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The largest possible gaps between quantum and classical algorithms

Andris Ambainis1

1 University of Latvia

Abstract. We investigate the biggest possible gaps between quantum and classical algorithms in the
query model of computation (which encompasses most of the known quantum algorithms). We consider
two settings: computing partial functions and computing total functions.

For partial functions, we exhibit a property-testing problem called Forrelation, where one needs to decide
whether one Boolean function is highly correlated with the Fourier transform of a second function. We show
that this problem can be solved using 1 quantum query but any randomized algorithm needs Ω(

√
N/logN)

queries (improving an Ω(N1/4) lower bound of Aaronson). We also show that this separation is close to
being optimal: any 1-query quantum algorithm can be simulated by a randomized algorithm that makes
Ω(

√
N) queries and any t-query quantum algorithm whatsoever can be simulated by an Ω(N1−1/2t)-query

randomized algorithm. We conjecture that a natural generalization of Forrelation achieves the optimal t
versus Ω(N1−1/2t) separation for all t.

For total functions, much smaller gaps between different models of computation are achievable (due
to the fact that the algorithm must output a decisive answer on every input). Before our work, the
biggest known gap for total functions was the quadratic gap achieved by Grover’s search algorithm. We
improve on this, showing a function that can be computed by a quantum algorithm making m queries but
requires Ω(m4/logcm) queries for deterministic algorithms. We also substantialy improve the biggest known
advantage for exact quantum algorithms (algorithms that always output the correct answer), to a nearly-
quadratic (m queries for an exact quantum algorithms vs. Ω(m2/logcm) queries for classical algorithms)
and solve two longstanding open questions about relations between classical models of computation: - we
show a function that can be computed by a randomized algorithm with m queries but requires Ω(m2/logcm)
queries deterministically, improving over a result by Snir from 1986; - we show the first example of a function
for which randomized algorithms that are allowed to make a mistake with a small probability are better
than zero-error randomized algorithms.

Joint work with Scott Aaronson (STOC’2015, arxiv:1411.5729) and Kaspars Balodis, Aleksandrs Belovs,
Troy Lee, Miklos Santha and Juris Smotrovs (STOC’2016, arxiv:1506.04719).
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Higher-Efficiency Quantum Algorithms for Simulation of Chemistry

Ryan Babbush1 ∗ Dominic W. Berry2 † Ian D. Kivlichan3 Annie Y. Wei3

Dean Southwood2 Peter J. Love4 Alán Aspuru-Guzik3

1 Quantum A. I. Lab, Google, Venice CA 90291, USA
2 Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia

3 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
4 Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA

Abstract. We introduce novel algorithms for the quantum simulation of molecular systems which are
asymptotically more efficient than those based on the Lie-Trotter-Suzuki decomposition. Our results build
upon recently developed techniques for simulating Hamiltonian evolution using a Taylor series. The key
difficulty in applying algorithms for general sparse Hamiltonian simulation to quantum chemistry is that a
query, corresponding to computation of an entry of the Hamiltonian, is difficult to compute. This means
that the gate complexity would be much higher than quantified by the query complexity. We solve this
problem with a novel quantum algorithm for on-the-fly computation of integrals that is exponentially faster
than classical sampling. We apply this technique in two different representations. First, we use the second
quantized molecular Hamiltonian, which can be decomposed into local Hamiltonians. Second, we use the
Configuration Interaction representation of the molecular Hamiltonian, which we decompose into 1-sparse
matrices using a novel decomposition that leads to improved scaling. Our second approach yields gate
complexity scaling as η2N3, where N is the number of spin orbitals and η is the number of electrons. This
is a dramatic improvement over the best previous approach which formally scaled as N8.

Keywords: Hamiltonian Simulation, Quantum Algorithms, Quantum Chemistry, Lie-Trotter-Suzuki

As small, fault-tolerant quantum computers come in-
creasingly close to viability there has been substantial
renewed interest in quantum simulating chemistry [1–3]
due to low qubit requirements and industrial importance
[4–15]. Using arbitrarily high-order Lie-Trotter-Suzuki
formulas, the tightest known bound on the gate count
of any quantum simulation of chemistry is Õ(N8t/εo(1))
[16, 17], where ε is the precision and N is the number
of spin-orbitals. However, using significantly more prac-
tical Lie-Trotter decompositions, the best known gate
complexity is Õ(N9

√
t3/ε) [7]. With typical numbers

of orbitals, such scaling becomes prohibitively costly [6].
The scaling using Lie-Trotter-Suzuki formulas origi-

nates because the scaling of that approach is not opti-
mal in the sparseness d of the Hamiltonian. Lie-Trotter-
Suzuki formulas have scaling at least as d2, whereas more
advanced approaches to the sparse Hamiltonian simula-
tion problem yield scaling that is close to linear in d [18–
21]. Note that these are the scalings if a decomposition
of the Hamiltonian into a sum is known, as is the case
for quantum chemistry. The difficulty with the more ad-
vanced approaches is that they quantify the complexity
in terms of an oracle, corresponding to calculation of ma-
trix entries of the Hamiltonian. For quantum chemistry,
the matrix entries of the Hamiltonian must be calculated
by evaluation of a integral, which is computationally in-
tensive. As a result, those approaches would yield sub-
stantially higher cost in terms of gate counts.

We build upon the simulation technique introduced in
[20] which is based on implementing a truncated Taylor
series. In order to evaluate the integral, we discretize
it on a grid. Then our quantum algorithm is able to

∗babbush@google.com
†dominic.berry@mq.edu.au

evaulate this integral with only logarithmic cost in the
number of grid points. This speedup is possible, because
the integral is only used for the weighting of terms in
the Hamiltonian evolution, and the algorithm does not
need to output an explicit value of the integral. Our
algorithms also need to use a database of the orbitals,
with complexity Õ(N).

We first use the second quantized molecular Hamilto-
nian, where the N spin-orbital system is encoded on N
qubits, which yields complexity Õ(N5t). Our best re-
sult uses the Configuration Interaction representation of
the Hamiltonian, where the sparseness is d = O(η2N2),
together with a novel decomposition of the Hamiltonian
into only O(d) 1-sparse Hamiltonians (whereas general
decomposition techniques require at least d2). This en-

ables us to obtain complexity scaling as Õ(η2N3t), which
is a significant improvement in N . Moreover, the scal-
ing is logarithmic in ε. It has been shown that for real
molecules, the scaling of the original Trotterized quan-
tum chemistry algorithm can be significantly improved
[6–10]. Similarly, for real molecules, the complexity of
our algorithm is likely to be further improved; this is a
question for future work.

In summary, we have provided practical quantum algo-
rithms to solve an industrially important problem (quan-
tum chemistry) with the lowest asymptotic complexity in
the literature. Our improved scalings should allow for the
quantum simulation of molecular systems much larger
than would be possible using Trotter-based methods.

Method

Our technique builds upon the simulation procedure
described in [20], which we first summarize. Given a
Hamiltonian that is a weighted sum of unitaries, the
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truncated Taylor series of the propagator can also be
expressed as a weighted sum of unitary operators. To
implement this sum, an ancilla register is prepared in a
superposition state with amplitudes proportional to the
square roots of the coefficients of terms in the Taylor
series sum. This task is performed using an operator re-
ferred to as B. Next, an operator is applied to the system
which coherently executes a single term in the Taylor se-
ries sum that is selected according to the ancilla register.
This task is performed using an operator referred to as
select(H). By applying B†select(H)B, one probabilis-
tically simulates evolution under the propagator. The
algorithm is made deterministic using oblivious ampli-
tude amplification [19]. This procedure is implemented
on many time segments to obtain the complete evolution.

In second quantization one can expand the molecular
electronic structure Hamiltonian as a sum of unitaries via

H =
∑
ij

hija
†
iaj+

1

2

∑
ijk`

hijk`a
†
ia

†
jaka` =

Γ∑
γ=1

WγHγ , (1)

where the operators a†i and aj obey the fermionic anti-
commutation relations and the scalar coefficients Wγ are
given as spatial integrals with no closed-form analytical
solution. The state is represented on the quantum com-
puter using N qubits to indicate the occupation of each
of the orbitals. Using the Jordan-Wigner transformation
[22, 23], the fermionic operators can be written as sums
of unitary operators Hγ , which are just tensor products
of Pauli operators. The number of these operators is
Γ = O(N4).

One might construct the operator B by precomput-
ing the Wγ and using a database to prepare the ancilla
superposition state. However, accessing this data would
have time complexity of at least Ω(Γ). The number of
segments is also Ω(Γ), so that approach would yield com-
plexity no better thanN8, not improving over Lie-Trotter
formulas. Instead, we exploit the fact that the Wγ are
defined by integrals. We approximate these integrals as
finite Riemann sums so that

Wγ =

∫
Z
wγ (~z) d~z ≈ V

µ

µ∑
ρ=1

wγ (~zρ) , (2)

where ~zρ is a point in the integration domain at grid
point ρ. Equation (2) represents a discretization of the
integrals defining the Wγ using µ grid points where the
domain of the integral, denoted as Z, has been trun-
cated to have total volume V. This truncation is possi-
ble because the functions wγ(~z) can be chosen to decay
exponentially for molecules studied in chemistry. Our al-
gorithm is effectively able to compute this integral with
complexity logarithmic in the number of grid points.

If we were to use the decomposition of the Hamiltonian
directly with this integral, then the complexity would
not be improved because of the difficulty of preparing
a state with amplitudes

√
wγ (~zρ). Instead we further

decompose each wγ (~zρ) into a sum of terms which differ

only by a sign. The decomposition is of the form

wγ (~z) ≈ ζ
M∑
m=1

wγ,m (~z) , wγ,m (~z) ∈ {−1,+1} . (3)

Using this decomposition, we can express the Hamilto-
nian as a sum of unitaries weighted by identical ampli-
tudes which differ only by an easily computed sign,

H =
ζV
µ

Γ∑
γ=1

M∑
m=1

µ∑
ρ=1

wγ,m (~zρ)Hγ . (4)

The number of terms in the sum has been greatly in-
creased, but the complexity is only logarithmic in the
number of terms in the sum. This representation enables
us to implement B by making a single query to the inte-
grand. For quantum chemistry the cost of sampling the
integrand is Õ(N), which is needed to access a database
of orbitals, which are chosen in advance classically. The
number of time segments required for the simulation is
Õ(N4t), resulting in an overall complexity for the simu-

lation of Õ(N5t).
Our second algorithm uses the Configuration Interac-

tion representation of the Hamiltonian (known as the CI
matrix). The CI matrix uses a compressed basis, where
the numbers of the occupied orbitals are stored, rather
than the using qubits for all the orbitals. This reduces the
number of qubits needed to store the state to O(η logN),
where η is the number of electrons. Though the CI matrix
cannot be expressed as a sum of polynomially many local
Hamiltonians, a paper by Toloui and Love [24] demon-
strated that the CI matrix can be decomposed as a sum
of O(N4) 1-sparse Hermitian operators.

If we were to just use the decomposition technique of
Toloui and Love we would obtain the same scaling as in
our first algorithm. Instead we introduce a decomposi-
tion into O(η2N2) 1-sparse Hermitian operators. This
technique is based on taking the i’th occupied orbital in
the list, and exciting it by p, and the j’th occupied orbital
and exciting it by q. Since i and j are at most η, and
p and q can each take O(N) different values, the total
number of alternatives is O(η2N2).

Given i, j, p and q, one can connect a list of occupied
orbitals α to a list of occupied orbitals β. The subtlety
is that we also need to be able to obtain α from β, and
the simple scheme would be ambiguous. To resolve the
ambiguity, we first choose whether i and j are taken as
indexing the occupied orbitals in α or β according the
separation of the occupied orbitals, in such a way as to
minimize the ambiguity. Then we use two additional bits
b1, b2 to resolve the remaining ambiguity.

Using techniques introduced in [19], we further decom-
pose the 1-sparse operators into unitary operators which
are also self-inverse. In this representation, the Hamil-
tonian itself, rather than the coefficients of terms, is an
integral over a Hermitian matrix-valued function. Ac-
cordingly, we can use the same strategy for computing
integrals on-the-fly in order to compute matrix elements
of the Hamiltonian. Due to the improved decomposition,
the complexity is improved to Õ(η2N3t).
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Perfect commuting-operator strategies
for linear system games

Richard Cleve1 2 Li Liu1 2 William Slofstra1
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Mermin [8] implicitly considers a non-local game that
is sometimes called the magic square game (see also [11,
9, 1, 4]). This game is based around a system of linear
equations over Z2 with nine variables and six equations.
Generalizing the magic square game, Cleve and Mittal [3]
investigate a class of games based on binary linear sys-
tems of the form Mx = b, where M ∈ Zm×n

2 and b ∈ Zm
2 .

The non-local game associated with a binary linear sys-
tem is:

Definition 1 Let Mx = b be a binary linear system, so
M ∈ Zm×n

2 and b ∈ Zm
2 . In the associated linear system

game, Alice receives as input s ∈ {1, . . . ,m}, and Bob
receives t ∈ {1, . . . , n}, where Ms,t = 1. Alice outputs
an assignment to the variables in equation s, and Bob
outputs a bit. Alice and Bob win if Alice’s assignment
satisfies equation s and Alice’s assignment to variable xt
is the same as Bob’s output bit.

A classical strategy is one where Alice and Bob do not
share entanglement. It can be shown that Mx = b has
a perfect classical strategy (i.e., a strategy with success
probability 1) if and only if the system of equations has a
solution. An entangled quantum strategy is a strategy in
which Alice and Bob share an entangled quantum state
|ψ〉. In the tensor-product model, |ψ〉 is a bipartite state
in a tensor product HA⊗HB , and Alice and Bob’s mea-
surements of this state are modeled as observables on HA

and HB respectively.
It is shown in [3] that a binary linear system game has

a perfect entangled strategy in the tensor-product model
if and only if the linear system has a finite-dimensional
operator solution in the following sense. We first express
our linear systems in a multiplicative notation, so a vector
x ∈ {±1}n satisfies equation ` if and only if

xk1
xk2

. . . xkr
= (−1)b` ,

where V` = {k1, k2, . . . , kr} = {1 ≤ k ≤ n : M`,k = 1} is
the set of indices of variables in equation `. Next, we ex-
tend the binary variables (the xi’s) to binary observables
as:

Definition 2 (Operator solution) An operator solu-
tion to a binary linear system Mx = b is a sequence
of bounded self-adjoint operators A1, . . . , An on a Hilbert
space H such that:

(a) A2
i = 1 (that is, Ai is a binary observable) for all

1 ≤ i ≤ n.

(b) If xi and xj appear in the same equation (i.e., i, j ∈
V` for some 1 ≤ ` ≤ m) then Ai and Aj commute
(we call this local compatibility).

(c) For each equation of the form xk1
xk2

. . . xkr
=

(−1)bl , the observables satisfy

Ak1
Ak2
· · ·Akr

= (−1)b`1

(we call this constraint satisfaction).

A finite dimensional operator solution to a binary lin-
ear system Mx = b is an operator solution in which the
Hilbert space H is finite dimensional.

