Measurement-based quantum computation with mechanical oscillators

Alessandro Ferraro

Continuous Variables (CVs) [Distinguishable bosons, qumodes]

Light quadratures trapped ion motion $\int \frac{1}{2} \int \frac{1}{$

What can we do with many qumodes?

Quantum computation over CVs

Gu et al., PRA (2009)

Models of computation

	Image:	The asurement-Based Quantum Computation (MBQC)
Continuous Variables	Lloyd & Braunstein PRL (1999)	Menicucci et al. PRL (2006)
Fault tolerant (with finite energy)	Gottesman, Kitaev, Preskill PRA (2001) Lund, Ralph, Haselgrove, PRL (2008)	Menicucci PRL (2014)

MBQC resources with traveling light: recent experimental progresses

60 entangled modes Frequency encoding

Single crystal & freq comb [Chen et al., PRL (2014)]

500+ entangled partitions Frequency encoding

Single crystal & freq comb [Roslund et al., Nat. Photonics (2014)]

10⁶ entangled modes Temporal encoding

Pulsed squeezed states [Yoshikawa et al., arXiv 1606.06688]

Also interesting alternative platforms: confined/massive continuous variables

Atomic ensembles

Trapped Ions

Circuit-QED

Why interesting?

Confined systems could be integrated easily

A cavity-optomechanics setup with multiple mechanical oscillators allows for:

1) Generation of universal resources for computation

2) Quantum tomography of the resource

3) Arbitrary Gaussian computation

A cavity-optomechanics setup with multiple mechanical oscillators allows for:

- Now 1) Generation of universal resources for computation
- Saturday 2) Quantum tomography of the resource
 - Now 3) Arbitrary Gaussian computation

Outline

Measurement-based quantum computation with CVs

Generation of universal resources for CV quantum computation

Arbitrary Gaussian computation

Outline

Measurement-based quantum computation with CVs

• Generation of universal resources for CV quantum computation

• Arbitrary Gaussian computation

Continuous Variables

Position and momentum operators

$$q_j = \frac{1}{\sqrt{2}}(b_j + b_j^{\dagger}) \qquad p_j = \frac{1}{i\sqrt{2}}(b_j - b_j^{\dagger}) \qquad [q_j, p_k] = i\delta_{j,k}$$

Computational basis

$$|\mathbf{v}
angle_{q}$$
 ($q|\mathbf{v}
angle_{q} = \mathbf{v}|\mathbf{v}
angle_{q}$, $\mathbf{v}\in\mathbb{R}$)

Entangling gate

$$CZ_{jk}\equiv \exp[iq_j\otimes q_k]$$

CV cluster state: the universal resource for computation

 Prepare each node in zero-momentum eigenstate

CV cluster state: the universal resource for computation

 Prepare each node in zero-momentum eigenstate

Entangle connected nodes with

$$\mathsf{CZ}_{\mathsf{j}\mathsf{k}} \equiv \exp[\mathsf{i}\mathsf{q}_{\mathsf{j}}\otimes\mathsf{q}_{\mathsf{k}}]$$

CV cluster state: the universal resource for computation

- Prepare each node in zero-momentum eigenstate
- Entangle connected nodes with

$$\mathsf{CZ}_{\mathsf{j}\mathsf{k}} \equiv \exp[\mathsf{i}\mathsf{q}_\mathsf{j}\otimes\mathsf{q}_\mathsf{k}]$$

CV cluster state

CV cluster state: the universal resource for computation

- Prepare each node in zero-momentum eigenstate
- Entangle connected nodes with

$$\mathsf{CZ}_{\mathsf{j}\mathsf{k}} \equiv \exp[\mathsf{i}\mathsf{q}_{\mathsf{j}}\otimes\mathsf{q}_{\mathsf{k}}]$$

- Measure each node locally
- Quadrature measurements → Gaussian computation
 Non-Gaussian measurements → universal

