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Goals of this tutorial*

� Give some details to understand basic ingredients 

of measurement-based quantum computation 

(MBQC) 

� Give pointers to related development/ application 

(fewer details)

� Will point out related talks in this conference

� Give some open problems

*This tutorial assumes little prior knowledge
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Moore’s Law:

The number of transistors on a chip doubles ~every 2 years 

� A transistor hits the size of a few atoms in about 20 years

[Courtesy: Intel]

� Quantum regime is inevitable

[Nat. Nano. 2010]

2037?

1nm



Candidate systems* for quantum computers

[Optics]

[Trapped Ions and atoms]

[NV center in diamond]

[Superconductors (Josephson junctions)]

[Cavity QED]

[NMR]

[Quantum dot]

*You may see many of these throughout this conference



New quantum Moore’s Law?

[H. Weimer]

� Number of qubits in ion trap

� Roughly doubles every 6 years! 

(may depend on physical systems)

e.g. see Nathan Langford’s tutorial on circuit QED 



ENIAC – first generation computer

[1946]

When will the first-generation quantum computer appear?

Contained: 

17,468 vacuum tubes, 

7,200 crystal diodes, 

1,500 relays, 

70,000 resistors, 

10,000 capacitors 

5 million hand-soldered joints

Weighed 27 tons

About 8.5 by 3 by 100 feet 

Took up 1800 square feet 

20 ten-digit signed accumulators



Quantum computation in a nutshell

� Naive measurement only gives 

one f(k) at a time

� Exploit quantum parallelism:

� Consider a function f and a corresponding unitary U:

� Good design of measurement 

may reveal properties of f 
� e.g. Shor’s factoring algorithm

180708208868740480595165616440590556627810251676940134917012702

1450056662540244048387341127590812303371781887966563182013214880

557  =(????....?) x (????...?)

� Factoring is hard:

=(39685999459597454290161126162883786067576449112810064832555157243) 

x 

(45534498646735972188403686897274408864356301263205069600999044599)



Quantum computation: Circuit model

(1) One qubit gates: any rotation

(2) Two qubit gate: entangling

� Building blocks

e.g., C-Z gate or 

Controlled-NOT gate
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CNOT & CZ gates

CNOT: 

0 0 � 0 0 
0 1 � 0 1
1 0 � 1 1 
1 1 � 1 0
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0 0 � 0 0 
0 1 � 0 1
1 0 � 1 0 
1 1 � - 1 1
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(Models of) Quantum Computation 

� Adiabatic:

� Topological:

� Measurement-based:                            local measurement is

the only operation needed

using braiding of anyons to
simulate quantum gates

� Circuit: 0/1

0/1

0
0
0

0



Outline

I. Introduction

IV. Summary

II. One-way cluster-state (or measurement-based) 

quantum computers

III. Other entangled resource states: Affleck-Kennedy

-Lieb-Tasaki (AKLT) family



Now focus on measurement-based 

(or one-way) quantum computer:

which can “simulate” unitary evolution



Unitary operation by measurement?

� Intuition: entanglement as resource!

� Controlled-Z (CZ) gate from Ising interaction

1 2

� Entanglement is generated:



Unitary operation by measurement?

� Intuition: entanglement as resource!

� Measurement on 1st qubit in basis

with outcome denoted by

1 2

measurement

CZ
CZ

� Second qubit becomes

� A unitary gate is induced:

≡ ≡

X Y



Simulating arbitrary one-qubit gates
� In terms of circuit:

1

2

ξ + or -

� Can cascade this a few times:

1

2

ξ1 + or -

ξ2

3 ξ3

4 ξ4

5

[Raussendorf &Wei, Ann Rev Cond-Mat ‘12]



Example: arbitrary one-qubit gate

� Consider: ξ1=0 & construct 
arbitrary rotation

� Propagating Z’s to left and use HZH=X:

� Take

we realize an Euler rotation, up to byproduct Z, X operators:



Comments

� Consider: ξ1=0, & construct 
arbitrary rotation

� Take

we realize an Euler rotation, up to byproduct Z, X operators:

� Note: measurement basis can depend on prior results

� Byproduct operators                            can be absorbed

by modifying later measurement basis

� Byproduct operators on final measurement in Z basis (readout) can be 
easily taken into account (only X flips 0/1)



Linear cluster state: resource for 

simulating arbitrary one-qubit gates

1

2

ξ1 + or -

ξ2

3 ξ3

4 ξ4

5

� May as well take |in>=|+>;    the whole state before measurement ξ’s 
is a highly entangled state � 1D cluster state



