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Superconducting qubit systems: recent experimental progress towards
fault-tolerant quantum computing at IBM

Antonio D. Córcoles1

1 IBM

Abstract. Quantum information processing has experienced dramatic experimental breakthroughs over
the last couple of years in many physical platforms. With current attained metrics, the horizon appears
promising for building increasingly powerful quantum processors. In this talk I will review recent progress
on quantum error detection and correction on superconducting qubit systems at IBM. Our experiments,
which are implemented within the stabilizer formalism present in the surface code architecture, aim at
demonstrating quantum error correcting protocols for fault-tolerant quantum computing. As a conclusion,
I will describe and reflect on the main experimental hurdles our field will have to tackle in the incoming
years.
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Observation of frequency-domain Hong-Ou-Mandel interference

Toshiki Kobayashi1 ∗ Rikizo Ikuta1 Shuto Yasui1 Shigehito Miki2

Taro Yamashita2 Hirotaka Terai2 Takashi Yamamoto1 Masato Koashi3
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Abstract. Hong-Ou-Mandel (HOM) interference plays a key role in quantum optics and quantum infor-
mation processing. Although many types of HOM interference have been demonstrated by using photons,
plasmons, atoms and phonons, all of them essentially used the spatial or polarization degree of freedom.
In this work, we report the first observation of the HOM interference between two photons with different
frequencies. The frequency-domain HOM interferometer is implemented by a partial frequency conversion
in a nonlinear optical medium with a strong pump light. Our results have important consequences for
manipulating the photonic quantum states encoded in the frequency domain.

Keywords: Quantum interference, Nonlinear optics

1 Introduction

In the past three decades since the HOM interference
has been proposed and demonstrated with two photons
from spontaneous parametric down-conversion (SPDC)
process [1], huge varieties of experiments based on the
HOM interference revealed fundamental properties in
quantum physics, especially in quantum optics, and its
applications are widely spreading over quantum infor-
mation processing. The HOM interference has been ob-
served with not only photons but also other bosonic par-
ticles, e.g., surface plasmons[2], Helium 4 atoms[3] and
phonons[4]. In spite of such demonstrations using various
kinds of physical systems, to the best of our knowledge,
all of them essentially used the spatial degree of freedom
for the HOM interference, including the use of polariza-
tion modes of photons that are easily converted to and
from spatial modes. The demonstrations use a beam-
splitter (BS) which mixes the two particles in different
spatial/polarization modes.
In this work[5], we report the first observation of the

HOM interference between two photons with different
frequencies in optical region. In contrast to the spa-
tial interferometer, the frequency-domain HOM interfer-
ometer is implemented in a single spatial mode with a
nonlinear optical frequency conversion[6, 7, 8]. In the
experiment, we input a 780 nm photon and a 1522 nm
photon to the frequency converter that partially converts
the wavelengths of the photons between 780 nm and
1522 nm[8]. We measured coincidence counts between
the output photons at 780 nm and those at 1522 nm
from the frequency converter. The observed visibility
of the HOM interference was 0.71 ± 0.04, which clearly
exceeds the maximum value of 0.5 in the classical wave
theory.

∗kobayashi-t@qi.mp.es.osaka-u.ac.jp

2 Experimental setup

The experimental setup for the frequency-domain
HOM interference by using the partial frequency
converter[8] is shown in Fig. 1(a). We prepare a heralded
single photon at 780 nm in mode A and a weak coher-
ent light at 1522 nm in mode B with an average photon
number of ∼ 0.1. The two light pulses are combined
by a dichroic mirror (DM2) and then focused on a type-0
quasi-phase-matched periodically-poled LiNbO3 (PPLN)
waveguide for the frequency conversion.
The time difference between the two light pulses is ad-

justed by mirrors (M) on a motorized stage. The verti-
cally polarized cw pump laser at 1600 nm is combined
with the two input light pulses by DM3 and focused on
the PPLN waveguide. The effective pump power was
set to 140 mW which corresponds to the conversion effi-
ciency of ∼ 0.4. After the frequency converter, the light
pulses at 780 nm and 1522 nm are separated by DM4

and Bragg gratings (BGU2 and BGL2). They are then
measured by an avalanche photodiode with the quantum
efficiency of about 60% for 780-nm photons (DU2) and
by a superconducting single-photon detector (SSPD)[9]
with the quantum efficiency of about 60% for the 1522-
nm photons (DL). In order to observe the HOM interfer-
ence, we collect the threefold coincidence events among
the three detectors DU1,DU2 and DL.

3 Experimental result

The experimental result of the dependency of the
threefold coincidence counts on the optical delay is shown
in Fig. 1(b). The observed visibility of 0.71 ± 0.04 at
the zero delay point was obtained by the best fit to the
experimental data with a Gaussian. The high visibility
clearly shows the nonclassical HOM interference between
the two light pulses in a single spatial mode with differ-
ent frequencies. We also measured the visibilities at the
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Figure 1: (a) The experimental setup of the frequency-domain HOM interference. In the experiment, the heralded
single photon source (HSPS) at 780 nm and the weak coherent pulse (WCP) at 1522 nm are prepared to serve as two
input photons to the frequency-domain BS. (b) The observed HOM dip at 140-mW pump power. The circles represent
the experimental threefold coincidence counts. The solid curve is the Gaussian fit to the experimental counts. The
dashed curve is obtained from our theoretical model with the experimental parameters. The dashed horizontal line
describes the half values of the maximum of the fitting result. (c) The pump power dependence of the visibility. The
circles are obtained from the experimental result. The dashed curve is obtained from our theoretical model with the
experimental parameters.

pump power 50 mW and 290 mW, which corresponds to
the conversion efficiencies ∼ 0.2 and ∼ 0.7, respectively.
The experimental result is shown in Fig. 1(c). The ob-
served visibilities are 0.34±0.10 at 50 mW and 0.65±0.10
at 290 mW. From our theoretical model, main reasons
for the degradation of the visibility comes from the input
light pulses; the effect of the multiphoton components in
the coherent light pulse at 1522 nm and the broad band-
width of the heralded single photon at 780 nm. If we
use two single photons with the same bandwidth as that
of the coherent light pulse, the visibility will be 0.98 at
190-mW pump power.

4 Conclusion

In conclusion, we have demonstrated the frequency-
domain HOM interference between a heralded single pho-
ton at 780 nm and a weak laser light at 1522 nm in a sin-
gle spatial mode by using the partial frequency converter
based on the nonlinear optical effect. We observed the
visibility of 0.71±0.04, which clearly shows the nonclassi-
cal interference. We believe that our results give a novel
tool for exploiting frequency-domain quantum phenom-
ena and a way of scaling up the quantum information
processing.
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Realization of the contextuality-nonlocality tradeoff with a qubit-qutrit
photon pair
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Abstract. We report our experimental results on the no-disturbance principle, which imposes a funda-
mental monogamy relation on contextuality vs non-locality. We employ a photonic qutrit-qubit hybrid to
explore no-disturbance monogamy at the quantum boundary spanned by non-contextuality and locality in-
equalities. In particular we realize the single point where the quantum boundary meets the no-disturbance
boundary. Our results agree with quantum theory and satisfy the stringent monogamy relation thereby
providing direct experimental evidence of a tradeoff between locally contextual correlations and spatially
separated correlations. Thus, our experiment provides evidence that entanglement is a particular manifes-
tation of a more fundamental quantum resource.

Keywords: nonlocality, contextuality, monogamy relation, entanglement

Quantum systems exhibit a wide range of non-classical
and counter-intuitive phenomena. Corresponding exper-
imental tests have been performed and support the ne-
cessity of quantum mechanics. The relation between
contextual correlations and non-local correlations has
been studied recently. It has been proven that the no-
disturbance (ND) principle imposes monogamy relation
between contextuality and non-locality and the quantum
version of this monogamy relation is even more stringent.

We demonstrate no-disturbance monogamy spanned
by non-contextuality and locality inequalities [1], which
was theoretically proposed by Kurzyński et al. in [2].
Consider a scenario with two spatial separated observers
Alice and Bob. Alice randomly chooses two compatible
measurements from five measurements {Ai} (i = 1, ..., 5)
and performs them on her system. Each two of Ai and
A(i+1) mod 5 are compatible. Whereas Bob chooses one
of two incompatible measurements B1, B2 and performs
them on his system. Each measurement has two out-
comes ±1.

One can test contextuality on Alice’s system via KCBS
inequality

κA =〈A1A2〉+ 〈A2A3〉+ 〈A3A4〉+ 〈A4A5〉

+ 〈A5A1〉
NCHV

> −3. (1)

Whereas CHSH locality inequality

βAB = 〈A1B1〉+〈A1B2〉+〈A4B1〉−〈A4B2〉
LHV
> −2 (2)

can be tested on the systems of Alice and Bob.
The ND principle imposes a nontrivial tradeoff be-

tween the violations of CHSH and KCBS inequalities,
i.e.,

βAB + κA

ND
> −5. (3)

∗gnep.eux@gmail.com

Figure 1: The region spanned by the allowed aver-
age values of CHSH and KCBS operators 〈CHSH〉 and
〈KCBS〉 can be divided into two overlapping parts and
bounded by the solid curves. Every quantum state pro-
duces a point inside the region. However only the spe-
cific states can produce the points on the boundaries.
The solid black straight line denotes the ND boundary.
Experimental results of 〈CHSH〉 and 〈KCBS〉 are rep-
resented by the black triangles and compared to their
theoretical predictions (red dots), producing the points
on the boundary of the quantum region.

According to the ND principle, only one of these inequal-
ities can be violated at a time. Quantum theory shows an
additional monogamy relation between NCHV and LHV
by restricting the possible values of (βAB , κA) within a
region in the parametric space spanned by the value of
these two inequalities. The more stringent monogamy re-
lation makes the quantum region to be smaller than that
imposed by the ND principle. Therefore the boundary
of the quantum region is more interesting. The quantum
boundary touches the ND boundary in a single point.

To experimentally investigate quantum monogamy re-
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Figure 2: Experimental setup. Alice and Bob share entangled photon pairs which are generated via type-I SPDC. For
Alice, cascade setup for sequentially measuring Ai and Ai+1 is used to test KCBS inequality. Whereas, to test CHSH
inequality Bj is measured via standard polarization measurements using HWP (Hb) and PBS.

lation between KCBS and CHSH inequalities, we produce
the boundary of the quantum region in the parametric
space spanned by the value of the two inequalities and
especially the single point where the quantum boundary
touches the ND boundary.

As illustrated in Fig. 2, our experimental setup con-
sists of three modules: state preparation, Alice’s mea-
surement, and Bob’s measurement. In the state prepara-
tion module, entangled photons of 801.6nm wavelength
are generated in a type-I spontaneous parametric down-
conversion (SPDC) process where two joint 0.5mm-thick
β-barium-borate (β-BBO) crystals are pumped by a CW
diode laser with 90mW of power. The visibility of en-
tangled photonic state is larger than 95%. One of the
photons as a qubit system is sent to Bob for his measure-
ment. The other is then split by a birefringent calcite
beam displacer (BD) into two parallel spatial modes. By
employing the polarizations and spatial modes of a single
photon, we can prepare arbitrary state of a qutrit.

To measure Alice’s observables Ai and their correla-
tions, we use cascaded Mach-Zehnder interferometers in
three steps. The first step is to realize the measure-
ment of Ai. Measuring AiAi+1 requires two sequential
measurements on the same photon. Since the single-
observable measuring devices map its eigenstates to a
fixed spatial path and polarization, with HWPs and BDs
we can re-create the corresponding eigenstates of Ai for
further measurement Ai+1 in the second step. Two out-
comes of Ai are each directed into identical but separated
devices. In the third step we use the same interferome-
ters in the first step to measurement Ai+1. Two identical
Ai+1 measuring devices are built, each of which is con-
nected to the corresponding output port of the measuring
device of Ai. The outcomes of the measurement AiAi+1

are given by the responses of the detectors.
For Bob, the measurement of observable Bj is standard

polarization measurement using HWP (Hb) and PBS.
The photons are detected by Dh and Dv right after the
PBS. For the photon detection, we only register the co-
incidence rates between the detectors of Alice and Bob.

We produce eight points on the quantum boundary
corresponding to eight different input states. The ex-
perimental results on the average values of CHSH and

KCBS operators are shown in Fig. 1. It is clear that the
inequality (3) is always satisfied in experiment, and the
violation of either KCBS or CHSH inequality forbids the
violation of the other, in agreement with the quantum
theory predictions. Especially, our results show the in-
equality (3) is tight, i.e., there is a state for which the
inequality becomes an equality. We present the mea-
sured values 〈CHSH〉ex = −2.061± 0.120, 〈KCBS〉ex =
−2.826 ± 0.151 in the single point where the quantum
boundary touches the ND boundary and the inequality
becomes an equality, i.e., βAB + κA = −5 is satisfied
within error bars.

The fact that the origin of Bell inequalities and con-
textual inequalities is the existence of joint probability
distributions naturally raises the question as to whether
similar monogamy relations exist between contextual cor-
relations and nonlocal correlations. Our experiment pro-
vides an answer to this question. We observe the fun-
damental monogamy relation between contextuality and
non-locality in a photonic qutrit-qubit system and show
the first experimental evidence of a tradeoff between lo-
cally contextual correlations and spatially separated cor-
relations imposed by quantum theory. The existence
of the monogamy relation suggests the existence of a
quantum resource of which entanglement is a particular
form. The resource required to violate KCBS inequality
can be transformed into entanglement which consumes
to violate CHSH inequality. Our experiment sheds new
light for further explorations of this quantum resource.
Furthermore our results suggest monogamy relations be-
tween different types of correlations might be ubiquitous
in nature and pave the way for further research on these
monogamy relations.
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One-way and reference-frame independent EPR-steering
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Abstract. Einstein-Podolsky-Rosen steering is a type of quantum correlation intermediate to entan-
glement and Bell nonlocality. It is widely investigated for its foundational aspects and applications in
quantum information and communication tasks. Here, we prove and experimentally observe that steering
can be one-way, i.e. the ability to complete the protocol is asymmetric under change of the parties. We
also prove and experimentally observe that steering can be demonstrated with 100% probability that this
is invariant to rotations of the measurement settings.

