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Introduction

Entanglement properties of random states/dynamics

I Play key roles in: scrambling, quantum chaos, many-body
localization, quantum error correction, quantum crypto...

I Entanglement entropy (von Neumann) of Haar-random
states—Page’s theorem:
The von Neumann entropy of small subsystems of a pure
state, averaged over the Haar/uniform measure, is nearly
maximal.

I Weak from a complexity point of view:

1. Haar has high complexity: requires exp gates/random bits to
even approximate; maximizes higher order entropies.

2. Max vN entropy has low complexity: can be achieved by less
random distributions (designs), can be efficiently implemented;
higher order entropies not necessarily max.

? This work: higher order entanglement entropies vs.
pseudorandom states/unitary channels
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Generalized quantum entropy

Generalized q. entropy of order α: entropic functions of tr{ρα}.
A unified definition:

S(α)
s (ρ) =

1

s(1− α)
[(tr{ρα})s − 1] .

Parameter s: family.

s = 1: Tsallis
s→ 0: Rényi (α→∞: min)

α→ 1: von Neumann
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Rényi entropies

We focus on Rényi entropies:

S
(α)
R (ρ) =

1

1− α
log tr{ρα}.

α ↑ S(α)
R ↓: more sensitive to nonuniformity in the spectrum.

α→∞ limit: min entropy

Smin(ρ) = − log ‖ρ‖ = − log λmax(ρ).

Determined only by the op. norm/largest eigenvalue.
Strongest entropy: large only when the whole spectrum is almost
uniform.



Rényi entropies

We focus on Rényi entropies:
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Rényi entropies

Why Rényi?

I They are convex in tr{ρα}, which makes it possible to use
Jensen’s inequality to lower bound the design-averaged values
by Haar integrals;

I They always have roof value n for systems of n qubits (log d),
which allows meaningful comparisons with the maximum and
between different orders;

I They are additive on product states, otherwise the generalized
quantities such as mutual information and tripartite
information do not make sense.

Results for other families (eg Tsallis) are also obtained.
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Rényi entropies

Example.

Consider the spectrum with one large eigenvalue:

λ =
( 1√

d
,
1− 1√

d

d− 1
, · · · ,

1− 1√
d

d− 1︸ ︷︷ ︸
d−1

)
.

I Min entropy: far from max (gap Θ(log d))

S
(∞)
R (λ) = − log λmax =

1

2
log d.

I α > 2 Rényi: gapped from max, but closer

S
(α)
R (λ) ≈ α

2(α− 1)
log d.

I Rényi-2 (and thus vN): almost maximal

S
(2)
R (λ) ≥ log d− 1.
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Designs

t-design: ensemble/distribution of states/unitaries that mimics the
Haar measure up to t moments.

Finite-order approximation to the Haar measure (pseudorandom).



Designs

t-design: ensemble/distribution of states/unitaries that mimics the
Haar measure up to t moments.

Finite-order approximation to the Haar measure (pseudorandom).



Designs

I State design: An ensemble/dist. ν of pure state vectors in
dimension d is a (complex projective) t-design if

Eν p(ψ) =

∫
dψp(ψ) ∀p ∈ Hom(t,t)(Cd).

I Unitary design: An ensemble/dist. µ of unitary operators in
dimension d is a unitary t-design if

Eµ p(U) =

∫
dUp(U) ∀p ∈ Hom(t,t)(U(d)).

Integrals taken over: uniform measure on the complex unit
sphere in Cd/Haar measure on U(d).
Hom(t,t): polynomials homogeneous of degree t both in the
elements and in their complex conjugates.

Efficient to implement. Applications in: signal processing,
randomized benchmarking, quantum data hiding, decoupling...
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Results for random states

Consider a bipartite pure state |ψ〉AB on HA ⊗HB, where HA and
HB have dimensions dA and dB respectively.

Entanglement entropy: entropy of the reduced density operator
ρA = trB|ψ〉〈ψ|.
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Results for random states
Order correspondence

Theorem: equal partition, asymptotic

Let να be a projective α-design. Consider equal partitions
dA = dB. As dA →∞,

Eνα S
(α)
R (ρA) ≥ log dA −

log Catα
α− 1

+O(d−2A ).

Catα := 1
α+1

(
2α
α

)
: Catalan number. So,

Eνα S
(α)
R (ρA) ≥ log dA −O(1).

I Rényi-α entanglement entropy averaged over an α-design
(expectation) is almost maximal.

I A state sampled from an α-design is very likely to exhibit
almost maximal Rényi-α entanglement entropy.
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Results for random states
Order correspondence

Theorem: general partition, finite dimension

Let να be a projective α-design. Let
q := α3/(32d2B) < 1, h(q) := 1 + 2q/[3(1− q)]. For all
dA, dB, 0 ≤ α ≤ ∞,

Eνα S
(α)
R (ρA) ≥ log dA −

2α− 3
2 logα+ log h(q)− 1

2 log π

α− 1
≥ log dA − 2.

When dA < dB, the result can be improved as follows:

Eνα S
(α)
R (ρA) ≥ log dA − 2

√
dA
dB
− log c,

where c = 1 if H is real and c = 2 if H is complex.



