Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

Nathan K. Langford

OVERVIEW

- Transmon circuit QED experimental hardware
- Finding your qubit: where to start when the fridge gets cold
- Getting things pulsing
- Getting control of your qubit
- Fast frequency tuning: making your qubit dance
- Using your qubit as a...

Acknowledgements Ramiro Sagastizabal, Florian Luthi and the rest of the DiCarlo lab at TU Delft

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

Nathan K. Langford

OVERVIEW

Transmon circuit QED experimental hardware

Acknowledgements Ramiro Sagastizabal and the rest of the DiCarlo lab at TU Delft

microwave electronics

Risté et al., Nat Comm 2015

microwave electronics

amplification chain

microwave components

dilution refrigerator & cryogenic components

chip

data acquisition

Cavity QED in electronic circuits

Haroche group (2000s) Wallraff et al., Nature (2004)

- "cavity" μ w coplanar waveguide resonator
- "atom" frequency-tunable transmon qubit
- "input/output" μ w feedline for control/read

Rabi interaction: field-dipole coupling

$$H = \hbar\omega_r a^{\dagger}a + \frac{1}{2}\hbar\omega_q \sigma_z + \hbar g \left(\sigma_+ + \sigma_-\right) \left(a + a^{\dagger}\right)$$

Jaynes-Cummings interaction: strong coupling regime

$$H = \hbar \omega_r \, a^{\dagger} a + \frac{1}{2} \hbar \omega_q \, \sigma_z + \hbar g \left(a \sigma_+ + a^{\dagger} \sigma_- \right) \qquad \text{RWA: } \gamma, \kappa < g, \Delta \ll \omega_q, \omega_r$$

Jaynes-Cummings interaction: dispersive regime

$$H = \hbar\omega_r a^{\dagger}a + \frac{1}{2}\hbar\omega_q \sigma_z + \hbar\chi \sigma_z a^{\dagger}a \qquad g \ll \Delta$$

Component frequencies

 $\omega_{\text{qub}} : E_{\text{C}} \text{ (geometry)} \quad \omega_{\text{res}} : \text{length (geometry)} \\
 : E_{\text{J}} \text{ (junctions)} \quad : \text{materials}$

Rabi, Phys Rev **49**, 324 (1936) Jaynes & Cummings, Proc IEEE **51**, 89 (1963)

Cavity QED in electronic circuits

Haroche group (2000s) Wallraff et al., Nature (2004)

- "cavity" μ w coplanar waveguide resonator
- "atom" frequency-tunable transmon qubit
- "input/output" μw feedline for control/read

Rabi interaction: field-dipole coupling

$$H = \hbar\omega_r a^{\dagger}a + \frac{1}{2}\hbar\omega_q \sigma_z + \hbar g \left(\sigma_+ + \sigma_-\right) \left(a + a^{\dagger}\right)$$

Jaynes-Cummings interaction: strong coupling regime

$$H = \hbar \omega_r \, a^{\dagger} a + \frac{1}{2} \hbar \omega_q \, \sigma_z + \hbar g \left(a \sigma_+ + a^{\dagger} \sigma_- \right) \qquad \text{RWA: } \gamma, \kappa < g, \Delta \ll \omega_q, \omega_r$$

Jaynes-Cummings interaction: dispersive regime

$$H = \hbar \omega_r \, a^{\dagger} a + \frac{1}{2} \hbar \omega_q \, \sigma_z + \hbar \chi \, \sigma_z \, a^{\dagger} a \qquad g \ll \Delta$$

Component frequencies

 $\omega_{\text{qub}} : E_{\text{C}} \text{ (geometry)} \qquad \omega_{\text{res}} : \text{length (geometry)} \\
 : E_{\text{J}} \text{ (junctions)} \qquad : \text{materials}$

Rabi, Phys Rev **49**, 324 (1936) Jaynes & Cummings, Proc IEEE **51**, 89 (1963)

The transmon qubit

- superconducting thin-film circuit
 → low-loss operation

large dipole moment (capacitive coupling)

harmonic

- a variety of junctions: single vs split, break junctions, nanowire junctions
- a variety of geometries: 2D vs 3D, xmon, gmon, three-island
- focus here: AI-AIOx SIS tunnel junction, standard transmon

Engineering the quantum

OVERVIEW

• Finding your qubit: where to start when the fridge gets cold

Microwave setup

Resonator spectroscopy

Microwave setup

Resonator spectroscopy

What do you see with?

digitise, demodulate & integrate

frequency down-mixing

- microwave equivalent of Mach-Zender
- homodyne: $\omega_{\mathrm{RF}} = \omega_{\mathrm{LO}}$
- heterodyne: $\omega_{\rm RF} = \omega_{\rm LO} + \omega_{\rm IF}$
- nonlinearity provided by IQ mixers

IQ Mixers

- nonlinearity provides signal multiplication
- IQ mixers multiply both carrier quadratures (cos and sin terms)
- can up-convert and down-convert signals
- typically used to move between microwave regime (for our experiments) and radio frequencies (where the electronics is good and cheap)

Step 1: Find your resonators

First look at your device...

