

Characterizations of symmetric partial Boolean functions with exact quantum query complexity ——Deutsch-Jozsa Problem

Daowen Qiu

School of Data and Computer Science Sun Yat-sen University, China Joint work with Shenggen Zheng arXiv:1603.06505(Qiu and Zheng)

2017AQIS

September 4-8, 2017, NUS, Singapore

Abstract

In this talk, I would like to report a recent work regarding:

1. An optimal exact quantum query algorithm for generalized Deutsch-Jozsa problem

2. The characterization of all symmetric partial Boolean functions with exact quantum 1-query complexity

Basic background

- Discover more problems to show that quantum computing is more powerful than classical computing
- These problems have the potential of applications in other areas such as cryptography.

Outline

- >1. Motivations, Problems, Results
- ≻2. Preliminaries
- **≻3. Main Results**
- ≻4. Methods of Proofs
- ≻5. Conclusions & Further Problems

1. Motivations, Problems, Results

>(1) Generalized Deutsch-Jozsa

>(2) Problems with exact quantum 1-query complexity

Motivation I

➤ The Deutsch-Jozsa promise problem [DJ'92]: $x \in \{0,1\}^n, |x| \text{ is the Hamming weight of } x,$ $DJ(x) = \begin{cases} 0 & if |x| = 0 \text{ or } |x| = n \\ 1 & if |x| = n/2 \end{cases}$ $Q_E(DJ) = 1, D(DJ) = \frac{n}{2} + 1$ $DJ_n^1 = \begin{cases} 0 & if |x| \le 1 \text{ or } |x| \ge n-1 \\ 1 & if |x| = n/2 \end{cases}$ [MJM'15]

[DJ'92] D. Deutsch, R. Jozsa, Rapid solution of problems by quantum computation, In Proceedings of the Royal Society of London, 439A (1992): 553—558.

[MJM'15] A. Montanaro, R. Jozsa, G. Mitchison, On exact quantum query complexity, Algorithmica**419** (2015) 775--796.

 $Q_F(DI_n^1) \leq 2$

Problem I

$$> DJ_n^k = \begin{cases} 0 & if |\mathbf{x}| \le k & or |\mathbf{x}| \ge n-k \\ 1 & if |\mathbf{x}| = n/2 \end{cases}$$
?

Our result:

Theorem 1 $Q_E(DJ_n^k) = k + 1$ and $D(DJ_n^k) = n/2 + k + 1$.

Motivation II

Deutsch-Jozsa problem that is a symmetric partial Boolean function can be solved by DJ algorithm (exact quantum 1-query algorithm). Then how to characterize the other symmetric partial Boolean functions with exact quantum 1query complexity? Can such functions be solved by DJ algorithm?

Problem and Result II

What can be solved with exact quantum 1-query complexity?

>Our result:

Theorem 2 Any symmetric partial Boolean function f has Q_E(f) = 1 if and only if f can be computed by the Deutsch-Jozsa algorithm.

Preliminaries

- **Symmetric partial Boolean functions**
- Classical query complexity
- > Quantum query complexity
- > Multilinear polynomials

Symmetrical partial Boolean functions

- Let f be a Boolean function from D ⊆ {0,1}ⁿ to {0,1}. If D = {0,1}ⁿ, then f is called a total Boolean function. Otherwise, f is called a partial Boolean function or a promise problem.
- ➤ A Boolean function f is called symmetric if f(x) only depends on the Hamming weight (i.e. |x|) of x, that is, if |x| = |y|, then f(x) = f(y).
- Given a partial Boolean function f with its domain of definition D ⊆ {0,1}ⁿ, if for any x ∈ D, and y ∈ {0,1}ⁿ, with |x| = |y|, we have y ∈ D, and f(x) = f(y), then f is called a symmetrical partial Boolean function.

