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Spin-based quantum computing in a silicon CMOS-compatible platform

Andrew S. Dzurak1

1 UNSW, School of Electrical Engineering, Sydney, Australia

Abstract. Spin qubits in silicon are excellent candidates for scalable quantum information processing
[1] due to their long coherence times and the enormous investment in silicon CMOS technology. While
our Australian effort in Si QC has largely focused on spin qubits based upon phosphorus dopant atoms
implanted in Si [2,3], we are also exploring spin qubits based on single electrons confined in SiMOS quantum
dots [4]. Such qubits can have long spin lifetimes T1=2 s, while electric field tuning of the conduction-
band valley splitting removes problems due to spin-valley mixing [5]. In isotopically enriched Si-28 these
SiMOS qubits have a control fidelity of 99.6% [6], consistent with that required for fault-tolerant QC. By
gate-voltage tuning the electron g∗-factor, the ESR operation frequency can be Stark shifted by > 10 MHz
[6], allowing individual addressability of many qubits. Most recently we have coupled two SiMOS qubits
to realize CNOT gates [7] for which over 25 gates can be performed within a two-qubit coherence time of
8 µs. I will conclude by discussing the prospects of scalability of this technology using traditional CMOS
manufacturing.

]
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Storage of multiple single-photon pulses emitted from a quantum dot in

a solid-state quantum memory
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Abstract. Quantum repeaters are critical components for distributing entanglement over long distances
in presence of unavoidable optical losses during transmission. Stimulated by Duan-Lukin-Cirac-Zoller
protocol, many improved quantum-repeater protocols based on quantum memories have been proposed,
which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of
multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated
to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the
storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-
state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon
pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in
each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable
and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based
on all-solid-state devices.

Keywords: deterministic single photon, multiple temporal modes, quantum memory

1 Introduction

Long-distance entanglement distribution has become
increasingly important, which is essential in the improve-
ment of many quantum technologies, such as quantum
key distribution [1] and quantum internet [2]. It is also
helpful in the examination of the foundation problems
in quantum mechanics, for example, the Bell-inequality
test [3]. However, this task is not easy to perform, be-
cause of the photon loss during the fiber transmission.
One proposal to overcome this issue is to use quantum
repeaters [4]. In this architecture, the entire distance
is divided into several shorter elementary links, and for
each link, entanglement between quantum memories can
be established independently. Next, the elementary links
are joined using entanglement swapping to create an en-
tangled pair over the entire distance. The storage of the
deterministic single photons and especially their storage
in a multimode configuration is very critical in the con-
struction of a high-efficiency quantum repeater.
In this work we experimentally demonstrate two points

(details are shown in Ref. [6]). The first point is
the storage of deterministic single photons (with no
multi-photons in principle) emitted from a semiconduc-
tor self-assembled quantum dot (QD) in a solid-state
polarization-maintaining quantum memory [7], which is
based on Nd3+:YVO4 crystals. The QD and the Rare-
earth (RE)-ion-doped crystals are separated by 5 m on
two separate optical tables and are connected via a 10-m
fiber. The second point is the realization of the tempo-
ral multiplexed quantum memory with QD-based narrow
single-photon pulses. 1, 20 and 100 temporal modes are
respectively stored in the quantum memory, with at most

∗tjs@ustc.edu.cn
†cfli@ustc.edu.cn

one photon present in each mode. Both of these points
will be helpful in the development of quantum repeaters.
Moreover, both sub-systems in our experiment are solid-
state, which will make this configuration more stable and
convenient.

2 Results

Storage of multiple single-photon pulses. We use
an electro-optic modulator (EOM) to chop the excitation
laser for the QD. The pulsewidth of the excitation laser
Texpw = 0.8 ns is reduced to be less than the QD’s life-
time, which ensures there is only one photon in a single
pulse. This point is also demonstrated by the Hanbury
Brown-Twiss experiment (g(2)(0) = 0.14).
Figure 1(a) shows the result of the storage for 1 single-

photon pulse with Tperiod = 400 ns and Tstorage = 40 ns.
The integration time is 11.7 hours. The peak at 0 ns
corresponds to the single photons that are not absorbed
without wetting-layer light, the peak at 40 ns corresponds
to the single photons that are stored, and the peak at
80 ns is the second-order retrieved single photons. Two
sets of filter and etalon (with a different free spectral
range (FSR)) are inserted in the beampath here to filter
the single photons more clearly. In this situation, the
second peak is almost as high as the first peak. In Figure
1(b), 20 single-photon pulse are stored in the quantum
memory with Tperiod = 400 ns and Tstorage = 100 ns. The
integration time is 7.5 hours, and the separation between
the neighboring modes is 4.8 ns. 20 peaks are clearly
seen in the range of 100 ∼ 200 ns, which are the stored
single-photon temporal modes. The peaks in the ranges
of 0 ∼ 100 ns and 200 ∼ 300 ns are the transmitted light
and the second-order retrieved light, respectively.
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Figure 1: The quantum storage of multiple single-

photon pulses. We use an EOM to modulate the exci-
tation light here, and its pulsewidth Texpw is reduced to
0.8 ns, which ensures there is at most one photon in each
pulse. (a) 1, (b) 20 and (c) 100 temporal modes of the s-
ingle photons are used for the quantum memory. (d) The
enlargement of the rectangle-regions in (c). This result
shows that the temporal modes of the single photons are
well maintained during the memory process.

We also examine the situation of 100 modes with
Tperiod = 1000 ns and Tstorage = 500 ns, as shown in
Figure 1(c). The integration time and the separation
between the neighboring modes are 46.1 hours and 4.8
ns, respectively. The peaks in the ranges of 0 ∼ 500 ns
and 500 ∼ 1000 ns are the transmitted light and the re-
trieved single photons, respectively. In fact, the efficien-
cy of quantum memory is related to the storage time. In
the present situation, the efficiency is approximately 7%,
whereas this value is estimated to be 20% and 13% in
the situations of Tstorage = 40 ns and Tstorage = 100 ns,
respectively. In spite of the decrease of the memory effi-
ciency, we can still clearly observe 100 small peaks from
the retrieved photons. Figure 1(d) shows the details of
the peaks in the blue rectangle of Figure 1(c) and those
in the pink rectangle with the time-coordinate subtract-
ed by Tstorage = 500 ns. Each of these peaks corresponds
well to each other one by one. This phenomenon shows
the reliability of our experimental results.

3 Discussion

Our work is the first demonstration of the storage
of the QD-based deterministic-single-photon pulse train-
s. Both the sub-quantum systems in this configuration,

namely, the QD and the RE-ion-doped crystals, are solid-
state materials. Moreover, we demonstrate that the po-
larization states of the single photons can be well pre-
served. Therefore, both the polarization states and the
time bins can be used to encode the qubits. One possi-
ble application of our configuration is the quantum re-
peater protocol recently proposed by Sinclair et al. [8],
which is based on spectral multiplexing, multimode AFC
delay quantum memory, entangled photon-pair sources,
Bell-state measurement and feed-forward control. An-
other example of the application of our configuration
is the quantum repeater protocol based on single pho-
ton sources [5], which improves upon the Duan-Lukin-
Cirac-Zoller (DLCZ) protocol by replacing the photon-
pair sources (an equivalent protocol as the DLCZ one)
with the single photon sources.
To conclude, we achieve the storage of deterministic

single photons emitted from a QD in a sandwich-like
Nd3+:YVO4 quantum memory, which can preserve the
polarization states of the input photons. We have al-
so demonstrated the temporal multimode operation of
the quantum memory with 1, 20 and 100 narrow single-
photon pulses. Only one photon exists in a single pulse at
most. Our work paves the way toward the construction
of high-speed quantum repeaters based on all-solid-state
devices and can also be used in other quantum technolo-
gies.
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Experimentally Secure Relativistic Bit Commitment
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Bit commitment is a well known cryptographic primitive used as a subroutine for different cryp-
tographic protocols. Unfortunately, it is known to be impossible to implement without additional
assumptions, such as limiting the computation power of the adversary. Relativistic bit commitment
relays on a more general feature, namely the impossibility of instantaneous communication between
distant parties. In this paper we first derive a tight classical upper bound for the winning probability
for a specific family of non-local games, known as CHSHq(p) and introduced recently in [1]. Using
our bound, we discuss possible improvements in security of a security of relativistic bit commitment
of Lunghi et. al. [2] against classical adversaries. For full version of the paper see [arXiv:1601.08095].

Introduction. Non-local games are important tools of
recent quantum information theory. In a two-player non-
local game a referee interacts with non-communicating
players who cooperate in order to win the game. The
referee chooses a pair of questions x, y according to a
publicly known probability distribution r(x, y) and sends
one question to each player. The goal of the players
is to produce outputs a and b. The win or loss of the
players is determined by a public verification function
V (a, b, x, y) ∈ {0, 1} – if a and b are valid answers for
question pair (x, y), the verification function is equal to
1 and the players win the game. With every game G we
can associate two different values: the maximum winning
probability of classical players ω(G) and the maximal
winning probability of players with quantum resources
ω∗(G). Finding any of these values is generally a hard
problem.

Non-local games studied in quantum information sci-
ence typically satisfy ω∗(G) > ω(G). However, many
communication scenarios in which non-communicating
parties cooperate in order to achieve some goal can be
reduced to a non-local game. This is the reason why
non-local games are also a valuable tool in various com-
putational complexity scenarios, such as interactive proof
systems [3]. A recent result of Chakraborty, Chailloux
and Leverrier [1] is a result of this type. They were able
to improve the security of a relativistic bit-commitment
protocol of Lunghi et. al. [2] against classical adversaries
into their ability to win a specific family of non-local
games called CHSHq(p).

CHSHq(p) is a family of games generalizing the well
known CHSH game [4]. In the CHSH game two non-
communicating players receive a single bit input x and
y distributed independently and uniformly. Their goal is
to provide a single bit answers a and b. They win the
game if a + b = xy mod 2.

Recently, there has been some interest in the gener-
alization of this game into higher alphabet inputs and
outputs [5]. Family of such games is called CHSHq. In
these games the non-communicating players receive uni-
formly distributed inputs x, y ∈ Fq and produce outputs
a, b ∈ Fq. They win the game if a + b = xy, where addi-

tion and multiplication are both operations in Fq.
Further generalization of the CHSHq games into

CHSHq(p) games concerns the probability distribution
of the inputs. CHSHq(p) denotes a family of games with
CHSHq verification function, where Bob’s input is dis-
tributed uniformly, while the distribution of Alice’s input
is independent of Bob’s and is distributed according to
some probability distribution, for which pmax ≤ p, where
pmax is the probability of the her most probable input.
Note that the games in this family differ only in the prob-
ability distribution of Alice’s input. In this paper we de-
rive an upper bound on the classical value of these games,
which doesn’t depend on the concrete distribution, but
only on parameters p and q. With a slight abuse of no-
tation, we call this upper bound ω(CHSHq(p)) and for-
mally define it as ω(CHSHq(p)) = maxi(ω(Gi)), where
the maximum is taken over all games Gi ∈ CHSHq(p).
Result. Chakraborty, Chailloux and Leverrier [1] give

the following upper bound

ω(CHSHq(p)) ≤ p +

√
2

q
. (1)

In our paper [arXiv:1601.08095] we derive a new upper
bound for this family of games, which holds whenever
p ≥ 1√

2q
:

ω(CHSHq(p)) ≤ p +
1

2pq
. (2)

Our bound is better than the bound (1) in all instances
where it holds and in fact, for certain range of param-
eters q and p it is tight as well. The bound has been
found by reducing the problem of finding the best clas-
sical strategy for the CHSHq(p) games to a problem of
finding the maximum amount of incidences between sets
of points and sets of lines in finite fields. This technique
was introduced by Bavarian and Shor [5] in order to find
upper bounds on classical winning probability of CHSHq

games with uniform inputs.
What follows is a brief explanation of how upper

bounds on the family of CHSHq(p) games can be used
to prove security of a relativistic bit-commitment of [2].
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Bit-commitment. Each bit-commitment protocol has
two phases – the commit phase and the reveal phase. In
the commit phase prover P sends a message to verifier V ,
in which she commits to a bit x. In the reveal phase, P
reveals the bit she committed to in the first phase. There
are two security requirements – the binding property and
the hiding property. Bit-commitment protocol is hiding,
if V cannot find out value of x before the reveal phase;
and it is binding, if P cannot reveal x in the reveal phase
if she committed to x in the commit phase. It has been
shown that both of these requirements cannot be met
without additional assumptions.

Here we consider a protocol, where the prover is split
into two non-communicating agents P and Q. We en-
force the non-communication assumption via relativistic
effects – placing P and Q far apart, so they cannot com-
municate instantly. Obvious downside of such protocol
is that binding property can be preserved only for the
time it takes a signal from P to reach Q. This limita-
tion can be circumvented by sustain phase, in which P
and Q continually exchange messages with V in such a
way that the protocol remains binding, until the reveal
phase. Such protocols were pioneered by Kent [6] and re-
cent state of the art protocol of this type is due to Lunghi
et al. [2]. The protocol is as follows:

1. Preparation. P and Q share k random numbers
b1, . . . , bk ∈ Fq and V has k random numbers y1, . . . , yk ∈
Fq.
2. Commit phase. V sends y1 to P who replies with

a1 = b1 + (y1 · x).
3. Sustain phase. V sends y2 to Q who replies with

a2 = b2 + (y2 · b1). Sustain phase continues in this fash-
ion with alternate communication between V and P or
Q. The timing of messages is crucial part of the sus-
tain phase. If in round i verifier V communicated with
P (Q), in round i+1 prover Q(P ) has to send ai+1 before
challenge yi could travel the distance between P and Q.

4. Reveal phase. The prover which did not commu-
nicate with V in the last round sends bk and x to V .
V iteratively verifies whether ai = bi + (bi−1 · yi) for all
k ≥ i ≥ 2 and whether a1 = b1 + y1 · x.

It is easy to see that this protocol is hiding, therefore
here we discuss only its binding property. Let p0 and p1
be the probability that Q reveals 0 and 1 successfully.
Protocol is ε-binding, if p0 + p1 ≤ 1 + ε.

Since this protocol runs in multiple rounds, we are in-
terested in the binding property after k rounds of com-
munication. Let us denote pk0 and pk1 the probability to

reveal 0 and 1 respectively after k rounds of the protocol.
We would like to quantify εk, such that pk0 + pk1 ≤ 1 + εk.

The classical value of games in CHSHq(p) can be used
to show the security of the protocol in the following way.

Throughout the protocol the provers have to provide
answers ai to the challenges yi. Due to the relativistic
constrains message ai can be seen as a function of the
to-be-revealed bit x and challenges yi, yi−2, . . . , y2, y1 (ai
has to be sent before yi−1 can reach the active prover).
In this view, messages bi can be recursively defined as
bi = ai − (yi · bi−1), therefore each bi can be seen as a
function of yi, . . . , y1, x.

In the last round the revealing prover (say P ) is sup-
posed to reveal bk. Since P does not know the last
challenge yk yet, he needs to attempt to guess bk with-
out it. Therefore his strategy can be seen as a func-
tion of the previous challenges (which he already knows,
since enough time passed since they were sent) and x:
b′k(yk−1, . . . , y1, x). The probability to reveal x with
given history of challenges pkx(yk−1, . . . , y1) in this sce-
nario is the probability that b′k = bk. Since we can treat
b′k as a deterministic function, here the probability is
taken only over all possible yk.

The overall probability to reveal x after k rounds
can then be recovered by taking the expectation
of pkx(yk−1, . . . , y1, x) over the history of challenges
yk−1, . . . , y1. However, let us start only by taking
expectation over the challenge yk−1, i. e., let us ex-
amine pkx(yk−2, . . . , y1). We are therefore interested
in Pr (b′(yk−1, . . . , y1, x) = b(yk, . . . , y1, x)), where the
probability is taken over all yk and yk−1. After rewrit-
ing bk, we get that we are interested in the probabil-
ity that b′(yk−1, . . . , y1, x) = ak(yk, . . . , yk−2, y1, x)− yk ·
bk−1(yk−1, . . . , y1, x). Rewriting and leaving out the vari-
ables we get ak − b′k = yk · bk−1. This can be treated as
a non-local game, where Q receives a uniform question
yk ∈ Fq, P receives a challenge bk−1 (which he can re-
construct from challenges known to him at this time) and
they are supposed to produce answers b′k and ak fulfilling
the above condition.

