
August 30, 2016 (Tuesday)  

 

09:00 - 10: 00 [Invited Talk] The largest possible gaps between quantum and classical  

Algorithms………………………………….…………………………………………………….…1 

Andris Ambainis (University of Latvia) 

10:30 - 11: 00 [Long Talk] Higher-Effciency Quantum Algorithms for Simulation of  

Chemistry………………………………………………………………..………………………….2 

Ryan Babbush (Google), Dominic W. Berry (Macquarie University), Ian D. Kivlichan 

(Harvard University), Annie Y. Wei (Harvard University), Dean Southwood (Macquarie 

University), Peter J. Love (Tufts University), and Alań Aspuru-Guzik (Harvard University)  

11:00 - 11:30 [Long Talk] Perfect commuting-operator strategies for linear system games.............5 

Richard Cleve (University of Waterloo), Li Liu (University of Waterloo), and William Slofstra 

(University of Waterloo) 

11:30 - 12:00 [Long Talk] A Four-Round LOCC Protocol Outperforms All Two-Round Protocols in  

Reducing the Entanglement Cost for A Distributed Quantum Information Processing……..7 

Eyuri Wakakuwa (University of Electro-Communications), Akihito Soeda(University of 

Tokyo), and Mio Murao (University of Tokyo)  

14:00 - 16:00 [Parallel Session A] 

14:00 - 14:20 Universal Quantum Emulator………………….………………………..…….……….9 

Iman Marvian (MIT) and Seth Lloyd (MIT) 

    14:20 - 14:40 Characterizing Supremacy in Near Term Quantum Devices…….....…….…...…11 

  Sergio Boixo (Google), Sergei Isakov(Google), Vadim Smelyanskiy (Google), Ryan 

Babbush (Google), Ding Nan (Google), Zhang Jiang (NASA), John Martinis (Google), and  

Hartmut Neven (Google) 

14:40 - 15:00 Factoring with Qutrits: Application of Improved Circuit Synthesis on Two  

Ternary Architectures……..……………………………………………..……..………………..14 

Alex Bocharov (Microsoft), Shawn X. Cui (UCSB), Martin Roetteler (Microsoft), and Krysta 

M.Svore (Microsoft) 

   15:00 - 15:20 Space-Efficient Error-Reduction for Unitary Quantum Computations…………..17 

Bill Fefferman (University of Maryland), Hirotada Kobayashi (National Institute of 

Informatics), Cedric Yen-Yu Lin (University of Maryland), Tomoyuki Morimae (Gunma 

University), and Harumichi Nishimura (Nagoya University) 

    15:20 - 15:40 Hamiltonian quantum computer in one dimension…..…………..……….....…….19 

Tzu-Chieh Wei (State Uiversity of New York at Stony Brook) and John C. Liang 

(Rumson-Fair Haven Regional High School) 

    15:40 - 16:00 Nonlocal correlations: Fair and Unfair Strategies in Bayesian Game…..….……21 

Arup Roy (Indian Statistical Institute), Amit Mukherjee (Indian Statistical Institute), Tamal 

Guha (Indian Statistical Institute), Sibasish Ghosh (Institute of Mathematical Sciences), 



Some Sankar Bhattacharya (Indian Statistical Institute), and Manik Banik (Institute of 

Mathematical Sciences) 

14:00 – 16:00 [Parallel Session B]  

14:00 - 14:20 Bell Correlations in Many-Body Systems………………..…..……………………23 

Jean-Daniel Bancal (University of Basel), Roman Schmied (University of Basel), Baptiste 

Allard (University of Basel), Matteo Fadel (University of Basel), Valerio Scarani  (National 

University of Singapore), Philipp Treutlein (University of Basel), and Nicolas Sangouard 

(University of Basel) 

14:20 - 14:40 Reliable and robust entanglement witness………..…………………….………..25 

Xiao Yuan (Tsinghua University, Beijing), Quanxin Mei (Tsinghua University, Beijing), Shan 

Zhou (Tsinghua University, Beijing), and Xiongfeng Ma (Tsinghua University, Beijing) 

    14:40 - 15:00 Separability of Bosonic States………..…………………………………..………...27 

       Nengkun Yu (University of Technology Sydney / University of Waterloo / University of 

Guelph) 

    15:00 - 15:20 A geometric approach to entanglement quantification with polynomial  

measures……..………………………………….…………………………...…………………...29 

Bartosz Regula (University of Nottingham) and Gerardo Adesso (University of Nottingham) 

    15:20 - 15:40 An Improved Semidefinite Programming Upper Bound on Distillable 

Entanglement and Nonadditivity of Rains’ Bound..………………………...………………….31 

  Xin Wang (University of Technology Sydney) and Runyao Duan (University of Technology  

Sydney / Chinese Academy of Sciences) 

 15:40 - 16:00 Extendability, complete extendability and a measure of entanglement for  

Gaussian states……..………………………………….………………………………………....33 

  B. V. Rajarama Bhat (Indian Statistical Institute), K. R. Parthasarathy (Indian  

Statistical Institute), and Ritabrata Sengupta (Indian Statistical Institute)  

16:30-18:30  [Poster session] 

Posters 

PT1 A lower bound on expected communication cost of quantum state redistribution……….....…35 

Anurag Anshu (National University of Singapore) 

PT2 An approximated single photon state generation from coherent states entangled with qubits by  

measuring qubits…………….………………………………....……………………………..…59 

Fumiaki Matsuoka (Hokkaido University) and Akihisa Tomita (Hokkaido University) 

PT3 Asymptotic Convertibility of Entanglement: A General Approach to Entanglement  

Concentration and Dilution………………….……………..…………………………..……..…61  

Yong Jiao (University of Electro-Communications), Eyuri Wakakuwa (University of 

Electro-Communications), and Tomohiro Ogawa (University of Electro-Communications) 

PT4 Attenuated quantum channel with probabilistic transmissivity……………………………..……63 

Kenshiro Kita (Aichi Prefectural University), Shinji Koyama (Aichi Prefectural University), 



Minami Tanaka (Aichi Prefectural University), and Tsuyoshi Sasaki Usuda (Aichi 

Prefectural University) 

PT5 Bridging the theory and experiment for device-independent quantum information………...…65 

Pei-Sheng Lin (National Cheng Kung University), Denis Rosset (National Cheng Kung 

University), and Yeong-Cherng Liang (National Cheng Kung University) 

PT6 Device-independent witnesses for entanglement depth: a case study……………….……..…67 

Jui-Chen Hung (National Cheng Kung University) and Yeong-Cherng Liang (National 

Cheng Kung University) 

PT7 Estimation on the execution time of a quantum computer from the analysis on quantum  

assembly code……………………………..…………………………….………………………69 

Yongsoo Hwang (Electronics and Telecommunications Research Institute) and Byung-Soo 

Cho (Electronics and Telecommunications Research Institute) 

PT8 Generating tripartite nonlocality from bipartite resources……………………………….…….....71 

Zhaofeng Su (University of Technology Sydney) and Yuan Feng (University of Technology 

Sydney) 

PT9 Graph-Associated Entanglement Cost of Multipartite State in Exact and Finite-Block-Length  

Approximate Construction………………………….………………………………………...…73 

Hayata Yamasaki (University of Tokyo), Akihito Soeda (University of Tokyo), and Mio 

Murao (University of Tokyo) 

PT10 Homological codes and abelian anyons………………...……………………..………………...75 

Péter Vrana (Budapest University of Technology and Economics) and Máté Farkas 

(Budapest University of Technology and Economics / University of Gdańsk) 

PT11 On Thermalisation of Two-Level Quantam Systems………………………….........………..…77 

Sagnik Chakraborty (The Institute of Mathematical Sciences), Prathik Cherian J (The 

Institute of Mathematical Sciences), and Sibasish Ghosh (The Institute of Mathematical 

Sciences) 

PT12 Optimization of Quantum Circuits with Multiple Outputs………………………………..……...80 

Masato Onoda (Ritsumeikan University), Kouhei Kushida (Ritsumeikan University), and 

Shigeru Yamashita (Ritsumeikan University) 

PT13 Parallelization of Braiding Operations for Topological Quantum Computation………….…...82 

  Kotaro Hoshi (Ritsumeikan University) and Shigeru Yamashita (Ritsumeikan University) 

PT14 Performance of Coupled Systems as Quantum Thermodynamic Machines…..…………….84 

George Thoma (The Institute of Mathematical Sciences), Manik Banik (The Institute of 

Mathematical Sciences), and Sibasish Ghosh (The Institute of Mathematical Sciences) 

PT15 Quantum Algorithm for Linear Equations with a Circulant Matrix………………...…………...87 

Souichi Takahira (Aichi Prefectural University), Asuka Ohashi (Ritsumeikan University), 

Tomohiro Sogabe (Nagoya University), and Tsuyoshi Sasaki Usuda (Aichi Prefectural 

University) 



PT16 Quantum Circuit Design of Integer Division Optimizing Ancillary Qubits and T-count……....89 

Himanshu Thapliyal (University of Kentucky), T. S. S. Varun (University of Kentucky), and 

Edgard Munoz-Coreas (University of Kentucky) 

PT17 Quantum Computation with Flying Electron Spin Qubits in Surface Acoustic Wave Systems 

      ……………………………………………………………………………………..…………….....91 

David Arvidsson-Shukur (University of Cambridge / Hitachi Cambridge Laboratory), Jacek 

Mosakowski (University of Cambridge / Hitachi Cambridge Laboratory), Mrittunjoy 

Guha-Majumdar (University of Cambridge / Hitachi Cambridge Laboratory), Ward 

Haddadin  (University of Cambridge), and Crispin Barnes (University of Cambridge) 

PT18 Quantum input-output algorithms for quantum systems with limited controllability……...…..94 

Ryosuke Sakai (University of Tokyo), Akihito Soeda (University of Tokyo), and Mio Murao 

(University of Tokyo) 

PT19 Quantum Media Conversion Between SAW Driven Flying Electron-Spin Qubits and Flying  

Photon-Polarization Qubits……………..……….………………………..…….………………96 

H. V. Lepage (University of Cambridge) and C. H. W. Barnes (University of Cambridge) 

PT20 Quantum Multiclass Support Vector Machine with Quantum One Against All Approach for  

Big Data Classification……………………………….………………………….……………....98 

 Arit Kumar Bishwas (Amity University), Ashish Mani (Amity University), and Vasile Palade  

(Coventry University) 

PT21 Reducing Loops for Topological Cluster State Quantum Computation………………….….100 

Kentaro Haneda (Ritsumeikan University), Shigeru Yamashita (Ritsumeikan University), 

Simon Devitt (Riken), and Kae Nemoto (National Institute of Informatics) 

PT22 Reduction of computation complexity of classical optimal decoding by adiabatic quantum  

  computation…………………………………..…………………………..……………………..102 

Yuta Nishino (Aichi Prefectural University), Souichi Takahira (Aichi Prefectural University), 

Akihito Kadoya (Aichi Prefectural University), Asuka Ohashi (Ritsumeikan University), and 

Tsuyoshi Sasaki Usuda (Aichi Prefectural University) 

PT23 Reduction of Quantum Cost by Changing the Functionality…………………………...……..104 

Nurul Ain Binti Adnan (Ritsumeikan University), Kouhei Kushida (Ritsumeikan University), 

and Shigeru Yamashita (Ritsumeikan University) 

PT24 Regularized Boltzmann entropy determines possibility of macroscopic adiabatic  

transformation………………………...………………………………….…………...………...106 

Hiroyasu Tajima (RIKEN) and Eyuri Wakakuwa (University of Electro-Communications) 

PT25 States evolution of a quantum-feedback-enhanced single photon source……………….....108 

C. Y. Chang (Georgia Institute of Technology / Georgia Tech Lorraine), D. S. Citrin 

(Georgia Institute of Technology / Georgia Tech Lorraine), L. Lanco (LPN/CNRS), and P. 

Senellart (LPN/CNRS) 

PT26 Steering fraction and its application to the superactivation of Einstein-Podolsky-Rosen  



steering……..……………………………………………………………………………………110 

Chung-Yun Hsieh (Tsing Hua University, Hsinchu), Yeong-Cherng Liang (National Cheng 

Kung University), and Ray-Kuang Lee (Tsing Hua University, Hsinchu / National Center for 

Theoretical Science) 

PT27 Visualizing the sets of 3-local and 3-quantum correlations…………………….....……...…..112 

Rui-Yang You (National Cheng Kung University), Denis Rosset (National Cheng Kung 

University / University of Geneva), and Yeong-Cherng Liang (National Cheng Kung 

University) 



The largest possible gaps between quantum and classical algorithms

Andris Ambainis1

1 University of Latvia

Abstract. We investigate the biggest possible gaps between quantum and classical algorithms in the
query model of computation (which encompasses most of the known quantum algorithms). We consider
two settings: computing partial functions and computing total functions.

For partial functions, we exhibit a property-testing problem called Forrelation, where one needs to decide
whether one Boolean function is highly correlated with the Fourier transform of a second function. We show
that this problem can be solved using 1 quantum query but any randomized algorithm needs Ω(

√
N/logN)

queries (improving an Ω(N1/4) lower bound of Aaronson). We also show that this separation is close to
being optimal: any 1-query quantum algorithm can be simulated by a randomized algorithm that makes
Ω(

√
N) queries and any t-query quantum algorithm whatsoever can be simulated by an Ω(N1−1/2t)-query

randomized algorithm. We conjecture that a natural generalization of Forrelation achieves the optimal t
versus Ω(N1−1/2t) separation for all t.

For total functions, much smaller gaps between different models of computation are achievable (due
to the fact that the algorithm must output a decisive answer on every input). Before our work, the
biggest known gap for total functions was the quadratic gap achieved by Grover’s search algorithm. We
improve on this, showing a function that can be computed by a quantum algorithm making m queries but
requires Ω(m4/logcm) queries for deterministic algorithms. We also substantialy improve the biggest known
advantage for exact quantum algorithms (algorithms that always output the correct answer), to a nearly-
quadratic (m queries for an exact quantum algorithms vs. Ω(m2/logcm) queries for classical algorithms)
and solve two longstanding open questions about relations between classical models of computation: - we
show a function that can be computed by a randomized algorithm with m queries but requires Ω(m2/logcm)
queries deterministically, improving over a result by Snir from 1986; - we show the first example of a function
for which randomized algorithms that are allowed to make a mistake with a small probability are better
than zero-error randomized algorithms.

Joint work with Scott Aaronson (STOC’2015, arxiv:1411.5729) and Kaspars Balodis, Aleksandrs Belovs,
Troy Lee, Miklos Santha and Juris Smotrovs (STOC’2016, arxiv:1506.04719).
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Higher-Efficiency Quantum Algorithms for Simulation of Chemistry

Ryan Babbush1 ∗ Dominic W. Berry2 † Ian D. Kivlichan3 Annie Y. Wei3

Dean Southwood2 Peter J. Love4 Alán Aspuru-Guzik3
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Abstract. We introduce novel algorithms for the quantum simulation of molecular systems which are
asymptotically more efficient than those based on the Lie-Trotter-Suzuki decomposition. Our results build
upon recently developed techniques for simulating Hamiltonian evolution using a Taylor series. The key
difficulty in applying algorithms for general sparse Hamiltonian simulation to quantum chemistry is that a
query, corresponding to computation of an entry of the Hamiltonian, is difficult to compute. This means
that the gate complexity would be much higher than quantified by the query complexity. We solve this
problem with a novel quantum algorithm for on-the-fly computation of integrals that is exponentially faster
than classical sampling. We apply this technique in two different representations. First, we use the second
quantized molecular Hamiltonian, which can be decomposed into local Hamiltonians. Second, we use the
Configuration Interaction representation of the molecular Hamiltonian, which we decompose into 1-sparse
matrices using a novel decomposition that leads to improved scaling. Our second approach yields gate
complexity scaling as η2N3, where N is the number of spin orbitals and η is the number of electrons. This
is a dramatic improvement over the best previous approach which formally scaled as N8.

Keywords: Hamiltonian Simulation, Quantum Algorithms, Quantum Chemistry, Lie-Trotter-Suzuki

As small, fault-tolerant quantum computers come in-
creasingly close to viability there has been substantial
renewed interest in quantum simulating chemistry [1–3]
due to low qubit requirements and industrial importance
[4–15]. Using arbitrarily high-order Lie-Trotter-Suzuki
formulas, the tightest known bound on the gate count
of any quantum simulation of chemistry is Õ(N8t/εo(1))
[16, 17], where ε is the precision and N is the number
of spin-orbitals. However, using significantly more prac-
tical Lie-Trotter decompositions, the best known gate
complexity is Õ(N9

√
t3/ε) [7]. With typical numbers

of orbitals, such scaling becomes prohibitively costly [6].
The scaling using Lie-Trotter-Suzuki formulas origi-

nates because the scaling of that approach is not opti-
mal in the sparseness d of the Hamiltonian. Lie-Trotter-
Suzuki formulas have scaling at least as d2, whereas more
advanced approaches to the sparse Hamiltonian simula-
tion problem yield scaling that is close to linear in d [18–
21]. Note that these are the scalings if a decomposition
of the Hamiltonian into a sum is known, as is the case
for quantum chemistry. The difficulty with the more ad-
vanced approaches is that they quantify the complexity
in terms of an oracle, corresponding to calculation of ma-
trix entries of the Hamiltonian. For quantum chemistry,
the matrix entries of the Hamiltonian must be calculated
by evaluation of a integral, which is computationally in-
tensive. As a result, those approaches would yield sub-
stantially higher cost in terms of gate counts.

We build upon the simulation technique introduced in
[20] which is based on implementing a truncated Taylor
series. In order to evaluate the integral, we discretize
it on a grid. Then our quantum algorithm is able to

∗babbush@google.com
†dominic.berry@mq.edu.au

evaulate this integral with only logarithmic cost in the
number of grid points. This speedup is possible, because
the integral is only used for the weighting of terms in
the Hamiltonian evolution, and the algorithm does not
need to output an explicit value of the integral. Our
algorithms also need to use a database of the orbitals,
with complexity Õ(N).

We first use the second quantized molecular Hamilto-
nian, where the N spin-orbital system is encoded on N
qubits, which yields complexity Õ(N5t). Our best re-
sult uses the Configuration Interaction representation of
the Hamiltonian, where the sparseness is d = O(η2N2),
together with a novel decomposition of the Hamiltonian
into only O(d) 1-sparse Hamiltonians (whereas general
decomposition techniques require at least d2). This en-

ables us to obtain complexity scaling as Õ(η2N3t), which
is a significant improvement in N . Moreover, the scal-
ing is logarithmic in ε. It has been shown that for real
molecules, the scaling of the original Trotterized quan-
tum chemistry algorithm can be significantly improved
[6–10]. Similarly, for real molecules, the complexity of
our algorithm is likely to be further improved; this is a
question for future work.

In summary, we have provided practical quantum algo-
rithms to solve an industrially important problem (quan-
tum chemistry) with the lowest asymptotic complexity in
the literature. Our improved scalings should allow for the
quantum simulation of molecular systems much larger
than would be possible using Trotter-based methods.

Method

Our technique builds upon the simulation procedure
described in [20], which we first summarize. Given a
Hamiltonian that is a weighted sum of unitaries, the
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truncated Taylor series of the propagator can also be
expressed as a weighted sum of unitary operators. To
implement this sum, an ancilla register is prepared in a
superposition state with amplitudes proportional to the
square roots of the coefficients of terms in the Taylor
series sum. This task is performed using an operator re-
ferred to as B. Next, an operator is applied to the system
which coherently executes a single term in the Taylor se-
ries sum that is selected according to the ancilla register.
This task is performed using an operator referred to as
select(H). By applying B†select(H)B, one probabilis-
tically simulates evolution under the propagator. The
algorithm is made deterministic using oblivious ampli-
tude amplification [19]. This procedure is implemented
on many time segments to obtain the complete evolution.

In second quantization one can expand the molecular
electronic structure Hamiltonian as a sum of unitaries via

H =
∑
ij

hija
†
iaj+

1

2

∑
ijk`

hijk`a
†
ia

†
jaka` =

Γ∑
γ=1

WγHγ , (1)

where the operators a†i and aj obey the fermionic anti-
commutation relations and the scalar coefficients Wγ are
given as spatial integrals with no closed-form analytical
solution. The state is represented on the quantum com-
puter using N qubits to indicate the occupation of each
of the orbitals. Using the Jordan-Wigner transformation
[22, 23], the fermionic operators can be written as sums
of unitary operators Hγ , which are just tensor products
of Pauli operators. The number of these operators is
Γ = O(N4).

One might construct the operator B by precomput-
ing the Wγ and using a database to prepare the ancilla
superposition state. However, accessing this data would
have time complexity of at least Ω(Γ). The number of
segments is also Ω(Γ), so that approach would yield com-
plexity no better thanN8, not improving over Lie-Trotter
formulas. Instead, we exploit the fact that the Wγ are
defined by integrals. We approximate these integrals as
finite Riemann sums so that

Wγ =

∫
Z
wγ (~z) d~z ≈ V

µ

µ∑
ρ=1

wγ (~zρ) , (2)

where ~zρ is a point in the integration domain at grid
point ρ. Equation (2) represents a discretization of the
integrals defining the Wγ using µ grid points where the
domain of the integral, denoted as Z, has been trun-
cated to have total volume V. This truncation is possi-
ble because the functions wγ(~z) can be chosen to decay
exponentially for molecules studied in chemistry. Our al-
gorithm is effectively able to compute this integral with
complexity logarithmic in the number of grid points.

If we were to use the decomposition of the Hamiltonian
directly with this integral, then the complexity would
not be improved because of the difficulty of preparing
a state with amplitudes

√
wγ (~zρ). Instead we further

decompose each wγ (~zρ) into a sum of terms which differ

only by a sign. The decomposition is of the form

wγ (~z) ≈ ζ
M∑
m=1

wγ,m (~z) , wγ,m (~z) ∈ {−1,+1} . (3)

Using this decomposition, we can express the Hamilto-
nian as a sum of unitaries weighted by identical ampli-
tudes which differ only by an easily computed sign,

H =
ζV
µ

Γ∑
γ=1

M∑
m=1

µ∑
ρ=1

wγ,m (~zρ)Hγ . (4)

The number of terms in the sum has been greatly in-
creased, but the complexity is only logarithmic in the
number of terms in the sum. This representation enables
us to implement B by making a single query to the inte-
grand. For quantum chemistry the cost of sampling the
integrand is Õ(N), which is needed to access a database
of orbitals, which are chosen in advance classically. The
number of time segments required for the simulation is
Õ(N4t), resulting in an overall complexity for the simu-

lation of Õ(N5t).
Our second algorithm uses the Configuration Interac-

tion representation of the Hamiltonian (known as the CI
matrix). The CI matrix uses a compressed basis, where
the numbers of the occupied orbitals are stored, rather
than the using qubits for all the orbitals. This reduces the
number of qubits needed to store the state to O(η logN),
where η is the number of electrons. Though the CI matrix
cannot be expressed as a sum of polynomially many local
Hamiltonians, a paper by Toloui and Love [24] demon-
strated that the CI matrix can be decomposed as a sum
of O(N4) 1-sparse Hermitian operators.

If we were to just use the decomposition technique of
Toloui and Love we would obtain the same scaling as in
our first algorithm. Instead we introduce a decomposi-
tion into O(η2N2) 1-sparse Hermitian operators. This
technique is based on taking the i’th occupied orbital in
the list, and exciting it by p, and the j’th occupied orbital
and exciting it by q. Since i and j are at most η, and
p and q can each take O(N) different values, the total
number of alternatives is O(η2N2).

Given i, j, p and q, one can connect a list of occupied
orbitals α to a list of occupied orbitals β. The subtlety
is that we also need to be able to obtain α from β, and
the simple scheme would be ambiguous. To resolve the
ambiguity, we first choose whether i and j are taken as
indexing the occupied orbitals in α or β according the
separation of the occupied orbitals, in such a way as to
minimize the ambiguity. Then we use two additional bits
b1, b2 to resolve the remaining ambiguity.

Using techniques introduced in [19], we further decom-
pose the 1-sparse operators into unitary operators which
are also self-inverse. In this representation, the Hamil-
tonian itself, rather than the coefficients of terms, is an
integral over a Hermitian matrix-valued function. Ac-
cordingly, we can use the same strategy for computing
integrals on-the-fly in order to compute matrix elements
of the Hamiltonian. Due to the improved decomposition,
the complexity is improved to Õ(η2N3t).
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Mermin [8] implicitly considers a non-local game that
is sometimes called the magic square game (see also [11,
9, 1, 4]). This game is based around a system of linear
equations over Z2 with nine variables and six equations.
Generalizing the magic square game, Cleve and Mittal [3]
investigate a class of games based on binary linear sys-
tems of the form Mx = b, where M ∈ Zm×n

2 and b ∈ Zm
2 .

The non-local game associated with a binary linear sys-
tem is:

Definition 1 Let Mx = b be a binary linear system, so
M ∈ Zm×n

2 and b ∈ Zm
2 . In the associated linear system

game, Alice receives as input s ∈ {1, . . . ,m}, and Bob
receives t ∈ {1, . . . , n}, where Ms,t = 1. Alice outputs
an assignment to the variables in equation s, and Bob
outputs a bit. Alice and Bob win if Alice’s assignment
satisfies equation s and Alice’s assignment to variable xt
is the same as Bob’s output bit.

A classical strategy is one where Alice and Bob do not
share entanglement. It can be shown that Mx = b has
a perfect classical strategy (i.e., a strategy with success
probability 1) if and only if the system of equations has a
solution. An entangled quantum strategy is a strategy in
which Alice and Bob share an entangled quantum state
|ψ〉. In the tensor-product model, |ψ〉 is a bipartite state
in a tensor product HA⊗HB , and Alice and Bob’s mea-
surements of this state are modeled as observables on HA

and HB respectively.
It is shown in [3] that a binary linear system game has

a perfect entangled strategy in the tensor-product model
if and only if the linear system has a finite-dimensional
operator solution in the following sense. We first express
our linear systems in a multiplicative notation, so a vector
x ∈ {±1}n satisfies equation ` if and only if

xk1
xk2

. . . xkr
= (−1)b` ,

where V` = {k1, k2, . . . , kr} = {1 ≤ k ≤ n : M`,k = 1} is
the set of indices of variables in equation `. Next, we ex-
tend the binary variables (the xi’s) to binary observables
as:

Definition 2 (Operator solution) An operator solu-
tion to a binary linear system Mx = b is a sequence
of bounded self-adjoint operators A1, . . . , An on a Hilbert
space H such that:

(a) A2
i = 1 (that is, Ai is a binary observable) for all

1 ≤ i ≤ n.

(b) If xi and xj appear in the same equation (i.e., i, j ∈
V` for some 1 ≤ ` ≤ m) then Ai and Aj commute
(we call this local compatibility).

(c) For each equation of the form xk1
xk2

. . . xkr
=

(−1)bl , the observables satisfy

Ak1
Ak2
· · ·Akr

= (−1)b`1

(we call this constraint satisfaction).

A finite dimensional operator solution to a binary lin-
ear system Mx = b is an operator solution in which the
Hilbert space H is finite dimensional.

The term “local compatibility” comes from quantum me-
chanics, where two observables commute if and only if
they are compatible in the sense that they represent
quantities which can be measured (or known) simultane-
ously. It is noteworthy that the result of [3] applies even
when the Hilbert spaces HA and HB are allowed to be
infinite dimensional; in this case, the operator solutions
will still be finite dimensional.

In this paper we are interested in the commuting op-
erator model for entanglement, in which |ψ〉 belongs to
a joint Hilbert space H, and Alice and Bob’s measure-
ments are modeled as observables on H with the prop-
erty that Alice’s observables commute with Bob’s observ-
ables. This model—which clearly subsumes the tensor-
product model—is used in algebraic quantum field the-
ory. For any non-local game, a finite-dimensional strat-
egy in the commuting-operator model can be converted
into a strategy in the tensor product model, but the pre-
cise relationship between the tensor-product model and
the commuting-operator model is unknown in general.
We refer to [13, 12, 7, 5] for more discussion.

The main result of our paper is that a binary linear
system game has a perfect entangled strategy in the com-
muting operator model if and only if the linear system has
a (possibly-infinite-dimensional) operator solution. Our
result relies on a useful characterization of the relations
in Definition 2 using finitely-presented groups, which we
call the solution group.

Definition 3 (Solution group) The solution group of
a binary linear system Mx = b is the group Γ gener-
ated by g1, . . . , gn and J satisfying the following relations
(where e is the group identity, and [a, b] = aba−1b−1 is
the group commutator):
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(a) g2i = e for all 1 ≤ i ≤ n, and J2 = e (generators
are involutions).

(b) [gi, J ] = e for all 1 ≤ i ≤ n (J commutes with each
generator).

(c) If xi and xj appear in the same equation (i.e., i, j ∈
V` for some `) then [gi, gj ] = e (local compatibility).

(d) gM`1
1 gM`2

2 · · · gM`n
n = Jb` for all 1 ≤ ` ≤ m (con-

straint satisfaction).

The new variable J acts as the scalar −1 in an operator
solution. In fact, an operator solution is a representation
of the solution group with J = −1.

Now we are ready to give the full statement of our main
theorem.

Theorem 4 Let Mx = b be a binary linear system. The
following statements are equivalent:

1. There is a perfect commuting-operator strategy for
the non-local game associated to Mx = b.

2. There is an operator solution for Mx = b (possibly
on an infinite-dimensional Hilbert space).

3. The solution group for Mx = b has the property
that J 6= e.

As is typical with results of this type (compare for in-
stance [10, Proposition 5.11]), the main difficulty in the
proof arises in showing that an operator solution can be
turned into a perfect strategy. In particular, an operator
solution does not come with an entangled state. By con-
sidering the solution group Γ, we construct a tracial state
on the group algebra of Γ to use as our entangled state.
In addition, the solution group captures some interesting
properties of the linear system games, which we discuss
shortly.

We do not know of any computational procedure which
can determine if a binary linear system has a perfect
entangled strategy. Arkhipov showed that, in the spe-
cial case where each variable appears in exactly two con-
straints, there is a polynomial-time algorithm to deter-
mine if a perfect entangled strategy exists [2] (in this case,
a game has a perfect commuting-operator strategy if and
only if it has a perfect tensor-product strategy). For the
general case, we can attempt to use the characterization
of perfect strategies in [3] by searching for operator solu-
tions over Cd, d ∈ N. It is decidable to determine if there
is an operator solution over Cd for fixed d, and thus this
naive procedure is guaranteed to find a perfect strategy
if one exists. However, if a perfect strategy does not ex-
ist, then the naive procedure does not halt. We note
that, for arbitrarily large d, Ji gives examples of binary
linear systems which have finite-dimensional operator so-
lutions, but for which the solutions require dimension at
least d [6].

In contrast, there is no apparent way to search
through operator solutions over infinite-dimensional
Hilbert spaces. What we can do instead is try to show
that J = e in the group Γ by searching through products

of the defining relations. Using our characterization, we
see that this procedure will halt if and only if the lin-
ear system game does not have a perfect strategy in the
commuting-operator model. Thus this problem would be
decidable if the tensor-product model and commuting-
operator model were equivalent. Determining whether
or not these two models are equivalent is a well-known
open problem due to Tsirelson [13].

A final comment is that our results easily generalize to
linear systems over Zp.
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Abstract. We prove that there is a trade-off relation between the entanglement cost and the number of
rounds of communication, for two distant parties to accomplish a bidirectional quantum information task
by local operations and classical communication (LOCC). We consider an implementation of a class of
two-qubit controlled-unitary gate by LOCC assisted by shared entanglement, in an information theoretical
scenario of asymptotically many input pairs and vanishingly small error. We prove the trade-off relation by
showing that one ebit of entanglement per pair is necessary to be consumed for implementing the unitary
by any two-round protocol, whereas the entanglement cost by a four-round protocol is strictly smaller than
one ebit per pair.

Keywords: LOCC protocols, number of rounds, entanglement

1 Introduction

When two distant parties collaborate to perform a dis-
tributed quantum information processing, it is necessary
to communicate some information with each other. If the
communication is restricted to be transmission of classi-
cal bits, it may also be necessary to make use of some
entanglement shared in advance, depending on the task.
Entanglement and classical communication are thus re-
garded as resources for distributed quantum information
processing, and minimizing the cost of those resources
has been one of the central issues in quantum informa-
tion theory.

A relatively unexplored question about distributed
quantum information processing is how the performance
of a protocol to accomplish a task depends on the num-
ber of rounds of communication in the protocol [1]. It
has been known that the performance of a protocol with
more than one round of communication is strictly bet-
ter than that of any protocol with only one round of
communication, for several tasks such as entanglement
distillation [2], quantum key distribution [3], state dis-
crimination [4–6] and hypothesis testing [7–9]. However,
few example of tasks is known for which an r′-round pro-
tocol outperforms any r-round protocol and 2 ≤ r < r′,
with the exception of the result of [5]. Moreover, to our
knowledge, it is not known whether there exists a trade-
off relation between the entanglement cost and the num-
ber of rounds of a protocol for a “genuinely bidirectional”
task, which cannot be accomplished by any protocol with
only one round of communication.

In this contribution, we investigate implementation of
a bipartite unitary gate by LOCC (local operations and
classical communication) assisted by shared entangle-
ment, in an information theoretical scenario introduced
in [10]. We prove that, for a class of two-qubit controlled-
unitary gates, a four-round protocol outperforms all two-

∗wakakuwa@quest.is.uec.ac.jp

round protocols in reducing the entanglement cost. Thus
we provide a first example of genuinely bidirectional tasks
for which there is a trade-off relation between the entan-
glement cost and the number of rounds of communica-
tion. It is different from the trade-off relation between the
entanglement cost and the classical communication cost,
which exists, e.g., for remote state preparation [11–14].

Notations. |Φd〉, |ΦKn〉 and |ΦLn〉 represent the maxi-
mally entangled state with the Schmidt rank d, Kn and
Ln, respectively. πd is the maximally mixed state of
rank d. The fidelity and the trace distance between
two quantum states ρ and σ are defined as F (ρ, σ) :=
(Tr[

√√
ρσ

√
ρ])2 and ‖ρ− σ‖1 := Tr[

√
(ρ− σ)2], respec-

tively. We abbreviate F (ρ, |ψ〉〈ψ|) as F (ρ, |ψ〉). For a
quantum operation E , we abbreviate E(|ψ〉〈ψ|) as E(|ψ〉).

2 Definitions

In this section, we describe a task that we analyze in
this contribution, and present a definition of a trade-off
relation between the entanglement cost and the number
of rounds.

Suppose Alice and Bob are given a sequence of bi-
partite quantum states |ψi1〉AB · · · |ψin〉AB , generated
by an i.i.d. quantum information source of an ensem-
ble {pi, ψi}i. We assume that the source is completely
mixed, i.e.,

∑
i pi|ψi〉〈ψi|AB = πA

d ⊗ πB
d . Alice and

Bob perform the same bipartite unitary UAB on each
of |ψi1〉AB , · · · , |ψin〉AB by LOCC using a resource state
ΦA0B0

Kn
, where Kn is a natural number, in such a way that

the average error vanishes in the limit of n→ ∞. Follow-
ing the formulation of the Schumacher compression [15],
we assume that Alice and Bob do not know {pi, ψi}i, but
know that the average state is completely mixed.

Equivalently, we consider a task in which Alice and
Bob apply (UAB)⊗n on (|Φd〉ARA |Φd〉BRB )⊗n by LOCC
using a resource state ΦA0B0

Kn
. Here, RA and RB are imag-

inary reference systems that are inaccessible to Alice and
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Bob. Rigorous definitions are given below.

Definition 1 (Definition 1 in [10]) Let U be a bipar-
tite unitary acting on two d-dimensional quantum sys-
tems A and B. Let Alice and Bob have quantum regis-
ters {A0, A1} and {B0, B1}, respectively, and let Mn be a
quantum operation from AnA0⊗BnB0 to AnA1⊗BnB1.
Mn is called an (r, n, ε)-protocol for implementing U if
Mn is an r-round LOCC that satisfies

F (ρ(Mn), |ΨU 〉⊗n|ΦLn〉A1B1) ≥ 1 − ε,

where |ΨU 〉 := UAB|Φd〉ARA |Φd〉BRB and

ρ(Mn) := Mn(|ΦARA

d 〉⊗n|ΦBRB

d 〉⊗n|ΦKn〉A0B0).

The entanglement cost of Mn is defined by logKn −
logLn.

Definition 2 A rate E is said to be achievable by an r-
round protocol for implementing U if, for any ε > 0, there
exists nε such that for any n ≥ nε, we find an (r, n, ε)-
protocol for implementing U with the entanglement cost
nE. For a technical reason, we additionally require that

lim
ε→0

ε · n4
ε = 0.

The entanglement cost of U by r-round protocols is de-
fined as

Er(U) := inf{E | E is achievable by an r-round
protocol for implementing U}.

The main focus of this contribution is whether there
is a trade-off relation between the entanglement cost and
the number of rounds for implementing a bipartite uni-
tary. In considering “trade-off relation”, we compare the
entanglement cost of a unitary by r-round protocols and
that by r′-round protocol (r < r′). If the latter is strictly
smaller than the former, we could say that there exists a
trade-off relation between the entanglement cost and the
number of rounds. A rigorous definition is as follows:

Definition 3 There exists a trade-off relation between
the entanglement cost and the number of rounds for im-
plementing U if there exists r, r′ ∈ N such that

r < r′, Er(U) > Er′(U).

3 Result and Proof

We consider a class of two-qubit controlled-phase gate,
which takes the form of

UAB
θ = |0〉〈0|A ⊗ IB + |1〉〈1|A ⊗ (eiθσz )B

where

σz =
(

1 0
0 −1

)
, 0 < θ ≤ π

2
.

The main result of this contribution is as follows:

Theorem 4 There exists a trade-off relation between the
entanglement cost and the number of rounds for imple-
menting Uθ for any θ ∈ (0, θmax], where θmax ∈ (0, π/2]
is a constant.

We prove Theorem 4 by showing that the following rela-
tions hold for any θ ∈ (0, θmax]:

E2(Uθ) ≥ 1, E4(Uθ) < 1.

The first inequality is proved in [10] (see the converse
part of Theorem 25 therein). A proof of the second
inequality is presented in the technical version of this
manuscript, in which we also derive a stronger relation
that limθ→0E4(Uθ) = 0.

4 Conclusion

We considered implementation of a class of two-qubit
controlled-unitary gate by local operations and classi-
cal communication (LOCC), assisted by shared entangle-
ment. We proved that a four-round protocol outperforms
all two-round LOCC protocols in reducing the entangle-
ment cost. Our result provides a first example of gen-
uinely bidirectional distributed quantum tasks, for which
there exists a trade-off relation between the entanglement
cost and the number of rounds of communication.
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Abstract. We propose a quantum algorithm that emulates the action of an unknown unitary transforma-
tion on a given input state, using multiple copies of some unknown sample input states of the unitary and
their corresponding output states. The algorithm does not assume any prior information about the unitary
to be emulated, or the sample input states. Remarkably, the runtime of the algorithm is logarithmic in
D, the dimension of the Hilbert space, and increases polynomially with d, the dimension of the subspace
spanned by the sample input states. Furthermore, the sample complexity of the algorithm, i.e. the total
number of copies of the sample input-output pairs needed to run the algorithm, is independent of D, and
polynomial in d.
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In this paper we introduce a quantum algorithm that
emulates the action of an unknown unitary transforma-
tion on new given input states. The algorithm couples
the new input state to multiple copies of some unknown
sample input-output pairs, that is copies of some input
states of the unitary as well as copies of the corresponding
output states. We do not assume any prior information
about the unitary to be emulated, or the given sample
input states. The algorithm emulates the action of the
unitary on any given state in the subspace spanned by
the previously given input states, which could be much
smaller than the system Hilbert space. Indeed, we are
interested in the cases where d, the dimension of this
subspace is constant or, at most, polylogarithmic in D,
the dimension of the system Hilbert space.

Obviously, having multiple copies of sample input-
output pairs we can perform measurements on them, and
using state tomography find an approximate classical de-
scription of these states in a standard basis. This, in
turn, yields the classical description of the unknown uni-
tary transformation, which then can be used to simulate
its action on the new given states. This approach, how-
ever, is highly inefficient and impractical: First of all,
state tomography in a large Hilbert space is a hard task
and requires lots of copies of the sample states. Second,
even if we find the classical description of the unitary
transformation, in general, this unitary cannot be imple-
mented efficiently.

More precisely, the approaches based on tomography
run in time Ω(D) and need Ω(D) copies of state, where D
is the dimension of the system Hilbert space. In contrast,
the runtime of the algorithm proposed in this work is
O(logD) and polynomial in d, and its sample complexity,
i.e. the total number of copies of the sample input-output
pairs that are needed to run the algorithm, is independent
of D and polynomial in d. Therefore, our algorithm is not
only exponentially faster than the approaches based on
tomography, its sample complexity is also dramatically
lower.

∗marvian@mit.edu
†slloyd@mit.edu

1 Preliminaries

Here we present the algorithm for the special case of
pure sample states. In the paper we explain how the
algorithm can be generalized to the case of mixed states
as well.

Let Sin = {|φink 〉〈φink | : k = 1, · · · ,K} be a set of sample
input states of the unitary U and Sout = {|φoutk 〉〈φoutk | =
U |φink 〉〈φink |U† : k = 1, · · · ,K} be the corresponding out-
puts. Let Hin and Hout be the subspaces spanned by
{|φink 〉 : k = 1, · · · ,K} and {|φoutk 〉 : k = 1, · · · ,K} re-
spectively, and d be the dimension of these subspaces.
We assume the set of input samples Sin contains suffi-
cient number of different states to uniquely determine
the action of U on the subspace Hin (up to a global
phase). It can be easily shown that having the classi-
cal description of the input and output states in Sin and
Sout we can uniquely determine the action of U on any
input state |ψ〉 ∈ Hin (up to a global phase), if and only
if the matrix algebra generated by Sin, that is the set
of polynomials in the elements of Sin, is the full matrix
algebra on Hin, i.e. contains all operators with supports
contained in Hin. Therefore, in the following we natu-
rally assume this assumption is satisfied. Furthermore,
we assume K the number of different sample input states
in Sin is poly(d).

To implement the algorithm, we need multiple copies
of each sample state in Sin and Sout. Interestingly, at the
end of the algorithm most of these states remain almost
unaffected. Indeed, the main use of the given copies of
sample states is to simulate controlled-reflections about
these states.

Let Rin(k) = eiπ|φ
in
k 〉〈φ

in
k | and Rout(k) = eiπ|φ

out
k 〉〈φ

out
k |

be the reflections about the input and output states |φink 〉
and |φoutk 〉, respectively. In the proposed algorithm we
need to implement the controlled-reflections Rin

a (k) and
Rout
a (k), defined as

Ra(k) = |0〉〈0|a ⊗ I + |1〉〈1|a ⊗ eiπ|φk〉〈φk| , (1)

where a is the label for the control qubit, and I is the
identity operator on the main system. Note that we have
suppressed the superscripts in and out in both sides.
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Figure 1: The quantum circuit for emulating unitary transformation U for the special case of pure input-output
sample pairs. Here k1, · · · , kT are T = poly(d) integers chosen uniformly at random from integers 1, · · · ,K. We use
the given copies of sample states in Sin and Sout to simulate the controlled-reflections Rin

a (k) and Rout
a (k), respectively.

A modified version of this circuit can be implemented using only O(log T ) ancillary qubits (instead of T qubits).

Using the given copies of the sample states, we can ef-
ficiently simulate these controlled-reflections via the den-
sity matrix exponentiation technique of Ref.[1]. It turns
out that using n copies of state σ one can simulate the
unitary e−itσ, or its controlled version |0〉〈0|⊗I+ |1〉〈1|⊗
e−itσ, for any real t, with error ε = O(t2/n), and in
time O(n × log(D)), where D is the dimension of the
Hilbert space. In the simplest case where the system is
a qubit (D = 2), this technique is basically simulating
the Heisenberg interaction between the system and each
given copy of state σ.

Therefore, in the following, where we present the algo-
rithm, we assume all the controlled-reflections {Ra(k) :
1 ≤ k ≤ K} can be efficiently implemented.

To simplify the presentation, we use the notation
Wa(k) ≡ Ra(k)HaRa(1), where again we have suppressed
in and out superscripts in both sides. Here Ha denotes
the Hadamard gate H acting on qubit a, where H|0〉 =
|+〉 and H|1〉 = |−〉, and |±〉 = (|0〉± |1〉)/

√
2. The algo-

rithm also uses a SWAP gate defined by SWAP|ν〉|µ〉 =
|µ〉|ν〉, for any pair of states |µ〉 and |ν〉.

2 The algorithm (Special case)

In this section we present the algorithm for the uni-
versal quantum emulator, in the special case where all
the sample input-output pairs are pure states. In the pa-
per we present several generalizations of this algorithm,
including to the case where the given samples contain
mixed states. Also, we present a modified version of this
circuit which realizes this algorithm with exponentially
less ancillary qubits.

Fig.(1) exhibits the quantum circuit that emulates the
action of an unknown unitary transformation U on any
given state |ψ〉 in the input subspace Hin. For a general
input state, which is not restricted to this subspace, this
circuit first projects the state to this subspace, and if
successful, then applies the unitary U to it.

