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Encoding a Qubit into an Oscillator using Phase Estimation

Barbara Terhal1

1 RWTH Aachen

Abstract. In 2001 Gottesman, Preskill and Kitaev proposed to encode a qubit into an oscillator (bosonic
mode) using so-called comb or grid states. We show how such states can be useful as displacement sensors,
going beyond squeezed states. We present new protocols for preparing these states using a dispersive
interaction with a qubit (as is common in circuit-QED) or using cat states, beam-splitters and homodyne
detection. Our protocols largely bypass the need for post-selection (which had been the stumbling block
in the literature until now) as we can interpret the protocols as a sequential implementation of phase
estimation.
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Fault-Tolerant Error Correction for non-Abelian Anyons

Guillaume Dauphinais1 ∗ David Poulin1 †

1 Institut quantique et département de physique, Université de Sherbrooke

Abstract. While topological quantum computation is intrinsically fault-tolerant at zero temperature, it
looses its topological protection at any finite temperature. We present a scheme to protect the information
stored in a system supporting non-cyclic anyons against thermal and measurement errors [1]. The correction
procedure builds on the work of Gács [2] and Harrington [3] and operates as a local cellular automaton. In
contrast to previously studied schemes, ours is valid for both abelian and non-abelian anyons and accounts
for measurement errors. We prove the existence of a fault-tolerant threshold and numerically simulate the
procedure for Ising anyons. Our simulations are consistent with a threshold between 10−4 and 10−3.

Keywords: non-abelian anyons, fault-tolerant error correction, cellular automaton, quantum memory

1 Background

Anyons and quantum computation. Non-abelian
anyons are hypothetical particles with very exotic prop-
erties that defy intuition but that are nonetheless per-
mitted by known laws of physics. These particles have
drawn much interest due to their suspected existence in
two-dimensional condensed matter systems and for their
potential applications in quantum computation [4]. In
particular, a quantum computation can in principle be re-
alized by braiding and fusing certain non-abelian anyons.
These operations are expected to be intrinsically robust
due to their topological nature.

Systems supporting anyonic excitations have a spectral
gap ∆. Provided the system is kept at a temperature T
lower than the spectral gap, the density of thermal exci-
tations is suppressed by an exponential Boltzmann factor
e−∆/T . However, this thermal protection is not scalable:
thermal excitations do appear at constant density for any
non-zero temperature and so their presence is unavoid-
able as the size of the computation increases. Thermally
activated anyons can corrupt the encoded data by braid-
ing or fusing with the computational anyons. It thus ap-
pears necessary to supplement topological quantum com-
putation with some form of quantum error correction.

Error correction for abelian anyons. Error correc-
tion in abelian anyonic models is intrinsically linked to
topological quantum error correction with the toric code
and has thus been studied extensively. There, it is possi-
ble to model the different thermal processes phenomeno-
logically using a particle creation rate and a diffusion
rate. Error correction monitors the presence of these
thermal excitations by periodically measuring the topo-
logical charge at every lattice site. A decoding algorithm
is used to statistically infer the homology of each parti-
cle’s world-line from these snapshots, thus enabling the
recovery of the topological information. It is now well
established that these systems possess a threshold: be-
low a critical “temperature”, the logical error rate can
be suppressed to arbitrarily low values by increasing the
system size [5].
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These error-correction studies assume that the topo-
logical charge measurements are perfect. In a realistic
setting, a measurement can report the wrong charge—
e.g., report a charge when the site if empty or fail to re-
port a charge—and moreover it can introduce additional
errors. The ability to protect a topologically ordered sys-
tems using such noisy charge measurements is intrinsi-
cally linked to fault-tolerant topological quantum error
correction, where fault-tolerance refers to the ability to
combat errors with noisy instruments. Again, for abelian
anyons, this problem has been studied extensively and is
known to possess a fault-tolerance threshold.

Error correction for non-abelian anyons. The the-
ory of error correction for non-abelian anyons is in con-
trast far less developed. Specific examples of error correc-
tion algorithms for Ising anyons [6], the Φ − Λ model [7]
and Fibonacci anyons [8] have been investigated numer-
ically and found to posses a threshold. Additionally,
greedy hard-decision renormalization group decoders can
error-correct any systems giving rise to anyonic excita-
tions [9, 10]. However, none of these studies have consid-
ered the case where the charge measurements are faulty,
a serious complication for all the previous methods.

