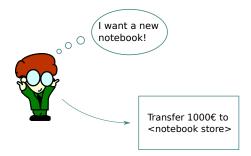
Quantum non-malleability and authentication

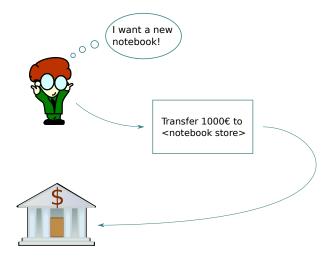
Christian Majenz QSoft/University of Amsterdam Joint work with Gorjan Alagic, NIST and University of Maryland

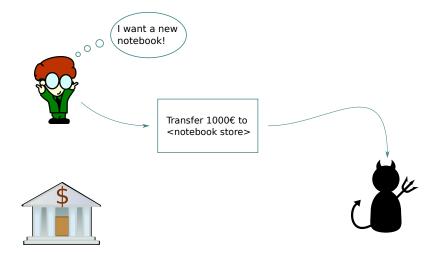
AQIS 2017, National University of Singapore

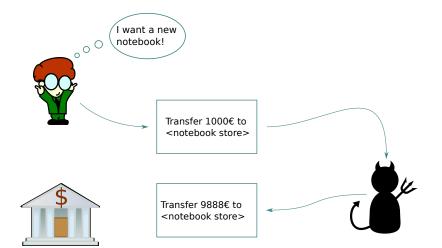
04.09.2017

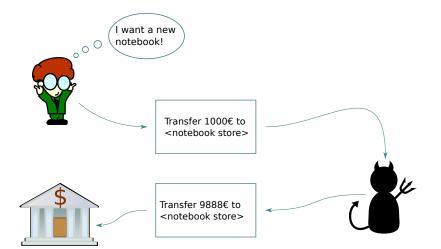
Motivation: a classical story...

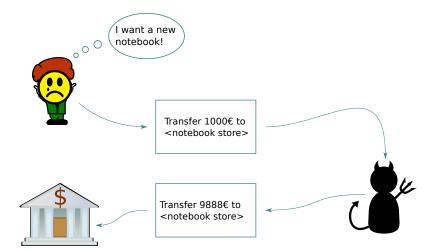


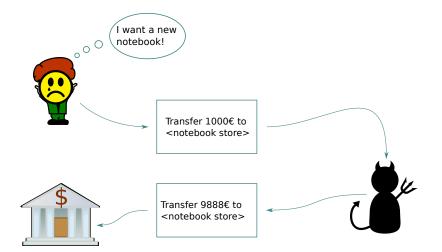




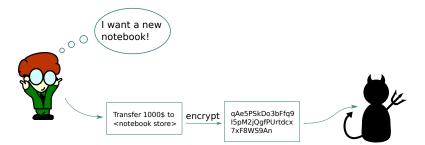


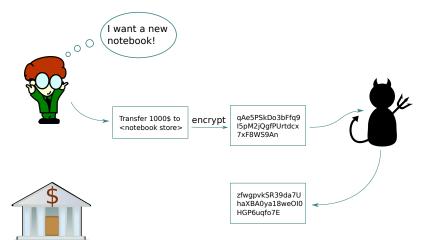


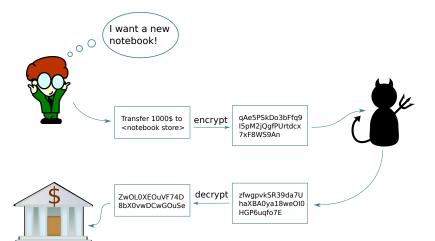




What cryptographic security notions would fix this problem?







fixes a vulnerability allowed by the previous definition

- fixes a vulnerability allowed by the previous definition
- implies secrecy, analogously to quantum authentication

- fixes a vulnerability allowed by the previous definition
- implies secrecy, analogously to quantum authentication
- serves as a primitive for building quantum authentication

- fixes a vulnerability allowed by the previous definition
- implies secrecy, analogously to quantum authentication
- serves as a primitive for building quantum authentication
- has both a simulation-based and an entropic characterization

