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A typical transmon circuit QED setup
Flux
control

Feedline for
Drive & ReadoutReadout

resonator

QubitBusCavity QED in electronic circuits

• “cavity” – mw coplanar waveguide resonator

• “atom” – frequency-tunable transmon qubit

• “input/output” - mw feedline for control/read

Rabi interaction: field-dipole coupling

Jaynes-Cummings interaction: strong coupling regime

Jaynes-Cummings interaction: dispersive regime

Component frequencies

Haroche group (2000s)
Wallraff et al., Nature (2004)

Rabi, Phys Rev 49, 324 (1936)
Jaynes & Cummings, Proc IEEE 51, 89 (1963)
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The transmon qubit

• superconducting thin-film circuit
→ low-loss operation

• Josephson junctions
→ nonlinearity without loss

large dipole moment
(capacitive coupling)

almost harmonic
(a bit anharmonic)

harmonic

≈

• a variety of junctions: single vs split, break junctions, nanowire junctions
• a variety of geometries: 2D vs 3D, xmon, gmon, three-island
• focus here: Al-AlOx SIS tunnel junction, standard transmon
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Resonator spectroscopy
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Resonator spectroscopy

What do you see with?

digitise, 
demodulate &

integrate

frequency
down-mixing

• microwave equivalent of Mach-Zender

• homodyne:

• heterodyne:

• nonlinearity provided by IQ mixers

IQ Mixers • nonlinearity provides signal multiplication

• IQ mixers multiply both carrier quadratures
(cos and sin terms)

• can up-convert and down-convert signals

• typically used to move between microwave 
regime (for our experiments) and radio 
frequencies (where the electronics is good and
cheap)



Step 1: Find your resonators

First look at your device…



Step 1: Find your resonators

What should you see?

kcouplingkinternal

gqubit

Quality factors

• energy stored / energy loss per 
cycle

Asymmetry arises from impedance (unwanted 
inductance) mismatching in the feedline and coupler.



Step 2: It’s alive!

The first signature of your qubit 

• low power: linear regime

• high power: nonlinear regime

• very high power: saturation regime (bare resonator response)

• frequency shift:
(same as dispersive shift for a two-level qubit)

• for most purposes, you want to operate in the linear regime

Note: dBm = log scale unit of power



Step 3: Change the tune…

Can you tune the qubit frequency?

Koch et al., PRA 2007
Qubits with matched junctions

I

I

FI

• identify sweet spots (top and bottom)

• calculate flux scaling

• identify qubit-resonator crossing points 
and calculate coupling strengths

anti sweet spot

sweet spot



Qubit spectroscopy

Microwave setup
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Qubit spectroscopy

Measurement signal

• uses two microwave tones 
(resonator readout and qubit 
excitation)

• detects qubit-state-dependent 
frequency shift of the resonator

• dispersive regime: 

excitation OFF excitation ON



Step 4: Find your qubit…

• move to a sweet spot or near a crossing

• use a power shift to estimate the qubit detuning

• start scanning…

Where do you start looking?

find resonator
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Step 4: Find your qubit…

• move to a sweet spot or near a crossing

• use a power shift to estimate the qubit detuning

• start scanning…

Where do you start looking?

find resonator

scan for qubit

zoom inBut is it your qubit ??



Step 5: It don’t mean a thing if it ain’t got that swing…

Flux tuning a split-junction qubit and tracked qubit spectroscopy

• as you move the qubit, both resonator and qubit frequency move

• at each step, find the resonator and then find the qubit



Step 5: It don’t mean a thing if it ain’t got that swing…

• as you move the qubit, both resonator and qubit frequency move

• at each step, find the resonator and then find the qubit

resonator scans qubit scans

But this does
not look like
this !!

