Analog quantum error correction with encoding a qubit into an oscillator

Kosuke Fukui, Akihisa Tomita, Atsushi Okamoto

Graduate School of Information Science and Technology, Hokkaido University

arXiv:1706.03011

Outline

I Toward a large-scale quantum computation Continuous variable QC GKP qubit Our work

II Analog quantum error correction Proposal - likelihood function -Error model in our work Three qubit bit flip code C4/C6 code Surface code Summary

Outline

I Toward a large-scale quantum computation
 Continuous variable QC
 GKP qubit
 Our work
 II Analog quantum error correction

Proposal - likelihood function -

Error model in our work

Three qubit bit flip code

C4/C6 code

Surface code

Summary

Toward large-scale quantum computation

- Large-scale QC requires large-scale entangled states
 Trapped ions 14 qubits entangled [1]
 - Superconducting

10 qubits entangled [2]

- [1] T. Monz et al., Phys. Rev. Lett. 106, 130506 (2011)
- [2] C. Song *et al.*, arXiv:1703.10302 (2017)
- [3] J. Yoshikawa et al., APLPhotonics 1, 060801 (2016)

Toward large-scale quantum computation

Large-scale QC requires large-scale entangled states

14 qubits entangled [1]

Superconducting

Trapped ions

10 qubits entangled [2]

Squeezed vacuum state in optical field

1,000,000 qumodes entangled [3]

6 September 2017 AQIS'17

[3] J. Yoshikawa et al., APLPhotonics 1, 060801 (2016)

Continuous variable quantum computation

- Large-scale QC with only squeezed vacuum (SV) states is impossible because of accumulation of errors [4]
- Continuous variable (CV) state needs to be digitized using an appropriate code, such as the GKP qubit

Continuous variable quantum computation

- Large-scale QC with only squeezed vacuum (SV) states is impossible because of accumulation of errors [4]
- Continuous variable (CV) state needs to be digitized using an appropriate code, such as the GKP qubit

6 September 2017 AQIS'17

2/18

[5] D. Gottesman *et al.*, Phys. Rev. A, **64**, 012310 (2001)

Gottesman-Kitaev-Preskill (GKP) qubit

Probability distribution

Gottesman-Kitaev-Preskill (GKP) qubit

Probability distribution

Gottesman-Kitaev-Preskill (GKP) qubit

 $2\sqrt{\pi}$ $4\sqrt{\pi}$

3/18

0

Probability distribution

Measurement error

 $2\sqrt{\pi}$

0

 $4\sqrt{\pi}$

AQIS'17

 $-4\sqrt{\pi}$ $-2\sqrt{\pi}$

6 September 2017

The more the squeezing level decreases, the larger measurement error probability becomes Decrease in squeezing level 0.12 0.06 0.06 0.06 0.06 0.03 10⁻¹¹⁰

 $-4\sqrt{\pi}$ $-2\sqrt{\pi}$

Toward large-scale QC with the GKP qubit

Advantage

- Large-scale QC with the GKP qubits is possible
- ► GKP qubits can be entangled in the same way as SV states

Implementation

- Several methods to generate the GKP qubit are proposed [6,7]
- Achievable squeezing level of SV state is 15 dB [8]

[6] B. M. Terhal *et al.*, Phys. Rev. A **93**,012315 (2016)

- [7] K. R. Motes *et al.*, Phys. Rev. A **95**, 053819 (2017)
- [8] H. Vahlbruch et al., Phys. Rev. Lett 117, 110801 (2016)
- [4] N. C. Menicucci, Phys. Rev. Lett. 112, 120504 (2014)

6 September 2017 AQIS'17

4/18

Toward large-scale QC with the GKP qubit

Advantage

- Large-scale QC with the GKP qubits is possible
- ► GKP qubits can be entangled in the same way as SV states

Implementation

- Several methods to generate the GKP qubit are proposed [6,7]
- Achievable squeezing level of SV state is 15 dB [8]

Problem

- Difficulty to experimentally generate the GKP qubit with the squeezing level 14.8 dB required for large-scale QC [4]
 - [6] B. M. Terhal et al., Phys. Rev. A 93,012315 (2016)
 - [7] K. R. Motes et al., Phys. Rev. A 95, 053819 (2017)
 - [8] H. Vahlbruch et al., Phys. Rev. Lett 117, 110801 (2016)

6 September 2017 AQIS'17

[4] N. C. Menicucci, Phys. Rev. Lett. 112, 120504 (2014)