- fixes a vulnerability allowed by the previous definition
- implies secrecy, analogously to quantum authentication
- serves as a primitive for building quantum authentication
- has both a simulation-based and an entropic characterization
- Additional result: The new definition of quantum authentication with key recycling by Garg, Yuen, Zhandry, '16, can be fulfilled using unitary 2-designs.

classical non-malleability (NM)

 NM first defined in the context of public key cryptography (Dolev, Dwork, Naor '95):

classical non-malleability (NM)

 NM first defined in the context of public key cryptography (Dolev, Dwork, Naor '95):

Definition (informal)

An encryption scheme is non-malleable if for any relation R on plaintexts, getting an encryption of x does not help with producing an encryption of $x' \neq x$ such that R(x, x').

 NM first defined in the context of public key cryptography (Dolev, Dwork, Naor '95):

Definition (informal)

An encryption scheme is non-malleable if for any relation R on plaintexts, getting an encryption of x does not help with producing an encryption of $x' \neq x$ such that R(x, x').

Example: Adversary wants to increase amount, relation is "≤"

 NM first defined in the context of public key cryptography (Dolev, Dwork, Naor '95):

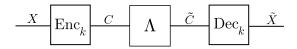
Definition (informal)

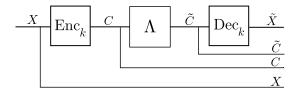
An encryption scheme is non-malleable if for any relation R on plaintexts, getting an encryption of x does not help with producing an encryption of $x' \neq x$ such that R(x, x').

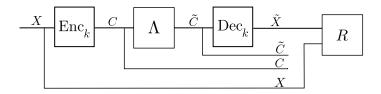
Example: Adversary wants to increase amount, relation is " \leq "

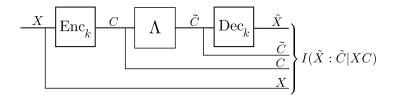
Information theoretic definition using entropy:

(X, C), (\tilde{X}, \tilde{C}) two plaintext ciphertext pairs, $C \neq \tilde{C}$ def: scheme is NM if $I(\tilde{X} : \tilde{C}|XC) = 0$ (Hanaoka et al. '02)

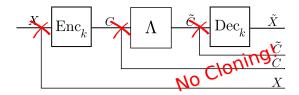








Quantum NM:



- def: Quantum encryption scheme: (Enc_k, Dec_k)
 - classical uniformly random key k
 - encryption map $(Enc_k)_{A \to C}$, decryption map $(Dec_k)_{C \to \overline{A}}$

- def: Quantum encryption scheme: (Enc_k, Dec_k)
 - classical uniformly random key k
 - encryption map $(Enc_k)_{A \to C}$, decryption map $(Dec_k)_{C \to \overline{A}}$

$$\blacktriangleright \mathcal{H}_{\bar{A}} = \mathcal{H}_{A} \oplus \mathbb{C} \ket{\perp}$$

- def: Quantum encryption scheme: (Enc_k, Dec_k)
 - classical uniformly random key k
 - encryption map $(Enc_k)_{A \to C}$, decryption map $(Dec_k)_{C \to \overline{A}}$

$$\blacktriangleright \ \mathcal{H}_{\bar{A}} = \mathcal{H}_{A} \oplus \mathbb{C} \ket{\perp}$$

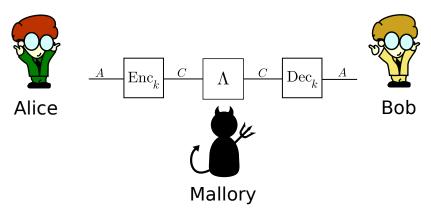
▶ correctness: $Dec_k \circ Enc_k = id_A$

- def: Quantum encryption scheme: (Enc_k, Dec_k)
 - classical uniformly random key k
 - encryption map $(Enc_k)_{A \to C}$, decryption map $(Dec_k)_{C \to \overline{A}}$

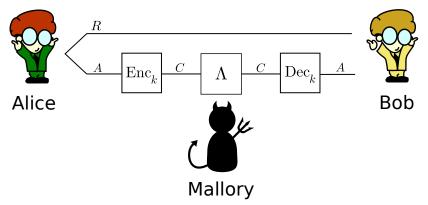
$$\blacktriangleright \ \mathcal{H}_{\bar{A}} = \mathcal{H}_{A} \oplus \mathbb{C} \ket{\perp}$$

