
Introduction Quantum simulation Second quantization Configuration interaction Summary

Higher-efficiency quantum algorithms for
simulation of chemistry

Ryan Babbush, Dominic W. Berry, Ian D. Kivlichan,
Annie Wei, Dean Southwood, Peter J. Love, Alán Aspuru-Guzik

Department of Chemistry and Department of Physics, Harvard University

August 30, 2016 (AQIS)

Ian Kivlichan Higher-efficiency quantum simulation of chemistry



Introduction Quantum simulation Second quantization Configuration interaction Summary

Basis of talk

Second-quantized chemistry:
R. Babbush, D. W. Berry, Ian D. Kivlichan, A. Y. Wei, P. J. Love
and A. Aspuru-Guzik, New Journal of Physics 18, 033032,
arXiv:1506.01020 (2016)

Configuration interaction:
R. Babbush, D. W. Berry, Ian D. Kivlichan, A. Y. Wei, P. J. Love
and A. Aspuru-Guzik, arXiv:1506.01029 (2015)

Ian Kivlichan Higher-efficiency quantum simulation of chemistry



Introduction Quantum simulation Second quantization Configuration interaction Summary

Overview

1 Why chemistry?
What chemistry problem are we solving?
Why should you care?

2 Quantum simulation
Prior methods for solving the chemistry problem
A recent method we used based on truncated Taylor series

3 New quantum algorithm for chemistry simulation
in second quantization

The integrals that appear (and a trick to evaluate integrals
exponentially faster on a quantum computer)

4 New quantum algorithm for chemistry simulation
in configuration interaction

Sparsity of the chemistry Hamiltonian and a 1-sparse coloring
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The electronic structure problem

The physical laws necessary for
the mathematical theory of a large
part of physics and the whole
of chemistry are thus completely
known, and the difficulty is only
that the exact application of these
laws leads to equations much too
complicated to be soluble.

The Schrödinger equation, H |ψ〉 = E |ψ〉

H = Tnuc + Telec + Vnuc-nuc + Vnuc-elec + Velec-elec

Clamp nuclei under the Born-Oppenheimer approximation

|Ψ〉 = |ψ〉elec |ψ〉nuc ⇒ H = Telec + Vnuc-elec + Velec-elec
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Why is the electronic structure problem important?

Energy surfaces → free energies

Free energies → chemical rates

rate ∝ kBT

h
exp

[
−∆G ‡

RT

]
Chemical accuracy ≈ 0.04 eV

Ab initio catalysis design, e.g.

N2+3H2 → 2NH3 (20MPa/500◦C)

5% of natural gas, 2% of energy!

We can’t do this classically: but
could with a ∼100-qubit quantum
computer
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The canonical quantum quantum chemistry algorithm1

1 Write Hamiltonian in qubit basis as sum of local terms,

H =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

hpqrs a
†
pa
†
qaras ≡

∑
γ

Hγ

2 Prepare ansatz |ψ〉 having overlap with the ground state,

H |0〉 = E0 |0〉 |〈ψ|0〉|2 ∈ Ω
(
poly

(
N−1

))
3 Use Trotterization to implement molecular evolution operator,

eAeB 6= eA+B e−iHt = lim
r→∞

(∏
γ

e−iHγt/r

)r

4 Use phase estimation to measure the phase from time-evolution

e−iHt |ψ〉 =
∑
k

〈k |ψ〉e−iEk t |k〉 Prob (E0 | ψ) = |〈ψ|0〉|2

1A. Aspuru-Guzik et al., Science 309, 1704 (2005).
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Recent advances

N =# basis functions, η =# electrons, Zmax =max charge

09/2005: Aspuru-Guzik et al. original algorithm1, O(N11) gates

12/2013: Wecker et al., better gate count estimates2, O(N9)

03/2014: Hastings et al., optimized circuits3 reducing the depth
by N2

06/2014: Poulin et al., efficient numerical evaluation of errors
for ground state4, indicating ∼N6.5 gates

10/2014: Babbush et al., chemical origin of errors5, numerics
indicating ∼N4Z 3

max gates
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Molecules on a 100MHz quantum computer2

How can we do even better?