The term “local compatibility” comes from quantum me-
chanics, where two observables commute if and only if
they are compatible in the sense that they represent
quantities which can be measured (or known) simultane-
ously. It is noteworthy that the result of [3] applies even
when the Hilbert spaces HA and HB are allowed to be
infinite dimensional; in this case, the operator solutions
will still be finite dimensional.

In this paper we are interested in the commuting op-
erator model for entanglement, in which |ψ〉 belongs to
a joint Hilbert space H, and Alice and Bob’s measure-
ments are modeled as observables on H with the prop-
erty that Alice’s observables commute with Bob’s observ-
ables. This model—which clearly subsumes the tensor-
product model—is used in algebraic quantum field the-
ory. For any non-local game, a finite-dimensional strat-
egy in the commuting-operator model can be converted
into a strategy in the tensor product model, but the pre-
cise relationship between the tensor-product model and
the commuting-operator model is unknown in general.
We refer to [13, 12, 7, 5] for more discussion.

The main result of our paper is that a binary linear
system game has a perfect entangled strategy in the com-
muting operator model if and only if the linear system has
a (possibly-infinite-dimensional) operator solution. Our
result relies on a useful characterization of the relations
in Definition 2 using finitely-presented groups, which we
call the solution group.

Definition 3 (Solution group) The solution group of
a binary linear system Mx = b is the group Γ gener-
ated by g1, . . . , gn and J satisfying the following relations
(where e is the group identity, and [a, b] = aba−1b−1 is
the group commutator):
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(a) g2i = e for all 1 ≤ i ≤ n, and J2 = e (generators
are involutions).

(b) [gi, J ] = e for all 1 ≤ i ≤ n (J commutes with each
generator).

(c) If xi and xj appear in the same equation (i.e., i, j ∈
V` for some `) then [gi, gj ] = e (local compatibility).

(d) gM`1
1 gM`2

2 · · · gM`n
n = Jb` for all 1 ≤ ` ≤ m (con-

straint satisfaction).

The new variable J acts as the scalar −1 in an operator
solution. In fact, an operator solution is a representation
of the solution group with J = −1.

Now we are ready to give the full statement of our main
theorem.

Theorem 4 Let Mx = b be a binary linear system. The
following statements are equivalent:

1. There is a perfect commuting-operator strategy for
the non-local game associated to Mx = b.

2. There is an operator solution for Mx = b (possibly
on an infinite-dimensional Hilbert space).

3. The solution group for Mx = b has the property
that J 6= e.

As is typical with results of this type (compare for in-
stance [10, Proposition 5.11]), the main difficulty in the
proof arises in showing that an operator solution can be
turned into a perfect strategy. In particular, an operator
solution does not come with an entangled state. By con-
sidering the solution group Γ, we construct a tracial state
on the group algebra of Γ to use as our entangled state.
In addition, the solution group captures some interesting
properties of the linear system games, which we discuss
shortly.

We do not know of any computational procedure which
can determine if a binary linear system has a perfect
entangled strategy. Arkhipov showed that, in the spe-
cial case where each variable appears in exactly two con-
straints, there is a polynomial-time algorithm to deter-
mine if a perfect entangled strategy exists [2] (in this case,
a game has a perfect commuting-operator strategy if and
only if it has a perfect tensor-product strategy). For the
general case, we can attempt to use the characterization
of perfect strategies in [3] by searching for operator solu-
tions over Cd, d ∈ N. It is decidable to determine if there
is an operator solution over Cd for fixed d, and thus this
naive procedure is guaranteed to find a perfect strategy
if one exists. However, if a perfect strategy does not ex-
ist, then the naive procedure does not halt. We note
that, for arbitrarily large d, Ji gives examples of binary
linear systems which have finite-dimensional operator so-
lutions, but for which the solutions require dimension at
least d [6].

In contrast, there is no apparent way to search
through operator solutions over infinite-dimensional
Hilbert spaces. What we can do instead is try to show
that J = e in the group Γ by searching through products

of the defining relations. Using our characterization, we
see that this procedure will halt if and only if the lin-
ear system game does not have a perfect strategy in the
commuting-operator model. Thus this problem would be
decidable if the tensor-product model and commuting-
operator model were equivalent. Determining whether
or not these two models are equivalent is a well-known
open problem due to Tsirelson [13].

A final comment is that our results easily generalize to
linear systems over Zp.
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Abstract. We prove that there is a trade-off relation between the entanglement cost and the number of
rounds of communication, for two distant parties to accomplish a bidirectional quantum information task
by local operations and classical communication (LOCC). We consider an implementation of a class of
two-qubit controlled-unitary gate by LOCC assisted by shared entanglement, in an information theoretical
scenario of asymptotically many input pairs and vanishingly small error. We prove the trade-off relation by
showing that one ebit of entanglement per pair is necessary to be consumed for implementing the unitary
by any two-round protocol, whereas the entanglement cost by a four-round protocol is strictly smaller than
one ebit per pair.

Keywords: LOCC protocols, number of rounds, entanglement

1 Introduction

When two distant parties collaborate to perform a dis-
tributed quantum information processing, it is necessary
to communicate some information with each other. If the
communication is restricted to be transmission of classi-
cal bits, it may also be necessary to make use of some
entanglement shared in advance, depending on the task.
Entanglement and classical communication are thus re-
garded as resources for distributed quantum information
processing, and minimizing the cost of those resources
has been one of the central issues in quantum informa-
tion theory.

A relatively unexplored question about distributed
quantum information processing is how the performance
of a protocol to accomplish a task depends on the num-
ber of rounds of communication in the protocol [1]. It
has been known that the performance of a protocol with
more than one round of communication is strictly bet-
ter than that of any protocol with only one round of
communication, for several tasks such as entanglement
distillation [2], quantum key distribution [3], state dis-
crimination [4–6] and hypothesis testing [7–9]. However,
few example of tasks is known for which an r′-round pro-
tocol outperforms any r-round protocol and 2 ≤ r < r′,
with the exception of the result of [5]. Moreover, to our
knowledge, it is not known whether there exists a trade-
off relation between the entanglement cost and the num-
ber of rounds of a protocol for a “genuinely bidirectional”
task, which cannot be accomplished by any protocol with
only one round of communication.

In this contribution, we investigate implementation of
a bipartite unitary gate by LOCC (local operations and
classical communication) assisted by shared entangle-
ment, in an information theoretical scenario introduced
in [10]. We prove that, for a class of two-qubit controlled-
unitary gates, a four-round protocol outperforms all two-

∗wakakuwa@quest.is.uec.ac.jp

round protocols in reducing the entanglement cost. Thus
we provide a first example of genuinely bidirectional tasks
for which there is a trade-off relation between the entan-
glement cost and the number of rounds of communica-
tion. It is different from the trade-off relation between the
entanglement cost and the classical communication cost,
which exists, e.g., for remote state preparation [11–14].

Notations. |Φd〉, |ΦKn〉 and |ΦLn〉 represent the maxi-
mally entangled state with the Schmidt rank d, Kn and
Ln, respectively. πd is the maximally mixed state of
rank d. The fidelity and the trace distance between
two quantum states ρ and σ are defined as F (ρ, σ) :=
(Tr[

√√
ρσ

√
ρ])2 and ‖ρ− σ‖1 := Tr[

√
(ρ− σ)2], respec-

tively. We abbreviate F (ρ, |ψ〉〈ψ|) as F (ρ, |ψ〉). For a
quantum operation E , we abbreviate E(|ψ〉〈ψ|) as E(|ψ〉).

2 Definitions

In this section, we describe a task that we analyze in
this contribution, and present a definition of a trade-off
relation between the entanglement cost and the number
of rounds.

Suppose Alice and Bob are given a sequence of bi-
partite quantum states |ψi1〉AB · · · |ψin〉AB , generated
by an i.i.d. quantum information source of an ensem-
ble {pi, ψi}i. We assume that the source is completely
mixed, i.e.,

∑
i pi|ψi〉〈ψi|AB = πA

d ⊗ πB
d . Alice and

Bob perform the same bipartite unitary UAB on each
of |ψi1〉AB , · · · , |ψin〉AB by LOCC using a resource state
ΦA0B0

Kn
, where Kn is a natural number, in such a way that

the average error vanishes in the limit of n→ ∞. Follow-
ing the formulation of the Schumacher compression [15],
we assume that Alice and Bob do not know {pi, ψi}i, but
know that the average state is completely mixed.

Equivalently, we consider a task in which Alice and
Bob apply (UAB)⊗n on (|Φd〉ARA |Φd〉BRB )⊗n by LOCC
using a resource state ΦA0B0

Kn
. Here, RA and RB are imag-

inary reference systems that are inaccessible to Alice and
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Bob. Rigorous definitions are given below.

Definition 1 (Definition 1 in [10]) Let U be a bipar-
tite unitary acting on two d-dimensional quantum sys-
tems A and B. Let Alice and Bob have quantum regis-
ters {A0, A1} and {B0, B1}, respectively, and let Mn be a
quantum operation from AnA0⊗BnB0 to AnA1⊗BnB1.
Mn is called an (r, n, ε)-protocol for implementing U if
Mn is an r-round LOCC that satisfies

F (ρ(Mn), |ΨU 〉⊗n|ΦLn〉A1B1) ≥ 1 − ε,

where |ΨU 〉 := UAB|Φd〉ARA |Φd〉BRB and

ρ(Mn) := Mn(|ΦARA

d 〉⊗n|ΦBRB

d 〉⊗n|ΦKn〉A0B0).

The entanglement cost of Mn is defined by logKn −
logLn.

Definition 2 A rate E is said to be achievable by an r-
round protocol for implementing U if, for any ε > 0, there
exists nε such that for any n ≥ nε, we find an (r, n, ε)-
protocol for implementing U with the entanglement cost
nE. For a technical reason, we additionally require that

lim
ε→0

ε · n4
ε = 0.

The entanglement cost of U by r-round protocols is de-
fined as

Er(U) := inf{E | E is achievable by an r-round
protocol for implementing U}.

The main focus of this contribution is whether there
is a trade-off relation between the entanglement cost and
the number of rounds for implementing a bipartite uni-
tary. In considering “trade-off relation”, we compare the
entanglement cost of a unitary by r-round protocols and
that by r′-round protocol (r < r′). If the latter is strictly
smaller than the former, we could say that there exists a
trade-off relation between the entanglement cost and the
number of rounds. A rigorous definition is as follows:

Definition 3 There exists a trade-off relation between
the entanglement cost and the number of rounds for im-
plementing U if there exists r, r′ ∈ N such that

r < r′, Er(U) > Er′(U).

3 Result and Proof

We consider a class of two-qubit controlled-phase gate,
which takes the form of

UAB
θ = |0〉〈0|A ⊗ IB + |1〉〈1|A ⊗ (eiθσz )B

where

σz =
(

1 0
0 −1

)
, 0 < θ ≤ π

2
.

The main result of this contribution is as follows:

Theorem 4 There exists a trade-off relation between the
entanglement cost and the number of rounds for imple-
menting Uθ for any θ ∈ (0, θmax], where θmax ∈ (0, π/2]
is a constant.

We prove Theorem 4 by showing that the following rela-
tions hold for any θ ∈ (0, θmax]:

E2(Uθ) ≥ 1, E4(Uθ) < 1.

The first inequality is proved in [10] (see the converse
part of Theorem 25 therein). A proof of the second
inequality is presented in the technical version of this
manuscript, in which we also derive a stronger relation
that limθ→0E4(Uθ) = 0.

4 Conclusion

We considered implementation of a class of two-qubit
controlled-unitary gate by local operations and classi-
cal communication (LOCC), assisted by shared entangle-
ment. We proved that a four-round protocol outperforms
all two-round LOCC protocols in reducing the entangle-
ment cost. Our result provides a first example of gen-
uinely bidirectional distributed quantum tasks, for which
there exists a trade-off relation between the entanglement
cost and the number of rounds of communication.
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Abstract. We propose a quantum algorithm that emulates the action of an unknown unitary transforma-
tion on a given input state, using multiple copies of some unknown sample input states of the unitary and
their corresponding output states. The algorithm does not assume any prior information about the unitary
to be emulated, or the sample input states. Remarkably, the runtime of the algorithm is logarithmic in
D, the dimension of the Hilbert space, and increases polynomially with d, the dimension of the subspace
spanned by the sample input states. Furthermore, the sample complexity of the algorithm, i.e. the total
number of copies of the sample input-output pairs needed to run the algorithm, is independent of D, and
polynomial in d.
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In this paper we introduce a quantum algorithm that
emulates the action of an unknown unitary transforma-
tion on new given input states. The algorithm couples
the new input state to multiple copies of some unknown
sample input-output pairs, that is copies of some input
states of the unitary as well as copies of the corresponding
output states. We do not assume any prior information
about the unitary to be emulated, or the given sample
input states. The algorithm emulates the action of the
unitary on any given state in the subspace spanned by
the previously given input states, which could be much
smaller than the system Hilbert space. Indeed, we are
interested in the cases where d, the dimension of this
subspace is constant or, at most, polylogarithmic in D,
the dimension of the system Hilbert space.

Obviously, having multiple copies of sample input-
output pairs we can perform measurements on them, and
using state tomography find an approximate classical de-
scription of these states in a standard basis. This, in
turn, yields the classical description of the unknown uni-
tary transformation, which then can be used to simulate
its action on the new given states. This approach, how-
ever, is highly inefficient and impractical: First of all,
state tomography in a large Hilbert space is a hard task
and requires lots of copies of the sample states. Second,
even if we find the classical description of the unitary
transformation, in general, this unitary cannot be imple-
mented efficiently.

More precisely, the approaches based on tomography
run in time Ω(D) and need Ω(D) copies of state, where D
is the dimension of the system Hilbert space. In contrast,
the runtime of the algorithm proposed in this work is
O(logD) and polynomial in d, and its sample complexity,
i.e. the total number of copies of the sample input-output
pairs that are needed to run the algorithm, is independent
of D and polynomial in d. Therefore, our algorithm is not
only exponentially faster than the approaches based on
tomography, its sample complexity is also dramatically
lower.

∗marvian@mit.edu
†slloyd@mit.edu

1 Preliminaries

Here we present the algorithm for the special case of
pure sample states. In the paper we explain how the
algorithm can be generalized to the case of mixed states
as well.

Let Sin = {|φink 〉〈φink | : k = 1, · · · ,K} be a set of sample
input states of the unitary U and Sout = {|φoutk 〉〈φoutk | =
U |φink 〉〈φink |U† : k = 1, · · · ,K} be the corresponding out-
puts. Let Hin and Hout be the subspaces spanned by
{|φink 〉 : k = 1, · · · ,K} and {|φoutk 〉 : k = 1, · · · ,K} re-
spectively, and d be the dimension of these subspaces.
We assume the set of input samples Sin contains suffi-
cient number of different states to uniquely determine
the action of U on the subspace Hin (up to a global
phase). It can be easily shown that having the classi-
cal description of the input and output states in Sin and
Sout we can uniquely determine the action of U on any
input state |ψ〉 ∈ Hin (up to a global phase), if and only
if the matrix algebra generated by Sin, that is the set
of polynomials in the elements of Sin, is the full matrix
algebra on Hin, i.e. contains all operators with supports
contained in Hin. Therefore, in the following we natu-
rally assume this assumption is satisfied. Furthermore,
we assume K the number of different sample input states
in Sin is poly(d).

