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The structure necessary for quantum speedups 

 

Shalev Ben-David 

University of Maryland, USA 
 

Abstract: One of the central insights in quantum computing has been that quantum computation seems 
to provide exponential speedups over classical computation, but only for certain "structured" problems, 
such as factoring. For unstructured problems, like NP-complete problems, we do not expect an 
exponential quantum speedups. This raises the question: can we formalize this intuition? What types of 
structure suffice?  In this talk, I will outline some of what we know about this problem, focusing 
primarily on the query complexity model due to its relative tractability. In the query complexity setting, 
we know that exponential speedups are not possible for total functions, but are sometimes possible 
when there is a promise on the input; I will describe what we know about the problem of characterizing 
the promises that allow exponential quantum speedups 



Experimental certi�cation of millions of genuinely entangled atoms in a

solid
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Abstract. Quantum theory predicts that entanglement can also persist in macroscopic physical systems,
albeit di�culties to demonstrate it experimentally remain. Recently, genuine entanglement between up
to 2900 atoms was reported. Here we demonstrate 16 million genuinely entangled atoms in a solid-state
quantum memory prepared by the heralded absorption of a single photon. We develop an entanglement
witness for quantifying the number of genuinely entangled particles based on the collective e�ect of directed
emission combined with the nonclassical nature of the emitted light. The method is applicable to a wide
range of physical systems and is e�ective even in situations with signi�cant losses.

Keywords: Multipartite entanglement, entanglement depth, solid-state quantum memory

1 Introdution

A clear picture of large-scale entanglement with its
complex structure is so far not developed. It is however
important to understand the role of di�erent facets of
multipartite entanglement in nature and in technical ap-
plications [1, 2]. For example, the so-called Schrödinger
cat states [3] are fundamentally di�erent from a single
photon coherently absorbed by a large atomic ensemble;
even though both are instances of multipartite entangle-
ment [4, chapter 16.5]. The theoretical study of large-
scale entanglement has to be followed by an experimen-
tal demonstration, which consists of two basic steps: the
preparation of an entangled system and a subsequent ap-
propriate measurement verifying the presence of entan-
glement. In the context of entanglement in large systems,
the preparation of entanglement is generally much sim-
pler than its veri�cation. For example, single-particle
measurements are often not possible and collective mea-
surements are typically restricted to certain types and
are of �nite resolution. These limitations call for new
witnesses that allow one to certify entanglement based
on accessible measurement data.
The concept of entanglement depth [5] was shown to

be meaningful for and applicable to large quantum sys-
tems. It is de�ned as the smallest number of genuinely
entangled particles that is compatible with the measured
data. This allows one to witness at least one subgroup
of genuinely entangled particles in a state-independent
and scalable way. Large entanglement depth was suc-
cessfully demonstrated with so-called spin-squeezed and
oversqueezed states by measuring �rst and second mo-
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Figure 1: Basic intuition. When atoms spontaneously
emit photons, phase coherence between the atoms leads
to constructive interference and enhanced emission prob-
ability in a certain direction, measured by a single photon
detector. Emission in any other direction is incoherent
and hence not enhanced. If this phase coherence is gen-
erated by absorbing a single photon, the atoms are nec-
essarily entangled.

ments of collective spin operators [6, 7, 8, 9]; lately up of
680 atoms [10]. Recently, a witness was proposed that is
designed for the W state, which is a coherent superpo-
sition of a single excitation shared by many atoms [11].
Based on this witness, an entanglement depth of around
2900 was measured [12]. However, these witnesses do not
detect entanglement when the vacuum component of the
state is dominant [11], even though the W state is known
to be quite robust against various sources of noise, in
particular, against loss of particles and excitation [13].
Hence, much larger values for the entanglement depth
could be expected.
Here, we present theoretical methods and experimen-

tal data that verify a large entanglement depth in a solid-
state quantum memory. A rare-earth-ion-doped crystal
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spectrally shaped to an atomic frequency comb (AFC)
is used to absorb and re-emit light at the single-photon
level [14, 15, 16, 17], where at least 40 billion atoms collec-
tively interact with the optical �eld. Using the measured
photon number statistics of the re-emitted light we col-
lect partial information about the quantum state of the
atomic ensemble before emission. Then, we show that
certain combinations of emission probabilities for one and
two photons imply entanglement between a large number
of atoms. With the measured data from our solid-state
quantum memory we demonstrate inseparable groups of
entangled particles containing at least 16 million atoms.

2 Results

Before discussing the experiment, we give an intuitive
explanation for the appearance of large entanglement
depth when a large atomic ensemble coherently interacts
with a single photon. Suppose that N two-level atoms
(|g〉 and |e〉 denote ground and excited state, respec-
tively), couple to a light �eld. The quantised interaction
in the dipole approximation is described by [18]

Hint =
∑
j,~k

e−i
~k·~rja~kσ

(j)
+ + ei

~k·~rja†~k
σ
(j)
− , (1)

that is, a single photon with wave vector ~k is annihi-
lated by exciting atom j via σ+ |g〉 = |e〉 and vice versa.

The phase is given by the scalar product between ~k and
the position ~rj of the atom. When an incoming light
�eld is absorbed via interaction (1), the imprinted phase
relation between the atoms serves as a memory for the
direction and the energy of the absorbed photons. With-
out this information, a spontaneous, directed re-emission
is not possible. In other words, phase coherence between
the atoms is necessary in order to a have well-controlled
re-emission direction [19, 20]. Now, depending on the na-
ture of the absorbed light, this coherence implies entan-
glement between the atoms or not. On the one hand, the
absorption of a coherent state leads to a coherent atomic
state, which is unentangled [4, chapter 16.7]. On the
other hand, if a single photon |1〉 is absorbed, the quan-
tisation of the �eld leads to a W state (or Dicke state with
a single excitation) of the atomic state [4, chapter 16.5]

|1〉 → |D1〉 ∝
∑
j

e−i
~k·~rj |g . . . gejg . . . g〉 . (2)

Then, the ensemble is genuinely multipartite entangled
[13]. These examples suggest a generic relation between
directed emission, single-photon character of the emitted
light and large entangled groups.
In our experiment, we use a neodymium-based solid-

state quantum memory operating at a total read-write
e�ciency of 7%. This memory was demonstrated to
be capable of storing di�erent types of photonic states
and preserving state properties such as the single-photon
character [15, 17, 22, 23, 24]. A heralded single photon
is produced via spontaneous parametric down conversion
[25] and coupled to the atomic ensemble, which was pre-
pared in the ground state |D0〉 = |g〉⊗N . After a 50 ns

10-4
p1

10-7

10-5

p2

Separable States
10-3

10-3 10-2 10-1

(i)

(ii)

10
5

10
6

10
7

10
8

10
9

Figure 2: Lower bounds on the entanglement depth K
for N ≈ 4.0(1) × 1010 [21]. Entanglement is required to
reach small p2 while keeping p1 constant. The number
next to a colored line is the minimal K that is compatible
with data points on this line. The two black crosses are
data points from the experiment including one standard
deviation: (i) raw data, (ii) taking detector noise into
account (cp. table 1).

delay time, the coherent excitation is spontaneously re-
emitted in forward direction and detected. In practice,
this optical state is not exactly a single photon. Due to
losses at di�erent levels, the state contains a large vacuum
component. Also higher photon components are present.
However, since directed emission and non-classical pho-
ton number statistics are largely preserved, entanglement
between large groups of atoms is expected.
In order to certify this entanglement, we develop the

following entanglement witness. Suppose a pure state
that is subdivided into a product of M groups

|ψ〉 = |φ1〉 ⊗ · · · ⊗ |φM 〉 , (3)

where the |φi〉 are arbitrary. Phase coherence between
the groups imply that each group has to carry some exci-
tation. This necessarily amounts to an emission spectrum
that also contains multi-photon components.
To be more speci�c, we consider the probabilities of

the atoms emitting one and two photons, p1 and p2, re-
spectively. In the low-excitation limit, these probabili-
ties correspond to p1 = | 〈D1| ψ〉 |2 and p2 = | 〈D2| ψ〉 |2,
where

|D2〉 ∝
∑
j<l

e−i
~k·(~rj+~rl) |g . . . gejg . . . gelg . . . g〉 , (4)

that is, the phase-coherent superposition of two excitia-
tons. As shown in Ref. [21], it is possible to �nd the
minimal p2 for a given p1 within the class (3) with �xed
M . By varying p1 and M one �nds a lower bound on
p2 as a function of p1 and M . Given the linearity of
p1 and p2 when mixing states like in Eq. (3) (with arbi-
trary grouping but lower-bounded M), the extension of
the bound to mixed states is straightforward. Comparing
the lower bounds with experimental data in turn gives an
upper bound on M and, by additionally measuring N , a
lower bound on the entanglement depth, which simply
reads K = N/M .
Experimentally, p1 is obtained from the probability

to measure a single re-emitted photon in the forward
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Table 1: Results for entanglement depthK for (i) the raw
data and (ii) the data after the detector noise has been
subtracted out (cf. Fig. 2). By sampling p1, p2 and N
around the measured values within the estimated uncer-
tainties, we calculate the expected entanglement depth
K. The values in the last columns are lower bounds on
K with con�dence 3σ = 99.7%.

Level of modeling p1 K K − 3σ
(i) raw data 0.0023(3) 4.76× 105 7.54× 104

(ii) after re-mission 0.013(2) 1.64× 107 3.72× 106

mode heralded by the detection of the idler photon at the
source. The value of p2 corresponds to the two-photon
statistics and is inferred from the measured autocorrela-
tion function g

(2)
ss|i = 2p2/p

2
1 and p1. From the raw data,

we �nd p1 = 2.3(3) × 10−3 and p2 = 5(2) × 10−8. The
relatively small value of p1 is a product of the e�ciencies
of the source, the memory and detectors. By taking the
detectors ine�ciencies into account, we can estimate the
real values of p1, p2, which are higher.
A key element in the experiment is the high-precision

measurement of N . The ratio of the coherent emission
in the forward direction and the incoherent emission in
the backward direction is a lower bound on the number
of resonant atoms [20]. Since incoherent emission from
single photons is much lower than detector dark counts,
the single photon source is replaced by a bright coherent
state for this measurement and we �nd N ≥ 4.0(1)×1010
[21]. The resulting K is presented in Fig. 2 and table 1
for the raw data and detector-noise-subtracted data.

3 Discussion

This work demonstrates that large entanglement depth
is experimentally certi�able even with atomic ensembles
beyond 1010 atoms and low detection and re-emission ef-
�ciencies. We prove that entanglement between many
atoms is necessary for the functioning of quantum mem-
ories that are based on collective emission, because the
combination of directed emission (i.e., high memory ef-
�ciency) and preservation of the single-photon character
imply large entanglement depth.
Our results further illustrate the fundamental di�er-

ence between various manifestations of large entangle-
ment. The scales at which we observe entanglement
depth seem to be completely out of reach for other types
of large entanglement, such as Schrödinger-cat states
[2, 26].
We report lower bounds on the minimal number of

genuinely entangled atoms, which should not be con-
fused with quantifying entanglement with an entangle-
ment measure. Indeed, the nature of the target state,
the W state |D1〉, and the experimental challenges sug-
gest that only a small amount of entanglement is present
in the crystal during the storage.
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Quantum non-malleability and authentication
(extended abstract)

Gorjan Alagic and Christian Majenz
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galagic@gmail.com majenz@math.ku.dk

1. Introduction.

Quantum cryptography has grown to be an important subfield of quantum information science.
While the most well-known results (like QKD) concern the use of quantum information for classical
cryptography, there has also been an increased interest in extending the framework of symmetric-
key cryptography to the encryption of quantum data.

In its most basic form, encryption ensures the secrecy of transmissions against eavesdroppers.
Besides secrecy, another desirable property is non-malleability, which guarantees that an adversary
cannot meaningfully modify the plaintext by manipulating the ciphertext. In the classical setting,
secrecy and non-malleability are independent: there are schemes which satisfy secrecy but are
malleable, and schemes which are non-malleable but transmit the plaintext in the clear.

In the setting of quantum information, encryption is the task of transmitting quantum states
over a completely insecure quantum channel. Information-theoretic secrecy for quantum encryption
is well-understood. Moreover, significant progress has been made on more advanced constructions,
such as authenticated encryption [5], quantum fully-homomorphic encryption [8], and many more.
Despite this high-level progress, a basic aspect of quantum encryption remains largely unstudied.
Indeed, quantum non-malleability was considered in only one previous work, by Ambainis, Bouda
and Winter [4]. Their definition (which we call ABW-NM) requires secrecy, and that the “effective
channel” Dec ◦ Λ ◦ Enc of any adversary Λ is trivial1.

Unlike non-malleability, the closely-related subject of quantum authentication (where decryp-
tion is allowed to reject) has received significant attention (see, e.g., [1, 5, 7, 9, 10].) In this set-
ting, there are two definitions. The widely-adopted definition of Dupuis, Nielsen and Salvail (DNS-
authentication) asks that, regardless of whether decryption rejects, the average effective channel of
any adversary does not touch the plaintext [9]. A more recent definition of Garg, Yuen and Zhandry
(GYZ-authentication) asks that, in the accept case, the adversary does not touch the plaintext with
high probability over the key (rather than on average) [10].

2. Summary of results.

In this work, we devise a new definition of quantum non-malleability (denoted NM). We prove
several new results about quantum non-malleability, quantum authentication, and the connections
between these two concepts. A summary of our results is as follows; we will focus on the exact case,
but all the definitions and results have appropriate relaxations to the approximate setting; see the
full paper for details [2].

1 More precisely, it is either the identity or replacement by a fixed state (or some combination of the two).
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2.1. New definition. We give a new definition of quantum non-malleability (NM), which improves
on ABW-NM in a number of ways:

1. it is expressed in terms of entropic quantities, generalizing classical definitions [11];
2. it can be alternatively characterized in terms of the effective attack (Theorem 5) for practical

security guarantees
3. it prevents more powerful attacks, which make use of side information about the plaintext;
4. it is immune to a devastating “plaintext injection” attack, whereby an adversary against an

ABW-NM scheme can send a plaintext of their choice to the receiver;
5. it does not require secrecy; instead, we show quantum non-malleability implies quantum secrecy.

The last point is analogous to the fact that quantum authentication implies encryption [5].
Informally, our definition states that any attack on the ciphertext will result in no information

gain – except via a “trivial attack” which is always possible against any scheme. In this trivial
attack, the adversary simply decides whether or not to destroy the ciphertext, and remembers that
choice in their side information. A formal definition is as follows. The relevant quantum registers
are: plaintext A, ciphertext C, user’s reference R, and adversary’s side information B.

Definition 1 A scheme is non-malleable (NM) if for any %ABR and any attack ΛCB→CB̃, the

effective channel Λ̃AB→AB̃ = Dec ◦ Λ ◦ Enc satisfies

I(AR : B̃)Λ̃(%) ≤ I(AR : B)% + h(p=(Λ, %)).

The binary entropy term h(p=(Λ, %)) captures the information gain of the aforementioned trivial

attack. Formally, p=(Λ, %) = F
(
TrB̃Λ((·)C ⊗ %B)

)2
is the squared entanglement fidelity of the

attack map as it acts on the ciphertext register if %B is input in the side information register.
Theorem 5 below provides an alternative way of defining NM, that is more suitable for practical
security definitions. It can be understood in the ”real vs. ideal” framework: for NM schemes, the
real effective attack is equal to the ideal, trivial, linear combination of the identity and a fixed
constant channel.

2.2. New results on non-malleability. As mentioned above, our first result is that NM implies
secrecy. Here, secrecy stands for one of a number of equivalent notions of security; one may for
instance use analogues of IND [6] or SEM [3] for computationally unbounded adversaries.

Theorem 2 If a quantum encryption scheme is non-malleable (NM), then it is also secret.

We remark that this is a significant departure from the classical case, where secrecy and non-
malleability are independent properties.

Next, we show that NM implies ABW-NM, and give a separation scheme which is secure under
ABW-NM but insecure under NM. As described in [2], this scheme is susceptible to a powerful
attack, whereby a simple adversary can freely choose the output of decryption.

Theorem 3 If a quantum encryption scheme is NM, then it is also ABW-NM.

On the other hand, if we restrict our attention to schemes where the encryption maps are unitary,
then we are able to show the following.

Theorem 4 Let Π be a quantum encryption scheme such that encryption Ek is unitary for all
keys k. Then Π is NM if and only if {Ek}k is a two-design.

2
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Together with the results of [4], this implies that NM and ABW-NM are in fact equivalent for
unitary schemes. Finally, we can also characterize NM schemes in the general case, as follows.

Theorem 5 A scheme is NM if and only if, for any ΛCB→CB̃, there exist maps Λ′
B→B̃, Λ′′

B→B̃
such that the effective attack Λ̃AB→AB̃ has the form

Λ̃ = idA ⊗ Λ′ +
1

|C|2 − 1
(|C| 〈DK(1C)〉 − id)A ⊗ Λ

′′ .

The maps Λ′ and Λ′′ are explicit functions of Λ [2]. This theorem shows that our notion provides
ciphertext non-malleability : if the ciphertext is modified, the plaintext is replaced by DK(1C).

2.3. New results on quantum authentication. The techniques we developed for quantum non-
malleability also yield several new results on quantum authentication, as follows. We note that our
definitions of authentication deviate slightly from the original versions [9, 10], in that decryption
outputs a reject symbol in place of the plaintext (rather than setting a flag to “reject.”)

First, we show how to build authentication from non-malleability. Given an encryption scheme
Π = {Ek}, we define Πtag

t to be a new scheme whose encryption is % 7→ Ek
(
%A ⊗ |0〉〈0|⊗tB

)
E†k, and

whose decryption rejects unless B measures to |0t〉.

Theorem 6 If a scheme Π = {Ek} satisfies NM, then Πtag
t is 22−t-DNS-authenticating.

If the starting NM scheme is encryption via the Clifford group, then the result is the well-known
Clifford scheme for authentication [1].

Next, we show that GYZ-authentication implies DNS-authentication.

Theorem 7 If a scheme is ε-GYZ-authenticating, then it is also O(
√
ε)-DNS-authenticating.

This result is technically non-trivial: on one hand, GYZ requires high probability of success while
DNS only needs success-on-average; on the other hand, GYZ requires nothing in the reject case
while DNS still makes rather stringent demands.

Finally, we show that GYZ-authentication can be satisfied by a scheme which “tags” plaintexts
as before, and encrypts with a unitary 2-design. This is a significant improvement over the analysis
of [10], which required eight-designs for the same construction.

Theorem 8 Let Π = {Ek}k be a 2−t-approximate 2-design scheme. Then Πtag
t is 2−Ω(t)-GYZ-

authenticating.

Given the conclusions of Theorem 4, we may state this as follows: if a unitary scheme Π is non-
malleable, then Πtag

t is GYZ-authenticating. We remark that the simulation of adversaries in this
proof is efficient, in the sense of [7].

3. Conclusion and open problems.

In this work, we introduced a new definition of quantum non-malleability, a core concept in en-
cryption. Our notion addresses a major vulnerability in the previous definition, and can serve as
a primitive for constructing authentication schemes. When using unitary 2-designs (e.g., the Clif-
ford group) for non-malleable encryption, the resulting authentication schemes are secure under
the strongest known definitions [10]. We remark that our work is also a natural starting point for
future research on quantum non-malleability in the setting of many messages and computational
security assumptions.

3
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Dining Philosophers, Leader Election and Ring Size problems, in the
quantum setting
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Abstract. We provide the first quantum protocol for the Dining Philosophers problem (DP), a central
problem in distributed algorithms, and use it to provide a new quantum protocol for the tightly related
problem of exact leader election, improving significantly over Tani et al [TKM12]. These two problems
are related to another important problem in distributed algorithms, the ring size problem, and interesting
connections are discussed. The results raise several interesting open questions.
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Extended Abstract

Before stating the results, we provide background on
the problems:

Dining philosophers problem The DP problem was
first introduced by [Dij71] and is one of the central prob-
lems in distributed algorithms; it is heavily related to
many synchronization problems, memory allocations and
semaphores mechanisms. It is defined as follows. A group
of n philosophers are sitting (and thinking) around a cir-
cular table in a Chinese restaurant. Between each pair of
philosophers there is a chopstick (a total of n). As time
passes by, a philosopher might get hungry. In order for a
hungry philosopher to eat, he must hold both chopsticks
(to his right, and to his left). A philosopher can only pick
up one chopstick at a time, and obviously cannot pick up
a chopstick which is already in the hand of a neighbor.
The only communication allowed, is message sending be-
tween adjacent philosophers (neighbors). Our goal is to
find an algorithm (each of the philosophers is identical
(no ID) and runs the same algorithm - anonymous) s.t.
every hungry philosopher will eventually eat, and to try
and minimize the communication complexity, as well as
the running time. In most of the paper we assume that
n, the number of philosophers, is known in advance to all
philosophers (or at least they know an upper bound for
it). It was shown in [LR81] that no deterministic classi-
cal algorithm can solve the DP problem, even if we only
want to ensure that one hungry philosopher will eventu-
ally eat. However, randomly, this is possible; and only
O (1) (classical) memory is required for each philosopher.

Fair leader election problem It turns out that the
DP question is tightly related to the problem of leader
election (LE). In this problem, we have a set of n iden-
tical parties, who want to elect a leader among them-
selves. Each party should have the same probability to

∗dorit.aharonov@gmail.com
†maor.ganz@mail.huji.ac.il
‡loick@e-magnin.com

be elected. Again each party is anonymous and runs the
same algorithm.

A deterministic algorithm always ends in finite time
and results in the election of a single leader. It is easy
to show that LE, like the DP problem, cannot be done
classically in a deterministic way, because LE implies DP.
What about a probabilistic solution?

A randomized LE protocol is allowed to never end or
to not elect a leader with some probability (preferably as
small as possible), but is not allowed to elect more than
one leader. When n is known to the players, or even
when some bound is known, then indeed there exists a
randomized solution to the LE problem [IR90].

It is based on the following idea: each player randomly
chooses a number in some finite range which depends on
n, and the one with the biggest number gets elected. The
players use their knowledge about n to make sure that
there is only a single biggest number.

In the quantum setting, a surprising result due to Tani
et. al [TKM12] provides a quantum algorithm which
solves the exact LE problem. Again, this assumes that
some bound on n is known in advance.

The ring size problem The question of whether n
is known to the players or not, plays an important role
in the context of the LE and DP problems. A related
question is thus the ring size problem. It is defined to
be the problem of finding n, the size of the ring, un-
der the same anonymous conditions. Classically, the ring
size also cannot be deterministically determined even if
we have an upper bound on n beforehand ( [ASW88],
[IR90]), but [IR90] showed that it can be found with
small error probability if we know bounds on the ring
size: N ≤ n < 2N . [IR90] also proved that the ring
size problem can be solved (even when no bound on n is
known beforehand) with arbitrarily small error.

Unfortunately, the probabilistic algorithm for the ring
size problem with error cannot be used to resolve the
LE problem even with error, because due to the error,
the possibility of choosing two leaders cannot be ruled
out. Indeed, we know LE to be impossible even in the
probabilistic setting, if no bound is known on n, but the
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randomized ring size problem can be solved in this set-
ting.

Our results To the best of our knowledge, neither the
DP nor the ring size problem were investigates in the
quantum setting before. Hence the current paper is the
first time they are discussed in this context.

We first show:

Theorem 1 Existence of an exact DP quantum
protocol. (roughly) There exists a quantum protocol for
the exact DP problem, in the setting in which n is known
or at least a bound on it is known.

This follows from the following lemma, which shows
that one can derive a DP algorithm from a LE algorithm,
by a simple classical reduction.

Lemma 2 LE-to-DP. (roughly) The existence of a LE
protocol implies that of a DP - inheriting its properties
[exact / random], with an addition O (n) time.

We can thus use the Quantum algorithm for exact LE
[TKM12] to give the above first result. Unfortunately,
this solution for the DP problem inherits its parame-
ters from the quantum solution. Moving forward, we can
prove that a solution exists which is much more efficient
in terms of memory, and is also just linear in time com-
plexity and communication complexity. To this end, we
reduce the DP problem, to the problem of breaking the
symmetry, namely, dividing the parties to two non-trivial
groups:

Lemma 3 (7) (roughly) Given a symmetry breaking
protocol, there exists a solution to the exact DP problem.

The protocol of [TKM12] offers a way to break the sym-
metry; we find an improved way to achieve symmetry
breaking. This leads to a more efficient algorithm for
exact DP than our first algorithm:

Theorem 4 (3) Efficient exact DP quantum pro-
tocol. (roughly) There exists a deterministic quantum
protocol to the DP problem, when n or an upper bound
on n is known, which uses O (1) quantum memory and
O (log n) classical memory per philosopher and O

(
n2

)
time complexity.

Perhaps one can also prove an implication in the other
direction, DP-to-LE? As we show, this does hold in the
exact (quantum) case when n is known. Thus, the two
problems are equivalent in the quantum setting, whereas
interestingly, in the classical randomized setting they are
not.

We thus make use of the following lemma:

Lemma 5 (4) DP-to-LE in the exact case. Given
a protocol that solves the DP problem deterministically,
when n is known, one can solve the exact LE problem on
a ring.

The proof idea is to use rounds of DP as black box, ad-
vancing eating philosophers to higher rounds, while elim-
inating the others.

By plugging-in our own efficient protocol of DP, we
actually get a significant improvement on the best pre-
viously known quantum algorithm for LE on the ring
(again, when n or a bound on it is known), and with
only O(1) memory:

Theorem 6 (10) A new and more efficient quan-
tum protocol for exact LE on a ring. There exists a
deterministic quantum LE algorithm on a ring of a known
size n with O

(
n2 log n

)
time, O (1) quantum memory

and O (log n) classical memory per philosopher, and total
classical communication complexity of O

(
n2 log n

)
, and

quantum communication complexity of O (n log n).
If only a bound N on n is known, then the algorithm

uses instead O
(
N2 · n

)
time complexity, O (1) quantum

memory and O (logN) classical memory per philoso-
pher, and total quantum bit communication complexity
of O

(
N2

)
and classical bits communication complexity

of O
(
N2 · n

)
.

Open questions What about when n is unknown? It
is long known ([IR90], [AW04]) that LE is classically im-
possible in this case, even for a randomized algorithm.
The idea is that one can build from a successful run on
a ring with n parties, a run on a ring with 2n parties,
by mirroring the parties. This yields two leaders, which
is strictly forbidden. If there exists a quantum protocol
for the exact ring size problem, this would lead to exact
quantum algorithms for these problems. As we recall, a
randomized solution for DP when n is unknown does ex-
ist; However like for LE, an exact protocol for DP is also
not known.

An important related open question is whether these
exact protocols can be achieved with O(1) total (classical
and quantum) memory. This is related to the follow-
ing seemingly basic question: Is there a constant depth,
translation invariant quantum circuit over constant di-
mensional particles on a circle, that can break symmetry
exactly? We conjecture that the answer is no; Proving
impossibility would be interesting, and possibly related
to better understanding of quantum states emerging in
translationally invariant quantum systems.

A Complete paper

A full version of the paper can be found online, quant-
ph arXiv 1707.01187. The additional numbers in paren-
theses next to some of the lemmas and theorems are the
numbers of these lemmas and theorems as they appear
in the full version. We have added those in the cases in
which these numbers do not match the numbers in this
abstract, for convenience of reading.
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Abstract. We give and prove an optimal exact quantum query algorithm with complexity k + 1 for
computing the promise problem (i.e., symmetric and partial Boolean function) DJk

n defined as: DJk
n(x) = 1

for |x| = n/2, DJk
n(x) = 0 for |x| in the set {0, 1, . . . , k, n−k, n−k+1, . . . , n}, and it is undefined for the rest

cases, where n is even, |x| is the Hamming weight of x. The case of k = 0 is the well-known Deutsch-Jozsa
problem. We outline all symmetric (and partial) Boolean functions with degrees 1 and 2, and prove their
exact quantum query complexity. Then we prove that any symmetrical (and partial) Boolean function f
has exact quantum 1-query complexity if and only if f can be computed by the Deutsch-Jozsa algorithm.

Keywords: exact quantum query algorithms, Deutsch-Jozsa problems, query complexity, symmetric
Boolean functions, promise problems

1 General Description

The quantum query models are the quantum analog
to the classical Boolean decision tree models, so they
are also called quantum decision tree models [4] and are
at least as powerful as the classical decision tree model-
s. The implementation procedure of a quantum decision
tree model is exactly a quantum query algorithm, and
it can be roughly described as: it starts with a fixed s-
tarting state |ψs〉 of a Hilbert space H and performs a
sequence of operations U0, Ox, U1, . . . , Ox, Ut, where Ui’s
are unitary operators that do not depend on the input
x but the query Ox does. This leads to the final state
|ψf 〉 = UtOxUt−1 · · ·U1OxU0|ψs〉. The result is obtained
by measuring the final state |ψf 〉.

A quantum query algorithm A exactly computes a
Boolean function f if its output equals f(x) with proba-
bility 1, for all inputs x. The exact quantum query algo-
rithms for computing total Boolean functions also have
been studied. The best known quantum speed-up was
just by a factor of 2 for many years [6, 8]. In 2013, as a
breakthrough result, Ambainis [2] has presented the first
example of a Boolean function f : {0, 1}n → {0, 1} for
which QE(f) = O(D(f)0.8675...), where D(f) denotes the
minimum number of queries used by any classical deter-
ministic query algorithm. The result was improved to
nearly-quadratic separation by Ambainis et al [1, 3] in
2016.

However, for computing partial Boolean functions,
there can be more than exponential separation [5, 9] be-
tween exact quantum and classical deterministic query
complexity, and the first result was the well-known
Deutsch-Jozsa algorithm [7]. Deutsch-Jozsa problem

∗The full paper for this abstract can be found in arX-
iv:1603.06505. This work was supported by the National Natural
Science Foundation of China (Nos. 61572532, 61272058, 61602532)
and the Fundamental Research Funds for the Central Universities
of China (Nos. 17lgjc24, 161gpy43).
†issqdw@mail.sysu.edu.cn, Corresponding author
‡zhengshg@mail2.sysu.edu.cn, Corresponding and also

co-first author

can be described as a partial Boolean function DJ0
n :

{0, 1}n → {0, 1} defined as: n is even, and DJ0
n(x) = 1

for |x| = n
2 and DJ0

n(x) = 0 for |x| = 0 or n, and the oth-
er cases are undefined, where |x| is the Hamming weight
of x.

Different from partially symmetric Boolean functions
in literature, the functions DJ0

n and DJ1
n above are both

symmetric and partial, so, they may be termed as sym-
metrically partial Boolean functions (i.e. promise prob-
lems) in this paper and the exact definition can be de-
scribed as follows.

Definition 1 Let f : {0, 1}n → {0, 1} be a partial
Boolean function, and let D ⊆ {0, 1}n be its domain of
definition. If for any x ∈ D and for any y ∈ {0, 1}n with
|x| = |y|, it holds that y ∈ D and f(x) = f(y), then f is
called a symmetrically partial Boolean function. When
D = {0, 1}n, f is a symmetric function.

So, a Boolean function is symmetrically partial if and
only if it is symmetric and partial. In this paper, we give
and prove an optimal exact quantum query algorithm
with complexity k + 1 for computing the symmetrically
partial Boolean functions DJk

n defined as: DJk
n(x) = 1 for

|x| = n/2, DJk
n(x) = 0 for |x| in the set {0, 1, . . . , k, n −

k, n−k+ 1, . . . , n}, and it is undefined for the rest cases,
where n is even, |x| is the Hamming weight of x. The
case of k = 0 is the well-known Deutsch-Jozsa problem
[7].

We outline all symmetrically partial Boolean function-
s with degrees 1 and 2, and prove their exact quantum
query complexity. Then we prove that any symmetri-
cally partial Boolean function f has exact quantum 1-
query complexity if and only if f can be computed by
the Deutsch-Jozsa algorithm.

We also discover the optimal exact quantum 2-query
complexity for distinguishing between inputs of Ham-
ming weight {bn/2c, dn/2e} and Hamming weight in the
set {0, n} for all odd n. In addition, a method is provid-
ed to determine the degree of any symmetrically partial
Boolean function.
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2 A list of our main results

A general generalization of Deutsch-Jozsa problem is
the following symmetrically partial function:

DJk
n(x) =

{
1 if |x| = n/2,
0 if |x| ≤ k or |x| ≥ n− k, (1)

where n is even and 0 ≤ k < n/2. When k = 0, it is the
Deutsch-Jozsa problem, and when k = 1, it equals the
problem given by Montanaro et al [10]. Our first main
result is as follows.

Theorem 2 The exact quantum query complexity of
DJk

n satisfies:
QE(DJk

n) = k + 1. (2)

However, the classical deterministic query complexity
for DJk

n is:
D(DJk

n) = n/2 + k + 1. (3)

A natural question is, what do Boolean functions with
the same exact quantum query complexity have in com-
mon? Due to the importance and simplicity of symmet-
ric functions, here we consider the case of exact quantum
1-query complexity for all symmetrical and partial func-
tions.

Therefore, the question is what can be solved with
exact quantum 1-query complexity? We can pose the
question more precisely: if an exact quantum 1-query
algorithm A computes a symmetrically partial function
f , then, can any symmetrically partial function g with
QE(g) = 1 be computed by A? Our second main result
answers this question as follows.

Theorem 3 Any symmetrical and partial Boolean func-
tion f has QE(f) = 1 if and only if f can be computed
by the Deutsch-Jozsa algorithm.

To prove the above theorem, we prove the following
three results.

Theorem 4 Let n > 1 and let f : {0, 1}n → {0, 1} be an
n-bit symmetric and partial Boolean function. Then:

(1) deg(f) = 1 if and only if f is isomorphic to the

function f
(1)
n,n;

(2) deg(f) = 2 if and only if f is isomorphic to one of
the functions

f
(1)
n,k(x) =

{
0 if |x| = 0,
1 if |x| = k,

(4)

f
(2)
n,k(x) =

{
0 if |x| = 0,
1 if |x| = k or |x| = k + 1,

(5)

f
(3)
n,l (x) =

{
0 if |x| = 0 or |x| = n,
1 if |x| = l,

(6)

f (4)n (x) =

{
0 if |x| = 0 or |x| = n,
1 if |x| = bn/2c or |x| = dn/2e, (7)

where n− 1 ≥ k ≥ bn/2c, and dn/2e ≥ l ≥ bn/2c.

Theorem 5 Let n be even and let f : {0, 1}n → {0, 1} be
an n-bit symmetric and partial function. Then QE(f) =
1 if and only if f is isomorphic to one of these functions:

f
(1)
n,k and f

(3)
n,n/2, where k ≥ n/2.

Theorem 6 Let n be odd and let f : {0, 1}n → {0, 1} be
an n-bit symmetric and partial function. Then QE(f) =
1 if and only if f is isomorphic to one of the functions

f
(1)
n,k, where k ≥ dn/2e.
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Abstract. We present a quantum algorithm for systems of (possibly inhomogeneous) linear ordinary dif-
ferential equations with constant coefficients. The algorithm produces a quantum state that is proportional
to the solution at a desired final time. The complexity of the algorithm is polynomial in the logarithm of
the inverse error, an exponential improvement over previous quantum algorithms for this problem. Our
result builds upon recent advances in quantum linear systems algorithms by encoding the simulation into
a sparse, well-conditioned linear system that approximates evolution according to the propagator using a
Taylor series. Unlike with finite difference methods, our approach does not require additional hypotheses
to ensure numerical stability. The full version of this work is given in Ref. [1].

Keywords: quantum algorithm, complexity, differential equations

1 Introduction

One of the original motivations for developing a quan-
tum computer was to efficiently simulate Hamiltonian dy-
namics, i.e., differential equations of the form d~x

dt = A~x
where A is anti-Hermitian. Given a suitable description
of A, a copy of the initial quantum state |x(0)〉, and an
evolution time T , the goal is to produce a quantum state
that is ε-close to the final state |x(T )〉. The first algo-
rithms for this problem had complexity polynomial in 1/ε
[2, 3, 4, 5]. Subsequent work gave an algorithm with com-
plexity poly(log(1/ε))—an exponential improvement—
which is optimal in a black-box model [6]. More re-
cent work has streamlined these algorithms and improved
their dependence on other parameters [7, 8, 9, 10, 11, 12].

While Hamiltonian simulation has been a focus of
quantum algorithms research, the more general prob-
lem of simulating linear differential equations of the form
d~x
dt = A~x + ~b for arbitrary A is less well studied. Ref-
erence [13] solves this problem using a quantum linear
systems algorithm (QLSA) [14] to implement linear mul-
tistep methods, which represent the differential equations
with a system of linear equations by discretizing time.
The complexity of this approach is poly(1/ε). Consider-
ing the recent improvements to the complexity of Hamil-
tonian simulation, it is natural to ask whether linear dif-
ferential equations can be solved more efficiently as a
function of ε.

Hamiltonian simulation is a central component of the
QLSA, and the techniques underlying poly(log(1/ε))
Hamiltonian simulation have been adapted to give a
QLSA with complexity poly(log(1/ε)) [15]. However,
even if this improved QLSA is used to implement the
algorithm of Ref. [13], the overall complexity is still
poly(1/ε), since the multistep method is a source of error.

In this work, we circumvent these limitations and
present a new quantum algorithm for linear differential

∗dominic.berry@mq.edu.au
†amchilds@umd.edu

equations with complexity poly(log(1/ε)), an exponen-
tial improvement over Ref. [13]. We use the new QLSA
in Ref. [15], but encode a truncation of the Taylor series
of exp(At), the propagator for the differential equation,
into a linear system, instead of using a linear multistep
method.

2 Contribution

2.1 Our Result

More formally, we consider the following problem:

ODE Simulation Problem: The N ×N matrix A =
V DV −1 is diagonalizable, s-sparse, and has eigenvalues
with non-positive real parts. In addition, ~b and ~xin are
N -dimensional vectors with known norms. We have an
oracle that computes entries of A, as well as oracles that
prepare states proportional to~b and ~xin. Produce a quan-
tum state ε-close (in `2 norm) to ~x(T )/‖~x(T )‖ for T > 0,
where ~x has the initial condition ~x(0) = ~xin and evolves
according to

d~x

dt
= A~x+~b. (1)

Our algorithm for solving this problem achieves the fol-
lowing (see Theorem 9 in [1]):

Main Result: Let g := maxt∈[0,T ] ‖~x(t)‖/‖~x(T )‖,
β := (‖~xin‖ + T‖|b〉‖)/‖~x(T )‖ and κV = ‖V ‖ · ‖V ‖−1.
There is a quantum algorithm that solves the ODE
Simulation Problem with constant probability which has
query and gate complexities that are poly(log (β/ε)) and
linear (up to logarithmic factors) in ‖A‖, T , s, g, and κV .

In addition to scaling well with the simulation error,
our algorithm has favourable performance as a function
of other parameters. The complexity is nearly linear in
the evolution time, which is a quadratic improvement
over Ref. [13] and is nearly optimal [5]. The complexity
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is also nearly linear in the sparsity of A and in g, which
characterizes the decay of the solution vector. The lat-
ter dependence is necessary since producing a normalized
version of a subnormalized solution vector is equivalent to
postselection, which is computationally intractable [16].
Along similar lines, we assume that the eigenvalues of
A have non-positive real parts, since it is intractable to
simulate exponentially growing solutions. This improves
upon Ref. [13], where the eigenvalues λ of A must sat-
isfy | arg(−λ)| ≤ α for some constant α depending on the
stability of the multistep method.

2.2 High-level Overview

Our new method is based on approximating the ma-

trix exp(Ah) by the sum Tk(Ah) =
∑k

j=0(Ah)j/j! and
then using that approximation to evolve the system for-
ward. The exact solution of the equation is ~x(t) =

exp(At)~x(0) + [exp(At) − I]A−1~b which we can approxi-
mate for small times h as ~x(h) = Tk(Ah)~x(0)+[Tk(Ah)−
I]A−1~b = Tk(Ah)~x(0)+

∑k
j=1[(Ah)j−1/j!]h~b. To see how

we implement this approximation, consider the following
linear system for k = 4.

I 0 0 0 0 0
−Ah I 0 0 0 0
0 −Ah/2 I 0 0 0
0 0 −Ah/3 I 0 0
0 0 0 −Ah/4 I 0
−I −I −I −I −I I




~z0
~z1
~z2
~z3
~z4
~z5

 =



~x(0)
~bh
0
0
0
0


(2)

The vector on the right-hand side only contains infor-
mation about the initial state and the inhomogeneity;
however, solving this system gives a vector that includes
information about ~x(h).

If we used a QLSA to solve this system, then we would
have a state proportional to

∑5
j=0 ~zj ⊗ |j〉. Conditioned

on measuring 5 in the last register, we would have a state
proportional to ~z5 = T4(Ah)~x(0) + [T4(Ah) − 1]A−1~b ≈
~x(h) up to some error. For j < 5 the ~zj do not give useful
information about the evolution of the state.

Using Tk(Ah) to evolve the system is advantageous be-
cause the coefficients for the Taylor series decay factori-
ally, so we obtain a good approximation of exp(Ah) even
with small k (i.e. low order of truncation). This should be
contrasted with Berry’s algorithm [13] which uses linear
multistep methods whose errors do not decay as rapidly
when going to higher orders. Berry’s algorithm also re-
quired additional hypotheses to guarantee the numerical
stability of the multistep method, whereas this is not a
problem for the Taylor series approach.

The system above only evolves forward for a short time
h. To evolve for the total time T , we simply construct
a matrix containing T/h copies of the matrix above (we
would choose h so T/h is an integer). In addition, at
the end we use lines with

(
· · · 0 −I I 0 · · ·

)
in

the matrix, to obtain a solution where many of the ~zj
are equal to the final value, which approximates ~x(T ).
Success is obtained when we obtain one of the ~zj that
approximates ~x(T ), so by this process we can boost the
success probability to a constant. See Section 2 of Ref. [1]
for details of this construction.

3 Conclusion

Compared to the previously proposed quantum algo-
rithm for linear differential equations [13], our algorithm
shows an exponential improvement with respect to the
error. Our result adds to the growing literature of quan-
tum algorithms for differential equations. Linear systems
are ubiquitous in the mathematical and natural sciences,
so our algorithm could be utilized in real-world applica-
tions of quantum computing.
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Abstract. Network centrality has important implications well beyond its role in physical and informa-
tion transport analysis; as such, various quantum-walk-based algorithms have been proposed for measuring
network vertex centrality. In this work, we propose a continuous-time quantum walk algorithm for deter-
mining vertex centrality, and show that it generalizes to arbitrary graphs via a statistical analysis of
randomly generated scale-free and Erds-Rnyi networks. As a proof of concept, the algorithm is detailed
on a four-vertex star graph and physically implemented via linear optics, using spatial and polarization
degrees of freedoms of single photons; the first successful physical demonstration of a quantum centrality
algorithm. Finally, we extend our quantum centrality to directed non-Hermitian graph structures using
PT-symmetric quantum walks; a statistical analysis shows strong agreement with the classical PageRank
measure on directed acyclic graphs.

Keywords: network centrality, quantum information, quantum algorithms, non-Hermitian dynamics

Quantum walks are an important tool in the field of
quantum information theory. Indeed as a method of uni-
versal quantum computation [4], they have motivated the
creation of quantum algorithms that are faster and more
efficient than their classical analogues [3], and provided
a vital link between quantum computation and model-
ing complex quantum dynamical systems (for example,
photosynthesis [7]). Moreover, in providing a method of
modelling network structures that doubles as a universal
system of quantum computation, the quantum walk is
uniquely placed in the quest to find quantum analogues
of classical network algorithms. As such, one potential
application of the quantum walk is in providing an effi-
cient quantum algorithm for vertex centrality ranking in
network analysis. Network centrality has important im-
plications well beyond its role in physical and informa-
tion transport analysis; as such, various quantum-walk-
based algorithms have been proposed for measuring net-
work vertex centrality. These include algorithms built on
the standard discrete-time quantum walk [3], the Szegedy
discrete-time quantum walk [9, 10, 6], or the continuous-
time quantum stochastic walk (QSW) [6, 11, 5]. How-
ever, whilst comparing well to classical centrality mea-
sures, these have the distinct disadvantage of requiring
expanded Hilbert spaces (up to N2 dimensions for a
graph of N vertices), or in the case of the QSW, mut-
ing the quantum behaviour due to decoherence. As such,
these quantum algorithms require increased quantum re-
sources, and as a result, for large networks are difficult
to implement on current experimental setups.

We instead propose a continuous-time quantum walk
algorithm for determining vertex centrality, allowing us
to preserve the full quantum behaviour of the walker,
whilst limiting the dimension of the Hilbert space to N .

∗josh.izaac@uwa.edu.au
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Further, we show that this scheme generalizes to arbi-
trary graphs via a statistical analysis of randomly gen-
erated scale-free and Erdős-Rényi networks; the analysis
indicates that the proposed measure is highly correlated
with the classical eigenvector centrality, and we suggest
that it provides an extension of the eigenvector centrality
to the quantum realm. As a proof of concept, the algo-
rithm is detailed on a four-vertex star graph and phys-
ically implemented via linear optics, using spatial and
polarization degrees of freedoms of single photons. This
talk reports the first successful physical demonstration of
a quantum centrality algorithm.

Unfortunately, one disadvantage of the quantum walk
as utilised above is the imposition of unitarity, due to
the quantum nature of the walkers. As such, the con-
ventional quantum walk is unable to model or analyze
directed network structures, without either a) resulting
in non-unitary dynamics, or b) modifying the framework.
This serves as a particular hindrance in extending estab-
lished quantum algorithms (e.g. quantum search, cen-
trality measures, graph isomorphism) and quantum dy-
namical models to systems with direction/biased poten-
tials (such as transport of electrons or excitons).

One such solution to this problem lies in the field
of PT-symmetry, which offers the capability to perform
quantum walks on directed graphs with non-Hermitian
Hamiltonians whilst preserving the norm [1, 2, 8]. Thus,
in the second part of this presentation, we formalize a
rigorous framework for continuous-time quantum walk-
ers on pseudo-Hermitian directed graph structures. This
is then extended to the cases of multi-particle quantum
walks and interdependent networks, before being applied
to measure vertex centrality in ensembles of randomly
generated PT-symmetric scale-free and Erdős-Rényi net-
works – resulting in strong agreement with the classical
PageRank algorithm, and enabling the proposed quan-
tum ‘eigenvector-like’ centrality algorithm to accurately
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extract the most central vertex in directed acyclic net-
works which fail under the classical eigenvector centrality.
Furthermore, we show that this formalism is equivalent to
considering an undirected, yet weighted, complete graph
with self-loops, providing a structural interpretation that
may lead to simple experimental implementation.

Whilst prior work on quantum centrality measures
has generally focused on discrete-time quantum walk-
based algorithms, our work shows that those based on
continuous-time quantum walks should not be so read-
ily discounted. With a reduced Hilbert space, they
have the ability to rank vertices in a manner sugges-
tive of the classical eigenvector centrality, providing
an extension of eigenvector centrality to the quantum
realm. Moreover, through the PT-symmetric framework,
this proposed centrality scheme can be extended to di-
rected graph structures, and provide centrality rank-
ing on graphs which the classical eigenvector central-
ity ranking is inconclusive. Finally, we have demon-
strated a successful experimental implementation of a
quantum centrality scheme. By exploring the capability
of continuous-time quantum walks in network centrality
analysis, the work presented here may, in future, lead
to easily-implementable and efficient quantum centrality
algorithms that take advantage of the potential speedup
provided by quantum computation.
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Resource theory is a widely applicable framework for analyzing the physical resources re-
quired for given tasks, such as computation, communication, and energy extraction. We
propose a general scheme for analyzing resource theories based on resource destroying maps,
which leave resource-free states unchanged but erase the resource stored in all other states.
We introduce a group of general conditions that determine whether a quantum operation
exhibits typical resource-free properties in relation to a given resource destroying map. Our
theory reveals fundamental connections among basic elements of resource theories, in partic-
ular, free states, free operations, and resource measures. In particular, we define a class of
simple resource measures that can be calculated without optimization, and that are mono-
tone nonincreasing under operations that commute with the resource destroying map. We
apply our theory to the resources of coherence and quantum correlations (e.g., discord), two
prominent features of nonclassicality.

In an upcoming work, we use the theory of resource destroying map to show a rather sur-
prising result that a simple discord measure called diagonal discord is generically monotone
under local discord non-generating operations.

Resource theory originates from the observation that certain properties of physical systems
become valuable resources, when the operations that can be performed are restricted so that such
properties are hard to create. The framework of resource theory has been applied to various other
concepts in quantum information, such as purity [1], magic states [2] and coherence [3, 4], and to
broader areas, such as asymmetry [5] and thermodynamics [6]. In recent years, considerable effort
has been devoted to developing a unified framework of resource theories [7–9]. In particular, Ref.
[7] studies the general case where the set of free operations is maximal, i.e., all (asymptotically)
resource non-generating operations are allowed, when the resource satisfies several postulates (e.g.,
the set of free states is convex). Some key aspects of resource theories are not addressed by existing
frameworks, however. For example, characterizing a proper set of free operations is frequently a
major difficulty in establishing a resource theory, and we do not yet have general principles and
understandings for nonmaximal theories. Indeed, a successful resource theory is usually specified by
physical restrictions on the set of allowed operations: LOCC and thermal operations [6, 10, 11] are
prominent examples. But such restrictions are often stronger than merely nongenerating, and may
lead to mathematical difficulties in characterizing and calculating monotones. Moreover, existing
results do not apply to some resources, such as discord, where the set of free states is nonconvex.

In this work, we propose a mathematically friendly framework of resource-free operations based
on the notion of resource destroying maps. Our framework applies to all resources including those
with nonconvex sets of free states.

Resource destroying maps. This is the key concept of our theory. Let F be the set of
free states for a certain theory. For all input states ρ, a resource destroying map λ satisfies the
following requirements: (i) resource destroying: if ρ 6∈ F , λ(ρ) ∈ F ; (ii) nonresource fixing: if
ρ ∈ F , λ(ρ) = ρ. In other words, a resource destroying map outputs a free state if the input is
not free, and leaves the input unchanged otherwise. The resource destroying map characterizes
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the resource-free space: F consists precisely of the fixed points of λ. It is easy to see that resource
destroying maps are idempotent and surjective. It is helpful to draw an analogy with fiber bundles:
λ defines a bundle projection onto F . Call a non-free state a parent state of its image free state.
Then each free state defines a family consisting of corresponding parent states (the fiber) and the
free state itself. Note that many important properties of our framework sharply contrast linear
resource destroying maps with nonlinear ones (which we discuss in the long version).

Note that a resource destroying map does not have to be completely positive or linear, and can
be highly nonuniform. However, we are mostly interested in the physically motivated ones, usually
with simple descriptions that work universally for all inputs. For example, the simplest case is
when the resource destroying map can be represented by a quantum channel. It can be shown that
λ cannot be a linear map (thus not a channel) when F is nonconvex.

Resource-free conditions. The definition of resource destroying maps allows us to write
down a group of general conditions that determine whether an operation exhibits various key
resource-free properties. Consider a theory with resource destroying map λ. The following duo of
conditions

E ◦ λ = λ ◦ E ◦ λ (1)

λ ◦ E = λ ◦ E ◦ λ (2)

respectively determines if a quantum operation E is resource non-generating/non-activating. The
free set F is closed under resource non-generating operations [Eq. (1)]: they never map a free state
to a resourceful one. This is a necessary constraint on free operations, since any other operation
can create resource, thus making the theory trivial. As studied in e.g. [7, 8], such maximal theories
(under some assumptions e.g. convexity) possess a common structure: they are reversible, and
the regularized relative entropy is the unique monotone (asymptotically). On the other hand,
the non-activating condition [Eq. (2)] has not been well studied to our knowledge. Think of the
output of λ as the free part of an input state. This condition means that E cannot make use
of the resource stored in any input to affect the free part. An alternative interpretation is that
resource non-activating operations do not mix up fibers in the fiber bundle. More colloquially, such
operations never break apart a family: members of the same family cannot be mapped to different
families. The combination of these two constraints gives us the commuting condition:

λ ◦ E = E ◦ λ. (3)

It is also meaningful to consider the “selective” versions of each condition: in practice, one may want
to require that the above conditions be satisfied even when considering selective measurements,
i.e., the outcome of the measurement is accessible. This leads to the following variation of each
condition: there is a Kraus decomposition E(·) =

∑
µKµ · K†µ such that all Kraus arms Eµ(·) ≡

Kµ ·K†µ satisfies the condition.

The sets of free operations derived from the above resource destruction framework exhibit several
general features. We show that certain free operations can be constructed by composing arbitrary
operations and the resource destroying map in certain sequences. Moreover, all conditions hold
for convex combinations when λ is linear, and for compositions. In particular, we demonstrate
that the commuting condition plays a key role in the quantification of resources. In particular, the
distance (as measured by any contractive distance measure) between a state and its resource-free
version is monotone nonincreasing under commuting operations. More formally, for any state ρ
and contractive distance D, define D̃(ρ) := D(ρ, λ(ρ)), then, for any Γ that commutes with λ,

D̃(ρ) ≥ D(Γ(ρ),Γ(λ(ρ))) = D(Γ(ρ), λ(Γ(ρ))) ≡ D̃(Γ(ρ)), (4)
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where the inequality follows from the contractivity of D. Therefore, for any resource theory with
free operations satisfying the commuting condition, we have a class of computationally easy mono-
tones which avoid optimizations (given that λ is suitably defined). We should note that D̃ is not
necessarily continuous everywhere when λ is nonlinear, which requires more careful analysis in
application (as will be demonstrated for discord).

Applications. Coherence and quantum correlations are prominent features of nonclassical
systems, which are under active study in recent years. We explicitly apply our framework to these
two theories in this work.

The resource theory treatment of coherence has drawn a lot of attention in recent years. See [12]
for a recent review. For coherence, the natural resource destroying map is simply a measurement
in the preferred basis. We show that a class of coherence-free operations with different physical
correspondences can be derived from our theory. Notably, several recent proposals, namely In-
coherent Operations [3, 4], Strictly Incoherenct Operations [13], Dephasing-covariant Operations
(appeared during the preparation of this work) [14, 15], naturally emerge from the theory of coher-
ence destroying map. The results of coherence can therefore be extended to other theories through
our framework. See the long version for more details.

On the other hand, discord-type quantum correlation has been refusing satisfactory treatments
within the framework of resource theories. Unlike separable states for entanglement, the sets of
classically correlated states (discord-free states) are nonconvex, and various key aspects of discord
such as free operations are poorly understood. Nevertheless, discord fits well into our theory, which
provides new insights into discord-free operations and discord monotones. The canonical discord
destroying map is simply a local measurement in the eigenbasis, which we call π: classically corre-
lated states are fixed points of π (on the classical side); and a local projective measurement always
erases discord. Local operations that do not create discord have been studied in Refs. [16, 17],
but other classes have not been considered before to our knowledge. We find that some of the
simplest quantum operations exhibit typical but different behaviors in this theory. In this paper
and an upcoming work [18], we show that all local isotropic channels (including unitary, antiuni-
tary, depolarizing channels and their combinations) are π-commuting. Local rank-one projective
measurements, however, are discord non-generating but activating. We also define a measure-and-
prepare protocol depending on the input that can generate but cannot activate discord, but it is
unclear at the moment whether there are channels in this class. Contractive distances between any
ρAB and πA(ρAB), e.g., a physically motivated simple measure of discord called diagonal discord
[19], are monotone under X(π) (so all isotropic channels). Together with some numerical evidence
[18], we find that, rather surprisingly, diagonal discord is likely monotone under all local discord
non-generating channels. We should point out that diagonal discord may suffer from discontinuities
[20, 21], however it can be shown that they do not occur at full rank non-degenerate states [18].

Concluding remarks. In this work, we propose a simple and widely applicable theory of
resource theories based on the notion of resource destroying maps. Our theory provides a gen-
eral scheme for understanding the power of quantum operations in relation to certain quantum
resources. The theory shows how to extend results that have been previously derived for specific
resources to a more general class of resource theories. In particular, our framework may lead to
conceptual advances in understanding nonconvex theories such as discord. It would also be inter-
esting to apply the framework of resource destroying maps to other important resource theories,
such as those of entanglement, magic states, asymmetry and thermodynamics.
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Logical paradoxes in deterministic quantum state injection
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While quantum computers are expected to yield considerable advantages over classical
devices, the precise features of quantum theory accounting for these advantages remain
unclear. Contextuality—the denial of a notion of classical physical reality—has emerged as
a promising hypothesis.

Howard et al. showed that single-qudit magic states, resources critical to achieving quan-
tum universality, exhibit a standard form of contextuality known to facilitate probabilistic
advantages in computational and communicational tasks. Strong contextuality is a logi-
cal form of contextuality describing systems, e.g. the GHZ state, that exhibit paradoxical
behaviour: the true statements describing their response to measurement are inconsistent.

We consider the role of paradoxes in deterministically achieving quantum universality. We
present large families of strongly contextual multiqudit magic states admitting deterministic
implementation of gates from the third level of the Clifford hierarchy. Our results contribute
to the computational resource theory of contextuality by applying logical tools towards a
structural understanding of quantum information theory.

Despite decades of research, identification of the precise physical and logical features accounting
for quantum advantages over classical devices, and the mechanisms by which they do so, remains a
pressing open problem in quantum computation. Further refinement of quantum computational re-
source theories will clarify for which computational problems quantum computers offer advantages
and facilitate concrete design improvements in the architecture of quantum devices.

Contextuality is a concept from the foundations of quantum mechanics first articulated by
Bell-Kochen-Specker [1, 2]. Their theorem denies the possibility of a classical explanation for the
statistical predictions of quantum theory in terms of hidden variables. Quantum measurements
cannot be straightfowardly modelled as revealing properties of a pre-existing classical reality. Con-
textuality subsumes nonlocality as a special case. Contextuality and nonlocality have emerged as
promising hypotheses as essential quantum resources needed for achieving advantages in computa-
tion and communication. In particular, a recent, seminal result of Howard et al. [3] demonstrates
the necessity of contextuality in fault-tolerantly achieving quantum universal computation in the
experimentally tractable setting of magic state distillation.

Our motivation is to refine the computational resource theory of contextuality by considering
the role of logical paradoxes realized by quantum resources. These paradoxes are relevant in a
diverse variety of settings: e.g. nonlocal games [4, 5], measurement-based quantum computation
[6], zero-error information theory [7], etc. We consider here, for the first time, their role in achieving
(fault-tolerant) universal quantum computation [8].

I. STRONG CONTEXTUALITY AND GHZ-TYPE PARADOXES

We make essential use of Abramsky-Brandenburger’s notion of strong contextuality [9], which
generalizes the notion of maximal nonlocality introduced by Elitzur-Popescu-Rohrlich [10] and Bar-
rett et al. [11]; it captures the paraxodical nature of systems that is key to achieving deterministic
advantages. Well known examples of strong contextuality include the GHZ state [12] and the PR
box [13]. Whereas standard contextuality is witnessed by the violation of a probabilistic inequality
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[14–16], strong contextuality is witnessed by a logical paradox [17]. Correlations exhibiting standard
probabilistic contextuality can be seen as stochastic mixtures of classical and paradoxical systems
[18]. Thus, the probabilistic advantage conferred by contextual resources can be understood as
a consequence of probabilistic access to paradoxical resources (and their attendant conferment of
deterministic advantages).

II. CONTEXTUALITY AS A RESOURCE

Contextuality (and the special case of nonlocality) has been shown to be critical to achieving
quantum advantage in a variety of information theoretic tasks. The pattern of strongly contex-
tual resources conferring deterministic advantages is seen in a diverse variety of computational
and communicational tasks: e.g. communication complexity [19], measurement-based quantum
computation [20], nonlocal games [4], zero-error classical channel capacity [7], etc.

Sharing an unlimited number of PR boxes between two parties renders all communication
complexity problems trivial [19]. Kochen-Specker configurations play an essential role in boosting
the zero-error (i.e. deterministic) capacity of certain classical channels [7]. Perfect strategies for
nonlocal games require strongly contextual resources [18].

Anders and Browne [21] proved that a linear computer with access to a GHZ state can deter-
ministically compute the OR of two bits (a non-linear function). The input bits determine which
measurements performed on the three qubits; linear post-processing of the measurement outcomes
yields the desired output bit. Raussendorf [20] generalised this to linear measurement-based quan-
tum computers. A computer restricted to performing linear arithmetic with access to measurements
on an empirical model can, with non-zero probability, compute a nonlinear function only if the
empirical model is contextual. It can deterministically compute a nonlinear function only if the
resource is strongly contextual. The success probability of the computation is bounded by the
product of a measure of the function’s nonlinearity and the contextual fraction of the resource
state [18].

III. RESULTS

As in Howard et al., we consider stabilizer quantum mechanics [22]. Circuits built within this
scheme, i.e. from Clifford gates, are relatively easy to implement in a fault-tolerant way. By
the Gottesman-Knill theorem [23], however, these circuits are efficiently classically simulable and
thus offer none of the power of quantum computation. The ability to perform a non-Clifford gate
promotes this scheme to universal quantum computation. This can be achieved by state injection
[24]: a variation on the quantum teleportation protocol that consumes a resource magic state and
implements a non-Clifford gate. Howard et al. showed that single-qudit magic states, resources
critical to achieving quantum universality, exhibit standard contextuality with respect to two-qudit
stabilizer operations once paired with an ancilla qudit. In this work, we consider the contextuality
properties of two-qudit resources needed for deterministic state injection.

Here, we establish a link between strong contextuality and the Clifford hierarchy [22], a distin-
guished class of gates admitting deterministic state injection. In contrast, a general magic state
must undergo a stochastic distillation and injection process (due to Bravyi and Kitaev [8]) before
being converted into a non-Clifford gate. We present large families of strongly contextual mul-
tiqudit magic states admitting deterministic implementation of gates from the third level of the
Clifford hierarchy.

Unlike Howard et al., we consider genuinely multiqudit states without the need for ancilla
qudits. We also make no use of negativity or Wigner functions [25]; instead, we exhibit GHZ-type
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paradoxical behaviour via elementary number theory.
The structure of our results is as follows:

• We use Cui-Gottesman-Krishna’s recent classification of the diagonal gates of the Clifford
hierarchy [26] to define strong magic states (Definition 1) as those capable of deterministically
injecting gates from the third level with the reasonable restriction of having vanishing local
terms.

• We prove a surprising lemma about the class of possible hidden variable models for multiqudit
stabilizer quantum mechanics. Lemma 1 indicates that such hidden variable models must
preserve the vector space structure of the Gross phase space [30] for stabilizer theory.

• We provide a number-theoretic criterion (Lemma 2) for the possibility vs. impossibility of
witnessing a given joint outcome upon stabilizer measurements on magic states.

• By choosing appropriate measurements to witness our paradoxes (Table 1), and exploiting
Dickson’s 1896 classification of permutation polynomials of low degree [31] (Theorem 2), we
are able to prove that all strong magic states exhibit generalised GHZ-type paradoxes. These
paradoxes exist in infinitely many dimensions.

IV. SIGNIFICANCE AND OUTLOOK

We have presented large families of genuinely multiqudit magic states exhibiting GHZ-type
paradoxes that are intimately connected with the Clifford hierarchy. The families exist in arbitrarily
large dimensions. Our results solidify the intuition that the logical paradoxes described by strong
contextuality (and nonlocality) play an important role in facilitating deterministic advantages
over classical devices. Most analyses of contextuality as a resource have considered standard
contextuality and probabilistic advantage; probabilistically contextual resources can be seen as
mixtures of strongly contextual and classical resources.

A closer analysis of how these states facilitate the deterministic conversion of magic states
into third level gates is warranted. A natural further question is to classify strong contextuality
in stabilizer mechanics and to fully delineate its relationship with the Clifford hierarchy. (It is
noteworthy that Lemma 2 holds even when Φ is not a polynomial. That the diagonal subset of
the Clifford hierarchy is defined using polynomials provides a strong hint that of their underlying
logical structure. Cubics are particularly suited for been proven to be permutation polynomials.)
This may require extension the elegant characterisation of Cui, Gottesman, and Krishna, from the
diagonal to the general case.
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discussions. Financial support from the EPSRC via grant EP/N017935/1 (Contextuality as a
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during the Logical Structures in Computation programme at the Simons Institute for the Theory
of Computing at the University of California, Berkeley.
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In these appendices we:

• Prove background material on contextuality, with formal mathematical definitions.

• Prove the background material on multiqudit stabilizer mechanics as presented by Gross [30]
as well as the Cui-Gottesman-Krisha [26] classification of the diagonal Clifford hierarchy.

• Give our definitions and results and outline the structure of the proof of our main theorem.

• Give the details of the proofs of our lemmas and main theorem.

VI. APPENDIX I: CONTEXTUALITY, PROBABILISTIC AND PARADOXICAL

Here, we follow the Abramsky-Brandenburger framework for contextuality and nonlocality [9].
An experiment wherein it is not assumed that all measurements can be performed simultaneously is
formally described by a measurement scenario: a triple (M, C,O) whereM is a set of measurement
labels and C is the set of contexts. A context is a maximal set C ⊂M of compatible measurements.
Measurement of each individual m ∈ M yields a value from the outcome set O. For example, the
standard Bell scenario is captured by M = {A0, A1, B0, B1}, contexts C = {{Ax, By} : x, y ∈
{0, 1}}, and outcome set O = {0, 1}. Empirical data from performing an experiment on a system
in a fixed state is given by a context-indexed family of conditional distributions EC : OC → [0, 1] on
joint outcomes. Data satisfying physically reasonable conditions of generalised nonsignalling—the
marginal distributions EC |C∩C′ and EC′ |C∩C′ agree for all C and C ′—constitute an empirical model
E .

An empirical model E is noncontextual when its predictions can be accounted for by a noncon-
textual hidden variable model. Such a hidden variable model can, without loss of generality [9, 27],
be assumed to have a canonical form: the hidden variable space is Λ = OM with hidden variables
being functions λ :M→O together with a distribution µ : Λ→ [0, 1] yielding the EC as marginal
distributions. Data arising from a hidden variable model will satisfy all Bell-type inequalities; thus,
contextuality is witnessed by violation of an inequality.

A hidden variable λ :M→O and an empirical model E are consistent when, for each context,
the joint outcome λ prescribes to the measurements in M has nonzero probability: EC(λ|C) > 0. An
empirical model is strongly contextual when it is inconsistent with all hidden variables. Well-known
examples of strongly contextual empirical models include GHZ states and PR boxes. Whereas the
standard probabilistic form of contextuality is witnessed by a violation of an equality, strong
contextuality is witnessed by a logical paradox.

To each measurement M ∈ M and outcome o ∈ O, the symbol Mi → o, is interpreted as “m
is measured resulting in the outcome o”. For measurements M1, ...,Mn ∈ C in a common context
C, one can construct sentences with symbols Mi → o and the connectives AND, OR, and NOT.
The theory of an empirical model is the subset of sentences that are true with certainty upon
measurement, no matter the outcome. A state is strongly contextual if and only if its theory is
logically inconsistent.

An empirical model E can be expressed as a convex mixture of a noncontextual part ENC and
a strongly contextual part ESC as E = CF(E)ESC + [1 − CF(E)]ENC . Here, CF(E) is a measure
of contextuality known as the contextual fraction [9]; it generalises the nonlocal fraction [11]. An
empirical model is strongly contextual if and only if CF(E) is 1. Thus, the contextual fraction
measures the degree to which a model provides probabilistic access to paradoxical data. Strongly
contextual models have a geometric interpretation: they are precisely the convex sums of the
nonsignalling polytope’s contextual vertices [28, 29].
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VII. APPENDIX III: STABILIZER QUANTUM MECHANICS

Here, we follow the presentation of Gross [30]. In what follows, d is an odd prime num-
ber. The d-dimensional single-qudit Pauli spin matrices are defined by X(q) |j〉 = |j + q〉 and
Z(p) |j〉 = ωpj |j〉 where ω is the phase factor e2πi/d and addition is modulo d. A Weyl operator,
represented by phase point coordinates in Z2

d, is defined by W (p, q) = ω−2−1pqZ(p)X(q) where
2−1 denotes the multiplicative inverse of 2 in Zd. An n-particle Weyl operator, represented by
coordinates in Z2n

d , is defined as W (p1, q1, ..., pn, qn) = W (p1, q1)⊗ ...⊗W (pn, qn). For notational
convenience, we denote a point (p1, q1, ..., pn, qn) in an n-particle phase space as (p,q). The sym-
plectic inner product of two phase space points is defined by: [(p,q)] =

∑n
i=1 piq

′
i − p′iqi. Weyl

operators obey a composition law: W (p,q)W (p’,q’) = ω2−1[(p,q),(p’,q’)]W (p + p’,q + q’). There-
fore, W (p,q)W (p’,q’) = W (p’,q’)W (p,q) = W (p+p’,q+q’) if and only if [(p,q), (p’,q’)] = 0.

The n-Weyl operators with arbitrary phase form the n-Pauli group Cn1 . The Clifford gates are
those unitaries preserving the Pauli group: Cn2 = {U : UPU∗ ∈ Cn1 for all P ∈ Cn1 }. The Clifford
hierarchy [22] is defined similarly: Cnk = {U : UPU∗ ∈ Cnk−1 for all P ∈ Cn1 }.

The magic states we will consider arise from the third level of the Clifford hierarchy. Cui,
Gottesman, and Krishna [26] give an explicit description of all diagonal gates in the kth level. For
d > 3, diagonal gates of the third level have the form:

UΦ =
∑
j∈Znd

ωΦ(j) |j〉 〈j|

where Φ is a multivariable polynomial of degree 3. Every such gate yields a magic state |Φ〉 =
UΦ |+〉⊗n =

∑
j∈Znd

ωΦ(j) |j〉. The magic states arising in this way from gates UΦ ∈ Cn3 \ Cn2 in

the third level of the Clifford hierarchy are especially useful achieving quantum universality in
that they admit deterministic protocols for injecting the gate UΦ. Gates from outside the Clifford
hierarchy may be implemented via state injection; however, this is a stochastic process that requires
randomly many attempts.

VIII. APPENDIX VI: PARADOXES OF STRONG MAGIC STATES

Stabilizer quantum mechanics contains, as available measurements, the set of Weyl operators
as indexed by phase points: M = Z2n

d . The contexts are given by maximal commuting subsets of
M. We now present large families of GHZ-type paradoxes arising from magic states |Φ〉 with no
local terms, i.e. the coefficients for the j3, k3 terms vanish.

Definition 1. A two-qudit magic state |Φ〉 = d−1
∑

j,k∈Z2
d
ωΦ(j,k) |j〉 |k〉 is strong if, with either φ1

or φ2 6≡ 0,

Φ(j, k) = φ1j
2k + φ2jk

2 + φ3j
2 + φ4k

2 + φ5jk + φ6j + φ7k + φ8

Theorem 1. Suppose that the dimension d 6≡ 1 (mod 3). All strong magic states |Φ〉 are strongly
contextual with respect to stabilizer measurements. The states C |Φ〉, where C is any Clifford gate,
are also strongly contextual.

We prove that for any strong magic state |Φ〉 and any hidden variable λ : Z4
d → Zd assumed,

for contradiction, to be consistent with |Φ〉, λ must predict the occurrence of an impossible event
for one of the following measurements.
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Type Operators, up to phase Phase points
Iα Z ⊗ I and I⊗ ZαX (1, 0, 0, 0) and (0, 0, α, 1)
IIα I⊗ Z and ZαX ⊗ I (0, 0, 1, 0) and (α, 1, 0, 0)

IIIα,β Z ⊗ Zβ and X ⊗ ZαX−β−1

(1, 0, β, 0) and (0, 1, α,−β−1)

TABLE I. The three families of contexts needed for our argument. Here, α, β ∈ Zd and β 6= 0.

The following, surprising lemma allows us to dramatically reduce (from exponential to polyno-
mial) the number of hidden variables λ : Z2n

d → Zd we must consider. The hidden variable space
Λ can be taken to be the dual vector space of the phase space Z2n

d .

Lemma 1. Suppose that n ≥ 2 and that λ : Z2n
d → Zd is a hidden variable with respect to n-particle

stabilizer quantum mechanics that is consistent with a quantum state. Then, λ(p, q) = λ · (p, q)
for some λ ∈ Z2n

d .

We then establish a number-theoretic criterion for joint outcomes being in the support of a
state |Φ〉.

Lemma 2. The joint outcome (A,B) is impossible for the measurement of U = W (p, q) and
V = W (p’, q’) with [U, V ] = 0 on the state |Φ〉 if and only if Ψ(m,n) is a permutation polynomial
for all j, k ∈ Zd where

Ψ(m,n) = −mA− nB − 2−1((mp1 + np′1)(mq1 + nq′1) + (mp2 + np′2)(mq2 + nq′2))+

j(mp1 + np′1) + k(mp2 + np′2) + Φ(j − (mq1 + nq′1), k − (mq2 + nq′2))

A permutation polynomial is one that takes each value in its range equally many times. We will
require elements of Dickson’s classification of one-variable permutation polynomials of low degree
[31].

Theorem 2 (Dickson, 1896). Suppose d 6≡ 1 (mod 3) and f(x) : Zd → Zd has degree at most 3.
Then, f is a permutation polynomial if and only if f(x) = ag(x+ b) + c where a 6= 0 and g(x) = x
or x3.

By applying a Clifford gate to |Φ〉, which preserves contextuality properties, we may assume
that φi vanishes for i ≥ 3. Noting that, by Lemma 1, λ prescribes to W (p,q) the outcome
λ1p1 + λ2q2 + λ3p2 + λ4q2, the consistency of λ with |Φ〉 implies that none of the polynomials in
any of the following families are permutation polynomials.

ΨIα(m,n) = m(j − λ2) + n2(jφ2 − 2−1α) + n(α(k − λ4)− λ3 − j2φ1 − 2jkφ2)

ΨIIα(m,n) = m(k − λ4) + n2(kφ1 − 2−1α) + n(α(j − λ2)− λ1 − k2φ2 − 2jkφ1)

ΨIIIα,β(m,n) = m(j − λ2 + β(k − λ4)) + n3(β−1(φ1 − β−1φ2) + n2(β−1(2−1α− 2jφ1 − 2kφ2+

β−1jφ2) + kφ1) + n(α(k − λ4) + β−1(λ3 + j2φ1 + 2jkφ2)− λ1 − 2jkφ1 − k2φ2)

We prove that this cannot be the case and, thus, that no hidden variable is consistent with |Φ〉.

IX. APPENDIX V: PROOFS

Here, we provide explicit details of the proofs of our results. First, we establish that the algebraic
relations between commuting Weyl operators enforce a strong condition on hidden variables: they
must be group homomorphisms from phase space to outcomes. This dramatically reduces (from
dd

2n
functions to d2n homomorphisms) the number of hidden variables we need to consider. The

assumption of multiple qudits is crucial here.
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Lemma 1. Suppose that n ≥ 2 and that λ : Z2n
d → Zd is a hidden variable with respect to n-particle

stabilizer quantum mechanics that is consistent with a quantum state. Then, λ(p, q) = λ · (p, q)
for some λ ∈ Z2n

d .

Proof. The hidden variable λ prescribes the outcome λ(p,q) to W (p,q). If λ is consistent with
a quantum state, these outcomes must respect the algebraic relations between commuting Weyl
operators: λ(p,q) + λ(p’,q’) = λ(p+p’,q+q’) whenever [(p,q), (p’,q’)] = 0. First, suppose
that n = 2. Thus, λ(p1, q1, p2, q2) = λ(p1, 0, p2, 0) + λ(0, q1, 0, q2) whenever p1q1 = −p2q2. These
observations justify the following manipulations.

λ(1, k, 0, 0) = λ(1, k, 0,−2−1k) + λ(0, 0, 0, 2−1k)

= λ(1, 2−1k, 1,−2−1k) + λ(0, 2−1k,−1, 0) + λ(0, 0, 0, 2−1k)

= λ(1, 0, 1, 0) + λ(0, 2−1k, 0,−2−1k) + λ(0, 2−1k, 0, 0) + λ(0, 0,−1, 0) + λ(0, 0, 0, 2−1k)

= λ(1, 0, 0, 0) + λ(0, 0, 1, 0) + λ(0, 2−1k, 0, 0) + λ(0, 2−1k, 0, 0) + λ(0, 0,−1, 0)

= λ(1, 0, 0, 0) + λ(0, k, 0, 0)

By a similar argument, λ(0, 0, 1, k) = λ(0, 0, 1, 0)+λ(0, 0, 0, k). Since λ(p1, q1, p2, q2) = λ(p1, q1, 0, 0)+
λ(0, 0, p2, q2) it follows that λ is linear. For n > 2, a similar argument holds.

Next, we establish a master equation governing the possibility vs. impossibility of observing a
given outcome upon measurement of a pair of commuting Weyl measurements on a state |Φ〉. The
equation is easily extended to more qudits/measurements and to polynomials Φ of any degree and
holds for any dimension d.

Lemma 2. The joint outcome (A,B) is impossible for the measurement of U = W (p, q) and
V = W (p’, q’) with [U, V ] = 0 on the state |Φ〉 if and only if Ψ(m,n) is a permutation polynomial
for all j, k ∈ Zd where

Ψ(m,n) = −mA− nB − 2−1((mp1 + np′1)(mq1 + nq′1) + (mp2 + np′2)(mq2 + nq′2))+

j(mp1 + np′1) + k(mp2 + np′2) + Φ(j − (mq1 + nq′1), k − (mq2 + nq′2))

Proof. The eigenvalues of a Weyl operator W are ωk for k ∈ Zd. The projection onto the
1-eigenspace of W is given by S0 = d−1

∑
m∈ZdW

m; this can be seen by noting that W d =

I, W ∗ = W−1. Therefore, the projection onto the ωk-eigenspace of W is given by Sk =
d−1

∑
m∈Zd ω

−mkWm.

Measuring U = W (p,q) and V = W (p’,q’) with [U, V ] = 0 and obtaining outcome (A,B) ∈ Z2
d

corresponds to the projection:

Π(A,B|U, V ) = (
∑
m∈Zd

ω−mAUm)(
∑
n∈Zd

ω−nBV n)

=
∑

m,n∈Zd

ω−mA−nBUmV n

=
∑

m,n∈Zd

ω−mA−nBW (P,Q)

=
∑

m,n∈Zd

ω−mA−nB−2−1(P·Q)Z(P1)X(Q1)⊗ ...⊗ Z(Pn)X(Qn)

where (P,Q) = m(p,q) + n(p’,q’).
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Applying this to a two-qudit magic state |Φ〉 = d−1
∑

j,k∈Zd ω
Φ(j,k) |j〉 |k〉, we obtain:

Π(A,B|U, V ) |Φ〉 = d−1
∑

m,n∈Zd

∑
j,k∈Zd

ω−mA−nB−2−1(P1Q1+P2Q2)+Φ(j,k)Z(P1)X(Q1)⊗ Z(P2)X(Q2) |j〉 |k〉

= d−1
∑

m,n∈Zd

∑
j,k∈Zd

ω−mA−nB−2−1(P1Q1+P2Q2)+Φ(j,k)Z(P1)⊗ Z(P2) |j +Q1〉 |k +Q2〉

= d−1
∑

m,n∈Zd

∑
j,k∈Zd

ω−mA−nB−2−1(P1Q1+P2Q2)+Φ(j−Q1,k−Q2)Z(P1)⊗ Z(P2) |j〉 |k〉

= d−1
∑
j,k∈Zd

∑
m,n∈Zd

ω−mA−nB−2−1(P1Q1+P2Q2)+jP1+kP2+Φ(j−Q1,k−Q2) |j〉 |k〉

So, observing the outcome (A,B) for the measurements U, V on the state |Φ〉 is impossible
precisely when the terms∑

m,n∈Zd

ω−mA−nB−2−1(P1Q1+P2Q2)+jP1+kP2+Φ(j−Q1,k−Q2)

vanish for all j, k ∈ Zd. Such a term is a sum of d2 many primitive dth-roots of unity and vanishes if
and only if each dth-root appears d many times. Thus, impossibility of the measurement outcome
is equivalent to

Ψ(m,n) = −mA− nB − 2−1(P1Q1 + P2Q2) + jP1 + kP2 + Φ(j −Q1, k −Q2)

= −mA− nB − 2−1((mp1 + np′1)(mq1 + nq′1) + (mp2 + np′2)(mq2 + nq′2))+

j(mp1 + np′1) + k(mp2 + np′2) + Φ(j − (mq1 + nq′1), k − (mq2 + nq′2))

being a permutation polynomial in m,n for all j, k ∈ Zd.

