Semidefinite programming converse bounds for quantum communication

arXiv:1709.00200

Kun Fang

Joint work with Xin Wang, Runyao Duan

Centre for Quantum Software and Information
University of Technology Sydney
Quantum communication

\[\approx \text{id} \]

Channel distance \[\| D \circ N \circ E - \text{id} \| \]

Channel fidelity \[F(\Phi_k, D \circ N \circ E(\Phi_k)) \]

where \(\Phi_k \) is \(k \)-dimensional maximally entangled state.

Semidefinite programming converse bounds for quantum communication (1709.00200)
X. Wang, K. Fang, R. Duan
Quantum communication

Semidefinite programming converse bounds for quantum communication (1709.00200)
X. Wang, K. Fang, R. Duan
Quantum communication

How well the simulation is? [Kretschmann, Werner, 2004]

- Channel distance $\| \mathcal{D} \circ \mathcal{N} \circ \mathcal{E} - id_k \|_\diamondsuit$.
- Channel fidelity $F(\Phi_k, \mathcal{D} \circ \mathcal{N} \circ \mathcal{E}(\Phi_k))$, where Φ_k is k-dimensional maximally entangled state.

...
Quantum capacity

- r: qubits transmitted per channel use.
- n: number of channel copies.
- ε: error tolerance.

A triplet (r, n, ε) is achievable if $\exists \Phi_k, \mathcal{E}_n$ and \mathcal{D}_n such that

$$\frac{1}{n} \log k \geq r, \quad F(\Phi_k, \tilde{\Phi}_k) \geq 1 - \varepsilon.$$

Optimal achievable rate given n, ε

$$r^*(n, \varepsilon) := \max \{r : (r, n, \varepsilon) \text{ achievable}\}.$$

Quantum capacity

$$Q(N) := \lim_{\varepsilon \to 0} \lim_{n \to \infty} r^*(n, \varepsilon).$$

For any quantum channel \(\mathcal{N} \), its quantum capacity is equal to the regularized coherent information of the channel:

\[
Q(\mathcal{N}) = \lim_{n \to \infty} \frac{1}{n} I_c(\mathcal{N}^\otimes n),
\]

where \(I_c(\mathcal{N}) = \max_{\phi_{AA'}} I(A_B)_{\mathcal{N}_{A' \to B} (\phi_{AA'})} \) and \(\phi_{AA'} \) pure state.

- Not a single-letter formula.
- \(I_c(\mathcal{N}) \) not additive in general.
Known converse bounds

<table>
<thead>
<tr>
<th></th>
<th>Strong converse</th>
<th>Efficiently computable</th>
<th>For general channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>✓</td>
<td>? (max-min)</td>
<td>✓</td>
</tr>
<tr>
<td>ε-DEG</td>
<td>?</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>E_C</td>
<td>✓</td>
<td>? (regularization)</td>
<td>✓</td>
</tr>
<tr>
<td>Q_E</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Q_{ss}</td>
<td>?</td>
<td>? (unbounded dimension)</td>
<td>✓</td>
</tr>
<tr>
<td>Q_Θ</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- **R:** Rains information [Tomamichel, Wilde, Winter, 2017]
- **ε-DEG:** Epsilon degradable bound [Sutter, Scholz, Winter, Renner, 2014]
- **E_C:** Channel’s entanglement cost [Berta, Brandão, Christandl, Wehner, 2013]
- **Q_E:** Entanglement assisted quantum capacity [Bennett, Devetak, Harrow, Shor, Winter, 2014; Berta, Christandl, Renner, 2011]
- **Q_{ss}:** Quantum capacity with symmetric side channels [Smith, Smolin, Winter, 2008]
- **Q_Θ:** Partial transposition bound [Holevo, Werner, 2001]
One-shot quantum capacity
One-shot quantum capacity

Unassisted code (UA): \[\Pi_{A_i B_i \to A_o B_o} = \epsilon_{A_i} \rightarrow A_o \otimes D_{B_i} \rightarrow B_o. \]

Positive partial transpose preserving (PPT) code:

Non-signalling (NS) code:

Semidefinite programming converse bounds for quantum communication (1709.00200)

X. Wang, K. Fang, R. Duan
One-shot quantum capacity

Unassisted code (UA):

\[\Pi_{A_i B_i \rightarrow A_0 B_0} = \mathcal{E}_{A_i \rightarrow A_0} \otimes \mathcal{D}_{B_i \rightarrow B_0}. \]

\[J_{\Pi} = \Pi_{A_i B_i \rightarrow A_0 B_0} \left(\Phi_{A_i B_i; A'_i B'_i} \right) \]
One-shot quantum capacity

