A generalised Quantum-Slepian Wolf

Anurag Anshu¹, Rahul Jain^{1,2}, Naqueeb Ahmad Warsi^{1,3}

 Centre for Quantum Technologies, NUS, Singapore
 MajuLab, UMI 3654, Singapore.
 School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore and IIITD, Delhi.

arXiv:1703.09961

September 8, 2017

Outline for section 1

1 The coding problem of Slepian and Wolf [1973]

2 Quantum case:

3 Techniques

4 Conclusion

Anurag Anshu¹, Rahul Jain^{1,2}, Naqueeb Ahmad Warsi^{1,3} Quantum message compression

The communication task

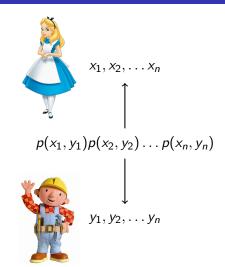
Anurag Anshu¹, Rahul Jain^{1,2}, Naqueeb Ahmad Warsi^{1,3}

Quantum message compression

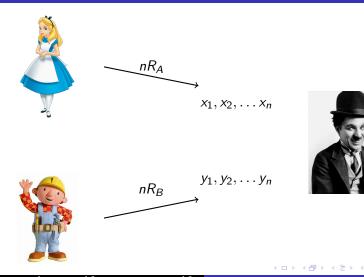
The communication task

$p(x_1, y_1)p(x_2, y_2) \dots p(x_n, y_n)$

The communication task



The communication task



Anurag Anshu¹, Rahul Jain^{1,2}, Naqueeb Ahmad Warsi^{1,3}

Quantum message compression

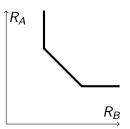
The rate region

- Slepian and Wolf [1973]: Task achievable if
 - $R_A \geq H(X|Y)$,
 - $R_B \geq H(Y|X)$,
 - $R_A + R_B \geq H(XY)$.
- Optimal.

∃ → < ∃ →</p>

The rate region

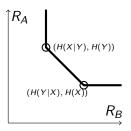
- Slepian and Wolf [1973]: Task achievable if
 - $R_A \geq H(X|Y)$,
 - $R_B \geq H(Y|X)$,
 - $R_A + R_B \geq H(XY)$.
- Optimal.



э

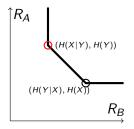
The rate region

- Slepian and Wolf [1973]: Task achievable if
 - $R_A \geq H(X|Y)$,
 - $R_B \geq H(Y|X)$,
 - $R_A + R_B \geq H(XY)$.
- Optimal.



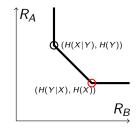
- ∢ ≣ ▶

Approach 1: reduce to two-party task



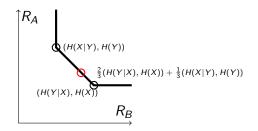
- To achieve red point:
 - Bob sends all of $y_1, y_2, \ldots y_n$ to Charlie with $nR_B = nH(Y)$.
 - Alice sends $x_1, x_2, \ldots x_n$ to Charlie with $nR_A = nH(X|Y)$.

Approach 1: reduce to two-party task



- To achieve red point:
 - Alice sends all of $x_1, x_2, ..., x_n$ to Charlie with $nR_A = nH(X)$.
 - Bob sends $y_1, y_2, \ldots y_n$ to Charlie with $nR_B = nH(Y|X)$.

Approach 1: time sharing



- To achieve red point:
 - Alice and Bob group $(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)$ into $(x_1, y_1), (x_2, y_2), \dots (x_{n/3}, y_{n/3})$ and $(x_{n/3+1}, y_{n/3+1}), (x_{n/3+2}, y_{n/3+2}), \dots (x_n, y_n).$
 - They follow first protocol on first group and second protocol on second group.

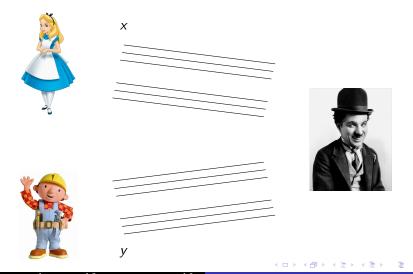
Approach 1: limitations

- Works only in the asymptotic, independent and identically distributed setting.
- Not suitable for following conceptually important settings:
 - One-shot setting: n = 1.
 - Asymptotic, non-i.i.d. setting: joint distribution $p(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n)$.
 - Second order: more information about communication rate region.