In this algorithm (k1, · · · , kT ) are T integers chosen
uniformly at random from integers 1, · · · ,K, where T is

a constant that determines the precision of emulation,
and we choose it to be polynomial in d, and independent
of D. Furthermore, state |φin1 〉 (and |φout1 〉) is one of the
sample input states (and its corresponding output) which
is chosen randomly at the beginning of the algorithm,
and is fixed during the algorithm. In steps (i) and (iv) of
the algorithm we implement, respectively, the unitaries

W in
ai (ki) and W out

ai

†
(ki) on the system and qubit ai, for

i = 1, · · · , T . As we explained before, all the conditional
reflectionsRin

a (k) andRout
a (k) can be efficiently simulated

using the given copies of states |φink 〉 and |φoutk 〉.
In step (ii) of the algorithm we perform a qubit mea-

surement in the computational basis {|0〉, |1〉}. Then,
after the measurement with probability 1−〈ψ|Πin|ψ〉 we
get outcome b = 1, in which case we project the system
to a state close to (I − Πin)|ψ〉/

√
1− 〈ψ|Πin|ψ〉, where

Πin is the projector to the subspace Hin. On the other
hand, with probability 〈ψ|Πin|ψ〉 we get the outcome
b = 0, in which case the final state of circuit is close
to UΠin|ψ〉/

√
〈ψ|Πin|ψ〉. In this case the algorithm con-

sumes a copy of state |φout1 〉, and returns a copy of state
|φin1 〉.

Note that, although the algorithm uses random inte-
gers (k1, · · · , kT ), for sufficiently large T it always trans-
forms the input state |ψ〉 ∈ Hin to a state with high
fidelity with the desired output state U |ψ〉.
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Abstract. A critical question for the field of quantum computing in the near future is whether quantum
devices without error correction can perform a well-defined computational task beyond the capabilities of
state-of-the-art classical computers, achieving so-called quantum supremacy. We study the computational
task of sampling from the output distribution of random quantum circuits. We introduce the cross entropy
difference as a useful benchmark of random quantum circuits which approximates the circuit fidelity. We
show that the cross entropy can be efficiently measured when circuit simulations are available. Beyond the
classically tractable regime, the cross entropy can be extrapolated and compared with theoretical estimates
to define a practical quantum supremacy demonstration. We conclude that quantum supremacy can be
achieved in the near-term with approximately fifty qubits.
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This work proposes a minimal resource demonstration
of quantum supremacy based on the implementation of
random quantum circuits. Random quantum circuits are
known examples of quantum chaotic evolutions [1, 2, 5–
8]. A signature of chaos is that small changes in model
specification or numerical errors lead to large divergences
in system trajectories. In quantum chaotic dynamics this
sensitivity manifests itself as a loss of fidelity | 〈ψt|ψεt 〉 |2
of a quantum state |ψt〉 which decreases exponentially
in the evolution time t and in the magnitude of a small
perturbation ε to the Hamiltonian that evolves |ψt〉.

With realistic superconducting hardware con-
straints [3], gates act in parallel on distinct sets of
n = logN qubits restricted to a planar lattice. In a
random quantum circuit, gates are sampled from a
universal set. The cycle number t plays the role of time
in the chaotic dynamics of the quantum state |ψt〉. The
real and imaginary parts of the amplitudes 〈xj |ψt〉 in
any local basis {xj}Nj=1 are approximately uniformly
distributed in a 2N dimensional sphere subject to
normalization. This implies that their distribution
is an unbiased Gaussian with variance ∝ 1/N , up
to finite moments. The distribution of probabilities
| 〈xj |ψt〉 |2 approaches the form Ne−pN , known as the
Porter-Thomas distribution [11].

Consider a sample S = {x1, . . . , xm} of bit-strings xj
obtained from m global measurements of every qubit in
the computational basis {|xj〉} (or any other basis ob-
tained from local operations). The joint probability of
the set of outcomes S is PrU (S) =

∏
xj∈S pU (xj) where

pU (x) ≡ | 〈x|ψ〉 |2. For a typical sample S, the central
limit theorem implies that

log PrU (S) =
∑
xj∈S

log pU (xj)

= −mH(pU ) +O(m1/2) , (1)
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where H(pU ) ≡ −
∑N
j=1 pU (xj) log pU (xj) is the entropy

of the output of U . Because pU (x) are i.i.d. distributed
according to the Porter-Thomas distribution,

H(pU ) = −
∫ ∞
0

pN2e−Np log p dp

= logN − 1 + γ , (2)

where γ ≈ 0.577 is the Euler constant.
Let Apcl(U) be a classical algorithm with computa-

tional time cost polynomial in n that takes a specifi-
cation of the random circuit U as input and outputs
a bit-string x with probability distribution ppcl(x|U).

Consider a typical sample Spcl = {xpcl1 , . . . , xpclm } ob-
tained from Apcl(U). We now focus on the probability

PrU (Spcl) =
∏
xpcl
j ∈Spcl

pU (xpclj ) that this sample Spcl is

observed from the output |ψ〉 of the circuit U . The cen-
tral limit theorem implies that

log PrU (Spcl) = −mH(ppcl, pU ) +O(m1/2) , (3)

where

H(ppcl, pU ) ≡ −
N∑
j=1

ppcl(xj |U) log pU (xj) (4)

is the cross entropy between ppcl(x|U) and pU (x). If
the cross entropy H(ppcl, pU ) is larger than the entropy
H(pU ) then ppcl(x|U) is sampling bit-strings that have
lower probability of being observed by the circuit U .

We are interested in the average performance of the
classical algorithm. Therefore, we average the cross en-
tropy over an ensemble {U} of random circuits

EU [H(ppcl, pU )] = EU

 N∑
j=1

ppcl(xj |U)
1

log pU (xj)

 . (5)

Based on aforementioned insights from quantum chaos,
we assume that the output of a classical algorithm with
polynomial cost is almost statistically uncorrelated with
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pU (x). Thus, averaging over the ensemble {U} can be
done independently for the output of the polynomial clas-
sical algorithm ppcl(x|U) and log pU (x). The distribution
of universal random quantum circuits converges to the
uniform (Haar) measure with increasing depth [7, 8]. For
fixed xj , the distribution of values {pU (xj)} when uni-
taries are sampled from the Haar measure also has the
Porter-Thomas form. Therefore, if we use sufficiently
deep random quantum circuits, we find that

−EU [log pU (xj)] ≈ −
∫ ∞
0

Ne−Np log p dp

= logN + γ . (6)

Then using
∑N
j=1 ppcl(xj |U) = 1 we get

EU [H(ppcl, pU )] = logN + γ . (7)

From Eqs. (2) and (7) we obtain

EU [log PrU (S)− log PrU (Spcl)] ' m . (8)

Equation (8) reveals that a typical sample S from a
random circuit U represents a signature of that circuit.
Note that the l.h.s. is the expectation value of the log of
Πx∈S | 〈x|ψ〉 |2/Πx∈Spcl

| 〈x|ψ〉 |2. The numerator is domi-
nated by measurement outcomes x that have high mea-
surement probabilities | 〈x|ψ〉 |2 > 1/N . Conversely, the
values of x in the denominator are chosen essentially at
random. Therefore, they are dominated by the support
of the Porter-Thomas distribution with p < 1/N .

The result in Eq. (7) also corresponds to the cross en-
tropy H0 = logN + γ of an algorithm which picks bit-
strings uniformly at random, p0(x) = 1/N . This leads to
a proposal for a test of quantum supremacy. We will mea-
sure the quality of an algorithm A as the difference be-
tween its cross entropy and the cross entropy of a uniform
classical sampler. The algorithm A can be an experimen-
tal quantum implementation or a classical algorithm. We
call this the cross entropy difference:

∆H(pA) ≡ H0 −H(pA, pU )

=
∑
j

(
1

N
− pA(xj |U)

)
log

1

pU (xj)
. (9)

The cross entropy difference measures how well algorithm
A(U) can predict the output of a (typical) quantum ran-
dom circuit U . This quantity is unity for the ideal ran-
dom circuit and zero for the uniform distribution.

Because an experimental implementation of a quantum
circuit is a realization of a quantum algorithm, we refer
to the experimental implementation as Aexp(U) and as-
sociate with it the probability distribution pexp(xj |U) =
〈xj | ρK |xj〉 and samples Sexp. The experimental cross
entropy difference is α ≡ EU [∆H(pexp)]. Quantum
supremacy is achieved, in practice, when

1 ≥ α > C , (10)

where a lower bound for C is given by the performance
of the best known classical algorithm A∗ executed on an

existing classical computer,

C = EU [∆H(p∗)] . (11)

Here p∗ is the output distribution of A∗.
The space and time complexity of simulating a ran-

dom circuit by using tensor contractions is exponential
in the treewidth of the quantum circuit, which is pro-
portional to min(d, n) in a 1D lattice, and min(d

√
n, n)

in a 2D lattice [10]. For large depth d, algorithms are
limited by the memory required to store the wavefunc-
tion in random-access memory, which in single precision
is 2n×2×4 bytes. For n = 48 qubits this requires at least
2.25 Petabytes, which is approximately the limit of what
can be done on the largest supercomputers of today1.
For circuits of small depth or less than approximately 48
qubits, direct simulation is viable so C = 1 and quantum
supremacy is impossible. Beyond this regime, the most
viable approximation scheme (of which we are aware) is
an estimation of the Feynman path integral correspond-
ing to the unitary transformation U . In this regime, the
lower bound for C decreases exponentially with the num-
ber of gates g � n.

We now address the question of how the cross entropy
difference α can be estimated from an experimental sam-
ple of bit-strings Sexp obtained by measuring the output
of Aexp(U) after m realizations of the circuit. For a typ-
ical sample Sexp (see Eq. (2)), the central limit theorem
applied to Eq. (9) implies that

α ' H0 −
1

m

m∑
j=1

log
1

pU (xexpj )
. (12)

The statistical error in this equation, from the central
limit theorem, goes like κ/

√
m, with κ ' 1. The estima-

tion would proceed as:

1. Select a random circuit U by sampling from an
available universal set of one and two qubit gates,
subject to experimental layout constraints.

2. Take a sufficiently large sample Sexp =
{xexp1 , . . . , xexpm } of bit-strings x in the com-
putational basis (m ∼ 103 − 106).

3. Compute the quantities log 1/pU (xexpj ) with the aid
of a sufficiently powerful classical computer.

4. Estimate α using Eq. (12).

A close correspondence between experiment, numerics
and theory provides a reliable foundation from which
to extrapolate α to larger circuits where the quantities
pU (xj) can no longer be obtained numerically. At this
point, C ' 0, and supremacy can be achieved. The value
of α can be extrapolated from circuits that can be simu-
lated because they have either less qubits (direct simula-
tion), mostly Clifford gates (stabilizer simulations) [4] or
smaller depth (tensor contraction simulations) [10].

1Trinity, the sixth fastest supercomputer in TOP500 has about
two Petabytes of primary memory, which is one of the largest.
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We now present a theoretical error model for α that
can be compared with experiment. The output ρ of the
experimental realization of a random circuit U is

ρ = α̃U |ψ0〉〈ψ0|U† + (1− α̃)σU , (13)

where 〈ψ0|U†σUU |ψ0〉 = 0 and α̃ is the circuit fidelity.
Under this ansatz, by the same arguments leading to
Eq. (7), we obtain that the circuit fidelity α̃ is approxi-
mately equal to the cross entropy difference, i.e. α ≈ α̃.
The absence of correlations is supported by numerical
simulations of typical random circuits. Estimating the
circuit fidelity by directly measuring the cross entropy
(see Eq. (12)) is a fundamentally new way to character-
ize complex quantum circuits.

The standard approach for studying circuit fidelities
is a digital error model where each gate is followed by
an error channel [3, 9]. Within this model, the circuit
fidelity can be estimated as [3]

α ≈ exp(−r1g1 − r2g2 − rinitn− rmesn) , (14)

where r1, r2 � 1 are the Pauli error rates for one and
two qubit gates, rinit, rmes � 1 are the initialization and
measurement error rates, and g1, g2 � 1 are the numbers
of one and two qubits gates respectively.

Figure 1 compares the cross entropy difference, Eq. (9),
obtained from our numerical simulations, with the esti-
mated fidelity, Eq. (14). We observe a good fit between
these two quantities. The validation of the digital error
model for complex quantum circuits is a long standing
problem. Our proposal represents a novel way of char-
acterizing devices and validating error models for multi-
qubit circuits. While our method requires exponential
classical computation, it can be performed with a rela-
tively small number of experiments and can be performed
for up to 48 qubits.
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Abstract. In two recent research papers we have developed a novel approach to synthesis of reversible
classical circuits, and in particular integer arithmetic circuits, on ternary quantum computers and applied
the approach to emulating Shor’s period finding function in two different universal quantum ternary bases.
We have done comparative analysis of the overall structure and cost of the period finding function in these
bases, one of which is a ternary analog of the Clifford+π/8 and the other comes from the topological
quantum computer based on non-Abelian metaplectic anyon framework. Significant benefits of the latter
framework have been demonstrated.
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1 Introduction and Background

Shor’s quantum algorithm for integer factorization [16]
is a striking case of the exponential speed-up promised
by a quantum computer over the best-known classical
algorithms. Since Shor’s original paper, many explicit
circuit constructions over qubits for performing the algo-
rithm have been developed and analyzed. This includes
the computer-assisted synthesis of the underlying quan-
tum circuits for the binary case (see the following and
references therein: [1, 2, 9, 13, 14, 15, 17, 18, 19]).

Research in prospective devices for fault-tolerant scal-
able quantum computing uncovered the importance of
non-binary and in particular, ternary quantum frame-
works. A recent ambitious proposal for the metaplec-
tic topological quantum computer (MTQC), in particular
[10, 11] offers native topological protection of quantum
information and quantum gates from local decoherence
as an added value over already very nice efficient logi-
cal circuit synthesis story [4, 3]. The MTQC creates an
inherently ternary quantum computing environment; for
example the common binary CNOT gate is no longer a
Clifford gate in that environment.

We studied The compilation and synthesis of ternary
circuits over two quantum bases: the Clifford + R|2〉 basis
[4] and the Clifford + P9 basis [5], where R|2〉 and P9 are
both non-Clifford single qutrit gates defined as:

R|2〉 = diag(1, 1,−1) (1)

P9 = diag(e−2π i/9, 1, e2π i/9). (2)

Clifford +R|2〉 The Clifford + R|2〉 basis [11], also
called metaplectic basis, can be obtained from a MTQC
by braiding of certain metaplectic non-abelian anyons
and projective measurement. The gate R|2〉 is produced
by injection of the magic state

|ψ〉 = |0〉 − |1〉+ |2〉. (3)
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The injection circuit is coherent probabilistic, succeeds in
three iterations on average and consumes three copies of
the magic state |ψ〉 on average. The |ψ〉 state is produced
by a relatively inexpensive protocol that uses topological
measurement and consequent intra-qutrit projection (see
[11], Lemma 5). This protocol requires only three qutrits
and produces an exact copy of |ψ〉 in 9/4 trials on average.
This is much better than any state distillation method,
especially because it produces |ψ〉 with fidelity 1.

In [4] we have developed effective compilation meth-
ods to compile efficient circuits in the metaplectic basis.
In particular, given an arbitrary two-level Householder
reflection r and a precision ε, then r is effectively ap-
proximated by a metaplectic circuit of R|2〉-count at most
C log3(1/ε) +O(log(log(1/ε))), C ≤ 8. It is shown in [3]
that the P9 gate specifically requires C = 6.

Clifford +P9 The Clifford + P9 basis is a natural
generalization of the binary π/8 gate. It is the ternary
case of the general multi-qudit basis proposed indepen-
dently in [12] and [8]. The P9 gate can be realized by
a certain deterministic measurement-assisted circuit [8]
given a copy of the magic state

µ = e−2π i/9|0〉+ |1〉+ e2π i/9|2〉, (4)

which further can be obtained from the usual magic state
distillation protocol. Specifically, it requiresO(log3(1/δ))
raw magic states of low fixed fidelity in order to distill a
copy of the magic state µ at fidelity 1− δ.

In [5] we have explored a novel approach to synthesis of
reversible ternary classical circuits over the Clifford+P9

basis. We have synthesized explicit circuits to express
classical reflections and other important classical non-
Clifford gates in this basis, which we subsequently used to
build efficient ternary implementations of integer adders
and their extensions.

In [6] we have further optimized these implementations
under the assumption of binary-encoded data and applied
the resulting solutions to emulating of the modular ex-
ponentiation period finding (which is the quantum part
of the Shor’s integer factorization algorithm). We have
performed the comparative cost analysis of optimized so-
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lutions between the “generic” Clifford+P9 architecture
and the MTQC architecture (the Clifford + R|2〉) using
magic state counts as the cost measure. We have shown
that the cost of emulating the entire binary circuit for the
period finding is almost directly proportional to the cost
of emulating the three-qubit Toffoli gate and the latter
is proportional to the cost of the P9 gate. We have fur-
ther pointed out that known distillation protocols for the
latter are somewhat more costly than best known distil-
lation protocols (e.g. Bravyi-Kitaev, [7]) for the binary
π/8 gate, but demonstrated that on an MTQC computer
specifically the magic state for the P9 gate can be pre-
pared (with a metaplectic circuit) rather than distilled
which leads to asymptotically lower magic state cost:
linear in fidelity bit size for preparation vs. cubic for
distillation. Thus the prospective MTQC architecture is
proven to be the most cost-effective known architecture
for integer factorization in terms of the overall logical
cost. Expected native topological protection of quantum
information and gates in the MTQC architecture clearly
only adds value to it.

2 Overview of main results

In [6] we have investigated in some detail the cost of im-
plementing Shor’s integer factorization algorithm [16] on
the two ternary architectures, Clifford + P9 and Clifford
+ R|2〉, using fairly straightforward emulation of known
binary circuits and modifications thereof in ternary logic.
One technical hurdle to overcome on that path: the bina-
ry CNOT gate cannot be emulated by a ternary Clifford
circuit and its cost is roughly the same as that of Toffoli
gate. The other key problem was to emulate the binary
Toffoli gate efficiently. In course of solving these prob-
lems we have made the following useful observation: if
a binary reflection (such as that Toffoli gate) needs to
be emulated only on binary data, then it can be typically
done at a fraction of the cost involved in implementing a
ternary reflection. For example, implementing two-level
ternary transposition |110〉 ↔ |111〉 is relatively expen-
sive, but its action on binary data only can be emulated
exactly at 2/5 of the cost. In particular we have proved
the following

Proposition 1 1) The binary CNOT gate can be em-
ulated exactly by a two-qutrit ternary circuit containing
ternary Clifford gates and 6 P9 gates.

2) The binary Toffoli gate can be emulated exactly ei-
ther by a four-qutrit ternary circuit containing ternary
Clifford gates and 6 P9 gates, or by a three-qutrit ternary
circuit containing ternary Clifford gates and 15 P9 gates.

We also found that by a minor rearrangements of con-
trolled adder circuits, the CNOT/Toffoli ratio for the n-
qubit additive shift is constrained to O(1/ log(n)) and
thus up to a small overhead factor of (1 +O(1/ log(n))),
the cost of emulation of Shor’s period finding function is
directly proportional to the cost of emulating the three-
qubit Toffoli gate.

We have chosen to use the magic state counts that
tally the number of magic states required for binary im-

plementation or, respectively, ternary emulation of the
target gates and circuits. For the Clifford+π/8 the mag-
ic states consumed by the π/8 gate are counted and for
both ternary bases the instances of the magic state |µ〉
consumed by the P9 gate are counted. The cost bounds
for the Toffoli gate are presented in Table 1.

Clean magic states Raw resources
Binary 7 7(2 log2(1/δ))2.5

GenericA P9 15 15 log3
2(1/δ)

GenericB P9 6 6 log3
2(1/δ)

Metaplectic 6 36 log3(1/δ)

Table 1: Resource count factors for three-qubit Toffoli
gates. “Generic A” stands for 3-qutrit emulation of the
Toffoli gate and “Generic B” and “Metaplectic” use 4-
qutrit emulation with one clean ancilla prepared with
SUM gates.

We note that the ternary emulation of the modular
exponentiation circuit based on modified ripple carry ad-
ditive shift as described in [6] section III, A, has the depth
O(n3) for the n-bit integers and performs all the Toffoli
gates sequentially. This means that the required clean
ancilla is shared across the circuit and adds just one unit
of width that is easily amortized over n. The entire mod-
ular exponentiation circuit has the width of only n + 3
qutrits in this case.

In the more sophisticated modular exponentiation cir-
cuit based on carry lookahead additive shift ([6] section
III, B) several Toffoli gates are performed in parallel in
almost any time slice, and therefore as many clean ancil-
las are required concurrently. The impact of this design
on the width of the circuits is presented in the Table 2.

Circuits Online width Offline width
Binary QCLA 3n− w(n) (qubits) 7n (6 log2(n))2.5

Generic A 3n− w(n) (qutrits) 15n (3 log2(n))3

Generic B 4n− w(n) (qutrits) 6n (3 log2(n))3

Metaplectic A 3n− w(n) (qutrits) 90× 3n log3(n)
Metaplectic B 4n− w(n) (qutrits) 36× 3n log3(n)

Table 2: Widths comparison for ternary emulations of
reduced-depth modular exponentiation circuits. (w(n) is
the Hamming weight of n). Generic/metaplectic case A s-
tands for 3-qutrit emulation of the Toffoli gate and case B

for the 4-qutrit emulation. The last column in metaplec-
tic rows shown the expected average of the probabilistic
width.

It is seen from Table 1 and Table 2 that the solution-
s over the metaplectic architecture are the most cost-
effective in both asymptotic and practical sense. The ta-
bles compare logical magic state counts and logical width-
s of known binary solutions and those of their ternary em-
ulation but disregard the cost quantum error correction
(QEC). Deeming the QEC cost would have been even
more in favor of the metaplectic architecture.
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Abstract. This paper develops general space-efficient methods for error reduction for unitary quan-
tum computation, i.e. computations without intermediate measurements. Consider a unitary quantum
computation with completeness c and soundness s, either with or without a witness. To reduce the er-
ror of the computation to at most 2−p, the most space-efficient method known requires extra workspace
of O(p log[1/(c− s)]) qubits. We present error-reduction methods that require extra workspace of just
O(log [p/(c− s)]) qubits. This in particular gives the first methods of strong amplification for logarithmic-
space unitary quantum computations with two-sided error. Consequences include the uselessness of quan-
tum witnesses in bounded-error logspace unitary quantum computations, the PSPACE upper bound for
QMA with exponentially small gap, and strong amplification for matchgate computations.

Keywords: space-bounded computation, quantum Merlin-Arthur, error reduction, quantum computing

1 Introduction

A very basic topic in various models of quantum com-
putation is whether computation error can be efficiently
reduced. For polynomial-time bounded error quantum
computation, the computation error can be made ex-
ponentially small via a simple repetition followed by
a threshold-value decision. This justifies the choice of
2/3 and 1/3 for the completeness and soundness param-
eters in the definition of the corresponding complexity
class BQP. This is also the case for quantum Merlin-
Arthur (QMA) proof systems, another central model of
quantum computation that models a quantum analogue
of NP (more precisely, MA). The price paid is the en-
largement of both the necessary workspace and the wit-
ness size linearly in the number of repetitions.

We now restrict attention to unitary quantum compu-
tations, i.e. computations in which only unitary opera-
tions are allowed and in particular intermediate measure-
ments are not allowed. Marriott and Watrous [2] devel-
oped a more sophisticated method of error reduction for
QMA proof systems, which was subsequently improved
by Nagaj, Wocjan, and Zhang [3]. The latter improved
method uses phase estimation to estimate the success
probability of the original computation, similarly to the
quantum counting algorithm (see e.g. [4, Chapter 6.3]).
This method reuses both the workspace and the witness
every time it applies the original computation and its in-
verse, and therefore does not increase the witness size.
Since the inverse of the original computation needs to be
applied, this amplification method works only for unitary
computations. To reduce the error probability to 2−p,
the method requires O

(
p

c−s

)
applications of the original

computation and its inverse, and extra workspace of size
O
(
p log 1

c−s

)
to store the phase estimation results, where

c and s are respectively the completeness and soundness
of the original computation.

∗Full version: arXiv:1604.08192 [1]

This existing in-place amplification method is still in-
sufficient if the workspace size must be logarithmically
bounded. No efficient error-reduction method is known
that keeps the size of necessary additional workspace log-
arithmically bounded. This is not limited to the case of
QMA proof systems, and in fact efficient error reduction
methods are rarely known for space-bounded quantum
computations (see [5] for an exception).

2 Main Result

This paper presents a general method of strong and
space-efficient error reduction for unitary quantum com-
putations. In particular, the method is applicable to
logarithmic-space unitary quantum computations and
QMA proof systems. All of our results hold for any model
of unitary space-bounded quantum computations. The
unitary model is not the most general (note the stan-
dard technique of deferring intermediate measurements
requires unallowablly many ancilla qubits in the case of
space-bounded computations), but our error amplifica-
tion results (and other recent progress [6]) make this
arguably one of the most reasonable models for space-
bounded quantum computation; see [7] for a discussion
of other models of space-bounded quantum computation.

Let N and Z+ be the sets of positive and nonnegative
integers, respectively. Let QMAUSPACE[lV, lM](c, s) de-
note the class of problems having QMA proof systems
with completeness c and soundness s, where the verifier
performs a unitary quantum computation that has no
time bound but is restricted to use lV(n) private qubits
and to receive a quantum witness of lM(n) qubits on ev-
ery input of length n. The main result of this paper is
the following strong and space-efficient error-reduction
for such QMA-type computations.

Theorem 1 For any functions p, lV, lM : Z+ → N and
for any functions c, s : Z+ → [0, 1] satisfying c > s, there
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exists a function δ : Z+ → N that is logarithmic with re-
spect to p

c−s such that

QMAUSPACE[lV, lM](c, s)

⊆ QMAUSPACE[lV + δ, lM](1− 2−p, 2−p).

In the full version [1] we give three different proofs of
this main theorem. In the following we discuss many
consequences of our main theorem. Many corollaries are
straightforward to show by choosing parameters in The-
orem 1 appropriately; see the full version for choices of
these parameters and for other omitted consequencess
(e.g. space-efficient amplification for QMA and strong
amplification for matchgate computation)

3 Implications

Strong amplification for unitary logspace quan-
tum computations The first consequence of The-
orem 1 is a remarkably strong error-reducibility for
logspace unitary quantum computations. Let QUL(c, s)
and QMAUL(c, s) denote respectively the class of prob-
lems decidable by logspace unitary quantum computa-
tions (resp. logspace unitary QMA proof systems with
log-size witnesses) with completeness c and soundness s.

Corollary 2 For any polynomially bounded func-
tion p : Z+ → N that is logarithmic-space computable
and for any logarithmic-space computable func-
tions c, s : Z+ → [0, 1] satisfying c− s ≥ 1/q for some
polynomially bounded function q : Z+ → N,

QUL(c, s) ⊆ QUL(1− 2−p, 2−p).

QMAUL(c, s) ⊆ QMAUL(1− 2−p, 2−p).

This in particular justifies defining the classes BQUL
and QMAUL of bounded-error logarithmic-space unitary
quantum computations by BQUL = QUL(2/3, 1/3) and
QMAUL = QMAUL(2/3, 1/3).

Uselessness of quantum witnesses in logarithmic-
space unitary QMA By a standard technique of re-
placing a quantum witness by a completely mixed state
Corollary 2 implies the following:

Corollary 3 QMAUL = BQUL.

A consequence of the Marriott-Watrous error reduc-
tion method [2] was that standard QMA systems are no
more powerful than BQP if restricted to use witnesses of
logarithmic size. Corollary 3 extends this by stating that
logarithmic sized witnesses do not increase the power of
logspace unitary quantum computations at all.

Strong amplification for unitary QMAPSPACE
Let QUPSPACE(c, s) and QMAUPSPACE(c, s) denote
respectively the class of problems decidable by poly-space
unitary quantum computations (resp. QMA proof sys-
tems) with completeness c and soundness s. We have the
following scaled-up version of Corollary 2.

Corollary 4 For any polynomially bounded func-
tion p : Z+ → N and for any polynomial-space com-
putable functions c, s : Z+ → [0, 1] satisfying c− s ≥ 2−q

for some polynomially bounded function q : Z+ → N,

QUPSPACE(c, s) ⊆ QUPSPACE
(
1− 2−2p , 2−2p

)
.

QMAUPSPACE(c, s) ⊆ QMAUPSPACE
(
1− 2−2p , 2−2p

)
.

Again by replacing the quantum witness by a com-
pletely mixed state, the following result follows from
Corollary 4 and that unbounded-error poly-space quan-
tum computations can be simulated in PSPACE [8, 9].

Corollary 5 For any polynomial-space computable func-
tions c, s : Z+ → [0, 1] satisfying c− s ≥ 2−q for some
polynomially bounded function q : Z+ → N,

QMAUPSPACE(c, s) = QUPSPACE(c, s) = PSPACE.

Let QMA(c, s) be the class of problems having
polynomial-time QMA proof systems with completeness c
and soundness s. An immediate corollary of Corollary 5
is the following upper bound for QMA proof systems with
exponentially small completeness-soundness gap.

Corollary 6 For any polynomially bounded func-
tion p : Z+ → N and for any polynomial-time computable
functions c, s : Z+ → [0, 1] satisfying c− s ≥ 2−q for
some polynomially bounded function q : Z+ → N,

QMA(c, s) ⊆ PSPACE.

Corollary 6 was also shown independently in [10]. In
fact, the first and third authors of the present paper fur-
ther proved that the converse of Corollary 6 also holds,
i.e., PSPACE is characterized by QMA proof systems
with exponentially small gap [6].
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Abstract. We consider Hamiltonian quantum computation (HQC) in one dimension, achieved by prepar-
ing an appropriate initial product state of qudits and then letting it evolve under a fixed Hamiltonian before
measuring individual qudits at some later time. We study the compromise between the locality k and the
local Hilbert space dimension d for universal HQC. For geometrically 2-local (i.e., k = 2), d = 8 is known
to be sufficient. We provide a construction for k = 3 with d = 5. Imposing translation invariance will
increase the required d. For this we also construct another 3-local (k = 3) Hamiltonian that is invariant
under translation of a unit cell of two sites but that requires d to be 8.
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1 Motivations

Feynman provided an example Hamiltonian able to ex-
ecute universal quantum computer [1],

HFeynman =

k−1∑
j=0

σ+
j+1σ

−
j Aj+1 + h.c., (1)

but the interaction involves four particles not geometri-
cally local. Operators σ− and σ+ act on a set of spin-
1/2 particles, representing a discrete unary clock register;
Aj ’s represent all the gates of a circuit.

Key questions to address. In this work we consider
the Hamiltonian quantum computer to lie on one spa-
tial dimension, and the interaction in the Hamiltonian
involves at most k consecutive sites. In particular, we
study the compromise between the locality k and the lo-
cal Hilbert-space dimension d. As the locality k increases,
it is expected that the minimum required d should de-
crease.

Prior related works. Feynman’s idea was used by
Kitaev to construct the so-called Local Hamiltonian
Problems (LHP) [2] and showed that 5-local LHP is
QMA-complete. The locality k for QMA-complete LHP
was, in a series of work, reduced to 2 [3, 4], even
with nearest-neighbor interactions on two spatial dimen-
sions [5]. In one spatial dimension, it was shown by
Aharonov et al. that 2-local 13-state Hamiltonians are
QMA-complete [6], and the local dimension d is recently
reduced to 8 by Hallgren et al. [7].

In terms of one-dimensional Hamiltonian quantum
computer, there have been various constructions, for ex-
ample, the continuous-time quantum cellular automata
by Vollbrecht and Cirac [8], by Kay [9], and by Nagaj
and Wocjan [10] as well as the universal quantum walk by
Chase and Landahl [11]. The 1D Hamiltonians in these

∗tzu-chieh.wei@stonybrook.edu

Figure 1: (color online) The status of locality k vs. local
Hilbert-space dimension (level) d for universal quantum
computation (BQP) in one spatial dimension.

constructions are nearest-neighbor two-body (or geomet-
rically 2-local), but involve the dimension of local Hilbert
space ranging from d = 8 [11] and higher [8, 9, 10].

2 Results and some details

Main results. Here we study the compromise between
the locality k and the local dimension d in one spatial di-
mension; the results are summarized in Figs. 1 and 2.
In our technical paper [12], we provide two construc-
tions: (i) one that uses a 5-state 3-local (or spin-2 near-
est and next-nearest-neighbor interacting) Hamiltonian
but is non-translation invariant, and (ii) 8-state 3-local
Hamiltonian that is invariant under translation of a unit
cell of two sites.

The former is inspired by the design used in 1D QMA
LHP [6, 7], whose focus was on 2-locality.In terms of com-
plexity, one implication is that simulating 1D chains of
spin-2 particles with nearest and next-nearest-neighbor
interaction is BQP-complete. Our second construction
is inspired by the translation invariant constructions in
Refs. [8, 9, 10] and in particular the work by Nagaj and
Wocjan [10]. We explicitly modify a particular scheme
with d = 20 in Ref. [10] and reduce d to 8. Our results
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Figure 2: (color online) The translation invariant case.

are summarized schematically in Fig. 1 and Fig. 2.

Detailed construction. Due to the space limitation,
it suffices for the purpose of demonstration to focus on
our first construction having k = 3 and d = 5. We refer
the other construction that is translation invariant (k = 3
and d = 8) to our technical paper [12]. On odd/even sites
host different groups of states, respectively,

{B,C,	, • , + }, { [0], [1], I [0], I [1],©}.

(We can regard the system as consisting of the same kind
of particles on all sites, but their interactions have two
different preferred bases.) There are two kinds of qubits:

and I , and the superscripts are used to indicate the
logical qubit values.

The transition rules are shown in Table 1. In particu-
lar, the gate operation occurs in rule 1:

1: I + −→ Um( + I ) (2)

whose backward (or time-reversed) propagation is

1† : + I −→ U†m(I + ). (3)

The design of these rules ensure that there is only one
unique forward rule and one unique reverse rule
(except at the beginning and the end), and the probabil-
ity of ending up at any location (i.e. configuration) can
be obtained analytically [10].
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Nonlocal correlations: Fair and Unfair Strategies in Bayesian Game
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Abstract. Interesting connection has been established between two apparently unrelated concepts,
namely, quantum nonlocality and Bayesian game theory. It has been shown that nonlocal correlations
in the form of advice can outperform classical equilibrium strategies in common interest Bayesian games
and also in conflicting interest Bayesian games. Classical equilibrium strategies can be of two types, fair
and unfair. Whereas in fair equilibrium payoffs of different players are equal, in unfair case they differ. Ad-
vantage of nonlocal correlation has been demonstrated over fair strategies, only. In this letter we show that
quantum strategies can outperform even the unfair classical equilibrium strategies. For this purpose we
consider a class of two players Bayesian games. It becomes that, such games can have only fair equilibria,
both fair and unfair equilibria, or only unfair ones. We provide a simple analytic method to characterize
the nonlocal correlations that are advantageous over the classical equilibrium strategies in these games. We
also show that quantum advice provides better social optimality solution (a relevant notion of equilibrium
for unfair case) over the clssical one.

Keywords: Nonlocal correlation, Fair and Unfair equilibrium, Correlated Equilibrium, Bell Nonlocality

1 Bayesian Game and equilibria

Undoubtedly one of the most fundamental contradic-
tions of Quantum mechanics (QM) with classical physics
gets manifested in its nonlocal behavior. This bizarre fea-
ture of QM was first established in the seminal work of
J. S. Bell [1], where he has shown that QM is incompati-
ble with the local-realistic world view of classical physics.
More precisely, Bell showed that measurement statistics
of multipartite entangled quantum systems can violate an
empirically testable local realistic inequality (in general
called Bell type inequalities) which establishes the denial
of local realism underlying QM. Since Bell’s work, non-
locality remains at the center of quantum foundational
research and it has been verified in numerous successful
experiments. Apart from foundational interest, quan-
tum nonlocality finds practical implications in various
device-independent protocols. But, very recently Brun-
ner and Linden have established usefulness of Bell non-
locality in Bayesian game theory [2]. A Bayesian game
can be played under classical equilibrium strategies which
are of two types, fair equilibrium and unfair equilibrium.
Payoffs of different players are equal in a fair equilib-
rium, but differ in case of an unfair equilibrium. It has
been shown that QM can provide advantageous strate-
gies over the best classical strategies in common inter-
est Bayesian games [2] as well as conflicting interesting
games [3]. However, such advantages are shown over the
fair equilibrium. The aim of this present letter is to estab-
lish the quantum advantages over the unfair equilibrium
strategies. This study is of important relevance since we
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‡g.tamal91@gmail.com
§sibasish@imsc.res.in
¶somesankar@gmail.com
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provide examples of Bayesian games which can be played
under unfair equilibrium strategies, only.

2 The class of games we consider

Let Alice and Bob are two players involved in the game.
Alice’s and Bob’s types/inputs are denoted as xA ∈ XA
and xB ∈ XB , respectively. For each type they take some
actions/outputs denoted as yA ∈ YA and yB ∈ YB and
accordingly they are given payoffs/utilities denoted as uA
and uB , respectively, where ui : XA×XB×YA×YB → R
, for i ∈ {A,B}. For the class of games considered here,
XA = XB = YA = YB = {0, 1} and the utilities are
given in Table-1. In accordance with the parameter κ
and τ of Table-1 let us denote such a game as G(κ, τ).
Whenever κ < τ , there is a conflict between Alice and
Bob in choosing their actions.

In the case of correlated strategies, i.e., when the par-
ties are given some common advice, the average payoff is
calculated as:

Fi =
∑
x,y

P (x)P (y|x)ui(x, y). (1)

Here P (x) is the probability distribution over the Alice’s
and Bob’s joint type x ≡ (xA, xB) which is considered
to be uniform for the class of games introduced above.
P (y|x) denote the conditional probability of the joint ac-
tion y ≡ (yA, yB) given the type x, i.e., the probability
that Alice takes action yA and Bob takes action yB given
their joint type (xA, xB). To play the game G(κ, τ) each
of Alice and Bob can take one of the following four pure
classical strategies:

g1i (xi) = 0; g2i (xi) = 1; g3i (xi) = xi; g
4
i (xi) = xi ⊕ 1;

where g1i (xi) = 0 means that ith party takes the ac-
tion 0 whatever be the type and similarly for the other
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xA ∧ xB = 0 xA ∧ xB = 1

yB = 0 yB = 1 yB = 0 yB = 1
yA = 0 (1, κ) (0, 0) (0, 0) (3/4, 3/4)
yA = 1 (0, 0) (1/2, τ) (3/4, 3/4) (0, 0)

Table 1: Utility table for the game G(κ, τ). Both κ and
τ are positive.

cases; ⊕ denotes modulo 2 sum. For the conflict-
ing case (i.e. τ > κ) there are three equilibrium
strategies eq1 ≡ (g1A, g

3
B), eq2 ≡ (g3A, g

4
B), and eq3 ≡

(g4A, g
2
B) whenever κ < 3

4 , with corresponding pay-
offs being (F eq1A , F eq1B ) =

(
11
16 ,

3
16 + κ

2

)
, (F eq2A , F eq2B ) =(

9
16 ,

3
16 + κ+τ

4

)
, and (F eq3A , F eq3B ) =

(
7
16 ,

3
16 + τ

2

)
. For

κ > 3
4 , there are also three equilibrium strategies eq′1 ≡

(g1A, g
1
B), eq2, and eq3 with payoff for the strategy eq′1

being (F
eq′1
A , F

eq′1
B ) =

(
3
4 ,

3κ
4

)
. For the parameter value

κ > 1, all the three equilibria are unfair and in every
case Bob’s payoff is greater than that of Alice. Note that
in this case (κ > 1) even no fair correlated equilibrium
strategy is possible. The case where κ+τ = 3/2 give a fair
equilibrium strategy as occurred in the conflicting game
of [3]. When τ < κ the game turns out to be a common
interest game. In this case there is only one equilibrium
strategy, (g1A, g

3
B) when κ < 3

4 and (g1A, g
1
B) otherwise,

with pay-off being
(
11
16 ,

3
16 + κ

2

)
and

(
3
4 ,

3κ
4

)
, respectively.

Since any classical (local realistic) advice can be writ-
ten as P (yA, yB |xA, xb) =

∫
dλP (yA|xA, λ)P (yB |xB , λ),

with λ being a local variable (also called hidden vari-
able by the quantum foundation community), convexity
ensures that using any such advice it is not possible to
overcome the equilibrium payoffs. However in quantum
world there are no-signaling correlations that are not of
this local realistic form (thus called nonlocal) and hence
there may be a possibility to overcome the classical equi-
librium payoffs.

3 2− 2− 2 no-signaling correlations

: For the two-party scenario with two two-outcome
measurements for each party, we denote the joint proba-
bility distribution as P (ab|ij), where the outcomes a, b ∈
{+,−} and the measurement settings i, j ∈ {0, 1}. We
can express the joint distribution as:

(P (+ + |ij), P (+− |ij), P (−+ |ij), P (−− |ij))
≡ (cij ,mij − cij , nij − cij , 1− nij −mij + cij), (2)

Here mij := P (+ + |ij) + P (+ − |ij) and nij := P (+ +
|ij) + P (− + |ij) denote the corresponding marginal
probabilities of Alice and Bob, with positivity impos-
ing the restrictions, max{0,mij + nij − 1} ≤ cij ≤
min{mij , nij} ∀ ij. According to no-signaling Alice’s
marginal outcome probability should not depend on
Bob’s measurement settings and vice versa, which can
be expressed as m00 = m01 := m0, m10 = m11 :=
m1, n00 = n10 := n0, n01 = n11 := n1. The celebrated
Bell-CHSH expression is given by, B = 〈00〉+〈01〉+〈10〉−

〈11〉, where 〈ij〉 := P (++ |ij)−P (+−|ij)−P (−+ |ij)+
P (− − |ij). A no-signaling probability distribution has
a local realistic description if and only if it satisfies the
Bell-CHSH inequality, i.e., iff |B| ≤ 2. In terms of prob-
abilities, the Bell-CHSH expression becomes,

B = 2 + 4(c00 + c01 + c10 − c11)− 4(m0 + n0). (3)

4 Our result and discussion

In the Bayesian game described above, the two play-
ers can be commonly advised by a general no-signaling
correlation. Then, Alice’s and Bob’s average payoffs, re-
spectively, read:

FNSA =
1

16
[3 + 3/2B + 2(m0 + n0) + (m1 + n1)] , (4)

FNSB =
1

16
[(10τ − 2κ) + (τ + κ)B + 4(κ− τ)(m0 + n0)

+(3− 4τ)(m1 + n1) + 4 (κ+ τ − 3/2) c11] . (5)

A no-signaling nonlocal advice outperforms some clas-
sical equilibrium payoff (F eqA , F eqB ) if FNSi > F eqi , for
i = A,B.

We show that such nonlocal correlations can outper-
form the unfair classical equilibrium strategies of such
Bayesian games (see [4] for detail). Furthermore we find
that unlike for the case of fair strategy the notion of
quantum equilibrium is not a valid one for unfair strate-
gies. In this case a stronger refinement of the equilibrium
concept, known as social optimality. Given a quantum
advice, the choice of measurement settings (strategies),
one by each player, will be called social optimality if the
sum of all players’ payoffs is maximum. We also show
that quantum advice can provide unfair social optimal
strategies better than the classical one. Although we
have considered a particular class but our analysis points
out the effectiveness of nonlocal advice over any classi-
cal correlation. We have also completely characterize the
no-signaling advices providing advantage in these games
over the fair and unfair classical equilibrium strategies.
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Abstract. Bell inequality violations have been demonstrated in systems involving up to fourteen par-
ticles, but testing a Bell inequality becomes increasingly challenging as the number of parties involved
increases. Yet, nonlocal correlations constitute a resource for device-independent information processing.
Here, we construct a Bell correlation witness, and show that it can be used to demonstrate that a state is
Bell correlated in situations where no Bell test can be performed. We report on an experimental violation
of the witness with about 480 atoms in a Bose-Einstein condensate. This opens the way for the study of
Bell nonlocality in many-body systems.

The violation of a Bell inequality is the key to device-
independent information processing. This allows one to
achieve tasks with one of the strongest form of secu-
rity known today. Security both against powerful ad-
versaries and in face of experimental uncertainties such
as systematic measurement errors. Device-independent
quantum key distribution (QKD) is an early example of
device-independent information processing [1]. Today,
more such tasks are known, including the certification of
quantum computation [2], of quantum states and mea-
surements [3], and randomness generation [4].

While most device-independent protocols rely on the
violation of bipartite Bell inequalities, new forms of corre-
lations are known to arise in presence of a larger number
of parties [5]. Testing a Bell inequality on many parties
is however technically challenging. Indeed, a Bell test
requires addressing of individual particles, which is sel-
dom possible when dealing with more than a few tens of
particles. The number of measurements that need to be
performed also increases rapidly with the number of par-
ties, and multipartite Bell inequalities typically involve
many-body correlations functions, which are difficult to
evaluate on systems involving many particles.

Building on the result of [6], we consider here the situa-
tion in which well-characterized collective measurements
are performed on an ensemble of particles. Using the few-
body correlator inequality from [6], we construct a wit-
ness operator for Bell correlated quantum states. This
witness only involves up to the second moment of two
collective measurements (see [7] for more details). It is
thus amenable to experimental test on large systems.