- Unassisted code (UA):
 \[
 \Pi_{A_iB_i \rightarrow A_oB_o} = \mathcal{E}_{A_i \rightarrow A_o} \otimes \mathcal{D}_{B_i \rightarrow B_o}.
 \]

- Positive partial transpose preserving (PPT) code: [Rains, 1999; Rains, 2001]
 \[
 \Pi_{A_iB_i \rightarrow A_oB_o} \text{ PPT operation } J_{\Pi}^{T_{B_iB_o}} \geq 0.
 \]

Semidefinite programming converse bounds for quantum communication (1709.00200)
X. Wang, K. Fang, R. Duan
One-shot quantum capacity

Unassisted code (UA):

\[\Pi_{A_iB_i \to A_0B_0} = \mathcal{E}_{A_i \to A_0} \otimes \mathcal{D}_{B_i \to B_0}. \]

Positive partial transpose preserving (PPT) code: [Rains, 1999; Rains, 2001]

\[\Pi_{A_iB_i \to A_0B_0} \text{ PPT operation } J_{\Pi}^{T_{B_iB_0}} \geq 0. \]

Non-signalling (NS) code: [Leung, Matthews, 2015; Duan, Winter, 2016]

\[\text{Tr}_{A_0} J_{\Pi} = \frac{1}{d_{A_i}} \otimes \text{Tr}_{A_iA_0} J_{\Pi}, \quad (A \rightarrow B) \]
\[\text{Tr}_{B_0} J_{\Pi} = \frac{1}{d_{B_i}} \otimes \text{Tr}_{B_iB_0} J_{\Pi}, \quad (B \rightarrow A) \]

\[J_{\Pi} = \Pi_{A_iB_i \to A_0B_0} \left(\Phi_{A_iB_i; A_i'B_i} \right) \]
One-shot quantum capacity

Unassisted code (UA):

$$\Pi_{A_iB_i \rightarrow A_0B_0} = \mathcal{E}_{A_i \rightarrow A_0} \otimes \mathcal{D}_{B_i \rightarrow B_0}. $$

Positive partial transpose preserving (PPT) code: [Rains, 1999; Rains, 2001]

$$\Pi_{A_iB_i \rightarrow A_0B_0} \text{ PPT operation } J_{\Pi}^{T_{B_0:B_0}} \geq 0.$$

Non-signalling (NS) code: [Leung, Matthews, 2015; Duan, Winter, 2016]

$$\text{Tr}_{A_0} J_{\Pi} = \frac{1_{A_i}}{d_{A_i}} \otimes \text{Tr}_{A_iA_0} J_{\Pi}, \quad (A \rightarrow B)$$

$$\text{Tr}_{B_0} J_{\Pi} = \frac{1_{B_i}}{d_{B_i}} \otimes \text{Tr}_{B_iB_0} J_{\Pi}, \quad (B \rightarrow A)$$

Semidefinite programming converse bounds for quantum communication (1709.00200)

X. Wang, K. Fang, R. Duan
Maximum channel fidelity

$$F_{\Omega}(N, k) := \sup_{\Pi \in \Omega} \text{Tr} \left(\Phi_k \cdot \Pi \circ N(\Phi_k) \right).$$

One-shot quantum capacity

$$Q^{(1)}_{\Omega}(N, \varepsilon) := \log \max \{ k : F_{\Omega}(N, k) \geq 1 - \varepsilon \}.$$

(Asymptotic) quantum capacity

$$Q_{\Omega}(N) = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} Q^{(1)}_{\Omega}(N^\otimes n, \varepsilon).$$
SDP converse bounds for one-shot quantum capacity

[Leung, Matthews, 2015]

\[F_{\Omega} (N, k) = \max \text{Tr} \, J_N W_{AB} \text{ s.t. } 0 \leq W_{AB} \leq \rho_A \otimes 1_B, \text{Tr} \, \rho_A = 1, \]

PPT: \(- k^{-1} \rho_A \otimes 1_B \leq W_{AB}^{TB} \leq k^{-1} \rho_A \otimes 1_B, \) **NS:** \(\text{Tr}_A W_{AB} = k^{-2} 1_B.\)

