Resource destroying maps, with new applications

Zi-Wen Liu

Center for Theoretical Physics Department of Physics MIT

AQIS 2017

Liu-Hu-Lloyd, PRL 118, 060502 (2017) Liu-Takagi-Lloyd, arXiv:1708.09076

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Resource destroying maps: a theory of resource theories

Applications: coherence and discord

Monotonicity of diagonal discord, a simple measure of q. correlation

 Resource theory: when there are restrictions, how to characterize/quantify resources.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Resource theory: when there are restrictions, how to characterize/quantify resources.
- ► Q. info ≈ theory of quantum resources. Entanglement, coherence, asymmetry, magic, contextuality, quantum thermodynamics...

- Resource theory: when there are restrictions, how to characterize/quantify resources.
- ► Q. info ≈ theory of quantum resources. Entanglement, coherence, asymmetry, magic, contextuality, quantum thermodynamics...
- Building blocks: free states & operations, resource measure. The set of free states is closed under free operations; The resource measure is monotone under free operations.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ◆ ○ ◆ ○ ◆

- Resource theory: when there are restrictions, how to characterize/quantify resources.
- ► Q. info ≈ theory of quantum resources. Entanglement, coherence, asymmetry, magic, contextuality, quantum thermodynamics...
- Building blocks: free states & operations, resource measure. The set of free states is closed under free operations; The resource measure is monotone under free operations.
- Free operations define a resource theory, e.g. LOCC, Thermal Operations. No general theories of different FO.

- Resource theory: when there are restrictions, how to characterize/quantify resources.
- ► Q. info ≈ theory of quantum resources. Entanglement, coherence, asymmetry, magic, contextuality, quantum thermodynamics...
- Building blocks: free states & operations, resource measure. The set of free states is closed under free operations; The resource measure is monotone under free operations.
- ► *Free operations* define a resource theory, e.g. LOCC, Thermal Operations. No general theories of different FO.
- Operational aspects: Rules for possible transformations; Rate of certain transformations as operational measures...

A simple explicit context: coherence

A simple explicit context: coherence

• Cat state: $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ (quantum coherent superposition) v.s. Fully mixed state: $\frac{|0\rangle\langle 0|+|1\rangle\langle 1|}{2}$ (classical mixture).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

A simple explicit context: coherence

- ► Cat state: $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ (quantum coherent superposition) v.s. Fully mixed state: $\frac{|0\rangle\langle 0|+|1\rangle\langle 1|}{2}$ (classical mixture).
- Questions:
 - 1. How to quantify coherent superpositions?
 - 2. What operations are considered "free" for coherence?

うして ふぼう ふぼう ふほう トーロー

A simple explicit context: coherence

- ► Cat state: $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ (quantum coherent superposition) v.s. Fully mixed state: $\frac{|0\rangle\langle 0|+|1\rangle\langle 1|}{2}$ (classical mixture).
- Questions:
 - 1. How to quantify coherent superpositions?
 - 2. What operations are considered "free" for coherence?
- Off-diagonal terms of density operators (in the preferred basis). What functions are good measures of coherence?

うして ふぼう ふぼう ふほう トーロー

- ► Cat state: $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ (quantum coherent superposition) v.s. Fully mixed state: $\frac{|0\rangle\langle 0|+|1\rangle\langle 1|}{2}$ (classical mixture).
- Questions:
 - 1. How to quantify coherent superpositions?
 - 2. What operations are considered "free" for coherence?
- Off-diagonal terms of density operators (in the preferred basis). What functions are good measures of coherence?

うして ふぼう ふぼう ふほう トーロー

•
$$l_1$$
-norm: $C_{l_1}(\rho) = \sum_{i \neq j} |\rho_{ij}|$

- ► Cat state: $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ (quantum coherent superposition) v.s. Fully mixed state: $\frac{|0\rangle\langle 0|+|1\rangle\langle 1|}{2}$ (classical mixture).
- Questions:
 - 1. How to quantify coherent superpositions?
 - 2. What operations are considered "free" for coherence?
- Off-diagonal terms of density operators (in the preferred basis). What functions are good measures of coherence?
 - l_1 -norm: $C_{l_1}(\rho) = \sum_{i \neq j} |\rho_{ij}|$
 - Min-distance measures (other theories: usually hard to compute), eg rel. entropy:

