Self-testing of binary observables based on commutation

[arXiv:1702.06845, Phys. Rev. A 95, 062323 (2017)]

Jed Kaniewski

QMATH, Department of Mathematical Sciences University of Copenhagen, Denmark

AQIS '17, Singapore 5 Sept 2017

Outline

- What is nonlocality?
- What is self-testing?
- The CHSH inequality
- The biased CHSH inequality
- Multiple anticommuting observables
- Summary and open problems

Outline

- What is nonlocality?
- What is self-testing?
- The CHSH inequality
- The biased CHSH inequality
- Multiple anticommuting observables
- Summary and open problems

Bell scenario

Bell scenario

Def.: Pr[a, b|x, y] is **local** if

$$\Pr[a,b|x,y] = \sum_{\lambda} p(\lambda) \, p(a|x,\lambda) \, p(b|y,\lambda).$$

Otherwise \implies nonlocal or it violates (some) Bell inequality

Assume quantum mechanics. . . what can I deduce about my system?

Assume quantum mechanics...what can I deduce about my system?

Entanglement: separable states always produce local statistics

$$\rho_{AB} = \sum_{\lambda} p_{\lambda} \sigma_{\lambda} \otimes \tau_{\lambda},$$

$$\Pr[a, b | x, y] = \operatorname{tr}\left[(P_a^x \otimes Q_b^y) \rho_{AB} \right] = \sum_{\lambda} p_{\lambda} \cdot \underbrace{\operatorname{tr}(P_a^x \sigma_{\lambda})}_{p(a|x,\lambda)} \cdot \underbrace{\operatorname{tr}(Q_b^y \tau_{\lambda})}_{p(b|y,\lambda)}$$

Assume quantum mechanics...what can I deduce about my system?

Entanglement: separable states always produce local statistics

$$\rho_{AB} = \sum_{\lambda} p_{\lambda} \sigma_{\lambda} \otimes \tau_{\lambda},$$

$$\Pr[a, b | x, y] = \operatorname{tr}\left[(P_a^x \otimes Q_b^y) \rho_{AB} \right] = \sum_{\lambda} p_{\lambda} \cdot \underbrace{\operatorname{tr}(P_a^x \sigma_{\lambda})}_{p(a|x,\lambda)} \cdot \underbrace{\operatorname{tr}(Q_b^y \tau_{\lambda})}_{p(b|y,\lambda)}$$

Assume quantum mechanics...what can I deduce about my system?

Entanglement: separable states always produce local statistics

$$\rho_{AB} = \sum_{\lambda} p_{\lambda} \sigma_{\lambda} \otimes \tau_{\lambda},$$

$$\Pr[a, b | x, y] = \operatorname{tr}\left[(P_a^x \otimes Q_b^y) \rho_{AB} \right] = \sum_{\lambda} p_{\lambda} \cdot \underbrace{\operatorname{tr}(P_a^x \sigma_{\lambda})}_{p(a|x,\lambda)} \cdot \underbrace{\operatorname{tr}(Q_b^y \tau_{\lambda})}_{p(b|y,\lambda)}$$

Self-testing

Given $\Pr[a, b|x, y] = \operatorname{tr}\left[(P_a^x \otimes Q_b^y)\rho_{AB}\right]$

deduce properties of ρ_{AB} , (P_a^x) , (Q_b^y)

Self-testing

Given $\Pr[a, b|x, y] = \operatorname{tr}\left[(P_a^x \otimes Q_b^y)\rho_{AB}\right]$

deduce properties of ρ_{AB} , (P_a^x) , (Q_b^y)

(don't assume that ρ_{AB} is pure or measurements are projective, deduce it instead!)