Optimization characterization

\[Q_{PPT}^{(1)} (N, \epsilon) = - \log \min m \]

s.t. \(\text{Tr} \, J_N W_{AB} \geq 1 - \epsilon, 0 \leq W_{AB} \leq \rho_A \otimes 1_B, \)

\(\text{Tr} \, \rho_A = 1, -m \rho_A \otimes 1_B \leq W_{AB}^{TB} \leq m \rho_A \otimes 1_B, \)

\[[\text{Tr}_A W_{AB} = m^2 1_B. \text{ NS condition}] \]
[Leung, Matthews, 2015]

\[F_\Omega (N, k) = \max \text{Tr} J_N W_{AB} \text{ s.t. } 0 \leq W_{AB} \leq \rho_A \otimes 1_B, \text{Tr} \rho_A = 1, \]

PPT: \[-k^{-1} \rho_A \otimes 1_B \leq W_{AB}^T \leq k^{-1} \rho_A \otimes 1_B, \]** NS:** \[\text{Tr}_A W_{AB} = k^{-2} 1_B.\]

Optimization characterization

\[Q_{PPT}^{(1)} (N, \epsilon) = -\log \min m \]

\[\text{s.t. } \text{Tr} J_N W_{AB} \geq 1 - \epsilon, 0 \leq W_{AB} \leq \rho_A \otimes 1_B, \]

\[\text{Tr} \rho_A = 1, -m \rho_A \otimes 1_B \leq W_{AB}^T \leq m \rho_A \otimes 1_B, \]

\[\left[\text{Tr}_A W_{AB} = m^2 1_B \text{ NS condition} \right] \]

Non-linear terms
\[Q^{(1)}_{PPT}(N, \varepsilon) = -\log \min m \]
\[
\text{s.t. } \text{Tr} J_N W_{AB} \geq 1 - \varepsilon, 0 \leq W_{AB} \leq \rho_A \otimes 1_B, \\
\text{Tr} \rho_A = 1, -m \rho_A \otimes 1_B \leq W_{AB}^T \leq m \rho_A \otimes 1_B. \\
[\text{Tr}_A W_{AB} = m^2 1_B. \text{ NS condition}]
\]
\[Q_{PPT}^{(1)}(N, \varepsilon) = -\log \min m \]

s.t. \(\text{Tr} J_N W_{AB} \geq 1 - \varepsilon, 0 \leq W_{AB} \leq \rho_A \otimes \mathbb{1}_B, \)

\[\text{Tr} \rho_A = 1, -m \rho_A \otimes \mathbb{1}_B \leq W_{AB}^{TB} \leq m \rho_A \otimes \mathbb{1}_B. \]

[\(\text{Tr}_A W_{AB} = m^2 \mathbb{1}_B. \) NS condition]

\[g(N, \varepsilon) := \min \text{Tr} S_A \]

s.t. \(\text{Tr} J_N W_{AB} \geq 1 - \varepsilon, 0 \leq W_{AB} \leq \rho_A \otimes \mathbb{1}_B, \)

\[\text{Tr} \rho_A = 1, -S_A \otimes \mathbb{1}_B \leq W_{AB}^{TB} \leq S_A \otimes \mathbb{1}_B. \]
\[Q_{PPT}^{(1)}(N, \varepsilon) = -\log \min m \]

s.t. \(\text{Tr} J_N W_{AB} \geq 1 - \varepsilon, 0 \leq W_{AB} \leq \rho_A \otimes 1_B, \)
\(\text{Tr} \rho_A = 1, -m \rho_A \otimes 1_B \leq W_{AB} \leq m \rho_A \otimes 1_B. \)
\[[\text{Tr}_A W_{AB} = m^2 1_B. \text{ NS condition}] \]

\[g(N, \varepsilon) := \min \text{Tr} S_A \]

s.t. \(\text{Tr} J_N W_{AB} \geq 1 - \varepsilon, 0 \leq W_{AB} \leq \rho_A \otimes 1_B, \)
\(\text{Tr} \rho_A = 1, -S_A \otimes 1_B \leq W_{AB} \leq S_A \otimes 1_B. \)

\[\tilde{g}(N, \varepsilon) := \min \text{Tr} S_A \]