Keywords: Quantum optics, Quantum information, EPR, nonlocality, steering, reference frame

Quantum entanglement is a key resource for quantum
information and communication tasks, such as teleporta-
tion, entanglement swapping and quantum key distribu-
tion. Einstein-Podolsky-Rosen (EPR) steering is a quan-
tum correlation that is distinct from other nonclassical
correlations such as Bell nonlocality (1) and quantum
nonseparability. Because of the nonlocal correlations,
measuring one system affects the measurement results
on the other system, hence the name ‘steering’.

1 Asymmetric steering

Moving through the classes of quantum nonlocality,
from Bell nonlocality towards nonseparability gives ac-
cess to protocols which are more robust to noise (2) for
projective measurements at the expense of increasing the
number of parties and apparatus that need to be trusted.
For entanglement witness tests and Bell inequality vio-
lations, both observers are untrusted or trusted respec-
tively. However, EPR-steering, which was only recently
formalized by Wiseman et al. (3), features a fundamen-
tal asymmetry in the sense that in a steering test the
observers play different roles: one party is trusted while
the other is untrusted. While the previous classes are
symmetric —the effects persist under exchange of the
parties - this does not necessarily hold for EPR-steering.
The question which arises is whether sharing an asym-
metric state can result in one-way EPR steering, where
e.g. Alice can steer Bob’s measurement outcomes, but
not the other way around.

This question was first experimentally addressed by
Händchen et al., who demonstrated Gaussian one-way
EPR steering (4). However their investigation was re-
stricted to Gaussian measurements on Gaussian states.
However, there exists explicit examples of supposedly
one-way steerable Gaussian states actually being two-
way steerable using a broader class of measurements (5).
Do states exist which are one-way steerable for arbi-
trary measurements? The answer is yes. Two indepen-

∗sabine.wollmann@griffithuni.edu.au
†g.pryde@griffith.edu.au

dent groups, Nicolas Brunner’s in Geneva and Howard
Wiseman’s in Brisbane, theoretically proved the exis-
tence of such states. Brunner’s approach holds for
arbitrary measurements with infinite settings, the so-
called infinite-setting positive-operator-valued measures
(POVMs), with the cost of using an exotic family of
states to demonstrate the effect over an extremely small
parameter range, which is unsuitable for experimental
observation (6). Independently, Evans et al. showed
one-way steerability exists for projective measurements
of Werner states and loss (7), which are easier to realise
experimentally.

In our work (5) we ask if we can extend the result
in Ref. (6) to find a simple state which is steerable in
one direction but cannot be steered in the other direc-
tion, even for the case of arbitrary measurements and
infinite settings. We consider a shared Werner state for
optical polarisation qubits, ρW (µ) = µ |ψs〉 〈ψs| + (1 −
µ)/4 Ix, where µ ∈ [0, 1], Ix is the identity and |ψs〉 =
(|01〉 − |10〉)/

√
2 (7). Using a theorem of Ref.(6) allowed

us to construct a state ρAB = 1−p
3 ρW + p+2

3
IA
2 ⊗ |v〉 〈v|,

where |v〉 is the vacuum state of Bob’s mode and the
probability p represents adding asymmetric loss in his
arm. This state is one-way steerable for POVMs, if we
can fulfil the condition p > 2µ+1

3 .
In our experiment we investigated three different

regimes: two-way steering, one-way steering for projec-
tive measurements and one-way steering for POVMs.
The state for each steering regime was reconstructed
via quantum state tomography and its fidelity with the
closest Werner state, and its parameter µ, was deter-
mined (5). To demonstrate two-way steering, we mea-
sured Alice’s steering parameter to be 8.4 standard devi-
ations (SDs) above the classical bound and Bob’s steering
parameter violating the steering inequality by 5.1 SDs.
Next we realized a one-way steerable state for projective
measurements by inserting a loss in Bob’s line (Fig.1).
Alice remained able to steer Bob’s state, violating the
inequality by 7.3 SDs. The loss of information in Bob’s
arm made him unable to steer the other party. Finally,
we investigated the regime where only one-way steering
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is possible, even for arbitrary POVMs. We were able to
violate the inequality by 6.6 SDs in one direction. In
the other direction, tomographic reconstruction verified
the creation of a state that was provably unsteerable for
POVMs. Thus, we observe genuine one-way EPR steer-
ing for the first time. We note that an independent
demonstration was realised in Ref.(8). While their re-
sult is restricted to two measurement settings, our result
holds for POVMs.
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Figure 1: Experimental scheme. Both, Alice and Bob,
are in control of their line and their detectors. The party
which is steering is also in control of the source. Entan-
gled photons at 820 nm were produced via SPDC (9).
Different measurement settings are realized by rotating
half- and quarter-wave plates relative to the polarizing
beam splitters. The loss, inserted for one-way EPR-
steering, was realized by a gradient neutral density filter
mounted in front of Bob’s line to control the fraction of
photons received. Long pass (LP) filters remove pump
photons co-propagating with the qubits before the latter
are coupled into fibres and detected by photon counting
modules and counting electronics.

2 Rotationally symmetric steering tests

In another experiment we also characterised the ro-
tational invariance of EPR-steering. Establishing such
a common reference frame —necessary for many quan-
tum information tasks - is a nontrivial issue and can
be highly resource intensive and technically demanding.
The question is whether quantum nonlocality can be
demonstrated without a shared reference frame. This
question was experimentally (10; 11) answered for the
CHSH inequality. Here, we formulate rotationally invari-
ant steering inequalities formmeasurement directions for
Alice and n directions for Bob. In our experiment, they
can estimate the average correlations Mjk := 〈AjBk〉
from their measurement outcomes. Alice has to violate
the EPR-steering inequality ‖M‖tr := tr

√
MTM ≤

√
m

for the trace-norm of the correlation matrix to demon-
strate steering of Bob’s state. For m=n=2, this trace-
norm inequality is the best possible steering inequality
that is invariant under local rotations that preserve the
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Figure 2: The Poincaré spheres show measurement di-
rections (blue and red). Alice’s measurement directions
are rotated by 90◦ in 10◦ steps (dots) along the plane
(grey) which was spanned by a1(blue) and a2 (red) form-
ing an angle of Φ = 0◦ (a), and Φ = 64◦ (b) with the σx
axis. We compare experimental data for the trace-norm
inequality (blue square) and CFFW inequality (red cir-
cles) with modeled curves using a maximally entangled
state (dashed line) and a Werner state ρW (µ) (solid line).

plane of Alice and Bob’s measurement directions. If Al-
ice’s and Bob’s measurement directions are sharing the
same plane, EPR-steering is always possible, regardless
of any rotations in the plane for a Werner state with
µ > 1√

2
. We compare our inequality with the CFFW

inequality (12). In our experiment (Fig.1), we consider
m = n = 2 orthogonal measurement directions for Al-
ice and Bob in the σx − σz plane (Fig.2). While Bob’s
measurement directions remained fixed along σx and σz,
Alice’s were rotated by w = 10◦steps. We compared our
trace-norm inequality (blue squares) with the CFFW in-
equality (red circles) and observed for both a violation
of the bound (Fig.2a). Rotating by angle Φ out of the
shared plane demonstrated the dependency of both in-
equalities on a shared measurement plane. At our chosen
angle, using the trace-norm inequality did not allow us
to demonstrate steering, while we could still violate the
CFFW inequality despite its dependence on the rotation
w along the plane (Fig.2b).
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Abstract. In this paper we establish a criterion of physical consistency for any resource theory. We show
that all currently proposed basis-dependent theories of coherence fail to satisfy this criterion. We further
characterize the physically consistent resource theory of coherence and find its operational power to be
quite limited. After relaxing the condition of physical consistency, a number of new coherence measures
are introduced based on relative Rényi entropies, and we study incoherent state transformations under
different operational classes, including the newly proposed dephasing-covariant operations. Necessary and
sufficient conditions are derived for the convertibility of qubit states.

Keywords: Quantum coherence, Quantum resource theories

1 Introduction

In quantum systems, the notion of coherence is ubiq-
uitous. For instance, the state |+〉 =

√
1/2(|0〉+ |1〉) can

be seen as a coherent superposition of the states |0〉 and
|1〉, while the state |0〉 can itself be seen as a coherent
superposition of |+〉 and |−〉 =

√
1/2(|0〉 − |1〉). Thus,

without further qualification, it is completely ambiguous
to say that one state has coherence while another does
not. One way to make such a statement meaningful in-
volves first identifying a fixed reference basis, and then
defining coherence with respect to this basis. More pre-
cisely, a basis for the system’s state space is specified
(called the incoherent basis), and then a given state is
deemed incoherent if it is diagonal in this basis.

Recently, researchers have used this distinction be-
tween coherent and incoherent states to construct re-
source theories of quantum coherence [1, 2, 3, 4]. A
general resource theory for a quantum system is char-
acterized by a pair (F ,O), where F is a set of “free”
states and O is a set of “free” quantum operations. Any
state that does not belong to F is then deemed a resource
state. Entanglement theory provides a prototypical ex-
ample of a resource theory in which the free states are
the separable or unentangled states, and the free oper-
ations are local operations and classical communication
(LOCC). For quantum coherence, the free states are the
incoherent states I. As for the free or “incoherent” op-
erations, many different approaches have been proposed,
and a primary objective of this paper is to consider the
physical meaning behind these approaches.

Specifically, we propose one notion of what it means
for a quantum resource theory to be “physical,” and
then we see what type of incoherent operations fits this
prescription. In principle, any pair (F ,O) defines a re-
source theory, provided the operations of O act invari-
antly on F ; i.e. E(ρ) ∈ F for all ρ ∈ F and all E ∈ O.

∗echitamb@siu.edu
†gour@ucalgary.ca

However, this is just a mathematical restriction placed
on the maps belonging to O. It does not imply that
E ∈ O can actually be physically implemented without
generating or consuming additional resource. The issue
is a bit subtle here since in quantum mechanics, physi-
cal operations on one system ultimately arise from uni-
tary dynamics and projective measurements on a larger
system, a process mathematically described by a Stine-
spring dilation. A resource theory (F ,O) defined on
system A is said to be physically consistent if every
free operation E ∈ O can be obtained by an auxiliary
state ρ̂B , a joint unitary UAB , and a projective mea-
surement {Pk}k that are all free in an extended resource
theory (F ′,O′) defined a larger system AB, for which
F = TrBF ′ := {TrB(ρAB) : ρAB ∈ F ′}. For example,
LOCC renders a physically consistent resource theory of
entanglement since any LOCC operation can be imple-
mented using only local unitaries and projections.

The most well-known resources theories of quantum
coherence are based on either Maximal Incoherent Op-
erations (MIO) [1], Incoherent Operations (IO) [2], or
Strictly Incoherent Operations (SIO) [3, 4]. We observe
that none of these offer a physically consistent resource
theory as just defined, and the true analog to LOCC
in coherence theory has been lacking. We identify this
hitherto missing piece as the class of physically incoher-
ent operations (PIO). The previously studied operations
MIO/IO/SIO are much closer akin to separable or non-
entangling operations in entanglement theory, and we
clarify what sort of physical interpretations can be given
to these operations. The relationship between the differ-
ent operational classes is depicted described by PIO ⊂
SIO ⊂ IO ⊂ MIO.

2 Results

The following summarizes our main results. First, we
fully characterize the class of physically incoherent oper-
ations (PIO).
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Proposition 1 A CPTP map E is a physically incoher-
ent operation if and only if it can be expressed as a con-
vex combination of maps each having Kraus operators
{Kj}rj=1 of the form

Kj = UjPj =
∑
x

eiθx |πj(x)〉〈x|Pj , (1)

where the Pj form an orthogonal and complete set of in-
coherent projectors on system A and πj are permutations.

Necessary and sufficient conditions for state transforma-
tions are derived.

Proposition 2 For any two state |ψ〉 and |φ〉, the trans-
formation |ψ〉 → |φ〉 is possible by PIO if and only if

|ψ〉 =
k∑
i=1

√
piUi|φ〉, (2)

where the Ui are incoherent isometries such that
PiUi|φ〉 = Ui|φ〉 for an orthogonal and complete set of
incoherent projectors {Pi}i.

While we find that PIO allows for optimal distillation of
maximal coherence from partially coherent pure states
in the asymptotic limit of many copies, the process
is strongly irreversible. That is, maximally coherent
states cannot be diluted into weakly coherent states at
a nonzero rate, and they are thus curiously found to be
the least powerful among all coherent states in terms of
asymptotic convertibility.

Given this limitation of PIO and its similar weakness
on the finite-copy level, it is therefore desirable from a
theoretical perspective to consider more general opera-
tions. Consequently, we shift our focus to the develop-
ment of coherence resource theories under different re-
laxations of PIO. To this end, we introduce the class of
dephasing-covariant incoherent operations (DIO), which
to our knowledge has never discussed before in litera-
ture. We provide physical motivation for DIO and show
that these operations are just as powerful as Maximal
Incoherent Operations (MIO) when acting on qubits. It
turns out that all classes of incoherent operations behave
equivalently for this task, and in fact, state convertiba-
bility depends on just two incoherent monotones. The
first is the Robustness of Coherence, and is defined as

CR(ρ) = min
t≥0

{
t
∣∣∣ ρ+ tσ

1 + t
∈ I, σ ≥ 0

}
.

Here we introduce a new type of robustness measure that
we call the ∆-Robustness of Coherence:

C∆,R(ρ) = min
t≥0

{
t
∣∣∣ ρ+ tσ

1 + t
∈ I, σ ≥ 0, ∆(σ − ρ) = 0

}
.

While CR is a monotone under MIO in general, for qubits
C∆,R is also a MIO monotone. These two measures com-
pletely characterize qubit state transformations, as we
prove in this paper.