We test this witness on a Bose-Einstein Condensate
(BEC) of about 480 Rubidium atoms prepared in a spin-
squeezed state. An experimental violation of the witness
by 3.8 standard deviations is observed (see figure 1), thus
demonstrating that the atoms share Bell correlations, i.e.
the state of the atoms is able to violate a Bell inequality.

The witness introduced here constitutes an easy way
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Figure 1: Experimental value of the witnessW upon vari-
ation of a parameter θ (see [7] for more details). Non-
Bell-correlated states can only achieve a value of W ≥ 0.
The red dot is 3.8 standard deviations from the bound,
demonstrating that the measured state can useful for
device-independent tasks.

to certify that a many-body quantum system can be
used for a device-independent task. This opens questions
about the possible use of many-body quantum systems
for device-independent information processing. More ef-
forts are also needed to further characterize many-body
nonlocal states. Finally, this result brings Bell correla-
tions into the field of quantum many-body physics, where
entanglement is already known to be responsible for en-
hanced metrologic precisions [8].
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Abstract. Theoretically, witnessing entanglement is by measuring a special Hermitian observable, called
entanglement witness (EW), which has non-negative expected outcomes for all separable states but can
have negative expectations for certain entangled states. In practice, an EW implementation may suffer
from two problems. The first one is reliability. Due to unreliable realization devices, a separable state could
be falsely identified as an entangled one. The second problem relates to robustness. A witness may be
suboptimal for a target state and fail to identify its entanglement. To overcome the reliability problem, we
employ a recently proposed measurement-device-independent entanglement witness scheme, in which the
correctness of the conclusion is independent of the implemented measurement devices. In order to overcome
the robustness problem, we optimize the EW to draw a better conclusion given certain experimental data.
With the proposed EW scheme, where only data post-processing needs to be modified comparing to the
original measurement-device-independent scheme, one can efficiently take advantage of the measurement
results to maximally draw reliable conclusions.

Keywords: entanglement witness, measurement device independent

1 Introduction

Witnessing the existence of entanglement is an im-
portant and necessary step for quantum information
processing. In theory, entanglement can be witnessed
by measuring a Hermitian observable W , whose output
expectation for any separable state σ is non-negative,
Tr(Wσ) ≥ 0, but can be negative for certain entangled
state ρ, Tr(Wρ) < 0. In this case, we call W an entan-
glement witness (EW) for state ρ. In general, W can be
obtained by a linear combination of product observables,
which can be measured locally on the subsystems.
In reality, EW implementation may suffer from two

problems. The first one is reliability. That is, one might
conclude unreliable results due to imperfect experimental
devices. If the realization devices are not well calibrated,
the practically implemented observable W ′ may deviate
from the original theoretical design W , which can even
be not a witness. That is, there may exist some separable
states σ, such that Tr[σW ′] < 0 ≤ Tr[σW ]. Branciard et
al. proposed the measurement-device-independent entan-
glement witness (MDIEW) scheme [1], in which entangle-
ment can be witnessed without assuming the realization
devices. The MDIEW scheme is based on an important
discovery that any entangled state can be witnessed in a
nonlocal game with quantum inputs [2]. In the MDIEW
scheme, it is shown that an arbitrary conventional EW
can be converted to be an MDIEW, which has been ex-
perimentally tested [3].
The second problem lies on the robustness of EW im-

plementation. Since each (linear) EW can only identify
certain regime of entangled states, a given EW is likely
to be ineffective to detect entanglement existing in an
unknown quantum state. While a failure of detecting en-
tanglement is theoretically acceptable, in practice, such
failure may cause experiment to be highly inefficient. In
a way, this problem becomes more serious in the MDIEW

∗yuanxiao12@mails.tsinghua.edu.cn
†xma@tsinghua.edu.cn

scenario, where the measurement devices are assumed to
be uncharacterized and even untrusted. In this case, the
implemented witness, which may although be designed
optimal at the first place, can become a bad one which
merely detects no entanglement. However, the observed
experimental data may still have enough information for
detecting entanglement. Therefore, the key problem we
are facing here is that given a set of observed experimen-
tal data, what is the best entanglement detection capa-
bility one can achieve.
Here, we only briefly review our result and refer to

Ref. [4] for details.

2 Reliable entanglement witness

Focus on the bipartite scenario with Hilbert space
HA ⊗HB , with dimensions dimHA = dA and dimHB =
dB . For a bipartite entangled state ρAB defined on
HA⊗HB, we can always find a conventional entanglemen-
t witnessW such that Tr[WρAB ] < 0 and Tr[WσAB] ≥ 0
for any separable state σAB . Suppose {ωT

x } and {τTy } to
be two bases for Hermitian operators on HA and HB ,
respectively. Thus, we can decompose W on the basis
{ωT

x ⊗ τTy } by W =
∑
x,y β

x,yωT
x ⊗ τTy , where βx,y are re-

al coefficients and the transpose is for later convenience.
An MDIEW can be obtained by

J =
∑
x,y

βx,y1,1 p(1, 1|ωx, τy) (1)

where βx,y1,1 = βx,y and p(1, 1|ωx, τy) is the probability
of outputting (a = 1, b = 1) with input states (ωx, τy).
In the MDIEW design, Alice (Bob) performs Bell state
measurement on ρA (ρB) and ωx (τy).
As shown in Ref. [1], J is linearly proportional to

the conventional witness when the measurement is pro-
jecting onto the maximally entangled state |Φ+

AA⟩ =
1/
√
dA
∑
i |ii⟩ and |Φ+

BB⟩ = 1/
√
dB
∑
j |jj⟩, J =

Tr[WρAB ]/dAdB. Thus, J defined in Eq. (1) witnesses
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entanglement. Furthermore, it can be proved that such
a witness is independent of the measurement devices.

3 Robust MDIEW

Now, we present a method to optimize the MDIEW
given a fixed observed experiment data p(1, 1|ωx, τy).

Problem (formal): For a given probability distribution
p(1, 1|ωx, τy), minimize

J(βx,y) =
∑
x,y

βx,yp(1, 1|ωx, τy) (2)

over all βx,y satisfying∑
x,y β

x,yTr
[
σAB(ω

T
x ⊗ τTy )

]
≥ 0, for any separable

state σAB and Tr
[∑

x,y β
x,yωT

x ⊗ τTy

]
= 1.

A possible solution to this problem is to try all en-
tanglement witnesses to find the optimal one. However,
it is proved that the problem of accurately finding such
an optimal witness is NP-hard. Thus, our problem is
also intractable for the most general case. The key for
the problem being intractable is that there is no efficient
way to characterize an arbitrary entanglement witness.
In the bipartite case, an operator is an witness if and
only if Tr[σABW ] ≥ 0 for any separable state σAB . As
σAB can always be decomposed as a convex combination
of separable states as |ψ⟩A |ϕ⟩B , the condition can be e-
quivalently expressed as ⟨ψ|A ⟨ϕ|BW |ψ⟩A |ϕ⟩B ≥ 0, for
any pure states |ψ⟩A and |ϕ⟩B . The constraints for a wit-
ness W are very difficult to describe in the most general
case, which makes our problem hard.
While, this problem can be resolved if we allow certain

failure errors. A Hermitian operator Wϵ is defined as an
ϵ-level entanglement witness, when

Prob {Tr[σWϵ] < 0|σ ∈ S} ≤ ϵ, (3)

where S is the set of separable states. That is, the opera-
tor Wϵ has a probability less than ϵ to detect a randomly
selected separable quantum state to be entangled. Intu-
itively, ϵ can be regarded as a failure error probability.
We refer to Ref. [5] for a rigorous definition. It is shown
that the ϵ-level optimal EW can be found efficiently for
any given entangled state ρ. In particular, constrained
on Tr[Wϵ] = 1 andWϵ to be an ϵ-level EW, one can run a
semi-definite programming (SDP) to minimize Tr[Wϵρ].
Following the method proposed in Ref. [5], we can solve

the minimization problem given in Eq. (2) by allowing
a certain failure probability ϵ. First, we relax the con-
straints. Instead of requiring being non-negative for all
separable states, we randomly generate N separable s-
tates {|ψ⟩iA |ϕ⟩iB} and require that∑

x,y

βx,y⟨ωT
x ⊗ τTy ⟩i ≥ 0, ∀i ∈ {1, 2, . . . , N}, (4)

where ⟨ωT
x ⊗ τTy ⟩i = ⟨ψ|iA ⟨ϕ|iB ωT

x ⊗ τTy |ψ⟩iA |ϕ⟩iB . Then
the problem can be expressed as

Problem (ϵ-level): given a probability distribution
p(1, 1|ωx, τy), minimize

J(βx,y) =
∑
x,y

βx,yp(1, 1|ωx, τy) (5)

over all βx,y satisfying∑
x,y β

x,y⟨ωT
x ⊗ τTy ⟩i ≥ 0, ∀i ∈ {1, 2, . . . , N}, for N

randomly generated separable states {|ψ⟩iA |ϕ⟩iB} and∑
x,y β

x,yTr
[
ωT
x ⊗ τTy

]
= 1.

Note that

WB = ⟨ψ|AWϵ |ψ⟩A ≥ 0, ∀ |ψ⟩A , (6)

whereWB ≥ 0 indicates thatWB has non-negative eigen-
values. Therefore, we only need to generate N states
|ψ⟩iA, for i = 1, 2, . . . , N , and the problem is

Problem (ϵ-level, SDP): given a probability distribution
p(1, 1|ωx, τy), minimize

J(βx,y) =
∑
x,y

βx,yp(1, 1|ωx, τy) (7)

over all βx,y satisfying∑
x,y β

x,y ⟨ψ|iA ωT
x |ψ⟩iA τTy ≥ 0,∀i ∈ {1, 2, . . . , N}, for N

randomly generated states {|ψ⟩iA} and∑
x,y β

x,yTr
[
ωT
x ⊗ τTy

]
= 1.

Then, we can run an SDP to solve this problem. It is
worth to remark that the problem can be similarly solved
in the multipartite case.
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Abstract. The structural relation between multipartite entanglement and symmetry is one of the central
mysteries of quantum mechanics. In this paper, we study the separability of quantum states in bosonic
system. We show that mixture of multi-qubit Dicke state is separable if and only if its partial transpose
is positive semi-definite, which confirms the hypothesis of [Wolfe, Yelin, Phys. Rev. Lett. (2014)]. We
generalize this result to a class of bosonic states in d⊗ d system and show that for general d, determine its
separability is NP-hard although verifiable conditions for separability is easily derived in case d = 3, 4.
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Quantum entanglement has been regarded as a re-
source of cryptography and metrology. Therefore, it is
a fundamental problem to qualitatively test whether a
given state is entangled or not. In multipartite systems,
a quantum state is called fully separable, not entangled,
if it can be written as a statistical mixture of product
states. Although it is known to be NP-Hard of test-
ing separability [1], a considerable number of different
separability criterions have been discovered (see the ref-
erences in [4, 3]), including the famous Positive Partial
Transpose(PPT) criterion [2]. One widely used tool of
detecting entanglement is entanglement witnesses [5, 6].
Another key concept for entanglement detection is sym-
metry. The k-symmetric extension provides a hierarchy
of separability criteria [7, 8, 9, 11, 10], which converges
exactly to the set of separable states when k goes to in-
finity.

Due to the essential role of symmetry played in entan-
glement theory, it becomes of great interest to study the
relation between multipartite entanglement and symme-
try, more precisely, the entanglement of bosonic system.
For N -qubit bosonic system, a natural basis is N -qubit
Dicke states(unormalized),

|DN,n〉 :=

(
N

n

)
Psym

(
|0〉⊗n ⊗ |1〉⊗N−n),

with Psym being the projection onto the Bosonic (ful-
ly symmetric) subspace, i.e., Psym = 1

N !

∑
π∈SN

Uπ, the
sum extending over all permutation operators Uπ of the
N -qubit systems. Dicke states are particularly suitable
for the cold atomic systems, where the particle number
is usually thousands. Considerable efforts have been de-
voted to study entanglement of Dicke states, theoretically
[12, 13, 14, 15, 16, 17], and experimentally [19, 18, 20, 21].
The separability of bosonic states, especially the role of
PPT in the separability of bosonic system, has attract-
ed lot of attention. Eckert et.al prove that there is no
PPT entanglement in three-qubit bosonic system [12].
After 10 years, the existence of four-qubit bosonic PPT
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entanglement is demonstrated in Ref. [22]. Particularly,
analytical criteria of the separability of mixture of Dicke
states(MDS) is highly desired, and has been pursued ex-
tensively [23, 24, 25, 26, 27]. For instance, in Ref. [25],
Quesada et.al. provided the analytical expression for the
best separable approximation of MDS by using the idea
introduced by Lewenstein et.al. in [26]. In Ref. [27],
Wolfe and Yelin proposed the hypothesis that MDS is
separable if and only if it is PPT, according to their ideas
on generating sufficient separability criteria numerically.

In this paper, we confirm the validity of the hypoth-
esis that PPT indicates separability of mixture of Dicke
state(MDS). The idea is also generalized to proved that
the separability of mixture of bipartite high dimensional
Dicke states is NP-complete, although very simple crite-
rion is given when the local dimension is 3 or 4.

More precisely, we provide an analytical necessary and
sufficient condition for N -qubit separability of the MDS,
which was called diagonal symmetric states in previous
literatures [23, 22, 24, 25, 27],

ρ =

N∑
n=0

χn|DN,n〉〈DN,n|.

Theorem 1 The MDS ρ =
∑N
n=0 χn|DN,n〉〈DN,n| is

separable if and only if the following two Hankel Matrices
[29] M0,M1 are positive semi-definite, i.e.,

M0 :=

 χ0 · · · χm0

· · · · · · · · ·
χm0 · · · χ2m0

 ≥ 0, (1)

M1 :=

 χ1 · · · χm1

· · · · · · · · ·
χm1 · · · χ2m1−1

 ≥ 0, (2)

where m0 := [N2 ] and m1 := [N+1
2 ].

Theorem 2 N -qubit MDS ρ =
∑N
n=0 χn|DN,n〉〈DN,n|

is separable if and only if it is PPT. More precisely, ρ
is separable if and only if it is PPT under the partial
transpose of m0 = [N2 ] subsystems.

27



These techniques to study the multi-qubit Dicke states
can be generalized to study the mixture of higher dimen-
sional bipartite Dicke states,

ρ =

d∑
i,j=1

χi,j |ψi,j〉〈ψi,j |,

with |ψi,j〉 :=

{
|ii〉 if i = j,

|ij〉+ |ji〉 otherwise.
being some basis

of d⊗ d symmetric subspace.
Recall the known hardness result on testing the mem-

bership of completely positive matrices in Ref. [28], we
have

Theorem 3 It is NP-Hard to decide whether ρ =∑d
i,j=1 χi,j |ψi,j〉〈ψi,j | is separable. On the other hand,

for d = 3, 4, it is separable if and only if χ = (χij)d×d is
semi-definite positive.

In this paper, we study the separability of bosonic s-
tate. We prove the validity of the hypothesis of Ref. [27]
by demonstrating an analytical condition for the sepa-
rability of mixture of N -qubit Dicke states. These tech-
niques are also applied on the mixture of d ⊗ d Dick-
e states, and hardness result is showed. We hope that
our techniques for certifying entanglement witness and
positive polynomials, may prove useful in furthering the
understanding of entanglement.
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A geometric approach to entanglement quantification
with polynomial measures
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Abstract. We show that the entanglement of any rank-2 state quantified with any polynomial
measure of entanglement can be expressed as a geometric problem on the corresponding Bloch
sphere. This setting provides novel insight into the properties of entanglement and allows us to
relate different polynomial measures to each other, simplifying their quantification. In particular,
using the geometric structure of the concurrence, we show that the convex roof of any polynomial
measure can be quantified exactly for rank-2 states which have only one or two unentangled
states in their range. We give explicit examples by quantifying the three-tangle exactly for
several representative classes of rank-2 three-qubit states. We also show how this method can be
used to obtain analytical results for more complex systems if one can exploit symmetries in their
geometry. We provide a direct application of the result by investigating the monogamy relations
of multi-qubit systems.

Keywords: entanglement measures, convex roof, entanglement monogamy

1 Introduction

Ever since the use of entanglement was recognised
as a useful resource in many quantum information
protocols, there has been a consistent effort to de-
velop a comprehensive framework for entanglement
quantification [1]. However, the promising results
in quantifying bipartite entanglement did not easily
generalise to systems of more parties, where even for
the three-qubit case we only have analytical results
in very few, special cases. In particular, the complex
optimisation problems involved in the quantification
of multipartite entanglement are a major obstacle to
obtaining a full understanding of the properties of
entanglement in general.

A particular class of well-studied and often-used
measures of entanglement are the polynomial mea-
sures, such as the concurrence of two qubits, the
three-tangle of three qubits, or generalised measures
for any number of qubits and qudits. Their quan-
tification for mixed states involves the difficult opti-
misation problem of evaluating the so-called convex
roof, that is, minimising the entanglement over all
possible pure-state decompositions. While the con-
currence of any two-qubit state can be quantified
exactly, the framework for quantification of entan-
glement of more qubits is in its infancy, and exact
results have only been obtained in very few, special
cases.

In this work [2, 3], we develop a geometric
approach to understanding and quantifying con-

∗bartosz.regula@gmail.com
†gerardo.adesso@nottingham.ac.uk

vex roof-extended polynomial measures of entan-
glement, establishing a link between geometric and
algebraic methods for entanglement quantification.
Our approach reveals common relations between dif-
ferent polynomial measures on pure states and al-
lows for a simplification of the problem of evaluating
their convex roof on mixed states.

2 Results

Any rank-2 quantum system can be visualised in
the well-known graphical representation called the
Bloch sphere. We show that for any such state,
the quantification of its entanglement corresponds
to a geometric problem of measuring distances on
the Bloch sphere. This approach allows the entan-
glement of all rank-2 states to enjoy a convenient
visual representation, which considerably simplifies
the study and understanding of their properties.

We first investigate the properties of the concur-
rence, derive its geometric structure in detail (see
Fig. 1), and use geometric methods to fully quan-
tify its convex roof. We then show that for all rank-
2 states which have only one or two unentangled
states in their range (their Bloch sphere), the geo-
metric structure of all polynomial measures of en-
tanglement is identical to that of the concurrence.
We call such states one-root and two-root states,
respectively. This result allows us to quantify the
convex roof exactly, not just for the concurrence,
but also for the three-tangle and for any other poly-
nomial measure of any degree.

Using the geometric approach, we provide ex-
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Figure 1: The curves of constant entanglement for
the concurrence (or any other polynomial measure
in two-root states). The curves obtained as the in-
tersection of the surface with the Bloch sphere show
all states with a given value of entanglement.

act, easily computable formulas for the entangle-
ment of all one-root and two-root mixed states. We
additionally prove an even stronger geometric re-
sult, showing that for all polynomial entanglement
measures of degree 2, the entanglement of one-root
states does not depend on the chosen convex decom-
position and becomes trivial to compute.

Further, we show that several classes of four-qubit
states have marginals which are one- or two-root
states, meaning that the simplified entanglement
properties are a common occurrence among all rank-
2 three-qubit systems. We show a direct physical
application of the relevant classes of states by inves-
tigating the monogamy of entanglement. In partic-
ular, we introduce a generalised form of the well-
known Coffman-Kundu-Wootters monogamy rela-
tion [4] in which we consider multipartite entangle-
ment in addition to the bipartite one, and we show
that among four-qubit states this stronger form of
monogamy is violated only for a small subset of
states. Interestingly, all of the states in the vio-
lating subset have one-root marginals, allowing us
to quantify exactly the three-partite entanglement
in these states [5]. The exact quantification of the
convex roof thanks to the simplified properties of
one-root states is therefore crucial to understand-
ing monogamy relations in systems of many qubits,
proving the relevance of the geometric methods in-
troduced in our work.

Lastly, we show that the geometric approach can
be used beyond one- and two-root states, employing
the case of the mixtures of GHZ and W states as an
example. We rederive known results for this class
of states [6] in the new approach, justifying its use

in a broader range of states and showing that the
geometric methods can be extremely helpful if the
Bloch sphere of a the considered state enjoys certain
symmetries.

3 Discussion

We introduced a geometric approach to character-
ising and quantifying convex roof-extended polyno-
mial measures of entanglement, showing a relation
between different measures and allowing for a sim-
plification of the problem of quantifying their con-
vex roof. While geometric methods have been em-
ployed in the study of entanglement, their applica-
tion to quantifying polynomial measures of entan-
glement has not been explored before. We showed
that this approach provides novel insight into the
structure of entanglement for rank-2 states, allow-
ing us to derive many simplified properties of such
states and quantify their entanglement exactly in
many relevant cases of three-qubit states as well as
more complex systems.

We investigated the particularly simplified cases
of one-root and two-root states, for which we can
quantify the convex roof of any polynomial measure
exactly. We showed that states of this type, in ad-
dition to being crucial in studying the generalised
monogamy relations of entanglement, are a common
occurrence among quantum states and thus of high
importance in quantum information.

Our approach not only provides a convenient vi-
sual representation for the properties of entangle-
ment, allowing us to introduce geometric insights
and results into the problem of entanglement quan-
tification, but also has immediate applications in the
theory of quantum correlations.
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Abstract. A new additive and semidefinite programming (SDP) computable entanglement
measure is introduced to upper bound the amount of distillable entanglement in bipartite quan-
tum states by PPT operations. This quantity is always smaller than or equal to the logarithmic
negativity, the previously best known SDP bound on distillable entanglement, and the inequality
is strict in general. By using similar techniques, a succinct SDP characterization of the one-copy
PPT-assisted deterministic distillation rate for any bipartite state is also obtained. We also
resolve two open problems in entanglement theory by showing that the Rains’ bound is neither
additive nor equal to the asymptotic relative entropy of entanglement. Finally, we introduce an
SDP quantity not only to lower bound the entanglement cost of general bipartite states, but also
to upper bound the PPT-assisted deterministic distillation rate.

Keywords: distillable entanglement, entanglement measure, entanglement cost, Rains’ bound

Introduction One basic entanglement measure
is the entanglement of distillation, denoted by ED,
which characterizes the rate at which one can ob-
tain maximally entangled states from an entangled
state by local operations and classical communica-
tion (LOCC) [1, 2]. Entanglement cost EC [1, 3] is
another fundamental measure in entanglement the-
ory, which quantifies the rate for converting maxi-
mally entangled states to the given state by LOCC.
Since both distillable entanglement and the entan-
glement cost are important but difficult to compute
[4], it is of great importance to find the best ap-
proach to efficiently evaluate them.
Improved SDP upper bound on distill-

able entanglement The logrithmic negativity of
a quantum state ρAB is given by EN(ρAB) ∶=
log2 min ∥ρTBAB∥1 [5, 6] . We now introduce a new
SDP quantity EW as follows:

EW (ρAB) = log2 min ∥XTB
AB∥1, s.t. XAB ≥ ρAB.

Theorem 1 The function EW (⋅) has the following
properties:

i) Additivity under tensor product: EW (ρAB ⊗
σA′B′) = EW (ρAB) +EW (σA′B′).

∗xin.wang-8@student.uts.edu.au
†runyao.duan@uts.edu.au

ii) Upper bound on PPT distillable entan-
glement: EΓ(ρAB) ≤ EW (ρAB).

iii) Detecting genuine PPT distillable entangle-
ment: EW (ρAB) > 0 if and only if ρAB is PPT
distillable.

iv) Entanglement monotone under PPT op-
erations: EW (Λ(ρAB)) ≤ W (ρAB) for any
Λ ∈ LOCC (and PPT).

v) Improved bound over logarithmic neg-
ativity: EW (ρAB) ≤ EN(ρAB), and the in-
equality can be strict.

It is worth pointing out that EN has all properties

i) to iv). In particular, for ρ
(α)
AB = ∑2

m=0 ∣ψm⟩⟨ψm∣/3
(0 < α ≤ 0.5) with ∣ψ0⟩ =

√
α∣01⟩+

√
1 − α∣10⟩, ∣ψ1⟩ =√

α∣02⟩+
√

1 − α∣20⟩, and ∣ψ2⟩ =
√
α∣12⟩+

√
1 − α∣21⟩,

we have EW (ρ(α)AB) < EN(ρ
(α)
AB).

Nonadditivity of Rains’ bound The Rains’
bound is arguably the best known upper bound of
distillable entanglement [7]. As it is is proved to
be equal to the asymptotic relative entropy of en-
tanglement for Werner states [8] and orthogonally
invariant states [9], one open problem is whether
these two quantities always coincide. Another open
problem is whether Rains’ bound is additive [9].

We resolve the above two open problems by in-
troducing a class of two-qubit states ρr whose clos-
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est separable states can be derived by the result
in Ref. [10]. Thus, the Rains’ bound of ρr is ex-
actly given. Then we apply the algorithm in Refs.
[11, 12] to demonstrate the gap between R(ρ⊗2

r ) and
2R(ρr). The example is ρr = 1

8 ∣00⟩⟨00∣ + x∣01⟩⟨01∣ +
7−8x

8 ∣10⟩⟨10∣ + 32r2−(6+32x)r+10x+1

4
√

2
(∣01⟩⟨10∣ + ∣10⟩⟨01∣)

with x = r + 32r2−10r+1
256r2−160r+33

+ (16r−5)y−1

32 ln (5/8−y)−32 ln (5/8+y) ,

y = (4r2 − 5r/2 + 33/64)1/2.

Theorem 2 For 0.45 ≤ r ≤ 0.548, we have
R(ρr0)⊗2 < 2R(ρr0). Meanwhile, E∞

R (ρr0) < R(ρr0).

It is now reasonable to define the asymptotic Rains’
bound, i.e., R∞(ρ) = infn≥1

1
nR(ρ

⊗n). Clearly R∞

would be a better upper bound for the distillable en-
tanglement. How to evaluate this quantity remains
open.
Deterministic distillation rate The deter-

ministic entanglement distillation concerns about
how to distill maximally entangled states exactly.
The one-copy PPT-assisted deterministic distilla-
tion rate can be formalized as an SDP.

Theorem 3 For bipartite state ρAB,

E
(1)
Γ,0(ρAB) =max

R
− log2 ∥RTBAB∥∞,

s.t. PAB ≤ RAB ≤ 1AB,
(1)

where PAB is the projection onto supp(ρAB).
And the asymptotic rate is given by EΓ,0(ρ) ∶=
supn≥1E

(1)
Γ,0(ρ⊗n)/n = limn≥1E

(1)
Γ,0(ρ⊗n)/n.

For a bipartite quantum state ρAB, we define

EM(ρAB) = − log2 max TrPABVAB,

s.t. Tr ∣V TB
AB ∣ = 1, VAB ≥ 0.

(2)

We further show that EM(ρ) is not only the upper
bound of the deterministic distillation rate of ρ, but
also a lower bound for the asymptotic Rains’ bound.

Theorem 4 For any bipartite state ρ, EΓ,0(ρ) ≤
EM(ρ) ≤ R∞(ρ) ≤ EC(ρ).

The last inequality is from Ref. [13]. Interestingly,
EM also gives the PPT-assisted deterministic distil-
lation rate for many special cases.
Conclusions We present a new and improved

SDP upper bound EW to the distillable entangle-
ment. This quantity enjoys additional nice prop-
erties such as additivity under tensor product and
monotonicity under both LOCC and PPT opera-
tions. Furthermore, we show that the Rains’ bound

is neither additive nor equal to the asymptotic rela-
tive entropy of entanglement by constructing a class
of two-qubit states. We also introduce the asymp-
totic Rains’ bound and give an SDP lower bound
EM for it, which provides an efficiently computable
lower bound for the entanglement cost of general bi-
partite states for the first time. Finally, we provide
a refined SDP for the one-copy PPT-assisted dis-
tillation rate and show that EM is the best upper
bound for the asymptotic rate. Proof details of our
main results can be found in arxivs: 1601.07940 and
1605.00348.

We were grateful to A. Winter, Y. Huang, M.
Tomamichel for helpful suggestions and M. Plenio
and J. Eisert for communicating references to us.
This work was partly supported by the Australian
Research Council (Grant Nos. DP120103776 and
FT120100449).

References

[1] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin,
and W. K. Wootters, Phys. Rev. A 54, 3824
(1996).

[2] E. M. Rains, Phys. Rev. A 60, 173 (1999).

[3] P. M. Hayden, M. Horodecki, and B. M. Terhal,
J. Phys. A. Math. Gen. 34, 6891 (2001).

[4] Y. Huang, New J. Phys., 16, 33027 (2014).

[5] G. Vidal and R. F. Werner, Phys. Rev. A 65,
032314 (2002).

[6] M. B. Plenio, Phys. Rev. Lett. 95, 090503 (2005).

[7] E. M. Rains, IEEE Trans. Inf. Theory 47, 2921
(2001).

[8] K. Audenaert et al, Phys. Rev. Lett. 87, 217902
(2001).

[9] K. Audenaert, B. De Moor, K. G. H. Vollbrecht,
and R. F. Werner, Phys. Rev. A 66, 32310
(2002).

[10] A. Miranowicz and S. Ishizaka, Phys. Rev. A
78, 32310 (2008).

[11] Y. Zinchenko, S. Friedland, and G. Gour, Phys.
Rev. A 82, 52336 (2010).

[12] M. W. Girard, Y. Zinchenko, S. Friedland, and
G. Gour, Phys. Rev. A 91, 29901 (2015).

[13] M. Hayashi, Quantum Information (Springer,
2006).

32



Extendability, complete extendability and a measure of entanglement
for Gaussian states

B. V. Rajarama Bhat1 ∗ K. R. Parthasarathy2 † Ritabrata Sengupta2 ‡

1 Theoretical Statistics and Mathematics Unit,
Indian Statistical Institute, Bengalore Centre,

8th Mile, Mysore Road RVCE Post,
Bangalore 560 059, India

2 Theoretical Statistics and Mathematics Unit,
Indian Statistical Institute, Delhi Centre,

7 S J S Sansanwal Marg, New Delhi 110 016, India

Abstract. Motivated by the notions of k-extendability and complete extendability of the state of a
finite level quantum system as described by Doherty et al (Phys. Rev. A, 69:022308), we introduce
parallel definitions in the context of Gaussian states and using only properties of their covariance matrices
derive necessary and sufficient conditions for their complete extendability. It turns out that the complete
extendability property is equivalent to the separability property of a bipartite Gaussian state. We also
give proof for this in general bipartite quantum states (need not be of finite dimensions). We further show
that maximum extendability number can be used as a measure of entanglement for Gaussian states.

Following the proof of quantum de Finetti theorem as outlined in Hudson and Moody (Z. Wahrschein-
lichkeitstheorie und Verw. Gebiete, 33(4):343–351), we show that separability is equivalent to complete
extendability for a state in a bipartite Hilbert space where at least one of which is of dimension greater
than 2. This, in particular, extends the result of Fannes, Lewis, and Verbeure (Lett. Math. Phys. 15(3):
255–260) to the case of an infinite dimensional Hilbert space whose C* algebra of all bounded operators is
not separable.

Keywords: Gaussian state, exchangeable Gaussian state, extendability, entanglement, measure of entan-
glement.

1 Introduction

One of the most important problems in quantum me-
chanics as well as quantum information theory is to de-
termine whether a given bipartite state is separable or
entangled [5]. There are several methods in tackling this
problem leading to a long list of important publications.
A detailed discussion on this topic is available in the sur-
vey articles by Horodecki et al [3], and Gühne and Tóth
[2]. One such condition which is both necessary and suffi-
cient for separability in finite dimensional product spaces
is complete extendability [1].

Definition 1 Let k ∈ N. A state ρ ∈ B(HA ⊗ HB) is
said to be k-extendable with respect to system B if there
is a state ρ̃ ∈ B(HA⊗H⊗kB ) which is invariant under any

permutation in H⊗kB and ρ = TrH⊗(k−1)
B

ρ̃, k ≥ 2.

A state ρ ∈ B(HA ⊗ HB) is said to be completely ex-
tendable if it is k-extendable for all k ∈ N.

The following theorem of Doherty, Parrilo, and Spedalieri
[1] emphasizes the importance of the notion of complete
extendability.

Theorem A:[1] A bipartite state ρ ∈ B(HA ⊗HB) is
separable if and only if it is completely extendable with
respect to one of its subsystems.

In this paper we have introduced concept of extend-
ability of Gaussian states. We have further shown that

∗bhat@isibang.ac.in
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any state in a bipartite Fock space is extendable if and
only if it is separable. We have reduced these conditions
in terms of simple matrix inequalities which in principle
can be solved by computer programmes.

2 Gaussian extendability

Definition 2 (Gaussian extendability) Let k ∈ N.
A Gaussian state ρg in Γ(Cm) ⊗ Γ(Cn) is said to be
Gaussian k-extendable with respect to the second sys-
tem if there is a Gaussian state ρ̃g in Γ(Cm)⊗ Γ(Cn)⊗k

which is invariant under any permutation in Γ(Cn)⊗k

and ρg = Tr Γ(Cn)⊗(k−1) ρ̃g, k ≥ 2.
A Gaussian state ρg in Γ(Cm) ⊗ Γ(Cn) is said to

be Gaussian completely extendable if it is Gaussian k-
extendable for every k ∈ N.

Theorem 3 Let ρ be a bipartite Gaussian state in

Γ(Cm) ⊗ Γ(Cn) with covariance matrix S =

[
A B
BT C

]
,

where A and C are marginal covariance matrices of the
first and second system respectively. Then ρ is completely
extendable with respect to the second system if and only
if there exists a real positive matrix θ such that

C +
ı

2
J2n ≥ θ ≥ BT

(
A+

ı

2
J2m

)−
B, (1)

where
(
A+ ı

2J2m

)−
is the Moore-Penrose inverse of A+

ı
2J2m.

Theorem 4 Any separable Gaussian state in a bipartite
system is completely extendable.
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Theorem 5 Any two-mode quantum Gaussian state ρ is
completely extendable if and only if it is separable.

Theorem 6 If a state ρ (not necessarily Gaussian) on
a bipartite Fock space is completely extendable, then it is
separable.

3 Complete extendability and separabil-
ity in general case

Consider a separable Hilbert space h and denote B =
B(h) the C* algebra of all bounded operators on h. Let
Bn = B(h⊗n) = B⊗n be the n-fold tensor product of
copies of B. Let B∞ be the C* inductive limit of Bn and
S denote the set of all states in B∞ equipped with the
weak* topology. Then S is a compact convex set. For
any ω ∈ S, define

ωn(X) = ω(in(X)), X ∈ Bn.

Then ωn is a state in Bn for all n and

ωn−1(X) = ωn(X ⊗ I), ∀X ∈ Bn−1, n = 2, 3, · · · .

in other words {ωn} is a consistent family of states in
{Bn}, n = 2, 3, · · · with the projective limit ω.

Conversely, let ωn be a state in Bn for each n =
1, 2, 3, · · · such that ωn(X ⊗ I) = ωn−1(X ⊗ I), ∀X ∈
Bn−1, n = 2, 3, · · · . Then there exists a unique state ω
in B∞ such that

ω(in(X)) = ωn(X), ∀X ∈ Bn, n = 1, 2, 3, · · · .

Definition 7 A state ω in B∞ is said to be locally nor-
mal if each ωn in Bn, n = 1, 2, · · · is determined by a
density operator ρn, n = 1, 2, · · · , i.e., a positive opera-
tor ρn of unit trace in h⊗n satisfying

ωn(X) = Tr ρnX, X ∈ Bn, n = 1, 2, · · · .

Then the relative trace of ρn in h⊗n over the last copy of
h is equal to ρn−1 for each n = 2, 3, · · · .

Definition 8 A state in B∞ is said to be exchangeable
if for any permutation π of {1, 2, · · · , n} and operators
Xj ∈ B, i = 1, 2, · · · , n

ωn(Xπ(1) ⊗Xπ(2) ⊗ · · · ⊗Xπ(n))

= ωn(X1 ⊗X2 ⊗ · · · ⊗Xn)

= ω(in(X1 ⊗X2 ⊗ · · · ⊗Xn)).

We shall now describe a version of quantum de Finetti
theorem due to Hudson and Moody [4] (see also Størmer
[6] for an abstract C* algebraic version) which we shall
make use of in our analysis of complete extendability -
separability problem. To this end denote by Rh the set
of all density operators on h. Viewing Rh as a subset of
the dual of B = Bh, equip it with the relative topology
inherited from the weak* topology. Let Ph denote the
set of all probability measures on the Borel σ-algebra of
Rh.

Theorem 9 [Hudson and Moody] A locally normal state
ω on B∞ is exchangeable if and only if there exists a
probability measure Pω in Ph such that

ω(in(X)) =

∫
Rh

Tr ρ⊗nX Pω(d ρ), ∀X ∈ Bn, n = 1, 2, · · · .

The correspondence ω → Pω between the set of locally
normal and exchangeable states and the set Ph of proba-
bility measures on Rh is bijective.

Remark 1 Theorem 9 shows that exchanbeability prop-
erty automatically implies that every finite dimensional
projection of ω, namely ωn, is separable. It is natural to
expect that complete extendeability would force separabil-
ity.

Theorem 10 Let h0, h be Hilbert spaces with dim h0 > 2
and ρ be a density operator in h0 ⊗ h. Let Bn] =
B(h0 ⊗ h⊗n), n = 0, 1, 2, · · · . Suppose there exist den-
sity operators ρn in h0 ⊗ h⊗n, n = 1, 2, · · · satisfying the
following properties:

1. ρ1 = ρ and

Tr ρn(X ⊗ I) = Tr ρn−1X, X ∈ Bn],

I being the identity in h, n = 1, 2, · · · .

2. For any X0 ∈ B(h0), Yj ∈ B(h), j = 1, 2, · · · , n and
any permutation π of {1, 2, · · · , n}

Tr ρnX0⊗Y1⊗· · ·⊗Yn = Tr ρnX0⊗Yπ(1)⊗· · ·⊗Yπ(n).

Then ρ is separable in h0⊗h. Furthermore ρn is separable
in h0 ⊗ h⊗n, n = 1, 2, · · · .

Results of this paper are taken from
http://arxiv.org/abs/1601.02365. The last theorem
will be posted soon in a separate preprint.

References

[1] Andrew C. Doherty, Pablo A. Parrilo, and Fed-
erico M. Spedalieri. Complete family of separability
criteria. Phys. Rev. A, 69:022308, Feb 2004.
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1 Introduction
Compression of information is a central concept in information theory, originating in the pioneering
work of Shannon [Sha]. Shannon showed that in asymptotic and i.i.d. setting, compression of
messages upto the Shannon entropy of the source could be achieved with arbitrarily small error.
This result was soon extended to the one-shot setting by Huffman [Huf52], who gave a zero error
coding scheme, now known as the Huffman coding scheme, that achieved a compression of expected
length of the message upto Shannon entropy of the source.

The notion of expected length of the message was further explored in the work by [HJMR10].
They considered the following task: Alice and Bob know a joint distribution p(x, y). Alice is
given an input x and Bob needs to output the conditional distribution p(y|x). They gave a
nearly tight characterization of the communication requirement of this task in terms of themutual
information (I(X : Y )), showing that the expected communication cost for this task is upper bounded
by I(X : Y ) + 2 log I(X : Y ) + O(1) and lower bounded by I(X : Y ). Their result also gave an
operational interpretation to the relative entropy through a task where Alice is given a distribution
P , both Alice and Bob are given a distribution Q and they need to jointly sample from a distribution
P ′ that satisfies ‖P ′ − P‖1 ≤ ε. In the work [BR11], the task was simplified to the case where
only Bob knows Q and the authors gave an interactive protocol with expected communication cost
D(P‖Q) +

√
D(P‖Q) + O(log 1

ε ). Not only did these results give elegant operational interpretation
to fundamental information theoretic quantities in one-shot setting, they also had implications for
direct sum results in communication complexity. Following theorem was shown in [BR11] (with
analogous result for product input distribution shown earlier in [HJMR10]):

Theorem 1.1 (Corollary 2.5, Braverman and Rao [BR11]; see also Result 3, [HJMR10]). Let C be
the communication complexity of the best protocol for computing a relation f with error δ on inputs
drawn from a distribution µ. Then any r round protocol computing f⊗n on the distribution µ⊗n

with error δ − ε must involve at least Ω(n(C − r · log(1
ε )−O(

√
C · r))) communication.

In quantum information theory, two-party communication protocols are typically of two kinds:
non-coherent protocols and coherent protocols. In non-coherent protocols, a well known example
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of which is the Schumacher compression [Sch95], the parties do not need to maintain a quantum
correlation with the Referee. There are various one-shot protocols that are formulated in non-
coherent setting and also have applications for direct sum results in one-way quantum communication
complexity ([JRS05, JRS08, AJM+14]).

In the case of coherent protocols, the parties are required to maintain a quantum correlation
with the Referee. This is seen, for example, in the case of Quantum state merging [HOW07], where
Alice (A), Bob (B) and Referee (R) share a pure tripartite quantum state ΨRAB and Alice needs to
send her register A to Bob (with the aid of shared entanglement) such that the final state between
Referee and Bob is ΨRA′B (where register A′ ≡ A held by Bob). A generalization of Quantum state
merging is the task of Quantum state redistribution, which very nicely captures the round by round
interaction of quantum communication protocols.

Quantum state redistribution : A pure state ΨRBCA is shared between Alice (A,C), Bob(B)
and Referee(R). For a given ε > 0, which we shall henceforth identify as ‘error’, Alice needs to
transfer the system C to Bob, such that the final state Ψ′RBC0A

(where register C0 ≡ C is with
Bob), satisfies P(Ψ′RBC0A

,ΨRBC0A) ≤ ε. Here, P(., .) is the purified distance.

This task has been well studied in literature in asymptotic setting ([DY08, Opp08, YBW08,
YD09]), giving an operational interpretation to the quantum conditional mutual information (de-
noted as I(R : C |B)Ψ), and more recently in one shot-setting ([DHO16, BCT16, AJD14]). It has
been used by Touchette [Tou15] as a natural framework to define the notion of quantum information
complexity (inspired by the notion of Information complexity, formally introduced in [Bra12]), with
application to direct sum result in bounded-round entanglement assisted quantum communication
complexity. Following is the main theorem in [Tou15]:

Theorem 1.2 (Touchette [Tou15], Theorem 3). Let C be the quantum communication complexity
of the best entanglement assisted protocol for computing a relation f with error δ on inputs drawn

from a distribution µ. Then any r round entanglement assisted protocol computing f⊗n on the
distribution µ⊗n with error δ − ε must involve at least Ω(n(( εr )2 · C − r)) quantum communication.

This theorem uses the one-shot upper bound of O( I(R:C |B)Ψ
ε2 ) on worst case quantum communi-

cation cost for Quantum state redistribution (as obtained in [ Tou15] using the one-shot results in
[BCT16]), which leads to a stronger dependence on the number of rounds, in comparision to Theo-
rem 1.1. A natural way to improve upon the theorem is to consider the expected communication
cost of Quantum state redistribution.

Our results

In this work, we study the expected communication cost of Quantum state redistribution; taking in-
spiration from the elegant one-shot operational interpretations of fundamental information theoretic
quantities provided in [Huf52],[HJMR10] and [BR11], and to explore the possibility of improvement
of Theorem 1.2. We find that, in contrast to the classical case, the expected communication cost is
not much better than the worst case communication cost. Our main theorem is the following.

Theorem 1.3. Fix a p < 1 and an ε ∈ [0, ( 1
70)

4
1−p ]. There exists a pure state ΨRBCA (that depends

on ε) such that, any interactive entanglement assisted communication protocol for its quantum state
redistribution with error ε requires expected communication cost at least I(R : C |B)Ψ · (

1
ε )p.
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For the special case where registers A,B are absent, which is also known as Quantum state
transfer and is the one-shot coherent analogue of Schumacher compression [Sch95], we obtain a
similar result with slightly better constants.

Theorem 1.4. Fix a p < 1 and any ε ∈ [0, (1
2)

15
1−p ]. There exists a pure state ΨRC (that depends

on ε) such that, any interactive entanglement assisted communication protocol for its quantum state
transfer with error ε requires expected communication cost at least S(ΨR) · (1

ε )p.

Note that Theorem 1.4 in itself is sufficient to given a lower bound on expected communication
cost of Quantum state redistribution, as Quantum state transfer is a special case. But the state
ΨRBCA that we consider in Theorem 1.3 has all registers R,A,B,C non-trivial and correlated with
each other. Thus, Quantum state redistribution of ΨRBCA cannot be reduced to the sub-case of
Quantum state transfer by any local operation, giving robustness to the bound.

A result similar to Theorem 1.4, but in the context of non-coherent quantum protocols, has been
obtained recently in [AGHY16]. This can be viewed as a complementary work in the following sense:
on one hand, it is stronger since non-coherent quantum protocols are less restrictive that coherent
quantum protocols. On the other hand, it is weaker due to the presence of round dependence
(Theorem 1.2, [AGHY16]) and error that depends on input size (Theorem 1.3, [AGHY16]), none of
which are present in Theorem 1.4. Moreover, this work does not provide an analogue of Theorem
1.3.

