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Superconducting qubit systems: recent experimental progress towards
fault-tolerant quantum computing at IBM

Antonio D. Córcoles1

1 IBM

Abstract. Quantum information processing has experienced dramatic experimental breakthroughs over
the last couple of years in many physical platforms. With current attained metrics, the horizon appears
promising for building increasingly powerful quantum processors. In this talk I will review recent progress
on quantum error detection and correction on superconducting qubit systems at IBM. Our experiments,
which are implemented within the stabilizer formalism present in the surface code architecture, aim at
demonstrating quantum error correcting protocols for fault-tolerant quantum computing. As a conclusion,
I will describe and reflect on the main experimental hurdles our field will have to tackle in the incoming
years.
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Observation of frequency-domain Hong-Ou-Mandel interference
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Abstract. Hong-Ou-Mandel (HOM) interference plays a key role in quantum optics and quantum infor-
mation processing. Although many types of HOM interference have been demonstrated by using photons,
plasmons, atoms and phonons, all of them essentially used the spatial or polarization degree of freedom.
In this work, we report the first observation of the HOM interference between two photons with different
frequencies. The frequency-domain HOM interferometer is implemented by a partial frequency conversion
in a nonlinear optical medium with a strong pump light. Our results have important consequences for
manipulating the photonic quantum states encoded in the frequency domain.

Keywords: Quantum interference, Nonlinear optics

1 Introduction

In the past three decades since the HOM interference
has been proposed and demonstrated with two photons
from spontaneous parametric down-conversion (SPDC)
process [1], huge varieties of experiments based on the
HOM interference revealed fundamental properties in
quantum physics, especially in quantum optics, and its
applications are widely spreading over quantum infor-
mation processing. The HOM interference has been ob-
served with not only photons but also other bosonic par-
ticles, e.g., surface plasmons[2], Helium 4 atoms[3] and
phonons[4]. In spite of such demonstrations using various
kinds of physical systems, to the best of our knowledge,
all of them essentially used the spatial degree of freedom
for the HOM interference, including the use of polariza-
tion modes of photons that are easily converted to and
from spatial modes. The demonstrations use a beam-
splitter (BS) which mixes the two particles in different
spatial/polarization modes.
In this work[5], we report the first observation of the

HOM interference between two photons with different
frequencies in optical region. In contrast to the spa-
tial interferometer, the frequency-domain HOM interfer-
ometer is implemented in a single spatial mode with a
nonlinear optical frequency conversion[6, 7, 8]. In the
experiment, we input a 780 nm photon and a 1522 nm
photon to the frequency converter that partially converts
the wavelengths of the photons between 780 nm and
1522 nm[8]. We measured coincidence counts between
the output photons at 780 nm and those at 1522 nm
from the frequency converter. The observed visibility
of the HOM interference was 0.71 ± 0.04, which clearly
exceeds the maximum value of 0.5 in the classical wave
theory.

∗kobayashi-t@qi.mp.es.osaka-u.ac.jp

2 Experimental setup

The experimental setup for the frequency-domain
HOM interference by using the partial frequency
converter[8] is shown in Fig. 1(a). We prepare a heralded
single photon at 780 nm in mode A and a weak coher-
ent light at 1522 nm in mode B with an average photon
number of ∼ 0.1. The two light pulses are combined
by a dichroic mirror (DM2) and then focused on a type-0
quasi-phase-matched periodically-poled LiNbO3 (PPLN)
waveguide for the frequency conversion.
The time difference between the two light pulses is ad-

justed by mirrors (M) on a motorized stage. The verti-
cally polarized cw pump laser at 1600 nm is combined
with the two input light pulses by DM3 and focused on
the PPLN waveguide. The effective pump power was
set to 140 mW which corresponds to the conversion effi-
ciency of ∼ 0.4. After the frequency converter, the light
pulses at 780 nm and 1522 nm are separated by DM4

and Bragg gratings (BGU2 and BGL2). They are then
measured by an avalanche photodiode with the quantum
efficiency of about 60% for 780-nm photons (DU2) and
by a superconducting single-photon detector (SSPD)[9]
with the quantum efficiency of about 60% for the 1522-
nm photons (DL). In order to observe the HOM interfer-
ence, we collect the threefold coincidence events among
the three detectors DU1,DU2 and DL.

3 Experimental result

The experimental result of the dependency of the
threefold coincidence counts on the optical delay is shown
in Fig. 1(b). The observed visibility of 0.71 ± 0.04 at
the zero delay point was obtained by the best fit to the
experimental data with a Gaussian. The high visibility
clearly shows the nonclassical HOM interference between
the two light pulses in a single spatial mode with differ-
ent frequencies. We also measured the visibilities at the
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Figure 1: (a) The experimental setup of the frequency-domain HOM interference. In the experiment, the heralded
single photon source (HSPS) at 780 nm and the weak coherent pulse (WCP) at 1522 nm are prepared to serve as two
input photons to the frequency-domain BS. (b) The observed HOM dip at 140-mW pump power. The circles represent
the experimental threefold coincidence counts. The solid curve is the Gaussian fit to the experimental counts. The
dashed curve is obtained from our theoretical model with the experimental parameters. The dashed horizontal line
describes the half values of the maximum of the fitting result. (c) The pump power dependence of the visibility. The
circles are obtained from the experimental result. The dashed curve is obtained from our theoretical model with the
experimental parameters.

pump power 50 mW and 290 mW, which corresponds to
the conversion efficiencies ∼ 0.2 and ∼ 0.7, respectively.
The experimental result is shown in Fig. 1(c). The ob-
served visibilities are 0.34±0.10 at 50 mW and 0.65±0.10
at 290 mW. From our theoretical model, main reasons
for the degradation of the visibility comes from the input
light pulses; the effect of the multiphoton components in
the coherent light pulse at 1522 nm and the broad band-
width of the heralded single photon at 780 nm. If we
use two single photons with the same bandwidth as that
of the coherent light pulse, the visibility will be 0.98 at
190-mW pump power.

4 Conclusion

In conclusion, we have demonstrated the frequency-
domain HOM interference between a heralded single pho-
ton at 780 nm and a weak laser light at 1522 nm in a sin-
gle spatial mode by using the partial frequency converter
based on the nonlinear optical effect. We observed the
visibility of 0.71±0.04, which clearly shows the nonclassi-
cal interference. We believe that our results give a novel
tool for exploiting frequency-domain quantum phenom-
ena and a way of scaling up the quantum information
processing.
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Realization of the contextuality-nonlocality tradeoff with a qubit-qutrit
photon pair
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Abstract. We report our experimental results on the no-disturbance principle, which imposes a funda-
mental monogamy relation on contextuality vs non-locality. We employ a photonic qutrit-qubit hybrid to
explore no-disturbance monogamy at the quantum boundary spanned by non-contextuality and locality in-
equalities. In particular we realize the single point where the quantum boundary meets the no-disturbance
boundary. Our results agree with quantum theory and satisfy the stringent monogamy relation thereby
providing direct experimental evidence of a tradeoff between locally contextual correlations and spatially
separated correlations. Thus, our experiment provides evidence that entanglement is a particular manifes-
tation of a more fundamental quantum resource.

Keywords: nonlocality, contextuality, monogamy relation, entanglement

Quantum systems exhibit a wide range of non-classical
and counter-intuitive phenomena. Corresponding exper-
imental tests have been performed and support the ne-
cessity of quantum mechanics. The relation between
contextual correlations and non-local correlations has
been studied recently. It has been proven that the no-
disturbance (ND) principle imposes monogamy relation
between contextuality and non-locality and the quantum
version of this monogamy relation is even more stringent.

We demonstrate no-disturbance monogamy spanned
by non-contextuality and locality inequalities [1], which
was theoretically proposed by Kurzyński et al. in [2].
Consider a scenario with two spatial separated observers
Alice and Bob. Alice randomly chooses two compatible
measurements from five measurements {Ai} (i = 1, ..., 5)
and performs them on her system. Each two of Ai and
A(i+1) mod 5 are compatible. Whereas Bob chooses one
of two incompatible measurements B1, B2 and performs
them on his system. Each measurement has two out-
comes ±1.

One can test contextuality on Alice’s system via KCBS
inequality

κA =〈A1A2〉+ 〈A2A3〉+ 〈A3A4〉+ 〈A4A5〉

+ 〈A5A1〉
NCHV

> −3. (1)

Whereas CHSH locality inequality

βAB = 〈A1B1〉+〈A1B2〉+〈A4B1〉−〈A4B2〉
LHV
> −2 (2)

can be tested on the systems of Alice and Bob.
The ND principle imposes a nontrivial tradeoff be-

tween the violations of CHSH and KCBS inequalities,
i.e.,

βAB + κA

ND
> −5. (3)

∗gnep.eux@gmail.com

Figure 1: The region spanned by the allowed aver-
age values of CHSH and KCBS operators 〈CHSH〉 and
〈KCBS〉 can be divided into two overlapping parts and
bounded by the solid curves. Every quantum state pro-
duces a point inside the region. However only the spe-
cific states can produce the points on the boundaries.
The solid black straight line denotes the ND boundary.
Experimental results of 〈CHSH〉 and 〈KCBS〉 are rep-
resented by the black triangles and compared to their
theoretical predictions (red dots), producing the points
on the boundary of the quantum region.

According to the ND principle, only one of these inequal-
ities can be violated at a time. Quantum theory shows an
additional monogamy relation between NCHV and LHV
by restricting the possible values of (βAB , κA) within a
region in the parametric space spanned by the value of
these two inequalities. The more stringent monogamy re-
lation makes the quantum region to be smaller than that
imposed by the ND principle. Therefore the boundary
of the quantum region is more interesting. The quantum
boundary touches the ND boundary in a single point.

To experimentally investigate quantum monogamy re-
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Figure 2: Experimental setup. Alice and Bob share entangled photon pairs which are generated via type-I SPDC. For
Alice, cascade setup for sequentially measuring Ai and Ai+1 is used to test KCBS inequality. Whereas, to test CHSH
inequality Bj is measured via standard polarization measurements using HWP (Hb) and PBS.

lation between KCBS and CHSH inequalities, we produce
the boundary of the quantum region in the parametric
space spanned by the value of the two inequalities and
especially the single point where the quantum boundary
touches the ND boundary.

As illustrated in Fig. 2, our experimental setup con-
sists of three modules: state preparation, Alice’s mea-
surement, and Bob’s measurement. In the state prepara-
tion module, entangled photons of 801.6nm wavelength
are generated in a type-I spontaneous parametric down-
conversion (SPDC) process where two joint 0.5mm-thick
β-barium-borate (β-BBO) crystals are pumped by a CW
diode laser with 90mW of power. The visibility of en-
tangled photonic state is larger than 95%. One of the
photons as a qubit system is sent to Bob for his measure-
ment. The other is then split by a birefringent calcite
beam displacer (BD) into two parallel spatial modes. By
employing the polarizations and spatial modes of a single
photon, we can prepare arbitrary state of a qutrit.

To measure Alice’s observables Ai and their correla-
tions, we use cascaded Mach-Zehnder interferometers in
three steps. The first step is to realize the measure-
ment of Ai. Measuring AiAi+1 requires two sequential
measurements on the same photon. Since the single-
observable measuring devices map its eigenstates to a
fixed spatial path and polarization, with HWPs and BDs
we can re-create the corresponding eigenstates of Ai for
further measurement Ai+1 in the second step. Two out-
comes of Ai are each directed into identical but separated
devices. In the third step we use the same interferome-
ters in the first step to measurement Ai+1. Two identical
Ai+1 measuring devices are built, each of which is con-
nected to the corresponding output port of the measuring
device of Ai. The outcomes of the measurement AiAi+1

are given by the responses of the detectors.
For Bob, the measurement of observable Bj is standard

polarization measurement using HWP (Hb) and PBS.
The photons are detected by Dh and Dv right after the
PBS. For the photon detection, we only register the co-
incidence rates between the detectors of Alice and Bob.

We produce eight points on the quantum boundary
corresponding to eight different input states. The ex-
perimental results on the average values of CHSH and

KCBS operators are shown in Fig. 1. It is clear that the
inequality (3) is always satisfied in experiment, and the
violation of either KCBS or CHSH inequality forbids the
violation of the other, in agreement with the quantum
theory predictions. Especially, our results show the in-
equality (3) is tight, i.e., there is a state for which the
inequality becomes an equality. We present the mea-
sured values 〈CHSH〉ex = −2.061± 0.120, 〈KCBS〉ex =
−2.826 ± 0.151 in the single point where the quantum
boundary touches the ND boundary and the inequality
becomes an equality, i.e., βAB + κA = −5 is satisfied
within error bars.

The fact that the origin of Bell inequalities and con-
textual inequalities is the existence of joint probability
distributions naturally raises the question as to whether
similar monogamy relations exist between contextual cor-
relations and nonlocal correlations. Our experiment pro-
vides an answer to this question. We observe the fun-
damental monogamy relation between contextuality and
non-locality in a photonic qutrit-qubit system and show
the first experimental evidence of a tradeoff between lo-
cally contextual correlations and spatially separated cor-
relations imposed by quantum theory. The existence
of the monogamy relation suggests the existence of a
quantum resource of which entanglement is a particular
form. The resource required to violate KCBS inequality
can be transformed into entanglement which consumes
to violate CHSH inequality. Our experiment sheds new
light for further explorations of this quantum resource.
Furthermore our results suggest monogamy relations be-
tween different types of correlations might be ubiquitous
in nature and pave the way for further research on these
monogamy relations.
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One-way and reference-frame independent EPR-steering
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Abstract. Einstein-Podolsky-Rosen steering is a type of quantum correlation intermediate to entan-
glement and Bell nonlocality. It is widely investigated for its foundational aspects and applications in
quantum information and communication tasks. Here, we prove and experimentally observe that steering
can be one-way, i.e. the ability to complete the protocol is asymmetric under change of the parties. We
also prove and experimentally observe that steering can be demonstrated with 100% probability that this
is invariant to rotations of the measurement settings.
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Quantum entanglement is a key resource for quantum
information and communication tasks, such as teleporta-
tion, entanglement swapping and quantum key distribu-
tion. Einstein-Podolsky-Rosen (EPR) steering is a quan-
tum correlation that is distinct from other nonclassical
correlations such as Bell nonlocality (1) and quantum
nonseparability. Because of the nonlocal correlations,
measuring one system affects the measurement results
on the other system, hence the name ‘steering’.

1 Asymmetric steering

Moving through the classes of quantum nonlocality,
from Bell nonlocality towards nonseparability gives ac-
cess to protocols which are more robust to noise (2) for
projective measurements at the expense of increasing the
number of parties and apparatus that need to be trusted.
For entanglement witness tests and Bell inequality vio-
lations, both observers are untrusted or trusted respec-
tively. However, EPR-steering, which was only recently
formalized by Wiseman et al. (3), features a fundamen-
tal asymmetry in the sense that in a steering test the
observers play different roles: one party is trusted while
the other is untrusted. While the previous classes are
symmetric —the effects persist under exchange of the
parties - this does not necessarily hold for EPR-steering.
The question which arises is whether sharing an asym-
metric state can result in one-way EPR steering, where
e.g. Alice can steer Bob’s measurement outcomes, but
not the other way around.

This question was first experimentally addressed by
Händchen et al., who demonstrated Gaussian one-way
EPR steering (4). However their investigation was re-
stricted to Gaussian measurements on Gaussian states.
However, there exists explicit examples of supposedly
one-way steerable Gaussian states actually being two-
way steerable using a broader class of measurements (5).
Do states exist which are one-way steerable for arbi-
trary measurements? The answer is yes. Two indepen-
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dent groups, Nicolas Brunner’s in Geneva and Howard
Wiseman’s in Brisbane, theoretically proved the exis-
tence of such states. Brunner’s approach holds for
arbitrary measurements with infinite settings, the so-
called infinite-setting positive-operator-valued measures
(POVMs), with the cost of using an exotic family of
states to demonstrate the effect over an extremely small
parameter range, which is unsuitable for experimental
observation (6). Independently, Evans et al. showed
one-way steerability exists for projective measurements
of Werner states and loss (7), which are easier to realise
experimentally.

In our work (5) we ask if we can extend the result
in Ref. (6) to find a simple state which is steerable in
one direction but cannot be steered in the other direc-
tion, even for the case of arbitrary measurements and
infinite settings. We consider a shared Werner state for
optical polarisation qubits, ρW (µ) = µ |ψs〉 〈ψs| + (1 −
µ)/4 Ix, where µ ∈ [0, 1], Ix is the identity and |ψs〉 =
(|01〉 − |10〉)/

√
2 (7). Using a theorem of Ref.(6) allowed

us to construct a state ρAB = 1−p
3 ρW + p+2

3
IA
2 ⊗ |v〉 〈v|,

where |v〉 is the vacuum state of Bob’s mode and the
probability p represents adding asymmetric loss in his
arm. This state is one-way steerable for POVMs, if we
can fulfil the condition p > 2µ+1

3 .
In our experiment we investigated three different

regimes: two-way steering, one-way steering for projec-
tive measurements and one-way steering for POVMs.
The state for each steering regime was reconstructed
via quantum state tomography and its fidelity with the
closest Werner state, and its parameter µ, was deter-
mined (5). To demonstrate two-way steering, we mea-
sured Alice’s steering parameter to be 8.4 standard devi-
ations (SDs) above the classical bound and Bob’s steering
parameter violating the steering inequality by 5.1 SDs.
Next we realized a one-way steerable state for projective
measurements by inserting a loss in Bob’s line (Fig.1).
Alice remained able to steer Bob’s state, violating the
inequality by 7.3 SDs. The loss of information in Bob’s
arm made him unable to steer the other party. Finally,
we investigated the regime where only one-way steering
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is possible, even for arbitrary POVMs. We were able to
violate the inequality by 6.6 SDs in one direction. In
the other direction, tomographic reconstruction verified
the creation of a state that was provably unsteerable for
POVMs. Thus, we observe genuine one-way EPR steer-
ing for the first time. We note that an independent
demonstration was realised in Ref.(8). While their re-
sult is restricted to two measurement settings, our result
holds for POVMs.
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Figure 1: Experimental scheme. Both, Alice and Bob,
are in control of their line and their detectors. The party
which is steering is also in control of the source. Entan-
gled photons at 820 nm were produced via SPDC (9).
Different measurement settings are realized by rotating
half- and quarter-wave plates relative to the polarizing
beam splitters. The loss, inserted for one-way EPR-
steering, was realized by a gradient neutral density filter
mounted in front of Bob’s line to control the fraction of
photons received. Long pass (LP) filters remove pump
photons co-propagating with the qubits before the latter
are coupled into fibres and detected by photon counting
modules and counting electronics.

2 Rotationally symmetric steering tests

In another experiment we also characterised the ro-
tational invariance of EPR-steering. Establishing such
a common reference frame —necessary for many quan-
tum information tasks - is a nontrivial issue and can
be highly resource intensive and technically demanding.
The question is whether quantum nonlocality can be
demonstrated without a shared reference frame. This
question was experimentally (10; 11) answered for the
CHSH inequality. Here, we formulate rotationally invari-
ant steering inequalities formmeasurement directions for
Alice and n directions for Bob. In our experiment, they
can estimate the average correlations Mjk := 〈AjBk〉
from their measurement outcomes. Alice has to violate
the EPR-steering inequality ‖M‖tr := tr

√
MTM ≤

√
m

for the trace-norm of the correlation matrix to demon-
strate steering of Bob’s state. For m=n=2, this trace-
norm inequality is the best possible steering inequality
that is invariant under local rotations that preserve the
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Figure 2: The Poincaré spheres show measurement di-
rections (blue and red). Alice’s measurement directions
are rotated by 90◦ in 10◦ steps (dots) along the plane
(grey) which was spanned by a1(blue) and a2 (red) form-
ing an angle of Φ = 0◦ (a), and Φ = 64◦ (b) with the σx
axis. We compare experimental data for the trace-norm
inequality (blue square) and CFFW inequality (red cir-
cles) with modeled curves using a maximally entangled
state (dashed line) and a Werner state ρW (µ) (solid line).

plane of Alice and Bob’s measurement directions. If Al-
ice’s and Bob’s measurement directions are sharing the
same plane, EPR-steering is always possible, regardless
of any rotations in the plane for a Werner state with
µ > 1√

2
. We compare our inequality with the CFFW

inequality (12). In our experiment (Fig.1), we consider
m = n = 2 orthogonal measurement directions for Al-
ice and Bob in the σx − σz plane (Fig.2). While Bob’s
measurement directions remained fixed along σx and σz,
Alice’s were rotated by w = 10◦steps. We compared our
trace-norm inequality (blue squares) with the CFFW in-
equality (red circles) and observed for both a violation
of the bound (Fig.2a). Rotating by angle Φ out of the
shared plane demonstrated the dependency of both in-
equalities on a shared measurement plane. At our chosen
angle, using the trace-norm inequality did not allow us
to demonstrate steering, while we could still violate the
CFFW inequality despite its dependence on the rotation
w along the plane (Fig.2b).
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Abstract. In this paper we establish a criterion of physical consistency for any resource theory. We show
that all currently proposed basis-dependent theories of coherence fail to satisfy this criterion. We further
characterize the physically consistent resource theory of coherence and find its operational power to be
quite limited. After relaxing the condition of physical consistency, a number of new coherence measures
are introduced based on relative Rényi entropies, and we study incoherent state transformations under
different operational classes, including the newly proposed dephasing-covariant operations. Necessary and
sufficient conditions are derived for the convertibility of qubit states.
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1 Introduction

In quantum systems, the notion of coherence is ubiq-
uitous. For instance, the state |+〉 =

√
1/2(|0〉+ |1〉) can

be seen as a coherent superposition of the states |0〉 and
|1〉, while the state |0〉 can itself be seen as a coherent
superposition of |+〉 and |−〉 =

√
1/2(|0〉 − |1〉). Thus,

without further qualification, it is completely ambiguous
to say that one state has coherence while another does
not. One way to make such a statement meaningful in-
volves first identifying a fixed reference basis, and then
defining coherence with respect to this basis. More pre-
cisely, a basis for the system’s state space is specified
(called the incoherent basis), and then a given state is
deemed incoherent if it is diagonal in this basis.

Recently, researchers have used this distinction be-
tween coherent and incoherent states to construct re-
source theories of quantum coherence [1, 2, 3, 4]. A
general resource theory for a quantum system is char-
acterized by a pair (F ,O), where F is a set of “free”
states and O is a set of “free” quantum operations. Any
state that does not belong to F is then deemed a resource
state. Entanglement theory provides a prototypical ex-
ample of a resource theory in which the free states are
the separable or unentangled states, and the free oper-
ations are local operations and classical communication
(LOCC). For quantum coherence, the free states are the
incoherent states I. As for the free or “incoherent” op-
erations, many different approaches have been proposed,
and a primary objective of this paper is to consider the
physical meaning behind these approaches.

Specifically, we propose one notion of what it means
for a quantum resource theory to be “physical,” and
then we see what type of incoherent operations fits this
prescription. In principle, any pair (F ,O) defines a re-
source theory, provided the operations of O act invari-
antly on F ; i.e. E(ρ) ∈ F for all ρ ∈ F and all E ∈ O.
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However, this is just a mathematical restriction placed
on the maps belonging to O. It does not imply that
E ∈ O can actually be physically implemented without
generating or consuming additional resource. The issue
is a bit subtle here since in quantum mechanics, physi-
cal operations on one system ultimately arise from uni-
tary dynamics and projective measurements on a larger
system, a process mathematically described by a Stine-
spring dilation. A resource theory (F ,O) defined on
system A is said to be physically consistent if every
free operation E ∈ O can be obtained by an auxiliary
state ρ̂B , a joint unitary UAB , and a projective mea-
surement {Pk}k that are all free in an extended resource
theory (F ′,O′) defined a larger system AB, for which
F = TrBF ′ := {TrB(ρAB) : ρAB ∈ F ′}. For example,
LOCC renders a physically consistent resource theory of
entanglement since any LOCC operation can be imple-
mented using only local unitaries and projections.

The most well-known resources theories of quantum
coherence are based on either Maximal Incoherent Op-
erations (MIO) [1], Incoherent Operations (IO) [2], or
Strictly Incoherent Operations (SIO) [3, 4]. We observe
that none of these offer a physically consistent resource
theory as just defined, and the true analog to LOCC
in coherence theory has been lacking. We identify this
hitherto missing piece as the class of physically incoher-
ent operations (PIO). The previously studied operations
MIO/IO/SIO are much closer akin to separable or non-
entangling operations in entanglement theory, and we
clarify what sort of physical interpretations can be given
to these operations. The relationship between the differ-
ent operational classes is depicted described by PIO ⊂
SIO ⊂ IO ⊂ MIO.

2 Results

The following summarizes our main results. First, we
fully characterize the class of physically incoherent oper-
ations (PIO).
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Proposition 1 A CPTP map E is a physically incoher-
ent operation if and only if it can be expressed as a con-
vex combination of maps each having Kraus operators
{Kj}rj=1 of the form

Kj = UjPj =
∑
x

eiθx |πj(x)〉〈x|Pj , (1)

where the Pj form an orthogonal and complete set of in-
coherent projectors on system A and πj are permutations.

Necessary and sufficient conditions for state transforma-
tions are derived.

Proposition 2 For any two state |ψ〉 and |φ〉, the trans-
formation |ψ〉 → |φ〉 is possible by PIO if and only if

|ψ〉 =
k∑
i=1

√
piUi|φ〉, (2)

where the Ui are incoherent isometries such that
PiUi|φ〉 = Ui|φ〉 for an orthogonal and complete set of
incoherent projectors {Pi}i.

While we find that PIO allows for optimal distillation of
maximal coherence from partially coherent pure states
in the asymptotic limit of many copies, the process
is strongly irreversible. That is, maximally coherent
states cannot be diluted into weakly coherent states at
a nonzero rate, and they are thus curiously found to be
the least powerful among all coherent states in terms of
asymptotic convertibility.

Given this limitation of PIO and its similar weakness
on the finite-copy level, it is therefore desirable from a
theoretical perspective to consider more general opera-
tions. Consequently, we shift our focus to the develop-
ment of coherence resource theories under different re-
laxations of PIO. To this end, we introduce the class of
dephasing-covariant incoherent operations (DIO), which
to our knowledge has never discussed before in litera-
ture. We provide physical motivation for DIO and show
that these operations are just as powerful as Maximal
Incoherent Operations (MIO) when acting on qubits. It
turns out that all classes of incoherent operations behave
equivalently for this task, and in fact, state convertiba-
bility depends on just two incoherent monotones. The
first is the Robustness of Coherence, and is defined as

CR(ρ) = min
t≥0

{
t
∣∣∣ ρ+ tσ

1 + t
∈ I, σ ≥ 0

}
.

Here we introduce a new type of robustness measure that
we call the ∆-Robustness of Coherence:

C∆,R(ρ) = min
t≥0

{
t
∣∣∣ ρ+ tσ

1 + t
∈ I, σ ≥ 0, ∆(σ − ρ) = 0

}
.

While CR is a monotone under MIO in general, for qubits
C∆,R is also a MIO monotone. These two measures com-
pletely characterize qubit state transformations, as we
prove in this paper.

Theorem 3 For qubit state ρ and σ, the transformation
ρ→ σ is possible by either SIO, DIO, IO, or MIO if and
only if both CR(ρ) ≥ CR(σ) and C∆,R(ρ) ≥ C∆,R(σ).

Additional results include:

• We show that the so-called majorization condition
decides transformation feasibility for the classes
SIO and a special subclass of IO that we denote
by sIO. However, whether or not the majorization
condition also holds for IO remains an open prob-
lem and we point out mistakes in recent proofs
claiming it does. By constructing an explicit family
of transformations, we show that the majorization
condition can be violated by MIO - even stronger
the Schmidt rank can be increased by MIO. In
addition, we demonstrate an operational equiva-
lence between incoherent pure state transforma-
tions using PIO/SIO/sIO and the transformation
of bipartite maximally correlated states using zero-
communication LOCC/one-way LOCC/ two-way
LOCC, respectively.

• We introduce a number of new incoherent mono-
tones/measures for the various operational classes
based. All of these measures are unified within a
very general framework for constructing incoher-
ent measures. Two class of measures included in
this framework are the relative Rényi α-entropies
of incoherence and the quantum relative Rényi α-
entropies of incoherence.

• We discuss in greater detail the relationship be-
tween coherence resource theories based on asym-
metry and those using a basis-dependent definition
of coherence. We develop the resource theories of
G-asymmetry and N -asymmetry, where G is the
group of all incoherent unitaries and N is the group
of all diagonal incoherent unitaries.

References
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There has currently been much interest in construct-
ing a resource theory of quantum coherence [1, 15, 2,
4, 13, 31, 29, 25, 20, 26, 30], in part because of recent
experimental and numerical findings that suggest quan-
tum coherence alone can enhance or impact physical dy-
namics in biology [17, 16, 12, 14], and thermodynamics
[18, 21]. In a standard resource-theoretic treatment of
quantum coherence, the free (or “incoherent”) states are
those that are diagonal in some fixed reference (or “in-
coherent”) basis. Different classes of allowed (or “inco-
herent”) operations have been proposed in the literature
[1, 2, 20, 26, 30, 5, 19], however an essential requirement is
that the incoherent operations act invariantly on the set
of diagonal density matrices. Incoherent operations can
then be seen as one of the most basic generalizations of
classical operations since their action on diagonal states
can always be simulated by classical processing.

In addition to coherence, entanglement is another pre-
cious resource in quantum information science. To prop-
erly unify coherence and entanglement under a common
resource-theoretic framework, one must modify the sce-
nario by adopting the “distant lab” perspective in which
two or more parties share a quantum system but they are
spatially separated from one another [24, 11]. In this set-
ting, entanglement cannot be generated between the par-
ties and it becomes another resource in play. When the
constraint of locality is added to the incoherent frame-
work, the allowable operations for Alice and Bob are
then local incoherent operations and classical commu-
nication (LIOCC). The hybrid coherence-entanglement
theory described here is similar in spirit to previous
work on the locality-restricted resource theories of pu-
rity and asymmetry. The goal of this paper is to inves-
tigate the LIOCC convertibility between entanglement
and coherence as resources in quantum information pro-
cessing. For instance, how much local coherence and
shared entanglement do Alice (A) and Bob (B) need to
prepare a particular bipartite state ρAB using LIOCC?
Conversely, how much coherence and entanglement can
be distilled from a given state ρAB using LIOCC? We
refer the detailed introduction of the bipartite coher-
ence theory to the full paper [6]. The canonical resource
states in the bipartite LIOCC framework are the maxi-
mally coherent bits (CoBits), |ΦA〉 :=

√
1/2(|0〉A+ |1〉A)
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and |ΦB〉 :=
√

1/2(|0〉B + |1〉B) for Alice and Bob’s
systems respectively [2], as well as the entangled state
|ΦAB〉 :=

√
1/2(|00〉+ |11〉), which we will call the max-

imally coherent entangled bit (eCoBit).
Asymptotic Manipulations of Entanglement and
Coherence: We now describe the primary tasks stud-
ied in this paper, which can be seen as the resource-
theoretic tasks recently analyzed by Winter and Yang
in Ref. [29] but now with additional locality constraints.
All of the detailed proofs can be found in Ref. [6], and
here we just present the results. Let us begin with
the problem of asymptotic state formation. A triple
(RA, RB , E

co) is an achievable coherence-entanglement
formation triple for the state ρAB if for every ε > 0
there exists an LIOCC operation L and integer n such

that L
(

Φ
⊗dn(RA+ε)e
A ⊗ Φ

⊗dn(RB+ε)e
B ⊗ Φ

⊗dn(Eco+ε)e
A′B′

)
ε
≈

ρ⊗n. Dual to the task of formation is resource distilla-
tion. A triple (RA, RB , E

co) is an achievable coherence-
entanglement distillation triple for ρAB if for every
ε > 0 there exists an LIOCC operation L and inte-

ger n such that L(ρ⊗n)
ε
≈ Φ

⊗bn(RA−ε)c
A ⊗ Φ

⊗bn(RB−ε)c
B ⊗

Φ
⊗bn(Eco−ε)c
AB . As we are dealing with asymptotic trans-

formations, we should expect the optimal rate triples
to be given by entropic quantities. We will also be in-
terested in these entropic quantities after sending our
state ωAB through the completely dephasing channel,
∆(ω) :=

∑
xy |xy〉〈xy|ω|xy〉〈xy|. It will be convenient to

think of ∆(ω) as encoding random variables XY having
joint distribution p(x, y) = 〈xy|∆(ω)|xy〉. For this rea-
son, we follow standard convention and replace the labels
(A,B)→ (X,Y ) when discussing a dephased state. Our
first main result completely characterizes the achievable
rate region for the LIOCC formation of bipartite pure
states.

Theorem 1 For a pure state |Ψ〉AB the following triples
are achievable coherence-entanglement formation rates

(RA, RB , E
co) =

(
0, S(Y |X)∆(Ψ) , S(X)∆(Ψ)

)
(1)

(RA, RB , E
co) =

(
S(X)∆(Ψ), S(Y |X)∆(Ψ), E(Ψ)

)
(2)

(RA, RB , E
co) =

(
0, 0, S(XY )∆(Ψ)

)
(3)

as well as the points obtained by interchanging A ↔ B
in Eqns. (1) – (3). Moreover, these points are optimal
in the sense that any achievable rate triple must satisfy
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(i) Eco ≥ E(Ψ), (ii) RA +RB ≥ S(XY )∆(Ψ), (iii) RB +
Eco ≥ S(XY )∆(Ψ).

For a mixed state ρAB , a formation protocol can be
constructed that achieves the average rates for any en-
semble {pk, |ϕk〉AB} such that ρ =

∑
k pk|ϕk〉〈ϕk| [3].

For instance, one can consider an ensemble whose aver-
age bipartite coherence attains the coherence of forma-
tion CF for ρ; i.e. it is an ensemble {pk, |ϕk〉AB} for
ρ that minimizes

∑
k pkS(XY )∆(ϕk) [31, 29]. Then for

a mixed state ρ, the coherence rate sum RA + RB of
Eq. (2) can attain the coherence of formation CF (ρ). In
the global setting where Alice and Bob are allowed to
perform joint operations across system AB, it has been
shown that CF (ρ) quantifies the optimal coherence con-
sumption rate for generating ρ using global incoherent
operations [29]. Our result then intuitively says that in
the restricted LIOCC setting, the same coherence rate
is sufficient to generate ρ, however they now need ad-
ditional entanglement at a rate

∑
k pkE(ϕk), where the

ensemble {pk, |ϕk〉AB} minimizes the average coherence
of ρ.

Next, we introduce a new LIOCC monotone and pro-
vide its operational interpretation. To do so, we recall
the recently studied task of assisted coherence distilla-
tion, which involves one party helping another distill as
much coherence as possible through general quantum op-
erations performed on the helper side and incoherent op-
erations performed on the distillation side [7]. For a
given state ρAB , the optimal asymptotic rate of coher-
ence distillation on Bob’s side when Alice helps is de-

noted by C
A|B
a (ρAB). When the roles are switched, the

optimal asymptotic rate is denoted by C
B|A
a (ρAB). It

was shown in Ref. [7] that C
A|B
a (ρAB) = S(Y )∆(Ψ) and

C
B|A
a (ρAB) = S(X)∆(Ψ). With these quantities in hand,

we define for a bipartite pure state |Ψ〉AB the function

CL(Ψ) = CA|Ba (Ψ) + CB|Aa (Ψ)− E(Ψ)

= S(X)∆(Ψ) + S(Y )∆(Ψ) − E(Ψ). (4)

Its extension to mixed states can be de-
fined by a convex roof optimization [27]:
CL(ρAB) = inf{pk,|ϕk〉AB}

∑
k pkCL(ϕABk ) for which

ρAB =
∑
k pk|ϕk〉〈ϕk|.

Theorem 2 The function CL is an LIOCC monotone.

We note that this is the first monotone of its kind since
it behaves monotonically under LIOCC, but not general
LOCC or even under LQICC, the latter being an oper-
ational class in which only one of the parties is required
to perform incoherent operations (as opposed to LIOCC
where both parties must perform incoherent operations)
[7]. Using the monotonicity of CL, we are able to derive
tight upper bounds on coherence distillation rates.

Theorem 3 For a pure state |Ψ〉AB the following triples
are achievable coherence-entanglement distillation rates

(RA, RB , E
co) =

(
S(X)∆(Ψ) − E(Ψ), S(Y )∆(Ψ), 0

)
(5)

(RA, RB , E
co) =

(
0, S(Y |X)∆(Ψ), I(X : Y )∆(Ψ)

)
, (6)

as well as the points obtained by interchanging A↔ B in
Eqn. (5) and (6). Moreover, these points are optimal in
the sense that any achievable rate triple must satisfy (i)
RA +RB ≤ CL(Ψ) and (ii) RB + Eco ≤ S(Y )∆(Ψ).

This theorem endows CL with the operational meaning of
quantifying how much local coherence can be simultane-
ously distilled from a pure state. For a state |Ψ〉 the max-

imum that Alice can help Bob distill coherence is C
A|B
a

while the maximum that Bob can help Alice is C
B|A
a .

Evidently, they cannot both simultaneously help each
other at these optimal rates. Instead, they are bounded
away from simultaneous optimality at a rate equaling
their shared entanglement. It is still unknown the precise
range of achievable distillation triples (RA, RB , E

co
max),

where Ecomax is the maximum eCoBit distillation rate.
While we are able to prove that Ecomax is the regular-
ized version of I(X : Y )∆(Ψ) optimized over all LIOCC
protocols, we have no single-letter expression for this rate
nor do we know the achievable local coherence rates for
optimal protocols.

A natural question is whether Ecomax(Ψ) = E(Ψ).
While this question remains open, we can show that E(Ψ)
is achievable if the Schmidt basis of the final state need
not be incoherent. More precisely, we say a number R is
an achievable LIOCC entanglement distillation rate if for
every ε > 0, there exists an LIOCC protocol L acting on n

copies of Ψ such that L(Ψ⊗n)
ε
≈ Λd, where Λd is a d⊗ d

maximally entangled pure state (i.e. ΛA = ΛB = I/d)
with 1

n log d > R − ε. The largest achievable distillation
rate will be denoted by ELIOCCD (Ψ).

Theorem 4 ELIOCCD (Ψ) = E(Ψ).

It is interesting to compare the coherence distilla-
tion rates using incoherent operations under different
types of locality constraints. In Refs. [23, 8, 22, 10],
similar comparisons were made in terms of purity (or
work-information) extraction. Let CGlobalD , CLIOCCD , and
CLIOD denote the optimal rate sum RA + RB of lo-
cal coherence distillation using global incoherent oper-
ations, LIOCC, and local incoherent operations (with
no classical communication), respectively. In complete
analogy to [23, 8, 22, 10], we define the nonlocal co-
herence deficit of a bipartite state ρAB as δ(ρAB) =
CGlobalD (ρAB)−CLIOCCD (ρAB) and the LIOCC coherence
deficit as δc(ρ

AB) = CLIOCCD (ρAB) − CLIOD (ρAB). In-
tuitively, the quantity δ(ρAB) quantifies the coherence
in a state that can only be accessed using nonlocal in-
coherent operations. Likewise, δc(ρ

AB) gives the coher-
ence in ρAB that requires classical communication to be
obtained. The results of Winter and Yang imply that
CGlobalD (Ψ) = S(XY )∆(Ψ) and CLIOD (Ψ) = S(X)∆(Ψ) +
S(Y )∆(Ψ) − 2E(Ψ) for a bipartite pure state |Ψ〉AB [28].
Combined with Theorem 3, we can compute the two co-
herence deficits for pure states:

δ(Ψ) = E(Ψ)− I(X : Y )∆(Ψ) (7)

δc(Ψ) = E(Ψ). (8)

It is curious that the entanglement E(Ψ) quantifies the
coherence gain unlocked by classical communication.

11



Note that a similar phenomenon exists in the resource
theory of purity; namely, the quantum deficit ∆(Ψ) and
classical deficit ∆c(Ψ) measure the analogous differences
in local purity distillation by so-called “closed opera-
tions” (CO), and they are given by ∆(Ψ) = ∆c(Ψ) =
E(Ψ) [23, 8]. For the task of distilling CoBits, every pro-
tocol using incoherent operations can be seen as one using
closed operations by accounting for all ancilla systems at
the start of protocol [5]. However, closed operations allow
for arbitrary unitary rotations, which are forbidden in co-
herence theory. The term I(X : Y )∆(Ψ) in δ(Ψ) identifies
precisely the basis dependence in coherence theory and
shows how this decreases the deficit δ(Ψ) relative ∆(Ψ).
On the other hand, there is evidently no basis depen-
dency in the classical deficit δc(Ψ) and it is equivalent to
∆c(Ψ).

Although our distillation results so far have only ap-
plied to pure states, we can deduce a very general result
concerning the distillability of mixed states.

Theorem 5 A mixed state ρAB has (LOCC) distillable
entanglement iff entanglement can be distilled using LI-
OCC.