Theorem 3 For qubit state ρ and σ, the transformation
ρ→ σ is possible by either SIO, DIO, IO, or MIO if and
only if both CR(ρ) ≥ CR(σ) and C∆,R(ρ) ≥ C∆,R(σ).

Additional results include:

• We show that the so-called majorization condition
decides transformation feasibility for the classes
SIO and a special subclass of IO that we denote
by sIO. However, whether or not the majorization
condition also holds for IO remains an open prob-
lem and we point out mistakes in recent proofs
claiming it does. By constructing an explicit family
of transformations, we show that the majorization
condition can be violated by MIO - even stronger
the Schmidt rank can be increased by MIO. In
addition, we demonstrate an operational equiva-
lence between incoherent pure state transforma-
tions using PIO/SIO/sIO and the transformation
of bipartite maximally correlated states using zero-
communication LOCC/one-way LOCC/ two-way
LOCC, respectively.

• We introduce a number of new incoherent mono-
tones/measures for the various operational classes
based. All of these measures are unified within a
very general framework for constructing incoher-
ent measures. Two class of measures included in
this framework are the relative Rényi α-entropies
of incoherence and the quantum relative Rényi α-
entropies of incoherence.

• We discuss in greater detail the relationship be-
tween coherence resource theories based on asym-
metry and those using a basis-dependent definition
of coherence. We develop the resource theories of
G-asymmetry and N -asymmetry, where G is the
group of all incoherent unitaries and N is the group
of all diagonal incoherent unitaries.
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There has currently been much interest in construct-
ing a resource theory of quantum coherence [1, 15, 2,
4, 13, 31, 29, 25, 20, 26, 30], in part because of recent
experimental and numerical findings that suggest quan-
tum coherence alone can enhance or impact physical dy-
namics in biology [17, 16, 12, 14], and thermodynamics
[18, 21]. In a standard resource-theoretic treatment of
quantum coherence, the free (or “incoherent”) states are
those that are diagonal in some fixed reference (or “in-
coherent”) basis. Different classes of allowed (or “inco-
herent”) operations have been proposed in the literature
[1, 2, 20, 26, 30, 5, 19], however an essential requirement is
that the incoherent operations act invariantly on the set
of diagonal density matrices. Incoherent operations can
then be seen as one of the most basic generalizations of
classical operations since their action on diagonal states
can always be simulated by classical processing.

In addition to coherence, entanglement is another pre-
cious resource in quantum information science. To prop-
erly unify coherence and entanglement under a common
resource-theoretic framework, one must modify the sce-
nario by adopting the “distant lab” perspective in which
two or more parties share a quantum system but they are
spatially separated from one another [24, 11]. In this set-
ting, entanglement cannot be generated between the par-
ties and it becomes another resource in play. When the
constraint of locality is added to the incoherent frame-
work, the allowable operations for Alice and Bob are
then local incoherent operations and classical commu-
nication (LIOCC). The hybrid coherence-entanglement
theory described here is similar in spirit to previous
work on the locality-restricted resource theories of pu-
rity and asymmetry. The goal of this paper is to inves-
tigate the LIOCC convertibility between entanglement
and coherence as resources in quantum information pro-
cessing. For instance, how much local coherence and
shared entanglement do Alice (A) and Bob (B) need to
prepare a particular bipartite state ρAB using LIOCC?
Conversely, how much coherence and entanglement can
be distilled from a given state ρAB using LIOCC? We
refer the detailed introduction of the bipartite coher-
ence theory to the full paper [6]. The canonical resource
states in the bipartite LIOCC framework are the maxi-
mally coherent bits (CoBits), |ΦA〉 :=

√
1/2(|0〉A+ |1〉A)

∗echitamb@siu.edu
†Min-Hsiu.Hsieh@uts.edu.au

and |ΦB〉 :=
√

1/2(|0〉B + |1〉B) for Alice and Bob’s
systems respectively [2], as well as the entangled state
|ΦAB〉 :=

√
1/2(|00〉+ |11〉), which we will call the max-

imally coherent entangled bit (eCoBit).
Asymptotic Manipulations of Entanglement and
Coherence: We now describe the primary tasks stud-
ied in this paper, which can be seen as the resource-
theoretic tasks recently analyzed by Winter and Yang
in Ref. [29] but now with additional locality constraints.
All of the detailed proofs can be found in Ref. [6], and
here we just present the results. Let us begin with
the problem of asymptotic state formation. A triple
(RA, RB , E

co) is an achievable coherence-entanglement
formation triple for the state ρAB if for every ε > 0
there exists an LIOCC operation L and integer n such

that L
(

Φ
⊗dn(RA+ε)e
A ⊗ Φ

⊗dn(RB+ε)e
B ⊗ Φ

⊗dn(Eco+ε)e
A′B′

)
ε
≈

ρ⊗n. Dual to the task of formation is resource distilla-
tion. A triple (RA, RB , E

co) is an achievable coherence-
entanglement distillation triple for ρAB if for every
ε > 0 there exists an LIOCC operation L and inte-

ger n such that L(ρ⊗n)
ε
≈ Φ

⊗bn(RA−ε)c
A ⊗ Φ

⊗bn(RB−ε)c
B ⊗

Φ
⊗bn(Eco−ε)c
AB . As we are dealing with asymptotic trans-

formations, we should expect the optimal rate triples
to be given by entropic quantities. We will also be in-
terested in these entropic quantities after sending our
state ωAB through the completely dephasing channel,
∆(ω) :=

∑
xy |xy〉〈xy|ω|xy〉〈xy|. It will be convenient to

think of ∆(ω) as encoding random variables XY having
joint distribution p(x, y) = 〈xy|∆(ω)|xy〉. For this rea-
son, we follow standard convention and replace the labels
(A,B)→ (X,Y ) when discussing a dephased state. Our
first main result completely characterizes the achievable
rate region for the LIOCC formation of bipartite pure
states.

Theorem 1 For a pure state |Ψ〉AB the following triples
are achievable coherence-entanglement formation rates

(RA, RB , E
co) =

(
0, S(Y |X)∆(Ψ) , S(X)∆(Ψ)

)
(1)

(RA, RB , E
co) =

(
S(X)∆(Ψ), S(Y |X)∆(Ψ), E(Ψ)

)
(2)

(RA, RB , E
co) =

(
0, 0, S(XY )∆(Ψ)

)
(3)

as well as the points obtained by interchanging A ↔ B
in Eqns. (1) – (3). Moreover, these points are optimal
in the sense that any achievable rate triple must satisfy
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(i) Eco ≥ E(Ψ), (ii) RA +RB ≥ S(XY )∆(Ψ), (iii) RB +
Eco ≥ S(XY )∆(Ψ).

For a mixed state ρAB , a formation protocol can be
constructed that achieves the average rates for any en-
semble {pk, |ϕk〉AB} such that ρ =

∑
k pk|ϕk〉〈ϕk| [3].

For instance, one can consider an ensemble whose aver-
age bipartite coherence attains the coherence of forma-
tion CF for ρ; i.e. it is an ensemble {pk, |ϕk〉AB} for
ρ that minimizes

∑
k pkS(XY )∆(ϕk) [31, 29]. Then for

a mixed state ρ, the coherence rate sum RA + RB of
Eq. (2) can attain the coherence of formation CF (ρ). In
the global setting where Alice and Bob are allowed to
perform joint operations across system AB, it has been
shown that CF (ρ) quantifies the optimal coherence con-
sumption rate for generating ρ using global incoherent
operations [29]. Our result then intuitively says that in
the restricted LIOCC setting, the same coherence rate
is sufficient to generate ρ, however they now need ad-
ditional entanglement at a rate

∑
k pkE(ϕk), where the

ensemble {pk, |ϕk〉AB} minimizes the average coherence
of ρ.

Next, we introduce a new LIOCC monotone and pro-
vide its operational interpretation. To do so, we recall
the recently studied task of assisted coherence distilla-
tion, which involves one party helping another distill as
much coherence as possible through general quantum op-
erations performed on the helper side and incoherent op-
erations performed on the distillation side [7]. For a
given state ρAB , the optimal asymptotic rate of coher-
ence distillation on Bob’s side when Alice helps is de-

noted by C
A|B
a (ρAB). When the roles are switched, the

optimal asymptotic rate is denoted by C
B|A
a (ρAB). It

was shown in Ref. [7] that C
A|B
a (ρAB) = S(Y )∆(Ψ) and

C
B|A
a (ρAB) = S(X)∆(Ψ). With these quantities in hand,

we define for a bipartite pure state |Ψ〉AB the function

CL(Ψ) = CA|Ba (Ψ) + CB|Aa (Ψ)− E(Ψ)

= S(X)∆(Ψ) + S(Y )∆(Ψ) − E(Ψ). (4)

Its extension to mixed states can be de-
fined by a convex roof optimization [27]:
CL(ρAB) = inf{pk,|ϕk〉AB}

∑
k pkCL(ϕABk ) for which

ρAB =
∑
k pk|ϕk〉〈ϕk|.

Theorem 2 The function CL is an LIOCC monotone.

We note that this is the first monotone of its kind since
it behaves monotonically under LIOCC, but not general
LOCC or even under LQICC, the latter being an oper-
ational class in which only one of the parties is required
to perform incoherent operations (as opposed to LIOCC
where both parties must perform incoherent operations)
[7]. Using the monotonicity of CL, we are able to derive
tight upper bounds on coherence distillation rates.

Theorem 3 For a pure state |Ψ〉AB the following triples
are achievable coherence-entanglement distillation rates

(RA, RB , E
co) =

(
S(X)∆(Ψ) − E(Ψ), S(Y )∆(Ψ), 0

)
(5)

(RA, RB , E
co) =

(
0, S(Y |X)∆(Ψ), I(X : Y )∆(Ψ)

)
, (6)

as well as the points obtained by interchanging A↔ B in
Eqn. (5) and (6). Moreover, these points are optimal in
the sense that any achievable rate triple must satisfy (i)
RA +RB ≤ CL(Ψ) and (ii) RB + Eco ≤ S(Y )∆(Ψ).

This theorem endows CL with the operational meaning of
quantifying how much local coherence can be simultane-
ously distilled from a pure state. For a state |Ψ〉 the max-

imum that Alice can help Bob distill coherence is C
A|B
a

while the maximum that Bob can help Alice is C
B|A
a .

Evidently, they cannot both simultaneously help each
other at these optimal rates. Instead, they are bounded
away from simultaneous optimality at a rate equaling
their shared entanglement. It is still unknown the precise
range of achievable distillation triples (RA, RB , E

co
max),

where Ecomax is the maximum eCoBit distillation rate.
While we are able to prove that Ecomax is the regular-
ized version of I(X : Y )∆(Ψ) optimized over all LIOCC
protocols, we have no single-letter expression for this rate
nor do we know the achievable local coherence rates for
optimal protocols.

A natural question is whether Ecomax(Ψ) = E(Ψ).
While this question remains open, we can show that E(Ψ)
is achievable if the Schmidt basis of the final state need
not be incoherent. More precisely, we say a number R is
an achievable LIOCC entanglement distillation rate if for
every ε > 0, there exists an LIOCC protocol L acting on n

copies of Ψ such that L(Ψ⊗n)
ε
≈ Λd, where Λd is a d⊗ d

maximally entangled pure state (i.e. ΛA = ΛB = I/d)
with 1

n log d > R − ε. The largest achievable distillation
rate will be denoted by ELIOCCD (Ψ).

Theorem 4 ELIOCCD (Ψ) = E(Ψ).

It is interesting to compare the coherence distilla-
tion rates using incoherent operations under different
types of locality constraints. In Refs. [23, 8, 22, 10],
similar comparisons were made in terms of purity (or
work-information) extraction. Let CGlobalD , CLIOCCD , and
CLIOD denote the optimal rate sum RA + RB of lo-
cal coherence distillation using global incoherent oper-
ations, LIOCC, and local incoherent operations (with
no classical communication), respectively. In complete
analogy to [23, 8, 22, 10], we define the nonlocal co-
herence deficit of a bipartite state ρAB as δ(ρAB) =
CGlobalD (ρAB)−CLIOCCD (ρAB) and the LIOCC coherence
deficit as δc(ρ

AB) = CLIOCCD (ρAB) − CLIOD (ρAB). In-
tuitively, the quantity δ(ρAB) quantifies the coherence
in a state that can only be accessed using nonlocal in-
coherent operations. Likewise, δc(ρ

AB) gives the coher-
ence in ρAB that requires classical communication to be
obtained. The results of Winter and Yang imply that
CGlobalD (Ψ) = S(XY )∆(Ψ) and CLIOD (Ψ) = S(X)∆(Ψ) +
S(Y )∆(Ψ) − 2E(Ψ) for a bipartite pure state |Ψ〉AB [28].
Combined with Theorem 3, we can compute the two co-
herence deficits for pure states:

δ(Ψ) = E(Ψ)− I(X : Y )∆(Ψ) (7)

δc(Ψ) = E(Ψ). (8)

It is curious that the entanglement E(Ψ) quantifies the
coherence gain unlocked by classical communication.
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Note that a similar phenomenon exists in the resource
theory of purity; namely, the quantum deficit ∆(Ψ) and
classical deficit ∆c(Ψ) measure the analogous differences
in local purity distillation by so-called “closed opera-
tions” (CO), and they are given by ∆(Ψ) = ∆c(Ψ) =
E(Ψ) [23, 8]. For the task of distilling CoBits, every pro-
tocol using incoherent operations can be seen as one using
closed operations by accounting for all ancilla systems at
the start of protocol [5]. However, closed operations allow
for arbitrary unitary rotations, which are forbidden in co-
herence theory. The term I(X : Y )∆(Ψ) in δ(Ψ) identifies
precisely the basis dependence in coherence theory and
shows how this decreases the deficit δ(Ψ) relative ∆(Ψ).
On the other hand, there is evidently no basis depen-
dency in the classical deficit δc(Ψ) and it is equivalent to
∆c(Ψ).

Although our distillation results so far have only ap-
plied to pure states, we can deduce a very general result
concerning the distillability of mixed states.

