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Preface

These proceedings contain abstracts for the talks and posters of the 24th Asian Quantum Information
Science conference, AQIS’24, held from August 26th to August 30th, 2024, at Hokkaido University,
Sapporo, Japan.
AQIS, the successor to the EQIS conferences held in Japan from 2001 to 2005, has been the foremost
Asian conference series converging all aspects of quantum information science, the burgeoning inter-
disciplinary field across quantum physics, computer science, mathematics, and information technolo-
gies, which includes theoretical and experimental research in all of the following areas: quantum com-
putation and simulation, from algorithms and complexity to circuit design; quantum programming
languages and semantics; quantum information theory; quantum cryptography, communication, and
more general network tasks; quantum gate design and architecture; quantum technologies and related
fields such as quantum foundations, quantum metrology, many-body quantum (thermo)dynamics,
and quantum space-time.
This year’s program comprises 7 invited talks, 55 contributed talks (12 long and 43 regular talks),
and 218 posters. In response to the Call for Papers, we received record-breaking 312 submissions for
talks by the deadline of May 20th. Of these, 55 contributed talks (i.e., the acceptance rate is less
than 18%) were selected via intensive reviews within a limited period of time, followed by serious
discussions between all members of the Program Committee.
We would like to thank the invited speakers and all authors who submitted abstracts of papers for
consideration. We would also like to thank the AQIS’24 conference chair, Prof. Akihisa Tomita;
the conference Steering Committee, chaired by Prof. Jaewan Kim; and the Organizing Committee,
chaired by Prof. Shigeru Yamashita. Lastly, we would like to express our deep gratitude to all the
members of the Program Committee, who accomplished difficult tasks with great perseverance and
dedication within such a limited period.

Eleni Diamanti (co-Chair)
Mio Murao (co-Chair)
Seiichiro Tani (Chair)
AQIS 2024 Program Committee Chairs
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Quantum processes with indefinite input-output direction
Giulio Chiribella1 2 3 ∗

1 QICI Quantum Information and Computation Initiative, The University of Hong Kong, Hong Kong, China
2 Department of Computer Science, University of Oxford, Oxford, United Kingdom

3 Perimeter Institute for Theoretical Physics, Waterloo, Canada

Abstract. At the fundamental level, the dynamics of quantum particles and fields is time-symmetric:
their dynamical equations are invariant under inversion of the time coordinate, possibly in conjunction
with the change of other physical properties, such as charge and parity. At the operational level, the time-
symmetry of the fundamental equations implies that certain quantum devices are bidirectional, meaning
that the role of their inputs and outputs can be exchanged. Here we characterize the largest set of operations
that can in principle be implemented on bidirectional devices, and show that this set includes operations in
which the role of the input and output ports of the given devices becomes indefinite. An example of such an
operation, called the “quantum time flip,” achieves input-output indefiniteness by adding quantum control
to the direction in which a single device is used. We show that quantum operations with indefinite input-
output directions can in principle achieve information-theoretic advantages over all possible operations
with definite time direction, and can lead to an extrmely strong form of indefinite causal order.
Related works:
G. Chiribella and Z. Liu, Quantum Operations with Indefinite Time Direction, Communication Physics 5,
190 (2022).
Z. Liu, M. Yang, and G. Chiribella, Quantum communication through devices with indefinite input-output
direction, New J. Phys. 25 043017 (2023).
Y. Guo, Z. Liu, H. Tang, X.-M. Hu, B.-H. Liu, Y.-F. Huang, C.-F. Li, G.-C. Guo, and G. Chiribella,
Experimental Demonstration of Input-Output Indefiniteness in a Single Quantum Device, Phys. Rev.
Lett. 132, 160201 (2024).
Z. Liu and G. Chiribella, Tsirelson bounds for quantum correlations with indefinite causal order,
arXiv:2403.02749.

Keywords: quantum causal structures, time in quantum mechanics, indefinite input-output direction,
quantum time flip
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Color code decoder with improved scaling for correcting circuit-level
noise

Seok-Hyung Lee1 ∗ Andrew Li1 Stephen D. Bartlett1

1 Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006,
Australia

Abstract. Two-dimensional color codes are a promising candidate for fault-tolerant quantum comput-
ing, as they have high encoding rates and transversal implementation of logical Clifford gates. However,
decoding color codes presents a significant challenge due to their complex structure. We introduce an
efficient color-code decoder that tackles these issues by combining two matching decoders for each color,
generalized to handle circuit-level noise by employing detector error models. Our simulations reveal that
this decoding strategy nearly reaches the best possible scaling of logical failure (pfail ∼ pd/2), where p is
the physical noise strength, which significantly outperforms the best matching-based decoders.

Keywords: Quantum error correction, Color code, Decoder

1 Introduction

Two-dimensional (2D) color codes [1, 2], visualized in
Fig. 1, are a family of stabilizer quantum error-correcting
codes that can be realized with local interactions on a 2D
plane, and provide a promising pathway for implement-
ing fault-tolerant quantum computation. Compared to
surface codes [3, 4], color codes have several notewor-
thy advantages: (i) They have higher encoding rates for
the same code distance [5], (ii) all the Clifford gates can
be implemented transversally [1], and (iii) an arbitrary
pair of commuting logical Pauli product operators can be
measured in parallel via lattice surgery [6]. In addition,
the well-studied Steane code is a small instance of a color
code, and recently a number of fault-tolerant operations
including transversal logic gates and magic state injection
have been demonstrated using color codes [7–11].
For these desirable features to be exploited for fault-

tolerant quantum computing in practice, we need bet-
ter decoders for color codes. Surface codes benefit from
the many advantages of a decoding approach based on
‘matching’, which is a standard method to handle errors
in codes that can only have edge-like errors (namely, el-
ementary errors violate at most two checks). Matching-
based decoders can operate both efficiently and near-
optimally, and are readily adapted to handle noisy syn-
drome extraction circuits. In color codes, an elementary
error, which is a single-qubitX or Z error, is generally in-
volved in three checks, and so a matching decoder cannot
directly be used. Moreover, considering realistic circuit-
level noise makes decoding more difficult because the
color code syndrome extraction circuits are more complex
than for the surface code. As a result of these deficien-
cies, existing decoders for the color code do not perform
as well as expected either in terms of error thresholds or
for sub-threshold scaling of the logical failure rate.
Several approaches to decode errors in color codes have

been proposed. The most widely studied methods are the
projection decoder and its variants [12–16], which can
achieve thresholds of around 8.7% for bit-flip noise [12]

∗seokhyung.lee@sydney.edu.au
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Figure 1: (a) Triangular 2D color code with code dis-
tance d = 7 based on a hexagonal lattice. Each vertex
hosts a qubit and each hexagonal face is associated with
a pair of Z-type and X-type checks. Logical operators
XL and ZL are supported on one of the three boundaries.
(b) Red-restricted lattice. Vertices and edges are shown
as blue/green circles and purple lines, respectively.

and around 0.47% for circuit-level noise [16]. However,
they have a fundamental limitation that the logical fail-
ure rate pfail scales like pd/3 below threshold [14, 16, 17],
not pd/2, where p is a physical noise strength and d is the
code distance. Such a drawback may significantly hinder
resource efficiency of quantum computing; roughly speak-
ing, it demands 9/4 times as many qubits than the case
with an optimal decoder if other factors are the same.
The Möbius decoder [17] is another matching-based de-
coder, which achieves a higher threshold of 9.0% under
bit-flip noise and, more importantly, a better scaling of
pfail ∼ p3d/7. The decoder has subsequently been im-
proved to accommodate circuit-level noise and general
color-code lattices [18].

In this work, we propose a matching-based color-code
decoder, which we call the concatenated minimum-weight
perfect matching (MWPM) decoder, that demonstrates
exceptional sub-threshold scaling of the logical failure
rate in regimes of interest for fault-tolerant quantum
computing. Our decoder functions by ‘concatenation’
of two matching decoders per color, for a total of six
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(a) (b) (c)

Figure 2: Example of executing the concatenated MWPM decoder on the triangular color code of
distance 7. (a) First-round MWPM on the red-restricted lattice L∗

¬r. (b) Second-round MWPM on the red-only

lattice L∗
r . (c) Residual errors after correcting V

(r)
pred, which is equivalent to a stabilizer.

matchings. We demonstrate that this decoder can be
generalized to handle circuit-level noise by using the con-
cept of detector error model. Notably, the logical fail-
ure rates of the concatenated MWPM decoder below
threshold is shown to be well-described by the scaling
pfail ∼ pd/2 for both bit-flip and circuit-level noise mod-
els. Thanks to this improvement, its sub-threshold per-
formance significantly surpasses the projection decoder.
Compared to the Möbius decoder, our decoder has a sim-
ilar scaling factor against d but achieves approximately
3–7 times lower logical failure rates for circuit-level noise
when 10−4 ⪅ p ⪅ 5× 10−4.
Technical description of our work is presented in

Ref. [19].

2 Concatenated MWPM decoder

We first describe the 2D variant of the concatenated
MWPM decoder that is applicable only when every syn-
drome measurement is perfect. Let us consider the 2D
color code on a lattice L2D, which may have boundaries.
The decoder to predict X errors in a single round can be
briefly depicted as follows (see Fig. 2 for an example):

1. (First-round MWPM) Input violated blue and
green Z-type checks to the MWPM algorithm on
the red-restricted lattice L∗

¬r, which returns a set

of edges of L∗
¬r. This set corresponds to a set E

(r)
pred

of red edges of L2D, each of which is predicted to
contain one X error. See Fig. 2(a).

2. (Second-round MWPM) Input E
(r)
pred and vio-

lated red Z-type checks to the MWPM algorithm
on the ‘red-only lattice’ L∗

r , which is constructed
according to the connection structure of red edges
and faces in L2D. The algorithm returns a set of
edges of L∗

r , which correspond to a set of vertices

V
(r)
pred of L2D that are predicted to have errors. See

Fig. 2(b).

3. Repeat the above two steps (together referred to as
the red sub-decoding procedure) while varying the

(a)

(b)

Figure 3: Numerical analysis of the concatenated
MWPM decoder under circuit-level noise. (a)
Noise threshold p×circuit(T ) as a function of the number

T of QEC rounds, which converges to p×,LT
circuit ≈ 0.456%.

(b) Logical failure rate per round pfail/T against p for
various code distances d when p is sufficiently lower than
the threshold.

color to green and blue, obtaining V
(g)
pred and V

(b)
pred.

Select the smallest one Vpred among V
(r)
pred, V

(g)
pred,

and V
(b)
pred as the final outcome.

Figure 2(c) presents a set of residual errors after cor-
rection, which is equivalent to a stabilizer thus does not

3
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Figure 4: Comparison of three matching-based decoders under circuit-level noise. Logical failure rates
per round pfail/T are estimated by using three different decoders: projection [14], Möbius [17, 18], and concatenated
MWPM decoders. The data for the projection and Möbius decoders are from Ref. [14] and [18], respectively.

cause a logical failure. Z errors can be predicted by de-
coding X-type check outcomes in an analogous way.
The above scheme cannot handle realistic noise (in-

cluding measurement errors) that is relevant to fault-
tolerant quantum computing. We thus adapt the de-
coder to a circuit-level noise model, where each prepa-
ration/measurement gives an orthogonal outcome with
probability p and each unitary gate is followed by a de-
polarizing noise channel with strength p. We employ de-
tector error models [20] for this, which are lists of inde-
pendent error mechanisms specifying their probabilities
and the set of detectors (i.e., products of measurement
outcomes that are deterministic when noiseless) and log-
ical observables damaged by them. We generalize the
three steps of the concatenated MWPM decoder using
detector error models and employ the Stim library [20]
to implement and analyze the decoder.

3 Performance analysis

For assessing the performance of the decoder, we con-
sider T rounds of the logical idling gate of the triangular
color code with code distance d under circuit-level noise
with strength p. The results are summarized in Fig. 3(a)
and (b), which are respectively for near-threshold and
sub-threshold regimes. From Fig. 3(a), we estimate the
long-term threshold of the decoder (when T → ∞) as
0.456%. From Fig. 3(b), we obtain an approximation of
the logical failure rate pfail as a function of T , p, and d
when p ⪅ 0.1%: pfail ≈ (0.0093)× (p/0.0032)0.50d−0.60.
Notably, the concatenated MWPM decoder has a sig-

nificant advantage in terms of the scaling of the failure
rate over d and p. Namely, pfail ∼ p0.5d for our de-
coder within our simulation range of d ≤ 31, while it
is ∼ pd/3 for the projection decoder [14] and ∼ p(3/7)d for
the Möbius decoder [17, 18]. The impact of this improve-
ment is numerically presented in Fig. 4, which compares
the performance (in terms of pfail/T ) of the concatenated
MWPM decoder with those of these two decoders. The
figure shows that the projection decoder significantly un-
derperforms the other two due to its suboptimal scaling
against d. The scaling against d is comparably similar
for the other two decoders (when p ⪅ 5 × 10−4); how-

ever, the concatenated MWPM decoder achieves logical
failure rates that are approximately 3–7 times lower than
the Möbius decoder.

More numerical results are presented in our technical
description [19]. In particular, we observe that choosing
an optimal CNOT schedule is very important as the log-
ical failure rates of the best and worst schedules differ by
more than twice.

4 Remarks

In this work, we introduced the concatenated MWPM
decoder processed by the concatenation of two rounds of
MWPM per color, which is applicable not only to sim-
ple bit-flip noise but also to realistic circuit-level noise.
The decoder is based on the idea that the outcome ob-
tained from decoding on a restricted lattice can serve as
additional ‘virtual syndrome data’, which undergo a sub-
sequent decoding round in conjunction with remaining
syndrome data.

We numerically analyzed the performance of the de-
coder in various aspects: We considered both bit-flip and
circuit-level noise models and investigated near-threshold
and sub-threshold behaviors of the logical failure rate
pfail. We found that the decoder has the thresholds of
8.2% for bit-flip noise and 0.46% for circuit-level noise,
which are comparable with those of previous matching-
based decoders such as the projection decoder [12–16]
and Möbius MWPM decoder [17, 18]. Remarkably, we
verified that the decoder approaches a scaling of pfail ∼
pd/2, where p is the noise strength and d is the code
distance, at least within our simulation range (d ⪅ 31
for bit-flip noise and d ⪅ 21 for circuit-level noise). As a
consequence, it outperforms previous matching-based de-
coders in terms of their sub-threshold failure rates across
both bit-flip and circuit-level noise. We therefore antic-
ipate that our decoder enhances the practicality of em-
ploying color codes in quantum computing, which has
been considered less viable than surface codes due to its
logical failure rate performance despite its advantage in
resource efficiency [6]. We distributed a python module
implementing the decoder on Github [21] so that other
researchers can use it.
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Abstract. Measurement-induced state disturbance is a main challenge in obtaining quantum statistics
at multiple time points. We introduce a novel method, namely snapshotting quantum dynamics, for
extracting temporal quantum statics from intermediate measurements at each time point. This allows us
to extract temporal quasi-probability distributions and correlation functions for various time orderings.
We experimentally demonstrate the proposed protocol using a 171Yb+and 138Ba+dual-species trapped-ion
system. The nonclassicality of multi-time QPDs is observed by their negativity and complex values, which
clearly indicate a contribution of quantum coherence in the dynamics.

Keywords: quantum statistics, quantum correlation function, quasi-probability, trapped-ion system

1 Introduction

A striking di↵erence between quantum and classical
mechanics arises from the understanding of measure-
ments. In quantum mechanics, the uncertainty principle
asserts that defining a joint probability distribution of
statistical properties of non-commuting variables is im-
possible, prohibiting a description of quantum physics
using classical probability theory. The same principle is
applied when performing sequential measurements dur-
ing the quantum state’s evolution. The double-slit exper-
iment serves as an illustration of this phenomenon: at-
tempting to extract path information causes the final in-
terference patterns to disappear. Consequently, one can-
not attain a classical joint probability distribution that
simultaneously describes both the which-path informa-
tion and the particle’s final position. The destructive
and irreversible e↵ect of measurements on a quantum sys-
tem raises an ongoing question: Is it possible to extract
the system’s information throughout quantum dynamics
while minimizing the impact of measurement on subse-
quent events? In this work, we show that dynamical
quantum information can be reconstructed from inter-
mediate measurement outcomes aided by classical post-
processing, where the statistics at the latter time are not
a↵ected by the measurement at the formal time. We pro-
vide a schematic protocol for doing this, which we named
snapshotting quantum dynamics.

Technical details are in the Appendix (see also [1]).

2 Snapshotting quantum dynamics

The main idea of snapshotting quantum dynamics (see
Fig. 1) is to consider a joint quasi-probability distribution

⇤hjkwon@kias.re.kr
†m.kim@imperial.ac.uk
‡kimkihwan@mail.tsinghua.edu.cn

between time points based on the Kirkwood-Dirac (KD)
distribution [2, 3]. For example, when a quantum state
⇢t1 at time t1 evolves under a quantum channel Nt1!t2 ,
we define the joint measurement statistics at two times
t1, t2 with outcomes x1, x2 as

p(x1, x2; t1, t2) = Tr [Nt1!t2 (⇢t1⇧x1)⇧x2 ]

= Tr [(Mx2 �Nt1!t2 �Mx1) ⇢t1 ] ,

where Mx(⇢) ⌘ ⇢⇧x. Such a joint distribution
is not a classical probability distribution as it can
have negative or non-real values, often referred to
as quasi-probability distribution. Nevertheless, the
KD distribution preserves the marginal statistics at
each time, i.e.,

P
x2

p(x1, x2; t1, t2) = Tr [⇢t1⇧x1 ] andP
x1

p(x1, x2; t1, t2) = Tr [Nt1!t2(⇢t1)⇧x2 ] = Tr [⇢t2⇧x2 ].
We can further generalize this to N -time points as

p(x1, x2, · · · , xN ; t1, t2, · · · , tN )

= Tr
⇥�
MxN �NtN�1!tN � · · · �Nt1!t2 �Mx1

�
(⇢t1)

⇤
.

Our key observation is that these quasi-probability dis-
tributions can be obtained from sequential measurement
at each time. This can be done by decomposing Mx(⇢)
into a linear combination of weighted Kraus operators as

Mx(⇢) =
X

m

�xmKm⇢K†
m

with some complex-valued coe�cients �xm (see also
Fig. 2).

As Kraus operators with outcomes m can be realized
by ancilla-assisted measurements, one can reconstruct
the N -time quasi-probability distribution from the in-
termediate outcomes by averaging over them with the
complex value weight as

p(x1, x2, · · · , xN ; t1, t2, · · · , tN ) = E
"

NY

i=1

�ximi

#
.
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Figure 1: Schematic procedure for snapshotting quan-
tum dynamics. Various types of information on quantum
dynamics are obtained simultaneously through classical
post-processing of the intermediate measurement out-
comes. These include the multi-time QPD with the cor-
rect marginal probabilities at the respective time points,
as well as both time-ordered and out-of-time-ordered cor-
relation functions.

Here, E[·] denotes averaging over all possible sequential
measurement outcomes (m1, · · · ,mN ), which can be un-
derstood as the observed trajectories of the quantum
dynamics, following the distribution pK(m1, · · · ,mN ) =
Tr[(KmN �NtN�1!tN � · · · �Nt1!t2 �Km1)(⇢t1)].
An important consequence of the proposed protocol

is that the quasi-probability contains the information of
both time- ordered and out-of-time-ordered quantum cor-
relations. In other words, one can obtain the multi-time
correlation functions,

C(t1, t2, · · · , tN ) = hA(t1)A(t2) · · ·A(tN )i,

even for the cases where the time-ordering t1  t2 
· · ·  tN is not satisfied.
As a special case, our approach o↵ers a novel scheme

to obtain the out-of-time-ordered correlator (OTOC)
throughout quantum dynamics, which has been widely
adopted as a quantifier of quantum information scram-
bling throughout complex quantum dynamics [4]. The
OTOC of a quantum system under unitary dynamics U⌧

is defined as the absolute square of the commutator be-
tween two operators V and W ,

COTOC ⌘ h[W (⌧), V (0)]†[W (⌧), V (0)]i, (1)

where V (0) = V and W (⌧) = U†
⌧WU⌧ . We note that the

OTOC is essentially a linear sum of four-point functions

(b)

(a)

System

Ancilla
𝑚1

𝝆

𝟎 𝟎

𝒕𝟏

𝑚2 𝑚𝑁
𝟎

𝒕𝟐 𝒕𝑵

……

|𝟎 , |𝟏⟩},      |𝟎𝒚 , |𝟏𝒚⟩},    |𝟎𝒙 , |𝟏𝒙⟩} 

𝝆

𝟎

{𝚷𝟎, 𝚷𝟏},     {𝑺†𝝆𝑺, 𝑺𝝆𝑺†},     {𝝆, 𝒁𝝆𝒁} System

Ancilla
𝒛-basis 𝒚-basis 𝒙-basis

Figure 2: (a) Ancilla-assisted measurement for realizing
Kraus operators. By performing z-, y- and x-basis mea-
surements on the ancilla, the system state is updated
depending on the measurement outcome. (b) The quan-
tum circuit to obtain the QPD p(x1, · · · , xN ) for a qubit
system. NtN�1!tN describes the dynamics of the system
from tN�1 to tN . The ancilla-assisted measurement is
performed at each time ti with the outcome mi. The
system state is updated to ⇢KtN (m1, · · · ,mN ) when the
measurement outcomes read (m1, · · · ,mN ), which hap-
pens with probability pK(m1, · · · ,mN ).

containing both time-ordered and out-of-time-ordered
correlation functions. Even though COTOC in Eq. (1)
contains terms with reversed time ordering, COTOC can
be obtained from the sequential measurement outcomes
(m1,m2,m3) at three-time points (t1, t2, t3) under the
unitary dynamics Ut1!t2 = U⌧ and Ut2!t3 = U†

⌧ as

COTOC = E
"

3Y

i=1

�OTOC

mi

#
, (2)

with some complex coe�cients �OTOC
mi

.
Compared to interference-based schemes for obtaining

the OTOC [5, 6], our scheme o↵ers the advantage that
an ancilla state is required to remain coherent only for a
short time during each ancilla-assisted measurement. We
highlight that the time-reversal unitary is applied only
once in our scheme. This can be contrasted with the
weak measurement-based schemes [7, 8], which possess
the same advantage as our scheme in ancilla coherence
time but require two time-reversals [7, 8].

3 Experimental demonstration

We experimentally demonstrate the proposed scheme
using dual-species trapped-ion system. 171Yb+and
138Ba+ions are used as the system qubit and the ancillary
qubit for measurement, respectively. We apply two dif-
ferent rotations to the system qubit for two di↵erent time
intervals (see also Fig. 3). We successfully reconstructed
the three-time quasi-probability distribution of the dy-
namics, whose negative and non-real values indicate the
non-classical contributions of coherence. From the quasi-
probability distribution, two- and three-point correlation
functions for the Pauli Z operator are evaluated, which
nicely match the theoretical predictions (see Fig. 3). We
also verify that the classical post-processing of our pro-
tocol successfully cancels out the impact of measurement
when compared to the projective measurement case (see
Fig. 4).
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Figure 3: (a) The unitary evolution of the system qubit: the operator Ut1!t2 = RX(✓) rotates the initial state around
the x-axis, and the operator Ut2!t3 = RY (✓2) further rotates the system state around the y-axis. (b) The three-time
QPD p(x1, x2, x3) reconstructed from the observed trajectories by classical postprocessing. The negativity of the real
QPD is verified for p(x1 = 0, x2 = 1, x3 = 0) (in blue-dashed-line boxes). (c) The marginal distributions for t1, t2,
and t3 under the unitary dynamics show the snapshotting of the state evolution.

4 Remarks

Our protocol provides a systematic approach to ex-
tracting quantum statistics from intermediate measure-
ment outcomes aided by classical post-processing. Our
method is applicable to any quantum system and dynam-
ics, serving as a valuable experimental tool for exploring
the quantum statistics of both open and closed quantum
systems. The potential applications include obtaining
various critical quantities based on correlation functions,
such as OTOC, in quantum many-body systems.

References

[1] P. Wang et al., arXiv:2207.06106.

[2] J. G. Kirkwood, Phys. Rev. 44, 31 (1933).

[3] P. A. M. Dirac, Rev. Mod. Phys. 17, 195 (1945).

[4] K. A. Landsman et al., Nature 567, 61 (2019).

[5] B. Swingle et al., Phys. Rev. A 94, 040302 (2016).

[6] N. Yunger Halpern, B. Swingle, and J. Dressel, Phys.
Rev. A 97, 042105 (2018).

[7] J. Dressel et al., Phys. Rev. A 98, 012132 (2018).
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Figure 4: Fidelity between the distributions for the z-
basis measurement at time t3. Red dots refer to the
fidelity between the marginal distribution from theory
(p(x3)) and the experimentally obtained three-time QPD
(pexp.(x3) =

P
x1,x2

pexp.(x1, x2, x3)). The black line
refers to the fidelity of 1 when the two distributions are
equal. The blue line refers to the theoretical fidelity be-
tween p(x3) and pproj.(x3) when projective measurements
are performed at times t1 and t2. The blue dots refer to
the corresponding experimental result.
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Measurement-induced state disturbance is a major challenge in obtaining quantum statistics at
multiple time points. We propose a method to extract dynamic information from a quantum system
at intermediate time points, namely snapshotting quantum dynamics. To this end, we apply classical
post-processing after performing the ancilla-assisted measurements to cancel out the impact of the
measurements at each time point. Based on this, we reconstruct a multi-time quasi-probability
distribution (QPD) that correctly recovers the probability distributions at the respective time points.
Our approach can also be applied to simultaneously extract exponentially many correlation functions
with various time-orderings. We provide a proof-of-principle experimental demonstration of the
proposed protocol using a dual-species trapped-ion system by employing 171Yb+ and 138Ba+ ions
as the system and the ancilla, respectively. Multi-time measurements are performed by repeated
initialization and detection of the ancilla state without directly measuring the system state. The
two- and three-time QPDs and correlation functions are reconstructed reliably from the experiment,
negativity and complex values in the QPDs clearly indicate a contribution of the quantum coherence
throughout dynamics.

INTRODUCTION11

A striking di↵erence between quantum mechanics and12

classical mechanics arises from understanding the mea-13

surements. In quantum mechanics, the uncertainty14

principle asserts that it is impossible to define a joint15

probability distribution of statistical properties of non-16

commuting variables, thus prohibiting a description of17

quantum physics using classical probability theory. This18

leads to the introduction of quasi-probability distribu-19

tions (QPDs), a prototypical example of which is the20

Wigner function [1] describing quantum phase space. An-21

other important class of QPDs is the Kirkwood-Dirac22

(KD) distribution [2, 3], which can be applied to any two23

incompatible sets of measurement operators. The non-24

classical features in these QPDs, characterized by nega-25

tive [1, 4] or even non-real values [2, 3], have been inves-26

tigated within the realms of quantum foundations [5, 6],27

closely connected to quantum contextuality [7–12], and28

recently recognized as a resource in quantum comput-29

ing [13–18] and quantum metrology [19–22].30

The same principle is applied when performing sequen-31

tial measurements during the evolution of a quantum32

state. The double-slit experiment serves as an illustration33

of this phenomenon: attempting to extract path informa-34

tion causes the final interference patterns to disappear.35

Consequently, one cannot obtain a classical joint prob-36

ability distribution that simultaneously describes both37

the which-path information and the final position of the38

particle. The absence of the classical probability de-39

scription of quantum mechanical processes gives rise to40

the nonclassicality of temporal correlation described by41

the Leggett-Garg inequality [6] and the no-go theorem42

for defining work observables in quantum thermodynam-43

ics [23]. Meanwhile, with recent advances in quantum44

information science, there has been an increasing de-45

mand to study multi-time quantum statistics to explore46

exotic features of quantum dynamics, such as informa-47

tion spreading throughout quantum dynamics [24, 25].48

Recently, it has also been shown that monitoring the dy-49

namics of a quantum system at multiple time points can50

witness entanglement [26].51

On the other hand, a major challenge arises when at-52

tempting to access these quantum correlations over time53

in experiments. As observed from the double-slit ex-54

periment, direct measurements performed on a quantum55

state wash out quantum coherences so that they can no56

longer contribute to the subsequent dynamics. The de-57

structive and irreversible e↵ect of measurements on a58

quantum system raises an ongoing question: Is it possi-59

ble to extract information of the system at intermediate60

points in time throughout quantum dynamics while min-61

imizing the impact of the measurement on subsequent62

events? The most widely adopted method is the use of63

weak measurements [27–32] (see Refs. [33–38] for exper-64

imental realizations) to gain little information with lit-65

tle disturbance of the system [39–41]. Over the years,66

various quantum measurement schemes [30, 31, 42] be-67

yond weak measurement have been proposed to extract68

temporal quantum correlation functions. Alternative ap-69

proaches have also been explored, including those uti-70

lizing long-time entanglement between the system and71
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the ancilla [43–46], as well as methods involving multiple72

copies of quantum states for each trial [23, 47, 48].73

In this work, we propose a novel method to ex-74

tract dynamical information from a quantum system75

through ancilla-assisted measurements at intermediate76

time points, which we term snapshotting quantum dy-77

namics. After collecting the ancilla measurement out-78

comes, they are properly weighted to cancel out the im-79

pact of the measurements at each time point, enabling us80

to obtain multi-time QPDs with correct marginal prob-81

abilities at the respective time points.82

Our method shares an advantage with sequential weak83

measurements [31, 36–38], requiring a short interaction84

time between the system and the ancilla. However, the85

main di↵erence lies in the ability of our protocol to com-86

pletely cancel out the measurement e↵ect through clas-87

sical post-processing, without approximating the system88

state in the weakly interacting regime.89

Another important feature of the proposed protocol is90

that exponentially many quantum correlation functions91

can be obtained simultaneously from the N -time ancilla92

measurement outcomes. This provides a useful method-93

ology for obtaining multiple temporal quantum statistics94

without changing the experimental settings. In particu-95

lar, the obtainable correlation functions include the out-96

of-time-ordered correlator (OTOC), a quantifier of quan-97

tum information scrambling [24, 25], which has also been98

studied in the context of QPDs [46, 49, 50].99

We provide a proof-of-principle experimental demon-100

stration of snapshotting to reconstruct multi-time QPDs.101

We employ a dual-species trapped-ion system consist-102

ing of 171Yb+ and 138Ba+ ions. We realize the required103

repeated ancilla-assisted measurements through interac-104

tions between 171Yb+ and 138Ba+ ions by performing in-105

circuit detection (ICD) and in-circuit initialization (ICI)106

[51–55]. The experimentally reconstructed QPD up to107

three-time points correctly reveals the marginal distri-108

bution at each time, and the correlation functions ex-109

tracted from them match the quantum mechanical pre-110

diction well with the full contribution of coherence. To111

the best of our knowledge, this is the first direct exper-112

imental realization of a quantum mechanical temporal113

joint distribution beyond two-time points without pro-114

cess tomography.115

QPD FOR MULTIPLE TIME POINTS116

Suppose a quantum state is ⇢ti at ti and evolves in117

time. The quantum state at a certain time tj can be118

expressed as119

⇢tj =Nti→tj(⇢ti), (1)

where Nti→tj is a completely positive trace-preserving120

quantum channel describing the evolution from time121

FIG. 1. Schematic procedure for snapshotting quantum dy-
namics. Various types of information on quantum dynamics
are obtained simultaneously through classical post-processing
of the intermediate measurement outcomes. These include
the multi-time QPD with the correct marginal probabilities
at the respective time points, as well as both time-ordered
and out-of-time-ordered correlation functions.

ti to tj . To obtain the information of the quantum122

state at time ti, one may perform measurements given123

by a set of projection operators ⇧xi = �xi� �xi� satis-124

fying ∑xi
⇧xi = 1, which leads to the outcome distri-125

bution of xi at time ti, p(xi; ti) = Tr[⇢ti⇧xi]. After126

the measurement is performed, the state collapses to127 �xi� �xi�. Such a projective measurement incurs a crit-128

ical issue when obtaining quantum statistics for more129

than two sequential time points. For example, the130

joint distribution of outcomes by performing projective131

measurements at times t1 and t2 can be written as132

p
proj.(x1, x2; t1, t2) = p(x1; t1)Tr[Nt1→t2(�x1� �x1�)⇧x2].133

However, the marginal distribution at time t2 obtained134

from the joint distribution p
proj.(x1, x2; t1, t2) does not135

match the statistics without the measurement at time136

t1, i.e., ∑x1
p
proj.(x1, x2; t1, t2) ≠ p(x2; t2). This in-137

vokes the so-called measurement problem that the wave-138

function collapse induced by the measurement cannot139

be explained as a direct consequence of the Schrödinger140

equation [56–58]. Consequently, the joint distribution of141

projective measurement outcomes becomes unsuitable for142

providing a complete description of quantum dynamics.143

To address such a problem, one can introduce a two-144

time joint distribution,145

10
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p(x1, x2; t1, t2) ≡ Tr[Nt1→t2(⇢t1⇧x1)⇧x2]= Tr[(Mx2 ○Nt1→t2 ○Mx1)(⇢t1)], (2)

where Mx(⇢) ≡ ⇢⇧x. We note that p(x1, x2; t1, t2) is146

well-normalized, ∑x1,x2
p(x1, x2; t1, t2) = 1, and correctly147

indicates the marginal distribution, ∑x1
p(x1, x2; t1, t2) =148

p(x2; t2). However, p(x1, x2; t1, t2) can have complex val-149

ues, i.e., being a QPD, and can be understood as the150

KD distribution [2, 3] of the two di↵erent measurement151

operators ⇧x1 and N †
t1→t2

(⇧x2) [59]. Such a distribu-152

tion has been recently rediscovered to provide a useful153

mathematical formalism to explore the concept of work154

and the fluctuation theorems in quantum thermodynam-155

ics [23, 46, 49, 59–63].156

The QPD based on the KD distribution was also gen-157

eralized to multiple-time points [22, 49]. In this paper,158

we define N -time QPD as159

p(x1, x2,�, xN ; t1, t2,�, tN)≡ Tr[(MxN ○NtN−1→tN ○ � ○Mx2 ○Nt1→t2 ○Mx1)(⇢t1)].
(3)

When the quantum state at each time point commutes160

with the measurement operator, i.e., [⇢ti ,⇧xi] = 0 for all161

ti, the distribution coincides with the classical joint dis-162

tribution obtained from sequential projective measure-163

ments. Consequently, nonclassical values, i.e., negative164

or non-real values in the QPD capture the coherence of165

the system state within the measurement basis by wit-166

nessing the non-commutativity between the state and167

the measurement operator (see, e.g., Refs. [10–12, 64]168

for more detailed analysis). Throughout the manuscript,169

we will also use a simplified notation p(x1, x2,�, xN) =170

p(x1, x2,�, xN ; t1, t2,�, tN) when the time sequence is171

trivial from the context.172

An important property of the N -time QPD is that it173

correctly reproduces marginal distributions, satisfying174

�
xk

p(x1,�, xN) = p(x1,�, xk−1, xk+1,�, xN) (4)

for any k = 1,2,�,N , where p(�, xk−1, xk+1,�) ≡175

Tr[(� ○Mxk+1 ○Ntk−1→tk+1 ○Mxk−1 ○ �)(⇢t1)] is a joint176

QPD without performing a measurement Mtk at time177

tk. This is known as the Kolmogorov consistency condi-178

tion in classical probability theory [65]. In other words,179

the N -time QPD incorporates all the information from180

the k-time QPDs p(xi1 , xi2 ,�, xik ; ti1 , ti2 ,�, tik) for any181

sub-time sequences with 1 ≤ i1 < i2 < � < ik ≤ N . In par-182

ticular, the marginal distribution of the QPD at a single183

time ti, p(xi), becomes real and non-negative, correctly184

indicating the probability distribution of the measure-185

ment outcome xi at time ti.186

We also note that the N -time QPD cannot sim-187

ply be expressed as a product of two-time QPDs,188

since it does not obey the Markov chain property [65],189

i.e., p(x1,�, xN) ≠ p(xN �xN−1)�p(x2�x1)p(x1) with190

p(xk �xk−1) = p(xk−1,xk)
p(xk−1) . We highlight that the quan-191

tum channel Ntk→tk+1 for each time interval is Marko-192

vian, hence the non-Markovianity arises from the e↵ect193

ofMxk .194

SNAPSHOTTING QUANTUM DYNAMICS195

The primary challenge in dealing with QPDs is that196

experimental reconstruction is not straightforward due197

to the presence of negative or non-real values. For the198

N -time QPD defined in Eq. (3), this stems from the199

fact that Mxi(⇢ti) = ⇢ti⇧xi at each time ti is a non-200

physical process that does not yield a Hermitian ma-201

trix. Our key observation to overcome this issue is that202 Mx can be alternatively expressed as a weighted sum of203 Km(⇢) ≡ Km⇢K
†
m
= pK(m)⇢K

m
, which can be interpreted204

as the result of a generalized measurement with out-205

come m [66]. The probability of the outcome is given by206

p
K(m) = Tr[Km(⇢)] = Tr[⇢K†

m
Km], and the state after207

the measurement becomes ⇢
K
m
= Km⇢K

†
m

pK(m) . The measure-208

ment operators compose a set of Kraus operators {Km},209

satisfying ∑mK
†
m
Km = 1.210

More explicitly, we aim to prove the following expres-211

sion,212

Mx(⇢) =�
m

�xmKm(⇢), (5)

with complex-valued coe�cients �xm. The complex coef-213

ficients can be implemented via classical post-processing214

by weighting the measurement outcomes di↵erently,215

which will be discussed in more detail. For example,216

the projection onto the computational basis of a qubit217

system, ⇧x = �x� �x� with x = 0,1, can be decomposed218

into219

⇢⇧x = ⇢ −Z⇢Z + 4⇧x⇢⇧x − i(−1)xS⇢S† + i(−1)xS†
⇢S

4
,

(6)
where S = �0� �0� + i �1� �1� is the phase gate. We fur-220

ther note that any Kraus operators can be realized by221

ancilla-assisted measurements [66]. For the qubit case in222

Eq. (6), the CNOT gate between the system and the223

ancilla followed by the ancilla measurement in the x-224

, y-, and z-bases leads to the set of Kraus operators,225

{Km} = �⇧0√
3
,
⇧1√
3
,
S

†√
6
,

S√
6
,

1√
6
,

Z√
6
� (see Fig. 2(a)).226

This observation can be further generalized to any d227

dimensional quantum system as follows:228

Theorem 1. For any set of projectors {⇧x}d−1x=0 acting229

on a d-dimensional quantum state ⇢, one can always230

construct a set of Kraus operators {Km} from ancilla-231

assisted measurement and find coe�cients �xm satisfying232

Eq. (5). The Kraus operators are determined by the in-233

formationally complete measurement on a d-dimensional234

ancilla state after its interaction with the system.235
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FIG. 2. (a) Ancilla-assisted measurement for realizing Kraus
operators. By performing z-, y- and x-basis measurements
on the ancilla, the system state is updated depending on the
measurement outcome. (b) The quantum circuit to obtain the
QPD p(x1,�, xN) for a qubit system. NtN−1→tN describes the
dynamics of the system from tN−1 to tN . The ancilla-assisted
measurement is performed at each time ti with the outcome
mi. The system state is updated to ⇢KtN (m1,�,mN) when
the measurement outcomes read (m1,�,mN), which happens
with probability pK(m1,�,mN).

The proof of Theorem 1 with more details can be found236

in Methods.237

Now, we introduce a protocol for snapshotting quan-238

tum dynamics via intermediate measurements. As an239

illustrative example, we show that the two-time QPD240

p(x1, x2; t1, t2) can be obtained by ancilla-assisted mea-241

surements at times t1 and t2 as follows. At time t1,242

we interact the state ⇢t1 with the ancilla and measure243

the ancilla state. For the ancilla state’s outcome m1,244

the system state is updated to ⇢
K
t1
(m1) = Km1(⇢t1)

pKt1(m1) with245

probability p
K
t1
(m1) = Tr[Km1(⇢t1)]. Subsequently, the246

system evolves to ⇢
K
t2
(m1) = Nt1→t2 �⇢Kt1(m1)� from time247

t1 to t2. We then perform the second measurement at248

time t2. When the outcome is m2, the system state is249

updated to ⇢
K
t2
(m1,m2) = Km2(⇢Kt2(m1))

pKt2(m2�m1) with conditional250

probability p
K
t2
(m2�m1) = Tr[Km2(⇢Kt2(m1))] for a given251

first measurement outcome m1. The joint probability of252

the sequential measurement outcome (m1,m2) becomes253

p
K(m1,m2) = p

K
t1
(m1)pKt2(m2�m1) = Tr[(Km2 ○ Nt1→t2 ○254 Km1)(⇢t1)]. We note that this joint probability is a clas-255

sical probability distribution that can be obtained di-256

rectly from the outcome statistics.257

We emphasize that the QPD p(x1, x2) and258

the classical joint distribution p
K(m1,m2) are259

linked through Eq. (5) in the form of p(x1, x2) =260 ∑m1,m2
�x1m1�x2m2p

K(m1,m2). Therefore once the261

probability distribution p
K(m1,m2) is obtained from the262

measurement outcomes, p(x1, x2) can be reconstructed263

via classical post-processing by the weighted sum of264

these probabilities.265

As shown in Fig. 2(b), it is straightforward to repeat266

this protocol for multiple time points, which leads to the267

following expression of the N -time QPD:268

p(x1,�, xN) = �
m1,�,mN

p
K(m1,�,mN) � N�

i=1
�ximi�

= E � N�
i=1

�ximi� ,
(7)

where E[⋅] denotes averaging over all possible sequen-269

tial measurement outcomes (m1,�,mN), which can be270

understood as the observed trajectories of the quantum271

dynamics, following the distribution p
K(m1,�,mN) =272

Tr[(KmN ○NtN−1→tN ○ � ○Nt1→t2 ○Km1)(⇢t1)].273

We note that the number of observed trajectories to be274

collected to reconstruct quantum statistics p(x1,�, xN)275

is greater than that for classical statistics pK(m1,�,mN)276

with the same precision. More precisely, the number of277

trajectories Mtraj to estimate p(x1,�, xN) for each time278

point within a fixed precision ✏ with probability 1 − �279

scales as Mtraj = 2(maxx,m ��xm�)2N
✏

ln(2��) from Hoe↵d-280

ing’s inequality [67]. Our protocol can also be applied281

to local projectors of multi-qubit systems with the same282

sampling overhead. We also provide a systematic algo-283

rithm to find the optimal coe�cient �xm to reconstruct284

the joint probability with the minimum number of mea-285

surement outcomes (see Methods).286

The resource requirement of the proposed protocol can287

be compared to other schemes for obtaining the KD288

distribution, while explicit comparisons between these289

protocols are challenging due to their di↵erent natures290

(see also Refs. [49, 59] for an overview). Compared to291

the two-point measurement-based scheme [42], which re-292

quires the measurement of multiple measurement distri-293

butions to infer the KD distribution, our protocol only294

requires a single measurement distribution p
K(m1,m2).295

The main di↵erence compared to the weak measurement-296

based schemes [30, 31] is that our protocol does not need297

to implement a weak coupling between the system and298

the ancilla to ensure that the system is undisturbed.299

While the schemes [68, 69] entailing strong measurements300

for two-time points share a similar structure with our pro-301

tocol, our protocol provides a straightforward multi-time302

generalization. Another scheme based on characteristic303

function estimation [43] requires classical post-processing304

of the inverse Fourier transform, while our protocol has305

a relatively simple post-processing with pre-determined306

coe�cients �ximi . The interference-based scheme [46]307

requires overlapping measurement and tomography of a308

quantum state in some occasions, both of which are not309

required in our scheme. A recently proposed quantum310

circuit model based on the block-encoding [70] could have311

a lower sampling cost than our protocol, but its appli-312

cation is limited to unitary dynamics and requires the313

implementation of the inverse unitary channel.314

Taking into account the physical constraints, our pro-315

tocol has a short time of system-ancilla coherence during316
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a measurement process at each time, which has an ad-317

vantage over interferometric schemes [43, 46] that require318

a long time of system-ancilla coherence throughout the319

entire protocol. While applying measurements in sequen-320

tial times could also be a challenging task, it has been321

realized on various physical platforms [36, 48, 71–74]. We322

also note that such intermediate measurement has been323

an active research area, as being an essential technique324

for quantum information processing, such as syndrome325

detection for quantum error correction [66].326

In the following section, we discuss that the classical327

post-processing of the sequential measurement outcomes328

leads to a unique feature of our approach, which allows329

the simultaneous extraction of exponentially many cor-330

relation functions.331

EXTRACTION OF MULTI-TIME CORRELATION332

FUNCTIONS333

While the N -time QPD provides valuable information334

about the marginal distribution at each time, its utility335

can even go beyond that. We demonstrate that corre-336

lation functions with di↵erent time-orderings can be ob-337

tained simultaneously from the N -time QPD. The quan-338

tum correlation function of an observable A throughout339

unitary quantum dynamics given by Uti→tj is defined as340

C(t1,�, tN) ≡ �A(t1)�A(tN)� ≡ Tr[⇢t0A(t1)�A(tN)],
(8)

where A(ti) = U
†
t0→ti

AUt0→ti is an observable in the341

Heisenberg picture. If the time sequence is given in in-342

creasing order, i.e., t1 ≤ t2 ≤ � ≤ tN , the correlation343

function is called time-ordered, otherwise it is called out-344

of-time-ordered.345

Using the eigenvalue decomposition of the observable,346

A = ∑x ax⇧x, the time-ordered correlation function can347

be expressed in terms of the QPD as348

C(t1,�, tN) = �
x1,�,xN

ax1�axN p(x1,�, xN). (9)

Furthermore, as the N -time QPD contains any k-time349

QPD with k ≤ N , all lower order correlation functions350

can also be obtained from p(x1,�, xN). For exam-351

ple, one can simultaneously obtain a complete set of352

time-ordered correlation functions {C(t1), C(t2), C(t3)},353

C(t1, t2), C(t2, t3), C(t1, t3)}, and C(t1, t2, t3) from the354

three-time QPD p(x1, x2, x3).355

More surprisingly, the snapshotting method can be uti-356

lized to obtain a family of out-of-time-ordered quantum357

correlation functions, summarized by the following ob-358

servation.359

Observation 1. All correlation functions360

C(tµ1 ,�, tµj , tµj+1�, tµk) with µ1 ≤ µ2 ≤ � ≤ µj−1 ≤ µj361

and µj ≥ µj+1 ≥ � ≥ µk−1 ≥ µk for some µj ≤ N can be362

simultaneously deduced from the distribution of observed363

trajectories p
K(m1,�,mN).364

This can be shown by expressing the cor-365

relation function as C(tµ1 ,�, tµj ,�, tµk) =366

Tr[A(tµj+1)�A(tµk)⇢t0A(tµ1)�A(tµj)], with two367

monotonically increasing sub-time sequences368

tµ1 ≤ tµ2 ≤ � ≤ tµj and tµk ≤ tµk−1 ≤ � ≤ tµj+1 .369

The correlation function is then expressed in terms of370

p
K(m1,�,mN) by noting that ⇢tiA, A⇢ti , and A⇢tiA371

can be simultaneously decomposed as a linear sum of372 Kmi(⇢ti) at each time ti (see Methods for detailed373

discussions). We highlight that our approach allows374

a systematic protocol to obtain both time-ordered375

and out-of-time-ordered correlation functions from a376

single set of measurement data p
K(m1,�,mN), without377

changing the setting for each correlation function. For378

example, in the three-time case, one can additionally379

access the out-of-time-ordered correlation functions380

C(t3, t2, t1), C(t2, t3, t1), and C(t1, t3, t2). The number381

of correlation functions that can be obtained from the382

N -time distribution p
K(m1,�,mN) scales exponentially383

as ≈ 2N , since there are two choices for A(ti) to be placed384

either on the left or on the right sides of the quantum385

state ⇢ti at each time ti. The out-of-time-ordered386

QPDs can also be obtained in the same way by taking387

A(ti) = ⇧xi(ti).388

As a special case, our approach o↵ers a novel scheme to389

obtain the OTOC throughout quantum dynamics, which390

has been widely adopted as a quantifier of quantum in-391

formation scrambling throughout complex quantum dy-392

namics [24, 25]. The OTOC of a quantum system under393

unitary dynamics U⌧ is defined as the absolute square of394

the commutator between two operators V and W ,395

COTOC ≡ �[W (⌧), V (0)]†[W (⌧), V (0)]�, (10)

where V (0) = V and W (⌧) = U
†
⌧
WU⌧ . We note396

that the OTOC is essentially a linear sum of four-397

point functions containing both time-ordered and out-398

of-time-ordered correlation functions. For example, if399

both V and W are Hermitian and unitary, COTOC =400

2(1 − �W (⌧)V (0)W (⌧)V (0)�). Even though COTOC in401

Eq. (10) contains terms with reversed time ordering,402

p
K(m1,m2,m3) obtained from the three-time snapshot-403

ting method enables us to evaluate its value described as404

follows (see Methods):405

Observation 2. COTOC can be obtained from the se-406

quential measurement outcomes (m1,m2,m3) at three-407

time points (t1, t2, t3) under the unitary dynamics408

Ut1→t2 = U⌧ and Ut2→t3 = U†
⌧
as409

COTOC = E � 3�
i=1

�
OTOC

mi
� , (11)

with the Kraus operator described in Theorem 1 and some410

complex coe�cients �
OTOC

mi
.411
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Compared to interference-based schemes for obtaining412

the OTOC [45–47, 75, 76], our scheme o↵ers the advan-413

tage that an ancilla state is required to remain coherent414

only for a short time during each ancilla-assisted mea-415

surement. We highlight that the time-reversal unitary is416

applied only once in our scheme. This can be contrasted417

with the weak measurement-based schemes [46, 49, 77],418

which possess the same advantage as our scheme in an-419

cilla coherence time but require two time-reversals [46,420

49, 77]. On the other hand, the stability of the protocol421

against imperfect implementations of the time-reversal422

unitary [78, 79] remains open for quantitative compari-423

son with an interference-based scheme without time re-424

versals [46, 47]. We also note that our scheme works for425

any diagonalizable operators V and W , nor on the target426

state ⇢.427

EXPERIMENTAL REALIZATION428

We experimentally demonstrate the proposed proto-429

col with trapped ions. A crucial part of the proto-430

col is the repeated measurement (ICD) and initializa-431

tion (ICI) of the ancilla without influencing the system,432

which are also core technologies for quantum error cor-433

rection. In trapped-ion systems, the ICD and ICI can434

be achieved by adopting ion shuttling [80–84] or multi-435

ple types of qubits [53, 85–92]. Here, we employ two436

di↵erent species trapped in a single trap, 171Yb+and437

138Ba+ions [90, 93, 94], which are used for the system438

qubit and the ancilla qubit, respectively. Both trapped439

ions are controlled by lasers with di↵erent wavelengths so440

that they can be controlled independently with minimal441

influence on each other [90].442

In the experiment, the system qubit is encoded in the443

hyperfine levels of the S1�2 manifold of the 171Yb+ ion,444 �F = 0,mF = 0� = �0�Yb
and �F = 1,mF = 0� = �1�Yb

with445

a splitting of 12.6428 GHz. The ancilla qubit is encoded446

in Zeeman levels of the S1�2 manifold of the 138Ba+ ion,447 �sj = 1�2� = �0�Ba
and �sj = −1�2� = �1�Ba

with an energy448

splitting of 16.2 MHz. Raman transitions are used to in-449

dividually manipulate the 171Yb+ and 138Ba+ ion-qubits450

with 355 nm and 532 nm lasers, respectively. For the451

entangling operations for both qubits, we simultaneously452

apply the 355 nm and 532 nm laser beams with appro-453

priately chosen frequencies (see Methods).454

We implement the quantum circuit in Fig. 2 to re-455

construct the multi-time QPD for a qubit system. The456

experimental realization for the essential parts of the cir-457

cuit is shown in Fig. 3. At the beginning of the proto-458

col, we optically pump the system qubit to �0�
Yb

, then459

prepare the state of ⇢Yb by using a single-qubit rota-460

tion performed by applying 355 nm Raman laser beams.461

As depicted in Fig. 3(a), the Raman lasers have a fre-462

quency di↵erence that matches the transition frequency463

of the 171Yb+ion-qubit. This frequency matching allows464

(b) (c)
𝑼𝒕𝑵−𝟏→𝒕𝑵

𝟎

(a) (i) Evolution of system qubit

Raman:
355 nm

𝑼𝒕𝑵−𝟏→𝒕𝑵
𝐘𝐛

(iii) Measurement of ancilla qubit

(ii) Initialization of ancilla qubit

OPT:
493 nm
614 nm
650 nm

(iv) Entangling operation

Raman:
355 nm

Raman:
532 nm

𝑈𝑡𝑁−1→𝑡𝑁

𝑚𝑁

0

𝒎𝑵

𝑼𝒕𝑵−𝟏→𝒕𝑵

𝝆𝒕𝑵 𝐘𝐛 𝟎 B𝐚

𝝆𝒕𝑵 𝐘𝐛 DET:
493 nm
650 nm

1762 nm

𝑹(
𝝅
𝟐
,
𝝅
𝟐
) 𝑹(

𝝅
𝟐
,𝝅) 𝑹(

𝝅
𝟐
,−

𝝅
𝟐
)

𝑹(
𝝅
𝟐
,𝝅)

M-S
Gate

𝒎𝑵

FIG. 3. Experimental realization of unitary evolution and
ancilla-assisted measurement with 171Yb+-138Ba+ trapped-
ion system. (a) A unitary operation UtN−1→tN is performed
by applying Raman laser beams to the system qubit rep-
resented by the pink ball. The ancilla-assisted measure-
ment is realized with the following three steps: (i) initial-
ization of the 138Ba+ qubit represented by the blue ball
to �0�

Ba
by optical pumping (OPT), (ii) application of a

CNOT gate between two qubits through an entangling op-
eration, and (iii) measurement of the ancilla qubit with flu-
orescence detection (DET). (b) The CNOT gate consists
of an M-S gate and four single-qubit rotations. The M-
S gate can be described as exp(−i⇡

4
X ⊗ X), where X is

the Pauli operator. The single-qubit rotation is defined as

R(✓,�) = � cos( ✓
2
) −ie−i� sin( ✓

2
)−iei� sin( ✓

2
) cos( ✓

2
) �. (c) The final time

measurement can be performed by direct measurement in ba-
sis mN ∈ {�0� , �1�} on the system qubit.

the Raman lasers to drive unitary evolutions, specifically465

single-qubit rotations, on the 171Yb+ion-qubit, At time466

t1, we perform the ancilla-assisted measurement as illus-467

trated in Fig. 3(a). The measurement procedure consists468

of initializing the ancilla qubit, applying a CNOT gate,469

and detecting the ancilla qubit state, where the first and470

third steps are regarded as the ICI and ICD. We perform471

the CNOT gate by using the Mølmer-Sørensen (M-S)472

gate [95] and single-qubit operations shown in Fig. 3(b).473

The z-basis measurement of the 138Ba+ ion is realized by474

fluorescence detection after shelving �0�
Ba

to D5�2 man-475

ifold. The x- and y-basis measurements are realized by476

rotating the axis of the 138Ba+ ion state before the z-basis477

measurement. We repeat the protocol by applying the478

next unitary evolution on the system qubit, followed by479

the ancilla-assisted measurement. We simplify the final480

measurement by using a projection measurement on the481

system qubit of 171Yb+ ion in the basis mN ∈ {�0� , �1�},482

since no further measurements are performed after that.483

As a concrete example, we reconstruct the three-time484

QPDs with the initial state ⇢Yb = (�1x� �1x�)Yb at time t1,485

where �1x�Yb
= (�0�

Yb
− �1�

Yb
)�√2. The unitary evolution486

from time t1 to t2 is described as Ut1→t2 = RX(✓) = e−i ✓
2X ,487

and the evolution from t2 to t3 is described as Ut2→t3 =488

14



7

𝑼𝒕𝟏→𝒕𝟐

RX (0.74π) RY ((0.74π)2)

𝑼𝒕𝟐→𝒕𝟑

|𝟏⟩

|𝟎⟩

|𝟏⟩

|𝟎⟩

|𝟏⟩

|𝟎⟩
𝒕𝟏 𝒕𝟐 𝒕𝟑

(a)

|𝟎⟩(b) |𝟏⟩

(0,
0,0
)

(0,
0,1
)

(0,
1,0
)

(0,
1,1
)

(1,
0,0
)

(1,
0,1
)

(1,
1,0
)

(1,
1,1
)-0.2

0.0

0.2

0.4

0.6

Q
ua

si
-p

ro
ba

bi
lit

y 
di

st
rib

ut
io

n

Three-time QPD p(x1, x2, x3)

= 0.74
 Re (data)
 Theory

(c)

(0,
0,0
)

(0,
0,1
)

(0,
1,0
)

(0,
1,1
)

(1,
0,0
)

(1,
0,1
)

(1,
1,0
)

(1,
1,1
)

-0.4

-0.2

0.0

0.2

0.4

Q
ua

si
-p

ro
ba

bi
lit

y 
di

st
rib

ut
io

n

Three-time QPD p(x1, x2, x3)

= 0.74
 Im (data)
 Theory

𝒕𝟏 𝒕𝟐 𝒕𝟑

𝒙𝟏 =𝟎 𝒙𝟏 =𝟏 𝒙𝟐 =𝟎 𝒙𝟐 =𝟏 𝒙𝟑 =𝟎 𝒙𝟑 =𝟏

(d)

FIG. 4. The experimental reconstruction of the three-time QPD and marginal distribution by the ancilla-assisted measurement
for ✓�⇡ = 0.74. (a) The unitary evolution of the system qubit is shown in the Bloch representation. The operator Ut1→t2 = RX(✓)
rotates the initial state around the x-axis, and the operator Ut2→t3 = RY (✓2) further rotates the system state around the y-axis.
(b) The normalized observed trajectories from the measurements at t1, t2, and t3 are represented by the 2D bar charts, where
m1,m2 ∈ {�0x� , �0y� , �0� , �1x� , �1y� , �1�}. The bar charts on the left and right represent the observed trajectories of m3 = �0� and
m3 = �1�, respectively, which are the measurement results of t3. (c) The three-time QPD p(x1, x2, x3) reconstructed from the
observed trajectories by classical processing. (i) The left blue bars indicate the real parts of the reconstructed three-time QPD,
and the negativity of the real QPD is verified for p(x1 = 0, x2 = 1, x3 = 0) (in blue-dashed-line boxes), which is −0.123(±0.060).
(ii) The right red bars indicate the imaginary parts of the reconstructed three-time QPD. (d) The marginal distributions for
t1, t2, and t3 under the unitary dynamics Ut1→t2 and Ut2→t3 show the snapshotting of the state evolution. The distributions
are marginalized over all the other time points of the QPDs. For all figures, error bars indicate standard deviations (STDs),
and theoretical expectations are shown as dashed bars (see Methods for details).

RY (✓2) = e−i ✓2

2 Y . Since the unitary evolution from time489

t1 to t2 is a rotation around the x-axis, the system state490

remains the same if no measurement is performed at time491

t1. However, if a measurement is made on the z-basis at492

time t1, the state collapses to �0� or �1� and then rotates493

under the evolution Ut1→t2 . This scenario illustrates how494

measurements can significantly influence the subsequent495

dynamics of a quantum system. From time t2 to t3, the496
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unitary evolution rotates the system qubit around the y-497

axis with angle ✓
2, which leads to non-trivial behaviors498

of the QPDs and correlation functions beyond sinusoidal499

functions of ✓. The three-time QPD is then expressed as500

p(x1, x2, x3)
=Tr �Ut2→t3Ut1→t2⇢t1⇧x1U

†
t1→t2

⇧x2U
†
t2→t3

⇧x3�
=�1x �x1� �x1�ei(✓�2)X �x2� �x2�ei(✓2�2)Y �x3� �x3�
e
−i(✓2�2)Y

e
−i(✓�2)X �1x� ,

(12)

where ⇧x = �x� �x� with x ∈ {0,1}.501

Figure 4 shows the experimental results for the above502

procedure. The distribution of observed trajectories from503

three-time measurements, pK(m1,m2,m3), for the case504

of ✓ = 0.74⇡ is shown in Fig. 4(b). At t1 and t2, we505

have the measurement results in the x-, y- and z-basis506

and only the z-basis measurement results for time t3. As507

shown in the circuit of Fig. 2(b), x-, y- and z-basis mea-508

surements of the ancilla yield six measurement outcomes,509

mi ∈ {�0x� , �1x� , �0y� , �1y� , �0� , �1�}. We post-select the510

data with only dark state outcomes to avoid heating of511

the vibrational modes (see Methods). We repeat each512

measurement configuration 100 times, for a total of 3600513

measurements.514

From the distribution of observed trajectories in515

Fig. 4(b), the three-time QPDs p(x1, x2, x3) are re-516

constructed as shown in Fig. 4(c). The quasi-517

probability of p(x1 = 0, x2 = 0, x3 = 0), as an exam-518

ple, is obtained directly from the relation of Eq. (7),519 ∑m1,m2,m3
�0m1�0m2�0m3p

K(m1,m2,m3), where �0m can520

be calculated from Eq. (6). In our actual reconstruction,521

we perform an optimization procedure to obtain a proper522

�ximi for all experimental data (see Methods). Some523

data points in Fig. 4(c) deviate from the theoretical ex-524

pectations by more than one standard deviation. This is525

because several observed trajectories shown in Fig. 4(b)526

deviate from the ideal values. However, these deviations527

are mainly due to technical imperfections rather than528

fundamental problems. We discuss experimental limita-529

tions related to fluctuations of experimental control pa-530

rameters in the last section before the conclusion section531

of the paper (see Methods for further details). Despite532

these deviations, our experimental results reveal the es-533

sential features of the QPDs, which are di↵erent from534

classical probability distributions. Classically, the joint535

probabilities at multiple time points can only have posi-536

tive values. However, as shown in Fig. 4(c), the negative537

value for p(x1 = 0, x2 = 1, x3 = 0) and the imaginary val-538

ues are observed for most cases.539

The three-time QPDs enable us to evaluate the cor-540

rect probability distribution of the system state during its541

unitary evolution. By taking the marginals of the QPDs,542

we recover the probability distribution at each point in543

time, which is not influenced by the previous measure-544

ments. As shown in Fig. 4(d), the measurement results545

at times t1, t2, and t3 are consistent with those distri-546

butions where no measurements were performed before.547

The clear di↵erence with and without previous measure-548

ments can be seen in the probability distribution at time549

t3. If projective measurements were performed at time550

t1 or t2, the distribution of the measurement results at551

time t3 should be 0.5 for each basis, which is not the case552

as shown in Fig. 4(d).553

We can obtain any combination of two-time QPDs554

from the three-time QPDs and observe nonclassi-555

cal features as shown in Fig. 5. The two-time556

QPDs are straightforwardly obtained from the three-557

time QPD by taking its marginals, p(x1, x2) =558 ∑x3
p(x1, x2, x3), p(x1, x3) = ∑x2

p(x1, x2, x3), and559

p(x2, x3) = ∑x1
p(x1, x2, x3). We note that it is not al-560

ways possible to do the reverse, that is, the reconstruction561

of the three-time QPDs from two-time QPDs, even with562

all possible combinations. Some data points in Fig. 5 de-563

viate from the ideal values by more than their standard564

deviations. Despite these deviations, we observe imag-565

inary and negative values in two-time QPDs as shown566

in Fig. 5, which indicate the coherence of the state with567

respect to the measurement basis [10–12, 64].568

Imaginary and negative values in two-time QPDs are569

shown in Figs. 5(a-b) and Figs. 5(b-c), respectively. For570

the unitary evolution of the single-qubit state, the oc-571

currence of imaginary and negative values in two-time572

QPDs can be understood from the relationship between573

the representation of the quantum state and the rotation574

axis in the Bloch sphere when the state contains coher-575

ence. For Ut1→t2 , the initial quantum state is represented576

on the x-axis, and the rotation axis for the unitary evolu-577

tion is also aligned along the x-axis in the Bloch sphere.578

In this case, the QPDs reveal imaginary values, as shown579

in Fig. 5(a). For Ut2→t3 , the quantum state is on the x-580

axis of the Bloch sphere, but the axis of rotation is along581

the y-axis, perpendicular to the state. In this case, the582

QPDs reveal negative values, as shown in Fig. 5(c). In583

Fig. 5(b), the process contains parallel and perpendicular584

relations, resulting in imaginary and negative QPDs.585

We also obtain quantum correlation functions from586

the observed trajectories. For di↵erent values of ✓,587

time-ordered three-time correlation functions (Fig. 6(d))588

and all combinations of two-time correlation functions589

(Fig. 6(c)) are deduced from the three-time QPDs.590

We also reconstruct out-of-time-ordered correlation func-591

tions based on Observation 1. We present C(t3, t2, t1)592

with the reversed time-ordering and C(t1, t3, t2) with an593

increasing-decreasing time-ordering in Figs. 6(e) and (f),594

respectively. The solid lines are from theoretical calcula-595

tions, where their explicit forms can be found in Meth-596

ods. The bands in Fig. 6 indicate the standard deviation597

(STD) of the experimental data. Although certain data598

points exhibit deviations exceeding the error bars, the599

overall trends observed in the data are generally consis-600

tent with the theoretical predictions.601
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(c)

FIG. 5. The two-time QPDs obtained from the three-time QPDs. The blue and red bars indicate the real and imaginary
parts of the QPDs. (a) The two-time QPD p(x1, x2) from the unitary evolution Ut1→t2 . (b) The two-time QPD p(x1, x3) from
Ut1→t3 . (c) The two-time QPD p(x2, x3) from Ut2→t3 . For all figures, the error bars indicate the STD, and the theoretical
expectations are shown as dashed bars (see Methods for details).
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FIG. 6. The results of the two- and three-time correlation functions. Here, blue and red colors indicate the real and the
imaginary parts of the correlation functions, respectively. Experimental data and theoretical expectations are shown as dots
and solid lines, respectively. (a-c) The two-time correlation functions reconstructed from the three-time QPDs. (d) The
time-ordered three-time correlation function reconstructed from the three-time QPDs. (e-f) C(t3, t2, t1) with the reversed
time-ordering and C(t1, t3, t2) with an increasing-decreasing time-ordering respectively.

The majority of the experimental deviations stem from602

technical imperfections in controlling experimental pa-603

rameters rather than fundamental issues in the underly-604

ing theoretical framework. Fluctuations in the parame-605

ters of the M-S gates are primarily responsible for the ob-606

served experimental deviations. In particular, more than607

90% of the data points that deviate from theoretical pre-608

dictions in Fig. 4(b) can be explained by fluctuations in609

the rotation angle of the M-S gates and the relative phase610

between two successive gates (see Methods). In the anal-611

ysis, the amounts of the fluctuations in rotation angle and612

relative phase are required to be 0.03⇡ (corresponding to613

11.8% fluctuations) and 0.04⇡ (approximately 4.4% fluc-614

tuations), respectively. We investigate the performance615

of the M-S gate using quantum process tomography, but616

we highlight that this data is not used for obtaining the617

joint distribution. The related details and other experi-618

mental imperfections are discussed in Methods.619

Figure 7 indicates the fidelity F (p, pexp.) =620

∑x3

�
p(x3)pexp.(x3) between the theoretical distri-621

bution at time t3 without intermediate measurements,622

p(x3) = Tr[⇢t3⇧x3], and the marginal distribution of623

the QPD, pexp.(x3) = ∑x1,x2
pexp.(x1, x2, x3), obtained624

from the experimental data. The marginal distribution625

obtained experimentally at time t3 is closer to the ideal626

distribution compared to the case when intermediate627
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projective measurements are performed at times t1 and628

t2.629
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FIG. 7. Fidelity between the distributions for the z-
basis measurement at time t3. The error bars represent
the standard error of the mean. Red dots refer to the fi-
delity between the marginal distribution from theory (p(x3))
and the experimentally obtained three-time QPD (pexp.(x3) =∑x1,x2

pexp.(x1, x2, x3)). The black line refers to the fidelity
of 1 when the two distributions are equal. The blue line refers
to the theoretical fidelity between p(x3) and pproj.(x3) when
projective measurements are performed at times t1 and t2.
The blue dots refer to the corresponding experimental result.

CONCLUSION AND OUTLOOK630

We have introduced a novel protocol named snapshot-631

ting to extract quantum statistics at multiple times from632

ancilla-assisted measurements and demonstrated it ex-633

perimentally using the 171Yb+-138Ba+ trapped-ion sys-634

tem. The key features of our approach are that the635

measurement e↵ect can be entirely canceled out through636

classical post-processing of the ancilla measurement out-637

comes and that the measurement requires only a short-638

time system-ancilla interaction at each immediate time639

point. By snapshotting quantum dynamics, the QPD at640

multiple time points and various types of quantum cor-641

relation functions can be simultaneously obtained from a642

single distribution of observed trajectories. We highlight643

that this method is applicable to any quantum system644

and dynamics, serving as a valuable experimental tool645

for exploring the quantum statistics of both open and646

closed quantum systems.647

The potential applications of the proposed proto-648

col include exploring quantum dynamics in many-body649

physics. In principle, when considering local observables,650

the number of samples required to reconstruct QPDs and651

correlation functions does not scale with the size of the652

system or the number of qubits. This property is promis-653

ing for obtaining various critical quantities based on cor-654

relation functions, such as OTOC, in quantum many-655

body systems [24, 25]. As the KD distribution itself has656

recently been recognized as an essential tool for inves-657

tigating information scrambling and quantum thermo-658

dynamics [46, 49, 50, 59], its direct reconstruction from659

experimental data will open a new avenue for experimen-660

tally testing of the nonclassical phenomena arising from661

quantum dynamics.662

METHODS663

Proof of Theorem 1664

Let us consider a slightly more general scenario665

such that the operators A = ∑d−1
x=0 ax �x� �x� and B =666 ∑d−1

x=0 bx �x� �x� diagonal in the same basis {�x�}d−1
x=0 are act-667

ing on the left and right sides of a d-dimensional quantum668

state, respectively, given as669

EB,A(⇢) = B⇢A =�
m

�m(B,A)Km(⇢), (13)

where Km(⇢) = Km⇢K
†
m
. We note that A and B is not670

required to be Hermitian. Theorem 1 in the main text671

to obtain the QPD p(x1, x2,�, xN) is a special case with672

A = ⇧x = �x� �x�, B = 1, and �xm = �m(1,⇧x).673

We then construct a set of Kraus operators {Km} to674

satisfy the condition in Eq. (13):675

Proposition 1. For the operators A = ∑x ax �x� �x� and
B = ∑x bx �x� �x� diagonal in the same basis {�x�}, there
always exist �m(B,A) satisfying Eq. (13) for a set of
Kraus operators {Km} with

Km = d−1�
x=0�

��m�x�√
↵
� �x� �x�,

where {��m� ��m�} is a set of informationally complete676

projectors and satisfies ∑m ��m� ��m� = ↵1.677

Proof. For the diagonal operators A = ∑x ax⇧x and B =678 ∑x bx⇧x, let us rewrite Eq. (13) as679

EB,A(⇢) = B⇢A

= ��
d−1�
y=0 by⇧y

�
�⇢�

d−1�
x=0ax⇧x�

= d−1�
x,y=0axby⇧y⇢⇧x

= d−1�
x,y=0�x�

�
�

d−1�
x′,y′=0

ax′by′ �x′� �y′��� �y�⇧y⇢⇧x

= d−1�
x,y=0�x�O(B,A)�y�⇧y⇢⇧x,

(14)

where we define O(B,A) = ∑d−1
x,y=0 axby �x� �y�. We note

that any operator O can be expressed in terms of the
informationally complete projectors {��m� ��m�} as O =

18
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∑m c
O

m
��m� ��m� with some complex coe�cients cO

m
. This

leads to an alternative expression

O(B,A) =�
m

c
O(B,A)
m

��m� ��m�.
By substituting this form into Eq. (14), we obtain680

EB,A(⇢)
=�

m

d−1�
x,y=0 c

O(B,A)
m

�x��m���m�y�⇧y⇢⇧x

=�
m

↵c
O(B,A)
m

�
�
d−1�
y=0
��m�y�√

↵
⇧y

�
�⇢�

d−1�
x=0⇧x

�x��m�√
↵
�

=�
m

�m(B,A)Km⇢K
†
m

=�
m

�m(B,A)Km(⇢),

(15)

where we take Km = ∑d−1
y=0 ��m�y�√

↵
⇧y to satisfy the normal-681

ization condition ∑mK
†
m
Km = 1 and define �m(B,A) =682

↵c
O(B,A)
m .683

To complete the proof of Theorem. 1, we show that684

these Kraus operators can be realized by the ancilla-685

assisted measurements. To this end, we introduce a d-686

dimensional ancilla state, initially prepared in �0�
R
. Af-687

ter applying the CSUM gate, a generalized CNOT gate,688

UCSUM = ∑d−1
x,y=0 �x,x⊕ y� �x, y� followed by the ancilla689

measurement with respect to the set of informationally690

complete projectors {��m� ��m�}, the Kraus operators for691

each measurement outcome become692

Km = d−1�
x=0�

��m�x�√
↵
�⇧x = ��m�UCSUM �0�R√

↵
. (16)

For a d-dimensional system, a set of informationally com-693

plete projectors {��m� ��m�} has at least d2 elements. For694

example, the measurement set discussed in the main text,695 {��m�} = {�0� , �1� , �0y� , �1y� , �0x� , �1x�} has 6 elements,696

which is more than d
2 = 4, thus being overcomplete.697

However, this measurement set is easier to realize in ex-698

periments since all the projectors are the eigenvalues of699

the Pauli matrices.700

Theorem 1 can be extended to local operators A and701

B of a multi-qudit system. This can be achieved by re-702

placing ⇧x with 1 ⊗ � ⊗ 1 ⊗ ⇧x ⊗ 1 ⊗ � ⊗ 1, where the703

projection is only applied to the target qudit. Conse-704

quently, Km only acts on the target qubit while main-705

taining the same form as in Eq. (16), ensuring that the706

corresponding ancilla-assisted measurement requires only707

the interaction between the ancilla state and the target708

qudit. Since the coe�cient �m(B,A) for the local oper-709

ators A and B remains the same as in the single-qudit710

case, the protocol does not scale with the size of the sys-711

tem as long as A and B act on a single-qudit.712

We also note that there can be various choices of weight
vectors �m(B,A) that satisfy Eq. (13) for a given set of

Kraus operators {Km}. In this case, the optimal choice
would be to minimize ��(B,A)�max ∶=maxm{��m(B,A)�}
as the number of samples to collect for a fixed precision
scales with ��(B,A)�2

max
from Hoe↵ding’s inequality [67].

More precisely, the optimization problem can be formal-
ized as follows:

for given ∶ A, B, {Km} (17)

minimize ∶ ���max =max
m
{��m�} (18)

subject to ∶ B ⊗A
T =�

m

�mKm ⊗K
∗
m
. (19)

By vectorizing the density matrix ⇢ in Eq. (13), we note713

that Eq. (19) is equivalent to the condition that Eq. (13)714

holds for any ⇢.715

For A = ∑d−1
x=0 ax �x� �x� and B = ∑d−1

x=0 bx �x� �x� and the716

measurement operators described in Eq. (16), the condi-717

tion in Eq. (19) is reduced to718

T� = ↵⇠, (20)

where [T ]x+yd,m = ��m�y��x��m�, [�]m = �m,719

and [⇠]x+yd = axby. From numerical opti-720

mization for the measurement set {��m�} =721 {�0� , �1� , �0y� , �1y� , �0x� , �1x�} with ↵ = 3, which722

leads to {Km} = �⇧0√
3
,
⇧1√
3
,
S

†√
6
,

S√
6
,

1√
6
,

Z√
6
�, we ob-723

tain �max = maxx,m{��m(1,⇧x)�}� ≈ 1.775. This is a724

more e�cient decomposition than that in Eq. (6) which725

yields �max = 3.726

Derivation of Observation 1727

From the cyclic property of the trace, the correlation
function can be rewritten as

C(tµ1 ,�, tµj ,�, tµk)= Tr[A(tµj+1)�A(tµk)⇢t0A(tµ1)�A(tµj)].
Then we note that both tµ1 ≤ tµ2 ≤ � ≤ tµj and
tµk ≤ tµk−1 ≤ � ≤ tµj+1 are monotonically increasing time
sequences, which leads to the following expression:

C(tµ1 ,�, tµj ,�, tµk)= Tr[(EBN ,AN ○ UtN−1→tN ○ � ○ Ut1→t2 ○ EB1,A1)(⇢t1)],
where Uti→tj(⇢) = Uti→tj⇢U

†
ti→tj

and we take (Bi,Ai) =728 (1,A) when A(ti) is applied to the right side, (Bi,Ai) =729 (A,1) when A(ti) is applied to the left side, and730 (Bi,Ai) = (A,A) when A(ti) is applied to the both sides.731

Since each EBi,Ai can be expressed as a linear combi-
nation of the actions of the Kraus operators {Km} from
Proposition 1, we obtain the following form,

C(tµ1 ,�, tµj ,�, tµk) = E � N�
i=1

�mi(Bi,Ai)� ,
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by averaging over all possible observed trajectories fol-732

lowing the distribution p
K(m1,m2,�,mN) = Tr[(KmN ○733 UtN−1→tN ○ � ○ Ut1→t2 ○Km1)(⇢t1)].734

We highlight that the correlation functions with dif-735

ferent time sequences (tµ1 ,�, tµk) are obtained by only736

replacing the coe�cients �mi(Bi,Ai), which can be eas-737

ily done in classical post-processing using the same data738

used to obtain p
K.739

Obtaining COTOC from intermediate measurements740

Let us express the OTOC for the two operatorsW (⌧) =
U

†
⌧
WU⌧ and V (0) = V as

COTOC = �[W (⌧), V (0)]†[W (⌧), V (0)]�
= �W †(⌧)V †(0)V (0)W (⌧)� − �V †(0)W †(⌧)V (0)W (⌧)�
− �W †(⌧)V †(0)W (⌧)V (0)� + �V †(0)W †(⌧)W (⌧)V (0)�
= Tr[V U

†
⌧
WU⌧⇢U

†
⌧
W

†
U⌧V

†]
−Tr[V U

†
⌧
WU⌧⇢V

†
U

†
⌧
W

†
U⌧ ]

−Tr[U †
⌧
WU⌧V ⇢U

†
⌧
W

†
U⌧V

†] +Tr[WU⌧V ⇢V
†
U

†
⌧
W

†]
= Tr[(EV,V † ○ U−1 ○ EW,W † ○ U ○ E1,1)(⇢)]
−Tr[(EV,1 ○ U−1 ○ EW,W † ○ U ○ E1,V †)(⇢)]
−Tr[(E1,V † ○ U−1 ○ EW,W † ○ U ○ EV,1)(⇢)]+Tr[(EW,W ○ U ○ EV,V †)(⇢)],

where we denote U(⇢) = U⌧⇢U
†
⌧
and U−1(⇢) = U

†
⌧
⇢U⌧ ,741

respectively.742

One can then construct the intermediate measure-743

ments {KV

m1
} = {KV

m3
} and {KW

m2
} from Proposition 1744

to express E1,1, E1,V † , EV,1, and EV,V † as a weighted sum745

of KV

m1
or KV

m3
, and EW,W † as a weighted sum of KW

m2
.746

From this, all the four terms in COTOC can be obtained747

simultaneously from p
K(m1,m2,m3) = Tr[(KV

m3
○ U−1 ○748 KW

m2
○ U ○KV

m1
(⇢)].749

Experimental setup750

As shown in Fig. 8(a), we use a dual-species trapped-751

ion system, which traps one 171Yb+ ion and one752

138Ba+ ion in a four-rod trap, to perform the ancilla-753

assisted measurements. The 171Yb+and 138Ba+ ions serve754

as the system and the ancilla qubits, respectively. The755

two ions have di↵erent energy structures and require dif-756

ferent initialization and detection lasers. Therefore, op-757

erations on the 171Yb+ ion do not a↵ect the 138Ba+ ion758

and vice versa. Therefore, it is possible to perform the759

ICD and ICI, where 138Ba+ ion-qubit is detected or ini-760

tialized without a↵ecting the other qubit [90], which is761

the essential property for the ancilla-assisted measure-762

ment. We perform single-qubit rotations and the two-763

qubit M-S gate by using 355 nm and 532 nm Raman764

laser beams for 171Yb+and 138Ba+ ions, respectively, as765

shown in Fig. 8(b).766

Two- and three-time QPDs simulation data767

Quantum process tomography of M-S gate768

To quantitatively characterize the e↵ect of imperfect769

M-S gates on the protocol, we perform quantum pro-770

cess tomography of the M-S gate. For quantum process771

tomography, we first prepare the system to one of the772

16 states �i� ⊗ �j�, where �i�, �j� ∈ {�0� , �1� , �1x� , �0y�},773

then apply an M-S gate operation and then measure774

the system on one of the nine measurement bases775 {xx,xy, xz, yx, yy, yz, zx, zy, zz}. Using the maximum776

likelihood method[94, 96–98], we reconstruct the process777

matrix from the measurement results as shown in Fig. 11.778

Compared to the ideal M-S gate, the process matrix has779

a fidelity of 93.16%. The process matrix has a mean fi-780

delity of 94.51%±1.18%, the average fidelity of the output781

state over all possible input states[94, 97, 99], which is782

consistent with the fidelity of the Bell state of 94%± 2%.783

We analyze the raw data, that is, 72 di↵erent observed784

trajectories shown in Fig. 4(b) with the result of quantum785

process tomography of the M-S gate. In our numerical786

analysis, fluctuations in the rotation angles of the M-S787

gate and relative phases between successive M-S gates788

can explain the deviations of the experimental results789

from the theoretical predictions. A parameterized M-S790

gate can be described as MS = exp(−i✓M(sin(�M1)Y +791

cos(�M1)X)⊗(sin(�M2)Y +cos(�M2)X)), where ✓M rep-792

resents the rotation angle that should be ⇡�4 for the ideal793

gate, and �M1 and �M2 represent the phases that deter-794

mine the rotation axis for the 171Yb+and 138Ba+qubits,795

respectively, which should be zero for the ideal gate. For796

each trajectory, we numerically adjust the rotation angles797

and relative phases of the M-S gate process matrix so that798

the numerical calculation agrees with the experimental799

result. Then, we collect the adjusted rotation angles and800

relative phases for all observed trajectories. Among a to-801

tal of 72 measurement results of pK(m1,m2,m3), more802

than 90% deviations in the data can be explained by fluc-803

tuations in the rotation angle of the M-S gate and rela-804

tive phases between two gates. The distributions of the805

adjusted parameters are as follows. The rotation angles806

are overall shifted by 0.001⇡ with a standard deviation807

of 0.03⇡, corresponding to approximately 11.8% fluctu-808

ations. The relative phases are shifted by 0.01⇡ with809

a standard deviation of 0.04⇡, corresponding to 4.4%.810

Here, we note that phase fluctuations are only consid-811

ered for the 171Yb+qubits.812

To illustrate the experimental imperfections, we inves-813

tigate the dependence of the contrasts of the two-time814

correlation functions on the infidelities of the M-S gates815

by using the experimental M-S gate process matrix. As816
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FIG. 8. Experimental setup. (a) 171Yb+ and 138Ba+ ions trapped in a four-rod trap. A magnetic field of 5.8 Gauss is applied
along the x-axis. To realize the M-S gate between two ions, the 171Yb+ ion is controlled by illuminating a pair of 355 nm
lasers (purple) with a frequency of f355 and f355 + fYb ± (� + fz), where fYb is the qubit splitting of the 171Yb+ qubit. The
138Ba+ ion is controlled by illuminating a pair of 532 nm lasers (green) with a frequency of f532 and f532 + fBa ± (� + fz), where
fBa is the qubit splitting of the 138Ba+ ion-qubit, fz is the frequency of the axial OOP (out-of-phase) mode, and � is the laser
detuning from the sideband of the OOP mode. Raman laser directions are represented by thick arrows, and the polarization
is represented by thin arrows and dots. (b) Energy levels and related lasers for the 171Yb+ and 138Ba+ ions. The hyperfine
qubit of the 171Yb+ ion and the Zeeman qubit of the 138Ba+ ion serve as the system qubit and the ancilla qubit, respectively.
Single-qubit rotations are realized by resonant Raman transitions. The two-qubit entangling operation is realized by applying
a bichromatic Raman laser for both ions. The 1762 nm laser is the shelving laser used for 138Ba+ ion-qubit detection.
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FIG. 9. Three-time QPDs simulation data

shown in Fig. 12(a), for the two-time correlation func-817

tions, the contrast of the real part decreases more than818

the contrast of the imaginary part. Here, we increase the819

infidelity by multiplying the operation of the M-S gate820

and assume that it increases linearly with the number821

of gates. Since multiplying the ideal CNOT gate twice822

equals an identity operator, we add two M-S gates at each823

step to increase the gate infidelity while maintaining the824

measurement scheme. Three-time measurements are also825

investigated using the experimental M-S gate process ma-826

trix. As shown in Fig. 12(b), the three-time correlation827

functions are simulated taking into account the process828

matrix infidelity. The experimental and simulated data829

with infidelity agree better than the ideal theory data,830

indicating that the infidelity of the M-S gate is one of831

the main causes of deviation. The major imperfections832

come from the rotation angle of the M-S gate. To be an833

ideal CNOT gate, the angle of the M-S gate should be834
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FIG. 10. Two-time QPDs simulation data

(a) (b) (c)

FIG. 11. The experimental process matrix of the M-S gate. (a-c) represent the real part, the imaginary part, and the absolute
value of the process matrix, respectively.

