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Observation, Modelling and Simulation

Science: Make observations, construct models, and build simulators.

−→

Multiple models can provide identical predictions. How to choose the best?

One philosophy is to follow Occam's Razor:

�Plurality should not be posited without necessity"



Computational Mechanics

What is `simple'?

Computational Mechanics: Simple processes require less memory.

Observations can be expressed as a time series:

. . . x−5x−4x−3x−2x−1x0x1x2x3x4x5 . . .

We divide the process into past ←−x = x−∞:0 and future −→x = x0:∞.

The causal states of a process are sets of pasts with identical future statistics:

P(
−→
X |←−X =←−x ) = P(

−→
X |←−X =←−x ′)⇔←−x ∼e

←−x ′.

J. P. Crutch�eld and K. Young, Phys. Rev. Lett. 63 105 (1989)



Computational Mechanics

Example: Random Process.

110110011101101001111011111010101111100010101000100111101101

{∗}.
Example: Perturbed Coin

011111000111101111101111111000000010000000111111110000110011

{∗0} {∗1}.
Example: No Triple Zero

110110011110110100111110111110101011111001010101001010011111

{∗00} {∗10} {∗1}.



Computational Mechanics

The simplest classical model is the ε-machine. It can be represented as an
edge-emitting hidden Markov model based on the causal states.

j k

x|T x
kj

Statistical Complexity: Shannon entropy of the steady-state distribution.

Cµ = −
∑
j

π(Sj) log2(π(Sj)).

This is the minimum memory required by a classical simulator of the model.

J. P. Crutch�eld and K. Young, Phys. Rev. Lett. 63 105 (1989)
C. R. Shalizi and J. P. Crutch�eld, J. Stat. Phys. 104 817 (2001)



Quantum Computational Mechanics

Even optimal classical models store redundant information. They do not exploit
overlap in the future statistics of di�erent causal states.

Quantum mechanics allows information storage in non-orthogonal states, and can
mitigate some of this redundancy.

|Sj〉 =
∑
xk

√
T x
kj |x〉|k〉.

We call such constructions q-machines. Their memory requirement is

Cq = −Tr(ρ log2 ρ) ρ =
∑
j

π(Sj)|Sj〉〈Sj |.

This is less than that of the corresponding ε-machine: Cq ≤ Cµ.

M. Gu, K. Wiesner, E. Rieper, and V. Vedral, Nat. Comm. 3 762 (2012)



Quantum Computational Mechanics

Example: The perturbed coin.

0 1

T |p

H|1− p T |1− p

H|p

Classically, the memory requirement is almost always 1 bit. Quantum
mechanically it is almost always less.

|S0〉 =
√
p|H〉|0〉+

√
1− p|T 〉|1〉

|S1〉 =
√
1− p|H〉|0〉+√p|T 〉|1〉
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M. Gu, K. Wiesner, E. Rieper, and V. Vedral, Nat. Comm. 3 762 (2012)
M. S. Palsson et al., Science Advances 3 e1601302 (2017)



Continuous-Time Stochastic Processes

Continuous-time processes also detail the times between events: xn = (xn, tn).
Process dynamic includes waiting time distributions φxkj(t).

The past now includes the time since the last emission. Likewise for the future.

←−
x = x−∞:0(∅, t0+) −→

x = (x0, t0−)x1:∞.

Renewal Processes: single symbol IID emissions with wait time distribution φ(t).

0|1 φ(t)

1

Simple, yet broad applicability, e.g. queues, lifetimes, neural spike trains.

The only relevant part of the past is the time since the last emission:

t0+ ∼e t ′0+ ⇔ P(T0− |T0+ = t0+) = P(T0− |T0+ = t ′0+).

S. E. Marzen and J. P. Crutch�eld, Entropy 17 4891 (2015)
S. E. Marzen and J. P. Crutch�eld, J. Stat. Phys. pp. 1-19 (2017).



Continuous-Time Stochastic Processes

Classically, the causal states of renewal processes are well-characterised.

For non-Poissonian processes the ε-machine tracks the time since last emission.

0 . . .

