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What are anyons1 ?

Localized gapped excitations living on a 2-dimensional surface

Each excitation is described by a unique label, called its
topological charge from a finite set {a, b, c , . . . }
We can imagine bringing 2 excitation together (a and b), and
ask what is their total charge c .

The possible outcomes are given by the fusion rules:

a× b =
∑
c

Nc
abc

1A. Kitaev, Annals Phys. 321, 2-111 (2006)
Guillaume Dauphinais and David Poulin Institut quantique & département de physique, Université de Sherbrooke
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Abelian vs non-abelian anyons

The fusion rules for abelian anyons are deterministic and
unique, as for excitations in the toric code:
e × e = 1, m ×m = 1, e ×m = em, . . .

Whereas for non-abelian anyons, the fusion rules are in
general probabilistic, for example with Fibonacci anyons:
τ × τ = 1 + τ .

A Hilbert space is associated to each fusion/splitting process.

Fusing two anyons a1 and a2 collapses the wavefunction into a
definite super-selection sector, with probability given by Born’s
rule:

P(c) = 〈ψ|Πa1a2
c |ψ〉. (1)

Guillaume Dauphinais and David Poulin Institut quantique & département de physique, Université de Sherbrooke
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Quantum computation with non-abelian anyons1

Measurement

Applying gates

Initialization

1M. H. Freedman et al., Commun. Math. Phys. 227, 605-622 (2002)
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Thermal processes can corrupt the information1

At T > 0, thermal
excitations are
present in finite
density.

Thermal excitations
can diffuse at no
energy cost.

It really is a scalibility
issue: for large
systems, such
processes are bound
to happen.
1F. L. Pedrocchi et al., arXiv:1505.03712
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Fault-tolerant error correction for non-abelian anyons

Our goal is to find an error correction procedure for systems
of non-abelian anyons

We want to include measurement errors

Fault-tolerant error correction for topologically ordered
systems giving rise to abelian anyons have been studied
extensively.1

1Dennis et al., J. Math. Phys. 43, 4452 (2002)
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Anyons and topological order

Anyons appear as excitations in topologically ordered systems1.
The ground space is degenerate and quantum information can be
encoded in such states.

Logical operations consist of
creating a pair of
excitations, performing
non-trivial loop, and fuse
the excitations back to the
vacuum.

World lines with the same
topology have the same
effect on the ground space.

1X. G. Wen, Phys. Rev. B 40, 7387 (1989)
Guillaume Dauphinais and David Poulin Institut quantique & département de physique, Université de Sherbrooke
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Error correction for abelian anyons

Topological quantum error correction for abelian anyons have been
extensively studied (i.e. the toric code)

Thermal processes are
modelled probabilistically.

A decoding algorithm is
used to find a correction
procedure.

The correction operations
are performed.
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Various families of decoding algorithms

Perfect matching

Mapping to statistical
physics problems

Clustering methods

Cellular automaton

Renormalization
methods a

aG. Duclos-Cianci et al., PRL 104, 050504 (2010)
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Emerging structure of the noise1

Each actual error is
characterize by a level
n.

If fits in a box of size
Qn × Qn × Un and is
separated by at least
aQn sites (bUn time
steps) from other
actual errors.

The notion of actual
error is recursively
defined over the level.

The rate of apperance of a level-n actual errors goes as εn ∼ e−2n

1J. H. Harrington, Ph. D. thesis, Caltech (2004)
Guillaume Dauphinais and David Poulin Institut quantique & département de physique, Université de Sherbrooke
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The idea behind Harrington’s algorithm

Cellular automata periodically measure topological charges.

If 2 excitations are close, they will be fused together.

If an excitation is isolated, it is displaced to the colony center.

→

Guillaume Dauphinais and David Poulin Institut quantique & département de physique, Université de Sherbrooke
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The need for renormalization

An error chain extending over 2 or more colonies cannot get
corrected using such simple local rules.

Colonies are periodically grouped into renormalized colonies.
Renormalized transition rules are periodically applied.

→

Guillaume Dauphinais and David Poulin Institut quantique & département de physique, Université de Sherbrooke
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Existence of a threshold

Harrington showed that a level-n actual error stays local at
the nth renormalization level.

