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Continuous Variables (CVs) 
[Distinguishable bosons, qumodes] 

What can we do 
with many qumodes?

Light quadratures        trapped ion motion    

 Quantum computation over CVs
  

Gu et al., PRA (2009)



  

Models of computation

Measurement-Based 
Quantum Computation (MBQC)

 
Circuit-Based 

Quantum Computation

Lloyd & Braunstein 
PRL (1999)

Menicucci et al.
PRL (2006)

Gottesman, Kitaev, Preskill 
PRA (2001)

 Lund, Ralph, Haselgrove, 
PRL (2008)

Menicucci
PRL (2014)

Continuous 
Variables

Fault tolerant
(with finite energy)



  

MBQC resources with traveling light:
recent experimental progresses

60 entangled
modes

Frequency encoding

Single crystal & freq comb 
[Chen et al., PRL (2014)]

500+ 
entangled partitions

Frequency encoding

Single crystal & freq comb 
[Roslund et al., Nat. 
Photonics (2014)]

Temporal encoding

Pulsed squeezed states  
[Yoshikawa et al., arXiv 

1606.06688]

  106  entangled
modes



  

Why interesting?

Confined systems could be integrated easily

 
Trapped Ions

Also interesting alternative platforms: 
confined/massive continuous variables

Circuit-QED

Optomechanics

Cavity-QED

Atomic ensembles



  

Take-home 
message

A cavity-optomechanics setup 
with multiple mechanical oscillators allows for:

1) Generation of universal resources for computation

2) Quantum tomography of the resource

3) Arbitrary Gaussian computation

Opto-mechanics

CV Quantum 
Computation

2N-tone
drive
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Continuous Variables 

Position and momentum operators

Computational basis

Entangling gate



  

Ideal measurement-based quantum computation

CV cluster state: the universal resource for computation 

 Prepare each node in zero-momentum  
 eigenstate

[Zhang and Braunstein, PRA (2006); Menicucci et al., PRL (2006)]
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Ideal measurement-based quantum computation

[Zhang and Braunstein, PRA (2006); Menicucci et al., PRL (2006)]

CV cluster state: the universal resource for computation 

CV cluster state



  

 Prepare each node in zero-momentum  
 eigenstate

 Entangle connected nodes with 

 
 Measure each node locally 

 Quadrature measurements → Gaussian computation 
 Non-Gaussian measurements → universal  

[Zhang and Braunstein, PRA (2006); Menicucci et al., PRL (2006)]

CV cluster state

X

X

X

X

P

P

P

Ideal measurement-based quantum computation

CV cluster state: the universal resource for computation 



  

Finite energy: finitely squeezed states

Squeezing operator T(r)

Fault tolerance is guaranteed for large enough squeezing

Position and momentum basis are infinitely squeezed (0<r<1):

In realistic settings momentum eigenstates are substituted by squeezed states



  

Gaussian states

Restricting to quadratic operations (CZ )  
and finite energy (squeezed states)

Full quantum mechanics Gaussian world

Density operator First and second moments

Unitaries Symplectic

States

Closed
Dynamics



  

Finite energy CV graph states are Gaussian 

Consider the union

of vertices    and edges    

Associated finite-energy graph state:
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Generate arbitrary graph states of mechanical 
oscillators exploiting the dissipative dynamics of 

optomechanical systems 

Dissipation-driven
steady state

Generic 
graph state

[Houhou, Aissaoui, AF, PRA '15]

2N-tone
drive



  

Exploiting the dissipative dynamics (1 mode) 

Assume the two-mode Hamiltonian system

with losses on mode    only

The system is dissipatively driven to a unique and squeezed steady state

[A. Kronwald et al., PRA (2013)]



  

Electro-mechanical implementation   

[Woolman et al., 

Science 349, 952 (2015)]

[Lei et al.,

arXiv:1605.08148] 

[Pirkkallainen et al., 

PRL 115, 243601 (2015)]

Driving the mechanical sidebands with two tones

[Lecocq et al., 

PRX 5, 041037 (2015)]



  

Electro-mechanical implementation   

[Pirkkallainen et al., 

PRL 115, 243601 (2015)]



  

Exploiting the dissipative dynamics (graph)

Consider an arbitrary N-mode graph state (with finite squeezing)

local

collective
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If we squeeze the collective modes, 
the local modes will automatically be in the desired graph state!



  

Exploiting the dissipative dynamics (graph)

Consider an arbitrary N-mode graph state (with finite squeezing)

Hamiltonian switching: 

local

collective

[Li, Ke, and Ficek, PRA (2009); Ikeda & Yamamoto, PRA (2013)]

- N temporal steps

- In each step one collective mode is coupled 
  and squeezed

If we squeeze the collective modes, 
the local modes will automatically be in the desired graph state!



  

How can we implement the Hamiltonian switch?

Consider the set of Hamiltonians with free parameters                 :

local

collective

arbitrary graph

At each step k set the 
free parameters as follows:



  

Example: 4-mode linear graph

Real time evolution 
of the fidelity:

Step 4Step 1 Step 2 Step 3

Finite-time evolution is enough to reach the target state



  

Hamiltonian engineering in optomechanics

Inspired by 1- and 2-mode schemes [Clerk, Hartmann, Marquardt, Meystre, Vitali,...]

- Linearizing

- Non-overlapping mechanical frequencies

- Rotating wave approximation

- Resolved sideband regime

Two drives per mechanical mode

2N-tone
drive

[Houhou, Aissaoui, 

AF, PRA '15]



  

Effects of mechanical noise: examples

Fidelity
Working regime:

Temperature

Mechanical
losses

[Houhou, Aissaoui, AF, PRA '15]
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General Gaussian Computation

Once the cluster is generated (and 
verified), single- and two-mode Gaussian 
gates are implemented via projective 
quadrature measurements



  

Continuous-monitoring strategy

1) Modulate a driving with the mechanical frequency of the oscillator to be 
measured (the phase determines the addressed quadrature)

2) Continuously monitoring the output light

[Clerk, Marquardt, Jacobs, NJP (2008)]



  

Continuous-monitoring strategy

1) Modulate a driving with the mechanical frequency of the oscillator to be 
measured (the phase determines the addressed quadrature)

2) Continuously monitoring the output light

[Clerk, Marquardt, Jacobs, NJP (2008)]
QND measurement of 
an arbitrary quadrature of
an arbitrary oscillator 



  

Universal single- and two-mode gates

The difference (infidelity) between implementing the gates via 
ideal projective measurements and via continuous monitoring 

vanishes for long monitoring times (and low losses)  

[Moore, Houhou, AF, arXiv:1609XXX]

Teleportation gate Fourier gate
In

fid
e

lit
y

time time

Efficiency

Shearing gate Control-phase

In
fid

e
lit

y

time time



  

To Conclude

Cluster-state generation

Gaussian computation

Opto-mechanics

CV Quantum 
Computation



  

To Conclude

O. Houhou 

(U Constantine,QUB) 

D. Moore 

(QUB)

Opto-mechanics

CV Quantum 
Computation

Cluster-state generation

Gaussian computation



  

Effects of mechanical noise

with                     :

Consider mechanical noise at temperature     and damping rate     :



  

 The higher the target squeezing the less the tolerable noise
 The larger the target graph the less the tolerable noise
 Working regime:



  

Experimental feasibility

[Teufel et al., Nature (2011)]
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