Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary 00

Higher-efficiency quantum algorithms for simulation of chemistry

Ryan Babbush, Dominic W. Berry, **Ian D. Kivlichan**, Annie Wei, Dean Southwood, Peter J. Love, Alán Aspuru-Guzik

Department of Chemistry and Department of Physics, Harvard University

August 30, 2016 (AQIS)

Introduction ●000	Quantum simulation	Second quantization	Configuration interaction	Summary 00
Basis of t	alk			

Second-quantized chemistry:

R. Babbush, D. W. Berry, Ian D. Kivlichan, A. Y. Wei, P. J. Love and A. Aspuru-Guzik, *New Journal of Physics* 18, 033032, arXiv:1506.01020 (2016)

Configuration interaction: R. Babbush, D. W. Berry, **Ian D. Kivlichan**, A. Y. Wei, P. J. Love and A. Aspuru-Guzik, arXiv:1506.01029 (2015)

Introduction ○●○○	Quantum simulation 0000000	Second quantization	Configuration interaction	Summary 00
Overview				

- What chemistry problem are we solving?
- Why should you care?

Introduction 0●00	Quantum simulation	Second quantization	Configuration interaction	Summary 00
Overview				

- What chemistry problem are we solving?
- Why should you care?

Quantum simulation

- Prior methods for solving the chemistry problem
- A recent method we used based on truncated Taylor series

Introduction 0●00	Quantum simulation	Second quantization	Configuration interaction	Summary 00
Overview				

- What chemistry problem are we solving?
- Why should you care?

Quantum simulation

- Prior methods for solving the chemistry problem
- A recent method we used based on truncated Taylor series
- New quantum algorithm for chemistry simulation in second quantization
 - The integrals that appear (and a trick to evaluate integrals exponentially faster on a quantum computer)

Introduction 0●00	Quantum simulation	Second quantization	Configuration interaction	Summary 00
Overview				

- What chemistry problem are we solving?
- Why should you care?
- Quantum simulation
 - Prior methods for solving the chemistry problem
 - A recent method we used based on truncated Taylor series
- New quantum algorithm for chemistry simulation in second quantization
 - The integrals that appear (and a trick to evaluate integrals exponentially faster on a quantum computer)
- New quantum algorithm for chemistry simulation in configuration interaction
 - Sparsity of the chemistry Hamiltonian and a 1-sparse coloring

The electronic structure problem

The physical laws necessary for the mathematical theory of a large part of physics **and the whole of chemistry** are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

The electronic structure problem

The physical laws necessary for the mathematical theory of a large part of physics **and the whole of chemistry** are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

• The Schrödinger equation, $H |\psi\rangle = E |\psi\rangle$

The electronic structure problem

The physical laws necessary for the mathematical theory of a large part of physics **and the whole of chemistry** are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

・ 同 ト ・ ヨ ト ・ ヨ ト

• The Schrödinger equation, $H |\psi\rangle = E |\psi\rangle$ $H = T_{nuc} + T_{elec} + V_{nuc-nuc} + V_{nuc-elec} + V_{elec-elec}$

The electronic structure problem

The physical laws necessary for the mathematical theory of a large part of physics **and the whole of chemistry** are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

(4月) (1日) (1日)

- The Schrödinger equation, $H |\psi\rangle = E |\psi\rangle$ $H = T_{\text{nuc}} + T_{\text{elec}} + V_{\text{nuc-nuc}} + V_{\text{nuc-elec}} + V_{\text{elec-elec}}$
- Clamp nuclei under the Born-Oppenheimer approximation

$$|\Psi\rangle = |\psi\rangle_{\rm elec} \, |\psi\rangle_{\rm nuc} \quad \Rightarrow \quad H = T_{\rm elec} + V_{\rm nuc-elec} + V_{\rm elec-elec}$$

• Energy surfaces \rightarrow free energies

イロト イポト イヨト イヨト

- Energy surfaces \rightarrow free energies
- $\bullet~\mbox{Free energies} \rightarrow \mbox{chemical rates}$

rate
$$\propto \frac{k_{\rm B}T}{h} \exp\left[-\frac{\Delta G^{\ddagger}}{RT}\right]$$

- Energy surfaces \rightarrow free energies
- $\bullet~\mbox{Free energies} \rightarrow \mbox{chemical rates}$

rate
$$\propto \frac{k_{\rm B}T}{h} \exp\left[-\frac{\Delta G^{\ddagger}}{RT}\right]$$

• Chemical accuracy pprox 0.04 eV

- Energy surfaces \rightarrow free energies
- $\bullet~\mbox{Free energies} \rightarrow \mbox{chemical rates}$

rate
$$\propto \frac{k_{\rm B}T}{h} \exp\left[-\frac{\Delta G^{\ddagger}}{RT}\right]$$

- Chemical accuracy pprox 0.04 eV
- Ab initio catalysis design, e.g.

 $N_2+3H_2 \rightarrow 2NH_3$ (20 MPa/500°C) 5% of natural gas, 2% of energy!

イロト イポト イヨト イヨト

- Energy surfaces \rightarrow free energies
- $\bullet~\mbox{Free energies} \rightarrow \mbox{chemical rates}$

rate
$$\propto rac{k_{
m B}T}{h} \exp\left[-rac{\Delta G^{\ddagger}}{RT}
ight]$$

- Chemical accuracy pprox 0.04 eV
- Ab initio catalysis design, e.g.

 $\mathrm{N_2+3H_2}
ightarrow 2\mathrm{NH_3}$ (20 $\mathrm{MPa}/\mathrm{500^\circ C}$)

5% of natural gas, 2% of energy!