Our technique and organization

We discuss our technique for the case of Quantum state transfer, for simplicity. For some β > 1, we
choose the pure state ΨRC in such a way that its smallest eigenvalue is 1

dβ and entropy of ΨR is at
most 2 log(d)

β (d being dimension of register R, see Lemma A.15). Let ωRC be a maximally entangled

state defined as |ω〉RC = Ψ
− 1

2
R√
d
|Ψ〉RC . For any interactive protocol P for quantum state transfer

of ΨRC with error ε and expected communication cost C (formally described in Appendix B), we
obtain an expression that serves as a transcript of the protocol, encoding the unitaries applied by
Alice and Bob and the probabilities of measurement outcomes (Corollary B.5, see also Lemma B.3).
This expression takes ideas from the technique of convex-split, introduced in [AJD14], for one-way
Quantum state redistribution protocols.

Then, crucially relying on the facts that ΨRC is a pure state and the register R is untouched
by the protocol (which allows the operation ρ → Ψ−

1
2

R ρΨ−
1
2

R to be performed on the register R,
see Lemmas C.3 and C.4), we construct a new interactive protocol P′ which achieves quantum
state transfer of the state ωRC with error

√
βε + √µ (for any µ < 1) and worst case quantum

communication cost at most Cµ (Lemmas C.5 and C.6). Suitably choosing the parameters ε, β and
µ and using known lower bound on worst case communication cost for state transfer of ωRC , we
obtain the desired result. Same technique also extends to quantum state redistribution. Details
appear in Appendix C (and can also be found in the arXiv version [Ans15])

Some questions related to our work are as follows.

1. What are some applications of Theorems 1.3 and 1.4 in quantum information theory? An
immediate application is that we obtain a lower bound on worst case communication cost
of Quantum state redistribution, since worst case communication cost is always larger than
expected communication cost of a protocol.

3
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2. Is it possible to improve the direct sum result for entanglement assisted quantum information
complexity obtained in [Tou15]? The work [AGHY16] provides yet another limitation to
such an improvement. But it may be possible to compress the whole protocol, rather than
round-by-round compression, along the lines similar to [BBCR10].
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A Preliminaries
In this section we present some notations, definitions, facts and lemmas that we will use in our
proofs.

Information theory

For a natural number n, let [n] represent the set {1, 2, . . . , n}. For a set S, let |S| be the size of
S. A tuple is a finite collection of positive integers, such as (i1, i2 . . . ir) for some finite r. We let
log represent logarithm to the base 2 and ln represent logarithm to the base e. The `1 norm of an
operator X is ‖X‖1

def= Tr
√
X†X and `2 norm is ‖X‖2

def=
√

TrXX†. A quantum state (or just a
state) is a positive semi-definite matrix with trace equal to 1. It is called pure if and only if the
rank is 1. Let |ψ〉 be a unit vector. We use ψ to represent the state and also the density matrix
|ψ〉〈ψ|, associated with |ψ〉.

A sub-normalized state is a positive semidefinite matrix with trace less than or equal to 1.
A quantum register A is associated with some Hilbert space HA. Define |A| def= dim(HA). We
denote by D(A), the set of quantum states in the Hilbert space HA and by D≤(A), the set of all
subnormalized states on register A. State ρ with subscript A indicates ρA ∈ D(A).

For two quantum states ρ and σ, ρ ⊗ σ represents the tensor product (Kronecker product) of
ρ and σ. Composition of two registers A and B, denoted AB, is associated with Hilbert space
HA ⊗HB. If two registers A,B are associated with the same Hilbert space, we shall denote it by
A ≡ B. Let ρAB be a bipartite quantum state in registers AB. We define

ρB
def= TrA(ρAB) def=

∑
i

(〈i| ⊗ 1B)ρAB(|i〉 ⊗ 1B),

where {|i〉}i is an orthonormal basis for the Hilbert space A and 1B is the identity matrix in
space B. The state ρB is referred to as the marginal state of ρAB in register B. Unless otherwise
stated, a missing register from subscript in a state will represent partial trace over that register.
A quantum map E : A → B is a completely positive and trace preserving (CPTP) linear map
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(mapping states from D(A) to states in D(B)). A completely positive and trace non-increasing
linear map Ẽ : A → B maps quantum states to sub-normalised states. The identity operator in
Hilbert space HA (and associated register A) is denoted IA. A unitary operator UA : HA → HA is
such that U †AUA = UAU

†
A = IA. An isometry V : HA → HB is such that V †V = IA and V V † = IB.

The set of all unitary operations on register A is denoted by U(A).

Definition A.1. We shall consider the following information theoretic quantities. Let ε ≥ 0.

1. generalized fidelity For ρ, σ ∈ D≤(A),

F(ρ, σ) def=
∥∥√ρ√σ∥∥1 +

√
(1− Tr(ρ))(1− Tr(σ)).

2. purified distance For ρ, σ ∈ D≤(A),

P(ρ, σ) =
√

1− F2(ρ, σ).

3. ε-ball For ρA ∈ D(A),

Bε(ρA) def= {ρ′A ∈ D(A)| P(ρA, ρ′A) ≤ ε}.

4. entropy For ρA ∈ D(A),
H(A)ρ

def= −Tr(ρA log ρA).

5. relative entropy For ρA, σA ∈ D(A),

D(ρA‖σA) def= Tr(ρA log ρA)− Tr(ρA log σA).

6. max-relative entropy For ρA, σA ∈ D(A),

Dmax(ρA‖σA) def= inf{λ ∈ R : 2λσA ≥ ρA}.

7. mutual information For ρAB ∈ D(AB),

I(A : B)ρ
def= D(ρAB‖ρA ⊗ ρB) = H(A)ρ + H(B)ρ −H(AB)ρ .

8. conditional mutual information For ρABC ∈ D(ABC),

I(A : B |C)ρ
def= I(A : BC)ρ − I(A : C)ρ = I(B : AC)ρ − I(B : C)ρ .

9. max-information For ρAB ∈ D(AB),

Imax(A : B)ρ
def= infσB∈D(B)Dmax(ρAB‖ρA ⊗ σB) .

10. smooth max-information For ρAB ∈ D(AB),

Iεmax(A : B)ρ
def= infρ′∈Bε(ρ)Imax(A : B)ρ′ .

7

41



11. conditional min-entropy For ρAB ∈ D(AB),

Hmin(A|B)ρ
def= −infσB∈D(B)Dmax(ρAB‖IA ⊗ σB) .

12. conditional max-entropy For ρAB ∈ D(AB),

Hmax(A|B)ρAB
def= −Hmin(A|R)ρAR ,

where ρABR is a purification of ρAB for some system R.

13. smooth conditional min-entropy For ρAB ∈ D(AB),

Hε
min(A|B)ρ

def= sup
ρ′∈Bε(ρ)

Hmin(A|B)ρ′ .

14. smooth conditional max-entropy For ρAB ∈ D(AB),

Hε
max(A|B)ρ

def= infρ′∈Bε(ρ)Hmax(A|B)ρ′ .

We will use the following facts.

Fact A.2 (Triangle inequality for purified distance, [Tom12]). For states ρ1
A, ρ

2
A, ρ

3
A ∈ D(A),

P(ρ1
A, ρ

3
A) ≤ P(ρ1

A, ρ
2
A) + P(ρ2

A, ρ
3
A).

Fact A.3 (Purified distance and trace distance, [Tom12], Proposition 3.3). For subnormalized
states ρ1, ρ2

1
2‖ρ1 − ρ2‖1 ≤ P(ρ1, ρ2) ≤

√
‖ρ1 − ρ2‖1.

Fact A.4 (Uhlmann’s theorem). [[Uhl76]] Let ρA, σA ∈ D(A). Let |ρ〉AB be a purification of ρA
and |σ〉AC be a purification of σA. There exists an isometry V : HC → HB such that,

F(|θ〉〈θ|AB , |ρ〉〈ρ|AB) = F(ρA, σA),

where |θ〉AB = (IA ⊗ V ) |σ〉AC .

Fact A.5 (Monotonicity of quantum operations). [[Lin75, BCF+96], [Tom12], Theorem 3.4] For
states ρ, σ, and quantum operation E(·),

‖E(ρ)− E(σ)‖1 ≤ ‖ρ− σ‖1 ,P(ρ, σ) ≤ P(E(ρ),E(σ)) and F(ρ, σ) ≤ F(E(ρ),E(σ)).

In particular, for a trace non-increasing completely positive map Ẽ(·),

P(ρ, σ) ≤ P(Ẽ(ρ), Ẽ(σ)).

Fact A.6 (Join concavity of fidelity). [[Wat11], Proposition 4.7] Given quantum states ρ1, ρ2 . . . ρk, σ1, σ2 . . . σk ∈
D(A) and positive numbers p1, p2 . . . pk such that

∑
i pi = 1. Then

F(
∑
i

piρi,
∑
i

piσi) ≥
∑
i

piF(ρi, σi).
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Fact A.7. Let ρ, σ ∈ D(A) be quantum states. Let α < 1 be a positive real number. If P(αρ, ασ) ≤
ε, then

P(ρ, σ) ≤ ε
√

2
α
.

Proof. P(αρ, ασ) ≤ ε implies F(αρ, ασ) ≥
√

1− ε2 ≥ 1−ε2. But, F(αρ, ασ) = α‖√ρ
√
σ‖1 +(1−α).

Thus,

F(ρ, σ) = ‖√ρ
√
σ‖1 ≥ 1− ε2

α
.

Thus, P(ρ, σ) ≤
√

1− (1− ε2

α )2 ≤
√

2ε2
α .

Fact A.8 (Fannes inequality). [[Fan73]] Given quantum states ρ1, ρ2 ∈ D(A), such that |A| = d
and P(ρ1, ρ2) = ε ≤ 1

2e ,
|S(ρ1)− S(ρ2)| ≤ ε log(d) + 1.

Fact A.9 (Subadditivity of entropy). [[AL70]] For a quantum state ρAB ∈ D(AB), |S(ρA) −
S(ρB)| ≤ S(ρAB) ≤ S(ρA) + S(ρB).

Fact A.10 (Concavity of entropy). [[Wat11], Theorem 10.9] For quantum states ρ1, ρ2 . . . ρn, and
positive real numbers λ1, λ2 . . . λn satisfying

∑
i λi = 1,

S(
∑
i

λiρi) ≥
∑
i

λiS(ρi).

Fact A.11. For a quantum state ρABC , it holds that

I(A : C)ρ ≤ 2S(ρC),

I(A : C |B)ρ ≤ I(AB : C)ρ ≤ 2S(ρC).

Proof. From Fact A.9, I(A : C)ρ = S(ρA) + S(ρC)− S(ρAC) ≤ 2S(ρC).

Fact A.12. For a bipartite quantum state ρAB, Iεmax(A : B)ρ ≥ −Hε
min(A|B)ρ.

Proof. Let σB be the state achieved in infimum in the definition of Imax (A : B)ρ. Let λ def=
Imax(A : B)ρ. Consider,

ρAB ≤ 2λρA ⊗ σB ≤ 2λIA ⊗ σB.

Thus, we have

−Hmin(A|B)ρ = infσ′B∈D(B)Dmax
(
ρAB

∥∥IA ⊗ σ′B) ≤ Dmax(ρAB‖IA ⊗ σB) ≤ λ = Imax(A : B)ρ .

This gives,
infρ′AB∈Bε(ρAB) −Hmin(A|B)ρ′ ≤ Iεmax(A : B)ρ .

Fact A.13. For a classical-quantum state ρAB of the form ρAB =
∑
j p(j) |j〉〈j|A ⊗ σ

j
B, it holds

that Imax(A : B)ρ ≤ log(|B|).
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Proof. By definition, Imax(A : B)ρ ≤ Dmax
(
ρAB

∥∥∥ρA ⊗ IB
|B|

)
. Also,

ρAB =
∑
j

p(j) |j〉〈j|A ⊗ σ
j
B ≤ |B|

∑
j

p(j) |j〉〈j|A ⊗
IB
|B|

= |B|ρA ⊗
IB
|B|

.

Thus, the fact follows.

Fact A.14. For a classical-quantum state ρABC =
∑
j p(j) |j〉〈j|A⊗ρ

j
BC , it holds that I(AB : C)ρ ≥∑

j p(j)I(B : C)ρj

Proof. Consider,

I(AB : C)ρ = S(ρAB) + S(ρC)− S(ρABC)

= S(
∑
j

p(j) |j〉〈j|A ⊗ ρ
j
B) + S(

∑
j

p(j)ρjC)− S(
∑
j

p(j) |j〉〈j|A ⊗ ρ
j
BC)

=
∑
j

p(j)S(ρjB) + S(
∑
j

p(j)ρjC)−
∑
j

p(j)S(ρjBC)

≥
∑
j

p(j)S(ρjB) +
∑
j

p(j)S(ρjC)−
∑
j

p(j)S(ρjBC) (Fact A.10)

=
∑
j

p(j)I(B : C)ρj

Lemma A.15. Fix a β ≥ 1 and an integer d > 1. There exists a probability distribution µ =
{e1, e2 . . . ed}, with e1 ≥ e2 . . . ≥ ed, such that ed = 1

dβ and entropy S(µ) ≤ 2 log(d)
β

Proof. Set e2 = e3 = . . . ed = 1
dβ . Then e1 = 1− d−1

dβ . Using x log( 1
x) ≤ log(e)

e < 1 for all x > 0, we
can upper bound the entropy of the distribution as∑

i

ei log( 1
ei

) = (1− d− 1
dβ

) log( 1
1− d−1

dβ

) + d− 1
dβ

log(dβ) < 2 + log(d)
β
≤ 2log(d)

β
.

B Interactive protocol for quantum state redistribution
In this section, we describe general structure of an interactive protocol for quantum state redistri-
bution and its expected communication cost.

Let quantum state |Ψ〉RBCA be shared between Alice (A,C), Bob (B) and Referee (R). Alice
and Bob have access to shared entanglement θEAEB in registers EA (with Alice) and EB (with
Bob). Using quantum teleportation, we can assume without loss of generality that Alice and Bob
communicate classical messages, which involves performing a POVM measurement on registers they
respectively hold, and sending the outcome of measurement to other party. This allows for the
notion of expected communication cost.

A r-round interactive protocol P (where r is an odd number) with error ε and expected com-
munication cost C is as follows (see also Figure 1)
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Input: A quantum state |Ψ〉RBCA, error parameter ε < 1.
Shared entanglement: |θ〉EAEB .

• Alice performs a measurementM = {M1
ACEA

,M2
ACEA

. . .}. Probability of outcome i1 is
pi1

def= Tr(M i1
ACEA

ΨCA ⊗ θEA). Let φi1RBACEAEB be the global normalized quantum state,
conditioned on this outcome. She sends message i1 to Bob.

• Upon receiving the message i1 from Alice, Bob performs a measurement

Mi1 = {M1,i1
BEB

,M2,i1
BEB

. . .}.

Probability of outcome i2 is pi2|i1
def= Tr(M i2,i1

BEB
φi1BEB). Let φi2,i1RBACEAEB

be the global
normalized quantum state conditioned on this outcomei2 and previous outcome i1. Bob
sends message i2 to Alice.

• Consider any odd round 1 < k ≤ r. Let the measurement outcomes in previous rounds
be i1, i2 . . . ik−1 and global normalized state be φik−1,ik−2...i1

RBACEAEB
. Alice performs the measure-

mentMik−1,ik−2...i2,i1 = {M1,ik−1,ik−2...i2,i1
ACEA

,M
2,ik−1,ik−2...i2,i1
ACEA

. . .} and obtains outcome ik
with probability pik|ik−1,ik−2...i2,i1

def= Tr(M ik,ik−1,ik−2...i2,i1
ACEA

φ
ik−1,ik−2...i1
AXEA

). Let the global
normalized state after outcome ik be φik,ik−1,ik−2...i1

RBACEBEA
. Alice sends the outcome ik to Bob.

• Consider an even round 2 < k ≤ r. Let the measurement outcomes in previous rounds be
i1, i2 . . . ik−1 and global normalized state be φik−1,ik−2...i1

RBACEAEB
. Bob performs the measurement

Mik−1,ik−2...i2,i1 = {M1,ik−1,ik−2...i2,i1
BEB

,M
2,ik−1,ik−2...i2,i1
BEB

. . .}

and obtains outcome ik with probability

pik|ik−1,ik−2...i2,i1
def= Tr(M ik,ik−1,ik−2...i2,i1

BEB
φ
ik−1,ik−2...i1
BEB

).

Let the global normalized state after outcome ik be φ
ik,ik−1,ik−2...i1
RBACEBEA

. Bob sends the outcome
ik to Alice.

• After receiving message ir from Alice at the end of round r, Bob applies a unitary
U bir,ir−1...i1 : BEB → BC0TB such that EB ≡ C0TB and C0 ≡ C. Alice applies a unitary
Uair,ir−1...i1 : ACEA → ACEA. Let Uir,ir−1...i1

def= Uair,ir−1...i1 ⊗ U
b
ir,ir−1...i1 . Define∣∣∣τ ir,ir−1...i1

〉
RBACC0TBEA

def= Uir,ir−1...i1

∣∣∣φir,ir−1...i1
〉
RBACEBEA

.

• For every k ≤ r, define

pi1,i2...ik
def= pi1 · pi2|i1 · pi3|i2,i1 . . . pik|ik−1,ik−2...i1 .

11

45



The joint state in registers RBC0A, after Alice and Bob’s final unitaries and averaged over
all messages is Ψ′RBC0A

def=
∑
ir,ir−1...i1 pi1,i2...irτ

ir,ir−1...i1
RBC0A

. It satisfies P(Ψ′RBC0A
,ΨRBC0A) ≤

ε.

The expected communication cost is as follows.

Fact B.1. Expected communication cost of P is∑
i1,i2...ir

pi1,i2...ir log(i1 · i2 . . . ir)

Proof. The expected communication cost is the expected length of the messages over all probability
outcomes. It can be evaluated as∑

i1

pi1 log(i1) +
∑
i1,i2

pi1pi2|i1 log(i2) + . . .
∑

i1,i2...ir

pi1,i2...ir−1pir|ir−1,ir−2...i1 log(ir)

=
∑

i1,i2...ir

pi1,i2...ir(log(i1) + log(i1) + . . . log(ir)).

This allows us to define

Definition B.2. Communication weight of a probability distribution {p1, p2 . . . pm} is de-
fined as

∑m
i=1 pi log(i).

The following lemma is a coherent representation of above protocol.

Lemma B.3. For every k ≤ r, let Ok represent the set of all tuples (i1, i2 . . . ik) which satisfy:
{i1, i2 . . . ik} is a sequence of measurement outcomes that occurs with non-zero probability upto k-th
round of P.

There exist registers M1,M2 . . .Mr and isometries

{Uik−1,ik−2...i2,i1 : ACEA → ACEAMk|k > 1, k odd , (i1, i2 . . . ik−1) ∈ Ok−1},

{Uik−1,ik−2...i2,i1 : BEB → BEBMk|k even , (i1, i2 . . . ik−1) ∈ Ok−1}

and U : ACEA → ACEAM1, such that

|Ψ〉RBCA |θ〉EAEB = U †
∑

i1,i2...ir

√
pi1,i2...irU

†
i1
U †i2,i1 . . . U

†
ir,ir−1...i1

∣∣∣τ ir,ir−1...i1
〉
RBCAC0TBEA

|ir〉Mr
. . . |i1〉M1

.
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Referee Alice Bob

ΨRBAC

R A C B

θEAEB

EA EB

MACEA

i1

Mi1
BEB

i2

ir

Uair,ir−1...i1

A C EA

U bir,ir−1...i1

TB C0 B

Ψ′RAC0B

Figure 1: Graphical representation of interactive protocol for Quantum state redistribution. The
messages i1, i2 . . . are exchanged by Alice and Bob till round r.
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Proof. Fix an odd k > 1. Let the messages prior to k−th round be (i1, i2 . . . ik−1). As defined in
protocol P, global quantum state before k-th round is φik−1,ik−2...i1

RBCAEAEB
. Alice performs the measurement

{M1,ik−1,ik−2...i2,i1
ACEA

,M
2,ik−1,ik−2...i2,i1
ACEA

. . .}.

This leads to the following equation (referred to as convex-split in [AJD14]):

φ
ik−1,ik−2...i1
RBEB

=
∑
ik

TrACEA(M ik,ik−1,ik−2...i2,i1
ACEA

φ
ik−1,ik−2...i1
RBCAEBEA

)

=
∑
ik

pik|ik−1,ik−2...i2,i1

TrACEA(M ik,ik−1,ik−2...i2,i1
ACEA

φ
ik−1,ik−2...i1
RBCAEBEA

M
ik,ik−1,ik−2...i2,i1
ACEA

)
pik|ik−1,ik−2...i2,i1

=
∑
ik

pik|ik−1,ik−2...i2,i1φ
ik,ik−1,ik−2...i2,i1
RBEB

(1)

A purification of φik−1,ik−2...i1
RBEB

on registers RBCAEBEA is φik−1,ik−2...i1
RBCAEBEA

. Introduce a register
Mk (of sufficiently large dimension) and consider the following purification of∑

ik

pik|ik−1,ik−2...i2,i1φ
ik,ik−1,ik−2...i2,i1
RBEB

on register RBCAEBEAMk :∑
ik

√
pik|ik−1,ik−2...i2,i1

∣∣∣φik,ik−1,ik−2...i2,i1
〉
RBCAEBEA

|ik〉Mk
.

By Uhlmann’s theorem A.4, there exists an isometryUik−1,ik−2...i2,i1 : ACEA → ACEAMk such
that

Uik−1,ik−2...i2,i1

∣∣∣φik−1,ik−2...i1
〉
RBCAEBEA

=
∑
ik

√
pik|ik−1,ik−2...i2,i1

∣∣∣φik,ik−1,ik−2...i2,i1
〉
RBCAEBEA

|ik〉Mk

(2)
For k = 1, introduce register M1 of sufficiently large dimension. Similar argument implies that

there exists an isometry U : ACEA → ACEAM1 such that

U |Ψ〉RBACEBEA =
∑
i1

√
pi1

∣∣∣φi1〉
RBACEBEA

|i1〉M1
(3)

For k even, introduce a register Mk of sufficiently large dimension. Again by similar argument,
there exists an isometry Uik−1,ik−2...i2,i1 : BEB → BEBMk such that

Uik−1,ik−2...i2,i1

∣∣∣φik−1,ik−2...i1
〉
RBCAEBEA

=
∑
ik

√
pik|ik−1,ik−2...i2,i1

∣∣∣φik,ik−1,ik−2...i2,i1
〉
RBCAEBEA

|ik〉Mk

(4)
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Now, we recursively use equations 2, 3 and 4. Consider,

|Ψ〉RBCA |θ〉EAEB = U †
∑
i1

√
pi1

∣∣∣φi1〉
RBCAEBEA

|i1〉M1

= U †
∑
i1

√
pi1U

†
i1

∑
i2

√
pi2|i1

∣∣∣φi2,i1〉
RBCAEBEA

|i2〉M2
|i1〉M1

= U †
∑
i1,i2

√
pi1,i2U

†
i1

∣∣∣φi2,i1〉
RBCAEBEA

|i2〉M2
|i1〉M1

= U †
∑

i1,i2...ir

√
pi1,i2...irU

†
i1
U †i2,i1 . . . U

†
ir,ir−1...i1

∣∣∣τ ir,ir−1...i1
〉
RBCAB0TBEA

|ir〉Mr
. . . |i1〉M1

Last equality follows by recursion. This completes the proof.

We introduce the following useful definitions.

Definition B.4. Define the following isometries and unitaries.

• Let k > 1 be odd. Isometry Uk : ACEAM1M2 . . .Mk−1 → ACEAM1M2 . . .Mk−1Mk,

Uk
def=

∑
i1,i2...ik−1

|i1〉〈i1|M1
⊗ |i2〉〈i2|M2

⊗ . . . |ik−1〉〈ik−1|Mk−1
⊗ Uik−1,ik−2...i2,i1 .

• For k even, Isometry Uk : BEBM1M2 . . .Mk−1 → BEBM1M2 . . .Mk−1Mk,

Uk
def=

∑
i1,i2...ik−1

|i1〉〈i1|M1
⊗ |i2〉〈i2|M2

⊗ . . . |ik−1〉〈ik−1|Mk−1
⊗ Uik−1,ik−2...i2,i1 .

• Unitary Uar+1 : ACEAM1M2 . . .Mr → ACEAM1M2 . . .Mr,

Uar+1
def=

∑
i1,i2...ir

|i1〉〈i1|M1
⊗ |i2〉〈i2|M2

⊗ . . . |ir〉〈ir|Mr
⊗ Uair,ir−1...i1 .

• Unitary U br+1 : BEBM1M2 . . .Mr → BC0TBM1M2 . . .Mr,

U br+1
def=

∑
i1,i2...ir

|i1〉〈i1|M1
⊗ |i2〉〈i2|M2

⊗ . . . |ir〉〈ir|Mr
⊗ U bir,ir−1...i1 .

• Unitary Ur+1 : ACEABEBM1M2 . . .Mr → ACEABC0TBM1M2 . . .Mr,

Ur+1
def=

∑
i1,i2...ir

|i1〉〈i1|M1
⊗ |i2〉〈i2|M2

⊗ . . . |ir〉〈ir|Mr
⊗ Uir,ir−1...i1 .

This leads to a more convenient representation of Lemma B.3.
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Corollary B.5. It holds that

|Ψ〉RBCA |θ〉EAEB = U †U †2 . . . U
†
r+1

∑
i1,i2...ir

√
pi1,i2...ir

∣∣∣τ ir,ir−1...i1
〉
RBCAC0TBEA

|ir〉Mr
. . . |i1〉M1

.

and
P(ΨRBC0A,

∑
i1,i2...ir

pi1,i2...irτ
ir,ir−1...i1
RBC0A

) ≤ ε.

Proof. The corollary follows immediately using Definition B.4 and Lemma B.3.

Following lemma is a refined form of above corollary, where we clarify the structure of the states∣∣τ ir,ir−1...i1
〉
RBCAC0TBEA

. Its proof is deferred to Appendix D.

Lemma B.6. There exists a probability distribution {p′i1,i2...ir} and pure states κir,ir−1...i1
CEATB

such that

P(ΨRBCA ⊗ θEAEB , U
†U †2 . . . U

†
r+1

∑
i1,i2...ir

√
p′i1,i2...irΨRBC0A ⊗ κ

ir,ir−1...i1
CEATB

|ir〉Mr
. . . |i1〉M1

) ≤ 2
√
ε,

and the communication weight of p′i1,i2...ir is at most C
1−ε .

C Lower bound on expected communication cost
In this section, we obtain a lower bound on expected communication cost of quantum state redis-
tribution and quantum state transfer, by considering a class of states defined below.

Let register R be composed of two registers RA, R′, such that R ≡ RAR
′. Let da be the

dimension of registers RA and A. Let d be the dimension of registers R′, C and B.

Definition C.1. Define

|Ψ〉RBCA
def= 1√

da

da∑
a=1
|a〉RA |a〉A |ψ

a〉R′BC ,

where

|ψa〉R′BC =
d∑
j=1

√
ej |uj〉R′ |vj(a)〉B |wj(a)〉C

with e1 ≥ e2 ≥ . . . ed > 0,
∑d
i=1 ei = 1 and {|u1〉 , . . . |ud〉}, {|v1(a)〉 , . . . |vd(a)〉}, {|w1(a)〉 , . . . |wd(a)〉}

form an orthonormal basis (second and third bases may depend arbitrarily on a) in their re-
spective Hilbert spaces.

Define a ‘GHZ state’: |ωa〉R′BC
def= 1√

d

∑d
j=1 |uj〉R′ |vj(a)〉B |wj(a)〉C . Using this, we define

ωRBCA
def= 1√

da

∑da
a=1 |a〉RA |a〉A |ω

a〉R′BC .

For quantum state transfer, we have the following definition.
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Definition C.2. Define a pure state

Ψ̃RC
def=

d∑
j=1

√
ej |uj〉R |wj〉C .

Corresponding maximally entangled state ω′RC
def= 1√

d

∑d
j=1 |uj〉R |wj〉C .

Following two relations are easy to verify.

|ω〉RBCA = 1√
da · d

Ψ−
1
2

R |Ψ〉RBCA and
∣∣ω′〉RC = 1√

d
(Ψ̃R)−

1
2

∣∣∣Ψ̃〉
RC

(5)

As noted in Appendix B, the protocol P achieves quantum state redistribution of ΨRBCA with
error ε and expected communication cost C.

We now use Lemma B.6 to prove the following for the state ωRBCA. Recall that ed is the
smallest eigenvalue of ψaR′ , independent of a.
Lemma C.3. It holds that

P(ωRBCA ⊗ θEAEB , U
†U †2 . . . U

†
r+1

∑
i1,i2...ir

√
p′i1,i2...irωRBC0A ⊗ κ

ir,ir−1...i1
CEATB

|ir〉Mr
. . . |i1〉M1

) ≤
√

8ε
ed · d

.

Communication weight of distribution p′i1,i2...ir is C
1−ε .

Proof. Define a completely positive map Ẽ : R → R as Ẽ(ρ) def= ed
da

(Ψ−
1
2

R ρΨ−
1
2

R ), which is trace
non-increasing since Ψ−1

R ≤
da
ed
IR. Using equation 5, observe that

Ẽ(ΨRBCA) = ed · d · ωRBCA.

Consider,

2
√
ε ≥ P(ΨRBCA ⊗ θEAEB , U

†U †2 . . . U
†
r+1

∑
i1,i2...ir

√
p′i1,i2...irΨRBC0A ⊗ κ

ir,ir−1...i1
CEATB

|ir〉Mr
. . . |i1〉M1

)

(Lemma B.6)

≥ P(Ẽ(ΨRBCA)⊗ θEAEB , U
†U †2 . . . U

†
r+1

∑
i1,i2...ir

√
p′i1,i2...ir Ẽ(ΨRBC0A)⊗ κir,ir−1...i1

CEATB
|ir〉Mr

. . . |i1〉M1
)

(Fact A.5)

= P(d · ed · ωRBCA ⊗ θEAEB , d · ed · U
†U †2 . . . U

†
r+1

∑
i1,i2...ir

√
p′i1,i2...irωRBC0A ⊗ κ

ir,ir−1...i1
CEATB

|ir〉Mr
. . . |i1〉M1

)

Using Fact A.7, we thus obtain

P(ωRBCA ⊗ θEAEB , U
†U †2 . . . U

†
r+1

∑
i1,i2...ir

√
p′i1,i2...irωRBC0A ⊗ κ

ir,ir−1...i1
CEATB

|ir〉Mr
. . . |i1〉M1

) ≤
√

8ε
d · ed

.

Furthermore, there is no change in communication weight. This completes the proof.
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Similarly for quantum state transfer, we have the following corollary

Corollary C.4. It holds that

P(ω′RC ⊗ θEAEB , U
†U †2 . . . U

†
r+1

∑
i1,i2...ir

√
p′i1,i2...irω

′
RC0 ⊗ κ

ir,ir−1...i1
CEATB

|ir〉Mr
. . . |i1〉M1

) ≤
√

8ε
ed · d

.

Communication weight of distribution p′i1,i2...ir is C
1−ε .

Now we exhibit an interactive entanglement assisted communication protocol for state-redistribution
of ωRBCA with suitably upper bounded worst case communication cost. Proof of this lemma has
been deferred to Appendix E.

Lemma C.5. Fix an error parameter µ > 0. There exists an entanglement assisted r-round
quantum communication protocol for state redistribution of ωRBCA with worst case quantum com-
munication cost at most 2C

µ(1−ε) and error at most
√

8ε
ed·d +√µ.

Similarly, we have the corollary for quantum state transfer.

Corollary C.6. Fix an error parameter µ > 0. There exists a r-round communication protocol for
state transfer of ω′RC with worst case quantum communication cost atmost 2C

µ(1−ε) and error at most√
8ε
ed·d +√µ.

Next two lemmas obtain lower bound on worst case quantum communication cost of quantum
state redistribution of ωRBCA and quantum state transfer of ω′RC .

Lemma C.7. Let d, the local dimension of register B, be such that d > 218. Then worst case
quantum communication cost of any interactive entanglement assisted quantum state redistribution
protocol of the state ωRBCA, with error δ < 1

6 , is at least 1
6 log(d).

Proof. Following lower bound on worst case quantum communication cost for interactive quan-
tum state redistribution of the state ωRBCA, with error δ, has been shown ([BCT16], Section 5,
Proposition 2):

1
2(Iδmax(R : BC)ω − Imax(R : B)ω).

Recall, from definition C.1, that ωRBC = 1
da

∑da
a=1 |a〉〈a|RA ⊗ ω

a
R′BC is a classical-quantum state.

Consider,

Iδmax(R : BC)ω ≥ infρRBC∈Bδ(ωRBC)I(R : BC)ρ
≥ infρR∈Bδ(ωR)S(ρR) + infρBC∈Bδ(ωBC)S(ρ′BC)− sup

ρRBC∈Bδ(ωRBC)
S(ρRBC)

≥ I(R : BC)ω − 3δ log(d)− 3 (Fact A.8)

≥ 1
da

∑
a

I
(
R′ : BC

)
ωa − 3δ log(d)− 3 (Fact A.14)

= 2 log(d)− 3δ log(d)− 3.

To bound Imax(R : B)ω, notice that ωRB = 1
d·da

∑da
a=1

∑d
j=1 |a〉〈a|RA⊗|uj〉〈uj |R′⊗|vj(a)〉〈vj(a)|B

is also a classical-quantum state. Using Fact A.13, we obtain Imax(R : B)ω ≤ log(|B|) = log(d).
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Thus, communication cost is lower bounded by

1
2(Iδmax(R : BC)ω − Imax(R : B)ω) ≥ log(d)− 3δ log(d)− 3

2 = 1− 3δ
2 log(d)− 1.5 > 1

6 log(d),

for d > 218.

For quantum state transfer, we have following bound.

Lemma C.8. Worst case quantum communication cost for state transfer of the state ω′RC , with
error δ < 1

2 , is at least 1
2 log(d) + 1

2 log(1− δ2).

Proof. The following lower bound on worst case interactive quantum communication cost of state
transfer of ω′RC has been shown ([BCT16], Section 5, Proposition 2):

1
2Iδmax(R : C)ω′ .

Consider,

Iδmax(R : C)ω′ ≥ −Hδ
min(R|C)ω′ (Fact A.12)

≥ −Hmax(R|C)ω′ + log(1− δ2) (Proposition 6.3, [Tom15])
= log(d) + log(1− δ2)

Now we proceed to proof of Theorem 1.3.

Proof: Theorem 1.3. Suppose there exists a r-round communication protocol P for entangle-
ment assisted quantum state redistribution of the pure state ΨRBCA with error ε and expected
communication cost at most I(R : C |B)Ψ · (

1
ε )p. Then we show a contradiction for p < 1.

For a β ≥ 1 to be chosen later, and d > 218, we choose {e1, e2 . . . ed} (Definition C.1) as
constructed in lemma A.15. Thus,

I(R : C |B)Ψ ≤ 2S(ΨC) ≤ 4log(d)
β

(Fact A.11).

Fix an error parameter µ. From lemma C.5, there exists a communication protocol P′ for
quantum state redistribution of ωRBCA, with error at most √µ +

√
8βε and worst case quantum

communication cost at most

2 · I(R : C |B)Ψ
µ(1− ε) · (1

ε
)p ≤ 8 log(d)

βµ(1− ε) · (
1
ε

)p ≤ 16log(d)
βµ

· (1
ε

)p.

Last inequality holds since ε < 1/2. Let βµεp = 128. Then √µ+
√

8βε = √µ+ 32√
µε

1−p
2 , which

is minimized at µ = 32 · ε
1−p

2 . This gives √µ+ 32√
µε

1−p
2 = 8

√
2 · ε

1−p
4 and β = 4/ε

1+p
2 > 1.

As in the theorem, let ε ∈ [0, ( 1
70)

4
1−p ]. Thus, we have a protocol for state redistribution of

ωRBCA, with error at most 8
√

2 · ε
1−p

4 < 1
6 and worst case communication at most 1

8 log(d), in
contradiction with lemma C.7.
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Above argument does not hold for any p ≥ 1 since we need to simultaneously satisfy β ≥ 1,
8βε < 1 and µ < 1.

On similar lines, we prove Theorem 1.4 below.

Proof: Theorem 1.4. Suppose there exists a communication protocol for state transfer of the
pure states Ψ̃RC with error ε < 1

2 and expected communication cost at most S(Ψ̃R) · (1
ε )p. Then

we show a contradiction for p < 1.
For a β ≥ 1 to be chosen later, choose ai as constructed in lemma A.15. Then S(Ψ̃R) ≤ 2 log(d)

β .
Fix an error parameter µ. From corollary C.6, there exists a communication protocol for state

transfer of ω′RC , with error at most √µ +
√

8βε and worst case quantum communication cost at
most

2S(Ψ′R)
µ(1− ε) · (

1
ε

)p ≤ 4 log(d)
βµ(1− ε) · (

1
ε

)p ≤ 8 log(d)
βµ

· (1
ε

)p.

Let βµεp = 16. Then √µ+
√

8βε = √µ+ 8
√

2√
µ ε

1−p
2 , which is minimized at µ = 8

√
2ε

1−p
2 . This

gives √µ+
√

8βε =
√

32
√

2ε
1−p

4 and β =
√

2/ε
1+p

2 > 1.
As in the theorem, let ε ∈ [0, (1

2)
15

1−p ]. Thus, we have a protocol for state transfer of ω′RC , with
error at most

√
32ε

1−p
4 < 1

2 and worst case communication at most 1
2 log(d), in contradiction with

lemma C.8.

D Proof of Lemma B.6
Proof. Let B be the set of tuples (i1, i2 . . . ir) for which F2(ΨRBC0A, τ

ir,ir−1...i1
RBC0A

) ≤ 1− ε. Let G be
remaining set of tuples. From corollary B.5 and purity of ΨRBC0A, it holds that∑

i1,i2...ir

pi1,i2...irF2(ΨRBC0A, τ
ir,ir−1...i1
RBC0A

) ≥ 1− ε2.

Thus,
(1− ε)

∑
(i1,i2...ir)∈B

pi1,i2...ir +
∑

(i1,i2...ir)∈G
pi1,i2...ir ≥ 1− ε2,

which implies
∑

(i1,i2...ir)∈B pi1,i2...ir ≤ ε. Thus we have
∑

(i1,i2...ir)∈G pi1,i2...ir ≥ 1− ε.
Define p′i1,i2...ir

def= pi1,i2...ir∑
i1,i2...ir∈G

pi1,i2...ir
, if (i1, i2 . . . ir) ∈ G and p′i1,i2...ir

def= 0 if (i1, i2 . . . ir) ∈ B.

For all (i1, i2 . . . ir) ∈ G, F2(ΨRBC0A, τ
ir,ir−1...i1
RBC0A

) ≥ 1− ε. Thus by Fact A.4, there exists a pure
state κir,ir−1...i1

CEATB
such that

F2(ΨRBC0A ⊗ κ
ir,ir−1...i1
CEATB

, τ
ir,ir−1...i1
RBCAC0TBEA

) ≥ 1− ε (6)

Consider,
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P(
∑

i1,i2...ir

√
pi1,i2...irτ

ir,ir−1...i1
RBCAC0TBEA

|ir〉Mr
. . . |i1〉M1

,
∑

i1,i2...ir

√
p′i1,i2...irτ

ir,ir−1...i1
RBCAC0TBEA

|ir〉Mr
. . . |i1〉M1

)

=
√

1− (
∑

i1,i2...ir

√
pi1,i2...irp

′
i1,i2...ir

)2 =
√

1− (
∑

i1,i2...ir∈G
pi1,i2...ir) ≤

√
ε

and

P(
∑

i1,i2...ir

√
p′i1,i2...irτ

ir,ir−1...i1
RBCAC0TBEA

|ir〉Mr
. . . |i1〉M1

,
∑

i1,i2...ir

√
p′i1,i2...irΨRBC0A ⊗ κ

ir,ir−1...i1
CEATB

|ir〉Mr
. . . |i1〉M1

)

=
√

1− (
∑

i1,i2...ir

p′i1,i2...irF(τ ir,ir−1...i1
RBCAC0TBEA

,ΨRBC0A ⊗ κ
ir,ir−1...i1
CEATB

))2 ≤
√
ε (Equation 6)

These together imply, using triangle inequality for purified distance (Fact A.2),

P(
∑

i1,i2...ir

√
pi1,i2...irτ

ir,ir−1...i1
RBCAC0TBEA

|ir〉Mr
. . . |i1〉M1

,
∑

i1,i2...ir

√
p′i1,i2...irΨRBC0A ⊗ κ

ir,ir−1...i1
CEATB

|ir〉Mr
. . . |i1〉M1

)

≤ 2
√
ε

Thus, from corollary B.5, we have

P(ΨRBCA ⊗ θEAEB , U
†U †2 . . . U

†
r+1

∑
i1,i2...ir

√
p′i1,i2...irΨRBC0A ⊗ κ

ir,ir−1...i1
CEATB

|ir〉Mr
. . . |i1〉M1

) ≤ 2
√
ε.

The communication weight of p′i1,i2...ir is

∑
i1,i2...ir

p′i1,i2...ir log(i1 · i2 . . . ir) ≤
1

1− ε
∑

i1,i2...ir∈G
pi1,i2...ir log(i1 · i2 . . . ir)

≤ 1
1− ε

∑
i1,i2...ir

pi1,i2...ir log(i1 · i2 . . . ir) = C

1− ε.

This completes the proof.

E Proof of Lemma C.5
Proof. From lemma C.3, we have that

P(ωRBCA⊗ θEAEB , U
†U †2 . . . U

†
r+1

∑
i1,i2...ir

√
p′i1,i2...irωRBC0A⊗ κ

ir,ir−1...i1
CEATB

|ir〉Mr
. . . |i1〉M1

) ≤
√

8ε
ad · d

,

and ∑
i1,i2...ir

p′i1,i2...ir log(i1 · i2 . . . ir) ≤
C

1− ε.
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Consider the set of tuples (i1, i2 . . . ir) which satisfy i1 · i2 . . . ir > 2
C

(1−ε)µ . Let this set be B′ and
G′ be the set of rest of the tuples. Then

C

(1− ε) >
∑

i1,i2...ir∈B′
p′i1,i2...ir log(i1 · i2 . . . ir) >

C

(1− ε)µ
∑

i1,i2...ir∈B′
p′i1,i2...ir .

This implies
∑
i1,i2...ir∈B′ p

′
i1,i2...ir < µ. Define a new probability distribution qi1,i2...ir

def=
p′i1,i2...ir∑

(i1,i2...ir)∈G′ p
′
i1,i2...ir

for all (i1, i2 . . . ir) ∈ G′ and qi1,i2...ir = 0 for all (i1, i2 . . . ir) ∈ B′. Consider,

P(
∑

i1,i2...ir

√
p′i1,i2...irωRBC0A⊗κ

ir,ir−1...i1
CEATB

|ir〉Mr
. . . |i1〉M1

,
∑

i1,i2...ir

√
qi1,i2...irωRBC0A⊗κ

ir,ir−1...i1
CEATB

|ir〉Mr
. . . |i1〉M1

)

=
√

1− (
∑

i1,i2...ir

√
p′i1,i2...irqi1,i2...ir)2 =

√
1−

∑
(i1,i2...ir)∈G′

p′i1,i2...ir ≤
√
µ.

Thus, triangle inequality for purified distance (Fact A.2) implies

P(ωRBCA ⊗ θEAEB , U
†U †2 . . . U

†
r+1

∑
i1,i2...ir

√
qi1,i2...irωRBC0A ⊗ κ

ir,ir−1...i1
CEATB

|ir〉Mr
. . . |i1〉M1

)

≤
√

8ε
ed · d

+√µ

Defining πRBCAEAEB
def= U †U †2 . . . U

†
r+1

∑
i1,i2...ir∈G′

√
qi1,i2...irωRBC0A ⊗ κ

ir,ir−1...i1
CEATB

|ir〉Mr
. . . |i1〉M1

,
we have

P(ωRBCA ⊗ θEAEB , ω
′
RBCEAEB

) ≤
√

8ε
ed · d

+√µ (7)

Let T be the set of all tuples (i1, i2 . . . ik) (with k ≤ r) that satisfy the following property: there
exists a set of positive integers {ik+1, ik+2 . . . ir} such that (i1, i2 . . . ik, ik+1 . . . ir) ∈ G′. Consider
the following protocol P′.

Input: A quantum state in registers RBCAEAEB.

• Alice applies the isometry U : ACEA → ACEAM1 (definition B.4). She introduces a
register M ′1 ≡ M1 in the state |0〉M ′1 and performs the following unitary W1 : M1M

′
1 →

M1M
′
1:

W1 |i〉M1
|0〉M ′1 = |i〉M1

|i〉M ′1 if (i) ∈ T and W1 |i〉M1
|0〉M ′1 = |i〉M1

|0〉M ′1 if (i) /∈ T .

She sends M ′1 to Bob.

• Bob introduces a register M ′2 ≡ M2 in the state |0〉M ′2 . If he receives |0〉M ′1 from Alice,
he performs no operation. Else he applies the isometry U2 : BEBM ′1 → BEBM

′
1M2 and
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then performs the following unitary W2 : M ′1M2M
′
2 →M ′1M2M

′
2:

W1 |i〉M ′1 |j〉M2
|0〉M ′2 = |i〉M ′1 |j〉M2

|j〉M ′2 if (i, j) ∈ T

and
W1 |i〉M ′1 |j〉M2

|0〉M ′2 = |i〉M ′1 |j〉M2
|0〉M ′2 if (i, j) /∈ T .

He sends M ′2 to Alice.