2 Main Ideas

The decoding algorithm. The basic idea of all topo-
logical decoding algorithm is to pair up the thermal
anyons, bring the anyons of a pair together and hope that
they fuse to the vacuum. The details of how the pairs are
chosen and how the anyons of a pair are brought together
is specific to each decoding algorithm.

Gács’ proof that one-dimensional cellular automatons
can process information in a fault-tolerant way is noto-
riously complex. Harrington builds on this proof by ex-
plaining how key concepts need to be adapted to the toric
code setting. Similarly, our proof builds on Harrington’s
proof and focuses on the key novelties introduced by the
non-abelian nature of the anyons.

The key idea in Gács and Harrington’s approach is
to classify errors into distinct groups called actual errors
characterized by a level, labeled by an integer k. Roughly,
the level of an actual error describes its spatial extension
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and separation from other actual errors, both exponen-
tially increasing with k. The idea is then to demonstrate
that level-k errors are effectively suppressed at the kth
level of renormalization of the decoding procedure. In a
sense, errors of different levels do not interact with each
other and can be analyzed independently. The non-trivial
braiding relations and fusion rules of non-abelian anyons
break this simple structure.

Complications with non-abelian anyons. Non-
abelian anyons present novel obstacles to this general de-
coding strategy. First, the fusion process is intrinsically
irreversible for non-abelian anyons. In particular, when
two anyons of ‘opposite’ topological charges a and ā are
brought together, they may fuse to a non-trivial charge
(i.e. a left-over excitation remains). Observing the out-
come of this fusion is an irreversible process (collapse of
the wave-function), so the error-correction process itself
could introduce physically irreversible changes to the sys-
tem. Second, there are many more ways in which small
errors involving non-abelian anyons can build up to a
larger error. The non-abelian nature of the excitations
also presents significant additional obstacles to the anal-
ysis of the error correction procedure itself.

The fusion-rules of non-abelian anyons are in general
non-deterministic. As in Harrington’s approach, we show
that the level-k syndrome will correctly identify the topo-
logical charge of a renormalized level-k cell. But even
when a particle and its anti-particle have been correctly
identified, their fusion may result in a non-trivial parti-
cle. As a consequence, our proof needs to apply to all
possible fusion histories of the anyons. For this purpose,
we introduce the notion of the trajectory domain of an
error, which is roughly the set of sites that have a fi-
nite amplitude of becoming charged as a consequence of
a given error.

The non-abelian braiding relations have deeper con-
sequences on the error classification. Consider a situa-
tion where a low-level actual error E is well isolated, in
space and time, from any other actual error. The low-
level correction rules tend to concentrate all the excita-
tions caused by E onto a single site, which will result
in the vacuum and thus the elimination of E. Suppose
however that a high-level transition rule drags an anyon
through the region containing E. This is not forbidden
by the definition of level-k actual errors: those need to
be well isolated from each other and from higher-level er-
rors, but this does not prevent high-level transition rules
from operating in their vicinity. As a consequence of
the non-abelian braiding rules, after the passage of the
high-level anyon, the excitations created by E may no
longer fuse to the vacuum: they have become entangled
with the high-level error. Thus, neither the error E nor
the higher-level error with which it has become entangled
can be corrected individually: they need a joint correc-
tion strategy.

Existence of a threshold for non-cyclic anyons.
This entanglement across errors of different levels re-

quires the definition of causally-linked clusters of errors.
These are collections of actual errors of distinct levels
that have potentially become entangled through the tran-
sition rules applied by the correction algorithm. Despite
this new failure mechanism, repeated applications of the
correction rules are bound to succeed for non-cyclic anyon
models, a family of non-abelian anyons we introduce in
this work. Indeed, every failed attempt moves the total
charge of the anyon which is dragged by the high-level
transition rule closer to becoming abelian. After a finite
number of attempts, the topological charge will become
abelian, so the next iteration is guaranteed to succeed
as in an abelian model. Thus, the net effect is a pos-
sible slow-down of the correction process, which can be
compensated by a lower error threshold. Numerical sim-
ulations of Ising anyons are consistent with a threshold
for the error rate in the range of 10−4 ∼ 10−3.
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Quantum noise spectroscopy
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Abstract. We present spectroscopy protocols capable of characterizing the noise affecting a set of qubits.
Concretely, we are able to reconstruct the correlation functions of the bath in frequency space, i.e., the
power spectra of the environment. This is achieved by measuring the response of the qubits under control
pulses with particular symmetries and in the presence of the bath of interest. We discuss implications of
these protocols to quantum control, metrology, and fault-tolerant quantum computing.