Step 1: Find your resonators

What should you see?

Quality factors

Asymmetry arises from impedance (unwanted inductance) mismatching in the feedline and coupler.

Step 2: It's alive!

- low power: linear regime
- high power: nonlinear regime
- very high power: saturation regime (bare resonator response)
- frequency shift: g^2/Δ (same as dispersive shift for a two-level qubit)
- for most purposes, you want to operate in the linear regime

Step 3: Change the tune...

Can you tune the qubit frequency?

Qubits with matched junctions Koch *et al.*, PRA 2007

$$f_{q}^{\text{bare}} = \sqrt{8E_{C}E_{J}(\Phi_{I})} - E_{C}$$

$$\approx f_{q}^{\max}\sqrt{|\cos(\pi\Phi/\Phi_{0})|}$$

$$f_{r} = f_{r}^{\text{bare}} + g^{2}/\Delta_{q,r}$$

$$(\Phi_{0} = h/(2e) = \text{magnetic flux quantum})$$

- identify sweet spots (top and bottom)
- calculate flux scaling
- identify qubit-resonator crossing points and calculate coupling strengths

Qubit spectroscopy

Microwave setup

Qubit spectroscopy

Microwave setup

Qubit spectroscopy

Measurement signal

- uses two microwave tones (resonator readout and qubit excitation)
- detects qubit-state-dependent frequency shift of the resonator
- dispersive regime:

$$II = help u u + 2help 0 z + h \chi 0 z u u = (help + h \chi 0 z) u u + 2help 0 z$$

$$II = help u u + 2help 0 z + h \chi 0 z u u = (help + h \chi 0 z) u u + 2help 0 z$$

$$II = help u u + 2help 0 z + h \chi 0 z u u = (help + h \chi 0 z) u u + 2help 0 z$$

$$II = help u u + 2help 0 z + h \chi 0 z u u = (help + h \chi 0 z) u u + 2help 0 z$$

$$II = help u u + 2help 0 z + h \chi 0 z u u = (help + h \chi 0 z) u u + 2help 0 z$$

$$II = help u u + 2help 0 z + h \chi 0 z u u = (help + h \chi 0 z) u u + 2help 0 z$$

$$II = help u u + 2help 0 z + h \chi 0 z u u = (help + h \chi 0 z) u u + 2help 0 z$$

$$II = help u u + 2help 0 z + h \chi 0 z u u = (help + h \chi 0 z) u u + 2help 0 z$$

$$II = help u u + 2help 0 z + h \chi 0 z u u = (help + h \chi 0 z) u u + 2help 0 z$$

$$II = help u u + 2help 0 z + h \chi 0 z u u = (help + h \chi 0 z) u u + 2help 0 z$$

$$II = help u u + 2help 0 z + h \chi 0 z u u = (help + h \chi 0 z) u u + 2help 0 z$$

$$II = help u u + 2help 0 z + h \chi 0 z u u = (help + h \chi 0 z) u u + 2help 0 z$$

$$II = help u u + 2help 0 z + h \chi 0 z u u = (help + h \chi 0 z) u u + 2help 0 z$$

$$II = help u u + 2help 0 z + h \chi 0 z u u = (help + h \chi 0 z) u u + 2help 0 z + h \chi 0 z u u + 2help 0 z + h \chi 0 z u u + 2help 0 z + h \chi 0 z u u + 2help 0 z + h \chi 0 z u u + 2help 0 z + h \chi 0 z u + 2help 0 z + h \chi 0 z u + 2help 0 z + h \chi 0 z u + 2help 0 z + h \chi 0 z +$$

$$H = \hbar\omega_r a^{\dagger}a + \frac{1}{2}\hbar\omega_q \sigma_z + \hbar\chi \sigma_z a^{\dagger}a = (\hbar\omega_r + \hbar\chi \sigma_z) a^{\dagger}a + \frac{1}{2}\hbar\omega_q \sigma_z$$

Step 4: Find your qubit...

Where do you start looking?

- move to a sweet spot or near a crossing
- use a power shift to estimate the qubit detuning
- start scanning...

find resonator

Step 4: Find your qubit...

Where do you start looking?

