Space-Efficient Error Reduction for Unitary Quantum Computations

Bill Fefferman (QuICS), Hirotada Kobayashi (NII),
Cedric Yen-Yu Lin (QuICS), Tomoyuki Morimae (Gunma U.),
Harumichi Nishimura (Nagoya U.)

AQIS ‘16, Taipei
August 30, 2016
Overview

• Basic definitions

• Past work: QMA error reduction

• Our results
Basic definitions
Quantum time complexity

• A family of quantum circuits \(\{V_x\}_{x \in \{0,1\}^n} \) acting on \(k(n) \) qubits solves a promise problem \(L = (L_{\text{yes}}, L_{\text{no}}) \) if
 \[
 x \in L_{\text{yes}} \Rightarrow \langle 0^k | V_x^{-1} | 1 \rangle \langle 1 \rangle_{\text{out}} V_x | 0^k \rangle \geq 2/3
 \]
 \[
 x \in L_{\text{no}} \Rightarrow \langle 0^k | V_x^{-1} | 1 \rangle \langle 1 \rangle_{\text{out}} V_x | 0^k \rangle \leq 1/3
 \]

• A problem is in \(\text{BQTIME}[t(n)] \) if it is solved by a family* of circuits \(\{V_x\} \) such that \(V_x \) uses at most \(O(t(n)) \) gates.

E.g. \(\text{BQP} = \bigcup_{t \in \text{poly}} \text{BQTIME}[t(n)] \)

*uniformly generated
Quantum space complexity

• A family of quantum circuits \(\{V_x\}_{x \in \{0,1\}^n} \) acting on \(k(n) \) qubits solves a promise problem \(L = (L_{yes}, L_{no}) \) if

\[
\begin{align*}
x \in L_{yes} & \Rightarrow \langle 0^k | V_x^{-1} | 1 \rangle (1)_{out} V_x | 0^k \rangle \geq 2/3 \\
x \in L_{no} & \Rightarrow \langle 0^k | V_x^{-1} | 1 \rangle (1)_{out} V_x | 0^k \rangle \leq 1/3
\end{align*}
\]

• A problem is in BQSPACE\([k(n)]\) if it is solved by a family* of circuits \(\{V_x\} \) such that \(V_x \) acts on at most \(O(k(n)) \) qubits.

• Some subtleties in the definition; in our talk we demand that only unitary operations are allowed for \(V_x \) (no intermediate measurements)
 • Usual method of deferring measurements uses too much space

*uniformly generated
Quantum Merlin-Arthur (QMA)

• We consider problems that can be verified quantumly given a quantum witness.

• \(k(n)\)-bounded \(QMA_m(c, s)\) is the set of promise problems \(L = (L_{yes}, L_{no})\) such that there is a circuit* acting on \(m + O(k)\) qubits such that

\[
x \in L_{yes} \Rightarrow \exists |\psi\rangle \in \mathbb{C}^m, \quad (\langle \psi | (0^k) V_x^{-1} | 1 \rangle (1_{out} V_x (|\psi\rangle |0^k\rangle)) \geq c
\]

\[
x \in L_{no} \Rightarrow \forall |\psi\rangle \in \mathbb{C}^m, \quad (\langle \psi | (0^k) V_x^{-1} | 1 \rangle (1_{out} V_x (|\psi\rangle |0^k\rangle)) \leq s
\]

• QMA is a central class of study in quantum complexity, and many problems in physics are QMA–complete (e.g. Local Hamiltonian [Kitaev’02]).

• The focus of our talk is error reduction for space-bounded QMA.

*uniformly generated
Past work: QMA error reduction
Gap amplification for QMA

- Goal: Take a $\text{QMA}(c, s)$ protocol and amplify it to a new protocol with completeness $c' > c$ and soundness $s' < s$

- Repetition [Kitaev ‘02]:
 - Our new witness is many copies of the original witness.
 - Perform original protocol on all copies, and accept or reject based on results.
 - To get 2^{-p} error, need $O(p/(c - s)^2)$ repetitions.

