

Reliable and robust entanglement witness

Xiao Yuan, Quanxin Mei, Shan Zhou, and Xiongfeng Ma

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China

PHYSICAL REVIEW A 93, 042317 (2016)

AQIS 2016

ENTANGLEMENT WITNESS AND THE RELIABILITY PROBLEM

• Separable state

 $\sigma = \sum_i p_i
ho_A^i \otimes
ho_B^i$

• For any entangled state ρ , there exists a Hermitian operator W such that $tr[W\rho] < 0$, while $tr[W\sigma] \ge 0$ for all separable state σ .

TIME-SHIFT ATTACK

NONLOCAL GAMES

- Quantum inputs and classical outputs with probability $P(a, b | \tau_s, \omega_t)$
- There must exist a linear combination of probabilities

$$I(p) = \sum \beta_{s,t,a,b} P(a,b|\tau_s,\omega_t)$$

such that $I(P_{\rho}) < 0$ and $I(P_{\rho}) \ge 0$ for all separable states.

F. Buscemi, PRL 108, 200401 (2012)

RELIABLE EW: MDIEW

• Suppose *W* to be an EW for ρ_{AB} . Given two measurement bases $\{\tau_s^T \in H_A\}$ and $\{\omega_t^T \in H_B\}$, W can be decomposed as

$$W = \sum \beta_{s,t} \tau_s^T \otimes \omega_t^T$$

• Then the MDIEW can be given by

 $I(p) = \sum \beta_{s,t} P(1,1|\tau_s,\omega_t)$

C. Branciard et al., PRL 110, 060405 (2013)

MDIEW EXAMPLE

- Consider a 2-qubit Werner state $\rho_{AB}^v = v |\Psi^-\rangle \langle \Psi^-| + (1-v)I/4$ with $v \in [0,1]$ and $|\Psi^-\rangle = \frac{|01\rangle |10\rangle}{\sqrt{2}}$
- ρ_{AB} is entangled if and only if v > 1/3, it can be detected by $W = \frac{1}{2}I |\Psi^-\rangle\langle\Psi^-|$, where $tr[W\rho] = \frac{1-3v}{4} < 0$ for v > 1/3
- Define $\sigma_0 = I$ and $\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$ as the Pauli matrix. For $s, t = 0, ..., 3, \tau_s = \sigma_s \frac{I + \vec{n} \cdot \vec{\sigma}}{2} \sigma_s, \ \omega_t = \sigma_t \frac{I + \vec{n} \cdot \vec{\sigma}}{2} \sigma_t$
- Then $\beta_{s,t} = \begin{cases} \frac{5}{8} & s = t \\ -\frac{1}{8} & s \neq t \end{cases}$, and the MDI-EW is

$$I(p) = \frac{5}{8} \sum_{s=t} P(1,1|\tau_s,\omega_t) - \frac{1}{8} \sum_{s\neq t} P(1,1|\tau_s,\omega_t)$$

MDIEW EXPERIMENT

P. Xu, X. Yuan, et al., PRL 112, 140506 (2014)

THE ROBUSTNESS PROBLEM

- In MDIEW, we have $I(p) = tr[W\rho]/d_A d_B$ with perfect measurement.
- The implemented witness, which may although be designed optimally in the first place, can become a bad one
 with imperfect measurement, which merely detects no entanglement.

- The observed experimental data may still have enough information for detecting entanglement.
- The key problem is to find the best estimation of entanglement given the observed experimental data.

COMPARISON WITH BELL INEQUALITY

- Bell inequality: $I(p) = \sum \beta_{s,t,a,b} P(a, b|x, y)$, linear programming.
- MDIEW: $I(p) = \sum \beta_{s,t,a,b} P(a, b | \tau_s, \omega_t)$, NP-hard.

ROBUST MDIEW

- Problem to solve: find the optimal coefficients $\beta_{s,t}$ for the observed probability distribution $P(1,1|\tau_s,\omega_t)$.
- Minimize : $I(p) = \sum \beta_{s,t} P(1,1|\tau_s,\omega_t)$
- Constraints:
 - Tr[W]=1,
 - $W = \sum \beta_{s,t} \tau_s^T \otimes \omega_t^T$ is an EW, that is, $\langle \psi |_A \langle \phi |_B W | \psi \rangle_A | \phi \rangle_B \ge 0$, for all pure states $|\psi \rangle_A | \phi \rangle_B$.

ϵ -LEVEL MDIEW

• A Hermitian operator W_{ϵ} is defined as an ϵ -level entanglement witness, when

 $\operatorname{Prob}\{\operatorname{Tr}[\sigma W_{\epsilon}] < 0 | \sigma \in S\} \leq \epsilon,$

where *S* is the set of separable states.

- Constraints: randomly generate N separable states $|\psi\rangle_A^i |\phi\rangle_B^i$ and require the average $\langle W_{\epsilon} \rangle \ge 0$ only for these states.
- To do so, we need to set $N \ge \frac{r}{\epsilon\beta} 1$, where r is the number of optimization variables, β is the success probability.

F. G. S. L. Brandao and R. O. Vianna, PRL 93, 220503 (2004).

INTUITION AND EXAMPLE

- Two-qubit Werner state $\rho_{AB}^v = v |\Psi^-\rangle \langle \Psi^-| + (1-v)I/4$ with $v \in [0,1]$ and $|\Psi^-\rangle = \frac{|01\rangle |10\rangle}{\sqrt{2}}$
- Entanglement witness $W = \frac{1}{2}I |\Psi^-\rangle\langle\Psi^-|$

SUMMARY

- The optimization is only a post-processing of experiment data, thus can be easily applied to existing experiment.
- The optimization program finds the ϵ -level optimal EW W_{ϵ} , which as its name indicates, has a probability less than or equal to ϵ to detect a separable state to be entangled. To decrease ϵ , one can increase N or calculate α such that $W = W_{\epsilon} + \alpha I$ is an EW.
- A different approach to the robustness problem is given in [E. Verbaniset al., Phys. Rev. Lett. 116, 190501, 2016].

THANK YOU!

• Xiao Yuan, 2016