⇡�4, but in our experiment, the angle is about 10% less835

than the ideal value. This angle imperfection explains836

well the disagreement in the imaginary parts for small ✓837

values.838

Further deviations can arise from phase fluctuation839

problems between successive M-S gates. The M-S gate840

can be described as exp �−i⇡
4
XYbXBa�, where XYb and841

XBa are Pauli operators �x of the 171Yb+ and 138Ba+842

ion qubits. We need to control the laser phases for the843

M-S gate to make the gate work as XYbXBa and not on844

other axes. For example, in the three-time correlation845

functions of Fig. 12(b), the second time point can be ex-846

plained by the drift of the 0.1⇡ phase for the 138Ba+ ion847

qubit.848

Post-selection detection and error analysis849

Figure 13 shows the detailed process of the 138Ba+ ion850

fluorescence detection. In this detection process, we first851

use a 1762 nm laser to shelve the �0�
Ba

population to D5�2,852

and then apply a 493 nm laser to drive the transition853

between S1�2 and P1�2. The shelving operation has no854

e↵ect if the qubit state is �1�
Ba

, and a large number of855

photons will be produced by the subsequent 493 nm laser.856

In contrast, if the qubit state is �0�
Ba

, the population is857

shelved to D5�2 and no photons are produced by the 493858

nm laser. Hence, the number of scattered photons can859

be used to distinguish the qubit states.860

In our multi-time measurements circuit, the ancilla861

(138Ba+ ion) is required to be detected and used repeat-862

edly. However, as shown in Fig. 13(a), the detection of a863

bright state produces a large number of photons, thereby864

heating the ion chain and further degrading the perfor-865

mance of subsequent CNOT operations. To solve this866

problem, we adopt a post-selection approach for all ICDs,867

which uses only dark state data. For bright state data, we868

transfer bright states to dark states by a ⇡ pulse before869

the measurement.870871

All the error bars in the main text are obtained by the872

bootstrap method. We first re-sample the experimen-873

tal raw data in Fig. 4(b), generating 1000 new datasets.874

Subsequently, we derive 1000 new results based on these875

datasets and obtain the standard deviations from the dis-876

tribution of these 1000 results.877
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FIG. 12. The e↵ect of imperfect M-S gates on the measurement scheme. (a) The blue circles and red squares represent
the contrast of the real and imaginary parts of C(t1, t2). The horizontal axis represents the number of imperfect M-S gates
applied to the system, while 0 represents an ideal M-S gate. (b) Simulation results of three-time correlation functions based
on the process matrix. Error bars are standard deviations. The blue and red lines represent the real and imaginary parts of
C(t1, t2, t3). The blue and red dots represent the corresponding experimental results.
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FIG. 13. Fluorescence detection of the 138Ba+ ion. The detection process consists of two steps: First, we use a 1762 nm laser
to shelve the �0�

Ba
population to D5�2, and then we use a 493 nm laser to drive the transition between S1�2 and P1�2. (a) Bright

state detection. When the ancilla is in �1�
Ba

, the shelving operation does not a↵ect the qubit. The subsequent 493 nm laser
produces a large number of photons. (b) Dark state detection. When the ancilla is in �0�

Ba
, its population is shelved to D5�2.

Therefore, the 493 nm laser will not produce any photons.

Expectation values from theory878

First, we consider two- and three-time correlation func-879

tions880

C(t1, t2)= Tr [⇢Z(t1)Z(t2)]
= Tr �Ut1→t2⇢t1ZU

†
t1→t2

Z�
C(t1, t2, t3)= Tr [⇢Z(t1)Z(t2)Z(t3)]
= Tr �Ut2→t3Ut1→t2⇢t1ZU

†
t1→t2

ZU
†
t2→t3

Z� ,

(21)

where Uti→tj describes the unitary time evolution from881

time ti to tj , and ⇢t1 is the quantum state at time t1. In882

this paper, we focus on the case where the initial state883

is prepared in ⇢t1 = �1x� �1x� with �1x� = (�0� − �1�)�√2,884

and the evolution unitary operators are given as Ut1→t2 =885

RX(✓) = e−i(✓�2)X , and Ut2→t3 = RY (✓2) = e−i(✓2�2)Y with886

✓ ∈ [0,⇡] and the Pauli matrices X, Y and Z. The theo-887

retical expectation values of Eq. (21) are888

C(t1, t2)
= Tr �Ut1→t2 �1x� �1x�ZU

†
t1→t2

Z�
= �1x�ZU

†
t1→t2

ZUt1→t2 �1x�
= �1x�Ze

i(✓�2)X
Ze
−i(✓�2)X �1x�= cos ✓ + i sin ✓

C(t1, t3)
= Tr �Ut2→t3Ut1→t2 �1x� �1x�ZU

†
t1→t2

U
†
t2→t3

Z�
= �1x�ZU

†
t1→t2

U
†
t2→t3

ZUt2→t3Ut1→t2 �1x�
= �1x�Ze

i(✓�2)X
e
i(✓2�2)Y

Ze
−i(✓2�2)Y

e
−i(✓�2)X �1x�

= cos ✓2(cos ✓ + i sin ✓)
C(t2, t3)
= Tr �Ut2→t3Ut1→t2 �1x� �1x�U †

t1→t2
ZU

†
t2→t3

Z�
= �1x�U †

t1→t2
ZU

†
t2→t3

ZUt2→t3Ut1→t2 �1x�
= �1x�ei(✓�2)XZe

i(✓2�2)Y
Ze
−i(✓2�2)Y

e
−i(✓�2)X �1x�

= cos ✓2,
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C(t1, t2, t3)
= Tr �Ut2→t3Ut1→t2 �1x� �1x�ZU

†
t1→t2

ZU
†
t2→t3

Z�
= �1x�ZU

†
t1→t2

ZU
†
t2→t3

ZUt2→t3Ut1→t2 �1x�
= �1x�Ze

i(✓�2)X
Ze

i(✓2�2)Y
Ze
−i(✓2�2)Y

e
−i(✓�2)X �1x�

= sin ✓2(cos ✓ + i sin ✓)
C(t2, t3, t1)
= Tr �Ut2→t3Ut1→t2Z �1x� �1x�U †

t1→t2
ZU

†
t2→t3

Z�
= �1x�U †

t1→t2
ZU

†
t2→t3

ZUt2→t3Ut1→t2Z �1x�
= �1x�ei(✓�2)XZe

i(✓2�2)Y
Ze
−i(✓2�2)Y

e
−i(✓�2)X

Z �1x�
= sin ✓2(− cos ✓ + i sin ✓)

C(t3, t2, t1)
= Tr �Ut2→t3ZUt1→t2Z �1x� �1x�U †

t1→t2
U

†
t2→t3

Z�
= �1x�U †

t1→t2
U

†
t2→t3

ZUt2→t3ZUt1→t2Z �1x�
= �1x�ei(✓�2)Xe

i(✓2�2)Y
Ze
−i(✓2�2)Y

Ze
−i(✓�2)X

Z �1x�
= sin ✓2(cos ✓ − i sin ✓).

(22)
Meanwhile, the two- and three-time QPDs are expressed889

as890

p(x1, x2)
= Tr �Ut1→t2⇢t1⇧x1U

†
t1→t2

⇧x2�
p(x1, x2, x3)
= Tr �Ut2→t3Ut1→t2⇢t1⇧x1U

†
t1→t2

⇧x2U
†
t2→t3

⇧x3� ,
(23)

which can also be calculated similarly to the correla-891

tion functions. For the initial state ⇢t1 = �1x� �1x� and892

the dynamics Ut1→t2 = RX(✓) = e
−i(✓�2)X and Ut2→t3 =893

RY (✓2) = e−i(✓2�2)Y , we obtain894

p(x1, x2)
= Tr �e−i(✓�2)X �1x� �1x�⇧x1e

i(✓�2)X⇧x2�
= �1x�⇧x1e

i(✓�2)X⇧x2e
−i(✓�2)X �1x�

= �1x�x1��x1�ei(✓�2)X �x2� �x2�e−i(✓�2)X �1x�
p(x1, x2, x3)
= Tr �e−i(✓2�2)Y

e
−i(✓�2)X �1x� �1x�⇧x1e

i(✓�2)X⇧x2e
i(✓2�2)Y ⇧x3�

= �1x�⇧x1e
i(✓�2)X⇧x2e

i(✓2�2)Y ⇧x3e
−i(✓2�2)Y

e
−i(✓�2)X �1x�

= �1x �x1� �x1�ei(✓�2)X �x2� �x2�ei(✓2�2)Y �x3� �x3�
e
−i(✓2�2)Y

e
−i(✓�2)X �1x� ,

(24)
where each component can be straightforwardly obtained895

from the explicit form of the rotation matrices.896
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Abstract. Error-corrected quantum computers have the potential to change the way we solve com-
putational problems. Quantum error correction involves repeated rounds of carefully scheduled gates to
measure the stabilisers of a code. A set of scheduling rules are typically imposed on the order of gates
to ensure the circuit can be rearranged into an equivalent circuit that can be easily seen to measure the
stabilisers. In this work, we ask what would happen if we break these rules and instead use circuit sched-
ules that we describe as tangled. We find that tangling schedules generates long-range entanglement not
accessible using nearest-neighbour two-qubit gates. Our tangled schedules method provides a new tool
for building quantum error correction circuits and we explore applications to design new architectures
for fault-tolerant quantum computers. Notably, we show that, for the widely used Pauli-based model of
computation (achieved by lattice surgery), this access to longer-range entanglement can reduce the device
connectivity requirements, without compromising on circuit depth.
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1 Introduction

For certain types of quantum hardware, e.g. super-
conducting quantum computers, the quantum processing
unit (QPU) typically has a fixed qubit layout and con-
nectivity. Here, connectivity means which pairs of qubits
can be acted on with native two-qubit gates. As connec-
tivity increases, so too does crosstalk noise and related
engineering challenges. Furthermore, a QPU with uni-
form connectivity structure is desirable so that different
code sizes and algorithms can be executed. As such, uni-
form, low-degree QPUs are the natural choice.
Since qubits are unfortunately noisy, the need for quan-

tum error correction (QEC) procedures arises. This may
require the measurement of some irregular, non-local sta-
bilisers, that cannot be measured in the standard way
using one auxiliary qubit per stabiliser due to the QPU’s
low degree of connectivity. For instance, when perform-
ing a lattice surgery operation with the surface code that
involves a Y Pauli term, the measurement of twist de-
fects and elongated rectangles is needed, and it is not
currently known how to do that on a square-grid con-
nectivity QPU without increasing circuit depth substan-
tially. Here, we present a general method of tangled syn-
drome extraction circuits, which enables measurement of
observables involving distant qubits. We then apply this
to the non-local stabilisers appearing during Pauli-based
computation with the surface code, and construct low-
depth circuits to measure them on a square-grid con-
nectivity QPU. Therefore, tangling enables fault-tolerant

∗george.geher@riverlane.com
†ophelia.crawford@riverlane.com
‡earl.campbell@riverlane.com

logical quantum computation via Pauli-based computa-
tional model using the surface code on square-grid con-
nectivity architectures.

2 Preliminaries

Consider a general stabiliser g = P1P2 . . . Pm, where
each of P1, P2, . . . , Pm is a single-qubit Pauli operator,
with no two of them acting on the same qubit. We can
always measure g using the following circuit: prepare an
auxiliary qubit in the |+⟩ state; apply controlled-P1; ap-
ply controlled-P2; . . . apply controlled-Pm; and finally,
measure out the auxiliary qubit in the X basis, see Fig-
ure 1. This measurement outcome corresponds to the
measurement of g. In this circuit C, all controlled gates
use the auxiliary qubit as the control. Furthermore, we
are free to shuffle the order of the controlled-Pj gates
and we may also insert identity gates. We call this the
auxiliary syndrome extraction circuit of g.

Next, consider a set of stabilisers {gj}mj=1, and for each
stabiliser gj suppose an auxiliary syndrome extraction
circuit Cj . Assume the circuits have the same depth, i.e.
number of layers including those with identity gates, and
that we use different auxiliary qubits for different stabilis-
ers. If we combine these circuits, so that they all occur
simultaneously, the resulting circuit, which we denote by
C, then measures the set of stabilisers {gj}mj=1 simultane-
ously and independently if and only if the following two
conditions are satisfied:

(a) no qubit is involved in more than one gate at a
time;

(b) for every pair of distinct circuits j ̸= k, the simul-
taneous combination of Cj and Ck is equivalent to
the serial execution Cj followed by Ck.

The technical manuscript [5] contains a more formal
equivalent statement of both (a) and (b) in its Section
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2. An illustration of these two conditions can be found
in [9, Figure 15].

3 Our main result

Our tangled syndrome extraction technique is based
on the following violation of condition (b).

Definition 1 (Tangled circuits) The auxiliary syn-
drome extraction circuits Cj and Ck are called tangled if
condition (a) above is satisfied for them, but condition
(b) is not.

It turns out that by tangling the circuits {Cj}mj=1, it
is possible to measure the product h = g1 · · · gm. Since,
in this case, the operators gj are no longer stabilisers
themselves, we emphasise this by calling them component
operators instead. We state our main result now.

Theorem 2 Consider a set of pair-wise commuting
Pauli product operators {gj}mj=1 and an auxiliary syn-
drome extraction circuit for each: {Cj}mj=1. Denote by
C the combined circuit. Compose an (undirected) graph
G = (V,E) where V = [1, . . . ,m] and (j, k) ∈ E if and
only if the circuits Cj and Ck are tangled. Suppose fur-
ther that G is a forest whose connected components are
T1, . . . , Tℓ. Then there exists a modification of C where

• we modify the single qubit Pauli measurements on
the auxiliary qubits, and

• we apply a Clifford correction on the data qubits,

such that the modified circuit C̃ measures the products
hr :=

∏
j∈Tr

gj for r = 1, . . . , ℓ simultaneously and inde-
pendently. Moreover, after two rounds of syndrome ex-
traction C̃, the accumulated Clifford corrections multiply
into a Pauli correction that can be tracked in software.

The main feature of our tangling circuits technique
is that it creates entanglement between the auxiliary
qubits, unlike in the case when condition (b) is satis-
fied. This is illustrated in Figure 2 for the simplest case
of our theorem, i.e. when G is a two-vertex tree graph.
In this case we need to modify the basis of measurements
on the auxiliary qubits from X to Y , and include a Clif-
ford correction as shown in Figure 2. As can be seen,
when we reorder the entangling gates of the circuit C̃,
so that the ones controlled on the first auxiliary qubit
are in front of the ones controlled on the other auxiliary
qubit, an additional CZ gate (red in bottom subfigure of
fig. 2) appears between the two auxiliary qubits. In Sec-
tion 2 of the technical manuscript [5], we prove a circuit
pruning identity, depicted in Figure 5b there, which we
then use to prove the above theorem. Namely, we itera-
tively identify leaves of G and remove them by using the
pruning identity. We continue with this process until the
remaining graph has no edges. The full details are in the
technical manuscript [5].

P1

P2

P3

Pm

...
. . .

|+ m

P1

P2

P3

Pm

...
. . .

|+ m

=

X X

Figure 1: Auxiliary syndrome extraction circuit to mea-
sure the stabiliser g = P1P2 . . . Pm.

2

3

1

4

4 3

1 2

g1 g2

|+
|+

|+
|+

na

nb

Y

Y

Y

Y

g1 = X ⊗X ⊗X ⊗X ⊗ I ⊗ I

g2 = Z ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ Z

gnb
2

√
g2

gnb
2

√
g2

is equivalent to

na

nb

Figure 2: (top) Graphical illustration of a pair of tangled
syndrome extraction circuits that measures the stabiliser
h = g1g2 = −XXY Y ZZ as a product of component op-
erators g1 = XXXXII and g2 = IIZZZZ. The X and
Z Pauli terms of a component operator are coloured red
and blue, respectively. (middle) Circuit for measuring h,
as specified by the top subfigure, with the outcome given
by na⊕nb. This circuit requires low connectivity and low
depth to measure the product g1g2 by violating the (b)
condition. (bottom): An equivalent circuit that shows
direct entanglement (red CZ gate) of auxiliary qubits.
There is a Clifford correction to achieve the desired post-
measurement state. However, after two rounds of the
protocol, the Clifford correction becomes a Pauli correc-
tion.
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Figure 3: (top) A weight-5 twist-defect Pauli operator
used for lattice surgery involving a Y Pauli term. The
X, Y and Z Pauli terms are coloured red, green and blue,
respectively. (middle) A sixth qubit (purple) initialised in
the |i⟩ state, and a weight-6 operator we can measure on
these six qubits using our tangling schedules technique.
(bottom) Graphical representation of the tangled circuit
we can use to measure the weight-6 operator. Since the
purple qubit was initialised in a Y -eigenstate, we effec-
tively measure the weight-5 twist-defect XXYXX.

4 Fault-tolerant quantum computing on
square-grid connectivity QPUs

In order to execute fault-tolerant quantum computa-
tion with the surface code, a popular way is to use the
Pauli-based computational model [1, 2, 3, 8], where the
major overhead is performing a series of multi logical
qubit Pauli measurements. This can be achieved in a 2D
planar architecture using lattice surgery [2, 3, 4, 7, 8, 9].
Some types of lattice surgery can be performed easily on
a square-grid connectivity QPU by measuring only lo-
cal stabilisers, meaning that one auxiliary qubit can be
allocated for each stabiliser, connected to the qubits on
which the stabiliser is supported. However, if the surface
code patches are not positioned in a particular way, or if
one of the logical Pauli terms is a Y , then the merge step
of lattice surgery needs some irregularly-shaped, long-
range stabilisers, typically so-called elongated rectangles
or twist defects. A naive approach to measure these
could be implemented using a high-depth circuit, swap-
ping qubits as needed, but would be detrimental to log-
ical fidelity and thresholds. More sophisticated, existing
proposals to measure these irregular stabilisers mostly
concentrate on changing the hardware either: globally
by introducing additional connectivity (e.g. [2]); or lo-
cally by changing the connectivity of the QPU in certain
regions (e.g. [3]).
With our tangled syndrome extraction, we show how

to measure these elongated rectangles and twist defects
under square-grid connectivity using a low-depth circuit.

Figure 4: Example of a Y Y Y Y -lattice surgery patch
whose stabilisers can be measured under square-grid con-
nectivity using a low-depth circuit. The four logical
qubits (enclosed in squares) are encoded into unrotated
planar codes. Each red/blue plaquette is an X/Z-Pauli
operator. Schedules between them are tangled if and only
if their auxiliary qubits are connected with a line (essen-
tially corresponding to the graph G from Theorem 2).
The logical Y Y Y Y measurement outcome corresponds
to the joint parity of measurements made on the auxil-
iary qubits coloured in purple.

An example is shown in Figure 3 and the details can be
found in Section 3 of the technical manuscript [5]. We
also present two schemes to perform a general multi-qubit
logical Pauli measurement, one with the unrotated pla-
nar code (see fig. 4) and another with the rotated planar
code, thereby enabling fault-tolerant quantum comput-
ing under fourfold connectivity. We estimate their space-
time cost based on numerical simulations that compare
the quantum memory and stability experiment [6] perfor-
mances of two types of rotated planar code patches: the
default patches where each stabiliser is local, and their
tangled versions where some stabilisers are replaced by
elongated rectangles. The full details are in Section 4–5
and the Appendix of the technical manuscript [5].

5 Outlook

In our work, we have only considered applications of
Theorem 2 where a stabiliser is a product of two compo-
nent operators. It is, however, a very natural next step to
explore schemes where we use more than two component
operators to measure a stabiliser. Furthermore, whilst we
have focused on planar codes in our work, we believe our
tangled syndrome extraction method has applications for
other stabiliser codes, and this would be another natural
continuation of the present work.
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1 Background

Shallow quantum circuits are a focus of recent research,
for they are arguably the most accessible resources with
genuine quantum features and advantages. At the fun-
damental level, shallow quantum circuits with constant
depth have been shown to be hard to simulate classically
(unless BQP ⊆ AM) [1], and they outperform their clas-
sical counterparts in certain computational tasks [2, 3].
In practice, variational shallow circuits [4, 5, 6, 7] will re-
main a core ingredient of quantum algorithms in the noisy
and intermediate-scale quantum (NISQ) era [8]. Efficient
methods of learning shallow and bounded-complexity
quantum circuits have recently been proposed [9, 10, 11].
Here we ask a fundamental question: GivenN copies of

an unknown n-qubit state and the promise that it is gen-
erated by a shallow circuit, is there a faithful compression
protocol that encodes the N -copy state into a memory of
fewer (qu)bits and then decodes it up to an error van-
ishing at N → ∞? Processing quantum states in the
many-copy form is important for extracting, storing, and
distributing quantum information. Tasks where many-
copy states serve as a fundamental resource, to list a few,
include quantum metrology [12, 13, 14], quantum state
tomography [15, 16] and shadow tomography [17, 18],
quantum cloning [19, 20, 21, 22], and quantum hypothe-
sis testing [23, 24, 25, 26]. Quantum algorithms, such as
quantum principle component analysis [27], may also re-
quire states in the many-copy form. As such, compression
of quantum states in the many-copy form is a basic and
crucial protocol required for their storage and transmis-
sion. In the literature, compression of many-copy states
was first studied for the simple case of pure qubits by
Plesch and Bužek [28], experimentally demonstrated in
Ref. [29], and later generalized in a series of works to
mixed qudits [30, 31, 32, 33]. However, regarding states
generated by shallow quantum circuits, the existing re-
sults are not applicable, for they all assume the state to
be in a fixed-dimension space. Here, instead, we consider
states in a growing-dimension (D = 2n) space with com-
plexity constraints. Therefore, studying the compression
of shallow-circuit states not only requires better under-
standing of this important family of states but also de-
mands new techniques of asymptotic quantum informa-
tion processing.

∗yuxiang@cs.hku.hk

2 Overview of main results

Given a set S of quantum states, the task of faithful
N -copy compression is to design a protocol that consists
of an encoder EN and a decoder DN such that the com-
pression error vanishes for large N :

lim
N→∞

sup
ρ∈S

dTr
(
DN ◦ EN (ρ⊗N ), ρ⊗N

)
= 0. (1)

Here dTr denotes the trace distance between quantum
states. The encoder EN and the decoder DN are de-
pendent on N but are independent of the input state.
The memory cost is characterized by the dimension of
the Hilbert space spanned by {EN (ρ⊗N )}. The goal of
compression is to reduce the memory cost

M := log2

∣∣∣Supp{EN (ρ⊗N )
}
ρ∈S

∣∣∣ , (2)

i.e., the number of (qu)bits required for storing EN (ρ⊗N ),
while respecting the faithfulness condition (1).

Here, we are interested in the set of shallow-circuit
states Ssc, which contains all n-qubit pure states that
can be generated from |0⟩⊗n by circuits of depth no more
than a constant d. As a proof-of-principle example, we
focus on the most representative case of brickwork shal-
low circuits and consider the set of shallow-circuit states

Ssc :=
{
|ψ⟩ : |ψ⟩ = Usc|0⟩⊗n ∃Usc

}
, (3)

where Usc is a brickwork circuit with bounded depth (≤
d).

Without compression, the memory cost of storing the
input state equals N · n qubits. Our main contribution
is to show that a faithful N -copy compression exists for
Ssc, as long as N grows at least as a polynomial of n
with a high enough degree. The memory cost of the
compression is linear in n and logarithmic in N , i.e.,
M = O(n · log2N), achieving an exponential memory
reduction in terms of N . Moreover, the memory does
not have to be fully quantum. Instead, one may use a
classical-quantum hybrid memory, where the ratio be-
tween the number of qubits and the number of classical
bits decreases as O(log2 n/ log2N). That is to say, when
N is large, the memory consists mainly of classical bits,
while a fully classical memory doesn’t work. More details
can be found in the technical manuscript.

Following the main result, it is natural to ask if the
memory cost can be further reduced. We prove that a
memory of size Ω(n · log2N) is required for keeping the
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compression faithful. In this sense, our compression pro-
tocol is optimal in the scaling of n and N .
To establish the compression protocol, we develop

novel tools for quantum information processing in the
asymptotic regime of many copies, including a method
of parameterizing shallow-circuit states in a small neigh-
borhood with only poly(n) parameters and a correspon-
dence between copies of a low-complexity state and a
multi-mode coherent state. These tools can be further
applied to other information processing tasks involving
complexity-constrained quantum states.

3 Discussions

We have shown that N copies of an n-qubit shallow-
circuit state can be optimally compressed to Θ(n·log2N)
qubits. Intriguingly, the two key parameters n (the num-
ber of qubits per copy) andN (the number of copies) take
distinct positions in the compression rate. We may give
an interpretation to this phenomenon: n is the parameter
of informativeness, as it is proportional to the number of
free parameters of a shallow-circuit state. On the other
hand, N is the parameter of accuracy, since 1/

√
N is the

error scaling of tomography, i.e., of how well can we learn
the information in the state. Our result shows that the
N -copy state can be exponentially compressed only in
the parameter of accuracy.
Besides memory efficiency, one may also be curi-

ous about the computational efficiency of shallow-circuit
state compression. Unfortunately, the compression pro-
tocol in this work, despite being memory-efficient, is
not computational efficient. The main obstacle is that
the protocol requires searching over a covering mesh of
shallow-circuit states, whose cost is exponentially large
(in n). It is noteworthy that this is also the key step
of converting a part of the memory to classical bits. It
is thus intriguing to conjecture that any protocol using
a hybrid memory is computationally inefficient. On the
other hand, there exist compression protocols using fully
quantum memory [30, 31] that do not require search-
ing, and there remains hope that these protocols could
inspire a computationally efficient protocol for shallow-
circuit states.
As we focused on the most fundamental case, there is

plenty room for extension. For example, one may con-
sider shallow-circuit states with a 2D structure, and the
techniques developed here should apply. Moreover, the
circuit depth d is treated as a constant throughout this
work, but from the derivation of results it can be seen
that the compression will still be faithful when d grows
very slowly (e.g., d ≪ log n) with n. In particular, it
would be interesting to cover pesudorandom quantum
states [34], which are low-depth states processing approx-
imate Haar-randomness and are thus of particular inter-
est in quantum cryptography. At last, one may even take
into account the effect of noise and consider the compres-
sion of noisy shallow-circuit states. While similar results
are expected there, some techniques in this work do not
immediately generalize to mixed states and require mod-
erate adaptation.

This work serves as the first step of establishing a
new direction of coherent quantum information process-
ing where the complexity of resources determines the rate
and performance of processing, which goes beyond the ex-
isting literature that focused on incoherent information
processing [9, 10, 11]. For future perspectives, it is our
goal to consider more tasks such as cloning [19, 20, 21, 22]
and gate programming [35, 36, 37, 38, 39] and, ultimately,
to re-examine the entire quantum Shannon theory estab-
lished in the past decade from the new perspective of the
NISQ era.
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Abstract. In this work [arXiv:2401.13946], we present a polynomial-time quantum algorithm for solving
the ground states of a class of classically hard Hamiltonians. The idea is to introduce a mapping f : ρ→ |ρ⟩
to use density matrices to represent pure states. We show that this mapping makes sense by giving an
efficient method to obtain the information of |ρ⟩ from measurements on ρ. Under this mapping, the
Lindblad master equation (LME) becomes a Schrödinger equation which contains natural imaginary time
evolution. The steady state of the LME, therefore, corresponds to the ground state of L†L with L the
Liouvillian operator of the LME. We show the runtime of the LME has the O(log(ζ−1)) scaling with ζ the
overlap between the initial state and the ground state compared with the O(poly(ζ−1)) scaling in other
algorithms. We give concrete constructions on Hamiltonians that are quantumly easy by our algorithm
and classically hard at the same time.

Keywords: Quantum algorithms, Open quantum systems, Quantum advantage

1 Introduction

Solving the ground states of general Hamiltonians is
believed to be difficult for both classical and quantum
computers. For quantum algorithms, a standard method
is to use quantum phase estimation [1] (QPE) combined
with amplitude amplification [2] (AA). Given a Hamil-
tonian whose spectral gap between the ground state and
the first excited state is bounded by ∆, the required run-
time to prepare its ground state to a fidelity 1 − ε is of
order O(poly(∆−1)poly(ε−1)poly(ζ−1)) with ζ the over-
lap between the initial state and the ground state. More
efficient algorithms based on linear combinations of uni-
taries and quantum signal processing [3, 4, 5] all adopt
the idea of actively projecting out the ground state in
some sense and can improve the runtime to an order
O(poly(∆−1)log(ε−1)poly(ζ−1)) with an exponential im-
provement over the precision ε.
However, from the O(poly(ζ−1)) scaling of the run-

time in the above algorithms, we can see why solving
ground state can be even inefficient on quantum com-
puters [6, 7]. As the number of qubits n of the sys-
tem grows, with no prior knowledge, the overlap be-
tween an initial state and the ground state is exponen-
tially small O(exp(n)−1), thus the runtime grows expo-
nentially with the qubit number. However, in this work,
we will present a quantum algorithm different from all the
above types for solving ground states of a certain class
of classically infeasible Hamiltonian with the runtime
of order O(∆−1log(ε−1/2ζ−1)) whose runtime is around

∆−1( ln(2)2 n+ ln(ε−
1
2 )).

∗ustcszx@mail.ustc.edu.cn

2 Algorithm

We begin to introduce our algorithm. The first com-
ponent comes from the dynamics of open quantum sys-
tems. Consider putting a system in an environment that
is large enough such that the Markovian approximation
is valid, then the dynamics of the system is governed by
the Lindblad master equation (LME) [8, 9]:

dρ

dt
= L[ρ] = −i[H, ρ] +

∑
i

λi(FiρF
†
i − 1

2
{ρ, F †

i Fi}) (1)

where ρ =
∑

ij ρij |i⟩⟨j| is the density matrix of the sys-
tem and Fi are quantum jump channels with strength λi.
LME describes the dissipative nature of a system coupled
with an environment. To see this more clearly, we can
re-express the above LME as a vector form [10, 11]:

dρ⃗

dt
= Lρ⃗ (2)

where ρ⃗ =
∑

ij ρij |i⟩|j⟩ is the vector representation of the
density matrix ρ and L is the Liouvillian generator for
the LME semi-group which are not Hermitian in general
has the following matrix form:

L = (−i(H ⊗ I − I ⊗HT ) +
∑
i

λiD[Fi]) (3)

where D[Fi] = Fi ⊗ F ∗
i − 1

2
F †
i Fi ⊗ I − I ⊗ 1

2
FT
i F

∗
i

Eq. 2 is attractive as it can be understood as a
Schrödinger equation with non-Hermitian Hamiltonian
iL which thus contains a natural imaginary time evolu-
tion. If the LME has a steady density matrix ρss i.e.
L[ρss] = 0, then the corresponding ρ⃗ss is the unnormal-
ized ground state of Hermitian Hamiltonian L†L with
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zero ground energy. Thus, the information of the ground
state of L†L is contained in ρss. The question is how
to retrieve the information, which leads to the second
component of our algorithm. We introduce the following
mapping:

f : ρ→ |ρ⟩ (4)

where |ρ⟩ is defined as 1
Cρ

∑
ij ρij |i⟩|j⟩ with the normal-

ization factor Cρ = ||ρ||F =
√∑

ij |ρij |2. The key is how

to understand this mapping. In this work, this map-
ping means that we are treating density matrices as pure
states. For example, a single-qubit maximum mixed den-
sity matrix (|0⟩⟨0|+|1⟩⟨1|)/2 is treated as a two-qubit Bell
state (|0⟩|0⟩+ |1⟩|1⟩)/

√
2. We will call the subsystem la-

beled by index i the row subsystem and the subsystem
labeled by index j the column subsystem. This mapping
makes sense due to the following relation:

⟨ρ|A|ρ⟩ = Tr(Bρ⊗ ρ)

Tr(ρ2)
(5)

where each matrix element of B Bil,jk = ⟨i|⟨l|B|j⟩|k⟩ has
the following relation with A:

Bil,jk = Aij,kl (6)

Eq. 5 means the information of |ρ⟩ i.e. the value of
⟨ρ|A|ρ⟩ with A a Hermitian operator can be obtained
from ρ by the value of the ratio of an operator B’s ex-
pectation value under ρ⊗ ρ to the purity of ρ. We name
B as the substitute operator of A.
Having the formula Eq. 5, the following questions are

how to measure its right-hand side and how efficient the
measurement can be. Before introducing the measure-
ment procedure, a prior thing to show is that the tensor
product properties of A are not lost in B. More clearly,
if each index of A in Eq. 6 actually contains indexes of
n qubits e.g. i → i1i2...in, then the following relation is
satisfied:

if: Ai1i2...inj1j2...jn,k1k2...knl1l2...ln =

A1
i1j1,k1l1A

2
i2j2,k2l2 ...A

n
injn,knln ,

then: Bi1i2...inl1l2...ln,j1j2...jnk1k2...kn
=

B1
i1l1,j1k1

B2
i2l2,j2k2

...Bn
inln,jnkn

(7)

where relations between A1, A2, ...An and B1, B2, ...Bn

satisfy the rules in Eq. 6. Due to the relation in Eq.
6, n > 1 situations can be generalized from the basic
n = 1 case where A is a 2-qubit operator. For this case,
the Hermitian A can be expressed as a real linear com-
bination of 16 2-qubit Pauli operators. Each operator
has a corresponding B operator which we will call the 2-
qubit Pauli substitute operator. Interestingly, although
the Hermiticity of 2-qubit Pauli operators is lost in the
2-qubit Pauli substitute operators, the unitarity is not,
i.e. each 2-qubit Pauli substitute operator is unitary. All
16 2-qubit Pauli substitute operators are summarized in
Table. 1. The unitarity of 2-qubit Pauli substitute op-
erators makes sure that we can measure the expectation
Tr(Bρ⊗ρ) by Hadamard tests [12]. Concretely, consider

ID A B Spectra of B
1 II 0.5II + 0.5XX + 0.5Y Y + 0.5ZZ {1,1,1,-1}
2 XX 0.5II + 0.5XX − 0.5Y Y − 0.5ZZ {1,1,-1,1}
3 Y Y −0.5II + 0.5XX − 0.5Y Y + 0.5ZZ {1,-1,-1,-1}
4 ZZ 0.5II − 0.5XX − 0.5Y Y + 0.5ZZ {1,-1,1,1}
5 IX 0.5IX + 0.5XI + 0.5iY Z − 0.5iZY {-1,i,-i,1}
6 XI 0.5IX + 0.5XI − 0.5iY Z + 0.5iZY {-1,i,-i,1}
7 Y Z −0.5iIX + 0.5iXI + 0.5Y Z + 0.5ZY {-1,i,-i,1}
8 ZY −0.5iIX + 0.5iXI − 0.5Y Z − 0.5ZY {-1,i,-i,1}
9 IY −0.5IY + 0.5iXZ − 0.5Y I − 0.5iZX {-1,i,-i,1}
10 Y I 0.5IY + 0.5iXZ + 0.5Y I − 0.5iZX {-1,i,-i,1}
11 XZ 0.5iIY + 0.5XZ − 0.5iY I + 0.5ZX {-1,i,-i,1}
12 ZX −0.5iIY + 0.5XZ + 0.5iY I + 0.5ZX {-1,i,-i,1}
13 IZ 0.5IZ + 0.5iXY − 0.5iY X + 0.5ZI {i,-i,1,-1}
14 ZI 0.5IZ − 0.5iXY + 0.5iY X + 0.5ZI {i,-i,1,-1}
15 XY 0.5iIZ − 0.5XY − 0.5Y X − 0.5iZI {1,-1,-i,i}
16 Y X 0.5iIZ + 0.5XY + 0.5Y X − 0.5iZI {1,-1,-i,i}

Table 1: The 16 2-qubit Pauli operators (A) and their
corresponding 2-qubit Pauli substitute operators (B).
Each B is unitary whose eigenvalues are presented.

a to be measured 2n-qubit Hermitian operator expressed
as a combination of m terms:

A =
m∑
i=1

giPi (8)

where Pi are 2n-qubit Pauli operators and gi are the
strengths which are real numbers. The substitute opera-
tor of A in Eq. 8 can be expressed as a similar form:

B =

m∑
i=1

giQi (9)

where due to the transformation rule Eq. 6, the tensor
product relation and the unitarity of the 2-qubit Pauli
substitute operators, each 2n-qubit Pauli substitute op-
erator Qi is unitary. Thus, the Hadamard test of O(1)
depth can be used to evaluate each Re(Tr(Qiρ ⊗ ρ)) .
The σz expectation value of the ancillary qubit gives the
value of Re(Tr(Qiρ⊗ρ)). By multiplying each estimated
value of Re(Tr(Qiρ ⊗ ρ)) by its weight gi and summing
up the results, we can obtain an estimation of the numer-
ator Tr(Bρ ⊗ ρ) in Eq. 5. There is no need to measure
the imaginary value of each Qi since they will cancel out
eventually guaranteed by the Hermiticity of A. For the
purity Tr(ρ2) in the denominator, Swap tests [13] of O(1)
depth are used to obtain the purity Tr(ρ2) in the denom-
inator of Eq. 5 as 2ps − 1 where ps is the probability of
measuring the ancillary qubit in the |0⟩ state. Thus, by
using Hadamard tests and Swap tests, we can measure
the value of ⟨ρ|A|ρ⟩.

Currently, the Hamiltonian L†L we solved is calculated
from the given L, which is easy as long as there are only
polynomial terms in L. However, given a Hamiltonian H
with given ground energy E0 first, the reverse procedure
of getting L that makes H − E0 = L†L is non-trivial.
Fortunately, if we add some restrictions on L and L†L
such as locality or connectivity constraints which are very

36



practical on real quantum computers, we can get the cor-
responding L in only polynomial-time by a classical algo-
rithm called the XL algorithm [14, 15], which is the final
component of our algorithm.
Having introduced the three components of our al-

gorithm, we can now formally describe our algorithm.
Given a Hamiltonian H with known ground energy E0,
we first judge and solve whether there exists L makes
H − E0 = L†L. If the XL algorithm gives a solution L,
then we can generate a quantum system whose LME dy-
namics are governed by the L⊗ L. Then, let the system
evolve freely to the steady state ρss ⊗ ρss of the LME.
Next, we can do the measurement procedure introduced
above and use Eq. 5 to obtain ground state information
such as ⟨ρss|A|ρss⟩ with A an observable.
The total runtime of this algorithm depends on the

time of the XL algorithm, the time of LME evolution,
and the time of measurement. The evolution part de-
pends on the overlap ζ between the initial state ρ0 and
the steady state ρss defined as ζ = |⟨ρ0|ρss⟩|, the small-
est real part of the gaps between the steady state and
other eigenvectors of L (assuming L is diagonalizable
[11]) denoted as ∆ and the required final overlap 1 − ε
to be achieved. We prove the runtime of this part is
of order O(∆−1log(ε−1/2)log(ζ−1)) which is bounded by

∆−1( ln(2)2 n + ln(ε−
1
2 )). The measurement part depends

on the purity of ρss and the number of terms in A. As-
suming Tr(ρ2ss) ≥ γ and A contains m terms, then to
achieve the MSE below an accuracy ϵ2, the number of
measurement is of order O(mγ−2ϵ−2).

3 Quantumly easy and classically hard
examples

A direct example of quantumly easy and classically
hard Hamiltonians under our algorithm can be found in
Ref. [16] where LME is designed to encode quantum
circuits. Suppose we want to simulate a quantum circuit:
|ψT ⟩ = UTUT−1...U1|0⟩⊗n with all layers local, we can
then define an LME with no internal Hamiltonian and
with two types of jump operators:

Fi = |0⟩i⟨1|i ⊗ |0⟩a⟨0|a (10)

Ft = Ut ⊗ |t+ 1⟩a⟨t|a + U†
t ⊗ |t⟩a⟨t+ 1|a (11)

with i = 1, ..., n and t = 0, ..., T . This LME has a unique
state state:

ρss =
1

T + 1

T∑
t=0

|ψt⟩⟨ψt| ⊗ |t⟩⟨t| (12)

Thus, assuming P ̸= BQP, this LME is classically hard
and satisfies all the conditions (spectral gap of L, purity
of the steady state, and the locality of L.) for our algo-
rithm to be in a polynomial time. Thus, its corresponding
L†L is exactly such an example.
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1 Introduction

Quantum computing holds the promise to redefine the
limits of information processing. Quantum algorithms,
such as those for Hamiltonian simulation (HS) [1, 2, 3,
4, 5, 6, 7], solving differential equation [8, 9], and singu-
lar value transformation [10, 11], achieve at most expo-
nential asymptotic speedup compared to their classical
counterparts [12]. These algorithms provide the com-
putational power necessary for exploring complex sys-
tems, holding the potential to empower researches like
chemistry [13, 14, 15, 16, 17, 18], condensed matter
physics [19, 20, 21], cryptography [22], engineering prob-
lems [23, 24, 25] and finance [26].
Realizing a transformation on an operator, f(H), fre-

quently appears in quantum algorithms such as Hamil-
tonian simulation, amplitude amplification, matrix inver-
sion, and factoring [4, 3, 12]. We often approximate these
functions by truncated series (TS) at an integer order K,

i.e. f(H) ≈
∑K

k=0 αkH
k for some real coefficients αk,

and treat the rest as truncation error δ. An increased K
indicates higher precision but requires more qubits and
gates, and a complicated circuit leads to vanishing quan-
tum advantage [27, 28]. Yet, harnessing practical advan-
tages from any quantum algorithm remains challenging.
Simplifying circuits without compromising precision

can be achieved by reducing K. Inspired by Ref. [5], we
utilize random mixing of TS such that multiple δ cancel
out each other. Also, random mixing effectively produces
fractional K, releasing the necessity of ceiling rounding
K. In this work, we introduce Randomized Truncated
Series (RTS), a simple and general framework featuring
random mixing, applicable for general TS-based quan-
tum algorithms. RTS results in a quadratically improved
and continuously adjustable truncation error. On the
high level, we mix f1(H) :=

∑K1

k=0 αkH
k and a mod-

ified TS of order K2 > K1, f2(H) :=
∑K1

k=0 αkH
k +

1/(1 − p)
∑K2

i=K1+1 αkH
k, where p ∈ [0, 1) is the mix-

ing probability. By simple observation, the mixture,
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fmix(H) := pf1(H) + (1 − p)f2(H) =
∑K2

k=0 αkH
k, bet-

ter approximates f(H). In real cases, we may not be
able to implement f1(H) and f2(H) exactly with high
probability. We thus denote V1 and V2 as correspond-
ing actual operators. Moreover, V1(2) is generally non-
unitary, and can only be probabilistically implemented
by a quantum circuit V1(2). We thus renew the proof for
the mixing lemma proposed in Ref. [29, 30] accounting
for near-unitary dynamics.

To employ RTS, we first consider a general proce-
dure: 1. prepare a quantum state with some ancilla
|ψ⟩ ⊗ |ancilla⟩; 2. apply V1(2) on both system; 3. and
heralding on correct measurement outcome on the ancilla
system obtain the desired output state V1(2) |ψ⟩. We can
then measure observable, perform tomography, or feed
the resultant state into another quantum system. To
employ RTS, we apply V1(2) with probability p(1− p) in
step 2 and collectively sample from the measurement re-
sult. In this manner, we can only reconstruct the classical
information about the final state. However, we also find
that we can obtain the final state coherently if V1(2) is a
concatenation of identical segments. We call this kind of
algorithm segmented algorithms. For example, in Hamil-
tonian simulation, we often split the entire evolution into
pieces, where each segment corresponds to the evolution
of a small time step. We, therefore, can perform ran-
domization on these segments to enable coherent error
cancellation.

RTS is a versatile protocol that optimizes various al-
gorithms, and we demonstrate a few in detail. We an-
ticipate further generalizations to analog quantum com-
puting and time-dependent evolution. RTS is compatible
with other circuit optimization tools, and we anticipate
that RTS helps quantum devices handle more compli-
cated tasks.

2 Main results

We obtain the following renewed mixing lemma.

Lemma 1 Let V1 and V2 approximate an ideal operator
U , and let the corresponding quantum channel on a den-
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sity matrix ρ = |ψ⟩ ⟨ψ| be V1 = V1ρV
†
1 , V2 = V2ρV

†
2 and

U = UρU†. Denote the operator Vm := pV1 + (1− p)V2.
Assume the operator norm ∥V1−U∥ ≤ δ1, ∥V2−U∥ ≤ δ2,
and ∥Vm − U∥ ≤ δm, then the mixed channel Vmix :=
pV1 + (1− p)V2 satisfies

R(Vmix,U) ≤ 2ε, (1)

where R(A,B) := ∥A − B∥1 and ε = 2δm+pδ21+(1−p)δ22.

The protocol to conduct RTS is summarized below:

RTS Protocol

1. Random generate 1 and 2 with the probability
p and (1− p) respectively

2. Construct a quantum circuit V1(2) when the
outcome in Step 1 is 1(2);

3. Post-select the measurement result on the an-
cilla system;

4. Post-process the output state.

The treatment of segmented algorithms differs in step
2, we instead concatenate proper amounts of V1(2) ac-
cording to specification. The algorithmic error after ap-
plying RTS is quantified by the main theorem.

Theorem 2 Let U =
∑∞

i=0 αkH
k be an operator in se-

ries expansion form and U(ρ) = UρU† be the correspond-
ing quantum channel. Assume a quantum circuit V1 en-
codes the truncated operator V1 such that ∥U −V1∥ ≤ δ1,
there exist another quantum circuit V2 that encodes V2,
where ∥U − V2∥ ≤ δ2 and δ2 = O(δ1). Employing RTS
on V1 and V2 yields an mixing channel Vmix such that

R(Vmix,U) = O
(
δ21
)

(2)

In Theorem 2, we neglect δm in the asymptotic regime
as it will be exponentially smaller than δ1 in the case of
large K2.

When employing RTS, we choose a large p such that
we only substitute a small portion of V1 by V2, introduc-
ing few extra costs. However, Theorem 2 indicates that
a quadratic reduction in the algorithmic error will be
generated. We demonstrate how to utilize RTS and the
performances with several examples, and the results are
shown below. Beginning with the simplest case, Hamil-
tonian Simulation (HS), as HS itself is implementing a
function of a Hamiltonian, fHS = e−iHt. In the BC-
CKS algorithm, we approximate fHS in the Taylor series

and truncated it at order K, i.e. f̃HS =
∑K

k=0
(−iHt)k

k! .
We can construct two series with maximum orders of K1

and K2. The BCCKS algorithm implements these two
series with two operators, denoted as V1,HS and V2,HS

respectively, such that ∥V1,HS − fHS∥ ≤ δ1,BCCKS and
∥(pV1,HS + (1− p)V2,HS)− fHS∥ ≤ δm,BCCKS.

Corollary 3 For the BCCKS algorithm approximating
the Hamiltonian dynamic UHS = e−iHtρeiHt [4], RTS

achieves an upper bound on algorithmic error

R(Vmix,BCCKS, UHS)

≤ max

{
40

1− p
δ21,BCCKS, 8δm,BCCKS

}
,

(3)

where δ1,BCCKS = 2 (ln 2)K1+1

(K1+1)! and δm,BCCKS =

2 (ln 2)K2+1

(K2+1)! .

Quantum signal processing (QSP) implements Cheby-
shev’s polynomials with quantum walk. Thus we instead
approximate fHS using Jacobi-Anger expansion and de-
fine the series expansion operator V1(2),HS QSP and the
corresponding error δ1(2),HS QSP similar to the BCCKS
case. See the technical version for detailed constructions
of operators.

Corollary 4 In QSP implementation of UHS, the algo-
rithmic error is upper bounded by

R(Vmix,HS QSP, UHS)

≤ max
{
28δ1,HS QSP, 8

√
δm,HS QSP

}
,

(4)

where δ1,HS QSP = 4tK1

2K1K1!
and δm,HS QSP = 4tK2

2K2K2!
.

QSP can also implement other function transforma-
tions on the Hamiltonian to realize all kinds of algo-
rithms. In specific, we further elaborate on the truncated
linear function (TLF), fΓ,TLF(λ) =

λ
2Γ ,∀|λ| ∈ [0,Γ], cor-

responding to the uniform spectral amplification algo-
rithm. TLF can be implemented by a linear combination
of two error functions, approximated by Jacobi-Anger
expansion variants. We thus construct K1 and K2 trun-
cated series expansions to approximate the error function
and combine them to implement TLF.

Corollary 5 In QSP implementation of UΓ,TLF to per-
form USA, the algorithmic error is upper bounded by

R(Vmix,USA, UΓ,TLF)

≤ max

{
8δm,USA QSP,

4

1− p
δ21,USA QSP

}
,

(5)

where δ1,USA QSP = 8Γe−8Γ2

√
π

4(8Γ2)K1/2

2K1/2(K1/2)!
and

δm,USA QSP = 8Γe−8Γ2

√
π

4(8Γ2)K2/2

2K2/2(K2/2)!
.

Lastly, we consider the application of RTS to solv-
ing ordinary differential equations in the form dx⃗/dt =

Ax⃗ + b⃗. The solution is given by x⃗(t) = eAtx⃗(0) +(
eAt − 1

)
A−1⃗b, where eAt and

(
eAt − 1

)
A−1 can be ap-

proximated by truncated Taylor series. We can achieve
a much lower error by RTS.

Corollary 6 Suppose |xjmix⟩ is an approximated solution
to the differential equation at time t = jh using RTS and
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Table 1: Algorithmic error and corresponding cost for the BCCKS algorithm with and without RTS. G̃ = (7.5× 2w +6w− 26)r
is the CNOT gate cost, where w = log2 L.

Error

Cost
7G̃ 8G̃ 9G̃ 10G̃

BCCKS 1.53×10−1 1.17×10−2 8.14×10−4 5.13×10−5

with RTS 3.59×10−3 3.25×10−5 2.14×10−7 1.15×10−9

Improvement 42.5× 361× 3810× 44500×

|x(jh)⟩ is the exact solution. We can upper bound the
estimation error by∥∥∥|xjmix⟩ − |x(jh)⟩

∥∥∥ ≤ max

{
4

1− p
δ21,ODE, 8δm,ODE

}
,

(6)

where δ1,ODE ≤ Cj

(K1+1)! , and 8δm,ODE ≤ Cj

(K2+1)! , and Cj
is a problem specific constant.

For comparison, the original error upper bounds
are, keeping the leading term, 2δ1,BCCKS,

√
δ1,HS QSP,

δ1,USA QSP and δ1,ODE for Corollaries 3, 4, 5, and 6 re-
spectively. It can be easily seen that RTS achieves a
quadratic speed-up.
Although any set of parameters {p,K1,K2} provides

a quadratic speed-up, the choice does influence the ac-
tual error, and a wise choice of parameters ensures better
performance. However, it is hard to develop a procedure
that provides the optimal parameters as f(H) is arbi-
trary. We instead perform a brute force search over the
error upper bound. Since K1 and K2 are discrete with
typical values being less than 100 and the error upper
bound function is smooth with respect to p, the classical
computation for the brute force search is efficient. For
algorithms with tight upper bounds, we generate a good
suggestion on the actual error.

3 Numerical Result

We analyze the error upper bounds and costs imple-
ment RTS on the BCCKS algorithm [4] simulating the
Ising model for t = 100 with

H =
n∑

i=1

σx
i σ

x
i+1 +

n∑
i=1

σz
i , (7)

where σi are Pauli operators acting on the ith qubit and
n = 100. The simulation consists of r = 28854 segments.
To make a focused illustration of RTS, we only consider
the gate cost of the SELECT oracle since it is the dom-
inant contribution.

Each segment performing V1(2) need 3(4) SELECT
oracles, and each costsK(7.5×2w+6w−26) CNOT gates
[31], where K is the truncation order and w = log2(L).
For a fixed cost budget, we traverse all feasible sets
{K1,K2, p} that use up the budget and find the mini-
mum rϵ, which is the final algorithmic error with RTS.
The result is shown in Fig. 1, with crosses representing
the performance under discrete truncation, and the blue
line indicating the optimal error achieved at a specific

0.9 1.0 1.1 1.2 1.3 1.4
CNOT gates 1e9

10 12

10 10

10 8

10 6

10 4

10 2

100

Er
ro

r

RTS
V1, 7
V1, 8

V1, 9
V1, 10

Figure 1: Algorithmic error and corresponding CNOT gate
cost. Cross markers with different colors correspond to the
original BCCKS algorithm with discrete truncation, where
we denote V1,K1 for a K1-truncated V1 operator. The solid
blue line indicates the performance when employing RTS. Any
point on the line corresponds to the error obtained by the
optimal set of parameters {K1,K2, p} using up all CNOT
gates.

cost using RTS. We can see in Fig. 1 that the blue line
declines faster than the orange dotted line, which is the
line fitting the 4 cross marks, meaning we greatly im-
proved the accuracy. Therefore we can use much fewer
gates for simulation, i.e. targeting ϵ = 10−8, we save
about 30% of CNOT gates.

We also evaluate how much RTS improves the BCCKS
algorithm in table 1. Note that we are restricted by only
four costs with the original algorithm within the error
range ϵ = [10−1, 10−5], whereas RTS enables a much finer
adjustment on circuit cost.

4 Conclusion and open problems.

We presented a simple framework RTS that applies to
arbitrary quantum algorithms relying on truncated se-
ries approximation. RTS enables a “fractional” trunca-
tion order and provides a quadratic improvement on al-
gorithmic error. Essentially, we leverage random mixing
to cancel out truncation error in two input quantum cir-
cuitsV1 andV2. We specifically exhibit the implementa-
tion of RTS in various contexts to illustrate the flexibility
of RTS. Although not evaluated in this work, RTS can
also apply to non-unitary dynamics Ref. [32, 33, 34] and
truncated-integral algorithms. We anticipate the gener-
alization of the framework into dynamics determined by
time-dependent operators, i.e. Dyson series, and analog
quantum computing model.
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Quantum limits of covert target detection
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Abstract. In covert target detection, Alice sends probe light to decide if a target is present within a
region containing thermal background radiation while remaining undetected by an adversary, Willie, who
is co-located with the target and collects all non-returning light. We rigorously formulate this problem
and derive quantum limits on Alice’s error probability in entanglement-assisted target detection given
any level of her detectability by Willie. We demonstrate how Alice approaches this limit using two-mode
squeezed vacuum probes for small to moderate background brightness while outperforming a scheme using
Gaussian-distributed coherent states.

Keywords: Quantum illumination, Covert sensing, Target detection

Alice wishes to interrogate a distant region embedded
in a thermal background for the presence or absence of a
target adversary by probing it with a microwave or opti-
cal beam and monitoring the resulting reflections. Mean-
while, the adversary, Willie, monitors his thermal back-
ground for statistical deviations from thermal noise, aim-
ing to detect if Alice is actively probing him. In this cat-
and-mouse game, how can Alice maximize her probabil-
ity of correctly detecting Willie while minimizing Willie’s
chances of knowing he is being probed? This question falls
under the domain of covert sensing and naturally arises
in the adversarial arms race between radar and radar de-
tectors [1].
Sending a probe with greater energy can better sense

Willie but also risks being detected. Alice thus faces
a trade-off between performance and covertness. We
seek the ultimate limit of Alice’s performance, and ask
whether moving towards this limit be facilitated by em-
ploying nonclassical light, as is well-known for quan-
tum illumination (henceforth abbreviated as QI) in non-
adversarial settings [2, 3, 4, 5, 6, 7, 8]? Indeed, sev-
eral other covert protocols have been introduced in the
continuous-variable setting [9, 10, 11, 12, 13, 14]. We sup-
pose that Alice wishes to remain ϵ-covert, i.e., that the
probability of Willie detecting her is at most 1/2+ ϵ, and
then obtain a closed-form lower bound on her error prob-
ability as a function of ϵ, the number of available optical
modes M , and levels of loss and noise in the system. We
show that two-mode squeezed vacuum (TMSV) probes
can approach this limit in certain regimes. Comparing
TMSV performance with that of Gaussian-distributed
coherent state probes, we show that TMSV probes en-
able a reduction in error probability by a factor scaling
exponentially with M .

1 Problem Setup

Entanglement-assisted target detection is illustrated in
Fig. 1. Alice (A) wishes to detect the absence (h = 0)

∗tham0157@e.ntu.edu.sg
†ranjith.nair@ntu.edu.sg
‡gumile@ntu.edu.sg

or presence (h = 1) of a weakly reflecting target (the
two cases are assumed equally likely for simplicity) with
round-trip reflectivity. The target is immersed in a ther-
mal background such that each background mode is in
a thermal state ρth (NB) = ∑∞n=0Nn

B/(NB + 1)n+1 ∣n⟩ ⟨n∣
with average photon number NB . Alice controls both
the transmitter and receiver, and can prepare at mostM
signal modes. Thus, any covert sensing protocol involves
preparing some incident probe state

∣ψ⟩IS =∑
n

√
pn ∣χn⟩I ∣n⟩S , (1)

where ∣n⟩S = ∣n1⟩1 ∣n2⟩2⋯ ∣nM ⟩M is an M -mode number
state of the signal (S) system, {∣χn⟩I} are normalized
(not necessarily orthogonal) states of an idler (I) system,
and pn is the probability mass function (pmf) of n. The
signal modes are sent to probe the target region while
the idler is held losslessly. In the return (R) modes, Alice

obtains an h-dependent return-idler state ρ
(h)
IR that she

measures to make a guess hest for the value of h. Alice’s
performance is given by the error probability PA

e , i.e., the
probability that hest ≠ h.

The adversary, Willie (W), is situated at the target’s
location. We model the target by a beam splitter with re-

flectance η ≪ 1. Let â
(m)
S and â

(m)
B be annihilation oper-

ators of the corresponding signal and background modes
(see Fig. 1). Then

â
(m)
R =

√
η(h) â

(m)
S +

√
1 − η(h) â(m)B , (2)

represents the annihilation operator of the mth mode re-
turning to Alice, where η(0) = 0 and η(1) = η. When

Willie is present (h = 1), he receives the modes â
(m)
W for

each m = 1, . . . ,M from the other output of the beam
splitter so that

â
(m)
W =

√
1 − η â(m)S −√η â(m)B . (3)

Thus Alice faces the hypothesis test

H0 ∶ ρ0 = (Tr S Ψ)⊗ ρth (NB)⊗M ,
H1 ∶ ρ1 = (idI ⊗L⊗Mη,NB

)Ψ,
(4)
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Figure 1: (a) In covert target detection, Alice (A) attempts to detect the presence of the adversary Willie (W) using
an ancilla-entangled probe while remaining undetected herself. In the beam-splitter model (b), Alice prepares a joint

state Ψ with M signal (S) and idler modes (I). Each signal mode â
(m)
S is either replaced by a background mode â

(m)
B

when Willie is absent, or mixed with the background at a beam splitter with reflectance η ≪ 1 representing the target.

Alice makes an optimal measurement on the return modes â
(m)
R , m = 1, . . .M along with the idler system. Willie,

when present, makes an optimal measurement on all his modes â
(m)
W .

where Lκ,N denotes a thermal loss (or noisy attenua-
tor) channel of transmittance κ and excess noise N [15].
Meanwhile, Willie is constrained only by the laws of
physics and can have prior knowledge of which probe
Ψ = ∣ψ⟩ ⟨ψ∣IS Alice plans to use. He thus faces the hy-
pothesis test

H′0 ∶ σ0 = ρth (NB)⊗M ,
H′1 ∶ σ1 = L⊗M1−η,NB

(Tr I Ψ) .
(5)

to decide whether Alice has sent a probe (H′1) or not
(H′0).

Assuming that both parties make optimal quantum
measurements and that their hypotheses are equally
likely, their resulting average error probabilities are given
by the Helstrom formula [16]:

PA
e = 1/2 − ∥ρ0 − ρ1∥1 /4 ≤ inf

0≤s≤1
Tr ρs0ρ

1−s
1 /2, (6)

PW
e = 1/2 − ∥σ0 − σ1∥1 /4 ≤ inf

0≤s≤1
Tr σs

0σ
1−s
1 /2, (7)

where ∥X∥1 ∶= Tr
√
X†X is the trace norm. We have also

indicated the quantum Chernoff bound [17] (QCB) that is
an exponentially tight upper bound on the average error
probability. Alice’s probe state is said to be ϵ-covert if

PW
e ≥ 1/2 − ϵ. (8)

We then ask: What is Alice’s minimal error probability
PA
e (as a function of M) when optimized over ϵ-covert

probes?
The above framework deviates in several ways from

previous studies of covert target detection. Firstly, our
notion of ϵ-covertness defined by way of Willie’s error
probability has clear operational significance unlike pre-
vious formulations that use the relative entropy [18]. Sec-
ondly, the background brightness is fixed at NB regard-
less of whether a target is present or absent. In con-
trast, most prior work on QI makes – for mathematical

expediency – the so-called No Passive Signature (NPS)
assumption which fine-tunes background brightness from
its nominal value of NB to NB/ (1 − η) when the target is
present. While the NPS approximation is accurate when
M is not very large, even standard QI has a quantum
advantage only when M ≫ 1, so that the physical basis
of the assumption is questionable for standard QI and for
covert detection (see [19] for a detailed discussion). As
we show below, dropping the NPS assumption induces
new qualitative behaviour in both non-adversarial and
covert QI. Alice’s performance then explicitly depends on
the number M of signal modes, e.g. the available time-
bandwidth product for temporal modes . This is the
case for many other other quantum sensing and discrim-
ination problems [20, 21, 22, 23] – since Alice gains some
information even for a vacuum probe, this phenomenon
is referred to as a passive signature (PS).

2 Technical Tools

2.1 QI with Passive Signature

We first derive analytical bounds on Alice’s perfor-
mance in the non-adversarial setting, i.e., for standard
QI but without the NPS approximation. In ref. [19], we
derive a general lower bound for Alice’s error probability:

PA
e ≥

1

2

⎡⎢⎢⎢⎢⎢⎣
1 −

¿
ÁÁÀ1 − ν2M [

∞
∑
n=0

pn (1 − γη,NB
)

n
2 ]

2⎤⎥⎥⎥⎥⎥⎦

≥ 1

2
[1 −
√

1 − ν2M (1 − γη,NB
)NS] , (9)

where γη,NB
= η
(1−η)NB+1 , NS ∶= ∑∞n=0 npn is the total

signal energy, and we have used Jensen’s inequality in
the last step. The above result gives the ultimate limit
of Alice’s performance in QI with the PS assumption. It
contrasts with the ultimate quantum limits of NPS QI
derived in ref. [24] (see Eqs. (12)-(13) therein), which do
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not include the M -dependent factor ν2M characteristic
of the passive signature.

2.2 Necessary condition for ϵ-covertness

To incorporate the covertness constraint, we formu-
late a necessary condition for ϵ-covertness. Suppose
that Alice transmits the probe Ψ of Eq. (1) with sig-
nal energy NS . The Fuchs-van de Graaf inequality
PW
e ≤ F (σ0, σ1) /2 that relates the trace distance to the

fidelity [25] between Willie’s hypothesis states (5) im-
plies that F (σ0, σ1) ≥ 1 − 2ϵ is a necessary condition for
ϵ−covertness. We use this to show that

∞
∑
n=0

√
qn

¿
ÁÁÀ(n +M − 1

n
)

Nn
B

(NB + 1)n+M
≥ 1 − 2ϵ (10)

is a necessary condition for ϵ−covertness, where qn =
⟨n∣σ1 ∣n⟩W and {qn = ∑n∶n1+⋯+nM

qn}
∞
n=0 is the pmf of the

total photon number seen by Willie under H′1 [19]. The
condition of Eq. (10) implies that as ϵ is decreased, Alice’s
per-mode probe must look progressively more similar to
the thermal background as we increase M (see [19] for
details). In a significant departure from standard QI, it
therefore does not make operational sense to consider the
scaling of Alice’s performance with signal energy NS . In-
stead, the key resource is the number of available optical
modes M .

3 Fundamental limit of PA
e under ϵ-

covertness

The thermal loss channel L1−η,NB
connecting the

modes in S to those in W (cf. Eq. (5)) admits the de-
composition

L1−η,NB
= AG ○L(1−η)/G (11)

into a quantum-limited amplifier AG of gain G = ηNB +1
and a pure-loss channel L(1−η)/G of transmittance (1 −
η)/G [26]. The right-hand side of the bound of Eq. (9) is
expressed in terms of the probability generating function
(pgf) PS (ξ) of the total photon number in S, defined as
PS (ξ) ∶= ∑∞n=0 pn ξn evaluated at ξ =

√
1 − γη,NB

. Using
Eq. (11), we can extend Haus’s pioneering work on con-
necting the input and output photon number pgfs of these
single-mode quantum-limited channels [27] to multimode
thermal loss channels and find the one-to-one mapping
between the photon number pgf of the probe and the
pgf PW (ξ) ∶= ∑∞n=0 qnξn of the total photon number in
Willie’s modes under H′1. By connecting PW (ξ) to the
covertness condition of Eq. (10), we can show that [19]

PA
e ≥

1 −
√

1 − (1 − 2ϵ)4 f2Mη,NB

2
, (12)

where fη,NB
= ν(NB + 1 − NB

x
)[ηNB(1 − x) + 1], x =

1 − Θ
η[1+NB(1−Θ)] and Θ =

√
(1−η)(NB+1)√
1+(1−η)NB

. This provides a

universal, analytical and probe-independent lower bound
for Alice’s error probability for any desired covertness
level ϵ.
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Figure 2: The lower bound Eq. (12) (solid) on Alice’s
error probability is compared to that of ϵ-covert TMSV
(dashed) and GCS probes ( dash-dotted line) for NB =
0.2 (blue) and NB = 0.002 (red). ϵ = 10−3 for both. For
largeM , the ratio of the error exponents predicted by the
bound (12) and of TMSV probes are 1.37 (for NB = 0.2)
and 1.16 (for NB = 0.002) respectively.

When limited to classical probes, Alice can generate
Gaussian-distributed coherent state (GCS) probes – co-
herent states in each signal mode with amplitude α ∈ C
chosen according to a product circular Gaussian distribu-

tion P (α) = 1
(πNS)e

−∣α∣2/NS with identical per-mode en-

ergy as for the TMSV probe (Alice’s measurement can be
conditioned on her knowledge of the amplitude transmit-
ted in each of the M shots). Note that taking NS = NB

ensures perfect covertness. Figure 2 compares the lower
bound of Eq. (12) to quantum TSMV and classical GCS
probes. For each M , we consider the M -mode indepen-
dently and identically distributed (iid) TMSV state with
per-mode signal energy NS chosen to be the maximum
allowable by the covertness constraint. For NB = 0.2, the
large-M error exponent achieved by TMSV probes was
about a factor of 1.37 lower than that of the bound, with
the discrepancy becoming smaller for smaller NB , along
with the gap between the GCS and TMSV exponents.

4 Discussion & Outlook

We introduced an operational framework for ϵ-covert
quantum target detection and obtained a fundamental
lower bound (12) on Alice’s error probability. As Fig. 2
indicates, the TMSV error exponent is close to that of our
lower bound in the optical regime of NB ≪ 1, with the
maximum advantage over the Gaussian-distributed co-
herent states being obtained for NB ≃ 0.2. Equation (9)
also constitutes the first universal performance limit for
standard non-covert QI without the unphysical NPS as-
sumption. For many further research avenues opened up
by our work, as well as detailed proofs of our results, see
ref. [19].
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Abstract. Recent proposals for global-scale quantum networking leverage strings of space-borne quantum
repeaters with on-board quantum memories. Here, we propose an alternative to such repeater constella-
tions using only a single satellite with two memories that effectively acts as a time-delayed version of a
single quantum repeater node. We estimate the secure finite keys and demonstrate an improvement of
at least three orders of magnitude over prior single-satellite methods that rely on a single memory, while
simultaneously reducing the necessary memory capacity by the same amount. We propose an experimental
platform to realise this scheme based on rare-Earth ion doped crystals.

Keywords: Quantum networking, quantum key distribution, entanglement distribution.

Long-distance (> 103 km) quantum entanglement distri-
bution will be crucial for the development of global net-
worked quantum computers, sensors, positioning, navi-
gation and timing, as well as for fundamental tests of
physics. The main scientific and technical challenge is the
high loss suffered by directly transmitted quantum sig-
nals that constrains the range and rate of entanglement
distribution. Currently, fibre-based long-distance quan-
tum communication experiments are limited to around
a few hundred to a thousand kilometres [1], made possi-
ble by new techniques such as twin-field (TF) quantum
key distribution (QKD) [2] and developments in low-loss
fibre and low-noise single photon detectors. However,
going beyond ∼ 103 km requires alternate approaches,
such as quantum repeaters (QRs) or free-space channels
via space-based platforms.

The use of free-space channels can extend the direct-
transmission limit, with fibre exponential loss scaling
replaced by the (mainly) inverse square loss scaling
of free-space propagation. Recently, the Micius satel-
lite [3] demonstrated milestones such as ground-space
teleportation [4], QKD with entangled photons across
1120 km [5], intercontinental QKD operated in trusted
node [6] and the integration of satellite links into long-
distance, trusted node ground networks [7]. These
groundbreaking achievements are however limited by
line-of-sight, the connection distance d between two
ground stations is limited by the requirement to be in
simultaneous view of the satellite (d ≤ 2000 km for al-
titude h = 500 km) unless the satellite operates as a
trusted node [8].

Fully global (d > 104 km) coverage with satellites
has been proposed by several groups. An initial pro-
posal was a hybrid, space-ground QR system [9] where
quantum memories (QMs) were located in ground sta-
tions. This scheme was recently extended towards fully
satellite-based QRs [10, 11] where the QMs are lo-

∗guendomu@physik.hu-berlin.de
†jsmdrsidhu@gmail.com

cated onboard satellites, eliminating intermediate trans-
atmospheric quantum links. These works demonstrated
that entanglement distribution across the whole globe
would be possible with a network of satellites equipped
with QMs and entangled photon pair sources. It was
shown that a storage time of around <1 s would be suffi-
cient to reach global distances [10, 11] whereas intercon-
tinental distances of > 8000 km would be possible with
memory times of around 100 ms [11, 12].

An alternative to multiple QR nodes is to physically
transport [13] entangled qubits, given sufficiently long
qubit coherence times. This could be achieved via ac-
tive quantum error correction [14] or by with ultra-long
lifetime QMs [15, 16]. Here, we propose a time-delayed
version of a single-node quantum repeater that can be
implemented with a single orbiting satellite carrying an
ultra-long-lived QM, which we refer to as QM1, in com-
bination with a shorter lived (∼ms) QM (QM2). The ad-
dition of the lower requirement QM2 provides a feasible
route towards dramatic improvements in secure key gen-
eration over QM1 alone. Using QKD as a benchmark for
quantum communication, our scheme extends the perfor-
mance and reduces the hardware requirements of a previ-
ous related proposal [15] by several orders of magnitude,
especially when taking into account fine-block size effects.

To start, we first provide an overview of our time-
delayed quantum repeater protocol. First, global quan-
tum communications using a low-Earth orbit (LEO)
satellite equipped with a QM with a lifetime in the order
of the associated orbital period (90 minutes for LEO)
and an entangled photon pair source has been previ-
ously proposed [15]. The source first sends one of the
photons in each entangled pair to ground station A and
the other half is stored in the on-board QM. The satel-
lite then continues in its orbit and stored photons in the
QM are retrieved and sent to ground station B as it flies
over. Our scheme instead supplements a long-lived QM
together with a second shorter-lived QM. QM1 needs to
have τQM1 > 1 hour with a high multimode capacity
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whereas QM2 only needs τQM2 ∼ 2L/c, where L is the
range between the satellite and the ground station. Using
a single QM limits the key length scaling to η2ch whereas
a second QM enhances the scaling to ∼ ηch, where ηch is
the average single channel loss, all else being equal. Our
scheme can be regarded as the time delayed version of a
single quantum repeater node [17, 18, 19] that enhances
the achievable key rates and tolerable losses and elimi-
nates the requirement for the two ground stations to be
in simultaneous view.

The protocol begins with the start of the satellite
pass over ground station A and operating its entan-
gled photon-pair source (EPS, rate s). One photon in
each pair is stored in QM1, the other photon is sent to
ground station A through the space-ground channel. If
this transmitted photon is lost, then the corresponding
stored photon in the QM1 is erased, else the stored pho-
ton is kept if ground station A indicates successful re-
ception. For QKD, the received photon is measured (as
in BBM92 [20]) or, more generally, the ground stations
could store the received photons in a QM if entanglement
was required instead.

After the first overpass, the satellite continues in its or-
bit and the source again starts emitting entangled photon
pairs when passing over ground station B. One photon of
each pair is sent to ground station B whereas the other
photon is stored in QM2. If ground station B successfully
receives the transmitted photon, then the corresponding
photon from QM2 is immediately retrieved together with
a photon stored in QM1 and entanglement swapping per-
formed by a Bell state measurement (BSM). The result
of the BSM is then broadcast for local unitary corrective
operations [17, 18]. Although we consider a QM paired
with an entangled photon pair source, the same protocol
can be realised with a DLCZ-type memory, where the
QM can emit a single photon entangled with its internal
atomic states [21].

Having now conceptually introduced our time-delayed
quantum repeater protocol, we can quantify the rela-
tive performance against the previous single-memory sce-
nario. Using QKD as a benchmark, we follow the ap-
proach of Ref. [5] to write the BBM92 finite-key length
with symmetric basis choice. Specifically, considering
the successfully entanglement-swapped pairs shared by
ground stations A and B, the finite key length in the Z
basis is then given by,

LZ =nZ − nZh

eX +

√
(nZ+1) log( 1

εsec
)

2nX(nX+nZ)

1 − ∆


− fenZh (eZ) − nZ∆ − log

2

εcorrε2sec
,

(1)

where εsec and εcorr are secrecy and correctness levels so
that the protocol is ε-secure if ε ≥ εsec + εcorr [5], ∆ is
a factor to account for the mismatch of different detec-
tor efficiencies, nZ/X are the number of matching and
coincident Z and X basis detection events respectively,
and eZ/X are the quantum bit error rates (QBER) for
each basis. The key length calculation for the X ba-

sis is similar to Eq. 1 thus the total key length becomes
L = LX +LZ . Note that a more refined model of the key
length is possible, but we choose this approach due to its
relative simplicity for comparative purposes.

The QBERs with a single QR node (2 QMs) as in our
protocol are given by [17],

eX =λBSMαAαB [εm (1 − εdp) + (1 − εm) εdp]

+
1

2
[1 − λBSMαAαB ] ,

(2)

and

eZ = λBSMαAαBεm +
1

2
[1 − λBSMαAαB ] . (3)

Here λBSM is a parameter that quantifies the ideal-
ity of the BSM and it is related to the BSM fidelity
FBSM =

√
3(λBSM+1)/4; αk is the probability of a real

detection event in ground station k; εm is the misalign-
ment error that also includes the source infidelity due to
possible multi-photon excitations and εdp is total dephas-
ing during the storage in memories which depends on the
individual memory errors em. Ensemble based memories
that we consider in this work have been shown to pre-
serve the phase, independent of the storage time [22, 23,
24].

This is since re-emission of the stored information re-
lies on rephasing of these excitations [25], any dephasing
will result in lower operation efficiency while maintaining
high fidelity. We assume a memory efficiency of ∼ 60%
at 90 minutes following the observed T2 = 6 hours in a
Europium doped crystal [16, 26] and λBSM = 0.98 [17,
18] corresponding to FBSM = 0.9925. We further as-
sume two identical passes over ground stations A and B
each of 240 s duration and without memory constraints.
Consequently, we will determine the required memory ca-
pacity as a result. We also do not assume a particular
orbit, apart from being consistent with the overpass times
and channel losses considered and achievable with realis-
tic transmitter and receiver apertures. In the following,
we finally assume an entangled photon pair source rate
s = 5 MHz, a source infidelity εm = 2%, and a tight
εcorr = εsec = 5 × 10−12.

Compared with the 1-QM scheme [15], the second QM
provides a marked advantage in the finite key setting
(Fig. 1). With a single QM, finite size effects becomes
significant after ηch ∼ 26 dB and the maximum tolerable
average loss is 28 dB, beyond which secure key gener-
ation is not possible in a single set of overpasses. This
also means that the 1-QM scheme would not produce any
finite key with channel losses such as those reported in
Ref. [5]. Fig. 1a shows the key rate per received pair,
R, for the single and double memory scheme as a func-
tion of average single channel loss (ηch). Notice that a
crossover between finite key rates is observed at an av-
erage channel loss of ηch = 25.9 dB. Fig. 1b explicitly
demonstrates the advantage of the two-memory scheme,
with higher loss tolerance and with up to three orders
of magnitude (at around ∼ 26.5 dB loss, beyond which
1-QM scheme is unable to generate secret keys) higher
secure key lengths, L, due to the repeater effect on the

49



Figure 1: Comparison of 1-QM and 2-QM Key Genera-
tion. a) Finite key rate per received pair (R) for em = 5%
(solid/dashed curves finite/asymptotic key rate); b) total fi-
nite key length (L) as a function of average single channel loss
(ηch) for em = 5% (solid/dashed curves finite/asymptotic key
length). (c) Finite key rate per received pair versus total in-
coherent noise for fixed channel losses.

second downlink indicated by the lower slope of the curve
for the 2-QM case.

The 2-QM protocol can achieve a finite key rate that
approaches its asymptotic limit even for high channel
loss and contact times of only a few minutes. In con-
trast, the 1-QM scheme shows a 15 dB gap between the
maximum tolerable loss and finite key limit due to the
greatly reduced number of received pairs, without the re-
peater effect of the second QM, imposing a severe finite
block size penalty. In the asymptotic limit, however, the
single-memory scheme could in principle tolerate higher
losses than the two-memory case due to a reduction of
errors from the absence of a non-perfect BSM (λBSM = 1

in the 1-QM case effectively) and the additional dephas-
ing in QM2. We also note that in the 2-QM case, the
BSM maximum success rate of 50% (assuming passive
ancilla-less static linear optics) halves the number of re-
ceived pairs, hence the implementation of deterministic
entanglement swapping BSMs could provide a tangible
improvement in finite key generation and increasing loss
tolerance due to longer blocks and better finite statistics.

Fig. 1c shows the effect of incoherent detector clicks,
pd, on the key rate for ηch = 25.9 dB, the crossover
point in Fig. 1a between the two schemes in the fi-
nite key setting. The two-memory scheme is more re-
silient to noise, despite the additional errors introduced
by the BSM/entanglement swapping and second mem-
ory required. This is due to the much larger block size
achievable with 2-QMs leading to lower statistical uncer-
tainties, hence tighter bounds in Eq. 1. The sensitivity
on the single channel loss is also illustrated: the dashed
curves for ηch = 27.5 dB show that the double memory
scheme has more than three times better noise tolerance
than its single memory counterpart.

In conclusion, we conceptually propose a new quan-
tum communication protocol that physically transports
stored qubits in an ultra-long-lived QM (lifetime in the
order of the orbital period) on an orbiting satellite, and
uses a second shorter-lived QM (lifetime in the order of
a round-trip classical communication signal) to substan-
tially enhance entanglement distribution over long dis-
tances. We quantify the performance of our protocol,
and find it dramatically reduces system complexity of
global quantum networks by taking advantage of two dif-
ferent paradigms, i.e. quantum repeater behaviour and
physically moving qubits, eliminating the need to coordi-
nate orbiting strings of QR satellites and multiple op-
tical links simultaneously. Using two QMs instead of
one significantly increases the maximum tolerable chan-
nel loss while reducing the required multimode capacity
from ∼ 108 [15] to ∼ 106 despite additional errors from
the second QM, a non-ideal BSM, and 50% BSM outcome
inefficiency in the 2-QM case. Recent progress in QMs
indicates that the necessary storage time and multimode
capacity should be achievable in the near future.

These results could be improved by utilising more
recent finite key calculations that specifically address
space-based QKD scenarios. The secure key lengths may
be increased by approximately ∼ 10% or else smaller
block sizes could be used [27]. Wavelength division mul-
tiplexing may allow increased rates at which entangled
pairs can be sent through the space-Earth quantum op-
tical channel despite QM linewidth limitations. Finally,
ultra-long-lived QMs in orbit may also serve as useful
probes to investigate the intersection of quantum physics
and general relativity and enable Bell tests across Earth-
Moon distances.
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Anonymous communication in quantum networks

Gláucia Murta1 2 ∗

1 Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
2 Institute for Theoretical Physics III, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany

Abstract. A fundamental cryptographic task is secure communication, in which two or more parties ex-
change confidential messages in the presence of an eavesdropper. In some scenarios, however, the identity
of the communicating parties may also be sensitive information. In these situations, it is essential to ensure
that the identities remain concealed throughout the protocol. In this talk, I will explore how quantum
systems bring advantages to anonymous communication. I will then focus on the task of anonymously
establishing a secret key among several users in a quantum network, introducing a security framework
that encompasses both secrecy of the key and user anonymity. I will present efficient and noise-tolerant
protocols that leverage the correlations of multipartite Greenberger–Horne–Zeilinger (GHZ) states, demon-
strating their superiority over protocols based on bipartite entanglement. Finally, I will discuss a recent
experiment showcasing that the advantages of multipartite entanglement can already be witnessed with
current technology.
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Toward large-scale quantum computing
–from the viewpoint of computer system architecture–

Teruo Tanimoto1 ∗

1 Kyushu University

Abstract. Quantum computers are recognized as an important computing platform in the post-Moore
era. We need to scale quantum computers much more to achieve a quantum advantage with a practical
problem. The talk will cover our recent activity on noisy-intermediate scale (NISQ) computers and fault-
tolerant quantum computers (FTQCs) using superconducting qubits. Superconducting qubits require a
cryogenic environment because they are sensitive to thermal noise. We have proposed system-level thermal
modeling and power-efficient system architectures to scale cryogenic quantum computers. The bottleneck
to scalability is the heat inflow through the wires transmitting and receiving microwaves in/out of the
cryostat and the heat generation from the components installed in the cryostat.

For NISQ computers, target algorithm-specific system architecture has been explored. NISQ algorithms,
such as the quantum approximate optimization algorithm and the variational quantum eigensolver, collect
numerous samples by executing the same quantum circuit repeatedly. Based on the analysis of communi-
cation in/out of the cryostat, we have proposed a simple cryogenic digital information processing circuit
in the 4 K stage.

FTQCs require various classical digital processing components for quantum error-corrected computa-
tion. The primary challenge was to establish a scalability analysis tool (XQsim) to identify the scalability
bottleneck of FTQCs using superconducting qubits. By constructing a reference FTQC microarchitecture,
we identified the major scalability factors as the power dissipation in the 4 K stage, the latency of quantum
error decoding, and the required bandwidth in/out of the cryostat. On the basis of the scalability anal-
ysis, design improvements for further scalability from the viewpoint of computer architecture have been
proposed.

[Our research activities are partly supported by JST Moonshot R&D Grant Number JPMJMS2067,
JSPS KAKENHI Grant Numbers JP22K17868]

Keywords: Computer system architecture, scalability analysis, cryogenic quantum computers
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Abstract. We show that any noise ‘truncates’ most quantum circuits to effectively logarithmic depth, in
the task of estimating Pauli expectation values. We then prove that non-unital noise induces lack of barren
plateaus for local cost functions, but we also design a classical algorithm to estimate Pauli expectation
values within inverse-polynomial additive error with high probability over the ensemble. Its runtime is
polynomial for 1D and quasi-polynomial for higher dimensional architectures. Taken together, our results
showcase that, unless we carefully engineer the circuits to take advantage of the noise, it is unlikely that
noisy circuits are preferable over shallow ones.