CV cluster state

Finite energy: finitely squeezed states

In realistic settings momentum eigenstates are substituted by squeezed states

Position and momentum basis are infinitely squeezed (0<r<1):

$$\lim_{r \to 1} T(r) |0\rangle \equiv |0\rangle_p$$

Fault tolerance is guaranteed for large enough squeezing

Gaussian states

Restricting to quadratic operations (CZ) and finite energy (squeezed states)

	Full quantum mechanics	Gaussian world
States	Density operator	First and second moments $R = (q_1, q_N, p_1, p_N)$
	μ	$\langle R \rangle$ $[V]_{kl} = \langle R_k R_l + R_l R_k \rangle / 2$
Closed Dynamics	Unitaries W $ ho' = W ho W^{\dagger}$	Symplectic S $V' = SVS^T$

Consider the union

$$G_{(\mathcal{V},\mathcal{E})} \equiv \{\mathcal{V},\mathcal{E}\}$$

of vertices $\mathcal V$ and edges $\mathcal E$

$$|\mathsf{G}_{\mathsf{r}}\rangle\equiv\mathsf{CZ}\bigotimes_{j\in\mathcal{V}}\mathsf{T}_{j}(\mathsf{r})|\mathbf{0}\rangle$$

Consider the union

$$G_{(\mathcal{V},\mathcal{E})} \equiv \{\mathcal{V},\mathcal{E}\}$$

of vertices $\mathcal V$ and edges $\mathcal E$

Consider the union

$$G_{(\mathcal{V},\mathcal{E})} \equiv \{\mathcal{V},\mathcal{E}\}$$

of vertices $\mathcal V$ and edges $\mathcal E$

Consider the union

$$G_{(\mathcal{V},\mathcal{E})} \equiv \{\mathcal{V},\mathcal{E}\}$$

of vertices $\mathcal V$ and edges $\mathcal E$

Outline

• Measurement-based quantum computation with CVs

Generation of universal resources for CV quantum computation

• Arbitrary Gaussian computation

Generate arbitrary graph states of mechanical oscillators exploiting the dissipative dynamics of optomechanical systems

[Houhou, Aissaoui, AF, PRA '15]

Exploiting the dissipative dynamics (1 mode)

Assume the two-mode Hamiltonian system

$$\mathsf{H} = \beta \mathsf{a}^{\dagger}(\mathsf{c} + \mathsf{r}\,\mathsf{c}^{\dagger}) + \mathrm{H.c.}$$

with losses on mode a only

$$\frac{\mathrm{d}\,\rho}{\mathrm{d}\,t} = -\mathrm{i}[\mathsf{H},\rho] + \kappa(\mathsf{a}\rho\mathsf{a}^\dagger - \frac{1}{2}\mathsf{a}^\dagger\mathsf{a}\rho - \frac{1}{2}\rho\mathsf{a}^\dagger\mathsf{a})$$

The system is dissipatively driven to a unique and squeezed steady state

$$\mathsf{V}_{ss} = \frac{1}{2}\mathsf{I}_2 \oplus \left(\begin{array}{cc} \frac{1+\mathsf{r}}{1-\mathsf{r}} & \mathbf{0} \\ \\ \mathbf{0} & \frac{1-\mathsf{r}}{1+\mathsf{r}} \end{array}\right)$$

[A. Kronwald et al., PRA (2013)]

Electro-mechanical implementation

Driving the mechanical sidebands with two tones

 $\mathbf{\check{H}} = \beta \mathbf{a}^{\dagger} (\mathbf{c} + \mathbf{r} \, \mathbf{c}^{\dagger}) + \text{H.c.}$

[Woolman et al., Science 349, 952 (2015)] [Lei et al., arXiv:1605.08148] [Pirkkallainen et al., PRL 115, 243601 (2015)] [Lecocq et al., PRX 5, 041037 (2015)]

Electro-mechanical implementation

[Pirkkallainen et al., PRL 115, 243601 (2015)]

Exploiting the dissipative dynamics (graph)

