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Overview of entanglement distillation

Maximally entangled states Φ(k) = 1/k
∑k

i,j=1 |ii〉〈jj | are useful physical
resources in quantum teleportation, superdense coding, etc.

However, in practice, only partially entangled pure or noisy mixed states
are available. We need extract maximally entangled states from them.

Entanglement of distillation (Bennett, DiVincenzo, Smolin, Wootters,
1996; Rains, PRA, 1999): the highest rate at which one can obtain Φ(2)
(EPR pairs, or ebits) from the given state ρ by local operations and
classical communications (LOCC),

ED(ρAB) = sup{r : lim
n→∞

inf
Λ∈LOCC

‖Λ(ρ⊗n
AB )− Φ(2rn)‖1 = 0}.

The structure of LOCC is very complicated, and usually more tractable
operations such as separable operations (SEP) or operations completely
preserving the positivity of partial transpose (PPT) are used.
LOCC ( SEP ( PPT .

PPT-assisted entanglement of distillation (Rains 1999, 2001):

EΓ(ρAB) = sup{r : lim
n→∞

inf
Λ∈PPT

‖Λ(ρ⊗n
AB )− Φ(2rn)‖1 = 0}.
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An Upper bound: Logarithmic negativity

How to evaluate the distillable entanglement (by any of LOCC, SEP, or
PPT) are formidable. Only known for very limited cases.

Logarithmic negativity (Vidal and Werner 2002; Plenio 2005):
EN(ρAB) = log2 ‖ρ

TB
AB‖1.

(Rains, 2001; Vidal and Werner 2002): ED(ρAB) ≤ EΓ(ρAB) ≤ EN(ρAB).

EN has many nice properties (see later) and remains to be the best
efficiently computable upper bound to EΓ.

The Negativity N(ρAB) = (‖ρTB
AB‖1 − 1)/2 (Zyczkowski, Horodecki, Sanpera

and Lewenstein 1998) is an entanglement monotone (Vidal and Werner
2002, Eisert 2006, Plenio 2005), but is not directly related to entanglement
of distillation.
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A better semidefinite programming (SDP) upper bound: EW (ρAB)

Primal SDP:

EW (ρAB) = min log2 ‖X
TB
AB ‖1, s.t. XAB ≥ ρAB . (1)

Dual SDP:

EW (ρAB) = max log2 TrρABRAB ,

s.t. |RTB
AB | ≤ IAB ,RAB ≥ 0.

(2)

Properties of EW :
i) Additivity: EW (ρAB ⊗ σA′B′ ) = EW (ρAB) + EW (σA′B′ ).
ii) Upper bound on PPT distillable entanglement: EΓ(ρAB) ≤ EW (ρAB).

iii) Detecting genuine PPT distillable entanglement: EW (ρAB) > 0 iff
EΓ(ρAB) > 0, i.e., ρAB is PPT distillable.

iv) Non-increasing in average under PPT and LOCC operations:
EW (ρ) ≥

∑
i piEW (ρi ) if ρ can be transformed to {(pi , ρi )} via LOCC (or

PPT).
v) Improved over logarithmic negativity: EW (ρAB) ≤ EN(ρAB), and the

inequality is strict in general.

EN has all above properties except v)!!!
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EW is strictly better than the logarithmic negativity EΓ

Example 1: Consider a class of two-qubit states

σ
(r)
AB = r |v0〉〈v0|+ (1− r)|v1〉〈v1|, 0 < r < 1,

where |v0〉 = 1/
√

2(|10〉 − |11〉) and |v1〉 = 1/
√

3(|00〉+ |10〉+ |11〉). The fact
that EW (σ(r)) < EN(σ(r)) is shown in the following figure:

0 0.2 0.4 0.6 0.8 1

r  from 0 to 1

0

0.2

0.4

0.6

0.8

E
W

(σ
( r )

)

E
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(σ
( r )

)
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EW is strictly better than the logarithmic negativity EΓ (cont.)

Example 2: Consider a class of 3⊗ 3 states
ρ

(α)
AB = 1/3

∑2
m=0 U

m|ψ0〉〈ψ0|(U†)m, 0 < α ≤ 0.5, where

|ψ0〉 =
√
α|00〉+

√
1− α|11〉 and U = X † ⊗ X and X =

∑2
i=0 |i ⊕ 1〉〈i |. Then

EΓ(ρ
(α)
AB ) ≤ EW (ρ

(α)
AB ) < EN(ρ

(α)
AB ).