To implement the algorithm, we need multiple copies
of each sample state in Sin and Sout. Interestingly, at the
end of the algorithm most of these states remain almost
unaffected. Indeed, the main use of the given copies of
sample states is to simulate controlled-reflections about
these states.

Let Rin(k) = eiπ|φ
in
k 〉〈φ

in
k | and Rout(k) = eiπ|φ

out
k 〉〈φ

out
k |

be the reflections about the input and output states |φink 〉
and |φoutk 〉, respectively. In the proposed algorithm we
need to implement the controlled-reflections Rin

a (k) and
Rout
a (k), defined as

Ra(k) = |0〉〈0|a ⊗ I + |1〉〈1|a ⊗ eiπ|φk〉〈φk| , (1)

where a is the label for the control qubit, and I is the
identity operator on the main system. Note that we have
suppressed the superscripts in and out in both sides.
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Figure 1: The quantum circuit for emulating unitary transformation U for the special case of pure input-output
sample pairs. Here k1, · · · , kT are T = poly(d) integers chosen uniformly at random from integers 1, · · · ,K. We use
the given copies of sample states in Sin and Sout to simulate the controlled-reflections Rin

a (k) and Rout
a (k), respectively.

A modified version of this circuit can be implemented using only O(log T ) ancillary qubits (instead of T qubits).

Using the given copies of the sample states, we can ef-
ficiently simulate these controlled-reflections via the den-
sity matrix exponentiation technique of Ref.[1]. It turns
out that using n copies of state σ one can simulate the
unitary e−itσ, or its controlled version |0〉〈0|⊗I+ |1〉〈1|⊗
e−itσ, for any real t, with error ε = O(t2/n), and in
time O(n × log(D)), where D is the dimension of the
Hilbert space. In the simplest case where the system is
a qubit (D = 2), this technique is basically simulating
the Heisenberg interaction between the system and each
given copy of state σ.

Therefore, in the following, where we present the algo-
rithm, we assume all the controlled-reflections {Ra(k) :
1 ≤ k ≤ K} can be efficiently implemented.

To simplify the presentation, we use the notation
Wa(k) ≡ Ra(k)HaRa(1), where again we have suppressed
in and out superscripts in both sides. Here Ha denotes
the Hadamard gate H acting on qubit a, where H|0〉 =
|+〉 and H|1〉 = |−〉, and |±〉 = (|0〉± |1〉)/

√
2. The algo-

rithm also uses a SWAP gate defined by SWAP|ν〉|µ〉 =
|µ〉|ν〉, for any pair of states |µ〉 and |ν〉.

2 The algorithm (Special case)

In this section we present the algorithm for the uni-
versal quantum emulator, in the special case where all
the sample input-output pairs are pure states. In the pa-
per we present several generalizations of this algorithm,
including to the case where the given samples contain
mixed states. Also, we present a modified version of this
circuit which realizes this algorithm with exponentially
less ancillary qubits.

Fig.(1) exhibits the quantum circuit that emulates the
action of an unknown unitary transformation U on any
given state |ψ〉 in the input subspace Hin. For a general
input state, which is not restricted to this subspace, this
circuit first projects the state to this subspace, and if
successful, then applies the unitary U to it.

In this algorithm (k1, · · · , kT ) are T integers chosen
uniformly at random from integers 1, · · · ,K, where T is

a constant that determines the precision of emulation,
and we choose it to be polynomial in d, and independent
of D. Furthermore, state |φin1 〉 (and |φout1 〉) is one of the
sample input states (and its corresponding output) which
is chosen randomly at the beginning of the algorithm,
and is fixed during the algorithm. In steps (i) and (iv) of
the algorithm we implement, respectively, the unitaries

W in
ai (ki) and W out

ai

†
(ki) on the system and qubit ai, for

i = 1, · · · , T . As we explained before, all the conditional
reflectionsRin

a (k) andRout
a (k) can be efficiently simulated

using the given copies of states |φink 〉 and |φoutk 〉.
In step (ii) of the algorithm we perform a qubit mea-

surement in the computational basis {|0〉, |1〉}. Then,
after the measurement with probability 1−〈ψ|Πin|ψ〉 we
get outcome b = 1, in which case we project the system
to a state close to (I − Πin)|ψ〉/

√
1− 〈ψ|Πin|ψ〉, where

Πin is the projector to the subspace Hin. On the other
hand, with probability 〈ψ|Πin|ψ〉 we get the outcome
b = 0, in which case the final state of circuit is close
to UΠin|ψ〉/

√
〈ψ|Πin|ψ〉. In this case the algorithm con-

sumes a copy of state |φout1 〉, and returns a copy of state
|φin1 〉.

Note that, although the algorithm uses random inte-
gers (k1, · · · , kT ), for sufficiently large T it always trans-
forms the input state |ψ〉 ∈ Hin to a state with high
fidelity with the desired output state U |ψ〉.
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Abstract. A critical question for the field of quantum computing in the near future is whether quantum
devices without error correction can perform a well-defined computational task beyond the capabilities of
state-of-the-art classical computers, achieving so-called quantum supremacy. We study the computational
task of sampling from the output distribution of random quantum circuits. We introduce the cross entropy
difference as a useful benchmark of random quantum circuits which approximates the circuit fidelity. We
show that the cross entropy can be efficiently measured when circuit simulations are available. Beyond the
classically tractable regime, the cross entropy can be extrapolated and compared with theoretical estimates
to define a practical quantum supremacy demonstration. We conclude that quantum supremacy can be
achieved in the near-term with approximately fifty qubits.

Keywords: quantum supremacy, quantum chaos, device characterization, quantum complexity theory

This work proposes a minimal resource demonstration
of quantum supremacy based on the implementation of
random quantum circuits. Random quantum circuits are
known examples of quantum chaotic evolutions [1, 2, 5–
8]. A signature of chaos is that small changes in model
specification or numerical errors lead to large divergences
in system trajectories. In quantum chaotic dynamics this
sensitivity manifests itself as a loss of fidelity | 〈ψt|ψεt 〉 |2
of a quantum state |ψt〉 which decreases exponentially
in the evolution time t and in the magnitude of a small
perturbation ε to the Hamiltonian that evolves |ψt〉.

With realistic superconducting hardware con-
straints [3], gates act in parallel on distinct sets of
n = logN qubits restricted to a planar lattice. In a
random quantum circuit, gates are sampled from a
universal set. The cycle number t plays the role of time
in the chaotic dynamics of the quantum state |ψt〉. The
real and imaginary parts of the amplitudes 〈xj |ψt〉 in
any local basis {xj}Nj=1 are approximately uniformly
distributed in a 2N dimensional sphere subject to
normalization. This implies that their distribution
is an unbiased Gaussian with variance ∝ 1/N , up
to finite moments. The distribution of probabilities
| 〈xj |ψt〉 |2 approaches the form Ne−pN , known as the
Porter-Thomas distribution [11].

Consider a sample S = {x1, . . . , xm} of bit-strings xj
obtained from m global measurements of every qubit in
the computational basis {|xj〉} (or any other basis ob-
tained from local operations). The joint probability of
the set of outcomes S is PrU (S) =

∏
xj∈S pU (xj) where

pU (x) ≡ | 〈x|ψ〉 |2. For a typical sample S, the central
limit theorem implies that

log PrU (S) =
∑
xj∈S

log pU (xj)

= −mH(pU ) +O(m1/2) , (1)

∗boixo@google.com
†smelyan@google.com
‡babbush@google.com

where H(pU ) ≡ −
∑N
j=1 pU (xj) log pU (xj) is the entropy

of the output of U . Because pU (x) are i.i.d. distributed
according to the Porter-Thomas distribution,

H(pU ) = −
∫ ∞
0

pN2e−Np log p dp

= logN − 1 + γ , (2)

where γ ≈ 0.577 is the Euler constant.
Let Apcl(U) be a classical algorithm with computa-

tional time cost polynomial in n that takes a specifi-
cation of the random circuit U as input and outputs
a bit-string x with probability distribution ppcl(x|U).

Consider a typical sample Spcl = {xpcl1 , . . . , xpclm } ob-
tained from Apcl(U). We now focus on the probability

PrU (Spcl) =
∏
xpcl
j ∈Spcl

pU (xpclj ) that this sample Spcl is

observed from the output |ψ〉 of the circuit U . The cen-
tral limit theorem implies that

log PrU (Spcl) = −mH(ppcl, pU ) +O(m1/2) , (3)

where

H(ppcl, pU ) ≡ −
N∑
j=1

ppcl(xj |U) log pU (xj) (4)

is the cross entropy between ppcl(x|U) and pU (x). If
the cross entropy H(ppcl, pU ) is larger than the entropy
H(pU ) then ppcl(x|U) is sampling bit-strings that have
lower probability of being observed by the circuit U .

We are interested in the average performance of the
classical algorithm. Therefore, we average the cross en-
tropy over an ensemble {U} of random circuits

EU [H(ppcl, pU )] = EU

 N∑
j=1

ppcl(xj |U)
1

log pU (xj)

 . (5)

Based on aforementioned insights from quantum chaos,
we assume that the output of a classical algorithm with
polynomial cost is almost statistically uncorrelated with
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pU (x). Thus, averaging over the ensemble {U} can be
done independently for the output of the polynomial clas-
sical algorithm ppcl(x|U) and log pU (x). The distribution
of universal random quantum circuits converges to the
uniform (Haar) measure with increasing depth [7, 8]. For
fixed xj , the distribution of values {pU (xj)} when uni-
taries are sampled from the Haar measure also has the
Porter-Thomas form. Therefore, if we use sufficiently
deep random quantum circuits, we find that

−EU [log pU (xj)] ≈ −
∫ ∞
0

Ne−Np log p dp

= logN + γ . (6)

Then using
∑N
j=1 ppcl(xj |U) = 1 we get

EU [H(ppcl, pU )] = logN + γ . (7)

From Eqs. (2) and (7) we obtain

EU [log PrU (S)− log PrU (Spcl)] ' m . (8)

Equation (8) reveals that a typical sample S from a
random circuit U represents a signature of that circuit.
Note that the l.h.s. is the expectation value of the log of
Πx∈S | 〈x|ψ〉 |2/Πx∈Spcl

| 〈x|ψ〉 |2. The numerator is domi-
nated by measurement outcomes x that have high mea-
surement probabilities | 〈x|ψ〉 |2 > 1/N . Conversely, the
values of x in the denominator are chosen essentially at
random. Therefore, they are dominated by the support
of the Porter-Thomas distribution with p < 1/N .

The result in Eq. (7) also corresponds to the cross en-
tropy H0 = logN + γ of an algorithm which picks bit-
strings uniformly at random, p0(x) = 1/N . This leads to
a proposal for a test of quantum supremacy. We will mea-
sure the quality of an algorithm A as the difference be-
tween its cross entropy and the cross entropy of a uniform
classical sampler. The algorithm A can be an experimen-
tal quantum implementation or a classical algorithm. We
call this the cross entropy difference:

∆H(pA) ≡ H0 −H(pA, pU )

=
∑
j

(
1

N
− pA(xj |U)

)
log

1

pU (xj)
. (9)

The cross entropy difference measures how well algorithm
A(U) can predict the output of a (typical) quantum ran-
dom circuit U . This quantity is unity for the ideal ran-
dom circuit and zero for the uniform distribution.

Because an experimental implementation of a quantum
circuit is a realization of a quantum algorithm, we refer
to the experimental implementation as Aexp(U) and as-
sociate with it the probability distribution pexp(xj |U) =
〈xj | ρK |xj〉 and samples Sexp. The experimental cross
entropy difference is α ≡ EU [∆H(pexp)]. Quantum
supremacy is achieved, in practice, when

1 ≥ α > C , (10)

where a lower bound for C is given by the performance
of the best known classical algorithm A∗ executed on an

existing classical computer,

C = EU [∆H(p∗)] . (11)

Here p∗ is the output distribution of A∗.
The space and time complexity of simulating a ran-

dom circuit by using tensor contractions is exponential
in the treewidth of the quantum circuit, which is pro-
portional to min(d, n) in a 1D lattice, and min(d

√
n, n)

in a 2D lattice [10]. For large depth d, algorithms are
limited by the memory required to store the wavefunc-
tion in random-access memory, which in single precision
is 2n×2×4 bytes. For n = 48 qubits this requires at least
2.25 Petabytes, which is approximately the limit of what
can be done on the largest supercomputers of today1.
For circuits of small depth or less than approximately 48
qubits, direct simulation is viable so C = 1 and quantum
supremacy is impossible. Beyond this regime, the most
viable approximation scheme (of which we are aware) is
an estimation of the Feynman path integral correspond-
ing to the unitary transformation U . In this regime, the
lower bound for C decreases exponentially with the num-
ber of gates g � n.

We now address the question of how the cross entropy
difference α can be estimated from an experimental sam-
ple of bit-strings Sexp obtained by measuring the output
of Aexp(U) after m realizations of the circuit. For a typ-
ical sample Sexp (see Eq. (2)), the central limit theorem
applied to Eq. (9) implies that

α ' H0 −
1

m

m∑
j=1

log
1

pU (xexpj )
. (12)

The statistical error in this equation, from the central
limit theorem, goes like κ/

√
m, with κ ' 1. The estima-

tion would proceed as:

1. Select a random circuit U by sampling from an
available universal set of one and two qubit gates,
subject to experimental layout constraints.

2. Take a sufficiently large sample Sexp =
{xexp1 , . . . , xexpm } of bit-strings x in the com-
putational basis (m ∼ 103 − 106).

3. Compute the quantities log 1/pU (xexpj ) with the aid
of a sufficiently powerful classical computer.

4. Estimate α using Eq. (12).

A close correspondence between experiment, numerics
and theory provides a reliable foundation from which
to extrapolate α to larger circuits where the quantities
pU (xj) can no longer be obtained numerically. At this
point, C ' 0, and supremacy can be achieved. The value
of α can be extrapolated from circuits that can be simu-
lated because they have either less qubits (direct simula-
tion), mostly Clifford gates (stabilizer simulations) [4] or
smaller depth (tensor contraction simulations) [10].

1Trinity, the sixth fastest supercomputer in TOP500 has about
two Petabytes of primary memory, which is one of the largest.
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We now present a theoretical error model for α that
can be compared with experiment. The output ρ of the
experimental realization of a random circuit U is

ρ = α̃U |ψ0〉〈ψ0|U† + (1− α̃)σU , (13)

where 〈ψ0|U†σUU |ψ0〉 = 0 and α̃ is the circuit fidelity.
Under this ansatz, by the same arguments leading to
Eq. (7), we obtain that the circuit fidelity α̃ is approxi-
mately equal to the cross entropy difference, i.e. α ≈ α̃.
The absence of correlations is supported by numerical
simulations of typical random circuits. Estimating the
circuit fidelity by directly measuring the cross entropy
(see Eq. (12)) is a fundamentally new way to character-
ize complex quantum circuits.

The standard approach for studying circuit fidelities
is a digital error model where each gate is followed by
an error channel [3, 9]. Within this model, the circuit
fidelity can be estimated as [3]

α ≈ exp(−r1g1 − r2g2 − rinitn− rmesn) , (14)

where r1, r2 � 1 are the Pauli error rates for one and
two qubit gates, rinit, rmes � 1 are the initialization and
measurement error rates, and g1, g2 � 1 are the numbers
of one and two qubits gates respectively.