• For every odd round k > 1, Alice introduces a register M ′k ≡ Mk in the state |0〉M ′
k
. If

she receives |0〉M ′
k−1

from Bob, she performs no further operation. Else, she applies the
isometry

Uk : ACEAM1M
′
2M3 . . .M

′
k−1 → ACEAM1M

′
2M3 . . .M

′
k−1Mk

and performs the following unitary Wk : M1M
′
2 . . .M

′
k−1MkM

′
k →M1M

′
2 . . .M

′
k−1MkM

′
k:

Wk |i1〉M1
|i2〉M ′2 . . . |ik〉Mk

|0〉M ′
k

= |i1〉M1
|i2〉M ′2 . . . |ik〉Mk

|ik〉M ′
k

if (i1, i2 . . . ik) ∈ T

and

Wk |i1〉M1
|i2〉M ′2 . . . |ik〉Mk

|0〉M ′
k

= |i1〉M1
|i2〉M ′2 . . . |ik〉Mk

|0〉M ′
k

if (i1, i2 . . . ik) /∈ T .

She sends M ′k to Bob.

• For every even round k > 2, Bob introduces a register M ′k ≡ Mk in the state |0〉M ′
k
. If

he receives |0〉M ′
k−1

from Alice, he performs no further operation.. Else, he applies the
isometry Uk : BEBM ′1M2M

′
3 . . .M

′
k−1 → BEBM

′
1M2M

′
3 . . .M

′
k−1Mk and performs the

following unitary Wk : M ′1M2 . . .M
′
k−1MkM

′
k →M ′1M2 . . .M

′
k−1MkM

′
k:

Wk |i1〉M ′1 |i2〉M2
. . . |ik〉Mk

|0〉M ′
k

= |i1〉M ′1 |i2〉M2
. . . |ik〉Mk

|ik〉M ′
k

if (i1, i2 . . . ik) ∈ T

and

Wk |i1〉M ′1 |i2〉M2
. . . |ik〉Mk

|0〉M ′
k

= |i1〉M ′1 |i2〉M2
. . . |ik〉Mk

|0〉M ′
k

if (i1, i2 . . . ik) /∈ T .

He sends M ′k to Alice.

• After round r, if Bob receives |0〉M ′r from Alice, he performs no further operation. Else
he applies the unitary U br+1 : BEBM ′1M2M

′
3 . . .M

′
r → BC0TBM

′
1M2M

′
3 . . .M

′
r. Alice

applies the unitary Uar+1 : ACEAM1M
′
2M3 . . .Mr → ACEAM1M

′
2M3 . . .Mr. They trace

out all of their registers except A,B,C0.

Let E : RBCAEAEB → RBC0A be the quantum map generated by P′. For any k, if any of the
parties receive the state |0〉M ′

k
, let this event be called abort.
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We show the following claim.

Claim E.1. It holds that E(πRBCAEAEB ) = ωRBC0A

Proof. We argue that the protocol never aborts when acting on πRBCAEAEB . Consider the first
round of the protocol. Define the projector Π def=

∑
i:(i)/∈T |i〉〈i|M1

. From definition B.4, it is clear
that the isometry U †2U

†
3 . . . U

†
r+1 is of the form

∑
i |i〉〈i|M1

⊗Vi, for some set of isometries {Vi} . Thus,
from the definition of πRBCAEAEB (in which the summation is only over the tuples (i1, i2 . . . ir) ∈ G′),
it holds that

ΠUπRBCAEAEB = 0.

This implies that Bob does not receive the state |0〉M ′1 and hence he does not aborts.
Same argument applies to other rounds, which implies that the protocol never aborts. Thus,

the state at the end of the protocol is

TrCEATB (Ur+1Ur . . . U2UπRBCAEAEB ) = ωRBC0A.

Thus, from equation 7, it holds that

P(E(ωRBCA ⊗ θEAEB ), ωRBC0A) ≤
√

8ε
ed · d

+√µ.

Quantum communication cost of the protocol is at most

max(i1,i2...ir)∈G′(log((i1 + 1) · (i2 + 1) . . . (ir + 1)) ≤ 2 ·max(i1,i2...ir)∈G′(log(i1 · i2 . . . ir) ≤
2C

(1− ε)µ.

This completes the proof.
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An approximated single photon state generation from coherent states

entangled with qubits by measuring qubits
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Abstract. In an entangled system between coherent states and qubits, a superposition of coherent
states is formed by measurement of the qubits. The induced superposition state can be controlled by
the initial coherent states, the initial qubit states and the measurement basis, and the magnitude of the
entanglement. In this paper, firstly, we briefly explain the entanglement preparation between the coherent
states and qubits using the conditional phase shift or the conditional displacement. Then, we show that
an approximate single photon state obtained when two weak coherent states are superposed in a distance
close to the origin of phase space.

Keywords: Quantum State Control, Conditional Operations, Post-Selection, Single Photon State

1 Introduction

The single photon source [1] is important for quan-
tum information technology such as quantum cryptogra-
phy [2] and photonic quantum information processing [3].
Quantum key distribution systems often employ weak co-
herent light as an approximated single photon. How-
ever, quantum information processing requires genuine
non-classical properties of single photons. Currently, a
practical single photon source is not available in terms of
generation efficiency, operation temperature, and quality.
Therefore, it is important to explore alternative methods
for single photon generation for the development of the
quantum information technology!
In this paper, we show that an approximated single

photon state can be generated by measurement of a qubit
from a hybrid system where coherent states are entangled
with a qubit. As methods of entanglement preparation,
we consider the conditional phase shift and the condi-
tional displacement [4]. A superposition of two coherent
states is formed by measuring the qubit. We show that
the induced superposition can be regarded as an approx-
imate single photon state, when two coherent states are
close and interfere destructively near the origin in phase
space.

2 Conditional Operation

In this section, we briefly explain the methods of en-
tanglement preparation using conditional operations [4].
As the first method, we consider the conditional phase
shift on a coherent state by a qubit. First, we prepare a
control qubit (|1〉c+ |0〉c)/

√
2 and a target coherent state

|α〉t to obtain the initial state |i〉 = |α〉t (|1〉c + |0〉c)/
√
2.

Then, the control qubit and the target coherent state
interacts through the conditional phase shift operation
Ûp |1〉c 〈1| + Î |0〉c 〈c| [4], where the phase shift opera-

tor is given by Ûp = eiθn̂ where θ is phase shift angle
and n̂ is a photon number operator on the coherent state

∗matsuoka@optnet.ist.hokudai.ac.jp
†tomita@ist.hokudai.ac.jp

|α〉t. Using the conditional phase shift, the initial state
is transformed to the entangled state as follows:

|Ψp〉 =
1
√
2
(|1〉c |αe

iθ
〉t + |0〉c |α〉t). (1)

As the second method, we consider the conditional dis-
placement. First, we generate the initial state |i〉 =
|α〉t (|1〉c+|0〉c)/

√
2 as used in the conditional phase shift.

Then, the control qubit and the target coherent state are
interacted through the conditional displacement opera-
tion Ûd |1〉c 〈1| + Î |0〉c [4], where the displacement op-

erator is given by Ûd = eγâ
†
−γ∗â. The amount of the

displacement reads γ = α − β = iχteiφ, where χ is the
coupling strength between the coherent state and the
qubit, and t is the interaction time. The direction of
the displacement on the phase space can be selected by
the phase φ. In the present proposal, we choose φ = 0,
since the superposition of two coherent states of different
amplitudes is required to generate the approximate single
photon state. The conditional displacement transforms
the initial state to

|Ψd〉 =
1
√
2
(|1〉c |β〉t + |0〉c |α〉t). (2)

3 Approximated single photon state gen-

eration by post-selection of qubit

We show that non-classical photon states can be gener-
ated by measurement of a qubit in the entangled system
of coherent states and a qubit prepared by a conditional
operation mentioned in Sec. II. The post-selection on the
qubit to the final state |f〉 = (|1〉c − |0〉c)/

√
2, i.e., |−〉

measurement, collapses the coherent state to the super-
position of two coherent states with the success proba-
bility given by the fidelity between the two states as

|ψp〉 =
1

2
√

Psucp

(|αeiθ〉t − |α〉t), (3)

where Psucp = 1

2

[

1− 1

2
(〈αeiθ |α〉+ 〈α|αeiθ〉)

]

, for the
state entangled by the conditional phase shift (1), and

|ψd〉 =
1

2
√
Psucd

(|β〉t − |α〉t), (4)
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where Psucd = 1

2

[

1− 1

2
(〈β|α〉+ 〈α|β〉)

]

, for the state en-
tangled by the control displacement (2). When a dis-
tance between two states in the superposition is small,
and the states are placed near the origin in phase space,
the transformed superposition state can be regarded as
a single photon state.
In order to confirm the above claim, we numerically

evaluated the detection probabilities as photon number
states |〈n|ψp〉|

2 and |〈n|ψd〉|
2, when the post-selected

states are measured in photon number basis. Figure 1 (a)

plots the detection probabilities |〈n|ψp〉|
2 for n = 1 (sin-

gle photon states: solid line), n = 2 (two photon states:
dashed line) and n = 3 (three photon states: dot-dashed
line). Here, we assume that the coherent amplitude of
the initial coherent state is α = 0.1. Similarly, Fig. 1
(b) plots the detection probabilities |〈n|ψd〉|

2. Note that
when the conditional displacement is used, the detection
probability for n = 0 (vacuum: dotted line) is appeared.
In order to compare the post-selected state and the co-
herent states, Fig. 1 (c) plots the detection probabili-

ties as photon number states |〈n|α〉|
2
, when the coher-

ent state is measured in photon number basis. In both
conditional operations, the detection probability as sin-
gle photon state |〈1|ψp〉|

2
and |〈1|ψd〉|

2
are greatly higher

than |〈1|α〉|2. Moreover, in both conditional operations,
there are the points of the detection probability as two
photon states equals zero, since superposition becomes
odd coherent states at these points.

4 Conclusion

In summary, we have shown that measurement of a
qubit in hybrid entangled system between a coherent
state and a qubit results in a non-classical state. We
have also proposed an application of the method to gen-
erate an approximate single photon state. The method
works probabilistically, but generates the heralded single
photons. The generation requires conditional operation.
It is reported that the conditional phase shift can be im-
plemented using superconducting circuits [5] and ions in
a solid [6], and that the conditional displacement can be
implemented using superconducting circuits [7], ion trap
[8] and Rydberg atoms [9]. Further comparison with the
conventional single photon generation methods under a
practical condition is left for future works.
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Abstract. We consider asymptotic convertibility of an arbitrary sequence of bipartite pure states into
another by local operations and classical communication (LOCC). We adopt an information-spectrum
approach to address cases where each element of the sequences is not always in tensor power of a bipartite
pure state. We derive necessary and sufficient conditions for the LOCC convertibility of one sequence to
another in terms of spectral entropy rates of entanglement of the sequences. Based on these results, we also
provide a simple proof for previously known results on the optimal rates of entanglement concentration
and dilution of general sequences of pure states.
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1 Introduction

An entangled quantum state shared between two dis-
tant parties is used as a resource for performing nonlocal
quantum information processing. When a state is not in
the desired form as a resource, we need to transform it
by LOCC to a target state with the desired form. Well-
known examples of such tasks are entanglement concen-
tration and dilution [1]. Entanglement concentration is a
task to obtain a maximally entangled state from copies of
a non-maximally entangled state by LOCC, and entan-
glement dilution is its inverse process. When the initial
state is copies of a bipartite pure state, the optimal rates
of entanglement concentration and dilution are asymp-
totically equal to the entanglement entropy [1].
For cases where the initial and target states are not al-

ways in tensor power of a bipartite state, the information-
spectrum method has been applied to analyze entangle-
ment concentration [2, 3] and entanglement dilution [3].
Originally, the information-spectrum method was devel-
oped in classical information theory by Verdú and Han
[4, 5], and has been extended to quantum information
theory by Nagaoka and Hayashi [6–8]. In the setting of
the information-spectrum method, the optimal rates of
entanglement concentration and dilution are obtained in
terms of spectral entropies [2, 3].
In this contribution, we consider a more general situa-

tion in which a general sequence of bipartite pure states
ψ̂AB = {ψABn }∞n=1 is converted into another general se-

quence of bipartite pure states ϕ̂AB = {ϕABn }∞n=1 asymp-

totically by a sequence of LOCC protocol L̂ = {Ln}∞n=1.
We require that the trace distance between the final state
Ln(ψABn ) and the target state ϕABn vanishes in the limit
of n→ ∞. We address a question of when such a conver-
sion is possible. Contrary to the previous approaches, we
do not assume that the initial state or the target state is
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a maximally entangled state.
The main results of this contribution are as follows.

First, we prove that ψ̂AB is asymptotically convertible to
ϕ̂AB if the spectral inf-entropy of entanglement of ψ̂AB

is larger than the spectral sup-entropy of entanglement
of ϕ̂AB . Second, we prove that if ψ̂AB is asymptotically
convertible to ϕ̂AB , the spectral inf- and sup-entropy of
entanglement of ψ̂AB is larger than those of ϕ̂AB , respec-
tively. If we restrict ϕ̂AB or ψ̂AB to be a sequence of
maximally entangled states, our results are equivalent to
those obtained by Hayashi [2] and Bowen-Datta [3], re-
garding the optimal rates of entanglement concentration
and dilution. Our proof based on an application of clas-
sical random number generation, which was pointed out
by Kumagai and Hayashi [9], is much simpler than those
of [2, 3].

2 Main Results

In this section, we present definitions of the problem
and state the main results of this contribution. As a
shorthand notation, we denote reduced density operators
TrB[|ψ⟩⟨ψ|AB ] and TrA[|ψ⟩⟨ψ|AB ] simply by ψA and ψB ,
respectively, for a bipartite pure state |ψ⟩AB .
Let HA

n and HB
n (n = 1, 2, . . . ) be arbitrary finite-

dimensional Hilbert spaces and consider a general se-
quence of bipartite systems HAB

n = HA
n ⊗ HB

n (n =

1, 2, . . . ). Let |ψn⟩AB and |ϕn⟩AB in HAB
n be arbi-

trary pure states for each n, and consider sequences
ψ̂AB = {ψABn }∞n=1 and ϕ̂AB = {ϕABn }∞n=1. We ask when

ψ̂AB can be asymptotically converted to ϕ̂AB by LOCC.
That is, we seek for conditions under which |ψn⟩AB can

be converted to |ϕn⟩AB by LOCC for each n, up to a
certain error that vanishes in the limit of n→ ∞.

Definition 1 We say that ψ̂AB = {ψABn }∞n=1 can be con-

verted to ϕ̂AB = {ϕABn }∞n=1 asymptotically by LOCC, if
there exists a sequence of LOCC Ln (n = 1, 2, . . . ) such
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that

lim
n→∞

∥Ln(ψABn )− ϕABn ∥1 = 0.

Here, ∥ · ∥1 is the trace distance of two density operators.

In this contribution, we provide necessary and suffi-
cient conditions for the asymptotic convertibility of two
sequences of pure states in terms of spectral entropy rates,
which are key ingredients in the information-spectrum
method and defined as follows. Let ρ̂ = {ρn}∞n=1 be an
arbitrary sequence of density operators, and σ̂ = {σn}∞n=1

be an arbitrary sequence of Hermitian operators. Then,
for each ε ∈ [0, 1], the spectral divergence rates are de-
fined by

D(ε|ρ̂||σ̂) = sup
{
a
∣∣ lim inf
n→∞

Trρn{ρn − enaσn > 0} ≥ 1− ε
}
,

D(ε|ρ̂||σ̂) = inf
{
a
∣∣ lim sup

n→∞
Trρn{ρn − enaσn > 0} ≤ ε

}
.

Here, {A > 0} denotes the spectral projection corre-
sponding to the positive part of a Hermitian operator A.
Using the spectral divergence rates, the spectral entropy
rates are defined by

H(ε|ρ̂) := −D(ε|ρ̂||Î), H(ε|ρ̂) := −D(ε|ρ̂||Î)

for ε ∈ [0, 1], where Î = {In}∞n=1 is the sequence of iden-
tity operators. Especially, for ε = 0 we write

H(ρ̂) = H(0|ρ̂), H(ρ̂) = H(0|ρ̂).

For any general sequences of bipartite pure states
ψ̂AB = {ψABn }∞n=1, consider sequences of reduced states

ψ̂A = {ψAn }∞n=1 and ψ̂B = {ψBn }∞n=1. Then it is easy to

see that ψ̂A and ψ̂B have the same spectral entropy rates.
The main results of this contribution are as follows.

Theorem 2 (direct part) Let ψ̂AB = {ψABn }∞n=1 and

ϕ̂AB = {ϕABn }∞n=1 be general sequences of pure states

on bipartite systems HAB
n (n = 1, 2, . . . ). If H(ψ̂A) >

H(ϕ̂A) holds, then ψ̂AB can be asymptotically converted

into ϕ̂AB by LOCC.

Theorem 3 (converse part) Let ψ̂AB = {ψABn }∞n=1

and ϕ̂AB = {ϕABn }∞n=1 be general sequences of pure states

on bipartite systems HAB
n (n = 1, 2, . . . ). If ψ̂AB can

be asymptotically converted into ϕ̂AB by LOCC, it must
hold that H(ε|ψ̂A) ≥ H(ε|ϕ̂A) and H(ε|ψ̂A) ≥ H(ε|ϕ̂A)
for every ε ∈ [0, 1].

As special cases, the above theorems lead to coding the-
orems for entanglement concentration [2, 3] and dilution
[3]. Letting the target state |ϕn⟩AB be a maximally en-
tangled state |ΦMn⟩AB , with Mn = enR be the Schmidt

rank of |ΦMn⟩ and R = H(ψ̂A) − γ (∀γ > 0), the above
theorems show that the supremum of the achievable rates
of entanglement concentration is equal to H(ψ̂A). On
the other hand, letting the initial state |ψn⟩AB be a
maximally entangled state |ΦMn⟩, with Mn = enR and

R = H(ϕ̂A)+γ (∀γ > 0), we can see that the infimum of
the required rates of maximally entangled states is equal
to H(ϕ̂A).

3 Conclusion

We analyzed asymptotic LOCC convertibility of se-
quences of bipartite pure entangled states and derived
necessary and sufficient conditions for a sequence to be
asymptotically convertible to another. Applying these
results, we also provided a simple proof for the optimal
rates of entanglement concentration and dilution in an
information-spectrum setting.
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Abstract. In quantum information theory, various results have been obtained regarding free-space quan-
tum communication. However, in realistic quantum communication systems, it is necessary to consider
fluctuations in amplitude and phase that are caused by such phenomena as turbulence and interference.
In the present paper, we consider a model of an attenuated channel with probabilistic transmissivity and
calculate the error probabilities of the homodyne and the optimum quantum receivers for binary phase
shift keying coherent-state signals and show that the latter is always superior to the former.
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1 Introduction

In the research on quantum communication [1], models
of free-space, an ideal optical fiber, and transmission in
the presence of thermal noise have been demonstrated so
far. However, various types of classical noise in realistic
quantum communication systems may exist. One that we
must consider is the fluctuation of amplitude and phase,
which is caused for example by turbulence and interfer-
ence. Regarding the fluctuation of amplitude, many stud-
ies have been conducted for so-called Gaussian channels,
which include the well-known pure-loss channel. Hence,
we had focused our attention on phase diffusion (e.g., [2])
as a source of non-Gaussian noise and investigated an im-
provement in a quasi-optimum quantum receiver [3] and
the robustness of the optimum quantum receiver [4].
In the present paper, we return to the topic of am-

plitude fluctuation and consider an attenuated quantum
channel in which the transmissivity fluctuates probabilis-
tically [5]. If the transmissivity obeys a non-Gaussian
distribution, the amplitude noise is not Gaussian. We
consider a normalized Rayleigh distribution and calculate
the error probability of a homodyne receiver for binary
phase shift keying coherent-state signals and demonstrate
that the result approximates that of the well-known clas-
sical fading channel. We also calculate the error proba-
bility of the optimum quantum receiver and clarify that
there is a clear gap between the error probabilities of the
homodyne receiver and the optimum quantum receiver.

2 Channel model

Consider an attenuated channel in which the transmis-
sivity is probabilistic due to for example fluctuation and
interference.

2.1 Kraus representation of the channel

The Kraus operator of an attenuated channel with
transmissivity η (0 ≤ η ≤ 1) is [6]

Ek(η) =
∞∑
n=0

√(
n
k

)√
ηn−k(1− η)k |n− k⟩⟨n| , (1)

∗im161005@cis.aichi-pu.ac.jp
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where k ∈ N (the set of all natural numbers) and |n⟩ is
the eigenstate of the number operator having n photons.
Suppose η obeys a probability distribution P (η). Let
ρ be an input state of this channel, i.e., a transmitted
quantum state, and let ρout be an output state, i.e., a
received quantum state. Then

ρout =

∫ 1

0

{
P (η)

∞∑
k=0

Ek(η)ρE
†
k(η)

}
dη. (2)

If the transmitted state is a coherent state ρ = |α⟩⟨α|
with coherent amplitude α, Eq. (2) becomes

ρout =

∫ 1

0

{
P (η) |√ηα⟩⟨√ηα|

}
dη. (3)

In the following, we assume the transmitted state is a co-
herent state. Note that ρout is a statistical mixture of co-
herent states

∣∣√ηα⟩, and therefore P (η) can be regarded
as a probability distribution of coherent amplitude

√
ηα.

2.2 Probability distribution of transmissivity

Suppose the probability distribution P (η) corresponds
to a Rayleigh distribution, which is a well-known non-
Gaussian distribution. However, as 0 ≤ η ≤ 1, we define
a truncated and normalized distribution,

P (η) =
P̃ (η)∫ 1

0

P̃ (η)dη

=
e−

η
η0

η0

(
1− e−

1
η0

) , (4)

where η0 (0 ≤ η0 ≤ 1) is related to the average of the

original Rayleigh distribution P̃ (η) = 1
η0
e−

η
η0 and char-

acterizes the channel.

3 Error performance of BPSK signals

In this section, we derive the error performance of re-
ceived quantum-state signals passing through the channel
defined in the previous section. Assume that the mod-
ulation scheme is a binary phase shift keying (BPSK),
which is the most fundamental digital modulation. We
consider two receivers: a homodyne receiver, which is
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the optimum classical receiver, and the optimum quan-
tum receiver. Suppose quantum-state signals are coher-
ent states. Then the transmitted quantum states are
ρ0 = |α⟩⟨α| and ρ1 = |−α⟩⟨−α|, which correspond to the
classical information bits 0 and 1, respectively.
From Eq. (3), the received quantum states are

ρ
(F)
0 =

∫ 1

0

P (η) |√ηα⟩⟨√ηα| dη, (5)

ρ
(F)
1 =

∫ 1

0

P (η) |−√
ηα⟩⟨−√

ηα| dη. (6)

Here we assume a priori probabilities of signals are equal.

3.1 Homodyne receiver

As the signals are BPSK coherent states, the thresh-
old value in the decision process in the receiver is zero.
Hence, the homodyne receiver are formally described by
the detection operators

Π0 =

∫ ∞

0

|xc⟩⟨xc| dxc, Π1 =

∫ 0

−∞
|xc⟩⟨xc| dxc, (7)

and the error probability of the homodyne receiver is

PHom
e =

1

2

{
Tr ρ

(F)
0 Π1 + Tr ρ

(F)
1 Π0

}
= Tr ρ

(F)
0 Π1. (8)

The second equality in Eq. (8) hold through the symme-
try between the signals and detection operators. From
Eqs. (5) and (8),

PHom
e =

1√
2πσ2

∫ 0

−∞

∫ 1

0

P (η)e−
(xc−

√
ηα)2

2σ2 dηdxc, (9)

where σ2 = 1
4 . Moreover, Eq. (9) can be expressed as

PHom
e =

1

2

∫ 1

0

P (η)erfc
(√

2ηα
)
dη, (10)

where erfc (x) := 2√
π

∫∞
x
e−t

2

dt. Note that the above er-

ror probability coincides with that of Rayleigh fading in
classical theory (e.g., [7]) up to the integral range.

3.2 Optimum quantum receiver

The optimum quantum receiver is the receiver that at-
tains the minimum value of the average probability of
error, i.e., the Helstrom bound. For the binary quantum-
state signals, the minimum error probability POpt

e is [1]

POpt
e =

1

2

{
1− 1

2
Tr
∣∣∣ρ(F)0 − ρ

(F)
1

∣∣∣}. (11)

3.3 Error performance

Figure 1 displays the error probabilities of the ho-
modyne and the optimum quantum receivers based on
Eqs. (10) and (11). A clear difference is seen in the error
performance between the two receivers for BPSK signals.
Moreover, within the large photon number regime, we
find that the error probability of the optimum quantum
receiver does not asymptotically approach that of the
homodyne receiver, but rather the difference increases.
Therefore, it is expected that this difference is maintained
in the limit when quantum states are almost classical.

Figure 1: Error probabilities of the homodyne and the
optimum quantum receivers.

4 Conclusion

In the present paper, we considered a model of an at-
tenuated quantum channel with probabilistic transmis-
sivity that obeys a non-Gaussian distribution and derived
the error performance for the homodyne and the opti-
mum quantum receivers. From the results we computed,
superiority in quantum communication is seen over the
entire range of the average number of photons. Further-
more, we showed that the error probability for the model
almost coincides with that of a classical fading channel
at least for the BPSK signals. We expect that the model
provides a one-dimensional approximation of a quantum
channel describing fading phenomenon [7, 8].

Acknowledgment This work has been supported in
part by KAKENHI (Grant Numbers 24360151 and
16H04367).

References

[1] C.W. Helstrom, Quantum detection and estimation
theory, Academic Press, New York, (1976).

[2] M.G. Genoni, S. Olivares, and M.G.A. Paris, Phys.
Rev. Lett. 106, 153603, (2011).

[3] S. Koyama, K. Nakahira, and T.S. Usuda, Proc. of
AQIS2014, pp.185-186, (2014).

[4] S. Koyama and T.S. Usuda, Proc. of ISITA2014,
pp.259-263, (2014).

[5] D.Yu. Vasylyev, A.A. Semenov, and W. Vogel, Phys.
Rev. Lett. 108, 220501, (2012).

[6] M.A. Nielsen and I.L. Chuang, Quantum Computa-
tion and Quantum Information, Cambridge Univer-
sity Press, (2000).

[7] S. Stein and J.J. Jones, Modern communica-
tion principle with application to digital signaling,
McGraw-Hill, (1967).

[8] S.D. Personick, Res. Lab. Electron., M. I. T., Cam-
bridge, Tech. Rep. 477, (1970).

64



Bridging the theory and experiment for
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Abstract. Device-independent (DI) quantum information processing is a novel paradigm of quantum
information where analyses are carried out directly from the observed correlations between measurement
outcomes. While DI characterization of quantum states and measurements is intrinsically more robust,
there remains an important gap between the theoretical tools developed for such purposes and the ex-
perimentally obtained correlations, which generically violate the non-signaling condition. In this work,
we discuss some theoretical tools that may allows us to bridge this gap and compare how they perform
under various sample sizes. This, in turn, provides insight on the minimal sample size needed for DI
characterizations.
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The ability to prepare quantum states of interest reli-
ably and the ability to manipulate them at will are the
basic requirements of all quantum information process-
ing tasks. Typically, in order to certify that a desired
quantum state has been prepared with some reasonable
fidelity, quantum state tomography involving a daunting
set of local measurements is carried out. If, instead, only
specific properties of the quantum state are of interest,
then a partial tomography in the form of appropriate wit-
nesses (such as an entanglement witness) is employed.

Although these resource characterization procedures
have been in place for a long time, the fact that we always
have access to only finite sample size and that they rely
on the detailed knowledge of the measurement performed
make them susceptible to various systematic errors (see,
for instance, [1] and references therein). Developing ro-
bust means to characterize quantum state in a practical
setting is thus of fundamental importance for the imple-
mentation of quantum information processing tasks.

Incidentally, the relatively young field of device-
independent quantum information [2, 3] provides a (par-
tial but) natural solution to this problem. Within the
paradigm of device-independence, the analysis of exper-
imentally observed data is carried out without assuming
the Hilbert space dimension of the physical system mea-
sured, let alone the measurements giving rise to these ob-
served correlations. As such, this approach is inherently
immune to, e.g., possible misalignment systematic error
that may take place during the measurement procedure.

While a handful of theoretical techniques (see, e.g.,
[4, 5, 6]) have been developed for this rapidly emerg-
ing area of research, there remains some important gaps
between many of these techniques and their actual im-
plementation in physical systems. For example, with the
assumption of samples being independent and identically
distributed (i.i.d.), the correlations between measure-
ment outcomes — which we represent using a collection
of joint conditional probability distributions {P (~a|~x)}—
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are usually estimated as the observed relative frequencies
of measurement outcomes. In the asymptotic limit when
the number of sample size N →∞, quantum theory pre-
dicts correlations between measurement outcomes that
satisfy the Born rule. (Henceforth, we refer to the set of
distributions arising from quantum theory as Q.)

In practice, however, one will always have access only
to a finite amount of data. Thus, such estimated correla-
tions always deviate from quantum prediction. In partic-
ular, they do not even satisfy the so-called non-signaling
conditions [7]. On the other hand, all theoretical tools
that have been developed for device-independent quan-
tum information (either implicitly or explicitly) assume
that the correlation observed satisfies the no-signaling
condition. Our goal here is investigate a few generic set
of tools that may allow one to bridge the aforementioned
gap when one has access only to finite statistics.

The first of these bridging tools was proposed in [8],
and amounts to finding the nearest quantum approxima-
tion (NQA)—according to certain norm —to the raw

correlation ~PObs estimated from relative frequencies. In
practice, as these does not seem to be a simple character-
ization of the set of quantum correlations, this amounts
to solving some semidefinite program using the super-
set characterizations of the set of quantum distribu-
tion due to Navascués-Pironio-Aćın (NPA) [4, 9] or its
variant [6]. Hereafter, we refer to these supersets as
Q1 ⊃ Q2 ⊃ . . . ⊃ Q. Moreover, for simplicity, in look-
ing for the NQA, we use Q1 as our approximation to the
quantum set in all subsequent discussions. In contrast,
the second of this method—developed in [10]—first per-
forms a canonical decomposition of any legitimate condi-
tional probability distribution into a non-signaling part
and a signaling part, followed by a projection onto the
corresponding non-signaling subspace. For convenience,
we henceforth refer to these methods, respectively, as the
NQA method and the projection method.

Clearly, in the asymptotic limit of infinite sample size,
both these methods would recover the prediction given
by quantum theory. Their behavior when there is only
finite data, in contrast, is not at all evident. In this work,
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we perform a systematic study of the reliability of these
methods assuming various sample sizes. In particular, we
employ the following two criteria:

(i) Convergence criterion: for any given quantum
distribution {PQ(~a|~x)}, we expect that the post-
processed distribution obtained by a reliable bridg-
ing method is one that converges to {PQ(~a|~x)} as
the sample size N increases

(ii) Membership criterion: since there is a priori
no guarantee that the post-processed distribution
~Pmethod
Proc (~a|~x) obtained from any of these methods

to be in Q, we demand that as N increases, the
chance of finding ~Pmethod

Proc (~a|~x) to admit a quantum
representation to be increasing (or, at least, non-
decreasing).

To quantitatively compare the reliability of these meth-
ods, we numerically simulate the outcomes obtained in a
Bell-type experiment according to certain ideal quantum
distributions {PQ(~a|~x)}, assuming various sample sizes.

We then use these simulated data to obtain ~PObs(~a|~x)
(by computing the relative frequencies) and post-process

each such raw distribution ~PObs(~a|~x) using one of the

methods mentioned above to obtain ~Pmethod
Proc (~a|~x). To

evaluate the reliability of these methods against the con-
vergence criterion, the distance of each post-processed
distribution to {PQ(~a|~x)} is computed, for simplicity, us-
ing the `1 norm. And to evaluate the reliability of these
methods against the membership criterion, we check for
the membership of each ~Pmethod

Proc (~a|~x) against increasingly
better approximations of the set of quantum correlations.

As a first example, we performed the simulation us-
ing the quantum distribution {~PCHSH

Q (~a|~x)} that leads to
the maximal Clauser-Horne-Shimony-Holt (CHSH) [11]
Bell-inequality violation. For both the projection method
and the NQA method (assuming the `1, `2 and `∞
norm), basic fitting suggests that the average distance∑

~x,~a

∣∣∣~P projection
Proc (~a|~x)− ~PQ(~a|~x)

∣∣∣ decreases essentially in

all cases as 1/
√
N , thereby showing that all these meth-

ods have preserved the rate of convergence of ~Pmethod
Proc (~a|~x)

to the ideal quantum distribution {~PCHSH

Q (~a|~x)}.
On the other hand, for the membership test, we see

that the NQA method with `1-norm performs consider-
ably better than the projection method, while the NQA
method with `2-norm has similar performance as the lat-
ter. Note that when subjected to the more stringent
test of Q2 compared with Q1, the chance of finding a
~Pmethod
Proc (~a|~x) within Q shrinks by a factor of 2 or more for

all these methods (while going from or Q2 to Q3 makes
hardly any difference). Interestingly, for all these meth-

ods, we see that the chance of obtaining ~Pmethod
Proc (~a|~x) that

lies inside Qk for k = 1, 2, 3 rapidly converges at about
N ≈ 200. This therefore suggests that for any mean-
ingful device-independent analysis, the minimal sample
size needed is of the order of 102. In the poster, we will
also present the corresponding plots assuming other ideal
quantum distributions {PQ(~a|~x)}.
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0 100 200 300 400 500 600 700 800 900 1000

P
ro

b
a

b
ili

ty
 o

f 
P

m
e
th

o
d

P
ro

c
 b

e
in

g
 i
n

s
id

e
 v

a
ri
o

u
s
 N

P
A

 l
e

v
e

ls

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
Membership test for extremal CHSH correlation

Projection - Q1

NQA(ℓ∞) - Q3

NQA(ℓ1) - Q3

NQA(ℓ2) - Q3

Projection - Q3

Figure 1: Average probability of finding ~Pmethod
Proc (~a|~x)

inside the various supersets of Q, specifically Qk for
k ∈ {1, 3}. Each ~Pmethod

Proc (~a|~x) is obtained by simulating

the quantum distribution ~PCHSH

Q according to the sample

size shown. The plot for ~PNQM
Proc (~a|~x) in conjunction with

Q1 has been omitted as, by definition, each ~PNQM
Proc (~a|~x) is

a member of Q1. For clarity, the corresponding plots for
Q2 have been suppressed as they are essentially visually
indistinguishable from the plots for Q3.
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Device-independent witnesses for entanglement depth: a case study
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Abstract. We investigate a generalization of the family of device-independent witnesses for entanglement
depth proposed in Liang et al. [Phys. Rev. Lett. 14, 190401 (2015)] and its one-parameter generalizations.
Specifically, we compute the device-independent k-producible bounds as a function of the number of parties
n and an additional parameter γ for some small values of n. The effectiveness of these generalized witnesses
against the original one is compared by determining the robustness of these witnesses against white noise
for a few family of genuine multipartite entangled states. We also investigate the quantum violation of
these witnesses by the generalized Greenberger-Horne-Zeilinger (GHZ) states.

Keywords: Device-independent quantum information, finite statistics, quantum correlations

With the advent of quantum information, the general
perception of quantum entanglement [1] has been shifted
from a bizarre feature offered by quantum theory to a
useful resource for information processing. Indeed, by
now, entanglement is a well-recognized resource in vari-
ous quantum information tasks, from quantum key distri-
butions, quantum communication to quantum computa-
tion etc. The reliable preparation of entangled quantum
state and the characterization of the corresponding en-
tanglement are thus important steps in these tasks.

Traditional means for characterizing quantum entan-
glement involves quantum state tomography, or the mea-
surement of so-called entanglement witnesses, namely,
Hermitian observables whose expectation value is guar-
anteed to be non-negative for separable states but which
can be negative for at least one entangled state. While
the measurement of such witnesses is much more prefer-
ably over a full-state tomography, it still shares a com-
mon drawback with the latter approach, namely, that it is
highly susceptible to various systematic errors [2, 3, 4, 5]
(especially in the presence of finite sample size), such as
a misalignment systematic error [6]. A possible way to
get around this issue is to measure, instead, a so-called
device-independent witnesses for entanglement [7], where
conclusions are drawn directly from the observed corre-
lations between measurement outcomes, without any as-
sumption of the Hilbert space dimension of the test state,
or the measurements being implemented during the test.

In contrast with conventional approach for witnessing
entanglement, a device-independent witness relies on the
observation of Bell-nonlocal correlations, i.e., correlations
that violate some Bell inequality [8, 9]. In a multipartite
setting, the strength of violation of these correlations may
even be used to witness the entanglement depth [10]—
the extent to which the underlying system is many-body
entangled—present in the system. See Figure 1 for an
illustration of the notion of entanglement depth.

While the possibility to witness entanglement depth
using Bell inequalities [11] was already recognized (im-
plicitly) in some earlier works based on the Mermin-
Ardehali-Belinskii-Klyshko inequalities [12], it was not

∗L26041040@mail.ncku.edu.tw
†ycliang@mail.ncku.edu.tw

Figure 1: Schematic diagram showing the idea of an en-
tanglement depth. Dashed-lines connecting any two cir-
cles symbolically represent that the two subsystems are
entangled. The minimal many-body entanglement re-
quired to reproduce the quantum state associated with
this system is 4, and thus this 7-partite system has an
entanglement depth of 4.

until the work of [13] where this was properly formalized.
In particular, the following family of device-independent
witnesses for entanglement depth applicable to n parties,
each allowed to perform two dichotomic measurements
was proposed:

Ikn : 21−n
∑

~x∈{0,1}n
En(~x)− En(~1n)

k-producible
states

≤ SQ,∗
k , (1)

where ~x is an n-bit string describing the choice of mea-
surements for each party, En(~x) is the full n-partite cor-
relator, i.e., the expectation value of the product of all n
parties’ measurement outcomes (each measurement out-
come is assumed to be ±1), and SQ,∗

k is the maximal
possible quantum value of the left-hand-side of Eq. (1)
when n is replaced by k. If the measurement statistics
observed in an n-party Bell-type experiment gives rise to
a value for the left-hand-side of Eq. (1) that is larger than
SQ,∗
k , then one can immediately conclude that the shared

state cannot be k-producible [14] and thus must have an
entanglement depth of at least k + 1.

Towards the end of [13], a one-parameter generaliza-
tion of the above witness was provided:

Ikn(γ) :
γ

2n

∑
~x∈{0,1}n

En(~x)− En(~1n)

k-producible
states

≤ SQ,∗k,γ , (2)
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where 0 < γ ≤ 2 and as above, SQ,∗k,γ is the maximal
quantum value of the left-hand-side of the above inequal-
ity when n is replaced by k. Notice that when γ = 2, the
witness of Eq. (2) reduces to the witness of Eq. (1). While
it was shown in [13] that Eq. (2) represent a legitimate
family of device-independent witnesses for entanglement
depth, the explicit form of the right-hand-side of Eq. (2),

i.e., SQ,∗k,γ has not been determined. The usefulness of
these witnesses compared with the witness of Eq. (1) has
also not been investigated. In this work, we address some
of these issues and also investigate the quantum violation
of these witnesses beyond the family of states considered
in Ref. [13].

To determine SQ,∗k,γ , we adopt the ansatz given in [13]:
we assume that the n parties share an n-partite
Greenberger-Horne-Zeilinger (GHZ) state [15] |GHZn〉 =
1√
2

(|0〉⊗n + |1〉⊗n), and that each party performs mea-

surement described by the ±1-outcome observables

Axi=0 = cosασx + sinασy, (3a)

Axi=1 = cos(φn + α)σx + sin(φn + α)σy (3b)

where α = −n−12n φn. The left-hand-side of Eq. (2) then

evaluates to SQn,γ(φn) = γ cosn+1 φn

2 −cos
(
n+1
2 φn

)
, which

can be maximized further over φn ∈ [0, π2 ]. Carrying this
out explicitly, one can verify using a converging hierar-
chy [16, 17] of semidefinite programs and for n ≤ 5 that
the maximal quantum value of Eq. (2) can indeed be
achieved via this ansatz, i.e., SQ,∗n,γ = maxφn SQ

n (φn).
To compare the effectiveness of the generalized fam-

ily of witnesses Ikn(γ) against the original one Ikn(2) for
witnessing entanglement depth, we carry out numeri-
cal optimizations for the maximal quantum violation of
these witnesses for the same four families of states consid-
ered in [13], namely, |GHZn〉, the n-partite W-state [18],
and the n-partite 1-dimensional cluster states [19] with
opened (closed) boundary condition. Unfortunately, for
the few values of γ = `

4 with ` = {1, 2, . . . , 7} that we
investigated, there does not seem to be any advantage of
Ikn(γ) compared with that of Eq. (1) (when measured in
terms of their white-noise robustness).

Next, we investigate its quantum violation of these wit-
nesses by the high-dimensional generalization of the GHZ
state, i.e., |GHZn,d〉 = 1√

d

∑d−1
i=0 |i〉⊗n. For even d, we

consider the modified ansatz

Axi=0 =

d
2−1⊕
j=0

cosασ(2j,2j+1)
x + sinασ(2j,2j+1)

y , (4a)

Axi=1 =

d
2−1⊕
j=0

cos(φn + α)σ(2j,2j+1)
x + sin(φn + α)σ(2j,2j+1)

y

(4b)

where the superscripts are used to label the qubit sub-
space [spanned by {|2j〉, |2j + 1〉}] at which the Pauli
matrices act on. For the same choice of parameters α
and φn, this turns out to give exactly the same quantum
value as with |GHZn,2〉 = |GHZn〉. We thus know that

Ikn are also good device-independent witnesses for entan-
glement depth for states that are close to |GHZn,d〉 for
arbitrary n ≥ 2 and arbitrary d even.
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Abstract. We analyze a quantum assembly code translated from a programmed quantum algorithm via
a quantum computing compiler. From the analysis result, we estimate the running time of the algorithm
on a quantum computer.
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Since the mid-1990s, a quantum computer has at-
tracted much attention because several quantum algo-
rithms such as factoring algorithm and unstructured data
search algorithm were proposed [1]. It was proved that
the algorithms have relatively low computational com-
plexity than classical algorithms for the same problems.
Therefore, it has been widely believed that a quantum
computer that executes the algorithms can solve the
problems much faster than a classical digital computer,
even a supercomputer listed in the TOP5001.

On the other hand, in the words of Pérez-Delgado and
Kok [2], a quantum computer has to execute an efficient
quantum algorithm efficiently. However, unfortunately
nobody has seen that a quantum computer really finds
the answer to the problems faster than a classical digital
computer, even a mobile computing device.

To implement a practical quantum computer, we have
to overcome a quantum noise problem. Quantum infor-
mation is very susceptible to quantum noise, and thus it
is almost impossible to keep the original state of quantum
information long enough for a reliable computing with-
out any protection. The fault-tolerant quantum comput-
ing based on a quantum error-correcting code is to date
the most promising methodology to fight against quan-
tum noise. The computing protocol allocates huge time
(gate) and space (qubit) resource for a reliable quantum
computing in spite of quantum noise.

By the way, due to the big overhead, it may be very
difficult to keep the efficiency of the quantum computing
algorithm in the real situation. In particular, by addi-
tional gates for the quantum error correction and fault-
tolerant operations, it is very difficult to keep the fast
problem-solving ability with the fault-tolerant protocol.

In this work, we try to see how much the fault-tolerant
architecture affects the execution of quantum algorithms.
For that reason, we first analyze quantum assembly codes
translated from programmed quantum algorithms via a
quantum computing compiler, and then estimate the run-
ning time of the algorithms. As is well known, an assem-
bly code is positioned at the middle of the whole comput-
ing procedure from an algorithm to a signal controlling
hardware devices. Consequently, we believe that it is
reasonable to estimate the running time of a quantum

1http://www.top500.org

computer from a quantum assembly code rather than a
quantum algorithm itself.

A quantum computing compiler translates a pro-
grammed quantum algorithm into a quantum assembly
code which consists of both of the quantum instructions
for qubits and unitary gates and the reduced classical in-
structions [3, 4]. There are two types of quantum assem-
bly codes, modular and non-modular. A modular code is
made up of one main module and several sub-modules.
The pre-defined sub-modules are called with qubit pa-
rameters during the execution of the main module. On
the contrary, a non-modular code has one main module
only. All the functions are stated in the main module
without any structure.

There is no difference in the execution between both
codes, but for the analysis the modular code is more use-
ful because of its structure and small size. After perform-
ing the analysis on the sub-procedures, the results are
combined to analyze the main module. From the analy-
sis result, we can estimate the required resource and the
running time of the quantum algorithm. In addition, we
can also find critical areas that consume much resource.

For this work, we use an open quantum computing
compiler ScaffCC that supports a programming language
Scaffold [4, 5]. By using the compiler, we translate two
quantum algorithms, Binary Welded Tree (BWT) and
Ground State Estimation (GSE). The BWT is a graph
traversal problem that finds a path from an entrance node
to an exist node over a welded binary tree. The quan-
tum BWT algorithm is based on quantum random walk,
which provides an exponential speed up over a classical
algorithm [6]. The GSE algorithm is a quantum simula-
tion algorithm to find the ground state of a molecule [7].