Keywords: Quantum Control, Noise Spectroscopy

Quantum systems, and in particular qubits, are the
core of the so called quantum technologies, which range
from quantum sensors to quantum computers. Central
to the implementation of these technologies is the ability
to control quantum systems with high precision, in the
presence of undesired interactions with external, classi-
cal or quantum, degrees of freedom, i.e., the environ-
ment. Active control methods to achieve this, such as
Quantum Error Correction, Optimal Control or Dynam-
ical Decoupling [1], have been proposed and experimen-
tally demonstrated during in recent years. Such methods
can be roughly divided in two categories: (i) methods
that use specific knowledge of the noise, but are typi-
cally very susceptible to uncertainty in such knowledge,
to design efficient protocols, and (ii) methods that are
effective with minimal assumptions on the noise, but are
generally not efficient and do not scale well with the size
of the system. Clearly, the ideal scenario is that in which
complete knowledge of the noise is available, but this is
generally not the case.

Mathematically, all information about the evolution of
a quantum state of a system coupled to a bath, ρSB(t),
can be determined from its initial state, assumed here to
be factorisable for simplicity, and the Hamiltonian:

ρSB(0) = ρS(0)⊗ ρB(0) and H(t).

Now, in general, the bath is inaccessible and unmeasur-
able, and only the system is what is of interest. As
such one is interested in predicting and controlling the
evolution of ρS(t) = trB [ρSB(t)]. Since, in general,
H(t) = HS + HB + HSB includes both the system and
the bath self dynamics (HS , HB) as well as an interaction
term HSB , then

ρS(t) = φ(ρS(0)),

is described by a decoherence-inducing CPTP map φ(·).
If knowledge of ρS(0), ρB(0), and H(t) is available, then
it is in principle straightforward to predict the dynam-
ics of the state, ρS(t), by explicitly constructing the map
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φ(·), using Master equation techniques or Path Integral
methods for example [2]. What is more, one could also
use any of the powerful optimal control ((i) above) meth-
ods to design control Hamiltonians capable of efficiently
minimizing the decoherence induced by the coupling be-
tween the system and the bath to a desired level.

Unfortunately, ρB(0) and H(t) are rarely fully known,
which is only natural given that, in general, they cannot
be directly measured in general. Phenomenological ar-
guments can shine light one them but there is always a
degree of uncertainty. How to move forward, then?

The key observation is that the dynamics of a system
due to its interaction with a external (typically inaccessi-
ble and uncontrollable) degrees of freedom, i.e., the bath,
can always be written [6, 7] in terms of convolutions be-
tween the filter functions, i.e., purely control dependent
functions, and the power spectra of the bath, i.e., the
Fourier transform of the correlation functions of bath op-
erators. Let us make this statement more explicit. One
can always write the Hamiltonian of system and bath (in
an appropriate interaction picture) via

H =
∑
a,b

ya,b,(t)Qa ⊗Bb(t),

where {Qa} is an operator basis for the system Hilbert
space, Bb(t) is a time-dependent bath operator, and
ya,b,(t) si switching function that contains the effect of
the control. One can show that ρS(t) is a function of
convolutions of the form∫ ∞
−∞

dω1 · · · dωkF
(k)
a1,··· ;b1,···(ω1, · · · , ωk, T )S

(k)
b1,··· ,bk(ω1, · · · , ωk),

where the filter function

F
(k)

~a,~b
(~ω, T ) =

∫ T

0

ds1 · · ·
∫ sk−1

0

dskya1,b1(s1) · · · yak,bk · · · ei~ω·~s

is fully known, as depends on the control only, and the

power spectra S
(k)
b1,··· ,bk(ω1, · · · , ωk) is the Fourier trans-

form of the bath correlator

Tr[Bb1(s1) · · ·Bbk(sk)ρB ].
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The above implies that there is no need to know ρB and
{Bb(t)}, but only their interplay in the bath correlation
functions.