Figure 1 compares the cross entropy difference, Eq. (9),
obtained from our numerical simulations, with the esti-
mated fidelity, Eq. (14). We observe a good fit between
these two quantities. The validation of the digital error
model for complex quantum circuits is a long standing
problem. Our proposal represents a novel way of char-
acterizing devices and validating error models for multi-
qubit circuits. While our method requires exponential
classical computation, it can be performed with a rela-
tively small number of experiments and can be performed
for up to 48 qubits.
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Two Ternary Architectures

Alex Bocharov1 ∗ Shawn X. Cui2 † Martin Roetteler1 ‡ Krysta M. Svore1 §

1 Microsoft Research
2 University of California, Santa Barbara

Abstract. In two recent research papers we have developed a novel approach to synthesis of reversible
classical circuits, and in particular integer arithmetic circuits, on ternary quantum computers and applied
the approach to emulating Shor’s period finding function in two different universal quantum ternary bases.
We have done comparative analysis of the overall structure and cost of the period finding function in these
bases, one of which is a ternary analog of the Clifford+π/8 and the other comes from the topological
quantum computer based on non-Abelian metaplectic anyon framework. Significant benefits of the latter
framework have been demonstrated.
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1 Introduction and Background

Shor’s quantum algorithm for integer factorization [16]
is a striking case of the exponential speed-up promised
by a quantum computer over the best-known classical
algorithms. Since Shor’s original paper, many explicit
circuit constructions over qubits for performing the algo-
rithm have been developed and analyzed. This includes
the computer-assisted synthesis of the underlying quan-
tum circuits for the binary case (see the following and
references therein: [1, 2, 9, 13, 14, 15, 17, 18, 19]).

Research in prospective devices for fault-tolerant scal-
able quantum computing uncovered the importance of
non-binary and in particular, ternary quantum frame-
works. A recent ambitious proposal for the metaplec-
tic topological quantum computer (MTQC), in particular
[10, 11] offers native topological protection of quantum
information and quantum gates from local decoherence
as an added value over already very nice efficient logi-
cal circuit synthesis story [4, 3]. The MTQC creates an
inherently ternary quantum computing environment; for
example the common binary CNOT gate is no longer a
Clifford gate in that environment.

We studied The compilation and synthesis of ternary
circuits over two quantum bases: the Clifford + R|2〉 basis
[4] and the Clifford + P9 basis [5], where R|2〉 and P9 are
both non-Clifford single qutrit gates defined as:

R|2〉 = diag(1, 1,−1) (1)

P9 = diag(e−2π i/9, 1, e2π i/9). (2)

Clifford +R|2〉 The Clifford + R|2〉 basis [11], also
called metaplectic basis, can be obtained from a MTQC
by braiding of certain metaplectic non-abelian anyons
and projective measurement. The gate R|2〉 is produced
by injection of the magic state

|ψ〉 = |0〉 − |1〉+ |2〉. (3)

∗alexeib@microsoft.com
†cuixsh@gmail.com
‡martinro@microsoft.com
§ksvore@microsoft.com

The injection circuit is coherent probabilistic, succeeds in
three iterations on average and consumes three copies of
the magic state |ψ〉 on average. The |ψ〉 state is produced
by a relatively inexpensive protocol that uses topological
measurement and consequent intra-qutrit projection (see
[11], Lemma 5). This protocol requires only three qutrits
and produces an exact copy of |ψ〉 in 9/4 trials on average.
This is much better than any state distillation method,
especially because it produces |ψ〉 with fidelity 1.

In [4] we have developed effective compilation meth-
ods to compile efficient circuits in the metaplectic basis.
In particular, given an arbitrary two-level Householder
reflection r and a precision ε, then r is effectively ap-
proximated by a metaplectic circuit of R|2〉-count at most
C log3(1/ε) +O(log(log(1/ε))), C ≤ 8. It is shown in [3]
that the P9 gate specifically requires C = 6.

Clifford +P9 The Clifford + P9 basis is a natural
generalization of the binary π/8 gate. It is the ternary
case of the general multi-qudit basis proposed indepen-
dently in [12] and [8]. The P9 gate can be realized by
a certain deterministic measurement-assisted circuit [8]
given a copy of the magic state

µ = e−2π i/9|0〉+ |1〉+ e2π i/9|2〉, (4)

which further can be obtained from the usual magic state
distillation protocol. Specifically, it requiresO(log3(1/δ))
raw magic states of low fixed fidelity in order to distill a
copy of the magic state µ at fidelity 1− δ.

In [5] we have explored a novel approach to synthesis of
reversible ternary classical circuits over the Clifford+P9

basis. We have synthesized explicit circuits to express
classical reflections and other important classical non-
Clifford gates in this basis, which we subsequently used to
build efficient ternary implementations of integer adders
and their extensions.

In [6] we have further optimized these implementations
under the assumption of binary-encoded data and applied
the resulting solutions to emulating of the modular ex-
ponentiation period finding (which is the quantum part
of the Shor’s integer factorization algorithm). We have
performed the comparative cost analysis of optimized so-
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lutions between the “generic” Clifford+P9 architecture
and the MTQC architecture (the Clifford + R|2〉) using
magic state counts as the cost measure. We have shown
that the cost of emulating the entire binary circuit for the
period finding is almost directly proportional to the cost
of emulating the three-qubit Toffoli gate and the latter
is proportional to the cost of the P9 gate. We have fur-
ther pointed out that known distillation protocols for the
latter are somewhat more costly than best known distil-
lation protocols (e.g. Bravyi-Kitaev, [7]) for the binary
π/8 gate, but demonstrated that on an MTQC computer
specifically the magic state for the P9 gate can be pre-
pared (with a metaplectic circuit) rather than distilled
which leads to asymptotically lower magic state cost:
linear in fidelity bit size for preparation vs. cubic for
distillation. Thus the prospective MTQC architecture is
proven to be the most cost-effective known architecture
for integer factorization in terms of the overall logical
cost. Expected native topological protection of quantum
information and gates in the MTQC architecture clearly
only adds value to it.

2 Overview of main results

In [6] we have investigated in some detail the cost of im-
plementing Shor’s integer factorization algorithm [16] on
the two ternary architectures, Clifford + P9 and Clifford
+ R|2〉, using fairly straightforward emulation of known
binary circuits and modifications thereof in ternary logic.
One technical hurdle to overcome on that path: the bina-
ry CNOT gate cannot be emulated by a ternary Clifford
circuit and its cost is roughly the same as that of Toffoli
gate. The other key problem was to emulate the binary
Toffoli gate efficiently. In course of solving these prob-
lems we have made the following useful observation: if
a binary reflection (such as that Toffoli gate) needs to
be emulated only on binary data, then it can be typically
done at a fraction of the cost involved in implementing a
ternary reflection. For example, implementing two-level
ternary transposition |110〉 ↔ |111〉 is relatively expen-
sive, but its action on binary data only can be emulated
exactly at 2/5 of the cost. In particular we have proved
the following

Proposition 1 1) The binary CNOT gate can be em-
ulated exactly by a two-qutrit ternary circuit containing
ternary Clifford gates and 6 P9 gates.

2) The binary Toffoli gate can be emulated exactly ei-
ther by a four-qutrit ternary circuit containing ternary
Clifford gates and 6 P9 gates, or by a three-qutrit ternary
circuit containing ternary Clifford gates and 15 P9 gates.

We also found that by a minor rearrangements of con-
trolled adder circuits, the CNOT/Toffoli ratio for the n-
qubit additive shift is constrained to O(1/ log(n)) and
thus up to a small overhead factor of (1 +O(1/ log(n))),
the cost of emulation of Shor’s period finding function is
directly proportional to the cost of emulating the three-
qubit Toffoli gate.

We have chosen to use the magic state counts that
tally the number of magic states required for binary im-

plementation or, respectively, ternary emulation of the
target gates and circuits. For the Clifford+π/8 the mag-
ic states consumed by the π/8 gate are counted and for
both ternary bases the instances of the magic state |µ〉
consumed by the P9 gate are counted. The cost bounds
for the Toffoli gate are presented in Table 1.

Clean magic states Raw resources
Binary 7 7(2 log2(1/δ))2.5

GenericA P9 15 15 log3
2(1/δ)

GenericB P9 6 6 log3
2(1/δ)

Metaplectic 6 36 log3(1/δ)

Table 1: Resource count factors for three-qubit Toffoli
gates. “Generic A” stands for 3-qutrit emulation of the
Toffoli gate and “Generic B” and “Metaplectic” use 4-
qutrit emulation with one clean ancilla prepared with
SUM gates.

We note that the ternary emulation of the modular
exponentiation circuit based on modified ripple carry ad-
ditive shift as described in [6] section III, A, has the depth
O(n3) for the n-bit integers and performs all the Toffoli
gates sequentially. This means that the required clean
ancilla is shared across the circuit and adds just one unit
of width that is easily amortized over n. The entire mod-
ular exponentiation circuit has the width of only n + 3
qutrits in this case.

In the more sophisticated modular exponentiation cir-
cuit based on carry lookahead additive shift ([6] section
III, B) several Toffoli gates are performed in parallel in
almost any time slice, and therefore as many clean ancil-
las are required concurrently. The impact of this design
on the width of the circuits is presented in the Table 2.

Circuits Online width Offline width
Binary QCLA 3n− w(n) (qubits) 7n (6 log2(n))2.5

Generic A 3n− w(n) (qutrits) 15n (3 log2(n))3

Generic B 4n− w(n) (qutrits) 6n (3 log2(n))3

Metaplectic A 3n− w(n) (qutrits) 90× 3n log3(n)
Metaplectic B 4n− w(n) (qutrits) 36× 3n log3(n)

Table 2: Widths comparison for ternary emulations of
reduced-depth modular exponentiation circuits. (w(n) is
the Hamming weight of n). Generic/metaplectic case A s-
tands for 3-qutrit emulation of the Toffoli gate and case B

for the 4-qutrit emulation. The last column in metaplec-
tic rows shown the expected average of the probabilistic
width.

It is seen from Table 1 and Table 2 that the solution-
s over the metaplectic architecture are the most cost-
effective in both asymptotic and practical sense. The ta-
bles compare logical magic state counts and logical width-
s of known binary solutions and those of their ternary em-
ulation but disregard the cost quantum error correction
(QEC). Deeming the QEC cost would have been even
more in favor of the metaplectic architecture.

15



References

[1] S. Beauregard. Circuit for Shor’s algorithm using
2n+3 qubits. In QIC, 3(2), 2003.

[2] D. Beckman, A. N. Chari, S. Devabhaktuni,
J. Preskill. Efficient networks for quantum factoring.
In Phys. Rev. A., 54:1034–1063, 1996.

[3] A. Bocharov. A Note on Optimality of Quan-
tum Circuits over Metaplectic Basis. arx-
iv.org/abs/1606.02315, 2016.

[4] A. Bocharov, S. X. Cui, V. Kliuchnikov, Z. Wang.
Efficient topological compilation for weakly-integral
anyon model. In Phys. Rev. A. 93, 012313, 2016.

[5] A. Bocharov, S. X. Cui, M. Roetteler, K. M. Svore.
Improved quantum ternary arithmetics. In QIC,
16(9,10): 862-884, 2016. (arxiv.org/abs/1512.03824)

[6] A. Bocharov, M. Roetteler, K. M. Svore. Fac-
toring with Qutrits: Shor’s Algorithm on Ternary
and Metaplectic Quantum Architectures. arx-
iv.org/abs/1605.02756, 2016.

[7] S. Bravyi, A. Kitaev. Universal quantum computa-
tion with ideal Clifford gates and noisy ancillas. In
Phys. Rev. A., 32(6), 2005.

[8] E. .T. Campbell, H. Anwar, D. E. Browne: Magic-
state distillation in all prime dimensions using quan-
tum reed-muller codes. In Phys. Rev. X., 2(4),
041021, 2012.

[9] R. Holevo, J. Watrous. Fast parallel circuits for the
quantum Fourier transform. In FOCS ’00 Proceed-
ings of the 41st Annual Symposium on Foundations
of Computer Science, 2000.

[10] S. X. Cui, S-M. Hong, Z. Wang. Universal quantum
computation with weakly integral anyons. In Quan-
tum Information Processing, 14: 2687–2727, 2014.

[11] S. X. Cui, Z. Wang. Universal quantum computation
with metaplectic anyons. In Journal of Mathematical
Physics, 56(3), 032202, 2015.

[12] M. Howard, J. Vala. Qudit versions of the qubit π/8
gate. In Phys. Rev. A., 86(2), 022316, 2012.

[13] I. L. Markov, M. Saeedi. Constant-optimized quan-
tum circuits for modular multiplication and exponen-
tiation. In QIC, pages 12(5,6), 2012.

[14] I. L. Markov, M. Saeedi. Faster quantum number
factoring via circuit synthesis. In Phys. Rev. A.,
87(012310), 2013.

[15] R. Van Meter, K. M. Itoh. Fast quantum modular
exponentiation. In Phys. Rev. A., 71(052320), 2005.

[16] P. W. Shor. Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer. SIAM J. on Comp., 26(5):1484–1509,
1997.

[17] Y. Takahashi, N. Kunihiro. A quantum circuit for
Shors factoring algorithm using 2n+2 qubits. In QIC,
6(2), 2006.

[18] V. Vedral, A. Barenco, A. Ekert. Quantum networks
for elementary arithmetic operations. In Phys. Rev.
A., 54(147), 1995.

[19] C. Zalka. Fast versions of Shor’s quantum factoring
algorithm. quant-ph/9806084, 1998.

16



Space-Efficient Error-Reduction for Unitary Quantum Computations∗

Bill Fefferman1 Hirotada Kobayashi2 Cedric Yen-Yu Lin1 Tomoyuki Morimae3

Harumichi Nishimura4

1 Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, USA
2 Principles of Informatics Research Division, National Institute of Informatics, Tokyo, Japan

3 Advanced Scientific Research Leaders Development Unit, Gunma University, Kiryu, Gunma, Japan
4 Graduate School of Information Science, Nagoya University, Nagoya, Aichi, Japan

Abstract. This paper develops general space-efficient methods for error reduction for unitary quan-
tum computation, i.e. computations without intermediate measurements. Consider a unitary quantum
computation with completeness c and soundness s, either with or without a witness. To reduce the er-
ror of the computation to at most 2−p, the most space-efficient method known requires extra workspace
of O(p log[1/(c− s)]) qubits. We present error-reduction methods that require extra workspace of just
O(log [p/(c− s)]) qubits. This in particular gives the first methods of strong amplification for logarithmic-
space unitary quantum computations with two-sided error. Consequences include the uselessness of quan-
tum witnesses in bounded-error logspace unitary quantum computations, the PSPACE upper bound for
QMA with exponentially small gap, and strong amplification for matchgate computations.
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1 Introduction

A very basic topic in various models of quantum com-
putation is whether computation error can be efficiently
reduced. For polynomial-time bounded error quantum
computation, the computation error can be made ex-
ponentially small via a simple repetition followed by
a threshold-value decision. This justifies the choice of
2/3 and 1/3 for the completeness and soundness param-
eters in the definition of the corresponding complexity
class BQP. This is also the case for quantum Merlin-
Arthur (QMA) proof systems, another central model of
quantum computation that models a quantum analogue
of NP (more precisely, MA). The price paid is the en-
largement of both the necessary workspace and the wit-
ness size linearly in the number of repetitions.