Flux tuning a split-junction qubit and tracked qubit spectroscopy

• asymmetric qubits have two “sweet spots”
• frequency gradient vs flux (and therefore flux 

noise) also reduced

sweet spots

gradient



Step 6: Estimating qubit-resonator couplings

Variety of different methods
Power Shift Fit Resonator & Qubit arches

Avoided Crossing Flux Pulsing

DiCarlo et al., Nature (2010)Wallraff et al., Nature (2004)



Step 7: Estimating qubit anharmonicity

Transmons are weakly anharmonic

• linked to low charge dispersion (charge noise insensitivity)

• higher levels affect photon-number dispersive shift

• limits speed of control pulses

• can be used to implement qubit-qubit entangling gates    DiCarlo et al., Nature (2009)

• can also cause unwanted spurious system interactions

Source 1 Frequency (GHz)

So
ur

ce
 2

 F
re

qu
en

cy
 (

G
H

z)

High-power spectroscopy “Two-tone” spectroscopy
(warning: uses three microwave tones)

Courtesy of F. Luthi (2016)
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CW vs Pulsed spectroscopy

Continuous spectroscopy: all sources always on

• readout cavity full of photons during qubit excitation

Photon-number splitting Qubit broadening/shifting

Pulsed spectroscopy

• half ‘n’ half: pulse the readout tone

 requires little calibration, works with short lifetimes, can be messier

• all the way: pulse both excitation and readout tones

 requires more calibration (e.g., excitation power, excitation and readout 
resolution), can be cleaner

 can use both saturation and pi pulses for excitation pulses

Schuster et al., PRL (2005)Schuster et al., Nature (2007)



Pulsed spectroscopy

Microwave setup



Microwave setup: half ‘n’ half

Pulsed spectroscopy



Microwave setup: all the way

Pulsed spectroscopy



Live Fourier transform of a square pulse

Pulsed spectroscopy

Decreasing
pulse amplitude

• Readout pulse length sets 
readout resolution

• Excitation pulse sets qubit 
resolution
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Microwave setup: all the way

Pulsed spectroscopy



Basic calibration steps

Tuning up for pulsing / time domain

Step 1
mixer

Step 2
pulse timings (RO, drive)

Step 4
pulse amp

Step 3
drive

frequency

-- allows full control 
of:

drive pulse 
envelope and drive 

pulse phase 
(rotation axis)

-- mixers require 
careful calibration 
to compensate for 

imperfections

-- timing critical at qubit and 
digitization (ADC)

-- delays are 
calibrated in AWG 

sequencing



Basic calibration: pulse frequency and amplitude

Find qubit frequency

• good starting sequence: most tolerant to inaccuracies

scan for resonator scan for qubit

Calibrate pulse amplitude using Rabi oscillations

Warning: frequency may be significantly inaccurate if 
the spec readout power is too high!!

traditional Rabi oscillations (vary pulse length)
Rabi calibration sequence

(vary amplitude for target pulse length)

get your p pulse here

Wallraff et al., PRL (2005)



Basic qubit characterisation sequences

T1: qubit relaxation time

• well-characterised pulse not required

• calibration points allow conversion from I/Q data to probability

calibration points

p pulse

variable
delay t



Basic qubit characterisation sequences

T2 star (Ramsey time): qubit dephasing time

• need reasonably well characterised pulse, or the data will look strange
• e.g., frequency detuning can give data outside the range of the calibration points
• artificial detuning allows better fitting of the decay time and frequency
• very versatile sequence with many applications

p/2 pulse

variable
delay t

p/2 pulse



Basic qubit characterisation sequences

T2 echo: decoupled qubit dephasing time

• insensitive to low-frequency phase noise

• not so sensitive to detuning because of echo effect

p pulse

variable
delay t/2

p/2 pulse p/2 pulse

variable
delay t/2



Fine-tuning your pulses

Optimal single-qubit control with DRAG



Fine-tuning your pulses

Optimal single-qubit control with DRAG

• 1-2 transition is quite close to 0-1 transition, especially 
for short drive pulse durations (~ 10 ns)

• leakage errors: pulses driving qubit into 2 state

• phase errors: qubits temporarily populate 2 state 
during pulse, leading to phase errors

→ use “derivative removal by adiabatic gate (DRAG)

AllXY MotzoiXY

weak anharmonicity

Reed, PhD thesis, Yale (2013)

Motzoi et al., PRL (2009)

Chow et al., PRA (2010)



Fine-tuning your pulses

Qubit frequency with Ramseys

• sensitivity to frequency increases with step size
• start small, zooming in after each step, until you reach target accuracy
• robust technique, limited mainly by T2 coherence time

Qubit amplitude with flipping sequences

• small amplitude errors may only become significant after many pulses
• diagnosed best with a long pulse sequence

10 ns step50 ns step



Fine tuning your pulses: going further?