We are now ready to prove our main theorem.

Theorem 1. Suppose that the dimension d 6≡ 1 (mod 3). All strong magic states |Φ〉 are strongly
contextual with respect to stabilizer measurements. The states C |Φ〉, where C is any Clifford gate,
are also strongly contextual.

Proof. Suppose |Φ〉 is a strong magic state and assume that there is exists a hidden variable
λ : Z2n

d → Zd consistent with |Φ〉. We will prove that the value prescribed by λ to one of
the following measurements is, in fact, impossible to observe of a system |Φ〉, contradicting the
consistency of λ with |Φ〉.

Type Operators, up to phase Phase points
Iα Z ⊗ I and I⊗ ZαX (1, 0, 0, 0) and (0, 0, α, 1)
IIα I⊗ Z and ZαX ⊗ I (0, 0, 1, 0) and (α, 1, 0, 0)

IIIα,β Z ⊗ Zβ and X ⊗ ZαX−β−1

(1, 0, β, 0) and (0, 1, α,−β−1)

TABLE I. The three families of contexts needed for our argument. Here, α, β ∈ Zd and β 6= 0.

As, by Lemma 1, λ prescribes to W (p1, q1, p2, q2) the outcome λ1p1 + λ2q2 + λ3p2 + λ4q2, we
find that consistency of λ with |Φ〉 implies that none of the following are permutation polynomials
for all j, k ∈ Zd:
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ΨIα(m,n) = m(j − λ2) + n2(jφ2 − 2−1α) + n(α(k − λ4)− λ3 − j2φ1 − 2jkφ2)

ΨIIα(m,n) = m(k − λ4) + n2(kφ1 − 2−1α) + n(α(j − λ2)− λ1 − k2φ2 − 2jkφ1)

ΨIIIα,β(m,n) = m(j − λ2 + β(k − λ4)) + n3(β−1(φ1 − β−1φ2) + n2(β−1(2−1α− 2jφ1 − 2kφ2+

β−1jφ2) + kφ1) + n(α(k − λ4) + β−1(λ3 + j2φ1 + 2jkφ2)− λ1 − 2jkφ1 − k2φ2)

We have dropped all terms constant in m,n. Our proof proceeds by closely analysing these
polynomials and repeatedly applying Theorem 2. First, consider ΨIα(m,n). This expression is
linear in m. When j 6= λ2, this is a permutation polynomial in n for each fixed value of m, so we
need only be concerned with the j = λ2 case. In this case, ΨIα is quadratic in n. By choosing
α = 2λ2φ2, the degree 2 term vanishes and the result is a permutation polynomial only if the linear
coefficient is nonzero. Thus, g is inconsistent with |Φ〉 unless λ3 = −λ2(2λ4φ2 + λ2φ1).

By a similar analysis of ΨIIα(m,n), we find that by choosing α = 2λ4φ1, g is inconsistent with
|Φ〉 unless λ1 = −λ4(2λ2φ1 + λ4φ2).

Finally, we make the substitutions for λ1, λ3 in ΨIIIα,β(m,n) and note that, as they too are linear
in m, we need only consider the pairs (j, k) = (−βk + βλ4 + λ2, k). After multiplying through by
β, we have:

n3(φ1 − β−1φ2) + n2(2−1α+ 3k(βφ1 − φ2) + β−1λ2φ2 + λ4φ2 − 2βλ4φ1 − 2λ2φ1)+

n(3βk2(βφ1 − φ2) + k(β(α− 4λ2φ1 + 2λ4φ2)− 4β2λ4φ1 + 2λ2φ2) + β(−αλ4 + λ2
4φ2+

4λ2λ4φ1) + β2λ2
4φ1 − 2λ2λ4φ2)

We consider two cases. (Note that we may assume that φ1 6≡ 0 by swapping qudits.) First, if
φ2 ≡ −1, then, by choosing α = 6(λ2φ1 − λ4) and β = φ−1

1 , the resulting polynomial factors as:

2(n+ φ−1
1 (k − λ4))3.

However, if φ2 6≡ −1, we may choose α = 2(φ2 + 1)−1(λ2φ1(φ2 + 2) + λ4(φ2
2 − 1)) and β =

φ−1
1 (φ2 + 1); the resulting polynomial factors as:

(n+ φ−1
1 (k − λ4)(φ2 + 1))3.

[1] J. S. Bell, Physics 1, 195 (1964).
[2] S. Kochen and E. P. Specker, J. Math. Mech. 17, 59 (1967).
[3] M. Howard, J. Wallman, V. Veitch, and J. Emerson, Nature 510, 351 (2014).
[4] R. Cleve, P. Hoyer, B. Toner, and J. Watrous, in Computational Complexity, 2004. Proceedings. 19th

IEEE Annual Conference on (2004) pp. 236–249.
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Convex geometry of quantum resource quantification

A general framework for measures of quantum resources
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Abstract. We introduce a framework unifying the mathematical characterisation of different measures
of general quantum resources and allowing for a systematic way to define a variety of faithful quantifiers
for any given convex quantum resource theory. The approach allows us to describe many commonly used
measures such as matrix norm–based quantifiers, robustness measures, convex roof–based measures, and
witness-based quantifiers together in a common formalism based on the convex geometry of the underlying
sets of resource-free states. We provide a detailed characterisation of the measures as well as derive various
bounds and relations between them and their duals, generalising and in many cases simplifying results found
in the resource theories of quantum entanglement and coherence. We present an explicit application of the
results to the resource theories of multi-level coherence, entanglement of Schmidt number k, multipartite
entanglement, as well as magic states.

Introduction

Many physical phenomena in quantum information sci-
ence have gone from being of purely theoretical interest
to enjoying a variety of uses as resources in quantum
information processing tasks. The developments sparked
an investigation into the mathematical formulation of
such resource theories, aiming to characterise the quan-
tum states and operations that one can use to perform
the physical tasks. In particular, it is crucial to be able
to quantify the given resource, allowing us to discrimi-
nate which quantum states are the most useful in the
given physical task. Throughout the development of the
resource theory of entanglement, various measures were
established [1, 21], many of which have been adapted to
other resource theories recently [7, 8, 10, 17, 20, 22, 23].
However, defining and characterising the measures of a
given quantum resource is usually cumbersome — the
investigation of such functions typically has to be ap-
proached in a resource-dependent way, and properties
such as faithfulness and monotonicity of the quantifiers
have to be explicitly verified. Moreover, although some
connections between the various quantities are known,
there are very few known results which provide a common
framework relating them and their features together.

In this work, we introduce a unifying formalism based
on the gauge functions of convex sets which significantly
simplifies the construction and characterisation of quan-
tifiers of general quantum resources. Gauge functions,
a fundamental tool in functional and convex analysis
[24, 25], have recently seen a surge of popularity in op-
timisation research after a framework for linear inverse
problems based on the so-called atomic gauge functions
was introduced [26]. We apply a similar formalism to the
quantification of quantum resources, establishing a con-
solidated view of many resource quantifiers. In particular,
we show that many commonly used and well-known quan-
tifiers — such as ones based on matrix norms, measures
built through the convex roof, the so-called robustness
measures, as well as various witness-based quantifiers —

∗bartosz.regula@gmail.com

are all examples of such atomic gauge functions, allowing
us to relate them in a common geometric framework. This
allows us to establish an extensive family of quantifiers for
any given quantum resource, introduce easily verifiable
criteria for a measure to satisfy desirable properties such
as faithfulness and strong monotonicity under relevant
free operations, and generalise known measures to new
quantum resources very easily. Further, we show that
many relations and bounds between the measures, some of
which known in the resource theories of entanglement and
coherence, are in fact universal among quantum resources,
and the proofs of such properties can be simplified in the
present framework.

The formalism presented in this work applies to gen-
eral finite-dimensional resource theories with a convex set
of resource-free states, which is a common and intuitive
assumption [16, 17]. A particularly useful case of such
resources, and one that we will focus on, is when the
set of free states is obtained as the convex hull of free
pure states. One can readily apply our results to any
given resource theory constructed in this way. In our
examples, we consider some representative examples of
such theories — quantum entanglement, quantum coher-
ence, and magic states — obtaining new results in the
quantification of the resources. In addition to the charac-
terisation of quantifiers already defined in the literature,
we introduce several new measures, such as: a measure of
multi-level quantum coherence which generalises the `1
norm of coherence [7], faithful quantifiers of magic [13],
measures of bipartite entanglement of Schmidt number
k and k-partite entanglement which generalise the con-
vex roof–extended negativity [27], as well as a class of
norms which generalise the greatest cross norm [28] to
the hierarchy of k-partite entanglement, with computable
formulas for genuine multipartite entanglement. We ad-
ditionally show that many proofs and properties of such
measures are significantly simplified in this formalism,
deriving novel results for quantifiers such as robustness
of Schmidt rank k entanglement [29] and robustness of
k-coherence [30].
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General framework

The basic tool of our approach are the so-called gauge
functions [25]. Given a convex set C, the gauge function
γC is defined as

γC(ρ) = inf
λ≥0

ρ ∈ λC, (1)

that is, the least amount that the set C has to “grow” in
order to contain ρ inside it. We will in particular deal with
gauge functions of sets which are defined as the convex
hull of some non-convex set S (for example, a subset of
pure quantum states). We then define the atomic gauge
function [26] as the gauge function of the convex hull:

AS(ρ) = γconv(S)(ρ). (2)

Such functions satisfy many useful properties, as we will
show.

We define a general convex resource theory as follows:
we begin with a set of free pure states V ⊆ Cd, which
satisfy some property defining the given resource the-
ory. We then define the set of free pure-state density

matrices: S+ =
{
|ψ〉 〈ψ|

∣∣∣ |ψ〉 ∈ V} such that any free

(mixed) state is in the convex hull of S+. We can now
define a variety of quantifiers by taking the atomic gauges
corresponding to different sets, and in fact we can show
that many well-known monotones belong to the gauge
function formalism. We will introduce several examples
to demonstrate the versatility of our approach.

Let us begin with the simplest case, that is, an atomic
gauge for the set of pure states: AV . This quantity has the
advantage that it is, in general, much easier to compute
than gauges defined for density matrices. It corresponds
to well-known quantifiers of pure-state quantum resources

— in the resource theory of entanglement, it is equal to
the sum of Schmidt coefficients [33], and in the resource
theory of coherence it corresponds to the `1 norm [7].

To define atomic gauge functions for mixed density
matrices, we start by taking the set S+ ∪ (−S+), that is,
S+ symmetrised around the origin. The gauge function
AS+∪(−S+), up to a constant, is nothing but the robust-
ness RS+ — a fundamental measure defined first in the
theory of entanglement [34]. Similarly, if we consider the
atomic gauge of the set S+∪(−D), where D is the set of all
density matrices, we obtain the generalised robustness
RGS+ — an extension of the robustness which was found
to have useful operational interpretations not only in
the resource theories of entanglement [35] and coherence
[22, 36], but also in generalised frameworks for resource
theories [17, 37]. We further show that many other quan-
tifiers in this framework, such as experimentally-friendly
families of witness-based measures [38–40], can be defined
simply by taking the gauge function AS+∪X with different
choices of the set X .

Additionally, one can define resource quantifiers
through matrix norms (or more general matrix gauge
functions). Examples of such measures include the great-
est cross norm for bipartite entanglement [28, 41], the
`1 norm of coherence [7], or the Schmidt operator norm
[42]. We show that these measures are also gauge func-
tions, and they can in fact be straightforwardly defined

for any resource theory as the atomic gauge of the set

S =
{
|α〉 〈β|

∣∣∣ |α〉 , |β〉 ∈ V}. We will denote such norm-

based quantifiers as AS .
Finally, an important concept in quantum resource

quantification is the convex roof. Many common mea-
sures are defined using this concept — they include quan-
tifiers such as the entanglement of formation (and concur-
rence) [43], convex-roof extended negativity [27], coher-
ence of formation [44], or coherence concurrence [45, 46].
If we have a gauge function AV which is defined for pure
states only, we can extend it to all mixed states by min-
imising over all pure-state decompositions:

A∪S+(ρ) = inf
{pi,|ψi〉}

∑
i

piAV(|ψi〉)2 (3)

where the minimisation is over all ensembles such that
ρ =

∑
i pi |ψi〉 〈ψi| with

∑
i pi = 1. In fact, we show the

convex roof to also be a gauge function, allowing us to
relate it to the other quantifiers easily.

Properties and results

We prove many useful properties of the measures de-
fined in the above formalism. In the following, we sum-
marise the main results of our work. Precise statements
of the theorems, including some assumptions that we omit
here for brevity, can be found in the manuscript [47].

Theorem 1 For any resource theory, the quantifiers are
faithful, that is, we have that ρ ∈ conv(S+) if and only if
A∪S+(ρ)− 1 = RS+(ρ) = AS(ρ)− 1 = RGS+(ρ) = 0.

Theorem 2 For any resource theory, the quantifiers sat-
isfy strong monotonicity under free operations: for a given
quantum channel Γ(ρ) =

∑
i Λi(ρ), where each Λi is a

relevant free operation (subchannel) in the given resource
theory, we have that∑

i

Tr (Λi(ρ))A

(
Λi(ρ)

Tr (Λi(ρ))

)
≤ A(ρ) (4)

where A is any one of the gauge-based quantifiers.

The two results above show that the atomic gauge func-
tions defined in this formalism are all valid measures of
the given resource. This is remarkable, given that proving
the monotonicity and faithfulness of measures defined in a
more ad-hoc way is often extremely cumbersome — here,
the result follows “for free” from the gauge function for-
malism, and can be applied to any given resource theory.
In particular, it establishes a family of measures which
can faithfully and reliably detect and quantify quantum
resources.

Theorem 3 For any resource theory, the quantifiers
bound each other as

RS+(ρ) ≥ AS(ρ)− 1 ≥ RGS+(ρ), A∪S+(ρ) ≥ AS(ρ) (5)

This result immediately allows us to relate the introduced
quantifiers with each other, and it generalises some known
bounds for the robustness of coherence and the `1 norm
of coherence [22] as well as quantitative relations between
measures such as the robustness of entanglement and the
greatest cross norm [28, 41].
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Theorem 4 For any resource theory, the quantifiers
reduce to the vector atomic gauge AV for pure states:
A∪S+(|ψ〉 〈ψ|) − 1 = AS(|ψ〉 〈ψ|) − 1 = RGS+(|ψ〉 〈ψ|) =

AV(|ψ〉)2 − 1.

This result explicitly shows that the quantifiers are all
closely related to each other, and the bounds obtained in
Theorem 3 are in fact tight. Additionally, it shows that the
quantification of pure-state resources is always simplified,
which is frequently a non-trivial fact to show for a given
resource theory. Note that the gauge function AV is often
significantly easier to compute that the general forms of
the quantifiers, in many cases leading to an analytical
characterisation of pure-state resources.

In addition to the above results, in the paper we relate
the introduced quantifiers to other types of measures, ob-
taining bounds and relations between gauge functions and
quantifiers such as geometric resource measures based on
quantum fidelity [48] as well as distance measures based
on relative entropy. Further, we show that many classes
of witness-based measures, experimentally-friendly quan-
tification methods based on optimising witness operators
[38], correspond in fact to gauge functions and therefore
share many of the simplified properties investigated herein.
These results, again, generalise many quantitative results
to arbitrary resource theories, and allow for a direct com-
parison between gauge-based measures and other common
quantifiers.

It is also important to note that each atomic gauge func-
tion A has an associated dual gauge function A◦. These
functions can be used to characterise the witnesses of the
given resource — for example, the witnesses of Schmidt
rank k entanglement are called k-block positive operators
and have a close relation with k-positive maps [42, 49, 50].
We obtain many quantitative results regarding the dual
gauge functions, and in particular we show that for any
positive semidefinite matrix X, the dual quantity A◦(X)
is the same regardless of which of the quantifiers A∪S+ , AS ,

RS+ , RGS+ we choose, therefore establishing a further dual
relation between the measures. The dual quantifiers can
be quantitatively related to the aforementioned geometric
measures [48] as well.

We remark that the choice of quantifiers that we in-
vestigated — A∪S+ , RS+ , AS , and RGS+ — is by no means
unique. In fact, the formalism allows one to define atomic
gauges for other chosen sets, and the tools that we intro-
duced can be used to investigate such measures straight-
forwardly, allowing us to establish easily verifiable criteria
for any gauge-based measure to satisfy desirable proper-
ties such as faithfulness and strong monotonicity under
relevant free operations.

Hierarchies of entanglement and coher-
ence

We have discussed the applications of our quantifiers
to the resource theories of entanglement and coherence.
However, in some physical tasks, not every entangled
state (or coherent state) is useful as a resource — one
might require entanglement of a particular Schmidt rank,
or entanglement between many parties in a multipartite

system, or coherence between multiple levels of a quantum
system [10, 30, 42, 51–55]. We can then define a hierarchy
of free states: for example, let Sk be the set of pure
states which have at most k non-zero Schmidt coefficients
(Schmidt rank k). All separable states then form the
convex hull of S1, all density matrices form the convex
hull of Sd, and in general we have S1 ⊂ S2 ⊂ · · · ⊂ Sd
[56]. A very similar hierarchy can be defined for coherence,
where the coherence rank is defined to be the number of
non-zero coefficients of a state |ψ〉 in a given basis, and
the convex hull Ck of states with a given coherence rank
gives us C1 ⊂ · · · ⊂ Cd. Finally, an important hierarchy of
the same kind is formed by the sets of k-partite entangled
states [57, 58].

An advantage of our approach based on convex geom-
etry is that it easily generalises to such hierarchies of
resources. The definitions of many measures straightfor-
wardly extend to each level of the hierarchy, making it
easy to quantify a specific “rank” of a given quantum
resource.

In particular, the application of results that we out-
lined in the previous section immediately allows us to
obtain many quantitative relations. We establish exact
formulas for quantities such as the robustness of k co-
herence, robustness of Schmidt rank k entanglement [29],
and norm-based measures of the resources. We intro-
duce novel quantifiers, such as a convex roof measure of
Schmidt rank k entanglement which generalises the convex
roof-extended negativity, a measure of k-coherence which
generalises the `1 norm of coherence, and a hierarchy of
norms which are faithful quantifiers of k-partite entangle-
ment generalising the greatest cross norm. Further, we
show that the quantification of gauge-based measures of
genuine multipartite entanglement on pure states in fact
reduces to the so-called genuine multipartite negativity
[59].

Further, we show an application of the gauge function
framework to the resource theory of magic states [13, 14,
23, 60–64], providing computable measures of the resource
and establishing quantitative relations between them.

Conclusions

We have introduced a general formalism which allows
one to define a variety of quantifiers for any general convex
quantum resource. We have shown that the quantifiers
defined in this way are closely related to each other, es-
tablishing quantitative relations between different types
of measures. Additionally, quantifiers in the framework
are guaranteed to satisfy desirable criteria such as mono-
tonicity and faithfulness, and exhibit useful properties
such as simplified formulas for pure states.

The universality of the formalism makes it applicable to
many different resource theories — since the quantitative
results can be easily adapted to any chosen convex re-
source theory, it provides insight into the general structure
of such theories. We therefore believe that the framework
will complement the recent efforts to establish a mathe-
matical formalism of general quantum resource theories
[15, 17, 19, 20].
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Quantum walks  

Peter Høyer 

Calgary, Canada 
 

Abstract: We give an introduction to quantum walks. No prior knowledge is assumed. We discuss the 
construction of quantum walks and their correspondance to and with random walks. We cover the main 
concepts and ideas when working with quantum walks. We explain how quantum walks relate to 
quantum search. We discuss applications in algorithmics and communication complexity, and state 
some of the main open questions. 



Higher order quantum operations of unitaries and their implications 
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Abstract: A supermap is a transformation from a map to a map.  Transforming a unitary to its inversed, 
transposed, complex conjugated and controlled unitary are examples of supermaps. We consider the 
case where the input and output maps are quantum operations and perform the output map directly by 
applying the input map given by a quantum black box, a quantum system implementing an unknown 
quantum operation, together with a sequence of input-independent fixed quantum operations called a 
quantum comb.  We regard such direct implementations of supermaps for quantum operations in 
quantum mechanics as higher order quantum operations.  General properties required for achieving 
higher order quantum operations can be formulated by the framework for quantum networks based on 
quantum combs proposed by Chiribella et al.  There are several known no-go theorems for higher order 
quantum operations with a single use of the black box. If infinite uses of the black box is allowed, the 
full classical description of the input is obtained, therefore it is possible to achieve higher order quantum 
operations by implementing the output map calculated by applying the supermap on the classical 
description of the input map.  However, it is not well known which supermaps are achievable with finite 
uses of the black box.  In this talk, we present go-results for higher order quantum operations of unitaries 
with finite uses of the black box.  We mainly focus on a universal quantum algorithm for performing a 
complex conjugate unitary and present its implications representing new characteristic features of 
quantum mechanics exhibited in higher order quantum operations of unitaries. 



Bell correlations in many-body systems
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Abstract. How can one characterize the quantum correlations between the constituent particles of a
many-body system? Although entanglement is routinely observed in many systems, we will focus on the
detection of a subset of quantum correlations – namely Bell correlations. We will derive Bell correlation
witnesses from many-particle Bell inequalities involving only one- and two-body correlation functions. We
will address the question of the statistics required to witness Bell correlated states in practice and we will
show first experimental results successfully reporting on the violation of a Bell correlation witness between
hundreds of spins.

Keywords: Theory of quantum entanglement and nonlocality, many-body systems

In 1964, John Bell proposed an experimental test in
which two black-boxes receiving classical inputs and
producing classical outputs only, can certify that the
correlations between the outputs cannot be explained by
classical means [1]. While these results are fundamen-
tally appealing to test the limits of classical physics as
a complete description of Nature, it has been realized in
1992 that Bell test can be used to certify that the state
on which the black boxes operate is a well identified
entangled state [2, 3]. As entanglement is at the core of
secure communication, the use of a Bell test is nowadays
seen as an appealing technique to certify the security of
communication tools independently of the details and
imperfections of the actual implementations [4, 5].

Although Bell tests occupy a privileged position
in physics at the interface between fundamental and
applied physics, Bell inequalities have been tested in
small systems only. Whereas new forms of correlations
are known to arise in presence of a larger number of
parties [6], testing a Bell inequality on many parties
is technically challenging. Indeed, a Bell test requires
addressing of individual particles, which is seldom
possible when dealing with more than a few tens of
particles. The number of measurements that need to
be performed also increases rapidly with the number
of parties, and multipartite Bell inequalities typically
involve many-body correlations functions, which are
difficult to evaluate on systems involving many particles.

Inspired by recent results [7], we consider here the
situation in which well-characterized collective measure-
ments are performed on an ensemble of particles. Using
few-body correlator inequalities, we construct witness op-
erators for Bell correlated quantum states, i.e. states vi-
olating a Bell inequality. These witnesses only involve
up to the second moment of collective measurements and
are thus suitable for experimental tests on large systems.

∗nicolas.sangouard@unibas.ch

We address the question of the statistics required to wit-
ness Bell correlated states in many-body systems [8] and
we show first experimental results successfully reporting
on the first violation of a Bell correlation witness in a
spin-squeezed Bose-Einstein condensate [9].
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3 NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai

Abstract. We consider memoryless quantum communication protocols, where the two parties do not
possess any memory besides their classical input and they take turns performing unitary operations on a
pure quantum state that they exchange between them. Most known quantum protocols are of this type and
recently a deep connection between memoryless protocols and Bell inequality violations has been explored
in [8]. We study the information cost of such protocols by looking at a canonical problem: bounded-round

quantum communication for the one-bit AND function. We prove directly a tight lower bound of Θ( log kk )
for the information cost of AND for k-round memoryless quantum protocols and for the input distribution
needed for the Disjointness function.

Keywords: communication complexity, information complexity, quantum protocols

1 Context

In the model of communication complexity, two play-
ers, Alice and Bob, receive inputs and would like to
solve some distributed task that depends on these inputs,
while minimizing the number of bits they exchange. This
model has deep connections to many areas of computer
science, including data structures, circuit lower bounds
and streaming algorithms [17]. Recently, a lot of atten-
tion has been given to a different measure of complexity
for communication protocols, namely the amount of in-
formation that is leaked about the players inputs during
the protocol. The information cost of a protocol is always
lower than the communication cost, since one communi-
cated bit can carry at most one bit of information. It
has proved to be one of the strongest techniques we have
to lower bound the communication complexity of func-
tions [2, 5, 3, 14].

One can also define the notions of communication and
information complexity in the quantum setting, where
the two players exchange quantum messages. While it
is straightforward to define the communication cost of a
quantum protocol as the number of qubits that the two
players exchange, one has to be careful when defining the
information cost of a quantum protocol. Besides some
application-specific definitions [13, 12], recently two main
definitions have been put forward. Touchette [21] has
defined a notion of quantum information cost (QIC) and
has proved that it has a number of important properties,
including that for any function the quantum informa-
tion complexity, namely the information cost of the op-
timal quantum protocol that solves the function, equals
the amortized communication complexity of the function.
Kerenidis et al. [15] proposed a different notion, the clas-
sical input information cost (CIC), that is more intu-
itively related to the information leakage of the protocol,
but is smaller than the QIC notion (hence it is a weaker
lower bound on communication complexity). Very re-

†andre.chailloux@inria.fr
‡jkeren@liafa.univ-paris-diderot.fr
§mathieu.lauriere@nyu.edu

cently, [19] clarified the relation between the two notions
showing that while CIC measures how much information
each player learns about the other’s input during the pro-
tocol, the QIC measures, on top of this, the information
the players forget during the protocol. While our under-
standing of the flow of information during a quantum pro-
tocol has deepened, these notions remain difficult to use
in practice. The main reason is that mathematically they
both involve a quantum conditional mutual information,
where the conditioning is on a quantum variable. This
quantity is notoriously difficult to handle, even though
there has been some recent breakthrough work on it [9].

Here, we try to overcome this difficulty by looking at
a rich subclass of protocols that we call memoryless pro-
tocols. In these protocols, the two parties take turns
performing unitary operations on a pure quantum state
that they exchange between them. They do not possess
any memory and hence when they send a message they
do not keep anything in their private space apart from
their classical input. There are many reasons why it is
interesting to look at such protocols. First, almost all
quantum protocols we know are memoryless. This in-
cludes all protocols in the simultaneous message passing
model, eg. fingerprints for Equality [6], and in the one-
way model, e.g. Hidden Matching [1, 10], but also the
two-way protocol for Disjointness in [7] and for Vector
in Subspace [20, 16]. Second, there is a deep connec-
tion between memoryless protocols and Bell inequality
violations that has been explored in [8, 18]. Third, mov-
ing towards implementations of quantum communication
protocols and the realization of quantum networks, mem-
oryless protocols can be much easier to implement as it
has already been shown [22, 11]. Last but not least, it
may be easier to understand the flow of quantum infor-
mation in memoryless protocols. For example, it is easy
to see that the relation between CIC and QIC is in this
case clear: for any memoryless protocol, QIC is exactly
two times CIC, since the players forget exactly as much
as they learn. Note that forgetting is not necessarily a
drawback of quantum protocols: forgetting is necessary
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in order to obtain quantum communication speed-ups for
some problems [19].

2 Contributions

In this work, we initiate the study of the information
cost of memoryless quantum protocols by looking at a
canonical problem: bounded-round quantum communi-
cation for the AND function on two bits. One of the main
reasons to study the AND function is its close relation to
the Disjointness problem (DISJ), where the players re-
ceive one set each and their goal is to decide whether
these two sets are disjoint. One can see DISJ as a func-
tion that takes as inputs two n-bit strings x, y and returns
the OR of the coordinate-wise AND of these strings,
i.e. DISJ(x, y) = OR(AND(x1, y1), . . . ,AND(xn, yn)).
In the classical world, a very elegant lower bound for
Disjointness using information-theoretic tools was given
by Bar-Yossef et al. [2] and its proof consists of the fol-
lowing two steps. First, one reduces DISJ to AND: given
a protocol for DISJ on inputs of size n, the players con-
struct a protocol for AND as follows: they embed their
one-bit inputs for AND in some random coordinate for
DISJ, use their private coins to pick the remaining (n−1)
inputs uniformly from {(0, 0), (0, 1), (1, 0)}, and run the
DISJ protocol. The output of DISJ for such inputs is the
same as the output of the AND function. One can show
this way that if the information cost of the DISJ proto-
col is I, then the information cost of the new protocol for
AND is I/n. This implies the information complexity of
DISJ is at least n times the information complexity of
AND for the above input distribution. The second stage
of the proof involves computing directly the information
complexity of the AND function, and showing to be at
least a constant, the tight Ω(n) lower bound for DISJ is
obtained.

In the quantum world, things are considerably
more complicated. The first attempt to provide an
information-theoretic proof of the bounded-round quan-
tum communication complexity of DISJ was by Jain et
al. [13]. In their work, they introduced a different
information-theoretic notion from QIC and CIC and used
it to reduce the DISJ problem to the AND problem. By
directly lower bounding this quantity for the AND func-
tion they managed to show that any k-round protocol for
DISJ has communication cost Ω(n/k2). There is no clear
way to improve this lower bound using their information-
theoretic notion and this bound falls short of the optimal
bound of Ω(n/k). Very recently, [4] provided a proof
which gives a bound of Ω̃(n/k) for k-round protocols for
DISJ by reducing DISJ to AND and then using the al-
ready known lower bound for DISJ to lower bound the
complexity of AND. This proof does not provide a direct
proof for the information complexity of AND.

Here we focus on the subclass of memoryless protocols
and prove directly a tight lower bound for the information
complexity of AND for memoryless protocols and for the
input distribution needed for DISJ. More precisely, con-
sidering the input distribution U0 defined by U0(x, y) = 1

3
for (x, y) 6= (1, 1) and U0(1, 1) = 0, we show the follow-

ing, where CICML
U0,ε,k(AND) is the minimum CIC achieved

by a k-round memoryless quantum protocol computing
AND with error at most ε on input distribution U0.

Theorem 1 For any ε ∈ (0, 1/2) and any integer k,

CICML
U0,ε,k(AND) = Θε

(
log(k)
k

)
.

The upper bound in Theorem 1 comes from a proto-
col described in [4] credited to Jain, Radhakrishnan and
Sen. Note also that from [13], we could obtain a non-
optimal bound of CICML

U0,ε,k(AND) = Ωε (1/k) , since the
information-theoretic notion used in [13] becomes equiv-
alent to CIC for memoryless protocols.

The question is then whether we can lift the lower
bound of Theorem 1 to memoryless quantum protocols
for DISJ. The obvious way to try and do it is to start with
a memoryless quantum protocol for DISJ and use it in
order to construct a memoryless protocol for AND. How-
ever, there is an issue: to solve AND, the players are given
one-bit inputs, say x and y. But if they want to use a pro-
tocol solving DISJ over n bits, they need to create n− 1
inputs for each party distributed in a way such that the
protocol for DISJ will actually compute AND(x, y). In
the classical case, the players use private coins to choose
the remaining inputs for DISJ, when we embed the AND
function to it. In [13], the players used a superposition of
coins in order to choose these inputs. Now, if the play-
ers keep these superpositions in their workspace, then
we lose the memoryless property of our protocols. On
the other hand, if they send these superpositions to the
other player, the information cost of the protocol might
considerably increase.

Since it is not obvious how to reduce DISJ to AND
while retaining the memoryless property, similarly to the
classical case where we do not know how to perform the
reduction without the use of private coins, we slightly en-
hance our model. More precisely, we look at the model
where the players do not possess any memory and hence
they do not keep anything in their private space apart
from their classical input and some classical private coins.
Note that one can also assume the players share public
coins without changing the model. In the classical case,
we do allow for private coins when we define the informa-
tion cost of a protocol. In the quantum case, we cannot
unitarily create classical coins. Allowing classical coins
seems like a minimal addition to the model. One can see
that the communication complexity in this new model is
not different from the communication complexity in the
model without coins. Indeed, any protocol with coins
can be simulated by a protocol where the coins are cre-
ated in superposition by the players without changing
the communication cost. But what about the informa-
tion complexity? On the one hand, the information com-
plexity cannot increase, since we can always ignore the
coins. Surprisingly, we show that it becomes as small as
it can possibly be, namely, it equals the information re-
vealed just by the value of the function. So any function
can be computed privately. In fact, we show that every
quantum protocol can be turned into a quantum protocol
with coins that has the same input-output behaviour as
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the original protocol and that is perfectly private, i.e. the
players only learn the value of the function the protocol
computes and nothing more.

Theorem 2 For every quantum communication proto-
col Π, there exists a memoryless quantum protocol Π′

with private classical coins such that: on every input
pair (x, y), Π′ has the same output distribution as Π,
and the information cost of Π′ is only the information
gained by Bob’s output Πout in Π. This means that
for every input distribution µ, we have CICµ(Π′) =
I (Πout(X,Y ) : X|Y ) , where (X,Y ) is a random variable
distributed according to µ, I denotes the (classical) con-
ditional mutual information and Πout(x, y) is the (clas-
sical) random variable corresponding to Bob’s output in
Π on input (x, y).

Although we call the protocol Π′ private, note that we
are not considering a cryptographic scenario where the
players might deviate from the protocol: we are inter-
ested in studying the information of fixed protocols. In
high level, in protocol Π′ Alice and Bob follow Π but they
use private coins to encrypt their messages. At the end of
the protocol, if their coins were the same, Bob is able to
output as in Π and knows nothing else than this value.
However, if their coins were different, our construction
prevents them from getting any information about each
other’s input, in which case they just restart the process
until they get the same coins. This construction yields a
private protocol at the expense of a very high communi-
cation cost. Our results imply that given any function f ,
if we take for Π the protocol where Alice just sends over
x to Bob who computes and output f(x, y), we obtain a
protocol Π′ that can perfectly compute f with CIC only
the information gained from f(x, y). Let CICML,C

µ,k (f)
denote the minimum CIC achieved by a k-round mem-
oryless quantum protocol with private classical coins to
compute f exactly on input distribution µ.

Corollary 3 For every input distribution µ, and ev-
ery positive integer k, CICML,C

µ,k (f) = I (f(X,Y ) : X|Y ) ,
where (X,Y ) is a random variable distributed according
to µ, and I denotes the (classical) conditional mutual in-
formation.

Note that, in the case of AND, on distribution U0 the out-
put of AND(x, y) = x∧y is always 0. Hence, by the above

result, CICML,C
U0,k

(AND) = 0 for every integer k. There are
two sides to this result. On the one hand, adding classi-
cal coins to quantum protocols allows for perfectly private
protocols. This is impossible in the classical world and
shows how quantum communication can offer advantages
over classical communication. On the other hand, allow-
ing the players to use private coins without restrictions
weakens the power of information complexity as a lower
bound for quantum communication complexity.

In order to try and salvage the notion of information
complexity as a strong lower bound while allowing the
players to use private coins, we consider an intermediate
model where the players are allowed to use what we call
one-shot coins. These are private coins that can be used

only once during the protocol. In the classical setting,
this assumption is not restrictive and does not change
the communication complexity nor the information com-
plexity [19]. We show that this is not the case in the
quantum setting: allowing general coins or one-shot coins
can lead to very different information complexities. In
fact, allowing one-shot coins do not necessarily decrease
the information complexity in the model without coin by
much.

Theorem 4 For every k-round memoryless quantum
protocol Π with one-shot coins, we can construct a k-
round memoryless protocol Π′ without coins, which out-
puts as Π and such that CICU0(Π′) = O

(
CICU0(Π) ·(

log(k) + |log CICU0
(Π)|

))
.

Informally, the proof goes as follows. The transforma-
tion from Π to Π′ is informally the following: (1) quantize
the coins from Π i.e., put them in quantum superposition
in quantum registers; (2) at each odd (or even) round,
Alice (or Bob) applies the same transformation as in Π.
Then, Alice (or Bob) would like to send all their quan-
tum registers, including the coin registers, to the other
player. Before doing that, Alice (or Bob) applies a com-
pensation unitary that will limit the information cost in-
crease that occurs because of the sending of all the quan-
tum registers. This result, combined with Theorem 1,
implies in particular that CICML,C1

U0,ε,k
(AND) = Θε

(
1
k

)
,

where CICML,C1

µ,ε,k (f) denotes the minimum CIC achieved
by a k-round memoryless quantum protocol with private
one-shot coins that computes f with error ε on input dis-
tribution µ. We see that while private coins allow for pri-
vate protocols, one-shot coins not always do. The main
open question is whether one-shot coins can be useful to
reduce DISJ to AND or more generally prove some direct
sum property for quantum information complexity.
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Abstract. We study the compression of arbitrary parametric families of n identically prepared finite-
dimensional quantum states, in a setting that can be regarded as a quantum analogue of population coding.
For a family with f free parameters, we propose an asymptotically faithful protocol that requires a memory
of overall size (f/2) log n. Our construction uses a quantum version of local asymptotic normality and, as
an intermediate step, solves the problem of the optimal compression of n identically prepared displaced
thermal states. Our protocol achieves the ultimate bound predicted by quantum Shannon theory. In
addition, we explore the minimum requirement for quantum memory: On the one hand, the amount of
quantum memory used by our protocol can be made arbitrarily small compared to the overall memory
cost; on the other hand, any protocol using only classical memory cannot be faithful.

Keywords: Population coding; Compression; Quantum system; Local asymptotic normality; Identically
prepared states

1 Introduction

Many problems in quantum information theory involve
a source that prepares multiple copies of the same quan-
tum state. This is the case, for example, of quantum to-
mography [1], quantum cloning [2, 3], and quantum state
discrimination [4]. The state prepared by the source is
generally unknown to the agent who has to carry out the
task. Instead, the agent knows that the state belongs
to some parametric family of density matrices {ρθ}θ∈Θ,
with the parameter θ varying in the set Θ. Also, it is
promised that all the particles emitted by the source are
independently prepared in the same quantum state ρθ:
when the source is used n times, it generates n quantum
particles in the tensor product state ρ⊗nθ .

How much information is contained in the n-particle
state ρ⊗nθ ? One way to address this question is to quan-
tify the minimum amount of memory needed to store the
state. It is important to stress that the problem of storing
the n-copy states {ρ⊗nθ , θ ∈ Θ} in a quantum memory
is different from the standard problem of quantum data
compression [5, 6, 7]. In our scenario, the mixed state
ρθ is not regarded as the average state of an informa-
tion source, but, instead, as a physical encoding of the
parameter θ. The goal of compression is to preserve the
encoding of the parameter θ, by storing the state ρ⊗nθ
into a memory and retrieving it with high fidelity for all
possible values of θ. To stress the difference with stan-
dard quantum compression, we refer to our scenario as
compression for quantum population coding. The expres-
sion “quantum population coding” refers to the encoding
of the parameter θ into the many-particle state ρ⊗nθ . We
choose this expression in analogy with (classical) popu-
lation coding, whereby a parameter is encoded into the
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population of n individuals [8]. The typical example of
population coding arises in computational neuroscience,
where the population consists of neurons and the param-
eter represents an external stimulus.

The compression for quantum population coding has
been first studied in the case of pure qubit states [9, 10],
and then extended to mixed states and higher dimensions
[11]. Later, a new protocol that reaches the ultimate
information-theoretic bound was found for qubit states
[12]. The classical version of the problem was addressed
in [13]. However, finding the optimal protocol for arbi-
trary parametric families of quantum states has remained
as an open problem so far.

In this paper, we provide the general theory for the
compression of n-tensor product state in a quantum para-
metric state family. We consider two categories of state
families: families of finite-dimensional states and families
of displaced thermal states in infinite dimensions. These
two categories of state families turn out to be connected
by the quantum version of local asymptotic normality (Q-
LAN)[14, 15, 16, 17], which reduces n-tensor product of
a finite-dimensional state locally to a displaced thermal
state. As the first step, we discuss this kind of compres-
sion for the thermal states family, which can be regarded
as the quantum extension of the Gaussian distribution.
In the next step, employing Q-LAN, we reduce the prob-
lem of compressing generic finite-dimensional states to
the case of displaced thermal states. Unlike previous
works, our protocol does not require any assumption on
the symmetry of the state family. In addition, an in-
triguing feature of our compression protocol is that the
ratio between the size of quantum memory and the size
of classical memory can be made arbitrarily close to but
not equal to zero. This feature is not an accident: for
identically prepared displaced thermal states and qudit
states, we show that any compression protocol using only
classical memory must have non-vanishing error.
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The extended version of this paper can be found on
arXiv [18].

2 Main result

The main result of our work is the optimal compres-
sion of identically prepared quantum states. We con-
sider two major categories of states: finite dimensional
(i.e. qudit) states and displaced thermal states. The
key problem is to find the minimum amount of mem-
ory needed to encode these states, in a way that they
can be recovered with an error vanishing in the number
of input copies. A compression protocol for a paramet-
ric (sub)family {ρθ}θ∈Θ consists of two components: the
encoder and the decoder, characterized by a couple of
quantum channels (completely positive trace-preserving
linear maps) E and D respectively.

The memory cost essentially depends on the
(sub)family from which the states are drawn. For in-
stance, the memory cost for states diagonalized in the
same basis (i.e. classical probability distributions) should
be less than the cost for general qudit states. As a con-
sequence, we need to specify the state subfamily being
considered before stating the main result.

We begin by introducing the parameterization for qu-
dit and displaced thermal states. The parameters are
categorized into two classes: classical parameters and
quantum parameters. Roughly speaking, a classical pa-
rameter controls the eigenvalues of the density matrix,
while a quantum parameter determines the eigenstates.

Any non-degenerate qudit state can be generated by
rotating a fixed diagonal state ρ0(µ) with spectrum µ,

i.e. ρθ = Uξρ0(µ)U†ξ , where θ = (µ, ξ) ∈ Rd2−1, with

µ ∈ Rd−1 being the spectrum and ξ ∈ Rd(d−1) character-
izing the rotation. The explicit form can be found in the
extended version of this paper [18]. Here, components of
µ are counted as classical parameters, and components
of ξ are the quantum parameters.

Displaced thermal states, which are a type of infinite-
dimensional states frequently encountered in quantum
optics, is defined as follows:

ρα,β = Dα ρ
(thm)
β D†α α = |α|eiT T ∈ [0, 2π), (1)

where Dµ = exp(µâ†− µ̄â) is the displacement operator,
β ∈ [0, 1) is a suitable parameter and

ρ
(thm)
β = (1− β)

∞∑
i=0

βi|i〉〈i| (2)

is a thermal state with {|k〉} being the photon number
basis. For the displaced thermal state family, there is one
classical parameter β specifying the probability distribu-
tion of the eigenvalues, and two quantum parameters |α|
and T = argα describing the strength and phase of the
displacement.

The main result of our work is the following:

Theorem 1 Let {ρ⊗nθ }θ∈Θ be the state (sub)family of n
identical displaced thermal states or non-degenerate qudit

states with fc free classical parameters and fq free quan-
tum parameters. For any δ ∈ (0, 2/9), the state fam-
ily can be compressed into [(1/2 + δ)fc + (1/2)fq] log n
classical bits and (fqδ) log n qubits with an error ε =
O
(
n−δ/2

)
+ O

(
n−κ(δ)

)
, where κ(δ) > 0 is determined

by the error of Q-LAN [17]. The compression is optimal,
in the sense that any compression protocol requiring a
memory of size [(fc + fq)/2− δ′] log n with δ′ > 0 cannot
be faithful.

For the state (sub)family, a free parameter is assumed
to be variable in a certain interval, while a fixed param-
eter can only take one fixed value. By faithful we mean
that the worst-case trace distance between the original
state and the recovered state D ◦ E (ρ⊗nθ )

ε := sup
θ∈Θ

1

2
‖ρ⊗nθ −D ◦ E (ρ⊗nθ )‖1 (3)

vanishes in the n→∞ limit.
Theorem 1 states that to encode each free parameter

a memory of size (1/2 + δ) logn is required. When the
parameter is classical, the required memory is fully classi-
cal; when the parameter is quantum, a quantum memory
of δ log n qubits is required. Note that Theorem 1 solves
the compression of several important (sub)families:

• The full model family of qudits (fc = d − 1 and
fq = d(d− 1)).

• The classical qudit subfamily (fc = d − 1 and
fq = 0) of d-dimensional classical probability distri-
butions can be compressed into (d/2) log n classical
bits, retrieving the result of [13].

• The phase-covariant qudit subfamily (fc = d − 1
and fq = d(d− 1)/2).

As we can see from Theorem 1, if we take δ to be small
enough, the ratio between the quantum memory cost and
the classical memory cost δfq/((1/2+δ)fc+(1/2)fq) can
be made close to zero when δ is set close to zero, yet
the compression error vanishes more slowly. It is then
intuitive to ask whether this ratio can be made equal to
zero while keeping the error vanishing, i.e. compressing
faithfully using a fully classical memory. The answer to
the above question is negative: we proved in the extended
version [18] that only commuting quantum states can be
faithfully compressed into classical bits. In other words,
only classical families of states can be stored using into
purely classical bits.

In [18] we provide protocols for compressing a vari-
ety of displaced thermal state (sub)families, and here
we briefly introduce the protocol for compressing non-
degenerate qudit states. Displaced thermal states and
non-degenerate qudit states are closely connected by the
Q-LAN. Here we use the results derived in [17], which
states that n identical copies of a qudit state can be ap-
proximated by a classical-quantum Gaussian state in a
sufficiently small neighborhood of a point θ0 ∈ Θ for
large n. The approximation is physically implemented by

two quantum channels: T
(n)
θ0

that converts qudit states
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Figure 1: Compression protocol for finite dimensional states.

to Gaussian states, and S
(n)
θ0

that do the inverse conver-
sion.

By using Q-LAN, we can reduce the compression for
non-degenerate qudit families to the compression of dis-
placed thermal state families as shown in Figure 1.

First, n1−δ/2 copies of ρθ in the input are taken out
for tomography. In this way, one obtains a neighbor-
hood that contains the input state with high probabil-
ity. This neighborhood is encoded into classical memory,
and is also used for the constructing the Q-LAN chan-

nel T
(n−n1−δ/2)
θ0

that converts the remaining n − n1−δ/2

copies to a classical-quantum Gaussian state. Next, the
Gaussian state is amplified to compensate the loss of in-
put copies. For each individual quantum mode, a dis-
placed thermal state compressor Pj,k [18] compresses it
into quantum memory.

The state can be decompressed from the memory by
sending the state of the hybrid memory through the chan-

nel S
(n)
θ0

, which can be constructed by consulting the
outcome of tomography.

The optimality of our compression protocol is justified
as follows. To prove that any protocol with an overall
memory size of (f/2 − δ) logn (where f = fc + fq) for
δ > 0 cannot be faithful, it suffices to construct such a
family that requires more than this amount of memory
to be faithfully compressed.

We define a mesh M on the parameter space Θ:

M =
{
θ ∈ Θ | |(θ − θ0)i| = zi · log n/

√
n, zi ∈ N ∀ i

}
(4)

where θ0 ∈ Θ is a fixed point. The mesh M is so defined
that the states corresponding to this mesh {ρθ}θ∈M are
almost mutually distinguishable. The points can be used
to approximately encode |M| different messages, and the
amount of information contained in this ensemble is ap-
proximately log |M|. In [18], we showed that the size of

memory required to faithfully encode this ensemble is

nenc ≥
f

2
log n− f log logn+ o(1) (5)

which, for any δ > 0, is larger than (f/2− δ) log n for
large n, showing the optimality of our protocol.

3 Conclusion

In this work we have solved the problem of compressing
identically prepared states of finite-dimensional quantum
systems and displaced thermal states. We showed that
the total size of the required memory is proportional to
the number of free parameters of the state. Moreover,
we observed the asymptotic ratio between the amount
of quantum bits and the amount of classical bits can be
set to an arbitrarily small constant. Still, a fully clas-
sical memory cannot faithfully encode genuine quantum
states: only states that are jointly diagonal in fixed basis
(i.e. a classical state family) can be compressed into a
purely classical memory.
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Abstract. Important properties of a quantum system are not directly measurable, but they can be
disclosed by how fast the system changes under controlled perturbations. In particular, asymmetry and
entanglement can be verified by reconstructing the state of a quantum system. Yet, this usually requires
experimental and computational resources which increase exponentially with the system size. Here we
show how to detect metrologically useful asymmetry and entanglement by a limited number of measure-
ments. This is achieved by studying how they affect the speed of evolution of a system under a unitary
transformation. We show that the speed of multi-qubit systems can be evaluated by measuring a set of
local observables increasing linearly with the number of qubits. We implement the detection scheme in an
all-optical experiment.

Keywords: quantum metrology, speed of evolution, asymmetry and entanglement,quantum fisher infor-
mation

The ability to engineer quantum coherence and en-
tanglement is one of the main factors determining non-
classical speed-up in information processing. Yet, their
experimental verification is a serious challenge. As they
are not directly observable, their detection usually im-
plies reconstructing the full state of the system, which
requires a number of measurements growing exponential-
ly with the system size. Also, verifying their presence is
necessary, but not always sufficient to guarantee a com-
putational advantage.

Studying the rate of change of a system under carefully
designed perturbations is a clever way to investigate its
key properties. In quantum information and metrology
protocols, a system speed determines its computational
power. In open system, computing quantum speed limits
also provides information about the environment struc-
ture, helping develop efficient control strategies, and in-
vestigate phase transitions of condensed matter systems.
Here we show how to detect metrologically useful coher-
ence and entanglement in systems of arbitrary dimen-
sion by measuring the speed of evolution under a generic
quantum channel, which for n-qubit systems is a function
of a linearly scaling (O(n)) number of observables. The
system speed is defined by the average rate of change
of the state,which is given by mean values of quantum
operators 〈·〉ρt = Tr(·ρt):

sτ (ρt) :=
||ρτ − ρ0||2

τ
=

(〈ρτ 〉ρτ + 〈ρ0〉ρ0 − 2〈ρτ 〉ρ0)1/2

τ
,

where the Euclidean distance is employed. Measuring the
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Figure 1: Overlap detection network.

swap operator on two system copies is sufficient to quan-
tify state overlaps. The overlap detection network for
n-qubit systems is depicted in Fig. 1. The unitary gates
Uτ,i = e−ihiτ are applied to the second copy of each pair.
The overlap, and therefore the speed function can be ex-
tracted by the Bell state measurement on each pair of
subsystem copies. We prove a quantitative link between
our speed measure, when undertaking a unitary dynam-
ics, and metrological quantum resources. First, we relate
speed to asymmetry, i.e. the amount of coherence with
respect to an Hamiltonian eigenbasis, which underpins
the usefulness of a probe state to phase estimation and
reference frame alignment schemes. By extending the
analysis to multipartite systems, a superlinear increase
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of speed with the system size certifies an advantage in
phase estimation powered by entanglement.

We demonstrate the scheme in an all-optical experi-
ment. We extract a lower bound to the metrologically
useful coherence (i.e. asymmetry) and entanglement of a
two-qubit system, by measuring its speed in a controlled
unitary evolution. While state tomography would require
fifteen measurements, we verify that the proposed pro-
tocol needs six. The system is prepared in two-copies
of a mixture of Bell states via spontaneous parametric
down-conversion (SPDC) sources. We evaluate the speed
function from purity and overlap measurements. We im-
plement a six-photon architecture to rule out the case
of BSMs measuring two photon pairs emitted by a sin-
gle SPDC source. We obtain results of excellent quality,
being able to experimentally quantify for the first time
the asymmetry of a system without state reconstruction.
Also, non-classical metrological efficiency due to entan-
glement is reliably detected.

To summarize, our work answers the crucial question:
how can we tell if a genuinely quantum process occurred?
We show that speed detection is an extremely powerful
strategy to certify quantum processes yielded by coher-
ence and entanglement in large computational registers.
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Abstract. We analyze Vaidman’s three-path interferometer with weak path marking [Phys. Rev.
A 87, 052104 (2013)] and find that common sense yields correct statements about the particle’s
path through the interferometer. This disagrees with the original claim that the particles have
discontinuous trajectories at odds with common sense. In our analysis, “the particle’s path”
has operational meaning as acquired by a path-discriminating measurement. For a quantum-
mechanical experimental demonstration of the case, one should perform a single-photon version of
the experiment by Danan et al. [Phys. Rev. Lett. 111, 240402 (2013)] with unambiguous path
discrimination. We present a detailed proposal for such an experiment.

Keywords: Foundations of quantum mechanics, Quantum state engineering and measurements,
Optical tests of quantum theory

1 Introduction

Vaidman argues that one can meaningfully talk about the
past of a quantum particle — specifically: which path it
took through an interferometer — by analyzing the faint
trace left along the path by weak, almost non-disturbing,
measurements within a formalism that uses forward and
backward evolving quantum states [1, 2]. This leads to
the following criterion [3]:

The particle was present in paths of the inter-
ferometer in which there is an overlap of the
forward and backward evolving wave functions.

(1)

He then arrives at conclusion that contradicts common
sense: The particle can have trajectories that are not
continuous, for example, in a three-path interferometer.
Later, this assertion is seemingly confirmed by experi-
ments on an optical three-path interferometer [4, 5]. In
both experiments, the three-path interferometer is an
asymmetric Mach-Zehnder interferometer (MZI) with a
symmetric MZI inserted into one arm; see Fig.(1) for
illustration.

Various aspects of this matter have been debated; there
are at least thirty papers written on the subject in the
past few years [6]. The debate is still on-going.

In this work, we first discuss an important aspect
that has not yet been recognized and examined in
depth: How one extracts path information from faint
traces left by an individual particle on its way through
the interferometer. It turns out that common sense

∗ cqtebg@nus.edu.sg
† khoria@ntu.edu.sg
‡ Currently at Data Storage Institute, A*Star;
dai jibo@dsi.a-star.edu.sg
§ yinkloong@quantumlah.org
¶ cqtnhk@nus.edu.sg

prevails if the right question about the path knowledge is
asked. (See points 1 to 3 in the detailed summary below).

Second, we point out that the experimental results in
Refs.[4, 5], in fact, do not provide direct and unanimous
support to Vaidman’s narrative (1) for the past of the
photons. (See points 3 to 5 in the detailed summary
below.)

Lastly, we propose single-photon experiments for both
the two-path interferometer and the three-path inter-
ferometer of Ref. [4], with unambiguous and full-path
information extraction. The proposal for the three-path
interferometer has not yet been realized, but once
performed, it should demonstrate that common sense
does prevail. (See points 6 to 7 in the detailed summary
below.)

2 Detailed Summary

1. We review Vaidman’s three-path interferometer,
and analyze the weak path marking by which a par-
ticle leaves faint traces at the various checkpoints
on its way from the source to the detector. We
conclude that destructive interference suppresses
the traces at two checkpoints, which explains why
a particle has a discontinuous trajectory in Vaid-
man’s narrative.

2. We further analyze how one acquires such specific
knowledge about the path of a particle just detected
by a suitable measurement of the quantum degrees
of freedom that are used to mark the path. In this
context, what we learn depends a lot on the ques-
tion we ask by the chosen measurement, and not
all questions are equally relevant. We examine the
faint traces left by the particle just detected and
show how one extracts path knowledge by a mea-
surement of unambiguous discrimination (MUD)
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FIG. 1: Fig.(1a) shows Vaidman’s three-path interferometer of Refs. [1-5]. The quantum particle is emitted by
source S, enters the interferometer at beam splitter BS1, and is detected by detector D after exiting at beam splitter
BS4. Both BS1 and BS4 have 2:1 transmission/reflection ratios. On the way from S to D, the particle can take the
outer path (path III), identified by path marker at checkpoint C, or the paths through the internal MZI (paths I or
II), identified by path markers at checkpoint A or B. The inner MZI is balanced such that for particles entering from
checkpoint E, checkpoint F would be the dark port due to destructive interference; BS2 and BS3 are 50:50
nonpolarizing beam splitters. The faint slanted lines connect simultaneous points on the three paths. Fig.(1b)
illustrates the description of the past of the particles using two-vector formalism and criterion (1). Since inside the
three-path interferometer there are only overlapping of forward wave function (blue/darker lines) and backward
(red/lighter lines) wave function at the inner MZI and the outer path, but not at E or F, it is concluded that the
trajectory from S to D is discontinuous. Note that the thickness of the blue lines is proportional to the probability of
finding the quantum particle there if we look for it.

on the path-marker degree of freedom. Unambigu-
ous which-path information gives operational and
quantitative meaning to the otherwise vague con-
cept of “where was the quantum particle.” We

show that, in fact, for the case of Vaidman’s three-
path setup with weak path marking, only a small
fraction of the particles have path knowledge, while
all others have unknowable paths.

3. Upon noting that the probability amplitudes pro-
cessed by the final beam splitter (BS4) are inco-
herent, we show how the observed data would in
fact agree with one’s common sense. Specifically,
for post-selected particles that are detected by D
after BS4 (as is done and analyzed in Refs. [4, 5]),
we conclude that the particles with unknown path
have, in fact, followed the common-sense path, i.e.
the outer path of the three-path interferometer. In
the limit of ever fainter traces, these are all parti-
cles. We provide two analyses, one is through an
accounting exercise, and another by examination
of the subensembles sorted according to the un-
ambiguous discrimination results, to support our
conclusion.

4. In Ref. [4], the experiment is performed with classi-
cal light intensities, and no information is available
about individual photons. One cannot simply in-
voke a fair-sampling assumption to infer the past of
a single photon. The formalism and analysis used

as in Refs. [1, 2] can only be applied to an ensemble
of particles [7].

5. In Ref. [5], while the experiment is indeed per-
formed with single photons, their detection method
is unable to extract all the available path informa-
tion in an unambiguous fashion, and as such is little
better than the original experiment in resolving the
narrative.

6. We take a close look at the inner two-path inter-
ferometer in Vaidman’s three-path setup, and show
that every particle detected at the exit for the de-
structive interference, i.e. at F, has a known path,
which is the reason for the incoherent probabil-
ity amplitudes mentioned in point 3 above. We
propose and perform a single-photon experiment
for such two-path interferometer with weak path
marking. In this experiment, we produce pairs of
polarization-entangled photons from down conver-
sion. One of them (signal) enters the MZI, with its
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polarization altered gently according to the path
taken. Due to the entanglement, the polarization
degree of freedom of the partner photon (idler) is
then utilized as the path marker. Upon perform-
ing MUD for two polarization qubit states, we can
then extract the path information of the signal. All
the obtained data are in good agreement with our
theoretical predictions [8].

7. Furthermore, we propose a single-photon version
of the three-path interferometer experiment of
Ref. [4], with unambiguous and full-path infor-
mation extraction. The experiment is similar to
the one for the two-path interferometer above,
but now two pairs of down-converted photons are
needed, as markings for three paths are required.
In addition, the MUD is performed on the path
qutrits of the idler rather than polarization qubits.

Our treatment is entirely within the standard formalism
of quantum mechanics and does not rely on the two-state
formalism employed by Vaidman. While we do not seek
to question the validity of the two-state formalism, we
see no particular advantage in using it; the standard
formalism offers a transparent way for studying the
properties of ensembles that are both pre-selected and
post-selected. Our analysis of Vaidman’s three-path
interferometer with weak path marking has established
that common sense does not mislead us, and Vaidman’s
criterion (1) does not correctly identify the path taken
by the particle.

A preprint for this work can be found at
arXiv:1704.03722.
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Occam’s Vorpal Quantum Razor: Memory reduction when simulating
continuous-time stochastic processes with quantum devices
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Abstract. The ubiquity of continuous-time stochastic processes makes the simulation these processes a
great utility. Classical simulators of continuous-time processes must typically track unbounded amounts of
information about past behaviour, enforcing limits on precision due to finite machine memory. However,
quantum machines can require less past information than even their optimal classical counterparts to
simulate discrete-time processes, and we demonstrate that this advantage extends to the continuous-time
regime. Moreover, we show that this memory reduction can be unboundedly large, allowing for arbitrary
precision with a finite quantum memory. We provide a systematic construction for superior quantum
machines, and a protocol for analogue quantum simulation of continuous-time renewal processes.

Keywords: Quantum Simulation, Quantum Memory, Computational Mechanics, Quantum Information,
Continuous-Time Stochastic Processes

Our experience of the world manifests as a series of
observations. These may be characterised by a time se-
ries that details what is observed, and when. The goal of
scientific theories is to construct models which can pro-
vide consistent explanations for past observations, and
make predictions about the future. Once equipped with
a model, we can build simulators of the processes, to em-
ulate the behaviour of the modelled system.

In general, one can devise many models for a process
that make identical predictions, and so it is desirable to
have criteria for discerning a preferred model. A guiding
philosophy for this is Occam’s razor “plurality should not
be posited without necessity”, which can be interpreted
as requiring that a model should be the ‘simplest’ that
accurately describes our observations. The field of com-
putational mechanics [1] provides a quantitive notion of
what constitutes the simplest model, defining the optimal
model of a process to be that which requires the least in-
formation about the past behaviour of the system whilst
retaining the same predictive power as though the entire
past history was known. Beyond the desire for elegance,
a pragmatic reason for investigating such optimal models
is that it facilitates the construction of simulators that
make efficient use of resources. Here, the resource we
optimise is the internal memory of the simulator.

It has recently been shown [2] that quantum mechanics
allows for the construction of simulators of discrete-time
processes that require less information about the past
than their optimal classical counterparts. This is possi-
ble because past states that have some, but not complete
overlap in future statistics need not be perfectly distin-
guished, and may be stored as non-orthogonal memory
states. This leads to the perhaps surprising conclusion
that a quantum device can be more efficient than a clas-
sical system even when simulating a purely classical pro-
cess. This opens a novel avenue for the quantum simula-

∗physics@tjelliott.net
†milegu@quantumcomplexity.org

tion of classical stochastic processes.
In our work [3] we have demonstrated that this quan-

tum advantage may be extended to the much richer and
broader realm of continuous-time stochastic processes.
Focussing on the particular case of renewal processes,
(which can be used to model a diverse range of systems
including queues and neural spike trains), we provide
a systematic construction for quantum models in this
regime that are more efficient than their corresponding
optimal classical counterparts, that can be applied for
arbitrary waiting-time distributions.

Classical simulators of such processes [4] typically re-
quire an unboundedly large memory to operate exactly
in the continuous-time regime, hence enforcing a trade-
off between memory usage and precision, ultimately and
fundamentally limiting the accuracy of such simulations.
In contrast to this, we show that our construction for
quantum simulators of the same processes may achieve
arbitrarily fine precision whilst still requiring only finite
memory [Fig. 1]. This hence allows quantum devices to
sidestep the limitations suffered by their classical com-
plements.

Alongside the details for constructing quantum simu-
lators of continuous-time renewal processes superior to
the optimal classical models, we characterise the mem-
ory required by such quantum models, which we show
to be timescale invariant, depending only on the form
of the waiting-time distribution. Further, we show that
unlike the optimal classical models that require certain
properties of the waiting-time distribution to be known
and incorporated into their construction, the superior
quantum models in effect self-assemble with a naive con-
struction directly from the waiting-time distribution. We
outline a protocol for how quantum models can be im-
plemented as analogue simulators of renewal processes,
and illustrate our results with two examples that exhibit
the unbounded advantage in the memory requirement of
quantum devices. We conclude by arguing that this infi-
nite memory saving may be a general property of quan-
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tum simulators of continuous-time renewal processes, and
discuss the prospects for extending our results to more
general continuous-time stochastic processes.
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Figure 1: The classical memory requirement to simulate
continuous-time stochastic processes typically increases
unboundedly with finer coarse-graining, while a quantum
simulator may be able to perform the same task to ar-
bitrary precision with only finite memory. The example
shown is for a uniform emission density renewal process,
where we find a bounded quantum memory requirement
in the continuous limit.
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Abstract. Recently the power of positive partial transpose preserving (PPT) and no-signalling
(NS) codes in quantum communication has been studied in [Leung/Matthews, IEEE Trans.
Inf. Theory 61:4486, 2015]. We continue with this line and study the PPT-assisted quantum
communication in both non-asymptotic and asymptotic settings. We show improved semidefinite
programming (SDP) finite blocklength converse bounds for quantum communication with a given
infidelity tolerance and utilize them to study the depolarizing channel and amplitude damping
channel in the small blocklength. We then present a general SDP strong converse bound on
quantum capacity. All these bounds are efficiently computable and do not rely on any specific
structure of the channel. In particular, we prove that our SDP strong converse bound is always
smaller than or equal to the partial transposition bound introduced by Holevo and Werner, and
the inequality could be strict. Furthermore, we show that the SDP strong converse bound can be
refined as the max-Rains information, which an analog to the Rains information introduced in
[Tomamichel/Wilde/Winter, IEEE Trans. Inf. Theory 63:715, 2017]. This also implies that it
is always no smaller than the Rains information. Finally, we establish an inequality relationship
among the known strong converse bounds on quantum capacity.

Keywords: quantum capacity, strong converse, semidefinite program

1 Introduction

A central topic in quantum information theory
is the reliable transmission of quantum information
via noisy quantum channels. The quantum capacity
of a noisy quantum channel is the highest rate at
which it can convey quantum information reliably
over asymptotically many uses of the channel. The
theorem by Lloyd, Shor, and Devetak (LSD) [1, 2, 3]
and the work in [4, 5, 6] show that the quantum ca-
pacity is equal to the regularized coherent informa-
tion. The quantum capacity is notoriously difficult
to evaluate since it is characterized by a multi-letter,
regularized expression and it is not even known to be
computable [7]. Our understanding of the classical
and quantum capacities remains limited. Even for
qubit channels, the quantum capacity of depolariz-
ing channel is unsolved. Given an arbitrary quan-
tum channel, a previously known efficiently com-
putable strong converse bound is the partial trans-
position bound introduced in Ref. [8]. Recently, the
Rains information [9] was established to be a strong

∗ xin.wang-8@student.uts.edu.au
� kun.fang-1@student.uts.edu.au
� runyao.duan@uts.edu.au
§ This work is an extended version of the previous work on
arXiv: 1601.06888.

converse bound for quantum communication.
To better understand the channel capacities, one

can study the performance of extra free resources in
the coding scheme. This scheme, called a code, is
equivalently a bipartite operation under some phys-
ically reasonable restrictions. Recently, the NS and
PPT codes are introduced to study quantum capac-
ity [10] while NS-assisted zero-error classical capac-
ity is studied in [11]. These codes are with mathe-
matically tractable structure and could provide in-
sights into the tough problem of determining capac-
ities. Note that NS codes are potentially stronger
than entanglement codes and the PPT codes include
operations that can be implemented by local opera-
tions and classical communication.

Another fundamental problem, of both theoreti-
cal and practical interest, is the trade-off between
the channel uses, transition rate and error toler-
ance in the non-asymptotic (or finite blocklength)
regime. In a realistic setting, the number of channel
uses is necessarily limited in quantum information
processing. Therefore one has to make a trade-off
between the transmission rate and error tolerance.
The study of finite blocklength regime has recently
garnered great interest in classical information the-
ory (e.g., [12, 13]) as well as in quantum information
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theory (e.g., [14, 15, 16, 17, 18, 10, 19, 20, 21, 22]).

2 Overview of results

Our work follows the quantum communication
via quantum channels assisted by NS and PPT
codes [10] and focuses on both non-asymptotic and
asymptotic regimes. To be specific, we show

� SDP finite blocklength converse bounds for
quantum communication with a given error
tolerance;

� SDP strong converse bound for quantum ca-
pacity: for any code with a rate exceeding our
bound, the error probability goes to one ex-
ponentially fast in the limit of many channel
uses.

Our bounds do not rely on the structure of the
channel and can be efficiently computed for any
channel since SDP [23] can be solved by polynomial-
time algorithms [24].

We first show that the one-shot ε-error capacity
assisted by PPT ∩ NS codes, is given by

Q
(1)
PPT∩NS (N , ε)

= − log min m

s.t. TrJNWAB ≥ 1 − ε,
0 ≤WAB ≤ ρA ⊗ 1B,
TrρA = 1,

PPT: −mρA ⊗ 1B ≤W TB
AB ≤mρA ⊗ 1B

NS:TrAWAB =m2
1B.

(1)

It is worth noting that Eq. (1) is not a convex
optimization problem. We do some relaxation on
the constraints and obtain SDP converse bounds for
quantum communication. These bounds improve
the SDP converse bound (− log f (N , ε)) in Ref. [22].
To be specific, we show that for any quantum chan-
nel N and error tolerance ε, it holds that

Q(1) (N , ε) ≤ Q(1)PPT∩NS (N , ε) ≤ − log ĝ (N , ε)
≤ − log g̃ (N , ε) ≤ − log g (N , ε) ≤ − log f (N , ε) .

(2)

where ĝ (N , ε), g̃ (N , ε), g (N , ε) are the SDPs we
derived, whose explicit formula can be found in the
technical version of this work. Note that to get a

better result, we may require a few times of succes-
sive refinement for ĝ and denote the result after i
times of refinement as ĝi.

Examples of the amplitude damping channel N (r)AD
and the qubit depolarizing channel ND (with depo-
larizing parameter p = 0.3) have been given to illus-
trate that our SDP converse bounds in Eq. (2) can
be strictly tighter. The numerical results are shown
in Figs. 1 and 2, respectively.
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Figure 1: Comparsion of SDP converse bounds
− log f , − log g, − log g̃ in the case of amplitude
damping channels with error tolerance ε = 0.01.
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Figure 2: Comparsion of SDP converse bounds
− log f , − log g, − log ĝ5 in the case of the qubit de-
polarizing channel with p = 0.3 and ε = 0.001.

We further study the asymptotic setting and show
efficiently computable strong converse bound on
quantum capacity. A previously known efficiently
computable strong converse bound for general chan-
nels is the partial transposition bound [8] intro-
duced by Holevo and Werner: Q (N ) ≤ QΘ (N ) ∶=
log ∥JTB

N
∥cb, where ∥ ⋅ ∥cb is the completely bounded

trace norm. Moreover, Tomamichel, Wilde and
Winter [9] introduced the Rains information R (N )
and show that it is a strong converse bound
on quantum capacity, i.e., Q (N ) ≤ R (N ) ∶=
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maxρA∈S(A)minσ∈PPT’D (NA′→B (φAA′) ∥σ), where
φAA′ is a purification of ρA and the set PPT’ = {σ ≥
0 ∶ ∥σTB∥1 ≤ 1}. There are other converse bounds
on quantum capacity [25, 26, 27, 28, 29, 30, 31, 32],
which require specific settings to be computable and
relatively tight. However, our work provides another
efficiently computable strong converse bound (QΓ)
for the quantum capacity of an arbitrary quantum
channel, i.e.,

Q (N ) ≤ Q→ (N ) ≤ QPPT (N ) ≤ QΓ (N ) ∶= log Γ (N ) ,

where

Γ (N ) ∶= max TrJNRAB

s.t. RAB ≥ 0,TrρA = 1,

− ρA ⊗ 1B ≤ RTBAB ≤ ρA ⊗ 1B
(3)

Moreover, if the rate exceeds QΓ, the error proba-
bility will go to one exponentially fast.

We further explore the properties of QΓ and find
that it can be refined as the max-Rains information,
which is an analog to the Rains information [9] in
the sense of replacing the relative entropy D with
the max-relative entropy Dmax [33], i.e.,

QΓ (N ) = max
ρ∈S(A)

min
σ∈PPT′

Dmax (NA′→B (φAA′) ∥σ) .

Finally, we establish an inequality relationship
among the known strong converse bounds on quan-
tum capacity,

Q (N ) ≤ Q→ (N ) ≤ R (N ) ≤ QΓ (N ) ≤ QΘ (N ) . (4)

We construct an explicit example Nr showing that
the last inequality in Eq. (4) can be strict, where
Nr = ∑1

i=0Ei ⋅E
�
i with E0 = ∣0⟩⟨0∣+

√
r∣1⟩⟨1∣ and E1 =√

1 − r∣0⟩⟨1∣+ ∣1⟩⟨2∣. The numerical result is given in
Fig. 3.
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Figure 3: Comparison of strong converse bounds
QΓ (Nr) and QΘ (Nr). The channel parameter r
ranges from 0 to 0.5.
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Locality Preserving Logical Operators in Topological Stabiliser Codes

Paul Webster1 ∗ Stephen D. Bartlett1
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Abstract. Locality preserving logical operators are naturally fault tolerant in topological codes, since they
preserve correctability of errors. We provide a framework for finding all locality preserving logical operators
admitted by a large and important class of topological stabiliser codes; those equivalent to a finite number
of copies of a toric code. We use this approach to explicitly classify the operators for these codes with
two types of boundary conditions, and illustrate how it may similarly be applied to codes with different
boundaries from these cases. This framework and classification provides a more complete understanding
of the potential and limitations of these codes for allowing fault tolerant quantum computing, which we
believe will be valuable in guiding future quantum computing architectures.

Keywords: fault tolerant quantum computing, topological stabilizer code, locality preserving, gapped
domain wall, toric code, color code

Topological stabiliser codes are a class of quantum er-
ror correcting codes that have attracted widespread at-
tention due to their simplicity and natural realisation
as physical systems [1, 2]. The codestates of such codes
are topologically protected, so that all local errors are
correctable [3]. As such, logical operators implemented
on information encoded in such codes are fault toler-
ant provided they are locality preserving [4]. However,
Bravyi and König [4], and subsequently Pastawski and
Yoshida [5], have shown that strong constraints apply to
the types of locality preserving operations that may be
implemented fault tolerantly in a topological stabiliser
code. Specifically, these constraints are upper bounds
on the level of the Clifford hierarchy from which gates
may be locality preserving in a given topological sta-
biliser code. Recently, Yoshida has also observed corre-
spondences between gapped domain walls and locality
preserving logical operators, and domain walls and sym-
metry protected excitations, that suggest an approach
to building a framework for finding all locality preserv-
ing logical operators which may be implemented in a
given topological stabiliser code [6]. Our work builds such
a framework and applies it to classify the locality pre-
serving logical operators which are implementable in any
topological stabiliser code which is locally equivalent to
a finite number of toric codes. This is a large class of
codes, containing all non-chiral, translationally invariant
two dimensional topological stabiliser codes [3], and a
wide range of higher dimensional topological stabiliser
codes, including all colour codes [7].

1 Main Ideas

The key ideas behind this work build on Yoshida’s ob-
servations in [6]. Specifically, we argue that in a d di-
mensional topological stabiliser code there are one-to-
one correspondences between k + 1 dimensional locality
preserving logical operators, k dimensional transparent,
gapped domain walls and k dimensional excitations for
1 ≤ k ≤ d − 1. We also note that transparent, gapped

∗pweb6304@uni.sydney.edu.au

domain walls correspond to permutations of excitations
which, in addition to preserving exchange, braiding and
fusion statistics [8], are constrained by the dimensions of
the code, domain wall and excitation.

We use these correspondences to build a recursive ap-
proach to finding all locality preserving logical operators
which may be implemented in a given topological sta-
biliser code. Specifically, all domain walls which permute
eigenstate excitations are first found. Such domain walls
correspond to Clifford locality preserving logical opera-
tors. They also may be viewed as symmetry protected
excitations of the code, which we label as C2 excita-
tions. We then consider domain walls which map eigen-
state excitations to excitations which may include C2 ex-
citations. These domain walls correspond to locality pre-
serving logical operators from the third level of the Clif-
ford hierarchy, and may in turn be viewed as new symme-
try protected excitations of the code. Considering domain
walls which involve these new excitations we can then find
locality preserving logical gates in the fourth level of the
Clifford hierarchy. This process is then continued on for
higher and higher levels of the hierarchy. The bound of
Bravyi and König ensures that the process terminates,
since above a certain level of the hierarchy there are no
new locality preserving logical gates, and so no new do-
main walls will be found. Once this termination occurs,
all locality preserving logical gates admitted by the code
will have been found.

2 Results

We apply this approach to the class of topological sta-
biliser codes that are locally equivalent to a finite num-
ber of identical d dimensional toric codes, considering
explicitly two types of boundary conditions. Firstly, we
consider codes locally equivalent to a disjoint union of
a finite number of generalised surface codes in d spatial
dimensions. For such codes we demonstrate that all non-
Clifford locality preserving logical operators are products
of Pauli X operators and Pauli Z operators controlled by
k qubits, which we denote CkZ. We also determine a nec-
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essary and sufficient condition for such CkZ operators to
be admitted as a function of k, d and the dimensional-
ity of electric charges of the surface codes involved. Sec-
ondly, we consider the d-dimensional colour code, which
may be viewed as d identical copies of a toric code folded
together to encode a single logical qubit [7]. We show
how the above results may be adapted for these different
boundary conditions. From this, we show that all non-
Clifford locality preserving logical gates in such codes are
products of Pauli X operators and rotations of the Bloch
sphere about the Z axis of 21−kπ, for k ∈ N, which we
denote by Rk. We show that an analogous necessary and
sufficient condition to that above determines which oper-
ators of this type are allowed. More generally, we indicate
how these results could be further generalised to a more
diverse range of boundary conditions for such codes. This
can allow our framework to have broad applicability to a
wide range of codes. We also suggest a generalisation of
our results to the larger class of quantum codes referred
to as abelian quantum double models [9].

3 Impact and Importance

The approach we develop could be valuable in assist-
ing with finding low overhead schemes for implement-
ing quantum algorithms. Specifically, magic state distil-
lation, which is necessary where locality preserving im-
plementations of gates are not possible, requires a very
large number of physical qubits [10]. By providing an ap-
proach to determining which gates are locality preserving
in a topological stabiliser code we offer the potential for
algorithms which minimise the need for magic state dis-
tillation to be chosen for such a code. This could make
implementation of these algorithms feasible even on rela-
tively small quantum computers which may be expected
to precede larger, more powerful quantum computers.

More specifically, our results regarding surface and
colour codes are particularly relevant, since these codes
are believed to be promising approaches for achieving
both small-scale protected quantum memories in the
short term [2], and large-scale memories in the long term
[10]. Understanding the potential of these codes to allow
for fault tolerant quantum computation, therefore, is an
important aspect of working towards achieving quantum
computing with such memories. While previous work had
identified particular locality preserving logical operators
admitted by these codes [7, 9], and general constraints
[4, 5], we provide the first complete classification of all
such operators. This allows for more certain assessment
of these codes, and for comparisons with other proposed
schemes for quantum computation. We hope this may
help to guide realisations of these schemes, or motivate
searches for alternatives.