We now restrict attention to unitary quantum compu-
tations, i.e. computations in which only unitary opera-
tions are allowed and in particular intermediate measure-
ments are not allowed. Marriott and Watrous [2] devel-
oped a more sophisticated method of error reduction for
QMA proof systems, which was subsequently improved
by Nagaj, Wocjan, and Zhang [3]. The latter improved
method uses phase estimation to estimate the success
probability of the original computation, similarly to the
quantum counting algorithm (see e.g. [4, Chapter 6.3]).
This method reuses both the workspace and the witness
every time it applies the original computation and its in-
verse, and therefore does not increase the witness size.
Since the inverse of the original computation needs to be
applied, this amplification method works only for unitary
computations. To reduce the error probability to 2−p,
the method requires O

(
p

c−s

)
applications of the original

computation and its inverse, and extra workspace of size
O
(
p log 1

c−s

)
to store the phase estimation results, where

c and s are respectively the completeness and soundness
of the original computation.

∗Full version: arXiv:1604.08192 [1]

This existing in-place amplification method is still in-
sufficient if the workspace size must be logarithmically
bounded. No efficient error-reduction method is known
that keeps the size of necessary additional workspace log-
arithmically bounded. This is not limited to the case of
QMA proof systems, and in fact efficient error reduction
methods are rarely known for space-bounded quantum
computations (see [5] for an exception).

2 Main Result

This paper presents a general method of strong and
space-efficient error reduction for unitary quantum com-
putations. In particular, the method is applicable to
logarithmic-space unitary quantum computations and
QMA proof systems. All of our results hold for any model
of unitary space-bounded quantum computations. The
unitary model is not the most general (note the stan-
dard technique of deferring intermediate measurements
requires unallowablly many ancilla qubits in the case of
space-bounded computations), but our error amplifica-
tion results (and other recent progress [6]) make this
arguably one of the most reasonable models for space-
bounded quantum computation; see [7] for a discussion
of other models of space-bounded quantum computation.

Let N and Z+ be the sets of positive and nonnegative
integers, respectively. Let QMAUSPACE[lV, lM](c, s) de-
note the class of problems having QMA proof systems
with completeness c and soundness s, where the verifier
performs a unitary quantum computation that has no
time bound but is restricted to use lV(n) private qubits
and to receive a quantum witness of lM(n) qubits on ev-
ery input of length n. The main result of this paper is
the following strong and space-efficient error-reduction
for such QMA-type computations.

Theorem 1 For any functions p, lV, lM : Z+ → N and
for any functions c, s : Z+ → [0, 1] satisfying c > s, there
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exists a function δ : Z+ → N that is logarithmic with re-
spect to p

c−s such that

QMAUSPACE[lV, lM](c, s)

⊆ QMAUSPACE[lV + δ, lM](1− 2−p, 2−p).

In the full version [1] we give three different proofs of
this main theorem. In the following we discuss many
consequences of our main theorem. Many corollaries are
straightforward to show by choosing parameters in The-
orem 1 appropriately; see the full version for choices of
these parameters and for other omitted consequencess
(e.g. space-efficient amplification for QMA and strong
amplification for matchgate computation)

3 Implications

Strong amplification for unitary logspace quan-
tum computations The first consequence of The-
orem 1 is a remarkably strong error-reducibility for
logspace unitary quantum computations. Let QUL(c, s)
and QMAUL(c, s) denote respectively the class of prob-
lems decidable by logspace unitary quantum computa-
tions (resp. logspace unitary QMA proof systems with
log-size witnesses) with completeness c and soundness s.

Corollary 2 For any polynomially bounded func-
tion p : Z+ → N that is logarithmic-space computable
and for any logarithmic-space computable func-
tions c, s : Z+ → [0, 1] satisfying c− s ≥ 1/q for some
polynomially bounded function q : Z+ → N,

QUL(c, s) ⊆ QUL(1− 2−p, 2−p).

QMAUL(c, s) ⊆ QMAUL(1− 2−p, 2−p).

This in particular justifies defining the classes BQUL
and QMAUL of bounded-error logarithmic-space unitary
quantum computations by BQUL = QUL(2/3, 1/3) and
QMAUL = QMAUL(2/3, 1/3).

Uselessness of quantum witnesses in logarithmic-
space unitary QMA By a standard technique of re-
placing a quantum witness by a completely mixed state
Corollary 2 implies the following:

Corollary 3 QMAUL = BQUL.

A consequence of the Marriott-Watrous error reduc-
tion method [2] was that standard QMA systems are no
more powerful than BQP if restricted to use witnesses of
logarithmic size. Corollary 3 extends this by stating that
logarithmic sized witnesses do not increase the power of
logspace unitary quantum computations at all.

Strong amplification for unitary QMAPSPACE
Let QUPSPACE(c, s) and QMAUPSPACE(c, s) denote
respectively the class of problems decidable by poly-space
unitary quantum computations (resp. QMA proof sys-
tems) with completeness c and soundness s. We have the
following scaled-up version of Corollary 2.

Corollary 4 For any polynomially bounded func-
tion p : Z+ → N and for any polynomial-space com-
putable functions c, s : Z+ → [0, 1] satisfying c− s ≥ 2−q

for some polynomially bounded function q : Z+ → N,

QUPSPACE(c, s) ⊆ QUPSPACE
(
1− 2−2p , 2−2p

)
.

QMAUPSPACE(c, s) ⊆ QMAUPSPACE
(
1− 2−2p , 2−2p

)
.

Again by replacing the quantum witness by a com-
pletely mixed state, the following result follows from
Corollary 4 and that unbounded-error poly-space quan-
tum computations can be simulated in PSPACE [8, 9].

Corollary 5 For any polynomial-space computable func-
tions c, s : Z+ → [0, 1] satisfying c− s ≥ 2−q for some
polynomially bounded function q : Z+ → N,

QMAUPSPACE(c, s) = QUPSPACE(c, s) = PSPACE.

Let QMA(c, s) be the class of problems having
polynomial-time QMA proof systems with completeness c
and soundness s. An immediate corollary of Corollary 5
is the following upper bound for QMA proof systems with
exponentially small completeness-soundness gap.

Corollary 6 For any polynomially bounded func-
tion p : Z+ → N and for any polynomial-time computable
functions c, s : Z+ → [0, 1] satisfying c− s ≥ 2−q for
some polynomially bounded function q : Z+ → N,

QMA(c, s) ⊆ PSPACE.

Corollary 6 was also shown independently in [10]. In
fact, the first and third authors of the present paper fur-
ther proved that the converse of Corollary 6 also holds,
i.e., PSPACE is characterized by QMA proof systems
with exponentially small gap [6].
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Abstract. We consider Hamiltonian quantum computation (HQC) in one dimension, achieved by prepar-
ing an appropriate initial product state of qudits and then letting it evolve under a fixed Hamiltonian before
measuring individual qudits at some later time. We study the compromise between the locality k and the
local Hilbert space dimension d for universal HQC. For geometrically 2-local (i.e., k = 2), d = 8 is known
to be sufficient. We provide a construction for k = 3 with d = 5. Imposing translation invariance will
increase the required d. For this we also construct another 3-local (k = 3) Hamiltonian that is invariant
under translation of a unit cell of two sites but that requires d to be 8.

Keywords: Hamiltonian quantum computer, quantum walk, quantum cellular automata, locality, local
Hilbert space dimension

1 Motivations

Feynman provided an example Hamiltonian able to ex-
ecute universal quantum computer [1],

HFeynman =

k−1∑
j=0

σ+
j+1σ

−
j Aj+1 + h.c., (1)

but the interaction involves four particles not geometri-
cally local. Operators σ− and σ+ act on a set of spin-
1/2 particles, representing a discrete unary clock register;
Aj ’s represent all the gates of a circuit.

Key questions to address. In this work we consider
the Hamiltonian quantum computer to lie on one spa-
tial dimension, and the interaction in the Hamiltonian
involves at most k consecutive sites. In particular, we
study the compromise between the locality k and the lo-
cal Hilbert-space dimension d. As the locality k increases,
it is expected that the minimum required d should de-
crease.

Prior related works. Feynman’s idea was used by
Kitaev to construct the so-called Local Hamiltonian
Problems (LHP) [2] and showed that 5-local LHP is
QMA-complete. The locality k for QMA-complete LHP
was, in a series of work, reduced to 2 [3, 4], even
with nearest-neighbor interactions on two spatial dimen-
sions [5]. In one spatial dimension, it was shown by
Aharonov et al. that 2-local 13-state Hamiltonians are
QMA-complete [6], and the local dimension d is recently
reduced to 8 by Hallgren et al. [7].

In terms of one-dimensional Hamiltonian quantum
computer, there have been various constructions, for ex-
ample, the continuous-time quantum cellular automata
by Vollbrecht and Cirac [8], by Kay [9], and by Nagaj
and Wocjan [10] as well as the universal quantum walk by
Chase and Landahl [11]. The 1D Hamiltonians in these

∗tzu-chieh.wei@stonybrook.edu

Figure 1: (color online) The status of locality k vs. local
Hilbert-space dimension (level) d for universal quantum
computation (BQP) in one spatial dimension.

constructions are nearest-neighbor two-body (or geomet-
rically 2-local), but involve the dimension of local Hilbert
space ranging from d = 8 [11] and higher [8, 9, 10].

2 Results and some details

Main results. Here we study the compromise between
the locality k and the local dimension d in one spatial di-
mension; the results are summarized in Figs. 1 and 2.
In our technical paper [12], we provide two construc-
tions: (i) one that uses a 5-state 3-local (or spin-2 near-
est and next-nearest-neighbor interacting) Hamiltonian
but is non-translation invariant, and (ii) 8-state 3-local
Hamiltonian that is invariant under translation of a unit
cell of two sites.

The former is inspired by the design used in 1D QMA
LHP [6, 7], whose focus was on 2-locality.In terms of com-
plexity, one implication is that simulating 1D chains of
spin-2 particles with nearest and next-nearest-neighbor
interaction is BQP-complete. Our second construction
is inspired by the translation invariant constructions in
Refs. [8, 9, 10] and in particular the work by Nagaj and
Wocjan [10]. We explicitly modify a particular scheme
with d = 20 in Ref. [10] and reduce d to 8. Our results
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Figure 2: (color online) The translation invariant case.

are summarized schematically in Fig. 1 and Fig. 2.

Detailed construction. Due to the space limitation,
it suffices for the purpose of demonstration to focus on
our first construction having k = 3 and d = 5. We refer
the other construction that is translation invariant (k = 3
and d = 8) to our technical paper [12]. On odd/even sites
host different groups of states, respectively,

{B,C,	, • , + }, { [0], [1], I [0], I [1],©}.

(We can regard the system as consisting of the same kind
of particles on all sites, but their interactions have two
different preferred bases.) There are two kinds of qubits:

and I , and the superscripts are used to indicate the
logical qubit values.

The transition rules are shown in Table 1. In particu-
lar, the gate operation occurs in rule 1:

1: I + −→ Um( + I ) (2)

whose backward (or time-reversed) propagation is

1† : + I −→ U†m(I + ). (3)

The design of these rules ensure that there is only one
unique forward rule and one unique reverse rule
(except at the beginning and the end), and the probabil-
ity of ending up at any location (i.e. configuration) can
be obtained analytically [10].
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B. Example of transitions:
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[
	 + + • © • © • © •
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• + I + • © • © • © •
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[3]
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• + + I • © • © • © •
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• + + 	 © • © • © •
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• + + C © • © • © •
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• + + © C • © • © •
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• + C © + • © • © •
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Nonlocal correlations: Fair and Unfair Strategies in Bayesian Game
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Abstract. Interesting connection has been established between two apparently unrelated concepts,
namely, quantum nonlocality and Bayesian game theory. It has been shown that nonlocal correlations
in the form of advice can outperform classical equilibrium strategies in common interest Bayesian games
and also in conflicting interest Bayesian games. Classical equilibrium strategies can be of two types, fair
and unfair. Whereas in fair equilibrium payoffs of different players are equal, in unfair case they differ. Ad-
vantage of nonlocal correlation has been demonstrated over fair strategies, only. In this letter we show that
quantum strategies can outperform even the unfair classical equilibrium strategies. For this purpose we
consider a class of two players Bayesian games. It becomes that, such games can have only fair equilibria,
both fair and unfair equilibria, or only unfair ones. We provide a simple analytic method to characterize
the nonlocal correlations that are advantageous over the classical equilibrium strategies in these games. We
also show that quantum advice provides better social optimality solution (a relevant notion of equilibrium
for unfair case) over the clssical one.

Keywords: Nonlocal correlation, Fair and Unfair equilibrium, Correlated Equilibrium, Bell Nonlocality

1 Bayesian Game and equilibria

Undoubtedly one of the most fundamental contradic-
tions of Quantum mechanics (QM) with classical physics
gets manifested in its nonlocal behavior. This bizarre fea-
ture of QM was first established in the seminal work of
J. S. Bell [1], where he has shown that QM is incompati-
ble with the local-realistic world view of classical physics.
More precisely, Bell showed that measurement statistics
of multipartite entangled quantum systems can violate an
empirically testable local realistic inequality (in general
called Bell type inequalities) which establishes the denial
of local realism underlying QM. Since Bell’s work, non-
locality remains at the center of quantum foundational
research and it has been verified in numerous successful
experiments. Apart from foundational interest, quan-
tum nonlocality finds practical implications in various
device-independent protocols. But, very recently Brun-
ner and Linden have established usefulness of Bell non-
locality in Bayesian game theory [2]. A Bayesian game
can be played under classical equilibrium strategies which
are of two types, fair equilibrium and unfair equilibrium.
Payoffs of different players are equal in a fair equilib-
rium, but differ in case of an unfair equilibrium. It has
been shown that QM can provide advantageous strate-
gies over the best classical strategies in common inter-
est Bayesian games [2] as well as conflicting interesting
games [3]. However, such advantages are shown over the
fair equilibrium. The aim of this present letter is to estab-
lish the quantum advantages over the unfair equilibrium
strategies. This study is of important relevance since we
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provide examples of Bayesian games which can be played
under unfair equilibrium strategies, only.

2 The class of games we consider

Let Alice and Bob are two players involved in the game.
Alice’s and Bob’s types/inputs are denoted as xA ∈ XA
and xB ∈ XB , respectively. For each type they take some
actions/outputs denoted as yA ∈ YA and yB ∈ YB and
accordingly they are given payoffs/utilities denoted as uA
and uB , respectively, where ui : XA×XB×YA×YB → R
, for i ∈ {A,B}. For the class of games considered here,
XA = XB = YA = YB = {0, 1} and the utilities are
given in Table-1. In accordance with the parameter κ
and τ of Table-1 let us denote such a game as G(κ, τ).
Whenever κ < τ , there is a conflict between Alice and
Bob in choosing their actions.