シック・ボート ボル・オート

 $C_r(\rho) = \min_{\sigma \in I} S(\rho \parallel \sigma) = S(\Pi(\rho)) - S(\rho)$

- ► Cat state: $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ (quantum coherent superposition) v.s. Fully mixed state: $\frac{|0\rangle\langle 0|+|1\rangle\langle 1|}{2}$ (classical mixture).
- Questions:
 - 1. How to quantify coherent superpositions?
 - 2. What operations are considered "free" for coherence?
- Off-diagonal terms of density operators (in the preferred basis). What functions are good measures of coherence?
 - l_1 -norm: $C_{l_1}(\rho) = \sum_{i \neq j} |\rho_{ij}|$
 - Min-distance measures (other theories: usually hard to compute), eg rel. entropy:

 $C_r(\rho) = \min_{\sigma \in I} S(\rho \parallel \sigma) = S(\Pi(\rho)) - S(\rho)$

Necessary condition: **monotone** under free ops Different monotones under different free (allowed) operations: monotonicity may fail when more ops are allowed.

- ► Cat state: $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ (quantum coherent superposition) v.s. Fully mixed state: $\frac{|0\rangle\langle 0|+|1\rangle\langle 1|}{2}$ (classical mixture).
- Questions:
 - 1. How to quantify coherent superpositions?
 - 2. What operations are considered "free" for coherence?
- Off-diagonal terms of density operators (in the preferred basis). What functions are good measures of coherence?
 - l_1 -norm: $C_{l_1}(\rho) = \sum_{i \neq j} |\rho_{ij}|$
 - Min-distance measures (other theories: usually hard to compute), eg rel. entropy:

 $C_r(\rho) = \min_{\sigma \in I} S(\rho \parallel \sigma) = S(\Pi(\rho)) - S(\rho)$

Necessary condition: **monotone** under free ops Different monotones under different free (allowed) operations: monotonicity may fail when more ops are allowed.

General theory relating monotones and free operations?

<u>This work</u>: a general theory of resource-free properties of operations based on **Resource Destroying Map**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 - のへで

<u>This work</u>: a general theory of resource-free properties of operations based on **Resource Destroying Map**.

► Reveals fundamental connections among elements.

(ロト (同) (三) (三) (つ) (○

<u>This work</u>: a <u>general</u> theory of resource-free properties of operations based on **Resource Destroying Map**.

- Reveals fundamental connections among elements.
- Generates easily computable monotones (without optimizations) under typical free operations.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

<u>This work</u>: a <u>general</u> theory of resource-free properties of operations based on **Resource Destroying Map**.

- Reveals fundamental connections among elements.
- Generates easily computable monotones (without optimizations) under typical free operations.
- Applies to all theories including nonconvex ones e.g. discord. (Frameworks for convex theories Brandão-Gour '15, Regula '17 etc.)

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Definition

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Definition

F: set of free states.

Definition

F: set of free states.

 λ is a RD map for F is for all density operators ρ :

• Resource destroying: if $\rho \notin F$, $\lambda(\rho) \in F$;

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

• Nonresource fixing: if $\rho \in F$, $\lambda(\rho) = \rho$.

Definition

- F: set of free states.
- λ is a RD map for F is for all density operators ρ :
 - Resource destroying: if $\rho \notin F$, $\lambda(\rho) \in F$;
 - ► Nonresource fixing: if $\rho \in F$, $\lambda(\rho) = \rho$.

3

Sac

Defines a fiber bundle structure of all states:

Base-free states; fiber (of a free state)-parent, states, and states

Definition

F: set of free states.

 λ is a RD map for F is for all density operators ρ :

- Resource destroying: if $\rho \notin F$, $\lambda(\rho) \in F$;
- Nonresource fixing: if $\rho \in F$, $\lambda(\rho) = \rho$.

F is nonconvex \Rightarrow no linear RD maps \Rightarrow no RD channels/CPTP maps. Exact conditions Gour '16.