Keywords: Noise, Classical simulation, Random quantum circuits, Barren plateaus

1 Introduction

Note: This submission is based on this work recently
posted on ArXiv [1].
In the era of pre-fault-tolerant quantum processors,

two popular candidate tasks to demonstrate quantum
advantage are random circuit sampling and solving opti-
mization problems via variational algorithms. It is cru-
cial to understand whether quantum advantage in these
settings, proven or conjectured to hold with ideal noise-
less circuits, persists when the circuits running these com-
putations are affected by realistic hardware noise.
Previous works paint a pessimistic picture: in ran-

dom circuit sampling, noise makes it possible to simu-
late the systems efficiently classically [2]. Similarly, in
variational quantum algorithms, noise quickly drives the
system to computationally trivial states, causing a phe-
nomenon known as “barren plateaus”—the cost function
landscape becomes effectively flat, making optimization
difficult [3, 4]. However, the overwhelming majority of
these results require strong structural assumptions on the
noise—that the noise is local, unital, primitive, and often,
even more specifically, depolarizing noise. In this work,
we significantly generalize these results, focusing on ran-
dom quantum circuits with possibly non-unital noise. Up
to our knowledge, we prove the strongest result to date
about how much such noisy circuits contract two input
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states, with the implication that unless these circuits are
carefully engineered to take advantage of noise [7], quan-
tum advantage will likely not materialize in its presence.

Why non-unital noise? Non-unital noise is physi-
cally relevant: for a number of current physical platforms
(e.g. superconducting qubits and optical networks), it is
more natural and realistic to take the noise to be non-
unital [5, 6]. Mathematically, non-unital noise is a gen-
eralization of unital noise, with qualitatively different re-
sults on computation. Strikingly, Ref. [7] has shown a
threshold theorem to perform exponentially long quan-
tum computations under non-unital noise, with specially
constructed circuits. This can never be the case with
depolarizing noise, which converges to the maximally-
mixed state in logarithmic time. Additionally, Ref. [8]
shows how existing easiness and hardness proofs of ran-
dom circuit sampling break down under non-unital noise.
The intuition is that while unital noise always increases
the entropy of its input, non-unital noise may not do so.
Non-unital noise is not “depolarizing noise, but worse” –
it is mathematically compelling in its own right.

2 Our contributions.

We study the impact of possibly non-unital noise on
algorithms estimating expectation values. We consider
families of random quantum circuits with local gates
picked from a 2-design and show three main results:

• Effective depth: We show that arbitrary deep
random quantum circuits, under any uncorrected
any (possibly non-unital) noise, effectively get
“truncated”, in the following sense: the influence
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of gates on local expectation values decreases expo-
nentially in their distance from the last layer, i.e.,
only the last log(n) layers contribute significantly
to any expectation value.

Formally, we show the following:

Theorem 1 (Effective depth) Let P be a Pauli,
ρin and σin be any quantum states and Φ be a noisy
random quantum circuit. Then

EΦ

[
Tr(PΦ(ρin − σin))

2
]
≤ O(Cdepth(Φ)) (1)

where the expectation is taken over the choice of
random gates and C < 1 is a parameter related to
the noise (which we assume non-reversible, i.e., not
associated to a unitary channel).

• Lack of barren plateaus: In the variational
quantum algorithms (VQAs) setting, non-unital
noise induces absence of barren plateaus for cost
functions made out of local observables—the cost
landscape is never flat, and the gradient of the cost
function never vanishes, at any depth. This can be
intuitively understood as originating from the shal-
lowness of the effective circuit under noise. This
phenomenon, however, is not good news for VQAs,
as the resultant shallow circuits also have more lim-
ited computational power. This contrasts with the
finding [4] that depolarizing noise in fact causes
barren plateaus at log(n) depth.

• Classical simulation: We also give an algorithm
to classically estimate Pauli expectation values up
to ε additive inverse-polynomial precision and high
success probability (over the ensemble), with run-

time of ∼ exp
(
logD

(
ε−2

))
, where D is the spatial

dimension of the system. The algorithm’s runtime
is independent of circuit depth. So, for constant
precision, our algorithm is efficient for any spatial
dimension; for inverse-polynomial precision, our al-
gorithm is efficient for 1D architectures. Our algo-
rithm is faster than the classical simulation algo-
rithm of Ref. [9], which (for constant precision and
in 2D) has a depth-dependent runtime that scales

as n2O(L
2) where L is depth.

Taken together, our results substantially advance our un-
derstanding of the effect of non-unital noise on near-term
quantum computation. They showcase that even though
we provably always avoid barren plateaus, unless we care-
fully engineer special circuits to take advantage of the
noise, it is unlikely that noisy quantum computers pro-
vide any advantage in quantum processing tasks that out-
put expectation values.

Preliminaries. We consider n-qubit, depth-L quan-
tum circuits Φ consisting of layers of two-qubit gates in-
terleaved by local (single-qubit) noise. No assumptions
about geometrical locality are needed, except where ex-
plicitly mentioned. Let Φ∗

[L,k] denote the circuit in the
Heisenberg picture from layer L to k, where k ≤ L. Let

Φ[1,k] denote the circuit in the Schrödinger picture, i.e.,
the first k − 1 layers.

Effective shallow circuits. To explain the significance
of Theorem 1, let us restate it, via one application of
Jensen’s inequality, as

EΦ[|Tr(PΦ(ρ))− Tr(PΦ(σ))|] ≤ O(Cdepth(Φ)), (2)

Proof. [Proof Sketch of Theorem 1] Observing that the
quantity we need to bound is a second-moment quantity
in the distribution over gates reduces the task to prov-
ing contraction over ensembles of random Clifford cir-
cuits. We also choose to work with a sparse parametriza-
tion of non-unital noise (the ‘normal form’ [10]). The
proof is conducted by working in the “Heisenberg pic-
ture”, peeling off a layer of noise and a layer of 2-qubit
gates, and then applying the adjoint of these layers to
the Pauli operator in the beginning. This incurs a mul-
tiplicative factor to the same quantity but with one less
circuit layer. The process is then iterated for all remain-
ing circuit layers, resulting in the claimed exponential-in-
depth decrease. The above-described technique strength-
ens previous second moment bounds on non-unital noisy
circuits found in Ref. [8]. □

To parse the previous result, take a noisy circuit of
interest C and let Φ = C[L−k,L], ρ = C[1,L−k](ρ0) and
σ = ρ0 = |0n⟩⟨0n|. From this, the connection to shallow
circuits becomes clear, since we have

EΦ[|Tr(PC(ρ0))− Tr(PC[1,L−k](ρ0))|] ≤ O(Cdepth(Φ))

Why taking averages over circuits is crucial.
Eq.(1) talks about how much a noisy circuit contracts
the distance between two different input states on aver-
age over circuits of a fixed architecture. This is known as
a ‘contraction result’ in the literature and was previously
proven for depolarizing and more general types of uni-
tal noise. The crux is that any quantum circuit affected
by depolarizing noise converges to the maximally-mixed
state exponentially fast in depth [12, 11] as∥∥∥∥Φ(ρin)− I

2n

∥∥∥∥
1

≤ O(
√
ncdepth(Φ)), (3)

for some constant c < 1 depending on the noise strength.
What is notable about this expression is that a single
state – the maximally-mixed state – is the ‘limit’ to which
all circuits affected by depolarizing noise converge, inde-
pendent of what gates are actually in the circuit, or its
input state. Because of this, no averages over circuits are
necessary in Eq.3.

In contrast, for circuits affected by non-unital noise,
the convergence point is some point in the Bloch sphere
that is not necessarily the maximally mixed state—in
fact, for many cases, a unique, circuit-independent con-
vergence point need not exist! There is yet another sub-
tlety to overcome for proving contraction: in [7] the au-
thors show that if non-unital noise is small enough, it is
possible to implement exponentially deep quantum cir-
cuits in our model. Thus, our families of random circuits
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potentially contain circuits for which no contraction is
observed for subexponential depths. Thus, a worst-case
bound is not possible in the depth regimes we study; only
on average over circuits do we escape these ‘pathologies’.

Proposition 2 (1-norm bound) For any quantum
states ρ, σ:

EΦ[∥Φ(ρ)− Φ(σ)∥1] ≤ 2n+1c
L−1

2 . (4)

Notice that at linear depth L = Ω(n), the right-hand
side of the above expression becomes exp(−Θ(n)). This
is a stronger result than (1), for linear depth and be-
yond, as it talks about indistinguishability of the states
themselves, and not just Pauli expectation values. Addi-
tionally, for high noise rates, we show that the statement
in (4) can be strengthened to worst case circuits, even for
non-unital noise. Specifically, we obtain

∥Φ(ρ)− Φ(σ)∥1 ≤ O(nbL), (5)

where the parameter b is strictly smaller than one only if
the noise rate exceeds a certain threshold.

Lack of barren plateaus. The barren plateaus phe-
nomenon [3, 4] stands as a central obstacle for variational
quantum algorithms. These algorithms involve encoding
the solution to a problem in the minimization of a cost
function, typically defined in terms of the expectation
value of an observable, with the free parameters for op-
timization being the gate parameters. Barren plateaus,
are characterized by the phenomenon where the gradient
norm of the cost function exhibits, on average, an expo-
nential decay O(exp(−n)) in the number of qubits n. We
prove that cost landscapes, with non-unital noise, are not
flat, and as a result, we do not get barren plateaus. In
more mathematical terms, we show that:

Theorem 3 (Lack of barren plateaus) Let H be any
local Hamiltonian and C(θ) = Tr(HΦ(ρ)) the cost func-
tion. When the noise is non-unital, then at any depth,
we have

Var[Tr(HΦ(ρ))] = Ω(1), Var[∥∇C∥22] = Ω(1). (6)

The main idea behind both proofs is similar to the proof
of (1). We start from the end of the circuit, use the
Heisenberg picture, and properties of the random cir-
cuit to simplify the expression. We also do a much finer
grained analysis of partial derivatives to show that only
the last few layers of the circuit have non-trivial partial
derivatives. That is,

Proposition 4 (Trainability) Let µ be any parameter
(in the light cone) of the k-th layer of a L-depth circuit,
evaluating a cost function C = Tr(HΦ(ρ)), for a local
Hamiltonian H and an ensemble of non-unital noisy ran-
dom circuits Φ. Then, we have

Var[∂µC] = exp(−Θ(L− k))). (7)

Qualitatively, one way to think about the lack of bar-
ren plateaus for our setup is to argue that the circuits

are “effectively” shallow, and shallow random circuits do
not exhibit barren plateaus for local cost functions [13].
Along with a rigorous mathematical proof, we provide
numerical simulations that strongly bear out this claim
in our technical manuscript. The technical tools devel-
oped in this work also allow, in the unital-noise scenario,
to improve upon the Barren Plateaus upper bounds pre-
sented in Ref. [4], as discussed in our main draft.

As an auxiliary result, we also give strong evidence
that certain types of quantum kernels – a popular
‘quantum’ method for machine learning – also offer no
advantage in optimization tasks, for similar mathemati-
cal reasons.

Classical simulation of noisy circuits at any depth.
The effective shallowness of noisy circuits implies that
they can be classically simulated. More formally, we
prove that:

Proposition 5 (Classical simulation) Let ε, δ > 0.
Let P be a Pauli. Let ρ0 := |0n⟩⟨0n|. Let Φ be a noisy
geometrically local with spatial dimension D quantum cir-
cuit of depth L sampled according to the described circuit
distribution. There is a classical algorithm that outputs
a value Ĉ that satisfies:

|Ĉ − Tr(PΦ(ρ0))| ≤ ε (8)

with at least 1 − δ probability of success and runtime
O(exp(logD(ε−2δ−1))). The runtime in the precision is
polynomial for 1-D local architectures, and quasipolyno-
mial for 2-D local architectures.

To prove this theorem, we work in the Heisenberg
picture and ‘propagate’ the observable P only a few
layers backwards—the number of layers we propagate
it through is inversely proportional to the precision we
want. Furthermore, we provide an alternative early-break
condition that, if met at some step t, guarantees an ε
approximation.

Discussion. In this work, we have shown how non-
unital noise, when starting with a random ansatz, “trun-
cates” the circuit. This truncated circuit escapes bar-
ren plateaus but the cost functional values, obtained
from such a circuit, can be simulated classically. Thus,
quantum advantage with uncorrected non–unital noise
in quantum machine learning is implausible and elusive.
Although, in the same vein as Ref. [8], the complexity of
sampling from such circuits still remains open, we expect
the effective depth picture and our techniques to help in
resolving this question.
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Simulating the quantum switch using causally ordered circuits requires at
least an exponential overhead in query complexity
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Abstract. Quantum theory is consistent with a model of computation that allows black-box operations
to be applied in an indefinite causal order, going beyond the standard circuit model of computation. The
simplest and most widely studied example of indefinite causal order is the quantum switch, which takes
as input one call to each of two n-qubit black-box quantum channels, and has been shown to provide
information-processing advantages in a wide variety of tasks. Yet, no exponential separation in query
complexity has been shown between processes with an indefinite causal order and standard quantum
circuits. In this work, we show that no quantum circuit with fixed causal order (or classical control of
the causal order) using multiple calls to one of the two n-qubit channels can reproduce the output of the
quantum switch if the number of calls is less than 2n. This shows that quantum processes with indefinite
causal order can exhibit an exponential enhancement in query complexity, as a function of the number of
qubits, over all quantum circuits with fixed, or classically controlled, causal order.

Keywords: Quantum supermaps, Indefinite causal order, Higher-order quantum computation

1 Introduction
The possibility of performing classical or quantum op-

erations in an indefinite causal order has attracted sig-
nificant attention in the last two decades [1–10]. From a
foundational perspective, this possibility has far-reaching
consequences for our understanding of causality, with im-
portant implications for the quantum nature of space-
time [1, 2, 11, 12]. From an information-theoretic stand-
point, this possibility is equally significant, challenging
the standard conception of computation in which gates
are performed in a well-defined causal order [3, 4, 6, 7, 13].
The simplest example of a quantum process with indef-
inite causal order is the quantum switch [4]: a trans-
formation that maps two quantum channels A and B
to a controlled operation between their two possible or-
derings B ◦ A and A ◦ B [4]. So far, the power of the
quantum switch has been demonstrated in various tasks
such as reducing the number of queries needed for quan-
tum channel discrimination problems [14] and computa-
tional promise problems [15–18], reducing the number of
communication rounds required for distributed compu-
tation tasks [19], increasing the winning probability in
multiparty games [5–7], increasing the capacity of noisy
communication channels [20–31], and providing enhance-
ments in quantum metrology [32–35] and quantum ther-
modynamics [36, 37].

Yet, in the context of quantum computation, no expo-
nential separation in query complexity has been shown
between processes with indefinite causal order and those
in which operations are performed in a definite order. In-

∗These three authors contributed equally.

deed, for the case of unitary channels it is known that the
quantum switch can be simulated by a quantum circuit
querying the unitary channels in a fixed order, with just
one extra query to one of the channels [4]. This result
holds for any size of the target system. A crucial open
question is whether the same holds for general quantum
channels.

In this work, we answer this question in the negative.
We prove a no-go theorem which states that the quan-
tum switch of two n-qubit channels cannot be simulated
using a quantum circuit with fixed causal order, with
a single call to one of the channels and M calls to the
other channel, if M ≤ max(2, 2n − 1). Additionally, we
conjecture that the same bound holds when M calls to
both channels are allowed. Our theorem demonstrates
the first known exponential separation in query complex-
ity between quantum processes with indefinite causal or-
der and standard quantum circuits, as a function of the
number of qubits.

If our conjecture is proven to be correct, this would
demonstrate that not all processes with indefinite causal
order can be efficiently simulated using standard quan-
tum circuits. The separation we prove is formulated with
respect to a computational task where the inputs and
outputs of the computation are both given by black-box
quantum channels [4, 22, 38, 39]. This is in contrast to
previous works on the query complexity of the quantum
switch, where the output of the computation is a bit rep-
resenting the evaluation of a classical function, in which
case no exponential separation has been found [14–18].

In the remainder of this work, we will formalise the no-
tion of indefinite causal order and the problem of simulat-
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ing the quantum switch, then present our main theorem
and sketch of the proof for the case of M = 2.

2 Framework
Processes with indefinite causal order arise as a special

case of higher-order quantum transformations [4, 22, 38,
40] (also known as quantum supermaps [39] or process
matrices [5]). These are defined according to the follow-
ing hierarchy. We denote as L(A) the set of all bounded
linear operators on a Hilbert space HA corresponding to
a physical system A. A quantum state is any linear opera-
tor ρ ∈ L(A) that is both positive semidefinite ρ ≥ 0 and
of unit trace Tr ρ = 1. A quantum channel is any linear
map C : [L(I) → L(O)] from quantum states to quantum
states that is both completely positive (CP) and trace
preserving (TP). A quantum supermap S is any multi-
linear map S :

⊗M
i=1[L(Ii) → L(Oi)] → [L(P ) → L(F )]

from the space of M -tuples of quantum channels to the
space of quantum channels that is both completely CP-
preserving and TP-preserving [41, 42].

Throughout, we will find it useful to use the Choi rep-
resentation [43, 44] of linear maps, which encompasses
both channels and supermaps. For any linear operator
V : HA → HB , its Choi vector is defined as

|V ⟩⟩ :=
∑
i

|i⟩A ⊗ V |i⟩A ∈ HA ⊗HB , (1)

and for any linear map Q : [L(A) → L(B)] its Choi
matrix is defined by

Q :=
∑
ij

|i⟩⟨j|A ⊗Q(|i⟩⟨j|A) ∈ L(A⊗B) , (2)

where {|i⟩}i is the computational basis.
The CPTP conditions imply that any quantum channel

C : [L(I) → L(O)] has a positive semidefinite Choi matrix
C ∈ L(I ⊗ O) normalised such that TrO C = 1I , where
1I is the identity matrix on HI . Similarly, any quantum
supermap S :

⊗M
i=1[L(Ii) → L(Oi)] → [L(P ) → L(F )]

can be written in the Choi representation as a positive
semidefinite matrix W ∈ L[P⊗

⊗M
i=1(Ii⊗Oi)⊗F ], called

the process matrix, satisfying the condition of being in
a specific subspace corresponding to the TP preserving
conditions, and normalised such that TrW = dPΠM

i=1d
Ii ,

where dA := dim(HA) [45]. The composition of quantum
states, quantum channels, and quantum supermaps can
be represented by the link product ∗ on their Choi matri-
ces [46]. In particular, the action of a quantum supermap
on a set of quantum channels is represented as follows
[46]: S(C1, . . . , CM ) ∼= W ∗(C1⊗· · ·⊗CM ), where the link
product on any two matrices Q ∈ L(A⊗B), R ∈ L(B⊗C)
is defined as Q ∗ R := TrB [(Q

AB ⊗ 1C)TB (1A ⊗ RBC)],
with TB being the partial transpose with respect to sys-
tem B.

Ordinary quantum circuits correspond to the special
class of quantum supermaps known as quantum circuits
with fixed causal order (QC-FOs) [10] or quantum combs
[38]. An M -slot quantum circuit with fixed causal or-
der is a quantum supermap which can be decomposed

as a quantum circuit with M + 1 fixed quantum chan-
nels V0 ∈ [L(P ) → L(I1 ⊗ E1)],V1 ∈ [L(O1 ⊗ E1) →
L(I2 ⊗ E2)], . . . ,VM ∈ [L(OM ⊗ EM ) → L(F )], con-
nected sequentially with auxiliary systems {Ei}Mi=1. The
action of such a supermap on M input quantum chan-
nels [L(Ii) → L(Oi)] ‘inserted’ into the slots between
each of the Vi is given by W ∗ (C1 ⊗ · · · ⊗ CM ) =
VM ∗ CM ∗ · · · ∗ V1 ∗ C1 ∗ V0.

However, QC-FOs are not the most general quan-
tum supermaps compatible with an underlying definite
causal structure. Convex combinations of QC-FOs and
supermaps where the order of operations is determined
dynamically are also both possible. A more general
class which includes such possibilities is quantum circuits
with classical control of causal order (QC-CCs) [10, 47].
Quantum supermaps which are not compatible with an
underlying definite causal structure are called causally
non-separable processes [5, 45, 48] and are said to have
indefinite causal order. Although it is currently an open
question whether there exist processes compatible with
a definite causal structure but are not QC-CCs [10], no
such processes have been found to date, and therefore,
any computational advantage of processes with indefinite
causal order is most reasonably determined by comparing
with QC-CCs.

3 Quantum switch and its simulations
The simplest and most widely studied example of a

process with indefinite causal order is the quantum switch
[4], which combines two quantum channels A ∈ [L(I) →
L(O)] and B ∈ [L(I ′) → L(O′)] in their two possi-
ble sequential orderings, depending on the state of a
quantum control qubit PC . The process matrix of the
n-qubit quantum switch SSWITCH : [[L(I) → L(O)] ⊗
[L(I ′) → L(O′)]] → [L(PC ⊗ PT ) → L(FC ⊗ FT )], where
I,O, I ′, O′, PT , FT , correspond to n-qubit Hilbert spaces
and PC , FC correspond to qubit Hilbert spaces, is given
by SSWITCH = |SSWITCH⟩⟩⟨⟨SSWITCH|, with

|SSWITCH⟩⟩PFIOI′O′
:= |0⟩PC |0⟩FC |1⟩⟩PT I |1⟩⟩OI′

|1⟩⟩O
′FT

+ |1⟩PC |1⟩FC |1⟩⟩PT I′
|1⟩⟩O

′I |1⟩⟩OFT .

(3)

For the case where the input channels are unitary, i.e.
U(·) = U(·)U† and V(·) = V (·)V †, the action of the
quantum switch takes the particularly simple form:

SSWITCH : (U, V ) 7→ V U ⊗ |0⟩⟨0|+ UV ⊗ |1⟩⟨1| . (4)

To understand the computational power of the quan-
tum switch, it is essential to understand whether its ac-
tion can be efficiently simulated with causally ordered
quantum supermaps by using more queries to one or
both of the channels. It is known that the action of the
quantum switch on unitary channels can be simulated de-
terministically and exactly with a quantum circuit with
fixed causal order Csim, using just one extra call to either
of the two channels [4]:

Csim(U ,V,U) = SSWITCH(U ,V) ∀U ,V . (5)

The circuit for Csim is depicted in Figure 1.
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Figure 1: A quantum circuit with fixed causal order tak-
ing two calls to a quantum channel A and a single call to
a quantum channel B. When A is a unitary channel, this
circuit simulates the action of the quantum switch of A
and B.

4 Main results
Interestingly, we observe that the same quantum cir-

cuit Csim can simulate the action of the quantum switch
on one unitary channel and one general quantum chan-
nel, with one extra call to the unitary channel. That is,
for any unitary channel U , and any quantum channel B,

Csim(U ,B,U) = SSWITCH(U ,B) . (6)

However, when Csim is applied to two general quantum
channels A,B, with 2 copies of A, it does not in general
reproduce the action of the quantum switch. This can be
explained by the fact that the quantum switch correlates
the randomness associated with a non-unitary channel
between its |0⟩ and |1⟩ branches.

As such, one might wonder whether there exists some
other causally ordered supermap, either a QC-FO or
QC-CC, which can reproduce the action of the quan-
tum switch, given M ≥ 2 copies of one of the two
channels. Here, we answer this in the negative for
M ≤ max(2, 2n − 1):

Theorem 1. There is no (M + 1)-slot supermap C :⊗M
i=1[L(Ii) → L(Oi)] ⊗ [L(I ′1) → L(O′

1)] → [L(PC ⊗
PT ) → L(FC⊗FT )], where {Ii}i, {Oi}i, I ′1, O′

j correspond
to n-qubit Hilbert spaces, with fixed causal order or clas-
sical control of the causal order satisfying

C(A, . . . ,A︸ ︷︷ ︸
M

,B) = SSWITCH(A,B) (7)

for all quantum channels A and B, if M ≤ max(2, 2n−1).

The full proof is given in the Technical Manuscript [47].
In the following, we give a sketch of the proof for the
case of M = 2. We begin by assuming that a 3-slot QC-
CC quantum supermap C simulates the quantum switch
for all unitary channels and all convex combinations of
unitary channels, i.e.,

C
(
U1 + U2

2
,
U1 + U2

2
,V

)
= SSWITCH

(
U1 + U2

2
,V

)
, (8)

∀l ∈ {1, 2} : C(Ul,Ul,V) = SSWITCH(Ul,V) , (9)

for all unitary operations U1,U2,V. By linearity of su-
permaps, we obtain

C(U1,U2,V) + C(U2,U1,V) = SSWITCH(U1 + U2,V). (10)

Since C(U2,U1,V) is a CP map, SSWITCH(U1 + U2,V) −
C(U1,U2,V) is CP. In terms of the Choi matrix, this re-
lation can be written as

C ⋆ (|U1⟩⟩⟨⟨U1| ⊗ |U2⟩⟩⟨⟨U2| ⊗ |V ⟩⟩⟨⟨V |)
≤ |SSWITCH⟩⟩⟨⟨SSWITCH| ∗ [(|U1⟩⟩⟨⟨U1|+ |U2⟩⟩⟨⟨U2|)⊗ |V ⟩⟩⟨⟨V |].

(11)

Since C can be implemented by a QC-CC, the Choi ma-
trix C can be decomposed as C =

∑
(i,j,k)∈Perm(1,2,3) Cijk

such that Cijk satisfies Cijk ≥ 0 and several affine
conditions (which we refer to the QC-CC conditions)
[10, 47]. Using an eigendecomposition of Cijk given by
Cijk =

∑
a |C

(a)
ijk⟩⟩⟨⟨C

(a)
ijk |, we obtain

|C(a)
ijk⟩⟩⟨⟨C

(a)
ijk | ⋆ (|U1⟩⟩⟨⟨U1| ⊗ |U2⟩⟩⟨⟨U2| ⊗ |V ⟩⟩⟨⟨V |)

≤ |SSWITCH⟩⟩⟨⟨SSWITCH| ∗ [(|U1⟩⟩⟨⟨U1|+ |U2⟩⟩⟨⟨U2|)⊗ |V ⟩⟩⟨⟨V |].
(12)

Therefore, the left-hand side of Eq. (12) can be written
as

|C(a)
ijk⟩⟩ ∗ (|U1⟩⟩ ⊗ |U2⟩⟩ ⊗ |V ⟩⟩)

=
2∑

l=1

p
(a,l)
ijk (U1, U2, V )|SSWITCH⟩⟩ ∗ (|Ul⟩⟩ ⊗ |V ⟩⟩), (13)

using p
(a,l)
ijk (U1, U2, V ) ∈ C. If |C(a)

ijk⟩⟩ is given by

|C(a)
ijk⟩⟩ =

2∑
l=1

|SSWITCH⟩⟩PIlOlI3O3F ⊗ |p(a,l)ijk ⟩⟩ (14)

for |p(a,1)ijk ⟩⟩ ∈ L(I2 ⊗ O2) and |p(a,2)ijk ⟩⟩ ∈ L(I1 ⊗ O1), the
corresponding quantum supermap C satisfies Eq. (13).
We show that the converse holds, i.e., if Eq. (13) holds
for all unitary operators U1, U2, V , |C(a)⟩⟩ can be written
as Eq. (14). The rough idea for this proof is based on
differentiation with respect to a parametrisation of the
input unitary operators, a technique introduced concur-
rently in Ref. [49] by some of the present authors. By
considering the differentiation of p

(a,1)
ijk (U1, U2, V ) with

respect to U1 and U2, we show that p
(a,1)
ijk (U1, U2, V ) can

be given as a linear function of U2 that does not depend
on U1 and V [47]. Then, p

(a,1)
ijk (U1, U2, V ) can be writ-

ten as p
(a,1)
ijk (U1, U2, V ) = |p(a,1)ijk ⟩⟩ ∗ |U2⟩⟩ using |p(a,1)⟩⟩ ∈

L(I2 ⊗O2). Similarly we show that p
(a,2)
ijk (U1, U2, V ) can

be written as p
(a,2)
ijk (U1, U2, V ) = |p(a,2)ijk ⟩⟩ ∗ |U1⟩⟩ using

|p(a,2)⟩⟩ ∈ L(I1 ⊗O1). Then, we obtain

|C(a)
ijk⟩⟩ ∗ (|U1⟩⟩ ⊗ |U2⟩⟩ ⊗ |V ⟩⟩)

=
2∑

l=1

|SSWITCH⟩⟩PIlOlI3O3F ⊗ |p(a,l)ijk ⟩⟩ ∗ (|U1⟩⟩ ⊗ |U2⟩⟩ ⊗ |V ⟩⟩).

(15)

Since this holds for all unitary operators U1, U2, V , we
obtain Eq. (14). Finally, we show that any quantum
supermap given in the form of Eq. (14) does not satisfy
the QC-CC conditions, thereby completing the proof [47].
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Complexity-theoretic foundations of BosonSampling with a linear

number of modes

A. Bouland, D. J. Brod, I. Datta, B. Fefferman, D. Grier, F. Hernández, M. Oszmaniec

Abstract BosonSampling is the leading can-
didate for demonstrating quantum computational
advantage in photonic systems. While we have re-
cently seen many impressive experimental demon-
strations, there is still a formidable distance be-
tween the complexity-theoretic hardness arguments
and current experiments. One of the largest gaps
involves the ratio of photons to modes–all current
hardness evidence assumes a “high-mode” regime
in which the number of linear optical modes scales
at least quadratically in the number of photons.
By contrast, current experiments operate in a “low-
mode” regime with a linear number of modes. In
this paper we bridge this gap, bringing the hard-
ness evidence for the low-mode experiments to the
same level as had been previously established for
the high-mode regime. This involves proving a new
worst-to-average-case reduction for computing the
Permanent which is robust to both large numbers
of row repetitions and also to distributions over ma-
trices with correlated entries.

Introduction In the decade since it was pro-
posed by Aaronson and Arkhipov [AA13], Boson-
Sampling has become one of the most promising
candidates for achieving quantum computational advantage—
the experimental demonstration of a quantum com-
putation which exponentially surpasses classical com-
puters. This requires a task which is both experi-
mentally feasible and has strong complexity-theoretic
evidence for hardness. We have now seen several ex-
perimental demonstrations of BosonSampling [WQD+19]
and its Gaussian variant at scale [ZPL+19, ZDQ+21,
MLA+22], as well as substantial work building the
theory of these experiments and bringing them closer
to feasibility (see e.g. [HKS+17, CC17, DMV+22,
GBA+22]).

Despite this progress, there is still a formidable
distance between experiment and theory. One of the
most notable gaps involves the ratio between the
number of modes and number of photons. The orig-
inal BosonSampling proposal calls for a “high-mode

regime” in which n photons are passed through an
m = Ω(n2)-mode Haar-random interferometer fol-
lowed by the measurement of each mode in the pho-
ton number basis.1 By contrast, all experiments to
date operate in a “low-mode regime” in which the
number of modes scales linearly in the number of
modes, m = Θ(n). Understanding this low-mode
regime has long been cited as a major open problem
going back to the original paper [AA13] which asked
explicitly:

“Can we reduce the number of modes
needed for our linear-optics experiment,

perhaps from O(n2) to O(n)?”

It is reasonable to conjecture that the need for such
a high number of modes is an artifact of current
proof techniques, rather than intrinsic to the hard-
ness of the sampling problem. For one, state-of-the-
art classical simulation algorithms are not able to
take advantage of the low-mode regime to achieve
dramatically faster runtimes2 [CC18], albeit some
improvements are possible [CC20, MRK+23]. Fur-
thermore, the low-mode regime is sufficient to per-
form universal quantum computation [KLM01].

However, analyzing the hardness of BosonSam-
pling in the low-mode regime is quite challenging
for two reasons. First, current proof techniques rely
heavily on a property of the high-mode regime known
as the “Bosonic Birthday Paradox” [AK11] which
ensures that most measurement outcomes are collision-
free—i.e., have a single photon in each occupied out-
put mode. By contrast, low-mode BosonSampling

1We note that the original paper used m = ω(n5) modes,
but they showed that an O(n2) experiment would suffice un-
der a plausible random matrix theory conjecture, and subse-
quent work proved variants of BosonSampling like Bipartite
BosonSampling [GBA+22] can be analyzed with as few as
O(n2) modes.

2To be precise, these algorithms run in time which is ex-
ponential in the number of photons, but merely polynomial
in the number of modes. In other words, high-mode experi-
ments with few photons provably cannot lead to exponential
quantum advantage.
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has a large number of collisions. Second, in the high-
mode regime the probability of each outcome is the
squared permanent of a submatrix of the Haar ran-
dom unitary that encodes the interferometer. These
submatrices have i.i.d. Gaussian entries, which are
convenient to analyze. In the low-mode regime, the
relevant submatrices do not have i.i.d. entries and
this is the case even in the absence of collisions.

In this work (see [BBD+23] for the technical ver-
sion of the manuscrip) we overcome these obstacles
and build the complexity-theoretic foundations for
BosonSampling in the low-mode regime, answering
Aaronson and Arkhipov’s question in the affirma-
tive. The starting point, following Aaronson and
Arkhipov, is to prove that hardness of classical ap-
proximate sampling from low-mode BosonSampling
experiments follows from the hardness of an appro-
priate average-case hardness conjecture:

Theorem 1 (Informal). Assuming average-case hard-
ness of computing output probabilities of low-mode
BosonSampling experiments, there is no efficient ran-
domized classical algorithm to sample from the out-
put distribution of such an experiment to inverse
polynomial additive error.

Our main results give strong evidence in favor of
this average-case hardness conjecture. In particular
we show it is #P-hard to compute the output prob-
abilities of random low-mode experiments, and also
provide numerical evidence for anticoncentration in
this regime. This brings low-mode BosonSampling
to essentially the same level of theoretical support
as high-mode experiments.

Proof sketch The first obstacle present in the
low-mode regime—the presence of photon collisions
in typical outcomes—breaks a property of the ex-
periment known as hiding. Hiding3 is the property
that all outputs of the experiment are symmetrical
over the choice of random experiment. This sim-
ple property plays a surprisingly key role in current
quantum advantage arguments. The basic reason
is that these arguments try to show no approxi-
mate classical sampler exists to small total varia-
tion distance error. If all outputs are on equal foot-
ing then this error can be spread over all outputs

3“Hiding” also refers to an input type conversion problem
in the original paper [AA13], but in subsequent papers was
used only to describe this symmetry property.

by Markov’s inequality. However if only a few out-
puts matter for the hardness arguments, one might
worry the approximate sampler could corrupt these
outputs only, and the arguments become implau-
sible. This symmetry property trivially holds for
Random Circuit Sampling, IQP, Fermion Sampling,
and many other advantage schemes, and also triv-
ially carries over to BosonSampling experiments in
the high-mode regime. However in the low-mode
regime this symmetry fails spectacularly—the out-
put space shatters into an exponential number of in-
comparable output types each with probability mass
that is relatively well spread.4

We instead proceed by formulating a modified
version of the Stockmeyer counting reduction which
does not require the hiding symmetry. We choose
a uniformly random outcome of the experiment and
use Stockmeyer counting to estimate the probabil-
ity of this outcome. By Markov’s inequality we can
ensure that most output probabilities of the approx-
imate sampler are mostly correct. However, this
modified reduction comes at a cost—to show hard-
ness of sampling, it no longer suffices to show hard-
ness of computing a single type of output, but in-
stead we must now show an entire suite of hardness
results for most outputs of the experiments. More
formally, for low-mode BosonSampling the output
space consists of an exponential number of incompa-
rable collision patterns—i.e., unordered lists of oc-
cupation numbers of modes. We need to argue it
is hard to estimate the output probabilities of most
collision patterns under a suitable measure.

Our next step is to show such a suite of average-
case hardness results of computing most outputs of
low-mode experiments:

Theorem 2 (Informal). It is #P-hard to compute
most output probabilities of most BosonSampling ex-
periments in the low-mode regime to within additive
error e−O(n logn).5

This is nearly what we need to show hardness
of sampling via the modified Stockmeyer reduction
(e−O(n) robustness). Here we need to overcome both
of the major differences that distinguish the low and

4That is, it is unclear if any particular output type occurs
with a probability that scales as an inverse polynomial.

5We note that this additive error is dependent on the out-
put type of the outcome, though this dependence is subleading
in the exponent.
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high-mode regimes. First, one must deal with the
presence of collisions—to do this we identify a col-
lection of output types which cover a large fraction
of the output probability distribution of typical ex-
periments. This requires a careful combinatorial ac-
counting of typical collision patterns in typical out-
puts of low-mode experiments. Once a suitable col-
lision pattern is identified, we need to show average-
case hardness for computing outputs of that collision
type over the random choice of interferometer. This
is equivalent to showing hardness of computing the
permanent of a large submatrix of a random unitary,
with a particular pattern of repeated rows.

In the high-mode regime this average-case hard-
ness argument proceeds using a variant of Lipton’s
argument. The basic idea is that since a Gaussian
is perturbed only slightly by shifting and rescaling,
one can in some sense “sneak” a tiny amount of a
worst-case matrix into an average-case matrix. This
uses an entry-by-entry analysis of the matrix. This
proof strategy breaks in the low-mode case since
the relevant submatrices are far from i.i.d. Gaus-
sian [Jia06]—instead, the entries come from a highly
correlated measure. We show that surprisingly, this
highly correlated distribution is nonetheless approx-
imately shift-and-scale invariant so that we recover
Lipton’s proof. To do this, we directly study the
probability density of the singular values of a subma-
trix of a Haar-random unitary [Col03, Réf05]. We
reduce the desired invariance property to estimat-
ing the gradient of this probability density, which
we show is equivalent to proving sharp tail bounds
on the maximum singular value. Our desired bounds
require that we go beyond generic concentration in-
equalities such as Levy’s lemma or log-Sobolev in-
equalities, and instead we derive them from high-
dimensional geometry. Considering the ubiquity of
the Haar measure over unitaries, we expect that this
bound may be of independent interest.

Finally we address the issue of anticoncentra-
tion of low-mode experiments. Anticoncentration is
a necessary ingredient for converting additive esti-
mates of output probabilities to multiplicative estimates—
which we conjecture to be hard. It remains open
to prove anticoncentration for all variants of Boson-
Sampling, but there has been partial progress in this
direction [Nez21], as well as numerical evidence for
anticoncentration in the high-mode regime [AA13].
However, as one reduces the number of modes, one

might worry that anticoncentration might begin to
fail, both due to the row repetitions in the submatri-
ces, and the correlations between submatrix entries.
This could be an issue as many of the known attacks
on quantum advantage schemes hold in the non-
anticoncentration regime, e.g. constant-depth ran-
dom circuits [NLPD+22]. To alleviate this concern
and to support our anticoncentration conjecture, we
provide numerical evidence that anticoncentration
holds in the low-mode regime, and indeed has very
similar behavior to the i.i.d. Gaussian case.

Discussion Our work better connects the the-
ory of BosonSampling to its empirical implementa-
tion. Aaronson and Arkhipov’s foundational work
led to a number of important extensions which im-
proved our understanding of the complexity of BosonSampling—
from generalizations to Gaussian BosonSampling,
to improving the robustness of average-case hard-
ness arguments, to efficiently spoofing or verifying
of experiments, to characterizing the effects of noise.
While many of the more empirical works have fo-
cused on the low-mode regime due to its connection
with experiment, most of the theoretical arguments
have focused on high-mode regime and may need
to be re-investigated in this new context. Many in-
teresting questions remain. For example, can we
improve the robustness of average-case hardness of
these experiments to e−O(n), i.e. to be only off by a
constant in the exponent as with high-mode Boson-
Sampling [BFLL21]? Do spoofing algorithms for
BosonSampling become easier or harder in the low-
mode case? How few modes are needed for intractabil-
ity, for example, for which α do m = αn experiments
have the best evidence for hardness,6 and are there
any fundamental limits on this constant?
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thesis, Université Pierre et Marie
Curie-Paris VI, 2003.

[DMV+22] Abhinav Deshpande, Arthur Mehta,
Trevor Vincent, Nicolás Quesada, Mar-
cel Hinsche, Marios Ioannou, Lars
Madsen, Jonathan Lavoie, Haoyu Qi,
Jens Eisert, Dominik Hangleiter, Bill
Fefferman, and Ish Dhand. Quan-
tum computational advantage via high-
dimensional Gaussian boson sampling.
Science Advances, 8(1):eabi7894, 2022.

[GBA+22] Daniel Grier, Daniel J. Brod,
Juan Miguel Arrazola, Marcos Beni-
cio de Andrade Alonso, and Nicolás
Quesada. The complexity of bipartite

Gaussian boson sampling. Quantum,
6:863, November 2022.

[HKS+17] Craig S. Hamilton, Regina Kruse,
Linda Sansoni, Sonja Barkhofen, Chris-
tine Silberhorn, and Igor Jex. Gaus-
sian boson sampling. Phys. Rev. Lett.,
119:170501, Oct 2017.

[Jia06] Tiefeng Jiang. How many entries of a
typical orthogonal matrix can be ap-
proximated by independent normals?
The Annals of Probability, 34(4):1497–
1529, 2006.

[KLM01] Emanuel Knill, Raymond Laflamme,
and Gerald J Milburn. A scheme for ef-
ficient quantum computation with lin-
ear optics. Nature, 409(6816):46–52,
2001.

[MLA+22] Lars S. Madsen, Fabian Lauden-
bach, Mohsen Falamarzi. Askarani,
Fabien Rortais, Trevor Vincent, Ja-
cob F. F. Bulmer, Filippo M. Mi-
atto, Leonhard Neuhaus, Lukas G.
Helt, Matthew J. Collins, Adriana E.
Lita, Thomas Gerrits, Sae Woo Nam,
Varun D. Vaidya, Matteo Menotti, Ish
Dhand, Zachary Vernon, Nicolás Que-
sada, and Jonathan Lavoie. Quantum
computational advantage with a pro-
grammable photonic processor. Nature,
606(7912):75–81, 2022.

[MRK+23] Gregory Morse, Tomasz Rybotycki,
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Abstract. Unpredictable functions (UPFs) play essential roles in classical cryptography. In this paper,
we introduce a quantum analog of UPFs, which we call unpredictable state generators (UPSGs). UPSGs
are implied by pseudorandom function-like states generators (PRFSs), which are a quantum analog of
pseudorandom functions (PRFs), and therefore UPSGs could exist even if one-way functions do not exist.
Although UPFs are equivalent to PRFs, UPSGs could be weaker than PRFSs. Despite this, we demonstrate
that all known applications of PRFSs are also achievable with UPSGs. Our findings suggest that, for many
applications, quantum unpredictability, rather than quantum pseudorandomness, is sufficient.

Keywords: Quantum cryptography, unpredictability, secret-key encryption, message authentication
codes with unclonable tags

1 Background

Pseudorandom functions (PRFs) [GGM86] are one of
the most fundamental primitives in classical cryptogra-
phy. A PRF is an efficiently computable keyed func-
tion that is computationally indistinguishable from a ran-
dom function for any polynomial-time adversary that can
query the function. PRFs have many important applica-
tions in cryptography, and in particular, they are essen-
tial building blocks of EUF-CMA-secure message authen-
tication codes (MACs) and IND-CPA-secure secret-key
encryption schemes (SKE).
Naor and Reingold [NR98] introduced a related prim-

itive so-called unpredictable functions (UPFs). Like
PRFs, a UPF is an efficiently computable keyed func-
tion fk(·), but the crucial difference is that the goal of
the adversary is not to distinguish it from the random
function but to predict the output fk(x

∗) without query-
ing x∗. Naor and Reingold showed that the existence of
PRFs is equivalent to that of UPFs.
What happens if we consider quantum versions

of PRFs and UPFs? Recently, quantum analogs
of elementary primitives have been extensively stud-
ied [JLS18, MY22b, AQY22, BCQ23, AGQY22, Yan22,
MY22a, BBSS23, ALY23]. For example, pseudoran-
dom states generators [JLS18], One-way states gener-
ators (OWSGs) [MY22b] and EFIs [BCQ23]. There
are mainly two reasons why studying such new quan-
tum elementary primitives are important. First, they
could exist without (quantumly-secure) one-way func-
tions (OWFs) [Kre21, KQST23], which are the most fun-
damental assumptions in classical cryptography. Second,
despite that, they have many useful applications. These
facts suggest that these primitives will play the role of
the most fundamental assumptions in quantum cryptog-
raphy, similar to OWFs in classical cryptography.
Quantum versions of PRFs have been already stud-

ied. Pseudorandom function-like states (generators)

∗tomoyuki.morimae@yukawa.kyoto-u.ac.jp
†shogo.yamada@yukawa.kyoto-u.ac.jp
‡takashi.yamakawa@ntt.com

(PRFSs) [AQY22, AGQY22] are one of the quantum
analogs of PRFs. A PRFS is a quantum polynomial-
time (QPT) algorithm that, on input a secret key k and
a classical bit string x, outputs a quantum state |ϕk(x)⟩.
The security roughly means that no QPT adversary can
tell whether it is querying the PRFS oracle or the oracle
that returns Haar random states. PRFSs could also ex-
ist without OWFs, and imply EUF-CMA-secure MACs
(with quantum tags) and IND-CPA-secure SKE (with
quantum ciphertexts) [AQY22].

On the other hand, no quantum analog of UPFs was
explored before. Is it equivalent to a quantum analog of
PRFs, such as PRFSs? Does it imply EUF-CMA-secure
MACs and IND-CPA-secure SKE like PRFSs? Can we
gain any meaningful insight for quantum cryptography
by studying it?

2 Our Results

The present paper aims to initiate the study of a quan-
tum version of UPFs which we call unpredictable states
generators (UPSGs). We define UPSGs and construct
several cryptographic applications from UPSGs.

Defining UPSGs. Our first contribution is to define
UPSGs. A UPSG is a QPT algorithm Eval that, on in-
put a secret key k and a classical bit string x, outputs a
quantum state |ϕk(x)⟩. Intuitively, the security (unpre-
dictability) is as follows: no QPT adversary, which can
quantumly query the oracle Eval(k, ·), can output (x∗, ρ)
such that x∗ was not queried and ρ is close to |ϕk(x∗)⟩.

In the classical case, PRFs and UPFs are equiva-
lent [NR98]. What happens in the quantum case? In
fact, we can show that PRFSs imply UPSGs. However,
the other direction is not clear. In the classical case,
the construction of PRFs from UPFs is done by using
the Goldreich-Levin [NR98, GL89]: if fk(·) is a UPF,
gk,r(x) := fk(x) · r is a PRF with the key (k, r), where
x · y is the inner product between bit strings x and y.
However, we cannot directly apply that idea to UPSGs:
In particular, what is |ϕk(x)⟩ · r?
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In summary, a quantum analog of UPFs, UPSGs, are
implied by PRFSs, which especially means that UPSGs
could also exist without OWFs. However, the equivalence
is not clear, and UPSGs could be weaker than PRFSs.
Then, a natural question is the following: Do UPSGs
have useful applications like PRFSs?

IND-CPA-secure SKE. Our second contribution is
to construct IND-CPA-secure SKE (with quantum ci-
phertexts) from UPSGs. In the classical case, unpre-
dictability implies pseudorandomness [NR98], which im-
plies encryption. However, as we have explained before,
we do not know how to convert unpredictability to pseu-
dorandomness in the quantum case. Therefore we cannot
use the same technique in the quantum case.
Before the construction of IND-CPA-secure SKE from

UPSGs, let us first recall the definition of IND-CPA-
secure SKE. SKE consists of an encryption algorithm Enc
and a decryption algorithm Dec. On input a secret key
and a bit b, Enc outputs a (possibly quantum) ciphertext
ctb, and Dec, on input the secret key and ciphertext ctb,
outputs b. As the IND-CPA security, we require that no
QPT adversary can distinguish ct0 from ct1.
Our idea to construct IND-CPA-secure SKE is based

on the duality between the swapping and the distinc-
tion [AAS20, HMY23]. The duality intuitively means
that distinguishing two orthogonal states |ψ⟩ and |ϕ⟩ is
as hard as swapping |ψ⟩ + |ϕ⟩ and |ψ⟩ − |ϕ⟩ with each
other. Our ciphertext for a single-bit message b ∈ {0, 1}
is, then, ctb := (x, y, |ctbx,y⟩), where

|ctbx,y⟩ := |0⟩ |x⟩ |ϕk(x)⟩+ (−1)b |1⟩ |y⟩ |ϕk(y)⟩ ,

and x and y are random bit strings. The secret key of our
SKE scheme is the key k of the UPSGs. From the unpre-
dictability of UPSGs, any QPT adversary cannot convert
|ϕk(x)⟩ to |ϕk(y)⟩, which means that any QPT adversary
cannot distinguish ct0 and ct1 due to the duality.
This argument seems to work. There is, however, one

subtle issue here. The adversary of the IND-CPA secu-
rity can query the encryption oracle. However, in general,
we do not know whether the duality works if the distin-
guisher queries an oracle because the swapping unitary
is constructed from the distinguishing unitary and its in-
verse.
We can solve the issue by observing that the oracle

query by the adversary can actually be removed. Be-
cause the oracle is an encryption algorithm for single-bit
messages and the adversary queries the oracle only poly-
nomially many times, we can remove the oracle by giving
sufficiently many outputs of the oracle to the adversary
in advance as an auxiliary input. The duality in [HMY23]
takes into account the auxiliary inputs to the adversary,
and therefore now we can use the duality.
Moreover, since it is known that IND-CPA-secure

SKE imply IND-CPA-secure SKE for quantum mes-
sages [BJ15], we get the following result.

Theorem 1 If UPSGs exist, then IND-CPA-secure SKE
(for quantum messages) exist.

MACs with unclonable tags. Our third contribu-
tion is to define MACs with unclonable tags and to con-
struct it from UPSGs. The unclonability of tags roughly
means that no QPT adversary can, given t-copies of a
quantum tag, output a large (possibly entangled) quan-
tum state that contains at least t + 1 valid tag states.
MACs with unclonable tags are useful in practical ap-
plications. For example, consider the following attack
(which is known as the replay attack in the classical cryp-
tography): Alice sends the message “transfer $100 to
Bob” with a MAC tag to a bank. Malicious Bob can
steal the pair of the message and the tag, and sends it
ten times to the bank so that he can get $1000. In clas-
sical cryptography, the standard EUF-CMA security of
MACs cannot avoid such an attack, and some higher-level
treatments are necessary.

If tags are unclonable, we can avoid such a replay at-
tack. It is easy to see that UPSGs imply EUF-CMA-
secure MACs with quantum tags. (We have only to take
|ϕk(m)⟩ as the tag of the message m.) However, it is
not self-evident whether the quantum unpredictability
implies unclonability. For instance, if fk(·) is a PRF,
|ϕk(x)⟩ := |fk(x)⟩ is a UPSG but |ϕk(x)⟩ is not unclon-
able.

Our idea to construct unclonable tags is to use the
unclonability of random BB84 states. (In other words, to
use Wiesner money [Wie83].) For two bit string x and θ,

we define |x⟩θ :=
⊗

iH
θi |xi⟩, where H is the Hadamard

gate, and xi and θi are ith bit of x and θ, respectively.
If we set τm := |ϕk(m)⟩ ⊗ |x⟩θ, where x and θ are chosen
at random, as a tag for classical message m, it seems
unclonable.

Here, τm = |ϕk(m)⟩ ⊗ |x⟩θ does not contain any in-
formation about x and θ except for |x⟩θ. From this, two
crucial issues arise. First, τm is not unclonable in general.
To understand this issue, assume that |ϕk(m)⟩ is not un-
clonable. (As mentioned above, we cannot ensure that
|ϕk(m)⟩ is unclonable.) Then, the following adversary
A breaks unclonability: A, given τm = |ϕk(m)⊗ |x⟩θ⟩,
clones |ϕk(m)⟩ and generates |x′⟩θ′ by choosing x′ and θ′

at random. It is clear that A can generate two valid tags
|ϕk(m)⟩ ⊗ |x⟩θ and |ϕk(m)⟩ ⊗ |x′⟩θ′ from a single copy of
τm = |ϕk(m)⟩ ⊗ |x⟩θ.
How can we avoid this issue? It seems that we can

avoid the first issue just by replacing the tag τm =
|ϕk(m)⟩ ⊗ |x⟩θ with τ ′m := |ϕk(m,x, θ)⟩ ⊗ |x⟩θ, where
|ϕk(m,x, θ)⟩ is the output of UPSGs on input (m,x, θ).
This is because, if no adversary can know x and θ from
|ϕk(m,x, θ)⟩, no adversary can clone τ ′m = |ϕk(m,x, θ)⟩⊗
|x⟩θ from the unclonability of random BB84 states. How-
ever, it is not clear whether UPSGs satisfy its property
in general.
The second issue is that the verifier of MAC can-

not verify whether τm = |ϕk(m)⟩ ⊗ |x⟩θ (or τ ′m =
|ϕk(m,x, θ)⟩ ⊗ |x⟩θ) is a valid tag or not. This is be-
cause, in general, the verifier cannot know x and θ from
the tag to verify the BB84 state |x⟩θ. To solve this is-
sue, we have to encode x and θ into a tag for the sake
of verification. However, if we do so directly, e.g., we
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set τ ′′m := (x, θ, |ϕk(m,x, θ)⟩ ⊗ |x⟩θ), the new tag is not
unclonable because x and θ are open.
From the above observation, if we can encrypt x, θ and
|ϕk(m,x, θ)⟩, we can construct a tag that is unclonable
and verifiable. We can do it by using IND-CPA-secure
SKE for quantum messages, which exist from Theorem 1
since we assume the existence of UPSGs. Therefore, by
setting τ ′′′m := Enc(sk, |(x, θ)⟩⊗|ϕk(m,x, θ)⟩)⊗|x⟩θ, where
Enc is the encryption algorithm of IND-CPA-secure SKE
for quantum messages, we can construct MACs with un-
clonable tags from UPSGs. Therefore we have the fol-
lowing result.

Theorem 2 If UPSGs exist, then MACs with unclon-
able tags exist.

OWSGs with pure output and a necessary condi-
tion for UPSGs As our fourth contribution, we con-
struct OWSGs with pure outputs from UPSGs, which
means that PP ̸= BQP is necessary for the existence
of UPSGs [CGG+23]. At first glance, the former looks
trivial since UPSGs imply IND-CPA-secure SKE from
Theorem 1 and IND-CPA-secure SKE imply OWSGs
[MY22a]. However, in general, the outputs of OWSGs
constructed from IND-CPA-secure SKE are not pure
states. Therefore, Theorem 1 does not mean that UP-
SGs imply OWSGs with pure outputs.
Before explaining how to construct OWSGs with pure

outputs, let us recall the definition of OWSGs with pure
outputs. An OWSG with pure outputs is the QPT algo-
rithm that, on input secret key k, then outputs a pure
state |ψk⟩. The security is the following: no QPT adver-
sary, given many copies of |ψk⟩, can output the correct
secret key k.
Our idea to construct OWSGs with pure outputs is

based on the following observation: from the unpre-
dictability of UPSGs, no QPT adversary A cannot cor-
rectly guess the secret key k of UPSGs using |ϕk(x)⟩ for
polynomially many bit strings x. This is because, if A
can do that, A breaks the unpredictability of UPSGs
as follows: A query polynomially many bit strings x to
Eval(k, ·) to guess the secret key k and output |ϕk(x′)⟩
by running Eval(k, x′), where x′ is not queries before.
From the above observation, we construct OWSGs as

follows. We set secret key k′ := (k, x1, ..., xt) of our
OWSG. Here, k is a secret key of UPSGs, and x1, ..., xt
are bit strings chosen uniformly at random, where t
is a polynomial of the length of k. Our OWSG runs
|ϕk(xi)⟩ ← Eval(k, xi) for all i and outputs

|ψk′⟩ :=
t⊗

i=1

|xi⟩ |ϕk(xi)⟩ .

As explained before, no QPT adversary can correctly
guess k (and also k′ = (k, x1, ..., xt)) even if the adver-
sary gets many copies of |ψk′⟩, which means our OWSG
with pure outputs satisfies the security. Therefore, we
have the following result.

Theorem 3 If UPSGs exist, then OWSGs with pure
outputs exist.

Because pure OWSGs are broken if PP =
BQP [CGG+23], we also have the following corollary,
which means PP ̸= BQP is a necessary condition for
the existence of UPSGs:

Corollary 4 If UPSGs exist, then PP ̸= BQP.

Implication of our result. IND-CPA-secure SKE im-
plies EFIs [MY22a]. Moreover, MACs with unclonable
tags straightforwardly imply private-key quantum money
schemes in the sense of [AC12, JLS18]. We therefore have
the following as a corollary of Theorem 1 and Theorem
2.

Corollary 5 If UPSGs exist, then EFIs and private-key
money schemes exist.

IND-CPA-secure SKE, MACs with unclonable tags,
OWSGs, EFIs, and private-key money schemes are also
implied by PRFSs, and these primitives are all known
applications of PRFSs. This suggests the following: For
many applications, quantum unpredictability, rather than
quantum pseudorandomness, is sufficient.
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Abstract. Reliable randomness is a core ingredient for cryptographic applications. The outcomes of
measurements on entangled states can violate Bell inequalities, thus guaranteeing their intrinsic random-
ness, which constitutes the basis for certified randomness generation. However, this certification requires
space- like separated devices, making it unfit for practical applications. Here we provide a general method
to certify randomness on a small-scale apparatus and implement the corresponding protocol on a device
that combines a solid-state emitter and a glass chip. In contrast to most existing randomness certification
techniques, our protocol accounts for information leakage and is thus compatible with emerging compact
devices.
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Reliable randomness is a core ingredient in algorithms
and applications ranging from numerical simulations to
statistical sampling and cryptography. The strictest re-
quirements on randomness sources are typically destined
to cryptographic applications. There, randomness should
ideally be both unpredictable and private, so that no in-
formation about the generated sequence can be gained
by an eavesdropper either prior to or immediately after
its generation. Quantum sources admit certification of
these properties, by exploiting links between the unpre-
dictability of a quantum behaviour and the violation of
Bell inequalities. A guarantee that numbers have been
sampled from empirical data exhibiting Bell nonlocality
or, more generally, contextuality can suffice to certify un-
predictability and privacy.

Randomness certification and other Bell-inequality-
based protocols offer attainable cryptographic advan-
tages for quantum information processing but they are
susceptible to loopholes. One way to close the local-
ity, or more generally, the compatibility loophole, is to
ensure space-like separation between the players of the
non-local game [1, 2, 3, 4]. However, that is not an op-
tion for a practical compact device. Merely asserting
that the relevant parts of the device are shielded [5] is
unsatisfactory for users who would like to prevent them-
selves against a device deteriorating with time. For such
a device, the compatibility loophole must be carefully
addressed, because crosstalk can lead to detrimental in-
formation flow between components. This compromises

∗boris.bourdoncle@quandela.com

theoretical analyses and security proofs even outside of
adversarial scenarios. More broadly, all future on-chip
quantum information processing will be susceptible to
such effects, for which reason it is essential that they be
taken into account in protocols and algorithms at the
information processing level.

In this work, we introduce novel theoretical tools to
take into account crosstalk and address the locality loop-
hole. We demonstrate these tools in a randomness certi-
fication protocol performed on a compact photonic chip.
Idealised analyses typically lead to relations between the
relevant figure of merit (fidelity, rate, guessing proba-
bility...) on the one hand, and Bell violations or more
general contextuality measures [6] on the other hand.
Here, we provide relations suited to realistic devices,
which allow the evaluation of the relevant figures of merit
in terms of both beneficial contextuality and detrimen-
tal crosstalk. Moreover, we introduce a method to up-
per bound the amount of crosstalk by computing how
far the device’s observed behaviour is from the set of
quantum correlations approximated by the Navascués–
Pironio–Aćın (NPA) hierarchy [7]. This enables detec-
tion of adversarial manipulation of the device which may
seek to exploit the locality loophole to spoof certification.

We incorporate our method in a randomness certifi-
cation protocol that is secure against quantum side in-
formation, meeting the highest security standards. Such
protocols require acquiring large statistics while main-
taining high photon purity and indistinguishability [8, 9],
which puts knock-on constraints on hardware efficiency
and stability. Our theoretical contribution bridging the
gap between ideal situations and realistic implementa-
tions, combined with finely controlled and robust hard-
ware, allow us to implement the first on-chip certified
quantum random number generation protocol with a full
security proof against quantum side information.
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1 Theoretical contribution

Our work uses the semi-device-independent frame-
work: we aim to derive a lower bound on the randomness
generated during the experiment, based on the input-
output correlations that characterise this experiment and
a physical assumption that restricts the correlations that
can be accessed. The experiments we consider can be for-
mulated as n-player games, where each (virtual) player
can choose an input (that correspond to a measurement
choice) and obtains an output (that corresponds to a
measurement result). The set of probabilities of obtain-
ing an output tuple given an input tuple is called a be-
haviour. If no information can flow between the players,
the behaviour satisfies the property of no-signalling. If
the input-output correlations stem from a quantum ex-
periment (i.e., performing quantum measurements on po-
tentially entangled particles), the behaviour is said to be
quantum. If the probability distributions for each input
tuples can’t be obtained as the marginals of a single prob-
ability distribution of global assignments of outcomes to
all measurements, the behaviour is said to be contextual.
Thanks to Bell’s theorem, we know there exist contex-
tual quantum behaviours, and such behaviours are use-
ful from a cryptographic perspective as the randomness
with which the outputs are obtained can’t be apparent:
the outputs obtained during the experiment are inher-
ently random [10, 11]. A behaviour is necessarily con-
textual when it violates a Bell inequality, or equivalently
when it reaches a value above a certain score, called non-
contextual or classical score, in a contextual game. The
score corresponds to the sum of the probabilities weighted
by a scalar for each input and output tuple and the input
probabilities. The set of such scalars is called the scoring
function and defines the game.

Our theoretical contribution is threefold.

• We define the signalling fraction SF (simultane-
ously introduced in a companion paper [12]), a mea-
sure of the information flow that can take place
between the components of the experiment, which
correspond to the players mentioned above. This
measure is defined in a similar way as the contex-
tual fraction [6] and the local fraction [13], but rel-
ative to the set of no-signalling behaviours: it is
equal to 0 for a no-signalling behaviour and to 1
for a maximally signalling behaviour. We gener-
alise the signalling fraction by defining the approx-
imate quantum fractions SF`, that are relative to
the set of quantum correlations approximated at
the `th level of the NPA hierarchy [7, 14].

• We then define, for a given scoring function, two
scores: the maximal score that can be reached by
behaviour with maximal contextual fraction ξ, and
the maximal score that be reached by behaviours
with signalling fraction at most σ and the further
requirement that the behaviour be deterministic on
a specific input tuple. The first score is related to a
characteristics of the game called consistency and
can be easily computed, while the second one is

the quantity of interest for the protocol we want
to implement (see next point). We prove that the
latter is upper-bounded by the former for any n-
partite games with binary inputs.

• Finally, we introduce a protocol for private ran-
domness generation and randomness expansion1 in
the presence of crosstalk. We use the approximate
quantum fraction to quantify the crosstalk, and not
the signalling fraction, because we assume that our
experiment is governed by the laws of quantum me-
chanics, and thus want to discard supra-quantum
behaviours. Our protocol is derived from Miller
and Shi’s spot-checking protocol [16] and provides
a lower bound on the amount of randomness that
it generates, valid even in the presence of quantum
side information.

This protocol allows us to certify randomness gener-
ation with a compact apparatus, provided that the fol-
lowing assumption is satisfied: the measure of crosstalk
by the approximate quantum fraction is a fair estimate of
the information flow at the hidden variable level. This as-
sumption is well-founded if the devices were fabricated by
an honest provider, i.e. were not programmed to act ma-
liciously in order to function with a high level of crosstalk
while keeping the empirically observable signalling low.
In that case, an eavesdropper can only take advantage
of flaws in the implementation and deterioration of the
devices with time to try and predict the outputs.

Compared to Ref. [17], which also uses the spot-
checking security proof of Miller and Shi [16] and takes
into account imperfect compatibility between the mea-
surements, our analysis is more general, as it applies to
any n-partite nonlocal game with binary inputs. An-
other approach to derive a lower bound on the physi-
cal crosstalk from the observed behaviour was proposed
in [18], which puts a constraint at the level of the mea-
surements rather than on the behaviours. Both metrics
provide valid lower bounds on the crosstalk; the advan-
tage of ours is that it integrates well with convex optimi-
sation techniques used to compute maximal scores, Bell
inequality violations and guessing probabilities.

2 Experimental contribution

We then implement our protocol on a photonic setup,
which is depicted in Fig 1. The contextual game we
implement is the Clauser-Horne-Shimony-Holt (CHSH)
game [19]. It’s a two-party game and we call the (vir-
tual) players Alice and Bob. In the setup, an electri-
cally controlled semiconductor quantum dot in a 2-µm-
diameter micropilar cavity generates single photons that
are sent to a reconfigurable glass chip, implementing the
CHSH game by varying the measurement choices via op-
tical phases and measuring output coincidences.

By a periodical calibration during the experiment, we
maintain a high precision over the implemented mea-
surement bases to limit crosstalk between the two par-

1Concerning the difference between the two notions, see [15].
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Figure 1: Compact implementation of a certified quantum random number generator. The quantum
dot (QD) photon emitter generates photons at 925 nm via a phonon-assisted excitation scheme (see Methods). H,
Q: half and quarter-wave plates. BP: bandpass filters. E: etalon. P: polarizer. After a demultiplexing stage (see
Methods), the outputs of a polarizing beamsplitter (PBS) are collected with collimators. The setup is entirely fibered
or waveguided in the blue area. A fibered delay τrep, allows to synchronize pairs of photons sent into the photonic
chip. A motorized shutter (MS) enables chip voltage calibration. The fibered polarisation controller (FPC), ensures
both photons enter the photonic chip with the same polarisation. Dashed grey lines indicate that elements of the
setup are automated to implement the randomness generation protocol, by adapting the voltage on the photon source
for optimal brightness and periodic calibrations of the thermo-optic phase-shifter voltages. V1−4 control the phases
on chip and hence measurement bases of Alice and Bob. VQD feedback loop ensures the QD emission remains bright
and the emitted photons indistinguishable.

ties. We use a bright and stable Quandela semiconduc-
tor quantum dot (QD) based single photon source [20]
that delivers indistinguishable single photons, allowing us
to obtain high Bell inequality violations. The polarised
fibered-device brightness of our QD-based single-photon
source is 8.3(8) % (all error bars represent one standard
deviation). The purity of the single photons, quan-
tified by the second-order normalised correlation func-
tion, is g(2)(0) ≈ 2.31(3) % and their indistinguishability,
quantified with the Hong-Ou-Mandel (HOM) visibility, is
VHOM = 93.09(4) % [21]. The train of emitted photons is
converted with a passive demultiplexing stage into pairs
of photons entering simultaneously the photonic chip.
On exiting the chip, the photons are detected by high-
efficiency single photon detectors and time tagged. The
overall transmission of the setup is 2.7 %.

Certifiying randomness requires witnessing correla-
tions that win the CHSH game, or equivalently that vi-
olate the CHSH inequality. This places requirements on
the purity and indistinguishability of the photons emit-
ted by the single-photon source. For the ideal case of a
source emitting only pure photons in a lossless optical
circuit, denoting ICHSH the value obtained for the CHSH
expression, we derive the following relation:

ICHSH =
√

2(VHOM + 1). (1)

The choice of inputs for Alice and Bob corresponds to
applying different phases on their side of the chip, that

are controlled by thermo-optic phase shifters. We use a
spatial encoding, which means that the outputs recorded
by Alice and Bob are determined by the modes in which
each of their photons exit the chip. The protocol alter-
nates between generation rounds, for which Alice’s and
Bob’s phases are fixed, and test rounds, for which they
each choose at random one of their two possible measure-
ment choices. We assume that the detected photons are
representative of the whole optical setup behaviour, i.e.
that the sampling is fair. The measured coincidence rate
is about 14 200(600) s−1. Before data acquisition we mea-
sured a violation of the CHSH inequality ICHSH = 2.68,
which we used to fix the optimal parameters for the pro-
tocol. We ran our protocol for a total number of rounds
N = 2.4 × 109, and we obtained a CHSH violation of
ICHSH = 2.685 and an approximate quantum fraction of
0.005 (at level 3 of the NPA hierarchy). Our protocol
then certifies that this generates 7.21× 106 private ran-
dom bits, quantified by the min-entropy of the outputs.
This amount of randomness is compatible with random-
ness expansion, in the sense that if we were to use the
interval algorithm to generate our strongly biased input
bits from a small number of uniform bits [22, 23], the in-
put randomness required for our implementation would
be 5.24× 106, which is smaller than the amount of ran-
domness we generate at the output.
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Abstract. In recent years, achieving verifiable quantum advantage on a NISQ device has
emerged as an important open problem in quantum information. The sampling-based quan-
tum advantages are not known to have efficient verification methods. This paper investigates
the verification of quantum advantage from a cryptographic perspective. We establish a
strong connection between the verifiability of quantum advantage and cryptographic and
complexity primitives, including efficiently samplable, statistically far but computationally
indistinguishable pairs of (mixed) quantum states (EFI), pseudorandom states (PRS), and
variants of minimum circuit size problems (MCSP). Specifically, we prove that a) a sampling-
based quantum advantage is either verifiable or can be used to build EFI and even PRS and
b) polynomial-time algorithms for a variant of MCSP would imply efficient verification of
quantum advantages. Full version: https://arxiv.org/pdf/2310.14464.
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1 Introduction
Quantum advantage experiments aim to demon-

strate that quantum computers can perform some
tasks faster than classical computers with a more
favorable amount of computational resources. In
the NISQ (Noisy Intermediate Scale Quantum)
era, sampling tasks such as random circuit sam-
pling (RCS) [2] and Boson sampling [1] emerge
as promising candidates for quantum advantage
experiments since they can be implemented on a
NISQ device and are provably hard for classical
computers. Besides classical hardness and imple-
mentation on a NISQ device, an equally important
aspect is how to allow an efficient classical com-
puter to verify the samples from such experiments.
Consequently, the challenge remains open to de-
signing a quantum advantage experiment that sat-
isfies all three criteria.

In terms of the verifiability of RCS, the linear
cross-entropy benchmarking (XEB) is first pro-
posed as a verification method [2]. However, XEB
is sample-efficient, but not computationally effi-
cient. Moreover, XEB can be spoofed [9, 16].
Perhaps there is a better verification method for
RCS? Hangleiter and his colleagues showed that
the answer is no [10]. They show that if the tar-
get distribution anticoncentrates, certifying close-
ness to the target distribution requires exponen-
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tially many samples, which covers RCS, Boson
sampling, and IQP sampling.

What about general quantum sampling experi-
ments? How do we determine if such an experi-
ment has an efficient verification method? In [8],
the verification task is modeled as a game between
a quantum party, a classical challenger, and a clas-
sical referee, which we will discuss later. However,
they can only show the limitations of the verifica-
tion method that calculates the empirical average
of some scoring function of individual samples in
this model.

2 Our results
In this paper, we investigate the verifiability of

sampling-based quantum advantage experiments
via a cryptographic perspective. To this end,
we first put forth formal definitions of verifiabil-
ity. Subsequently, we study the implication of the
hardness of a variant of the minimal circuit size
problem (MCSP) on verifiability. Furthermore,
we establish the connection between verifiability
and fundamental quantum cryptographic primi-
tives: EFI (efficiently generated, statistically far,
and computationally indistinguishable states) and
PRS (pseudorandom states). Lastly, we general-
ize verifiable quantum advantage to capture the
verifiability of interactive proof of quantumness.
We hope that our work will advance the under-
standing of the verifiability of quantum advantage
experiments and provide insights into the develop-
ment of future quantum advantage experiments.
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To address the verifiability of quantum advan-
tage experiments, we model the verification pro-
cess as an interaction between three parties: Alice
(a quantum advocate and experiment designer),
Bob (a quantum skeptic), and a verifier 1. Al-
ice runs the quantum experiment and sends tran-
scripts of her experiment, including the setup of
the experiment apparatus and outcomes, to the
verifier. She also tells Bob about her experiment
apparatus but not the outcomes. Bob proposes a
classically samplable distribution that depends on
Alice’s experiment and is indistinguishable from
Alice’s distribution, and sends the description of
his sampling algorithm along with samples of his
distribution to the verifier. The verifier’s goal is
to distinguish Alice and Bob’s samples, so we also
call him the distinguisher. The distinguisher takes
all the information from Alice and Bob as input.
In the case of RCS, Alice publishes her random
circuit C, and sends her measurement outcome on
C|0n⟩ to the distinguisher. Bob proposes a C-
dependent spoofing algorithm, and sends the de-
scription of the algorithm along with his samples
to the distinguisher.

Definition 1 (Verifiable quantum advantage)
Let C be a set of polynomial-sized quantum circuits
on n qubits. We say the experiment that samples a
C ∈ C and repeatedly measures the output state in
the computational basis achieves verifiable quan-
tum advantage if for all D = {DC ,SC}C∈C where
SC is a time-s classical sampler for DC , there
exists a classical polynomial time distinguisher A
such that

E
C←C

|Pr[A(C,SC , zzzC) = 1]−

Pr[AD(C,SC , zzzDC
) = 1]| ≥ 1/ poly(n),

where zzzC is a polynomial-sized set of samples gen-
erated from measuring C|0n⟩ in the computational
basis, and zzzDC

is a set of samples drawn from DC .

We give several VQA examples to demonstrate
the expressiveness of our verifiability definition,
such as Fourier sampling (e.g., based on Shor’s
algorithm and Simon’s problem). Note that our
distinguisher is more general than the ones used
in the experiments [2] and studied in [8]. Their
distinguishers are agnostic about how the classical
samples are sampled, and they score each sample
individually, and make their decisions based on
the average of the scores. As pointed out in [8], if
the distinguisher knows the spoofing algorithm of
XEB proposed in [16], the distinguisher can dis-
tinguish the spoofing samples from the quantum
samples. Hence, we define VQA with respect to a
more general distinguisher.

1We came up with this model unaware of the two-party
game proposed in [8], although the two models share some
similarities

Minimum circuit size problem (MCSP) vs.
VQA. We aim to identify the computational
hardness of verifying quantum advantages. One
potential approach is finding a problem for which
the existence of efficient algorithms would lead to
efficient verification. This is similar to the con-
nections between Meta-complexity problems and
cryptography.

Classical meta-complexity problems, which ask
to identify specific complexity measures (e.g., cir-
cuit complexity) of given Boolean functions, is
a fundamental topic in complexity theory. It is
worth noting that efficient classical algorithms for
these problems imply that one-way functions do
not exist [12, 17]. Inspired by the connections
between meta-complexity problems and cryptog-
raphy, we introduce a variant of meta-complexity
problems called the minimum circuit size problems
for samples (SampMCSP), which asks the minimal
size of classical samplers that can generate samples
indistinguishable from the given samples. This
problem is analogous to the state minimum circuit
size problem introduced in [7], which asks to iden-
tify the quantum circuit complexity of given quan-
tum states. We demonstrate that if SampMCSP
can be solved in polynomial time, then quantum
advantage experiments that only generate polyno-
mially many samples can be verified efficiently.

EFI vs. VQA. Next, we study the relationships
between verifiability and the quantum crypto-
graphic primitive EFI. EFI is a fundamental quan-
tum cryptographic primitive, which is equivalent
to quantum commitment schemes, quantum obliv-
ious transfer, quantum multi-party computation
and others [3]. We show a duality between EFI
and verifiable quantum advantage, when we con-
sider classically-secure EFI pairs, i.e., whose com-
putational indistinguishability holds only against
classical algorithms.

Theorem 2 (Informal) Suppose that a quan-
tum experiment admits quantum advantage.
Then, the experiment is verifiable if and only if
there exists a sufficiently large faction of the cir-
cuits’ output states that do not form an EFI pair
with any quantum state that encodes a classical
samplable distribution.

If we allow verifying quantum advantage by a
quantum computer, we obtain a similar duality
between quantum-secure EFIs and quantum verifi-
ability. These results provide necessary and suffi-
cient conditions for verifiability based on whether
the quantum circuit family can form EFI pairs with
classical polynomial-time samplable distributions.
To the best of our knowledge, all existing EFI pairs
satisfy such a property, i.e., one of the EFI genera-
tors can be simulated by classical polynomial-time

2
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sampling algorithms.

Pseudorandom states (PRS) vs. VQA A set
of states is a PRS if a random state in this set
is computationally indistinguishable from a Haar
random state [11]. PRS is an essential quantum
cryptographic primitive that can be used to build
other primitives, including one-time digital sig-
nature and EFI. Moreover, the existence of PRS
implies the existence of EFI, and thus the afore-
mentioned applications that are equivalent to EFI
can also be constructed from PRS. There is also
evidence showing that the existence of PRS is a
weaker assumption than the existence of one-way
functions [14].

Intuitively, if the output states of a quantum ad-
vantage experiment are pseudorandom, the mea-
surement output distribution should be indistin-
guishable from the measurement output distri-
bution of Haar random states. In addition, the
measurement output distribution of Haar random
states can be approximated by a classical distri-
bution, so this quantum advantage experiment
doesn’t achieve verifiability. However, in the defi-
nition of PRS, the distinguisher is unaware of the
preparation circuit of the given state, but the dis-
tinguisher in a quantum advantage experiment is.
Hence, we can only prove this result for a sub-
class of PRS, called classically unidentifiable PRS,
which intuitively says that when distinguishing
samples from measuring different states, knowing
the circuit doesn’t help. Many existing PRS con-
structions, such as the random phase states and
binary phase states [11, 6], are classically uniden-
tifiable.

Theorem 3 (Informal) If the quantum advan-
tage of a quantum sampling algorithm is verifiable,
then the output states are not classically unidenti-
fiable PRS.

The motivation behind Theorem 3 is that RCS is
proposed as a candidate construction of PRS [15].
If the output states of random circuits are clas-
sically unidentifiable, Theorem 3 gives us a proof
that RCS experiments are unverifiable. Note that
[10] shows the distribution induced by measuring a
random circuit is indistinguishable from some clas-
sical distribution, which doesn’t imply RCS is not
VQA according to Theorem 1. Conversely, The-
orem 3 also tells us that if some construction of
PRS fails, it is possible to use this construction for
verifiable quantum advantage. This is a win-win
situation.

What about interactive quantum advan-
tage experiments? So far, we have focused on
sampling-based quantum advantage experiments.

There are interactive verifiable quantum advan-
tage proposals called proof of quantumness (PoQ)
[4, 5, 13]. These PoQs achieve verifiability, but one
obstacle in implementing these protocols is main-
taining coherence during the interactions.

Hence, we generalize Theorem 1 to capture the
strength of both Theorem 1 and the verifiabil-
ity of PoQ. In the generalized definition, the
trusted party is the designated verifier, who gen-
erates public parameters and a private verification
key. After getting all the samples, the designated
verifier uses the verification key to distinguish Al-
ice’s quantum samples from Bob’s samples. We
call this Designated verifiable quantum advantage
or DVQA.

Under this definition, the trusted verifier is of-
fline, so Alice doesn’t need to interact with the
trusted verifier and can generate the samples on
her own as in Theorem 1. Moreover, it is possible
to compile existing PoQ to satisfy the new defi-
nition. For example: Assuming a random oracle,
the interactive protocol of [4] fits this definition.
The function keys and trapdoors of their protocol
are the public parameters and private verification
keys here. Then, the classical or quantum prover
can run the operations of the verifier in the origi-
nal protocol locally by querying the random oracle
for the challenges. In the end, the prover sends all
the generated transcripts to the distinguisher A,
who uses the verification key to distinguish the
transcripts. In the compiled protocol, the verifier
is offline as in Theorem 1, and the verifiability of
the original PoQ is preserved.

3 Conclusion and discussions
In summary, our results show connections be-

tween the verifiability of quantum advantages and
the quantum cryptographic primitives. It is worth
noting that computational tasks demonstrating
quantum advantages on near-term quantum de-
vices might not directly result in useful applica-
tions; however, our results show that the quest
for quantum advantages and their verifiability can
provide new insights and methods to build funda-
mental quantum cryptographic primitives. For a
quantum experiment designer: The study of quan-
tum cryptography can provide new insights into
designing a verifiable quantum advantage experi-
ment. For a quantum cryptographer: The quest
for verifiability of quantum advantages might lead
to quantum cryptographic applications. Theo-
rem 2 implies that if an experiment is not verifi-
able, then it will form a classical-secure EFI with a
classical polynomial-time samplable distribution.

3
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1 Extended abstract

Quantum theory is in principle compatible with
processes that violate causal inequalities, an ana-
logue of Bell inequalities that constrain the correla-
tions observed by parties operating in a definite or-
der [1–3]. To date, many examples of causal inequal-
ities that are potentially violated by processes with
indefinite causal order have been found [2, 4–11].
However, in general, the maximum quantum viola-
tions of these inequalities are still unknown even in
the simplest cases, unlike in the case of Bell inequal-
ities such as Clauser-Horne-Shimony-Holt (CHSH)
inequality [12], for which Tsirelson bound provides
the ultimate violation achievable in quantum the-
ory. The lack of exact bounds on the quantum vi-
olation of causal inequalities limits our understand-
ing of indefinite causal order in quantum mechan-
ics. In addition, new questions have recently arisen
from the introduction of a new class of scenarios
where not only the causal order of the experiments,
but also the temporal direction of the information
flow within the local laboratories can be indefinite
[13]. Can these scenarios lead to even larger vio-
lations? And in the affirmative case, where does
the boundary lie between the correlations achievable
with indefinite causal order alone and those achiev-
able when indefinite causal order is combined with
indefinite temporal direction?

Here we answer all the above questions. First, we
develop a general method for bounding the violation
of causal inequalities by quantum processes with in-
definite causal order. We start by showing that the
maximal violation of a special class of causal in-
equalities, termed single-trigger causal inequalities,

∗zixuanliu@connect.hku.hk
†giulio@cs.hku.hk

can be determined explicitly. The maximal viola-
tion of single-trigger causal inequalities provides up-
per bounds on the violations of arbitrary causal in-
equalities. Mathematically, these upper bounds can
be seen as an semidefinite programming (SDP) re-
laxation of the original problem of computing the
maximal quantum violation of causal inequalities.

Using this method, we establish the analogue of
Tsirelson bound for paradigmatic examples of causal
inequalities. We show the maximal violation of
the Oreshkov-Costa-Brukner (OCB) inequality [2]
and the inequality associated with Lazy Guess Your
Neighbor’s Input game [5]. In addition, we provide
a non-trivial upper bound of the success probabil-
ity of Guess Your Neighbor’s Input game [5]. Our
results allow for a geometric representation of the
quantum correlations arising from indefinite causal
order. Intriguingly, we find that the geometric rep-
resentation of the OCB correlations coincides with
the representation of the CHSH correlations in the
Bell inequality setting [14].

Then, we show that classical processes with in-
definite causal order and time direction can violate
all causal inequalities to their algebraic maximum.
These processes are the classical version of the quan-
tum processes with indefinite time direction intro-
duced in Ref. [13]. They are in principle compatible
with the validity of classical physics in the labora-
tories of the different parties, but do not assume a
privileged direction of time outside each laboratory.
In particular, we construct a classical process which
allows two parties to perfectly signal to each other.

Our results offer new insights into the structure of
the set of quantum correlations generated by quan-
tum indefinite-causal-order processes, and can be
used as a tool to better understand the operational
implication of indefinite causal order in quantum
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theory. An open question is whether our general
bound could be tight for all the other causal in-
equalities. The analogy with Bell inequalities, how-
ever, suggests a negative answer. In Bell scenarios,
a converging sequence of upper bounds on the value
of maximal quantum violations is provided by the
Navascués-Pironio-Aćın SDP hierarchy [15, 16]. The
analogy with this situation suggests that our SDP
relaxation may be just the first level of a a similar
hierarchy of SDPs. Determining whether this anal-
ogy is correct, and, in the affirmative case, identi-
fying the other levels of the hierarchy are among
the most important research directions opened by
our work. Another interesting direction is to extend
our method for the calculation of the ICO bound
to other type of inequalities with non-trivial causal
structure, such as the inequalities recently studied
in Refs. [17, 18]. Another interesting direction of
future research is to establish self-testing results for
causal inequalities, in analogy to the self-testing re-
sults in Bell scenarios [19, 20]. Such a self-testing re-
sult may have cryptographic implications, in a simi-
lar way as it was observed in the setting of Bell cor-
relations. While the physical realization of the OCB
process is still an open problem, these implications
would provide important foundational insights into
the operational understanding of indefinite causal
order in quantum theory. Finally, our results open
up a search for physical principles capable of ex-
plaining why the violation of causal inequalities by
ICO quantum processes is not equal, in general, to
the algebraic maximum, and, of determining the ex-
act value of the quantum violation. In the context
of Bell inequalities, the analogue question was orig-
inally raised by Popescu and Rohrlich [21], and led
to the discovery of new information theoretic princi-
ples, such as non-trivial communication complexity
[22–24], non-trivial nonlocal computation [25], in-
formation causality [26], macroscopic locality [27],
and local orthogonality [28].