Finally, our work provides deeper understanding of
the codes we study, which may illuminate approaches
that may be taken to explore important open ques-
tions. Specifically, our work illustrates how the bounds
of Bravyi and König, and of Pastawski and Yoshida, can
be viewed to arise for the codes we consider from di-
mensional constraints on the actions of domain walls on

excitations. We hope that this may provide insight that
may allow for similar bounds to be derived for a broader
class of codes, such as non-abelian quantum double mod-
els. Another area our work may illuminate is explorations
of alternative approaches to achieving fault tolerant op-
erations based on braiding defects [11]. Such defects are
known to emerge as boundaries of domain walls in two
dimensional codes [12]. We hope that our exploration of
domain walls and excitations in higher dimensional codes
may provide insight for future explorations of analogous
higher dimensional defects, which may prove to allow for
a rich braiding structure, and a range of fault tolerant
operators.
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Abstract. We consider the problem of certifying binary observables based on a Bell inequality violation
alone, a task known as self-testing of measurements. We introduce a family of commutation-based measures,
which encode all the distinct arrangements of two projective observables on a qubit. These quantities by
construction take into account the usual limitations of self-testing and since they are “weighted” by the
(reduced) state, they automatically deal with rank-deficient reduced density matrices. We show that these
measures can be estimated from the observed Bell violation in several scenarios and the proofs rely only
on standard linear algebra. The trade-offs turn out to be tight and, in particular, they give non-trivial
statements for arbitrarily small violations. On the other extreme, observing the maximal violation allows us
to deduce precisely the form of the observables, which immediately leads to a complete rigidity statement.
In particular, we show that for all n ≥ 3 the n-partite Mermin-Ardehali-Belinskii-Klyshko inequality self-
tests the n-partite Greenberger-Horne-Zeilinger state and maximally incompatible qubit measurements on
every party. Our results imply that any pair of projective observables on a qubit can be certified in a truly
robust manner. Finally, we show that commutation-based measures give a convenient way of expressing
relations among more than two observables.

Keywords: self-testing, Bell nonlocality, device-independence

1 Introduction
The fact that quantum mechanics is incompatible with

the concept of local realism [9] is arguably one of the
most surprising features of the quantum world. It should
therefore come as no surprise that Bell nonlocality is
an attractive field of research for both theoreticians
(see Ref. [10] for a review) and experimentalists (see
e.g. the recent loophole-free Bell tests [23, 22, 39, 24]).
An important practical application of Bell nonlocality is
device-independent quantum cryptography, whose goal is
to prove the security of protocols executed using poten-
tially untrusted devices (see Refs. [7, 2, 18, 1, 19] for the
early contributions and Ref. [21] for a relatively up-to-
date review). What makes this task possible is the fact
that observing nonlocal correlations allows us to draw
conclusions about the inner workings of the untrusted
devices. In fact, certain extremal quantum correlations
identify exactly the quantum system under considera-
tion (up to well-understood equivalences). For example
the only manner to achieve the maximal violation of the
Clauser-Horne-Shimony-Holt (CHSH) [15] inequality is
to perform anticommuting measurements on the maxi-
mally entangled state of two qubits [41, 43, 38]. Mayers
and Yao realised that this allows us to certify quantum
devices under minimal assumptions and they also coined
the term self-testing [28, 29]. The general question is
simple: “We have conducted a Bell test and observed
certain nonlocal correlations. What can we rigorously
deduce about the state shared between the devices and
the measurements performed?”.

The first self-testing results only applied in the case of
observing the ideal statistics. While interesting from the
foundational point of view, it is not sufficient for practi-
cal applications. In order to make statements relevant for
experiments we must make them robust, i.e. we have to

∗jkaniewski@math.ku.dk

show that if the observed statistics are close to the ideal
ones, then the quantum device should be close (in some
well-defined sense) to the perfect realisation. To simplify
the problem, instead of looking at the entire probability
distribution, we often only look at the violation of some
fixed Bell inequality. A Bell inequality is given by a vec-
tor of real coefficients cabxy ∈ R and the corresponding
Bell value β is defined as

β :=
∑
abxy

cabxy Pr[a, b|x, y],

where Pr[a, b|x, y] is the probability of observing outputs
a, b given inputs x, y. Let βL and βQ be the largest
values achievable by local-realistic theories and quantum
mechanics, respectively, and suppose that βL < βQ. A
necessary condition to make a self-testing statement is
to observe some violation (β > βL) and a self-testing re-
sult is called robust if we can make conclusions even if
the violation is not maximal (β < βQ). It is important
to distinguish self-testing results which only apply if the
violation is close to maximal from the ones that cover a
sizeable portion of the interval [βL, βQ]. The latter apply
to real-world experiments and, therefore, might actually
be useful in designing robust and efficient testing pro-
cedures for real devices. Deriving such experimentally-
relevant self-testing statements is precisely the focus of
this work.

The main challenge in deriving robust self-testing
statements lies in finding a natural mathematical formu-
lation of the problem. Since our goal is to make state-
ments even for statistics significantly differing from the
ideal setup, we cannot aim for a complete description.
We should instead pin down the relevant property and
certify precisely that property. This is how our approach
differs from the standard formulation, which attempts to
certify closeness (in trace distance) to the perfect reali-
sation.
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Our primary goal is to certify two-outcome (binary)
projective measurements. We propose a novel formula-
tion based on commutation, which recovers several previ-
ous results as extreme cases. Commutation-based mea-
sures are easily computable, have a simple physical in-
terpretation and demonstrate that all pairs of projective
qubit observables can be certified in a robust fashion.

2 Previous self-testing results
While self-testing of quantum states has received sig-

nificant attention in the regime of small [40, 33, 46, 30, 4,
31, 42, 36, 16, 20, 32, 12, 35, 17, 13] and experimentally-
relevant [6, 47, 45, 37, 5, 44, 25] robustness, self-testing
of measurements is a significantly less studied topic. Al-
though most results in the small robustness regime come
as complete rigidity statements (i.e. they also charac-
terise the optimal measurements), there are only two
approaches that yield experimentally-relevant robust-
ness [5, 11, 14].

3 Self-testing of observables based on
commutation

In our framework we certify observables of one party at
a time, i.e. we have a separate statement for each party,
which only depends on the local observables and the re-
duced state. This is in line with the idea of focusing on
a single property, instead of certifying the whole setup.

The two inherent limitations of self-testing (i.e. proper-
ties that cannot be deduced from the outcome statistics)
are: the presence of auxiliary degrees of freedom and the
application of local unitaries. It is clear that these two
equivalences do not affect commutation relations between
observables. We might therefore conclude that what we
should be certifying is precisely the commutation struc-
ture between the observables. This is, however, not quite
correct as we can only make statements about the observ-
ables on the support of the (reduced) state. Therefore, in-
stead of making statements about the observables, we will
consider scalar quantities of the form t := tr(TρA), where
ρA is the reduced state on the subsystem to be measured
and T is a Hermitian operator constructed from the ob-
servables (whose exact definition depends on the commu-
tation structure we wish to certify). An appealing feature
of these measures is the fact that the maximal value of t
is achieved by essentially just one arrangement of observ-
ables. Let us stress that whenever we make a statement
directly about the operators, we implicitly assume that
the reduced state is full-rank.

4 Methods
A binary observable is a Hermitian operator A satis-

fying −I ≤ A ≤ I (we do not a priori assume projectiv-
ity). It is well known that in the case of binary observ-
ables commutators and anticommutators of observables
appear in the square of the Bell operator. Let W be
the Bell operator, let β := tr(WρAB) be the Bell value
and from the Cauchy-Schwarz inequality we deduce that

β2 = [tr(WρAB)]
2 ≤ tr(W 2ρAB) · tr ρAB = tr(W 2ρAB).

Therefore, proving an operator inequality

W 2 ≤ g(A0, A1)⊗ I, (1)

where A0 and A1 are the observables of Alice and g is
a function which outputs a Hermitian operator, immedi-
ately implies β ≤

√
tr
(
g(A0, A1)ρA

)
. If the right-hand

side provides a useful characterisation of the observables
of Alice, this constitutes a self-testing statement. Let us
stress that for projective observables W 2 can often be
written explicitly as a function of their commutators and
anticommutators, which provides helpful intuition on the
possible form of the function g(A0, A1).

5 Certifying anticommuting observables
In the CHSH scenario Alice and Bob measure one of

two binary observables denoted by Aj and Bk for j, k ∈
{0, 1}. The CHSH operator is defined as

W := (A0 +A1)⊗B0 + (A0 −A1)⊗B1

for which βL = 2 and βQ = 2
√
2. We prove that

W 2 ≤ 4 · I⊗ I− [A0, A1]⊗ [B0, B1]

and by noticing that |[B0, B1]| ≤ 2 · I we obtain

W 2 ≤ 4 · I⊗ I+ 2 |[A0, A1]| ⊗ I.

From the argument outlined above we deduce that

β ≤ 2
√
1 + t, (2)

where t := 1
2 tr

(
|[A0, A1]|ρA

)
∈ [0, 1] is the effective com-

mutator. This scalar quantity is invariant under local
unitaries and adding extra degrees of freedom, it avoids
making any statement about the observables outside the
support of ρA and is easily computable. The physical
interpretation is clear: t measures the incompatibility
of Alice’s observables “weighted” by the reduced state
ρA. The matrix modulus, which arises in the derivation,
avoids cancellations, e.g. t = 0 implies that the observ-
ables commute on the support of ρA, which prevents us
from observing any violation. On the other extreme, the
maximal value t = 1 implies the existence of a unitary
UA such that

A0 = UA(σx ⊗ I)U†A and A1 = UA(σy ⊗ I)U†A (3)

(recall the assumption that ρA is full-rank). This shows
that t is a useful measure of how close Alice’s observ-
ables are to a pair of anticommuting observables on a
qubit. The inequality (2) is interesting for several rea-
sons: it gives a non-trivial statement as soon as β > 2,
it is tight and observing the maximal violation β = 2

√
2

implies t = 1, which allows us to deduce the exact form
of the observables. Although our primary goal is cer-
tifying observables, in the case of perfect statistics this
argument immediately gives a complete rigidity state-
ment. An extension of this method allows us to cer-
tify maximally incompatible observables in the multipar-
tite setting using the Mermin-Ardehali-Belinskii-Klyshko
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(MABK) [34, 3, 8] family. The resulting trade-offs are,
again, tight and we obtain complete rigidity statements
for the perfect statistics.

6 Certifying non-maximally incompati-
ble observables

In the previous cases the optimal observables on ev-
ery party correspond to anticommuting observables on a
qubit. Here, we show that an arbitrary pair of qubit ob-
servables, not necessarily maximally incompatible, is ex-
actly characterised through their commutation relation.
For α ≥ 1 we consider the generalisation of the CHSH
inequality:

Wα := α(A0 +A1)⊗B0 + (A0 −A1)⊗B1

introduced by Lawson, Linden and Popescu [27]. The
local-realistic and quantum bounds for this inequality
equal βLα = 2α and βQα = 2

√
α2 + 1 (hence βLα < βQα

for all α ≥ 1) and the maximal violation is achieved by
measuring a maximally entangled two-qubit state, but
the optimal observables of Alice are no longer maximally
incompatible. We show that

W 2
α ≤ 2(α2 + 1) · I⊗ I+ Tα ⊗ I

for Tα := (α2−1){A0, A1}+2α|[A0, A1]|. Defining tα :=
1
4 tr(TαρA)−

1
2 (α

2−1), which recovers the effective com-
mutator for α = 1, allows us to write βα ≤ 2

√
α2 + tα. If

the observables of Alice commute, we have tα ≤ 0, which
immediately recovers the classical bound. On the other
hand, observing the maximal violation βα = βQα implies
that tα = 1 and that there exists of a unitary UA such
that

A0 = UA(σx ⊗ I)U†A,

A1 = UA
(
[cos θα σx + sin θα σy]⊗ I

)
U†A

for θα := arccos
(
α2−1
α2+1

)
∈ (0, π/2]. This characterises

the exact commutation structure between the observables
and by considering α ∈ [1,∞) we can certify any angle
between two projective observables on a qubit. The max-
imal violation is only possible if the observables of Bob
anticommute, which leads directly to a rigidity statement
for the generalised CHSH inequality.

All the details can be found in the full version of this
work [26]. In addition we show that this method is useful
for treating the case of more than two observables and
discuss potential extensions to the case of measurements
with more than two outcomes.
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Abstract: Physicists, mathematicians and engineers, guided by what has worked well in their respective 
disciplines, have historically developed different scientific tastes, different notions of what constitutes 
an interesting, well-posed problem or an adequate solution. While this has led to some frustrating 
misunderstandings, it has invigorated the theory of communication and computation, enabling it to 
outgrow its brash beginnings with Turing, Shannon and von Neumann, and develop a coherent scientific 
taste of its own, adopting and domesticating ideas from thermodynamics and quantum mechanics that 
physicists had mistakenly thought belonged solely to their field, to better formalize the core concepts 
of communication and computation. 
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Abstract. Recently, it is well recognized that hypothesis testing has deep relations with other topics
in quantum information theory as well as in classical information theory. These relations enable us to
derive precise evaluation in the finite-length setting. However, such usefulness of hypothesis testing is not
limited to information theoretical topics. For example, it can be used for verification of entangled state and
quantum computer as well as guaranteeing the security of keys generated via quantum key distribution.
In this talk, we overview these kinds of applications of hypothesis testing.
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1 Quantum information theory and bi-
nary hypothesis testing

In information theory community it is well known that
many information theoretical tasks can be analyzed by
using the terminology of the binary asymmetric hypoth-
esis testing. While there are many studies to focus on
this relation, the first series study with this direction is
the method of information spectrum, which was initi-
ated by Han and Verdú [8][9][39], in which we convert
the optimization problems in various information tasks
into the binary asymmetric hypothesis testing, and the
asymptotic behavior of the likelihood ratio plays a key
role. This correspondence is valid without any assump-
tion for the information source and/or the information
channel, i.e., we do not need the independent and identi-
cal distributed condition nor Markovian condition. Due
to the generality of the method of information spectrum,
Nagaoka [31] considered to employ this method for quan-
tum information theory. As a result, he found a remark-
able relation between the classical-quantum channel cod-
ing and the quantum binary hypothesis testing, in which
the correctly decoding probability is upper bounded by
the performance of the corresponding quantum binary
hypothesis testing in a canonical way. Later, Polyanskiy,
Poor and Verdú [33] showed the same inequality only
with the classical channel coding, which is called meta-
converse theorem, nowadays. Nagaoka [31] also pointed
out the notable relation between the quantum binary hy-
pothesis testing and the Rényi relative entropy. These his
results were presented in the first conference of ERATO
Workshop on Quantum Information Science, which is the
forerunner of AQIS conference series [31].

Based on this study, the author jointly with Nagaoka
proved another remarkable relation between the classical-
quantum channel coding and the quantum binary hy-
pothesis testing [24, 11]. That is, they showed that the
decoding error probability is upper bounded by the error
probability of the corresponding quantum binary hypoth-
esis testing, which is chosen slightly differently from the
meta converse. Based on this method, the author derived
the lower bound of the error exponent in the classical-
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quantum channel [15]. Wang and Renner [40] reformu-
lated this result by introducing the hypothesis testing
entropy. Later, Polyanskiy, Poor and Verdú showed the
same inequality only with the classical channel coding,
which is called the dependence test (DT) bound [33].
These two remarkable relations lead the breakthrough
of the second order analysis of channel coding [16, 33].

Also, quantum data compression can be treated via the
quantum binary hypothesis testing [10, 32]. Since reduc-
tion to a quantum analogue of likelihood ratio test, i.e.,
the quantum binary hypothesis testing is a very power-
ful method [20, 11], the following topics can be treated
in this direction; quantum wiretap channel [19], universal
(compound) channel coding [18, 4], entanglement concen-
tration [12], entanglement dilution [20, Section 8.6], clas-
sical data compression with quantum side information
[37], quantum Slepian-Wolf problem [3], classical ran-
dom number generation with quantum side information
[37], quantum state redistribution [2], and entanglement
assisted communication over (quantum-quantum) point
to point quantum channel, Gel’fand- Pinsker quantum
channel, and quantum broadcast channel [1].

2 Verification of bipartite entangled
state

Application of quantum hypothesis testing is not lim-
ited to the above type of theoretical aspects. Quantum
hypothesis testing can be applied to more practical top-
ics. One is verification of a bipartite entangled state.
When an entangled state is generated experimentally, to
use the generated bipartite entangled state, we need to
verify whether the generated state is truly the intent bi-
partite entangled state. In the conventional qubit system,
our verification is written as a binary POVM on the bi-
partite system. In this case, the direction of the error
cannot be expected, it is suitable that the performance
of this testing does not depend on the direction. That is,
the POVM of the testing is preferred to be invariant for
the group action preserving the entangled state. Such a
testing method is formulated by using the irreducible de-
composition of the group representation theory [22, 17].

However, in a usual optical device, like, spontaneous



parametric down-conversion (SPDC), a binary POVM is
often constructed by a filter and a detector. That is,
when the filter is passed, we have detection. Otherwise,
we have no detection. In this situation, it is impossi-
ble to distinguish the following two cases, both of which
correspond to no detection. One is the event that the
photon pair is not generated so that it is not detected.
The other is the event that the photon pair is generated,
but the filter is not passed so that it is not detected.
Then, the performance of the following two cases are not
the same. We have the detection when the generated
state is close to the intent entangled state. We have the
detection when the generated state is far from the intent
entangled state. Surprisingly, when the photon genera-
tion rate is known, the latter has better performance for
this testing [27], whose experimental demonstration was
also done [26].

3 Quantum key distribution

Another important application of hypothesis testing is
its application to quantum key distribution, which is a
method to share secure keys via quantum communica-
tions and classical communications [5]. Its security is
trivial when the quantum communication channel has no
noise. However, a real quantum communication channel
has a certain amount of noise. When the amount is less
than a threshold, we can generate secure keys by com-
bining the error correction and the privacy amplification
[36]. Quantum key distribution focuses on the bit basis
and the phase basis. The error of the bit basis expresses
the sacrifice rate in the error correction and the error of
the phase basis expresses the sacrifice rate in the privacy
amplification [13]. Later, a similar observation was also
done via smooth entropy [38]. While we randomly choose
check bits in quantum key distribution, its purpose is ver-
ification of the error rates of both bases.

However, in a realistic quantum key distribution, we of-
ten employ weak coherent pulses, which generates multi-
photon state with some probability. In this situation,
only a part of generated photons arrive at the receiver
side. When a multi-photon state is generated, the eaves-
dropper, in principle, can obtain the transmitted infor-
mation. Therefore, the required sacrifice rate in the pri-
vacy amplification is determined by the rate of pulses
generated as multi-photon among the pluses arrived at
the receiver side and the error rate of phase basis among
pulses generated as single-photon and arrived at the re-
ceiver side [14]. That is, when we employ weak coherent
pulses, we need to know these two ratios as well as the
bit error ratio of the received pulses. For this purpose,
we need to guarantee that these two rates are not greater
than certain values. In this verification process, we ran-
domly chooses several values of intensity of pulses [28].
Then, we obtain the detection rate and the error rates
of the phase basis depending on the intensity. Using this
data, we apply the method of hypothesis testing or the
interval estimation, which employs the percent point [25].
Hence, we can verify these two ratios with certain inter-
vals.

4 Verification of quantum computer

Hypothesis testing can be applied to the verification of
quantum computer. In the conventional circuit model,
it is quite difficult to predict the outcome of the cir-
cuit because the aim of the computation is to know the
outcome. As an alternative model of quantum com-
puter, measurement-based quantum computer (MBQC)
is known [34], and is composed of a limited number of
local measurements and a graph state, which is an entan-
gled state of large size. Since the components of MBQC
have known forms, its verification can be done by veri-
fying these components. Therefore, when we can trust
these local measurement devices, we can verify our com-
putation outcome under the MBQC model by verifying
the graph state. However, since available measurements
are restricted to a limited number of local measurements,
we need to realize the verification only with this limited
class of measurements. Fortunately, in the graph state,
the outcome of the Z basis predicts the behavior of the
connected site. In the case of two-colorable graph, we can
deterministically predict the outcome of the X basis on
sites of one color from the Z basis outcome on sites of the
other color. Using this property, we can verify whether
the generated state is the intent graph state [23]. Since
the above prediction is deterministic, this verification is
can be done very efficiently. That is, the required num-
ber of sampling does not depend on the size of the graph
state. Since this test checks whether the state belongs
to the stabilizer defined by the pair of the X basis mea-
surement and the Z basis measurement, it is called the
stabilizer test.

Further, this method can be extended to the case when
the measurement devices has noises and the generated
graph state has noise [6]. In this case, we need to attach
the fault-tolerant MBQC, which is often based on a topo-
logical surface code. When the noises of measurement
devices are independent, they can be theoretically con-
verted to the noises in the generated graph state. Once
we fix the scheme of the fault-tolerant MBQC, we can
define the set of correctable errors. When the noise be-
longs to the set of correctable error, the fault-tolerant
MBQC works properly, i.e., the computation outcome is
the correct value. Hence, it is sufficient to verify whether
the error belongs to the the set. Since this test is also
deterministic, the required number of sampling still does
not depend on the size of the graph state.

Furthermore, we can make this kind of test even when
the measurement device cannot be trusted. This kind
of test is called self-testing, and the currently proposed
method works with the noiseless case. In this setting,
the testing of a graph state can be reduced to the test-
ing of the Bell state in a canonical way. McKague et al
[30] proposed the self-testing of the Bell state only with
the CHSH test. However, the recently proposed method
[21] combines the CHSH test and the stabilizer test so
that the performance is much improved. This self-testing
of the Bell state yields a self-testing of the graph state.
When it applied to the verification of MBQC, the ob-
tained scaling is much better than previously obtained



verification methods [35, 29], and is the same as that of
the paper [7], which employs a different method.
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Abstract. Round-robin-differential-phase (RRDPS) quantum key distribution (QKD) protocol has at-
tracted intensive studies due to its distinct security characteristic, e.g., information leakage in RRDPS can
be bounded without learning error rate of key bits. Nevertheless, its implementation is still far from practi-
cal due to the complication of its measurement device. Moreover, on the theoretical side, its security is still
not clear in view of error rate. Here, by observing a potential phase randomization in the encoding states,
we develop a theory to bound information leakage quite tightly and differently. Besides, the error rate is
incorporated to improve the secret key rate, which is significant for the understanding of RRDPS. Based on
our novel security proof, the practicality and performance of RRDPS can be both improved dramatically.
Furthermore, we realize an experiment up to 140km fiber distance which is the longest achievable distance
of RRDPS system until now, while the original security proof predicts no secret key can be generated in
our experiment.

Keywords: QKD, RRDPS

1 Introduction

Unlike classical cryptography whose security relies on
unproven mathematical assumptions, quantum key dis-
tribution (QKD) [1, 2] can information-theoretically dis-
tribute secret key bits between distant peers (such as
Alice and Bob). According to quantum mechanics, any
eavesdropping on quantum channel will inevitably intro-
duce signal disturbance, which implies that Alice and
Bob can bound the information leakage for the eaves-
dropper (Eve) through collecting the error rate of their
raw key bits. Thus, monitoring signal disturbance is in-
dispensable for almost all QKD protocols.
Surprisingly, recently proposed round-robin-

differential-phase-shift (RRDPS) [3] protocol is an
exception. In RRDPS protocol, Alice prepares a series of
pulse trains, each consisting of L weak coherent pulses.
The pulses are individually modulated to random phases
out of 0 and π, and every L-pulse train can be handled
as a packet. Upon receiving these packets, Bob measures
the phase shift between the i-th pulse and (i + r)-th
pulse of each packet, where r is randomly chosen from
[1, L − 1] for each packet and i + r ⩽ L. Through a
simple and comprehensive security proof [3], it has been
pointed out that Eve’s information on raw key bits IAE
is no larger than h2(n/(L − 1)), where n is the photon
number of a packet. The main merit of RRDPS protocol
is that IAE does not depend on error rate of key bits,
and thus can be treated as a constant experimentally.
It’s obvious that the information leakage will be deeply
suppressed when L becomes large, which is the reason
why a RRDPS experiment with large L is important.
There have been several successful demonstrations of

∗wshuang@ustc.edu.cn
†weich@ustc.edu.cn

this protocol with passive interferometers [4, 5] and
actively-selectable components [6, 7]. The longest achiev-
able distance is around 90km [7]. Albeit great progresses
on experiments of RRDPS protocol have been made, it’s
still a great challenge to realize a practical measurement
system with large L value. Besides, large L value will de-
crease the secret key rate per pulse obviously. Therefore,
it is highly desired if IAE can be further lowered while
L is maintained small. Additionally, although IAE given
in Ref.[3] does not depend on the error rate, theorists
are still not clear how does Eve’s attack introduce error
bits, and if it is possible to use the error rate in RRDPS
to improve its performance. To address these issues, we
first report a new theory to bound IAE greatly tighter
than before especially for small L values. Interestingly,
error rate can be also taken into account in our method
to estimate IAE further tightly. Through numerical sim-
ulation, we show that with our theory, the performance
of real-life RRDPS implementation can be improved dra-
matically. It is remarkable that the most simple real-life
RRDPS protocol with L = 3, which is not permitted in
the original RRDPS protocol, can outperform the ones
with very large L. Finally, we verify our theory through
an experiment with L = 3, which achieves the longest
achievable distance (140km) so far.

2 Results

In Tab.1, the maximum tolerant error rate for RRDPS
with conventional method and the proposed formula are
given. Our formula can increase the tolerance of error
rate dramatically, especially when L is small. It’s re-
markable to note that for the case L = 3, our bound can
tolerant E up to 8%, while original RRDPS protocol can
not generate secure key bits at all. One may also note
that the difference between these methods become little
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(b) Fig.2. Secret key rate
R (per pulse) versus channel
loss under WCS.

in large L cases. The reason is quite simple, e.g., the orig-
inal bound h2(1/(L− 1)) has been close to 0 for large L,
so the potential improvement made by our analyses will
be very little. However, the significance of our theory will
not be compromised for real-life implementations, since
we show that the RRDPS systems with small L values
can outperform the ones with larger L values .

Table 1: The maximum value of tolerant error rate of
RRDPS with different method.XXXXXXXL

method
original RRDPS new without E new with E

3 – 0.0546 0.0811
5 0.0289 0.122 0.144
65 0.302 0.347 0.347

We simulate the secret key rate R per pulse versus to-
tal loss for L = 3, L = 5 and L = 65 using single photon
source and weak coherent source respectively. The sim-
ulation results are shown in Fig.1 and Fig.2. In each
figure, the upper line and middle line correspond to the
proposed calculations of IAE with and without error rate
statistic, while the lower line accounts for the original
RRDPS protocol. Note that in Fig.1 (a) and Fig.2 (a),
there is no line for the original RRDPS protocol, since
original protocol’s key rate is 0 for L = 3 case.
We tested the L = 3 RRDPS system with standard

telecom fiber channels at the distance of 50 km, 100 km,
and 140 km. Thus, we have successfully verified the fea-
sibility of RRDPS with the smallest L = 3, which is
impossible based on original theory.

3 Conclusion

In conclusion, we develop a theory to estimate Eve’s
information on raw key bits IAE in a quite different way.

Briefly speaking, the new physics behind our method is
that the potential phase randomization can be utilized
for the security analysis of RRDPS. The main merit of
our method is that IAE could be bounded more tightly
than before, especially when L is small. In theory, the
relation between the information leakage and error rate
in RRDPS is present clearly, which is particularly mean-
ingful for the completeness of security analysis of QKD.
Our results pave an avenue towards practical RRDPS[8].
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Abstract. Blind quantum computation protocols allow a user to delegate a computation to a remote
quantum computer in such a way that the privacy of their computation is preserved, even from the device
implementing the computation. To date, such protocols are only known for settings involving at least
two quantum devices: either a user with some quantum capabilities and a remote quantum server or
two or more entangled but noncommunicating servers. In this work, we take the first step towards the
construction of a blind quantum computing protocol with a completely classical client and single quantum
server. Specifically, we show how a classical client can exploit the ambiguity in the flow of information in
measurement-based quantum computing to construct a protocol for hiding critical aspects of a computation
delegated to a remote quantum computer.

Keywords: blind quantum computation, secure delegated quantum computation, measurement-based
quantum computation, generalized information flow

It is very likely that when a universal quantum com-
puter will finally become available, it will be hosted by
large institutions and accessed remotely by clients. For
example, companies like D-Wave [1] and IBM [2], as well
as academic institutions including the University of Bris-
tol [3], have begun making their quantum devices availa-
ble for remote access. This situation will inevitably lead
to questions as to the integrity and privacy of the client’s
computation. In the past, quantum protocols have been
proposed to address similar problems. Protocols which
provide security of client’s quantum computation, as well
as input and output, are known as blind quantum com-
puting protocols [4, 5, 6, 7]. Similarly, protocols which
capture the idea of verification of quantum computing,
i.e., the ability to detect, with very high probability, any
attempt by a malicious server to deviate from the compu-
tation are known as verifiable quantum computing proto-
cols [8, 9, 10]. A common feature among known protocols
for these tasks is that either the client require a small
quantum device on their side or there must exist at le-
ast two non-communicating quantum servers [11, 12]. In
other words, there is a requirement that two or more par-
ties involved in the protocol possess quantum processors.
Ideally, we would like to have a secure delegated quantum
computing protocol between a completely classical client
and a quantum server. In this work, we take the first
steps towards this problem. We construct a blind quan-
tum computing protocol which maintains security of the
client’s computation even against the quantum server. In
the next section, we briefly describe our main ideas and
results, but the full details can be found in [13].

∗atul_mantri@mymail.sutd.edu.sg
†tommaso_demarie@sutd.edu.sg
‡ncmenicucci@gmail.com
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Main Ideas and Results

Our aim is to explore the possibility of blind quantum
computation with a purely classical client. We demon-
strate this fact by constructing a protocol for a task we
call as classically driven blind quantum computing (CD-
BQC) and analyse its security in the stand-alone setting.
Our protocol uses measurement-based quantum compu-
ting (MBQC) [14] as the underlying principle. We show
that the protocol allows a client to hide non-trivial infor-
mation about their computation from the powerful quan-
tum server by making use of a novel technique that we
call flow ambiguity. In particular, we analyse the case of a
single instance of the protocol and show that the amount
of information obtained by the server is bounded below
what is necessary to unambiguously distinguish the com-
putation.

In the MBQC framework we denote by ∆ the com-
putation of the client such that ∆ = {G,α,f}. Here G
denotes the graph state, α is the set of measurement an-
gles on the graph state, and f represents the information
flow [15] which captures how angles are to be adapted
based on results of previous measurements. Formally,
generalised information flow or g-flow [16] is defined as
follows: For an open graph G(I,O), there exists a g-flow
(g,�) if one can define a function g : Oc → P (Ic) and
a partial order � on V such that ∀i ∈ Oc, all of the
following conditions hold:

(G1) if j ∈ g(i) and j 6= i, then j � i;
(G2) if j � i and i 6= j, then j /∈ Odd(g(i)); and
(G3) i /∈ g(i) and i ∈ Odd(g(i)).

Intuitively, g-flow is used to assign a set of local cor-
rections to a subset of unmeasured qubits to ensure de-

453

atul_mantri@mymail.sutd.edu.sg
tommaso_demarie@sutd.edu.sg
ncmenicucci@gmail.com
joseph_fitzsimons@sutd.edu.sg


terministic computation, despite the random nature of
the measurement outcomes obtained during the compu-
tation. It is important to note that for a fixed graph there
exist multiple choices of the input and output vertex sets
that result in deterministic measurement patterns consis-
tent with the same fixed total ordering of vertices. Spe-
cifically, we show that the transcript of any run of the
protocol is consistent with multiple non-equivalent com-
putations. This is due to the fact that the information
about the g-flow for the underlying resource state is hid-
den from the server. This particular ambiguity in the flow
enables the classical user to hide the essential aspects of
the computation.

The CDBQC protocol is interactive and proceeds as
follows. Firstly, the client sends the dimension of the
graph to the server to prepare the graph state |G〉. At
each step i: Client chooses a bit ri uniformly random.
Using ri and the previous measurement outcome b<i′ ,
client updates the angle αi to construct α′i in the follo-
wing way:

α′ = (−1)s
x

α+ (r ⊕ sz)π

where sx and sz denote the corrections dictated by flow
based on previous measurement results. The server per-
forms a projective measurement of i-th vertex in the XY-

plane of the Bloch sphere, denoted M
α′
i

i = {|±α′
i
〉〈±α′

i
|},

where {|±α′〉} = 1√
2
(|0〉 ± eiα

′ |1〉) and sends the mea-

surement outcome b′i to the client. The client records
bi = b′i ⊕ ri in b and then updates the set (sx, sz). If the
i-th vertex is output qubit then the bit bi is registered
in the set pCB . The client and the server repeat this pro-
cedure for all the vertex of the graph in the given total
order. The client implements the final round of correcti-
ons on the string pC (equivalent to pCB in the case of
honest server) to obtain the output string p. At the end
of the protocol, the server possesses information about
the angles α′ and the measurement outcome b′ and whe-
reas the client’s secret consists of the actual measurement
angle α and the flow bits f . Hereafter we will denote the
variables with the upper-case letters and particular in-
stances of such variable with the lower-case letters. For
example, A will be used to denote the angle variable and
F is used to represent the flow variable. For simplicity,
let’s take the case whenA and F are uniformly variables.
We quantify the amount of information that on average
remains hidden from the server about the client’s com-
putation at the end of the protocol. This is given by the
conditional entropy H(A,F |B′,A′).

H(A,F |B′,A′) = H(A,F )− I(B′,A′;A,F ). (1)

where H(A,F ) = H(A) + H(F ) := log2NA + log2NF .
Here NA and NF denote the number of possible choices
for the angle and flow variable respectively. Using tools
from information theory we explicitly calculate that, in a
single run of CDBQC protocol, the mutual information
between the client’s secret input (α, f) and the informa-
tion received by the server (α′, b′) is bounded by

I(B′,A′;A,F ) ≤ H(A′)

This in turn gives a lower bound on the conditional en-
tropy

H(A,F |B′,A′) ≥ log2NF (2)

We derive a non-trivial lower bound on the conditional
entropy by calculating the value of NF . Note that flow
is a property of the underlying graph and therefore
depends on the chosen graph G. We will consider the
case of cluster states as they are known to be universal
for quantum computation with (X, Y)-plane measure-
ments [17]. To calculate NF for the cluster state, we
put a lower bound on the number of different input and
output choices (open graphs) #G(I,O)n,m satisfying
flow conditions for a cluster state and a certain fixed
total order. Mathematically, this corresponds to calcu-
lating the flows that satisfy the conditions (G1)-(G3) as
mentioned above. To simplify the counting argument we
put an additional constraint:

(G4) If k ∈ N (i) ∪N (j), and if k ∈ g(i), then k /∈ g(j).

This is not required strictly by the definition of g-flow,
but it simplifies the flow counting problem and so we
obtain a lower bound on the number of flows rather than
the exact number. For a generic cluster state G(n,m) with
the fixed total ordering of measurements, the number of
different open graphs G(I,O) satisfying the conditions
(G1)- (G4) is given by:

#G(I,O)n,m = F
|n−m|
2min(n,m)+1

min(n,m)∏
µ=2

F 2
2µ. (3)

where Fi is the ith Fibonacci number. Further sim-
plifying the above equation gives us #G(I,O)n,m =
22N log2 φ+O(Nε) for ε < 1, N = nm and assuming
m = poly(n). This shows that there exists at least an
exponential number (in the dimension of the graph) of
information flows corresponding to a cluster state for a gi-
ven total order of measurements. To demonstrate this we
take a simple example of 2× 2 cluster state G(I,O)(2×2)
in Fig. 1. The figure shows 9 possible open graphs com-
patible with the flow conditions (G1)-(G4). In general
different flows correspond to different computations.

Using the following relation NF ≥ #G(I,O)n,m
with the the above result, we get log2NF ≥
log2 #G(I,O)n,m ≈ 1.388N . Therefore, the conditional
entropy is given by

H(A,F |B′,A′) ≥ 1.388N. (4)

This shows that it is indeed possible for a client to hide
their chosen computation, by using the ambiguity in the
flow of information, from a quantum server. Importantly,
we show that it is not possible for the quantum server
to guess the client’s computation perfectly, since a large
number of other computations are still compatible with
the information server receives.

For more details, we refer to the published version of
this work [13] and references therein.
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Figure 1: All the possible G(I,O)2,2 combinations that satisfy g-flow conditions for the 2× 2 cluster state are shown.
The arrows indicate the direction of the quantum information flow. Note that overlapping input and output sets are
allowed. All patterns implement unitary embeddings on the input state.
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Abstract. Space-based quantum key distribution (QKD) is a widely discussed and greatly anticipated key
technology for emerging quantum communication applications. However, high launch costs of conventional
satellites prevent rapid progress in the development of space-based QKD. Here, we present a robust high-
brightness source of entangled photons that can be employed on a small-scale nanosatellite to enable space
based QKD.
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A key technology for quantum experiments is quantum
cryptography, and in particular QKD, which bridges the
gap between fundamental tests of the concepts of quan-
tum mechanics and potential applications in communi-
cation technology. QKD enables secure communication
with forward secrecy based on the laws of quantum me-
chanics. While ground-based QKD systems are now in
place in several institutions across the globe, their range
on earth is fundamentally limited (absorption losses, line-
of-sight).

Figure 1: Different schemes for space-based QKD. (1)
Ground-to-satellite, (2) satellite-to-ground, (3) entangle-
ment based, (4) inter satellite. Illustration reproduced
from [1].

To overcome this limitation, space-based QKD satel-
lites have been proposed and first proof-of-concept satel-
lites have been developed and deployed in the recent years
[1, 2]. Fig. 1 shows several different concepts for space-
based QKD. Our approach envisiones the generation of
entangled photon pairs in orbit (3 in Fig. 1) to enable
QKD over long distances via an entanglement-based pro-
tocol.

Despite its advantages, space-based QKD suffers from
high costs and system complexities. In order to minimize
the costs for the demonstration of space-based QKD, we
are working on an iterative approach in which entangled
photon sources are operated in a low-earth orbit aboard
low-cost nanosatellites. This provides a cost-effective al-
ternative to a full-scale QKD satellite.

At the heart of our technology lies the Small Photon
Entangling Quantum System (SPEQS), a specifically de-
signed, small entangled photon source based on sponta-

∗cqtal@nus.edu.sg

neous parametric down conversion (SPDC). SPDC is rou-
tinely exploited to create entangled photon pairs from a
material with a strong second order non-linearity, such as
β-Barium Borate (BBO) or Lithium Niobate. In short, in
the presence of a non-linear crystal, a pump photon can
split into two lower energy photons that are correlated re-
garding their polarization state (for example |H1〉 |H2〉 or
|V1〉 |V2〉 in type-I phasematching depending on the crys-
tal orientation). If SPDC photon pairs are created in two
coherent processes, e.g. in crossed crystal or double pass
configuration [3, 4], one can produce the entangled state:

|Ψ〉 =
1√
2

(
|H1〉 |H2〉 + eiΦ |V1〉 |V2〉

)
(1)

The first generation of SPEQS that produced corre-
lated photon pairs was successfully launched and its in-
orbit operation was demonstrated [5]. The source design
will be further improved to produce entangled photon
pairs. We give a brief overview on the progress made on
this source (SPEQS-1) which will be launched within a
year.

Figure 2: Schematic of the current design of our SPEQS-2
entangled-photon source. The components in the aligned
crystal configuration are (1) 405 nm pump, (2) spatial
and spectral filtering, (3) preparation of pump polariza-
tion, (4) BBO crystal, (5) quarter waveplate,(6) BBO
crystal, (7) temporal compensator YVO4 and (8) dichroic
mirror. The dotted rectangle highlights the SPDC gen-
eration and temporal compensation.

Our final goal is the development of a source (SPEQS-
2) that provides entangled photon pairs with higher pair
rates to overcome atmospheric turbulence and absorp-
tion losses [6] and enable space based QKD on a small
and cost-effective platform. Here, we present the progress
on our final source design (see Fig. 2). We use two BBO
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crystals with aligned optical axes in type-I phase match-
ing condition to create non-degenerate entangled photon
pairs via SPDC. Collinear emission of the SPDC photons
enables a compact and robust source design. By compen-
sating the temporal walkoff effects, we can prepare the
entangled two-photon state in Eq. 1. First experiments
performed with this source design show that an in-orbit
rate of 1 million entangled photon pairs per second is
within reach. In ground-based experiments, we achieve a
pair rate of more than 70 k/s/mW at high visibility which
is unprecedented for BBO based entangled pair sources.

With the employment of a compact, high brightness
QKD source in space, we lay the foundation for pratical
entanglement based QKD on a multitude of platforms,
such as aircrafts, drones and fiber-coupled, ground-based
systems.
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Abstract. In recent years there has been a great deal of focus on a globe spanning quantum network,
including linked satellites for applications ranging from quantum key distribution to distributed sensors and
clocks. In many of these schemes, relativistic transformations may have deleterious effects on the purity
of the distributed entangled pairs. This becomes particularly important for the application of distributed
clocks. In this paper, we have developed a Lorentz invariant entanglement distribution protocol that
completely removes the effects due to the relative motions of the satellites.
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One of the main roadblocks to the widespread utiliza-
tion of quantum communication such as quantum cryp-
tography is the difficulty of producing long-distance en-
tanglement. Photons are a natural way of generating
such entanglement due to their excellent coherence prop-
erties and the fact that they are ”flying qubits”. However
optical fiber quantum communication is limited to dis-
tances of approximately ∼ 200 km due to photon loss,
which make them practical for only for a limited re-
gion, not a global scale. Broadly two approaches have
been considered to overcome this challenge – the use
of quantum repeaters to cascade entanglement genera-
tion for longer distances [1, 2], and space-based schemes
[3, 4, 5, 6]. Quantum communication in space is attrac-
tive due to the negligible effects of the atmosphere which
is the origin of decoherence effects such as photon loss.
This allows for the possibility of globe-scale quantum net-
work where the photons can be transmitted at distances
of the order of the diameter of the Earth without the need
of additional infrastructure such as quantum repeaters.

In this paper, we investigate various strategies for
space-based entanglement distribution using photons.
We examine three popular alternatives for entanglement
generation: (I) a polarization entangled photons; (II) sin-
gle photon entangled state; and (III) dual rail entangled
photons. The advantages and disadvantages of each will
be investigated in the context of low Earth orbit (LEO)
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†batyr.ilyas@nu.edu.kz
‡IIAOPSW@gmail.com
§takeoka@nict.go.jp
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Figure 1: Entanglement distribution between three satel-
lites in low Earth orbit. The photons heading to the
two satellites may have different momenta p, q, due to
their different directions. We choose Alice’s satellite to
be moving in the z-direction without loss of generality.

satellites producing and detecting the photons (see Fig.
1). The photonic states (II) and (III) are particularly
interesting as they are based on RI quantities. It is
known that photonic Fock states are RI quantities [10].
It is therefore natural to choose entangled states involv-
ing these degrees of freedom to develop a truly Lorentz
invariant (LI) entanglement distribution. Choosing such
manifestly LI states bypasses the need for any correction
that would need to be made for states such as (I).

Let us first introduce the three types of entangled pho-
ton states that will be analyzed in this paper for creating
long-distance entanglement using photons. The first is
simply a polarization entangled photon pair, produced
for example by parametric down conversion. The state
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is written

|Ψ(S)
I 〉 =

1√
2

(|p, h〉|q, h〉 − |p, v〉|q, v〉) , (1)

where |p, σ〉 is a single photon state of four momentum
p and polarization σ = h, v, and the S refers to the fact
that the photons are in the reference frame of the source
satellite. We label the modes for Alice and Bob’s satel-
lites with A and B respectively. The second type of en-
tangled state is the single photon entangled state, which
can be produced by a single photon source mounted on
the source satellite entering a 50:50 beamsplitter. The
state is

|Ψ(S)
II 〉 =

1√
2

(|p, λ〉A|0〉B − |0〉B |q, λ〉B). (2)

where λ = ±1 labels the helicity, and |0〉 is the electro-
magnetic vacuum. Finally, the third type of entangled
state is using a dual rail encoding, where Alice and Bob
each posses two distinct modes A1, A2 and B1, B2 re-
spectively, and the same helicity is used for both photons
and modes:

|Ψ(S)
III 〉 =

1√
2

(|0〉A1|p, λ〉A2|0〉B1|q, λ〉B2

− |p, λ〉A1|0〉A2|q, λ〉B1|0〉B2). (3)

Each of these states will have a different behavior under
a Lorentz transformation, and our task will be to identify
which is the best for entanglement generation.

First, let us examine how single photon states trans-
form. For a photon of helicity λ and momentum p in the
Source frame, the state in Alice’s frame is

U(Λ)|p, λ〉 = e−iλΘ(Λ,p)|Λp, λ〉 (4)

where Θ is the Wigner phase, and Λ is the Lorentz trans-
formation to the frame of A. Since we assume that the
photon momentum is in an arbitrary direction, without
loss of generality we may take the Lorentz transforma-
tion to be a pure boost in the z direction Λ = Lz(β).
In this case Lz(β) is the standard Lorentz transforma-
tion matrix with dimensionless velocity β = v/c (c is the
speed of light). Polarized vectors in the original frame
are defined as

|p, h〉 = R(p̂)(0, cosφ,− sinφ, 0)T

|p, v〉 = R(p̂)(0, sinφ, cosφ, 0)T

|p, λ〉 = R(p̂)(0, 1, iλ, 0)T /
√

2 (5)

where the rotation matrix is R(p̂) = Rz(φ)Ry(θ), with
Ry,z being the standard SO(3) rotation matrices, and
p̂ = (sin θ cosφ, sin θ, sinφ, cos θ) is the normalized 3-
momentum. For a pure boost in the z direction, the
effect is to transform the coordinates as

sin θ → sin θ′ =
sin θ√

sin2 θ + γ2(cos θ − β)2

φ→ φ′ = φ. (6)
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Figure 2: Performance of the entanglement distribution
for various protocols. Trace distance ε between the orig-
inal state and that observed in a moving frame for (a)
a single horizontally (or vertically) polarized photon (b)
a polarization entangled photon pair moving in opposite
directions θ = θA = −θB . Parameters are β = 10−5.
(c) Negativity of (10) under Lorentz boosts with differ-
ent orientations. Photons are taken to move in opposite
directions θA = −θB , φA = φB and the spread due to
the diffraction is σ = 1. (d) Number of entangled pho-
ton states (10) with σ = 1 required to reach purities
as marked. We assume a photon attenuation factor of
A = 100, and the number of photons required for k pu-
rification steps to be 2k.

To a good approximation, for β � 1 the variation in
angle has the effect of

θ′ ≈ π
(
θ

π

)1− 2
π ln 2β

. (7)

This effectively broadens or contracts the angular varia-
tion around the z-axis. The angular variation is the ori-
gin of the variation in entanglement that was observed in
works such as Ref.

To quantify the change we measure the trace distance
of the polarization vector

ε = Tr(
√

(ρ(S) − ρ(A))2)/2 (8)

where ρ(S) = Trp(|p, σ〉〈p, σ|) and ρ(A) =
Trp(|Λp, σ〉〈Λp, σ|) for this case. Here we trace
over the momentum degrees of freedom in order to
obtain a 4 × 4 matrix that is with respect to the
polarization degrees of freedom. Fig. 2(a) shows the
trace distance between a horizontally polarized photon
with momentum p as observed by the source and Alice’s
satellite. For small velocities β � 1 as will be true for
all satellites orbiting the Earth, expansion of the density
matrices reveals that

εh ≈ β sin θ cosφ, (9)

which very accurately summarizes the numerical results
in Fig. 2(a). We see that the basic effect of the relativistic
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correction on the polarization is at the level of εh ∼ O(β).
We note that the trace distance is the most appropriate
quantity (than the fidelity for instance which scales as
F ∼ 1−O(β2)), as it is most closely related to distances
on the Bloch sphere.

Let us now examine the effect on the entangled states.
For the type I entangled state, in Alice’s frame we have

|Ψ(A)
I 〉 =

1√
2

(|Λp, h〉|Λq, h〉 − |Λp, v〉|Λq, v〉) . (10)

The Wigner phase does not affect the state in this case
as the state is transformed only by a pure Lorentz boost.
The sole effect in terms of the trace distance is the ro-
tation of the polarization vectors, as given in (6). The
trace distance between the states in the Source and Al-
ice’s frames ρ(S,A) = Trp,q(|Ψ(S,A)

I 〉〈Ψ(S,A)
I |) is shown in

Fig. 2(b).

εI ≈ β sin θ. (11)

We again see that the relativistic correction again occurs
at the level of ∼ O(β).

In this regard, the type II and III entangled states are
a better choice. Fock states, including the vacuum, are
known to be invariant states under Lorentz transforms,
and remain orthogonal in all reference frames. For the
single photon entangled states, transforming to the ref-
erence frame of satellite A, we find

|Ψ(A)
II 〉 =

1√
2

(e−iλΘ(Λ,p)| − Λp, λ〉A|0〉B

− e−iλΘ(Λ,q)|0〉A|Λq, λ〉B). (12)

|Ψ(A)
III 〉 =e−iλ(Θ(Λ,p)+Θ(Λ,q))(|0〉A1|p, λ〉A2|0〉B1|q, λ〉B2

− |p, λ〉A1|0〉A2|q, λ〉B1|0〉B2), (13)

Similarly to type I, the photons are Lorentz transformed
and there are separate Wigner phase terms due to the
photon traveling with different momenta. Helicity is a
Lorentz invariant quantity. The Wigner phase, which
depends on the Lorentz transformation and the momen-
tum does not show up in the measure we calculate. In
both these cases, the entanglement is present in the pho-
ton number, rather than polarization. We thus define the
density matrices for these states according to

ρ = Trp,q,λ(|Ψ〉〈Ψ|). (14)

The trace distance between ρ(S) and ρ(A) is always zero,
hence it is a manifestly LI state.

To take into account of diffraction, we integrate with
a momentum distribution [11]

|Ψ̃〉 =

∫
d̃pd̃qfA(p)fB(q)|Ψ(p, q)〉 (15)

where the |Ψ(p, q)〉 are the states (1), (2), (3) in the

source satellite’s frame. Here d̃p ≡ d3p
2|p| is a Lorentz-

invariant momentum integration measure and the f(p)
is a normalized diffraction function.

f(p) =
1√
M
e−

θ2

2σ2 δ(|p| − p0). (16)

This gives a Gaussian spread for a photon traveling in
primarily the z-direction. σ is a parameter controlling
the angular spread of the beam and M is a suitable nor-
malization factor. To have photons traveling in directions
other than the z-direction, we make rotation of the co-
ordinates around the y-axis by changing variables in the
integrand

θ → θ′′ = cos−1 (cosα cos θ + sinα sin θ cosφ)

φ→ φ′′ = tan−1

(
sin θ sinφ

cosα sin θ cosφ− sinα cos θ

)
(17)

which gives photons traveling in primarily the direction
(θ, φ) = (α, 0). To transform to Alice’s frame, one then
applies a boost in the z-direction to the states, which
amounts to making the transformation (6).

We now estimate the order to which the relativistic
corrections affect the entanglement. To gauge this we
calculate the effect of the boost on the purity of the states
P = Trρ2. The purity is directly related to the entangle-
ment in this case as for the case with no diffraction, the
entanglement is invariant under all boosts. The degrada-
tion in the entanglement observed in Fig. 2(c) arises from
an effective decoherence entering the system due to trac-
ing out the momentum degrees of freedom. Performing
an expansion for β � 1 we find that the purity behaves
as

P ≈ 1− 2σ2(1 + |β|)2. (18)

Turning to type II and III states, we find that the
effects of diffraction that afflicted type I states are not
present in terms of entanglement degradation. The rea-
son is that the type of entanglement is encoded in the
orthogonality of the Fock states, which are preserved as
they are relativistically invariant. For the type II state
the main effect that one must account for is simply pho-
ton loss, which is captured by the photon attenuation A
which is the same as the above. For the dual rail type
III states, there is however the issue that the diffraction
cone for the two rails will start to overlap unless they
are separated by a sufficiently large distance, which is
impractical for satellite based sources and detectors.

In summary, we have analyzed several photon based
entanglement distribution protocols for the space-based
quantum network. We find that standard polarization
based photon entanglement (type I) can experience sig-
nificant errors for satellites that are in low Earth orbit.
While in principle these are correctable if the velocities
of the satellites are known to high precision, this can still
introduce errors at the δβ, which is the error on the es-
timate of the satellite velocity.We note that other types
of encodings, such as in energy or time, would also un-
dergo Lorentz transformations. Combined with the fact
that diffraction effects degrade the entanglement for type
I states, our results point to the fact that single photon
entangled states (type II) and dual rail photon entangle-
ment (type III) are a superior choice in terms of robust-
ness to relativistic transformations.

460



This work is supported by the Shanghai Research Chal-
lenge Fund, New York University Global Seed Grants for
Collaborative Research, NYU-ECNU Institute of Physics
at NYU Shanghai, National Natural Science Foundation
of China (Grant No. 61571301), the Thousand Talents
Program for Distinguished Young Scholars (Grant No.
D1210036A), and the NSFC Research Fund for Interna-
tional Young Scientists (Grant No. 11650110425).

References

[1] Gisin, Nicolas and Ribordy, Grégoire and Tittel,
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Efficient classical verification of quantum computations∗
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Abstract. We propose an efficient scheme for verifying quantum computations in the ‘high complexity’
regime i.e. beyond the remit of classical computers. Previously proposed schemes remarkably provide
confidence against arbitrarily malicious adversarial behaviour in the misfunctioning of the computer. Our
scheme is not secure against arbitrarily adversarial behaviour, but may nevertheless be sufficiently accept-
able in many practical situations. In contrast to previous schemes, our verifier is entirely classical. It is
based on the fact that adaptive Clifford circuits on general product state inputs provide universal quantum
computation, while the same processes without adaptation are always classically efficiently simulatable.

Keywords: verification, quantum computation

Establishing confidence in the output of a quantum
computing device operating in the ‘high complexity’
regime i.e. beyond the remit of classical computers, will
be an important issue as our first quantum computers
become available. Some previously proposed schemes for
such verification [1, 2, 3, 4] have been based on adap-
tations of the formalism of interactive proof systems
(IP) from classical complexity theory [5], while others
[12, 13, 14] have been based on the formalism of mea-
surement based computing (MQC). Verification has also
played an important role in the cognate subjects of blind
quantum computing [10, 9], and self testing and device
independent protocols [15, 12, 11].

Most of the previously proposed schemes have been
designed to provide confidence in correctness of the out-
put against the most general prospective malicious or
adversarial behaviour in the misfunctioning of the com-
puter. But although a stance of such extreme guarded-
ness may be appropriate and relevant in fields such as
cryptography, information security and financial trans-
action, it is not normally adopted in standard scientific
method, and it comes at a considerable cost. All previous
schemes (except some [12, 11] having multiple provers,
so not directly relevant for our setting) require the ver-
ifier to have a quantum communication channel to the
prover and some quantum processing capability (to the
extent of the verifier having the ability to perform indi-
vidual computational steps that would suffice for univer-
sal quantum computing). As such, these schemes, while
being significant developments in the theory of verifica-
tion, are perhaps less relevant for issues of realistically
efficient verification capability per se.

In contrast to the above, in our scheme the verifier is
entirely classical, using only polynomially-bounded clas-
sical computing resources and only classical communi-
cation with the prover. However there are associated
limitations too: the confidence in correctness of the out-
put will not be secure against arbitrarily malicious mal-
functioning of the computer, but nevertheless we would
expect that it could be acceptable in many realistic situ-
ations, to an extent that’s not dissimilar from commonly

∗Full arXiv version available at

https://arxiv.org/abs/1705.02817

accepted scientific practice. Indeed with this concession
we gain in manifest simplicity and transparency.

Our scheme will be based on the fact that adaptive
Clifford computations (on product state inputs that can
include 1-qubit magic states) provide universal quantum
computation [7], whereas non-adaptive Clifford compu-
tations with the same inputs are always classically effi-
ciently simulatable [6]. Intuitively, this will enable us to
reduce the the running of a universal quantum computer
to a classically simulatable process, after the machine has
completed its run, and hence, with further testing runs of
the same sequence of quantum operations that occurred
in the initial run, we can efficiently verify that the ma-
chine was able to correctly run that sequence.
The verification scheme. Suppose we have available
a quantum computing device that can allegedly per-
form Clifford gates and computational basis measure-
ments, and we can also reliably prepare the computa-
tional basis states |0〉 and |1〉 as well as the magic state
|A〉 = 1√

2
(|0〉+eiπ/4 |1〉). We also assume that the classi-

cal actions of hardware choice involved in adaptation in
response to the classical outcomes of intermediate mea-
surements, can be reliably performed.

It is well known [7] that the above resources provide
universal quantum computation. Indeed in addition to
the Clifford gates it suffices to be able to implement the
gate T = diag(1 , eiπ/4), which can be achieved by an
adaptive Clifford process called “the T -gadget”, consum-
ing one copy of |A〉 as follows: to apply T to line k using
|A〉 on line a, first apply Clifford CXka to those two lines,
measure line a to obtain measurement outcome m, and
then apply the Clifford gate Sm = diag(1 , i)m to line
k. This results in T being applied on line k (up to an
irrelevant overall phase).

In view of all the above, suppose now that we have
solved an instance of a BQP decision task by implement-
ing an adaptive Clifford circuit on our quantum comput-
ing device, to obtain output 0 or 1. By further efficient
use of the machine and efficient classical computation,
we wish to develop confidence in the correctness of the
quantum operation of the machine and its classical out-
put for the adaptive choices in the computational run
that occurred.
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Having run our adaptive Clifford circuit we record
its output as well as the sequence of (adaptively cho-
sen) gates that were actually applied. We will refer to
this particular sequence as the ‘computational run’. To
develop confidence in the correctness of its output we
next run, polynomially many times, the same sequence
of gates non-adaptively (including here also the inter-
mediate measurement operations but ignoring their out-
comes). We refer to these runs as ‘gate test runs’. From
the frequencies of their outputs, we obtain an estimate of
the output probabilities of this non-adaptive process to
within 1/poly(n) additive error (with probability expo-
nentially close to 1, by the Chernoff bound cf Appendix
of [8]). Now this non-adaptive process of Clifford gates
and measurements, the same sequence of operations that
actually occurred in the computational run, is classically
efficiently simulatable [6]. We classically compute its out-
put probabilities and compare them to the experimen-
tally obtained values, verifying that the single actually
implemented sequence of operations used in the compu-
tational run, provided a true sample of its output distri-
bution to within 1/poly(n) additive error in the proba-
bilities (assuming that the computing device behaves in
the same way for repeated trials of a given process).

The non-adaptive process in the gate test runs differs
from the computational run only in that the intermedi-
ate measurement results are uniformly randomly vary-
ing and unlikely to reproduce those that occurred in
the computational run itself. Nevertheless we still de-
velop confidence in the computing device’s ability to cor-
rectly implement the same sequence of operations that
occurred in the computational run, albeit in a slightly
different scenario. Indeed since the measured qubit is al-
ways disjoint from rest of the computer and never used
again, the measurement operation on it can have no ef-
fect on the reduced state of the rest of the computer
(by the no-signalling principle). As such, the unitary
gates of the (adaptive) computational run acted on the
same (reduced) input states that occur in the (now classi-
cally simulatable, non-adaptive) gate test runs. Also the
computer cannot physically function differently for dif-
ferent intermediate measurement results (assuming suit-
able non-communication in implementation of local op-
erations, and having the measured qubits reasonably iso-
lated from the other qubits). So although the gate test
runs produce generally different intermediate measure-
ment outputs, they may nevertheless still be viewed as
providing evidence for validity of the implementation of
the quantum operations that actually occurred in the
computational run.

In the adaptive process, it is important that the dif-
ferent gate sequences (assumed now to be sufficiently
faithfully implemented themselves) are chosen with their
correct respective probabilities, for a single run of the
adaptive process to represent a valid sampling of the de-
sired BQP problem’s solution. We can develop further
confidence in the device’s correctness of its operation in
this respect as follows. We consider the initial part of
the circuit up to the first T -gadget and run it polyno-

mially many times to estimate the measurement prob-
ability to within a 1/poly(n) additive error, and verify
that it is within (say) O(1/t2) of the value half, where
t = O(poly(n)) is the number of T -gadgets in the circuit.
Being adequately satisfied with the first T -gadget’s mea-
surement operation, we apply the same process to the
second T -gadget, while now treating the first T -gadget’s
measurement output non-adaptively and using the gate
sequence from the computational run up to the second
T -gadget. Similarly we work through all the T -gadgets
in order. We refer to such test runs as ‘measurement test
runs’.

The theoretical probability of any adaptive gate se-
quence is 1/2t and we have developed confidence that
the computing device has selected the gate sequence
used in the computational run with probability π =(
1
2 +O( 1

t2 )
)t

= 1
2t

(
1 +O( 1

t2 )
)t
. Since (1 + 1

m2 )m → 1
as m → ∞ we see that we can thus (with polynomially
bounded computing effort) confirm that |π− 1

2t | <
ε
2t for

any chosen constant ε > 0 and all sufficiently large t.
Finally let pout be the true theoretical probability of

output 0 in the adaptive Clifford process, and let p
(j)
out,

for j = 1, . . . , 2t, be the corresponding output probability
for the jth adapted gate sequence. Also let π(j) be the
true theoretical probability that the jth gate sequence
occurs in an adaptive run. (In fact π(j) = 1/2t here).

Then pout =
∑2t

j=1 p
(j)
outπ

(j). Let j0 be the label of the
adaptive sequence that was actually used in the compu-
tational run. With polynomially bounded quantum and
classical computational resources we have developed con-
fidence that:
(i) (from gate test runs) the output probability p̃

(j0)
out of

the implemented computational run is within additive er-

ror η = 1/poly(n) of its theoretical value p
(j0)
out , and

(ii) (from measurement test runs) the gate sequence la-
belled j0 has been chosen by the device with proba-
bility π̃(j0) that is within ε/2t of its theoretical value
π(j0) = 1/2t.
(i) and (ii) then imply that (with suitably chosen η and
ε) our quantum computing device has provided a sample
of a probability distribution that is within any desired
ε′ > 0 of the theoretical distribution {pout, 1 − pout},
so its output is then (within the requirements of the
bounded error condition) the solution to our BQP de-
cision problem e.g. we could assume without loss of gen-
erality that the BQP algorithm used has bounded error
margin |pout−1/2| > 0.49, and choose ε and η to provide
ε′ < 0.01, to then establish confidence that the machine’s
output is the correct answer to the decision problem with
probability at least 0.98.
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Abstract. We study lower bounds on the optimal error probability in channel coding at rates below
capacity, commonly termed sphere-packing bounds. In this work, we establish a sphere-packing bound for
classical-quantum channels, which significantly improves previous prefactor from the order of subexponen-
tial to polynomial. Furthermore, the gap between the obtained error exponent for constant composition
codes and the best known classical random coding exponent vanishes in the order of o(log n/n), indicating
our sphere-packing bound is almost exact in the high rate regime. The main technical contributions are
two converse Hoeffding bounds for quantum hypothesis testing and the saddle-point properties of error
exponent functions. Our complete paper can be found in arXiv:1704.05703 [quant-ph].

Shannon’s noisy coding theorem [1] states that a mes-
sage in an appropriately coded form can be reliably
transmitted through a discrete memoryless channel W ,
provided the coding rate R is below the channel ca-
pacity CW . More precisely, the probability of decod-
ing errors can be made arbitrarily small as the coding
blocklength grows. Later, Shannon himself pioneered
the study of the exponential dependency of the opti-
mal error probability ε∗(n,R) for a blocklength n and
transmission rate R [2]. He defined the reliability func-
tion to be, for any fixed coding rate R < CW , E(R) :=
lim supn→+∞ − 1

n log ε∗(n,R). The quantity E(R) then
provides a measure of how rapidly the error probability
approaches zero with an increase in blocklength. This
characterization of the reliability function is hence called
the the error exponent analysis. For a classical chan-
nel, the upper bounds of the optimal error can be estab-
lished using a random coding argument [3]. On the other
hand, the lower bound was first developed by Shannon,
Gallager, and Berlekamp [4] and was called the sphere-
packing bound.

Error exponent analysis in classical-quantum (c-q)
channels is much more difficult because of the noncom-
mutative nature of quantum mechanics. Dalai [8] em-
ployed Shannon-Gallager-Berlekamp’s approach to estab-
lish a sphere-packing bound with Gallager’s expression
[4]. It was later pointed out that these two sphere-
packing exponents are not equal for general c-q chan-
nels . The sphere-packing bound obtained by Dalai [8]
had a pre-factor e−O(

√
n), which is loose in the situation

where the transmission rate is close to channel capac-
ity. The main contribution of this paper is to establish a
sphere-packing bound with a better pre-factor O(n−t) for
some t > 1/2, which notably improves Dalai’s bound [8]
from the order of subexponential to polynomial (Corol-
lary 2). When restricting to constant composition codes,
we can be more explicit about the obtained pre-factor,

∗F99942118@ntu.edu.tw
†Min-Hsiu.Hsieh@uts.edu.au
‡marco.tomamichel@uts.edu.au

namely, n−
1
2 (1+|E′

sp(R)|+o(1)) (Theorem 1). Furthermore,
this sphere-packing bound and the best known random
coding upper bound [9] in the classical case coincide up
to the third-order term. Hence, our result yields an al-
most exact asymptotics of the sphere-packing bound for
constant composition codes.

Our main ingredients are a tight concentration inequal-
ity in strong large deviation theory [6] and Blahut’s ap-
proach of hypothesis testing reduction [5]. The strategy
of the proof consists of three steps: (i) formulate the error
probability of a certain codebook to a hypothesis testing
problem; (ii) give a lower (or called the converse) bound
to the type-I error in quantum hypothesis testing; and
(iii) relate the error with the strong sphere-packing ex-
ponent. In Section 2, we provide two converse bounds for
quantum hypothesis testing. The first bound generalizes
Blahut’s one-shot converse Hoeffding bound [5, Theorem
10] to the quantum case (Proposition 4). Unlike Blahut’s
result derived in the weak form, we establish a strong
sphere-packing bound for c-q channels. For the second
bound (Proposition 5), we employ Bahadur-Ranga Rao’s
inequality [6] to prove a sharp converse bound in step
(ii). Finally, we combine these two results to obtain a
refined strong sphere-packing bound with a polynomial
pre-factor.

1 Notation and Main Result

1.1 Notation

Throughout this paper, we consider a finite-
dimensional Hilbert space H. The set of density op-
erators (i.e. positive semi-definite operators with unit
trace) on H are defined as S(H). We write ρ � σ
if supp(ρ) ⊂ supp(σ), where supp(ρ) denotes the sup-
port of ρ. The identity operator on H is denoted by
1H. When there is no possibility of confusion, we skip
the subscript H. Let N, R, and R>0 denote the set of
integers, real numbers, and positive real numbers,, re-
spectively. Define [n] := {1, 2, . . . , n} for n ∈ N. Given
a pair of positive semi-definite operators ρ, σ ∈ S(H),
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we define the (quantum) relative entropy as D(ρ‖σ) :=
Tr [ρ (logρ− logσ)], when ρ � σ, and +∞ otherwise.
For every α ∈ [0, 1), we define the (Petz) quantum
Rényi divergences Dα(ρ‖σ) := 1

α−1 log Tr
[
ρασ1−α]. For

α = 1, D1(ρ‖σ) := limα→1Dα(ρ‖σ) = D(ρ‖σ). Let
X = {1, 2, . . . , |X |} be a finite alphabet, and let P(X )
be the set of probability distributions on X . A classical-
quantum (c-q) channel W maps elements of the finite set
X to the density operators in S(H), i.e., W : X → S(H).
Let M be a finite alphabetical set with size M = |M|.
An (n-block) encoder is a map fn : M → Xn that en-
codes each message m ∈ M to a codeword xn(m) :=
x1(m) . . . xn(m) ∈ Xn. The codeword xn(m) is then
mapped to a state W⊗nxn(m) = Wx1(m) ⊗ · · · ⊗Wxn(m) ∈
S(H⊗n). The decoder is described by a positive operator-
valued measurement (POVM) Πn = {Πn,1, . . . ,Πn,M}
on H⊗n, where Πn,i ≥ 0 and

∑M
i=1 Πn,i = 1. The pair

(fn,Πn) =: Cn is called a code with rate R = 1
n log |M|.

The error probability of sending a message m with the
code Cn is εm(W, Cn) := 1 − Tr

(
Πn,mWxn(m)

)
. We

use εmax(W, Cn) = maxm∈M εm(W, Cn) and ε̄(W, Cn) =
1
M

∑
m∈M εm(W, Cn) to denote the maximal error prob-

ability and the average error probability, respectively.
Given a sequence xn ∈ Xn, we denote by Pxn(x) :=
1
n

∑n
i=1 1 {x = xi} the empirical distribution of xn. A

constant composition code with a composition Pxn refers
to a codebook whose codewords all have the same distri-
bution Pxn .

We define the following conditional entropic quantities
for the channel W with P ∈ P(X ): Dα (W‖σ|P ) :=∑
x∈X P (x)Dα (Wx‖σ). The mutual information of the

c-q channel W : X → S(H) with prior distribution
P ∈ P(X ) is defined as I(P,W ) :== D (W ‖PW |P ),
where PW :=

∑
x∈X P (x)Wx. The (classical) capac-

ity of the channel W : X → S(H) is denoted by:
CW := maxP∈P(X ) I(P,W ). We define two related in-
formation quantities: for every α ∈ [0, 1],

I(1)α (P,W ) := min
σ∈S(H)

Dα (P ◦W ‖P ⊗ σ) ; (1)

I(2)α (P,W ) := min
σ∈S(H)

Dα (W ‖σ|P ) . (2)

The term I
(1)
α (P,W ) is called the α-Rényi mutual in-

formation. The second term I
(2)
α (P,W ) can be viewed

as a variant of the α-Rényi mutual information. For
the case of α = 1, they both equal conventional mutual

information, i.e. I
(1)
1 (P,W ) = I

(2)
1 (P,W ) = I(P,W ).

Mosonyi and Ogawa [10, Proposition IV.2] showed that

for all α ∈ [0, 1], Cα,W := maxP∈P(X ) I
(1)
α (P,W ) =

maxP∈P(X ) I
(2)
α (P,W ), and it is termed the Rényi ra-

dius of order α. Let

E(1)
sp (R,P ) := sup

0<α≤1

1− α
α

(
I(1)α (P,W )−R

)
; (3)

E(2)
sp (R,P ) := sup

0<α≤1

1− α
α

(
I(2)α (P,W )−R

)
. (4)

The sphere-packing exponent is defined by

Esp(R) := max
P∈P(X )

E(1)
sp (R,P ) = max

P∈P(X )
E(2)

sp (R,P ),

where the last equality follows from [10, Proposition
IV.2]. Further, we define a rate, [8]: R∞ := C0,W . It
follows that Esp(R) = +∞ for any R ≤ R∞ (see also [4,
p. 69] and [3, Eq. (5.8.5)]). In this paper, we assume the
channel satisfies R∞ < CW .

Given any R ∈ (R∞, CW ) and P ∈ PR(X ), we de-
note a maximum absolute value subgradient of the sphere-
packing exponent at R by∣∣E′sp(R)

∣∣ := max
P :E

(2)
sp (R,P )=Esp(R)

1− α?R,P
α?R,P

,

where α?R,P is the optimizer in Eq. (4).
Consider a binary hypothesis whose null and alterna-

tive hypotheses are ρ ∈ S(H) and σ ∈ S(H), respec-
tively. The type-I error and type-II error of the hypoth-
esis testing, for an operator 0 ≤ Q ≤ 1, are defined as
α (Q; ρ) := Tr [(1−Q)ρ], and β (Q;σ) := Tr [Qσ]. There
is a trade-off between these two errors. Thus, we can de-
fine the minimum type-I error, when the type-II error is
below µ ∈ (0, 1), as

α̂µ (ρ‖σ) := min
0≤Q≤1

{
α (Q; ρ) : β (Q;σ) ≤ µ

}
. (5)

1.2 Main Result

Theorem 1 (Refined Strong Sphere-Packing Bound
of Constant Composition Codes). Consider a classical-
quantum channel W : X → S(H) and R ∈ (R∞, CW ).
For every γ > 0, there exist an N0 ∈ N and a constant
A > 0 such that for all constant composition codes Cn
of length n ≥ N0 with message size |Cn| ≥ exp{nR}, we
have

ε̄ (Cn) ≥ A

n
1
2 (1+|E′

sp(R)|+γ)
exp {−nEsp(R)} . (6)

The following corollary generalizes the refined sphere-
packing bound for constant composition codes to arbi-
trary codes via a standard argument [4, p. 95].

Corollary 2 (Refined Strong Sphere-Packing Bound for
General Codes). Consider a classical-quantum channel
W : X → S(H) and R ∈ (R∞, CW ). There exist some
t > 1/2 and N0 ∈ N such that for all codes of length
n ≥ N0, we have

ε∗ (n,R) ≥ n−t exp {−nEsp(R)} . (7)

We provide the proof in the full version [12, Section 4.2].
Theorem 1 yields

log
1

ε̄(Cn)
≤ nEsp(R) +

1

2

(
1 +

∣∣E′sp(R)
∣∣) log n+ o(log n),

On the other hand, for the case of classical non-singular
channels, it was shown that [9, Theorem 3.6], for all con-
stant composition codes Cn and rate R ∈ (Rcrit, CW ),

log
1

ε̄(Cn)
≥ nEr(R) +

1

2
(1 + |E′r(R)|) logn+ Ω(1), (8)

where Er(R) is the random coding exponent, and Rcrit is
the critical rate such that Er(R) = Esp(R) for all R ≥
Rcrit [3, p. 160]. Hence our result, Theorem 1, matches
the achievability up to the logarithmic order.
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2 Proof Ideas

To establish our main result, we combine Blahut’s in-
sight of relating a channel coding problem to binary hy-
pothesis testing [5] with a sharp concentration inequality
employed in Ref. [7]. Our proof consists of three major
steps: (i) reduce the channel coding problem to binary
hypothesis testing (Lemma 3); (ii) bound its type-I error
from below (Propositions 4 and 5); (iii) relate the derived
bound to the sphere-packing exponent.

Lemma 3. For any classical-quantum channel W : X →
S(H) and any code Cn with message size M , it follows
that

εmax (Cn) ≥ max
σ∈S(H)

min
xn∈Cn

α̂ 1
M

(
W⊗nxn ‖σ⊗n

)
. (9)

We provide the proof in the full version [12, Section 4].

Proposition 4 (Chebyshev-Type Converse Hoeffding
Bound). Let R ∈ (R∞, CW ). Consider the hypotheses

H0 : ρn = W⊗nxn ; (10)

H1 : σn = (σ?)
⊗n

, (11)

where xn ∈ Xn and σ? ∈
arg minσ∈S(H) sup0<α≤1

1−α
α (Dα (W ‖σ|Pxn)−R).

Then, for every c > 0, there exist N0 ∈ N and
κ1, κ2 ∈ R>0 such that for all n ≥ N0 we have

α̂c exp{−nR} (ρn‖σn) ≥ κ1 exp
{
−κ2
√
n− nE(2)

sp (R,Pxn)
}
,

We provide the proof in the full version [12, Section 4].

Proposition 5 (Sharp Converse Hoeffding Bound). Let
R ∈ (R∞, CW ). Consider the hypothesese:

H0 : ρn = W⊗nxn ; (12)

H1 : σn = (σ?)
⊗n

, (13)

where xn ∈ Xn, and σ? :=
arg minσ∈S(H) sup0<α≤1

1−α
α (Dα (W ‖σ|Pxn)−R)

satisfying E
(2)
sp (R,Pxn) ∈ [ν,+∞) for some positive

ν > 0. For every c > 0, there exists a constant N0 ∈ N,
independent of the sequences ρn and σn, such that for
all n ≥ N0 we have

α̂c exp{−nR} (ρn‖σn) ≥ A

n
1
2 (1+s

?)
exp

{
−nE(2)

sp (R,Pxn)
}
,

where s? := − ∂E(2)
sp (r,P )

∂r

∣∣∣∣
r=R

, and A ∈ R>0 is a finite

constant depending on R, ν and W .

We provide the proof in the full version [12, Section 4].

3 Discussion

In this paper, we obtained a refined strong sphere-
packing bound for c-q channels and constant composition

codes with a polynomial pre-factor n−
1
2 (1+|E′

sp(R)|+o(1)).
Moreover, the established result matches the best known

random coding bound (i.e. achievability) up to the log-
arithmic order [7, 9]. For the case of general codes, the
derived pre-factor is of the polynomial order, i.e. O(n−t)
for some t > 1/2. We are able to obtain the exact pre-
factor without the assumption of constant composition
codes for a class of symmetric c-q channels. We note
that the exact pre-factor for general codes is still open
even in the classical case. Finally, our refinement enables
a moderate deviation analysis in c-q channels [13].
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Abstract. We study lower bounds on the optimal error probability in classical coding over classical-
quantum channels at rates below the capacity, commonly termed quantum sphere-packing bounds. Win-
ter and Dalai have derived such bounds for classical-quantum channels; however, the exponents in their
bounds only coincide when the channel is classical. In this paper, we show that these two exponents admit
a variational representation and are related by the Golden-Thompson inequality, reaffirming that Dalai’s
expression is stronger in general classical-quantum channels. Second, we establish a sphere-packing bound
for classical-quantum channels, which significantly improves Dalai’s prefactor from the order of subexpo-
nential to polynomial. Furthermore, the gap between the obtained error exponent for constant composition
codes and the best known classical random coding exponent vanishes in the order of o(logn/n), indicating
our sphere-packing bound is almost exact in the high rate regime. Finally, for a special class of symmetric
classical-quantum channels, we can completely characterize its optimal error probability without the con-
stant composition code assumption. The main technical contributions are two converse Hoeffding bounds
for quantum hypothesis testing and the saddle-point properties of error exponent functions.

1. Introduction

Shannon’s noisy coding theorem [1] states that a message in an appropriately coded form can be reliably
transmitted through a discrete memoryless channel W, provided the coding rate R is below the channel
capacity CW. More precisely, the probability of decoding errors can be made arbitrarily small as the
coding blocklength grows. Later, Shannon himself pioneered the study of the exponential dependency of
the optimal error probability ε∗(n,R) for a blocklength n and transmission rate R [2]. He defined the
reliability function to be, for any fixed coding rate R < CW,

E(R) := lim sup
n→+∞

− 1

n
log ε∗(n,R). (1)

The quantity E(R) then provides a measure of how rapidly the error probability approaches zero with
an increase in blocklength. This characterization of the reliability function is hence called the reliability
function analysis or the error exponent analysis.

For a classical channel, lower bounds for the reliability function can be established by random coding
arguments [3, 4, 5, 6]. However, upper bounds require different techniques since the code-dependent
bounds on the error probability need to be optimized over all codebooks. The first result—the sphere-
packing bound E(R) ≤ Esp(R)—was developed by Shannon, Gallager, and Berlekamp [7]. The sphere-
packing exponent Esp(R) is defined as

Esp(R) := sup
s≥0

{
max
P

E0(s, P )− sR
}
, (2)

where P is maximized over all probability distributions on the input alphabet, and E0(s, P ) is the aux-
iliary function or Gallager’s exponent [5]. Unlike Shannon-Gallager-Berlekamp’s technique which relates

E-mail address: F99942118@ntu.edu.tw, Min-Hsiu.Hsieh@uts.edu.au, marco.tomamichel@uts.edu.au.
Part of this paper was accepted in 2017 IEEE International Symposium on Information Theory (ISIT).
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channel coding to binary hypothesis testing, Haroutunian [8, 9] employed a combinatorial method and
obtained an upper bound for the reliability function in terms of the following expression

Ẽsp(R) := max
P

min
V
{D (V‖W|P ) : I(P,V) ≤ R} , (3)

where V is minimized over all channels with the same output alphabet as W, D(V‖W|P ) is the conditional
relative entropy between the dummy channel V and the true channel W, and I(P,V) is the mutual
information of the channel V (the detailed definitions are given in Section 2). It was later realized
that the two quantities in Eqs. (2) and (3) are equivalent: they are related by convex program duality
[10, 11, 12]. Therefore, these two expressions, Eqs. (2) or (3), are both called sphere-packing exponents.