2Dave Wecker, Microsoft Research. Used with permission
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Truncated Taylor series simulation

Berry, Childs, Cleve, Kothari, Somma3: approximate the
time-evolution operator with a truncated Taylor expansion
rather than Trotter-Suzuki decomposition

Deterministic algorithm for simulating sparse Hamiltonians
super-polynomially more precisely

Õ(nd2t log(1/ε)) for a d-sparse n-qubit Hamiltonian
Compare accuracy scaling ε with Lie-Trotter-Suzuki poly(1/ε)

3D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Phys.
Rev. Lett. 114, 090502 (2015).
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Truncated Taylor series simulation

Three steps:

1 Find a way of writing the Hamiltonian as a linear combination of
easily-applied unitaries, H =

∑
γ WγHγ , where Wγ ∈ C

2 Divide into r ≥
∑

γ |Wγ |t segments

3 Apply approximate time-evolution operator as truncated Taylor
series Ũr ≈ e−iHt/r to initial state, r times (nasty part)
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series Ũr ≈ e−iHt/r to initial state, r times (nasty part)

Ian Kivlichan Higher-efficiency quantum simulation of chemistry



Introduction Quantum simulation Second quantization Configuration interaction Summary

The approximate time-evolution operator

Expand e−iHt/r as a Taylor series of these complex coefficients
Wγ and unitaries Hγ , truncated to order K = log(r/ε)

log log(r/ε) , i.e.

Ũr =
K∑

k=0

(−iHt/r)k

k!
=

K∑
k=0

∑
γ1,··· ,γK

(−it/r)k

k!
Wγ1 · · ·WγKHγ1 · · ·HγK

Initialize ancilla register with amplitudes ∼square roots of Taylor
series coefficients

Use ancilla register to control when we apply products of Hγ

Use oblivious amplitude amplification to “extract” state
time-evolved by t/r . Repeat r times

Ian Kivlichan Higher-efficiency quantum simulation of chemistry
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Rest of the talk

Q: How can truncated Taylor series reduce dependence on N?

Could trivially apply, get scaling Õ(nd2) = Õ(η4N5)

Instead, use the structure of the chemistry Hamiltonian to do
much better. We’ll do this in two representations of the
wavefunction:

1 Chemistry in second quantization

Evaluate integrals on-the-fly → Õ(N5)

2 Chemistry in configuration interaction (first-quantized)

Decomposition of the configuration interaction matrix
(Hamiltonian in that basis) → Õ(η2N3)

Ian Kivlichan Higher-efficiency quantum simulation of chemistry
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The second-quantized representation

H = Telec + Vnuc-elec + Velec-elec is not a qubit Hamiltonian

H =
∑
pq

hpqa
†
paq+

1

2

∑
pqrs

hpqrsa
†
pa
†
qaras

hpq =

∫
dx ϕp(x)∗ (Telec + Vnuc-elec)ϕq(x)

hpqrs =

∫
dx1dx2

ϕp(x1)∗ ϕq(x2)∗ ϕr (x1)ϕs(x2)

|x1 − x2|

Ian Kivlichan Higher-efficiency quantum simulation of chemistry
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How can we improve second quantization?

“Find a way of writing the Hamiltonian as a linear combination
of easily-applied unitaries, H =

∑
γ WγHγ , where Wγ ∈ C”...

The second-quantized Hamiltonian,

H =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

hpqrsa
†
pa
†
qaras

1 can be mapped to a linear combination of unitaries using
Jordan-Wigner (decompose into Pauli operators on qubits),

2 the weights on each tensor product are given by integrals

hpq =

∫
d~r ϕp(~r)∗ (Telec + Vnuc-elec)ϕq(~r) or

hpqrs =

∫
d~r1d~r2

ϕp (~r1)∗ ϕq (~r2)∗ ϕr (~r1)ϕs (~r2)

|~r1 − ~r2|
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Computing integrals on-the-fly

Could classically compute integrals and encode in amplitudes.