2 Technical version of the work

Our paper is available on arXiv
(https://arxiv.org/abs/2403.02749).

References

[1] G. Chiribella, G. D’Ariano, P. Perinotti, and
B. Valiron, “Beyond quantum computers,”
arXiv preprint arXiv:0912.0195, 2009.

[2] O. Oreshkov, F. Costa, and Č. Brukner, “Quan-
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Abstract. We show that quantum entanglement provides an exponential advantage in learning properties
of a bosonic continuous-variable (CV) system. Considering learning n bosonic mode random displacement
channel, we prove that without an ancillary quantum memory, an exponential number of copies of the
channel in n is required to estimate its characteristic function to reasonable precision. In contrast, we
present an entanglement-assisted scheme that only requires the number of samples independent of n, given
a su�cient amount of squeezing. This establishes an exponential separation in sample complexity. We
then show that the entanglement-assisted scheme is su�ciently robust against photon loss.

Keywords: Quantum learning, Continuous-variable systems, Quantum advantage

1 Introduction

Learning and characterizing a physical system is a cru-
cial task in science and technology. Over the past few
years, there has been a huge interest in studying quan-
tum advantage in learning a quantum system. Many of
the previous results discovered a quantum advantage in
learning using quantum memory in the sense that learn-
ing schemes allowed the use of entanglement with quan-
tum memory to provide an exponential sample complex-
ity advantage over any schemes without quantum mem-
ory. Specifically, Refs. [1, 2] establish a framework for
proving exponential separation in sample complexity be-
tween learning with and without a coherently controllable
quantum memory.

However, most learning tasks studied so far are re-
stricted to discrete-variable (DV) systems. It is natural
to ask whether entanglement-enabled advantage can also
be realized for learning properties of bosonic continuous-
variable (CV) systems. This is particularly important
because CV systems are ubiquitous in nature and have
many applications, such as quantum sensing. The main
obstacle for generalizing the results in DV systems to
CV systems is that the latter has an infinite-dimensional
Hilbert space, making it challenging to formulate rigorous
results concerning the complexity of learning properties
of these systems. Recent progress has been achieved in
studies of entanglement-enhanced learning of CV-state
characteristic functions [3]; however, the lower bounds
obtained so far apply to a restricted class of learn-

⇤changhun0218@gmail.com

ing strategies rather than to general entanglement-free
schemes.

In this work, we rigorously prove an entanglement-
enabled advantage in learning an n-mode bosonic ran-
dom displacement channel. Specifically, we show that
any schemes without ancillary quantum memory require
an exponential number of samples in n to learn the char-
acteristic functions of the channel with reasonably good
precision and high success probability. In stark contrast,
we present a simple scheme utilizing entanglement with
ancillary quantum memory (i.e., entanglement-assisted)
that can complete the same learning task with a sam-
ple complexity independent of n, given access to two-
mode squeezed vacuum (TMSV) states with su�ciently
large squeezing parameter and Bell measurements (BM).
This establishes an exponential separation between learn-
ing with and without entanglement in bosonic systems.
The two learning scenarios are illustrated in Fig. 1. We
emphasize that our hardness results hold for arbitrar-
ily high-energy input states and arbitrary measurements,
while the presented entanglement-assisted scheme only
requires a finite-energy TMSV and BM.

2 Results

2.1 Main result

Our main result is to prove the exponential sep-
aration of sample complexity between two types of
learning schemes, (i) entanglement-free scheme and (ii)
entanglement-assisted scheme, for the random displace-
ment channel, as illustrated in Fig. 1. The main
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Figure 1: Schemes for learning an n-mode random
displacement channel ⇤. (a) TMSV+BM, a spe-
cific entanglement-assisted (EA) scheme. (b) General
entanglement-free (EF) scheme (see the main text).

result is obtained by combining Theorem 1, proving
the upper-bound of sample complexity for the pro-
posed entanglement-assisted scheme and Theorem 2,
proving the lower-bound of sample complexity for any
entanglement-free schemes. Here, an entanglement-free
scheme is (i) ancilla-free, i.e., not allowed to use ancil-
lary memory, (ii) concatenation-free, i.e., the output of
the channel is measured destructively after each channel
use, but (iii) adaptive, i.e., for each channel use, the in-
put to the channel and the measurement performed on
the output may depend on measurement outcomes ob-
tained in earlier rounds. On the other hand, a particu-
lar entanglement-assisted scheme we propose is allowed
to use (i) ancilla, (ii) concatenation-free, and (iii) non-
adaptive.

2.2 Problem setup

We consider the task of learning an n-mode random
displacement channel characterized by a probability dis-
tribution p(↵) with ↵ 2 Cn, which transforms an input
state ⇢̂ as

⇤(⇢̂) =

Z
d
2n
↵ p(↵)D̂(↵)⇢̂D̂†(↵) (1)

=
1

⇡n

Z
d
2n
� �(�)Tr[⇢̂D̂(�)]D̂†(�), (2)

where D̂(↵) ⌘ ⌦n
i=1D̂(↵i) and D̂(↵i) ⌘ exp(↵iâ

†
i �↵

⇤
i âi)

is the displacement operator for the ith mode. Here,
the second equivalent expression is by the characteristic
function of p(↵), i.e., its Fourier transform, as

�(�) ⌘
Z

d
2n
↵ p(↵)e↵

†���†↵
. (3)

Here, because of the Fourier relation, �(�) with a large �
contributes to rapidly oscillating p(↵). Since the domain
of � is infinite in principle, we will focus on a restricted
finite domain specified later. The goal of our learning
task is to learn the channel by estimating the character-
istic function �(�). We emphasize that this is di↵erent
from identifying a particular displacement that is drawn
from the distribution p(↵).

2.3 Entanglement-assisted scheme

Now, we present an entanglement-assisted scheme (see
Fig. 1(a)). Consider an n-mode random displacement

channel ⇤B acting on the n-mode system B. To learn
this channel, we prepare n CV Bell states with a finite
squeezing parameter r, which is a two-mode squeezed
vacuum (TMSV) state, and half of the states go through
the channel while the other half stays in quantum mem-
ory. Finally, we measure the output state by CV Bell
measurement (BM), which can be implemented by pass-
ing through a 50:50 beam splitter and performing ho-
modyne measurement on output ports along di↵erent
quadratures. To see how to learn a random displace-
ment channel using this TMSV+BM scheme, we invoke
the probability of obtaining outcome ⇣ from BM:

pEA(⇣) =
1

⇡2n

Z
d
2n
↵ �(↵)e�e�2r|↵|2

e
↵†⇣�⇣†↵

. (4)

Fourier transforming to invert this relation, we obtain

�(�) = e
e�2r|�|2

Z
d
2n
⇣ pEA(⇣)e

⇣†���†⇣
. (5)

This expression indicates that, by sampling N measure-
ment outcomes {⇣(i)}Ni=1 from a TMSV+BM scheme, one
can obtain an unbiased estimator �̃(�) of �(�) by defin-

ing �̃(�) ⌘ 1
N e

e�2r|�|2 PN
i=1 e

⇣(i)†���†⇣(i)

. Note that the
same set of samples can be used to estimate �(�) for dif-
ferent values of � just by modifying the estimator. Using
the Hoe↵ding’s bound, we prove the following theorem:

Theorem 1 For any n-mode random displacement

channel ⇤, after the TMSV+BM scheme with squeez-

ing parameter r has learned from N copies of ⇤, and

then received a query � 2 Cn
, it can provide an esti-

mator �̃(�) of ⇤’s characteristic function �(�) such that

|�̃(�)� �(�)|  ✏ with probability at least 1� �, with the

number of samples N = 8e2e
�2r|�|2

✏
�2 log 4��1

.

Here, if we confine the domain of � to |�|2  n with
a constant  > 0, we obtain an upper bound on the
sample complexity for achieving an error ✏ with success
probability 1�� using each scheme:

NEA = O(e2e
�2rn

✏
�2 log ��1), . (6)

In particular, if we choose the squeezing parameter as r =
⌦(log n), the sample complexityNEA = O(✏�2 log ��1) of
the entanglement-assisted scheme becomes independent
of the number of modes n, while our lower bound on sam-
ple complexity of the entanglement-free scheme increases
exponentially with n (see below). Since the accessible
squeezing parameter is bounded in practice, though, we
will compare the sample complexities of the two schemes
when r is an n-independent constant below.

2.4 Entanglement-free schemes

We now prove an exponential sample complexity
lower bound for any entanglement-free scheme using
information-theoretic methods. This highlights the in-
dispensable role of entanglement for e�ciently learning
bosonic random displacement channels. Our result is as
follows:
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Theorem 2 Let ⇤ be an arbitrary n-mode random

displacement channel (n � 8) and consider an

entanglement-free scheme that uses N copies of ⇤. Af-

ter all measurements are completed, the scheme receives

the query � 2 Cn
and returns an estimate �̃(�) of ⇤’s

characteristic function �(�). Suppose that, with success

probability at least 2/3, |�̃(�)� �(�)|  ✏  0.24 for any

� such that |�|2  n. Then N � 0.01✏�2(1 + 1.98)n.

Here, the success probability 2/3 is arbitrary and can be
easily amplified. Comparing with the sample complexity
of the entanglement-assisted given in Eq. (6), Theorem 2
establishes an exponential separation in n for cuto↵ co-
e�cient  = O(1) and squeezing parameter r = ⌦(log n).
The intuition underlying this theorem is that displace-
ment operators D̂(�) do not generally commute with each
other. Consequently, entanglement-free measurements
can resolve �(�) for only a small portion of � space.
The main idea of the proof of the theorem is (i) to de-

fine a family of “3-peak” random displacement channels
⇤✏,�

3-peak = {⇤�}�2Cn whose characteristic functions and
distributions of displacement are, respectively,

��(�) = e
� |�|2

2�2 + 2i✏0e
� |���|2

2�2 � 2i✏0e
� |�+�|2

2�2 , (7)

p�(↵) / e
�2�2|↵|2 (1 + 4✏0 sin(2(�i↵r � �r↵i))) , (8)

where � > 0 and ✏ ⌘ 0.98✏0, and (ii) to consider a binary
hypothesis testing of (1) ⇤ = ⇤0; (2) ⇤ = ⇤� , for Gaus-
sian random variable � characterized by . Then, we can
show that (iii) given a learning scheme satisfying the as-
sumptions of Theorem 2, Bob can guess correctly with
high probability. This means that the outcome distribu-
tions of Bob’s scheme under hypotheses (1) and (2) must
have a su�ciently large total variation distance (TVD).
Finally, (iv) we can upper bound the contribution from
each use of ⇤ to the TVD to be exponentially small.
Therefore, the number of channel uses N must be ex-
ponentially large to ensure a large enough TVD, which
gives us the desired lower bound.

2.5 E↵ect of loss

For practical applications, we analyze how the
entanglement-assisted scheme is a↵ected by photon loss,
a dominant noise source in optical platforms. We con-
sider two di↵erent places where the loss occurs: one is
before applying the channel with loss rate 1�Tb to model
the preparation imperfection, and the other is after ap-
plying the channel and before the perfect BM with loss
rate 1 � Ta, which models the finite e�ciency of detec-
tion. As before, we derive the relation between the mea-
surement probability distribution and the characteristic
function of the channel:

�(�) = e
e�2reff |�|2

Z
d
2n
⇣ ploss(⇣)e

(⇣†���†⇣)/
p
Ta , (9)

where we define an e↵ective squeezing parameter

re↵ ⌘ �1

2
log

✓
Tbe

�2r + (1� Tb) +
1� Ta

Ta

◆
, (10)

Figure 2: Comparison of TMSV+BM and the
entanglement-free lower bound at  = 1 for estimating
any �(�) such that |�|2  n with precision " = 0.2 and
success probability 1 � � = 2/3. The orange region rep-
resents a rigorous advantage over all entanglement-free
schemes.

which incorporates the loss rates. Because loss degrades
the advantage from squeezing, the upper bound on sam-
ple complexity in Theorem 1 is modified as:

Theorem 3 For the same task as in Theorem 1, a

TMVS+BM scheme with squeezing parameter r and

transmission rates before and after the channel to be Tb

and Ta, respectively, can estimate any �(�) to error ✏

with success probability 1�� using the number of samples

N = 8e2e
�2re↵|�|2

✏
�2 log 4��1

.

Thus, when |�|2  n with a constant  > 0, Tb =
1 � O(1/n), Ta = 1 � O(1/n) and r = ⌦(log n), the
sample complexity becomes N = O(✏�2 log ��1) as in
the lossless case. For practically relevant squeezing and
including loss before BM, we compare the sample com-
plexity for the lossy TMSV+BM protocol and the lossless
entanglement-free lower bound in Fig. 2, finding a signif-
icant entanglement-enabled advantage in realistic exper-
imental settings. Although the 109 number of samples
required to achieve the advantage seems large, the state-
of-the-art quantum optics experiments (e.g., Refs. [4, 5])
can attain such number of samples in a reasonable time
with high sampling rate up to 160 GHz.

3 Discussion

We proved that schemes that exploit entanglement
with an ancillary quantum memory can learn n-mode
bosonic random displacement channels with exponen-
tially fewer samples compared to entanglement-free
schemes. Our results show that the information-theoretic
framework for learning studied in DV quantum systems
can be generalized to the CV setting and have power-
ful implications. We anticipate that these techniques can
also be applied to other CV learning tasks. Besides gen-
eralizing other previous results known in DV systems, an
interesting open question is to find a practical applica-
tion of such an exponential advantage. We expect that
it may have a direct connection to quantum sensing.
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We show that quantum entanglement can provide an exponential advantage in learning properties
of a bosonic continuous-variable (CV) system. The task we consider is estimating a probabilistic
mixture of displacement operators acting on n bosonic modes, called a random displacement channel.
We prove that if the n modes are not entangled with an ancillary quantum memory, then the channel
must be sampled a number of times exponential in n in order to estimate its characteristic function
to reasonable precision; this lower bound on sample complexity applies even if the channel inputs and
measurements performed on channel outputs are chosen adaptively. On the other hand, we present a
simple entanglement-assisted scheme that only requires a number of samples independent of n, given
a su�cient amount of squeezing. This establishes an exponential separation in sample complexity.
We then analyze the e�ect of photon loss and show that the entanglement-assisted scheme is still
significantly more e�cient than any lossless entanglement-free scheme under mild experimental
conditions. Our work illuminates the role of entanglement in learning continuous-variable systems and
points toward experimentally feasible demonstrations of provable entanglement-enabled advantage
using CV quantum platforms.

Quantum science and technology holds promise to rev-
olutionize how we understand and interact with nature,
enabling computational speedups [1], classically impossi-
ble communication tasks [2, 3], and measurements with
unprecedented sensitivity [4–6]. Rapid progress during
the noisy intermediate-scale quantum (NISQ) era [7] has
brought these promises closer to reality, but the challenge
remains to demonstrate rigorous quantum advantage for
practical problems.

Over the past few years, there has been ongoing theo-
retical and experimental progress in exploring quantum
computational advantage [8–16]. Another recent line of
research seeks quantum advantage in learning [17–24],
revealing that access to quantum memory enables us to
learn properties of nature more e�ciently. Specifically,
Refs. [18, 19] establish a framework for proving expo-
nential separation in sample complexity between learn-
ing with and without a coherently controllable quantum
memory. In contrast to its computational counterpart,
this entanglement-enabled advantage in learning can be
proven without invoking computational assumptions and
can sometimes be more experimentally accessible. A proof-
of-principle experiment has been conducted on Google’s
superconducting quantum processor using 40 qubits [18].

Most learning tasks studied so far are restricted to
discrete-variable (DV) systems. It is natural to ask

whether entanglement-enabled advantage can also be real-
ized for learning properties of bosonic continuous-variable
(CV) systems. This is particularly interesting and impor-
tant because CV systems are ubiquitous in nature and
have many applications in quantum information science,
such as quantum sensing [6, 8, 25–27]. However, gener-
alizing the results in DV systems to CV systems can be
di�cult because bosonic systems have infinite-dimensional
Hilbert spaces, making it challenging to formulate rigorous
results concerning the complexity of learning properties
of these systems. Recent progress has been achieved in
studies of entanglement-enhanced learning of CV-state
characteristic functions [28]; however, the lower bounds
obtained so far apply to a restricted class of learning strate-
gies rather than to general entanglement-free schemes.

In this work, we rigorously establish an entanglement-
enabled advantage in learning a probabilistic mixture of
n-mode displacement operations, called a bosonic ran-

dom displacement channel. Specifically, we show that any
schemes without ancillary quantum memory require a
number of samples exponential in n to learn the char-
acteristic functions of the channel with reasonably good
precision and high success probability. On the contrary,
we present a simple scheme utilizing entanglement with
ancillary quantum memory (i.e., entanglement-assisted)
that can complete the same learning task with a sample
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complexity independent of n, given access to two-mode
squeezed vacuum (TMSV) states with su�ciently large
squeezing parameter and Bell measurements (BM). This
establishes an exponential separation between learning
with and without entanglement in the bosonic system.
The two learning scenarios are illustrated in Fig. 1. Note
that our hardness results hold for arbitrarily high-energy
input states and arbitrary measurements, while the pre-
sented entanglement-assisted scheme only requires a finite-
energy TMSV and BM.

Furthermore, we analyze the robustness of this
entanglement-enabled advantage under realistic exper-
imental conditions. Specifically, we study the photon-loss
e�ect, the most common noise source in optical platforms.
Our results suggest that for squeezing parameters and loss
rates achievable in a state-of-the-art bosonic experiment
platform, the separation in sample complexity remains
significant. Therefore, we anticipate that an experimental
demonstration of entanglement-enabled advantage in CV
quantum systems can be achieved in the near future.

Problem Setup.— We consider the task of learning
an n-mode random displacement channel characterized
by a probability distribution p(–) with – œ Cn, which
transforms an input state fl̂ as

�(fl̂) =
⁄

d
2n

– p(–)D̂(–)fl̂D̂
†(–), (1)

where D̂(–) := ¢n

i=1D̂(–i) and D̂(–i) := exp(–iâ
†
i
≠–

ú
i
âi)

is the displacement operator for the ith mode. The ran-
dom displacement channel can also be equivalently de-
scribed by the characteristic function of p(–), i.e., its
Fourier transform, as (see SM S1 [29] for the derivation)

�(fl̂) = 1
fin

⁄
d

2n
— ⁄(—) Tr[fl̂D̂(—)]D̂†(—), (2)

⁄(—) :=
⁄

d
2n

– p(–)e–
†
—≠—

†
–

. (3)

Here, because of the Fourier relation, ⁄(—) with a large —

contributes to rapidly oscillating p(–). Since the domain
of — is infinite in principle, we will focus on a restricted
finite domain specified later. The goal is to learn the
channel by estimating the characteristic function ⁄(—).
We emphasize that the goal is to characterize the channel,
as opposed to identifying a particular displacement that
is drawn from the distribution p(–). The value of — for
which ⁄(—) is to be estimated is revealed only after all
measurements are completed.

We focus on the separation between two types of learn-
ing schemes for the random displacement channel distin-
guished by whether or not the scheme uses entanglement
between the system and an ancilla, as illustrated in Fig. 1.
Throughout this work, we define an entanglement-free
scheme to be both ancilla-free and concatenation-free,
i.e., the output of the channel is measured destructively

TMSV BM

(a) (b)

!! {"}

FIG. 1. Schemes for learning an n-mode random displacement
channel �. (a) TMSV+BM, a specific entanglement-assisted
(EA) scheme. (b) General entanglement-free (EF) scheme.
Here we assume no concatenation is allowed, i.e., each copy
of the channel acts on some input state fl0 and is measured
destructively by some POVM {E}. The input state and
measurement are allowed to be adaptively chosen depending
on previous outcomes. An example of EF scheme is Vac-
uum+Heterodyne (see the main text).

after each channel use. However, the entanglement-free
scheme is allowed to be adaptive; for each channel use,
the input to the channel and the measurement performed
on the output may depend on measurement outcomes
obtained in earlier rounds. This scenario is similar to
Refs. [17, 22]. Several recent works have obtained lower
bounds on learning DV channels that hold even with
concatenation [23, 30, 31], but we will not analyze the
consequences of concatenating CV channels in this work
for simplicity.

Schemes.— Now, we present an entanglement-assisted
scheme (see Fig. 1) inspired by a similar scheme to which
has been proposed in DV Pauli channel estimation in
Ref. [23]. Consider an n-mode random displacement chan-
nel �B acting on the n-mode system B. To learn this
channel, we prepare n CV Bell states with a finite squeez-
ing parameter r, which is a two-mode squeezed vacuum
(TMSV) state, and half of the states go through the chan-
nel while the other half stays in quantum memory. Finally,
we measure the output state by CV Bell measurement
(BM), which can be implemented by passing through
a 50:50 beam splitter and performing homodyne mea-
surement on output ports along di�erent quadratures [27].
Formally, the BM POVM element labeled by {’ œ Cn} has
the following form: (I ¢ D̂(’))|�ÍÈ�|(I ¢ D̂

†(’))/fi
n; here

|�Í denotes the tensor product of n infinitely squeezed
TMSV states, each proportional to

qŒ
k=0 |kÍ|kÍ when

expressed in the Fock basis. To see how to learn a ran-
dom displacement channel using this TMSV+BM scheme,
we invoke the probability of obtaining outcome ’ from
BM (see SM S2 A [29] for the derivation):

pEA(’) = 1
fi2n

⁄
d

2n
– ⁄(–)e≠e

≠2r|–|2
e

–
†
’≠’

†
–

. (4)
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Fourier transforming to invert this relation, we obtain

⁄(—) = e
e

≠2r|—|2
⁄

d
2n

’ pEA(’)e’
†
—≠—

†
’

:= e
e

≠2r|—|2
⁄EA(—).

(5)

This expression indicates that, by sampling N measure-
ment outcomes {’

(i)}N

i=1 from a TMSV+BM scheme, one
can obtain an unbiased estimator ⁄̃(—) of ⁄(—) by defin-
ing ⁄̃(—) := 1

N
e

e
≠2r|—|2 q

N

i=1 e
’

(i)†
—≠—

†
’

(i) . Note that the
same set of samples can be used to estimate ⁄(—) for dif-
ferent values of — just by modifying the estimator. Using
the Hoe�ding’s bound, we prove the following theorem
(see SM S2 A for the proof):

Theorem 1. For any n-mode random displacement chan-

nel �, after the TMSV+BM scheme with squeezing param-

eter r has learned from N copies of �, and then received

a query — œ Cn
, it can provide an estimator ⁄̃(—) of �’s

characteristic function ⁄(—) such that |⁄̃(—) ≠ ⁄(—)| Æ ‘

with probability at least 1 ≠ ”, with the number of samples

N = 8e
2e

≠2r|—|2
‘

≠2 log 4”
≠1

.

Let us compare the TMSV+BM scheme with a particu-
lar entanglement-free scheme that uses the vacuum state
as input and heterodyne detection (Vacuum+Heterodyne).
Here, heterodyne detection is defined as a projection
onto the (overcomplete) basis of coherent states, i.e.,
|’ÍÈ’|/fi

n with ’ œ Cn. Though it may not be the optimal
entanglement-free scheme, this specific scheme helps us
understand the limitations of entanglement-free schemes,
which we capture more generally in Theorem 2 below.

In this scheme, the probability of obtaining POVM
outcome ’ is (see SM S2 B [29])

pV H(’) = 1
fi2n

⁄
d

2n
– ⁄(–)e–

†
’≠’

†
–

e
≠|–|2

. (6)

In fact, the Vacuum+Heterodyne scheme can be under-
stood as the TMSV+BM scheme with r = 0. Inverting
this relation by Fourier transforming, we may express the
channel’s characteristic function in terms of the measure-
ment probability distribution:

⁄(—) = e
|—|2

⁄
d

2n
’ pV H(’)e’

†
—≠—

†
’ := e

|—|2
⁄V H(—),

(7)

which yields another unbiased estimator ⁄̃(—) :=
1
N

e
|—|2 q

N

i=1 e
’

(i)†
—≠—

†
’

(i) given N samples {’
(i)}N

i=1.
Comparing to (5), we see that the r-dependent prefac-
tor is missing from (7). Specifically, if we confine — to
|—|2 Æ Ÿn with a constant Ÿ > 0, we obtain upper bounds
on the sample complexity for achieving an error ‘ with
success probability 1≠” using each scheme:

NEA = O(e2e
≠2r

Ÿn
‘

≠2 log ”
≠1), (8)

NV H = O(e2Ÿn
‘

≠2 log ”
≠1). (9)

In particular, if we choose the squeezing parameter as r =
�(log n), the sample complexity NEA = O(‘≠2 log ”

≠1) of
the entanglement-assisted scheme becomes independent
of the number of modes n, while our upper bound on sam-
ple complexity of the entanglement-free scheme increases
exponentially with n. Since the accessible squeezing pa-
rameter is bounded in practice, though, we will compare
the sample complexities of the two schemes when r is an
n-independent constant below.

To illustrate the di�erence, we compare TMSV+BM
and Vacuum+Heterodyne strategies with an example in
Fig. 2. We consider a single-mode channel for ease of
visualization, characterized by

p(–) = 2‡
2

fi
e

≠2‡
2|–|2

[cos2(–r“i ≠ –i“r)

+ sin2(–r“r + –i“i)], (10)

⁄(—) = e
≠ |—|2

2‡2 + 1
4e

≠ |—≠“|2
2‡2 + 1

4e
≠ |—+“|2

2‡2

≠ 1
4e

≠ |—≠i“|2
2‡2 ≠ 1

4e
≠ |—+i“|2

2‡2 , (11)

with ‡ = 0.3, “r = 1.6, “i = 0 (“ := “r + i“i), and
r = 2 for the TMSV+BM scheme. The figure, where we
present the underlying output probability distributions
and their characteristic functions from Eqs. (4),(5),(6),
and (7), clearly shows that in the TMSV+BM scheme
with a su�ciently large squeezing parameter, the resul-
tant probability distribution and characteristic function
are almost identical to the ideal case. However, for the
Vacuum+Heterodyne scheme, the vacuum noise distorts
the initial probability distribution so significantly that we
cannot see the signal clearly, which thus makes it harder
to estimate the original characteristic function.

Lower bound.— Our upper bound on the sample com-
plexity of the Vacuum+Heterodyne scheme scales expo-
nentially with n. Can this scaling be improved using more
advanced entanglement-free schemes, such as homodyne
or general-dyne detection [27, 32], or by non-Gaussian
resources like GKP states [33] or photon-number resolv-
ing measurements [34]? Here, using information-theoretic
methods, we prove an exponential sample complexity
lower bound for any entanglement-free scheme. This
highlights the indispensable role of entanglement for e�-
ciently learning bosonic random displacement channels.
Our result is as follows:
Theorem 2. Let � be an arbitrary n-mode random dis-

placement channel (n Ø 8) and consider an entanglement-

free scheme that uses N copies of �. After all mea-

surements are completed, the scheme receives the query

— œ Cn
and returns an estimate ⁄̃(—) of �’s characteristic

function ⁄(—). Suppose that, with success probability at

least 2/3, |⁄̃(—) ≠ ⁄(—)| Æ ‘ Æ 0.24 for all — such that

|—|2 Æ nŸ. Then N Ø 0.01‘
≠2(1 + 1.98Ÿ)n

.

Here, the choice of success probability 2/3 is arbi-
trary and can be easily amplified. Comparing with the
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(a) True distribution

(b) Entanglement-assisted

(c) Vacuum+Heterodyne

FIG. 2. Comparison between (a) the true distribution, (b)
TMSV+BM, and (c) Vacuum+Heterodyne strategies. The
left panel represents the probability distribution of the true
distribution and measurement probability distributions for
each scheme. The right panel represents the characteristic
function of probability distributions.

entanglement-assisted sample complexity given in Eq. (8),
Theorem 2 establishes a separation exponential in n for
cuto� coe�cient Ÿ = O(1) and squeezing parameter
r = �(log n). The intuition underlying this theorem is
that displacement operators D̂(—) do not generally com-
mute with each other. Consequently, entanglement-free
measurements can resolve ⁄(—) for only a small portion
of — space. We sketch the proof below and leave the full
details to SM S3 [29].

Proof Sketch. Our proof extends the techniques of
Refs. [18, 23] to the CV case. We begin by defining the
following family of “3-peak” random displacement chan-
nels ⇤‘,‡

39peak = {�“}“œCn whose characteristic functions
and distributions of displacement are, respectively,

⁄“(—) = e
≠ |—|2

2‡2 + 2i‘0e
≠ |—≠“|2

2‡2 ≠ 2i‘0e
≠ |—+“|2

2‡2 , (12)

p“(–) Ã e
≠2‡

2|–|2
(1 + 4‘0 sin(2(“i–r ≠ “r–i))) . (13)

with positive parameters ‡ and ‘ := 0.98‘0. We will show
that, even with the prior knowledge that the channel
is from this family, it is still hard for entanglement-free
schemes to complete the learning tasks.

The key idea is to reduce learning to binary hypothesis
testing. Consider the following game between Alice and
Bob: Alice chooses one of two hypotheses with equal

probability: (1) Set � = �0; (2) Set � = �“ , for “ sampled
from a zero-mean homogeneous Gaussian distribution
whose variance is determined by Ÿ. Next, Alice allows Bob
to use the channel � N times, and Bob uses his favorite
entanglement-free scheme to learn from these channel
uses. After Bob has finished all quantum measurements
and keeps only classical data, Alice reveals some auxiliary
information to Bob, who is then asked to decide whether
Alice has chosen (1) or (2).

Given a learning scheme satisfying the assumptions of
Theorem 2, Bob can guess correctly with high probabil-
ity. This means that the outcome distributions of Bob’s
scheme under hypotheses (1) and (2) must have a su�-
ciently large total variation distance (TVD). On the other
hand, we can upper bound the contribution from each
use of � to the TVD to be exponentially small, where
we use a technique inspired by Ref. [35] which derived
the maximum fidelity of Gaussian random displacement
channels. Therefore, the number of channel uses N must
be exponentially large to ensure a large enough TVD,
which gives us the desired lower bound.

E�ect of loss.— Now, for practical applications, we
study how the entanglement-assisted scheme is a�ected by
photon loss, a dominant noise source in optical platforms
(see SM S2 D for a discussion of more general noise models,
such as phase di�usion). Photon loss transforms the
relevant bosonic operator â to

Ô
T â +

Ô
1 ≠ T ê, where T

is the transmission rate and ê is the environmental mode,
i.e., 1≠T is the loss rate. We consider two di�erent places
where the loss occurs: one is before applying the channel
with loss rate 1≠Tb to model the preparation imperfection,
and the other is after applying the channel and before the
perfect BM with loss rate 1 ≠ Ta, which models the finite
e�ciency of detection, i.e., an imperfect BM [27]. As
before, we derive the relation between the measurement
probability distribution and the characteristic function of
the channel (with appropriate rescaling of the phase):

⁄(—) = e
e

≠2re� |—|2
⁄

d
2n

’ ploss(’)e(’
†
—≠—

†
’)/

Ô
Ta , (14)

where we define an e�ective squeezing parameter

re� := ≠1
2 log

3
Tbe

≠2r + (1 ≠ Tb) + 1 ≠ Ta

Ta

4
, (15)

which incorporates the loss rates. Because loss degrades
the advantage from squeezing, the upper bound on sample
complexity in Theorem 1 is modified in the presence of
loss (see SM S2 C for the proof):

Theorem 3. For the same task as in Theorem 1, a

TMVS+BM scheme with squeezing parameter r and trans-

mission rates before and after the channel to be Tb and

Ta, respectively, can estimate any ⁄(—) to error ‘ with

success probability 1≠” using the number of samples
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(b)(a)

FIG. 3. (a) Comparison of TMSV+BM (with di�erent loss rates), Vacuum+Heterodyne, and the entanglement-free lower
bound at Ÿ = 1. The task is to estimate any ⁄(—) such that |—|2 Æ Ÿn with precision Á = 0.2 and success probability 1 ≠ ” = 2/3.
The orange region represents a rigorous advantage over all entanglement-free schemes. The blue region represents an advantage
over noiseless Vacuum+Heterodyne. (b) Comparison of the TMSV+BM scheme with squeezing parameter r = 1.0 and loss rate
1 ≠ T = 0.1 with the entanglement-free lower bound of Theorem 2. (See SM S3 A for further practical considerations.) The task
is the same as (a). The brown solid contour lines represent the sample complexity of TMSV+BM given by Theorem 3. The blue
dashed contour lines represent the ratio of sample complexity between the entanglement-free lower bound and TMSV+BM,
indicating the entanglement-enabled advantage.

N = 8e
2e

≠2re�|—|2
‘

≠2 log 4”
≠1

, where re� is defined ac-

cording to Eq. (15).

Thus, when |—|2 Æ Ÿn with a constant Ÿ > 0, Tb =
1≠O(1/n), Ta = 1≠O(1/n) and r = �(log n), the sample
complexity becomes N = O(‘≠2 log ”

≠1) as in the lossless
case. For practically relevant squeezing and including
loss prior to Bell measurement, we compare the sample
complexity for the lossy TMSV+BM protocol and the
lossless entanglement-free lower bound in Fig. 3, finding
a significant entanglement-enabled advantage in realistic
experimental settings. Specifically, for reasonable param-
eter choices such as squeezing parameter r = 1, loss rate
10%, and Ÿ = O(1), we can achieve a factor of 104 (108)
advantage for around n = 30 (60) modes. Although the
109 number of samples required to achieve the advantage
seems large, the state-of-the-art quantum optics exper-
iments (e.g., Refs. [36, 37]) can attain such number of
samples in a reasonable time with high sampling rate up
to 160 GHz.

Discussion.— We proved that schemes that exploit
entanglement with an ancillary quantum memory can
learn n-mode bosonic random displacement channels with
exponentially fewer samples compared to entanglement-
free schemes. Our results show that the information-
theoretic framework for learning studied in DV quantum
systems [17, 19] can be generalized to the CV setting
and have powerful implications. We anticipate that these
techniques can be applied to other CV learning tasks as
well. In addition, our analysis suggests that the separation
in sample complexity between entanglement-assisted and

entanglement-free protocols may be realized in the near
future.

Apart from their theoretical interest, random displace-
ment channels can also be practically relevant in, e.g.,
modeling noise in bosonic systems. As in the qubit
case [38], we expect that noise tailoring methods can
transform more general noise models into random dis-
placement channels; therefore e�ciently learning random
displacement channels can be useful for benchmarking
CV quantum systems [39, 40] and for error mitigation.

Displacement estimation is also studied in quantum
metrology (see e.g. [41–43]). A task often considered in
metrology is learning an unknown unitary displacement or
phase transformation acting independently on each mode
[36, 42, 44–47] whereas the task analyzed in this word is
learning an unknown mixture of multimode displacements.
Furthermore, while the goal in metrology is typically to
learn one or a few parameters, in our case, the param-
eter space is very large. Therefore, the methodology in
the two settings is quite di�erent. Connections between
metrology and bosonic channel learning are worthy of
further exploration.
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S1. PRELIMINARY

In this section, we provide some identities that are frequently used in Supplemental Material
(more details can be found in Refs. [1–3]). First, an elementary operator in n-mode bosonic
system is n-mode displacement operator D̂(—) := e

—â†≠—†â, where — := (—1, . . . , —n)T œ Cn, â :=
� These authors contributed equally to this work: C.O. (changhun0218@gmail.com); S.C. (csenrui@uchicago.edu).
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2

(â1, . . . , ân)T and â
† := (â†

1, . . . , â
†
n)T are annihilation and creation operator of bosons, which follow

the commutation relation [âi, â
†
j ] = ”ij . Displacement operator D̂(—) forms an orthogonal basis in

the operator space; thus, any operator Ô can be expanded by displacement operators as

Ô = 1
fin

⁄
d

2n
— Tr

Ë
ÔD̂(—)

È
D̂

†(—), (S1)

where Tr[ÔD̂(—)] is called the characteristic function of an operator Ô. The n-mode displacement
operator has the following properties

D̂
†(—) = D̂(≠—), D̂

ú(—) = D̂(—ú), D̂
T(—) = D̂(≠—

ú), Tr
Ë
D̂(—)

È
= fi

n
”

(2n)(—), (S2)

D̂(—1)D̂(—2) = D̂(—1 + —2)e(—†
2—1≠—†

1—2)/2
, D̂(–)D̂†(—)D̂†(–) = D̂

†(—)e–†—≠—†–
, (S3)

⁄
d

2n
—

fin
D̂(—)OD̂

†(—) = Tr[O]1, (S4)

where the last identity is the twirling identity. We also frequently use the following identity:

”
(2n)(–) = 1

fi2n

⁄
d

2n
—e

—†–≠–†—
. (S5)

Also, we employ the Wigner function of an operator Ô defined as

WO(–) = 1
fi2n

⁄
d

2n
— Tr

Ë
ÔD̂(—)

È
e

—†–≠–†—
. (S6)

In Sec. S1 A, we show that for a given random displacement channel, which is defined by the
probability distribution p(–), we can rewrite it by the Fourier transformation ⁄(—) of p(–), i.e., its
characteristic function, as

�(fl̂) :=
⁄

d
2n

–p(–)D̂(–)fl̂D̂
†(–) = 1

fin

⁄
d

2n
—⁄(—) Tr

Ë
fl̂D̂(—)

È
D̂

†(—), (S7)

where the probability p(–) and the characteristic function ⁄(—) follow the relation

⁄(—) =
⁄

d
2n

– p(–)e–†—≠—†–
, p(–) = 1

fi2n

⁄
d

2n
— ⁄(—)e—†–≠–†—

. (S8)

A. Fourier relation

Here, we derive the expression of a random displacement channel characterized by a probability
distribution p(–) by its characteristic function ⁄(—). To see the relation, we use the identity (S1).
Applying this for the density operator fl̂, we can show that

�(fl̂) =
⁄

d
2n

–p(–)D̂(–)fl̂D̂
†(–) =

⁄
d

2n
–p(–)D̂(–)

5 1
fin

⁄
d

2n
— Tr

Ë
fl̂D̂(—)

È
D̂

†(—)
6

D̂
†(–) (S9)

= 1
fin

⁄
d

2n
–

⁄
d

2n
—p(–) Tr

Ë
fl̂D̂(—)

È
D̂(–)D̂†(—)D̂†(–) (S10)

= 1
fin

⁄
d

2n
–

⁄
d

2n
—p(–) Tr

Ë
fl̂D̂(—)

È
D̂

†(—)e–†—≠—†– (S11)

= 1
fin

⁄
d

2n
—⁄(—) Tr

Ë
fl̂D̂(—)

È
D̂

†(—), (S12)
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3

where we used the identities from Eqs. (S3),(S5). Here, the last line renders the identity

⁄(—) =
⁄

d
2n

–p(–)e–†—≠—†–
. (S13)

Thus, ⁄(—) is the Fourier transform of p(–). Its inverse Fourier transformation gives

p(–) = 1
fi2n

⁄
d

2n
—⁄(—)e—†–≠–†—

. (S14)

S2. DERIVATION OF OUTPUT PROBABILITY DISTRIBUTIONS OF EACH SCHEME

A. Entanglement-assisted (TMSV+BM) schemes

In this section, we consider the two-mode squeezed vacuum and Bell measurement (TMSV+BM)
strategy (see Fig. 1(a) in the main text.) and prove Theorem 1 in the main text by deriving the
sample complexity of the strategy. We assume a lossless system and a perfect Bell measurement,
whereas the input squeezed state has a finite squeezing parameter r since the input squeezing
parameter r is typically upper-bounded by a constant in practice. We then analyze the e�ect of the
imperfect measurement and loss in Sec. S2 C.

We now derive the probability of outcomes of the strategy, i.e., the outcomes obtained by
applying an n-mode channel � onto a product state of a subsystem of n TMSV states |�̃Í and
measuring in the Bell basis |�(’)ÍÈ�(’)|/fi

n with ’ œ Cn:

pEA(’) = 1
fin

Tr
Ë
(|�(’)ÍÈ�(’)|AB)(IA ¢ �B)(|�̃ÍÈ�̃|AB)

È
. (S15)

To simplify the expression, we rewrite a TMSV state. To do that, let us first consider a single-mode
squeezed state |rÍ := Ŝ(r)|0Í:

|rÍÈr| = 1
fi

⁄
d

2
–D̂

†(–) Tr
Ë
D̂(–)|rÍÈr|

È
:= 1

fi

⁄
d

2
–D̂

†(–)f(–, r), (S16)

where Ŝ(r) := exp
Ë
r(â†2 ≠ â

2)/2
È

is the squeezing operation and we have defined

f(–, r) := Tr
Ë
D̂(–)|rÍÈr|

È
= È0|Ŝ†(r)D̂(–)Ŝ(r)|0Í = È0|D̂(– cosh r ≠ –

ú sinh r)|0Í (S17)

= exp
3

≠1
2 |– cosh r ≠ –

ú sinh r|2
4

. (S18)

Here, we have used the relation, Ŝ
†(r)âŜ(r) = â cosh r + â

† sinh r. Using the fact that a TMSV
state can be generated by injecting two single-mode squeezed states into the 50:50 beam splitter,
i.e., ÛBS(|rÍÈr| ¢ | ≠ rÍÈ≠r|)Û †

BS = |�̃(r)ÍÈ�̃(r)|, where ÛBS is 50:50 beam splitter, we can rewrite
the TMSV state |�̃(r)Í as

|�̃(r)ÍÈ�̃(r)| = 1
fi2

⁄
d

2
–1d

2
–2ÛBS[D̂†(–1) ¢ D̂

†(–2)]Û †
BSf(–1, r)f(–2, ≠r) (S19)

= 1
fi2

⁄
d

2
–1d

2
–2D̂

†
3

–1 ≠ –2Ô
2

4
¢ D̂

†
3

–1 + –2Ô
2

4
f(–1, r)f(–2, ≠r) (S20)

= 1
fi2

⁄
d

2
Ê1d

2
Ê2D̂

†(Ê1) ¢ D̂
†(Ê2)f

3
Ê1 + Ê2Ô

2
, r

4
f

3
Ê2 ≠ Ê1Ô

2
, ≠r

4
(S21)

:= 1
fi2

⁄
d

2
Ê1d

2
Ê2D̂

†(Ê1) ¢ D̂
†(Ê2)g(w1, w2, r), (S22)

97



4

where we defined

g(Ê1, Ê2, r) := f

3
Ê1 + Ê2Ô

2
, r

4
f

3
Ê2 ≠ Ê1Ô

2
, ≠r

4
(S23)

= exp
5
≠1

2
Ë
(|Ê1|2 + |Ê2|2) cosh 2r ≠ (Ê1Ê2 + Ê

ú
1Ê

ú
2) sinh 2r

È6
, (S24)

which is the characteristic function of the TMSV state |�̃(r)Í by Eq. (S1), i.e.,

g(Ê1, Ê2, r) := Tr
Ë
|�̃(r)ÍÈ�̃(r)|(D̂(Ê1) ¢ D̂(Ê2))

È
. (S25)

Multiple TMSV states are straightforward to generalize:

g(Ê1, Ê2, r) := exp
5
≠1

2
Ë
(|Ê1|2 + |Ê2|2) cosh 2r ≠ (Ê1 · Ê2 + Ê

ú
1 · Ê

ú
2) sinh 2r

È6
, (S26)

where Ê1,2 are now n-dimensional complex vectors. Especially when Ê2 = Ê
ú
1, it reduces to

g(Ê1, Ê
ú
1, r) = exp

1
≠e

≠2r|Ê1|2
2

. (S27)

Therefore, the input TMSV states can be written as

|�̃(r)ÍÈ�̃(r)| = 1
fi2n

⁄
d

2n
Ê1d

2n
Ê2D̂

†(Ê1) ¢ D̂
†(Ê2)g(w1, w2, r). (S28)

Similarly, by generalizing an entangled state with a single-mode ancilla to an entangled state
with n modes and infinite squeezing, the measurement POVM of CV Bell measurement can be
written as [2, 3]

1
fin

|�(’)ÍÈ�(’)| = 1
fin

(I ¢ D̂(’))|�ÍÈ�|(I ¢ D̂
†(’)) =

⁄
d

2n
Ê

fi2n
e

’ú·Êú≠’·Ê
D̂

†(Ê) ¢ D̂
T(Ê), (S29)

where

|�ÍÈ�| :=
⁄

d
2n

Ê

fin
D̂

†(Ê) ¢ D̂
T(Ê) (S30)

corresponds to a multimode generalization of a TMSV state with infinite squeezing parameter, i.e.,
|�Í Ã

qŒ
k=0 |kÍ|kÍ. Here, the normalization factor 1/fi

n is introduced to ensure the completeness
1

fin

⁄
d

2n
’|�(’)ÍÈ�(’)| = 1¢ 1. (S31)

We now simplify the expression of the output probability distribution of the scheme:

pEA(’)

= 1
fin

Tr
Ë
(|�(’)ÍÈ�(’)|AB)(IA ¢ �B)(|�̃ÍÈ�̃|AB)

È
(S32)

= 1
fin

Tr
5 ⁄

d
2n

Ê

fin

d
2n

—1d
2n

—2
fi2n

g(—1, —2, r)e’ú·Êú≠’·Ê
D̂

†(Ê)A ¢ D̂
T(Ê)B(IA ¢ �B)(D̂†(—1)A ¢ D̂

†(—2)B)
6
.

(S33)

Here, we have

(IA ¢ �B)(D̂†(—1)A ¢ D̂
†(—2)B) = D̂

†(—1)A ¢ 1
fin

⁄
d

2n
Ê⁄(Ê) Tr

Ë
D̂

†(—2)BD̂(Ê)B

È
D̂

†(Ê)B (S34)

= D̂
†(—1)A ¢

⁄
d

2n
Ê⁄(Ê)”(Ê ≠ —2)D̂†(Ê)B (S35)

= ⁄(—2)D̂†(—1)A ¢ D̂
†(—2)B. (S36)
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Thus, we can simplify Eq. (S32) as

1
fin

Tr
C⁄

d
2n

Ê

fin

d
2n

—1d
2n

—2
fi2n

g(—1, —2, r)e’ú·Êú≠’·Ê
D̂

†(Ê)A ¢ D̂
T(Ê)B(IA ¢ �B)(D̂†(—1)A ¢ D̂

†(—2)B)
D

(S37)

= 1
fin

⁄
d

2n
Ê

fin

d
2n

—1d
2n

—2
fi2n

⁄(—2)g(—1, —2, r)e’ú·Êú≠’·Ê Tr
Ë
D̂

†(Ê)AD̂
†(—1)A

È
Tr

Ë
D̂

T(Ê)BD̂
†(—2)B

È

(S38)

= 1
fi2n

⁄
d

2n
Êd

2n
—1d

2n
—2⁄(—2)g(—1, —2, r)e’ú·Êú≠’·Ê

”(Ê + —1)”(Êú + —2) (S39)

= 1
fi2n

⁄
d

2n
Ê⁄(≠Ê

ú)g(≠Ê, ≠Ê
ú
, r)e’ú·Êú≠’·Ê

. (S40)

Hence, we finally obtain the probability of obtaining ’ from Bell measurement with an initial Bell
state with finite squeezing:

pEA(’) = 1
fi2n

⁄
d

2n
Ê⁄(≠Ê

ú)g(≠Ê, ≠Ê
ú
, r)e’ú·Êú≠’·Ê = 1

fi2n

⁄
d

2n
Ê⁄(≠Ê

ú)e≠e≠2r|Ê|2
e

’ú·Êú≠’·Ê
.

(S41)
By inverting the relation using Fourier transformation,

⁄
d

2n
’pEA(’)e’†—≠—†’ = 1

fi2n

⁄
d

2n
Ê⁄(≠Ê

ú)g(≠Ê, ≠Ê
ú
, r)e(Êú+—)·’ú≠(Êú+—)ú·’ (S42)

= ⁄(—)g(—ú
, —, r), (S43)

we obtain the relation between the characteristic function of the channel ⁄(—) and the probability
distribution of outcomes pEA(’):

⁄(—) = 1
g(—ú, —, r)

⁄
d

2n
’pEA(’)e’†—≠—†’ = exp

1
e

≠2r|—|2
2 ⁄

d
2n

’pEA(’)e’†—≠—†’
. (S44)

The expression shows that by obtaining samples ’’s following the probability distribution using
sampling in experiment and taking Fourier transformation, one can obtain the estimate of ⁄(—).
Now, we show the number of samples N Ø 8

‘2 log 4
” e

2e≠2r|—|2 = O(e2e≠2r|—|2
‘
≠2 log ”

≠1) su�ces to
have a good precision ‘ with a high probability 1 ≠ ”. As observed above, for N number of
samples, {’

(i)}N
i=1, we set the estimator of ⁄(—) to be ⁄̃(—) = 1

N

qN
i=1 exp

!
e

≠2r|—|2
"
e

’(i)†—≠—†’(i) for
measurement outcome ’ and apply the Hoe�ding bound for the estimator. To do that, we find
the bound for real part and imaginary part, respectively and combine them. We first obtain two
di�erent probabilities’ bound by the Hoe�ding bound such that

Pr[|⁄̃r(—) ≠ ⁄r(—)| Æ ‘/2] Ø 1 ≠ 2e
≠ N‘2

8 e≠2e≠2r |—|2
, Pr[|⁄̃i(—) ≠ ⁄i(—)| Æ ‘/2] Ø 1 ≠ 2e

≠ N‘2
8 e≠2e≠2r |—|2

,

(S45)

where ⁄r = Re(⁄) and ⁄i = Im(⁄) and similar for ⁄̃. Applying the union bound and the triangle
inequality, we obtain

Pr[|⁄̃(—) ≠ ⁄(—)| Æ ‘] Ø 1 ≠ 4e
≠ N‘2

8 e≠2e≠2r |—|2
. (S46)

Thus, if we choose the number of samples to be

N Ø 8
‘2 log 4

”
e

2e≠2r|—|2 = O(e2e≠2r|—|2
‘
≠2 log ”

≠1) (S47)

the estimation error is upper-bounded by ‘ with high probability 1 ≠ ”. This completes the proof of
Theorem 1 in the main text.

Note that in an ideal case where the input squeezing parameter r can be chosen to be arbitrarily
large, the sample complexity can be reduced to N = O(1/‘

2) for any —.
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B. Entanglement-free (Vacuum+Heterodyne) schemes

Now, let us consider the entanglement-free scheme with vacuum input and heterodyne detection
(Vacuum+Heterodyne). In general, denoting �„ as a POVM with an outcome „ and |„0ÍÈ„0| as an
input state, the probability of a classical scheme is written as

pEF („) = Tr[�„�(|„0ÍÈ„0|)] (S48)

= 1
fi2n

⁄
d

2n
–d

2n
— Tr

Ë
D̂(–)�(D̂†(—))

È
Tr

Ë
�„D̂

†(–)
È

Tr
Ë
|„0ÍÈ„0|D̂(—)

È
(S49)

= 1
fin

⁄
d

2n
–d

2n
—⁄(—)”(– ≠ —) Tr

Ë
�„D̂

†(–)
È

Tr
Ë
|„0ÍÈ„0|D̂(—)

È
(S50)

= 1
fin

⁄
d

2n
—⁄(—) Tr

Ë
�„D̂

†(—)
È

Tr
Ë
|„0ÍÈ„0|D̂(—)

È
. (S51)

For the Vacuum+Heterodyne scheme, we employ vacuum state input |„0Í = |0Í and heterodyne
detection, whose POVM elements are described by projectors onto the (overcomplete) basis of
coherent states, |’ÍÈ’|/fi

n, where |’Í is a coherent state with complex amplitude ’ œ Cn. Note
that such a scheme is informationally complete in the sense that it provides distinct probability
distributions for di�erent channels. For this scheme, we can obtain the probability distribution

pV H(’) = 1
fi2n

⁄
d

2n
–⁄(–) Tr

Ë
|’ÍÈ’|D̂†(–)

È
Tr

Ë
|0ÍÈ0|D̂(–)

È
= 1

fi2n

⁄
d

2n
–⁄(–)e–†’≠’†–

e
≠|–|2

.

(S52)

Again, by inverting the probability distribution as
⁄

d
2n

’pV H(’)e’†—≠—†’ = 1
fi2n

⁄
d

2n
’d

2n
–⁄(–)e’†(—≠–)≠(—≠–)†’

e
≠|–|2 = ⁄(—)e≠|—|2

, (S53)

we obtain the final relation between the measurement probability distribution and the characteristic
function of the channel:

⁄(—) = e
|—|2

⁄
d

2n
›pV H(’)e’†—≠—†’

. (S54)

It clearly shows the di�erence from the quantum strategies, which is the prefactor e
|—|2 . Thus,

similarly, after sampling ’ from experiments following pEF (’) and averaging e
|—|2

e
’†—≠—†’ over the

samples, we obtain the estimate of ⁄(—). As for the entanglement-assisted case, for N samples,
{’

(i)}N
i=1, by setting the estimator ⁄̃(—) = 1

N

qN
i=1 e

|—|2
e

’(i)†—≠—†’(i) and using the Hoe�ding bound,
we obtain

Pr[|⁄̃(—) ≠ ⁄(—)| Æ ‘] Ø 1 ≠ 4e
≠ N‘2

8 e≠2|—|2
. (S55)

Thus, in this case, it indicates that the su�cient number of samples is

N Ø 8
‘2 log 4

”
e

2|—|2 = O(e2|—|2
‘
≠2 log ”

≠1) (S56)

for the estimation error to be upper-bounded by ‘ with high probability 1 ≠ ”. It clearly shows the
significant di�erence of the sample complexity from the entanglement-assisted case.
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C. Entanglement-assisted scheme with imperfection

We now consider the e�ect of imperfections and prove Theorem 3 in the main text. More
specifically, we consider the cases where photon loss occurs before and after applying the random
displacement channel we want to learn and a regularized Bell measurement. Here, the photon loss
before and after the random displacement channel models an imperfect input state preparation
and imperfect Bell measurement. On the other hand, we introduce parameter s to regularize the
Bell measurement POVM by a general-dyne measurement POVM, where we recover the perfect
Bell measurement by taking s æ Œ. By considering the regularized Bell measurement POVM,
we assume the same condition as the lower bound in Sec. S3 in that the measurement POVM is
normalizable, i.e., its norm is finite.

Let us first consider the e�ect of the loss channel on a single-mode displacement operator.
Using the equivalent description of a loss channel L by a beam splitter interaction with a vacuum
environment, we can show that

L[D̂†(–)S ] = TrE [UT (D̂†(–)S ¢ |0ÍÈ0|E)U †
T ] (S57)

=
⁄

d
2
z

fin
e

≠ 1
2 |z|2 TrE [UT D̂

†(–)S ¢ D̂
†(z)EU

†
T ] (S58)

=
⁄

d
2
z

fin
e

≠ 1
2 |z|2 TrE [D̂†(

Ô
T– ≠

Ô
1 ≠ Tz)S ¢ D̂

†(
Ô

Tz +
Ô

1 ≠ T–)E ] (S59)

= T
≠1

e
≠ 1≠T

2T |–|2
D̂

†(–/

Ô
T )S , (S60)

where ÛT is the beam splitter interaction with the environment with the transmission rate T , and
thus 1 ≠ T is the loss rate. Here, we used the identity [1]

|0ÍÈ0| =
⁄

d
2n

z

fin
e

≠ 1
2 |z|2

D̂
†(z). (S61)

Recall that the input state is two-mode squeezed states with a finite squeezing parameter, which
is written as

|�̃(r)ÍÈ�̃(r)| = 1
fi2n

⁄
d

2n
Ê1d

2n
Ê2g(w1, w2, r)D̂†(Ê1) ¢ D̂

†(Ê2). (S62)

Let us first study how the displacement operator transforms over the channels.
First, after a loss channel with loss rate 1 ≠ Tb, the random displacement channel � and another

loss channel with loss rate 1 ≠ Ta, an n-mode displacement operator transforms as

LTa
AB(IA ¢ �B)LTb

AB(D̂†(Ê1)A ¢ D̂
†(Ê2)B) (S63)

= T
≠2n
b e

≠ 1≠Tb
2Tb

(|Ê1|2+|Ê2|2)LTa
AB(IA ¢ �B)(D̂†(Ê1/


Tb)A ¢ D̂

†(Ê2/


Tb)B) (S64)

= T
≠2n
b e

≠ 1≠Tb
2Tb

(|Ê1|2+|Ê2|2)
⁄(Ê2/


Tb)LTa

AB(D̂†(Ê1/


Tb)A ¢ D̂
†(Ê2/


Tb)B) (S65)

= (TbTa)≠2n
e

≠ 1≠Tb
2Tb

(|Ê1|2+|Ê2|2)
e

≠ 1≠Ta
2TaTb

(|Ê1|2+|Ê2|2)
⁄(Ê2/


Tb)(D̂†(Ê1/


TbTa)A ¢ D̂

†(Ê2/


TbTa)B).
(S66)

Now we implement the regularized Bell measurement. Recall that the perfect Bell measurement can
be conducted by applying a 50:50 beam splitter and then performing homodyne detection. Here, we
will regularize the homodyne detection by general-dyne detection and tracing out some quadratures.

After 50:50 beam splitters ÛBS, the displacement operators transform as

D̂
†(Ê1/


TbTa)A ¢ D̂

†(Ê2/


TbTa)B æ D̂
†

3
Ê1 ≠ Ê2Ô

2TbTa

4

A
¢ D̂

†
3

Ê1 + Ê2Ô
2TbTa

4

B
. (S67)
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We then perform measurements described by the following POVM:

)
�̂A

– (≠s) ¢ �̂B
— (s)

*
–,—

where �̂“(s) := 1
fin

D̂(“) |sÍÈs| D̂
†(“), (S68)

where s Ø 0 is the squeezing parameter for the Bell measurement. We note that this measurement
corresponds to a special type of general-dyne measurement [3] and that when s æ Œ, we recover
the Bell measurement studied in Sec. S2 A. Then, the output probability is written as

q(–, —) := 1
fi2n

⁄
d

2n
Êg(Ê1, Ê2, r) Tr

Ë
�̂A

– (≠s) ¢ �̂B
— (s)ÛBS

1
LTa

AB(IA ¢ �B)LTb
AB(D̂†(Ê1)A ¢ D̂

†(Ê2)B)
2

Û
†
BS

È
.

(S69)

Here, we have

Tr
Ë
�̂–(≠s)D̂†(Ê)

È
= 1

fin
È≠s|D̂†(–)D̂†(Ê)D̂(–)| ≠ sÍ = 1

fin
e

≠ 1
2 (|Ê|2 cosh 2s+(Ê2+Êú2) sinh 2s/2)

e
Ê†–≠–†Ê

,

(S70)

Tr
Ë
�̂—(s)D̂†(Ê)

È
= 1

fin
e

≠ 1
2 (|Ê|2 cosh 2s≠(Ê2+Êú2) sinh 2s/2)

e
Ê†—≠—†Ê

, (S71)

and

Tr
5
�̂–(≠s)D̂†

3
Ê1 ≠ Ê2Ô

2TaTb

46
Tr

5
�̂—(s)D̂†

3
Ê1 + Ê2Ô

2TaTb

46
(S72)

= 1
fi2n

e
≠ 1

2

Ë
(|Ê1|2+|Ê2|2) cosh 2s

TaTb
≠(Ê1·Ê2+Êú

1 ·Êú
2) sinh 2s

TaTb

È

exp
5
Ê

ú
1

3
– + —Ô
2TaTb

4
+ Ê

ú
2

3
— ≠ –Ô
2TaTb

4
≠ c.c.

6
(S73)

= 1
fi2n

g(Ê1/


TaTb, Ê2/


TaTb, s) exp
5
Ê

†
1

3
– + —Ô
2TaTb

4
+ Ê

†
2

3
— ≠ –Ô
2TaTb

4
≠ c.c.

6
. (S74)

We now trace out one of two quadratures for each mode. To do that, we take integral over the
imaginary part of – and the real part of —. Here, we define – := –r + i–i and — := —r + i—i. If we
take the integral, the relevant part reduces to

1
fin

⁄
d

n
–i exp

5
–

3
Ê

ú
1 ≠ Ê

ú
2Ô

2TaTb

4
≠ –

ú
3

Ê1 ≠ Ê2Ô
2TaTb

46
= ”(Re(Ê1 ≠ Ê2)/


2TaTb)e≠i

Ô
2 Im(Ê1≠Ê2)–r/

Ô
TaTb ,

(S75)
1

fin

⁄
d

n
—r exp

5
—

3
Ê

ú
1 + Ê

ú
2Ô

2TaTb

4
≠ —

ú
3

Ê1 + Ê2Ô
2TaTb

46
= ”(Im(Ê1 + Ê2)/


2TaTb)ei

Ô
2 Re(Ê1+Ê2)—i/

Ô
TaTb ,

(S76)

where the delta function gives us Ê2 = Ê
ú
1. Thus,

⁄
d

n
–id

n
—r Tr

5
�̂–(≠s)D̂†

3
Ê1 ≠ Ê2Ô

2TaTb

46
Tr

5
�̂—(s)D̂†

3
Ê1 + Ê2Ô

2TaTb

46
(S77)

= g(Ê1/


TaTb, Ê2/


TaTb, s)”
3

Ê1 ≠ Ê
ú
2Ô

2TaTb

4
e

≠i
Ô

2 Im(Ê1≠Ê2)–r/
Ô

TaTbe
i
Ô

2 Re(Ê1+Ê2)—i/
Ô

TaTb . (S78)

Thus, the output probability is, by defining the measurement output variable as › = ≠–r + i—i,
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given by

q(›) (S79)

=
⁄

d
n
–id

n
—rq(–, —) (S80)

= 1
fi2n

⁄
d

n
–id

n
—rd

2n
Ê1d

2n
Ê2(TbTa)≠n

e
≠( 1≠Tb

2Tb
+ 1≠Ta

2TaTb
)(|Ê1|2+|Ê2|2)

g(Ê1, Ê2, r)⁄(Ê2/


Tb)

◊ Tr
5
�̂–(≠s)D̂†

3
Ê1 ≠ Ê2Ô

2TaTb

46
Tr

5
�̂—(s)D̂†

3
Ê1 + Ê2Ô

2TaTb

46
(S81)

= 1
fi2n

⁄
d

2n
Ê1d

2n
Ê2(TbTa)≠2n

e
≠( 1≠Tb

2Tb
+ 1≠Ta

2TaTb
)(|Ê1|2+|Ê2|2)

⁄(Ê2/


Tb)g(Ê1, Ê
ú
2, r)g(Ê1/


TaTb, Ê2/


TaTb, s)

◊ ”

3
Ê1 ≠ Ê

ú
2Ô

2TaTb

4
e

≠i
Ô

2 Im(Ê1≠Ê2)–r/
Ô

TaTbe
i
Ô

2 Re(Ê1+Ê2)—i/
Ô

TaTb (S82)

=
3 2

TaTb

4n 1
fi2n

⁄
d

2n
Êe

≠( 1≠Tb
Tb

+ 1≠Ta
TaTb

)|Ê|2
⁄(Êú

/


Tb)g(Ê, Ê
ú
, r)g(Ê/


TaTb, Ê

ú
/


TaTb, s)e
Ô

2(›·Ê≠Êú·›ú)/
Ô

TaTb

(S83)

=
3 2

TaTb

4n 1
fi2n

⁄
d

2n
Êe

≠( 1≠Tb
Tb

+ 1≠Ta
TaTb

)|Ê|2
⁄(Êú

/


Tb)e≠(e≠2r+e≠2s/TaTb)|Ê|2
e

Ô
2(›·Ê≠Êú·›ú)/

Ô
TaTb

(S84)

=
3 2

Ta

4n 1
fi2n

⁄
d

2n
Êe

≠((1≠Tb)+ 1≠Ta
Ta

)|Ê|2
⁄(Êú)e

Ô
2(›·Ê≠Êú·›ú)/

Ô
Ta . (S85)

Here, for consistency with Sec. S2 A, we rescale
Ô

2› = ’ and define ploss(’) such that

ploss(’) =
3 1

Ta

4n 1
fi2n

⁄
d

2n
Êe

≠((1≠Tb)+ 1≠Ta
Ta

)|Ê|2
⁄(Êú)e≠(Tbe≠2r+e≠2s/Ta)|Ê|2

e
(Ê·’≠Êú·’ú)/

Ô
Ta , (S86)

where 2n factor is canceled because of the relation 2n
d

2n
› = d

2n
’ (This rescaling is because the

convention of Bell measurement outcome ’ in Sec. S2 A is di�erent from › in this section by
Ô

2
factor.). Therefore, after Fourier transformation, we obtain

⁄
d

2n
’ploss(’)e(’†—≠—†’)/

Ô
Ta = ⁄(—)e≠(Tbe≠2r+e≠2s/Ta)|—|2

e
≠(1≠Tb)|—|2

e
≠ 1≠Ta

Ta
|—|2

. (S87)

Consequently, the characteristic function is written by the probability distribution as

⁄(—) = e
(Tbe≠2r+e≠2s/Ta)|—|2

e
(1≠Tb)|—|2

e
1≠Ta

Ta
|—|2

⁄
d

2n
’ploss(’)e(’†—≠—†’)/

Ô
Ta , (S88)

= e
e≠2re� |—|2

⁄
d

2n
’ploss(’)e(’†—≠—†’)/

Ô
Ta . (S89)

where we defined an e�ective squeezing parameter re� due to all kinds of imperfections via

e
≠2re� := (Tbe

≠2r + T
≠1
a e

≠2s) + (1 ≠ Tb) + 1 ≠ Ta

Ta
. (S90)

In order to estimate any ⁄(—), one simply obtains N samples {’
(i)}N

i=1 from p(’) and set the estimator
to be ⁄̃(—) := 1

N

qN
i=1 e

e≠2re� |—|2
e

(’(i)†—≠—†’(i))/
Ô

Tb . According to the Hoe�ding’s inequality as the
ideal case, averaging over N Ø 8/‘

2 log(4/”)e2e≠2re� |—|2 copies is su�cient to estimate ⁄(—) to ‘

additive error with high probability.
Meanwhile, the e�ects of imperfections are thus the envelope of Fourier transforms. Especially

when s æ Œ, the e�ective squeezing parameter under loss is given by

re� = ≠1
2 log

3
Tbe

≠2r + (1 ≠ Tb) + 1 ≠ Ta

Ta

4
. (S91)
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This completes the proof of Theorem 3 in the main text.
To be clearer, for photon loss before the channel without any other imperfections, i.e., s æ Œ

and Ta = 1, the envelope is given by

e
[Tbe≠2r+(1≠Tb)]|—|2

, (S92)

and for photon loss after the channel without other imperfections, the envelope is given by

e
[e≠2r+(1≠Ta)/Ta]|—|2

. (S93)

D. Discussion on more general input states

In this section, we study more general sources of noise other than finite squeezing and photon
loss. To begin with, consider the case where we use an arbitrary input state while the CV Bell
measurement is still employed. To this end, note that Eq. (S44) from Sec. S2 A does not use any
special properties of TMSV, and actually holds for any 2n-mode input state, i.e.,

⁄(—) = 1
gfl̂(—ú, —)

⁄
d

2n
’pEA(’)e’†—≠—†’

, (S94)

where g is the characteristic function of the input state fl̂:

gfl̂(w1, w2) = Tr
Ë
fl̂D̂(Ê1) ¢ D̂(Ê2)

È
. (S95)

The fact that the same relation holds by replacing the g function properly indicates that for di�erent
types of input states, we still have a very similar form of an unbiased estimator for N samples:

⁄̃(—) = 1
N

Nÿ

i=1

1
gfl̂(—ú, —)e

’(i)†—≠—†’(i)
. (S96)

It implies that the sampling complexity is determined by the function gfl̂(—ú
, —). More specifically,

by the Hoe�ding inequality, the number of samples to achieve an error ‘ with high probability 1 ≠ ”

is given by

N = O(|gfl̂(—ú
, —)|≠2

‘
≠2 log ”

≠1). (S97)

For example, for TMSV states, this function reduces to

g�̃(—ú
, —) = exp

1
≠e

≠2r|—|2
2
. (S98)

Therefore, as long as the function g of the input state is su�ciently large for the — of interest, we
can still expect the scheme to be sample e�cient.

Such a general form enables us to analyze the e�ect of general noise on input states. Let us
again focus on TMSV states but assume a noise channel N . Then, the characteristic function g of
the noisy TMSV states can be written as

gN (�̃)(w1, w2) = Tr
Ë
N (|�̃(r)ÍÈ�̃(r)|)D̂(Ê1) ¢ D̂(Ê2)

È
. (S99)

As discussed, it su�ces to analyze how the characteristic function changes by noise to ensure that
a significant advantage is still maintained for noisy states. In typical experiments, while the CV
Bell measurement noise can be modeled by photon loss, as we considered already in the previous
section, other types of noise may exist in the TMSV state preparation procedure. An example is
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(a) (b)

FIG. S1. E�ect of phase di�usion on the squared characteristic function |gN�(fl̂)(—ú
, —)|2, where we choose a

specific form of — œ Cn as (a) — := (|—|/
Ô

n, . . . , |—|/
Ô

n) and (b) — := (|—|, 0, . . . , 0) for two extreme cases
with a given |—|2. We fix the squeezing parameter r = 1.5 of the input TMSV states and set the number of
modes n = 50. For the standard deviation � = 1¶ of phase noise, following Gaussian distributions, one may
observe that the characteristic function is almost identical to the noiseless case (� = 0¶). For the standard
deviation � = 2¶ as well, the e�ect is not very significant.

phase di�usion, which can be modeled by a photon-number-dependent random phase following a
Gaussian distribution. For 2n-mode state input, we can write the noise channel as

N�(fl̂) (S100)

=
⁄

d
n
„Ad

n
„B

e
≠ |„A|2+|„B |2

2�2

(2fi�2)n
e

≠i„A·n̂A≠i„B ·n̂B fl̂e
i„A·n̂A+i„B ·n̂B (S101)

= 1
fi2n

⁄
d

2n
Ê1d

2n
Ê2gfl̂(Ê1, Ê2)

⁄
d

n
„Ad

n
„B

e
≠ |„A|2+|„B |2

2�2

(2fi�2)n
e

≠i„A·n̂A≠i„B ·n̂B [D̂†(Ê1) ¢ D̂
†(Ê2)]ei„A·n̂A+i„B ·n̂B ,

(S102)

where „A and „B are n-dimensional real vectors and n̂A and n̂B are photon number operator vectors
for A and B parts, respectively. Then, noting that

e
≠i„A·n̂A≠i„B ·n̂B [D̂†(Ê1) ¢ D̂

†(Ê2)]ei„A·n̂A+i„B ·n̂B = D̂
†(Ê1e

≠i„A) ¢ D̂
†(Ê2e

≠i„B ), (S103)

where Ê1e
≠i„A and Ê2e

≠i„B are interpreted as vectors obtained by an elementwise product, the
corresponding g function for TMSV states is written as

gN (�̃)(w1, w2) (S104)

= Tr
Ë
N�(|�̃(r)ÍÈ�̃(r)|)D̂(Ê1) ¢ D̂(Ê2)

È
(S105)

= 1
fi2n

⁄
d

2n
—1d

2n
—2g�̃(—1, —2)

⁄
d

n
„Ad

n
„B

e
≠ |„A|2+|„B |2

2�2

(2fi�2)n
Tr

Ë
D̂

†(—1e
≠i„A) ¢ D̂

†(—2e
≠i„B )D̂(Ê1) ¢ D̂(Ê2)

È

(S106)

=
⁄

d
2n

—1d
2n

—2g�̃(—1, —2)
⁄

d
n
„Ad

n
„B

e
≠ |„A|2+|„B |2

2�2

(2fi�2)n
”(Ê1 ≠ —1e

≠i„A)”(Ê2 ≠ —2e
≠i„B ) (S107)

=
⁄

d
n
„Ad

n
„B

e
≠ |„A|2+|„B |2

2�2

(2fi�2)n
g�̃(Ê1e

i„A , Ê2e
i„B ). (S108)

Thus, the e�ect of phase noise is to transform the g function as a mixture with random phases. We
present examples to illustrate the e�ect of the phase noise on the sample complexity in Fig. S1.
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We have chosen the parameters — œ Cn of two extreme cases as — := (|—|/
Ô

n, . . . , |—|/
Ô

n) and
— := (|—|, 0, . . . , 0). Recall that the typical choice of the regime of interest in the main text is
|—|2 Æ Ÿn; here, the range |—|2 œ [0, 130] in the figure covers up to Ÿ = 2.5 for n = 50. We see that
the advantages of the entanglement-assisted scheme look robust against small-phase di�usion noise.

S3. FUNDAMENTAL LIMITS FOR ENTANGLEMENT-FREE SCHEMES

In this section, we prove the fundamental limit on general entanglement-free schemes for learning
n-mode random displacement channels. In this work, we will focus on the ancilla-free schemes
without concatenation. This means that, for each copy of the channel, we act it on some input state
and apply a destructive POVM measurement right after. The input states and measurements can
be adaptively chosen depending on previous measurement outcomes. See Fig. S2. Bounds for such
schemes have been investigated in di�erent tasks [4–6]. One can also study ancilla-free protocols
with concatenation, the lower bounds for which have been obtained in several recent works [6–8], but
we leave that for future study as continuous-variable system puts an additional level of complexity.
Throughout this work, we assume entanglement-free schemes to have no concatenation.

FIG. S2. Schematics for entanglement-free schemes. In this work we assume no concatenation is allowed.
Such a scheme can be completely specificed by a collection of input states and POVM measurements that
adaptively depend on the measurement outcomes from the previous round.

Theorem S1. Let � be an arbitrary n-mode random displacement channel (n Ø 8) and consider

an entanglement-free scheme that uses N copies of �. After all measurements are completed, the

scheme receives the query — œ Cn
and returns an estimate ⁄̃(—) of �’s characteristic function ⁄(—).

Suppose that, with success probability at least 2/3, |⁄̃(—) ≠ ⁄(—)| Æ ‘ Æ 0.24 for all — such that

|—|2 Æ nŸ. Then N Ø 0.01‘
≠2(1 + 1.98Ÿ)n

.

Recall that an entanglement-assisted scheme can achieve the same task using O(‘≠2) copies of
channels given su�cient squeezing and Ÿ = O(1). Therefore, we establish an exponential separation
between learning bosonic random displacement channels with and without entanglement. In the
following, we start proving this result in Sec. S3 A and present a core lemma in Sec. S3 B. We also
prove a bound for learning with Gaussian schemes in Sec. S3 C, which might be of independent
interest.

Before proceeding, let us specify some regularization conditions. We will only work with proper
vectors (i.e., normalizable vector) in the Hilbert space and bounded operator acting on the Hilbert
space. That is to say, all the quantum states we considered can be expressed as a density operator
fl̂ with trace 1, and all the POVM element Ê is a bounded positive semi-definite operator satisfying
Ê Æ Î. Perhaps the most representative example that does not admit the above form is the perfect
homodyne detection projector |xÍÈx|, which represents projection onto the quadrature x. While |xÍ
is not a proper vector in the relevant Hilbert space, it can be treated as a limit of proper vectors in
any physical setting. Concretely, homodyne detection is implemented by applying a 50:50 beam
splitter between the input state and a strong local oscillator [3], and the above improper projector
|xÍÈx| is obtained by taking the limit where the power of the oscillator goes to infinity. Therefore, in

106



13

a reasonable physical setup, the actual projector is constructed with a proper vector in the Hilbert
space, thus satisfying our assumptions. We emphasize that our entanglement-assisted strategy also
satisfies the same assumption as we regularize the Bell measurements with general-dyne detection
with a parameter s < Œ, see Sec. S2 C.

A. Lower bound for entanglement-free schemes

Given positive number n Ø 8 and ‘ Æ 0.24, we introduce a family of “3-peak” random displacement
channels, defined by their characteristic functions,

�“ : ⁄“(—) := e
≠ |—|2

2‡2 + 2i‘0e
≠ |—≠“|2

2‡2 ≠ 2i‘0e
≠ |—+“|2

2‡2 , “ œ Cn
, (S109)

where ‘0 := ‘/0.98 Æ 0.25. The corresponding distributions of displacements, computed via Fourier
transformation, are

�“ : p“(–) =
A

2‡
2

fi

Bn

e
≠2‡2|–|2 (1 + 4‘0 sin(2(Im[“] Re[–] ≠ Re[“] Im[–]))) , (S110)

from which we see that the typical strength of displacement is of order 1/‡. Roughly, the smaller ‡

is, the larger energy the channel carries. We define �dep := �0 as the CV analogy of the depolarizing
channel, and the other �“ can be viewed as perturbed depolarizing channels. The set of 3-peak
channels with parameters (‘, ‡) is denoted as ⇤‘,‡

39peak. With this, we are going to prove a strictly
stronger result than Theorem S1. That is, even if one knows the channel to be estimated is from
the restricted family, ⇤‘,‡

39peak, an exponential lower bound still applies.

Theorem S2. Given positive numbers n, ‡, Ÿ, ‘ such that

2‡
2 Æ max

;
1 ≠ 1.98Ÿ, 0.99Ÿ

3Ò
1 + (0.99Ÿ)≠2 ≠ 1

4<
, n Ø 8, ‘ Æ 0.24. (S111)

If there exists an entanglement-free scheme such that, after learning from N copies of an n-mode

random displacement channel � œ ⇤‘,‡
39peak, and then receiving a query — œ Cn

, can return an

estimate ⁄̃(—) of ⁄(—) such that |⁄̃(—) ≠ ⁄(—)| Æ ‘ with probability at least 2/3 for all — such that

|—|2 Æ nŸ, then

N Ø 0.01‘
≠2

3
1 + 1.98Ÿ

1 + 2‡2

4n

. (S112)

It is not hard to see that a ‡ > 0 satisfying the assumptions can always be found for any Ÿ > 0.
Indeed, Theorem S1 follows from Theorem S2 by choosing ‡ æ 0. Note that Theorem S2 does not
place any constraint on the input state and measurement. This means that learning a finite-energy
random displacement channel is hard without ancilla even given energy-unbounded input state and
measurement. Also, Theorem S2 enables an experimental test, as it only requires generating finite
displacement with high probability. The practical performance of this bound with ‡ = 0.3 is shown
in Fig. S3.

Proof of Theorem S2. Now we introduce the following game between Alice and Bob that helps
reduce the learning task to a partially-revealed hypothesis testing task [9]. First, Alice samples
s œ {±1} with equal probability and “ œ Cn according to the multivariate normal distribution q(“)
defined as

q(“) :=
A

1
2fi‡2

“

Bn

e
≠ |“|2

2‡2
“ , (S113)
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(b)(a)

FIG. S3. Learning random displacement channels from the family with ‡ = 0.3 as in Theorem S2. (In the
main text, we set ‡ = 0.) All Ÿ shown in the figure satisfies Eq. (S111). (a) Comparison of TMSV+BM (with
di�erent loss rates), Vacuum+Heterodyne, and the entanglement-free lower bound at Ÿ = 1. The task is to
estimate any ⁄(—) such that |—|2 Æ Ÿn with precision Á = 0.2 and success probability 1 ≠ ” = 2/3. The orange
region represents a rigorous advantage over any entanglement-free schemes. The blue region represents an
advantage over Vacuum+heterodyne. (b) Comparison of the TMSV+BM scheme with squeezing parameter
r = 1.0 and loss rate 1 ≠ T = 0.1 with the entanglement-free lower bound of Theorem 2. The task is the same
as (a). The brown solid contour lines represent the sample complexity of TMSV+BM given by Theorem 3.
The blue dashed contour lines represent the ratio of sample complexity between the entanglement-free lower
bound and TMSV+BM, which clearly indicates the entanglement-enabled advantages.

where we will set 2‡
2
“ := 0.99Ÿ to ensure the tail probability, i.e., Pr

!
|“|2 > Ÿn

"
, to be su�ciently

small. Next, Alice does one of the following with equal probability:

1. Prepare N copies of �dep for Bob;

2. Prepare N copies of �s“ for Bob.

Bob then measures the N copies of the channels Alice prepared. After Bob has finished the
measurements and retains only classical information, Alice reveals the value of “ to Bob. Now Bob
is asked to distinguish between the two hypotheses: whether Alice has prepared copies of �dep or
�s“ . Crucially, Bob must have completed all quantum measurements before Alice reveals “, and
can only perform classical post-processing after that.

We first argue that if there is a scheme satisfying the assumptions of Theorem S2, then Bob can
use it to win the game with an average probability much better than random guess. Bob’s strategy
is as follows: If the “ he received satisfies 2‡

2
< |“|2 Æ Ÿn, use the scheme to query ⁄(“). Note

that for any “ œ Cn:

--⁄dep(“) ≠ ⁄±“(“)
-- = 1

2
--⁄“(“) ≠ ⁄≠“(“)

-- = 2‘0

----1 ≠ e
≠ 4|“|2

2‡2

---- . (S114)

For |“|2 > 2‡
2, the R.H.S. is lower bounded by 2‘0 ◊ 0.98 = 2‘. By assumption, this allows Bob to

distinguish among {�dep, �“ , �≠“} and thus guess correctly with at least 2/3 chance; For other “,
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Bob just makes a uniformly random guess. Note that

Pr
1
2‡

2
< |“|2 Æ Ÿn

2
= 1 ≠ Pr

1
|“|2 > Ÿn

2
≠ Pr

1
|“|2 Æ 2‡

2
2

(S115)

= 1 ≠
3�(n, n/0.99)

�(n)

4
≠

A

1 ≠
�(n, ‡

2
/‡

2
“)

�(n)

B

(S116)

Ø 1
2 ≠

A

1 ≠
�(n, ‡

2
/‡

2
“)

�(n)

B

(S117)

= 1
2 ≠

s ‡2/‡2
“

0 t
n≠1

e
≠t

dt

(n ≠ 1)! (S118)

Ø 0.49987. (S119)

The first inequality is shown in Sec. S4. The second inequality requires n Ø 8 and 2‡
2 Æ 0.99Ÿ := 2‡

2
“ .

Bob’s average success probability is lower bounded by

Pr[Success] Ø Pr
1
2‡

2
< |“|2 Æ Ÿn

2
◊ 2/3 +

1
1 ≠ Pr

1
2‡

2
< |“|2 Æ Ÿn

22
◊ 1/2. (S120)

Now we investigate the probability distribution of Bob’s measurement outcomes for any “. For
any adaptive entanglement-free strategy, one specifies an input state and a POVM for the ith
copy of � that can depend on previous measurement outcomes. We denote the ith measurement
outcomes as oi and the outcomes up to the ith round as o<i = [o1, ..., oi≠1]. The latter is added as
a superscript to the ith input states fl

o<i and POVM element E
o<i
oi to emphasize their adaptive

nature. With these notations, the probability of obtaining outcomes o1:N on N copies of � is

p(o1:N |�) =
NŸ

k=1
Tr

Ë
Ê

o<i
oi

�(fl̂o<i)
È
. (S121)

For a fixed “, let p1(o1:N ) := p(o1:N |�dep), p2,“(o1:N ) := Es=±1p(o1:N |�s“), which is the distribution
of Bob’s outcomes under the two hypotheses, respectively, conditioned on the “ he received.
According to the property of total variation distance, the maximal probability that Bob can
distinguish p1 and p2,“ is bounded by

Pr[Success|“] Æ 1
2(1 + TVD(p1, p2,“)), (S122)

where TVD is the total variation distance defined as

TVD(p1, p2,“) :=
ÿ

o1:N

max {0, p1(o1:N ) ≠ p2,“(o1:N )} . (S123)

We note that the sum over o1:N should be understood as integral for continuous-variable outcomes.

