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Goals of this tutorial®

O Give some details to understand basic ingredients
of measurement-based quantum computation
(MBQC)

 Give pointers to related development/ application
(fewer details)

O Will point out related talks in this conference
Q Give some open problems

*This tutorial assumes little prior knowledge
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Moore’s Law:

The number of transistors on a chip doubles ~every 2 years
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=>» A transistor hits the size of a few atoms in about 20 years
= Quantum regime is inevitable



Candidate systems™ for quantum computers

0: turmel junction
[ ]: capactor

N ['_I'Fapped lons and atoms] &

<

Mitrogen-
vatancy
colour centre 6

[NMR] [NV center in diamond]

Carbon-13
[Quantum dot]

*You may see many of these throughout this conference



New quantum Moore’s Law?

/ Moore's Law for Quantum Computers \
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a Number of qubits in ion trap

=» Roughly doubles every 6 years!
(may depend on physical systems)
e.g. see Nathan Langford’s tutorial on circuit QED



ENIAC — first generation computer

[1946]

Contained:

17,468 vacuum tubes,

7,200 crystal diodes,

1,500 relays,

70,000 resistors,

10,000 capacitors

5 million hand-soldered joints

Weighed 27 tons
About 8.5 by 3 by 100 feet
Took up 1800 square feet

20 ten-digit signed accumulators

When will the first-generation quantum computer appear?



Quantum computation in a nutshell

o Consider a function fand a corresponding unitary U-
Up: k) ®10) — |k) @ |f(F))

a Exploit quantum parallelism:

—

[ > Naive measurement only gives
o™ —1 Foan one f(k) at a time

(Z k>) ®0) — Z k)@ [f(k) = Good design of measurement
k=0 k=0 may reveal properties of f

= e.g9. Shor’s factoring algorithm

—

o Factoring is hard:

180708208868740480595165616440590556627810251676940134917012702

1450056662540244048387341127590812303371781887966563182013214880
557 =(?277....7) x (2227...7)

=(39685999459597454290161126162883786067576449112810064832555157243)

X
(45534498646735972188403686897274408864356301263205069600999044599)



Quantum computation: Circuit model

0 — o) § 0 — o
U e ¥
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a Building blocks m /
. — 7=
(1) One qubit gates: any rotation v
CNOT:

(2) Two qubit gate: entangling

c 00>00

e.g., C-Z gate or 0 1 z 0 1

) | 10> 11

N Controlled-NOT gate i 11510

Universal gates
AN



CNOT:

CZ:

00->00
01->01
10>11
11>10

00>00
01->01
10>10
11>-11

CNOT & CZ gates

CNOT = [0).(0] ® I, 4 [1)(1]| ® X,

C

CZ = ’0>c<0‘ ® It + ’1>c<1‘ ® Zy

C C




(Models of) Quantum Computation
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a Circuit:

0/1
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a Adiabatic: H(t) = (1 _ —)H- . iy 4
( ) T initial + T final

\/ using braiding of anyons to

a Topological: //) simulate quantum gates
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o Measurement-based: .5 |, local measurement is
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Outline

|. Introduction

Il. One-way cluster-state (or measurement-based)
quantum computers

lll. Other entangled resource states: Affleck-Kennedy
-Lieb-Tasaki (AKLT) family

V. Summary



Now focus on measurement-based
(or one-way) quantum computer:

which can “simulate” unitary evolution



Unitary operation by measurement?

o Intuition: entanglement as resource!

+ Controlled-Z (CZ) gate from Ising interaction

0

(1)y(1_5(2))
Z

CZyy = e—i3(1-0 )0

o OO =
o= o O
oo O

1
0
0

+ Entanglement is generated:

cz
(a0) +b[1)) |[+) — [¥) = a|0)|+) 4+ b[1)|-)



Unitary operation by measurement?

o Intuition: entanglement as resource! 1 0

cZ
cZ O—O

(al0) +6[1)) [+) —— [¥) = al0)[+) +b]1)[—-) fin); — 0, [in)s

» Measurement on 1st qubit in basis measurement
[+ &) = (€—i€/2‘0> s €i€/2‘1>)/\/§ cos(&)oy + sin(é)oy,
1 i
with outcome denoted by + = (—1)° X y

=» Second qubit becomes

H(EE P12 ~ ae® P4y £ be %2 =)y = He™4/2Z5(a|0)2 + b|1)2)

= A unitary gate is induced: U(¢,s) = H e**%/%22¢



Simulating arbitrary one-qubit gates

a In terms of circuit: [Raussendorf &Wei, Ann Rev Cond-Mat ‘12]

in) = (a|0) + b1>)1—r3— +or-
CZ
+) 2 U(&, s)|in)2

U(¢,s) = H %273

o Can cascade this a few times:

in) = (a[0) + b[1). & — +or-

CzZ
+) E—  Uilig) = HU& 5
+) 4 P
cz B2
H_>4 ED—

CZ




Example: arbitrary one-qubit gate

1
in) = (a|0) ‘|‘b|1>)1 @ + Or - U1<{£}> — HU(52781> U(f, 8) — HeigZ/QZS
+) =
) Q Consider: £,=0 & construct
+) 4 arbitrary rotation
+)

U, ({€})lin)
Ui ({€}) = (He™42/2750) (He'*32/2 755 (He*24/2 752) (H Z**)

O Propagating Z’s to left and use HZH=X:
Ur({€}, {s}) = Zo1taa X sotos (D T0GX/2 i(-1)262/2 (i1 6X/2

Q Take &2 = —(=1)"'7, &= —(=1)"8, &= —(=1)"""a
we realize an Euler rotation, up to byproduct Z, X operators:

