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Simplest scenario Magnetometry: 
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Bang-Bang X- control

What does the qubit feel ??

Caldeira, Leggett,…
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But…why should we care?
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• METROLOGY

Example: Magnetometry

Example: Thermometry

The possibilities(ii)…

Spectral density 𝐽(𝜔)

Inverse absolute temperature 𝛽

In our original Bosonic thermal bath example:

Higher (non-Gaussian) correlations more possibilities!
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The necessity…

Correlation decay MUST be verified if we want to scale quantum technologies … a given 
high fidelity may not be enough…

Noise Spectroscopy with multiple qubits!

How can you verify this if the bath is usually inaccessible? 

Ng & Preskill 2009 and Preskill 2013: A threshold exists if   〈 𝐵ℓ 𝑡 𝐵ℓ’(𝑡’) 〉 decays at least 
polynomially with the distance between qubit ℓ and qubit ℓ’

Novais et al.  2014, Huttler and Loss 2014,…: The threshold of the surface code 
deteriorates (or disappears!) depending of the decay of correlations or the low frequency 
behavior of noise correlations. Also true for concatenated codes.
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What do we want?

Ok... so how do we do it?



Generalized cumulants [Kubo 62]

Before we start…Noise and correlations

Classical

Quantum

In general… all cumulants are non-vanishing.

Special case: Gaussian noise Only 𝐶(1) and 𝐶 2 are non-vanishing 
(but they can have any functional form)

Stationary noise:
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Step 1: What does the qubit ‘feel’?

Can be formally written as a Cumulant-like power series of  convolutions of…

Generalized filter Functions:

Paz & Viola PRL 2014

Fundamental filter Functions:

Power Poly spectra:
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Step 2: How to deconvolve the integrals?

• Isolate, Truncate and Discretize

• Do it for different control sequences, i.e., different filters.

Solve linear system of equations to obtain  {𝑆𝑟}

 ‘Reconstruct’ 𝑆(𝜔) in the chosen basis!

Combine expectation 
values of appropriate 
observables and initial 
states

• Physical arguments: freq. 
cutoff in S

• Smart choice of control

• Convenient basis
• Control symmetries
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• Control repetition:
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𝑦 𝑡 : {𝐶𝐷𝐷2 𝑇𝑝 =
𝑇𝑚𝑎𝑥

𝑘
≥ 4𝜏0 }[Alvarez & Suter PRL 09]: Fixed Sequence, variable cycle time:

[Norris, Paz-Silva, Viola PRL 16]: Variable sequence, variable cycle time 
more reconstruction power: limited only by time resolution
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Moving on: what about beyond Gaussian (e.g. 1/f) noise?

Generalized cumulants [Kubo 62]

A higher dimensional frequency comb ??

Classical or bosonic
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Once more unto the breach…
𝑦(𝑡) periodic w/ period 𝑇𝑝  Repeat a ‘composed’ sequence

Frequency comb in multiple dimensions.

One can now reconstruct 𝑆 𝑘<𝐾 ( 𝑟𝜔0) !! 

Many variables, so one must be careful 
with ‘numerical’ issues (condition number, 
etc.). 



Take a breath slide…

• We have shown: single qubit spectroscopy of dephasing Gaussian and 
non-Gaussian, classical  & quantum (bosonic), noise.

What about the noise affecting multiple qubits?

Is there an advantage of using more than one probe? 



Multiqubit spectroscopy
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General dephasing model:

Multiqubit spectroscopy

plus widely Gaussian, zero-mean, stationary noise :

with:

More 
Power Spectra: Filters:
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• Control repetition:

• Displacement (anti) symmetry

• Mirror (anti) symmetry:

Multiqubit spectroscopy (ii)

Repetition is not enough!! Need a larger ‘control toolbox’
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Multiqubit spectroscopy (iii)

Need a larger set of initial states and observables



Numerical Experiment
Two excitons in a bosonic thermal environment

 thermometry, verify decay of correlations with distance, etc. 
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Fig. (Actual, Reconstructed, Relative Error)  𝛽 𝑡 2 classical noise , 𝑀 = 40, 325 points in 
the reconstruction of the bispectrum.  Sequences chosen from the 𝐶𝐷𝐷0−5
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Fig.  Bosonic bath, 𝜌𝐵 0 =
1

2
𝜌𝛽 + 𝜌𝛽′

(a) Predicted dynamics with Gaussian, first 
non-Gaussian contribution (solid is 
theory); (b) relative magnitude of higher 
order contributions; (c) reconstructed 

𝑆3 𝜔 ∝ 𝛿 𝜔1 + 𝜔2 𝐽3 (𝜔1, 𝜔3)
+ 𝛿 𝜔2 + 𝜔3 𝐽3 (𝜔1, 𝜔2)
+ 𝛿 𝜔1 + 𝜔3 𝐽3 (𝜔2, 𝜔3)
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