

Dimension witnesses beyond non-classicality tests

Edgar Aguilar, Mate Farkas, Marcin Pawlowski

AQIS 2016

Motivation – High d Systems

Generation and confirmation of a (100 × 100)-dimensional detector & logic entangled quantum system z basis x basis SLM 1 SLM 2 n=1, l=2 n=4, l=-3 SMI Mario Krenn^{a,b,1}, Marcus Huber^{c,d,e}, Robert Fickler^{a,b}, Radek Lapkiewicz^{a,b}, Sven Ramelow^{a,b,2}, and lase Anton Zeilinger^{a,b,1} 405nm PBS ррКТ Author Affiliations Contributed by Anton Zeilinger, February 24, 2014 (sent for review December 15, 2013) QWPC Direct measurement of a 27-dimensional orbital-QWP' HWP1 angular-momentum state vector strong measurement Mehul Malik, Mohammad Mirhosseini, Martin P. J. Lavery, Jonathan Leach, Miles J. Padgett & Robert W. Boyd Affiliations | Contributions | Corresponding author Nature Communications 5, Article number: 3115 | doi:10.1038/ncomms4115 HW Received 22 October 2013 | Accepted 16 December 2013 | Published 20 January 2014

Dimension Witnesses

Testing the Dimension of Hilbert Spaces

Nicolas Brunner, Stefano Pironio, Antonio Acin, Nicolas Gisin, André Allan Méthot, and Valerio Scarani Phys. Rev. Lett. **100**, 210503 – Published 30 May 2008

Lower bound on the dimension of a quantum system given measured data

Stephanie Wehner, Matthias Christandl, and Andrew C. Doherty Phys. Rev. A **78**, 062112 – Published 22 December 2008

Dimension Witnesses and Quantum State Discrimination

Nicolas Brunner, Miguel Navascués, and Tamás Vértesi Phys. Rev. Lett. **110**, 150501 – Published 8 April 2013

Device-independent dimension tests in the prepare-and-measure scenario

Jamie Sikora, Antonios Varvitsiotis, Zhaohui Wei

(Submitted on 13 Jun 2016)

Our Result

Assuming the dimension of a physical state is *d*, there is a witness that distinguishes between *fully quantum* and *classical states*, including *separable partitions*.

E.g. let d = ab, then the witness should distinguish between Q_{ab} , $Q_a Q_b$, $C_a Q_b$, $C_b Q_a$, C_{ab}

Random Access Codes (RACs)

Input for Alice

 $x = x_0 x_1 \dots x_{n-1}$; $x_i \in \{0, 1, \dots, d-1\}$

• Input for Bob

$$y \in \{0, 1, \dots, n-1\}$$

- <u>Rules (Prepare & Measure)</u> Alice prepares and sends a *d*-dimensional state to Bob. Bob measure the state and outputs $b \in \{0, 1, ..., d - 1\}$.
- <u>Success Condition</u>

$$b = x_{v}$$

• <u>Figure of Merit</u> Average Success Probability

$$\bar{p} = \frac{1}{nd^n} \sum_{\mathbf{x}, \mathbf{y}} p(b = x_y | \mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y}) = \frac{1}{n} \sum_{\mathbf{y}} p(\text{Correctly guessing } x_y)$$

$2^2 \rightarrow 1 \text{ QRAC}$; An Example

In general, for $2^d \rightarrow 1$ RACS:

$$\bar{p}_q = \frac{1}{2} \left(1 + \frac{1}{\sqrt{d}} \right)$$
$$\bar{p}_c = \frac{1}{2} \left(1 + \frac{1}{d} \right)$$

For d=2, $\bar{p}_c = 0.75$, $\bar{p}_q \approx 0.854$

Figure 5: Bloch sphere representation of encoding for $2 \mapsto 1$ quantum random access code.

Ambainis et al., Quantum Random Access Codes with Shared Randomnes, q-ph: 0810.2937

Our Framework and non-Adaptive Strategies

- Let $d=d^0d^1\cdots d^{k-1}$, and suppose we want to know the maximum $\bar{p},$ for $Q_{d^0}Q_{d^1}\cdots Q_{d^{k-1}}$
- Alice sends $|\psi\rangle = |\psi^0\rangle |\psi^1\rangle \cdots |\psi^{k-1}\rangle$ to Bob.
- Bob measures each qudit with projective measurements.
- In general, the choice of the *j*th measurement basis could depend on all previous measurement outcomes. We call this an Adaptive Strategy.

• Lemma: For an Adaptive Strategy there exists a non-Adaptive Strategy which has at least the same average success probability.

The Magic...

• $\bar{p} = \frac{1}{2}(p(\text{correctly guessing 0th dit}) + p(\text{correctly guessing 1st dit}))$

- Now, e.g., let d = ab, then write: $x_0 = x_0^0 x_0^1$, $x_1 = x_1^0 x_1^1$ with $x_i^0 \in \{0, 1, \dots, a-1\}$, $x_i^1 \in \{0, 1, \dots, b-1\}$
- u = p(correctly guessing FIRST part of 0th dit)
 v = p(correctly guessing SECOND part of 0th dit)

Our Result Applied to Examples

d =4		d=6		d =8	
Q_4	0.75	Q_6	0.704124	Q_8	0.676777
$Q_2 Q_2$	0.728553	$Q_2 Q_3$	0.673176	$Q_2 Q_4$	0.640165
C_2Q_2	0.654508	C_2Q_3	0.614357	$Q_2 Q_2 Q_2$	0.621859
C_4	0.625	C_3Q_2	0.596856	C_2Q_4	0.591506
		<i>C</i> ₆	0.583333	$C_2 Q_2 Q_2$	0.582955
				C_4Q_2	0.570164

 C_8

0.5625

Questions?