Ul({g}, {3}) — Z31‘|'33XS2+S4 6—iozX/2 6—@'52/2 €_i7X/2



Comments

1

Ur({¢}) = HU(ﬁz‘,Si) U(E,s) = He*%/27°

=4

O Consider: ¢{,=0, & construct
arbitrary rotation

U1({£})[in)

Q Take &= (-1, &=—(-1)"8, &= —(-1)"""a
we realize an Euler rotation, up to byproduct Z, X operators:

Ul({f}, {3}) _ gsitss ysatsa ,—iaX/2 ,—ifZ/2 ,—ivX/2

=>» Note: measurement basis can depend on prior results

= Byproduct operators Zs:1t53 X524 can be absorbed
by modifying later measurement basis

=» Byproduct operators on final measurement in Z basis (readout) can be
easily taken into account (only X flips 0/1)



Linear cluster state: resource for
simulating arbitrary one-qubit gates

I

L=

S

HOIjel0l [elauas

D B LdBF X
1 %

<

U1({£})/in)

a May as well take |in) = |+) the whole state before measurement £’s
Is a highly entangled state =» 1D cluster state



Simulating CNOT by measurement

Oy O
o Consider initial state l l
2 3 4
(a|0) + b|1))1 (c|0) +d|1))2 [+)3 |+)4
CZo3 CZ13CZsy
> |w>1234 1

[9)1230 = [0)3(al0)1 +b[1)1) (c|0)2 + d[1)2)|+)4

+ 1)z (al0)y — b[1)1) (c|0)2 — d|1)2)|—)4 [tin) 12 === CNOT|t)in) 14

a Measurement on 2" and 3" qubits in basis |+) = (|0} + [1))/v2

If outcome=++: an effective CNOT applied:
1) 14 = 23(+ + 1) 1234 ~ CNOT114(al0); 4 b[1)1)(c|0)4 + d|1)4)

Can show: |Yout) ~ 272 X;® Z;2 CNOT14/in)14

o Note the action of CZ gates can be pushed up front
(a 4-qubit “cluster” state can be used to simulating CNOT)



CNOT gate: symmetric design

[Raussendorf &Briegel PRL 01’]

1 2 3 4 5 6 7
contro (_/ control ou

9 10 11 12 13 14 15
targetin - (e eed e (O O)—)  target out

=» The following measurement pattern simulates CNOT gate
(via entanglement between wires)

Q: how do | know it implements CNOT?
byproduct operators="?

D Ans: see Theorem | in Raussendorf, Browne &
13 Briegel PRA’03

CNOT-gate (generalization to qudit: Zhou et al. PRA ‘03)



Theorem 1. Let C(g)=Cyg)UCpy(g)UCy(g) with
Cg)NCy(g)=CUg)NCo(g)=Cp(g)NCp(g)= be a

cluster for the simulation of a gate g, realizing the unitary
transformation U, and |gb)(;(g) the cluster state on the cluster
- (Car(2)

Suppose the state |l,b'>(j(g)=P{.S:?I M) | d) (g Obeys the
2n eigenvalue equations

0 i - AP al 4 —( — .1

Cil2).))rrr (Drrir(C :
U.E Hg) )( UoOU! ) Col2))] W =(—1 )Rz ) cie) -

with N\, ;.. ;€{0,1} and 1<i<n.

X, 0%

Then, on the cluster C(g) the gate g acting on an arbitrary
quantum input state |¢;,) can be realized according to
Scheme 1 with the measurement directions in C,/(g) de-
scribed by M (&) and the measurements of the qubits in
C/(g) being o, measurements. Thereby, the input and output
state in the simulation of g are related via

| You) = UUs | ). (62)

where Us is a byproduct operator given by

LTE= (O_Ef]')SI-‘F}\_‘,j(O-IE-j]))\:.i_ (63)
(Cig)zi)=1

[Raussendorf, Browne
& Briegel PRA 03

]



2D cluster state and graph states

o Can be created by applying CZ gates to each pair with edge
‘G> — <®> OZZJ (‘—I—)‘—I—) .o ‘_|_>) [Raussendorf&Briegel ‘01]

- OO
o Cluster state: special case of general “graph” states

K,|G) = |G), Vvertexv

@ @ Ko 7 (can show this, using
. ‘@ v — Ny ® U above def. of G)
@ uEND(v)

= Uniquely define the state G, also via Hamiltonian H = — Z Ky




Z measurement on graph state

O The effect is just to remove the measured qubit,
keeping the remaining entanglement structure

P =10)alYera) + [Da ( 1] Zb) Wana)

be NB(a)
a o 20\({04
=> Graph after Z measurement on a: 1 O 3
a
v" If outcome =0: 0)o|+)1|C) 234 |C) 234 : linear cluster state
v If outcome =1:  [0)a|—)1 Z2Z3|C)a34

O For X & Y measurements, see [Hein, Eisert, Briegel '04, Hein et al. ‘06]



2D cluster state Is a resource for
quantum computation

C) = & CZi; (|4)|+) -+ |+))

o Whole entangled state is created first
(by whatever means)

o Operations needed for universal QC are
single-qubit measurements only

=» Pattern of measurement gives computation
(entanglement is being consumed - one-way)

1 3 4 5 6 7

-> Elementary “Lego 1 2 3 4 5 control X . Y|Y D
ieces” for QC: X | [ YE

P -:ID target [ XIX XM X X [

general rotation O 101112 13 14 15

CNOT-gate



Cluster state for universal computation

o Carve out entanglement structure
by local Z measurement >

DD RO
O~ >—<5 % P }

patateeteeréielelatocen

(1) Each wire simulates one-qubit evolution (gates)
(2) Each bridge simulates two-qubit gate (CNOT)

‘ 2D or higher dimension is needed for universal QC &
Graph connectivity is essential (percolation)