Strengthening entanglement distillability crite-
rion: As shown in Ref. [9], a state ρ has distillable
entanglement iff for some k there exists rank two op-
erators A and B such that the (unnormalized) state
A ⊗ Bρ⊗kA ⊗ B is entangled. By Theorem 3 and fol-
lowing the same argumentation of Ref. [9], we can fur-
ther require that the A and B are incoherent operators;
that is, they have the form A = |0〉〈α0| + |1〉〈α1| and
B = |0〉〈β0| + |1〉〈β1| where ∆(α0) := ∆(|α0〉〈α0|) is
orthogonal to ∆(α1) := ∆(|α1〉〈α1|), and likewise for
∆(β0) := ∆(|β0〉〈β0|) for ∆(β1) := ∆(|β1〉〈β1|). We are
thus able to add an additional condition to the distillabil-
ity criterion of Ref. [9]. We hope that the strengthened
distillability criterion can be useful in the long-standing
search for NPT bound entanglement.
Discussion: We would like to comment on the partic-
ular type of incoherent operations studied in this letter.
As noted in the introduction, there have been various
proposals for the “free” class of operations in a resource
theory of coherence. This letter has adopted the inco-
herent operations (IO) of Baumgratz et al. [2], where
each Kraus operator in a measurement just needs to be
incoherence-preserving. While the class IO has draw-
backs in terms of formulating a full physically consis-
tent resource theory of coherence [30, 5], it nevertheless
seems unlikely that the results of this letter would remain
true if other operational classes were considered. For ex-
ample, the strictly incoherent operations (SIO) proposed
by Yadin et al. are unable to convert one eCoBit into a
CoBit [30]. Thus, we believe that the interesting con-
nections between IO coherence theory and entanglement
demonstrated in this letter make a positive case for why
IO is important in quantum information theory, indepen-
dent of any other motivation. In fact, one could even put
coherence aside and view LIOCC as just being a simpli-
fied subset of LOCC. As we have shown here, nontriv-
ial conclusions about entanglement can indeed be drawn

by studying LOCC from “the inside.” This approach
is somewhat dual to the standard practice of studying
LOCC using more general separable operations (SEP),
the chain of inclusions being LIOCC ⊂ LOCC ⊂ SEP.
Interesting future work would be to consider more gen-
eral connections between coherence non-generating and
entanglement non-generating operations.
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Abstract. Nielsen developed that the condition for the LOCC-convertibility of two pure states of a
bipartite system in finite dimensional systems is given by a majorization relation of Schmidt cofficients of
them. The key of the proof of this is Birkhoff’s theorem in matrix theory. In this study, we establish an
infinite dimensional version of Birkhoff’s theorem and apply them to prove that the condition for LOCC
convertibility holds in infinite dimensional systems as in the similar form in finite dimensional.
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1 Introduction

Extensive efforts have been devoted to understand lo-
cal operations and classical communications (LOCC),
since LOCC protocols have many applications in quan-
tum information theory. Among them, the convertibility
under LOCC is one of the important topics in quantum
information theory. Nielsen [1] developed the condition
for the LOCC-convertibility of two pure states of a bi-
partite system in finite dimensional systems.
For pure states |ψ⟩⟨ψ| and |ϕ⟩⟨ϕ| of a bipartite system,

we say that |ψ⟩⟨ψ| is majorized by |ϕ⟩⟨ϕ|, if the Schmidt
coefficients of |ψ⟩ is majorized by those of |ϕ⟩. For state
vectors |ψ⟩ and |ϕ⟩, we say that |ψ⟩ is majorized by |ϕ⟩,
if the Schmidt coefficents of |ψ⟩ is majorized by those of
|ϕ⟩. Nielsen [1, 2] proved that

one can convert |ψ⟩ to |ϕ⟩ by LOCC

⇐⇒ |ψ⟩ is majorized by |ϕ⟩.

Subsequently, Owari et al. [3] proved that the neces-
sary condition for LOCC convertibility holds in infinite
dimensional systems as in the same form in finite dimen-
sional. Moreover, Owari et al. [3] introduced a notion
of ϵ-convertibility by LOCC in infinite dimensional sys-
tems and proved that ϵ-convertibility for LOCC gives a
characterization of the sufficient condition.
However, it has been open whether the sufficient con-

dition also holds in infinite dimensional systems as in the
same form.
In [2, Section12.5], the key tool and the essence of the

Nielsen’s proof of the sufficient condition for LOCC con-
vertibility in finite dimensional systems is Birkhoff’s the-
orem in matrix theory.
According to Birkhoff’s theorem [4] [5, Section II.2],

(i) the extreme points of the convex set of doubly
stochastic matrices are permutation matrices.

(ii) any doubly stochastic matrix can be represented as
a convex combination of permutation matrices,

(iii) the set of doubly stochastic matrices coincides with
the closed convex hull of the set of permutation
matrices.

∗asakura0d@gmail.com

Moreover, (i), (ii), (iii) imply each other by Caratheodory
Theorem.
Nielsen used Birkhoff’s theorem (ii) in [2, Section12.5].
An infinite dimensional analogue of Birkhoff’s theorem

is known as Birkhoff’s problem111, which was considered
in [6, 7, 8, 9, 10, 11, 12] etc. Nevertheless, there is no
study treated (ii). Unlike the finite dimensional case, (i),
(ii) and (iii) are not always equivalent to each other in in-
finite dimensional case. Moreover in infinite dimensional
cases (i) remained true, whereas the validity of (ii) and
(iii) depend on the choice of topology. While in finite
dimensional case (ii) is equivalent to (iii) by virtue of
Caratheodory Theorem, in infinite dimensional case the
assertion of (ii) can be stronger than the one of (iii).
In this study, we establish an infinite dimensional ver-

sion of Birkhoff’s theorem (i)(ii)(iii) with the weakly op-
erator topology (WOT). In particular, we show that an
infinite dimensional analogue of (ii) holds in WOT, and
we apply this to prove a new characterization for LOCC-
convertibility in infinite dimensional. Our characteriza-
tion, of course, is a certain generalization of Nielsen’s re-
sult. Moreover, our characterization implies the results
of Owari et al. [3] as a corollary.

2 Main results

Let H be separable (at most countable infinite di-
mensional) Hilbert space. For a fixed CONS (|i⟩)∞i=1,
let P(H), D(H) be the sets of bounded operators∑∞
i,j=1 aij |i⟩⟨j| satisfying the following (P ), (D):

(P ) aij = 0or 1,

∞∑
j=1

aij = 1,

∞∑
i=1

aij = 1 (for any i, j)

(D) aij ∈ [0, 1],
∞∑
j=1

aij = 1,
∞∑
i=1

aij = 1 (for any i, j).

Then, we can rewrite Birkhoff’s theorem(ii) as following:
Theorem1(Birkhoff [4]) When H = Cd and (|i⟩) is

the standard basis in Cd, denoting P(H) =: {Pn}d!n=1, for
any D ∈ D(H), there exists a probability mass {pn}d!n=1

such that

D =

d!∑
n=1

pnPn.

In this study, we get the following result:
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Theorem2(Asakura) For any D ∈ D(H), there ex-
ists a probability measure µD on P(H) such that

D =

∫
P(H)

XdµD(X),

where the integral converges in WOT.

3 Main result(2) : LOCC-convertibility

Nielsen’s theorem [1] [2, Section12.5] can be written
mathematically as following:
Theorem3(Nielsen[1, 2]) Let H and K be finite di-

mensional Hilbert spaces, and let ψ, ϕ ∈ H ⊗ K be unit
vectors. Then, the followings are equivalent.

• There exist a POVM {Mi}i on H and a set of uni-
tary operators {Ui}i K such that

|ϕ⟩⟨ϕ| =
∑
i

(Mi ⊗ Ui)|ψ⟩⟨ψ|(M∗
i ⊗ U∗

i ), (1)

where the sum is finite sum.

• TrK |ψ⟩⟨ψ| ≺ TrK |ϕ⟩⟨ϕ| holds.
In this study, applying Theorem 2, we prove the fol-

lowing infinite dimensional analogue of Theorem 3. The
following theorem is main results.
Theorem4(Asakura) LetH and K be infinite dimen-

sional Hilbert spaces, and let ψ, ϕ ∈ H ⊗ K be full rank
unit vectors. Then, the followings are equivalent.

• There exist a Borel set I of a certain of met-
ric space, a probability mesure µ on I, a set of
densely defined (not necessarily bounded) opera-
tors {Mi}i∈I on H, a dense subspace H0 ⊂ H and
a set of unitary operators {Ui}i∈I on K such that

|ψ⟩ ∈ D(Mi ⊗ Ui), i ∈ I, (2)

(TrK|ψ⟩⟨ψ|)H0 ⊂ H0, (3)

D(Mi) ⊃ H0, i ∈ I (4)∫
I

⟨η|Mi
∗Mi|ξ⟩dµ(i) = ⟨η|ξ⟩, for η, ξ ∈ H0, (5)

I ∋ i 7→ (Mi ⊗ Ui)|ψ⟩⟨ψ|(M∗
i ⊗ U∗

i ) ∈ C1(H)

is integrable, (6)

|ϕ⟩⟨ϕ| =
∫
I

(Mi ⊗ Ui)|ψ⟩⟨ψ|(M∗
i ⊗ U∗

i )dµ(i),

where the integral convergesges in C1(H). (7)

• TrK |ψ⟩⟨ψ| ≺ TrK |ϕ⟩⟨ϕ| holds.
In general case, Theorem 4 becomes the following the-

orem, which immediately follows from Theorem 4.
Theorem6(Asakura) LetH and K be infinite dimen-

sional Hilbert spaces, and let ψ, ϕ ∈ H ⊗K be unit vec-
tors.

• There exist (I, µ, {Mi}i∈I , H0, {Ui}i∈I) in Theo-
rem 4 and infinite rank partial isometries VH, VK
such that

|ϕ⟩⟨ϕ| = (VH ⊗ VK)
(∫

I

(Mi ⊗ Ui)|ψ⟩⟨ψ|

(M∗
i ⊗ U∗

i )dµ(i)
)
(VH

∗ ⊗ VK
∗) (8)

• TrK |ψ⟩⟨ψ| ≺ TrK |ϕ⟩⟨ϕ| holds.

Moreover, by Theorem 6, we can construct a sequence
of LOCC-quantum channel {Λn}n such that Λn(|ψ⟩⟨ψ|)
converges (8) in the trace norm. Namely, we reprove the
following result as a corollary of Theorem 6:
Theorem7(Owariet al. [3])
Let H and K be infinite dimensional Hilbert spaces,

and let ψ, ϕ ∈ H ⊗ K be unit vectors. If TrK |ψ⟩⟨ψ| ≺
TrK |ϕ⟩⟨ϕ| holds, then, for any ϵ > 0, there exists a LOCC
quantum channel Λϵ such that

∥Λϵ(|ψ⟩⟨ψ|)− |ϕ⟩⟨ϕ|∥1 < ϵ.
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Abstract. We introduce a new approach for approximating the expectation value of a local observable in
ground states of local Hamiltonians that are represented as PEPS tensor-networks. Instead of contracting
the full tensor-network, we estimate the expectation value using only a local patch of the tensor-network
around the observable. Surprisingly, we demonstrate that this is often easier to do when the system is
frustrated. We test our approach in 1D systems, where we show how the expectation value can be calculated
up to at least 3 or 4 digits of precision, even when the patch radius is smaller than the correlation length.
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1 Introduction

Variational tensor-network methods [1] provide a
promising way for understanding the low-temperature
physics of many-body condensed matter systems. In par-
ticular, they seem suitable for studying the ground states
of highly frustrated systems, where the sign problem
hinders many of the quantum Monte Carlo approaches.
The best-known and by far the most successful tensor-
network method is the Density Matrix Renormalization
Group (DMRG) algorithm [2, 3]. It can be viewed
as a variational algorithm for minimizing the energy of
the system over the manifold of Matrix Product States
(MPS) [4, 5], which are special types of tensor-network
states a with linear 1D structure. In 2D and beyond
the most natural generalization of MPS are the so-called
Projected Entangled Pairs States (PEPS) tensor-network
states [6, 7, 8, 9, 10]. PEPS have proven useful for un-
derstanding the physics of 2D lattice systems and in par-
ticular their entanglement structure. However, as a nu-
merical method for studying 2D quantum systems, they
still face substantial challenges which limit their applica-
bility. In most cases, the best results are still obtained
either by DMRG, in which a 1D MPS wraps around the
2D surface, or by quantum Monte Carlo methods.
There are several reasons for this qualitative differ-

ence between 1D and 2D systems. The most impor-
tant one is the computational cost of contracting the
2D tensor network. While in 1D this cost scales lin-
early in the system size, it is exponential for 2D and
above. Formally, contracting a PEPS is #P-hard [11],
which is at least NP-hard. To overcome this exponen-
tial barrier, many approximation schemes have been de-
vised [9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20]. However,
while being physically motivated, none of them is rigor-
ous, and to some extent they all produce uncontrolled ap-
proximations, even when dealing with the ground state
itself. Moreover, while their computational cost is lin-
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ear in PEPS size, it scales badly in the so-called ‘bond-
dimension’ of the tensor-network, which limits their prac-
tical use to small systems/resolutions.
In this work we introduce a new approach for approx-

imating the expectation value of a local observable in a
2D PEPS tensor-network. Our starting point is a simple
observation that while the contraction of a general 2D
PEPS is #P-hard, this is not necessarily the case if the
PEPS describes a ground state of a gapped local Hamil-
tonian. Gapped ground states exhibit strong properties
of locality, such as exponential decay of correlations [21]
and are therefore subject to many constraints to which
arbitrary PEPS are not. This enables us to use only a
local patch of the PEPS tensor-network around the local
observable to approximate its expectation value, which
therefore leads to an efficient algorithm.
We identify two novel methods that provide rigor-

ous upper- and lower- bounds on the expectation value.
While we usually cannot give rigorous bound on the dis-
tance between these bounds, we demonstrate numerically
that this distance – and hence the error in our approxi-
mation – can be surprisingly small.
The first method, which we call the ‘basic method’, is

expected to give good results in the case of frustration-
free gapped systems. The second one, which we call the
‘commutator gauge optimization’ (CGO) method, works
only for frustrated systems by utilizing the many inter-
constraints that the solutions of these systems have to
satisfy. We show that it can be essentially reduced to a
SDP program, which can be efficiently solved. In ad-
dition, it does not rely directly on the existence of a
gap, and may work even when considering patches of the
PEPS that are much smaller than the correlation length.
To test the validity of the two methods, we performed

some numerical tests on 1D systems whose ground states
are described by MPS. The main purpose of these tests
was not to suggest a practical numerical method for es-
timating ⟨B⟩, but to demonstrate that a surprisingly
large amount of information is found locally in a ten-
sor network that represents a ground state, in particular
if the system is frustrated – which is counter-intuitive.
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Our numerical experiments demonstrate that in the frus-
trated case, one can easily obtain 3-4 digits of ⟨B⟩ by
accessing only a ball of radius ℓ ∼ 3, 4 around B —
smaller than the correlation lengths of these models!
Moreover, as we indicated above, this is better than the
frustration-free case, where we could only recover 1-2 dig-
its of ⟨B⟩. The full details of these numerical experi-
ments can be found in the arXiv version of this paper at
http://arxiv.org/abs/1603.06049.
While a direct implementation of the above methods

for 2D systems is not numerically practical for 2D, we
are confident that the observations underlying these al-
gorithms can be turned into practical heuristics for the
2D problem.
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Abstract. A special feature of the ground state in a topologically ordered phase is the existence of
large-scale correlations depending only on the topology of the regions. These correlations can be detected
by the topological entanglement entropy or by a measure called irreducible correlation. We show that
these two measures coincide for states obeying an area law and having zero-correlation length. Moreover,
we provide an operational meaning for these measures by proving its equivalence to the optimal rate
of a particular class of secret sharing protocols. This establishes an information-theoretical approach to
multipartite correlations in topologically ordered systems.
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1 Introduction

Topologically ordered phase is an exotic quantum
phase that cannot be explained by conventional models
based on local order parameters and symmetry-breaking.
One way to classify the ground states with topological
orders is by identifying characteristic large-scale global
multipartite correlations (topological correlations). A
possible measure to detect such topological correlations is
the topological entanglement entropy (TEE) [1, 2], which
also appears as the universal constant term in the area
law [1]. The definition of the TEE is based on the idea
that topological correlations reduce the entropy of ring-
like regions compared to what is expected by considering
the entropy of just local regions [2]. More precisely, the
TEE quantifies the entropy reduction by subtracting the
contributions of local correlations using a Venn-diagram
calculation. Such a quantity of multipartite correlations
is known in classical information theory [3]. However, the
information-theoretical meaning of the function in both
classical and quantum settings is not clear, since it lacks
basic properties such as, e.g., positivity and it is always
zero for any pure state in quantum settings.

The irreducible correlation [4] is an alternative mea-
sure of topological correlations which employs the maxi-
mum entropy method to quantify the genuinely tripartite
correlations. The irreducible correlation is always non-
negative, and it has a clear geometrical interpretation as
the quantum analog of a correlation measure called the
kth-order effect [5] in classical information-geometry. It
has been conjectured that the 3rd-order irreducible corre-
lation and the TEE coincide in the thermodynamic limit
for gapped ground states [6].

Here, we partly resolve this conjecture and show that
when the ground state obeys an area law and has zero-
correlation length, the TEE and the 3rd-order irreducible
correlation are equivalent. This sufficient condition holds

∗kato@eve.phys.s.u-tokyo.ac.jp
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for a wide class of exactly solvable spin models which de-
scribe non-chiral topological ordered phases. To show the
equivalence, we calculate the 3rd-order irreducible corre-
lation by explicitly constructing the maximum entropy
state on region ABC that is consistent with all reduced
density matrices (RDMs) of the ground state on AB, BC
and AC. In general, calculating the maximum entropy
state is a computationally hard problem. We overcome
this challenge by employing the properties of quantum
Markov states which saturate the strong subsdditivity [7].

We further show that under the same assumptions the
irreducible correlation is equal to the optimal asymptotic
rate of a secret sharing protocol as suggested in [4]. This
leads to an operational interpretation of the TEE as the
number of bits that can be hidden in global regions from
any party that only has access to local regions.

2 Summary of results

Let us consider the RDMs of the ground state of a
gapped spin lattice system on circle or ring-like regions
ABC given in Fig. 1. We then define the TEE by

Stopo ≡ Sρ(AB) + Sρ(BC) + Sρ(CA)

− Sρ(A)− Sρ(B)− Sρ(C)− Sρ(ABC) , (1)

which is in accordance with the one considered by Kitaev
and Preskill [1]. Here, Sρ(A) represents the von Neu-
mann entropy of the RDM ρA of region A. For regions
as given in Fig. 1(c) , the above definition is consistent

𝐵 A 

𝐶 

(a) 

𝐵 

A 

𝐶 

𝐵 

(𝑐) 

𝐵 A 

𝐶 

(𝑏) 

Figure 1: Examples of the region ABC for the calculation
of TEE. The value of TEE of (a) is a half of others for a
topologically ordered ground state due to the difference
of the topology of the whole region ABC.
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with the one by Levin and Wen [2] if it is possible to as-
sume that there is no correlation between A and C, i.e.,
ρAC = ρA⊗ρC . The TEE is interpreted as the difference
between the entropy of ABC and the expected entropy of
ABC by considering the entropy of just local regions [2].

Let us consider the closed convex set R2
ρ of states which

is consistent with all bipartite RDMs of ρABC

R2
ρ ≡ {σABC | σAB = ρAB , σBC = ρBC , σAC = ρAC} .

(2)
We define the maximum entropy state by the state in R2

ρ

which maximizes the von Neumann entropy, i.e.,

ρ̃
(2)
ABC ≡ arg max

σABC∈R2
ρ

Sσ(ABC) . (3)

According to the maximum entropy principle, the max-
imum entropy state is the most “unbiased” inference of
ρABC if all of the bipartite marginals are known.

We define the 3rd-order irreducible correlation
C(3)(ρABC) as [4]

C(3)(ρABC) ≡ Sρ̃(2)(ABC)− Sρ(ABC) . (4)

Note that the irreducible correlation has a clear
information-geometric meaning as the distance from the
closure of the set of all Gibbs states of 2-local Hamilto-
nians [8].

Our main result is that if the ground state satisfy the
two properties in the following, the TEE is equivalent to
the 3rd-order irreducible correlation.

(I) If two regions A and B are separated, Iρ(A : B) ≡
Sρ(A) + Sρ(B)− Sρ(AB) = 0.

(II) If region A and C are indirectly connected through
B and ABC has no holes, ρABC has zero condi-
tional mutual infromation Iρ(A : C|B) ≡ Iρ(A :
BC)− Iρ(A : B) = 0.

Theorem 2.1 If a ground state on a 2D spin lattice sat-
isfies properties (I) and (II), the equality

Stopo = C(3)(ρABC) (5)

holds for all choices of regions depicted in Fig. 1.

It is widely accepted that a ground state in a gapped
system obeys an area law of entanglement entropy for
any connected region A with smooth boundaries, that is,

Sρ(A) = α|∂A| − γ +O(|∂A|−1) , (6)

where α denotes a non-universal constant, |∂A| denotes
the size of the boundary of region A. γ is another defi-
nition of the TEE and is equivalent to Stopo for the con-
figuration in Fig. 1(a). In models with zero-correlation
length, O(|∂A|−1) can be negligible and the ground state
satisfy both properties (I) and (II).

The key idea of the proof is to divide each region shown
in Fig.1 so that each RDM is a quantum Markov state
(QMS). A QMS conditioned on B is a tripartite state
that satisfies property (II), i.e., Iρ(A : C|B) = 0 [7].

We develop a technique of merging overlapping marginal

QMS to construct the maximum entropy state ρ̃
(2)
ABC by

using the equivalence condition revealed in Ref. [7].
The equivalence of the TEE to the 3rd-order irre-

ducible correlation also provides an operational interpre-
tation of the TEE. Recall that if C(3)(ρABC) is nonzero,
the global state in region ABC contains information that
cannot be determined only from the marginals on AB,
BC or AC. A similar situation is encountered in se-
cret sharing protocols. It has been shown [4, 9] that for
stabilizer states, the kth-order irreducible correlation of
a n-partite state represents the difference between the
asymptotic bit rate that can be hidden from k and from
k − 1 parties, where secrets are encoded by global uni-
taries which preserves all k ( or k − 1) RDMs. We show
that this also holds true in our setting for n = 3 and
k = 2.

Theorem 2.2 For a tripartite state ρABC satisfying
properties (I) and (II), the equality

r(ρABC) = C(3)(ρABC) (7)

holds for all choices of regions depicted in Fig. 1, where
r(ρABC) is the optimal secret sharing rate.

Thus, we provide new geometrical and operational mean-
ings of the TEE. Our results motivate us to inves-
tigate the relationships between characteristic proper-
ties of topological orders by utilizing these information-
theoretical meanings.
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Abstract. We investigate metrological properties of systems of quantum dot electron spin qubits. Op-
timal strategies for probing the value of an external, static magnetic field are provided within Bayesian
approach, with initial knowledge about the magnetic field described by its a priori Gaussian probabil-
ity distribution. We report phase-like transitions between optimal protocols occurring during the sys-
tem evolution. We show that optimal scenario requires initial entanglement and point out benefits of
classical strategies for longer evolution times. We observe that non-Markovian effects, stemming from
the interaction with environment, can provide limited metrological advantage for small magnetic fields.
The full version of the paper is available at arXiv:1605.04279.

Keywords: quantum metrology, quantum dots, noise

1 Introduction

Quantum metrology relies on the fact that quantum
correlations make state evolution more sensitive to dy-
namics which depends on some parameter that is sup-
posed to be revealed. It is known that, in the so called
frequentist approach, for estimating small variations of a
deterministic parameter, for locally unbiased estimators
dependent on its value and N systems undergoing inde-
pendent evolution, quantum mechanics can offer a 1/N
(so called Heisenberg scaling) improvement of the pre-
cision (defined by the deviation from the precise value)
in the asymptotic limit. This should be compared to a
scaling 1/

√
N , available for classical resources, and re-

ferred to as quantum shot-noise limit. Generally it is
known that in a situation when the parameter is a phase
generated by some Hamiltonian evolution, then the lo-
cal noise usually destroys the quantum effect (both in
atomic spectroscopy and quantum optics), leading to at
most constant improvement over classical scaling.

In the so-called Bayesian approach this scenario is al-
tered so that the parameter to be estimated is a random
variable with some a priori probability distribution. In
many cases, this framework is more justified than the
frequentist approach: it does not assume perfect knowl-
edge about a system under consideration before an exper-
iment and it outputs optimal estimators even for small
N . We apply Bayesian metrology to a physical scenario
where the form of the noise depends on the parameter.
Specifically, we analyze a system of independent quan-
tum dots interacting via hyperfine interaction with their
local, maximally mixed spin environments [1], under a so
called box model approximation. Spins of the electron
dots are subject to external time independent magnetic
field B with the random value characterized by the Gaus-
sian probability distribution with a variance ∆2Bprior

∗pawel.mazurek@ug.edu.pl

and mean B0. The Bayesian approach allows to diminish
the average mean square error of magnetic field estima-
tor. It relies on measurements that may depend on time.

Our aim was to find the optimal initial state and mea-
surement scheme which results in the smallest relative
mean square error ∆2Best

∆2Bprior
of the estimator – a signature

of the gain of information about the field. It is achieved
by numerical optimization [2] yielding optimal strategies
for given time of the evolution and initial probability dis-
tribution. The system evolution was solved analytically
within the ,,box model” of hyperfine interaction, applica-
ble in time regime that encompasses small times, where
metrologicalally important effects occur.

2 Main results
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Figure 1: Comparison between ’perpendicular’ (green
dashed line) and ’parallel’ (solid purple line) strategies
for 1 quantum dot and prior Gaussian distribution with
B0 = 7 mT, ∆Bprior = 4 mT. Red points represent the
optimal strategy.

In order to sketch the action of noise on the evolu-
tion of the system, we start with a single qubit and com-
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pare two strategies, each optimal in different time regime
(Fig. 1). The perpendicular strategy relies on prepar-
ing the state in Bloch sphere perpendicular to the field
direction, and performing measurements of an observ-
able represented by a Bloch sphere vector perpendicu-
lar to both field and state vectors. The parallel strat-
egy relies on preparing the state in the direction of the
magnetic field, and performing projective measurements
along this direction. For large fields, the dynamics does
not change populations of the system, hence the esti-
mating of magnetic field can be done only through the
phase, and perpendicular strategy is the optimal one, as
in a case of a simple unitary evolution. The single mini-
mum in the strategy comes from a trade-off between the
damping of phase (resulting both from statistical averag-
ing over prior field probability distribution and physical
noise), and the rotation of the phase by magnetic field.
For times long enough so that the coherences are nearly
completely damped, the state ceases to depend on the
magnetic field, hence there is no information gain. For
intermediate magnetic fields, the populations of the sys-
tem start to be effected by the magnetic field, and mea-
surements of the occupation levels lead to information
gain dominant in longer times. One should note that for
small magnetic fields the ,,perpendicular” strategy proves
to be effective even in the long time regime. This can
be explained by the fact that, due to the memory effects
stemming from the interaction with the environment, the
coherences experience a revival to the value dependent on
B and remain unaffected by the phase factors of the type
exp[igµBBt], which for non-zero ∆2Bprior would lead to
their decay. Clearly, apart from the mentioned minor
memory effects, the long time regime is entirely classi-
cal, as the estimation there is purely statistical, while in
the short time regime, quantum coherences are crucial.
For this reason, for more particles in non-negligible mag-
netic field, only for low times entanglement will lead to
enhancement of estimation.

Indeed, by performing similar studies for systems of
N = 2, . . . , 5 dots, as well as Monte Carlo simulations, we
showed that entanglement is the necessary resource for
achieving the global optimum. In description of these sys-
tems below, we use the notation in which magnetic field
is directed along z axis, and eigenstates of z-component
of electron spin operator are given by Ŝz|0〉 = ~

2 |0〉,
Ŝz|1〉 = −~

2 |1〉, and |+〉 = 1√
2
(|0〉 + |1〉). We denote

GHZ(N)= 1√
2

(
|0〉⊗N + |1〉⊗N

)
.

A feature characteristic for transition into larger sys-
tems is the growing structural complexity of the region
that relies on product coherence states. We showed that
the general sequence of optimal states for small num-
ber N of quantum dots is the following: (1) regime of
initially entangled states, with (1a) regime of GHZ(N)
and (1b) regime of GHZ(N) superposed with |+〉⊗N ; (2)
intermediate regime of optimal product coherent states
|+〉⊗N−1|0〉, followed by |+〉⊗N−2|0〉|0〉, end so on; (3)
regime of product states without coherences |0〉⊗N .

Transitions within the region (1) are characterized by
a continuous change of the optimal initial state, while

transitions inside (2) region, as well transitions (1)-(2)
and (2)-(3), signalize a non-continuous change of the op-
timal initial state. One should note that the precision
of field estimation grows with increasing N for all possi-
ble times of performing the measurements, with time of
optimal information gain not strongly depending on N.
We stress that for the regimes (2) and (3), in contrast
with the entanglement regime (1), the effects associated
with lack of initial knowledge described by a non-zero
∆2Bprior play a secondary role and the physical noise for
longer times is solely beneficial for magnetometric pur-
poses. Note that the whole regime is absent for a unitary
evolution, which implies lack of discontinuous transitions
in the optimal state space.

3 Discussion

The presented physical model enables the structure of
the measurement strategy, involving measurement of oc-
cupation levels, to partially recover information that, due
to noise, becomes inaccessible for phase-based measure-
ments. Nevertheless, it does not enable to win over the
noisless case, which for all investigated a priori Gaus-
sian probability distributions achieve better information
gains optimized over initial state, measurement strategy
and time of performing the measurement.

The standard situation considered in the literature is
when the parameter under consideration (here the mag-
netic field) is encoded into the system directly and the
noise can only destroy that information. Here the dy-
namics makes the parameter imprinted both on the sys-
tem and environment or - strictly speaking - into a global
state of both. Despite the fact that the initial ancillas are
maximally noisy and that the final noisy dynamics acts
here completely locally, the corresponding noise is un-
avoidably ,,convoluted” with the original dynamics and
the final result is such that we get the product noisy dy-
namics which has the parameter imprinted in a nonstan-
dard, nonlinear way. On the other hand the imprinting
the magnetic field by unitary dynamics is restricted to
the Bloch sphere. Effectively we have then the two sce-
narios. In the latter the parameter is imprinted in the
states on the sphere, while in the former, it is imprinted
in the mixed states that in general belong to the interior
of the sphere. It seems that this is the geometry of the
two sets out of which only the one has the nonzero vol-
ume, that in general might make the difference in favor
of the noisy scenario.
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Abstract. Before our work, it was unknown that whether the quantum Lovász number always
coincides with the entanglement-assisted zero-error classical capacity of a quantum channel. In
this paper, we resolve this open problem by explicitly constructing a class of qutrit-to-qutrit chan-
nels whose quantum Lovász number is strictly larger than its entanglement-assisted zero-error
classical capacity. Interestingly, this class of channels is reversible in the presence of quantum
no-signalling correlations.
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Introduction A fundamental problem of infor-
mation theory is to determine the capability of a
communication channel for delivering messages from
the sender to the receiver. Shannon first investi-
gated this problem in the zero-error setting and de-
scribed the zero-error capacity of a channel as the
maximum rate at which it can be used to trans-
mit information with zero probability of confusion
[1]. Recently the zero-error information theory has
been studied in the quantum setting and many new
phenomena were observed. One of the most remark-
able results is that entanglement can be used to im-
prove the zero-error capacity of a classical channel
[2, 3]. Furthermore, there are more kinds of capac-
ities when considering auxiliary resources, such as
shared entanglement [2, 3, 4, 5] and no-signalling
correlations [2, 6].

For the zero-error communication via quantum
channels, the non-commutative graph associated
with a quantum channel captures the zero-error
communication properties of this channel [5], thus
the non-commutative graph plays a similar role to
confusability graph of a classical channel. It is well-
known that the zero-error capacity is extremely dif-
ficult to compute for both classical and quantum
channels. In Ref. [7], it was proved that comput-
ing the one-shot zero-error capacity of a quantum
channel is QMA-complete and the calculation of the
asymptotic zero-error capacity is even not known
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to be computable. Nevertheless, the zero-error ca-
pacities of classical channels and quantum channels
are upper bounded by the the famous Lovász num-
ber of a confusability graph [8] and the quantum
Lovász number [5] of a non-commutative graph, re-
spectively. Furthermore, the entanglement-assisted
zero-error capacity C0E of a classical channel is also
upper-bounded by the Lovász number [5, 9], and
this notable result can be generalized to quantum
channels by using the quantum Lovász number [5].

One of the most important and intriguing open
problems in zero-error information theory is whether
there is a gap between the entanglement-assisted
zero-error capacity and the quantum Lovász num-
ber of a classical or quantum channel, which is fre-
quently mentioned in Refs. [3, 5, 9, 10, 11, 12]. If
they are equal, it would imply that C0E is additive
while the unassisted case is not [13].

In this paper, we show the answer to the open
problem above is negative for quantum channels.
We construct a class of qutrit-to-qutrit channels
whose quantum Lovász number is strictly larger
than its entanglement-assisted zero-error capacity.
In particular, this class of channels is reversible un-
der quantum no-signalling correlations (QNSC).
Main results The entanglement-assisted zero-

error capacity C0E of a channel is the optimal rate at
which it is possible to transmit information perfectly
while the sender and receiver share free entangle-
ment. Since C0E is not known to be computable, it
is difficult to compare C0E to the quantum Lovász
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number. The problem whether there exists a gap
between them remained open for almost six years.
Our approach to answer this problem is based on
the class of channels Nα(ρ) = CαρC

†
α + DαρD

†
α

(0 < α ≤ π/4) with

Cα = sinα∣0⟩⟨1∣ + ∣1⟩⟨2∣,Dα = cosα∣2⟩⟨1∣ + ∣1⟩⟨0∣.

We first consider the QNSC assisted zero-error
capacity [6], which is potentially larger than the
entanglement-assisted case. We also use the QNSC
assisted zero-error classical simulation cost S0,NS [6]
during the proof, which is the minimum noiseless
bits required to simulate a channel under QNSC. It
holds that C0E ≤ C0,NS ≤ S0,NS .

Proposition 1 For Nα (0 < α ≤ π/4),

C0,NS(Nα) = S0,NS(Nα) = 2.

We then show the exact value of the quantum
Lovász number of Nα.

Proposition 2 For Nα (0 < α ≤ π/4),

ϑ̃(Nα) = 2 + cos2 α + cos−2 α > 4. (1)

Combining Propositions 1 and 2, we can conclude
that there is a separation between quantum Lovász
number and entanglement-assisted zero-error clas-
sical capacity. This is based on the fact that C0E

is upper bounded by the QNSC assisted zero-error
capacity C0,NS . Our main result is presented as fol-
lows.

Theorem 3 For the class of quantum channels Nα
(0 < α ≤ π/4),

log2 ϑ̃(Nα) > C0,NS(Nα) ≥ C0E(Nα). (2)

Conclusions and discussions In summary,
we construct a class of quantum channels whose
quantum Lovász number is strictly larger than its
entanglement-assisted zero-error capacity. This re-
solves a well-known open problem in zero-error
quantum information. There are still several un-
solved problems left. For instance, it is of great in-
terest to study the case of classical channel. For
the confusability graph G, a variant of Lovász num-
ber called Schrijver number [14, 15] was proved to
be an tighter upper bound for the entanglement-
assisted independence number than Lovász number
[16] . However, it remains unknown whether Schri-
jver number will converge to Lovász number in the
asymptotic setting. A gap between the regularized

Schrijver number and Lovász number would imply
a separation between C0E(G) and ϑ(G).

We would like to thank Andreas Winter for help-
ful suggestions. This work was partly supported
by the Australian Research Council (Grant No.
DP120103776 and No. FT120100449).

References

[1] C. E. Shannon, IRE Trans. Inf. Theory 2, 8
(1956).

[2] T. S. Cubitt, D. Leung, W. Matthews, and A.
Winter, Phys. Rev. Lett. 104, 230503 (2010).

[3] D. Leung, L. Mancinska, W. Matthews, M.
Ozols, and A. Roy, Commun. Math. Phys. 311,
97 (2012).

[4] R. Duan and Y. Shi, Phys. Rev. Lett. 101, 20501
(2008).

[5] R. Duan, S. Severini, and A. Winter, IEEE
Trans. Inf. Theory 59, 1164 (2013).

[6] R. Duan and A. Winter, IEEE Trans. Inf. The-
ory 62, 891 (2016).

[7] S. Beigi and P. W. Shor, arXiv:0709.2090.

[8] L. Lovász, IEEE Trans. Inf. Theory 25, 1
(1979).

[9] S. Beigi, Phys. Rev. A, vol. 82, no. 1, p. 10303,
(2010).

[10] T. Cubitt, L. Mancinska, D. E. Roberson,
S. Severini, D. Stahlke, and A. Winter, IEEE
Trans. Inf. Theory 60, 7330 (2014).

[11] T. S. Cubitt, D. Leung, W. Matthews, and
A. Winter, IEEE Trans. Inf. Theory 57, 5509
(2011).

[12] L. Mancinska, G. Scarpa, and S. Severini, IEEE
Trans. Inf. Theory 59, 4025 (2013).

[13] N. Alon, Combinatorica 18, 301 (1998).

[14] A. Schrijver, IEEE Trans. Inf. Theory, 25, 4,
1979.

[15] R. J. McEliece, E. R. Rodemich, and H. C.
Rumsey Jr, J. Comb. Inform. Syst. Sci, 3, 3,
1978.

[16] T. Cubitt, L. Mancinska, D. E. Roberson, S.
Severini, D. Stahlke, and A. Winter,

IEEE Trans. Inf. Theory, 60, 11, 2014.

23



Maximum privacy without coherence, zero-error

Debbie Leung1 ∗ Nengkun Yu2 1 3 †

1 Institute for Quantum Computing and Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Ontario, Canada

2 Centre for Quantum Computation & Intelligent Systems, Faculty of Engineering and Information Technology,
University of Technology Sydney, NSW 2007, Australia

3 Department of Mathematics & Statistics, University of Guelph, Guelph, Ontario, Canada

Abstract. We study the possible difference between the quantum and the private capacities of a quantum
channel in the zero-error setting. For a family of channels introduced by [LLSS14], we demonstrate an
extreme difference: the zero-error quantum capacity is zero, whereas the zero-error private capacity is
maximum given the quantum output dimension.
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The quantum capacity Q(N ), measured in qubits per
channel use, establishes the maximum rate for transmit-
ting quantum information and how well we can perform
quantum error correction. The private capacity P(N ), in
bits per channel use, gives the maximum rate of private
classical communication. Errors that become negligible
as the number of channel uses increases are allowed in
the above definitions.

Understanding the relation between the quantum and
the private capacities is an essential task in quantum
Shannon theory. In [HHHO05], some channels N are
found for which Q(N ) = 0 but P (N ) > 0, breaking a
long-held intuition that coherence is necessary for pri-
vacy. In [LLSS14], a class of channels with Q(N ) ≤ 1
and P (N ) = log d is presented, where d2 is the input di-
mension and log is taken base 2. As d increases, these
channels saturate an upper bound for P (N )−Q(N ) thus
approximately realizing the largest possible separation
between the two capacities.

Quite recently, the notion of zero-error capacity has
been introduced for quantum channels [MA05]. We de-
note the zero-error quantum and private capacities for
a quantum channel N as Q0(N ) and P0(N ) respec-
tively. Zero-error private classical communication re-
quires perfect data transmission such that no one but
the receiver gains any information on the data. Clearly
Q0(N ) ≤ Q(N ) ≤ P(N ) and Q0(N ) ≤ P0(N ) ≤ P(N ).

In this paper, we study the zero-error quantum capac-
ity of the channels introduced in [LLSS14], and demon-
strate an exact extreme separation. For these channels,
P0(N ) = log d and Q0(N ) = 0. In other words, each of
these channels has no capacity to transmit quantum in-
formation perfectly, even it has full ability to distribute
private information perfectly.

The notion of zero-error quantum capacity can be in-
troduced as follows. Let αq(N ) be the maximum integer
k such that there is a k-dimensional subspace H′A of HA

that can be perfectly transmitted through N . That is,
there is a recovery quantum channel R from D(HB) to
D(HA′) so that (R◦N )(ψ) = ψ for any |ψ〉 ∈ HA′ (recall

∗wcleung@uwaterloo.ca
†nengkunyu@gmail.com

ψ = |ψ〉〈ψ|). Then, log2 α
q(N ) represents the maximum

number of qubits one can send perfectly by one use of N .
The zero-error quantum capacity of N , Q0(N ), is defined
as:

Q0(N ) = sup
n≥1

log2 α
q(N⊗n)

n
. (1)

we can invoke the following lemma from [CS12].

Lemma 1 Let N : D(HA) → D(HB) be a quantum
channel. One can transmit quantum information with-
out error through a single use of N if and only if there
are orthogonal states |α〉 and |β〉 such that

tr [N (|α〉〈α|)N (|β〉〈β|)] = 0 (2)

and

tr [N (|α+ β〉〈α+ β|)N (|α− β〉〈α− β|)] = 0. (3)

where |α± β〉 = 1/
√

2(|α〉 ± |β〉).
Private communication via a memoryless classical

channel and quantum key distribution are well estab-
lished subjects. Private classical communication of a
quantum channel has more recently been formally intro-
duced in [Dev05]. The private capacity of N measures
the maximum rate of reliable classical data transmission
via N while keeping the output of the complementary
channel independent of the data.

The family of channels Nd introduced in [LLSS14] can
be schematically summarized as follows:

A2

A1

V

P

E,“VE”

B,“VB”

(4)

For each integer d ≥ 2, we define the channel Nd which
has two input registers A1 and A2, each of dimension d.
A unitary operation V is applied to A2, followed by a
controlled phase gate P =

∑
i,j ω

ij |i〉〈i| ⊗ |j〉〈j| acting

on A1A2, where ω is a primitive dth root of unity. Bob
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receives only A1 (now relabeled as B) and “VB”, which
denotes a classical register with a description of V . The
A2 register is discarded. The complementary channel has
outputs A2 (relabeled as E) and “VE” which also contains
a description of V . The isometric extension is given by

Ud |ψ〉A1A2
=
∑
V

√
pr(V )

(
P (I ⊗ V ) |ψ〉A1A2

)
⊗|V 〉VB

⊗|V 〉VE
.

Here, V is drawn from any exact unitary 2-design G =
{g1, g2, · · · , gm}.

It was shown in [LLSS14] that P (Nd) = log d. The
method given by [LLSS14] to transmit private classical
data has no error and has perfect secrecy so P0(Nd) =
log d. To be self-contained, we provide a quick argument
here. Suppose the input into A2 is half of a maximally
entangled state |Φ〉 = 1√

d

∑
i |i〉A2

|i〉A3
where A3 stays

in Alice’s possession. By the transpose trick, the unitary
operations V and P can be replaced by unitary opera-
tions acting on A1 and A3 without changing the final
state on B,E,A3, VB , VE . So, the output of the com-
plementary channel (E, VE) is independent of the input.
Moreover, Nd(|i〉〈i| ⊗ I/d) = |i〉〈i|. So log d bits can be
transmitted perfectly and secretly.