In particular, EΓ(ρ(0.5)) = EW (ρ(0.5)) = log2 3/2 < log2 5/3 = EN(ρ(0.5)).
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Lower bound: PPT-assisted deterministic entanglement distillation

Deterministic Entanglement Distillation: How to distill maximally
entangled states exactly from a mixed state? “zero-error version of
entanglement distillation”.
(Duan, Feng, Ji, Ying, 2004; Matthews and Winter, 2008): Bipartite pure
state cases (LOCC and PPT no difference!).
One-copy PPT-assisted deterministic distillation rate:

E
(1)
Γ,0(ρAB) = max{log2 k : Λ(ρAB) = Φ(k),∃Λ ∈ PPT}.

Asymptotic PPT-assisted deterministic distillation rate:

EΓ,0(ρAB) := sup
n≥1

E
(1)
Γ,0(ρ⊗n)

n
= lim

n≥1

E
(1)
Γ,0(ρ⊗n)

n
.

The one-copy rate can be computed by a rather simple SDP:

E
(1)
Γ,0(ρAB) = max

R
− log2 ‖R

TB
AB ‖∞,

s.t. PAB ≤ RAB ≤ IAB ,

where PAB is the projector on the support of ρAB .
Clearly we have

E
(1)
Γ,0 ≤ EΓ,0 ≤ EΓ ≤ EW ≤ EN ,

and the first three inequalities become an equality while the last one is
strict for ρ

(0.5)
AB .

Xin Wang and Runyao Duan, AQIS’2016
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Deterministic Entanglement Distillation: How to distill maximally
entangled states exactly from a mixed state? “zero-error version of
entanglement distillation”.
(Duan, Feng, Ji, Ying, 2004; Matthews and Winter, 2008): Bipartite pure
state cases (LOCC and PPT no difference!).
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Rains’ bound and the relative entropy of entanglement

Rains’ bound (Rains 2001; Audenaert, De Moor, Vollbrecht and Werner
2002):

R(ρ) = minS(ρ||σ) s.t. σ ≥ 0, tr|σTB | ≤ 1,

where S(ρ||σ) = tr(ρ log ρ− ρ log σ) denotes the relative Von Neumann
entropy.

(Rains 2001) Rains’ bound is the best known upper bound on the PPT
distillable entanglement, i.e., EΓ(ρ) ≤ R(ρ).

Relative entropy of entanglement (Vedral, Plenio, Rippin and
Knight,1997; Vedral and Plenio 1998; Vedral, Plenio, Jacobs and Knight
1997) with respect to the PPT states:

ER(ρ) = minS(ρ||σ) s.t. σ, σTB ≥ 0, trσ = 1.

The asymptotic relative entropy of entanglement is given by

E∞R (ρ) = inf
n≥1

1

n
ER(ρ⊗n).

Clearly, ER(ρ) ≥ R(ρ), and ER(ρ) equals to R(ρ) for every two-qubit state
(Miranowicz and Ishizaka 2008) or the bipartite state with one qubit
subsystem (Girard, Gour and Friedland 2014).
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Rains’ bound is not additive

A conjecture (Audenaert, De Moor, Vollbrecht and Werner 2002): Rains’
bound is always additive;

An open problem (Plenio and Virmani 2007): Whether Rains’ bound is
always equal to the asymptotic relative entropy of entanglement?

Theorem: There exists a two-qubit state ρ such that

R(ρ⊗2) < 2R(ρ).

Meanwhile,
E∞R (ρ) < R(ρ).

Xin Wang and Runyao Duan, AQIS’2016
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Rains’ bound is not additive: Proof ideas

i) Construct a 2⊗ 2 state ρ so that we can explicitly find a PPT state σ
such that R(ρ) = ER(ρ) = S(ρ||σ) using a technique in (Miranowicz and
Ishizaka 2008; see also Gour and Friedland 2011).

ii) Find an upper bound E+
R (ρ⊗2) on ER(ρ⊗2) by using an algorithm

developed in (Zinchenko, Friedland, and Gour 2010; Girard, Zinchenko,
Friedland and Gour 2015). More precisely, the algorithm produces a PPT
state σ0 so that E+

R (ρ⊗2) = S(ρ⊗2||σ0).

iii) Achieve the goal by directly showing

R(ρ⊗2) ≤ ER(ρ⊗2) ≤ E+
R (ρ⊗2)<2ER(ρ) = 2R(ρ).

iv) An example of semi-analytical and semi-numerical proof.
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Rains’ bound is not additive: Proof ideas (cont.)

