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Preliminary and Notation[1/13]

Birkhoff’s Theorem ( : matrix analysis(math))
& in infinite dimensinaol Hilbert space

LOCC-convertibility ( : quantum information )

Notation
H, K : separable Hilbert spaces. (Unless specified otherwise dim =∞)

|ψ⟩, |ϕ⟩ ∈ H ⊗K : unit vectors.

majorization: for σ =
∑∞

n=1 an|xn⟩⟨xn|, ρ =
∑∞

n=1 bn|yn⟩⟨yn| ∈ S(H),
σ ≺ ρ ⇐⇒

def

∑n
i=1 a

↓
i ≤

∑n
i=1 b

↓
i , ∀n ∈ N.

|ψ⟩ →
LOCC

|ϕ⟩ ⇐⇒
def

∃ n ∈ N ∪ {∞}, ∃ POVM on H {Mi}ni=1 and ∃ a set of

unitary on K {Ui}ni=1 s.t.

|ϕ⟩⟨ϕ| =
n∑

i=1

(Mi ⊗ Ui )|ψ⟩⟨ψ|(M∗
i ⊗ U∗

i ), in C1(H).

”in C1(H)” means the convergence in Banach space (C1(H), || · ||1) when
n =∞.



LOCC-convertibility[2/13]

Theorem(Nielsen, 1999)[1][2, S12.5.1] : the case dimH, dimK <∞

|ψ⟩ →
LOCC

|ϕ⟩ ⇐⇒ TrK |ψ⟩⟨ψ| ≺ TrK |ϕ⟩⟨ϕ|

Theorem(Owari et al, 2008)[3] : the case of dimH, dimK =∞

|ψ⟩ →
LOCC

|ϕ⟩ =⇒ TrK |ψ⟩⟨ψ| ≺ TrK |ϕ⟩⟨ϕ|

TrK |ψ⟩⟨ψ| ≺ TrK |ϕ⟩⟨ϕ| =⇒ |ψ⟩ →
ϵ−LOCC

|ϕ⟩

where ” →
ϵ−LOCC

” means ”with (for any small) ϵ error by LOCC”.

TrK |ψ⟩⟨ψ| ≺ TrK |ϕ⟩⟨ϕ| ⇒ |ψ⟩ →
LOCC

|ϕ⟩ in infinite dimensional space has

been open.

Our main purpose is to give an answer to this open problem.
[1]M. A. Nielsen, ”Condition for a class of entanglement transformations”, Physical Review Letters, Vol.83-2 :436-439(1999)
[2]M ANielesen, I L Chuang, Quantum Computation and Quantum Information, Cambrige University Press, Cambrige, 2000.
[3]M. Owari, S. L. Braunstein, K. Nemoto, M. Murao, ”ε-convertibility of entangled states and extension of Schmidt rank in
infinite dimensional systems”, Quantum Information and Computation, Vol.8 :30-52(2008)
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Birkhoff theorem[3/13]

TrK |ψ⟩⟨ψ| ≺ TrK |ϕ⟩⟨ϕ| ⇒ |ψ⟩ →
LOCC

|ϕ⟩ in finite dimensional space (⋆) is

proved by Birkhoff’s theorem.

Theorem(Birkhoff 1946)[4]

(i) ex{d × d doubly stochastic matrix} = {d × d permutation},

(ii) any doubly stochastic matrix can be represented as a finite convex
combination of permutation matrices,

(iii) {d × d doubly stochastic matrix} = co{d × d permutation}
= co{d × d permutation}.

(ii) is used in the proof of (⋆).

infinite dimensional analogue of Birkhoff’s Theorem ≃ Birkoff’s problem 111

But, we can not use known results for Birkhoff’s problem 111, since no
one treated in any study (ii) in infinite dimensional space!

We construct an infinite dimensional analogue of (ii),
and using this, we want to get an infinite dimensional analogue of (⋆).
[4]G. Birkhoff. ”Three observations on linear algebra”.(Spanish) Univ. Nac. Tucuman. Revista A. 5 :137-151(1946)
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Definition of D(H), P(H) etc [4/13]

For a fixed CONS (|i⟩)∞i=1, we define the sets of bounded operators
∑∞

i,j=1 aij |i⟩⟨j |
as follows:

(P(H)) : aij ∈ {0, 1},
∞∑
j=1

aij = 1,
∞∑
i=1

aij = 1(∀i , j)← permutation

(P0(H)) : aij ∈ {0, 1},
∞∑
j=1

aij ≤ 1,
∞∑
i=1

aij ≤ 1(∀i , j)← subpermutation

(D(H)) : aij ∈ [0, 1],
∞∑
j=1

aij = 1and
∞∑
i=1

aij = 1(∀i , j)← doubly stochastic

(D0(H)) : aij ∈ [0, 1],
∞∑
j=1

aij ≤ 1,
∞∑
i=1

aij ≤ 1(∀i , j)← doubly substochastic

remark

Any element of P(H) is unitary on H.
This is a generalization of the fact that any permutation matrix is unitary.