In the case of correlated strategies, i.e., when the par-
ties are given some common advice, the average payoff is
calculated as:

Fi =
∑
x,y

P (x)P (y|x)ui(x, y). (1)

Here P (x) is the probability distribution over the Alice’s
and Bob’s joint type x ≡ (xA, xB) which is considered
to be uniform for the class of games introduced above.
P (y|x) denote the conditional probability of the joint ac-
tion y ≡ (yA, yB) given the type x, i.e., the probability
that Alice takes action yA and Bob takes action yB given
their joint type (xA, xB). To play the game G(κ, τ) each
of Alice and Bob can take one of the following four pure
classical strategies:

g1i (xi) = 0; g2i (xi) = 1; g3i (xi) = xi; g
4
i (xi) = xi ⊕ 1;

where g1i (xi) = 0 means that ith party takes the ac-
tion 0 whatever be the type and similarly for the other
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xA ∧ xB = 0 xA ∧ xB = 1

yB = 0 yB = 1 yB = 0 yB = 1
yA = 0 (1, κ) (0, 0) (0, 0) (3/4, 3/4)
yA = 1 (0, 0) (1/2, τ) (3/4, 3/4) (0, 0)

Table 1: Utility table for the game G(κ, τ). Both κ and
τ are positive.

cases; ⊕ denotes modulo 2 sum. For the conflict-
ing case (i.e. τ > κ) there are three equilibrium
strategies eq1 ≡ (g1A, g

3
B), eq2 ≡ (g3A, g

4
B), and eq3 ≡

(g4A, g
2
B) whenever κ < 3

4 , with corresponding pay-
offs being (F eq1A , F eq1B ) =

(
11
16 ,

3
16 + κ

2

)
, (F eq2A , F eq2B ) =(

9
16 ,

3
16 + κ+τ

4

)
, and (F eq3A , F eq3B ) =

(
7
16 ,

3
16 + τ

2

)
. For

κ > 3
4 , there are also three equilibrium strategies eq′1 ≡

(g1A, g
1
B), eq2, and eq3 with payoff for the strategy eq′1

being (F
eq′1
A , F

eq′1
B ) =

(
3
4 ,

3κ
4

)
. For the parameter value

κ > 1, all the three equilibria are unfair and in every
case Bob’s payoff is greater than that of Alice. Note that
in this case (κ > 1) even no fair correlated equilibrium
strategy is possible. The case where κ+τ = 3/2 give a fair
equilibrium strategy as occurred in the conflicting game
of [3]. When τ < κ the game turns out to be a common
interest game. In this case there is only one equilibrium
strategy, (g1A, g

3
B) when κ < 3

4 and (g1A, g
1
B) otherwise,

with pay-off being
(
11
16 ,

3
16 + κ

2

)
and

(
3
4 ,

3κ
4

)
, respectively.

Since any classical (local realistic) advice can be writ-
ten as P (yA, yB |xA, xb) =

∫
dλP (yA|xA, λ)P (yB |xB , λ),

with λ being a local variable (also called hidden vari-
able by the quantum foundation community), convexity
ensures that using any such advice it is not possible to
overcome the equilibrium payoffs. However in quantum
world there are no-signaling correlations that are not of
this local realistic form (thus called nonlocal) and hence
there may be a possibility to overcome the classical equi-
librium payoffs.

3 2− 2− 2 no-signaling correlations

: For the two-party scenario with two two-outcome
measurements for each party, we denote the joint proba-
bility distribution as P (ab|ij), where the outcomes a, b ∈
{+,−} and the measurement settings i, j ∈ {0, 1}. We
can express the joint distribution as:

(P (+ + |ij), P (+− |ij), P (−+ |ij), P (−− |ij))
≡ (cij ,mij − cij , nij − cij , 1− nij −mij + cij), (2)

Here mij := P (+ + |ij) + P (+ − |ij) and nij := P (+ +
|ij) + P (− + |ij) denote the corresponding marginal
probabilities of Alice and Bob, with positivity impos-
ing the restrictions, max{0,mij + nij − 1} ≤ cij ≤
min{mij , nij} ∀ ij. According to no-signaling Alice’s
marginal outcome probability should not depend on
Bob’s measurement settings and vice versa, which can
be expressed as m00 = m01 := m0, m10 = m11 :=
m1, n00 = n10 := n0, n01 = n11 := n1. The celebrated
Bell-CHSH expression is given by, B = 〈00〉+〈01〉+〈10〉−

〈11〉, where 〈ij〉 := P (++ |ij)−P (+−|ij)−P (−+ |ij)+
P (− − |ij). A no-signaling probability distribution has
a local realistic description if and only if it satisfies the
Bell-CHSH inequality, i.e., iff |B| ≤ 2. In terms of prob-
abilities, the Bell-CHSH expression becomes,

B = 2 + 4(c00 + c01 + c10 − c11)− 4(m0 + n0). (3)

4 Our result and discussion

In the Bayesian game described above, the two play-
ers can be commonly advised by a general no-signaling
correlation. Then, Alice’s and Bob’s average payoffs, re-
spectively, read:

FNSA =
1

16
[3 + 3/2B + 2(m0 + n0) + (m1 + n1)] , (4)

FNSB =
1

16
[(10τ − 2κ) + (τ + κ)B + 4(κ− τ)(m0 + n0)

+(3− 4τ)(m1 + n1) + 4 (κ+ τ − 3/2) c11] . (5)

A no-signaling nonlocal advice outperforms some clas-
sical equilibrium payoff (F eqA , F eqB ) if FNSi > F eqi , for
i = A,B.

We show that such nonlocal correlations can outper-
form the unfair classical equilibrium strategies of such
Bayesian games (see [4] for detail). Furthermore we find
that unlike for the case of fair strategy the notion of
quantum equilibrium is not a valid one for unfair strate-
gies. In this case a stronger refinement of the equilibrium
concept, known as social optimality. Given a quantum
advice, the choice of measurement settings (strategies),
one by each player, will be called social optimality if the
sum of all players’ payoffs is maximum. We also show
that quantum advice can provide unfair social optimal
strategies better than the classical one. Although we
have considered a particular class but our analysis points
out the effectiveness of nonlocal advice over any classi-
cal correlation. We have also completely characterize the
no-signaling advices providing advantage in these games
over the fair and unfair classical equilibrium strategies.

References

[1] J. S. Bell. On the Einstein Podolsky Rosen Paradox
Physics 1 (3): 195200 (1964). J. S. Bell, Speakable
and Unspeakable in Quantum Mechanics (Cambridge
University Press, 1987).

[2] N. Brunner and N. Linden. Connection between Bell
nonlocality and Bayesian game theory. Nature Com-
munications 4, 2057 (2013).

[3] A. Pappa et al. Nonlocality and Conflicting Interest
Games Phys. Rev. Lett. 114, 020401 (2015).

[4] A. Roy et al. Nonlocal correlations: Fair and Unfair
Strategies in Bayesian Game. arXiv:1601.02349, 2016.

22



Bell Correlations in Many-Body Systems

Jean-Daniel Bancal1 ∗ Roman Schmied2 Baptiste Allard2 Matteo Fadel2

Valerio Scarani3 4 Philipp Treutlein2 Nicolas Sangouard1

1 Quantum Optics Theory Group, Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel
2 Quantum Atom Optics Lab, Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel
3 Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

4 Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542

Abstract. Bell inequality violations have been demonstrated in systems involving up to fourteen par-
ticles, but testing a Bell inequality becomes increasingly challenging as the number of parties involved
increases. Yet, nonlocal correlations constitute a resource for device-independent information processing.
Here, we construct a Bell correlation witness, and show that it can be used to demonstrate that a state is
Bell correlated in situations where no Bell test can be performed. We report on an experimental violation
of the witness with about 480 atoms in a Bose-Einstein condensate. This opens the way for the study of
Bell nonlocality in many-body systems.

The violation of a Bell inequality is the key to device-
independent information processing. This allows one to
achieve tasks with one of the strongest form of secu-
rity known today. Security both against powerful ad-
versaries and in face of experimental uncertainties such
as systematic measurement errors. Device-independent
quantum key distribution (QKD) is an early example of
device-independent information processing [1]. Today,
more such tasks are known, including the certification of
quantum computation [2], of quantum states and mea-
surements [3], and randomness generation [4].

While most device-independent protocols rely on the
violation of bipartite Bell inequalities, new forms of corre-
lations are known to arise in presence of a larger number
of parties [5]. Testing a Bell inequality on many parties
is however technically challenging. Indeed, a Bell test
requires addressing of individual particles, which is sel-
dom possible when dealing with more than a few tens of
particles. The number of measurements that need to be
performed also increases rapidly with the number of par-
ties, and multipartite Bell inequalities typically involve
many-body correlations functions, which are difficult to
evaluate on systems involving many particles.

Building on the result of [6], we consider here the situa-
tion in which well-characterized collective measurements
are performed on an ensemble of particles. Using the few-
body correlator inequality from [6], we construct a wit-
ness operator for Bell correlated quantum states. This
witness only involves up to the second moment of two
collective measurements (see [7] for more details). It is
thus amenable to experimental test on large systems.

We test this witness on a Bose-Einstein Condensate
(BEC) of about 480 Rubidium atoms prepared in a spin-
squeezed state. An experimental violation of the witness
by 3.8 standard deviations is observed (see figure 1), thus
demonstrating that the atoms share Bell correlations, i.e.
the state of the atoms is able to violate a Bell inequality.

The witness introduced here constitutes an easy way
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Figure 1: Experimental value of the witnessW upon vari-
ation of a parameter θ (see [7] for more details). Non-
Bell-correlated states can only achieve a value of W ≥ 0.
The red dot is 3.8 standard deviations from the bound,
demonstrating that the measured state can useful for
device-independent tasks.

to certify that a many-body quantum system can be
used for a device-independent task. This opens questions
about the possible use of many-body quantum systems
for device-independent information processing. More ef-
forts are also needed to further characterize many-body
nonlocal states. Finally, this result brings Bell correla-
tions into the field of quantum many-body physics, where
entanglement is already known to be responsible for en-
hanced metrologic precisions [8].
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Abstract. Theoretically, witnessing entanglement is by measuring a special Hermitian observable, called
entanglement witness (EW), which has non-negative expected outcomes for all separable states but can
have negative expectations for certain entangled states. In practice, an EW implementation may suffer
from two problems. The first one is reliability. Due to unreliable realization devices, a separable state could
be falsely identified as an entangled one. The second problem relates to robustness. A witness may be
suboptimal for a target state and fail to identify its entanglement. To overcome the reliability problem, we
employ a recently proposed measurement-device-independent entanglement witness scheme, in which the
correctness of the conclusion is independent of the implemented measurement devices. In order to overcome
the robustness problem, we optimize the EW to draw a better conclusion given certain experimental data.
With the proposed EW scheme, where only data post-processing needs to be modified comparing to the
original measurement-device-independent scheme, one can efficiently take advantage of the measurement
results to maximally draw reliable conclusions.

Keywords: entanglement witness, measurement device independent

1 Introduction

Witnessing the existence of entanglement is an im-
portant and necessary step for quantum information
processing. In theory, entanglement can be witnessed
by measuring a Hermitian observable W , whose output
expectation for any separable state σ is non-negative,
Tr(Wσ) ≥ 0, but can be negative for certain entangled
state ρ, Tr(Wρ) < 0. In this case, we call W an entan-
glement witness (EW) for state ρ. In general, W can be
obtained by a linear combination of product observables,
which can be measured locally on the subsystems.
In reality, EW implementation may suffer from two

problems. The first one is reliability. That is, one might
conclude unreliable results due to imperfect experimental
devices. If the realization devices are not well calibrated,
the practically implemented observable W ′ may deviate
from the original theoretical design W , which can even
be not a witness. That is, there may exist some separable
states σ, such that Tr[σW ′] < 0 ≤ Tr[σW ]. Branciard et
al. proposed the measurement-device-independent entan-
glement witness (MDIEW) scheme [1], in which entangle-
ment can be witnessed without assuming the realization
devices. The MDIEW scheme is based on an important
discovery that any entangled state can be witnessed in a
nonlocal game with quantum inputs [2]. In the MDIEW
scheme, it is shown that an arbitrary conventional EW
can be converted to be an MDIEW, which has been ex-
perimentally tested [3].
The second problem lies on the robustness of EW im-

plementation. Since each (linear) EW can only identify
certain regime of entangled states, a given EW is likely
to be ineffective to detect entanglement existing in an
unknown quantum state. While a failure of detecting en-
tanglement is theoretically acceptable, in practice, such
failure may cause experiment to be highly inefficient. In
a way, this problem becomes more serious in the MDIEW
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scenario, where the measurement devices are assumed to
be uncharacterized and even untrusted. In this case, the
implemented witness, which may although be designed
optimal at the first place, can become a bad one which
merely detects no entanglement. However, the observed
experimental data may still have enough information for
detecting entanglement. Therefore, the key problem we
are facing here is that given a set of observed experimen-
tal data, what is the best entanglement detection capa-
bility one can achieve.
Here, we only briefly review our result and refer to

Ref. [4] for details.

2 Reliable entanglement witness

Focus on the bipartite scenario with Hilbert space
HA ⊗HB , with dimensions dimHA = dA and dimHB =
dB . For a bipartite entangled state ρAB defined on
HA⊗HB, we can always find a conventional entanglemen-
t witnessW such that Tr[WρAB ] < 0 and Tr[WσAB] ≥ 0
for any separable state σAB . Suppose {ωT

x } and {τTy } to
be two bases for Hermitian operators on HA and HB ,
respectively. Thus, we can decompose W on the basis
{ωT

x ⊗ τTy } by W =
∑
x,y β

x,yωT
x ⊗ τTy , where βx,y are re-

al coefficients and the transpose is for later convenience.
An MDIEW can be obtained by

J =
∑
x,y

βx,y1,1 p(1, 1|ωx, τy) (1)

where βx,y1,1 = βx,y and p(1, 1|ωx, τy) is the probability
of outputting (a = 1, b = 1) with input states (ωx, τy).
In the MDIEW design, Alice (Bob) performs Bell state
measurement on ρA (ρB) and ωx (τy).
As shown in Ref. [1], J is linearly proportional to

the conventional witness when the measurement is pro-
jecting onto the maximally entangled state |Φ+

AA⟩ =
1/
√
dA
∑
i |ii⟩ and |Φ+

BB⟩ = 1/
√
dB
∑
j |jj⟩, J =

Tr[WρAB ]/dAdB. Thus, J defined in Eq. (1) witnesses
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entanglement. Furthermore, it can be proved that such
a witness is independent of the measurement devices.

3 Robust MDIEW

Now, we present a method to optimize the MDIEW
given a fixed observed experiment data p(1, 1|ωx, τy).

Problem (formal): For a given probability distribution
p(1, 1|ωx, τy), minimize

J(βx,y) =
∑
x,y

βx,yp(1, 1|ωx, τy) (2)

over all βx,y satisfying∑
x,y β

x,yTr
[
σAB(ω

T
x ⊗ τTy )

]
≥ 0, for any separable

state σAB and Tr
[∑

x,y β
x,yωT

x ⊗ τTy

]
= 1.

