

Practical round-robindifferential-phase-shift quantum key distribution

arXiv:1702.01260 (2017)

Yunguang Han

Collaborated with: Zhenqiang Yin, Shuang Wang, Wei Chen, Rong Wang, Zhenfu Han & Guangcan Guo University of Science and Technology of China AQIS 2017, Singapore

Outline

- 1. Introduction: RRDPS protocol
- 2. Security analysis of practical RRDPS
- 3. Experimental implementation

RRDPS QKD protocol

Practical quantum key distribution protocol without monitoring signal disturbance

T. Sasaki, Y. Yamamoto, and M. Koashi, Nature 509, 475 (2014)

Security analysis of QKD

General secure key rate (Devetak –Winter formula)

 $R \ge I(A:B) - I(A:E)$

Understanding through post processing

$$R = 1 - H_{EC} - H_{PA}$$

Mutual information

 H_{EC} : Difference between Alice and Bob, shown as quantum error rate, EC-Error Correction

- H_{PA} : Information leakage to the eavesdropper, not directly observable, PA-Privacy Amplification
- Useful tool: Holevo bound

$$\chi(A:\rho_E) = S(\rho_E) - \sum_a p(a)S(\rho_E^a)$$

Security analysis of QKD

BB84 QKD

$$H_{PA} = H_{EC} = h(e_{bit})$$

 $R \ge 1 - 2h(e_{bit})$

Device Independent(DI) QKD

$$\chi(B:E) \le h(\frac{1 + \sqrt{(S/2)^2 - 1}}{2})$$

$$R \ge 1 - h(e) - h(\frac{1 + \sqrt{(S/2)^2 - 1}}{2})$$

$$S - CHSH value$$

In conventional QKD protocols, H_{PA} is a written as a function of the bit error rate or other outcome value. The signal disturbance should be monitored to estimate the leakage information.

RRDPS: receiver

as key bit

of detected pairs {i,j}

Security:

> On Alice's side

Eve cannot deterministically read the phase difference

of the pair that she wants to know.

- > On Bob's side
- Eve cannot fully control which pair Bob announces.

Key rate of RRDPS

1. Single photon case

$$I_{AE} = H_{PA} \le h(1/(L-1))$$

$$R = 1 - h(e_{bit}) - h(1/(L-1))$$

2. Truncated at vth photons

$$I_{AE} = H_{PA} \le h(\frac{v_{th}}{L-1})$$
$$R = 1 - h(e_{bit}) - h(\frac{v_{th}}{L-1})$$

The leakage information is not related with error rate. Without monitoring the disturbance.

Advantages and Disadvantages

Advantages:

1. High tolerable error rate.

Setting a large enough L, tolerate up to 50% error rate.

2. Multi-photon event can be used to generate secure key.

3. Less parameters when considering finite size effect.

Disadvantages:

1. Difficult to implement with large L, the key rate per packet also decreases.

2. The bound of leakage information is not tight.

Experimental progress

Exp1. Passive selection of delay, one detector on each route L=5, distance 30km, key rate 10^-9, scaling problem H. Takesue, et al. Nat Photon 9, 827–831 (2015)

Experimental progress

Exp2. Compact cascade Michelson interferometer, 8*8 choice L=65, distance 90km, key rate 10^-6, demanding phase control

S. Wang, et al. Nat Photon 9, 832–836 (2015)

New analysis method

Single photon case

- > Alice prepares $|\psi\rangle = \sum_{i=1}^{L} (-1)^{k_i} |i\rangle$
- Eve's general collective attack

$$U_{Eve}|i\rangle|e_{00}\rangle = \sum_{j=1}^{L} c_{ij}|j\rangle|e_{ij}\rangle = \sum_{j=1}^{L} \widetilde{c_{ij}}|j\rangle$$

➢ Bob measures between |*a*⟩ and |*b*⟩, announce {a,b}
 Project the incoming states into (|*a*⟩ ± |*b*⟩)/√2
 ➢ Density of Eve's ancilla

$$\rho_E = P\left\{\sum_{i=1}^{L} (-1)^{k_i} \widetilde{c_{ia}}\right\} + P\left\{\sum_{i=1}^{L} (-1)^{k_i} \widetilde{c_{ib}}\right\} \qquad P\{|x\}\} = |x\rangle\langle x|$$

Eve aims to guess $k_a \oplus k_b$ after Bob reveals the value {a,b}

Utilize phase randomization

Phase randomization

 $k_i(i \neq a, b)$ equals to 0,1 randomly, so we can randomize the relative phase between $|e_{aa}\rangle$ and $|e_{ia}\rangle$ ($|e_{bb}\rangle$ and $|e_{ib}\rangle$) > Density of Eve's ancilla

$$\rho_{E} = P\{(-1)^{k_{a}}\widetilde{c_{aa}} + (-1)^{k_{b}}\widetilde{c_{ba}}\} + P\{(-1)^{k_{a}}\widetilde{c_{bb}} + (-1)^{k_{b}}\widetilde{c_{ab}}\}$$
$$+ \sum_{i \neq a,b} c_{ia}^{2} P\{|e_{ia}\rangle\} + c_{ib}^{2} P\{|e_{ib}\rangle\}$$

After phase randomization, the leakage information of the eavesdropper will be compressed.