Given the above, it is clear that being able to access
information about the correlations in the bath would be
an important tool in the quantum control arsenal. A
few applications come to mind if detailed knowledge of
all the power spectra of the bath affecting a set of qubits
was available:

• The problem of having high quality quantum sys-
tems to execute a particular protocol would be one
of designing controls, and thus the filters, capable
of minimizing the value of the most relevant convo-
lutions within fixed experimental constraints, e.g.,
bandwidth.

• Applications that use the bath as resource, e.g., to
generate entanglement between qubits [8], could be
fully controlled, optimized, etc.

• If, additional information about the environment
was available, physical parameters could be ex-
tracted [9, 10]. For example, the temperature of
a bosonic thermal environment.

• Questions related to the rate of decay of correla-
tions, crucial for fault-tolerant quantum computing
applications [11], could be addressed.

This has motivated a recent push [3, 4, 5] to develop
Noise spectroscopy protocols that use a qubit as a probe
to characterize the underlying noise process affecting it,
in terms of the bath correlation functions. Many of such
protocols have been proposed and experimentally demon-
strated. Initial efforts assumed a functional form (with
some free parameters) for the power spectra [3]. This fa-
cilitated the deconvolution of the relevant integrals and
allowed the use of the measured response of the qubit
to estimate the parameters. The success of such proto-
cols heavily depended on the accuracy of the assumed
knowledge and this was a limitation. More recently, pro-
tocols that can reconstruct an ’arbitrary’ (within certain
constraints we discuss below) power spectra have been
demonstrated [4, 5]. Their key contribution is the idea
that symmetries in the control can lead to a way to decon-
volve the relevant integrals and thus avoids the need to
make a assumptions on the power spectra. However, they
have been so far limited to the case of Gaussian noise,
i.e., when only one power spectra is non-vanishing, af-
fecting a single qubit. Moving beyond these limitations
is imperative if characterizing the bath affecting systems
relevant to quantum information processing applications
is the main objective: we need to be able to characterize
general noise affecting multiple quits.

In this talk I will discuss advancement we have made
in this direction, focusing mainly on two results:
Non-Gaussian noise spectroscopy [12].- The

Gaussian noise assumption is valid in various physical
systems in the weak coupling or the short-time limits,
or is naturally satisfied for certain specific cases, e.g., a
bosonic thermal environment. However, beyond these

scenarios non-Gaussian noise is the rule, e.g., 1/f noise
in superconducting qubits.

We show that, by exploiting the mathematical struc-
ture of filter functions recently explored [7], it is possible
to (i) extend the sampling range current Gaussian noise
spectroscopy beyond the ’expected’ limit set by the in-
verse of the switching time, and (ii) to reconstruct the
higher order power spectra characterizing a classical non-
Gaussian noise source such as random telegraph noise.
We demonstrate the success of the protocol via numeri-
cal examples.

Multiqubit noise spectroscopy [13].- Since one is
typically interested in multiple qubits for quantum tech-
nology applications, there is a need to characterize the
noise affecting multiple qubits. Here by exploiting and
combining two types of symmetries in the control (an-
tisymmetry and repetition), we show that one can re-
construct all the power spectra describing the action of
Gaussian noise (or approximately Gaussian) on a set of
qubits. Concretely, a model described by a Hamiltonian
of the form

H(t) =
N∑
i=1

σ(i)
z ⊗Bi(t) +

∑
i,j

σ(i)
z ⊗ σ(j)

z ⊗Bi,j(t), (1)

where the generic bath operators {Bi(t)} have Gaussian
statistics (or to a good approximation). That is, they are
such that

C(k)(Bi1(t1), Bi2(t2) · · ·Bik(tk)) = 0 for k > 2,

where C(k)(Bi1(t1), Bi2(t2) · · ·Bik(tk)) is the k-th cumu-
lant [14] of {Bi1(t1), Bi2(t2), · · · , Bik(tk)}. A bosonic
thermal environment with linear coupling satisfies this
condition exactly and we demonstrate the execution of
our protocol in such model.