Distribution of yk is uniform, therefore it remains
to examine how well Q can guess the value of bk−1
without the knowledge of yk−1 – this is in fact
pk−1x (yk−2, . . . , y1, x)! Therefore this game is in fam-
ily CHSHq(pk−1x (yk−2, . . . , y1, x)). Altogether we have
pkx(yk−2, . . . , y1) ≤ ω(CHSHq(pk−1x (yk−2, . . . , y1, x))).
Better bounds for CHSHq(p) games therefore provide
better bounds on binding property of this protocol.
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Abstract. The basic architecture and functions of a quantum key distribution (QKD) network with enhanced 

application interfaces for applying QKD technologies to multiple applications are proposed. The proposed network 

has a three-layer architecture that consists of a quantum layer, key management layer, and key supply layer. 

Since a robust quantum layer is important for constructing a practical QKD network, a QKD system was 

developed on the basis of a planar lightwave circuit interferometer, and its long-term stable operation was 

confirmed. A quantum key distribution advanced encryption standard (QKD-AES) hybrid system and an 

encrypted smartphone system were developed as secure communication applications on our QKD network. The 

validity and the usefulness of the systems were demonstrated on the Tokyo QKD Network testbed.  

Keywords: QKD, QKD Network, AES, BB84 

1. Introduction 
Communication technology for protecting significant, 

secret information from eavesdropping and cracking 

is indispensable. For secret communication, an 

ultimate, secure form of crypto-key sharing between 

remote parties is needed. Quantum key distribution 

(QKD) [1] provides a solution to the problem with a 

remote user sharing crypto-key. Long-term (over 

30-days) field evaluations [2] [3] and QKD network 

testbeds [4] [5] toward practical use have been 

reported. We demonstrated a secure TV conference 

that used point-to-point (PTP) communication and 

was encrypted by a one-time-pad (OTP) encryption 

with a quantum-key on the Tokyo QKD Network [5]. 

In order to build a secure crypto-key distribution 

network infrastructure that supports not only PTP 

communications but multipoint-to-multipoint 

(MPTMP) communications with QKD, novel network 

architecture, crypto-key management, and key 

supply functions are needed. In this paper, we first 

propose the basic architecture and functions of our 

QKD Platform (PF), which is a QKD network with 

enhanced application interfaces. We next explain our 

latest robust QKD system, which serves as a basis for 

QKD PF and the developed secure communication 

applications on the QKD PF.  

 

2. Quantum Key Distribution Platform  
Secure communication between a data center and a 

remote backup center is a use case of high-speed 

secure PTP communication on the QKD PF. Expected 

applications for the QKD PF include not only PTP 

systems but also MPTMP systems such as those that 

enable secure smartphone communication between 

multiple terminals. 
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Therefore, an application independent crypto-key 

supply that corresponds to MPTMP communication is 

an important requirement for the QKD PF. Since 

there are several kinds of QKD protocols, e.g., BB84 

and continuous variable protocols, the second 

requirement is a crypto-key management that 

corresponds to various types of QKD systems. Also, 

the QKD PF should support a wide variety of 

network topologies. In order to meet the above 

requirements, we propose a three-layer QKD PF 

architecture that consists of a quantum layer, a key 

management layer, and a key supply layer as shown 

in Fig. 1. In the quantum layer, each QKD link 

generates quantum-keys in its own way.  The keys 

are then pushed up to the key management layer, 

stored, relayed, and managed, supporting various 

network topologies and multiple user applications. 

The key supply layer is introduced to implement two 

functions: an application independent key supply and 

a secure key transfer from the QKD PF to key 

consumers. The QKD PF uses a centralized control 

style. A key management server monitors the status 

of the QKD PF such as the error rates of the QKD 

links and the accumulation of generated keys. The 

key management server also decides the key relay 

route. The Tokyo QKD Network was updated and has 

been operated on the network architecture [6].   

 
Fig. 1 QKD PF architecture 
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3. Robust QKD System
For practical operation of the QKD PF, a robust

quantum layer is indispensable. We developed a

robust, single-way decoy-BB84 [7] QKD system on

the basis of a planar lightwave circuit interferometer

that operates with a low quantum bit error rate

(QBER) [3]. A layer 2 network encryptor was

integrated with the QKD system (QKD-AES hybrid

system in Sec. 4), and long-term operation under

practical environmental conditions was carried out.

Consecutive stable operation for 21 weeks was

achieved. Fig. 2 shows the evaluation results. An

average secure key rate of 107.7 kbps (@11.5 dB loss)

with standard deviation of +/-8.6% was confirmed.

Fig. 2 Long-term evaluation results 

4. Applications on the QKD PF
In this section, examples of applications implemented

so far on the QKD PF are introduced. One application

is a quantum key distribution advanced encryption

standard (QKD-AES) hybrid system for high-speed (>

Gbps) secure communication. As shown in Fig. 3, a

layer 2 network encryptor was integrated with the

QKD PF. Synchronization of the crypto-key between

terminals is a key technology. In the application,

data over Ethernet was encrypted with AES, and the

crypto-key was periodically refreshed from the QKD

PF. We confirmed a key refresh period of several

seconds and long-term (21-week) stable operation.

Fig. 3 QKD-AES hybrid system 

The second application is an encrypted smartphone 

system that corresponds to multiple users. Fig. 4 

shows an overview of the application. A center server 

manages both call sessions and crypto-key 

distributions. To realize MPTMP secure 

communication, call sessions are encrypted with AES, 

and quantum keys are used for authentications and 

AES crypto-key distributions. An AES crypto-key is 

distributed with OTP from the center server. On the 

QKD PF with 5 nodes, we confirmed a sequence of 

key distributions from the QKD PF to smartphones 

and secure communication between each 

smartphone. 

Fig. 4 Encrypted smartphone system 

5. Summary
The basic architecture and functions of a QKD

network with enhanced application interfaces have

been explained for multiple secure communication

applications. Robust QKD systems are integral for

QKD networks. We have presented the long-term,

highly stable operation of our QKD system. As

examples of secure communication applications on

the QKD PF, a QKD-AES hybrid system and a secure

smartphone system have been introduced. With these

technologies, we believe that secure communication

infrastructure will be constructed in the near future.
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New Technologies by Fusion of Macroscopic Quantum Physics and
Classical Information Science

Osamu Hirota1 ∗

1Quantum ICT Research Institute, Tamagawa University,
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Abstract. Quantum information science is not merely a field of physics but a new science which aims to
create new scientific technologies by combining the conventional information science and quantum physics.
While information science focuses on the technologies which are useful in the real world, quantum physics
aims at understating the characteristics of the physical world. In order to develop the above-captioned new
science, we must take full advantage of the characteristics of both information science and quantum physics.
To that end, it is inevitable to apply macroscopic quantum physics to classical information science. This
talk will deal with the non-orthogonal quantum state in the infinite-dimensional space, a representative
example of macroscopic quantum effects, as well as its history. In addition, the basic concepts of“Quantum
Enigma Cipher” and“Quantum Radar Camera”are introduced, which have been developed based on
the said study. These are expected to be applied in a real world as commercial technologies.

Keywords: Macroscopic quantum phenomena, Quantum Enigma Cipher, Quantum Radar Camera

1 Introduction

Many fundamental theories in quantum information
science were developed based on non-orthogonal quan-
tum state in infinite dimensional space, which de-
scribes a macroscopic quantum phenomena. A prob-
lem of discrimination of non-orthogonal quantum states
through quantum measurement, that was pioneered by
C.W.Helstrom[1], is a typical example. To formulate
quantum communication theory, several researchers gen-
eralized from Bayes criterion to Neyman-Peason , Min-
imax criteria, and Shannon mutual information which
play different roles in each other. These provide useful
tool for technologies of classical information processed by
quantum phenomena. Thus, theory of non-orthogonal
state in infinite dimensional space is a foundation for
quantum information science which opens up new tech-
nologies in a real world.
In this paper, I describe a survey of my works on quan-

tum information science based on a fusion of macroscopic
quantum physics and classical information science. First,
I describe a survey of theory of non-orthogonal quantum
state in the sections II and III, including a basic theory
for quantum information science such as quantum com-
munication theory. In the section IV, I discuss an ap-
plication of theoretical achievements on non-orthogonal
quantum state to a new concept on cryptography such as
open system cryptography. In the section V, an example
of a new physical cipher such as open system cryptog-
raphy so called Quantum Enigma Cipher is described,
in which the security is ensured by a combination of a
mathematical encryption and physical randomization of
its ciphertext.
Furthermore, it will be suggested for future works that

quantum imaging has a potential of a real application for
a new type of camera so called quantum radar camera
by connecting the original theory and Volterra-Wiener
theory.

∗hirota@lab.tamagawa.ac.jp

2 Basis of quantum optics

2.1 Quantum optical field

Glauber unified a formulation on classical and quan-
tum optical field that is described by

▽2E(r, t) =
1

c2
d2E(r, t)

dr2
(1)

where the electric field is given by

E(r, t) = i
∑
k

(
hωk
4πϵ0

)1/2[akuk(r)e
−iωk − ak

†uk(r)e
iωk ]

(2)
Here uk(r) is mode function. This mode is called Q-mode
which corresponds to infinite dimensional Hilbert space
HS . Observables in the mode are described by photon
annihilation and creation operators as follows:

a = (XC + iXS)

a† = (XC + iXS) (3)

where [ak, a
†
k′ ] = δk,k′ .

The quantum state is a vector in the space HS .

|Ψ >∈ HS

|||Ψ > || = 1 (4)

where whole state vectors are normalized.

2.2 Basic states of Q-mode

Since Q-mode means an infinite dimensional Hilbert
space, the state vector is represented by a linear super-
position of orthonormal vector such as Fock state |n >.
The representative state is a coherent state which was
discussed by R.Glauber[2] to explain coherence property
of laser light. Then coherent state is given

a|α > = α|α >

|α > =
∑
n

αn

n!
e−|α|2/2|n > (5)
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where

α = < α|a|α >=< Xc > +i < Xs >

|α|2 = < n >=< α|a†a|α > (6)

The coherent state is a typical example of the non-
orthogonal state in Q-mode as follows:

< α1|α2 >= exp(−1

2
|α1|2 −

1

2
|α1|2 + α∗

1α2) (7)

This provides the over completeness in the space such as

1

π

∫
|α >< α|d2α = I (8)

where I is the identity operator on HS .

2.3 Glauber-Sudarshan representation

The Galuber-Sudarshan representation is for describ-
ing the phase space distribution of a quantum system in
the phase space formulation. It provides useful applica-
tions in laser theory and especially coherence theory, and
given as follows[2,3]:

ρGS =

∫
P (α)|α >< α|d2α

Ξ(λ) =

∫
< α|eλa

†−λ∗a|α > P (α)d2α (9)

First order mutual coherence function is defined as fol-
lows:

G1(r1, r2, τ) = Tr{ρGSE†(r1, t1)E(r2, t2)} (10)

Higher order mutual coherence function can also be de-
fined. Here we give the second order mutual coherence
function.

G2(r1, r2, τ)

= Tr{ρGSE†(r1, t1)E
†(r2, t2)E(r2, t2)E(r1, t1)}(11)

In the subsequent sections, I will provide useful applica-
tions of the above theories.

3 Main theorems in quantum informa-
tion science

A role of quantum information science is to verify po-
tential applications of fundamental nature of quantum
mechanics. To do so, quantum communication theory
was developed. In this section, I will describe the fact
that non-orthogonal states play a very important role in
such a theory.

3.1 Quantum detection theory for non-
orthogonal states

Quantum detection theory makes clear the fundamen-
tal limit for the discrimination among quantum states.
Basically, if a set of quantum states is non-orthogonal
each other, no one can discriminate without error. In
the following, the formulations are shown.

Let us first describe the theory of quantum Bayes cri-
terion.

Theorem:{Helstrom}[1]
The quantum limitation (average error probability) for
the discrimination for two quantum states ρ1 and ρ2 is
given by

Pe =
1

2
− ||p1ρ1 − p2ρ2|| (12)

where p1, and p2 are a priori probabilities.

Let us generalize to M -ary case. That is, a set of quan-
tum states is given as {ρi, i = 1, 2, 3, . . .M}. The crite-
rion of quantum Beys strategy is as follows:

min
Π

∑
i

∑
j

ξiCjiTrρiΠi (13)

where, Π = {Πj} is POVM(positive operator valued
measure). As usual, we define the risk operator as fol-
lows:

Wj ≡
M∑
j=1

ξiCjiρi (14)

Γ =
M∑
j=1

ΠjWj =
M∑
j=1

WjΠj (15)

In general, we consider Cji = 1 (i ̸= j)，Cji = 0 (i = j).
Then the criterion becomes average error probability Pe.

min
Π

Pe = min
Π

(1−
∑
i

ξiTrρiΠi) (16)

Theorem:{Holevo[4], Y uen[5]}
The optimum condition for M -ary quantum Bayes strat-
egy with respect to POVM is

(Wj − Γ)Πj = Πj(Wj − Γ) = 0, ∀j
Πj(Wi −Wj)Πi = 0, ∀i, j
Wj − Γ ≥ 0, ∀j (17)

where

Wj ≡
M∑
j=1

ξiCjiρi

Γ =

M∑
j=1

ΠjWj =

M∑
j=1

WjΠj (18)

where Cji = 1 (i ̸= j)，Cji = 0 (i = j).

In case of quantum minimax strategy, the criterion is
given by

Pem = min
{Πj}

·max
{ξi}

{
1−

M∑
i=1

ξiTrρiΠj

}
(19)

In this criterion, we have the following result.
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Theorem:{Hirota− Ikehara[6]}
Let {ξi} and {Πj} be a priori probability and POVM,
respectively. Then we have

min
{Πj}

·max
{ξi}

Pe = max
{ξi}

·min
{Πj}

Pe (20)

Theorem:{Hirota− Ikehara[6]}
The optimum conditions for POVM is given by

TrρiΠi = TrρjΠj , ∀i, j
(Wj − Γ )Πj = Πj(Wj − Γ ) = 0, ∀j
Πj(Wi −Wj)Πi = 0, ∀i, j
Wj − Γ ≥ 0, ∀j (21)

where Cji = 1 (i ̸= j)，Cji = 0 (i = j).

Recently, the mathematical progress for quantum min-
imax theory has been given by G.M.D’Ariano et al[7],
K.Kato [8], F.Tanaka [9], and K.Nakahira et al [10].

3.2 Classical capacity for quantum Gaussian
channel

When Shannon mutual information is employed as a
criterion for evaluation of communication performance,
collective quantum measurement effect provides the fol-
lowing capacity formula for lossy Gaussian noise chan-
nel, which can be realized by coherent state signals or
two-photon coherent state. This is quantum version of
well known Shannon-Wiener formula in classical Gaus-
sian channel. In fact, when S ≪< n >, it reduces
to classical one. In addition, several features on differ-
ence between quantum and classical of classical capacity
for several quantum channels were clarified by author’s
group.

Theorem:{Holevo− Sohma−Hirota[11]}
The classical capacity for quantum lossy Gaussian noise
channel is given by

CHSH = log(1 +
S

1+ < n >
) + S log(1 +

1

S+ < n >
)

− < n > log(
1 + S

<n>

1 + S
1+<n>

) (22)

where S and < n > are received signal and noise photon
number, respectively.

Theorem:{Hirota[12], Guha[13]}
The secret capacity for physical cipher based on coherent
state is

CGS = CHSH − CShannon = log(1 +
SB

1+ < n >B
) +

SB log(1 +
1

SB+ < n >B
)− < n >B log(

1 + SB

<n>B

1 + SB

1+<n>B

)

− log(1 +
SE

1+ < n >E
) (23)

3.3 No-cloning theorem

Theorem:{Wootters− Zurek[14]}
Let us assume that |ψ >A, |ϕ >B are quantum states in
two systems. There is no unitary operator on H⊗H such
that for all states |ψ >A,|ϕ >B

U(|ψ >A ⊗|ϕ >B) = eic(ψ,ϕ)|ψ >A ⊗|ψ >B (24)

where ic(ψ, ϕ) is a real number depending on
|ψ >A,|ϕ >B.