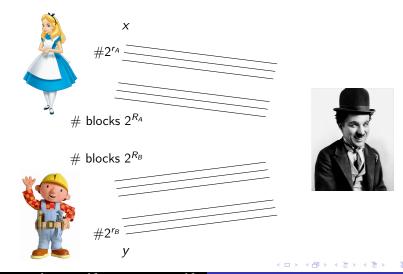
Approach 2: Slepian and Wolf's protocol

- Although designed for asymptotic and i.i.d. setting, key ideas work in:
 - One-shot setting: n = 1, [Warsi 2016, Anshu, Jain and Warsi 2017].
 - Asymptotic, non-i.i.d. setting: joint distribution $p(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n)$ [Han 2003].
 - Second order: more information about communication rate region. [Tan and Kosut, 2012].

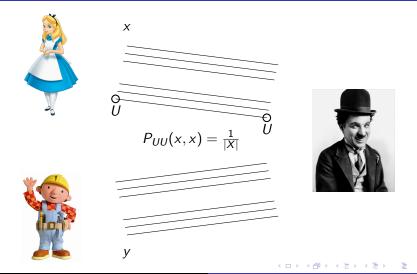
Approach 2: a one-shot protocol



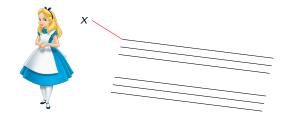
Approach 2: a one-shot protocol



Approach 2: a one-shot protocol

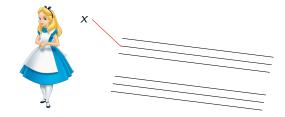


Approach 2: Alice's strategy

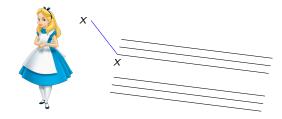


Anurag Anshu¹, Rahul Jain^{1,2}, Naqueeb Ahmad Warsi^{1,3} Quantum message compression

Approach 2: Alice's strategy

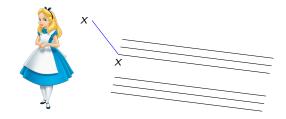


Approach 2: Alice's strategy



Anurag Anshu¹, Rahul Jain^{1,2}, Naqueeb Ahmad Warsi^{1,3} Quantum message compression

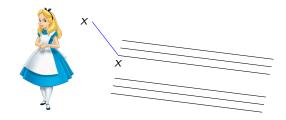
Approach 2: Alice's strategy



• Probability of finding no sample:

•
$$(1 - \frac{1}{|X|})^{2^{R_A + r_A}}$$
.
• $\approx \varepsilon$ if $2^{R_A + r_A} \ge |X|/\varepsilon$

Approach 2: Alice's strategy

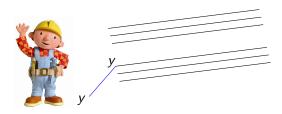


• Probability of finding no sample:

•
$$(1 - \frac{1}{|X|})^{2^{R_A + r_A}}$$
.
• $\approx \varepsilon$ if $2^{R_A + r_A} \ge |X|/\varepsilon$

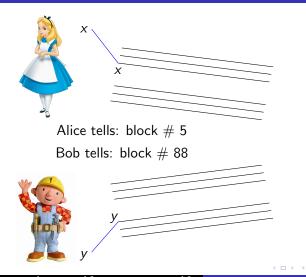
• So choose
$$R_A + r_A \ge \log |X| - \log \varepsilon$$
.

Approach 2: Bob's strategy

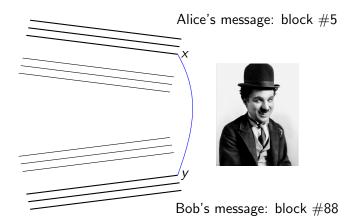


- Similar strategy for Bob.
- Choose $R_B + r_B \geq \log |Y| \log \varepsilon$.

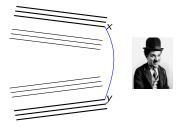
Approach 2: when both succeed



Approach 2: Charlie's strategy



Approach 2: Charlie's strategy



- Charlie performs hypothesis testing.
- $\bullet\,$ Succeeds with probability $1-3\varepsilon\,$ if

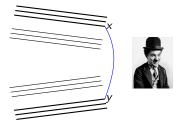
•
$$r_A \leq \log |X| - H_0(X|Y)$$

•
$$r_B \leq \log |Y| - H_0(Y|X)$$
,

•
$$r_A + r_B \leq \log |X||Y| - H_0(XY)$$
.