Consider an arbitrary N-mode graph state (with finite squeezing)

$$V = \frac{1}{2} S^{\mathsf{T}} \begin{pmatrix} \frac{1+\mathsf{r}}{1-\mathsf{r}} \, \mathsf{I}_{\mathsf{N}} & \mathsf{0}_{\mathsf{N}} \\ & & \\ \mathsf{0}_{\mathsf{N}} & \frac{1-\mathsf{r}}{1+\mathsf{r}} \, \mathsf{I}_{\mathsf{N}} \end{pmatrix} S$$

$$\begin{split} S \longleftrightarrow W & \implies \quad c = W \, b \qquad b = (b_1, \dots, b_N) \, \, \text{local} \\ c = (c_1, \dots, c_N) \, \, \text{collective} \end{split}$$

Exploiting the dissipative dynamics (graph)

Consider an arbitrary N-mode graph state (with finite squeezing)

$$V = \frac{1}{2} S^{\mathsf{T}} \begin{pmatrix} \frac{1+\mathsf{r}}{1-\mathsf{r}} \, \mathsf{I}_{\mathsf{N}} & \mathsf{0}_{\mathsf{N}} \\ & & \\ \mathsf{0}_{\mathsf{N}} & \frac{1-\mathsf{r}}{1+\mathsf{r}} \, \mathsf{I}_{\mathsf{N}} \end{pmatrix} S$$

 $\begin{array}{ll} S\longleftrightarrow W & \Longrightarrow & c=W\,b & b=(b_1,\ldots,b_N) \text{ local} \\ & c=(c_1,\ldots,c_N) \text{ collective} \end{array}$

If we squeeze the collective modes,

the local modes will automatically be in the desired graph state!

Exploiting the dissipative dynamics (graph)

Consider an arbitrary N-mode graph state (with finite squeezing)

$$V = \frac{1}{2} S^{\mathsf{T}} \left(\begin{array}{cc} \frac{1+r}{1-r} \, \mathsf{I}_{\mathsf{N}} & \mathsf{0}_{\mathsf{N}} \\ & & \\ \mathsf{0}_{\mathsf{N}} & \frac{1-r}{1+r} \, \mathsf{I}_{\mathsf{N}} \end{array} \right) S$$

 $\begin{array}{ll} S\longleftrightarrow W & \Longrightarrow & c=W\,b & b=(b_1,\ldots,b_N) \text{ local} \\ & c=(c_1,\ldots,c_N) \text{ collective} \end{array}$

If we squeeze the collective modes,

the local modes will automatically be in the desired graph state!

Hamiltonian switching: - N temporal steps

$$\mathsf{H}^{(\mathsf{k})} = \beta \mathsf{a}^{\dagger}(\mathsf{c}_{\mathsf{k}} + \mathsf{r}\,\mathsf{c}_{\mathsf{k}}^{\dagger}) + \mathrm{H.c.}$$

$$(\mathsf{k}=1,\ldots,\mathsf{N})$$

- In each step one collective mode is coupled and squeezed

[Li, Ke, and Ficek, PRA (2009); Ikeda & Yamamoto, PRA (2013)]

How can we implement the Hamiltonian switch?

Consider the set of Hamiltonians with free parameters α_{i}^{\pm} , ϕ_{i}^{\pm} :

$$H = a^{\dagger} \sum_{j=1}^{N} g_{j} \left(\alpha_{j}^{+} e^{i\phi_{j}^{+}} b_{j}^{\dagger} + \alpha_{j}^{-} e^{i\phi_{j}^{-}} b_{j} \right) + \text{H.c.}$$

At each step k set the free parameters as follows

$$\begin{aligned} \alpha_{j}^{-} &= \frac{\beta}{g_{j}} |W_{kj}| \\ \alpha_{j}^{+} &= r\alpha_{j}^{-} \\ \phi_{j}^{-} &= -\phi_{j}^{+} = \arg(W_{kj}) \\ &\downarrow \\ &\downarrow \\ &\equiv \mathsf{H}^{(k)} &= \beta \mathsf{a}^{\dagger}(\mathsf{c}_{\mathsf{k}} + \mathsf{r}\mathsf{c}_{\mathsf{k}}^{\dagger}) + \mathrm{H.c.} \end{aligned}$$

Example: 4-mode linear graph

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \longrightarrow -(i I_N + A) = R W$$

Finite-time evolution is enough to reach the target state

Hamiltonian engineering in optomechanics

Inspired by 1- and 2-mode schemes [Clerk, Hartmann, Marquardt, Meystre, Vitali,...]