Free conditions

 $\mathcal E:$ some operation. Relations with λ that determine its properties:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Free conditions

 $\mathcal E:$ some operation. Relations with λ that determine its properties:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• Nongenerating $(\bar{\mathbb{X}})$: $\mathcal{E} \circ \lambda = \lambda \circ \mathcal{E} \circ \lambda$

Free conditions

 $\mathcal{E}:$ some operation. Relations with λ that determine its properties:

- Nongenerating $(\bar{\mathbb{X}})$: $\mathcal{E} \circ \lambda = \lambda \circ \mathcal{E} \circ \lambda$
- Nonactivating* $(\bar{\mathbb{X}}^*)$: $\lambda \circ \mathcal{E} = \lambda \circ \mathcal{E} \circ \lambda$

Free conditions

- $\mathcal{E}:$ some operation. Relations with λ that determine its properties:
 - Nongenerating $(\bar{\mathbb{X}})$: $\mathcal{E} \circ \lambda = \lambda \circ \mathcal{E} \circ \lambda$
 - ► Nonactivating* $(\bar{\mathbb{X}}^*)$: $\lambda \circ \mathcal{E} = \lambda \circ \mathcal{E} \circ \lambda$ (never break up a family)

Free conditions

- \mathcal{E} : some operation. Relations with λ that determine its properties:
 - Nongenerating $(\bar{\mathbb{X}})$: $\mathcal{E} \circ \lambda = \lambda \circ \mathcal{E} \circ \lambda$
 - ► Nonactivating* $(\bar{\mathbb{X}}^*)$: $\lambda \circ \mathcal{E} = \lambda \circ \mathcal{E} \circ \lambda$ (never break up a family)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ◆ ○ ◆ ○ ◆

Free conditions

- \mathcal{E} : some operation. Relations with λ that determine its properties:
 - Nongenerating $(\bar{\mathbb{X}})$: $\mathcal{E} \circ \lambda = \lambda \circ \mathcal{E} \circ \lambda$
 - ► Nonactivating* $(\bar{\mathbb{X}}^*)$: $\lambda \circ \mathcal{E} = \lambda \circ \mathcal{E} \circ \lambda$ (never break up a family)

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

• Commuting (X): $\lambda \circ \mathcal{E} = \mathcal{E} \circ \lambda$

Free conditions

- \mathcal{E} : some operation. Relations with λ that determine its properties:
 - Nongenerating $(\bar{\mathbb{X}})$: $\mathcal{E} \circ \lambda = \lambda \circ \mathcal{E} \circ \lambda$
 - ► Nonactivating* $(\bar{\mathbb{X}}^*)$: $\lambda \circ \mathcal{E} = \lambda \circ \mathcal{E} \circ \lambda$ (never break up a family)

- Commuting (X): $\lambda \circ \mathcal{E} = \mathcal{E} \circ \lambda$
- Selective (subscript s): ∃ Kraus decomposition s.t. all arms satisfy ↑ (property holds even if the measurement outcome is retained).

General properties of free classes

Each of the above conditions defines a class of free ops with a certain property.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

General properties of free classes

Each of the above conditions defines a class of free ops with a certain property.

Robustness. Note that, given a certain F, the definition of RD map is typically not unique (unless F is a singleton).

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

Q: Are the free classes different when λ is defined differently?

General properties of free classes

Each of the above conditions defines a class of free ops with a certain property.

Robustness. Note that, given a certain F, the definition of RD map is typically not unique (unless F is a singleton).

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

Q: Are the free classes different when λ is defined differently?

Nongenerating condition: robust;

General properties of free classes

Each of the above conditions defines a class of free ops with a certain property.

Robustness. Note that, given a certain F, the definition of RD map is typically not unique (unless F is a singleton).

Q: Are the free classes different when λ is defined differently?

- Nongenerating condition: robust;
- Nonactivating and thus commuting condition: not robust. Example: consider a coherence destroying map λ that maps every coherent state to one incoherent state, and other free states are "orphans". Then a partial depolarizing channel fails the nonactivating condition.

General properties of free classes

Each of the above conditions defines a class of free ops with a certain property.

Robustness. Note that, given a certain F, the definition of RD map is typically not unique (unless F is a singleton).

Q: Are the free classes different when λ is defined differently?

- Nongenerating condition: robust;
- Nonactivating and thus commuting condition: not robust. Example: consider a coherence destroying map λ that maps every coherent state to one incoherent state, and other free states are "orphans". Then a partial depolarizing channel fails the nonactivating condition.
- Most RD maps are not natural/physical. Robustness may hold under reasonable restrictions.
General properties of free classes

Each of the above conditions defines a class of free ops with a certain property.