4 Closed system cryptography and open
system cryptography

Let us consider a system of symmetric key cipher such
as stream cipher where |Ks| bits secret key Ks is shared
between the sender and the receiver, and |Ks| bits secret
key is expanded by a mathematical algorithm, which is
called running key. The ciphertext is given by“exclusive
OR operation” of running key sequence and plaintext
sequence. In this system, the sequence of ciphertext is
determined uniquely by the sequences of running key and
plaintext. Although the running key is longer than |Ks|
bits, the possible number of sequence is only

N = 2|Ks|, (25)

because mathematical algorithm as expander is deter-
ministic for |Ks| bits secret key as an initial key.
The ciphertext is sent to the legitimate receiver

through a transmission line. The attacker can get the
exact ciphertext by tapping on the line. That is, the ci-
phertext of the attacker is the same as that of legitimate
receiver. This scheme is called“ closed system cryp-
tography”. In general, the attacker can pin down the
|Ks| bit secret key by a brute force attack under certain
known plaintext, because the key space is formed only
by |Ks| bits in closed system cryptography. On the other
hand, one can employ random algorithm as expander.
However, because of the conditions that the legitimate
receiver has to decrypt ciphertext by |Ks| bits key and
that ciphertexts for the legitimate receiver and the at-
tacker are same, such a randomization cannot provide an
expansion of key space. Such a feature is unavoidable in
the closed system cryptography.
In order to investigate a new cryptosystem, we have to

find“ open system cryptography”to realize the scheme
where the key space for the attacker is greater than that
for the legitimate receiver. By open system cryptogra-
phy, we mean a cryptosystem such that ciphertext of the
legitimate receiver and ciphertext of the attacker are dif-
ferent. In this system, the attacker does not receive the
ciphertext correctly, and cannot pin down the |Ks| bit se-
cret key even if she tries a brute force attack. However,
the legitimate receiver can obtain the long plaintext se-
quence correctly from the received signal based on |Ks|
bit key. Since it seems impossible to realize such a scheme
only by mathematical tool, one needs a help of physical
phenomena to attain the goal. In the following section,
I will explain a potential method to realize the above
scheme.
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5 Quantum Enigma Cipher

In this section, I will give a general framework of a
physical cipher as application of quantum detection the-
ory and no cloning theorem for non-orthogonal states.

5.1 Concept

The general network systems need to be protected from
interception by unauthorized parties. The most serious
attack is “ Cyber attack against Layer-1 (physical layer
such as optical communication line)”, because technolo-
gies of coupler for tapping have been developed by sev-
eral institutes. In addition, there are many optical mon-
itor ports for network maintenance. In fact, physical
layer of high speed data link is a defenseless. To date,
that protection has been provided by classical encryption
systems. However, such technologies cannot ensure the
provable security, and also the eavesdropper can obtain
the correct ciphertext: C of mathematical cipher for pay-
load at Layer-2, and she can store it in memory devices.
Thus, we cannot rule out the possibility that the cipher
may be decrypted by future development of algorithm
and computer science.
The best way to protect high speed data is to physi-

cally randomize signals as the ciphertext of a mathemat-
ical cipher. This is called physical random cipher. The
most important feature of this physical random cipher is
that the eavesdropper cannot get the correct ciphertext
of mathematical cipher, for example a stream cipher by
PRNG (pseudo random number generator), from com-
munication lines, while the legitimate user can get it and
he can decrypt based on a knowledge of secret key of
PRNG.
First example was proposed by H.P.Yuen as “Keyed

communication in quantum noise(KCQ)”in 2000[review
is given in 15]. In his scheme, the mathematical cipher
is used to select optical communication basis to transmit
binary bit data. So the optical signals correspond to ci-
phertext of the mathematical cipher. Thus a modulation
scheme becomes an encryption box for electric data se-
quence. A legitimate user can get the correct ciphertext,
but an eavesdropper cannot get the correct ciphertext,
because she does not know which communication basis is
used and her received signals are randomized by large ef-
fect of quantum noise due to mismatch in communication
basis.
During 15 years, many prototype systems so called α/η

or Y-00 protocol have been implemented and useful per-
formances have been demonstrated in real optical net-
works[16,17,18,19].

5.2 Definition of Quantum Enigma Cipher

Quantum Enigma Cipher is a general scheme for phys-
ical random cipher, which may be a generalization of
KCQ. Let us describe here the ideal quantum enigma
cipher system.
The quantum enigma cipher consists of an integration

of mathematical encryption box and physical randomiza-
tion box. Here, the physical randomization means that
optical signals as the ciphertext of a mathematical cipher

are randomized by quantum noise when the eavesdropper
observes optical signals with coherent states or another
non-orthogonal state. Along with this concept, Quantum
Enigma Cipher allows a secure high speed data transmis-
sion by means of the quantum noise randomization by a
mathematical encryption box and signal modulation sys-
tems. Thus, we will define the quantum enigma cipher.

Definition Quantum Enigma Cipher is defined as a
scheme which has the following property[20,21,22,23]:
Optical signals correspond to ciphertext of a mathemat-
ical cipher. The observation signals of legitimate’s re-
ceiver are error free with a priori knowledge in commu-
nication systems. An eavesdropper’s receiver suffer a se-
rious error without a priori knowledge.

Examples of the implementation are as follows:
(a) Communication basis for transmission of data is
scrambled by PRNG with a secret key[15].
(b) Mapping scheme between data for communication
system and optical signal is scrambled by PRNG [24].
(c) Fusion of (a) and (b)[24]
(d) A priori probability for a set of coherent states is hid-
den as secret key against eavesdropper[21].
(e) A difference of error performance between legitimate
and eavesdropper’s receiver is created by entanglement
resource in transmitter and receiver[22,25].

If the data for communication system is not encrypted
by a mathematical cipher, one has to employ (a),(b) and
(c). If the data is already encrypted by a mathematical
cipher, one can employ one of {(d), (e)}.
In any scheme, the quantum enigma cipher has a math-

ematical encryption box and physical encryption box.
The mathematical encryption box has a secret key of the
length |Ks| bits and PRNG for expansion of the secret
key. The physical encryption box has a mechanism to
create ciphertext as signal and it has a function to in-
duces an error when the eavesdropper’s receiver receives
the ciphertext as signal. Consequently different cipher-
text sequences are observed in the legitimate’s receiver
and the eavesdropper’s receiver, respectively. A require-
ment for the physical randomization is

Pe(Eve) >> Pe(Bob) ∼ 0 (26)

This means that the error performance Pe of the eaves-
dropper becomes worse than that of the legitimate user,
when they observe the ciphertext as signal in communi-
cation lines.

5.3 Security analysis

In the investigation for the quantitative evaluation of
information theoretically secure scheme, Shannon mu-
tual information, trace distance (statistical distance),
and Holevo quantity are not appropriate as measure of
security. In the following, we will give a guide for such a
purpose.
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5.3.1 Model

Let us describe a standard symmetric key encryption.
A general symmetric key encryption Λ can be given by

Λ = ([PK ], Enc,Dec) (27)

where [PK ] is key generation algorithm and it provides
key sequence K ∈ K depending on the probability PK ,
Enc is an encryption algorithm which generates cipher-
text C = Enc(K,M) where M is plaintext, Dec is
a decryption algorithm which produces plaintext M =
Dec(K,C). In the case of symmetric key cipher, the se-
cret key is fixed.
When Λ cannot be decrypted by means of computa-

tional resource, its security is evaluated by “Guessing
probability”[21,22,23].

(i) Ciphertext only attack on data:

PG(M) = max
M∈M

P (M |C) (28)

(ii) Ciphertext only attack on key:

PG(K) = max
K∈K

P (K|C) (29)

On the other hand, when some plaintext Mk and cipher-
text corresponding to them are known, it is called known
plaintext attack. It is easy to generalize the above for-
mula as follows:

(iii) Known plaintext attack on data:

PGk
(M) = max

M∈M
P (M |C,Mk) (30)

(iv) Known plaintext attack on key:

PGk
(K) = max

K∈K
P (K|C,Mk) (31)

If one needs an average, then one can define average
guessing probability as follows:

P̄G(M) =
∑
C∈C

P (C) max
M∈M

P (M |C) (32)

In order to apply the above concept to quantum
enigma cipher, one can employ the quantum detection
theory for observation of ciphertext, and easily modify
the formula of guessing probability. These are sometimes
called maximum “a posteriori probability” guessing.

5.3.2 Evaluation of security

A mathematical encryption box produces the cipher-
text of length at most 2|Ks| bits. Because the key length
is |Ks| bits, when the eavesdropper gets the known plain-
text of the length |Ks| bits and ciphertext corresponding
to them, she can pindown the secret key by the Brute
force attack (trying 2|Ks| key candidates). That is, the
guessing probability is one. In addition, the sequence
of the ciphertext has certain correlation because of the
structure of PRNG. So the eavesdropper can investigate

several mathematical algorithms to estimate the secret
key.
In the ideal quantum enigma cipher, the eavesdrop-

per’s observation of the cipertext as signal in commu-
nication lines suffers error completely by quantum noise
randomization, while the legitimate user does not. So
the legitimate user can decrypt with the secret key, but
the eavesdropper does not even if she gets the secret key
after her observation of ciphertext as signal.
Thus, the guessing probability is

PG(Ks) = 2−|Ks| (33)

even if she collects the ciphertext of 2|Ks| bits. This
means an immunity against the Brute force attack by
computers. On the other hand, the quantum no cloning
theorem may protect a physical Brute force attack by
cloning whole quantum states, because a set of quantum
states for the quantum enigma cipher are designed by
non-orthogonal state with very close signal distance each
other.
Recently, 1 Gbit/sec physical random cipher as a first

generation of quantum enigma cipher was demonstrated
and Y-00 cipher of 100 Gbit/sec by wave length division
multiplex was also demonstrated[19].

6 Security of one time pad

6.1 Ideal

When the distribution PK is uniform, the one time pad
has the perfect secrecy such that

PG(M) = max
M∈M

P (M |C) = P (M) (34)

However, even if the system has the perfect secrecy, it
does not mean “secure” against known plaintext attack
on data when data is a language such as English. That
is,

⌈The perfect secrecy means secure against ciphertext
only attack, and it does not imply the security against
“known plaintext attack and falsification attack”.[26]⌋

Thus, the term of “unconditional security” is mislead-
ing. Let us show an example. The eavesdropper can get
the correct chiphertext of the length |K| bits, and she
can launch the Brute force attack. The decrypted data
sequences of the length |K| bits give all combination of
English alphabet (ASCII code) of length |K| bits. These
include a large number of correct English words such as
“orange, signal, cipher, and so on”. When the attack is
ciphertext only attack, she cannot decide which word is
the real plaintext. However, if she knows the first alpha-
bet “o” as the known plaintext attack, the correct word
may be “orange”. Thus, the guessing probability may
become very large value.

6.2 Security of one time pad forwarded by QKD

The quantum key distribution does not provide the
perfectly uniform distribution for key sequence KG
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against an eavesdropper. In fact, the average guessing
probability is given by Portman and Renner[27] as fol-
lows:

P̄G(KG) ≤
1

2|KG| + d (35)

where d is the trace distance in QKD protocol. Thus,
the one time pad forwarded by QKD is non ideal one
time pad which is encrypted by key sequence with non
uniform distribution. That is,

Λ = ([PK ] ̸= ideal, Enc,Dec), PK ̸= 1

2|KG| (36)

If the value of the trace distance is very large in compari-
son with 1

2|KG| , the guessing probability is very large. So
such a one time pad may be decrypted easily.
In addition, QKD needs an initial secret key for the au-

thentification before the legitimate users start the QKD
protocol. This is the same situation as the conventional
symmetric cipher in which the key is for initial seed key
for PRNG. Thus, we cannot start cryptographic action
without certain initial secret key, except for the conven-
tional public key encryption.

7 Quantum radar camera

Quantum imaging is one of attractive applications of
new physical phenomena. Especially ghost imaging is a
technology to synthesize target image by means of cer-
tain correlation between signal beam and reference beam.
In original proposal[28] and experiment[29], an entangle-
ment light was employed in the system. By lively in-
vestigation, it was clarified that ghost imaging does not
represent a true quantum, and that the function can be
realized by semi-quantum or classical resource. This fact
is reasonable in the world of science and technology, be-
cause any useful technologies in real world should be re-
alized by classical way, and these functions may be en-
hanced by quantum nature. The important fact is that
this function can be realized only at optical field. In ad-
dition, a special feature of ghost imaging is to have im-
munity against atmospheric turbulence. To analyze it,
one can employ the extended Huygens-Fresnel principle.

E(r′, t) =

∫
E(r, t)

k0e
ik0(L+|r′−r|2/2L)

i2πL
eϕ(r

′,r)dr (37)

where ϕ(r′, r) is a complex valued random process due to
turbulence.
Thus, based on Glauber’s coherence theory and the

above formula, unified theory has been presented by Erk-
men and Shapiro[30], Hardy and Shapiro[31]. The basic
formula is given by following the average cross correlation
function.

< R(rccd) >= K

∫
dτ1

∫
dτ2

∫
drh(t− τ1)h(t− τ2)

× < E†
R(rccd, τ1)E

†
T (r, τ2)ER(rccd, τ1)ET (r, τ2) >(38)

Their works give a great contribution towards a real de-
velopment of this technology. However, one can see eas-
ily the fact that their model includes highly non-linear

random process in which Volterra-Wiener theory is ap-
plicable. Based on the above, a general design theory
as space-time quantum Wiener receiver theory has been
developed by the present author. It has a potential to
generalize the ghost imaging as a “quantum radar cam-
era”, which is applicable to automobile camera under any
weather. I will report in the subsequent paper.
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Abstract. Calderbank-Shor-Steane (CSS) stabilizer states are of particularly importance in the appli-
cation of fault-tolerant quantum computation (FTQC). However, how to efficiently prepare arbitrary CSS
stabilizer states for general CSS stabilizer codes is still unknown. In this paper, we propose two protocols
to distill CSS stabilizer states with Steane syndrome extraction by classical codes or quantum CSS codes.
With the ability to produce high-quality ancillary states, FTQC schemes using Steane syndrome extrac-
tion or those based on teleportation become promising. These ancillary states are expensive and valuable.
Along the same lines, we show that classical coding techniques can reduce ancilla consumption by using
additional transversal controlled-NOT gates and classical computing power.

Keywords: CSS stabilizer states, Steane syndrome extraction, ancilla distillation, error-correcting codes

1 Introduction

Fault-tolerant quantum computation (FTQC) com-
putes in the codespace of a stabilizer code [1] using
imperfect quantum circuits, interspersed with repeated
error corrections. Currently most FTQC schemes use
Calderbank-Shor-Steane (CSS) type stabilizer codes [2,
3]. We focus on the preparation of the CSS stabilizer
states in this talk. Technical details of this work can be
found in [4].

CSS stabilizer states can be prepared using Clifford
encoding circuits, but this is not fault-tolerant, so the
generated states need to be verified. Basic CSS stabilizer
states, such as the logical states |0〉L or |+〉L, are usu-
ally fault-tolerantly generated by specific quantum cir-
cuits with post-selection in FTQC schemes. For general
CSS codes, it is unknown how to produce arbitrary sta-
bilizer states that are clean enough for FTQC, especially
when the code length is large. Herein we show how classi-
cal error-correcting codes, together with Steane syndrome
extraction [5], can be applied to distill any CSS stabi-
lizer states (Protocol I), by actively correcting errors on
a fraction of ancillas. Along the way, we also develop
a distillation protocol by using CSS codes rather than
classical codes (Protocol II).

2 Ancilla Distillation

Steane suggested a method to extract error syndromes
for CSS codes [5], as shown in Fig. 1. Two clean ancil-
las |+〉L and |0〉L in the logical states of the underlying
CSS code Q are used to measure the X and Z error
syndromes, respectively. Each controlled-NOT (CNOT)
gate in Fig. 1 represents transversal CNOT gates, and
X and Z errors will propagate, respectively, to the an-
cillas |+〉L and |0〉L through the CNOTs. Suppose the
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Figure 1: Quantum circuit for Steane syndrome extrac-
tion.

measurement outcomes of |+〉L and |0〉L are mX and
mZ (in bits), respectively. Then the measured X and Z
syndromes are H1m

T
X , and H1m

T
Z , respectively. We can

perform error correction according to these syndromes or
just keep track of them.

Suppose we are given a bunch of imperfect ancillas in
some CSS stabilizer state, and we are going to distill
them. It is not efficient to use Steane syndrome extrac-
tion to do error correction on a noisy ancilla since it re-
quires us to already have two clean ancillas. What we are
going to do is to figure out the correct error syndromes of
a small portion of the ancillas by measuring the rest. Our
distillation protocol for CSS stabilizer states by classical
codes (Protocol I) involves two rounds of error correc-
tions: one for X errors and one for Z errors. Suppose C2
is an [m, k, d] binary linear block code that can correct
t = bd−1

2 c errors. Such a code has r = m − k parity

checks and let H2 = [AT Ir] be the parity-check matrix
of C2 in the systematic form. In each round, we group
the ancillas and do transversal CNOTs on the ancillas
according to the pattern of the parity-check matrix H2.
Equivalently the syndromes of target ancillas are encoded
by the classical codes into the rest ancillas. Then we can
use classical decoding techniques to recover the correct
error syndromes on the target ancillas. After two rounds,
we are left with a fraction ( k

m )2 of our original ancillas.
The rate of an arbitrary Pauli error is roughly c̃pt+1 for
some c̃ if we assume the distillation circuits are perfect.
This procedure could be iterated; or one can just vary
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the distances of the classical codes used depending on
the original error rates and the desired final error rates.
Similarly for Protocol II by quantum CSS codes.