Realizations of cluster states

o Bloch’s group: controlled collision in cold atoms (Nature 2003)

A b
n/2 — B /2
N\
M E o @3 @ G-
A\ Y
C 1 /2 I 1 n/2
j M w2 S
Lattice site - Lattice site -

o J-W Pan’s group: 4-photon 6 qubit and CNOT (PRL 2010)

Time




Cluster state: a valence-bond picture

] Cluster state = a valence-bond state [Verstraete & Cirac '04]
= a projected entangled pair state (PEPS)

CE A _—
; i ; . —— » Bond of two virtual qubits =

& — SO — G CZ| ++) = [0)+) + 1))
5 » Projection of several virtual
qubits to physical qubit =

P = |0Y(0000] 4 |1)(1111]

_ , _ [see also Gottesman &
d Quantum computation via teleportation  Chuang '99]

o o S
> 1-qubit gate: @) ______ © L

> 2-qubit gate: ) Ul %)

7 sl¥) T A O

(B



QC in correlation space

0 Previous picture of valence bond was [Gross & Eisert 07,
Gross et al. ‘07]

generalized by Gross and Eisert using
maitrix product states (MPS) and PEPS

O lllustrate with 1D cluster state:

d Measurement outcome ¢; at site i:

(G ety s 0110 = L= Aldp) - - Al¢s) - Al) - R



Cluster state QC: in correlation space

Q A A ). A .{ A freeee E

| | | |
Siy2 S

i+1

O Measurement outcome g, at site i~ A(¢1) = D _{¢ilsi) As,

(G weePis ey 01| W) = L= A(n) -+ Al¢) --- A1) - R

O As spins are measured, the boundary vector R is operated by gates
[R) — A1(¢1)|R) = A1(d2)Ar(¢1)|R) — -+
O For 1D cluster state: A(0) = |+)(0|, A(1) = |—)(1]
> measure in basis |+ ¢) = (e7%/2|0) + €/2]1)) /V2

=» obtain same 1-qubit gate as before:
A(E,8) = e[ 0) (0] + (=1)%e 2| ) (1] = He*?/2Z°

O 2-qubit gates use 2D PEPS =» see Gross & Eisert ‘07



Comment: deriving MPS for cluster state

o)+ = (10 1) (1)

N

(5) o m)= (155 |23)

P, = 10)(00] + |1)(11]

a MPS form:

0 [\ _ (0 Y )
(150 10 ) =500 ) =oanon+ ma-

A(0) = [4+) (0], A(1) = [=){1]



Related talk:

Monday Session A: 4. [3:00-3:20] Anurag Anshu, ltai
Arad and Aditya Jain. How local is the information in
MPS/PEPS tensor networks?



Cluster states: not unique ground
state of 2-body Hamiltonians

[Haselgrov, Nielsen &

4 First proved by Nielsen Osborne ‘03, Nielsen '04]

O Van den Nest et al. proved for general (connected) graph states G:

=> For approximation: ground-state of 2-body Hamiltonian can

be e-close to G, but the gap is proportional to € [Van den Nest et al. ‘08]

O Bartlett & Rudolph constructed a two-body Hamiltonian such that
the ground state is approximately an encoded cluster state

S _'I | [Bartlett & Rudolph ‘06]

T 5 T == 2 2 0y ® T
| ————, 1logical cluster qubit Hes it
= 09— = 4 physical qubits ) | A i
fl—.’_|“..r_| ._..i ;I—:I‘... V=- 2 (G-i,ur) ® G‘(‘l'.jj+0‘(‘;t.” ® G'(P.j))
) ; (i) =)

O Darmawan & Bartlett constructed encoded cluster state
by deforming the AKLT Hamiltonian [Darmawan & Bartlett *14]



Linear optic QC & cluster state

O Linear optic universal QC possible with single photon source,
linear optic elements (beam splitters, mirrors, etc) & photon counting

= High overhead in entangling gates  [Knill, Laflamme & Milburn "01]

J Cluster state helps reduce this overhead  vyan & Reznik '03: Nielsen
‘04; Browen & Ruldoph ’05;

= Grow cluster states efficiently Kieling, Rudolph &Eisert ‘07]
type-I type-Il
ictin 0,0,0,0,0
; D ; D Elus:erg S\).(-c'ess
) oOO0C ©
45° | “ary, w
' D Probabilistic X O_O_O_OQSD
d '-Jl entangling O_O
gate
() (b)

L Experiments: see e.qg. [O'Brien Science '07]



Create continuous-variable cluster states

O Use frequency comb and parametric amplifier in cavity

» Theory: [Menicucci et al ‘06, '08] _ [60 modes in
> Experiment | Pfister group "11]

OoPO ' OPO Lock
PPKTP,
Pump (2u,) [ | e AN b
T <HR-Dye0.2mm:
YOl OPO Locking Beam
Alignment Beam (w,) \/\ -4
N
N\ Quantum b

PZT

N
Two-Tone LO Beam (w, £ 0}
el
Cavity OPO Locking Beam (w, £ 0)
A3

> Experiment Il: [> 10,000 modes in Furusawa group ‘12 ]

X(s) = e P and Z(r) = ™ Cy; =explig®q)

State preparation Verification

Fibre delay

s [ steo |

............................




