Quantum error-correction in black holes

Beni Yoshida (Perimeter Institute)

[1] Holographic quantum error-correcting codes,

[2] Chaos in quantum channel,

[3] Complexity by design, arXiv:1609:xxxxx

Daniel Harlow (Harvard → MIT)

Xiao-liang Qi (Stanford)

Fernando Pastawski (Caltech→Berlin) John Preskill (Caltech)

Daniel Roberts (MIT→IAS)

Simons collaborations

A black hole is a quantum errorcorrecting code

Anti-de Sitter/Conformal field theory (AdS/CFT) correspondence

• [Conjecture] Equivalence of string (gravity) theory in bulk with CFT on boundary (Maldacena)

Hyperbolic space

(negatively curved)

Bulk (D+1)-dimensional theory with gravity on AdS space

Anti-de Sitter/Conformal field theory (AdS/CFT) correspondence

- [Conjecture] Equivalence of string (gravity) theory in bulk with CFT on boundary (Maldacena)
- [Holography] Bulk degrees of freedom are encoded in boundary, like a hologram.

Quantum entanglement in AdS/CFT

Space-time as a tensor network

• [Swingle's conjecture]

AdS/CFT correspondence can be expressed as a MERA?

minimal surface

MERA = Multi-scale Entanglement Renormalization Ansatz (Vidal)

Concrete and simple toy tensor network model (joint with Harlow, Pastawski and Preskill)

Dictionary : Correspondence of operators

boundary system

bulk system

Bulk operator vs boundary operator

• [Entanglement wedge reconstruction]

A bulk operator ϕ can be represented by some integral of local boundary operators supported on A if ϕ is contained inside the entanglement wedge of A.

Remarks

- Entanglement wedge may go beyond black hole horizons (i.e. no firewall).
- "Proven" by using a generalized RT formula (Jefferis et al, Dong et al, Bao et al)
- No explicit recipe is known for more than one intervals

Bulk locality puzzle

• The reconstruction recipe leads to a paradox

All the bulk operators must correspond to identity operators on the boundary ?

If so, the AdS/CFT seems very boring ...

Quantum error-correction in AdS/CFT ?

• The AdS/CFT correspondence can be viewed as a quantum error-correcting code. [Almheiri-Dong-Harlow].

They are different operators, but act in the same manner in a low energy subspace.

cf. Quantum secret-sharing code

Let's construct a toy model

A simple toy model

1 bulk qubit

in total, just 6 qubits

5 boundary qubits

A bulk operator must have representations on any region with three qubits.

Entanglement wedge reconstruction !

Five-qubit code

• Encode a single logical qubit into a system of five qubits.

 $\mathcal{C} = \{ |\psi\rangle : S_j |\psi\rangle = |\psi\rangle \; \forall j \}$

• Five-qubit code has code distance 3

set of states with distance 1

The code can correct single-qubit errors !

Five-qubit code is a quantum gravity

Perfectness of five qubit code

• Let's view the five-qubit code as a six-leg tensor.

• Any leg can be used as an input of quantum codes.

A holographic quantum error-correcting code

• A tiling of the five qubit code

Entanglement wedge reconstruction

• 1 in & 3 out (operator pushing)

Holographic state

• The Ryu-Takayanagi formula holds exactly (tiling of perfect tensors)

Coarse-graining (RG transformation) = Distillation of EPR pairs along the geodesic

EPR pairs

Perfect tensors

• A pure state with maximal entanglement in any bipartition

Perfect tensor (2n legs)

• Five qubit code

Random tensors

- Perfect tensors are very rare...
- But almost perfect tensors are pretty common !
 - Pick a Haar random state.

Due to the Page's theorem, the state is almost maximally entangled along any cut.

• To construct a holographic code/state, just pick tensors randomly.

Coding properties: erasure threshold

• Remove qubits with probability $p = \frac{1}{2} - \epsilon$

A central bulk leg is contained in the entanglement wedge of A (if |A|>|B|)

Erasure threshold = 1/2

New quantum codes from quantum gravity ?

So far, no black holes...

Information loss puzzle

• Is quantum information lost?

Information loss puzzle

• Or hidden into some non-local degrees of freedom ?

Locally it looks like " $e^{-\beta H}$ ", but globally it is not .

Quantum error-correction

• Scrambling is very similar to how quantum error-correcting codes work.

• Local indistinguishability.

Choi-Jamilkowski isomorphism

• Quantum channel on n qubits can be viewed as a state on 2n qubits.

unitary operator as a state

$$U = \sum_{i,j} U_{i,j} |i\rangle \langle j| \qquad |U\rangle = \sum_{i,j} U_{i,j} |i\rangle \otimes |j\rangle$$

in U out in U out out

[Choi-Jamilkowski, Hayden-Preskill,Hartman-Maldacena]

Scrambling in a black hole

• Thermofield double state (finite T)

$$\rho_{in} = \frac{e^{-\beta H}}{\text{Tr } e^{-\beta H}} \qquad \rho_{out} = \frac{e^{-\beta H}}{\text{Tr } e^{-\beta H}}$$
$$|\Psi\rangle = \sum_{j} e^{-\beta E_{j}/2} e^{-iE_{j}t} \psi_{j}\rangle \otimes |\psi_{j}\rangle$$

• A black hole geometry for the TFD state is the two-sided hole (AdS/CFT prediction)

Let's construct a tensor network toy model !