Error exponent analysis in classical-quantum (c-q) channels is more challenging because of the noncom-
mutative nature of quantum mechanics. Burnashev and Holevo [13] introduced a quantum version of the
auxiliary function [14, 15] and initialized the study of reliability functions in c-q channels. Winter [16] de-

rived a sphere-packing bound for c-q channels in the form of Ẽsp(R) in Eq. (3), generalizing Haroutunian’s
idea [8]. Dalai [17] employed Shannon-Gallager-Berlekamp’s approach [7] to establish a sphere-packing
bound with Gallager’s exponent in Eq. (2). In the follow-up work [18], Dalai and Winter pointed out that
these two exponents are not equal in c-q channels. In this work, we explicitly demonstrate a relationship
between the two quantities. Precisely, we show that they individually admit a variational representation
(Theorem 6 in Section 3):

Esp(R) = max
P

sup
0<α≤1

min
σ

{
1− α
α

(∑
x

P (x)Dα (Wx‖σ)−R

)}
; (4)

Ẽsp(R) = max
P

sup
0<α≤1

min
σ

{
1− α
α

(∑
x

P (x)D[
α (Wx‖σ)−R

)}
, (5)

where σ is minimized over all density operators on some Hilbert space H; Wx is the channel output state
on H; Dα is the (Petz) α-Rényi divergence [19]; and D[

α is the log-Euclidean α-Rényi divergence.

Since Dα ≥ D[
α for all α ∈ (0, 1], as a simple consequence of the Golden-Thompson inequality [20, 21],

the exponent Esp(R) in Eq. (4) is stronger than Ẽsp(R) in Eq. (5), i.e.

E(R) ≤ Esp(R) ≤ Ẽsp(R). (6)

These two exponents coincide2 only when all the channel output states commute (i.e. for classical chan-

nels). Thus, we call Esp(R) and Ẽsp(R) the strong sphere-packing exponent and the weak sphere-packing
exponent, respectively. The lower bounds for the optimal error probability in terms of these two quantities
are called the strong sphere-packing bound

ε∗ (n,R) ≥ f(n) exp {−n [Esp(R− g(n))]} , (7)

and the weak sphere-packing bound

ε∗ (n,R) ≥ f(n) exp
{
−n
[
Ẽsp(R− g(n))

]}
, (8)

where f(n) is the pre-factor of the bound, and g(n) is a rate back-off term. We note that g(n) = 0 in our
main result, and hence we only study f(n) in the following discussion.

The strong sphere-packing bound obtained by Dalai [17] had a pre-factor f(n) = e−O(
√
n), which is

loose for small blocklength n or in the situation where the transmission rate is close to channel capacity.
The main contribution of this paper is to establish a sphere-packing bound with a better pre-factor f(n) =
O(n−t) for some t > 1/2, which notably improves Dalai’s bound [17] from the order of subexponential to
polynomial (Corollary 10). When restricting to constant composition codes, we can be more explicit about

the obtained pre-factor, namely, f(n) = n−
1
2(1+|E′sp(R)|+o(1)) (Theorem 9). Furthermore, this sphere-

packing bound and the best known random coding upper bound [22, 23, 24, 25] in the classical case
coincide up to the third-order term (see the discussion in Section 4)). Hence, our result yields an almost

2For the coding rates above channel capacity, these two exponents are both zero (α attains 1 in Eqs. (4) and (5)). We exclude
this trivial case and only consider the rate being strictly below capacity.

2

469



exact asymptotics of the sphere-packing bound for constant composition codes. Our second contribution

is to show that, for a class of symmetric c-q channels, the pre-factor f(n) = O(n−
1
2(1+|E′sp(R)|)), holds for

general codes. In other words, we are able to obtain an exact sphere-packing bound for general codes, by
exploiting a symmetric property of the channel.

Our main ingredients are a tight concentration inequality in strong large deviation theory [26], [27,
Theorem 3.7.4], [28, Section III.D] (Appendix B) and Blahut’s approach of hypothesis testing reduction
[10]. The strategy of the proof consists of three steps: (i) formulate the error probability of a certain
codebook to a hypothesis testing problem; (ii) give a lower (or called the converse) bound to the type-I
error in quantum hypothesis testing; and (iii) relate the error with the strong sphere-packing exponent. In
Section 4.1, we provide two converse bounds for quantum hypothesis testing. The first bound generalizes
Blahut’s one-shot converse Hoeffding bound [10, Theorem 10] to the quantum case (Proposition 12).
Unlike Blahut’s result derived in the weak form, we establish a strong sphere-packing bound for c-q
channels. For the second bound (Proposition 14), we employ Bahadur-Ranga Rao’s inequality [26] to
prove a sharp converse bound in step (ii). Finally, we combine these two results to obtain a refined strong
sphere-packing bound with a polynomial pre-factor.

Table 1 collects major proof approaches of classical sphere-packing bounds, Eqs. (7) and (8), and
discusses their generalizations to c-q channels. We remark that the established polynomial pre-factor is
crucial for the analysis of coding performance in the medium error probability regime (more commonly
known as moderate deviation analysis) [28, 29, 30].

The remaining part of the paper is organized as follows. Section 2 introduces the notation and necessary
preliminaries. The relationship between the weak and strong sphere-packing exponents is proved in
Section 3. In Section 4, we prove a refined sphere-packing bound for c-q channels. We consider a
symmetric c-q channel and establish an exact sphere-packing bound in Section 5. Lastly, we conclude
this paper in Section 6.

Blocklength Composition Pre-factor Rate back-off Classical-quantum
TightnessBounds\Settings

n dependent f(n) g(n) channels

Shannon-Gallager-
Any n Yes e−O(

√
n) O

(
logn
n

)
Dalai [17] Strong(a)

Berlekamp [7]

Haroutunian [8]

Large n Yes e−o(n) o(1) Winter [16] WeakOmura [31](b)

Csisár-Korner [12]

(c) Blahut [10] Any n No e−O(
√
n) O

(
n−

1
2

)
Eqs. (187) & (192) Strong

Large n Yes n−
1
2(1+|E′sp(R)|+o(1)) 0 Theorem 9 Strong(d) Altuğ-Wagner [32]

(e) Elkayam-Feder [33] Any n Yes O
(
n−t
)

O
(

logn
n

)
Unknown Unknown

Agustin-Nakiboğlu
Large n No O

(
n−t
)

0 Unknown Unknown(f)
[34, 35, 36, 37]

Table 1. Different sphere-packing bounds are compared by (i) whether the bounds hold
for any blocklength n or only for sufficiently large n ∈ N; (ii) whether or not they are
dependent on the constant composition codes; (iii) & (iv) the asymptotics f(n) and g(n);
(v) the corresponding c-q generalizations. The parameter t in rows (e) and (f) is some value
in the range t > 1/2; and (vi) whether their error exponent expressions for c-q channels
are in the strong form (Eq. (2)) or weak form (Eq. (3)).

2. Notation and Preliminaries

Throughout this paper, we consider a finite-dimensional Hilbert space H. The set of density operators
(i.e. positive semi-definite operators with unit trace) and the set of full-rank density operators on H are
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defined as S(H) and S>0(H), respectively. For ρ, σ ∈ S(H), we write ρ� σ if the support of ρ is contained
in the support of σ. The identity operator on H is denoted by 1H. If there is no possibility of confusion,
we will skip the subscript H. We use Tr [ · ] to denote the trace. Let N, R, R≥0, and R>0 denote the
set of integers, real numbers, non-negative real numbers, and positive real numbers, respectively. Define
[n] := {1, 2, . . . , n} for n ∈ N.

For a positive semi-definite operator A whose spectral decomposition is A =
∑

i aiPi, where (ai)i and
(Pi)i are the eigenvalues and eigenprojections of A, its power is defined as: Ap :=

∑
i:ai 6=0 a

p
iPi. In

particular, A0 denotes the projection onto supp(A), where we use supp(A) to denote the support of the
operator A. Further, A ⊥ B means supp(A) ∩ supp(B) = ∅. We denote by log the natural logarithm.

2.1. Information Quantities and Error-Exponent Functions. Given a pair of positive semi-definite
operators ρ, σ ∈ S(H), we define quantum relative entropy [38, 39] and relative variance [40, 41, 42],
respectively as

D(ρ‖σ) := Tr [ρ (logρ− logσ)] ; (9)

V (ρ‖σ) := Tr
[
ρ (logρ− logσ)2

]
−D(ρ‖σ)2, (10)

when ρ� σ, and +∞ otherwise.
For density operators ρ, σ ∈ S>0(H), and every α ∈ (0, 1), we define the following two families of

quantum Rényi divergences [19, 43, 44]:

Dα(ρ‖σ) :=
1

α− 1
logQα(ρ‖σ), Qα(ρ‖σ) := Tr

[
ρασ1−α] ; (11)

D[
α(ρ‖σ) :=

1

α− 1
logQ[α(ρ‖σ), Q[α(ρ‖σ) := Tr

[
eα log ρ+(1−α) log σ

]
. (12)

We term the above quantities as the (Petz) α-Rényi divergence, and the log-Euclidean α-Rényi divergence,
respectively. The log-Euclidean Rényi divergence arises from the log-Euclidean operator mean (also called
the chaotic mean): A♦αB := exp ((1− α) logA+ α logB) for 0 ≤ α ≤ 1. For general density operators
ρ, σ ∈ S(H), the above definitions can be extended as

Qα(ρ‖σ) := lim
δ↓0

Qα(ρ+ δ1‖σ + δ1) and Q[α(ρ‖σ) := lim
δ↓0

Q[α(ρ+ δ1‖σ + δ1). (13)

Note that these two quantities are related by the Golden-Thompson inequality [20, 21]:

Q[α(ρ‖σ) ≤ Qα(ρ‖σ), ∀α ∈ (0, 1). (14)

For α = 1 and α = 0, we define (see e.g. [44, Lemma III.4]):

D1(ρ‖σ) := lim
α↑1

Dα(ρ‖σ) = D(ρ‖σ), D[
1(ρ‖σ) := lim

α↑1
D[
α(ρ‖σ) = D(ρ‖σ); (15)

D0(ρ‖σ) := lim
α↓0

Dα(ρ‖σ), D[
0(ρ‖σ) := lim

α↓0
D[
α(ρ‖σ). (16)

We will need the following lemma in the next section.

Lemma 1 ([45], [44, Lemma III.3, Lemma III.11, Theorem III.14, Corollary III.25], [46, Corollary 2.2]).
Let ρ, σ ∈ S(H). Then,

α 7→ logQα(ρ‖σ) and α 7→ logQ[α(ρ‖σ) are convex on (0, 1); (17)

α 7→ Dα (ρ‖σ) is continuous and monotone increasing on [0, 1]. (18)

Moreover3,

∀α ∈ (0, 1), (ρ, σ) 7→ Q[α(ρ‖σ) is jointly concave on S(H)× S(H); (19)

∀α ∈ [0, 1], σ 7→ Dα(ρ‖σ) is strictly convex and lower semi-continuous on S(H). (20)

3It was shown in [44, Lemma III.22] that the map σ 7→ Dα(ρ‖σ) is lower semi-continuous on S(H) for all α ∈ (0, 1). The
argement can be extended to the range α ∈ [0, 1] by the same method in [44, Lemma III.22].

4

471



Let X = {1, 2, . . . , |X |} be a finite alphabet, and let P(X ) be the set of probability distributions on
X . A classical-quantum (c-q) channel W maps elements of the finite set X to density operators in S(H),
i.e. W : x 7→ Wx. For a c-q channel W : X → S(H) and P ∈ P(X ), it is convenient to denote the
corresponding c-q state:

P ◦W :=
∑
x∈X

P (x)|x〉〈x| ⊗Wx. (21)

We also express the input distribution P ∈ P(X ) as a diagonal matrix with respect to the computational
basis {|x〉}x∈X , i.e. P =

∑
x∈X P (x)|x〉〈x|. Denote the conditional relative entropy of two c-q channels

V,W : X → S(H) with a prior distribution P ∈ P(X ) by

D (V‖W|P ) :=
∑
x∈X

P (x)D (Vx‖Wx) . (22)

Similarly, we define the following conditional entropic quantities for W : X → S(H), σ ∈ S(H) and
P ∈ P(X ):

D (W‖σ|P ) :=
∑
x∈X

P (x)D (Wx‖σ) , (23)

Dα (W‖σ|P ) :=
∑
x∈X

P (x)Dα (Wx‖σ) , (24)

D[
α (W‖σ|P ) :=

∑
x∈X

P (x)D[
α (Wx‖σ) . (25)

The mutual information of the prior distribution P ∈ P(X ) and the c-q channel W : X → S(H) is defined
as

I(P,W) := inf
σ∈S(H)

D (W‖σ|P ) = D (W‖PW|P ) , (26)

where PW :=
∑

x∈X P (x)Wx. The (classical) capacity of the channel W : X → S(H) is denoted by
[47, 48]:

CW := max
P∈P(X )

I(P,W). (27)

We define two related information quantities: for every α ∈ [0, 1],

I(1)
α (P,W) := inf

σ∈S(H)
Dα (P ◦W‖P ⊗ σ) ; (28)

I(2)
α (P,W) := inf

σ∈S(H)
Dα (W‖σ|P ) . (29)

The term I
(1)
α (P,W) is called the α-Rényi mutual information [49, 50, 36] or the generalized Holevo

quantity. The second term I
(2)
α (P,W) can be viewed as a variant of the α-Rényi mutual information. It

can be verified that these two functions are related by Jensen’s inequality:

I(1)
α (P,W) ≤ I(2)

α (P,W). (30)

For the case of α = 1, they both equal conventional mutual information, i.e. I
(1)
1 (P,W) = I

(2)
1 (P,W) =

I(P,W). Mosonyi and Ogawa [44, Proposition IV.2] showed that for all α ∈ [0, 1],

Cα,W := sup
P∈P(X )

I(1)
α (P,W) = sup

P∈P(X )
I(2)
α (P,W), (31)

and it is termed the Rényi radius or the Rényi capacity of order α. Moreover, Proposition 2 below and
the compactness of P(X ) show that the suprema in Eq. (31) can be replaced with maxima. The following
proposition presents important properties of α-Rényi mutual information and radius. The proof is given
in Appendix C.

Proposition 2 (Properties of α-Rényi Mutual Information and Radius). Given any classical-quantum
channel W : X → S(H), the following holds:

5
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(a) The map (α, P ) 7→ I
(2)
α (P,W) is continuous on [0, 1]× P(X ).

(b) For every P ∈ P(X ), α 7→ I
(2)
α (P,W) is monotone increasing on [0, 1].

(c) For every P ∈ P(X ), α 7→ 1−α
α I

(2)
α (P,W) is strictly concave on (0, 1).

(d) The map α 7→ Cα,W is continuous and monotone increasing on [0, 1].

Items (a), (b), and (c) also hold for I
(1)
α (P,W).

The strong sphere-packing exponent [17] of a c-q channel W : X → S(H) and a rate R ≥ 0 is defined
by

Esp(R) := max
P∈P(X )

Esp(R,P ), (32)

where

Esp(R,P ) := sup
s≥0
{E0(s, P )− sR} , (33)

and E0 is the auxiliary function of the c-q channel W (see [13, 14, 15]):

E0(s, P ) := − log Tr

(∑
x∈X

P (x) ·W 1/(1+s)
x

)1+s
 (34)

for all P ∈ P(X ) and s ≥ 0.
The weak sphere-packing exponent [16] is defined as

Ẽsp(R) := max
P∈P(X )

Ẽsp(R,P ), (35)

where

Ẽsp(R,P ) := min
V:X→S(H)

{D (V‖W|P ) : I(P,V) ≤ R} . (36)

We also need the following definitions: for any R ≥ 0 and P ∈ P(X ),

E(1)
sp (R,P ) := sup

0<α≤1

1− α
α

(
I(1)
α (P,W)−R

)
; (37)

E(2)
sp (R,P ) := sup

0<α≤1

1− α
α

(
I(2)
α (P,W)−R

)
, (38)

Eq. (30) implies that (see also Theorem 6) E
(1)
sp (R,P ) ≤ E

(2)
sp (R,P ). By quantum Sibson’s identity

[51], one finds

E(1)
sp (R,P ) = Esp(R,P ). (39)

Proposition 2 and Eq. (31) imply that the two quantities given in Eqs. (37) and (38) are equal to the
strong sphere-packing exponent by maximizing over the input distributions:

Esp(R) = max
P∈P(X )

E(1)
sp (R,P ) = max

P∈P(X )
E(2)

sp (R,P ). (40)

Further, we define [12, p. 152], [17, Theorem 6]:

R∞ := C0,W. (41)

From the definitions in Eqs. (27) and (41), it can be verified that R∞ ≤ CW for all c-q channels W. In
Proposition 4 below, one has Esp(R) = +∞ for R < R∞, and Esp(R) = 0 as R > CW. Throughout this
paper, we further assume that the considered c-q channel W satisfies R∞ < CW.

As we will show in Section 4, the quantity E
(2)
sp (R,P ) plays a significant role in the connection between

hypothesis testing and channel coding. Moreover, Proposition 3 below shows that the the optimizer in
Eqs. (29) and (38) forms a saddle-point. The proof closely follows Altuğ and Wagner [32, Proposition 1],
and is given in Appendix D.

6
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Proposition 3 (Saddle-Point). Consider a classical-quantum channel W : X → S(H), any R ∈ (R∞, CW),
and P ∈ P(X ). Let

SP,W(H) := {σ ∈ S(H) : ∀x ∈ supp(P ), Wx 6⊥ σ} . (42)

Define

FR,P (α, σ) :=


1− α
α

(Dα (W‖σ|P )−R) , α ∈ (0, 1)

0, α = 1
, (43)

on (0, 1]× S(H), and denote by

PR(X ) :=

{
P ∈ P(X) : sup

0<α≤1
inf

σ∈S(H)
FR,P (α, σ) ∈ R>0

}
. (44)

The following holds

(a) For any P ∈ P(X ), FR,P (·, ·) has a saddle-point on (0, 1]× SP,W(H) with the saddle-value:

min
σ∈S(H)

sup
0<α≤1

FR,P (α, σ) = sup
0<α≤1

min
σ∈S(H)

FR,P (α, σ) = E(2)
sp (R,P ). (45)

(b) If P ∈ PR(X ), the saddle-point is unique.
(c) Fix P ∈ PR(X ). Any saddle-point (α?R,P , σ

?
R,P ) of FR,P (·, ·) satisfies α?R,P ∈ (0, 1) and

σ?R,P �Wx, ∀x ∈ supp(P ). (46)

The following proposition discusses the continuity and differentiability of the error-exponent functions.
The proof is shown in Appendix E.

Proposition 4 (Properties of Error-Exponent Functions). Consider a classical-quantum channel W :
X → S(H) with R∞ < CW. We have

(a) Given every P ∈ P(X ), E
(2)
sp (·, P ) is convex and non-increasing on [0,+∞], and continuous on[

I
(2)
0 (P,W),+∞

]
. For every R > R∞, E

(2)
sp (R, ·) is continuous on P(X ). Further,

E(2)
sp (R,P ) =

+∞, R < I
(2)
0 (P,W)

0, R ≥ I(2)
1 (P,W)

. (47)

(b) Esp(·) is convex and non-increasing on [0,+∞], and continuous on [R∞,+∞]. Further,

Esp(R) =

{
+∞, R < R∞

0, R ≥ CW
. (48)

(c) Consider any R ∈ (R∞, CW) and P ∈ PR(X ) (see Eq. (44)). The function E
(2)
sp (·, P ) is differen-

tiable with

s?R,P = − ∂E
(2)
sp (r, P )

∂r

∣∣∣∣∣
r=R

∈ R>0, (49)

where s?R,P := (1− α?R,P )/α?R,P , and α?R,P is the optimizer in Eq. (38).

(d) s?R,(·) in Eq. (49) is continuous on PR(X ).

Given any R ∈ (R∞, CW) and P ∈ PR(X ), we denote a maximum absolute value subgradient of the
sphere-packing exponent at R by ∣∣E′sp(R)

∣∣ := max
P :E

(2)
sp (R,P )=Esp(R)

s?R,P . (50)

Note that the term
∣∣E′sp(R)

∣∣ in Eq. (50) is well-defined and finite by item (d) in Proposition 4.
Figure 1 below depicts different cases of the Esp(R) over rate R.
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+∞

CW

(a) 0 = R∞ < CW.

+∞

R∞ CW

(b) 0 < R∞ < CW.

+∞

CW

(c) 0 < R∞ = CW.

Figure 1. This figure illustrates three cases of the strong sphere-packing exponent Esp(R)
over R ≥ 0. In the first case 0 = R∞ < CW (the left figure), Esp(R) is only infinite at R = 0
and finite otherwise. In the second case 0 < R∞ < CW (the central figure), Esp(R) = +∞
for R < R∞, and Esp(R) < +∞ for R ≥ R∞. In the third case 0 < R∞ = CW (the
right figure), Esp(R) = +∞ for R < CW , and Esp(R) = 0 for R ≥ CW . Without loss of
generality, we assume R∞ < CW to exclude the last case throughout this paper.

2.2. Quantum Hypothesis Testing and Channel Coding. Consider a binary hypothesis whose null
and alternative hypotheses are ρ ∈ S(H) and σ ∈ S(H), respectively. The type-I error and type-II error
of the hypothesis testing, for an operator 0 ≤ Q ≤ 1, are defined as:

α (Q; ρ) := Tr [(1−Q)ρ] , (51)

β (Q;σ) := Tr [Qσ] . (52)

There is a trade-off relation between these two errors. Thus we can define the minimum Type-I error
when the type-II error is below µ ∈ (0, 1) as

α̂µ (ρ‖σ) := min
0≤Q≤1

{
α (Q; ρ) : β (Q;σ) ≤ µ

}
. (53)

We define an error-exponent function [52, 53, 54] for two sequences of states

H0 : ρn = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn, (54)

H1 : σn = σ1 ⊗ σ2 ⊗ · · · ⊗ σn, (55)

by

φn (r|ρn‖σn) := sup
α∈(0,1]

{
1− α
α

(
1

n
Dα (ρn‖σn)− r

)}
, r ≥ 0. (56)

It is known that [54, Lemma 4]

φn (r|ρn‖σn) = +∞, ∀r ∈
[
0,− 1

n
D0 (ρn‖σn)

)
. (57)

Let M be a finite alphabetical set with size M = |M|. An (n-block) encoder is a map fn :M→ X n
that encodes each message m ∈ M to a codeword xn(m) := x1(m)x2(m) . . . xn(m) ∈ X n. The codeword
xn(m) is then mapped to a state

W⊗nxn(m) = Wx1(m) ⊗Wx2(m) ⊗ · · · ⊗Wxn(m) ∈ S(H⊗n). (58)

The decoder is described by a positive operator-valued measurement (POVM) Πn = {Πn,1, . . . ,Πn,M}
on H⊗n, where Πn,i ≥ 0 and

∑M
i=1 Πn,i = 1. The pair (fn,Πn) =: Cn is called a code with rate R =

1
n log |Cn| = 1

n logM . The error probability of sending a message m with the code Cn is εm(Cn) :=

1 − Tr
(
Πn,mWxn(m)

)
. We use εmax(Cn) = maxm∈M εm(Cn) and ε̄(Cn) = 1

M

∑
m∈M εm(Cn) to denote the

8

475



maximal error probability and the average error probability, respectively. Given a sequence xn ∈ X n, we
denote by

Pxn(x) :=
1

n

n∑
i=1

1 {x = xi} (59)

the empirical distribution of xn, where xi is the i-th position of xn. A constant composition code with a
composition Pxn refers to a codebook whose codewords all have the same distribution Pxn .

Denote by ε∗ (n,R) the smallest average probability of error among all the coding strategies with a
blocklengh n and coding rate R. The reliability function of the channel W and the coding rate R is
defined by4

E(R) := lim sup
n→+∞

− 1

n
log ε∗ (n,R) . (60)

Winter [16] and Dalai [17] showed that the reliability function of a c-q channel can be upper bounded by

E(R) ≤ Ẽsp(R) and E(R) ≤ Esp(R), respectively.

2.3. Nussbaum-Szko la Distributions. Assume the dimension of the Hilbert space H is d. Given
density operators ρ, σ ∈ S(H) with spectral decompositions

ρ =
∑
i∈[d]

λi|xi〉〈xi|, and σ =
∑
j∈[d]

γj |yj〉〈yj |, (61)

we define the Nussbaum-Szko la distributions [55] pρ,σ, qρ,σ as

pρ,σ(i, j) := λi|〈xi|yj〉|2, qρ,σ(i, j) := γj |〈xi|yj〉|2. (62)

The distributions pρ,σ, qρ,σ have the same mathematical properties as the density operators ρ, σ in some
cases, and thus are useful in the sequel. First, one can verify that [55, 40],

Dα (ρ‖σ) = Dα (pρ,σ‖qρ,σ) , ∀α ∈ [0, 1]. (63)

Second, for product states ρ1 ⊗ ρ2 and σ1 ⊗ σ2, we have

pρ1⊗ρ2,σ1⊗σ2 = pρ1,σ1 ⊗ pρ2,σ2 , and qρ1⊗ρ2,σ1⊗σ2 = qρ1,σ1 ⊗ qρ2,σ2 . (64)

Third, ρ � σ if and only if pρ,σ � qρ,σ. Moreover, we will use ω to represent the pair of indices (i, j) in
Eq. (62), and view the distributions pρ,σ, qρ,σ as diagonal matrices, e.g. Tr [pρ,σ] =

∑
ω∈[d]×[d] p

ρ,σ(ω).

3. Relation between the Strong and Weak Sphere-Packing Exponents

This section derives alternative formulations of the strong and weak sphere-packing exponents of
Eqs. (2)-(3), and provides a relation between these two exponents. As we will show later, the derived
formulations are essentially optimization problems in the primal domain, while the expressions in Eqs. (2)
and (3) are corresponding dual representations.

We first consider the following convex optimization problem and then exploit it to establish variational
formulations of the sphere-packing exponents. Let ρ, τ ∈ S(H) be two density operators. Consider the
following convex optimization problem:

(P) e(r) := inf
σ∈S(H)

D (σ‖ρ) ,

subject to D (σ‖τ) ≤ r.
(65)

The above primal problem is interpreted as finding the optimal operator σ? that achieves the minimum
relative entropy e(r) to ρ, within r-radius to τ . The following result shows the dual representation of
problem (P) via Lagrangian duality.

Lemma 5 ([52, Section 3.7], [56], [44, Theorem III.5]). The dual problem of (P) is given by

(D) sup
s≥0

{
−(1 + s) logQ[ 1

1+s

(ρ‖τ)− sr
}
. (66)

4Throughout this paper, we skip the dependence of the channel W in the reliability function and error-exponent functions.
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Proof. By the method of Lagrange multipliers, the primal problem in Eq. (65) can be rewritten as

sup
s≥0

inf
σ∈S(H)

{D(σ‖ρ) + s (D(σ‖τ)− r)} (67)

= sup
s≥0

{
(1 + s) inf

σ∈S(H)

{
1

1 + s
D(σ‖ρ) +

s

1 + s
D(σ‖τ)

}
− sr

}
(68)

= sup
s≥0

{
−(1 + s) logQ[ 1

1+s

(ρ‖τ)− sr
}
, (69)

where the last equality follows from [44, Theorem III.5]. �

Theorem 6 (Variational Representations of the Sphere-Packing Exponents). Let W : X → S(H) be a
classical-quantum channel. For any R > R∞, we have

Ẽsp(R,P ) = sup
0<α≤1

min
σ∈S(H)

{
1− α
α

(
D[
α (W‖σ|P )−R

)}
, and (70)

Esp(R,P ) ≤ sup
0<α≤1

min
σ∈S(H)

{
1− α
α

(Dα (W‖σ|P )−R)

}
, (71)

where Ẽsp(R,P ) and Esp(R,P ) are defined in Eqs. (36) and (33), respectively.
Moreover, equality in Eq. (71) is attained when maximizing over all prior distributions, i.e.,

Esp(R) = max
P∈P(X )

Esp(R,P ) = max
P∈P(X )

sup
0<α≤1

min
σ∈S(H)

{
1− α
α

(Dα (W‖σ|P )−R)

}
. (72)

Proof. We start with the proof of Eq. (70). Observe that

min
σ∈S(H)

D (V‖σ|P ) = min
σ∈S(H)

∑
x∈X

P (x) Tr [Vx (log Vx − log σ)] (73)

= I(P,V). (74)

We find

Ẽsp(R,P ) = min
V:X→S(H)

{D (V‖W|P ) : I(P,V) ≤ R} (75)

= min
V:X→S(H)

{
D (V‖W|P ) : min

σ∈S(H)
D (V‖σ|P ) ≤ R

}
(76)

= sup
s≥0

min
V:X→S(H)

{
D (V‖W|P ) + s

(
min

σ∈S(H)
D (V‖σ|P )−R

)}
(77)

= sup
s≥0

min
σ∈S(H)

min
V:X→S(H)

{
−sR+

∑
x∈X

P (x)D (Vx‖Wx) + s ·D (Vx‖σ)

}
(78)

= sup
s≥0

min
σ∈S(H)

{∑
x∈X

P (x) min
Vx∈S(H)

[D (Vx‖Wx) + s ·D (Vx‖σ)− sR]

}
(79)

= min
σ∈S(H)

{∑
x∈X

P (x) min
Vx∈S(H)

{D (Vx‖Wx) : D (Vx‖σ) ≤ R}

}
. (80)

In Eq. (77) we introduced the constraint into the objective function via the Lagrange multiplier s ≥ 0;
and Eq. (79) follows from the linearity of the convex combination. By Lemma 5, the inner minimum over
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Vx ∈ S(H) can be represented as its dual problem:

Ẽsp(R,P ) = min
σ∈S(H)

sup
s≥0

{
−(1 + s)

∑
x∈X

P (x) log

[
Q[ 1

1+s

(Wx‖σ)

]
− sR

}
(81)

= min
σ∈S(H)

sup
0<α≤1

{
−
∑

x∈X P (x) log
[
Q[α (Wx‖σ)

]
− (1− α)R

α

}
, (82)

where we substitute α = 1/(1+s). From Lemma 1, the numerator in the bracket of Eq. (82) is a concave-
convex saddle function for every σ ∈ S(H) and every α ∈ (0, 1]. Hence, we invoke the minimax theorem,
Proposition 7 below, to exchange the order of min-sup in Eq. (82):

Ẽsp(R,P ) = sup
0<α≤1

min
σ∈S(H)

{
−
∑

x∈X P (x) log
[
Q[α (Wx‖σ)

]
− (1− α)R

α

}
(83)

= sup
0<α≤1

min
σ∈S(H)

{
1− α
α

(
D[
α (W‖σ|P )−R

)}
, (84)

where in (84) we recall the definition of the log-Euclidean α-Rényi divergence, Eq. (12), and hence prove
the first claim in Eq. (70).

Next, we will prove Eq. (71). From Jensen’s inequality and the concavity of the logarithm, the right-
hand side of Eq. (71) implies that

sup
0<α≤1

min
σ∈S(H)

{
1− α
α

(∑
x∈X

P (x)Dα (Wx‖σ)−R

)}
(85)

= sup
0<α≤1

min
σ∈S(H)

{
− 1

α

∑
x∈X

P (x) log Tr
[
Wα
x σ

1−α]− 1− α
α

R

}
(86)

≥ sup
0<α≤1

min
σ∈S(H)

{
− 1

α
log Tr

[∑
x∈X

P (x)
[
Wα
x σ

1−α]]− 1− α
α

R

}
(87)

= Esp(R,P ), (88)

where the last equality follows from Eq. (39).
Finally, Eq. (72) follows from the following identity proved by Mosonyi and Ogawa [44, Proposition

IV.2]:

max
P∈P(X )

min
σ∈S(H)

Dα (W‖σ|P ) = max
P∈P(X )

min
σ∈S(H)

Dα (P ◦W‖P ⊗ σ) , (89)

Note that the above relation also holds for D[
α.

Proposition 7 ([49, Proposition 21]). Let A ⊂ R≥0 be a convex set and let B be a compact Hausdorff
space. Further, let f : A× B → R be concave on A as well as convex on B. Then

sup
x∈A

inf
y∈B

f(x, y)

x
= inf

y∈B
sup
x∈A

f(x, y)

x
. (90)

�

The following corollary is a simple consequence of the variational representations of the sphere-packing
exponents in Theorem 6 and Eq. (14) .

Corollary 8. For any classical-quantum channel W : X → S(H), R > R∞, and P ∈ P(X ), it holds that

Esp(R,P ) ≤ Ẽsp(R,P ). (91)
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4. The Refined Strong Sphere-Packing Bound

The main result in the section is a refined strong sphere-packing bound for c-q channels with a polyno-
mial pre-factor (Theorem 9), improving upon a subexponential pre-factor obtained in [17]. To establish
this result, we combine Blahut’s insight of relating a channel coding problem to binary hypothesis testing
[10, 57] with a sharp concentration inequality employed in Ref. [32]. Our proof consists of three major
steps: (i) reduce the channel coding problem to binary hypothesis testing (Lemma 11); (ii) bound its
type-I error from below (Propositions 12 and 14); (iii) employ Theorem 6 to relate the derived bound to
the strong sphere-packing exponent.

Theorem 9 (Refined Strong Sphere-Packing Bound of Constant Composition Codes). Consider a classical-
quantum channel W : X → S(H) and R ∈ (R∞, CW). For every γ > 0, there exist an N0 ∈ N and a
constant A > 0 such that for all constant composition codes Cn of length n ≥ N0 with message size
|Cn| ≥ exp{nR}, we have

ε̄ (Cn) ≥ A

n
1
2(1+|E′sp(R)|+γ)

exp {−nEsp(R)} . (92)

The following corollary generalizes the refined sphere-packing bound for constant composition codes to
arbitrary codes via a standard argument [7, p. 95].

Corollary 10 (Refined Strong Sphere-Packing Bound for General Codes). Consider a classical-quantum
channel W : X → S(H) and R ∈ (R∞, CW). There exist some t > 1/2 and N0 ∈ N such that for all codes
of length n ≥ N0, we have

ε∗ (n,R) ≥ n−t exp {−nEsp(R)} . (93)

Proofs for Theorem 9 and Corollary 10 are provided in Section 4.2.

Theorem 9 yields

log
1

ε̄(Cn)
≤ nEsp(R) +

1

2

(
1 +

∣∣E′sp(R)
∣∣) log n+ o(log n), (94)

where the term 1
2

(
1 +

∣∣E′sp(R)
∣∣) can be viewed as a second-order term (see the discussions in [58, Section

4.4]). On the other hand, for the case of classical non-singular channels5, it was shown that [24, Theorem
3.6], for all constant composition codes Cn and rate R ∈ (Rcrit, CW),

log
1

ε̄(Cn)
≥ nEr(R) +

1

2

(
1 +

∣∣E′r(R)
∣∣) log n+ Ω(1), (95)

where Er(R) is the random coding exponent, and Rcrit is the critical rate such that Er(R) = Esp(R) for all
R ≥ Rcrit [6, p. 160], [15]. Hence our result, Theorem 9, matches the achievability up to the logarithmic
order. We note that whether the third order o(log n) in Eq. (94) can be improved to O(1) is still unknown
even for the classical case.

4.1. Converse Bounds for Quantum Hypothesis Testing. This section contains the hypothesis
testing reduction method (Lemma 11) and two converse bounds (Propositions 12 and 14). We first
present a proof that relates the decoding error of a code to binary hypothesis testing. We note that
Lemma 11 below is similar to the meta-converse in Ref. [60]. However, the idea dates back to Blahut [10].

Lemma 11. For any classical-quantum channel W : X → S(H) and any code Cn with message size M ,
it follows that

εmax (Cn) ≥ max
σ∈S(H)

min
xn∈Cn

α̂ 1
M

(
W⊗nxn ‖σ⊗n

)
. (96)

5For classical singular channels, one has log 1
ε̄(Cn)

≥ nEr(R) + 1
2

logn + Ω(1) [24]. Further, it was conjectured that [59]

that log 1
ε̄(Cn)

≤ nEsp(R) + 1
2

logn+ o(logn), for all asymmetric classical singular channels and constant composition codes.

However, such a result remains open.
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Proof. Let xn(m) be the codeword encoding the message m ∈ {1, . . . ,M}. Define a binary hypothesis
testing problem:

H0 : W⊗nxn(m), (97)

H1 : σn :=

n⊗
i=1

σi, (98)

where σn ∈ S (H⊗n) can be viewed as a dummy channel output. Since
∑M

m=1 β (Πn,m;σn) = 1 for any
POVM Πn = {Πn,1, . . . ,Πn,M}, and β (Πn,m;σn) ≥ 0 for every m ∈ M, there must exist a message

m ∈M for any code Cn such that β (Πn,m;σn) ≤ 1
M . Fix xn := xn (m). Then

εmax (Cn) ≥ εm (Cn) = α
(
Πn,m;W⊗nxn

)
≥ α̂ 1

M

(
W⊗nxn ‖σn

)
. (99)

Since the above inequality (99) holds for every σn ∈ S (H⊗n), it follows that

εmax (Cn) ≥ max
σ∈S(H)

min
xn∈Cn

α̂ 1
M

(
W⊗nxn ‖σ⊗n

)
. (100)

�

In the following Proposition, we generalize Blahut’s one-shot converse Hoeffding bound [10, Theorem
10] to the quantum setting. This result is essentially a Chebyshev-type bound. We will employ it to lower
bound the error of “bad sequences” that yield smaller error exponent in Section 4.2.

Proposition 12 (One-Shot Converse Hoeffding Bound). Consider the following binary hypothesis testing
problem: H0 : ρ versus H1 : σ, where ρ, σ ∈ S(H). For every r ≥ 0 and ν > 0, we have

α̂ 1
4

exp{−(r+ν)} (ρ‖σ) ≥ 1

2

(
1

2
− K(ρ, σ)

ν2

)
exp {−ν − φ (r|ρ‖σ)} (101)

where

φ (r|ρ‖σ) := sup
α∈(0,1]

{
1− α
α

(Dα (ρ‖σ)− r)
}
, (102)

and

K(ρ, σ) := V (q̂t‖q) + V (q̂t‖p) ∈ R≥0, (103)

where (p, q) are the Nussbaum-Szko la distributions of (ρ, σ), and

q̂t(ω) =
p1−t(ω)qt(ω)∑

ω∈supp(p)∩supp(q) p
1−t(ω)qt(ω)

, ω ∈ supp(p) ∩ supp(q) (104)

for some t ∈ [0, 1].

Proof. If ρ and σ have disjoint supports, then Eq. (101) trivially holds since Dα(ρ‖σ) = +∞ for all α ∈
[0, 1]. Hence, we assume ρ and σ have non-disjoint support in the following. Let B := supp(p)∩supp(q) be
the intersection of the joint support of p and q. Fix φ(r) := φ(r|ρ‖σ) = φ(r|p‖q) since Dα(ρ‖σ) = Dα(p‖q).

For any test 0 ≤ Q ≤ 1, Nagaoka showed that [56, Lemma 1] (see also [54, Proposition 2], [55]):

α (Q; ρ) + δβ (Q;σ) ≥ 1

2

 ∑
ω:p(ω)≤δq(ω)

p(ω) +
∑

ω:p(ω)>δq(ω)

δq(ω)

 , ∀δ ≥ 0. (105)

Let r > 0, δ = er−φ(r), and µ ≥ 0 that will be specified later. Eq. (105) implies that

α̂µ (ρ‖σ) ≥ 1

2

 ∑
ω:p(ω)eφ(r)≤q(ω)er

p(ω) +
∑

ω:p(ω)eφ(r)>q(ω)er

er−φ(r)q(ω)

− er−φ(r)µ (106)

≥ 1

2

 ∑
ω∈U1(ν)

p(ω) +
∑

ω∈U2(ν)

er−φ(r)q(ω)

− er−φ(r)µ, (107)
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where in the last line we introduce the decision regions for some ν > 0:

U1(ν) :=
{
ω : q̂t(ω)e−ν < p(ω)eφ(r) ≤ q(ω)er

}
, U2(ν) :=

{
ω : q̂t(ω)e−ν < q(ω)er < p(ω)eφ(r)

}
, (108)

and q̂t is the tilted distribution (see [10, Theorem 4]):

q̂t(ω) =
p1−t(ω)qt(ω)∑
ω∈B p

1−t(ω)qt(ω)
, ω ∈ B (109)

for some t ∈ [0, 1] such that q̂t satisfies

D (q̂t‖p) = φ (r) and D (q̂t‖q) = r. (110)

In the following, we are going to lower bound the right-hand side of Eq. (107) in terms of q̂t. From
Eq. (108), we find ∑

ω∈U1(ν)

p(ω) ≥ e−(φ(r)+ν)
∑

ω∈U1(ν)

q̂t(ω);

∑
ω∈U2(ν)

q(ω) ≥ e−(r+ν)
∑

ω∈U2(ν)

q̂t(ω).
(111)

Next, we estimate the error in the union:
∑

ω∈U1(ν)∪U2(ν) q̂t(ω). Let

UA :=
{
ω : q̂t(ω)e−ν < q(ω)er

}
, UB :=

{
ω : q̂t(ω)e−ν < p(ω)eφ(r)

}
. (112)

Observe that U1(ν) ∪ U2(ν) = UA ∩ UB and∑
ω∈UA∩UB

q̂t(ω) ≥ 1−
∑
ω∈Uc

A

q̂t(ω)−
∑
ω∈Uc

B

q̂t(ω). (113)

Denote by

UT :=

{
ω :

∣∣∣∣log
q̂t(ω)

q(ω)
e−r
∣∣∣∣ ≥ ν} (114)

=

{
ω :

∣∣∣∣∣log
q̂t(ω)

q(ω)
−
∑
ω∈B

q̂t(ω) log
q̂t(ω)

q(ω)

∣∣∣∣∣ ≥ ν
}
, (115)

where the last equality follows from Eq. (110). Since Uc
A ⊆ UT , we apply Chebyshev’s inequality to obtain∑

ω∈Uc
A

q̂t(ω) ≤
∑
ω∈UT

q̂t(ω) ≤ V (q̂t‖q)
ν2

. (116)

Similarly, ∑
ω∈Uc

B

q̂t(ω) ≤ V (q̂t‖p)
ν2

. (117)

Let K = K(ρ, σ) := V (q̂t‖q) + V (q̂t‖p). Equation (113), along with (116) and (117) yields that∑
ω∈U1(ν)∪U2(ν)

q̂t(ω) =
∑

ω∈UA∩UB

q̂t(ω) ≥ 1− K

ν2
. (118)
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Hence, from Eqs. (107), (111), and (118), we obtain the lower bound of the type-I error:

α̂µ (ρ‖σ) ≥ 1

2

 ∑
ω∈U1(ν)

p(ω) +
∑

ω∈U2(ν)

er−φ(r)q(ω)

− er−φ(r)µ, (119)

≥ 1

2
e−(φ(r)+ν)

 ∑
ω∈U1(ν)

q̂t(ω) +
∑

ω∈U2(ν)

q̂t(ω)

− er−φ(r)µ (120)

≥ 1

2
e−(φ(r)+ν)

 ∑
ω∈U1(ν)∪U2(ν)

q̂t(ω)

− er−φ(r)µ (121)

≥ 1

2
e−(φ(r)+ν)

(
1− K

ν2

)
− er−φ(r)µ. (122)

Choose µ = 1
4 exp{−(r + ν)}. Eq. (122) further gives

α̂ 1
4

exp{−(r+ν)} (ρ‖σ) ≥ 1

2
e−(φ(r)+ν)

(
1− K

ν2

)
− 1

4
e−(φ(r)+ν) (123)

=
1

2

(
1

2
− K

ν2

)
e−(φ(r)+ν), (124)

which completes the proof. �

Applying Proposition 12 to product states yields the following result.

Proposition 13 (Chebyshev-Type Converse Hoeffding Bound). Let W : X → S(H) be a classical-
quantum channel, and let R ∈ (R∞, CW). Consider the binary hypothesis testing with sequences

H0 : ρn = W⊗nxn ; (125)

H1 : σn =
(
σ?R,Pxn

)⊗n
, (126)

where xn ∈ X n and σ?R,P ∈ arg minσ∈S(H) sup0<α≤1
1−α
α (Dα (W‖σ|Pxn)−R). Then, for every c > 0,

there exist N0 ∈ N and κ1, κ2 ∈ R>0 such that for all n ≥ N0 we have

α̂c exp{−nR} (ρn‖σn) ≥ κ1 exp
{
−κ2

√
n− nE(2)

sp (R,Pxn)
}
, (127)

Remark 4.1. Consider independent and identically distributed (i.i.d.) extensions H0 : ρ⊗n and H1 : σ⊗n.
Proposition 13 then recovers the converse proof of the quantum Hoeffding bound (see [56] and [61, Section
5.4]): for r ∈ (0, D(ρ‖σ)),

lim
n→+∞

− 1

n
log α̂exp{−nr}

(
ρ⊗n‖σ⊗n

)
≤ sup

0<α≤1

1− α
α

(Dα(ρ‖σ)− r) . (128)

Proof. Denote by pn =
⊗n

i=1 pxi , q
n =

⊗
i=1 qxi Nussbaum-Szko la distributions of ρn and σn [55] with

joint supports Bxi := supp(pxi) ∩ supp(qxi), i ∈ [n]. Let Rn := R − γn, where γn := ν+log 4c
n . Fix an

arbitrary R0 ∈ (R∞, R). Choose an N0 ∈ N such that Rn ≥ R0 for all n ≥ N0. Consider n ≥ N0 onwards.
Then, Proposition 12 implies that

α̂c exp{−nR} (ρn‖σn) ≥ 1

2

(
1

2
− K(ρn, σn)

ν2

)
exp {−ν − nφn (Rn|ρn‖σn)} (129)

=
1

2

(
1

2
− K(ρn, σn)

ν2

)
exp

{
−ν − nE(2)

sp (Rn, Pxn)
}
, (130)
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where the second equality (130) follows from the saddle-point property, item (a) in Proposition 3. Since
the coefficient K(ρn, σn) in Eq. (103) is additive for product states, one has

K (ρn, σn) = V (q̂nt ‖pn) + V (q̂nt ‖qn) (131)

= n
∑
x∈X

Pxn(x) [V (q̂x,t‖px) + V (q̂x,t‖qx)] , (132)

where Pxn is the empirical distribution for the sequence xn, and q̂nt :=
⊗n

i=1 q̂xi,t is the tilted distribution
(see Eqs. (104) and (109)). Note that q̂nt � pn and q̂nt � qn for all t ∈ [0, 1]. This guarantees that the
quantity K(ρn, σn) is finite.

Let

Vmax := max
t∈[0,1], Pxn∈P(X )

∑
x∈X

Pxn(x) [V (q̂x,t‖px) + V (q̂x,t‖qx)] ∈ R>0, (133)

we obtain

K (ρn, σn) ≤ nVmax. (134)

By choosing ν =
√

4nVmax, Eqs. (130) and (134) give

α̂c exp{−nR} (ρn‖σn) ≥ 1

8
exp

{
−
√

4nVmax − nE(2)
sp (R− γn, Pxn)

}
. (135)

Finally, we will remove the rate back-off term γn in Eq. (135). Recall item (a) in Proposition 4 that

the map r 7→ E
(2)
sp (r, Pxn) is convex and monotone decreasing. Further, we assume E

(2)
sp (R0, Pxn) > 0

and thus the E
(2)
sp (·, Pxn) is differentiable at R0 by item (c) in Proposition 4. Otherwise, the monotone

decreases imply that E
(2)
sp (R,Pxn) = E

(2)
sp (R0, Pxn) = 0, which already completes the proof. Denoting by

∂− the left derivative, the convexity then implies that

E(2)
sp (R− γn, Pxn) ≤ E(2)

sp (R,Pxn)− γn∂−E(2)
sp (R− γn, Pxn), (136)

≤ E(2)
sp (R,Pxn)− γn

∂E
(2)
sp (r, Pxn)

∂r

∣∣∣∣∣
r=R0

, (137)

where the last inequality (137) follows from the monotone decreases. Let

Υ := max
Pxn∈P(X )

∣∣∣∣∣ ∂E(2)
sp (r, Pxn)

∂r

∣∣∣∣∣
r=R0

∣∣∣∣∣ . (138)

Note that Υ ∈ R≥0 due to R0 > R∞ and item (d) of Proposition 4. Then, Eqs. (135), (137), and (138)
lead to

α̂c exp{−nR} (ρn‖σn) ≥ 1

8
exp

{
−
√

4nVmax − γnΥ− nE(2)
sp (R,Pxn)

}
. (139)

Setting κ1 = 1/8 and choosing a constant κ2 ∈ R>0 such that
√

4nVmax + γnΥ ≤ κ2
√
n for all n ≥ N0

conclude this corollary. �

The following Proposition 14 is a sharp converse bound from Bahadur-Ranga Rao’s inequality (see
Appendix B). In Section 4.2, we will exploit this result to bound the error of “good sequences” with a
polynomial pre-factor.

Proposition 14 (Sharp Converse Hoeffding Bound). Let W : X → S(H) be a classical-quantum channel,
and let R ∈ (R∞, CW). Consider the following binary hypothesis testing problem with sequences

H0 : ρn = W⊗nxn ; (140)

H1 : σn =
(
σ?R,Pxn

)⊗n
, (141)

where xn ∈ X n, and σ?R,P := arg minσ∈S(H) sup0<α≤1
1−α
α (Dα (W‖σ|Pxn)−R) satisfying

E(2)
sp (R,Pxn) ∈ [ν,+∞) (142)
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for some positive ν > 0. For every c > 0, there exists a constant N0 ∈ N, independent of the sequences
ρn and σn, such that for all n ≥ N0 we have

α̂c exp{−nR} (ρn‖σn) ≥ A

n
1
2

(
1+s?R,Pxn

) exp
{
−nE(2)

sp (R,Pxn)
}
, (143)

where s?R,P := − ∂E
(2)
sp (r,P )
∂r

∣∣∣∣
r=R

, and A ∈ R>0 is a finite constant depending on R, ν and W.

Proof. Fix an arbitrary R0 ∈ (R∞, R). Let γn := logn
2n + x

n and Rn := R− γn for some x ∈ R. The choice
of x and the rate back-off term γn will become evident later. Let N1 ∈ N such that Rn ∈ [R0, R] for all
n ≥ N1. Subsequently, we choose such n ≥ N1 onwards.

Let pn :=
⊗n

i=1 pxi and qn :=
⊗n

i=1 qxi , where (pxi , qxi) are Nussbaum-Szko la distributions [55] of
(Wxi , σ

?) for every i ∈ [n]. Since Dα(ρxi‖σxi) = Dα(pxi‖qxi), for α ∈ (0, 1], again we shorthand

φn(Rn) := φn (Rn|ρn‖σn) = φn(Rn|pn‖qn) = E(2)
sp (Rn, Pxn) , (144)

where the last equality in Eq. (144) follows from the saddle-point property, item (a) in Proposition 3.
Moreover, item (c) in Proposition 3 implies that the state σ? dominants all the states: σ? � Wx, for all
x ∈ supp(Pxn), Hence, we have pn � qn. Without loss of generality, we set zero all elements of qxi that
do not lie in the support of pxi , i.e. qxi(ω) = 0, ω 6∈ supp(pxi), i ∈ [n], because those elements do not
contribute in φn(Rn).

Repeating Nagaoka’s argument [56] in Eq. (105) for any 0 ≤ Qn ≤ 1 and choosing δ = exp{nRn −
nφn(Rn)} yields

α (Qn; ρn) + δβ (Qn;σn) ≥ 1

2

(
α (U; pn) + enRn−nφn(Rn)β (U; qn)

)
, (145)

where α (U; pn) :=
∑

ω∈Uc pn(ω), β (U; qn) :=
∑

ω∈U q
n(ω), and

U :=
{
ω : pn(ω)enφn(Rn) > qn(ω)enRn

}
. (146)

In the following, we will employ Bahadur-Ranga Rao’s concentration inequality, Theorem 18, in Ap-
pendix B, to further lower bound α (U; pn) and β (U; qn). Before proceeding, we need to introduce some
notation. Let

Λ0,Pxn
(t) :=

∑
x∈X

Pxn(x)Λ0,xi(t), Λ1,Pxn
(t) :=

∑
x∈X

Pxn(x)Λ0,xi(t);

Λ0,xi(t) := logEpxi

[
e
t log

qxi
pxi

]
, Λ1,xi(t) := logEqxi

[
e
t log

pxi
qxi

]
,

(147)

and the Lengendre-Fenchel transform:

Λ∗j,Pxn
(z) := sup

t∈R
{tz − Λj,Pxn

(t)} , j ∈ {0, 1}. (148)

The quantities Λ∗j,Pxn
(z) would appear in the lower bounds of α (U; pn) and β (U; qn) obtained by Bahadur-

Randga Rao’s inequality as shown later.
Note that Eqs. (144), (142) and item (a) in Proposition 4 imply that, for all r ∈ [R0, R],

φn(r) ≥ φn(R) ≥ ν > 0. (149)

Lemma 17 in Appendix A thus relates the Legendre-Fenchel transform Λ∗j,Pxn
(z) to the desired error-

exponent function φn(Rn): for all r ∈ [R0, R]:

Λ′′0,Pxn
(t) > 0, ∀t ∈ [0, 1]; (150)

Λ∗0,Pxn
(φn(r)− r) = φn(r); (151)

Λ∗1,Pxn
(r − φn(r)) = r, (152)
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and there exists a unique optimizer t? := t?r,Pxn
to the Legendre-Fenchel transform Λ∗0,Pxn

(z) with

t? =
s?r,Pxn

1 + s?r,Pxn

∈ (0, 1), (153)

s?r,Pxn
= −∂φn(r)

∂r
. (154)

Next, we show that the optimizer t? in Eq. (153) can be further bounded in the following region:

t? ∈

[
ν

Ψ(R,ν)

1 + ν
Ψ(R,ν)

, 1

]
=: H, (155)

where

Ψ(R, ν) := max
Pxn : ν≤φn(R)<+∞

I
(2)
1 (Pxn ,W) ∈ R>0. (156)

Owing to t? =
s?r,Pxn

1+s?r,Pxn
in Eq. (153), proving Eq. (155) is equivalent to showing that, whenever φn(R) ∈

[ν,+∞) and r ∈ [R0, R]:

s?r,Pxn
≥ ν

Ψ(R, ν)
. (157)

Item (a) in Proposition 4 gives φn(Ψ(R, ν)) = 0 because I
(2)
1 (Pxn ,W) ≤ Ψ(R, ν). Continuing from

Eq. (154) leads to

s?r,Pxn
= −∂φn(r)

∂r
≥ −∂φn(r)

∂r

∣∣∣∣
r=R

≥ ν − 0

Ψ(R, ν)−R
≥ ν

Ψ(R, ν)
, (158)

where the first and second inequalities follow from the fact that φn(r) is convex and non-increasing in r.
Since Eq. (155) shows that the optimizer t? always lies in the compact set H, we can define the following

quantities:

Vmax(R, ν) := max
t∈H,Pxn∈PR,ν(X )

Λ′′0,Pxn
(t); (159)

Vmin(R, ν) := min
t∈H,Pxn∈PR,ν(X )

Λ′′0,Pxn
(t); (160)

Kmax(R, ν) := 15
√

2π max
t∈H,Pxn∈PR,ν(X )

T0,Pxn
(t)

Λ′′0,Pxn
(t)

; (161)

T0,Pxn
(t) :=

∑
x∈X

Pxn(x)Eq̂x,t

[∣∣∣∣log
qx
px
− Λ′0,x(t)

∣∣∣∣3
]
, (162)

where

PR,ν(X ) :=
{
Pxn ∈ P(X ) : ν ≤ E(2)

sp (R,Pxn) ≤ Esp(R) < +∞
}

(163)

is a compact set owing to the continuity of r 7→ φn(r). Also note that the maximization and minimization
in the above definitions are well-defined and finite because Λ′′0,(·)(·) and T0,(·)(·) are continuous functions

in (0, 1]× PR(X ) [32, Lemma 6], where PR(X ) is defined in Eq. (44). Further, the quantity Vmin(R, ν) is
bounded away from zero because of the positivity in Eq. (150).

Now, we are ready to derive the lower bounds for α (U; pn) and β (U; qn). Let N2 ∈ N be sufficiently
large such that for all n ≥ N2,

√
n ≥ 1 + (1 +Kmax(R, ν))2√

Vmin(R, ν)
. (164)
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Letting Zi = log qi − log pi with probability measure µi = pi, and z = Rn − φn(Rn) in Theorem 18, the
Bahadur-Randga Rao’s inequality gives

α (U; pn) :=
∑
ω∈Uc

pn(ω) (165)

= Pr

{
1

n

n∑
i=1

Zi ≥ Rn − φn(Rn)

}
(166)

≥ 2A(R, ν)√
n

exp
{
−nΛ∗0,Pxn

(φn(Rn)−Rn)
}

(167)

where

A(R, ν) :=
e−Kmax(R,ν)√
4πVmax(R, ν)

. (168)

Similarly, applying Theorem 18 with Zi = log pi − log qi, µi = qi, and z = φn(Rn)−Rn yields

β (U; qn) :=
∑
ω∈U

qn(ω) (169)

= Pr

{
1

n

n∑
i=1

Zi ≥ φn(Rn)−Rn

}
(170)

≥ 2A(R, ν)√
n

exp
{
−nΛ∗1,Pxn

(Rn − φn(Rn))
}
. (171)

Continuing from Eq. (167) and item (b) in Lemma 17 gives

α (U; pn) ≥ 2A(R, ν)√
n

exp {−nφn (Rn)} . (172)

Eq. (171) together with item (c) in Lemma 17 yields

β (U; qn) ≥ 2A(R, ν)√
n

exp {−nRn} = 2c exp {−nR} , (173)

where we choose x = − logA(R, ν) + log c in the rate back-off term γn = logn
2n + x

n . Thus we can bound

the left-hand side of Eq. (145) from below by A(R,ν)√
n

exp{−nφn(Rn)}. For any test 0 ≤ Qn ≤ 1 such that

β(Qn;σn) ≤ c exp {−nR} , (174)

we have,

α(Qn; ρn) ≥ A(R, ν)√
n

exp {−nφn (Rn)} . (175)

Hence, by choosing Qn in Eqs.(174) and (175) that attains α̂c exp{−nR}, we have

α̂c exp{−nR} (ρn‖σn) ≥ A(R, ν)√
n

exp {−nφn (Rn)} =
A(R, ν)√

n
exp

{
−nE(2)

sp (R− γn, Pxn)
}
. (176)

It remains to remove the rate back-off term γn in Eq. (176). By Taylor’s theorem, one has

E(2)
sp (R− γn, Pxn) = E(2)

sp (R,Pxn)− γn
∂E

(2)
sp (r, Pxn)

∂r

∣∣∣∣∣
r=R

+
γ2
n

2

∂2E
(2)
sp (r, Pxn)

∂r2

∣∣∣∣∣
r=R̄

, (177)
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for some R̄ ∈ (R0, R). Recalling item (d) in Lemma 17, one can show that

− ∂E
(2)
sp (r, Pxn)

∂r

∣∣∣∣∣
r=R

= s?R,Pxn
∈ R>0,

∂2E
(2)
sp (r, Pxn)

∂r2

∣∣∣∣∣
r=R̄

=
(1 + s̄)3

Λ′′0,Pxn

(
s̄

1+s̄

) ≤ (1 + s̄)3

Vmin(R, ν)
=: Υ ∈ R>0,

(178)

where s̄ := − ∂E(2)
sp (r, Pxn)/∂r

∣∣∣
r=R̄
∈ R>0, and the inequality follows from Eq. (160). Then, Eqs. (176),

(177) and (178) lead to

α̂c exp{−nR} (ρn‖σn) ≥ A(R, ν)√
n

exp
{
−nE(2)

sp (R,Pxn)− n
[
γn

(
s?R,Pxn

+
γn
2

Υ
)]}

(179)

=
A(R, ν)

n
1
2

(
1+s?R,Pxn

) exp
{
−nE(2)

sp (R,Pxn)− `n
}
, (180)

where we denote by

`n := −
(
s?R,Pxn

+
γn
2

Υ
)

logA(R, ν) +
γnΥ

4
log n. (181)

Since s?R,Pxn
∈ R>0 and γn log n = o(1), we choose a constant L ∈ R>0 and N3 ∈ N such that

`n ≤ L, ∀N ≥ N3. (182)

Hence, Eqs. (180) and (182) lead to

α̂c exp{−nR} (ρn‖σn) =
A(R, ν) exp{−L}

n
1
2

(
1+s?R,Pxn

) exp
{
−nE(2)

sp (R,Pxn)
}
. (183)

By letting N0 := max {N1, N2, N3} and A′ := A(R, ν) exp{−L}, we conclude the proof. �

4.2. Proofs of Theorem 9 and Corollary 10. We are ready to prove our main result—the refined
strong sphere-packing bound in Theorem 9 for constant composition codes and Corollary 10 for general
codes.

Proof of Theorem 9. Fix any rate R∞ < R < CW. First note that by Ref. [15, Proposition 10], we find

Esp(R) ∈ R>0. (184)

By Lemma 11 and the standard expurgation method (see e.g. [7, p. 96], [10, Theorem 20], [57, p. 395]),
it holds for every constant composition code Cn with a common composition Pxn that

ε (Cn) ≥ 1

2
εmax

(
C′n
)
≥ max

σ∈S(H)

1

2
α̂1/|C′n|

(
W⊗nxn ‖σ⊗n

)
(185)

≥ max
σ∈S(H)

1

2
α̂2 exp{−nR}

(
W⊗nxn ‖σ⊗n

)
(186)

≥ 1

2
α̂2 exp{−nR}

(
W⊗nxn ‖(σ?)⊗n

)
, (187)

where C′n is an expurgated code with message size |C′n| = d|Cn|/2e ≥ 1
2 exp{nR}. Inequality (186) holds

because the map µ 7→ α̂µ is monotone decreasing. In the last line (187) we denote by

σ? = σ?R,Pxn
:= arg min

σ∈S(H)
sup

0<α≤1

{
1− α
α

(Dα (W‖σ|Pxn)−R)

}
(188)

a channel output state that depends on the coding rate R and the composition Pxn .
In the following, we deal with sequences of inputs that will yield different lower bounds. Fix an arbitrary

δ ∈ (0, Esp(R)). Let ν := Esp(R)− δ > 0, and recall the definition in Eq. (163):

PR,ν(X ) :=
{
Pxn ∈ P(X ) : ν ≤ E(2)

sp (R,Pxn) ≤ Esp(R) < +∞
}
. (189)
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The set PR,ν(X ) ensures that the error exponents of the input sequences xn with composition Pxn ∈
PR,ν(X ) are close to the sphere-packing exponent Esp(R).

For sequences xn with Pxn /∈ PR,ν(X ), we infer that

Esp(R)− E(2)
sp (R,Pxn) = δ > 0. (190)

We then apply the Chebyshev-type bound, Proposition 13, with c = 2 to obtain, ∀Pxn /∈ PR,ν(X ),

α̂2 exp{−nR}
(
W⊗nxn ‖(σ?)⊗n

)
≥ κ1 exp

{
−κ2

√
n− nE(2)

sp (R,Pxn)
}
, (191)

≥ κ1 exp
{
−κ2

√
n− n [Esp (R)− δ]

}
, (192)

for all sufficiently large n, say n ≥ N1 ∈ N. The equality in Eq. (191) follows from the saddle-point
property, item (a) in Proposition 3, and the constants κ1, κ2 are positive and finite constants.

Next, we consider sequences xn with Pxn ∈ PR,ν(X ). Since such sequences satisfy Eq. (142), we apply
the sharp lower bound, Proposition 14, with c = 2 to obtain, ∀Pxn ∈ PR,ν(X ),

α̂2 exp{−nR}
(
W⊗nxn ‖(σ?)⊗n

)
≥ 2A

n
1
2

(
1+s?R,Pxn

) exp
{
−nE(2)

sp (R,Pxn)
}
, (193)

for all sufficiently large n, say n ≥ N2 ∈ N, and some A ∈ R>0. In the following, we will relate the term
s?R,Pxn

in Eq. (193) to
∣∣E′sp(R)

∣∣. The idea follows similar from [32, Eqs. (111)–(114)]. Let

P?R(X ) :=
{
P ∈ P(X ) : E(2)

sp (R,P ) = Esp(R)
}
, (194)

Pθ(X ) :=

{
P ∈ PR,ν(X ) : min

Q∈P?R(X )
‖P −Q‖1 ≥ θ

}
. (195)

Since s?R,(·) is uniformly continuous on the compact set P ∈ PR,ν(X ) (see item (d) of Proposition 4), one

has

∀γ ∈ R>0, ∃f(γ) ∈ R>0, such that ∀P,Q ∈ PR,ν(X ), ‖P −Q‖1 < f(γ)⇒
∣∣s?R,P − s?R,Q∣∣ < γ. (196)

By choosing γ ∈ R>0 that satisfies Eq. (196), it follows that

s?R,Pxn
≤
∣∣E′sp(R)

∣∣+ γ, ∀Pxn ∈ PR,ν(X )\Pf(γ)(X ). (197)

Hence, Eqs. (193) and (197) further lead to, ∀Pxn ∈ PR,ν(X )\Pf(γ)(X ),

α̂2 exp{−nR}
(
W⊗nxn ‖(σ?)⊗n

)
≥ 2A

n
1
2(1+|E′sp(R)|+γ)

exp {−nEsp (R)} . (198)

For the case Pxn ∈ PR,ν(X ) ∩ Pf(γ)(X ), we have

Esp(R)− max
P∈Pf(γ)(X )

E(2)
sp (R,Pxn) =: δ′ > 0. (199)

Then, Eqs. (193) and (199) give, ∀Pxn ∈ PR,ν(X ) ∩ Pf(γ)(X ),

α̂2 exp{−nR}
(
W⊗nxn ‖(σ?)⊗n

)
≥ 2A

n
1
2

(
1+s?R,Pxn

) exp
{
−n
[
Esp (R)− δ′

]}
. (200)

Finally, by comparing the bounds in Eqs. (192), (198) and (200), the first-order leading term in the
right-hand side of Eq. (198) decays faster than that of Eqs. (192) and (200). Thus, for sufficiently large
n, say n ≥ N3 ∈ N, we combine the bounds to obtain, for all compositions Pxn ∈ P(X ),

α̂2 exp{−nR}
(
W⊗nxn ‖(σ?)⊗n

)
≥ 2A

n
1
2(1+|E′sp(R)|+γ)

exp {−nEsp (R)} . (201)

By combining Eqs. (187), (201), we conclude our result: for any γ > 0 and every n-blocklength constant
composition code Cn,

ε̄ (Cn) ≥ A

n
1
2(1+|E′sp(R)|+γ)

exp {−nEsp (R)} , (202)

for all sufficiently large n ≥ N0 := max {N1, N2, N3}. �
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Proof of Corollary 10. For an n-blocklength code, there are at most
(n+|X |−1
|X |−1

)
< n|X | different composi-

tions. Hence, for any code with M = exp{nR} codewords, there exists some codewords M ′ of the same

composition such that M ′ ≥ M/n|X |. Denote by C′n such constant composition codes with composition
Pxn .

Fix an arbitrary R0 ∈ (R∞, R), and choose N1 be an integer such that R− |X |n log n ≥ R0 for all n ≥ N1.
Consider such n ≥ N1 onwards. By following the similar steps in Theorem 9, we obtain

ε∗ (n,R) ≥ ε̄
(
C′n
)
≥ A

n
1
2

(
1+s?

R,Pnx

) exp

{
−nE(2)

sp

(
R− |X |

n
log n, Pxn

)}
, (203)

for all sufficiently large n, say n ≥ N2 ∈ N, and some s?R,Pxn
∈ R>0. Let

Υ := max
P∈P(X ):E

(2)
sp (R̄,P )=Esp(R̄)

∣∣∣∣∣ ∂E(2)
sp (r, P )

∂r

∣∣∣∣∣
r=R0

∣∣∣∣∣ . (204)

Then, item (a) in Proposition 4 implies that

E(2)
sp

(
R− |X |

n
log n, Pxn

)
≤ E(2)

sp (R,Pxn) + Υ · |X |
n

log n (205)

≤ Esp(R) + Υ · |X |
n

log n, ∀n ≥ N2 (206)

Combining Eqs. (203) and (206) gives

ε∗ (n,R) ≥ A

n
1
2

(
1+s?R,Pxn

)
+Υ|X |

exp {−nEsp(R)} , ∀n ≥ max{N1, N2}. (207)

By choosing t ∈ R>0 such that n−t ≤ An−
1
2

(
1+s?R,Pxn

)
−Υ|X |

, and letting N0 := max{N1, N2}, we conclude
our claim. �

5. Symmetric Classical-Quantum Channels

In this section, we consider a symmetric c-q channels. By using the symmetric property of the channels,

we show that the uniform distribution, denoted by UX , achieves the maximum of E
(1)
sp (R, ·) and E

(2)
sp (R, ·).

Then, by choosing the optimal output state σ?R = σ?R,UX , every input sequence in the codebook is a good

codeword and attains the sphere-packing exponent Esp(R). Hence, we can remove the assumption of
constant composition codes and apply Theorem 9 in Section 4 to obtain the optimal pre-factor for the
sphere-packing bound (Theorem 15).

A c-q channel W : X → S(H) is symmetric if it satisfies

Wx := V x−1W1(V †)x−1, ∀x ∈ X , (208)

where W1 ∈ S(H) is an arbitrary density operator, and V satisfies V †V = V V † = V |X | = 1H.

Theorem 15 (Exact Sphere-packing Bound for Symmetric Classical-Quantum Channels). For any rate
R ∈ (R∞, CW), there exist A > 0 and N0 ∈ N such that for all codes Cn of length n ≥ N0 with message
size |Cn| ≥ exp{nR}, we have

εmax (Cn) ≥ A

n
1
2(1+|E′sp(R)|) exp {−nEsp(R)} . (209)

Proof. The proof consists of the following steps. First, we show that the distribution UX satisfies

E
(1)
sp (R,UX ) = E

(2)
sp (R,UX ) = Esp(R). Second, we show that E

(2)
sp (R,P ) = Esp(R) for all P ∈ P(X ),

which means that any codeword attains the sphere-packing exponent. Finally, we follow Theorem 9 to
complete the proof.
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Fix any R ∈ (R∞, CW). From the definition of the symmetric channels in Eq. (208), it is not hard to
verify that UXW

α = V UXW
αV † for all α ∈ (0, 1], where we denote by PWα :=

∑
x∈X P (x)Wα

x for all
α ∈ (0, 1]. Hence, it follows that

Tr[Wα
x (UXW

α)
1−α
α ] = Tr[V x−1Wα

1 V
†x−1(UXW

α)
1−α
α ] (210)

= Tr[Wα
1 (UXW

α)
1−α
α ] (211)

for all x ∈ X and α ∈ (0, 1]. Summing Eq. (211) over all x ∈ X and dividing by M yields that

Tr[Wα
x (UXW

α)
1−α
α ] = Tr[(UXW

α)
1
α ], (212)

for all x ∈ X and α ∈ (0, 1]. Recalling Proposition 16 below, the above equation shows that the distribution
UX indeed maximizes E0(s, P ), ∀s ∈ R≥0. Then we have

E(1)
sp (R,UX ) = sup

s≥0

{
max
P∈P(X )

E0(s, P )− sR
}

= Esp(R).

Further, Jensen’s inequality shows that E
(2)
sp (R,UX ) ≥ E

(1)
sp (R,UX ) = Esp(R), and thus, E

(2)
sp (R,UX ) =

Esp(R).
Next, let (α?R, σ

?
R) be the saddle-point of FR,UX (·, ·) (see Eq. (43)). One can observe from the definition

of E
(2)
sp and Eq. (212) that all the quantities Dα?R

(Wx‖σ?R), x ∈ X , are equal. By item (c) of Proposition

3 and Eq. (300), we obtain

σ?R =

(
UXW

α?R
)1/α?R

Tr
[(
UXW

α?R
)1/α?R] , (213)

which, in turn, implies that

E(2)
sp (R,P ) = sup

α∈(0,1]
FR,P (α, σ?R) = sup

s≥0
{E0(s, UX )− sR} = Esp(R), ∀P ∈ P(X ). (214)

Further, we have ∣∣E′sp(R)
∣∣ =

1− α?R
α?R

=

∣∣∣∣∣∂E(2)
sp (R,P )

∂R

∣∣∣∣∣ , ∀P ∈ P(X ). (215)

Since Eqs. (214) and (5) indicates that every input sequence attains the sphere-packing exponent, we
apply the same arguments in the proof of Theorem 9 to conclude this theorem.

Proposition 16 ([14, Eq. (38)]). Let s ∈ R≥0 be arbitrary. The Necessary and sufficient condition for
the distribution P ? to maximize E0(s, P ) is

Tr

[
W 1/(1+s)
x ·

(∑
x∈X

P ?(x)W 1/(1+s)
x

)s]
≥ Tr

(∑
x∈X

P ?(x)W 1/(1+s)
x

)1+s
 , ∀x ∈ X (216)

with equality if P ?(x) 6= 0.

�

6. Conclusions

In this paper, we provided an exposition of sphere-packing bounds in classical and quantum channel
coding. Unlike classical results, there are two different quantum sphere-packing exponents, one being
stronger than the other. We provided variational representations for these two exponents, and showed
that they are ordered by the Golden-Thompson inequality. Our proof strategy was inspired by Blahut’s
approach of hypothesis testing reduction [10] and Altuğ-Wagner’s technique in strong large deviation
theory [32]. Specifically, the pre-factor of the bound, that is akin to the converse Hoeffding bound in
quantum hypothesis testing, can be improved by Bahadur-Ranga Rao’s sharp concentration inequality
[26, 27]. Consequently, we obtained a refined strong sphere-packing bound for c-q channels and constant
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composition codes with a polynomial pre-factor f(n) = n−
1
2(1+|E′sp(R)|+o(1)). Moreover, the established

result matches the best known random coding bound (i.e. achievability) up to the logarithmic order
[32, 23, 24, 25]. For the case of general codes, the derived pre-factor is of the polynomial order, i.e. f(n) =
O(n−t) for some t > 1/2. We are able to obtain the exact pre-factor without the assumption of constant
composition codes for a class of symmetric c-q channels. We note that the exact pre-factor for general
codes is still open even in the classical case. Finally, our refinement enables a moderate deviation analysis
in c-q channels [29] (see also [30]).

Appendix A. Lengendre-Fenchel Transform and Error-Exponent Functions

In this section, we will see that the Lengendre-Fenchel transform is closely related to the error-exponent
function of hypothesis testing and channel coding. Consider the following binary hypotheses:

H0 : pn := px1 ⊗ px2 ⊗ · · · pxn ,
H1 : qn := qx1 ⊗ qx2 ⊗ · · · qxn ,

(217)

where pxi , qxi are probability mass functions; and xi belongs to some finite alphabet X and n ∈ N be
fixed. Given any r ≥ 0, recall the definition of the error-exponent function in Eq. (56):

φn(r) = φn(r|pn‖qn) = sup
α∈(0,1]

{
1− α
α

(
1

n
Dα (pn‖qn)− r

)}
. (218)

Without loss of generality, we assume that pn � qn have the same support since elements of qxi , that do
not lie in the support of pxi , do not contribute to φn(r).

Let Z be a random variable with probability measure µ. Further, we assume Z is finite on supp(µ).
The cumulant generating function (c.g.f.) of Z is defined as

Λ(t) := logEµ
[
etZ
]
, t ∈ R. (219)

The Lengendre-Fenchel transform of Λ(t) is

Λ∗(z) := sup
t∈R
{zt− Λ(t)} . (220)

Such a transform plays a significant role in concentration inequalities, convex analysis, and large deviation
theory [27].

Let Pxn be the empirical distribution of the sequence xn = x1x2 . . . xn. Let Z0 = log qn

pn with probability

measure pn, Z1 = log pn

qn with probability measure qn, and denote

Λ0,Pxn
(t) :=

1

n
logEpn

[
etZ0

]
=
∑
x∈X

Pxn(x)Λ0,xi(t),

Λ1,Pxn
(t) :=

1

n
logEqn

[
etZ1

]
=
∑
x∈X

Pxn(x)Λ1,xi(t);

(221)

where

Λ0,xi(t) := logEpxi

[
e
t log

qxi
pxi

]
, Λ1,xi(t) := logEqxi

[
e
t log

pxi
qxi

]
. (222)

Rewrite the right-hand side of Eq. (218) with α = 1
1+s , and observe that∑

x∈X
Pxn(x)sD 1

1+s
(px‖qx) = −(1 + s)Λ0,Pxn

(
s

1 + s

)
(223)

=: E
(2)
0 (s, Pxn). (224)

Then the error-exponent function in Eq. (218) can also be viewed as a Lengendre-Fenchel transform of

E
(2)
0 (s, Pxn):

φn(r) = sup
s≥0

{
E

(2)
0 (s, Pxn)− sr

}
. (225)
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The following lemma relates φn(r) to Λ∗j,Pxn
(z), the Lengendre-Fenchel transform of Eq. (221):

Λ∗j,Pxn
(z) := sup

t∈R
{tz − Λj,Pxn

(t)} , j ∈ {0, 1}. (226)

Lemma 17. Let pn and qn, n ∈ N, be described as above. Assume r > 1
nD0 (pn‖qn) and φn(r) > 0. The

following hold:

(a) Λ′′0,Pxn
(t) > 0 for all t ∈ [0, 1].

(b) Λ∗0,Pxn
(φn(r)− r) = φn(r).

(c) Λ∗1,Pxn
(r − φn(r)) = r.

(d) Let t? := t?r,Pxn
be the optimizer of Λ∗0,Pxn

(z) in Eq. (226), and s? := s?r,Pxn
be the optimizer of φn(r)

in Eq. (225). The optimizer t? ∈ (0, 1) is unique, and satisfies Λ′0,Pxn
(t?) = φn(r)−r. In particular,

one has t? = s?

1+s? ; s? = −∂φn(r)
∂r ; and ∂2φn(r)

∂r2 = −
(
∂2E

(2)
0 (s,Pxn )

∂s2

∣∣∣∣
s=s?

)−1

=

(
1+s?r,Pxn

)3

Λ′′0,Pxn
(t?)

> 0.

Before proving Lemma 17, we will need the following partial derivatives with respect to t:

Λ′0,xi(t) = Eq̂xi,t

[
log

qxi
pxi

]
, Λ′1,xi(t) = Eq̂xi,1−t

[
log

pxi
qxi

]
; (227)

Λ′′0,xi(t) = Varq̂xi,t

[
log

qxi
pxi

]
, Λ′′1,xi(t) = Varq̂xi,1−t

[
log

pxi
qxi

]
, (228)

where we denote the tilted distributions for every i ∈ [n] and t ∈ [0, 1] by

q̂xi,t(ω) :=
pxi(ω)1−tqxi(ω)t∑

ω∈supp(pxi )
pxi(ω)1−tqxi(ω)t

, ω ∈ supp(pxi). (229)

It is also easy to verify that

Λ0,xi(t) = Λ1,xi(1− t), Λ′0,xi(t) = −Λ′1,xi(1− t), Λ′′0,xi(t) = Λ′′1,xi(1− t). (230)

This lemma closely follows Ref. [32, Lemma 9]; however, the major difference is that we prove the
claim using φn(r|ρn‖σn) in Eq. (56) instead of the discrimination function: min {D (τ‖ρ) : D (τ‖σ) ≤ r}
in Eq. (65). This expression is crucial to obtaining the sphere-packing bound in Theorem 9 in the strong
from, cf. Eq. (2), instead of the weak form, cf. Eq. (3).