Representation of symmetric partial Boolean functions

- ➢ Given a partial symmetric function $f: \{0,1\}^n \rightarrow \{0,1\}$, with the domain *D* of definition, it can be equivalently described by a vector $(b_0, b_1, ..., b_n) \in \{0,1,*\}^{n+1}$, where $f(x) = b_{|x|}$, i.e. b_k is the value of f(x) when |x| = k, and f(x) is `undefined' for $b_{|x|} = *$.
- Example
 - $f(x) = x_1 \lor x_2 \qquad b = (b_0, b_1, b_2) = (0,1,1)$ $f(x) = x_1 \land x_2 \qquad b = (b_0, b_1, b_2) = (0,0,1)$

Isomorphism of symmetric partial Boolean functions

- Two symmetric partial functions f and g over {0,1}ⁿ are isomorphic if they are equal up to negations and permutations of the input variables, and negation of the output variable.
- Concerning the *n*-bit symmetric partial functions, it is clear that the following four functions are isomorphic to each other:

$$\begin{array}{ll} (b_0, b_1, \dots, b_n); & (b_n, b_{n-1}, \dots, b_0); \\ (\overline{b}_0, \overline{b}_1, \dots, \overline{b}_n); & (\overline{b}_n, \overline{b}_{n-1}, \dots, \overline{b}_0). \end{array}$$

Another simple example:

$$f(x) = x_1 \lor x_2 \qquad b = (b_0, b_1, b_2) = (0, 1, 1)$$

$$g(x) = x_1 \land x_2 \qquad b = (b_0, b_1, b_2) = (0, 0, 1)$$

Classical query complexity

- An exact classical (deterministic) query algorithm to compute a Boolean function f: {0,1}ⁿ → {0,1} can be described by a decision tree.
- ➢ If the output of a decision tree is f(x), for all x ∈ {0,1}ⁿ, the decision tree is said to "compute" f. The depthof a tree is the maximum number of queries that can happen before a leaf is reached and a result obtained.
- D(f), the deterministic decision tree complexity of f is
 the smallest depth among all deterministic decision trees
 that compute f.

Example

- Deterministic query complexity
 (how many times we need to query the input bits)
- Example: $f(x_1, x_2) = x_1 \bigoplus x_2$ 0 x_1 x_2 x_3 x_4 x_2 x_2 x_3 x_4 x_2 x_3 x_4 x_2 x_3 x_4 x_5 x_5

Decision tree

The minimal depth over all decision trees computing f is the exact classical query complexity (deterministic query complexity, decision tree complexity) D(f).

0

Quantum query algorithms

> Quantum T -query algorithm (its complexity is T)
 f: {0,1}ⁿ → {0,1}, input bit string x = x₁ … x_n
 We consider a Hilbert space H with basis state |i, j> for
 i ∈ {0,1,...,n}, j ∈ {1,...,m} (m can be chosen arbitrarily)
 A T-query quantum algorithm:

 $|\psi_f\rangle = U_T Q_x U_{T-1} Q_x \cdots Q_x U_1 Q_x U_0 |\psi_s\rangle,$

A *T*-query quantum algorithm:

$$|\psi_f\rangle = U_T Q_x U_{T-1} Q_x \cdots Q_x U_1 Q_x U_0 |\psi_s\rangle,$$

and then the algorithm performs a measurement,

where

$$Q_{x}|i,j\rangle = (-1)^{x_{i}}|i,j\rangle \text{ for } i \in \{1, \dots, n\}$$
$$Q_{x}|0,j\rangle = |0,j\rangle$$

$$|i,j\rangle \rightarrow Q_{\chi} \rightarrow (-1)^{x_i}|i,j\rangle$$

Deutsch-Jozsa's query box, Grover's query box

$$|i\rangle \rightarrow Q_{x} \rightarrow (-1)^{x_{i}}|i\rangle$$

Quantum query complexity

The final state is then measured with a measurement $\{M_0, M_1\}$. For an input $x \in \{0,1\}^n$, we denote A(x) the output of the quantum query algorithm A.