s.t. \(\text{Tr} J_N W_{AB} \geq 1 - \varepsilon, 0 \leq W_{AB} \leq \rho_A \otimes 1_B, \)
\(\text{Tr} \rho_A = 1, -S_A \otimes 1_B \leq W_{AB} \leq S_A \otimes 1_B, \)
\(\text{Tr}_A W_{AB} = t 1_B. \)
\[Q_{PPT}^{(1)} (N, \varepsilon) = -\log \min m \]

\[
\begin{align*}
\text{s.t. } & \text{ Tr } J_N W_{AB} \geq 1 - \varepsilon, 0 \leq W_{AB} \leq \rho_A \otimes 1_B, \\
& \text{ Tr } \rho_A = 1, -m \rho_A \otimes 1_B \leq W_{AB}^{TB} \leq m \rho_A \otimes 1_B. \\
& [\text{ Tr}_A W_{AB} = m^2 1_B. \text{ NS condition}]
\end{align*}
\]

\[g (N, \varepsilon) := \min \text{ Tr } S_A \]

\[
\begin{align*}
\text{s.t. } & \text{ Tr } J_N W_{AB} \geq 1 - \varepsilon, 0 \leq W_{AB} \leq \rho_A \otimes 1_B, \\
& \text{ Tr } \rho_A = 1, -S_A \otimes 1_B \leq W_{AB}^{TB} \leq S_A \otimes 1_B.
\end{align*}
\]

\[\tilde{g} (N, \varepsilon) := \min \text{ Tr } S_A \]

\[
\begin{align*}
\text{s.t. } & \text{ Tr } J_N W_{AB} \geq 1 - \varepsilon, 0 \leq W_{AB} \leq \rho_A \otimes 1_B, \\
& \text{ Tr } \rho_A = 1, -S_A \otimes 1_B \leq W_{AB}^{TB} \leq S_A \otimes 1_B, \\
& \text{ Tr}_A W_{AB} = t 1_B.
\end{align*}
\]

\[\hat{g} (N, \varepsilon) := \min \text{ Tr } S_A \]

\[
\begin{align*}
\text{s.t. } & \text{ Tr } J_N W_{AB} \geq 1 - \varepsilon, 0 \leq W_{AB} \leq \rho_A \otimes 1_B, \\
& \text{ Tr } \rho_A = 1, -S_A \otimes 1_B \leq W_{AB}^{TB} \leq S_A \otimes 1_B, \\
& \text{ Tr}_A W_{AB} = t 1_B, t \geq \hat{m}^2, \\
& (Q_{PPT \cap NS}^{(1)} (N, \varepsilon) \leq -\log \hat{m}).
\end{align*}
\]
Main result 1: SDP converse bounds for one-shot quantum capacity

[Semidefinite programming converse bounds for quantum communication](1709.00200) X. Wang, K. Fang, R. Duan

[Semidefinite programming converse bounds for quantum communication](1709.00200) X. Wang, K. Fang, R. Duan

\[f(N, \varepsilon) = \min \text{Tr} S_A \]
\[\text{s.t. } \text{Tr} J_N W_{AB} \geq 1 - \varepsilon, S_A, \Theta_{AB} \geq 0, \text{Tr} \rho_A = 1, \]
\[0 \leq W_{AB} \leq \rho_A \otimes 1_B, S_A \otimes 1_B \geq W_{AB} + \Theta_{AB}^{TB}. \]
Main result 1: SDP converse bounds for one-shot quantum capacity

[Tomamichel, Berta, Renes, 2016]

\[
f (N, \varepsilon) = \min \ \text{Tr} \ S_A
\]

\[\text{s.t. } \text{Tr} \ J_N W_{AB} \geq 1 - \varepsilon, S_A, \Theta_{AB} \geq 0, \text{Tr} \ \rho_A = 1, \]

\[0 \leq W_{AB} \leq \rho_A \otimes \mathbb{1}_B, S_A \otimes \mathbb{1}_B \geq W_{AB} + \Theta_{AB}^T. \quad (5)\]

Theorem

For any quantum channel \(N \) and error tolerance \(\varepsilon \), the inequality chain holds

\[
Q^{(1)} (N, \varepsilon) \leq Q_{PPT \cap NS}^{(1)} (N, \varepsilon) \leq - \log \tilde{g} (N, \varepsilon) \leq - \log \tilde{\tilde{g}} (N, \varepsilon) \leq - \log g (N, \varepsilon) \leq - \log f (N, \varepsilon). \quad (6)
\]
Example: Amplitude damping channel