- move to a sweet spot or near a crossing
- use a power shift to estimate the qubit detuning
- start scanning...

Step 4: Find your qubit...

7.029

7.027

(745) 7.028

ð

Where do you start looking?

move to a sweet spot or near a crossing ٠

1.0 0.9

0.8 0.7

0.6

0.5

0.3

0.2

0.1

0.0

Step 5: It don't mean a thing if it ain't got that swing...

Flux tuning a split-junction qubit and tracked qubit spectroscopy

- as you move the qubit, both resonator and qubit frequency move
- at each step, find the resonator and then find the qubit

Step 5: It don't mean a thing if it ain't got that swing...

Flux tuning a split-junction qubit and tracked qubit spectroscopy

• as you move the qubit, both resonator and qubit frequency move

Step 6: Estimating qubit-resonator couplings

Variety of different methods

Step 7: Estimating qubit anharmonicity

Transmons are weakly anharmonic

- linked to low charge dispersion (charge noise insensitivity)
- higher levels affect photon-number dispersive shift
- limits speed of control pulses
- can be used to implement qubit-qubit entangling gates DiCarlo et al., Nature (2009)
- can also cause unwanted spurious system interactions

"Two-tone" spectroscopy (warning: uses three microwave tones)

Engineering the quantum

OVERVIEW

• Getting things pulsing

CW vs Pulsed spectroscopy

Continuous spectroscopy: all sources always on

• readout cavity full of photons during qubit excitation

Pulsed spectroscopy

• half 'n' half: pulse the readout tone

(High) away of the second seco

- > requires little calibration, works with short lifetimes, can be messier
- all the way: pulse both excitation and readout tones
 - requires more calibration (e.g., excitation power, excitation and readout resolution), can be cleaner
 - > can use both saturation and pi pulses for excitation pulses

Microwave setup

Microwave setup: half 'n' half

Microwave setup: all the way

Engineering the quantum

OVERVIEW

• Getting control of your qubit

Microwave setup: all the way

Tuning up for pulsing / time domain

Basic calibration: pulse frequency and amplitude

Find qubit frequency

scan for resonator

Warning: frequency may be significantly inaccurate if the spec readout power is too high!!

scan for qubit

(vary amplitude for target pulse length)

Calibrate pulse amplitude using Rabi oscillations

traditional Rabi oscillations (vary pulse length)
Basic qubit characterisation sequences

T1: qubit relaxation time

- well-characterised pulse not required
- calibration points allow conversion from I/Q data to probability

Basic qubit characterisation sequences

T2 star (Ramsey time): qubit dephasing time

- need reasonably well characterised pulse, or the data will look strange
- e.g., frequency detuning can give data outside the range of the calibration points
- artificial detuning allows better fitting of the decay time and frequency
- very versatile sequence with many applications

Basic qubit characterisation sequences

T2 echo: decoupled qubit dephasing time

- insensitive to low-frequency phase noise
- not so sensitive to detuning because of echo effect

Fine-tuning your pulses

Optimal single-qubit control with DRAG

Fine-tuning your pulses

Optimal single-qubit control with DRAG

- 1-2 transition is quite close to 0-1 transition, especially for short drive pulse durations (~ 10 ns)
- leakage errors: pulses driving qubit into 2 state
- phase errors: qubits temporarily populate 2 state during pulse, leading to phase errors
 - \rightarrow use "derivative removal by adiabatic gate (DRAG)

weak anharmonicity

Motzoi *et al.*, PRL (2009) Chow *et al.*, PRA (2010)

AIIXY

MotzoiXY

Fine-tuning your pulses

Qubit frequency with Ramseys

- sensitivity to frequency increases with step size
- start small, zooming in after each step, until you reach target accuracy
- robust technique, limited mainly by T2 coherence time

Qubit amplitude with flipping sequences

- small amplitude errors may only become significant after many pulses
- diagnosed best with a long pulse sequence

Fine tuning your pulses: going further?

State of the art

These techniques should allow you to get near fidelities sufficient for fault-tolerant single qubit control in surface code.

Asaad, Dickel, *et al.*, Nature QI (2016)

Amplifying errors for accurate benchmarking

- Randomized Benchmarking: targets gate errors independently of "preparationand-measurement" errors; rigorous benchmarking, limited diagnostic capabilities
- Gate-Set Tomography: complete characterisation of everything, long and arduous

Operational approaches

- Your application is the most important yardstick
- Use algorithm specific diagnostics
- Amplify errors that are relevant to your application
- e.g., Martinis benchmarking

Engineering the quantum

OVERVIEW

• Fast frequency tuning: making your qubit dance

Fast frequency tuning: let's dance!

