Analog quantum error correction with encoding a qubit into an oscillator

Kosuke Fukui, Akihisa Tomita, Atsushi Okamoto
Graduate School of Information Science and Technology, Hokkaido University

arXiv: 1706.03011
I Toward a large-scale quantum computation
 Continuous variable QC
 GKP qubit
 Our work

II Analog quantum error correction
 Proposal - likelihood function -
 Error model in our work
 Three qubit bit flip code
 C4/C6 code
 Surface code
 Summary
Outline

I Toward a large-scale quantum computation
 Continuous variable QC
 GKP qubit
 Our work

II Analog quantum error correction
 Proposal - likelihood function -
 Error model in our work
 Three qubit bit flip code
 C4/C6 code
 Surface code
 Summary
Toward large-scale quantum computation

Large-scale QC requires large-scale entangled states

<table>
<thead>
<tr>
<th>Technique</th>
<th>Number of qubits entangled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapped ions</td>
<td>14</td>
</tr>
<tr>
<td>Superconducting</td>
<td>10</td>
</tr>
</tbody>
</table>

References

3. J. Yoshikawa et al., APL Photonics **1**, 060801 (2016)
Toward large-scale quantum computation

- Large-scale QC requires large-scale entangled states
 - Trapped ions: 14 qubits entangled \[1\]
 - Superconducting: 10 qubits entangled \[2\]
 - Squeezed vacuum state in optical field: \(1,000,000\) qumodes entangled \[3\]

Vacuum state

\[
\begin{array}{c}
p \\
\downarrow \quad q
\end{array}
\quad \overset{squeezing}{\rightarrow} \quad \begin{array}{c}
p \\
\downarrow \quad q
\end{array}
\]

Squeezed vacuum state

Increase of the squeezing level improves measurement accuracy in \(q\) quadrature

\(q(p):\) real (imaginary) part of optical field amplitude

\[2\] C. Song et al., arXiv:1703.10302 (2017)
\[3\] J. Yoshikawa et al., APLPhotonics **1**, 060801 (2016)
Continuous variable quantum computation

- Large-scale QC with only squeezed vacuum (SV) states is impossible because of accumulation of errors [4]
- Continuous variable (CV) state needs to be digitized using an appropriate code, such as the GKP qubit

Large-scale QC with only squeezed vacuum (SV) states is **impossible** because of accumulation of errors \[4\]

Continuous variable (CV) state needs to be digitized using an appropriate code, such as the GKP qubit

GKP qubit \[5\]

\[
\begin{align*}
|0\rangle & \propto \sum_{t=-\infty}^{\infty} \int e^{-2\pi \delta^2 t^2} e^{-\left(q-2t\sqrt{\pi}\right)^2/(2\delta^2)} |q\rangle dq \\
|1\rangle & \propto \sum_{t=-\infty}^{\infty} \int e^{\pi \delta^2 (2t+1)^2/2} e^{-\left(q-(2t+1)\sqrt{\pi}\right)^2/(2\delta^2)} |q\rangle dq
\end{align*}
\]

δ^2: variance of the GKP qubit

Gottesman-Kitaev-Preskill (GKP) qubit

Probability distribution

| $0\rangle$ state

| $1\rangle$ state

q

$-4\sqrt{\pi}$ $-2\sqrt{\pi}$ 0 $2\sqrt{\pi}$ $4\sqrt{\pi}$

$-3\sqrt{\pi}$ $-\sqrt{\pi}$ 0 $\sqrt{\pi}$ $3\sqrt{\pi}$
Gottesman-Kitaev-Preskill (GKP) qubit

Probability distribution

| 0 state
| 0 state

| 1 state
| 1 state

Area where state is identified as 0 state
Area where state is identified as 1 state
Gottesman-Kitaev-Preskill (GKP) qubit

Probability distribution

| 0⟩ state

Area where state is identified as 0 state

| 1⟩ state

Area where state is identified as 1 state

Measurement error

The more the squeezing level decreases, the larger measurement error probability becomes

