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Qubit and Pauli Matries

Consider the two-level quantum system: qubits. A qubit (quantum
bit) is the quantum state (a unit vector) in a 2-dimensional complex

vector space C2 with an orthonormal basis {|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
}.

The Pauli matrices

{I =

[
1 0
0 1

]
,X =

[
0 1
1 0

]
,Z =

[
1 0
0 −1

]
,Y = −iXZ}

form a basis of the linear operators on a single-qubit state space.

X |0〉 = |1〉, Z |1〉 = −|1〉.

The eigenvalues of X ,Y , or Z are ±1.

XY = −YX , XZ = −ZX , YZ = −ZY .
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n-fold Pauli group

n-fold Pauli group:

Gn = {cM1 ⊗ · · · ⊗Mn : Mj ∈ {I ,X ,Y ,Z}, c ∈ {±1,±i}}.

Any elements in Gn has eigenvalues ±1.

Any two elements g , h ∈ Gn either commute or anticommute with
each other.

The weight of E ∈ Gn is the number of its nonidentity components.
Ex. the weight of X ⊗ Y ⊗ Z ⊗ I ⊗ I is three.
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Quantum Stabilizer Codes

S = 〈g1, g2, · · · , gn−k〉: an Abelian subgroup of Gn and −I /∈ S.

An [[n, k, d ]] quantum stabilizer code C(S) corresponding to the
stabilizer group S is the 2k -dimensional subspace of the n-qubit state
space C2n fixed by S so that any error E ∈ Gn of wt(E) ≤ d − 1 is
detectable.

C(S) = {|ψ〉 ∈ C2n : g |ψ〉 = |ψ〉 , ∀g ∈ S}.

An error E ∈ Gn can be detected if it anticommutes with some
stabilizer gj ∈ S:

gj(E |ψ〉) = −Egj |ψ〉 = − (E |ψ〉).

The error syndrome of E is the binary (n− k)-tuple corresponding to
the eigenvalues of g1, . . . , gn−k .

+1 :→ 0

−1 :→ 1
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The eigenstate of S ⊂ Gn is called a stabilizer state if k = 0
or S = 〈g1, g2, · · · , gn〉.

The Einstein-Podolsky-Rosen (EPR) pair

|00〉+ |11〉√
2

is stabilized by X ⊗ X and Z ⊗ Z .
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Calderbank-Shor-Steane (CSS) Codes

For simplicity, we consider an [[n = 2γ + 1, 1]] CSS code Q that encodes
one logical qubit in n physical qubits.

Suppose Q is defined by an [n, n − γ] classical dual-containing code
C1(⊇ C⊥1 ) and let H1 be its binary parity-check matrix of dimension n× γ.
Let [M]i,j denote the (i , j) entry of a matrix M. Then the Z and X
stabilizer generators of Q are

gi =
n⊗

j=1

Z [H1]i,j

and

gγ+i =
n⊗

j=1

X [H1]i,j ,

respectively, for i = 1, · · · , γ.

Let |0〉L, |1〉L denote the encoded |0〉, |1〉. Let |+〉L = 1√
2

(|0〉L + |1〉L).

Let X̄ , Z̄ denote the logical operators of Q.
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Steane Syndrome Extraction

Steane syndrome extraction

   

Two ancilla states are required: |+〉L, |0〉L.

Suppose a Pauli error Xe occurs on a quantum codeword, where e ∈ Zn
2 is a

binary n-tuple (row vector) indicating which qubits have X errors.

Ex. X101 = X ⊗ I ⊗ X .

Then its (binary) error syndrome sX ∈ Zγ2 , which corresponds to the eigenvalues
of g1, · · · , gγ , is given by

sTX = H1m
T = H1e

T ,

where m is the binary measurement outcome vector.

The Z error syndrome is defined similarly: sZ ∈ Zγ2 .
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CSS State Preparation

The two ancillas |+〉L and |0〉L are actually stabilizer states of Q by including
logical operator X̄ or Z̄ in with the stabilizer generators. Namely, |+〉L is
stabilized by

〈g1, · · · , gn−1, X̄ 〉,

and |0〉L is stabilized by
〈g1, · · · , gn−1, Z̄〉.

The stabilizer states of any Calderbank-Shor-Steane (CSS) codes can be
prepared by quantum circuits with CNOT and H gates only.