Simulating CNOT by measurement

� Consider initial state

If outcome=++: an effective CNOT applied:

2 3

1

4

Can show:

� Measurement on 2nd and 3rd qubits in basis

� Note the action of CZ gates can be pushed up front
(a 4-qubit “cluster” state can be used to simulating CNOT) 



CNOT gate: symmetric design

� The following measurement pattern simulates CNOT gate 
(via entanglement between wires)

[Raussendorf &Briegel PRL 01’]

21 3 4 6 75

8

109 11 12 14 1513

control in control out

target in target out

Q: how do I know it implements CNOT? 

byproduct operators=?

Ans: see Theorem I in  Raussendorf, Browne & 

Briegel PRA ’03

(generalization to qudit: Zhou et al. PRA ‘03)



[Raussendorf, Browne 
& Briegel PRA ’03      ]



2D cluster state and graph states

� Can be created by applying CZ gates to each pair with edge

� Cluster state: special case of general “graph” states

[Raussendorf&Briegel ‘01]

X

ZZ

Z

� Uniquely define the state G, also via Hamiltonian

(can show this, using

above def. of G)



Z measurement on graph state

� The effect is just to remove the measured qubit, 

keeping the remaining entanglement structure

a

� Graph after Z measurement on a:
a

1

2

3

4

� If outcome =0:

� If outcome =1:

� For X & Y measurements, see [Hein, Eisert, Briegel ’04, Hein et al. ‘06]



2D cluster state is a resource for 

quantum computation

� Whole entangled state is created first 

(by whatever means)

� Pattern of measurement gives computation
(entanglement is being consumed � one-way)

� Operations needed for universal QC are 

single-qubit measurements only

� Elementary “Lego
pieces” for QC:



Cluster state for universal computation

Z Z Z

Z Z

Z Z Z Z Z Z Z Z

Z

Z Z Z Z Z Z Z

Z Z

Z Z Z Z

Z Z Z

� Carve out entanglement structure 

by local Z measurement Z

Z Z Z

Z Z

Z Z Z Z Z Z Z Z

Z

Z Z Z Z Z Z Z

Z Z

Z Z Z Z

Z Z Z

(1) Each wire simulates one-qubit evolution (gates)

(2) Each bridge simulates two-qubit gate (CNOT)

2D or higher dimension is needed for universal QC &

Graph connectivity is essential (percolation)



Realizations of cluster states

� J-W Pan’s group: 4-photon 6 qubit and CNOT (PRL 2010)

� Bloch’s group: controlled collision in cold atoms (Nature 2003)



Cluster state: a valence-bond picture

� Cluster state = a valence-bond state 

= a projected entangled pair state (PEPS)

[Verstraete & Cirac ’04]

� Bond of two virtual qubits = 

� Projection of several virtual 

qubits to physical qubit = 

� Quantum computation via teleportation

� 1-qubit gate: � 2-qubit gate:

[see also Gottesman & 

Chuang ‘99]



QC in correlation space
[Gross & Eisert ’07,

Gross et al. ‘07]
� Previous picture of valence bond was 

generalized by Gross and Eisert using
matrix product states (MPS) and PEPS

� Illustrate with 1D cluster state:

A A A

si+2 si+1
si

A A RL

� Measurement outcome φi at site i:



Cluster state QC: in correlation space

A A A

si+2 si+1 si

A A RL

� Measurement outcome φi at site i:

� As spins are measured, the boundary vector R is operated by gates

� For 1D cluster state:

� measure in basis

� obtain same 1-qubit gate as before:

� 2-qubit gates use 2D PEPS � see Gross & Eisert ‘07



Comment: deriving MPS for cluster state

� MPS form:



Monday Session A: 4. [3:00-3:20] Anurag Anshu, Itai
Arad and Aditya Jain. How local is the information in 

MPS/PEPS tensor networks?