Self-testing

Given $\Pr[a, b|x, y] = \operatorname{tr}\left[(P_a^x \otimes Q_b^y)\rho_{AB}\right]$

deduce properties of ρ_{AB} , (P_a^x) , (Q_b^y)

(don't assume that ρ_{AB} is pure or measurements are projective, deduce it instead!)

often only promised some Bell violation

$$\sum_{abxy} c_{ab}^{xy} \Pr[a, b|x, y] = \beta$$

$$\sum_{abxy} c_{ab}^{xy} \Pr[a,b|x,y] = \beta$$

measurement certification

Why care about self-testing of measurements?

- significantly less studied (particularly in the robust regime)
- relevant for (two-party) device-independent cryptography
- pinning down the optimal measurements immediately gives the optimal state

Outline

- What is nonlocality?
- What is self-testing?
- The CHSH inequality
- The biased CHSH inequality
- Multiple anticommuting observables
- Summary and open problems

Measurements with two outcomes

$$F_j = F_j^{\dagger},$$

$$F_j \ge 0,$$

$$F_0 + F_1 = 1$$

Measurements with two outcomes

$$F_{j} = F_{j}^{\dagger},$$

$$F_{j} \ge 0,$$

$$F_{0} + F_{1} = 1$$

Conveniently written as observables

$$A = F_0 - F_1$$

One-to-one mapping, i.e. any

$$A = A^{\dagger}$$
 and $-1 \le A \le 1$

corresponds to a valid measurement [for projective measurements $A^2 = 1$]

The CHSH value

$$\beta := \operatorname{tr}(W \rho_{AB})$$
 for $W := A_0 \otimes (B_0 + B_1) + A_1 \otimes (B_0 - B_1)$

Classically $\beta \leq 2$, but quantumly can reach up to $2\sqrt{2}$

The CHSH value

$$\beta := \operatorname{tr}(W \rho_{AB}) \text{ for } W := A_0 \otimes (B_0 + B_1) + A_1 \otimes (B_0 - B_1)$$

Classically $\beta \leq 2$, but quantumly can reach up to $2\sqrt{2}$

What can we deduce from $\beta > 2$?

The CHSH value

$$\beta := \operatorname{tr}(W \rho_{AB}) \text{ for } W := A_0 \otimes (B_0 + B_1) + A_1 \otimes (B_0 - B_1)$$

Classically $\beta \leq 2$, but quantumly can reach up to $2\sqrt{2}$

What can we deduce from $\beta > 2$?

If
$$A_j^2 = B_k^2 = 1$$
, then

$$W^2 = 4 \cdot 1 \otimes 1 - [A_0, A_1] \otimes [B_0, B_1].$$

If
$$A_j^2 = B_k^2 = 1$$
, then

$$W^2 = 4 \cdot 1 \otimes 1 - [A_0, A_1] \otimes [B_0, B_1].$$

In general $(A_j^2, B_k^2 \le 1)$

$$W^2 \le 4 \cdot 1 \otimes 1 - [A_0, A_1] \otimes [B_0, B_1].$$

Simple upper bounds

$$W^{2} \leq 4 \cdot \mathbb{1} \otimes \mathbb{1} + |[A_{0}, A_{1}] \otimes [B_{0}, B_{1}]|$$

= $4 \cdot \mathbb{1} \otimes \mathbb{1} + |[A_{0}, A_{1}]| \otimes |[B_{0}, B_{1}]|$
 $\leq 4 \cdot \mathbb{1} \otimes \mathbb{1} + 2|[A_{0}, A_{1}]| \otimes \mathbb{1}.$

$$W^2 \le 4 \cdot 1 \otimes 1 + 2|[A_0, A_1]| \otimes 1.$$

$$W^2 \le 4 \cdot 1 \otimes 1 + 2|[A_0, A_1]| \otimes 1.$$

The Cauchy-Schwarz inequality

$$\left[\operatorname{tr}(W\rho_{AB})\right]^{2} \le \operatorname{tr}(W^{2}\rho_{AB}) \cdot \operatorname{tr}\rho_{AB} = \operatorname{tr}(W^{2}\rho_{AB})$$

$$W^2 \le 4 \cdot \mathbb{1} \otimes \mathbb{1} + 2|[A_0, A_1]| \otimes \mathbb{1}.$$