Furthermore, [LLSS14] also shows that Q(Nd) ≤ 1.
Intuitively, superposition of states in system A1 will be
heavily decohered by the P gate, because error correction
is ineffective due to the random unitary V . However,
[LLSS14] finds that Q(Nd) ≥ 0.61 for large d.

This motivates the current study, to demonstrate an
extreme separation of P0 and Q0 using the channels Nd.
Our main result is that, no finite number of uses of Nd

can be used to transmit one qubit with zero error. This
implies in particular Q0(Nd) = 0, while P0(Nd) = log d,
attaining the extremes allowed by the quantum output
dimension.

Our main technical result is a characterization of pairs
of input states whose orthogonality is preserved by n uses
of the channel.

Theorem 2 Let n be any positive integer, |ψ1〉 =∑
i1,··· ,in |i1, · · · , in〉 |αi1,··· ,in〉, and |ψ2〉 =

∑
i1,··· ,in

|i1, · · · , in〉 |βi1,··· ,in〉 be two arbitrary pure state inputs
for N⊗nd . Then, tr[N⊗nd (ψ1)N⊗nd (ψ2)] = 0 if and only
if at most one of |αi1,··· ,in〉 and |βi1,··· ,in〉 is nonzero for
each tuple (i1, · · · , in).

In other words, states suitable for transmitting classi-
cal information through N⊗nd without any error have no
“overlap” in the computational basis of A⊗n1 .

As a consequence, we have

Theorem 3 For any positive integer n, N⊗nd cannot
transmit a qubit with zero error. In particular, this im-
plies Q0(Nd) = 0.

To prove Theorem 2, the following two lemmas are
needed,

Lemma 4 Let |ψ1〉 =
∑

i |i〉 |αi〉 and |ψ2〉 =
∑

i |i〉 |βi〉
be two possible pure input states for Nd. Then,
tr[Nd(ψ1)Nd(ψ2)] = 0 if and only if at most one of |αi〉
and |βi〉 is nonzero for each i.

Lemma 5 [YDY14] For all positive integer n, there is no
non-zero bipartite matrix M satisfying M ≥ 0, MΓ ≥ 0,
and tr(M(I − Φ)⊗n) = 0, where MΓ denotes the partial
transpose of bipartite matrix M .

In this paper, we show an extreme separation between
zero-error quantum capacity and the private capacity by
demonstrating for a class of channels that the private
capacity is maximum given the output dimension, while
there is no ability to transmit even one-qubit with any
finite number of channel uses, when no error can be tol-
erated. We hope techniques from our work can be used
to study the zero-error capacity of other channels.
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Abstract. Bosonic channels are important in practice as they form a simple model for free-
space or fiber-optic communication. We consider a single-sender multi-receiver pure-loss bosonic
broadcast channel and establish the unconstrained capacity region for the distillation of bipartite
entanglement and secret key between the sender and each receiver, where they are allowed
arbitrary public classical communication.

Quantum key distribution (QKD) and entangle-
ment distillation (ED) are two cornerstones of quan-
tum communication technology. QKD enables two
or more parties to share unconditionally secure ran-
dom bit sequences whereas ED allows them to distill
pure maximal entanglement from a quantum state
shared via a noisy communication channel. In both
protocols, the parties are allowed to perform (in
principle) an unlimited amount of local operations
and classical communication (LOCC).

One of the problem in optical quantum com-
munication is the channel loss. For example, all
known QKD protocols exhibit an exponential rate-
loss tradeoff, in which the secret key rate drops ex-
ponentially with increasing fiber distance [1].

Some time after these limitations were observed,
Refs. [2] provided a mathematical proof, using the
notion of squashed entanglement [3], that the trade-
off is indeed a fundamental limitation even with un-
constrained input energy. One of the main results of
[2] is an upper bound on the LOCC assisted quan-
tum and secret key agreement capacity of a pure-loss
bosonic channel, which is solely a function of the
channel transmittance η (for finite energy, tighter
bounds are also available [2]). Ref. [4] extended the
squashed entanglement technique to obtain upper
bounds for a variety of phase-insensitive Gaussian
channels. Concurrently with [4], Ref. [5] improved
the infinite-energy bound from [2] and conclusively
established the unconstrained capacity of the pure-
loss bosonic channel as C (η) = − log2 (1− η).

Extension of the above point-to-point scenario to
the network quantum communication scenarios such
as broadcast and multiple access channels is an im-

portant direction. Even though various network
quantum communication scenarios have been exam-
ined, there has been limited work on the LOCC-
assisted quantum and private capacities. Only re-
cently in [6] were nontrivial outer bounds on the
achievable rates established for the LOCC-assisted
capacities in a general m-receiver quantum broad-
cast channel (QBC) (for any m ≥ 1) based on mul-
tipartite generalizations of the squashed entangle-
ment [7] and the methods of [2].

In this paper, we consider a single-sender
multiple-receiver pure-loss bosonic QBC and estab-
lish the unconstrained LOCC-assisted capacity re-
gion for the distillation of bipartite entanglement
and secret key between the sender and each receiver.
Consider a pure loss bosonic QBC LA′→BC where
the channel splits the input state into three systems,
one to each of Bob, Charlie, and the environment
with transmittance ηB, ηC , and 1−ηB−ηC , respec-
tively, where ηB, ηC ∈ [0, 1], ηB + ηC ≤ 1. Phys-
ically it is modeled by a pair of beam splitters, in
both the signal is mixed with a vacuum, where the
first one induces pure loss and the second one splits
the signal to Bob and Charlie. Alice wants to share
the entanglement or secret keys with Bob and Char-
lie through n channel uses and unlimited amount of
LOCC. Let us denote entanglement rates between
Alice and Bob (Charlie) as EAB (EAC), and the se-
cret key rate as KAB (KAC), respectively. Our main
theorem is stated as follows:

Theorem 1 The LOCC-assisted, unconstrained
capacity region of the pure-loss bosonic QBC
LA′→BC is given by

EAB +KAB ≤ log2([1− ηC ]/[1− ηB − ηC ]), (1)
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EAC +KAC ≤ log2([1− ηB]/[1− ηB − ηC ]), (2)

EAB+KAB+EAC+KAC ≤ − log2(1−ηB−ηC). (3)

A complete proof is given in [8]. To prove the
statement, we establish inner bounds on the achiev-
able rate region by employing the quantum state
merging protocol [9]. The converse part relies upon
several tools. First, we utilize a teleportation sim-
ulation argument originally introduced in [10, Sec-
tion V]. and recently extended in [5]. Next, it is
known that the relative entropy of entanglement is
an upper bound on the distillable key of a bipartite
state [11]. Then the recent work in [5] stated how
these two ideas are combined to upper bound the
LOCC-assisted quantum and private capacities for
certain class of point-to-point channels.

Also critical for the proof of the converse part
is the fact that the physical implementation of
LA′→BC is not unique. For example, we could have
a first beam splitter split system B from C and E,
and then a second one split C and E. It is also
possible to split C at the first beam splitter. This
observation implies a drastic simplification of the
calculation of the relative entropy of entanglement.
The obtained outer bounds match the inner bounds
in the infinite-energy limit, thereby establishing the
unconstrained capacity region. An example fothe
rate region is shown in Fig. 1.

The above theorem can be generalized for single-
sender multiple-receiver pure-loss broadcast chan-
nel LA′→B1···Bm with m > 2 which is character-
ized by a set of transmittances {ηB1 , · · · , ηBm} with∑m

i=1 ηBi ≤ 1 [12]. Let B = {B1, · · · , Bm}, T ⊆ B,
and T be a complement of set T . We have the fol-
lowing theorem:

Theorem 2 The LOCC-assisted unconstrained ca-
pacity region of the pure-loss bosonic QBC
LA′→B1···Bm is given by∑

Bi∈T
EABi +KABi ≤ log2

(
1− ηT
1− ηB

)
, (4)

for all non-empty T , where ηB =
∑m

i=1 ηBi and ηT =∑
Bi∈T ηBi.

A complete proof is given in [8].
Our result could provide a useful benchmark for

implementing a broadcasting of entanglement and
secret key through linear optics networks which is
usually used in real world quantum communications.
Important open questions include the distillations of
EBC and KBC , or even GHZ states through QBC,
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Figure 1: LOCC-assisted capacity region given by
(1)–(3), where (ηB, ηC) = (0.2, 0.3).

and determining the capacity region in both this set-
ting and even the single-sender single-receiver case
when there is an energy constraint on the transmit-
ter which is practically more relevant.
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Abstract. Einstein-Podolsky-Rosen (EPR) steering exhibits a unique asymmetric prop-
erty, i.e., the steerability can differ between observers. This property is inherently different
from the symmetric concepts of entanglement and Bell nonlocality, and it has attracted
increasing interest. We propose a practical method to quantify the steerability. And we
experimentally use it to quantify asymmetric EPR steering in the frame of projective
measurements. Furthermore, we then clearly demonstrate one-way EPR steering. Our
work provides a new insight into the fundamental asymmetry of quantum nonlocality and
has potential applications in asymmetric quantum information processing.
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Asymmetric EPR steering is an important
open question proposed when EPR steering is re-
formulated in 2007 [1]. Supposing Alice and Bob
share a pair of two-qubit state, it is easy to image
that if Alice entangles with Bob, then Bob must
also entangle with Alice. Such a symmetric fea-
ture holds for both entanglement and Bell non-
locality [2]. However, the situation is dramati-
cally changed when one turns to a novel kind of
quantum nonlocality, the EPR steering, which
stands between entanglement and Bell nonlocal-
ity. It may happen that for some asymmetric
bipartite quantum states, Alice can steer Bob
but Bob cannot steer Alice. This distinguished
feature would be useful for the one-way quan-
tum tasks. The first experimental verification
of one-way EPR steering was performed by us-
ing two entangled continuous variable systems in
2012 [3]. However, the experiments demonstrat-
ing one-way EPR steering [3, 4] are restricted
to Gaussian measurements, and for more gener-
al measurements, like projective measurements,
there is no experiment realizing the asymmet-
ric feature of EPR steering even the theoretical
analysis has been proposed [5].
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Recently, we for the first time quantify the s-
teerability and demonstrate one-way EPR steer-
ing in the simplest entangled system (two qubit-
s) using two-setting projective measurements [6].
The asymmetric two-qubit states in the form of

ρAB = η|Ψ(θ)〉〈Ψ(θ)|+ (1− η)|Φ(θ)〉〈Φ(θ)|, (1)

where 0 ≤ η ≤ 1, |Ψ(θ)〉 = cos θ|0A0B〉 +
sin θ|1A1B〉, |Φ(θ)〉 = cos θ|1A0B〉 + sin θ|0A1B〉,
are prepared based on the setup shown in Figure
1. For all non-trivial ρAB, Alice can steer Bob’s
state. When | cos 2θ| < |2η − 1|, Bob can also
steer Alice’s state. If | cos 2θ| ≥ |2η − 1|, there
always exists a local hidden state model for Al-
ice to reproduce her conditional states when Bob
chooses any two directions to measure, which
means Bob can not steer Alice’s state.

Based on the steering robustness [7], we intro-
duce an intuitive criterion R called as steering
radius, which is defined as

R(ρAB) = max
{~n1,~n2}

{r(ρAB){~n1,~n2}}, (2)

to quantify the steerability. Here, r(ρAB){~n1,~n2}
is explained below. In the case of two measure-
ment settings {~n1, ~n2}, there are at most four
local hidden states, ρi (i = a, b, c, d), repro-
ducing Bob’s conditional states if Alice can not
steer Bob’s system. We can expand the hidden
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Figure 1: Experimental setup. (a). The en-
tangled photon pairs are prepared through the
spontaneous parametric down conversion (SPD-
C) process by pumping the BBO crystal with
ultraviolet pulses. The state’s parameters η and
θ can be detuned conveniently by employing the
setup shown in (a) and the unbalanced Mach-
Zehnder interferometer (UMZ) with beam split-
ters (BSs) and removable shutters (RSs) shown
in (b). A unit consisting of a quarter-wave plate
(QWP) and a half-wave plate (HWP) on Alice’s
side is used to set the measurement direction.
The same unit with an extra polarization beam
splitter (PBS) on Bob’s side is used to perform
state tomography. Photons are collected into a
single mode fiber equipped with a 3 nm inter-
ference filter and are then detected by a single-
photon detector (SPD) on each side. (d). The
strategy is for local hidden states to reproduce
the conditional states. One of the two photons
is used as the trigger for the coincidence unit,
and the other is used to prepare the four local
hidden states, which can be conveniently pre-
pared by employing the setup of (b) and (c).
The probabilities are controlled by adjusting the
RSs.

states to the super quantum hidden state mod-
el (SQHSM), which means there are no physical
restrictions on the states ρi and ρi, which can
be located outside of the Bloch sphere. In such
a case, there is generally more than one set of

SQHSM. Thus, r(ρAB){~n1,~n2} can be defined as
the radius of the SQHSM which is written as

min
SQHSM

{max{L[ρa], L[ρb], L[ρc], L[ρd]}}, (3)

where L[ρi] (i = a, b, c, d) denotes the length of
Bloch vectors of the states ρi. If r(ρAB){~n1,~n2} >
1, at least one of the hidden states is located
beyond the Bloch sphere; thus, the model is not
physical. The different values of R on two sides
clearly illustrate the asymmetric feature of EPR
steering. Furthermore, the one-way steering is
demonstrated when R > 1 on one side and R < 1
on the other side (see Figure 2 (b)).

Figure 2: Experimental results for asymmetric
EPR steering. (a) The distribution of the ex-
perimental states. The right column shows the
entangled states we prepared, and the left col-
umn is a magnification of the corresponding re-
gion in the right column. The two green curves
represent the cases of | cos 2θ| = |2η − 1|. The
blue points and red squares represent the states
realizing one-way and two-way EPR steering, re-
spectively. The black triangles represent the s-
tates for which EPR steering task fails for both
observers. (b) The values of R for the states la-
beled in the left column in (a). The red squares
represent the situation where Alice steers Bob’s
system, and the blue points represent the case
where Bob steers Alice’s system. (c) Geometric
illustration of the strategy for local hidden states
(black points) to construct the four normalized
conditional states (red points) obtained from the
maximally entangled state.

For the failing EPR steering process, the lo-
cal hidden state model, which provides a direct
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and convinced contradiction between the nonlo-
cal EPR steering and classical physics, is pre-
pared experimentally to reconstruct the condi-
tional states obtained in the steering process (see
Figure 3).

Figure 3: The experimental results of the nor-
malized conditional states and local hidden s-
tates shown in the Bloch sphere. The theoret-
ical and experimental results of the normalized
conditional states are marked by the black and
red points (hollow), respectively. The blue and
green points represent the results of the four lo-
cal hidden states in theory and experiment, re-
spectively. The normalized conditional states
constructed by the local hidden states are shown
by the brown points. (a) and (c) Show the case
in which Alice steers Bob’s system, whereas (b)
and (d) show the case in which Bob steers Al-
ice’s system. The parameters of the shared state
in (a) and (b) are θ = 0.442 and η = 0.658;
the parameters of the shared state in (c) and
(d) are θ = 0.429 and η = 0.819. (a), (b) and
(d) Show that the local hidden state models ex-
ist, and the steering tasks fail. (c) Shows that
no local hidden state model exists for the steer-
ing process with the constructed hidden states
located beyond the Bloch sphere and R = 1.076.

The quantification of EPR steering provides
an intuitional and fundamental way to under-
stand the EPR steering. The demonstrated

asymmetric EPR steering, especially one-way s-
teering, helps us to investigate the asymmetric
feature of quantum nonlocality. This is signifi-
cant within quantum foundations and quantum
information, and shows the potential applica-
tions in the tasks of one-way quantum key distri-
bution [8] and the quantum subchannel discrim-
ination [7], even within the frame of two-setting
measurements.
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Abstract. The properties of quantum information in space-time can be investigated by studying opera-
tional tasks. In one such task, summoning, an unknown quantum state is supplied at one point, and a call
is made at another for it to be returned at a third. Hayden-May recently proved necessary and sufficient
conditions for guaranteeing successful return of a summoned state for finite sets of call and return points
when there is a guarantee of at most one summons. We prove necessary and sufficient conditions when
there may be several possible summonses and complying with any one constitutes success. We show there
is a ”quantum paradox of choice” in summoning: the extra freedom in completing the task makes it strictly
harder. This intriguing result has practical applications for distributed quantum computing and cryptog-
raphy and also implications for our understanding of relativistic quantum information and its localization
in space-time.

Keywords: Relativistic quantum cryptography, distributed quantum computing, summoning

It is well known that the exploitation of quantum ef-
fects gives rise to exciting new possibilities for computa-
tion, information processing and cryptography[3, 16, 13,
15, 5], but more recently, it has been realized that placing
quantum information under relativistic constraints leads
to the emergence of further unique effects[11, 9, 7] and
since this area has not yet been well explored, it is likely
that many useful relativistic quantum phenomena remain
to be discovered.

In this project, we have been studying constraints on
quantum information processing that arise in the rela-
tivistic context, and have uncovered a new and surprising
effect: under appropriate circumstances, transmitting a
quantum message may be possible if there is only one op-
tion for the place of delivery, but impossible if multiple
options are offered, so having more freedom can some-
times make a relativistic quantum task more difficult.
This apparent paradox has important consequences for
our understanding of how quantum states may be propa-
gated in distributed quantum computers, global financial
networks and other contexts where relativistic signalling
constraints are important.

The starting point for our project is a task known
as summoning, in which an agent is given an un-
known quantum state and required to produce it at
a point in space-time in response to a call made at
some earlier point[11]. The combination of the rela-
tivistic no-signalling principle[14] and the quantum no-
cloning theorem[4, 17] together impose strict constraints
on the possible geometric configurations of call and re-
turn points. Our work involves a generalization of this
task in which calls may be made at any number of call
points and the agent is required to return the state at
any one of the return points corresponding to one of the
calls: we have proved a theorem establishing necessary
and sufficient conditions on the possible geometric config-
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urations of call and return points in space-time for which
there exists a protocol that guarantees a successful re-
sponse to this task, and showed that these are strictly
stronger conditions than those established by Hayden-
May[7] for the original summoning task. Thus, strangely,
giving an agent more possible ways to respond to this task
actually makes it harder for him to respond successfully.

The resolution of the apparent paradox rests on a
previously unappreciated feature of summoning tasks.
Prima facie it seems that the guarantee of at most one call
plays no special role in a summoning task other than to
ensure that Alice is never required to produce two copies
of an unknown state, in violation of the no-cloning theo-
rem. It thus initially seems paradoxical that summoning
becomes strictly harder if we allow the possibility of more
than one call, even though only one valid response is re-
quired. However, if Alice knows that no more than one
call will occur, learning that a call has been made at
one point tells her that there are no calls at any other
point, and this allows her to coordinate the behaviour
of her agents via the global call distribution. A single
call gives Alice less information if multiple calls can oc-
cur: she learns nothing about the distribution of calls at
other points. She thus cannot use the call distribution to
coordinate her agents actions in the same way. In other
words, the guarantee of at most one call provides a re-
source that gives Alice the ability to complete tasks that
would be impossible without it.

The effect we describe has important practical appli-
cations, because the no-summoning theorem has already
been used for the development of new protocols in rel-
ativistic quantum cryptography[8, 10, 12, 1, 2], and our
stronger results suggest further ways of exploiting sum-
moning as a general way of controlling the flow of quan-
tum information. For example, our result is a useful way
of characterizing possible distributed parallel quantum
computations in which the output of a sub-protocol is
routed to one of several parallel computations which call
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Figure 1: A 2 + 1 dimensional example of a spacetime
configuration of call and repsonse points where summon-
ing is possible if it is guaranteed that there will be only
one call, but not if more than one call may arrive.

for the output when they reach a certain state[6]. We
thus expect this result to find application in future cryp-
tographic protocols as well as in quantum network algo-
rithms.

Our result also has interesting theoretical implica-
tions: there is a long-standing tradition of using appar-
ent paradoxes to refine our understanding of quantum
theory[3, 16, 13, 15, 5], but this new effect is perhaps
the first intrinsically relativistic quantum paradox, in the
sense that the effect can be exhibited only in the frame-
work of relativistic quantum theory. Our project thus
offers a useful starting point for probing intuitions about
the nature of quantum states as spatiotemporal entities -
an area which has received comparatively little attention
in recent debates over the reality of the quantum state.
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Abstract. Current experimental tests of non-classicality are binary in their conclusions, regardless of the
dimension. Either a physical information carrier is considered to be classical in nature, or else it is said to
be quantum. Nevertheless, this does not imply straight away that the experimental setup can produce any
desired quantum state of the desired dimension. In this work, we provide a refined dimension witness based
on Quantum Random Access Codes, which is able to distinguish between fully classical states, classical-
quantum states, separable quantum states, and arbitrary high-dimensional quantum states. These results
will be useful to the community, in order to correctly characterize the power of existing experimental
setups, to know which quantum information and computation protocols are within our grasp.

Keywords: Dimension Witness, QRACs, Classical-Quantum States

The dimension, or degrees of freedom, of physical in-
formation carriers is crucial. In order for quantum com-
puters to show a true practical advantage over their clas-
sical counterparts, they must operate on systems of large
dimension. That is why we are increasingly striving to
coherently control systems of large dimensions [1, 2, 3, 4].
Another promising area is that of quantum information
processing, where the dimension of the system is also re-
garded as a resource. Not only do higher dimensional
systems offer more computational and communication
power, but they are also useful in e.g. Bell experiments
[5, 6] Hence, the quantum information community has
come up with the brilliant idea of a dimension witness,
originally based on the violation of some particular Bell
inequalities [7], and then extended to the prepare and
measure scenario [8].

Dimension witnesses can be understood in slightly dif-
ferent ways, depending on the underlying assumptions,
but in general refer to some linear function on measure-
ment outcome probabilities. For example, in [7] the sys-
tems are assumed to be quantum in nature, and the di-
mension witness is a Bell inequality which cannot be vio-
lated without using quantum systems of at least a specific
size. The other example to compare is [8], where they use
ideas from state discrimination theory to make a dimen-
sion witness that can distinguish between a classical and
a quantum system.

While dimension witnesses have been of great help for
experimentalists, there is a subtle issue that has been
missing in the analysis thus far, which we illustrate with
an example. Imagine an experimentalist has complete
control over photonic qubit systems but can only create
these systems independently (e.g. one at a time), and
she does this 20 times. Surely, if done correctly, it’s pos-
sible to find a dimension witness that makes 20 qubits
in a product state perform better than 20 classical bits
and then make a claim like ”I work with Hilbert Spaces
of Dimension 1 Million”. While, this is strictly not a
lie, it is very misleading! Hence, we look for a dimension
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witness that can signal whether the experimentalist has
full (coherent) control of the Hilbert space, in the pre-
vious example this would imply arbitrary entanglement
between said photons.

This work provides a simple tool for experimental
teams to determine up to which dimension they have full
control of their Hilbert space (i.e. they can create all
states of said dimension). This is very important for the
community, as a benchmark tool to check our progress on
building quantum computers, and also for experimental-
ists to know which protocols they can feasibly execute.
We focus on the prepare and measure scenario, which is
the most general case. Since the point is to show that
there is complete coherent control of a particular dimen-
sion, it doesn’t matter if the physical information carriers
are divided as entangled particles, or just one system in
an arbitrary state. In particular, we focus on Random
Access Codes (RACs), where we call the preparation part
of the experiment Alice, and the measurement part Bob.

A nd → 1 Random Access Code (RAC) is a strategy
in which Alice tries to compress a n-dit string into 1
dit, such that Bob can recover any of the n dits with
high probability [10]. Specifically, Alice receives an input
string X = x0x1 · · ·xn−1 where xi ∈ [d], and we write
[d] ≡ {0, 1, 2, . . . , d − 1}. She is allowed to send one dit
a = Ec(X) to Bob. On the other side, Bob receives
an input y ∈ [n], and together with Alice’s message a,
outputs b = Dc(a, y) as a guess for xy. If Bob’s guess is
correct (i.e. b = xy) then we say that they win, otherwise
we say that they lose. Since both encoding and decoding
functions are in general probabilistic, we in fact quantify
the probability of success p(b = xy). As a figure of merit
for the encoding-decoding strategy, we use the average
success probability P = 1

ndn

∑
X

∑
y p(b = xy).

Similarly, we may define nd → 1 Quantum Ran-
dom Access Codes (QRACs) with the only change be-
ing that Alice tries to compress her input string into a
d-dimensional quantum system. The decoding function
is nothing more than a quantum measurement, i.e. he
outputs his guess b with probability tr[ρaM

y
b ]. It can

be shown that the maximum average success probabil-
ity can be achieved with pure states (ρa = |a〉〈a|) [10].
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Similarly, it is possible to argue that this maximum is
achieved when the operators My

b are projective measure-
ments, which is what we shall henceforth be assuming.

Assume the dimension factorizes as d = ab (with
a ≥ b), then in general we are interested in the follow-
ing 5 cases: Cab, CaQb, CbQa, QaQb, Qab. In the same
order, these are to be understood as: a classical system
of dimension ab, a classical system of dimension a and
a quantum system of dimension b, a classical system of
dimension b and a quantum system of dimension a, a
quantum system of dimension a in a separable state with
a quantum system of dimension b, and a quantum sys-
tem of dimension ab. This is trivially generalized. The
Main Result of our work deals with constructing ex-
plicit dimension witnesses which are able to differentiate
the above cases. The explicit construction is technical,
but an example of how our tools can be used is provided,
as well as the main ideas regarding the proof.
Example. For a classical 2d → 1 RAC the aver-

age success probability is PCd
= 1

2 + 1
d , while for the

quantum case the 2d → 1 QRAC has an average suc-
cess probability of PQd

= 1
2 + 1

2
√
d
. We look at dimen-

sion 4, with PC4 = 0.625 and PQ4 = 0.75, and with our
main result we are able to calculate PC2Q2

= 0.6546 and
PQ2Q2

≈ 0.7286. This means that, it is not enough for the
experimentalist to obtain an average success probability
greater than PC4, to claim that she has complete control
over 4-dimensional Hilbert space. Surely, this would im-
ply immediately that her states are not entirely classical,
but the big prize in this example would be to obtain an
experimental result above the PQ2Q2

value.
Now we briefly present the key ideas of our proof.

First, we prove that an identity decoding function (where
Bob’s outcome measurements are directly used in the
output without further post-processing) cannot be worse
than the optimal decoding function. Second, adaptive
measurements cannot outperform non-adaptive ones. By
this we mean, Bob’s measurement strategy only depends
on his input y, and in the optimal case does not depend
on the measurement results of the first systems. These
two points, make it so that essentially Alice and Bob are
playing two parallel QRACs at the same time. Finally,
for a given 2d → 1 QRAC, we derive ”maximal quan-
tum curves” which relate the probability of guessing dit
1, as a function of the probability of guessing dit 2 when
using the optimal quantum mechanical strategy - which
involves using Mutually Unbiased Bases [11].

Up to this point, we need to assume that the system is
a specific dimension d, and then we are able to provide
the tools necessary for distinguishing the nature of said
system. This is problematic, because sometimes experi-
mentalists don’t even know what is the effective dimen-
sion of their system. Hence, we propose a very simple
1d0 → 1 QRAC (which is just state discrimination in
disguise), where d0 is a guess of the dimension size. If
the average success probability is less than 1, then we
express it as d

d0
, and d is the effective system size the

experimentalist should be working with. Specifically, the
experimentalist would know that his system is at least

dimension d, and if if it were this dimension, then she
could say how classical or quantum it is.

Finally, we conclude by saying that our main result
can be used to prove that for some cases PQa

> PQbQc

even if a < bc. This just shows that indeed having access
to the full Hilbert space is a great resource, and it is
this what we should be checking when developing new
quantum technologies.
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Abstract. This paper proposes a multidimensional reconciliation protocol for continuous variable quan-
tum key distribution based on Polar codes. This protocol consists of two components, one is the multidi-
mensional algorithm, and the other is Polar coding. In the first component, the continuous sifted key at
Alice is first normalized then transformed to a binary data by a sphere and rotation transform operation.
Then the continuous sifted key at Bob is also operated by normalization and the same rotation above. A
virtual binary additive white Gaussian-like channel between Alice and Bob is established. In the second
component, a specific decoding scheme with side information for Polar codes is presented, where the frozen
bits locations are used as the reconciliation information. Simulation results show that the bit error rate
performance and the efficiency of the proposed protocol are improved.
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1 Introduction

Quantum key distribution (QKD) allows two remote
parties (Alice and Bob) to share a secret key, even in the
presence of an eavesdropper (Eve) with unlimited compu-
tational power [1]. Continuous-variable quantum key dis-
tribution (CVQKD) [2] attracts a lot of attention recently
for its high rate of key generation and no limitations of s-
ingle photon source and single photon detectors. But the
quantum channel for the CVQKD system is not perfect
one, the errors in the secret key is unavoidable. Moreover,
the CVQKD quantum transmission process can only pro-
vide continuously distributed raw keys [3], they have been
converted to binary ones. Thus, a reconciliation proto-
col [4] is crucial to extract the errorless secret keys in a
CVQKD system. Furthermore, a high efficient reconcili-
ation protocol would provide a promising way to achieve
the long distance CVQKD protocol at low signal-to-noise
ratio (SNR). In this paper, we propose a multidimension-
al reconciliation protocol for CVQKD using Polar codes.
The proposed protocol includes multidimensional recon-
ciliation component and polar coding component. In the
multidimensional reconciliation component, the continu-
ous Gaussian variables are normalized and transferred to
binary without quantization. In the polar coding com-
ponent, a novel construction is designed. The numerical
simulation shows that the bit error rate performance and
the efficiency of the proposed protocol are higher than
that protocol in [5] with the same condition.

2 Multidimensional Reconciliation Pro-
tocol of CVQKD using Polar Codes

Figure 1 shows the schematic diagram of the proposed
protocol. There are two components in the proposed pro-
tocol. One is multidimensional reconciliation component
(named MR), the other is error correction component us-
ing polar coding.

∗zhaosm@njupt.edu.cn

Figure 1: The schematic diagram of Multidimensional Rec-
onciliation protocol using Polar code.

In a CVQKD system, the continuous variable carriers
for the key is usually modulated with Gaussian distri-
bution. The raw keys X and Y for Alice and Bob are
continuous Gaussian distribution random variables, and
it is always assumed that Y = X + N , where N is an
Additive White Gaussian Noise.
In the multidimensional reconciliation component, Al-

ice and Bob first separately normalize their own raw keys,
which are generated from the quantum process. Both Al-
ice and Bob first divide their key variables which generat-
ed from the quantum process into a set of shorter ones, X
and Y , in the size of the dimension d, where Y = X +Z,
X ∼ N(0,Σ2) and Z ∼ N(0, σ2). Then Alice and Bob
normalize their key variables X and Y to get x and y
separately. Alice generates a random binary string u as
her final key for x and obtains the transformation matrix
M(x, u) with the constraints M(x, u)x = u. She sends
the transformation matrix M(x, u) to Bob. Bob makes
the same transformation on his own key information y to
get v, where v = M(x, u)y. Subsequently, a virtual bi-
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nary additive white Gaussian-like channel between Bob
and Alice is established. Therefore, Alice and Bob hold a
pair of key (u and v) without quantization, where u is a
binary string, and v is a Gaussian distribution. It should
be noted that that v is also the error version of u, that
is v = u + e, the final noise e is just a rotated version
of the noise N Bob has, in particular, both noises are
Gaussian with the same variance. This is true because
the Gaussian distribution of the noise is invariant under
orthogonal transformations. In Polar coding component,
the frozen bits information are used as the side informa-
tion to correct errors e. Alice constructs a Polar code
with the code rate R and code length N , and shares the
frozen bits information to Alice. With the frozen bits in-
formation, Bob decodes v with BP decoding algorithm.
Finally, they get a pair of common binary key.

3 Discussion and Conclusion

In this section, numerical simulation results are pre-
sented to discuss the proposed reconciliation protocol.
The simulations are done with CPU of Intel Core i5-
3230M. For simulation, the dimension d is set to 4. The
variance of signal is set to 1. Belief propagation decod-
ing algorithm is adopted for Polar codes. The maximum
value for the frame number is set to be 500.
The efficiency is an important parameter for reconcili-

ation protocol, which is defined as,

β =
DeccOutput

DeccInput
(1− FER), (1)

where DeccOutput denotes the error-correction output
rate, DeccInput denotes for the data output rate of the
system used as an input for the error-correction, and
FER is frame error rate. The bigger β is, the higher
efficiency the protocol has.
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Figure 2: The bit error rate (BER) performance of the pro-
posed reconciliation protocol, together with the BER perfor-
mance of the protocol in [5].

Fig.2 shows the bit error rate (BER) performance of
the proposed reconciliation protocol, together with the
BER performance of the protocol in [5]. For the com-
parison, the code length for Polar code is 1024, the code
length for low density parity check (LDPC) code in [5] is
set to 2000. The code rate is set to 0.375. The results

Table 1: Efficiency of the proposed reconciliation proto-
col, in comparison with the efficiency with the protocol
in [5].

SNR Proposed protocol Protocol in [5]

0.8 63.75 49.54

0.9 66.90 57.60

1.0 73.16 62.22

1.1 78.16 64.00

show that the BER performance of the proposed proto-
col is better than that using the protocol in [5]. When
SNR=1, the BER for the proposed protocol is 10−3, while
it is 5× 10−1 for the protocol in [5]. It is indicated that
the proposed reconciliation protocol is better for CVQKD
systems.
Table 1 further presents the efficiency of the proposed

reconciliation protocol, in comparison with the efficien-
cy with the protocol in [5]. The results show that the
efficiency of the proposed protocol is higher than that
using protocol in [5]. Although the proposed reconcili-
ation protocol with code length of 1024 and code rate
of 0.375 doesnt get the required efficiency, the length of
practical key in CVQKD is much longer than 1024. It
is believable that the efficiency of the proposed protocol
can be up to 90% because the performance of Polar code
is increasingly improved with a longer code length at low
SNRs.
In this paper, we have presented a protocol of multi-

dimensional reconciliation using Polar codes for CVQKD
system. It has been shown that the protocol can correc-
t the error without the need to discrete the continuous
variable, it can be implemented only by constructing a
special kind of side information. It is more adaptable for
a long distance CVQKD system.
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We present a framework for systematically studying linear bosonic non-Gaussian

channels. A strong motivation being that it is compulsory to go beyond the Gaussian

regime for numerous tasks in continuous-variable quantum information protocols.

Our emphasis is on a class of channels that we call photon-added Gaussian chan-

nels and these are experimentally viable with current quantum-optical technologies.

These channels are obtained by extending Gaussian channels with photon addition

applied to the ancilla ports (in its respective Stinespring unitary representation)

giving rise to a one-parameter family of non-Gaussian channels indexed by photon

number n ≥ 1 with n = 0 corresponding to the underlying Gaussian channel. We

then derive the corresponding operator-sum representation which becomes indispens-

able since the phase-space framework has limited usefulness in the present context.

We observe that these channels are Fock-preserving, i.e., coherence non-generating

on incoherent states in the Fock basis. Furthermore, noisy Gaussian channels can

be expressed as a convex mixture of these non-Gaussian channels analogous to the

Fock basis representation of a thermal state. We then report examples of activa-

tion of nonclassicality, using this method of photon-addition, at outputs of channels

that would otherwise output only classical states, and present a classicality no-go

theorem. We also derive many structure theorems for these channels. Finally, we

observe that there exists an environment-assisted error-correction scheme for trans-

mitting classical information through these channels.

Keywords : non-Gaussianity, non-Gaussian channels, photon-addition, Gaussian

channels, Stinespring dilation, continuous-variable systems

Non-Gaussian states and operations have recently received much attention with respect

to theoretical and experimental schemes in continuous-variable quantum information theory.

Commonly used non-Gaussian operations include photon addition [1, 2], photon subtraction

[3–5], photon counting [6], cubic phase gates[7], and Kerr nonlinearities [8]. Experimentally

realizable non-Gaussian states include Fock states [9–11], noon states [12], cat states [13, 14],

and photon-added coherent states [15, 16], among other examples [17–19].

There are various motivations and uses for going beyond the Gaussian regime for imple-

menting quantum information protocols. These include no-go theorems against Gaussian-

∗Electronic address: krishnakumar.sabapathy@gmail.com

37



2

FIG. 1: Showing a schematic diagram for the construction of a class of non-Gaussian channels by

using two constituent elements of photon-addition and bosonic Gaussian channels.

only toolbox like distillation of entanglement from Gaussian states [20–22], use as quantum

repeaters [23], and for other quantum information protocols like cloning [24], error-correction

[25], bit-commitment [26], and computing with cluster states [27], to list a few examples.

Also non-Gaussian resources have proven advantageous in many scenarios like parameter

estimation [28], generation of entangled states [29–32], teleportation [33–35], and universal

quantum computation [36–38].

In this article we generate non-Gaussian operations using two main ingredients, the com-

monly used photon-addition and the ubiquitous class of bosonic Gaussian channels[39]. We

call the resulting non-Gaussian operations as photon-added Gaussian channels and this is

schematically represented in Fig. 1. Here the photon-addition will be applied to the environ-

ment state in the Stinespring dilation of the underlying Gaussian channel. As a consequence

we generate non-Gaussian operations on the initial system when the environment system is

ignored.

The method can also be thought of as being one example of the many protocols and

implementations which concern manipulating the environment state in the Stinespring rep-

resentation of a channel that have been considered in literature. Some illustrative examples

include implementation of general gates [40], using mixed environment states for channel

simulation [41], manipulating the environment to generate additional capacities either as a

helper or adversary [42–44], and using feedback from the environment to correct for trans-

mission of information through the channel [45–47].

I. SUMMARY OF MAIN RESULTS

Our main contribution is to formulate and present a systematic framework to study

non-Gaussian channels. We focus on a special class of channels we call as photon-added

Gaussian channels. These channels are realized by extending quantum-limited Gaussian

channels with photon-addition applied to the environment state in the Stinespring dilation
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of these channels. The resulting channels are linear and non-Gaussian in nature. We consider

the case of photon-added attenuator, amplifier, and phase conjugator as our main examples.

We then obtain the operator-sum representation[39] of the photon-added channels and

study various implications. We find that for each of the three families of channels there

exists an operator-sum representation in which the Kraus operators are real. Furthermore,

the positive quadratic operators associated with the Kraus operators can all be taken to

be simultaneously diagonal in the Fock basis. This allows for environment-assisted classical

information transmission through these channels.

We derive a series of structure theorems for these channels. The photon-added ampli-

fier, attenuator, and phase-conjugation channels take incoherent states in the Fock basis to

incoherent states showing that they belong to the class of the so-called maximally incoher-

ent operations from a resource-theoretic point of view for coherence in the Fock basis. We

also see that the photon-added channels are complementary to the photon-added amplifier

channels leading to a trivial implication on the minimum output entropy for these channels.

We show that the output nonclassicality of the phase conjugation channel can be acti-

vated by a non-trivial photon-addition leading to a classicality no-go theorem concerning

the nonclassicality-breaking nature of the channel [48–50]. We also provide a decomposi-

tion of noisy Gaussian channels in terms of their respective photon-added quantum-limited

channels analogous to the Fock basis representation of a thermal state.

The present study is one approach contributing to the systematic study of non-Gaussian

operations that have not only proved advantageous for many quantum information protocols

but are also necessary due to many Gaussian no-go theorems as mentioned earlier. The

non-Gaussian channels that we introduce are arguably the simplest class of channels that

go beyond the Gaussian scenario.

Furthermore, our method allows for tuning between the Gaussian and non-Gaussian

regime in the space of channels through photon-addition where n plays the role of the tuning

parameter, with n = 0 corresponding to a Gaussian channel and n > 0 corresponding to a

non-Gaussian channel. Also the photon-added channels considered in the article [51] are

experimentally realizable. We believe that there are many applications of the present work

in light of the increasing use of non-Gaussian resources in continuous-variable quantum

computing, cryptography, and communications tasks.
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For technical details please refer arXiv:1604.07859 [quant-ph] [51].
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[25] J. Niset, J. Fiurášek, and N. J. Cerf, No-Go Theorem for Gaussian Quantum Error Correction,

Phys. Rev. Lett. 102, 120501 (2009).

[26] L. Magnin, F. Magniez, A. Leverrier, and N. J. Cerf, Strong no-go theorem for Gaussian

quantum bit commitment, Phys. Rev. A 81, 010302(R) (2010).

[27] M. Ohliger, K. Kieling, and J. Eisert, Limitations of quantum computing with Gaussian cluster

states, Phys. Rev. A 82, 042336 (2010).

[28] G. Adesso, F. Dell’Anno, S. De Siena, F. Illuminati, and L. A. M. Souza, Optimal estimation

of losses at the ultimate quantum limit with non-Gaussian states, Phys. Rev. A 79, 040305(R)

(2009).

[29] A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier, Increasing Entanglement

between Gaussian States by Coherent Photon Subtraction, Phys. Rev. Lett. 98, 030502 (2007).

[30] H. Yakahashi, J. S. Neergaard-Nielsen, M. Takeuchi, M. Takeoka, K. Hayasaka, A. Furusawa,

and M. Sasaki, Entanglement distillation from Gaussian input states, Nat. Photonics 4, 178

(2010).

[31] K. K. Sabapathy, J. S. Ivan, and R. Simon, Robustness of Non-Gaussian Entanglement against

Noisy Amplifier and Attenuator Environments, Phys. Rev. Lett. 107, 130501 (2011).
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Abstract. A CHSHq game is a generalization of the standard two player CHSH game, having q different
input and output options. In contrast to the binary game, the best classical and quantum winning strategies
are not known exactly. In our work [8] we provide a constructive classical strategy for winning a CHSHq

game, with q being a prime. Our construction achieves a winning probability better than 1
22q
− 2

3 , which
is in contrast with the previously known constructive strategies achieving only the winning probability of
O(q−1).