Our work arXiv:1706.03011

Proposal

- To reduce the required squeezing level, we have focused on analog information contained in the GKP qubit
- We propose a maximum-likelihood method which harnesses the analog information and improves QEC performance

Main results [9]

- The first proposal to achieve the hashing bound for the quantum capacity of the Gaussian quantum channel
- ► The required squeezing level can be reduced by $\sim 1 \text{ dB}$

Outline

I Toward a large-scale quantum computation Continuous variable QC GKP qubit Our work

II Analog quantum error correction Proposal - likelihood function -Error model in our work Three qubit bit flip code C4/C6 code Surface code Summary

The true deviation $\overline{\Delta}$ obeys the Gaussian distribution f(x)We regard the Gaussian distribution as a likelihood function $f(|\overline{\Delta}|)$

The true deviation $\overline{\Delta}$ obeys the Gaussian distribution f(x)We regard the Gaussian distribution as a likelihood function $f(|\overline{\Delta}|)$

The true deviation $\overline{\Delta}$ obeys the Gaussian distribution f(x)We regard the Gaussian distribution as a likelihood function $f(|\overline{\Delta}|)$

The true deviation $\overline{\Delta}$ obeys the Gaussian distribution f(x)We regard the Gaussian distribution as a likelihood function $f(|\overline{\Delta}|)$

The true deviation $\overline{\Delta}$ obeys the Gaussian distribution f(x)We regard the Gaussian distribution as a likelihood function $f(|\overline{\Delta}|)$

The true deviation $\overline{\Delta}$ obeys the Gaussian distribution f(x)We regard the Gaussian distribution as a likelihood function $f(|\overline{\Delta}|)$

The true deviation $\overline{\Delta}$ obeys the Gaussian distribution f(x)We regard the Gaussian distribution as a likelihood function $f(|\overline{\Delta}|)$

The Gaussian quantum channel

The Gaussian quantum channel (GQC) leads to a displacement in the quadrature by a complex Gaussian random variable [5]

Described by superoperator ζ acting on density operator ρ as

$$ho
ightarrow \zeta(
ho) = rac{1}{\pi\xi^2} \int d^2 lpha \mathrm{e}^{-|lpha|^2/\xi^2} D(lpha)
ho D(lpha)^\dagger$$

 $D(\alpha)$ is a displacement operator in the phase space

6 September 2017 AQIS'17

[5] D. Gottesman *et al.*, Phys. Rev. A, **64**, 012310 (2001)

Outline

I Toward a large-scale quantum computation Continuous variable QC GKP qubit Our work

II Analog quantum error correction

Proposal - likelihood function Error model in our work
Three qubit bit flip code
C4/C6 code
Surface code
Summary

Ex.) Three-qubit bit-flip code

Single logical qubit is encoded into three qubits

$\alpha |0\rangle + \beta |1\rangle \longrightarrow \alpha |000\rangle_{123} + \beta |111\rangle_{123} \quad (|\alpha|^2 + |\beta|^2 = 1)$

Ex.) Three-qubit bit-flip code

6 September 2017 AQIS'17

8/18

Ex.) Three-qubit bit-flip code

In conventional method based on majority voting, the pattern of error on qubit 1 is selected

A quantum circuit for three-qubit bit-flip code

A quantum circuit for three-qubit bit-flip code

A quantum circuit for three-qubit bit-flip code

6 September 2017 AQIS'17

A quantum circuit for three-qubit bit-flip code

6 September 2017 AQIS'17

<i>q</i> m1	<u>qubit 1</u>	q_{m2}	<u>qubit 2</u>	<i>q</i> m3 ∣	<u>qubit 3</u>
		-	-		

Ex.) If double errors on qubit 2 and 3, and we obtain the measurement deviation of three qubits Δm_1 , Δm_2 , and Δm_3 , there are the two possibilities as follows:

By comparing the likelihoods for the error patterns, we can correct the double-error one

Results for the three-qubit bit-flip code

- Our method can improve the QEC performance and reduce the squeezing level required for the failure probability 10⁻⁹ by 1.5 dB
- Our method can correct double errors on the three qubits

6 September 2017 AQIS'17

11/18

Results for the three-qubit bit-flip code

- Our method can improve the QEC performance and reduce the squeezing level required for the failure probability 10⁻⁹ by 1.5 dB
- Our method can correct double errors on the three qubits

6 September 2017 AQIS'17

11/18

Outline

I Toward a large-scale quantum computation Continuous variable QC GKP qubit Our work

II Analog quantum error correction

Proposal - likelihood function Error model in our work
Three qubit bit flip code
C4/C6 code
Surface code
Summary