For the analysis, we assume the following quantum sys-
tem and fault-tolerant protocols. We employ the FCFS
(First Come First Served) scheduling over quantum gates
and 2D lattice for the qubit arrangement layout. In par-
ticular, the two-qubit operation is affected by the layout
because qubits have to be re-positioned beforehand by
following the layout.

We apply the fault-tolerant quantum computing proto-
col based on the concatenated Steane code. We differ the
gate execution time according to the implementations of
a logical gate, transversal and non-transversal. Further-
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Figure 1: Time units for running BWT algorithm.

more, because the level-1 logical qubit is not enough to
satisfy a threshold of a quantum computing component,
we vary the level of the concatenation. After each logi-
cal operation, the fault-tolerant quantum error correction
based on Shor’s scheme [8] is applied to logical qubits.

Fig. 1 shows the analysis result on the required time
units for running the BWT algorithm. Note that the
level-0 indicates an ideal quantum computing without
logical operations and quantum error correction. For
BWT problem, a critical input value is known as a height
300 [6, 9]. Note that the critical input value is the max-
imum input value (the height of a binary tree) it is be-
lieved that a classical digital computer solves efficiently.
Which means that the BWT problem with a tree of
height greater than 300 can be solved by a quantum com-
puter faster than a digital computer. From our analysis
result, the problem can be solved around 15 hours by
a quantum computer under the assumptions: the quan-
tum processor works at 1GHz and the concatenation level
is 4. If a concatenation level is higher than 4, the re-
quired time increases remarkably, 58 days (level-5) and
15.2 years (level-6). But fortunately such a high concate-
nation level is not required [10].

Fig. 2 shows the analysis result about GSE (M=04,
b=09) algorithms on varying the concatenation level.
The critical input value for GSE is known as M = 208 [4],
but unfortunately we did not analyze it because we could
not compile the case due to the lack of classical comput-
ing power. For reference, the size of the quantum assem-
bly code is bigger than 2G bytes even when M = 64.
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Abstract. Nonlocality is an important resource for quantum information processing. Tripartite nonlo-
cality is more difficult to produce in experiments than bipartite ones. In this paper, we analyze a simple
setting to generate tripartite nonlocality from two classes of bipartite resources, namely, two-qubit en-
tangled pure states and Werner states. Upper bounds on the tripartite nonlocality, characterized by the
maximal violation of Svetlichny inequalities, are given, and the optimal measurements to achieve these
bounds are provided.
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1 Motivation

Nonlocality is one of the most fundamental character-
istics of quantum mechanics. The nonlocal quantum cor-
relations existing between spatially separated quantum
systems have significant advantages over classical cor-
relations, thus serving as an indispensable resource for
quantum information processing. In recent years, many
novel applications of nonlocality have been developed for
quantum computation and quantum communication [1],
including communication complexity [2], quantum cryp-
tography [3], randomness generation [4], and device in-
dependent quantum computation [5].

The quantum states which exibit nonlocal correlations
are called nonlocal states. The nonlocality of a quan-
tum state can be verified by Bell-type inequalities which
give upper bounds on all local correlations that admit
a local hidden variable (LHV) model [1]. For bipartite
quantum systems, a sufficient criterion of being nonlocal
is the violation of Clauser-Horner-Shimony-Holt (CHSH)
inequality [6], while for tripartite systems, Svetlichny in-
equality plays a similar role [7].

In the last several decades, nonlocality of bipartite sys-
tems has been extensively investigated. However, the
problem regarding multipartite nonlocality is much more
complicated than the bipartite case, and very few works
were presented in the literature. Even the nonlocality
of three-qubit states, the simplest multipartite system-
s, is not well understood. In this special case, Ghose et
al. derived an analytical expression of nonlocality for the
generalized GHZ states and W states [11]. Later in 2010,
Ajoy et al. extended this result to a set of more general
GHZ-class states and W-class states [12].

In experiments, it is much harder to produce entangled
tripartite systems than bipartite ones [13]. Note that be-
ing entangled is the necessary condition of being nonlocal
for quantum systems. Therefore, it has practical mean-
ing to generate tripartite nonlocal systems from bipartite
ones.

∗youngpath2012@gmail.com
†Yuan.Feng@uts.edu.au

2 Summary of Contribution

We analyze in this paper a simple setting, showed in
Figure 1, for generating tripartite nonlocality from bipar-
tite resources. There are three remotely located partici-
pants Alice, Bob, and Clare. Alice and Bob each shares a
copy of the resource state ρ with Clare, denoted as ρAC1

and ρBC2 respectively. Clare then applies a CNOT oper-
ation on C1 (the control qubit) and C2 (the target qubit),
and measures the system C2 with some projective mea-
surement. The tripartite nonlocality of the remaining
systems ABC1 will be quantified by the maximal viola-
tion of Svetlichny inequalities.

Figure 1: The setting for tripartite nonlocality genera-
tion.

Two different types of resource states are investigated
in the paper: two-qubit Werner states

ρW = p|Φ〉〈Φ|+ (1− p)I
4

(1)

where 0 < p < 1 and |Φ〉 = (|00〉 + |11〉)/
√

2, and arbi-
trarily entangled two-qubit pure states with the Schmidt
decomposition

|Φθ〉 = cos θ|00〉+ sin θ|11〉, 0 < θ <
π

2
. (2)

Our contributions are detailed as follows:
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• A simple way to evaluate the maximal violation of
Svetlichny inequalities for a special class of three-
qubit states. We develop a technique to calculate
the maximal violation of Svetlichny inequalities for
a class of three-qubit states including both pure s-
tates and mixed states. With this technique, we
are able to compute the maximal violation for gen-
eralized GHZ states |Ψθ〉 = cos θ|000〉 + sin θ|111〉
which reads

Smax(Ψθ) =

{
4| cos 2θ| if sin2 2θ < 1

3

4
√

2| sin 2θ| if sin2 2θ ≥ 1
3 .

This result coincides with [11], but the proof is
much simpler. Furthermore, the technique plays
a crucial role in obtaining optimal measurements
for generating tripartite nonlocality from bipartite
resources considered in this paper.

• Optimal measurement for generating tripartite non-
locality from Werner states. Suppose a Werner s-
tate ρW as defined in Eq.(1) is used as the bipartite
resource in Fig. 1, and Clare is only allowed to per-
form projective measurement in the X − Z plain.
Then the maximal Svetlichny inequality violation
of the remaining states satisfies

p0Smax(ρ0) + p1Smax(ρ1) ≤ 4p2
√

2,

where ρ0 and ρ1 are the post-measurement states of
system ABC1 with the corresponding probabilities
p0 and p1, respectively. The equality holds when
the measurement according to the standard basis
{|0〉, |1〉} is applied. Furthermore, in this case the
maximal violation 4p2

√
2 is achieved for both mea-

surement outcomes, thus tripartite nonlocality will
be generated with certainty if p > 2−

1
4 ≈ 0.8409.

• Optimal measurement for generating tripartite non-
locality from two-qubit pure states. Suppose |Φθ〉 as
defined in Eq.(2) is used as the bipartite resource
in Fig. 1, i.e. ρ = |Φθ〉〈Φθ| where

0.4911 ≈
√

1

2
− 1

2

√
2−
√

3 ≤ cos θ

≤
√

1

2
+

1

2

√
2−
√

3 ≈ 0.8711,

and Clare is only allowed to perform projective
measurement in theX−Z plain. Then the quadrat-
ic mean1 of the maximal Svetlichny inequality vio-
lations of the remaining states satisfies

√
p0Smax(Ψ0)2 + p1Smax(Ψ1)2 ≤ 4

√
2 sin2 2θ

1 + cos2 2θ
,

where |Ψ0〉 and |Ψ1〉 are the post-measurement s-
tates of system ABC1 with the corresponding prob-
abilities p0 and p1, respectively. Again, the equality

1For technical reasons, here we consider the quadratic mean,
instead of the arithmetic mean as for the Werner states case, to
quantify the tripartite nonlocality of the remaining states.

holds when the measurement according to the stan-
dard basis {|0〉, |1〉} is applied. Furthermore, in this
case we have Smax(Ψ1) = 4

√
2 and

Smax(Ψ0) =
4
√

2 sin2 2θ

1 + cos2 2θ
. (3)

Thus tripartite nonlocality will be generated with
certainty if

0.5412 ≈

√
2−
√

2

2
< cos θ <

√√
2

2
≈ 0.8409.
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Abstract. We introduce and analyze graph-associated entanglement cost, a generalization of the entangle-
ment cost of bipartite quantum states to multipartite. We identify a necessary and sufficient condition for
any multipartite entangled state to be constructible when quantum communication between the multiple
parties is restricted to a network represented by a tree. The condition for exact construction is expressed in
terms of the Schmidt ranks of the state defined with respect to edges of the tree. We also study approximate
construction and provide a second-order asymptotic analysis.

Keywords: multipartite entanglement, entanglement cost, distributed construction of states

1 Introduction

Convertibility between multipartite quantum states by
means of local operations and classical operation (LOCC)
establishes a hierarchy on entanglement of the quan-
tum states [1]. The convertibility results obtained in
the LOCC framework also apply to more general non-
LOCC settings, answering resource requirements for cer-
tain tasks. For instance, let there be two parties sepa-
rated by some distance, who are connected by a quan-
tum channel, but otherwise limited to LOCC. The op-
timal amount of quantum communication to asymptoti-
cally construct a shared entangled state equals the entan-
glement cost [2], since a noiseless qubit channel can be
simulated by quantum teleportation with one Bell state
besides LOCC.
This scenario generalizes to more parties connected by

several quantum channels. The connectivity can be rep-
resented by a graph G = (V,E), where each vertex v ∈ V
corresponds to a party and edge e ∈ E to a channel. The
total number of channels is not enough to characterize
the network of channels. It amounts to the fact that the
topology of the whole graph cannot be determined by
the total number of edges. To represent a network con-
necting N parties, at least N − 1 edges are required. A
connected graph of the least number of edges is called a
tree.
If each channel at e ∈ E has a limited capacity, say, of

log2me qubits, the parties must suitably exploit the lim-
ited resources to construct a given state. Each noiseless
quantum channel is equivalent to a maximally entangled
state of me-level systems, which composes an initial re-
source state |Φres(G)⟩. The possibility of the pursued
state construction is determined by a generalized notion
of bipartite entanglement cost, which we name graph-
associated entanglement cost.
We analyze the graph-associated entanglement cost of

multipartite pure states under trees to achieve exact and
approximate state construction. Our answer to the for-

∗yamasaki@eve.phys.s.u-tokyo.ac.jp
†soeda@phys.s.u-tokyo.ac.jp
‡murao@phys.s.u-tokyo.ac.jp

Figure 1: Construction of a multipartite entangled state
ρ (gray circles) under a graph G. Parties (squares) are
connected by quantum channels (lines) specified by G.
Each channel is equivalent to LOCC and a maximally en-
tangled state (a pair of black circles connected by a line),
which composes a resource state |Φres(G)⟩. The con-
struction task is to transform |Φres(G)⟩ into ρ by LOCC.

mer is given in terms of the Schmidt rank [3] defined
with respect to edges of the given tree. For the latter,
we refine the analysis given in Ref. [4] and combine the
results of Ref. [5] to provide the second-order asymptotic
analysis.

2 Multipartite State Construction and
Graph-associated Entanglement Cost

We consider the tasks of exact and approximate con-
struction of a multipartite entangled state ρ, as shown in
Figure 1. In the LOCC framework, the exact construc-
tion under a graph G for a target state ρ is defined as a
task to deterministically and exactly transform the initial
resource state |Φres(G)⟩ into the target state ρ by LOCC.
The (n, ϵ)-approximate construction under G for ρ is de-
fined as a task to deterministically transform |Φres(G)⟩
by LOCC into an N -partite state ρ̃n which approximates
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n copies of the target state ρ⊗n up to ϵ in terms of the
trace distance. Note that the system size for the initial
resource state and the target state is not necessarily the
same.
We define variants of graph-associated entanglement

cost, namely graph-associated total entanglement cost
and graph-associated edge entanglement cost. As
|Φres(G)⟩ consists of bipartite maximally entangled
states, we can quantify entanglement of |Φres(G)⟩ using
ebit, which represents the entanglement entropy of a Bell
state. The total amount of entanglement of |Φres(G)⟩
is the sum of the amount of bipartite entanglement at
all the edges. The exact (or (n, ϵ)-approximate) graph-
associated total entanglement cost is defined for a graph
G and an N -partite state ρ as the minimum total amount
of entanglement of |Φres(G)⟩ from which the exact (or
(n, ϵ)-approximate) construction under G for ρ is achiev-
able.
We define graph-associated edge entanglement costs

to characterize distributed entanglement properties of
multipartite states. There can be several optimal ini-
tial resource states minimizing the graph-associated to-
tal entanglement cost, and we assign an index i to rep-
resent different configurations of the optimal resource
states. For a graph G and an N -partite state ρ, let∣∣∣Φ̂ires(G, ρ)⟩ denote the optimal initial resource state

with configuration i for the exact construction under G
for ρ. Then, exact graph-associated edge entanglement
cost EGGC,i,e(ρ) is defined as the amount of entanglement
of the bipartite maximally entangled state prepared at

edge e ∈ E of
∣∣∣Φ̂ires(G, ρ)⟩. Similarly, (n, ϵ)-approximate

graph-associated edge entanglement cost EG,n,ϵGC,i,e(ρ) is de-
fined for the (n, ϵ)-approximate construction.

3 Graph-Associated Edge Entanglement
Costs under Trees

We analyze the graph-associate entanglement costs un-
der a special class of graphs, trees, which represent a net-
work in which all the parties are connected by the small-
est number of channels. We assume that target states
are pure states, denoted by |ψ⟩, for simplicity. When
any edge e ∈ E on a tree T is deleted, T is divided into
two connected components. A reduced state ρe of |ψ⟩
with respect to the edge e is defined as the one obtained
by tracing out the systems belonging to one of the two
components. We obtain the following theorems.

Theorem 1. Exact graph-associated entanglement cost:
For any tree T = (V,E) and any N -partite pure state
|ψ⟩, the configuration i for the optimal resource state∣∣∣Φ̂ires(T, ψ)⟩ is uniquely determined, and, for each edge

e ∈ E,
ETGC,i,e (ψ) = log2 rank ρe.

Theorem 2. (n, ϵ)-approximate graph-associated entan-
glement cost: For any tree T = (V,E), any N -partite
pure state |ψ⟩, any ϵ, n > 0, and any configuration i for
the optimal resource state of the (n, ϵ)-approximate con-
struction, it holds that

1. upper bound: For error thresholds at respective
edges denoted by ϵ′(e) > 0 for each e ∈ E satis-
fying

∑
e∈E 2ϵ′(e) ≦ ϵ,

∑
e∈E

ET,n,ϵGC,i,e (ψ) ≦
∑
e∈E H

ϵ′(e)2/4

s (ρ⊗ne )

n
,

where H
ϵ′(e)2/4

s is the quantum information spec-
trum entropy defined in Ref. [5].

2. lower bound: For any δ, η > 0 and each e ∈ E,

ET,n,ϵGC,i,e(ψ) ≧
H
ϵ2/4+η

s (ρ⊗ne )− δ + log2 η

n
.

To prove Theorem 1 and 2, we explicitly provide an
optimal algorithm for exact construction, in which |ψ⟩ is
constructed in a distributed manner based on a recursive
description of |ψ⟩ under trees. Approximate construction
of |ψ⟩⊗n can be achieved by exact construction of an ap-

proximate state
∣∣∣ψ̃n⟩ calculated from ϵ′. Our construc-

tion algorithms can save the maximum quantum memory
space of parties.
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Abstract. We study a generalization of Kitaev’s abelian toric code model defined on CW complexes.
In this model qudits are attached to n dimensional cells and the interaction is given by generalized star
and plaquette operators. These are defined in terms of coboundary and boundary maps in the locally
finite cellular cochain complex and the cellular chain complex. We find that the set of energy-minimizing
ground states and the types of charges carried by certain localized excitations depend only on the proper
homotopy type of the CW complex. As an application we show that the homological product of a CSS
code with the infinite toric code has excitations with abelian anyonic statistics.

1 Background

Homological quantum codes are a class of CSS codes
with stabilizer generators constructed from finite dimen-
sional chain complexes over a finite field and equipped
with a distinguished basis. Algebraic topology is a rich
source of such chain complexes, the main examples being
the simplicial chain complex of a triangulated space and
the cellular chain complex of a CW complex. From a
purely coding-theoretic point of view, these are interest-
ing because they offer the possibility to construct quan-
tum LDPC codes from spaces with a “bounded local
geometry”. The first such example was the toric code
introduced by Kitaev [1], which has constant stabilizer
weights, O(

√
n) distance and constant dimension.

To every CSS code with a given set of stabilizer gener-
ators there is a canonically associated Hamiltonian. The
interaction terms are −1 times the projections onto the
subspaces fixed by each generator, and the ground state
space coincides with the code space. Importantly, if the
CSS code is constructed from a cellular chain complex,
then the interaction terms are local (with respect to the
underlying topology), making such codes promising can-
didates for a potential physical implementation. Addi-
tionally, the toric code is known to have another interest-
ing feature, namely it exhibits topological order and has
excitations resembling localized charged particles with
anyonic statistics.

Ref. [2] introduced the homological product operation
for CSS codes, which corresponds to the tensor product
of the underlying chain complexes. This in turn is the
algebraic counterpart of the cartesian product of topo-
logical spaces, but is also defined for abstract chain com-
plexes. Important applications include ref. [3], where it
was shown that the tensor product of two random chain
complexes gives rise to asymptotically good codes with
only O(

√
n) stabilizer weights, and ref. [4], where a spe-
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cific family of product codes is shown to have a phase
transition at a finite temperature.

The homological product construction thus seems to
have interesting properties both at the level of abstract
codes and for the corresponding physical systems with
local Hamiltonians. In ref. [3] the following question
was posed as one of the open questions: Do homological
products of the toric code and some fixed code retain the
property of having anyonic excitations? It is this question
which served as the main motivation for our work.

2 Results

In order to rigorously formulate the question, we use
the language of algebraic quantum field theory, following
the similar analysis of the toric code model in refs. [5, 6].
In this framework, it is necessary to consider infinite sys-
tems, thus the torus in the toric code is replaced with a
plane. It turns out that much of the analysis can be ex-
tended to more general spaces with the help of algebraic
topology. For this reason, the starting point of our inves-
tigation is the following collection of data: 1) a locally
finite CW complex E, 2) a finite abelian group G, and
3) a natural number n. The subsystems are described by
the Hilbert space `2(G), and they live on the set En of
n dimensional cells of E. The interaction terms (equiva-
lently: stabilizer generators) are defined in terms of the
boundaries of n + 1-cells (for Z-type) and coboundaries
of n−1-cells (for X-type). From these data one can con-
struct a C*-algebra A (quasilocal-algebra) together with
a derivation encoding the infinitesimal time evolution.

To present the model more precisely, we introduce
some notation. For any g ∈ G we let Xg be the uni-
tary acting on `2(G) as |h〉 7→ |g + h〉 and for any χ ∈ Ĝ
we let Zχ act as |h〉 7→ χ(h) |h〉. If γ is a formal lin-
ear combination of n-cells with coefficients in Ĝ (thought
of as an n-chain), then Zγ denotes the tensor product
of the Z-type operators acting at the appropriate posi-
tions. Similarly, if δ is a formal linear combination of
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n-cells with coefficients in G (a locally finite n-cochain),
then Xδ denotes a product of X-type operators. For an
n− 1-cell eα and an n+ 1-cell eβ we let

Aα =
1

|G|
∑
g∈G

X∂T (geα) and Bβ =
1

|G|
∑
χ∈Ĝ

Z∂(χeβ),

where ∂ and ∂T denote the boundary and coboundary
operations, respectively. The Hamiltonian is the sum of
−Aα and −Bβ over the n± 1 cells.

Since for every finite (compact) E the corresponding
systems always possess frustration free ground states, it
is natural to look for frustration free ground states in
the infinite case as well, even though in this case there
are also other ground states. We find that these ground
states are in bijection with the set of all states on an al-
gebra, which we call the logical algebra. The structure of
this algebra is determined by the nth homology and lo-
cally finite cohomology groups with coefficients in Ĝ and
G, respectively, and the canonical pairing between the
two. Moreover, the bijection respects irreducibility, the
factor property and quasiequivalence in both directions
(the latter informs us about the possible phases of the
system at zero temperature).

Having found these ground states, the next step is
to look for endomorphisms which, when composed with
a ground state, form states describing localized excita-
tions. By analogy with the infinite toric code, in which
case such endomorphisms can be obtained as conjuga-
tions with products of Z (X) operators along infinite
paths (dual paths), the most general candidates are con-
jugations with arbitrary products of Z (X) operators on
the n-cells. Such products can be conveniently encoded
as locally finite n-chains (n-cochains). Clearly, some re-
strictions need to be made, otherwise the resulting states
could have infinite energy, which is unphysical. The ap-
propriate condition turns out to be that the boundary of
the locally finite n-chain (coboundary of the n-cochain)
has finite support. If γK and δK denote the restriction of
γ and δ to a finite subset K of n-cells (i.e. removing the
terms for cells outside K), the endomorphism is given by

ρ(γ,δ) : A 7→ lim
K→En

ZγKXδKAX−δKZ−γK .

Such locally finite chains and cochains can be thought
of as representatives of homology and cohomology classes
at infinity, i.e. elements of H∞n−1(E; Ĝ) and Hn

∞(E;G).
As usual in algebraic field theory, charged sectors are
identified with certain equivalence classes of representa-
tions of the quasilocal algebra. It turns out that this
equivalence class is left unchanged upon choosing a differ-
ent representative of the (co-)homology classes at infinity
in question.

For a partial converse, it is possible to introduce a uni-
tary representation of H∞n (E; Ĝ) × Hn−1

∞ (E;G) in the
center of the von Neumann algebra generated by the
GNS representation corresponding to these states. If
these representations are inequivalent, then the equiv-
alence classes of GNS representations are also different,
i.e. these are invariants associated to the states. In many

important cases these invariants are able to tell apart
different charged sectors. If the GNS representation is
πω : A→ B(H), then the invariant is defined as

Pω([d]∞, [c]∞) := lim
K±→En±1

πω

(
X∂T (c−cK− )Z∂(d−dK+

)
)
.

When E is essentially plane-like (e.g. the main exam-
ple E = R2×F with F compact), then it is possible to in-
troduce a canonical braiding on the category of localized
endomorphisms. In this case the anyonic charged sectors
correspond to elements of Hn−1(F ; Ĝ) and Hn−1(F ;G),
and the braiding can be expressed via the Kronecker pair-
ing between homology and cohomology classes. In the
special case when F is a point and n = 1, we recover
the results for the toric code, where charged excitations
are obtained using half-infinite paths and dual paths. In
general, one can take the tensor product of an n − 1-
cycle (n− 1-cocycle) in F with a half-infinite path (dual
path), and these give rise to localized (i.e. particle-like)
excitations having anyonic statistics.
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Abstract

It has always been a difficult issue in Statistical Mechanics to provide a generic interaction
Hamiltonian among the microscopic constituents of a macroscopic system which would give
rise to equilibration of the system. One tries to evade this problem by incorporating the
so-called H − theorem, according to which, the (macroscopic) system arrives at equilibrium
when its entropy becomes maximum over all the accessible micro states. This approach has
become quite useful for thermodynamic calculations using the (thermodynamic) equilibrium
states of the system. Nevertheless, the original problem has still not been resolved. In the
context of resolving this problem it is important to check the validity of thermodynamic
concepts – known to be valid for macroscopic systems – in the microscopic world. Quantum
thermodynamics is an effort in that direction. As a toy model towards this effort, we look
here at the process of thermalization of a two-level quantum system under the action of a
Markovian master equation corresponding to memory-less action of a huge heat bath, kept
at certain temperature. A two-qubit interaction Hamiltonian (Hth, say) is then designed
– with a single qubit mixed state as the initial state of the bath – which gives rise to
thermalisation of the system qubit in the infinite time limit. We then look at the question of
equilibration by taking the simplest case of a two-qubit system A+B, under some interaction
Hamiltonian Hint (which is of the form of Hth) with the individual qubits being under the
action of individual heat baths of temperatures T1, and T2. Different equilibrium phases
of the two-qubit system are shown to appear – both the qubits or one of them get cooled
down.

1 Introduction

Physical systems evolving towards an equilibrium state is a very common phenomenon. The
nature of the process, taking any given initial state to a fixed final state, is non-invertible. So if
one tries to give a quantum mechanical description of the process, it must be non-unitary. As we
know all closed systems in quantum mechanics evolve through unitary operators, non-unitary
evolution means a closed system description of equilibration is not possible. This suggests that
one should take an open system approach to equilibration. Along this line Popescu et. al [3, 4]
came up with the idea that although the whole system is undergoing a unitary process a part of
the system can evolve towards equilibrium; the part of the system behaving as an open system.
The usefulness of this process lies in the fact that although we get to study the equilibration
process which is essentially non-unitary, all the nice structures of unitary dynamics are retained.

In this work [1], we take this approach and start with a known thermalization process: a
qubit (system) interacting with a radiation field (bath). The corresponding master equation is
called the quantum optical master equation. We device a unitary process so that the system
qubit interacting with another ancilla qubit (bath) evolve in the same way as the solution of the
quantum quantum optical master equation. Thus we give an joint unitary description of two
qubits where one of them is thermalizing. We then go on to study a chain of qubits with nearest
neighbour interaction (which we have taken to be two for simplicity) with each end connected

1
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to a bath and the temperature of the two baths are different. We find that the system no longer
behaves like its classical counter part. Rather different phases of cooling and heating of the
qubits are obtained by varying the initial temperature of the baths.

2 Themalizing Hamiltonian

We start with a known thermalizing process - a qubit interacting with a bosonic bath - described
by the quantum optical master equation.

dρ

dt
= γ0(N + 1)

(
σ−ρ(t)σ+ −

1

2
σ+σ−ρ(t)− 1

2
ρ(t)σ+σ−

)
+ γ0N

(
σ+ρ(t)σ− −

1

2
σ−σ+ρ(t)− 1

2
ρ(t)σ−σ+

) (1)

Here, N = (exp E(ω)
kBT

− 1)−1 is the Planck distribution. kB is the Boltzmann constant, T is
temperature and E(ω) is the energy at frequency ω. γ0 is the spontaneous emission rate of the
bath and γ = γ0(2N + 1) is the total emission rate (including thermally induced emission and
absorption processes). Here, γ gives the measure of temperature of bath

Solving this master equation gives us the evolution of the qubit. Our next step is to simulate
this dynamics by appending a single qubit mixed state ancilla to the system qubit in order to
find a corresponding 2-qubit unitary. By utilizing the work of G.Narang and Arvind [2], we
succeed in doing this. And from this unitary we are able to extract a Hamiltonian. Since this
Hamiltonian leads to thermalization of the system qubit, we call it the thermalizing Hamiltonian.

Hth(t) = f(t)
(
|φ+〉〈φ+| − |φ−〉〈φ−|

)
(2)

where, f(t) = ±γe−γt/2
2
√
1−e−γt , |φ

±〉 = 1√
2
(|00〉 ± |11〉)

3 Two-qubit Interaction

Armed with the single qubit thermalizing Hamiltonian we try to extend our analysis to one-
dimensional chain of qubits which has heat baths of different temperature at each end. We
consider the simplest case of two qubits as shown in the figure.

Here, A,B are the system qubits and A1, B1 are the corresponding ancillae representing
respective heat baths. We are interested in the respective thermal behavior of the two system
qubits A and B. The thermalizing hamiltonians HA1A(t) and HBB1(t) are given by,

HA1A(t) = a(t)
(
|φ+〉〈φ+| − |φ−〉〈φ−|

)
HBB1(t) = b(t)

(
|φ+〉〈φ+| − |φ−〉〈φ−|

)
Where, a(t) = γ1e−γ1t/2

2
√

1−e−γ1t
and b(t) = γ2e−γ2t/2

2
√

1−e−γ2t
For simplicity, we take the interaction hamiltonian HAB to be of the same functional form

as the thermalizing Hamiltonian.

HAB(t) = c(t)
(
|φ+〉〈φ+| − |φ−〉〈φ−|

)
2
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where, c(t) = γ3e−γ3t/2

2
√

1−e−γ3t
Now, we can calculate the total Hamiltonian and the time evolution operator. We turn to

numerical calculations at this point and plot graphs that indicate whether heating/cooling has
taken place for the system qubits A and B. Heating/cooling is decided by comparing the initial
temperature of the qubits to their final equilibrium temperatures. Some examples for the plots
are shown below (with thermal states as initial states of A, B)

The X and Y axes are the temperature measures of B1 and A1 respectively.Blue indicates
that both qubits have cooled, red indicates that both have heated up and yellow/green indicate
that one has cooled while the other has heated up.

4 Conclusions

We have here different phases of the two qubits A and B in the steady state case: (i) both of
them may be cooled down to min. possible temperatures, (ii) both of them may be heated, or
(iii) one of them gets cooled down and the other one gets heated. But, note that there is never
any violation of the second law. Changing the form/strength of the interaction Hamiltonian
Hint (t), we may get to see a completely different equilibrium phases No external source is
acting on the two qubits (apart from their respective heat baths) In order to come up with a
two-qubit refrigerator (with another qubit system being cooled down) – like in the case of [5]
– we should consider a three-qubit system A + B + C (with a Hamiltonian approach)-starting
from an optical master equation for a squeezed thermal bath (say).

The reference to the arxiv version of the main article is given in [1].
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1 Introduction

In order to demonstrate the ability of quantum com-
puting in the near future, an efficient quantum algorithm
should be implemented efficiently. In general, a quantum
algorithm includes a part to calculate (classical) logic
functions corresponding to a problem instance. Thus,
an efficient design technique for realization of a (clas-
sical) logic function should be very important even for
quantum circuits, as pointed out in the literature (e.g.,
[1]). Therefore, the design methodology of reversible cir-
cuits has been studied very extensively in the reversible
computation as well as quantum computation research
communities.
There are many ways to design a reversible circuit to

calculate a Boolean function; one of the most popular
ways is to design an initial circuit consisting of Mixed
Polarity Multiple-Control Toffoli (MPMCT) gates, and
then decompose a large gate (i.e., with the large num-
ber of inputs) into elementary gates. In the latter part,
there have been proposed many methods dedicated to
reversible/quantum circuits.
For the first part, the important task is to find a small

Exclusive-or Sum-Of-Products (ESOP) expression for a
given Boolean function because we can generate a re-
versible circuit for a logic function by concatenating an
MPMCT gate corresponding to each product term in the
ESOP expression (as we will mention later). There are
many ESOP-based synthesis methods; in the approaches
our essential task is to find a small (with respect to the
quantum cost) ESOP expression, which may be a pure
classical logic synthesis problem.
Recently, the paper [2] proposed an idea to reduce

quantum cost; we add MPMCT gates to change the given
functionality so that the modified function has a smaller
ESOP expression. However, the paper [2] only shows
how to apply the idea to a single output function, and
it is unclear how to deal with multiple-output functions.
Thus, we propose a new method that can reduce quan-
tum costs of multiple output functions by utilizing the
same idea. Our method utilizes a property that we can
“copy” a classical logic by using a CNOT gates. Our
preliminary experimental results confirm that our new
method can reduce quantum cost much more than using
only previous method.
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Figure 1: A Kmap for G1.
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Figure 2: A Kmap for G2.

00 01 11 10

00 1 1

01 1 1

11

10 1 1 1 1

𝑥1𝑥2
𝑥3𝑥4

Figure 3: Kmap for
(G1 +G2)
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Figure 4: A Kmap after
copying the function by a
CNOT gate.

2 Reducing Quantum Cost by Adding
MPMCT Gates

2.1 Previous Method

In the following, we refer to a blank cell or a cell having
the 0 value as 0-value cell in a Kmap. Also, a cell hav-
ing the 1 value is called 1-value cell. A minterm of a
logic function is the combination of all the input variables
(negative or positive) when the logic function becomes 1.
Thus one minterm can corresponds to an MPMCT gate
that has n control bits, which is called anMPMCTn gate
in the following. One 1-value cell in a Kmap corresponds
to one minterm in a logic function, and a rectangular con-
sisting of 2m 1-value cells corresponds to an MPMCTm
gate.
Now let us explain the previous method in [2]. Let a

circuit G have qubits, x1, · · · , xn+1, and calculate a logic
function with n variables (x1, · · · , xn) on xn+1. Suppose
we add an MPMCT gate whose (possibly many) control
and target bits are some of x1, · · · , xn before and after
G. Let the set of control bits of the added MPMCT gate
be C and the target bit be xt. Then, if there is a gate
g in G such that the control bits of g is the same as
C + {xt} and the polarities for the control bits of g and
the added MPMCT gate are the same except for xt, we
need to change (i.e., invert) the polarity of xt of g to keep
the functionality of the circuit. This means that adding
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Figure 5: Copying the function of G1 by a CNOT gate.
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Figure 6: Copying a part of G1 by a CNOT gate.

an MPMCT can change the locations of 0-value cells and
1-value cells in a Kmap for the function realized by G.
Therefore, if we add appropriate MPMCT gates, we can
modify the given function so that it has a much simpler
ESOP forms; the total quantum cost can be reduced.
By using this modification, the previous method [2] can
design a circuit for a single output function with lower
quantum cost.

2.2 Our New Idea: Using CNOT Gates to Copy
Classical Logic

The previous method explained in the previous section
cannot deal with multiple-output functions efficiently.
Here we propose an efficient method to treat multiple-
output functions directly. Our idea is to use a CNOT
gate to copy a classical logic between multiple outputs.
Let G1 be a set of MPMCT gates whose target bits

are all t1. In other words, G1 is a quantum circuit that
calculates a Boolean function on t1. Let also the Kmap
for the function be as shown in Fig. 1. Further let G2 be
a set of MPMCT gates whose target bits are all t2, and
the Kmap for the function of G2 be as shown in Fig. 2.
Then let us consider to design a circuit that calculates the
above two functions at the same time, i.e., two-output
function. If we add a CNOT gates whose control bit
is t1 and target bit is t2 between G1 and G2 as shown
in Fig. 5, we can ”copy” the function of G1 at t1 into
the function of G2 at t2. This means that the circuit in
Fig. 5 calculate the function that is exactly the same as
G2 at t2 because any MPMCT gate-based circuit is self-
inverse. In othe words, we can consider that the part of
the circuit after the CNOT gate in Fig. 5 (i.e., G1 and
G2) calculates the function whose Kmap is as shown in
Fig. 3. Note that if we ”copy” the 1-value cells in Fig. 1
to the Kmap as shown in Fig. 2, we get the Kmap as
shown in Fig. 3. In conclusion, if the function after the
above ”copy” is easier to be designed than the function
by only G2, the total quantum cost of the circuit designed
as Fig. 5 becomes smaller than the simple concatenation
of G1 and G2. This is our idea in this paper.
We can copy only part of a circuit. Let G1 be divided

into two parts, G1a and G1b. Then, the circuit as shown
in Fig. 6 can copy only the functionality of G1a, and thus
we need to design a circuit equivalent to G2 and G1a for
the function on t2 as shown in Fig. 6.
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Figure 7: Applying previous method to Fig. 5.
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Figure 8: The final circuit.

For the circuit as shown in Fig. 5, we can use the previ-
ous method [2] to design a circuit for the function realized
by G2 and G1. Namely, we add two MPMCT gates be-
fore and after G2 and G1a. By this, the circuit becomes
as shown in Fig. 7, and then our final circuit becomes as
shown in Fig. 8.

3 Experimental Results and Conclusions

To evaluate our idea presented above, we performed
the following experiment. We generated randomly two-
output functions with four variables. We have 16C2 ×
16C2 =14,400 functions even if we only consider the case
when the number of minterms is two. Thus, we tried
10,000 randomly selected two-output functions with four
variables having 2 to 7 minterms. For the randomly se-
lected functions, we compared two methods; (1) we ap-
plied the previous method to each of the outputs, and
combine the results, and (2) we applied our idea to add
CNOT gates to copy appropriate partial function from
one function to another function before applying the pre-
vious method. Then, we confirmed that our proposed
method can achieve lower quantum cost for 95% cases,
and it can reduce the quantum cost by approximately
12.5% compared to the previous method in average.
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1 Introduction

Recently topological quantum computation [2] has
been drawing much attention as one of the promising
ways to realize fault-tolerant quantum computation. The
topological quantum computation model perform compu-
tations by using braiding operations [2]. The most im-
portant issue is that any two operations can be performed
parallelly when the braiding operations corresponding to
the two operations are not physically overlapped [4]. For
example, g1 and g2 in Fig. 1(a) can be performed paral-
lelly because these are not overlapped with each other.
Thus we can reduce a computational time of a circuit by
parallelizing operations. Fig. 1(b) shows the parallelized
circuit.
However, the number of combinations of operations to

parallelize is enormous. Thus it is difficult to find a op-
timal way to parallelize a circuit. Therefore, we propose
some heuristics to parallelize a circuit, and compare var-
ious methods. These heuristics decide sets of operations
(computational steps) that can be performed parallelly
from the beginning (left-hand side) of a give circuit. An
example of a parallelized circuit is shown in Fig. 1(b)
where a dotted-line box means a set of computational
steps that can be performed parallelly.
In the followings, first, we describe an algorithm that

is commonly used in these methods for listing candidates
of computational steps that can be performed parallelly.
Then, we propose three methods, a greedy method, a
method based on a cost function and a probabilistic
method to select good computational steps in the listed
candidates. Our methods parallelize a whole given circuit
by repeating the above two steps (i.e., listing candidates
of computational steps and selecting one from the list.)
Finally we report our experimental result which shows
that the method based on a cost function and the prob-
abilistic method produced good solutions.
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Figure 1: A quantum circuit.
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2 Parallelization of a circuit

2.1 Listing candidates of computational steps

Recently, a promising implementation scheme for topo-
logical quantum computation has been proposed [2]; the
implementation is divided into three parts, initialization
part, a large array of only CNOT gates, and the mea-
surement part. Thus it is very important to optimize
a circuit consisting of only CNOT gates; we consider to
optimize a circuit consisting of only CNOT gates. In the
following, the target and the control qubits of gate gi are
denoted by T (gi) and C(gi), respectively.
First we introduce a terminology “overlapped.”

Definition 1 A pair of gates gi and gj are said to be
overlapped if the line between T (gi) and C(gi) and
the line between T (gj) and C(gj) overlap each other. If
gi and gj are not overlapped, they are said to be non-
overlapped with each other.
For example, in the circuit as shown in Fig. 1(a), g1

whose target and control bits are x3 and x5, respectively,
and g2 whose target and control bits are x1 and x2, re-
spectively, are non-overlapped, whereas g1 and g3 whose
target and control bits are x5 and x4, respectively, are
overlapped. This is because two lines between x3 and x5,
and between x1 and x2, are not overlapped, but two lines
between x3 and x5, and between x5 and x4, overlap each
other. If the two logical CNOT gates are non-overlapped,
the braiding operations for the two CNOT gates can be
performed in one logical time step in our model.
We can swap two CNOT gates, gi and gj , if C(gi) ̸=

T (gj) and T (gi) ̸= C(gj). We refer this as the swapping
rule in this abstract. For example, g4 and g5 in Fig. 1(a)
can be swapped. However, g1 and g3 in Fig. 1(a) cannot
be swapped because the control qubit of g1 and the target
qubit of g3 are the same qubit (i.e., x5).
To explain our method, we also need the following ter-

minology.

Definition 2 When gi and gj cannot be swapped by the
swapping rule, and there is gi before gj, We say gj de-
pends on gi.
For example, g3 depends on g1 in Fig. 1(a) because

C(g1) and T (g3) are the same. On the other hand, g2
does not depend on g1.
We explain our method to list up candidates of com-

putational steps checking the above two relations (i.e.,
overlapped and dependence) of gates.
First, we create a directed acyclic graph, GD, which

represents the dependence relation between any two
CNOT gates in a given circuit. A vertex in GD cor-
respond to a CNOT gate, and an edge between two ver-
tices represents the dependence relation between the cor-
responding two CNOT gates. CNOT gates to be selected
as a candidate computational step should be the source
vertices in GD.
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Next, we create the undirected graph, GS , from the
source vertices in GD. A vertex in GS represents to a
CNOT gate, and an edge between two vertices represents
the non-overlapped relation between the corresponding
two CNOT gates. It is obvious from our construction of
the graphs that two CNOT gates whose corresponding
vertices are adjacent to each other in GS can be done
at the same time. When we select some CNOT gates as
a candidate computational step, there should be edges
between any pair of all the vertices corresponding to the
CNOT gates to be selected. This means that the vertices
to be selected should compose a clique of GS . Accord-
ingly, we have to select a maximal clique in GS as a
candidate computational step in order to parallelize as
many CNOT gates as possible. In our experiment, we
utilized Bron-Kerbosch Algorithm [3] to list all maximal
cliques in GS . We consider the set of all these maximal
cliques as the candidate of the computational steps to be
parallelized.

2.2 Selecting computational steps

In the previous section, we described the method to list
candidates of the computational steps to be parallelized.
In this section, we explain how we can select one from
the candidates. We can find the optimal solution by ex-
haustive search, which is unrealistic from the viewpoint
of the computational complexity. Thus we propose three
heuristics to select a possibly good computational steps
from these candidates.
First, we describe a greedy method. The greedy

method selects the maximum clique of the listed cliques
in order to select the computational steps from the candi-
dates. In other words, this is the method that parallelizes
as many CNOT gates as possible from the beginning of
a circuit.
Next, we describe the method based on a cost function.

A cost function quantifies how a current situation is good
statically. For our purpose, the cost function corresponds
to weighting each of the listed cliques. Based on the cost
function, the method selects the clique with the maxi-
mum weight. The difficulty for this method is that we
still have not been able to find out a good cost function
for this purpose; we consider finding a good cost func-
tion would be very difficult problem. Therefore, in our
experiment we tried some cost functions and compared
those. The result showed that we were able to find out a
good solution when we considered the number of vertices
that depend on a clique as the cost function value for the
clique.
Finally, we describe the probabilistic method. As men-

tioned above, it is difficult to find out a good cost func-
tion. Therefore, we consider to use the method for se-
lecting the good solution probabilistically instead of se-
lecting based on pre-determined fixed cost function. For
this purpose, we can use Monte-Carlo tree search [1] as a
probabilistic method. Monte-Carlo tree search was pro-
posed in the field of computer Go, and has been used to
select the next move in any situation. In the research of
computer Go, it has been known to be difficult to evalu-
ate a situation by using a cost function similar to the case
of selecting cliques. Therefore, the following idea was
proposed; we play the game until the end by randomly
(playout) from each candidate move, and select the move
having the highest winning rate. However, we cannot
get a good solution by simply calculating winning rates.
Thus, we assign many playouts to promising moves, and
make the search tree grow by expanding moves when the
number of playouts exceeds a threshold. By this strategy,
it has been known that we are able to efficiently select

Table 1: Execution results
circuit greedy cost function probabilistic

bits/gates steps time steps time steps time
16/100 82 0.00 68 0.00 64 0.54
16/500 190 0.01 166 0.02 157 250
49/500 116 0.02 91 0.11 88 180
100/500 81 0.15 74 0.74 66 1500
100/1000 161 0.14 128 2.50 135 12000

good moves with high accuracy.
In the above Monte-Carlo tree search, the problem is

how to define a promising move. One solution is to de-
fine that the value called “UCB1” for a promising move
should be the maximum value. UCB1 is a value which is
used to solve Multi-armed bandit problem [1].
We can apply Monte-Carlo tree search to our prob-

lem of selecting cliques as follows: we consider a move
corresponds to selecting a clique, and a winning rate cor-
responds to the inverse number of the expected value of
the number of the total computational steps. The rea-
son why we consider an inverse number is that we want
to minimize the number of computational steps for the
problem of selecting cliques. Furthermore, we are able
to normalize the value to [0, 1] by inverting the number,
and thus it is convenient to calculate UCB1.

2.3 Preliminary Experimental Result

We implemented the above three methods, and tried to
minimize the computational steps of randomly selected
circuits. The comparison results are shown in Table 1.

3 Conclusion

In this abstract, we propose three methods to paral-
lelize a circuit for the reduction of computational steps
for topological quantum computation. Our method par-
allelizes a circuit by repeating two steps; (1) listing the
candidates of the computational steps, and (2) selecting
the good computational steps from the candidates. Our
method based on a cost function produces good results
generally in short execution time. On the other hand,
the probabilistic method needs more time but produces
better results than the method based on a cost function.
Thus there is a possibility that a better cost function ex-
its, which means our future work is to find such a cost
function. Also we would like to improve the execution
time of the probabilistic method.
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Abstract. In this work we make a comparative study between coupled spin-1/2 systems and coupled
quantum oscillators when they constitute as the working media of quantum thermodynamic machines. For
this purpose, we consider anisotropic 1-D Heisenberg model of interaction between two spin-1/2 systems.
Analogous interaction in the case of two oscillators is realized by considering quadratic coupling between
positions and momenta of the two oscillators. Interestingly, we point out certain range of parameters for
which the efficiency of the coupled oscillators outperform the efficiency obtained from coupled spin systems.
With the same interaction, the coupled systems work as refrigerator for a different range of parameters
and the coefficient of performance of coupled spins outperform that of the coupled oscillators.