..
But then have to store them, O(N4) to access

Instead, general-purpose trick to evaluate in only O(log(1/ε)):

Assume ∃ black box for the integrand
Restrict to finite volume and break into Riemann sum,

Wγ =

∫
wγ(~z)d~z ≈

npoints∑
ρ

V

npoints
wγ(~zρ)

Break up V
npoints

wγ(~zρ) into a sum of signs wγ,m(~zρ) = ±1,

determined by comparison with integrand wγ(~z)
Sum approximates integral, but only O(log(V /ε)) to compute to
precision ε
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Applying the integral trick

Finite volume OK, can choose ϕi significant on V = O(logN)

Worst thing to evaluate is 6-D integrals hpqrs , still O(logN)

Can evaluate ϕi in logarithmic time to get wγ,m(~zρ). Can be
done coherently, then use truncated Taylor series for evolution

However, evaluating N of them brings cost to Õ(N)

Ian Kivlichan Higher-efficiency quantum simulation of chemistry



Introduction Quantum simulation Second quantization Configuration interaction Summary

Applying the integral trick

Finite volume OK, can choose ϕi significant on V = O(logN)

Worst thing to evaluate is 6-D integrals hpqrs , still O(logN)

Can evaluate ϕi in logarithmic time to get wγ,m(~zρ). Can be
done coherently, then use truncated Taylor series for evolution

However, evaluating N of them brings cost to Õ(N)
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Second-quantized algorithm cost

How many gates do we need?

Õ(N) to evaluate N SOs

Oblivious amplitude amplification for truncated Taylor series:

r = O

(∑
γ,ρ,m

|wγ,ρ,m(~zρ)|

)
= O

(∑
γ,ρ,m

1

)
= Õ(N4)

Total cost is the product of these, Õ(rN) = Õ(N5)

Big reduction on Õ(η4N5) of trivial application!

How can we do even better?
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Õ(N) to evaluate N SOs

Oblivious amplitude amplification for truncated Taylor series:

r = O

(∑
γ,ρ,m

|wγ,ρ,m(~zρ)|

)
= O

(∑
γ,ρ,m

1

)
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Big reduction on Õ(η4N5) of trivial application!

How can we do even better?

Ian Kivlichan Higher-efficiency quantum simulation of chemistry



Introduction Quantum simulation Second quantization Configuration interaction Summary

The configuration interaction (CI) representation

First quantization: instead of encoding
occupation (second quantization), limit
to valid states:

|α〉 = |α1, α2, · · · , αη〉,

where αi ∈ {1, . . . ,N} labels
spin-orbital “electron i” is in.

Θ(η logN) qubits instead of Θ(N). But
can’t decompose into poly number of
products of Pauli gates.

How to simulate? → 1-sparse coloring
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Sparse matrices

2-sparse: ≤2 non-zero entries per row/column.

Red and green are
a 1-sparse coloring

Sparsity of chemistry? 1-sparse coloring?
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Sparsity of the Hamiltonian

Straightforward: a†i a
†
j akal terms in the Hamiltonian have the

most non-zero matrix elements

For any k, ` (η2 choices), the state |c1 · · · ck · · · c` · · · cN〉 can
change to |c1 · · · ci · · · cj · · · cN〉 for any i , j (N2 choices)

c1 c2 c3 c4 c6c5 c7 c8
a2†a4†a3a7

=⇒ any state can be connected by the Hamiltonian to
O(η2N2) other states: this is its sparsity

=⇒ trivial application Õ(nd2t log(1/ε)) = Õ(η4N5t log(1/ε))

Ian Kivlichan Higher-efficiency quantum simulation of chemistry
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Edge colorings

Ian Kivlichan Higher-efficiency quantum simulation of chemistry

Say I give you this degree 4 graph (each vertex is connected
to at most four others).
Can you color edges such that each vertex has at most one
edge of any color?

