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A black hole is a quantum error-
correcting code



• [Conjecture] Equivalence of string (gravity) theory in bulk with CFT on 
boundary (Maldacena)

Boundary D-dimensional conformal field 
theory (without gravity)

Bulk (D+1)-dimensional theory 
with gravity on AdS space

Anti-de Sitter/Conformal field theory (AdS/CFT) 
correspondence

Hyperbolic space 
(negatively curved)



2-dimensional “qubits” on AdS
1-dimensional strongly 
interacting “qubits”

• [Holography] Bulk degrees of freedom are encoded in boundary, like a hologram.

Anti-de Sitter/Conformal field theory (AdS/CFT) 
correspondence

• [Conjecture] Equivalence of string (gravity) theory in bulk with CFT on 
boundary (Maldacena)

Hyperbolic space 
(negatively curved)

“holography”



• [Ryu-Takayanagi formula]

Quantum entanglement in AdS/CFT

S(A) =
1

4GN
min
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Minimize over spatial bulk 
surfaces homologous to A

QM
GR

A A1 A2

(For “large N“)



Space-time as a tensor network

• [Swingle’s conjecture]

AdS/CFT correspondence can be expressed as a MERA ?

MERA = Multi-scale Entanglement Renormalization Ansatz (Vidal)
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Concrete and simple toy tensor network model 

(joint with Harlow, Pastawski and Preskill)



Dictionary : Correspondence of operators
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Bulk operator vs boundary operator 
• [Entanglement wedge reconstruction]

• Entanglement wedge may go beyond black hole horizons (i.e. no firewall).

A bulk operator     can be represented by some integral of local boundary operators 

supported on A if     is contained inside the entanglement wedge of A. 
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• “Proven” by using a generalized RT formula (Jefferis et al, Dong et al, Bao et al)

• No explicit recipe is known for more than one intervals

Remarks
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Bulk locality puzzle
• The reconstruction recipe leads to a paradox

All the bulk operators must correspond to identity operators on the boundary ?

If so, the AdS/CFT seems very boring …



Quantum error-correction in AdS/CFT ? 

• The AdS/CFT correspondence can be viewed as a quantum error-correcting code. 
[Almheiri-Dong-Harlow].
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They are different operators, but act in the same manner in a low energy subspace. 

cf. Quantum secret-sharing code



Let’s construct a toy model



A simple toy model

A bulk operator must have representations on any region with three qubits.

logical qubit

physical qubits

Entanglement wedge reconstruction !

1 bulk qubit

5 boundary qubits
in total, just 6 qubits



Five-qubit code

• Encode a single logical qubit into a system of five qubits.
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universal quantum computation scheme by using the language of SPT phases. Also, it

may be interesting to characterize the gauge color code [27] by this framework.

(d) SPT phases with q-form global symmetry provide a number of interesting quantum

critical Hamiltonians as boundary modes. Analytical and numerical studies of such

boundary modes may provide further insights into problems of quantum criticality in

higher dimensions.

(e) Spatial dimension of symmetry operators can be non-integer values [43–45]. Namely,

one can construct an SPT Hamiltonian protected by fractal-like symmetry operators.

Studies of such fractal SPT phases and their gauged models may be an interesting future

problem.

S1 = X ⌦ Z ⌦ Z ⌦ X ⌦ I (73)

S2 = I ⌦ X ⌦ Z ⌦ Z ⌦ X (74)

S3 = X ⌦ I ⌦ X ⌦ Z ⌦ Z (75)

S4 = Z ⌦ X ⌦ I ⌦ X ⌦ Z (76)
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• Five-qubit code has code distance 3
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set of states with distance 1

The code can correct single-qubit 
errors !

encode



Five-qubit code is a quantum gravity



Perfectness of five qubit code

• Let’s view the five-qubit code as a six-leg tensor.

outputinput

T T

• Any leg can be used as an input of quantum codes.

