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Abstract

In this talk, I would like to report a recent work
regarding:
1. An optimal exact quantum query algorithm
for generalized Deutsch-Jozsa problem

2. The characterization of all symmetric
partial Boolean functions with exact quantum
1-query complexity
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Basic backgrounad

» Discover more problems to show that
guantum computing i1s more powerful than
classical computing

» These problems have the potential of
applications in other areas such as

cryptography.
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Outline
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1. Motivations, Problems,
Results

» (1) Generalized Deutsch-Jozsa

» (2) Problems with exact quantum 1-query
complexity
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Motivation |

» The Deutsch-Jozsa promise problem [DJ'92]:
x € {0,1}", |x| is the Hamming weight of x,

(0 iflx|=0o0r|x| =n
Dj(x) = {1 if x| = n/2

0:(D)) = 1,D(D)) = +1

0 ifIx[<1orlxl=zn—-1 ,
>D],g:{1 flx if|x|=|7|1/2 [MIM'15]

Qe(DJp) <2

[DJ92] D. Deutsch, R. Jozsa, Rapid solution of problems by quantum
computation, In Proceedings of the Royal Society of London, 439A
(1992): 553—558.

[MIM’15] A. Montanaro, R. Jozsa, G. Mitchison, On exact quantum query
complexity, Algorithmica419 (2015) 775--796.
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Problem |

k(0 iflxI<kor|x|zn—-k 9
” DJn = {1 if|x| =n/2 |

»Our result:
Theorem1 Qgz(DJ¥) =k +1andD(DJ¥) =n/2+k + 1.




Motivation Il

Deutsch-Jozsa problem that is a symmetric
partial Boolean function can be solved by DJ
algorithm (exact quantum 1-query algorithm).
Then how to characterize the other symmetric
partial Boolean functions with exact quantum 1-
query complexity? Can such functions be solved
by DJ algorithm?
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Problem and Result Il

» What can be solved with exact quantum 1-query
complexity?

> Our result:

» Theorem 2 Any symmetric partial Boolean function f has
Qr(f) = 1if and only if f can be computed by the Deutsch-
Jozsa algorithm.
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Preliminaries

» Symmetric partial Boolean functions
» Classical guery complexity

» Quantum query complexity

» Multilinear polynomials
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Symmetrical partial
Boolean functions

» Let f be a Boolean function from D < {0,1}" to {0, 1}. If
D = {0,1}", then f is called a total Boolean function.
Otherwise, f is called a partial Boolean function or a
promise problem.

» A Boolean function f is called symmetric if f(x) only
depends on the Hamming weight (i.e. |x|) of x, that is, if
x| = [y[, then f (x) = f(¥).

» (Given a partial Boolean function f with its domain of
definition D < {0,1}", if for any x € D, and y € {0,1}",
with x| = |y|, we have y € D, and f(x) = f(y),then fis
called a symmetrical partial Boolean function.
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Representation of symmetric
partial Boolean functions

» Given a partial symmetric function f:{0,1}"* -
{0,1}, with the domain D of definition, it can be
equivalently described by a vector (b, by, ..., b;,) € {0,1,*
}**1, where f(x) = by, i.e. by is the value of f(x) when
|x| =k, and f(x) is ‘undefined' for bj,| =x.

» Example
f(X) = X1 VXZ b = (bo, bl! bz) = (0,1,1)
f(X) = X1 N\ Xy b = (bo,bl, bz) — (0,0,1)
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Isomorphism of symmetric
partial Boolean functions

» Two symmetric partial functions f and g over
{0,1}" are isomorphic if they are equal up to
negations and permutations of the input variables,

and negation of the output variable.
» Concerning the n-bit symmetric partial functions, it is clear that the
following four functions are isomorphic to each other:

(bo, b1, s bn) s (bpybpy, s bo);

(bg, by, ..., by): (b, byy_1, ..., bo).
Another simple example:
f(x) =x1Vx, b = (by, b1, b;) = (0,1,1)
g(x) = x; Ax; b = (b, by, b;) = (0,0,1)

13
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Classical query complexity

» An exact classical (deterministic) query algorithm to
compute a Boolean function f:{0,1}" — {0,1} can be
described by a decision tree.