- ➤ We say that the quantum query algorithm A computes f within an error ε if for every input x ∈ {0,1}ⁿ it holds that $Pr[A(x) = f(x)] \ge 1 - ε.$
- > If ε =0, we says that the quantum algorithm is **exact**.
- ▶ $Q_{\varepsilon}(f), Q(f), Q_{E}(f)$ are the smallest T among all quantum query algorithms that compute f (with error ε , bounded-error, exact, respectively).

Multilinear polynomials

Every Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ has a unique representation as an *n*-variate multilinear polynomial over the reals, i.e., there exist real coefficients a_s such that

$$f(x_1, \dots, x_n) = \sum_{S \subseteq [n]} a_S \prod_{i \in S} x_i$$

The degree of f is the degree of its largest monomial: $deg(f) = max\{|S|: a_S \neq 0\}.$ For example, $AND_2(x_1, x_2) = x_1 \cdot x_2$ and $OR_2(x_1, x_2) = x_1 + x_2 - x_1 \cdot x_2.$

Multilinear polynomials representing

- Let f be a partial function with a domain of definition D ⊆ {0,1}ⁿ. For 0 ≤ ε < 1/2, we say a real multilinear polynomial p approximates f with error ε if:
 (1) |p(x) f(x)| ≤ ε for all x ∈ D;
 (2) 0 ≤ p(x) ≤ 1 for all x ∈ {0,1}ⁿ.
- The approximate degree of f with error ε, denoted by deg_ε(f), is the minimum degree among all real multilinear polynomials that approximate f with error ε. In particular,

 $\widetilde{deg}_0(f) \triangleq \deg(f)$

Methods of Proofs

We would like to outline the basic ideas and methods for the proofs of main results.

$$DJ_n^k = \begin{cases} 0 & if|x| \le k \text{ or } |x| \ge n-k \\ 1 & if|x| = n/2 \end{cases}$$

Theorem 1
$$Q_E(DJ_n^k) = k + 1$$
 and $D(DJ_n^k) = \frac{n}{2} + k + 1$.
Proof method:

- Using the exact quantum query algorithms for computing $EXACT_n^k$ and due to Ambainis *et al.* (TQC'13), we can give an exact quantum (k + 1)-query algorithm for computing DJ_n^k
- On the other hand, we will prove that $deg(DJ_n^k) \ge 2k + 2$, and therefore

$$Q_E(DJ_n^k) \ge \deg(DJ_n^k)/2 = k+1$$

 $Q_E(DJ_n^k) \le k+1$

Subroutine: Xquery(m, x) [from Ambainis *et al.* (TQC'13)

Input:
$$x = x_1, x_2, ..., x_m$$
.
Output: $(0,0) \Rightarrow |x| \neq \frac{m}{2}$
 $(i,j) \Rightarrow x_i \neq x_j$

Algorithm 2 Algorithm for DJ_n^k

1:	procedure $DJ($ integer n , integer k , array x
2:	integer l:=1
3:	while $l \leq k$ do
4:	$\text{Output} \leftarrow \mathbf{X}\mathbf{query}(n, x)$
5:	if Output=(0,0) then return 0
6:	end if
7:	if Output=(i, j) then
8:	$x \leftarrow x \setminus \{x_i, x_j\}$
9:	$l \leftarrow l + 1$
10:	$n \leftarrow n-2$
11:	end if
12:	end while
13:	$\textbf{Output} \leftarrow \textbf{Xquery}(n, x)$
14:	if Output=(0,0) then return 0
15:	end if
16:	if Output=(i, j) then return 1
17:	end if
18:	end procedure

 $\deg(DJ_n^k) \ge 2k+2$

Lemma: For any symmetrically partial Boolean function f over $\{0,1\}^n$ with domain of definition D, suppose $\deg_{\varepsilon}(f) = d$. Then there exists a real multilinear polynomial q approximates f with error ε and q can be written as

 $q(x) = c_0 + c_1 V_1 + c_2 V_2 + \dots + c_d V_d,$ where $c_i \in R, V_1 = x_1 + \dots + x_n, V_2 = x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n, \dots$

Suppose that $\deg(DJ_n^k) \le 2k + 1$. Then we can get a contradiction. So, $\deg(DJ_n^k) \ge 2k + 2$ follows.