Finally we will expand on the implications of having
access to such knowledge and some of the important ap-
plications discussed earlier in this abstract, particularly
optimized entanglement generation, bath thermometry
and characterizing the decay bath correlations for fault-
tolerant quantum computing.
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Abstract. Decoupling is one of the most important primitives in a wide range of quantum science. It
is known that approximate unitary 2-designs can achieve decoupling at a certain rate if the degree of
approximation is sufficiently precise. Here, we propose a new scheme of achieving decoupling, based on
repeated applications of a random diagonal-unitary in the Pauli-X basis and that in the Pauli-Z basis, and
show that decoupling can be achieved by rather imprecise approximate unitary 2-designs. We also provide
a simple quantum circuit for decoupling and show implications on two applications.

Keywords: Decoupling, Unitary design, Quantum Shannon theory, Quantum thermodynamics

1 Introduction and main results

The task of decoupling is to destroy all possible correla-
tions between two systems by applying a unitary to one of
the systems (see Fig 1 for the full description). This task
is playing significant roles in quantum Shannon theory, as
it can be used to prove most of the capacity theorems by
showing the existence of a decoder, and also in quantum
thermodynaics, in the blackhole physics, and quantum
many-body physics, where fundamental phenomena can
be understood as consequences of decoupling.

Decoupling was originally studied using Haar random
unitaries, unitaries drawn from a unitary group uniformly
at random according to the Haar measure, and was shown
to be achievable at a certain rate [1]. It is more im-
portant to investigate decoupling with unitary t-designs,
which simulates up to the tth order moments of Haar
random unitaries, since Haar random unitaries cannot
be efficiently implemented. Simply due to the fact that
decoupling uses at most the second order properties of
Haar random unitaries, exact unitary 2-designs can triv-
ially achieve decoupling at the same rate as the Haar one.
Exact designs are however not necessary because even
Haar random unitaries cannot decouple the system per-
fectly. Motivated by this, decoupling with approximate
unitary 2-designs was studied, and it turned out that de-
coupling can be achieved if the degree of approximation
is sufficiently precise [2].

It is however still open whether the precision of approx-
imate unitary 2-designs in Ref. [2] is necessary or not to
achieve decoupling at the same rate as the Haar random
one. Addressing this question is practically and theoret-
ically important because approximate unitary 2-designs
with less precisions are presumably easier to implement,
and answering this question provides some insight to an-
other open problem of whether unitary 2-designs are re-
ally needed in decoupling.

In this work, we provide a new construction of decou-

∗nakata@qi.t.u-tokyo.ac.jp
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pling [3], where random unitaries diagonal in the Pauli-X
and those in the Pauli-Z bases are applied alternately and
repeatedly. By showing that the process achieves decou-
pling at the same rate as the Haar one but cannot be a
precise unitary 2-design [4], we reach our conclusion that
the precision of approximate unitary 2-designs in Ref. [2]
is not necessary to achieve decoupling. Moreover, when
the CPTP map TA→B (see Fig. 1) is the partial trace
over a subsystem in A, which is the most important case
in applications of decoupling, we also show that decou-
pling can be achieved with even less precise approximate
unitary 2-designs.

We then provide a quantum circuit implementing de-
coupling using O(N2

A) two-qubit gates, where NA is the
number of qubits in the system A (see Fig. 1). In terms
of the number of gates, this circuit is unfortunately less
efficient than the best known result using O(NA logNA)
gates, but our construction has a couple of advantages.
One is that the circuit is divided into a constant num-
ber of commuting parts and all gates in each commuting
part can be applied simultaneously. The other is that,
from the physical point of view, the circuit corresponds
to the Hamiltonian dynamics where the interactions are
two-body and are changed only a few times, independent
of the system size. This “nearly time-independent” fea-
ture is unique to our construction and is important in
the understanding of a natural mechanism that leads to
decoupling in many-body systems.

We also explain implications on physical and informa-
tion theoretic tasks, such as relative thermalization [5]
and the state merging protocol [6].