Our distillation protocols are similar to magic state dis-
tillation, but there is an important distinction: because
these ancillas are stabilizer states, they can be made us-
ing only Clifford gates. We should expect better perfor-
mance here than in magic state distillation, where one
cannot improve the quality of the encoded state directly
by measuring it. At the very least we should be able to
do better in this respect: with magic state distillation,
there is a probability of failure, where you have to dis-
card everything; here, if we detect an error in the logical
operators, we can correct them. Also, only certain codes
with special properties can be used for magic state dis-
tillation; while a broad range of classical error-correcting
codes can be applied in our scheme.

3 Ancilla Saving

Steane syndrome extraction is more suitable for quan-
tum CSS codes, whose stabilizer generators have high
weight, regardless of locality of the stabilizers. However,
it requires two ancillas of the same size of the underlying
quantum codes, which makes Steane syndrome extrac-
tion expensive especially when code length is large. As
a consequence, we would like to save them during syn-
drome measurement as long as accumulated errors are
not serious. It turns out that the ancilla-saving problem
is equivalent to the distillation problem mathematically.
Parallelling the development of distillation by classical
codes, we propose an ancilla saving protocol by classical
codes.

When the ancilla consumption rate is fixed, we can
increase the frequency of quantum error correction with
ancilla saving protocol, which equivalently lower the error
rate on data qubits. Consequently the effective error rate
of the [[n, 1]]+[m,m−r] ancilla saving protocol decreases
to rp/m, assuming that quantum error correction is suf-
ficiently fast. Let F p

o and F p
comb be the channel fidelities

of the original and the [[n, 1]] + [m,m − r] protocols at
error rate p, respectively. Then there exists p∗ so that

F p∗

o = F
rp∗/m
comb . Hence for p ≤ p∗ the effective channel fi-

delity of the [[n, 1]]+[m,m−r] protocol is higher. Thus it
is possible to use fewer ancillas than necessary to recover
correct error syndromes in Steane syndrome extraction
by using higher classical decoding complexity and addi-
tional CNOTs, while sacrificing a little channel fidelity.
It is assumed that classical computing power is much
cheaper, compared to expensive quantum resources. The
layout of additional transversal CNOTs depends on the
chosen classical code and their cost may be compara-
ble to saved ancilla preparation. However, the overall
error-correcting power can be increased when the ancilla
consumption rate is fixed.

4 Discussion

In the distillation protocol by classical coding, error
syndromes of the target ancillas are encoded by the cou-

pling CNOTs and then recovered. If the error rates be-
come small enough, it is no longer reasonable to ignore er-
rors in the transversal circuits, and the measured parity-
check syndromes H1νi are not reliable. However, this
still can be handled by learning more parities of stabi-
lizer generators as suggested in [6]. That is, we choose
another classical code C3 to encode the parity checks of
H1 by appending more redundant rows. By calculating
additional parities checks, we can use any decoder of C3
to purify the decoding outputs of C2 and obtain more
reliable error syndromes about the target ancillas. Tech-
nical details and performance analysis are our ongoing
work.

With the ability to distill clean logical ancillas, logi-
cal teleportation becomes possible [7], since only Clifford
gates and logical ancillas are required. One can have
an FTQC scheme that consists of several quantum codes
suitable for (transversal) implementation of different log-
ical gates and apply logical teleportation to transfer logi-
cal qubits between these code blocks [7]. This avoids the
need of any magic states. However, the overhead for dis-
tillation dominates in this scheme and we need to further
analyze and quantify the cost of distillation of various
ancillas.
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1 Motivation and intoduction

Successful transmission of quantum information over
long distances is a cornerstone of quantum cryptographic
protocols and remains a daunting experimental challenge.
Photons remain the medium of choice for facilitating such
transmissions, and the community has typically focused
on transmitting information in only a small number of
“flying” photons. Common examples include encoding a
qubit in two orthogonal polarizations of a single photon
or encoding two qubits in a pair of photons entangled in
energy and time [1]. If any such photons are lost during
flight, the corresponding encoded information is unrecov-
erable. However, the large (i.e., infinite) Hilbert space of
a photonic mode offers the possibility of utilizing encod-
ings which allow for recovery of the information despite
photon loss (or other errors) occurring mid-flight. Need-
less to say, such encodings are also useful for protecting
quantum information in stationary photonic media (e.g.,
microwave cavities or collective spin systems [2]).

Two classes of single-mode codes have previously
been proposed to achieve recoverability: the seminal
Gottesman-Kitaev-Preskill (GKP) codes [4, 5], con-
structed to protect from small shifts in photonic quadra-
tures, and cat-codes [6, 7], consisting of superpositions of
evenly distributed coherent states. Code states of both
classes consist of superpositions of an infinite number of
Fock states, making encoding arguably more complex as
compared to code states defined on a finite subspace.

Here, we propose a new class of bosonic codes, the bi-
nomial codes [8]. The binomial code states are formed
from a finite superposition of Fock states weighted with
square roots of binomial coefficients. The codes can ex-
actly correct errors that are polynomial up to a specified
degree in photonic creation and annihilation operators,
including amplitude damping and displacement noise as
well as photon addition and dephasing errors. Besides
being conceptually simple and highly customizable, bi-
nomial codes can protect quantum information from cer-
tain errors using a smaller average photon number than
the corresponding cat codes. The binomial codes are tai-
lored for detecting photon loss and gain errors by means
of measurements of the generalized photon number par-
ity, which is favorable for implementation in state-of-the-

∗valbert4@gmail.com

art experimental schemes [9]. In Ref. [8], we present
an explicit quantum error recovery operation based on
projective measurements and unitary operations.

Additionally, we relax the aforementioned generalized
parity structure of the binomial codes and numerically
obtain codes with even lower unrecoverable error rates
and smaller average photon number. Interestingly, some
of these numerically optimized photonic codes can be ex-
pressed in closed form.

2 New classes of photonic codes

Suppose that flying quantum information is subjected
to a error/noise channel Eγ that can be expanded in a
small parameter γ � 1. The goal of quantum error cor-
rection is to find an encoding (denoted by projection P )
and a recovery operation R such that the effect of the er-
ror is suppressed to some higher order L after application
of the recovery:

ρ = PρP −→ REγ (ρ) = ρ+O
(
γL+1

)
. (1)

For many physical error channels acting on multi-qubit
systems, the γ-expansion of the error channel’s Kraus op-
erators consists of sums of products of single-qubit Pauli
operators whose weight increases with the order in γ [10].
If the first few terms in the expansion take the code
states to distinct subspaces of orthogonal error states,
then those terms are correctable and the corresponding
order in γ is suppressed after recovery. Quantitatively,
this is represented by the Knill-Laflamme quantum error
correction conditions [11]. For example, a pair of ele-
ments {E1, E2} in the expansion of Eγ is correctable if
and only if

PE†kE`P = ck`P (2)

for `, k ∈ {1, 2}. If the above is satisfied, then there exist
syndromes which allow one to detect and correct the two
corresponding errors during the recovery operation R.

While a single mode does not consist of multiple phys-
ical qubits, we develop a similarly useful expansion in
terms of the raising (â†) and lowering (â) operators of
the mode (with

[
â, â†

]
= 1). Analogous to a multi-qubit

code which protects from all single-qubit errors (i.e., op-
erators of weight 1), there exists a binomial code which
protects from single powers of â and â†. We can also carry
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over the principle of superposition that is so prominent
in multi-qubit error correction.

2.1 Binomial codes: simple example

A simple example of the above framework is the small-
est binomial code

|W↑〉 =
1√
2

(|0〉+ |4〉) and |W↓〉 = |2〉 , (3)

where |n〉 with n ≥ 0 are the photonic Fock states. This
code protects either against the pair {I, â} or

{
I, â†

}
,

where I is the identity (i.e., no error). One readily ob-
serves that the codes consist of Fock states of even pho-
ton numbers. This spacing guarantees that, upon loss (or
gain) of a photon, the resulting error states remain or-
thogonal to the code space. Upon action of â on the code
states, the resulting states â|W↑〉 ∝ |3〉 and â|W↓〉 ∝ |1〉
are located in the odd-photon-number subspace and are
thus orthogonal to the even-subspace code words. In ad-
dition, the two error states are spaced far enough to be
orthogonal to each other. The corresponding syndrome
used to detect a photon loss (or gain) event is simply the

photon number parity (−)
â†â

.
However, since the code space projection is P =
|W↑〉〈W↑| + |W↓〉〈W↓|, quantum error correction condi-
tions (2) also require that 〈W↑|â†â|W↑〉 = 〈W↓|â†â|W↓〉.
This condition is equivalent to the code words having the
same average photon number, which can be verified by
direct observation of Eq. (3). We will show this in a
different way to demonstrate why the codes are named
as such. Superimposing the code words yields

|W±〉 =
1

2

(
|0〉 ±

√
2|2〉+ |4〉

)
, (4)

where the coefficients are square roots of the binomial
coefficients “1 2 1” from the third line of Pascal’s trian-
gle. Note that in this basis, the quantum error correction
conditions (2) can be proven using the binomial formula:

〈W+|â†â|W±〉 =
1

2

2∑
n=0

(
2

n

)
n (±)

n
=
x

2

d

dx
(1± x)

2

∣∣∣∣
x=1

.

2.2 Binomial codes: general case

The family of binomial codes is expressed as

|WN,S
↑/↓ 〉 =

1√
2N

[0,N+1]∑
p even/odd

√(
N + 1

p

)
|p(S + 1)〉 , (5)

with spacing S > 0, order N > 0, and p ranging from
0 to N + 1. The example from the previous Subsection
is the N,S = 1 case. The previous analysis and use of
the binomial formula can be straightforwardly extended
to show that a code space spanned by the two codewords
satisfies the quantum error correction conditions (2) for
all â†kâ` such that |k − `| ≤ S and k + ` ≤ N . This
means that any elements of the small γ expansion of the
error channel Eγ which consist of a linear superposition of
such â†kâ` can be corrected. Therefore, codes at different

points of the two-dimensional parameter space {N,S} are
tailored to protecting against different types of errors.
Codes with S � N protect against error channels which
cause large photon losses while codes with S = 1 � N
protect against “dephasing” error channels expressible in
powers of â†â.

As a real-world example, we can consider the photonic
amplitude damping channel whose Kraus operators are

E` =
√

(1−e−γ)`
`! e−

1
2γâ
†ââ`. For an optical fiber, the

damping factor γ = l/latt with l being the length of the
channel and latt being the attenuation length. For a sta-
tionary cavity, γ = κδt with δt being time and κ being
the photon loss rate. The Kraus operators in the order-L
expansion in γ for such a channel are of the form â†kâ`

with k, ` ≤ L. Therefore, setting L = S = N allows one
to satisfy Eqs. (1-2) and recover the information to the
desired order.

2.3 Numerically optimized codes

The spacing between binomial code words which pro-
vides correction against photon losses comes at a price
— an average photon number increasing linearly with S.
We have used several numerical schemes which utilize the
quantum error conditions (2) for the first few powers of â
and obtained codes which do not have a spacing, have a
smaller average photon number, and still correct against
the chosen errors to the desired order. Surprisingly, some
of these codes can be obtained analytically. For example,
the code

|W↑〉 = 1√
6

(√
7−
√

17|0〉+
√√

17− 1|3〉
)

|W↓〉 = 1√
6

(√
9−
√

17|2〉 −
√√

17− 3|4〉
) (6)

has an average photon number of approximately 1.56,
compared to 2 for the smallest binomial code (3). A
careful calculation ([8], Appx. H) reveals that this code
is capable of correcting errors to first order in the γ-
expansion of the amplitude damping channel.

3 Outlook

With the advent of binomial and numerically opti-
mized codes in addition to the existing GKP and cat
code families, there are currently (at least) four fami-
lies of single-mode encodings. This raises the question:
Which encoding is best? Expanding in the small pa-
rameters of the channel may not be sufficient to answer
this question since there are many other degrees of free-
dom not taken into account. These include the average
photon number, the employed recovery channel R, fi-
delity metric, and overall experimental feasibility. In the
case of GKP codes, another obstacle is the error model:
those codes have not yet been thoroughly analyzed in
terms of the photon loss and creation operators â and
â†. An implementation-independent appraisal of the var-
ious codes could begin by making use of channel-adapted
quantum error recovery [12, 13]. A comparison of the
best case recovery fidelities for the various codes should
prove helpful in determining code applicability to various
error channels.
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Entanglement-Assisted Quantum Communication
Beating the Quantum Singleton Bound
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Abstract. Brun, Devetak, and Hsieh [Science 314, 436 (2006)] demonstrated that pre-shared entangle-
ment between sender and receiver enables quantum communication protocols that have better parameters
than schemes without the assistance of entanglement. Subsequently, the same authors derived a version of
the so-called quantum Singleton bound that relates the parameters of the entanglement-assisted quantum-
error correcting codes proposed by them. We present a new entanglement-assisted quantum communication
scheme with parameters violating this bound in certain ranges.

Keywords: Entanglement-assisted communication, teleportation, quantum codes

1 Introduction

Entanglement is a resource that enables or enhances
many tasks in quantum communication. When sender
and receiver share a maximally entangled state, quantum
teleportation allows the sender to transmit an unknown
quantum state by just sending a finite amount of classical
information over a noiseless classical channel [1]. Brun,
Devetak, and Hsieh [3] showed that the performance of
quantum error-correcting codes (QECCs) in a communi-
cation scenario can be improved when a noisy quantum
channel is assisted by entanglement.

We present a quantum communication scheme that
also uses a noisy quantum channel assisted by entangle-
ment. The main idea it to execute a teleportation proto-
col [1] in which the classical information is protected us-
ing a code and then sent via the noisy quantum channel to
the receiver. This allows to use classical error-correcting
codes. In some range, our scheme has better parameters
than the one proposed in [3], showing that the adaption
of the quantum Singleton bound to that class of codes
presented in [4] can be violated.

2 Quantum Error-Correcting Codes

A standard quantum error-correcting code C of length
n is a subspace of the Hilbert space (Cq)⊗n of n qu-
dits. Usually, q is assumed to be a power of a prime, i.e.,
q = pm for some prime p. A QECC encoding k qudits
has dimension qk and is denoted by [[n, k, d]]q. A QECC
with minimum distance d = 2t + 1 allows to correct all
errors affecting no more than t of the subsystems. The
parameters of a QECC are constraint by the so-called
quantum Singleton bound [5, 6]

2d ≤ n− k + 2. (1)

Codes meeting this bound with equality are called quan-
tum MDS (QMDS) codes.

An entanglement assisted quantum error-correcting
code (EAQECC), denoted by [[n, k, d; c]]q, is a quantum
error-correcting code that additionally uses c maximally
entangled states.

∗markus.grassl@mpl.mpg.de

In [4], the authors formulated a Singleton bound for
the parameters [[n, k, d; c]]q of an EAQECC:

2d ≤ n− k + 2 + c. (2)

In [3], a construction of EAQECC from any linear code
[n, κ, d]q2 over the finite field Fq2 of size q2 was given.
The parameters of the resulting EAQECC are [[n, 2κ −
n+ c, d; c]]q, where the number c of maximally entangled
states depends on the classical code and is at most n−κ.
Using a classical MDS code [n, κ, n−κ+1]q2 , we obtain an
EAQECC with parameters [[n, k, n−k+c

2 + 1; c]]q, meeting
the bound (2) with equality when n = k + c is even.
Assuming the maximal value for c = n−k, the minimum
distance of an EAQECC from this construction obeys the
bound

d ≤ n− k + 1. (3)

which is exactly the Singleton bound for classical codes.
The bound (3) is also a trivial absolute bound on the
minimum distance of any quantum code.