 $\bullet~$ We can't do this classically: but could with a ${\sim}100\text{-}\text{qubit}$ quantum computer

イロト イポト イヨト イヨト

Write Hamiltonian in qubit basis as sum of local terms,

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + rac{1}{2} \sum_{pqrs} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s \equiv \sum_{\gamma} H_{\gamma}$$

() Write Hamiltonian in qubit basis as sum of local terms,

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + rac{1}{2} \sum_{pqrs} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s \equiv \sum_{\gamma} H_{\gamma}$$

 $\begin{array}{ll} \textcircled{0} \end{array} \text{ Prepare ansatz } |\psi\rangle \text{ having overlap with the ground state,} \\ H |0\rangle = E_0 |0\rangle \qquad |\langle\psi|0\rangle|^2 \in \Omega \left(\operatorname{poly} \left(N^{-1} \right) \right) \end{array} \end{array}$

The canonical quantum quantum chemistry algorithm¹

() Write Hamiltonian in qubit basis as sum of local terms,

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + rac{1}{2} \sum_{pqrs} h_{pqrs} \, a_p^{\dagger} a_q^{\dagger} a_r a_s \equiv \sum_{\gamma} H_{\gamma}$$

② Prepare ansatz $|\psi
angle$ having overlap with the ground state,

$$|\langle \psi | 0 \rangle = E_0 | 0 \rangle$$
 $|\langle \psi | 0 \rangle|^2 \in \Omega \left(\text{poly} \left(N^{-1} \right) \right)$

Ise Trotterization to implement molecular evolution operator,

$$e^{A}e^{B} \neq e^{A+B}$$
 $e^{-iHt} = \lim_{r \to \infty} \left(\prod_{\gamma} e^{-iH_{\gamma}t/r}\right)^{r}$

¹A. Aspuru-Guzik *et al.*, Science **309**, 1704 (2005).

Write Hamiltonian in qubit basis as sum of local terms,

$$H=\sum_{pq}h_{pq}a_p^{\dagger}a_q+rac{1}{2}\sum_{pqrs}h_{pqrs}\,a_p^{\dagger}a_q^{\dagger}a_ra_s\equiv\sum_{\gamma}H_{\gamma}$$

② Prepare ansatz $|\psi
angle$ having overlap with the ground state,

$$|\langle \psi | 0 \rangle = E_0 | 0 \rangle$$
 $|\langle \psi | 0 \rangle|^2 \in \Omega \left(\text{poly} \left(N^{-1} \right) \right)$

Ise Trotterization to implement molecular evolution operator,

$$e^{A}e^{B} \neq e^{A+B}$$
 $e^{-iHt} = \lim_{r \to \infty} \left(\prod_{\gamma} e^{-iH_{\gamma}t/r}\right)^{r}$

Use phase estimation to measure the phase from time-evolution

$$e^{-iHt} \ket{\psi} = \sum_{k} \langle k | \psi \rangle e^{-iE_{k}t} \ket{k} \qquad \operatorname{Prob}\left(E_{0} \mid \psi\right) = \left|\langle \psi | 0 \rangle\right|^{2}$$

Introduction 0000	Quantum simulation 000000	Second quantization	Configuration interaction	Summary 00
Recent ad	lvances			

N = # basis functions, $\eta = \#$ electrons, $Z_{\max} = \max$ charge

→ 御 → → 注 → → 注 →

3

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary 00
Recent a	dvances			

- N=# basis functions, $\eta=\#$ electrons, $Z_{\max}=\max$ charge
- 09/2005: Aspuru-Guzik et al. original algorithm¹, $O(N^{11})$ gates

¹A. Aspuru-Guzik *et al.*, Science **309**, 1704 (2005). □→ < □→ < ≥→ < ≥→ ≥ → ○ < Ian Kivlichan Higher-efficiency quantum simulation of chemistry

Introduction 0000	Quantum simulation 0●00000	Second quantization	Configuration interaction	Summary 00
Recent advances				

- N = # basis functions, $\eta = \#$ electrons, $Z_{\max} = \max$ charge
- 09/2005: Aspuru-Guzik et al. original algorithm¹, $O(N^{11})$ gates
- 12/2013: Wecker *et al.*, better gate count estimates², $O(N^9)$

²D. Wecker *et al.*, Phys. Rev. A **90**, 022305 (2014) $\rightarrow \langle B \rangle \langle B \rangle \langle B \rangle$

¹A. Aspuru-Guzik *et al.*, Science **309**, 1704 (2005).

Introduction 0000	Quantum simulation 0●00000	Second quantization	Configuration interaction	Summary 00
Recent ac	vances			

- N=# basis functions, $\eta=\#$ electrons, $\textit{Z}_{\max}=\max$ charge
- 09/2005: Aspuru-Guzik et al. original algorithm¹, $O(N^{11})$ gates
- 12/2013: Wecker *et al.*, better gate count estimates², $O(N^9)$
- 03/2014: Hastings *et al.*, optimized circuits³ reducing the depth by N^2

- ²D. Wecker et al., Phys. Rev. A **90**, 022305 (2014).

¹A. Aspuru-Guzik *et al.*, Science **309**, 1704 (2005).

Introduction 0000	Quantum simulation 0●00000	Second quantization	Configuration interaction	Summary 00
Recent ad	vances			

- N=# basis functions, $\eta=\#$ electrons, $\textit{Z}_{\max}=\max$ charge
- 09/2005: Aspuru-Guzik et al. original algorithm¹, $O(N^{11})$ gates
- 12/2013: Wecker *et al.*, better gate count estimates², $O(N^9)$
- 03/2014: Hastings *et al.*, optimized circuits³ reducing the depth by N^2
- 06/2014: Poulin *et al.*, efficient numerical evaluation of errors for ground state⁴, indicating $\sim N^{6.5}$ gates

- ²D. Wecker et al., Phys. Rev. A 90, 022305 (2014).
- ³M. B. Hastings et al., Quantum Info. Comput. 15, 1 (2015).
- ⁴D. Poulin *et al.*, Quantum Info. Comput. **15**, 361 (2015)... (=) (=)

¹A. Aspuru-Guzik *et al.*, Science **309**, 1704 (2005).