• $H_0(.|.)$ is a one-shot version of H(.|.).

Approach 2: Charlie's strategy



Recall:

- $R_A + r_A \geq \log |X| \log \varepsilon$,
- $R_B + r_B \geq \log |Y| \log \varepsilon$,
- Implies the desired.

Outline for section 2

The coding problem of Slepian and Wolf [1973]

Quantum case:

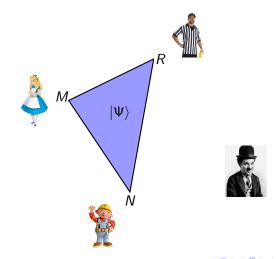
3 Techniques

4 Conclusion

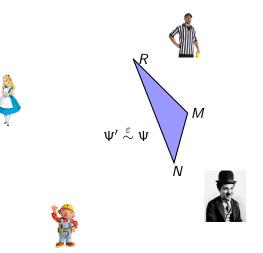
Anurag Anshu¹, Rahul Jain^{1,2}, Naqueeb Ahmad Warsi^{1,3} Quantum message compression

-

Quantum version of the problem



Quantum version of the problem



Prior work

• First considered in [Abeyesinghe, Devetak, Hayden, Winter, 2009] in asymptotic i.i.d. setting.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Quantum state: $|\Psi\rangle_{RMN}^{\otimes n}$.

Prior work

- First considered in [Abeyesinghe, Devetak, Hayden, Winter, 2009] in asymptotic i.i.d. setting.
- Quantum state: $|\Psi\rangle_{RMN}^{\otimes n}$.
- Used time-sharing to reduce to Schumacher compression and quantum state merging.
- Rate region for the task: if Alice communicates nC_A qubits, Bob communicates nC_B qubits, then

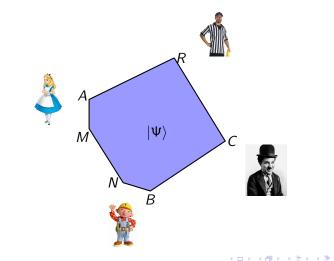
N).

•
$$C_A \ge \frac{1}{2}I(R:M),$$

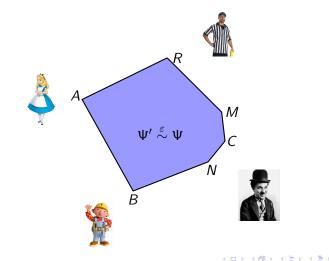
• $C_B \ge \frac{1}{2}I(R:N),$
• $C_A + C_B \ge \frac{1}{2}I(R:M).$

- One shot version studied in [Dutil and Hayden, 2010]. Hence no time-sharing.
- Studied the entanglement cost in this task, rather than communication cost.
- Technique involved decoupling by random unitary.

A generalized Quantum Slepian-Wolf



A generalized Quantum Slepian-Wolf



Our results

- One-shot rate region for communication required by Alice and Bob.
- Asymptotic i.i.d. analysis for:
 - Register C trivial.

Our results

- One-shot rate region for communication required by Alice and Bob.
- Asymptotic i.i.d. analysis for:
 - Register C trivial.
 - Registers *C*, *A*, *B* trivial. Recovers the result in [Abeyesinghe, Devetak, Hayden, Winter, 2009].

Our results

- One-shot rate region for communication required by Alice and Bob.
- Asymptotic i.i.d. analysis for:
 - Register C trivial.
 - Registers *C*, *A*, *B* trivial. Recovers the result in [Abeyesinghe, Devetak, Hayden, Winter, 2009].
 - Registers *C*, *A* trivial. This case was studied in [Hsieh and Watanabe, 2015] for trade-off between entanglement consumption between Alice-Charlie and quantum communication between Bob-Charlie.

Our results

- One-shot rate region for communication required by Alice and Bob.
- Asymptotic i.i.d. analysis for:
 - Register C trivial.
 - Registers *C*, *A*, *B* trivial. Recovers the result in [Abeyesinghe, Devetak, Hayden, Winter, 2009].
 - Registers *C*, *A* trivial. This case was studied in [Hsieh and Watanabe, 2015] for trade-off between entanglement consumption between Alice-Charlie and quantum communication between Bob-Charlie.
 - Registers *N*, *B* trivial. Recovers Quantum state redistribution [Devetak and Yard, 2009].

