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Displacement Sensor

Assume weak time-dependent unknown force 𝐹 𝑡 on oscillator 

so Hamiltonian 𝐻 𝑡 = ℏ𝜔(𝑎†𝑎 + 1/2) −  𝑞𝐹(𝑡).

For example LC oscillator

𝐻 𝑡 = ℏ𝜔(𝑎†𝑎 + 1/2) + 𝑔 𝑉(𝑡)(𝑎 + 𝑎†),  𝑞 = 𝑞 =
1

2
(𝑎 + 𝑎†)

What are the limits in determining the

displacement caused by V(t)?



Displacement Sensor

Force induces a certain displacement 𝑒−𝑖 𝑢  𝑝+𝑖 𝑣  𝑞 , assume 𝑢
and 𝑣 small.

Displacement acts on an oscillator sensor state |  𝜓𝑠𝑒𝑛𝑠𝑜𝑟 .

Goal: estimate 𝑢 and 𝑣 as  𝑢 and  𝑣 by clever measurement.

Single shot, single mode

Can we get accuracy down to zero (for increasing photon 

number) for both these estimates or 

is this forbidden by Heisenberg uncertainty?

 𝑝 =
𝑖

2
(𝑎† − 𝑎)



Displacement Intermezzo
Let 𝐷 𝛼 = exp(𝛼𝑎† − 𝛼∗𝑎†) be a unitary displacement

|  𝛼 = 𝐷 𝛼 |  0 with vacuum state |  0 .

𝐷 𝛼 𝐷 𝛽 = 𝑒𝑖 𝐼𝑚 𝛼𝛽∗
𝐷(𝛼 + 𝛽)

Horizontal axis: (𝑎 + 𝑎†)/2 ∝ 𝑞 (= 𝑅𝑒(𝛼))

Vertical axis: −𝑖(𝑎 − 𝑎†)/2 ∝ 𝑝 (= 𝐼𝑚 𝛼 )

Displacement is translation in phase space

𝑅 𝜃 = 𝑒−𝑖𝜃𝑎†𝑎 is a rotation, 𝑅 𝜃 |  𝛼 = |  𝛼𝑒−𝑖𝜃
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Displacement
𝐷 𝛼 = exp(𝛼𝑎† − 𝛼∗𝑎) unitary displacement

For example (in rotating frame of 

oscillator)

Take  𝜔𝑟 ≈ 𝜔𝑑 resonance.

And say Ω𝑦 𝑡 = Ω𝑦, Ω𝑥 𝑡 = Ω𝑥

𝐻𝑠𝑖𝑔𝑛𝑎𝑙 induces a displacement 

𝛼,with 𝑅𝑒 𝛼 ∝ Ω𝑦 , Im(α) ∝ Ω𝑥

Direction of displacement is controlled by Ω𝑥(𝑡) and Ω𝑦 𝑡 .
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𝐻𝑠𝑖𝑔𝑛𝑎𝑙 𝑡 = 𝜀 𝑡 𝑎𝑒−𝑖𝜔𝑟𝑡 + 𝑎†𝑒𝑖𝜔𝑟𝑡 .

𝜀 𝑡 = Ω𝑥(𝑡) cos 𝜔𝑑𝑡 + Ω𝑦 𝑡 sin 𝜔𝑑𝑡



Some Background

This is not the sensing of a magnetic field or an optical phase.

Penasa et al. (2016) (Paris group): Measurement of the 

microwave field amplitude beyond the standard quantum limit.

Using Rydberg atom-cavity mode

entangled state.

Protocol depends on knowing the 

direction of the displacement

Standard Quantum Limit arguments do not apply since we do 

not intend to measure a quadrature



Limitations on sensing

Ruler in phase space

what resolution (depending on

photon number)



Two-mode solutions

• Two modes, one with, say, amplitude-squeezed state and 

one phase-squeezed state, both undergoing displacement.

• Entanglement: two-mode squeezed state (e.g. Braunstein & 

Kimble 1999) one of which undergoes a displacement 𝐷(𝛽)

Trick is to have an eigenstate of both 𝑝1 + 𝑝2 and 𝑞1 − 𝑞2

Can we do it for a single mode?