3 The New Scheme

In our scheme, we use the c maximally entangled states
in a teleportation protocol to transmit k = c qudits. Each
generalized Bell measurement in the teleportation pro-
tocol has q2 possible outcomes, i.e., we have to send a
classical string with 2k symbols from an alphabet of size
q to the receiver. As we allow for n uses of a quantum
channel, we can use a classical code C over an alphabet
of size q encoding 2k symbols into n symbols, denoted by
[n, 2k, d]q, were again d denotes the minimum distance of
the code. The classical string of length n is mapped to
one of the qn basis states of the Hilbert space of n qudits
and then sent via the noisy quantum channel N to the
receiver. The receiver measures the output of the quan-
tum channel in the computational basis and obtains a
classical string of length n. Applying error correction for
the classical code C, the 2k symbols corresponding to the
measurement results from the teleportation protocol are
retrieved. The measurement and the classical decoder are
depicted together as a quantum-to-classical map Dq→c in
Fig. 1. The receiver applies the corresponding correction
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Figure 1: Our teleportation-based scheme using c = k maximally entangled states.

operators Xa and Zb to the c qudits from the c max-
imally entangled states and completes the teleportation
protocol.

Note that we are only transmitting basis states over the
quantum channel, and therefore the protocol is resilient
to arbitrary phase errors. When following the stan-
dard teleportation protocol, one can replace the quantum
channel by a classical channel.

The parameters of our scheme are determined by the
classical code C. The Singleton bound for classical codes
implies the bound

d ≤ n− 2k + 1 (4)

on the minimum distance of our scheme. It can be
achieved whenever the classical code is an MDS code.
In the special case k = c, the bound (2) implies

d ≤ n/2 + 1. (5)

Hence, for k < n/4 the bound (2) is more restrictive
than the bound for our scheme (see also Fig. 2). Even
when more maximally entangled states are used in the
original construction of EAQECCs, our scheme has a
larger normalized minimum distance δ = d/n for a rate
R = k/n below a certain threshold (e.g., R < 1/5 for
c = (n− k)/2).

4 Discussion

Quantum codes based on teleportation have been con-
sidered before when studying the entanglement-assisted
capacity of quantum channels [2, Section III.E]. It was
observed that this results in an entanglement-assisted ca-
pacity that is half the classical capacity of the unassisted
quantum channel. We are, however, not aware of related
results for the finite-length case.

Our scheme beats the quantum Singleton bound (2)
for quantum communication schemes with a rate below a
certain threshold and uses a smaller amount c of entan-
glement than the scheme proposed in [3]. On the other
hand, when the amount of additional entanglement does
not matter, using c = n − k maximally entangled in the

-
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Figure 2: Asymptotic bounds (length n → ∞) on the
normalized minimum distance δ = d/n as a function of
the code rate R = k/n.

original scheme has the potential to reach the absolute
bound (3). It is plausible to assume that using c > n− k
maximally entangled states would not result in better pa-
rameters, as in this case the encoding operation E would
map k + c > n qudits to a smaller number of qubits.

Tight upper and lower bounds relating length n, di-
mension k, minimum distance d, and the number c of
maximally entangled states have yet to be found.
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Abstract. Measurement-based quantum computation utilizes local measurements on suitably entangled
resource states for the implementation of quantum gates. But a complete characterization for universal
resource states is still missing. Motivated by the connection between symmetry-protected topological order
in one dimension and the protection of certain quantum gates in measurement-based quantum computa-
tion, we show that the two-dimensional plaquette states on arbitrary lattices exhibit nontrivial symmetry-
protected topological order and that they are universal resource states for quantum computation.

Keywords: measurement-based quantum computation, universal resource states, valence-bond states,
quantum phases of matter, symmetry-protected topological order

1 Introduction

An intriguing connection between the resourcefulness
in measurement-based quantum computation (MBQC)
and certain phases of matter was discovered by Else et
al. in Ref. [1], where the authors show that there ex-
ists a property of many-body states, namely symmetry-
protected topological (SPT) order in one dimension, that
can be utilized for the protection of certain one-qubit
quantum gates in MBQC. In Ref. [2, 3] the utility of
SPT phases for quantum computation in 1D has also
been demonstrated for other symmetry groups beyond
the Z2 × Z2 symmetry originally considered in Ref. [1].
However, in order for quantum computation to be uni-
versal in MBQC, the entangled resource states need to be
at least two-dimensional. Therefore, one important ques-
tion that arises is whether there exist two-dimensional
SPT states that enable universal MBQC. Moreover, if
such states exist, can universality be a global property
of its entire phase? Can such a state possess robust-
ness against noise that respects the symmetry of the SPT
phase? Such robustness could originate from the under-
lying topological nature: a symmetry-protected topologi-
cally ordered state in the presence of noise that respects a
certain symmetry does not immediately undergo a quan-
tum phase transition, i.e. it remains a gapped ground
state of some generic, symmetric Hamiltonian.

2 Main Results

In our paper [4], we demonstrate that certain canonical
2D SPT tensor-network states (protected by any symme-
try) indeed serve as universal resource for MBQC. These
fixed point wave functions were constructed by Chen and
collaborators [5, 6] using group cohomology.

The authors of Refs. [5, 6] discovered a consistent rela-
tion between the third group cohomology H3(G,U(1)) of
a symmetry group G and SPT order in (2+1)D bosonic
systems and beyond. Particularly, they prove that each

∗hendrik.poulsen-nautrup@uibk.ac.at
†tzu-chieh.wei@stonybrook.edu

nontrivial element of the third group cohomology cor-
responds to a distinct, nontrivial SPT phase and as
such serves as a classification of SPT order. Specifi-
cally, in Ref. [6], they discuss a fixed point wave function
in a canonical form, showing that it exhibits nontrivial
SPT order with respect to symmetry representations con-
structed from nontrivial elements in H3(G,U(1)).

In Ref. [6] the authors predominantly considered 2D
fixed-point wave functions on square and triangular lat-
tices. Essentially, these ground states possess plaquette-
like entanglement structures, built upon products of qu-
dit GHZ-like states:

|ψgs〉 =
⊗
j

|ψ〉pj

=
1

dnp/2

⊗
j

(
d−1∑
g=0

|α1 = g, β2 = g, ..., ζk = g〉pj

)

where qudits within the jth plaquette pj are labeled by
α1, β2, ..., ζk.

We show that the canonical plaquette-like entangle-
ment structures defined on arbitrary random lattices (in-
cluding all regular and quasicrystalline lattices as spe-
cial cases) do indeed display nontrivial SPT order while
also enabling universal MBQC provided the underlying
graphs are ‘percolated’ or, said equivalently, in the su-
percritical phase of percolation.

Our results show that nontrivial 2D (or higher) SPT
order can give rise to universal quantum computation,
strengthening the link uncovered in the 1D case by Else
et al. [1]. Even though the results hold only for fixed-
point wave functions, it is likely that small deformations
preserving the symmetry should extend this universality
to a finite region within the phase.

We note that there is a related work by Miller and
Miyake [7] where they constructed a specific 2D spin-1/2
ground state respecting Z3

2 symmetry such that it can
yield random cluster states that are universal.
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(a) (b)

(c) (d)

Figure 1: (a) A two-dimensional plaquette states |ψ〉pj

defined on a square lattice (blue dots: parton qudits;
physical sites: shaded circles). Connections indicate
entanglement. (b) Measurement reduces the plaquette
state to a bond state. Red crosses mark sites on which
all virtual qudits are measured in the generalized Pauli-X
basis. (c) Schematic for the proof that plaquette states
on arbitrary lattices are universal resources. (d) An ap-
plication of (c) on the square-octagon lattice.

3 Quantum Computational Universality

The detailed proof of why the generalized plaquette
states possess SPT order follows closely that of Ref. [6]
by examining the symmetry action on the boundary and
relating the obstruction of being a product of local uni-
taries to a nontrivial element in the cohomology group.
Instead, we will focus on the quantum computational uni-
versality of such fixed point states.

In Fig. 1(c), we provide a schematic illustration for
the proof that plaquette states on arbitrary lattices
are universal resources. Essentially, using entanglement
concentration from GHZ-like states to Bell-like states,
we can concentrate entanglement to two parton qu-
dits across polygons, at the expense of measuring some
other qudits. The sites carrying endpoints of the re-
sulting Bell entanglement are chosen to form vertices of
a honeycomb-like subgraph. The red dashed lines de-
picted in Fig. 1(c) and 1(d) represent ‘Bell-state’-like
entanglement or ‘valence-bonds’ shared between parton
qudits associated with some polygons. We can intu-
itively see that as long as the original lattice or graph
has ample connectivity, the paths of the honeycomb sub-
graph can be chosen sufficiently far apart such that red
dashed lines of two-qudit shared entanglement do not
cross, and can only converge at vertices. Altogether,
the resulting entanglement structure is that of a valence-
bond solid as introduced by Verstraete and Cirac in
Ref. [8]. Therein, valence-bond solids were also shown to
be universal for MBQC. Fig. 1(b) shows the valence-bond

Figure 2: Illustration of entanglement concentration. (a)
is an entanglement concentration to any two partons on
the plaquette by measuring qudits outside the red path in
the generalized Pauli-X basis. Operation in (b) merges
two plaquettes into one utilizing Bell-measurements such
that entanglement can be concentrated to any two par-
tons on these two plaquettes via (a).

state obtained from the square-lattice plaquette state in
Fig. 1(a). Fig. 1(d) displays an application of the general
idea as described in the previous paragraph and illus-
trated in Fig. 1(c). Note that separation between paths
does not need to be very far although we require this for
the general proof of universality. (The specific tool is the
entanglement concentration illustrated in Fig. 2.)
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Abstract. Implementing a qubit quantum computer in continuous-variable systems conventionally re-
quires the engineering of specific interactions according to the encoding basis states. In this work, we
present a unified formalism to conduct universal quantum computation with a fixed set of operations but
arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes
can be implemented by basis state preparations, continuous-variable exponential-swap operations, and
swap-tests. Our formalism inherits the advantages that the quantum information is decoupled from col-
lective noise, and logical qubits with different encodings can be brought to interact without decoding. We
also propose a possible implementation of the required operations by using interactions that are available
in a variety of continuous-variable systems. Our work separates the ‘hardware’ problem of engineering
quantum-computing-universal interactions, from the ‘software’ problem of designing encodings for specific
purposes. The development of quantum computer architecture could hence be simplified.

Keywords: Continuous variable, quantum computer, hybrid quantum system, decoherence free subsys-
tem

1 Introduction

In a wide range of quantum computational tasks, the
basic quantity of quantum information is a two-level sys-
tem that can be prepared in an arbitrary superposition
state (qubit). If the quantum system consists of indi-
vidually addressable energy eigenstates, such as the in-
ternal levels in trapped atoms or the polarisation states
of electron spins [1], the qubit bases are most trivially
represented by two of such states. On the other hand,
there are also quantum systems, such as optical modes,
mechanical oscillators, quantised motion of trapped ions,
and spin ensembles [2, 3, 4, 5, 6], that consist of an abun-
dance of evenly-spaced energy levels. In these systems,
usually referred to as continuous-variable (CV) systems,
addressing a particular energy eigenstate is usually chal-
lenging. There is thus no trivial CV representation of a
qubit.
Nevertheless, the large Hilbert space of each degree of

freedom, usually called a quantum mode (qumode), pro-
vides the flexibility for designing qubit encodings. Each
popular encoding has its own strength and drawbacks.
For instances, Fock state encoding [7, 8, 9] and coherent
state encoding [10, 11] enable efficient state preparation
and linear-optical logic gates, but some logic gates are
probabilistic and their implementations require stringent
detection efficiencies. Cat state encoding enables quan-
tum error correction against photon loss [12, 13], but
implementing the logic gates may require slow Zeno dy-
namics. The Gottesman-Kitaev-Preskill (GKP) protocol
enables fault-tolerant quantum computating and logical
states to be readout by accurate homodyne detection,
but the basis states are superpositions of squeezed states
which the construction is technically challenging [14, 15].
Conventionally, implementing the computing logical

processes requires the engineering of dedicated interac-
tions according to the characteristics of the encoding ba-

∗hklau.physics@gmail.com

sis, which may require a specific physical setup, i.e. hard-
ware, that cannot be changed as easily as the choice of
encoding. For example, the phase-shift gate for the Fock
state encoding, i.e., |0L〉 = |0〉 and |1L〉 = â†|0〉, is im-
plemented by applying the operation exp(iφâ†â). How-
ever, this operation does not implement a logical phase-
shift, but it maps the state out of the computational
subspace for coherent state encoding, i.e., |0L〉 = |α〉 and
|1L〉 = | − α〉. The variety of encoding diversifies the ar-
chitecture of CV quantum computers, and precludes the
strengths of each encoding to be shared with all others.
We ask a question, is there a unified scheme that could

conduct universal quantum computation irrespective of
the basis states? The answer is, surprisingly, yes. In
our work, we describe two universal quantum computing
schemes that all logical processes are independent of the
encoding state in each qumode. Specifically, a qubit is
stored in the parity of two or four qumodes. The logi-
cal processes, which include computational state initial-
isation, universal set of logic gates, and state-readout,
can be implemented by the preparation of encoding ba-
sis states |0L〉 and |1L〉, exponential-swap operations, i.e.,

eiθŜ |ψ1〉|ψ2〉 = cos θ|ψ1〉|ψ2〉 + i sin θ|ψ2〉|ψ1〉, and swap-
tests [16]. We also show how the required operations
can be implemented with realistic CV interactions that
could be found in superconducting cavity QED systems,
mechanical oscillator systems, and trapped ions.
Our work separates the ‘hardware’ problem of engi-

neering quantum-computing-universal interactions, from
the ‘software’ problem of designing encodings for specific
purposes. The development of quantum computer ar-
chitecture could hence be simplified. Additionally, the
schemes also come with two advantages. First, they
inherently allow logical qubits with different encoding
to be brought to interact without decoding. This un-
precedented flexibility would allow the strengths of dif-
ferent encodings to be utilised in the same computation,
when each encoding is employed in the computational
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process that it is best adopted. For instance, coherent
states are efficiently created as undetected logical ancil-
lae, cat states are best for transmitting quantum informa-
tion through lossy links, and the final result is accurately
readout from GKP qubits.
Second, the logical states are robust against collective

noise. In CV quantum computation, leakage error is a
major form of error as the environmental noise typically
projects the encoded state out of the computational sub-
space. In some CV systems, the noise is the same in each
qumode. The decoherence effect of such collective noise
can be reduced by storing the quantum information in
the decoherence-free-subsystem (DFS) [17, 18, 19]. As
a merit of our schemes, the logical states are inherently
within the DFS. The key idea is that collective noise com-
mutes with the swap operation, which is the foundation
of the logical processes. To the best of our knowledge,
our schemes are also the first explicit protocols that in-
corporate DFS in CV systems.
More details of our work can be found in the arXiv

posting [20].
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Measurement-based quantum computation with mechanical oscillators
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Abstract. It has recently been demonstrated that various types of mechanical oscillators can operate
deeply in the quantum regime. We explore the possibility of using them as platforms for quantum com-
putation over continuous variables. In particular, we consider an optomechanical system composed of a
single cavity mode interacting with a set of mechanical resonators and we propose a scheme for generating
the so-called cluster state, a universal resource for measurement-based quantum computation. We also in-
troduce a tomographic method to verify the cluster generation and we detail the necessary measurements
to perform arbitrary Gaussian operations.

Keywords: quantum computation, continuous variables, optomechanical systems, quantum tomography

Quantum computation over infinite-dimensional sys-
tems (continuous variables) has been historically ex-
plored focussing first on the circuit model of computa-
tion [1], much akin to finite-dimensional systems (dis-
crete variables). However, it was soon realised that a
valid alternative approach is constituted by the so called
measurement-based model [2]. The latter allows to per-
form general processing of quantum information over con-
tinuous variables provided a suitable entangled state —
dubbed cluster state — is used as a resource and addi-
tional measurements are locally performed over its con-
stituents. Despite the limitations of finite squeezing, both
the circuit and measurement based models have been the-
oretically proven to be fault tolerant, once proper encod-
ings are introduced.

Much effort has been recently devoted towards the gen-
eration of cluster states whose nodes are constituted of
light modes. On the other hand, recent experimental
advances have shown that various types of massive me-
chanical oscillators can operate deeply in the quantum
regime [3], promoting these systems to interesting can-
didates for quantum technologies. These achievements,
together with the possibility to scale up the number of in-
volved oscillators, pave the way for more advanced quan-
tum information applications. In this context, Schimidt
et al. [4] have proposed a platform, based on the lin-
earized radiation-pressure interaction, to implement gen-
eral Gaussian operations between multiple mechanical os-
cillators. The implementation of such a platform would
represent a first step towards the realization of the circuit
model of universal quantum computation over continu-
ous variables. However, specific schemes for continuous-
variable measurement-based computation involving mas-
sive degrees of freedoms, rather than radiative ones, are
still lacking. The main advantage of this would be that,
being hosted in stationary or solid-state based architec-
tures, they offer a promising path towards integrated and
scalable quantum technologies.