A possible solution to this problem is to try all en-
tanglement witnesses to find the optimal one. However,
it is proved that the problem of accurately finding such
an optimal witness is NP-hard. Thus, our problem is
also intractable for the most general case. The key for
the problem being intractable is that there is no efficient
way to characterize an arbitrary entanglement witness.
In the bipartite case, an operator is an witness if and
only if Tr[σABW ] ≥ 0 for any separable state σAB . As
σAB can always be decomposed as a convex combination
of separable states as |ψ⟩A |ϕ⟩B , the condition can be e-
quivalently expressed as ⟨ψ|A ⟨ϕ|BW |ψ⟩A |ϕ⟩B ≥ 0, for
any pure states |ψ⟩A and |ϕ⟩B . The constraints for a wit-
ness W are very difficult to describe in the most general
case, which makes our problem hard.
While, this problem can be resolved if we allow certain

failure errors. A Hermitian operator Wϵ is defined as an
ϵ-level entanglement witness, when

Prob {Tr[σWϵ] < 0|σ ∈ S} ≤ ϵ, (3)

where S is the set of separable states. That is, the opera-
tor Wϵ has a probability less than ϵ to detect a randomly
selected separable quantum state to be entangled. Intu-
itively, ϵ can be regarded as a failure error probability.
We refer to Ref. [5] for a rigorous definition. It is shown
that the ϵ-level optimal EW can be found efficiently for
any given entangled state ρ. In particular, constrained
on Tr[Wϵ] = 1 andWϵ to be an ϵ-level EW, one can run a
semi-definite programming (SDP) to minimize Tr[Wϵρ].
Following the method proposed in Ref. [5], we can solve

the minimization problem given in Eq. (2) by allowing
a certain failure probability ϵ. First, we relax the con-
straints. Instead of requiring being non-negative for all
separable states, we randomly generate N separable s-
tates {|ψ⟩iA |ϕ⟩iB} and require that∑

x,y

βx,y⟨ωT
x ⊗ τTy ⟩i ≥ 0, ∀i ∈ {1, 2, . . . , N}, (4)

where ⟨ωT
x ⊗ τTy ⟩i = ⟨ψ|iA ⟨ϕ|iB ωT

x ⊗ τTy |ψ⟩iA |ϕ⟩iB . Then
the problem can be expressed as

Problem (ϵ-level): given a probability distribution
p(1, 1|ωx, τy), minimize

J(βx,y) =
∑
x,y

βx,yp(1, 1|ωx, τy) (5)

over all βx,y satisfying∑
x,y β

x,y⟨ωT
x ⊗ τTy ⟩i ≥ 0, ∀i ∈ {1, 2, . . . , N}, for N

randomly generated separable states {|ψ⟩iA |ϕ⟩iB} and∑
x,y β

x,yTr
[
ωT
x ⊗ τTy

]
= 1.

Note that

WB = ⟨ψ|AWϵ |ψ⟩A ≥ 0, ∀ |ψ⟩A , (6)

whereWB ≥ 0 indicates thatWB has non-negative eigen-
values. Therefore, we only need to generate N states
|ψ⟩iA, for i = 1, 2, . . . , N , and the problem is

Problem (ϵ-level, SDP): given a probability distribution
p(1, 1|ωx, τy), minimize

J(βx,y) =
∑
x,y

βx,yp(1, 1|ωx, τy) (7)

over all βx,y satisfying∑
x,y β

x,y ⟨ψ|iA ωT
x |ψ⟩iA τTy ≥ 0,∀i ∈ {1, 2, . . . , N}, for N

randomly generated states {|ψ⟩iA} and∑
x,y β

x,yTr
[
ωT
x ⊗ τTy

]
= 1.

Then, we can run an SDP to solve this problem. It is
worth to remark that the problem can be similarly solved
in the multipartite case.
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Abstract. The structural relation between multipartite entanglement and symmetry is one of the central
mysteries of quantum mechanics. In this paper, we study the separability of quantum states in bosonic
system. We show that mixture of multi-qubit Dicke state is separable if and only if its partial transpose
is positive semi-definite, which confirms the hypothesis of [Wolfe, Yelin, Phys. Rev. Lett. (2014)]. We
generalize this result to a class of bosonic states in d⊗ d system and show that for general d, determine its
separability is NP-hard although verifiable conditions for separability is easily derived in case d = 3, 4.
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Quantum entanglement has been regarded as a re-
source of cryptography and metrology. Therefore, it is
a fundamental problem to qualitatively test whether a
given state is entangled or not. In multipartite systems,
a quantum state is called fully separable, not entangled,
if it can be written as a statistical mixture of product
states. Although it is known to be NP-Hard of test-
ing separability [1], a considerable number of different
separability criterions have been discovered (see the ref-
erences in [4, 3]), including the famous Positive Partial
Transpose(PPT) criterion [2]. One widely used tool of
detecting entanglement is entanglement witnesses [5, 6].
Another key concept for entanglement detection is sym-
metry. The k-symmetric extension provides a hierarchy
of separability criteria [7, 8, 9, 11, 10], which converges
exactly to the set of separable states when k goes to in-
finity.

Due to the essential role of symmetry played in entan-
glement theory, it becomes of great interest to study the
relation between multipartite entanglement and symme-
try, more precisely, the entanglement of bosonic system.
For N -qubit bosonic system, a natural basis is N -qubit
Dicke states(unormalized),

|DN,n〉 :=

(
N

n

)
Psym

(
|0〉⊗n ⊗ |1〉⊗N−n),

with Psym being the projection onto the Bosonic (ful-
ly symmetric) subspace, i.e., Psym = 1

N !

∑
π∈SN

Uπ, the
sum extending over all permutation operators Uπ of the
N -qubit systems. Dicke states are particularly suitable
for the cold atomic systems, where the particle number
is usually thousands. Considerable efforts have been de-
voted to study entanglement of Dicke states, theoretically
[12, 13, 14, 15, 16, 17], and experimentally [19, 18, 20, 21].
The separability of bosonic states, especially the role of
PPT in the separability of bosonic system, has attract-
ed lot of attention. Eckert et.al prove that there is no
PPT entanglement in three-qubit bosonic system [12].
After 10 years, the existence of four-qubit bosonic PPT
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entanglement is demonstrated in Ref. [22]. Particularly,
analytical criteria of the separability of mixture of Dicke
states(MDS) is highly desired, and has been pursued ex-
tensively [23, 24, 25, 26, 27]. For instance, in Ref. [25],
Quesada et.al. provided the analytical expression for the
best separable approximation of MDS by using the idea
introduced by Lewenstein et.al. in [26]. In Ref. [27],
Wolfe and Yelin proposed the hypothesis that MDS is
separable if and only if it is PPT, according to their ideas
on generating sufficient separability criteria numerically.

In this paper, we confirm the validity of the hypoth-
esis that PPT indicates separability of mixture of Dicke
state(MDS). The idea is also generalized to proved that
the separability of mixture of bipartite high dimensional
Dicke states is NP-complete, although very simple crite-
rion is given when the local dimension is 3 or 4.

More precisely, we provide an analytical necessary and
sufficient condition for N -qubit separability of the MDS,
which was called diagonal symmetric states in previous
literatures [23, 22, 24, 25, 27],

ρ =

N∑
n=0

χn|DN,n〉〈DN,n|.

Theorem 1 The MDS ρ =
∑N
n=0 χn|DN,n〉〈DN,n| is

separable if and only if the following two Hankel Matrices
[29] M0,M1 are positive semi-definite, i.e.,

M0 :=

 χ0 · · · χm0

· · · · · · · · ·
χm0 · · · χ2m0

 ≥ 0, (1)

M1 :=

 χ1 · · · χm1

· · · · · · · · ·
χm1 · · · χ2m1−1

 ≥ 0, (2)

where m0 := [N2 ] and m1 := [N+1
2 ].

Theorem 2 N -qubit MDS ρ =
∑N
n=0 χn|DN,n〉〈DN,n|

is separable if and only if it is PPT. More precisely, ρ
is separable if and only if it is PPT under the partial
transpose of m0 = [N2 ] subsystems.
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These techniques to study the multi-qubit Dicke states
can be generalized to study the mixture of higher dimen-
sional bipartite Dicke states,

ρ =

d∑
i,j=1

χi,j |ψi,j〉〈ψi,j |,

with |ψi,j〉 :=

{
|ii〉 if i = j,

|ij〉+ |ji〉 otherwise.
being some basis

of d⊗ d symmetric subspace.
Recall the known hardness result on testing the mem-

bership of completely positive matrices in Ref. [28], we
have

Theorem 3 It is NP-Hard to decide whether ρ =∑d
i,j=1 χi,j |ψi,j〉〈ψi,j | is separable. On the other hand,

for d = 3, 4, it is separable if and only if χ = (χij)d×d is
semi-definite positive.

In this paper, we study the separability of bosonic s-
tate. We prove the validity of the hypothesis of Ref. [27]
by demonstrating an analytical condition for the sepa-
rability of mixture of N -qubit Dicke states. These tech-
niques are also applied on the mixture of d ⊗ d Dick-
e states, and hardness result is showed. We hope that
our techniques for certifying entanglement witness and
positive polynomials, may prove useful in furthering the
understanding of entanglement.
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[15] R. Hübener, M. Kleinmann, T-C Wei, C. González-
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Abstract. We show that the entanglement of any rank-2 state quantified with any polynomial
measure of entanglement can be expressed as a geometric problem on the corresponding Bloch
sphere. This setting provides novel insight into the properties of entanglement and allows us to
relate different polynomial measures to each other, simplifying their quantification. In particular,
using the geometric structure of the concurrence, we show that the convex roof of any polynomial
measure can be quantified exactly for rank-2 states which have only one or two unentangled
states in their range. We give explicit examples by quantifying the three-tangle exactly for
several representative classes of rank-2 three-qubit states. We also show how this method can be
used to obtain analytical results for more complex systems if one can exploit symmetries in their
geometry. We provide a direct application of the result by investigating the monogamy relations
of multi-qubit systems.

Keywords: entanglement measures, convex roof, entanglement monogamy

1 Introduction

Ever since the use of entanglement was recognised
as a useful resource in many quantum information
protocols, there has been a consistent effort to de-
velop a comprehensive framework for entanglement
quantification [1]. However, the promising results
in quantifying bipartite entanglement did not easily
generalise to systems of more parties, where even for
the three-qubit case we only have analytical results
in very few, special cases. In particular, the complex
optimisation problems involved in the quantification
of multipartite entanglement are a major obstacle to
obtaining a full understanding of the properties of
entanglement in general.

A particular class of well-studied and often-used
measures of entanglement are the polynomial mea-
sures, such as the concurrence of two qubits, the
three-tangle of three qubits, or generalised measures
for any number of qubits and qudits. Their quan-
tification for mixed states involves the difficult opti-
misation problem of evaluating the so-called convex
roof, that is, minimising the entanglement over all
possible pure-state decompositions. While the con-
currence of any two-qubit state can be quantified
exactly, the framework for quantification of entan-
glement of more qubits is in its infancy, and exact
results have only been obtained in very few, special
cases.

In this work [2, 3], we develop a geometric
approach to understanding and quantifying con-
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vex roof-extended polynomial measures of entan-
glement, establishing a link between geometric and
algebraic methods for entanglement quantification.
Our approach reveals common relations between dif-
ferent polynomial measures on pure states and al-
lows for a simplification of the problem of evaluating
their convex roof on mixed states.

2 Results

Any rank-2 quantum system can be visualised in
the well-known graphical representation called the
Bloch sphere. We show that for any such state,
the quantification of its entanglement corresponds
to a geometric problem of measuring distances on
the Bloch sphere. This approach allows the entan-
glement of all rank-2 states to enjoy a convenient
visual representation, which considerably simplifies
the study and understanding of their properties.

We first investigate the properties of the concur-
rence, derive its geometric structure in detail (see
Fig. 1), and use geometric methods to fully quan-
tify its convex roof. We then show that for all rank-
2 states which have only one or two unentangled
states in their range (their Bloch sphere), the geo-
metric structure of all polynomial measures of en-
tanglement is identical to that of the concurrence.
We call such states one-root and two-root states,
respectively. This result allows us to quantify the
convex roof exactly, not just for the concurrence,
but also for the three-tangle and for any other poly-
nomial measure of any degree.

Using the geometric approach, we provide ex-
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Figure 1: The curves of constant entanglement for
the concurrence (or any other polynomial measure
in two-root states). The curves obtained as the in-
tersection of the surface with the Bloch sphere show
all states with a given value of entanglement.

act, easily computable formulas for the entangle-
ment of all one-root and two-root mixed states. We
additionally prove an even stronger geometric re-
sult, showing that for all polynomial entanglement
measures of degree 2, the entanglement of one-root
states does not depend on the chosen convex decom-
position and becomes trivial to compute.

Further, we show that several classes of four-qubit
states have marginals which are one- or two-root
states, meaning that the simplified entanglement
properties are a common occurrence among all rank-
2 three-qubit systems. We show a direct physical
application of the relevant classes of states by inves-
tigating the monogamy of entanglement. In partic-
ular, we introduce a generalised form of the well-
known Coffman-Kundu-Wootters monogamy rela-
tion [4] in which we consider multipartite entangle-
ment in addition to the bipartite one, and we show
that among four-qubit states this stronger form of
monogamy is violated only for a small subset of
states. Interestingly, all of the states in the vio-
lating subset have one-root marginals, allowing us
to quantify exactly the three-partite entanglement
in these states [5]. The exact quantification of the
convex roof thanks to the simplified properties of
one-root states is therefore crucial to understand-
ing monogamy relations in systems of many qubits,
proving the relevance of the geometric methods in-
troduced in our work.

Lastly, we show that the geometric approach can
be used beyond one- and two-root states, employing
the case of the mixtures of GHZ and W states as an
example. We rederive known results for this class
of states [6] in the new approach, justifying its use

in a broader range of states and showing that the
geometric methods can be extremely helpful if the
Bloch sphere of a the considered state enjoys certain
symmetries.

3 Discussion

We introduced a geometric approach to character-
ising and quantifying convex roof-extended polyno-
mial measures of entanglement, showing a relation
between different measures and allowing for a sim-
plification of the problem of quantifying their con-
vex roof. While geometric methods have been em-
ployed in the study of entanglement, their applica-
tion to quantifying polynomial measures of entan-
glement has not been explored before. We showed
that this approach provides novel insight into the
structure of entanglement for rank-2 states, allow-
ing us to derive many simplified properties of such
states and quantify their entanglement exactly in
many relevant cases of three-qubit states as well as
more complex systems.

We investigated the particularly simplified cases
of one-root and two-root states, for which we can
quantify the convex roof of any polynomial measure
exactly. We showed that states of this type, in ad-
dition to being crucial in studying the generalised
monogamy relations of entanglement, are a common
occurrence among quantum states and thus of high
importance in quantum information.