The Cauchy-Schwarz inequality

$$\left[\operatorname{tr}(W\rho_{AB})\right]^{2} \le \operatorname{tr}(W^{2}\rho_{AB}) \cdot \operatorname{tr}\rho_{AB} = \operatorname{tr}(W^{2}\rho_{AB})$$

leads to

$$\beta \leq 2\sqrt{1+t},$$

where $t := \frac{1}{2} \operatorname{tr} (|[A_0, A_1]| \rho_A)$.

Bell violation certifies incompatibility of observables!

The quantity

$$t := \frac{1}{2} \operatorname{tr} \left(|[A_0, A_1]| \rho_A \right)$$

- invariant under local unitaries and adding auxiliary systems
- easy to compute
- clear operational interpretation as "weighted average"
- t = 1 (max. value) implies

$$UA_0U^{\dagger} = \sigma_x \otimes \mathbb{1},$$

$$UA_1U^{\dagger} = \sigma_y \otimes \mathbb{1}.$$

[assuming ρ_A is full-rank]

The quantity

$$t := \frac{1}{2}\operatorname{tr}\left(|[A_0, A_1]|\rho_A\right)$$

- invariant under local unitaries and adding auxiliary systems
- easy to compute
- clear operational interpretation as "weighted average"
- t = 1 (max. value) implies

$$UA_0U^{\dagger} = \sigma_x \otimes \mathbb{1},$$

$$UA_1U^{\dagger} = \sigma_y \otimes \mathbb{1}.$$

[assuming ρ_A is full-rank]

 $\implies t =$ "distance from the optimal arrangement"

The relation

$$\beta \leq 2\sqrt{1+t},$$

- is non-trivial as soon as $\beta > 2$
- is tight

The relation

$$\beta \le 2\sqrt{1+t},$$

- is non-trivial as soon as $\beta > 2$
- is tight

CHSH violation certifies closeness to the optimal arrangement

The relation

$$\beta \le 2\sqrt{1+t},$$

- is non-trivial as soon as $\beta > 2$
- is tight

CHSH violation certifies closeness to the optimal arrangement

BONUS: $\beta = 2\sqrt{2}$ implies t = 1 and so

$$UA_0U^{\dagger} = \sigma_x \otimes \mathbb{1},$$

$$UA_1U^{\dagger} = \sigma_y \otimes \mathbb{1}$$

By symmetry the same applies to Bob, so W (up to local unitaries) is just a **two-qubit operator tensored with identity** \Longrightarrow finding the optimal state is easy

Complete rigidity statement: if $\beta = 2\sqrt{2}$ then there exists $U = U_A \otimes U_B$ and $\tau_{A'B'}$

$$\rho_{AB} = U(\Phi_{AB} \otimes \tau_{A'B'})U^{\dagger},$$

where $\Phi_{AB} = \text{EPR}$ pair and

$$\begin{split} &U_A A_0 U_A^\dagger = \sigma_x \otimes \mathbb{1}, \\ &U_A A_1 U_A^\dagger = \sigma_y \otimes \mathbb{1}, \\ &U_B B_0 U_B^\dagger = \sigma_x \otimes \mathbb{1}, \\ &U_B B_1 U_B^\dagger = \sigma_y \otimes \mathbb{1}. \end{split}$$