Theorem 5 A mixed state ρAB has (LOCC) distillable
entanglement iff entanglement can be distilled using LI-
OCC.

Strengthening entanglement distillability crite-
rion: As shown in Ref. [9], a state ρ has distillable
entanglement iff for some k there exists rank two op-
erators A and B such that the (unnormalized) state
A ⊗ Bρ⊗kA ⊗ B is entangled. By Theorem 3 and fol-
lowing the same argumentation of Ref. [9], we can fur-
ther require that the A and B are incoherent operators;
that is, they have the form A = |0〉〈α0| + |1〉〈α1| and
B = |0〉〈β0| + |1〉〈β1| where ∆(α0) := ∆(|α0〉〈α0|) is
orthogonal to ∆(α1) := ∆(|α1〉〈α1|), and likewise for
∆(β0) := ∆(|β0〉〈β0|) for ∆(β1) := ∆(|β1〉〈β1|). We are
thus able to add an additional condition to the distillabil-
ity criterion of Ref. [9]. We hope that the strengthened
distillability criterion can be useful in the long-standing
search for NPT bound entanglement.
Discussion: We would like to comment on the partic-
ular type of incoherent operations studied in this letter.
As noted in the introduction, there have been various
proposals for the “free” class of operations in a resource
theory of coherence. This letter has adopted the inco-
herent operations (IO) of Baumgratz et al. [2], where
each Kraus operator in a measurement just needs to be
incoherence-preserving. While the class IO has draw-
backs in terms of formulating a full physically consis-
tent resource theory of coherence [30, 5], it nevertheless
seems unlikely that the results of this letter would remain
true if other operational classes were considered. For ex-
ample, the strictly incoherent operations (SIO) proposed
by Yadin et al. are unable to convert one eCoBit into a
CoBit [30]. Thus, we believe that the interesting con-
nections between IO coherence theory and entanglement
demonstrated in this letter make a positive case for why
IO is important in quantum information theory, indepen-
dent of any other motivation. In fact, one could even put
coherence aside and view LIOCC as just being a simpli-
fied subset of LOCC. As we have shown here, nontriv-
ial conclusions about entanglement can indeed be drawn

by studying LOCC from “the inside.” This approach
is somewhat dual to the standard practice of studying
LOCC using more general separable operations (SEP),
the chain of inclusions being LIOCC ⊂ LOCC ⊂ SEP.
Interesting future work would be to consider more gen-
eral connections between coherence non-generating and
entanglement non-generating operations.
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Abstract. Nielsen developed that the condition for the LOCC-convertibility of two pure states of a
bipartite system in finite dimensional systems is given by a majorization relation of Schmidt cofficients of
them. The key of the proof of this is Birkhoff’s theorem in matrix theory. In this study, we establish an
infinite dimensional version of Birkhoff’s theorem and apply them to prove that the condition for LOCC
convertibility holds in infinite dimensional systems as in the similar form in finite dimensional.
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1 Introduction

Extensive efforts have been devoted to understand lo-
cal operations and classical communications (LOCC),
since LOCC protocols have many applications in quan-
tum information theory. Among them, the convertibility
under LOCC is one of the important topics in quantum
information theory. Nielsen [1] developed the condition
for the LOCC-convertibility of two pure states of a bi-
partite system in finite dimensional systems.
For pure states |ψ⟩⟨ψ| and |ϕ⟩⟨ϕ| of a bipartite system,

we say that |ψ⟩⟨ψ| is majorized by |ϕ⟩⟨ϕ|, if the Schmidt
coefficients of |ψ⟩ is majorized by those of |ϕ⟩. For state
vectors |ψ⟩ and |ϕ⟩, we say that |ψ⟩ is majorized by |ϕ⟩,
if the Schmidt coefficents of |ψ⟩ is majorized by those of
|ϕ⟩. Nielsen [1, 2] proved that

one can convert |ψ⟩ to |ϕ⟩ by LOCC

⇐⇒ |ψ⟩ is majorized by |ϕ⟩.

Subsequently, Owari et al. [3] proved that the neces-
sary condition for LOCC convertibility holds in infinite
dimensional systems as in the same form in finite dimen-
sional. Moreover, Owari et al. [3] introduced a notion
of ϵ-convertibility by LOCC in infinite dimensional sys-
tems and proved that ϵ-convertibility for LOCC gives a
characterization of the sufficient condition.
However, it has been open whether the sufficient con-

dition also holds in infinite dimensional systems as in the
same form.
In [2, Section12.5], the key tool and the essence of the

Nielsen’s proof of the sufficient condition for LOCC con-
vertibility in finite dimensional systems is Birkhoff’s the-
orem in matrix theory.
According to Birkhoff’s theorem [4] [5, Section II.2],

(i) the extreme points of the convex set of doubly
stochastic matrices are permutation matrices.

(ii) any doubly stochastic matrix can be represented as
a convex combination of permutation matrices,

(iii) the set of doubly stochastic matrices coincides with
the closed convex hull of the set of permutation
matrices.

∗asakura0d@gmail.com

Moreover, (i), (ii), (iii) imply each other by Caratheodory
Theorem.
Nielsen used Birkhoff’s theorem (ii) in [2, Section12.5].
An infinite dimensional analogue of Birkhoff’s theorem

is known as Birkhoff’s problem111, which was considered
in [6, 7, 8, 9, 10, 11, 12] etc. Nevertheless, there is no
study treated (ii). Unlike the finite dimensional case, (i),
(ii) and (iii) are not always equivalent to each other in in-
finite dimensional case. Moreover in infinite dimensional
cases (i) remained true, whereas the validity of (ii) and
(iii) depend on the choice of topology. While in finite
dimensional case (ii) is equivalent to (iii) by virtue of
Caratheodory Theorem, in infinite dimensional case the
assertion of (ii) can be stronger than the one of (iii).
In this study, we establish an infinite dimensional ver-

sion of Birkhoff’s theorem (i)(ii)(iii) with the weakly op-
erator topology (WOT). In particular, we show that an
infinite dimensional analogue of (ii) holds in WOT, and
we apply this to prove a new characterization for LOCC-
convertibility in infinite dimensional. Our characteriza-
tion, of course, is a certain generalization of Nielsen’s re-
sult. Moreover, our characterization implies the results
of Owari et al. [3] as a corollary.

2 Main results

Let H be separable (at most countable infinite di-
mensional) Hilbert space. For a fixed CONS (|i⟩)∞i=1,
let P(H), D(H) be the sets of bounded operators∑∞
i,j=1 aij |i⟩⟨j| satisfying the following (P ), (D):

(P ) aij = 0or 1,

∞∑
j=1

aij = 1,

∞∑
i=1

aij = 1 (for any i, j)

(D) aij ∈ [0, 1],
∞∑
j=1

aij = 1,
∞∑
i=1

aij = 1 (for any i, j).

Then, we can rewrite Birkhoff’s theorem(ii) as following:
Theorem1(Birkhoff [4]) When H = Cd and (|i⟩) is

the standard basis in Cd, denoting P(H) =: {Pn}d!n=1, for
any D ∈ D(H), there exists a probability mass {pn}d!n=1

such that

D =

d!∑
n=1

pnPn.

In this study, we get the following result:
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Theorem2(Asakura) For any D ∈ D(H), there ex-
ists a probability measure µD on P(H) such that

D =

∫
P(H)

XdµD(X),

where the integral converges in WOT.

3 Main result(2) : LOCC-convertibility

Nielsen’s theorem [1] [2, Section12.5] can be written
mathematically as following:
Theorem3(Nielsen[1, 2]) Let H and K be finite di-

mensional Hilbert spaces, and let ψ, ϕ ∈ H ⊗ K be unit
vectors. Then, the followings are equivalent.

• There exist a POVM {Mi}i on H and a set of uni-
tary operators {Ui}i K such that

|ϕ⟩⟨ϕ| =
∑
i

(Mi ⊗ Ui)|ψ⟩⟨ψ|(M∗
i ⊗ U∗

i ), (1)

where the sum is finite sum.

• TrK |ψ⟩⟨ψ| ≺ TrK |ϕ⟩⟨ϕ| holds.
In this study, applying Theorem 2, we prove the fol-

lowing infinite dimensional analogue of Theorem 3. The
following theorem is main results.
Theorem4(Asakura) LetH and K be infinite dimen-

sional Hilbert spaces, and let ψ, ϕ ∈ H ⊗ K be full rank
unit vectors. Then, the followings are equivalent.

• There exist a Borel set I of a certain of met-
ric space, a probability mesure µ on I, a set of
densely defined (not necessarily bounded) opera-
tors {Mi}i∈I on H, a dense subspace H0 ⊂ H and
a set of unitary operators {Ui}i∈I on K such that

|ψ⟩ ∈ D(Mi ⊗ Ui), i ∈ I, (2)

(TrK|ψ⟩⟨ψ|)H0 ⊂ H0, (3)

D(Mi) ⊃ H0, i ∈ I (4)∫
I

⟨η|Mi
∗Mi|ξ⟩dµ(i) = ⟨η|ξ⟩, for η, ξ ∈ H0, (5)

I ∋ i 7→ (Mi ⊗ Ui)|ψ⟩⟨ψ|(M∗
i ⊗ U∗

i ) ∈ C1(H)

is integrable, (6)

|ϕ⟩⟨ϕ| =
∫
I

(Mi ⊗ Ui)|ψ⟩⟨ψ|(M∗
i ⊗ U∗

i )dµ(i),

where the integral convergesges in C1(H). (7)

• TrK |ψ⟩⟨ψ| ≺ TrK |ϕ⟩⟨ϕ| holds.
In general case, Theorem 4 becomes the following the-

orem, which immediately follows from Theorem 4.
Theorem6(Asakura) LetH and K be infinite dimen-

sional Hilbert spaces, and let ψ, ϕ ∈ H ⊗K be unit vec-
tors.

• There exist (I, µ, {Mi}i∈I , H0, {Ui}i∈I) in Theo-
rem 4 and infinite rank partial isometries VH, VK
such that

|ϕ⟩⟨ϕ| = (VH ⊗ VK)
(∫

I

(Mi ⊗ Ui)|ψ⟩⟨ψ|

(M∗
i ⊗ U∗

i )dµ(i)
)
(VH

∗ ⊗ VK
∗) (8)

• TrK |ψ⟩⟨ψ| ≺ TrK |ϕ⟩⟨ϕ| holds.

Moreover, by Theorem 6, we can construct a sequence
of LOCC-quantum channel {Λn}n such that Λn(|ψ⟩⟨ψ|)
converges (8) in the trace norm. Namely, we reprove the
following result as a corollary of Theorem 6:
Theorem7(Owariet al. [3])
Let H and K be infinite dimensional Hilbert spaces,

and let ψ, ϕ ∈ H ⊗ K be unit vectors. If TrK |ψ⟩⟨ψ| ≺
TrK |ϕ⟩⟨ϕ| holds, then, for any ϵ > 0, there exists a LOCC
quantum channel Λϵ such that

∥Λϵ(|ψ⟩⟨ψ|)− |ϕ⟩⟨ϕ|∥1 < ϵ.
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[12] R. Grzaślewicz. ”On extreme infinite doubly
stochastic matrices”. Illinois Journal of Mathematics
31, no. 4 :529-543(1987)

15



How local is the information in MPS/PEPS tensor networks?
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Abstract. We introduce a new approach for approximating the expectation value of a local observable in
ground states of local Hamiltonians that are represented as PEPS tensor-networks. Instead of contracting
the full tensor-network, we estimate the expectation value using only a local patch of the tensor-network
around the observable. Surprisingly, we demonstrate that this is often easier to do when the system is
frustrated. We test our approach in 1D systems, where we show how the expectation value can be calculated
up to at least 3 or 4 digits of precision, even when the patch radius is smaller than the correlation length.

Keywords: Local Hamiltonians, Ground states, Tensor networks, MPS, PEPS, SDP

1 Introduction

Variational tensor-network methods [1] provide a
promising way for understanding the low-temperature
physics of many-body condensed matter systems. In par-
ticular, they seem suitable for studying the ground states
of highly frustrated systems, where the sign problem
hinders many of the quantum Monte Carlo approaches.
The best-known and by far the most successful tensor-
network method is the Density Matrix Renormalization
Group (DMRG) algorithm [2, 3]. It can be viewed
as a variational algorithm for minimizing the energy of
the system over the manifold of Matrix Product States
(MPS) [4, 5], which are special types of tensor-network
states a with linear 1D structure. In 2D and beyond
the most natural generalization of MPS are the so-called
Projected Entangled Pairs States (PEPS) tensor-network
states [6, 7, 8, 9, 10]. PEPS have proven useful for un-
derstanding the physics of 2D lattice systems and in par-
ticular their entanglement structure. However, as a nu-
merical method for studying 2D quantum systems, they
still face substantial challenges which limit their applica-
bility. In most cases, the best results are still obtained
either by DMRG, in which a 1D MPS wraps around the
2D surface, or by quantum Monte Carlo methods.
There are several reasons for this qualitative differ-

ence between 1D and 2D systems. The most impor-
tant one is the computational cost of contracting the
2D tensor network. While in 1D this cost scales lin-
early in the system size, it is exponential for 2D and
above. Formally, contracting a PEPS is #P-hard [11],
which is at least NP-hard. To overcome this exponen-
tial barrier, many approximation schemes have been de-
vised [9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20]. However,
while being physically motivated, none of them is rigor-
ous, and to some extent they all produce uncontrolled ap-
proximations, even when dealing with the ground state
itself. Moreover, while their computational cost is lin-

∗henrikabel.27@gmail.com
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ear in PEPS size, it scales badly in the so-called ‘bond-
dimension’ of the tensor-network, which limits their prac-
tical use to small systems/resolutions.
In this work we introduce a new approach for approx-

imating the expectation value of a local observable in a
2D PEPS tensor-network. Our starting point is a simple
observation that while the contraction of a general 2D
PEPS is #P-hard, this is not necessarily the case if the
PEPS describes a ground state of a gapped local Hamil-
tonian. Gapped ground states exhibit strong properties
of locality, such as exponential decay of correlations [21]
and are therefore subject to many constraints to which
arbitrary PEPS are not. This enables us to use only a
local patch of the PEPS tensor-network around the local
observable to approximate its expectation value, which
therefore leads to an efficient algorithm.
We identify two novel methods that provide rigor-

ous upper- and lower- bounds on the expectation value.
While we usually cannot give rigorous bound on the dis-
tance between these bounds, we demonstrate numerically
that this distance – and hence the error in our approxi-
mation – can be surprisingly small.
The first method, which we call the ‘basic method’, is

expected to give good results in the case of frustration-
free gapped systems. The second one, which we call the
‘commutator gauge optimization’ (CGO) method, works
only for frustrated systems by utilizing the many inter-
constraints that the solutions of these systems have to
satisfy. We show that it can be essentially reduced to a
SDP program, which can be efficiently solved. In ad-
dition, it does not rely directly on the existence of a
gap, and may work even when considering patches of the
PEPS that are much smaller than the correlation length.
To test the validity of the two methods, we performed

some numerical tests on 1D systems whose ground states
are described by MPS. The main purpose of these tests
was not to suggest a practical numerical method for es-
timating ⟨B⟩, but to demonstrate that a surprisingly
large amount of information is found locally in a ten-
sor network that represents a ground state, in particular
if the system is frustrated – which is counter-intuitive.