Main result 1: Birkhoff’s thm in infinite dim. with WOT [5/13]

Theorem1(Asakura)

For a separable infinite dimensional H, we have

(i) exD(H) = P(H).
(ii) [integral representation of D(H)] For any D ∈ D(H), there exist a

probability measure µD on P(H) such that

D = WOT -

∫
P(H)

XdµD(X ).

(iii) coP(H) ⊊ D(H) ⊊ cow (P(H)) = D0(H).

Theorem(Birkoff)[rewrite] : the case H = Cd and (|i⟩)i =the standard basis in Cd

(i) exD(H) = P(H).
(ii) For any D ∈ D(H), there exists a probability {pi}d!i=1 s.t. D =

∑d!
i=1 piPi ,

where {Pi}d!i=1 := P(H)
(iii) D(H) = coP(H) = coP(H).



Main result 1: Birkhoff’s thm in infinite dim. with WOT [5/13]

Theorem1(Asakura)

For a separable infinite dimensional H, we have

(i) exD(H) = P(H).
(ii) [integral representation of D(H)] For any D ∈ D(H), there exist a

probability measure µD on P(H) such that

D = WOT -

∫
P(H)

XdµD(X ).

(iii) coP(H) ⊊ D(H) ⊊ cow (P(H)) = D0(H).

Theorem(Birkoff)[rewrite] : the case H = Cd and (|i⟩)i =the standard basis in Cd

(i) exD(H) = P(H).
(ii) For any D ∈ D(H), there exists a probability {pi}d!i=1 s.t. D =

∑d!
i=1 piPi ,

where {Pi}d!i=1 := P(H)
(iii) D(H) = coP(H) = coP(H).



Main results 2: a sufficient condition in infinite dim. [6/13]

Using Theorem 1 (ii), we get the following:

Theorem2(Asakura)

Let |ψ⟩ and |ϕ⟩ be full rank unit vectors. If TrK|ψ⟩⟨ψ| ≺ TrK|ϕ⟩⟨ϕ|, then

◦ there exist

a probability measure µD on P(H),
a dense subspace H0 ⊂ H
a set of densely defined unbounded operators {MX}X∈P(H) on H with
D(MX ) ⊃ H0(∀X ∈ P(H)) satisfying ”some conditions” such that

|ϕ⟩⟨ϕ| =
∫
P(H)

(MX ⊗ X ∗)|ψ⟩⟨ψ|(M∗
X ⊗ X )dµD(X ), inC1(H) (a)

and
∫
P(H)
⟨η|M∗

XMX |ξ⟩dµD(X ) = ⟨η|ξ⟩ ∀η, ξ ∈ H0 (b) hold.

In general case, we get the same result up to a local partial isometry.

(a) is a generalization of |ϕ⟩⟨ϕ| =
∑n

i=1(Mi ⊗ Ui )|ψ⟩⟨ψ|(M∗
i ⊗ U∗

i ).

(b) is a generalization of
∑

i M
∗
i Mi = IH.



sketch proof of the sufficient condition (Thm2) using the
integral representation (Thm1(ii))[7/13]

We may assume that |ψ⟩, |ϕ⟩ have a same Schmidt CONS.

→ |ψ⟩ =
∑∞

i=1

√
ai |ii⟩, |ϕ⟩ =

∑∞
i=1

√
bi |ii⟩ with a := (ai ) ≺ b := (bi )

→ By [17], ∃D ∈ D(l2) such that a = Db.

→ By Theorem 1(ii), ∃ a prob. measure µD on P(H) s.t. D =
∫
P(l2)

XdµD(X ).

Let ρψ := TrK |ψ⟩⟨ψ| =
∑∞

i=1 ai |i⟩⟨i |, ρϕ := TrK |ϕ⟩⟨ϕ| =
∑∞

i=1 bi |i⟩⟨i |, then
→ ρψ =

∫
P(H)

XρϕX
∗dµD(X ) in C1(H).

