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Abstract 
     In this talk, I would like to report a recent work 
regarding:  
1. An optimal exact quantum query algorithm 
for generalized Deutsch-Jozsa problem 
2. The characterization of all symmetric 
partial Boolean functions with exact quantum 
1-query complexity 
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Basic background 
Discover more problems to show that 

quantum computing is more powerful than 
classical computing 
These problems have the potential of 

applications in other areas such as 
cryptography. 
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1. Motivations, Problems, Results 
2. Preliminaries 
3. Main Results 
4. Methods of Proofs  
5. Conclusions & Further Problems  
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1. Motivations, Problems, 
Results 

(1) Generalized Deutsch-Jozsa  
(2) Problems with exact quantum 1-query 

complexity 
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Motivation I 
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 The Deutsch-Jozsa promise problem [DJ’92]: 
𝑥 ∈ 0,1 𝑛, |x| is the Hamming weight of 𝑥, 

𝐷𝐷 𝑥 = �01  𝑖𝑖 x = 0 𝑜𝑜 |x| = 𝑛
𝑖𝑖 |x| = 𝑛/2  

𝑄𝐸 𝐷𝐷 = 1,𝐷 𝐷𝐷 =
𝑛
2

+ 1 
 

 𝐷𝐷𝑛1 = �01
   𝑖𝑖|x| ≤ 1  𝑜𝑜|x| ≥ 𝑛 − 1

    𝑖𝑖|x| = 𝑛/2 [MJM’15] 

𝑄𝐸 𝐷𝐷𝑛1 ≤ 2 
 
[DJ’92] D. Deutsch, R. Jozsa, Rapid solution of problems by quantum 
computation,  In Proceedings of the Royal Society of London, 439A 
(1992): 553—558. 
[MJM’15] A. Montanaro, R. Jozsa,  G. Mitchison, On exact quantum query 
complexity, Algorithmica419 (2015) 775--796. 
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Problem I 
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Motivation II 
Deutsch-Jozsa problem that is a symmetric 
partial Boolean function can be solved by DJ 
algorithm (exact quantum 1-query algorithm). 
Then how to characterize the other symmetric 
partial Boolean functions with exact quantum 1-
query complexity? Can such functions be solved 
by DJ algorithm? 
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Problem and Result II 
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Preliminaries 
Symmetric partial Boolean functions 
Classical query complexity  
Quantum query complexity  
Multilinear polynomials 
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Symmetrical partial  
Boolean functions 
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Representation of symmetric 
partial Boolean functions 

12 



Isomorphism of symmetric 
partial Boolean functions 
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Classical query complexity 
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 An exact classical (deterministic) query algorithm  to 
compute a Boolean function 𝑖: {0,1}𝑛 →  {0,1} can be 
described by a decision tree. 
 

 If the output of a decision tree is 𝑖(𝑥), for all  𝑥 ∈
 {0,1}𝑛, the decision tree is said to "compute"  𝑖. The 
depthof a tree is the maximum number of queries that 
can happen before a leaf is reached and a result 
obtained.   

 𝐷(𝑖), the deterministic decision tree complexity of 𝑖 is 
the smallest depth among all deterministic decision trees 
that compute 𝑖. 
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Example 
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 Deterministic query complexity 
(how many times we need to query the input bits)

 Example:  
    𝑖 𝑥1, 𝑥2 = 𝑥1 ⊕ 𝑥2

 Decision tree
The minimal depth over all decision trees computing 
𝑖 is the exact classical query complexity (deterministic 
query complexity, decision tree complexity) 𝐷(𝑖).
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Quantum query algorithms 
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Black box 
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𝑄𝑥 

𝑄𝑥 
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Quantum query complexity 
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Multilinear polynomials 
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Multilinear polynomials representing 
symmetric partial Boolean functions 
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Methods of Proofs 
We would like to outline the basic 
ideas and methods for the proofs of 
main results. 
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𝑫𝑱𝒏𝒌 = �𝟎𝟏
   𝒊𝒊 𝒙 ≤ 𝒌  𝒐𝒐 |𝐱| ≥ 𝒏 − 𝒌

    𝒊𝒊|𝐱| = 𝒏/𝟐  
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 𝑄𝐸 𝐷𝐷𝑛𝑘 ≤ 𝑘 + 1 
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deg 𝐷𝐷𝑛𝑘 ≥ 2𝑘 + 2 
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Theorem:𝑸𝑬(𝒊) = 𝟏 𝒊𝒊 𝒂𝒏𝒂 𝒐𝒏𝒐𝒐 𝒊𝒊   𝒊 can be 
computed by DJ algorithm  
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where 𝑛 − 1 ≥  𝑘 ≥ ⌊𝑛/2⌋, and 𝑛/2 ≥ 𝑙 ≥ ⌊𝑛/2⌋. 



Two Lemmas 
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Equivalence transformation 
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 𝐷𝐷𝑛𝑘 = �01
   𝑖𝑖 x ≤ 𝑘  𝑜𝑜 |x| ≥ 𝑛 − 𝑘

    𝑖𝑖|x| = 𝑛/2  

Theorem.   𝑄𝐸 𝐷𝐷𝑛𝑘 = 𝑘 + 1 and 𝐷 𝐷𝐷𝑛𝑘 = 𝑛/2 + 𝑘 + 1. 
 
Theorem.  Any symmetric partial Boolean function 𝑖 has 
𝑄𝐸(𝑖) = 1 if and only if 𝑖 can be computed by the 
Deutsch-Jozsa algorithm. 
 
Theorem.Any classical deterministic algorithm that solves 
Simon's problem requires Ω( 𝟐𝐧) queries. 
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Conclusions 
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 Let 𝑖: {0,1}𝑛 →  {0,1}  be an 𝑛-bit symmetric  partial 
Boolean function with domain of definition 𝐷, and let 
0 ≤ 𝑘 < ⌊𝑛

2
⌋ . Then, for  2𝑘 + 1 ≤ deg 𝑖 ≤  2(𝑘 + 1), 

how to characterize 𝑖by giving all functions with  
degrees from 2𝑘 + 1 to 2𝑘 + 2?  

 For the function 𝐷𝑊𝑛
𝑘,𝑙defined as: 

 
 
 

can we give optimal exact quantum query algorithms for 
any 𝑘 and 𝑙? 
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Problems 
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Thank you for your attention！ 
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