Thus, the average probability that Bob can win the game is upper bounded by

Pr[Success] = E“≥q Pr[Success|“] Æ 1
2(1 + E“TVD(p1, p2,“)). (S124)

Combining Eq. (S120) and Eq. (S124), we get

E“TVD(p1, p2,“) Ø 0.1666. (S125)

In the following, we show by direct calculation that this is impossible unless N is exponentially
large in n, which yields a desired lower bound for the sample complexity.
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Thanks to convexity, we assume pure input states and rank-1 measurement without decreasing
the TVD, i.e., the kth round’s input state and POVM are written as |Ao<kÍ and {|Bo<k

ok ÍÈBo<k
ok |},

which are conditioned on the previous measurement outcomes o<k. Here, the input state has unit
length and

q
ok

|Bo<k
ok ÍÈBo<k

ok | = 1. We note that since any density matrix is trace-class, a spectrum
decomposition always exists. On the other hand, the POVM element can be non-compact operator
and might not have spectrum decomposition, but it is known that they can always be composed
into rank-1 projectors with positive coe�cients (see [10, Theorem 6]). Thus, making both the input
state and measurement projector to be rank-1 is indeed justified.

Now, let us rewrite the probabilities as

p1(o1:N ) =
NŸ

k=1
ÈBo<k

ok
|�dep(|Ao<kÍÈAo<k |)|Bo<k

ok
Í (S126)

=
NŸ

k=1

3 1
fin

⁄
d

2n
—k⁄dep(—k)ÈBo<k

ok
|D̂†(—k)|Bo<k

ok
ÍÈAo<k |D̂(—k)|Ao<kÍ

4
, (S127)

p2,“(o1:N ) = Es=±1
NŸ

k=1
ÈBo<k

ok
|�s“(|Ao<kÍÈAo<k |)|Bo<k

ok
Í (S128)

= Es=±1
NŸ

k=1

3 1
fin

⁄
d

2n
—k⁄s“(—k)ÈBo<k

ok
|D̂†(—k)|Bo<k

ok
ÍÈAo<k |D̂(—k)|Ao<kÍ

4
. (S129)

Let ⁄
add
“ (—k) := ⁄“(—k) ≠ ⁄dep(—k). The di�erence of the probabilities can then be written as

p1(o1:N ) ≠ p2,“(o1:N ) (S130)

=p1(o1:N )
3

1 ≠ p2,“(o1:N )
p1(o1:N )

4
(S131)

=p1(o1:N )
A

1 ≠ Es=±1
NŸ

k=1

A

1 +
1

fin

s
d

2n
—k⁄

add
s“ (—k)ÈBo<k

ok |D̂†(—k)|Bo<k
ok ÍÈAo<k |D̂(—k)|Ao<kÍ

1
fin

s
d2n—k⁄dep(—k)ÈBo<k

ok |D̂†(—k)|Bo<k
ok ÍÈAo<k |D̂(—k)|Ao<kÍ

BB

(S132)

=p1(o1:N )
A

1 ≠ Es=±1
NŸ

k=1

1
1 ≠ 4‘0 Im G

oÆk
‡ (s“)

2B

, (S133)

where we have defined

G
oÆk
‡ (“) :=

s
d

2n
—e

≠ |—≠“|2
2‡2 G

oÆk(—)
s

d2n—Õe≠ |—Õ|2
2‡2 GoÆk(—Õ)

, (S134)

where

G
oÆk(—) := ÈBo<k

ok |D̂†(—)|Bo<k
ok Í

ÈBo<k
ok |Bo<k

ok Í
· ÈAo<k |D̂(—)|Ao<kÍ, (S135)

which satisfies G
oÆk(“) = G

oÆk(≠“)ú.

We thus have

E“TVD(p1, p2,“) = E“

ÿ

o1:N

p1(o1:N ) max
I

0, 1 ≠ Es=±1
NŸ

k=1

1
1 ≠ 4‘0 Im G

oÆk
‡ (s“)

2J

. (S136)
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Now we can lower bound the following term,

Es=±1
NŸ

k=1

1
1 ≠ 4‘0 Im G

oÆk
‡ (s“)

2
(S137)

Ø
NŸ

k=1

Ú1
1 ≠ 4‘0 Im G

oÆk
‡ (+“)

2 1
1 ≠ 4‘0 Im G

oÆk
‡ (≠“)

2
(S138)

=
NŸ

k=1

Ú
1 ≠ 16‘2

0
1
Im G

oÆk
‡ (“)

22
(S139)

Ø
NŸ

k=1

3
1 ≠ 16‘

2
0

1
ImG

oÆk
‡ (“)

224
(S140)

Ø 1 ≠
Nÿ

k=1
16‘

2
0|GoÆk

‡ (“)|2, (S141)

where the second line uses the AM-GM inequality and the fact that the expression inside the bracket
is the ratio of two conditional probabilities and is thus non-negative; the third line uses the fact that
Im G

oÆk
‡ (“) = ≠ Im G

oÆk
‡ (≠“); the fourth line uses

Ô
1 ≠ x Ø 1 ≠ x, ’ 0 Æ x Æ 1; and the final line

uses the inequality
r

i(1 ≠ xi) Ø 1 ≠
q

i xi for all 0 Æ xi Æ 1. Thus, we can get rid of the maximum
in the expression of the average TVD as

E“TVD(p1, p2,“) Æ
ÿ

o1:N

p1(o1:N )
Nÿ

k=1
16‘

2
0E“ |GoÆk

‡ (“)|2. (S142)

To further upper bound the R.H.S., we need the following Lemma S1. The lemma is analogous
to Pauli twirling in discrete-variable systems but also takes finite energy into consideration. The
proof of Lemma S1 is given in Sec. S3 B; Alternatively, when the input states and measurements are
restricted to be Gaussian, a more straightforward calculation is possible, yielding di�erent bounds,
which we will present in Sec. S3 C.

Lemma S1. For any |Ao<kÍ , |Bo<k
ok Í we have

E“ |GoÆk
‡ (“)|2 Æ

A
1 + 2‡

2

1 + 2‡2 + 4‡2
“

Bn

, (S143)

given that ‡
2 Æ max

;
1
2 ≠ 2‡

2
“ , ‡

2
“

3Ò
1 + 1

4‡4
“

≠ 1
4<

.

Thanks to Lemma S1, we get the following upper bound

E“TVD(p1, p2,“) Æ
ÿ

o1:N

p1(o1:N )
Nÿ

k=1
16‘

2
0

A
1 + 2‡

2

1 + 2‡2 + 4‡2
“

Bn

= 16N‘
2
0

A
1 + 2‡

2

1 + 2‡2 + 4‡2
“

Bn

. (S144)

Combining this with the lower bound in Eq. (S125) and substituting ‘ = 0.98‘0,

N Ø 0.01‘
≠2

A

1 +
4‡

2
“

1 + 2‡2

Bn

. (S145)

By substituting 2‡
2
“ = 0.99Ÿ, we obtain the lower bound as claimed in Theorem S2.
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In Fig. S3, we compare the upper bound of the TMSV+BM scheme to the derived lower bound
of entanglement-free schemes. In contrast to the main text, we set ‡ = 0.3 to consider a more
practical case for experimental realization in the near future. To see how much energy is required to
realize the 3-peak channel, one can easily check that for a given ‡, the corresponding single-mode
depolarizing channel �0 transforms a vacuum input state to a thermal state of mean photon number
1/2‡

2. Since this channel is a product channel, it implies that we need 1/2‡
2 average photons per

mode. For our choice ‡ = 0.3, 1/2‡
2 ¥ 5.56. Since the envelope determined by ‡ has a larger

contribution than “ that determines the oscillation, we are required to produce approximately
1/2‡

2 photon number on average. It is worth emphasizing that for Ÿ Æ 2.5, the choice satisfies the
condition of Theorem S2.

B. Proof of Lemma S1

In this section we prove Lemma S1. Let |AÍ , |BÍ be arbitrary normalized pure states in the
n-mode bosonic Hilbert space. Define

G(—) := ÈB|D̂†(—)|BÍÈA|D̂(—)|AÍ, (S146)

G‡(“) := [N‡ ú G](“)
[N‡ ú G](0)

:=
s

d
2n

— exp
!
≠|— ≠ “|2/2‡

2"
G(—)s

d2n— exp(≠|—|2/2‡2)G(—) . (S147)

Here ú stands for convolution. We are going to prove the following inequality

E“ |G‡(“)|2 = E“ |[N‡ ú G](“)|2
|[N‡ ú G](0)|2 Æ

A
1 + 2‡

2

1 + 2‡2 + 4‡2
“

Bn

, (S148)

where “ ≥ q(“) :=
1

1
2fi‡2

“

2n
exp

1
≠ |“|2

2‡2
“

2
and ‡

2 Æ max
;

1
2 ≠ 2‡

2
“ , ‡

2
“

3Ò
1 + 1

4‡4
“

≠ 1
4<

.

First of all, write the following expression in the Fourier basis

[N‡ ú G](“) = 1
fi2n

⁄
d

2n
Êe

Ê†“≠“†Ê
F[N‡úG](Ê) = 1

fi2n

⁄
d

2n
Êe

Ê†“≠“†Ê
FN‡ (Ê)FG(Ê), (S149)

where the last equality uses the convolution theorem [11]. The Fourier component of N‡ is

FN‡ (Ê) =
⁄

d
2n

—e
≠ |—|2

2‡2 e
—†Ê≠Ê†— = (2fi‡

2)n
e

≠2‡2|Ê|2
. (S150)

The Fourier component of G can be computed as

FG(Ê) =
⁄

d
2n

—ÈB|D̂†(—)|BÍÈA|D̂(—)|AÍe—†Ê≠Ê†— (S151)

=
⁄

d
2n

—ÈB|D̂†(—)|BÍÈA|D̂†(Ê)D̂(—)D̂(Ê)|AÍ (S152)

= fi
n|ÈB|D̂(Ê)|AÍ|2, (S153)

where the second line uses D̂
†(Ê)D̂(—)D̂(Ê) = e

—†Ê≠Ê†—
D̂(—), and the last line is by Eq. (S1). Thus,

|[N‡ ú G](“)|2 (S154)

=
----

1
fi2n

⁄
d

2n
Êe

Ê†“≠“†Ê
FN‡ (Ê)FG(Ê)

----
2

(S155)

= 1
fi4n

⁄
d

2n
Êd

2n
Ê

Õ
e

(Ê≠ÊÕ)†“≠“†(Ê≠ÊÕ)
FN‡ (Ê)F ú

N‡
(ÊÕ)FG(Ê)F ú

G(ÊÕ) (S156)

= (2‡
2)2n

⁄
d

2n
Êd

2n
Ê

Õ
e

(Ê≠ÊÕ)†“≠“†(Ê≠ÊÕ)
e

≠2‡2(|Ê|2+|ÊÕ|2)|ÈB, B|D̂(Ê) ¢ D̂(ÊÕ)|A, AÍ|2. (S157)
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FIG. S4. Schematics for Eq. (S164) to (S169). Here, each line represents n-mode state, and we omit the
phase factors for simplicity.

After averaging over Gaussian distribution of “, we obtain the numerator

E“ |[N‡ ú G](“)|2 = (2‡
2)2n

⁄
d

2n
Êd

2n
Ê

Õ
e

≠2‡2
“ |Ê≠ÊÕ|2

e
≠2‡2(|Ê|2+|ÊÕ|2)|ÈB, B|D̂(Ê) ¢ D̂(ÊÕ)|A, AÍ|2

(S158)

= (2‡
2)2n

⁄
d

2n
–d

2n
—e

≠4‡2
“ |—|2

e
≠2‡2(|–|2+|—|2)|ÈB, B|Û †

BSD̂(–) ¢ D̂(—)ÛBS|A, AÍ|2.

(S159)

Here, we changed the variable as Ê = (– + —)/
Ô

2 and Ê
Õ = (– ≠ —)/

Ô
2, i.e., (Ê + Ê

Õ)/
Ô

2 = – and
(Ê ≠ Ê

Õ)/
Ô

2 = — and chose the 50:50 beam splitter such that

Û
†
BSD̂(–) ¢ D̂(—)ÛBS = D̂((– + —)/

Ô
2) ¢ D̂((– ≠ —)/

Ô
2). (S160)

The denominator follows similarly from Eq. (S157) as

|[N‡ ú G](0)|2 = (2‡
2)2n

⁄
d

2n
Êd

2n
Ê

Õ
e

≠2‡2(|Ê|2+|ÊÕ|2)|ÈB, B|D̂(Ê) ¢ D̂(ÊÕ)|A, AÍ|2 (S161)

= (2‡
2)2n

⁄
d

2n
–d

2n
—e

≠2‡2(|–|2+|—|2)|ÈB, B|Û †
BSD̂(–) ¢ D̂(—)ÛBS|A, AÍ|2. (S162)

To further simplify the expressions, note that by applying the convolution theorem to Eq. (S151),
we have

1
fin

|ÈB|D̂(–)|AÍ|2 =
⁄

d
2n

—WA(—)WB(— ≠ –), (S163)

where WA and WB are the Wigner functions of the states |AÍ and |BÍ, respectively. Here, note the
sign in the arguments due to the complex conjugate of the characteristic function, ÈB|D̂†(—)|BÍ, in
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Eq. (S151). Thus, by defining the 2n-mode states |aÍ := ÛBS|A, AÍ and |bÍ := ÛBS|B, BÍ, we have
⁄

d
2n

–d
2n

—e
≠4‡2

“ |—|2
e

≠2‡2(|–|2+|—|2)|ÈB, B|Û †
BSD̂(–) ¢ D̂(—)ÛBS|A, AÍ|2 (S164)

= fi
2n

⁄
d

2n
Ê1d

2n
Ê2d

2n
–d

2n
—e

≠2‡2|–|2
e

≠(4‡2
“+2‡2)|—|2

Wa(Ê1, Ê2)Wb(Ê1 ≠ –, Ê2 ≠ —) (S165)

= fi
2n

⁄
d

2n
Ê1d

2n
Ê2d

2n
“1d

2n
“2e

≠2‡2|Ê1≠“1|2
e

≠(4‡2
“+2‡2)|Ê2≠“2|2

Wa(Ê1, Ê2)Wb(“1, “2) (S166)

= fi
2n

⁄
d

2n
–1d

2n
–2d

2n
—1d

2n
—2e

≠4‡2|–1|2
e

≠(8‡2
“+4‡2)|–2|2

Wa

3
–1 + —1Ô

2
,
–2 + —2Ô

2

4
Wb

3
—1 ≠ –1Ô

2
,
—2 ≠ –2Ô

2

4

(S167)

= fi
2n

⁄
d

2n
–1d

2n
–2e

≠4‡2|–1|2
e

≠(8‡2
“+4‡2)|–2|2

Wd(–1, –2) (S168)

= fi
2n(1 + 2‡

2)≠n(1 + 2‡
2 + 4‡

2
“)≠n Tr

S

Ufl̂d

A
1 ≠ 2‡

2

1 + 2‡2

Bn̂1

¢
A

1 ≠ 2‡
2 ≠ 4‡

2
“

1 + 2‡2 + 4‡2
“

Bn̂2
T

V, (S169)

where we used the convolution theorem for the first equality, and we changed the variables for the
second and third equalities, and

Wd(–1, –2) =
⁄

d
2n

—1d
2n

—2Wa

3
–1 + —1Ô

2
,
–2 + —2Ô

2

4
Wb

3
—1 ≠ –1Ô

2
,
—2 ≠ –2Ô

2

4
(S170)

is the Wigner function of the state fl̂d obtained by applying a 50:50 beam splitter to the state |aÍ
and |bÍ and tracing out half of the output. For the last equality, n̂1 and n̂2 are the sum of the
photon number operators for the first and second n modes, respectively, and we use the following
correspondence between the Wigner function and the operator

e
≠4x|–|2

fin
≈∆ [(1 ≠ 2x)/(1 + 2x)]n̂

(1 + 2x)n
, (S171)

for any x > 0 (see e.g. [12, Eq. (3.6.39)]). Note that, when x > 1/2 the R.H.S. is proportional
to a thermal state. Similar methods have been used to prove the maximum fidelity of Gaussian
channels [13]. We illustrate the procedure in Fig. S4. With the same logic, we have

⁄
d

2n
–d

2n
—e

≠2‡2(|–|2+|—|2)|ÈB, B|Û †
BSD̂(–) ¢ D̂(—)ÛBS|A, AÍ|2 (S172)

= fi
2n(1 + 2‡

2)≠2n Tr

S

Ufl̂d

A
1 ≠ 2‡

2

1 + 2‡2

Bn̂1

¢
A

1 ≠ 2‡
2

1 + 2‡2

Bn̂2
T

V . (S173)

Hence, we have

E“ |G‡(“)|2 =
A

1 + 2‡
2

1 + 2‡2 + 4‡2
“

Bn Tr
C

fl̂d

1
1≠2‡2

1+2‡2

2n̂1 ¢
3

1≠2‡2≠4‡2
“

1+2‡2+4‡2
“

4n̂2
D

Tr
5
fl̂d

1
1≠2‡2
1+2‡2

2n̂1 ¢
1

1≠2‡2
1+2‡2

2n̂2
6 . (S174)

We now consider two parameter regimes. First, if 2‡
2 + 4‡

2
“ Æ 1, the operators on the R.H.S. are

positive-semidefinite, and it is not hard to see, by monotonicity, that

Tr
C

fl̂d

1
1≠2‡2

1+2‡2

2n̂1 ¢
3

1≠2‡2≠4‡2
“

1+2‡2+4‡2
“

4n̂2
D

Tr
5
fl̂d

1
1≠2‡2
1+2‡2

2n̂1 ¢
1

1≠2‡2
1+2‡2

2n̂2
6 Æ 1. (S175)
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Second, if 2‡
2 + 4‡

2
“ > 1 but 2‡

2 Æ 2‡
2
“

3Ò
1 + 1

4‡4
“

≠ 1
4

Æ 1 (the last inequality holds for all
‡“ > 0), the above can be bounded as

Tr
C

fl̂d

1
1≠2‡2

1+2‡2

2n̂1 ¢
3

1≠2‡2≠4‡2
“

1+2‡2+4‡2
“

4n̂2
D

Tr
5
fl̂d

1
1≠2‡2
1+2‡2

2n̂1 ¢
1

1≠2‡2
1+2‡2

2n̂2
6 Æ

Tr
C

fl̂d

1
1≠2‡2

1+2‡2

2n̂1 ¢
----

1≠2‡2≠4‡2
“

1+2‡2+4‡2
“

----
n̂2

D

Tr
5
fl̂d

1
1≠2‡2
1+2‡2

2n̂1 ¢
1

1≠2‡2
1+2‡2

2n̂2
6 (S176)

=
Tr

5
fl̂d

1
1≠2‡2

1+2‡2

2n̂1 ¢
1

1≠2�2

1+2�2

2n̂2
6

Tr
5
fl̂d

1
1≠2‡2
1+2‡2

2n̂1 ¢
1

1≠2‡2
1+2‡2

2n̂2
6 (S177)

Æ 1, (S178)

where, in the second line, we define ≠1≠2‡2≠4‡2
“

1+2‡2+4‡2
“

:= 1≠2�2

1+2�2 , i.e., �2 = 1
4(‡2+2‡2

“) . In the third line,
we use �2 Ø ‡

2, which can be easily verified under our assumptions for ‡. Therefore, as long as
‡

2 Æ max
;

1
2 ≠ 2‡

2
“ , ‡

2
“

3Ò
1 + 1

4‡4
“

≠ 1
4<

, we have the following bound

E“ |G‡(“)|2 Æ
A

1 + 2‡
2

1 + 2‡2 + 4‡2
“

Bn

. (S179)

This completes the proof of Lemma S1. Note that the equality can be achieved if fl̂d is chosen to be
the vacuum state. One can verify this holds when |AÍ = |BÍ = |–Í for some coherent state |–Í.

C. Lower bound for entanglement-free Gaussian schemes

In this section, we give a lower bound for a specific class of scheme, the Gaussian schemes,
which may be of independent interest. An ancilla-free Gaussian scheme is specified by collections of
adaptively chosen Gaussian input state and Gaussian measurements. Again, thanks to convexity,
we again consider only pure input states and rank-1 POVM measurements. A Gaussian input state
can be expressed as |AÍ = D̂(Ê)|ĀÍ, where |ĀÍ is a centered (i.e., zero-mean) Gaussian state; A
Gaussian POVM can be written as

�̂(–) = |BÍÈB| = 1
fin

D̂(–)|B̄ÍÈB̄|D̂†(–), (S180)

for outcomes – œ Cn, where |B̄Í is a centered Gaussian state. We refer the readers to Ref. [1–3] for
more details about Gaussian quantum information.

Proposition S3. Given positive numbers n, ‡, Ÿ, ‘ such that

n Ø 8, ‘ Æ 0.24. (S181)

If there exists an entanglement-free Gaussian scheme such that, after learning from N copies of an

n-mode random displacement channel � œ ⇤‘,‡
39peak, and then receiving a query — œ Cn

, can return

an estimate ⁄̃(—) of ⁄(—) such that |⁄̃(—) ≠ ⁄(—)| Æ ‘ with probability at least 2/3 for all — such that

|—|2 Æ nŸ, then

N Ø 0.01‘
≠2 min

I3
1 + 0.99Ÿ

‡2

4n/2
,

3
1 + 1.98Ÿ

1 + 2‡2

4n
J

. (S182)
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A few remarks before presenting the proof: When Ÿ = O(1) and ‡
2 π Ÿ, the second expression

in the minimization dominates, and we recover Theorem S2. On the other hand, the bound for
Gaussian schemes also holds for arbitrarily large ‡, though the upper bound will enter a di�erent
branch and the separation with entanglement-assisted schemes becomes weaker.

Proof. Consider the same partially-revealed hypothesis-testing task and the same strategy used by
Bob in the proof of Theorem S2. Recall that the average TVD under the two hypotheses is lower
bounded by

E“TVD(p1, p2,“) Ø 0.1666. (S183)

To upper bound the average TVD, recall the following bound derived in Eq. (S142),

E“TVD(p1, p2,“) Æ
ÿ

o1:N

p1(o1:N )
Nÿ

k=1
16‘

2
0E“ |GoÆk

‡ (“)|2, (S184)

with G
oÆk
‡ defined as

G
oÆk
‡ (“) =

s
d

2n
—e

≠ |—≠“|2
2‡2 G

oÆk(—)
s

d2n—Õe≠ |—Õ|2
2‡2 GoÆk(—Õ)

, (S185)

G
oÆk(—) = ÈBo<k

ok |D̂†(—)|Bo<k
ok Í

ÈBo<k
ok |Bo<k

ok Í
· ÈAo<k |D̂(—)|Ao<kÍ, (S186)

Note that this bound holds for any ‡. Now we calculate the R.H.S. with Gaussian schemes. First
compute G

oÆk(—),

G
oÆk(—) = ÈB̄|D̂†(–)D̂†(—)D̂(–)|B̄ÍÈA|D̂(—)|AÍ = ÈB̄|D̂†(—)|B̄ÍÈĀ|D̂(—)|ĀÍe—†(–≠Ê)≠(–≠Ê)†—

,

(S187)

Here, without loss of generality, we can always write |ĀÍ = ÛBSAÛsqA
|0Í, where ÛBSA represents

the unitary operator for a beam-splitter network and ÛsqA
represents the product of single-mode

squeezing operations. Similarly, |B̄Í = ÛBSB ÛsqB
|0Í.

To simplify G
oÆk(—), using â := (x̂ + ip̂)/

Ô
2, we can rewrite the displacement operator as

D̂(—) := exp
1
—â

† ≠ —
†
â

2
= exp

1Ô
2i Im —x̂ ≠

Ô
2i Re —p̂

2
= exp

1Ô
2iv · q̂

2
, (S188)

where q̂ := (x̂1, . . . , x̂n, p̂1, . . . , p̂n)T and v(—) := (Im —1, . . . , Im —n, Re —1, . . . , Re —n)T. And

È0|D̂(—)|0Í = e
≠ 1

2 |—|2 = e
≠ 1

2 |v|2
. (S189)

Now, let us introduce the symplectic matrix S that describes the dynamics of quadrature operators
under Gaussian unitary operation Û :

Û
†
q̂iÛ = (Sq̂)i. (S190)

Since the Gaussian unitary operation we consider is written as ÛBSÛsq, the symplectic matrix can
be decomposed as S = SBSSsq. Here, SBS is an orthogonal matrix and Ŝsq can be explicitly written
as diag(er1 , . . . , e

rn , e
≠r1 , . . . , e

≠rn), where r1, . . . , rn Ø 0 represent squeezing parameters for each
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mode. We use r for squeezing parameters for |AÍ and s for |B̄Í. After the symplectic transformation
S, the displacement operator transforms as

exp
1Ô

2iv
T

q̂

2
æ exp

1Ô
2iv · (Sq̂)

2
= exp

1Ô
2i(ST

v) · q̂

2
, (S191)

and

È0| exp
1Ô

2i(ST
v) · q̂

2
|0Í = e

≠ 1
2 |STv|2 (S192)

Thus,

ÈĀ|D̂(—)|ĀÍ = È0|Û †
sqA

Û
†
BSA

D̂(—)ÛBSAÛsqA
|0Í = e

≠ 1
2 |ST

Av|2
, (S193)

and

ÈB̄|D̂†(—)|B̄Í = ÈB̄|D̂(—)|B̄Í = e
≠ 1

2 |ST
BvÕ|2 = e

≠ 1
2 |ST

Bv|2
, (S194)

where v := v(—). The first equality is due to the fact that ÈB̄|D̂†(—)|B̄Í is real. And we can write
the phase factor as

exp
1
—

†(– ≠ Ê) ≠ —(– ≠ Ê)†
2

= exp
1
2iv

T
u

2
, (S195)

where u := (≠ Re(–1 ≠ Ê1), . . . , ≠ Re(–n ≠ Ên), Im(–1 ≠ Ê1), . . . , Im(–n ≠ Ên))T. Thus,

G
oÆk(—) = ÈB̄|D̂†(—)|B̄ÍÈĀ|D̂(—)|ĀÍe—†(–≠Ê)≠(–≠Ê)†— (S196)

= exp
5
≠1

2v
T(SAS

T
A + SBS

T
B)v + 2iv

T
u

6
(S197)

:= exp
5
≠1

2v
T�v + 2iv

T
u

6
(S198)

= exp
5
≠1

2(Ov)T
D(Ov) + 2i(Ov)T · (Ou)

6
(S199)

=
2nŸ

i=1
exp

C

≠di

2

3
v

Õ
i ≠ 2i

di
u

Õ
i

42
≠ 2u

Õ2
i

di

D

, (S200)

where � := SAS
T
A + SBS

T
B > 0 is diagonalized as � = O

T
DO with diagonal matrix D =

diag(d1, . . . , d2n) > 0, and v
Õ := Ov, u

Õ := Ou. Let us analyze the spectrum of D. Note that
since SAS

T
A and SBS

T
B are physical covariance matrices, SAS

T
A Ø i�, SBS

T
B Ø i�, and thus

� Ø 2i� [3], where

� =
A

0 1
≠1 0

B

¢ 1M . (S201)

Hence, by the Williamson decomposition [3], the spectrum of � is composed of pairs such that the
product of the ith and (i + n)th eigenvalues of this matrix is no smaller than 4. Without loss of
generality, we label the eigenvalues d1, ..., d2n in such a way that didi+n Ø 4 for all 1 Æ i Æ n.

Now let us compute G
oÆk
‡ (“).

G
oÆk
‡ (“) =

s
d

2n
—e

≠ |—≠“|2
2‡2 G

oÆk(—)/(2fi‡
2)n

s
d2n—Õe≠ |—Õ|2

2‡2 GoÆk(—Õ)/(2fi‡2)n
(S202)
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By defining z := (Im “1, . . . , Im “n, Re “1, . . . , Re “n), and z
Õ := Oz, we have

1
(2fi‡2)n

⁄
d

2n
—e

≠ |—≠“|2
2‡2 G

oÆk(—) (S203)

= 1
(2fi‡2)n

⁄
d

2n
v

Õ
2nŸ

i=1
exp

C

≠(vÕ
i ≠ z

Õ
i)2

2‡2 ≠ di

2

3
v

Õ
i ≠ 2i

di
u

Õ
i

42
≠ 2u

Õ2
i

di

D

(S204)

=
2nŸ

i=1

C
1Ô

1 + di‡
2 exp

A

≠ 2u
Õ2
i ‡

2

1 + di‡
2

B

exp
A

1
2

A
≠diz

Õ2
i + 4iuiz

Õ
i

1 + di‡
2

BBD

, (S205)

Therefore, we obtain

G
oÆk
‡ (“) =

2nŸ

i=1
exp

C
1
2

A
≠diz

Õ2
i + 4iuiz

Õ
i

1 + di‡
2

BD

, and |GoÆk
‡ (“)| =

2nŸ

i=1
exp

C
≠diz

Õ2
i

2(1 + di‡
2)

D

. (S206)

Thus, after taking the average over “, we obtain

E“ |GoÆk
‡ (“)|2 =

⁄
d

2n
z

Õ e
≠ |z|2

2‡2
“

(2fi‡2
“)n

2nŸ

i=1
exp

C
≠diz

Õ2
i

(1 + di‡
2)

D

=
2nŸ

i=1

Û
1

1 + 2di‡
2
“/(1 + di‡

2)) . (S207)

Substituting this back to Eq. (S184), we obtain the following upper bound for the average TVD

E“TVD(p1, p2,“) Æ 16N‘
2
0

2nŸ

i=1

Û
1

1 + 2di‡
2
“/(1 + di‡

2)) , (S208)

which, combined with the lower bound Eq. (S183) and substituting ‘0 = ‘/0.98, yields the following
sample complexity bound

N Ø 0.01‘
≠2

Q

a
2nŸ

i=1

Û

1 +
2di‡

2
“

1 + di‡
2

R

b . (S209)

To find a lower bound independent of di’s, focus on the following product, for any 1 Æ i Æ n,
A

1 +
2di‡

2
“

1 + di‡
2

B A

1 +
2di+n‡

2
“

1 + di+n‡2

B

(S210)

This is an increasing function in di and di+n. We know the spectrum satisfies didi+n Ø 4. Hence,
we can lower bound it by setting di+n/2 = 2/di := d > 0, which leads to

A

1 +
2di‡

2
“

1 + di‡
2

B A

1 +
2di+n‡

2
“

1 + di+n‡2

B

Ø
(d + 2‡

2 + 4‡
2
“)(1 + 2d(‡2 + 2‡

2
“))

(d + 2‡2)(1 + 2d‡2) . (S211)

The R.H.S. is di�erentiable in d, with its only extreme value at d = 1 being
A

1 +
4‡

2
“

1 + 2‡2

B2
. (S212)

Meanwhile, when d æ 0 or d æ Œ, it becomes 1 + 2‡
2
“/‡

2. We thus have the following lower bound,
A

1 +
2di‡

2
“

1 + di‡
2

B A

1 +
2di+n‡

2
“

1 + di+n‡2

B

Ø min

Y
]

[1 +
2‡

2
“

‡2 ,

A

1 +
4‡

2
“

1 + 2‡2

B2
Z
^

\ , (S213)
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which gives us the following sample complexity lower bound:

N Ø 0.01‘
≠2 min

Y
]

[

A

1 +
2‡

2
“

‡2

Bn/2
,

A

1 +
4‡

2
“

1 + 2‡2

Bn
Z
^

\ . (S214)

Substituting 2‡
2
“ = 0.99Ÿ completes the proof of Proposition S3.

S4. GAUSSIAN TAIL EFFECT

In this section, we find the condition that the e�ect of truncating a multivariate normal
distribution is smaller than 0.5, which is used to derive the lower bound for entanglement-free
schemes. Consider a multivariate normal distribution:

q(x) =
3 1

2fi‡2

4n

exp
A

≠ |x|2

2‡2

B

, (S215)

where x œ R2n. Note that in the main text, while we consider “ œ Cn, they are equivalent. Now,
we consider a truncated distribution with |x|2 Æ R

2 with a given R:
⁄

|x|ÆR
dxq(x) =

⁄

|x|ÆR
dx

3 1
2fi‡2

4n

exp
A

≠ |x|2

2‡2

B

(S216)

=
3 1

2fi‡2

4n ⁄ R

0
dr

⁄
d�2nr

2n≠1 exp
A

≠ r
2

2‡2

B

(S217)

= 1 ≠
�

1
n,

R2

2‡2

2

�(n) . (S218)

where we have used the following integrals:
⁄

d�n = 2fi
n/2

�(n/2) ,

⁄ R

0
drr

2n≠1 exp
A

≠ r
2

2‡2

B

= 2n≠1
‡

2n

C

�(n) ≠ �
A

n,
R

2

2‡2

BD

, (S219)

and

�(n, x) =
⁄ Œ

x
t
n≠1

e
≠t

dt (S220)

is the (upper) incomplete gamma function and �(n) = �(n, 0). Therefore, the tail probability is
given by �

1
n,

R2

2‡2

2
/�(n). In the main text and the proof of sample complexity lower bound of

entanglement-free schemes, we choose 2‡
2 = 0.99Ÿ and R

2 = Ÿn. For our purpose, it su�ces to
show that �(n,n/0.99)

�(n) Æ 0.5. To see this, we use the following inequality [14]:

�(n, kn)
�(n) Æ (ke

1≠k)n
, ’ k > 1. (S221)

First notice that for k = 1/0.99 and n = 14000, (ke
1≠k)n Æ 0.492. Now, for every n < 14000, one

can numerically verify �(n,n/0.99)
�(n) Æ 0.5 (see Fig. S5); For n > 14000, the upper bound (ke

1≠k)n

monotonically decreases with n, so we also have �(n,n/0.99)
�(n) Æ 0.492. Combining these two cases

completes the proof.
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FIG. S5. Numerical verification that the Gaussian tail probability is upper bounded by 0.5 for n up to 14000.
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Abstract. Wave-particle duality, the cornerstone of quantum mechanics, illustrates essen-
tial trade-offs between two complementary aspects of quantum systems. In this work, from
the perspective of coherence resource manipulation, we uncover a novel duality relation between
quantum coherence and distinguishability in ensembles of mutually orthogonal pure states, treat-
ing them as two complementary resources. We demonstrate that the sum of ‘co-bits’, coherence
preserved after discrimination, and classical bits, distinguishability extracted through perfect
discrimination is bounded. One cannot simultaneously extract all classical information and pre-
serve coherence. Such duality relation exposes an inherent trade-off between quantum coherence
and classical distinguishability resources. Our findings offer a fresh perspective and advance
our understanding of the intrinsic complementary relationship between quantum and classical
resources. Note: A technical version of this work is attached.

Keywords: Quantum coherence, wave-particle duality, quantum resource theory, quantum
state discrimination.

Background. Wave-particle duality, a fundamen-
tal principle in quantum mechanics, deeply relates
with foundational phenomena such as uncertainty
relations [1–3] and Wheeler’s delayed-choice experi-
ments [4], as well as to innovative quantum imaging
techniques [5, 6]. It reveals an inherent trade-off
relation between the display of wave and particle
behavior in a single quantum particle. Such dual-
ity relation is typically demonstrated in interference
experiments [7–10]. In a two-path interferometer
experiment, a particle behavior is characterized by
path information acquired by a which-path detector,
while wave behavior is determined by the visibility
of the interference pattern. Quantitative statements
of wave-particle duality in two-path interferometer
experiments [11, 12], such as the famous inequality
by Englert [13] and Jaeger et al. [14], are formulated
as

D2 + V 2 ≤ 1, (1)

where D measures path distinguishability, charac-
terizing particle behavior, and V is the visibility of
the interference fringe, determining wave behavior.

Furthermore, in extending wave-particle dual-
ity relation to multipath interferometers [15, 16],
such relation has been reformulated in the con-
text of quantum information theory. These refor-
mulations [17–20] leverage resource theory of co-
herence [21–24] and quantum state discrimination
(QSD) [25], a fundamental quantum information

Figure 1: (a) Quantum state discrimination via free
operations. The discrimination procedure consists
of applying a free operation N w.r.t. a quantum re-
source theory and measuring the state in a computa-
tional basis. (b) Coherence-distinguishability dual-
ity relation. There is an inherent trade-off between
the quantum coherence resource (‘co-bits’) and the
classical distinguishability resource (‘c-bits’).

task. By entangling particle and detector states
within an interferometer, Eq. (1) was formulated
by a duality relation between some coherence mea-
sure [26], which substitutes visibility to identify
wave properties, and the distinguishability among
detector states providing which-path information.

Coherence stands as a typical quantum resource
generating quantum superposition promoting quan-
tum computation algorithms [27, 28] and intrin-
sic randomness vital in quantum cryptography [29–
31]. While distinguishability, contrasted with co-
herence, acts as a classical resource revealing deter-
ministic classical information encoded in quantum
systems [32–34]. The above reformulation caught a
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glimpse of the deep complementary correlation be-
tween quantum and classical resources.

Following up this quantum information perspec-
tive, wave-particle duality has been extended into
quantum many-body systems [35–37]. An opera-
tional meaning of wave-particle duality has also been
demonstrated [38]. However, all of these investi-
gations are rooted in interference scenarios. Can
we further discern a similar duality relationship be-
tween coherence and distinguishability resources in
broader and more fundamental quantum scenar-
ios, transcending typical interference experiments?
Such inquiry aids in elucidating the intrinsic connec-
tion between these two resources themselves from a
theoretical perspective for quantum foundations.
Overview of results: This work aims to investi-
gate the manipulation of coherence resources within
the context of quantum state discrimination (QSD),
offering a fresh perspective on wave-particle dual-
ity through the lens of quantum resource theory.
Specifically, we establish the following:

1. We propose a general paradigm for quan-
tum state discrimination via quantum chan-
nels, enabling the exploration of quantum
resource manipulation within QSD.

2. We reveal a coherence-distinguishability
duality relation, quantitatively captured by
a bounded sum of ‘co-bits’ (preserved co-
herence) and classical bits (extracted dis-
tinguishability). This relation highlights a
resource-theoretic nature of wave-particle
duality.

3. We analyze extreme cases in this coherence-
distinguishability duality relation. First, we
show that this duality relation is tight by a
special case. Secondly, we demonstrate that
One cannot simultaneously extract all classi-
cal bits and preserve coherence. These obser-
vations hint again at the underlying wave-
particle duality relationship between co-
herence and distinguishability resource.

Quantum state discrimination via free opera-
tions: Our first contribution is to propose a general
quantum state discrimination paradigm via quan-
tum channels, which contributes to explore quan-
tum resource manipulation within QSD.

Recall that for the minimum-error state discrimi-
nation, one aims to find a Positive Operator-Valued
Measure (POVM) {Ej}k−1

j=0 to maximize the aver-
age success probability of discriminating a state en-

semble Ω = {(pj , ρj)}k−1
j=0 with

∑k−1
j=0 pj = 1, ρj ∈

D(HA):

Psuc(Ω) = max
{Ej}j

∑
j

pj Tr(Ejρj). (2)

To investigate the quantum resource manipula-
tion in QSD, we reconsider a general paradigm for
discriminating Ω = {(pj , ρj)}k−1

j=0 as the following
steps in order: (I) Receive an unknown state ρj with
prior probability pj . (II) Apply a quantum channel
NA→BA′ to ρj , yielding ω(j)

BA′ = NA→BA′(ρj) where
A′ ∼= A and dimHB = k. (III) Measure ω(j)

BA′ on the
subsystem B in computational basis. If the outcome
is i, decide the received state is ρi.

We call the above quantum channel NA→BA′ a
discrimination channel. This paradigm provides
an intuitive approach to evaluate the ‘resourceful-
ness’ of the discrimination channel, which is crucial
for understanding resource dynamics and manipula-
tion within a discrimination task. Specifically, for
a given quantum resource theory (F ,O), we intro-
duce the optimal average success probability by free
operations as follows.

P̃suc,O(Ω) =max

k−1∑
j=0

pj Tr[NA→BA′(ρj)(|j⟩⟨j|B ⊗ IA′)]

s.t. NA→BA′ ∈ O

Furthermore, we denote P̃suc(Ω) as the maximal
average success probability attainable through op-
erations NA→BA′ without constraints on their avail-
ability. Note if there is an optimal NA→BA′ ∈
L(HA,HBA′) such that P̃suc(Ω) = Psuc(Ω), we say
NA→BA′ can optimally discriminate Ω.

Proposition 1 For a d-dimensional state ensemble
Ω = {(pj , ρj)}k−1

j=0 , the optimal discrimination prob-
ability Psuc(Ω) can be achieved by incoherent opera-
tions.

Proposition 1 reveals that the process of optimally
discriminating an ensemble Ω does not consume ad-
ditional quantum coherence. This pivotal finding
aligns with the intuition from the wave-particle du-
ality relation that distinguishability cannot increase
with an increase in coherence, where they are com-
plementary.
Coherence-distinguishability duality: Our sec-
ond contribution is to reveal an inherent trade-off
between preserved coherence and achievable per-
fect distinguishability within ensembles of mutually
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Wave-Particle Duality Coherence-Distinguishability Duality
Scenario Multi-interference experiment Coherence resource manipulation in QSD

Quantitative Relation D2 + V 2 ≤ 1 CMIO(Ω) + S(Ω) ≤ log d

Particle behavior D: Path distinguishability S(Ω): Classical distinguishability bits
Wave behavior V : Interference fringe visibility CMIO(Ω): Post-discrimination ‘co-bits’
Extreme Case Perfect path distinguishability D = 1 Full classical bit extraction S(Ω) = log d

=⇒ No interference V = 0 =⇒ No ‘co-bits’ preserved CMIO(Ω) = 0

Equality holding condition Pure detector states Maximally coherent states

Table 1: Comparison between Wave-Particle Duality (Eq. (1)) and Coherence-Distinguishability Duality
((Eq. (3))

.
orthogonal pure states, highlighting the resource-
theoretic nature of wave-particle duality.

For coherence analysis, we consider the maximum
relative entropy of coherence Cmax(ρ) as a coherence
measure [22, 39, 40]. The maximal possible value
of Cmax(·) for a d-dimensional state is achieved by
Ψd with Cmax(Ψd) = log d [41], corresponding with
log d coherent bits (co-bits) [42]. Then, we introduce
the post-disrimination coherence as the maximum
average co-bits that can be preserved after a perfect
discrimination procedure.

Definition 2 ( Post-discrimination coherence)
For a mutually orthogonal d-dimensional state en-
semble Ω = {(pj , ρj)}k−1

j=0 , the post-discrimination
coherence under maximally incoherent operations
is defined as CMIO(Ω) := log(1 + η) where

η = max
{ k−1∑

j=0

pjCR(σj) : M(ρj) = |j⟩⟨j| ⊗ σj ,

σj ∈ D(Hd), ∀j, M ∈ MIO
}
.

Proposition 1 indicates that there is always a fea-
sible MIO M for CMIO(Ω).

We recall that the distinguishability emerges from
a pure state ensemble Ω = {(pj , |ψj⟩)}k−1

j=0 can be
characterized by the von-Neumann entropy defined
on it [32], i.e., S(Ω) := S(ω̂) where S(·) is the von-
Neumann entropy of a state and ω̂ =

∑
j pj |ψj⟩⟨ψj |

denotes the average state of Ω. In Theorem 3, we
demonstrate the duality relation between these two
quantities S(Ω) and CMIO(Ω).

Theorem 3 (Coherence-distinguishability duality)
For a mutually orthogonal d-dimensional pure-state
ensemble Ω = {(1/k, |ψj⟩)}k−1

j=0 ,

CMIO(Ω) + S(Ω) ≤ log d. (3)

Theorem 3 gives a novel wave-particle duality re-
lation through the lens of quantum resource theory.

It reveals an intriguing fact that the more classical
bits (‘c-bits’) you want to decode, the fewer ‘co-bits’
can be preserved after extracting all classical infor-
mation.
Boundary cases of duality relation: Our third
contribution is to analyze extreme cases of this dual-
ity relation. We demonstrate the tightness of Eq. (3)
and the fact that one cannot simultaneously extract
all classical information and preserve coherence.

Proposition 4 Let |ϕj⟩ = HXj |0⟩ where H,X are
the d-dimensional Hadamard gate and generalized
Pauli X gate. For Ω = {(1/k, |ϕj⟩)}k−1

j=0 , k ≤ d,

CMIO(Ω) + S(Ω) = log d. (4)

Proposition 4 shows that an ensemble of k mu-
tually orthogonal maximally coherent states exactly
achieves the upper bound in Eq. (3), which iden-
tifies the tightness of this trade-off relation. This
finding underscores a novel role for maximally coher-
ent states beyond their established status as golden
resources within the quantum resource theory of co-
herence.

Furthermore, as another boundary case of Theo-
rem 3, we note that when the cardinality of the set
Ω is equal to the dimension d, CMIO(Ω) vanishes,
indicating that no coherence resource could be pre-
served after perfect discrimination. The total sim-
ilarity comparisons between Wave-Particle Duality
(Eq. (1)) and Coherence-Distinguishability Duality
((Eq. (3)) are shown in Table 1.

Concluding remarks: In this work, we ex-
plore the quantum coherence manipulation within
quantum state discrimination and uncover a signif-
icant duality relation between quantum coherence
and classical distinguishability resources. Our re-
sult opens a new avenue for studying wave-particle
duality and the uncertainty principle through the
lens of quantum resource theories, offering insights
to both quantum foundations and quantum infor-
mation theory.
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Wave-particle duality, a fundamental principle of quantum mechanics, encapsulates the complementary rela-
tionship between the wave and particle behaviors of quantum systems. In this paper, we uncover a novel man-
ifestation of this duality by establishing a trade-off between quantum coherence and classical distinguishability
through the lens of quantum state discrimination under incoherent operations. We prove that in an ensemble of
mutually orthogonal pure states, the sum of ‘co-bits’, quantifying the coherence preserved under incoherent free
operations, and classical bits, representing the distinguishability extracted via quantum state discrimination, is
bounded. This coherence-distinguishability duality relation exposes an inherent limitation on the simultaneous
preservation of a system’s quantum coherence (wave-like property) and extraction of its classical distinguisha-
bility (particle-like property). Our findings provide a fresh perspective on wave-particle duality through the
paradigm of quantum resource theories, offering fundamental insights into the manipulation of quantum and
classical resources, with implications for quantum foundations and quantum technologies.

Introduction.— Can all physical observables of a system
be sharply determined simultaneously, or say is there any
trade-off relation among them? Heisenberg answered this
pivotal question with his famous uncertainty principle [1].
This fundamental principle states that the more accurately one
measures the position of a particle, the less accurately one can
measure its momentum, and vice versa. Uncertainty princi-
ples deeply reveal an inherent knowledge trade-off between
two complementary observables of a quantum system [2]. Un-
der a modern formulation in terms of entropy [3–5], uncer-
tainty relation is further shown to be equivalent to another in-
triguing and fundamental phenomenon in quantum mechan-
ics, namely wave-particle duality.

Wave-particle duality stated by Bohr’s complementarity
principle [6] also reveals an inherent trade-off relation be-
tween two conjugate properties of a quantum object. This
describes a competition phenomenon between the display of
wave and particle behavior for a single quantum particle. Such
duality relation is typically demonstrated in interference ex-
periments [7–10], such as the double-slit experiment or two-
path interferometer. In such experiments, a particle behavior
is characterized by path information acquired by a which-path
detector, while wave behavior is determined by the visibility
of the interference pattern. Quantitative statements of wave-
particle duality [11, 12], such as the famous inequality by En-
glert [13] and Jaeger et al. [14], are formulated as

D2 + V 2 ≤ 1, (1)

whereD represents path distinguishability and V denotes vis-
ibility of the interference fringe. Perfect path distinguishabil-

* Zhiping Liu and Chengkai Zhu contributed equally to this work.
† felixxinwang@hkust-gz.edu.cn

Fig 1. (a) Quantum state discrimination via free operations. The dis-
crimination procedure consists of applying a free operation N w.r.t.
a quantum resource theory and measuring the state on a computa-
tional basis. (b) Coherence-distinguishability duality relation. There
is a trade-off between the quantum coherence resource (‘co-bits’) and
the classical distinguishability resource (‘c-bits’).

ity (D = 1) corresponds to complete particle behavior, thus
no interference pattern will exhibit (V = 0).

Furthermore, in extending wave-particle duality relation to
multipath interferometers [15, 16], such relation has been re-
formulated within the context of quantum information the-
ory. These reformulations [17–20] leverage the resource the-
ory of coherence [21–24] and quantum state discrimination
(QSD) [25], a fundamental task in quantum information the-
ory. By entangling particle and detector states within an inter-
ferometer, Eq. (1) was formulated by a duality relation be-
tween some coherence measure [26] replacing visibility to
identifying wave property, and the distinguishability among
detector states providing which-path information. In this con-
text, perfect distinguishability of mutually orthogonal detector
states implies full path information and the absence of coher-
ence.

Coherence stands as a typical quantum resource generat-
ing quantum superposition promoting quantum computation
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algorithms [27, 28] and intrinsic randomness vital in quan-
tum cryptography [29–31]. While distinguishability, con-
trasted with coherence, acts as a classical resource reveal-
ing deterministic classical information encoded in quantum
systems [32–34]. The above reformulation caught a glimpse
of the deep complementary correlation between quantum and
classical resources.

Following up this quantum information perspective, wave-
particle duality has been extended into complicated quan-
tum many-body systems [35–37]. An operational meaning of
wave-particle duality has also been demonstrated within dis-
crimination games [38]. However, all of these investigations
are rooted in interference scenarios, where the path of parti-
cles is entangled with corresponding detector states within an
interferometer. Can we further discern a similar duality rela-
tionship between coherence and distinguishability resources
in broader and more fundamental quantum scenarios, tran-
scending typical interference experiments? Such inquiry aids
in elucidating the intrinsic connection between these two re-
sources themselves from a theoretical perspective for quantum
foundations.

In this work, we uncover a novel coherence-
distinguishability duality relation within mutually orthogonal
pure-state ensembles. Different from supposing a multipath
interferometer scenario as previous works, our discovery
stems from exploring coherence resource manipulation by
introducing a new paradigm for QSD via free operations
(see Fig. 1(a)). This duality relation shows that the more
one extracts classical information by discriminating states
in the ensemble, the less one can preserve the coherence,
and vice versa. It unveils an inherent trade-off between the
coherence resource preserved after discrimination and the
achievable perfect distinguishability within these ensembles
(see Fig. 1(b)).

In particular, we present two intriguing cases derived from
our coherence-distinguishability duality relation. Firstly, we
reveal that our duality relation is tight. When considering
mutually orthogonal maximally coherent states, the sum of
the maximum co-bits left and the classical bits we can ex-
tract achieves the bound log d. Secondly, we demonstrate
that in discriminating a complete orthonormal basis of a d-
dimensional Hilbert space, no coherence can be preserved
while extracting log d classical bits. This is a mutually ex-
clusive extreme situation within our duality relation. Our
work establishes a profound connection between coherence
and distinguishability as fundamental resources, generalizing
the wave-particle duality relation into a new scenario within
the realm of quantum resource theory.

Quantum state discrimination via free operations.— We
begin with an introduction to quantum resource theories and
quantum state discrimination. Let L(HA,HB) denote the set
of linear operations from a dA-dimensional Hilbert space HA

to HB . Let D(HA) be the set of density operators acting on
HA, and NA→B be a quantum operation from system A to B
which is a completely positive and trace-preserving map. A
quantum resource theory of states is defined as a tuple (F ,O)
where F is the set of free states; O is the set of free operations
that preserve free states, i.e., N (ρ) ∈ F , ∀N ∈ O, ∀ρ ∈ F .

For (F ,O), a reasonable resource measure R(ρ) ∈ R, ∀ρ ∈
D(HA) satisfies monotonicity R(N (ρ)) ≤ R(ρ) and posi-
tivity R(ρ) ≥ 0, ∀ρ ∈ D(HA), ∀N ∈ O. Such a quantum
resource theory intuitively arises when there is a restricted set
of operations O that are significantly easier to implement than
the others, e.g., local operations and classical communication
(LOCC) in entanglement theory [39], Clifford operations in
the quantum resource theory of magic states [40, 41].

For coherence, we start by fixing the incoherent basis as
the computational basis {|i⟩}i when considering circuit-based
quantum computation, since the encoding and decoding of
the information will be reduced to the classical application
of stochastic matrices onto probability vectors if there is no
coherence involved. We denote by I the set of incoherent
states, i.e., those diagonal in {|i⟩}i. For a given dimension d,
we denote |Ψd⟩ = 1√

d

∑d−1
i=0 |i⟩ as the maximally coherent

state, and denote Ψd = |Ψd⟩⟨Ψd|. The maximal set of opera-
tions that map incoherent states to incoherent states is called
the maximally incoherent operations (MIO) [42]. Other com-
mon free operations include incoherent operations (IO) [26],
dephasing-covariant incoherent operations (DIO) [43, 44] and
strictly incoherent operations (SIO) [21]. There are hierar-
chies among these free operations: SIO ⊊ IO ⊊ MIO,
SIO ⊊ DIO ⊊ MIO [43]. More details about QRT of co-
herence can be found in the appendix.

Recall that for the minimum-error state discrimination, one
aims to find a Positive Operator-Valued Measure (POVM)
{Ej}k−1

j=0 to maximize the average success probability of
discriminating a state ensemble Ω = {(pj , ρj)}k−1

j=0 with∑
j pj = 1, ρj ∈ D(HA):

Psuc(Ω) = max
{Ej}j

∑
j

pj Tr(Ejρj). (2)

Numerous studies have been carried out to understand the lim-
its of such a task when measurements are restricted to different
classes, including POVMs with locality constraints [45–53]
(i.e., LOCC, separable, PPT POVMs), incoherent [54], stabi-
lizer measurement [55], all of which are considered within the
context of different quantum resource theories.

To investigate the quantum resource manipulation in QSD,
we reconsider a general paradigm for discriminating Ω =
{(pj , ρj)}k−1

j=0 as the following steps in order: (I) Receive an
unknown state ρj with prior probability pj . (II) Apply a quan-
tum channel NA→BA′ to ρj , yielding ω(j)

BA′ = NA→BA′(ρj)

where A′ ∼= A and dimHB = k. (III) Measure ω(j)
BA′ on

the subsystem B in computational basis. If the outcome is i,
decide the received state is ρi.

We call the above quantum channel NA→BA′ a discrimi-
nation channel. This paradigm provides an intuitive approach
to evaluate the ‘resourcefulness’ of the discrimination chan-
nel, which is crucial for understanding resource dynamics and
manipulation within a discrimination task. Specifically, for a
given quantum state ensemble Ω = {(pj , ρj)}k−1

j=0 and a quan-
tum resource theory (F ,O), we introduce the optimal average
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success probability by free operations as follows.

P̃suc,O(Ω) =max
k−1∑
j=0

pj Tr[NA→BA′(ρj)(|j⟩⟨j|B ⊗ IA′)]

s.t. NA→BA′ ∈ O

Furthermore, we denote P̃suc(Ω) as the maximal average
success probability attainable through operations NA→BA′

without constraints on their availability. It is worth noting that
P̃suc,O(Ω) can be equivalently characterized by optimization
over operations NA→B ∈ O, since discarding the subsystem
A′ typically constitutes a free operation. However, the inclu-
sion of the reference system A′ facilitates a comprehensive
examination of resource dynamics during the discrimination
process. This concept is elaborated further in Theorem 2.
Note if there is an optimal NA→BA′ ∈ L(HA,HBA′) such
that P̃suc(Ω) = Psuc(Ω), we say NA→BA′ can optimally dis-
criminate Ω.

Coherence manipulation in state discrimination.— Now,
in the context of quantum coherence manipulation in QSD, we
present our first result that the process of optimally discrimi-
nating an ensemble Ω does not necessitate the consumption of
additional quantum coherence. We establish this by demon-
strating that the optimal average success probability, typically
associated with unrestricted general POVMs, can be realized
through free operations within the prescribed paradigm of a
discrimination process.

Proposition 1 For a d-dimensional state ensemble
Ω = {(pj , ρj)}k−1

j=0 , the optimal discrimination proba-
bility Psuc(Ω) can be achieved by incoherent operations.

Proposition 1 is established by proving Psuc(Ω) =

P̃suc,IO(Ω) = P̃suc,MIO(Ω), with the detailed proof deferred
to appendix. The wave-particle duality relation reminds us
that an increase in visibility pattern always implies a decrease
in path discrimination. This pivotal finding aligns with the
intuition from the wave-particle duality relation that distin-
guishability cannot increase with an increase in coherence,
where they are complementary.

This result also highlights the importance of exploring QSD
tasks within the context of dynamical quantum resources, as
proposed in our paradigm, rather than focusing solely on re-
strictions on POVMs. From the perspective of resource the-
ories of measurements [54, 56–58], the ‘free measurements’
for coherence are previously considered as incoherent mea-
surements, which are diagonal in the fixed basis {|i⟩}i. How-
ever, this characterization yields a limited understanding of
QSD tasks in the context of resource theories. We establish
that QSD performed by incoherent measurements is merely
equivalent to our aforementioned process with a discrimina-
tion channel belonging to DIO (SIO), a strict subset of MIO
(IO), as shown in the appendix. Hence, incoherent measure-
ments generally fall short of achieving optimal discrimination
by Proposition 1. This analysis suggests that MIO possesses
an intrinsic advantage over DIO in the task of coherent state

discrimination, which can be quantified by the generalized ro-
bustness of incoherent measurements [54, 56]. This insight
establishes a strict hierarchy between MIO and DIO on the
optimal discrimination of coherent states.

When optimal discrimination associated with global
POVMs is not achievable through free measurements alone,
it is intuitive to consider employing ancillary resource states
to enhance discrimination capabilities [59–61]. In this way,
the resource cost for a QSD task is quantified by the minimal
number of copies of the resource state required for reaching
optimal global discrimination. However, examining the re-
source cost of QSD via DIO (SIO), which is tantamount to
performing incoherent measurements, reveals a subtlety. For
any optimal channel N ∈ O that attains P̃suc,O(Ω), applying
the dephasing channel ∆ before or after N yields the same
outcome when N is DIO (SIO), i.e., ∆ ◦ N (ρ ⊗ Ψd) =
N ◦ ∆(ρ ⊗ Ψd), ∀ρ. Thus, Ψd does not assist in simulat-
ing any more powerful discrimination channel through DIO
(SIO). This insight implies a no-go case for reaching optimal
global discrimination via DIO (SIO) in discriminating general
coherent state ensembles.

Coherence-distinguishability duality.— Given that opti-
mal discrimination does not involve additional consumption
of coherence, it is reasonable to postulate that the process
may consume the coherence present within the state ensemble
itself, owing to the decoherence effect of the discrimination
task. Then it prompts intriguing questions: how much coher-
ence can be maximally preserved after a discrimination pro-
cess? By characterizing this maximally preserved coherence,
can we establish a duality relation between the distinguisha-
bility and coherence resources?

To address this question, we start with the problem of dis-
criminating an ensemble of mutually orthogonal pure states.
For coherence analysis, we consider the maximum relative
entropy of coherence as a coherence measure [62]. It is
denoted as Cmax(ρ) = log(1 + CR(ρ)) where CR(ρ) =
minσ∈D(Hd){s ≥ 0|ρ+sσ

1+s
:= τ ∈ I} is the robustness

of coherence [22, 63]. The logarithm is taken under the
base of two throughout the paper. The maximal value of
Cmax(·) for a d-dimensional state is achieved by Ψd with
Cmax(Ψd) = log d [64], corresponding with log d coherent
bits (co-bits) [65]. Then, we introduce the post-disrimination
coherence as the maximum average co-bits that can be pre-
served after a perfect discrimination procedure.

Definition 1 (Post-discrimination coherence) For a mutu-
ally orthogonal d-dimensional state ensemble Ω =
{(pj , ρj)}k−1

j=0 , the post-discrimination coherence under max-
imally incoherent operations is defined as CMIO(Ω) :=
log(1 + η) where

η = max
{ k−1∑

j=0

pjCR(σj) : M(ρj) = |j⟩⟨j| ⊗ σj ,

σj ∈ D(Hd), ∀j, M ∈ MIO
}
.

It is worth noting that, by Proposition 1, there is always
a feasible maximally incoherent operation M for CMIO(Ω).
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The constraint M(ρj) = |j⟩⟨j| ⊗ σj corresponds to the crite-
rion for perfect discrimination of a mutually orthogonal state
ensemble, wherein {σj}k−1

j=0 act as memory states that restore
coherence. This quantity evaluates the average resource re-
tained in the quantum states after a discrimination process
by maximally incoherent operations. Notably, it can be effi-
ciently computed by semidefinite programming (SDP), which
is a powerful tool in quantum information theory [66, 67].

To characterize the distinguishability, we recall that the
distinguishability emerges from a pure state ensemble Ω =
{(pj , |ψj⟩)}k−1

j=0 can be characterized by the von-Neumann en-
tropy defined on it [32], i.e., S(Ω) := S(ω̂) where S(·) is the
von-Neumann entropy of a state and ω̂ =

∑
j pj |ψj⟩⟨ψj | de-

notes the average state of Ω. We are now ready to present
our main result of the relationship between these two quanti-
ties S(Ω) and CMIO(Ω), for a mutually orthogonal pure-state
ensemble Ω.

Theorem 2 (Coherence-distinguishability duality) For
a mutually orthogonal d-dimensional pure-state ensemble
Ω = {(1/k, |ψj⟩)}k−1

j=0 ,

CMIO(Ω) + S(Ω) ≤ log d. (3)

Notice that from the state ensemble Ω, one can distill S(Ω)
bits of classical information by perfectly discriminating any
given unknown state within the ensemble. For such a fixed
state ensemble Ω, the maximum number of co-bits that can be
left after perfect discrimination has an upper bound directly
related to the von-Neunman entropy of Ω. Moreover, this the-
orem reveals an intriguing and crucial fact that the more clas-
sical bits (‘c-bits’) you want to decode, the fewer ‘co-bits’ can
be preserved after extracting all classical information. The
proof of Theorem 2 is deferred to the appendix.

We note that Theorem 2 is not entirely a prior unexpected,
as a discrimination procedure appears to introduce decoher-
ence. However, remarkably, this quantitative relationship
gives a novel wave-particle duality relation as the follow-
ing. Since we are dealing with a d-dimensional Hilbert space,
we can further normalize the post-discrimination coherence
CMIO(Ω) and the von-Neunman entropy S(Ω) of an ensem-
ble at the same time by Ṽ 2 = CMIO(Ω)/ log d and D̃2 =
S(Ω)/ log d. Thus, we uncover a wave-particle duality-like
relation as follows.

Ṽ 2 + D̃2 ≤ 1, (4)

which is akin to the form of Eq. (1). This relation is an inher-
ent duality property of a state ensemble containing mutually
orthogonal pure states prepared with equal probability.

More generally, we can extend this duality relation into the
state ensemble with non-uniform distribution. If we character-
ize the distinguishability with the min-entropy of Smin(Ω) :=
−Hmax(ω̂||I) = Smin(ω̂), where ω̂ denotes the average state
of Ω and Smin(ω̂) = − log pmax is the min-entropy of ω̂ [68],
then for a mutually orthogonal d-dimensional pure-state en-
semble Ω = {(pj , |ψj⟩)}k−1

j=0 ,

CMIO(Ω) + Smin(Ω) ≤ log d. (5)

The relative proof remains in the appendix. This duality rela-
tion reveals that the sum of ‘co-bits’ maximally preserved and
‘c-bits’ at least gained is also bounded, although this bound is
not generally tight.

Boundary cases of duality.— To deepen our understand-
ing of the coherence-distinguishability duality relation, we ex-
plore two specific instances illuminating its fundamental as-
pects. Firstly, analogous to how squeezed coherent states in
quantum optics reach the Heisenberg uncertainty limit [69],
we identify a particular state ensemble that makes the equal-
ity in Eq. (3) hold. LetH denote the d-dimensional Hadamard
gate, given by H = 1√

d

∑d−1
i,j=0 ω

kj |k⟩⟨j| where ω = ei2π/d,
and X denote the d-dimensional generalized Pauli X gate,
given by X =

∑d−1
i=0 |i+ 1⟩⟨i|. Then we have the following.

Proposition 3 Let |ϕj⟩ = HXj |0⟩ where H,X are the d-
dimensional Hadamard gate and generalized Pauli X gate.
For Ω = {(1/k, |ϕj⟩)}k−1

j=0 , k ≤ d,

CMIO(Ω) + S(Ω) = log d. (6)

Proposition 3 shows that an ensemble of k mutually or-
thogonal maximally coherent states exactly achieves the up-
per bound in Eq. (3), which identifies the tightness of this
trade-off relation. The proof is provided in the appendix.
This finding underscores a novel role for maximally coher-
ent states beyond their established status as golden resources
within the quantum resource theory of coherence. It is also
interesting to seek other non-trivial ensemble cases saturating
the coherence-distinguishability duality relation. A necessary
condition for those ensembles to achieve the upper bound can
be found in the appendix.

Furthermore, as another boundary case of Theorem 2, we
note that when the cardinality of the set Ω is equal to the
dimension d, CMIO(Ω) vanishes, indicating that no coher-
ence could be preserved after perfect discrimination. Equiv-
alently, this states that if a quantum channel N ∈ MIO ex-
ists such that N (|ψj⟩⟨ψj |) = |j⟩⟨j| ⊗ σj , σj ∈ Hd for each
j = 0, 1, ..., d − 1, then each σj must be an incoherent state.
It illustrates an extreme case in which it is inherently unfea-
sible to completely extract all c-bits encoded in a complete
orthonormal basis of the Hilbert space through MIO while
concurrently maintaining any co-bit. This scenario reveals
a mutual exclusion between coherence and distinguishability
within the ensemble of mutually orthogonal pure states, analo-
gous to the situation described byD = 1 and V = 0 in Eq. (1).
Another extreme situation arises when the ensemble Ω con-
tains only one state ρ, where no distinguishability can be ob-
tained and the coherence of ρ remains completely preserved,
as CMIO(Ω) = Cmax(ρ). These observations hint again at an
underlying wave-particle duality relationship within these en-
sembles.

Concluding remarks.— In this work, we explore the ma-
nipulation of quantum coherence within quantum state dis-
crimination by proposing a general QSD paradigm via quan-
tum operations. Leveraging this new paradigm of QSD,
we treat coherence and distinguishability as two comple-
mentary resources and then uncover a significant coherence-
distinguishability duality relation. This relation emerges from
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a mutually orthogonal pure-state ensemble where free opera-
tions cannot simultaneously accomplish the extraction of all
c-bits and the preservation of the co-bits.

Note that the seminal work [17] also established a dual-
ity between coherence and path distinguishability via unam-
biguous state discrimination, focusing on extending the wave-
particle duality to multipath interference. In their setting, the
particle states and path detector states are entangled within
the interferometer forming a total system state. Coherence is
quantified with tracing out the detector states, while distin-
guishability arises from an ensemble of detector states that al-
low unambiguous discrimination. Orthogonal detector states
signify complete distinguishability and the absence of coher-
ence. Our work, however, derives a duality relation from or-
thogonal state ensembles, presenting a fresh perspective on
resource manipulation that contrasts with the interference sce-
narios addressed in prior research.

We anticipate that our paradigm for QSD may be applied
to advance the understanding of the interplay between clas-
sical distinguishability and other quantum resources, such as

entanglement, magic, thermodynamics [70, 71] and imaginar-
ity [72]. There is a possibility of exploring other duality rela-
tions between every two potential complementary resources.
Furthermore, it is interesting to study if there is any uncer-
tainty relation formulation of our coherence-distinguishability
duality relation, considering that wave-particle duality rela-
tion is a special case of uncertainty relation.
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Supplemental Material for:
Quantum Coherence and Distinguishability:

A Resource-Theoretic Perspective on Wave-Particle Duality

In this Supplemental Material, we offer detailed proofs of the theorems and propositions in the manuscript “Quantum Co-
herence and Distinguishability: A Resource-Theoretic Perspective on Wave-Particle Duality”. In Appendix I, we demonstrate
two paradigms of quantum state discrimination via free operations and free POVMs respectively. In Appendix II, we cover
the basics of the quantum resource theory of coherence. In Appendix III, we first present the detailed proofs for Proposition 1
and Proposition S2, which characterize the capability difference of different classes of incoherent free operations in state dis-
crimination tasks, respectively. In Appendix IV, we provide detailed proofs of Theorem 2 and Proposition 3, which reveal
the coherence-distinguishability duality relation and demonstrate its tightness with a special case. Additionally, we present a
necessary condition for the duality relation to achieve equality.

I. QUANTUM STATE DISCRIMINATION VIA FREE OPERATIONS

Given a quantum state ensemble Ω = {(pj , ρj)}k−1
j=0 where

∑
j pj = 1, ρj ∈ D(HA), dA = d and k ≤ d, and a free states set

F with corresponding free operations set O, we introduce the quantum state discrimination via channel

1. Receive an unknown state ρj with prior probability pj .

2. Apply a quantum operation NA→A′B to ρj yielding τ (j)A′B = NA→A′B(ρj) where A′ ∼= A and dimHB = k.

3. Measure τ (i)A′B on subsystem B in basis {|i⟩}k−1
i=0 . If the outcome is i, decide the received state is ρi.

POVM

Psuc(Ω) = max
{Ej}

k−1∑
j=0

pj Tr(ρjEj)

s.t.
k−1∑
j=0

Ej = I, Ej ≥ 0, ∀j,

Quantum channel

P̃suc(Ω) =max
k−1∑
j=0

pj Tr[NA→BA′(ρj)(|j⟩⟨j|B ⊗ IA′)]

s.t. NA→BA′ ∈ CPTP.

We call NA→BA′ the discrimination channel, where subsystem A′ is introduced to further investigate the resource left after
discrimination process. When NA→BA′ is chosen from a set of free operation O of some quantum resource theory, we call this
task quantum state discrimination via free operations. And we denote the optimal average success probability via free operations
with P̃suc,O(Ω). In the following, we discard the subsystem A′ and consider NA→B ∈ O without affecting the attainment of
P̃suc,O(Ω).

Besides, we denote a set of restricted resourceless POVMs with MF , when E = {Ej}j ∈ MF for some resource theory, we
call the task quantum state discrimination via free POVMs and denote the optimal average success probability via free POVMs
with Psuc,MF (Ω).

II. QUANTUM RESOURCE THEORY OF COHERENCE

We briefly introduce the quantum resource theory (QRT) of coherence [73, 74]. Throughout this Letter, we denote Hilbert
space with d-dimension as Hd. Let L(Hd) be the space of linear operators mapping Hd to itself and D(Hd) be the set of density
operators acting on Hd. We define dephasing operations ∆ as follows:

∆(ρ) =
d−1∑
i=0

|i⟩⟨i|ρ|i⟩⟨i| (S1)

The set of free states in QRT of coherence is defined as I := {ρ ≥ 0|∆(ρ) = ρ}.
In the following, we introduce several free operations in QRT of coherence. The maximally incoherent operations (MIO) is

the largest class of incoherent operations, which map I onto itself. The incoherent operations (IO) [26] admit a set of Kraus
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operators {Kn}n such that:

KnρK
†
n

Tr[KnρK
†
n]

∈ I,
∑
n

K†
nKn = I, ∀n, ρ ∈ I (S2)

Dephasing-covariant incoherent operations (DIO) [43, 44] are those quantum operations E which commute with the dephasing
operations ∆ for any quantum state ρ such that: [∆, E ] = 0. The strictly incoherent operations (SIO) [21] fulfill ⟨i|KnρK

†
n|i⟩ =

⟨i|Kn∆[ρ]K†
n|i⟩ ∀n, i. There are hierarchies among these free operations: SIO ⊊ IO ⊊ MIO, SIO ⊊ DIO ⊊ MIO [43]. In a

d-dimensional Hilbert space Hd, a maximally coherent state is:

|Ψd⟩ =
1√
d

d−1∑
i=0

|i⟩. (S3)

We denote |Ψd⟩⟨Ψd| with Ψd in the following.
A good coherence measure is expected to satisfy the following three conditions under MIO:

• C(ρ) = 0 ∀ρ ∈ I;

• C(ρ) ≥ C(T (ρ)) for all incoherent CPTP maps T ;

• Convexity:
∑

j pjC(ρj) ≥ C(
∑

j pjρj), which is not necessary.

Definition S1 (Robustness of coherence [22, 75]) The robustness of coherence of a quantum state ρ ∈ D(Hd) is defined as:

CR(ρ) = min
τ∈D(Hd)

{
s ≥ 0

∣∣∣∣ ρ+ sτ

1 + s
:= δ ∈ I

}
, (S4)

which can be transformed into a simple semidefinite program (SDP) [22]:

CR(ρ) = max Tr(Wρ) (S5)
s.t. ∆(W ) ≤ 0, (S6)

W ≥ −I, (S7)

where the Hermitian operator M = −W fulfills M ≥ 0 if and only if Tr(ρM) = Tr(ρ∆(M)) for all incoherent states ρ ∈ I.
Such an observable M serves as a coherence witness, where Tr(ρM) ≤ 0 indicates coherence in the state ρ. Robustness of
coherence is multiplicative under the tensor product of states:

1 + CR(ρ1 ⊗ ρ2) = (1 + CR(ρ1))(1 + CR(ρ2)) (S8)

Another main advantage of the robustness of coherence is that it can be estimated in the laboratory as an expected value of
observable M with respect to ρ. An operational interpretation of the robustness of coherence is that: it quantifies the advantage
enabled by a quantum state in a phase discrimination task.

Another equivalent primal standard form of the above SDP [75] is:

1 + CR(ρ) = min
{
λ | ρ ≤ λσ, σ ∈ I

}
(S9)

and the dual form is given by

1 + CR(ρ) = max
{
Tr(ρS) |S ≥ 0, Sii = 1, ∀i

}
(S10)

Definition S2 (Maximum relative entropy of coherence) [62] The maximum relative entropy of coherence of a state ρ is defined
as:

Cmax(ρ) = min
σ∈I

Dmax(ρ||σ), (S11)

where I is the set of incoherent states in D(Hd) and Dmax(ρ||σ) denotes the maximum relative entropy of ρ with respect to σ
and Dmax(ρ||σ) := min{λ | ρ ≤ 2λσ}.

It is obvious thatDmax(ρ||σ) is the upper bound of the maximum relative entropy of coherence. Note that 2Cmax(ρ) = 1+CR(ρ).
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III. COHERENCE MANIPULATION WITHIN QSD

Lemma S1 For a d-dimensional state ensemble Ω = {(pj , ρj)}k−1
j=0 and a resource theory of states (F ,O), there exist quantum-

classical channels N qc ∈ O achieving the optimal discrimination probability via free operations P̃suc,O(Ω).

Proof We consider QSD via free operations in some quantum resource theory with N ∈ O. Suppose N is the optimal channel
achieving P̃suc,O(Ω). It follows

P̃suc,O(Ω) =
k−1∑
j=0

pj Tr(N (ρj)|j⟩⟨j|) (S12a)

=
k−1∑
j=0

pj Tr
(
N (ρj)∆(|j⟩⟨j|)

)
(S12b)

=

k−1∑
j=0

pj Tr(∆ ◦ N (ρj)|j⟩⟨j|), (S12c)

where we use the fact that the adjoint map of a fully dephasing channel ∆(·) is itself. Note that N ∈ O is a free operation
in some resource theory, it holds that N (ρ) ∈ F , ∀ρ ∈ F , where F denotes the set of free states. Obviously, we have
∆ ◦ N (ρ) ∈ F , ∀ρ ∈ F . Thus, it holds ∆ ◦ N ∈ O. Then we conclude that ∆ ◦ N is also an optimal free channel achieving
P̃suc,O(Ω). Then we show that ∆ ◦ N is a quantum-classical channel. We express JN =

∑
i,i′ |i⟩⟨i′| ⊗ N (|i⟩⟨i′|) and deduce

that

J∆◦N =
∑
i,i′

|i⟩⟨i′| ⊗∆ ◦ N (|i⟩⟨i′|) (S13a)

=
∑
i,i′,q

pi,i′,q|i⟩⟨i′| ⊗ |q⟩⟨q|) (S13b)

=
∑
q

Qq ⊗ |q⟩⟨q| (S13c)

Then we express the Choi operator of ∆ ◦ N as J∆◦N =
∑

q Qq ⊗ |q⟩⟨q|, where Qq =
∑

i,i′ pi,i′,q|i⟩⟨i′|,
∑

q Qq = I and
Qq ≥ 0 due to ∆ ◦ N is a CPTP map. We can choose Qq = MT

q and conclude {Mq}k−1
q=0 is a POVM. Thus, ∆ ◦ N is a

quantum-classical channel N qc. Such conclusion also holds when N ∈ CPTP without considering any resource theory, and
indicates that P̃suc(Ω) ≤ Psuc(Ω). ■

Proposition 1 For a d-dimensional state ensemble Ω = {(pj , ρj)}k−1
j=0 , the optimal discrimination probability Psuc(Ω) can be

achieved by quantum state discrimination via incoherent operations.

Proof We prove this proposition by demonstrating that Psuc(Ω) = P̃suc,IO(Ω). First, we will show Psuc(Ω) ≤ P̃suc,IO(Ω).
Suppose the optimal POVM for Psuc(Ω) is {Ej}k−1

j=0 . We can obtain a quantum-classical channel

MA→B(ρA) =
k−1∑
j=0

Tr(ρAEj)|j⟩⟨j|. (S14)

In the following, we show that quantum-classical channel MA→B is an IO. Suppose the spectral decomposition of Eq is

Eq =

rq∑
i=1

λqi |ψ
q
i ⟩⟨ψ

q
i |, (S15)

where rq is the rank of Eq . Then we can express the Kraus operators of the quantum-classical channel as Kq
i =

√
λqi |q⟩⟨ψ

q
i |.

We can check that for any |j⟩:

Kq
i |j⟩⟨j|(K

q
i )

† = λqi |q⟩⟨ψ
q
i |j⟩⟨j|ψ

q
i ⟩⟨q| = λqi |⟨j|ψ

q
i ⟩|

2|q⟩⟨q|. (S16)
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Kq
i |j⟩⟨j|(K

q
i )

† ∈ I . Thus, we can conclude that MA→A′ ∈ IO. Then we have

P̃suc,IO(Ω) ≥
k−1∑
j=0

pj Tr(M(ρj)|j⟩⟨j|) =
k−1∑
j=0

pj Tr(ρjEj) = Psuc(Ω). (S17)

Second, we are going to prove Psuc(Ω) ≥ P̃suc,IO(Ω). Recall that P̃suc,IO(Ω) can always be achieved by a quantum-classical
channel N ′ according to the Lemma S1. Note that we have shown that the quantum-classical channel is an IO. Suppose
that JN ′ =

∑
qM

T
q ⊗ |q⟩⟨q| and we can conclude that P̃suc,IO(Ω) is equivalently achieved by a POVM {Mq}k−1

0 . Thus,

Psuc(Ω) ≥ P̃suc,IO(Ω).
In conclusion, we have Psuc(Ω) = P̃suc,IO(Ω), which means optimal discrimination probability via free operations can be

achieved with IO. The result also holds for MIO because IO ⊊ MIO. ■

Definition S3 (Incoherent measurement [54]) A d-dimentional POVM {Em}k−1
m=0 is called an incoherent measurement if

∆(Em) = Em for all m.

Incoherent measurements can be regarded as POVMs analog of incoherent states, which are diagonal in the fixed basis and can
be expressed as Em =

∑d−1
i=0 p(m|i)|i⟩⟨i|. We denote the set of incoherent measurements as MI .

Proposition S2 For a d-dimensional state ensemble Ω = {(pj , ρj)}k−1
j=0 , we have

Psuc,MI (Ω) = P̃suc,SIO(Ω). (S18)

Proof First, we show that Psuc,MI (Ω) ≥ P̃suc,DIO(Ω). Recall that the discrimination channel N ∈ DIO reaching P̃suc,DIO(Ω)

can be a quantum-classical channel. We denote the quantum-classical channel N by N (·) =
∑k−1

j=0 Tr(Ej ·)|j⟩⟨j|, where
{Ej}k−1

j=0 is the corresponding POVM. Note that N ∈ DIO and ∀ρ, we have

N (ρ) = ∆ ◦ N (ρ) = N ◦∆(ρ) =

k−1∑
j=0

Tr(Ej∆(ρ))|j⟩⟨j| =
k−1∑
j=0

Tr(∆(Ej)ρ)|j⟩⟨j|. (S19)

Obviously, {∆(Ej)}k−1
j=0 is an incoherent measurement with

∑k−1
j=0 ∆(Ej) = I and ∆(Ej) ≥ 0. Thus, we can directly let

Ej =
∑

i pi,j |i⟩⟨i| and {Ej}k−1
j=0 ∈ MI . Thus, we conclude that Psuc,MI (Ω) ≥ P̃suc,DIO(Ω).

Conversely, if we distinguish Ω via incoherent measurements, and the optimal discrimination probability under such con-
straints is achieved by an incoherent measurement {Ej}d−1

j=0 , where Ej =
∑

i pi,j |i⟩⟨i|. We can construct a channel Ñ ∈ DIO
with its Choi operator being JÑ ==

∑
j Ej ⊗ |j⟩⟨j| =

∑
i,j pi,j |i⟩⟨i| ⊗ |j⟩⟨j|, which means Psuc,MI (Ω) ≤ P̃suc,DIO(Ω). We

can further reduce the DIO into SIO. We have shown that the Choi operator of the quantum-classical channel of incoherent mea-
surements can be expressed as JÑ =

∑
i,j pi,j |i⟩⟨i| ⊗ |j⟩⟨j| with Ej =

∑
j pi,j |i⟩⟨i|. Then we can express the Kraus operators

of JÑ as Kj
i =

√
pi,j |j⟩⟨i|. We can check that

Kj
i |q⟩⟨q

′|(Kj
i )

† = pi,j |j⟩⟨i|q⟩⟨q′|i⟩⟨j| = pi,jδi,qδi,q′ |j⟩⟨j| (S20a)

If q = q′, we obtain that Kj
i |q⟩⟨q|(K

j
i )

† = pi,jδi,q|j⟩⟨j|; and if q ̸= q′, we obtain that Kj
i |q⟩⟨q′|(K

j
i )

† = 0. Thus Ñ discussed
above belongs to SIO. Thus, we have Psuc,MI (Ω) = P̃suc,SIO(Ω). It also holds for Psuc,MI (Ω) = P̃suc,DIO(Ω). ■
Remark 1 Until now, we have demonstrated the significant difference between MIO and DIO in QSD tasks. Using the paradigm
of QSD via free operations, we can implement the global optimal POVMs equivalently through MIO (IO), but only achieve the
incoherent measurements equivalently through DIO (SIO). Thus, we can argue that MIO (IO) provides a maximal advantage over
DIO (SIO) in the QSD task, as discussed in Ref. [54, 56]. This advantage is fully identified by the quantifier called robustness
for incoherent measurements RMI as follows:

RMI (M) = max
Ω0

psuc(Ω0,M)

maxN∈MI psuc(Ω0,N)
− 1, (S21)

where psuc(Ω0,E) =
∑

j pj Tr(Ejρj) with E = {Ej}k−1
j=0 , M is a global POVM, N is an incoherent measurement, and

Ω0 = {pj , ρj}k−1
j=0 denotes a quantum state ensemble. Note that RMI (M) ≥ 0 and when M ⊈ MI , ∃ Ω0 let RMI (M) > 0.

We can conclude that QSD via free operation in the QRT of coherence can identify a strict hierarchy between MIO and DIO on
the optimal discrimination probability.
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IV. COHERENCE-DISTINGUISHABILITY DUALITY RELATION

Lemma S3 For a mutually orthogonal d-dimensional state ensemble Ω = {(pj , ρj)}k−1
j=0 , if the post-discrimination coherence

under maximally incoherent operations CMIO(Ω) is achieved by some MIO N , then CMIO(Ω) = Cmax(N (ω̂)) with ω̂ =∑k−1
j=0 pjρj .

