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What are AME states?

|ψ〉 =
11 22 33 44 55 66 77 88

Tr{1,2,3,4}c |ψ〉〈ψ| ∝ 1Tr{1,2,3,7}c |ψ〉〈ψ| ∝ 1Tr{2,3,5,6}c |ψ〉〈ψ| ∝ 1

AME states

A state of n particles is AME if for all S ⊂ {1, . . . , n}

|S| ≤ bn/2c =⇒ TrSc |ψ〉〈ψ| ∝ 1.
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Content of this talk

Classical error
correcting codes

AME states of minimal support

Perfect tensors

Quantum error
correcting codes
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Why are AME states interesting?

Natural generalization of EPR and GHZ states

Resource for multipartite teleportation and quantum secret sharing [3]

Holographic models implementing the Ads/Cft correspondence [4]

code, thinning out the algebra of bulk logical operators, and hence reducing the rate

of the code.

A code that works better can be obtained by a simple modification of the pentagon

code — the modified tensor network is constructed by starting with a pentagon at the

center and adding alternating layers of hexagons (with no dangling bulk indices) and

pentagons (each with one bulk index) as the network grows radially outward. The

associated network is depicted in figure 17. This change suffices to remove all the

constant-weight logical operators acting nontrivally on the center and in fact we can

prove that this pentagon/hexagon code has an erasure threshold. Numerical studies

show that erasure can be corrected by the greedy algorithm with high success proba-

bility for p ≤ pgreedyc ≈ 0.26; the erasure threshold pc achieved by the optimal recovery

method might be higher than pgreedyc if the tensors have further special properties aside

from just being perfect.

(a) Pentagon/Hexagon code (b) One qubit code

Figure 17. Tensor networks for holographic pentagon/hexagon codes with erasure thresh-
olds, where neighboring polygons share contracted indices. In the network shown on the left,
pentagons and hexagons alternate on the lattice; each pentagon carries one dangling bulk
index, and hexagons carry no bulk degrees of freedom. The logical qubit residing on the
central pentagon is well protected against erasure if the erasure probability on the boundary
is below the threshold value pc. In the network on the right, there is just a single bulk qubit
located at the center; the rest of the network is similar to the holographic state constructed
from hexagons only.

Since our main interest is in the reconstruction of the center of the bulk, in appendix

D we study a code for which the only logical index resides at the center, also shown in

figure 17. This code is almost the same as the holographic state obtained by contracting

six-leg perfect tensors (hexagons), except that the tensor network contains one pentagon

– 33 –

Still fundamental questions open. Existence (qubits):
n = 2, 3, �4, 5, 6, 7, �8, �9, . . . [5, 6]
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Classical error correcting codes
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[ n = 3 , k = 1 , dH = 3 ]
q = 2

dH = 2 t+ 1



Constructing QECCs and AME states | Classical error correcting codes 5 / 16

Classical error correcting codes

0

1

Message Encoding Error Correction

000

111

100

010

001

011

101

110

000

111

[ n = 3 , k = 1 , dH = 3 ]
q = 2

dH = 2 t+ 1



Constructing QECCs and AME states | Classical error correcting codes 5 / 16

Classical error correcting codes

0

1

Message Encoding Error Correction

000

111

100

010

001

011

101

110

000

111

[ n = 3 , k = 1 , dH = 3 ]
q = 2

dH = 2 t+ 1



Constructing QECCs and AME states | Classical error correcting codes 5 / 16

Classical error correcting codes

0

1

Message Encoding Error Correction

000

111

100

010

001

011

101

110

000

111

[ n = 3 , k = 1 , dH = 3 ]
q = 2

dH = 2 t+ 1



Constructing QECCs and AME states | Classical error correcting codes 5 / 16

Classical error correcting codes

0

1

Message Encoding Error Correction

000

111

100

010

001

011

101

110

000

111

[ n = 3 , k = 1 , dH = 3 ]
q = 2

dH = 2 t+ 1



Constructing QECCs and AME states | Classical error correcting codes 5 / 16

Classical error correcting codes

0

1

Message Encoding Error Correction

000

111

100

010

001

011

101

110

000

111

[ n = 3 , k = 1 , dH = 3 ]
q = 2

dH = 2 t+ 1



Constructing QECCs and AME states | Classical error correcting codes 5 / 16

Classical error correcting codes

0

1

Message Encoding Error Correction

000

111

100

010

001

011

101

110

000

111

[ n = 3 , k = 1 , dH = 3 ]
q = 2

dH = 2 t+ 1



Constructing QECCs and AME states | Classical error correcting codes 5 / 16

Classical error correcting codes

0

1

Message Encoding Error Correction

000

111

100

010

001

011

101

110

000

111

[ n = 3 , k = 1 , dH = 3 ]
q = 2

dH = 2 t+ 1



Constructing QECCs and AME states | Classical error correcting codes 5 / 16

Classical error correcting codes

0

1

Message Encoding Error Correction

000

111

100

010

001

011

101

110

000

111

[ n = 3 , k = 1 , dH = 3 ]
q = 2

dH = 2 t+ 1



Constructing QECCs and AME states | Classical error correcting codes 6 / 16

Maximal distance separable (MDS) codes

[ n = 3 , k = 1 , dH = 3 ]
q = 2

Is this optimal?