- correctness: $\operatorname{Dec}_k \circ \operatorname{Enc}_k = \operatorname{id}_A$
- average encryption map: $Enc_{\mathcal{K}} = \mathbb{E}_k Enc_k$

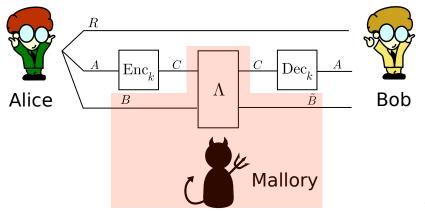
Recall: classical non-malleability setup



- Recall: classical non-malleability setup
- add reference system

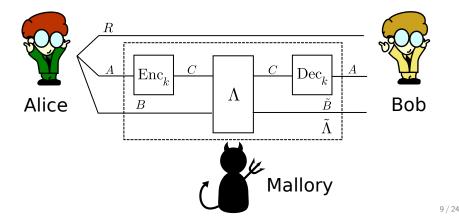


- Recall: classical non-malleability setup
- add reference system
- allow side info for adversary



- Recall: classical non-malleability setup
- add reference system
- allow side info for adversary
- def: effective map on plaintexts and side info

$$\tilde{\Lambda} = \mathbb{E}_k[\operatorname{Dec}_k \circ \Lambda \circ \operatorname{Enc}_k]$$



Mallory can decide whether to intervene or not

- Mallory can decide whether to intervene or not
- example:

$$\Lambda_{C \to C\tilde{B}} = p \operatorname{id}_{C} \otimes |0\rangle \langle 0|_{\tilde{B}} + (1-p)U_{C}(\cdot)U_{C}^{\dagger} \otimes |1\rangle \langle 1|_{\tilde{B}},$$

Mallory tampers with the message with probability 1 - p, and records her choice.

Mallory can decide whether to intervene or not

example:

$$\Lambda_{C \to C\tilde{B}} = p \operatorname{id}_{C} \otimes |0\rangle \langle 0|_{\tilde{B}} + (1-p)U_{C}(\cdot)U_{C}^{\dagger} \otimes |1\rangle \langle 1|_{\tilde{B}},$$

Mallory tampers with the message with probability 1 - p, and records her choice.

definition:

$$p_{=}(\Lambda_{CB\to C\tilde{B}}, \rho) = \operatorname{tr} \left[(\phi^{+}_{CC'} \otimes \mathbb{1}_{\tilde{B}}) \Lambda_{CB\to C\tilde{B}} (\phi^{+}_{CC'} \otimes \rho_{B}) \right]$$
$$= F(\operatorname{tr}_{\tilde{B}} \Lambda_{CB\to C\tilde{B}} (\phi^{+}_{CC'} \otimes \rho_{B}), \phi^{+}_{CC'})^{2}$$

Mallory can decide whether to intervene or not

example:

$$\Lambda_{C \to C\tilde{B}} = p \operatorname{id}_{C} \otimes |0\rangle \langle 0|_{\tilde{B}} + (1-p)U_{C}(\cdot)U_{C}^{\dagger} \otimes |1\rangle \langle 1|_{\tilde{B}},$$

Mallory tampers with the message with probability 1 - p, and records her choice.

definition:

$$p_{=}(\Lambda_{CB\to C\tilde{B}}, \rho) = \operatorname{tr}\left[(\phi_{CC'}^{+} \otimes \mathbb{1}_{\tilde{B}})\Lambda_{CB\to C\tilde{B}}(\phi_{CC'}^{+} \otimes \rho_{B})\right]$$
$$= F(\operatorname{tr}_{\tilde{B}}\Lambda_{CB\to C\tilde{B}}(\phi_{CC'}^{+} \otimes \rho_{B}), \phi_{CC'}^{+})^{2}$$

"probability of Λ acting as the identity on C"

Mallory can decide whether to intervene or not

example:

$$\Lambda_{C \to C\tilde{B}} = p \operatorname{id}_{C} \otimes |0\rangle \langle 0|_{\tilde{B}} + (1-p)U_{C}(\cdot)U_{C}^{\dagger} \otimes |1\rangle \langle 1|_{\tilde{B}},$$