Firstly, we construct two-qubit states ρr and σr such that R(ρr ) = S(ρr ||σr ) by
use of a technique from (Miranowicz and Ishizaka 2008; see also Gour and
Friedland 2011). Choose

σr =
1

4
|00〉〈00|+ 1

8
|11〉〈11|+ r |01〉〈01|+ (

5

8
− r)|10〉〈10|+ 1

4
√

2
(|01〉〈10|+ |10〉〈01|).

The positivity of σr requires that 5−
√

17
16
≤ r ≤ 5+

√
17

16
. Assume that

r ≥ 5/8− r and we can further choose 0.3125 ≤ r ≤ 0.57 for simplicity. Then

ρr =
1

8
|00〉〈00|+ x |01〉〈01|+ 7− 8x

8
|10〉〈10|

+
32r 2 − (6 + 32x)r + 10x + 1

4
√

2
(|01〉〈10|+ |10〉〈01|)

with

x = r +
32r 2 − 10r + 1

256r 2 − 160r + 33
+

(16r − 5)y−1

32 ln (5/8− y)− 32 ln (5/8 + y)

and y = (4r 2 − 5r/2 + 33/64)1/2. We set 0.3125 ≤ r ≤ 0.5480 to ensure the
positivity of ρr .
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Rains’ bound is not additive: Proof details (cont.)

Let us first choose r0 = 0.547, the Rains’ bound of ρr0 is given by

R(ρr0 ) = ER(ρr0 ) = S(ρr0 ||σr0 ) ' 0.3891999.

Furthermore, applying the algorithm in (Zinchenko, Friedland, and Gour 2010;
Girard, Zinchenko, Friedland and Gour 2015), we can find a PPT state σ0 such
that

E+
R (ρ⊗2

r0 ) = S(ρ⊗2
r0 ||σ0) ' 0.7683307.

(Note: in low dimensions, this algorithm provides an estimation E+
R (ρ) with an

absolute error smaller than 10−3, i.e. ER(ρ) ≤ E+
R (ρ) ≤ ER(ρ) + 10−3).

The relative entropy here is calculated based on the Matlab function “logm”
and the function “Entropy” in QETLAB (Nathaniel Johnston 2015). In this
case, the accuracy is guaranteed by the fact ‖e logm(σr0 ) − σr0‖1 ≤ 10−16 and
‖e logm(σ0) − σ0‖1 ≤ 10−14. Noting that the difference between 2R(ρr0 ) and
E+
R (ρ2

r0 ) is already 1.00691× 10−2, we can safely claim that

R(ρ⊗2
r0 ) ≤ ER(ρ⊗2

r0 ) ≤ E+
R (ρ⊗2

r0 ) < 2R(ρr0 ).

It is also easy to observe that

E∞R (ρr0 ) ≤ 1

2
ER(ρ⊗2

r0 ) < R(ρr0 ).
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Rains’ bound is not additive (cont.)

When 0.45 ≤ r ≤ 0.548, we show the gap between 2R(ρr ) and E+
R (ρ⊗2

r ) in the
following figure:

0.46 0.48 0.5 0.52 0.54

r from 0.45 to 0.548

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86
2R(ρ

r
)

E
R

+
(ρ

r

⊗ 2
)

Figure : This plot demonstrates the difference between 2R(ρr ) and E+
R (ρ⊗2

r ) for

0.45 ≤ r ≤ 0.548. The dashed line depicts E+
R (ρ⊗2

r ) while the solid line depicts
2R(ρr ).
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Applications and future directions

Regularization of Rains’ bound:

R∞(ρ) = inf
k≥1

R(ρ⊗k)

k
.

A better upper bound on distillable entanglement:

EΓ(ρ) ≤ R∞(ρ)≤R(ρ),

and the second inequality could be strict.

Remarks: We were informed by one of AQIS’16 referees that Hayashi
introduced the regularization of Rains’ bound in his book in 2006.

How about R∞ and E∞R ?

R∞(ρ) < E∞R (ρ) for any rank-2 mixed state ρ supporting on the
anti-symmetric 3⊗ 3 space, thus the irreversibility of PPT manipulation of
entanglement, the 20th open problem in Quantum Information Theory on
Werner’s website, proposed by Plenio in 2005. (See Xin Wang and Runyao
Duan, arXiv:1606.09421).
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