Keywords: Otto cycle, coupled spin-1/2 system, coupled oscillators

1 Introduction

Study of thermodynamics in quantum regime can re-
veal fundamental features. As for example, the statement
of the second law of thermodynamics in the presence of an
ancilla [1, 2] or, when the system has coherence [3, 4], has
been established in great details from where the classical
version of the second law emerges under appropriate lim-
its. Extension of thermodynamics to quantum regime can
be approached in different directions such as information-
theoretic point of view [5, 6, 7], resource-theoretic aspect
[8], work extraction from quantum systems [9, 10, 11],
etc. Different models of thermodynamic machines can
be considered as useful tools to study in such directions.
Such heat devices also help us to understand the behavior
of thermodynamic quantities such as work and efficiency
with non-classical feature such as entanglement, quan-
tum superposition, squeezing, etc.

2 Results

Coupled systems as quantum heat engines are stud-
ied widely in recent past [12, 13, 14, 15, 16, 17]. It
has been shown that appropriate coupling can increase
the efficiency of the system compared to the uncoupled
model [15]. The aim of the present work is to com-
pare the performances of different coupled quantum sys-
tems when used as the working medium of a thermody-
namic machines. For this purpose, we consider coupled
spin-1/2 system and coupled quantum oscillator as work-
ing medium of quantum Otto cycle where the coupling
in both the cases are taken to be of similar form (e.g.
Heisenberg XX or XY interaction). Our findings are
listed as follows: (i) we compare the efficiencies in the
realm of increasing dimension of the system, (ii) we show
that efficiency of a coupled system is bounded (both from
above and below) in terms of the efficiencies of its parts
(independent modes) when both the independent modes
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‡sibasish@imsc.res.in

work in the engine mode, (iii) global efficiency decreases
when a part of the coupled system works as refrigerator,
(iv) for certain range of parameters the efficiency of the
coupled oscillators outperforms the efficiency obtained
from coupled spin systems, (v) with the same interac-
tion, system work as refrigerator for a different range of
parameters and the coefficient of performance of coupled
spins outperform that of the coupled oscillators.

2.1 Quantum Otto cycle

Quantum Otto cycles are analogous to the classical
Otto cycle, and the latter consists of two isochoric pro-

’ω

’ω

ω

ω

TT(3) (1)

(4)

(2)

c h

Figure 1: Pictorial representation of quantum Otto cycle.
The working medium of this cycle is a harmonic oscilla-
tor. Stage 1 and Stage 3 are thermalization processes, in
which the system exchanges heat with the bath. Stages 2
and 4 correspond to adiabatic processes where frequency
of the oscillator changes from ω to ω′ and back by doing
certain amount of work.
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cesses (work, W = 0) and two adiabatic processes (heat
Q = 0). The system exchanges heat with the bath during
the thermalization processes and the work is done when
the system undergoes adiabatic process. Work and heat
are calculated from the change in mean energies, where
mean energy of the system represented by the state ρ and
the Hamiltonian H is defined as Tr[ρH].

2.2 Coupled oscillator and spin-1/2 system

Coupled oscillator : Consider two oscillators (labeled
as 1 and 2) having same mass and frequency, and the
Hamiltonian is given by,

Hos =
p2

1

2m
+

p2
2

2m
+
mΩ2

2
x2

1 +
mΩ2

2
x2

2

+2

(
mΩ

2
λxx1x2 +

1

2mΩ
λpp1p2

)
, (1)

where λx and λp are the coupling strengths with same
units as that of Ω. Under suitable co-ordinate transfor-
mation the Hamiltonian reads as,

Hos =
p2
A

2MA
+
MAΩ2

A

2
x2
A +

p2
B

2MB
+
MBΩ2

B

2
x2
B (2)

=

(
c†AcA +

1

2

)
ΩA +

(
c†BcB +

1

2

)
ΩB , (3)

where c†k and ck, where k = A,B, are the creation and an-
nihilation operators for the independent oscillator modes
A and B. Here ΩA and ΩB are eigenmode frequencies
and MA and MB are the effective masses in the new
co-ordinate frame. The explicit expressions are given
as MA/B = mΩ

(Ω±λp) ,ΩA/B =
√

(Ω± λp)(Ω± λx). While

this coupled system is used as the working mideum of the
above said Otto cycle, the total amount of heat absorbed
by the system from hot reservoir is given by,

Q =
ωA
2

(
coth

[
βhωA

2

]
− coth

[
βcω

′
A

2

])
+

ωB
2

(
coth

[
βhωB

2

]
− coth

[
βcω

′
B

2

])
. (4)

The first (second) term QA (QB) denotes the heat ab-
sorbed by the system A (B). Similarly, the total work is
the sum of the work done by the independent systems,
W = WA +WB , which is given by,

W =
(ωA − ω′A)

2

(
coth

[
βhωA

2

]
− coth

[
βcω

′
A

2

])
+

(ωB − ω′B)

2

(
coth

[
βhωB

2

]
− coth

[
βcω

′
B

2

])
.(5)

The efficiency of the individual system is given as ηk =
1 − ω′k/ωk, where k = {A,B}. But the actual efficiency
of the coupled system is defined as the ratio of total work
over the total heat absorbed by the system. So we can
write

η =
WA +WB

QA +QB
=
ηAQA + ηBQB
QA +QB

. (6)
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Figure 2: The two dotted curves show the upper bound
(ηB) and lower bound (ηA) . The continuous curve repre-
sents the efficiency of the coupled oscillator. Efficiency of
the coupled spin system is denoted by the dashed curve.
Carnot value is represented by the horizontal line. When
the independent systems work in engine mode, the global
efficiency of the coupled system lies inside the bounds.
The plot also shows that the global efficiency of the cou-
pled oscillators is higher than that of the coupled spins
for small values of λJ . When the upper bound reaches
Carnot value, ηB = 1−Tc/Th for λJ = λc (represented by
vertical dashed-dotted line), then we get ηos = ηsp = ηA.
Here we take Th = 2, Tc = 1, ω = 4 and ω′ = 3.

When both the systems are working in engine mode (i.e.,
QA > 0 and QB > 0), we have,

min{ηA, ηB} ≤ η ≤ max{ηA, ηB}. (7)

Coupled spin-1/2 system: Consider two spin-1/2 sys-
tems coupled via Heisenberg exchange interaction, i.e.,

Hsp = Bz(S
z
1 ⊗ I + I ⊗Sz2 ) + 2(JxS

x
1S

x
2 + JyS

y
1S

y
2 ), (8)

where Jx and Jy are the interaction constants along x and
y directions. Likewise oscillator case, here also the Hamil-
tonian can be expessed as raising and lowering operators
and under suitable coordinate transformations it can be
expressed as in terms of two uncoupled spin modes. In
the particular case λx = Jx = λp = Jy = λJ(say) (in spin
case, the model is known as Heisenberg XX model), the
efficiencys of the coupled systems have been compared in
Fig.2

3 Discussion

The coupled spins and coupled oscillators can also work
as refrigerators. The refrigeration cycle is same as the
cycle described for engine above provided refrigerators
absorb heat from cold bath (Qc > 0) and transfer it into
hot bath (Qh < 0). To transfer heat from the cold bath
to the hot bath, work has to be done on the system and
hence, we have W = Qh + Qc < 0. The coefficient of
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performance (COP) is defined as ζ = Qc/|W |. Likewise
efficiency, the global COP is bounded by COPs of the
subsystems when both the the subsystems work as re-
frigerators. Interestingly we find that the global COP
of the coupled spins is higher than that of the coupled
oscillators for small values of λJ .

To conclude, we compared the performance of coupled
oscillators and coupled spins when they work as a heat
engine. We choose suitable co-ordinate transformation
to get two independent systems. The global efficiency is
bounded by the efficiencies of the independent systems.
We have also shown that such bounds exist when the sys-
tem work as refrigerator. We also point out the range of
parameters and form of interaction where the efficiency
of the coupled oscillators is higher than that of the cou-
pled spins. For two particular types of interactions, we
show that the global COP is higher for coupled spins
compared to coupled oscillators, whereas, with the same
interaction, coupled oscillators found to be more efficient,
when the system work as heat engine. Therefore coupling
causes opposite effects in the figure of merits of heat en-
gine and refrigerator.
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Abstract. Harrow, Hassidim, and Lloyd proposed the efficient quantum algorithm (HHL algorithm) for
linear equations when the coefficient matrix is sparse and well-conditioned. The HHL algorithm can obtain
a quantum state corresponding to the solution of the linear equations. Here we consider linear systems with
circulant coefficient matrices and propose a quantum algorithm to obtain a quantum state of the solution.
The proposed algorithm does not require Hamiltonian simulation, which is used in the HHL algorithm,
because eigenvalues of circulant matrix can be obtained using quantum Fourier transform. The proposed
quantum algorithm is roughly quadratically faster than the classical algorithm.

Keywords: Quantum algorithm, Linear equations, Circulant matrix

1 Introduction

Linear equations occur in science and engineering com-
putation applications. There are many algorithms to
solve linear equations, e.g., LU factorization and the con-
jugate gradient method. Harrow, Hassidim and Lloyd
proposed a quantum algorithm (HHL algorithm) for lin-
ear equations [1]. The HHL algorithm outputs a quantum
state |x⟩ = A−1|b⟩ with O(log(N)) runtime and is expo-
nentially faster than any classical algorithm, where A is
a well-conditioned and sparse N ×N matrix. Moreover,
the HHL algorithm has some applications [2, 3, 4].
We wish to obtain a quantum state |x⟩ for other ma-

trix. We focus on the circulant matrix C, which appears
in difference solutions of partial differential equations be-
cause the eigenvalues of C can be calculated using dis-
crete Fourier transform.
Here, we propose a quantum algorithm to obtain

|x⟩= C−1|b⟩ for a specific case of the circulant matrix.
The HHL algorithm obtains the quantum state |x⟩ using
Hamiltonian simulation [5]. In contrast, the proposed
algorithm uses Amplitude Estimation (AE) [6] to ob-
tain the quantum state |x⟩. The proposed algorithm is
roughly quadratically faster than the classical algorithm
[7].

2 Known quantum algorithms

2.1 HHL algorithm

For a well-conditioned and sparse N×N matrix A, the
HHL algorithm generates quantum state |x⟩ that corre-

sponds to the solution of the linear equations Ax⃗ = b⃗.
The HHL algorithm assumes that we can efficiently pre-
pare a quantum state |b⟩ =

∑N−1
j=0 bj |j⟩. The HHL

∗im151006@cis.aichi-pu.ac.jp
†a-ohashi@fc.ritsumei.ac.jp
‡sogabe@na.nuap.nagoya-u.ac.jp
§usuda@ist.aichi-pu.ac.jp

algorithm first estimates the eigenvalues λj of A us-
ing phase estimation with Hamiltonian simulation eiAt,
which can be implemented in O(log(N)) runtime [5].
Next, the algorithm performs controlled rotation and
inverse phase estimation. We obtain a quantum state∑N−1
j=0 βj |uj⟩

(√
1− Γ2

λ2
j
|0⟩a + Γ

λj
|1⟩a

)
, where |uj⟩ is the

eigenvector of A, βj = ⟨uj |b⟩, Γ = O(1/κ), and κ is
the condition number of A. Finally, we measure the an-
cilla qubit. If we obtain 1, the quantum state becomes

1√∑N−1
k=0 |βk/λk|2

∑N−1
j=0

βj

λj
|uj⟩ = |x⟩. If we obtain 0, the

algorithm fails. Therefore, we use the Amplitude Am-
plification (AA) to obtain 1. Here, the total runtime is
O(log(N)s2κ2/ϵ), where s is the number of nonzero ele-
ments per row and ϵ is the allowable error.

2.2 Amplitude estimation

Let A be an unitary operator used to obtain quan-
tum state |µ⟩ =

∑N−1
k=0 µk|k⟩ for initial zero state |0⟩,

i.e., A|0⟩ = |µ⟩. We can estimate |µj | by estimating
the phase of the eigenvalues of Qj = −AS0A−1Sj using
a technique that is similar to phase estimation, where
Sj = (IN −2 |j⟩⟨j|) and IN is the N ×N identity matrix.
The eigenvalues of Qj are given by e±i2θj , where θj is a
real number such that sin(θj) = |µj |.
We prepare |µ⟩|0⟩m (m is the number of qubit and

is relative to the estimation error) as the input state.
If θj can be represented as θj = π z

M for any positive
integer z, the AE can output the state |µj , g(θj)⟩ =
−i√
2
(eiθj |µ(j)

+ ⟩|M θj
π ⟩−e−iθj |µ(j)

− ⟩|M(1− θj
π )⟩), where |µ

(j)
± ⟩

is the eigenvector of Qj and M = 2m.

2.3 Parallel amplitude estimation

Let Q be an unitary operator Q = −(IN ⊗AS0A−1)S,
where S is an unitary operator that changes the sign
of the amplitude if and only if the first qubits equal
the second qubits (i.e., S|j⟩|j⟩ = −|j⟩|j⟩ and S|j⟩|i⟩ =
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|j⟩|i⟩ for j ̸= i). The eigenvalues and the correspond-

ing eigenvectors are given by |j⟩|µ(j)
± ⟩ and e±i2θj for

j = 0, 1, . . . , N − 1, respectively. For all j and any posi-
tive integer z, if the input state is

∑N−1
j=0 |j⟩|µ⟩|0⟩m and

θj can be represented as θj = π z
M , the parallel AE can

output the state
∑N−1
j=0 |j⟩|µj , g(θj)⟩.

3 Circulant matrix

The circulant matrix C has the form:

C =


c0 c1 c2 · · · cN−1

cN−1 c0 c1 · · · cN−2

cN−2 cN−1 c0 · · · cN−3

...
...

...
. . .

...
c1 c2 c3 · · · c0

 . (1)

The eigenvalues λj of C are given by λj =
∑N−1
k=0 cke

i 2πjk
N .

We can obtain λj by applying quantum Fourier trans-

form FN to quantum state |c⟩ =
∑N−1
k=0 ck|k⟩. Specifi-

cally, FN |c⟩ =
∑N−1
k=0 (λk/

√
N)|k⟩ =

∑N−1
k=0 µk|k⟩ =: |µ⟩,

where µk = λk/
√
N .

The eigenvectors |uj⟩ corresponding to the eigenvalues
λj are given by applying FN to computational basis |j⟩,
i.e., |uj⟩ = FN |j⟩ = 1√

N

∑N−1
k=0 ei

2πjk
N |k⟩.

4 Main Algorithm

4.1 Outline

STEP 1 (state preparation):
We assume that |b⟩ and |c⟩ can be prepared effi-

ciently. We prepare the quantum state |b⟩|c⟩|0⟩m|0⟩a =∑N−1
j=0 βj |uj⟩|c⟩|0⟩m|0⟩a, where |uj⟩ is the eigenvector of

the circulant matrix C and βj = ⟨uj |b⟩.
STEP 2 (parallel amplitude estimation):

We apply F†
N to the first quantum state and FN to the

second quantum state. Since F†
N |uj⟩ = |j⟩ and FN |c⟩ =

|µ⟩, we obtain
∑N−1
j=0 βj |j⟩|µ⟩|0⟩m|0⟩a. Next, we estimate

|µj | for each j using parallel AE. Thus, we obtain

N−1∑
j=0

βj |j⟩|µj , g(θj)⟩|0⟩a. (2)

STEP 3 (controlled rotation):

We perform a controlled rotation on the ancilla qubit
with the third qubits as a control to obtain the following

N−1∑
j=0

βj |j⟩|µj , g(θj)⟩

(√
1− Γ2

|µj |2
|0⟩a +

Γ

|µj |
|1⟩a

)
, (3)

where constant Γ is chosen to satisfy |Γ/ sin(πz/M)| < 1.

STEP 4 (inverse parallel amplitude estimation):

We undo the quantum states other than the ancilla
qubit, i.e., we perform the inverse of STEP 2 to obtain
the following

N−1∑
j=0

βj |uj⟩|c⟩|0⟩m
(√

1− Γ2

|µj |2
|0⟩a +

Γ

|µj |
|1⟩a

)
. (4)

STEP 5 (measurement of the ancilla qubit):
We measure the ancilla qubit. If we obtain 1, then we

have 1√∑N−1
k=0 |βjΓ/µj |2

∑N−1
j=0

βjΓ
|µj | |uj⟩ which equals to

1√∑N−1
k=0 |βj/λj |2

N−1∑
j=0

βj
|λj |

|uj⟩. (5)

If we obtain 0, then the proposed algorithm fails. Thus,
we use AA to obtain 1. If |λj | = λj for all j, then ob-
tained state (5) becomes |x⟩ = C−1|b⟩ corresponding to
the solution.

4.2 Runtime

In parallel AE, the unitary operator Q that runs in
O(log2(N)) is appliedM times. The parallel AE requires
M = O(

√
N/ε) to estimate λj within error ε due to

estimate |µj | = |λj | /
√
N . Thus, parallel AE requires

O(
√
N log2(N)/ε) steps. The probability that we obtain

1 in STEP 5 is Ω(1/κ2), where κ is the condition number
of C. Therefore, we requireO(κ) repetitions in AA. Thus,
the total runtime of the proposed algorithm is as follows:

O(κ
√
N log2(N)/ε). (6)

There is classical algorithm by using fast Fourier trans-
form, which is O(N log(N)) when used to solve linear

equations Cx⃗ = b⃗. Therefore, the proposed algorithm is
roughly quadratically faster than the classical algorithm
in terms of N (i.e., the matrix size).

5 Conclusion

We have proposed a quantum algorithm to obtain
quantum state |x⟩ = C−1|b⟩ for the circulant matrix
C with which we can efficiently obtain eigenvalues us-
ing quantum Fourier transform. The proposed algorithm
uses AE rather than Hamiltonian simulation to estimate
eigenvalues. However, there are many constraints on the
circulant matrix. Thus, in future, we plan to improve the
proposed algorithm to remove such circulant matrix con-
straints. In addition, we plan to perform error analysis
of the obtained quantum state.
Acknowledgment: This work has been supported in
part by KAKENHI (Grant Nos. 24360151, 16H04367).
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Abstract. We outline methodology for a universal set of quantum gates for surface acoustic wave (SAW)
quantum computations. We use analytical methods to postulate a Hamiltonian which would implement
the gates. Numerical parameter sweeps of the time-dependent Schrödinger equation finds the optimal
parameters of the Hamiltonian. The two-qubit gates that we find are sqrt(SWAP) gates, either of the form
of inter-channel operations or intra-channel operations. The inter-channel operations are needed for the
circuit quantum computer models developed in prior SAW works. The intra-channel operations can be
used for a novel type of SAW cluster state quantum computations.

1 Extended Abstract

Since the initial breakthroughs and the discovery of
the potential power of a quantum computer, almost three
decades have been allocated towards exploring problems
that might be more efficiently solved on such a machine.
[1, 2, 5, 4, 15] Whilst numerous mathematical applica-
tions have been found for quantum computers, the exper-
imental successes in carrying out quantum computations
have been limited. The difficulty in acquiring long deco-
herence times, short operational times, fast optimal read-
out and scalability has driven the field of experimental
quantum computation around the entire spectrum of the
subject of physics. [6, 7, 1, 8, 2, 9] In terms of quantum
hardware, the quantum computation has to be tailored
to the specific qubit used in the manipulations. For ex-
ample, whilst the spatial quantum evolution of massless
particles is essentially non-dispersive, but interactions be-
tween particles are weak; the spatial evolution of massive
particles is dispersive, but interactions can be strong.

In this work we develop and investigate one of the sug-
gested experimental protocols for realising quantum com-
putations: quantum computations with surface acous-
tic wave (SAW) qubits. The ideas of a SAW quantum
computational protocol is based on electron spin qubits
that are carried forward by a surface acoustic wave on
the surface of a semiconductor heterojunction. [7, 10]
The acoustic wave begins on a 2D electron gas that
is incident on 1D quantum wires. In these quantum
wires the surface acoustic wave captures and carries sin-
gle electrons, which become confined to the minima of
the SAW. By placing a number of 1D wires parallel on
the 2D surface and capturing one electron spin qubit in
each wire, it is possible to realise quantum computations.
We suggest magnetic gating for the implementation of
single qubit rotations and non-magnetic screening gates
for inter-channel sqrt(SWAP) two-qubit operations. The
SAW based quantum computation model gains signifi-
cant benefits over other massive qubit models in that

∗drma2@cam.ac.uk

it straightforwardly obtains the transport of the qubits,
which in other technologies can be problematic. Further-
more, the SAW based systems allow the magnetic and
electric gates to be stationary and static on the surface
of the heterostructure device.

Presently, neither experimental data nor numerical
simulations have been published for the operations
needed in electron spin SAW quantum computing. Mo-
tivated by the prospect of experimentally implementing
these flying qubit quantum computations, we have car-
ried out a thorough numerical investigation of SAW fly-
ing electron spin qubit quantum gates. These simulations
have allowed us to specify the physical parameters needed
in order to implement the suggested two-qubit gates in
real physical systems.

Before we present our findings when it comes to the
implementation of the SAW two-qubit gates, we spend
a few lines on describing the numerical methods used in
this protocol.

In order to obtain the results of this paper, the
time-dependent Schrödinger equation (TDSE) was solved
based on the methods of [12]. We extended the original
Staggered Leapfrog method presented in [13] to also in-
clude the spin component of the potential of the Hamilto-
nian and incorporate the spin-dependence in the poten-
tial. In terms of the quantum evolution in 1D quantum
wires, we effectively remove two dimensions by integrat-
ing over them such that the problem reduces to a sim-
ulation of one dimension per particle but with altered
Hamiltonian parameters. A more detailed overview of
the numerical methods for a single particle simulation
can be found in our previous work in Ref. [14].

Whilst the matrix algebra of the quantum evolution
— in principle — is straightforward, the dimensional-
ity of a two particle quantum system and the need of a
large number of lattice points for a realistic simulation,
leads to enormous constraints on the speed of the sim-
ulation. However, we have found that owing to the ro-
tational nature of spin qubit quantum evolution, the use
of GPU cards can significantly increase the speed of such
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computations. By parallelising the Staggered Leapfrog
method on GPUs using OpenCL, it has been possible
to reduce the computational time by two orders of mag-
nitude, which is crucial for realising parameter scans in
realistic computational times. We also deem the numeri-
cal GPU adapted methods of this work to be highly valu-
able for simulations of any similar system and we strongly
advocate the use of GPU boosted code in tailoring few-
particle quantum Hamiltonians on classical computers.
Inter-Channel Gates: The simulations of the proposed

inter-channel sqrt(SWAP) operations were successfully
implemented. We simulated Hamiltonians created by
carefully tuned screening gates on the top of the het-
erostructure. The electric gates are such that they can
bring two separated harmonic potential minima to a mu-
tual minimum and then separate them again. Crucially,
the massive wavepacket dispersion is eliminated due to
the Gaussian wavepacket nature of the qubits in these
potentials. These simulations are crucial in order to get
a hint of what the real experimental parameters will have
to be.

One way of realising quantum computations in these
systems is by allowing a circuit model to be implemented
on the set of input qubits that are initialised in the ar-
ray of 1D quantum wires of the system. However, owing
to the 2D nature of the device structure qubits can only
directly interact with qubits in neighbouring wires. The
limit of the two-qubit interactions to nearest neighbour
inter-channel gates significantly limits the speed of the
quantum computation. Hence, we suggest the alternative
implementation of SAW quantum computing; namely fly-
ing qubit cluster state one-way quantum computing. In
order to efficiently create cluster states for fault toler-
ant quantum computing, the SAW system will have to
include multiple qubits travelling on successive minima
of the SAW in the same wire. This creates a 2D array
of qubits. Crucially, the system then requires means of
intra-channel two-qubit gates.
Intra-Channel Gates: These gates are implemented on

two-qubits trapped in successive minima travelling down
the same 1D quantum wire. We find that by implement-
ing a stripe Schottky gate, perpendicular to the direc-
tion of travel of the qubits, one can alter the Hamil-
tonian, such that the ground state is perturbed for a
short period of time, allowing some tunnelling between
the two quantum dot minima that contain the qubits.
By carefully tuning the parameters of the confining po-
tential and the stripe gate, it is possible to utilise the
spin-dependent difference in the interaction potential of
the electron qubits in order to implement a sqrt(SWAP)
operation. We calculate the time-dependent Hamiltonian
analytically based on a semi-classical model and numer-
ically obtain its form by using density functional theory
to self-consistently solve the Poisson equation. In terms
of realising the intra-channel sqrt(SWAP) operation, the
two potentials are equivalent.

The intra-channel and inter-channel two-qubit gates
can then be used to create a cluster state of the M − 1
first channels in the semiconductor heterostructure junc-

tion. The Mth channel is used as the input channel.
This channel would remain latent during the first half
of the SAW computation (the half during which the clus-
ter state is created) but become live and manipulated
in the second half (the half during which the one-way
computation takes place).

Experimentally attainable SAWs have typical speeds
of around 3000 ms−1 and coherence times of about 100
ns. Hence, with gate sizes of about a micron, several
hundreds of qubit operations can be carried out within
the lifetime of the qubits.

Conclusively, this work presents a toolkit for the im-
plementation of SAW quantum computing with flying
electron spin qubits. We show how two types of two-
qubit gates can be implemented. The realisations of
these gates are simulated by solving the time-evolution of
the Schrödinger equation for a Hamiltonian with credible
stripe Schottky gate and screening gate potentials found
either analytically or by density functional theory. We
also suggest how the combination of these two particle
gates together with single particle gates can be used in
order to realise one-way cluster state computations using
the SAW systems.
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Abstract. We present two algorithms that apply an arbitrary quantum operation on a qubit, which may
be continuously evolving according to its own Hamiltonian. The qubit couples to a quantum computer
through a fixed interaction Hamiltonian, which can only be switched on and off. The algorithms achieve
an input and output operation, i.e., transfer of the qubit state between the qubit and quantum computer.
All the steps of the algorithms are described by a closed formula of the input parameters of the algorithm
and the interacting unitary between the qubit and quantum computer.

Keywords: quantum control, quantum algorithm, input-output approach

1 Introduction

Quantum algorithms assume that quantum systems
can be controlled, or more precisely, that the necessary
operations can be applied on the systems at will, but
such high controllability is scarce in actual quantum sys-
tems. In contrast, a quantum computer is a quantum sys-
tem, on which arbitrary quantum operations are possible.
One of the main goals of quantum control theory [1–4] is
to identify the means to increase the controllability of a
quantum system by coupling it to a quantum computer.
Typically, the poorly controllable systems are assumed
to evolve continuously according to its self-Hamiltonian.
Occasionally referred to as local control [5–12], certain

parts of a physical system are assumed to be highly con-
trollable or the system can be coupled with a quantum
computer. Protocols such as [10–12] show that we can
transfer the state of the physical system to the quantum
computer (output) and return it to the physical systems
(input), in principle by local control. Thus, physical sys-
tems become fully controllable by this input-output ap-
proach because of high controllability of quantum com-
puters. The advantage of this approach is independence
on the desired operation to be implemented on the phys-
ical system. Hence, once we find methods to realize the
input-output operations under limited controllability, we
can perform any quantum operations for the physical sys-
tem.
In this paper, we study means to control a physical

system by the input-output approach, for a system cou-
pled with a part of a quantum computer by a single fixed
interaction Hamiltonian, for which we can arrange the
duration of the coupling. It is generally difficult to con-
struct exact input-output operations on our restrictions
as pointed out in [10,11]. Thus, we will present two algo-
rithms for a given coupling which implement approximate
input-output operations. The first algorithm is similar to
a procedure introduced by [10, 11] and requires a larger
quantum memory for the quantum computer to perform
approximate input-output operations with higher accu-

∗sakai@eve.phys.s.u-tokyo.ac.jp
†soeda@phys.s.u-tokyo.ac.jp
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racy. The second algorithm requires only a fixed amount
of quantum memory with respect to the required accu-
racy. Finally, we will evaluate the upper bound of the ac-
curacy of the implemented operations of our algorithms
in the diamond norm.

2 Setting

We consider a qubit S, which evolves according to a
fixed time-independent self-Hamiltonian HS . We assume
that the quantum computer in contrast to S is able to
perform arbitrary quantum operations (CPTP maps and
quantum instruments).
We model the coupling between S and the quantum

computer by two subsystems, a register system R and
an interface system I of the quantum computer. R is
the main processing part of the quantum computer con-
sisting of N qubits. The interface system I is one qubit
system, which directly couples to S by a single fixed in-
teraction Hamiltonian Hint. We assume that we are only
allowed to choose between on and off of Hint, and that
I behaves as a part of the quantum computer, i.e., any
unitary operations can be performed on IR when Hint is
off. The set of unitary operators LUNHS ,Hint

describes all
the possible operations on the total system.

3 Algorithms

Our two algorithms implement an approximate output
operation T out

M (ξ), which satisfies for any state |ψS⟩S =
aS |0⟩S + bS |1⟩S on S

T out
M (ξ) |ψS⟩S |0⟩I |0⟩

⊗M
R

= |0⟩S ⊗
(
aS |0⟩I + bS

√
1− ξ2 |1⟩I

)
⊗ |0⟩⊗MR

+ bSξ |1⟩S |gout⟩ (1)

with a certain fixed basis on SIR, |gout⟩ is a state on
IR, and M is the number of qubits on R. We see that
T out
M (0) is the exact output operation when the initial

state of IR is |0⟩I |0⟩
⊗M
R . Our algorithms consist of the

unitary operator Uint on SI which is generated by Hint

and HS such as Uint := e−iHonτ for some fixed duration
time τ , where we defined Hon := HS ⊗ IS +Hint. Then,
the algorithms have the following properties:
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• Algorithm 1 [10, 11]: Alg. 1 requires sufficiently
large N -qubit register system for the approximate
output operation, i.e., ξ of Eq. (1) is exponentially
close to zero with N .

• Algorithm 2: Alg. 2 requires only one qubit register
system for the approximate output operation. The
quantum circuit representation of Alg. 2 is in Fig. 1.

S
I
R

Uint Uint

W (2)
1

Uint

W (3)
1

Uint

W (k)
1

Figure 1: A quantum circuit representation of the Alg. 2.

The first three steps are the same as Alg. 1. Then W
(k)
1

and Uint are iterated, where W
(k)
1 (k = 1, 2, . . . ) are uni-

tary operators on IR and depend on Uint. Thus, the total
operations are in LUNHS ,Hint

. By Alg. 2, ξ of Eq. (1) is
exponentially close to zero with increasing the number of

iterations of W
(k)
1 and Uint.

By performing the inverse of our algorithms (T out
M (ξ))†

for U†
int instead of Uint, we can construct the approximate

input operation in LUNHS ,Hint
. (One can check that when

the initial state of S is |0⟩S , (T out
M (0))† is the exact input

operation by applying (T out
M (ξ))† on Eq. (1).) Therefore,

we obtain the concrete procedures of the realizations of
approximate input-output operations in LUNHS ,Hint

.
Note that our algorithms do not succeed for all Uint,

and we obtain the set of unitary operators on SI which
make the algorithms work. We will refer these unitary
operators as exploitable unitary operators.

4 Accuracy of control by approximate
input-output operations

We divide operations on the total system SIR into
three steps. First, we implement the output operation
T out
M (ξout) to transfer the state on S to I. At the second

step, we perform a desired operation on I, say M, which
is always possible by definition. Finally, we perform the
input operation T in

M (ξin) := (T out
M (ξin))

† to transfer back

the state in I to S. We define map Φξout,ξinM formed by
the above procedure, then we show the following lemma
to compare with M. The diamond norm is denoted by
∥ • ∥⋄.

Lemma 1 For any CPTP map M on S, and 0 ≤
ξout, ξin ≤ 1, ∥Φξout,ξin

M − M∥⋄ ≤ 2
√
1− Ξ2 if Ξ ≥ 0,

otherwise if Ξ < 0, then ∥Φξout,ξinM − M∥⋄ ≤ 2, where

Ξ := −1 +
√
1− ξ2out +

√
1− ξ2in − ξoutξin.

The lemma shows that when ξout, ξin are close to 0,
Ξ2 ≈ 1− (ξout + ξin)

2, hence ∥Φξout,ξinM −M∥⋄ ≤ 2(ξout +
ξin) ≈ 0.　Therefore, Lem. 1 implies that T out

M (ξout) and
T in
M (ξin) behave as input and output operations, respec-

tively, even when ξin, ξout are not strictly 0.

5 Conclusion

We have considered controlling a physical system by
coupling to a quantum computer, and the coupling is de-
scribed by time-independent Hamiltonian Hint. In these
situations, we presented two algorithms for approximate
input-output operations under given unitary operator
Uint on SI, where Uint needs to be an exploitable uni-
tary. Although we have assumed that Uint is generated
by time-evolution, we can prepare a unitary operator on

SI such as U
(n)
eff = e−iHontn(

∏n−1
j=1 (IS ⊗ u

(j)
I )e−iHontj )

for any positive integer n, unitary operators u
(j)
I on

I, positive real numbers tj . Then our algorithms ap-

ply with U
(n)
eff ∈ LUNHS ,Hint

instead of Uint. In fact,
this technique is sometimes useful to construct an ex-
ploitable unitary operator. For example, we suppose that
Hint := αXS ⊗XI and HS := gZS , where X,Z are Pauli
X and Z operators, respectively, and α, g ∈ R, then we
can show that e−iHonτ is not exploitable unitary for any

τ , but becomes U
(2)
eff by the technique.
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Qubits.
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Abstract. Different physical implementations of qubits offer advantages in different
tasks required by a quantum computer. In hybrid quantum systems, the need arises for
an interface between different types of qubtis. This research investigates quantum media
conversion between electron-spin qubits and photon-polarization qubits through accurate
GPU accelerated simulations.
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1 Introduction

Quantum computing and quantum cryptog-
raphy are the two main areas of interest for
the applications of quantum information sys-
tems. Currently, there exist no perfect physical
qubit implementation which could be used effi-
ciently for all operations involved in quantum-
information technologies.[1] Different types of
qubits can be used at each step of the quantum
computation or quantum communication to op-
timise the success of each task. For example,
electron-spin qubits in a semiconductor mate-
rial offer straightforward initialization and ma-
nipulation of the qubit state since the interac-
tions between particles and an external magnetic
field are strong. Strong particle-particle inter-
actions also favour stable and scalable compu-
tation as they allow straightforward implemen-
tation of two qubit logic gates.[2] Conversely,
photon-polarization qubits are advantageous for
readout operations and for fast long-distance
communication.[3, 4] Qubit coherence over long
distances makes photons absolutely necessary for
quantum key distribution schemes.

2 Quantum Media Conversion

Due to the hybrid nature of these quan-
tum systems, we investigated methods for in-

∗hl407@cam.ac.uk

terfacing different qubit types and an effi-
cient implementation of quantum media conver-
sion (QMC) between electron-spin qubits and
photon-polarization qubits. Certain protocols
only require QMC between definite states – map-
ping a spin-1⁄2 system onto a circular polariza-
tion state. In this case, the Hilbert space for
each qubit has dimension 2 and the mapping of
states can be expressed in terms of spin selec-
tion rules.[5] This has been the main focus of
our research. For truly generalizable QMC hard-
ware, the entire Bloch Sphere must be mapped
onto the Poincare Sphere. For the transmission
of quantum states over arbitrary distances, sev-
eral interfaces could be laid out in series leading
to a set of quantum repeaters.
A promising approach to the problem of single

electron transport are travelling surface acous-
tic waves (SAWs). In piezoelectric materials
such as gallium arsenide, an oscillating stress
and strain wave is accompanied by an electric
potential modulation of similar waveform. Care-
fully tuned travelling SAWs can be used to carry
single electrons acting as qubits across a GaAs
device.[6, 7]
In this research, a model is built in which an

electron is taken from a 2D electron gas and car-
ried by a SAW along a 1D channel, where its
spin is initialized by an external magnetic field.
It is then carried across a lateral p-n junction
and is ultimately introduced to a 2D hole gas
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where it recombines with a hole and produces a
single photon. By engineering the band struc-
ture in the region of recombination to lift any
degeneracies in the valence band, the hole gas
becomes populated with |mJ | = 3

2
holes only.

Spin selection rules then dictate the photon cir-
cular polarization state from the electron spin
state and provide insight on the relationship be-
tween the electron spin state and the angle at
which the photon was emitted.

3 GPU Accelerated Simulations

We model SAW-driven electron transport
across our device by solving the time depen-
dent Schrodinger Equation whilst the effective
potential of the n-p junction itself it obtained
via the density functional theory (DFT) mod-
elling method. The quest for meaningful and
stable resutls leads to a very large number of
operations to be carried out by a computer. A
two dimensional simulation with Nx by Ny lat-
tice points will require a vector of size (NxNy),
which then scales exponentially with the number
of particles simulated.
For simple operations, when each calculation

is independent of others, such calculations can
be performed in parallel. Modern CPU archi-
tectures make use of parallel computing where
multi-threaded processors can perform 4 to 32
tasks simultaneaously. However, graphics pro-
cessing units (GPUs) have been optimised to op-
erate at a very high level of parallelism. As of
when this paper is being written, modern GPUs
contain several thousands of processor cores and
can operate on the order of ten billion floating-
point operations per second (10 GFLOP/s). We
found GPU accelerated computation to be espe-
cially useful when simulating electron transport
in a 2D or 3D heterostructure.

4 Conclusions

SAW-driven single electron transport is simu-
lated by solving the time dependent Schrodinger
Equation. Band structure engineering and ap-
propriate selection rules dictate how quantum in-
formation is converted from electron-spin qubits
to photon-polarization qubits. Accurate simu-
lations are obtained using fast algorithms and

GPU acceleration.
For more information, please refer to

http://www.sp.phy.cam.ac.uk/research/

surface-acoustic-waves-saws
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Abstract. In this paper, it has been shown that multiclass support vector machine for big data classi-
fication can be implemented in logarithm time complexity on a quantum computer. Quantum version of
one-against-all approach has been developed to address the quantum SVM multiclass problem statement.
With quantum one-against-all approach, there will be k quantum binary support vector machine (SVM)
classifiers. The strategy involves training a single quantum binary classifier per class, with the samples of
that class as positive samples and all other samples as negatives. Once all the k quantum binary classifiers
get trained, all quantum classifiers are applied to an unseen quantum query state to predict the class for
which the corresponding classifier reports the highest confidence score. The quantum multiclass SVM with
proposed approach exhibits an exponential speed up over its classical counterpart.

Keywords: Quantum Algorithm, Multiclass Classification, SVM

1 Introduction

Support vector machine (SVM) is a very popular bi-
nary classifier, however,in recent years the need for mul-
ticlass support vector machine has been growing with
increase in big data applications. Multiclass SVM classi-
fies vectors into multiple sets with the help of trained
oracles[1]. Many approaches have been proposed for
constructing multiclass support vector machine with the
help of binary SVM and one of the most popular one
is one-against-all[2]. Recently,Rebentrost,Mohseni and
Lloyd[3],proposed an elegant quantum version of binary
support vector machine for big data which works in log-
arithm time for both training and classification stages,
so it has an exponential time complexity improvement
overits classical counter part.However, the algorithm in
[3] does not support multiclass classification. In our pro-
posed work, we have investigated and developed the mul-
ticlass quantum SVM algorithmfor big data with one-
against-all approach. For the purpose we adopted the
technique mentioned in [3] to construct the binary quan-
tum SVM as a base and then lead our investigation for
multiclass quantum SVM. We have used quantum ver-
sion of one-against-all approach. The run time complex-
ity of our proposed multiclass quantum SVM with quan-
tum one-against-all approach has been analyzed. It was
found that the algorithm works exponentially faster than
the classical version.

2 Multiclass quantum SVM Classifica-
tion for big data with Quantum One-
Against-All Approach

With quantum one-against-all approach, there is one
quantum binary support vector machine for each class
to separate members of that class from rest of the class

∗aritkumar.official@gmail.com
†amaini@amity.edu
‡vasile.palade@coventry.ac.uk

members, this results inkquantum binary classifiers. At
first, we have formulated k quantum binary least square
SVM classifiers.Then we apply all the quantum binary
classifiers to an unseen quantum query state to predict
the class for which the corresponding classifier reports
the highest confidence score.The mentioned quantum ver-
sion of one-against-all approach uses Grover’s search al-
gorithm [4]and finds the highest confidence score with
quadratic speed up O(

√
k) in comparison to the classical

version of one-against-all approach, which is O (k). The
total runtime of the proposed quantum multiclass SVM
has been analyzed as

O(k(logMN)) +O(
√
k) (1)

where M is the training vectors associated with k quan-
tum binary classifiers and N is the dimension of feature
space.

While estimating the total run time of the algorithm,
the following error analysis has been carried out. We
begin the analysis for single classifier, later we scale to
k classifiers. The kernel matrix preparation causes O
(log M N) costs. The number of time steps in phase
estimation T requires O(t20ε

−1).
Where (t20) is the total evolution time which is de-

termining the phase estimation error and ε is the
maximally error. Combining, we get the run time
O(t20ε

−1O(logMN)). Lets define a constant εKr such
that εKr ≤ |λl| ≤ 1, also lets define an effective condi-
tion number κeff = ε−1

Kr. Where λl are eigen values and
κeff is used to employ the filtering procedure in phase
estimation, referring [5]. By considering the error anal-
ysis, and iterating the algorithm for O(κeff ) times for
achieving a constant success probability of the post se-
lection step, the total run time is O(κ3eff ε

−3(logMN))

including the error factor of O(κ3eff ε
−3). Which can be

scaled as O (log M N). Nowtherefore, for k classifiers with
quantum one-against-all approach it will be considered
O(k(logMN)) +O(

√
k).
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3 Conclusion

It has been shown that the multiclass support vec-
tor machine can be quantum mechanically implemented
in logarithm time complexity as compared to the clas-
sical counterpart multiclass support vector machine for
big data classification, which runs in polynomial time
complexity, thus resulting in an exponential speed up.
We have analyzed and addressed the quantum multi-
class SVM problem with quantum mechanically imple-
mented one-against-all approach, which shows quadratic
speed gain as compared to the classical one-against-all
approach. In quantum one-against-all approach, we first
construct k quantum binary classifiers. Then we con-
struct a quantum query state, which is to be classified.
Next, is to classify the quantum query state with all the k
quantum binary classifiers. The class, for which the cor-
responding quantum binary classifier’s probability con-
fidence score is highest, will be considered as predicted
class.
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1 Introduction

The TQC (Topological Quantum Computing) model
has been receiving a lot of attention because it has proven
to be one of the most promising fault-tolerant quantum
computation models. In the TQC model, we arrange
qubits in a two-dimensional space, and we encode logical
qubits by using a surface code for error correction. By
adding the time axis, we consider the three-dimensional
space to represent calculation steps for the TQC model.
In a three-dimensional space, a region of physical qubits
measured in a specific basis is called a defect. We pre-
pare a pair of defects to encode one logical qubit. Then,
in a TQC model, we can perform a desired calculation by
moving defects in the space [1]. This computation model
is called topological cluster state computation (TCSC),
and computation steps can be represented by defect pat-
terns in the three-dimensional space.
In TCSC, if the two defect patterns are topologically

equivalent, the represented two quantum computations
by the defect patterns are proven to be the same. We
can optimize the space for TCSC by using this property.
There have been found various transformations which do
not keep the topological equivalence, but still keep com-
putational equivalence [3].
Theoretically, we can optimize the necessary space (or,

volume) size for TCSC by applying transformation rules.
However, it is not fully automated to find a good order
of applying the rules up to today, and it is desirable to
have an automated software to do so [2].
The functionality of TCSC does not change when we

change the shape of each defect in anyway if we keep the
topology, e.g., we can bent and/or stretch it in anyway
without changing the functionality. Thus, if we consider
the exact shape of defects, we may need to consider infi-
nite possibilities of transformations. Thus, in this paper,
we propose an efficient way to represent a computation
for TCSC; we consider a loop for each defect, and we
maintain only the relationship between loops to repre-
sent a computation. We formulate the known transfor-
mations as changing the relationship of loops by using
simple set operations. Accordingly, we can have an au-
tomated optimization method based on our formulation.
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Figure 1: Rule 3.

Figure 2: Rule 4.

In the following, we explain our formulation and our op-
timization method with some preliminary experimental
results.

2 Space Optimization for the TCSC

2.1 Transformation Rules

Here, we denote some useful transformation rules
which can be used to reduce the space for TCSC. In our
formulation, each defect pattern is represented by a (open
or closed) loop. Each braid between two defect patterns
is represented by a crossing between the corresponding
two loops.
Rule 1. In TCSC, topologically equivalent defect pat-

terns perform the same computation. Therefore we can
bent and/or stretch the shape of any loop.
Rule 2. If there are two braids between two defects,

they cancel each other. Thus, we can remove even num-
ber of crossings between two loops.
Rule 3. If one loop, li, crosses only one loop, lj , we can

remove li. If li has injection points and/or input/outputs,
they move to lj . This rule is called teleporting. An ex-
ample is shown in Fig. 1.
Rule 4. If one loop, li, which does not have either

any injection point nor any input/output, crosses three
loops, we can remove li. Also we can remove one of the
three loops if it does not have either any injection point
nor any input/output. This rule can be described as in
Fig. 2.
Rule 5. This is similar to Rule 4. If one loop, li,

that does not have either any injection point nor any
input/output crosses two loops, we can remove li. Also
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Figure 3: Rule 5

(a) SWAP Circuit (b) Removing l7 and l2 by
Rule 4.

(c) Removing l5 and l6 by
Rule 5.

(d) Removing l8 and l3 by
Rule 5.