H = [HX |HZ ] =

(
Ir A B 0 0 0
0 0 0 D Is F

)
,

H′ =

(
Ir 0 0 0 0 0
0 0 0 0 Is 0

)
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Example

The [[7, 1, 3]] Steane code has stabilizer generators

g1 = Z1Z4Z5Z7,

g2 = Z2Z4Z6Z7,

g3 = Z3Z5Z6Z7,

g4 = X1X4X5X7,

g5 = X2X4X6X7,

g6 = X3X5X6X7,

and logical operators X̄ = X1X2X4, Z̄ = Z1Z2Z4.

|0̄〉 of the [[7, 1, 3]] Steane code: (|+〉 = H|0〉)



Errors Propagate through CNOT Gates

X • • X • • Z

= =

X Z Z

A procedure is fault-tolerant if it has the property that if only one
component (or more generally, a small number of components) in the
procedure fails, the errors produced by this failure are not transformed by
the procedure into an uncorrectable error.

In general, we don’t know how to fault-tolerantly prepare ancilla states of
an arbitrary CSS code.

If we have the correct error syndrome of a polluted ancilla, ex. |0〉L, we
can prepare a clean one.
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What do we do?

Main idea: Extract the correct error syndromes of some target
ancillas from a bunch of noisy ancillas.
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Distillation by Classical Codes

Suppose we are given a bunch of imperfect ancillas of some CSS code defined
by H1.




 




  




  




  




  

Let H2 = [AT Ir ] be a parity-check matrice of a classical [m, r , 2t + 1] linear
block code C2 in the systematic form.

If [A]i,j = 1, we apply transversal CNOTs from the i-th ancilla to the (k + j)-th
ancilla. As a consequence, X errors on the target ancillas will propagate to the
parity-check ancillas via the CNOTs. Ex. the [5,1,5] repetition code.

The error syndrome of the target ancilla are hidden in the error syndromes of
the other four parity-check ancillas.

H2


e1HT

1
...

emHT
1

 =


ν1HT

1
...

νrHT
1

 .
ν1, . . . , νr are measured.

e1HT
1 , . . . , emHT

1 are still unknown.
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Distillation Protocol by Classical Codes

Our distillation protocol for CSS stabilizer states by classical codes (Protocol I)
involves two rounds of error corrections: one for X errors and one for Z errors.

Suppose we are using an [m, r ] code.

1 (encoding for the first round) Divide the noisy ancillas up into groups of m.
Coupling the qubits according to the parity-check matrix. Then measure all the
qubits of each of the parity-checking ancillas.

2 (decoding) We can then use the classical codes C1 (or C⊥1 if we are distilling |0〉L
or |1〉L) and C2 to locate X errors among the m ancillas, and correct them (or
just keep track of them). The rate of X errors goes from p to cpt+1 for some c.
The rate of Z errors on the remaining k ancillas will increase to ∼ (β + 1)p.

3 Of a fraction k/m, we again divide them up into groups of m. It is very
important that ancillas that were grouped together in the first round are not
grouped together in the second round, because their errors are correlated. Then
do similar steps of 1 and 2.

4 The rate of Z errors will go from (β + 1)p to c((β + 1)p)t+1 = c ′pt+1, and the
rate of X errors will go from cpt+1 to (β + 1)cpt+1 = c ′′pt+1. (So the rate of
an arbitrary Pauli error is roughly c̃pt+1 for some c̃.)



Distillation Protocol by Classical Codes

Our distillation protocol for CSS stabilizer states by classical codes (Protocol I)
involves two rounds of error corrections: one for X errors and one for Z errors.

Suppose we are using an [m, r ] code.

1 (encoding for the first round) Divide the noisy ancillas up into groups of m.
Coupling the qubits according to the parity-check matrix. Then measure all the
qubits of each of the parity-checking ancillas.

2 (decoding) We can then use the classical codes C1 (or C⊥1 if we are distilling |0〉L
or |1〉L) and C2 to locate X errors among the m ancillas, and correct them (or
just keep track of them). The rate of X errors goes from p to cpt+1 for some c.
The rate of Z errors on the remaining k ancillas will increase to ∼ (β + 1)p.

3 Of a fraction k/m, we again divide them up into groups of m. It is very
important that ancillas that were grouped together in the first round are not
grouped together in the second round, because their errors are correlated. Then
do similar steps of 1 and 2.

4 The rate of Z errors will go from (β + 1)p to c((β + 1)p)t+1 = c ′pt+1, and the
rate of X errors will go from cpt+1 to (β + 1)cpt+1 = c ′′pt+1. (So the rate of
an arbitrary Pauli error is roughly c̃pt+1 for some c̃.)



Distillation Protocol by Classical Codes

Our distillation protocol for CSS stabilizer states by classical codes (Protocol I)
involves two rounds of error corrections: one for X errors and one for Z errors.

Suppose we are using an [m, r ] code.

1 (encoding for the first round) Divide the noisy ancillas up into groups of m.
Coupling the qubits according to the parity-check matrix. Then measure all the
qubits of each of the parity-checking ancillas.