Displacement notation 𝐷 𝛽 = exp(𝛽𝑎† − 𝛽∗𝑎)



Quantum Cramer-Rao Lower 

Bound
For unbiased estimates  𝑢 and  𝑣 (of the parameters u and v in 

displacement 𝑒−𝑖 𝑢  𝑝+𝑖 𝑣  𝑞)

𝑉𝑎𝑟  𝑢 + 𝑉𝑎𝑟(  𝑣) ≥ 2 (for coherent/thermal/squeezed states)

In general one has

𝑉𝑎𝑟  𝑢 + 𝑉𝑎𝑟  𝑣 ≥
1

2 𝑛 + 1
Derived from Σ ≥ 𝐹−1, taking traces, then minimizing r.h.s.

Is bound achievable/useful?

Genoni et al, PRA (2013)



Grid State

Common +1 eigenstate of 𝑆𝑝 = exp(𝑖  𝑝 2𝜋) and 𝑆𝑞 =

exp 𝑖  𝑞 2𝜋 we call grid state |  𝜓𝑔𝑟𝑖𝑑

Thus

𝑝 ≈ 0 𝑚𝑜𝑑 2𝜋, 𝑞 ≈ 0 𝑚𝑜𝑑 2𝜋.

 𝑛 ≈
1

4Δ2

𝜎 of Gaussian envelope ∽
1

Δ

and 𝜎 of individual peaks ~∆

Maximum strength of displacement

on vacuum input  𝑛 ≤ 𝜋/2

𝑒𝐴𝑒𝐵 = 𝑒𝐵𝑒𝐴𝑒[𝐴,𝐵], 𝑓𝑜𝑟 𝐴, 𝐵 𝑙𝑖𝑛. 𝑐𝑜𝑚𝑏 𝑜𝑓 𝑝 𝑎𝑛𝑑 𝑞

(Gottesman, Kitaev, Preskill, PRA 2001)
 𝑛 ≈ 12
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Qubit into an oscillator

Gottesman, Kitaev, Preskill 2001:  

Common +1 eigenstates of 𝑆𝑝 = exp(−𝑖  𝑝 2 𝜋) and 𝑆𝑞 =

exp 𝑖  𝑞 2 𝜋 with  𝑞,  𝑝 = 𝑖.

Thus

𝑝 = 0 𝑚𝑜𝑑 𝜋, 𝑞 = 0 𝑚𝑜𝑑 𝜋.

We have 𝑍 = exp 𝑖  𝑞 𝜋 , 𝑋 = exp −𝑖  𝑝 𝜋 , 

𝑍|  0 =  0 , 𝑍  1 = −|  1

How to prepare a finite-photon number version of these 

states (using coupling of bosonic mode to a qubit)?

𝑒𝐴𝑒𝐵 = 𝑒𝐵𝑒𝐴𝑒[𝐴,𝐵], 𝑓𝑜𝑟 𝐴, 𝐵 𝑙𝑖𝑛. 𝑐𝑜𝑚𝑏 𝑜𝑓 𝑝 𝑎𝑛𝑑 𝑞Note 𝑆𝑝 and 𝑆𝑞

slightly different as before

(state versus qubit space)



Approximate States
Common +1 eigenstates of 𝑆𝑝 = exp(−𝑖  𝑝 2 𝜋) and 

𝑆𝑞 = exp 𝑖  𝑞 2 𝜋 are  |0 and |  1 so that 

Z = exp 𝑖  𝑞 𝜋 with 𝑍  |0 =  |0 , 𝑍  |1 = −|  1 .

 |0  |1

Squeezed peaks at even multiples of 𝜋 Squeezed peaks at odd multiples of 𝜋

Error correction means detecting small displacements (measuring p and q mod 

𝜋) and reversing this displacement: this works for with 𝑢 , 𝑣 ≤ 𝜋/2. 