Decrease in squeezing level

6 September 2017 AQIS'17
Toward large-scale QC with the GKP qubit

Advantage

- Large-scale QC with the GKP qubits is possible
- GKP qubits can be entangled in the same way as SV states

Implementation

- Several methods to generate the GKP qubit are proposed [6,7]
- Achievable squeezing level of SV state is 15 dB [8]
Toward large-scale QC with the GKP qubit

Advantage

- Large-scale QC with the GKP qubits is possible
- GKP qubits can be entangled in the same way as SV states

Implementation

- Several methods to generate the GKP qubit are proposed [6,7]
- Achievable squeezing level of SV state is 15 dB [8]

Problem

- Difficulty to experimentally generate the GKP qubit with the squeezing level 14.8 dB required for large-scale QC [4]

Proposal

- To reduce the required squeezing level, we have focused on analog information contained in the GKP qubit
- We propose a maximum-likelihood method which harnesses the analog information and improves QEC performance

Main results [9]

- The first proposal to achieve the hashing bound for the quantum capacity of the Gaussian quantum channel
- The required squeezing level can be reduced by \(\sim 1 \text{ dB} \)
Outline

I Toward a large-scale quantum computation
 Continuous variable QC
 GKP qubit
 Our work

II Analog quantum error correction
 Proposal - likelihood function -
 Error model in our work
 Three qubit bit flip code
 C4/C6 code
 Surface code
 Summary
The true deviation Δ obeys the Gaussian distribution $f(x)$.
We regard the Gaussian distribution as a **likelihood function** $f(|\Delta|)$.
The true deviation Δ obeys the Gaussian distribution $f(x)$.

We regard the Gaussian distribution as a likelihood function $f(|\Delta|)$.

Ex.) When we obtain the measurement outcome q_m, we consider two possibilities to determine the bit value 0 or 1.

- Area where state is identified as 0 state
- Area where state is identified as 1 state

q_m: Measurement outcome
The true deviation $\bar{\Delta}$ obeys the Gaussian distribution $f(x)$.
We regard the Gaussian distribution as a likelihood function $f(|\bar{\Delta}|)$.

Ex.) When we obtain the measurement outcome q_m, we consider two possibilities to determine the bit value 0 or 1.

Δ_m: Measurement deviation
q_m: Measurement outcome

Area where state is identified as 0 state
Area where state is identified as 1 state
The true bit value is 0

Ex.) When we obtain the measurement outcome \(q_m \),
we consider two possibilities to determine the bit value 0 or 1.

The true deviation \(\bar{\Delta} \) obeys the Gaussian distribution \(f(x) \).
We regard the Gaussian distribution as a likelihood function \(f(|\bar{\Delta}|) \).

\(q_m \): Measurement outcome
\(\Delta_m \): Measurement deviation

Area where state is identified as 0 state Area where state is identified as 1 state
The true deviation $\overline{\Delta}$ obeys the Gaussian distribution $f(x)$. We regard the Gaussian distribution as a likelihood function $f(|\overline{\Delta}|)$.

Ex.) When we obtain the measurement outcome q_m, we consider two possibilities to determine the bit value 0 or 1.

The true bit value is 0.

Δ_m; Measurement deviation

Δ_m; Measurement deviation

$|\Delta| = \Delta_m$

q_m: Measurement outcome

Δ_m: Measurement deviation

$\overline{\Delta}$: True deviation
The true bit value is 0

\[\Delta_m \]

\[q_m \]

true deviation \(|\bar{\Delta}| = \Delta_m \)

Ex.) When we obtain the measurement outcome \(q_m \), we consider two possibilities to determine the bit value 0 or 1

The true bit value is 1

\[q_m \]

Area where state is identified as 0 state

Area where state is identified as 1 state

\(q_m \): Measurement outcome \(\Delta_m \): Measurement deviation \(\bar{\Delta} \): True deviation
The true deviation $\bar{\Delta}$ obeys the Gaussian distribution $f(x)$
We regard the Gaussian distribution as a likelihood function $f(|\bar{\Delta}|)$

Ex.) When we obtain the measurement outcome q_m, we consider two possibilities to determine the bit value 0 or 1.