State of the art

These techniques should allow you to get 
near fidelities sufficient for fault-tolerant 
single qubit control in surface code.

Operational approaches

• Your application is the most 
important yardstick

• Use algorithm specific diagnostics
• Amplify errors that are relevant to 

your application
• e.g., Martinis benchmarking

Amplifying errors for accurate benchmarking

• Randomized Benchmarking: targets gate errors independently of “preparation-
and-measurement” errors; rigorous benchmarking, limited diagnostic capabilities

• Gate-Set Tomography: complete characterisation of everything, long and arduous

Asaad, Dickel, et al., Nature QI (2016)

mixer
skewness
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Fast frequency tuning: let’s dance!

Why do you want to be able to pulse your qubit frequency?

Controlled excitation swapping 
with bus resonators and other 

qubits

Fast qubit-qubit entangling gates 
and arbitrary interactions

DiCarlo et al., Nature (2010)

Majer et al., Nature (2007)

Salathé et al., PRX 2015

DiCarlo et al., Nature (2009)



Fast frequency tuning: let’s dance!

Microwave setup



Fast frequency tuning: let’s dance!

Microwave setup

“bias tee”



Fast frequency tuning: a distorted reality

How you want flux pulsing to look

Digital simulation of the quantum Rabi model

Mezzacapo et al., Sci Rep (2014)



But what’s the real story?

“bias tee”

AWG: finite BW, sampling rate,
resolution, amplitude

frequency-
dependent 
cable loss 

(skin effect)

low-pass
filtering

?

on-chip 
response??

Fast frequency tuning: a distorted reality



Fast frequency tuning: a distorted reality

Pre-compensating non-ideality with “predistortion” filters



Fast frequency tuning: a distorted reality

Inside the fridge: the qubit is your signal

What you see when you first get 
inside the fridge

Flux-controlled excitation swapping:
the flux chevron



Fast frequency tuning: a distorted reality

RamZ: measuring your flux pulse with a Ramsey sequence

RamZ signal after applying a flux 
correction

RamZ signal measuring an on-chip 
flux response

• use a Ramsey pulse pair to sense residual frequency error after the down step 
of a flux pulse

• increase/decrease pulse separation to control detector sensitivity

• adjust step size to probe different timescales
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Using your qubit as a…  photon meter

Measurement of a bus resonator via an ancilla “meter” qubit

Rabi resonator

Rabi qubitWigner
qubit

Rabi input
coupler

Wigner readout

Rabi readout

Flux
control

Drive & Readout

• study interaction between “Rabi” qubit and (quarter-wave) “Rabi” resonator

• measure Rabi qubit directly and measure Rabi resonator via the “Wigner” qubit

• resonator could be loaded with photons via resonant interaction with the Rabi 
qubit (g ~ 2 MHz) and coherently driven via a classical input line

• Wigner qubit strongly coupled (~ 70 MHz) but dispersively (detuning ~ 1.4 GHz)

• Wigner qubit state read out independently using a dedicated readout resonator

Langford, et al., in preparation (2016)



Using your qubit as a…  photon meter

Photon-dependent qubit frequency: the ac Stark effect
Schuster et al., PRL 2005

Dispersive-regime Hamiltonian



Using your qubit as a…  photon meter

Photon-dependent qubit frequency: ac Stark effect
Schuster et al., PRL 2005

Dispersive-regime Hamiltonian



Using your qubit as a…  photon meter

Photon-number splitting of the qubit peak

Size of dispersive shift depends on how photons are created !!