Leakage information

$$\mathbf{k_{a} \oplus k_{b}} = \mathbf{0} \qquad \rho_{0}^{(a,b)} = P\{\tilde{c}_{aa} + \tilde{c}_{ba}\} + P\{\tilde{c}_{bb} + \tilde{c}_{ab}\} + \sum_{i \neq a,b} c_{ia}^{2} P\{|e_{ia}\rangle\} + c_{ib}^{2} P\{|e_{ib}\rangle\}.$$

$$\mathbf{k_a} \oplus \mathbf{k_b} = \mathbf{1} \qquad \rho_1^{(a,b)} = P\{\tilde{c}_{aa} - \tilde{c}_{ba}\} + P\{\tilde{c}_{bb} - \tilde{c}_{ab}\} + \sum_{i \neq a,b} c_{ia}^2 P\{|e_{ia}\rangle\} + c_{ib}^2 P\{|e_{ib}\rangle\}.$$

Eve's Information for {a,b} (using Holevo bound)

$$\begin{split} Q^{(a,b)}I^{(a,b)}_{AE} &= (c^2_{aa} + c^2_{ba})S(\begin{bmatrix} \frac{c^2_{aa}}{c^2_{aa} + c^2_{ba}} & 0\\ 0 & \frac{c^2_{ba}}{c^2_{aa} + c^2_{ba}} \end{bmatrix}) + (c^2_{bb} + c^2_{ab})S(\begin{bmatrix} \frac{c^2_{bb}}{c^2_{bb} + c^2_{ab}} & 0\\ 0 & \frac{c^2_{ab}}{c^2_{bb} + c^2_{ab}} \end{bmatrix}) \\ &= \varphi(c^2_{ba}, c^2_{aa}) + \varphi(c^2_{ab}, c^2_{bb}), \end{split}$$

 $\varphi(x,y) = -x \log_2 x - y \log_2 y + (x+y) \log_2 (x+y)$

Tighter bound

Total leakage information (average weighted by the yield)

$$I_{AE} = \frac{\sum_{a < b} Q^{(a,b)} I_{AE}^{(a,b)}}{\sum_{a < b} Q^{(a,b)}} = \frac{\sum_{a < b} \varphi(c_{ba}^2, c_{aa}^2) + \varphi(c_{ab}^2, c_{bb}^2)}{(L-1)\sum_{i,j} c_{ij}^2}.$$

By convexity of function φ

$$I_{AE} \leqslant \frac{\varphi((L-1)x_1, x_2)}{(L-1)(x_1+x_2)}.$$

 $x_1 = \sum_i c_{ii}^2, x_2 = \sum_{i \neq j} c_{ij}^2, x_1 + x_2 = 1,$

Considering the worst case, get an upper bound of leakage information Without monitoring error rate: x1 and x2 can be free variable; Considering error rate: constraint on x1 and x2.

$$x_2/(x_1+x_2) \leq 2(L-1)E/(L-2)$$

Comparison

TABLE I. The maximum value of tolerant error rate of RRDPS with different methods.

L method	original RRDPS	without error rate	with error rate
3	_	0.0546	0.0811
5	0.0289	0.122	0.144
16	0.165	0.244	0.252
32	0.24	0.3	0.303
64	0.301	0.346	0.346

Tighter bound of the leakage information, especially for small L values, e.g. L=3 is acceptable.

Multi-photon case

Consider the odd and even photon number case respectively, get a recursive relation. N-photon in L-pulse packet

$$I_{AE} \leqslant Max_{x_1, x_2, \dots, x_{N+1}} \{ \frac{\sum_{n=1}^{N} \varphi((L-n)x_n, nx_{n+1})}{L-1} \}, \qquad \sum_{i=1}^{N+1} x_i = 1$$

Consider the odd and even photon number case respectively, get a recursive relation.

$$E \ge \frac{\sum_{n\ge 1}^{(N-1)/2} (\sqrt{(L-2n)x_{2n}} - \sqrt{2nx_{2n+1}})^2 + (L-N-1)x_{N+1}/2}{L-1} \text{ for odd } N,$$

$$E \ge \frac{\sum_{n\ge 1}^{N/2} (\sqrt{(L-2n+1)x_{2n-1}} - \sqrt{(2n-1)x_{2n}})^2 + (L-N-1)x_{N+1}/2}{L-1} \text{ for even } N.$$

Simulation

Error rate 0.015

Error rate 0.15

Secret key rate R versus channel loss R1-the original protocol R2-the proposed protocol

Proof of principle experiment

Experiment setup

L=3, the simplest RRDPS realization

Experimental result

$l(\mathrm{km})$	Q_s	E_s	Q_d	E_d	Q_v	R_1	R_2
50	3.24×10^{-3}	1.76%	7.52×10^{-4}	1.95%	1.12×10^{-5}	8.14×10^{-5}	3.60×10^{-4}
100	3.28×10^{-4}	2.26%	7.86×10^{-5}	4.01%	4.50×10^{-6}	4.98×10^{-6}	3.15×10^{-5}
140	5.52×10^{-5}	4.99%	1.56×10^{-5}	13.31%	3.87×10^{-6}	_	1.45×10^{-6}

Conclusion & remarks

- Develop a new method to estimate the leakage information of RRDPS protocol, give a tighter bound.
- The main method is utilizing potential phase randomization.
- Demonstrate a proof of principle experiment with simplest setup L=3.
- Problem caused by phase coding inaccuracy and potential attack.
- Robustness of RRDPS protocol. Can it be measurementdevice-independent?
- Connection with other redundant coding type protocols, e.g. quantum retrieval game, quantum hidden match problem.

THANK YOU!

Further readings related to this talk:

- T. Sasaki, Y. Yamamot, and M. Koashi, Nature 509, 475 (2014)
- <u>S. Wang, et al. Nat Photon 9, 832–836 (2015)</u>
- <u>Z. Yin *et al.* arXiv:1702.01260 (2017)</u>
- <u>S. Wang, et al. arXiv:1707.00387 (2017)</u>