Proof According to the definition, the MIO N achieving CMIO(Ω) satisfies N (ρj) = |j⟩⟨j| ⊗ σj , ∀ρj ∈ Ω. Then we have

CMIO(Ω) = log[1 + η] (S22a)

= log[1 +
k−1∑
j=0

pjCR(σj)] (S22b)

= log[1 +
k−1∑
j=0

pjCR(|j⟩⟨j| ⊗ σj)] (S22c)

= log

1 + CR

( k−1∑
j=0

pj |j⟩⟨j| ⊗ σj

) (S22d)

= log

1 + CR

( k−1∑
j=0

pjN (ρj)
) (S22e)

= log[1 + CR(N (ω̂)], (S22f)

where ω̂ =
∑k−1

j=0 pjρj . We drive Eq. (S22c) from Eq. (S22b) because robustness of coherence is multiplicative under the
tensor product of states. And Eq. (S22d) is driven from Eq. (S22c) because the robustness of coherence is convex linear on
classical-quantum states [76]. ■

Theorem S4 For a mutually orthogonal d-dimensional pure-state ensemble Ω = {(pi, |ψi⟩)}k−1
i=0 ,

CMIO(Ω) + Smin(Ω) ≤ log d, (S23)

Proof Denote by E = {|ψi⟩}d−1
i=0 an orthogonal basis of HA with dA = k, and N (|ψi⟩⟨ψi|) = |i⟩⟨i|⊗σi, where |i⟩⟨i| ∈ D(HB),

dB = k and i = 0, · · · , k − 1. For these states |ψj⟩, j = k, · · · , d− 1, i.e., |ψj⟩ ∈ E but |ψj⟩ /∈ Ω, we directly assume:

N (|ψj⟩⟨ψj |) =

(
k−1∑
n=0

qjn|n⟩⟨n|

)
⊗ ρj , j = k, · · · d− 1, (S24)

where
∑k−1

n=0 q
j
n = 1, ρj ∈ D(HA′) and dA′ = d, and we use the conclusion that (∆ ⊗ I) ◦ N is also the optimal channel

achieving CMIO(Ω). Then we have,

N
(
I

d

)
= N

(
1

d

d−1∑
i=0

|ψi⟩⟨ψi|

)

=
1

d

k−1∑
i=0

N (|ψi⟩⟨ψi|) +
d−1∑
j=k

N (|ψj⟩⟨ψj |)


=

1

d

k−1∑
i=0

|i⟩⟨i| ⊗ σi +
d−1∑
j=k

(
k−1∑
n=0

qjn|n⟩⟨n|

)
⊗ ρj


=

1

d

k−1∑
i=0

|i⟩⟨i| ⊗

σi + d−1∑
j=k

qji ρj



(S25)

Notice that N is a MIO which yields N
(
I
d

)
is incoherent. Thus, we have σi+

∑d−1
j=k q

j
i ρj is an incoherent state (unnormalized)

for i = 0, · · · , k − 1. We can conclude that CR(σi) ≤
∑d−1

j=k q
j
i . Therefore,

η =
k−1∑
i=0

piCR(σi) ≤ max
k−1∑
i=0

pi

d−1∑
j=k

qji . (S26)
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If each |ψi⟩ in Ω is given with probability pi, we have
∑k−1

i=0

∑d−1
j=k piq

j
i ≤

∑d−1
j=k

∑k−1
i=0 pmaxq

j
i ≤ (d − k)pmax, where pmax =

max{p0, p1, ..., pk−1}). Thus, we have CMIO(Ω) = log(1 + η) ≤ log[(d− k)pmax + 1] ≤ log d+ log(pmax) and conclude

CMIO(Ω) + Smin(Ω) ≤ log d, (S27)

where Smin(Ω) is defined as the min-entropy of the average state of Ω with ω̂ =
∑

i pi|ψi⟩⟨ψi| and Smin(Ω) = Smin(ω̂) =
− log(pmax).

■

Theorem 2 For a mutually orthogonal d-dimensional pure-state ensemble Ω = {(1/k, |ψi⟩)}k−1
i=0 ,

CMIO(Ω) + S(Ω) ≤ log d, (S28)

Proof Note that for the Ω = {(1/k, |ψi⟩)}k−1
i=0 , S(Ω) = Smin(Ω) = log k, we arrive the conclusion immediately, combined

with the Theorem S4. ■
This bound can be achieved in the following example.

Proposition 3 Let |ϕi⟩ = HXi|0⟩ where H,X are the d-dimensional Hadamard gate and generalized Pauli X gate. For
Ω = {(1/k, |ϕi⟩)}k−1

i=0 , k ≤ d,

CMIO(Ω) + S(Ω) = log d. (S29)

Proof We construct an MIO channel N to show the equality sign can be achieved in Eq. (S26) for this ensemble containing
k mutually orthogonal maximally coherent states. Here, d-dimensional Hadamard gate H and d-dimensional Pauli X gate are
defined as H = 1√

d

∑d−1
i,j=0 ω

kj |k⟩⟨j| and X =
∑d−1

i=0 |i + 1⟩⟨i| respectively, where {|i⟩}d−1
i=0 denotes computational basis and

ω = ei2π/d. We denote |ϕi⟩⟨ϕi| with Ψi in the following, and construct the MIO channel N as follows:

N (ρ) =

k−1∑
i=0

Tr(Ψiρ)|i⟩⟨i| ⊗ Dp(Z
†iρZi) +

d−1∑
j=k

Tr(Ψjρ)Π⊗ [(Z†jρZj) ◦ U ], ∀ρ, (S30)

where Π = 1/k
∑k−1

i=0 |i⟩⟨i|, Z denotes d-dimensional PauliZ operator withZ =
∑d−1

j=0 ω
j |j⟩⟨j|, U = I+ 1

d−1

∑
i<j(e

iπ|i⟩⟨j|+
e−iπ|j⟩⟨i|) and τ ◦U is the Hadamard product with (τ ◦ U)ij = −τij/(d−1), for i ̸= j and a given state τ . Note that τ → τ ◦U
is also an MIO. And Dp(ρ) = (1− p)ρ+ p I

d denotes the p-depolarizing channel, with p = 1− d−k
k(d−1) . First, we can check N

is a MIO with N (|m⟩⟨m|) = ∆[N (|m⟩⟨m|)] with m = 0, · · · , k − 1. Then we can check that:

N (Ψi) = |i⟩⟨i| ⊗ σ, i = 0, · · · , k − 1, (S31)

where σ = I/d +
∑

m ̸=n
d−k

k(d−1)d |m⟩⟨n|. Thus, CMIO(Ω) ≥
∑k−1

i=0 CR(σ)/k = (d − k)/k. Combined with the upper bound
provided by the Theorem 2, we can conclude that CMIO(Ω) = (d− k)/k and CMIO(Ω) = log(d/k) = log d− S(Ω). ■

Proposition S5 For a mutually orthogonal d-dimensional pure-state ensemble Ω = {(1/k, |ψi⟩)}k−1
i=0 with k < d, the necessary

condition for Ω to saturate the coherence-distinguishability duality relation is

Cmax(ω̂) + S(ω̂) ≥ log d, (S32)

where ω̂ =
∑k−1

i=0 1/k|ψi⟩⟨ψi|.

Proof Saturating the coherence-distinguishability duality relation with a given Ω means CMIO(Ω)+S(Ω) = log d. Note that we
restrict k < d and avoid the trivial case of extracting all log d c-bits from Ω, namely S(Ω) = log d. Suppose the MIO achieving
CMIO(Ω) is N , combined with Lemma S3, if Cmax(ω̂) + S(ω̂) < log d, we have

CMIO(Ω) + S(Ω) = Cmax(N (ω̂)) + S(Ω) (S33)
= Cmax(N (ω̂)) + S(ω̂) (S34)
≤ Cmax(ω̂) + S(ω̂) (S35)
< log d. (S36)

Then it is impossible for Ω to saturate the coherence-distinguishability duality relation. Thus, we conclude that Cmax(ω̂) +
S(ω̂) ≥ log d is the necessary condition. ■
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Nonlocality-driven certification without locality requirements
Ivan Supic1 ∗

1 Sorbonne University

Abstract. In recent years, quantum technologies have experienced rapid growth and maturation. As
quantum devices become capable of specific tasks, ensuring their proper functioning is crucial, necessitating
reliable certification techniques. Certification became one of the most important topics in the field as it
addresses concerns related to noise and decoherence, ensuring that devices align effectively with blueprints.
In this talk I will discuss possible answers to the question: How can certification methods, which rely on
the robustness of quantum correlations, be applied to quantum computing platforms? Self-testing as the
most important primitive for device-independent certification is constructed within the framework of the
Bell scenario, which entails two or more spatially separated parties. While this setup is advantageous for
demonstrating foundational proofs of quantumness, its application to computing platforms poses challenges
due to the inherent integrality of such platforms, making them incompatible with Bell-type scenarios. I will
describe two approaches to dealing with this problem. In the first one I give some answers stemming from
using quantum homomorphic encryption to bypass the locality requirement. In the second one I describe
plethora of self-testing results that can be proven in the case when some amount of communication is
allowed among the parties.
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Self-testing: Capabilities and Limitations
Laura Mančinska1 ∗

1 QMATH, University of Copenhagen

Abstract. In this talk, I will introduce the concept of self-testing, which aims to address the fundamental
question of how can we certify the proper functioning of black-box quantum devices. Self-testing represents
the strongest form of quantum functionality certification, enabling a classical user to infer the quantum
state and measurements used to produce the observed measurement statistics.

I will survey key self-testing results and discuss outstanding questions in the field. As an example, we
will examine a recent protocol that allows for self-testing of arbitrary real projective measurements in the
simplest two-party Bell scenario.

Regarding limitations, I will highlight common assumptions in existing self-testing results, pointing out
their potential weaknesses, especially in the context of cryptographic applications. To address these limita-
tions, I will present a general theorem that promotes most existing self-testing results to their assumption-
free variants. However, we will also see that in some scenarios assumptions cannot be lifted. To illustrate
this point, I will present a simple quantum correlation that qualifies as a self-test only under certain as-
sumptions.

∗mancinska@math.ku.dk
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Quantum communication on the bosonic loss-dephasing channel
Francesco Anna Mele1 ⇤ Farzin Salek2 † Vittorio Giovannetti1 ‡ Ludovico Lami4 §

1
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Cavalieri 7, IT-56126 Pisa, Italy
2
Department of Mathematics, Technical University of Munich, Boltzmannstrasse 3, 85748 Garching, Germany

3
QuSoft, Science Park 123, 1098 XG Amsterdam, the Netherlands

Abstract. Quantum optical platforms, essential for quantum communication and computation, are typ-
ically a↵ected by photon loss and dephasing noise. Our paper addresses the crucial problem of determining
for which regime of loss and dephasing the noise can be corrected. Our results, refuting a known conjec-
ture, show that quantum error correction and reliable quantum communication are impossible in a large
region of parameter space of loss and dephasing. On the positive side, however, we prove that if the sender
and the receiver are assisted by two-way classical communication, then reliable quantum communication
becomes possible even for arbitrarily high levels of loss and dephasing.

Keywords: Continuous-variable systems, Bosonic loss-dephasing channel, Quantum Shannon Theory

1 Introduction

Quantum optical platforms play a crucial role in
both quantum communication and quantum computa-
tion. However, one of the most serious problems plagu-
ing these platforms is the presence of noise due to photon

loss and bosonic dephasing [1, 2, 3], which have been
both extensively analysed separately [4, 5, 6, 7]. Loss
dissipates energy, whereas dephasing works to transform
coherent superpositions into probabilistic mixtures. Al-
though loss and dephasing sources can simultaneously
a↵ect bosonic systems [8, 9, 10, 11, 12], the existing liter-
ature provides only partial results about their combined
e↵ect [12], modelled by the so-called loss-dephasing chan-
nel. Understanding the combined e↵ect of loss and de-
phasing is challenging due to the conflicting behaviours
they exhibit: loss takes a simple form when written in
the coherent state basis but is complicated to analyse in
the Fock basis [13], whereas dephasing demonstrates the
opposite pattern, making the analysis of their combined
e↵ect quite intricate.

Consider an optical link or a quantum memory af-
fected by both loss and dephasing. Can the overall noise
be corrected? In other words, does the corresponding
channel have non-zero quantum capacity? Answering
this question is crucial for determining the specific con-
ditions under which quantum communication and quan-
tum computation can be successfully achieved in opti-
cal platforms. This question is intimately related to the
anti-degradability condition in Quantum Shannon The-
ory: if a noise channel is anti-degradable [14, 15], there
are no quantum communication protocols or quantum
error-correcting codes capable of overcoming it. Conse-
quently, it is crucial to understand whether the combined
e↵ect of loss and dephasing results in an anti-degradable
channel. This has been a puzzling problem, to the point
that in [12] it was conjectured that the combined loss-

⇤francesco.mele@sns.it
†farzin.salek@gmail.com
‡vittorio.giovannetti@sns.it
§ludovico.lami@gmail.com

dephasing noise results in an anti-degradable channel if
and only if the loss is above 50%.

In our paper [16] we refute the above conjecture; specif-
ically, for any value of the photon loss, we explicitly find
a critical value of the dephasing above which the result-
ing loss-dephasing channel is anti-degradable. Our result
identifies a large region of the loss-dephasing parameter
space where correcting the noise and achieving quantum
communication is impossible. On the more positive side,
however, we also prove that if the sender and the re-
ceiver are assisted by two-way classical communication,
then quantum communication — and thus quantum key
distribution — is always possible, even in scenarios char-
acterised by arbitrarily high levels of loss and dephasing.

On the technical level, we devise a new method
to analyse anti-degradability of bosonic channels,
and we use it to derive the first analytical results charac-
terising the transmission and storage of quantum infor-
mation in the presence of both loss and dephasing noise.
We believe that this constitutes a significant technical as
well as conceptual innovation because all other known
tools to analyse quantum capacities (e.g. degradabil-
ity [15], PPT-ness [17], teleportation simulability [18, 19],
entanglement breaking-ness [15]) fail completely for
this channel [12, 16]. We are thus confident that our anal-
ysis, which is a first of its kind, will be of wide interest
to the community interested in quantum communication
at large, beyond the specific niche of those interested in
bosonic systems.

2 Preliminaries

The quantum capacity Q(N ) of a channel N quanti-
fies the e�ciency in transmitting qubits reliably across
N [14, 15]. The condition Q(N ) = 0 implies that there
exist neither reliable quantum communication protocols
across N nor codes capable of correcting the errors in-
duced by N . By definition, N is anti-degradable if there
exists a channel A — called the anti-degrading map —
such that A � N c = N , where N c is a complementary
channel of N [14]. Importantly, if N is anti-degradable
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then Q(N ) = 0 [14].
The phenomenon of photon loss can be modelled by

the well-known pure-loss channel E� of transmissivity � 2
[0, 1] [13, 20]. When � = 1 the pure-loss channel is noise-
less, while when � = 0 it is completely noisy. It is known
that E� is anti-degradable for � 2 [0, 1

2 ] [21, 22, 23, 24].
The phenomenon of bosonic dephasing can be described
by the bosonic dephasing channel D� [12, 7, 25], which
maps the state ⇢ =

P1
m,n=0 ⇢mn|mihn|, written in the

Fock basis, to D�(⇢) :=
P1

m,n=0 ⇢mn e
� �

2 (m�n)2 |mihn|,
resulting in a reduction in magnitude of the o↵-diagonal
elements. When � = 0, the bosonic dephasing channel is
noiseless. In contrast, when � ! 1, it completely annihi-
lates all o↵-diagonal components of the input density ma-
trix, reducing it to an incoherent probabilistic mixture of
Fock states. Moreover, D� is never anti-degradable [25].
Consider an optical system undergoing simultaneous

loss and dephasing over a time interval. At each instant,
the system is susceptible to both an infinitesimal pure-
loss channel and an infinitesimal bosonic dephasing chan-
nel. Hence, the overall channel, which describes the si-
multaneous e↵ect of loss and dephasing, results in a suit-
able composition of numerous concatenations between
infinitesimal pure-loss and bosonic dephasing channels.
However, given that (i) the pure-loss channel and the
bosonic dephasing channel commute, E� �D� = D� � E�;
(ii) the composition of pure-loss channels is a pure-loss
channel, E�1 � E�2 = E�1�2 ; and (iii) the composition of
bosonic dephasing channels is a bosonic dephasing chan-
nel, D�1 � D�2 = D�1+�2 ; it follows that the combined
e↵ect of loss and dephasing can be modelled by the com-
position N�,� := E� � D� , which we will refer to as the
bosonic loss-dephasing channel.

3 Results

Prior to this work, the only result on the anti-
degradability of the bosonic loss-dephasing channel N�,�

was that it is anti-degradable if the transmissivity � is
below 1

2 [12]. (This result trivially follows from the anti-
degradability of E� for �  1

2 ). Notably, in the regime
� >

1
2 , it was an open question to understand whether

N�,� is anti-degradable for some values of the dephasing
�, and in [12] the answer was conjectured to be negative.
However, in the forthcoming Theorem 1, we show that
the latter conjecture is incorrect.

Theorem 1 The bosonic loss-dephasing channel N�,�

is anti-degradable if the transmissivity � and the de-

phasing � fall within one of the following regions:

(i) � 2 [0, 1
2 ] and � � 0; (ii) � 2 ( 12 , 1) and

� such that ✓

⇣
e
��/2

,

q
�

1��

⌘
 3

2 , where ✓(x, y) :=
P1

n=0 x
n2

y
n
. A weaker but simpler condition that im-

plies anti-degradability is �  max
⇣

1
2 ,

1
1+9e��

⌘
.

Proof. [Proof sketch] A single-mode channel N is anti-
degradable if and only if its generalised Choi state
is two-extendible [26, 27], i.e. there exists a tripartite
state ⇢AB1B2 such that the reduced states on AB1 and

AB2 both coincide with the generalised Choi state:
TrB2 [⇢AB1B2 ] = TrB1 [⇢AB1B2 ] = CAB(N ) := IdA ⌦
NA0!B

�
 AA0

�
, with  AA0 being a two-mode squeezed

vacuum state [13]. The crux of our proof is to find a
two-extension of CAB(N�,�) in the region identified by
condition (ii). We do this in two steps.

First, after scrutinising CAB(N�,�) in the Fock basis,
we construct a tripartite state ⌧AB1B2 such that the re-
duced states on AB1 and AB2 have the same diagonal
as CAB(N�,�), and the same pattern of vanishing o↵-
diagonal entries. We construct ⌧AB1B2 by applying sev-
eral channels — namely, beam splitter unitaries, squeez-
ing unitary, partial trace, and a three mode controlled-
add-add isometry — to a 4-mode vacuum state.

The second step consists in transforming ⌧AB1B2 into a
two-extension of CAB(N�,�) by tweaking its o↵-diagonal
entries. This is done by using the toolbox of Hadamard

maps [15], whose employment here constitutes one of
our main technical innovations. For any matrix
A := (amn)m,n2N, the associated Hadamard map H

(A)

is defined by H
(A)(|mihn|) = amn|mihn| for all m,n [15].

In practice, H
(A) acts on the input density matrix by

multiplying each (m,n) entry by the corresponding coef-
ficient amn. Importantly, H(A) is a quantum channel if
and only if A is Hermitian, positive semi-definite, and has
all 1’s on the main diagonal [15]. The crucial observation
is that it is always possible to find an infinite matrix A�,� ,
which is Hermitian and has all 1’s on the main diagonal,

such that the operator IdA ⌦H
(A�,�)
B1

⌦H
(A�,�)
B2

(⌧AB1B2)
coincides with CAB(N�,�) when tracing out either B1 or
B2.

This however does not mean that we have found a two-
extension of CAB , because the above operator is not nec-
essarily a state — it may fail to be positive semi-definite.
It is a state, however, whenever H

(A�,�) is a quantum
channel, i.e. when the infinite matrix A�,� is positive
semi-definite, in formula A�,� � 0. Therefore, a su�-
cient condition on the anti-degradability of N�,� is that
A�,� � 0. The rest of the proof consists in showing that
under condition (ii) one indeed finds A�,� � 0. This is
not straightforward to check, because A�,� is an infinite

matrix, and it cannot be diagonalised analytically nor
numerically. To by-pass this last hurdle we had the idea
to employ the theory of diagonally dominant matri-
ces, and in particular the statement that if a matrix A

is such that |ann| �
P

m:mNeqn |amn| � 0 for all n, then
necessarily A � 0 [28, Chapter 6]. ⇤

Theorem 1 identifies a region of the parameter space
(�, �), illustrated in Fig. 1, where the channel is anti-
degradable, thereby implying the absence of viable error
correcting codes for quantum data transfer and storage.
In Fig. 1, we plot other relevant regions, e.g. a region
where N�,� is not anti-degradable, and another region
where the quantum capacity of N�,� is strictly positive.

As we have just seen, (unassisted) quantum communi-
cation is not possible when the combined e↵ects of loss
and dephasing are too strong. However, as we show in
the technical manuscript, if Alice (the sender) and Bob
(the receiver) have access to a two-way classical com-

142



munication line, then quantum communication, entan-
glement distribution, and quantum-key distribution [29]
become again achievable for any value of loss and de-
phasing, even when Alice’s input signals are constrained
to have limited energy. In particular, this implies that
the bosonic loss-dephasing channel is never entanglement
breaking [14, 15].

Let us conclude with a quite shocking observation.
Theorem 1 implies that even if � >

1
2 one can pick � large

enough so that there exists an anti-degrading map achiev-
ing the transformation N c

�,�(|nihn|F ) �! N�,�(|nihn|F ),
which can be expressed as

E1��(|nihn|F )⌦ |p�nihp�n|C �! E�(|nihn|F ) , (1)

where |niF denotes the nth Fock state and |p�niC de-
notes a coherent state [13] (see the technical manuscript
for an explicit construction of such anti-degrading map).
This entails the following remarkable fact: for � > 1/2
and large enough � there exists an n-independent strat-
egy to convert the lossy Fock state E1��(|nihn|F ) into
the less lossy Fock state E�(|nihn|F ) using the coherent
state |p�niC as a resource. In other words, one can undo
part of the loss on |niF if one has a coherent state that
contains some information on n, su�ciently amplified so
that that information is accessible enough. The nontriv-
ial and somewhat surprising nature of this exact conver-
sion strategy arises from the fact that the coherent states
{|p�niC}n2N are not orthogonal, meaning that the strat-
egy that consists in measuring the coherent state, guess-
ing n, and re-preparing E�(|nihn|F ) cannot succeed with
probability 1.

4 Discussion

In our paper, we have provided the first analytical in-
vestigation of the quantum communication capabilities
of the bosonic loss-dephasing channel, a much more re-
alistic model of noise than dephasing and loss treated
separately. Refuting a conjecture put forth in [12], we
showed that the bosonic loss-dephasing channel is anti-
degradable in a large region of the loss-dephasing param-
eter space, entailing that neither quantum communica-
tion nor quantum error correcting codes are possible in
this region. On the positive side, we also showed that
if two-way classical communication is suitably exploited,
then quantum communication is always achievable, even
in scenarios characterised by high levels of loss and de-
phasing, and even in the presence of stringent energy
constraints.

Figure 1: The vertical axis represents the transmissivity
�, while the horizontal axis corresponds to e�� , where � is
the dephasing parameter. 1) In the red region, identified
in Theorem 1, the bosonic loss-dephasing channel N�,�

is anti-degradable, and hence there are neither quantum
error correction codes nor quantum communication pro-
tocols. 2) The crossed red region is a numerical estimate
of the region where the infinite matrix A�,� is positive
semi-definite, implying the anti-degradability of N�,� , as
explained in Theorem 1. This estimate is derived by ex-
amining the positive semi-definiteness of the d ⇥ d top-
left corner of A�,� for large d (increasing d already be-
yond d � 20 yields no discernible change in the plot).
3) In the crossed green region, the quantum capacity of
N�,� is strictly positive, allowing for quantum communi-
cation and quantum error correction. We show this by
optimising the coherent information [15, 14] over input
states of the form ⇢p := p|0ih0| + (1 � p)|1ih1|. 4) In
the green region, N�,� is not anti-degradable. This is
derived by observing that the action of N�,� can only
subtract and never add any photons. Specifically, if the
input state to N�,� is supported on the span of the first
d Fock states, so is the output state. This restriction de-

fines a qudit-to-qudit channel N (d)
�,� , analysing which can

yield some insights into N�,� itself. First, if N (d)
�,� is not

anti-degradable then the same is true of N�,� ; secondly,

the anti-degradability of N (d)
�,� is equivalent to the two-

extendibility of the corresponding Choi state [26], and
for moderate values of d this latter condition can be ef-
ficiently checked numerically via semi-definite program-

ming [30, 15]. The restriction N (6)
�,� is anti-degradable if

and only if � and � fall within the green region, explaining
why N�,� is not anti-degradable here. 5) Interestingly,

the qubit restriction N (2)
�,� , equivalent to the composition

between the amplitude damping channel and the qubit
dephasing channel [15], yields the analytical result: If

� >
1

1+e�� , then N�,� is not anti-degradable.
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Quantum optical systems are typically affected by two types of noise: photon loss and dephasing.
Despite extensive research on each noise process individually, a comprehensive understanding of
their combined effect is still lacking. A crucial problem lies in determining the values of loss and
dephasing for which the resulting loss-dephasing channel is anti-degradable, implying the absence of
codes capable of correcting its effect or, alternatively, capable of enabling quantum communication.
A conjecture in [Quantum 6, 821 (2022)] suggested that the bosonic loss-dephasing channel is not
anti-degradable if the loss is below 50%. In this paper we refute this conjecture, specifically proving
that for any value of the loss, if the dephasing is above a critical value, then the bosonic loss-dephasing
channel is anti-degradable. While our result identifies a large parameter region where quantum
communication is not possible, we also prove that if two-way classical communication is available,
then quantum communication — and thus quantum key distribution — is always achievable, even for
high values of loss and dephasing.

Quantum optical platforms are key elements of quan-
tum technologies, contributing significantly to both
quantum communication and quantum computation [1–
9]. Since the potential benefits of quantum technologies
are hindered by the presence of decoherence [10], the
investigation of decoherence sources affecting bosonic
systems and the development of bosonic quantum error-
correcting codes have been extensively analysed in recent
years [11–22]. The primary noise processes in bosonic
systems that act as dominant sources of decoherence
are photon loss and bosonic dephasing [23–25], which have
been both extensively analysed [13, 26–28]. Loss affects
the system by causing it to dissipate some of its en-
ergy, whereas dephasing works to transform coherent
superpositions into probabilistic mixtures. Although
loss and dephasing sources can simultaneously affect
bosonic systems [15, 29], such as in superconducting sys-
tems [30, 31], the existing literature provides only partial
results about their combined effect [32]. On a technical
level, understanding the combined effect of loss and de-
phasing is challenging due to the conflicting behaviours
they exhibit: the action of loss takes a simple form when
written in the coherent state basis but is complicated to
analyse in the Fock basis [2], whereas dephasing demon-
strates the opposite pattern, making the analysis of their
combined effect quite intricate.

Consider an optical link (e.g. an optical fibre or a free-
space link) or a quantum memory affected by both loss
and dephasing, where the link is used for quantum com-
munication and the memory for quantum computation.
A crucial challenge is to determine the conditions un-
der which there exist protocols capable of enabling reli-

able quantum communication across the optical link or
capable of mitigating the combined noise affecting the
quantum memory. This problem is closely related to the
anti-degradability condition in quantum Shannon the-
ory: if a noise channel is anti-degradable [33, 34], there are
no quantum communication protocols for reliable infor-
mation transmission or quantum error-correcting codes
capable of overcoming it. Consequently, it is crucial
to understand whether the combined effect of loss and
dephasing results in an anti-degradable channel. This
has been a puzzling problem, to the point that in [32] it
was conjectured that the combined loss-dephasing noise
does not result in an anti-degradable channel if the loss
is below 50%.

In this paper we refute the above conjecture; specif-
ically, we prove that for any value of the photon loss
there exists a critical value of the dephasing above which
the resulting loss-dephasing channel is anti-degradable.
Our discovery thus identifies a large region of the loss-
dephasing parameter space where correcting the noise
and achieving reliable quantum communication is im-
possible. On the more positive side, however, we also
prove that if the sender and the receiver are assisted by
two-way classical communication, then reliable quan-
tum communication — and thus quantum key distribu-
tion — is always possible, even in scenarios characterised
by arbitrarily high levels of loss and dephasing. Ours are
the first analytical results to characterise the transmission
of quantum information in the presence of both loss and
dephasing noise.

Preliminaries.— The quantum capacity&(N )of a quan-
tum channel N quantifies the efficiency in transmitting
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qubits reliably acrossN [33, 34]. The condition&(N ) = 0
implies that there exist neither reliable quantum com-
munication protocols across N nor codes capable of cor-
recting the errors induced by N . Accordingly, if N is
anti-degradable its quantum capacity vanishes [33]. This
underscores the significance of determining whether a
channel is anti-degradable, as the noise associated with
such a channel cannot be corrected. By definition, a
channel N is anti-degradable if there exists a channel A
— called the anti-degrading map — such that A�N c = N ,
where N c denotes a complementary channel of N [33].
Conversely, a channel N is degradable if there exists a
channel D such that D � N = N c. Degradable chan-
nels are theoretically important because their quantum
capacity can be calculated as the single-letter coherent
information of the channel [33–35].

The phenomenon of photon loss is mathematically
modelled by the pure-loss channel E⌫ [2, 4], a single-mode
continuous-variable channel that acts on the input state
⌧ by mixing it with an environmental vacuum state in a
beam splitter of transmissivity ⌫ 2 [0, 1]:

E⌫(⌧) ..= Tr⇢
⇥
*⌫ (⌧( ⌦ |0ih0|

⇢
)*†

⌫

⇤
, (1)

where *⌫
..= exp

h
arccos

⇣p
⌫
⌘
(0̂† 4̂ � 0̂ 4̂

†)
i

is the beam
splitter unitary, 0̂ and 4̂ are the annihilation operators of
the input system ( and of the environment ⇢, and Tr⇢
is the partial trace w.r.t. ⇢. When a single photon is fed
into E⌫, it is transmitted to the output with probability ⌫,
while it is lost to the environment with probability 1�⌫.
More generally, if = photons are fed into the channel,
the output is given by the binomial probability mixture
E⌫(|=ih= |) =

Õ
=

✓=0
�
=

;

�(1�⌫)✓⌫=�✓ |= � ✓ih= � ✓ |, where |=i
denotes the Fock state with = photons [2]. When ⌫ = 1
the pure-loss channel is noiseless, while when ⌫ = 0 it is
completely noisy — it maps any state into the vacuum.
It is known that the pure-loss channel is anti-degradable
for ⌫ 2 [0, 1

2 ] and degradable for ⌫ 2 [ 1
2 ,1] [36–39].

The phenomenon of bosonic dephasing is mathemati-
cally described by the bosonic dephasing channelD✏ [28, 32,
40], which maps the state ⌧ =

Õ1
< ,==0 ⌧<= |<ih= |, written

in the Fock basis, to

D✏(⌧) ..=
1’

< ,==0
⌧<=4

� ✏
2 (<�=)2 |<ih= | , (2)

resulting in a reduction in magnitude of the off-diagonal
elements. When ✏ = 0, the bosonic dephasing channel is
noiseless. In contrast, when ✏ ! 1, it completely anni-
hilates all off-diagonal components of the input density
matrix, reducing it to an incoherent probabilistic mixture
of Fock states. Moreover, the bosonic dephasing channel
is never anti-degradable and it is always degradable [40].

Consider an optical system undergoing simultaneous
loss and dephasing over a finite time interval. At each

instant, the system is susceptible to both an infinitesi-
mal pure-loss channel and an infinitesimal bosonic de-
phasing channel. Hence, the overall channel, which de-
scribes the simultaneous effect of loss and dephasing,
results in a suitable composition of numerous concate-
nations between infinitesimal pure-loss and bosonic de-
phasing channels. However, given that (i) the pure-loss
channel and the bosonic dephasing channel commute,
E⌫ �D✏ = D✏ �E⌫; (ii) the composition of pure-loss chan-
nels is a pure-loss channel, E⌫1 � E⌫2 = E⌫1⌫2 ; and (iii) the
composition of bosonic dephasing channels is a bosonic
dephasing channel,D✏1�D✏2 = D✏1+✏2 ; it follows that the
combined effect of loss and dephasing can be modelled
by the composition

N⌫,✏
..= E⌫ �D✏ , (3)

which we will refer to as the bosonic loss-dephasing chan-
nel [41].

Anti-degradability.— Prior to this work, the only
result on the anti-degradability of the bosonic loss-
dephasing channel was that it is anti-degradable if the
transmissivity is below 1

2 [32]. (This result trivially fol-
lows from the anti-degradability of the pure-loss channel
for transmissivities below 1

2 , and the fact that the compo-
sition of an anti-degradable channel with another chan-
nel inherits the property of being anti-degradable [41]).
Notably, in the regime ⌫ > 1

2 , it was an open question to
understand whether or not the bosonic loss-dephasing
channel N⌫,✏ is anti-degradable for some values of the
dephasing ✏, and in [32] the answer was conjectured to
be negative. However, in the forthcoming Theorem 1, we
show that the latter conjecture is incorrect, specifically,
we prove that for all ⌫ 2 [0, 1), if ✏ is sufficiently large,
then N⌫,✏ becomes anti-degradable [41, Theorem 27].

Theorem 1. The bosonic loss-dephasing channel N⌫,✏ is
anti-degradable if the transmissivity ⌫ and the dephasing ✏
fall within one of the following regions: (i) ⌫ 2 [0, 1

2 ] and

✏ � 0; (ii) ⌫ 2 ( 1
2 , 1) and ✏ such that 

✓
4
�✏/2

,

q
⌫

1�⌫

◆
 3

2 ,

where (G , H) ..=
Õ1

==0 G
=

2
H
= . A weaker but simpler suf-

ficient condition that implies anti-degradability is given by
⌫  max

� 1
2 ,

1
1+94�✏

�
.

Proof sketch. Any finite dimensional channel N is anti-
degradable if and only if its Choi state is two-
extendible [42], meaning that there exists a tripartite state
⌧�⌫1⌫2 such that the reduced states on �⌫1 and �⌫2 both
coincide with the Choi state:

Tr⌫2 [⌧�⌫1⌫2] = ⇠�⌫1(N ) ,
Tr⌫1 [⌧�⌫1⌫2] = ⇠�⌫2(N ) , (4)

where the Choi state is defined as ⇠�⌫(N ) ..=
id� ⌦N�

0!⌫(���
0), with ���

0 being the maximally en-
tangled state. Such a characterisation extends to infi-
nite dimension by considering the generalised Choi state
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⇠
(A)
�⌫

(N ) ..= id� ⌦N�
0!⌫

�
 (A)

��
0
�

[43], obtained by replac-
ing ���

0 by the two-mode squeezed vacuum state (A)
��

0
with squeezing parameter A > 0 [2]. The crux of our
proof is to find a two-extension of ⇠(A)

�⌫
(N⌫,✏) in the re-

gion identified by condition (ii). We do this in two steps.
First, after scrutinising the matrix⇠

(A)
�⌫

(N⌫,✏)written in
the Fock basis, we construct a tripartite state ��⌫1⌫2 such
that the reduced states on �⌫1 and �⌫2 have the same di-
agonal as ⇠

(A)
�⌫

(N⌫,✏), and the same pattern of vanishing
off-diagonal entries. The construction of this tripartite
state involves applying several channels — namely, beam
splitter unitaries, squeezing unitary, partial trace, and a
three mode controlled-add-add isometry — to a 4-mode
vacuum state.

The second step consists in transforming ��⌫1⌫2 into a
two-extension of ⇠(A)

�⌫
(N⌫,✏) by tweaking its off-diagonal

entries. This is done by using the toolbox of Hadamard
maps [34]. For any matrix �

..= (0<=)< ,=2N, the associated
Hadamard map �

(�) is defined by

�
(�)(|<ih= |) = 0<= |<ih= | (5)

for all < , = [34]. In practice, �(�) acts on the input den-
sity matrix by multiplying each (< , =) entry by the cor-
responding coefficient 0<= . Importantly, �(�) is a quan-
tum channel if and only if � is Hermitian, positive semi-
definite, and has all 1’s on the main diagonal [34]. The
crucial observation is that it is always possible to find an
infinite matrix �⌫,✏ (possibly not positive semi-definite),
which is real, symmetric, and has all 1’s on the main diag-
onal, such that the operator id� ⌦�(�⌫,✏)

⌫1
⌦�

(�⌫,✏)
⌫2

(��⌫1⌫2)
coincides with ⇠

(A)
�⌫

(N⌫,✏) when tracing out either ⌫1 or
⌫2.

This however does not mean that we have found a two-
extension of ⇠(A)

�⌫
, because the above operator is not nec-

essarily a state — it may fail to be positive semi-definite.
It is a state, however, whenever �

(�⌫,✏) is a quantum
channel, i.e. when the infinite matrix �⌫,✏ is positive
semi-definite, in formula �⌫,✏ � 0. Therefore, a suffi-
cient condition on the anti-degradability of N⌫,✏ is that
�⌫,✏ � 0.

The rest of the proof consists in showing that un-
der condition (ii) one indeed finds �⌫,✏ � 0. This is
not straightforward to check, because �⌫,✏ is an infi-
nite matrix, and it cannot be diagonalised analytically
nor numerically. To by-pass this last hurdle we em-
ploy the theory of diagonally dominant matrices, and
in particular the statement that if a matrix � is such
that 0== � Õ

<:<<= |0<= | � 0 for all =, then necessarily
� � 0 [44, Chapter 6]. We demonstrate that if ⌫ and ✏
satisfy condition (ii), then �⌫,✏ satisfies this condition,
which establishes that �⌫,✏ � 0 and hence concludes the
proof [41].

Theorem 1 identifies a region of the parameter space

(⌫, ✏), with ⌫ identifying the transmissivity and ✏ the
dephasing, where the channel is anti-degradable and
thus its quantum capacity vanishes, thereby implying
the absence of viable error correcting codes for quan-
tum data transfer and storage. This region is illustrated
in Fig. 1. Interestingly, Theorem 1 implies that even
if ⌫ > 1

2 one can pick ✏ large enough so that there ex-
ists an anti-degrading map achieving the transformation
N c

⌫,✏(|=ih= |�) �! N⌫,✏(|=ih= |�), which can be expressed
as [41, Subsection I G]

E1�⌫(|=ih= |�) ⌦
��p✏=

↵⌦p
✏=

��
⇠
�! E⌫(|=ih= |�) , (6)

where |=i
�

denotes the =th Fock state and
��p✏=

↵
⇠

de-
notes a coherent state [2] (see [41, Theorem 29] for an ex-
plicit construction of such anti-degrading map). This en-
tails the following remarkable fact: for ⌫ > 1/2 and large
enough ✏ there exists an =-independent strategy to con-
vert the lossy Fock state E1�⌫(|=ih= |�) into the less lossy
Fock state E⌫(|=ih= |�) using the coherent state

��p✏=
↵
⇠

as a resource. In other words, one can undo part of the
loss on |=i

�
if one has a coherent state that contains some

information on =, sufficiently amplified so that that infor-
mation is accessible enough. The nontrivial and some-
what surprising nature of this exact conversion strategy
arises from the fact that the coherent states {

��p✏=
↵
⇠
}=2N

are not orthogonal, meaning that the strategy that con-
sists in measuring the coherent state, guessing =, and
re-preparing E⌫(|=ih= |�) cannot succeed with probabil-
ity 1.

Theorem 1 does not identify the entire anti-
degradability region of N⌫,✏, but only a subset of it.
One way to improve this approximation is to determine
numerically the region where the infinite matrix �⌫,✏
introduced in the proof sketch of Theorem 1 is positive
semi-definite. In Fig. 1 we depict a numerical estimate
of this region (see the crossed red part of the plot).

So far we have been concerned with inner approxima-
tions of the anti-degradability region. To obtain outer
approximations, instead, one can start by observing that
the action of N⌫,✏ can only subtract and never add any
photons. Mathematically, if the input state to N⌫,✏ is
supported on the span of the first 3 Fock states, so is
the output state [41]. This restriction defines a qu3it-to-
qu3it channel N (3)

⌫,✏, analysing which can yield some in-

sights into N⌫,✏ itself. First, if N (3)
⌫,✏ is not anti-degradable

then the same is true of N⌫,✏ [41]; secondly, as discussed
above the anti-degradability of N (3)

⌫,✏ is equivalent to the
two-extendibility of the corresponding Choi state [42],
and for moderate values of 3 this latter condition can
be efficiently checked numerically via semi-definite pro-
gramming [34, 41, 45]. In this way, we can numerically
determine a parameter region (see green region of Fig. 1)
whereN⌫,✏ is not anti-degradable. Interestingly, already
the qubit restriction N (2)

⌫,✏, which coincides with the com-
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position between the amplitude damping channel and
the qubit dephasing channel [34], yields the necessary
condition ⌫  1

1+4�✏ on the anti-degradability of N⌫,✏,
as shown in the forthcoming Theorem 2. Based on the
analysis of the qudit restrictions [41], we conjecture that,
if ✏ is sufficiently large, the latter condition ⌫  1

1+4�✏ is
not only necessary but also sufficient.

Theorem 2. If ⌫ > 1
1+4�✏ then N⌫,✏ is not anti-degradable.

Proof sketch. A qubit channel N is anti-degradable if and
only if

1
4 Tr

⇥
N (12)2

⇤
� Tr

⇥
⇠(N )2

⇤
� 4

p
det[⇠(N )], (7)

where ⇠(N ) is the Choi state [42, 46, 47]. When focusing
on the qubit restriction N (2)

⌫,✏, Eq. (7) is equivalent to the
condition ⌫  1

1+4�✏ .

We are interested in the anti-degradability of the loss-
dephasing channel because it implies that the quan-
tum capacity vanishes, entailing the impossibility of
quantum communication. We now look at the com-
plementary question: when is the quantum capacity
&(N⌫,✏) strictly positive? A simple sufficient condi-
tion can be obtained by optimising the coherent infor-
mation [33, 34] of N⌫,✏ over input states of the form
⌧?

..= ? |0ih0| + (1 � ?) |1ih1|. By doing so we identify a
region of the (⌫, ✏) parameter space where &(N⌫,✏) > 0
(see the crossed green region in Fig. 1). In this region
quantum communication and quantum error correction
become feasible.

Two-way quantum communication.— As we have just
seen, (unassisted) quantum communication is not pos-
sible when the combined effects of loss and dephasing
are too strong. However, in the forthcoming Theorem 3
we show that if Alice (the sender) and Bob (the receiver)
have access to a two-way classical communication line,
then quantum communication, entanglement distribu-
tion, and quantum-key distribution [48] become again
achievable for any value of loss and dephasing, even
when Alice’s input signals are constrained to have lim-
ited energy.

In this two-way communication setting the rele-
vant notion of capacity is the two-way quantum capacity
&2(N ) [33, 34], defined as the maximum achievable rate
of qubits that can be reliably transmitted across N with
the aid of two-way classical communication. Since in
practice Alice has only a limited amount of energy to pro-
duce her input signals, one usually defines the so-called
energy-constrained two-way quantum capacity [49, 50],
denoted as &2(N ,#B). Here, #B denotes the mean pho-
ton number constraint at the input of the channel. Now,
we are ready to state the main result of this section [41,
Section III].

FIG. 1. Summary of results on the anti-degradability of the
bosonic loss-dephasing channel N⌫,✏ . The vertical axis rep-
resents the transmissivity ⌫, while the horizontal axis corre-
sponds to 4

�✏ , where ✏ is the dephasing parameter. In the
green region N⌫,✏ is not anti-degradable, while in the red re-
gion it is anti-degradable. In the crossed green region, the
quantum capacity of N⌫,✏ is strictly positive. The crossed red
region is a numerical estimate of the region where the infi-
nite matrix �⌫,✏ is positive semi-definite, a condition implying
that N⌫,✏ is anti-degradable, as explained in the proof sketch
of Theorem 1. Such an estimate can be obtained by examining
the positive semi-definiteness of the 3⇥3 top-left corner of�⌫,✏
for large values of 3 (here we employ 3 = 30, but increasing 3

already beyond 3 � 20 yields no discernible change in the plot).
The restriction N (6)

⌫,✏ is anti-degradable if and only if ⌫ and ✏

fall within the green region, and this is the reason why N⌫,✏
is not anti-degradable in the green region. Below the curve



✓
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,

q
⌫

1�⌫

◆
= 3

2 , the channel N⌫,✏ is anti-degradable, as

stated in Theorem 1. Above the curve ⌫ = 1
1+4�✏ , the channel

is not anti-degradable, as guaranteed by Theorem 2.

Theorem 3. For all #B > 0, ⌫ 2 (0, 1], and ✏ �
0, the energy-constrained two-way quantum capacity of
the bosonic loss-dephasing channel is strictly positive,
i.e. &2(N⌫,✏ ,#B) > 0. In particular, N⌫,✏ is not entan-
glement breaking. An explicit lower bound is

&2(N⌫,✏ ,#B) �
⌫#

:


log2

✓
# + : � 1

#

◆
� (

�
⌧# ,: ,✏

� �
(8)

for any # , : 2 N+ satisfying #

:
 #B . Here, ((·) is the

von Neumann entropy, ⌧# ,: ,✏ is a
�
#+:�1

#

�
-dimensional state

defined by

⌧# ,: ,✏
..=

✓
# + : � 1

#

◆�1 ’
? ,@2⇧(# ,:)

4
� ✏

2 k?�@k2
2 |?ih@ | ,

(9)
where⇧(# , :) ..=

�
? 2 N: :

Õ
:

8=1 ?8 = #

 
represents the set

of partitions of a set of # elements into : parts, and the vectors
{|?i}?2⇧(# ,:) are orthonormal.

Proof sketch. The proof exploits entanglement transmis-
sion protected by a particular error correction technique,
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rail encoding. In a :-mode bosonic system, consider the
subspace +# ,: corresponding to a total photon num-
ber # . We can use this subspace, whose dimension is
3# ,:

..= dim+# ,: =
�
#+:�1

#

�
, as an error correction code

that protects against the detrimental action of N⌫,✏. To
this end, we prepare a maximally entangled state of di-
mension 3# ,: and send one share of it through : copies of
the channel N⌫,✏, one per mode. Since under the action
of N⌫,✏ photons can only be lost and never added, and
each photon has a probability ⌫ of being transmitted,
the probability that an #-photon state will retain all of
its photons at the output of the channel is exactly ⌫# . If
this happens to be the case, which — crucially — can be
certified by a total photon number measurement at the
output, then the input state has been subjected to no loss
and only dephasing. The entanglement of the resulting,
maximally correlated state can be distilled via an explicit
protocol known as the hashing protocol [34, 51], result-
ing in log2 3# ,:�((⌧# ,: ,✏) > 0 singlet (a.k.a. ebit, i.e. unit
of entanglement) yield. The strict positivity of this yield
follows by observing that ⌧# ,: ,✏ is a 3# ,:-dimensional
mixed state that is not maximally mixed [41].

Degradability.— The bosonic loss-dephasing channel
N⌫,✏ is never degradable, except in the simple cases
when either ⌫ = 1 or ✏ = 0 and ⌫ � 1/2 [32]. This in turn
implies that no single-letter formula for its quantum ca-
pacity is known outside of the anti-degradability region
studied here, where the capacity vanishes. The failure
of degradability has been demonstrated in [32] through
a lengthy proof; we are now in position to provide an
alternative, much simpler argument. The key ideas are
as follows: (i) If the qubit restriction N (2)

⌫,✏ is not degrad-
able, then N⌫,✏ is not degradable either [41]; and (ii) if
the rank of the Choi state of a qubit channel is greater
or equal to 3 than such channel is not degradable [52,
Theorem 4]. The result then follows by observing that
the rank of the Choi state of the qubit channel N (2)

⌫,✏ is
exactly 3 (for a detailed proof see [41, Theorem 34]).

Conclusion.— In this paper we have provided the
first analytical investigation of the quantum communica-
tion capabilities of the bosonic loss-dephasing channel,
a much more realistic model of noise than dephasing
and loss treated separately. Refuting a conjecture put
forth in [32], we showed that the bosonic loss-dephasing
channel is anti-degradable in a large region of the loss-
dephasing parameter space, entailing that neither quan-
tum communication nor quantum error correcting codes
are possible in this region. On the positive side, we also
showed that if two-way classical communication is suit-
ably exploited, then quantum communication is always
achievable, even in scenarios characterised by high lev-
els of loss and dephasing, and even in the presence of
stringent energy constraints.

Two fundamental technical innovations are key to
our approach. First, a new method to analyse anti-
degradability of bosonic channels, based on a two-stage
construction of a symmetric extension of the Choi state.
The introduction of this technique is crucial here also on
the conceptual level, as all other known tools to anal-
yse quantum capacities (e.g. degradability [34], PPT-
ness [53], or teleportation simulability [54, 55]) fail com-
pletely for the loss-dephasing channel [32]. We envision
that our technique could also be applied to other cases,
e.g. to analyse the anti-degradability of the composition
between the pure-loss channel and a general bosonic de-
phasing channel [41, Section V]. The second innovation
we introduce is based on the use of rail encoding to in-
vestigate two-way assisted entanglement generation on
the loss-dephasing channel. This technique, which we
anticipate may be used to study general processes where
photon loss is involved, has the additional benefit of
yielding an explicit entanglement generation protocol.

Although the capacities of the dephasing channel
and the pure-loss channel (separately) have been deter-
mined [28, 38, 39, 54, 56–59], the capacities of the channel
resulting from their combined action remain unknown.
An intriguing open problem is to calculate or approxi-
mate these capacities.
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I. PRELIMINARIES AND NOTATION

A. Quantum states and Channels

In this subsection, we present a summary of the notation and fundamental properties used in the paper, drawing
from the conventions established in standard quantum information theory textbooks [1–4]. Every quantum system
is associated with a separable complex Hilbert space H whose dimension is denoted by |H|. We use subscripts to
denote the system associated to a Hilbert space and also systems on which the operators act. The composite quantum
systems � and ⌫ exist within the tensor product of their individual Hilbert spaces H� ⌦ H⌫ which is also denoted
by H�⌫.

We shall use 1 to denote the identity operator on H. The operator norm of a linear operator ⇥ : H ! H is defined
as

k⇥k1 ..= sup
|#i2H: h# |#i=1

q
h# |⇥†⇥ |#i . (S1)

An alternative (but equivalent) definition of the operator norm is as follows:

k⇥k1 ..= sup
|Ei,|Fi2H, hE |Ei=hF |Fi=1

|hE |⇥ |Fi | . (S2)
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An operator is called bounded if its operator norm is bounded, i.e. k⇥k1 < 1. A bounded operator ⇥ is positive
semi-definite if h# |⇥ |#i � 0,8 |#i 2 H , while it is positive definite if h# |⇥ |#i > 0, 8 |#i 2 H . The trace norm
of a linear operator ⇥ : H ! H is defined as k⇥k1 ..= Tr

p
⇥†⇥. The set of trace class operators, denoted as T (H),

is the set of all the linear operators on H such that their trace norm is finite, i.e. k⇥k1 < 1. The operator and trace
norm satisfy k⇥k1  k⇥k1. The set of quantum states (density operators), denoted as P(H), is the set of positive
semi-definite trace class operators on H with unit trace. The fidelity between two quantum states ⌧, � 2 P(H) is
defined as �(⌧, �) ..= Tr

⇥pp
⌧�

p
⌧
⇤
.

A superoperator is a linear map between spaces of linear operators. The identity superoperator will be denoted as
id. Quantum channels are completely-positive trace-preserving (cptp) superoperators. In this paper, we will use two
different representations of a quantum channel that are known as Stinespring and Choi–Jamiołkowski representation.
A quantum channel N�

0!⌫ can be represented in Stinespring representation as

N�
0!⌫(·) = Tr⇢

⇥
*�

0
⇢!⌫⇢(· ⌦ |0ih0|

⇢
)*†

�
0
⇢!⌫⇢

⇤
.

Here, ⇢ is an environment system, |0i
⇢

is a pure state of the environment, and *�
0
⇢!⌫⇢ is an isometry that takes as

input the systems �0 and ⇢ and outputs the systems ⌫, ⇢. The associated complementary channel N c
�
0!⌫

is given by

N
c
�
0!⇢

(·) = Tr⌫
⇥
*�

0
⇢!⌫⇢(· ⌦ |0ih0|

⇢
)*†

�
0
⇢!⌫⇢

⇤
.

A channel N is called degradable if there exist a quantum channel J , such that when is used after N , we get back
to the complementary channel N c, i.e. J �N = N

c. On the other hand, a channel is called anti-degradable if there
is another quantum channel A, such that using it after the complementary channel, gives back the original channel,
i.e. A � N

c = N . The channels J and A are usually called the degrading map and the anti-degrading map of N ,
respectively.

The Choi–Jamiołkowski representation of the channel N�
0!⌫ is the operator ⇠(N ) 2 T (H� ⌦ H⌫) that is defined

as
⇠(N ) ..= id� ⌦N�

0!⌫(|�ih�|��0) , (S3)

where |�i = 1p
|H� |

Õ|H� |�1
8=0 |8i

�
⌦ |8i

�
0 is a maximally entangled state of schmidt rank |H� |, the set of states

{|8i}8=0,...,|H� |�1 forms a basis for H�, and H� = H�
0 . It is a well-established fact that the superoperator N is a

quantum channel if and only if ⇠(N ) � 0 and Tr⌫ ⇠(N ) = 1�/|H� | [2].
Definition 1. A bipartite state ⌧�⌫ is symmetric two-extendible on ⌫ if there exists a tripartite state ��⌫1⌫2 such that

• �⌫1⌫2��⌫1⌫2�
†
⌫1⌫2

= ��⌫1⌫2

• Tr⌫1 ��⌫1⌫2 = ⌧�⌫,

where ⌫1 and ⌫2 are two copies of the system ⌫, the operator �⌫1⌫2
.
.=

Õ
8 , 9

|8ih9 |
⌫1

⌦ | 9ih8 |
⌫2

denotes the swap unitary, and

{|8i
⌫1}8 and {|8i

⌫2}8 form an orthonormal basis. The state ��⌫1⌫2 is called a symmetric two-extension of ⌧�⌫ on ⌫.

Definition 2. A bipartite state ⌧�⌫ is called two-extendible on ⌫ if there exists a tripartite state ��⌫1⌫2 such that

Tr⌫1 ��⌫1⌫2 = Tr⌫2 ��⌫1⌫2 = ⌧�⌫ , (S4)
where ⌫1 and ⌫2 are two copies of the system ⌫.

Lemma 3 [5]. A bipartite state ⌧�⌫ is two-extendible on ⌫ if and only if it is symmetric two-extendible on ⌫ .

Proof. First, assume ⌧�⌫ is symmetric two-extendible on ⌫. Since �⌫1⌫2��⌫1⌫2�
†
⌫1⌫2

= ��⌫1⌫2 , it holds that Tr⌫2 ��⌫1⌫2 =
Tr⌫1 ��⌫1⌫2 . This implies that ⌧�⌫ is two-extendible on ⌫. Second, let ⌧�⌫ be two-extendible on ⌫. One can easily
check that the state 1/2(��⌫1⌫2 + �⌫1⌫2��⌫1⌫2�

†
⌫1⌫2

) is a symmetric two-extension of ⌧�⌫.

It has been demonstrated that a quantum channel is anti-degradable if and only if its Choi state is two-extendible on
the output system [6]. This equivalence leads to a simple necessary and sufficient condition for the anti-degradability
of qubit channels:
Lemma 4. [7, Corollary 4](See also [6, 8]) Any qubit quantum channel N is anti-degradable if and only if it satisfies

Tr

"✓
N

✓
12
2

◆◆2
#
� Tr

⇥
(⇠(N ))2

⇤
� 4

p
det(⇠(N )),

where 12 denotes the identity operator on the qubit Hilbert space.
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3

B. Bosonic systems

In this subsection, we will provide an overview of relevant definitions and properties concerning quantum infor-
mation with continuous variable systems; refer to [9] for detailed explanations. A single-mode of electromagnetic
radiation with definite frequency and polarisation is represented by the Hilbert space !2(R), which comprises all
square-integrable complex-valued functions over R. Let N+ be the set of strictly positive integers and let N ..= {0}[N+.
For any = 2 N, the construction of the Fock state |=i (the quantum state with = photons) involves the application of
the bosonic creation operator 0̂† to the vacuum state |0i:

|=i ..=
1p
=!

(0̂†)= |0i . (S5)

The Fock states {|=i}=2N form an orthonormal basis of !2(R). The bosonic annihilation operator 0̂ and creation
operator 0̂† satisfy the well-known canonical commutation relation [0̂ , 0̂†] = 1.

Let C be the set of complex numbers. For any � 2 C, let ⇡(�) ..= 4
� 0̂†��⇤

0̂ be the displacement operator. A coherent
state of parameter �, denoted by |�i, is defined by applying the displacement operator ⇡(�) to the vacuum state,
i.e. |�i ..= ⇡(�) |0i. The overlap between coherent states is given by

h� |�i = 4
� 1

2 (|� |2+|� |2�2�⇤�)
. (S6)

Quantum channels acting on bosonic systems are sometimes called bosonic channels. Similar to finite-dimensional
channels, bosonic channels admit a Choi–Jamiołkowski representation, usually referred to as generalised Choi–
Jamiołkowski representation [10, 11]. Consider isomorphic Hilbert spaces H� ,H�

0 which are possibly infinite
dimensional. Let |#i

��
0 be a pure state satisfying Tr�0

⇥
|#ih# |

��
0
⇤
> 0 (See [12, Lemma 26]). The generalised

Choi state is constructed by applying the channel to the subsystem �
0 of |#i

�
0
�

(see Lemma 49 in the Appendix):
id� ⌦N�

0!⌫(|#ih# |
��

0). The construction of the generalised Choi state usually utilises the two-mode squeezed
vacuum state with squeezing parameter A > 0, defined as follows [9]:

|#(A)i
��

0 ..=
1

cosh(A)
1’
==0

tanh=(A) |=i
�
|=i

�
0 . (S7)

The equivalence between anti-degradability of a channel and two-extendibility of its Choi state extends to the infinite-
dimensional channels [13]. We provide a detailed proof of this equivalence in Lemma 50 in the Appendix as it helps us
in developing our intuition in inventing an explicit example of an anti-degrading map of the bosonic loss-dephasing
channel.

C. Hadamard maps

Let� = (0<=)< ,=2N , 0<= 2 C, be an infinite matrix of complex numbers. Consider the superoperator� on T
�
!

2(R)� ,
recognised as the Hadamard map, whose action on rank one operator |<ih= | is defined as follows:

�(|<ih= |) = 0<= |<ih= | , 8< , = 2 N .

In Section IV A in the Appendix, we provide an overview of relevant properties of Hadamard maps. In particular,
by combining known results about Hadamard maps and matrix analysis, in Lemma 47 in the Appendix, we show
that given an infinite matrix � = (0<=)< ,=2N , 0<= 2 C, the associated Hadamard map is a quantum channel if

• � is Hermitian

• 0== = 1, 8= 2 N

• � is diagonally dominant, i.e.
Õ1
<=0
<<=

|0<= |  1, 8 = 2 N .

D. Beam splitter

A beam splitter serves as a linear optical tool employed for creating quantum entanglement between two modes,
referred to as the system mode (denoted as () and the environment mode (denoted as ⇢). A depiction of a beam splitter
is reported in Fig 1.

155



4

Definition 5. Let H( ,H⇢

.

.= !
2(R). Let 0̂ and 4̂ denote the annihilation operator of H( and H⇢, respectively. For all ⌫ 2 [0, 1],

the beam splitter unitary of transmissivity ⌫ is given by

*
(⇢

⌫
.
.= exp

h
arccos

p
⌫
⇣
0̂
†
4̂ � 0̂ 4̂†

⌘i
. (S8)

Lemma 6. For all ⌫ 2 [0, 1], it holds that

(*(⇢

⌫ )† 0̂ *(⇢

⌫ =
p
⌫ 0̂ +

p
1 � ⌫ 4̂ ,

*
(⇢

⌫ 0̂ (*(⇢

⌫ )† =
p
⌫ 0̂ �

p
1 � ⌫ 4̂ ,

(*(⇢

⌫ )† 4̂ *(⇢

⌫ = �
p

1 � ⌫ 0̂ +
p
⌫ 4̂ ,

*
(⇢

⌫ 4̂ (*(⇢

⌫ )† =
p

1 � ⌫ 0̂ +
p
⌫ 4̂ .

(S9)

Proof. These identities can be readily proved by applying the Baker-Campbell-Hausdorff formula. For an alternative
proof see [14, Lemma A.2].

Lemma 7. For all ⌫ 2 [0, 1] and all = 2 N, it holds that

*
(⇢

⌫ |=i
(
⌦ |0i

⇢
=

=’
;=0

(�1);
s✓

=

;

◆
⌫

=�;
2 (1 � ⌫) ;2 |= � ;i

(
⌦ |;i

⇢
, (S10)

*
(⇢

⌫ |0i
(
⌦ |=i

⇢
=

=’
;=0

s✓
=

;

◆
(1 � ⌫) ;2⌫ =�;

2 |;i
(
⌦ |= � ;i

⇢
. (S11)

Proof. Thanks to Lemma (6), we have that*(⇢

⌫ 0̂

�
*
(⇢

⌫

�† = p
⌫0̂ �

p
1 � ⌫4̂. Consequently, it holds that

*
(⇢

⌫ |=i
(
⌦ |0i

⇢
=

1p
=!
*
(⇢

⌫ (0†)= |0i
(
⌦ |0i

⇢

=
1p
=!

✓
*
(⇢

⌫ 0
†
⇣
*
(⇢

⌫

⌘†◆=
|0i

(
⌦ |0i

⇢

=
1p
=!

⇣p
⌫0† �

p
1 � ⌫1†

⌘
=

|0i
(
⌦ |0i

⇢

=
1p
=!

=’
;=0

(�1);
✓
=

;

◆
⌫

=�;
2 (1 � ⌫) ;2 (0†)=�; |0i

(
⌦ (1†); |0i

⇢

=
=’
;=0

(�1);
s✓

=

;

◆
⌫

=�;
2 (1 � ⌫) ;2 |= � ;i

(
⌦ |;i

⇢
.

(S12)

Analogously, one can show the validity of (S11) by exploiting*(⇢

⌫ 4̂ (*(⇢

⌫ )† =
p

1 � ⌫ 0̂ +
p
⌫ 4̂.

Remark 8. It is easily seen that Eq. (S10) is equivalent to

*
(⇢

⌫ |=i
(
⌦ |0i

⇢
= (�1)=

=’
;=0

(�1);
s✓

=

;

◆
⌫

;

2 (1 � ⌫) =�;2 |;i
(
⌦ |= � ;i

⇢
.

E. Pure-loss channel

In optical platforms, the most common source of noise is photon loss, which is modelled by the pure-loss channel [9].
For any ⌫ 2 [0, 1], the pure-loss channel E⌫ of transmissivity ⌫ is a single-mode bosonic channel which acts on the
input system by mixing it in a beam splitter of transmissivity ⌫ with an environmental vacuum state; see Fig 1. In
this model, the input signal is partially transmitted and partially reflected by the beam splitter, representing the
loss of photons (or energy) in the channel. When ⌫ = 1, the pure-loss channel is noiseless (it equals the identity
superoperator). Conversely, when ⌫ = 0, the pure-loss channel is completely noisy (specifically, it is a constant
channel that maps any state in |0ih0|).
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FIG. 1. Stinespring representation of the pure-loss channel E⌫. The pure-loss channel E⌫ acts on the input state ⌧ by mixing it
in a beam splitter of transmissivity ⌫ (represented by the grey box) with an environmental vacuum state |0i. Moreover, 0̂ and 4̂

are the annihilation operators of the input mode and the environmental mode, respectively. The complementary channel of the
pure-loss channel is given by E

c
⌫(⌧) = E1�⌫

�(�1)0̂† 0̂⌧(�1)0̂† 0̂ � .

Definition 9. Let H( ,H⇢

.

.= !
2(R). For all ⌫ 2 [0, 1], the pure-loss channel of transmissivity ⌫ is a quantum channel

E⌫ : T (H() ! T (H() defined as follows:

E⌫(⌧) .
.= Tr⇢

⇥
*
(⇢

⌫

�
⌧( ⌦ |0ih0|

⇢

�(*(⇢

⌫ )†
⇤
, 8⌧ 2 T (H() ,

where |0ih0|
⇢

denotes the vacuum state of H⇢ and*
(⇢

⌫ denotes the beam splitter unitary defined in (S8).

Lemma 10. For all ⌫ 2 [0, 1] and all = ,< 2 N, it holds that

E⌫(|<ih= |) =
min(= ,<)’
✓=0

s✓
<

✓

◆ ✓
=

✓

◆
(1 � ⌫)✓⌫ =+<

2 �✓ |< � ✓ih= � ✓ | .

Proof. This is a direct consequence of (S10) and of the definition of pure-loss channel.

Lemma 11. For all⌫ 2 [0, 1], a complementary channel E
c

⌫ : T (H() ! T (H⇢) of the pure-loss channel E⌫ : T (H() ! T (H()
is given by

E
c

⌫(⌧) .
.= Tr(


*
(⇢

⌫

�
⌧( ⌦ |0ih0|

⇢

� ⇣
*
(⇢

⌫

⌘†�
= E1�⌫ �R(⌧), 8⌧ 2 T (H() , (S13)

where R(·) .
.= + ·+†

with +
.
.= (�1)0̂† 0̂ .

Proof. By linearity, it suffices to show the identity in (S13) for rank-one Fock operators of the form |<ih= | for any
= ,< 2 N, i.e.

Tr(

*
(⇢

⌫

� |<ih= |
(
⌦ |0ih0|

⇢

� ⇣
*
(⇢

⌫

⌘†�
= E1�⌫ �R(|<ih= |) . (S14)

This follows directly from (S10).

Proposition 12. [15, 16] The pure-loss channel E⌫ is degradable if and only if ⌫ 2 [ 1
2 , 1], and it is anti-degradable if and only

if ⌫ 2 [0, 1
2 ].

Lemma 13. [14, Lemma A.7] For all ⌫1 ,⌫2 2 [0, 1] it holds that E⌫1 � E⌫2 = E⌫1⌫2 .

F. Bosonic dephasing channel

Another main source of noise in optical platforms is bosonic dephasing, which serves as a prominent example of
a non-Gaussian channel [17, 18].
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Definition 14. Let H(

.

.= !
2(R) and let 0̂ be the corresponding annihilation operator. For all ✏ � 0, the bosonic dephasing

channel D✏ : T (H() ! T (H() is a quantum channel defined as follows:

D✏(⌧) .
.=

1p
2�✏

π 1

�1
d) 4�

)2
2✏
4
8) 0̂† 0̂ ⌧ 4�8) 0̂

†
0̂
, 8⌧ 2 T (H() .

In other words, D✏ is a convex combination of phase space rotations ⌧ 7�! 4
8) 0̂† 0̂ ⌧ 4�8) 0̂

†
0̂
, where the random variable ) follows

a centered Gaussian distribution with a variance of ✏.

Lemma 15. For all ✏ � 0 and all = ,< 2 N, it holds that

D✏(|<ih= |) = 4
� 1

2 ✏(=�<)2 |<ih= | .
Proof. This result follows from the Fourier transform of the Gaussian function:

1p
2�✏

π 1

�1
d) 4�

)2
2✏
4
8): = 4

� 1
2 ✏:

2
, 8 : 2 R . (S15)

When ✏ = 0, the bosonic dephasing channel is noiseless. In contrast, when ✏ ! 1 it annihilates all off-diagonal
components of the input density matrix, reducing it to an incoherent probabilistic mixture of Fock states. We now
present a Stinespring dilation of the bosonic dephasing channel.
Lemma 16. Let H( = H⇢

.

.= !
2(R) and let 0̂ and 4̂ be annihilation operators on H( and H⇢, respectively. For all ✏ > 0, the

bosonic dephasing channel D✏ : T (H() ! T (H() can be expressed in Stinespring representation as

D✏(⌧) = Tr⇢
⇥
+
(⇢

✏
�
⌧( ⌦ |0ih0|

⇢

�(+(⇢

✏ )†
⇤
, 8⌧ 2 T (H() , (S16)

where +
(⇢

✏ denotes the conditional displacement unitary defined by

+
(⇢

✏
.
.= exp

⇥p
✏ 0̂† 0̂ ⌦ (4̂† � 4̂)

⇤
=

1’
==0

|=ih= |
(
⌦ ⇡(p✏=). (S17)

Proof. For any = ,< 2 N it holds that

Tr⇢
⇥
+
(⇢

✏
� |<ih= |

(
⌦ |0ih0|

⇢

�(+(⇢

✏ )†
⇤

(i)
= Tr⇢

⇥
|<ih= |

(
⌦

��p✏=
↵⌦p

✏<
��
⇢

⇤
(ii)
= 4

� ✏
2 (=�<)2 |<ih= |

(iii)
= D✏(|<ih= |) .

(S18)

Here, in (i) we used that +(⇢

✏ |=i
(
⌦ |0i

⇢
= |=i

(
⌦

��p✏=
↵
⇢
, where

��p✏=
↵
⇢

denotes the coherent state with parameterp
✏=. In (ii), we exploited the formula for the overlap between coherent states provided in (S6), and in (iii) we used

Lemma 15. The proof is completed by linearity.

Remark 17. A different approach to dilating the bosonic dephasing channel, as outlined in the existing literature [17, 19, 20],

is as follows:

+̃
SE

✏ = exp
⇥
�8p✏ 0̂† 0̂ (4̂† + 4̂)

⇤
.

This unitary transformation is achieved by rotating the environmental mode of the unitary operator +
SE
✏ in (S17) by

�
2 , that

is +̃
SE
✏ = 4

8
�
2 4̂

†
4̂
+

SE
✏ 4

�8 �2 4̂† 4̂ . These dilations yield the same dephasing channel, as all dilations are equivalent up to unitary

transformations.

Proposition 18 [21]. The bosonic dephasing channel D✏ is degradable for all ✏ � 0.

Proposition 19 [21]. The bosonic dephasing channel D✏ is never anti-degradable.

Lemma 20. For all ✏1 , ✏2 � 0, the composition of bosonic dephasing channels is given by D✏1 �D✏2 = D✏1+✏2 .

Proof. This can be shown by leveraging Lemma 15.
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G. Bosonic loss-dephasing channel

Consider an optical system undergoing simultaneous loss and dephasing over a finite time interval. At each instant,
the system is susceptible to both an infinitesimal pure-loss channel and an infinitesimal bosonic dephasing channel.
Hence, the overall channel describing the simultaneous effect of loss and dephasing results in a suitable composition
of numerous concatenations between infinitesimal pure-loss and bosonic dephasing channels. However, given that:

• The pure-loss channel and the bosonic dephasing channel commute, i.e. E⌫ � D✏ = D✏ � E⌫, as implied by
Lemma 10 and Lemma 15;

• The composition of pure-loss channels is a pure-loss channel, E⌫1 � E⌫2 = E⌫1⌫2 (Lemma 13);

• The composition of bosonic dephasing channels is a bosonic dephasing channel, D✏1 �D✏2 = D✏1+✏2 (Lemma 20);
it follows that the combined effect of loss and dephasing can be modelled by the composition between pure-loss
channel and bosonic dephasing channel,

N⌫,✏
..= E⌫ �D✏ , (S19)

dubbed the bosonic loss-dephasing channel.
Definition 21. For all ✏ � 0 and ⌫ 2 [0, 1], the bosonic loss-dephasing channel N⌫,✏ is a quantum channel defined by the

composition between pure-loss channel and bosonic dephasing channel: N⌫,✏
.
.= D✏ � E⌫ .

Lemma 22. For all ⌫ 2 [0, 1] and ✏ � 0, it holds that N⌫,✏
.
.= D✏ � E⌫ = E⌫ �D✏. Moreover, for all = ,< 2 N it holds that

N⌫,✏(|<ih= |) = 4
� 1

2 ✏(=�<)2
E⌫(|<ih= |)

= 4
� 1

2 ✏(=�<)2
min(= ,<)’
✓=0

s✓
=

✓

◆ ✓
<

✓

◆
(1 � ⌫)✓⌫ =+<

2 �✓ |< � ✓ih= � ✓ | .

Proof. It follows from Lemma 10 and Lemma 15.

Lemma 23. Let H( ,H⇢1 ,H⇢2
.
.= !

2(R). For all ⌫ 2 [0, 1] and all ✏ � 0, the bosonic loss-dephasing channel N⌫,✏ : T (H() !
T (H() admits the following Stinespring representation:

N⌫,✏(⌧) = Tr⇢1⇢2


*
(⇢1
⌫ +

(⇢2
✏

�
⌧( ⌦ |0ih0|

⇢1 ⌦ |0ih0|
⇢2

� ⇣
*
(⇢1
⌫ +

(⇢2
✏

⌘†�
, 8⌧ 2 T (H(),

The associated complementary channel N
c

⌫,✏ : T (H() ! T (H⇢1 ⌦ H⇢2) is defined as follows:

N
c

⌫,✏(⌧) .
.= Tr(


*
(⇢1
⌫ +

(⇢2
✏

�
⌧( ⌦ |0ih0|

⇢1 ⌦ |0ih0|
⇢2

� ⇣
*
(⇢1
⌫ +

(⇢2
✏

⌘†�
, 8⌧ 2 T (H() .

In particular,

N
c

⌫,✏(|<ih= |) = (�1)<�=
E1�⌫

�|<ih= |
⇢1

� ⌦ ��p✏<
↵⌦p

✏=
��
⇢2

, 8< , = 2 N , (S20)

where

��p✏=
↵
⇢2

denotes the coherent state with parameter
p
✏=.

Proof. The Eq. (S20) is derived by first applying (S13) and subsequently utilising the dilation of the bosonic dephasing
channel. Finally, the non-environment mode of the bosonic dephasing channel is traced out.

Lemma 24. Consider the Hilbert spaces H(, H⇢1 , and H⇢2 , all isomorphic to !
2(R). Let ⌫ 2 [0, 1] and ✏ � 0. The bosonic

loss-dephasing channel N⌫,✏ : T (H() ! T (H() exhibits anti-degradability if and only if there exists a quantum channel

A⌫,✏ : T (H⇢out
) ! T (H() satisfying the following condition:

A⌫,✏ �N c

⌫,✏(|<ih= |) = N⌫,✏(|<ih= |), 8< , = 2 N , (S21)

where N
c

⌫,✏ : T (H() ! T (H⇢out
) denotes the complementary channel reported in (S20), and H⇢out

⇢ H⇢1 ⌦ H⇢2 is defined

in (S42). Moreover, the condition in (S21) is equivalent to

A⌫,✏
�
E1�⌫ (|<ih= |) ⌦

��p✏<
↵⌦p

✏=
��� = (�1)<�=

4
� ✏

2 (<�=)2
E⌫(|<ih= |), 8< , = 2 N , (S22)

where

��p✏=
↵

denotes the coherent state with parameter
p
✏=.
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Proof. N⌫,✏ is anti-degradable if and only if there exists a quantum channel A⌫,✏ : T (H⇢out) ! T (H() such that

A⌫,✏ �N c
⌫,✏(⌧) = N⌫,✏(⌧), 8⌧ 2 T (H() . (S23)

By linearity, it suffices to show the condition in (S21), i.e. which corresponds to the condition in (S23) restricted to
rank-one Fock operators of the form ⌧ = |<ih= | with < , = 2 N. Moreover, by exploiting Lemma 22 and S20, the
condition in (S21) is equivalent to (S22).

Lemma 25. For all ✏1 , ✏2 � 0 and all ⌫1 ,⌫2 it holds that N⌫1 ,✏1 �N⌫2 ,✏2 = N⌫1⌫2 , ✏1+✏2 .

Proof. This can be shown by exploiting Lemma 13 and Lemma 20.

H. Preliminaries on capacities of quantum channels

Quantum channels can be suitably exploited in order to transfer information from their input port to a possibly
distant output port, a crucial task in quantum information theory [1, 3]. In particular, quantum Shannon theory [2, 4]
primarily helps us understand the fundamental limits of quantum communication using a quantum channel N .
These limits are called capacities and tell us the ultimate amount of information we can send through the channel
when we use it many times [2, 4]. Different capacities are defined based on the type of information that is being sent
down the channel. For example, classical and quantum capacities of a quantum channel correspond to its ultimate
capability of transmission of classical and quantum information, respectively. A channel can also be used to generate
secret bits and the relevant capacity in this context is the so-called secret-key capacity. Each of the above-mentioned
capacities might be endowed with other resources such as initial shared entanglement between the sender and the
receiver or (possibly interactive) classical communication over a noiseless but public channel. This latter scenario
gives rise to the notion of two-way capacities.

Specifically, the quantum capacity &(N ) of a quantum channel N is the maximum rate at which qubits can be
reliably transmitted through N [4]. We can further assume that both the sender, Alice, and the receiver, Bob, have
free access to a public, noiseless two-way classical channel. In this two-way communication setting, the relevant
notion of capacities are the two-way quantum capacity &2(N ) and the secret-key capacity  (N ) [2, 4], defined as the
maximum achievable rate of qubits and secret-key bits, respectively, that can be reliably transmitted across N with
the aid of two-way classical communication. Since an ebit (i.e. a maximally entangled state of Schmidt rank 2) can
always be used to generate one bit of secret key [22], a trivial bound relates these capacities: &2(N )   (N ).

In practical scenarios, it is important to consider that the input state prepared by Alice can not have unlimited
energy and it adheres to specific energy constraints. In bosonic systems, it is common to limit the average photon
number of any input state ⌧ as Tr

⇥
0̂
†
0̂⌧

⇤
 #B , where #B > 0 is a given energy constraint. For any #B > 0, the energy-

constrained (EC) two-way capacities for transmitting qubits and secret-key bits, denoted as &2(N ,#B) and  (N ,#B)
respectively, are defined similarly to the unconstrained capacities with the difference that now the optimisation is
performed over those strategies that exploit input states that adhere to the specified energy constraint. As in the
unconstrained scenario, the relation between EC two-way capacities continue to hold, i.e. &2(N ,#B)   (N ,#B).
Moreover, the unconstrained capacities are upper bounds for the corresponding energy constrained capacities and
they become equal in the limit #B ! 1.

Two-way capacities of a quantum channel are closely related to another important information-processing task,
namely, entanglement distillation over a quantum channel. Suppose Alice generates = copies of a state ⌧�0

� and
sends the �0 subsystems to Bob using the channel N for = times. Now, Alice and Bob share = copies of the state
⌧0
�⌫

..= id� ⌦N�
0!⌫(⌧��0). The task of an entanglement distillation protocol concerns identifying the largest number

< of ebits that can be extracted using = copies of ⌧0
�⌫

via LOCC (Local Operations and Classical Communication)
operations. The rate of an entanglement distillation protocol is defined by the ratio</=. The distillable entanglement
⇢3(⌧0

�⌫
) of ⌧0

�⌫
is defined as the maximum rate over all the possible entanglement distillation protocols [23] [4, Chapter

8]. Note that without extra classical communication, entanglement distillation is not possible [24]. The following
lemma establishes a link between the two-way quantum capacity, secret-key capacity, and distillable entanglement.

Lemma 26. Let H� ,H�
0 ,H⌫

.

.= !
2(R). Let N : H�

0 ! H⌫ be a quantum channel. Let #B > 0 be the energy constaint, and

let ⌧�0
� 2 P(H� ⌦ H�

0) be a two-mode state satisfying the energy constraint Tr
⇥
(0̂† 0̂ ⌦ id�)⌧�0

�

⇤
 #B , where 0̂ denotes the

annihilation operator on H�
0 . Then, it holds that

 (N ,#B) � &2(N ,#B) � ⇢3(id� ⌦N (⌧��0)) , (S24)

where  (N ,#B) denotes the energy-constrained secret-key capacity of N , &2(N ,#B) denotes the energy-constrained two-way

quantum capacity of N , and ⇢3(id� ⌦N (⌧��0)) denotes the distillable entanglement of the state id� ⌦N (⌧��0).
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The proof idea of the above lemma is the following. Suppose that Alice produces = copies of a state ⌧��0 such that
the energy constraint is satisfied. Then, she can use the channel = times to send all subsystems �0 to Bob. Then, Alice
and Bob share = copies of id� ⌦N (⌧��0), which can now be used to generate ⇡ = ⇢3(id� ⌦N (⌧��0)) ebits by means of
a suitable entanglement distillation protocol. The ebit rate of this protocol is thus ⇢3(id� ⌦N (⌧��0)), which provides
a lower bound on &2(N ,#B) thanks to quantum teleportation [25]. In addition, it holds that  (N ,#B) � &2(N ,#B)
because an ebit can generate a secret-key bit [22]. Consequently, (S24) holds.

II. ANTI-DEGRADABILITY AND DEGRADABILITY OF BOSONIC LOSS-DEPHASING CHANNEL

This section is split into two parts based on the observation that if the input state to the bosonic loss-dephasing
channel is chosen from a finite-dimensional subspace, the bosonic loss-dephasing channel effectively becomes a
finite-dimensional channel, a fact we show in Lemma 33. This property allows us to apply established insights about
the finite-dimensional channels to the bosonic loss-dephasing channel. In subsection II A, we present our study of the
bosonic loss-dephasing channel when the input resides in the entire infinite-dimensional space, while subsection II B
is dedicated to the findings resulting from analysis of finite-dimensional restrictions of the bosonic loss-dephasing
channel.

A. Sufficient condition on anti-degradability

It is known that the bosonic dephasing channel D✏ is degradable across all dephasing parameter range ✏ � 0
and also it is never anti-degradable [17]. The pure-loss channel E⌫ displays the peculiar characteristic of being anti-
degradable for transmissivity values within the range⌫ 2 [0, 1

2 ] and degradable for⌫ 2 [ 1
2 , 1] [15, 16]. It turns out that

when an anti-degradable channel is concatenated with another channel, the resulting channel inherits the property
of being anti-degradable (see Lemma 51). This implies the following: if ⌫ 2 [0, 1

2 ] and ✏ � 0, then the bosonic loss-
dephasing channel N⌫,✏ is anti-degradable [21]. The authors of [21] left as an open question to understand whether or
not the bosonic loss-dephasing channel N⌫,✏ is anti-degradable in the region ⌫ 2 ( 1

2 , 1]. In particular, they conjecture
that N⌫,✏ is not anti-degradable for all transmissivity values ⌫ 2 ( 1

2 , 1] and for all ✏ � 0. In the following theorem,
we refute this conjecture by explicitly finding values of ⌫ 2 ( 1

2 , 1] and ✏ � 0 where the channel is anti-degradable.
Our approach also yields an explicit expression for an anti-degrading map of the bosonic loss-dephasing channel.

Theorem 27. Each of the following is a sufficient condition for the bosonic loss-dephasing channel N⌫,✏ to exhibit anti-

degradability:

(i) ⌫ 2 [0, 1
2 ] and ✏ � 0.

(ii) ⌫ 2 ( 1
2 , 1) and 

✓
4
�✏/2

,

q
⌫

1�⌫

◆
 3

2 , where  is defined as (G , H) .
.=

Õ1
==0 G

=
2
H
=
, 8 G , H 2 [0, 1).

In particular, N⌫,✏ is anti-degradable if ⌫  max
� 1

2 ,
1

1+94�✏
�
.

Proof. The proof of the sufficient condition (i) follows directly from the observation that the composition of a pure-
loss channel with transmissivity ⌫ 2 [0, 1

2 ] with any other channel inherits the anti-degradability from the pure-loss
channel (see Lemma 51).

The proof of the sufficient condition (ii) is more involved, and it is the main technical contribution of our work.
We rely on the equivalence between anti-degradability of a quantum channel and the two-extendibility of its Choi
state [6, 13]. To provide a comprehensive and intuitive understanding of this idea and to aid in the construction of
an anti-degrading map of the bosonic loss-dephasing channel, we present this equivalence in Lemma 50 within the
Appendix.