Related talks:

Thursday Session A:

5. [3:20-3:40] Hoi-Kwan Lau and Martin

Plenio. Universal Quantum Computing with Arbitrary
Continuous-Variable Encoding

6. [3:40-4:00] Alessandro Ferraro, Oussama Houhou,
Darren Moore, Mauro Paternostro and Tommaso
Tufarelli. Measurement-based quantum computation with
mechanical oscillators



Fault tolerant cluster-state QC

O Uses a 3d cluster state and implements surface codes

IN eaCh,.Z_q layer 6 e [Raussendorf, Harrington
& Goyal '07]
O CNOT is achievable - ’
: t

Simulated !‘vln:\\-\_\

0 Uses magic-state distillation bare S-qubit
to achieve non-Clifford gate

Out (encoded)

=>» Error threshold 0.75%, qubit loss threshold 24.9%
[Barrett & Stace ‘10]



Related talk:

Friday 10:30-11:00 [Long] Guillaume Dauphinais
and David Poulin. Fault Tolerant Quantum Memory
for non-Abelian Anyons



Universal blind guantum computation

[Broadbent, Fitzsimons & Kashefi '09]
O Using the following cluster state (called brickwork state)

A

> Alice prepares
V) = @ (10)ey + €% 1y)
with random
Opy=0,m/4,...70/4

> Bob entangles all qubits
according to the brickwork
graph via CZ gates

> Alice tells Bob what measurement basis for
Bob to perform and he returns the outcome
(compute like one-way computer)

=>» Alice can achieve her quantum

computation without Bob knowing
what she computed!!

1 Alice computes ¢/, where 50\1/ = sgu =0. ¢, = (1), + 57,7

| =» Realized in an exp.

Barz et al. 2012

2 Alice chooses r,, €r {0,1} and computes 9, , = cﬁ_’r._y Fall 4 T e
3 Alice transmits J, , to Bob. Bob measures in the basis {|+(5T.y> ) |~5T.y>}.
4 Bob transmits the result s, , € {0.1} to Alice.

5 If r,, = 1 above, Alice flips s, ,; otherwise she does nothing.



We have seen the cluster states on the square
lattice and the brickwork lattice for universal for
guantum computation

Q: How much do we know about the general
cluster/graph states?



Universality in graph/cluster states

* Beyond square & brickwork: other 2D graph/cluster states on
regular lattices, e.g. triangular, honeycomb, kagome, etc. are universal

= Can use local measurement to convert one to the other ~ [Van den Nest et al. ‘06]

(with fewer qubits, but still macroscopic)



Graph states on regular lattices

% Beyond square & brickwork: other 2D graph/cluster states on
regular lattices, e.g. triangular, honeycomb, kagome, etc. are universal

[Van den Nest et al. ‘06]

(o) AVAVAVAVAVAVAVAY
AVAVAVAVAVAVAVAVAY
YN/ NN/ NSNS N NNy
VAVAVAVAVANAVAVAV
NN NN NN NN\
SANAVAVANAVAVANVAY
N/ NN/ NN/ NN NN
VAVAVAVAVAVAVAVAV
NN/ NN/ NN NN N

Y o, and 0. measurements are displayed by L] and <

— /e OF IR D L5

-.: \ ‘ ‘ A ‘ A

AN

VTRV a AT A YATL Ve ¥
\VAVAYALAVAY,

\/

N )
Kol | iy

fv‘v‘v‘vA§~
QEREREREL

=» local measurement
converts one to another




Universality in graph/cluster states

“ Beyond square & brickwork: other 2D graph/cluster states on
regular lattices, e.g. triangular, honeycomb, kagome, etc. are universal

> Can use local measurement to convert one to the other ~ [Van den Nest et al. ‘06]
(with fewer qubits, but still macroscopic)

%gpmz: BN
: e HTR ey
< Faulty square lattice (degree < 4) LE e BT
[Browne et al. ‘08] rrﬁ-‘h_rnl . HH%I .
L - TR I R R
= As long as it is sufficiently connected o | .W:qa}r'*'"" ]
(a la percolation), can find sub-graph ~ honeycomb 3 HH R SPLIE B
s S0 I B M aaps MM o
5 S TR ! I_.:Ij_l_l
s aagtany SE3Raog 2 s gt
BT SRS Mo o SN SRINE -
O.t.1 1! .'bf_}“!"“ "
— ‘. r e 4




Cluster state on faulty lattice

[Browne et al. ‘08]

<+ No qubits on empty sites (degree < 4)

€= site percolation

% But assume perfect CZ gates |G) = (%) CZij (|H)+) -+ 14+))

% As long as probability of occupied sites > site percolation threshold

=> still universal for MBQC

l

L

I

L

1

Local
measurement




Universality in graph/cluster states

* Beyond square & brickwork: other 2D graph/cluster states on
regular lattices, e.g. triangular, honeycomb, kagome, etc. are universal

= Can use local measurement to convert one to the other ~ [Van den Nest et al. ‘06]

(with fewer qubits, but still macroscopic)

%gpmz: L T

: e HTHE
s Faulty square lattice (degree < 4) RN G og SUUL 3 308 222

[Browne et al. ‘08] FYF{JE U e HH%I .

SR B NN R

=» As long as it is sufficiently connected ript | .W:tﬁ}rm"" i

(a la percolation), can find sub-graph ~ honeycomb 3 223 e SO SN SR

s S0 I B M aaps MM o

L, bt T

. | ot TR R

s Any 2D planar random graphs in et 1 T

supercritical phase of percolation are universal
[Wei, Affleck & Raussendorf.‘12]




Other universal states

a2 So far no complete characterization for resource states

o Can they be unique ground state with 2-body
Hamiltonians with a finite gap?

i Aottt A ]

ﬁMMm.M,ﬂﬁ.ﬁ
P —
i o g WY

=> If so, create resources by cooling!