Robustness. Note that, given a certain F, the definition of RD map is typically not unique (unless F is a singleton).

Q: Are the free classes different when λ is defined differently?

- Nongenerating condition: robust;
- Nonactivating and thus commuting condition: not robust. Example: consider a coherence destroying map λ that maps every coherent state to one incoherent state, and other free states are "orphans". Then a partial depolarizing channel fails the nonactivating condition.
- Most RD maps are not natural/physical. Robustness may hold under reasonable restrictions.

Free conditions hold for:

- Compositions;
- Convex combinations when the RD map is linear.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Monotonicity theorems

Monotonicity theorems

A common way of defining monotones: minimum distance to the free set $\mathfrak{D}(\rho) := \inf_{\sigma \in F} D(\rho, \sigma)$. Optimization is typically hard.

(A more general framework for convex theories Regula '17)

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

Monotonicity theorems

A common way of defining monotones: minimum distance to the free set $\mathfrak{D}(\rho) := \inf_{\sigma \in F} D(\rho, \sigma)$. Optimization is typically hard.

(A more general framework for convex theories Regula '17)

Consider the following simple measure without optimization—distance to its resource-destroyed counterpart:

$$\tilde{\mathfrak{D}}(\rho) := D(\rho, \lambda(\rho)),$$

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

where D is a contractive distance (obeys data processing).

Monotonicity theorems

A common way of defining monotones: minimum distance to the free set $\mathfrak{D}(\rho) := \inf_{\sigma \in F} D(\rho, \sigma)$. Optimization is typically hard.

(A more general framework for convex theories Regula '17)

Consider the following simple measure without optimization—distance to its resource-destroyed counterpart:

$$\tilde{\mathfrak{D}}(\rho) := D(\rho, \lambda(\rho)),$$

where D is a contractive distance (obeys data processing).

Theorem

Let $\Gamma \in \mathbb{X}$. Then $\tilde{\mathfrak{D}}(\Gamma(\rho)) \leq \tilde{\mathfrak{D}}(\rho)$.

 $\text{Proof: } \tilde{\mathfrak{D}}(\rho) \geq D(\Gamma(\rho), \Gamma(\lambda(\rho))) = D(\Gamma(\rho), \lambda(\Gamma(\rho))) \equiv \tilde{\mathfrak{D}}(\Gamma(\rho)).$

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

Monotonicity theorems

A common way of defining monotones: minimum distance to the free set $\mathfrak{D}(\rho) := \inf_{\sigma \in F} D(\rho, \sigma)$. Optimization is typically hard.

(A more general framework for convex theories Regula '17)

Consider the following simple measure without optimization—distance to its resource-destroyed counterpart:

$$\tilde{\mathfrak{D}}(\rho) := D(\rho, \lambda(\rho)),$$

where D is a contractive distance (obeys data processing).

Theorem

Let $\Gamma \in \mathbb{X}$. Then $\tilde{\mathfrak{D}}(\Gamma(\rho)) \leq \tilde{\mathfrak{D}}(\rho)$.

 $\text{Proof: } \tilde{\mathfrak{D}}(\rho) \geq D(\Gamma(\rho), \Gamma(\lambda(\rho))) = D(\Gamma(\rho), \lambda(\Gamma(\rho))) \equiv \tilde{\mathfrak{D}}(\Gamma(\rho)).$

Proving commutativity can be nontrivial.

・ロト・4回・4回・4回・4日・

Monotonicity theorems

Selective (strong) monotonicity: monotonicity of selective measurements on average.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Monotonicity theorems

Selective (strong) monotonicity: monotonicity of selective measurements on average.

r is a selective monotone under \mathcal{E} , if $r(\rho) \ge p_{\mu}r(\mathcal{E}(\rho_{\mu}))$, where $p_{\mu} = \operatorname{tr}(K_{\mu}\rho K_{\mu}^{\dagger})$, and $\rho_{\mu} := K_{\mu}\rho K_{\mu}^{\dagger}/p_{\mu}$ is the post-measurement state of the μ -th Kraus arm.