16



Our numerical experiments demonstrate that in the frus-
trated case, one can easily obtain 3-4 digits of ⟨B⟩ by
accessing only a ball of radius ℓ ∼ 3, 4 around B —
smaller than the correlation lengths of these models!
Moreover, as we indicated above, this is better than the
frustration-free case, where we could only recover 1-2 dig-
its of ⟨B⟩. The full details of these numerical experi-
ments can be found in the arXiv version of this paper at
http://arxiv.org/abs/1603.06049.
While a direct implementation of the above methods

for 2D systems is not numerically practical for 2D, we
are confident that the observations underlying these al-
gorithms can be turned into practical heuristics for the
2D problem.
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Abstract. A special feature of the ground state in a topologically ordered phase is the existence of
large-scale correlations depending only on the topology of the regions. These correlations can be detected
by the topological entanglement entropy or by a measure called irreducible correlation. We show that
these two measures coincide for states obeying an area law and having zero-correlation length. Moreover,
we provide an operational meaning for these measures by proving its equivalence to the optimal rate
of a particular class of secret sharing protocols. This establishes an information-theoretical approach to
multipartite correlations in topologically ordered systems.
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1 Introduction

Topologically ordered phase is an exotic quantum
phase that cannot be explained by conventional models
based on local order parameters and symmetry-breaking.
One way to classify the ground states with topological
orders is by identifying characteristic large-scale global
multipartite correlations (topological correlations). A
possible measure to detect such topological correlations is
the topological entanglement entropy (TEE) [1, 2], which
also appears as the universal constant term in the area
law [1]. The definition of the TEE is based on the idea
that topological correlations reduce the entropy of ring-
like regions compared to what is expected by considering
the entropy of just local regions [2]. More precisely, the
TEE quantifies the entropy reduction by subtracting the
contributions of local correlations using a Venn-diagram
calculation. Such a quantity of multipartite correlations
is known in classical information theory [3]. However, the
information-theoretical meaning of the function in both
classical and quantum settings is not clear, since it lacks
basic properties such as, e.g., positivity and it is always
zero for any pure state in quantum settings.

The irreducible correlation [4] is an alternative mea-
sure of topological correlations which employs the maxi-
mum entropy method to quantify the genuinely tripartite
correlations. The irreducible correlation is always non-
negative, and it has a clear geometrical interpretation as
the quantum analog of a correlation measure called the
kth-order effect [5] in classical information-geometry. It
has been conjectured that the 3rd-order irreducible corre-
lation and the TEE coincide in the thermodynamic limit
for gapped ground states [6].

Here, we partly resolve this conjecture and show that
when the ground state obeys an area law and has zero-
correlation length, the TEE and the 3rd-order irreducible
correlation are equivalent. This sufficient condition holds
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for a wide class of exactly solvable spin models which de-
scribe non-chiral topological ordered phases. To show the
equivalence, we calculate the 3rd-order irreducible corre-
lation by explicitly constructing the maximum entropy
state on region ABC that is consistent with all reduced
density matrices (RDMs) of the ground state on AB, BC
and AC. In general, calculating the maximum entropy
state is a computationally hard problem. We overcome
this challenge by employing the properties of quantum
Markov states which saturate the strong subsdditivity [7].

We further show that under the same assumptions the
irreducible correlation is equal to the optimal asymptotic
rate of a secret sharing protocol as suggested in [4]. This
leads to an operational interpretation of the TEE as the
number of bits that can be hidden in global regions from
any party that only has access to local regions.

2 Summary of results

Let us consider the RDMs of the ground state of a
gapped spin lattice system on circle or ring-like regions
ABC given in Fig. 1. We then define the TEE by

Stopo ≡ Sρ(AB) + Sρ(BC) + Sρ(CA)

− Sρ(A)− Sρ(B)− Sρ(C)− Sρ(ABC) , (1)

which is in accordance with the one considered by Kitaev
and Preskill [1]. Here, Sρ(A) represents the von Neu-
mann entropy of the RDM ρA of region A. For regions
as given in Fig. 1(c) , the above definition is consistent

𝐵 A 

𝐶 

(a) 

𝐵 

A 

𝐶 

𝐵 

(𝑐) 

𝐵 A 

𝐶 

(𝑏) 

Figure 1: Examples of the region ABC for the calculation
of TEE. The value of TEE of (a) is a half of others for a
topologically ordered ground state due to the difference
of the topology of the whole region ABC.
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with the one by Levin and Wen [2] if it is possible to as-
sume that there is no correlation between A and C, i.e.,
ρAC = ρA⊗ρC . The TEE is interpreted as the difference
between the entropy of ABC and the expected entropy of
ABC by considering the entropy of just local regions [2].

Let us consider the closed convex set R2
ρ of states which

is consistent with all bipartite RDMs of ρABC

R2
ρ ≡ {σABC | σAB = ρAB , σBC = ρBC , σAC = ρAC} .

(2)
We define the maximum entropy state by the state in R2

ρ

which maximizes the von Neumann entropy, i.e.,

ρ̃
(2)
ABC ≡ arg max

σABC∈R2
ρ

Sσ(ABC) . (3)

According to the maximum entropy principle, the max-
imum entropy state is the most “unbiased” inference of
ρABC if all of the bipartite marginals are known.

We define the 3rd-order irreducible correlation
C(3)(ρABC) as [4]

C(3)(ρABC) ≡ Sρ̃(2)(ABC)− Sρ(ABC) . (4)

Note that the irreducible correlation has a clear
information-geometric meaning as the distance from the
closure of the set of all Gibbs states of 2-local Hamilto-
nians [8].

Our main result is that if the ground state satisfy the
two properties in the following, the TEE is equivalent to
the 3rd-order irreducible correlation.

(I) If two regions A and B are separated, Iρ(A : B) ≡
Sρ(A) + Sρ(B)− Sρ(AB) = 0.

(II) If region A and C are indirectly connected through
B and ABC has no holes, ρABC has zero condi-
tional mutual infromation Iρ(A : C|B) ≡ Iρ(A :
BC)− Iρ(A : B) = 0.

Theorem 2.1 If a ground state on a 2D spin lattice sat-
isfies properties (I) and (II), the equality

Stopo = C(3)(ρABC) (5)

holds for all choices of regions depicted in Fig. 1.

It is widely accepted that a ground state in a gapped
system obeys an area law of entanglement entropy for
any connected region A with smooth boundaries, that is,

Sρ(A) = α|∂A| − γ +O(|∂A|−1) , (6)

where α denotes a non-universal constant, |∂A| denotes
the size of the boundary of region A. γ is another defi-
nition of the TEE and is equivalent to Stopo for the con-
figuration in Fig. 1(a). In models with zero-correlation
length, O(|∂A|−1) can be negligible and the ground state
satisfy both properties (I) and (II).

The key idea of the proof is to divide each region shown
in Fig.1 so that each RDM is a quantum Markov state
(QMS). A QMS conditioned on B is a tripartite state
that satisfies property (II), i.e., Iρ(A : C|B) = 0 [7].

We develop a technique of merging overlapping marginal

QMS to construct the maximum entropy state ρ̃
(2)
ABC by

using the equivalence condition revealed in Ref. [7].
The equivalence of the TEE to the 3rd-order irre-

ducible correlation also provides an operational interpre-
tation of the TEE. Recall that if C(3)(ρABC) is nonzero,
the global state in region ABC contains information that
cannot be determined only from the marginals on AB,
BC or AC. A similar situation is encountered in se-
cret sharing protocols. It has been shown [4, 9] that for
stabilizer states, the kth-order irreducible correlation of
a n-partite state represents the difference between the
asymptotic bit rate that can be hidden from k and from
k − 1 parties, where secrets are encoded by global uni-
taries which preserves all k ( or k − 1) RDMs. We show
that this also holds true in our setting for n = 3 and
k = 2.

Theorem 2.2 For a tripartite state ρABC satisfying
properties (I) and (II), the equality

r(ρABC) = C(3)(ρABC) (7)

holds for all choices of regions depicted in Fig. 1, where
r(ρABC) is the optimal secret sharing rate.

Thus, we provide new geometrical and operational mean-
ings of the TEE. Our results motivate us to inves-
tigate the relationships between characteristic proper-
ties of topological orders by utilizing these information-
theoretical meanings.
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Abstract. We investigate metrological properties of systems of quantum dot electron spin qubits. Op-
timal strategies for probing the value of an external, static magnetic field are provided within Bayesian
approach, with initial knowledge about the magnetic field described by its a priori Gaussian probabil-
ity distribution. We report phase-like transitions between optimal protocols occurring during the sys-
tem evolution. We show that optimal scenario requires initial entanglement and point out benefits of
classical strategies for longer evolution times. We observe that non-Markovian effects, stemming from
the interaction with environment, can provide limited metrological advantage for small magnetic fields.
The full version of the paper is available at arXiv:1605.04279.
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1 Introduction

Quantum metrology relies on the fact that quantum
correlations make state evolution more sensitive to dy-
namics which depends on some parameter that is sup-
posed to be revealed. It is known that, in the so called
frequentist approach, for estimating small variations of a
deterministic parameter, for locally unbiased estimators
dependent on its value and N systems undergoing inde-
pendent evolution, quantum mechanics can offer a 1/N
(so called Heisenberg scaling) improvement of the pre-
cision (defined by the deviation from the precise value)
in the asymptotic limit. This should be compared to a
scaling 1/

√
N , available for classical resources, and re-

ferred to as quantum shot-noise limit. Generally it is
known that in a situation when the parameter is a phase
generated by some Hamiltonian evolution, then the lo-
cal noise usually destroys the quantum effect (both in
atomic spectroscopy and quantum optics), leading to at
most constant improvement over classical scaling.

In the so-called Bayesian approach this scenario is al-
tered so that the parameter to be estimated is a random
variable with some a priori probability distribution. In
many cases, this framework is more justified than the
frequentist approach: it does not assume perfect knowl-
edge about a system under consideration before an exper-
iment and it outputs optimal estimators even for small
N . We apply Bayesian metrology to a physical scenario
where the form of the noise depends on the parameter.
Specifically, we analyze a system of independent quan-
tum dots interacting via hyperfine interaction with their
local, maximally mixed spin environments [1], under a so
called box model approximation. Spins of the electron
dots are subject to external time independent magnetic
field B with the random value characterized by the Gaus-
sian probability distribution with a variance ∆2Bprior

∗pawel.mazurek@ug.edu.pl

and mean B0. The Bayesian approach allows to diminish
the average mean square error of magnetic field estima-
tor. It relies on measurements that may depend on time.

Our aim was to find the optimal initial state and mea-
surement scheme which results in the smallest relative
mean square error ∆2Best

∆2Bprior
of the estimator – a signature

of the gain of information about the field. It is achieved
by numerical optimization [2] yielding optimal strategies
for given time of the evolution and initial probability dis-
tribution. The system evolution was solved analytically
within the ,,box model” of hyperfine interaction, applica-
ble in time regime that encompasses small times, where
metrologicalally important effects occur.

2 Main results
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Figure 1: Comparison between ’perpendicular’ (green
dashed line) and ’parallel’ (solid purple line) strategies
for 1 quantum dot and prior Gaussian distribution with
B0 = 7 mT, ∆Bprior = 4 mT. Red points represent the
optimal strategy.

In order to sketch the action of noise on the evolu-
tion of the system, we start with a single qubit and com-
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pare two strategies, each optimal in different time regime
(Fig. 1). The perpendicular strategy relies on prepar-
ing the state in Bloch sphere perpendicular to the field
direction, and performing measurements of an observ-
able represented by a Bloch sphere vector perpendicu-
lar to both field and state vectors. The parallel strat-
egy relies on preparing the state in the direction of the
magnetic field, and performing projective measurements
along this direction. For large fields, the dynamics does
not change populations of the system, hence the esti-
mating of magnetic field can be done only through the
phase, and perpendicular strategy is the optimal one, as
in a case of a simple unitary evolution. The single mini-
mum in the strategy comes from a trade-off between the
damping of phase (resulting both from statistical averag-
ing over prior field probability distribution and physical
noise), and the rotation of the phase by magnetic field.
For times long enough so that the coherences are nearly
completely damped, the state ceases to depend on the
magnetic field, hence there is no information gain. For
intermediate magnetic fields, the populations of the sys-
tem start to be effected by the magnetic field, and mea-
surements of the occupation levels lead to information
gain dominant in longer times. One should note that for
small magnetic fields the ,,perpendicular” strategy proves
to be effective even in the long time regime. This can
be explained by the fact that, due to the memory effects
stemming from the interaction with the environment, the
coherences experience a revival to the value dependent on
B and remain unaffected by the phase factors of the type
exp[igµBBt], which for non-zero ∆2Bprior would lead to
their decay. Clearly, apart from the mentioned minor
memory effects, the long time regime is entirely classi-
cal, as the estimation there is purely statistical, while in
the short time regime, quantum coherences are crucial.
For this reason, for more particles in non-negligible mag-
netic field, only for low times entanglement will lead to
enhancement of estimation.