Proof of Lemma 17-(a). We will prove this statement by contradiction. Let t ∈ [0, 1], Assuming that
Λ′′0,Pxn

(t) = 0, implies Λ′′0,x(t) = 0, ∀x ∈ supp(Pxn). Recall from Eq. (228)

0 = Λ′′0,x(t) = Varq̂x,t

[
log

qx
px

]
, (231)

which is equivalent to

px(ω) = qx(ω) · e−Λ′0,x(t), ∀ω ∈ supp(px). (232)

Summing both sides of Eq. (232) over ω ∈ supp(px) gives

1 = Tr
[
p0
xqx
]

e−Λ′0,x(t). (233)

Then, Eqs. (232) and (233) imply that

φn(r) = sup
0<α≤1

α− 1

α

(
r −

∑
x∈X

Pxn(x)Dα (px‖qx)

)
(234)

= sup
0<α≤1

α− 1

α

(
r +

∑
x∈X

Pxn(x) log Tr
[
p0
xqx
])

(235)

= 0, (236)

where Eq. (236) follows since r > 1
nD0(pn‖qn) = − 1

n

∑
x∈X Pxn(x) log Tr

[
p0
xqx
]

by assumption. However,
this contradicts with the assumption φn(r) > 0. Hence, we conclude item (a). �
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Proof of Lemma 17-(b). Observe that E
(2)
0 (s, Pxn)− sr in Eq. (225) is strictly concave in s ∈ R≥0 since

∂2E
(2)
0 (s, Pxn)

∂s2
= − 1

(1 + s)3
Λ′′0,Pxn

(
s

1 + s

)
< 0, (237)

owing to Eqs. (224), (228), and Lemma (a). Moreover, s = 0 cannot be an optimum in Eq. (225);
otherwise, it will violate the assumption φn(r) ≥ 0. Thus a unique maximizer s? ∈ R>0 exists such that

φn(r) = −s?r + E
(2)
0 (s?, Pxn) (238)

=
s?

1 + s?
Λ′0,Pxn

(
s?

1 + s?

)
− Λ0,Pxn

(
s?

1 + s?

)
. (239)

where in the second equality we use Eq. (224) and

r =
∂E

(2)
0 (s, Pxn)

∂s

∣∣∣∣∣
s=s?

(240)

= − 1

1 + s?
Λ′0,Pxn

(
s?

1 + s?

)
− Λ0,Pxn

(
s?

1 + s?

)
. (241)

Comparing Eq. (239) with (241) gives

Λ′0,Pxn

(
s?

1 + s?

)
= φn(r)− r, (242)

which is exactly the optimum solution to Λ∗0,Pxn
(z) in Eq. (226) with

t? =
s?

1 + s?
∈ (0, 1), (243)

z = φn(r)− r. (244)

Hence, we obtain

Λ∗0,Pxn
(φn(r)− r) = t?z − Λ0,Pxn

(t?) (245)

=
s?

1 + s?
(φn(r)− r)− Λ0,Pxn

(
s?

1 + s?

)
(246)

=
s?

1 + s?
Λ′0,Pxn

(
s?

1 + s?

)
− Λ0,Pxn

(
s?

1 + s?

)
(247)

= φn(r), (248)

where Eqs. (242) and (239) are used in the third and last equalities. �

Proof of Lemma 17-(c). This proof follows from similar arguments in item (b) and Eq. (230). Eqs. (242)
and (230) lead to

Λ′1,Pxn

(
1

1 + s?

)
= r − φn(r), (249)

which satisfies the optimum solution to Λ1,Pxn
(z) in Eq. (226) with t? = 1

1+s? ∈ (0, 1) and z = r − φn(r).
Then,

Λ∗1,Pxn
(r − φn(r)) = t?z − Λ1,Pxn

(t?) (250)

=
1

1 + s?
(r − φn(r))− Λ1,Pxn

(
s?

1 + s?

)
(251)

=
1

1 + s?
Λ′1,Pxn

(
1

1 + s?

)
− Λ1,Pxn

(
1

1 + s?

)
(252)

= r, (253)

where the third equality is due to Eq. (249), and the last equality follows from Eqs. (230) and (241).
�
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Proof of Lemma 17-(d). The fact that a unique optimizer t? ∈ (0, 1) exists such that Λ′0,Pxn
(t?) = φn(r)−r

follows directly from Eqs. (242), (243) and Λ′′0,Pxn
(t) > 0, for t ∈ [0, 1].

Moreover, Eqs. (238), (240), and (237) yield

−∂φn(r)

∂r
= s?, (254)

∂2φn(r)

∂r2
= −∂s

?

∂r
= −

(
∂2E

(2)
0 (s, Pxn)

∂s2

)−1
∣∣∣∣∣∣
s=s?

=
(1 + s?)3

Λ0,Pxn

(
s?

1+s?

) , (255)

which completes the claim in item (d). �

Appendix B. A Tight Large Deviation Inequality

Let (Zi)
n
i=1 be a sequence of independent, real-valued random variables with probability measures

(µi)
n
i=1. Let Λi(t) := logE

[
etZi

]
and define the Legendre-Fenchel transform of 1

n

∑n
i=1 Λi(·) to be:

Λ∗n(z) := sup
t∈R

{
zt− 1

n

n∑
i=1

Λi(t)

}
, ∀z ∈ R. (256)

Then there exists a real number t? ∈ (0, 1] for every z ∈ R such that

z =
1

n

n∑
i=1

Λ′i(t
?); (257)

Λ∗n(z) = zt? − 1

n

n∑
i=1

Λi(t
?). (258)

Define the probability measure µ̃i via

dµ̃i
dµi

(zi) := et
?zi−Λi(t

?), (259)

and let Z̄i := Zi − Eµ̃i [Zi]. Furthermore, define m2,n :=
∑n

i=1 Varµ̃i
[
Z̄i
]
, m3,n :=

∑n
i=1Eµ̃i

[∣∣Z̄i∣∣3],
and Kn(t?) :=

15
√

2πm3,n

m2,n
. With these definitions, we can now state the following sharp concentration

inequality for 1
n

∑n
i=1 Zi:

Theorem 18 (Bahadur-Ranga Rao’s Concentration Inequality [32, Proposition 5], [26]). Provided that
√
m2,n ≥ 1 + (1 +Kn (t?))2, then

Pr

{
1

n

n∑
i=1

Zi ≥ z

}
≥ e−nΛ∗n(z) e−Kn(t?)

2
√

2πm2,n
. (260)

Appendix C. Proof of Proposition 2

Proposition 2 (Properties of α-Rényi Mutual Information and Radius). Given any classical-quantum
channel W : X → S(H), the following holds:

(a) The map (α, P ) 7→ I
(2)
α (P,W) is continuous on [0, 1]× P(X ).

(b) For every P ∈ P(X ), α 7→ I
(2)
α (P,W) is monotone increasing on [0, 1].

(c) For every P ∈ P(X ), α 7→ 1−α
α I

(2)
α (P,W) is strictly concave on (0, 1].

(d) The map α 7→ Cα,W is continuous and monotone increasing on [0, 1].

Items (a), (b), and (c) also hold for I
(1)
α (P,W).
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Proof of Proposition 2-(a). Fix an arbitrary sequence (αk, Pk)k∈N such that αk ∈ [0, 1], Pk ∈ P(X ), and
limk→+∞(αk, Pk) = (α∞, P∞) ∈ [0, 1]× P(X ). Let

σ?k ∈ arg min
σ∈S(H)

Dαk (W‖σ|Pk) , ∀k ∈ N ∪ {+∞}. (261)

The definition in Eq. (29) implies that

lim inf
k→+∞

I(2)
αk

(Pk,W) = lim inf
k→+∞

Dαk (W‖σ?k|Pk) (262)

≥ Dα∞

(
W

∥∥∥∥ lim
k→+∞

σ?k

∣∣∣∣P∞) (263)

≥ min
σ∈S(H)

Dα∞ (W‖σ|P∞) (264)

= I(2)
α∞(P∞,W), (265)

where, in order to establish (263), we used the lower semi-continuity of the map σ 7→ Dαk(W‖σ|Pk) in
Eq. (23) and the continuity of (α, P ) 7→ Dα (W‖σ?k|P ) (Eq. (18) in Lemma 1).

Next, we let

σk := (1− εk)σ?∞ + εk
1

d
, ∀k ∈ N; (266)

εk :=
‖Pk − P∞‖1

2
. (267)

Then, it follows that

lim sup
k→+∞

I(2)
αk

(Pk,W) ≤ lim sup
k→+∞

{Dαk (W‖σk|Pk)} (268)

= lim sup
k→+∞

{
Dαk (W‖σk|P∞) +

∑
x∈X

[Pk(x)− P∞(x)]Dαk (Wx‖σk)

}
(269)

≤ lim sup
k→+∞

{Dαk (W‖σk|P∞)}+ lim sup
k→+∞

{∑
x∈X

[Pk(x)− P∞(x)]Dαk (Wx‖σk)

}
(270)

= Dα∞ (W‖σ?∞|P∞) + lim sup
k→+∞

{∑
x∈X

[Pk(x)− P∞(x)]Dαk (Wx‖σk)

}
(271)

= I(2)
α∞(P∞,W) + lim sup

k→+∞

{∑
x∈X

[Pk(x)− P∞(x)]Dαk (Wx‖σk)

}
. (272)

Here, Eq. (269) follows from the definition in Eq. (23). Inequality (270) holds because the superior
limit of sum is smaller than the sum of superior limits. Equality (271) holds because σk � Wx for
all x ∈ supp(P∞) and k ∈ N ∪ {+∞}. Thus, the map (αk, σk) 7→ Dαk(W‖σk|P∞) is continuous for
k ∈ N ∪ {+∞}.
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It remains to show the second term in Eq. (272) is actually zero. The definition in Eq. (23) and direct
calculation show that

lim sup
k→+∞

{∑
x∈X

[Pk(x)− P∞(x)]Dαk (Wx‖σk)

}
(273)

≤ lim sup
k→+∞

{
εk ·max

x∈X
Dαk(Wx‖σk)

}
(274)

≤ lim sup
k→+∞

{
εk ·max

x∈X
Dαk

(
Wx

∥∥∥∥εk1d
)}

(275)

= lim sup
k→+∞

{
εk ·

[
log εk + max

x∈X
Dαk

(
Wx

∥∥∥∥1d
)]}

(276)

= lim sup
k→+∞

εk log εk (277)

= 0, (278)

where Eq. (275) follows from the dominance of α-Rényi divergence [62, Section 4]; in the last equality
(278) we use the convention limεk↓0 εk log εk = 0 and limk→+∞ Pk = P∞. Hence, item (a) is proven. �

Proof of Proposition 2-(b). Recall the definition in Eq. (29). The statement immediately follows from
Eq. (18) (see also [44, Lemma IV.5]) because the minimization over σ ∈ S(H) preserves the monotonicity.

�

Proof of Proposition 2-(c). The claim was proven by Mosonyi and Ogawa [44, Appendix B]. �

Proof of Proposition 2-(d). The map α 7→ Cα,W is continuous and monotone increasing on [0, 1].
Berge’s maximum theorem [63, Section IV.3], [64, Lemma 3.1] shows that the continuous map (α, P ) 7→
I

(2)
α (P,W) maximized over the compact set P ∈ P(X ) is still continuous for α ∈ [0, 1].

Lastly, we show the the assertions for I
(1)
α (P,W). Quantum Sibson’s identity [51] implies that I

(1)
α (P,W) =

α
1−αE0((1−α)/α, P ) for α ∈ [0, 1), where E0 is defined in Eq. (34). Items (a) and (b) hold directly. Item (c)

follows from the concavity of s 7→ E0(s, P ) for all s ≥ 0 [15]. �

Appendix D. Proof of Proposition 3

Proposition 3 (Saddle-Point). Consider a classical-quantum channel W : X → S(H), any R ∈ (R∞, CW),
and P ∈ P(X ). Let

SP,W(H) := {σ ∈ S(H) : ∀x ∈ supp(P ), Wx 6⊥ σ} . (279)

Define

FR,P (α, σ) :=


1− α
α

(Dα (W‖σ|P )−R) , α ∈ (0, 1)

0, α = 1
, (280)

on (0, 1]× S(H), and denote by

PR(X ) :=

{
P ∈ P(X) : sup

0<α≤1
inf

σ∈S(H)
FR,P (α, σ) ∈ R>0

}
. (281)

The following holds

(a) For any P ∈ P(X ), FR,P (·, ·) has a saddle-point on (0, 1]× SP,W(H) with the saddle-value:

min
σ∈S(H)

sup
0<α≤1

FR,P (α, σ) = sup
0<α≤1

min
σ∈S(H)

FR,P (α, σ) = E(2)
sp (R,P ). (282)

(b) If P ∈ PR(X ), the saddle-point is unique.
(c) Fix P ∈ PR(X ). Any saddle-point (α?R,P , σ

?
R,P ) of FR,P (·, ·) satisfies α?R,P ∈ (0, 1) and

σ?R,P �Wx, ∀x ∈ supp(P ). (283)
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Proof of Proposition 3-(a). Fix arbitrary R > R∞ and P ∈ P(X ). In the following, we prove the existence
of a saddle-point of FR,P (·, ·) on (0, 1] × SP,W(H). Ref. [65, Lemma 36.2] states that (α?, σ?) is a saddle
point of FR,P (·, ·) if and only if the supremum in

sup
α∈(0,1]

inf
σ∈SP,W(H)

FR,P (α, σ) (284)

is attained at α? ∈ (0, 1], the infimum in

inf
σ∈SP,W(H)

sup
α∈(0,1]

FR,P (α, σ) (285)

is attained at σ? ∈ SP,W(H), and the two extrema in Eqs. (284), (285) are equal and finite. We first claim
that, ∀α ∈ (0, 1],

inf
σ∈SP,W(H)

FR,P (α, σ) = inf
σ∈S(H)

FR,P (α, σ). (286)

To see this, observe that for any α ∈ (0, 1), Eqs. (11) and (24) yield

∀σ ∈ S(H)\SP,W(H), Dα (W‖σ|P ) = +∞, (287)

which, in turn, implies

∀σ ∈ S(H)\SP,W(H), FR,P (α, σ) = +∞. (288)

Further, Eq. (286) holds trivially when α = 1. Hence, Eq. (286) yields

sup
α∈(0,1]

inf
σ∈SP,W(H)

FR,P (α, σ) = sup
α∈(0,1]

inf
σ∈S(H)

FR,P (α, σ) (289)

Owing to the fact R > R∞ and Eq. (38), we have

E(2)
sp (R,P ) = sup

α∈(0,1]
inf

σ∈S(H)
FR,P (α, σ) < +∞, (290)

which guarantees the supremum in the right-hand side of Eq. (290) is attained at some α ∈ (0, 1]. Namely,
there exists some ᾱR,P ∈ (0, 1] such that

sup
α∈(0,1]

inf
σ∈SP,W(H)

FR,P (α, σ) = max
α∈[ᾱR,P ,1]

inf
σ∈S(H)

FR,P (α, σ) < +∞. (291)

Thus, we complete our claim in Eq. (284). It remains to show that the infimum in Eq.(285) is attained at
some σ? ∈ SP,W(H) and the supremum and infimum are exchangeable. To achieve this, we will show that(
[ᾱR,P , 1],SP,W(H), FR,P

)
is a closed saddle-element (see Definition 19 below) and employ the boundness

of [ᾱR,P , 1]× SP,W(H) to conclude our claim.

Definition 19 (Closed Saddle-Element [65]). We denote by ri and cl the relative interior and the closure
of a set, respectively. Let A,B be subsets of a real vector space, and F : A×B → R ∪ {±∞}. The triple
(A,B, F ) is called a closed saddle-element if for any x ∈ ri (A) (resp. y ∈ ri (B)),

(i) B (resp. A) is convex.
(ii) F (x, ·) (resp. F (·, y)) is convex (resp. concave) and lower (resp. upper) semi-continuous.
(iii) Any accumulation point of B (resp. A) that does not belong to B (resp. A), say yo (resp. xo)

satisfies limy→yo F (x, y) = +∞ (resp. limx→xo F (x, y) = −∞).

Fix an arbitrary α ∈ ri ([ᾱR,P , 1]) = (ᾱR,P , 1). We check that
(
SP,W(H), FR,P (α, ·)

)
fulfills the three

items in Definition 19. (i) The set SP,W(H) is clearly convex. (ii) Eq. (20) in Lemma 1 implies that
σ 7→ Dα(Wx‖σ) is convex and lower semi-continuous. Since convex combination preservers the convexity
and the lower semi-continuity, Eq. (280) yields that σ 7→ FR,P (α, σ) is convex and lower semi-continuous on
SP,W(H). (iii) Due to the compactness of S(H), any accumulation point of SP,W(H) that does not belong
to SP,W(H), say σo, satisfies σo ∈ S(H)\SP,W(H). Eqs. (287) and (288) then show that FR,P (α, σo) = +∞.
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Next, fix an arbitrary σ ∈ ri
(
SP,W(H)

)
. Owing to the convexity of SP,W(H), it follows that ri

(
SP,W(H)

)
= ri

(
cl
(
SP,W(H)

))
(see e.g. [66, Theorem 6.3]). We first claim cl

(
SP,W(H)

)
= S(H). To see this, ob-

serve that S>0(H) ⊆ SP,W(H) since a full-rank density operator is not orthogonal with every Wx, x ∈ X .
Hence,

S(H) = cl (S>0(H)) ⊆ cl
(
SP,W(H)

)
. (292)

On the other hand, the fact SP,W(H) ⊆ S(H) leads to

cl
(
SP,W(H)

)
⊆ cl (S(H)) = S(H). (293)

By Eqs. (292) and (293), we deduce that

ri
(
SP,W(H)

)
= ri

(
cl
(
SP,W(H)

))
= ri (S(H)) = S>0(H), (294)

where the last equality in Eq. (294) follows from [67, Proposition 2.9]. Hence, we obtain

∀σ ∈ ri
(
SP,W(H)

)
and ∀x ∈ X , σ �Wx. (295)

Now we verify that ([ᾱR,P , 1], FR,P (·, σ)) satisfies the three items in Definition 19. Fix an arbitrary
σ ∈ ri

(
SP,W(H)

)
. (i) The set (0, 1] is obviously convex. (ii) From Eq. (18) in Lemma 1, the map α 7→

FR,P (α, σ) is continuous on (0, 1). Further, it is not hard to verify that FR,P (1, σ) = 0 = limα↑1 FR,P (α, σ)
from Eqs. (295), (280), and (11). Item (c) in Proposition 2 implies that α 7→ FR,P (α, σ) on [ᾱR, 1) is
concave. Moreover, the continuity of α 7→ FR,P (α, σ) on [ᾱR,P , 1) guarantees the concavity of α 7→
FR,P (α, σ) on [ᾱR,P , 1]. (iii) Since [ᾱR,P , 1] is closed, there is no accumulation point of [ᾱR,P , 1] that does
not belong to [ᾱR,P , 1].

We are at the position to prove item (a) of Proposition 3. The closed saddle-element, along with the
boundness of SP,W(H) and Rockafellar’s saddle-point result [65, Theorem 8], [66, Theorem 37.3] imply
that

−∞ < sup
α∈[ᾱR,P ,1]

inf
σ∈SP,W(H)

FR,P (s, σ) = min
σ∈SP,W(H)

sup
α∈[ᾱR,P ,1]

FR,P (s, σ). (296)

Then Eqs. (291) and (296) lead to the existence of a saddle-point of FR,P (·, ·) on (0, 1]×SP,W(H). Hence,
item (a) is proved.

�

Proof of Proposition 3-(b). Fix arbitrary R ∈ (R∞, CW) and P ∈ PR(X ). We have

sup
0<α≤1

min
σ∈S(H)

FR,P (α, σ) ∈ R>0. (297)

First note that α? = 1 will not be a saddle point of FR,P (·, σ) because FR,P (1, σ) = 0, ∀σ ∈ S(H),
contradicting Eq. (297).

Now, fix α? ∈ (0, 1) to be a saddle-point of FR,P (·, ·). Eq. (20) in Lemma 1 implies that the map
σ 7→ Dα?(W‖σ|P ) is strictly convex, and thus the minimizer of Eq. (297) is unique. Next, let σ? ∈ SP,W(H)
be a saddle-point of FR,P (·, ·). Then,

FR,P (α, σ?) =
1− α
α

(
I(2)
α (P,W)−R

)
. (298)

Item (c) in Proposition 2 then shows that 1−α
α I

(2)
α (P,W) is strictly concave on (0, 1), which in turn implies

that FR,P (·, σ?) is also strictly concave on (0, 1). Hence, the maximizer of Eq. (297) is unique. �

Proof of Proposition 3-(c). As shown in the proof of item (b), α? = 1 is not a saddle point of FR,P (·, ·)
for any R > R∞ and P ∈ PR(X ). We assume (α?, σ?) is a saddle-point of FR,P (·, ·) with α? ∈ (0, 1), it
holds that

FR,P (α?, σ?) = min
σ∈S(H)

FR,P (α?, σ) =
α? − 1

α?
R+

1− α?

α?
min

σ∈S(H)
Dα?(W‖σ|P ). (299)
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We claim that the minimizer of Eq. (299) must satisfy

σ? =

(∑
x∈X P (x) Wα?

x

Tr[Wα?
x (σ?)1−α? ]

) 1
α?

Tr

[(∑
x∈X P (x) Wα?

x

Tr[Wα?
x (σ?)1−α? ]

) 1
α?
] . (300)

Our approach follows closely from Hayashi and Tomamichel [49, Lemma 5]. Observe that

arg min
σ∈S(H)

Dα (W‖σ|P ) = arg max
σ∈S(H)

gα(σ), ∀α ∈ (0, 1), (301)

where

gα(σ) :=
∑
x∈X

P (x) log Tr
[
Wα
x σ

1−α] . (302)

Note that the map σ 7→ gα(σ) is strictly concave for every α ∈ (0, 1) by Eq. (20) in Lemma 1. A sufficient
and necessary condition for σ to be an optimizer of Eq. (301) is

∂ωgα(σ) := Dgα(σ)[ω − σ] = 0, (303)

for all ω ∈ S(H), where Dgα(σ) denotes the Fréchet derivative of the map gα (see e.g. [49, Appendix C],
[68, 69, 70, 71]). Direct calculation shows that

∂ωgα(σ) = Tr

[∑
x∈X

P (x)
Wα
x

Tr [Wα
x σ

1−α]
∂ωσ

1−α

]
. (304)

Next, we check that the fixed-points of the following map attains Eq. (303):

σ 7→

(∑
x∈X P (x) Wα

x
Tr[Wα

x σ
1−α]

) 1
α

κα(σ)
, (305)

where κα(σ) denotes a finite normalization constant. Let σ̄ be a fix-point of the map in Eq. (305). Then
Eqs. (304) and (305) yield

∂ωgα(σ̄) = Tr
[
κα(σ̄)ασ̄α∂ωσ̄

1−α] = Tr
[
κα(σ̄)ασ̄α(1− α)σ̄−α(ω − σ̄)

]
= (1− α)κα(σ̄)α Tr [ω − σ̄] = 0.

(306)

By Brouwer’s fixed-point theorem, the map in Eq. (305) is indeed the optimizer for Eq. (301). Further,
it is clear from Eq. (300) that

σ? �Wx, ∀x ∈ supp(P ), (307)

and thus item (c) is proved.
�

Appendix E. Proof of Proposition 4

Proposition 4 (Properties of Error-Exponent Functions). Consider a classical-quantum channel W :
X → S(H) with R∞ < CW. We have

(a) Given every P ∈ P(X ), E
(2)
sp (·, P ) is convex and non-increasing on [0,+∞], and continuous on[

I
(2)
0 (P,W),+∞

]
. For every R > R∞, E

(2)
sp (R, ·) is continuous on P(X ). Further,

E(2)
sp (R,P ) =

+∞, R < I
(2)
0 (P,W)

0, R ≥ I(2)
1 (P,W)

. (308)
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(b) Esp(·) is convex and non-increasing on [0,+∞], and continuous on [R∞,+∞]. Further,

Esp(R) =

{
+∞, R < R∞

0, R ≥ CW
. (309)

(c) Consider any R ∈ (R∞, CW) and P ∈ PR(X ) (see Eq. (44)). The function E
(2)
sp (·, P ) is differen-

tiable with

s?R,P = − ∂E
(2)
sp (r, P )

∂r

∣∣∣∣∣
r=R

∈ R>0, (310)

where s?R,P := (1− α?R,P )/α?R,P , and α?R,P is the optimizer in Eq. (38).

(d) s?R,(·) in Eq. (310) is continuous on PR(X ).

Proof of Proposition 4-(a). Fix any arbitrary P ∈ P(X ). Item (b) in Proposition 2 shows that the map

α 7→ I
(2)
α (P,W) is monotone increasing on [0, 1]. Hence, from the definition in Eq. (38), it is not hard to

verify that E
(2)
sp (R,P ) = +∞ for all R ∈ (0, I

(2)
0 (P,W)); finite for all R > I

(2)
0 (P,W); and E

(2)
sp (R,P ) = 0,

for all R ≥ I(2)
1 (P,W).

For every α ∈ (0, 1], the function 1−α
α (I

(2)
α (P,W) − R) in Eq. (38) is an non-increasing, convex, and

continuous function in R ∈ R>0. Since E
(2)
sp (R,P ) is the pointwise supremum of the above function,

E
(2)
sp (R,P ) is non-increasing, convex, and lower semi-continuous function for all R ≥ 0. Furthermore,

since a convex function is continuous on the interior of the interval if it is finite [72, Corollary 6.3.3], thus

E
(2)
sp (R,P ) is continuous for all R > I

(2)
0 (P,W), and continuous from the right at R = I

(2)
0 (P,W).

To establish the continuity of E
(2)
sp (R,P ) in P ∈ P(X ), we first claim that there exists some ᾱR ∈ (0, 1]

such that for every P ∈ P(X ),

sup
α∈(0,1]

1− α
α

(
I(2)
α (P,W)−R

)
= sup

α∈[ᾱR,1]

1− α
α

(
I(2)
α (P,W)−R

)
. (311)

Recall that R > R∞ = maxP∈P(X ) I
(2)
0 (P,W). The continuity, item (a) in Proposition 2, implies that

there is an ᾱR > 0 such that

R ≥ I(2)
ᾱR(P,W), ∀P ∈ P(X ). (312)

Then, Eq. (312) and the monotone increases of the map α 7→ I
(2)
α (P,W) yield that,

1− α
α

(
I(2)
α (P,W)−R

)
< 0, ∀P ∈ P(X ), and α ∈ (0, ᾱR). (313)

The non-negativity of E
(2)
sp (R,P ) ≥ 0 ensures that the maximizer α? will not happen in the region (0, ᾱR),

and thus Eq. (311) is evident. Finally, Berge’s maximum theorem [63, Section IV.3], [64, Lemma 3.1]
coupled with the compactness of [ᾱR, 1] and item (a) in Proposition 2 complete our claim:

P 7→ E(2)
sp (R,P ) = sup

α∈[ᾱR,1]

1− α
α

(
I(2)
α (P,W)−R

)
is continuous on P(X ). (314)

�

Proof of Proposition 4-(b). The statement follows since item (a) holds for any P ∈ P(X ). �

Proof of Proposition 4-(c). For any R ∈ (R∞, CW) and P ∈ PR(X ), item (b) in Proposition 3 shows that
the optimizer α?R,P is unique. Moreover, Eq. (310) follows from item (d) in Lemma 17.

�
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Proof of Proposition 4-(d). The proof of this item is similar to [32, Proposition 3.4]. Fix any Po ∈ PR(X )
and consider arbitrary {Pk}k∈N such that Pk ∈ PR(X ), ∀k ∈ N, and limn→+∞ Pk = Po. Following from
Eq. (310), we have

s?R,Pk = − ∂E
(2)
sp (r, Pk)

∂r

∣∣∣∣∣
r=R

. (315)

Given any R ∈ (R∞, CW), the continuity of E
(2)
sp (R, ·) (see item (a)) implies that

lim
k→+∞

E(2)
sp (R,Pk) = E(2)

sp (R,Po). (316)

Then, continuity of the first-order derivative in [73, Corollary VI.6.2.8], we have

lim
k→+∞

s?R,Pk = lim
k→+∞

− ∂E
(2)
sp (r, Pk)

∂r

∣∣∣∣∣
r=R

= − ∂E
(2)
sp (r, Po)

∂r

∣∣∣∣∣
r=R

= s?R,Po , (317)

which completes the proof. �
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rényi mutual information,” Journal of Mathematical Physics, vol. 57, no. 10, p. 102201, oct 2016.

[50] M. M. Wilde, A. Winter, and D. Yang, “Strong converse for the classical capacity of entanglement-
breaking and Hadamard channels via a sandwiched Rényi relative entropy,” Communications in
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Abstract. Quantum systems, in general, cannot be simulated efficiently by a classical computer, and
hence is useful for solving certain mathematical problems and simulating quantum many-body systems.
This also implies, unfortunately, that verification of the output of the quantum systems is not so trivial,
since predicting the output is exponentially hard. Here we propose a framework for verification of the output
of fault-tolerant quantum computation in the measurement-based model. Contrast to existing analyses on
fault-tolerance, we do not assume any noise model on the resource state, but an arbitrary resource state
is tested by using only single-qubit measurements to verify whether the output of measurement-based
quantum computation on it is correct or not. Verifiability is equipped by a constant time repetition
of the original meausrement-based quantum computation in appropriate meausrement bases. Since full
characterization of quantum noise is exponentially hard for large-scale quantum computing systems, our
framework provides an efficient way of practical verification of experimental quantum error correction.
(The long version of the present work is located on arXiv [1].)

Keywords: verification, fault-tolerant quantum computation, measurement-based quantum computation,
blind quantum computation

1 Introduction

Quantum computation provides a new paradigm of in-
formation processing offering both fast and secure infor-
mation processing, which could not be realized in clas-
sical computation [2]. Recently, a lot of experimen-
tal efforts have been paid to realize quantum computa-
tion [3, 4, 5]. There, fault-tolerant quantum computation
with quantum error correction [2, 6] is inevitable to ob-
tain quantum advantage using noisy quantum devices.
Due to the recent rapid progresses on experimental

quantum error correction techniques [7, 8, 9, 10], there
is an increasing demand on an efficient way of a perfor-
mance analysis of fault-tolerant quantum computation.
There are three categories for this purpose, characteri-
zation, validation and verification of quantum systems
(QCVV) [11]. In the majority of existing performance
analyses of fault-tolerant quantum computation, a spe-
cific noise model, such as independent and identical Pauli
error operation and some specific correlation models, is
assumed apriori [12, 13, 14, 15, 16, 17, 19, 18, 20]. By
characterizing the elementary quantum operations ex-
perimentally, these could serve as validation of quantum
computing devices [21]. However, in actual experiments,
more general noise might occur including general trace
preserving completely positive (TP-CP) maps with var-
ious correlation between qubits [22, 23]. Since full to-
mographic approch does not work efficiently, we need a
novel scheme for the third category, verification, to guar-
antee correctness of the output of a quantum computer
without assuming the underlying noise model. Unfor-
tunately, existing fault-tolerant quantum computations
have not equipped such an efficient verification scheme

∗fujii@qi.t.u-tokyo.ac.jp
†masahito@math.nagoya-u.ac.jp

yet.

2 Verifiable fault-tolerance

The aim of this work is to develop fault-tolerant quan-
tum computation being equipped with a verification
scheme without assuming the underlying noise model.
As requirements of verifiable fault-tolerance, we define
the following two concepts. One is detectability which
means that if the error of a quantum computer is not
correctable, such a faulty output of the quantum com-
putation is detected with high probability. In this stage,
any assumption on the underlying noise model should not
be made. The other is acceptability which means that an
appropriately constructed quantum computer can pass
the verification with high probability. In other words,
under a realistic noise model, the test accepts the quan-
tum computation with high probability. Both properties
are important to characterize performance of test in sta-
tistical hypothesis testing [24].

3 Our main contribution

In this work, we develop verifiable fault-tolerance
in measurement-based quantum computation (MBQC)
[25, 26], which satisfies both detectability and acceptabil-
ity (see Ref [1] for the detail). We take a rather different
approach to fault-tolerance than conventional one. We
do not assume any noise model underlying, but define
a correctable set of errors on a resource state of MBQC
and test whether the error on a given resource state be-
longs to such a set or not. To this end, we employ the
stabilizer test proposed in Ref. [27], where an efficient
verification of MBQC can be carried out by testing the
graph state. However, this method is not fault-tolerant
lacking acceptability; any small amount of noise on the
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graph state causes rejection regardless whether or not it
is correctable. Although the paper [28] extended the sta-
bilizer test to the self-testing for the measurement basis,
it still has the same problem. Therefore, we crucially
extend the stabilizer test [27] for a noisy situation, so
that we can decide whether the given resource states be-
long to a set of fault-tolerant resource states or not (See
“Test for veirification of fault-tolerance” in Ref [1]). In
Theorem 1 of Ref. [1], we show under the condition of
a successful pass of the test, that the accuracy of fault-
tolerant MBQC is guaranteed to be arbitrarily high (i.e.,
contraposition of detectability). Our verification scheme
works quite efficiently by simply repeating fault-tolerant
MBQC without verification for a constant time in appro-
priate measurement bases. Therefore, we do not need any
special resource state nor entangling operation for verifi-
cation. The total overhead is only factored by a constant
to the original fault-tolerant MBQC. In order to demon-
strate acceptability, we consider a concrete example, and
explicitly define a set of correctable errors on the re-
source state for topologically protected MBQC [14, 16, 6]
(see “Verifiable fault-tolerance for topological ly protected
MBQC.―” and Appendix A and B in Ref. [1] for the de-
tail). Under a realistic noise model, we calculate a lower
bound of the acceptance probability concretely and show
that it can be made close to one (see “Acceptance prob-
ability under a typical error model.―” and Appendix C
in Ref. [1]).

4 Verifiable blind quantum computation

We also address an application of the proposed ver-
ification scheme in a different context, blind quantum
computation [29, 30, 33, 32, 34, 31, 35]. A promis-
ing application of the proposed framework is verification
of measurement-only blind quantum computation [33].
Suppose a quantum server generates two-colorable graph
states and sends them to a client who execute univer-
sal quantum computation by only single-qubit measure-
ments, where client employ the proposed verification.
First, our protocol is a one-way quantum communication
from Bob to Alice, and therefore, the blindness is guar-
anteed by the no-signaling principle as in the protocol
of Ref. [33], which contrasts to verifiable blind quantum
computation [30, 35] of BFK (Broadbent-Fitzsimons-
Kashefi) type [29]. According to detectability (Theorem
1 of Ref. [1]), under the condition of acceptance, the ac-
curacy of the output is guaranteed. Contrast to the ear-
lier verifiable blind quantum computation [30, 27], by
virtue of acceptability, the proposed verification scheme
can accept the delegated quantum computation even un-
der quantum server’s deviation or quantum channel noise
as long as they are correctable. In this way, we can
verify the quantum server is honest enough to obtain a
correct output by only using single-qubit measurements.
While fault-tolerance of verifiable blind quantum compu-
tation has been an open problem in the field [36], the pro-
posed verifiable fault-tolerance in the measurement-based
model combined with measurement-only blind quantum
computation [33] resolved it successfully.
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This short abstract is based on Ref. [1]. As
commonly understood, the noise spectroscopy
problem is ill-posed. Ad-hoc solutions assume
implicit structure which is often never deter-
mined. Thus it is unclear when the method
will succeed or whether one should trust the
solution obtained. Here we propose to treat
the problem from the point of view of statisti-
cal estimation theory. We develop a Bayesian
solution to the problem which allows one to
easily incorporate assumptions which render
the problem solvable. We compare several nu-
merical techniques for noise spectroscopy and
find the Bayesian approach to be superior in
many respects.

The development of quantum technologies requires
accurate characterisation not only for validation but
also for control. Quantum noise spectroscopy proto-
cols of varying generality have been developed and
implemented in recent years [2–10] as a protocol to
probe some aspects of the characterisation problem.
Their objective is to characterize the actual noise af-
fecting a quantum system of interest, regardless of its
source, in terms of its correlations, or more specifically
the set of power poly-spectra [11]. The key point is
that the information these protocols output should be
enough to enable its use, in tandem with optimal con-
trol techniques, to design control routines tailored to
suppress the actual noise affecting the quantum sys-
tem of interest [12, 13]. Operationally, spectroscopy
protocols measure the response of a quantum system,
in terms of expectation values of observables, in a
known initial state, to the noise affecting it and user-
determined control routines. The main difficulty is
that noise correlations influence the dynamics of the
quantum system in a highly non-linear way. Thus, in-
ferring these correlations in detail from the response
of the quantum system is generally an ill-posed prob-
lem, unless constraints are imposed or, equivalently,
if a priori information on the noise is assumed. Even
when standard assumptions such as Gaussian noise
or a dephasing coupling are satisfied, the problem re-
mains non-linear and inverting it carries along a set of
non-trivial complications that in turn constraint the
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Figure 1: Estimation demands data. At some point (the
exact location of which depends are far too many fac-
tors to quantify), the distribution of data becomes well-
approximated by a Gaussian, allowing an effective lineariza-
tion of the problem. This greatly simplifies the calculations
required to solve the estimation problem. When this is not
the case, the problem demands more resources and more
clever numerical algorithms to approximate the solution. In
any case, the more parameters one has in their model, the
more data is require to learn anything. (The section numbers
refer to the companion paper [1].)

type of noise that can be characterized. For exam-
ple, in Refs. [5–9] a control induced frequency comb
approach is used in order to overcome the non-linear
character of the problem but it comes at the cost of
being only effective when the noise correlations are
smooth functions in frequency space.

We propose that many of these problems can be
alleviated, or at least properly quantified, using a sta-
tistically principled approach. Within the statistical
phrasing of the problem we provide a Bayesian so-
lution [14], complete with a numerical implementa-
tion. We show the problem can be solved analyti-
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cally with no numerical approximations in the limit
of large of amounts of experimental data. At the
other extreme—the small-data limit—a numerically
stable Monte Carlo algorithm [15] approximates the
full Bayesian solution. Our two approaches provide a
robust solution to the software side of the noise spec-
troscopy problem. These two regimes are schemati-
cally depicted in Figure 1. For brevity, only the for-
mer will be described in this abstract.

We briefly describe the essence of the spectroscopy
protocol. Consult the companion technical paper for
full details of the physical model [1]. First, a +1 eigen-
state of σx is prepared on the system at time t = 0, in
such way that the expectation value of the observable
σx at the final time t = T , given Hctrl(t), is deter-
mined by

〈σx〉 = e
−
∫∞

0
dω
2π F (ω)S(ω)

, (1)

where F (ω) is known as the filter function. Different
choices of Hctrl(t) result in different filters F (ω), and
different experimentally accessible values of 〈σx〉. In
principle, it should be possible to choose a sufficiently
large set of different control sequences in such way
that the integral in the exponent can be deconvolved,
and information about S(ω) can be inferred. Differ-
ent approaches to this problem, under different sim-
plifying assumptions, have been proposed and even
experimentally implemented [7, 8, 10, 16, 17].

In the physical description we often make reference
to observations as being the average values of observ-
ables. By contrast, in real experiments, observations
are made by acquiring single bits of data at a time
through projective measurements of single quantum
systems. These two views of experimental observa-
tions agree only in the limit that very large num-
bers of projective measurements are made on identical
copies of the system. Reasoning about noise spec-
troscopy in the presence of experimental constraints
is thus, at its core, a statistical problem not suited to
the “data-fitting” paradigm we are more used to. To
make this precise we first extract the core mathemat-
ical elements of the problem. Mathematically, we are
interested in

χ(S;Fj) = 1
2π

∫ ∞
0

S(ω)Fj(ω)dω, (2)

where Fj indexes many different control sequences
which result in different filter functions. In our sim-
ulations and algorithms we take the simple approach
of numerically integrating this as

χ(S;Fj) ≈
1

4π
∑
k

Fj(ωk)S(ωk)(ωk − ωk−1). (3)

Recall that we do not have direct access to χ as
it is only exposed experimentally through the statis-
tical model in (1). Moreover, expectation values of
observables also cannot be measured directly and will
always come with fluctuations due to finite sample

sizes. Thus, we prefer to work from the bottom up,
considering the precise distribution of each bit of data.
To this end, let r be a the binary random variable with
distribution

Pr(r = 1|S;Fj) = 1
2

(
1 + e−χ(S;Fj)

)
, (4)

such that the expectation value in (1) obeys

〈σx〉 = Pr(r = 1|S;Fj)− Pr(r = −1|S;Fj).

This is the most fundamental statistical model and we
should process data at this level whenever possible.
But wait, what does it mean to process data? This is
where Bayes come in.

The notation Pr(A|B) is read “the probability of A
being true given B is known to be true”. So, Pr(r =
1|S;Fj) is the probability of observing r = 1 given the
filter Fj is used and the spectrum is S. Ah, but that
seems a bit awkward, doesn’t it? Isn’t the spectrum
the thing we don’t know? To rectify this, we invert
the probability using Bayes’ rule:

Pr(S|r;Fj) = Pr(r|S;Fj) Pr(S|Fj)
Pr(r|Fj)

. (5)

Some terminology: Pr(r|S;Fj) is called the likelihood
function and in physics it is always given by the physi-
cal model; Pr(r|Fj) is called the evidence and it is usu-
ally ignored as it can be determined by normalization;
Pr(S|Fj) is called the prior and encodes the informa-
tion we have about the spectrum before the data is
take; and finally, Pr(S|r;Fj) is called the posterior,
which is the information we have about the spectrum
after the experiment—exactly what we want to know!

In general, performing this inversion is both analyt-
ically and computationally intractable. There are two
general approaches to solving this problem. Either we
make analytical approximations or we employ clever
numerical integration techniques. Here we demon-
strate both. But, the problem and solutions are also
not decoupled from how much can be assumed known
about the spectrum—the dimension of model—and
the amount of data available, such that the domain
of applicability of each solution is restricted in subtle
ways. This is shown pictorially in Figure 1.

In the large data we effectively linearize the model
and use what is known as Gaussian process (GP) re-
gression [18]. this S(ω) ∼ GP(µ(ω), k(ω, ω′)), where
µ is the mean function and k is the covariance func-
tion, or kernel. In standard notation,

µ(ω) = ES [S(ω)] and (6)
k(ω, ω′) = ES [(S(ω)− µ(ω))(S(ω′)− µ(ω′))]. (7)

In principle we can choose any functions µ and k as
our mean and kernel functions. However, there are
natural choices and ones that have been found to per-
form well in a broad range of problems. The most
common kernel is the so-called squared exponential

k(ω, ω′) = κe−
(ω−ω′)2

δ , (8)

2

509



0 10 20 30 40 50 60 70 80

ω

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
S
(ω

)
Prior mean True 95% credible

Figure 2: A visualization of a Gaussian Process. Here the
mean function µ is taken to be a Gaussian function and we
use the squared exponential kernel in (8) with parameters
κ = 0.02 and δ = 100. In red, the mean and 95% credible
band is plotted. The other curves are samples from this GP.
One of them, in solid black, we take to be the true spectrum.

where δ is a hyper-parameter which controls the cor-
relation in S for nearby ω and κ controls the overall
prior uncertainty. We have plotted a visualization of
the GP we will use in Figure 2.

If we begin with a GP prior and the distribution
of data is also Gaussian, then the posterior is Gaus-
sian and we can derive an analytic expression for its
mean function and kernel. Denote G as the matrix
with entries Gkj = Fj(ωk)(ωk − ωk−1)/4π. Then,
Bayesian updating amounts to updating the covari-
ance and mean as follows [18]:

k 7→ k′ = GTΣ−1G+ k−1, (9)
µ 7→ k′−1 (χTΣ−1G+ µTk−1) , (10)

where the bold font simply means the vector of values
defined by the level of discretization.

In describing one of our numerical results, we com-
pare the GP estimator with a naive estimator. As a
point of reference, we can also treat the prior mean
function as an estimator and calculate its loss. The
result of 400 trials is shown in Figure 3. As expected,
the posterior loss is lower than the prior loss, indicat-
ing that the algorithm is learning. The naive loss does
a respectable job as well, but is convincingly beaten
by the GP estimator—especially given the fact that
GP estimator comes with all the added benefits of the
Bayesian methodology discussed above.

In this work, we formulated the noise spectroscopy
problem in the language of statistical estimation the-
ory. This allows us to provide a robust and principled
solution to the problem using Bayesian analysis.
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Figure 3: The performance of the Gaussian process estimator and naive estimator in relation to the prior loss. Plotted is
a normalized histogram of the log-loss over 400 trials. The simulated experiment is that of N = 100 (Left) and N = 1000
(Right) single-shot repetitions of each of the 25 control sequences described in the text. Both the median loss (solid line) and
the mean loss / Bayes risk (dashed line) are shown to guide the eye. The prior for the Gaussian process estimator is taken to
be that shown in Figure 2, and the true spectra are sampled from the prior.
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Abstract. We show that the reliable communication through a classical-quantum channel is possible
when the transmission rate approaches the channel capacity sufficiently slowly. This scenario exists between
the non-vanishing error probability regime, where the rate tends to capacity with a fixed error, and the small
error probability regime, where the error vanishes given a rate below capacity. The proof employs a sharp
concentration bound in strong large deviation theory, and the asymptotic expansions of the error-exponent
functions. Our complete paper can be found in arXiv:1701.03195 [quant-ph].

1 Introduction

The interplay between the transmission rate, block-
length and error probability is one of the core problems
in Shannon theory. Based on different ranges of the error
probability, its study roughly falls into the following three
categories: (i) large error probability or non-vanishing
error probability regime; (ii) medium error probability
regime; and (iii) small probability error regime. In the
non-vanishing error probability regime, the target is to
find the largest rate of a code given a blocklength n up
to an error ε. Strassen [2] applied the central limit the-
orem (CLT) to show that the maximum message size
of an n-blocklength code through a discrete memoryless
channel (DMC) W yields an asymptotic expansion to the
order

√
n, and hence this is called second-order analysis

[3]:

logM∗(Wn, ε) = nC +
√
nV Φ−1(ε) +O(log n), (1)

where the quantities C and V denote the capacity and
the dispersion [3] of the channel, and Φ is the cumulative
distribution function of a standard normal random vari-
able. Equivalently, the second-order result in Eq. (1) can
be formulated for estimating the optimal decoding error
with blocklength n and rate C −A/

√
n for any constant

A:

lim
n→+∞

ε∗
(
n,C −A/

√
n
)

= Φ

(
A√
V

)
. (2)

In the small error probability regime, Shannon [4] in-
troduced a reliability function E(R) as the optimal ex-
ponent of the exponential decreases of the error for any
rate R below C:

ε∗ (n,R) = e−nE(R)+o(n). (3)

This seminal work entails the error exponent analysis of
a broad class of channels [5, 6, 8]. The exponential decay
of the error in Eq. (3) is the consequence of the large devi-
ation principle (LDP) [10]. Hence, the errors in Eqs. (2)

∗F99942118@ntu.edu.tw
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and (3), respectively, fall into the CLT regime and LDP
regime.

Altuğ and Wagner [11, 12] pioneered the study of the
medium error probability regime, and investigated the
asymptotic behaviour of the optimal decoding error when
the coding rate converges to capacity slowly. Specifi-
cally, they studied the conditions under which the error
is asymptotically equal to1

ε∗ (n,C − an) ∼ Φ

(√
nan√
V

)
∼ e

−na2
n

2V , (4)

where the sequence (an)n∈N satisfies

(i) lim
n→+∞

an = 0, and (ii) lim
n→+∞

na2n = +∞. (5)

A DMC with errors satisfying Eq. (4) possesses a
moderate deviation property (MDP) [10]. These three
approaches—(i), (ii), and (iii)—all have theoretical sig-
nificance and practical value; however, this paper focuses
on the medium error probability regime, which is rarely
explored in the quantum scenario.

Our main contribution is, for any classical-quantum
(c-q) channel with a non-zero dispersion V > 0,

lim
n→+∞

log ε∗(n,C − an)

na2n
= − 1

2V
, (6)

where (an)n is an arbitrary sequence satisfies Eq. (5).
The result in Eq. (6) shows that reliable communication
for a c-q channel is possible when the transmission rate
approaches capacity at the scale of Θ(n−t), t ∈ (0, 12 ).
Our proof employs techniques from error exponent anal-
ysis. For the achievability part, we start from Hayashi’s
upper bound of the average error for c-q channels [13]
followed by an asymptotic expansion of the error ex-
ponent. For the converse, we exploit a refined sphere-
packing bound [7, 8]. We remark that Altuğ and Wag-
ner’s converse proof [12, Theorem 2.2] cannot be directly
generalized to c-q channels because their sphere-packing
bound is of a weaker form [9, 8] and hence naively follow-
ing their converse approach will result in a gap between

1We denote fn ∼ gn if and only if limn→+∞
fn
gn

= 1.
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the achievability and converse results. Different from the
approaches in this work, we remark that a recent and
independent paper [1] proceeds from another way of the
non-vanishing error regime and also accomplish a MDP
result in Eq. (6).

2 Notation and Main Result

2.1 Notation

Throughout this paper, we consider a finite-
dimensional Hilbert space H. Denote by X a finite input
alphabet, and let P(X ) be the set of probability dis-
tributions on X . A c-q channel W maps elements of
X to the density operators in S(H), i.e. W : x 7→ Wx.
Let M be a finite alphabetical set with size M = |M|.
An (n-block) encoder is a map fn : M → Xn that en-
codes each message m ∈ M to a codeword xn(m) :=
x1(m) . . . xn(m) ∈ Xn. The codeword xn(m) is then
mapped to a state W⊗nxn(m) = Wx1(m) ⊗ · · · ⊗Wxn(m) ∈
S(H⊗n). The decoder is described by a positive operator-
valued measurement (POVM) Πn = {Πn,1, . . . ,Πn,M} on

H⊗n, where Πn,i ≥ 0 and
∑M
i=1 Πn,i = 1H. The pair

(fn,Πn) =: Cn is called a code with rate R = 1
n log |M|.

The error probability of sending a message m with the
code Cn is εm(Cn) := 1 − Tr

(
Πn,mWxn(m)

)
. We use

ε̄(Cn) = 1
M

∑
m∈M εm(Cn) to denote the average er-

ror probability. Denote the relative entropy and rela-
tive entropy variance by D(ρ‖σ) := Tr [ρ (log ρ− log σ)]

and V (ρ‖σ) := Tr
[
ρ (log ρ− log σ)

2
]
−D(ρ‖σ)2, respec-

tively. We define the mutual information by I(P,W ) :=
D (P ◦W ‖P ⊗ PW ), where P◦W :=

∑
x∈X P (x)|x〉〈x|⊗

Wx. Hence, the (classical) information capacity of the
channel is C := maxP∈P(X ) I(P,W ). The informa-
tion variance is defined byV (P,W ) := V (W ‖PW |P ),
where PW :=

∑
x P (x)Wx. Further, we define V :=

minP∈P(X ): I(P,W )=C V (P,W ).

2.2 Main Results

Theorem 1 (Achievability). For any c-q channel with
V > 0 and any sequence (an)n≥1 satisfying Eq. (5), there
exists a sequence of codes {Cn}n≥1 with rates Rn = C−an
so that

lim sup
n→+∞

1

na2n
log ε̄ (Cn) ≤ − 1

2V
. (7)

Theorem 2 (Converse). For any c-q channel with V >
0, any sequence {an}n≥1 satisfying Eq. (5), and any se-
quence of codes {Cn}n≥1 with rates Rn = C−an, it holds
that

lim inf
n→+∞

1

na2n
log ε̄ (Cn) ≥ − 1

2V
. (8)

The proof can be found in Section 3 of the main text.

3 Auxiliary functions and their proper-
ties.

In order to prove Theorems 1 and 2, we need the follow-
ing crucial properties of the auxiliary functions, Proposi-

tions 3, 4, and 5. The proof can be found in Appendix A
of the main text.

The auxiliary function of a classical-quantum channel
is defined as [14, 15]

E0(s, P ) := − log Tr

(∑
x∈X

P (x)W 1/(1+s)
x

)1+s
 .

In this paper, we will require three variants of the above
auxiliary function: ∀s ≥ 0 and σ ∈ S(H),

Ẽ0(s, P, σ) := sD1−s (P ◦W ‖P ⊗ σ) (9)

Eh(s, P, σ) := sD 1
1+s

(W ‖σ|P ) , (10)

Ẽh(s, P, σ) := sD[
1

1+s
(W ‖σ|P ) , (11)

where Dα is the (Petz’s) quantum Rényi divergence
and D[

α(ρ‖σ) := 1
α log Tr[exp{α log ρ + (1 − α) log σ}]

is the log-Euclidean Rényi divergence; Dα (W ‖σ|P ) :=∑
x∈X P (x)Dα (Wx‖σ).

Proposition 3 (Properties of Ẽ0(s, P, σ)).

(a) Ẽ0(s, P, σ) and its partial deriva-

tives ∂Ẽ0(s, P, σ)/∂s, ∂2Ẽ0(s, P, σ)/∂s2,

∂3Ẽ0(s, P, σ)/∂s3 are all continuous in
(s, P ) ∈ [0,+∞)×P(X ).

(b) For every P ∈ P(X ), the function Ẽ0(s, P, σ) is
concave in s ∈ [0,+∞).

(c) For every P ∈ P(X ), ∂Ẽ0(s,P,σ)
∂s

∣∣∣
s=0

=

D (P ◦W ‖P ⊗ σ) .

(d) For every P ∈ P(X ), lims→+∞
∂Ẽ0(s,P,σ)

∂s ≤
∂Ẽ0(s,P,σ)

∂s ≤ D (P ◦W ‖P ⊗ σ) , ∀s ∈ [0,+∞).

(e) For every P ∈ P(X ), ∂2Ẽ0(s,P,σ)
∂s2

∣∣∣
s=0

=

−V (P ◦W ‖P ⊗ σ) .

Proposition 4 (Properties of Eh(s, P, σ)).

(a) Eh(s, P, σ) and its partial deriva-
tives ∂Eh(s, P, σ)/∂s, ∂2Eh(s, P, σ)/∂s2,
∂3Eh(s, P, σ)/∂s3 are continuous for (s, P ) ∈
[0,+∞)×P(X ).

(b) For every P ∈ P(X ), the function Eh(s, P, σ) is
concave in s for all s ∈ [0,+∞).

(c) For every P ∈ P(X ), ∂Eh(s,P,σ)
∂s

∣∣∣
s=0

=

D (W ‖σ|P ) .

(d) For every P ∈ P(X ), lims→+∞
∂Eh(s,P,σ)

∂s ≤
∂Eh(s,P,σ)

∂s ≤ D (W ‖σ|P ) , ∀s ∈ [0,+∞).

(e) For every P ∈ P(X ), ∂2Eh(s,P,σ)
∂s2

∣∣∣
s=0

=

−V (W ‖σ|P ) , where V (W ‖σ|P ) :=∑
x∈X P (x)V (Wx‖σ).
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Proposition 5 (Properties of Ẽh(s, P, σ)).

(a) Ẽh(s, P, σ) and its partial deriva-

tives ∂Ẽh(s, P, σ)/∂s, ∂2Ẽh(s, P, σ)/∂s2,

∂3Ẽh(s, P, σ)/∂s3 are all continuous for
(s, P ) ∈ [0,+∞)×P(X ).

(b) For every P ∈ P(X ), the function Ẽh(s, P, σ) is
concave in s for all s ∈ [0,+∞).

(c) For every P ∈ P(X ), ∂Ẽh(s,P,σ)
∂s

∣∣∣
s=0

=

D (W ‖σ|P ) .

(d) For every P ∈ P(X ), lims→+∞
∂Ẽh(s,P,σ)

∂s ≤
∂Ẽh(s,P,σ)

∂s ≤ D (W ‖σ|P ) , ∀s ∈ [0,+∞).

(e) For every P ∈ P(X ), ∂2Ẽh(s,P,σ)
∂s2

∣∣∣
s=0

=

−Ṽ (W ‖σ|P ), where Ṽ (W ‖σ|P ) :=∑
x∈X P (x)Ṽ (Wx‖σ) and Ṽ (ρ‖σ) :=∫ 1

0
dtTr

[
ρ1−t(log ρ− log σ)ρt(log ρ− log σ)

]
−

D(ρ‖σ)2.

4 Discussions

We consider a scenario that involves the interplay be-
tween three parameters—optimal error probability, the
transmission rate, and the coding blocklength. Our re-
sult shows that the optimal error of a c-q channel with
positive channel dispersion tends to zero as the rate ap-
proaches channel capacity slower than 1√

n
. Our proof

strategy is based on a strong large deviation inequality
[8] and the asymptotic behaviour expansion the error ex-
ponent function. It is interesting that a recent and in-
dependent work [1], which proceeds from the other ex-
treme of the non-vanishing error probability regime, also
accomplishes the MDP result.
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Moderate Deviation Analysis for Classical-Quantum Channels and
Quantum Hypothesis Testing
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Abstract. In this work, we study the tradeoffs between the error probabilities of classical-quantum chan-
nels and the blocklength n when the transmission rates approach the channel capacity at a rate slower than
1/
√
n, a research topic known as moderate deviation analysis. We show that the optimal error probability

vanishes under this rate convergence. Our main technical contributions are a tight quantum sphere-packing
bound, obtained via Chaganty and Sethuraman’s concentration inequality in strong large deviation theory,
and asymptotic expansions of error-exponent functions. Moderate deviation analysis for quantum hypoth-
esis testing is also established. The converse directly follows from our channel coding result, while the
achievability relies on a martingale inequality.

1. Introduction

Investigating the interplay between the transmission rate, blocklength and error probability is one of
the core problems in information theory. Based on different ranges of the error probability, the analysis
of communication performance roughly falls into the following three categories: (i) large error probability
or non-vanishing error probability regime; (ii) medium error probability regime; and (iii) small error
probability regime. In the non-vanishing error probability regime, the largest transmission rate, given a
coding length n and an error probability no more than ε, is one of the main research focuses. Strassen
[1] first demonstrated that the maximum size of an n-blocklength code through a discrete memoryless
channel (DMC) W, denoted by M∗(Wn, ε), yields an asymptotic expansion to the order

√
n, and hence

this is called second-order analysis:

logM∗(Wn, ε) = nC +
√
nV Φ−1(ε) +O(log n), (1.1)

where the quantities C and V denote the capacity [2] and the dispersion [3] of the channel, and Φ is the
cumulative distribution function of a standard normal random variable. Equivalently, Eq. (1.1) yields the
following relationship between the optimal decoding error with blocklength n and rate C−A/

√
n for any

constant A:

lim
n→+∞

ε∗
(
n,C −A/

√
n
)

= Φ

(
A√
V

)
. (1.2)

Strassen’s result relied on the Gaussian approximation or the central limit theorem (CLT). His work was
latter refined by Hayashi [4], Polyanskiy et al. [3], and extended to quantum channels [5, 6, 7, 8]. The
results for higher-order asymptotics are referred to Refs. [9, 10, 11].

In the small error probability regime, Shannon [12] introduced the reliability function E(R) as the
optimal error exponent:

lim
n→+∞

− 1

n
log ε∗ (n,R) = E(R), (1.3)

E-mail address: F99942118@ntu.edu.tw, Min-Hsiu.Hsieh@uts.edu.au.
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for rate R below the channel capacity1 C. This seminal work entails the error exponent analysis of a
broad class of channels [14, 13, 15, 16, 17, 18]. The exponential decay of the error probability in Eq. (1.3)
is a consequence of the large deviation principle (LDP) [19]. In summary, the errors in Eqs. (1.2) and
(1.3), respectively, fall into the CLT regime and large-deviation regime.

Altuğ and Wagner [20, 21] pioneered the study of the medium error probability regime, and investigated
the asymptotic behaviour of the optimal decoding error when the coding rate converges to capacity
sufficiently slowly. Specifically, they studied under which conditions the error is asymptotically equal to2

ε∗ (n,C − an) ∼ Φ

(√
nan√
v

)
∼ e

−na2n
2v , (1.4)

where the sequence (an)n∈N satisfies

(i) lim
n→+∞

an = 0;

(ii) lim
n→+∞

an
√
n = +∞.

(1.5)

Evidently, the transmission rate in Eq. (1.4) approaches capacity slower than 1/
√
n. A DMC with errors

satisfying Eq. (1.4) possesses a moderate deviation property (MDP) [19, Section 3.7]. The constant v in
Eq. (1.4) equals the channel dispersion V when both the limit in Eq. (1.2) and MDP hold [22, Theorem 1].
We refer the interested readers to Refs. [22, 24, 21] for further results in classical channel coding. These
three approaches—(i), (ii), and (iii)—all have theoretical significance and practical value, and this paper
will focus on the medium error probability regime, which is rarely explored in the quantum scenario.

Our main contribution is, for any classical-quantum (c-q) channel with a non-zero dispersion V > 0,

lim
n→+∞

log ε∗(n,C − an)

na2
n

= − 1

2V
, (1.6)

where (an)n∈N is any sequence satisfying Eq. (1.5). The result in Eq. (1.6) shows that reliable communi-
cation over a c-q channel is possible when the transmission rate approaches capacity at the scale slower
than 1/

√
n. Our proof employs techniques from the error exponent analysis (the LDP regime). For the

achievability part, we start from Hayashi’s upper bound of the average error for c-q channels [27] followed
by an asymptotic expansion of the error-exponent function. For the converse, we employ a sharp converse
bound based on a strong large deviation inequality (Proposition 7). This bound is more general than
the previous result in Ref. [18, Proposition 14], since it allows the transmission rates to depend on the
blocklength instead of being fixed. We remark that Altuğ and Wagner’s converse proof [21, Theorem 2.2]
is not sufficient for proving Eq. (1.6) because their sphere-packing bound is of a weaker form in general
c-q channels [18, Theorem 6] (see also [29]). Thus, naively following their converse approach will result
in a gap between the achievability and converse results (see Remark 3.1).

As a special case of c-q channel coding, we obtain the moderate deviations for binary quantum hypoth-
esis testing (see Theorems 9 and 10):

lim
n→+∞

1

na2
n

log α̂exp{−n[D(ρ‖σ)−an]}
(
ρ⊗n‖σ⊗n

)
= − 1

2V (ρ‖σ)
, (1.7)

where α̂µ denotes the smallest type-I error when the type-II error does not exceed µ; D(ρ‖σ) and V (ρ‖σ)
denote the relative entropy and relative variance of ρ and σ, respectively. The converse part directly
follows from the channel coding, and we provide two proofs for the achievability part. The first one comes
from Audeneart et al.’s error exponent analysis [30], while the second one employs a martingale inequality
[24]. We remark that the moderate deviation analysis for classical hypothesis testing was studied by Sason
[24], and by Watanabe and Hayashi [25]. Moreover, a recent work by Rouzé and Datta [26] formulated
the quantum hypothesis problem into a martingale, which is similar to our approach for proving the
achievability.

1To the best of our knowledge, the reliability function E(R) is only known in the high rate regime, i.e. at rates above a
critical rate (see e.g. [13, p. 160]).
2We denote fn ∼ gn if and only if limn→+∞

fn
gn

= 1.
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Unlike our proof techniques relying on error exponent analysis (the LDP regime), a recent and in-
dependent paper [31] obtained the same result, but proceeds from the second-order analysis (the CLT
regime). Their achievability proof follows from the one-shot capacity by Wang and Renner [32]; while the
converse part generalizes Polyanskiy and Verdú’s result [22] (which in turn relies on Strassen’s Gaussian
approximation [1]) and a powerful inequality in probability [33] to the quantum scenario. We summarize
the error behaviors in these three regimes in Table 1.

This paper is organized as follows. We introduce notation and preliminaries in Section 2. Section 3
contains our main result—the moderate deviation analysis for c-q channel coding. In Section 4, we present
the moderate deviations for quantum hypothesis testing. Lastly, we conclude this paper in Section 5.

Error Regimes Concentration Phenomena Hypothesis Testing Channel Coding

Large Error CLT: Pr (Sn ≥
√
nx)→ 1− Φ

(
x√
v

)
α̂

exp
{
−n

[
D− A√

n

]} → Φ
(

A√
V

)
ε∗
(
n,C − A√

n

)
→ Φ

(
A√
V

)
Medium Error MDP: Pr (Sn ≥ nanx) = e−

na2n
2v

x+o(na2n) α̂exp{−n[D−an]} = e−
na2n
2V

+o(na2n) ε∗(n,C − an) = e−
na2n
2V

+o(na2n)

Small Error LDP: Pr (Sn ≥ nx) = e−nΛ∗(x)+o(n) α̂exp{−nr} = e−nφ(r)+o(n) ε∗(n,R) = e−nE(R)+o(n)

Table 1. This table compares the asymptotic error behaviors of quantum hypothesis testing and
classical-quantum channel coding in three error probability regimes: (i) large error (central limit
theorem), (ii) medium error (moderate deviation principle), and (iii) small error (large deviation
principle). The quantity Sn denotes the sum of n independent and identically distributed random
variables with zero mean and variance v. The exponent Λ∗ is the Legendre-Fenchel transform of
the normalized cumulant generating function of Sn [19]. The error α̂exp{−nr} is defined as the
minimum type-I error with the type-II error smaller than exp{−nr}. The quantities D and V
in the hypothesis testing column denote the quantum relative entropy and the relative entropy
variance, respectively. The optimal error probability with blocklength n and rate R is denoted by
ε∗(n,R). The quantities C and V in the channel coding column indicate the channel capacity and
the channel dispersion, respectively. The sequence (an)n∈N satisfies Eq. (1.5). The quantity E(R)
is the reliability function of the channel.

2. Preliminaries and Notation

We first introduce necessary notation. Throughout this paper, we consider a Hilbert space H with
finite dimension d. The set of density operators (i.e. positive semi-definite operators with unit trace) and
non-singular density operators on H are defined by S(H) and S>0(H), respectively. The identity operator
on H is denoted by 1H, or simply 1 if there is no possibility of confusion. We use Tr [ · ] as the trace
function. Let N, R, and R≥0 denote the set of integers, real numbers, and non-negative real numbers,
respectively. Define [n] := {1, 2, . . . , n} for n ∈ N.

The power of a positive semi-definite operator A is defined as: Ap =
∑

i:ai 6=0 a
p
iPi, where (ai)i and

(Pi)i are the eigenvalues and eigenprojections of A =
∑

i aiPi. We use supp(A) to denote support of the
operator A. We write A� B if supp(A) ⊂ supp(B).

2.1. Quantum Hypothesis Testing and Channel Coding. Consider a binary hypothesis testing
problem whose null and alternative hypotheses are ρ ∈ S(H) and σ ∈ S(H), respectively. The type-I
error and type-II error of the hypothesis testing, for an operator 0 ≤ Q ≤ 1, are defined as follows:

α (Q; ρ) := Tr [(1−Q)ρ] , (2.1)

β (Q;σ) := Tr [Qσ] . (2.2)

There is a trade-off relation between these two errors. Thus we can define the minimum type-I error when
the type-II error is below µ ∈ (0, 1) as

α̂µ (ρ‖σ) := min
0≤Q≤1

{
α (Q; ρ) : β (Q;σ) ≤ µ

}
. (2.3)
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Denote by X a finite input alphabet, and let P(X ) be the set of probability distributions on X . For a
sequence xn ∈ X n, we denote by

Pxn(x) :=
1

n

n∑
i=1

1 {x = xi} , (2.4)

where xi is the i-th element of xn.
A c-q channel W maps elements of X to the density operators in S(H), i.e. W : x 7→ Wx. We denote

the image of the channel W by

im (W) := {ρ ∈ S(H)| ∃x ∈ X : ρ = Wx} , (2.5)

and its closure by im(W). Without loss of generality, we assume that im (W) has full support on the
Hilbert space H throughout this paper.

Let M be a finite alphabetical set with size M = |M|. An (n-block) encoder is a map fn :M→ X n
that encodes each message m ∈M to a codeword xn(m) := x1(m) . . . xn(m) ∈ X n. The c-q channel then
produces an output state W⊗nxn(m) with the input codeword xn(m), where

W⊗nxn(m) = Wx1(m) ⊗ · · · ⊗Wxn(m) ∈ S(H⊗n). (2.6)

The decoder is described by a positive operator-valued measurement (POVM) Πn = {Πn,1, . . . ,Πn,M} on

H⊗n, where Πn,i ≥ 0 and
∑M

i=1 Πn,i = 1. The pair (fn,Πn) =: Cn is called a code with rate R = 1
n log |M|.

The error probability of sending a message m with the code Cn is εm(W, Cn) := 1−Tr
(
Πn,mWxn(m)

)
. We

use εmax(W, Cn) = maxm∈M εm(W, Cn) and ε̄(W, Cn) = 1
M

∑
m∈M εm(W, Cn) to denote the maximal error

probability and the average error probability, respectively. Denote by ε∗ (n,R) the smallest average error
probability among all codes Cn with message size |M| = exp{nR}.

2.2. Information Quantities. For any ρ, σ ∈ S(H), we define the quantum relative entropy, (Petz’s)
quantum Rényi divergence [43], and the log-Euclidean Rényi divergence [48, 18], respectively, as follows:

D(ρ‖σ) := Tr [ρ (log ρ− log σ)] , (2.7)

Dα(ρ‖σ) :=
1

α− 1
log Tr[ρασ1−α], (2.8)

D[
α(ρ‖σ) :=

1

α− 1
log Tr

[
eα log ρ+(1−α) log σ

]
. (2.9)

We define two types of the quantum relative entropy variances [5, 6] by

V (ρ‖σ) := Tr
[
ρ (log ρ− log σ)2

]
−D(ρ‖σ)2 (2.10)

Ṽ (ρ‖σ) :=

∫ 1

0
dtTr

[
ρ1−t(log ρ− log σ)ρt(log ρ− log σ)

]
−D(ρ‖σ)2. (2.11)

It is well-known that both quantities are non-negative, and

V (ρ‖σ) > 0 implies D(ρ‖σ) > 0. (2.12)

We define the conditional quantum relative entropy of two channels W̄,W and P ∈ P(X ) to be

D
(
W̄‖W|P

)
:=
∑
x∈X

P (x)D
(
W̄x‖Wx

)
. (2.13)
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Similarly, we define the following conditional entropic quantities for σ ∈ S(H) and P ∈ P(X ):

D (W‖σ|P ) :=
∑
x∈X

P (x)D (Wx‖σ) , (2.14)

Dα (W‖σ|P ) :=
∑
x∈X

P (x)Dα (Wx‖σ) , (2.15)

V (W‖σ|P ) :=
∑
x∈X

P (x)V (Wx‖σ) , (2.16)

Ṽ (W‖σ|P ) :=
∑
x∈X

P (x)Ṽ (Wx‖σ) . (2.17)

The mutual information of the channel W : X → S(H) with a prior distribution P ∈ P(X ) is defined by

I(P,W) := D (P ◦W‖P ⊗ PW) = D (W‖PW|P ) , (2.18)

where P ◦W :=
∑

x∈X P (x)|x〉〈x| ⊗Wx and PW :=
∑

x∈X P (x)Wx. Hence, the (classical) information
capacity of the channel W is

CW := max
P∈P(X )

I(P,W). (2.19)

The conditional information variance and the unconditional information variance of W : X → S(H) with
a prior distribution P ∈ P(X ) are defined, respectively, by

V (P,W) := V (W‖PW|P ) ,

U(P,W) := V (P ◦W‖P ⊗ PW) .
(2.20)

It is known that (see e.g. [3, Lemma 62]) that V (P ?,W) = U(P ?,W) for every capacity-achieving distri-
bution P ? ∈ P(X ), i.e. I(P ?,W) = CW. Similarly, we also define the unconditional information variance

in terms of Ṽ (ρ‖σ):

Ṽ (P,W) := Ṽ (W‖PW|P ) . (2.21)

The minimal peripheral information variance and its variant are defined by

VW := min
P∈P(X ): I(P,W)=CW

V (P,W), (2.22)

ṼW := min
P∈P(X ): I(P,W)=CW

Ṽ (P,W). (2.23)

Furthermore, one can verify that

VW > 0 implies CW > 0. (2.24)

2.2.1. Auxiliary functions and their properties. The auxiliary function of a classical-quantum channel is
defined as [35, 36, 37, 38, 39]

E0(s, P ) := − log Tr

(∑
x∈X

P (x)W 1/(1+s)
x

)1+s
 .

In this paper, we will require three variants of the above auxiliary function: ∀s ≥ 0 and σ ∈ S(H),

Ẽ0(s, P, σ) := sD1−s (P ◦W‖P ⊗ σ) (2.25)

Eh(s, P, σ) := sD 1
1+s

(W‖σ|P ) , (2.26)

Ẽh(s, P, σ) := sD[
1

1+s

(W‖σ|P ) , (2.27)

where Dα and D[
α are the (Petz’s) quantum Rényi divergence and the log-Euclidean Rényi divergence,

respectively.
5
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The function Ẽ0(s, P, σ) will play a major role in the achievability part of our main result (see Theorem 4
in Section 3). This quantity yields an upper bound to the average error probability (see [27, Eq. (9)]):

ε̄(W, Cn) ≤ 4 exp

{
−n
[

max
0≤s≤1

max
P∈P(X )

{
−sR+ Ẽ0(s, P, PW)

}]}
. (2.28)

Properties of Eh and Ẽh will be crucial in the analysis of the converse part of our main result.

The following proposition summarizes properties of Ẽ0(s, P, σ). We provide the proof in Appendix A.1.

Proposition 1 (Properties of Ẽ0(s, P, σ)). Consider a classical-quantum channel W : X → S(H), a

distribution P ∈ P(X ), and a state σ ∈ S(H) with Wx � σ for all x ∈ supp(P ). Then Ẽ0(s, P, σ) defined
in Eq. (2.25) enjoys the following properties.

(a) Ẽ0(s, P, σ) and its partial derivatives ∂Ẽ0(s, P, σ)/∂s, ∂2Ẽ0(s, P, σ)/∂s2, ∂3Ẽ0(s, P, σ)/∂s3 are all
continuous in (s, P ) ∈ R≥0 × P(X ).

(b) For every P ∈ P(X ), the function Ẽ0(s, P, σ) is concave in s ∈ R≥0.
(c) For every P ∈ P(X ),

∂Ẽ0(s, P, σ)

∂s

∣∣∣∣∣
s=0

= D (P ◦W‖P ⊗ σ) . (2.29)

(d) For every P ∈ P(X ),

lim
s→+∞

∂Ẽ0(s, P, σ)

∂s
≤ ∂Ẽ0(s, P, σ)

∂s
≤ D (P ◦W‖P ⊗ σ) , ∀s ∈ R≥0. (2.30)

(e) For every P ∈ P(X ),

∂2Ẽ0(s, P, σ)

∂s2

∣∣∣∣∣
s=0

= −V (P ◦W‖P ⊗ σ) . (2.31)

Properties of Eh(s, P, σ) are collected in the following proposition. The proof can be found in Appen-
dix A.2.

Proposition 2 (Properties of Eh(s, P, σ)). Consider a classical-quantum channel W : X → S(H), a
distribution P ∈ P(X ), and a state σ ∈ S(H) with Wx � σ for all x ∈ supp(P ). Then Eh(s, P, σ) defined
in Eq. (2.26) enjoys the following properties.

(a) Eh(s, P, σ) and its partial derivatives ∂Eh(s, P, σ)/∂s, ∂2Eh(s, P, σ)/∂s2, ∂3Eh(s, P, σ)/∂s3 are
continuous for (s, P ) ∈ R≥0 × P(X ).

(b) For every P ∈ P(X ), the function Eh(s, P, σ) is concave in s for all s ∈ R≥0.
(c) For every P ∈ P(X ),

∂Eh(s, P, σ)

∂s

∣∣∣∣
s=0

= D (W‖σ|P ) . (2.32)

(d) For every P ∈ P(X ),

lim
s→+∞

∂Eh(s, P, σ)

∂s
≤ ∂Eh(s, P, σ)

∂s
≤ D (W‖σ|P ) , ∀s ∈ R≥0. (2.33)

(e) For every P ∈ P(X ),

∂2Eh(s, P, σ)

∂s2

∣∣∣∣
s=0

= −V (W‖σ|P ) . (2.34)

Proposition 3 below lists the properties of Ẽh, and the proof is provided in Appendix A.3.

Proposition 3 (Properties of Ẽh(s, P, σ)). Consider a classical-quantum channel W : X → S(H), a

distribution P ∈ P(X ), and a state σ ∈ S(H) with Wx � σ for all x ∈ supp(P ). Then Ẽh(s, P, σ) defined
in Eq. (2.27) enjoys the following properties.
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(a) Ẽh(s, P, σ) and its partial derivatives ∂Ẽh(s, P, σ)/∂s, ∂2Ẽh(s, P, σ)/∂s2, ∂3Ẽh(s, P, σ)/∂s3 are
all continuous for (s, P ) ∈ R≥0 × P(X ).

(b) For every P ∈ P(X ), the function Ẽh(s, P, σ) is concave in s for all s ∈ R≥0.
(c) For every P ∈ P(X ),

∂Ẽh(s, P, σ)

∂s

∣∣∣∣∣
s=0

= D (W‖σ|P ) . (2.35)

(d) For every P ∈ P(X ),

lim
s→+∞

∂Ẽh(s, P, σ)

∂s
≤ ∂Ẽh(s, P, σ)

∂s
≤ D (W‖σ|P ) , ∀s ∈ R≥0. (2.36)

(e) For every P ∈ P(X ),

∂2Ẽh(s, P, σ)

∂s2

∣∣∣∣∣
s=0

= −Ṽ (W‖σ|P ) . (2.37)

2.2.2. Error Exponents. Auxiliary functions allow us to concisely define sphere-packing exponent func-
tions of a classical-quantum channel. We will use notation similar to Refs. [40, 28, 18]. Define

Ẽsp(R,P, σ) := min
W̄:X→S◦

{
D
(
W̄‖W|P

)
: D
(
W̄‖σ|P

)
≤ R

}
(2.38)

= sup
s≥0

{
Ẽh(s, P )− sR

}
, (2.39)

E(2)
sp (R,P, σ) := sup

s≥0
{Eh (s, P )− sR} , (2.40)

for all R > 0, P ∈ P(X ), and σ ∈ S>0(H). The equality in Eq. (2.39) follows from [18, Theorem 6]. From
the definitions in Eqs. (2.38) and (D.9), it is not hard to see that [30]

Ẽsp(R,P, σ) = 0, ∀R ≥ D (W‖σ|P ) . (2.41)

and

E(2)
sp (R,P, σ) =

{
+∞, R < D0 (W‖σ|P ) ,

0, R ≥ D (W‖σ|P ) .
(2.42)

3. Moderate Deviations for Classical-Quantum Channels

This section presents our main results—the error performance of classical-quantum channels satisfies
the moderate deviation property, Eq. (1.4). The achievability part is stated in Theorem 4, and its proof is
given in Section 3.1. Our proof strategy employs Hayashi’s bound [27] and the properties of the modified
auxiliary function (Proposition 1). Theorem 5 contains the converse part, and is proved in Section 3.2. The
proof involves a weak sphere-packing bound (Proposition 6), a sharp converse lower bound (Proposition 7),
and an approximation of the error-exponent function around capacity (Proposition 8).

Let (an)n∈N be a sequence of real numbers satisfying

(i) an → 0, as n→ +∞,
(ii) an

√
n→ +∞, as n→ +∞.

(3.1)

Theorem 4 (Achievability). For any W : X → S(H) with VW > 0 and any sequence (an)n≥1 satisfying
Eq. (3.1), there exists a sequence of codes {Cn}n≥1 with rates Rn = CW − an so that

lim sup
n→+∞

1

na2
n

log ε̄ (W, Cn) ≤ − 1

2VW
. (3.2)

The proof is given in Section 3.1.
7
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Theorem 5 (Converse). For any W : X → S(H) with VW > 0, any sequence {an}n≥1 satisfying Eq. (3.1),
and any sequence of codes {Cn}n≥1 with rates Rn = CW − an, it holds that

lim inf
n→+∞

1

na2
n

log ε̄ (W, Cn) ≥ − 1

2VW
. (3.3)

The proof is given in Section 3.2.