Introduction 0000	Quantum simulation 0●00000	Second quantization	Configuration interaction	Summary 00
Recent ad	vances			

- N = # basis functions, $\eta = \#$ electrons, $Z_{max} = max$ charge
- 09/2005: Aspuru-Guzik et al. original algorithm¹, $O(N^{11})$ gates
- 12/2013: Wecker *et al.*, better gate count estimates², $O(N^9)$
- 03/2014: Hastings *et al.*, optimized circuits³ reducing the depth by N^2
- 06/2014: Poulin *et al.*, efficient numerical evaluation of errors for ground state⁴, indicating $\sim N^{6.5}$ gates
- 10/2014: Babbush *et al.*, chemical origin of errors⁵, numerics indicating $\sim N^4 Z_{max}^3$ gates

- ³M. B. Hastings et al., Quantum Info. Comput. 15, 1 (2015).
- ⁴D. Poulin *et al.*, Quantum Info. Comput. **15**, 361 (2015).
- ⁵R. Babbush *et al.*, Phys. Rev. A **91**, 022311 (2015). ← → ← = → ← = → → =

¹A. Aspuru-Guzik et al., Science **309**, 1704 (2005).

²D. Wecker et al., Phys. Rev. A 90, 022305 (2014).

²Dave Wecker, Microsoft Research. Used with permission $\rightarrow \langle a \rangle$

3

²Dave Wecker, Microsoft Research. Used with permission $\rightarrow \leftarrow \equiv \rightarrow \leftarrow \equiv \rightarrow$

Ian Kivlichan Higher-efficiency quantum simulation of chemistry

э

• Berry, Childs, Cleve, Kothari, Somma³: approximate the time-evolution operator with a *truncated Taylor expansion* rather than Trotter-Suzuki decomposition

³D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Phys. Rev. Lett. **114**, 090502 (2015).

- Berry, Childs, Cleve, Kothari, Somma³: approximate the time-evolution operator with a *truncated Taylor expansion* rather than Trotter-Suzuki decomposition
- Deterministic algorithm for simulating *sparse Hamiltonians* super-polynomially more precisely
 - $\tilde{O}(nd^2t \log(1/\epsilon))$ for a *d*-sparse *n*-qubit Hamiltonian
 - Compare accuracy scaling ϵ with Lie-Trotter-Suzuki $\mathsf{poly}(1/\epsilon)$

³D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Phys. Rev. Lett. **114**, 090502 (2015).

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary 00
Truncated	Taylor series	simulation		

Three steps:

• Find a way of writing the Hamiltonian as a linear combination of easily-applied unitaries, $H = \sum_{\gamma} W_{\gamma} H_{\gamma}$, where $W_{\gamma} \in \mathbb{C}$

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary 00
Truncated	I Taylor series	s simulation		

Three steps:

- Find a way of writing the Hamiltonian as a linear combination of easily-applied unitaries, $H = \sum_{\gamma} W_{\gamma} H_{\gamma}$, where $W_{\gamma} \in \mathbb{C}$
- 2 Divide into $r \geq \sum_{\gamma} |W_{\gamma}|t$ segments

4 3 5 4 3 5

Truncated	Taylor series	simulation		
Introduction 0000	Quantum simulation 0000000	Second quantization	Configuration interaction	Summary 00

Three steps:

- Find a way of writing the Hamiltonian as a linear combination of easily-applied unitaries, $H = \sum_{\gamma} W_{\gamma} H_{\gamma}$, where $W_{\gamma} \in \mathbb{C}$
- 2 Divide into $r \geq \sum_{\gamma} |W_{\gamma}| t$ segments
- Solution Apply approximate time-evolution operator as truncated Taylor series $\tilde{U}_r ≈ e^{-iHt/r}$ to initial state, r times (nasty part)

ヨト イヨト イヨト

The approximate time-evolution operator

• Expand $e^{-iHt/r}$ as a Taylor series of these complex coefficients W_{γ} and unitaries H_{γ} , truncated to order $K = \frac{\log(r/\epsilon)}{\log\log(r/\epsilon)}$, i.e.

$$\tilde{U}_r = \sum_{k=0}^{K} \frac{(-iHt/r)^k}{k!} = \sum_{k=0}^{K} \sum_{\gamma_1, \cdots, \gamma_K} \frac{(-it/r)^k}{k!} W_{\gamma_1} \cdots W_{\gamma_K} H_{\gamma_1} \cdots H_{\gamma_K}$$

(4 同) 4 ヨ) 4 ヨ)

The approximate time-evolution operator

• Expand $e^{-iHt/r}$ as a Taylor series of these complex coefficients W_{γ} and unitaries H_{γ} , truncated to order $K = \frac{\log(r/\epsilon)}{\log\log(r/\epsilon)}$, i.e.

$$\tilde{U}_r = \sum_{k=0}^{K} \frac{(-iHt/r)^k}{k!} = \sum_{k=0}^{K} \sum_{\gamma_1, \cdots, \gamma_K} \frac{(-it/r)^k}{k!} W_{\gamma_1} \cdots W_{\gamma_K} H_{\gamma_1} \cdots H_{\gamma_K}$$

- \bullet Initialize ancilla register with amplitudes $\sim \!\! square$ roots of Taylor series coefficients
- Use ancilla register to control when we apply products of H_γ
- Use *oblivious amplitude amplification* to "extract" state time-evolved by t/r. Repeat r times

(4月) イヨト イヨト

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary 00
Rest of th	e talk			

Q: How can truncated Taylor series reduce dependence on N?

∃ → < ∃ →</p>

Introduction 0000	Quantum simulation 000000●	Second quantization	Configuration interaction	Summary 00
Rest of th	e talk			

- Q: How can truncated Taylor series reduce dependence on N?
- Could trivially apply, get scaling $ilde{O}(nd^2) = ilde{O}(\eta^4 N^5)$

医下子 医下
Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary 00
Rest of th	e talk			

Q: How can truncated Taylor series reduce dependence on N?

- Could trivially apply, get scaling $ilde{O}(nd^2) = ilde{O}(\eta^4 N^5)$
- Instead, use the structure of the chemistry Hamiltonian to do much better. We'll do this in two representations of the wavefunction:
 - O Chemistry in second quantization
 - **2** Chemistry in configuration interaction (first-quantized)

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary 00
Rest of th	e talk			

Q: How can truncated Taylor series reduce dependence on N?