Yes!

Singleton bound [7]

dH ≤ n− k + 1

[7] R. Singleton, IEEE Trans. Inf. Theor., 10.2 (2006), 116–118
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Constructing linear MDS codes

m Gk×n = c

Message Generator matrix Code word

G Has standard form (by taking linear combinations of code words)

Gk×n = [1k|A]

Smallest Hamming dist. given by smallest dist. to all zero code word.
=⇒ Code is MDS iff any subset of k columns of Gk×n is linearly
independent. ⇐⇒ All square sub-matrices of A are non-singular.
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Constructing linear MDS codes

m Gk×n = c

Message Generator matrix Code word

G Has standard form (by taking linear combinations of code words)

Gk×n = [1k|A]

Smallest Hamming dist. given by smallest dist. to all zero code word.
=⇒ Code is MDS iff any subset of k columns of Gk×n is linearly
independent. ⇐⇒ All square sub-matrices of A are non-singular.

This only makes sense if you can take linear
combinations of messages and code words!

Yes. Right. Solution: Finite fields

Integers modulo q for q prime are a finite field.
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Minimal support AME states from MDS codes

Take an MDS code with k = bn/2c

Smallest Hamming distance between any two code words
dH = n− k + 1 = dn/2e+ 1

Consider ~v, ~w ∈ [q]bn/2c, then the product states

|~v Gbn/2c×n〉
and |~wGbn/2c×n〉

remain orthogonal upon tracing out up to dn/2e subsystems.

Hence, we can construct a minimal support AME state like this:

|Ψ〉 ∝
∑

~v∈[q]bn/2c

|~v Gk×n〉
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An example

Generator matrix of a [6, 3, 4]5 MDS code:

G3×6 =

 1 0 0 1 1 1
0 1 0 1 2 3
0 0 1 1 3 4

 .

Yields minimal support AME state for n = 6, q = 5:

|Ψ〉 =
∑

~v∈GF (5)3

|~v G〉 =
4∑

i,j,l=0

|i, j, l, i+ j + l, i+ 2j + 3l, i+ 3j + 4l〉

Can construct such states for all n ≤ q− 1 and q prime [arXiv:1701.03359].

Stabilizers of |Ψ〉 can be read off from the the G matrix.
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MDS codes from minimal support AME states

Minimal support
AME state

=⇒MDS code
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MDS codes from minimal support AME states

Minimal support
AME state

⇐=MDS code
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Quantum error correcting codes

[[ n , k , d ]] q

|ψ〉 ∈ (Cq)⊗k

Message Encoding Error Correction

|ϕ〉 ∈ C ⊂ (Cq)⊗n

unitary

t systems affected

|ϕ̃〉 /∈ C |ϕ〉 ∈ C
measuring stabilizers

Quantum singleton bound [10–12]

2 t+ 1 = d ≤ n− k
2

+ 1

[10] D. Gottesman, PhD thesis, Caltech, 1997, URL: https://arxiv.org/abs/quant-ph/9705052

[11] E. Knill and R. Laflamme, Phys. Rev. A, 55 (2 1997), 900–911

[12] N. J. Cerf and R. Cleve, Phys. Rev. A, 56 (3 1997), 1721–1732

https://arxiv.org/abs/quant-ph/9705052
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QECCs from minimal support AME states

Conjecture

For every prime q ≥ n− 1 and n even there exists a [[n, 1, n/2]]q QECC,
whose code space C is spanned by AME states.

We can explicitly construct the codes up to n = 8.

The conjecture is true if there exist certain operators M whose weight
cannot be decreased by multiplying it with stabilizers of |Ψ〉 . . .

and
we can almost show that such M exist for all even n.
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The code

Given a minimal support AME state |Ψ〉:

The code

C := span({|Ψm〉}) with |Ψm〉 := Mm|Ψ〉

To correct errors E,F from some set of errors, we must have that

m 6= m′ =⇒ 〈ψm|E†F |ψm′〉 = 0.

Claim: If M is an incompressible Pauli string operator,
then C is a [[n, 1, n/2]]q QECC.
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Some intuition

Remember EPR state: (U ⊗ 1)|ψ+〉 = (1⊗ U †)|ψ+〉

AME state:

|Ψ〉 =

q∑
j1...,jn=1

cj1...,jn |j1 . . . , jn〉 ,

i1 i2 i3 · · · in

c c
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