Continuous-time requires tracking to arbitrary precision. This leads to a divergent
memory requirement.

With �nite memory, forced to make a trade-o� between precision and storage.

S. E. Marzen and J. P. Crutch�eld, Entropy 17 4891 (2015)
S. E. Marzen and J. P. Crutch�eld, J. Stat. Phys. pp. 1-19 (2017).



Quantum Simulators of Continuous-Time Processes

What happens when applying quantum treatment to continuous-time processes?

Analogous to discrete-time, de�ne states using conditional probabilities
(ψ(t) =

√
φ(t)):

|St〉 =

∫ ∞
0

dt ′
√

P(T0− = t ′|T0+ = t)|t ′〉

=
1√
Φ(t)

∫ ∞
0

dt ′ψ(t + t ′)|t ′〉.

Statistics encoded into wavefunction, measurement in {|t〉} gives correct
probabilities.

Passage of time mimicked by measurement sweeps along the continuous-variable.
Non-detection projects to state with the correct conditional statistics.

T. J. Elliott and M. Gu, arXiv:1704.04231



Quantum Simulators of Continuous-Time Processes

By construction, the quantum causal states will self-merge if two states have
identical future statistics.

This allows us to neglect the causal architecture needed in the classical case, and
naively construct the corresponding states for all possible wait times.

Di�erent quantum causal states typically have non-zero overlap:

〈Sa|Sb〉 =
1√

Φ(a)Φ(b)

∫ ∞
0

dtψ(t + a)ψ(t + b).

Thus, the q-machine requires less memory than the corresponding ε-machine.

T. J. Elliott and M. Gu, arXiv:1704.04231



Quantum Simulators of Continuous-Time Processes

The q-machine memory requirement can be found from the steady state.

Eigenvalue equation for steady-state density matrix:

µ

∫ ∞
0

db

∫ ∞
0

dtψ(t + a)ψ(t + b)fn(b) = λnfn(a).

Solving this, we have

Cq = −
∑
n

λn log2 λn.

This is insensitive to time rescaling.

T. J. Elliott and M. Gu, arXiv:1704.04231



Quantum Simulators of Continuous-Time Processes

Digital simulation is easy due to IID renewal processes. Prepare |St
0+
〉|S0〉⊗L−1.

Analogue simulation is much more interesting!

Discretised version: Prepare qubits in |σt〉. Sweep along chain, and conditionally
transform |1〉|0〉⊗∞ → |1〉|σ0〉. Measurement of |1〉 signi�es emission event.

Continuous: Prepare particle in |St〉. Gate conditioned on particle presence.

T. J. Elliott and M. Gu, arXiv:1704.04231



Quantum Simulators of Continuous-Time Processes

Example: Uniform Emission Probability.

λn =
8

(π(2n − 1))2

Cq ≈ 1.2809

q-machine memory is �nite, but Cµ diverges - unbounded advantage!1

T. J. Elliott and M. Gu, arXiv:1704.04231
1Note also: A. J. P. Garner et al., arXiv:1609.04408 (to appear in New. J. Phys.)



Quantum Simulators of Continuous-Time Processes

Example: Delayed Poisson Process.

Can sweep between pure Poisson and pure periodic processes.

Again an unbounded memory advantage for the q-machine - we suspect this may
be a typical property.

T. J. Elliott and M. Gu, arXiv:1704.04231



Summary and Outlook

Computational Mechanics provides the tools to determine the most
memory-e�cient models. Quantum mechanics allows classical bounds on memory
to be beaten.

Classically an unbounded memory is needed to track continuous-time processes to
arbitrary precision.

Quantum mechanics reduces this memory requirement, and arbitrary precision can
be achieved with �nite memory.

Future Questions:

Proof of conjecture about typicality of bounded memory?

Extension to more general continuous-time stochastic processes.

Experimental implementation.

Advantages in other information-theoretic quantities of q-machines.

Further optimisation of q-machines.



Thanks for listening!

The Quantum and Complexity Science Initiative
http://www.quantumcomplexity.org/

T. J. Elliott and M. Gu, arXiv:1704.04231
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