Indeed, by performing similar studies for systems of
N = 2, . . . , 5 dots, as well as Monte Carlo simulations, we
showed that entanglement is the necessary resource for
achieving the global optimum. In description of these sys-
tems below, we use the notation in which magnetic field
is directed along z axis, and eigenstates of z-component
of electron spin operator are given by Ŝz|0〉 = ~

2 |0〉,
Ŝz|1〉 = −~

2 |1〉, and |+〉 = 1√
2
(|0〉 + |1〉). We denote

GHZ(N)= 1√
2

(
|0〉⊗N + |1〉⊗N

)
.

A feature characteristic for transition into larger sys-
tems is the growing structural complexity of the region
that relies on product coherence states. We showed that
the general sequence of optimal states for small num-
ber N of quantum dots is the following: (1) regime of
initially entangled states, with (1a) regime of GHZ(N)
and (1b) regime of GHZ(N) superposed with |+〉⊗N ; (2)
intermediate regime of optimal product coherent states
|+〉⊗N−1|0〉, followed by |+〉⊗N−2|0〉|0〉, end so on; (3)
regime of product states without coherences |0〉⊗N .

Transitions within the region (1) are characterized by
a continuous change of the optimal initial state, while

transitions inside (2) region, as well transitions (1)-(2)
and (2)-(3), signalize a non-continuous change of the op-
timal initial state. One should note that the precision
of field estimation grows with increasing N for all possi-
ble times of performing the measurements, with time of
optimal information gain not strongly depending on N.
We stress that for the regimes (2) and (3), in contrast
with the entanglement regime (1), the effects associated
with lack of initial knowledge described by a non-zero
∆2Bprior play a secondary role and the physical noise for
longer times is solely beneficial for magnetometric pur-
poses. Note that the whole regime is absent for a unitary
evolution, which implies lack of discontinuous transitions
in the optimal state space.

3 Discussion

The presented physical model enables the structure of
the measurement strategy, involving measurement of oc-
cupation levels, to partially recover information that, due
to noise, becomes inaccessible for phase-based measure-
ments. Nevertheless, it does not enable to win over the
noisless case, which for all investigated a priori Gaus-
sian probability distributions achieve better information
gains optimized over initial state, measurement strategy
and time of performing the measurement.

The standard situation considered in the literature is
when the parameter under consideration (here the mag-
netic field) is encoded into the system directly and the
noise can only destroy that information. Here the dy-
namics makes the parameter imprinted both on the sys-
tem and environment or - strictly speaking - into a global
state of both. Despite the fact that the initial ancillas are
maximally noisy and that the final noisy dynamics acts
here completely locally, the corresponding noise is un-
avoidably ,,convoluted” with the original dynamics and
the final result is such that we get the product noisy dy-
namics which has the parameter imprinted in a nonstan-
dard, nonlinear way. On the other hand the imprinting
the magnetic field by unitary dynamics is restricted to
the Bloch sphere. Effectively we have then the two sce-
narios. In the latter the parameter is imprinted in the
states on the sphere, while in the former, it is imprinted
in the mixed states that in general belong to the interior
of the sphere. It seems that this is the geometry of the
two sets out of which only the one has the nonzero vol-
ume, that in general might make the difference in favor
of the noisy scenario.
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Abstract. Before our work, it was unknown that whether the quantum Lovász number always
coincides with the entanglement-assisted zero-error classical capacity of a quantum channel. In
this paper, we resolve this open problem by explicitly constructing a class of qutrit-to-qutrit chan-
nels whose quantum Lovász number is strictly larger than its entanglement-assisted zero-error
classical capacity. Interestingly, this class of channels is reversible in the presence of quantum
no-signalling correlations.
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Introduction A fundamental problem of infor-
mation theory is to determine the capability of a
communication channel for delivering messages from
the sender to the receiver. Shannon first investi-
gated this problem in the zero-error setting and de-
scribed the zero-error capacity of a channel as the
maximum rate at which it can be used to trans-
mit information with zero probability of confusion
[1]. Recently the zero-error information theory has
been studied in the quantum setting and many new
phenomena were observed. One of the most remark-
able results is that entanglement can be used to im-
prove the zero-error capacity of a classical channel
[2, 3]. Furthermore, there are more kinds of capac-
ities when considering auxiliary resources, such as
shared entanglement [2, 3, 4, 5] and no-signalling
correlations [2, 6].

For the zero-error communication via quantum
channels, the non-commutative graph associated
with a quantum channel captures the zero-error
communication properties of this channel [5], thus
the non-commutative graph plays a similar role to
confusability graph of a classical channel. It is well-
known that the zero-error capacity is extremely dif-
ficult to compute for both classical and quantum
channels. In Ref. [7], it was proved that comput-
ing the one-shot zero-error capacity of a quantum
channel is QMA-complete and the calculation of the
asymptotic zero-error capacity is even not known
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to be computable. Nevertheless, the zero-error ca-
pacities of classical channels and quantum channels
are upper bounded by the the famous Lovász num-
ber of a confusability graph [8] and the quantum
Lovász number [5] of a non-commutative graph, re-
spectively. Furthermore, the entanglement-assisted
zero-error capacity C0E of a classical channel is also
upper-bounded by the Lovász number [5, 9], and
this notable result can be generalized to quantum
channels by using the quantum Lovász number [5].

One of the most important and intriguing open
problems in zero-error information theory is whether
there is a gap between the entanglement-assisted
zero-error capacity and the quantum Lovász num-
ber of a classical or quantum channel, which is fre-
quently mentioned in Refs. [3, 5, 9, 10, 11, 12]. If
they are equal, it would imply that C0E is additive
while the unassisted case is not [13].

In this paper, we show the answer to the open
problem above is negative for quantum channels.
We construct a class of qutrit-to-qutrit channels
whose quantum Lovász number is strictly larger
than its entanglement-assisted zero-error capacity.
In particular, this class of channels is reversible un-
der quantum no-signalling correlations (QNSC).
Main results The entanglement-assisted zero-

error capacity C0E of a channel is the optimal rate at
which it is possible to transmit information perfectly
while the sender and receiver share free entangle-
ment. Since C0E is not known to be computable, it
is difficult to compare C0E to the quantum Lovász
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number. The problem whether there exists a gap
between them remained open for almost six years.
Our approach to answer this problem is based on
the class of channels Nα(ρ) = CαρC

†
α + DαρD

†
α

(0 < α ≤ π/4) with

Cα = sinα∣0⟩⟨1∣ + ∣1⟩⟨2∣,Dα = cosα∣2⟩⟨1∣ + ∣1⟩⟨0∣.

We first consider the QNSC assisted zero-error
capacity [6], which is potentially larger than the
entanglement-assisted case. We also use the QNSC
assisted zero-error classical simulation cost S0,NS [6]
during the proof, which is the minimum noiseless
bits required to simulate a channel under QNSC. It
holds that C0E ≤ C0,NS ≤ S0,NS .

Proposition 1 For Nα (0 < α ≤ π/4),

C0,NS(Nα) = S0,NS(Nα) = 2.

We then show the exact value of the quantum
Lovász number of Nα.

Proposition 2 For Nα (0 < α ≤ π/4),

ϑ̃(Nα) = 2 + cos2 α + cos−2 α > 4. (1)

Combining Propositions 1 and 2, we can conclude
that there is a separation between quantum Lovász
number and entanglement-assisted zero-error clas-
sical capacity. This is based on the fact that C0E

is upper bounded by the QNSC assisted zero-error
capacity C0,NS . Our main result is presented as fol-
lows.

Theorem 3 For the class of quantum channels Nα
(0 < α ≤ π/4),

log2 ϑ̃(Nα) > C0,NS(Nα) ≥ C0E(Nα). (2)

Conclusions and discussions In summary,
we construct a class of quantum channels whose
quantum Lovász number is strictly larger than its
entanglement-assisted zero-error capacity. This re-
solves a well-known open problem in zero-error
quantum information. There are still several un-
solved problems left. For instance, it is of great in-
terest to study the case of classical channel. For
the confusability graph G, a variant of Lovász num-
ber called Schrijver number [14, 15] was proved to
be an tighter upper bound for the entanglement-
assisted independence number than Lovász number
[16] . However, it remains unknown whether Schri-
jver number will converge to Lovász number in the
asymptotic setting. A gap between the regularized

Schrijver number and Lovász number would imply
a separation between C0E(G) and ϑ(G).
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by the Australian Research Council (Grant No.
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Abstract. We study the possible difference between the quantum and the private capacities of a quantum
channel in the zero-error setting. For a family of channels introduced by [LLSS14], we demonstrate an
extreme difference: the zero-error quantum capacity is zero, whereas the zero-error private capacity is
maximum given the quantum output dimension.
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The quantum capacity Q(N ), measured in qubits per
channel use, establishes the maximum rate for transmit-
ting quantum information and how well we can perform
quantum error correction. The private capacity P(N ), in
bits per channel use, gives the maximum rate of private
classical communication. Errors that become negligible
as the number of channel uses increases are allowed in
the above definitions.

Understanding the relation between the quantum and
the private capacities is an essential task in quantum
Shannon theory. In [HHHO05], some channels N are
found for which Q(N ) = 0 but P (N ) > 0, breaking a
long-held intuition that coherence is necessary for pri-
vacy. In [LLSS14], a class of channels with Q(N ) ≤ 1
and P (N ) = log d is presented, where d2 is the input di-
mension and log is taken base 2. As d increases, these
channels saturate an upper bound for P (N )−Q(N ) thus
approximately realizing the largest possible separation
between the two capacities.

Quite recently, the notion of zero-error capacity has
been introduced for quantum channels [MA05]. We de-
note the zero-error quantum and private capacities for
a quantum channel N as Q0(N ) and P0(N ) respec-
tively. Zero-error private classical communication re-
quires perfect data transmission such that no one but
the receiver gains any information on the data. Clearly
Q0(N ) ≤ Q(N ) ≤ P(N ) and Q0(N ) ≤ P0(N ) ≤ P(N ).

In this paper, we study the zero-error quantum capac-
ity of the channels introduced in [LLSS14], and demon-
strate an exact extreme separation. For these channels,
P0(N ) = log d and Q0(N ) = 0. In other words, each of
these channels has no capacity to transmit quantum in-
formation perfectly, even it has full ability to distribute
private information perfectly.

The notion of zero-error quantum capacity can be in-
troduced as follows. Let αq(N ) be the maximum integer
k such that there is a k-dimensional subspace H′A of HA

that can be perfectly transmitted through N . That is,
there is a recovery quantum channel R from D(HB) to
D(HA′) so that (R◦N )(ψ) = ψ for any |ψ〉 ∈ HA′ (recall

∗wcleung@uwaterloo.ca
†nengkunyu@gmail.com

ψ = |ψ〉〈ψ|). Then, log2 α
q(N ) represents the maximum

number of qubits one can send perfectly by one use of N .
The zero-error quantum capacity of N , Q0(N ), is defined
as:

Q0(N ) = sup
n≥1

log2 α
q(N⊗n)

n
. (1)

we can invoke the following lemma from [CS12].

Lemma 1 Let N : D(HA) → D(HB) be a quantum
channel. One can transmit quantum information with-
out error through a single use of N if and only if there
are orthogonal states |α〉 and |β〉 such that

tr [N (|α〉〈α|)N (|β〉〈β|)] = 0 (2)

and

tr [N (|α+ β〉〈α+ β|)N (|α− β〉〈α− β|)] = 0. (3)

where |α± β〉 = 1/
√

2(|α〉 ± |β〉).
Private communication via a memoryless classical

channel and quantum key distribution are well estab-
lished subjects. Private classical communication of a
quantum channel has more recently been formally intro-
duced in [Dev05]. The private capacity of N measures
the maximum rate of reliable classical data transmission
via N while keeping the output of the complementary
channel independent of the data.

The family of channels Nd introduced in [LLSS14] can
be schematically summarized as follows:

A2

A1

V

P

E,“VE”

B,“VB”

(4)

For each integer d ≥ 2, we define the channel Nd which
has two input registers A1 and A2, each of dimension d.
A unitary operation V is applied to A2, followed by a
controlled phase gate P =

∑
i,j ω

ij |i〉〈i| ⊗ |j〉〈j| acting

on A1A2, where ω is a primitive dth root of unity. Bob
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receives only A1 (now relabeled as B) and “VB”, which
denotes a classical register with a description of V . The
A2 register is discarded. The complementary channel has
outputs A2 (relabeled as E) and “VE” which also contains
a description of V . The isometric extension is given by

Ud |ψ〉A1A2
=
∑
V

√
pr(V )

(
P (I ⊗ V ) |ψ〉A1A2

)
⊗|V 〉VB

⊗|V 〉VE
.

Here, V is drawn from any exact unitary 2-design G =
{g1, g2, · · · , gm}.

It was shown in [LLSS14] that P (Nd) = log d. The
method given by [LLSS14] to transmit private classical
data has no error and has perfect secrecy so P0(Nd) =
log d. To be self-contained, we provide a quick argument
here. Suppose the input into A2 is half of a maximally
entangled state |Φ〉 = 1√

d

∑
i |i〉A2

|i〉A3
where A3 stays

in Alice’s possession. By the transpose trick, the unitary
operations V and P can be replaced by unitary opera-
tions acting on A1 and A3 without changing the final
state on B,E,A3, VB , VE . So, the output of the com-
plementary channel (E, VE) is independent of the input.
Moreover, Nd(|i〉〈i| ⊗ I/d) = |i〉〈i|. So log d bits can be
transmitted perfectly and secretly.