Examination of the required squeezing

To examine required squeezing level for large-scale QC, we numerically calculated the hashing bound for the GQC

Examination of the required squeezing

To examine required squeezing level for large-scale QC, we numerically calculated the hashing bound for the GQC

Hashing bound ξ_{hb}

The hashing bound is the maximum value of the condition that yields the non-zero quantum capacity

► The GQC has nonvanishing quantum capacity for $\xi < \xi_{hb}$

6 September 2017 AQIS'17

Achievable hashing bound

Achievable hashing bound for the GQC [5][10]

6 September 2017 AQIS'17

13/18

[5] D. Gottesman *et al.*, Phys. Rev. A, **64**, 012310 (2001)
[10] J. Harrington *et al.*, Phys. Rev. A 64, 062301 (2001)

Achievable hashing bound

Achievable hashing bound for the GQC [5][10]

~ .607 has been conjectured as the lower bound of quantum capacity for the GQC

6 September 2017 AQIS'17

[5] D. Gottesman *et al.*, Phys. Rev. A, **64**, 012310 (2001)
[10] J. Harrington *et al.*, Phys. Rev. A 64, 062301 (2001)

Achievable hashing bound

Achievable hashing bound for the GQC [5][10]

~.607 has been conjectured as the lower bound of quantum capacity for the GQC

6 September 2017 AQIS'17

[5] D. Gottesman *et al.*, Phys. Rev. A, **64**, 012310 (2001)
[10] J. Harrington *et al.*, Phys. Rev. A 64, 062301 (2001)

Analog QEC for the C4/C6 code

We applied our method to the Knill's C4 /C6 code [11] using a message passing algorithm proposed by Poulin [12,13]

[11] E. Knill, Nature, 434, 39-44 (2005)
[12] D. Poulin, Phys. Rev. A 74, 052333 (2006)
[13] H. Goto *et al.*, Sci. Rep. 3, 2044 (2013)

6 September 2017 AQIS'17

Analog QEC for the C4/C6 code

We applied our method to the Knill's C4 /C6 code [11] using a message passing algorithm proposed by Poulin [12,13]

[11] E. Knill, Nature, 434, 39-44 (2005)
[12] D. Poulin, Phys. Rev. A 74, 052333 (2006)
[13] H. Goto *et al.*, Sci. Rep. 3, 2044 (2013)

6 September 2017 AQIS'17

Analog QEC for the C4/C6 code

We applied our method to the Knill's C4 /C6 code [11] using a message passing algorithm proposed by Poulin [12,13]

Results for the C4/C6 code

Our method can improve the QEC performance and reduce the squeezing level required for fault-tolerant QC

[5] D. Gottesman *et al.*, Phys. Rev. A, **64**, 012310 (2001)
[10] J. Harrington *et al.*, Phys. Rev. A 64, 062301 (2001)

6 September 2017 AQIS'17

15/18

Results for the C4/C6 code

- Our method can improve the QEC performance and reduce the squeezing level required for fault-tolerant QC
- Our method can achieve the hashing bound ~ .607 [5][10]

[5] D. Gottesman *et al.*, Phys. Rev. A, **64**, 012310 (2001)
[10] J. Harrington *et al.*, Phys. Rev. A 64, 062301 (2001)

6 September 2017 AQIS'17

15/18

Outline

I Toward a large-scale quantum computation Continuous variable QC GKP qubit Our work

II Analog quantum error correction

Proposal - likelihood function Error model in our work
Three qubit bit flip code
C4/C6 code
Surface code
Summary

Analog QEC for the surface code

We applied our method to a surface code which is used to implement topological QC [14,15]

Errors are detected at the boundary of the error chain

From the boundary information, we need to decide the most likely error chain by using minimum-weight perfect match algorithm

[14] A. Y. Kitaev, Ann. Phys. **303**, 2 (2003)

6 September 2017 AQIS'17

16/18 [15]

[15] R. Raussendorf et al., Phys. Rev. Lett. 98, 190504 (2007)

Results for the surface code

Our method can also improve the QEC performance and reduce the squeezing level required for Topological QC [16]

Results for the surface code

Our method can also improve the QEC performance and reduce the squeezing level required for Topological QC [16]

Summary

- The GKP qubit is a promising element toward large-scale QC
- Proposal to harness analog information contained in the GKP qubit to reduce the requirement for large-scale QC
- Proposal can achieve the hashing bound for the optimal method against the GQC
- Our method can be applied to various QEC codes such as, concatenated code, non-concatenated code, and surface code

Thank you for your attention !