Then MX :=
√
ρϕX

∗(ρψ
− 1

2 ) with D(MX ) := D(ρ
− 1

2

ψ ) and H0 := span{|i⟩}i
satisfy the conditions. In particular,

(MX ⊗ X ∗)|ψ⟩ = |ϕ⟩, ∀X ∈ P(H)
→ |ϕ⟩⟨ϕ| =

∫
P(H)

(MX ⊗ X ∗)|ψ⟩⟨ψ|(M∗
X ⊗ X )dµD(X ), inC1(H)

remark
The above MX is understood in terms of relative modular operator.

[17]V. Kaftal, G. Weiss, ”An infinite dimensional Schur-Horn Theorem and majorization theory”, Journal of Functional Analysis,
Vol. 259, No. 13, ;3115-3162(2010)



Main results 3: a characterization in infinite dim. [8/13]

Theorem 3(Asakura)

For full rank unit vectors |ψ⟩ and |ϕ⟩, the following are equivalent:

(I) There exist

a Borel set I of a certain of metric space,
a probability measure µ on I ,
a set of densely defined (unbounded) operator {Mi}i∈I on H and a
dense subspace H0 ⊂ H with D(Mi ) ⊃ H0 and (♯)
a set of unitary op {Ui}i∈I on K

satisfying ”some conditions” such that

|ϕ⟩⟨ϕ| =
(∫

I

(Mi ⊗ Ui )|ψ⟩⟨ψ|(M∗
i ⊗ U∗

i )dµ(i)
)
, inC1(H).

(II) TrK|ψ⟩⟨ψ| ≺ TrK|ϕ⟩⟨ϕ| holds.

(II)⇒(I) is a corollary of Theorem 2.

(I)⇒(II) is proved by some arguments used in [21].
[21]Y. Li, P. Busch, ”Von Neumann entropy and majorization”, Journal of Mathematical Analysis and Applications, Vol. 408,
:384-393(2012)



Main results 3’ : a characterization in infinite dim. [9/13]

Theorem 3’(Asakura)

For unit vectors |ψ⟩ and |ϕ⟩, the following are equivalent:

(I) There exist

infinite rank partial isometry operators VH, VK,
a Borel set I of a certain of metric space,
a probability measure µ on I ,
a set of densely defined (unbounded) operator {Mi}i∈I on H and a
dense subspace H0 ⊂ H with D(Mi ) ⊃ H0 and (♯)
a set of unitary op {Ui}i∈I on K

satisfying ”some conditions” such that

|ϕ⟩⟨ϕ| =(VH ⊗ VK)
(∫

I

(Mi ⊗ Ui )|ψ⟩⟨ψ|(M∗
i ⊗ U∗

i )dµ(i)
)
(V ∗

H ⊗ V ∗
K), inC1(H).

(II) TrK|ψ⟩⟨ψ| ≺ TrK|ϕ⟩⟨ϕ| holds.

Theorem 3’ immediately follows from Theorem 3.



sketch proof of the integral representaion property [10/13]

Theorem1(ii)[rewrite]

For any D ∈ D(H), there exist a probability measure µD on P(H) such that

D = WOT -

∫
P(H)

XdµD(X ).

Preliminary fact

Let B(H)1 := {X ∈ B(H)|∥X∥ ≤ 1}, then (B(H)1,WOT ) is a metrizable
compact space [13, 4.6]

→ Since D(H), D0(H), P(H), P0(H) are all subsets of B(H)1, we can
consider these sets as (sub)sets in the compact metric space.

Convex theory

Choquet theory : Any element of a metrizable compact convex subset X in
a locally convex linear space has an integral representation on exX .
A subset Y of a convex set Z is a face (of Z),
if λy1 + (1− λ)y2 ∈ Y (y1, y2 ∈ Z, λ ∈ [0, 1]) ⇒ y1, y2 ∈ Y.

(face ≃ ”set analogue of extreme point”)



sketch proof of the integral representaion (cont.) [11/13]

The key of the proof is the following:

(I) D(H)
w
= D0(H) and D0(H) is compact in WOT.

(II) D(H) ⊂ D0(H) is face. exD(H) = P(H) ⊂ P0(H) = exD0(H).