» |If the output of a decision treeis f(x), for all x €
{0,1}", the decision tree is said to "compute" f. The
depthof a tree is the maximum number of queries that
can happen before a leaf is reached and a result
obtained.

» D(f), the deterministic decision tree complexity of f is
the smallest depth among all deterministic decision trees
that compute f.

14
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Example

> Deterministic query complexity
(how many times we need to query the input bits)

= Example: o .M., 4
f(x1,x2) = x1 D x> " %y " %y

O ~ 1 o ~ 1

a O ] 1 a 1 ] O

> Decision tree
The minimal depth over all decision trees computing
f is the exact classical query complexity (deterministic
query complexity, decision tree complexity) D (f).

"15
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Quantum query algorithms

» Quantum T -query algorithm (its complexity is T')

f:10,1}" - {0,1}, input bit string x = x; -+ x,

We consider a Hilbert space H with basis state |, j) for

i €{0,1,...,n},j €{1,...,m} (m can be chosen arbitrarily)
A T-query quantum algorithm:

|¢f) = UrQxUr_10Qx - QxU10Q, Uy |lps);

Uo Q U,

il
i
QO
&
il
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Black box

A T-query quantum algorithm:

|¢f) = UrQxUr—1Qx - QxU10QxUj |lps>;
and then the algorithm performs a measurement,

where
Qli,j) = (—1)*%i|i,j) fori € {1,...,n}
Qx10,j) =10, )

i, jy—> Qx — (—D)*i[i, )

= Deutsch-Jozsa’s query box, Grover’s query box
1) = Q, — (=1D)™[i)

17
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Quantum query complexity

The final state is then measured with a measurement {M, , M4}.

For an input x € {0,1}", we denote A(x) the output of the
guantum query algorithm A.

» We say that the quantum query algorithm A computes f

within an error ¢ if for every input x € {0,1}" it holds that
PrlA(x)=f(x)] = 1—c¢.

» If €=0, we says that the quantum algorithm is exact.

> Q.(f),Q(f), Qg (f) are the smallest T among all quantum
query algorithms that compute f (with error &, bounded-
error, exact, respectively).

18
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Multilinear polynomials

Every Boolean function f: {0,1}"* - {0,1} has a unique
representation as an n-variate multilinear polynomial over
the reals, i.e., there exist real coefficients as such that

fO )= ) as| |
Sc[n]

LES

The degree of f is the degree of its largest monomial:
deg(f) = max{|S|:as # 0}.
For example, AND,(x{,x,) = x{ - x, and
OR,(x1,x5) = x1 + X3 — X1 * Xo.
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Multilinear polynomials representing{i&;
symmetric partial Boolean functions

> Let f be a partial function with a domain of definition
D < {0,1}*. For 0 < ¢ < 1/2, we say a real multilinear
polynomial p approximates f with error ¢ if:

(1) |p(x) — f(x)| < eforall x € D;

(2) 0 <p(x)<1forallx € {0,1}".

» The approximate degree of f with error &, denoted by
dege(f), is the minimum degree among all real
multilinear polynomials that approximate f with error ¢.

In particular,
degqo(f) £ deg(f)

20
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Methods of Proofs

We would like to outline the basic
Ideas and methods for the proofs of
main results.
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D]"—{O iflx| <k or|x|=>n—k
"1 if|x| =n/2

Theorem 1 QE(D]T’f) =k +1and D(D],’{') = g + k + 1.

