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I What cryptographic security notions would fix this problem?
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Summary of Results

New definition of information-theoretic quantum non-malleability
which

I fixes a vulnerability allowed by the previous definition

I implies secrecy, analogously to quantum authentication

I serves as a primitive for building quantum authentication

I has both a simulation-based and an entropic characterization

♠ Additional result: The new definition of quantum
authentication with key recycling by Garg, Yuen, Zhandry, ’16,
can be fulfilled using unitary 2-designs.
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Non-malleability
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classical non-malleability (NM)

I NM first defined in the context of public key cryptography
(Dolev, Dwork, Naor ’95):

Definition (informal)

An encryption scheme is non-malleable if for any relation R on
plaintexts, getting an encryption of x does not help with producing
an encryption of x ′ 6= x such that R(x , x ′).

Example: Adversary wants to increase amount, relation is “≤”

I Information theoretic definition using entropy:

(X ,C ), (X̃ , C̃ ) two plaintext ciphertext pairs, C 6= C̃

def: scheme is NM if I (X̃ : C̃ |XC ) = 0 (Hanaoka et al. ’02)
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the no-cloning problem

I Classical NM:
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the no-cloning problem

I Quantum NM:

No Cloning!
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Quantum symmetric key encryption

def: Quantum encryption scheme: (Enck ,Deck)

I classical uniformly random key k

I encryption map (Enck)A→C , decryption map (Deck)C→Ā

I HĀ = HA ⊕ C |⊥〉
I correctness: Deck ◦ Enck = idA
I average encryption map: EncK = EkEnck

8 / 24



Quantum symmetric key encryption

def: Quantum encryption scheme: (Enck ,Deck)

I classical uniformly random key k

I encryption map (Enck)A→C , decryption map (Deck)C→Ā
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Setup for q-non-malleability

I Recall: classical non-malleability setup

I add reference system
I allow side info for adversary

def: effective map on plaintexts and side info
Λ̃ = Ek [Deck ◦ Λ ◦ Enck ]

Alice Bob

Mallory
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The unavoidable attack

I Mallory can decide whether to intervene or not

I example:

ΛC→CB̃ = p idC ⊗ |0〉〈0|B̃ + (1− p)UC (·)U†
C ⊗ |1〉〈1|B̃ ,

Mallory tampers with the message with probability 1− p, and
records her choice.

I definition:

p=(ΛCB→CB̃ , ρ) =tr
[
(φ+

CC ′ ⊗ 1B̃)ΛCB→CB̃(φ+
CC ′ ⊗ ρB)

]
=F (trB̃ΛCB→CB̃(φ+

CC ′ ⊗ ρB), φ+
CC ′)

2

I ”probability of Λ acting as the identity on C”

⇒ p=(Λ) = p for the example if tr(UC ) = 0.
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New definition

I idea: define NM such that Mallory cannot increase her
correlations with the honest parties, except by the unavoidable
attack

p=(Λ, ρ) =F (tr
B̃

Λ
CB→CB̃

(|φ+〉〈φ+|CC′ ⊗ ρB ),

|φ+〉〈φ+|CC′ )2
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Comparison to previous definition

Definition (ABW-NM, Ambainis, Bouda, Winter ’09)

Let Π = (Enck ,Deck) be a quantum encryption scheme. Π is
ABW-NM if

,

for some probability p.

Theorem (Alagic, CM)

Let Π = (Enck ,Deck) be a quantum encryption scheme. Π is
qNM if and only if

,

where Λ′ and Λ′′ are explicitly given in terms of Λ.
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Improvements

The new definition

... allows adversaries with side information

... prevents plaintext injection attack

... provides ciphertext non-malleability

while ABW-NM does not.
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More Properties

! Unitary encryption maps:
qNM⇔ {Enck}k is unitary 2-design

(⇔ ABW-NM, Ambainis
et al.)

I non-unitary schemes are interesting, e.g. for authentication.

! qNM ⇒ information theoretic IND

I qNM serves as primitive for quantum authentication schemes
⇒ last part of the talk
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Summary non-malleability

ABW-NM qNM

assumes secrecy

implies secrecy

secure against plaintext injection

primitive for authentication
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Authentication
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Authentication

I want a new
notebook!