- Could trivially apply, get scaling $ilde{O}(nd^2) = ilde{O}(\eta^4 N^5)$
- Instead, use the structure of the chemistry Hamiltonian to do much better. We'll do this in two representations of the wavefunction:

O Chemistry in second quantization

- Evaluate integrals on-the-fly $ightarrow ilde{O}(N^5)$
- ② Chemistry in configuration interaction (first-quantized)

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary 00
Rest of th	e talk			

Q: How can truncated Taylor series reduce dependence on N?

- Could trivially apply, get scaling $ilde{O}(nd^2) = ilde{O}(\eta^4 N^5)$
- Instead, use the structure of the chemistry Hamiltonian to do much better. We'll do this in two representations of the wavefunction:
 - O Chemistry in second quantization
 - Evaluate integrals on-the-fly $ightarrow ilde{O}(N^5)$
 - ② Chemistry in configuration interaction (first-quantized)
 - Decomposition of the configuration interaction matrix (Hamiltonian in that basis) $\rightarrow \tilde{O}(\eta^2 N^3)$

通 とう きょう く きょ

0000	0000000	00000	00000	00
The secon	d aughtized	roprocontation		

 $H = T_{\rm elec} + V_{\rm nuc-elec} + V_{\rm elec-elec}$ is not a qubit Hamiltonian

伺 とう きょう うちょう

3

 $H = T_{elec} + V_{nuc-elec} + V_{elec-elec}$ is not a qubit Hamiltonian

< ∃⇒

 $H = T_{elec} + V_{nuc-elec} + V_{elec-elec}$ is not a qubit Hamiltonian

 $H = T_{elec} + V_{nuc-elec} + V_{elec-elec}$ is not a qubit Hamiltonian

• "Find a way of writing the Hamiltonian as a linear combination of easily-applied unitaries, $H = \sum_{\gamma} W_{\gamma} H_{\gamma}$, where $W_{\gamma} \in \mathbb{C}$ "...

(4 同) 4 ヨ) 4 ヨ)

- "Find a way of writing the Hamiltonian as a linear combination of easily-applied unitaries, $H = \sum_{\gamma} W_{\gamma} H_{\gamma}$, where $W_{\gamma} \in \mathbb{C}$ "...
- The second-quantized Hamiltonian,

$$H=\sum_{pq}h_{pq}a_p^{\dagger}a_q+rac{1}{2}\sum_{pqrs}h_{pqrs}a_p^{\dagger}a_q^{\dagger}a_ra_s$$

 can be mapped to a linear combination of unitaries using Jordan-Wigner (decompose into Pauli operators on qubits),

伺下 イヨト イヨト

- "Find a way of writing the Hamiltonian as a linear combination of easily-applied unitaries, $H = \sum_{\gamma} W_{\gamma} H_{\gamma}$, where $W_{\gamma} \in \mathbb{C}$ "...
- The second-quantized Hamiltonian,

$$H=\sum_{pq}h_{pq}a_p^{\dagger}a_q+rac{1}{2}\sum_{pqrs}h_{pqrs}a_p^{\dagger}a_q^{\dagger}a_ra_s$$

- can be mapped to a linear combination of unitaries using Jordan-Wigner (decompose into Pauli operators on qubits),
- ② the weights on each tensor product are given by integrals

$$h_{pq} = \int \mathrm{d}\vec{r}\,\varphi_{p}(\vec{r})^{*}\left(T_{\text{elec}} + V_{\text{nuc-elec}}\right)\varphi_{q}(\vec{r}) \text{ or}$$
$$h_{pqrs} = \int \mathrm{d}\vec{r_{1}}\mathrm{d}\vec{r_{2}}\frac{\varphi_{p}\left(\vec{r_{1}}\right)^{*}\varphi_{q}\left(\vec{r_{2}}\right)^{*}\varphi_{r}\left(\vec{r_{1}}\right)\varphi_{s}\left(\vec{r_{2}}\right)}{|\vec{r_{1}} - \vec{r_{2}}|}$$

伺下 イヨト イヨト

Introduction 0000	troduction Quantum simulation Second quantization		Configuration interaction	Summary 00			
Computi	Computing integrals on-the-fly						

• Could classically compute integrals and encode in amplitudes.

- Could classically compute integrals and encode in amplitudes... But then have to store them, $O(N^4)$ to access
- Instead, general-purpose trick to evaluate in only $O(\log(1/\epsilon))$:
 - Assume \exists black box for the integrand
 - Restrict to finite volume and break into Riemann sum,

$$W_{\gamma} = \int w_{\gamma}(ec{z})\,\mathrm{d}ec{z} pprox \sum_{
ho}^{n_{\mathrm{points}}} rac{V}{n_{\mathrm{points}}}w_{\gamma}(ec{z}_{
ho})$$

・ 同 ト ・ ヨ ト ・ ヨ ト

- Could classically compute integrals and encode in amplitudes... But then have to store them, $O(N^4)$ to access
- Instead, general-purpose trick to evaluate in only $O(\log(1/\epsilon))$:
 - Assume \exists black box for the integrand
 - Restrict to finite volume and break into Riemann sum,

$$W_{\gamma} = \int w_{\gamma}(\vec{z}) \, \mathrm{d} ec{z} pprox \sum_{
ho}^{n_{\mathrm{points}}} rac{V}{n_{\mathrm{points}}} w_{\gamma}(ec{z}_{
ho})$$

- Break up $\frac{V}{n_{\text{points}}} w_{\gamma}(\vec{z}_{\rho})$ into a sum of signs $w_{\gamma,m}(\vec{z}_{\rho}) = \pm 1$, determined by comparison with integrand $w_{\gamma}(\vec{z})$
- Sum approximates integral, but only $O(\log(V/\epsilon))$ to compute to precision ϵ

- 4 同 2 4 日 2 4 日 2 4

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary 00
Applying	the integral tr	rick		

- Finite volume OK, can choose φ_i significant on $V = O(\log N)$
- Worst thing to evaluate is 6-D integrals h_{pqrs} , still $O(\log N)$

∃ → < ∃ →</p>

Applying	the integral t	trick		
Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary 00

- Finite volume OK, can choose φ_i significant on $V = O(\log N)$
- Worst thing to evaluate is 6-D integrals h_{pqrs} , still $O(\log N)$
- Can evaluate φ_i in logarithmic time to get $w_{\gamma,m}(\vec{z}_{\rho})$. Can be done coherently, then use truncated Taylor series for evolution
- However, evaluating N of them brings cost to $\tilde{O}(N)$

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary 00
Second-qı	antized algori	thm cost		

How many gates do we need?