Remark 3.1. Altuğ and Wagner [21] proved Theorem 5 for discrete classical channels by a weak sphere-

packing bound with the expression of Ẽsp. Although such a weak sphere-packing bound indeed holds for
c-q channels (see Proposition 6 and Remark B.1 in Appendix B), Proposition 8 in Section 3.2 shows that
it will lead to

lim sup
n→+∞

1

na2
n

log ε̄ (W, Cn) ≤ − 1

2ṼW
, (3.4)

where ṼW is defined in Eq. (2.23). Since Ṽ (ρ‖σ) ≤ V (ρ‖σ) [42, Theorem 1.2], it holds that ṼW ≤ VW and
the equality happens if and only if the channel reduces to classical. Hence, Altuğ and Wagner’s method
yields a weaker result in quantum regime; namely, a gap between the achievability and the converse. In
Section 3.2, we will employ a sharp converse bound from strong large deviation theory to achieve our
result, Theorem 5.

3.1. Proof of Achievability: Theorem 4. Let W : X → S(H) satisfy VW > 0. Let {an}n≥1 be any
sequence of real numbers satisfying Eq. (3.1). Since VW > 0, Eq. (2.24) shows that CW > 0. Hence, we
have CW − an > 0, for all sufficiently large n. Fix such an integer n onwards, Hayashi’s upper bound,
Eq. (2.28), implies that there exists a code Cn with Rn = CW − an so that

ε̄(W, Cn) ≤ 4 exp

(
−n
[

max
0≤s≤1

{
Ẽ0(s, P, PW)− sRn

}])
, (3.5)

for all P ∈ P(X ). In the following, we denote by Ẽ0(s, P ) := Ẽ0(s, P, PW) for notational convenience.
Simple algebra yields

1

na2
n

log ε̄(W, Cn) ≤ log 4

na2
n

− 1

a2
n

max
0≤s≤1

{
Ẽ0(s, P )− sRn

}
, (3.6)

for all sufficiently large n and any P ∈ P(X ).

Let P̃(X ) be the set of distributions that achieve the minimum in Eq. (2.22), and let P̃ ∈ P̃(X ). Note

that Ref. [9, Lemma 3] implies that P̃(X ) is compact. Applying Taylor’s theorem to Ẽ0(s, P̃ ) at s = 0
together with Proposition 1 gives

Ẽ0

(
s, P̃

)
= sCW −

s2

2
VW +

s3

6

∂3Ẽ0

(
s, P̃

)
∂s3

∣∣∣∣∣∣
s=s̄

, (3.7)

for some s̄ ∈ [0, s]. Let sn = an/VW. Then sn ≤ 1 for all sufficiently large n by the assumption in Eq. (3.1)
and VW > 0. For all sn ≤ 1, Eq. (3.7) yields

max
0≤s≤1

{
Ẽ0

(
s, P̃

)
− sRn

}
≥ Ẽ0

(
sn, P̃

)
− snRn (3.8)

=
an
VW

(CW −Rn)− a2
n

2VW
+

a3
n

6V 3
W

∂3Ẽ0

(
s, P̃

)
∂s3

∣∣∣∣∣∣
s=s̄n

(3.9)

=
a2
n

2VW
+

a3
n

6V 3
W

∂3Ẽ0

(
s, P̃

)
∂s3

∣∣∣∣∣∣
s=s̄n

, (3.10)

where s̄n ∈ [0, sn] and Eq. (3.10) holds since Rn = CW − an.
8
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Define

Υ = max
(s,P )∈[0,1]×P̃(X )

∣∣∣∣∣∂3Ẽ0 (s, P )

∂s3

∣∣∣∣∣ , (3.11)

which is finite due to the compact set [0, 1]× P̃(X ) and item (a) in Proposition 1. Therefore, Eq. (3.10)
implies that

max
0≤s≤1

{
Ẽ0

(
s, P̃

)
− sRn

}
≥ a2

n

2VW
+

a3
n

6V 3
W

∂3Ẽ0

(
s, P̃

)
∂s3

∣∣∣∣∣∣
s=s̄n

(3.12)

≥ a2
n

2VW
− a3

n

6V 3
W

∣∣∣∣∣∣
∂3Ẽ0

(
s, P̃

)
∂s3

∣∣∣∣∣∣
s=s̄n

∣∣∣∣∣∣ (3.13)

≥ a2
n

2VW
− a3

n

6V 3
W

Υ, (3.14)

for all sufficiently large n.
Substituting Eq. (3.14) into Eq. (3.6) gives

1

na2
n

log ε̄(W, Cn) ≤ log 4

na2
n

− 1

2VW

(
1−Υ

an
3V 2

W

)
. (3.15)

Recall Eq. (3.1) and let n→ +∞, which completes the proof:

lim sup
n→+∞

1

na2
n

log ε̄(W, Cn) ≤ − 1

2VW
. (3.16)

�

3.2. Proof of Converse: Theorem 5. Our strategy consists of the following steps. First, we claim that
it suffices to prove Eq. (3.3) for the maximal error probability of any code Cn, i.e. εmax(W, Cn). Recall
the standard expurgation method (see e.g. [41, p. 96], [50, Theorem 20], [15, p. 395]): by removing half
codewords with highest error probability to arrive at ε̄ (W, Cn) ≥ 1

2εmax (W, C′n) with |C′n| = d|Cn|/2e ≥
1
2 exp{nRn} = exp{n(Rn − 1

n log 2)}. Since the induced rate back-off is only 1
n log 2 = o(an), one might

define another sequence a′n := an − 1
n log 2 satisfying Eq. (3.1). Hence, without of loss generality, we only

need to prove the converse part for εmax.
Second, we employ the method of Ref. [18, Lemma 16] to relate the error probability εmax to the

minimum type-I error:

log εmax(W, Cn)

na2
n

≥ max
σn∈S(H⊗n)

min
xn∈Xn

log α̂exp{−nRn}(W
⊗n
xn ‖σn)

na2
n

(3.17)

≥ min
xn∈Xn

log α̂exp{−nRn}(W
⊗n
xn ‖(P ?W)⊗n)

na2
n

, (3.18)

where P ? ∈ P(X ) is an arbitrary capacity-achieving distribution, i.e. I(P ?,W) = CW.
Third, we divide the set of codewords into two groups. Fix an arbitrary η ∈ (0, 1

2). Let A :=

maxρ∈S◦ V (ρ‖P ?W) and let ξ =
√

2A/η. Define:

Ωgood := {xn ∈ X n : D(W‖P ?W|Pxn) > Rn} ; (3.19)

Ωbad := X n\Ωgood. (3.20)

For the codes in Ωbad, we employ a weak converse bound in Proposition 6, and apply a sharp converse
bound, Proposition 7, for Ωgood. Furthermore, we can assume an > 0 for all sufficiently large n ∈ N owing
to the assumption limn→+∞ an

√
n = +∞. Subsequently, we will consider such n onwards.
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Proof of Theorem 5. We start the proof with the case Ωbad, and further consider two different cases:

Ω
(1)
bad :=

{
xn ∈ X n : D(W‖P ?W|Pxn) ≤ Rn −

2ξ√
n

}
; (3.21)

Ω
(2)
bad :=

{
xn ∈ X n : Rn −

2ξ√
n
< D(W‖P ?W|Pxn) ≤ Rn

}
. (3.22)

We apply the following weak converse bound with σ = P ?W, whose proof is provided in Appendix B to
further lower bound the right-hand side of Eq. (3.18).

Proposition 6 (A Weak Converse Bound). Consider a classical-quantum channel W : X → S(H) with

S◦ := im(W), an arbitrary rate R ≥ 0, and σ ∈ S>0(H). For any η ∈ (0, 1
2), let N0 ∈ N such that for all

n ≥ N0,

e−ξ
√
n ≤ η

2
, (3.23)

where ξ =
√

2A/η and A := maxρ∈S◦ V (ρ‖σ). Then, it holds that for all n ≥ N0,

α̂exp{−nR}
(
W⊗nxn ‖σ⊗n

)
≥ f(η) exp

−n
Ẽsp

(
R− 2ξ√

n
, Pxn , σ

)
1− η

 , (3.24)

where f(η) = exp
{
−h(1−η)

1−η

}
and h(p) := −p log p− (1− p) log(1− p) is the binary entropy function.

Let η and ξ be defined as above, and let N1 be an integer satisfying Eq. (3.23). Then Eq. (3.24) gives,
for all n ≥ N1,

log α̂exp{−nRn}(W
⊗n
xn ‖(P ?W)⊗n)

na2
n

≥ −
Ẽsp

(
Rn − 2ξ√

n
, Pxn , P

?W
)

a2
n(1− η)

+
log f(η)

na2
n

. (3.25)

Further, Eq. (2.41) implies that for all xn ∈ Ω
(1)
bad,

Ẽsp

(
Rn −

2ξ√
n
, Pxn , P

?W

)
= 0. (3.26)

Hence, we have for all xn ∈ Ω
(1)
bad,

log α̂exp{−nRn}(W
⊗n
xn ‖(P ?W)⊗n)

na2
n

≥ log f(η)

na2
n

(3.27)

≥ − 1

2VW
+

log f(η)

na2
n

, (3.28)

where the last inequality follows from VW > 0. Since f(η) < +∞, taking the infimum limit of n → +∞
and using Eq. (3.1) give, for all xn ∈ Ω

(1)
bad,

lim inf
n→+∞

log α̂exp{−nRn}
(
W⊗nxn ‖(P ?W)⊗n)

)
na2

n

≥ − 1

2VW
. (3.29)

Next, we move on to xn ∈ Ω
(2)
bad. In this case, Ẽsp in Eq. (3.25) is not equal to zero for any finite n, we

employ Eq. (3.47) in Proposition 8 below with δn = an + 2ξ/
√
n and bn = an to arrive at

lim inf
n→+∞

log α̂exp{−nRn}
(
W⊗nxn ‖(P ?W)⊗n)

)
na2

n

≥ − lim
n→+∞

4ξ2

n
(
an + 2ξ√

n

)2 ·
1

2ṼW(1− η)
(3.30)

= 0 (3.31)

≥ − 1

2VW
, (3.32)

where the equality follows since limn→+∞ na
2
n = +∞.
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In the last case of xn ∈ Ωgood, we employ a tighter bound, Proposition 7, to lower bound the right-hand
side of Eq. (3.18). The proof is delayed to Appendix C.

Proposition 7 (A Sharp Converse Bound). Consider a classical-quantum channel W : X → S(H) and a
state σ ∈ S(H). Suppose the sequence xn ∈ X n satisfies

ν ≤ V (W‖σ|Pxn) < +∞ (3.33)

for some ν > 0, and suppose the sequence of rates (Rn)n∈N satisfies3 D0(W‖σ|Pxn) < Rn < D(W‖σ|Pxn).
Then, there exists an N0 ∈ N such that, for all n ≥ N0,

α̂exp{−nRn}(W
⊗n
xn ‖σ⊗n) ≥ A

s?n
√
n

exp
{
−nE(2)

sp (Rn − cn, Pxn , σ)
}
, (3.34)

where cn = K logn
n and A,K > 0 are finite constants independent of the sequence xn, and

s?n := arg max
s≥0

{Eh(s, Pxn , σ)− sRn} . (3.35)

Before applying Proposition 7, we verify that the condition, Eq. (3.33), is satisfied. Define

v(δ) := min
P∈P(X )

{V (W‖P ?W|P ) : D(W‖P ?W|P ) ≥ CW − δ} . (3.36)

Note that the map δ 7→ v(δ) is monotone decreasing and continuous at 0 from above, i.e. limδ↓0 v(δ) =
v(0) = VW [7, Lemma 22]. For any κ ∈ (0, 1), we can choose a sufficiently small γ > 0 independent of the
sequence xn such that v(γ) ≥ (1− κ)VW =: ν > 0. Further, let N2 ∈ N such that an ≤ γ for all n ≥ N2.
Then, one finds, for all xn ∈ Ωgood and n ≥ N2,

V (W‖P ?W|Pxn) ≥ v(γ) ≥ ν > 0. (3.37)

Moreover, since VW > 0 implies that CW = maxP∈P(X )D(W‖P ?W|P ) > maxP∈PD0(W‖P ?W|P ), one can
choose a sufficiently large n, say N3 ∈ N, such that Rn > D0(W‖P ?W|Pxn) for all n ≥ N3. Now, we have
for all xn ∈ Ωgood and n ≥ max{N2, N3} that

max
P∈P(X )

D0(W‖P ?W|P ) < Rn < D(W‖P ?W|Pxn); (3.38)

0 < ν ≤ V (W‖P ?W|Pxn). (3.39)

Together with Eqs. (3.18) and (3.37) and letting σ = P ?W, Proposition 7 yields, for all xn ∈ Ωgood and
all sufficiently large n, say n ≥ N4 ∈ N,

log α̂exp{−nRn}
(
W⊗nxn ‖(P ?W)⊗n

)
na2

n

≥ −E
(2)
sp (Rn − cn, Pxn , P

?W)

a2
n

− log s?n
√
n

na2
n

+
logA

na2
n

. (3.40)

Recall Eq. (3.48) in Proposition 8 below with bn = 0 and δn = an + cn that lim supn→+∞
s?n

an+cn
≤ 1

VW
.

Hence, one can fix an arbitrary ζ > 0 and there exists an N5 ∈ N such that s?n
√
n

(an+cn)
√
n
≤ 1

VW
+ ζ for all

n ≥ N5. This then leads to for all sufficiently large n ≥ max{N2, N3, N4, N5} and all xn ∈ Ωgood,

log α̂exp{−nRn}
(
W⊗nxn ‖(P ?W)⊗n

)
na2

n

≥ −E
(2)
sp (Rn − cn, Pxn , P

?W)

a2
n

− log(an + cn)
√
n

na2
n

+

log A
1
VW

+ζ

na2
n

. (3.41)

Taking n → +∞, the second and the third terms on the right-hand side of Eq. (3.41) vanish since

cn = K logn
n = o(an) and the assumption limn→+∞ an

√
n = +∞.

3Note that D0(W‖σ|P ) = D(W‖σ|P ) implies Wx = σ for all x ∈ supp(P ) [46, Collorary 4.1]. This further gives V (W‖σ|P ) =
0. However, the assumption in Eq. (3.33) ensures that lim infn∈ND(W‖σ|Pxn) − D0(W‖σ|Pxn) > 0. Hence, the intervals
[D0(W‖σ|Pxn), D(W‖σ|Pxn)] for all xn satisfying Eq. (3.33) are not measure zero.
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Next, we apply Eq. (3.46) in Proposition 8 again to bound the error-exponent function E
(2)
sp in Eq. (3.40):

for all xn ∈ Ω(3)

lim inf
n→+∞

log α̂exp{−nRn}
(
W⊗nxn ‖(P ?W)⊗n

)
na2

n

≥ − lim sup
n→+∞

E
(2)
sp (CW − δn, Pxn , P

?W)

a2
n

(3.42)

= − lim sup
n→+∞

E
(2)
sp (CW − δn, Pxn , P

?W)

δ2
n

(3.43)

≥ − 1

2VW
. (3.44)

Finally, combining Eqs. (3.18), (3.29), (3.32) and (3.44) concludes the desired Eq. (3.3).

Proposition 8 (Error Exponent around Capacity). Let (bn)n∈N be a sequence of real numbers with
limn→+∞ bn = 0 and let (δn)n∈N be a sequence of positive numbers with limn→+∞ δn = 0. Suppose the
sequence of distributions (Pn)n∈N satisfies

CW − δn < D(W‖P ?W|Pn) ≤ CW − bn. (3.45)

The following hold:

lim sup
n→+∞

E
(2)
sp (CW − δn, Pn, P ?W)

δ2
n

≤ lim sup
n→+∞

(δn − bn)2

2VWδ2
n

; (3.46)

lim sup
n→+∞

Ẽsp (CW − δn, Pn, P ?W)

δ2
n

≤ lim sup
n→+∞

(δn − bn)2

2ṼWδ2
n

; (3.47)

lim sup
n→+∞

s?n
δn
≤ 1

VW
, (3.48)

where

s?n := arg max
s≥0

{Eh(s, Pn, P
?W)− s (CW − δn)} . (3.49)

The proof of Proposition 8 is provided in Appendix D.
�

4. Moderate Deviations for Quantum Hypothesis Testing

In this section, we show that a special case of channel coding yields the moderate deviation result for
quantum hypothesis testing. The achievability part is given in Theorem 9. In Section 4.1, we provide two
proofs. The first proof follows the idea of asymptotic expansions in Theorem 4; however, we will employ
Audenaet et al.’s quantum Hoeffding bound [30], instead of Hayashi’s inequality [27]. The second proof
relies on a martingale inequality [24]. The converse part and its proof are provided in Theorem 10 and
Section 4.2, respectively.

Theorem 9 (Achievability). Let ρ, σ ∈ S(H) be the density operators with finite relative variance V :=
V (ρ‖σ) > 0. For any sequence of real numbers (an)n∈N satisfying Eq. (3.1), there exists a sequence
rn := D (ρ‖σ)− an such that

lim sup
n→+∞

1

na2
n

log α̂exp{−nrn}
(
ρ⊗n‖σ⊗n

)
≤ − 1

2V
. (4.1)

Theorem 10 (Converse). Let ρ, σ ∈ S(H) be the density operators with non-zero and finite relative
variance V := V (ρ‖σ) > 0. For any sequence of real numbers {an}n∈N satisfying Eq. (3.1), there exists
a sequence rn := D (ρ‖σ)− an such that

lim inf
n→+∞

1

na2
n

log α̂exp{−nrn}
(
ρ⊗n‖σ⊗n

)
≥ − 1

2V
. (4.2)
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4.1. Proof of Achievability: Theorem 9. In this section, we present two proofs for Theorem 9. The
first one relies on the quantum Hoeffding bound [30] and the Taylor’s expansion of the exponent function
Eh.

The first proof of Theorem 9. Recall the following achievability of the quantum Hoeffding bound:

Lemma 11 (Theorem 5, Section 5.5 of [30]). Let ρ, σ ∈ S(H). For any r ≥ 0 and any n ∈ N, we have

α̂exp{−nr}
(
ρ⊗n‖σ⊗n

)
≤ exp

{
−n
[

sup
0<α≤1

{
α− 1

α
(r −Dα (ρ‖σ))

}]}
. (4.3)

Since D(ρ‖σ) > 0 (due to Eq. (2.12)), we have

rn := D(ρ‖σ)− an > 0 (4.4)

for all sufficiently large n. Choose such n onwards, then Eq. (4.3) implies that:

1

na2
n

log α̂exp{−nrn}
(
ρ⊗n‖σ⊗n

)
≤ − 1

a2
n

sup
0<α≤1

{
α− 1

α
(rn −Dα (ρ‖σ))

}
(4.5)

= − 1

a2
n

sup
s≥0
{Eh(s)− srn} , (4.6)

where we substitute s = 1−α
α and let

Eh(s) := sD 1
1+s

(ρ‖σ) . (4.7)

Taylor’s theorem followed by simple calculation yields

Eh(s) = sD(ρ‖σ)− s2

2
V +

s3

6

∂3Eh(s)

∂s3

∣∣∣∣
s=s̄

(4.8)

for some s̄ ∈ [0, s] and all s ≥ 0. The above equation is also a simple consequence of items (c) and (e) in
Proposition 2. Now let sn = an/V , for all n ∈ N. Then for all sufficiently large n and for some s̄n ∈ [0, sn],
Eq. (4.8) yields

sup
s≥0
{Eh(s)− srn} ≥ Eh(sn)− snrn (4.9)

=
an
V

(D(ρ‖σ)− rn)− a2
n

2V
+

a3
n

6V 3

∂3Eh(s)

∂s3

∣∣∣∣
s=s̄n

(4.10)

=
a2
n

2V
+

a3
n

6V 3

∂3Eh(s)

∂s3

∣∣∣∣
s=s̄n

, (4.11)

where we substitute rn = D(ρ‖σ)− an in Eq. (4.11).
Define

Υ := max
s∈[0,1]

∣∣∣∣∂3Eh(s)

∂s3

∣∣∣∣ , (4.12)

which is finite. Therefore, Eq. (4.11) leads to

sup
s≥0
{Eh(s)− srn} ≥

a2
n

2V
+

a3
n

6V 3

∂3Eh(s)

∂s3

∣∣∣∣
s=s̄n

(4.13)

≥ a2
n

2V
− a3

n

6V 3
Υ (4.14)

for all sufficiently large n. Substituting Eq. (4.14) into Eq. (4.6) yields

1

na2
n

log α̂exp{−nrn} (ρ‖σ) ≤ − 1

2V

(
1−Υ

an
3V 2

)
, (4.15)

which implies the desired achievability part:

lim sup
n→+∞

1

na2
n

log α̂exp{−nrn} (ρ‖σ) ≤ − 1

2V
. (4.16)
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In the following, we give an alternative proof of Theorem 9 by employing a martingale inequality [24].

The second proof of Theorem 9. We follow the idea in Ref. [6] to write the eigendecomposition of ρ⊗n and
σ⊗n, respectively, as

ρ⊗n =
∑
xn

λn(xn)|fnxn〉〈fnxn |; σ⊗n =
∑
yn

γn(yn)|gnyn〉〈gnyn |, (4.17)

where xn := x1x2 . . . xn; yn := y1y2 . . . yn; λn(xn) =
∏n
i=1 λ(xi); µ

n(yn) =
∏n
i=1 µ(yi); |fnxn〉 = |fx1〉 ⊗

|fx2〉 ⊗ · · · ⊗ |fxn〉; and |gnyn〉 = |gy1〉 ⊗ |gy2〉 ⊗ · · · ⊗ |gyn〉. Further, we define a pair of random variables

(X,Y ) via the Nussbaum-Szko la mapping [58], i.e. PX,Y (x, y) = λ(x)|γxy|2, where γxy := 〈gy|fx〉 ∈ C. It
is well-known that

D(ρ‖σ) = D(λ(X)‖µ(Y )) = E(X,Y )

[
log

λ(X)

µ(Y )

]
, (4.18)

V (ρ‖σ) = V (λ(X)‖µ(Y )) = Var(X,Y )

[
log

λ(X)

µ(Y )

]
. (4.19)

Let Tn := exp {nrn}. For every sequence xn, we define a sub-normalized vector:

|ξnxn〉 :=
∑

yn:λn(xn)/µn(yn)≥Tn

γnxnyn |gnyn〉 (4.20)

with γnxnyn =
∏n
i=1 γxiyi and

∑
x |γxy|2 =

∑
y |γxy|2 = 1. Applying the Gram-Schmidt orthonormalization

process on {|ξnxn〉}xn to obtain an orthonormal vectors

|ξ̂nxn〉 =
∑

yn:λn(xn)/µn(yn)≥Tn

tnxnyn |gnyn〉 (4.21)

for some tnxnyn ∈ C and ∑
yn:λn(xn)/µn(yn)≥Tn

|tnxnyn |2 = 1. (4.22)

We define a test of the hypotheses by

Qn :=
∑
xn

|ξ̂nxn〉〈ξ̂nxn |. (4.23)

Then, it suffices to show β (Qn;σ⊗n) ≤ exp{−nrn} and

lim
n→+∞

1

na2
n

logα
(
Qn; ρ⊗n

)
≤ − 1

2V
(4.24)

to complete the proof. The former follows Eqs. (4.17), (4.21), and (4.22):

β
(
Qn;σ⊗n

)
=
∑
xn

Tr
[
σ⊗n|ξ̂nxn〉〈ξ̂nxn |

]
=
∑
xn

∑
yn:λn(xn)/µn(yn)≥Tn

|tnxnyn |2µn(yn)

≤
∑
xn

λn(xn)

Tn
=

1

Tn
= exp{−nrn}. (4.25)
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Likewise, since |ξxn 〉〈ξxn |
|〈ξxn |ξxn 〉|2

≤ Qn, one can verify that

α
(
Qn; ρ⊗n

)
≤ 1−

∑
xn

λn(xn)〈ξnxn |ξnxn〉 (4.26)

= Pr

{
λn(Xn)

µn(Y n)
< Tn

}
(4.27)

= Pr

{
log

λn(Xn)

µn(Y n)
< nrn

}
. (4.28)

Next, we adopt Sason’s approach [24] to construct a martingale sequence {Uk,Mk}nk=0, where Mk

denotes the sigma-algebra formed by (Xl, Yl)
k
l=1; M0 ⊆M1 ⊆ . . . ⊆Mn is the filtration; and

Uk := E(Xn,Y n)

[
log

λn(Xn)

µn(Y n)

∣∣∣∣Mk

]
(4.29)

=

k∑
i=1

log
λ(Xi)

µ(Yi)
+

n∑
i=k+1

EXn

[
log

λ(Xi)

µ(Yi)

]
(4.30)

=
k∑
i=1

log
λ(Xi)

µ(Yi)
+ (n− k)D(λ(X)‖µ(Y )). (4.31)

In particular, we have

U0 = nD (λ(X)‖µ(Y )) ; Un = log
λ(Xn)

µ(Y n)
=

n∑
i=1

log
λ(Xi)

µ(Yi)
.

Hence, it can be verified that:

Uk − Uk−1 = log
λ(Xk)

µ(Yk)
−D(λ(X)‖µ(Y ));

EXn [Uk − Uk−1|Mk−1] = 0;

EXn

[
(Uk − Uk−1)2

∣∣∣Mk−1

]
= V (λ(X)‖µ(Y )) = V.

Let

b := max
(x,y):x=y

∣∣∣∣log
λ(x)

µ(y)
−D(λ(X)‖µ(Y ))

∣∣∣∣ , (4.32)

which is a finite number due to the assumption of the finite-dimensional Hilbert space. Then, we have
|Uk − Uk−1| ≤ b almost surely for every k ∈ [n]. Equipped with the notation above, Eq. (4.28) can be
expressed as:

α
(
Qn; ρ⊗n

)
= Pr {Un − U0 ≤ −nan} . (4.33)

In the following, we borrow the idea from Sason [24] to employ a martingale inequality to upper bound
Eq. (4.33).

Theorem 12 (Refined Azuma’s Inequality [24, Theorem 2]). Let (Xk)
n
k=1 be a martingale with respect to

the filtration (Mk)
n
k=0 such that the following requirements are satisfied almost surely: (i) E [Xk|Mk−1] =

0; (ii) E
[
X2
k |Mk−1

]
≤ v; (iii) ‖Xk‖∞ ≤ bk. For any x ≥ 0,

Pr

{
n∑
k=1

Xk ≥ xn

}
= Pr

{
n∑
k=1

Xk ≤ −xn

}

≤ 2 exp

{
−nh

(
bx+ v

b2 + v

∥∥∥∥ v

b2 + v

)}
, (4.34)

where h(p‖q) := p log p
q + (1− p) log 1−p

1−q .
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Apply Theorem 12 to Eq. (4.33) with x = an, Xk = Uk − Uk−1 for ever k ∈ [n]:

α
(
Qn; ρ⊗n

)
≤ 2 exp

{
−nh

(
ban + V

b2 + V

∥∥∥∥ V

b2 + V

)}
. (4.35)

By using a scalar inequality [24, Lemma 1]:

(1 + u) log(1 + u) ≥ u+
u2

2
− u3

6
, u ≥ 0, (4.36)

and the definition of h(·‖·) in Theorem 12, Eq. (4.35) leads to

α
(
Qn; ρ⊗n

)
≤ 2 exp

{
−n
[
a2
n

2V

(
1− anb

3V (1 + V/b2)

)]}
. (4.37)

Finally, recall that limn→+∞ an = 0 in Eq. (3.1), then

lim sup
n→+∞

1

na2
n

logαn (ηn) ≤ − 1

2V
.

�

4.2. Proof of Converse: Theorem 10. The converse part is a direct consequence of the sharp converse
Hoeffding bound, Theorem 7.

Let X = {x} and Wx = ρ. We apply Theorem 7 with r = rn to obtain

α̂exp{−nrn}
(
ρ⊗n‖σ⊗n

)
≥ A

s?n
√
n

exp

{
−n
[

sup
0<α≤1

α− 1

α
(rn − cn −Dα (ρ‖σ))

]}
, (4.38)

for sufficiently large n ∈ N and some constant A > 0. Here

s?n := arg max
s≥0

{
sD 1

1+s
(ρ‖σ)− srn

}
. (4.39)

Now let

δn := an + cn, ∀n ∈ N, (4.40)

and invoke Proposition 8 with Wx = ρ, P (x) = 1, and substitute P ?W with σ to obtain

lim sup
n→+∞

sups≥0

{
−s (D (ρ‖σ)− δn) + sD 1

1+s
(ρ‖σ)

}
δ2
n

≤ 1

2V
. (4.41)

Moreover, Eq. (3.48) in Proposition 8 gives that limn→+∞
s?n
δn

= 1/V . Combining Eqs. (4.38) and (4.41)
concludes our claim:

lim inf
n→+∞

log α̂exp{−nrn} (ρ⊗n‖σ⊗n)

nδ2
n

≥ − 1

2V
. (4.42)

5. Conclusion

A practical question in quantum information theory is that—is it possible for a reliable communication
through a c-q channel when the transmission rate approaches capacity in blocklength? In this paper, we
propose a moderate deviation analysis for c-q channel and thus give an affirmative answer. Moreover, we
also establish the moderate deviations for quantum hypothesis testing.

Our proof strategy is based on a strong large deviation theory [28, 18] and the study of the asymptotic
behaviour of the error exponent function. As a result, we successfully bridge the connection between
small error regime and the medium error regime. On the other hand, the recent work from the authors
[31] also obtains the moderate deviation result via the techniques in the non-vanishing error regime. It is
remarkable that both methods from different regimes arrive at the same place, and hence both this work
along with Ref. [31] illuminate the whole picture of the three regimes in quantum information theory. �
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Appendix A. Properties of Auxiliary Functions

This section contains proofs of Propositions 1 and 2. Most results follow from properties of Petz
quantum Rényi divergence [43] (see also [44, 45, 46]).

A.1. Proof of Proposition 1.

Proposition 1 (Properties of Ẽ0(s, P, σ)). For any classical-quantum channel W : X → S(H), the

modified auxiliary function Ẽ0(s, P, σ) admits the following properties.

(a) Ẽ0(s, P, σ) and its partial derivatives ∂Ẽ0(s, P, σ)/∂s, ∂2Ẽ0(s, P, σ)/∂s2, ∂3Ẽ0(s, P, σ)/∂s3 are all
continuous in (s, P ) ∈ R≥0 × P(X ).

(b) For every P ∈ P(X ), the function Ẽ0(s, P, σ) is concave in s ∈ R≥0.
(c) For every P ∈ P(X ),

∂Ẽ0(s, P, σ)

∂s

∣∣∣∣∣
s=0

= D(P ◦W‖P ⊗ σ) (A.1)

(d) For every P ∈ P(X ),

lim
s→+∞

∂Ẽ0(s, P )

∂s
≤ ∂Ẽ0(s, P )

∂s
≤ D(P ◦W‖P ⊗ σ), ∀s ∈ R≥0. (A.2)

(e) For every P ∈ P(X ),

∂2Ẽ0(s, P )

∂s2

∣∣∣∣∣
s=0

= −V (P ◦W‖P ⊗ σ). (A.3)

Proof of Proposition 1.

(1-(a)) The continuity can be proved by the standard approach of functional calculus (see e.g. [44, Lemma

III.1] and [45, Section 4.2]). Let F̃ (s) :=
∑

x∈X P (x) Tr
[
W 1−s
x (σ)s

]
. Direct calculation shows that

∂Ẽ0(s, P, σ)

∂s
= − F̃

′(s)

F̃ (s)
, (A.4)

∂2Ẽ0(s, P, σ)

∂s2
= − F̃

′′(s)

F̃ (s)
+

(
∂Ẽ0(s, P, σ)

∂s

)2

, (A.5)

∂3Ẽ0(s, P, σ)

∂s3
= − F̃

′′′(s, P )

F̃ (s, P )
+ 3

∂Ẽ0(s, P, σ)

∂s

∂2Ẽ0(s, P, σ)

∂s2
−

(
∂Ẽ0(s, P, σ)

∂s

)3

, (A.6)
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and

F̃ ′(s) =
∑
x∈X

P (x) Tr
[
−W 1−s

x log(Wx)(σ)s +W 1−s
x (σ)slog(σ)

]
, (A.7)

F̃ ′′(s) =
∑
x∈X

P (x) Tr
[
W 1−s
x log2(Wx)(σ)s −W 1−s

x log(Wx)(σ)slog(σ)

−W 1−s
x log(Wx)(σ)slog(σ) +W 1−s

x (σ)slog2(σ)
]
,

(A.8)

F̃ ′′′(s) =
∑
x∈X

P (x) Tr
[
−W 1−s

x log3(Wx)(σ)s +W 1−s
x log2(Wx)(σ)slog(σ)

+2W 1−s
x log2(Wx)(σ)slog(σ)− 2W 1−s

x log(Wx)(σ)slog2(σ)

−W 1−s
x log(Wx)(σ)slog2(σ) +W 1−s

x (σ)slog3(σ)
]
.

(A.9)

Since the matrix power function is continuous (with respect to the strong topology; see e.g. [47,
Theorem 1.19]), we conclude the continuity of the partial derivatives Eqs. (A.4)-(A.6) in item (a).

(1-(b)) The claim follows from the concavity of the map s 7→ sD1−s( · ‖ · ) (see e.g. [48, Lemma III.11]).
(1-(c)) The results can be derived from evaluating Eqs. (A.4), (A.5), (A.7), and (A.8) at s = 0. We

provide an alternative proof here. One can verify

∂Ẽ0(s, P, σ)

∂s

∣∣∣∣∣
s=0

= D1−s (P ◦W‖P ⊗ σ)− sD′1−s (P ◦W‖P ⊗ σ)
∣∣
s=0

(A.10)

= D1−s (P ◦W‖P ⊗ σ)|s=0 (A.11)

= D(P ◦W‖P ⊗ σ). (A.12)

(1-(d)) The concavity of the map s 7→ Ẽ(s, P, σ) in item (b) ensures that ∂Ẽ(s, P, σ)/∂s is non-increasing
in s. Along with Eq. (A.12), we conclude Eq. (2.30).

(1-(e)) Following from item (c), one obtain

∂2Ẽ0(s, P, σ)

∂s2

∣∣∣∣∣
s=0

= −2D′1−s (P ◦W‖P ⊗ σ) + sD′′1−s (P ◦W‖P ⊗ σ)
∣∣
s=0

(A.13)

= −2D′1−s (P ◦W‖P ⊗ σ)
∣∣
s=0

(A.14)

= −V (P ◦W‖P ⊗ σ), (A.15)

where the last equality (A.15) follows from the fact D′1/1+s(·‖·)|s=0 = V (·‖·)/2 [45, Theorem 2].

�

A.2. Proof of Proposition 2.

Proposition 2 (Properties of Eh(s, P, σ)). Consider a classical-quantum channel W : X → S(H), a
distribution P ∈ P(X ), and a state σ ∈ S(H) with Wx � σ for all x ∈ supp(P ). Then Eh(s, P, σ) defined
in Eq. (2.26) enjoys the following properties.

(a) The partial derivatives ∂Eh(s, P, σ)/∂s, ∂2Eh(s, P, σ)/∂s2, ∂3Eh(s, P, σ)/∂s3, and Eh(s, P ) are
all continuous for (s, P ) ∈ R≥0 × P(X ).

(b) For every P ∈ P(X ), the function Eh(s, P, σ) is concave in s for all s ∈ R≥0.
(c) For every P ∈ P(X ),

∂Eh(s, P, σ)

∂s

∣∣∣∣
s=0

= D (W‖σ|P ) . (A.16)

(d) For every P ∈ P(X ),

lim
s→+∞

∂Eh(s, P, σ)

∂s
≤ ∂Eh(s, P, σ)

∂s
≤ D (W‖σ|P ) , ∀s ∈ R≥0. (A.17)
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(e) For every P ∈ P(X ),

∂2Eh(s, P, σ)

∂s2

∣∣∣∣
s=0

= −V (W‖σ|P ) . (A.18)

Proof Proposition 2.

(2-(a)) Direct calculation yields that

∂Eh(s, P, σ)

∂s
= D 1

1+s
(W‖σ|P )− s

(1 + s)2
D′ 1

1+s

(W‖σ|P ) (A.19)

∂2Eh(s, P, σ)

∂s2
= − 2

(1 + s)3
D′ 1

1+s

(W‖σ|P ) +
s

(1 + s)4
D′′1

1+s

(W‖σ|P ) (A.20)

∂3Eh(s, P, σ)

∂s3
=

6

(1 + s)4
D′ 1

1+s

(W‖σ|P ) +
3− 3s

(1 + s)5
D′′1

1+s

(W‖σ|P )

− s

(1 + s)6
D′′′1

1+s

(W‖σ|P ) . (A.21)

From Eqs. (A.19)-(A.21) and the fact thatD1/(1+s) (W‖σ|P ), D′1/(1+s) (W‖σ|P ), D′′1/(1+s) (W‖σ|P ),

and D′′′1/(1+s) (W‖σ|P ) are continuous for (s, P ) ∈ R≥0×P(X ), we deduce the continuity property

in item (a).
(2-(b)) The proof strategy follows closely with [48, Appendix B]. Let ψ(α) =

∑
x∈X P (x) log Tr

[
Wα
x σ

1−α].
Since α 7→ ψ(α) is convex for all α ∈ (0, 1] [48, Lemma III.11], it can be written as the supremum
of affine functions, i.e.

ψ(α) = sup
i∈I
{ciα+ di} (A.22)

for some index set I. Hence,

−Eh(s, P, σ) = (1 + s)ψ

(
1

1 + s

)
= sup

i∈I
{ci + di(1 + s)} . (A.23)

The right-hand side of Eq. (A.23), in turn, implies that the map s 7→ Eh(s, P, σ) is convex for all
s ∈ R≥0.

(2-(c)) From Eqs. (A.19) and (A.20), one finds

∂Eh(s, P, σ)

∂s

∣∣∣∣
s=0

= D (W‖σ|P ) . (A.24)

(2-(d)) The concavity of the map s 7→ Eh(s, P, σ) in item (b) ensures that ∂Eh(s, P, σ)/∂s is non-increasing
in s. Along with Eq. (A.24) in item (c), we conclude Eq. (2.33).

(2-(e)) Applying D′1/1+s(·‖·)|s=0 = V (·‖·)/2 [45, Theorem 2], it holds that

∂2Eh(s, P, σ)

∂s2

∣∣∣∣
s=0

= −V (W‖σ|P ) . (A.25)

�

A.3. Proof of Proposition 3.

Proposition 3 (Properties of Ẽh(s, P, σ)). Consider a classical-quantum channel W : X → S(H), a

distribution P ∈ P(X ), and a state σ ∈ S(H) with Wx � σ for all x ∈ supp(P ). Then Ẽh(s, P, σ) defined
in Eq. (2.27) enjoys the following properties.

(a) The partial derivatives ∂Ẽh(s, P, σ)/∂s, ∂2Ẽh(s, P, σ)/∂s2, ∂3Ẽh(s, P, σ)/∂s3, and Ẽh(s, P, σ) are
all continuous for (s, P ) ∈ R≥0 × P(X ).

(b) For every P ∈ P(X ), the function Ẽh(s, P, σ) is concave in s for all s ∈ R≥0.
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(c) For every P ∈ P(X ),

∂Ẽh(s, P, σ)

∂s

∣∣∣∣∣
s=0

= D (W‖σ|P ) . (A.26)

(d) For every P ∈ P(X ),

lim
s→+∞

∂Ẽh(s, P, σ)

∂s
≤ ∂Ẽh(s, P, σ)

∂s
≤ D (W‖σ|P ) , ∀s ∈ R≥0. (A.27)

(e) For every P ∈ P(X ),

∂2Ẽh(s, P, σ)

∂s2

∣∣∣∣∣
s=0

= −Ṽ (W‖σ|P ) . (A.28)

Proof of Proposition 3. This proof follows similarly from Proposition 2.

(3-(a)) Direct calculation yields that

∂Ẽh(s, P, σ)

∂s
= D̃ 1

1+s
(W‖σ|P )− s

(1 + s)2
D̃′ 1

1+s

(W‖σ|P ) (A.29)

∂2Ẽh(s, P, σ)

∂s2
= − 2

(1 + s)3
D̃′ 1

1+s

(W‖σ|P ) +
s

(1 + s)4
D̃′′1

1+s

(W‖σ|P ) (A.30)

∂3Ẽh(s, P, σ)

∂s3
=

6

(1 + s)4
D̃′ 1

1+s

(W‖σ|P ) +
3− 3s

(1 + s)5
D̃′′1

1+s

(W‖σ|P )

− s

(1 + s)6
D̃′′′1

1+s

(W‖σ|P ) . (A.31)

From Eqs. (A.29)-(A.31) and the fact that D̃1/(1+s) (W‖σ|P ), D̃′1/(1+s) (W‖σ|P ), D̃′′1/(1+s) (W‖σ|P ),

and D′′′1/(1+s) (W‖σ|P ) are continuous for (s, P ) ∈ R≥0×P(X ), we deduce the continuity property

in item (a).
(3-(b)) The proof strategy follows closely with [48, Appendix B]. Let

ψ̃(α) =
∑
x∈X

P (x) log Tr
[
eα logWx+(1−α) log σ

]
. (A.32)

Since α 7→ ψ̃(α) is convex for all α ∈ (0, 1] [48, Lemma III.11], it can be written as the supremum
of affine functions, i.e.

ψ̃(α) = sup
i∈I
{ciα+ di} (A.33)

for some index set I. Hence,

−Ẽh(s, P, σ) = (1 + s)ψ̃

(
1

1 + s

)
= sup

i∈I
{ci + di(1 + s)} . (A.34)

The right-hand side of Eq. (A.34), in turn, implies that the map s 7→ Ẽh(s, P, σ) is convex for all
s ∈ R≥0.

(3-(c)) From Eqs. (A.29) and (A.30) and recalling [48, Lemma III.4], one finds

∂Ẽh(s, P, σ)

∂s

∣∣∣∣∣
s=0

= D (W‖σ|P ) . (A.35)

(3-(d)) The concavity of the map s 7→ Eh(s, P ) in item (b) ensures that ∂Eh(s, P )/∂s is non-increasing
in s. Along with Eq. (A.35) in item (c), we conclude Eq. (2.36).
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(3-(e)) Following similar steps in [45, Proposition 4], it can be verifies that

D̃′α(ρ‖σ)
∣∣∣
α=1

= lim
α↑1

1

2

d2

dα2
log f(α) =

f(1)f ′′(1)− (f ′(1))2

2(f(1))2
, (A.36)

where f(α) := Tr
[
eα log ρ+(1−α)σ

]
. Further, the Fréchet derivative of the exponential (see e.g. [49,

Example X.4.2]) gives

f ′(α) = Tr
[
eα log ρ+(1−α)σ (log ρ− log σ)

]
, (A.37)

f ′′(α) =

∫ 1

0
dtTr

[
et(α log ρ+(1−α)σ) (log ρ− log σ) e(1−t)(α log ρ+(1−α)σ) (log ρ− log σ)

]
, (A.38)

Therefore, Eq. (A.36) equals

D̃′α(ρ‖σ)
∣∣∣
α=1

=
1

2

(∫ 1

0
dtTr

[
ρ1−t(log ρ− log σ)ρt(log ρ− log σ)

]
−D(ρ‖σ)2

)
(A.39)

=
1

2
Ṽ (ρ‖σ). (A.40)

Finally, combining with Eq. (A.30) yields

∂2Ẽh(s, P, σ)

∂s2

∣∣∣∣∣
s=0

= −Ṽ (W‖σ|P ) . (A.41)

�

Appendix B. A Weak Converse Bound: Proof of Proposition 6

Proposition 6 (Weak Converse Bound with Polynomial Prefactors). Consider a classical-quantum chan-

nel W : X → S(H) with S◦ := im(W), an arbitrary rate R ≥ 0, and σ ∈ S>0(H). For any η ∈ (0, 1
2) and

c > 0, let N0 ∈ N such that for all n ≥ N0,

c · e−ξ
√
n ≤ η

2
, (B.1)

where ξ =
√

2A/η and A := maxρ∈S◦ V (ρ‖σ). Then, it holds that for all n ≥ N0,

α̂c exp{−nR}
(
W⊗nxn ‖σ⊗n

)
≥ f(η) exp

−n
Ẽsp

(
R− 2ξ√

n
, Pxn , σ

)
1− η

 , (B.2)

where f(η) = exp
{
−h(1−η)

1−η

}
and h(p) := −p log p− (1− p) log(1− p) is the binary entropy function.

Remark B.1. Consider a constant composition code with common type Pxn on a finite input alphabet X .
Recall the definition of the weak sphere-packing exponent [40, 18]:

Ẽsp(R,Pxn) := min
W̄:X→S(H)

{
D
(
W̄‖W|Pxn

)
: I(Pxn , W̄) ≤ R

}
. (B.3)

Proposition 6, along with [18, Lemma 11], establishes a weak sphere-packing bound with polynomial
prefactors, which generalizes Altuğ and Wagner’s result [21, Lemma 3] to c-q channels: for any η ∈ (0, 1

2)
and for all sufficiently large n such that Eq. (B.1) holds, we have

εmax(W, Pxn) ≥ max
σ∈S(H)

α̂exp{−nR}
(
W⊗nxn ‖σ⊗n

)
(B.4)

≥ α̂exp{−nR}
(
W⊗nxn ‖(σ?)⊗n

)
(B.5)

≥ f(η) exp

−n
Ẽsp

(
R− 2ξ√

n
, Pxn

)
1− η

 , (B.6)

where σ? := PxnW̄
? and W̄? is an arbitrary minimizer in Eq. (B.3). Moreover, Eq. (B.6) improves the

prefactor of Winter’s weak sphere-packing bound [40] from the order of subexponential to polynomial.
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Proof of Proposition 6. Consider an arbitrary sequence xn ∈ X n and a test Qn on H⊗n. For two c-q
channels W̄,W : X → S◦, the data-processing inequality implies that

D
(
W̄⊗nxn ‖W⊗nxn

)
≥
[
1− α(Qn; W̄⊗nxn )

]
log

1− α(Qn; W̄⊗nxn )

1− α(Qn;W⊗nxn )
+ α(Qn; W̄⊗nxn ) log

α(Qn; W̄⊗nxn )

α(Qn;W⊗nxn )
(B.7)

= −h
(
α(Qn; W̄⊗nxn )

)
− α(Qn; W̄⊗nxn ) logα(Qn;W⊗nxn )

−
[
1− α(Qn; W̄⊗nxn )

]
log
(
1− α(Qn;W⊗nxn )

)
(B.8)

≥ −α(Qn; W̄⊗nxn ) logα(Qn;W⊗nxn )− h
(
α(Qn; W̄⊗nxn )

)
, (B.9)

where the last inequality (B.9) follows since the third term in (B.8) is non-negative. Continuing from
Eq. (B.9), we have

α(Qn;W⊗nxn ) ≥ exp

{
−
D
(
W̄⊗nxn

∥∥W⊗nxn
)

+ h
(
α(Qn; W̄⊗nxn )

)
α(Qn; W̄⊗nxn )

}
(B.10)

= exp

{
−
nD

(
W̄
∥∥W∣∣Pxn

)
+ h

(
α(Qn; W̄⊗nxn )

)
α(Qn; W̄⊗nxn )

}
, (B.11)

where Eq. (B.11) follows from the additivity of the relative entropy and the empirical distribution Pxn .
The next step is to replace α(Qn;W⊗nxn ) with a lower bound that does not depend on the dummy channel

W̄ , provided that W̄ satisfies certain conditions. This can be done using Proposition 13, Wolfowitz’s strong
converse bound. We delay its proof in Appendix B.1.

Proposition 13 (Wolfowitz’s Strong Converse). Let S◦ ⊆ S(H) be closed and let W̄ : X → S◦ be an
arbitrary classical-quantum channel. Consider the binary hypothesis testing:

H0 : W̄⊗nxn , (B.12)

H1 : σ⊗n, (B.13)

where xn ∈ X n and σ ∈ S>0(H). For any test Qn such that β(Qn;σ⊗n) ≤ e−nR and D
(
W̄xn‖σ|Pxn

)
≤

R− 2κ, it holds that

α
(
Qn; W̄⊗nxn

)
> 1− A

nκ2
− e−nκ, (B.14)

where A := maxρ∈S◦ V (ρ‖σ).

Fix 0 < η < 1
2 , and let ξ2 := 2A

η . Note that ξ2 is finite because A < +∞. For all n ≥ N0, we have

c · e−ξ
√
n ≤ η

2
(B.15)

by assumption in Proposition 6. Choose κ = ξ/
√
n. For any W̄ : X → S◦ with D

(
W̄‖σ|Pxn

)
≤ R − 2ξ√

n

and any test Qn such that β(Qn;σ⊗n) ≤ e−nR, Proposition 13 gives a lower bound to the type-I error:

α(Qn; W̄⊗nxn ) ≥ 1− A

nκ2
− e−nκ ≥ 1− η. (B.16)

Hence, combining Eqs. (B.11) and (B.16) yields that, for any β(Qn;σ⊗n) ≤ ce−nR,

α(Qn;W⊗nxn ) ≥ max
W̄:D(W̄‖σ|Pxn)≤R− 2ξ√

n

exp

{
−
nD

(
W̄
∥∥W∣∣Pxn

)
+ h (1− η)

1− η

}
, (B.17)

= exp

{
−h (1− η)

1− η

}
exp

−n Ẽsp

(
R− 2ξ√

n
, Pxn , σ

)
1− η

 , (B.18)

which concludes Proposition 6.
�
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B.1. Proof of Wolfowitz’s Strong Converse: Proposition 13. To prove our claim, we first introduce
notation for generalized divergences. For any ρ, σ ∈ S(H), and γ > 0, define the hockey-stick divergence
by

Dγ(ρ‖σ) := Tr
[
(ρ− γσ)+

]
, (B.19)

where A+ := A{A ≥ 0} denotes the self-adjoint matrix contributed only by its positive part. This
divergence satisfies the data-processing inequality (DPI):

Tr
[
(ρ− γ%)+

]
≥ Tr

[
(N (ρ)− γN (%))+

]
, (B.20)

for any completely positive and trace-preserving map N : S(Hin)→ S(Hout) [51, Lemma 4]. Let

ρp := p|0〉〈0|+ (1− p)|1〉〈1|, and σq := q|0〉〈0|+ (1− q)|1〉〈1|, (B.21)

for 0 ≤ p, q ≤ 1 and some orthonormal basis {|0〉, |1〉}, and define

dγ (p‖q) := Dγ (ρp‖σq) . (B.22)

Note that the quantity dγ (p‖q) is independent of the choice of the basis {|0〉, |1〉}. Now we are ready to
prove Proposition 13.

Proof of Proposition 13. Fix an arbitrary test Qn on H⊗n. For notational convenience, we shorthand
ρn = W̄⊗nxn , τn = σ⊗n, α = α(Qn; ρn) and β = β = (Qn; τn). Further, we assume β(Qn; τn) ≤ e−nR.
From the definition of the classical divergence, Eqs. (B.19) and (B.22), and any γ > 0, we find

dγ(1− α‖β) = (1− α− γβ)+ + (α− γ [1− β])+ (B.23)

≥ 1− α− γβ (B.24)

≥ 1− α− γe−nR. (B.25)

On the other hand, DPI and the measurement map Tr[Qn(·)]|0〉〈0|+ (1− Tr[Qn(·)])|1〉〈1| imply that

Dγ (ρn‖τn) ≥ dγ (Tr[Qnρ
n]‖Tr[Qnτ

n]) = dγ(1− α‖β). (B.26)

Hence, Eqs. (B.25) and (B.26) lead to

α ≥ 1−Dγ (ρn‖τn)− γe−nR. (B.27)

Since

Dγ (ρn‖τn) = Tr [{ρn − γτn ≥ 0} (ρn − γτn)] (B.28)

≤ Tr [{ρn − γτn ≥ 0} ρn] , (B.29)

continuing from Eq. (B.27) gives

α ≥ 1− Tr [{ρn − γτn ≥ 0} ρn ]− γe−nR. (B.30)

Next, invoking Lemma 14 below, for all log γ > D (ρn‖τn), we have

α ≥ 1− V (ρn‖τn)

[log γ −D (ρn‖τn)]2
− γe−nR (B.31)

= 1−
V
(
W̄‖σ|Pxn

)
n
[

log γ
n −D

(
W̄‖σ|Pxn

)]2 − γe−nR (B.32)

Finally, recall D
(
W̄‖σ|Pxn

)
≤ R−2κ and A := maxρ∈S◦ V (ρ‖σ) and choose log γ = nD

(
W̄‖σ|Pxn

)
+nκ.

Then, Eq. (B.32) yields, for any test Qn and β(Qn;σ⊗n) ≤ e−nR,

α
(
Qn; W̄⊗nxn

)
≥ 1−

V
(
W̄‖σ|Pxn

)
nκ2

− e−nκ (B.33)

≥ 1− A

nκ2
− e−nκ, (B.34)

which concludes the proof.
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Lemma 14 (Quantum Chebyshev’s Inequality [51, Lemma 6]). Let ρ, σ ∈ S(H) and assume log γ >
D(ρ‖σ). Then

Tr [ρ {ρ− γσ ≥ 0}] ≤ V (ρ‖σ)

[log γ −D(ρ‖σ)]2
. (B.35)

�

Appendix C. A Sharp Converse Bound from Strong Large Deviation

In this section, we provide the proof of Proposition 7. Our technique highly relies on a strong large
deviation inequality.

C.1. A Strong Large Deviation Inequality. Let (Xi)i∈N be a sequence of independent, real-valued

random variables with probability measures (µi)
n
i=1. Let Zn :=

∑n
i=1Xi and let Λn(t) := logE

[
etZn

]
.

Define the Legendre-Fenchel transform of 1
nΛn(·) by:

Λ∗n(z) := sup
t∈R

{
zt− 1

n
Λn(t)

}
, ∀z ∈ R. (C.1)

Let (Tn)n∈N be a bounded sequence of real numbers and (t?n)n∈N be a sequence satisfying for all n ∈ N

t?n ∈ (0, 1); (C.2)

Tn =
1

n
Λ′n(t?n); (C.3)

Λ∗n(Tn) = Tnt
?
n −

1

n
Λn(t?n). (C.4)

With these definitions, we can now state the following sharp concentration inequality for 1
nZn:

Theorem 15 (Chaganty-Sethuraman’s Concentration Inequality [52, Theorem 3.3] ). For any η ∈ (0, 1),
there exists an N0 ∈ N such that, for all n ≥ N0,

Pr

{
1

n
Zn ≥ Tn,

}
≥ 1− η
t?n
√

2πnm2,n
exp{−nΛ?n(Tn)}, (C.5)

where m2,n := 1
n

∑n
i=1 Varµ̃n,i [Xi], and the measure µ̃n,i is defined via

dµ̃n,i
dµi

(y) :=
eyt

?
n

E [et?nXi ]
. (C.6)

Remark C.1. Chaganty and Sethuraman in Ref. [52, Theorem 3.3] considered a more general sequence
of random variables {Zn}n∈N, which are not necessarily the sum of random variables. They proved
Theorem 15 provided that the following condition is satisfied: there exists δ0 > 0 such that for any δ and
λ with 0 < δ < δ0 < λ, supδ<|t|≤λt?n |Λn(t?n + it)/Λn(t?n)| = o(1/

√
n), where the supremum is defined to be

0 if {t : δ < |t| ≤ λt?n} is empty. In the case of Zn being a sum of random variables, Λn(t?n + it)/Λn(t?n)
is the product of the characteristic functions of {Xi}ni=1. Since the supremum of a characteristic function
on a compact interval not containing 0 is less than 1, this condition is thus satisfied.

We note that the lower bound in Theorem 15 for the general sequence of random variables (Xi)i∈N
suffices to establish the converse, Theorem 5. We do not particularly consider the case of lattice valued
random variables (see e.g. [52, Theorem 3.5]).

C.2. Proof of Proposition 7.

Proposition 7 (A Sharp Converse Bound). Consider a classical-quantum channel W : X → S(H) and a
state σ ∈ S(H). Suppose the sequence xn ∈ X n satisfies

ν ≤ V (W‖σ|Pxn) < +∞ (C.7)
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for some ν > 0, and suppose the sequence of rates (Rn)n∈N satisfies D0(W‖σ|Pxn) < Rn < D(W‖σ|Pxn).
Then, there exists an N0 ∈ N such that, for all n ≥ N0,

α̂exp{−nRn}(W
⊗n
xn ‖σ⊗n) ≥ A

s?n
√
n

exp
{
−nE(2)

sp (Rn − cn, Pxn , σ)
}
, (C.8)

where cn = K logn
n and A,K > 0 are finite constants independent of the sequence xn, and

s?n := arg max
s≥0

{Eh(s, Pxn , σ)− sRn} . (C.9)

Proof of Proposition 7. Let ρn := W⊗nxn , σn := σ⊗n, pn :=
⊗n

i=1 pxi , and qn :=
⊗n

i=1 qxi , where pxi , qxi
are Nussbaum-Szko la distributions [58] of Wxi , σ for every i ∈ [n]. Let R̃n := Rn−γn, where γn := logn

2n + x
n

for some x ∈ R. The choice of x and the rate back-off term γn will become evident later. Let N1 ∈ N
such that R̃n ≥ D0(W‖σ|Pxn) for all n ≥ N1. Subsequently, we choose such n ≥ N1 onwards.

Since Dα(Wxi‖σ) = Dα(pxi‖qxi), for α ∈ (0, 1], we use the notation

φn(R̃n) := E(2)
sp (R̃n, Pxn , σ) = sup

0<α≤1

1− α
α

(∑
x∈X

Pxn(x)Dα(pxi‖qxi)− R̃n

)
, (C.10)

where Pxn denotes the empirical distribution of xn = x1, . . . xn. Moreover, the condition in Eq. (C.7)
implies that Wx � σ, for all x ∈ supp(Pxn), and thus pn � qn. Without loss of generality, we let

qxi(ω) = 0, ω 6∈ supp(pxi) since they won’t contribute to φn(R̃n).

We apply Nagaoka’s argument [59]: for any 0 ≤ Qn ≤ 1, choosing δ = exp{nR̃n − nφn(R̃n)} yields:

α (Qn; ρn) + δβ (Qn;σn) ≥ 1

2

(
α (U; pn) + enR̃n−nφn(R̃n)β (U; qn)

)
, (C.11)

where

α (U; pn) :=
∑
ω∈Uc

pn(ω); β (U; qn) :=
∑
ω∈U

qn(ω), (C.12)

and

U :=
{
ω : pn(ω)enφn(R̃n) > qn(ω)enR̃n

}
. (C.13)

In the following, we will employ Theorem 15, to further lower bound α (U; pn) and β (U; qn). Before
proceeding, we need to introduce some notation. Define the tilted distributions, for every i ∈ [n] and
t ∈ [0, 1], to be

q̂xi,t(ω) :=
pxi(ω)1−tqxi(ω)t∑

ω∈supp(pxi )
pxi(ω)1−tqxi(ω)t

, ω ∈ supp(pxi). (C.14)

Let

Λ0,xi(t) := logEpxi

[
e
t log

qxi
pxi

]
, Λ1,xi(t) := logEqxi

[
e
t log

pxi
qxi

]
, (C.15)

Since pn and qn share the same support, it can be verified that the maps t 7→ Λj,xi(t), j ∈ {0, 1} are
differential for all t ∈ [0, 1]. One can immediately verify the following partial derivatives with respect to t:

Λ′0,xi(t) = Eq̂xi,t

[
log

qxi
pxi

]
, Λ′1,xi(t) = Eq̂xi,1−t

[
log

pxi
qxi

]
; (C.16)

Λ′′0,xi(t) = Varq̂xi,t

[
log

qxi
pxi

]
, Λ′′1,xi(t) = Varq̂xi,1−t

[
log

pxi
qxi

]
. (C.17)

Note that Eqs. (C.15), (C.16), and (C.17) ensure that

Λ0,xi(t) = Λ1,xi(1− t), Λ′0,xi(t) = −Λ′1,xi(1− t), Λ′′0,xi(t) = Λ′′1,xi(1− t). (C.18)

25

539



With Λj,xi(t) in Eq. (C.15), we can define

Λj,Pxn
(t) :=

∑
x∈X

Pxn(x)Λj,x(t), j ∈ {0, 1}; (C.19)

Λ∗j,Pxn
(z) := sup

t∈R
{tz − Λj,Pxn

(t)} , j ∈ {0, 1}, (C.20)

where Λ∗j,Pxn
(z) in Eq. (C.20) are the Legendre-Fenchel transform of Λj,Pxn

(t). The quantities Λ∗j,Pxn
(z)

would appear in the lower bounds of α (U; pn) and β (U; qn) obtained by Theorem 15 as shown later.
In the following, we will relate the Legendre-Fenchel transform Λ∗j,Pn(z) to the desired error-exponent

function φn(R̃n). Such a relationship is stated in the following lemma whose proof was presented in [18].

Lemma 16 ([18, Lemma 17]). The following holds for all sequences xn satisfying Eq. (C.7) and all
r ∈ (D0(W‖σ|Pxn), D(W‖σ|Pxn)):

(a) Λ′′0,Pxn
(t) > 0 for all t ∈ [0, 1].

(b) Λ∗0,Pxn
(φn(r)− r) = φn(r).

(c) Λ∗1,Pxn
(r − φn(r)) = r.

(d) Let s? be the optimizer of E
(2)
sp (r, Pxn , σ), c.f. (C.9). The optimizer of Λ∗0,Pxn

(z), denoted by t?, is

unique and satisfies t? = s?

1+s? ∈ (0, 1) and Λ′0,Pxn
(t?) = φn(r)− r.

Since the item (d) in Lemma 16 shows that the optimizer t in Eq. (C.20) always lies in the compact
set [0, 1], by invoking Eq. (C.18) we define the following quantity:

Vmin(ν) := min
t∈[0,1], Pxn∈Pν(X )

Λ′′0,Pn(t), (C.21)

where Pν(X ) := {Pxn ∈ P(X ) : ν ≤ V (W‖σ|Pxn) < +∞} is a compact set owing to the continuity of the
map P 7→ V (W‖σ|P ); see Eq. (2.16).

Further, from the definitions in Eqs, (C.17), Λ′′0,(·)(·) is continuous functions in [0, 1] × P(X ). The

minimization in the above definitions are well-defined and finite. Further, the quantity Vmin(ν) is bounded
away from zero owing to item (a) in Lemma 16.

Now, we are ready to derive the lower bounds to α (U; pn) and β (U; qn). Fix an arbitrary η ∈ (0, 1).

Applying Theorem 15 to Xi = log qi− log pi with probability measure pi, and threshold Tn = R̃n−φn(R̃n)
gives, for all sufficiently large n, say n ≥ N2 ∈ N,

α (U; pn) :=
∑
ω∈Uc

pn(ω) (C.22)

= Pr

{
1

n

n∑
i=1

Zi ≥ R̃n − φn(R̃n)

}
(C.23)

≥ 1− η
t?n
√

2πnVmin(ν)
exp

{
−nΛ∗0,Pxn

(
φn(R̃n)− R̃n

)}
, (C.24)

where

t?n := arg max
t∈R

{tzn − Λ0,Pxn
(t)} (C.25)
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Similarly, applying again Theorem 15 to Xi = log pi− log qi with probability measure = qi, and threshold
φn(R̃n)− R̃n yields, for all sufficiently large n, say n ≥ N3 ∈ N,

β (U; qn) :=
∑
ω∈U

qn(ω) (C.26)

= Pr

{
1

n

n∑
i=1

Zi ≥ φn(R̃n)− R̃n

}
(C.27)

≥ 1− η
(1− t?n)

√
2πnVmin(ν)

exp
{
−nΛ∗1,Pxn

(
R̃n − φn(R̃n)

)}
(C.28)

≥ 1− η√
2πnVmin(ν)

exp
{
−nΛ∗1,Pxn

(
R̃n − φn(R̃n)

)}
, (C.29)

where the term 1− t?n in Eq (C.28) comes from the symmetry in Eq. (C.18), and the last inequality (C.29)
follows from t?n ∈ (0, 1) in item (d) of Lemma 16.

Continuing from Eq. (C.24) and item (b) in Lemma 16 gives

α (U; pn) ≥ 1− η
t?n
√

2πnVmin(ν)
exp{−nφn(R̃n)}. (C.30)

Eq. (C.29) together with item (c) in Lemma 16 yields

β (U; qn) ≥ 1− η√
2πnVmin(ν)

exp{−nR̃n} = 2 exp{−nRn}, (C.31)

where we choose x = log 2
√

2πVmin(ν)− log(1−η) in the rate back-off γn = logn
2n + x

n . Thus we can bound
the left-hand side of Eq. (C.11) from below. If for any test 0 ≤ Qn ≤ 1 such that

β(Qn;σn) ≤ exp{−nRn}, (C.32)

holds, it implies that

α(Qn; ρn) ≥ 1− η
t?n2
√

2πnVmin(ν)
exp{−nφn(R̃n)}. (C.33)

Finally, let A := (1 − η)/(2
√

2πVmin(ν)) and choose a constant K > 0 such that for all n ≥ N0 :=
max{N1, N2, N3},

γn =
log n

2n
+

log 2
√

2πVmin(ν)− log(1− η)

n
≤ K log n

n
=: cn. (C.34)

Since the map r 7→ φn(r) is monotonically decreasing [30, Section 5], Eqs. (C.32), (C.33), and (C.34)
conclude our result: for all n ≥ N0,

α̂exp{−nR} (ρn‖σn) ≥ A

t?n
√
n

exp
{
−nE(2)

sp (Rn − cn, Pxn , σ)
}

(C.35)

≥ A

s?n
√
n

exp
{
−nE(2)

sp (Rn − cn, Pxn , σ)
}
, (C.36)

where the last inequality follows from item (d) in Lemma 16: t?n = s?n/(1 + s?n) ∈ (0, 1). �

Appendix D. Proof of Proposition 8

Proposition 8 (Error Exponent around Capacity). Let (bn)n∈N be a sequence of real numbers with
limn→+∞ bn = 0 and let (δn)n∈N be a sequence of positive numbers with limn→+∞ δn = 0. Suppose the
sequence of distributions (Pn)n∈N satisfies

CW − δn < D(W‖P ?W|Pn) ≤ CW − bn. (D.1)
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The following holds:

lim sup
n→+∞

E
(2)
sp (CW − δn, Pn, P ?W)

δ2
n

≤ lim sup
n→+∞

(δn − bn)2

2VWδ2
n

; (D.2)

lim sup
n→+∞

Ẽsp (CW − δn, Pn, P ?W)

δ2
n

≤ lim sup
n→+∞

(δn − bn)2

2ṼWδ2
n

; (D.3)

lim sup
n→+∞

s?n
δn
≤ 1

VW
, (D.4)

where

s?n := arg max
s≥0

{Eh(s, Pn, P
?W)− s (CW − δn)} . (D.5)

Proof of Proposition 8. We only prove Eqs. (D.2) and (D.4), since Eq. (D.3) follows from the same argu-
ment and Proposition 3.

Recall the error-exponent function E
(2)
sp :

E(2)
sp (CW − δn, P, P ?W) = sup

s≥0
{−s (CW − δn) + Eh(s, P, P ?W)} . (D.6)

In the following, we fix σ = P ?W in the definition of Eh (Eq. (2.26)) and denote by

Eh(s, P ) := Eh(s, P, P ?W) = sD 1
1+s

(W‖P ?W|P ) . (D.7)

for notational convenience. We define a critical rate for a c-q channel W to be

rcr := max
P∈P(X )

∂Eh(s, P )

∂s

∣∣∣∣
s=1

. (D.8)

Let N0 be the smallest integer such that CW − δn > rcr, ∀n ≥ N0. Since the map r 7→ E
(2)
sp (r, ·, ·) is

non-increasing [30, Section 5], the maximization over s in Eq. (D.6) can be restricted to the set [0, 1] for
any rate above rcr, i.e.,

E(2)
sp (CW − δn, Pn, P ?W) = max

0≤s≤1
{−s (CW − δn) + Eh(s, Pn)} . (D.9)

For every n ∈ N, let s?n attain the maxima in Eq. (D.9) at a rate of CW− δn ≥ 0. In the following lemma,
we discuss the asymptotic behavior of {s?n}n∈N.

Lemma 17. Let s?n attain the maxima in Eq. (D.9) and Pn satisfy Eq. (D.1). We have

(a) The limit point of {Pn}n∈N is capacity achieving.
(b) s?n > 0 for all n ∈ N and limn→+∞ s

?
n = 0.

Proof of Lemma 17. Let {Pnk}k≥1 and {s?nk}k≥1 be arbitrary subsequences. Since P(X ) and [0, 1] are
compact, we may assume that

lim
k→+∞

Pnk = Po, lim
k→∞

s?nk = so, (D.10)

for some Po ∈ P(X ) and so ∈ [0, 1].

(17-(a)) Let k → +∞. Eq. (D.1) implies that

D(W‖P ?W|Po) = CW, (D.11)

which guarantees that Po is capacity-achieving by the dual representation of the information
radius, see e.g. [61], [9, Theorem 2].

(17-(b)) One can observe from Eq. (D.9) that s?n = 0 if and only if CW − δn ≥ D(W‖P ?W|Pn). However,
this violates the assumption in Eq. (D.1). Hence, we have s?n > 0 for all n ∈ N.

Since Po is capacity achieving, the uniqueness of the divergence center implies that PoW = P ?W.
Item (c) in Proposition 2 shows that

∂2Eh (s, Po)

∂s2

∣∣∣∣
s=0

= −V (W‖P ?W|Po) = −V (Po,W) ≤ −VW < 0, (D.12)
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where the last inequality follows since VW > 0. Then, Eq. (D.12) implies that the first-order
derivative ∂Eh (s, Po) /∂s is strictly decreasing around s = 0. Moreover, item (d) in Proposition 2
gives

∂Eh (s, Po)

∂s

∣∣∣∣
s=so

≤ D (W‖P ?W|Po) = CW, (D.13)

This, together with items (b) and (c) in Proposition 2, shows that the first inequality in Eq. (D.13)
becomes an equality if and only if so = 0. Since the subsequence was arbitrary, item (b) is shown.

�

Now we are ready to prove this proposition. We start with proving Eq. (D.4). Since s 7→ Eh(s, ·) is
concave from item (b) in Proposition 2, the maximizer s?n must satisfy

∂Eh(s, Pnk)

∂s

∣∣∣∣
s=s?nk

= CW − δnk . (D.14)

Further, item (c) in Proposition 2 gives

∂Eh

(
s, P ?nk

)
∂s

∣∣∣∣∣
s=0

= D
(
W‖P ?W|P ?nk

)
. (D.15)

The mean value theorem states that there exists a number ŝnk ∈
(
0, s?nk

)
, for each k ≥ N, such that

− ∂2Eh (s, Pnk)

∂s2

∣∣∣∣
s=ŝnk

=
D (W‖P ?W|Pnk)− CW + δnk

s?nk
(D.16)

≤ δnk
s?nk

, (D.17)

where the last inequality is again due to D
(
W‖P ?W|P ?nk

)
≤ CW. When k approaches infinity, items (a)

and (e) in Proposition 2 give

lim
k→+∞

∂2Eh (s, Pnk)

∂s2

∣∣∣∣
s=ŝnk

=
∂2Eh (s, Po)

∂s2

∣∣∣∣
s=0

= −V (Po,W) ≤ −VW. (D.18)

Combining Eqs. (D.17) and (D.18) leads to

lim sup
k→+∞

s?nk
δnk
≤ 1

VW
. (D.19)

Since the subsequence was arbitrary, the above result establishes Eq. (D.4).
Next, for any sufficiently large n ≥ N0, we apply Taylor’s theorem to the map s?n 7→ Eh (s?n, Pn) at the

original point to obtain

E(2)
sp (CW − δn, Pn, P ?W)

= −s?n (CW − δn) + Eh (s?n, Pn) (D.20)

= s?n (δn +D(W‖P ?W |Pn)− CW)− (s?n)2

2
V (Pn,W) +

(s?n)3

6

∂3Eh(s, Pn)

∂s3

∣∣∣∣
s=s̄n

(D.21)

for some s̄n ∈ [0, s?n]. Let

Υ = max
(s,P )∈[0,1]×P(X )

∣∣∣∣∂3Eh (s, P )

∂s3

∣∣∣∣ . (D.22)
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Continuing from Eq. (D.21) gives

E(2)
sp (CW − δn, Pn, P ?W) ≤ s?n(δn − bn)− (s?n)2

2
V (Pn,W) +

(s?n)3Υ

6
(D.23)

≤ sup
s≥0

{
s(δn − bn)− s2

2
V (Pn,W)

}
+

(s?n)3Υ

6
(D.24)

=
(δn − bn)2

2V (Pn,W)
+

(s?n)3Υ

6
, (D.25)

where the first line follows from the assumption D (W‖P ?W|Pn) ≤ CW − bn in Eq. (D.1) and Eq. (D.22).
Finally, Eq. (D.25), along with item (b) in Lemma 17 and Eq. (D.19), implies that

lim sup
n→+∞

E
(2)
sp (CW − δn, Pn, P ?W)

δ2
n

≤ lim sup
n→+∞

(δn − bn)2

2V (Pn,W)δ2
n

(D.26)

≤ lim sup
n→+∞

(δn − bn)2

2VWδ2
n

, (D.27)

where the last inequality follows from the continuity of V ( · ,W) on P(X ) (Eq. (2.20)); the fact that
{Pn}n∈N is capacity achieving (item (a) in Lemma 17); and the definition of VW in Eq. (2.22). �
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Analog quantum error correction with encoding a qubit into an oscillator
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Abstract. To implement fault-tolerant quantum computation with continuous variables, Gottesman-Kitaev-Preskill
(GKP) qubits have been recognized as an important technological element. However, the analog outcome of GKP
qubits, which includes beneficial information to improve the error tolerance, has been wasted, because the GKP
qubits have been treated as only discrete variables in quantum error-correcting codes. In this paper, we propose
a hybrid quantum error correction approach that combines digital information with the analog information of the
GKP qubits using the maximum-likelihood method. As an example, a concatenated code known as Knill’s C4/C6
code can achieve the hashing bound for the quantum capacity of the Gaussian quantum channel. To the best of our
knowledge, this approach is the first attempt to draw both digital and analog information from a single quantum state
itself to improve quantum error correction performance.

Keywords: Continuous variables

1 Introduction
Quantum computation (QC) has a great deal of poten-

tial [1, 2]. Although a small-scale quantum computation
(QC) with various quantum systems have been demonstrated,
a large-scale QC is still a significant experimental challenge
for most candidates of quantum systems. In continuous vari-
able quantum computation (CV-QC), squeezed vacuum states
with the optical setting have shown great potential, because
scalable entangled states can be generated by only beam split-
ter (BS) coupling between two squeezed vacuum states [3].
Hence, CV-QC has attracted a lot of attention toward a large-
scale QC. However, a large-scale computation with squeezed
vacuum states has been shown to be difficult to achieve be-
cause of the accumulation of errors during the QC process,
even though the states are created with perfect experimental
apparatus [4]. Therefore, fault-tolerant (FT) protection from
noise is required that uses the quantum error correcting code.
Because noise accumulation originates from the “continu-
ous” nature of the CV-QC, it can be circumvented by encoding
CVs into digitized variables using an appropriate code, such
as Gottesman–Kitaev–Preskill (GKP) code [5], which are re-
ferred to as GKP qubits. Menicucci showed that CV-FTQC
is possible within the framework of measurement-based QC
using squeezed vacuum cluster states with GKP qubits [4].
Moreover, GKP qubits keep the advantage of squeezed vac-
uum states on optical implementation that they can be entan-
gled by only BS coupling. Hence, GKP qubits offer a promis-
ing element for the implementation of CV-FTQC.

To be practical, the squeezing level required for FTQC
should be experimentally achievable. Unfortunately,
Menicucci’s scheme still requires a 14.8 dB squeezing level
to achieve the FT threshold pFT = 2 × 10−2 [6, 7]. Thus,
another twist is necessary to reduce the required squeezing
level. It is analog information contained in the GKP qubit
that has been overlooked. The effect of noise on CV states is
observed as a deviation in an analog measurement outcome,
which includes beneficial information for quantum error cor-
rection (QEC). Despite this, the analog information from the

∗fukui.opt@gmail.com
†tomita@ist.hokudai.ac.jp

GKP qubit has been wasted because the GKP qubit has been
treated as only a discrete variable (DV) qubit, for which the
measurement outcomes are described by bits. Harnessing the
wasted information for the QEC will improve the error toler-
ance compared with using the conventional method based on
only bit information.

2 Likelihood function
To utilize analog information from the GKP qubits, we in-

troduced likelihood function as shown in Fig. 1. We make a
decision on the bit value k(= 0,1) from the measurement out-
come of the GKP qubit qm = qk +∆m to minimize the devi-
ation |∆m|, where qk(k = 0,1) is defined as (2t + k)

√
π(t =

0,±1,±2, · · · .), shown in Fig. 1 (a). If we consider only
digital information k, as in conventional QEC, we waste the
analog information contained in ∆m. Instead, we propose a
likelihood method to improve our decision for the QEC using
analog information. We define the true deviation |∆̄| as the
difference between the measurement outcome and true peak
value q̄k, that is, |∆̄| = |q̄k − qm|. We consider the following
two possible events: one is the correct decision, where the
true deviation value |∆| is less than

√
π/2 and equals to |∆m|

as shown in Fig.1 (b). The other is the incorrect decision,
where |∆| is greater than

√
π/2 and satisfies |∆̄|+ |∆m|=

√
π ,

as shown in Fig.1(c). Because the true deviation value obeys
the Gaussian distribution function f (∆), we can evaluate the
probabilities of the two events by

f (∆) =
1√

2πσ 2
e−∆2

/(2σ2). (1)

In our method, we regard function f (∆) as a likelihood func-
tion. Using this function, the likelihood of the correct deci-
sion is calculated by f (∆) = f (∆m). The likelihood of the
incorrect decision, whose |∆| is

√
π − |∆m|, is calculated by

f (∆) = f (
√

π − |∆m|). We can reduce the decision error on
the entire code word by considering the likelihood of the joint
event and choosing the most likely candidate.

547



Figure 1: Introduction of a likelihood function. (a) Measure-
ment outcome and deviation from the peak value in q (posi-
tion) quadrature. The dotted line shows the measurement out-
come qm equal to (2t + k)

√
π +∆m (t = 0,±1,±2, · · · , k =

0,1), where k is defined as the bit value that minimizes the
deviation ∆m. The red areas indicate the area that yields code
word (k+ 1) mod 2, whereas the white area denotes the area
that yields the codeword k. (b) and (c) Gaussian distribution
functions as likelihood functions of the true deviation value ∆
represented by the arrows. (b) refers to the case of the cor-
rect decision, where the amplitude of the true deviation value
is |∆| <

√
π/2, whereas (c) the case of the incorrect decision√

π/2< |∆|<
√

π .

3 Concatenated code with analog information
We demonstrate that the proposed likelihood method im-

proves the error tolerance on a concatenated code, which is
indispensable for achieving FTQC. The use of a maximum-
likelihood method for a concatenated code was proposed with
a message-passing algorithm by Poulin [8], and later Goto and
Uchikawa [9] for Knill’s C4/C6 [6]. However, because previ-
ous proposals have been based on the probability of the correct
decision given by

pcorr =
∫ √

π
2

−
√

π
2

dx
1√

2πσ 2
exp(−x2/2σ2). (2)

The probability pcorr is the portion of a normalized Gaussian
of a variance σ2 that lies between −

√
π/2 and

√
π/2 [4].