2 (decoding) We can then use the classical codes C1 (or C⊥1 if we are distilling |0〉L
or |1〉L) and C2 to locate X errors among the m ancillas, and correct them (or
just keep track of them). The rate of X errors goes from p to cpt+1 for some c.
The rate of Z errors on the remaining k ancillas will increase to ∼ (β + 1)p.

3 Of a fraction k/m, we again divide them up into groups of m. It is very
important that ancillas that were grouped together in the first round are not
grouped together in the second round, because their errors are correlated. Then
do similar steps of 1 and 2.

4 The rate of Z errors will go from (β + 1)p to c((β + 1)p)t+1 = c ′pt+1, and the
rate of X errors will go from cpt+1 to (β + 1)cpt+1 = c ′′pt+1. (So the rate of
an arbitrary Pauli error is roughly c̃pt+1 for some c̃.)



Distillation Protocol by Classical Codes

Our distillation protocol for CSS stabilizer states by classical codes (Protocol I)
involves two rounds of error corrections: one for X errors and one for Z errors.

Suppose we are using an [m, r ] code.

1 (encoding for the first round) Divide the noisy ancillas up into groups of m.
Coupling the qubits according to the parity-check matrix. Then measure all the
qubits of each of the parity-checking ancillas.

2 (decoding) We can then use the classical codes C1 (or C⊥1 if we are distilling |0〉L
or |1〉L) and C2 to locate X errors among the m ancillas, and correct them (or
just keep track of them). The rate of X errors goes from p to cpt+1 for some c.
The rate of Z errors on the remaining k ancillas will increase to ∼ (β + 1)p.

3 Of a fraction k/m, we again divide them up into groups of m. It is very
important that ancillas that were grouped together in the first round are not
grouped together in the second round, because their errors are correlated. Then
do similar steps of 1 and 2.

4 The rate of Z errors will go from (β + 1)p to c((β + 1)p)t+1 = c ′pt+1, and the
rate of X errors will go from cpt+1 to (β + 1)cpt+1 = c ′′pt+1. (So the rate of
an arbitrary Pauli error is roughly c̃pt+1 for some c̃.)



Distillation Protocol by Classical Codes

Our distillation protocol for CSS stabilizer states by classical codes (Protocol I)
involves two rounds of error corrections: one for X errors and one for Z errors.

Suppose we are using an [m, r ] code.

1 (encoding for the first round) Divide the noisy ancillas up into groups of m.
Coupling the qubits according to the parity-check matrix. Then measure all the
qubits of each of the parity-checking ancillas.

2 (decoding) We can then use the classical codes C1 (or C⊥1 if we are distilling |0〉L
or |1〉L) and C2 to locate X errors among the m ancillas, and correct them (or
just keep track of them). The rate of X errors goes from p to cpt+1 for some c.
The rate of Z errors on the remaining k ancillas will increase to ∼ (β + 1)p.

3 Of a fraction k/m, we again divide them up into groups of m. It is very
important that ancillas that were grouped together in the first round are not
grouped together in the second round, because their errors are correlated. Then
do similar steps of 1 and 2.

4 The rate of Z errors will go from (β + 1)p to c((β + 1)p)t+1 = c ′pt+1, and the
rate of X errors will go from cpt+1 to (β + 1)cpt+1 = c ′′pt+1. (So the rate of
an arbitrary Pauli error is roughly c̃pt+1 for some c̃.)



Example

The [[7, 1, 3]] Steane code has stabilizer generators

g1 = Z1Z4Z5Z7,

g2 = Z2Z4Z6Z7,

g3 = Z3Z5Z6Z7,

g4 = X1X4X5X7,

g5 = X2X4X6X7,

g6 = X3X5X6X7,

and logical operators X̄ = X1X2X4, Z̄ = Z1Z2Z4.

Suppose we have three noisy Steane codewords E1|0〉L, E2|0〉L, and E3|0〉L,
where E1 = X1X2, E2 = X3 and E3 = X4.

Apparently E1 is an uncorrectable error for Steane code.



After the (perfect) distillation circuit by the [3, 1, 3] code, the errors
become E ′1 = E1, E ′2 = E1E2 = X1X2X3, and E ′3 = E1E3 = X1X2X4 = X̄ .

Then measuring bitwise the second and the third codewords, and
calculating the parities of g1, g2, g3 and Z̄ , we have their syndrome bits

1111,
0001.

Now we can use the parity check matrix of the [3, 1, 3] repetition code to
recover the four syndrome bits of the first codeword:

0001.

Since the fourth bit is 1, we apply X̄ to the first codeword to correct the
logical error and the final state is

X4|0〉L,

which has a correctable residual error X4. Thus we have fault-tolerantly
prepared an ancilla |0〉L in this case.



Example

Assume the distillation circuit is perfect.