« TriCluster state [Chenetal.’09]

+ Affleck-Kennedy-Lieb-Tasaki (AKLT) family of states [AKLT 87, ‘8]

[ 1D (not universal): [Gross & Eisert‘07, ‘10] [Brennen & Miyake '087]

2D (universal): [Wei, Affleck & Raussendorf‘11] [Miyake ‘11] [Wei et al. ‘13-'15]

+ Symmetry-protected topological states

1D (not universal): [Else, Doherty & Bartlett '12] [Miller & Miyake’15] [Prakash & Wei’15]
2D (universal, but not much explored): [Poulsen Nautrup & Wei’15] [Miller & Miyake ’15]



Example ground state of two-body
Hamiltonian as computational resource

a TriCluster state (6_|eve|) [Chen, Zeng, Gu, Yoshida & Chuang, PRL'09]

(oHogisiiaeiis ) @—@ = |00)+[01) + [10) — [11)

“o N\ BN e

(_o®7fe %i-rbth‘ ("} Prvic = [0)(000] + | I)(111] + [2)(100]
IO +3)(011] + |4)(010| + |5)(101]

e

Hic=Y (h,zb + hba + s )

[

hub - h-h ==
(28, — 5)(28,, — 3)(285., — 1)(2S., + 1)(4S., +11) SR " , Y
y - = i & .‘r - -1 0 i - ) B zl{.:"‘a.. —-FH..?SH, e 3 25.]- +3 35.._1_ _'_5
(255, +5)(255. +3)(285. — 1)(255. + 1)(4S5. —11) B s~ 508 _“” - +3)(2%. +9)

— 75v/28,, (2S,. — 5)(2S., + 3)(25., — 1)(2S., + 1) TR TR e e
(4852 + 6453 — ’?SGS- — 2728}, + 67) (22457 — 1657 — 19685}, + 4057 + 35508, — 9)

= 1252,
- gaﬂﬂtj_.sﬁ" —5455 — 280S2_ + 2728, + 67) B . - g
Sy, (255, — 5)(28s. — 3)(28,. — 1)(25,. +3) . Llflﬁiam :{:}fb 36005y + 52057 + 59945, — 125)
+ 41082 (28,. — 1)(2S,, — 3)x
(12857 + 56052 —zwcm?’ — 3848S;_ + 675)
+ 4\;*’_:13@‘?:' —am:s*»‘ +2a.105*~ — 38488, — 675)
[Ebg —5]{2.5&, —3}+hf



Too much entanglement is useless

, _ [Gross, Flammia & Eisert '09;
1 States (n-qubit) possessing too much Bremner, Mora & Winter ‘09]

geometric entanglement E; are not
universal for QC (i.eif £, >n—4)

E,(|¥)) = —log, nax (| T)|? P = set of product states

Q Intuition: if state is very high in geometric entanglement, every
local measurement outcome has low probability

= whatever local measurement strategy, the distribution of
outcomes is so random that one can simulate it with a random
coin (thus not more powerful than classical random string)

L Moreover, states with high entanglement are typical:
those with E, < n — 2logy(n) — 3 is rare, i.e. with fraction < ™™

=» Universal resource states are rare!!



Outline

|. Introduction

Il. One-way (measurement-based) quantum computers

lll. Other entangled resource states: AKLT family

V. Summary



A new direction: valence-bond ground
states of isotropic antiferromagnet

o AKLT (Affleck-Kennedy-Lieb-Tasaki) states/models

» Importance: provide strong support for Haldane’s [AKLT '87,88]
conjecture on spectral properties of spin chains

- Provide concrete example for symmetry-protected
topological order  [Gu & Wen 09, ‘11]

0 States of spin S=1,3/2, 2,.. (defined on any lattice/graph)

= Unique* ground states of gapped* two-body isotropic Hamiltonians

H = Z f(S;-S;)  f(x)is a polynomial
(4,7)

*w/ appropriate boundary conditions; #gap proved in 1D; evidence in 2D: Garcia-Saez,Murg,Wei‘ 12



(hybrid) AKLT state defined on any graph

a # virtual qubits
= # neighbors

0 S= # neighbors /2

a Physical spin Hilbert
space = symmetric
subspace of qubits

P, = projection to symmetric subspace of n qubit = spin n/2



1D AKLT state for simulating 1-qubit gates

0 Easy to see from its matrix product state (MPS)
[Gross & Eisert, PRL ‘07][Brennen & Miyake, PRL ‘09]

sin?let |01> - |10> — ( ‘O> ‘1> ) ( —’T(>)> >

et

) (L ) o my=( Jay Ly )

P, = |4+ 1)(00] + [0)({01] + (10])/v2 + | — 1)(11]
o MPS form: 10 =12), [+ 1) = =) +ily)/V2, | = 1) = (Jz) — i[y))/V2

10) 1) Y _(10/V2 -1 Y L, .
pv< Mo o )_ ( A —|o>¢§) S(0)X + )Y + )2

=>» Gates with superposition of X, Y, Z are achievable

=>» Arbitrary 1-qubit gates possible (but universal QC requires
2-qubit gates) =» any 2D AKLT states universal?



Hamiltonian & SPT order

. A=X,Y orZ
o 1D spin-1 AKLT state )X + Y)Y + |2)Z
Is ground state of the gapped 2-body Hamiltonian _..] A k...
= 1, - = 2 |
H = ;Si - Sip1 + g(Sz : Sz'—l—l) X, y,lor .

o AKLT is a symmetry-protected topological (SPT) state,
e.g. by Z,xZ, symmetry (rotation around x or z by 180°)

o Under transformation on physical spins:
0) = 1[2), [+ 1) = =(J2) +ily))/V2, | = 1) = (J2) —ily))/V2

-1 0 0 2) = 12), |2y — —|2), |y) — —|y)
Uz(”): 0 1 0

0 0 -1 A—Z-A-Z

0 0 -1 _ B
Um<7r>< 0 -1 0 ) 2) = =lz), [2) = l2), Jy) = ~ly)