The CHSH inequality

Complete rigidity statement: if $\beta = 2\sqrt{2}$ then there exists $U = U_A \otimes U_B$ and $\tau_{A'B'}$

$$\rho_{AB} = U(\Phi_{AB} \otimes \tau_{A'B'})U^{\dagger},$$

where $\Phi_{AB} = \text{EPR}$ pair and

$$U_A A_0 U_A^{\dagger} = \sigma_x \otimes \mathbb{1},$$

$$U_A A_1 U_A^{\dagger} = \sigma_y \otimes \mathbb{1},$$

$$U_B B_0 U_B^{\dagger} = \sigma_x \otimes \mathbb{1},$$

$$U_B B_1 U_B^{\dagger} = \sigma_y \otimes \mathbb{1}.$$

very similar to the original proof by Popescu and Rohrlich

The CHSH inequality

Complete rigidity statement: if $\beta = 2\sqrt{2}$ then there exists $U = U_A \otimes U_B$ and $\tau_{A'B'}$

$$\rho_{AB} = U(\Phi_{AB} \otimes \tau_{A'B'})U^{\dagger},$$

where $\Phi_{AB} = \text{EPR}$ pair and

$$U_A A_0 U_A^{\dagger} = \sigma_x \otimes \mathbb{1},$$

$$U_A A_1 U_A^{\dagger} = \sigma_y \otimes \mathbb{1},$$

$$U_B B_0 U_B^{\dagger} = \sigma_x \otimes \mathbb{1},$$

$$U_B B_1 U_B^{\dagger} = \sigma_y \otimes \mathbb{1}.$$

very similar to the **original proof by Popescu and Rohrlich** [generalises straightforwardly to multipartite inequalities: Mermin/MABK inequalities]

Outline

- What is nonlocality?
- What is self-testing?
- The CHSH inequality
- The biased CHSH inequality
- Multiple anticommuting observables
- Summary and open problems

For $\alpha \geq 1$ the biased CHSH value

$$\beta := \operatorname{tr} \left(W_{\alpha} \rho_{AB} \right)$$

for

$$W_{\alpha} := \alpha(A_0 + A_1) \otimes B_0 + (A_0 - A_1) \otimes B_1.$$

Classically $\beta \leq 2\alpha$, but quantumly we can reach up to $2\sqrt{\alpha^2 + 1}$.

- optimal state: maximally entangled of 2 qubits
- optimal observables of Bob: maximally incompatible
- optimal observables of Alice: non-maximally incompatible!

Analogous argument leads to

$$\beta_{\alpha} \le 2\sqrt{\alpha^2 + t_{\alpha}}$$

for $t_{\alpha} := \operatorname{tr}(T_{\alpha}\rho_A)$, where

$$T_{\alpha} := \frac{\alpha^2 - 1}{4} (\{A_0, A_1\} - 2 \cdot \mathbb{1}) + \frac{\alpha}{2} |[A_0, A_1]|.$$

Analogous argument leads to

$$\beta_{\alpha} \le 2\sqrt{\alpha^2 + t_{\alpha}}$$

for $t_{\alpha} := \operatorname{tr}(T_{\alpha}\rho_A)$, where

$$T_{\alpha} := \frac{\alpha^2 - 1}{4} (\{A_0, A_1\} - 2 \cdot 1) + \frac{\alpha}{2} |[A_0, A_1]|.$$

- for $\alpha = 1$ we recover CHSH
- setting $[A_0, A_1] = 0$ yields the classical bound
- $t_{\alpha} = 1$ (max. value) implies

$$UA_0U^{\dagger} = \sigma_x \otimes \mathbb{1}$$

$$UA_1U^{\dagger} = (\cos\theta_{\alpha} \, \sigma_x + \sin\theta_{\alpha} \, \sigma_y) \otimes \mathbb{1}$$

Analogous argument leads to

$$\beta_{\alpha} \le 2\sqrt{\alpha^2 + t_{\alpha}}$$

for $t_{\alpha} := \operatorname{tr}(T_{\alpha}\rho_A)$, where

$$T_{\alpha} := \frac{\alpha^2 - 1}{4} (\{A_0, A_1\} - 2 \cdot \mathbb{1}) + \frac{\alpha}{2} |[A_0, A_1]|.$$

- for $\alpha = 1$ we recover CHSH
- setting $[A_0, A_1] = 0$ yields the classical bound
- $t_{\alpha} = 1$ (max. value) implies

$$UA_0U^{\dagger} = \sigma_x \otimes \mathbb{1}$$

$$UA_1U^{\dagger} = (\cos\theta_{\alpha} \, \sigma_x + \sin\theta_{\alpha} \, \sigma_y) \otimes \mathbb{1}$$

Any pair of qubit observables can be robustly certified!