うして ふぼう ふぼう ふほう トーロー

Monotonicity theorems

Selective (strong) monotonicity: monotonicity of selective measurements on average.

r is a selective monotone under \mathcal{E} , if $r(\rho) \geq p_{\mu}r(\mathcal{E}(\rho_{\mu}))$, where $p_{\mu} = \operatorname{tr}(K_{\mu}\rho K_{\mu}^{\dagger})$, and $\rho_{\mu} := K_{\mu}\rho K_{\mu}^{\dagger}/p_{\mu}$ is the post-measurement state of the μ -th Kraus arm.

- Usually considered desirable but not necessary.
- If r is convex (so F is convex), selective monotonicity implies monotonicity.

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

Monotonicity theorems

Selective (strong) monotonicity: monotonicity of selective measurements on average.

r is a selective monotone under \mathcal{E} , if $r(\rho) \geq p_{\mu}r(\mathcal{E}(\rho_{\mu}))$, where $p_{\mu} = \operatorname{tr}(K_{\mu}\rho K_{\mu}^{\dagger})$, and $\rho_{\mu} := K_{\mu}\rho K_{\mu}^{\dagger}/p_{\mu}$ is the post-measurement state of the μ -th Kraus arm.

- Usually considered desirable but not necessary.
- If r is convex (so F is convex), selective monotonicity implies monotonicity.

Theorem

Let *D* be a distance measure that further satisfies $D(\rho, \sigma) = \sum_{\mu} p_{\mu} D(\rho_{\mu}, \sigma_{\mu})$ (true for eg relative entropy). Then selective monotonicity holds for \mathfrak{D} under selective commuting operations \mathbb{X}_s .

- イロト 4 回 ト 4 三 ト 4 三 ト つへで

Free states: diagonal in the preferred basis

- Free states: diagonal in the preferred basis
- Coherence destroying map/channel: complete dephasing

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Free states: diagonal in the preferred basis
- Coherence destroying map/channel: complete dephasing

IO Baumgratz et al. '13 DIO ~; Chitambar-Gour '16 SIO Yadin et al. '16

DIO and IO are incomparable Some mp (entanglement breaking) channel $\in \bar{X}^*(\Pi) \backslash \bar{X}(\Pi)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• $D(\rho, \Pi(\rho))$ is monotone under DIO.

- Free states: diagonal in the preferred basis
- Coherence destroying map/channel: complete dephasing

IO Baumgratz et al. '13 DIO ~; Chitambar-Gour '16 SIO Yadin et al. '16

DIO and IO are incomparable Some mp (entanglement breaking) channel $\in \bar{X}^*(\Pi) \backslash \bar{X}(\Pi)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• $D(\rho, \Pi(\rho))$ is monotone under DIO.

- Free states: diagonal in the preferred basis
- Coherence destroying map/channel: complete dephasing

IO Baumgratz et al. '13 DIO ~; Chitambar-Gour '16 SIO Yadin et al. '16

DIO and IO are incomparable Some mp (entanglement breaking) channel $\in \bar{X}^*(\Pi) \backslash \bar{X}(\Pi)$

• $D(\rho, \Pi(\rho))$ is monotone under DIO.

Reviews: 1609.02439; 1703.01852.

・ロト・4日・4日・4日・日・900

 The most general form of nonclassical correlations.
Original def: the min reduction in mutual information between subsystems by local measurements (WLOG on A)

$$D_A(\rho_{AB}) = \min_{\{\Lambda_A\}} [I(A:B) - I(\tilde{A}:B)],$$

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

 $\{\Lambda_A\}$ —local measurement, \tilde{A} —post-measurement. Deficit: min joint entropy production

 The most general form of nonclassical correlations.
Original def: the min reduction in mutual information between subsystems by local measurements (WLOG on A)

$$D_A(\rho_{AB}) = \min_{\{\Lambda_A\}} [I(A:B) - I(\tilde{A}:B)],$$

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

 $\{\Lambda_A\}$ —local measurement, \tilde{A} —post-measurement. Deficit: min joint entropy production

► Broader than entanglement: can exist in separable states. Free states: $\rho_{AB} = \sum_i p_i |i\rangle_A \langle i| \otimes \rho_B^i$ (CQ). Nonconvex!