Transfer 1000$ to
<notebook store>

encrypt

decrypt

qAe5PSkDo3bFfq9
I5pM2jQgfPUrtdcx
7xF8WS9An

zfwgpvkSR39da7U
haXBA0ya18weOI0
HGP6uqfo7E
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Quantum authentication

I First studied by Barnum et al. ’02

I Most used definition by Dupuis, Nielsen and Salvail ’10

I New definition by Garg, Yuen and Zhandry ’16:

Definition (GYZ Authentication; Garg, Yuen and Zhandry)

Π = (Enck ,Deck) is ε-GYZ-authenticating if, for any attack
ΛCB→CB′ , there exists Λacc

B→B̃
such that for all ρAB

Ek

[∥∥∥Πacc [Deck ◦ Λ ◦ Enck(ρAB)] Πacc −
(
idA ⊗ Λacc

)
(ρAB)

∥∥∥
1

]
≤ ε

with Πacc = 1−⊥.
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GYZ-authentication with 2-designs

I GYZ authenticating scheme from 8-designs (GYZ ’16)

I Using representation-theoretic analysis:

Theorem (Alagic, CM)

Adding a constant tag to a quantum message and applying a
random element from a 2-design provides GYZ authentication.

I Independently proven by Portmann ’16

I advantages: shorter keys, nice constructions (Clifford group)
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Proof sketch

consider pure states and attack isometries (Stinespring)

Simulator for an attack isometry VCB→CB̃ :

ΓV
B→B̃

= trCVCB→CB̃

same simulator as used by GYZ, introduced by Broadbent and
Wainewright ’16

want to bound

Ek

[∥∥∥〈0|T U†
kVUk (|ψ〉AB ⊗ |0〉T )− ΓV |ψ〉AB

∥∥∥2

2

]
Use ”swap trick” trAXBX = trSXX ′AX ⊗ BX ′ and Schur’s
lemma for U 7→ U ⊗ U
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Ek

[∥∥∥〈0|T U†
kVUk (|ψ〉AB ⊗ |0〉T )− ΓV |ψ〉AB

∥∥∥2

2

]
Use ”swap trick” trAXBX = trSXX ′AX ⊗ BX ′ and Schur’s
lemma for U 7→ U ⊗ U

20 / 24



Authentication from NM: Intuition

I want a new
notebook!

Transfer 1000$ to
<notebook store>

21 / 24



Authentication from NM: Intuition

I want a new
notebook!

Transfer 1000$ to
<notebook store>
00000000000000

21 / 24



Authentication from NM: Intuition

I want a new
notebook!

Transfer 1000$ to
<notebook store>
00000000000000

en
cr

yp
t

qAe5PSkDo3bFfq9
I5pM2jQgfPUrtdcx
7xF8WS9An

21 / 24



Authentication from NM: Intuition

I want a new
notebook!

Transfer 1000$ to
<notebook store>
00000000000000

en
cr

yp
t

qAe5PSkDo3bFfq9
I5pM2jQgfPUrtdcx
7xF8WS9An

zfwgpvkSR39da7U
haXBA0ya18weOI0
HGP6uqfo7E

21 / 24



Authentication from NM: Intuition

I want a new
notebook!

Transfer 1000$ to
<notebook store>
00000000000000

en
cr

yp
t

decrypt

qAe5PSkDo3bFfq9
I5pM2jQgfPUrtdcx
7xF8WS9An

zfwgpvkSR39da7U
haXBA0ya18weOI0
HGP6uqfo7E

ZwOL0XEOuVF74D
8bX0vwDCwGOuSe
TO7c2N6qjbBPDLy

21 / 24



Authentication from NM: Intuition

I want a new
notebook!

Transfer 1000$ to
<notebook store>
00000000000000

en
cr

yp
t

decrypt

qAe5PSkDo3bFfq9
I5pM2jQgfPUrtdcx
7xF8WS9An

zfwgpvkSR39da7U
haXBA0ya18weOI0
HGP6uqfo7E

ZwOL0XEOuVF74D
8bX0vwDCwGOuSe
TO7c2N6qjbBPDLy=00000000000000?

21 / 24



Authentication from NM: Intuition

I want a new
notebook!

Transfer 1000$ to
<notebook store>
00000000000000

en
cr

yp
t

decrypt

qAe5PSkDo3bFfq9
I5pM2jQgfPUrtdcx
7xF8WS9An

zfwgpvkSR39da7U
haXBA0ya18weOI0
HGP6uqfo7E

ZwOL0XEOuVF74D
8bX0vwDCwGOuSe
TO7c2N6qjbBPDLy=00000000000000?

No!

21 / 24



Authentication from qNM

Theorem (Alagic, CM)

Adding a constant tag to a quantum message and encrypting it
with an qNM scheme achieves DNS-authentication
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Summary authentication

DNS authentication from qNM schemes via tagging

GYZ authentication from 2-designs instead of 8-designs
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Open questions

Current work with
Christian Majenz and
Tommaso Gagliardoni
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