- k-bounded $\text{QMA}_m(c, s) \subseteq \left(k \cdot \frac{p}{(c-s)^2}\right)$-bounded $\text{QMA} \cdot O\left(m \cdot \frac{p}{(c-s)^2}\right)(1 - 2^{-p}, 2^{-p})$

- Is there a way to reduce error without increasing the witness size?
In-place amplification [Marriott-Watrous ‘05]

• Define two projectors \(\Delta = |0\rangle\langle 0|_{\text{anc}} \) and \(\Pi = V_x^{-1}|1\rangle\langle 1|_{\text{out}} V_x \).
 The max success probability is the max eigenvalue of \(\Delta \Pi \Delta \).

• Verification procedure:
 • Initialize a state consisting of the witness and blank ancilla
 • Alternatingly measure \(\{ \Pi, I - \Pi \} \) and \(\{ \Delta, I - \Delta \} \), \(O(p/(c - s)^2) \) times
 • Classical postprocessing of results: reject if consecutive measurements differ in results too many times

• Note that we don’t require many copies of the witness!
 But still require \(O(p/(c - s)^2) \) extra space to record intermediate results

• Result:
 \(k \)-bounded \(\text{QMA}_m (c, s) \leq \left(k + \frac{p}{(c-s)^2} \right) \)-bounded \(\text{QMA}_m (1 - 2^{-p}, 2^{-p}) \)
Intuition for in-place amplification

• Recall Jordan’s lemma:
 Hilbert space decomposes into 1- and 2-dimensional subspaces invariant under Π and Δ.

• Assume starting state $|\psi\rangle|0^k\rangle$ is in one of these invariant subspaces.
 Let its original acceptance probability be λ.
 Measurements of Π and Δ never take the state out of invariant subspace:
Phase estimation approach [NWZ11]

• Phase estimation [Kitaev ‘95]:
 • Given unitary U and eigenstate ψ, estimates eigenvalue to precision j with failure prob. ϵ
 • Uses $O(\log(1/(j\epsilon)))$ ancilla qubits and $O(1/(j\epsilon))$ applications of controlled-U
 • Key ingredient in many q. algorithms, e.g. factoring [Shor94] and quantum counting [BHT98]

• Define rotations $R_0 = I - 2\Delta$ and $R_1 = I - 2\Pi$.
 Then within each invariant subspace, $R_0 R_1$ is a rotation by an angle related to acceptance probability

• Apply p trials of phase estimation to $R_0 R_1$ to estimate max success probability.
 • Each trial performed to constant failure prob. and precision $O(c - s)$
 • Classical postprocessing on results

• Result: get space savings from use of phase estimation!

 k-bounded $\text{QMA}_m(c, s) \subseteq \left(k + p \log \frac{1}{c-s}\right)$–bounded $\text{QMA}_m(1 - 2^{-p}, 2^{-p})$
Our results
Main thm: Space efficient QMA amplification

• Previous best result [NWZ11]:

 \[k\text{-bounded } QMA_m(c, s) \subseteq \left(k + p \log \frac{1}{c-s} \right) \text{-bounded } QMA_m(1 - 2^{-p}, 2^{-p}) \]

• To get error \(2^{-\text{poly}}\), requires polynomially many ancilla qubits.

• Our improved result:

 \[k\text{-bounded } QMA_m(c, s) \subseteq \left(k + \log \frac{p}{c-s} \right) \text{-bounded } QMA_m(1 - 2^{-p}, 2^{-p}) \]

• As a consequence, we obtain the first “strong error reduction” result for quantum logspace.
Main theorem (Proof sketch 1/3)

• I’ll talk about the simplest proof we have.

• Suppose we have a verifier \(\{V_x\} \) for \(k \)-bounded \(\text{QMA}_m(c,s) \).