 The most general form of nonclassical correlations.
Original def: the min reduction in mutual information between subsystems by local measurements (WLOG on A)

$$D_A(\rho_{AB}) = \min_{\{\Lambda_A\}} [I(A:B) - I(\tilde{A}:B)],$$

 $\{\Lambda_A\}$ —local measurement, \tilde{A} —post-measurement. Deficit: min joint entropy production

- ► Broader than entanglement: can exist in separable states. Free states: $\rho_{AB} = \sum_i p_i |i\rangle_A \langle i| \otimes \rho_B^i$ (CQ). Nonconvex!
- Notorious problems:
 - Evaluation is very hard (NP-complete), including similar measures, eg deficit. Reason: the optimization over local POVMs (or even proj.) is intractable;
 - No strong physical correspondences;
 - No good resource theory treatments yet. Difficulty: nonconvexity—no known RT frameworks apply.

 Discord destroying map (no discord destroying channel due to nonconvexity):

Local dephasing in the eigenbasis:

$$\pi_A(\rho_{AB}) := \sum_i (|i\rangle_A \langle i| \otimes I_B) \rho_{AB}(|i\rangle_A \langle i| \otimes I_B).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

<ロト < 部 ト < 注 ト < 注 ト こ の < で</p>

 Diagonal discord: perform local measurement in an eigenbasis (unique when nondegenerate).

$$\bar{D}_A(\rho_{AB}) := I(\rho_{AB}) - I(\pi_A(\rho_{AB})) = S(\pi_A(\rho_{AB})) - S(\rho_{AB}).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 Diagonal discord: perform local measurement in an eigenbasis (unique when nondegenerate).

$$\bar{D}_A(\rho_{AB}) := I(\rho_{AB}) - I(\pi_A(\rho_{AB})) = S(\pi_A(\rho_{AB})) - S(\rho_{AB}).$$

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

Unifies discord and deficit. Easy to compute and study.

 Diagonal discord: perform local measurement in an eigenbasis (unique when nondegenerate).

 $\bar{D}_A(\rho_{AB}) := I(\rho_{AB}) - I(\pi_A(\rho_{AB})) = S(\pi_A(\rho_{AB})) - S(\rho_{AB}).$

Unifies discord and deficit. Easy to compute and study.

Note that: π as the canonical discord destroying map (and DD as the preferrable measure of discord) is natural, in the sense that it does not disturb the marginals, thus truly characterizes the properties of "correlation".

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

 Diagonal discord: perform local measurement in an eigenbasis (unique when nondegenerate).

 $\bar{D}_A(\rho_{AB}) := I(\rho_{AB}) - I(\pi_A(\rho_{AB})) = S(\pi_A(\rho_{AB})) - S(\rho_{AB}).$

Unifies discord and deficit. Easy to compute and study.

Note that: π as the canonical discord destroying map (and DD as the preferrable measure of discord) is natural, in the sense that it does not disturb the marginals, thus truly characterizes the properties of "correlation".

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

► Faithful: zero for CQ, positive otherwise.

 Diagonal discord: perform local measurement in an eigenbasis (unique when nondegenerate).

 $\bar{D}_A(\rho_{AB}) := I(\rho_{AB}) - I(\pi_A(\rho_{AB})) = S(\pi_A(\rho_{AB})) - S(\rho_{AB}).$

Unifies discord and deficit. Easy to compute and study.

- Note that: π as the canonical discord destroying map (and DD as the preferrable measure of discord) is natural, in the sense that it does not disturb the marginals, thus truly characterizes the properties of "correlation".
- ► Faithful: zero for CQ, positive otherwise.
- Physical correspondences: eg thermo
 - ► Heat flow. No-go theorem: no energy transport without discord. Instantaneous heat flow rate, thermal initial states at different temperatures: $\Delta E \approx \frac{1}{\beta_A \beta_B} \overline{D}_A$ (\propto infinitesimal DD).
 - Work extraction. Difference in extractable work, local vs global demons/classical vs quantum channels Brodutch-Terno '10.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

A few lines of algebra yield:

$$\bar{D}_A(\rho_{AB}) = S(\rho_{AB} \parallel \pi_A(\rho_{AB})).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

A few lines of algebra yield:

$$\bar{D}_A(\rho_{AB}) = S(\rho_{AB} \parallel \pi_A(\rho_{AB})).$$

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

▶ By the monotonocity theorem, \overline{D}_A is monotone under *local* operations that commute with π_A ($\in X_A(\pi_A)$).