Assume ⌫ 2 ( 1
2 , 1) and 

✓
4
�✏/2

,

q
⌫

1�⌫

◆
 3

2 . Let H� ,H⌫ ,H⌫1 ,H⌫2 = !
2(R) and suppose that the bosonic loss-

dephasing channel N⌫,✏ is a quantum channel from the system �
0 to ⌫. We want to show that the generalised Choi

state of N⌫,✏ is two-extendible on ⌫. In other words, we want to show that there exists a tripartite state ⌧�⌫1⌫2 such
that

Tr⌫2 [⌧�⌫1⌫2] = ��⌫1 ,

Tr⌫1 [⌧�⌫1⌫2] = ��⌫2 ,
(S25)
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where ��⌫ ..= id� ⌦N⌫,✏(|#(A)ih#(A)|��0) is the generalised Choi state ofN⌫,✏, and |#(A)i
��

0 is the two-mode squeezed
vacuum state with squeezing parameter A > 0 defined in (S7). By Lemma (22), the generalised Choi state of the
bosonic loss-dephasing channel can be expressed as follows:

��⌫ =
1

cosh2(A)

1’
< ,==0

min(< ,=)’
✓=0

(tanh(A))<+=
4
� ✏

2 (<�=)2p
B✓ (< , 1 � ⌫)B✓ (= , 1 � ⌫) |<ih= |

�
⌦ |< � ✓ih= � ✓ |

⌫
, (S26)

whereB✓ (= ,⌫) ..=
�
=

✓

�
⌫✓ (1�⌫)=�✓ . We observe that ��⌫ is a linear combination of |<ih= |⌦ | 91ih92 |, where< , = , 91 , 92 2 N,

91  =1, 92  =, and < � = = 91 � 92. This insight leads to the following educated guess about the structure of a
potential two-extension:

⌧̃�⌫1⌫2 =
1’

< ,==0

<’
✓1=0

=’
✓2=0

min(<�✓1 ,=�✓2)’
:=0

2(< , = , ✓1 , ✓2 , :) |<ih= |
�
⌦ |< � ✓1ih= � ✓2 |⌫1 ⌦ |✓1 + :ih✓2 + : |⌫2 , (S27)

where {2(< , = , ✓1 , ✓2 , :)}< ,= ,✓1 ,✓2 ,: are some suitable coefficients. The soundness of this guess is confirmed by the fact
that both Tr⌫2 [⌧̃�⌫1⌫2] and Tr⌫1 [⌧̃�⌫1⌫2] are linear combinations of |<ih= | ⌦ | 91ih92 | with< , = , 91 , 92 2 N, 91  <, 92  =,
and < � = = 91 � 92, similar to the generalised Choi state ��⌫ in (S26).

At this point, one could try to define the coefficients {2(< , = , ✓1 , ✓2 , :)}< ,= ,✓1 ,✓2 ,: so as to satisfy the required conditions
of the extendibility. However, the resulting tripartite operator may not qualify as a quantum state. In order to ensure
that we obtain a quantum state, our approach consists in producing the operator ⌧̃�⌫1⌫2 via a physical process that
consists in applying a sequence of quantum channels to a quantum state.

We begin by constructing a quantum state that has the same operator structure as the operator ⌧̃�⌫1⌫2 in (S27). This
means that at this initial stage, we only aim to build a tripartite state consisting of a linear combination of operators
|<ih= |

�
⌦ |< � ✓1ih= � ✓2 |⌫1 ⌦ |✓1 + :ih✓2 + : |⌫2 with the summation limits identical to those in (S27). This ensures that

the coefficients equal to zero coincide in the two operators.
We now illustrate on each step of this construction. For a fixed = 2 N, consider the state |=i

�
⌦ |=i

⌫1 . We introduce
two auxiliary single-mode systems ⌫2 and ⇠ initially in vacuum states: |=i

�
⌦ |=i

⌫1 ⌦ |0i
⌫2 ⌦ |0i

⇠
. We next send the

systems ⌫2 and ⌫1 through the ports of a beam splitter, resulting in a superposition of |=i
�
⌦ |= � ✓i

⌫1 ⌦ |✓i
⌫2 ⌦ |0i

⇠

for ✓ = 0, 1, . . . , =, as implied by Lemma (7). We repeat this for systems ⌫1 and ⇠, thus obtaining a superposition
of |=i

�
⌦ |= � ✓ � :i

⌫1 ⌦ |✓i
⌫2 ⌦ |:i

⇠
, with : = 0, 1, . . . , = � ✓ and ✓ = 0, 1, . . . , =. Consider now the isometry ,⇠⌫1⌫2

defined by

,
⇠⌫1⌫2 |=i

⌫1 ⌦ |<i
⌫2 ⌦ |:i

⇠
= |= + :i

⌫1 ⌦ |< + :i
⌫2 ⌦ |:i

⇠
, 8 = ,< , : 2 N , (S28)

dubbed controlled-add-add isometry (mode ⇠ is the control mode). By applying this isometry to the superposition we
created by using beam splitters, we obtain a superposition of |=i

�
⌦ |= � ✓i

⌫1 ⌦ |✓ + :i
⌫2 ⌦ |:i

⇠
with : = 0, 1, . . . , =� ✓

and ✓ = 0, 1, . . . , =. Finally, by tracing out system ⇠, we obtain the same operator structure of the operator ⌧̃�⌫1⌫2
in (S27). Having focused on the operator structure, we have not considered the transmissivities of the two beam
splitters so far. We will see that these transmissivities can be chosen carefully such that the diagonal elements of the
operator at hand becomes equal to those of the Choi state.

We now apply the outlined construction to the two-mode squeezed vacuum state with two vacuum states appended
to it, i.e. |#(A)i

�⌫1
⌦ |0i

⌫2 ⌦ |0i
⇠

. For reasons that will become clear in a moment, we choose the two beam splitter
transmissivities to be ⌫ (for the beam splitter acting on ⌫2⌫1) and 1�⌫

⌫ (for the one acting on ⇠⌫1). By doing so we
obtain the state

��)↵
�⌫1⌫2⇠

..=,⇠ ,⌫1⌫2
*
⇠⌫1
1�⌫
⌫

*
⌫2⌫1
⌫ |#(A)i

�⌫1
⌦ |0i

⌫2 ⌦ |0i
⇠

=
1

cosh(A)
1’
==0

=’
✓=0

=�✓’
:=0

tanh=(A)
s
B✓ (= , 1 � ⌫)B:

✓
= � ✓ , 2⌫ � 1

⌫

◆
|=i

�
⌦ |= � ✓i

⌫1 ⌦ |✓ + :i
⌫2 ⌦ |:i

⇠
,

(S29)

where we used (S7) and Lemma 7. Note that the transmissivities of the beam splitters *⇠⌫1
1�⌫
⌫

and *⌫2⌫1
⌫ are chosen

such that the diagonal elements of Tr⌫2⇠

⇥ ��)↵⌦
)
��
�⌫1⌫2⇠

⇤
and Tr⌫1⇠

⇥ ��)↵⌦
)
��
�⌫1⌫2⇠

⇤
both coincide with those of the
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Choi state ��⌫ in (S26). To verify this, let us calculate the state Tr⇠
⇥ ��)↵⌦

)
��
�⌫1⌫2⇠

⇤
:

Tr⇠
⇥ ��)↵⌦

)
��
�⌫1⌫2⇠

⇤
=

1
cosh2(A)

1’
< ,==0

<’
✓1=0

=’
✓2=0

min(<�✓1 ,=�✓2)’
:=0

(tanh(A))<+=p
B✓1(< , 1 � ⌫)B✓2(= , 1 � ⌫)

266664

s
B:

✓
< � ✓1 ,

2⌫ � 1
⌫

◆
B:

✓
= � ✓2 ,

2⌫ � 1
⌫

◆377775
|<ih= |

�
⌦ |< � ✓1ih= � ✓2 |⌫1 ⌦ |✓1 + :ih✓2 + : |⌫2 .

Notably, the structure of the state Tr⇠
⇥ ��)↵⌦

)
��
�⌫1⌫2⇠

⇤
mirrors that of (S27) with specific coefficients 2(< , = , ✓1 , ✓2 , :).

Moreover, it holds that

Tr⌫2⇠

⇥ ��)↵⌦
)
��
�⌫1⌫2⇠

⇤
=

1
cosh2(A)

1’
< ,==0

min(< ,=)’
✓=0

(tanh(A))<+=p
B✓ (< , 1 � ⌫)B✓ (= , 1 � ⌫)

266664
min(<�✓ ,=�✓ )’

:=0

s
B:

✓
< � ✓ , 2⌫ � 1

⌫

◆
B:

✓
= � ✓ , 2⌫ � 1

⌫

◆377775
|<ih= |

�
⌦ |< � ✓ih= � ✓ |

⌫1

(S30)
and that

Tr⌫1⇠

⇥ ��)↵⌦
)
��
�⌫1⌫2⇠

⇤
= Tr⌫2⇠

⇥ ��)↵⌦
)
��
�⌫1⌫2⇠

⇤
. (S31)

In order to prove (S31), observe that

Tr⌫1⇠

⇥ ��)↵⌦
)
��
�⌫1⌫2⇠

⇤
=

1
cosh2(A)

1’
< ,==0

<’
✓1=max(<�= ,0)

<�✓1’
:=0

(tanh(A))<+=p
B✓1(< , 1 � ⌫)B=�<+✓1(= , 1 � ⌫)

B:

✓
< � ✓1 ,

2⌫ � 1
⌫

◆
|<ih= |

�
⌦ |✓1 + :ih= � < + ✓1 + : |⌫2

=
1

cosh2(A)

1’
< ,==0

<’
✓1=max(<�= ,0)

<�✓1’
✓=0

(tanh(A))<+=p
B✓1(< , 1 � ⌫)B=�<+✓1(= , 1 � ⌫)

B<�✓1�✓

✓
< � ✓1 ,

2⌫ � 1
⌫

◆
|<ih= |

�
⌦ |< � ✓ih= � ✓ |

⌫2

=
1

cosh2(A)

1’
< ,==0

min(< ,=)’
✓=0

(tanh(A))<+=
<�✓’

✓1=max(<�= ,0)

p
B✓1(< , 1 � ⌫)B=�<+✓1(= , 1 � ⌫)

B<�✓1�✓

✓
< � ✓1 ,

2⌫ � 1
⌫

◆
|<ih= |

�
⌦ |< � ✓ih= � ✓ |

=
1

cosh2(A)

1’
< ,==0

min(< ,=)’
✓=0

(tanh(A))<+=
min(=�✓ ,<�✓ )’

:=0

p
B<�✓�:(< , 1 � ⌫)B=�✓�:(= , 1 � ⌫)

B:

✓
: + ✓ , 2⌫ � 1

⌫

◆
|<ih= |

�
⌦ |< � ✓ih= � ✓ |

(i)
=

1
cosh2(A)

1’
< ,==0

min(< ,=)’
✓=0

(tanh(A))<+=p
B✓ (< , 1 � ⌫)B✓ (= , 1 � ⌫)

266664
min(<�✓ ,=�✓ )’

:=0

s
B:

✓
< � ✓ , 2⌫ � 1

⌫

◆
B:

✓
= � ✓ , 2⌫ � 1

⌫

◆377775
|<ih= |

�
⌦ |< � ✓ih= � ✓ |

⌫2

(ii)
= Tr⌫2⇠

⇥ ��)↵⌦
)
��
�⌫1⌫2⇠

⇤

(S32)
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Here, in (i), we used the identity

p
B<�✓�:(< , 1 � ⌫)B=�✓�:(= , 1 � ⌫)B:

✓
: + ✓ , 2⌫ � 1

⌫

◆

=
p
B✓ (< , 1 � ⌫)B✓ (= , 1 � ⌫)

s
B:

✓
< � ✓ , 2⌫ � 1

⌫

◆
B:

✓
= � ✓ , 2⌫ � 1

⌫

◆
,

(S33)

which can be easily proved by substituting the definition B✓ (= ,⌫) ..=
�
=

✓

�
⌫✓ (1 � ⌫)=�✓ and by leveraging the binomial

identity

✓
=

; + :

◆ ✓
; + :
:

◆
=

✓
=

;

◆ ✓
= � ;
:

◆
. (S34)

Moreover, in (ii), we exploited (S30).
Note that the off-diagonal terms of the state in (S30) are not equal to those of the Choi state ��⌫ in (S26). Specifically,

the points of difference with the Choi state ��⌫ are the presence of the term inside the square brackets and the absence
of the dephasing exponent. To address these additional terms, let us use the toolbox of Hadamard maps. Let � be the
Hadamard map, introduced in Sec. I C, associated with the infinite matrix � ..= (0<=)< ,=2N defined as follows:

0<=
..=

4
� ✏

2 (=�<)2

Õmin(= ,<)
9=0

q
B 9

�
= ,

2⌫�1
⌫

�
B 9

�
< ,

2⌫�1
⌫

� , 8 = ,< 2 N . (S35)

By construction, we have that

id� ⌦�⌫1

⇣
Tr⌫2⇠

⇥ ��)↵⌦
)
��
�⌫1⌫2⇠

⇤ ⌘

=
1

cosh2(A)

1’
< ,==0

min(< ,=)’
✓=0

(tanh(A))<+=p
B✓ (< , 1 � ⌫)B✓ (= , 1 � ⌫)

266664
min(<�✓ ,=�✓ )’

:=0

s
B:

✓
< � ✓ , 2⌫ � 1

⌫

◆
B:

✓
= � ✓ , 2⌫ � 1

⌫

◆377775
0<�✓ , =�✓ |<ih= |

�
⌦ |< � ✓ih= � ✓ |

⌫1

=
1

cosh2(A)

1’
< ,==0

min(< ,=)’
✓=0

(tanh(A))<+=
4
� ✏

2 (=�<)2 p
B✓ (< , 1 � ⌫)B✓ (= , 1 � ⌫) |<ih= |

�
⌦ |< � ✓ih= � ✓ |

⌫1

= ��⌫1 .

(S36)

This means that the operator

⌧�⌫1⌫2
..= id� ⌦�⌫1 ⌦ �⌫2

⇣
Tr⇠

h��)↵⌦
)
��
�⌫1⌫2⇠

i ⌘
(S37)

satisfies the extendibility conditions in (S25). All that remains to prove is that ⌧�⌫1⌫2 is in fact a quantum state. We
will do this by showing that the superoperator � is a quantum channel. In Sec. I C, we establish that a Hadamard
map is a quantum channel if its defining infinite matrix is Hermitian, has diagonal elements equal to one, and is
diagonally dominant. The first two properties are trivially satisfied by the infinite matrix � defined in (S35). We only

need to demonstrate that for the parameter region ⌫ > 1
2 and 

✓
4
�✏/2

,

q
⌫

1�⌫

◆
 3

2 , the infinite matrix � is diagonally

dominant. We recall that, by definition, � is diagonally dominant if it holds that
Õ1
<=0
<<=

|0<= |  1, 8 = 2 N. Note that
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for any = ,< 2 N we have that

|0=< | =
4
� ✏

2 (=�<)2

Õmin(= ,<)
9=0

q�
=

9

� �
<

9

� � 1�⌫
⌫

�=+<�29 � 2⌫�1
⌫

�29

 4
� ✏

2 (=�<)2

Õmin(= ,<)
9=0

r�min(= ,<)
9

�2 � 1�⌫
⌫

�=+<�29 � 2⌫�1
⌫

�29

= 4
� ✏

2 (=�<)2
✓

⌫
1 � ⌫

◆ |=�< |
2

.

(S38)

Consequently, if ⌫ and ✏ are such that ⌫ > 1
2 and 

✓
4
�✏/2

,

q
⌫

1�⌫

◆
 3

2 , for any = 2 N we have that

1’
<=0
<<=

|0<= | 
1’
<=0
<<=

4
� ✏

2 (<�=)2
✓

⌫
1 � ⌫

◆ |<�= |
2

=
1’
:=1

4
� ✏

2 :
2
✓

⌫
1 � ⌫

◆ :

2

+
=’
:=1

4
� ✏

2 :
2
✓

⌫
1 � ⌫

◆ :

2

 2
1’
:=1

4
� ✏

2 :
2
✓

⌫
1 � ⌫

◆ :

2

= 2

 
4
�✏/2

,

r
⌫

1 � ⌫

!
� 2

 1 .

(S39)

Therefore, the infinite matrix � is diagonally dominant if ⌫ > 1
2 and 

✓
4
�✏/2

,

q
⌫

1�⌫

◆
 3

2 . This establishes that �⌫1

and �⌫2 are valid quantum channels in this parameter range, implying that ⌧�⌫1⌫2 is a valid two-extension of the
Choi state of N⌫,✏, and in turn entailing that N⌫,✏ is anti-degradable. Finally, note that if ⌫ > 1

2 the condition



 
4
�✏/2

,

r
⌫

1 � ⌫

!
 3

2 (S40)

is implied by ⌫  1
1+94�✏ . Indeed,



 
4
�✏/2

,

r
⌫

1 � ⌫

!
..=

=’
:=0

4
� ✏

2 :
2

 r
⌫

1 � ⌫

!
:


1’
:=0

✓
4
�✏⌫

1 � ⌫

◆
:/2

=
1

1 �
q

4
�✏⌫

1�⌫

 3
2 ,

where the last inequality follows from 4
�✏⌫

1�⌫  1
9 , which is implied by ⌫  1

1+94�✏ .

Expanding the anti-degradability region numerically

Note that Theorem 27 does not identify the entire anti-degradability region of the bosonic loss-dephasing channel
N⌫,✏. In fact, from the above argument it becomes clear that a way to obtain a better inner approximation of this
region is to check for which values of the parameters the infinite matrix � defined by (S35) is positive semi-definite.
This is established in the following theorem.

Theorem 28. Let ✓
2(N) be the space of square-summable complex-valued sequences (defined by (S83) below). For any ⌫ 2 ( 1

2 , 1)
and ✏ > 0, let � = (0<=)< ,=2N be the infinite matrix whose components are defined by (S35). If � � 0 is positive semi-definite

as an operator on ✓
2(N), then the bosonic loss-dephasing channel N⌫,✏ is anti-degradable.
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Proof. In the proof of Theorem 27 we have seen that the bosonic loss-dephasing channel is anti-degradable if the
Hadamard map associated with the infinite matrix � (given in (S35)) is a quantum channel. Since the diagonal
elements of � are equal to one, from Lemma 46 we deduce that the Hadamard map associated to � is a quantum
channel if and only if � is positive semi-definite. This concludes the proof.

In Theorem 27, we showed that the above-mentioned infinite matrix� is positive semi-definite if
⇣
4
�✏/2

,

p
⌫/(1 � ⌫)

⌘


3
2 , where (G , H) ..=

Õ1
==0 G

=
2
H
= . This identifies just a portion of the full region of parameters of ⌫ and ✏ where the

infinite matrix � is positive semi-definite.
To analyse the positive semi-definiteness of the infinite matrix � further, let �(3) denote its 3 ⇥ 3 top-left corner.

Note that it is well-known that an infinite matrix is positive semi-definite if and only if its 3 ⇥ 3 top-left corner is
positive semi-definite for all 3 2 N. For modest values of 3, we can numerically determine the parameter region
where �(3) is positive semi-definite. To achieve this, we plot in Fig. 2 the quantity

◆3(✏) ..= max
✓
⌫ 2

✓
1
2 , 1

�
: �(3) is positive semi-definite

◆
, (S41)

with respect to 4
�✏ for various values of 3. This quantity is relevant because �(3) is positive semi-definite if and

only if ⌫  ◆3(✏). Moreover, the quantity ◆3(✏) monotonically decreases in 3 and converges to some ◆̄(✏) as 3 ! 1.
Notably, the condition ⌫  ◆̄(✏) is necessary and sufficient for positive semi-definiteness of the infinite matrix �, and
also a sufficient condition for the anti-degradability of the the bosonic loss-dephasing channel N⌫,✏. Our numerical
investigation seems to suggest that when 3 is approximately 20, the quantity ◆3(✏) has already reached its limiting
value ◆̄(✏), which can be approximated, for instance, by considering, the curve ◆30(✏).

FIG. 2. Numerical estimation of the anti-degradability of the loss-dephasing channel. The horizontal axis shows the quantity 4�✏ ,
varying from 0 to 1 as dephasing parameter ✏ decreases from 1 to 0, while the vertical axis corresponds to the transmissivity ⌫.
Theorem 27 establishes that below the region defined by the blue curve, corresponding to the condition (4�✏/2

,

p
⌫/(1 � ⌫)) = 3/2,

the bosonic loss-dephasing channel is anti-degradable. Moreover, Theorem 35 establishes that above the region defined by the
purple curve, corresponding to ⌫ = 1

1+4�✏ , the bosonic loss-dephasing channel is not anti-degradable. The other curves depict
the quantity ◆

3
(✏), which is defined in (S41) as the maximum value of the transmissivity where �(3) is positive semi-definite,

for various values of 3. Our numerical analysis seems to indicate that in the region below the red curve, corresponding to
⌫  ◆30(✏), the bosonic loss-dephasing channel is anti-degradable. Here, we employ 3 = 30, as increasing 3 beyond 3 � 20 yields
no discernible change in the plot.
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Anti-degrading maps

Theorem 27 discovers parameter regions of transmissivity ⌫ and dephasing ✏ in which the bosonic loss-dephasing
channel N⌫,✏ is anti-degradable. Although the proof of this theorem ensures the existence of anti-degrading maps
for N⌫,✏ within these parameter regions, it does not offer explicit constructions of such anti-degrading maps. In
the forthcoming Theorem 29, we present such explicit constructions. Note that, thanks to Lemma 23, the output
operators of the complementary channel N c

⌫,✏ reside within the space T (H⇢out), where H⇢out is the following subspace
of the two-mode Hilbert space H⇢1 ⌦ H⇢2 = !

2(R) ⌦ !2(R):

H⇢out
..= Span

n
|✓i

⇢1 ⌦
��p✏=

↵
⇢2

: ✓  = with ✓ , = 2 N
o
, (S42)

where |=i represents the =th Fock state, and
��p✏=

↵
denotes the coherent state with a parameter of p✏=. These states

correspond to the environmental modes of the pure-loss and dephasing channels, respectively (we shall maintain
this notation throughout).

Theorem 29. Anti-degrading maps corresponding to each parameter region in Theorem 27 can be defined as follows. In the

region (i), i.e. ⌫ 2
⇥
0, 1

2
⇤

and ✏ � 0, an anti-degrading map is given by

A⌫,✏ =
⇣
E ⌫

1�⌫
�R⇢1

⌘
⌦ Tr⇢2 , (S43)

where R⇢1(·) .
.= (�1)4̂†1 4̂1 · (�1)4̂†1 4̂1 , with 4̂1 as the annihilation operator of the output mode of the pure-loss channel ⇢1.

In the region (ii), i.e. ⌫ 2 ( 1
2 , 1) and ✏ such that 

✓
4
�✏/2

,

q
⌫

1�⌫

◆
 3

2 , an anti-degrading map A⌫,✏ : T (H⇢out
) ! T (HB),

with H⇢out
given by (S42), is defined as follows. For all ✓1 , ✓2 , =1 , =2 2 N with ✓1  =1 and ✓2  =2, it holds that

A⌫,✏
�|✓1ih✓2 | ⌦ ��p✏=1

↵⌦p
✏=2

��� .
.=

min(=1�✓1 ,=2�✓2)’
:=0

2
(✓1 ,✓2 ,=1 ,=2)
:

|: + ✓1ih: + ✓2 | , (S44)

where for all : 2 {0, 1, . . . ,min(=1 � ✓1 , =2 � ✓2)} the coefficients 2
(✓1 ,✓2 ,=1 ,=2)
:

are defined as

2
(✓1 ,✓2 ,=1 ,=2)
:

.

.= (�1)✓1�✓2
s
B:

✓
=1 � ✓1 ,

2⌫ � 1
⌫

◆
B:

✓
=2 � ✓2 ,

2⌫ � 1
⌫

◆
0=1�✓1=2�✓2 0:+✓1:+✓2 , (S45)

where B;(= ,⌫) .
.=

�
=

;

�
⌫;(1 � ⌫)=�; , and 0<= is defined in (S35).

Proof of Theorem 29. Let us suppose that ⌫ and ✏ fall within the parameter region (i). A complementary channel of the
pure-loss channel E⌫ is given by E

c
⌫ = E1�⌫ �R. Consequently, Lemma 13 implies that

⇣
E ⌫

1�⌫
�R

⌘
� E c

⌫ = E⌫, i.e. the
channel E ⌫

1�⌫
�R is an anti-degrading map of the pure-loss channel. The general construction detailed in the proof of

Lemma 51 for the anti-degrading map of the composition between an anti-degradable channel and another channel
demonstrates that the map given in (S43) is an anti-degrading map of N⌫,✏.

Let us now suppose that ⌫ and ✏ fall within the parameter region (ii). To come up with the anti-degrading map
defined in (S44), we drew intuition from the proof of Lemma 50, which demonstrates the equivalence between two-
extendibility of the Choi state and the existence of an anti-degrading map, while also considering the two-extension
of the Choi state of N⌫,✏ explicitly found in (S37). In order to show that the map A⌫,✏ in (S44) is an anti-degrading
map of N⌫,✏, we need to show that it is a quantum channel satisfying A⌫,✏ �N c

⌫,✏ = N⌫,✏. We begin by proving that
A⌫,✏ is trace preserving. By linearity, it suffices to show that for any ✓1 , ✓2 , =1 , =2 2 N with ✓1  =1 and ✓2  =2 it holds
that

Tr
h
A⌫,✏

⇣
|✓1ih✓2 |⇢1 ⌦

��p✏=1
↵⌦p

✏=2
��
⇢2

⌘i
= Tr

h
|✓1ih✓2 |⇢1 ⌦

��p✏=1
↵⌦p

✏=2
��
⇢2

i
. (S46)
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Indeed, we obtain

Tr
h
A⌫,✏

⇣
|✓1ih✓2 |⇢1 ⌦

��p✏<
↵⌦p

✏=
��
⇢2

⌘i
= ⇣✓1 ,✓2

min(<�✓1 ,=�✓1)’
:=0

2
(✓1 ,✓1 ,< ,=)
:

= ⇣✓1 ,✓2

min(<�✓1 ,=�✓1)’
:=0

s
B:

✓
< � ✓1 ,

2⌫ � 1
⌫

◆
B:

✓
= � ✓1 ,

2⌫ � 1
⌫

◆
0<�✓1 ,=�✓1 0:+✓1 ,:+✓1

= ⇣✓1 ,✓2 4
� ✏

2 (<�=)2

= Tr
h
|✓1ih✓2 |⇢1 ⌦

��p✏=1
↵⌦p

✏=2
��
⇢2

i
,

where ⇣✓1 ,✓2 denotes the kronecker delta and where we have exploited the formula for the overlap between coherent
states provided in (S6). Now, let us show that A⌫,✏ is completely positive. To achieve this, we need to find a pure
state on Hanc ⌦H⇢out , where Hanc in an auxiliary reference, such that Tranc[| ih |] > 0 and (idanc ⌦A⌫,✏)(| ih |) �
0 [10, 11, 26]. Let Hanc ..= H� ⌦ H⌫1 = !

2(R) ⌦ !2(R) and let us construct the pure state | i
�⌫1⇢1⇢2 2 Hanc ⌦ H⇢out as

follows:

| i
�⌫1⇢1⇢2

..= *⌫1⇢1
⌫ +

⌫1⇢2
✏ |#(A)i

�⌫1
|0i

⇢1 |0i⇢2

=
1

cosh(A)
1’
==0

=’
✓=0

(�1)✓ tanh=(A)
p
B;(= , 1 � ⌫) |=i

�
|= � ✓i

⌫1 |✓i⇢1

��p✏=
↵
⇢2

,

(S47)

where*⌫1⇢1
⌫ is the beam splitter unitary,+⌫1⇢2

✏ is the conditional displacement unitary, and |#(A)i
�⌫1

is the two-mode
squeezed vacuum state with squeezing A > 0. Let us now show that Tr�⌫1

⇥
| ih |

�⌫1⇢1⇢2

⇤
is positive definite on

H⇢out . Let
��)↵

⇢1⇢2
2 H⇢out . Since there exists ✓̄ , =̄ 2 N with ;̄  =̄ such that

⌦
)
��
⇢1⇢2

��
✓̄

↵
⇢1

⌦
��p✏=̄

↵
⇢2
< 0, (S47) implies

that

⌦
)
��
⇢1⇢2

Tr�⌫1

⇥
| ih |

�⌫1⇢1⇢2

⇤ ��)↵
⇢1⇢2

=
1

cosh2(A)

1’
==0

=’
;=0

tanh2=(A)B✓ (= , 1 � ⌫)
���⌦)��

⇢1⇢2
|✓i

⇢1 ⌦
��p✏=

↵
⇢2

���2

� 1
cosh2(A)

tanh2=̄(A)B
;̄
(=̄ , 1 � ⌫)

���⌦)��
⇢1⇢2

��
✓̄

↵
⇢1

⌦
��p✏=̄

↵
⇢2

���2
> 0 .

We next show that id�⌫1 ⌦A⌫,✏(| ih |) is positive semi-definite. Let ⌫2 denote the output system of A⌫,✏. Note that

id�⌫1 ⌦A⌫,✏(| ih |
�⌫1⇢1⇢2)

(i)
=

1
cosh2(A)

1’
< ,==0

<’
✓1=0

=’
✓2=0

(�1)✓1+✓2[tanh(A)]<+=p
B✓1(< , 1 � ⌫)B✓2(= , 1 � ⌫)

|<ih= |
�
⌦ |< � ✓1ih= � ✓2 |⌫1 ⌦ A⌫,✏

⇣
|✓1ih✓2 |⇢1 ⌦

��p✏<
↵⌦p

✏=
��
⇢2

⌘

(ii)
=

1
cosh2(A)

1’
< ,==0

<’
✓1=0

=’
✓2=0

min(<�✓1 ,=�✓2)’
:=0

[tanh(A)]<+=

s
B✓1(< , 1 � ⌫)B✓2(= , 1 � ⌫)B:

✓
< � ✓1 ,

2⌫ � 1
⌫

◆
B:

✓
= � ✓2 ,

2⌫ � 1
⌫

◆

0<�✓1 ,=�✓2 0:+✓1 ,:+✓2 |=1ih= |� ⌦ |< � ✓1ih= � ✓2 |⌫1 ⌦ |: + ✓1ih: + ✓2 |⌫2

(iii)
= ⌧�⌫1⌫2 .

(S48)
Here, in (i) we used the definition of | i

�⌫1⇢1⇢2 given in (S47); in (ii) we utilised the definition of the map A⌫,✏
from (S44); and in (iii) we recognised the tripartite operator ⌧�⌫1⌫2 defined in (S37), which is a quantum state

provided that ⌫ and ✏ satisfy 

✓
4
�✏/2

,

q
⌫

1�⌫

◆
 3

2 . Therefore, in such a parameter region, id�⌫1 ⌦A⌫,✏(| ih |
�⌫1⇢1⇢2)
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is positive semi-definite, and thus A⌫,✏ is a quantum channel. Let us now verify that A⌫,✏ �N
c
⌫,✏ = N⌫,✏. To show

this, note that

id� ⌦
⇣
A⌫,✏ �N c

⌫,✏

⌘
(|#(A)ih#(A)|

�⌫1
) (iv)
= Tr⌫1

⇥
id�⌫1 ⌦A⌫,✏(| ih |

�⌫1⇢1⇢2)
⇤

(v)
= Tr⌫1 [⌧�⌫1⌫2]

(vi)
= id� ⌦N⌫,✏

⇣
|#(A)ih#(A)|

�⌫2

⌘
,

(S49)

Here, in (iv) we employed (S47); in (v) we exploited (S48); and in (vi) we used that ⌧�⌫1⌫2 is a two-extension of
id� ⌦N⌫,✏ (|#(A)ih#(A)|), as established in the proof of Theorem 27. Finally, since the two-mode squeezed vacuum
state |#(A)i

�⌫
satisfies Tr⌫[|#(A)ih#(A)|�⌫] > 0, we conclude A⌫,✏ �N c

⌫,✏ = N⌫,✏.

B. Analysis of the bosonic loss-dephasing channel via its finite-dimensional restrictions

Definition 30. Let 3 2 N and let H3

.

.= Span({|=i}==0,...,3�1) be the subspace spanned by the first 3 Fock states. The qudit

restriction of the bosonic loss-dephasing channel N
(3)
⌫,✏ is a quantum channel defined by

N
(3)
⌫,✏(⇥) .

.= N⌫,✏(⇥) 8⇥ 2 T (H3) (S50)

Lemma 31. Let H� ,H⌫

.

.= !
2(R). Let N : T (H�) ! T (H⌫) be a quantum channel and let N

(3)
be its qudit restriction,

defined by

N
(3)(⇥) .

.= N (⇥) 8⇥ 2 T (H3) . (S51)

If N is (anti-)degradable, then its qudit restriction N
(3)

is (anti-)degradable.

Proof. Let N (·) = Tr⇢[+�!⌫⇢(·)+†
�!⌫⇢

] be a Stinespring representation of N , and let N c(·) = Tr⌫[+�!⌫⇢(·)+†
�!⌫⇢

] be
the associated complementary channel. Note that the isometry+�!⌫⇢ provides a Stinespring representation also for
the qudit restriction N

(3). Hence, the qudit restriction of the complementary channel N c is a complementary channel
of the qudit restriction N

(3), i.e.

(N (3))c(⇥) = N
c(⇥) 8⇥ 2 T (H3) . (S52)

Moreover, note that any degrading or anti-degrading map of N is effective for all input states, including those
restricted to H3. Consequently, an (anti-)degrading map of N is also an (anti-)degrading map of its qudit restriction
N

(3).

Corollary 32. If the qudit restriction N
(3)
⌫,✏ is not (anti)-degradable, then the bosonic loss-dephasing channel N⌫,✏ is also not

(anti)-degradable.

The following lemma shows that qudit restriction N
(3)
⌫,✏ is a qu3it-to-qu3it channel, mapping the space spanned by

{|=i}==0,...,3�1 into itself.

Lemma 33. If the input state to the bosonic loss-dephasing channel is confined into the finite-dimensional subspace spanned by

{|=i}==0,...,3�1, the resulting output state will similarly be confined to this subspace.

Proof. Examining Lemma 22 reveals that the operator |<ih= |, when acted on by the bosonic loss-dephasing channel,
is transformed into linear combinations of operators {|✓ih: |}✓< ,:= . This means that if the input state to the bosonic
loss-dephasing channel is restricted to the 3-dimensional subspace {|=i}==0,...,3�1, the output of the channel will
reside within the same subspace.

The qubit restriction N
(2)
⌫,✏ of the bosonic loss-dephasing channel coincides with the composition between the

amplitude damping channel and the qubit dephasing channel [2, 4], which we dub amplitude-phase damping channel.
Theorems 34 and 35 utilise the amplitude-phase damping channel N (2)

⌫,✏ to find that the bosonic loss-dephasing
channel N⌫,✏ is never degradable and, additionally, it is not anti-degradabile for ⌫ > 1

1+4�✏ , respectively.
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The bosonic loss-dephasing channel is never degradable

The bosonic loss-dephasing channel N⌫,✏ is never degradable, except when it coincides with either the bosonic
dephasing channel (✏ > 0 and ⌫ = 1) or the degradable pure-loss channel (✏ = 0 and ⌫ � 1

2 ), thereby complicating
the derivation of its quantum capacity [21]. This result has been previously demonstrated in [21] through pages-long
proof; however, here we provide a significantly simpler proof of this result.

Theorem 34. Let ⌫ 2 [0, 1] and ✏ � 0. The bosonic loss-dephasing channel N⌫,✏ is degradable if and only if one of the following

conditions is satisfied:

• ✏ = 0 and ⌫ 2 [ 1
2 , 1]

• ✏ � 0 and ⌫ = 1

Proof. Thanks to Corollary 32, a necessary condition for N⌫,✏ to be degradable is the degradability of the amplitude-
phase damping channel N (2)

⌫,✏. We now apply [27, Theorem 4], which establishes a necessary condition on the
degradability of any qubit channel. Specifically, the rank of the Choi state of a degradable qubit channel is necessarily
less or equal to 2. By using the notation used in (S3), the matrix associated with the Choi state of the amplitude-phase
damping channel ⇠

⇣
N

(2)
⌫,✏

⌘
in the computational basis {|00i , |01i , |10i , |11i} is given by:

1
2

©≠≠≠
´

1 0 0
p
4
�✏⌫

0 0 0 0
0 0 1 � ⌫ 0p
4
�✏⌫ 0 0 ⌫

™ÆÆÆ
¨
. (S53)

One can easily see that its rank is equal to 3 for ✏ > 0 and ⌫ 2 (0, 1). In addition, for ⌫ = 1 the bosonic loss-dephasing
channel coincides with the bosonic dephasing channel, N1,✏ = D✏, which is degradable for any value of ✏ � 0 [17].
Finally, for ✏ = 0 the bosonic loss-dephasing channel coincides with the pure-loss channel, N⌫,0 = E⌫, which is
degradable if and only if ⌫ 2 [ 1

2 , 1] [15, 16].

Necessary condition on anti-degradability via qubit restriction

The next theorem establishes the parameter range where the bosonic loss-dephasing channel is not anti-degradable.
We provide three different proofs for this theorem.

Theorem 35. Let ✏ � 0. If ⌫ > 1
1+4�✏ , then the bosonic loss-dephasing channel N⌫,✏ is not anti-degradable.

Proof 1. Assume that N⌫,✏ is anti-degradable; then substituting < = 0 and = = 1 in (S22) yields

A⌫,✏
�
E1�⌫(|0ih1|) ⌦

��0↵⌦p✏
��� = �4� 1

2 ✏E⌫(|0ih1|) . (S54)

By exploiting E⌫(|0ih1|) =
p
⌫ |0ih1|, we have

A⌫,✏
�|0ih1| ⌦ ��0↵⌦p✏

��� = �
r
4
�✏⌫

1 � ⌫
|0ih1| .

Using Lemma 48 in the Appendix, we find
q

4
�✏⌫

1�⌫  1, or ⌫  1
1+4�✏ .

Proof 2. Assume that N⌫,✏ is anti-degradable. As a consequence of (S22) and of the data-processing inequality for
the fidelity [1], we find

�

�
E⌫(|0ih0|) , E⌫(|1ih1|)

� � �

�
E1�⌫(|0ih0|) ⌦ |0ih0| , E1�⌫(|1ih1|) ⌦

��p✏
↵⌦p

✏
�� �

. (S55)
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Furthermore, we obtain
p

1 � ⌫ = �

� |0ih0| ,⌫ |1ih1| + (1 � ⌫) |0ih0| �
(i)
= �

�
E⌫(|0ih0|), E⌫(|1ih1|)

�
(ii)
� �

� |0ih0| , ��p✏
↵⌦p

✏
�� �
�

�
E1�⌫(|0ih0|), E1�⌫(|1ih1|)

�
(iii)
� �

� |0ih0| , ��p✏
↵⌦p

✏
�� �
�

� |0ih0| ,⌫ |0ih0| + (1 � ⌫) |1ih1| �
(iv)
=
p
4
�✏⌫ .

(S56)

Here, (i) follows from Lemma 10, (ii) follows from (S55) and from the fact that the fidelity is multiplicative under tensor
product [1], (iii) uses Lemma 10 again, and in (iv) we exploited that |

⌦
0
��p✏

↵
| =

p
4
�✏. This yields

p
1 � ⌫ �

p
4
�✏⌫,

or ⌫  1
1+4�✏ .

Proof 3. By exploiting Lemma 4 and the Choi matrix of the qubit channel N (2)
⌫,✏ reported in (S53), one can easily obtain

thatN (2)
⌫,✏ is anti-degradable if and only if⌫  1

1+4�✏ . Consequently, thanks to Corollary 32, the bosonic loss-dephasing
channel N⌫,✏ is not anti-degradable for ⌫ > 1

1+4�✏ .

Necessary condition on anti-degradability via qudit restrictions

Let us introduce the following quantity for any 3 2 N and ✏ � 0:

⌫3(✏) ..= max
⇣
⌫ 2 [0, 1] : N

(3)
⌫,✏ is anti-degradable

⌘
. (S57)

This quantity is relevant since it allows us to find parameter region where the bosonic loss-dephasing channel is
not anti-degradable. Specifically, for ⌫ > ⌫3(✏) the bosonic loss-dephasing channel N⌫,✏ is not anti degradable, as
established by Corollary 32. Thanks to the Proof 3 of Theorem 35, it follows that for 3 = 2 we have that ⌫2(✏) = 1

1+4�✏ ,
thereby establishing that N⌫,✏ is not anti degradable for ⌫ > 1

1+4�✏ . Through an examination of larger values of 3,
we aim to identify an extended parameter region where the channel is not anti-degradable (see Fig. 3). We begin by
proving some useful properties of the quantity ⌫3(✏).

Lemma 36. For any ✏ � 0 and 3 2 N, 3 � 2, the following facts hold:

• Fact 1: The qu3it restriction of the bosonic loss-dephasing channel N
(3)
⌫,✏ is anti-degradable if and only if ⌫  ⌫3(✏)

• Fact 2: The quantity ⌫3(✏) is monotonically increasing in ✏

• Fact 3: For 3 = 2, it precisely holds that ⌫2(✏) = 1
1+4�✏

• Fact 4: The quantity ⌫3(✏) is monotonically non-increasing in 3

• Fact 5: It holds that
1
2  ⌫3(✏)  1

1+4�✏

• Fact 6: When 3 = 3 and 4
�✏ 

p
2 � 1 (or ✏ � 0.881), it exactly holds that ⌫3(✏) = 1

1+4�✏

Proof. Fact 1. It suffices to show that for any ✏ � 0 and ⌫,⌫0 2 [0, 1] with ⌫0 < ⌫, if N (3)
⌫,✏ is anti-degradable, then so is

N
(3)
⌫0
,✏. To show this, we exploit the composition rule

E⌫1 �N⌫2 ,✏ = N⌫1⌫2 ,✏ 8⌫1 ,⌫2 2 [0, 1] , (S58)

as established by Lemma 25, implying that the channel N (3)
⌫0
,✏ can be written as the composition between N

(3)
⌫,✏ and

another channel. Consequently, Lemma 51 concludes the proof.
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Fact 2. Analogously to Fact 1, it suffices to show that for any ⌫ 2 [0, 1] and for any ✏0 � ✏ � 0, if N
(3)
⌫,✏ is

anti-degradable, then so is N (3)
⌫,✏0 . This follows from the composition rule

D✏1 �N⌫,✏2 = N⌫,✏1+✏2 8 ✏1 , ✏2 � 0 , (S59)

as proved in Lemma 25. Furthermore, Lemma 51 concludes the proof.

Fact 3. This has already been proved in the Proof 3 of Theorem 35.

Fact 4. This follows from the observation that for all 30 � 3, if N (30)
⌫,✏ is anti-degradable, then so is N (3)

⌫,✏.

Fact 5. The upper bound ⌫3(✏)  1
1+4�✏ follows from Fact 3 and Fact 4. Moreover, since the pure-loss channel

E⌫ is anti-degradable if and only if ⌫  1
2 , Fact 4 implies that ⌫3(0) � 1

2 (more specifically, one can also show that
⌫3(0) = 1

2 ). Consequently, Fact 2 concludes the proof.

Fact 6. This proof relies on the equivalence between anti-degradability of a channel and two-extendibility of its
Choi state, as established in Lemma 50. Let ⌫ and ✏ be such that ⌫ = 1

1+4�✏ and 4�✏ 
p

2 � 1, implying that ⌫ � 1p
2
.

By using Lemma 22, we obtain the Choi state of N (3)
⌫,✏ as follows:

id� ⌦N⌫,✏(|�3ih�3 |) =
1
3

2’
<=0

2’
==0

min(< ,=)’
✓=0

4
� ✏

2 (<�=)2
s✓

<

✓

◆ ✓
=

✓

◆
⌫

<+=
2 �✓ (1 � ⌫); |<ih= |

�
⌦ |< � ✓ih= � ✓ |

⌫
,

where �3 is the maximally entangled state of Schmidt rank 3. We define a two-extension ⌧̃�⌫1⌫2 of the Choi state by
the following conditions. First, ⌧̃�⌫1⌫2 satisfies the following ⌫1 $ ⌫2 symmetry for all 81 , 82 , 83 , 91 , 92 , 93 2 {0, 1, 2}:

h91 |� h92 |⌫1
h93 |⌫2

⌧̃�⌫1⌫2 |81i� |82i⌫1 |83i⌫2 = h91 |� h93 |⌫1
h92 |⌫2

⌧̃�⌫1⌫2 |81i� |82i⌫1 |83i⌫2

h91 |� h92 |⌫1
h93 |⌫2

⌧̃�⌫1⌫2 |81i� |82i⌫1 |83i⌫2 = h91 |� h92 |⌫1
h93 |⌫2

⌧̃�⌫1⌫2 |81i� |83i⌫1 |82i⌫2 .

(S60)

Furthermore, if 81 < max(82 , 83)or 91 < max(92 , 93), or if 81 > 82+83 or 91 > 92+93, then h91 |� h92 |⌫1
h93 |⌫2

⌧̃�⌫1⌫2 |81i� |82i⌫1 |83i⌫2 =
0 . We can thus define ⌧̃�⌫1⌫2 by writing only the matrix elements with respect the set {|81i� |82i⌫1 |83i⌫2} with
2 � 81 � 82 � 83 � 0 such that 82 + 83 � 81. Hence, in order to fully define ⌧̃�⌫1⌫2 , it suffices to write the matrix elements
of ⌧̃�⌫1⌫2 with respect to the set { |0i

�
|0i

⌫1 |0i⌫2 , |1i
�
|0i

⌫1 |0i⌫2 , |1i
�
|1i

⌫1 |1i⌫2 , |2i
�
|1i

⌫1 |1i⌫2 , |2i
�
|2i

⌫1 |0i⌫2 ,|2i
�
|2i

⌫1 |1i⌫2 , |2i
�
|2i

⌫1 |2i⌫2 }. This gives rise to the following 7 ⇥ 7 matrix:

0�0⌫10⌫2 1�1⌫10⌫2 1�1⌫11⌫2 2�1⌫11⌫2 2�2⌫10⌫2 2�2⌫11⌫2 2�2⌫12⌫2

0�0⌫10⌫2 1
p

1 � ⌫ 0
p

2(1 � ⌫) (1�⌫)2
⌫ 0 0

1�1⌫10⌫2

p
1 � ⌫ 1 � ⌫ 0

p
2(1 � ⌫)3

q
(1�⌫)5
⌫2 0 0

1�1⌫11⌫2 0 0 2⌫ � 1 0 0 2⌫�1
⌫

p
1 � ⌫ 0

2�1⌫11⌫2

p
2(1 � ⌫)

p
2(1 � ⌫)3 0 2(1 � ⌫)2

p
2 (1�⌫)3

⌫ 0 0

2�2⌫10⌫2
(1�⌫)2

⌫

q
(1�⌫)5
⌫2 0

p
2 (1�⌫)3

⌫ (1 � ⌫)2 0 0

2�2⌫11⌫2 0 0 2⌫�1
⌫

p
1 � ⌫ 0 0 2(1 � ⌫)(2⌫ � 1) 0

2�2⌫12⌫2 0 0 0 0 0 0 (2⌫ � 1)2

One can show by direct calculation that this matrix is positive semi-definite if and only ⌫ � 1p
2
. Note that the

matrix is positive semi-definite if and only if ⌧̃�⌫1⌫2 is positive semi-definite. The latter follows from the following
two simple facts: (i) A = ⇥ = symmetric matrix with a duplicate column is positive semi-definite if and only if the
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FIG. 3. Each curve indicates necessary and sufficient conditions where the qu3it restriction N
(3)
⌫,✏ of the bosonic loss-dephasing

channel N⌫,✏ is anti-degradable. In the region above the curve⌫5(✏), the bosonic loss-dephasing channel is never anti-degradable.

(= � 1)⇥ (= � 1) matrix obtained by deleting one of the two equal column and the corresponding row is positive semi-
definite, and (ii) A =⇥= symmetric matrix with a zero column is positive semi-definite if and only if the (=�1)⇥(=�1)
matrix obtained by deleting such a column and the corresponding row is positive semi-definite. One can also verify
Tr⌫1 ⌧̃�⌫1⌫2 = Tr⌫2 ⌧̃�⌫1⌫2 , and they are equal to the Choi state of the qutrit restriction with ⌫ = 1

1+4�✏ . We therefore
conclude that the curve ⌫ = 1

1+4�✏ provides a necessary and sufficient condition for the anti-degradability of the qutrit
channel N (3)

⌫,✏ when ⌫ � 1p
2
, or equivalently when 4�✏ 

p
2 � 1.

To numerically compute the quantity ⌫3(✏) given in (S57), we utilise the equivalence between anti-degradability
of a channel and two-extendibility of its Choi state [6]. Specifically, for small values of 3, we can determine necessary
and sufficient conditions for the anti-degradability of N (3)

⌫,✏ by numerically solving the following semi-definite program:

min
⌧�⌫1⌫2

1

s.t. ⌧�⌫1⌫2 � 0 ,

Tr[⌧�⌫1⌫2] = 1,

Tr⌫2 [⌧�⌫1⌫2] = id� ⌦N (3)
⌫,✏(|�3ih�3 |��0) ,

Tr⌫1 [⌧�⌫1⌫2] = id� ⌦N (3)
⌫,✏(|�3ih�3 |��0) .

(S61)

where |�3i is the maximally entangled state of schmidt rank 3. The channel N (3)
⌫,✏ is anti-degradable if and only if the

semi-definite program admits a feasible solution. We compute the quantity ⌫3(✏) defined in (S57) by numerically
solving the semi-definite program. The results are plotted with respect to 4

�✏ for various values of 3 in Fig. 3,
showcasing the dependence of ⌫3(✏) on ✏ for small values of 3. Our numerical analysis reveals that when ✏ is
sufficiently large, i.e. 4�✏ . 0.41 or ✏ & 0.89, the value of ⌫3(✏) consistently equals 1

1+4�✏ for all examined values of 3.
In particular, this seems to suggest that within this range of the dephasing parameter, N⌫,✏ is anti-degradable if and
only if ⌫  1

1+4�✏ . Based on this numerical exploration, we propose the following conjecture:

Conjecture 37. If ✏ is sufficiently large (✏ & 0.89), then the bosonic loss-dephasing channel N⌫,✏ is anti-degradable if and

only if ⌫  1
1+4�✏ .
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Notably, from Fig. 3 we observe that if ⌫ and ✏ satisfy ⌫ = 1
1+4�✏ with 4

�✏ & 0.41 (or ✏ . 0.89), then N⌫,✏ is not
anti-degradable.

III. COHERENCE PRESERVATION OF THE BOSONIC LOSS-DEPHASING CHANNEL

In this section we use the notation introduced in Section I H.

Theorem 38. Let ✏ � 0 and ⌫ 2 (0, 1]. For any energy constraint #B > 0, the energy-constrained two-way quantum and

secret-key capacities of the bosonic loss-dephasing channel are strictly positive,  (N⌫,✏ ,#B) � &2(N⌫,✏ ,#B) > 0.

Proof. We begin by assuming #B 2 (0, 1) and defining the two-mode state

| #B
i
��

0 ..=
p

1 � #B |00i
��

0 +
p
#B |11i

��
0 , (S62)

where the mean photon number of �0 system is equal to #B . By exploiting Lemma 22, one can observe that the state

⌧�⌫ ..= id� ⌦N⌫,✏(| #B
ih #B

|
��

0) (S63)

is effectively a two-qubit state and its matrix with respect to the computational basis {|00i , |01i , |10i , |11i} is given
by:

⌧�⌫ =
©≠≠≠
´

1 � #B 0 0
p
(1 � #B)#B4

�✏⌫
0 0 0 0
0 0 (1 � ⌫)#B 0p

(1 � #B)#B4
�✏⌫ 0 0 ⌫#B

™ÆÆÆ
¨
.

If we perform partial transpose with respect to the system ⌫, we find the matrix

(⌧�⌫)|⌫ =
©≠≠≠
´

1 � #B 0 0 0
0 0

p
(1 � #B)#B4

�✏⌫ 0
0

p
(1 � #B)#B4

�✏⌫ (1 � ⌫)#B 0
0 0 0 ⌫#B

™ÆÆÆ
¨
,

whose eigenvalues are not all positive, i.e. the state ⌧�⌫ is not PPT [28]. By exploiting the fact that any two-qubit
state is distillable if and only if it is not PPT [28], it follows that ⇢3

�
id� ⌦N⌫,✏(| #B

ih #B
|
��

0)
�
> 0 , where ⇢3 is the

distillable entanglement. On the other hand, from Lemma 26 we have that

 (N⌫,✏ ,#B) � &2(N⌫,✏ ,#B) � ⇢3

�
id� ⌦N⌫,✏(| #B

ih #B
|
��

0)
�
. (S64)

This concludes the proof for #B 2 (0, 1). Since the energy-constrained capacities are monotonically non-decreasing
in the energy constraint #B , the proof follows for any #B > 0.

Since the state id� ⌦N⌫,✏(| #B
ih #B

|
��

0) in (S63) is always entangled, it follows that the bosonic loss-dephasing
channel N⌫,✏ is never entanglement breaking [2]. We state this formally in the following theorem.

Theorem 39. For all ✏ � 0 and all ⌫ 2 (0, 1], the bosonic loss-dephasing channel N⌫,✏ is not entanglement breaking.

In the following subsection we will find an explicit strictly positive lower bound on the two-way capacities of the
bosonic loss-dephasing channel.

A. Multi-rail multi-photon encoding

Let ⇧(# , :) be the set of partitions of # objects into : (possibly empty) parts. It is well known that |⇧(# , :)| =�
#+:�1
:�1

�
=

�
#+:�1
#

�
. Clearly, we can think of each ? 2 ⇧(# , :) as a vector in N:

+, also denoted by ?, with the constraint
that

Õ
:

✓=1 ?✓ = # . For each ? 2 ⇧(# , :), define the associate :-mode Fock state as
��#?

↵
..= |?1i . . . |?:i . (S65)

174



23

Note that for ? , @ 2 ⇧(# , :), we have that
⌦
#?

��#@

↵
= ⇣? ,@ . Let us call

%# ,:

..=
’

?2⇧(# ,:)
#? (S66)

the projector onto the :-mode subspace of total photon number # . Note that the bosonic dephasing channel satisfies
that

D
⌦:
✏

���#?

↵⌦
#@

��� = 4
� ✏

2
Õ
✓
(?✓�@✓ )2

��#?

↵⌦
#@

�� = 4
� ✏

2 k?�@k2 ��#?

↵⌦
#@

�� = ( # ,: ,✏)?@
��#?

↵⌦
#@

��
, (S67)

where  # ,: ,✏ is the
�
#+:�1
#

� ⇥ �
#+:�1
#

�
matrix with entries

( # ,: ,✏)?@ ..= 4
� ✏

2 k?�@k2
. (S68)

For any
�
#+:�1
#

�
-dimensional state �, let us denote as � the following isometrically equivalent state

� ..=
’

? ,@2⇧(# ,:)
�?@

��#?

↵⌦
#@

��
. (S69)

The state �, which is termed as the rail encoding of �, is supported on the subspace of : modes with total photon
number equal to # . Now, let ⌧ be a

�
#+:�1
#

�
-dimensional state and let us calculate the output of D⌦:

✏ when the input
is ⌧:

D
⌦:
✏ (⌧) =

’
? ,@2⇧(# ,:)

⌧?@( # ,: ,✏)?@
��#?

↵⌦
#@

�� =  # ,: ,✏ � ⌧ = ⇥# ,: ,✏(⌧) , (S70)

where the operation � denotes the element-wise product between matrices and where we have introduced the
following Hadamard channel:

⇥# ,: ,✏(-) ..=  # ,: ,✏ � - , (S71)

Since D
⌦:
✏ is a (completely) positive map, this in particular shows that  # ,: ,✏ � 0. (This latter statement can also be

proved directly with techniques similar to that in the proof of [29, Lemma 15].) In practice, the :-fold application
of the bosonic dephasing channel on the :-mode #-photon code space behaves as a new Hadamard channel ⇥# ,: ,✏
with associated matrix  # ,: ,✏.

Lower bound on the two-way capacity of the bosonic loss-dephasing channel

Since under the action of N⌫,✏ photons can only be lost and never added, and each photon has a probability ⌫ of
being transmitted, the probability that an #-photon state will retain # photons at the output of the channel is exactly
⌫# . If that happens, then the state in the code space is effectively left untouched by the loss and only dephased under
the action of the Hadamard channel ⇥# ,: ,✏.

More formally, from the Kraus representation

E⌫(-) =
1’
==0

1
=! (1 � ⌫)=⌫ 0

†
0

2 0
=
-(0†)=⌫ 0

†
0

2 (S72)

it is easy to deduce the handy identity

E
⌦:
⌫

�
⌧
�
= ⌫#⌧ +

⇣
1 � ⌫#

⌘
⇣# ,: ,⌫ , (S73)

valid for all
�
#+:�1
#

�
-dimensional states ⌧, with the notation of (S69). Here, ⇣# ,: ,⌫ is a suitable :-mode state supported

on the subspace of total photon number at most # � 1, and thus ⌧⇣# ,: ,⌫ = ⇣# ,: ,⌫⌧ = 0. In turn, the above identity
implies that

N
⌦:
⌫,✏

�
⌧
�
= ⌫#  # ,: ,✏ � ⌧ +

⇣
1 � ⌫#

⌘
⇣0
# ,: ,⌫,✏ = ⌫# ⇥# ,: ,✏(⌧) +

⇣
1 � ⌫#

⌘
⇣0
# ,: ,⌫,✏ , (S74)

where once again ⇣0
# ,: ,⌫,✏ is a suitable :-mode state supported on the subspace of total photon number at most # � 1.

Therefore, we can use the channel N ⌦:
⌫,✏ to simulate ⇥# ,: ,✏ probabilistically, with probability ⌫# . The simulation

works as follows:
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(i) The input state ⌧ is encoded in the :-mode #-photon subspace according to the mapping ⌧ 7! ⌧.

(ii) The :-mode state ⌧ is sent across N ⌦:
⌫,✏, via : uses of the bosonic loss-dephasing channel.

(iii) The total photon number is measured at the output. If # photons are found then the simulation is successful,
otherwise the protocol is aborted.

A wealth of operational resource inequalities can be deduced from the above considerations. Here we limit
ourselves to the observation that the two-way quantum capacity must satisfy

&2(N⌫,✏)
(i)
� ⌫#

:

&2(⇥# ,: ,✏) . (S75)

Consequently, it holds that

&2(N⌫,✏) �
⌫#

:

&2(⇥# ,: ,✏)
(i)
� ⌫#

:

�coh
�
id ⌦⇥# ,: ,✏(| ih |)�

(iii)
=

⌫#

:

"
log2

✓
# + : � 1

#

◆
� (

 ✓
# + : � 1

#

◆�1
 # ,: ,✏

!#
.

(S76)

Here, in (ii), we used the fact that the two-way quantum capacity of a channel can be lower bounded in terms of the
coherent information [2, 4] and we introduced the two-qu3it maximally entangled state | i of dimension 3 =

�
#+:�1
#

�
.

In (iii), we used the definition of coherent information �coh(⌧�⌫) ..= ((⌧⌫) � ((⌧�⌫), with ((·) being the von Neumann
entropy, and the fact that

id ⌦⇥# ,: ,✏(| ih |) = 1�
#+:�1
#

� ’
? ,@2⇧(# ,:)

|?ih@ | ⌦ ⇥# ,: ,✏(|?ih@ |)

=
1�

#+:�1
#

� ’
? ,@2⇧(# ,:)

( # ,: ,✏)?@ |?ih@ | ⌦ |?ih@ | ,
(S77)

which implies that the spectrum of id ⌦⇥# ,: ,✏(| ih |) coincides with the spectrum of the matrix
�
#+:�1
#

��1
 # ,: ,✏.

Consequently, we have that

&2(N⌫,✏) � max
# ,:2N+

⌫#

:

"
log2

✓
# + : � 1

#

◆
� (

 ✓
# + : � 1

#

◆�1
 # ,: ,✏

!#
. (S78)

One can obtain a lower bound on the energy-constrained two-way quantum capacity &2(N⌫,✏ ,#B) by restricting the
optimisation to the values of # and : such that #

:
 #B . Indeed, note that the rail-encoded state ⌧̄ satisfies the energy

constraint as its mean photon number per mode is #

:
. In formula, we have that

&2(N⌫,✏ ,#B) � max
# ,:2N+: #

:
#B

⌫#

:

"
log2

✓
# + : � 1

#

◆
� (

 ✓
# + : � 1

#

◆�1
 # ,: ,✏

!#
. (S79)

Note that log2
�
#+:�1
#

� �( ⇣ �
#+:�1
#

��1
 # ,: ,✏

⌘
is always positive because

�
#+:�1
#

��1
 # ,: ,✏ is a

�
#+:�1
#

�
-dimensional, non-

maximally mixed, state and thus its von Neumann entropy is strictly smaller than by log2
�
#+:�1
#

�
. Consequently, we

have the following theorem.

Theorem 40. Let ✏ � 0 and ⌫ 2 (0, 1]. For any energy constraint #B > 0, the energy-constrained two-way quantum and

secret-key capacities of the bosonic loss-dephasing channel are lower bounded by

 (N⌫,✏ ,#B) � &2(N⌫,✏ ,#B) � max
# ,:2N+
#

:
#B

⌫#

:


log2

✓
# + : � 1

#

◆
� ( �

⌧# ,: ,✏
� �

> 0 . (S80)
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Here, ((·) is the von Neumann entropy, ⌧# ,: ,✏ is a
�
#+:�1
#

�
-dimensional state defined by

⌧# ,: ,✏
.
.=

✓
# + : � 1

#

◆�1 ’
? ,@2⇧(# ,:)

4
� ✏

2 k?�@k2
2 |?ih@ | , (S81)

where ⇧(# , :) .
.=

�
? 2 N: :

Õ
:

8=1 ?8 = #

 
represents the set of partitions of a set of # elements into : parts, and the vectors

{|?i}?2⇧(# ,:) are orthonormal. In particular,

 (N⌫,✏ ,#B) � &2(N⌫,✏ ,#B) > max
# ,:2N+

⌫#

:


log2

✓
# + : � 1

#

◆
� ( �

⌧# ,: ,✏
� �

> 0 . (S82)

IV. APPENDIX

A. Hadamard maps

Given an infinite matrix � = (0<=)< ,=2N , 0<= 2 C, we can introduce a superoperator �, recognised as the Hadamard

map, whose action is defined as�(|<ih= |) = 0= ,< |<ih= | for all = ,< 2 N. We are interested in establishing requirements
for an infinite matrix � to ensure that the associated Hadamard map � is a quantum channel. We begin with some
preliminaries. Let ✓ 2(N) be the space of square-summable complex-valued sequences defined as

✓
2(N) ..=

8>><
>>:
G

..= {G=}=2N , G= 2 C : kGk ..=

vt 1’
==0

|G= |2 < 1
9>>=
>>;
. (S83)

An infinite matrix � ..= (0<=)< ,=2N , 0<= 2 C defines a linear operator on ✓ 2(N). The operator norm of � is defined as
follows:

k�k1 ..= sup
G2✓2(N)
kGk=1

k�Gk = sup
{G= }=2N ,G=2CÕ1

==0 |G= |2=1

vut 1’
<=0

�����
1’
==0

0<=G=

�����
2

.

� is said to be bounded if k�k1 < 1. The following lemma, referred to as Schur test, gives a sufficent condition for
an infinite matrix to be bounded (e.g. [30, Page 24, Problem 45]).
Lemma 41. Let �

.

.= (0<=)< ,=2N , 0<= 2 C, be an infinite matrix. Suppose that there exist {?=}=2N , ?= 2 R>0 and

{@<}<2N , @< 2 R>0, and � > 0, and ✏ > 0 such that

1’
<=0

|0<= |?<  �@= and

1’
==0

|0<= |@=  ✏?< , 8< , = 2 N .

Then the matrix � satisfies k�k1  �✏. In particular, � is bounded.

By choosing ?= = @= = 1 and ✏ = � = sup
=2N

Õ1
<=0 |0<= |, we obtain the following corollary:

Corollary 42. Let � = (0<=)< ,=2N , 0<= 2 C, be an infinite Hermitian matrix. If sup
=2N

Õ1
<=0 |0<= | is finite, then � is

bounded.

Lemma 43. Let � = (0<=)< ,=2N , 0<= 2 C, be a bounded Hermitian infinite matrix. Then � is positive semi-definite as an

operator on ✓
2(N) if and only if �

(3) .
.= (0<=)< ,==0,1,...,3�1 is positive semi-definite for all 3 2 N, where �

(3)
is the 3 ⇥ 3 top left

corner of �.

Proof. Assume that �(3) is positive semi-definite for all 3 2 N. Let us pick an arbitrary G 2 ✓2(N). It is known that for
any ⌘ > 0, there exists 3 2 N and H

(3) ..= (H(3)
=
)=2N , H

(3)
=

2 C, with H(3)
=

= 0 for all = > 3, such that kG � H(3)k < ⌘ . Note
that

G
†
�G =

⇣
G � H(3)

⌘†
� G +

⇣
H
(3)

⌘†
� (G � H(3)) +

⇣
H
(3)

⌘†
�H

(3)

(i)
� �kG � H(3)k k�k1

⇣
kGk + kH(3)k

⌘
+

⇣
H
(3)

⌘†
�

(3)
H
(3)

(ii)
� �⌘ k�k1 (2kGk + ⌘) ,
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where in (i) we applied Cauchy-Schwarz inequality twice and the definition of infinity norm as follows

|(G � H(3))†� G |  kG � H(3)kk� Gk  kG � H(3)kk�k1kGk ,
|(H(3))†� (G � H(3))|  kH(3)kk� (G � H(3))k  kH(3)kk�k1kG � H(3)k ,

and, in (ii), we exploited triangular inequality to derive

kH(3)k  kH(3) � Gk + kGk  ⌘ + kGk , (S84)

together with the fact that �(3) is positive semi-definite. Hence, since ⌘ > 0 is arbitrary, we conclude that G†�G � 0,
meaning that � is positive semi-definite as an operator on ✓2(N).

A square matrix is said to be diagonally dominant if
’
<<=

|0<= |  |0== |, 8=.

In words, a square matrix is said to be diagonally dominant if for every row of the matrix, the absolute value of the
diagonal entry in a row is larger than or equal to the sum of the absolute values of all the other (non-diagonal) entries
in that row. Note that for Hermitian matrices one can exchange row with column in this definition. We proceed to
state a sufficient condition for a matrix � to be positive semi-definite as an operator on ✓2(N). While the following
sufficient condition is usually stated for finite matrices, it can be generalised to infinite matrices as per Lemma 43.

Lemma 44. [31, Chapter 6] For any 3 2 N, let � = (0<=)< ,==0,1,...,3�1 , 0<= 2 C, be a 3 ⇥ 3 Hermitian matrix with 0== 2 R�0
for all = 2 {0, . . . , 3 � 1}. � is positive semi-definite if it is diagonally dominant.

Lemma 45. Let � = (0<=)< ,=2N , 0<= 2 C be an infinite Hermitian matrix with 0== 2 R�0 ,8= 2 N. Assume that sup
=2N 0==

is finite and that � is diagonally dominant. Then � is bounded and positive semi-definite when seen as an operator on ✓
2(N).

Proof. Since

sup
=2N

1’
<=0

|0<= |  2 sup
=2N

0= ,= < 1 ,

Corollary 42 implies that � is bounded. The fact that � is positive semi-definite as an operator on ✓ 2(N) follows from
Lemma 44 together with Lemma 43.

We now present a lemma from the literature that establishes necessary and sufficient conditions for an infinite
matrix � to ensure that the associated Hadamard map � is a quantum channel. We then use it to derive an explicit
sufficient condition for an infinite matrix � to give rise to a cptp Hadamard map.

Lemma 46. [18, Lemma S4] Let �
.
.= (0<=)< ,=2N , 0<= 2 C be a bounded infinite matrix. The following requirements establish

the necessary and sufficient conditions for the associated Hadamard map � to qualify as a quantum channel:

(i) 0== = 1, 8= 2 N;

(ii) � is positive semi-definite as on operator on ✓
2(N).

As a consequence of Lemma 46 and Lemma 45, we obtain:

Lemma 47. Let �
.
.= (0<=)< ,=2N be an infinite Hermitian matrix that is diagonally dominant with 0= ,= = 1 for all = 2 N. In

this case, its associated Hadamard map � is a quantum channel.

B. Miscellaneous Lemmas

Lemma 48. Let H� and H⌫ be two Hilbert spaces and let N : T (H�) ! T (H⌫) be a quantum channel. For all normalised

states |#1i , |#2i 2 H� and

��)1
↵
,

��)2
↵
2 H⌫ it holds that

��⌦)1
��N (|#1ih#2 |)

��)2
↵��  1 . (S85)
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Proof. It holds that

��⌦)1
��N (|#1ih#2 |)

��)2
↵�� (i)

 kN (|#1ih#2 |)k1
(ii)
 kN (|#1ih#2 |)k1

(iii)
 k |#1ih#2 | k1

= 1 .

(S86)

Here, in (i), we exploited one of the definition of the operator norm in (S2). In (ii), we exploited that the trace norm
is always an upper bound on the operator norm. Finally, in (iii), we leveraged the monotonicity of the trace norm
under quantum channels [1].

Lemma 49 [10, 11]. Let H� ,H�
0 be isomorphic Hilbert spaces, possibly infinite dimensional. Let |#i

�
0
�

be a pure state that

satisfies Tr�0
⇥
|#ih# |

��
0
⇤
> 0. The generalised Choi–Jamiołkowski matrix defines an isomorphism between the set of quantum

channels from H�
0 to H⌫ and the set of bipartite states ��⌫ 2 P (H�⌫) such that Tr⌫ ��⌫ = Tr�0

⇥
|#ih# |

��
0
⇤
. Specifically, for

any quantum channel N�
0!⌫ : T (H�

0) ! T (H⌫), it holds that

N�
0!⌫

���
48

↵⌦
49

��� = 1p
⌫8⌫ 9

Tr�
h⇣��
49

↵⌦
48

��
�
⌦ 1⌫

⌘
��⌫

i
, 8 8 , 9 2 N , (S87)

where (|48i)82N and (⌫8)82N form a spectral decomposition of Tr�0
⇥
|#ih# |

��
0
⇤
, i.e. Tr�0

⇥
|#ih# |

��
0
⇤
=

Õ
8
⌫8 |48ih48 |� , and where

the state ��⌫ .
.= id� ⌦N�

0!⌫(|#ih# |
��

0) is called the generalised Choi state of N . Eq. S87 is enough to specify the channel

N�
0!⌫ completely, as the linear span of the operators

���
48

↵⌦
49

���
8 , 92N

(i.e. the set of finite-rank operators) is dense in T (H�
0).

Lemma 50 [6]. Let H� ,H�
0 ,H⌫ be isomorphic Hilbert spaces, possibly infinite dimensional. Let N�

0!⌫ : T (H�
0) ! T (H⌫)

be a quantum channel. Let |#i
�
0
�
2 H� ⌦ H�

0 be a pure state such that the reduced state Tr�0[|#ih# |
��

0] is positive definite.

Then, N�
0!⌫ is anti-degradable if and only if the state id� ⌦N�

0!⌫(|#ih# |
��

0) is two-extendible on ⌫, meaning that there

exists a state ⌧�⌫1⌫2 2 P (H� ⌦ H⌫1 ⌦ H⌫2) such that

Tr⌫2 [⌧�⌫1⌫2] = id� ⌦N�
0!⌫1(|#ih# |

��
0) ,

Tr⌫1 [⌧�⌫1⌫2] = id� ⌦N�
0!⌫2(|#ih# |

��
0), (S88)

where H⌫1 and H⌫2 are Hilbert spaces that are isomorphic to H⌫.

Proof. Let *�
0
⇢!⌫⇢ be a Stinespring dilation of the channel N�

0!⌫. Further assume that N�
0!⌫ is anti-degradable.

By definition, there exists a quantum channel A⇢!⌫ such that A⇢!⌫ �N c
�
0!⌫

= N�
0!⌫. Let us consider the tripartite

state ⌧�⌫1⌫2 , with ⌫1 , ⌫2 being copies of ⌫, defined as

⌧�⌫1⌫2 = id� ⌦ id⌫1 ⌦A⇢!⌫2

⇣
*�

0
⇢!⌫1⇢

� |#ih# |
��

0 ⌦ |0ih0|
⇢

�
*

†
�
0
⇢!⌫1⇢

⌘
. (S89)

It holds that

Tr⌫2 [⌧�⌫1⌫2] = Tr⌫2

h
id� ⌦ id⌫1 ⌦A⇢!⌫2

⇣
*�

0
⇢!⌫1⇢

� |#ih# |
��

0 ⌦ |0ih0|
⇢

�
*

†
�
0
⇢!⌫1⇢

⌘i

= id� ⌦ Tr⇢
h
*�

0
⇢!⌫1⇢

� |#ih# |
��

0 ⌦ |0ih0|
⇢

�
*

†
�
0
⇢!⌫1⇢

i
= id� ⌦N�

0!⌫1

�|#ih# |
��

0
�
,

and

Tr⌫1 [⌧�⌫1⌫2] = Tr⌫1

h
id� ⌦ id⌫1 ⌦A⇢!⌫2

⇣
*�

0
⇢!⌫1⇢

� |#ih# |
��

0 ⌦ |0ih0|
⇢

�
*

†
�
0
⇢!⌫1⇢

⌘i

= id� ⌦A⇢!⌫2

⇣
Tr⌫1

h
*�

0
⇢!⌫1⇢

� |#ih# |
��

0 ⌦ |0ih0|
⇢

�
*

†
�
0
⇢!⌫1⇢

i ⌘
= id� ⌦A⇢!⌫2 �N c

�
0!⌫2

�|#ih# |
��

0
�

= id� ⌦N�
0!⌫2

�|#ih# |
��

0
�
.
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Now, let us establish the converse. Assume that there exists ⌧�⌫1⌫2 which satisfies (S88). Let | i
�⌫1⌫2% 2 H� ⌦

H⌫1 ⌦ H⌫2 ⌦ H% be a purification of ⌧�⌫1⌫2 , with H% being the purifying Hilbert space. Note that both | i
�⌫1⌫2%

and *�
0
⇢!⌫1⇢

� |#i
��

0 ⌦ |0i
⇢

�
are purifications of id� ⌦N�

0!⌫1

�|#ih# |
��

0
�
, with H⌫2 ⌦ H% and H⇢ being their

purifying Hilbert spaces, respectively. It follows that [1] there exists an isometry+⇢!⌫2% : H⇢ ! H⌫2 ⌦H% such that
+⇢!⌫2% *�

0
⇢!⌫1⇢

� |#i
��

0 ⌦ |0i
⇢

�
= | i

�⌫1⌫2% . Hence, the quantum channel A⇢!⌫2 : T (H⇢) ! T (H⌫2), defined by
A⇢!⌫2(·) = Tr%

h
+⇢!⌫2%(·)+†

⇢!⌫2%

i
, satisfies that

id� ⌦A⇢!⌫2 �N c
�
0!⌫2

(|#ih# |
��

0) = id� ⌦A⇢!⌫2

⇣
Tr⌫1

h
*�

0
⇢!⌫1⇢(|#ih# |

��
0 ⌦ |0ih0|

⇢
)*†

�
0
⇢!⌫1⇢

i ⌘
= Tr⌫1%

⇥
| ih |

�⌫1⌫2%

⇤
= Tr⌫1 [⌧�⌫1⌫2]
= id� ⌦N�

0!⌫2

�|#ih# |
��

0
�
.

Consequently, since the pure state |#i
�
0
�

satisfies Tr�0
⇥
|#ih# |

��
0
⇤
> 0, Lemma 49 implies that A⇢!⌫2 � N

c
�
0!⌫2

=
N�

0!⌫2 , meaning that N�
0!⌫2 is anti-degradable.

Lemma 51. Let N ,M : T (H() ! T (H() be quantum channels. If either M or N is anti-degradable, then the composition

M � N is anti-degradable. Specifically, let ⇢1 and ⇢2 be the Stinespring environments of N and M, respectively. If N is

anti-degradable with anti-degrading map A⇢1!(, then (M �A⇢1!()⌦ Tr⇢2 is an anti-degrading map of M �N . Analogously,

if M is anti-degradable with anti-degrading map A⇢2!(, then Tr⇢1 ⌦A⇢2!( is an anti-degrading map of M �N .

Proof. Let +(!(⇢1 and,(!(⇢2 be Stinespring isometries associated with N and M, respectively. By considering the
following complementary channel of M �N ,

(M �N )c(⌧) = Tr(

,

(!(⇢2
+
(!(⇢1 ⌧

⇣
+
(!(⇢1

⌘† ⇣
,

(!(⇢2
⌘†�

, 8⌧ 2 T (H() ,

one can easily check that if N is anti-degradable with anti-degrading map A⇢1!(, then

[(M �A⇢1!() ⌦ Tr⇢2] � (M �N )c = M �N . (S90)

Analogously, one can easily verify that if M is anti-degradable with anti-degrading map A⇢2!(, then

[Tr⇢1 ⌦A⇢2!(] � (M �N )c = M �N . (S91)

V. GENERALISATION OF OUR METHODS TO GENERAL BOSONIC DEPHASING CHANNELS

In Theorem 27 we introduced a method to analyse anti-degradability of the bosonic loss-dephasing channel. In this
section, we show that this method can be applied also to analyse the anti-degradability of the composition between
a general bosonic dephasing channel and the pure-loss channel channel.

Given a probability distribution ?(·) over R, the associated general bosonic dephasing channel is given by

D
(?)(-) ..=

π 1

�1
d) ?()) 4 8) 0̂† 0̂ - 4�8) 0̂† 0̂ . (S92)

If ?()) is the Gaussian distribution ?()) ..= 1p
2�✏

4
� )2

2✏ , the general bosonic dephasing channel D(?) exactly coincides

with the bosonic dephasing channel D✏ analysed in this work. The action of D(?) on operators of the form |=ih< | is
given by

D
(?)(|=ih< |) = ?̃(= � <) |=ih< | , (S93)

where ?̃ is the Fourier transform of the probability distribution ?, i.e.

?̃(:) ..=
π 1

�1
d) ?()) 4 8:) . (S94)
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Let N (?)
⌫ be the composition between such a general bosonic dephasing channel D(?) and the pure-loss channel, i.e.

N
(?)
⌫

..= D
(?) � E⌫ = E⌫ �D(?)

. (S95)

We can apply the exact same method that we have introduced in the proof of Thereom 27 in order to analyse the anti-
degradability of N (?)

⌫ . The key observation is that in the proof of Theorem 27 we did not use the explicit expression of
the channel D(?) before stating (S37). This simple observation allows us to generalise our results to arbitrary bosonic
dephasing channels, as stated in the following theorem.

Theorem 52 (Sufficient condition on the anti-degradability of the composition between a general bosonic dephasing
channel and pure-loss channel). Let ⌫ 2 [0, 1) and let ?(·) be a probability distribution over R. Let � = (0<=)< ,=2N be the

infinite matrix whose components are defined by

0<=
.
.=

)̃(= � <)Õmin(= ,<)
9=0

q
B 9

�
= ,

2⌫�1
⌫

�
B 9

�
< ,

2⌫�1
⌫

� , 8 = ,< 2 N . (S96)

The channel N
(?)
⌫ is anti-degradable as long as either ⌫ 2 [0, 1

2 ] or the infinite matrix � is positive semi-definite.
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Bombs and prizes, and the communication power of a single noisy qubit

Saptarshi Roy1 ∗ Tamal Guha1 † Sutapa Saha2 ‡ Giulio Chiribella1 §

1 QICI Quantum Information and Computation Initiative, Department of Computer Science, The University of
Hong Kong, Pokfulam Road, Hong Kong

2 Department of Astrophysics and High Energy Physics, S. N. Bose National Center for Basic Sciences, Block JD,
Sector III, Salt Lake, Kolkata 700106, India

Abstract. A fundamental property of quantum information is that a single qubit, taken in isolation, can
carry at most 1 bit. The situation is different if the sender and receiver share entangled particles: in this
case, the rate at which classical information can be transmitted through a qubit channel, quantified by its
entanglement-assisted capacity, can generally exceed 1 bit. But what if the entanglement-assisted capacity
is not more than 1 bit, as it happens for an important class of qubit channels known as entanglement-
breaking? Can a noisy entanglement-breaking qubit channel be replaced by a noisy bit channel for the
purposes of classical communication? Here we answer the question in the negative. We introduce a game
where a player helps another player to find a prize hidden in one of four possible boxes, while avoiding a
bomb hidden in one of the remaining three boxes. In this game, the two players cannot be sure to avoid
the bomb if they communicate through a noisy bit channel. In contrast, they can avoid the bomb with
certainty and find the prize with 1/3 probability if they communicate through an entanglement-breaking
qubit channel, known as the universal NOT channel. The features of the quantum strategy can be simulated
through the transmission of a bit, but this simulation requires the transmission to be a noiseless bit and
to be assisted by shared randomness: without shared randomness, even the noiseless transmission of a
three-level classical system cannot match the winning probability of the quantum strategy.

Keywords: Classical communication, Entanglement breaking channel, Shared Randomness

Introduction.- A celebrated result by Holevo [1] im-
plies that a d-dimensional quantum system, taken in iso-
lation, can carry at most log d bits of classical informa-
tion, where log denotes the base-2 logarithm. This state-
ment was later generalized by Frenkel and Weiner [2],
who showed that the set of conditional probability distri-
butions achievable by a sender and a receiver through the
transmission of a d-dimensional quantum system coin-
cides with the set of conditional probability distributions
achievable through the transmission of a d-dimensional
classical system, possibly assisted by correlated random
bits shared by the sender and the receiver before the start
of the communication protocol. This result implies that,
for every possible classical task, the transmission of a
d-dimensional quantum system can be replaced by the
transmission of a d-dimensional classical system assisted
by classical shared randomness.

The situation is different when the sender and re-
ceiver pre-share entanglement. In this case, the rate
at which bits can be reliably transmitted through a
quantum communication channel is quantified by its
entanglement-assisted classical capacity [3]. For qubit
channels, the entanglement-assisted capacity can gen-
erally exceed one bit, as shown by the dense coding
protocol [4]. In this case, the transmission of a two-
dimensional quantum system is clearly superior to the
transmission of a two-dimensional classical system. But
what if the entanglement-assisted capacity is not more
than one bit? The prototype of qubit channels with
entanglement-assisted capacity no more than 1 bit is the

∗sapsoy@gmail.com
†g.tamal91@gmail.com
‡sutapa.gate@gmail.com
§giulio@cs.hku.hk

class of entanglement-breaking channels [5, 6, 7]. In gen-
eral, the transmission of a d-dimensional quantum system
through an entanglement-breaking channel can yield at
most log d bits of classical communication [7]. Hence, a
natural question is whether, for the purposes of classical
communication, the transmission of a two-dimensional
quantum system through a noisy entanglement-breaking
channel can be replaced by the transmission of a two-
dimensional classical system through a noisy classical
channel.

Figure 1: The bomb and prize game. A referee puts a
prize in one of four possible boxes, labelled as {1, 2, 3, 4},
and a bomb in one of the three remaining boxes. The
referee communicates to Alice the label b of the box con-
taining the bomb and the label x of the box containing
the prize. Then, the referee closes the boxes and sends
them over to Bob, asking him to open one box. Bob
wins if the finds the prize, under the constraint that the
bomb is avoided with certainty. In this task, he is as-
sisted by Alice, who communicates classical messages to
him through a channel with limited capacity.
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Here we answer the above question in the negative: we
provide a purely classical communication task that we
put in the form of a game where a noisy entanglement-
breaking qubit channel is more valuable than any noisy
bit channel, even with the assistance of arbitrary amounts
of shared randomness between the sender and receiver.
In stark contrast, we show that the entanglement-assisted
transmission of a qubit through a noisy entanglement-
breaking channel allows the task to be accomplished with
a finite probability of success. Finally, we analyze the ad-
ditional classical resources required to achieve the com-
munication task.
The bomb and prize game.– We now provide the precise

mathematical formulation of the bomb and prize game il-
lustrated in Figure 1. The location of the bomb and prize
is described by a pair (b, x), where b ∈ {1, 2, 3, 4} specifies
the position of the bomb and x ∈ {1, 2, 3, 4}\{b} specifies
the position of the prize. The overall strategy adopted
by Alice and Bob can be described by a conditional prob-
ability distribution p(y|b, x), where y ∈ {1, 2, 3, 4} is the
box opened by Bob. For a given configuration (b, x),
the probability of winning the game is p(x|b, x). In the
following, we will consider the worst case winning prob-
ability

pprizeworst := min
b,x

p(x|b, x) , (1)

under the constraint that the bomb is avoided, corre-
sponding to the condition

pbomb
worst = 0 with pbomb

worst := max
b,x

p(b|b, x) . (2)

We now show two key results about classical strate-
gies: (i) the bomb-avoiding condition (2) cannot be sat-
isfied by any bit channel with nonmaximal capacity, and
(ii) if the Alice and Bob do not share randomness, then
the winning probability (1) subject to the bomb-avoiding
condition (2) is zero even if a noiseless bit channel (or
even a noiseless trit channel) is available.