T T



A holographic quantum error-correcting code
• A tiling of the five qubit code

five qubit 
code output

input

AdS geometry

bulk 
legs

boundary 
legs



Entanglement wedge reconstruction

Input

A

A

B

C

D

Input
Input

A

A

B

C

D

Input

• 1 in & 3 out (operator pushing)



Holographic state
• The Ryu-Takayanagi formula holds exactly (tiling of perfect tensors)

perfect tensor A

B

EPR pairs

Coarse-graining (RG transformation) = Distillation of EPR pairs along the geodesic



Perfect tensors
• A pure state with maximal entanglement in any bipartition

A

B

to construct a tensor network with exact correspondence between bulk tensors and

boundary wavefunctions. For instance, one can insert additional tensor legs in a tensor

tree which control the choice of tensors as proposed in [].

The AdS/CFT correspondence is a statement on a duality where there are two

equivalent descriptions for the same theory. Namely, bulk/boundary operators are re-

lated by some isomorphism. One then might think that the Hilbert spaces H
bulk

, H
boundary

are isomorphic to each other with the same dimensions. However, Harlow and his

friends pointed out that this leads to a contradiction.

Consider a bulk operator �(x0, r, t = 0) at t = 0 and boost the system to the frame

where an observer at (x0, r) moves to (x0, r0) at the boundary (r0 > r) in a direction

perpendicular to the boundary. Letting U
t

be a boost unitary operator, the AdS/CFT

correspondence states that

U�(x0, r, t = 0)U † = O(x0, t) r0 � r = ct. (1.3)

In the original frame, the boundary CFT operator O(x, t) can be written as

O(x, t) = UO0(t = 0)U † (1.4)

where the CFT operator O0(t = 0) depends only on O(x, t) where x is within the

causal wedge. Thus, the bulk operator �(x0, r, t = 0) can be represented by boundary

operators inside the causal wedge.

2 Perfect tensor

In this section, we introduce the notion of perfect tensors. Consider a system of 2n

spins. Let v be the number of states per spin. A wavefunction | i is said to be a

perfect state i↵ its reduced density matrix ⇢
A

for all A such that |A|  n is maximally

entangled:

⇢
A

/ I
A

for all |A|  n (2.1)

where I
A

is an identity matrix on A. So, for any bipartition, the entanglement entropy

has a maximal value. Let | i be a perfect state, A be a subset of spins with |A|  n

and B be the complement of A. Since A is maximally entangled with B, any quantum

operation acting on A has a dual quantum operation acting on B. Namely, let U
A

⌦ I

be an arbitrary unitary operator which acts exclusively on A. Then there always exists

– 4 –

where T
i1i2...in = hi1i2 . . . i

n

| i. We shall shall call such a tensor a perfect tensor. The

duality of unitary operators in a bipartition can be concisely represented in a language

of tensors. Recall that a unitary operator acting on k spins can be represented as a

tensor with 2k legs where k legs correspond to a bra and other k legs correspond to a

ket.

One can construct an isomorphism from perfect tensors. Let T
i1i2...i2n be a perfect

tensor with 2n legs. Let M
i1,...,ik

be a tensor representation of an input state | i which

is a k spin state. By contracting legs i1, . . . , ik of M
i1,...,ik

and T
i1i2...i2n , one obtains a

new tensor N
ik+1,...,i2n , which corresponds to the output state |�i of the map:

N
ik+1,...,i2n =

X

i1,...,ik

T
i1i2...i2nMi1,...,ik

. (2.5)

This contraction defines the map  : (Cv)⌦k ! (Cv)⌦2n�k whose input is M
i1,...,ik

and

output is N
ik+1,...,i2n . This map is an isometry since pairwise orthogonal states remain

to orthogonal. Such an isometry can be viewed as an encoding map of a quantum

error-correcting code where k -spin input states are encoded in 2n � k-spin output

states where k input legs can be viewed as logical legs. A quantum code with k = 1,

constructed from a perfect tensor, will be called a perfect code (Fig. 2).

(a) (b) logical leg

Figure 2. (a) Perfect state. (b) Perfect code.