э

0000	000000	0000	00000	00
Second-q	Jantized algo	orithm cost		

How many gates do we need?

- $\tilde{O}(N)$ to evaluate N SOs
- Oblivious amplitude amplification for truncated Taylor series:

$$r = O\left(\sum_{\gamma,\rho,m} |w_{\gamma,\rho,m}(\vec{z_{\rho}})|\right) = O\left(\sum_{\gamma,\rho,m} 1\right) = \tilde{O}(N^{4})$$

• Total cost is the product of these, $\tilde{O}(rN) = \tilde{O}(N^5)$ Big reduction on $\tilde{O}(\eta^4 N^5)$ of trivial application!

0000	000000	0000	00000	00
Second-q	uantized algo	orithm cost		

How many gates do we need?

- $\tilde{O}(N)$ to evaluate N SOs
- Oblivious amplitude amplification for truncated Taylor series:

$$r = O\left(\sum_{\gamma,\rho,m} |w_{\gamma,\rho,m}(\vec{z_{\rho}})|\right) = O\left(\sum_{\gamma,\rho,m} 1\right) = \tilde{O}(N^{4})$$

• Total cost is the product of these, $\tilde{O}(rN) = \tilde{O}(N^5)$ Big reduction on $\tilde{O}(\eta^4 N^5)$ of trivial application!

How can we do even better?

 $|\alpha\rangle = |\alpha_1, \alpha_2, \cdots, \alpha_\eta\rangle,$

where $\alpha_i \in \{1, \dots, N\}$ labels spin-orbital "electron *i*" is in.

伺 ト く ヨ ト く ヨ ト

$$|\alpha\rangle = |\alpha_1, \alpha_2, \cdots, \alpha_\eta\rangle,$$

where $\alpha_i \in \{1, \ldots, N\}$ labels spin-orbital "electron *i*" is in.

 $|\alpha\rangle = |\alpha_1, \alpha_2, \cdots, \alpha_\eta\rangle,$

where $\alpha_i \in \{1, \dots, N\}$ labels spin-orbital "electron *i*" is in.

 $\Theta(\eta \log N)$ qubits instead of $\Theta(N)$. But can't decompose into poly number of products of Pauli gates.

(4月) イヨト イヨト

 $|\alpha\rangle = |\alpha_1, \alpha_2, \cdots, \alpha_\eta\rangle,$

where $\alpha_i \in \{1, \dots, N\}$ labels spin-orbital "electron *i*" is in.

 $\Theta(\eta \log N)$ qubits instead of $\Theta(N)$. But can't decompose into poly number of products of Pauli gates.

How to simulate? \rightarrow 1-sparse coloring

イロト イポト イラト イラト

Introduction	Quantum simulation	Second quantization	Configuration interaction	Summary
0000	0000000		○●○○○	00
Sparse ma	atrices			

(1.0)	0	5.0	0	0	0	0	0 \
0	3.0	0	0	0	0	11.0	0
0	0	0	0	9.0	0	0	0
0	0	6.0	0	0	0	0	0
0	0	0	7.0	0	0	0	0
2.0	0	0	0	0	10.0	0	0
0	0	0	8.0	0	0	0	0
$\int 0$	4.0	0	0	0	0	0	12.0/

2-sparse: ≤ 2 non-zero entries per row/column.

伺 ト イヨト イヨト

3

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction ○●○○○	Summary 00
Sparse m	atrices			

2-sparse: \leq 2 non-zero entries per row/column. Red and green are a 1-sparse coloring

э

Introduction	Quantum simulation	Second quantization	Configuration interaction	Summary
0000	0000000		0●000	00
Sparse m	atrices			

2-sparse: \leq 2 non-zero entries per row/column. Red and green are a 1-sparse coloring

```
Sparsity of chemistry? 1-sparse coloring?
```

Sparsity	of the Hamilt	onian		
Introduction 0000	Quantum simulation 0000000	Second quantization	Configuration interaction	Summary 00

• Straightforward: $a_i^{\dagger} a_j^{\dagger} a_k a_l$ terms in the Hamiltonian have the most non-zero matrix elements

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction 00●00	Summary 00
Sparsity of	of the Hamilt	onian		

- Straightforward: $a_i^{\dagger} a_j^{\dagger} a_k a_l$ terms in the Hamiltonian have the most non-zero matrix elements
- For any k, ℓ (η^2 choices), the state $|c_1 \cdots c_k \cdots c_\ell \cdots c_N\rangle$ can change to $|c_1 \cdots c_i \cdots c_j \cdots c_N\rangle$ for any i, j (N^2 choices)

- Straightforward: $a_i^{\dagger} a_j^{\dagger} a_k a_l$ terms in the Hamiltonian have the most non-zero matrix elements
- For any k, ℓ (η^2 choices), the state $|c_1 \cdots c_k \cdots c_\ell \cdots c_N\rangle$ can change to $|c_1 \cdots c_i \cdots c_j \cdots c_N\rangle$ for any i, j (N^2 choices)

- \implies any state can be connected by the Hamiltonian to $O(\eta^2 N^2)$ other states: this is its sparsity
- \implies trivial application $ilde{O}(nd^2t\log(1/\epsilon)) = ilde{O}(\eta^4N^5t\log(1/\epsilon))$

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction 000●0	Summary 00
Edge colo	orings			

Say I give you this degree 4 graph (each vertex is connected to at most four others).

Can you color edges such that each vertex has at most one edge of any color?

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary 00
Edge colo	rings			

Here's a way to do it: if there are v vertices, choose vd colors and assign one to each edge! This is the $\tilde{O}(d^2)$ if we trivially applied the truncated Taylor series algorithm to chemistry.