Amplitude damping channel $\mathcal{N}_{AD} = \sum_{i=0}^{1} E_i \cdot E_i^\dagger$ with

$$
E_0 = |0\rangle \langle 0| + \sqrt{1 - r} |1\rangle \langle 1| \quad E_1 = \sqrt{r} |0\rangle \langle 1|, \quad 0 \leq r \leq 1
$$
Qubit depolarizing channel $\mathcal{N}_D(\rho) = (1-p)\rho + \frac{p}{3}(X\rho X + Y\rho Y + Z\rho Z)$, where X, Y, Z are Pauli matrices.
Asymptotic quantum capacity
$$Q^{(1)}_{PPT}(N, \varepsilon) = -\log \min m$$

s.t. \(\text{Tr} J_N W_{AB} \geq 1 - \varepsilon, 0 \leq W_{AB} \leq \rho_A \otimes 1_B, \)

\(\text{Tr} \rho_A = 1, -m\rho_A \otimes 1_B \leq W_{AB}^{TB} \leq m\rho_A \otimes 1_B. \)
SDP strong converse bound for quantum capacity

\[Q_{PPT}^{(1)} (N, \varepsilon) = -\log \min m \]

s.t. \(\text{Tr} J_N W_{AB} \geq 1 - \varepsilon, 0 \leq W_{AB} \leq \rho_A \otimes 1_B, \)

\[\text{Tr} \rho_A = 1, -m \rho_A \otimes 1_B \leq W_{AB}^{TB} \leq m \rho_A \otimes 1_B. \]

Take \(R_{AB} = W_{AB} / m \) and throw away the condition \(W_{AB} \leq \rho_A \otimes 1_B \), we obtain an additive SDP upper bound \(Q_{PPT}^{(1)} (N, \varepsilon) \leq Q_\Gamma (N) - \log (1 - \varepsilon), \) where

\[Q_\Gamma (N) = \log \max \text{Tr} J_N R_{AB} \]

s.t. \(R_{AB}, \rho_A \geq 0, \text{Tr} \rho_A = 1, \)

\[- \rho_A \otimes 1_B \leq R_{AB}^{TB} \leq \rho_A \otimes 1_B. \]

(7)

Semidefinite programming converse bounds for quantum communication(1709.00200)

X. Wang, K. Fang, R. Duan
\[Q_{\text{PPT}}^{(1)} (N, \varepsilon) = - \log \min m \]

\[
\text{s.t. } \begin{align*}
\text{Tr } J_N W_{AB} & \geq 1 - \varepsilon, \quad 0 \leq W_{AB} \leq \rho_A \otimes 1_B, \\
\text{Tr } \rho_A & = 1, \quad -m \rho_A \otimes 1_B \leq W_{AB}^T \leq m \rho_A \otimes 1_B.
\end{align*}
\]

Take \(R_{AB} = W_{AB}/m \) and throw away the condition \(W_{AB} \leq \rho_A \otimes 1_B \), we obtain an additive SDP upper bound

\[
Q_{\text{PPT}}^{(1)} (N, \varepsilon) \leq Q_{\Gamma} (N) - \log (1 - \varepsilon),
\]

where

\[Q_{\Gamma} (N) = \log \max \text{Tr } J_N R_{AB} \]

\[
\text{s.t. } R_{AB}, \rho_A \geq 0, \text{Tr } \rho_A = 1, \\
\quad \rho_A \otimes 1_B \leq R_{AB}^T \leq \rho_A \otimes 1_B.
\]

- Additivity: \(Q_{\Gamma} (N \otimes M) = Q_{\Gamma} (N) + Q_{\Gamma} (M) \) (by utilizing SDP duality).
- Converse bound for \(Q (N) \) : \(Q (N) \leq Q_{\text{PPT}} (N) \leq Q_{\Gamma} (N) \).
- For noiseless quantum channel \(J_d \), \(Q (J_d) = Q_{\Gamma} (J_d) = \log_2 d \).
- Strong converse: denote the n-shot optimal rate as \(r \), then \((r, n, \varepsilon) \) satisfies

\[
nr \leq n Q_{\Gamma} (N) - \log (1 - \varepsilon),
\]

which implies \(\varepsilon \geq 1 - 2^n (Q_{\Gamma} (N) - r) \).
Main result 2: SDP strong converse bound for quantum capacity

Theorem (SDP strong converse bound for Q)