-1 0 0 A—- XA X

=>» Projective representation (e.g. Z & X) of symmetry implies SPT order



SPT order of cluster state

o MPS for cluster state (single site):
A(0) = [+){0], A(1) = [—-)(1]
= +/- basis: A(+)~ A(0)+ A(l)=H, A(-)=HZ

o Two sites: A=l, X, Y orZ
A++) =H" =1, A4+—-) = H(HZ) = Z v A

A(—+)=(HZ)H = X, A(-—)=(HZ)" = XZ [ ]

+/- /-

o Under XIXI... on physical spins:

A(H++) = A(++), A(+—) = A(+—)
A(=+) = =A(=+), A(==) = =A(—-)

}A(a,ﬁ)%Z-A(a,B)-Z

a Similarly for IXIX... : A(a,8) = X - A(a, B) - X

=» projective representation =» SPT order



SPT order & gates

o AKLT is a symmetry-protected topological (SPT) state,
e.g. by Z,xZ, symmetry (rotation around x or z by 180°)
with Hamiltonian

. 1, - =
H:ZSi-SZ-+1+§(Si-Si+1)

2

a 1D cluster state is also a SPT state, e.g. by Z,xZ,
symmetry (XIXI... or IXIX..) with Hamiltonian

H=-% Zi1XiZin

0o Generic states in such 1D SPT phase

A, =0, R B, [Else et al. ‘12]

logical junk [Prakash & Wei‘15]

subspace subspace

=>» Only identity gate (up to Pauli) is protected
=» But arbitrary 1-qubit gate is possible, e.g. with S, symmetry [Miller & Miyake 15]



2D SPT states for universal QC

0 A“Control-control-Z state”.  [Miller & Miyake ‘15]
W= CCZ (Control-Control-Z) gates applied to all triangles with |+++ ..++>

(with symmetry Z,xZ,xZ,)

o Fixed-point wavefunctions of generic SPT states (with any nontrivial
SPT order) are universal resource; see

Thursday Session A: 4. [3:00-3:20] Hendrik Poulsen Nautrup
and Tzu-Chieh Wei. Symmetry-protected topologically ordered
states for universal quantum computation



In the remaining, we will focus on AKLT family
of states for universal quantum computation



Converting 1D AKLT state to cluster state
sin?let 01) — |10)

PP DD DD
\ e
P Py = [+ 1)(00] + 0)((01] + (10])/v/2 + | — 1)(11]

0 Via adaptive local measurement (i.e. state reduction)
[Chen, Duan, Ji & Zeng ‘10 ]

o Via fixed POVM [Wei, Affleck & Raussendorf ‘11 ]
= generalizable to 2D AKLT: F}F,+ F)F,+ FIF, =1

Fo~ 1Sy = 1){80 = 1]+ 1Sy = —1)(Sy = =1 ~ [+ +){++ | +] = =)~ — |
Fy oo 18, = 108, = 11+ 18, = =1)(S, = 1] ~ [i,6)(6,i] + | = &, i) (i, ~i]
Fy ~ |5 = 1)(5: = 1] + |52 = —1)(52 = —1] ~ [00){00] + [11)(11]

= Outcome labeled by x.y, z: V) — Fo )



POVM: 1D AKLT state =» cluster state

singlet |01> — |10>

P, )
a POVM: F/F, +FJF,+ FIF, =1 y
e.g. for the outcome (labeled x, y, z) z

=> the post-measurement state is an encoded 1D cluster state with graph:

=» 1 logical qubit = 1 domain = consecutive sites with same outcome

=>» This generalizes to some 2D AKLT states (with S<2)



Realizations of 1D AKLT state

a Resch’s group: photonic implementation (Nature Phys 2011)

....................



2D AKLT states for quantum computation?

. . Wei,Affleck & Raussendorf, PRL ’11; Miyake ‘11;
a On various lattices Wei, PRA 13, Wei, Haghnegahdar& Raussendorf, PRA ‘14
Wei & Raussendorf ‘15

< honeycomb s square-octagon . ‘cross’ &) star
o % % % %
 square-hexagon & decorated-square w Ssquare 2 Kagome
(spin-2 spin-3/2 mixture) (spin-2 spin-1 mixture) (spin-2) (spin-2)
¢ ¢ |
oo o

@ | 4

TR 1
wiiy Ll B

~—@—0—@
L S S



Proposal for 2D AKLT states

o Liu, Liand Gu [JOSA B 31, 2689 (2014)]
(a) () s

(a)

o Koch-danusz, Khomskii & Sela [PRL 114, 247204 (2015)]
electrons in Mott insulator

R=Xels

d) e)

Ja U
AP



AKLT states on trivalent lattices

o Each site: three virtual qubits e = spin 3/2 (in general: S= #nbr /2)

=>» physical spin = symmetric subspace of qubits

a Two virtual qubits on an edge form a singlet @—@

01) —[10
P = [3/2)(000] + | = 3/2)(111] + [1/2)(W ]+ | — 1/2)(W|

—> Effective qubit

(|001) + [010) + |100)) <

§1>
V3 279

W) = —3(|110> + 101) + [011)) « ’%_%>




Use generalized measurement (POVM)

o 2 13\ /3 3 3 [Wei,Affleck & Raussendorf’11
== VsUGL 123, Myake 11]
2 (13\ /3 3 3
Fo = g ( §><§ T - §>< - 5 g;) Completeness:
2 (13\ /3 3 3 ; T _—
P /% _><_ __><__ FiF, +FiF, + FiF, =1
vy 3 ( 2/\2l, 173 21y vy

o POVM gives random outcome X, y and z at each site

= Can show POVM on all sites converts AKLT to a graph state
(graph depends on random x, y and z outcomes)



Proving graph state

Let us first explain the notation. Consider a central vertex

C € V(Gy({F})) and all its neighboring vertices C,, € V(Gy).
Denote the POVM outcome for all L sites v € C,C,, by a, and (