Keywords: Non-locality, CHSH game

1 Introduction

Non-locality is one of the defining features of quantum
mechanics qualitatively differentiating it from classical
physics [4]. Apart from its foundational importance, sci-
entists have recently realized that quantum non-locality
is also an extremely valuable resource enabling various
tasks, such as quantum key distribution [1] or random-
ness expansion and amplification [9]. All these appli-
cations use a unifying feature of quantum mechanics –
namely its possibility to provide the experimentalist re-
sults that exhibit super-classical correlations. Measure-
ments on distant parts of a quantum system can, if per-
formed in a specific way, produce results that are not
reproducible by any classical system, even with the help
of pre-shared information. Since the seminal work of Bell
[3], who first realized this fact, a long line of research was
devoted both to experimental realization of different tests
of quantumness and its theoretical implications.

Arguably the simplest and most studied generaliza-
tion of the original Bell setting is the Clauser-Horne-
Shimony-Holt (CHSH) setting [5], where two experimen-
talists choose one out of two possible binary measure-
ments on their part of the system. The setting can
be rephrased into a language of games, where two non-
communicating players, Alice and Bob, both receive a
uniformly chosen single bit input x and y respectively
and their goal is to produce single bit outputs a and b,
such that a + b ≡ xy mod 2 (see Fig. 1a).

It is well known that classical players can win this game
with probability no more than 75%. Utilizing quantum
mechanics, players can share a maximally entangled state
of two qubits and perform a suitable measurement (de-
pendent on the input) on their respective qubit. In such a
way they can increase the probability of wining the game

up to 2+
√
2

4 ≈ 85%.
A straightforward generalization is a CHSHq game,

where the dimensionality of both inputs and outputs is
limited to a prime q (see Fig. 1b). In this case, the
winning condition states a + b ≡ xy mod q. However,
in order for this game to be interesting, the probability

∗plesch@savba.sk
†mpivoluska@mail.muni.cz

of winning the game with a quantum strategy must be
higher than the probability with purely classical systems.
Therefore, bounds for these probabilities are of utmost
importance for its possible use.

Contrary to the binary CHSH game, neither the ex-
act value of the probability of winning the game with
a quantum strategy ω∗(CHSHq), nor a strategy obtain-
ing the optimal value is known. The only existing result
due to [2] introduces an upper bound for the quantum
probability

ω∗(CHSHq) ≤ 1

q
+

q − 1

q

1√
q

=
1√
q

+
1

q
− 1

q
√
q
.

For classical strategies [2], there exists an upper bound
in the form

ω(CHSHq) = O
(
q−

1
2−ε
)

for q = p2k+1,

where p is a prime, k ≥ 1 and ε > 0 is a constant. It is
only valid for the case of an odd prime power, but still
could serve for a proof of a classical – quantum gap if
the quantum bound would be proven tight.

There also exists a set of lower bounds (also proven in
[2]) in the form

ω(CHSHq) =

 Ω
(
q−

1
2

)
for q = p2k

Ω
(
q−

2
3

)
for q = p2k+1

.

We see that for q being an even power prime the lower
bound is higher than for odd powers and thus for all
values of q there is a significant gap between the lower or
upper (partly non-existent) bounds.

Even more importantly and perhaps surprisingly, these
lower bounds are not connected with any concrete strat-
egy. Quantum strategies existing so far are limited to
different heuristics (e.g. trying to maximize the winning
probability over all measurements of the maximally en-
tangled bipartite state), random searches and numerics
[6, 7]. Best known classical strategies so far obtained only

ω(CHSHq) = Ω
(

1
q

)
[7], which corresponds to a trivial

strategy (both Alice and Bob output 0 irrespective on
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A B

x ∈ Fq y ∈ Fq

a ∈ Fq b ∈ Fq

a+ b
?≡ xy mod q

A B

x ∈ {0, 1} y ∈ {0, 1}

a ∈ {0, 1} b ∈ {0, 1}

a+ b
?≡ xy mod 2

a.) b.)

Figure 1: a.) Two non-communicating players Alice (A) and Bob (B) get one bit inputs x and y each, chosen at
random. Their goal is to produce two outputs a and b such that a + b ≡ xy mod 2. b.) The same situation with
inputs x and y chosen at random from a finite field Fq with prime q. Goal of the players it to produce two outputs
a, b ∈ Fq respectively, such that a + b ≡ xy mod q.

their input and win if either x = 0 or y = 0, thus in
2q − 1 out of q2 cases).

In our paper [8] we presented the first constructive clas-
sical strategy for the CHSHq game with the probability

of winning Ω
(
q−

2
3

)
for q being a prime. With this strat-

egy we close the gap between constructive strategies and
existence bounds. To be able to prove this result, we first
related the problem of classical CHSHq game strategies
to a well-known problem of point-line incidences. Do-
ing that we were able to construct an explicit strategy
for winning a generalized CHSHq game with a winning

probability lower bounded by p−2/3

22 , what perfectly mim-
ics the non-constructive existence bound known so far.

This result is useful for potential design of device in-
dependent algorithms based on higher alphabet CHSH
games in different aspects. First, it closes the gap be-
tween existing explicit strategies and proven existence
bounds, which helps the understanding of the nature of
the problem. Second, and most importantly, the pre-
sented result provides the first non-trivial classical strat-
egy for a CHSH game, where Alice and Bob need to act
in a way that depends on their input and their output is
a result of a non-trivial calculation.

There is also a set of open questions that remain. The
obvious one is, how one could generalize the result pre-
sented in this paper for prime power fields. This is not
easy, as the nature of the proof relays on the relation
between addition and multiplication, which is unique for
prime fields. Also the fact that known existence bounds
crucially depend on whether they are deployed on even
or odd power prime field suggests that any possible gen-
eralization will not be straightforward.

More ambitious goals include the aim of finding tight
bounds on classical strategies. This might, in accor-
dance with suitable heuristic results for quantum strate-
gies, lead to the possibility of direct use of higher-order
CHSHq games in experiments. The ultimate goal, nat-
urally, remains to directly prove a gap between classical

and quantum strategies.
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Abstract. Quantum computer simulators play an important role when we develop and evaluate quantum
algorithms. Quantum computation can be regarded as parallel computation in some sense, and thus, it
is suitable to implement a simulator on a device that can process many operations in parallel. In this
research, we propose a GPGPU-based quantum computer simulator. The proposed simulator recursively
decomposes the state space so that the sizes of the subspaces will fit the sizes of hierarchical caches. This
makes cache hit rates higher. We also developed the method that can avoid bank conflicts. We implemented
the proposed simulator on an NVIDIA GeForce GTX 970. Experimental results show that the proposed
simulator has better performance.

Keywords: quantum circuit simulation, GPGPU, cache-aware simulation

1 Introduction

Development of quantum algorithms is a difficult task
and sometimes needs analysis based on simulation as well
as theoretical analysis. For this purpose, simulation of
quantum computers is highly demanded. However, sim-
ulation of quantum computers is a time-consuming task,
and thus, various kinds of simulation methods have been
investigated intensively[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14].

Since quantum computation is parallel computation in
some sense, which is called quantum parallelism, it is suit-
able to implement simulators on parallel computation de-
vices such as GPGPUs, many-core CPUs, and ASICs. In
this research, we focus on simulators on GPGPUs. In
[5], a GPGPU-based simulator was proposed. The simu-
lator is designed so that it can access data in a coalesced
manner since coalesced memory access is crucial for high
performance in GPGPU computing. The simulator gen-
erates coalesced access patterns by decomposing the state
space into subspaces so that each subspace may have con-
secutive computational basis vectors as its basis.

In GPGPU computing, memory access often becomes
a bottleneck, and so is the case of quantum circuit sim-
ulation. Thus, reducing memory access overhead is the
main concern in this research field. One of the solutions
for this problem is to make efficient use of L2-cache. A
GPGPU has an L2-cache between shared memory and
global memory, and by achieving high L2-cache hit rate
we can improve the performance of the simulator. In
GPGPU computing, shared memory is used as a user-
controllable cache. Shared memory is divided into mem-
ory banks. Data stored in different banks can be ac-
cessed in parallel. On the other hand, data stored in
the same bank must be accessed sequentially, which is
called a bank conflict. Thus, generating memory access
patterns that avoids bank conflicts also improves the per-
formance.

In this research, we extended the method in [5] and de-
veloped a GPGPU-based quantum circuit simulator that
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achieves high L2-cache hit rate. We also developed a
method that can avoid bank conflicts in shared memory.
We implemented our simulator on an NVIDIA GeForce
GTX 970. Experimental results show that the proposed
simulator has better performance.

2 GPGPU Programming Model

The programming model of the target GPGPU is
so-called SIMT (Single Instruction, Multiple Thread)
model. A bunch of threads (32 threads for our target
architecture), called a warp, executes the same instruc-
tion on different data. Threads are grouped into thread-
blocks. Threads in a thread-block share on-chip shared
memory. The shared memory can be used to communi-
cate between threads in the same thread-block. On the
other hand, communication across thread-blocks needs to
transfer data to the off-chip global memory. The global
memory has an L2-cache, and the L2-cache can be used
to boost inter-block communication. The shared mem-
ory can be used as a user-controllable L1-cache. Thus,
the shared memory together with the L2-cache forms a
hierarchical cache architecture.

3 Cache-Aware Quantum Circuit Simu-
lation

We use the linearity of matrix-vector multiplication to
simulate quantum gates efficiently, which is commonly
used in quantum circuit simulations[5, 7, 8, 12]. Let
Q = {q0, . . . , qn−1} be a set of qubits, and also let
v = (α0, . . . , α2n−1)T be a state vector of the n-qubit
system. For m < n, we divide Q into two disjoint sub-
sets, S1 = {qi1 , . . . , qim}, S2 = {qj1 , . . . , qjn−m

} where
i1 < · · · < im and j1 < · · · < jn−m. We fix the values
of the qubits in S2 as xj1 , xj2 , . . . , xjn−m (xjk ∈ {0, 1}),
respectively. Then, vxj1

xj2
···xjn−m

denotes the projection
of v onto the subspace where the qubits in S2 are fixed
to xj1xj2 · · ·xjn−m

. Note that the following holds:

11···1∑
xj1

xj2
···xjn−m

=00···0
vxj1

xj2
···xjn−m

= v, and

vx · vy = 0 for x 6= y(x, y ∈ {0, 1}n−m).
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We consider a sequence of quantum gates, (g1, g2, . . . , gk).
We restrict each of gi’s to be a one-qubit gate or a
controlled-unitary gate. We identify each of the quantum
gates gi with the corresponding transformation. Then by
linearity, the following holds:

gk ◦ · · · ◦ g2 ◦ g1(v) =
∑
i

gk ◦ · · · ◦ g2 ◦ g1(vi),

where gj ◦ gi is a composite transformation of gi and gj .
This means that we may apply quantum gates to each
vi independently, and then sum up the resulting vectors
v′i = gk ◦ · · · ◦ g2 ◦ g1(vi) (0 ≤ i < 2n−m) to obtain
a complete result. Note that if the target bits of gj ’s
(1 ≤ j ≤ k) are placed on the qubits in S1, v′i is in the
same subspace as vi.

In order to make L2-cache hit rate higher, we apply
the above method recursively. That is, we decompose
the state space into subspaces whose size fits in the L2-
cache. Then, we recursively decompose each of the sub-
spaces into smaller subspaces whose size fits in the shared
memory. Then, by simulating quantum gate operations
within each subspace, we can achieve high memory access
locality. The simulation can be done for each subspace
one by one. However, in order to achieve high memory
access locality for L2-cache, it is needed to appropriately
schedule the order of the subspaces to be simulated. The
proposed method does this without spoiling the parallel
computation of a GPGPU.

4 Avoiding Bank Conflicts

When simulating a quantum gate sequence for a sub-
space, the amplitudes of the basis vectors that lies in
the target subspace are in the shared memory. Let
the number of memory banks be 2k. Also, let the
shared memory have amplitudes of the basis vectors
|00 . . . 0〉 , . . . , |11 . . . 1〉 where the amplitude of |x〉 is
stored at address x. When simulating a quantum gate
whose target bit is on the i-th qubit, each thread fetches
from the shared memory a pair of amplitudes whose cor-
responding computational basis state differs only on the
i-th bit. When i ≤ k, the j-th thread and the (j+ 2k−1)-
th thread access to the same bank, which causes a bank
conflict.

To avoid the bank conflict, we modified the access pat-
terns so that the (j + 2k−1)-th thread may access to the
other amplitude of the pair first. By this, the j-th to the
(j+ 2k−1)-th threads access to mutually distinct banks,
and we can improve memory access performance.

5 Implementation and Experiments

We implemented our method on an NVIDIA GeForce
GTX 970. The CUDA runtime version used for the im-
plementation is 7.0. We used 25-qubit quantum circuits
as benchmarks. The experimental results show that the
proposed method can achieve from 4.3% to 10% improve-
ment of the performance.
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Clauser-Horne Bell test with imperfect random inputs
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Abstract. Bell test is one of the most important tools in quantum information science. In practice,
loopholes existing in experimental demonstrations of Bell tests may affect the validity of the conclusions.
In this work, we focus on the randomness (freewill) loophole and investigate the randomness requirement
in a well-known Bell test, the Clauser-Horne test, under various conditions. Our result thus provides input
randomness requirements on the Clauser-Horne test under varieties of practical scenarios. The employed
analysis technique can also be generalized to other Bell inequalities.

Keywords: Bell test, Clauser-Horne test, randomness (freewill) loophole

1 Introduction

Since the inception of quantum mechanics, whether the
law of nature is deterministic or truly random has been
long debated.During this debate, Einstein, Podolsky, and
Rosen (EPR) proposed a paradox [1] that eventually
leaded to a counterintuitive phenomenon — quantum
nonlocality. Later, Bell put the EPR paradox in an ex-
perimentally testable framework, known as Bell test [2].
In the bipartite scenario, a Bell test involves two remote-
ly separated parties, Alice and Bob, who receive random
inputs x and y and produce outputs a and b, respective-
ly. Based on the probability distribution p̃AB(a, b|x, y) of
the outputs conditioned on the inputs, Bell’s inequality
can be defined by a linear combination of p̃AB(a, b|x, y)
according to

J =
∑
a,b,x,y

βx,ya,b p̃AB(a, b|x, y) ≤ JC , (1)

where JC is a bound for all local hidden variable models
(LHVMs), meaning that, any LHVM cannot violate any
Bell’s inequality.
There are three main inherent loopholes. The first one

is the locality loophole and the second one is the detection
efficiency loophole. These two loopholes can be closed
by separating the two parties sufficiently apart with re-
gard to the synchronization precision of different mea-
surements in the tests. Third, the randomness (freewill)
loophole refers to the underlying assumption in Bell tests
that different measurement settings can be chosen ran-
domly (freely). Generally, a Bell test requires the input
of each party to be fully random in order to avoid in-
formation leakage between different parties. If there is a
local hidden variable that shares information about the
random inputs, where in the worst scenario, the inputs
are all predetermined such that each party knows exactly
the input of the other party, it is possible to violate Bel-
l inequalities just with LHVM strategies. Yet, it is still
meaningful to discuss the randomness requirement of Bell
tests in a practical scenario. This is especially meaning-
ful when considering a loophole free Bell test [3, 4] and
its applications to practical tasks in the presence of an
eavesdropper.

∗xma@tsinghua.edu.cn

2 Randomness Requirement

In this work, we consider Bell’s inequalities with input
settings not chosen fully randomly. That is, the inputs
x and y depend on some local hidden variable, denoted
as λ. The input randomness can be quantified by the
dependence of the inputs conditioned on λ. Suppose the
inputs x and y are chosen according to a priori probabil-
ity p(x, y|λ), the input randomness can be measured by
its upper and lower bounds,

P = max
x,y,λ

p(x, y|λ),

Q = min
x,y,λ

p(x, y|λ).
(2)

When the input settings are determined by p(x, y|λ),
the observed probability p̃AB(a, b|x, y) of outputs con-
ditioned on inputs is given by

p̃AB(a, b|x, y) =
∑
λ p̃AB(a, b|x, y, λ)p(x, y|λ)q(λ)

p(x, y)
, (3)

where q(λ) is the priori probability of λ, p(x, y) =∑
λ p(x, y|λ)q(λ) is the averaged probability of choosing

x and y, and p̃AB(a, b|x, y, λ) is the strategy of Alice and
Bob conditioned on λ. Then, the Bell’s inequality defined
in Eq. (1) should be rephrased by

J =
∑
x,y

1

p(x, y)

∑
λ

∑
a,b

βx,ya,b p̃AB(a, b|x, y, λ)p(x, y|λ)q(λ)

≤ JC .
(4)

3 CH inequality

In this section, we will investigate the randomness re-
quirement of the CH inequality under different condition-
s, including whether p̃AB(a, b|x, y) is signaling or NS, and
whether the factorizable condition is satisfied or not.

3.1 CH inequality with LHVMs

The CH inequality is defined in the bipartite scenario,
where the input settings x and y and the outputs a and
b are all bits. Based on the probability distribution that
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obtains a specific measurement outcome, for instance 00,
the CH inequality is defined according to

JCH = p̃AB(0, 0) + p̃AB(0, 1) + p̃AB(1, 0)

− p̃AB(1, 1)− p̃A(0)− p̃B(0) ≤ 0,
(5)

where we omit the outputs a and b and define p̃A(x)
(p̃B(y)) to be the probability of detecting 0 with input
setting x (y) by Alice (Bob), and p̃AB(x, y) the probabil-
ity of coincidence detection 00 for both sides with input
settings x and y for Alice and Bob, respectively.
In real experiments, the input probability can be arbi-

trary, where our result can still apply with certain modi-
fications on normalization. With the normalization con-
dition, the CH value with LHVMs strategies is given by

JLHVM
CH = 4

∑
λ

q(λ)Jλ (6)

with Jλ defined by

Jλ = p̃A(0, λ)p̃B(0, λ)p(0, 0|λ) + p̃A(0, λ)p̃B(1, λ)p(0, 1|λ)
+ p̃A(1, λ)p̃B(0, λ)p(1, 0|λ)− p̃A(1, λ)p̃B(1, λ)p(1, 1|λ)
− p̃A(0, λ)(p(0, 0|λ) + p(0, 1|λ))/2
− p̃B(0, λ)(p(0, 0|λ) + p(1, 0|λ))/2.

(7)
With the randomness parameter defined in Eq. (2), our
target is to maximize JLHVM

CH defined in Eq. (6).

3.2 General strategy (attack)

In this part, we consider a general strategy (attack)
where no additional assumption is imposed. Note that
the optimization of Eq. (6) requires to optimize over the
strategy of Alice and Bob, p̃A(x, λ) and p̃B(y, λ), and also
the strategy of deciding the inputs, p(x, y|λ). Here, we
first analyze how to optimize the strategy of Alice and
Bob.
Because all probabilistic LHVM strategies can be re-

alized with a convex combination of deterministic strate-
gies, it is sufficient to just consider deterministic strate-
gies, i.e., p̃A(x), p̃B(y) ∈ {0, 1} for the optimization. Con-
ditioned on different values of p̃A(x) and p̃B(y), we should
choose the optimal strategy of p̃A(x) and p̃B(y) that max-
imize Jλ.

(p̃A(0), p̃A(1), p̃B(0), p̃B(1)) Jλ
(0,1,1,0) (p(1, 0)− p(0, 0))/2
(0,1,1,1) (p(1, 0)− p(0, 0))/2− p(1, 1)
(1,0,0,1) (p(0, 1)− p(0, 0))/2
(1,0,1,1) (p(0, 1)− p(1, 0))/2
(1,1,0,1) (p(0, 1)− p(0, 0))/2− p(1, 1)
(1,1,1,0) (p(1, 0)− p(0, 1))/2
(1,1,1,1) (p(1, 0) + p(0, 1))/2− p(1, 1)

Table 1: Possible strategies for letting Jλ be positive.

For simple notation, we denote p(i, j) by p2∗i+j here-
after, thus the possible deterministic strategies for Jλ are

in the following set{
p2 − p0

2
,
p1 − p0

2
,
p1 − p2

2
,
p2 − p1

2
,
p2 + p1

2
− p3

}
.

(8)
Because there are only five possible strategies of Alice

and Bob, we can also consider that there are only five
different strategies of choosing the input settings. There-
fore, we label λj to be the jth strategy of choosing the
input settings and JLHVM

CH can be rewritten in the follow-
ing way,

JLHVM
CH /4

= q(λ1)(p2(λ1)− p0(λ1))/2 + q(λ2)(p1(λ2)− p0(λ2))/2

+ q(λ3)(p1(λ3)− p2(λ3))/2 + q(λ4)(p2(λ4)− p1(λ4))/2

+ q(λ5)[(p2(λ5) + p1(λ5))/2− p3(λ5)].
(9)

Then JLHVM
CH can be expressed by

JLHVM
CH = 4

∑
ij

βijq(λj)pi(λj), (10)

Based on the value of P and Q, we give the optimal
CH value JLHVM

CH with LHVMs by

JLHVM
CH (P,Q) =


5
2 (4P − 1) 3P +Q ≤ 1,
1− 4Q 2P +Q ≥ 3

4 ,
4P − 2Q− 1

2 else,
(11)

Note that when P is greater than 3/8, the value of JLHVM
CH

is independent of P .

3.3 Results

Let us compare the results of the CH values JLHVM
CH

under different conditions. For the maximal quantum vi-
olation JQ = (

√
2− 1)/2, we calculate the critical values

of Q and P such that JLHVM
CH (P,Q) = JQ. When Q is

small, the optimal CH value JLHVM
CH (P,Q) depends only

on P . In this case, the critical values of P for the sig-
naling, signaling+fac, NS, and NS+fac are 0.207, 0.302,
0.285, 0.354, respectively. On the other hand, when Q
is large, the optimal CH value JLHVM

CH (P,Q) depends on-
ly on Q instead. In this case, the critical values of Q
for the signaling and NS condition are 0.198 and 0.146,
respectively.
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Cat states are coherent quantum superpositions of macroscopically distinct states and are useful
for understanding the boundary between the classical and the quantum world. Due to their macro-
scopic nature, cat states are difficult to prepare in physical systems. We propose a method to create
cat states in one-dimensional quantum walks using delocalized initial states of the walker. Since
the quantum walks can be performed on any quantum system, our proposal enables a platform-
independent realization of the cat states. We further show that the linear dispersion relation of
the effective quantum walk Hamiltonian, which governs the dynamics of the delocalized states, is
responsible for the formation of the cat states. We analyze the robustness of these states against
the environmental interactions and present methods to control and manipulate the cat states in the
photonic implementation of quantum walks.

I. INTRODUCTION

Schrödinger cat states can be defined as quantum su-
perpositions of macroscopically distinct states of a quan-
tum system [1–4]. Due to their macroscopic nature, the
cat states play an important role in fundamental tests of
quantum theory and precision measurements [5–8]. Nu-
merous attempts are being made to prepare the cat states
in various physical systems [9–27].

The macroscopic superposition, which makes the cat
states interesting also makes them hard to create in phys-
ical systems. This is because of the difficulty in control-
ling the evolution of macroscopic quantum systems while
preserving the coherence in the state. Quantum walks in-
herently involve the coherent evolution of a macroscopic
system.

In a quantum walk process, a quantum walker propa-
gates on a lattice where the propagation is conditioned
over its internal states (the coin states) [28, 29]. The
quantum walker, unlike its classical counterpart, pre-
serves the coherence during the propagation which re-
sults in a faster spread of the walker over the lattice
as compared to the classical random walks. Quantum
walks have been extensively studied to devise quantum
algorithms [30–34] and to simulate various quantum phe-
nomena [35–55].

Here we propose a method to prepare the cat states in
a one-dimensional discrete time quantum walk (DTQW)
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using delocalized initial states of the walker. The quan-
tum walks can be implemented on virtually any quantum
system that meets the requirements (a lattice and a coin).
Thus, our proposal provides a platform-independent
method to create cat states, which enables us to test the
fundamental theories on more accessible systems.

In Ref. [56], Cardano et al. implemented a one-
dimensional quantum walk on the orbital angular mo-
mentum (OAM) space of a single photon, following the
proposal of Refs. [57, 58]. In this experiment, they
demonstrated that the state of the walker, which is de-
localized initially, evolves to form a bimodal distribution
that resembles a cat state. Their experimental finding,
which is consistent with their numerical calculations, mo-
tivates the research to find the cause of the formation of
cat states and analysis of the stability of these states
against the decoherence in quantum walks.

Here we start with a Gaussian (delocalized) initial
state and prove that it evolves to form a cat state. We
clarify the conditions for the formation of the cat states
for the entire range of the parameter θ, which character-
izes the bias in the coin flip in the quantum walk. The
linearity of the dispersion relation of the low-momentum
effective Hamiltonian, which governs the dynamics of the
delocalized states, is shown to be the reason for the for-
mation of the cat states in the one-dimensional quantum
walks. Furthermore, experimentally viable methods are
proposed to demonstrate the coherence in the presence
of environmental interactions. Our analysis of the effects
of decoherence on the quality of the cat states show that
large separations in the cat states are possible even in
the presence of noise. Finally, we provide a method to
stabilize and manipulate the cat states over the OAM of
light.

49

mailto:weiwei.zhang@ucalgary.ca
mailto:sandeep.goyal@ucalgary.ca
mailto:gaofei_bupt@hotmail.com
mailto:sandersb@ucalgary.ca
mailto:csimo@ucalgary.ca


2

The structure of the article is as follows: we provide
the relevant background regarding the one-dimensional
quantum walks in Sec. II. In Sec. III and IV we present
our numerical and analytical findings. We discuss the
effect of decoherence on the cat states in Sec. V. Method
to control and manipulate the cat states are presented in
Sec. VI. We conclude in Sec. VII.

II. BACKGROUND

In this section, we present the relevant background of
the one-dimensional quantum walks. We describe the
regular coined quantum walks on a one-dimensional lat-
tice, its generalization and the Hamiltonian, which gov-
erns the dynamics of the quantum walks. We conclude
the section with an optical implementation scheme where
the walk is performed over the OAM of a light beam.

A. One-dimensional Discrete time quantum walks

In a one-dimensional DTQW the walker propagates on
a one-dimensional lattice. The movements of the walker
on the lattice are conditioned over the state of a two-
state quantum coin. Each step in the walk consists of a
coin-flip (C) followed by the conditional propagation (S).
If {|↑〉 , |↓〉} represents a set of two orthogonal states of
the coin then the coin-flip operator C reads [59]

C =
(

cos θ |↑〉+ sin θ |↓〉
)
〈↑|+

(
sin θ |↑〉 − cos θ |↓〉

)
〈↓| ,
(1)

where the parameter θ ∈ [0, 2π). The conditional prop-
agator S instructs the walker to move forward (F =∑
x |x+ 1〉 〈x|) or backward (F †) on the lattice condi-

tioned over the states of the coin,

S = F ⊗ |↑〉 〈↑|+ F † ⊗ |↓〉 〈↓| . (2)

Here x is the index for the lattice sites. Thus, the quan-
tum walk propagator Z reads

Z = S(1⊗ C). (3)

Repeated action of the propagator Z gives rise to the
quantum walk dynamics.

One-dimensional DTQW has been generalized to sim-
ulate various dynamics. One of the most interesting
generalizations is where a phase, which is linear in the
position, is introduced after every step of the quantum
walk [60, 61]. The operator Fm which gives the site-
dependent phase reads

Fm =
∑
x

exp(iΦx) |x〉 〈x| , (4)

where Φ is an independent parameter. The subscript m
in the operator Fm is just a reminder that the opera-
tor Fm is a shift operator in the momentum space. The
propagator for the generalized quantum walk reads

Z̄ = FmZ. (5)

This generalized quantum walk demonstrates vari-
ous interesting properties such as Bloch oscillations and
quasi-periodic dynamics [61]. If the strength of the pa-
rameter Φ is set to be Φ = 2π/p, where p is a positive
integer, then the walker recovers its original state after
2p number of steps for odd p and after p number of steps
for even p. This feature can be used to restrict the spread
of the walker on the lattice.

B. Quantum walk Hamiltonian

The Hamiltonian H that governs the quantum walk
dynamics can be calculated by substituting

Z = exp(−iHδt), (6)

where δt is the duration of a single step in the quantum
walk. Here we have taken ~ ≡ 1.

From the definition of the conditional propagator S
in (2) and the operator F , we can assert that the propa-
gator Z and the Hamiltonian H are translation invariant.
Thus, the Hamiltonian H can be block diagonalized in
the momentum (or Fourier transform) basis {|k〉}

H =
⊕

k∈[−π,π)

H(k). (7)

Here we have considered a lattice of size N with periodic
boundary condition, where N is taken to be much larger
than the number of quantum walk steps. The variable
k represents the (quasi-) momentum that can take dis-
crete values between −π and π in the integer multiples
of 2π/N .

The Hamiltonian H(k) in the momentum basis can be
calculated by expanding the position eigenstates {|x〉} in
the momentum basis {|k〉} as

|x〉 =
1√
N

∑
k

exp(ikx) |k〉 . (8)

By substituting Eq. (8) into the definition of the propa-
gator Z and using Eq. (6) we arrive at

H(k) = h(k) · σ. (9)

Here σ is the vector (σx, σy, σz) of Pauli spin matrices
and h(k) = (h1(k), h2(k), h3(k)) is a three dimensional
real vector, which reads

h1(k) = −R(k) sin θ cos k, (10)

h2(k) = R(k) sin θ sin k, (11)

h3(k) = −R(k) cos θ cos k, (12)

R(k) =
cos−1(− cos θ sin k)√
sin2 θ sin2 k + cos2 k

. (13)

Interestingly, for small values of the parameter θ and
small k, the Hamiltonian H(k) takes a special form that
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resembles a two-component Dirac Hamiltonian (see Ap-
pendix A). In this limit the effective Hamiltonian, which
we represent by Hd, reads

Hd(k) = −
(
k +

π

2

)
σz − θ

π

2
σx. (14)

In the Hamiltonian Hd(k) the parameter θ characterizes
the mass of the particle.

C. Implementing quantum walks in optical system

In this section, we describe an implementation scheme
to realize a one-dimensional quantum walk on the OAM
of light. This scheme was proposed in [58] and experi-
mentally demonstrated in [56]. The purpose of this sec-
tion is to familiarize the readers with an implementation
scheme for the cat states in the quantum walks. Us-
ing this implementation for the one-dimensional quan-
tum walks we will propose a method to manipulate and
control the cat states.

In this implementation scheme, the OAM of light
serves as the lattice and the polarization is used as the
coin. The conditional propagator S (2) is constructed
by means of a q-plate which is a device that couples the
OAM of light with its spin angular momentum (polariza-
tion) [62]. The action of a q-plate on the combined state
of the OAM and the polarization is given by

|L, `〉 → |R, `− 2q〉 , (15)

|R, `〉 → |L, `+ 2q〉 , (16)

where |L〉 and |R〉 are the left- and right-handed circular
polarization of light, and |`〉 is the OAM state that has
angular momentum proportional to `~. The half-integer
parameter q characterizes the q-plate.

A half-wave plate with its fast axis parallel to the hori-
zontal axis interchange the left- and right-handed circular
polarization. Therefore, a q-plate with q = 1/2 followed
by a half-wave plate give rise to the conditional propaga-
tor S (2).

The coin-flip operator C (1) can be implemented us-
ing the Simon-Mukunda polarization gadget [63]. This
gadget is a combination of one half-wave plate and two
quarter-wave plates, and can be used to realize an arbi-
trary SU(2) operation on the polarization of light. Hence,
the quantum walk propagator Z can be simulated using a
q-plate, a half-wave plate, and a Simon-Mukunda polar-
ization gadget in series. Placing these three components
in a loop can realize a one-dimensional quantum walk on
the OAM of light.

III. CAT STATES IN QUANTUM WALKS

In this section, we demonstrate the formation of the
cat states in the one-dimensional DTQW. We show that
the walker in a delocalized (Gaussian) initial state evolves

FIG. 1. The evolution of the walker on a one-dimensional
lattice for (a) localized and (b) delocalized initial states. Here,
the parameter θ = π/4, and the width of the Gaussian for the
figure (b) is σ ≈ 10.

to form a cat state. We present methods to analyze the
cat nature of the evolved state of the walker.

Quantum walk evolution, typically, results in a bi-
modal distribution of the walker on the lattice. In Fig. 1,
we plot the probability distribution of the walker at time
t = 90, 120, 150 steps for a localized and a delocal-
ized initial states. In Fig. 1a, the initial state of the
walker is localized at the origin. The state of the walker
evolves to a bimodal distribution with a residual prob-
ability between the two components of the distribution.
The residual probability signifies the overlap between the
two components of the distribution. Hence, the evolved
state is not a cat state.

In Fig. 1b, we start with a delocalized initial state
|Ψ(0)〉de of the walker

|Ψ(0)〉de =
1

N
∑
n

exp

(
− n2

4σ2

)
|n〉 ⊗ |χ〉c , (17)

which has a Gaussian probability distribution. We find
that the delocalized state |Ψ(0)〉de evolves to a state
|Ψ(t)〉de after time t that has the bimodal probability
distribution with vanishing residual probability between
the two components of the bimodal distribution. Here
we have chosen the width σ of the Gaussian to be suf-
ficiently large (about 10 lattice sites). |χ〉c is a normal-
ized initial state of the coin, and N is the normalization
constant. The two components of the bimodal distribu-
tion can represent macroscopically distinct states of the
walker. Hence, the evolved state can be seen as a cat
state. In the remainder of this section, we analyze the
conditions required for the evolved state to be a cat state.

A. Small θ case

We start with a simple case when the parameter θ is
small. In this limit, the quantum walk Hamiltonian can
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be approximated to a two-component Dirac Hamiltonian
Hd (14). In this limit, the quantum walk can be used to
simulate quantum relativistic effects such as Klein para-
dox and Zitterbewegung [38, 43]. Thus, this limit can be
considered as the relativistic limit of the quantum walk.

The parameter θ in the Dirac Hamiltonian Hd charac-
terizes the mass of the particle. For θ = 0 the Hamilto-
nian Hd represents a massless particle. If the initial state
of the walker in the momentum space is

|Ψ(0)〉 =
∑
k

|ψk〉 ⊗ (a |↑〉+ b |↓〉) , (18)

then the evolved state, for the case θ = 0, reads

|Ψ(t)〉 = exp(−iHdt) |Ψ(0)〉 ,

=
∑
k

(
iaeikt |ψk〉 ⊗ |↑〉 − ibe−ikt |ψk〉 ⊗ |↓〉

)
.

(19)

Here, the two orthogonal spin components of the particle
propagate in the opposite directions independent of each
other. Due to the linear dispersion relation in the Dirac
Hamiltonian, the evolution does not result in the spread-
ing of the wave function of the particle, which results in
the formation of cat states.

The same feature, namely, the non-dispersive be-
haviour of the wave function, persists for non-zero values
of θ as long as θ is small. Thus, cat states can be formed
in the relativistic limit of the one-dimensional quantum
walks.

B. Arbitrary θ case

In the limit when θ is large, the Dirac description of
the quantum walk breaks down, therefore, one might not
expect to observe the cat states. In Fig. 2, we plot the
probability distribution of the walker over the lattice at
different times. Here we have considered two different dy-
namics for the walker, one where we use the exact quan-
tum walk evolution to propagate the walker on the lattice
and other where we use Dirac Hamiltonian to propagate
the walker. We have chosen θ = π/2.4, i.e., a large value
of θ. From this figure, we see that the Dirac Hamil-
tonian and the exact quantum walk dynamics result in
strikingly different evolutions. The cat-state-like distri-
bution persists for large θ in the exact quantum walk
evolution where Dirac description predicts only dispersed
wave function.

In the following, we show that the evolved states
achieved for an arbitrary θ and the state |Ψ(t)〉 (19)
achieved in the small θ limit are qualitatively the same.
In order to see that, first, we notice that the state |Ψ(t)〉
in Eq. (19) is highly entangled and the wave-packets cor-
responding to the orthogonal states of the coin propagate
in the opposite directions.
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FIG. 2. The comparison between the exact quantum walk
evolution (the dashed line) and the evolution using the Dirac
Hamiltonian (the solid line) for large values of θ (θ = π/2.4 =
75◦). This figure shows the spread in the width of the Gaus-
sian in the case of the Dirac evolution but almost no spread
in the exact quantum walks evolution.

In Fig. 3a we plot the entanglement in the state
|Ψ(t)〉de between the coin and the walker. The entangle-
ment is calculated by first calculating the reduced den-
sity matrix of the coin (or the walker) and then calcu-
lating the von-Neumann entropy of the reduce density
matrix [64]. In this figure, we can see that the entan-
glement approaches the maximum value after sufficiently
long time. In Fig. 3b we plot the distribution for the
states of the walker corresponding to the two orthogonal
states of the coin, which are calculated by diagonalizing
the reduced density matrix of the coin. Clearly the two
wave-packets are moving in the opposite directions. The
maximum entanglement along with the purity show that
the state |Ψ(t)〉de must have the form

|Ψ(t)〉de =
1√
2

(|X(t)〉 ⊗ |φ(t)〉+ |X⊥(t)〉 ⊗ |φ⊥(t)〉) ,

(20)
where the states |X(t)〉 and |X⊥(t)〉 represent the two
non-overlapping wave-packets and |φ(t)〉 and |φ⊥(t)〉 are
the orthogonal states of the coin.

Another method to verify the coherence in the two
wave-packets in the evolved state |Ψ(t)〉de is by studying
the probability distribution of the walker in the momen-
tum space after projecting over an appropriate state of
the coin. This can be done as follows: if the states |X(t)〉
and |X⊥(t)〉 are coherent Gaussian states that have the
form

|G(±nt, σ)〉 =
1

M
∑
n

exp

(
− (n± nt)2

4σ2

)
|n〉 , (21)

with the mean at ±nt and the width σ, then the Fourier
transform of these states read

|G(±nt, σ)〉 → 1

M
∑
k

e∓intke−σ
2k2/2 |k〉 . (22)
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FIG. 3. In this figure we summarize the numerical evidence in favour of the cat states in one dimensional DTQW. Here we
have chosen the parameter θ = π/4 and the width of the Gaussian σ ≈ 10, unless specified explicitly. In Fig. (a) we plot the
entanglement between the coin and the lattice as a function of time for different values of θ. The entanglement is calculated
by calculating the von-Neumann entropy of the reduced density matrix of the coin. In Fig. (b) we show the macroscopically
distinct states of the walker propagating in the opposite directions. The two macroscopically distinct states correspond to the
states |X〉 and |X⊥〉 introduced in Eq. (20). Here the solid curves are the Gaussian moving towards the right and the dashed
curves are the Gaussian moving towards the left. (c) The probability distribution in the momentum space after projecting the
evolved state on a chosen coin state. Here we have chosen the coin states |χ〉c = |χ′〉c = |u−(0)〉+ i |u+(0)〉, where |u±(0)〉 are
the eigenvectors of the quantum walk Hamiltonian corresponding to k = 0. The occurrence of the fringes in this distribution
signifies the coherence between the two macroscopic states |X〉 and |X⊥〉 of the walker.

Thus, the state |Ψ(t)〉de in the momentum basis reads∣∣∣Ψ̃t

〉
=

1√
2M

∑
k

e−σ
2k2/2 |k〉⊗

(
e−intk |φ〉+ eintk |φ⊥〉

)
.

(23)

After projecting the state
∣∣∣Ψ̃t

〉
on the coin state |χ′〉c,

the state of the walker reads

|Ψ〉 =
1√
2M

∑
k

e−σ
2k2/2

(
αe−intk + βeintk

)
|k〉 , (24)

where

α = c〈χ
′ |φ(t)〉, β = c〈χ

′ |φ⊥(t)〉. (25)

Note that, |Ψ〉 in (24) represents a state of the walker
which is a superposition of two Gaussians in the position
space centred around ±nt. Thus, the state |Ψ〉 itself is
a cat state as it contains a coherent superposition of two
macroscopically distinct states.

For α = β, the probability distribution correspond-
ing to |Ψ〉 in the momentum space will be a product of a
Gaussian and cos2 ntk. For an appropriate choice of |χ′〉c
one can acquire α = β. Thus, the presence of the fringes
in the momentum space probability distribution signifies
the coherence in the two Gaussian probability distribu-
tions in the evolved state of the quantum walk. In Fig. 3c
we plot the probability distribution for the state |Ψ〉 in
the momentum space. The clear presence of the fringes
in the plot ensures that the two Gaussian probability dis-
tributions in the evolved state of the walker are coherent,
thus, the evolved state is a cat state.

Until now we have considered only those cases when
the initial state of the walker is centred around k = 0;
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FIG. 4. The plot for the probability distribution of the
evolved state for different values of the mean momentum k0.
Here we have set θ = π/4 and the width of the Gaussian
σ = 10.

therefore, the average momentum of the walker is small.
What happens when the initial state is a Gaussian but
not centred at k = 0? In Fig. 4 we plot the probability
distribution for different initial states. Here we consider
the initial state of the walker to have a Gaussian proba-
bility distribution and the mean value of the momentum
to be 0 ≤ k0 ≤ π/2. From Fig. 4 it can be seen that we
get perfect cat states only when k0 ≈ 0.

In this section, we have shown that the delocalized ini-
tial states of a quantum walker evolve to form the cat
states. This result is independent of the coin parameter
θ. However, the formation of the cat states strongly de-
pends on the mean value of the momentum in the initial
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state. So far our analysis was based only on numerical
results. In the following section, we present the analytic
description for the formation of the cat states in quan-
tum walks for the entire range of θ including the large θ
regime where Dirac Hamiltonian does not comply.

IV. ANALYTIC APPROACH TO THE CAT
STATES IN QUANTUM WALKS

The numerical results, although compelling, do not
give us the real physics behind the formation of the cat
states in the quantum walks. In this section, we present
the reasons behind the formation of the cat states in the
quantum walk.

An important result in the previous section is that the
cat states are formed due to the delocalized initial states
that are centred around zero momentum. It suggests that
the low-momentum behaviour of the quantum walks is
responsible for the formation of the cat states. Further-
more, from the small θ limit of the quantum walk Hamil-
tonian, i.e., Dirac Hamiltonian, we can see that the lin-
ear dispersion relation and the momentum-independent
eigenvectors of the Hamiltonian cause the formation of
the cat states.