Related talk:



Cluster states: not unique ground 

state of 2-body Hamiltonians
[Haselgrov, Nielsen & 

Osborne ‘03, Nielsen ’04]
� First proved by Nielsen

� Van den Nest et al. proved for general (connected) graph states G:

� For approximation:  ground-state of 2-body Hamiltonian can 
be ϵ-close to G, but the gap is proportional to ϵ

[Van den Nest et al. ‘08]

� Bartlett & Rudolph constructed a two-body Hamiltonian such that
the ground state is approximately an encoded cluster state

[Bartlett & Rudolph ‘06]

1 logical cluster qubit 
= 4 physical qubits

� Darmawan & Bartlett constructed encoded cluster state
by deforming the AKLT Hamiltonian [Darmawan & Bartlett ‘14]



Linear optic QC & cluster state
� Linear optic universal QC possible with single photon source, 

linear optic elements (beam splitters, mirrors, etc) & photon counting

[Knill, Laflamme & Milburn ’01]� High overhead in entangling gates

� Cluster state helps reduce this overhead [Yoran & Reznik ’03; Nielsen 

‘04; Browen & Ruldoph ’05;

Kieling, Rudolph &Eisert ‘07]� Grow cluster states efficiently

� Experiments: see e.g. [O’Brien Science ’07]



Create continuous-variable cluster states

� Use frequency comb and parametric amplifier in cavity

[Menicucci et al ‘06, ’08]� Theory: [60 modes in 

Pfister group ’11] 

� Experiment II: [> 10,000 modes in Furusawa group ‘12 ]

� Experiment I:



Thursday Session A: 

5. [3:20-3:40] Hoi-Kwan Lau and Martin 
Plenio. Universal Quantum Computing with Arbitrary 

Continuous-Variable Encoding

6. [3:40-4:00] Alessandro Ferraro, Oussama Houhou, 
Darren Moore, Mauro Paternostro and Tommaso
Tufarelli. Measurement-based quantum computation with 

mechanical oscillators

Related talks:



Fault tolerant cluster-state QC
� Uses a 3d cluster state and implements surface codes 

in each 2d layer

� Error threshold 0.75%, qubit loss threshold 24.9% 

� Uses magic-state distillation 
to achieve non-Clifford gate

[Raussendorf, Harrington 

& Goyal ’07] 

[Barrett & Stace ‘10] 

� CNOT is achievable



Friday 10:30-11:00 [Long] Guillaume Dauphinais
and David Poulin. Fault Tolerant Quantum Memory 

for non-Abelian Anyons

Related talk:



Universal blind quantum computation

� Using the following cluster state (called brickwork state)

[Broadbent, Fitzsimons & Kashefi ’09]

� Alice prepares

x

y

with random 

� Bob entangles all qubits 

according to the brickwork 

graph via CZ gates

� Alice tells Bob what measurement basis for 

Bob to perform and he returns the outcome 

(compute like one-way computer)

� Alice can achieve her quantum 

computation without Bob knowing 

what she computed!!

� Realized in an exp.

Barz et al. 2012



We have seen the cluster states on the square 

lattice and the brickwork lattice for universal for 

quantum computation

Q: How much do we know about the general 

cluster/graph states?



Universality in graph/cluster states

� Beyond square & brickwork: other 2D graph/cluster states on 
regular lattices, e.g. triangular, honeycomb, kagome, etc. are universal

[Van den Nest et al. ‘06]� Can use local measurement to convert one to the other

(with fewer qubits, but still macroscopic)



Graph states on regular lattices

� Beyond square & brickwork: other 2D graph/cluster states on 
regular lattices, e.g. triangular, honeycomb, kagome, etc. are universal

[Van den Nest et al. ‘06]
� local measurement 

converts one to another

Y

Y

Y



Universality in graph/cluster states

� Faulty square lattice (degree ≤ 4)

� Beyond square & brickwork: other 2D graph/cluster states on 
regular lattices, e.g. triangular, honeycomb, kagome, etc. are universal

[Browne et al. ‘08]

[Van den Nest et al. ‘06]� Can use local measurement to convert one to the other

(with fewer qubits, but still macroscopic)

� As long as it is sufficiently connected 

(a la percolation), can find sub-graph ~ honeycomb



Cluster state on faulty lattice

� No qubits on empty sites (degree ≤ 4) 
�� site percolation

� But assume perfect CZ gates

[Browne et al. ‘08]

� As long as probability of occupied sites > site percolation threshold
� still universal for MBQC

Local 

measurement



Universality in graph/cluster states

� Faulty square lattice (degree ≤ 4)

� Beyond square & brickwork: other 2D graph/cluster states on 
regular lattices, e.g. triangular, honeycomb, kagome, etc. are universal

� Any 2D planar random graphs in 
supercritical phase of percolation are universal

[Browne et al. ‘08]

[Wei, Affleck & Raussendorf.‘12]

[Van den Nest et al. ‘06]� Can use local measurement to convert one to the other

(with fewer qubits, but still macroscopic)

� As long as it is sufficiently connected 

(a la percolation), can find sub-graph ~ honeycomb



Other universal states

� Can they be unique ground state with 2-body 

Hamiltonians with a finite gap?