Theorem: $Q_E(f) = 1$ if and only if f can be computed by DJ algorithm

Lemma 1 Let n > 1 and let $f: \{0,1\}^n \rightarrow \{0,1\}$ be an n-bit symmetrically partial Boolean function. Then:

(1) deg(f) = 1 iff f is isomorphic to the function $f_{n,n}^{(1)}$

(2) $\deg(f) = 2$ iff f is isomorphic to one of the functions

$$\begin{aligned} f_{n,k}^{(1)}(x) &= \begin{cases} 0 & \text{if } |x| = 0, \\ 1 & \text{if } |x| = k, \end{cases} & f_{n,l}^{(3)}(x) = \begin{cases} 0 & \text{if } |x| = 0 \text{ or } |x| = n, \\ 1 & \text{if } |x| = l, \end{cases} \\ f_{n,k}^{(2)}(x) &= \begin{cases} 0 & \text{if } |x| = 0, \\ 1 & \text{if } |x| = k \text{ or } |x| = k+1, \end{cases} & f_{n}^{(4)}(x) = \begin{cases} 0 & \text{if } |x| = 0 \text{ or } |x| = n, \\ 1 & \text{if } |x| = k \text{ or } |x| = k+1, \end{cases} & f_{n}^{(4)}(x) = \begin{cases} 0 & \text{if } |x| = 0 \text{ or } |x| = n, \\ 1 & \text{if } |x| = \lfloor n/2 \rfloor \text{ or } |x| = \lceil n/2 \rceil, \end{aligned} \end{aligned}$$

where $n-1 \ge k \ge \lfloor n/2 \rfloor$, and $\lfloor n/2 \rfloor \ge l \ge \lfloor n/2 \rfloor$.

Two Lemmas

> Lemma. Let n be even. Then QE(f) = 1 if and only if f is isomorphic to one of these functions: $f_{n,k}^{(1)}$ and $f_{n,n/2}^{(3)}$, $k \ge \frac{n}{2}$. > Lemma. Let n be odd. Then QE(f) = 1 if and only if f is isomorphic to one of these functions: $f_{n,k}^{(1)}$, $k \ge [n/2]$.

Equivalence transformation

Indeed, these functions with exact quantum 1query complexity can be essentially transformed into DJ problem by padding some zeros into the input string. So, QE(f) = 1 if and only if f can be computed by DJ algorithm.

Conclusions

>
$$DJ_n^k = \begin{cases} 0 & if |x| ≤ k & or |x| ≥ n - k \\ 1 & if |x| = n/2 \end{cases}$$

Theorem. $Q_E(DJ_n^k) = k + 1 \text{ and } D(DJ_n^k) = n/2 + k + 1.$

Theorem. Any symmetric partial Boolean function f has $Q_E(f) = 1$ if and only if f can be computed by the Deutsch-Jozsa algorithm.

Theorem. Any classical deterministic algorithm that solves Simon's problem requires $\Omega(\sqrt{2^n})$ queries.

Problems

- Let f: {0,1}ⁿ → {0,1} be an n-bit symmetric partial Boolean function with domain of definition D, and let $0 \le k < \lfloor \frac{n}{2} \rfloor$. Then, for $2k + 1 \le \deg(f) \le 2(k + 1)$, how to characterize f by giving all functions with degrees from 2k + 1 to 2k + 2?
- > For the function $DW_n^{k,l}$ defined as:

$$DW_{n}^{k,l}(x) = \begin{cases} 0 & \text{if } |x| = k, \\ 1 & \text{if } |x| = l, \end{cases}$$

can we give optimal exact quantum query algorithms for any k and l?

Thank you for your attention !