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In 1992 Steven White introduced DMRG
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Density Matrix Formulation for Quantum Renormalization Groups

Steven R. White
Department of Physics, University of California, Irvine, California 92717
(Received 22 May 1992)

A generalization of the numerical renormalization-group procedure used first by Wilson for the Kondo
problem is presented. It is shown that this formulation is optimal in a certain sense. As a demonstration
of the effectiveness of this approach, results from numerical real-space renormalization-group calcula-
tions for Heisenberg chains are presented.

PACS numbers: 75.10.Jm, 02.70.+d, 05.30.—d

While Wilson’s solution of the Kondo problem [1] us-  sumes in using this procedure that only the lowest-lying
ing a numerical renormalization-group (RG) technique block eigenstates play a dominant role in forming states
k was a dramatic breakthrough, the numerical approach he  of larger blocks at later iterations. )

DMRG = Density Matrix Renormalization Group

A variational algorithm to approximate the ground state of spin chains
using a 1D tensor-network ansatz (MPS)

Example: ground energy of S=1 anti-ferromagnetic Heisenberg chain:

Monte-Carlo DMRG ('92) DMRG ('93)
-1.401 5(5) -1.401 484(2) -1.401 484 038 971(4)
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Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from
a Wide Range of Numerical Algorithms
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Numerical results for ground-state and excited-state properties (energies, double occupancies, and
Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are
presented, in order to provide an assessment of our ability to compute accurate results in the
thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare
and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory,
density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a
fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock
methods. Comparison of results obtained by different methods allows for the identification of uncertainties
and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is
emphasized. Cases where agreement between different methods is obtained establish benchmark results
k that may be useful in the validation of new approaches and the improvement of existing methods.
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Q Why are 2D T.N. methods not as successful as 1D T.N. methods?
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Q Why are 2D T.N. methods not as successful as 1D T.N. methods?

Can they be improved?
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Tensor networks

Cil in
Wy =) iy lin .- in) —=> A rank-n tensor
LY geeny in il ,1:2 . ’Ln

Matrix Product State (MPS)
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Tensor networks

Cil in
Wy =) iy lin .- in) —=> %\ rank-n tensor
U1,.-yln 7/1 7’2 e /[’TL

Matrix Product State (MPS)
A Ay As A, As A,

1 11 T_ —T — Advantages \

’L1 Z2 ?,3 7,4

O 29" — O (n) parameters

, , Network structure corresponds
Projected Entangled Pairs (PEPS) © b
to entanglement structure

\/\ O Allows variational algorithms

(
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Contracting a tensor-network
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Contracting a tensor-network

B ,
TTT ?
4
(B) = (4 rBw/ N

=

@® Contracting a general PEPS is
#P-hard (Schuch et. al. ’07)

O One must use approximations
(boundary MPS, CTM, TRG

etc.)
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Contracting a tensor-network

(B) = (4| BJv) / .

=

@® Contracting a general PEPS is
#P-hard (Schuch et. al. ’07)
Can we approximate (B)
O One must use approximations using only a local patch of
(boundary MPS, CTM, TRG the T.N., assuming that |)
etc.) a ground state of a known
local Hamiltonian H ?




Expectaion value from a local patch

\L

~— Main Problem

Given a g.s. |¢) of a known local Hamiltonian H in the form of a
PEPS and a local observable B, approximate (¢|B|¢) using only
a local patch L of the PEPS around B.

\

External states\ }/— Internal states
= 10a4) ® |1a)
(87

Vi = Span{\]a>}
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The basic algorithm 7 /12

¥) =310 @ 1) Vi = Span{|L.) }

e def .
Define: pr % Trpe 1) (yp]  and Pr = projector onto Vr,

Then: pr = PrprPr

Therefore: <’¢’B"¢> = TI'(pLB) = TI'(PL,OLPLB) = TI'(pL . PLBPL)

The basic method: Find b,,ip, bynasz, the minimal/maximal eigenvalues
of P, BP;,. Then <¢’B|¢> < [bmz’nybmam]

— Lemma \

If |¢) has an exponential decay of correlations with correlation length &,
and L is a patch of radius ¢, then for every eigenvalue b; of P;, BP;,