� TriCluster state

� So far no complete characterization for resource states

� If so, create resources by cooling!

[Chen et al. ’09]

� Affleck-Kennedy-Lieb-Tasaki (AKLT) family of states [AKLT ’87, ‘88]

� Symmetry-protected topological states

[Gross & Eisert ‘07, ‘10] [Brennen & Miyake ’08?]1D (not universal):

2D (universal): [Wei, Affleck & Raussendorf ‘11] [Miyake ‘11] [Wei et al. ‘13-’15]

[Else, Doherty & Bartlett ’12] [Miller & Miyake ’15]1D (not universal): [Prakash & Wei ’15]

2D (universal, but not much explored): [Miller & Miyake ’15][Poulsen Nautrup & Wei ’15]



Example ground state of two-body 

Hamiltonian as computational resource 

� TriCluster state (6-level) [Chen, Zeng, Gu,Yoshida & Chuang, PRL’09]



Too much entanglement is useless 
[Gross, Flammia & Eisert ’09; 

Bremner, Mora & Winter ‘09]� States (n-qubit) possessing too much 
geometric entanglement Eg are not 
universal for QC ( i.e if                     )

� Intuition: if state is very high in geometric entanglement, every 
local measurement outcome has low probability

� whatever local measurement strategy, the distribution of 
outcomes is so random that one can simulate it with a random 
coin (thus not more powerful than classical random string)

� Moreover, states with high entanglement are typical:

those with                                        is rare, i.e. with fraction  

� Universal resource states are rare!!



Outline

I. Introduction

IV. Summary

II. One-way (measurement-based) quantum computers

III. Other entangled resource states: AKLT family



A new direction: valence-bond ground 

states of isotropic antiferromagnet

� Unique* ground states of gapped# two-body isotropic Hamiltonians

� States of spin S=1,3/2, 2,.. (defined on any lattice/graph)

[AKLT ’87,88]

� AKLT (Affleck-Kennedy-Lieb-Tasaki) states/models

f(x) is a polynomial

*w/ appropriate boundary conditions;  #gap proved in 1D; evidence in 2D: Garcia-Saez,Murg,Wei ‘ 12

� Importance: provide strong support for Haldane’s
conjecture on spectral properties of spin chains

� Provide concrete example for symmetry-protected 
topological order [Gu & Wen ’09, ‘11]



(hybrid) AKLT state defined on any graph

singlet

Pv

S=1

S=1/2
S=2

S=3/2

� S= # neighbors / 2

� # virtual qubits
= # neighbors

� Physical spin Hilbert
space = symmetric
subspace of qubits

Pv = projection to symmetric subspace of n qubit ≡ spin n/2



1D AKLT state for simulating 1-qubit gates

� Easy to see from its matrix product state (MPS)
[Brennen & Miyake, PRL ‘09][Gross & Eisert, PRL ‘07]

� MPS form:

� Gates with superposition of X, Y, Z are achievable

� Arbitrary 1-qubit gates possible (but universal QC requires 

2-qubit gates) � any 2D AKLT states universal? 



Hamiltonian & SPT order

� 1D spin-1 AKLT state

is ground state of the gapped 2-body Hamiltonian A

x, y, or z

A=X, Y or Z

� AKLT is a symmetry-protected  topological (SPT) state, 

e.g. by Z2xZ2 symmetry (rotation around x or z by 180o) 

� Under transformation on physical spins:

� Projective representation (e.g. Z & X) of symmetry implies SPT order



SPT order of cluster state

� Under XIXI… on physical spins:

� Similarly for IXIX… :

� MPS for cluster state (single site):

� +/- basis:

� Two sites:

� projective representation � SPT order

A

+/- +/-

A=I, X, Y or Z



SPT order & gates
� AKLT is a symmetry-protected  topological (SPT) state, 

e.g. by Z2xZ2 symmetry (rotation around x or z by 180o) 

with Hamiltonian

� 1D cluster state is also a SPT state, e.g. by Z2xZ2

symmetry (XIXI… or IXIX..) with Hamiltonian

� Generic states in such 1D SPT phase

logical
subspace

junk
subspace

[Else et al. ‘12]

[Miller & Miyake ‘15]

[Prakash & Wei ‘15]