For any quantum channel N,

$$Q(N) \leq Q_\Gamma(N) = \log \max \text{Tr } J_N R_{AB}$$

s.t. $R_{AB}, \rho_A \geq 0$, $\text{Tr } \rho_A = 1$,

$$-\rho_A \otimes 1_B \leq R_{AB}^T \leq \rho_A \otimes 1_B.$$

The fidelity of transmission goes to zero if the rate exceeds $Q_\Gamma(N)$.
Main result 2: SDP strong converse bound for quantum capacity

Theorem (SDP strong converse bound for Q)

For any quantum channel \mathcal{N},

$$Q(\mathcal{N}) \leq Q_{\Gamma}(\mathcal{N}) = \log \max \text{Tr} J_N R_{AB}$$

s.t. $R_{AB}, \rho_A \geq 0, \text{Tr} \rho_A = 1,$

$$-\rho_A \otimes 1_B \leq R_{AB}^{T_B} \leq \rho_A \otimes 1_B.$$

The fidelity of transmission goes to zero if the rate exceeds $Q_{\Gamma}(\mathcal{N})$.

How to understand $Q_{\Gamma}(\mathcal{N})$?

Semidefinite programming converse bounds for quantum communication (1709.00200)
X. Wang, K. Fang, R. Duan
Main result 2: SDP strong converse bound for quantum capacity

Theorem (SDP strong converse bound for Q)

For any quantum channel \mathcal{N},

$$Q(\mathcal{N}) \leq Q_\Gamma(\mathcal{N}) = \log \max \text{Tr} J_\mathcal{N} R_{AB}$$

s.t. $R_{AB}, \rho_A \geq 0, \text{Tr} \rho_A = 1$,

$$-\rho_A \otimes 1_B \leq R^B_{AB} \leq \rho_A \otimes 1_B.$$

The fidelity of transmission goes to zero if the rate exceeds $Q_\Gamma(\mathcal{N})$.

How to understand $Q_\Gamma(\mathcal{N})$?

$$Q_\Gamma(\mathcal{N}) = \max_{\rho_A \in S(A)} E_W(\mathcal{N}_A' \rightarrow B(\phi_{AA'}))$$

$$= \max_{\rho \in S(A)} \min_{\sigma \in \text{PPT}' } D_{\max}(\mathcal{N}_A' \rightarrow B(\phi_{AA'}), \sigma)$$

where $E_W(\rho) := \log \max \{\text{Tr} \rho R_{AB} : -1_{AB} \leq R^B_{AB} \leq 1_{AB}, R_{AB} \geq 0\}$, [Wang, Duan, 2016], $\phi_{AA'}$ is a purification of ρ_A and PPT' = $\{\sigma \geq 0 : \|\sigma^T_B\|_1 \leq 1\}$.
Main result 2: SDP strong converse bound for quantum capacity

Theorem (SDP strong converse bound for Q)

For any quantum channel N,

$$Q(N) \leq Q\Gamma(N) = \log \max \text{Tr} \ J_N R_{AB}$$

s.t. $R_{AB}, \rho_A \geq 0, \text{Tr} \ \rho_A = 1,$

$$-\rho_A \otimes 1_B \leq R_{AB}^T \leq \rho_A \otimes 1_B.$$

The fidelity of transmission goes to zero if the rate exceeds $Q\Gamma(N)$.

How to understand $Q\Gamma(N)$?

Entanglement measure

$$Q\Gamma(N) = \max_{\rho_A \in S(A)} E_W(N_{A'\rightarrow B}(\phi_{AA'}))$$

$$= \max_{\rho \in S(A)} \min_{\sigma \in \text{PPT}'} D_{\max} (N_{A'\rightarrow B}(\phi_{AA'})) \| \sigma)$$

where $E_W(\rho) := \log \max \{ \text{Tr} \ \rho R_{AB} : -1_{AB} \leq R_{AB}^T \leq 1_{AB}, R_{AB} \geq 0 \}$, [Wang, Duan, 2016], $\phi_{AA'}$ is a purification of ρ_A and $\text{PPT}' = \{ \sigma \geq 0 : \|\sigma^T\|_1 \leq 1 \}$.

Remark: For any EB channel N, $Q\Gamma(N) = 0$. If $Q_E(N) \neq 0$, $Q\Gamma(N) < Q_E(N)$.

