Detecting metrologically useful coherence by few local measurements

Chao Zhang CAS Key Laboratory of Quantum Information, USTC

Outlines

> Brief review of quantum coherence

> the speed detection scheme

➢ Relate speed to coherence

Relate speed to entanglement

Demonstrate speed detection scheme in an all-optical experiment

- the most essential property that distinguishes quantum mechanics from classical theory
- fundamental resource for quantum information processing
- plays an important role in the fields of superfluidity, thermodynamics, and quantum biology

Quantifying coherence

(i) $C(\rho) \ge 0$ for all states ρ , with $C(\delta) = 0$ for all incoherent states $\delta \in \mathcal{I}$.

(ii a) Contractivity under incoherent channels Λ_{ICPTP} ,

$$\mathcal{C}(\rho) \geq \mathcal{C}(\Lambda_{\mathrm{ICPTP}}(\rho)).$$

(ii b) Contractivity under selective measurements on average, $C(\rho) \ge \sum_j p_j C(\rho_j)$, where $\rho_j = K_j \rho K_j^{\dagger} / p_j$ and $p_j = \text{Tr}(K_j \rho K_j^{\dagger})$, for any $\{K_j\}$ such that $\sum_j K_j^{\dagger} K_j = \mathbb{I}$ and $K_j \mathcal{I} K_j \subset \mathcal{I}$ for all *j*. (iii) Convexity, $C(q\rho + (1 - q)\tau) \le qC(\rho) + (1 - q)C(\tau)$ for any states ρ and τ and $q \in [0, 1]$.

• The l1-norm quantifies coherence in an intuitive way, by the off-diagonal elements of a density matrix ρ in the reference basis

$$\mathcal{C}_{l_1}(\rho) = \sum_{i \neq j} |\rho_{ij}|.$$

• Alternatively, one can quantify coherence by means of a geometric approach. Given a distance D, a generic distance-based measure of coherence is defined as

$$\mathcal{C}_D(\rho) = \underset{\delta \in \mathcal{I}}{\min} D(\rho, \delta) = D(\rho, \delta_\rho),$$

 In the quantum metrology scenario, coherence can be identified as the degree of uncertainty about the value of an observable K while performing a measurement on the state, or equivalently the sensitivity of the state to a phase shift generated by K.

- All the methods need to perform full state tomography which require exponentially increasing resources with the system size.
- State tomography may contain redundant information, we actually do not need to know the full information about the state matrix.
- So it is important to design alternative strategies.

Speed detection

Classical

- Exerting forces to test material strength
- Evaluating reflexes to assess neuromuscular efficiency

Quantum

Add a unitary gate to test the speed of evolution of the system

Definition

We quantify the system speed over an interval $0 \le t \le \tau$ by the average rate of change of the state, which is given by mean values of quantum operators $\langle \cdot \rangle_{\rho_t} = \text{Tr}(\cdot \rho_t)$:

$$s_{\tau}(\rho_t) := \frac{\|\rho_{\tau} - \rho_0\|_2}{\tau} = \frac{(\langle \rho_{\tau} \rangle_{\rho_{\tau}} + \langle \rho_0 \rangle_{\rho_0} - 2\langle \rho_{\tau} \rangle_{\rho_0})^{1/2}}{\tau},$$

where the Euclidean distance is employed

 The state overlaps can be quantified by measuring the swap operator on two system copies.

$$\begin{array}{lll} \langle \sigma \rangle_{\rho} &=& \langle V \rangle_{\rho \otimes \sigma} \\ V(|\phi_1\rangle \otimes |\phi_2\rangle) &=& |\phi_2\rangle \otimes |\phi_1\rangle, \forall |\phi_{1,2}\rangle \end{array}$$

• For two qubit swaps

 $V_{12} = \mathbb{I} - 2P_{12}^{-}, P_{12}^{-} = |\psi\rangle\langle\psi|_{12}, |\psi\rangle = 1/\sqrt{2}(|01\rangle - |10\rangle).$

 Each local swap can be recast in terms of projections on the Bell singlet

Overlap detection network

Relate speed to coherence

Proof that speed bounds any QFI

The system speed can express in terms of the Hilbert-Schmidt distance $D_{\text{HS}}(\rho, \sigma) = \sqrt{\text{Tr}((\rho - \sigma)^2)}$ and the related norm