6_6/5
bi — (W|BlY)| < —
\ iy, <$’pL’$> )




The basic algorithm 7 /12

¥) =310 @ 1) Vi = Span{|L.) }

\
Define: pu @® In 1D we expect: miny, (x|pr|z) = O (1)
Then: p;| @ In 2D we expect: miny, (z|pr|z) = O (e70W)
Therefore: @® In 3D we expect: miny, (z|pr|z) = O (6_0(52)>
The basic § lues
@ Can we do better?
~—Lemma \_ _J ’

If |¢) has an exponential decay of correlations with correlation length &,
and L is a patch of radius ¢, then for every eigenvalue b; of P;, BP;,

6_6/6
bi — (W|BlY)| < —
\ iy, <$’pL’$> )
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Commutator Gauge Optimization (CGO)

Main idea: Optimize over all local operators K for which (B) = (K)

Construction: For any A supported on L, define

Ki = B+ [H,Al =B+ [Hg, Al

WIH, AllY) =0 = (P|BlY) = (|Kaly)

Algorithm:

O Fix a set of random operators A; supported on L

O bma:z: — H}{ln Amaac [PL(B + [HL7 Az])PL]

This can be easily written as an SDP problem



The dual problem

If for every A, we have Trp(pr[A, Hr]) = 0, then

0="Tr(AlHL,pr]) = Trr, ATror|Hr, pr] — (TTOL[HLapL] = 0)

~— The dual problem:

\
find bmae = maxTr(prB) , bmin = minTr(prB)
PL PL
subject to:

o pr, lives inside V7,

© Trpr[Hp,pr] =0

o pr >0 and Tr(pp) =1

J
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The dual problem 0L

If for every A, we have Trp(pr[A, Hr]) = 0, then

0="Tr(AlHL,pr]) = Trr, ATror|Hr, pr] — (Tl‘aL[HL,,OL] = 0)

~— The dual problem: \

find bmaer = maxTr(prB) , bmin = minTr(prB)
PL PL

subject to:
o pr, lives inside V7,
© Tror[Hp,pr] =0
o pr >0 and Tr(pp) =1

ﬁ CGO works only for frustrated systems (for F.F., [Hy,py] = 0 trivially)

ﬁ When there's an area-law, no. of variables = exp(O (|0L|)) while no. of
equations = exp(O (|L])) - CGO gives non-trivial results.



Numerical Results

We tested CGO and the basic method for several 1D chains
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Example: XY model with random magnetic field (spectral gap=0.06)

Obs exact (B) basic £ = 3 CGO (=3 basic £ = 4 CGO (=14
P,P,  0.19999  [0.01222,0.71539] (0.36) [0.19997,0.20091] (0.0005) [0.02336,0.66029] (0.32)  [0.19999,0.20007] (4 x 10~5)
PP, 0.89168  [0.20769,0.98444] (0.39)  [0.88757,0.89180] (0.002)  [0.19351,0.97041] (0.39)  [0.89144,0.89168] (0.0001)
Random  0.27118  [0.02703,0.42696] (0.2)  [0.27025,0.27116] (0.0005) [0.03769,0.49442] (0.23) [0.27109,0.27116] (4 x 10~9)
N T T T I T I
\
\
\\
0.225 -~ | -
\ 0.20188 - £=3 .
~ alg. stops
8 \
€ N 0.20125
g
. 0.20063
5
= 02125
0]
Q
o
5
[
[m)
o N
0.2 e s
————— T . | . |
400 500 600 700



Summary

O

O © OO
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Efficient contraction of a 2D tensor-network is the main obstacle
for good 2D tensor-based algorithms.

If we assume that the T.N. is a good approximation to the ground state
then local patches can be used to approximate a local expectation value

Non-trivial local constraints for global eigenstates of H:

(Tl"aL[HL, pL] = O)

Can we turn it into a practical algorithm?
Can it be used as a criteria to test the proximity of the T.N. to the
true ground state (other than just the energy)

Can it be used to prove rigorous results about the complexity of the
LH problem?

Can it be used elsewhere: MC simulations, MBL, ...
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