• chi varies linearly with drive 
frequency

• the standard value is only true on 
resonance (dressed-state frequency)

• chi -> 0 at bare resonator frequency 
minus cavity shift

Gambetta et al., PRA 2006



Using your qubit as a…  photon meter

Ramsey-based average photon meter

Ramsey-based parity meter

p/2 pulse p/2 pulse

p/2 pulse p/2 pulse

delay t
(sets range)

delay t = 1/4c

Bertet et al., PRL (2002), Risté et al., Nat Comm (2013), Vlastakis et al., Science (2013)



Using your qubit as a…  photon meter

The dark (bright?) side of qubit-resonator “chevrons”
Recall qubit “chevron”:



Using your qubit as a…  photon meter

The dark (bright?) side of qubit-resonator “chevrons”

photon meter parity meter



Using your qubit as a…  photon meter

Direct Wigner tomography via a parity measurement

Rabi resonator

parity
meter

coherent drive input

parity readout

• requires resonator input coupler for 
displacement pulse

• ancilla qubit for parity operation and readout

Bertet et al., PRL (2002), Vlastakis et al., Science (2013)

zero photons one photon two photons



Measuring flux noise
• tuning a qubit away from its sweet spot increases its sensitivity to flux noise
• T1 and T2 echo measurements give estimate of pure dephasing

Using your qubit as a…  noise spectrum analyser

From the change in pure dephasing with flux gradient, can calculate 1/f flux noise:

A = 1/f flux noise @ 1 Hz 



Using your qubit as a…  noise spectrum analyser

Measuring charge noise
• in transmons, charge noise is exponentially 

suppressed with increasing EJ/EC

• environmental charge noise causes qubit to 
wander along the offset charge axis

• transmon dipole oscillations mediated by 
Cooper pair tunnelling through junction

• quasiparticle (unpaired electron) tunnelling 
events shifts energy curves by half a pair

• this causes shot-to-shot switching between 
two frequencies, which shows up as beating 
in a Ramsey experiment and can be tracked

Koch et al., PRA 2007 (transmon bible)

Risté et al., Nat Comm 2013
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Charge noise in a nanowire “dmon”

Using your qubit as a…  noise spectrum analyser

• shows very different noise behaviour 
from the standard SIS junction transmon

• conduction channels in the 
semiconductor nanowire may be very 
sensitive to environmental charges

• exact source of frequency noise 
unknown

• we use a parity meter to study the shot-
to-shot switching dynamics

Courtesy of F. Luthi, T. Stavenga (2016)

random telegraph noise



Summary in pictures…



Bonus Slides!!



Asymmetric qubits and why you might want ’em…

• matched junctions (EJ1 =EJ2):

• mismatched junctions (EJ1 > EJ2):

Effect of mismatched junctions on qubit frequency

asymmetry ~ 0.86
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Pulsing with an IQ mixer
• single sideband modulation of a 

microwave carrier tone

• pulse envelope allows switching 
of pulses on/off

• RF modulation of IQ envelopes 
allows control of drive pulse 
phase

• also compensation for mixer 
imperfections: leakage, skewness

Pulsed spectroscopy

qubit pulses (DRAG)

square pulse (eg. for saturation pulses)

SB modulation in frequency domain



Basic calibration 1: mixer leakage and skewness

Mixer leakage: Adjust DC offset 
voltages of the I & Q channels of the 

AWG to minimise leakage of the 
carrier tone.

microwave carrier 
drive before mixer

after cancelling leakage

after compensating skewness

Mixer skewness: Adjust relative phase 
and amplitude of I/Q modulation 

envelopes to minimise power in the 
(unwanted) spurious sideband.

Calibrating single-sideband pulse modulation

“spurious sideband” can cause errors 
such as “leakage” out of the qubit 

basis



Basic calibration 2: pulse timings

Getting your pulses in sync

• Pulse timings controlled by the AWG through
analogue and digital (marker) outputs

• Latency (internal delays) in electronics, filtering
and cabling introduce different signal delays

• Timing is critical “on chip” and at the ADC

• Delays, once calibrated, are easily compensated in the pulse sequences.

Direct calibration: Signals transmitted 
through the feedline show up in the 

measurement signal.
Remember: Always look at the start times!!

Indirect calibration: Other signals must be 
calibrated by looking at the response of other 
elements, like qubits.  Ramsey-based pulse 

sequences are the most sensitive way of 
detecting frequency shifts.



Fast frequency tuning: a distorted reality

What it looks like in reality…

Step response of an isolated AWG
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