Semidefinite programming converse bounds for quantum communication(1709.00200)

X. Wang, K. Fang, R. Duan
Comparison with other bounds

Rains information [Tomamichel, Wilde, Winter, 2016]

$$R(N) := \max_{\rho \in S(A)} \min_{\sigma \in \text{PPT}'} D(N_{A'} \rightarrow B(\phi_{AA'}) \| \sigma)$$

Due to the fact that $D(\rho \| \sigma) \leq D_{\max}(\rho \| \sigma)$ [Datta], we have $R(N) \leq Q_{\Gamma}(N)$.

\[\bigcirc\]

Rains information strongly converse but not known to be efficiently computable in general.

\[\bigcirc\]

$Q_{\Gamma}(N)$ strongly converse and efficiently computable in general.
Comparison with other bounds

Rains information [Tomamichel, Wilde, Winter, 2016]

\[R(N) := \max_{\rho \in \mathcal{S}(A)} \min_{\sigma \in \text{PPT}} D(\mathcal{N}_{A'\to B}(\phi_{AA'}) \| \sigma) \]

\[Q_{\Gamma}(N) = \max_{\rho \in \mathcal{S}(A)} \min_{\sigma \in \text{PPT}} D_{\text{max}}(\mathcal{N}_{A'\to B}(\phi_{AA'}) \| \sigma) \]
Comparison with other bounds

Rains information [Tomamichel, Wilde, Winter, 2016]

\[R(N) := \max_{\rho \in \mathcal{S}(A)} \min_{\sigma \in \text{PPT}'} D(\mathcal{N}_{A' \rightarrow B}(\phi_{AA'}) \| \sigma) \]

\[Q_{\Gamma}(N) = \max_{\rho \in \mathcal{S}(A)} \min_{\sigma \in \text{PPT}'} D_{\max}(\mathcal{N}_{A' \rightarrow B}(\phi_{AA'}) \| \sigma) \]

Due to the fact that \(D(\rho \| \sigma) \leq D_{\max}(\rho \| \sigma) \) [Datta, 2009], we have \(R(N) \leq Q_{\Gamma}(N) \).
Comparison with other bounds

Rains information [Tomamichel, Wilde, Winter, 2016]

\[R(N) := \max_{\rho \in S(A)} \min_{\sigma \in \text{PPT}'} D(N_{A'} \to B(\phi_{AA'}) \| \sigma) \]

\[Q_{\Gamma}(N) = \max_{\rho \in S(A)} \min_{\sigma \in \text{PPT}'} D_{\text{max}}(N_{A'} \to B(\phi_{AA'}) \| \sigma) \]

Due to the fact that \(D(\rho \| \sigma) \leq D_{\text{max}}(\rho \| \sigma) \) [Datta, 2009], we have \(R(N) \leq Q_{\Gamma}(N) \).

- \(R(N) \) strong converse but not known to be efficiently computable in general.
- \(Q_{\Gamma}(N) \) strong converse and **efficiently computable** in general.

Semidefinite programming converse bounds for quantum communication(1709.00200)

X. Wang, K. Fang, R. Duan
Comparison with other bounds

○ Partial Transposition bound [Holevo, Werner, 2001]

\[Q(N) \leq Q_\Theta(N) = \log \|N \circ T\|, \]

where \(T \) is the transpose map, \(\|N\| = \|N \otimes id\|_1 \) and can be characterized by SDP from [Watrous, 2012].
Comparison with other bounds

- Partial Transposition bound [Holevo, Werner, 2001]

\[Q(N) \leq Q_{\Theta}(N) = \log \|N \circ T\|_\Diamond, \]

where \(T\) is the transpose map, \(\|N\|_\Diamond = \|N \otimes id\|_1\) and can be characterized by SDP from [Watrous, 2012].

Improved efficiently computable bound

For any quantum channel \(N\), it holds \(Q_T(N) \leq Q_{\Theta}(N)\).
Comparison with other bounds

- Partial Transposition bound [Holevo, Werner, 2001]

\[Q(N) \leq Q_\Theta(N) = \log \|N \circ T\|_\Diamond, \]

where \(T \) is the transpose map, \(\|N\|_\Diamond = \|N \otimes id\|_1 \) and can be characterized by SDP from [Watrous, 2012].

Improved efficiently computable bound

For any quantum channel \(N \), it holds \(Q_\Gamma(N) \leq Q_\Theta(N) \).

Example: \(N_r = \sum_i E_i \cdot E_i^\dagger \) where \(E_0 = |0\rangle\langle 0| + \sqrt{r}|1\rangle\langle 1| \), \(E_1 = \sqrt{1-r}|0\rangle\langle 1| + |1\rangle\langle 2| \).

