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The issue

Early quantum computer (QC) operating in “high complexity” regime
i.e. beyond power of any current classical computers.

How can we establish confidence that its running is correct?

Some possible approaches:

(1) Classical simulation: check suitably small QCs (or suitably 
limited use of QC) by direct classical simulation and statistical tests
of the machine.
But want to check beyond this regime!....



(2) NP problems: “solution is computationally hard to get, 
but if given a candidate solution it is easy to check if it is 
correct or not”  e.g. factoring!
Works well!
But does not apply to general BQP problems (or more general
computational tasks like sampling or quantum simulation.)

(3) Methods inspired by theory of interactive proof systems (IP) 
in classical complexity theory:

P
Prover

unbounded 
comp. power,
but untrusted!

V
Verifier

Restricted to only 
feasible (BPP) 
comp. power

Interactive process,
poly many rounds,
poly sized messages



Decision task: is input x in L? (hard for V to decide!)

Required for IP protocol:
Completeness: if answer is “yes” and P follows protocol honestly/correctly
Then Prob(V concludes “yes”) > 1 – eps  (any eps > 0)
But don’t trust P to do assigned job honestly/correctly! So:
Soundness: if answer is “no” then for any P i.e. honest or dishonest/faulty,
Prob(V concludes “yes”) < eps
“P cannot trick V into accepting a bad x”

Not symmetric in “yes”/ “no” -
If V concludes “yes” – can be confident that it is correct!
But if V concludes “no” – cannot be confident of result –
need to start over with decision task for complement of L.

Classical theorem: 
IP = PSPACE (and a PSPACE prover suffices for protocols).



Can adapt/generalise to quantum setting!
D. Aharonov, M. Ben-or, E. Eban 2008 (then with U. Mahadev 2017).
A. Broadbent 2015.    T. Morimae, J. Fitzsimons 2016.
M. Hayashi, T. Morimae 2015.
Measurement based schemes: J. Fitzsimons, E. Kashefi 2012, 
based on A. Broadbent, J. Fitzsimons, E. Kashefi 2008.

QPIP: Quantum Prover Interactive Proofs
* P now limited to BQP computing power (i.e. P is our QC machine).
* V as before (BPP power) plus some “suitably limited” quantum 

processing capability.
* Completeness and soundness requirements as before.

“Theorem” (various versions): A BQP prover can verify any BQP 
language to a BPP verifier who also has some (suitably limited, but 
reliable) quantum processing capability.



Some features of QPIP formalism
(does it solve our verification issue!?)

* Generally don’t run original algorithm itself but ‘embed’ it into a larger
algorithm/interaction with inbuilt verification checks (traps for dishonest 
or faulty P’s etc), sometimes also requiring encoded or encrypted states.

* Can question extent of V’s quantum capability required 
(can a purely classical V suffice?)

* Do we really need verification against prospectively arbitrarily malicious 
malfunctioning provers?
may be suitable for crypto/security issues... 
but not usually demanded in experimental physics/science!?
Einstein: “nature hides her secret because of her essential loftiness 
but not by means of ruse”.



Some possible approaches (cont)
(4) our approach:

* Novel basis: use results about classically simulatable classes 
of quantum circuits (and their relation to universal QC) to extend
‘verification by classical simulation’ techniques to apply to high complexity 
regime while maintaining poly-scaling of classical verification effort.

* Weaker (more realistic?) demands – verification will not be secure against 
arbitrarily malicious malfunctioning provers (QCs).

- Can gain in simplicity (fully classical V, QC implements essentially only 
the original BQP algorithm).

- Have some flexibility to adapt schemes to check/probe particular kinds of 
suspected sources of failure e.g. specific to an implementational platform.



Our computational scenario

Assume we have –
* QC designed to perform Clifford gates 
and computational basis measurements.
* Reliable source of various 1-qubit states, including
|0>, |1> and magic state |A> =  (|0> + ei*pi/4 |1>) /√2

Then can implement T = diag (1  ei*pi/4) gate by 
adaptive Clifford process (“T gadget”)

So have universal quantum computing via adaptive Clifford circuits



Theorem:
Let C be any Clifford circuit of size N, 
including intermediate measurements, with:
* input being any product state   (we’ll use only |0>, |1>, |A>)
* one-bit output (i.e. single line final measurement).
Then:
(a) If C is adaptive (choice of Clifford gates can depend on earlier 
intermediate measurement outcomes) then we have universal 
quantum computing power.
(b) If C is non-adaptive then the output probabilities can always be 
classically efficiently calculated (i.e. in poly(N) time).

Note: (a) involves no new physical processes that do not occur in (b)!



Verifying a BQP computation

* Assume input is |0>…|0>. Express computation as an adaptive 
Clifford circuit with Prob(output correct) > 0.99999

* Run the adaptive Clifford circuit on the QC. Record the output.
Record also the adapted sequence of gates that 
actually occurred – the “computational run”.

We assume classical choice of gates is unproblematic!



The QC machine cannot “know” whether the computational run was 
adaptive or not!! 
So QC’s actual physical process (i.e. implementing the gate sequence 
that occurred) cannot depend on adaptive vs. nonadaptive -ness.
For (reasonable) verification it suffices to verify validity of 
QC machine’s implementation of this process.

The adaptive process is universal for BQP but after any run, the process 
that actually occurred is classically simulatable! – so can comprehensively 
check it with further runs of the same sequence (run non-adaptively now)
and statistical checks against classically efficiently predictable behaviour.



Example of checks

giving  p+ and p- values classically efficiently, and then compare 
statistics of QC’s runs. But will often get p+ = p- = ½.

Similarly could check Z and X measurements on each line which 
characterises Clifford C uniquely.

To further probe correctness of implementation of C, 
can check the individual Pauli’s:
Change input to product state |p1>|p2>..|pn+t> where |pi>s are +/-
eigenstates of corresponding correct Pi’s.
Then Z1 measurement output is deterministic i.e. Prob(+)
or Prob(-) is 1, depending on +/- choices for |pi>s.

Paulis classically 
efficiently determined



Summary

Efficient classical simulation techniques can be used to verify 
operation of a QC machine in‘high complexity’regime i.e. beyond 
direct classical simulability.

The verification scheme is not effective against arbitrarily malicious 
malfunctioning in the QC, but may suffice in many practical situations, 
in line with common scientific practice.


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