� Only identity gate (up to Pauli) is protected

� But arbitrary 1-qubit gate is possible, e.g. with S4 symmetry 



2D SPT states for universal QC

[Miller & Miyake ‘15]� A “Control-control-Z state”:

ψ=  CCZ (Control-Control-Z) gates applied to all triangles  with |+++ ..++>

(with symmetry Z2xZ2xZ2)

� Fixed-point wavefunctions of generic SPT states (with any nontrivial 
SPT order) are universal resource; see

Thursday Session A: 4. [3:00-3:20] Hendrik Poulsen Nautrup
and Tzu-Chieh Wei. Symmetry-protected topologically ordered 
states for universal quantum computation



In the remaining, we will focus on AKLT family

of states for universal quantum computation



Converting 1D AKLT state to cluster state

� Via adaptive local measurement (i.e. state reduction)
[Chen, Duan, Ji & Zeng ‘10 ]

� Via fixed POVM
� generalizable to 2D AKLT:

[Wei, Affleck & Raussendorf ‘11 ]

� Outcome labeled by x,y, z:



POVM: 1D AKLT state � cluster state

� POVM:

[Wei, Affleck & Raussendorf ’11, `12 ]

e.g. for the outcome (labeled x, y, z)

POVM

x

y

z

� the post-measurement state is an encoded 1D cluster state with graph:

� 1 logical qubit = 1 domain = consecutive sites with same outcome

� This generalizes to some 2D AKLT states (with S ≤ 2 )



Realizations of 1D AKLT state

� Resch’s group: photonic implementation (Nature Phys 2011)



2D AKLT states for quantum computation?

� On various lattices
Wei,Affleck & Raussendorf, PRL ’11; Miyake ‘11; 

Wei, PRA ’13, Wei, Haghnegahdar& Raussendorf, PRA ‘14

Wei & Raussendorf ‘15

☺ honeycomb

spin-3/2: 

	 star☺ square-octagon ☺ ‘cross’

	 Kagome  

(spin-2)

☺ square-hexagon
(spin-2 spin-3/2 mixture)

☺ decorated-square

(spin-2 spin-1 mixture)

☺ square

(spin-2)



Proposal for 2D AKLT states
� Liu, Li and Gu [JOSA B 31, 2689 (2014)]

� Koch-Janusz, Khomskii & Sela [PRL 114, 247204 (2015)]

t2g electrons in Mott insulator



AKLT states on trivalent lattices

� Each site: three virtual qubits ≡ spin 3/2 (in general:  S= #nbr /2)

� Two virtual qubits on an edge form a singlet

� physical spin =  symmetric subspace of qubits

Effective qubit



Use generalized measurement (POVM)

� POVM gives random outcome x, y and z at each site

Completeness: 

[Wei,Affleck & Raussendorf ’11
Miyake ‘11]

� Can show POVM on all sites converts AKLT to a graph state 

(graph depends on random x, y and z outcomes)



Proving graph state 



Probability of POVM outcomes

� Can evaluate this using coherent states; alternatively

use tensor product states

� Turns out to be a geometric object

� Measurement gives random outcomes, but what is the

probability of a given set of outcomes?

[Wei,Affleck & Raussendorf, PRL ’11 & PRA ’12]



2.  Are they percolated? (if so, universal resource) 

1. What is the graph? which determines the graph state
� How to identify the graphs ?

Difference from 1D case: 

graph & percolation

[Wei,Affleck & Raussendorf PRL’11]



Recipe: construct graph for ‘the graph state’

honeycomb square octagon

� Examples: random POVM outcomes x, y, z 



Step 1: Merge sites to “domains”� vertices

� 1 domain = 1 logical qubit

honeycomb square octagon

: encoding of a logical qubit



Step 2: edge correction between domains

� Even # edges = 0 edge, Odd # edges = 1 edge
(due to                in the C-Z gate )

honeycomb square octagon



Step 3: Check connections (percolation)

� Sufficient number of wires if graph is in supercritical phase (percolation) 

� Verified this for honeycomb, square octagon and cross lattices
� AKLT states on these are universal resources



How robust is connectivity?  
� Characterized by artificially removing domains to see 

when connectivity collapses (phase transition)

supercritical subcritical

supercritical subcritical

[Wei ’13]

P
s
p

a
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Frustration on star lattice

?