Mallory tampers with the message with probability 1 - p, and records her choice.

definition:

$$p_{=}(\Lambda_{CB\to C\tilde{B}}, \rho) = \operatorname{tr}\left[(\phi_{CC'}^{+} \otimes \mathbb{1}_{\tilde{B}})\Lambda_{CB\to C\tilde{B}}(\phi_{CC'}^{+} \otimes \rho_{B})\right]$$
$$= F(\operatorname{tr}_{\tilde{B}}\Lambda_{CB\to C\tilde{B}}(\phi_{CC'}^{+} \otimes \rho_{B}), \phi_{CC'}^{+})^{2}$$

▶ "probability of Λ acting as the identity on C" ⇒ $p_{=}(\Lambda) = p$ for the example if $tr(U_C) = 0$.

New definition

 idea: define NM such that Mallory cannot increase her correlations with the honest parties, except by the unavoidable attack

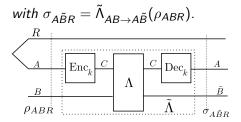
New definition

 idea: define NM such that Mallory cannot increase her correlations with the honest parties, except by the unavoidable attack

Definition (Quantum non-malleability (qNM))

A scheme $\Pi = (\text{Enc}_k, \text{Dec}_k)$ is non-malleable, if for all states ρ_{ABR} and all attacks $\Lambda_{CB \to C\tilde{B}}$,

$$I(AR: ilde{B})_\sigma \leq I(AR:B)_
ho$$



New definition

 idea: define NM such that Mallory cannot increase her correlations with the honest parties, except by the unavoidable attack

Definition (Quantum non-malleability (qNM))

A scheme $\Pi = (\text{Enc}_k, \text{Dec}_k)$ is non-malleable, if for all states ρ_{ABR} and all attacks $\Lambda_{CB \to C\tilde{B}}$,

$$I(AR:\tilde{B})_{\sigma} \leq I(AR:B)_{\rho} + h(p_{=}(\Lambda,\rho)),$$
with $\sigma_{A\tilde{B}R} = \tilde{\Lambda}_{AB \to A\tilde{B}}(\rho_{ABR}).$

$$R$$

$$R$$

$$Enc_{k} C$$

$$A$$

$$C$$

$$B$$

$$B$$

$$P_{ABR}$$

$$P_$$

Comparison to previous definition

Definition (ABW-NM, Ambainis, Bouda, Winter '09) Let $\Pi = (\text{Enc}_k, \text{Dec}_k)$ be a quantum encryption scheme. Π is ABW-NM if

$$\mathbb{E}_{k}\left[-\underbrace{\operatorname{Enc}_{k}}{}-\underline{\Lambda}-\underbrace{\operatorname{Dec}_{k}}{}\right] = p\left(\underline{A}-\underline{h}\right) + (1-p)\left(\underline{A}-\underline{h} \\ = \mathbb{E}_{k}\left[-\underbrace{\operatorname{Dec}_{k}}{}-\underline{h}\right]\right),$$

for some probability p.

Comparison to previous definition

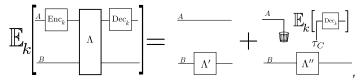
Definition (ABW-NM, Ambainis, Bouda, Winter '09) Let $\Pi = (\text{Enc}_k, \text{Dec}_k)$ be a quantum encryption scheme. Π is ABW-NM if

$$\mathbb{E}_{k}\left[-\underbrace{\operatorname{Enc}_{k}}{}-\underline{\Lambda}-\underbrace{\operatorname{Dec}_{k}}{}\right] = p\left(\underline{A}_{-}\right)+(1-p)\left(\underline{A}_{-}\right)\mathbb{E}_{k}\left[\left[\underline{\Gamma}_{\operatorname{Dec}_{k}}\right]\right),$$

for some probability p.

Theorem (Alagic, CM)

Let $\Pi = (\mathrm{Enc}_k, \mathrm{Dec}_k)$ be a quantum encryption scheme. Π is qNM if and only if



where Λ' and Λ'' are explicitly given in terms of Λ .