 𝑛 ≈
1

2Δ2

𝜎 of Gaussian envelope ∽
1

Δ

and 𝜎 of individual peaks ~∆



Preservation or Error Correction

• All errors (photon loss etc.) can be expanded in terms of linear

combinations of displacements, 𝑒𝑖 𝑢  𝑝 𝑒𝑖 𝑣  𝑞 for real u,v.

• Assume 𝑛𝑚𝑎𝑥 photons in oscillator. Expand (𝜅 𝑡𝑎)𝑝 in terms of

small displacements when 𝜅𝑡 𝑛𝑚𝑎𝑥 ≪ 1.

Error correction can be done with an ancilla oscillator state 

and linear optics (e.g. Glancy, Knill 2006) and can be repeated 

indefinitely as long as the approximate states can be viewed as 

a perfect state with only ‘small’ displacement errors

𝑒𝑖 𝑢  𝑝 𝑒𝑖 𝑣  𝑞 with 𝑢 , 𝑣 ≤ 𝜋/6

‘ 
𝜋

6
Threshold’



Qubit into an oscillator

What states offer ‘protection’, form a code?

Small displacement errors

Cat code (Yale group)

 |0 ∝ |  𝛼 + |  −𝛼 ,|  1 ∝ |  𝑖𝛼 + |  −𝑖𝛼 .

Single photon loss (action of 

annihilation operator a) can 

be detected by photon parity 

measurement (𝑃 = 𝑒𝑖𝜋𝑎†𝑎).

Single photon 

loss 𝑎|  0 = |  𝛼 − |  −𝛼 gives 

odd parity cat state.



Qubit into an oscillator

Measuring the parity operator P using an ancilla qubit.

Controlled-P uses dispersive qubit-cavity coupling 𝜒𝑍𝑎†𝑎 for 

time t with 𝜒𝑡 = 𝜋/2.

Grid states can also be prepared by repeatedly performing

‘Ramsey Phase Estimation’ Experiments.



Preparation of |0>
Approximate +1 eigenstate of 𝑆𝑞 = exp 𝑖  𝑞 2 𝜋

(and Z = exp 𝑖  𝑞 𝜋 ) is squeezed vacuum 𝑞 ≈ 0.
How to make this into an +1 eigenstate of 𝑆𝑝 = exp(−𝑖  𝑝 2 𝜋)?

Measure the eigenvalue 𝑒𝑖𝜃 of 𝑆𝑝 = 𝐷( 2𝜋)!

Phase Estimation

Phase Estimation: 

Protocol which take eigenstate |  𝜓𝜃 of unitary U with

𝑈|  𝜓𝜃 = 𝑒𝑖𝜃|  𝜓𝜃 and estimates 𝜃 as some  𝜃.

Only finite precision/approximate projection onto eigenstate.

No post-selection…

Displacement notation 𝐷 𝛼 = exp(𝛼𝑎† − 𝛼∗𝑎)



Phase Estimation (partial list)
Textbook PE:𝑙 = 2𝑘 , 𝑘 = 𝑀 − 1,…0 and use the circuit with

adaptive phases 𝜑 (semi-classical implementation of Fourier Transform, 

1999). One bit of phase per round.

Kitaev PE: 𝑙 = 2𝑘 , 𝑘 = 𝑀 − 1,…0 and use the circuit with

𝜑 = 0 and 𝜑 = 𝜋/2

Heisenberg-limited PE without adaptive phases (Higgins et al. NJP 2009): 

Kitaev PE with round repetition depending on k. Only useful if resources 

(#photons or time) for doing 𝑈𝑙 scale with l (no true here! it scales with 𝑙2) 

‘Homer-Simpson’ Non-adaptive PE:  l=1

M/2 times with phase 𝜑 = 0, M/2 times with phase 𝜑 = 𝜋/2.

Adaptive protocol with feedback (Berry, Wiseman, Breslin, PRA 2001): 

l=1 phase adaptively 𝜑 in each round.