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary 00
Edge colo	orings			

 \exists coloring that uses only *d* colors: just intractable to find. And even once found, can't necessarily be applied... Does such a coloring exist for the chemistry Hamiltonian? How might we find + apply it?

Introduction 0000	Quantum simulation 0000000	Second quantization	Configuration interaction	Summary 00
CI algorit	hm			

• (Slater-Condon) rules give CI matrix elements $\langle \alpha | H | \beta \rangle$ depending on differing spin-orbitals in $| \alpha \rangle$ and $| \beta \rangle$

伺 ト く ヨ ト く ヨ ト

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary 00
CI algorit	hm			

- (Slater-Condon) rules give CI matrix elements $\langle \alpha | H | \beta \rangle$ depending on differing spin-orbitals in $| \alpha \rangle$ and $| \beta \rangle$
- Use to find appliable 1-sparse coloring. (Given $|\alpha\rangle$ ($|\beta\rangle$) and color γ , give me $|\beta\rangle$ ($|\alpha\rangle$).)

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction 0000●	Summary 00
CI algorit	hm			

- (Slater-Condon) rules give CI matrix elements $\langle \alpha | H | \beta \rangle$ depending on differing spin-orbitals in $| \alpha \rangle$ and $| \beta \rangle$
- Use to find appliable 1-sparse coloring. (Given $|\alpha\rangle$ ($|\beta\rangle$) and color γ , give me $|\beta\rangle$ ($|\alpha\rangle$).)

Two options:

() Label by spin-orbitals that differ between $|\alpha\rangle$ and $|\beta\rangle$: $O(N^4)$ possibilities

伺下 イヨト イヨト

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction 0000●	Summary 00
CI algorit	hm			

- (Slater-Condon) rules give CI matrix elements $\langle \alpha | H | \beta \rangle$ depending on differing spin-orbitals in $| \alpha \rangle$ and $| \beta \rangle$
- Use to find appliable 1-sparse coloring. (Given $|\alpha\rangle$ ($|\beta\rangle$) and color γ , give me $|\beta\rangle$ ($|\alpha\rangle$).)

Two options:

- **()** Label by spin-orbitals that differ between $|\alpha\rangle$ and $|\beta\rangle$: $O(N^4)$ possibilities
- **2** Optimal: label by spin-orbital positions *i* and *j* which differ as well as $p = \beta_{i'} \alpha_i$ and $q = \beta_{j'} \alpha_j$: $O(\eta^2 N^2)$ possibilities

伺下 イヨト イヨト

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction 0000●	Summary 00
CI algorit	hm			

- (Slater-Condon) rules give CI matrix elements $\langle \alpha | H | \beta \rangle$ depending on differing spin-orbitals in $| \alpha \rangle$ and $| \beta \rangle$
- Use to find appliable 1-sparse coloring. (Given $|\alpha\rangle$ ($|\beta\rangle$) and color γ , give me $|\beta\rangle$ ($|\alpha\rangle$).)

Two options:

- **()** Label by spin-orbitals that differ between $|\alpha\rangle$ and $|\beta\rangle$: $O(N^4)$ possibilities
- **2** Optimal: label by spin-orbital positions *i* and *j* which differ as well as $p = \beta_{i'} \alpha_i$ and $q = \beta_{j'} \alpha_j$: $O(\eta^2 N^2)$ possibilities

• Cost: $\tilde{O}(N)$ for N SOs from integrals $\implies \tilde{O}(rN) = \tilde{O}(\eta^2 N^3)$

・ 同 ト ・ ヨ ト ・ ヨ ト …
Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary ●0
Take-hom	e messages			

- Can solve interesting and industrially relevant problems (electronic structure in chemistry) with quantum computers
- **2** A lot of work has been done in last two years on algorithms using Lie-Trotter-Suzuki (rigorous $\tilde{O}(N^8 t/\epsilon^{o(1)})$), but can do *even better* using new Taylor series techniques

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary ●0
Take-hom	e messages			

- Can solve interesting and industrially relevant problems (electronic structure in chemistry) with quantum computers
- **2** A lot of work has been done in last two years on algorithms using Lie-Trotter-Suzuki (rigorous $\tilde{O}(N^8 t/\epsilon^{o(1)})$), but can do even better using new Taylor series techniques
 - $\tilde{O}(N^5 t \log(1/\epsilon))$ in second quantization
 - $ilde{O}(\eta^2 N^3 t \log(1/\epsilon))$ in configuration interaction

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary ●0
Take-hom	e messages			

- Can solve interesting and industrially relevant problems (electronic structure in chemistry) with quantum computers
- **2** A lot of work has been done in last two years on algorithms using Lie-Trotter-Suzuki (rigorous $\tilde{O}(N^8 t/\epsilon^{o(1)})$), but can do even better using new Taylor series techniques
 - $\tilde{O}(N^5 t \log(1/\epsilon))$ in second quantization
 - $ilde{O}(\eta^2 N^3 t \log(1/\epsilon))$ in configuration interaction
- Initial Stress of Contracts of Contracts
 - Evaluating integrals on-the-fly and working with linear combinations of them (general-purpose trick)
 - Sparse colorings using structure of the chemistry Hamiltonian

伺下 イヨト イヨト

Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary ○●
Acknowle	dgements			

Collaborators: Ryan Babbush (Google—talk at 2:40 PM), Dominic Berry (Macquarie), Annie Wei (Harvard), Peter Love (Tufts), Alán Aspuru-Guzik (Harvard)

Australian Government

Australian Research Council

Thanks for listening! 🙂

Second-quantized chemistry: R. Babbush, D. W. Berry, **Ian D. Kivlichan**, A. Y. Wei, P. J. Love and A. Aspuru-Guzik, *New Journal of Physics* **18**, 033032, arXiv:1506.01020 (2016)

Configuration interaction: R. Babbush, D. W. Berry, Ian D. Kivlichan, A. Y. Wei, P. J. Love and A. Aspuru-Guzik, arXiv:1506.01029 (2015)

New paper on the complexity of simulating many-body physics / chemistry in real space (truncated Taylor series + surprising finite-difference approximations): Ian D. Kivlichan, N. Wiebe, R. Babbush, and A. Aspuru-Guzik, arXiv:1608.05696 (2016)