A few lines of algebra yield:

$$\bar{D}_A(\rho_{AB}) = S(\rho_{AB} \parallel \pi_A(\rho_{AB})).$$

- ▶ By the monotonocity theorem, \overline{D}_A is monotone under *local* operations that commute with π_A ($\in X_A(\pi_A)$).
- Necessarily contained in the nongenerating class $\bar{X}_A(\pi_A)$:
 - = commutativity-preserving Hu-Fan-Zhou-Liu '11
 - ► Qubit: semiclassical ∪ unital/mixed-unitary HFZL; Streltsov-Kampermann-Bruβ '11
 - ▶ Qudit (d > 2): semiclassical \cup isotropic HFZL; Guo-Hou '13

A few lines of algebra yield:

$$\bar{D}_A(\rho_{AB}) = S(\rho_{AB} \parallel \pi_A(\rho_{AB})).$$

- ▶ By the monotonocity theorem, \overline{D}_A is monotone under *local* operations that commute with π_A ($\in X_A(\pi_A)$).
- Necessarily contained in the nongenerating class $\bar{X}_A(\pi_A)$:
 - = commutativity-preserving Hu-Fan-Zhou-Liu '11
 - ► Qubit: semiclassical ∪ unital/mixed-unitary HFZL; Streltsov-Kampermann-Bruβ '11
 - ▶ Qudit (d > 2): semiclassical \cup isotropic HFZL; Guo-Hou '13

Monotonicity

Characterize $X_A(\pi_A)$. We show that

<□ > < @ > < E > < E > E のQ @

Monotonicity

Characterize $X_A(\pi_A)$. We show that

• Isotropic $\in X_A(\pi_A)$ (unitary + antiunitary)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Monotonicity

Characterize $X_A(\pi_A)$. We show that

- Isotropic $\in X_A(\pi_A)$ (unitary + antiunitary)
- Semiclassical ∉ X_A(π_A) (do not commute when input is nonclassical), but always output CQ states (zero discord)

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

Monotonicity

Characterize $X_A(\pi_A)$. We show that

- Isotropic $\in X_A(\pi_A)$ (unitary + antiunitary)
- Semiclassical ∉ X_A(π_A) (do not commute when input is nonclassical), but always output CQ states (zero discord)
- Qubit: \exists mixed-unitary $\notin X_A(\pi_A)$ (note: ISO \subsetneq MU); Explicit condition;

Open: all MU\ISO $\notin X_A(\pi_A)$?

Figure: (a) qubit; (b) qudit d > 2.

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

Monotonicity

Monotonicity of MU\ISO for qubits?

Monotonicity of MU\ISO for qubits? Numerical tests:

Figure: (a) $\frac{1}{3}\rho + \frac{2}{3}H\rho H$ (b) $\frac{1}{3}\rho + \frac{2}{3}R_n(\pi/2)\rho R_n(\pi/2)^{\dagger}$ where $R_n(\pi/2)$ is the $\pi/2$ rotation with respect to the axis $\mathbf{n} \propto (1, 1, 1)$ (c) $\frac{1}{6}\rho + \frac{1}{3}R_X(\pi/10)\rho R_X(\pi/10)^{\dagger} + \frac{1}{2}R_Z(\pi/5)\rho R_Z(\pi/5)^{\dagger}$ where R_X and R_Z are rotations with respect to X axis and Z axis respectively.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Monotonicity

Monotonicity

Figure: (a) qubit; (b) qudit, d > 2.

Conclusion: for qudits, DD is monotone under all local commutativity-preserving (nongenerating) channels; for qubits, very likely.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Monotonicity

Figure: (a) qubit; (b) qudit, d > 2.

Conclusion: for qudits, DD is monotone under all local commutativity-preserving (nongenerating) channels; for qubits, very likely.

DD (surprisingly) exhibits almost "maximal" monotonicity!

Continuity

Another desirable property: continuity.