Why do you want to be able to pulse your qubit frequency?

Fast qubit-qubit entangling gates and arbitrary interactions

Fast frequency tuning: let's dance!

Microwave setup

Fast frequency tuning: let's dance!

Microwave setup

How you want flux pulsing to look

Digital simulation of the quantum Rabi model

But what's the real story?

AWG: finite BW, sampling rate, resolution, amplitude

Pre-compensating non-ideality with "predistortion" filters

Inside the fridge: the qubit is your signal

Flux-controlled excitation swapping: the flux chevron

What you see when you first get inside the fridge

RamZ: measuring your flux pulse with a Ramsey sequence

- use a Ramsey pulse pair to sense residual frequency error after the down step of a flux pulse
- increase/decrease pulse separation to control detector sensitivity
- adjust step size to probe different timescales

Engineering the quantum

OVERVIEW

• Using your qubit as a...

Using your qubit as a ... photon meter

Measurement of a bus resonator via an ancilla "meter" qubit

Langford, *et al.*, in preparation (2016)

- study interaction between "Rabi" qubit and (quarter-wave) "Rabi" resonator
- measure Rabi qubit directly and measure Rabi resonator via the "Wigner" qubit
- resonator could be loaded with photons via resonant interaction with the Rabi qubit (g ~ 2 MHz) and coherently driven via a classical input line
- Wigner qubit strongly coupled (~ 70 MHz) but dispersively (detuning ~ 1.4 GHz)
- Wigner qubit state read out independently using a dedicated readout resonator

Using your qubit as a ... photon meter

Photon-dependent qubit frequency: the ac Stark effect

Schuster et al., PRL 2005

Dispersive-regime Hamiltonian

$$H = \hbar\omega_r a^{\dagger}a + \frac{1}{2}\hbar\omega_q \sigma_z + \hbar\chi \sigma_z a^{\dagger}a = (\hbar\omega_r + \hbar\chi \sigma_z) a^{\dagger}a + \frac{1}{2}\hbar\omega_q \sigma_z$$

Using your qubit as a... photon meter

Photon-dependent qubit frequency: ac Stark effect

Schuster et al., PRL 2005

Dispersive-regime Hamiltonian

$$H = \hbar \omega_r a^{\dagger} a + \frac{1}{2} \hbar \omega_q \sigma_z + \hbar \chi \sigma_z a^{\dagger} a = \hbar \omega_r a^{\dagger} a + \frac{1}{2} (\hbar \omega_q + \hbar 2 \chi a^{\dagger} a) \sigma_z$$
$$\chi = \frac{g^2 \alpha}{\Delta (\Delta + \alpha)} \quad \alpha = \text{ anharmonicity}$$

Using your qubit as a ... photon meter

Photon-number splitting of the qubit peak

Size of dispersive shift depends on how photons are created !!

- chi varies linearly with drive frequency
- the standard value is only true on resonance (dressed-state frequency)
- chi -> 0 at bare resonator frequency minus cavity shift

Using your qubit as a... photon meter

Ramsey-based parity meter

Bertet et al., PRL (2002), Risté et al., Nat Comm (2013), Vlastakis et al., Science (2013)

 $\pi/2$ pulse

Using your qubit as a... photon meter

The dark (bright?) side of qubit-resonator "chevrons"

Using your qubit as a ... photon meter

The dark (bright?) side of qubit-resonator "chevrons"

Using your qubit as a ... photon meter

Direct Wigner tomography via a parity measurement

- requires resonator input coupler for displacement pulse
- ancilla qubit for parity operation and readout

$$W(\alpha \,|\, \rho) = \frac{2}{\pi} \operatorname{Tr} \left[\Pi D(\alpha)^{\dagger} \rho D(\alpha) \right]$$

Measuring flux noise

- tuning a qubit away from its sweet spot increases its sensitivity to flux noise
- T1 and T2 echo measurements give estimate of pure dephasing

From the change in pure dephasing with flux gradient, can calculate 1/f flux noise:

$$\frac{1}{T_{\varphi}} = A\Phi_0 \ln\left(\frac{T}{t}\right) \frac{d\omega}{d\Phi} \qquad \text{ A = 1/f flux noise @ 1 Hz} \qquad \left(S_{\Phi}(f) = \frac{A^2 \Phi_0^2}{f}\right)$$

Measuring charge noise

- in transmons, charge noise is exponentially suppressed with increasing E_J/E_C
- environmental charge noise causes qubit to wander along the offset charge axis
- transmon dipole oscillations mediated by Cooper pair tunnelling through junction
- quasiparticle (unpaired electron) tunnelling events shifts energy curves by half a pair
- this causes shot-to-shot switching between two frequencies, which shows up as beating in a Ramsey experiment and can be tracked