Results for random states
Order correspondence

Methods:

I Key observations: given an α-design να,
Eνα tr{ραA} =

∫
dψtr{ραA}, since tr{ραA} only involves

degree-α terms of entries of |ψ〉.
By the convexity of Rényi in tr{ρα} and Jensen’s ineq.,

Eνα S
(α)
R (ρA) ≥ 1

1− α
log

(∫
dψtr{ραA}

)
.
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Results for random states
Order correspondence

I Boils down to calculating the Haar integrals of tr{ραA}:∫
dψtr{ραA} =

1

α!D[α]

∑
σ∈Sα

d
ξ(στ)
A d

ξ(σ)
B .

D[α] :=
(
dAdB+α−1

α

)
: dim of the symmetric subspace of H⊗α

Sα: symmetric group of α symbols
ξ(σ): number of disjoint cycles of permutation σ
τ : full cycle/1-shift (1 2 ... α)

Similar results Zyczkowsky-Sommers ’01; Collins-Nechita ’10, ’11



Results for random states
Order correspondence

I Equal partitions, large d limit (basic result):
Cycle Lemma. ξ(στ) + ξ(σ) ≤ α+ 1.
After a little algebra:∫

dψtr{ραA} = Catαd
−α+1
A +O

(
d
−(α+1)
A

)
.

I General partitions, finite dimension (general result): more
technical.
Used various tools developed in random matrix theory,
Weingarten calculus and representation theory etc.
Collins-Matsumoto ’17; Goupil-Schaeffer ’98...

See full paper for details.
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Results for random states
Approximate designs

The above results are for exact designs. The following error bound
shows that these results does not deviate much for approximate
designs:

Theorem

Let ν̃α be an ε-approximate α-design (α ≥ 2), i.e.,∥∥Fα(ν̃α)− P[α]

∥∥
1
≤ ε, where Fα(ν̃α) := D[α] Eν̃α(|ψ〉〈ψ|)⊗t is the

α-th frame operator of ν̃α, and P[α] is the projector onto the

α-partite symmetric subspace of (Cd)⊗α. Then

Eν̃α S
(α)
R (ρA) ≥ 1

1− α
log

(∫
dψ tr{ραA}+

ε

D[α]

)
.

Key step: matrix Hölder



Results for random states
Log design maximizes min entropy

Can finite order designs maximize ∞-entropy (min entropy)?
Can we distinguish designs from Haar by entanglement?

Theorem

Let να be a projective α-design, where
α = d(log dA)/ae ≤ (16d2B)1/3 with 0 < a ≤ 1. Then

Eνα Smin(ρA) ≥ log dA − 2− a.

In particular, Eνα Smin(ρA) ≥ log dA − 3 if α = dlog dAe.

Min entanglement entropy of log designs is almost maximal

I Avg. entanglement spectrum of a log design is highly uniform.

I Cannot distinguish higher (superlog) order designs from
uniformly random by entanglement properties.

Key step: Eνα ‖ρA‖ ≤ (Eνα ‖ρA‖α)1/α ≤ [Eνα tr{ραA}]
1/α.
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Results for random states
Separation: existence of 2-design with non-maximal Rényi-3

Another natural question: Are Rényi entanglement entropies of
different orders truly separated, in the sense that ∃ α-design
s.t. Rényi entropy of order > α is bounded away from maximal?

We construct such a separation for α = 2:

Theorem

There exist a family of 2-designs such that, for all α > 2,

log dA − S(α)
R (ρA) ∈ Ω(log dA).

Our construction is based on the orbits of a special subgroup of
the unitary group on H = HA ⊗HB. Representation theory.
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Results for random states
Separation: existence of 2-design with non-maximal Rényi-3

Let G = UA ⊗UB (NB: irreducible, not unitary 2-design). The
orbit of |ψ〉 under the action of G forms a 2-design iff tr{ρ2A} is
equal to the average over the uniform ensemble:

tr{ρ2A} =
dA + dB
dAdB + 1

.

It holds if ρA has the following spectrum

λ1 =
dAdB + 1 + (dA − 1)

√
(dA + 1)(dAdB + 1)

dA(dAdB + 1)
,

λ2 = · · · = λdA =
dAdB + 1−

√
(dA + 1)(dAdB + 1)

dA(dAdB + 1)
.

Suppose dB/dA is bounded by constant r. Then λ1 ≥ (rdA)−1/2.
So

S
(α)
R (ρA) ≤ 1

1− α
λα1 ≤

α

2(α− 1)
(log dA + log r).



Results for random unitaries
Model: entanglement/tripartite information of the Choi state

Intrinsic entanglement/scrambling properties of random unitary
channels?

Choi isomorphism:
Unitary operator U =

∑d−1
i,j=0 Uij |i〉〈j|

m
Pure state |U〉 = 1√

d

∑d−1
i,j=0 Uji|i〉in ⊗ |j〉out
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Results for random unitaries
Model: entanglement/tripartite information of the Choi state

Partition the input into A and B, and the output into C and D

We are interested in the entanglement between AC and BD
(entropy of AC).