[Maldacena]

Toy model of the Einstein-Rosen bridge

• Consider a network of random unitary operators, tiling the wormhole geometry.

How do we probe the interior of a black hole ?

Out-of-time ordered correlation functions

• We should measure some "hidden" correlations (Kitaev 2014)

• Previously considered by Larkin and Ovchinikov in 1960s, and recently by Shenker and Stanford

Time evolution of operators

- OTOCs detect the growth of operators
- Consider $OTO = \langle A(0)B(t)A^{\dagger}(0)B^{\dagger}(t) \rangle$ (commutator) [A, B] = 0 then OTO = 1
 - $\{A, B\} = 0$ then OTO = -1

Non-commutativity between A(0) and B(t)

• Expand B(t):

$$B(t) = e^{-iHt} B e^{iHt} = \sum_{j} \alpha_{j} P_{j}$$

high-weight Pauli operators

Key Questions

- How do we <u>define</u> scrambling ?
- <u>Quantum information theoretic meaning</u> of OTO ?
- Is the <u>converse</u> true ?

scrambling
$$\overrightarrow{}$$
 OTO $\simeq 0$

I will relate OTOCs to entanglement entropies (joint with Hosur, Qi and Roberts)

• Average of OTO over local operators A and D at T=infty

 $\left| \left\langle A(0)D(t)A^{\dagger}(0)D^{\dagger}(t) \right\rangle \right|$ average over A, D

• Average of OTO over local operators A and D at T=infty

$$\begin{split} \left| \left\langle A(0)D(t)A^{\dagger}(0)D^{\dagger}(t) \right\rangle \right| = & \frac{1}{4^{a+d}} \sum_{A,D} \left\langle A(0)D(t)A^{\dagger}(0)D^{\dagger}(t) \right\rangle \\ & \int \\ \text{average over A, D} \end{split} \text{Pauli operators (unitary 1-design)} \end{split}$$

• Average of OTO over local operators A and D at T=infty

$$\begin{vmatrix} \langle A(0)D(t)A^{\dagger}(0)D^{\dagger}(t) \rangle \end{vmatrix} = \frac{1}{4^{a+d}} \sum_{A,D} \langle A(0)D(t)A^{\dagger}(0)D^{\dagger}(t) \rangle$$
Pauli operators (unitary 1-design)
average over A, D
$$input \qquad A \qquad B \qquad A \qquad D$$
output
$$\bigcup_{C \qquad D} \qquad A \qquad O \qquad O \qquad O \qquad O \qquad O$$

• Average of OTO over local operators A and D at T=infty

• Average of OTO over local operators A and D at T=infty

This implies the mutual information $I_{BD}^{(2)} = S_B^{(2)} + S_D^{(2)} - S_{BD}^{(2)}$ is small

B and D are not correlated, so the system is scrambling.

• Average of OTO over local operators A and D at T=infty

• If $OTO \simeq 0$ then, $S_{BD}^{(2)}$ is large

This implies the mutual information $I_{BD}^{(2)} = S_B^{(2)} + S_D^{(2)} - S_{BD}^{(2)}$ is small

B and D are not correlated, so the system is scrambling.

• For finite T, we will consider the so-called Thermofield double state.

Scrambling phenomena in a black hole

• This captures key properties of scrambling for "large-N" theories.

Eg) Ballistic propagations of entanglement, RT formula in a wormhole geometry...

- Operator size grows linearly, OTO will pick it up.
- For a non-local random quantum circuit, the scrambling time is log(n) [Cleve et al 2006]

Random unitary (maximally entangled)

Scrambling in AdS black hole

mutual information I(A, B) is large

OTO correlators will be small.

mutual information I(A, B) is (almost) zero

What did we learn ?

Lesson 1

The AdS/CFT correspondence is a quantum error-correcting code.

Bulk quantum information is encoded in boundary like a hologram.

very entangled tensor (eg random tensor)

Lesson 2

OTO correlator is the probe of space-time

OTO correlator detects scrambling/ chaos

Lesson 3

OTO correlators are the probes of space-time (seeing the interior of a black hole)

 $OTO = \langle A(0)B(t)C(0)D(t) \rangle$

1970s

Black hole =

2010s

Black hole =

[1] Holographic quantum error-correcting codes

String

[2] Chaos in quantum channel,

[3] Complexity by design, arXiv:1609:xxxxx

Daniel Harlow (Harvard → MIT)

Xiao-liang Qi (Stanford)

Fernando Pastawski (Caltech→Berlin) John Preskill (Caltech)

Daniel Roberts (MIT→IAS)

Simons collaborations

Thank you !