The true bit value is 0

The true bit value is 1

q_m: Measurement outcome Δ_m: Measurement deviation $\bar{\Delta}$: True deviation
Error model in this work

The Gaussian quantum channel

The Gaussian quantum channel (GQC) leads to a displacement in the quadrature by a complex Gaussian random variable [5]

Described by superoperator ζ acting on density operator ρ as

$$\rho \rightarrow \zeta(\rho) = \frac{1}{\pi \xi^2} \int d^2 \alpha e^{-|\alpha|^2/\xi^2} D(\alpha) \rho D(\alpha)^\dagger$$

$D(\alpha)$ is a displacement operator in the phase space.

The GQC conserves the position of the Gaussian peak, but increases the variance by ξ^2
Outline

I Toward a large-scale quantum computation
 Continuous variable QC
 GKP qubit
 Our work

II Analog quantum error correction
 Proposal - likelihood function -
 Error model in our work
 Three qubit bit flip code
 C4/C6 code
 Surface code
 Summary
Single logical qubit is encoded into three qubits

\[
\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |000\rangle_{123} + \beta |111\rangle_{123} \quad (|\alpha|^2 + |\beta|^2 = 1)
\]
Ex.) Three-qubit bit-flip code

Single logical qubit is encoded into three qubits

\[\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |000\rangle_{123} + \beta |111\rangle_{123} \quad (|\alpha|^2 + |\beta|^2 = 1) \]

- **Bit flip error**
 - No error: \[\alpha |000\rangle_{123} + \beta |111\rangle_{123} \]
 - On qubit 1: \[\alpha |100\rangle_{123} + \beta |011\rangle_{123} \]
 - On qubit 2&3: \[\alpha |011\rangle_{123} + \beta |100\rangle_{123} \]
 - On qubit 2: \[\alpha |010\rangle_{123} + \beta |101\rangle_{123} \]
 - On qubit 1&3: \[\alpha |101\rangle_{123} + \beta |010\rangle_{123} \]
 - \ldots

- **Error pattern**
 - \[\alpha |000\rangle_{123} + \beta |111\rangle_{123} \]
 - \[\alpha |100\rangle_{123} + \beta |011\rangle_{123} \]
 - \[\alpha |011\rangle_{123} + \beta |100\rangle_{123} \]
 - \[\alpha |010\rangle_{123} + \beta |101\rangle_{123} \]
 - \[\alpha |101\rangle_{123} + \beta |010\rangle_{123} \]
 - \ldots
Single logical qubit is encoded into three qubits

\[\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |000\rangle_{123} + \beta |111\rangle_{123} \quad (|\alpha|^2 + |\beta|^2 = 1) \]

- **Bit flip error**
 - No error
 - on qubit 1
 - on qubit 2&3

- **Error pattern**
 - \(\alpha |000\rangle_{123} + \beta |111\rangle_{123} \)
 - \(\alpha |100\rangle_{123} + \beta |011\rangle_{123} \)
 - \(\alpha |011\rangle_{123} + \beta |100\rangle_{123} \)

The patterns of error on qubit 1 and 2&3 have same syndrome

In conventional method based on majoritv voting, the pattern of error on qubit 1 is selected.
Analog QEC for three-qubit bit-flip code

A quantum circuit for three-qubit bit-flip code

After GQC

6 September 2017 AQIS'17
After GQC, the true deviations of qubit 1, 2, 3 become $\overline{\Delta}_1$, $\overline{\Delta}_2$, and $\overline{\Delta}_3$, respectively.

Ideal GKP qubit
Analog QEC for three-qubit bit-flip code

A quantum circuit for three-qubit bit-flip code

After GQC, the true deviations of qubit 1, 2, 3 become $\bar{\Delta}_1$, $\bar{\Delta}_2$, and $\bar{\Delta}_3$, respectively.

