Flow Ambiguity: A Path Towards Classically Driven Blind Quantum Computation

Atul Mantri September 6, 2017

Singapore University of Technology and Design (SUTD) and Centre for Quantum Technologies (CQT), Singapore

Tommaso Demarie SUTD & CQT

Nicolas Menicucci RMIT University

Joseph Fitzsimons SUTD & CQT

Problem Statement and Prior Work

Imagine a scenario where large scale quantum computer becomes available BUT only at <u>a few locations</u> around the globe, however anyone can access it over the internet!

Security

What about integrity and privacy of the client's computation?

Blind quantum computation¹- allows a client, with weak computational power, to delegate a computation to a remote (powerful) quantum server. These protocols come mainly in two flavors:

▶ (*Blindness*) privacy of client's computation is preserved.

▶ (*Verification*) integrity of the desired computation is maintained.

¹For more information see review article: npj Quantum Information 3, Article number: 23 (2017)

Protocol	client's power	No. of server
BFK ²	single qubit preparation device	1
MF ³	measurement apparatus	1
RUV ⁴	completely classical	2

A common feature among all these known protocols is that either the client requires a small quantum device on their side or there must exist at least two non-communicating quantum servers.

²Universal blind quantum computation. FOCS'09. 50th Annual IEEE Symposium (pp. 517-526).

³PRA 87(5), 050301

⁴Nature, 496(7446), 456-460. (servers are entangled but noncommunicating)

Classically Driven Blind Quantum Computation

Is it possible for a completely classical client to delegate a quantum computation to a single remote quantum server while keeping the information about computation hidden?

Preliminaries

Measurement-based quantum computation

Our contribution

Task

Alice's target computation is given by $\Delta_A = \{\rho_I, U_A, \mathcal{M}\}$, where ρ_I^5 is the *n*-qubit input state, U_A is the unitary embedding that maps ρ_I to the output state $\rho_O = U_A \rho_I U_A^{\dagger}$, and \mathcal{M} is the final set of measurement on the output state to get the classical output.

We propose an interactive protocol to perform this task which we call *classically driven blind quantum computation*.

⁵We take input states that can be efficiently described classically.

Protocol steps are as follows:

- **State preparation**: Bob prepares the graph state $|\mathcal{G}\rangle_{n \times m}$.
- Measurements: For i = 1, ..., N, repeat:
 - 1. Alice picks a bit $r_i \in_R \{0, 1\}$ uniformly at random. Then, using r_i, s^x , s^z , she computes the angle α'_i , where

$$\boldsymbol{\alpha'} = (-1)^{\boldsymbol{s}^{\boldsymbol{x}}} \boldsymbol{\alpha} + (\boldsymbol{s}^{\boldsymbol{z}} + \boldsymbol{r}) \pi \mod 2\pi,$$

- 2. Alice transmits α'_i to Bob.
- 3. Bob measures the *i*th qubit in the basis $\{|\pm_{\alpha_{i'}}\rangle\}$ and transmits the measurement outcome $b'_i \in \{0, 1\}$ to Alice.
- 4. Alice records $b_i = b'_i \oplus r_i$ in **b** and then updates the dependency sets $(\mathbf{s}^x, \mathbf{s}^z)$. If $i \in O$, then she also records b_i in \mathbf{p}_B^C
- **Post Processing**: Alice performs final (classical) operations on the set of output qubits by calculating $\mathbf{p} = \mathbf{p}_{B}^{C} \oplus \mathbf{s}_{O}^{z}$, where \mathbf{s}_{O}^{z} is used to represent the final set of *Z* corrections.

To demonstrate this we take a simple example of 2×2 cluster state $G(I, O)_{(2 \times 2)}$. The figure shows 9 possible open graphs compatible with all the flow conditions.

Flow - circuit mapping

In general different flows correspond to different computations.

Security

- \diamond Description of Alice's computation $\Delta_A^{MBQC} := (G_{n \times m}, \alpha, f)$
- \diamond Information Bob receives := (b', lpha')

Aim (Formal)

H(A, F|B', A') = ?

We observe the following relation:

$$H(\mathbf{A}, \mathbf{F}|\mathbf{B'}, \mathbf{A'}) \geq H(\mathbf{F}) - N + H(\mathbf{B'}, \mathbf{A'}|\mathbf{A}, \mathbf{F})$$

Therefore, our task reduces to calculate:

- 1. *H*(*B*′, *A*′|*A*, *F*)
- 2. H(**F**)

1. Conditional entropy: H(B', A'|A, F)

Claim

 $H(B', A'|A, F) \ge N$ regardless of Bob's strategy.

Outline of the proof:

- Construct full joint probability distribution for all the variables in the protocol $\Pr(b', \alpha', \alpha, f, b, r)$
- Use dependencies between different variables to calculate the full joint probability.
- Marginalizing over **B** and using the joint probability distribution $\Pr(b', \alpha', \alpha, f, r)$ to compute $\Pr(b', \alpha' | \alpha, f)$

This in turn gives a lower bound on the conditional entropy

$$H(A, F|B', A') \geq H(F) = \log_2 N_F$$

Side result

 $I(B', A'; A, F) \leq H(A')$

2. Flow counting argument: H_F

Theorem

$$\#\mathcal{G}(I,O)_{n,m} = F_{2\min(n,m)+1}^{|n-m|} \prod_{\mu=2}^{\min(n,m)} F_{2\mu}^2.$$

where F_i is the *i*th Fibonacci number.

Upon simplification: $#\mathcal{G}(I, O)_{n,m} = 2^{2N \log_2 \phi + O(N^{\epsilon})}$ for $\epsilon < 1, N = nm$, and m = poly(n)

Combining $N_F \ge \#\mathcal{G}(I, O)_{n,m}$ with the previous result, we get $\log_2 N_F \ge \log_2 \#\mathcal{G}(I, O)_{n,m} \approx 1.388N$.

Final Result

 $H(A, F|B', A') \ge 1.388N$

Conclusion and Future Directions

• We explore the possibility of classically driven blind quantum computation.

• This is shown by observing that multiple non-equivalent computations in the MBQC model can yield the same transcript of measurement angles and results, even when the resource state and order of measurements are fixed.

• We also show that, in a single run of the protocol, the amount of information obtained by the server about client's computation is bounded.

• Is it possible to exploit this novel cryptographic tool, flow ambiguity, to achieve *universal* classically driven blind quantum computation?

• More importantly, can such a technique be used as a building block for *verification* of quantum computers by completely *classical client* or in other words to prove if $BQP = IP_{BQP}$?

Thank you for your attention!

Paper reference: Phys. Rev. X 7, 031004 (2017).