Interestingly, for small values of the momentum k the
Hamiltonian H(k) in Eq. (9) also has linear dispersion
even though the Hamiltonian H(k) itself is non-linear in
k (see Appendix A for detailed calculations)

E±(k) = ±
(
k cos θ +

π

2

)
+O(k3). (26)

In other words, the energy E±(k) does not have second
order terms in k and for small values of k (say k < π/20)
the k3 terms can be neglected, hence, giving rise to linear
dispersion relation.

Furthermore, the eigenvectors |u±(k)〉 of the Hamilto-
nian H(k) depend weakly on the momentum k for small
values of k (see Appendix A)

| 〈ui(0) |uj(k)〉 |2 = δij +O(k2). (27)

Eq. (27) along with the linear dispersion relation is re-
sponsible for the formation of the cat states. This can
be understood as follows: if we start with a delocalized
state

∣∣∣Ψ̃(0)
〉
de

of the walker∣∣∣Ψ̃(0)
〉
de

=
1

N ′
∑
k

exp

(
− k2

4δ2

)
|k〉 ⊗ |χ〉c , (28)

which has a Gaussian spread in the momentum space,
centred around k = 0 and having the width δ < π/20,
and the coin state |χ〉c, then the evolved state at time t
reads∣∣∣Ψ̃(t)

〉
=

1

N ′
∑
k

exp

(
− k2

4δ2

)
|k〉⊗(

e−iE−(k)ta−(k) |u−(k)〉+ e−iE+(k)ta+(k) |u+(k)〉
)
,

(29)

where a±(k) = 〈u±(k) |χ〉c. Now projecting the state∣∣∣Ψ̃(t)
〉

on the coin state |χ〉c results in state of the walker

|Ψ〉mom =
1

N ′
∑
k

exp

(
− k2

4δ2

)(
e−iE−(k)t|a−(k)|2

+e−iE+(k)t|a+(k)|2
)
|k〉 . (30)

The state |Ψ〉mom in (30) is same as the state |Ψ〉 in (24)
with α = |a−|2, β = |a+|2 and δ = 1/σ, and in the
position space |Ψ〉mom represents a state which is in a
superposition of two Gaussians centred around ±t cos θ.
Hence, |Ψ〉mom represents a cat state.

Alternatively, if |a−(k)|2 = |a+(k)|2 and independent
of k then the probability distribution corresponding to
the state |Ψ〉mom in the momentum space is a product
of a Gaussian and cos2E−(k)t. This means the proba-
bility distribution corresponding to the state |Ψ〉mom has
fringes exactly like the one in Fig. 3c. In that case the

state
∣∣∣Ψ̃(t)

〉
de

represents a cat state.

For appropriate choices for the state |χ〉c we can get
|a−(k)|2 ≈ |a+(k)|2 which, for small values of k, is k-
independent. Using Eq. (27) we can construct one such
class of state which reads

|χ〉c =
1√
2

(
|u−(0)〉+ eiϕ |u+(0)〉

)
, (31)

where ϕ is a free parameter. This class satisfies the rela-
tion

|a−(k)|2 ≈ |a+(k)|2 ≈ 1

2
. (32)

This completes our proof that the HamiltonianH(k), and
hence the one-dimensional DTQW, gives rise to the cat
states.

Let us emphasize that the linear dispersion (26) does
not mean that the Hamiltonian is linear. In fact in our
case, if we truncate the Hamiltonian H(k) to the first
order in k, then we will not get the linear dispersion re-
lation for large values of the parameter θ. The O(k2)
terms in the Hamiltonian H(k) make the dispersion re-
lation linear.

To summarize, we have shown that the formation of
the cat states is due to the linear dispersion relation and
the weak dependence of the eigenvectors of the quantum
walk Hamiltonian on the momentum k. In the following
section, we analyze the effect of decoherence on the cat
states in quantum walks.

V. EFFECT OF DEPHASING ON THE CAT
STATES

The discussion of the cat states is incomplete without
considering the effects of the environmental interactions
with the quantum system. Cat states are highly suscep-
tible to their surroundings. Therefore, establishing the
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feasibility of forming a cat states in a quantum system
interacting with a bath is important. In this section, we
study the effect of pure dephasing type bath interactions
on the quality of the cat states. We consider three differ-
ent scenarios, (i) the bath is acting only on the walker,
(ii) the bath is acting only on the coin, and (iii) the bath
is acting on both, the walker and the coin.

The action of a pure dephasing type bath on a given
density matrix ρ can be defined by the relation [65–67]

ρ→ ρ̃ = e−ηtρ+ (1− e−ηt)diag(ρ) = V̂ (ρ). (33)

Here η characterizes the strength of the bath, η = 0 im-
plies no interaction with the bath. The function diag(ρ)
keeps the diagonal elements of the matrix ρ and discard
all the off-diagonal elements. Formally, the action of the
pure dephasing bath can be represented by the superop-
erator V̂ .

We incorporate the effect of the dephasing in our evo-
lution by applying the superoperator V̂ after every step
of the quantum walk on either the walker or the coin or
on both. In Fig. 5, we plot the spread of the walker over
the lattice in the presence of dephasing. Interestingly,
we still get the bimodal distribution with an additional
residual probability between the two peaks.

Although the evolved state in the presence of dephas-
ing has a similar bimodal distribution as in the case of
pure states (without dephasing), the coherence in the
two cases can be very different. To quantify the coher-
ence in the evolved state of the walker we can calculate
the revival fidelity of the evolved state upon reversing
the dynamics using a physical operation [18, 68]. If the
state of the walker remains pure in the evolution then
the walker can regain its original state by reversing the
dynamics. However, if the walker loses the purity in the
evolution then the revival is not perfect.

To quantify the coherence, first, we need to devise an
operation that can reverse the dynamics of the quan-
tum walk. In our numerical calculations, we find that
the Pauli spin operator σy acting on the coin state of
the walker can be used to reverse the direction of prop-
agation of the walker if the initial state of the walker is
delocalized.

Using the σy operator we can calculate the revival fi-
delity as follows: we first evolve the initial delocalized
state of the walker for time T in the presence of the bath.
At this point, we reverse the dynamics by applying the
σy operator on the coin. We again evolve the state for
time T in the presence of the bath followed by σy op-
eration. Now we can calculate the fidelity between the
evolved state ρ(2T ) and the initial state |Ψ(0)〉de as

r = de〈Ψ(0) | (1⊗ σy)ρ(2T )(1⊗ σy) |Ψ(0)〉de. (34)

High values of the revival fidelity r signifies high amount
of coherence in the state.

In Fig. 6 we plot the revival fidelity in the quantum
walk evolution for various values of θ in the absence of
the dephasing. Here we apply the σy operation after
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FIG. 5. Spread of the walker on the lattice in the presence of
dephasing after 250 steps.
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FIG. 6. Plot for the revival fidelity between the evolved state
and the initial state for different values of θ in the absence of
the dephasing. For first n = 97 steps the walk is uninterrupted
at which point we apply the σy operation. The application of
σy causes the walker to retrace its footsteps resulting in a rise
in the fidelity reaching the maximum at n = 194 steps. Here
we have plotted the values of the fidelity only for the even
number of steps as the fidelity for the odd number of steps is
zero.

n number of steps. Till then the fidelity between the
evolved state and the initial state decreases monotoni-
cally. After we apply the dynamic-reversing operation,
the fidelity start increasing which acquire the maximum
value 1 at 2n steps. From this plot it is clear that the
system regains its initial state with high fidelity, thus,
confirming the high coherence in the state.

In Fig. 7 we plot the revival fidelity as a function of
the bath strength η. Here we have chosen T = 250 steps,
thus, the total evolution is for 2T = 500 steps. This figure
shows that we can achieve a very high revival fidelity
for small η (η ≈ 0.001). If we choose T to be smaller
then the revival fidelity can be high even for stronger
bath interactions. This suggests that the cat states with
significant separation between the two components in the
bimodal distribution should be possible in the physical
implementations of quantum walks.
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FIG. 7. Revival fidelity of the quantum walk under the action
of different baths

VI. CONTROLLING THE CAT STATES IN OAM
IMPLEMENTATION OF QUANTUM WALKS

In this section, we consider the optical implementation
of the one-dimensional quantum walk which we intro-
duced in Sec. II C. In this implementation, the quantum
walk is performed over the OAM space of light. Here we
propose a method to manipulate and control the sepa-
ration between the two distinct components in the cat
state.

The first requirement to realize a cat state in a one-
dimensional quantum walk is the delocalized (Gaussian)
initial state. The Gaussian initial state in the OAM im-
plementation of the quantum walk can be constructed,
simply, by using a spatial light modulators [56]. Thus,
by using a spatial light modulator and using the scheme
presented in Ref. [56, 58] we can form the cat states in
the optical quantum walks.

After realizing the cat state, the next step is to con-
trol the separation between the macroscopic states of the
walker. In Sec. II A we have seen that the application of
the momentum shift operator Fm in a one-dimensional
DTQW causes a periodic revival of the initial state of
the walker. The walker regains its initial state after 2p
number of steps where the number p = 2π/Φ is related
to the parameter of the operator Fm.

We use the same Fm to stabilize the cat state in the
quantum walks. In order to stabilize the cat state at time
t, first, we evolve the initial Gaussian state of the walker
for time t using the quantum walk propagator Z (3). The
evolved state |Ψ(t)〉 reads

|Ψ(t)〉 ≈ 1√
2

(|G(−nt, σ)〉 ⊗ |u−〉+ |G(nt, σ)〉 ⊗ |u+〉) .

(35)
At time t we introduce the momentum shift operator Fm

in the quantum walk with a certain value of p. Due to
the momentum shift operator the state of the walker start
oscillating, recovering the state |Ψ(t)〉 periodically after
the time period 2p. Hence, we can preserve the cat state
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FIG. 8. Here we plot the revival fidelity of the cat state after
the experiencing electric field for n × 2p. Here the width of
the delocalized initial state is σ = 9 and the time of evolution
is t = 100 steps.

|Ψ(t)〉 for a long time. The only obstacle in preserving
the cat states in the decoherence.

Now if we want to increase the separation between the
two Gaussian wave-packets of the cat state |Ψ(t)〉, then
we remove the operator Fm after a time period which is a
multiple of 2p. On the other hand, if we want to decrease
the separation between the two Gaussian wave-packets
we remove Fm after 2np followed immediately by one-
time application of σy operation. Hence, by introducing
the Fm and the reversal operation σy we can control and
manipulate the cat states in the quantum walks.

In Fig. 8 we show the numerically calculated revival
fidelity of the cat states. Here we have evolved the de-
localized initial state for 100 steps. Then we apply Fm

for n× 2p number of steps. We remove the operator Fm

and apply the quantum walk reversal operation σy and
evolve the system for 100 steps and calculate the fidelity
with the initial state. Here n is an integer between 1 and
100. We can see that for sufficiently large values of p the
revival fidelity converges to the value 1.

The action of the operator Fm can be implemented in
the OAM quantum walk by means of a Dove prism [69].
The action of the dove prism on the OAM states of light
can be written as

|`〉 → exp(i2ϕ`) |−`〉 , (36)

where ϕ is the angle of rotation of the dove prism along
the propagation axis of the light beam. Thus, two dove
prisms in a sequence with angles ϕ/4 and −ϕ/4 can im-
plement the action of the operator Fm (4) with Φ = ϕ.

The final component required to achieve the complete
control over the cat states in one-dimensional quantum
walks is the reversal operation σy. In the current scheme,
this operation can be achieved by simply using a half-
wave plate that has the fast axis parallel to the horizontal
axis.

To summarize, we have discussed an optical scheme to
manipulate and control the cat state in OAM quantum

56
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walks using linear optical devices half-wave plates and
dove prisms.

VII. CONCLUSION

In conclusion, we have proposed a method to prepare
the cat states in the quantum walk setup using delocal-
ized initial states. Our method is system-independent
and works for the entire range of the parameter θ. We
have also studied the effects of environmental interactions
on the cat states and demonstrated that the large sepa-
ration in the cat states is possible even in the presence
of noise. Finally, we presented a method to control and
manipulate the cat states in the optical systems.

The formation of the cat states in one-dimensional
DTQW yields an interesting class of low-momentum
Hamiltonians that, despite being non-linear in the mo-
mentum, possess linear dispersion relation. Both quan-
tum walks and the cat states have been used to describe
the coherent energy transfer in the photosynthesis pro-
cess [35, 36, 40–42, 70]. The current proposal of preparing
cat states using quantum walks threads the two concepts

together, which might also contribute to a better under-
standing of the underlying physics of photosynthesis.

ACKNOWLEDGMENTS

SKG and CS acknowledge the support from NSERC.
BCS thanks NSERC, Alberta Innovates, and China’s
1000 Talent Plan for financial support. WZ appreci-
ates the financial support from the BUPT Excellent
Ph.D. Students Foundation (Grant No. CX201325), the
China Scholarship Council (Grant No. 201406470022),
and NSERC. FG acknowledges the financial support from
NSFC (Grants No. 61272057 and No. 61572081).

Appendix A: Hamiltonian for the one-dimensional
discrete time quantum walk

The low-momentum expansion of the Hamiltonian
H(k) in (9) can be calculated by using the Taylor series
expansion of the Hamiltonian H(k) and discarding the
O(k3) and higher order terms. The truncated 2nd-order
Hamiltonians read

H(2) =

 − cos θ
(
k cos θ + π

2 −
1
4πk

2 sin2 θ
) (

− sin θ
(
k cos θ + π

2 −
1
4πk

2 sin2 θ
)

−ik sin θ
(
k cos θ + π

2

) )
(
− sin θ

(
k cos θ + π

2 −
1
4πk

2 sin2 θ
)

+ik sin θ
(
k cos θ + π

2

) )
cos θ

(
k cos θ + π

2 −
1
4πk

2 sin2 θ
)

 . (A1)

The eigenvalues E±(k) of the Hamiltonian (A1) read

E±(k) = ±
(
k cos θ +

π

2

)
+O(k3), (A2)

and the corresponding eigenvectors read

|u−(k)〉 =
1

N1

((
− 1

2k
2 cos θ + k2 − 2ik − 2

)
cos θ2

sin θ
2

)
,

(A3)

|u+(k)〉 =
1

N2

((
− 1

2k
2 cos θ − k2 + 2ik + 2

)
sin θ

2

cos θ2

)
.

(A4)

Here, N1 and N2 are normalization factors which read

N1 =

√
sin2 θ

2
+

∣∣∣∣−k22 cos θ + k2 − 2ik − 2

∣∣∣∣2 cos2
θ

2
,

(A5)

N2 =

√
cos2

θ

2
+

∣∣∣∣k22 cos θ + k2 − 2ik − 2

∣∣∣∣2 sin2 θ

2
.

(A6)

With these eigenvectors and eigenvalues we can rewrite
the Hamiltonian H(2)(k) as

H(2)(k) = E+(k) |u+(k)〉 〈u+(k)|+ E− |u−(k)〉 〈u−(k)| .
(A7)

For the small values of the parameter θ and small k,
the Hamiltonian H(k) reduces to a simpler form Hd that
reads [37, 48]

Hd(k) = −
(
k +

π

2

)
σz − θ

π

2
σx. (A8)

The Hamiltonian Hd is linear in k; hence, it corresponds
to a two-component Dirac Hamiltonian. From Eq. (A8)
it is clear that the parameter θ characterizes the mass
and the velocity of the walker. For small values of θ the
walker behaves like a quantum relativistic particle with
energy

Ed(k) = ±
√(

k +
π

2

)2
+
π2

4
θ2 = ±

(
k +

π

2

)
+O(θ2).

(A9)
The Hamiltonian Hd is valid only for the small values

of the parameter θ. For large values of θ (but still small k)
the effective quantum walk Hamiltonian takes a slightly
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more complicated form which is the truncated 1st-order Hamiltonian H(1) for quantum walks

H(1) =

(
− cos θ

(
k cos θ + π

2

)
− sin θ

(
k cos θ + π

2

)
− ik π2 sin θ

− sin θ
(
k cos θ + π

2

)
+ ik π2 sin θ cos θ

(
k cos θ + π

2

) )
, (A10)

The eigenvalues for this Hamiltonian are

E
(1)
± = ±

√(
k cos θ +

π

2

)2
+
(
k
π

2
sin θ

)2
, (A11)

which are, in general, not linear in k. However, one can
recover the linear dispersion relation (A9) from (A11) by
restricting the parameter θ to small values or introducing
O(k2) terms in the Hamiltonian.
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M. Štefaňak, V. Potoček, C. Hamilton, I. Jex, and C. Sil-
berhorn, Science 336, 55 (2012).

[48] C. M. Chandrashekar, S. Banerjee, and R. Srikanth,
Phys. Rev. A 81, 062340 (2010).

[49] D. W. Berry and A. M. Childs, Q. Info. Comp. 12, 29
(2012).

58

http://dx.doi.org/10.1103/physrevlett.57.13
http://dx.doi.org/10.1016/s0079-6638(08)70324-x
http://dx.doi.org/ 10.1103/physreva.67.012105
http://dx.doi.org/10.1103/physreva.75.052105
http://dx.doi.org/10.1103/physreva.75.052105
http://dx.doi.org/10.1126/science.272.5265.1131
http://dx.doi.org/10.1103/physrevlett.77.4887
http://dx.doi.org/10.1103/physrevlett.77.4887
http://dx.doi.org/10.1103/physrevlett.75.418
http://dx.doi.org/10.1103/physrevlett.75.418
http://dx.doi.org/10.1007/s11433-013-5152-z
http://dx.doi.org/10.1007/s11433-013-5152-z
http://dx.doi.org/ 10.1103/physreva.92.012316
http://dx.doi.org/ 10.1126/science.1243289
http://dx.doi.org/10.1126/science.aaf2941
http://dx.doi.org/10.1007/s11128-012-0432-5
http://dx.doi.org/10.1007/s11128-012-0432-5
http://dx.doi.org/10.1080/00107151031000110776
http://dx.doi.org/10.1103/physreva.67.052307
http://dx.doi.org/10.1103/physreva.67.052307
http://dx.doi.org/10.1103/PhysRevA.73.054302
http://dx.doi.org/http://dx.doi.org/10.1063/1.2759837
http://dx.doi.org/ 10.1103/physrevlett.104.050502
http://dx.doi.org/ 10.1126/science.1218448


11

[50] T. Kitagawa, Quantum Inf. Process. 11, 1107 (2012).
[51] T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner,

E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and
A. G. White, Nat. Commun. 3, 882 (2012).
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Entropic uncertainty relations for successive generalized measurements
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Abstract. We derive entropic uncertainty relations for successive generalized measurements by using
general descriptions of quantum measurement within two distinctive operational scenarios. In the first
scenario, by merging two successive measurements into one we consider successive measurement scheme
as a method to perform an overall composite measurement. In the second scenario, on the other hand,
we consider it as a method to measure a pair of jointly measurable observables by marginalizing over the
distribution obtained in this scheme. Entropic uncertainty relations derived in both scenarios are examined
in specific examples of spin-1/2 systems.

Keywords: Entropic uncertainty relations, Successive measurements, Unsharpness, Disturbance

1 Introduction

Uncertainty principle has been considered as one of
the most important concepts in quantum physics, since
Heisenberg suggested a trade-off between imprecision of
instrument measuring a particle’s position and distur-
bance of its momentum. From the Heisenberg’s view-
point, the uncertainty principle is actively discussed re-
cently with increasing abilities to control quantum sys-
tems, and successive measurement(SM) scheme plays key
roles in clarifying meanings of imprecision and distur-
bance of measurements.

In this work, we investigate statistical properties of
probability distributions obtained via SM scheme, and
derive entropic uncertainty relations(URs) for successive
generalized measurements, by generalizing the previous
work [1] for the concept of positive-operator-valued mea-
sures(POVMs). We refer to [2] for detailed discussions
and references of this manuscript.

1.1 Measure of unsharpness

To begin with, let us clarify notations and terminolo-
gies as follows. For a finite d-dimensional Hilbert space
Hd, we denote the vector space of all linear operators
on Hd by L(Hd). Any observable A then is described
by POVM {Âi} which is a set of positive operators
Âi ∈ L(Hd) obeying

∑nA

i=1 Âi = Î with the number of
elements nA. In a particular case that all POVM ele-
ments are given as projections, A is a projection-valued
measure (PVM). In this case, A is called a sharp observ-
able. On the other hand, if A is not a PVM, it is called
an unsharp observable.

To characterize the unsharpness, we consider Âi in the
form of spectral decomposition Âi =

∑d
k=1 a

k
i |aki 〉〈aki |,

where 0 ≤ aki ≤ 1 is an eigenvalue corresponding to an
eigenvector |aki 〉. Then the measure of unsharpness is
defined as

Dρ(A) =

nA∑
i=1

d∑
k=1

〈aki |ρ̂|aki 〉h(aki ) (1)

for ρ̂ with h(aki ) = −aki log aki , which is so-called device
uncertainty (see [3] for details). This quantity has an im-
portant property that a nontrivial lower bound of entropy

⇢̂ B

⇢̂ C

⇢̂ A B0

A

Equ
iva

len
t

Post-processing
(a) Successive measurements

(c) Joint measurements

(b) Overall measurements

IA
i (⇢̂)

pA
i

Figure 1: Relations among measurement schemes. (a)
SM of observables A and B, where the first measurement
A gives rise to output state IAi (ρ)/pA(i) conditioned on
its outcome i; (b) Overall measurement of C, (c) Joint
measurements of A and B′.

is given by itself such that

Hρ(A) ≥ Dρ(A) ≥ min
ρ
Dρ(A) ≥ − log max

i
‖Âi‖ (2)

due to the concavity of entropy. The minimal de-
vice uncertainty can be obtained by diagonalizing∑nA

i=1

∑d
k=1 h(aki )|aki 〉〈aki | and taking the lowest eigen-

value, which is stronger than − log maxi ‖Âi‖ proposed
in [4].

1.2 General description of successive measure-
ment

In the present work, by a successive measurement(SM),
we mean a scheme where two measurements are per-
formed one after the other successively as the second one
is performed immediately on an output state condition-
ally transformed according to an outcome of the first one.
To describe SM, we need the concept of an A-compatible
instrument, which is a mapping IA : i → IAi such that
each IAi is a completely positive linear map on L(Hd) sat-

isfying tr[IAi (ρ̂)] = tr[Âiρ̂] for all states ρ̂. Accordingly,
the instrument illustrates that a measurement outcome i
is obtained with the probability pAi = tr[Âiρ̂] for a state
ρ̂, and a normalized output state IAi (ρ̂)/pAi is generated
as depicted in Fig. 1-(a).

Now, let us consider the first scenario as depicted in
Figure 1-(b) that can be seen as a method to obtain the
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Figure 2: Graphs illustrate the lower bounds in Equation
(5) for SM of Z and X(θ) with respect to angle θ and the
unsharpness parameters s and t.

overall observable C described by POVM {Ĉij} obeying

tr[Ĉij ρ̂] = tr[IAi (ρ̂)B̂j ] = pAB(i, j) (3)

for all i, j and all states ρ̂. In the Heisenberg picture,
equivalently, it can be rewritten as Ĉij = IA∗i (B̂j) where
IA∗i denotes the adjoint map of IAi . Namely, the SM of
A, B are merged into C having nAnB outcomes.

On the other hand, in the second scenario the scheme is
considered as a strategy to perform a joint measurement
of A and B′ as depicted in Fig. 1-(c), where A and B′

are described by

Âi =

nB∑
j=1

Ĉij and B̂′j =

nA∑
i=1

Ĉij (4)

for all i, j, respectively.

2 Overall observables obtained via SM

In the first scenario, we can consider performing SM of
A and B as a method to implement the overall measure-
ment of C. This fact implies Hρ(A,B) = Hρ(C), since
pAB(i, j) = pC(i, j) for all i, j. Thus, our goal to analyze
uncertainty existing in the first scenario can be achieved
under consideration of the overall observable C. By us-
ing the fact that uncertainty of a measurement does not
vanish due to its unsharpness, as described in Eq. (2),
we obtain entropic form of UR lower bounded by device
uncertainty characterizing unsharpness of C such that

Hρ(A,B) ≥ Dρ(C) ≥ min
ρ
Dρ(C) ≡ D1. (5)

Let us take an example of successively measuring two
qubit observables Z at first and X(θ) later in H2 de-
scribed by Ẑ± = (Î ± sσ̂z)/2 and X̂±(θ) = {Î ±
t(sin θσ̂x + cos θσ̂z)}/2 respectively, where unsharp pa-
rameters are denoted by 0 ≤ s, t ≤ 1. Addition-
ally, we assume the Lüders instrument for Z, which
means the overall observable S is described by Ŝµν =√
ẐµX̂ν(θ)

√
Ẑµ for µ, ν = ±1. In this case, we

plot the lower bounds D1 and the incompatibility c =

− log maxµ,ν ‖
√
Ẑµ

√
X̂ν(θ)‖ versus the angle θ in Fig.2.

3 Joint observables obtained via SM

Both observables A and B′ obtained via the second sce-
nario may have their own unsharpness, so that an amount
of uncertainties about A and B′ may not vanish due to
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Figure 3: Graph illustrates device uncertainties D(Z),
D(X ′) and their summation D(Z) +D(X ′) with respect
to the unsharp parameter s.

the unsharpness of them. As formulating this fact, we
obtain entropic URs in the form of

Hρ(A) +Hρ(B
′) ≥ Dρ(A) +Dρ(B

′) (6)

≥ min
ρ

[Dρ(A) +Dρ(B
′)] ≡ D2.

Here, an important point is that the second measurement
B may be perturbed to be B′ because of disturbance
caused by the first measurement A, while A is preserved.

We assume to implement the Lüders instrument for Z
and a measurement of X successively in H2 described
by Ẑ± = (Î ± sσ̂z)/2 and X̂± = (Î ± σ̂x)/2 respectively.
In this case, the SM is equivalent to measure a pair of
jointly measurable observables Z and X ′, where X ′ is
given as X̂ ′± = (Î ± tσ̂x)2 with the unsharp parameter

t =
√

1− s2. Thus, we cannot avoid unsharpness, and
there is the trade-off between the unsharpness of Z and
X ′ such that the more sharpness of Z, the more unsharp-
ness of X ′. This behavior can be found in Fig. 3

4 Conclusion

In the present work we have suggested entropic URs
for successive generalized measurement within two dis-
tinctive scenarios. In both scenarios, it is identified that
measuring incompatible observables via SM scheme im-
poses unavoidable uncertainty, as illustrated in Figs. 2
and 3. Additionally, we note that the entropic UR (6)
derived in the second scenario is applicable to any pair
of jointly measurable observables, since Heinosaari et al.
have proved that we can obtain any pair of jointly mea-
surable observables via SM scheme.
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Abstract. In this paper, utilizing continuous variable nature of the GKP code states effectively, we pro-
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decoding of C4/C6 confirmed the effectiveness of our method in terms of error-tolerance and the threshold
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1 Introduction

Quantum computers have a great deal of potential,
but to realize that potential, they need some sort of
protection from noise to construct a large scale quan-
tum computation. Optical continuous variable states
are promising candidates for building blocks to imple-
ment scalable quantum computation and communication
[1,2]. However, the finite squeezing limits the scale of the
quantum computation by inducing noise, which destroys
the quantum information even with the perfect exper-
imental apparatus[3]. Nevertheless, it has been shown
that an infinite length fault-tolerant quantum computa-
tion is possible using qubit encoding of an oscillator in-
troduced by Gottesman, Kitaev, and Preskill (so called
the GKP code states) in 2014 [4]. In this paper, we
propose a maximum-likelihood scheme for concatenated
Calderbank-Shor-Steane (CSS) codes with the GKP code
states. In particular, we perform numerical simulation
with the C4/C6 code proposed by Knill [5].

2 Likelihood for the GKP code states

We start by explaining the GKP code states where
the qubit is protected against small shifts in phase space
[6]. GKP proposed to use states whose q quadrature
wave function is composed of a series of Gaussian peaks
of width ∆ contained in a larger Gaussian envelope of
width 1/∆. The approximated logical states |0̃⟩ and |1̃⟩
are given by

|0̃⟩ ∝
∞∑

t=−∞

∫
e−2π∆2t2e−(q−2t

√
π)2/(2∆2) |q⟩ dq

|1̃⟩ ∝
∞∑

t=−∞

∫
e−π∆

2(2t+1)2/2e−(q−(2t+1)
√
π)2/(2∆2) |q⟩ dq.

(1)

The bit values 0 and 1 of the GKP code states can be
determined by measurement of the variable q. Although
in case of ∆→ 0 (infinite squeezing) the state becomes
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the perfect code states, the approximate states are not
orthogonal, and there are some probability of misidentify
a 0 state |0̃⟩ as a 1 state |1̃⟩ and vise versa. Measurement
on the approximated states |0̃⟩ (|1̃⟩) yields an outcome
qm around the nearest bit value qk = (2t +k ) (t = 0,
± 1, ± 2,・・・. k = 0, 1). In practice, because we don’t
know the true state, we need to guess the true bit value
is k from the measurement result qm . We define the mea-
surement shift by ∆qm =｜qm − qk｜ for the logical state
|k̃⟩. If ∆qm is less than

√
π/2, the true shift ∆ is equal

to ∆qm . On the other hand, if ∆qm is between
√
π/2

and
√
π, the true shift ∆ is equal to −∆qm . We notice

that ∆ obeys the following Gaussian probability distri-
bution f(∆) with the average 0 and the variance ∆2,

f(∆) =
1√

2π∆2
e−∆

2
/(2∆2) (2)

In our method we regard the functionf(∆)as a likelihood
function and combine the discrete variables k, which refer
to the degree of freedom for the logical level, with the
continuous variables ∆, the degree of freedom for the
physical level to improve our guess on k.

3 Maximum-likelihood decoder

To give the idea of our maximum-likelihood method,
we briefly describe our method by three-qubit bit flip
error code. The three-qubit code encodes a single log-
ical qubit into three physical qubits to correct a single
bit flip error. Suppose the three physical qubits are la-
beled by 1, 2, and 3. The two logical states |0⟩ L and
|1⟩L are defined as |0⟩L = |000⟩123 and |1⟩L=|111⟩123, so
that an arbitrary single qubit state |Ψ⟩ =α |0⟩+β |0⟩ is
mapped to α |0⟩ L+β |0⟩L=α |000⟩123+β |0⟩123 = |Ψ⟩L. In
a conventional manner, the three-qubit code will correct
a state such as |100⟩123 (|011⟩123) to |000⟩123 (|111⟩123) by
a majority voting. In our maximum-likelihood manner,
we compare two maximum-likelihood functions which are
corresponding to the case with a single error and dou-
ble errors. If the error syndrome shows that the first
qubit is 0 (or1) and other two qubits are 11(or 00), we
compare the function F 1=f(∆m1)×f(−∆m2)×f(−∆m3)
with F 2=f(−∆m1)×f(∆m2)×f(∆m3), where the ∆mi is
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Figure 1: Error-correcting teleportation with the
maximum-likelihood decoding for C4/C6 code.

the measurement shift of i-th qubit. Because the func-
tion F 1(F 2) is a likelihood, in the case of F 1＞ F 2, we
decide that a single error occurs on the first qubit. In the
case of F 1＜ F 2, we decide that two error occur on the
second and third qubits. In our method the three-qubit
code can correct two errors, whereas in the conventional
method the code corrects only a single error.
We apply the likelihood function to our maximum-

likelihood method for concatenated CSS codes and con-
firm the validity of our method by a numerical calcula-
tion for the specific case of C4/C6 code based on tele-
portation. As in the figure.1, which shows the decoder
of the C4/C6 code, the encoded data qubit |Ψ⟩in is tele-
ported to the fresh encoded qubit of the ancilla Bell state
|Ψ⟩out using maximum-likelihood decoding (MLD). The
outcome of the encoded Bell measurement, bx and bz,
provides the syndrome information and error-detecting
or error-correcting operation is performed by teleporta-
tion. The C4/C6 code is composed of a concatenation of
two codes, C4 and C6. At level-1, a qubit pair is encoded
into four physical qubits, which refers to C4. At more
than level-1, a level-l qubit pair is encoded into three
level-(l-1) qubit pairs (l= 2,3,4 ‥‥). To evaluate the
performance of the proposed decoder, we examined the
error-tolerance for a Gaussian channel which leads to er-
rors of displacements in the q and p quadrature, which is
dipicted as GC in figure.1. By considering the displace-
ment which follows Gaussian distribution, we evaluate
the influence as the decreasing of the squeezing level of
the encoded data qubit. In this simulation, we assumed
that errors occur only on the channel and the other op-
erations (encoding, Bell-state preparation, decoding, and
Bell measurement) are performed without any errors. In
figure. 2, the error probabilities are plotted as a func-
tion of the squeezing level of the encoded data qubit for
the levels l = 1,2,3 after the channel for 11 dB of the
encoded Bell pair’s squeezing level. In figure.2, for ex-
ample, the error probability is improved from about 0.25
to 0.05 at squeezing level of 6.7 dB for level-3, by use of
our maximum-likelihood method. Moreover, the thresh-
old for concatenation of C4/C6 by use of the proposal
are improved by a little less than 1 dB. The simulation
results show our method improves the error rate and the
thresholds effectively.

4 Conclusion

Towards efficient fault-tolerant quantum computation
with the GKP code states, we introduced a maximum-
likelihood method for concatenated Calderbank-Shor-
Steane codes and applied for the C4/C6 code proposed by
Knill. In our method, we use a hybrid quantum informa-

Figure 2: The error probabilities of the decoding with
(a) Knill’s conventional method, and (b) our maximum-
likelihood method for the levels l = 1,2,3.

tion processing, where discrete degree of freedom of a bit
value are combined with continuous degree of freedom of
a shift value for enhancing noise resistance. A numerical
calculations for a decoding of C4/C6 confirmed the effec-
tiveness of our method in terms of error-tolerance and
the threshold for concatenation. Moreover, the method
will reduce resources required for fault-tolerant quantum
computation. The enhanced power results from the con-
tinuous variable nature of the oscillators combined with
discretization on decoding.
Acknowledgement : This work was partly supported
by ImPACT ”Advanced Information Society Infrastruc-
ture Linking Quantum Artificial Brains in Quantum Net-
work”.
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We describe a method of generation of four-qubit
and six-qubit cluster states using electrons in Quantum
One-Dimensional Channels (Q1DC), driven by Surface
Acoustic Waves (SAWs).

Section 1 is on the generation of the cluster state
using electrons in quantum one-dimensional channels,
driven by Surface Acoustic Waves. Section 2 is on
measures for characterization of N-particle entangle-
ment. Section 3 is on the results and discussion of the
entanglement generation and characterization.

I. INTRODUCTION

One-way quantum computation, also known as Cluster
State Quantum Computation, provides a robust and
efficient tool to perform universal quantum computation
using only single-qubit projective measurements, given
a highly entangled cluster state. The cluster-state
approach to quantum computation also leads to certain
practical advantages such as robustness against errors.

The cluster state is generated on a basis defined
by electrons in Quantum One-Dimensional Channels
(Q1DCs), driven by Surface Acoustic Waves [1]. The
setup for the generation consists of Copper interdigitated
transducers on a Silicon substrate with layers of Silicon
Dioxide and Zinc Oxide, to reinforce the piezoelectric
effect on the substrate. The transducers are placed on
either sides of a centrally-placed etched region with
an Electron Gas. When a high frequency AC signal is
applied, Surface Acoustic Waves are generated, by the
principle of piezoelectricity. As the SAW propagates
through the etched region, the travelling potential it
creates carries the electrons from the electron gas with it.

A typical SAW frequency of 3 GHz and an applied
power of 10 dBm produces a measurable current in
the nano-ampere range, as shown by Barnes, et al [1].
One-qubit rotations and controlled two-qubit gates can
be implemented on this system. The primary gate in
our generation-protocol is the Root of Swap gate.

Interchannel and intra-channel, two-instance swap

operations form the primary building blocks of the given
generation-protocol. Owen et al [2] demonstrated how
two particles that are interacting in a harmonic potential
generate maximally entangled states, which are created
simply through the quantum dynamics of the system
and possessing a high entanglement delity (F > 0.98).
The underlying operation is essentially a root-of-SWAP
operation. Bayer et al [3] demonstrated coupling and
entanglement of quantum states in a pair of vertically
aligned quantum dots by studying the emission of an
interacting exciton in a single dot molecule as a function
of the separation between the dots. The electron-hole
complex was shown to be equivalent to entangled states
of two interacting spins.

II. SURFACE ACOUSTIC WAVES

Surface-acoustic waves (SAWs) are sound waves that
travel parallel to the surface of an elastic material. The
displacement amplitude decays into the material and
therefore these waves are confined to within roughly a
wavelength of the surface. In a piezoelectric material,
mechanical deformations associated with the SAW
produce electric fields.

For non-piezoelectric materials, Hooke’s law states
that the mechanical stress field experienced by a body is
proportional to the strain field:

σij = cijklεkl

where σij and εkl are components of the stress and strain
fields respectively, and cijkl is a component of the 4th
rank ’elastic’ tensor. The electric displacement for non-
piezoelectric materials is proportional to components of
the electric field, with components of the permittivity
tensor being the proportionality constants.

For piezeolectric materials, the electric displacement
depends on the applied electric field and mechanical
strain, and the stresses depend on both the applied
mechanical strain and the electric field.

Di = εSij + eijkεjk
σij = -ekijEk + cEijklεkl

Here superscripts S and E denote that the quantities
are measured under constant strain and electric field
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respectively.

A SAW can be generated by applying an oscillat-
ing signal to a suitably designed set of interdigitated
transducer based surface gates on a piezoelectric
substrate. Small localized displacements of the uid
will propagate as an acoustic wave, also known as a
compressional wave. When a SAW passes beneath a
SAW transducer of the appropriate pitch, an alternating
potential is generated across the transducer.

III. THE SETUP

In our setup, by bringing the channels close to each
other, we allow for Coulombic interaction to take place
between the electrons travelling in the channels. As seen,
with a high fidelity, this generates an entangled state us-
ing the ’Root-of-Swap’ operation. One can also use a
magnetic field, oriented in a certain direction to imple-
ment single qubit rotations, which constitute an essential
part of the Universal Quantum Gates set.

Figure 1: Setup, comprising of Quantum
One-Dimensional Channels with electrons driven by

Surface Acoustic Waves (SAWs)

IV. CHARACTERIZATION OF
ENTANGLEMENT

We wish to characterize the entanglement in mul-
tipartite qubit states. A pure n-qubit state is called
unentangled if its wave function may be written as an
n-fold tensor product of individual qubits. A state is
globally entangled if it cannot be written as a tensor
product of any set of subsystems.

There are several ways of quantifying entanglement.
Measures of entanglement can be been used that are
constant on locally equivalent states. These must be en-
tanglement monotones i.e. they must be non-increasing
under Local Operations and Classical Communication
(LOCC).

One can also have observables whose expectation
values are positive (negative) on unentangled states and
negative (positive) on entangled states.

Partial Density Matrices

The density operator ρ for the ensemble or mix-
ture of states |ψi〉 with probabilities pi is given by

ρ =
∑
ipi|ψi〉〈ψi|

The reduced density operator describes the properties
of measurements of a sub-system A, when the other
subsystem(s) is(are) left unobserved, by tracing them
out.

Peres [4] showed that a necessary condition for
seperability in a system is that a matrix obtained using
partial transposition of the density matrix of the system
has only non-negative eigenvalues.

Concurrence

As defined by Carvalho et al [5], for an N-partite
quantum system, one can define 2N − 2 reduced density
matrices and an associated concurrence measure:

CN = 21−
N
2

√
(2N − 2)(〈ψ|ψ〉)2 −

∑
α
Trρα

2

where α labels all the reduced density matrices.

V. RESULTS AND DISCUSSION

Figure 2: Gate Combination with interchannel and
intrachannel Root-of-Swap Operations

For this setup, we consider the various input states
and the concurrence measures for the entanglement
generated by the setup in the process.

Case 1: Input comprises of |00〉 and |00〉

C4 = 0

Case 2: Input comprises of |11〉 and |11〉
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C4 = 0

Both these cases are expected to have vanishing en-
tanglement concurrence-measures, as the Root-of-Swap
operation leaves the |11〉/|00〉 combinations unaltered.
In this case, a seperable input composite state is unaf-
fected by the setup-entanglers.

Case 3:
Input comprises of |00〉 and |01〉
Input comprises of |00〉 and |10〉
Input comprises of |01〉 and |00〉
Input comprises of |10〉 and |00〉
Input comprises of |11〉 and |10〉
Input comprises of |11〉 and |01〉
Input comprises of |10〉 and |11〉
Input comprises of |01〉 and |11〉

C4 = 1.479

In these cases, there is one flipped spin, with respect
to the remaining qubit subsystem. As a result, the
entanglement capacity for each of these systems is equal.

Case 4:
Input comprises of |00〉 and |11〉
Input comprises of |11〉 and |00〉

C4 = 1.458

The first inter-channel entangling Root-of-Swap op-
eration has no effect on the input state since they
are |11〉/|00〉 combinations. However, the subsequent
intra-channel entanglers give rise to entanglement in the
state.

Case 5:
Input comprises of |01〉 and |01〉
Input comprises of |10〉 and |10〉

C4 = 1.620

This is the case when both interchannel and intrachannel
entanglers contribute to the generation of entanglement.

Case 6:
Input comprises of |01〉 and |10〉
Input comprises of |10〉 and |01〉

C4 = 1.225

This is an interesting case wherein the entanglers con-
tribute to the generation of entanglement, much like in
Case 5. However, the concurrence measure is much lower
in this case.

Figure 3: Concurrence Plot

We hypothize that the dip in the plot (Case 6 ) is be-
cause of the concept of Entanglement Monogamy. Once
the entanglement is generated by the interchannel en-
tanglers, the intrachannel entanglers entangle the states
further, though this essentially reduces entanglement be-
tween subsystems and we obtain a cluster state.

Figure 4: Polar Plot of Concurrence Measures

Figure 5: Gate Combination with intrachannel and
interchannel Root-of-Swap Operations

In this case, we have vanishing concurrence (imply-
ing seperability) for input comprising of |00〉|00〉 and
|11〉|11〉, as in the previous setup.