U is displacement, need controlled-displacement

𝑈|  𝜓𝜃 = 𝑒𝑖𝜃|  𝜓𝜃

𝑃 0 =
1

2
(1 + cos 𝜃𝑙 + 𝜑 )
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Circuit-QED paradigm

• High-Q micro-cavity, say,1 𝑚𝑠𝑒𝑐 or more.

• High quality qubit, say, 𝑇1, 𝑇2 ≈ 𝑂 10 𝜇𝑠𝑒𝑐
• Strong dispersive qubit-cavity coupling 𝜒𝑍𝑎†𝑎

(e.g. 
𝜒

2𝜋
= 2.5𝑀𝐻𝑧, cavity/qubit detuning 1 GHz, nonlinearities O(1) kHz) 

• Dispersive coupling allows for qubit-controlled 
cavity rotation (𝑅 𝜃𝑍 = exp −𝑖𝜃 𝑎†𝑎 𝑍 ) which can 

be directly used for 

qubit-controlled displacement.

• Controlled-rotations take 𝑇 =  𝜋 𝜒 = 200 𝑛𝑎𝑛𝑜𝑠𝑒𝑐.

• Use no more than 50 photons

Cats in cavities, e.g. Vlastakis et al., Science 2013, Ofek et al.: arXiv.org:1602.04768 



Numerical Simulation Results
• Start with squeezed vacuum with 8.3 dB of squeezing.

Adaptive protocol with M=8 is best

Gives a 94% (heralded) chance of 

preparing a state for which ‘probability 

for p-shift errors beyond 𝜋/6’ on state is 

less than 1%.

Biggest source of concern are nonlinearities

𝐾 (𝑎†𝑎)2, 𝜒′Z(𝑎†𝑎)2.
and bad qubits. But Yale group can use

numerical techniques to prepare cavity

states such as GKP states.

• M=8 protocol is executed in 4 𝜇𝑠𝑒𝑐.
(number of photons in state  𝑛 ≈ 25 ± 25)



Displacement Sensor

Theory Analysis
Preparation of grid sensor state using textbook phase 

estimation

Displacement comes by…

Measurement of 𝑆𝑝 and 𝑆𝑞 using phase estimation.

Result: MSD  𝑢 + MSD(  𝑣) = 𝑂(  1  𝑛
)

Mean-square-deviation defined as MSD  𝑢 =
  𝑢 𝑃( 𝑢|𝑢)( 𝑢 − 𝑢)2

Puzzle: 𝑛 versus 𝑛? Intuitively, grid state with Δ parameter is squeezed so

that 𝑉𝑎𝑟(𝑝) ∼ Δ2 and  𝑛 ∼ 1/Δ2, so 1/ 𝑛 scaling expected….

Remember bound 𝑉𝑎𝑟  𝑢 + 𝑉𝑎𝑟  𝑣 ≥
1

2  𝑛+1



Other sensor: quantum 

compass state
Zurek, Nature 2001: state is  ∝ |  𝛼 + |  −𝛼 + |  𝑖𝛼 + |  −𝑖𝛼

Interference tiles in the 

middle have an area 

scaling as 
1

 𝑛

Displacement 𝐷(𝛽) of 

strength

𝛽 ∼
1

 𝑛
can map it onto 

orthogonal state.



Information
Assume 𝑢 and 𝑣 are uniformly distributed in interval 

[−
𝜋

2
,

𝜋

2
). What information about 𝑢 and 𝑣 can be obtained by 

measurement? 

Our finding: Quantum compass state has O(1) upper bound on 

information while information in grid state scales as Θ log  𝑛 .



Conclusion
Creation of Grid or GKP code states may be experimentally 

feasible (using some heralding/post-selection).

They could be useful for encoding a qubit into an oscillator as 

well as for displacement sensing. Phase estimation can be used 

for non-fault tolerant error correction.

Current work on protocol for breeding grid states from cat states

via beamsplitters and homodyne 

detection. M rounds is equivalent

to M rounds of ‘Ramsey 

phase-estimation’.

Bad: Large cats needed! (but fix..)

Good: grid states on the fly, no

nonlinearities.                           (improvement on scheme by Vasconcelos, Sanz, Glancy in 2010)