Manning	formation	almahua inta m	. 6. 14	
0000	0000000	00000	00000	00
Introduction	Quantum simulation	Second quantization	Configuration interaction	Summary

$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$ not a qubit Hamiltonian

伺 と く ヨ と く ヨ と …

Manning	a formionia	almahka inta au	hite	
0000	000000	00000	00000	00
Introduction	Quantum simulation	Second quantization	Configuration interaction	Summary

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$$
 not a qubit Hamiltonian

qubits are distinguishable

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Manning	a formionic	Jachra into au	hite	
0000	000000	00000	00000	00
Introduction	Quantum simulation	Second quantization	Configuration interaction	Summary

 $H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$ not a qubit Hamiltonian

qubits are distinguishable

fermions are antisymmetric

ゆ と く ヨ と く ヨ と

0000	000000	00000	00000	00
Introduction	Quantum simulation	Second quantization	Configuration interaction	Summary

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$$
 not a qubit Hamiltonian

qubits are distinguishable

fermions are antisymmetric

伺 ト イヨト イヨト

$Q_j^{\dagger} = \frac{X_j - iY_j}{2}$	$Q_j = \frac{X_j + iY_j}{2}$
$Q^{\dagger}\ket{0}=\ket{1}$	$Q\ket{1}=\ket{0}$
$Q^{\dagger} \ket{1} = 0$	$Q \ket{0} = 0$

N /		dente la construcción de la constru	1.1.1	
0000	000000	00000	00000	00
Introduction	Quantum simulation	Second quantization	Configuration interaction	Summary

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$$
 not a qubit Hamiltonian

qubits are distinguishable

fermions are antisymmetric

$$egin{aligned} Q_j^{\dagger} &= rac{X_j - iY_j}{2} & Q_j &= rac{X_j + iY_j}{2} \ Q^{\dagger} & |0
angle &= |1
angle & Q & |1
angle &= |0
angle \ Q^{\dagger} & |1
angle &= 0 & Q & |0
angle &= 0 \end{aligned}$$

$$\begin{cases} a_i, a_j^{\dagger} \\ a_i, a_j \end{cases} = a_i a_j^{\dagger} + a_j^{\dagger} a_i = \delta_{ij} I$$
$$\{a_i, a_j\} = \left\{a_i^{\dagger}, a_j^{\dagger}\right\} = 0$$

伺 ト く ヨ ト く ヨ ト

N /		dente la construcción de la constru	1.1.1	
0000	000000	00000	00000	00
Introduction	Quantum simulation	Second quantization	Configuration interaction	Summary

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$$
 not a qubit Hamiltonian

qubits are distinguishable

fermions are antisymmetric

$Q_j = \frac{X_j + iY_j}{2}$
$Q\ket{1}=\ket{0}$
$Q \ket{0} = 0$

$$\begin{cases} a_i, a_j^{\dagger} \\ a_i, a_j^{\dagger} \end{cases} = a_i a_j^{\dagger} + a_j^{\dagger} a_i = \delta_{ij} I$$
$$\{a_i, a_j\} = \begin{cases} a_i^{\dagger}, a_j^{\dagger} \\ a_j^{\dagger} = Q_j^{\dagger} \otimes Z^{\otimes j} \quad a_j = Q_j \otimes Z^{\otimes j} \end{cases}$$

伺 ト く ヨ ト く ヨ ト

Manning	a formionia	algabra into au	, hite	
0000	0000000	00000	00000	00
Introduction	Quantum simulation	Second quantization	Configuration interaction	Summary

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$$
 not a qubit Hamiltonian

qubits are distinguishable

fermions are antisymmetric

- 4 国际 - 4 国际

- $\begin{array}{ll} Q_j^{\dagger} = \frac{X_j iY_j}{2} & Q_j = \frac{X_j + iY_j}{2} & \left\{a_i, a_j^{\dagger}\right\} = a_i a_j^{\dagger} + a_j^{\dagger} a_i = \delta_{ij} I \\ Q^{\dagger} \left|0\right\rangle = \left|1\right\rangle & Q \left|1\right\rangle = \left|0\right\rangle & \left\{a_i, a_j\right\} = \left\{a_i^{\dagger}, a_j^{\dagger}\right\} = 0 \\ Q^{\dagger} \left|1\right\rangle = 0 & Q \left|0\right\rangle = 0 & a_j^{\dagger} = Q_j^{\dagger} \otimes Z^{\otimes j} & a_j = Q_j \otimes Z^{\otimes j} \end{array}$
- $$\begin{split} H_{\rm H_2} &= -0.8126\,\textit{I} + 0.1720\,(\textit{Z}_0 + \textit{Z}_1) 0.2228\,(\textit{Z}_2 + \textit{Z}_3) + 0.1687\,\textit{Z}_0\textit{Z}_1 \\ &\quad + 0.1743\,\textit{Z}_2\textit{Z}_3 + 0.1205\,(\textit{Z}_0\textit{Z}_2 + \textit{Z}_1\textit{Z}_3) + 0.1659\,(\textit{Z}_0\textit{Z}_3 + \textit{Z}_1\textit{Z}_2) \\ &\quad + 0.04532\,(\textit{X}_0\textit{Y}_1\textit{Y}_2\textit{X}_3 + \textit{Y}_0\textit{X}_1\textit{X}_2\textit{Y}_3 \textit{X}_0\textit{X}_1\textit{Y}_2\textit{Y}_3 \textit{Y}_0\textit{Y}_1\textit{X}_2\textit{X}_3) \end{split}$$

	~~
Introduction Quantum simulation Second quantization Configuration interaction	Summary