For readers from quantum information science, it may be convenient to characterize

a quantum error-correcting code by a standard notation [[n, k, d]]
v

where n represents

the total number of spins, k represents the number of logical v-dimensional spins (so

there are vk orthogonal states in the codeword space), d represents the code distance

and v represents the number of states in each spin. According to this notation, a

perfect code is represented by [[2n � 1, 1, n]]
v

. Similarly, a perfect state is represented

by [[2n, 0, n + 1]]
v

. We shall demonstrate that a perfect code [[2n � 1, 1, n]]
v

can be

converted into a perfect state [[2n, 0, n + 1]]
v

, and vise versa.

– 6 –

a dual unitary operator I ⌦ V
B

that acts only on B such that (Fig. 1(a))

U
A

⌦ I| i = I ⌦ V
B

| i. (2.2)

This duality is often referred to as a gate teleportation which is a generalized notion of

state teleportation with EPR pairs. This duality between U
A

and V
B

is a result of the

Choi-Jamiolkowski isomorphism where a state is interpreted as a quantum channel.

An important consequence of the duality is that, in any bipartition, one can distill

a maximal number of EPR pairs. Here an EPR pair refers to a maximally entangled

two-spin state: |EPRi = 1p
v

P
v�1
j=0 |ji ⌦ |ji. Consider a perfect state with 2n spins | i

in a bipartition into A and B such that |A|  n. Then there always exists a unitary

transformation I ⌦ U
B

which acts exclusively on B such that |�i = I ⌦ U
B

| i consists

of |A| decoupled copies of EPR pairs supported over spins in A and B, and 2n � 2|A|
decoupled spins in B. Namely,

|�i = |EPRi⌦|A| ⌦ |0i⌦2n�2|A|. (2.3)

So, one can distill |A| decoupled copies of EPR pairs by applying a local unitary only

on B as depicted in Fig 1(b).

TUA T VB=
duality

T UB
distillation

(a) (b)

A B

UA VB

A B

=

UB

A B

=

A B

EPR pair

A B

UA VB

A B

=

UB

A B

=

A B

EPR pair

Figure 1. (a) Duality of unitary operators in a perfect state. (b) Distillation of EPR pairs.

We then introduce the notion of perfect tensors. A perfect state | i can be written

by a tensor as follows:

| i =
v�1X

i1=0

v�1X

i2=0

· · ·
v�1X

in=0

T
i1i2...in |i1i2 . . . i

n

i (2.4)

– 5 –

Perfect state (2n spins) Perfect tensor (2n legs)

• Five qubit code

6 leg perfect tensorT T



Random tensors
• Perfect tensors are very rare…

• But almost perfect tensors are pretty common !

Pick a Haar random state.

Due to the Page’s theorem, the state is almost maximally entangled along any cut.
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there are vk orthogonal states in the codeword space), d represents the code distance

and v represents the number of states in each spin. According to this notation, a

perfect code is represented by [[2n � 1, 1, n]]
v

. Similarly, a perfect state is represented

by [[2n, 0, n + 1]]
v

. We shall demonstrate that a perfect code [[2n � 1, 1, n]]
v

can be

converted into a perfect state [[2n, 0, n + 1]]
v

, and vise versa.

– 6 –

• To construct a holographic code/state, just pick tensors randomly.

Random tensor
Holographic code



Coding properties: erasure threshold

• Remove qubits with probability 
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A central bulk leg is contained in the 
entanglement wedge of A (if |A|>|B|)

Erasure threshold = 1/2

New quantum codes from quantum gravity ?



So far, no black holes…



Information loss puzzle

• Is quantum information lost ?
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Locally it looks like               , but globally it is not . 

Information loss puzzle

• Or hidden into some non-local degrees of freedom ?
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Quantum error-correction

• Scrambling is very similar to how quantum error-correcting codes work.
1

| i (1)

1

d

X

P

P ⌦ P = SWAP (2)

|�ji = U | ji (3)

| i =
X

j

e��Ej/2| ji ⌦ | ji (4)

| (t)i = (I ⌦ U)| i =
X

j

e��Ej/2e�iEjt| ji ⌦ | ji (5)

Tr
⇥
A(0)D(t)A†(0)D†(t)⇢�

⇤
(6)