- Examples are known that DD can be discontinuous (but all in the vicinity of degeneracies).
- We show that, when ρ_A is nondegenerate, DD is continuous. Fannes-type bound:

Theorem

 Δ : smallest gap in the spectrum. $\|\rho'_{AB} - \rho_{AB}\|_1 \leq \epsilon$. For sufficiently small ϵ :

$$\begin{aligned} & \left| \bar{D}_A(\rho'_{AB}) - \bar{D}_A(\rho_{AB}) \right| \\ \leq & 4 \left(\frac{3\sqrt{d_A^3} d_B^2}{\Delta} + 1 \right) \epsilon \log d_A d_B + 2H \left[\left(\frac{6\sqrt{d_A^3} d_B^2}{\Delta} + 1 \right) \epsilon \right] \\ & + 2H(\epsilon). \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Consider $\bar{\mathfrak{D}}(\rho_{AB})_{\delta,\pi_A} := \delta(\rho_{AB},\pi_A(\rho_{AB}))$:
 - All contractive δ : monotone under SC \cup ISO;

- Consider $\bar{\mathfrak{D}}(\rho_{AB})_{\delta,\pi_A} := \delta(\rho_{AB},\pi_A(\rho_{AB}))$:
 - All contractive δ : monotone under SC \cup ISO;
 - Schatten-p norm: continuity holds.

$$\left|\bar{\mathfrak{D}}(\rho_{AB}')_{\|\cdot\|_{p},\pi_{A}}-\bar{\mathfrak{D}}(\rho_{AB})_{\|\cdot\|_{p},\pi_{A}}\right| \leq \left(2+\frac{6\sqrt{d_{A}^{3}}d_{B}^{2}}{\Delta}\right)\epsilon.$$

- Consider $\bar{\mathfrak{D}}(\rho_{AB})_{\delta,\pi_A} := \delta(\rho_{AB},\pi_A(\rho_{AB}))$:
 - All contractive δ : monotone under SC \cup ISO;
 - Schatten-p norm: continuity holds.

$$\left|\bar{\mathfrak{D}}(\rho_{AB}')_{\|\cdot\|_{p},\pi_{A}}-\bar{\mathfrak{D}}(\rho_{AB})_{\|\cdot\|_{p},\pi_{A}}\right| \leq \left(2+\frac{6\sqrt{d_{A}^{3}}d_{B}^{2}}{\Delta}\right)\epsilon.$$

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

 The above monotonicity and continuity results generalize to multisided measures.

A framework of resource theories based on (fiber bundles on) free states. General classes of free operations. Simple monotones without optimizations. Applies to all theories (properties sharply contrast convex vs. nonconvex theories).

- A framework of resource theories based on (fiber bundles on) free states. General classes of free operations. Simple monotones without optimizations. Applies to all theories (properties sharply contrast convex vs. nonconvex theories).
- Coherence and (the notoriously ill-behaved theory of) discord exhibit great structures in our theory. DD exhibits good properties generically!

- A framework of resource theories based on (fiber bundles on) free states. General classes of free operations. Simple monotones without optimizations. Applies to all theories (properties sharply contrast convex vs. nonconvex theories).
- Coherence and (the notoriously ill-behaved theory of) discord exhibit great structures in our theory. DD exhibits good properties generically!
- Possible further directions:
 - Resource breaking map? More physical restrictions on RD map (eg no orphan)?

- A framework of resource theories based on (fiber bundles on) free states. General classes of free operations. Simple monotones without optimizations. Applies to all theories (properties sharply contrast convex vs. nonconvex theories).
- Coherence and (the notoriously ill-behaved theory of) discord exhibit great structures in our theory. DD exhibits good properties generically!
- Possible further directions:
 - Resource breaking map? More physical restrictions on RD map (eg no orphan)?
 - RD map theory for other resources (eg magic states, asymmetry*)?

Apply RD map to your favorite theory! Prove new monotones! Extend results for known theories to other theories!

- A framework of resource theories based on (fiber bundles on) free states. General classes of free operations. Simple monotones without optimizations. Applies to all theories (properties sharply contrast convex vs. nonconvex theories).
- Coherence and (the notoriously ill-behaved theory of) discord exhibit great structures in our theory. DD exhibits good properties generically!
- Possible further directions:
 - Resource breaking map? More physical restrictions on RD map (eg no orphan)?
 - RD map theory for other resources (eg magic states, asymmetry*)?
 Apply RD map to your favorite theory! Prove new monotones!
 Extend results for known theories to other theories!
 - Generalizations to resource theories beyond states (eg channels, measurements)?

RD map: 1606.03723 Diagonal discord: 1708.09076

Thanks for your attention!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●