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$$
 not a qubit Hamiltonian

qubits are distinguishable

fermions are antisymmetric

3

- $\begin{array}{ll} Q_{j}^{\dagger} = \frac{X_{j} iY_{j}}{2} & Q_{j} = \frac{X_{j} + iY_{j}}{2} & \left\{a_{i}, a_{j}^{\dagger}\right\} = a_{i}a_{j}^{\dagger} + a_{j}^{\dagger}a_{i} = \delta_{ij}I \\ Q^{\dagger} \left|0\right\rangle = \left|1\right\rangle & Q \left|1\right\rangle = \left|0\right\rangle & \left\{a_{i}, a_{j}\right\} = \left\{a_{i}^{\dagger}, a_{j}^{\dagger}\right\} = 0 \\ Q^{\dagger} \left|1\right\rangle = 0 & Q \left|0\right\rangle = 0 & a_{j}^{\dagger} = Q_{j}^{\dagger} \otimes Z^{\otimes j} & a_{j} = Q_{j} \otimes Z^{\otimes j} \end{array}$
- $$\begin{split} H_{\mathrm{H}_{2}} &= -0.8126\,I + 0.1720\,(Z_{0}+Z_{1}) 0.2228\,(Z_{2}+Z_{3}) + 0.1687\,Z_{0}Z_{1} \\ &\quad + 0.1743\,Z_{2}Z_{3} + 0.1205\,(Z_{0}Z_{2}+Z_{1}Z_{3}) + 0.1659\,(Z_{0}Z_{3}+Z_{1}Z_{2}) \\ &\quad + 0.04532\,(X_{0}Y_{1}Y_{2}X_{3} + Y_{0}X_{1}X_{2}Y_{3} X_{0}X_{1}Y_{2}Y_{3} Y_{0}Y_{1}X_{2}X_{3}) \end{split}$$

The Jordan-Wigner transformation is O(N)-local

⁴A. Y. Kitaev, *e-print arXiv:9511026* (1995)

			1	
Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary 00

Kitaev's quantum phase estimation algorithm

$$egin{aligned} \mathcal{H}d \left| 0
ight
angle &= rac{\left| 0
ight
angle + \left| 1
ight
angle \ &\sqrt{2} \end{aligned} \ \mathcal{H}d \left| 1
ight
angle &= rac{\left| 0
ight
angle - \left| 1
ight
angle \ &\sqrt{2} \end{aligned}$$

After controlled unitary,

$$U \ket{\psi} = e^{-iHt} \ket{\psi} = \sum_{k} a_{k} e^{-iE_{k}t} \ket{k}$$

$$\frac{\ket{0}\ket{\psi}+\ket{1}e^{-iHt}\ket{\psi}}{\sqrt{2}}$$

Prob of measuring $|0\rangle_{\rm anc}$ is,

$$\sum_k |a_k|^2 \left(1 + \cos\left(E_k t\right)\right)$$

⁴A. Y. Kitaev, *e-print arXiv:9511026* (1995)

э

Hd

 $\sum_k |a_k|^2 \left(1 + \cos\left(E_k t\right)\right)$

Instead use inverse QFT

⁴A. Y. Kitaev, *e-print arXiv:9511026* (1995)

lan Kivlichan

0

 112^{L}

・ロン ・四 と ・ ヨン ・ ヨン

Kitzev's	auantum nha	se estimation	algorithm ⁵	
Introduction 0000	Quantum simulation	Second quantization	Configuration interaction	Summary 00

$$egin{aligned} \mathcal{H}d \left| 0
ight
angle &= rac{\left| 0
ight
angle + \left| 1
ight
angle \ \sqrt{2} \end{aligned} \ \mathcal{H}d \left| 1
ight
angle &= rac{\left| 0
ight
angle - \left| 1
ight
angle \ \sqrt{2} \end{aligned}$$

$$U \ket{\psi} = e^{-iHt} \ket{\psi} = \sum_{k} a_{k} e^{-iE_{k}t} \ket{k}$$

o

⁵A. Y. Kitaev, *e-print arXiv:9511026* (1995) ← □ → ← ∂ → ← ≧ → ← ≧ → ⊂ ≧ → ○ Ian Kivlichan Higher-efficiency quantum simulation of chemistry

Kitoov's	auantum nha	an actimation	algarithm ⁵	
0000	0000000	00000	00000	00
Introduction	Quantum simulation	Second quantization	Configuration interaction	Summary

Kitaev's quantum phase estimation algorithm

$$egin{aligned} \mathcal{H}d \left| 0
ight
angle &= rac{\left| 0
ight
angle + \left| 1
ight
angle}{\sqrt{2}} \ \mathcal{H}d \left| 1
ight
angle &= rac{\left| 0
ight
angle - \left| 1
ight
angle}{\sqrt{2}} \end{aligned}$$

$$U \ket{\psi} = e^{-iHt} \ket{\psi} = \sum_{k} a_{k} e^{-iE_{k}t} \ket{k}$$

After controlled unitary,

$$\frac{\ket{0}_{\mathrm{anc}}\ket{\psi}+\ket{1}_{\mathrm{anc}}e^{-iHt}\ket{\psi}}{\sqrt{2}}$$

⁵A. Y. Kitaev, e-print arXiv:9511026 (1995) Ian Kivlichan Higher-efficiency quantum simulation of chemistry

Kitoov's	auantum nha	an actimation	algarithm ⁵	
0000	0000000	00000	00000	00
Introduction	Quantum simulation	Second quantization	Configuration interaction	Summary

Kitaev's quantum phase estimation algorithm

$$egin{aligned} \mathcal{H}d \left| 0
ight
angle &= rac{\left| 0
ight
angle + \left| 1
ight
angle }{\sqrt{2}} \ \mathcal{H}d \left| 1
ight
angle &= rac{\left| 0
ight
angle - \left| 1
ight
angle }{\sqrt{2}} \end{aligned}$$

$$U \ket{\psi} = e^{-iHt} \ket{\psi} = \sum_{k} a_{k} e^{-iE_{k}t} \ket{k}$$

After controlled unitary,

$$rac{\ket{0}_{\mathrm{anc}}\ket{\psi}+\ket{1}_{\mathrm{anc}}e^{-iHt}\ket{\psi}}{\sqrt{2}}$$

Prob of measuring $\left|0\right\rangle_{\rm anc}$ is

$$\sum_{k} |a_k|^2 \left(1 + \cos\left(E_k t\right)\right)$$

⁵A. Y. Kitaev, *e-print arXiv:9511026* (1995)