This is due to the entanglers not generating entan-
glement for this particular input state, given a Root-of-
Swap based generator setup, irrespective of the order of
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the entanglers: first intra- and then inter-channel en-
tanglers, or first inter- and then intra-channel entanglers.

For the case with one spin flipped, with respect to
other qubits in the system, we have the same result
as for the previous setup. The concurrence remains
at 1.479. The concurrence measure and the amount
of entanglement remains unchanged due to the fact
that after the first entangler operation in both circuits,
entanglement is generated only in a single two-qubit
subsystem while the remaining two-qubit subsystem
remains in a composite state. This step remains
unchanged due to the symmetry of this particular
kind of four-qubit input state. Eventually, the second
entangler generates entanglement in the entire system
by generating quantum correlations between one part of
the entangled two-qubit subsytem and one half of the
composite subsystem of qubits.

Figure 6: Polar Plot of Concurrence Measures

The concurrence for the |00〉|11〉/|11〉|00〉 and the
|01〉|01〉/|10〉|10〉 states are interchanged, with respect to
the case for the inter-intrachannel combination. The for-
mer has a concurrence of 1.620 while the latter has a
concurrence of 1.458. This is because the switch in the
entangler combination and sequence is countered by the
rearrangement of input qubits for the respective match-
ing concurrence measures in the two setup-cases. For the
|01〉|10〉/|10〉|01〉, the concurrence remains at 1.225.

Figure 7: Special Gate Combination (’Cross-Arm
Mobius’)

In this case, for same-spin qubit input, concurrence
vanishes, while for the case with one spin flipped,
with respect to other qubits in the system, we have a

higher concurrence than the previous case. The value
of concurrence for this input combination and the setup
(Figure 7) is 1.571.

The concurrence for the |00〉|11〉/|11〉|00〉 and the
|01〉|01〉/|10〉|10〉 states are higher or equal to the
previous setup-cases. The former has a concurrence of
1.894 while the latter has a concurrence of 1.620.

For the |01〉|10〉/|10〉|01〉, the concurrence value is
1.785. The possible cause for higher concurrence for all
input combinations is viewed in the entanglement within
the various subsystem partitions. Previously, there was
a trade-off between the contribution of an entangled
partition-class and the seperability of remaining subsys-
tem partition-classes. In this setup, the entanglement
is present across the various partitions and subsystems.
Thus this setup, named as the ’Cross-Arm Mobius’, is a
good generator of entanglement in SAW-driven electrons.

Figure 8: Density Matrix for |0110〉 case and
inter-intrachannel setup)

VI. CONCLUSION

We have developed a scheme for the generation of
entanglement and cluster states on a basis defined
by electrons in Quantum One Dimensional Channels
(Q1DCs), driven by Surface Acoustic Waves (SAWs).
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Abstract. We study the experimentally accessible properties of multi-photon entanglement generated
by single photon sources and beam splitters. As the photon number increases, it is possible to observe
a rich variety of structures in the photon distributions obtained after linear optics transformations. In
this presentation, we focus on the patterns obtained from the unbiased interference of all modes that is
described by a discrete Fourier transformation of the light field amplitudes and show how the entanglement
can be characterized using the correlations of photon statistics observed in the two multi-mode outputs.

Keywords: Multi-photon entanglement, entanglement generation, entanglement evaluation

1 Introduction

Nowadays, the development of reliable single photon
sources opens up new possibilities of quantum informa-
tion processing using an increasing number of single pho-
ton inputs. It is well-known that splitting a single photon
into two output modes by a beam splitter can generate a
Bell state with entanglement between the modes (single-
rail encoded entanglement). Although the single-rail en-
coded entanglement of single photon Bell states can be
accessed by linear optics and photon detection with extra
ancillary photons [1, 2, 3], we restrict ourself on the Fock
spaces of the entangled states themselves without any
ancilla. Under this constraint, the single-rail encoded
entanglement of two modes is not more accessible. By
scaling up the single photon entanglement between a pair
of modes to multi-photon entanglement between pairs of
multiple modes, more possible local unitaries are imple-
mentable by linear optics and photon number detection,
such that the multi-photon entanglement is then acces-
sible without ancillas. An entanglement criterion for a
specific type of multi-photon entangled states which can
be implemented by discrete Fourier transformations and
photon number detection without ancillas will be derived.

2 Generation and evaluation of multi-
photon entanglement

To tackle the limits on the unitary transformations in
the Fock space of a single mode, we scale the system up
to multiple single photon sources. As it is shown in Fig.
1, M photons in M input modes are split by M beam
splitters and redistributed into two separate output ports
A and B. In this manner, one obtains a state represented
by a coherent superposition of all possible photon num-
ber states satisfying the condition that here is only one
photon in each mode m, and this photon is found either
in port A or in port B, i.e.

|ψM 〉 =
∑

nm≤1

|n〉A |n̄〉B , (1)

Since we only consider linear optics and photon detection,
the local measurements will not be sensitive to quan-
tum coherence between different total photon numbers.

Figure 1: Entanglement generation from M single pho-
tons. The modes are indexed by 0, ...,M − 1.

Therefore, we should consider the different partitions of
photon number between A and B separately, assigning
a different entangled state to each. Post-selecting the
output states |ψM 〉 with fixed photon number partitions
(1A : M − 1B), ..., (M − 1A : 1B) between A and B, one
can obtain (M −1) entangled states |φN,M−N 〉 which are
the binomially distributed components of the coherent
superposition of the total output state given by Eq. (1),
i.e.

|ψM 〉 =
1

2M/2

M∑
N=0

√(
M

N

)
|φN,M−N 〉 (2)

with

|φN,M−N 〉 =
1√(
M
N

) ∑
nm≤1,|n|=N

|n〉 |n̄〉 . (3)

Here the sum in Eq. (3) runs over all patterns of N pho-
tons that have zero or one photon in each mode and the
bar over the photon number distribution in B indicates
the complementary correlation n(A) + n(B) = (1, ..., 1).
Increasing total photon number M , one can generate an
increasing number of entangled states |φN,M−N 〉, all of
which have their own entanglement structures.

To access this multi-photon entanglement by photon
detection, one needs to implement certain local unitaries
UA and UB to transform the photon number state ba-
sis E to another basis system K on the subsystems A
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and B, such that one can perform measurements sensi-
tive to the quantum coherences between the complemen-
tarily correlated Fock states (Fig. 1). The best unitary
transformation for entanglement evaluation would be the
one that maps the photon number state basis E into its
MUB. However, due to the large number of possible pho-
ton distributions compared to the much lower number
of modes, such a unitary cannot be implemented via
linear optics transformations of modes at photon num-
bers greater than one. Instead of the perfect MUBs-
mapping in the whole post-selected Fock space, the next
best choice is the discrete Fourier transformation (DFT)
UF , which transforms a single optical input mode into a
mutually unbiased superposition of all M output modes,
i.e.

b†k = ÛFa
†
kÛ
†
F =

M−1∑
m=0

1√
M
ei

2π
M kma†m. (4)

In general, the combinations of creation operators in the
multi-photon statistics results in a non-trivial bias in the
statistics of the multi-photon output distributions. How-
ever, we can identify specific translational patterns p,
such that the DFT transforms each input pattern into a
superposition of mutually unbiased output patterns re-
lated to each other by cyclic mode shifts Ŝ. The pattern
class Ep of p are generated from the cyclic mode shifts Ŝ
from the origin photon number state p, i.e.

Ep = {Ŝm |p〉}m=0,...,M−1. (5)

The MUB Kp = {|kp〉}k of the translational pattern class
Ep is then given by

|kp〉 :=
1√
dp

M−1∑
m=0

e−i
2π
M kmŜm |p〉 . (6)

where dp is the cardinality of the p-pattern class Ep. In
the Kp basis the the state |φN,M−N 〉 is correlated by
(k(A),−k(B)), i.e.

|φN,M−N 〉 =
1√(
M
N

) ∑
p,k

|kp〉 |−kp̄〉 . (7)

The k-values of |kp〉 states can be displaced by DFTs
in the output patterns n of photon number detections.
We call this property the K-readout rule of DFTs, which
says

〈n|UF |kp〉 = 0, for all K(n) 6= k (8)

with
K(n) =

∑
m=0,...,M−1

nmm (mod M) (9)

being the M -modulus total mode index of the photon
number state |n〉, which we call the displacement of the
output pattern n. The K-readout rule implies that the
correlations of k-values of in the kp-basis will be dis-
placed in the correlations of K-values in the photon
number detection after local DFTs. According to Eq.
(7), the output patterns of photon number detection af-
ter local DFTs of the target entangled state |φN,M−N 〉

exhibits therefore perfect (K,−K)-correlations. That
means for the state |φN,M−N 〉, the probability P(K,−K)
of (K,−K)-correlations in the output patterns of photon
number detection after local DFTs is 100%. In the natu-
rally photon number state basis, the probability P(n, n̄)
of the complementary correlations (n, n̄) is also 100% for
the state |φN,M−N 〉. In general, the sum of the two prob-
abilities for correct correlations ((n, n̄)- and (K,−K)-
correlations) has an upper bound for separable states,
which is smaller than 2. The upper bound can be de-
rived with the help of the separable inequality of corre-
lation functions in MUBs [4]. As a result, we can then
derive a separability inequality as follows.

P(n, n̄|ρsep.) + P(K,−K|U⊗2
F ρsep.U

†⊗2
F ) ≤ 3

2
. (10)

Note that, while this is by no means the optimal bound
for DFTs, it does provides a sufficient criterion for the
experimental verification of multi-photon entanglement
in our system. We have therefore demonstrated the pos-
sibility of detecting the multi-photon entanglement of the
post-selected state |φN,M−N 〉 using linear optics (specif-
ically the DFTs) and photon detection.

3 Conclusion

We consider the generation of entangled multi-photon
states using multiple single photon sources and linear
optics. The resulting state exhibit a highly non-trivial
structure in their photon number statistics. After post-
selection of fixed photon number partitions with respect
to the subsystems A and B the entanglement of each out-
put state can be evaluated by linear optics and photon
detection. Specifically, we show that the mode trans-
formation known as the discrete Fourier transformation
(DFT) can be used to evaluate the correlations in two
different photon number bases, where the identification
of mutually unbiased subspaces permits us to formulate
a criterion for entanglement detection based on the sum
of the probabilities of measuring the correct correlations
in both photon detection measurements. For separable
states, the bound of this sum of two probabilities is 3/2,
while the entangled state generated by beam splitting
ideally exhibits both correlations with probability 1. Ex-
perimentally, it should therefore be possible to verify this
entanglement using DFTs by observing correlations that
exceed this bound.

References

[1] E. Knill. Phys. Rev. A, 66:052306, 2002.

[2] A. P. Lund and T. C. Ralph. Phys. Rev. A, 66:032307,
2002.

[3] T. C. Ralph, A. P. Lund, and H. M. Wiseman. Jour-
nal of Optics B: Quantum and Semiclassical Optics,
7(10):S245, 2005.

[4] C. Spengler, M. Huber, S. Brierley, et al. Phys. Rev.
A, 86:022311, 2012.

70



Geometrical distance on quantum channels

Haidong Yuan
Department of Mechanical and Automation Engineering,

The Chinese University of Hong Kong, Shatin, Hong Kong∗

Chi-Hang Fred Fung
Canada Research Centre, Huawei Technologies Canada, Ontario, Canada†

(Dated: July 21, 2016)

We propose a metric on the space of quantum channels and show how this metric determines
the prefect discrimination between quantum channels and the ultimate precision limit for quantum
parameter estimation, it thus provides a unified framework for these two related, but so far largely
separated fields. New insights can then be gained for studies in both fields, which we demonstrate
with two examples: first we derive a lower bound on the minimum number of uses needed for perfect
discrimination of two quantum channels, which can be seen as the counterpart of the Heisenberg
limit in quantum parameter estimation; second we show that sequential strategy has advantage over
parallel strategy in quantum parameter estimation by providing an example inspired by quantum
channel discrimination. We remark that our metric is efficiently computable using semi-definite
programming.

PACS numbers:

Quantum channel discrimination and quantum parameter estimation are two active fields in quantum information
science, quantum channel discrimination studies how to identify a quantum channel among a discrete set of channels[4–
9] whereas quantum parameter estimation focus on identifying a channel among a continuous set of channels that
characterized by some parameters[10–28]. Intuitively they are all related to the distinguishability of quantum channels,
which are determined by the distance between the channels. Despite their similar nature, studies in these two fields
are largely separated, as it lacks of a common measure of the distances on quantum channels.

We propose a distance measure on general quantum channels which can be seen as an extension of Bures metric
on quantum states to quantum channels. We first show how this distance measure provide a general framework for
quantum parameter estimation which relates the ultimate precision limit directly to the underlying dynamics, this
provides efficient methods for computing the ultimate precision limit. It also provides an analytical formula of the
precision limit with arbitrary pure input states, which does not need any optimization over equivalent Kraus operators
as required in previous studies[20, 21]. We further demonstrate the power of the framework by deriving a sufficient
condition on when ancillary systems are not useful for improving the precision limit. We then show this distance
measure bridges the studies in quantum channel discrimination and quantum parameter estimation, and show how
new insights can be gained on studies of both fields through two examples: first we derive a lower bound on the
minimum number of evaluations needed for perfect discrimination between two quantum channels, this lower bound
is a counterpart of the Heisenberg limit in quantum parameter estimation; second we show sequential strategy can
outperform parallel strategy in quantum parameter estimation by providing an example inspired by quantum channel
discrimination, which sheds light on a conjecture in quantum parameter estimation.
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Abstract. The formula of the channel matrix for group covariant signals in classical-quantum communi-
cation has been studied to calculate the channel matrix analytically. However, the derived formula cannot
be applied to coded q-ary phase shift keing (PSK) signals by the codes over extension field Fq despite its
importance. In this study, using coding by group codes over F4 and F8, we demonstrate that coded 4PSK
and 8PSK signal sets can be narrow sense group covariant with respect to F4 and F8, respectively.

Keywords: Quantum information theory, Extension field, Gram matrix, Channel matrix

1 Introduction

In classical-quantum communication[1], the computa-
tion of the channel capacity in finite codeword length
is difficult even though finite codeword length is used
in actual communication. For example, when Square-
Root Measurement (SRM)[2] is used, the channel matrix
is calculated by the square root of the Gram matrix of
the quantum signal set. However, due to computational
complexity, it is difficult to calculate using a universal
algorithm if there are many signals.
Therefore, we have studied formulas to calculate the

channel matrix analytically, and formula of channel ma-
trix for narrow sense group covariant signals[4] has been
derived[3]. However, the formula cannot be applied to
quantum signal sets coded by codes over extension field
Fpk = Fq despite its importance. Here, p is a prime num-
ber and k is a natural number. Thus, we now focus on
the group covariance of q-ary Phase Shift Keying (PSK)
coherent-state signals coded by codes over Fq.
In this paper, with coding by codes over F4 and F8,

we show that coded 4PSK and 8PSK signal sets can be
narrow sense group covariant with respect to F4 and F8

respectively.

2 Group covariant signals

Definition 1 ([5]) Let (G; ◦) be a finite group and a set
of parameters that characterize pure quantum-state sig-
nals {|ψi⟩ | i ∈ G}. The set of signals is called (G; ◦, χ̂)-
covariant if there exist unitary operators Uk(k ∈ G) such
that

Uk|ψi⟩ = χ̂(k, i)|ψk◦i⟩, ∀i, k ∈ G, (1)

where χ̂ is a map from G×G into U = {x ∈ C | |x| = 1}.

If χ̂(i, j) = 1 (∀i, j ∈ G), the set of signals is referred
to as narrow sense group covariant.

∗im153006@cis.aichi-pu.ac.jp
†a-ohashi@fc.ritsumei.ac.jp
‡usuda@ist.aichi-pu.ac.jp

Proposition 2 ([3]) A set of pure quantum-state sig-
nals {|ψi⟩ | i ∈ G} is (G; ◦, χ̂)-covariant if and only if,
for any i, j ∈ G,

⟨ψk◦i|ψk◦j⟩ = χ̂(k, i)χ̂(k, j)⟨ψi|ψj⟩, (2)

for all k ∈ G.

Next, we give another proposition for (G; ◦, χ̂)-
covariant signals, which is used in Section 3.

Proposition 3 ([6]) Let G be an additive group. A set
{v | v ∈ C} of coded (G; +, χ̂)-covariant signals by
a group code C(⊆ Gn) over G is (C; +, χ̂′)-covariant.
Here, χ̂′ is defined as follows:

χ̂′(v,w) =
n∏
i=1

χ̂(vi, wi), (3)

for v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ C.

3 Group covariance of coded PSK signals

3.1 Coded 4PSK signals by codes over F4

We show an example wherein 4PSK signals can be nar-
row sense group covariant with respect to F4 by coding,
and a construction method of narrow sense group covari-
ant codes of length 2n over F22 = F4 from arbitrary group
codes over F4.
In the following, we use quaternary vector representa-

tion {0, 1, 2, 3} for elements of F4 rather than{0, 1, ω, ω+
1}(ω2 + ω + 1 = 0).

Proposition 4 The set of coded 4PSK signals by the
(2,1) code

C(2,1) := {00, 13, 22, 31}

over F4 is narrow sense group covariant with respect to
C(2,1) (and F4).

This proposition is proven using Proposition 2.
To prepare to demonstrate the method, we define a

map f4 : F4 → F4 as follows:

f4(a) =

{
a if a ∈ {0, 2},
a+ 2 if a ∈ {1, 3}. (4)
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Definition 5 For code C over F4 of length n, consider
the codes Cex

(2,1)(C) ⊂ F2n
4 constructed by adding redun-

dant symbols as follows:

Cex
(2,1)(C) :=

{
(a|b) | a = (a1, . . . , an) ∈ C

b = (f4(a1), . . . , f4(an)) ∈ Fn4
}
. (5)

We refer to Cex
(2,1) as the extended code of C by C(2,1).

From Proposition 3, we obtain the following proposition
for codes Cex

(2,1).

Proposition 6 A set of coded 4PSK signals {|wi⟩ | wi ∈
Cex

(2,1)} is narrow sense group covariant with respect to
Cex

(2,1) if C is a group.

3.2 Coded 8PSK signals by codes over F8

Here, we show an example of symmetrization of 8PSK
signals by coding and a construction method of narrow
sense group covariant codes of length 8n over F23 = F8

from arbitrary group codes over F8.
In the following, we use an octonary vector represen-

tation {0, 1, 2, 3, 4, 5, 6, 7} for elements of F8 rather than
{0, 1, ω, ω+1, ω2, ω2+1, ω2+ω, ω2+ω+1}(ω3+ω+1 = 0).
Furthermore, note that the eight letters correspond to
8PSK signals in the order 0, 4, 1, 6, 2, 7, 3 from the first
signal.

Proposition 7 The set of coded 8PSK signals by the
(8,1) code

C(8,1) := {00000000, 13131313, 22222222, 31313131
44576675, 57447566, 66754457, 75665744}

over F8 is narrow sense group covariant with respect to
C(8,1) (and F8).

This proposition is proven using Proposition 2.
To demonstrate the method, we define a map f8 : F8 →

F7
8 as follows:

f8(a) =



(0, 0, 0, 0, 0, 0, 0) if a = 0,
(3, 1, 3, 1, 3, 1, 3) if a = 1,
(2, 2, 2, 2, 2, 2, 2) if a = 2,
(1, 2, 1, 2, 1, 2, 1) if a = 3,
(4, 5, 7, 6, 6, 7, 5) if a = 4,
(7, 4, 4, 7, 5, 6, 6) if a = 5,
(6, 7, 5, 4, 4, 5, 7) if a = 6,
(5, 6, 6, 5, 7, 4, 4) if a = 7.

(6)

Definition 8 For code C over F8 of length n, consider
the code Cex

(8,1)(C) ⊂ F8n
8 constructed by adding redundant

symbols as follows:

Cex
(8,1)(C) :=

{
(a|b) | a = (a1, . . . , an) ∈ C

b = (f8(a1), . . . , f8(an)) ∈ F7n
8

}
.(7)

We refer to Cex
(8,1) as the extended code of C by C(8,1).

From Proposition 3, we obtain following proposition for
the codes Cex

(8,1).

Proposition 9 A set of coded 8PSK signals {|wi⟩ | wi ∈
Cex

(8,1)} is narrow sense group covariant with respect to
Cex

(8,1) if C is a group.

4 Example

Here, we give an example of our method. Let C =
{000, 121, 232, 313}. Gram matrix of the coded 4PSK
signals by C is

ΓC =


1 e(−4+2i)NS e(−5−i)NS e(−3−i)NS

e(−4−2i)NS 1 e(−3+3i)NS e(−5−i)NS

e(−5+i)NS e(−3−3i)NS 1 e(−4+2i)NS

e(−3+i)NS e(−5+i)NS e(−4−2i)NS 1

 ,

(8)

and it is obvious that this code does not comprise group
covariant signals. However, the Gram matrix of the
coded 4PSK signals by the code

Cex
(2,1)(C) = {000000, 132213, 223122, 311331} (9)

which is a group code over F4 but is not a group code
over Z4 is

ΓCex
(2,1)

(C) =


1 e−8NS e−10NS e−6NS

e−8NS 1 e−6NS e−10NS

e−10NS e−6NS 1 e−8NS

e−6NS e−10NS e−8NS 1

 .

(10)

This signal set is narrow sense group covariant with re-
spect to C(2,1) (and F4) from Proposition 3.

5 Conclusion

We have shown codes over extension fields F4 and F8

with which coded 4PSK signal sets and coded 8PSK sig-
nal sets are applicable to the channel matrix formula.
Our method is simple; however we think it proposes

a type of symmetrization method of non-symmetric sig-
nals using “coding”. Therefore, in future study, we will
consider symmetrization of quadrature-amplitude modu-
lation (QAM) signals by coding. Note that QAM signals
are important but are not group covariant in any sense.
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Abstract. In decoy-BB84 quantum key distribution (QKD) protocol, intensity fluctuation of the trans-
mitted optical pulses reduce secure key rate. The main factors of intensity fluctuation are a light source
and an intensity modulator (IM). In this study, we focus an IM and show that fluctuation of modulation
signals affect intensity fluctuation. Furthermore, we propose a robust IM with Nested Modulator (NM) for
suppressing influence of fluctuation of modulation signals and experimentally confirm that the influence is
greatly suppressed by NM
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1 Introduction

It is rather recent that quantum key distribution
(QKD) systems have shown enough performances for
practical use, in terms of key generation speed and stabil-
ity. Currently, state-of-arts QKD systems generate key at
several hundred kb/s through an installed fiber of more
than 10-dB loss[1]. The automatic control on the QKD
systems enables unmanned operation for months without
severe disruption. People are now seriously considering
deployment of QKD systems. Still, there are a number of
obsessions on the social deployment, one of which is the
lack of security certification on a working system. In fact,
security of the QKD protocol, particularly decoy-BB84,
has been fully established in theory. However, such secu-
rity proofs would be of no use without the certification
that QKD equipment works properly under the practical
conditions. In terms of security certification,“ working
properly”refers that the system satisfies the assumptions
of the security proof.
An important issue for the decoy protocol is that the

intensities of the transmitted pulses should be set pre-
cisely and kept stable. Since the estimation of the leak-
age information to the eavesdropper (Eve) depends on
the intensities of the pulses, errors in the pulse intensi-
ties prevent us from accurate calculation of the amount
of sacrifice bits, and thus affect the security of the final
key. Recent studies suggested that the error of the pulse
intensity should be kept smaller than 5 % [2, 3]. There-
fore, it is necessary for the transmitters to stabilize the
intensity within this range.
Experimentally, the intensity varies by several reasons,

such as fluctuation of laser intensity, drift and fluctuation
in the intensity modulation, and alteration of the loss in
the passive components. Among these mechanisms, the
effects from passive components would be smaller than
others. We here focus on the intensity modulator, and
propose a novel intensity modulator to reduce the inten-
sity fluctuation.

∗nakata@optnet.ist.hokudai.ac.jp
†username3@domainname3

We consider a LiNbO3 (LN) based intensity modula-
tor (IM) used for high speed QKD systems. Since decoy
method requires to change the intensity pulse by pulse,
the IM should operate as fast as the clock frequency. The
LN modulators are often employed for decoy method, be-
cause high speed modulators up to 20 GHz band width
are commercially available. The intensity fluctuation
originates from the fluctuation of the drive voltage. Ac-
tually, the drive voltage may fluctuate for high frequency
operation. As well-known, the band width of the drivers
should be much larger than the clock frequency to con-
serve the rectangular pulse shape. Otherwise, the wave-
form of the pulse is deformed and the signal varies by
timing. The pulse jitter then results in the fluctuation of
the applied voltage to alter the modulation.

2 Intensity fluctuation in a conventional
modulator

Dual-drive Modulators (DDM) are often used for IM
in QKD systems [4]. Figure 1(a) shows the schematic
structure of the DDM. The intensity of the output is
given by the phase shifts θ1 and θ2 through the upper
and lower arms, as

Iout(θ1, θ2) =
1

2
(1 + cos(θ1 − θ2)) Iin. (1)

For two-decoy method, three different intensities IS ,
ID, and I0 are used, where the phases are set to
(θ1, θ2) = (0, 0), (θ, 0), and(0, π) for IS , ID, and I0, re-
spectively. If the applied voltage deviates from the de-
signed value, the phase shift error results in the inten-
sity error. Suppose the phase shift error appears in the
upper arm θ1 → θ1 + ∆, the intensity error I(∆) =
[I(θ1 +∆, θ2)− I(θ1, θ2)] /I(θ1, θ2) grows proportionally
to ∆2 for IS and I0, but to ∆ for ID. Therefore, decoy
intensity is more sensitive to the phase error than other
intensities IS and I0. We measured the fluctuation of
the decoy intensity for (θ1 = π?2, θ2 = 0). As shown in
Fig. 1(b), intensity distribution is broaden at the DDM
output. If we evaluate the fluctuation by 3σ/µ, with the
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average intensity µ and the standard deviation σ, the
range of the fluctuation 3σ/µ increased from 4.4 % to 7.5
% by the IM.

Figure 1: (a) A schematic structure of a Dual-Drive Mod-
ulator (DDM,) (b) Intensity distribution of decoy pulses
at the DDM output.

3 Reduction of the intensity fluctuation
by a nested modulator

We observed that the large intensity fluctuation comes
from the linear dependence of the intensity on the phase
error for the decoy pulses. Therefore, we can reduce the
intensity fluctuation by changing the linear dependence
to the square dependence. To this end, we introduce a
novel intensity modulator structure to the QKD trans-
mitter. This type of the modulator, called a nested mod-
ulator (NM) [5] contains two Mach-Zehnder interferome-
ter, as shown in Fig. 2(a). Though the phases θ1, θ2, θ3,
and θ4 can be controlled independently, we fix θ3 and θ4
to zero. Then, the output intensity is given by

Iout(θ1, θ2) =
1

8
(3 + 2 cos θ1 + 2 cos θ2 + cos(θ1 − θ2)) Iin.

(2)
We obtain signal and two decoys by setting θ1 and θ2
as IS = Iout(0, 0) = Iin, ID = Iout(0, π) = Iin/4 , and
I0 = Iout(π, π) = 0. By applying phase error as in the
DDM θ1 → θ1+∆, we observe the intensity errors grows
proportional to ∆2 for all IS , ID, and I0. Therefore, NM
output should be robust to the phase error, i.e., error of
the applied voltage. Figure 2 (b) shows the measured
intensity distribution of the NM output. The fluctuation
was estimated to be 3σ/µ =4.9 %, which was almost
equal to the input fluctuation.

Figure 2: (a) A schematic structure of a Nested Modu-
lator (NM,) (b) Intensity distribution of decoy pulses at
the NM output.

4 Conclusion

We have shown that the intensity of the modulator out-
put may fluctuate largely by the change of the applied
voltage. The change may originate from the deformation
of the electric pulses due to the limited band width of the
driver, which become serious for the high speed QKD sys-
tems. We propose the use of nested modulators (NMs)
to decoy-QKD transmitter. The output intensities from
the NM vary as a quadratic function of the phase er-
ror, so that the intensities are little affected by the drive
voltage fluctuation, if the operation point is properly set.
The decoy intensity from the nested modulator should be
fixed to 0.25 Iin to achieve the robustness to the applied
voltage fluctuation. However, this value is often used in
decoy-BB84 system, so that the effect on the final key
rate would be small.
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1. INTRODUCTION 

Information processing technology is largely 

based on the physics of classical electromagnetic 

dynamics.The processing of computers and networks 

is based on this principle. This principle has 

blossomed in 20
th

 century as electronics. 

Digitalcomputers operate on data including 

magnitudes, symbols and letters i.e. in the form of 

binary digits 0 and 1. Each  information is encoded in 

using different combinations of these digits. By 

comparing, counting and manipulating different 

combinations of these digits as per instructions digital 

computers perform tasks. These tasks include 

controlling industrial processes, regulating operations 

of machines, stimulating dynamic systems,analyzing 

and organizing vast business data etc.  A new 

principle of physics is on focus since late 20
th

 

century. This new principle of information processing 

is based on quantum physics. Entering the realms of 

atoms opens up enormous powerful opportunities 

where processors work a million times faster than the 

ones we use today. A quantum computer has a 

sequence of qubits. A qubit can have any value 0, 1 

or any quantum superposition of these two qubit 

states. If there are n qubits then 2^n states can be 

represented by it simultaneously. A QC is a step 

ahead of classical computer in computation of prime  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Factorization, secure communication, and 

teleportation of quantum information.However this 

information processing is not easy to realize because 

the quantum states are not stable (easily decoherence) 

for long time and difficult to manipulate.  Vigorous 

efforts are going for the realization quantum 

information processing. 

This article is review on the 

newcomputational model of quantum computers 

called measurement based quantum computation. 

Section 2 describes the basic concepts of 

Measurement based quantum computation and 

comparison with conventional computation models 

i.e. the circuit model.  Section 3 describes errors and 

quantum error correcting codes. Section 4 is about 

fault tolerant topological quantum computer. 

 

2. MEASUREMENT BASED QUANTUM 

COMPUTATION 

From the beginning the realizationof 

quantum computing has been considered on the basis 

of circuit model (fig 1). Circuit model has few basic 

gates such as single qubit rotation gates and two qubit 

interaction gate: the controlled not gate.Controlled 
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NOT gate is one of the main difficulty in realization 

of QC. To obtain proper interaction between the 

particles is quite difficult. 

In 2000s a new paradigm for quantum 

computers started.  Researchers began to re-examine 

the computational model to utilize the feature of 

quantum physics. Since classical physics is 

completely different form quantum physics they 

thought of a new model for computation. Quantum 

states can exist in entanglement state. This feature 

leads to new model described by Gottesman and 

Chuang. As per their model quantum gates operate by 

the means of quantum teleportation. In Teleportation, 

quantum information is transmitted from one location 

to another with the help of classical computing and 

quantum entanglement between the sending and 

receiver location. Output of controlled –NOT is 

obtained by using entangled state by operating 

quantum teleportation. (Fig.2). The entangled state 

can be regarded as a computational resource for the 

quantum gate. Further modified computation model 

of teleportation is One way quantum computation. 

Prepare a cluster state that is entangled.Next stepis to 

perform single-qubit measurement on the cluster 

state. After this perform universal quantum 

computation. Major role is played by entangled 

cluster state in quantum gate and information flow. 

Creating an entangled state is a lot easier than 

measurement because target is already known. We 

utilize a non deterministic gate that has low success 

probability in order to generate the entangled 

resource. Once the resource of entangled state is 

created it is easy to perform one qubit interaction 

rather than two qubit interactions gates, so the new 

computational model decreases the difficulty of 

realizing quantum computers. 

 

Figure 1 Circuit Model 

 

Figure 2 Teleportation Based Gate 

 

Figure 3 Measurement based quantum computation 

 

3. ERRORS AND QUANTUM ERROR 

CORRECTING CODES 

Qubits are prone to errors. They can be affected by 

heat,noise in the environment or by stray 

electromagnetic couplings. Usually there is bit flip 

error in classical computing i.e. 0 is mistakenly 

flipped to 1 or vice versa.  Whereas in case of qubits 

there can be bit flip as well as phase errors. In case of 

phase error the sign of phase relation between 0 and 1 

flips. 

There are two main differences between 

classical error correction and quantum error 

correction. First is non cloning theorem it states that 

it is impossible to perfectly copy an unknown 

quantum state.  This means there is no operation that 

satisfies this  U |ψ⟩ |0⟩ = |ψ⟩|ψ⟩ for an unknown 

|ψ⟩.Therefore, we are unable to protect arbitrary 

quantum states against errors by simply making 

multiple copies.  It is possible to spread information 

of one qubit into highly entangled state of several 

qubits. Peter Shor discovered this methodto 

formulating a quantum error correcting code by 

storing the information of one qubit onto a highly 

entangled state of nine qubits. 
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Secondly, measurement of any unknown 

quantum state will collapse the wave function 

describing the state.  Quantum information is 

destroyed while trying to measure certain subset of 

encoded state. 

Classical error correction is the base of 

quantum error correction but still we need to define 

codes in slightly different manner. This is due both to 

the restrictions of what we can theoretically do with 

quantum information, but also due to the possible 

errors that can affect qubits.  As stated earlier 

classical bits experience only bit flip but qubits 

experience both bit flip and phase errors. The errors 

are mostly continuous .such as rotation around X axis 

by some phase angle or some incoherent error caused 

by interaction with the outside world. 

We introduce additional measurement qubit 

or syndrome measurement to diagnose which error 

corrupts an encoded state. A series of quantum 

measurement and data combination is used to 

diagnose. . We then reverse an error by applying a 

corrective operation based on the syndrome. A 

syndrome measurement can determine whether a 

qubit has been corrupted or not. And if it is so 

thenwhich one had been corrupted. The outcome not 

only tells which bit was affected but also in which 

several ways it was affected.The syndrome 

measurement does not tell us about the value that is 

stored in the logical qubit as the measurement will 

destroy soit. It is better to store information in 9 

qubits than in 1 qubit. 

We only present formalism for coherent 

errors that can be represented by unitary gate. 

Error operator E acting on a qubit|ψ⟩ can be 

decomposed into linear superposition of X gates, Z 

gates and Y= iXZ 

The detection occurs by redundant encoding 

with two classical codes. One code will detect X 

errors and other will detect Z errors without having to 

necessarily decode the code space. The simplest 

example is the bit flip code  |0⟩L = |0⟩⊗N
 and |1⟩ = 

|1⟩⊗N 
where the ⊗

N 
 means N copies of the qubit.  The 

number of physical flips needed to turn |0⟩L ↔ |1⟩L 

scales linearly with N.  In quantum we cannot 

directly measure the subset of the code block. 

Therefore we need some different method to spot 

errors. In bit flip code,there exists a certain property y 

that for both basis states, pair wise bit-parity in the 

code block is even (i.e. calculating the parity of any 

two bits via modulo addition for the |0⟩L and |1⟩L 

state is even). If the result of comparison is an odd 

value, we know an error has occurred without 

actually knowing if we started with the |0iL or |1iL 

state. This is what we need. Therefore, we need a 

way to calculate the parity of any two qubits in the 

code block without directly measuring the qubits 

themselves. The circuit introduces anancillary bit that 

interacts with the qubits and measured. The result 

will determine the parity of the two qubits (even or 

odd) and also force them to be in one of the parity if 

it is not beforehand. The principle of codespace is to 

construct encoded codewords that always have well 

defined parity regardless of the state of encoded 

information. 

Returning to the example , the two encoded 

states are of even parity states of any pair wise Z 

operators. . i.e. applying the operator ZiZj for any i,j∈ 

N returns the same state, ZiZj |0, 1⟩L = |0, 1⟩L. Bit 

flip errors result in states which violate this condition. 

For example, a bit-flip on qubit one of the encoded 

block will result in Z1Zj |0, 1⟩L = − |0, 1⟩L ,∀j.  If we 

measure the parity of any of these operators and we 

find an odd result, we know that some type of error 

has occurred. Location and number of unique errors 

depend on the size of code block N. The parity of 

pair wise checks of the ZiZi+1 operator will help us do 

so. 

In case of quantum phase flip works in same 

way as bit flip. Therefore a full quantum error 

correction includes two classical codes one for bit 

flip and other for phase errors. 

In Shor code one redundancy code is 

embedded into another. The code encodes a single 

qubit of information into nine physical qubits. The 

basis states are given by, 

 |0⟩L = 
 

  
  (|000⟩ + |111⟩)(|000⟩ + 

|111⟩)(|000⟩ + |111⟩)  

|1⟩L = 
 

  
  (|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ 

− |111⟩) 

We have three blocks of three qubits that 

effectively act as a distance three redundancy code to 

correct bit flips. This allows us to correct a single bit 

flip error in any one of the three blocks. 

 

3.1 SUBSYSTEM CODES 

3.1.1 Bacon-Shor Codes 
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A  new  approach to implement quantum 

error correction is the quantum subsystem. In 

subspace codes, The information is encoded ina  

coding subspace of some large multiqubit system in a 

subspace code. Subspaces of the multi qubitare 

identified by the Subsystem and are considered to be 

equivalent.  Bacon-Shor Code is of general nature. It 

has the ability to perform dynamical code switching 

in a fault-tolerant manner. The flexibility of BS codes 

is its strength. BS codes are stabilizer codes and are 

now defined over a square lattice. The lattice 

dimensions represent the X and Z error correction 

properties .Commenting on the size of the lattice in 

either of these two dimensions dictates the total 

number of errors the code can correct. In general, a 

C(n1,n2) BS code is defined over a n1 × n2 square 

lattice which encodes one logical qubit into n1n2 

physical qubits with the ability to correct at least  

(n1−1)/ 2  Z errors and at least ( n2−1 2) X errors. 

 

3.1.2 Topological Codes 

Topological code’s structure is defined on a 

lattice as in the case of subsystem code and the 

scaling of the code is done in such a way that more 

errors are corrected. In topological coding schemes 

the protection afforded to logical information relies 

on the unlikely application of error chains which 

define non-trivial topological paths over the code 

surface. The two ways of approaching areFirst is to 

treat topological codes as a class of stabilizer codes 

over qubit system. Second is to construct  a physical 

Hamiltonian model based on the structure of the 

topological code or choose systems which appear to 

exhibit topological order. As a result  more 

complicated field on anyonic quantum computation 

occurs. 

Toric code is a topological quantum error 

correcting code and example to stabilizing code. 

 

Figure 4 Concatenated Code 

 

4. FAULT TOLERANT TOPOLOGICAL 

QUANTUM COMPUTER 

We need to protect quantum computing 

form decoherence and different kinds of noise.Error 

correction codes are available for quantum computers 

and we can perform fault-tolerant quantum 

computing by applying an error correction procedure 

appropriately during computation. A fault tolerant 

system based on circuit model used quantum linear 

code and concatenated codes. A standard quantum 

linear encodes a single qubit into several qubits. It 

can handle single bit flip and phase flip error but if 

more than one occurs error correction does not work 

well. Concatenated coding works well for this. It 

recursively uses linear code . It provides greater error 

tolerance if the error rate per basic computational unit 

is less than a certain threshold. By the usage of  

codeof concatenation of sufficient depth with the 

error rate below the threshold then reliable computing 

can be executed. It is assumed here that any quantum 

gate can be achieved between widely separated 

particles, but with the increase in distance  interaction 

between particles becomes weak.Code of quantum 

gate  can be rewritten. And is written between 

spatially separate particles into combinations of 

quantum gates between nearest-neighbour sites, the 

number of consumed gates becomes larger in that 

case and the threshold of the fault-tolerant system 

becomes significantly small. At some point of time 

there was shortage of concatenated codes for fault 

tolerant systems so new topological or surface codes 

were proposed. Topological code uses the concept of 

nearest interactions. This is a realistic model than 

circuit model.A toric code is a quantum error 

correcting and an example of stabilizer code defined 

on a  2- D spin  lattice.The edges of 2D lattice 

represents the qubits.The qubits are in entangled state 

as in  topological code. The qubits  that are on the 

endpoints of the 2D lattice are identical/similar to 

ones that are on the other side. The 2D lattice is on 

the surface of a torus, which provides us with the 

degrees of freedom that is used in encoding logical 

qubits. The entanglement and error correction can be 

performed on the nearest neighbourinteractions. 

Theencoding size can be enlarged by expanding the 

lattice. Toric code can also be rewritten on a square 

lattice with boundaries by constructing the equivalent 

for the hole of the torus and introducing the same 

topology. This makes easier to prepare multiple 

logical qubits. There exists a special form of 3D 

cluster state which becomes a resource Error 

correction. Toric code 0 1 2 3 2’ 0’ 6 7 6’ 5 4 1’ In 

this case, we can perform fault-tolerant quantum 

computing with only single-qubit measurements after 

preparing the 3D cluster states. The thresholds can be 
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improved by devising better encoding and decoding 

methods . Recently, the important realistic case of 

errors with a high loss rate  and of nondeterministic 

entangling gates has also been investigated. 

5. FUTURE OUTLOOK 

 Having reviewed the concepts and features 

of measurement based quantum computation and 

fault tolerant system we would like to mention the 

outlook for future research. As per theory, we need to 

find more realistic physical model for realization of 

measurement based quantum computation.  There 

have been studies for finding Hamiltonians whose 

ground states are universal resources for 

measurement based quantum computation. On 

experimental sides some demonstrations of MBQC 

have been performed. However, it is prone to errors. 