The new definition

- ... allows adversaries with side information
- ... prevents plaintext injection attack
- ... provides *ciphertext* non-malleability

while ABW-NM does not.

! Unitary encryption maps: qNM⇔ {Enc_k}_k is unitary 2-design ! Unitary encryption maps:
 qNM⇔ {Enc_k}_k is unitary 2-design(⇔ ABW-NM, Ambainis et al.)

- ! Unitary encryption maps: $qNM \Leftrightarrow \{Enc_k\}_k$ is *unitary 2-design*($\Leftrightarrow ABW-NM$, Ambainis et al.)
- non-unitary schemes are interesting, e.g. for authentication.

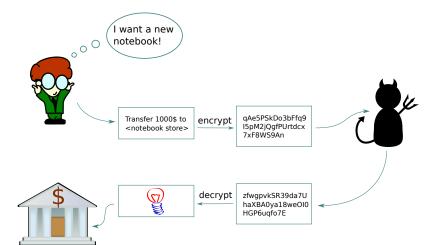
- ! Unitary encryption maps: qNM⇔ {Enc_k}_k is unitary 2-design(⇔ ABW-NM, Ambainis et al.)
- non-unitary schemes are interesting, e.g. for authentication.
- ! qNM \Rightarrow information theoretic IND

- ! Unitary encryption maps: qNM⇔ {Enc_k}_k is unitary 2-design(⇔ ABW-NM, Ambainis et al.)
- non-unitary schemes are interesting, e.g. for authentication.
- ! qNM \Rightarrow information theoretic IND
- qNM serves as primitive for quantum authentication schemes
 ⇒ last part of the talk

	ABW-NM	qNM
assumes secrecy	\checkmark	×
implies secrecy	X	\checkmark
secure against plaintext injection	X	\checkmark
primitive for authentication	X	\checkmark

Authentication

Authentication



First studied by Barnum et al. '02

- First studied by Barnum et al. '02
- Most used definition by Dupuis, Nielsen and Salvail '10

- First studied by Barnum et al. '02
- Most used definition by Dupuis, Nielsen and Salvail '10
- New definition by Garg, Yuen and Zhandry '16:

- First studied by Barnum et al. '02
- Most used definition by Dupuis, Nielsen and Salvail '10
- New definition by Garg, Yuen and Zhandry '16:

Definition (GYZ Authentication; Garg, Yuen and Zhandry) $\Pi = (\text{Enc}_k, \text{Dec}_k) \text{ is } \varepsilon\text{-}GYZ\text{-}authenticating if, for any attack}$ $\Lambda_{CB \to CB'}, \text{ there exists } \Lambda_{B \to \tilde{B}}^{acc} \text{ such that for all } \rho_{AB}$

$$\mathbb{E}_{k}\left[\left\| \mathsf{\Pi}_{\mathsf{acc}}\left[\operatorname{Dec}_{k} \circ \mathsf{\Lambda} \circ \operatorname{Enc}_{k}(\rho_{\mathsf{AB}})\right] \mathsf{\Pi}_{\mathsf{acc}} - \left(\operatorname{id}_{\mathsf{A}} \otimes \mathsf{\Lambda}^{\mathsf{acc}}\right)(\rho_{\mathsf{AB}})\right\|_{1}\right] \leq \varepsilon$$

with $\Pi_{acc} = \mathbb{1} - \bot$. R $Enc_k C$ Λ B \tilde{B} \tilde{A}

GYZ authenticating scheme from 8-designs (GYZ '16)

- ▶ GYZ authenticating scheme from 8-designs (GYZ '16)
- Using representation-theoretic analysis:

Adding a constant tag to a quantum message and applying a random element from a 2-design provides GYZ authentication.

- ▶ GYZ authenticating scheme from 8-designs (GYZ '16)
- Using representation-theoretic analysis:

Adding a constant tag to a quantum message and applying a random element from a 2-design provides GYZ authentication.

Independently proven by Portmann '16

- ▶ GYZ authenticating scheme from 8-designs (GYZ '16)
- Using representation-theoretic analysis:

Adding a constant tag to a quantum message and applying a random element from a 2-design provides GYZ authentication.