4 3 b

Outline for section 3

The coding problem of Slepian and Wolf [1973]

2 Quantum case:

3 Techniques

Conclusion

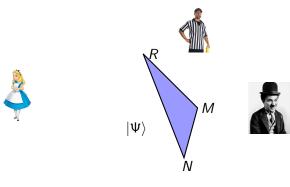
Anurag Anshu¹, Rahul Jain^{1,2}, Naqueeb Ahmad Warsi^{1,3} Quantum message compression

-

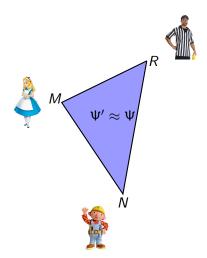
- Convex-split technique:
 - Introduced in [Anshu, Devabathini and Jain, 2014] as a coherent quantum version of rejection sampling.
 - We use a bipartite version of the technique.

- Convex-split technique:
 - Introduced in [Anshu, Devabathini and Jain, 2014] as a coherent quantum version of rejection sampling.
 - We use a bipartite version of the technique.
- Position-based decoding technique:
 - Introduced in [Anshu, Jain and Warsi, 2017] for entanglement assisted quantum channel coding. Used to obtain near-optimal one-shot code for point to point quantum channel.

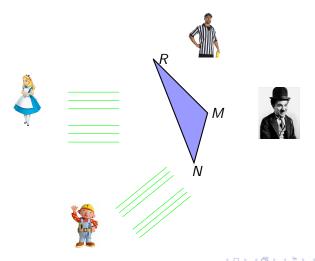
Time-reversed problem



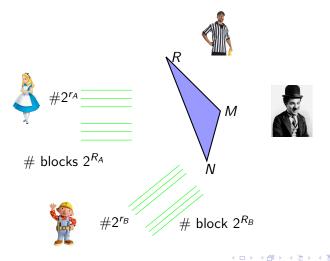
Time-reversed problem



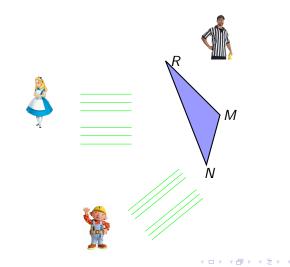
Shared entanglement



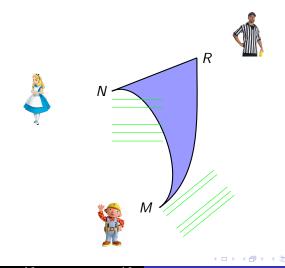
Shared entanglement



Actual state with Alice, Bob, Reference



Desired states with Alice, Bob, Reference



Sufficient condition for actual pprox desired

- Bipartite convex-split lemma.
- Gives conditions for $R_A + r_A$, $R_B + r_B$ and $R_A + r_A + R_B + r_B$ so that Reference is randomly entangled with Alice and Bob.
- Charlie holds purification, hence he can steer the actual state to one of desired states.

Decoding by Alice and Bob

- Charlie only communicates partial information: block number.
- Alice and Bob use quantum hypothesis testing to obtain the correct location in the block [position-based decoding].

Outline for section 4

The coding problem of Slepian and Wolf [1973]

2 Quantum case:

3 Techniques

Anurag Anshu¹, Rahul Jain^{1,2}, Naqueeb Ahmad Warsi^{1,3} Quantum message compression

∃ >

• We studied a quantum generalization of the distributed source compression problem due to Slepian and Wolf.

Conclusion

- We studied a quantum generalization of the distributed source compression problem due to Slepian and Wolf.
- Obtained one-shot achievability results, and analysed its asymptotic i.i.d. property when Charlie has no side information (else if Bob has no registers: quantum state redistribution).

Conclusion

- We studied a quantum generalization of the distributed source compression problem due to Slepian and Wolf.
- Obtained one-shot achievability results, and analysed its asymptotic i.i.d. property when Charlie has no side information (else if Bob has no registers: quantum state redistribution).
- Can we find nice asymptotic i.i.d. behaviour when Charlie has side information?

Conclusion

- We studied a quantum generalization of the distributed source compression problem due to Slepian and Wolf.
- Obtained one-shot achievability results, and analysed its asymptotic i.i.d. property when Charlie has no side information (else if Bob has no registers: quantum state redistribution).
- Can we find nice asymptotic i.i.d. behaviour when Charlie has side information?
- Can we prove a tight converse for these tasks?