Our approach not only provides a convenient vi-
sual representation for the properties of entangle-
ment, allowing us to introduce geometric insights
and results into the problem of entanglement quan-
tification, but also has immediate applications in the
theory of quantum correlations.
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An Improved Semidefinite Programming Upper Bound on Distillable
Entanglement and Nonadditivity of Rains’ Bound
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Abstract. A new additive and semidefinite programming (SDP) computable entanglement
measure is introduced to upper bound the amount of distillable entanglement in bipartite quan-
tum states by PPT operations. This quantity is always smaller than or equal to the logarithmic
negativity, the previously best known SDP bound on distillable entanglement, and the inequality
is strict in general. By using similar techniques, a succinct SDP characterization of the one-copy
PPT-assisted deterministic distillation rate for any bipartite state is also obtained. We also
resolve two open problems in entanglement theory by showing that the Rains’ bound is neither
additive nor equal to the asymptotic relative entropy of entanglement. Finally, we introduce an
SDP quantity not only to lower bound the entanglement cost of general bipartite states, but also
to upper bound the PPT-assisted deterministic distillation rate.

Keywords: distillable entanglement, entanglement measure, entanglement cost, Rains’ bound

Introduction One basic entanglement measure
is the entanglement of distillation, denoted by ED,
which characterizes the rate at which one can ob-
tain maximally entangled states from an entangled
state by local operations and classical communica-
tion (LOCC) [1, 2]. Entanglement cost EC [1, 3] is
another fundamental measure in entanglement the-
ory, which quantifies the rate for converting maxi-
mally entangled states to the given state by LOCC.
Since both distillable entanglement and the entan-
glement cost are important but difficult to compute
[4], it is of great importance to find the best ap-
proach to efficiently evaluate them.
Improved SDP upper bound on distill-

able entanglement The logrithmic negativity of
a quantum state ρAB is given by EN(ρAB) ∶=
log2 min ∥ρTBAB∥1 [5, 6] . We now introduce a new
SDP quantity EW as follows:

EW (ρAB) = log2 min ∥XTB
AB∥1, s.t. XAB ≥ ρAB.

Theorem 1 The function EW (⋅) has the following
properties:

i) Additivity under tensor product: EW (ρAB ⊗
σA′B′) = EW (ρAB) +EW (σA′B′).

∗xin.wang-8@student.uts.edu.au
†runyao.duan@uts.edu.au

ii) Upper bound on PPT distillable entan-
glement: EΓ(ρAB) ≤ EW (ρAB).

iii) Detecting genuine PPT distillable entangle-
ment: EW (ρAB) > 0 if and only if ρAB is PPT
distillable.

iv) Entanglement monotone under PPT op-
erations: EW (Λ(ρAB)) ≤ W (ρAB) for any
Λ ∈ LOCC (and PPT).

v) Improved bound over logarithmic neg-
ativity: EW (ρAB) ≤ EN(ρAB), and the in-
equality can be strict.

It is worth pointing out that EN has all properties

i) to iv). In particular, for ρ
(α)
AB = ∑2

m=0 ∣ψm⟩⟨ψm∣/3
(0 < α ≤ 0.5) with ∣ψ0⟩ =

√
α∣01⟩+

√
1 − α∣10⟩, ∣ψ1⟩ =√

α∣02⟩+
√

1 − α∣20⟩, and ∣ψ2⟩ =
√
α∣12⟩+

√
1 − α∣21⟩,

we have EW (ρ(α)AB) < EN(ρ
(α)
AB).

Nonadditivity of Rains’ bound The Rains’
bound is arguably the best known upper bound of
distillable entanglement [7]. As it is is proved to
be equal to the asymptotic relative entropy of en-
tanglement for Werner states [8] and orthogonally
invariant states [9], one open problem is whether
these two quantities always coincide. Another open
problem is whether Rains’ bound is additive [9].

We resolve the above two open problems by in-
troducing a class of two-qubit states ρr whose clos-
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est separable states can be derived by the result
in Ref. [10]. Thus, the Rains’ bound of ρr is ex-
actly given. Then we apply the algorithm in Refs.
[11, 12] to demonstrate the gap between R(ρ⊗2

r ) and
2R(ρr). The example is ρr = 1

8 ∣00⟩⟨00∣ + x∣01⟩⟨01∣ +
7−8x

8 ∣10⟩⟨10∣ + 32r2−(6+32x)r+10x+1

4
√

2
(∣01⟩⟨10∣ + ∣10⟩⟨01∣)

with x = r + 32r2−10r+1
256r2−160r+33

+ (16r−5)y−1

32 ln (5/8−y)−32 ln (5/8+y) ,

y = (4r2 − 5r/2 + 33/64)1/2.

Theorem 2 For 0.45 ≤ r ≤ 0.548, we have
R(ρr0)⊗2 < 2R(ρr0). Meanwhile, E∞

R (ρr0) < R(ρr0).

It is now reasonable to define the asymptotic Rains’
bound, i.e., R∞(ρ) = infn≥1

1
nR(ρ

⊗n). Clearly R∞

would be a better upper bound for the distillable en-
tanglement. How to evaluate this quantity remains
open.
Deterministic distillation rate The deter-

ministic entanglement distillation concerns about
how to distill maximally entangled states exactly.
The one-copy PPT-assisted deterministic distilla-
tion rate can be formalized as an SDP.

Theorem 3 For bipartite state ρAB,

E
(1)
Γ,0(ρAB) =max

R
− log2 ∥RTBAB∥∞,

s.t. PAB ≤ RAB ≤ 1AB,
(1)

where PAB is the projection onto supp(ρAB).
And the asymptotic rate is given by EΓ,0(ρ) ∶=
supn≥1E

(1)
Γ,0(ρ⊗n)/n = limn≥1E

(1)
Γ,0(ρ⊗n)/n.

For a bipartite quantum state ρAB, we define

EM(ρAB) = − log2 max TrPABVAB,

s.t. Tr ∣V TB
AB ∣ = 1, VAB ≥ 0.

(2)

We further show that EM(ρ) is not only the upper
bound of the deterministic distillation rate of ρ, but
also a lower bound for the asymptotic Rains’ bound.

Theorem 4 For any bipartite state ρ, EΓ,0(ρ) ≤
EM(ρ) ≤ R∞(ρ) ≤ EC(ρ).

The last inequality is from Ref. [13]. Interestingly,
EM also gives the PPT-assisted deterministic distil-
lation rate for many special cases.
Conclusions We present a new and improved

SDP upper bound EW to the distillable entangle-
ment. This quantity enjoys additional nice prop-
erties such as additivity under tensor product and
monotonicity under both LOCC and PPT opera-
tions. Furthermore, we show that the Rains’ bound

is neither additive nor equal to the asymptotic rela-
tive entropy of entanglement by constructing a class
of two-qubit states. We also introduce the asymp-
totic Rains’ bound and give an SDP lower bound
EM for it, which provides an efficiently computable
lower bound for the entanglement cost of general bi-
partite states for the first time. Finally, we provide
a refined SDP for the one-copy PPT-assisted dis-
tillation rate and show that EM is the best upper
bound for the asymptotic rate. Proof details of our
main results can be found in arxivs: 1601.07940 and
1605.00348.
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Extendability, complete extendability and a measure of entanglement
for Gaussian states
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Abstract. Motivated by the notions of k-extendability and complete extendability of the state of a
finite level quantum system as described by Doherty et al (Phys. Rev. A, 69:022308), we introduce
parallel definitions in the context of Gaussian states and using only properties of their covariance matrices
derive necessary and sufficient conditions for their complete extendability. It turns out that the complete
extendability property is equivalent to the separability property of a bipartite Gaussian state. We also
give proof for this in general bipartite quantum states (need not be of finite dimensions). We further show
that maximum extendability number can be used as a measure of entanglement for Gaussian states.

Following the proof of quantum de Finetti theorem as outlined in Hudson and Moody (Z. Wahrschein-
lichkeitstheorie und Verw. Gebiete, 33(4):343–351), we show that separability is equivalent to complete
extendability for a state in a bipartite Hilbert space where at least one of which is of dimension greater
than 2. This, in particular, extends the result of Fannes, Lewis, and Verbeure (Lett. Math. Phys. 15(3):
255–260) to the case of an infinite dimensional Hilbert space whose C* algebra of all bounded operators is
not separable.

Keywords: Gaussian state, exchangeable Gaussian state, extendability, entanglement, measure of entan-
glement.

1 Introduction

One of the most important problems in quantum me-
chanics as well as quantum information theory is to de-
termine whether a given bipartite state is separable or
entangled [5]. There are several methods in tackling this
problem leading to a long list of important publications.
A detailed discussion on this topic is available in the sur-
vey articles by Horodecki et al [3], and Gühne and Tóth
[2]. One such condition which is both necessary and suffi-
cient for separability in finite dimensional product spaces
is complete extendability [1].

Definition 1 Let k ∈ N. A state ρ ∈ B(HA ⊗ HB) is
said to be k-extendable with respect to system B if there
is a state ρ̃ ∈ B(HA⊗H⊗kB ) which is invariant under any

permutation in H⊗kB and ρ = TrH⊗(k−1)
B

ρ̃, k ≥ 2.

A state ρ ∈ B(HA ⊗ HB) is said to be completely ex-
tendable if it is k-extendable for all k ∈ N.

The following theorem of Doherty, Parrilo, and Spedalieri
[1] emphasizes the importance of the notion of complete
extendability.

Theorem A:[1] A bipartite state ρ ∈ B(HA ⊗HB) is
separable if and only if it is completely extendable with
respect to one of its subsystems.

In this paper we have introduced concept of extend-
ability of Gaussian states. We have further shown that

∗bhat@isibang.ac.in
†krp@isid.ac.in
‡rb@isid.ac.in

any state in a bipartite Fock space is extendable if and
only if it is separable. We have reduced these conditions
in terms of simple matrix inequalities which in principle
can be solved by computer programmes.

2 Gaussian extendability

Definition 2 (Gaussian extendability) Let k ∈ N.
A Gaussian state ρg in Γ(Cm) ⊗ Γ(Cn) is said to be
Gaussian k-extendable with respect to the second sys-
tem if there is a Gaussian state ρ̃g in Γ(Cm)⊗ Γ(Cn)⊗k

which is invariant under any permutation in Γ(Cn)⊗k

and ρg = Tr Γ(Cn)⊗(k−1) ρ̃g, k ≥ 2.
A Gaussian state ρg in Γ(Cm) ⊗ Γ(Cn) is said to

be Gaussian completely extendable if it is Gaussian k-
extendable for every k ∈ N.

Theorem 3 Let ρ be a bipartite Gaussian state in

Γ(Cm) ⊗ Γ(Cn) with covariance matrix S =

[
A B
BT C

]
,

where A and C are marginal covariance matrices of the
first and second system respectively. Then ρ is completely
extendable with respect to the second system if and only
if there exists a real positive matrix θ such that

C +
ı

2
J2n ≥ θ ≥ BT

(
A+

ı

2
J2m

)−
B, (1)

where
(
A+ ı

2J2m

)−
is the Moore-Penrose inverse of A+

ı
2J2m.

Theorem 4 Any separable Gaussian state in a bipartite
system is completely extendable.
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Theorem 5 Any two-mode quantum Gaussian state ρ is
completely extendable if and only if it is separable.

Theorem 6 If a state ρ (not necessarily Gaussian) on
a bipartite Fock space is completely extendable, then it is
separable.

3 Complete extendability and separabil-
ity in general case

Consider a separable Hilbert space h and denote B =
B(h) the C* algebra of all bounded operators on h. Let
Bn = B(h⊗n) = B⊗n be the n-fold tensor product of
copies of B. Let B∞ be the C* inductive limit of Bn and
S denote the set of all states in B∞ equipped with the
weak* topology. Then S is a compact convex set. For
any ω ∈ S, define

ωn(X) = ω(in(X)), X ∈ Bn.

Then ωn is a state in Bn for all n and

ωn−1(X) = ωn(X ⊗ I), ∀X ∈ Bn−1, n = 2, 3, · · · .

in other words {ωn} is a consistent family of states in
{Bn}, n = 2, 3, · · · with the projective limit ω.

Conversely, let ωn be a state in Bn for each n =
1, 2, 3, · · · such that ωn(X ⊗ I) = ωn−1(X ⊗ I), ∀X ∈
Bn−1, n = 2, 3, · · · . Then there exists a unique state ω
in B∞ such that

ω(in(X)) = ωn(X), ∀X ∈ Bn, n = 1, 2, 3, · · · .

Definition 7 A state ω in B∞ is said to be locally nor-
mal if each ωn in Bn, n = 1, 2, · · · is determined by a
density operator ρn, n = 1, 2, · · · , i.e., a positive opera-
tor ρn of unit trace in h⊗n satisfying

ωn(X) = Tr ρnX, X ∈ Bn, n = 1, 2, · · · .

Then the relative trace of ρn in h⊗n over the last copy of
h is equal to ρn−1 for each n = 2, 3, · · · .

Definition 8 A state in B∞ is said to be exchangeable
if for any permutation π of {1, 2, · · · , n} and operators
Xj ∈ B, i = 1, 2, · · · , n

ωn(Xπ(1) ⊗Xπ(2) ⊗ · · · ⊗Xπ(n))

= ωn(X1 ⊗X2 ⊗ · · · ⊗Xn)

= ω(in(X1 ⊗X2 ⊗ · · · ⊗Xn)).

We shall now describe a version of quantum de Finetti
theorem due to Hudson and Moody [4] (see also Størmer
[6] for an abstract C* algebraic version) which we shall
make use of in our analysis of complete extendability -
separability problem. To this end denote by Rh the set
of all density operators on h. Viewing Rh as a subset of
the dual of B = Bh, equip it with the relative topology
inherited from the weak* topology. Let Ph denote the
set of all probability measures on the Borel σ-algebra of
Rh.

Theorem 9 [Hudson and Moody] A locally normal state
ω on B∞ is exchangeable if and only if there exists a
probability measure Pω in Ph such that

ω(in(X)) =

∫
Rh

Tr ρ⊗nX Pω(d ρ), ∀X ∈ Bn, n = 1, 2, · · · .

The correspondence ω → Pω between the set of locally
normal and exchangeable states and the set Ph of proba-
bility measures on Rh is bijective.

Remark 1 Theorem 9 shows that exchanbeability prop-
erty automatically implies that every finite dimensional
projection of ω, namely ωn, is separable. It is natural to
expect that complete extendeability would force separabil-
ity.

Theorem 10 Let h0, h be Hilbert spaces with dim h0 > 2
and ρ be a density operator in h0 ⊗ h. Let Bn] =
B(h0 ⊗ h⊗n), n = 0, 1, 2, · · · . Suppose there exist den-
sity operators ρn in h0 ⊗ h⊗n, n = 1, 2, · · · satisfying the
following properties:

1. ρ1 = ρ and

Tr ρn(X ⊗ I) = Tr ρn−1X, X ∈ Bn],

I being the identity in h, n = 1, 2, · · · .

2. For any X0 ∈ B(h0), Yj ∈ B(h), j = 1, 2, · · · , n and
any permutation π of {1, 2, · · · , n}

Tr ρnX0⊗Y1⊗· · ·⊗Yn = Tr ρnX0⊗Yπ(1)⊗· · ·⊗Yπ(n).

Then ρ is separable in h0⊗h. Furthermore ρn is separable
in h0 ⊗ h⊗n, n = 1, 2, · · · .

Results of this paper are taken from
http://arxiv.org/abs/1601.02365. The last theorem
will be posted soon in a separate preprint.
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