Here’s a way to do it: if there are v vertices, choose vd colors
and assign one to each edge!
This is the Õ(d2) if we trivially applied the truncated Taylor
series algorithm to chemistry.

∃ coloring that uses only d colors: just intractable to find.
And even once found, can’t necessarily be applied...
Does such a coloring exist for the chemistry Hamiltonian?
How might we find + apply it?
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CI algorithm

(Slater-Condon) rules give CI matrix elements 〈α|H|β〉
depending on differing spin-orbitals in |α〉 and |β〉

Use to find appliable 1-sparse coloring. (Given |α〉 (|β〉) and
color γ, give me |β〉 (|α〉).)

Two options:
1 Label by spin-orbitals that differ between |α〉 and |β〉: O(N4)

possibilities
2 Optimal: label by spin-orbital positions i and j which differ as

well as p = βi ′ − αi and q = βj′ − αj : O(η2N2) possibilities

Cost: Õ(N) for N SOs from integrals =⇒ Õ(rN) = Õ(η2N3)
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Take-home messages

1 Can solve interesting and industrially relevant problems
(electronic structure in chemistry) with quantum computers

2 A lot of work has been done in last two years on algorithms
using Lie-Trotter-Suzuki (rigorous Õ(N8t/εo(1))), but can do
even better using new Taylor series techniques

Õ(N5t log(1/ε)) in second quantization
Õ(η2N3t log(1/ε)) in configuration interaction

3 Tricks:

Evaluating integrals on-the-fly and working with linear
combinations of them (general-purpose trick)
Sparse colorings using structure of the chemistry Hamiltonian
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Second-quantized chemistry:
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New paper on the complexity of simulating many-body physics / chemistry in real
space (truncated Taylor series + surprising finite-difference approximations):
Ian D. Kivlichan, N. Wiebe, R. Babbush, and A. Aspuru-Guzik, arXiv:1608.05696
(2016)
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Mapping a fermionic algebra into qubits

H =
∑

pq hpqa
†
paq + 1

2

∑
pqrs hpqrsa

†
pa
†
qaras not a qubit Hamiltonian

qubits are distinguishable

Q†j =
Xj − iYj

2
Qj =

Xj + iYj

2

Q† |0〉 = |1〉 Q |1〉 = |0〉
Q† |1〉 = 0 Q |0〉 = 0

fermions are antisymmetric{
ai , a

†
j

}
= aia

†
j + a†j ai = δij I

{ai , aj} =
{
a†i , a

†
j

}
= 0

a†j = Q†j ⊗ Z⊗j aj = Qj ⊗ Z⊗j

The Jordan-Wigner transformation is O (N)-local

Ian Kivlichan Higher-efficiency quantum simulation of chemistry

HH2 = −0.8126 I + 0.1720 (Z0 + Z1)− 0.2228 (Z2 + Z3) + 0.1687Z0Z1

+0.1743Z2Z3 + 0.1205 (Z0Z2 + Z1Z3) + 0.1659 (Z0Z3 + Z1Z2)

+0.04532 (X0Y1Y2X3 + Y0X1X2Y3 − X0X1Y2Y3 − Y0Y1X2X3)
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Kitaev’s quantum phase estimation algorithm4

Hd |0〉 =
|0〉+ |1〉√

2

Hd |1〉 =
|0〉 − |1〉√

2

After controlled unitary,

|0〉 |ψ〉+ |1〉 e−iHt |ψ〉√
2

Prob of measuring |0〉anc is,∑
k

|ak |2 (1 + cos (Ekt))

Instead use inverse QFT

|0〉 Hd • Hd

|ψ〉 / U

U |ψ〉 = e−iHt |ψ〉 =
∑
k

ake
−iEk t |k〉

|0〉 Hd • · · ·

F−1
L

|0〉 Hd • · · ·
...

...
...

|0〉 Hd · · · •

|ψ〉 / U U2 · · · U2L

4A. Y. Kitaev, e-print arXiv:9511026 (1995)
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