 $S_{\tau}(\rho, H) := s_{\tau}(\rho)^2/2 = D_{\text{HS}}^2(\rho, U_{\tau}\rho U_{\tau}^{\dagger})/(2\tau^2) = ||U_{\tau}\rho U_{\tau}^{\dagger} - \rho||_2^2/(2\tau^2).$ The zero limit is

$$S_0(\rho, H) := \lim_{\tau \to 0} S_{\tau}(\rho, H) = -1/2 \operatorname{Tr}([\rho, H]^2).$$

By expanding the quantity in terms of the state spectrum and eigenbasis, one has

$$\mathcal{S}_0(\rho, H) = \sum_{i \neq j} (\lambda_i - \lambda_j)^2 / 2 |\langle i|H|j \rangle|^2.$$

The expression of the quantum fisher information

$$\mathcal{I}_F(\rho, H) = \sum_{i \neq j} (\lambda_i - \lambda_j)^2 / (2(\lambda_i + \lambda_j)) |\langle i|H|j \rangle|^2$$

Since $\lambda_i + \lambda_j \le 1, \forall i, j,$

 $\mathcal{S}_0(\rho, H) \leq \mathcal{I}_F(\rho, H), \forall \rho, H.$

Relate speed to entanglement

Proof that a non-linear scaling of speed witnesses entanglement

In the quantum metrology scenario, the quantum fisher information of separable states achieve at best (with the adopted normalization)

 $\mathcal{I}_F(\rho, H_n) = n/4$

while entanglement enables up to a quadratic improvement

$$\mathcal{I}_F(\rho,H_n) = n^2$$

So $\mathcal{I}_F(\rho, H_n) > n/4$ witnesses entanglement.

Thus, the speed function also witnesses entanglement

 $S_{\tau}(\rho, H_n) > n/4.$

Experimental Demonstration

Experimental demostration

- We experimentally demonstrate the scheme of a two-qubit system AB.
- The system is prepared in a mixture of Bell states

 $\rho_{p,AB} = p |\phi^+\rangle \langle \phi^+| + (1-p) |\phi^-\rangle \langle \phi^-|, |\phi^\pm\rangle = 1/\sqrt{2}(|00\rangle \pm |11\rangle),$

- We run a series of experiments with equally stepped values of the mixing parameter p=0,0.1,0.2,...,0.9,1
- We choose the perturbation as the phase shift induced by three pauli matrix, and we choose the phase shift theta=pi/6

Experimental demostration

Experimental demostration Copy 1

- We employ a sandwichlik EPR source.
- The two BBO crystals are identically cut, with one true zero order HWP in the middle
- The source has high brightness, high collection efficiency, high fidelity at the same time. It is extremely suitable for multiphoton experiments.
- The detailed description can be found in PRL 115, 260402

Experimental demostration

- We prepare copy 2 from two SPDC sources by post-selection.
- Reason: The four photons interfering into the BSMs form a closed-loop network. This poses the problem to rule out the same-order noise. We generate Copy 2 with two trigger photons which guarantee to generate the two copies from different sources.

Experimental demostration

BSM

- > We employ standard linear optical Bell state measurement scheme
- > The HWPs after the first PBS are set to be 22.5, which can measure the photons in the +/- basis. When the input state is $|\phi^+\rangle$, the measurement result will be $|++\rangle$ or $|--\rangle$; When the input state is $|\phi^-\rangle$, the measurement result will be $|+-\rangle$ or $|-+\rangle$; If we want to discriminate $|\psi^{\pm}\rangle$, we need to insert a 45 HWP in one of the input port of the PBS.

Results

- ➤ We performed tomographies of the input Bell states and of the BSMs. The fidelity of the input states are respectively 0.9889 (ϕ_1^+), 0.9901 (ϕ_1^-), 0.9279 (ϕ_2^+), 0.9319 (ϕ_2^-). The average fidelities of BSM1 and BSM2 are 0.9389 ± 0.0030 and 0.9360 ± 0.0034.
- > The speed measurement results for three directions:

Conclusion

- We propose efficient speed detection scheme by measuring a set of local observables increasing linearly with the number of qubits.
- We show the speed of evolution of a quantum system can reveal its key properties including metrologically useful coherence and entanglement.
- We demonstrate the scheme in an all-optical experiment.
- arXiv: 1611.02004

Thank you!