� Cannot have POVM outcome
xxx, yyy or zzz on a triangle 

(1) Only 50% edges on triangles occupied 

< pth ≈0.5244 of Kagome

� disconnected graph

(2)  Simulations confirmed: graphs not      

percolated 

� AKLT on star likely NOT universal

� Consequences: 



Difficulty for spin-2

� Technical problem: trivial extension of POVM 

does NOT work!

� Fortunately, can add elements K’s to complete the identity

� Leakage out of logical subspace (error)

Completeness: 

[Wei, Haghnegahdar, Raussendorf ’14]



Another difficulty:  sample POVM outcomes

[Wei, Raussendorf ’15]

� How to calculate such an N-body correlation function?

� Bottom line: can use Monte Carlo sampling



Local POVM: 5-level to (2 or 1)-level

� POVM gives random outcome Fx, Fy, Fz, Kx, Ky, Kz at each site

Completeness: 

[Wei, Haghnegahdar, Raussendorf ’14]

or

� Local action (depends on outcome):



Post-POVM state: graph state

� If F outcome on all sites 

� a planar graph state

[Wei, Haghnegahdar, Raussendorf ’14]

a domain
= vertex

� Vertex = a domain of sites with

same color (x, y or z)

� K outcome = F followed by 

measurement (then post-selecting ‘-’ result)

� Either 

(1) shrinks domain size [trivial] or

(2) logical X or Y measurement [nontrivial]



Vertex = domain = connected sites of same color

Edge = links between two domains (modulo 2)

POVM � Graph of the graph state

:logical X 
measurement

:logical Y 
measurement

� Effect of nontrival

� non-planar graph



Non-planarity from X/Y measurement

A

X measurement

on A

A

Y measurement

on A

X:

Y:

� Effect of X measurement is more complicated than Y measurement 

[See e.g. Hein et ‘06]



Restore planarity: further measurement 
� Deal with non-planarity due to Pauli X measurement: 

remove all vertices surrounding that of X measurement (via Z measurement)

AX:

X measurement

on A

� Deal with non-planarity due to Pauli Y measurement: 

remove only subset of vertices surrounding that of Y measurement

A

Y measurement

on A

Y:



Vertex = domain = connected sites of same color

Edge = links between two domains (modulo 2)

POVM � Graph of the graph state

:logical X 
measurement

:logical Y 
measurement

� Pauli X or Y measurement on planar

graph state � non-planar graph



Restore Planarity by 

Another round of measurement 

Deal with X measurement Deal with Y measurement



Examining percolation of typical graphs 
(resulting from POVM and active logical Z measurement)

� 1. As system size N=L x L increases, exists

a spanning cluster with high probability

� 2. Robustness of connectivity: finite 

percolation threshold (deleting each vertex 

with increasing probability)

� 3. Data collapse: verify that transition is 

continuous (critical exponent ν = 4/3)

1

2
3

supercritical
phase

(graph state
universal)

subcritical
phase

(graph state
not universal)



Spin-2 AKLT on square is universal for 

quantum computation

� Because the typical graph states (obtained from local measurement
on AKLT) are universal � hence AKLT itself is universal

� Difference from spin-3/2 on honeycomb: not all randomly
assigned POVM outcomes are allowed 
� weight formula is crucial

� Emerging (partial) picture for AKLT family:

AKLT states involving spin-2 and other lower spin entities are 
universal if they reside on a 2D frustration-free regular lattice 
with any combination of spin-2, spin-3/2, spin-1 and spin-1/2



Summary

� Introduced one-way (cluster-state) quantum computation

� Showed various AKLT states (on different 2D lattices) 

provide universal resource for quantum computation

� Measurement-based QC uses entanglement

� Teleportation viewpoint and tensor-network 

approach (correlation space QC) 

� Universality in graph states

� Fault tolerance & surface code � Blind quantum computation

� Possible connection to SPT order



Not covered

� MBQC, classical spin models & complexity
[Van den Nest, Dur & Briegel ’07, ‘08]

� Thermal phase diagram of MBQC
[Fujii, Nakata, Ohzeki & Murao’ ‘13]

[Li et al. ’11, Wei, Li & Kwek ‘14]

� Deformed AKLT models & transition in QC power

[Darmawan, Brennen & Bartlett ‘12, 

Huang & Wei ‘16]

� Verifiable blind QC [Hayashi & Morimae ’15]



Open problems

� Complete characterization of all universal 

resource states? 

� Even for AKLT family?

� Deeper connection of topological QC to MBQC?

� Universal resource in an entire SPT phase? 

� Even for just 1D SPT phase and arbitrary 1-qubit 
gate?