In order to bridge this gap, the aim of the present work
is to introduce a scheme to generate, verify, and process

∗a.ferraro@qub.ac.uk

information over continuous-variable cluster states of me-
chanical oscillators.

Generation of the cluster state over a mechanical-
oscillator network— We propose a scheme for generating
cluster states whose nodes are embodied by the mechani-
cal modes of an optomechanical system. These states are
obtained by properly engineering both the Hamiltonian
and the dissipative dynamics of the radiation degrees of
freedom. Specifically, the method we use to engineer the
desired Hamiltonian is based on multi-tone external driv-
ing, adapting and generalizing previous approaches so
that the required sidebands could be independently ex-
cited. In order to drive dissipatively the system to the
graph states, we use a theoretical framework — intro-
duced in Ref. [5] — that adapts quantum dissipation en-
gineering to Gaussian continuous-variable systems. The
merit of our scheme is that one can generate arbitrary

Figure 1: (Color online) (a) : An optomechanical sys-
tem consisting of one optical cavity mode a coupled to
N non-interacting mechanical resonators b1, . . . , bN . The
cavity dissipates with a damping rate κ, and it is driven
by M classical laser fields. (b) : The state of the mechan-
ical resonators can be prepared in different graph state
geometries, e.g., from left to right, a linear, a dual-rail,
and a generic graph state. A graph state with lattice
geometry is called cluster state and can be proven to
be a universal resource for quantum computation over
continuous-variable systems.

26



graph states only by driving the optomechanical system
with a sequence of tunable pulses. The generation pro-
tocol is sketched in Fig.1 and described in full in Ref. [6]
— where the interested reader can find all the technical
details, including the effect of mechanical noise.

Quantum state reconstruction of the mechanical-
oscillator network— Once the cluster state has been gen-
erated, a question immediately arises: how can we ver-
ify that the state prepared in the experiment is indeed
the desired one? In the language of Quantum Mechanics,
the problem is that of experimentally estimating the den-
sity operator of the mechanical system. It is well known
that the full information encoded in the density operator
cannot be accessed through the measurement of a single
observable. One must instead collect the measurement
statistics of several distinct observables, a task which re-
quires access to many copies of the quantum system of
interest. By post-processing the outcomes of these mea-
surements, the experimenter may estimate the density
operator via techniques broadly known as quantum to-
mography or quantum state reconstruction.

In an optomechanical context various approaches to
quantum state reconstruction have been explored in
the literature, for example employing quantum non-
demolition measurements of mechanical quadratures, us-
ing short laser pulses to prepare and read out the me-
chanical state, or exploiting a detuned driving field [3].
However, to the best of our knowledge, no method has
been proposed for the efficient readout of the quantum
state of an oscillator network in an optomechanical set-
ting.

We propose a protocol of quantum state reconstruc-
tion for the mechanical portion of the optomechanical
system used to generate the cluster state (again, see
Fig. 1). Our protocol relies on the linearized radiation
pressure interaction, and exploits measurements on the
accessible output modes of the optical cavity. By con-
trolling in time the interaction strength, we show that it
is possible to encode information about any mechanical
quadrature in the cavity mode, which can then be mea-
sured through the output field leaking out of the system.
Specifically, an arbitrary moment of the selected quadra-
ture can be estimated via appropriate light-quadrature
measurements, followed by the inversion of a linear sys-
tem of equations. Similarly to Ref. [7], an important
advantage of this scheme is that it requires minimal ac-
cess to the mechanical network, in that only one light
probe is sufficient to reconstruct the state of the entire
network. Details can be found in the annexed technical
appendix.

Quadrature Measurements for Computation— In or-
der to carry out a computation on the cluster state, ap-
propriate measurements must be available to repeatedly
drive the cluster step by step into the required state.
For continuous-variable clusters, an arbitrary Gaussian
transformation can be achieved via suitable Gaussian
measurements, that can be implemented in the same set-
up considered thus far.

To achieve quadrature measurements on the mechan-

ics by monitoring the cavity field one must engineer a
quantum non-demolition interaction between the desired
quadrature measurement operator and the cavity field.
This can be achieved by modulating the driving fields
with the appropriate mechanical frequency, while the
phase of this modulation determines which quadrature
is addressed. Continuous measurements are then carried
out on the cavity field via homodyne detection. Tracking
the evolution of the mechanical system shows that, when
this indirect measurement is performed on a node of the
cluster state, the steady state of the remaining nodes
transforms as for the case of a strong projective mea-
surement. One can show that the procedure is robust
when noise in the measurement is included. This implies
that any single-mode mechanical measurement can be
performed by measuring the cavity field only, allowing in
turn the realisation of arbitrary Gaussian dynamics over
the cluster.

In summary, our work shows that a cavity-
optomechanics set-up allows for the generation and ver-
ification of continuous-variable cluster states. In addi-
tion, the same set-up allows to perform arbitrary Gaus-
sian operations measuring the cavity field only, which
constitutes a necessary step towards universal quantum
computation.
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Abstract. We consider the problem of transforming a tripartite state to a bipartite state by stochastic
local operations and classical communication (SLOCC). We first exhibit a family of tripartite states of
which a single copy cannot be transformed to the bipartite maximally entangled state, while two copies
can. We then characterize tripartite pure states of which multiple copies will have more advantages in
SLOCC transformation than a single copy. Finally we explicitly compute the SLOCC distillation rate of a
family of tripartite states and characterize those tripartite states which can be transformed to the bipartite
maximally entangled state by SLOCC in an asymptotic setting. Our approach is based on the classification
of matrix spaces according to the singularity.

Keywords: Entanglement transformation, Entanglement distillation rate, SLOCC, Maximal rank of ma-
trix space

1 Introduction
What is the optimal number of copies of a given N -

partite state |φ〉 that can be obtained from a given N -
partite state |ψ〉, when each party can only perform lo-
cal operations on their respective systems with the help
of unlimited two-way classical communication (LOCC)?
This optimal number is named as the entanglement trans-
formation rate. In practice, evaluating the entanglement
transformation rate, especially in the multipartite case,
is difficult since the class of LOCC is still not satisfacto-
rily understood. To partially remedy this situation, we
relax the restriction of LOCC and consider the class of
stochastic local operations and classical communication
(SLOCC). Remarkably, multipartite to bipartite SLOCC
entanglement convertibility was shown to be equivalent
to the polynomial identity testing (PIT) problem [1]. Af-
ter that work, it is natural to consider the multipartite-
to-bipartite SLOCC transformation problem. In this pa-
per we exhibit several results in this direction.
Our results are based on the connection of this problem

with the structure of matrix spaces, which was first sug-
gested in [1]. This work was, however, heavily inspired
by the recent progress on the non-commutative rational
identity testing problem, settled in [2] and [3].

2 Main Results
In this paper, we focus on transforming tripartite pure

state |ψ〉ABC ∈ HA ⊗ HB ⊗ HC where dim(HA) =
dim(HB) = dim(HC) = d, to a bipartite pure state
∗Yinan.Li@student.uts.edu.au
†Youming.Qiao@uts.edu.au
‡Xin.Wang-8@student.uts.edu.au
§Runyao.Duan@uts.edu.au

|φ〉AB ∈ HA ⊗ HB . We use ψABC to denote the pro-
jection |ψ〉 〈ψ|ABC . Define K(ψABC) = max{Sch(φAB) :
|φ〉AB ∈ supp(TrC ABC)}, where Sch(φAB) is the
Schmidt rank of |φ〉AB . In [1], it has been shown that
|ψ〉ABC can be transformed to |φ〉AB by SLOCC if and
only if K(ψABC) ≥ Sch(φAB).

Using the linear isomorphism ∆(|i〉 ⊗ |j〉) = |i〉 〈j|,
we denote M(ψABC) = ∆[supp(TrCψABC)], which is a
linear space of matrices (a.k.a. matrix space). Equiv-
alently, K(ψABC) = mrk(M(ψABC)) = max{rank(E) :
E ∈ M(ψABC)}. Thus it is interesting to consider the
maximal rank of a matrix space. We say a matrix space
is non-singular if it contains a full rank matrix. Other-
wise we say it is singular. Intuitively, only those tripartite
states |ψ〉ABC such thatM(ψABC) is non-singular can be
transformed to the bipartite maximally entangled state
by SLOCC. A very important structure to witness the
singularity of a matrix subspace is the shrunk subspace.
A linear subspace U ≤ Cd is called a shrunk subspace of
a d × d matrix space S if dim(U) > dim(S(U)), where
S(U) = span{∪E∈SEU}. If a matrix space has a shrunk
subspace, it must be singular and we call it a shrinking
matrix space. If a matrix space is neither non-singular
nor shrinking, we call it exceptional (e.g. the space of
3×3 skew-symmetric matrices). In addition, We say two
matrix spaces S and S ′ are equivalent, if there exist two
invertible matrices P and Q such that PSQ = S ′.

Now we will using techniques of matrix spaces to study
the tripartite-to-bipartite transformation. First, we ex-
hibit a family of tripartite states which cannot be trans-
formed to the bipartite maximally entangled state with
a single copy by SLOCC, but can do so with two copies.

Theorem 1 Let |ψd〉ABC be a tripartite state with
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supp(TrC(ψd
ABC)) = span{|i〉 |j〉 − |j〉 |i〉 : 0 ≤ i, j ≤

d− 1}. If d is odd, we have

|ψd〉ABC

SLOCC

6−→ |Φd〉AB ,

but
|ψd〉⊗2

ABC

SLOCC−→ |Φd〉⊗2
AB ,

where |Φd〉AB is the d-dimensional bipartite maximally
entangled state shared by A and B.

In general, we are interested in those states of which
multiple copies have more advantages in SLOCC trans-
formation than a single copy. Indeed this problem can
be fully solved, as shown in the following theorem.

Theorem 2 A tripartite state |ψ〉ABC ∈ HA⊗HB⊗HC

satisfies K(ψ⊗2
ABC) > K(ψABC)2 if and only if its isomet-

ric bipartite matrix space M(ψABC) ≤M(d) satisfies:

1. mrk(M(ψABC)) < dim(Im(M(ψABC))), and

2. mrk(M(ψABC)) < d− dim(Ker(M(ψABC))),

where Ker(S) = ∩E∈SKer(E) and Im(S) =
span{∪E∈SIm(E)}.

Moreover, we consider the tripartite-to-bipartite trans-
formation by SLOCC in an asymptotic setting. In par-
ticular, the transformation to the bipartite maximally
entangled state, which can be viewed as a SLOCC en-
tanglement distillation problem. Define the bipartite en-
tanglement distillation rate of a tripartite state |ψ〉ABC

by

RD(ψABC) = sup{r : |ψ〉⊗n
ABC

SLOCC−→ |Φ2〉⊗nr
AB }.

By the result in [1], we have

RD(ψABC) = log2 mrk∞(M(ψABC))

= lim
n→+∞

1
n

log2 mrk(M(ψ⊗n
ABC)).

We call mrk∞(S) the asymptotic maximal rank of the
matrix space S. We say |ψ〉ABC can be transformed
to the bipartite maximally entangled state by SLOCC
asymptotically if RD(ψABC) = log2 d. Though it is gen-
erally difficult to calculate the bipartite entanglement dis-
tillation rate, we still have the following characterization:

Theorem 3 |ψ〉ABC can be transformed to the bipar-
tite maximally entangled state by SLOCC asymptotically,
i.e., mrk∞(M(ψABC)) = d, if and only if M(ψABC) has
no shrunk subspace.

It is sufficient to consider singular matrix spaces and
prove the following two cases:

• For a matrix space S which has a shrunk subspace,
mrk∞(S) < d;

• For a matrix space R which does not have a shrunk
subspace, mrk∞(R) = d.

For a shrinking matrix space S, up to equivalence, it
can be regarded as a subspace of a maximal compression
space A(p, q, d) := span{{|i〉 〈j| : 1 ≤ i ≤ p, 1 ≤ j ≤
d}∪ {|i〉 〈j| : p+ 1 ≤ i ≤ d, 1 ≤ j ≤ q}} with parameters
(p, q, d) and p+ q < d.

We can calculate the asymptotic maximal rank of a
maximal compression space, hence the bipartite entan-
glement distillation rate of the associated tripartite state,
by the following formula:
Theorem 4 log2 mrk∞(A(p, q, d)) = log2 d − k, where
k = min{D((1− α)||p′), D(α||q′)}. Here p′ = p

d , q
′ = q

d ,
α = log2(d−q)−log2 p

log2((d−p)(d−q))−log2(pq) and D(a||b) = alog2
a
b + (1−

a)log2
1−a
1−b .

Since D(a||b) = 0 if and only if a = b. We can obtain
k > 0. Thus for any shrinking matrix space S ≤ M(d),
it is a subspace of A(p, q, d) for some parameters (p, q, d),
we have mrk∞(S) ≤ mrk∞(A(p, q, d)) < d.

On the other hand, for matrix spaces R1,R2 ≤M(d)
which have no shrunk subspace, R1 ⊗ R2 still has no
shrunk subspace. This can be proved by using the
invariant-theoretic characterizations of shrinking matrix
spaces (see e.g. [2]). In particular, we have 1

2d ≤
mrk(R1) ≤ d [4]. Thus mrk∞(R) = d.

In addition, we have the following corollary directly
obtained by the results in [2] and [3]:
Corollary 5 There is a deterministic polynomial time
algrithm to determine whether a tripartite state can be
transformed to the maximally bipartite entangled state by
SLOCC asymptotically.

3 Conclusion
In summary, we use the structure of matrix spaces to

study the entanglement transformation from a tripartite
pure state to a bipartite pure state by SLOCC. We ex-
hibit examples which cannot be transformed to bipartite
maximally entangled state by SLOCC, while two copies
can. Then we characterize those tripartite states of which
multiple copies will have advantages in SLOCC entangle-
ment transformation than a single copy. Importantly, we
obtain a full characterization for those tripartite states
which can be transformed to bipartite maximally entan-
gled state by SLOCC in an asymptotical setting. In
particular we exhibit a closed formula to calculate the
tripartite-to-bipartite entanglement distillation rate for
a large class of tripartite states.
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Abstract. In this work we derive some new information-theoretic bounds relating information
gain and disturbance in quantum measurements. Such bounds considerably strengthen previous
results and solve an open problem posed in [F. Buscemi and M. Horodecki, Open Sys. Inf. Dyn.
16, 29 (2009)]. We do this by proving a new inequality for the entropy change in quantum
channels and by specializing some recent results in the theory of approximate reversibility.
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Introduction. The measurement process is cen-
tral in quantum theory as it describes the ob-
server’s act of gathering information about the ex-
ternal world. It is quite natural then to adopt
an information-theoretic viewpoint when studying
quantum measurements.

To the best of our knowledge, the first attempt
to explicitly characterize a quantum measurement
M in terms of an entropic quantity (namely, re-
lated to the von Neumann–Shannon entropy) was
by the Dutch theoretical physicist Groenewold, who
in 1971 introduced his information gain, conjectur-
ing that it be always non-negative (thus the name
“gain”) [1]. We have to remind that, at that time,
the only widely known model for quantum mea-
surements was the von Neumann–Lüders projec-
tion postulate. Indeed, in such a restricted sce-
nario, Groenewold’s information gain is always non-
negative (this was proved by Lindblad) but the
more general theory of quantum instruments (de-
veloped in the meanwhile by Davies and Lewis and
by Ozawa) makes room for quantum measurements
with a negative information gain (this was proved
by Ozawa [2]).

More recently, the problem of characterizing the
information gain of a quantum measurement has
been considered from the viewpoint of quantum in-
formation theory. In particular, the definition given
by Groenewold has been modified so that, while it
coincides with the original one in all those cases in
which this is positive, it continues to remain pos-
itive also for more general quantum measurement
processes (while Groenewold’s measure turns neg-
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ative) [3]. Moreover, such a modified information
gain acquires a clear-cut operational interpretation
due to Winter’s quantum measurement compression
protocol [4].

Information gain and entropy change. Sup-
pose that the system being measured initially is in
state ρ and that, conditional on the outcome m
of the measurement, its state has correspondingly
changed to σm. Groenewold information gain is then
defined as an “average entropy reduction” due to the
measurement M, i.e.,

IG(ρ,M) ≡ H(ρ)−
∑
m

p(m)H(σm),

where H denotes the von Neumann entropy and
p(m) is the probability of outcome m. Therefore,
the study of Groenewold information gain amounts
to the study of entropy changes.