We apply our method to the C4/C6 code modified
with a message-passing algorithm proposed by Goto and
Uchikawa [9]. The error correction in the C4/C6 code is based
on quantum teleportation, where the logical qubit |ψ̃⟩L en-
coded by the C4/C6 code is teleported to the fresh encoded
Bell state. The quantum teleportation process refers to the
outcome of the Bell measurement on the encoded qubits and
determines the amount of displacement. If this feedforward is
performed correctly, the error is successfully corrected. From
Bell measurement, we obtain the outcomes of bit values for
the physical GKP qubits of the encoded data qubit and en-
coded qubit of the encoded Bell state. In addition to bit values,
we also obtain deviation values for the physical GKP qubits.
Therefore, we can improve the error tolerance of the code by

Figure 2: Error correction by quantum teleportation. The en-
coded data qubit |ψ̃⟩L, two encoded qubits |+̃⟩L, and |0̃⟩L are
encoded by C4/C6 code. GQC and MLD denote the GQC and
a maximum-likelihood decision, respectively.

introducing the likelihood method to the Bell measurement.
To validate our method, we numerically simulated the

quantum teleportation process against Gaussian quantum
channel (GQC) [5, 10] for the C4/C6 code with the con-
ventional [9] and proposed method using the Monte Carlo
method. The error correction in the C4/C6 code is based on
quantum teleportation, where the logical qubit |ψ̃⟩L encoded
by the C4/C6 code is teleported to the fresh encoded Bell state,
as shown in Fig.2. The quantum teleportation process refers to
the outcomes Mp and Mq of the Bell measurement on the en-
coded qubits, and determines the amount of displacement. We
obtain the Bell measurement outcomes of bit values mpi and
mqi for the i-th physical GKP qubit of the encoded data qubit
and encoded qubit of the encoded Bell state, respectively. In
addition to bit values, we also obtain deviation values ∆pmi
and ∆qmi for the i-th physical GKP qubit. Therefore, the pro-
posed likelihood method can improve the error tolerance of
the Bell measurement.

As a simple example to explain our method for the Bell
measurement, we describe the level-1 C4/C6 code, that is, the
C4 code. The C4 code is the [[4,2,2]] code and consists of four
physical GKP qubits to encode a level-1 qubit pair; thus, it is
not the error-correcting code but the error-detecting code in
the conventional method. The logical bit value of the C4 code
is k (=0,1) when the bit value of the level-1 qubit pair is (k,0)
or (k,1), that is, the bit value of the first qubit k defines a log-
ical bit value of a qubit pair. As the parity check of the Z op-
erator for the first and second qubits ZIZI and IIZZ indicates,
the bit value of the level-1 qubit pair (0,0) corresponds to the
bit value of the physical GKP qubits (mq1,mq2,mq3,mq4) =
(0,0,0,0) or (1,1,1,1) [6]. The bit values of the pairs (0,1),
(1,0), and (1,1) correspond to the bit values of the physical
GKP qubits (0,1,0,1) or (1,0,1,0), (0,0,1,1) or (1,1,0,0), and
(0,1,1,0) or (1,0,0,1), respectively. Therefore, if the measure-
ment outcome of the physical GKP qubits is (0,0,1,0) for the Z
basis, then we consider two error patterns, assuming the level-
1 qubit pair (0,0). The first pattern is a single error on the
physical qubit 3 and the second pattern is the triple errors on
the physical qubits 1, 2, and 4. We then calculate the likeli-
hood for the level-1 qubit pair (0,0) F0,0 as

F0,0 = f (∆qm1) f (∆qm2) f (
√

π −|∆qm3|) f (∆qm4)

+ f (
√

π −|∆qm1|) f (
√

π −|∆qm2|) f (∆qm3) f (
√

π −|∆qm4|). (3)

We similarly calculate the F0,1,F1,0, and F1,1 likelihood for
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Figure 3: Simulation results for the failure probabilities of the
C4/C6 code using the conventional and proposed method. The
failure probabilities using the conventional method (blue line)
and proposed method (red line) are represented for the con-
catenated level-1 (solid), level-2 (dashed ), level-3 (dashed-
dotted), level-4 (open circles), and level-5 (filled circles).

the bit value of qubit pairs (0,1), (1,0), and (1,1). Finally,
we determine the level-1 logical bit value for the Z basis by
comparing F0,0 +F0,1 with F1,0 +F1,1, which refer to the like-
lihood functions for the logical bit values zero and one, re-
spectively. If F0,0 +F0,1 > F1,0 +F1,1, then we determine that
the level-1 logical bit value for the Z basis is zero, and vice
versa. The level-1 logical bit value for the X basis can be de-
termined by the parity check of the X operator for the first and
second qubits XXII and IXIX in a similar manner. In the con-
ventional likelihood method [8, 9] F0,0, F0,1, F1,0, and F1,1 are
given by the same joint probability

p3
corr(1− pcorr)+ pcorr(1− pcorr)

3, (4)

where the probability pcorr is defined by Eq. (2) in the main
text. Because F0,0+F0,1 = F1,0+F1,1, the C4 code is not error-
correcting code but error-detecting code in the conventional
method, whereas it is the error-correcting code in our method.
For higher levels of concatenation, the likelihood for the level-
l (l ≧ 2) bit value can be calculated by the likelihood for the
level-(l −1) bit value in a similar manner.

In Fig.3, the failure probabilities up to level-5 of the con-
catenation are plotted as a function of the data qubit’s devi-
ation. The results confirm that our method suppresses errors
more effectively than the conventional method. It is also re-
markable that our method achieves the hashing bound of the
standard deviation for the quantum capacity of the GQC ∼
0.607, which corresponds to the squeezing level of 1.3 dB
and has been conjectured to be an attainable value using the
optimal method [5, 10]. The quantum capacity is defined as
the supremum of all achievable rates at which quantum infor-
mation can be transmitted over the quantum channel and the
hashing bound of the standard deviation is the maximum value
of the condition that yields the non-zero positive quantum ca-
pacity. By contrast, the concatenated code with only digital in-
formation achieves the hashing bound ∼ 0.555 [5, 10], which
corresponds to the squeezing level of 2.1 dB. This implies
that QEC using our method provides an optimal performance
against GQC, while QEC using only digital information pro-
vides suboptimal performance.

4 Conclusion
We proposed a new approach to maximize QEC perfor-

mance with digitized CV states. To our knowledge, our ap-
proach is the first attempt to draw both digital and analog
information from a single CV state to improve QEC perfor-
mance. Our method can reduce the threshold of squeezing
level required for CV-FTQC, which will encourage the exper-
imental developments by alleviating the burden to implement.
Our method can be applied to not only C4/C6 code, but also
surface code [11], color code [12], and other QECs. Further-
more, our method is a versatile tool for decision, which can
incorporate with GKP qubit, cat code, and other various codes
used to digitize CV states. We believe this work will open up
a new approach to QEC with digitized CV states, which will
be indispensable to construct CV-FTQC.

Although several methods to implement GKP qubits have
been proposed [13, 14, 15], it is still difficult to experimen-
tally generate GKP qubits with the squeezing level required
for FTQC. Our method can alleviate this requirement, and
will encourage experimental developments.

This work was funded by ImPACT Program of Council for
Science, Technology and Innovation.
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Abstract: The area of interactive proof system studies the procedure of proof verification from the 
computer science perspective and has played a key role in computational complexity theory. This talk 
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problems in quantum proof systems. In this talk, we will discuss several such examples and highlight 
the role of entanglement in quantum interactive proof systems. 



Irreversibility of Asymptotic Entanglement Manipulation
Under PPT-preserving Operations
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Abstract. We demonstrate the irreversibility of asymptotic entanglement manipulation under
quantum operations that completely preserve positivity of partial transpose (PPT), which re-
solves a major open problem in quantum information theory. To be more specific, we show that
for any rank-two mixed state supporting on the 3 ⊗ 3 antisymmetric subspace, the amount of
distillable entanglement by PPT operations is strictly smaller than one entanglement bit (ebit)
while its entanglement cost under PPT operations is exactly one ebit. As a byproduct, we
find that for this class of quantum states, both the Rains’ bound and its regularization, are
strictly less than the asymptotic relative entropy of entanglement with respect to PPT states.
So, in general, there is no unique entanglement measure for the manipulation of entanglement
by PPT operations. We further present a feasible sufficient condition for the irreversibility of
entanglement manipulation under PPT operations.

Keywords: Distillable entanglement, Entanglement measure, Irreversibility, Entanglement cost

Introduction Entanglement plays a crucial role
in quantum physics and is the key resource in quan-
tum information processing. So it is quite natural
and important to develop a theoretical framework
to describe and quantify it. In spite of a series of
remarkable recent progress in the theory of entan-
glement (for reviews see, e.g., [1, 2, 3, 4]), many fun-
damental challenges still remain open. One of the
most significant task is to determine the distillable
entanglement ED, i.e. the highest rate at which one
can obtain maximally entangled states from an en-
tangled state by local operations and classical com-
munication (LOCC) [5, 6]. This fundamental mea-
sure fully captures the ability of given state shared
between distant parties to generate strongly corre-
lated qubits in order to allow reliable quantum tele-
portation or quantum cryptography. However, how
to calculate ED for general quantum states still re-
mains unknown. Another fundamental measure in
entanglement theory is entanglement cost EC [5, 7],
which quantifies the rate for converting maximally
entangled states to the given state by LOCC alone.
Entanglement cost is also difficult to evaluate [8]
and it is known only for a few of quantum states

∗xin.wang-8@student.uts.edu.au
†runyao.duan@uts.edu.au
‡This submission is based on arxiv:1606.09421.

[9, 10, 11].
A well-known upper bound of the distillable en-

tanglement is the relative entropy of entanglement
w.r.t PPT states [12, 13, 14], i.e., ER,PPT (ρ) =

minS(ρ∣∣σ) s.t. σ,σTB ≥ 0,Trσ = 1, where
S(ρ∣∣σ) = Tr(ρ log2 ρ − ρ log2 σ) denotes the rela-
tive Von Neumann entropy and the optimal solu-
tion σ is called the closest PPT state of ρ. An im-
proved bound is the Rains’ bound [15], which is ar-
guably the best known upper bound of distillable
entanglement and refined in [16] as a convex opti-
mization problem as R(ρ) = minS(ρ∣∣τ) s.t. τ ≥

0,Tr ∣τTB ∣ ≤ 1. As Rains’ bound is proved to be
equal to the asymptotic relative entropy of entan-
glement for Werner states [17] and orthogonally in-
variant states [16], one open problem is to determine
whether these two quantities always coincide [1].

Another fundamental problem in entanglement
theory is the irreversibility in entanglement manip-
ulations. The manipulation of entanglement un-
der LOCC is generally irreversible in the finite-copy
regime [5]. Surprisingly, in the asymptotic settings
where the number of copies tend to infinite, this
process of entanglement manipulation for bipartite
pure states is shown to be reversible [18]. In con-
trast, for mixed states, this asymptotic reversibil-
ity under LOCC operations does not hold anymore
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[19, 20, 9, 21, 22, 23]. Various approaches have been
considered to enlarge the class of operations to en-
sure reversible interconversion of entanglement in
the asymptotic setting. A natural candidate is the
class of quantum operations that completely pre-
serve positivity of partial transpose (PPT) [15]. A
remarkable result is that any state with a nonposi-
tive partial transpose (NPT) is distillable under this
class of operations [24]. This suggests the possibil-
ity of reversibility under PPT operations and there
are examples of mixed states which can be reversibly
converted into pure states in the asymptotic setting,
e.g. the class of antisymmetric states [25]. However,
the reversibility under PPT operations remained un-
solved [25, 26, 1, 27] and it is one of the major open
problems in quantum information theory [28].

The main difficulty of the problems above is
that the regularized quantities are usually ex-
tremely difficult to determine or estimate. Note
that the asymptotic relative entropy of entangle-
ment w.r.t PPT states is given by E∞R,PPT (ρ) =

infn≥1ER,PPT (ρ⊗n)/n. To figure out whether Rains’
bound always coincides with E∞R,PPT , one necessar-
ily has to evaluate E∞R,PPT (ρ) of an explicit state ρ.
The problem of irreversibility under PPT operations
is more intractable, one not only has to evaluate the
PPT distillable entanglement, but also needs to de-
termine the PPT entanglement cost.

In this paper, we resolve the open problems men-
tioned above via convex optimization approach.
In particular, we utilize semidefinite programming
techniques to overcome the difficulty of evaluating
regularized quantities. The main results of this work
are as follows:

(i) Rains’ bound and its regularization can be
strictly smaller than the asymptotic relative
entropy of entanglement;

(ii) Asymptotic entanglement manipulation under
PPT operations is irreversible, i.e., PPT op-
erations are not sufficient to ensure asymptot-
ically reversibly interconversion (see FIG. 1).

Lower bound for asymptotic relative en-
tropy of entanglement To see results (i) and (ii),
the key approach is to introduce a single-letter ad-
ditive SDP lower bound for E∞R and construct an
explicit class of states. We will first introduce the
SDP lower bound and show the separation between
the regularized Rains’ bound and E∞R,PPT later in
Eq. (2). We define D(ρ) as the set of quantum
states supporting on supp(ρ) and denote the set of

Figure 1: The amount of Bell states distilled from
the state is not enough to reproduce the given state
under PPT operations in the asymptotic regime.

PPT states by Γ. Then, the problem can be relaxed
to the minimization of the relative entropy distance
between D(ρ) and the set Γ. Applying some prop-
erties of quantum relative entropy, the problem can
be further relaxed to minimizing − log TrPABσ over
all PPT states σ, where PAB is the projection onto
supp(ρ). Noting that this is SDP-computable, we
can further use SDP techniques to lower bound the
regularized quantity, i.e.,

E∞R,PPT (ρ) = inf
n≥1

ER,PPT (ρ
⊗n
)

n

≥ Eη(ρ) = max− log2 ∥Y
TB
AB∥∞,

s.t. − YAB ≤ P TBAB ≤ YAB.

(1)

The key idea here is utilizing the duality theory of
SDP to prove that Eη is additive under tensor prod-
uct. It is worth noting that Eη provides an efficiently
computable lower bound for entanglement cost, i.e.,

EC(ρ) ≥ EC,PPT (ρ) ≥ Eη(ρ).

One can also obtain SDP lower bound for entangle-
ment cost of quantum channels [29] via Eη.
Irreversibility of asymptotic entanglement

manipulation under PPT operations We use a
3⊗3 state to show the irreversibility under PPT op-
erations and then present an SDP-computable suf-
ficient condition for the irreversibility. The state we
use is ρv =

1
2(∣v1⟩⟨v1∣ + ∣v2⟩⟨v2∣) with ∣v1⟩ = (∣01⟩ −

∣10⟩)/
√

2, ∣v2⟩ = (∣02⟩ − ∣20⟩)/
√

2. It is clear that ρv
is a rank-two state supporting on the 3 ⊗ 3 anti-
symmetric subspace. On one hand, we apply the
lower bound Eη to estimate the PPT entanglement
cost and prove that EC,PPT (ρv) = E∞R,PPT (ρv) =

Eη(ρv) = 1. On the other hand, we evaluate the
PPT distillable entanglement of ρv by the Rains
bound and the SDP characterization of the one-copy
PPT deterministic distillable entanglement [30], i.e.,
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ED,PPT (ρv) = R
∞
(ρv) = log2(1 + 1/

√

2). Hence,

EC,PPT (ρv) = E
∞
R,PPT (ρv) = 1

> log2(1 + 1/
√

2)

= R∞(ρv) = ED,PPT (ρv).

(2)

We further show that for any rank-two mixed state
supporting on the 3⊗3 antisymmetric subspace, the
PPT distillable entanglement is strictly smaller than
one entanglement bit (ebit) while its PPT entangle-
ment cost is exactly one ebit.

As a byproduct, from Eq. (2), it is clear for ρv,
both the Rains’ bound and its regularization, are
strictly less than the asymptotic relative entropy of
entanglement, which resolve the second problem. So
in general there is no unique entanglement measure
under PPT operations.

Finally, we present an SDP-computable sufficient
condition for the irreversibility of entanglement ma-
nipulation under PPT operations. For a bipartite
state ρ, if Eη(ρ) > EW (ρ) = minXAB≥ρ log ∥XTB

AB∥1,
then

ED,PPT (ρ) ≤ EW (ρ) < Eη(ρ) ≤ EC,PPT (ρ), (3)

where EW is an improved SDP upper bound on
PPT distillable entanglement in our previous work
[30]. As a example, we show the irreversibility un-
der PPT operations for a class of 3 ⊗ 3 states de-
fined by ρ(α) = (∣ψ1⟩⟨ψ1∣ + ∣ψ2⟩⟨ψ2∣)/2, where ∣ψ1⟩ =
√

α∣01⟩ −
√

1 − α∣10⟩ and ∣ψ2⟩ =
√

α∣02⟩ −
√

1 − α∣20⟩
with 0.42 ≤ α ≤ 0.5. It is worth noting that Brandão
and Plenio [31, 27] have shown that multipartite en-
tangled states can be reversibly interconverted un-
der asymptotically non-entangling operations. Our
results may imply that this set of operations is min-
imal for bipartite entanlged states to ensure the re-
versibility.

RD would like to thank Andreas Winter for many
inspirational discussions on the potential gap be-
tween the regularized Rains’ bound and the asymp-
totic relative entropy of entanglement. The au-
thors also thank Jonathan Oppenheim for helpful
suggestions. This work was partly supported by
the Australian Research Council under Grant Nos.
DP120103776 and FT120100449.
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Abstract. Non-asymptotic entanglement distillation studies the trade-off between three pa-
rameters: the distillation rate, the number of independent and identically distributed prepared
states, and the fidelity of the distillation. We first study the one-shot ε-infidelity distillable
entanglement under quantum operations that completely preserve positivity of the partial trans-
pose (PPT) and characterize it as a semidefinite program (SDP). For isotropic states, it can
be further simplified to a linear program. The one-shot ε-infidelity PPT-assisted distillable en-
tanglement can be transformed to a quantum hypothesis testing problem. Moreover, we show
efficently computable second-order upper and lower bounds for the non-asymptotic distillable
entanglment with a given infidelity tolerance. Utilizing these bounds, we obtain the second or-
der asymptotic expansions of the optimal distillation rates for pure states and some classes of
mixed states. In particular, this result recovers the second-order expansion of LOCC distillable
entanglement for pure states in [Datta/Leditzky, IEEE Trans. Inf. Theory 61:582, 2015]. Fur-
thermore, we provide an algorithm for calculating the Rains bound and present direct numerical
evidence (not involving any other entanglement measures, as in [Wang/Duan, Phys. Rev. A
95:062322, 2017]), showing that the Rains bound is not additive under tensor products.

Keywords: entanglement distillation, Rains bound, hypothesis testing, semidefinite program

1 Introduction

Quantum entanglement is a striking feature of
quantum mechanics and is a key ingredient in many
quantum information processing tasks, including the
teleportation [1], superdense coding [2], and numer-
ous uses in quantum cryptography protocols [3, 4].
All these protocols necessarily rely on entanglement
resources, especially the maximally entangled states.

In general, the task of entanglement distillation
aims at obtaining maximally entangled states from
less-entangled bipartite states shared between two
parties and it allows them to perform LOCC. The
concept of distillable entanglement characterizes the
rate at which one can asymptotically obtain maxi-
mally entangled states from a collection of identi-
cally and independently distributed (i.i.d) prepared
entangled states by LOCC [5, 6]. Distillation from
non-i.i.d prepared states has also been considered
recently [7]. Distillable entanglement is a funda-
mental entanglement measure which captures the
resource character of entanglement. Up to now,

∗ kun.fang-1@student.uts.edu.au
� xin.wang-8@student.uts.edu.au
� marco.tomamichel@uts.edu.au
§ runyao.duan@uts.edu.au
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how to calculate distillable entanglement for gen-
eral quantum states remains unknown and various
approaches [8, 9, 10, 11, 12, 13, 14, 15] have been
developed to evaluate this important quantity.

However, in a realistic setting, the resources are
finite and the number of independent and identically
distributed (i.i.d.) prepared states is necessarily lim-
ited. More importantly, it is notoriously hard to do
coherent state manipulation over a very large num-
bers of qubits in the current status or near future.
Therefore, it is important to characterize how well
we can distill maximally entangled states from finite
copies of prepared states. Under the non-asymptotic
setting, one also has to make a trade-off between the
distillation rate and infidelity tolerance.

The non-asymptotic analysis of entanglement dis-
tillation will help us better exploit the power of en-
tanglement in a realistic setting. Previously, the
one-shot distillable entanglement was studied in
Refs. [16, 17], but their bounds are not efficiently
computable. The Rains bound [11] and the hash-
ing bound [18] are arguably the best general up-
per and lower bound for distillable entanglement,
respectively. However, these bounds do not provide
sufficiently good evaluation about entanglement dis-
tillation with finite resources.
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2 Overview of results

In this work, we study the entanglement distil-
lation with finite resources and provide efficiently
computable estimation of the non-asymptotic distil-
lable entanglement. Our approach utilizes the tech-
niques of convex optimization and second-order ex-
pansion of hypothesis testing.

We first give the SDP characterization of one-
shot PPT distillable entanglement with a given infi-
delity tolerance and connect it to a hypothesis test-
ing problem. For given bipartite state ρAB and in-
fidelity tolerance ε > 0, we show that

E
(1)
Γ,ε (ρAB) = − log min η

s.t. TrρABMAB ≥ 1 − ε,
0 ≤MAB ≤ 1AB,
− η1AB ≤MTB

AB ≤ η1AB

(1)

and

E
(1)
Γ,ε (ρAB) = min

∥CTB ∥1≤1
Dε
H (ρ∥C) . (2)

As the one-shot PPT distillable entanglement can
be represented in the form of hypothesis testing rel-
ative entropy, we further derive a second-order up-
per bound of the non-asymptotic distillable entan-
glement. Specifically, for any bipartite states ρAB
and given infidelity tolerance ε ∈ (0,1), we show that

E
(1)
Γ,ε (ρ

⊗n) ≤ nR (ρ) +
√
nVR (ρ)Φ−1 (ε) +O (logn) ,

(3)

where VR (ρ) =
⎧⎪⎪⎨⎪⎪⎩

maxσ∈Sρ V (ρ∥σ) if 0 < ε ≤ 1/2
minσ∈Sρ V (ρ∥σ) if 1/2 < ε < 1

,

(4)

and V (ρ∣∣σ) = Trρ (log ρ − logσ)2 −D (ρ∣∣σ)2, Sρ is
the set of operators that achieve the minimum of
R (ρ) = minσ∈PPT’D (ρ∥σ) and Φ−1 is the cumulative
normal distribution function.

We also observe that R (ρ) and VR (ρ) can be effi-
ciently computed via the cutting-plane method [19]
or rational (Padé) approximations [20]. This allows
us to efficiently compute the second-order converse
bound of non-asymptotic distillable entanglement in
Eq. (3). Moreover, one can use these algorithms
to verify the non-additivity of Rains bound [21] as
shown in Fig. 4.

On the other hand, to estimate the achievability
of non-asymptotic entanglement distillation, we give

the second order expansion of the 1-LOCC hashing
lower bound [18]. To be specific, for any bipartite
state ρ and infidelity tolerance ε ∈ (0,1),

E(1)
→,ε (ρ⊗nAB) ≥ nI (A⟩B)ρ+

√
nV (A⟩B)ρΦ

−1 (ε)+O (logn) .
(5)

Finally, we use our results to study some partic-
ular classes of bipartite quantum states, including
pure states, isotropic states and some other classes
of mixed states.

(i) For any bipartite pure state ψAB, denote the
reduced state as ρA = TrB ψAB, then

E(1)
→,ε (ψ⊗n) = E

(1)
Γ,ε (ψ

⊗n) = nS (ρA)

+
√
n [TrρA (log ρA)2 − S (ρA)2]Φ−1 (ε) +O (logn) .

(ii) For the bipartite quantum state
ρAB = p∣v1⟩⟨v1∣ + (1 − p) ∣v2⟩⟨v2∣, where
∣v1⟩ = 1√

2
(∣00⟩ + ∣11⟩), ∣v2⟩ = 1√

2
(∣01⟩ + ∣10⟩),

its second-order distillable entanglement is

E(1)
→,ε (ρ⊗nAB) = E(1)Γ,ε (ρ

⊗n
AB) = n (1 − h2 (p))

+

¿
ÁÁÀnp (1 − p) (log

1 − p
p

)
2

+O (logn) .

(iii) For the isotropic states ρF = (1 − F ) 1−Φ(d)
d2−1

+
F ⋅Φ (d), we have the linear program:

E
(1)
Γ,ε (ρ

⊗n
F ) = − log min η

s.t. 0 ≤mi ≤ 1, i = 0,1,⋯, n,
n

∑
i=0

(n
i
)F i (1 − F )n−imi ≥ 1 − ε,

− η ≤
n

∑
i=0

xi,kmi ≤ η, k = 0,1,⋯, n.

(6)

We further show the numerical estimation of non-
asymptotic distillable entanglement of 3⊗3 isotropic
state ρF (F = 0.9) with infidelity tolerance ε = 0.001
in the following figures. Fig. 1 shows that the 1-
LOCC hashing bound cannot be achieved by coher-
ently manipulating 100 copies of the isotropic state
while such manipulation is already hard to perform
in practice. Fig. 2 shows the estimation of non-
asymptotic (1-LOCC, LOCC, SEP, PPT-assisted)
distillable entanglement of the isotropic state. The
finite blocklength distillable entanglement will lie
between two dashed lines while asymptotic distil-
lation rates lie between the two solid lines. Fig. 3
shows that the fitting curve of the series of points
1
nE
(1)
Γ,ε (ρ⊗nF ) (1 ≤ n ≤ 100) almost coincides with the
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second-order upper bound in large n (≥ 103) and
converges to its Rains bound. This may indicates
that EΓ (ρF ) = R (ρF ).
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Figure 4: Non-additivity of Rains bound.
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Abstract. Finding the optimal encoding strategies can be challenging for communication using quantum
channels, as classical and quantum capacities may be superadditive. Pre-shared entanglement assistance
can often simplify this task, as the entanglement-assisted classical capacity for any channel is additive.
If the entanglement assistance is limited, the picture is much more unclear. If the classical capacity is
additive, it is unknown if superadditivity can still be developed with limited entanglement assistance. We
show this is possible, by providing an example. We construct a channel for which, the classical capacity is
additive, but that with limited entanglement assistance can be superadditive.

Keywords: quantum Shannon theory, quantum channels, entanglement, trade-off capacities, superaddi-
tivity

Channel capacities describe the maximum rate at
which a channel can transmit information. A classical
channel can only transmit classical information, and the
maximum communication rate is fully characterized by
its capacity [1], which is described by a simple formula.

For quantum channels, however, the story is very dif-
ferent. First, a quantum channel can transmit both clas-
sical and quantum information. Hence there are a few
different types of capacity, such as the classical capacity
C [2, 3] and the quantum capacity Q [4, 5, 6]. Moreo-
ver, the capacity formulae are of a “multi-letter” nature,
optimized over inputs of an infinite number of channel
uses. This is easy to understand, as quantum inputs can
be entangled across channels. Sometimes such inputs can
improve the communication rate, leading to the “supe-
radditivity” phenomenon. Many channels with such phe-
nomenon have been found [7, 8, 9].

Although the “superadditivity” phenomenon is itself
interesting, it is not desirable for communication purpose.
If the capacity formula of a channel is superadditive, it
means computing the capacity and finding the capacity-
achieving input states get very hard. Without knowing
such input states, one cannot find the optimal encoding
strategy. If the capacity formula of a channel is additive
(i.e.“single-letter”), then one only has to optimize over
inputs of a single channel use, and this is tractable. Hence
an important goal in quantum information theory is to
characterize channels with additive capacities [10, 11, 12].
More recently, this has been extended to approximate
channels by those with additive capacities [13].

There are also vast differences between classical and
quantum communication, in terms of the auxiliary re-
sources that can be used, and how they enhance the ca-
pacities. In the classical setting, it can be shown that
pre-shared randomness does not increase the capacity of

∗eltonzhu@mit.edu
†quntao@mit.edu
‡shor@math.mit.edu

a channel. In the quantum setting, the most common
resource is quantum entanglement. Unlike classical com-
munication, pre-shared entanglement between the sen-
der and receiver can enhance communication, with the
most prominent example being superdense coding [14].
Remarkably, in the presence of unlimited pre-shared en-
tanglement, the capacity formula of an arbitrary noisy
channel becomes “single-letter” [15, 16]. Hence, with
unlimited pre-shared entanglement assistance, quantum
Shannon theory greatly simplifies.

However, in many cases, unlimited pre-shared entang-
lement between the sender and receiver can be unrea-
listic. Thus it makes sense to study the trade-off capa-
city region between entanglement and classical/quantum
communication, or even among these three resources.

The first such work is given by Shor [17], who exami-
ned the case where only finite pre-shared entanglement is
available and obtained a trade-off curve that illustrates
how the optimal rate of classical communication depends
on the amount of entanglement assistance (CE trade-off).
Subsequently, many other trade-off capacities were stu-
died [12, 18, 19, 20, 21].

This work aims to study the additivity properties of
CE trade-off capacity, i.e. the classical capacity with li-
mited entanglement assistance. This is important both
from a theoretical point of view, as an extension of nume-
rous former studies on additivity of the classical capacity
[22, 7], and also from a practical point of view, since
trade-off capacities naturally occur in future quantum
communication.

The CE trade-off capacity formula given by Shor is
“multi-letter”. This comes naturally, as the formula must
reduce to the classical capacity formula when the entang-
lement assistance is set to zero. Hence, one does not
expect it to be additive in general. This intuition can
be made sharper, by considering the CE trade-off ca-
pacity of a channel with superadditive classical capacity.
As the classical capacity must vary continuously with the
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amount of entanglement, superadditivity will be retained
when entanglement assistance is small.

What if we assume the classical capacity of a channel
is additive? In this case, the picture is much unclea-
rer. Intuitively, one expect the CE trade-off capacity to
be additive. This comes from the fact that with unli-
mited pre-shared entanglement, the classical capacity is
additive. So one would hope that limited entanglement
assistance wouldn’t complicate matters.

However, naively proving additivity of the CE trade-
off capacity from its additive classical capacity fails
for simple channels like the depolarizing channel, and
entanglement-breaking channels. One of the reasons is
that the trade-off capacity beats the time-sharing stra-
tegy. For CE trade-off, the time-sharing strategy is sim-
ply to distil the pre-shared entanglement into Bell pairs,
and use them for classical communication over a fraction
of the channel uses. For the other channel uses, one just
performs classical communication without entanglement
assistance. Since the trade-off protocol can beat this stra-
tegy, additivity of the CE trade-off capacity does not im-
mediately follow from that of the classical capacity.

We show that this is simply not possible. There ex-
ist channels with a superadditive trade-off capacity, even
when the classical capacity is additive. We show this
by constructing an example. Our example is a switch
channel, where part of the input acts as a switch regis-
ter and determines which of the two sub-channels are
used. One of the sub-channels is a classical channel. The
second sub-channel is a quantum channel with a supe-
radditive classical capacity. The classical channel has
a larger classical capacity. Hence without entanglement
assistance, the classical channel is always used and the
capacity is additive. However, when pre-shared entang-
lement is available, the quantum channel is more favora-
ble. Hence superadditivity develops. We also require the
quantum channel to have its CE trade-off curve strictly
concave, otherwise the trade-off protocol reduces to time-
sharing. The whole argument is made precise in Ref.[23].

Our work implies that additivity is a very non-robust
notion, and can be lost when resources start to trade.
Even though unlimited pre-shared entanglement simplies
quantum Shannon theory, limited entanglement can po-
tentially complicate it.

Interestingly, the quantum capacity with limited en-
tanglement assistance (QE trade-off) does not have this
weird behavior, because its trade-off protocol does not
beat the time-sharing strategy.

Recognizing the difficulty in obtaining an additive CE
trade-off region in Shor’s original framework, efforts have
been made to give an additive CE trade-off capacity, by
imposing a different constraint [24]. This can be used
to bound an eavesdropper’s information gain in two-way
quantum key distribution protocols. The above switch
channel framework can also be used to study the additi-
vity property of other trade-off capacities [25].
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Abstract. A central theme in quantum computation is to show how quantum resources can be used to
gain advantage in information processing tasks. In particular, non-local games have been used to exhibit
quantum advantage in boolean constraint satisfaction, and to obtain quantum versions of graph invariants
such as the chromatic number, and more broadly, of graph homomorphisms.

We introduce a general notion of non-local games for homomorphisms between relational structures,
which play a central role in finite model theory, constraint satisfaction and database theory. We show
how quantum strategies for such games can be viewed as Kleisli morphisms for a quantum monad on the
(classical) category of relational structures and homomorphisms, removing the two-player non-local element
of the game. We use these results to exhibit a wide range of examples of contextuality-powered quantum
advantage, and to unify several apparently diverse strands of previous work. In particular, we spell out
an equivalence between state-independent strong contextuality, quantum homomorphisms, and quantum
advantage in constraint satisfaction, showing in particular that state-independent strong contextuality
proofs can always be underwritten by non-locality arguments.

The full version of this paper is available from arXiv:1705.07310[cs.LO].

Keywords: non-local games, quantum advantage, monads

Finite relational structures and the homomorphisms
between them form a mathematical core common to fi-
nite model theory [10], constraint satisfaction [5], and
relational database theory [9]. Moreover, much of graph
theory can be formulated in terms of the existence of
graph homomorphisms, as expounded e.g. in the influen-
tial text [6]. Thus, implicitly at least, the mathematical
setting for all these works is categories of σ-structures
and homomorphisms, for relational vocabularies σ.

What could it mean to quantize these structures?
More precisely, with the advent of quantum computing,
we can now consider the consequences of using quantum
resources for carrying out various information-processing
tasks. A major theme of current research is to delineate
the scope of the quantum advantage which can be gained
by the use of quantum resources. How can this be related
to these fundamental structures?

Our starting point is the notion of quantum graph ho-
momorphism introduced in [11] as a generalization of the
notion of quantum chromatic number [2]. Consider the
following game, played by Alice and Bob cooperating
against a Verifier. Their goal is to establish the exis-
tence of a homomorphism G→ H for given graphs G and
H. Verifier provides vertices v1, v2 ∈ V (G) to Alice and
Bob respectively. They produce outputs w1, w2 ∈ V (H)
in response. No communication between Alice and Bob
is permitted during the game. They win if the fol-
lowing conditions hold: v1 = v2 ⇒ w1 = w2 and
v1 ∼ v2 ⇒ w1 ∼ w2, where we write ∼ for the ad-
jacency relation.

If only classical resources are permitted, then the ex-
istence of a perfect strategy for Alice and Bob — one
in which they win with probability 1 — is equivalent to

∗samsom.abramsky@cs.ox.ac.uk
†rui.soares.barbosa@cs.ox.ac.uk
‡nadish.desilva@utoronto.ca
§ocbzapata@gmail.com

the existence of a graph homomorphism in the standard
sense. However, using quantum resources, in the form
of an entangled bipartite state where Alice and Bob can
each perform measurements on their part, there are per-
fect strategies in cases where no classical homomorphism
exists, thus exhibiting quantum advantage.

Alice–Bob games have also been studied for other
tasks, notably for constraint systems. Consider the fol-
lowing system of linear equations over Z2:

A ⊕B ⊕ C = 0 B ⊕E ⊕H = 0

A ⊕D⊕G = 0 G⊕H ⊕ I = 0

D⊕E ⊕ F = 0 C ⊕ F ⊕ I = 1

Of course, this system is not satisfiable in the standard
sense, as we can see by summing over the left- and right-
hand sides. Now consider the following Alice–Bob game.
The Verifier sends Alice an equation, and Bob a vari-
able. Alice returns an assignment to the variables in the
equation, and Bob returns an assignment for his vari-
able. They win if Bob’s assignment agrees with Alice’s,
and moreover Alice’s assignment satisfies the given equa-
tion. Classically, the existence of a perfect strategy is
equivalent to the existence of a satisfying assignment for
the whole system. Using quantum resources, there is a
perfect strategy for the above system, which corresponds
to Mermin’s “magic square” construction [12]. This can
be generalized to a notion of quantum perfect strategies
for a broad class of constraint systems [4, 3], which have
strong connections both to the study of contextuality
in quantum mechanics, and to a number of challenging
mathematical questions [16, 15]. Clearly, these games are
analogous to those for graph homomorphisms. What is
the precise relationship?

In [11], generalizing results in [2], the existence of a
quantum perfect strategy for the homomorphism game
from G to H is characterized in terms of the exis-
tence of a family {Evw}v∈V (G),w∈V (H) of projectors in
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d-dimensional Hilbert space for some d, subject to cer-
tain conditions. Analogous results for constraint systems
are proved in [4]. This characterization eliminates the
two-person aspect of the game, and the shared state, leav-
ing a “projector-valued relation” as the witness for exis-
tence of a quantum perfect strategy. We shall henceforth
call these witnesses quantum graph homomorphisms. An
important further step is taken in [11]. A construction
H 7→ MH on graphs is introduced, such that the exis-
tence of a quantum graph homomorphism from G to H
is equivalent to the existence of a standard graph homo-
morphism G→ MH.

Our contribution begins at this point. We describe a
general notion of non-local game for witnessing homo-
morphisms between structures for any relational signa-
ture. We show that the use of quantum resources in these
games can be characterized by a notion of quantum ho-
momorphism, removing the two-player non-local and the
state-dependent aspects of the game. Moreover, quan-
tum homomorphisms can in turn be characterized as the
Kleisli morphisms for a quantum monad on the (classical)
category of relational structures and homomorphisms.
Monads are used in computer science – particularly in
functional programming and semantics of programming
language – to express computational effects [14]. This
monad is graded [13] by the dimension of the Hilbert
space.

Our account refines and generalizes the ideas from both
[2, 11] and [4]. We characterize quantum solutions for
general constraint satisfaction problems, showing as a
special case that these subsume the binary constraint sys-
tems of [4].

We also show how quantum witnesses for state-
independent strong contextuality in the sense of [1] are
characterized by quantum homomorphisms. This estab-
lishes a link between state-independent contextuality and
non-locality, showing that that state-independent strong
contextuality proofs can always be underwritten by non-
locality arguments. This can be seen as a general form
of constructions for turning Kochen–Specker contextual-
ity proofs into Bell non-locality arguments [7]. The rôle
of the entangled state and of Bob in the non-local game
is to provide an operational or physical underpinning for
the compatibility or generalized no-signalling assumption
which is made for empirical models [1].

The precise relationship with the quantum graph ho-
momorphisms of [11] turns out to be more subtle. By
adapting a construction from [8], we show that their no-
tion is characterized by a quantum solution in our sense
for a related boolean constraint system. Overall, we show
that a wide range of notions of quantum advantage is cap-
tured in a uniform way by the quantum monad, applied
directly to the standard classical structures.
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Abstract. Characterizing genuine quantum resources and determining operational rules for their ma-
nipulation are crucial steps to appraise possibilities and limitations of quantum technologies. Two such
key resources are nonclassicality, manifested as quantum superposition between reference states of a single
system, and entanglement, capturing quantum correlations among two or more subsystems. Here we
present a general formalism for the conversion of nonclassicality into multipartite entanglement, showing
that a faithful reversible transformation between the two resources is always possible, within a precise
resource-theoretic framework. Specializing to quantum coherence between the levels of a quantum system
as an instance of nonclassicality, we introduce explicit protocols for such a mapping. We further show that
the conversion relates multilevel coherence and multipartite entanglement not only qualitatively, but also
quantitatively, restricting the amount of entanglement achievable in the process and in particular yielding
an equality between the two resources when quantified by geometric measures.

1 Introduction

Signature features of the quantum world have been
recently recognized as resources that can be harnessed
for disruptive technologies [1]. One such resource, em-
bodying the nonclassicality of quantum mechanics, is
the possibility for a quantum system to exist in a su-
perposition of “classical” states. The latter are usually
determined based on physical considerations; for instance,
in continuous-variable systems they can be identified with
the Glauber-Sudarshan coherent states [2, 3], while in
discrete-variable systems they can be taken to form a
reference orthonormal basis (e.g. the energy eigenbasis),
so that superposition manifests as quantum coherence
[4–12].

Superposition underlies other nonclassical phenomena
such as quantum entanglement among parts of a quantum
system [13]. These two resources enjoy different uses in
quantum technologies, and it thus becomes particularly
relevant to investigate the connection between them
beyond a merely conceptual standpoint, and to devise
operational schemes that allow the dynamical transforma-
tion of one into the other. Several works have analyzed
this problem. In quantum optics, nonclassicality gets
mapped into entanglement by a beam splitter [14–18],
while, in the discrete-variable scenario, it is the controlled
not (cnot) gate [19, 20] that plays a similar role. The
quantitative interplay between the degree of nonclassi-
cality and the bipartite entanglement obtained from it
has been investigated as well [17, 21–26]. These studies
have advanced our understanding of nonclassicality as
a resource in systems of arbitrary dimension [7, 12, 25–31].

∗bartosz.regula@gmail.com

In this work [32], we show that there always exists a
state-independent unitary mapping, realized by opera-
tions which alone cannot create nonclassicality, such that
the presence of k-level nonclassicality in the state of a
single d-level system is necessary and sufficient to create
k + 1-partite entanglement between the system and k
ancillas. To exemplify such a conversion procedure, we
specialize to quantum coherence as an instance of nonclas-
sicality [12], and introduce an explicit physical protocol
which directly converts k-level coherence into k + 1-body
multipartite entanglement. The protocol entangles a d-
level system (qudit) with up to d qubits by a sequential
application of generalized cnot gates. The protocol can
be further extended via the decoupling of the qudit sys-
tem, realizable by either unitary or locc operations, to
provide a mapping of k-coherence into multipartite entan-
glement of the ancillary qubits alone. This process can
also be seen as a toy model for decoherence [33] due to the
interaction with a many-body environment, with informa-
tion about the superposition leaking into the environment
in the form of multipartite entanglement.

Further, we explicitly show that the amount of k-
coherence in the initial system places a quantitative restric-
tion on the amount of entanglement that can be converted
from it. In particular, the fidelity-based geometric mea-
sure of k + 1-partite entanglement [34, 35] at the output
of the protocol is exactly equal to the initial coherence of
the qudit system, quantified by the fidelity-based geomet-
ric measure of k-coherence — a computable quantifier of
multi-level coherence introduced here, extending previous
work [7, 23].
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Figure 1: Schemes of two protocols to convert k-coherence into multipartite entanglement. Both protocols begin
with the global unitary operation UA which sequentially entangles each level of the qudit system in the state |ψd〉
with a corresponding ancillary qubit by generalized cnot gates, resulting in a k + 1-partite entangled state. One
can then decouple the qudit system either (a) by a unitary transformation UB, consisting of a Fourier transform
and a disentangling unitary UD, or (b) via a one-way locc operation ∆. Both protocols result in genuine k-partite
entanglement between the ancillary qubits.

2 Nonclassicality converison

The nonclassicality of a state ρ is a notion that depends
on our chosen set of states that we take to be “classical”.
Choosing a finite set of states {|χi〉} (not necessarily
orthogonal) which spans the whole Hilbert space H to
constitute the pure classical states, one asks whether ρ can
be represented as a convex combination of classical states
only. If this is not possible — that is, if one has to consider
superpositions of {|χi〉} — then ρ is a nonclassical state.
Therefore, the set of all classical states C is formed by the
convex hull of {|χi〉}.

This formalism leads to a natural measure of the level
of nonclassicality of a state. For a pure state, one
can indeed define the nonclassical rank (RN) [21, 25]:
RN (|ψ〉) = min

{
r
∣∣ |ψ〉 =

∑r
i=1 ci |χi〉 , |χi〉 ∈ C

}
with

nonzero complex coefficients ci. This clearly resembles
the definition of the Schmidt rank RS(|ψ〉) of bipartite
entangled states, and it can in fact be extended to mixed
states in the same way as the latter is extended to the
Schmidt number NS(ρ) [36]. We thus define the nonclassi-
cal number (NN) as NN (ρ) = min{pi,|ψi〉}maxi RN (|ψi〉)
where the minimization is performed over all pure-state
convex decompositions of ρ into ρ =

∑
i pi |ψi〉 〈ψi|.

Killoran et al. [25] showed that in this formalism there
always exists an isometry, consisting of adding an ancilla
system and applying a global unitary operation, which
maps a pure state of nonclassical rank k into a bipar-
tite entangled pure state of Schmidt rank k. As one of
the main results of this paper, we show that an analo-
gous faithful conversion of multilevel nonclassicality into
genuine multipartite entanglement is always possible.

Theorem 1 Let H be a d-dimensional Hilbert space, and
Hanc the Hilbert space of an ancillary system. Then if
the classical pure states {|χi〉}di=1 ∈ H form a linearly
independent set spanning H, there exists an isometry
Λ : H → H ⊗ H⊗danc such that for any state ρ ∈ D(H)

with nonclassical number NN(ρ) = k, ΛρΛ† is genuinely
k + 1-partite entangled iff ρ is nonclassical (2 ≤ k ≤ d)
and ΛρΛ† is fully separable iff ρ is classical (k = 1).

Theorem 1 shows that one can always faithfully map
the k-level nonclassicality of a quantum system in two
ways, but we note that the specifics of the mappings are
not fixed by the theorems — in particular, this means
that one can construct different mappings which map
multilevel nonclassicality into qualitatively different types
of entanglement. We give two examples of such mappings:
one which only use two levels of each ancillary system, re-
sulting in entanglement akin to that of W states [37], and
another protocol which instead uses qudit ancillary sys-
tems and generates a generalized GHZ-type entanglement
between the qudits. However, the choice of a W-type map-
ping in the theorem makes the conversion quite appealing
in practice, as it only requires qubit ancillas, and, as we
show below, enables one to create entanglement by a se-
quential application of two-body gates on the nonclassical
system and each ancilla.

3 Coherence conversion

We will now specialize to the framework of quantum
coherence [4, 7, 12]. Here, the classical states {|i〉}di=1 are
taken to form an orthonormal basis for H. Analogously to
nonclassicality, we can then define a hierarchy of coherence
levels by considering the coherence rank RC(|ψ〉), defined
to be the number of non-zero coefficients ci that a state
|ψ〉 =

∑
i ci |i〉 has in this basis [5, 6], and extending it to

mixed states as the coherence number NC(ρ).
The k-coherence of a single qudit can be converted into

multipartite entanglement in different physical ways. To
show this, we design a protocol to convert k-coherence into
k+ 1-partite entanglement between the qudit and k qubit
ancillas (following Thm. 1), realizable by a sequential
application of cnot gates (see UA in Fig. (a) and (b)).
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We then provide a natural mapping of k-coherence into
k-body entanglement, which can be accomplished by a
second step which disentangles the qudit system — either
by unitary transformations as in Fig. (a), or by one-way
locc ∆ as in Fig. (b). The locc protocol might lend
itself to a more efficient implementation as it does not
require global interactions. It also reflects an operational
scenario in which input agents are constrained to the
resource theory of k-coherence, having at disposal only
incoherent ancillas and incoherent operations as used in
the first step, while output agents are constrained to the
resource theory of entanglement, being bound to use locc
as in the second step.

Quantification. — In any resource theory, one can
define a faithful class of quantifiers by considering the
distance to the set of non-resource states [38, 39]. In the
cases of bipartite entanglement and standard coherence
(i.e., 2-coherence in our framework), the corresponding
non-resource sets are the sets of separable states S and
incoherent states I, respectively [7, 40]. For the case of
k-partite entanglement, one can define the non-resource
set as the set of k − 1-producible states P(k−1) [41], i.e.,
states which are at most k−1-partite entangled. Similarly
for k-coherence, we consider the set C(k−1) of states which
are at most k−1-coherent. We can then define quantifiers

of k-partite entanglement E
(k)
D and k-level coherence C

(k)
D ,

for which we obtain the following result.

Theorem 2 Let D be any distance contractive under
cptp and G denote the choice of distance 1 − F (ρ, σ).
Given the protocol which converts the k-coherence of a
state ρ into k + 1-partite entanglement of ρ′ = UAρU

†
A or

k-partite entanglement of ρ′′ = ∆(ρ′), we get:

C
(k)
D (ρ) ≥ E(k+1)

D (ρ′) (1)

C
(k)
D (ρ) ≥ E(k)

D (ρ′′) (2)

C
(k)
G (ρ) = E

(k+1)
G (ρ′) (3)

The amount of k-coherence present in the initial state
thus places quantitative constraints on the multipartite
entanglement one can obtain from it. Remarkably, under
the fidelity-based geometric quantifiers, the k-coherence of
any system and the converted k + 1-partite entanglement
are actually equal, and the simple properties and com-
putability of the geometric measure of k-coherence mean
that the geometric measure of k + 1-partite entanglement
can be efficiently computed for states ρ′ obtained from
the conversion protocol.

4 Conclusions

Our work reveals a qualitative and quantitative connec-
tion between multilevel nonclassicality and multipartite
entanglement, generalizing previous results in the resource
theory of quantum coherence [7, 12, 23], and further con-
tributing towards the formalization of nonclassicality as a
resource [25, 26, 31]. In particular, by proving the convert-
ibility of the two resources in general multipartite settings,
the results provide on one hand a further advance towards
establishing a unified framework for the quantification

of fundamental quantum phenomena as resources, and
reveals on the other hand feasible protocols to interchange
such resources experimentally to realize efficient hybrid
approaches to quantum technologies.

References

[1] J. P. Dowling and G. J. Milburn, Philos. T. Roy. Soc.
A 361, 1655 (2003).

[2] R. J. Glauber, Phys. Rev. 131, 2766 (1963).

[3] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).

[4] J. Aberg, (2006), arXiv:quant-ph/0612146 .

[5] B. Witt and F. Mintert, New J. Phys. 15, 093020
(2013).

[6] F. Levi and F. Mintert, New J. Phys. 16, 033007
(2014).

[7] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys.
Rev. Lett. 113, 140401 (2014).

[8] T. R. Bromley, M. Cianciaruso, and G. Adesso, Phys.
Rev. Lett. 114, 210401 (2015).

[9] A. Winter and D. Yang, Phys. Rev. Lett. 116, 120404
(2016).

[10] C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani,
N. Johnston, and G. Adesso, Phys. Rev. Lett. 116,
150502 (2016).

[11] E. Chitambar and G. Gour, Phys. Rev. Lett. 117,
030401 (2016).

[12] A. Streltsov, G. Adesso, and M. B. Plenio, (2016).

[13] R. Horodecki, P. Horodecki, M. Horodecki, and
K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).

[14] M. S. Kim, W. Son, V. Bužek, and P. L. Knight,
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Simultaneous hollowisation separability criterion in general multipartite

systems
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Abstract. We use the generalized concurrence approach to investigate the general multipartite separa-
bility problem. To this aim, we first show how to generate a set containing all the independent generalized
concurrences for any multipartite system. Then, by extending the preconcurrence matrix formalism to
these systems, we show that the separability problem is equivalent to a pure matrix analysis problem that
consists in determining whether a set of given symmetric matrices is simultaneously unitarily congruent to
hollow matrices, i.e., to matrices whose main diagonal is composed only of zeroes.

Keywords: Quantum entanglement, separability criteria, generalized concurrences.

Quantum entanglement is at the heart of quantum me-
chanics and intimately linked to its nonlocal feature [1].
It is a key resource in many promising applications, like,
to cite a few, quantum cryptography [2], quantum com-
munication [3], quantum imaging [4], or also quantum
sensing [5]. In this context, the ability to distinguish both
experimentally and theoretically between entangled and
separable states is a crucial issue. Theoretically, this is-
sue is entirely solved in the pure state case where general
and practical necessary and sufficient separability criteria
have been identified (see, e.g., Ref. [6]). For mixed states,
the question is much more involved and remains open in
the very general case. Still various necessary but not suf-
ficient conditions of separability have been stated [1, 7],
such as the positive partial transpose (PPT) criterion [8],
combinatorially independent permutation criteria [9, 10],
Bell-type inequalities [11], or criteria based on entangle-
ment witnesses [12, 13]. In some restricted cases, some of
these above-cited criteria turn to be also sufficient con-
ditions of separability. This happens for example for
the PPT criterion in low-dimensional or low-rank cases,
such as for qubit-qubit or qubit-qutrit systems [12], for
Cm⊗Cn(m ≤ n) bipartite states with rank at most n [14],
or even for general multipartite mixed states with rank
at most 3 [15].

The concurrence [16] is another tool that proved to
provide a necessary and sufficient condition (NSC) of sep-
arability in 2-qubit systems. It is defined for pure states
|ψ〉 as

C(ψ) ≡ |〈ψ|S|ψ∗〉|, (1)

where S = σy ⊗ σy is the 2-qubit spin-flip operator with
σy the second Pauli matrix and where |ψ∗〉 is the complex
conjugate of |ψ〉 expressed in the computational basis.
For mixed states ρ, the concurrence is defined via the
standard convex-roof construction :

C(ρ) = inf
{pi,|ψi〉}

∑

i

piC(ψi), (2)

where the infinimum is computed over all possible de-
compositions of ρ, i.e., all sets {pi, |ψi〉} such that ρ =
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∑
i pi|ψi〉〈ψi|. The concurrence is an entanglement mea-

sure that vanishes only for separable states [16] and this
provides an easy of separability : a state ρ is separable
if and only if C(ρ) = 0. In general, the minimization
implied by convex-roofs is a very challenging task. How-
ever, in the case of the concurrence, Eq. (2) simplifies
to [16]

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (3)

with λi (i = 1, . . . , 4) the square roots of the eigenvalues
of ρSρ∗S sorted in decreasing order.

The 2-qubit concurrence has been generalized to more
general bipartite [17] or even multipartite [6] systems by
the introduction of a vector of generalized concurrences
Cα defined similarly as in Eq.(1) but each with a specific
generalized "spin-flip" operator Sα [17, 6]. The cancel-
lation of all the generalized concurrences still provides
an NSC of separability, however only for pure states.
Though the extension to mixed states via the convex-
roof construction yields a similar elegant result as in
Eq. (3) for each Cα [17, 6], the cancellation of each of
them only provides a necessary separability condition for
mixed states [17, 6]. Here, we show that the missing el-
ement to get a necessary and sufficient condition of sep-
arability based on generalized concurrences can be for-
malized equivalently as a pure matrix analysis problem
that consists in determining whether a set of given sym-

metric matrices is simultaneously unitarily congruent to

hollow matrices, i.e., to matrices whose main diagonal is

composed only of zeroes.
To this aim, we first refine the NSC of separability

based on generalized concurrences for pure states by
showing how to get an optimal non-redundant set of gen-
eralized "spin-flip" operators Sα for arbitrary multipartite
systems. The generalized "spin-flip" operators Sα intro-
duced in Refs. [6, 17] are generated either from tensor
products of SO(n) generators [6] or from 2×2 minor equa-
tions from tensor matricizations [17, 18]. Both methods
unfortunately produce highly redundant sets of opera-
tors. Here, we show how to extract from them the only
independent operators. For this purpose we make use
of the 2 × 2 minor equations method [17], that is better
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suited for this task.
We then extend the concept of preconcurrence matri-

ces [19] to these independent operators and address the
mixed state case. From there, we can prove our main
result, which is to show that a general mixed states is
separable if and only if all its preconcurrence matrices
(which are complex symmetric matrices) are simultane-

ously hollowisable, i.e. simultaneously unitarily congru-
ent to hollow matrices. In other words, we show that
the separability problem is equivalent to the pure matrix
analysis problem of finding whether a set of symmetric
matrices is simultaneously hollowisabe or not.

Although related topics such as simultaneous unitary
congruence of pairs of complex matrices have already
been studied in the literature [20], very few seems to
be known about the simultaneous hollowisation problem.
The problem of simultaneous diagonalisation of symmet-
ric matrices, which in a sense can be seen as the oppo-
site problem to simultaneous hollowisation, is by contrast
well known and can be solved using a simple commuta-
tion criterion [21].

With this mathematical reformulation of the separa-
bility problem, we wish to draw the attention of both
the matrix analysis and the entanglement detection com-
munities to the problem of simultaneous hollowisation.
Progress on this topic could indeed provide interesting
headway in the field of entanglement detection. This
problem may be hard to solve but we would like to point
that partial answers to the problem can already lead to
separability criteria for particular classes of states. We
illustrate this in the last part of our paper by showing
that a criterion for simultaneous hollowisability of 2 × 2
symmetric matrices can be translated into a separability
criterion for general mixed states of rank 2.

To do so, we first use theorem 1 from Ref. [22] to get
the hollowisability condition for symmetric 2×2 matrices.
With this condition, we can prove that a set of symmet-
ric 2×2 symmetric matrices are simultaneously hollowis-
able if and only if these matrices are individually hollow-
isable and proportional to each other. Combined with
the preconcurrence matrix formalism developed earlier,
this simultaneous hollowisability condition can be used
to prove that any rank 2 state is separable if and only if
all its preconcurrence matrices are hollowisable and pro-
portional to each other. As we already mentioned, the
PPT criterion is also an NSC of separability for rank 2
states [15]. The criterion involving the preconcurrence
matrices has however the advantage to provide a separa-
ble decomposition for separable states, directly computed
from the preconcurrence matrices.

In conclusion, we show that the simultaneous hollowi-
sation problem constitutes a new approach to the separa-
bility problem. Using this approach, we obtain an NSC
of separability for general multipartite states of rank 2
that is independent from the PPT criterion (which is also
an NSC of separability in that case). We hope that this
reformulation will stimulate further research to find prac-
tical criteria for simultaneous hollowisation, which could
lead to new NSC of separability.
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Abstract. Quantum entanglement is a fundamental resource in quantum information processing and its
generation, manipulation and distribution between distant parties are all key challenges in the pursuit of
global quantum communications. Increasing the dimensionality of entanglement has been shown to im-
prove robustness and channel capacities in secure quantum communications. Here, we give an overview
of our efforts towards exploiting high-dimensional entanglement in long-distance quantum communication.
We report on the results a first feasibility study, in which we distribute genuine 4-dimensional hyperentan-
glement via a free-space link over the rooftops of Vienna. We discuss how this approach could be extended
to applications such as large-alphabet quantum key distribution in space and conclude with a brief update
on our progress in engineering a sutiable space-proof-entangled photon source.

Keywords: Quantum entanglement, Optical communication, Quantum cryptography, Quantum optics

Long-distance quantum communication with
high-dimensional entanglement

The distribution of quantum information over long dis-
tances is a key challenge in the pursuit of global quantum
communication. Optical satellite links allow overcoming
the distance limitations of fiber-based transmission on
ground and could thus play a central role in future quan-
tum communication networks. The viability of this ap-
proach is backed by a long history of long-distance quan-
tum optics experiments over terrestrial free-space links
where the losses and atmospheric turbulence were sim-
ilar (or worse) than for optical satellite links [1]. Free-
space quantum communication has now reached a level
of maturity that is most markedly reflected in the re-
cent launch of dedicated quantum communication satel-
lites [2–4]. Despite these remarkable developments, ex-
periments in this field still focus on two-level photonic
systems. Specifically, polarization qubits have been the
system of choice for free-space quantum communications
for over a decade.

High-dimensional entanglement and hyperentangle-
ment have both been shown to improve the security
and channel capacity quantum communications [5,6] and
have been successfully exploited in the realization of ad-
vanced quantum information processing protocols in a
laboratory setting, such as quantum teleportation of mul-
tiple degrees of freedom [7], quantum dense coding with
increased channel capacity [8], and efficient entanglement
purification [9, 10]. Consequently, increasing the dimen-
sionality of entangled quantum systems can be considered
a key technological step towards the realization of more
practical protocols in real world free-space link scenarios
ultimately also linking to and from space.

In a recent feasibility study [11], we made a first step

∗fabian.steinlechner@oeaw.ac.at
†rupert.ursin@oeaw.ac.at

towards implementing advanced high-dimensional quan-
tum communication protocols in long-distance free-space
links. We used hyperentanglement – that is a quan-
tum state entangled not only in polarization but also
the arrival time of the photons – to realize a large state
space [12] and distribute high-dimensional entanglement
via an intra-city free-space link in turbulent atmosphere
(Fig. 1). In order to verify the integrity of the atmo-
spheric quantum communication channel for hyperentan-
gled photons, we experimentally certified entanglement
in both polarization and energy-time subspaces individ-
ually, as well as genuine 4-dimensional entanglement with
a Bell-state Fidelity of 0.9419. The hyperentangled state
of the entire system could thus be used to transmit 1.4671
ebits of entanglement of formation. Note, however, that
the potential dimensionality of energy-time entanglement
is orders of magnitudes larger than demonstrated in this
first feasibility study. Future setups for free-space ex-
periments could use several unbalanced interferometers,
or additional photonic degrees of freedom to greatly in-
crease the dimensionality and with it the resistance to
inevitable background noise.

The coherent transmission of quantum information
embedded in a genuine high-dimensional state space
under real-world link conditions represents an impor-
tant step towards long-distance quantum communica-
tions with more complex quantum systems. The method-
ology of implementation, as well as the remarkably high-
transmission fidelity and pair-detection rates demon-
strated in our proof-of-concept experiment, make the
approach highly suitable for the exploitation of such
states in existing proposals for satellite experiments with
polarization-entangled photons. This could significantly
extend the scope of future experiments in space: The ad-
ditional possibility of analyzing high-dimensional energy-
time entanglement not only allows for larger information
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capacity in quantum communication, but could provide
a platform for entirely new fundamental physics exper-
iments, such as the evaluation of models for gravity-
induced wave function collapse [13] or quantum infor-
mation processing in a relativistic framework. We thus
hope that our results will motivate both further theoret-
ical research into energy-time entanglement experiments
conceivable at relativistic scenarios with satellite links,
as well as experimental research into the exploitation of
hyperentanglement in long-distance free-space quantum
communications.

Engineering a space-proof entangled pho-
ton source

The development of space-suitable sources and de-
tection hardware represents another major challenge in
the pursuit of global-scale quantum communication with
satellite links. Robust and efficient entangled photon
sources are not only a vital pre-requesite towards imple-
menting advanced quantum protocols in space, but can
also enable other challenging experiments on ground [14].

In collaboration with the Fraunhofer Instiut Jena, we
are currently developing a power-efficient prototype en-
tangled photon source (EPS) that can sustain the strong
vibrations and thermal fluctuations of space flight and
operation in space. We outline the main factors which
led to the baseline optical design and opto-mechanical
implementation (Fig. 2), as well as preliminary results
on performance characterization and environmental test-
ing of the EPS. We discuss some of the main challenges
that are still to be addressed, such as further integreation,
as well as sources with tailored spectral properties, such
as ultra-narrowband or pulsed sources (e.g. for multi-
photon experiments) and ultra-broadband sources (with
strong correlations in time e.g. for clock synchroniza-
tion).
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Figure 1: High-dimensional entanglement distribution over the rooftops of Vienna. An ultra-bright hyperentangled
photon source was located in a laboratory at the Institute for Quantum Optics and Quantum Information Vienna (IQOQI). The
source utilized spontaneous parametric down-conversion to produces polarization/energy-time hyperentangled photon pairs. The
photons were distributed to Alice and Bob via a free-space link and and optical single-mode fiber, respectively. Bob’s photons
were collected using a telephoto objective and guided to a polarization detection module. A polarization-dependent delay was
implemented for Franson interference measurements in the energy-time basis.

Figure 2: Opto-mechanical implementation of the
space-suitable entangled photon engineering model.
The main constraints of the opto-mechanical implementation
are to provide a mechanically and temperature stable mount-
ing structure for the optics of the EPS while maintaining fine-
tuneability of the required degrees of freedom for alignment
and fixation of individual components.
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Abstract. Leading proposals for linear-optical quantum computing (LOQC) use cluster states as univer-
sal resources for measurement-based quantum computation. Results from percolation theory have shown
that universal cluster states can be generated using schemes which exceed the critical percolation threshold,
but these results consider states with unbounded size. Here we consider how percolation can be maintained
using a fixed physical-depth architecture, assuming the state is continuously generated and measured such
that only a finite portion is visible at any time. We show that universal LOQC can be implemented using
a constant-size device with modest depth without the need for high-complexity algorithms.

Keywords: Linear Optical Quantum Computing, Quantum Computation Architectures, Percolation

1 Context

Over the two last decades architectures for linear
optical quantum computation (LOQC) have matured
from (technically) efficient, but ultimately unrealistic
proof-of-principle designs [1] to scalable and increas-
ingly feasible modern proposals [2]. Historically, the pri-
mary challenge for LOQC architectures was the inherent
non-determinism of entangling operations between non-
interacting photonic qubits (using only linear optics). By
utilising the paradigm of measurement-based quantum
computation (MBQC) [3, 4], modern architectures avoid
the need to perform probabilistic entangling gates arbi-
trarily during the computation, allowing all entanglement
to be generated prior to the desired quantum compu-
tation. As such, current LOQC architectures demand
the generation of large-scale entangled cluster states that
provide a universal resource for quantum computation.

In current LOQC architectures, large cluster states are
created from small three-qubit GHZ states via proba-
bilistic entangling “fusion” gates (that can be “boosted”
to operate with an arbitrarily high success rate [5, 6]).
Within such a model, Gimeno-Segovia, et. al. showed
that when the fusion success rate exceeds some critical
threshold, large-scale entanglement is produced in a per-
colated manner [7]. Single-qubit channels and states for
quantum error correction are then produced from perco-
lated lattice cluster states by “renormalization”, whereby
blocks of percolated physical qubits are abstracted to in-
dividual logical qubits with the idealised lattice structure
[8]. One key advantage of such a model is that after the
initial GHZ resource state generation [9], photons do not
pass through active, high-loss components, producing a
so-called “ballistic” architecture. This approach is con-
trasted to other modern LOQC proposals that generate
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entanglement with a “repeat-until-success” architecture,
requiring large, snowflake-like resource states and many
layers of active switching [10]. Once a large percolated
cluster state lattice is constructed, identifying a percola-
tion path spanning the cluster allows single-qubit chan-
nels and renormalization to be performed.

While this model is valid in an abstract computational
space, any feasible architecture must also consider realis-
tic constraints of a physical device. Due to the geometric
and material constraints of any foreseeable optical plat-
form, it is unrealistic to suggest that a LOQC device
must create and store the full cluster state lattice needed
for a quantum computation at any one time. Instead, we
consider a “windowed” architecture whereby the device
is continually being created and measured, storing only
a finite slice of the full resource state at any one time.
As such, current architectural methodssuch as identifying
MBQC paths for single-qubit channelsmust be extended
to a windowed architecture.

2 Presented work

Our submitted work [11] considers this architectural
challenge. Specifically, we ask: “what is the small-
est computational window required to produce a single-
qubit channel from a percolated cluster state lattice,
and what are the associated architectural trade-offs.”
Within the described LOQC architecture, this question
maps to the challenge of finding paths through a maze
given only a fixed “lookahead” and with no backtrack-
ing. By considering a simple algorithm for “limited-
lookahead pathfinding” (LLP), we show that finite win-
dow lengths are sufficient to produce long-range, low-
loss single-qubit channels. Moreover, we show that LLP
can operate with surprisingly small window lengths even
for lattices produced with entangling gate success rates
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only marginally above the percolation threshold. Fur-
thermore, we demonstrate that at such window lengths,
near-perfect LLP is achieved without any need for more
sophisticated pathfinding “strategies”. This is especially
pertinent to LOQC as photonic qubits must be stored in
loss-inducing delay-lines during all classical co-processes,
and therefore any reductions in co-processor require-
ments may lead to significant reductions in qubit loss
rates.

Our work also identifies heuristics techniques for sim-
ulating the performance LLP. By showing that easy-
to-calculate percolation statistics can be used to ap-
proximate computationally expensive LLP, we provide
a method for fast simulation of novel architectures; as
architectural models become increasingly complex, such
simulation heuristics will be crucial to rapid development
and innovation within the field.

Finally, we summarise by providing a number of key
implications this work has for LOQC and identifying di-
rections for further study. Firstly, this work indicates
that a device with fixed-depth can still allow for success-
ful LOQC, providing a significant insight into the ulti-
mate form of a physical LOQC device. Secondly, this
work elucidates key resource trade-offs inherent to mod-
ern LOQC architectures. Our work shows that cluster
states lattices must be produced with connectivity ex-
ceeding the percolation threshold, and that large reduc-
tions in resource costs occur when this rate is further in-
creased. Lastly, the work provides a positive outlook for
the maturation of LOQC from purely theoretical models
to experimentally viable architectures.
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Abstract. The quantum Rabi model describes the most fundamental light-matter interaction of the
dipolar coupling between a two-level system and a bosonic field mode. An analytical solution of the
quantum Rabi model covering all coupling regimes such as the weak, the ultrastrong, and the deep-strong
coupling regimes has only recently been proposed. Moreover, several physical systems have been pursued
to implement the perturbative regime of ultrastrong coupling. However, it is still challenging to reach the
dynamics of the nonperturbative ultrastrong coupling regime and the deep-strong coupling regime, which
would show intriguing physical phenomena beyond intuitive features of the quantum Rabi model. Here,
we implement the quantum simulation of the paradigmatic quantum Rabi model in a trapped-ion system,
reproducing key features of all parameter regimes from the weak to the deep-strong coupling regimes.

Keywords: Quantum Rabi model, Jaynes-Cummings coupling, Ultrastrong coupling, Deep-Strong cou-
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The quantum Rabi model (QRM) describes the most
fundamental light-matter interaction involving quantized
light and quantized matter [1, 2], which is associated to
the dipolar coupling between a two-level system and a
bosonic field mode. The Hamiltonian of the QRM is
written as

ĤQRM (φ) =
ω0

2
σ̂z + ωmâ

+â+ ig(σ̂+ − σ̂−)(â+ â+), (1)

where ω0, ωm, and g are frequencies of the qubit, the
mode, and the coupling strength. Although it plays a
central role in the dynamics of a collection of quantum
optics and condensed matter systems [3], such as cav-
ity quantum electrodynamics (CQED), quantum dots,
trapped ions, or circuit QED (cQED), an analytical solu-
tion of the QRM in all coupling regimes has only recent-
ly been proposed [4]. Typically, the coupling strength is
much weaker than the mode frequency, which allows one
to perform the rotating-wave approximation that leads
to the Jaynes-Cummings (JC) model. When the inter-
action strength grows to a meaningful fraction or larger
than the mode frequency, the ultrastrong coupling (USC)
or the deep-strong coupling (DSC) regime is reached, re-
spectively, where the rotating-wave approximation is no
longer valid. Recently, several systems have been able to
experimentally reach the perturbative USC regime of the
QRM. However, it is still challenging to reach the nonper-
turbative USC regime, or DSC regime, which would show
intriguing physical phenomena beyond intuitive features
of the QRM.

Here, following Ref. [5], we implement the QRM and
we experimentally simulate the dynamics of the model
in all parameter regimes from the weak and USC to the
DSC regime in a single trapped ion system, which is con-
sidered as one of the prominent platforms for building
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quantum simulators. In the experimental quantum sim-
ulation, a single atomic ion with the two internal levels
of a qubit is confined in a radio-frequency Paul trap and
its motional quantum state is cooled down to the ground
state by standard sideband cooling. The general cou-
pling of the QRM between the internal level and one of
the radial motional modes is realized by a laser field with
two frequencies in the resolved-sideband limit shown in
Ref. [5]. By taking a suitable interaction picture associ-
ated with two inhomogeneously detuned laser beams, we
address all parameter regimes of the QRM [5].

In the experiment, we have simulated various features
of the QRM from the dynamics, spectrum, and ground
states in all parameter regimes. Firstly, we simulate the
dynamics of the QRM from the weak-coupling regime vi-
a USC regime to the DSC regime. Figure 1 shows the
spin dynamics under the QRM with respect to the ratio
g/ωm equal to 0.04, 0.6, and 1.2, respectively, where we
can clearly observe collapses and partial revivals during
the system evolution. In particular, in the DSC regime,
we observe the phonon bounce forth and back within the
same parity chains. Secondly, we measure the spectrum
of the QRM up to the USC regime. Finally, we adiabat-
ically prepare the ground state of the QRM in the DSC
regime and measure its corresponding phonon distribu-
tion for different spin states as shown in Fig. 2, which
reveals a complex entangled structure between the spin
and the bosonic field. We also measure the fidelity of
the state by adiabatically bringing it back to the original
initial state and detecting the population in the original
ground state.

Summarizing, we fully simulate the QRM in a trapped
ion system. The present ideas are straightforwardly gen-
eralizable to many ions, opening the possibility of go-
ing from the more natural Tavis-Cummings model to the
Dicke model.
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Figure 1: Spin dynamics under the QRM in different coupling regimes. (a) For the ratio g/ωm = 0.04, the
system behaves as the JC model in the weak coupling regime. (b) For the ratio g/ωm = 0.6, namely, the ultrastrong
coupling regime, we can clearly observe collapse and revival signatures. (c) For the ratio g/ωm = 1.2, the collapse is
fast and the revival is only partial. For all the panels above, the theoretical curve is the solid line, while the points
with error bars are the experiment results.
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Figure 2: Adiabatical ground-state preparation to the deep-strong coupling regime g/ωm = 1.2. Panel (a)
shows the spin dynamical evolution during the adiabatic preparation of the ground state for the DSC regime. Panels
(b) and (c) depict the phonon distributions of the prepared ground state with respect to the spin down and spin up
part, respectively. All the experimental results are plotted with error bars, while the simulation results are solid curve
(panel (a)) or empty bars (panels (b) and (c)).
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Holonomic surface codes for fault-tolerant quantum computation 
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Abstract: Surface codes can protect quantum information stored in qubits from local errors as long as 
the per-operation error rate is below a certain threshold. Imperfect control is a main source of errors 
that make the threshold a challenging task. By harnessing quantum holonomy, here we propose a 
method to suppress the errors caused by imperfect control in surface codes. In our scheme, the 
holonomic gates are built via auxiliary qubits rather than the auxiliary levels in multi-level systems used 
in conventional holonomic quantum computation. The key advantage of our scheme is that the auxiliary 
qubits are in their ground state before and after each gate operation, so they are not involved in the 
operation cycles of surface codes. This provides a new and advantageous way to implement surface 
codes for fault-tolerant quantum computation. 



Group theory and non-local games 

 

William Slofstra 
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Abstract: How much entanglement is required to play a non-local game optimally or near-optimally? 
This question has proven very difficult to answer in general. Recently we have found non-local games 
which cannot be played optimally with any finite amount of entanglement. In this talk, I will explain 
how this result arises out of a connection between linear system non-local games and group theory. This 
connection opens up a number of avenues for further research in entanglement requirements, self-
testing, and complexity. 



Classically testing the exponential nature of Hilbert space 

Henry Yuen 
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Abstract: As we create more sophisticated quantum systems (including, one day, quantum computers) 
it becomes imperative to characterize just how much “quantumness” is present in them. However, the 
exponentiality of Hilbert space, the very feature of Nature that we are trying to exploit in these systems, 
also poses a significant barrier to verifying quantum behavior. Bell tests offer a powerful solution to 
this challenge. By performing simple statistical tests on measurement outcomes of spatially separated 
systems, we can certify not only the presence of quantum behavior, in certain cases we can even 
characterize the quantum state of the systems, as well as the measurement operators. In recent years, 
Bell tests (also known as non-local games) have found widespread usage in quantum information 
processing, from randomness testing protocols to delegated quantum computation.In this talk, I will 
survey the recent progress in using Bell tests to certify high dimensional entanglement --- a setting 
where the dimensionality is an asymptotically growing parameter. I will also describe some new results 
on testing high dimensional entanglement in the presence of noise (joint work with Rotem Arnon-
Friedman). These tests establish an important bridge connecting the classical world we live in to the 
exponentially vast Hilbert space of quantum states. 
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Abstract. We generalize the fidelity function for multi-round quantum strategies, which we call the
strategy fidelity. We provide many interesting properties of the strategy fidelity, including a Fuchs-van de
Graaf relationship with the strategy norm. And we illustrate an operational interpretation of the strategy
fidelity in the spirit of Uhlmann’s Theorem and discuss its application to the security analysis of quantum
protocols for interactive cryptographic tasks such as bit-commitment and oblivious string transfer. Our
analysis is very general in the sense that the actions of the protocol need not be fully specified, which is in
stark contrast to most other security proofs.

Keywords: Quantum strategies, cryptography, fidelity, semidefinite programming

1 Setting and Definitions

In this paper we consider multiple-round interactions
between two parties involving the exchange of quantum
information. There is a natural asymmetry between
the parties as only one of the parties can send the first
message or receive the final message. Since we are not
concerned about optimizing the number of messages ex-
changed, without loss of generality both of these tasks
are done by the same party, which, for convenience, we
call Bob. Let us call the other party Alice. The inter-
action between Alice and Bob decomposes naturally into
a finite number r of rounds (see Figure 1). Such inter-
actions are conveniently described by the formalism of
quantum strategies introduced in Ref. [3].

Definition 1 (Pure strategy and pure co-strategy)
Let r ≥ 1 and let X1, . . . ,Xr,Y1, . . . ,Yr,Zr,Wr be com-
plex Euclidean spaces and, for notational convenience,
let Xr+1 := C and Z0 := C. An r-round pure strat-
egy Ã having input spaces X1, . . . ,Xr, output spaces
Y1, . . . ,Yr, and final memory space Zr, consists of:

1. complex Euclidean spaces Z1, . . . ,Zr−1, called in-
termediate memory spaces, and

2. an r-tuple of linear isometries (A1, . . . , Ar) of the
form Ai : Xi ⊗Zi−1 → Yi ⊗Zi.

An r-round pure co-strategy having input spaces
Y1, . . . ,Yr, output spaces X1, . . . ,Xr, and final memory
space Wr is defined similarly (see Figure 1 for an illus-
tration).

A pure strategy and a pure co-strategy are said to be
compatible when the input spaces of one are the output
spaces of the other, and vice versa. The final state of the
interaction between Ã and B̃ is denoted by

|ψ(Ã, B̃)〉 := (IZr
⊗Br)(Ar ⊗ IWr−1

) · · ·
· · · (IZ1

⊗B1)(A1 ⊗ IW0
)|β〉 ∈ Zr ⊗Wr.
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For compatible pure strategy Ã and pure co-strategy B̃,
let

ρA(B̃) := TrZr

(
|ψ(Ã, B̃)〉〈ψ(Ã, B̃)|

)
(1)

denote the reduced state of the final memory space Wr

of B̃ after the interaction between Ã and B̃.
Recall that the fidelity F(P,Q) between two positive

semidefinite operators P and Q is defined as

F(P,Q) :=
∥∥∥√P√Q∥∥∥

Tr
.

When applied to density operators ρ, ξ, the fidelity func-
tion F(ρ, ξ) is a useful distance measure for quantum
states. We would like to construct a generalization of
the fidelity function that can serve as a useful distance
measure for quantum strategies.

Definition 2 (Strategy fidelity) For any r-round
strategies S and T having the same input and output
spaces, the strategy fidelity is defined as

Fr(S, T ) := min
B

F(ρS(B̃), ρT (B̃))

where the minimization is over all compatible co-
strategies B and the states ρS(B̃), ρT (B̃) are as defined
in (1).

2 Properties of the Strategy Fidelity

We now list several properties of the strategy fidelity
which we prove in the paper.

• (Fuchs-van de Graaf inequalities for strategies) For
any r-round strategies S and T , it holds that

1− 1

2
‖S − T ‖�r ≤ Fr(S, T ) ≤

√
1− 1

4
‖S − T ‖2�r.