C )\‘ : .

a,, respectively. Denote by E, the set of £ edges that run : ® Beck, ”"’)Q‘

/K = (- 1)E '+Z~'Eﬂ'® (®eck, Mu(e) Z'E“N

< . ag b
between C and C,. Denote by E, the set of £ edges internal 7
to C. Denote by V., the set of all qubits in C, and by V, the set
of all qubits in C,. (Recall that there are four qubit locations "X, if ng even
per L vertex v € C,Cy,.) Extending Eq. (33) of Ref. [17]tothe | o —
T2 @\jé - it (1Y, i ngy s odd
,\/C — (— (u(e)) (v(g)) 1) (vi(e)) ’;tv(e)) \ /
u ecE, e'cE,

= (—1)E |+211|Eu1®® s B = Zﬂ-au#b | El

n ecE,

(vi(e") _(vae'))

e'cE,

TABLEII. The choice of b and a4,

We take the following convention for b as reported in

Table II. For POVM outcome a. = z, we take b = x; for a,

z v y

a. = x, we take b = z; for a. = y, we take b = z. With this b X Z Z

choice we have uth y y X

POVM outcome Z % y

Ey Z 3
K:C — (_ ] )JE.-!+Z,u IEu| ®(®()€E#}L’”‘?))Z‘L } | — . - . . - -
Stabilizer generator ;A 0l o] Aidjolilglil Xk jorla ]
Logieal Toperior @0l @Floll @ o
X ® .G K- R .
Logical Z operator Aol Aol Aol

ecE,




Probability of POVM outcomes

o Measurement gives random outcomes, but what is the
probability of a given set of outcomes?

P({a(v}) ~ ¢AKLT|® (o) Fa@)[YakLr)

a Can evaluate this using coherent states; alternatively
use tensor product states

o Turns out to be a geometric object

P({a(v}) ~ 21

[ Wei,Affleck & Raussendorf, PRL 11 & PRA '12]



Difference from 1D case:
graph & percolation

[ Wei,Affleck & Raussendorf PRL'11]

1. What is the graph? which determines the graph state
=» How to identify the graphs ?

2. Are they percolated? (if so, universal resource)




Recipe: construct graph for ‘the graph state’

» Examples: random POVM outcomes x, v, z

xz vz )¢ »— 30— vv
zz
v‘vx xx xz.zz xx‘zv
vv
xv \'z zx
Y x zz xz zz vz x X
vx \'z zx xx vv zz vz
'rz zx vx xRz Yy zz
z zv z\' xz xz‘ ‘
2
vx

! !thh! %

honeycomb square octagon

P({a(v}) ~ 2V17¢




Step 1: Merge sites to “domains™ vertices

» 1 domain = 1 logical qubit

honeycomb

square octagon

|ttty [ 4141 encoding of a logical qubit



Step 2: edge correction between domains

0 edge, Odd # edges = 1 edge

= I inthe C-Z gate

» Even # edges =

)

2
z

(dueto o

square octagon

honeycomb



Step 3: Check connections (percolation)

» Sufficient number of wires if graph is in supercritical phase (percolation)

v" Verified this for honeycomb, square octagon and cross lattices
=>» AKLT states on these are universal resources



when connectivity collapses (phase transition)

How robust is connectivity?

» Characterized by artificially removing domains to see

subcritical

Pdelete

06

0.7

0.8

Pspan

0.8

0.6

04

0.2

[Wei’13]
S ' ' L= 20
wm%% 3 L= 40
ad L= 60
e L= 80
% L =100
L L =120
4~++ t
f-
+1*' g
supercritical = subcritical
A
%
K&%
0.1 0.2 0.3 0.4 0.5 0.6
Pdelete



Frustration on star lattice

J/ =» Cannot have POVM outcome

/ \ XXX, YYYy or zzz on a triangle
T ?

> Consequences:

1) Only 50% edges on triangles occupied
< Py, =0.5244 of Kagome .,/ /o

b Y
i - disconnected graph AL
XX X
) Simulations confirmed: graphs not
percolated

= AKLT on star likely NOT universal




Difficulty for spin-2

o Technical problem: trivial extension of POVM
does NOT work!

roo= ) v -2)(-7, FiF, + FJFy + FIF. #c- 1

- o]
F, = 2><2y+ —2><—2y

o Fortunately, can add elements K's to complete the identity

= Leakage out of logical subspace (error)

g

2 : :
F, = \/;(Sa — _|_2> <Sa — _|_2| 4 ‘Sa — _2><Sa _ _2|) [Wei, Haghnegahdar, Raussendorf’14]

1 &=\ enen) 0 =yz08 =215 =2

f P
- =T, Y,z Completeness: Z FaFa + Z KaKa —




Another difficulty: sample POVM outcomes

p({F, K}) = (AKLT|Q F ) Fa(u) @) K Kp(u) [AKLT) =2 Wi, Raussendort 15
o How to calculate such an N-body correlation function?