Furthermore, [LLSS14] also shows that Q(Nd) ≤ 1.
Intuitively, superposition of states in system A1 will be
heavily decohered by the P gate, because error correction
is ineffective due to the random unitary V . However,
[LLSS14] finds that Q(Nd) ≥ 0.61 for large d.

This motivates the current study, to demonstrate an
extreme separation of P0 and Q0 using the channels Nd.
Our main result is that, no finite number of uses of Nd

can be used to transmit one qubit with zero error. This
implies in particular Q0(Nd) = 0, while P0(Nd) = log d,
attaining the extremes allowed by the quantum output
dimension.

Our main technical result is a characterization of pairs
of input states whose orthogonality is preserved by n uses
of the channel.

Theorem 2 Let n be any positive integer, |ψ1〉 =∑
i1,··· ,in |i1, · · · , in〉 |αi1,··· ,in〉, and |ψ2〉 =

∑
i1,··· ,in

|i1, · · · , in〉 |βi1,··· ,in〉 be two arbitrary pure state inputs
for N⊗nd . Then, tr[N⊗nd (ψ1)N⊗nd (ψ2)] = 0 if and only
if at most one of |αi1,··· ,in〉 and |βi1,··· ,in〉 is nonzero for
each tuple (i1, · · · , in).

In other words, states suitable for transmitting classi-
cal information through N⊗nd without any error have no
“overlap” in the computational basis of A⊗n1 .

As a consequence, we have

Theorem 3 For any positive integer n, N⊗nd cannot
transmit a qubit with zero error. In particular, this im-
plies Q0(Nd) = 0.

To prove Theorem 2, the following two lemmas are
needed,

Lemma 4 Let |ψ1〉 =
∑

i |i〉 |αi〉 and |ψ2〉 =
∑

i |i〉 |βi〉
be two possible pure input states for Nd. Then,
tr[Nd(ψ1)Nd(ψ2)] = 0 if and only if at most one of |αi〉
and |βi〉 is nonzero for each i.

Lemma 5 [YDY14] For all positive integer n, there is no
non-zero bipartite matrix M satisfying M ≥ 0, MΓ ≥ 0,
and tr(M(I − Φ)⊗n) = 0, where MΓ denotes the partial
transpose of bipartite matrix M .

In this paper, we show an extreme separation between
zero-error quantum capacity and the private capacity by
demonstrating for a class of channels that the private
capacity is maximum given the output dimension, while
there is no ability to transmit even one-qubit with any
finite number of channel uses, when no error can be tol-
erated. We hope techniques from our work can be used
to study the zero-error capacity of other channels.
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Abstract. Bosonic channels are important in practice as they form a simple model for free-
space or fiber-optic communication. We consider a single-sender multi-receiver pure-loss bosonic
broadcast channel and establish the unconstrained capacity region for the distillation of bipartite
entanglement and secret key between the sender and each receiver, where they are allowed
arbitrary public classical communication.

Quantum key distribution (QKD) and entangle-
ment distillation (ED) are two cornerstones of quan-
tum communication technology. QKD enables two
or more parties to share unconditionally secure ran-
dom bit sequences whereas ED allows them to distill
pure maximal entanglement from a quantum state
shared via a noisy communication channel. In both
protocols, the parties are allowed to perform (in
principle) an unlimited amount of local operations
and classical communication (LOCC).

One of the problem in optical quantum com-
munication is the channel loss. For example, all
known QKD protocols exhibit an exponential rate-
loss tradeoff, in which the secret key rate drops ex-
ponentially with increasing fiber distance [1].

Some time after these limitations were observed,
Refs. [2] provided a mathematical proof, using the
notion of squashed entanglement [3], that the trade-
off is indeed a fundamental limitation even with un-
constrained input energy. One of the main results of
[2] is an upper bound on the LOCC assisted quan-
tum and secret key agreement capacity of a pure-loss
bosonic channel, which is solely a function of the
channel transmittance η (for finite energy, tighter
bounds are also available [2]). Ref. [4] extended the
squashed entanglement technique to obtain upper
bounds for a variety of phase-insensitive Gaussian
channels. Concurrently with [4], Ref. [5] improved
the infinite-energy bound from [2] and conclusively
established the unconstrained capacity of the pure-
loss bosonic channel as C (η) = − log2 (1− η).

Extension of the above point-to-point scenario to
the network quantum communication scenarios such
as broadcast and multiple access channels is an im-

portant direction. Even though various network
quantum communication scenarios have been exam-
ined, there has been limited work on the LOCC-
assisted quantum and private capacities. Only re-
cently in [6] were nontrivial outer bounds on the
achievable rates established for the LOCC-assisted
capacities in a general m-receiver quantum broad-
cast channel (QBC) (for any m ≥ 1) based on mul-
tipartite generalizations of the squashed entangle-
ment [7] and the methods of [2].

In this paper, we consider a single-sender
multiple-receiver pure-loss bosonic QBC and estab-
lish the unconstrained LOCC-assisted capacity re-
gion for the distillation of bipartite entanglement
and secret key between the sender and each receiver.
Consider a pure loss bosonic QBC LA′→BC where
the channel splits the input state into three systems,
one to each of Bob, Charlie, and the environment
with transmittance ηB, ηC , and 1−ηB−ηC , respec-
tively, where ηB, ηC ∈ [0, 1], ηB + ηC ≤ 1. Phys-
ically it is modeled by a pair of beam splitters, in
both the signal is mixed with a vacuum, where the
first one induces pure loss and the second one splits
the signal to Bob and Charlie. Alice wants to share
the entanglement or secret keys with Bob and Char-
lie through n channel uses and unlimited amount of
LOCC. Let us denote entanglement rates between
Alice and Bob (Charlie) as EAB (EAC), and the se-
cret key rate as KAB (KAC), respectively. Our main
theorem is stated as follows:

Theorem 1 The LOCC-assisted, unconstrained
capacity region of the pure-loss bosonic QBC
LA′→BC is given by

EAB +KAB ≤ log2([1− ηC ]/[1− ηB − ηC ]), (1)
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EAC +KAC ≤ log2([1− ηB]/[1− ηB − ηC ]), (2)

EAB+KAB+EAC+KAC ≤ − log2(1−ηB−ηC). (3)

A complete proof is given in [8]. To prove the
statement, we establish inner bounds on the achiev-
able rate region by employing the quantum state
merging protocol [9]. The converse part relies upon
several tools. First, we utilize a teleportation sim-
ulation argument originally introduced in [10, Sec-
tion V]. and recently extended in [5]. Next, it is
known that the relative entropy of entanglement is
an upper bound on the distillable key of a bipartite
state [11]. Then the recent work in [5] stated how
these two ideas are combined to upper bound the
LOCC-assisted quantum and private capacities for
certain class of point-to-point channels.

Also critical for the proof of the converse part
is the fact that the physical implementation of
LA′→BC is not unique. For example, we could have
a first beam splitter split system B from C and E,
and then a second one split C and E. It is also
possible to split C at the first beam splitter. This
observation implies a drastic simplification of the
calculation of the relative entropy of entanglement.
The obtained outer bounds match the inner bounds
in the infinite-energy limit, thereby establishing the
unconstrained capacity region. An example fothe
rate region is shown in Fig. 1.

The above theorem can be generalized for single-
sender multiple-receiver pure-loss broadcast chan-
nel LA′→B1···Bm with m > 2 which is character-
ized by a set of transmittances {ηB1 , · · · , ηBm} with∑m

i=1 ηBi ≤ 1 [12]. Let B = {B1, · · · , Bm}, T ⊆ B,
and T be a complement of set T . We have the fol-
lowing theorem:

Theorem 2 The LOCC-assisted unconstrained ca-
pacity region of the pure-loss bosonic QBC
LA′→B1···Bm is given by∑

Bi∈T
EABi +KABi ≤ log2

(
1− ηT
1− ηB

)
, (4)

for all non-empty T , where ηB =
∑m

i=1 ηBi and ηT =∑
Bi∈T ηBi.

A complete proof is given in [8].
Our result could provide a useful benchmark for

implementing a broadcasting of entanglement and
secret key through linear optics networks which is
usually used in real world quantum communications.
Important open questions include the distillations of
EBC and KBC , or even GHZ states through QBC,
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Figure 1: LOCC-assisted capacity region given by
(1)–(3), where (ηB, ηC) = (0.2, 0.3).

and determining the capacity region in both this set-
ting and even the single-sender single-receiver case
when there is an energy constraint on the transmit-
ter which is practically more relevant.
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Abstract. Einstein-Podolsky-Rosen (EPR) steering exhibits a unique asymmetric prop-
erty, i.e., the steerability can differ between observers. This property is inherently different
from the symmetric concepts of entanglement and Bell nonlocality, and it has attracted
increasing interest. We propose a practical method to quantify the steerability. And we
experimentally use it to quantify asymmetric EPR steering in the frame of projective
measurements. Furthermore, we then clearly demonstrate one-way EPR steering. Our
work provides a new insight into the fundamental asymmetry of quantum nonlocality and
has potential applications in asymmetric quantum information processing.
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Asymmetric EPR steering is an important
open question proposed when EPR steering is re-
formulated in 2007 [1]. Supposing Alice and Bob
share a pair of two-qubit state, it is easy to image
that if Alice entangles with Bob, then Bob must
also entangle with Alice. Such a symmetric fea-
ture holds for both entanglement and Bell non-
locality [2]. However, the situation is dramati-
cally changed when one turns to a novel kind of
quantum nonlocality, the EPR steering, which
stands between entanglement and Bell nonlocal-
ity. It may happen that for some asymmetric
bipartite quantum states, Alice can steer Bob
but Bob cannot steer Alice. This distinguished
feature would be useful for the one-way quan-
tum tasks. The first experimental verification
of one-way EPR steering was performed by us-
ing two entangled continuous variable systems in
2012 [3]. However, the experiments demonstrat-
ing one-way EPR steering [3, 4] are restricted
to Gaussian measurements, and for more gener-
al measurements, like projective measurements,
there is no experiment realizing the asymmet-
ric feature of EPR steering even the theoretical
analysis has been proposed [5].
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Recently, we for the first time quantify the s-
teerability and demonstrate one-way EPR steer-
ing in the simplest entangled system (two qubit-
s) using two-setting projective measurements [6].
The asymmetric two-qubit states in the form of

ρAB = η|Ψ(θ)〉〈Ψ(θ)|+ (1− η)|Φ(θ)〉〈Φ(θ)|, (1)

where 0 ≤ η ≤ 1, |Ψ(θ)〉 = cos θ|0A0B〉 +
sin θ|1A1B〉, |Φ(θ)〉 = cos θ|1A0B〉 + sin θ|0A1B〉,
are prepared based on the setup shown in Figure
1. For all non-trivial ρAB, Alice can steer Bob’s
state. When | cos 2θ| < |2η − 1|, Bob can also
steer Alice’s state. If | cos 2θ| ≥ |2η − 1|, there
always exists a local hidden state model for Al-
ice to reproduce her conditional states when Bob
chooses any two directions to measure, which
means Bob can not steer Alice’s state.

Based on the steering robustness [7], we intro-
duce an intuitive criterion R called as steering
radius, which is defined as

R(ρAB) = max
{~n1,~n2}

{r(ρAB){~n1,~n2}}, (2)

to quantify the steerability. Here, r(ρAB){~n1,~n2}
is explained below. In the case of two measure-
ment settings {~n1, ~n2}, there are at most four
local hidden states, ρi (i = a, b, c, d), repro-
ducing Bob’s conditional states if Alice can not
steer Bob’s system. We can expand the hidden

28



Figure 1: Experimental setup. (a). The en-
tangled photon pairs are prepared through the
spontaneous parametric down conversion (SPD-
C) process by pumping the BBO crystal with
ultraviolet pulses. The state’s parameters η and
θ can be detuned conveniently by employing the
setup shown in (a) and the unbalanced Mach-
Zehnder interferometer (UMZ) with beam split-
ters (BSs) and removable shutters (RSs) shown
in (b). A unit consisting of a quarter-wave plate
(QWP) and a half-wave plate (HWP) on Alice’s
side is used to set the measurement direction.
The same unit with an extra polarization beam
splitter (PBS) on Bob’s side is used to perform
state tomography. Photons are collected into a
single mode fiber equipped with a 3 nm inter-
ference filter and are then detected by a single-
photon detector (SPD) on each side. (d). The
strategy is for local hidden states to reproduce
the conditional states. One of the two photons
is used as the trigger for the coincidence unit,
and the other is used to prepare the four local
hidden states, which can be conveniently pre-
pared by employing the setup of (b) and (c).
The probabilities are controlled by adjusting the
RSs.

states to the super quantum hidden state mod-
el (SQHSM), which means there are no physical
restrictions on the states ρi and ρi, which can
be located outside of the Bloch sphere. In such
a case, there is generally more than one set of

SQHSM. Thus, r(ρAB){~n1,~n2} can be defined as
the radius of the SQHSM which is written as

min
SQHSM

{max{L[ρa], L[ρb], L[ρc], L[ρd]}}, (3)

where L[ρi] (i = a, b, c, d) denotes the length of
Bloch vectors of the states ρi. If r(ρAB){~n1,~n2} >
1, at least one of the hidden states is located
beyond the Bloch sphere; thus, the model is not
physical. The different values of R on two sides
clearly illustrate the asymmetric feature of EPR
steering. Furthermore, the one-way steering is
demonstrated when R > 1 on one side and R < 1
on the other side (see Figure 2 (b)).

Figure 2: Experimental results for asymmetric
EPR steering. (a) The distribution of the ex-
perimental states. The right column shows the
entangled states we prepared, and the left col-
umn is a magnification of the corresponding re-
gion in the right column. The two green curves
represent the cases of | cos 2θ| = |2η − 1|. The
blue points and red squares represent the states
realizing one-way and two-way EPR steering, re-
spectively. The black triangles represent the s-
tates for which EPR steering task fails for both
observers. (b) The values of R for the states la-
beled in the left column in (a). The red squares
represent the situation where Alice steers Bob’s
system, and the blue points represent the case
where Bob steers Alice’s system. (c) Geometric
illustration of the strategy for local hidden states
(black points) to construct the four normalized
conditional states (red points) obtained from the
maximally entangled state.