Outline

- What is nonlocality?
- What is self-testing?
- The CHSH inequality
- The biased CHSH inequality
- Multiple anticommuting observables
- Summary and open problems

Problem with 3 anticommuting observables: cannot distinguish

$$(\sigma_x, \sigma_y, \sigma_z)$$
 vs. $(\sigma_x, -\sigma_y, \sigma_z)$

[not unitarily equivalent; related by transposition]

Problem with 3 anticommuting observables: cannot distinguish

$$(\sigma_x, \sigma_y, \sigma_z)$$
 vs. $(\sigma_x, -\sigma_y, \sigma_z)$

[not unitarily equivalent; related by transposition]

Standard self-testing statement: exists projective observable Υ ($\Upsilon^2 = 1$):

$$\begin{split} UA_0U^\dagger &= \sigma_x \otimes \mathbb{1} \\ UA_1U^\dagger &= \sigma_y \otimes \Upsilon \\ UA_2U^\dagger &= \sigma_z \otimes \mathbb{1} \end{split}$$

[direct sum of the two arrangements]

Problem with 3 anticommuting observables: cannot distinguish

$$(\sigma_x, \sigma_y, \sigma_z)$$
 vs. $(\sigma_x, -\sigma_y, \sigma_z)$

[not unitarily equivalent; related by transposition]

Standard self-testing statement: exists projective observable Υ $(\Upsilon^2 = 1)$:

$$UA_0U^{\dagger} = \sigma_x \otimes \mathbb{1}$$

$$UA_1U^{\dagger} = \sigma_y \otimes \Upsilon$$

$$UA_2U^{\dagger} = \sigma_z \otimes \mathbb{1}$$

[direct sum of the two arrangements]

A simple extension of CHSH gives

$$\operatorname{tr}\left(|[A_0,A_1]|\rho_A\right)=\operatorname{tr}\left(|[A_0,A_2]|\rho_A\right)=\operatorname{tr}\left(|[A_1,A_2]|\rho_A\right)=2$$

[generalises straightforwardly to arbitrary number]

Simple and symmetric

A simple extension of CHSH gives

$$\operatorname{tr}(|[A_0, A_1]|\rho_A) = \operatorname{tr}(|[A_0, A_2]|\rho_A) = \operatorname{tr}(|[A_1, A_2]|\rho_A) = 2$$

[generalises straightforwardly to arbitrary number]

Simple and symmetric

Good news: the two are equivalent!

It is "natural" to formulate self-testing statements in terms of commutation

Outline

- What is nonlocality?
- What is self-testing?
- The CHSH inequality
- The biased CHSH inequality
- Multiple anticommuting observables
- Summary and open problems

Summary

- Commutation-based formulation is convenient: tight self-testing relations from elementary algebra
- For every angle on a qubit there exists a simple (easy to evaluate) commutation-based function which measures distance to this arrangement
- Every such arrangement can be certified in a robust manner
- Knowing the commutation structure immediately gives a full rigidity statement

Open problems

- What about arrangements of observables that "do not fit" into a qubit? E.g. the maximal violation of I_{3322} requires large dimension (in fact, conjectured to be ∞).
 - What is the commutation structure of the optimal observables?
- What about observables with more outcomes?
 E.g. Heisenberg-Weyl observables satisfy "twisted commutation relation"

$$Z_d X_d = \omega X_d Z_d \qquad (\omega = e^{2\pi i/d}).$$

Can we find an inequality which certifies precisely this relation?