Results for random unitaries
Model: entanglement/tripartite information of the Choi state

(Negative) tripartite information

−I3(A : C : D) := I(A : CD)− I(A : C)− I(A : D).

Determined by S(AC).

S(AC) always large → I(A : C) small → −I3 large:

I U generates global entanglement to “hide” local information
of the input.
Large −I3 diagnoses ‘scrambling’ Hosur-Qi-Roberts-Yoshida ’15:
local operators supported on A always gets spread onto CD
via global entanglement.
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Results for random unitaries
Order correspondence

Theorem: equal partition, asymptotic

Let µα be a unitary α-design. Consider equal partitions of the
input and output registers, dA = dB = dC = dD. As d→∞,

Eµα S
(α)
R (ρAC) ≥ log d− log Catα

α− 1
+O(d−1).

So,
Eµα S

(α)
R (ρAC) ≥ log d−O(1).

I Rényi-α entanglement entropy averaged over a unitary
α-design (expectation) is almost maximal.

I A unitary sampled from a unitary α-design is very likely to
exhibit almost maximal Rényi-α entanglement entropy.
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Results for random unitaries
Order correspondence

Theorem: general partition, finite dimension

Let µα be a unitary α-design. Suppose d >
√

6α7/4, dA ≤ dB.
Then

Eµα S
(α)
R (ρAC)

≥ log d− log Catα
α− 1

−
log
[
aαh(q)

8

(
7 + cosh 2α(α−1)

d

)]
α− 1

,

where aα :=
(

1− 6α7/2

d2

)−1
.



Results for random unitaries
Order correspondence

Methods:

I By properties of designs and Jensen (similar as for states):

Eνα
[
S
(α)
R (ρAC)

]
≥ 1

1− α
log

(∫
dUtr {ραAC}

)
.

I Haar integrals of tr{ραA}:∫
dUtr {ραAC} =

1

dα

∑
σ,γ∈Sα

d
ξ(στ)
A d

ξ(σ)
B d

ξ(γτ)
C d

ξ(γ)
D Wg(d, σγ−1),

Wg(d, σ) := 1
(α!)2

∑
λ`α

χλ(1)2χλ(σ)
sλ,d(1,··· ,1) : Weingarten function.

λ ` α means λ is a partition of α
χλ, sλ: corresponding character of Sα and Schur polynomial

Wg can be derived by various tools in representation theory, such
as Schur-Weyl duality and Jucys-Murphy elements.
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Results for random unitaries
Order correspondence

I Equal partitions, large d limit (basic result):
the Cycle Lemma + asymptotics of Weingarten function
Collins ’03; Collins-Sniady ’06;

I General partitions, finite dimension (general result):
See full paper for details.

I Results for unitaries analogous to those for states (analysis
much more difficult). Gap constructions unknown.
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Results for random unitaries
Approximate designs

Error bound for approximate unitary designs:

Theorem

Let µ̃α be an ε-approximate unitary α-design, i.e.,∥∥∥Fα(µ̃α)−
∫

dUU⊗α ⊗ U †⊗α
∥∥∥
1
≤ ε, where

Fα(µ̃α) := Eµ̃α
[
U⊗α ⊗ U †⊗α

]
is the α-th frame operator of µ̃α.

Then

Eµ̃α [S
(α)
R (ρAC)] ≥ 1

1− α
log

(∫
dUtr {ραAC}+

1

dα
ε

)
.

Key step: matrix Hölder



Results for random unitaries
Log design maximizes min entropy

Similar techniques and results for the min entropy:

Theorem

Let µα be a unitary α-design, where 1 ≤ α = dlog d/ae ≤
√
d/2

and a > 0; then

Eνα Smin(ρAC) ≥ log d− 2− a.

In particular, Eνα Smin(ρAC) ≥ log d− 3 if α ≥ dlog de.

Cannot distinguish higher (superlog) order unitary designs from the
Haar measure by entanglement properties.
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Summary

Our results:

I Linking the order of design and generalized entropy: α-design
exhibits almost maximal entanglement as measured by
Rényi-α.
A family of strong Page’s theorems.

I Logarithmic ‘nontrivial’ orders of design: log-design maximizes
all entanglement entropy.
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Entropic scrambling complexities

Scrambling complexity in terms of degree of randomness by
Rényi entanglement entropy:

I Rényi-α entanglement entropy can be a diagnostic of the
randomness complexity of α-design;

I Hierarchy of complexities between max entanglement entropy
and max randomness. Similar motivation Brown-Susskind ’17;

I Max-scrambling: max min entanglement entropy, uniform
entanglement spectrum.

Fast max-scrambling conjecture: the minimum time for a
physical system to max-scramble scales as Õ(n).
This afternoon Nakata-Hirche-Koashi-Winter ’17
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Rényi entanglement entropy:
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Future directions

I Open problems: Separations for higher orders and the unitary
case? Negative tripartite Rényi information (no subaddivity)?

I Dynamical aspects of designs/complexity?
eg Design Hamiltonian Nakata-Hirche-Koashi-Winter ’17

I Applications in the study of quantum gravity, quantum
many-body physics, quantum cryptography...
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Thanks for your attention!
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