• (Symmetry) For any r-round strategies S and T , it
holds that Fr(S, T ) = Fr(T, S).
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Figure 1: An r-round interaction between a pure strategy of Alice (the linear isometries above the dashed line) and
a pure co-strategy of Bob (the linear isometries below the dashed line). Arrows crossing the dashed line represent
messages exchanged between the parties, while horizontal arrows represent private memory.

• (Joint concavity) For any r-round strategies
S1, . . . , Sn and T 1, . . . , Tn, and nonnegative scalars
λ1, . . . , λn satisfying

∑n
i=1 λi = 1, we have

Fr

(
n∑

i=1

λiS
i,

n∑
i=1

λiT
i

)
≥

n∑
i=1

λi Fr

(
Si, T i

)
.

• (Bounds on the strategy fidelity) For any r-round
strategies S and T , we have 0 ≤ Fr(S, T ) ≤ 1.
Moreover, Fr(S, T ) = 1 if and only if S = T and
Fr(S, T ) = 0 if and only if S and T are perfectly
distinguishable.

• (Monotonicity) For all physically realizable maps
Υ from r-round strategies to r′-round strategies, it
holds that

Fr′(Υ(S),Υ(T )) ≥ Fr(S, T ).

• (Strategy generalization of Uhlmann’s Theorem)
Let S, T be r-round strategies and let S̃, T̃ be any
purifications of S, T . Let ψ(S̃, B̃), ψ(T̃ , B̃) be the
density operators corresponding, respectively, to
states |ψ(S̃, B̃)〉, |ψ(T̃ , B̃)〉 in Definition 1. We have

Fr(S, T )2 = max
Ξ

min
B〈

(S̃, B̃),
(
Ξ⊗ IL(Wr)

) (
(T̃ , B̃)

)〉
where the minimum is over all r-round pure co-
strategies B̃ and the maximum is over all quantum
channels Ξ acting on Zr alone.

• (Semidefinite programming formulation of the
strategy fidelity) This is detailed in the paper.

3 Applications to Cryptography

In the paper we discuss how the strategy version of the
Fuchs-van de Graaf inequalities is crucial to our cryp-
tographic applications. In particular, we show the im-
possibility of ideal quantum protocols for interactive bit-
commitment and oblivious string transfer.

We define bit-commitment below, and include the def-
inition of oblivious transfer in the paper.

Definition 3 In bit-commitment, we require Alice and
Bob to interact over two communication stages:

• Commit Phase: Alice chooses a uniformly random
bit a and interacts with Bob using an r-round pure
strategy Ãa.

• Reveal Phase: Alice sends a to Bob and continues
her interaction with him (so that Bob can test if she
has cheated).

• Cheat Detection: Bob, knowing which pure strategy
B̃ he has used, measures to check if the final state is
consistent with Alice’s pure strategy Ãa. He aborts
the protocol if this measurement detects the final
state is not consistent with Alice’s pure strategy Ãa.
If Alice is honest, he never aborts.

Protocols are designed with the intention to achieve the
following two important properties of interest:

• Binding: Alice cannot change her mind after the
Commit Phase and reveal the other value of a
(without being detected by Bob).

• Hiding: Bob cannot learn Alice’s bit a before she
reveals it during the Reveal Phase.

Finding a protocol with perfect binding and hiding
properties is known to be impossible [6, 4, 5]. However,
these security proofs rely on an assumption that we do
not make, that Bob’s actions are specified beforehand
(see the paper for details).

We define the cheating probabilities of Alice and Bob
as follows:

Bob: The maximum probability with which a dishon-
est Bob can learn an honest Alice’s committed
bit a ∈ {0, 1} after the Commit Phase.

Alice: The maximum probability Alice can change her
commitment from 0 to 1 (or from 1 to 0) before
the Reveal Phase.

Theorem 4 In any interactive quantum protocol for bit-
commitment, we have that Alice or Bob can cheat with

probability at least 9−
√

17
8 ≈ 61%.
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Note that this is a similar bound to the one obtained
in [2] for the interactive setting and the same as in [1] in
the channel setting.

We also derive a lower bound on oblivious transfer,
given below.

Theorem 5 In any interactive quantum protocol for 1-
out-of-2 oblivious string transfer, we have that Alice or

Bob can cheat with probability at least 9−
√

17
8 ≈ 61%.
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Ensembles of quantum states or unitaries that reproduce the first α moments of completely
random states or unitaries (drawn from the Haar measure) are called α designs. Entropic
functions of the α-th power of a density operator are called α entropies (e.g. Rényi and
Tsallis). We reveal strong connections between designs and generalized (in particular Rényi)
entropies of the same order, by showing that the Rényi-α entanglement entropies averaged
over α designs are generically almost maximal. Moreover, we find that the min entanglement
entropies become maximal for designs of an order logarithmic in the dimension of the sys-
tem, which implies that they are indistinguishable from Haar-random by the entanglement
spectrum.

The entanglement properties of random quantum states or dynamics play important roles in
various disciplines of physics, not only restricted to quantum information. For example, the notion
of ‘scrambling’, which originates from the study of black holes and quantum gravity [1–3], describes
the phenomenon that initially localized quantum information spreads over the entire system via
global entanglement, so that the state of the system is effectively randomized and the information
is lost from the perspective of any local observer. The relation between the degree of entanglement
and randomness also plays key roles in many other important fields, such as quantum chaos [4–6],
quantum thermalization and many-body localization [7], and quantum data hiding [8, 9].

It has long been noticed that a random state is typically highly entangled [10, 11]. This obser-
vation is formalized by the Page’s theorem [12–15], which states that the average von Neumann
entanglement entropy of a completely random state (drawn from the Haar measure) is very close
to maximum. Similar observations for the entanglement in random unitary channels are recently
made in Ref. [6]. However, such results are not tight from a complexity point of view. Designs
are pseudorandom distributions of quantum states or unitaries that mimic the Haar measure up to
certain moments. The complexity of Haar randomness is exponential, that is, the number of local
gates and random bits needed to generate a Haar random state grows exponentially in the number
of degrees of freedom [16]. Nevertheless, a 2-design, which can be efficiently implemented [17–20],
is sufficient to attain the Page-like property. Indeed, the conventional von Neumann entropy is
insensitive to a lot of detailed information in the spectrum. The entanglement entropies given by
generalized entropies that depend on higher powers of the reduced density operator are needed to
distinguish the entanglement spectra of ensembles of different complexities.

This work mainly studies generalized (most importantly Rényi) entanglement entropies av-
eraged over state and unitary designs, so as to obtain the strongest entanglement properties of
pseudorandom ensembles (designs).

Key definitions. Designs can be defined in several equivalent ways. We directly use the
following one by polynomials: Let Hom(t,t)(Cd) be the space of polynomials homogeneous of degree

t both in the coordinates of vectors in Cd and in their complex conjugates. An ensemble ν of pure
state vectors in dimension d is a (complex projective) t-design if Eν p(ψ) =

∫
p(ψ)dψ for all

p ∈ Hom(t,t)(Cd), where the integral is taken with respect to the (normalized) uniform measure

on the complex unit sphere in Cd. Unitary designs are defined similarly, where p ∈ Hom(t,t)(U(d))
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and the integral is taken over the Haar measure on U(d).
The defining element of α-entropies of state ρ is the term tr{ρα}. We mostly focus on Rényi

entropies. The Rényi-α entropy of a state ρ is given by S
(α)
R (ρ) = 1

1−α log tr{ρα}. The α → ∞
limit Smin(ρ) = − log ‖ρ‖ = − log λmax(ρ) is known as the min entropy.

Main results. We first find that Rényi-α entanglement entropy of a state or unitary sampled
from an α-design is generically maximal. The results represent formal connections between the
order of entanglement entropies and the order of designs. We mostly employ tools from random
matrix theory, representation theory and Weingarten calculus to calculate the Haar integrals of
generalized entanglement entropies, which provide lower bounds to the design-averaged values.
Note that the entanglement properties of unitaries are studied via the Choi states. See [6] for
motivations.

In the limit of large dimension, our results imply that the Rényi-α entanglement entropy between
subsystems of equal size (for simplicity) averaged over α-designs is nearly maximal:

Theorem 1. Consider bipartite systems on Hilbert space HA ⊗ HB, where HA and HB have
dimensions dA and dB respectively. Let να be a projective α-design. Consider equal partitions
dA = dB. As dA →∞,

Eνα S
(α)
R (ρA) ≥ log dA −

log Catα
α− 1

+O(d−2A ) ≥ log dA −O(1), (1)

where Catα is the α-th Catalan number, satisfying log Catα
α−1 ≤ 2 for all α ≥ 2. Also consider a

unitary U =
∑

ij Uij |i〉〈j| on a d-dimensional Hilbert space. Let µα be a unitary α-design. The

dual Choi state is given by |U〉 = 1√
d

∑
ji |i〉in|j〉out. Consider equal partitions of the input and

output registers. As d→∞,

Eµα S
(α)
R (ρAC) ≥ log d− log Catα

α− 1
+O(d−1) ≥ log d−O(1). (2)

That is, the average Rényi-α entanglement entropy of α-designs along all valid cuts is only
smaller than the maximum value log d by at most a constant. It implies that a state/unitary
drawn from an α-design is very likely to have almost maximal Rényi-α entanglement entropy.

We also provide explicit bounds in finite dimension:

Theorem 2. Let να be a projective α-design. Let q := α3/(32d2B) < 1, h(q) := 1 + 2q/[3(1 − q)].
For all dA, dB, 0 ≤ α ≤ ∞,

Eνα S
(α)
R (ρA) ≥ log dA −

2α− 3
2 logα+ log h(q)− 1

2 log π

α− 1
≥ log dA − 2. (3)

When dA < dB, the result can be improved as follows:

Eνα S
(α)
R (ρA) ≥ log dA − 2 log

(
1 +

√
dA
dB

)
− log c ≥ log dA − 2

√
dA
dB
− log c, (4)

where c = 1 if H is real and c = 2 if H is complex.
Let µα be a unitary α-design. Suppose d >

√
6k7/4, dA ≤ dB. Then

Eµα S
(α)
R (ρAC) ≥ log d− log Catα

α− 1
−

log
[
aαh(q)

8

(
7 + cosh 2α(α−1)

d

)]
α− 1

, (5)

where aα := 1

1− 6α7/2

d2

.
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Now we focus on the extreme case of the Rényi family—the min entropy. It is the strongest
entropy in the sense that, by definition, it is sensitive to any nonuniformity in the spectrum. The
maximality of min entropy indicates that the spectrum is uniform everywhere (completely random).
We find that, for states/unitaries in dimension d, designs of order O(log d) already exhibit nearly
maximal average min entanglement entropy:

Theorem 3. Let να be a projective α-design, where α = d(log dA)/ae ≤ (16d2B)1/3 with 0 < a ≤ 1.
Then

Eνα Smin(ρA) ≥ log dA − 2− a. (6)

In particular, Eνα Smin(ρA) ≥ log dA − 3 if α = dlog dAe.
Let µα be a unitary α-design, where 1 ≤ α = dlog d/ae ≤

√
d/2 and a > 0; then

Eνα Smin(ρAC) ≥ log d− 2− a. (7)

In particular, Eνα Smin(ρAC) ≥ log d− 3 if α ≥ dlog de.

This result actually implies that, in terms of entanglement, designs of order only up to O(log d)
can behave “pseudorandomly”. Designs of higher orders have entanglement properties that are
indistinguishable from Haar.

We also provide a result that separates different orders of Rényi entanglement entropies. We
show that

Theorem 4. There exists 2-designs such that the difference between average Rényi-α entanglement
entropies from the maximum is unbounded for α > 2.

That is, the Rényi-2 entanglement entropy is nearly maximal by previous results, but the α > 2
Rényi entanglement entropies are far from maximal, so we can distinguish some 2-designs from
higher order designs by Rényi-2. We hope to extend this result to higher orders and unitary
channels in the future.

Discussions. Our results reveal fundamental connections between the order of generalized en-
tanglement entropies and the order of randomness. The results motivate a definition of “scrambling
complexities” in terms of degree of randomness by Rényi entanglement entropies: if the Rényi-α
entanglement entropy is nearly maximal between generic partitions, then the system behaves like
α-designs in terms of entanglement, or α-designs can model the entanglement properties of this sys-
tem. For example, the generic maximality of min entanglement entropy indicates that the system
looks completely random (and the local information is completely lost) to any local observers,which
we call “max-scrambling”. Then by the log moment result, it is reasonable to conjecture that the
minimum time for a physical system of n degrees of freedom to max-scramble scales as Õ(n) (fast
max-scrambling conjecture). It would be interesting to further study the dynamics of Rényi entan-
glement entropies in scrambling systems. It would also be interesting to consider the connections
between scrambling complexities and computational power of certain physical systems.
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No-Hypersignaling Principle
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Abstract. A paramount topic in quantum foundations, rooted in the study of the EPR paradox and Bell
inequalities, is that of characterizing quantum theory in terms of the space-like correlations it allows. Here
we show that to focus only on space-like correlations is not enough: we explicitly construct a toy model
theory that, while not contradicting classical and quantum theories at the level of space-like correlations,
still displays an anomalous behavior in its time-like correlations. We call this anomaly, quantified in terms
of a specific communication game, the “hypersignaling” phenomena. We hence conclude that the “principle
of quantumness,” if it exists, cannot be found in space-like correlations alone: nontrivial constraints need
to be imposed also on time-like correlations, in order to exclude hypersignaling theories.

Keywords: no-hypersignaling principle

This presentation is based on Ref. [1].
One of the main tenets in modern physics is that if

two space-like separated events are correlated, then such
correlations must not carry any information [2]. This as-
sumption, constituting the so-called no-signaling princi-
ple, was the starting point used by Bell [3] to quantify and
compare space-like correlations of different theories on
even grounds—an idea of vital importance for his argu-
ment about the EPR paradox [4] and the derivation of his
famous inequality. Subsequently, due to seminal works by
Tsirelson (Cirel’son) [5] and Popescu and Rohrlich [6],
it became clear that the no-signaling principle alone is
not enough to characterize “physical” space-like corre-
lations: non-signaling space-like correlations allowed by
quantum theory form a strict subset within the set of all
non-signaling correlations [7].

A natural question is then to try to identify additional
principles that, together with the no-signaling principle,
may be able to rule out all super-quantum non-signaling
correlations at once. Various ideas have been proposed,
ranging from complexity theory, e.g. the collapse of the
complexity tower [8] to information theory, e.g. the infor-
mation causality principle [9]. However, none of these has
been able to characterize the quantum/super-quantum
boundary in full. In particular, an outstanding open
question is whether quantum theory can be character-
ized in terms of the space-like correlations it allows [7].

In this presentation, we show that this cannot be done:
any approach to characterize quantum theory based only
on space-like correlations is necessarily incomplete un-
less it also takes into account time-like correlations as
well. The characterization of time-like correlations is
part of the program [10] of general probabilistic theo-
ries aimed at reconstructing operational features of quan-
tum theory. Our approach, which is completely unre-
lated to the study of temporal correlations à la Leggett–
Garg [11, 12, 13, 14], considers the elementary resource

∗cqtmda@nus.edu.sg

of noiseless communication and the input/output corre-
lations that can be so established. By analogy with the
no-signaling principle, we operationally introduce what
we call the “no-hypersignaling principle,” which roughly
states that any input/output correlation that can be ob-
tained by transmitting a composite system should also
be obtainable by independently transmitting its con-
stituents. As obvious as this may look (it is indeed so
in classical and quantum theories), the fact that quan-
tum theory obeys the no-hypersignaling principle (as we
define it) is in fact a highly nontrivial consequence of a
recent result by Frenkel and Weiner [15]. We also notice
that the no-hypersignaling principle is not related with
phenomena such as superadditivity of capacities of noisy
quantum channels [16].

We then construct a toy model theory, that we refer
to as the HS model, which violates the no-hypersignaling
principle, but only possesses classical space-like correla-
tions. As such, this theory (and other analogous the-
ories) would go undetected in any test involving only
space-like correlations, despite displaying the anomalous
effect of hypersignaling. On the technical side, the HS
model is closely related to the standard implementa-
tion [17, 18, 19] of Popescu–Rohrlich [6] super-quantum
non-signaling space-like correlations (or “PR-boxes,” for
short). However, while the PR-box model theory relies on
entangled states to outperform quantum space-like corre-
lations, our HS model relies on entangled measurements
to outperform quantum time-like correlations. Nonethe-
less, since in our model only separable states are avail-
able, no super-quantum space-like correlation can be ob-
tained. Therefore, while the standard PR-box model the-
ory can be ruled out on the basis of its super-quantum
space-like correlations, the HS model can only be ruled
out by the principle of no-hypersignaling.

It is now important to understand how hypersignaling
is logically related with other possible “anomalies,” such
as the violation of local tomography or the violation of
information causality. If any hypersignaling theory neces-
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Figure 1: No-Hypersignaling vs Information
Causality and vs Local Tomography. Left: the di-
agram compares theories satisfying information causal-
ity (yellow set) and the no-hypersignaling principle (blue
set): CT (classical theory), QT (quantum theory), PR
Model (the toy model theory for PR-boxes), and HS
Model (the locally classical, hypersignaling theory con-
structed in this paper). Right: comparison between lo-
cal tomography and no-hypersignaling as two features of
general probabilistic theories. Examples of theories that
are non-hypersignaling but violate local tomography are
provided by real quantum theory (RQT) and fermionic
quantum theory (FQT). The HS Model is locally tomo-
graphic but hypersignaling. Finally CT, QT, and the
PR Model lie in the intersection, as they obey both local
tomography and the no-hypersignaling principle.

sarily violates also other principles concerning space-like
correlations, then one could rightly argue that the phe-
nomenon of hypersignaling might be ruled out just by
looking at space-like correlations. However, the point of
this paper is to argue the opposite: that time-like corre-
lations require a new independent principle.

The fact that hypersignaling and information causality
are independent is easy to see. As a necessary condition
for the violation of information causality is the presence
of entangled states, and since the HS Model only con-
tains separable states, then the HS Model necessarily
obeys information causality, despite allowing hypersig-
naling. Vice versa, we know that the PR Model violates
information causality but, since it only allows separable
measurements, it cannot display any form of hypersig-
naling. The situation is depicted in Left Fig. 1.

We now turn to the condition of local tomography [20].
From the explicit expression of the pure states of the HS
Model, it is possible to verify that the elementary system
S has linear dimension `(S) = 3 and that the bipartite
system S⊗S has linear dimension `(S⊗S) = 9 = `(S)2.
Thus the HS Model is locally tomographic, despite being
hypersignaling. Vice versa, there exist consistent the-
ories that obey the no-hypersignaling principle and yet
are not locally tomographic. As an example, let us con-
sider restrictions (for example, superselections) of quan-
tum theory, as introduced in Ref. [21]. Since such theo-
ries are restrictions of quantum theory, they cannot ex-
hibit hypersignaling: if they did, then quantum theory
would also exhibit hypersignaling, which is not true. For
example, real quantum theory [20] and fermionic quan-
tum theory [21] are two possible such restricted quantum
theories. However, as proved in Refs. [21, 22, 20], both
theories are not locally tomographic. The situation is

summarized in Right Fig. 1.
We also notice that the no-hypersignaling principle can

be violated by theories that do not show superadditivity
of classical capacities. In Ref. [23] the authors show that
a locally tomographic theory cannot feature superaddi-
tivity effects of classical capacities. Thus hypersignaling
does not necessarily imply superadditivity of classical ca-
pacities, because the HS Model is locally tomographic.

One interesting question arises from noting that while
the HS Model has classical space-like correlations and
super-quantum time-like correlations, the PR Model has
super-quantum space-like correlations and classical time-
like correlations. Could it be that a theory can be super
quantum only with respect to either space-like or time-
like correlations, but not both? Could quantum theory
have the unique distinction of “balancing” between these
two extrema? It turns out that the answer is no, and
follows from the example of the Hybrid Models derived
in Ref. [1]. In order to obtain the hypersignaling correla-
tion in Ref. [1] we need seven factorized states and seven
effects among which only one is not factorized. Since
such an entangled effect is exactly one of those admitted
in the Hybrid Models, we know that the same hypersig-
naling correlation can be surely obtained in those models
too. Moreover, since in the Hybrid Models two entangled
states are also available, super-quantum spacelike corre-
lations can also be created. Hence, the Hybrid Models
have the ability to create both space-like and time-like
super-quantum correlations.

Finally, we compare the no-hypersignaling principle
with two recently proposed and related principles, that
is, dimension mismatch [24] and information content [25].
Both such principles rule out superquantum theories on
the basis of the correlations achievable by a single-partite
system, in contrast with the no-hypersignaling principle
which requires composite systems. However, they achieve
this by considering a more complicated setup, where the
choice of the information to be decoded is not fixed but
depends on an additional input (a second question) to
the receiver. Moreover, both the dimension mismatch
principle and the information content principle rely on
a certain degree of arbitrariness in the criteria chosen
to benchmark operational theories: dimension mismatch
is defined with respect to an arbitrarily chosen reference
task, i.e. pairwise state discrimination, while information
content is defined with respect to an arbitrarily chosen
information measure, i.e. mutual information. This is in
contrast with the no-hypersignaling principle proposed
here, where the full set of input-output correlations is
considered without the need to invoke any particular dis-
crimination task or information measure. Finally, we no-
tice that dimension mismatch, to be meaningful, requires
the existence of perfectly distinguishable states, which is
not guaranteed without the so-called “no-restriction as-
sumption.”
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Abstract. In this work we consider a quantum generalization of the task considered by Slepian and
Wolf [1] regarding distributed source compression. In our task Alice, Bob, Charlie and Referee share
a joint pure state. Alice and Bob wish to send a part of their respective systems to Charlie without
collaborating with each other. We give achievability bounds for this task in the one-shot setting and
provide asymptotic analysis in the case when there is no side information with Charlie. Our result implies
the result of Abeyesinghe, Devetak, Hayden and Winter in [2] who studied a special case of this problem.
As another special case wherein Bob holds trivial registers, we recover the result of Devetak and Yard [3]
regarding quantum state redistribution.

Keywords: Coherent quantum protocols, Quantum Slepian Wolf, Quantum side information, Quantum
information theory

In information theory, one of the most fundamental
problems is the task of source-compression. The answer
to this problem was given by Shannon in his celebrated
work [4]. Slepian and Wolf, in their work [1], studied this
task in the distributed network setting, which consists of
three parties Alice (X1, X2 . . . Xn ), Bob (Y1, Y2 . . . Yn)
and Charlie, where (X1, Y1), (X2, Y2), . . . (Xn, Yn) are
pairs of independent and identically distributed corre-
lated random variables. The goal here is that Alice
needs to communicate (X1, X2, . . . Xn) to Charlie and
similarly, Bob needs to communicate (Y1, Y2, . . . Yn) to
Charlie. Furthermore, Alice and Bob do not collabo-
rate. From Shannon’s result, one can easily see that the
amount of total communication sufficient to accomplish
this task is nH(X)+nH(Y ). However, the surprising fea-
ture of the result of Slepian and Wolf is that the amount
of total communication only needs to be nH(XY ). Fur-
thermore, their result implies that there is a trade-off on
the amount of communication between (Alice, Charlie)
and (Bob, Charlie).

The quantum version of this problem was studied by
Abeyesinghe, Devetak, Hayden and Winter in [2]. In
this setting, there are four parties, Alice (M), Bob (N),
Charlie and Referee (R), where Referee serves as a puri-
fying system for Alice and Bob. The goal is that Alice
needs to communicate the register M to Charlie and Bob
needs to communicate the register N to Charlie, such
that the final quantum state between Referee and Char-
lie is close to the original pure state between Referee,
Alice and Bob. The work [2] studied above task in the
asymptotic and i.i.d setting. The authors introduced a
protocol termed Fully Quantum Slepian-Wolf and com-
bined it with Schumacher’s compression [5] (using the
notion of time-sharing) to obtain a rate pair.

The emerging framework of one-shot information the-
ory is providing a new perspective on data compression
and channel coding and is also relevant in the practical
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scenarios. This framework also provides insights into the
conceptual details of information theoretic protocols, as
the notational complications arising due to many copies
of the state are no longer present (although we note
that asymptotic and i.i.d setting also has its own con-
veniences). One-shot information theory also has found
applications in both classical communication complexity
[6, 7] and quantum communication complexity [8]. Many
quantum tasks have been formulated in their one-shot
setting, such as quantum state merging ([9, 10], origi-
nally introduced in [11]) and quantum state redistribu-
tion ([12, 13, 14], originally introduced in [3, 15]).

Given the importance of one-shot information theory,
in this work we consider the one-shot version of the prob-
lem studied in [2]. To capture a more general scenario,
along with the registers M,N we also allow Alice, Bob
and Charlie to have additional registers A,B,C respec-
tively. Thus, our setting is as follows, depicted in Figure
1.

Task: Alice (AM), Bob (BN), Charlie (C) and Referee
(R) share a joint pure quantum state. The goal is that
Alice needs to communicate the register M to Charlie
and Bob needs to communicate the register N to Charlie,
such that the final quantum state between Referee (R),
Alice (A), Bob (B) and Charlie (CMN) is close to the
original pure state between the parties. We allow pre-
shared entanglement between (Alice, Charlie) and (Bob,
Charlie) respectively.

This task is a natural generalization of the aforemen-
tioned task and also extends the well studied problem of
quantum state redistribution [3, 15]. A special case when
A is trivial was considered by [16] in which they studied
the trade-off between amount of entanglement consumed
between Alice and Charlie and communication between
Bob and Charlie.
Our Results: Our one shot result is mentioned as Theo-
rem 1 towards the end of this abstract. We emphasize on
two main ingredients: first is that the rate region appears
in terms of max-relative entropy and hypothesis testing
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relative entropy. Second ingredient is that the rate region
is a union of a family of rate regions, each characterized
by a quantum state that is close to original state Ψ and
satisfies some max-relative entropy constraints.

Using this, we are able to obtain the following rate
region in the asymptotic i.i.d setting when C is trivial:

RA→C ≥ 1

2
(I(RAB : M)− I(A : M)) ,

RB→C ≥ 1

2
(I(RAB : N)− I(B : N)) ,

RA→C +RB→C ≥ 1

2

(
I(RAB : M : N)

−I(A : M)− I(B : N)

)
,

where RA→C is the rate of quantum communication
from Alice to Charlie, RB→C is the rate of quantum
communication from Bob to Charlie and all the infor-
mation theoretic quantities calculated above are with
respect to the state ΨRABMN shared between Alice,
Bob and Referee. The quantity I (RAB : M : N) is
the tripartite quantum mutual information, defined as
S(ΨRAB) + S(ΨM ) + S(ΨN )− S(ΨRABMN ), where S(.)
is the von-Neumann entropy.

An immediate consequence of the above result is the
rate pair obtained for the task considered in [2], with
registers A,B being trivial. Moreover, if registers B,N
are trivial in the original task, then the task reduces to
that of quantum state redistribution. In this case, the
result of Theorem 1 also reproduces the bound given in
[3, 15] for quantum state redistribution in asymptotic and
i.i.d. setting.

Techniques: Along with the inherent challenges of
one-shot information theory, an additional challenge for
extending the result of [2] is the absence of the notion
of time sharing in the one-shot case. The idea of time-
sharing is as follows: given two rates R = (R1, R2) and
R′ = (R′

1, R
′
2) at which Alice and Bob can communicate

to Charlie, one can construct a protocol which achieves
the rate αR + (1 − α)R′ by using the first protocol for
the first αn copies and using the second protocol for the
last (1− α)n copies (see [17, Page 534]).

It is clear that this technique cannot extend to the
one-shot setting which considers just one copy of input
state. We overcome the obstacle of time sharing in the
one-shot case by using the technique of convex-split [13]
along with position-based decoding [18]. The convex-split
technique allows one party to prepare a convex combina-
tion of states on the registers of other party, if the first
party holds a purification of the registers of the second
party. The concept of position-based decoding is essen-
tially hypothesis testing on a global state.

Technical contribution of this work resides in two as-
pects. First is that we prove a new version of convex-
split lemma [13, Page 3], which we refer to as tri-partite
convex-split lemma, which requires Charlie to prepare a
convex combination of quantum states shared between
three parties Referee, Alice and Bob. We prove the suf-
ficient conditions which allow Charlie to prepare such

convex combination with small error. Second technical
contribution is in our asymptotic analysis of the one-shot
bounds. It can be seen that the time-sharing technique,
along with the quantum state redistribution protocol of
[3, 15], obtains the asymptotic achievability result men-
tioned above 1. Since our one-shot result has no time-
sharing involved, we provide an explicit analysis of our
bound when there are many independent copies of the
state Ψ shared between the parties, in the case where reg-
ister C is absent. For this, we exploit several properties of
the quantum information spectrum relative entropy (in-
troduced in [19, 20]; the classical information spectrum
approach originated in [21]) to show the existence of a
quantum state that is close to the original state Ψ and
satisfies several max-entropy constraints on the reduced
systems. A special case of this analysis has also appeared
in the context of quantum channel coding for broadcast
channel in our work [18], suggesting a wide applicability
of the techniques developed in the proof.

Following is our main result. Its proof can be found in
the extended version of this work [22].

Theorem 1 Fix ε1, ε2, δ > 0. Let Alice (AM), Bob
(BN), Referee (R) and Charlie (C) share the pure state
|Ψ〉RAMBNC . There exists an entanglement assisted
quantum protocol, with entanglement shared only between
(Alice, Charlie) and (Bob, Charlie), such that at the
end of the protocol, Alice (A), Bob (B), Referee (R)
and Charlie (CMN) share the state Φ′

RAMBNC with the

property that P(Φ′, |Ψ〉〈Ψ|) ≤ ε1 + 5ε2 + 2
√
δ. The

number of qubits that Alice sends to Charlie is RA→C

and that Bob sends to Charlie is RB→C , where the pair
(RA→C , RB→C) lie in the union of the following rate re-
gion: for every Ψ′

RAMBNC ∈ Bε1 (ΨRAMBNC) such that
Ψ′
RAB � 2δΨRAB and states σM , ωN :

RA→C ≥ 1

2

(
Dmax(Ψ′

RABM‖ΨRAB ⊗ σM )

−D
ε22
H (ΨAM‖ΨA ⊗ σM ) + log

1

ε22δ

)
,

RB→C ≥ 1

2

(
Dmax(Ψ′

RABN‖ΨRAB ⊗ ωN )

−D
ε22
H (ΨBN‖ΨB ⊗ ωN ) + log

1

ε22δ

)
,

RA→C +RB→C ≥ 1

2

(
Dmax(Ψ′

RABMN‖ΨRAB ⊗ σM ⊗ ωN )

−D
ε22
H (ΨAM‖ΨA ⊗ σM )

−D
ε22
H (ΨBN‖ΨB ⊗ ωN ) + log

1

ε22δ

)
.

1The extremal points of the rate region are (RA→C , RB→C) =
( 1
2

I (RB : M |NC) , 1
2

I (RAM : N |C)) and (RA→C , RB→C) =

( 1
2

I (RBN : M |C) , 1
2

I (RA : N |MC)). The first can be achieved
by Bob sending N to Charlie using quantum state redistribution,
followed by Alice sending M to Charlie, again using quantum state
redistribution. Second can be achieved in analogous fashion. Any
rate pair can then be achieved by time sharing between these two
protocols.
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Figure 1: The task of a generalized quantum slepian wolf.

Above, P(ρ, σ) is the purified distance between quan-
tum states ρ, σ, Dmax(ρ‖σ) is the max-relative entropy be-
tween quantum states ρ, σ and Bε(ρ) := {σ : P(ρ, σ) ≤ ε}.
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Abstract. The quantum internet holds promise for achieving quantum communication freely between
any clients all over the globe. The most primitive function of the quantum internet is to provide quantum
entanglement or a secret key to two points efficiently, by using intermediate nodes connected by optical
channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum internet protocol,
by generalizing the Takeoka-Guha-Wilde bound to be applicable to any network topology. Our result―
putting a practical but general limitation on the quantum internet―enables us to grasp the potential of
the future quantum internet.

Keywords: quantum internet, Takeoka-Guha-Wilde bound, squashed entanglement

1 Introduction

In the conventional Internet, if a client, Alice, wants to
communicate with another client, Bob, an Internet pro-
tocol determines the path that the data follow to travel
across multiple networks from Alice to Bob. Analogously,
in the future, according to a request for performing quan-
tum communication between Alice and Bob, a quantum
internet [1] protocol will supply the resources―such as
a secret key (secret bits) for the purpose of the uncon-
ditionally secure communication and quantum entangle-
ment (ebits) for the purpose of the quantum teleporta-
tion―to Alice and Bob by utilizing proper intermediate
nodes connected by optical channels―for instance, opti-
cal fibres―with each other.
In this presentation, we present [2] a general, funda-

mental and practical limitation on any two-party quan-
tum communication over any quantum network com-
posed of arbitrary quantum nodes and arbitrary quan-
tum channels connecting the nodes. In particular, we
derive an upper bound on obtainable ebits or secret bits
between arbitrary two clients involved in the quantum
network by using arbitrary combination of the quantum
channels and local operations and classical communica-
tion (LOCC) among the nodes (see Fig. 1 for the detail).
This achievement is notable in the sense that a priori
working out upper bounds on secure key rates and en-
tanglement generation rates for a general quantum inter-
net topology is highly non-trivial because there are many
intermediate nodes, various elements such as quantum
memories and many different protocols such as entangle-
ment generation, entanglement swapping, entanglement
distillation and quantum error correction.

2 Main results

Here, we present the upper bound for the general quan-
tum internet protocol. To obtain our bound, we need to

∗azuma.koji@lab.ntt.co.jp
†mizutani@qi.mp.es.osaka-u.ac.jp
‡hklo@ece.utoronto.ca

define a general paradigm of two-party communication
over the quantum internet (see Fig. 1a). In the quan-
tum internet, there are a variety of quantum channels
connecting nodes, for example, depending on the lengths
of optical channels. This necessitates to generalize the
paradigm [3, 4] of Takeoka et al. for the point-to-point
communication, where it has been enough to treat only
one optical channel between Alice and Bob. For instance,
we need to allow the choice of which channel to use in
the next round to depend on the outcomes of LOCC op-
erations in previous rounds, in contrast to the paradigm
of Takeoka et al.
To make this more precise, let us define the general

protocol. We assume that any classical communication
over the network is freely usable. Suppose that Alice
(A) and Bob (B) call a quantum internet protocol to
share a resource for quantum communication, uncondi-
tionally secure key or quantum entanglement, over the
quantum network. Accordingly, the quantum internet
protocol determines a subnetwork to supply the resource
to Alice and Bob. The subnetwork is characterized by a
directed graph G = (V,E) with a set V of vertices and a
set E of edges, where the vertices of G represent Alice’s
node, Bob’s node and intermediate nodes {Ck}k=1,2,...,n

in the subnetwork, i.e., V = {A,B,C1, C2, . . . , Cn}, and
an edge ε = v1 → v2 ∈ E of G for v1, v2 ∈ V specifies
a quantum channel N v1→v2 to send a quantum system
from node v1 to node v2 in the subnetwork. Then, the
most general protocol proceeds in an adaptive manner
as follows [c.f. Fig. 1b which exemplifies a linear net-
work with n = 4]. The protocol starts by preparing the

whole system in a separable state ρ̂ABC
1C2...Cn

1 and then
by using a quantum channel N e1 with e1 ∈ E. This is
followed by arbitrary LOCC among all the nodes, which
gives an outcome k1 and a quantum state ρ̂ABC

1C2...Cn

k1
with probability pk1 . In the second round, depending on
the outcome k1, a node uses a quantum channel N ek1

with ek1 ∈ E, followed by LOCC among all the nodes.
This LOCC gives an outcome k2 and a quantum state
ρ̂ABC

1C2...Cn

k2k1
with probability pk2|k1 . Similarly, in the
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Figure 1: Quantum internet (Reproduced from [2]). Panel (a) depicts a general quantum internet where Alice
(A) and Bob (B) request its internet protocol to supply them with the resources for quantum communication, such as
a secret-key and quantum entanglement. Accordingly, the protocol chooses a quantum network G (which might be a
quantum subnetwork) associated with a directed graph G = (V,E). The set V of vertices is composed of the nodes as
V = {A,B,C1, C2, . . . , Cn} (n = 9 in this panel) and the set E of edges specifies quantum channels {N e}e∈E in such
a way that N v1→v2 represents a quantum channel to send a quantum system from node v1 ∈ V to node v2 ∈ V . The
protocol can combine the quantum channels {N e}e∈E with LOCC arbitrarily, to provide the required resources for
Alice and Bob. However, our bound suggests that the obtainable secret bits or ebits are upper bounded by a bound
for the point-to-point communication between a single parity having nodes VA ⊂ V with A and another party having
VB(= V \VA) with B. In panel (b), we describe the paradigm of the most general two-party communication protocols,
by exemplifying a linear network with n = 4. In the i-th round (i = 1, 2, . . . , l), according to the previous outcomes
ki−1 = ki−1 . . . k2k1, the protocol may use a quantum channel N eki−1 with eki−1 ∈ E, followed by LOCC providing

a quantum state ρ̂ABC
1C2...Cn

ki
with a new outcome ki. After an l-th round, Alice and Bob obtain a quantum state

ρ̂ABC
1C2...Cn

kl
, from which they can distill log2 dkl

ebits or secret bits approximately.

i-th round, according to the previous outcomes ki−1 :=
ki−1 . . . k2k1 (with k0 := 1), the protocol uses a quan-
tum channel N eki−1 with eki−1 ∈ E, followed by LOCC

providing a quantum state ρ̂ABC
1C2...Cn

ki
with a new out-

come ki with probability pki|ki−1
. After a finite number of

rounds, say after an l-th round, the protocol must present
ρ̂ABkl

= TrC1C2...Cn(ρ̂ABC
1C2...Cn

kl
) close to a target state

τ̂ABdkl
with rank dkl

in the sense of ||ρ̂ABkl
− τ̂ABdkl

||1 ≤ ϵ

for ϵ > 0, from which Alice and Bob can distil log2 dkl

secret bits for the purpose of the unconditionally secure
communication or log2 dkl

ebits for the purpose of the
quantum teleportation. After all, the protocol results in
presenting log2 dkl

secret bits or ebits with probability
pkl

by using quantum channels {N eki }i=0,1,...,l−1, where
pki := pki|ki−1

. . . pk3|k2
pk2|k1pk1 .

For this general adaptive protocol, our main result is
described as follows. Let us divide set V into two disjoint
sets, VA including A and VB including B, satisfying VA =
V \ VB and VB = V \ VA [c.f. Fig. 1 for the examples].
If N eki is a channel between a node in VA and a node in
VB , we write ki ∈ KVA↔VB

. For example, k1 ∈ KVA↔VB

in Fig. 1b. Then, for any choice of VA and VB , the most

general protocol has a limitation described by

∑
kl

pkl
log2 dkl

≤
l−1∑
i=0

∑
ki∈KVA↔VB

pkiEsq(N eki ) + g(ϵ),

(1)

where g is a is a continuous function [3, 5] with the prop-
erty of limϵ→0 g(ϵ) = 0 and Esq(N ) is the squashed en-
tanglement of channel N [3, 4]. This bound is reduced to∑

kl
pkl

log2 dkl
≤
∑l−1
i=0

∑
ki∈KVA↔VB

pkiEsq(N eki ) for

ϵ → 0. The bound (1) is obtained by regarding the
general multi-party protocol as bipartite communication
between VA and VB and by applying the Takeoka-Guha-
Wilde bound (TGW) to the bipartite one (see Supple-
mentary Note 1 in [2] for the proof). Since the bound
holds for any choice of VA, the bound shows that the av-
erage of the obtained secret bits or ebits is most tightly
bounded by the choice of VA that minimizes the right-
hand side of Eq. (1).
The generality of our upper bound stems from that of

the TGW bound applied to any quantum channel, in con-
trast to Pirandola’s contemporary work [6] that instead
uses the Pirandola-Laurenza-Ottaviani-Banchi (PLOB)
bound [7] applied only to teleportation stretchable chan-
nels in order to obtain a good bound for multipath net-
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works composed of lossy optical channels.
As an application of our bound in Eq. (1), we con-

sider purely optical linear networks [like Fig. 1b] com-
posed only of lossy optical channels, and we can con-
clude that existing intercity QKD schemes [8, 9, 10]
and quantum repeater schemes [11, 12, 13, 14, 15, 16]
have no scaling gap with our upper bound, implying
that our upper bound is excellent enough to conclude
that there is no further big improvement on the practi-
cal schemes. In addition, we apply our bound in Eq. (1)
to the Duan-Lukin-Cirac-Zoller-type (DLCZ)-type quan-
tum repeaters [17, 18, 19, 20] with time-dependent mem-
ory decay. To do this, we first show that DLCZ-type
quantum repeaters with time-dependent memory decay
can be regarded as a linear quantum network [like Fig.
1b] composed of lossy optical channels and noisy qubit
channels (corresponding to the model of the decay of
matter quantum memories) in the spacetime. Then, by
applying our upper bound to the linear network, we ob-
tain a nontrivial fact that the coherence time of mat-
ter quantum memories should be, at least, larger than
0.1 ms—which are comparable even with the up-to-date
experimental result [21] with retaining the coupling effi-
ciency with photons—to enjoy the blessing of arbitrary
DLCZ-type quantum repeaters (see Supplementary Note
2 in [2] for the detail).
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Approximate broadcasting of quantum correlations
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Abstract. Broadcasting quantum and classical information is a basic task in quantum infor-
mation processing, and is also a useful model in the study of quantum correlations including
quantum discord. We establish a full operational characterization of two-sided quantum discord
in terms of bilocal broadcasting of quantum correlations. Moreover, we show that both the opti-
mal fidelity of unilocal broadcasting of the correlations in an arbitrary bipartite quantum state
and that of broadcasting an arbitrary set of quantum states can be formulated as semidefinite
programs (SDPs), which are efficiently computable. We also analyze some properties of these
SDPs and evaluate the broadcasting fidelities for some cases of interest.

Keywords: quantum correlation, quantum discord, broadcasting, semidefinite program

1 Introduction

Copying information is a rather simple task in the
classical realm, but unfortunately not in the quan-
tum realm. It is not allowed to create an identical
copy of an arbitrary unknown pure quantum state
due to the no-cloning theorem [1, 2]. One can clone
a set of pure states if and only if they are orthogonal.
The no-broadcasting theorem [3] generalizes this re-
sult to mixed states, saying that a set of quantum
states can be broadcasted if and only if the states
commute with each other.

These no-go theorems can be further extended
to the setting of local broadcast for compos-
ite quantum systems. Given a bipartite quan-
tum state ρAB shared by Alice and Bob, their
objective is to perform local operations only
(without communication) to produce a state
ρ̂A1A2B1B2 = (ΛA→A1A2 ⊗ ΓB→B1B2)ρAB such that
TrA1B1 ρ̂A1A2B1B2 = TrA2B2 ρ̂A1A2B1B2 = ρAB. (See
Fig. 1 for bilocal broadcasting.) It is shown in Ref.
[4] that this task can only be performed if and only
if ρAB is classically correlated. Even if the task is
relaxed to obtain two bipartite states with the same
correlation as ρAB (measured by the mutual infor-
mation), it is feasible to do the task if and only if
the given state ρAB is classically correlated. This
is called the no-local-broadcasting theorem [4]. Fur-

∗ wei.xie-4@student.uts.edu.au
� kun.fang-1@student.uts.edu.au
� xin.wang-8@student.uts.edu.au
§ runyao.duan@uts.edu.au
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thermore, when the local operations are only allowed
for one party (e.g., Alice), the task can be done if
and only if ρAB is classical on A [5, 6, 7]. (See Fig.
1 for unilocal broadcasting.)

When the task of perfect broadcasting cannot be
accomplished, it is natural to ask whether the broad-
casting can be performed in an approximate fashion,
and how to design the optimal broadcasting opera-
tion. We shall study the approximate broadcasting
of states and correlations by utilizing semidefinite
programs (SDPs). In Ref. [8] the Bose-symmetric
channel is considered as unilocal broadcasting oper-
ation and an SDP is derived for this problem.

Quantum discord, as an indispensable measure of
quantum correlation beyond entanglement, is intro-
duced in Refs. [9] and [10] independently. It is ar-
gued [11] that quantum discord is responsible for the
quantum speed-up over classical algorithms. Quan-
tum discord is a quite useful concept in many fields
of quantum information processing [4, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

The local broadcasting paradigm can provide a
natural operational interpretation to quantum dis-
cord. Remarkably, the minimum average loss of
mutual information resulting from local operation
ΛA→A1⋯An on A for arbitrary quantum state ρAB ap-
proaches its quantum discord DA(ρAB) as n goes to
infinity [12, 27]. However, it remains open whether
there is an analogous connection for the two-sided
setting of redistributing correlations [26].
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Figure 1: Unilocal (left) and bilocal (right) broad-
casting of quantum correlations in initial state ρAB.
The objective is for the quantum channels Λ,Γ to
make the states on AiB or AiBi as close to ρAB as
possible measured in some way.

2 Overview of results

In this paper, we study the approximate broad-
casting of quantum correlations in both asymptotic
and non-asymptotic settings.

In the asymptotic regime, we rigorously prove the
conjecture in Ref. [26] and provide an operational
meaning of the two-sided quantum discord in terms
of bilocal broadcasting of correlations.

Specifically, the two-sided quantum discord of bi-
partite state ρAB is given by

DAB(ρAB) ∶=
min

EA,FB∈QC
[I(A ∶ B)ρAB

− I(A ∶ B)(EA⊗FB)ρAB
] , (1)

where QC denotes the set of all quantum-to-classical
channels, I(A ∶ B)ρAB

denotes the quantum mutual
information of state ρAB. Then we prove that for
any bipartite state ρAB,

DAB(ρAB) =

lim
n→∞ min

ΛA→A1...An
ΓB→B1...Bn

1

n

n

∑
j=1

[I(A ∶ B)ρAB
− I(Aj ∶ Bj)(Λj⊗Γj)ρAB

] ,

(2)

where ΛA→A1...An and ΓB→B1...Bn be quantum chan-
nels and denote Λj ∶= Tr/Aj

○Λ and Γj ∶= Tr/Bj
○Γ.

This result shows that the asymptotic minimum av-
erage loss of correlation after optimal bilocal broad-
casting is exactly the two-sided quantum discord of
the initial state.

In the non-asymptotic regime, we give an SDP
characterization of the optimal unilocal broadcast-
ing fidelity and show that the universal quantum
clone machine (UQCM) [28, 29] can also serve as
the optimal universal unilocal broadcasting opera-
tion. In particular, it has the strongest power for
universal unilocal broadcasting.

Specifically, given a bipartite state ρAB, the opti-
mal unilocal n-broadcasting fidelity of ρAB on system
A is defined as the following optimal average fidelity
over all quantum channels ΛA→A1⋯An ,

fn(ρAB) ∶= sup
ΛA→A1⋯An

1

n

n

∑
j=1

F (ρAB,Tr/AjB ΛA→A1...An(ρAB)).

(3)

We show that the quantity fn(ρAB) can be charac-
terized as SDP,

fn(ρAB) = max
1

2
Tr(XAB +X�

AB)

s.t. (
ρAB XAB

X�
AB Tr/A1B(JTAρAB)) ≥ 0,

JAA1⋯An ≥ 0,Tr/A JAA1⋯An = 1A,

JAA1⋯An = 1

n!
∑
π∈Sn

WπJAA1⋯AnW
�
π ,

(4)

where Wπ is a unitary for each permuta-
tion π in symmetric group Sn, by the action
Wπ ∣j1, j2, . . . , jn⟩ = ∣jπ−1(1), jπ−1(2), . . . , jπ−1(n)⟩ for
any choice of ∣j1⟩, ∣j2⟩, . . . , ∣jn⟩. A quantum channel
ΛA→A1⋯An is called a symmetric broadcasting chan-

nel, if Λ(ρ) = Wπ(Λ(ρ))W �
π for any input state ρ

and permutation π.
The optimal unilocal 2-broadcasting fidelity of

the maximally entangled state ∣Φd⟩ = 1√
d
∑d−1
j=0 ∣jj⟩

is given by f2(Φd) =
√

d+1
2d . Interestingly, its opti-

mal broadcasting channel is exactly the universal
quantum clone machine, denoted as Υd

A→A1A2
.

Moreover, the optimal unilocal 2-broadcasting
fidelity for pure two-qubit states is analytically
solved. For two-qubit pure state ψθ = ∣ψθ⟩⟨ψθ ∣ with
∣ψθ⟩ = cos θ∣00⟩ + sin θ∣11⟩, θ ∈ (0, π/4], its optimal
unilocal 2-broadcasting fidelity is given by

f2(ψθ) =
⎧⎪⎪⎨⎪⎪⎩

cos2 θ + (sin2 θ)/
√

2, θ ∈ (0,arctan(2−1/4)]
(3

2(cos4 θ + sin4 θ))1/2, θ ∈ (arctan(2−1/4), π/4]
.

Furthermore, we introduce a worst-case quanti-
fier for the performance of unilocal broadcasting of
a symmetric channel. For any symmetric broadcast-
ing channel ΛA→A1⋯An , we define its unilocal broad-
casting power as

P(Λ) ∶= inf
ρAB∈S(AB)

F (ρAB,Tr/A1B Λ(ρAB)). (5)
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The unilocal broadcasting power of a symmetric
broadcasting channel gives a measure of the uni-
versal unilocal broadcasting ability for symmetric
broadcasting channels. The universality means it is
independent of the input state. The channel with a
larger value of unilocal broadcasting power is more
capable of unilocal broadcasting quantum states in
a universal sense.

In particular, we prove that the optimal unilocal
2-broadcasting channel Υd

A→A1A2
for the maximally

entangled state has the greatest power for unilocal
2-broadcasting, i.e.,

max
ΛA→A1A2

P(ΛA→A1A2) = P(Υ
d
A→A1A2

), (6)

where the maximum is taken over all symmetric
broadcasting channels.

Finally, we discuss broadcasting of a set of quan-
tum states. Assuming the given states ρi are
on the system A, we study how to optimize the
n-broadcasting fidelity gn(η) of an ensemble η ∶=
{pi, ρi}mi=1, which is defined as

gn(η) ∶= sup
m

∑
i=1

n

∑
j=1

1

n
piF (ρi, ρ̂ij)

s.t. ρ̂ij = Tr/Aj
ΛA→A1⋯An(ρi),

Λ is a quantum channel.

(7)

Following the same line as the optimal unilocal
broadcasting fidelity, we show that gn(η) can also
be characterized as SDP,

gn(η) ∶= max
m

∑
i=1

1

2
piTr(Xi +X�

i )

s.t. (
ρi Xi

X�
i Tr/A1

(JAA1⋯Anρ
T
i )

) ≥ 0,∀i = 1,⋯,m,

JAA1⋯An ≥ 0,Tr/A JAA1⋯An = 1A,

JAA1⋯An = 1

n!
∑
π∈Sn

WπJAA1⋯AnW
�
π .

(8)
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INTRODUCTION

In many applications of quantum mechanics it is important
to have full control over a quantum system used to perform
a desired task or a quantum protocol. This amounts to being
able to implement arbitrary unitary operation on the system in
question. Perhaps the most well-known example is the circuit
model of quantum computing, where the ability to implement
arbitrary unitary gates on a system of many distinguishable
particles (say, qubits) is a necessary ingredient for performing
universal quantum computation [1, 2]. From the experimental
perspective, it is typically very easy to implement single-qubit
gates. This collection of gates, however, does not lead to uni-
versal quantum computation and to this aim has to be supple-
mented by an entangling gate [3]. Similar situations appears
in other physical contexts. Typically, the set of easily accessi-
ble unitary gates acting on a given quantum system, does not
ensure full controllability.

This work studies the extension problem for gate-sets ap-
pearing naturally in systems consisting of non-distinguishable
particles: passive linear optics for (A) bosonic and (B)
fermionic systems with fixed number of particles, as well as
(C) active linear optics acting on fermionic system with fixed
number of modes subject to the parity super-selection rule [4].
Specifically, for the aforementioned scenarios, we study what
unitary transformations can be implemented if the restricted
class of gates K is supplemented by additional unitary trans-
formations - see Fig. 1. We investigate two variants of this
problem:

(i) the gate-set K is supplemented with unitaries of the
form exp (−itX) generated by the Hamiltonian X;

(ii) the gate-setK is supplemented by a single unitary trans-
formation V .

We denote by 〈K,X〉 the set of unitaries that can be gen-
erated form the restricted gate-set K and unitaries of the form
exp (−itX), where t is an arbitrary real number. Likewise,
slightly abusing the notation, we denote by 〈K,V 〉 the set of
unitaries that can be generated by elements form K and an
extra gate V . The merit of this work is to characterize sets
〈K,X〉 and 〈K,V 〉 for different linear optical groups K (act-
ing on the appropriate Hilbert spacesH). If the resulting gate-
set 〈K,X〉 (or 〈K,V 〉) form the full unitary group U(H), we
say that the Hamiltonian X (or the gate V ) promotes the re-
stricted collection of gates K to universality inH.

CONTEXT AND MOTIVATION

Linear optical transformations are relevant in many con-
texts. Passive bosonic linear optics describes single-particle

FIG. 1. A schematic presentation of the problems studied. (i) Given
a family of gates K (white) and a one-parameter family of unitaries
exp(−itX) (black loop), what class of gates (cyan) can be generated
in the full unitary group U(H) (orange)? (ii) Given a family of gates
K (white) and a single gate V (black dot), what class of gates (cyan)
can be generated in the full unitary group U(H) (orange)?

evolutions of a system ofN identical bosons in dmodes. Such
transformations are natural for quantum optics, when quan-
tum states of light pass through an optical network formed
from beam-splitters and phase shifters [5]. Linear optics un-
derpins the KLM scheme of quantum computing with pho-
tons [6] and the boson sampling strategy for demonstrating
quantum supremacy with linear optical networks [7]. More-
over, this class of transformations is used to manipulate cold
bosonic particles in optical traps [8, 9]. Similarly, passive
fermionic linear optics describes single-particle evolutions of
a system of N identical fermions in d modes [10, 11], which
can be realized in integer quantum hall effect systems exhibit-
ing edge channels [12]. Passive fermionic linear optics to-
gether with particle-number measurements yields a classically
simulable model of quantum computation [11]. Finally, active
fermionic linear optics describes free-fermion transformations
that are not necessary particle preserving. These fermionic
transformations are the basic ingredient of a classically simu-
lable model of quantum computation [4, 10], which have been
widely studied in the context of Matchgates [13–15].

SETTING

We denote the Hilbert space of N bosons in d modes by
Hb. We have Hb = SymN

(
Cd
)
, i.e., in this case the bosonic

Hilbert space can be identified with the totally symmetric
subspace of the Hilbert space of N distinguishable qudits,(
Cd
)⊗N

. In this language the group of passive linear optical
bosonic transformations, denoted by LOb, can defined as the
group of unitaries of the form U⊗N , withU ∈ U(d), restricted
to the bosonic subspaceHb.

The Hilbert space of N (spinless) fermionic particles in d
modes (d ≥ N ) is Hf = ∧N

(
Cd
)
, i.e., the totally antisym-

metric subspace of
(
Cd
)⊗N

. Similarly to the bosonic case,
the group of passive fermionic linear optics LOf is defined as
the group of unitaries U⊗N , with U ∈ U(d), restricted to the
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fermionic subspace Hf . And in an analogous way, one can
define the group of active parity-preserving fermionic linear
optics (FLO) that acts on the positive parity fermionic Fock
space,H+

Fock.

RESULTS - THE MAIN IDEAS

In this work, we completely solve problems (i) and (ii) for
the scenarios A-C. We characterize the unitary transforma-
tions that are implementable (maybe approximately) by linear
optical gates supplemented with any additional Hamiltonian
or a gate. Our characterization is given in terms of explicit al-
gebraic conditions on the Hamiltonian X or the gate V that
can be can be tested operationally. The resulting behavior
is surprisingly rich and structurally depends on the number
of modes and the number of particles. In particular, contrary
to what intuition might suggest, it is not true that every non-
trivial extra gate or Hamiltonian provides universality in sce-
narios A-C. Solution of problems (i) and (ii) gives the clear
understanding of what resources are necessary to have full
physical controllability in the contexts listed above. More-
over, our results can be viewed as a step towards a solution
of the general problem of classification of invertible quantum
circuits posed recently by Aaronson and co-workers [16, 17].

To give an idea about the structure of our findings (see [18]
for the full version of the paper), we present the results con-
cerning the gate addition for the simplest case of passive linear
optics and for passive fermionic linear optics.

Theorem 1 (Extensions of Passive Bosonic Linear Optics with
an additional gate). Let V /∈ LOb be a gate acting on the
Hilbert space Hb of N > 1 bosons in d modes. Let 〈LOb, V 〉
be the group of transformations generated by passive bosonic
linear optics and V inHb. For d = 2 we define:

Lb = |Ψb〉〈Ψb|, |Ψb〉 =
N∑

k=0

(−1)k|Dk〉|DN−k〉 ∈ Hb ⊗Hb ,

(1)
where |Dk〉 denote the two-mode Dicke states with k-particles
being in the first mode. We have the following possibilities:

(a) If d > 2, then 〈LOb, V 〉 = U (Hb).

(b) If d = 2, N 6= 6 and [V ⊗ V,Lb] = 0, then

〈LOb, V 〉 = Gb = {U ∈ U (Hb)| [U ⊗ U,Lb] = 0 }.

(c) If d = 2 and [V ⊗V,Lb] 6= 0, then 〈LOb, V 〉 = U (Hb).

In the above theorem we have situations with N = 1
particles as for them LOb = U(Hb). We see that for
d 6= 2 any additional gate promotes LOb to universality in
the bosonic space Hb. For d = 2 the resulting gate-set
〈LOb, V 〉 depends only on the commutator [V ⊗ V,Lb]. If it
is nonzero, then V again extends LOb to universality; while
if it vanishes (and N 6= 6) V extends LOb to the ”mid-
dle group” Gb. Up to a global phase the group Gb con-
sists of unitaries that preserve the bilinear form defined by
B(|ψ〉, |φ〉) = 〈Ψb|(|ψ〉 ⊗ |φ〉). Here, by preservation we
mean that Bb(U |ψ〉, U |φ〉) = Bb(|ψ〉, |φ〉), for all vectors
|φ〉,|ψ〉. If the number of particles N is even then |Ψb〉 is a

FIG. 2. A pictorial presentation of most complicated chain of group
inclusions that can be realized for the problem (ii) in the considered
scenarios. For passive fermionic linear optics LOf in the half-filling
case (d = 2N ) we have LOf ⊂ LOf ∪ LOf ·W ⊂ Gf ⊂ U(Hf ),
where W =

∏d
i=1(fi + f†

i ), and the ”middle” group Gf is defined
by the condition [U ⊗ U,Lf ] = 0.

symmetric tensor and defines the real inner product. In this
case we have Gb = 〈T(Hb),SO(Hb)〉, where SO(Hb) is the
special orthogonal group on Hb. When the number of parti-
clesN is odd, the vector |Ψb〉 is antisymmetric and defines the
symplectic structure (i.e. non-degenerate and antisymmetric
form) on Hb. In this case we have Gb = 〈T(Hb),USp(Hb)〉,
where USp(Hb) is the unitary symplectic group. The two dif-
fer considerably as USp(H) acts transitively on the set of pure
states on H [19–21]. On the other hand, SO(H) acts tran-
sitively only on ”real” pure states. Thus, for odd number of
particles, adding any additional gate gives either the full uni-
tary controllability or the pure-state controllability. In the case
of d = 2 modes and N = 6 particles if [V ⊗ V,Lb] = 0 the
situation complicates due to the presence of additional group
(related to the exotic group G2) in between LOb and Gb. We
leave the description of this exceptional case as an interesting
open problem.

The analogous result of passive fermionic linear optics is
the following

Theorem 2 (Extensions of Passive Fermionic Linear Optics
with an additional gate). Let V /∈ LOf be a gate acting on
Hilbert space of N fermions in d modes Hf , where N /∈
{0, 1, d − 1, d}. Let 〈LOf , V 〉 be the group of transforma-
tions generated by passive fermionic linear optics and V in
Hf . For d = 2N (half-filling) we define:

Lf = |Ψf 〉〈Ψf |, with |Ψf 〉 = |1〉∧|2〉∧. . .∧|2N〉 ∈ Hf⊗Hf

(2)
where ∧ denotes the standard wedge product. We have the
following possibilities:

(a) If d 6= 2N , then 〈LOf , V 〉 = U (Hf ).

(b) If d = 2N and V = Wk, for k ∈ LOf and W =∏d
i=1(fi + f†i ), then 〈LOf , V 〉 = LOf ∪ LOf ·W .

(c) If d = 2N , V 6= gW , for g ∈ LOf , and [V ⊗ V,Lf ] =
0, then

〈LOf , V 〉 = Gf = {U ∈ U (Hf )| [V ⊗ V,Lf ] = 0 }.

(d) If d = 2N and [V ⊗ V,Lf ] 6= 0, then 〈LOf , V 〉 =
U (Hf ).

The structure of the above result is similar to the case of
passive bosonic linear optics. In the formulation of the theo-
rem we have excluded the non interesting casesN ∈ {0, 1, d−
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1, d} since for them LOf equals the full unitary group on the
respective Hilbert space. When d 6= 2N every gate promotes
LOf to universality. However, in the physically relevant case
of half-filling [22], a more interesting ”onion” structure ap-
pears. In the case (b) addition of an extra gate of the form
kW , where k ∈ LOf and gate W (describing particle-hole
transformation in Hf ) gives the gate-set LOf ∪ LOf ·W (it
is crucial here that W commutes with Lf and that conjuga-
tion by W leaves LOf invariant). The further possibilities are
described, similarly to the bosonic case, by the commutation
properties of V ⊗ V with LOf . If d is not divisible by four
we have Gf = 〈T(Hf ),SO(Hf )〉. On the other hand, for d
divisible by four,Gf = 〈T(Hf ),USp(Hf )〉. The correspond-
ing bilinear forms are defined by inner products with |Ψf 〉.

EXAMPLES AND APPLICATIONS

We can apply our general results to many concrete phys-
ical examples. let us present first an exemplary application
of our findings. In the reference [23], the authors were inter-
ested in extending bosonic linear optics to universality in Hb

by adding an additional gate. This problem was motivated by
the need to construct physically-accessible universal gate-set
in Hb, which can be used to generate, via construction based
on random circuits [24], approximate bosonic t-designs. The
example below proves that a singe gate based on the cross-
Kerr nonlinearity suffices to promote bosonic linear optics to
universality inHb. It should be mentioned that Kerr-like trans-
formation have been previously used to obtain universal quan-
tum computation in continuous-variable systems [25].

Example 1. Consider a bosonic system with d = 2 modes
and N > 1 particles, and a gate generated by the cross-Kerr
interaction (acting onHb for a fixed time t),

Vt = exp (−itn̂an̂b) , (3)

where n̂a,b are the occupation number operators correspond-
ing to modes a and b. Let 〈LOb, Vt〉 be the group of trans-
formations generated by passive bosonic linear optics and Vt.
Then, 〈LOb, Vt〉 = U (Hb) if and only if

e2it[l(N−l)−k(N−k)] 6= 1 , (4)

for at least one pair (k, l) , where k, l = 0, . . . , N . In par-
ticular, the gate Vπ

3
promotes passive bosonic linear optics to

universality inHb for d = 2 modes.

Using the general results, we can also easily see that there
might exist physical Hamiltonians that add different controlla-
bility properties to LOb, depending on the number of particles
N . The following example shows a particular case.

Example 2. Consider the Hamiltonian X3 = n̂3a − n̂3b acting
on Hb for d = 2 modes and N 6= 6 particles. Deepening on
the value N we get different types of gate-sets after supple-
menting passive bosonic optics with X3

(a) For even N : 〈LOb, X3〉 = 〈T(Hb),SO(Hb)〉;

(b) For odd N : 〈LOb, X3〉 = 〈T(Hb),USp(Hb)〉.

In, particular for odd N we have full controllability on the set
of pure states onHb, whereas for even N this is not the case.

We can also give analogous results for passive and active
fermionic linear optics, here we provide two:

Example 3. For any non-quadratic Hamiltonian M contain-
ing only two-mode terms, the generated group 〈LOf ,M〉 is
the entire unitary group U (Hf ).

Hamiltonians that are not composed of two-mode terms are
also often studied. One typical family of these are the so-
called correlated hopping Hamiltonians, where the hopping-
term between two sites is multiplied with number operators
belonging to other sites. For such Hamiltonians universality is
not guaranteed:

Example 4. Consider the correlated hopping Hamiltonian

Y =

d/2−1∑
j=1

(n̂2j − n̂2j+2)2(f†2j−1f2j+1 + f†2j+1f2j−1) +

(n̂2j−1−n̂2j+1)2(f†2jf2j+2 + f†2j+2f2j). (5)

acting on Hf for the case of half filling (d = 2N ). Then, we
have the following situations

(a) for even N : 〈LOf , Y 〉 = 〈T(Hf ),SO(Hf )〉;

(b) for odd N : 〈LOf , Y 〉 = 〈T(Hf ),USp(Hf )〉.

For odd N the Hamiltonian Y together with LOf ensures full
controllability on the set of pure states on Hf . However, for
even N this is not the case. The above statements are even
true for each term appearing in sum Eq. (5). The correlated
hopping Hamiltonian Y often appears (in a relabeled form) in
the literature on extended Hubbard models [26].

DISCUSSION AND OUTLOOK

In this extended abstract, we presented a comprehensive
treatment of the extension problems for various classes of lin-
ear optical gates for bosons and fermions (see [18] for the full
version of the paper, containing the discussion of the active
linear optics for fermions and the proof of our results . The re-
sulting behavior is surprisingly rich and critically depends on
the number of modes and number of particles present in the
system. However, there is a number of interesting problems
we did not addressed here. First, it would be interesting to ana-
lyze which extra gates or Hamiltonians allow for the most effi-
cient control [27] or the efficient approximation of gates from
the appropriate unitary group [28]. Another important prob-
lem concerns the robustness of the extra gate or Hamiltonian
to the noise that inevitably affects any quantum system. In
future works we also plan to use our results to study (compu-
tational) universality of classically simulable models of com-
putation supported on fermionic systems [10] and Machgates
[13–15].
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Optimal quantum error correcting codes from absolutely maximally
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Abstract. Absolutely maximally entangled (AME) states are pure multi-partite generalizations of the
bipartite maximally entangled states with the property that all reduced states of at most half the system
size are in the maximally mixed state. AME states are of interest for multipartite teleportation and
quantum secret sharing and have recently found new applications in the context of high-energy physics in
toy models realizing the AdS/CFT-correspondence. We work out in detail the connection between AME
states of minimal support and classical maximum distance separable (MDS) error correcting codes and, in
particular, provide explicit closed form expressions for AME states of n parties with local dimension q a
power of a prime for all q ≥ n1. Building on this, we construct a generalization of the Bell-basis consisting
of AME states and develop a stabilizer formalism for AME states. For every q ≥ n1 prime we show how to
construct QECCs that encode a logical qudit into a subspace spanned by AME states. Under a conjecture
for which we provide numerical evidence, this construction produces a family of quantum error correcting
codes [[n, 1, n/2]]q for n even, with the highest code distance allowed by the quantum Singleton bound. We
show that our conjecture is equivalent to the existence of an operator whose support cannot be decreased
by multiplying it with stabilizer products and explicitly construct the codes up to n = 8.

Keywords: absolutely maximally entangled states, quantum error correcting codes, MDS codes, stabi-
lizer, singleton bound

The maximally entangled states of two qubits, the so-
called EPR states, are pure states of 2-qubits having re-
duced density matrices on each half of the system that are
maximally mixed. A very intriguing question is whether
systems made out of more than two parties can exhibit
this property that all reduced states of at most half of the
system size are maximally mixed. Such states are called
Absolutely Maximally Entangled (AME) states and are
pure multi-partite generalizations of the bipartite maxi-
mally entangled states.

AME states are known to play an important role in
quantum information processing when dealing with many
parties. They are useful for multipartite teleportation
and in quantum secret sharing [1]. AME states have
also deep connections with apparently unrelated areas
of mathematics such as combinatorial designs and struc-
tures [2], classical error correcting codes [3], and quantum
error correcting codes (QECC) [4]. Recently, they have
gained new relevance as building blocks for holographic
theories and in high energy physics. There they allow
for the construction of tensor network states that realize
discrete instances of the AdS/CFT correspondence and
holography [5, 6, 7, 8].

At the same time it is still largely unknown for which n
and q AME states exist and how they can be constructed.
In the case of qubits for instance, it has been proven an-
alytically that there are no AME states for n = 4 and
n ≥ 7. The non-existence in the cases n = 4 and n ≥ 8
was proven by finding a contradiction in a linear program

∗zahra.raissi@icfo.eu
†christian.gogolin@icfo.eu
‡arnau.riera@icfo.eu
§antonio.acin@icfo.eu

[9, 4]. Qubit AME states for n = 2, 3 were long known, a
state for n = 5 was found in [10] and more recently such
for n = 5, 6 were found numerically in [11, 12, 13]. The
existence of such states was previously known in the con-
text of quantum error correction [14]. Only very recently
it was shown that there cannot be a qubit AME state for
the case n = 7 [15].

We work out in detail the connection between AME
states of minimal support and classical maximum dis-
tance separable (MDS) error correcting codes and, in
particular, provide explicit closed form expressions for
AME(n, q) states of n parties with local dimension q a
power of a prime for all n ≤ q + 1. Further, from a sin-
gle AME state, we show how to produce an orthonormal
basis of AME states. Based on our construction of mini-
mal support AME states, we derive the generators of the
stabilizer group of our AME states

Further we conjecture the existence of an infinite
family of QECC whose code spaces are spanned by AME
states and explicitly construct them for several cases.
More precisely, we present a construction that we believe
yields for every q ≥ n − 1 a power of a prime a QECCs
that encodes a logical q-level qudit into a subspace
spanned by AME states of n such qudits. Under a
conjecture for which we provide numerical evidence, this
construction produces a family of quantum error cor-
recting codes [[n, 1, n/2]]q for n even achieve the highest
code distance allowed the quantum Singleton bound.
For n mod 4 = 3 these codes can correct arbitrary
errors on the same number of subsystems as a QMDS
code with the same n and k. Our method provides
QECC for smaller local dimension q than previously
known QECC with otherwise identical parameters and
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we explicitly construct them for n = 4, 6, 8. Also, our
proposal has a very clear physical motivation and nicely
complements other constructions of non-binary QECC
(see for example [16, 17] for an overview and [18] for
tables of known codes with q = 2).

This extended abstract is based on [19].
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Abstract. We provide new constructions of unitary designs on one qudit and those on N qubits, based
on the schemes of repeating random unitaires diagonal in mutually unbiased bases. We first show that, if
a pair of the bases satisfies a certain condition, the process on one qudit approximately forms a unitary
t-design after O(t) repetitions. We then construct quantum circuits on N qubits that achieve unitary t-
designs for t = o(N1/2) using O(tN2) gates, improving the best known result using O(t10N2) gates in terms
of t. Furthermore, we propose a design Hamiltonian, a random Hamiltonian of which dynamics always
forms a unitary design after a threshold time, and present one with two-local spin-glass-type interactions.
After changing the interactions only O(t) times, the dynamics forms unitary t-designs. We also generalise
the fast scrambling conjecture in terms of the design Hamiltonian.

Keywords: unitary design, random circuits, scrambling

1 Introduction and main results

Random processes play key roles in quantum infor-
mation processing, as one of the important primitives
in quantum Shannon theory and as a useful resource of
quantum advantages, and also in fundamental physics of
complex quantum systems, leading to new developments
in quantum thermodynamics, the black hole information
science and strongly correlated many-body physics. Tra-
ditionally, quantum random processes are represented by
Haar random unitaries. However, they cannot be effi-
ciently implemented by quantum circuits, which also im-
plies that Haar random unitaries rarely appear in natu-
ral many-body systems. This fact has led to the study
of finite-degree approximations of them, called unitary
t-designs [1, 2]. Unitary 2-designs were intensely stud-
ied so far, but little is known about efficient implemen-
tations of t-designs for general t [3, 4], amongst which
the best known result is to use local random quantum
circuits [4]. They approximately form t-designs using
O(t10N2) gates,. This result can be interpreted in terms
of Hamiltonian dynamics that the interactions should
be changed uniformly at random O(t10N) times before
unitary t-designs are generated, which is highly time-
dependent and may not be physically feasible especially
in a large system.

In this work based on Ref. [5], we show the following:

1. In a one-qudit system, O(t) repetitions of ran-
dom unitaries diagonal in two bases achieve uni-
tary t-designs if a pair of the two bases satisfies the
Fourier-type condition (Theorem 1).

2. In an N -qubit system, we provide a quantum cir-
cuit with O(tN2) gates forming a unitary t-design
for t = o(N1/2) (Theorem 2, see Table. 1 as well).

∗nakata@qi.t.u-tokyo.ac.jp
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‡koashi@qi.t.u-tokyo.ac.jp
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3. We introduce a design Hamiltonian and present one
with spin-glass interactions (Corollary 1). The in-
teractions should be changed only O(t) times to
achieve unitary t-designs.

Our results contribute both to quantum information
science and to fundamental physics. In quantum infor-
mation science, unitary t-designs for t ≥ 4 are useful not
only because they have direct applications [7, 8, 9, 10] but
also because they provide better performance in a num-
ber of applications of 2-designs. There, it is often shown
that one unitary chosen from a 2-design achieves the goal
with high probability. If a higher-design is used instead,
the probability gets much higher due to the large devia-
tion bounds of designs [11]. Hence, our result improves
any applications of unitary t-designs for t ≥ 2.

On the other hand, our result about the design Hamil-
tonian contributes to developing a unified framework
of studying random unitaries in isolated quantum sys-
tems, where Hamiltonians should be time-independent
and fixed. The idea of design Hamiltonian opens for
the first time the possibility to address the fast scram-
bling conjecture (even the generalised version) in terms
of time-independent Hamiltonians. Since scrambling and
its higher order generalisation are the key to understand-
ing fundamental physics in complex quantum many-body
systems, we believe that the design Hamiltonian provides
the solid basis of these studies.

2 Brief description of theorems

An ε-approximate unitary t-design is a random uni-

tary U such that ||G(t)U − G(t)
UH
||� ≤ ε, where G(t)U :=

EU [U⊗tXU†⊗t], EU is an average over U , and UH is a
Haar random unitary. A random unitary DE diagonal in
a fixed basis E is a diagonal unitary with random phases.
Let (E = {|k〉}d−1k=0, F = {|α〉}d−1α=0) be a pair of mutually
unbiased bases. When the phases θkα of the inner prod-
uct, i.e. 〈k|α〉 = eiθkα/

√
d, satisfy θk+l,α = θkα + θlα
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Table 1: A comparison of quantum circuits generating unitary t-designs on N qubits. The cTPE in the first row stands
for the classical tensor product expander. The number of gates needed in the case of cTPE+Fourier transformation
is not explicitly given in the original paper [3]. Using the result in Ref. [6] about the efficient sampling of cTPE,
the number of gates necessary for the implementation turns out to be O(t3N4). If t ≤ 2N/50, it can be improved
to O(t2N3). In the last column, we write what if the circuit is interpreted as a dynamics generated by a natural
Hamiltonian, which is important to understanding fundamental physics in complex quantum many-body systems.

Total number of gates it works for Natural Hamiltonian

cTPE + Fourier trans. [3] O(t3N4) t = O(N/ logN)) N.A.
Local random circuits [4] O(t10N2) t =poly(N) Highly time-dependent

Our result (Theorem 2) O(tN2) t = o(N1/2) Nearly time-independent

(∀k, l, α ∈ [0, d − 1]), where + is an operation making
[0, d−1] an additive group, we call the pair Fourier-type.

Theorem 1 (Unitary designs on a qudit) Let
(E,F ) be a Fourier-type pair of bases on a qu-
dit and let d = Ω(t2t!). A random unitary

D[`] := (
∏1
i=`D

E
i D

F
i )DE

0 , where DE
i and DF

i are
independent random diagonal unitaries in the basis of E
and F , respectively, is an ε-approximate unitary t-design
if ` ≥ 1

log d−2 log t! (t log d+ log 1/ε).

On N qubits, we define a random quantum circuit

C(t)Z diagonal in the Pauli-Z basis, where random diag-
onal two-qubit gates in the form of (diagZ{1, eiϕ1} ⊗
diagZ{1, eiϕ2})diagZ{1, 1, 1, eiϑ} are applied onto all
pairs of two qubits, where ϕ1 and ϕ2 are chosen indepen-
dently from a set {2πm/(t+ 1) : m ∈ [0, t]} uniformly at
random, and ϑ from {2πm/(bt/2c+ 1) : m ∈ [0, bt/2c]}.

Theorem 2 (Unitary designs on N qubits) Let t =

o(N1/2). Then, (C(t)Z HN )2`C(t)Z , where HN is the
Hadamard transformation on N qubits, is an ε-
approximate unitary t-design if ` ≥ t + 1

N log2 1/ε. The
number of two-qubit gates and random bits are O

(
N(tN+

log2 1/ε)
)

and O
(
(log2 t)N(tN + log2 1/ε)

)
, respectively.

The third main result is about an ε-approximate t-
design Hamiltonian, a random Hamiltonian of which dy-
namics forms an ε-approximate unitary t-design at any
time after a design time.

Corollary 3 (Design Hamiltonians) Let t =

o(N1/2) and H
(t)
XZ be a set of 2-local time-dependent

Hamiltonians in the form of

HXZ(T ) =

{
H

(m)
Z if 2mπ ≤ T < (2m+ 1)π,

H
(m)
X if (2m+ 1)π ≤ T < 2(m+ 1)π,

(1)
where T denotes time, m = 0, 1, · · · , H

(m)
W =

{−
∑
j<k JikWj⊗Wk−

∑
j BjWj}Jjk,Bj∈Pt (W = X,Z),

and Pt := {j/(2bt/2c + 1) : j ∈ [−bt/2c, bt/2c]} (bxc
is the floor function). Then, a Hamiltonian drawn uni-

formly at random from H
(t)
XZ is an ε-approximate t-design

Hamiltonian and the design time is (2t+1+ 2
N log 1/ε)π.

The design Hamiltonian HXZ generates a unitary de-
sign in a short time irrespective of the system size. For
the Hamiltonians with local interactions, we conjecture

that, as a generalisation of the fast scrambling conjec-
ture, there exists a natural design Hamiltonian with time-
independent local interactions that achieves unitary de-
signs in O(t logN) time.
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Abstract: The semi-device-independent approach provides a framework for prepare-and-measure 
quantum protocols using devices whose behaviour does not need to be characterized or trusted, except 
for a single assumption on the dimension of the Hilbert space characterizing the quantum carriers. Here, 
we propose instead to constrain the quantum carriers through a bound on the mean value of a well 
chosen observable. This modified assumption is physically better motivated than a dimension bound 
and closer to the description of actual experiments. In particular, we consider quantum optical schemes 
where the source emits quantum states described in an infinite-dimensiona Fock space and model our 
assumption as an upper bound on the average photon number in the emitted states. We characterize the 
set of correlations that may be exhibited in the simplest possible scenario compatible with our new 
framework, based on two energy-constrained state preparations and a two-outcome measurement. 
Interestingly, we uncover the existence of quantum correlations exceeding the set of classical 
correlations that can be produced by devices behaving in a purely pre-determined fashion (possibly 
including shared randomness). This feature suggests immediate applications to certified randomness 
generation. Along this line, we analyze the achievable correlations in several prepare-and-measure 
optical schemes with a mean photon-number constraint and demonstrate that they allow for the 
generation of certified randomness. Our simplest optical scheme works by the on-off keying of an 
attenuated laser source followed by photocounting. It opens the path to more sophisticated energy-
constrained semi-device-independent quantum cryptography protocols, such as quantum key 
distribution. 