A level-n actual errors gets corrected by the nth level
transition rules.

Actual errors stay well-separated from each other in time.

The properties above combined with the fact that εn ∼ e−2n leads
to the existence of a threshold.

Guillaume Dauphinais and David Poulin Institut quantique & département de physique, Université de Sherbrooke
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Complications for non-abelian anyons: probabilistic
evolution

The fusion channel of 2 or more anyons is in general not
deterministic:

= α + β

We introduce the notion of a trajectory domain of an error. It
roughly corresponds to the set of sites having a probability of
becoming charged because of a given error.

Guillaume Dauphinais and David Poulin Institut quantique & département de physique, Université de Sherbrooke

Fault-tolerant error correction for non-abelian anyons1



Non-abelian anyons and quantum information Error correction for abelian anyons Error correction for non-abelian anyons

Complications for non-abelian anyons: renormalized charge

The total charge present in a colony becomes path-dependent and
subject to rapid fluctuations.

The notion of renormalized charge needs to be carefully defined,
and must include the interactions of the errors with the transition
rules

Guillaume Dauphinais and David Poulin Institut quantique & département de physique, Université de Sherbrooke
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Complications for non-abelian anyons: interactions
between renormalization levels

The hierarchic classification of errors does not capture the
’topological interaction’ between anyons caused by different actual
errors.

→

We introduce the notion of causally-linked clusters of errors, sets
of actual errors which can potentially interact with each others
through the application of transition rules.

Guillaume Dauphinais and David Poulin Institut quantique & département de physique, Université de Sherbrooke
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Key properties for non-cyclic anyons

Despite all the complications related to the ’non-abelianity’, we
show that our algorithm is such that

A level-n causally-linked cluster is spatially local at the nth

level of renormalization.

The renormalized syndromes are valid (the good renormalized
charge is reported).

Renormalized transition rules are always successful after being
applied a constant number of times.

Non-cyclic anyons are anyons such that for any sequence of labels
{x0, x1, . . . , xn} such that x0 = xn (and not the vacuum), then∏n

i=0 N
xi+1
xi x̄i

= 0.

Guillaume Dauphinais and David Poulin Institut quantique & département de physique, Université de Sherbrooke
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Key properties for non-cyclic anyons

Despite all the complications related to the ’non-abelianity’, we
show that our algorithm is such that

A level-n causally-linked cluster is spatially local at the nth

level of renormalization.

The renormalized syndromes are valid (the good renormalized
charge is reported).
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Fault-tolerant error correction for non-abelian anyons1



Non-abelian anyons and quantum information Error correction for abelian anyons Error correction for non-abelian anyons

Key properties for non-cyclic anyons

Despite all the complications related to the ’non-abelianity’, we
show that our algorithm is such that

A level-n causally-linked cluster is spatially local at the nth

level of renormalization.

The renormalized syndromes are valid (the good renormalized
charge is reported).

Renormalized transition rules are always successful after being
applied a constant number of times.

Non-cyclic anyons are anyons such that for any sequence of labels
{x0, x1, . . . , xn} such that x0 = xn (and not the vacuum), then∏n

i=0 N
xi+1
xi x̄i

= 0.

1arXiv:1607.02159

Guillaume Dauphinais and David Poulin Institut quantique & département de physique, Université de Sherbrooke
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A threshold for non-cyclic anyons

Despite the new failing mechanisms for non-abelian anyons, we
show that our algorithm possess a threshold for non-cyclic anyons.

Threshold theorem

If A is non-cyclic, there exists a critical value pc > 0 such that if
p + q < pc , for any number of time steps T and any ε > 0, there
exists a linear system size L = Qn ∈ O(log 1

ε ) such that with
probability of at least 1− ε, the encoded quantum state can in
principle be recovered after T time steps.

The theorem provides an upper bound on the numerical value of
pc < 2, 7× 10−20 × (3D + 1)−4.
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Numerical simulations

We performed numerical simulations for Ising anyons. They
suggest a threshold in the range of 10−4 ∼ 10−3.
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Future directions

What can we say about cyclic anyons ? (ex. Fibonacci
anyons)

How do we modify the algorithm to the case where we have
computational anyons ?

How about braiding in a fault-tolerant manner ?
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Thank you for your attention !
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