Definition of D(H) and D0(H)[rewrite]
D(H) : the set of doubly stochastic operator

∑
i,j aij |i⟩⟨j |

(
∑

i aij =
∑

j aij = 1)

D0(H) : the set of doubly substochastic operator
∑

i,j aij |i⟩⟨j |
(
∑

i aij ,
∑

j aij ≤ 1)

sketch of the proof

By (I), we can apply Choquet’s theorem to D0(H) (⊃ D(H)) with WOT.

Main subject is not D0(H) but D(H).

By (II), we can use the argement on D0(H) for D(H).



sketch proof of the integral representaion (cont.)[12/13]

By Choquet’s theorem, for any D ∈ D(H) ⊂ D0(H), there exists a
probability measure µD on P0(H)(= exD0(H)) such that

D = w -
∫
P0(H)

XdµD(X )

= w -
∫
P(H)

XdµD(X ) + w -
∫
P0(H)\P(H)

XdµD(X ).

Thus, putting p := µD(P(H)), 1− p := µD(P0(H) \ P(H)) and

D(H) ∋ D = p · w -

∫
P(H)

p−1XdµD(X )

⋆

+ (1− p) · w -

∫
P0(H)\P(H)

(1− p)−1XdµD(X )

⋆⋆

.

(⋆) ∈ D(H) and (⋆⋆) ∈ D0(H) \ D(H).

Since D(H) is a face of D0(H) (:(b)), we get p=1 i.e.,

D = w -

∫
P(H)

XdµD(X ). □



Conclusion [13/13]

Summary

We establish the infinite dimensional Birkhoff’s theorem with WOT

(The key is the situation that we can use some convex theories (face,
Chouqet’s thm...)).

using this, we prove a new characterization of LOCC convertibility in
infinite dimensional space

(The key is using a kind of relative modular operator).

Open Problem

Can we get not integral form but discrete sum form?:

|ϕ⟩⟨ϕ| =
∞∑
i=1

(Mi ⊗ Ui )|ψ⟩⟨ψ|(M∗
i ⊗ U∗

i )
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the case that D can not be written as discrete convex sum

The following D ∈ D(H) can not written as a discrete convex sum.

D := ⊕∞
n=1

1

n
1n,

where 1n denotes the n × n matrix of ones, i.e., a n × n matrix where every
element is equal to 1.

Actually, this D can not be written a discrete convex sum, and then
whenever we construct ”POVM-element” MX as described above, we can
not make discrete LOCC form.

But, if we can choose ”good” MX and UX , for this D, we can construct
discrete LOCC form (open problem).



example for not operator topology

In this slide, let X be the set of real infinite matrices where all sum of row and
column absolutely converges.

In [8], X is equipped with the weakest topology for which the following
linear functional θi s, ϕjs and φijs are all continuous.

θi (X ) :=
∞∑
j=1

xij , ϕj(X ) :=
∞∑
i=1

xij , φij(X ) := xij (i , j = 1, 2, . . . ).

In [9], X is equipped with the topology for which the following VN,ϵs make a
neighborhood basis of O,

VN,ϵ :=
{
X = (xij) ∈ X

∣∣ ∞∑
j=1

xij < ϵ (i ≤ N),
∞∑
i=1

xij < ϵ (j ≤ N)
}
.

[8]D.G.Kendall, ”On Infinite Doubly Stochastic Matrices and Birkoff’s problem”. J. London Math. Soc.35 :81-84(1960)
[9]B. A. Rattray, J. E. L. Peck, ”Infinite stochastic matrices”, Trans. Roy. Soc. Canada. Sect. III. (3) 49 :55-57(1955)



relation to the result of Owari et al

Theorem(Owari et al, 2008)[3][rewrite]

If TrK |ψ⟩⟨ψ| ≺ TrK |ϕ⟩⟨ϕ|, then there exist a LOCC sequence {Λn}∞n=1 such that

∥Λn(|ψ⟩⟨ψ|)− |ϕ⟩⟨ϕ|∥1 → 0

The following lemma is a key tool of the proof of the copmactness of D0(H)(:(I)
in slide11).

Lemma(Asakura)

For any D ∈ D0(H), we can construct the sequence {Dn}n such that

Dn → D in WOT.

Dn can be written as a direct sum of n × n doubly stochastic and identity
operator.



relation to the result of Owari et al(cont.)

This lemma says

”anydoubly (sub)stochastic operator (= infinte matrix)D

can be approximated by doubly stochastic matrixDn”.

We can construct a LOCC channel Λn corresponding to Dn such that
∥Λn(|ψ⟩⟨ψ|)− |ϕ⟩⟨ϕ|∥1 → 0.