Proof method:

® Using the exact quantum query algorithms for computing
EXACTF and due to Ambainis et al. (TQC’13), we can give
an exact quantum (k + 1)-query algorithm for computing
DJX

® On the other hand, we will prove that deg(DJ¥) > 2k + 2,
and therefore

Qe(DJ¥) = deg(DJ})/2 =k + 1

22
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Qr(DJE) <k +1

Subroutine: Xquery(m,x) [from Ambainis et al. (TQC’13)
]

Input: x = X1, X5, ..., X;-
Output: (0,0) = |x| # %
(l,]) = Xi F Xj

23




Algorithm 2 Algorithm for DJ':‘;

. procedure DJ(integer n, integer k, array x)

1

2: integer [:=1

3: while ! < k do —
4 Output < Xquery(n,x)

if Output=(0,0) then return 0O

.l

6: end if

7: if OQutput=(i, j) then

8: x —x\ {zix;}

9: [l +— [+ 1

10: n $—n — 2

11: end if

12: end while

13: Output < Xquery(n, x)

14: if Output=(0,0) then return 0O
15: end if

16: if Output=(i, j) then return 1
17: end if

18: end procedure

24
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deg(DJX) = 2k + 2

Lemma: For any symmetrically partial Boolean function f over
{0,1}™ with domain of definition D, suppose deg.(f) = d
Then there exists a real multilinear polynomial g approximates f
with error € and g can be written as

q(x) =co+c Vi + Vo + -+ c4Vy,
where ¢; ER,V; = x1 + -+ x,, Vo = x1X5 + X1X3+ -+
Xy 1 Xy "

Suppose that deg(DJX) < 2k + 1. Then we can get a
contradiction. So, deg(D]f’l) > 2k + 2 follows.
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Theorem:Qe(f) = 1if and only if f canbe\
computed by DJ algorithm

Lemmal Letn > 1andlet f:{0,1}" — {0,1} be an n-bit symmetrically
partial Boolean function. Then:

(1) deg(f) = 1iff f isisomorphicto the function frf’i)
(2) deg(f) = 2 iff f is isomorphic to one of the functions

W, ~_ ) 0 iffz[=0, (3) (1) — [0 if |z| =0 or |z| = n,
= = <
0 if |z| =0, (0 if || =0 or |2| =n
fr@) ={ . () (z) = 4 ’
1 if jz[ =k or [z] = k+1, f (@) | 1 if |2| = [n/2] or |z| = [n/2],

wheren—12>= k >|n/2|,and [n/2] =1 = |n/2].

26
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Two Lemmas

» Lemma. Let n be even. Then QE(f) = 1 if
and only if f is isomorphic to one of

these functions: f,(ll,)( and fnn/z K 2%

» Lemma. Let n be odd. Then QE(f) = 1 if
and only if f is isomorphic to one of

these functions: f k> [n/2].

nk’

27
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Equivalence transformation

» Indeed, these functions with exact quantum 1-
query complexity can be essentially transtormed
into DJ problem by padding some zeros into the
input string. So, QE(f) = 1 if and only if f can
be computed by DJ algorithm.

28




Conclusions

v (0 iflx|<kor|x|=zn—k
” Dl = {1 if|x| =n/2

Theorem. QE(D],’{) =k + 1 and D(D],’{) =n/2+k+1.

Theorem. Any symmetric partial Boolean function f has
Qr(f) = 1lifand only if f can be computed by the
Deutsch-Jozsa algorithm.

Theorem.Any classical deterministic algorithm that solves
Simon's problem requires Q(v2") queries.



Problems

» Let f:{0,1}" = {0,1} be an n-bit symmetric partial
Boolean function with domain of definition D, and let
0<k< [gj .Then, for 2k +1 < deg(f) < 2(k+ 1),
how to characterize f by giving all functions with
degrees from 2k + 1 to 2k + 27

» For the function DWnk’ldefined as:

0 if |x| =k,

can we give optimal exact quantum query algorithms for
any k and [?
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SUN YAT-SEN UNIVERSITY

Thank you for your attention !
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