Figure 4: Optimizing SWAP circuit by our method.

we can remove one of the two loops if it does not have
either any injection point nor any input/output. This
rule can be described as in Fig. 3.

2.2 Optimization Method

As we mentioned before, topologically equivalent
defect patterns perform the equivalent computation.
Therefore, there are infinite equivalent defect patterns.
Accordingly, our method represents TCSC as a set of
loops; we can treat topological equivalent defect patterns
as the same set of loops.
We do not need to consider Rule 1 because we consider

the whole circuit as a set of loops, and thus we do not
need to care the geometry information of each defect,
such as size and position.
Our method is stated as follows:

• We find a loop, li, that does not have either any
injection point nor any input/output.

– If li crosses only one loop, we apply Rule 3 to
delete li.

– If li crosses only two loop, we apply Rule 5 to
delete loops.

– If li crosses only three loop, we apply Rule 4
to delete loops.

We show an example in the following.
Fig. 4 (a) shows the defect patterns of TCSC for re-

alizing SWAP operation. First, we remove l7 and l2 by
Rule 4 to get Fig. 4 (b). Then, we remove l6 and l5 by
Rule 5 to get Fig. 4 (c). Finally, we use Rule 5 again to
remove l8 and l3; Our optimized circuit is represented by
Fig. 4 (d). The circuit indeed swaps the inputs.

3 Preliminary Experimental Results and
Conclusion

We implemented the proposed method and performed
a preliminary experiment as follows. We first randomly

Table 1: Comparison between before and after our opti-
mization.

Quantum circuits ♯ loops
qubits gates ex in Before After (%)

10 10 1 0 30 1.00 96.7
10 10 1 10 30 8.84 70.5
10 10 10 0 30 6.38 78.7
10 10 5 5 30 4.55 84.8
10 10 10 10 30 17.82 40.6
100 100 1 0 300 1.00 99.7
100 100 1 100 300 92.94 69.0
100 100 100 0 300 51.84 82.7
100 100 50 50 300 36.49 87.8
100 100 100 100 300 221.45 26.2

generated 10,000 circuits for each specific case (i.e., the
number of qubits, gates, and external inputs/outputs,
and injectors). Then, we derived defect patterns from the
circuits, and reduced the number of loops by our method.
Table 1 shows the numbers of loops of the initial circuit
in the fifth column from the left, and the average (over
10,000 circuits) number of loops after our optimization
method in the sixth column. The specification of cir-
cuits (i.e., the number of qubits, gates, and external in-
puts/outputs, and injectors) of our randomly generate
circuits are given in the first to the fourth columns, in
this order. The last column show the average reduction
ratios.
From the experimental results, we can observe that the

number of loops after our optimization method would
be related to the number of primary inputs/outputs and
injectors. In our experiment, we confirmed that the order
of applying our rules does not affect the final results. In
our future work, we would like to study this feature (i.e.,
the order of applying the rules) further. Also, our future
work would be to seek how to reduce the volume of TCSC
after reducing the number of loops by our method.
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Abstract. Adiabatic quantum computation (AQC)[1, 2] was proposed by Farhi et al. to quickly solve
combinational optimization problems. However, there are only a few applications of AQC and we aim to
find more applications. In this study, we demonstrate the implementation of a method of classical optimal
decoding in digital communication using AQC. In particular, we consider classical optimal decoding of single
parity check codes. Moreover, we reduce the computational complexity and demonstrate the simulation
results.
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1 Introduction
Adiabatic quantum computation (AQC) using quan-

tum annealing theory[3] was proposed by Farhi et al. in
2002[1]. It was pointed out that AQC can solve combina-
tional optimization problems faster than classical compu-
tation. However, only a few problems are quickly solved
by AQC.
In this study, we consider implementing classical opti-

mal decoding of binary linear codes in digital communi-
cation by AQC. The computational complexity of classi-
cal optimal decoding increases exponentially as the code-
word length increases. An efficient calculation algorithm
for classical optimal decoding was presented[4]; however,
the algorithm could efficiently decode only some codes.
In the research of quantum ciphers called Keyed Commu-
nication in Quantum noise (KCQ)[5], classical optimal
decoding was used to evaluate the performance of KCQ
protocols using binary linear codes[6]; however, owing to
the high computational complexity of classical optimal
decoding, the performance of KCQ protocols could not
be evaluated. To solve these problems, we first demon-
strate how to implement classical optimal decoding by
AQC. In particular, we consider classical optimal decod-
ing of single parity check (SPC) codes that are used in
KCQ research[6]. Second, we reduce the computational
complexity by devising a step function and demonstrate
the numerical results.

2 Adiabatic quantum computation
(AQC)

In this section, we introduce AQC based on the
references[1, 2]. AQC uses quantum annealing theory[3]
and solves combinational optimization problems. In
AQC, the Hamiltonian is

H(t) =
(
1− q(t)

)
H0 + q(t)H1, (1)
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where H0 is an initial Hamiltonian whose ground state is
trivial, H1 is a final Hamiltonian whose ground state cor-
responds to the solution, and q(t) is monotone increasing
function that satisfies q(0) = 0 and q(1) = 1. We control
the Hamiltonian H(t) by varying the function q(t) = 0 to
q(t) = 1. AQC works by maintaining the quantum state
close to the instantaneous ground state of Eq.(1). Fi-
nally, we obtain the solution by finding the ground state
of H1; however, if there is a level crossing, quantum sys-
tems cannot keep the quantum state close to the ground
state.

3 Classical optimal decoding of binary
linear codes

In this study, we use binary phase shift keying (BPSK)
signals coded by binary linear codes, and we assume
that channel noise is an additive white Gaussian noise
(AWGN). AWGN is the most common model used in the
evaluation of KCQ protocols. To implement classical op-
timal decoding, we have to find the codeword that has
the maximum conditional probability as follows:

P (y|wi) =
n∏
j=1

1

2πσ2
e−|yj−wi,j |2/2σ2

, (2)

where y(y1, y2, . . . , yn), yj ∈ C is the output, n is the
codeword length, wi,j ∈ {−A,A} is the amplitude of the
BPSK signal, and σ2 is the variance of noise.

4 Classical optimal decoding by AQC
To implement classical optimal decoding by AQC, we

have to construct the Hamiltonian of Eq.(1) in accor-
dance with the problem. First, the H0 is constructed as
follows:

H0 = I2n − |ψ(0)⟩⟨ψ(0)| , (3)
where

|ψ(0)⟩ = 1√
2k

2k∑
i=1

|wi⟩ , |wi⟩ =
n⊗
j=1

|wi,j⟩ , (4)

|wi,j = A⟩ = (1, 0)T, |wi,j = −A⟩ = (0, 1)T, and IM is
theM×M identity matrix. Second, theH1 is constructed
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Figure 1: Behavior of the eigenvalues of Hamiltonian
when the codeword length n = 4.

so that its eigenvalues express the cost function of the
problem. The cost function is Eq.(2) in classical optimal
decoding. On finding the codeword wi that maximizes
Eq.(2), we can transform Eq.(2) as follows:

P ′(y|wi) =
n∑
j=1

(−2Re[yj ]wi,j + w2
i,j). (5)

The final Hamiltonian H1 is constructed based on Eq.(5)
and the property of SPC codes that states that no code-
words can have an odd number of 1.

H1 =
n∑
j=1

λj − c(n)
n⊗
j=1

(
σzi,j − I2

)
, (6)

where c(n) is a penalty function that is determined for
the problem, σzi,j is the Pauli matrix, and λj is

λj = I2 ⊗ I2 ⊗ · · ·⊗ (−2Ayjσ
z
i,j +A2σz2i,j)︸ ︷︷ ︸
jth

⊗ · · ·⊗ I2. (7)

5 Simulation
We examined the behavior of the eigenvalues of the

H(t) and simulated the behavior of observation proba-
bilities.

5.1 Problem setting

In simulating AQC, for simplicity we set the amplitude
A = 1, the output y = (1, 1, . . . , 1) and the variance of
noise σ2 = 1/2. We set the penalty function c(n) =
nAn to increase as the codeword length increased and
the amplitude grew. We prepared the step parameter
t = j/J, (0 ≤ j ≤ J) for simulation, where J is the
number of steps and corresponds to the computational
complexity. In this study, we compare the step functions
q(t) = t and q(t) = t3.

5.2 Behavior of the eigenvalues of the H(t)

Fig.1 shows that the behavior of the eigenvalues of
Hamiltonian when the codeword length n = 4. As ob-
served from the lower two lines, these do not cross be-
tween q(t) = 0 and q(t) = 1 and therefore, we can appro-
priately implement classical optimal decoding.

Figure 2: Observation probability when the number of
steps J = 800.

5.3 Simulation results

Fig.2 is the simulation result for AQC with each step
function q(t) when the number of steps J = 800 and
n = 8. Each of the blue lines represents a solution state.
When J = 800, we can obtain the |11111111⟩ state with
an observation probability of 99.02% with the step func-
tion q(t) = t3. On the other hand in AQC with the step
function q(t) = t, we obtain the state with an observation
probability of 89.58%. To achieve an observation proba-
bility of 99% with the step function q(t) = t, we need to
implement AQC with J ≈ 1700. From these results, it
can be observed that we can obtain a solution with higher
probability and reduce the computational complexity for
classical optimal decoding by using our proposed step
function q(t) = t3.

6 Conclusion

We considered implementing classical optimal decod-
ing of SPC codes by AQC. First, we demonstrated that
classical optimal decoding is apparently implemented by
using Hamiltonian proposed in this study. Second, we
can obtain the solution state vector with higher proba-
bility and lower number of steps than the conventional
step function q(t) = t by using the cubic step function.
In the future, we aim to consider the implementation of
classical optimal decoding with other codes by AQC.
Acknowledgment: This work has been supported in
part by KAKENHI (Grant Nos. 24360151, 16H04367).
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1 Introduction

In order to demonstrate the ability of quantum com-
puting in the near future, an efficient quantum algorithm
should be implemented. Since most of known quantum
algorithms include Boolean components, an efficient de-
sign technique for realization of a Boolean function is
very crucial even for quantum circuits.

There are many ways to design a reversible circuit to
realize a Boolean function; one of most popular ways is
to generate an initial circuit consisting of Mixed Polarity
Multiple-Control Toffoli (MPMCT) gates [1], [2] based on
a small Exclusive-or Sum-Of-Products (ESOP) expres-
sion [3] and then decompose a large gate (i.e., with the
large number of inputs) into elementary gates. Once an
initial circuit is obtained, further post-optimization tech-
niques such as library-based, transformation-based and
template-based optimization method can be applied [5].

This paper describes a technique to reduce the quan-
tum cost by changing the functionality of a Boolean func-
tion, represented as ESOP. This technique is of particular
interest since it is one of few in the literature (i.e., [4]),
that presents a way in which ESOP expressions can be
manipulated to reduce the quantum cost of the corre-
sponding circuit. The idea presented in [4] cannot be
simply applied to large practical functions. Thus, in this
paper, we propose a heuristic technique to utilize the
idea. Our proposed method find a small ESOP expres-
sions for the given function. Then, it will find a good
pair of product terms in the ESOP expression so that we
can reduce the quantum cost by applying the idea of [4]
to the two terms.

We expect that our approach may produce a better
quantum cost reduction than existing method, and in-
deed our experimentary results confirm this expectation.

2 Preliminaries

2.1 Quantum cost

For evaluating the performance of the quantum cir-
cuit synthesis, the most basic thing to do is to calculate
the quantum cost. The quantum cost of a reversible cir-
cuit is the number of premitive quantum gates needed
to implement the circuit. Primitive quantum gates are
elementary gates that are consist of two bits or less, such
as CNOT gates, NOT gates and control-V gates. Each
elementary gates are considered to have a unit cost.

2.2 Realizing Boolean function with MPMCT
Gates

A minterm of a Boolean function is the combina-
tion of all the input variables (negative or positive) when
the Boolean function becomes one. In the following, an
MPMCTn gate means an MPMCT gate that has n con-
trol bits.

∗nu ain@ngc.is.ritsumi.ac.jp
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Table 1: A Truth Table for
a 4-input Boolean Function
with 4 Minterms

x1 x2 x3 x4 f(x)
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

Figure 1: The quantum cir-
cuit for Table 1

Figure 2: Grouping of gates

To realize an n-input Boolean function with k
minterms by a reversible circuit, one possible way is to
put k MPMCTn gates such that (1) each MPMCTn
gate corresponds to each minterm of the function, and
(2) the polarity of each control bit for an MPMCT gate
corresponds to each variable’s polarity in the correspond-
ing minterm. In other words, if xi or xi appears in a
minterm, the corresponding control bit is positive or neg-
ative, respectively. In this construction, the target bit of
all the MPMCTn gates is the same as the qubit where
we want to realize the function.

For instance, Table 1 shows a 4-input Boolean function
with 4 minterms, and the circuit in Fig. 1 realizes the
function: x2 ·x4 ·x1 ·x3⊕x2 ·x3 ·x1 ·x4⊕x1 ·x4 ·x2 ·x3⊕
x1 · x3 · x2 · x4. For example, the left most gate in Fig. 1
corresponds to x2 · x4 · x1 · x3; the control bits for x2 and
x4 are in the positive polarities denoted by black circles,
and x1 and x3 are in the negative polarities denoted by
white circles.

3 Better ESOP-based Implementation

3.1 Previous work

It has been shown in [4] that we can modify a given
specification in order to obtain a better ESOP-based im-
plementation, and then modifies the result to get back to
the originally desired specification/function. This justi-
fied us a way/approach in which ESOP expressions can
be manipulated to reduce the quantum cost of the cor-
responding circuit. However, the method in [4] cannot
deal with a large function. Motivated by this, this paper
proposes an iterative heuristic approach to reduce the
quantum cost of a large function.

3.2 Proposed Method

The idea behind our method that we first generate a
smaller versions of ESOP to the whole functions. We
group the product terms in the obtained ESOP by two,
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Figure 3: The insertion of a
CNOT gate

Figure 4: The insertion of
a CNOT gate (Group 1)

Figure 5: After the in-
sertion of a CNOT gate
(Group 1)

Figure 6: Final circuit
(Group 1)

and then apply the concept to each group of two product
terms. This involves adding MPMCT gates to the initial
quantum circuit as shown in Fig. 3

Let us take the example of circuit shown in Fig. 1 and
group the gates into two groups as shown in Fig. 2. For
the first group (two gates from the left, gate A and B),
if we insert an MPMCT gate whose negative control bit
is x4 and the target bit is x3 (i.e., a CNOT gate) be-
fore G′ as shown in Fig. 4, the inserted CNOT gate (the
control bit is x4 and the target bit x3) inverts the value
of x3 when x4 = 0. See Fig. 5. This means that the
gate changes the input state (0110) = x1, x2, x3, x4 to
x1, x2, x3, x4. Thus the two MPMCT gates (A and B)
can be merged into one new MPMCT gate as shown in
Fig. 6.

Similarly, for the second group (two gates from right,
gate C and D), if we insert an MPMCT gate whose posi-
tive control bit is x4 and the target bit is x3 (i.e., CNOT
gate) before G′, the inserted CNOT gate (the control bit
is x4 and the target bit x3) inverts the value of x3 when x4
= 1. See Fig. 7. and Fig. 8. Thus the gate changes the in-
put state (1001) = x1, x2, x3, x4 to x1, x2, x3, x4. There-
fore the two MPMCT gates (C and D) can be merged
into one new MPMCT gate as shown in Fig. 9.

Further, we would like to note that after applying the
CNOT gate in Fig. 3, the resulting states of the qubits
after the circuit are not exactly the same as the ones of
the desired circuit because we changed the functionality
of x3 by inserting the MPMCT gate. Therefore, we insert
the same MPMCT gate after G′ at the end of the circuit
as shown in Fig. 10.

Finally gates A, B, C and D in the circuit as shown in
Fig. 1 can be merged into two gates as shown in Fig. 10.
After applying the same MPMCT gate at the end of cir-
cuit in Fig. 10, the functionality of the resulting circuit
is exactly the same as the original circuit in Fig. 1. The
original quantum cost for Fig. 1 is 112 but now is reduced
to 30.

Figure 7: The insertion of
a CNOT gate (Group 2)

Figure 8: After the in-
sertion of a CNOT gate
(Group 2)

Figure 9: Final circuit
(Group 2)

Figure 10: Optimized
Circuit

Table 2: Experimental Results

Function Original Cost This Work (Proposed)
z4ml 573 513

9symml 3,429 1,563
alu2 13,011 10,248
alu4 496,980 38,3312

cordic 27,580,332 20,283,129

4 Experimental Results and Conclusions

To evaluate an ESOP-based synthesis method, we use
the program called as ABC. We can minimize ESOP
forms by ABC, and so we used the program as a base
method; we calculate the original quantum cost based on
the minimized ESOP forms by ABC. We applied our al-
gorithm to various benchmark circuits and compared our
results with the original cost. The outcome of the com-
parison (see Table 2) clearly shows that the proposed
method can reduce quantum cost.

From the results, we can observe that our proposed
method not only has the ability to produce a smaller
ESOP expression for the modified specification but also
can reach the result with much lower quantum cost. Ob-
viously our future work is to improve the resulting quan-
tum cost of other circuits.
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Abstract. Whether the Boltzman entropy is equal to the thermodynamic entropy has been one of the
central issue since the beginning of statistical mechanics. Today, it is believed that the thermodynamic
entropy STD is equal to a function S̃TD that is defined by regularizing the Boltzman entropy in order to
ensure extensivity. However, it is not known whether S̃TD completely determines the possibility of the
macroscopic adiabatic transformation in the same way as STD does. In this paper, by formulating possi-
bility of the macroscopic adiabatic transformations in terms of “coarse-graining” of quantum operations,
we prove that S̃TD provides a necessary and sufficient condition for possibility of a macroscopic adiabatic
transformation.
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1 Introduction

How the thermodynamic entropy STD is related to the
Boltzmann entropy SB has been one of the central issue
since the beginning of statistical mechanics. Today, it
is believed that the thermodynamic entropy is equal to
the following regularzied Boltzmann entropy S̃TD, which
is defined in terms of the Boltzmann entropy SB and is
extensive by definition [1];

S̃TD[U, V,N ] := lim
X→∞

SB [UX, V X,NX]

X
, (1)

where U , V and N , denoting the internal energy, the
volume and the number of particles, respectively. How-
ever, it is not known whether S̃TD completely determines
possibility and impossibility of a macroscopic adiabatic
transformation in the same way as STD. As stated by
the second law of thermodynamics, the thermodynamic
entropy STD satisfies the following statement [2];

(U, V,N) ≺aq (U ′, V ′, N)

⇔ STD[U, V,N ] ≤ STD[U
′, V ′, N ′]. (2)

where (U, V,N) ≺aq (U ′, V ′, N) means “an adiabatic
transformation from (U, V,N) to (U ′, V ′, N) is possible”.
In statistical mechanics field, many researches [3–

5] have demonstrated the “only if” part of (2) for
S̃TD[U, V,N ] by adopting certain formulations of “adi-
abatic operations”, while leaving the “if” part unproven.
On the other hand, recent approaches from quantum in-
formation theory [6–15] have succeeded in deriving de-
tailed thermodynamic relations, which characterize pos-
sibility and impossibility of quantum state transforma-
tions by a set of restricted operations. In their ap-
proaches, however, conditions for possibility of state
transformations are represented by not only the macro-
scopic parameters, but also the microscopic parameters
such as the fluctuation in microcanonical state. This is in

∗hiroyasu.tajima@riken.jp
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contrast to (2), which is represented only by macroscopic
parameters.
In this paper, we propose a coarse-graining approach

to try the “if” part in (2), and show that S̃TD provides
a necessary and sufficient condition for possibility of a
macroscopic adiabatic transformation, i.e., a macroscopic
state transformation by adiabatic operations. First, we
pdefine the possibility of macroscopic adiabatic trans-
formations, based on a “coarse-graining” of possibility
of quantum state transformations by unital operations.
Second, we prove that the magnitude relation of S̃TD pro-
vides a necessary and sufficient condition for possibility
of a macroscopic adiabatic transformation.

2 Preliminaries

In this section, we clarify basic concepts of thermo-
dynamics and statistical mechanics. See e.g. [1, 2] for
details.
In thermodynamics, an equilibrium state is represented

by values of a set of macroscopic physical quantities such
as (U, V,N). In this abstract, we consider cases where
all these physical quantities are extensive, and where the
quantities include the internal energy, i.e., we represent
the equilibrium state as a⃗ := (U, a1, ..., aL).
As the second law of thermodynamics, the thermo-

dynamic entropy STD completely determines possibility
and impossibility of a macroscopic adiabatic transforma-
tion; a⃗ ≺aq a⃗′ ⇔ STD [⃗a] ≤ STD [⃗a

′], where a⃗ ≺aq a⃗′ to
represent the statement that “an adiabatic transforma-
tion from a⃗ to a⃗ is possible”.
Let us introduce the statistical mechanical counterpart

for the thermodynamic equilibrium a⃗. Since we are con-
cerning a macroscopic limit, we describe a physical sys-
tem by a Hilbert space H(X) depending on a scaling pa-
rameter X. The macroscopic limit is defined as the limit
of X → ∞. We assume that X takes values in a set
X = N or X = R+. For each X ∈ X and l = 0, · · · , L,
we denote the set of the Hermite operators on H(X) as
A⃗(X) := (H(X), A(X),[1], ..., A(X),[L]). Then, the micro-
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canonical state corresponding to an equilibrium state a⃗

is defined by π̂
(X)
a⃗,δX

:= Π̂
(X)
a⃗,δX

/D
(X)
a⃗,δX

, where Π̂
(X)
a⃗,δX

and

D
(X)
a⃗,δX

are the projection and the dimension of the fol-

lowing H(X)
a⃗,δX

, which is a subspace of of H(X);

H(X)
a⃗,δX

:= span
{
|ψ⟩ ∈ H(X)

∣∣∣ ∃λ[l] ∈ [X(a[l] − δX),

X(a[l] + δX)) s.t. A(X)[l]|ψ⟩ = λ[l]|ψ⟩ for 0 ≤ l ≤ L
}
.

(3)

The parameter δX is a positive function of X, which
represents the negligible fluctuation of macroscopic quan-
tities. Since we are normalizing macroscopic observables
as (5), it is natural to assume that limX→∞ δX = 0.
Next, we introduce the regularized Boltzmann entropy.

When the limit S̃TD exists, we call it the regularized
Boltzmann entropy;

S̃TD [⃗a] := lim
X→∞

1

X
logD

(X)↓
a⃗ (4)

Here, D
(X)↓
a⃗ is the dimension of the following H(X)↓

a⃗ ;

H(X)
a⃗ := span

{
|ψ⟩ ∈ H(X)

∣∣∣ ∃λ[l] ≤ Xa[l],

s.t. A(X)[l]|ψ⟩ = λ[l]|ψ⟩ for 0 ≤ l ≤ L
}
, (5)

With concrete calculations, it has been shown that there
exists the limit S̃TD in many physical systems, e.g., gases
of particles with natural potentials including the van der
Waars potential [1].

3 Formulation of Possibility of Macro-
scopic Adiabatic Transformations

We propose a definition of the possibility of a macro-
scopic state transformation, by “coarse-graining” the
possibility of the quantum state transformation which
can be considered as a quantum mechanical counterpart
of the adiabatic transformation. We employ the unital
CPTP map E(1̂) = 1̂ as the quantum state transforma-
tion, because a unital map does not decrease the von
Neumann entropy of an arbitrary quantum state [16], i.e.,
S(E(ρ)) ≥ S(ρ) for all ρ ∈ S(H). Because this feature is
similar to the adiabatic transformation in thermodynam-
ics, many researches have treat the unital operation as a
quantum counterpart of the adiabatic transformation in
thermodynamics [5, 12,13].
Now, we give of the possibility of a macroscopic adia-

batic transformation. The basic idea is as follows;

Basic Idea 1 Suppose a microcanonical state π
(X)
a⃗,δX

is
transformed by a quantum operation EX to another mi-

crocanonical state π
(X)
a⃗′,δ′X

. From a macroscopic point of

view, we observe that an equilibrium state a⃗ is trans-
formed to another equilibrium state a⃗′, for any δX and
δ′X within the range of “macroscopically negligible fluc-
tuations”. Therefore, we could say that an equilibrium
state a⃗ can be transformed to another equilibrium state
a⃗′ if, for any macroscopically negligible δX and a δ′X , a

state π
(X)
a⃗,δX

can be transformed to π
(X)
a⃗′,δ′X

.

We translate the above idea into a strict definition;

Definition 1 We define a⃗ ≺ãq a⃗′ as follows; For any
{δX}X∈X ∈ ∆, there exists {δ′X}X∈X ∈ ∆ and a set
{EX}X∈X such that

lim
n→∞

∥∥∥EX(π̂
(X)
a⃗,δX

)− π̂
(X)

a⃗′,δ⃗′X

∥∥∥ = 0, (6)

and EX is a unital CPTP map on S(HX) for all X ∈ X .
Here, ∥ρ− σ∥ is the trace distance.

4 Main Results

Theorem 2 When the regularized Boltzmann entropy
S̃TD exists, the following holds for arbitrary a⃗ and a⃗′:

S̃TD [⃗a] ≤ S̃TD [⃗a
′] ⇔ a⃗ ≺ãq a⃗′. (7)

Theorem 2 states that S̃TD provides a necessary and
sufficient condition for possibility of a macroscopic adia-
batic transformation in the same way as STD does.
Our results shows that the regularized Boltzmann en-

tropy S̃TD gives a total ordered structure of macroscopic
adiabatic transforamtion, just as thermodynamic entropy
STD. We emphasize that our results do not depend on
any microscopic parameters, including δX that we have
introduced to define the generalized microcanonical state
π̂a⃗,δX . This is in contrast to Ref. [14], and other previous
approaches from quantum information theory [6–13, 15],
in which convertibility of states are characterized by func-
tions that depends on microscopic parameters.
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States evolution of a quantum-feedback-enhanced single photon source
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Abstract. We present a theory of quantum optical feedback from a single-photon quantum-dot (QD)
emitter embedded in a microcavity in the strong-coupling limit [1] with optical feedback from a distant
mirror (external cavity) [2].

Keywords: Single photon emitter, Quantum coherence feedback

1 Introduction

The basic phenomenon for quantum information pro-
cessing network relies on preserving the coherence ex-
change between atomic excitations and photonic state.
Nowadays, the network technologies for optical quantum
device relied on the pure interaction at the single parti-
cle level and it requires photon source that can reproduce
highly indistinguishable single photons. Recently, the ad-
vances in designing semiconductor devices allows fabri-
cating such devices that meet the requirement. A single
quantum dot (QD) embedded in a microcavities create
high-purity single photon with high brightness with the
enhancement of the cavity. Additionally, by adding quan-
tum feedback of this system can be driven to a target
state via external control of the target state by a mod-
ification of the repumping strength. The single photon
emitter has been shown to stabilize the exchange between
the quantum states and improve qubit control based on
the repeated action of a sensor-controller-actuator loop.

Here, We discuss a theory of quantum optical feedback
from a single-photon quantum-dot (QD) emitter embed-
ded in a microcavity in the strong-coupling limit [1] with
optical feedback from a distant mirror (external cavity)
[2]. Furthermore, we expand our study for single excita-
tion state to two-excitation state within the external cav-
ity system, we study the photon statistics of the device
and compare it to a single photon emitter without feed-
back. Our proposed quantum feedback control scheme
shows a potential route to improve the purity of the sin-
gle photon source.

2 Model

The system consists of a microcavity with a QD cou-
pled to a single-cavity mode (see Fig. 1). An external
mirror is placed in front of the single photon emitter at
distance, L = cτ

2 , to introduce coherent feedback into the
microcavity. The Hamiltonian within the rotating-wave
and dipole approximations is given in [3]:

Ĥ

~
= −γ(σ−a†+σ†a−)−

∫ ∞
0

[G(k, t)a†dk+G∗(k, t)d†ka]dk

∗cychang@gatech.edu
†david.citrin@ece.gatech.edu

Figure 1: Experimental scheme.

Thus, the system can be describe with superposition of
three orthogonal basis for single excitation:

|Ψ〉 = ce |e, 0, 0〉+ cg |g, 1, 0〉+

∫
cgk |g, 0, k〉dk (1)

Projecting the time-dependent Schrödinger equation
(i~ ∂

∂t |Ψ〉 = Ĥ |Ψ〉), the three rate equations for single
excitation are written:

∂ce
∂t

= iγcg (2)

∂cg
∂t

= iγce + i

∫
cg,kG(k, t)dk (3)

∂cg,k
∂t

= icgG
∗(k, t) (4)

Figure 2: (a) The photon density inside the cavity

|cg(t)|2 with feedback (red) and without quantum feed-
back (black).(b) The spectrum of the output photon

|cgk(t)|2 with external feedback (red) and without quan-
tum feedback (black).
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Next, We study the two-excitation states in our sys-
tem. A general time-dependent wavefunction for two-
excitation state is thus represent by superposition of each
state parameter:

|Ψ〉 = cec |e, 1, 0〉+

∫
cek |e, 0, k〉dk + ccc |g, 2, 0〉+∫

cck |g, 1, k〉dk +

∫ ∫
ckk′ |g, 0, {k, k′}〉dkdk′

Following the similar process for single excitation case,
we obtain five equations of motion for the various ampli-
tudes:

∂cec
∂t

= iγccc + i

∫
cekG(k, t)dk (5)

∂cek
∂t

= iγcck + icecG
∗(k, t) (6)

∂ccc
∂t

= iγcec + i

∫
cckG(k, t)dk (7)

∂cck
∂t

= iγcek + i

∫
ckk′G(k′, t)dk′ + icccG

∗(k, t) (8)

∂ckk′

∂t
= icck′G

∗(k, t) (9)

Figure 3: Time evolution of the probabilities of five states

3 Result and Conclusion

While Fig. 3 shows the dynamics of each state it is
more interesting to study the photon statistics due to
their coherent nature. Assuming that the probability of
emission of photons is proportional to the square of the
state coefficient and independent from the different mode
in the external cavity(green and orange), we can see such
setup may emit single photon between 0 and τ which are
from only one photon in the external cavity, for a photon
from these states, g(2)(t, 0) = 0 for a single photon source.

g(2)(t, τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉 〈I(t+ τ)〉

.

The dynamic of the photon statistics can also be
characterized by an experimental observable quantity,
g(2)(t, τ), the second-order coherence of the excitation
light source in a typical HBT setup (inset of Fig. 4(a)).
The correlation function at times detector 1 and 2 can
be used to characterize the photon statistics,

The value of g(2)(t, 0) can be used to categorize the
quantum nature of the light: thermal if g(2)(t, 0) = 2,

coherent if g(2)(t, 0) = 1, or squeezed if g(2)(t, 0) = 0.2.
In the following, we consider g(2)(t,0) as is measured in

the HBT experiment. We define g
(2)
µ (t, τ) as that asso-

ciated with photons in the microcavity g
(2)
EC(t, τ) as that

associated with photons in the external cavity [3],

g(2)µ (t, 0) =

〈
a†a†aa

〉
〈a†a〉2

=
|ccc(t)|2∣∣∣|cec(t)|2 + |cec(t)|2 + |cec(t)|2

∣∣∣ ,
g
(2)
EC(t, 0) =

〈
d†kd
†
kdkdk

〉
〈
d†kdk

〉2 =
|ckk′(t)|2∣∣∣|cek(t)|2 + |cck(t)|2 + |ckk′(t)|2

∣∣∣ .
Here, we use our previous result in Fig. 3 to compute

g(2)(t, τ) shown in Fig.4(b) and compare with a continu-
ous single photon source in Fig. 4(a).

Figure 4: (a) The second order coherence function,
g(2)(t, 0), for continuous single photon source and (b)
g(2)(t, 0) for micro cavity photon (red) and an external
cavity photon (blue).

In conclusion, we performed a cQED simulation of a
single-photon emitter in a microcavity with time-delayed
optical feedback. The model extends the exact ana-
lytical solutions of the single excitation case [2] to the
two-excitation. Our results establish a future framework
for the theoretical description of feedback control in the
quantum limit of a quantum dot/micropillar coherent
feedback system. Such a scheme shows enhanced oscil-
lation. Our result also shows generating highly purity
and indistinguishable single photons that are desirable
for quantum network and large scale photonic quantum
computers.
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Abstract. Einstein-Podolsky-Rosen (EPR) steering is a quantum phenomenon associated with the ability
of spatially separated observers to steer — by means of local measurements — the assemblage, i.e., the set
of conditional quantum states accessible by a distant party. Inspired by the studies of Bell-nonlocality, we
introduce the concept of steering fraction, which quantifies the extent to which a given assemblage violates
a steering inequality. We then use this to establish (1) a sufficient condition for the superactivation of
steering and (2) an upper bound on the maximal quantum violation of steering inequality achievable by
arbitrary finite-dimensional maximally entangled state.

Keywords: Einstein-Podolsky-Rosen steering, superactivation, quantum nonlocality

From the famous Einstein-Podolsky-Rosen (EPR)
paradox [1] to Bell’s seminal discovery [2], quantum the-
ory has never failed to surprise us with its plethora
of intriguing phenomena and mind-boggling applica-
tions [3, 4]. Among those who made the bizarre nature of
quantum theory evident was Schrödinger, who not only
coined the term “entanglement”, but also pointed out
that quantum theory allows for steering [5]: through the
act of local measurements on one-half of an entangled
state, a party can remotely steer the set of (conditional)
quantum states accessible by the other party.

Taking a quantum information perspective, the
demonstration of steering can be viewed as the verifi-
cation of entanglement involving an untrusted party [6].
Imagine that two parties Alice and Bob share some quan-
tum states and Alice’s wants to convince Bob that the
shared state is entangled, but Bob doesn’t trust her. If
Alice can convince Bob the shared state indeed exhibits
EPR steering, then Bob would believe that they share
entanglement, as the latter is a prerequisite for steering.
Note, however, shared entanglement is generally insuffi-
cient to guarantee steerability. Interestingly, steerability
is actually a necessary but generally insufficient condition
for the demonstration of Bell-nonlocality. Hence, steer-
ing represents a form of quantum inseparability that is
intermediate between entanglement and Bell-nonlocality.

Apart from entanglement verification in a partially-
trusted scenario, steering has also found applications in
the distribution of secret keys in partially trusted sce-
nario [7]. From a resource perspective, the steerability
of a quantum state ρ, i.e, the extent to which a quan-
tum state can exhibit steering turns out to provide also
an indication for the usefulness of ρ in other quantum
information processing tasks. For instance, steerability
as quantified by steering robustness [8] is monotonously
related to the probability of success in the problem of
subchannel discrimination when one is restricted to local
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measurements aided by one-way communications. The
quantification of steerability is thus of relevance also in
quantum information.

In this work, inspired by the nonlocality fraction intro-
duced by Cavalcanti et al. [9], we introduce a quantifier
for steerability dubbed steering fraction, which is par-
ticularly suited for the studies of steerability in relation
to an arbitrary but fixed steering inequality [10, 11] or
steering functional. To this end, consider an assemblage
of (unnormalized) conditional quantum states

σ = {σax} = {trA(ρ(Ea|x ⊗ I))} (1)

and a steering functional F = {F ax } [11], where E =
{Ea|x} is the set of positive-operator-valued measure
(POVM) elements implemented by Alice on the shared
state ρ, I is the identity operating acting on Bob’s Hilbert
space, and trA is the partial trace over Alice’s Hilbert
space. We define the corresponding steering fraction as:

Γs(σ, F ) =
1

BC(F )

∑
x,a

tr(F axσ
a
x), (2)

where BC(F ) = supσ∈Ls

∑
x,a tr(F axσ

a
x) is the supremum

of the steering functional F over the set Ls of all assem-
blages describable by local hidden-state model [6, 11]. In
this form, the steerability of an assemblage σ (and hence
of the underlying state ρ giving rise to this assemblage)
for the given steering functional F is evident: the assem-
blage σ violates the steering inequality corresponding to
F if and only if Γs(σ, F ) > 1. From here, let us also
define—for any given state ρ and and steering functional
F—the largest steering violation corresponding to F as

LVρ(F ) = sup
E

Γs(σ(ρ,E), F ), (3)

where σ(ρ,E) is understood as the assemblage induced
by the state ρ and the set of POVMs E. Essentially,
this is just the largest steering fraction attainable by ρ
with respect to the steering inequality F . This can be
computed by maximizing Eq. (2) over Alice’s POVMs,
and hence the corresponding assemblages via Eq. (1).
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As any quantum experiments necessarily involves re-
peated measurements over many copies of the quantum
state ρ, a natural question that arises in this context is
the steerability of ρ compared with multiple copies of ρ,
i.e., ρ⊗k with k > 1. In particular, an interesting ques-
tion that one may ask is whether there exists ρ which is
non-steerable (and hence does not violate any steering in-
equality), but which becomes steerable if we allow joint
measurements on sufficiently many copies of the same
state. Following the terminology introduced by Palazue-
los [12] in the context of Bell-nonlocality, we say that
a quantum state ρ can be superactivated if it has the
aforementioned property, namely, that ρ is non-steerable
(and hence describable by a local-hidden-state model),
but ρ⊗k is steerable for some k > 1. The superactivation
of ρ for EPR-steering can be rephrased as:

LVρ(F ) ≤ 1 ∀F, (4a)

Γs(σ(ρ⊗k,E), F ′) > 1 for some k, E and F ′. (4b)

That superactivation is possible for Bell-nonlocality
was first demonstrated by Palazuelos [12] using the
isotropic state in C8 ⊗ C8 in conjunction with the so-
called Khot-Vishnoi (KV) game [13, 14] GKV. Their
result was soon generalized by Calvacanti et al. [9] to
show that all entangled isotropic states that are Bell-
local can be superactivated. Since there exist entangled
isotropic states that are non-steerable, and as mentioned
above, a quantum state that is Bell-nonlocal must also
exhibit steering, we know that there must also be entan-
gled isotropic states whose steerability can be superacti-
vated. Indeed, our calculations show that for any state
ρ acting on Cd ⊗ Cd, one can find a collection of POVM

Ẽ(k) = {Ẽ(k)
a|x} acting on Cdk (Alice’s side) and a steering

functional F̃KV induced by GKV such that:

Γs(σ(ρ⊗k, Ẽ(k)), F̃KV) ≥ C [Fmax(ρ)d]k

(log dk)2
, (5)

where Fmax(ρ) is the fully entangled fraction [15, 16] of
the state ρ. This implies that for any state that is non-
steerable but with Fmax(ρ) > 1

d (such as those entangled
but non-steerable isotropic states) must exhibit superac-
tivation of EPR steering via the steering functional FKV .
More generally, we establish the following result:

Theorem 1 Given a state ρ acting on Cd ⊗ Cd and a
steering functional F = {F ax ≥ 0}. A sufficient condition
for ρ to be k-copy F̃ -steerable (from Alice to Bob) is

Fmax(ρ) >

[
1

LVMES(F )

] 1
k

(6)

Here F̃ is a steering functional induced by F through the
operation of twirling and LVMES(F ) is the largest violation
(Eq. (3)) of maximally entangled pure states in Cd⊗Cd,

such as |Φd〉 = 1√
d

∑d−1
i=0 |i〉|i〉, with respect to F .

Notice that in the sufficient condition given above, the
right-hand-side is phrased in terms of the property of a

d-dimensional maximally entangled state, such as |Φd〉,
which illustrates once again the importance of the max-
imally entangled state as a benchmark for quantum in-
formation task. Apart from its own interest, Theorem 1
together with a simple physical argument imply the fol-
lowing estimate for LV πMES(F ), where π indicates only

projective POVMs are considered: (Hd =
∑d
i=1

1
i )

Corollary 2 For a steering functional F = {F ax ≥ 0}:

LV πMES(F ) ≤ d2

Hd +Hdd− d
. (7)

Note that the upper bound is less than d
log d , which is

the current finest upper bound for the largest Bell vi-
olation of maximally entangled states under projective
measurements [17]. Let us stress the generality of the
above corollary: it holds for arbitrary dimension d and
arbitrary steering functional that involves only positive
semidefinite operators. This upper bound is better than
Proposition 2.17 derived recently in [11] by a factor 1

log d .
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Abstract. According to Bell’s theorem, quantum systems exhibit stronger correlations than
classical systems described by local hidden variables. In standard Bell scenarios, the local hid-
den variable is shared between all observers; consequently, the set of local correlations is convex.
Convexity also holds for the quantum set when sharing a multipartite state between all ob-
servers. In quantum networks however, resources have a distribution restricted according to a
specific topology; the resulting local and quantum sets are particularly difficult to characterize.
Considering the simplest cyclic quantum network, the triangle, we devise a method to sample a
three-dimensional slice of local and quantum sets.
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Bell’s theorem characterizes the scenarios where
all observers have access to the same resource. Con-
sider, for example, an experiment with three ob-
servers, who we name Alice, Bob and Charlie. The
measurement settings corresponding to these ob-
servers are written x, y and z, while the measure-
ment outcomes are written a, b and c. We write
the joint probability distribution P (abc|xyz) of ob-
serving outcomes (a, b, c) for the choice (x, y, z) of
measurement settings, where outcomes and settings
are taken from finite sets. Correlations are local if
they can be written:

P (abc|xyz) =

∫
Λ

dλρλ(λ)PA(a|xλ)PB(b|yλ)PC(c|zλ),

(1)
for suitable local response probabilities PA, PB, PC

and a local hidden variable λ taken from the set Λ
with distribution ρλ. With a suitable enumeration
of coefficients, the distribution P (abc|xyz) can be
written as a vector ~P ∈ Rn where n is the product
of the number of outcomes and settings.

Let L ⊂ Rn the set of all ~P obeying (1). It is
known that L is convex; specifically, L is a poly-
tope formed by the convex hull of a finite number
of vertices [1, 2]; alternatively, the polytope can be
converted to be represented as the intersection of
half-spaces, defining the Bell inequalities [3] reve-
lant to the scenario.

On the other hand, correlations are quantum if
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they can be written:

P (abc|xyz) = tr
[(
MA
a|x ⊗M

B
b|y ⊗M

C
c|z

)
ρABC

]
,

(2)

for suitable POVMs
{
MA
a|x

}
,
{
MB
b|y

}
,
{
MC
c|z

}
and

a density matrix ρABC. The quantum set is convex
as well and can be approximated by semidefinite
relaxations using the NPA hierarchy [4]; we write
Q ⊂ Rn the set of all ~P obeying (2).

Many algorithms exist to describe the boundary
of the local set, and, for visualization purposes, the
NPA hierarchy converges sufficiently well. How-
ever, when restricting the distribution of local hid-
den variables and states according to the topology
of a network, the problem is much harder.

A B

C

Figure 1: Three observers sharing bipartite re-
sources α, β, γ.

1 Sets of 3-local/3-quantum correlations

Let us now consider a network formed by three
sources and three observers, as in Figure 1. To sim-
plify the problem, we assume the observers always
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perform the same measurement, whose outcomes are
binary a, b, c = 0, 1.

When the sources are represented by local hidden
variables, the resulting set of correlations is given
by:

P (abc) =

∫
Λα

dα

∫
Λβ

dβ

∫
Λγ

dγρα(α)ρβ(β)ργ(γ)

·PA(a|βγ)PB(b|γα)PC(c|αβ). (3)

This set, which we write L3, is known not to be
convex [5, 6], and the characterization of its bound-
ary is not known apart from some entropic in-
equalites [6, 7].

To help in characterizing the set of those corre-
lations, we will consider the subspace of symmetric
correlations S = {~P |P (abc) = P (acb) = P (bca)} ⊂
R

8.
The subspace S can be represented in a three-

dimensional plot, as normalization shows that:

P (000) + 3P (001) + 3P (011) + P (111) = 1. (4)

The symmetric correlations Psingle, P=, P 6= are al-
ready studied [8]:

P (000) P (001) P (011) P (111) 3-local

Psingle 0 1/3 0 0 ?

P= 1/2 0 0 1/2 no

P 6= 0 1/6 1/6 0 yes

(5)

Sampling the 3-local correlations. — We
plot some of the established inequalities in that sce-
nario [8, 9], along with point cloud samples taken
at random in S ∩ L3 using the following method.
We draw the cardinality m of the sets Λ at random
between 2 and 15. We then take Λα = Λβ = Λγ =
{1, . . . ,m}, and draw a random discrete distribution
Pα(α). We also draw a random response function
PA(a|βγ). We reuse the distribution Pα for Pβ, Pγ
as well, and the response function PA for PB and
PC. This guarantees that the resulting correlations
are symmetric:

P (abc) =

m∑
α,β,γ=1

Pα(α)Pβ(β)Pγ(γ)

·PA(a|βγ)PB(b|γα)PC(c|αβ). (6)

We then repeat the process a sufficient number of
times to populate S ∩ L3.

Sampling the 3-quantum correlations. —
We follow the same reasoning for 3-quantum cor-
relations, where no state is shared by the three ob-
servers, only bipartite states ρA’B, ρB’C, ρC’A. To
start with, we draw a random qubit state ρA’B, along
with a random POVM element MAA’

0 corresponding
to the outcome a = 0. The same state is reused for
ρB’C, ρC’A, and the same POVM element for MBB’

0 ,
MCC’

0 . The resulting correlations are written:

P (abc) = tr
[

(ρA’B ⊗ ρB’C ⊗ ρC’A)

·
(
MAA’
a ⊗MBB’

b ⊗MCC’
c

) ]
, (7)

where the tensor product ordering is specified by the
indices.
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