One of the main problems is to obtain scalability in 

quantum computers. As per further research, optical 

quantum computation a new high efficiency single 

photon source is necessary. Ultra cold atomic gas in 

an optical lattice can be used for preparing large 

entangled resource for measurement based quantum 

computation. Another important candidate is the use 

of solid state artificial atoms such as quantum dots or 

dopants in solids for stationary qubits and the use of 

atoms photon interaction with cavity quantum 

electrodynamics for quantum gates. To conclude, 

measurement based quantum computation provides 

great hope towards realising quantum computers. 
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Abstract. The ability to distribute entanglement to be used as cryptographic key over complex quantum
networks is an important step towards a quantum version of the Internet. Most attention so far has been
given to the distribution of bipartite entanglement. In this work we derive bounds on the rate at which
multipartite private states, such as GHZ states, can be distributed using a given network architecture. Our
bounds are particular interest for possible applications of multi-receiver cryptography or quantum secret
sharing.
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An important prerequisite for the application of quan-
tum protocols such as quantum key distribution (QKD)
to real world communication problems is the distribu-
tion of entanglement over long distances. The simplest
way to do so is to create an entangled state locally and
send part of it over a quantum channel. As the channel
typically introduces noise, it is usually necessary to send
many copies of the state via the channel and perform lo-
cal operations and classical communication (LOCC) in
order to distill the desired resource state.
For point to point communication, it has recently been
shown [1] that the rate at which a secret key can be
transmitted via asymptotically many uses of a channel
assisted by LOCC is upper bounded by the squashed en-
tanglement of the channel. The protocol used here is
adaptive in the sense that after each channel use a round
of LOCC is performed, determining which state will be
inserted into the channel next.
The limitations of point to point transmission of entan-
glement can be overcome by use of quantum repeaters.
While quantum repeaters allow for distribution of en-
tanglement over arbitrarily large distances, the use of
quantum protocols in a future version of the Internet will
require entanglement to be distributed over complex net-
works rather than just a chain of nodes. In [2], the upper
bound on the bipartite key rate given in [1] has been gen-
eralised from only a single quantum channel to an arbi-
trary network consisting of ancillary nodes and quantum
channels. In [3] a lower bound for arbitrary networks is
presented.
Another important generalisation towards the quantum
Internet is to go beyond a one-sender and one-receiver
model. This can be achieved using a GHZ state or a mul-
tipartite private state [4]. Another cryptographic proto-
col involving many parties is secret sharing, where two or
more parties have to come together in order to decrypt
a message. It has been shown that this can be achieved
using a GHZ state [5].
In the present work, we present an upper bound on the
rate at which GHZ states and multipartite private states
can be distributed between an arbitrary number of par-
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ties, who are connected by an arbitrary network consist-
ing of quantum broadcast channels and ancillary nodes.
The scenario considered here is a generalisation of [6] in
that it contains a network of broadcast channels rather
than just a single broadcast channel and it is a general-
isation of [2] in that it considers multipartite key distri-
bution rather than bipartite one and broadcast channels
rather than single receiver ones. We also discuss how the
lower bound presented in [3] can be generalised to the
multipartite case.
We consider the following setup: There are m nodes
A1...Am held by the m parties as well as an arbitrary
number of ancillary nodes. The nodes are connected by
an arbitrary network of quantum broadcast channels of
N e : Xe → Y e

1 ...Y
e
re . The network can be described by

a hypergraph with party and ancillary nodes as vertices
and broadcast channels N e as hyperedges. In addition
the nodes are connected by a network of classical com-
munication, such as the conventional Internet. Initially,
the quantum state ρ0 of the system is fully separable be-
tween all nodes. It is our goal to establish an m-partite
private state γA1...Am

, as defined in [4], between the par-
ties A1...Am. A special case of such a private state is the
GHZ state.
In order to achieve this goal, an adaptive protocol is
performed. The protocol begins with application of
broadcast channel N e0 : Xe0 → Y e0

1 ...Y e0
re0

followed

by a round of (probabilistic) LOCC, the outcome k1
of which determines which broadcast channel N ek1 :
Xek1 → Y

ek1
1 ...Y

ek1
rek1

is used next. Outcome k1 is ob-

tained with probability p(k1). After the channel use an-
other round of LOCC is performed, resulting in k2. The
outcomes k2 = (k1, k2), which are obtained with prob-
ability p(k2) = p(k2|k1)p(k1), determine which channel
N ek2 : Xek2 → Y

ek2
1 ...Y

ek2
rek2

is used next and so on. Af-

ter l channel uses we arrive at state ρkl with probability

p(kl), such that
∥∥∥ρkl

A1...Am
− γdkl

A1...Am

∥∥∥
1
≤ ε for some m-

partite private state γdkl .
Our main result is an upper bound on the key dimen-
sion dkl

, averaged over all possible outcomes of the l-
round protocol. Before stating the theorem, let us intro-
duce some notation: We call P a partition of the nodes
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into disjoint classes G1...Gm such that each class contains
one party node. In general, some branches of a broad-
cast channel will remain within the class containing the
sender whereas some branches cross the boundaries to
other classes. Given channel N e : Xe → Y e

1 ...Y
e
re , we de-

note by GeX ∈ {G1...Gm} the class containing the sender
node and by Ge(1)...G

e
(ne)

∈ {G1...Gm} the other classes
containing receiving nodes. Given partition P, we de-
note by ext(P) the set of indices e, such that channels N e

crosses at least one boundary between classes. Let us also
define Ye

X ,Ye
(1), ...,Y

e
(ne)

as products of all output systems
Y e
j of N e going to a node in classes GeX ,Ge(1), ...,G

e
(ne)

, re-
spectively.
If after l =

∑
e l

e rounds of an adaptive protocol as de-
scribed above the state of A1...Am is ε-close to an m-

partite private state γ
dkl

A1...Am
, it holds

m 〈log dkl
〉kl
≤ min

P

1

1− cε

 ∑
e∈ext(P)

〈le〉kl
E(P)

sq (N e) + f(ε)


where the minimisation is over all partitions P, le is the
number of uses of channel N e and the averaging is over
all outcome vectors kl. Further c ∈ Z+ and f(ε) → 0

as ε → 0. E
(P)
sq (N e) denotes the multipartite squashed

entanglement as introduced in [7], w.r.t. the partitions
given by P and N e.
Let us now discuss how the lower bound on the key rate
presented in [3] can be generalised to the multipartite
setting. They have derived a lower bound on the key
rate that can be achieved by using each channel N e with
given frequency f̄e. The bound is achieved by means
of a so-called aggregated quantum repeater protocol. The
protocol involves distribution of

⌊
f̄eQ↔ (N e)

⌋
copies of

Bell states |Φ+〉 via each channel N e. The resulting net-
work of Bell states is then used to distribute the maximal
entanglement between Alice and Bob by means of entan-
glement swapping. The network of Bell states can be
seen as an undirected graph. The amount of key obtain-
able in this way depends on the number of edge disjoint
paths between Alice and Bob. By Menger’s theorem [8],
this number is equal to the minimum number of edges in
any cut between Alice and Bob. In the case of multipar-
tite key distribution the problem of finding an achievable
rate becomes more involved. We will restrict ourselves to
the simpler case where all channels in the communication
network have only a single sender and a single receiver
and discuss general broadcast channels in future work.
As in the bipartite case we use an aggregated quantum
repeater protocol. We begin by creating a network of
Bell states |Φ+〉, that can be described by a graph GBell.
The Bell state network is then used to establish a number
of (qubit) GHZ state among A1, ..., Am. The number of
qubits of the GHZ state then provides us with a lower
bound on the multipartite key rate. Finding the maxi-
mal number of GHZ-entangled qubits, however, is a more
difficult task as in the bipartite case, where we can use
Menger’s theorem.
In [9] it has been shown that GHZ states can be con-
nected by an operation similar to entanglement swap-

ping: Assuming we have an n-partite GHZ state and an
m-partite GHZ state, application of a projection onto
two parties results in an n+m− 1 partite GHZ state of
the remaining parties. In particular two Bell states can
be connected into a 3-partite GHZ state. If necessary,
party Ai can also be removed by a measurement in the
σx eigenbasis and a local application of σz depending on
the output, resulting in an n+m− 2 partite GHZ state
of the remaining parties, which can be seen as a direct
generalisation of entanglement swapping to GHZ states.
In a general Bell state network we can create a GHZ state
between parties A1...Am if the corresponding graph con-
tain a tree spanning vertices A1...Am, i.e. if there exists
an acyclic subgraph connecting all vertices A1...Am. A
tree that spans a subset of vertices of a graph is referred
to as a Steiner tree. Hence, in order to determine the
number of GHZ states that can be established between
A1...Am by means of generalised entanglement swapping,
we need to compute the number of edge-disjoint Steiner
trees spanning A1...Am in the graph corresponding to the
Bell network, which is another generalisation of Menger’s
Theorem.
For general graphs the problem of finding the number
of edge-disjoint Steiner trees spanning a subset S of ver-
tices, also known as Steiner tree packing has been shown
to be NP complete [10]. There are, however, polynomial
algorithms, that can provide us with lower bounds on the
number of edge-disjoint Steiner trees in a graph [11].
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Permutation-invariant quantum codes from polynomials
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Abstract. A qudit code is a subspace of the state space of a fixed number of qudits. Such a code is
permutation-invariant if it is unchanged under the swapping of any pair of the underlying qudits. Prior
permutation-invariant qubit codes encode a single qubit while correcting t arbitrary errors, and their logical
codewords have two important properties. First, the Dicke states over which the logical codewords are
superposed over have weights spaced a constant number apart. Second, the probability of observing each
logical codeword as a given Dicke state is proportional to a binomial coefficient. We design permutation-
invariant qudit codes encoding a single qubit with logical codewords that need not have the above two
properties, while still allowing the correction of t arbitrary errors. Polynomials govern the structure of the
Dicke states and the probabilities in our construction.

The promise offered by the fields of quantum
cryptography [1, 2] and quantum computation [3] has
fueled recent interest in quantum technologies. To
implement such technologies, one needs a way to reliably
transmit quantum information, which is inherently
fragile and often decoheres because of unwanted physical
interactions. If a decoherence-free subspace (DFS) [4] of
such interactions were to exist, encoding within it would
guarantee the integrity of the quantum information.
Indeed, in the case of the spurious exchange couplings [5],
the corresponding DFS is just the symmetric subspace
of the underlying qubits. In practice, only approximate
DFSs are accessible because of small unpredictable
perturbations to the dominant physical interaction [6],
and using approximate DFSs necessitate a small amount
of error correction. When the approximate DFS is the
symmetric subspace, permutation-invariant codes can be
used to negate the aforementioned errors [7, 8, 9].

Permutation-invariant codes are particularly useful
in correcting errors induced by quantum permutation
channels with spontaneous decay errors, with Kraus
decomposition N (ρ) = A(P(ρ)) =

∑
α,β AβPαρP

†
αAβ ,

where P and A are quantum channels satisfying the
completeness relation

∑
α P
†
αPα =

∑
β A
†
βAβ = 1 and

1 is the identity operator on m qubits. The channel
P has each of its Kraus operators Pα proportional to
eiθαâα , where θα is the infinitesimal parameter and
the infinitesimal generator âα is any linear combination
of exchange operators. By a judicious choice of
θα and âα, the channel P can model the stochastic
reordering and coherent exchange of quantum packets
as well as out-of-order delivery of classical packets
[10]. The channel A on the other hand models
spontaneous decay errors, otherwise also known as
amplitude damping errors, where an excited state in
each qubit independently relaxes to the ground state
with probability γ. Our permutation-invariant code
is inherently robust against the effects of channel P,
and can suppress all errors of order γ introduced by
channel A, and is hence approximately robust against
the composite noisy permutation channel N .

∗yingkai ouyang@sutd.edu.sg

The possibility of error correction in permutation-
invariant codes [7, 8, 9, 11] is a useful feature, particularly
when exchange errors or random permutation errors are
the dominant errors afflicting the system. Permutation-
invariant codes that can correct even a single qubit
error are necessarily non-stabilizer codes, and hence
the design of such codes is non-trivial and necessarily
uses techniques beyond the stabilizer formalism.
Permutation-invariant codes with error correction
capabilities are also necessarily highly entangled, and
may be of interest to further the theory the entanglement
of symmetric states [12, 13, 14, 15, 16, 17].

The first example of a permutation-invariant code
which encodes one qubit into 9-qubits while being able
to correct any single qubit error was given by Ruskai
over a decade ago [7]. A few years later, Ruskai and
Pollatshek found 7-qubit permutation invariant codes
encoding a single qubit which correct arbitrary single
qubit errors [8]. Recently permutation-invariant codes
encoding a single qubit into (2t+ 1)2 qubits that correct
arbitrary t-qubit errors has been found [9]. In Ref. [11],
permutation-invariant codes encoding more than a qubit
while correcting spontaneous decay errors to leading
order have also been studied. In Ref. [18], the similarity
of permutation-invariant quantum codes and bosonic
codes has also been explored, and further advance in
the theory of either one of these theories might have
important implications for the other.

Here, we extend the theory of permutation-invariant
quantum codes, while still retaining the ability to
correct t arbitrary errors. The full technical details of
this submission is available on the arXiv in Ref. [19].
Prior permutation-invariant qubit codes that encode a
single qubit while correcting t arbitrary errors, have
logical codewords with two important properties. First,
the Dicke states over which the logical codewords are
superposed over have weights spaced a constant number
apart. Second, the probability of observing each
logical codeword as a given Dicke state is proportional
to a binomial coefficient. We design permutation-
invariant qudit codes encoding a single qubit with logical
codewords that need not have the above two properties,
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while still allowing the correction of t arbitrary errors.
Polynomials govern the structure of the Dicke states and
the probabilities in our construction.

We also note that unlike prior permutation-invariant
quantum codes that have been restricted to systems
comprised of solely qubits, we extend our theory to
permutation-invariant qudit codes. For N -qubit systems,
the symmetric subspace is spanned by Dicke states with
weights from 0 to N . Here, a Dicke state of weight w is a
uniform superposition over all computation basis states
with exactly w excitations, and we denote it as |DN

w 〉.
To describe permutation-invariant codes over qudits,

we elucidate the basis of the symmetric subspace of N
qudits, where each qudit is of dimension q. We denote
TN,q to be the set of all q-tuples with components that
are non-negative integers that sum to N . For each τττ =
(τ0, . . . , τq−1) ∈ TN,q, we necessarily have τ0+· · ·+τq−1 =
N , and we wish to define a Dicke state of type τττ , which
we denote as |D[τττ ]〉. Each |D[τττ ]〉 is a superposition over
all computational basis states |x〉 = |x1〉⊗· · ·⊗|xm〉 such
that each |x〉 is a tensor product of exactly pj |j〉’s for
0 ≤ j ≤ q − 1.

We construct permutation-invariant codes encoding
a single qubit into N qudits that correct arbitrary
t qudit errors using polynomials p0, . . . , pq−1 in the
variable z and f in the variable x. We assume that the
polynomial f(x) =

∑n
z=0 fzx

z, has real coefficients fz,
and (p0(z), . . . , pq−1(z)) ∈ TN,q for every 0 ≤ z ≤ n,
with fn 6= 0. Now let

F0 = {0 ≤ z ≤ n : fz > 0},
F1 = {0 ≤ z ≤ n : fz < 0}, (1)

denote the index sets for which fz is positive and negative
respectively, and let |f | = |f0| + · · · + |fn|. Our
permutation-invariant codes have basis vectors

|0L〉 =

√
2|fn|
|f |

∑
z∈F0

√
|fz|
|fn|
|D[(p0(z), . . . , pq−1(z))]〉,

|1L〉 =

√
2|fn|
|f |

∑
z∈F1

√
|fz|
|fn|
|D[p0(z), . . . , pq−1(z)]〉. (2)

Notice that the logical codewords in Eq. (2) are
independent of the choice of nonzero fn, and we can
without loss of generality consider a constant nonzero
fn such as fn = 1. For all 0 ≤ z ≤ n, we denote the
classical codes

Cz = {x ∈ {0, . . . , N}N : wtj(x) = pj(z), 0 ≤ j ≤ q − 1},
(3)

and define the pair-wise minimum distance between these
codes as

∆ = min{d(x,y) : x ∈ Cz,y ∈ Cz′ , 0 ≤ z < z′ ≤ n}, (4)

where d(x,y) = |{1 ≤ i ≤ N : xi 6= yi}| denotes
the Hamming distance between the vectors x and
y. Theorem 1 gives sufficient conditions for which
the permutation-invariant code spanned by the logical
vectors given in Eq. (2) corrects t arbitrary qudit errors.

Theorem 1 Let p0, . . . , pq−1 be polynomials of degree at
most θ. Let f(x) be a non-zero polynomial with real
coefficients having a root at x = 1 with multiplicity
m. Then the code spanned by Eq. (2) corrects at least
t = min{

⌊
∆−1

2

⌋
,
⌊
m−1

2θ

⌋
} arbitrary qudit errors.

Theorem 1 implies that if

m ≥ (∆− 1)θ + 1, (5)

the number of errors that can be corrected is t =
⌊

∆−1
2

⌋
.

In this scenario, evaluating t becomes a combinatorial
problem which depends only on ∆.

The amplitudes
√

2
|f |

√
|fz| of our permutation-

invariant code that arise in Eq. (2) depend crucially on
our choice of the polynomial f(x) with real coefficients.
When the degree of f(x) is equal to the multiplicity of
its root at x = 1, that is when n = m, we uniquely have
f(x) = fn(x − 1)n and fz = fn(−1)n−z

(
n
z

)
. This choice

of f(x) gives rise to the amplitudes that are crucial in
the specification of certain permutation-invariant codes
[7, 9, 11] and certain bosonic codes [18]. When n > m,
we must have

f(x) = fn(x− 1)m

xn−m +
n−m−1∑
j=0

ajx
j

 , (6)

where aj are arbitrary real constants for 0 ≤ j ≤
n −m − 1. Hence the set of all polynomials of the form
in Eq. (6) is isomorphic to Rn−m, while the set of all
monic polynomials f(x) of degree n with real coefficients
is isomorphic to Rn. Random choices of fz typically
yield polynomials f(x) inconsistent with Eq. (6), and the
combinatorial identity

n∑
z=0

fzz
j = 0, for every 0 ≤ j ≤ m− 1, (7)

required in the proof of Theorem 1 need not hold. Here
we take the convention where 00 = 1. In view of this,
requiring f(x) to have a root at x = 1 with multiplicity
m is non-trivial.

To complete the specification of our code, apart
from the polynomial f(x), the polynomials p0, . . . , pq−1

appearing in Eq. (2) are also required. In particular,
to correct one error, the Ruskai code [7, 9] has logical
codewords

|0L〉 =
1

2
(|D9

0〉+
√

3|D9
6〉)

|1L〉 =
1

2
(|D9

3〉+
√

3|D9
9〉). (8)

With our current construction, to correct one error we
can for example use p1(z) = 1+3z, f(x) = (1+x)(x−1)5

and N = 19 to obtain a permutation-invariant code with
logical codewords

|0L〉 =

√
4|D19

4 〉+
√

5|D19
13〉+ |D19

19〉√
10

|1L〉 =
|D19

1 〉+
√

5|D19
7 〉+

√
4|D19

16〉√
10

, (9)
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where the weight distribution for the Dicke states are
linearly shifted, and the square of the amplitudes do not
follow the binomial distribution.

Theorem 1 implies that the polynomials p0, . . . , pq−1

can be non-linear. For example for q = 3, f(x) = (1 +
x)(x− 1)5 and p1(z) = 3z2, p2(z) = 0, p1(z) = N − p1(z)
and N = 108, we have

|0L〉 =

√
4|D[105, 3, 0]〉+

√
5|D[60, 48, 0]〉+ |D[0, 108, 0]〉√

10

|1L〉 =
|D[108, 0, 0]〉+

√
5|D[96, 12, 0]〉+

√
4|D[33, 75, 0]〉√

10
.

(10)

The code spanned by Eq. (10) also corrects one
error. Clearly many other choices of polynomials
p0, . . . , pq−1 are also feasible within the framework of our
construction.

To prove Theorem 1, we first state the key lemmas.

Lemma 2 Let P ∈ P⊗Nq have weight w where w ≤ 2t.
Let τ0, . . . , τq−1 be polynomials in the variable z of degree
at most θ. Let τττ = (τ0, . . . , τq−1) ∈ TN,q. Then
〈D[τττ ]|P |D[τττ ]〉 is a polynomial of degree at most 2tθ in
the variable z.

Lemma 3 Let f(x) =
∑n
z=0 fzx

z be a non-zero
polynomial with real coefficients fz and a root at x = 1
with multiplicity m. Then Eq. (7) holds.

it then suffices to show for every N -qudit Pauli operator
of weight at most 2t (i) the non-deformation conditions
〈0L|P |0L〉 = 〈1L|P |1L〉 and (ii) the orthogonality
conditions 〈0L|P |1L〉 = 0 [20]. Having t ≥

⌊
∆−1

2

⌋
immediately implies that the orthogonality conditions (ii)
hold. Hence it remains to prove (i), or equivalently the
non-deformation condition

n∑
z=0

fz〈D[p(z)]|P |D[p(z)]〉 = 0, (11)

where we denote p(z) = (p0(z), . . . , pq−1(z)). The proof
of Eq. (11) has two ingredients: (i) the polynomials
〈D[p(z)]|P |D[p(z)]〉 have degree no more than 2tθ in the
variable z as given in Lemma 2, and (ii) the combinatorial
identity Eq. (7) as given in Lemma 3. Note that condition
(i) implies that

〈D[p(z)]|P |D[p(z)]〉 =
2tθ∑
j=0

αjz
j , (12)

for some constants αj ∈ C. Hence

n∑
z=0

fz〈D[p(z)]|P |D[p(z)]〉 =
n∑
z=0

fz

2tθ∑
j=0

αjz
j

=
2tθ∑
j=0

αj

(
n∑
z=0

fzz
j

)
. (13)

But the bracketed term in Eq. (13) is always zero because
of condition (ii) and m > 2tθ, and this completes the
proof of the non-deformation condition Eq. (11). Hence
our code can correct at least t arbitrary qudit errors.
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Quantum algorithm for association rules mining
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Abstract. Association rules mining (ARM) is one of the most important problems in knowledge discovery
and data mining. Given a transaction database that has a large number of transactions and items, the
task of ARM is to acquire consumption habits of customers by discovering the relationships between
itemsets (sets of items). In this paper, we propose a quantum algorithm for the key procedure of ARM,
finding out frequent itemsets from the candidate itemsets and acquiring their supports. Specifically, for

the case in which there are M
(k)
f frequent k-itemsets in the M

(k)
c candidate k-itemsets (M

(k)
f ≤ M

(k)
c ),

our algorithm can efficiently mine these frequent k-itemsets and estimate their supports by using parallel

amplitude estimation and amplitude amplification with complexity O(
k
√
M

(k)
c M

(k)
f

ϵ ), where ϵ is the error
for estimating the supports. Compared with the classical counterpart, classical sampling-based algorithm,

whose complexity is O(
kM(k)

c

ϵ2 ), our quantum algorithm quadratically improves the dependence on ϵ, and

also improves the dependence onM
(k)
c to some degree which depends on the practical scale ofM

(k)
f relative

to M
(k)
c .

Keywords: AQIS, template

1 Introduction

As one of the most important problems in data min-
ing, association rules mining (ARM) is to discover the
consumption habits of customers by finding out relation-
ships between pairs of itemsets (sets of items) from a big
transaction database [1]. The transaction database is a
large set of a large number of transactions which is denot-
ed by T = {T0, T1, · · · , TN−1} for N transactions, each
one being a subset of an overall set of items denoted by
I = {I0, I1, · · · , IM−1} for M items, i.e., Ti ⊆ I. It can
also be represented by a N ×M binary matrix, denoted
by D, in which the element Dij = 1(0) means that the
item Ij is (not) contained in the transaction Ti. The task
of ARM can be reduced to that of mining all the frequent
itemsets [1]. Here an itemset X is called frequent if its
support, defined by the percentage of transactions that
contain X and denoted by supp(X), is not less than a
preset threshold min supp.
In classical regime, there are various algorithms [1] for

mining frequent itemsets, the most famous one being the
Apriori algorithm [2]. Based on the important Apriori
property stating that all nonempty subset of a frequent
itemset must also be frequent, Apriori algorithm employs
an iterative approach known as a level-wise search to dis-
cover all the frequent itemsets. In the kth iteration of the
algorithm, two procedures are executed:

• (P1) Given the set of candidate k-itemsets C(k)

which is determined by the frequent (k−1)-itemsets
when k > 1 or is just I when k = 1, the supports
of all the elements in C(k) are examined by passing
every transaction of database and the frequent el-
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ements are pick out to form the set of all frequent
k-itemsets F (k).

• (P2) Generate the set of candidate (k+1)-itemsets
C(k+1) from F (k).

In practice, in each iteration (P1) dominant the time
complexity of whole process [3]. Therefore, how to effi-
ciently executing (P1) of each iteration, namely finding
out frequent itemsets from candidate ones, is of great im-
portance. In the following section, we provide a quantum
algorithm to implement (P1) for each iteration that can
significantly reduce the time complexity in contrast to
the classical algorithms.

2 Quantum algorithm

Our quantum algorithm is to find out frequent item-
sets from the candidate itemsets in the procedure (P1)
of each iteration shown above. Our algorithm is based
on the basic quantum oracle O that access the element
of the database binary matrix D, namely, O|i⟩|j⟩|a⟩ =
|i⟩|j⟩|a ⊕ Dij⟩. Θ(k) basic oracles O together with the
generalized CNOT operation [4] can be used to construc-
t the quantum oracle O(k) that can identify whether an
arbitrary transaction contain a k-itemset in in the way
that

O(k)|i⟩|X⟩ = (−1)τ(i,X)|i⟩|X⟩,

where τ(i,X) = 1 if X ⊆ Ti and τ(i,X) = 0 otherwise.
Corresponding to O(k), we define a ”big” Grover operator
as

G(k) =
(
(2|XN ⟩⟨XN | − IN )⊗ IMk

)
O(k),

where |XN ⟩ =
∑N−1

i=0 |i⟩√
N

and IN is the identity operator

with dimension N .
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we suppose C(k) has M
(k)
c elements C(k) = {C(k)

j |j =

1, 2, · · · ,M (k)
c } where C

(k)
j = {I

c
(k)
jl

|l = 1, 2, · · · , k, c(k)jl ∈

ZM}, F (k) has M
(k)
f elements and F (k) ⊆ C(k). To mine

the M
(k)
f frequent k-itemsets from M

(k)
c candidate k-

itemsets, it requires computing the supports of all the
candidate k-itemsets and then picking out the frequent
k-itemsets. Our quantum algorithm will propose a new
kind of amplitude estimation [5], parallel amplitude esti-
mation, to generate a state approximating∑M(k)

c
j=1 |s(k)j ⟩⟨s(k)j | ⊗ |C(k)

j ⟩⟨C(k)
j |

M
(k)
c

,

where s
(k)
j denote the supports of C

(k)
j , and then use

the amplitude amplification [5] on the state to search for

s
(k)
j ≥ min supp. Finally, measuring the state after am-
plitude amplification reveals the frequent k-itemsets and
their supports. The details of our algorithm for mining
frequent k-itemsets are described as follows.

Algorithm 1 Mining frequent k-itemsets F (k) and their
supports from candidate k-itemsets C(k)

Input: C(k),G(k),k,T ;
Output: F (k) and the supports of elements in F (k);
1: Prepare three registers in the state

(
∑T−1

t=0 |t⟩√
T

)|XN ⟩(
∑M

(k)
c

j=1 |C(k)
j ⟩√

M
(k)
c

).

2: Perform the unitary operation
∑T−1
y=0 |y⟩⟨y|⊗ (G(k))y

on the state.
3: Perform the inverse Fourier transformation F †

T on the
first register. Then the third register encodes all the
candidate k-itemsets, while the first register encoding
their corresponding supports.

4: Search in the first register of the state for the terms

y satisfying sin2(πyT ) ≥ min supp or sin2(π(T−y)
T ) ≥

min supp by using amplitude amplification and then
the state of the first and third register

∼

∑M(k)
c

j=1,supp(C
(k)
j )≥min supp

|s(k)j ⟩⟨s(k)j | ⊗ |C(k)
j ⟩⟨C(k)

j |

M
(k)
f

.

5: Measure the first and third register forO(M
(k)
f ) times

to reveal all the M
(k)
f frequent k-itemsets (i.e., F (k))

and their supports.

3 Complexity

We take the basic oracle O as the query complexity.
The comparison of our quantum algorithm and classi-
cal algorithms are given in the TABLE 1. The Apriori
algorithm directly calculate the supports of candidate k-
itemsets by scanning every transaction in a deterministic
way, while the classical sampling-based algorithm esti-
mates the supports by sampling the database and thus
is non-deterministic. It is shown that our algorithm is
significantly faster than the classical algorithms.

Table 1: Comparisons of our quantum algorithm, clas-
sical sampling-based algorithm and the classical Apriori
algorithm for mining F (k) from C(k).

algorithm determinacy query complexity

Quantum non-deterministic O(
k
√
M

(k)
c M

(k)
f

ϵ )

Sampling-based non-deterministic O(
kM(k)

c

ϵ2 )

Apriori deterministic O(kM
(k)
c N)

4 Conclusions

We provide a quantum algorithm for the core proce-
dure of implementing ARM, mining frequent itemsets
from the candidate itemsets. Specifically, by subtly using
amplitude estimation and amplitude amplification, our
algorithm can efficiently find out the frequent k-itemsets
from candidate k-itemsets and estimate their supports.
Complexity analysis shows our algorithm is faster than
the classical counterpart, classical sampling-based algo-
rithm, in the sense that the complexity of our algorithm
is at least quadratically improved in the dependence on
the error. We hope our quantum algorithm for ARM can
help better understanding the power of quantum com-
puting and inspire more quantum algorithms for big data
mining tasks.
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Quantum Chinese Chess

Abstract. For the pedagogical and entertaining purposes, we are projecting the quantum Chinese chess.
Some additional chess rules are put as simile or metaphor of quantum superposition, entanglement, and
measurement. Our short-term goal is to build an online platform for the chess players. As the long-term goal,
we want to investigate the effect of the quantum moves on quantum Chinese chess. So far it is still unknown
how to evaluate the power quantum moves in the chess play.

Keywords: quantum game, quantum entanglement, quantum measurement

1 Introduction

The idea of quantum chess was originally proposed 
for the study of quantum chromodynamics. Therein, 
the space-time is pretended as a chessboard [1]. Maybe 
quantum tic-tac-toe was the first game play developed as 
a metaphor for the counterintuitive nature in quantum 
physics [2]. In 2010, Akl and Wismath proposed quan-
tum chess to put “humans and computers on an osten-
sibly equal footing when faced with the uncertainties of 
quantum physics” [3]. Early in this year, Chris Cantwell 
has successfully raised funds for Quantum Chess on the 
Kickstarter [4]. Now everyone can see Hawking and Rudd 
playing the quantum chess on YouTube, and there even 
are apps for quantum chess.

Here we propose the quantum version of Chinese chess, 
also known as Xiangqi, which is a popular pastime in the 
Eastern world. For the pedagogical purpose, we eventu-
ally hope to propose quantum Chinese chess accessible 
and understandable for kids and young adult across the 
Taiwan Strait.

2 Rules

Among quantum tic-tac-toe, quantum chess, and Xi-
angqi, three quantum properties: the superposition, en-
tanglement, and quantum measurement are well ex-
ploited. To demonstrate how it can be done, three “quan-
tum” moves are put in addition to the traditional ones.
(1) (Superposition) In addition to the regular move, the 
quantum move can move the regular move twice and 
make a supposition. Fig. 1 shows the quantum move 
of the “red Cannon”. (2) (Entanglement) Based on (1), 
one can make entanglement between two or more chess 
pieces. For example, Fig.2 shows the entanglement be-
tween “red Cannon” and “red Chariot”. Notably, the 
entanglement is made because the superposition of Can-
non seems to “block” the moving way of Chariot. Fig. 2 
(c) and (d) show two possible conditions after the mea-
surement. (3) (Quantum measurement) If one want to
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Figure 1: (a) Before the quantum move. The arrows
each show the corresponding regular moves. (b) After
the quantum move. The slashes indicate that “state” in
superposition rather than a “real object” of the piece.

capture and remove the opponent piece with the super-
position, one has to perform measurement both on this
piece and his own. For example, the red Chariot wants
to demolish the “black Cannon” in Fig. 3 (a). The prob-
ability of this event can occur with the probability 0.25,
where the red Chariot and the black Cannon must be
collapsed into the position as shown in Fig. 3(b) In ad-
dition, one can ask for the measurement on the specific
opponent pieces in some circumstance. For example, in
Fig. (4), the player with the red pieces can ask for the
measurement on the black Canon.

The development of quantum Chinese chess is still in
a very early stage. So far, we can play quantum Chinese
chess on PC. Our goal is to put quantum Chinese chess
on network platform such as twitch. As for the academic
study, there are many interesting open questions. One
of them is “Do quantum moves really useful?” Based
on our chess experience with the low-level strength, we
give a very rough answer: It largely depends on how the
players recognize the probability on the board.

Traditionally, through the chess play, two players usu-
ally seek the balance of terror on the board and start
the attacks afterward. Essentially a quantum move can
move twice the regular move or make no move with the
equal probability. As for the mind-reading, a conserva-

1Department of Physics, Chung Yuan Christian University, Chungli 320, Taiwan, Republic of China
2Institute of Information Science, Academia Sinica

3Department of Computer Science & Information Engineering, National Taiwan University
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Figure 2: (a) To form the entanglement, the red Chariot
make a quantum move. (b) The entanglement between
the red Chariot and the red Canon. The quantum mea-
surement on these two pieces results in the cases either
(c) or (d).

tive player may recognize the quantum move as a null
move, while an aggressive player may recognize it as a
quick one. Moreover, if the piece under its superposition
can remove the opposite pieces with at most the proba-
bility 0.5. In this case, quantum moves are exploited to
make a “not-so-real” threaten or a bluff. It is feasible
that aggressive quantum moves may not be encouraged
for a traditional player.

3 Discussion

In the chessboard of Xiangqi, there are 32 chess pieces
distributed during 90 standing points. In the setup, the
opposite soldiers are divided only a very narrow “river
and boundary”. The board looks more crowded than
that in quantum chess. The legal regular moves are very
limited. Moreover, in the initial game play, two players
each usually take several regular moves to achieve the
layout/ composition for the following defense and offense.
In this process, it does not pay to make a quantum move,
which will just delay layout completion. Finally, it could
be useful that the pieces can escape from be captured and
removed using the quantum move. To sum up, quantum
Chinese chess is a good game as a metaphor of basic
concept in quantum theory. We are looking forward to
the collaboration for the further development of quantum
Chinese chess.

Figure 3: (a) The red Chariot wants to capture the black
Canon. To make this happen, the red Chariot ask for the
quantum measurement on these two pieces. The capture
can become real if the pieces are collapsed into the case
(b).

4 Acknowledge

The authors acknowledge national support from the
Ministry of Science and Technology of the Republic of
China under Contract No. 102-2112-M-033 -006 -MY3.

References

[1] New Scientist, 2137, 32 (1998).

[2] Allan Goff: American Journal of Physics 74, 962
(2006).

[3] S. G. Akl, Parallel Process. Letters, 20, 275 (2010).

[4] http://quantumrealmgames.com/

91



Quantum Coherence - Their origin and trade-off relations
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Abstract. Quantum coherence is investigated using a new measure with metric properties and entropic
nature and decomposed into local and intrinsic contributions. The trade-off relation between these con-
tributions as well as their distribution properties are studied for simple tripartite systems and the more
complex spin chain model.

Keywords: Quantum coherence, Local and Intrinsic coherence, Monogamy of coherence.

1 Introduction

Quantifying coherence using methods of quantum in-
formation science was introduced in [1]. Apart from
the introduction of definitions corresponding to incoher-
ent states, incoherent operations and maximally coherent
states, the set of properties a functional should satisfy to
be considered as a coherence measure were discussed in
[1]. For a coherence measure C they are as follows: (i)
C ≥ 0 and C ≡ 0 iff ρ ∈ I(b), where I(b); is the set
of incoherent states. (ii) C(ρ) is invariant under unitary
transformations, (iii) C(ρ) is monotonic under incoher-
ent completely positive trace preserving (ICPTP) map,
as well as under selective incoherent measurements on
average. (iv) C(ρ) is convex i.e., does not increase under
mixing of quantum states. Two measures of coherence
namely the relative entropy of coherence and the `1 norm
were introduced in [1]. The former is an entropic mea-
sure, whereas the later is a geometric measure with each
of them having their own advantages. To be a distance
property a function d over a set X should satisfy the fol-
lowing properties: (i) d(x, y) > 0 ∀ x 6= y and d(x, x) = 0
(Positivity) (ii) d(x, y) = d(y, x) (Symmetry). In addi-
tion if d satisfies d(x, y)+d(y, z) ≥ d(x, z) i.e., the triangle
inequality, then d is a metric over the space X. We in-
troduce a new coherence measure based on the quantum
version of the Jensen-Shannon divergence (QJSD) [2, 3]

J (ρ, σ) =
1

2
[S(ρ‖(ρ+ σ)/2) + S(σ‖(ρ+ σ)/2)]. (1)

which combines the features of both distance property
and entropic nature. The QJSD is a distance but it is not
a metric i.e., it does not satisfy the triangle inequality. To
overcome this we use the square root of the QJSD as our
distance measure, since it satisfies the triangle inequality.
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2 Inter-qubit, Intra-qubit and Total Co-
herence

The total coherence of a given system is defined using
the square root of the QJSD using the following expres-
sion

C(ρ) ≡ min
σ∈I(b)

√
J (ρ, σ), (2)

where I(b) is the set of incoherent states in a particular
basis b. This measure (2) satisfies the properties outlined
in Ref. [1] and hence qualifies as a coherence quantifier.
But coherence can have its origin to intra-qubit and inter-
qubit correlations. We propose the following measure of
coherence to distinctly measure the intra-qubit and the
inter-qubit coherences through the following equations

CI(ρ) ≡ min
σS∈IS

D(ρ, σS), (3)

CL(ρ) ≡ D(σmin
S , ρd). (4)

Here CI is the inter-qubit coherence and refer to it as
intrinsic coherence and CL is the Local coherence which
computes the contribution of the intra-qubit coherence.
As an illustrative example we consider a two qubit trans-
verse Ising model which has the Hamiltonian

H = λσx1σ
x
2 + J(σx1 + σx2 ) + ελ(σz1 + σz2). (5)

The parameters J and λ are the the coupling parameters
and ε is a symmetry breaking term. A numerical estima-
tion of the values of CL, CI and C are given in Fig 1 (a).
The local coherence and the intrinsic coherence are com-
plementary. In the limit J � λ the coherence is intrinsic
in nature since the ground state approaches a Bell state
in the J = 0 and ε → 0 limit. In the limit J � λ the
coherence is localized with each spin since for λ = 0 the
ground state is (|0〉 − |1〉)(|0〉 − |1〉).

3 Distribution and Shareability of quan-
tum coherence

The quantum coherence in a tripartite system ρ123 may
be decomposed in any one of the following forms

C123 ≤ C1 + C2 + C3 + C1:2:3,
C123 ≤ C1 + C2 + C3 + C2:3 + C1:23. (6)
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Figure 1: Coherence measured using QJSD for (a) N = 2
site Ising model with ε = 0.2; (b) Werner GHZ state (c)
W state with θ = π/4; (d) N = 10 site XXZ spin chain
model with J = 1. Inset: Monogamy of the XXZ spin
chain.

where Cn is the local coherence of the nth subsystem
obtained from the reduced density matrix ρn and C1:2:3

is the intrinsic coherence i.e., CI(ρ123). There are many
such equivalent decompositions from which can conclude
that

C1:2:3 ' C2:3 + C1:23 ' C1:2 + C12:3 ' C1:3 + C13:2. (7)

The above decomposition gives us an idea about how
coherence is shared between the subsystems of various
orders in a composite system. Similar to monogamy of
entangled states [4, 5] we define the monogamy of co-
herence. In a maximally coherent tripartite system ρ123,
the coherence between the system 1 and the bipartition
23 is related to the coherence between the subsystems 1
and 2 as well the coherence between 1 and 3 through the
inequality

C1:23 ≥ C1:2 + C1:3. (8)

If the inequality is obeyed the system is called monoga-
mous and if not it is referred to as polygamous system.
For a multipartite system the inequality is C1:2...N ≥∑N
n=1 C1:n and we define the measure

M =
N∑
n=2

C1:n − C1:2...N (9)

which is monogamous for M ≤ 0 and polygamous M >
0. Thus from the monogamy concept we get to know
whether the coherence is distributed in a bipartite fashion
or in a multipartite fashion.

4 Investigation of Multipartite systems

The tripartite states can be divided into two classes
namely GHZ and the W class. These two classes are
unrelated under local operations and classical communi-
cation [6]. The Local coherence of the systems in these

two kinds of states is zero and hence the intrinsic co-
herence is equal to the total coherence. For the pure
mixed tripartite states the coherence and its distribution
is given through Fig 1 (b) and Fig 1 (c).

To understand complex multipartite systems we inves-
tigate the Heisenberg XXZ spin chain. The Hamiltonian
of the spin chain is

H = J
∑
n

(σxnσ
x
n+1 + σynσ

y
n+1 + ∆σznσ

z
n+1), (10)

where J is the nearest neighbor spin coupling and ∆ is
the anisotropy parameter. The total quantum coherence
shown in Fig 1 (d) is found to vary with the anisotropy
parameter. The monogamy of coherence is shown in the
inset of Fig 1 (d) shows that ∆ switches the coherence
from bipartite to multipartite nature.

5 Conclusion

A new coherence measure with both distance proper-
ties and entropic nature is proposed. The total coherence
in the system is decomposed into contributions which
arise from Local and Intrinsic contributions. It is found
that the coherence transforms from the local to intrinsic
nature in a Ising model depending on the interaction pa-
rameter. In the case of the Heisenberg spin chain there
is a change from the monogamous behavior which is a
highly multipartite coherence to the polygamous nature
which is more bipartite in nature. Further applications
in quantum metrology [7] may lead to interferometric ad-
vantages.
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Homomorphic encryption has been recognised as an
important primitive for building secure delegated com-
putation protocols for many decades [1]. It provides a
processing functionality for encrypted data which stays
secret during the evaluation, and a scheme is fully-
homomorphic if it allows for arbitrary computation. De-
spite widespread interest in this problem, it was not un-
til 2009 that the first computationally secure classical
scheme for fully homomorphic encryption (FHE) was dis-
covered [2], with many improvements following rapidly
from this initial discovery [3, 4], and has recently drawn
attention within the quantum information community
[5–12]. One might wonder if quantum cryptosystems
might offer unconditionally secure homomorphic encryp-
tion schemes and whether the privacy homomorphisms
could be extended to allow for evaluation of quantum
circuits.