The first result we present here is a simple yet
powerful bound to the entropy change in quantum
channels:

Theorem 1 ([5]) Let Φ be a completely positive
trace-preserving (CPTP) map. For any input state
ρ, the following relation holds:

H[Φ(ρ)]−H(ρ) ≥ D[ρ‖(Φ† ◦ Φ)(ρ)],

where Φ† is the adjoint of Φ (i.e., Tr[X Φ(Y )] =
Tr[Φ†(Y ) X] for all X and Y ) and D(X‖Y ) =
Tr[X logX − X log Y ] is the quantum relative en-
tropy between X ≥ 0 and Y > 0.

(In fact, the above statement is also true for positive,
not necessarily completely positive, maps. However,
for the sake of simplicity, we refrain from considering
this case here, which is however of some interest in
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the light of recent results generalizing the quantum
data-processing inequality to positive TP maps [6].)

Here we focus in particular on an interesting con-
sequence of Theorem 1:

Corollary 2 ([5]) Let Φ be a CPTP map, satisfy-
ing, in particular, the condition of subunitality, i.e.,
Φ(1) ≤ 1. Then, there exists a CPTP map Ψ such
that, for any input state ρ, the following relation
holds:

H[Φ(ρ)]−H(ρ) ≥ D[ρ‖(Φ† ◦ Φ)(ρ)]

≥ D[ρ‖(Ψ ◦ Φ)(ρ)]

≥ 0.

Interpreting Ψ as the reverse channel of Φ, the
above corollary states that

1. if the entropy gain is small, then the action of
Φ can be approximately undone (by Ψ);

2. if Φ is not approximately reversible (i.e.,
minΨD[ρ‖(Ψ ◦ Φ)(ρ)] is “large”) then the en-
tropy gain too must be “large”.

Application to efficient quantum measure-
ments. Efficient quantum measurements are those
such that, for each outcome m, there exists an op-
erator Em such that σm = EmρE

†
m/Tr[EmρE

†
m]. In

this case, the CPTP map defined by

M(ρ) ≡
∑
m

EmρE
†
m ⊗ |m〉〈m|

is automatically subunital. Hence, in the case of ef-
ficient quantum measurements, Corollary 2 provides
the following bound on the operational information
gain I:

H(M)− I(ρ,M) ≥ D[ρ‖(M̃ ◦M)(ρ)], (1)

where H(M) is the Shannon entropy of the outcome

distribution p(m) = Tr[EmρE
†
m] and M̃ is the re-

verse of M.
In Ref. [7], Jacobs interprets the bound

∆S ≡ H(M)− I(ρ,M) ≥ 0

as a generalized second law for efficient quantum
measurements. It is then clear that our bound (1)
constitutes a strengthened generalized second law,
in that it not only shows that ∆S is non-negative
for efficient measurements (a trivial consequence of
the non-negativity of the relative entropy), but also
states that, whenever ∆S is “small”, then the mea-
surement process is almost reversible, as it happens
in adiabatic thermodynamical processes.

Entropic disturbance. Given an input ensemble
E = {p(x), ρx} and a CPTP map Φ, the Holevo
information loss is defined as [9]

∆χ(E) ≡ χ(E)− χ[Φ(E)],

where χ(E) = H(ρ̄) −
∑

x p(x)H(ρx), for ρ̄ =∑
x p(x)ρx, and Φ(E) is the output ensemble

{p(x),Φ(ρx)}. The techniques developed in this
work allow us to prove the following theorem:

Theorem 3 ([5]) Let Φ be a CPTP map and E =
{p(x), ρx} an input ensemble. Then, there exists a
reverse channel Ψ such that

∆χ(E) ≥ −2 log
∑
x

p(x)
√
F [ρx, (Ψ ◦ Φ)(ρx)], (2)

where
√
F (ρ, σ) denotes the square-root fidelity

‖√ρ
√
σ‖1.
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Abstract. I will present recent studies on information transfer during decoherence, inspired by quantum
information theory. I will introduce Spectrum Broadcast Structures specific quantum state structures,
responsible for an emergence of objective-like properties. I will show how they appear in several well known
models of decoherence, such as the illuminated sphere model, the spin-spin model, and Quantum Brownian
Motion model. The latter, being the most challenging due to explicit inclusion of self-dynamics of both the
central system and the environment, shows dynamical spectrum broadcast structures, encoding a motion,
rather than a single parameter.
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Quantum-to-classical transition has a been a subject of
a debate and active investigation from the very beginning
of quantum theory. The importance of understanding
the transition mechanisms lies not only in fundamental
problems like how quantum mechanics explains the ob-
served world of everyday experience, but also in more
practical questions, e.g. how to preserve quantumness.
One of the multiple aspects of the problem is explain-
ing the robust, objective nature of the observed world.
As it is well known, in quantum mechanics the act of
observation in general changes the state of the system,
thus seemingly precluding any form of objectivity. Reso-
lution of this apparent paradox has been the subject of,
so called, quantum Darwinism theory-a refined and more
realistic form of decoherence theory, where the system
is indirectly observed by monitoring portions of its en-
vironment and information content of those portions is
the main object of the study. Building on this theory,
a deeper approach using, so called, Spectrum Broadcast
Structures (SBS) has been proposed in [1]. I will first
briefly review the results of [1]. The approach is based
on a direct analysis of quantum states of the system and a
portion of the environment, rather than on information-
theoretical functions. Starting from a reasonable defi-
nition of objectivity, where, roughly speaking, multiple
observers measure their portions of the environment and
observe the same result without disturbing the system,
the argument of [1] links it to a specific state structure,
using the notion of non-disturbance proposed by Bohr.
The result can be interpreted in a quantum information
theory terms, showing that the process of objectification
is a much weaker from of quantum state broadcasting,
where only information on one observable (pointer basis)
is being broadcasted.
The power of the result [1] is that it has been obtained

in an abstract, model independent way. A natural ques-
tion arises if SBS appear in known models of decoherence.
The answer is affirmative and requires a paradigmatic
shift with respect to the standard decoherence studies
in that instead of analyzing a reduced state of the sys-
tem only, one has to look at a joint state of the system

∗jkorbicz@mif.pg.gda.pl

and a portion of the environment. I will first present re-
sults on simple models, neglecting self-dynamics of the
system. One of them is the emblematic model of colli-
sional decoherence-a small dielectric sphere illuminated
by photons, studied from the SBS point of view in [2]. I
will introduce the basic mathematical tools for searching
for SBS and then show how such structures are being dy-
namically formed in the course of the evolution, even if
the environment is initially noisy and in a more general
state than thermal. Based on the general results of [1],
the formation of SBS leads to objectification of the posi-
tion of the sphere. Moreover, with a help of the classical
Perron-Frobenius Theorem I will show a surprising effect
of how the decoherence mechanism can be used to faith-
fully broadcast a specific message into the environment.
Next, I will briefly consider the spin-spin model, where a
central spin-1/2 interacts with a bath of spins-1/2 with
random interaction strengths. I will show the formation
of the SBS, which here makes objective the projection
of the central spin on the axis chosen by the interaction.
Thus, in this simple model of qubit decoherence it not
only becomes a classical bit, but its value is stored in
many copies in the environment. Finally, I will move to
a more realistic model where self-dynamics of both the
central system and the environment is included in the
description-Quantum Brownian Motion (QBM), i.e. a
central oscillator interacting with a bath of oscillators.
The formation of SBS in the model has been studied in
[3, 4] in the approximation, where the central oscillator
is massive and hence feels no recoil from the environment
(apart from a renormalization of its frequency). This is
the opposite regime to the one usually studied so far,
where the environment is supposed to be insensitive to
the system and hence Born-Markov approximation can
be used. Here instead, we are interested in the informa-
tion flow from the system to the environment. Assuming
the environment to be discrete, with random and inde-
pendently, identically distributed frequencies and with a
help of various simplifications I will show the formation of
SBS in the studied regime. A distinctive feature of spec-
trum broadcast structures in this model is that, unlike
in the previous ones, they are dynamical: At any mo-
ment of time a SBS is being formed. This is due to the
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explicit inclusion of the self-dynamics of the central sys-
tem, which rotates the pointer basis at a time-scale of the
(renormalized) self-frequency. Traces of this motion are
dynamically encoded into the environment. I will show
the effects of non-zero temperature of the environment-
the higher the temperature the stronger the decoherence
of the central oscillator but the lower the informational
capacity of the environment, inhibiting formation of SBS.
I will end discussing several possible development paths
for the presented approach.
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Abstract. In this paper, we extend the theory of quantum Markov processes on a single quantum state
to a broader theory that covers Markovian evolution of an ensemble of quantum states. This general-
izes Lindblad’s formulation of quantum dynamical semigroups. Our formalism includes an explicit form
of semigroups, their time derivative—the infinitesimal generator, a carré du champ operator, and matrix
Φ-entropy. We find a matrix Φ-Sobolev inequality that governs the exponential decay of the these matrix
Φ-entropy. Special cases of the matrix Φ-entropy evaluate to the Holevo quantity and the variance of the
ensemble, which allows us to relate our formalism to classical coding over quantum channels. In particu-
lar, we show that the convergence rates of two special semigroups—the depolarizing and phase-damping
channels—can be explicitly computed. They result in fundamentally different equilibrium situations, for
which there is no classical analogy. Our complete paper can be found in arXiv:1511.02627 [quant-ph].

Understanding the time evolution of quantum systems
is a crucial problem in physics. To accurately describe the
evolution of a large class of open quantum systems whose
dynamics only depends on the current time step without
reference to any earlier step in the sequence, a Markovian
master equation is derived [1], and this forms the basis
of the theory of quantum Markov processes. The formu-
lation includes an explicit form of a quantum dynamical
semigroup (QDS). To date, analyses of quantum Markov
processes and their mixing-time only consider the evo-
lution of a single quantum state. However, if the quan-
tum information-processing task involves classical inputs,
a classical-quantum (c-q) encoding E : X 7→ D(H) is
normally performed before a quantum channel (or cir-
cuit). The resulting channel generates a quantum en-
semble WX , {pX(x),Wx}x∈X , if the classical input X
has a distribution pX . This class of classical-quantum
channels and the induced quantum ensembles contain im-
portant yet practical applications, e.g., sending classical
messages over a quantum channel. Thus how to describe
the dynamic evolution of a quantum ensemble WX is also
a fundamentally important question that, as yet, has not
been explored. Moreover, a multitude of questions follow.
What is the long-term behavior of this ensemble dur-
ing a Markovian dynamical process? How fast does the
ensemble generated converge to its equilibrium? Under
what circumstances does the classical-quantum channel
lose its capability to communicate information? Find-
ing the answers to those questions will shed light on how
those ensembles might be used to help computation or
communication.

In this paper, we develop a framework for Markov semi-
group theory to characterize the dynamical process of
a quantum ensemble WX , and present preliminary an-
swers to the questions raised above. The proposed semi-
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groups {Pt}t≥0 acting on the ensemble WX directly gen-
eralize Davies and Lindblad’s notion of quantum dynam-
ical semigroups (QDS) Φt [1] from a single quantum state
to an ensemble. To measure the information content of
the ensemble undergoing the proposed Markovian evolu-
tion at each time step, we use an entropic quantity—the
recently introduced matrix Φ-entropy [2]. We obtain a
formula that describes the rate at which the matrix Φ-
entropy changes with time. With this formula, we show
that the matrix Φ-entropy decays exponentially and its
convergence rate is related to the constant in the matrix
log-Sobolev inequality (see Theorem 1).

Two special cases of the proposed Markovian dynam-
ical evolution are studied: parallel evolution of each in-
dividual state and statistical mixing of quantum states
in the ensemble. In the first case, each quantum state
is independently evolved with the QDS of depolarizing
and phase-damping channels. The equilibrium state in
the former is unique; hence, the matrix Φ-entropy will
converge to zero for the depolarizing parallel evolution.
However, the matrix Φ-entropy can be strictly positive
in the latter, since each state can evolve into different
equilibrium states. We demonstrate the time evolution
of these two channels in the following figure. Next, we

(a) Depolarizing channel. (b) Phase-damping channel.

consider statistical mixing of quantum states indexed by
n-bit strings (a Boolean hypercube). In all these exam-
ples, we can explicitly compute the convergence rates.
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Markov semigroups for a quantum ensemble. Consider a
time-dependent c-q map Wt : x ∈ X 7→ Wt,x ∈ D(H) at

time t. We denote by Wt,X , {pX(x),Wt,x} the quan-
tum ensemble generated by the c-q channel Wt with the
input distribution pX We say that a family of operators
{Pt}t≥0 acting on an ensemble Wx forms a Markov semi-
group if they satisfy Ps ◦ Pt = Ps+t. Then we define
the Markov semigroup Pt acting on the initial ensem-
ble W0 by the rule: Wt : x 7→ Wt,x ,

∑
y T

x←y
t (W0,y),

where {Tx←y
t } be a set of completely positive maps, and∑

y T
x←y
t be a completely positive and trace-preserving

(CPTP) unital map. We call the distribution pX in-
variant to the semigroup {Pt}t≥0 and the c-q channels
{Wt}t≥0 if

∑
x∈X pX(x)W0,x =

∑
x∈X pX(x)Wt,x for all

t ≥ 0. In other words, the invariant measure pX ensures
that the average state of the ensemble Wt,X remained
unchanged at each time step.

Matrix Φ-entropy and matrix Φ-Sobolev inequality. We
will use the following definition of matrix Φ-entropies to
measure the information content of an ensemble WX :

HΦ(WX) , Tr [EXΦ(WX)− Φ(EX [WX ])] , (1)

where EX denotes taking expectation with respect to the
random variable X and the distribution pX , and Φ is
a convex function. The matrix Φ-entropy is introduced
in Ref. [2], and has various desirable properties as an
entropy measure. Notably, it includes several entropic
quantities as a special case. When Φ(u) = u2, HΦ(WX)
equals the variance of the ensemble WX , Var(WX). The
Holevo quantity χ(WX) can be obtained when Φ(u) =
u log u.

Define the modified energy functional as

EΦ(WX) , −Tr [EX [Φ′ (WX) ∂tPt(WX)]] ,

where Φ′ is the first-order derivative of Φ. We say a
matrix Φ-Sobolev inequality exists with a constant C > 0
if

HΦ(WX) ≤ CEΦ(WX) (2)

for all classical-quantum channels WX .

Exponential decay phenomenon. In the following, we
present the main result of the paper: the matrix Φ-
entropy admits an exponential decay along the semigroup
and the ensemble will converge to its equilibrium—the in-
variant ensemble for Pt. The decaying constant is closely
related to the constant in the matrix Φ-Sobolev inequal-
ity.

Theorem 1 (Main Result).

HΦ(WX) ≤ CEΦ(WX) ⇔ HΦ (Wt,X) ≤ e−t/CHΦ(W0,X)

for all classical-quantum channels W with an invariant
distribution pX .

We remark that Theorem 1 yields a stronger notion of
the monotonicity of the Holevo quantity: χ(Φt (WX)) ≤
e−t/Cχ(WX) for every QDS Φt. Before concluding the
paper, we present two special cases of the semigroup
{Pt}t≥0 and obtain optimal decaying constants for them.

Discussion. In this paper, we study the long-term be-
haviour of a classical-quantum channel when its input
is associated with a probability distribution. To achieve
this goal, we also extend the definition of QDS on a sin-
gle quantum state to that on a classical-quantum map,
i.e., a quantum ensemble. This kind of problem is fun-
damental, and has been studied in both the classical and
quantum settings. We summarize those results and con-
trast with our hybrid classical-quantum scenario in the
following table.