Semidefinite programming converse bounds for quantum communication(1709.00200)
X. Wang, K. Fang, R. Duan
Partial Transposition bound [Holevo, Werner, 2001]

\[Q(N) \leq Q_\Theta(N) = \log \| N \circ T \|_\diamond, \]

where \(T \) is the transpose map, \(\| N \|_\diamond = \| N \otimes \text{id} \|_1 \) and can be characterized by SDP from [Watrous, 2012].

Improved efficiently computable bound

For any quantum channel \(N \), it holds \(Q_\Gamma(N) \leq Q_\Theta(N) \).

Example: \(N_r = \sum_i E_i \cdot E_i^\dagger \) where \(E_0 = |0\rangle \langle 0| + \sqrt{r} |1\rangle \langle 1| \), \(E_1 = \sqrt{1 - r} |0\rangle \langle 1| + |1\rangle \langle 2| \).

Converse bounds comparison

For any quantum channel \(N \), it holds \(Q(N) \leq R(N) \leq Q_\Gamma(N) \leq Q_\Theta(N) \).
Known converse bounds

<table>
<thead>
<tr>
<th></th>
<th>Strong converse</th>
<th>Efficiently computable</th>
<th>For general channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_Γ</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>R</td>
<td>✓</td>
<td>✓ (max-min)</td>
<td>✓</td>
</tr>
<tr>
<td>ε-DEG</td>
<td>?</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>E_C</td>
<td>✓</td>
<td>? (regularization)</td>
<td>✓</td>
</tr>
<tr>
<td>Q_E</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Q_{ss}</td>
<td>?</td>
<td>? (unbounded dimension)</td>
<td>✓</td>
</tr>
<tr>
<td>Q_Θ</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- Q_Γ: SDP strong converse bound in this talk.
- R: Rains information [Tomamichel, Wilde, Winter, 2017]
- ε-DEG: Epsilon degradable bound [Sutter, Scholz, Winter, Renner, 2014]
- E_C: Channel’s entanglement cost [Berta, Brandão, Christandl, Wehner, 2013]
- Q_E: Entanglement assisted quantum capacity [Bennett, Devetak, Harrow, Shor, Winter, 2014; Berta, Christandl, Renner, 2011]
- Q_{ss}: Quantum capacity with symmetric side channels [Smith, Smolin, Winter, 2008]
- Q_Θ: Partial transposition bound [Holevo, Werner, 2001]
- $\exists N$, $Q_\Gamma (N) < \varepsilon$-DEG ($N$).

Semidefinite programming converse bounds for quantum communication(1709.00200)
X. Wang, K. Fang, R. Duan
Theorem (SDP converse bounds for finite blocklength Q)

For any quantum channel \mathcal{N} and error tolerance ϵ, the inequality chain holds

$$Q^{(1)}(\mathcal{N}, \epsilon) \leq Q^{(1)}_{\text{PPT} \cap \text{NS}}(\mathcal{N}, \epsilon) \leq -\log \hat{g}(\mathcal{N}, \epsilon) \leq -\log \tilde{g}(\mathcal{N}, \epsilon) \leq -\log g(\mathcal{N}, \epsilon) \leq -\log f(\mathcal{N}, \epsilon).$$

Theorem (SDP strong converse bound for Q)

For any quantum channel \mathcal{N},

$$Q(\mathcal{N}) \leq Q_\Gamma(\mathcal{N}) = \log \max \text{Tr} J_\mathcal{N} R_{AB}$$

s.t. $R_{AB}, \rho_A \geq 0$, Tr $\rho_A = 1$,

$$-\rho_A \otimes 1_B \leq R_{AB}^{TB} \leq \rho_A \otimes 1_B.$$

$$Q(\mathcal{N}) \leq R(\mathcal{N}) \leq Q_\Gamma(\mathcal{N}) \leq Q_\Theta(\mathcal{N}).$$

Semidefinite programming converse bounds for quantum communication(1709.00200)

X. Wang, K. Fang, R. Duan
Open questions and future works

- How to apply our relaxation technique to Gaussian channels?
- Q_1 does not work well for depolarizing channels. Can we obtain a better result from the linear programs \hat{g}, \tilde{g} or g?
THE END

THANK YOU!
References

Semidefinite programming converse bounds for quantum communication(1709.00200)
X. Wang, K. Fang, R. Duan