Effects of mechanical noise: examples

[Houhou, Aissaoui, AF, PRA '15]

Outline

• Measurement-based quantum computation with CVs

• Generation of universal resources for CV quantum computation

Arbitrary Gaussian computation

General Gaussian Computation

Once the cluster is generated (and verified), single- and two-mode Gaussian gates are implemented via projective **quadrature measurements**

Continuous-monitoring strategy

1) Modulate a driving with the mechanical frequency of the oscillator to be measured (the phase determines the addressed quadrature)

2) Continuously monitoring the output light

[Clerk, Marquardt, Jacobs, NJP (2008)]

Continuous-monitoring strategy

1) Modulate a driving with the mechanical frequency of the oscillator to be measured (the phase determines the addressed quadrature)

2) Continuously monitoring the output light

$$H = g(t) X \sum_{j} (b_{j} + b_{j}^{\dagger}) + \sum_{j} \Omega_{j} b_{j}^{\dagger} b_{j}$$

$$g(t) \equiv 2g' \cos(\Omega_{j} t + \theta)$$

$$H_{int} = g' X [Q_{\theta,j}] + Q_{\sigma,j} \cos(2\Omega_{j} t + \theta) + Q_{\pi/2,j} \sin(2\Omega_{j} t + \theta)]$$

QND measurement of an arbitrary quadrature of an arbitrary oscillator

[Clerk, Marquardt, Jacobs, NJP (2008)]

Universal single- and two-mode gates

The difference (infidelity) between implementing the gates via ideal projective measurements and via continuous monitoring vanishes for long monitoring times (and low losses)

[Moore, Houhou, AF, arXiv:1609XXX]

Cluster-state generation

Gaussian computation

To Conclude

Cluster-state generation

Gaussian computation

Opto-mechanics

CV Quantum Computation

DIEQ QUANTUM TECHNOLOGY at QUEEN'S

John Templeton Foundation

O. Houhou

(U Constantine,QUB)

D. Moore

(QUB)

Effects of mechanical noise

Consider mechanical noise at temperature T_i and damping rate γ_j :

$$\frac{\mathrm{d}\,\rho}{\mathrm{d}\,t} = -\mathrm{i}[\mathsf{H},\rho] + \kappa(\mathsf{a}\rho\mathsf{a}^{\dagger} - \frac{1}{2}\mathsf{a}^{\dagger}\mathsf{a}\rho - \frac{1}{2}\rho\mathsf{a}^{\dagger}\mathsf{a}) + \mathcal{L}_{1} + \mathcal{L}_{2}$$

with $\gamma_{\rm j}\;,\kappa\ll\Omega_{\rm j}$:

$$\begin{split} \mathcal{L}_{1} &= \sum_{j=1}^{N} \gamma_{j} (n_{j}+1) \left(b_{j} \rho b_{j}^{\dagger} - \frac{1}{2} b_{j}^{\dagger} b_{j} \rho - \frac{1}{2} \rho b_{j}^{\dagger} b_{j} \right) \\ \mathcal{L}_{2} &= \sum_{j=1}^{N} \gamma_{j} n_{j} \left(b_{j}^{\dagger} \rho b_{j} - \frac{1}{2} b_{j} b_{j}^{\dagger} \rho - \frac{1}{2} \rho b_{j} b_{j}^{\dagger} \right) \\ n_{j} &= \left(\exp \frac{\hbar \Omega_{j}}{\mathsf{K}_{\mathsf{B}} \mathsf{T}_{j}} - 1 \right)^{-1} \end{split}$$

- The higher the target squeezing the less the tolerable noise
- The larger the target graph the less the tolerable noise
- Working regime:

 $\gamma_{\rm j} \ll \kappa \ll \Omega_{\rm j} ~{\rm and}~ {\rm low}~ {\sf T}_{\rm j}$

Experimental feasibility