For the failing EPR steering process, the lo-
cal hidden state model, which provides a direct
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and convinced contradiction between the nonlo-
cal EPR steering and classical physics, is pre-
pared experimentally to reconstruct the condi-
tional states obtained in the steering process (see
Figure 3).

Figure 3: The experimental results of the nor-
malized conditional states and local hidden s-
tates shown in the Bloch sphere. The theoret-
ical and experimental results of the normalized
conditional states are marked by the black and
red points (hollow), respectively. The blue and
green points represent the results of the four lo-
cal hidden states in theory and experiment, re-
spectively. The normalized conditional states
constructed by the local hidden states are shown
by the brown points. (a) and (c) Show the case
in which Alice steers Bob’s system, whereas (b)
and (d) show the case in which Bob steers Al-
ice’s system. The parameters of the shared state
in (a) and (b) are θ = 0.442 and η = 0.658;
the parameters of the shared state in (c) and
(d) are θ = 0.429 and η = 0.819. (a), (b) and
(d) Show that the local hidden state models ex-
ist, and the steering tasks fail. (c) Shows that
no local hidden state model exists for the steer-
ing process with the constructed hidden states
located beyond the Bloch sphere and R = 1.076.

The quantification of EPR steering provides
an intuitional and fundamental way to under-
stand the EPR steering. The demonstrated

asymmetric EPR steering, especially one-way s-
teering, helps us to investigate the asymmetric
feature of quantum nonlocality. This is signifi-
cant within quantum foundations and quantum
information, and shows the potential applica-
tions in the tasks of one-way quantum key distri-
bution [8] and the quantum subchannel discrim-
ination [7], even within the frame of two-setting
measurements.
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Abstract. The properties of quantum information in space-time can be investigated by studying opera-
tional tasks. In one such task, summoning, an unknown quantum state is supplied at one point, and a call
is made at another for it to be returned at a third. Hayden-May recently proved necessary and sufficient
conditions for guaranteeing successful return of a summoned state for finite sets of call and return points
when there is a guarantee of at most one summons. We prove necessary and sufficient conditions when
there may be several possible summonses and complying with any one constitutes success. We show there
is a ”quantum paradox of choice” in summoning: the extra freedom in completing the task makes it strictly
harder. This intriguing result has practical applications for distributed quantum computing and cryptog-
raphy and also implications for our understanding of relativistic quantum information and its localization
in space-time.
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It is well known that the exploitation of quantum ef-
fects gives rise to exciting new possibilities for computa-
tion, information processing and cryptography[3, 16, 13,
15, 5], but more recently, it has been realized that placing
quantum information under relativistic constraints leads
to the emergence of further unique effects[11, 9, 7] and
since this area has not yet been well explored, it is likely
that many useful relativistic quantum phenomena remain
to be discovered.

In this project, we have been studying constraints on
quantum information processing that arise in the rela-
tivistic context, and have uncovered a new and surprising
effect: under appropriate circumstances, transmitting a
quantum message may be possible if there is only one op-
tion for the place of delivery, but impossible if multiple
options are offered, so having more freedom can some-
times make a relativistic quantum task more difficult.
This apparent paradox has important consequences for
our understanding of how quantum states may be propa-
gated in distributed quantum computers, global financial
networks and other contexts where relativistic signalling
constraints are important.

The starting point for our project is a task known
as summoning, in which an agent is given an un-
known quantum state and required to produce it at
a point in space-time in response to a call made at
some earlier point[11]. The combination of the rela-
tivistic no-signalling principle[14] and the quantum no-
cloning theorem[4, 17] together impose strict constraints
on the possible geometric configurations of call and re-
turn points. Our work involves a generalization of this
task in which calls may be made at any number of call
points and the agent is required to return the state at
any one of the return points corresponding to one of the
calls: we have proved a theorem establishing necessary
and sufficient conditions on the possible geometric config-
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urations of call and return points in space-time for which
there exists a protocol that guarantees a successful re-
sponse to this task, and showed that these are strictly
stronger conditions than those established by Hayden-
May[7] for the original summoning task. Thus, strangely,
giving an agent more possible ways to respond to this task
actually makes it harder for him to respond successfully.

The resolution of the apparent paradox rests on a
previously unappreciated feature of summoning tasks.
Prima facie it seems that the guarantee of at most one call
plays no special role in a summoning task other than to
ensure that Alice is never required to produce two copies
of an unknown state, in violation of the no-cloning theo-
rem. It thus initially seems paradoxical that summoning
becomes strictly harder if we allow the possibility of more
than one call, even though only one valid response is re-
quired. However, if Alice knows that no more than one
call will occur, learning that a call has been made at
one point tells her that there are no calls at any other
point, and this allows her to coordinate the behaviour
of her agents via the global call distribution. A single
call gives Alice less information if multiple calls can oc-
cur: she learns nothing about the distribution of calls at
other points. She thus cannot use the call distribution to
coordinate her agents actions in the same way. In other
words, the guarantee of at most one call provides a re-
source that gives Alice the ability to complete tasks that
would be impossible without it.

The effect we describe has important practical appli-
cations, because the no-summoning theorem has already
been used for the development of new protocols in rel-
ativistic quantum cryptography[8, 10, 12, 1, 2], and our
stronger results suggest further ways of exploiting sum-
moning as a general way of controlling the flow of quan-
tum information. For example, our result is a useful way
of characterizing possible distributed parallel quantum
computations in which the output of a sub-protocol is
routed to one of several parallel computations which call
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Figure 1: A 2 + 1 dimensional example of a spacetime
configuration of call and repsonse points where summon-
ing is possible if it is guaranteed that there will be only
one call, but not if more than one call may arrive.

for the output when they reach a certain state[6]. We
thus expect this result to find application in future cryp-
tographic protocols as well as in quantum network algo-
rithms.

Our result also has interesting theoretical implica-
tions: there is a long-standing tradition of using appar-
ent paradoxes to refine our understanding of quantum
theory[3, 16, 13, 15, 5], but this new effect is perhaps
the first intrinsically relativistic quantum paradox, in the
sense that the effect can be exhibited only in the frame-
work of relativistic quantum theory. Our project thus
offers a useful starting point for probing intuitions about
the nature of quantum states as spatiotemporal entities -
an area which has received comparatively little attention
in recent debates over the reality of the quantum state.
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Dimension Witnesses Beyond Non-Classicality Tests
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Abstract. Current experimental tests of non-classicality are binary in their conclusions, regardless of the
dimension. Either a physical information carrier is considered to be classical in nature, or else it is said to
be quantum. Nevertheless, this does not imply straight away that the experimental setup can produce any
desired quantum state of the desired dimension. In this work, we provide a refined dimension witness based
on Quantum Random Access Codes, which is able to distinguish between fully classical states, classical-
quantum states, separable quantum states, and arbitrary high-dimensional quantum states. These results
will be useful to the community, in order to correctly characterize the power of existing experimental
setups, to know which quantum information and computation protocols are within our grasp.

Keywords: Dimension Witness, QRACs, Classical-Quantum States

The dimension, or degrees of freedom, of physical in-
formation carriers is crucial. In order for quantum com-
puters to show a true practical advantage over their clas-
sical counterparts, they must operate on systems of large
dimension. That is why we are increasingly striving to
coherently control systems of large dimensions [1, 2, 3, 4].
Another promising area is that of quantum information
processing, where the dimension of the system is also re-
garded as a resource. Not only do higher dimensional
systems offer more computational and communication
power, but they are also useful in e.g. Bell experiments
[5, 6] Hence, the quantum information community has
come up with the brilliant idea of a dimension witness,
originally based on the violation of some particular Bell
inequalities [7], and then extended to the prepare and
measure scenario [8].

Dimension witnesses can be understood in slightly dif-
ferent ways, depending on the underlying assumptions,
but in general refer to some linear function on measure-
ment outcome probabilities. For example, in [7] the sys-
tems are assumed to be quantum in nature, and the di-
mension witness is a Bell inequality which cannot be vio-
lated without using quantum systems of at least a specific
size. The other example to compare is [8], where they use
ideas from state discrimination theory to make a dimen-
sion witness that can distinguish between a classical and
a quantum system.

While dimension witnesses have been of great help for
experimentalists, there is a subtle issue that has been
missing in the analysis thus far, which we illustrate with
an example. Imagine an experimentalist has complete
control over photonic qubit systems but can only create
these systems independently (e.g. one at a time), and
she does this 20 times. Surely, if done correctly, it’s pos-
sible to find a dimension witness that makes 20 qubits
in a product state perform better than 20 classical bits
and then make a claim like ”I work with Hilbert Spaces
of Dimension 1 Million”. While, this is strictly not a
lie, it is very misleading! Hence, we look for a dimension
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witness that can signal whether the experimentalist has
full (coherent) control of the Hilbert space, in the pre-
vious example this would imply arbitrary entanglement
between said photons.

This work provides a simple tool for experimental
teams to determine up to which dimension they have full
control of their Hilbert space (i.e. they can create all
states of said dimension). This is very important for the
community, as a benchmark tool to check our progress on
building quantum computers, and also for experimental-
ists to know which protocols they can feasibly execute.
We focus on the prepare and measure scenario, which is
the most general case. Since the point is to show that
there is complete coherent control of a particular dimen-
sion, it doesn’t matter if the physical information carriers
are divided as entangled particles, or just one system in
an arbitrary state. In particular, we focus on Random
Access Codes (RACs), where we call the preparation part
of the experiment Alice, and the measurement part Bob.

A nd → 1 Random Access Code (RAC) is a strategy
in which Alice tries to compress a n-dit string into 1
dit, such that Bob can recover any of the n dits with
high probability [10]. Specifically, Alice receives an input
string X = x0x1 · · ·xn−1 where xi ∈ [d], and we write
[d] ≡ {0, 1, 2, . . . , d − 1}. She is allowed to send one dit
a = Ec(X) to Bob. On the other side, Bob receives
an input y ∈ [n], and together with Alice’s message a,
outputs b = Dc(a, y) as a guess for xy. If Bob’s guess is
correct (i.e. b = xy) then we say that they win, otherwise
we say that they lose. Since both encoding and decoding
functions are in general probabilistic, we in fact quantify
the probability of success p(b = xy). As a figure of merit
for the encoding-decoding strategy, we use the average
success probability P = 1

ndn

∑
X

∑
y p(b = xy).

Similarly, we may define nd → 1 Quantum Ran-
dom Access Codes (QRACs) with the only change be-
ing that Alice tries to compress her input string into a
d-dimensional quantum system. The decoding function
is nothing more than a quantum measurement, i.e. he
outputs his guess b with probability tr[ρaM

y
b ]. It can

be shown that the maximum average success probabil-
ity can be achieved with pure states (ρa = |a〉〈a|) [10].
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Similarly, it is possible to argue that this maximum is
achieved when the operators My

b are projective measure-
ments, which is what we shall henceforth be assuming.

Assume the dimension factorizes as d = ab (with
a ≥ b), then in general we are interested in the follow-
ing 5 cases: Cab, CaQb, CbQa, QaQb, Qab. In the same
order, these are to be understood as: a classical system
of dimension ab, a classical system of dimension a and
a quantum system of dimension b, a classical system of
dimension b and a quantum system of dimension a, a
quantum system of dimension a in a separable state with
a quantum system of dimension b, and a quantum sys-
tem of dimension ab. This is trivially generalized. The
Main Result of our work deals with constructing ex-
plicit dimension witnesses which are able to differentiate
the above cases. The explicit construction is technical,
but an example of how our tools can be used is provided,
as well as the main ideas regarding the proof.
Example. For a classical 2d → 1 RAC the aver-

age success probability is PCd
= 1

2 + 1
d , while for the

quantum case the 2d → 1 QRAC has an average suc-
cess probability of PQd

= 1
2 + 1

2
√
d
. We look at dimen-

sion 4, with PC4 = 0.625 and PQ4 = 0.75, and with our
main result we are able to calculate PC2Q2

= 0.6546 and
PQ2Q2

≈ 0.7286. This means that, it is not enough for the
experimentalist to obtain an average success probability
greater than PC4, to claim that she has complete control
over 4-dimensional Hilbert space. Surely, this would im-
ply immediately that her states are not entirely classical,
but the big prize in this example would be to obtain an
experimental result above the PQ2Q2

value.
Now we briefly present the key ideas of our proof.

First, we prove that an identity decoding function (where
Bob’s outcome measurements are directly used in the
output without further post-processing) cannot be worse
than the optimal decoding function. Second, adaptive
measurements cannot outperform non-adaptive ones. By
this we mean, Bob’s measurement strategy only depends
on his input y, and in the optimal case does not depend
on the measurement results of the first systems. These
two points, make it so that essentially Alice and Bob are
playing two parallel QRACs at the same time. Finally,
for a given 2d → 1 QRAC, we derive ”maximal quan-
tum curves” which relate the probability of guessing dit
1, as a function of the probability of guessing dit 2 when
using the optimal quantum mechanical strategy - which
involves using Mutually Unbiased Bases [11].

Up to this point, we need to assume that the system is
a specific dimension d, and then we are able to provide
the tools necessary for distinguishing the nature of said
system. This is problematic, because sometimes experi-
mentalists don’t even know what is the effective dimen-
sion of their system. Hence, we propose a very simple
1d0 → 1 QRAC (which is just state discrimination in
disguise), where d0 is a guess of the dimension size. If
the average success probability is less than 1, then we
express it as d

d0
, and d is the effective system size the

experimentalist should be working with. Specifically, the
experimentalist would know that his system is at least

dimension d, and if if it were this dimension, then she
could say how classical or quantum it is.

Finally, we conclude by saying that our main result
can be used to prove that for some cases PQa

> PQbQc

even if a < bc. This just shows that indeed having access
to the full Hilbert space is a great resource, and it is
this what we should be checking when developing new
quantum technologies.
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