Depolarizing channel with parameter p: An error X , Y , or Z occurs with
probability p/3 and no error occurs with probability 1− p.

Ancilla distillation by 1) [7, 4, 3] Hamming code (green); 2) [3, 1, 3]
repetition code (red); 3) [5, 1, 5] repetition code (blue). The dashed line is
the rate without distillation.
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If p is small enough, our protocol will work. As can be seen in this
logarithmic plot, each curve appears linear with slope t + 1 and the
“threshold” for each code is specified by log pth = − 1

t
log c̃.



It is also possible to do distillation by using quantum CSS codes.
See arXiv:1605.05647.

Let’s go to its applications.



Ancilla Saving Protocol

Clean ancillas |0〉L and |+〉L are expensive resources. We would like to
save them during syndrome measurement as long as errors do not
accumulate seriously.

Suppose we have m codewords |ψ1〉, · · · , |ψm〉 of the [[n, 1]] CSS code Q
defined by H1. Our goal here is to estimate the m error syndromes by
using only r (< m) clean ancillas |+〉L.
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When the ancilla consumption rate is fixed, we can increase the frequency
of quantum error correction with the ancilla saving protocol, which is
equivalent to lowering the error rate on the data qubits.
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As can be seen, applying the ancilla saving protocol with the [5, 1, 5] is
better than the original scheme for p < 0.00925. Of course, this fidelity
gain was at the cost of some additional CNOT gates and classical
decoding steps.



Teleportation-based FTQC Scheme

T. A. Brun, Y.-C. Zheng, K.-C. Hsu, J. Job, and C.-Y. Lai,
“Teleportation-Based Fault-tolerant Quantum Computation in Multi-qubit Large
Block Codes,” arXiv:1504.03913.

Ancilla Factory

Memory Array Processor
    Array

M M M

MMM

P P

P P

Am Am Am Ap Ap

  ......   ......

M: memory blocks of large stabilizer codes
P: concatenated [[15, 1, 3]] punctured Reed-Muller codes.

Ancilla factory : constantly prepares the ancilla qubits for error correction

and teleportation, such as |0̄〉, which are CSS stabilizer states.



Measuring a Logical X or Z operator

1 Suppose we wish to measure X̄i X̄j . The logical qubits i and j of the X ancilla are
prepared in the state

|Φ+〉L =
1
√

2
(|0i0j 〉L + |1i1j 〉L),

which is a joint +1 eigenstate of X̄i X̄j and Z̄i Z̄j , and the other logical qubits are
prepared in the state |0〉L.

2 Suppose we wish to measure X̄i Z̄j on logical qubits i and j .

If i 6= j , logical qubit i of the X ancilla and logical qubit j of the
Z ancilla at step 1) are prepared in the entangled state

|Ωij〉L = 1/2 (|0i0j〉L + |0i1j〉L + |1i0j〉L − |1i1j〉L) ,

which is a joint +1 eigenstate of X̄i Z̄j and Z̄i X̄j , while the other
logical qubits of the X or Z ancillas are prepared in the state |0〉L
or |+〉L, respectively.
If i = j , the ancilla is prepared in a joint +1 eigenstate of Ȳi Z̄i

and Z̄i X̄i .



Multipartite Entanglement Purification

In the task of multipartite entanglement purification for CSS stabilizer states by
local operations and classical communication (LOCC), each qubit is considered
as a single party.

These parties share several copies of noisy CSS stabilizer states. The goal is to
purify a small subset of these states by LOCC only.
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Transversality and LOCC

All the operations we need in our previous distillation protocols are
transversal controlled-NOT (CNOT) gates, bitwise single-qubit
measurements, classical decoding, and correction by Pauli operators.

The encoded CNOT gate is in a bitwise fashion.

•
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codeword 1 . . . •
•

codeword 2 . . .
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These features for fault-tolerance are similar to the constraint of LOCC in
the multipartite protocol.

Our CSS state distillation protocols are naturally also multipartite
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Conclusion

When the circuit is imperfect, need another classical code to encode the error
syndrome as in
A. Ashikhmin, C.-Y. Lai, and T. A. Brun, “Robust quantum error syndrome extraction by classical coding,”

in Proceedings of IEEE International Symposium on Information Theory (ISIT 2014), pp. 546-550, June

2014 in Honolulu, Hawaii, USA.

.... in Preparation.

Relation between the distillation protocol and compressed sensing?



Thank You!


	 Fault-tolerant Quantum Computation
	Stabilizer Codes, CSS Codes
	Steane Syndrome Extraction

	CSS State Distillation
	Applications
	Ancilla Saving Protocol
	Teleportation-based FTQC by Large Block Codes
	Multipartite Entanglement Purification

	Conclusion