2 Brief descriptions of our theorems

The decoupling protocol is explained in Fig. 1. A uni-
tary t-design is defined as follows; for a bounded operator

X on the t-copies of a Hilbert space H, let G(t)U (X) :=
EU [U⊗tXU†⊗t] where EU represents an expectation over
a random unitary U . A δ-approximate unitary t-design

is a random unitary U satisfying ||G(t)U −G
(t)

UH
||� ≤ δ where

UH is a Haar random unitary.
It was shown that the decoupling rate ΛHaar (see the
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UA TA→B
System A

Reference R

ρAR

System B

?
≈

τB

⊗

ρR

Figure 1: The decoupling protocol [1]. The system A of the initial state ρAR goes through a unitary evolution
UA and a CPTP map TA→B . The goal of decoupling is to make the output as close to τB ⊗ ρR as possible by
choosing an appropriate unitary UA, where τB is a marginal state in B of a Jamio lkowski state of TA→B , and
ρR = trRρAR. When UA is a Haar random unitary, the output state is ΛHaar-close to τB ⊗ ρR with high probability,
where ΛHaar = 2−

1
2 (H

ε
min(A|R)ρ+H

ε
min(A|B)τ ) + 12ε and Hε

min is the ε-smooth conditional min-entropy [1].

caption of Fig. 1) is achieved if U is a Haar random
unitary or an exact unitary 2-design [1]. Moreover, δ-
approximate unitary 2-designs can also achieve the de-
coupling rate O(ΛHaar) if δ = O(1/d4A), where dA is the
dimension of the system A [2]. Our goal is to show that
this precision of approximate unitary 2-designs is not nec-
essary to achieve the decoupling rate O(ΛHaar).

To state our main results, let DW be a ran-
dom W -diagonal-unitary (W = X,Z), which is a
diagonal unitary in the Pauli-W basis with random
phases. We then introduce a random unitary D[`] :=
DZ
`+1D

X
` D

Z
` · · ·DX

1 D
Z
1 , where each DW

i is independent.

Theorem 1 (Ref. [4]) The random unitary D[`] on an
N -qubit system is a δ-approximate unitary 2-design for
` ≥ 2 + 1

N (1 + log 1/δ). Conversely, D[`] cannot be a
δ-approximate unitary 2-design if ` ≤ 1

N log 1/δ.

It follows from Theorem 1 and Ref. [2] that decou-
pling at the rate O(ΛHaar) is achieved by D[`] if ` ≥ 7.
However, we show that ` ≥ 3 is sufficient for achieving
decoupling at the rate O(ΛHaar)

Theorem 2 (Ref. [3]) Let ` ≥ 2 and ε > 0. Then,

EUA∼D[`]||TA→B(UAρARU
†
A)− τB ⊗ ρR||1 ≤ ΛD[`], (1)

where ΛD[`] =
√
c`2
− 1

2 (H
ε
min(A|R)ρ+H

ε
min(A|B)τ ) +12ε, c` =

2 +O(d
−(`−3)
A ), and dA is the dimension of A.

We immediately obtain the following corollary, which
provides our main statement that precise approximate
unitary 2-designs are not necessary for decoupling.

Corollary 3 The random unitary D[`] achieves decou-
pling at the rate O(ΛHaar) if ` ≥ 3. When ` = 3, the D[`]
cannot be a O(1/d4A)-approximate unitary 2-design.

Furthermore, we can also show that D[`] with ` = 2
achieves decoupling when the CPTP map TA→B is given
by the partial trace of a subsystem of A. This case is par-
ticularly important in most applications of decoupling.

Using the result in Ref. [7], we also provide a quantum
circuit that implements D[`], and so, achieves unitary 2-
designs and decoupling. The circuit repeats the following
steps O(`) times; single-qubit phase gates on all qubits

with phases randomly chosen from {0, 2π/3, 4π/3}, the
controlled-Z gates acting on every pair of qubits with
probability 1/2, and the Hadamard gates on all qubits.
In total, the circuit uses O(`N2) gates.

3 Discussions

Our results indicate the possibility that random uni-
taris strictly less uniform than unitary 2-designs, not in
the sense of approximation, could achieve decoupling at
the rate O(ΛHaar). This would also lead to the exten-
sion of unitary t-designs to non-integer t, because only
1-designs are less uniform than 2-designs in the current
framework, but they cannot achieve decoupling. It would
be interesting to introduce t-designs with non-integer t
and investigate decoupling with them, which may be done
using the frame potential or by the direct investigation
based on continuous Hamiltonian dynamics.
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