Like their classical counterparts, quantum homomor-
phic encryption (QHE) schemes comprise of four parts:
key generation, encryption, evaluation, and decryption.
Unlike blind quantum computation [13], in which the
computation to be performed forms part of the secret,
QHE schemes do not have secret circuit evaluations.
They serve to obscure only the information that is con-
tained within the state to be processed using the chosen
circuit. The extent to which a scheme is secure depends
on its specifics, and in previous work has varied depend-
ing on the precise nature of the computation which can
be performed on the encrypted input. QHE schemes de-
scribed in Refs. [9, 10] offer some information theoretic
security, but this is only in the form of a gap between the
information accessible with and without the secret key,
a notion of security which does not imply the stronger
notion of security under composition. These schemes are
also limited in the set of operations that can be performed
on the encrypted data. The scheme in [9] only allows
computations in the BosonSampling model, while that in
[10] is not known to support encoded universal quantum
computing. Broadbent and Jeffrey’s scheme [11] enables
quantum homomorphic encryption of fixed depth circuits
by bootstrapping onto a classical fully homomorphic en-
cryption scheme and as such is only computationally se-
cure. Recently Dulek, Schaffner and Speelman [12] used
the garden-hose model of computation with Broadbent
and Jeffrey’s quantum homomorphic schemes to allow the
evaluation of polynomial-depth circuits. Several other

schemes for computing on encrypted data have previously
been introduced which offer universal quantum compu-
tation, but require interactions between the client and
evaluator [5–8]. This requirement for interaction places
them outside of the formalism of homomorphic encryp-
tion, although confusingly several of these schemes use
that terminology [5, 6].

The difficulty in creating a perfectly secure quan-
tum fully homomorphic encryption (QFHE) scheme per-
sists, and is in line with the no-go result provided by
[14] that perfect information-theoretic security whilst en-
abling arbitrary processing of encrypted data is impossi-
ble, unless the size of the encoding grows exponentially.
Nonetheless, given the growing interest in QHE schemes
and the multitude of possibilities, Broadbent and Jef-
frey set out to provide a rigorous framework for defin-
ing QHE schemes [11], basing their security definitions
on the requirement for indistinguishability of codewords
under chosen plaintext attack with additional computa-
tion assumptions. Broadbent and Jeffery also require
that a quantum fully homomorphic encryption satisfies
two properties: correctness and compactness. Perfect
correctness occurs when the evaluated output on the ci-
pherstate after decryption is exactly the correct evalu-
ated input.

Here we present a quantum encryption scheme which
is homomorphic for arbitrary classical and quantum cir-
cuits which have at most some constant number of non-
Clifford gates. Unlike classical schemes, the security of
the scheme we present is information theoretic, satisfy-
ing entropic security definitions, and hence independent
of the computational power of an adversary. The QHE
scheme we present builds on constructions taken from
quantum error correction codes to provide gates for uni-
versal quantum computation. The block of qubits that
contains the code is embedded in a much larger set of
qubits that are initialized in a maximally mixed state.
The qubits are then shuffled in a specific but random
way to hide the qubits that contain that code. Our pro-
tocol guarantees that the trace distance between cipher-
texts corresponding to any two quantum inputs is ex-
ponentially suppressed. This is a significantly stronger
security guarantee than previous homomorphic encryp-
tion schemes presented in [9]. Moreover the computation
power of our scheme is similar to that of Broadbent and
Jeffrey’s while avoiding bootstrapping on the classical ho-

94



2

....

....

....

....

....

....

....
....
....

...
.

...
.

...
.

...
.

...
.

...
.

...
.

....

....

....

data random ancillas

....

....

....

....

....

....
.... ....

....

....

....

....

....

....

....
....
....

...
.

...
.

...
.

...
.

...
.

...
.

...
.

....

....

....

....

....

....

....

....

....
.... ....

columns permuted 
according to 

copies copies

-th row 

encrypt

FIG. 1: Figure shows qubits arranged on a grid with shaded
circles representing data qubits. Within the x-th row, the
n data qubits are in a code encoded by Ux. The unshaded
circles are ancilla qubits which are in the completely mixed
state. There are r sets of codes, and b copies of such sets. A
random permutation of the columns completes the encryption
procedure of our quantum homomorphic encryption scheme.

momorphic encryption scheme.

Our QHE scheme takes as its input a r-qubit state
ρinput, and t independent copies of the magic state
|T 〉〈T | = I

2 + X−Y
2
√
2

, all arranged in a single column (See

Figure 1). We then introduce (2n − 1) more columns of
maximally mixed qubits to obtain a grid of qubits with
r + t rows and 2n columns. Here, we choose n to such
that n−1

4 is a non-negative integer. Of the new columns
introduced, n − 1 of them will be incorporated as data
qubits while the remaining n columns will be used as
ancillae in the encryption. An encoding quantum cir-
cuit U = U1 ⊗ · · · ⊗ Ur+t is applied row-wise on the
first n columns. Applying U spreads the quantum in-
put from just the first column to the first n columns.
Since every qubit not residing on the first column is
maximally mixed, the encoding circuit on each row en-
codes the quantum data on the first column into a ran-
dom quantum code, the resultant quantum information
of which resides in a random codespace on the first n
columns. Encryption is then achieved via randomly per-
muting the 2n columns with a permutation κ. Permuting
the columns brings the quantum information to be pro-
cessed from the first n columns to the columns k1, . . . , kn,
where 1 ≤ k1 < · · · < kn ≤ 2n. For the decryption algo-
rithm, one performs the inverse permutation κ−1 of the
columns, followed by the inverse unitary U† on the first
n columns of the grid. Finally every qubit in the rows
r + 1 to r + t are measured in the computation basis.
The quantum output of our scheme is then located on
the first r rows of the first column of our grid of qubits.

To evaluate the circuit, the evaluator operates inde-
pendently and identically (i.i.d) on not n but 2n columns
of qubits, n columns of which are the maximally mixed
state. The i.i.d structure of the evaluator’s operations
allows these operations to commute with any secret
permutation of the columns of the qubits on the grid.
In addition, the evaluators’ operations necessarily leave

...
.

...
.

FIG. 2: Figure shows the encoding quantum circuit Ux that
is applied on the first n qubits in the x-th row. Each line
represents one qubit and the gates are applied in the order
from left to right.

the n columns of qubits initialized in the maximally
mixed state unchanged, thereby implementing i.i.d quan-
tum operations on only the columns containing the en-
coded quantum data. Hence the evaluator, by applying
transversal gates on the 2n columns, achieves the ap-
plication of the corresponding transversal gates on the n
columns with the quantum data without requiring knowl-
edge of the location of the columns containing the en-
coded quantum information.

The circuit to be evaluated can always be written as
V = Vd . . . V1, where the evaluator is to apply privacy
homomorphisms of the gates V1 to Vd sequentially. Here,
each Vi applies either a Clifford gate or a T gate locally
on a single qubit, or applies a CNOT locally on a pair of
qubits.

When Vi is a unitary operation that applies a Clifford
gate G locally on the x-th qubit, the evaluator can apply
the logical G-gate on our random code on the x-th row
without any knowledge of the data columns k1, . . . , kn.
To do so, the evaluator simply applies the unitary G⊗2n

on the 2n qubits located on the x-th row on each copy.
Since any unitary operation leaves a maximally mixed
qubit state unchanged, the evaluator effectively only ap-
plies the unitary G⊗n on the qubits in the encrypted data
columns k1, . . . , kn on the x-th row, which is the logical
G-gate on the x-th row.

When Vi is a unitary operation that applies a CNOT
gate with control on the x-th qubit and target on the y-th
qubit, denoted as CNOTx,y, the evaluator can also ap-
ply the corresponding logical CNOT gate on our random
code on the x-th and y-th row without any knowledge of
the data columns k1, . . . , kn. To do so, the evaluator sim-
ply applies a CNOT with control qubit on the x-th row
and the j-th column and target qubit on the y-th row and
the j-th column for every j = 1, . . . , 2n. Since any uni-
tary operation on two qubits leaves a maximally mixed
two-qubit state unchanged, the evaluator effectively only
applies the unitary CNOT⊗n on the qubits in the en-
crypted data columns k1, . . . , kn with control qubits on
the x-th row and target qubits on the y-th row, which
is the correct logical CNOT-gate, which we denote as
CNOTx,y.
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3

When Vi is a unitary operation that applies the k-
th non-Clifford gate T on the x-th qubit, the evaluator
has to perform gate teleportation [15, 16]. Now consider
gate teleportation of a single-qubit gate T . Omitting
the correction operation required by gate teleportation
allows this procedure to succeed with probability 1

2 as
depicted in Figure 3. The required measurement can be
deferred until decryption due to the principle of deferred
measurement [17].

To implement gate teleportation of the logical T op-
eration, the evaluator applies privacy homomorphism for
CNOTx,r+k followed by the privacy homomorphism for
CNOTr+k,x. Because of the ancilla columns being in the
maximally mixed state, the unitary CNOTx,r+k followed
by the the unitary CNOTr+k,x are effectively applied on
the data columns k1, . . . , kn.

TH|0〉 Z meas

|ψ〉 T |ψ〉 with probability 1
2

FIG. 3: Gate teleportation of the T -gate without correction.

Our scheme satisfies the correctness and compactness
condition of Broadbent and Stacey. Each copy of our
scheme yields the correct quantum output with con-
stant probability 2−t. Extra copies simply amplify the
probability of success. Thus although each instance of
our scheme implements T non-deterministically, it can
be said to have heralded perfect completeness: namely,
b = b

√
α
2 + 1c222t copies of our scheme yields the cor-

rect output in at least one copy with probability at least
1 − e−α, and we know which of the b copies yield the
correct output. An arbitrarily large α brings the suc-
cess probability arbitrarily close to unity. Since t, b are
constant, and the total number of gates required for de-
cryption is independent of the depth of the circuit to be
evaluated. Hence, our scheme is compact for circuits with
a constant maximum number of T gates and unbounded
Clifford gates.

Randomly permuting the columns of qubits obfus-
cates the subset of columns where the quantum infor-
mation resides, thereby encrypting the quantum data.
The maximum trace distance between any two outputs
is exponentially suppressed in n, with value at most

e
(
4n
π

)1/4
4b(r+t)2−n, which is exponentially suppressed

in n for constant r and t. For full details, see Ref. [18].
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5 Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Singapore

Abstract. We consider composite bosons (cobosons) comprised of two elementary particles, fermions
or bosons, in an entangled state. First, we show that the effective number of cobosons implies the level
of correlation between the two constituent particles. For the maximum level of correlation, the effective
number of cobosons is the same as the total number of cobosons, which can exhibit the original Bose-
Einstein condensation (BEC). In this context, we study a model of BEC for indistinguishable cobosons
with a controllable parameter, i.e., entanglement between the two constituent particles. Furthermore we
consider its application in entanglement of macroscopic states.

Keywords: BoseEinstein condensation, composite boson, entanglement, macroscopic state

We consider a simple model of BEC with composite
bosonic particles. In particular, we assume that neither
the composite particles nor their constituents interact,
such that the internal structure of composite particles is
stable and temperature independent.

Of course, the bound states between constituent parti-
cles have to result from their interaction. However, here
we assume that once the constituents form a composite
particle state, they do not interact anymore. Physically,
this may correspond to a dilute gas of composite particles
for which energy scales of a binding interaction potential
between constituents are much greater than energy scales
of the confining trap. As an example, one may think of
an atomic hydrogen gas in which ionization temperature
is much higher than the standard temperatures required
to obtain BEC. Such a simplified model allows us to fo-
cus on the fundamental problem of how BEC depends on
the internal state of composite particles, while neglecting
other physical properties.

Imagine a pair of distinguishable fermionic or bosonic
particles. The system is described by the creation op-
erators â†k and b̂†l , where the indices k, l = 0, 1, . . . ,∞
label different modes that can be occupied by the two
particles. These modes can, for example, correspond to
different energy/momentum states. The wave function
of the system is of the form

∞∑
k,l=0

αk,lâ
†
k b̂
†
l |0〉, (1)

where αk,l is the probability amplitude that particle a
is in mode k and particle b is in mode l, and |0〉 is the
vacuum state. Using insights from entanglement theory,

∗papercrane79@kias.re.kr

the mathematical procedure known as the Schmidt de-
composition allows us to rewrite the above state as [1]

∞∑
m=0

√
λmâ

†
mb̂
†
m|0〉 ≡ ĉ†|0〉, (2)

where the modes labeled by m are superpositions of the
previous modes k and l and

√
λm are probability am-

plitudes that both particles occupy mode m. Note that
despite the fact that â†m and b̂†m share the same label,
physically these modes might be totally different. What
is important is that, the modes labeled by m give rise to
the internal structure of a composite particle.

We introduce a composite boson creation operator ĉ†,
that creates a pair of particles. Note that this operator
resembles the one for Cooper pairs [2]. The entanglement
between particles is encoded in the amplitudes

√
λm. In

particular, one can introduce a measure of entanglement
known as purity

P =
∞∑
m=0

λ2m, 0 < P ≤ 1. (3)

For P = 1 the particles are disentangled, whereas in the
limit P → 0 the entanglement between particles goes
to infinity. The degree of entanglement can be also ex-
pressed via the so called Schmidt number K = 1/P . In-
tuitively, K estimates the average number of modes that
are taken into account in the internal structure of a com-
posite boson.

The bosonic properties of ĉ† can be studied in many
ways. For example, the commutation relation gives
[ĉ, ĉ†] = 1 + ξ

∑
λm(â†mâm + b̂†mb̂m), where ξ = −1 if

a and b are fermions, or ξ = +1 if they are bosons. On
the other hand, following the approach in [1] one may
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study the ladder properties of this operator

|n〉 ≡ χ−1/2n

(ĉ†)n√
n!
|0〉,

ĉ|n〉 =

√
χn
χn−1

√
n|n− 1〉+ |εn〉, 〈n− 1|εn〉 = 0,

〈εn|εn〉 = 1− n χn
χn−1

+ (n− 1)
χn+1

χn
, (4)

where |n〉 are states of n composite bosons, parameters
χn are normalization factors, such that 〈n|n〉 = 1, and
|εn〉 are unnormalized states that can result from sub-
tracting a single composite particle from a state |n〉. The
states |εn〉 do not correspond to n− 1 composite bosons
of the same type, but rather to a complicated state of
n − 1 pairs of particles a and b. The ladder structure
of operators ĉ† and ĉ starts to approach those of ideal
bosons if χn+1

χn
→ 1 for all n.

To simplify our model, we assume BEC in Gaussian
states which are represented by a combination of coher-
ent, thermal, and squeezed states. Assuming that com-
posite bosons are in a thermal state or in a harmonic
trap, we can describe the composite bosons with a Gaus-
sian state. Thus, the Gaussian formula of the composite
bosons is represented by the following modified operator
that is based on the one studied in [1]

ĉ†r =
∞∑
m=0

√
(1− x)xmâ†m,r b̂

†
m,r, (5)

where the double indices refer to internal (m) and to
external degrees of freedom (r). The internal index m
may represent their position values. In our case r la-
bels the energy levels of the trap in which the BEC
takes place. Moreover, as we assumed in the begin-
ning, the internal structure parameters λm = (1− x)xm

(for 0 ≤ x < 1) are independent of r. The inter-
nal structure parameter λm is equivalent to the coef-
ficient of a two-mode squeezed vacuum (TMSV) state,
|TMSV 〉 =

∑∞
m=0

√
(1− r)rm|m〉a|m〉b, which is a typ-

ical two-mode Gaussian state. The above operator has
desirable properties, since it is possible to analytically
evaluate the factors χn and one can control the entan-
glement between constituents a and b via the parameter
x [1]. For x = 0 the system is separable and in the limit
x→ 1 entanglement goes to infinity. In addition

0 ≤ (
χn+1

χn
)F =

xn(n+ 1)(1− x)

(1− xn+1)
< 1 (6)

for a pair of fermions [1] and

1 < (
χn+1

χn
)B =

(n+ 1)(1− x)

(1− xn+1)
≤ n+ 1 (7)

for a pair of bosons [1].
It is known that the effective number of cobosons is

related to the level of correlation between the two con-
stituent particles. For the maximum level of correlation,
the effective number of cobosons is the same as the total
number of cobosons. For the weak level of correlation, the

effective number of cobosons is smaller (larger) than the
total number of cobosons while each constituent fermion
(boson) exhibits its own property.

We showed how much the coboson BEC deviates from
the behavior of a BEC comprised of ideal bosons, us-
ing a controllable parameter, i.e., entanglement between
the two constituent particles. We specifically considered
bi-fermions trapped in a 3D isotropic harmonic system.
By the Pauli exclusion principle between bi-fermions, we
found that the effective number of bi-fermions can be
smaller than the total number of bi-fermions, regardless
of system. Thus we demonstrated that the effective num-
ber of bi-fermions in the ground state increases with the
degree of entanglement between a pair of fermions. Cor-
respondingly, we found that the transition temperature for
the 3D isotropic harmonic system, i.e., the temperature
at which all the bi-fermions moved to the excited states,
increased with increasing entanglement.

Moreover, we discussed coboson BEC, where each co-
boson is a bi-boson. Due to the bunching effect from each
constituent boson, the effective number of bi-bosons can
be greater than the total number of bi-bosons. Thus it
was shown that the effective number of bi-bosons in the
ground state decreases with the degree of entanglement
between a pair of bosons. Correspondingly, the transi-
tion temperature for the 3D isotropic harmonic system
decreased with increasing entanglement. When the en-
tanglement between a pair of bosons becomes sufficiently
small, the bi-boson pairs are dissociated, increasing the
bunching effect in the effective number of bi-bosons. Con-
sequently the coboson operator is represented by the direct
product of each component field operator.

All the details are given in Ref. [3]. Furthermore,
we show that BEC of composite bosons can be applied
to quantum indistinguishability using macroscopic states
[4].

Acknowledgments This research was partly sup-
ported by the IT R&D program of MOTIE/KEIT
[1004346 (2012)].
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Quantum key distribution without monitoring signal disturbance by
using heralded pair-coherent sources
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Abstract. Recently, a new type of quantum key distribution (QKD) without monitoring signal distur-
bance, named the round-robin differential-phase-shift (RRDPS) QKD, was proposed. However, the current
RRDPS-QKD schemes with the weak coherent pulses (WCPs) have low key generation rates and short
transmission distances due to the vacuum component of sources of these schemes are significant large. In
this paper, we propose to implement the heralded pair-coherent source into the RRDPS-QKD scheme to
provide a longer transmission distance comparing with the scheme with WCPs.

Keywords: Round-robin differential-phase-shift quantum key distribution, Heralded pair-coherent
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1 Introduction

Quantum key distribution (QKD) allows two remote
users, called Alice and Bob, to securely exchange cryp-
tographic keys despite that in the presence of an eaves-
dropper (Eve), and it has been theoretically proved to be
unconditionally secure. However, if there exists the dis-
turbances caused by the imperfect quantum channel or
eavesdroppers, the keys might not be identical or secure.
Hence, it is essential to guarantee protection against the
eavesdropping by monitoring the signal disturbances dur-
ing the transmission of the quantum signals.
Recently, a new QKD scheme, named the round-robin

differential phase-shift (RRDPS) QKD [1], was proposed,
which does not need monitoring of disturbances to guar-
antee the security. Hence, the RRDPS-QKD could tol-
erate a high bit error rate, up to almost 50%, which
is significantly higher than that of the traditional QKD
schemes. Since the RRDPS-QKD was proposed, it has
been studied from both theoretically [1,2] and experimen-
tally [3, 4]. However, the current RRDPS-QKD schemes
with the weak coherent pulses (WCPs) have low key gen-
eration rate and short transmission distance due to the
vacuum component of WCPs is significant large.
On the other hand, the heralded pair-coherent source

(HPCS) can remove the shortcomings of the WCPs be-
cause the vacuum component of the HPCS is much lower
than that of the WCPs. Hence, it shows excellent behav-
iors when the applications of the HPCS to the traditional
QKD schemes [5, 6]. In this paper, we propose to imple-
ment the HPCS into the RRDPS-QKD scheme. In addi-
tion, a tighter and more reasonable bound of the phase
error rate proposed by [2] is adopted. By comparing the
performances of the current RRDPS-QKD scheme with
the WCPs, the transmission distance of the our scheme
with HPCS is significantly longer than that of the current
scheme with WCPs.

∗zhaosm@njupt.edu.cn

2 The RRDPS-QKD scheme with HPCS

The schematic diagram of the RRDPS-QKD with the
HPCS is shown in Fig.1, and the proposed scheme runs
as follows:

PCS

ATT Variable DelayPM

RNG RNGAlice Bob

BS

BS

r

( i , j )

Quantum Channel

Classic Channel
s  s    si j

i 

j 

Figure 1: A schematic diagram of the RRDPS-QKD with
the HPCS. PCS: pair-coherent source. ATT: attenuator. PM:
phase modulator. BS: beam splitter. RNG: random number
generator.

Step 1: Alice employs the HPCS to generate a series
of pulse trains, where each pulse train contains L pulses.
The HPCS is realized by the photon-heralding technique
on the pair-coherent source (PCS) [7] that uses one mode
of a two-mode correlated coherent state from the PCS as
a trigger to encode the behavior of the other mode and
the other mode as a carrier to transmit the quantum
signals to Bob. Then Alice generates a random L-bit
sequence, s1, s2, · · · , sL, where si ∈ {0, 1} by a random
number generator (RNG). Subsequently, Alice encodes
the random L-bit sequence into the phase of the L-pulse
train, 0 according by si = 0 or π according by si = 1, by
a phase modulator (PM).
Step 2: Alice uses an attenuator (ATT) to attenuate

the pulse trains into the signals with the average intensity
µ. Then, Alice sends the pulse trains to Bob through a
quantum channel.
Step 3: Upon receiving an L-pulse train, Bob splits

the pulse train into two pulse trains with a 50:50 beam
splitter (BS). Then Bob shifts one of the pulse trains
by r pulses with a Variable Delay, which is controlled
by a RNG. The RNG is used to generate a number r ∈
{−L+ 1, · · · ,−2,−1, 1, 2, · · · , L− 1}.
Step 4: Bob measures the interference between two L-
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pulse trains. If Bob obtains a detection result on position
i and j in the unshifted pulse train and the shifted pulse
train, respectively, where i and j satisfy j = i±r (modL),
Bob records a key bit sA according to the relative phase
sB = si ⊕ sj . Otherwise, Bob regards the transmission
as a failure.
Step 5: Bob announces the indices {i, j} to Alice

through a classic channel, and Alice could compute sA =
si ⊕ sj to obtain a sifted key sA.
By using the photon-heralding technique on the PCS,

one mode of the PCS can be locally triggered and used
to encode the behavior of the other mode. Then the n-
photon number probability of the encoded pulse can be
expressed as [5, 6]

Pn(µ) =
1√
I0(2µ)

µ2n

(n!)2
[1− (1− ηA)

n + dA], (1)

where µ is the average intensity of the pulses, I0(x) is
the modified Bessel’s function of the first kind, ηA and
dA represent the detection efficiency and the dark count
rate of the triggering detector of Alice, respectively.
The key generation rate per pulse for the proposed

scheme can be written as the following [2]

R =
1

L
QLµ[1− fH(ebit)−HPA], (2)

where QLµ is the overall gain when the average intensity
of the pulse trains is Lµ, f denotes the efficiency of the
error correction, and H(x) = −x log2(x)−(1−x) log2(1−
x) is a binary Shannon entropy. ebit is the bit error rate
and HPA is the ratio of the key rate loss in the privacy
amplification.

3 Results discussion

In this section, we discuss the performance of the pro-
posed protocol by numerical simulations.
Fig.2 shows the key generation rate performance of the

RRDPS-QKD with the HPCS against the transmission
distance, in comparison with that of the RRDPS-QKD
with the WCPs with the same experimental parameters
[2] when L = 32, ηA = 75% and dA = 5 × 10−8. The
results show that the key generation rate performance of
proposed scheme is much better than that of the current
scheme with the WCPs. The transmission distance of the
our scheme with HPCS is significantly longer than that
of the current scheme with WCPs. That is because the
vacuum component of the HPCS is significant lower than
that of the WCPs.
In this paper, we have presented to implement the

HPCS into the RRDPS-QKD scheme. In addition, a
tighter and more reasonable bound of the phase error
rate proposed by is adopted. It has been shown that the
transmission distance of the our scheme with HPCS is
significantly longer than that of the current scheme with
WCPs.
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Figure 2: The key generation rate performance of the
RRDPS-QKD with the HPCS against the transmission dis-
tance, in comparison with that of the RRDPS-QKD with the
WCPs.
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Spin blockade of Heavy-Holes in Double Quantum Dots
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1School of Physics, The University of New South Wales, Sydney NSW 2052, Australia
2University of Science and Technology of China, Hefei, Anhui, 230026, China

Abstract. Spin-orbit interaction plays a crucial role in manipulating hole-spin qubits, and its coupling
strength may be extracted from Pauli spin blockade. We investigate Pauli spin blockade for two heavy
holes in a double quantum dot in an in-plane magnetic field. We include relevant spin-orbit interactions
as well as complex Zeeman interaction, and calculate blockade leakage as a function of the in-plane field
strength and direction. The leakage is anisotropic in the in-plane field direction. We further compare the
spin-orbit coupling strength by extracting the relation between the leakage current and the field strength.
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1 Lower-dimensional hole system

Holes, often symbolized as an alternate representation
of electrons in the valence band, have the effective spin
J= 3

2 [see Fig. 1(a).] Owing to the atomic p-orbital, holes
suffer from less spin-spin coupling to the nuclei and is
expected to have a strong spin-orbit (SO) interaction[1].
Hole qubits then promise a less noisier magnetic environ-
ment and a purely electric control due to the strong SO
mixture in the hole qubit [see Fig. 1(b).]

The J= 3
2 Hilbert space comprises a heavy hole (HH)

with a secondary quantum number mJ =± 3
2 and a light

hole (LH) with mJ = ± 1
2 . For two-dimensional holes,

when the HH-LH splitting is relatively large, the HH and
LH states can be considered weakly coupled, and one may
perform a unitary rotation to block-diagonalize the J= 3

2
matrix[2]. In gated QDs, the ground state usually have a
strong HH character and can be treated as a pseudospin.

k

E
(a)

CB S=1
2

VB
J=3

2

J=1
2

(c)

⇑

⇓

(b)

E(t)
∿∿

Figure 1: (a) The effective spin of bulk conduction band
(CB) and valence band (VB) with J = 1

2 ⊕ 1. The red
and blue curves correspond to the HH and LH. (b) Both
the logicals |⇑〉 and |⇓〉 in a HH are an strong SO mixture
and can be driven by electric control E(t). (c) PSB in a
two-HH double QD. Practically, the spin of the left HH is
unknown. PSB is often employed in quantum computing
because it permits spin-selective charge readouts.

∗jo-tzu.hung@unsw.edu.au

2 Spin-orbit lifted Pauli spin blockade

We theoretically investigate hole SO interaction by
studying Pauli spin blockade [PSB, see Fig. 1(c)] of
two HHs confined by coupled QDs in a magnetic field
B=B(cos θ, sin θ, 0). θ is measured from the x axis.

We adapt the Pauli matrices ~σ to describe a HH pseu-
dospin. The in-plane Zeeman interaction is given by
ĤZ =ĤZq+Ĥ[001]+ĤZc, where ĤZq =− 3

2qµBB(eiθσ++

e−iθσ−), and Ĥ[001] =
−f
~2 µBB(e−iθσ+p

2
−+ eiθσ−p

2
+) and

ĤZc=F (µBB)3(e−3iθσ++e3iθσ−), with σ± = 1
2 (σx±iσy)

and p± being the raising (lower) operator of the spa-
tial momentum. µB denotes the Bohr magneton, q is
a dimensionless, material-dependent quantity, and both
of f and F are subject to the dot confinement. The
SO interaction ĤSO = ĤR + ĤD includes Rashba and
Dresselhaus couplings, with ĤR = iα(σ+p

3
−−σ−p3

+) and

ĤD=−β3(σ+p−p+p−+σ−p+p−p+)−β1(σ+p−+σ−p+).
Figure 1(c) shows a HH PSB from (1, 1) to (0, 2), where

(NL, NR) labels the number of HHs on the left and right.
The two dots are coupled by a spin-perserving coupling
t0, and the lowest energy state is |S02〉, a (0, 2) singlet.
Due to the Pauli exclusion principle, the left spin, if it is
parallel to the right spin, will be blocked. In the presence
of the SO interaction, such PSB may be lifted[3].
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Figure 2: Individual DQD spin splittings (a) 2|EZ(B)|
with the dot radius R0 = 30 nm and (b) 2|EZ(R0)| at
B = 0.1 T, due to ĤZq, Ĥ[001] and ĤZc, respectively.

We denote by |S11〉 the (1, 1) singlet and by |T0〉 the
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Table 1: The θ-dependent ∆+(θ) and ∆0(θ), with
tR(D) ≡ 〈S02| ĤR(D) |↓↓〉 being the Rashba (Dresselhaus)
coupling parameter.

∆+
1√
2
∆0

ĤZq (tR cos θ − tD sin θ) i(tR sin θ − tD cos θ)

Ĥ[001] (tR cos θ + tD sin θ) −i(tR sin θ + tD cos θ + tB)

ĤZc (tR cos 3θ + tD sin 3θ) −i(tR sin 3θ + tD cos 3θ)

0 π/2 π 3π/2 2π

θ

1.3

1.4

1.5

1.6

I
(e
Γ
0
)

(a) ĤZq only

Ĥ[001] only

0 π/2 π 3π/2 2π

θ

1.332

1.336

1.340
I
(e
Γ
0
)

(b) the B-cubic term only

Figure 3: Individual PSB leakage currents I(θ) at B = 1
T when (a) only the B-linear terms in ĤZ are included,
and when (b) only ĤZc is included. The oscillation pe-
riod in (b) is three times more than that in (a). e is the
elementary charge, and we set the (1, 1) relaxation rate
Γ0 = 3 MHz and tR = 0.3t0 � tD. t0 = 200 µeV.

(1, 1) unpolarized triplet, and by |T±〉 the (1, 1) polarized
triplet. In the basis {S02,M,M⊥, T+, T−}, the effective
tunneling Hamiltonian reads

Ĥ =


0 0 NM (θ) ∆+(θ) −∆+(θ)
0 0 0 0 0

NM (θ) 0 0 0 0
∆∗+(θ) 0 0 EZ 0
−∆∗+(θ) 0 0 0 −EZ

 ,

(1)
Here we have used the superpositions of |S11〉 and |T0〉:
|M〉≡ 1

NM
[∆0(θ) |S11〉−t0 |T0〉] and |M⊥〉 = 1

NM
(t0 |S11〉+

∆∗0(θ) |T0〉) with NM =
√
t20 + |∆0(θ)|2. The in-plane

Zeeman terms split the triplet by EZ , whereas ∆+(θ)
and ∆0(θ) correspond to the SO tunneling element be-
tween |T±〉 and |S02〉, and between |T0〉 and |S02〉. We
list ∆+(θ) and ∆0(θ) in Table 1 by considering individual
Zeeman terms.

3 Main Results

We diagonalize Eq. (1) and calculate the PSB
leakage by solving the steady-state kinetic equations:
−∑

σWkσPk−
∑
k′ 6=k ΓkPk+

∑
k′ 6=k Γk′Pk′+

∑
σ UσkPσ=0

and −∑
k UσkPσ+

∑
kWkσPk = 0. Here Pk and Pσ cor-

respond to the probabilities in the eigenstate |k〉 and in
(0, 1) with the spin σ. Wkσ (Uσk) denotes the transition
rate from |k〉 [(0, 1)σ] to (0, 1)σ (|k〉), and Γk is the (1, 1)
relaxation rate out of |k〉.

Figure 2 shows individual spin splittings in a dou-
ble QD due to the three terms in ĤZ . As expected,
the two B-linear terms are significant at low and in-
termediate fields, whereas ĤZc is dominating at large
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Ĥ[001]
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Figure 4: Individual PSB leakage currents I(B) at θ = 0
for (a) tR = 0.3t0 � tD and (b)tR = 0.6t0 � tD.

fields. Figure 3 compares individual I(θ) at B = 1 T
with a fixed SO coupling. The qualitative difference in
I(θ) between the B-linear and B-cubic cases provides
an indication of the power of the dominating in-plane
Zeeman term in hole QDs. In Fig. 4, we find at low
fields, where the B-linear terms dominates, the larger
|dI/dB|, the stronger the SO coupling. To compare
with electron PSB[4], we assume tR� t0 and |EZ |< t0,

we obtain I(B) ∼ eΓDLPME
2
Zγ

2/(E2
Z +

t40
|∆+|2 γ

2), with

ΓDL the transition rate between the dot and lead, and
γ2 = Γ0/ΓDL.

4 Conclusion

We have found that (i) the I(θ) behavior suggests that
the SO mixture in the hole qubit can be tuned by adjust-
ing the field direction θ, and (ii) the slope of I(B) can be
used in comparing the SO coupling strength.
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Unified View of Quantum Correlations and Quantum Coherence
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Abstract. We present arguments that quantum coherence in a bipartite system can be contained either
locally or in the correlations between the subsystems. The portion of quantum coherence contained within
correlations can be viewed as a kind of quantum correlation which we call correlated coherence. We
demonstrate that the framework provided by correlated coherence allows us to retrieve the same sets
of quantum correlations as defined by the asymmetric and symmetric versions of quantum discord as
well as quantum entanglement, thus providing a unified interpretation of these correlations. We also
prove that correlated coherence can be formulated as an entanglement monotone, thus demonstrating that
entanglement may be viewed as a specialized form of coherence.

Keywords: Quantum Coherence, Quantum Correlations, Quantum Discord, Entanglement

1 Introduction

Following the quantitative theories of entanglement,
Baumgratz et al. [2] recently proposed a resource the-
ory of quantum coherence. They first postulate a set
of axioms that a measure of quantum coherence should
satisfy, and then went on to demonstrate that several
intuitive measures of quantum coherence satisfy these
properties. Recent developments have since uncovered
interesting connections between quantum coherence and
correlation, such as their interconversion with each other
[3, 4] as well as trade-off relations [5]. At the same time, it
is well known in quantum information theory that within
quantum theory, the set of all possible correlations can
be categorized either as ”classical” or ”quantum”. Here,
we provide some arguments [1] to suggest that the ”quan-
tumness” of quantum correlations can be interpreted in
terms of the language of the resource theory of quantum
coherence, thus providing a bridge between the two con-
cepts.

2 Preliminaries

We will frequently refer to a bipartite quantum state
which we denote ρAB , where A and B refer to local sub-
systems held by different laboratories. Following conven-
tion, we say the subsystems A and B are held by Alice
and Bob respectively. The local state of Alice is obtained
by performing a partial trace on ρAB , and is denoted by
ρA = TrB(ρAB), and {|i〉A} is a complete local basis of
Alice’s system. Bob’s local state and local basis are also
similarly defined. In general, the systems Alice and Bob
holds may be composite, such that A = A1A2 · · ·AN and
B = B1B2 · · ·BM so the total state may identically be
denoted by ρA1A2···ANB1B2···BM

.
We will adopt the axiomatic approach for coherence

measures as shown in Ref. [2]. For a fixed basis set {|i〉},
the set of incoherent states I is the set of quantum states

∗bbtankc@gmail.com
†tera900@snu.ac.kr
‡kaeri@gmail.com
§h.jeong37@gmail.com

with diagonal density matrices with respect to this ba-
sis. Then a reasonable measure of quantum coherence
C should satisfy following properties: (C1) C(ρ) ≥ 0 for
any quantum state ρ and equality holds if and only if
ρ ∈ I. (C2a) The measure is non-increasing under in-
coherent completely positive and trace preserving maps
(ICPTP) Φ , i.e., C(ρ) ≥ C(Φ(ρ)). (C2b) Monotonic-
ity for average coherence under selective outcomes of
ICPTP: C(ρ) ≥

∑
n pnC(ρn), where ρn = K̂nρK̂

†
n/pn

and pn = TrK̂nρK̂
†
n] for all K̂n with

∑
n K̂nK̂

†
n = 1 and

K̂nIK̂†n ⊆ I. (C3) Convexity, i.e. λC(ρ)+(1−λ)C(σ) ≥
C(λρ + (1 − λ)σ), for any density matrix ρ and σ with
0 ≤ λ ≤ 1. Here, we will employ the l1-norm of coher-
ence, which is defined by C (ρ) :=

∑
i6=j |〈i| ρ |j〉|, for any

given basis set {|i〉} (otherwise called the reference ba-
sis). It can be shown that this definition satisfies all the
properties mentioned [2].

3 Results

Consider a bipartite state ρAB , with total coherence
C (ρAB) with respect to local reference bases {|i〉A} and
{|j〉B}. Then C (ρA) and C (ρB) can be interpreted as
the coherence that is local to A and B respectively. In
general, the sum of the total local coherences is not nec-
essarily the same as the total coherence in the system. It
is therefore reasonable to suppose that a portion of the
quantum coherences are not stored locally, but within
the correlations of the system itself. This motivates the
following definition:

Definition 1 With respect to local reference bases {|i〉A}
and {|j〉B}, the correlated coherence for a bipartite quan-
tum system is the local coherences subtracted from the
total coherence:

Ccc (ρAB) := C (ρAB)− C (ρA)− C (ρB)

where ρA and ρB are the reduced density matrices of A
and B respectively.

In general, the above quantity is basis dependent.
However, it can be made a state dependent property by
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choosing the local basis to be the the local eigenbasis.
For every bipartite state ρAB , the reduced density ma-
trices ρA and ρB have eigenbases {|αi〉} and {|βi〉}, re-
spectively. In the even of degeneracy, where multiple
local eigenbases exists, we will choose the basis that min-
imizes the total coherence. By choosing these local bases,
ρA and ρB are both diagonal so the local coherences are
zero. The implication of this is that for such a choice, the
coherence in the system is stored entirely within the cor-
relations and the correlated coherence becomes a state
dependent property. We will assume that this choice of
local bases will always be made.

Correlated coherence has many interesting proper-
ties. For instance, the following theorems suggests that
it can properly define the set of states with symmet-
ric/asymmetric quantum discord or quantum entangle-
ment:

Theorem 2 (Symmetric Quantum Discord) For a
given state ρAB, Ccc (ρAB) = 0 iff ρAB =∑

i,j pi,j |i〉A 〈i| ⊗ |j〉B 〈j|.

Theorem 3 (Asymmetric Quantum Discord)
For a given state ρAB, let {|i〉A} and {|j〉B} be the
the eigenbases of ρA and ρB respectively. Define the
measurement on A onto the local basis as ΠA(ρAB) :=∑

i(|i〉A 〈i| ⊗ IB)ρAB(|i〉A 〈i| ⊗ IB). Then, with respect
to these local bases, Ccc (ρAB) − Ccc (ΠA(ρAB)) = 0 iff
ρAB =

∑
i pi |i〉A 〈i| ⊗ ρiB, where ρiB is some normalized

density matrix and {|i〉A} is some set of orthonormal
vectors.

Theorem 4 (Entanglement) Let ρAA′BB′ be some ex-
tension of a bipartite state ρAB and choose the local bases
to be the eigenbases of ρAA′ and ρBB′ respectively. Then
with respect to these local bases, min Ccc (ρAA′BB′) = 0
iff ρAB =

∑
i pi |αi〉A 〈αi| ⊗ |βi〉B 〈βi| for some set of

normalized vectors |αi〉 and |βi〉 that are not necessarily
orthogonal and may repeat. The minimization is over all
possible extensions of ρAB of the form ρAA′BB′ .

The above results already suggest a non-trivial rela-
tionship between coherence and quantum correlations.
This relationship can be pushed further. We also demon-
strate that it is possible to construct a new entanglement
monotone from the coherence measure, suggesting that
entanglement itself is a specialized form of coherence.
This new entanglement monotone is first constructed by
considering what we call unitarily symmetric extensions:

Definition 5 (Unitarily Symmetric Extensions)
Let ρAA′BB′ be an extension of a bipartite state ρAB.
The extension ρAA′BB′ is said to be unitarily symmetric
if it remains invariant up to local unitary operations on
AA′ and BB′ under a system swap between Alice and
Bob.

More formally, let {|i〉AA′} and {|j〉BB′} be com-
plete local bases on AA′ and BB′ respectively. Define
the swap operator Uswap |i, j〉AA′BB′ := |j, i〉AA′BB′ .
Then ρAA′BB′ is unitarily symmetric if there exists lo-
cal unitary operations UAA′ and UBB′ such that UAA′ ⊗
UBB′

(
UswapρAA′BB′U†swap

)
U†AA′ ⊗ U†BB′ = ρAA′BB′ .

It is possible then to define our entanglement measure:

Definition 6 Let ρAA′BB′ be some unitarily symmetric
extension of a bipartite state ρAB and choose the local
bases to be the eigenbases of ρAA′ and ρBB′ respectively.
Then the entanglement of coherence is defined to be:

Ecc(ρAB) := min Ccc (ρAA′BB′)

The minimization is over all possible unitarily symmet-
ric extensions of ρAB of the form ρAA′BB′ .

From the above definition, it can then be shown that
the above quantity satisfies the basic requirement of all
entanglement measures:

Theorem 7 (Entanglement monotone) The entan-
glement of coherence Ecc is an entanglement monotone
in the sense that it satisfies:

i. Ecc (ρAB) = 0 iff Ecc (ρAB) is separable.

ii. Ecc (ρAB) is invariant under local unitaries on A and
B.

iii. Ecc (ρAB) ≥ Ecc (ΛLOCC(ρAB)) for any LOCC pro-
cedure ΛLOCC.

4 Conclusion

The framework of the correlated coherence allows us
to identify the same non-classical correlations as those
of (both symmetric and asymmetric) quantum discord
and quantum entanglement. We also provide the first
direct proof that entanglement can be viewed as a type
of coherence by constructing an entanglement monotone
through correlated coherence. The successful interpreta-
tion of quantum discord and entanglement in terms of
the language of coherence suggests that tasks enabled
by them actually derive their quantum advantage from
a common source. This connection may eventually allow
for the development of a new set of common tools in the
treatment of various forms of quantum correlations and
quantum coherence.
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