Tr
⇥
A(0)yD(t)yA†(0)yD†(t)y

⇤
y = ⇢1/4� (7)

| i
1
Z
e��H

(I ⌦ U)
P

j |ji ⌦ |ji =
P

j |ji ⌦ U |ji

• Local indistinguishability.

black hole

1

⇢R ' ⇢0R (1)

nY

j=1

(1 + e��jt) (2)

“e��H”

e�iHt (3)

| i (4)

1

d

X

P

P ⌦ P = SWAP (5)

|�ji = U | ji (6)

| i =
X

j

e��Ej/2| ji ⌦ | ji (7)

| (t)i = (I ⌦ U)| i =
X

j

e��Ej/2e�iEjt| ji ⌦ | ji (8)

Hawking 
radiation

logical qubit

codewords

= error

1

nY

j=1

(1 + e��jt) (1)

“e��H”

e�iHt (2)

| i (3)

1

d

X

P

P ⌦ P = SWAP (4)

|�ji = U | ji (5)

| i =
X

j

e��Ej/2| ji ⌦ | ji (6)

| (t)i = (I ⌦ U)| i =
X

j

e��Ej/2e�iEjt| ji ⌦ | ji (7)

Tr
⇥
A(0)D(t)A†(0)D†(t)⇢�

⇤
(8)

time evolution



Choi-Jamilkowski isomorphism
• Quantum channel on n qubits can be viewed as a state on 2n qubits.

[Choi-Jamilkowski, Hayden-Preskill,Hartman-Maldacena]
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Random thoughts on scrambling
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This is a collection of observations on scrambling.
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I. RECURRENCE TIME OF A PLANAR PERFECT TENSOR NETWORK

Consider a planar tensor network as shown in Fig. 1. This mimics the growth of the

Einstein-Rosen bridge for the interior of a two-sided black hole under time-evolution along

the spirit of Hartman-Maldacena. In order for this system to correctly capture the black hole

dynamic, the system needs to get scrambled after the scrambling time (which is order of L),

and then stay scrambled for a long duration of time until the recurrence time. The recurrence

time is believed to be at least exponentially long, which is a classical recurrence time, and

possibly doubly exponentially long, which is a quantum recurrence time. In this section, we

study the recurrence time of the planar network of perfect tensors. For concreteness, we will

restrict our considerations to those with perfect tensors associated with the qutrit perfect

code.

To find the recurrence time, we inject two-body Pauli Z operators from the top left corner

of the tensor network and compute the output Pauli operator on the bottom. We define the

recurrence time t

rec

to be the minimal time step t

rec

necessary for the network to output

the same Pauli operators. The recurrence time crucially depends on the system size L as

shown in the plot in Fig 2. Note that the plot is in a logarithmic scale. When the system

size is L = 3m, the recurrence time grows only linearly: t

rec

= 4L. This expression can

be analytically obtained. The linear growth is due to the fact that the qutrit tensor can

input output
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Scrambling in a black hole

• Thermofield double state (finite T)

CFT 1 CFT 2

length=O(T)
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• A black hole geometry for the TFD state is the two-sided hole (AdS/CFT prediction)

Let’s construct a tensor network toy 

model !

[Maldacena]



Toy model of the Einstein-Rosen bridge

[39]), and then an explicit tensor network model was proposed in [15] (see also [40]).18

Before we begin, let us review the proposal of [12]. The tensor network representation

of the thermofield double state is shown in Fig. 10. At the left and right ends, we have

a hyperbolic network, representing the two asymptotically AdS boundaries. This network

extends infinitely from the UV into the IR thermal scale � at the black hole horizon. Then,

the middle is flat representing the black hole interior. The entire network grows as t grows

by adding more layers in the middle flat region.

We would like to further elaborate on this proposal of tensor network representation of

the black hole interior. We will study networks of perfect tensors and demonstrate chaotic

dynamics by finding ballistic growth of local unitary operators and the linear growth of

the tripartite information until the scrambling time. For the rest of discussion, we take

the infinite temperature � = 0 limit so we can ignore the hyperbolic part and focus in on

the planar tiling of tensor networks representing the interior.
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Figure 10: Tensor network representation of the Einstein-Rosen bridge. A four-leg tensor
lives at each node. We will consider a network of perfect tensors.