Encoding

(data qubit) qubit 1 $|\tilde{\psi}\rangle_1$
qubit 2 $|\tilde{0}\rangle_2$
qubit 3 $|\tilde{0}\rangle_3$

GQC

$\bar{\Delta}_1$
$\bar{\Delta}_2$
$\bar{\Delta}_3$

Error correction

After CNOT, the true deviation of ancilla 1 is $\bar{\Delta}_1 + \bar{\Delta}_2$, ancilla 2 is $\bar{\Delta}_2 + \bar{\Delta}_3$, and ancilla 3 is $\bar{\Delta}_3$, assuming ancilla qubits are ideal.

6 September 2017 AQIS'17
Analog QEC for three-qubit bit-flip code

A quantum circuit for three-qubit bit-flip code

After GQC, the true deviations of qubit 1, 2, 3 become $\bar{\Delta}_1$, $\bar{\Delta}_2$, and $\bar{\Delta}_3$, respectively.

Ideal GKP qubit

After CNOT, the true deviation of ancilla 1 is $\bar{\Delta}_1 + \bar{\Delta}_2$, ancilla 2 is $\bar{\Delta}_2 + \bar{\Delta}_3$, and ancilla 3 is $\bar{\Delta}_3$, assuming ancilla qubits are ideal.

From the measurement of ancillae, we obtain the measurement deviations Δ_{mi} ($i=1,2,3$)

Ex.) No error
we obtain the $\bar{\Delta}_i$ ($i=1,2,3$) correctly

Ex.) Double errors on qubit 2 and 3
we need to decide between single error on qubit 1 and double errors on qubit 2&3
Ex.) If double errors on qubit 2 and 3, and we obtain the measurement deviation of three qubits $\Delta m_1, \Delta m_2,$ and Δm_3, there are the two possibilities as follows:
Ex.) If double errors on qubit 2 and 3, and we obtain the measurement deviation of three qubits Δm_1, Δm_2, and Δm_3, there are the two possibilities as follows:
Syndrome with analog information

Ex.) If double errors on qubit 2 and 3, and we obtain the measurement deviation of three qubits Δm_1, Δm_2, and Δm_3, there are the two possibilities as follows:

Error on qubit 1

Error on qubit 1

q^{m_1}

q^{m_2}

q^{m_3}

q^{m_1}

q^{m_2}

q^{m_3}
Syndrome with analog information

Ex.) If double errors on qubit 2 and 3, and we obtain the measurement deviation of three qubits Δm_1, Δm_2, and Δm_3, there are the two possibilities as follows:

Error on qubit 1

Likelihood for error on qubit 1:

$$f(\sqrt{\pi} - \Delta m_1) \times f(\Delta m_2) \times f(\Delta m_3)$$
 Syndrome with analog information

Ex.) If double errors on qubit 2 and 3, and we obtain the measurement deviation of three qubits Δm_1, Δm_2, and Δm_3, there are the two possibilities as follows:

Error on qubit 1

Likelihood for error on qubit 1

$$f(\sqrt{\pi} - \Delta m_1) \times f(\Delta m_2) \times f(\Delta m_3)$$

Errors on qubit 2 & 3

Likelihood for errors on qubit 2 & 3

$$f(\Delta m_1) \times f(\sqrt{\pi} - \Delta m_2) \times f(\sqrt{\pi} - \Delta m_3)$$
Syndrome with analog information

Ex.) If double errors on qubit 2 and 3, and we obtain the measurement deviation of three qubits Δm_1, Δm_2, and Δm_3, there are the two possibilities as follows:

Error on qubit 1

Likelihood for error on qubit 1

$f(\sqrt{\pi} - \Delta m_1) \times f(\Delta m_2) \times f(\Delta m_3)$

Errors on qubit 2 & 3

Likelihood for errors on qubit 2 & 3

$f(\Delta m_1) \times f(\sqrt{\pi} - \Delta m_2) \times f(\sqrt{\pi} - \Delta m_3)$

The likelihoods for qubit 2&3 are almost the same
Syndrome with analog information

Ex.) If double errors on qubit 2 and 3, and we obtain the measurement deviation of three qubits $\Delta m_1, \Delta m_2$, and Δm_3, there are the two possibilities as follows:

Error on qubit 1

Likelihood for error on qubit 1

$$f(\sqrt{\pi} - \Delta m_1) \times f(\Delta m_2) \times f(\Delta m_3)$$

Errors on qubit 2 & 3

Likelihood for errors on qubit 2 & 3

$$f(\Delta m_1) \times f(\sqrt{\pi} - \Delta m_2) \times f(\sqrt{\pi} - \Delta m_3)$$

By comparing the likelihoods for the error patterns, we can correct the double-error one

The likelihoods for qubit 2 & 3 are almost the same
Results for the three-qubit bit-flip code

- Our method can improve the QEC performance and reduce the squeezing level required for the failure probability 10^{-9} by 1.5 dB
- Our method can correct double errors on the three qubits
Results for the three-qubit bit-flip code

- Our method can improve the QEC performance and reduce the squeezing level required for the failure probability 10^{-9} by 1.5 dB.
- Our method can correct double errors on the three qubits.

![Graph showing failure probability vs. standard deviation of the GQC ξ. The graph compares the conventional method (blue line) and the proposed method (red line), with a highlighted difference of approximately 1.5 dB.](image)
I Toward a large-scale quantum computation
 Continuous variable QC
 GKP qubit
 Our work

II Analog quantum error correction
 Proposal - likelihood function -
 Error model in our work
 Three qubit bit flip code
 C4/C6 code
 Surface code
 Summary
Examination of the required squeezing

To examine required squeezing level for large-scale QC, we numerically calculated the **hashing bound** for the GQC.
Examination of the required squeezing

To examine required squeezing level for large-scale QC, we numerically calculated the hashing bound for the GQC.

Hashing bound ξ_{hb}

The hashing bound is the maximum value of the condition that yields the non-zero quantum capacity.

Encoding ➔ GQC ➔ Decoding

Increasing the variance by ξ^2

The GQC has nonvanishing quantum capacity for $\xi < \xi_{hb}$
Achievable hashing bound for the GQC

The GQC has nonvanishing quantum capacity for \(\xi < \xi_{hb} \)

GKP qubit concatenated with CSS code + Binary information → \(\xi_{hb} \approx 0.555 \)

Achievable hashing bound

Achievable hashing bound for the GQC

Encoding → GQC → Decoding

Increasing the variance by ξ^2

The GQC has nonvanishing quantum capacity for $\xi < \xi_{hb}$

GKP qubit concatenated with CSS code + Binary information → $\xi_{hb} \sim .555$

Optimal method (Open problem) → $\xi_{max} \sim .607$

$\sim .607$ has been conjectured as the lower bound of quantum capacity for the GQC

Achievable hashing bound

Achievable hashing bound for the GQC \cite{5,10}

- **Encoding** → **GQC** → **Decoding**

 Increasing the variance by ξ^2

 The GQC has nonvanishing quantum capacity for $\xi < \xi_{hb}$

GKP qubit concatenated with CSS code + Binary information $\rightarrow \xi_{hb} \sim .555$

GKP qubit concatenated with CSS code + Binary information + **Analog information** (This work) $\rightarrow \xi_{max} \sim .607$

$\sim .607$ has been conjectured as the lower bound of quantum capacity for the GQC

\cite{5,10} D. Gottesman et al., Phys. Rev. A, 64, 012310 (2001)
\cite{10} J. Harrington et al., Phys. Rev. A 64, 062301 (2001)
Analog QEC for the C4/C6 code

We applied our method to the Knill's C4/C6 code [11] using a message passing algorithm proposed by Poulin [12,13].

\[\lvert \tilde{\psi} \rangle_L \]

Encoded Bell measurement

\[\lvert + \rangle_L \]
\[\lvert 0 \rangle_L \]

Encoded Bell state preparation

\[\text{GQC} \]

\[\text{MLD} \]

\[M_p \]

\[M_q \]

\[X \]
\[Z \]
We applied our method to the Knill's C_4/C_6 code using a message passing algorithm proposed by Poulin.