Classical Quantum Classical-Quantum

Entropy Ref. [3]
Lp relative entropy Matrix Φ-entropy

[4, Def. 3.5] Ref. [2]
Log-Sobolev

Refs. [5, 3] [4, Def. 3.5] Eq. (2) & Ref. [8]
Inequality

Exponential
[3, Corollary 1] [6, Lemma 21] Theorem 1

Decay

Our main result, Theorem 1, appears similar to Boltz-
mann’s H -Theorem [7], i.e. Ht ≤ e−t/CH0 where
Ht ,

∫
dv ft log ft is the Boltzmann’s H -quantity, and

ft is a real-valued function that determines the number
of gas particles. Our result can be arguably viewed as the
generalization of the above inequality by replacing ft to
a matrix-valued function (or a classical-quantum chan-
nel) W . Furthermore, we provide an interesting example
that has no classical analogy. In the classical setting,
irrelevant to their exact values of the stationary states,
Boltzmann’s H -quantity will always be zero after reach-
ing its equilibrium. On the contrary, the final stationary
states of the Markovian evolution of a classical-quantum
channel do play a crucial role in their long term behav-
iors. As our two examples of parallel evolution of depo-
larizing and phase-damping channels show, the existence
of a unique fixed stationary quantum state of the depo-
larizing channel guarantees that the Φ-entropy converges
to zero, indicating the ensemble loses its power of being
an information carrier. Surprisingly, it is possible that
the stationary quantum ensemble resulting from phase-
damping channels still contains computational power. It
will be interesting to see how useful this kind of quan-
tum phenomena can be in quantum communication and
computation.
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1 Petz-type and maximal f-divergences

The concept of classical f -divergences gives a unified
framework to construct and study measures of dissimi-
larity of probability distributions; special cases include
the relative entropy and the Rényi divergences. Various
quantum versions of this concept, and more narrowly,
the concept of Rényi divergences, has been introduced
in the literature with applications in quantum informa-
tion theory. Here we establish various properties of these
quantities and relations among them; in particular, we
show that in general the different quantum versions of
a classical f -divergence strictly differ for non-commuting
states under mild technical conditions; that in general
measurements strictly decrease the distinguishability of
two quantum states unless they commute; and that cer-
tain quantum operations strictly decrease certain quan-
tum Rényi divergences of two states unless they can be
reversed on the given states.

One very successful construction for quantum f -
divergences was developed by Petz [8], defined for ev-
ery function f : (0,+∞) → R and quantum states %, σ
as SPf (%‖σ) := Trσ1/2f (L%Rσ−1)σ1/2, where L% and
Rσ−1 stand for the left- and right multiplications by %
and σ−1. The most important examples are the relative
entropy SPη (%‖σ) = Tr %(log % − log σ), and SPfα(%‖σ) =

sgn(α− 1) Tr %ασ1−α, where η and fα are as before. The
latter quantities give rise to the standard Rényi diver-
gences Dα(%‖σ) := 1

α−1 log Tr %ασ1−α, which, together
with the more recently introduced sandwiched Rényi di-

vergences D∗α(%‖σ) := 1
α−1 log Tr

(
%1/2σ

1−α
α %1/2

)α
, are

known to quantify the trade-off between the two error
probabilities in various hypothesis testing problems; see
[7] and references therein.

Other ways to define quantum f -divergences go via
optimizing classical f -divergences over pairs of classical
probability distributions related to the quantum states.
One such approach was introduced and studied in de-
tail by Matsumoto under the name maximal f -divergence

∗hiai.fumio@gmail.com
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[6]. For two quantum states % and σ, and a func-
tion f : (0,+∞) → R, the corresponding maximal
f -divergence is defined as Smax

f (%‖σ) := inf{Sf (p‖q) :
p, q ∈ B(K)+ are commuting, dimK < +∞, and Φ(p) =
%, Φ(q) = σ for some CPTP map Φ : B(K) →
B(H)}. As it was shown in [6], this optimization
can be written in an explicit form as Smax

f (%‖σ) =

Trσ1/2f
(
σ−1/2%σ−1/2

)
σ1/2. By their very definition,

the maximal f -divergences are maximal among the
monotone (under quantum operations) quantum f -
divergences in the sense that for any two states %, σ, any
operator convex function f : (0,+∞) → R, and any
monotone quantum f -divergence Sqf , we have Sqf (%‖σ) ≤
Smax
f (%‖σ); in particular, this holds for the Petz-type f -

divergences. Our first result is that the Petz-type and
the maximal f -divergences are strictly different in the
following precise sense [3]:

Theorem 1 Let %, σ be non-commuting states such that
supp % ⊆ suppσ. Then

SPf (%‖σ) < Smax
f (%‖σ)

for any operator convex function f on [0,+∞) such that
the measure µf in the canonical integral representation
of f in [4, Theorem 8.1] has a large enough support. In
particular, this holds for the most relevant examples f =
η and f = fα.

2 Measured f-divergences

Measurements can be seen as quantum operations
mapping quantum states into classical probability dis-
tributions, and hence for any monotone quantum f -
divergence Sqf , one has

Sqf (%‖σ) ≥ sup
{Mx}x∈X

{Sf ({TrMx%}x∈X ‖{TrMxσ}x∈X )}

=: Smeas
f (%‖σ), (1)

where the supremum is taken over all finite POVMs. It
follows from its definition that the measured f -divergence
Smax
f is a monotone quantum f -divergence, and by the
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above, it is minimal among all monotone quantum f -
divergences, hence it is the dual notion of the above max-
imal f -divergence. A variant Spr

f (%‖σ) can be defined by
requiring the measurements to be projective; it is easy to
see that in this case the supremum over measurements
becomes a maximum that is attained at a rank-1 pro-
jective measurement (von Neumann measurement). Ob-
viously, Spr

f is also a quantum f -divergence, but it is
not clear whether it satisfies some of the most natural
requirements for a quantum divergence, e.g., invariance
under isometric embeddings of its arguments into bigger
Hilbert spaces. In fact, we have the following [3]:

Proposition 2 For any operator convex function f on
(0,+∞), the following are equivalent: (i) Spr

f is mono-

tone non-increasing under CPTP maps; (ii) Spr
f is in-

variant under isometries; (iii) Smeas
f (%‖σ) = Spr

f (%‖σ)
for any two states %, σ.

It is clear that information is lost during the mea-
surement process, and hence the distinguishability of
the post-measurement probability distributions cannot
be larger than that of the original quantum states, as
expressed by the inequality in (1). It is natural to ask
whether a measurement can be found that does not de-
crease the distinguishability. The following result shows
that in the case of the Petz-type f -divergences, this is
rarely the case unless the two states commute [3]:

Theorem 3 Let %, σ be states such that supp % ⊆ suppσ.
The following are equivalent:

(i) SPf (%‖σ) = Sf ({TrMx%}x∈X ‖{TrMxσ}x∈X ) for
some measurement {Mx}x∈X and some operator
convex function f on [0,+∞) such that | suppµf | ≥
|spec (L%Rσ−1)|+ |X |.

(ii) %σ = σ%.

(iii) SPf (%‖σ) = Spr
f (%‖σ) for all convex functions f :

(0,+∞)→ R.

(iv) SPf (%‖σ) = Spr
f (%‖σ) for a continuous operator con-

vex function f on [0,+∞) such that | suppµf | ≥
|spec (L%Rσ−1)|+ dim suppσ.

It is an open question whether condition (i) in the
above Theorem can be strengthened to SPf (%‖σ) =
Smeas
f (%‖σ). This is certainly the case for every f for

which Smeas
f = Spr

f , and it was shown very recently in [2]
that this holds for the most important examples f = η
and f = fα, α ∈ (0, 1) ∪ (1,+∞).

3 Monotonicity of α-z Rényi divergences

A two-parameter family of quantum Rényi diver-
gences, called α-z Rényi divergences, was introduced in
[1] (see also [5, Section 3.3]), defined as Dα,z(%‖σ) :=
1

α−1 log Tr
(
σ

1−α
2z %

α
z σ

1−α
2z

)z
for any α ∈ R\{1} and z > 0.

This notion encapsulates the previously considered Rényi
divergences, as the special case z = 1, α > 0 yields the
standard Rényi divergences, while z = α > 0 gives the

sandwiched Rényi divergences. Monotonicity of these
quantities under CPTP maps has been established for
various domains of (α, z) pairs (see [3] and references
therein), but a complete characterization of monotonicity
is still missing. It is natural to ask when the monotonic-
ity inequality is satisfied with equality. Here we consider
the special case where the map Φ is bistochastic, and
% or σ is a fixed point of Φ. A particular example of
this case is when Φ is a dephasing map, i.e., a (block-
)diagonalization in some basis in which one of the states
is already (block-)diagonal. Under this assumption, we
prove the monotonicity for various (α, z) pairs for which
it has not been known before, or actually fails for general
CPTP maps. Moreover, we show that in these cases the
map does not decrease the α-z Rényi divergence if and
only if it is reversible on {%, σ}, i.e., there exists a CPTP
map Ψ such that Ψ(Φ(%)) = %, Ψ(Φ(σ)) = σ. The exact
range of (α, z) pairs for which we prove these is given in
[3, Theorem 5.2]. See [3] and references therein also for
related results and the history of the reversibility prob-
lem.
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tum Rényi relative entropies. Comm. Math. Phys.,
334(3):1617–1648, 2015.
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Abstract. The auxiliary function of a classical channel appears in two fundamental quantities, the
random coding exponent and the sphere-packing exponent, which yield upper and lower bounds on the
error probability of decoding, respectively. A crucial property of the auxiliary function is its concavity,
and this property consequently leads to several important results in finite blocklength analysis. In this
paper, we prove that the auxiliary function of a classical-quantum channel also enjoys the same concavity
property, extending an earlier partial result to its full generality. We also prove that the auxiliary function
satisfies the data-processing inequality, among various other important properties. Furthermore, we show
that the concavity property of the auxiliary function enables a geometric interpretation of the random
coding exponent and the sphere-packing exponent of a classical-quantum channel. The key component in
our proof is an important result from the theory of matrix geometric means. Our complete paper can be
found in arXiv:1602.03297 [quant-ph].

1 Introduction

Denote by P(X ) the set of probability distributions
on a finite set X = {1, 2, . . . , |X |}. For any fixed P ∈
P(X ) and s ≥ 0, the auxiliary function E0(s, P ) of a
classical communication channel Q(y|x) with the output
set Y = {1, 2, . . . , |Y|} is defined as

E0(s, P ) , − log

∑
y∈Y

(∑
x∈X

P (x)Q(y|x)
1

1+s

)1+s
 . (1)

This function appears in two fundamental quantities in
classical information theory: for any R ≥ 0,

Er(R) , max
0≤s≤1

{
max

P∈P(X )
E0(s, P )− sR

}
, (2)

Esp(R) , sup
s≥0

{
max

P∈P(X )
E0(s, P )− sR

}
, (3)

where Er(R) is called the random coding exponent and
Esp(R) is called the sphere-packing exponent of the clas-
sical channel Q. These two quantities are critical since,
for any block length n and any rate 0 ≤ R ≤ C, where C
denotes the capacity of the channel W , the error proba-
bility Pe(n,R), minimized over all possible coding strate-
gies, satisfies: [1]–[3]

2−nEsp(R) . Pe(n,R) . 2−nEr(R). (4)

Consequently, properties of the auxiliary function
E0(s, P ) reveal important functional behaviour of the
two exponents, and lead to a deeper understanding of
the error probability of a given classical channel Q. It is
well-known (and easy to show) [3]: (1) E0(s, P ) ≥ 0; (2)
∂E0(s,P )

∂s > 0; (3)∂2E0(s,P )
∂s2 ≤ 0 for all s ≥ 0. It turns out

that E0(s, P ) is concave in s ≥ 0. In addition to other
important contributions in finite block length analysis,
this fact also provides an alternative proof to Shannon’s
noiseless channel coding theorem [4].

In recent years, much attention has been paid to under-
standing the reliable transmission of classical messages
through a quantum channel. In this scenario, it suffices
to consider a classical-quantum channel, which is a map-
ping W : x ∈ X 7→ Wx ∈ S(H) from the finite set X to
S(H), the set of density operators (positive semi-definite
operators with unit trace) on a fixed Hilbert space H.
Given a classical-quantum channel W and a distribution
P on the input X , we can similarly define the auxiliary
function E0(s, P,W ) [5], [6]: ∀s ≥ 0,

E0(s, P,W ) , − log Tr

(∑
x∈X

P (x) ·W
1

1+s
x

)1+s
 . (5)

This quantity is a quantum generalization of Eq. (1), and
recovers Eq. (1) when all {Wx}x∈X commute. When
no confusion is possible, we ignore the argument W in
E0(s, P,W ).

The auxiliary function E0(s, P ) in Eq. (5) also appears
in the random coding exponent Er(R) and the sphere-
packing exponent Esp(R) of a classical-quantum channel
W , which can be similarly defined as that in Eqs. (2)
and (3), respectively. However, relations between these
two exponents and the error probability of the under-
lining classical-quantum channel W are much harder to
obtain. The random coding exponent Er(R) is shown to
be an upper bound to the error probability of a classical-
quantum channel W when every Wx is a pure state in
Ref. [5], and it is conjectured to hold for general quan-
tum states. Furthermore, the sphere-packing bound that
lower bounds the error probability of W was recently
proved in Ref. [7]. These results are highly nontrivial due
to the non-commutative nature of the density operators
involved in their definitions. Many important questions
in quantum information theory are still left open. No-
tably, it is still unknown whether the auxiliary function
E0(s, P ) in Eq. (5) is concave for all s ≥ 0. This might be
one reason that the error probability of any finite block
length n is less understood in the quantum regime. Note
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that E0(s, P ) has been shown to be concave in 0 ≤ s ≤ 1
in Ref. [8]. Its proof relies on an ad-hoc operator in-
equality in order to show that the second-order derivative
of E0(s, P ) is non-positive for s ∈ [0, 1]. However, this
method seems impossible to work for all s ≥ 0.

In this paper, we prove that E0(s, P ) of a classical-
quantum channel W is concave for all s ≥ 0. Our proof
culminates the latest development of operator algebra;
in particular, the beautiful theory of a general geometric
mean of operators [9].

2 Technical Tools: Geometric Means

For two positive definte matrices A,B, define the “s-
weighted geometric mean” of A and B as

A#sB , A1/2
(
A−1/2BA−1/2

)s
A1/2. (6)

for all s ∈ [0, 1]. The geometric mean is our key ingre-
dient to our main result (Theorem 2), which enjoys the
following properties.

Proposition 1 (Properties of Geometric Means [9]).
The map (A,B) 7→ A#sB is jointly concave, ∀0 ≤ s ≤ 1.

3 Main Result

Our main result is to prove the concavity of the auxil-
iary function:

Theorem 2. Given a classical-quantum channel W ∈
W (X ) and a distribution P ∈P(X ), the auxiliary func-
tion E0(s, P ) is concave in s for all s ≥ 0.

4 Properties of the Auxiliary Function

This section presents important properties of the aux-
iliary function.

Proposition 3. The auxiliary function E0(s, P,W ) has
the following properties.

(a) Monotonicity: E0(s, P,W ) ≤ E0(t, P,W ) for all
0 ≤ s ≤ t.

(b) Non-negativity: E0(s, P,W ) ≥ 0 for all s ≥ 0 with
E0(0, P,W ) = 0.

(c) Relation with mutual information:
∂E0(s, P,W )/∂s|s=0 = I(P,W ).

(d) Concavity in s: ∂2E0(s,P,W )
∂s2 ≤ 0 for all s ≥ 0.

(e) Convexity in W : The map W 7→ E0(s, P,W ) is
convex.

(f) Convexity in P : The map P 7→ exp(−E0(s, P,W ))
is convex.

(g) Tensor invariance: E0(s, P,W ⊗ %) = E0(s, P,W ),
for some subsystem % ∈ S(H).

(h) Unitary invariance: E0(s, P, UWU†) =
E0(s, P,W ), where UWU† is the unitary con-
jugation of W .

(i) Data-processing inequality: E0(s, P,Φ ◦ W ) ≤
E0(s, P,W ) for any completely-positive and trace-
preserving map Φ.

(j) Conditions for maximization over P : The input dis-
tribution P attains E0(s, P,W ), if and only if

Tr

[
W 1/(1+s)

x

(∑
x∈X

P (x)W 1/(1+s)
x

)s]

≥ Tr

(∑
x∈X

P (x)W 1/(1+s)
x

)1+s
 , ∀x ∈ X .

4.1 Relations to Random Coding Exponent and
Sphere-Packing Exponent

The concavity property of the auxiliary function allows
us to better characterize the random coding exponent
and the sphere packing exponent:

Proposition 4. Both the random coding exponent Er(R)
and the sphere-packing exponent Esp(R) are decreasing
and strictly convex in R.

5 Conclusion

In this paper, we proved an open question that was
originally raised in Ref. [6]. A partial result to this ques-
tion was obtained in Ref. [8]; however, we can extend
the concavity of the auxiliary function E0(s, P ) for all
s ≥ 0. Consequently, the definition of the auxiliary func-
tion Eq. (5) of a classical-quantum channel exactly re-
covers its classical counterpart [3], a quantity that plays
a crucial role in classical information theory. We hope
that this concave property will also allow us to better
characterize the error probability of a classical-quantum
channel in the finite regime.
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