- Independently proven by Portmann '16
- advantages: shorter keys, nice constructions (Clifford group)

consider pure states and attack isometries (Stinespring)

$$\Gamma^V_{B\to\tilde{B}} = \operatorname{tr}_C V_{CB\to C\tilde{B}}$$

$$\Gamma^{V}_{B\to\tilde{B}} = \operatorname{tr}_{C} V_{CB\to C\tilde{B}}$$

same simulator as used by GYZ, introduced by Broadbent and Wainewright '16

$$\Gamma^{V}_{B\to\tilde{B}} = \operatorname{tr}_{C} V_{CB\to C\tilde{B}}$$

same simulator as used by GYZ, introduced by Broadbent and Wainewright '16 $\,$

want to bound

$$\mathbb{E}_{k}\left[\left\|\left\langle 0\right|_{T}U_{k}^{\dagger}VU_{k}\left(\left|\psi\right\rangle_{AB}\otimes\left|0\right\rangle_{T}\right)-\mathsf{\Gamma}^{V}\left|\psi\right\rangle_{AB}\right\|_{2}^{2}\right]$$

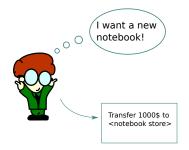
$$\Gamma^{V}_{B\to\tilde{B}} = \operatorname{tr}_{C} V_{CB\to C\tilde{B}}$$

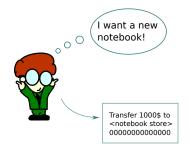
same simulator as used by GYZ, introduced by Broadbent and Wainewright '16 $\,$

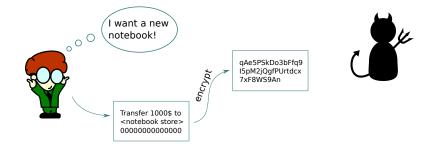
want to bound

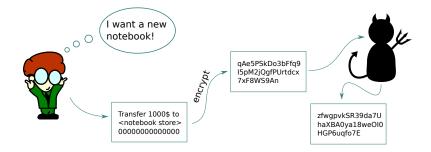
$$\mathbb{E}_{k}\left[\left\|\left\langle 0\right|_{\mathcal{T}}U_{k}^{\dagger}VU_{k}\left(\left|\psi\right\rangle_{AB}\otimes\left|0\right\rangle_{\mathcal{T}}\right)-\mathsf{\Gamma}^{V}\left|\psi\right\rangle_{AB}\right\|_{2}^{2}\right]$$

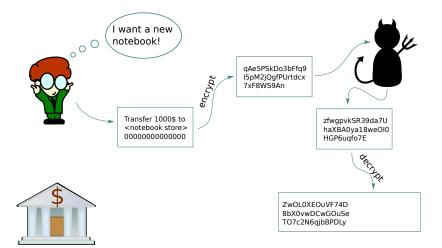
Use "swap trick" $trA_XB_X = trS_{XX'}A_X \otimes B_{X'}$ and Schur's lemma for $U \mapsto U \otimes U$

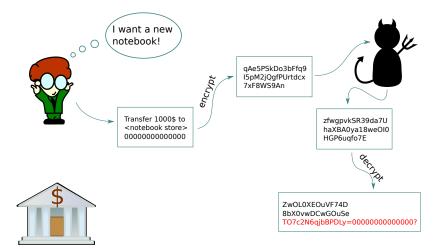


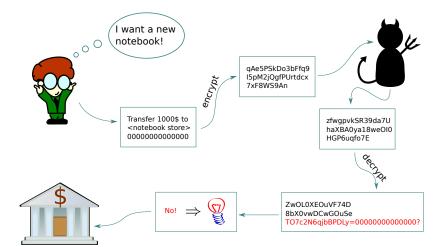












Adding a constant tag to a quantum message and encrypting it with an qNM scheme achieves DNS-authentication

$\checkmark\,$ DNS authentication from qNM schemes via tagging $\checkmark\,$ GYZ authentication from 2-designs instead of 8-designs

Open questions

Computational security?

Current work with Christian Majenz and Tommaso Gagliardoni Can we improve the Λ -dependence of NM?

NM with high probability?