Analog QEC for the C4/C6 code

We applied our method to the Knill's C4/C6 code [11] using a message passing algorithm proposed by Poulin [12,13]

\[|\tilde{\psi}\rangle_L \rightarrow \text{GQC} \rightarrow |+\rangle_L \rightarrow |0\rangle_L \rightarrow \text{Encoded Bell state preparation} \rightarrow \text{Encoded Bell measurement} \rightarrow \text{MLD} \rightarrow \text{MLD : Maximum likelihood decision} \]

Convention method

\[p = \int_{-\frac{\sqrt{\pi}}{2}}^{\frac{\sqrt{\pi}}{2}} dx \frac{1}{\sqrt{2\pi}\xi^2} \exp(-x^2/2\xi^2) \]

Likelihood for correct bit value

Likelihood for incorrect bit value

\[1 - p \]

Proposal

\[f(\Delta m) = \frac{1}{\sqrt{2\pi}\xi^2} e^{-\Delta m^2/(2\xi^2)} \]

\[f(\sqrt{\pi} - |\Delta m|) \]

\[\xi^2 : \text{Noise level of GQC} \]

Results for the C4/C6 code

- Our method can improve the QEC performance and reduce the squeezing level required for fault-tolerant QC.

Results for the C4/C6 code

- Our method can improve the QEC performance and reduce the squeezing level required for fault-tolerant QC
- Our method can achieve the hashing bound $\sim \frac{555}{607}$ \cite{5, 10}

\[\text{Conventional method} \]

- Level-1
- Level-2
- Level-3
- Level-4
- Level-5

\[\text{Proposed method} \]

- Level-1
- Level-2
- Level-3
- Level-4
- Level-5

\[\text{Failure probability} \]

\[\text{Standard deviation of the GQC } \xi \]

\[\sim 1 \text{ dB} \]

\[\frac{555}{607} \]

Outline

I Toward a large-scale quantum computation
 Continuous variable QC
 GKP qubit
 Our work

II Analog quantum error correction
 Proposal - likelihood function -
 Error model in our work
 Three qubit bit flip code
 C4/C6 code
 Surface code
 Summary
Analog QEC for the surface code

We applied our method to a surface code which is used to implement topological QC \[14,15\]

Errors are detected at the boundary of the error chain

From the boundary information, we need to decide the most likely error chain by using minimum-weight perfect match match algorithm

Results for the surface code

Our method can also improve the QEC performance and reduce the squeezing level required for Topological QC \cite{16}

\[d = 5, d = 7, d = 9, d = 11, d = 13, d = 15 \]

\[\text{Conventional method} \quad \text{Proposed method} \]

\[\text{Standard deviation of the GQC } \xi \]

Our method can also improve the QEC performance and reduce the squeezing level required for Topological QC \cite{16}

\begin{itemize}
\item Conventional method
\item Proposed method
\end{itemize}

\begin{align*}
\text{Conventional method} & \quad \text{Proposed method} \\
\text{Standard deviation of the GQC } \xi & \quad \text{Standard deviation of the GQC } \xi
\end{align*}

\begin{align*}
\text{Failure probability} & \quad \text{Failure probability} \\
10^{-1} & \quad 10^{-1} \\
10^{-2} & \quad 10^{-2} \\
10^{-3} & \quad 10^{-3}
\end{align*}

\begin{align*}
\text{Distance } d = 5 & \quad \text{Distance } d = 7 \\
\text{Distance } d = 9 & \quad \text{Distance } d = 11 \\
\text{Distance } d = 13 & \quad \text{Distance } d = 15
\end{align*}

\cite{16} K.F, K. Fujii, A. Tomita, and A. Okamoto (in preparation)
Summary

- The GKP qubit is a promising element toward large-scale QC

- Proposal to harness analog information contained in the GKP qubit to reduce the requirement for large-scale QC

- Proposal can achieve the hashing bound for the optimal method against the GQC

- Our method can be applied to various QEC codes such as, concatenated code, non-concatenated code, and surface code
Thank you for your attention!