Measuring charge noise

- in transmons, charge noise is exponentially suppressed with increasing E_J/E_C
- environmental charge noise causes qubit to wander along the offset charge axis
- transmon dipole oscillations mediated by Cooper pair tunnelling through junction
- quasiparticle (unpaired electron) tunnelling events shifts energy curves by half a pair
- this causes shot-to-shot switching between two frequencies, which shows up as beating in a Ramsey experiment and can be tracked

Charge noise in a nanowire "dmon"

- shows very different noise behaviour from the standard SIS junction transmon
- conduction channels in the semiconductor nanowire may be very sensitive to environmental charges
- exact source of frequency noise unknown
- we use a parity meter to study the shotto-shot switching dynamics

Courtesy of F. Luthi, T. Stavenga (2016)

Summary in pictures...

Bonus Slides!!

Asymmetric qubits and why you might want 'em...

Effect of mismatched junctions on qubit frequency

• matched junctions $(E_{J1} = E_{J2})$:

$$f_{\rm q} = (f_{\rm q}^{\rm max} + E_{\rm C})\sqrt{|\cos(\pi\Phi/\Phi_0)|} - E_{\rm C}$$

• mismatched junctions
$$(E_{J1} > E_{J2})$$
:

$$f_{\rm q} = (f_{\rm q}^{\rm max} + E_{\rm C}) \left[\alpha^2 + (1 - \alpha^2) \cos^2\left(\pi \Phi/\Phi_0\right)\right]^{1/4} - E_{\rm C}$$

Asymmetric qubits and why you might want 'em...

Effect of mismatched junctions on qubit frequency

• matched junctions $(E_{J1} = E_{J2})$:

$$f_{\rm q} = (f_{\rm q}^{\rm max} + E_{\rm C})\sqrt{|\cos(\pi\Phi/\Phi_0)|} - E_{\rm C}$$

• mismatched junctions (
$$E_{J1} < E_{J2}$$
):

$$f_{\rm q} = (f_{\rm q}^{\rm max} + E_{\rm C}) \left[\alpha^2 + (1 - \alpha^2) \cos^2(\pi \Phi/\Phi_0)\right]^{1/4} - E_{\rm C}$$

Asymmetric qubits and why you might want 'em...

Effect of mismatched junctions on qubit frequency

• matched junctions $(E_{J1} = E_{J2})$:

$$f_{\rm q} = (f_{\rm q}^{\rm max} + E_{\rm C})\sqrt{|\cos(\pi\Phi/\Phi_0)|} - E_{\rm C}$$

• mismatched junctions ($E_{J1} < E_{J2}$):

$$f_{\rm q} = (f_{\rm q}^{\rm max} + E_{\rm C}) \left[\alpha^2 + (1 - \alpha^2) \cos^2\left(\pi \Phi/\Phi_0\right)\right]^{1/4} - E_{\rm C}$$

Pulsed spectroscopy

Pulsing with an IQ mixer

- single sideband modulation of a microwave carrier tone
- pulse envelope allows switching of pulses on/off
- RF modulation of IQ envelopes allows control of drive pulse phase
- also compensation for mixer imperfections: leakage, skewness

square pulse (eg. for saturation pulses)

SB modulation in frequency domain

qubit pulses (DRAG)

Basic calibration 1: mixer leakage and skewness

Calibrating single-sideband pulse modulation

microwave carrier drive before mixer

Mixer leakage: Adjust DC offset voltages of the I & Q channels of the AWG to minimise leakage of the carrier tone.

J.J. trigger

drive

pulse

aubit

pulse

AWG

Mixer skewness: Adjust relative phase and amplitude of I/Q modulation envelopes to minimise power in the (unwanted) spurious sideband.

after compensating skewness
Basic calibration 2: pulse timings

Getting your pulses in sync

- Pulse timings controlled by the AWG through analogue and digital (marker) outputs
- Latency (internal delays) in electronics, filtering and cabling introduce different signal delays
- Timing is critical "on chip" and at the ADC

• Delays, once calibrated, are easily compensated in the pulse sequences.

Direct calibration: Signals transmitted through the feedline show up in the measurement signal. Remember: Always look at the start times!!

Indirect calibration: Other signals must be calibrated by looking at the response of other elements, like qubits. Ramsey-based pulse sequences are the most sensitive way of detecting frequency shifts.

What it looks like in reality...

Step response of an isolated AWG

Step response of an isolated AWG

Corrected step response from AWG