 We would like to reduce the error to \(2^{-p} \)

1. Reduce error to \(1/(8p) \) using phase estimation (à la [NWZ11])

 Let \(V_x^{(1)} \) be the circuit that

 • Applies phase estimation to \(R_0 R_1 \) with precision \(O(c - s) \) and failure prob. \(1/(8p) \)
 • Completeness = \(1 - 1/(8p) \), soundness = \(1/(8p) \)
 • Uses space \(O \left(k + \log \frac{1}{c-s} + \log p \right) = O \left(k + \log \frac{p}{c-s} \right) \)
Main theorem (Proof sketch 2/3)

1. $V_x^{(1)}$ uses phase estimation to achieve completeness $1 - 1/(8p)$ and soundness $= 1/(8p)$, using $O \left(k + \log \frac{p}{c-s} \right)$ space.

2. Take the “AND” of $O(p)$ iterations of $V_x^{(1)}$.

Let $V_x^{(2)}$ be the circuit that implements the following:

- Repeat $N_1 = O(p)$ times:
 - Apply $V_x^{(1)}$, and increments a counter if output state is accept.
 - Apply $(V_x^{(1)})^{-1}$, and increments a counter if ancilla qubits not returned to 0.
- Accept iff counter remains 0.
- Completeness $\geq 1 - 2N_1/(8p) \geq 1/2$, soundness $= (8p)^{-2N_1} \leq 2^{-O(p)}$.
- Only extra space used is for the counter, which takes $O(\log p)$ space.
Main theorem (Proof sketch 3/3)

1. $V_x^{(1)}$ uses phase estimation to achieve completeness $1 - 1/(8p)$ and soundness $= 1/(8p)$, using $O\left(k + \log \frac{p}{c-s}\right)$ space

2. $V_x^{(2)}$ takes “AND” of $O(p)$ iterations of $V_x^{(1)}$ to achieve constant completeness and exponentially small soundness

3. Take the “OR” of $N_2 = O(p)$ iterations of $V_x^{(2)}$
 - Repeat N_2 times:
 - Apply $V_x^{(2)}$, and increments a counter if output state is reject
 - Apply $(V_x^{(2)})^{-1}$, and increments a counter if ancilla qubits not returned to 0
 - Accept iff counter is at least 1.
 - Completeness $\geq 1 - 2^{-p}$, soundness $\leq 2^{-p}$

 - Total space used: $O\left(k + \log \frac{p}{c-s}\right)$
Consequences (1/2)

- Strong error reduction for (unitary) quantum logspace:
 \[\forall c - s > \frac{1}{\text{poly}}, \text{QSPACE}[^{\log(n)}](c, s) \subseteq \text{QSPACE}[^{\log(n)}](1 - 2^{-\text{poly}}, 2^{-\text{poly}}) \]

- Uselessness of quantum witnesses for space-bounded QMA
 - Idea: verifier can do error reduction, guess a random witness, and do error reduction again
 - Result: \(k \)-bounded \(\text{QMA}_{O(k)}(2/3, 1/3) = \text{BQSPACE}[k] \)

- Strong error reduction for poly-sized nearest neighbor matchgate computations
 - Physically motivated model related to computation with noninteracting fermions
 - Equivalent to unitary quantum logspace [JKMW10]
Consequences (2/2)

• QMA with exponentially small gap is contained in PSPACE:

\[
\text{PreciseQMA} := \bigcup_{c - s > 2^{-\text{poly}}} \text{QMA}(c, s) \subseteq \text{PSPACE}
\]

• Uses the result that BQPSPACE = PSPACE [Watrous ‘00]

• Turns out converse holds: PreciseQMA = PSPACE [Fefferman, L. ‘16]

 Computing ground state energy of a local Hamiltonian to poly digits is PSPACE-complete
Why unitary quantum space classes?

- Marriott-Watrous style in-place error reduction is only possible without intermediate measurements, since all such methods apply V_x^{-1}
 - For non-unitary quantum logspace, unknown how to reduce error to $o(1)$
 - In this case if $c - s = o(1)$, unknown how to reduce error to constant
- Unitary quantum logspace is equivalent to matchgate circuits [JKMW10]
- Natural complete problems for unitary quantum space classes [Fefferman, L. ‘16]
 e.g. for quantum logspace:
 - Computing minimum eigenvalue for Hermitian matrix
 - Computing inverse for well-conditioned matrix

 Analogous complete problems known for other unitary q. space classes
- Open question: do intermediate measurements give additional power?
Thanks!