18This model has the additional nice property of implementing the holographic quantum error correction
proposal of [41].

35

• Consider a network of random unitary operators, tiling the wormhole geometry.

[Hosur-Qi-Roberts-BY]

CFT 1 CFT 2

length=O(T)

random unitary operators



How do we probe the interior of a 
black hole ?



Out-of-time ordered correlation functions

• We should measure some “hidden” correlations (Kitaev 2014)

• Previously considered by Larkin and Ovchinikov in 1960s, and recently by Shenker and Stanford
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Time evolution of operators

• OTOCs detect the growth of operators

• Expand B(t):
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• Consider (commutator)
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[Roberts-Stanford-Susskind]



Key Questions

• How do we define scrambling ?

• Quantum information theoretic meaning of OTO ?
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• Is the converse true ?

I will relate OTOCs to entanglement entropies (joint with Hosur, Qi and Roberts)
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• If then,            is large

This implies the mutual information                                              is small

B and D are not correlated, so the system is scrambling.
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• For finite T, we will consider the so-called Thermofield double state. 



Scrambling phenomena in a black hole
[39]), and then an explicit tensor network model was proposed in [15] (see also [40]).18

Before we begin, let us review the proposal of [12]. The tensor network representation

of the thermofield double state is shown in Fig. 10. At the left and right ends, we have

a hyperbolic network, representing the two asymptotically AdS boundaries. This network

extends infinitely from the UV into the IR thermal scale � at the black hole horizon. Then,

the middle is flat representing the black hole interior. The entire network grows as t grows

by adding more layers in the middle flat region.

We would like to further elaborate on this proposal of tensor network representation of

the black hole interior. We will study networks of perfect tensors and demonstrate chaotic

dynamics by finding ballistic growth of local unitary operators and the linear growth of

the tripartite information until the scrambling time. For the rest of discussion, we take

the infinite temperature � = 0 limit so we can ignore the hyperbolic part and focus in on

the planar tiling of tensor networks representing the interior.
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Figure 10: Tensor network representation of the Einstein-Rosen bridge. A four-leg tensor
lives at each node. We will consider a network of perfect tensors.

18This model has the additional nice property of implementing the holographic quantum error correction
proposal of [41].
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• This captures key properties of scrambling for “large-N” theories.

Eg) Ballistic propagations of entanglement, RT formula in a wormhole geometry…

Random unitary (maximally entangled)

=

• Operator size grows linearly, OTO will pick it up.

• For a non-local random quantum circuit, the scrambling time is log(n) [Cleve et al 2006]
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What did we learn ?



Lesson 1

The AdS/CFT correspondence is a quantum error-correcting code.

very entangled tensor 
(eg random tensor)

Bulk quantum information is encoded 
in boundary like a hologram.



Lesson 2

OTO correlator is the probe of space-time

[39]), and then an explicit tensor network model was proposed in [15] (see also [40]).18

Before we begin, let us review the proposal of [12]. The tensor network representation

of the thermofield double state is shown in Fig. 10. At the left and right ends, we have

a hyperbolic network, representing the two asymptotically AdS boundaries. This network

extends infinitely from the UV into the IR thermal scale � at the black hole horizon. Then,

the middle is flat representing the black hole interior. The entire network grows as t grows

by adding more layers in the middle flat region.

We would like to further elaborate on this proposal of tensor network representation of

the black hole interior. We will study networks of perfect tensors and demonstrate chaotic

dynamics by finding ballistic growth of local unitary operators and the linear growth of

the tripartite information until the scrambling time. For the rest of discussion, we take

the infinite temperature � = 0 limit so we can ignore the hyperbolic part and focus in on

the planar tiling of tensor networks representing the interior.
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Figure 10: Tensor network representation of the Einstein-Rosen bridge. A four-leg tensor
lives at each node. We will consider a network of perfect tensors.

18This model has the additional nice property of implementing the holographic quantum error correction
proposal of [41].
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OTO correlator detects scrambling/
chaos



Lesson 3

OTO correlators are the probes of space-time (seeing the interior of 
a black hole)
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