Lemma. If there exists a set ) (subset of D) such that — ®,cq(—1)V+1 X, is
in the stablizer group S(|Gp)) of the state |Gyp), then p({F, K'}) = 0. Otherwise,

1) €]~ |V |+2] 5 | —dim (ker (H))

p(iF i =c (5

?

where c is a constant. [ [Go) ~ X) Fa(w)|AKLT)

D set of domains having all sites POVM K

L(H),,=1i{K,,X,} =0, and (H),, =0 otherwise

=» Bottom line: can use Monte Carlo sampling



Local POVM: 5-level to (2 or 1)-level

2 : ,
F, = \/;(Sa — _|_2> <Sa — _|_2‘ 4+ ‘Sa — _2><Sa _ _2’) [Wei, Haghnegahdar, Raussendorf’14]

| K- \/g(\¢;><¢;!) = %W;Wb; Fo o 103)= \/gﬂsa =2) &[S0 = -2))

_a=x,Y,2 Completeness: Z FlF, + Z KIK,=1

xX=T,Y,z a=T,Y,z

o POVM gives random outcome F,, Fy, F,, K., Ky, K, at each site

DO O 0 @ ©® @ @ ® > Localaction (depends on outcome):
® 00660 & 6 @6 €

|®) — Foza,y,or2|P)
© Fr &6 686 6§ & & F

or

® 6K e 66 « § F
® 0 r O RN O O @ ‘(I)> ;Kazx,y,orz’q)>
®e 66 6 o6 6
K & & F. K, & & F, F, F



Post-POVM state: graph state

2 ; :
F, = \/;(‘Sa _ +2> <Sa — _|_2| + ‘Sa _ _2><Sa _ _2|) [Wei, Haghnegahdar, Raussendorf’14]

Ko = @qmw;) = %cb;w;\ Fo o ey) = \/g(sa =2) £|S, = -2))

— a=T,Y,z

e 0 00 & @ @ @ @ o If Foutcome on all sites
e o000 ee o = a planar graph state
_eplece®eeene [G)=cFAKLT)
v
adomain. PRO®6666en v Vertex = a domain of sites with
= vertex g e e 0 & v & same color (x, y or z)
® 6 & e 0 6 6 @ +
B ® o Koutcome = F followed by ¢
®6ew/oee 6« e 6 measurement (then post-selecting ‘-’ result)
K &® ® F, X, &® & F, F, F, > Either
® P 0000 6 6 @ (1) shrinks domain size [trivial] or
(2) logical X or Y measurement [nontrivial]
FE&E6&&E G K R &R



POVM = Graph of the graph state

Vertex = domain = connected sites of same color \Go> F(v) ]AKLT)
Edge = links between two domains (modulo 2)

o Effect of nontrival Ko = —=¢5){¢a| Fa ogical X D logical Y
=> non-planar graph measurement measurement

N




Non-planarity from X/Y measurement

[See e.g. Hein et ‘06]

——>

»

X measurement
onA
1

Y measurement
onA

=>» Effect of X measurement is more complicated than Y measurement



Restore planarity: further measurement

o Deal with non-planarity due to Pauli X measurement:
remove all vertices surrounding that of X measurement (via Z measurement) y

X measurement /‘/‘

on A . {\

o

o Deal with non-planarity due to Pauli Y measurement:
remove only subset of vertices surrounding that of Y measurement

Y measurement




POVM = Graph of the graph state

Vertex = domain = connected sites of same color
Edge = links between two domains (modulo 2)

a Pauli X or Y measurement on planar Jogical X <:> logical Y
graph state = non-planar graph measurement measurement




Restore Planarity by
Another round of measurement

j Deal with X measurement > Deal with Y measurement




F,span

I:)span

Examining percolation of typical graphs
(resulting from POVM and active logical Z measurement)

1.1

7 L
0.9 |
0.8 |
0.7 | |

06

0.5

20

60 100 140 180

09

0.8
0.7
0.6
05
04
03}
02t
A

L=120
L=140
L=160
L=180

0.15
F)delete

0.05 0.1

0.2

0.25

v 1. As system size N=L x L increases, exists
a spanning cluster with high probability

v" 2. Robustness of connectivity: finite
percolation threshold (deleting each vertex
with increasing probability)

v" 3. Data collapse: verify that transition is
continuous (critical exponent v = 4/3)

Pspan

1

09
08
0.7 +
06

0.5
04
0.3
0.2

0.1+

0

(Pdelete'Pdelete*)L

- L=120

R, L=140

: L=160

3 % L=180

LY subcritical

' supercritical %+ phase
. phase *_ (graph state .

3 .
L (graph state ot universal)]

universal) .

8 6 4 -2 0 2 4 6

1/nu



Spin-2 AKLT on square is universal for
gquantum computation

0o Because the typical graph states (obtained from local measurement
on AKLT) are universal = hence AKLT itself is universal

o Difference from spin-3/2 on honeycomb: not all randomly
assigned POVM outcomes are allowed
=» weight formula is crucial

a Emerging (partial) picture for AKLT family:

AKLT states involving spin-2 and other lower spin entities are
universal if they reside on a 2D frustration-free regular lattice
with any combination of spin-2, spin-3/2, spin-1 and spin-1/2



Summary

o Introduced one-way (cluster-state) quantum computation

B RRNANACARRE - =>» Measurement-based QC uses entanglement
f nnnnnnnnn

i =» Teleportation viewpoint and tensor-network
eeeeeeee , e approach (correlation space QC)
5 f + IR IR

frefe ol mefurrEinire
—

=>» Universality in graph states

=» Fault tolerance & surface code =» Blind quantum computation

=» Possible connection to SPT order

0 Showed various AKLT states (on different 2D lattices)
provide universal resource for quantum computatlon

oot
Tt
+++++




Not covered

d MBQGC, classical spin models & complexity

[Van den Nest, Dur & Briegel 07, ‘08]

O Thermal phase diagram of MBQC

[Fujii, Nakata, Ohzeki & Murao’ ‘13]

[Lietal 11, Wei, Li & Kwek ‘14]

0 Deformed AKLT models & transition in QC power

[Darmawan, Brennen & Bartlett ‘12,
Huang & Wei‘16]

4 Verifiable blind QC [Hayashi & Morimae *15]



Open problems

O Complete characterization of all universal
resource states?

> Even for AKLT family?

A Universal resource in an entire SPT phase?

» Even for just 1D SPT phase and arbitrary 1-qubit
gate?

O Deeper connection of topological QC to MBQC?