Result (i) is established by the following theorem:

Theorem 1 For every classical strategy using a single-
bit channel of capacity C < 1 and an arbitrary amount of
shared randomness, the worst-case probability of opening
the box containing the bomb is lower bounded as

pbomb
worst ≥

[1 − C]ln 4

8
. (3)

The proof of the theorem is provided in the technical
version.

Result (ii) is established by the following theorem:

Theorem 2 In the absence of shared randomness be-
tween Alice and Bob, the worst-case winning probability
(1) subject to the bomb-avoiding condition (2) is zero for
every classical strategy using the transmission of a clas-
sical system of dimension d ≤ 3.

The detailed proof of the theorem is in the technical ver-
sion.

It is worth noting that the above theorem provides
the best possible result in terms of dimensionality of the
transmitted classical system: indeed, if Alice could trans-
mit a 4-dimensional system through a noiseless channel,
then she could communicate to Bob the exact location of
the prize, thereby trivializing the game.

The quantum strategy. We now show that the trans-
mission of a single qubit through a noisy entanglement-
breaking channel allows Bob to avoid the bomb with cer-
tainty and to find the prize with a guaranteed probability
of 1/3. The quantum strategy uses an entanglement-
breaking channel known as the (approximate) universal
NOT channel [8] (see also [9] for an extension to d ≥ 2.)
The universal NOT channel, hereafter denoted by UNOT,
acts on an input density matrix ρ as follows:

UNOT(ρ) =
2

3
Tr[ρ] I − 1

3
ρ . (4)

Experimental realizations of this transformation have
been demonstrated with photons [10, 11]. The UNOT

channel is unitarily equivalent to the optimal universal
transpose [12, 13], which also has been implemented ex-
perimentally [14, 15, 16, 17].

The universal NOT channel can be equivalently real-
ized as a uniform mixture of three Bloch sphere rota-
tions about the three Cartesian axes; specifically, one
has UNOT(ρ) = 1

3 (XρX + Y ρY +ZρZ), where, {X,Y, Z}
are the spin-1/2 Pauli operators along x, y and z direc-
tions respectively. Since UNOT is a Pauli channel, its
entanglement-assisted capacity can be computed via a
closed-form expression [3, 18], which yields the value
CE(UNOT) = 2− log 3 ≈ 0.415. Hence, the universal NOT
channel satisfies the constraint of the bomb game: even
with the assistance of quantum correlations, it does not
allow Alice to transmit more than one bit per channel
use.

On the other hand, the entanglement-assisted trans-
mission of a qubit through the UNOT channel can be used
to avoid the bomb with certainty and to win the game
with a guaranteed probability of 1/3. The protocol that
achieves this feature is a “universal NOT version” of the
dense coding protocol [4].

Protocol 1 (UNOT dense coding) Before the start of
the protocol, Alice and Bob share two qubits A and B
in the entangled state |Φ+⟩AB = (|0⟩A ⊗ |0⟩B + |1⟩A ⊗
|1⟩B)/

√
2. Then, they perform the following operations:

1. Alice applies one of the unitary gates I,X, Y, or Z
depending on whether the bomb is in box 1, 2, 3, or
4, respectively.

2. Alice sends qubit A to Bob through the universal
NOT channel.

3. Bob measures both qubits A and B in the Bell
basis, that is, the orthonormal basis consisting of
states |Φ1⟩ := |Φ+⟩, |Φ2⟩ := (X ⊗ I)|Φ+⟩, |Φ3⟩ :=
(Y ⊗ I)|Φ+⟩, and |Φ4⟩ := (Z ⊗ I)|Φ+⟩. If the mea-
surement outcome is y, Bob will open the y-th box.
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Checking that the above protocol allows Bob to avoid
the bomb is relatively straightforward. If the bomb is
in position b ∈ {1, 2, 3, 4}, then qubits A and B are in
the state |Φb⟩. When qubit A is sent through the UNOT

channel, the final state of qubits AB is

(UNOT⊗ IB)(|Φb⟩⟨Φb|) =
1

3
I ⊗ I − 1

3
|Φb⟩⟨Φb|

=
1

3

∑
y ̸=b

|Φy⟩⟨Φy| . (5)

Hence, when Bob measures the two qubits in the Bell
basis, he will obtain an outcome y that is guaranteed to
satisfy the condition y ̸= b. Thanks to this fact, Bob
avoids the bomb with certainty. Since the value of y
is uniformly random in the set {1, 2, 3, 4} \ {b}, Bob is

guaranteed to find the prize with probability pprizeworst =
1/3.

Comparing this result with Theorem 1, we can con-
clude that the entanglement-assisted transmission of a
qubit through the UNOT channel is more valuable than
the transmission of a bit through a noisy channel, even
in the presence of shared randomness. Note also that the
net effect of Protocol 1 is to reproduce the transmission
of a four-dimensional classical system through the noisy
channel specified by the conditional probability distribu-
tion

pNOT(y|b) =

{
0 if y = b
1
3 if y ̸= b .

(6)

This channel, which we call classical 4-dimensional NOT
channel, has capacity C = 2−log2 3-bits, exactly equal to
the entanglement-assisted capacity of the universal NOT
channel. A corollary of Theorem 1 is that the classical
4-dimensional NOT channel cannot be simulated by any
noisy bit channel.

The shared randomness requirement. Theorem 2 im-
plies that, in the absence of shared randomness, even the
noiseless transmission of a trit cannot match the trans-
mission of a qubit through the UNOT channel. It is then
natural to ask how much shared randomness is needed to
reproduce the features of the quantum strategy. In the
following, we answer this question.

Consider a variant of the bomb and prize game where
the referee communicates to Alice only the position of
the bomb, without communicating the position of the
prize. A general strategy for this variant of the game
is described by the conditional probability distribution
p(y|b) that Bob opens box y when the bomb is in posi-
tion b. In this case, the worst-case winning probability
is pprizeworst := minb miny ̸=b p(y|b) and the worst-case proba-
bility of opening the bomb is pbomb

worst : maxb p(b|b). With

these settings, the maximum of pprizeworst over all strategies
p(y|b) satisfying the bomb-avoiding condition pbomb

worst = 0
is 1/3. This maximum winning probability is achieved by
one and only one strategy, corresponding to the classical
NOT channel pNOT(y|b) in Eq. (6).

We now show that every classical strategy that sim-
ulates the channel pNOT(y|b) using a noiseless bit chan-

nel must be assisted by log 3 bits of shared randomenss.
Moreover, this amount of shared randomness is sufficient:

Theorem 3 The classical 4-dimensional NOT channel
(6) can be simulated through the transmission of a single
bit if and only if the sender and receiver share log 3 bits
of randomness.

The proof is provided in the technical version. Note that
the amount of shared randomness required by the sim-
ulation is more than 1 bit: while the 4-dimensional NOT
channel can be simulated with two entangled qubits and
a noisy, entanglement-breaking qubit channel, it cannot
be simulated with two correlated bits and a noiseless bit
channel.

Simulation of the universal NOT channel. Quite re-
markably, a bit of noiseless classical communication plus
log 3 bits of classical shared randomness is also sufficient
to simulate the UNOT channel. To this purpose, Alice and
Bob can use the following protocol:

Protocol 2 (Simulation of the universal NOT channel)
Before the beginning of the protocol, Alice and Bob share
two perfectly correlated trits, with uniformly distributed
values.

1. If the value of the trit is i ∈ {1, 2, 3}, Alice mea-
sures the input qubit in the orthonormal basis Bi =

{|ψ(i)
0 ⟩, |ψ(i)

1 ⟩} corresponding to the eigenstates of
the Pauli matrix σi, with σ1 := X, σ2 := Y , and
σ3 := Z,

2. Alice uses the classical bit channel to communicate
the outcome of her measurement to Bob,

3. Upon receiving the measurement outcome j ∈
{0, 1}, Bob prepares the output qubit in the basis

state |ψ(i)
(j+1) mod 2⟩, depending on the outcome j

and on the trit value i.

On average, Protocol 2 yields the UNOT channel, as
shown in the technical version. This result can be further
generalized, showing that every entanglement-breaking
qubit channel can be simulated by using a noiseless clas-
sical bit channel assisted by shared randomness (see
the technical version). An interesting open question is
whether the result further generalizes to higher dimen-
sions.

Conclusions.- We have shown that the transmission of
a qubit through a noisy entanglement-breaking channel
cannot, in general, be reproduced by the transmission
of a bit through a noisy channel, even if the sender and
receiver share arbitrary amounts of randomness. More-
over, we have shown that even if a bit (or a trit) chan-
nel with maximal capacity is available, reproducing the
transmission of a qubit requires shared randomness. The
advantage of the transmission of a noisy qubit can be
demonstrated experimentally on a photonic platform.
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[14] F. De Martini, V. Bužek, F. Sciarrino, and C. Sias.
Experimental realization of the quantum universal
not gate. Nature, 419(6909):815–818, October 2002.

[15] Hyang-Tag Lim, Yong-Su Kim, Young-Sik Ra, Joon-
woo Bae, and Yoon-Ho Kim. Experimental re-
alization of an approximate partial transpose for
photonic two-qubit systems. Phys. Rev. Lett.,
107:160401, Oct 2011.

[16] Hyang-Tag Lim, Young-Sik Ra, Yong-Su Kim, Joon-
woo Bae, and Yoon-Ho Kim. Experimental imple-
mentation of the universal transpose operation using
the structural physical approximation. Phys. Rev.
A, 83:020301, Feb 2011.

[17] Hyang-Tag Lim, Yong-Su Kim, Young-Sik Ra, Joon-
woo Bae, and Yoon-Ho Kim. Experimental imple-
mentation of an approximate partial transpose for
two-qubit systems. In Conference on Lasers and
Electro-Optics 2012, QELS. OSA, 2012.

[18] XIAN-TING LIANG and HONG-YI FAN.
ENTANGLEMENT-ASSISTED CLASSICAL
CAPACITIES OF SOME SINGLE QUBIT QUAN-
TUM NOISY CHANNELS. Modern Physics Letters
B, 16(12):441–448, May 2002.

186



1

Appendix A: Proof of Theorem 1

The single-bit channel N available to Alice and Bob
can be represented by a conditional probability distri-
bution pchan(j|i), i, j ∈ {0, 1}, specifying the probability
that Bob receives a bit in the state j when Alice sent a
bit in the state i.

The bit channel N has unit capacity if and only if
j is an invertible function of i, that is, if and only if
pchan(j|i) = δj,i or pchan(j|i) = δj,i⊕1, where ⊕ denotes
addition modulo 2. Hence, the hypothesis that N has
non-unit capacity implies that there exists at least one
value j such that pchan(j|0) > 0 and pchan(j|1) > 0. We
call such an j an “ambiguous output” and denote its
minimum probability of the ambiguous output as

pmin(j) := min
i

pchan(j|i). (A1)

Taking the worst case over all ambiguous outputs, we
obtain the ambiguous probability

p? := max
j

pmin(j) . (A2)

In the following, we will denote by j∗ the value such
that pmin(j∗) = p?. Since the channel N has non-unit
capacity, the ambiguous probability is nonzero: p? > 0.

Let us start by analyzing the setting where Alice and
Bob do not share any correlated random bit. In this
case, Alice’s and Bob’s strategy is completely described
by an encoding channel E , used by Alice to encode
the position of the bomb into the input of channel C,
and a decoding channel D, used by Bob to convert the
output of channel C into the decision as to which box
Bob should open. The two channels are represented by
probability distributions penc(i|m) and pdec(n|j), with
m, n ∈ {1, 2, 3, 4}. Hence, the probability that Bob opens
box n when the bomb is in box m is

pin/out(n|m) := ∑
i,j

pdec(n|j) pchan(j|i) penc(i|m)

= ∑
j

pdec(n|j)Prob(j|m) , (A3)

having defined Prob(j|m) := ∑i pchan(j|i) penc(i|m).
Now, notice that the ambiguous output j∗ has probab-

ility lower bounded as Prob(j∗|m) ≥ p?, independently
of m. Denoting by pworst := maxn pin/out(n|n) the worst-
case probability that Bob opens a box containing the
bomb, we then have the bound

pworst ≥ pin/out(n|n)
≥ pdec(n|j∗)Prob(j∗|n)
≥ pdec(n|j∗) p? , ∀n ∈ {1, 2, 3, 4} . (A4)

In particular, let nmax be the most likely output of Bob’s
decoder when the output of the transmission channel

is j∗, namely pdec(nmax|j∗) ≥ pdec(n|j∗) for every n ∈
{1, 2, 3, 4}. With this definition, we have pdec(nmax|j∗) ≥
1/4, and the above bound becomes

pworst ≥
p?

4
. (A5)

Since the non-unit capacity condition implies p? > 0,
the probability of opening the box with the bomb is
nonzero.

Bound (A5) holds even if Alice and Bob share ran-
domness. If Alice and Bob pick encoding and decod-
ing operations Ek and Dk with probability λk, then
the overall input-output distribution takes the form
pin/out(n|m) = ∑k λk p(k)in/out(n|m), where p(k)in/out(n|m)
is the input-output distribution for fixed encoding and
decoding operations Ek and Dk. The worst case probab-
ility is then lower bounded as

pworst ≥ ∑
k

λk p(k)in/out(n|n)

≥ ∑
k

λk p(k)dec(n|j∗)Prob
(k)(j∗|n)

≥ ∑
k

λk p(k)dec(n|j∗) p?

= pdec(n|j∗) p? , ∀n ∈ {1, 2, 3, 4} , (A6)

having defined pdec(n|j) := ∑k λk p(k)dec(n|j) to be the
average probability that Bob opens box n upon receiv-
ing the bit value j. Defining nmax to be the value of n
that maximizes pdec(n|j∗), we then have the inequality
pdec(n|j∗) ≥ 1/4, which plugged into Eq. (A6) yields
Eq. (A5).

To conclude, we provide a lower bound to the r.h.s.
of Eq. (A5) in terms of the channel capacity. To this
purpose, note that the capacity of channel N is an upper
bound to the capacity of the binary symmetric channel
Nsym = (N +N ′)/2, where N ′ is the channel obtained
by pre- and post- composing channel N with a bit flip
(explicitly, channel N ′ corresponds to the probability
distribution p′chan(j|i) = pchan(j ⊕ 1|i ⊕ 1)). Explicitly,
the capacity of the binary symmetric channel Nsym is [1]

C(Nsym) = 1 − H(psym) , (A7)

where H(p) = −p log p− (1− p) log(1− p) is the binary
entropy, and

psym := min
{

p(0|0) + p(1|1)
2

,
p(0|1) + p(1|0)

2

}
,

(A8)

Since the binary entropy satisfies the bound H(p) ≤
[4p(1 − p)]1/ ln 4 [2], we obtain the bound

4 psym (1 − psym) ≥ [1 − C(Nsym)]ln 4

≥ [1 − C(N )]ln 4 , (A9)
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which in turn implies the bound

psym ≥ 1 −
√

1 − [1 − C(N )]ln 4

2

≥ [1 − C(N )]ln 4

2
. (A10)

Finally, note that the definition of psym implies psym ≤
p?. Hence, Eqs. (A5) and (A10) imply pworst ≥ p?/4 ≥
psym/4 ≥ [1 − C(N )]ln 4/8.

Appendix B: Proof of Theorem 2

The most general classical strategy using a classical
bit channel and no shared randomness consists of an
encoding operation, described by the conditional prob-
ability penc(s|b, x) that Alice communicates the bit value
s if the initial configuration of the boxes is (b, x), and a
decoding operation, described by the conditional prob-
ability pdec(y|s) that Bob opens box y upon receiving
the bit value s. Without loss of generality, we assume
that the communication channel from Alice to Bob is
the identity channel, since any other bit channel can be
reproduced by appending an additional noisy opera-
tion to Bob’s decoding. Now, for every s ∈ {0, 1, 2} we
define the sets Ãs := {(b, x) | penc(s|b, x) ̸= 0}, As :=
{b | ∃x : (b, x) ∈ Ãs}, and Bs := {y | pdec(y|s) ̸= 0}.
Since Bob opens at least one box with non-zero prob-
ability, the set Bs is nonempty for every s ∈ {0, 1, 2}.
The constraint that the bomb is avoided with certainty
implies the condition B0 ∩ B1 ∩ B2 = ∅: indeed, if the
intersection were nonempty, there would be a box that
has nonzero probability to be opened no matter what
value is communicated by Alice, and meaning that there
is no way to avoid the bomb with certainty if the bomb
is placed into that box.

If the union B0 ∪ B1 ∪ B2 is not the full set {1, 2, 3, 4},
then there exist a box that has zero probability to be
opened, no matter what message Alice sends. Clearly,
putting the prize in that box brings the winning prob-
ability down to zero. In the following we will assume
that B0 ∪ B1 ∪ B2 = {1, 2, 3, 4}. Now, there are two pos-
sible cases: (1) there exist two indices s and t such that
the intersection Bs ∩ Bt has cardinality at least 2, (2) the
intersection Bs ∩ Bt has cardinality at most 1 for every
s, t ∈ {0, 1, 2}. Let us consider case (1) first, assuming
s = 0 and t = 1 without loss of generality. Let y0 and y1
be the boxes in the intersection B0 ∩ B1. The condition
B0 ∩ B1 ∩ B2 = ∅ then implies that neither y0 nor y1
is contained in B2. Hence, placing the bomb in box y0
forces Alice to communicate the message s = 2, and

placing the prize in box y1 implies that Bob has zero
probability of finding the prize.

Let us now consider the case (2). Since the intersection
between any two of the sets B0, B1, and B2 has cardinality
at most 1, the set B := (B0 ∩ B1) ∪ (B1 ∩ B2) ∪ (B0 ∩ B2)
has cardinality at most 3. Hence, there exists at least
one element y0 that is not in B. Since B0 ∪ B1 ∪ B2 =
{1, 2, 3, 4}, the element y0 should be in one of the three
sets B0, B1, and B2. Without loss of generality, let us as-
sume y0 ∈ B0. To conclude, we separate two cases: (2a)
|B0| ≥ 2 and (2b) |B0| = 1. In case (2a), B0 contains at
least another index y1 in addition to y0. Hence, putting
the bomb in y1 guarantees that Alice will not communic-
ate the message s = 0, and putting the prize in y0 guar-
antees that Bob has zero probability of finding the prize.
In case (2b), the condition B0 ∪ B1 ∪ B2 = {1, 2, 3, 4} im-
plies B1 ∪ B2 = {1, 2, 3, 4, } \ {y0}. Hence, at least one
of the two sets has cardinality 2. Without loss of gener-
ality, let us assume that B2 has cardinality 2. Since the
intersection B1 ∩ B2 has cardinality at most 1, B2 must
contain at least one element y2 that is not contained in
B1, plus another element y1. Putting the bomb in y1
guarantees that Alice does not send the message s = 2,
and putting the prize in y2 guarantees that Bob has zero
probability of finding the prize.

Appendix C: Proof of Theorem 3

Here we introduce a compact notation of strategy
matrices for the strategies that can be implemented by
limited classical communication. They are characterized
by the input-output statistics that the strategy S induces.
Therefore, formally,

Definition 1. A strategy S is a 4 × 4 matrix containing
the entire set of input(b)-output(y) conditional probabilities
{p(y|b)} such that Sby = p(y|b).

In our work, we will be interested in the scenario
when Alice is allowed to communicate a classical two-
level system x ∈ {0, 1} to Bob, which finally partitioned
the full set of output indices {1, 2, 3, 4} in two disjoint
subsets Bx, x ∈ {0, 1}. With the condition B0 ∪ B1 =
{1, 2, 3, 4} and B0 ∩ B1 = ∅, only two possibilities arise:
|Bx| = 1, |Bx⊕1| = 3 and |Bx| = |Bx⊕1| = 2.

The first possibility encapsulates 4C1 = 4 differently
partitioned subsets each corresponding to a strategy
with two independent probability parameters (p, q). As
an example, consider a particular partition where B0 =
{1} and B1 = {2, 3, 4}, i.e., for x = 0 communication
from Alice, Bob always outputs 1, and for x = 1, he
outputs {2, 3, 4} with the probabilities (p, q, 1 − p − q)
respectively. Then these four strategy matrices which we
will henceforth call 1 : 3 strategies can be represented
as:
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S(1,1) :=


0 p q (1 − p − q)
1 0 0 0
1 0 0 0
1 0 0 0

 ,S(1,2) :=


0 1 0 0
p 0 q (1 − p − q)
0 1 0 0
0 1 0 0


,

S(1,3) :=


0 0 1 0
0 0 1 0
p q 0 (1 − p − q)
0 0 1 0

 and S(1,4) :=


0 0 0 1
0 0 0 1
0 0 0 1
p q (1 − p − q) 0



On the other hand, for the strategy matrices belonging
to the second class, there are 3 different set partitioning
each with the two-parameter probabilities (p, q) denot-
ing three distinct strategies. However, here when Alice
communicates x = 0 (x = 1), Bob any one index ran-

domly from B0 (B1) following a probability distribution
{p, 1− p} ({q, 1− q}). Hence under this partitioning pos-
sibility, we obtain the following three strategy matrices
which from now on will be referred to as 2 : 2 strategies:

S(2,1) :=


0 p (1 − p) 0
q 0 0 (1 − q)
q 0 0 (1 − q)
0 p (1 − p) 0

 ,S(2,2) :=


0 p 0 (1 − p)
q 0 (1 − q) 0
0 p 0 (1 − p)
q 0 (1 − q) 0

 and S(2,3) :=


0 0 p (1 − p)
0 0 p (1 − p)
q (1 − q) 0 0
q (1 − q) 0 0

 .

In all these strategy matrices S(i,j), i = 1 and i = 2 cor-
respond respectively the 1 : 3 and 2 : 2 partitioning and j
denotes the particular set partition for the corresponding
group i ∈ {1, 2}.

A general strategy receives assistance from a shared
classically correlated system. The role of any shared
correlation (randomness) is to mix these deterministic
strategies. Therefore any strategy using shared random-
ness takes the form

S =
d

∑
i=1

Pi S(xi ,yi)
(pi, qi), where ∑

i
Pi = 1. (C1)

Here d is the local dimension of the shared classically
correlated state. Also, d denotes the maximal number of
strategies S(x,y) that can be mixed.

With all these preliminaries we will now move to the
question of simulating the classical 4-dimensional NOT
channel with two-level classical communication and SR.
Let us begin with the characterization of the classical
4-dimensional NOT gate in terms of a strategy matrix.

Proposition 1. In the strategy matrix notation, the 4-

dimensional NOT gate takes the form S∗ := 1
3


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

.

Proof. The proof directly follows from the action of 4-
dimensional NOT gate, as in Eq. (??) of the main manu-
script.

Evidently, the strategy matrix S∗ cannot be obtained
from any particular S(x,y). Then the objective is to find
the min d (as in Eq. (C1)), such that we can have S = S∗

by optimally choosing the free parameters xi, yi, pi, qi,
and Pi. Our analysis reveals that the minimal dimension
of the local subsystem of the classically correlated state
to implement the 4-dimensional NOT strategy is three
(d = 3), a trit. Furthermore, we show that one requires
two perfectly correlated trits, i.e., log 3 bits of shared ran-
domness to implement the 4-dimensional NOT strategy.
We prove this to be a necessary and sufficient condition.
This rules out the possibility of using the shared ran-
domness of two classically correlated two-level systems
to implement S∗. We give a detailed description of our
findings subsequently.

Sharing two d = 3 dimensional classical systems im-
plies that the strategies that can be generated are ob-
tained from mixing at most three deterministic strategies
listed before into 1 : 3 and 2 : 2 classes. From
Eq. (C1) the most general strategies in this case
take the form S = αS(x1,y1)

(p1, q1) + βS(x2,y2)
(p2, q2) +

γS(x3,y3)
(p3, q3), where α + β + γ = 1.
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Lemma 1. Mixing three strategies from class 1 : 3 cannot
generate S∗.

Proof. Let us consider any three strategy matrices
S(1,yi)

, yi ∈ {1, 2, 3, 4} chosen from the 1 : 3 classes,
such that S = ∑3

i=1 PiS(1,yi)
(pi, qi). A closer inspection

reveals that for any three such strategies, there is one
row ȳ = {1, 2, 3, 4} \ {y1, y2, y3}, where two of the non-
diagonal elements are zero. This immediately tells that
S can not be identified as S∗.

Lemma 2. Mixing any strategy from class 1 : 3 with any
two strategies from the 2 : 2 class cannot generate S∗.

Proof. There are (3
2)× 4 = 12 ways one can choose such

a mixture of strategies. However, all such mixtures
are mathematically equivalent. This is because mixing
any two class 2 : 2 strategies can make all the non-
diagonal elements of the effective strategy matrix non-
zero. Mixing any class 1 : 3 strategy on top of this yields
identical equations for generating the optimal strategy
matrix S∗. So without loss of generality we mix S(2,1),
S(2,2), and S(1,1) and demand the generation of S∗. We
have

S = αS(2,1)(p1, q1) + βS(2,2)(p2, q2) + γS(1,1)(p3, q3),(C2)

where we have α + β + γ = 1, and pis and qis denote
the local randomness parameters. We want to solve for

S = S∗, which translates to Sij =
1−δij

3 , where ij denotes
the ijth matrix element. Here there are only 8 unknowns
but 12 equations making it an overdetermined system.
For there to be a consistent solution, we must have

S01 − S21 − S31 = −1
3

=⇒ γp3 = −1
3

. (C3)

Since γ ≥ 0, for a consistent solution, we need p3 <
0. Being a probability p3 ≥ 0 and hence a consistent
solution for S = S∗ cannot exist.

Lemma 3. log 3 bits of shared randomness is necessary to
generate the optimal strategy matrix S∗.

Proof. The possible candidates are obtained by mixing
three strategies from class 2 : 2, and mixing two class
1 : 3 strategies with a class 2 : 2 strategy.
Case 1. Here we consider mixing three strategies from
class 2 : 2. When they are mixed with probabilities α, β,
and γ we have

S = αS(2,1)(p1, q1) + βS(2,2)(p2, q2) + γS(2,3)(p3, q3),(C4)

where pi, qi denote the local randomness that Bob em-
ploys for the (2, i)th strategy. Of course the mixing
probabilities sum to unity, α + β + γ = 1. We want
to solve for S = S∗. This is equivalent to the condi-

tion Sij =
1−δij

3 , where ij in superscript denotes the ijth

matrix element. The number of non-trivial relations, as
pointed out before, is 12, but the number of unknowns is

8 making it an overdetermined system. For a consistent
solution to exist we must have

S01 + S10 + S23 + S32 =
4
3

=⇒ α + β =
2
3

,

S12 + S21 + S03 + S30 =
4
3

=⇒ β + γ =
2
3

,

S02 + S20 + S13 + S31 =
4
3

=⇒ α + γ =
2
3

.

The above equations imply that for a consistent solution
to exist we must have α = β = γ = 1

3 . It corresponds to
an initial shared randomness of log 3 bits.
Case 2.
Now we will consider the scenario where two of the 1:3
strategies is combined with one of the 2:2 class strategy.
Note that, due to the symmetric structure of each of the
individual strategy classes we can choose any two of
the 1 : 3 class, however, depending upon this choice not
all the strategies from 2 : 2 classes are equivalent. Let
us first consider the following convex combination of
strategies:

S = αS(1,1)(p1, q1) + βS(1,2)(p2, q2) + γS(2,1)(p3, q3),

where, {pk, qk|k ∈ {1, 2}} and p3, q3 are the local ran-
domness for (1, k)th and (2, 1)th strategies respectively
and α, β, γ denote the same as in Eq. (C4). Using the
notation Sij to denote the ijth element of the matrix S
and identifying S with S∗, we obtain the following equa-
tions:

S21 = β =
1
3

,

S30 = α =
1
3

,

which readily implies γ = 1
3 . On the other hand, if

they choose S(2,2) instead of S(2,1), then the similar ana-
lysis will again lead to the condition α = β = γ = 1

3 .
However, for choice of S(2,3) as the 2 : 2 class element,
both the third and fourth rows will contain zeros other
than the input position b. Hence such a strategy will
never work to obtain S∗. With a similar analysis, one
may argue that for every pair of 1 : 3 class strategies,
there exists one 2 : 2 strategy, combining which lead to
a failure in the worst case scenario. In particular, S(2,1)
should be avoided whenever the pair {S(1,1),S(1,4)} or,
{S(1,2),S(1,3)} is chosen and so on.

1. Sufficiency of a classical bit and log 3-bit SR to simulate
4-dimensional NOT channel

In the following, we will give a strategy to utilize
log 3-bits of SR, along with the communication of a
two-level classical system to simulate 4-dimensional NOT
gate. To begin with Alice and Bob have two perfectly
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correlated trits: the probability pi that Alice’s and Bob’s
trits are in the state i ∈ {1, 2, 3} is 1/3 for every i. Alice
can communicate one bit xi,b ∈ {0, 1} to Bob which
depends on i and the input b ∈ {1, 2, 3, 4}. Precisely,
xi,b = 0 whenever the input variable b to Alice is in
the sector Bi,0 = {1, 1 + i} ⊂ {1, 2, 3, 4} and xi,b = 1 for
b ∈ Bi,1 = {1, 2, 3, 4} \ Bi,0. Finally depending upon i
and xi,b, Bob produces an output y ∈ {1, 2, 3, 4} with the
following probability distribution.

p
(

y = B1(2)
i,xi,b

|i, xi,b

)
=

1
2

,

p
(

y = B1(2)
i,xi,b⊕1|i, xi,b

)
= 0, (C5)

where B1(2)
i,k are the respective elements of the set Bi,k,

i.e., Bi,k = {B1
i,k, B2

i,k}.
We are interested in the input-output statistics p(y|b)

that the above strategy produces. Formally, we can write

p(y|b) =
3

∑
i=1

pi p(y|i, xi,b) =
1
3

3

∑
i=1

p(y|i, xi,b). (C6)

Now two distinct cases arise. When y ̸= b, then there
exists a unique i∗ ∈ {1, 2, 3}, s.t. {y, b} = Bi∗ ,0 or Bi∗ ,1.
Then from (C5), it right away implies p(y|i∗, xi∗ ,b) = 0.
Again from Eq. (C5), for all i ∈ {1, 2, 3} \ i∗, we have
p(y|i, xi,b) =

1
2 . Combining the above findings with (C6),

we get

p(y ̸= b|b) = 1
3 ∑

i ̸=i∗
p(y|i, xi,b) +

1
3

p(y|i∗, xi∗ ,b) =
1
3

.

(C7)

For y = b, (C5) immediately forces p(y = b|i, xi,b) = 0
for all i. Substituting this in (C6) we get p(y = b|b) = 0.
This along with (C7) demonstrate the simulation of the
classical NOT channel (??).

Appendix D: Simulation of universal NOT channel

We will now prove that the Protocol. 2 in the main
manuscript exactly simulates the universal qubit NOT
channel.

Note that, Protocol. 2 simulates a qubit channel from
L(HA) → L(HB) which takes the form

NA→B(ρA) =
3

∑
i=1

1

∑
j=−1

pi ⟨ψ
(i)
j | ρA |ψ(i)

j ⟩ |ψ(i)
−j⟩⟨ψ

(i)
−j |B,

where, |ψ(i)
j ⟩ , j ∈ {±1} are the respective eigenstates of

the Pauli matrices σi, i ∈ {1, 2, 3} and 0 ≤ pi ≤ 1 are the
probabilities at which Alice performs the corresponding
Pauli measurement. In the following we will drop the
subscripts A and B for simplicity. Now, if Alice and

Bob share a classically correlated trit system randomly
sampled over {1, 2, 3}, then for an arbitrary two-level
quantum state ρ = 1

2 (I + n⃗.⃗σ), we obtain

N (ρ) =
1
3

3

∑
i=1

(
1 ± ni

2
)|ψ(i)

∓1⟩⟨ψ
(i)
∓1|

=
1
3

3

∑
i=1

(
1 ± ni

2
)

1
2
(I ∓ σi)

=
1
2
(I − 1

3
n⃗.⃗σ)

=
1
3

3

∑
i=1

σiρσi.

Appendix E: Simulation of entanglement-breaking qubit
channels

An entanglement-breaking channel ΦCQ is called
classical-quantum (CQ) if its action on arbitrary state
ρ ∈ L(H) can be expressed as ΦCQ(ρ) = ∑k Rk⟨ψk|ρ|ψk⟩,
where Rks are arbitrary density matrices and {|ψk⟩} con-
stitutes an orthonormal basis. Being a special case, a
qubit CQ map Φqubit

CQ assumes a particularly simple
form

Φqubit
CQ (ρ) = R0⟨ψ|ρ|ψ⟩+ R1⟨ψ⊥|ρ|ψ⊥⟩. (E1)

for all possible ρ ∈ L(C2), where C2 is the two dimen-
sional complex Hilbert space.

It is known that every extreme point of the set of
entanglement-breaking qubit maps is an extreme CQ
map E j

CQ. Therefore, the set of entanglement-breaking
qubit maps is the convex hull of extreme qubit CQ maps
[3, 4]. Hence, every entanglement-breaking qubit map
Φqubit can be written as

Φqubit(ρ) = ∑
j

pjE
j
CQ(ρ), with ∑

j
pj = 1. (E2)

Since E j
CQ is an extreme CQ map, we have E j

CQ(ρ) =

Rj
0⟨ψj|ρ|ψj⟩+ Rj

1⟨ψ⊥
j |ρ|ψ⊥

j ⟩, with Rj
0(1) = |ϕj

0(1)⟩⟨ϕ
j
0(1)|

being pure states. Now, two distant parties, one (say
Alice) in possession of an arbitrary state ρ, and the other
(say Bob) responsible for simulating Φqubit(ρ) employ
the following protocol.

Protocol 1 (Simulation of a qubit entanglement-breaking
channel). Before the protocol begins, Alice and Bob share a
classically correlated random variable k distributed with the
same probabilities as in Eq. (E2).

1. If the value of the random variable is j, which they
obtain with probability pj, Alice measures the state ρ in
her possession in the basis {|ψj⟩ , |ψ⊥

j ⟩}.
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2. Alice then communicates a bit {0 7→ |ψj⟩ , 1 7→ |ψ⊥
j ⟩}

conveying the measurement outcome to Bob.

3. Bob prepares Rj
0 or Rj

1 when the communicated bit is 0
or 1 respectively.

The net effect of the protocol is to simulate every E j
CQ

with a probability pj, and on average, generates the same
map as in Eq. (E2). Therefore, Protocol. 1 demonstrates
that every entanglement-breaking qubit channel can be
simulated by using a perfect classical bit channel assisted
by shared randomness.
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Quantum networks boosted by entanglement with a control system
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Abstract. Coherent control over the configurations of quantum devices in a network scenario offer
promising advantages in quantum information processing. So far such advantages were assuming the
control system is uncorrelated with the communicated data. Here, we explore the power of quantum
correlation between them, showing two communication tasks that can be accomplished by the information-
erasing channels if and only if the sender shares prior entanglement with a third party controlling the
network configuration. While the first task considers a-bit of classical communication keeping secret to the
controller, the second task is to establish entanglement among a number of distant receivers.

Keywords: Coherent control of path, Indefinite causal order

1 Introduction

A remarkable feature for quantum particles is their
ability to undergo multiple evolutions simultaneously, in
a coherent superposition [1, 2, 3]. The application of such
an interfering evolution to filter out the noise in a quan-
tum channel was first pointed out in [4] and thereafter,
recently studied from various information theoretic per-
spectives both theoretically [5, 6, 7, 8] and experimentally
[9, 10]. In a quantum network, such a superposition of
multiple evolutions, i.e., the quantum channels, is mod-
elled in presence of a control system, which routes the
target system through a particular path.
Alternatively, such a network model, equipped with the

control system, also provides an interesting toy model to
investigate a new causal structure that could potentially
arise in a quantum theory of gravity [11, 12]. A con-
crete example of such a new causal structure is quan-
tum SWITCH [13, 14], which connects two quantum
channels in an order determined by the quantumness
of the control and gives rise to causal nonseparability
[15, 16]. Over the past decade, quantum SWITCH is
found to offer information processing advantages in vari-
ous tasks [17, 18, 19, 20, 7, 21, 22, 23, 24, 25, 26, 27, 28]
and also stimulated several experimental investigations
[29, 30, 31, 32, 33, 34].
Previous studies of all coherently controlled networks,

including quantum SWITCH, are explored the benefits
of quantum superposition by assuming the controller ini-
tially uncorrelated with the target system. It is possible,
however, to consider a more general situation, in which
the control and the target share prior correlations. In
this situation, the data processed by the network be-
comes correlated with its evolution, potentially giving
rise to new phenomena that could not be observed in the
traditional setting.
Here, we explore the power of quantum correlations be-

tween control and target, showing that they enable two

∗g.tamal91@gmail.com
†sapsoy@gmail.com
‡giulio@cs.hku.hk

communication tasks that are impossible with an uncor-
related control, or even with a classically correlated one.
Both the tasks involve an assistance of the controller,
who also shares a prior quantum correlation with the
sender. The controller, for instance, can be considered
as a communication company responsible for the connec-
tion between the sender and the receiver, or in general,
any third party who has access on the outcomes of the
measurement performed on the control system.

Our first task considers perfect communication of the
classical information via completely information-erasing
channels and also without leaking any information to the
controller. The second task is to establish bipartite, or
more generally, multipartite entangled network between
sender and a number of spatially separated receivers via
the same completely information-erasing channels. We
show that both the tasks can be accomplished perfectly
if and only if the sender and the controller initially shares
a maximally entangled state.

2 Basic Framework

The general quantum evolutions are referred as quan-
tum channels acting on the set of quantum states. Math-
ematically, the action of any quantum channel (say E)
on a quantum system (ρ) can be identified with a non-
unique set of operators ({Ei}), namely the Kraus opera-
tors, summed up to the identity operator on the system
Hilbert space.

Quantum SWITCH, in its simplest form, considers two
such quantum channels E and F acting on a single target
system in a controlled-order fashion and gives rise to a
combined channel S(E ,F) acting jointly on the target-
control pair. In particular, the target effectively passes
through two different quantum channels E ◦ F or F ◦ E
depending upon whether the control system is in |0⟩ or
|1⟩ state. In the present context E and F are regarded
as completely information erasing qubit channels, which
we will denote as E0 and E1 respectively. Here, Eψ rep-
resents a channel which produces a fixed quantum state
|ψ⟩ independent of the input system. The Kraus opera-
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tors for the combined SWITCH channel S(E0, E1) can be
found in the main manuscript [35], where we have also
considered the SWITCH action of d-different completely
information erasing qudit channels {E0, E1, · · · , Ed−1}.
The control over the choice of the same quantum chan-

nels E0 and E1 can be described in a similar manner.
Here, the target system will pass through the channel E0
or, E1, whenever the control is in the state |0⟩ or, |1⟩ re-
spectively. We will denote the combined channel action
on the target-control quantum system for the controlled
choice configuration as T (E0, E1) and the corresponding
Kraus operators can be found in our main manuscript
[35].
It is important to mention that while the controlled-

order configuration (quantum SWITCH) S(E0, E1) de-
pends only on the channels, the Kraus operators of
controlled-choice configuration T (E0, E1) involves a cou-
ple of complex parameters, generally referred as vacuum
amplitudes from the experimental perspectives [6, 36].
Physically, these externally tunable parameters carry the
information of the trivial path, i.e., the path which is not
used in a particular instance of choice.
In our main manuscript [35], it is shown in detail

that for a particular choice of these external parame-
ters, the effective action of T (E0, E1) exactly matches
with that of the S(E0, E1), even when more numbers
of orthogonal completely information erasing channels
{E0, E1, · · · , Ed−1} are considered. This, in turn, helps us
to continue our analysis only with the controlled-order
configuration of these channels, which at the same time
holds true for the controlled-choice configuration.

3 Private Classical Communication

Consider a scenario where the sender Alice would like
to communicate a bit of classical information to a distant
receiver Bob. Unfortunately, they do not have access to
clean classical channel, instead connected via a pair of
completely information erasing set-reset channels: one of
them (E0) produces the bit ”0” and the other (E1) pro-
duces ”1” irrespective of any input they fed into the line.
However, there is a third party Charlie who has access to
a controlling quibt which can rout the sent bit through
these channels in any arbitrary order. Still there is no
way to establish perfect classical communication between
Alice and Bob, keeping Charlie completely ignorant, by
probing the channels in a definite causal order. Inter-
estingly, the SWITCH action S(E0, E1) has a decoher-
ence free subspace spanned |0⟩ ⊗ |0⟩ and |1⟩ ⊗ |1⟩ (see
our main manuscript [35] for detailed analysis), which
contains both states |Φ±⟩ := 1√

2
(|0⟩ ⊗ |0⟩ ± |1⟩ ⊗ |1⟩).

Therefore, if Alice initially shares a maximally entangled
state |Φ+⟩ with Charlie, then she can encode the classi-
cal bit x ∈ {0, 1} on her qubit by applying nothing or, a
σx rotation respectively. In either case, the state will be
transferred intact after the SWITCH action and Char-
lie will remain ignorant about the message x since it is
impossible distinguish between |Φ±⟩ just by performing
measurement on the control qubit. Then Charlie can per-
form a σx measurement on his qubit and communicate

Figure 1: Communication with the assistance of corre-
lations with a control system. Sender A communicates
to receiver B through two noisy channels with the assis-
tance of a third party, C, who controls the configuration
of the two channels. We focus on the case where the con-
figuration is either the order of the noisy channels (a), or
the choice of which channel is used (b). The controller
and the sender initially share an entangled state (dotted
line on the top left). Then, the sender encodes some in-
put data, by performing local operations on her part of
the entangled state. The output of these operations is
a signal that is sent through the network, and possibly
some auxiliary systems that the sender will keep in her
laboratory. After transmission, the controller assists the
receiver by providing him classical information extracted
from the control system.

the information classically to Bob. Finally, performing
again a σx measurement on his qubit Bob can decode the
bit x perfectly: x = 0 when Bob’s outcome is same with
that of Charlie and x = 1 otherwise (see Fig. 1).It can
be shown that the initial maximal entanglement between
Alice and Charlie is necessary for the perfect accomplish-
ment of the task. This, along with its d-dimensional gen-
eralization, leads us to the following theorem, proof of
which is presented in our main manuscript [35].

Theorem 1 A classical dit can be communicated, with
no leakage to the controller, through d orthogonal
information-erasing channels in d coherently controlled
configurations if and only if the control and target are
initially in a d-dimensional maximally entangled state.

Theorem 1 also highlights a fundamental difference be-
tween protocols using control over the configurations of
channel configuration and protocols using the noisy chan-
nels in a fixed configuration, while allowing control over
operations performed before and after each noisy chan-
nel [37]. Such a protocol allow Alice to communication
the classical information through the control, in a way
which is completely independent of the noisy channels
[38]. However, it generally leaks information to Charlie,
violating the privacy requirement of the present task (see
[35] for detailed analysis).
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4 Establishment of Multipartite Entan-
glement

Our second task is to establish entanglement between
the sender (Alice) and an N numbers of spatially sep-
arated receivers (Bobs), all of whom are connected via
completely information erasing channels to Alice. While
the general scenario with an arbitrary N is discussed
in our main manuscript [35], here we will consider only
N = 2 case. Note that, being completely information
erasing, such channels acting on one part of a multipartite
quantum state, destroy any form of initial correlations
the state possessed and hence obviously entanglement-
breaking too. This suggests that it is impossible to estab-
lish entanglement between sender and receivers via these
channels, even in any possible definite causal orderings.
However, if Alice is allowed to share a maximally entan-
gled state |Φ+⟩ with Charlie, using two ancillary qubit
|0⟩ ⊗ |0⟩ and applying C-NOT gate on each of them she
can prepare a four-partite GHZ state 1√

2
(|0⟩⊗4 + |1⟩⊗4).

Then keeping the first qubit with her, Alice can send
other two qubits via individual SWITCH channels. In-
terestingly, it transfers the GHZ state unaffected at the
receivers end (see our manuscript [35]), which could also
be understood intuitively, by recalling the fact that ev-
ery individual SWITCH line admits a decoherence free
subspace. However, the crucial point here is that using a
single control qubit and two different transmission lines
of completely information erasing channels E0 and E1 it is
possible to preserve the subspace spanned by |0⟩⊗|0⟩⊗|0⟩
and |1⟩⊗|1⟩⊗|1⟩. Finally, by performing the Fourier mea-
surement on the control qubit, Charlie can communicate
the outcome to any of the receivers (say Bob1) and ac-
cordingly Bob1 can apply a local unitary to establish a
tripartite GHZ state among Alice, Bob2 and himself. In
particular, Bob1 will do nothing or apply a σx rotation if
Charlie communicates + or −, respectively (see Fig 2).
Also, in this case we have proved the necessity of max-

imal entanglement between target and control system for
GHZ distribution [35]. This result and its d-dimensional
generalization is contained in the following theorem.

Theorem 2 Coherent control on the configuration of d
orthogonal information-erasing channels enables perfect
establishment of d-dimensional GHZ states between the
sender and N spatially separated receivers if and only if
the sender and controller initially share a d-dimensional
maximally entangled state.

Besides of its various information theoretic applications
[39, 40, 41], a distributed GHZ-state can be used to
achieve a task, namely Random Receiver Quantum Com-
munication (RRQC) [23], where the goal is to transfer the
quantum information to one of many receivers, however,
whose identity will only be disclosed after the commu-
nication. Strikingly, initial target-control entanglement
allows us to accomplish RRQC with completely informa-
tion erasing channels, while in lack of such entanglement
the task can only be achieved with channels which pre-
serve classical information [23].

Figure 2: Distribution of entanglement to N = 2 spa-
tially separated parties through coherently controlled
information-erasing channels. The task can be perfectly
achieved with the assistance of shared entanglement be-
tween the qubit at the sender’s end, and a qubit used to
control the configuration of channels between the sender
and each receiver.

5 Conclusion

In this work we initiated the exploration of quantum
networks whose configuration is entangled with the state
of a control system. We focused on applications to quan-
tum communication, identifying two tasks that can be
perfectly achieved if and only if the sender and the con-
troller initially share maximal entanglement.

Both the tasks highlights the power of initial target-
control quantum correlation in compared to their un-
correlated or even classically correlated configurations.
Moreover, the first task points out that the coherent
controlled configurations of noisy channels are fundamen-
tally different from those of other protocols where the en-
coded information bypassed via the controller, avoiding
the actual noises. The coherently controlled configura-
tions in our work involves both the coherently controlled
order as well as the coherently controlled choice configu-
ration of the completely information erasing channels.

While in this work we focused on quantum communi-
cation, we believe that protocols using quantum corre-
lations with the configuration of quantum networks will
have significant implications also in other quantum tech-
nology, likely including quantum metrology, thermody-
namics, and computation. Such protocols are poten-
tially within reach with existing photonic setups, and
would mark a new step in the development of a quantum
technology of coherent control over the configurations of
quantum networks.
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Časlav Brukner, and Philip Walther. Experimental
verification of an indefinite causal order. Science
Advances, 3(3), March 2017.

[31] K. Goswami, C. Giarmatzi, M. Kewming, F. Costa,
C. Branciard, J. Romero, and A. G. White. Indef-
inite causal order in a quantum switch. Phys. Rev.
Lett., 121:090503, Aug 2018.

[32] Kejin Wei, Nora Tischler, Si-Ran Zhao, Yu-Huai Li,
Juan Miguel Arrazola, Yang Liu, Weijun Zhang, Hao
Li, Lixing You, Zhen Wang, Yu-Ao Chen, Barry C.
Sanders, Qiang Zhang, Geoff J. Pryde, Feihu Xu,
and Jian-Wei Pan. Experimental quantum switching
for exponentially superior quantum communication
complexity. Phys. Rev. Lett., 122:120504, Mar 2019.

[33] Yu Guo, Xiao-Min Hu, Zhi-Bo Hou, Huan Cao, Jin-
Ming Cui, Bi-Heng Liu, Yun-Feng Huang, Chuan-
Feng Li, Guang-Can Guo, and Giulio Chiribella.
Experimental transmission of quantum information
using a superposition of causal orders. Phys. Rev.
Lett., 124:030502, Jan 2020.

[34] K. Goswami and J. Romero. Experiments on quan-
tum causality. AVS Quantum Science, 2(3):037101,
October 2020.

[35] Tamal Guha, Saptarshi Roy, and Giulio Chiri-
bella. Quantum networks boosted by entanglement
with a control system. Physical Review Research,
5(3):033214, 2023.

[36] Augustin Vanrietvelde and Giulio Chiribella.
Universal control of quantum processes us-
ing sector-preserving channels. arXiv preprint
arXiv:2106.12463, 2021.
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Abstract. We introduce the task of shadow process simulation, where the goal is to reproduce the
expectation values of arbitrary quantum observables at the output of a target physical process. When the
sender and receiver share no-signaling resources, we show that the performance of shadow process simulation
exceeds that of conventional process simulation protocols in scenarios including communication, noise
simulation, and data compression. Remarkably, shadow simulation provides increased accuracy without
any increase in the sampling cost. Overall, shadow simulation provides a unified framework for a variety of
quantum protocols, including probabilistic error cancellation and circuit knitting in quantum computing.

Keywords: Quantum Shannon Theory, Quantum Channel Simulation, Quantum Communication

1 Introduction

Quantum channel simulation [1, 2, 3, 4, 5, 6, 7] is a
fundamental primitive in quantum Shannon theory. It
serves as an abstraction of many practical tasks in quan-
tum computing and quantum information processing, in-
cluding quantum communication and quantum error cor-
rection. The aim of quantum channel simulation is to
reproduce the output states of a target channel using an
available channel N .
However, in many practical scenarios, what we are in-

terested in is shadow information, i.e., the information
about the expectation values of all possible observables.
Shadow information unravels many physical properties
of a quantum system, and its importance has motivated
the invention of protocols such as shadow tomography [8]
and classical shadow [9]. In this work, we ask the ques-
tion that what if we only want to transmit the shadow
information through quantum channels? Would it be an
easier task than transmitting the quantum state itself?
To answer this question, we introduce a new quan-

tum information processing task called shadow process
simulation, where the goal is to reproduce the expecta-
tion values of all possible observables at the output of
a target quantum channel. Shadow process simulation
can be regarded as a generalization of quantum chan-
nel simulation. This generalization is useful for quantum
information processing in the near term, where classi-
cal post-processing of expectation values can be used to
simulate larger quantum memories [10, 11, 12, 13], probe
properties of quantum systems [14, 9, 15], mitigate er-
rors [16, 17, 18, 19, 20, 21], and simulate unphysical op-
erations [22, 23, 24].

We start the investigation under a framework where
the two parties involved in this task are allowed to per-
form local operations assisted by shared classical random-
ness. In particular, within this framework we establish

∗This submission is based on arXiv:2401.14934.

the following:

• We prove that shared randomness together with
post-processing can simulate arbitrary no-signaling
resources, providing a complete characterization of
randomness-assisted shadow simulation codes.

• We find in several applications that shadow simu-
lation overcomes the limits of conventional channel
simulation at the price of an increase in the num-
ber of samples needed to accurately estimate the
expectation values.

• We also find scenarios where shadow simulation
achieves lower error than conventional channel sim-
ulation without any sampling overhead, demon-
strating a strict advantage of shadow simulation.

Our work challenges a common interpretation of quan-
tum states. While the quantum state is often regarded as
an encoding of the expectation values of arbitrary observ-
ables, we show that transferring an encoding of all expec-
tation values is a much less demanding task than trans-
mitting the quantum state. In this respect, the quantum
state appears to be more than just a catalogue of expec-
tation values.

2 Framework of shadow process simula-
tion

Conventional channel simulation aims to simulate the
action of a target channel M by using an available chan-
nel N . To accomplish this simulation, Alice and Bob per-
form local encoding and decoding channels E and D, re-
spectively, thus obtaining the new channel D◦N◦E = M.
In shadow simulation, because the final result is the ex-
pectation value of some observable, which is obtained by
multiple rounds of measurement, Alice and Bob can sam-
ple their local operations E and D from sets of channels
{Ej} and {Dj} in each round as in Figure 1. We allow
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Figure 1: Alice and Bob are connected through a quan-
tum channel N . The task is to enable Bob to estimate
the expectation value Tr[OM(ρ)] of an arbitrary observ-
able O on the output state M(ρ) produced by a target
channel M when acting on an arbitrary input state ρ of a
reference system R and a system A′ in Alice’s laboratory.

them to share classical randomness so that they can coor-
dinate their local operations. After the output has been
measured, Bob can post-process the measurement statis-
tics, taking arbitrary linear combinations of the outcome
probabilities. In this way, Alice and Bob can simulate
any linear map of the form

S̃(N ) =
∑
j

λjDj ◦ N ◦ Ej . (1)

The linear map S̃ is an example of a supermap [25], that
is, a map acting on the vector space spanned by quan-
tum operations. Due to the possible presence of negative
coefficients in the set {λj}, S̃ generally does not trans-
form quantum channels into quantum channels. Instead,
it transforms Hermitian-preserving maps into Hermitian-
preserving maps, and we call such a supermap a virtual
supermap.
A virtual supermap S̃ of the form (1) represents

a randomness-assisted shadow simulation code, corre-
sponding to a virtual bipartite process Ŝ :=

∑
j λj Ej ⊗

Dj . It is rather straightforward to see that this virtual
process is no-signaling, meaning that no information is
exchanged between Alice and Bob. The converse is less
straightforward but turns out to be true:

Theorem 1 A virtual supermap S̃ is a randomness-
assisted shadow simulation code if and only if the cor-
responding virtual process Ŝ is no-signaling.

Theorem 1 provides a complete characterization of
the randomness-assisted shadow simulation codes and al-
lows us to directly study shadow process simulation with
no-signaling shadow simulation codes, which are linear
combinations of quantum no-signaling codes. Sampling
over different quantum codes generally leads to a sam-
pling overhead, meaning that more rounds of data col-
lection are needed to estimate the desired expectation
values [22, 23, 24]. We define the sampling cost of the

code S̃ as

csmp

(
S̃
)
:= inf

{
p+ + p−

∣∣∣ Ŝ = p+Ŝ+ − p−Ŝ−, p± ∈ R+,

Ŝ± ∈ CPTP ∩NS
}
, (2)

where CPTP and NS denote the set of completely pos-
itive, trace-preserving maps and the set of no-signaling
virtual processes, respectively, and R+ is the set of non-
negative real numbers. Note that every conventional

channel simulation protocol has csmp

(
S̃
)
= 1, since the

map Ŝ is a no-signaling channel. The sampling cost
csmp characterizes the range of post-processed measure-
ment outcomes, and a wider range requires more rounds
of measurement to accurately estimate the expectation
value.

3 Surpassing the limits of quantum chan-
nel simulation

We illustrate the power of shadow simulation in three
applications. The first application we consider is com-
munication, which can be viewed as the simulation of
an identity channel acting on a given number of qubits.
The key quantity to study in communication is capac-
ity, which measures the highest dimension of an iden-
tity channel that one can simulate. Here, we define the
one-shot γ-cost shadow capacity assisted by no-signaling
resources as

Q
(1)
γ,NS(N ) := sup

d,Ŝ∈NS

{
log2 d

∣∣∣ S̃(N ) = idd, csmp

(
S̃
)
≤ γ

}
,

(3)

where the dimension d is optimized over positive inte-
gers. In the technical version, we provide an explicit
semidefinite programming expression for the shadow ca-
pacity for every given γ. This expression extends the
previously known expression for the one-shot quantum
capacity assisted by no-signaling resources [4, 26], which
can be retrieved in the special case γ = 1. For γ > 1,
we show that the one-shot shadow capacity is generally
larger than the one-shot quantum capacity. A concrete
example is provided below:

Theorem 2 Let Ndepo,p(ρ) = pρ + (1 − p)12/2 be a
single-qubit depolarizing channel, where p ∈ [0, 1] is a
probability and 12 is the identity operator on C2. For
γ ≥ 1, the one-shot zero-error shadow capacity assisted
by no-signaling resources is

Q
(1)
γ,NS(Ndepo,p) = log2

⌊√
2pγ + p+ 1

⌋
. (4)

Theorem 2 shows that a qubit depolarizing channel can
be used to transmit the expectation values of all observ-
ables on a quantum system of arbitrarily high dimension,
at the price of an increased sampling cost, provided that
the channel is not completely depolarizing (p ̸= 0). This
fact is interesting because, for p ≤ 1/3, the depolariz-
ing channel is entanglement-breaking [27] and therefore
it cannot reliably transmit quantum states, even if in-
finitely many copies of it are available.

In the technical version, we also show similar results in
the dual task to communication, that is, the simulation
of a target noisy channel using a noiseless one. In this
case, the key quantity is the simulation cost, defined as
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Figure 2: Compared with that of conventional quantum
channel simulation (horizontal lines), the minimum error
in the shadow simulation case is smaller with the same
or even lower cost budget.

the number of noiseless qubits that must be sent from
the sender to a receiver. The shadow simulation cost
generalizes the quantum simulation cost studied in the
conventional scenario [4, 7] and can generally be reduced
by increasing the sampling cost.
Besides communication and noisy channel simula-

tion, shadow simulation also allows simulating high-
dimensional noiseless channels using low-dimensional
ones. This shadow simulation can also be viewed as a
form of quantum compression, where the goal is to store
the expectation values of all possible observables. Alter-
natively, one can view this shadow simulation as the sim-
ulation of a high-dimensional quantum measurement us-
ing a low-dimensional one. In the following theorem, we
provide an exact characterization of the minimum sam-
pling cost required for this shadow compression task.

Theorem 3 Given identity channels idd and idd′ with
d′ ≥ d ≥ 2, the minimum sampling cost of an exact
shadow simulation of idd′ using idd and no-signaling re-
sources is 2d′

2
/d2 − 1.

This theorem implies that one can perfectly shadow-
simulate the transmission of an arbitrarily large num-
ber of qubits, and thus any quantum channel, using only
a single-qubit identity channel, a task that cannot be
achieved in conventional channel simulation. Further-
more, it also implies that every channel with non-zero

shadow capacity Q
(1)
γ,NS for some γ can shadow-simulate

every other channel, generalizing the result of Theorem 2
for single-qubit depolarizing channels.

4 Achieving lower error without sam-
pling overhead

In the zero-error scenario, we have seen that the
shadow capacity and shadow simulation cost coincide
with the conventional capacity and simulation cost for
γ = 1. In stark contrast, we now show that in the ap-
proximate scenario, shadow simulation can achieve lower
error than conventional channel simulation even if γ = 1.

In this scenario, our goal is to convert channel N into
an approximation of channelM. We define the minimum
error achievable with sampling cost bounded by γ based
on the diamond distance:

ε∗γ,NS(N ,M) := inf
Ŝ∈NS

{
1

2

∥∥∥S̃(N )−M
∥∥∥
⋄

∣∣∣∣ csmp

(
S̃
)
≤ γ

}
.

(5)

We use the diamond distance because, as we show in
the technical version, it captures the worst case error of
measuring observables. Figure 2 presents the minimum
errors in both shadow communication and noisy chan-
nel simulation at different cost budgets ranging from 0.9
to 1.2 for some commonly used quantum channels. Sur-
prisingly, shadow simulation codes achieve smaller errors
at the same or even lower levels of sampling cost com-
pared with quantum simulation codes. This implies that
classical post-processing can enhance the transmission of
expectation values even if no sampling overhead is in-
volved.

5 Conclusions

In this work, we introduced the task of shadow simula-
tion of quantum channels, showing that transmitting and
processing expectation values of arbitrary observables is
generally a less demanding task than transmitting and
processing quantum states. Besides their foundational
interest, our results are relevant to practical applications
to NISQ quantum technologies. Our work provides new
efficient methods for measuring observables with noisy
quantum devices, and new communication protocols for
transmitting multiple complementary pieces of informa-
tion, opening up a systematic way to study new quantum
protocols that sample over different transformations of
quantum processes.
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We introduce the task of shadow process simulation, where the goal is to reproduce the expec-
tation values of arbitrary quantum observables at the output of a target physical process. When
the sender and receiver share no-signaling resources, we show that the performance of shadow pro-
cess simulation exceeds that of conventional process simulation protocols in a variety of scenarios
including communication, noise simulation, and data compression. Remarkably, shadow simulation
provides increased accuracy without any increase in the sampling cost. Overall, shadow simula-
tion provides a unified framework for a variety of quantum protocols, including probabilistic error
cancellation and circuit knitting in quantum computing.

Introduction.— “What is a quantum state?” is one
of the central questions in the foundations of quantum
mechanics. A minimal interpretation is that a quantum
state is a compact way to represent all expectation values
of the possible observable quantities associated to a given
system. This interpretation may suggest that transmit-
ting a quantum state from a place to another is equiv-
alent to transferring information about the expectation
values of arbitrary observables. In this paper, we show
that this equivalence does not hold when the sender and
receiver share random bits: in this case, transferring in-
formation about all possible expectation values is a much
less demanding task than transferring the quantum state.
Some instances of this phenomenon can be derived from
results on error mitigation [1–3], while other more radical
instances emerge from a new task that we name shadow
simulation of quantum processes.

The settings of shadow simulation are illustrated in
Figure 1, and we only consider finite-dimensional quan-
tum systems. A sender, Alice, has access to a quantum
communication channel N that transfers quantum states
to a receiver, Bob. Initially, Alice has a quantum system
A′, which may be entangled with a reference system R
and together in an arbitrary state ρ possibly unknown
to her. Bob has a device that measures an arbitrary
observable O, possibly unknown to him. The goal of
shadow simulation is to enable Bob to estimate the ex-
pectation value Tr[OM(ρ)] for a target quantum channel
M. To achieve this goal, Alice and Bob perform pre-
and post-processing operations Ej and Dj , coordinating
their actions using shared random bits. To estimate the
expectation value Tr[OM(ρ)], Bob will perform measure-
ments at the output of the channel N and perform clas-
sical post-processing on the measurement outcomes. The
protocol is successful if Bob’s estimate deviates from the
true value Tr[OM(ρ)] by less than a given error toler-

FIG. 1. Shadow simulation of quantum channels. A
sender (Alice) and a receiver (Bob) are connected through a
quantum channel N . The task is to enable Bob to estimate
the expectation value Tr[OM(ρ)] of an arbitrary observable
O on the output state M(ρ) produced by a target channel
M when acting on an arbitrary input state ρ of a reference
system R and a system A′ in Alice’s laboratory. To achieve
this task, Alice and Bob can coordinate their operations Ej

and Dj by sharing random bits.

ance ϵ, for every possible state ρ and for every possible
observable O.

Shadow simulation can be viewed as a generalization
of the task of quantum channel simulation [4–10]. The
crucial difference is that shadow simulation does not aim
at reproducing the output states of a target channel, but
only their “shadow information” [11, 12], i.e., the infor-
mation about the expectation values of all possible ob-
servables. This generalization is useful for quantum infor-
mation processing in the noisy intermediate-scale quan-
tum (NISQ) era [13], where classical post-processing of
expectation values can be used to simulate larger quan-
tum memories [14–17], probe properties of quantum sys-
tems [18–20], mitigate errors [1, 2, 21–24], and simulate
unphysical operations [25–27].

Remarkably, we find that shadow simulation is not
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constrained by the limits of conventional channel sim-
ulation. For example, we show that one can perfectly
shadow-simulate the transmission of an arbitrarily large
number of qubits using only a single-qubit channel, a
task that cannot be achieved in conventional channel sim-
ulation. In this example, the transmission of a larger
number of qubits is simulated at the price of an increase
of the number of samples needed to accurately estimate
the expectation values. Quite surprisingly, we also find
scenarios where shadow simulation achieves lower error
than conventional channel simulation without any over-
head in sampling cost, provided that Alice and Bob have
access to no-signaling quantum resources. Overall, our
results reveal that shared classical randomness and clas-
sical post-processing are valuable resources for quantum
communication and other quantum technologies.

Framework: virtual supermaps.— In conventional
quantum channel simulation, the aim is to simulate the
action of a target channel M (with input A′ and output
B′) by using an available channel N (with input A and
output B). To convert channel N into an approxima-
tion of channel M, Alice and Bob perform encoding and
decoding channels E and D in their local laboratories, re-
spectively, thus obtaining the new channel D ◦N ◦ E . In
shadow simulation, instead, Bob can sample his decoding
operation D from a set of channels {Dj} and, after the
output has been measured, he can post-process the mea-
surement statistics, taking arbitrary linear combinations
of the outcome probabilities. In this way, Bob can effec-
tively implement a linear map of the form D̃=

∑
j λj Dj ,

where {λj} are arbitrary real numbers [1, 18, 25, 28].

Note that in general D̃ is not a valid quantum channel
(completely positive, trace-preserving map), but rather a
virtual channel, described by a Hermitian-preserving and
trace-scaling map [11, 29–32].

More generally, Bob may share classical randomness
with Alice, and coordinate his local operations with hers,
as in Figure 1. Hence, Bob’s post-processing gives rise to
linear maps of the form

S̃(N ) =
∑
j

λjDj ◦ N ◦ Ej . (1)

The linear map S̃ is an example of a supermap [33–35],
that is, a map acting on the vector space spanned by
quantum operations. Unlike most supermaps considered
so far, however, S̃ generally does not transform quan-
tum channels into quantum channels due to the pos-
sible presence of negative coefficients in the set {λj}.

Instead, S̃ transforms Hermitian-preserving maps into
Hermitian-preserving maps, and trace-scaling maps into
trace-scaling maps with possibly different scaling factors.
We call the supermaps with these two properties virtual
supermaps.

Any virtual supermap S̃ is into one-to-one correspon-
dence with a virtual bipartite processes Ŝ transforming

operators on system A′B into operators on system AB′.
The correspondence can be made explicit by decompos-
ing the action of the virtual supermap S̃ as S̃(N ) =∑
k Bk ◦ N ◦ Ak, where Ak and Bk are suitable linear

maps, and by defining Ŝ :=
∑
kAk ⊗ Bk.

A virtual supermap S̃ of the special form (1) will be
called a (randomness-assisted) shadow simulation code.

For a shadow simulation code S̃, the corresponding vir-
tual bipartite process is Ŝ :=

∑
j λj Ej ⊗Dj . It is rather

straightforward to see that this virtual process is no-
signaling, meaning that for every pair of operators ρA′

and ρB acting on A′ and B, respectively, the operator
TrB′ [Ŝ(ρA′ ⊗ρB)] is independent of ρB , and the operator

TrA[Ŝ(ρA′ ⊗ ρB)] is independent of ρA′ . The converse
is less straightforward but turns out to be true, yielding
a complete characterization of the randomness-assisted
shadow simulation codes:

Theorem 1 A virtual supermap S̃ is a randomness-
assisted shadow simulation code if and only if the cor-
responding virtual process Ŝ is no-signaling.

The proof is provided in Appendix A. An important
consequence of Theorem 1 is that shared randomness
and classical post-processing can be used to simulate ar-
bitrary no-signaling resources. Explicitly, a no-signaling
resource is represented by a quantum no-signaling chan-
nel Ŝ [36, 37] with input A′B and output AB′. Us-

ing the no-signaling channel Ŝ, Alice and Bob can im-
plement the corresponding supermap S̃, which can be
implemented using only shared randomness and classi-
cal post-processing, as guaranteed by Theorem 1. The
same conclusion applies to protocols using local opera-
tions and shared entanglement, which is a special case of
no-signaling resources.
No-signaling assisted shadow simulation.—

Quantum no-signaling resources have been extensively
studied in quantum Shannon theory [7, 10, 38]. We
now extend their study to the task of shadow simula-
tion. While in channel simulation Alice and Bob have the
assistance of a fixed no-signaling channel, in shadow sim-
ulation they can more generally sample over a set of no-
signaling channels {Ŝj}. Using classical post-processing,

they can reproduce the virtual supermap S̃ :=
∑
j λj S̃j .

We call this supermap a no-signaling shadow simulation
code.

The randomization over different settings generally
comes at the price of an increased sampling cost, meaning
that more rounds of data collection are needed to esti-
mate the desired expectation values [25–27]. To quantify

this price, we define the sampling cost of the code S̃ as

csmp

(
S̃
)

:= inf
{
p+ + p−

∣∣∣ Ŝ = p+Ŝ+ − p−Ŝ−,

p± ∈ R+, Ŝ± ∈ CPTP ∩ NS
}
,
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where CPTP and NS denote the set of completely pos-
itive, trace-preserving maps and the set of no-signaling
virtual processes, respectively, and R+ is the set of non-
negative real numbers. Note that every conventional

channel simulation protocol has csmp

(
S̃
)

= 1, since the

map Ŝ is a no-signaling channel. The sampling cost
csmp characterizes the range of post-processed measure-
ment outcomes. Intuitively, a wider range requires more
rounds of measurement to accurately estimate the ex-
pectation value. In Appendix A, we rigorously justify
the definition of sampling cost using Hoeffding’s inequal-
ity [39], which confirms this intuition.

To quantify the simulation error, we adopt
the diamond-norm distance ∥S̃(N ) − M∥⋄/2 =:

perr(S̃;N ,M) [40], which is the same as the worst
case error of measuring observables as we show in
Appendix A. This error measure applies to conventional
and shadow simulation, with the only difference that
in the conventional scenario the no-signaling bipartite
map Ŝ is completely positive and trace-preserving,
while in the shadow simulation scenario Ŝ can be any
Hermitian-preserving and trace-scaling map.

The optimal quantum limits to the task of shadow sim-
ulation can be quantified by two parameters. One is the
minimum error achievable with sampling cost bounded
by γ:

ε∗γ,NS(N ,M) := inf
Ŝ∈NS

{
perr

(
S̃;N ,M

) ∣∣∣ csmp

(
S̃
)
≤ γ

}
.

The other is the minimum sampling cost needed to guar-
antee that the error is below a given error tolerance ε:

γ∗ε,NS (N ,M) := inf
Ŝ∈NS

{
csmp

(
S̃
) ∣∣∣ perr (S̃;N ,M

)
≤ ε
}
.

Both quantities can be computed efficiently by semidef-
inite programs (SDPs) given in Appendix B. In the fol-
lowing, we illustrate the power of shadow simulation in
three applications.

Shadow communication.— Quantum communica-
tion can be viewed as a special case of channel simulation:
the simulation of an identity channel acting on a given
number of qubits. Here we consider the zero-error sce-
nario [7, 41–43], corresponding to an exact simulation of
the identity channel. We define a zero-error shadow com-
munication code S̃ as a supermap satisfying the condi-

tion perr

(
S̃;N , idd

)
= 0, where idd denotes the identity

channel on a d-dimensional quantum system. Then, we
define the one-shot zero-error shadow capacity assisted
by no-signaling resources as

Q
(1)
γ,NS(N ) := sup

d,Ŝ∈NS

{
log2 d

∣∣∣ S̃(N ) = idd, csmp

(
S̃
)
≤ γ

}
,

(2)

where the dimension d is optimized over positive integers.
Here the term “one-shot” refers to the fact that the com-
munication protocol only involves quantum operations

on the inputs and outputs of a single use of channel N .
Note that S̃ is not a physical operations but a virtual
one implemented as the average action across multiple
rounds, where each round involves a single use of N .

In Appendix C, we provide an explicit SDP expres-
sion for the shadow capacity for every given γ. This
expression extends the previously known expression for
the one-shot zero-error quantum capacity assisted by no-
signaling resources [7, 44], which can be retrieved in the
special case γ = 1.

For γ > 1, we show that the zero-error shadow capacity
is generally larger than the zero-error quantum capacity.
A concrete example is provided by the following theorem:

Theorem 2 Let Ndepo,p(ρ) = pρ + (1 − p)12/2 be a
single-qubit depolarizing channel, where p ∈ [0, 1] is a
probability and 12 is the identity operator on C2. For
γ ≥ 1, the one-shot zero-error shadow capacity assisted
by no-signaling resources is

Q
(1)
γ,NS(Ndepo,p) = log2

⌊√
2pγ + p+ 1

⌋
. (3)

Eq. (3) shows that the shadow capacity can become arbi-
trarily large as γ grows, provided that the channel is not
completely depolarizing (p ̸= 0). In other words, a qubit
depolarizing channel can be used to transmit the expec-
tation values of all observables on a quantum system of
arbitrarily high dimension, at the price of an increased
sampling cost.

It is useful to compare the above finding with the ex-
isting results about error mitigation. Error mitigation
protocols, such as those in Refs. [25, 45], can be used to
transmit arbitrary expectation values on a single-qubit
state through repeated uses of a single-qubit depolariz-
ing channel. This fact is interesting because, for p ≤ 1/3,
the depolarizing channel is entanglement-breaking [46]
and therefore it cannot reliably transmit quantum states,
even if infinitely many copies of it are available. Theo-
rem 2 takes this observation to a much stronger level: not
only can a qubit depolarizing channel transmit all expec-
tation values for a single qubit, but also it can transmit
the expectation values on arbitrarily high-dimensional
quantum systems.

Now, recall that Theorem 1 guarantees that every no-
signaling code can be simulated with local operations and
shared classical randomness, generally at the expense of
a larger sampling cost. Combining this fact with Theo-
rem 2, we obtain that randomness-assisted shadow sim-
ulation codes can have arbitrarily large capacity for suf-
ficiently large values of the sampling cost. The same
argument applies to shadow simulation codes assisted by
shared entanglement. Remarkably, these phenomena are
not limited to the depolarizing channel, but apply in gen-
eral to every quantum channel achieving at least one non-
zero value of the zero-error no-signaling assisted shadow
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FIG. 2. Minimum error of shadow simulation of common
channels under different budgets for sampling cost. The chan-
nels we consider here are the amplitude damping channel,
the dephasing channel, and the depolarizing channel at a low
noise level (p = 0.9). For communication (left), single-qubit
versions of these channels are studied, and the goal is to simu-
late a qubit identity channel id2. For noise simulation (right),
we consider simulating two-qubit versions of the noisy chan-
nels via id2, where by a two-qubit amplitude damping channel
we mean two single-qubit amplitude damping channels acting
independently on two qubits. Compared with that of con-
ventional quantum channel simulation (horizontal lines), the
minimum error in the shadow case is smaller with the same
or even lower cost budget.

capacity (2). The proof of this fact will be provided at
the end of the next section.

Shadow simulation via noiseless channels.—
The dual task to communication is the simulation of

a target noisy channel using a noiseless channel. In this
case, the key quantity is the simulation cost, defined as
the number of noiseless qubits that must be sent from the
sender to a receiver. In the context of zero-error shadow
simulation assisted by no-signaling resources, we define
the one-shot shadow simulation cost of channel M as

S
(1)
γ,NS(M) := inf

d,Ŝ∈NS

{
log2 d

∣∣∣ S̃(idd) = M, csmp

(
S̃
)
≤ γ

}
,

where the dimension d is optimized over positive integers.
This quantity generalizes the one-shot zero-error simula-
tion cost studied in the conventional quantum channel
simulation scenario [7, 10]. In Appendix D, we provide
an SDP for the zero-error shadow simulation cost, and we
show that the simulation cost can generally be reduced
by increasing the sampling cost.

Besides simulating noisy channels, shadow simulation
also allows simulating high-dimensional noiseless chan-
nels using low-dimensional ones. This shadow simula-
tion can also be viewed as a form of quantum com-
pression, where the goal is to store the expectation
values of all possible observables. Alternatively, one
can view this shadow simulation as the simulation of

a high-dimensional quantum measurement using a low-
dimensional one. Differing from previous works that
aimed at the simulation of the full measurement statis-
tics [47], however, shadow simulation focuses on the ex-
pectation values.

The minimum sampling cost for simulating a higher-
dimensional identity channel is provided by the following
theorem:

Theorem 3 Given identity channels idd and idd′ with
d′ ≥ d ≥ 2, the minimum sampling cost of an exact
shadow simulation of idd′ using idd and no-signaling re-
sources is

γ∗0,NS (idd, idd′) = 2

(
d′

d

)2

− 1. (4)

Theorem 3 has two important implications. First, it
implies that the shadow simulation cost of every quan-
tum channel can be lowered to 1 by allowing a suffi-
ciently large sampling overhead. Indeed, let M be a
quantum channel with one-shot zero-error quantum sim-

ulation cost S
(1)
NS(M) = log2 d

′, meaning that M can
be simulated using idd′ through a quantum no-signaling
code. In turn, Eq. (4) implies that idd′ can be shadow-
simulated using a qubit identity channel, with a sampling
cost (d′2−2)/2. Composing the two simulations, one then
gets a shadow simulation of M from id2 with sampling
cost (d′2 − 2)/2.

Second, Theorem 3 implies that every channel N with

non-zero shadow capacity Q
(1)
γ,NS for some γ can shadow-

simulate every other channel M. In particular, it can
simulate an identity channel on arbitrarily many qubits.
This observation generalizes the result of Theorem 2 for
single-qubit depolarizing channels.
Achieving lower error without sampling

overhead.— In the zero-error scenario, we have seen
that the shadow capacity and shadow simulation cost
coincide with the conventional capacity and simulation
cost for γ = 1. In stark contrast, we now show that
in the approximate scenario, shadow simulation can
achieve lower error than conventional channel sim-
ulation even if γ = 1, that is, without incurring a
sampling overhead. As examples, we consider three
common quantum channels: the single-qubit ampli-
tude damping channel NAD with two Kraus operators
|0⟩⟨0| +

√
p|1⟩⟨1| and

√
1 − p|0⟩⟨1|, the dephasing channel

Ndeph(·) = p(·) + (1 − p)diag(·), and the depolarizing
channel Ndepo(·) = p(·) + (1 − p)Tr[·]1d/d. For each
channel, the parameter p ∈ [0, 1] indicates the level of
the noise. For the depolarizing channel, the parameter
d represents the dimension of the system on which they
act, and 1d is the d-dimensional identity operator.

Figure 2 shows the minimum errors in both shadow
communication and noisy channel simulation at differ-
ent cost budgets ranging from 0.9 to 1.2. Surprisingly,
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shadow simulation codes achieve a smaller error at the
same or even a lower level of cost compared with quan-
tum simulation codes, whose sampling cost is 1. The
difference is more evident in the plot of noise simulation,
where the minimum error of quantum codes is almost
the twice of the shadow simulation codes. This implies
that classical post-processing can enhance the transmis-
sion of expectation values even if no sampling overhead
is involved. The underlying reason can be attributed to
the existence of a virtual channel simulable by a unit-
cost shadow simulation code that is closer to the target
channel than all quantum channels simulable by quantum
simulation codes.

Conclusions.— In this paper, we introduced the task
of shadow simulation of quantum channels, showing that
transmitting and processing expectation values of arbi-
trary observables is generally a less demanding task than
transmitting and processing quantum states. Besides
their foundational interest, our results are relevant to
practical applications to NISQ quantum technologies, as
they provide more efficient schemes for measuring ob-
servables at the output of noisy quantum devices. An
interesting direction of future research is to explore sce-
narios where only a given set of physically relevant ob-
servables is concerned [12, 19]. Our results also open up
a systematic way to study new quantum protocols that
sample over different transformations of quantum pro-
cesses, known as quantum supermaps [33–35].
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Appendix A: Shadow Simulation Codes

A quantum simulation code (EA′→A,DB→B′) can be written as a quantum supermap [33], which sends a quantum
channel NA→B to another quantum channel MA′→B′ . Each quantum supermap is associated with a bipartite quantum
operation that is no-signaling from Bob to Alice, i.e., no transmission of information from Bob to Alice. In the setting
of shadow simulation of quantum channels, simulation codes are not restricted to quantum supermaps. A shadow
simulation code allows classical post-processing so that its encoding and decoding parts do not have to be quantum
channels. For example, one can consider the encoding operation ẼA′→A :=

∑
j λjEj,A′→A and the decoding operation

D̃B→B′ :=
∑
k µkDk,B→B′ with real coefficients λj , µk and quantum channels Ej,A′→A,Dk,B→B′ . The expectation

value with respect to the state transmitted through a quantum channel NA→B using this shadow simulation code(
ẼA′→A, D̃B→B′

)
can be decomposed as

Tr
[
D̃B→B′ ◦ NA→B ◦ ẼA′→A(ρRA′)ORB′

]
=
∑
j,k

λjµkTr [Dk,B→B′ ◦ NA→B ◦ Ej,A′→A(ρRA′)ORB′ ] . (A1)

Hence, although we cannot directly implement ẼA′→A and D̃B→B′ , we can simulate their effect by sending copies of
the state using quantum simulation codes sampled from {(Ej,A′→A,Dk,B→B′)} for multiple rounds and then post-
processing the measurement results from all rounds.

Though the encoding operation Ẽ and the decoding operation D̃ are seemingly independent, it is important to
note that both maps are implemented with classical post-processing, which only happens at Bob’s side after Bob
completes the measurement. Therefore, Bob needs information on Alice’s sampled operation in each round to guide
the post-processing. Hence, we consider simulation codes where Alice and Bob have pre-shared randomness, and such
codes are realized by the following steps:

1. Alice randomly samples one encoding channel Eα,A′→A from the set of channels {Ej,A′→A} with a probability
distribution Pr (Ej,A′→A) = |λj |/γ, where γ =

∑
j |λj |, and applies the sampled channel to state ρRA′ .

2. Alice then sends the post-encoding state Eα,A′→A(ρRA′) into the noisy channel NA→B .

3. Upon receiving the state NA→B ◦ Eα,A′→A(ρRA′) coming out of the noisy channel, Bob applies the decoding
channel Dα,B→B′ to the received state, where the value α is known to Bob due to the classical randomness
shared between him and Alice.

4. Bob measures the decoded state Dα,B→B′ ◦ NA→B ◦ Eα,A′→A(ρRA′) with an observable ORB′ , which gives a
measurement outcome o.
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5. Repeat the above steps for M times, and denote the index α and the measurement outcome o in the m-th round
by αm and om, respectively. Then, compute ξ := γ

M

∑M
m=1 sgn(λαm

)om as the communicated expectation value,
where sgn is the sign function.

This protocol offers an unbiased estimator ξ for the desired expectation value Tr
[(

S̃ (N )
)

(ρ)O
]
, where S̃ is a virtual

supermap representing a randomness-assisted shadow simulation code whose action on NA→B is

S̃(N )A′→B′ =
∑
j

λjDj,B→B′ ◦ NA→B ◦ Ej,A′→A. (A2)

This can be seen by checking the expectation value of ξ:

E [ξ] =
γ

M

M∑
m=1

E [sgn(λαm
)om] (A3)

=
γ

M

M∑
m=1

∑
j

|λj |
γ

sgn(λj)Tr [Dj ◦ N ◦ Ej(ρ)O] (A4)

=
1

M

M∑
m=1

∑
j

λjTr [Dj ◦ N ◦ Ej(ρ)O] (A5)

= Tr

∑
j

λjDj ◦ N ◦ Ej(ρ)O

 (A6)

= Tr
[(

S̃(N )
)

(ρ)O
]
. (A7)

Each supermap is associated with a bipartite map, and for a randomness-assisted shadow simulation code in
Eq. (A2), its corresponding bipartite map is

ŜA′B→AB′ =
∑
j

λjEj,A′→A ⊗Dj,B→B′ . (A8)

It is clear that every randomness-assisted shadow simulation code is associated with a Hermitian-preserving bipartite
map. This is because the Choi operator of the associated bipartite map is Hermitian, and a map is Hermitian-
preserving if and only if its Choi operator is Hermitian. In the following, we show that bipartite maps associated
with randomness-assisted shadow simulation codes, besides being Hermitian-preserving, are also no-signaling. For
a bipartite map ŜA′B→AB′ , being no-signaling from Bob to Alice means that the output state at A is independent
of the input state at B, i.e., TrB′ ◦ ŜA′B→AB′ = ŜA′→A ◦ TrB , where ŜA′→A is the local effective operation of the
map ŜA′B→AB′ from A to A′. By the Choi-Jamio lkowski isomorphism [48, 49], we can uniquely represent ŜA′B→AB′

using its Choi operator J Ŝ
A′BAB′ := idA′B⊗ŜĀ′B̄→AB′(|Γ⟩⟨Γ|A′BĀ′B̄), where |Γ⟩A′BĀ′B̄ :=

∑dA′B−1
j=0 |j⟩A′B |j⟩Ā′B̄ is the

unnormalized maximally entangled state, dA′B is the dimension of the system A′B, and the Hilbert space associated
with the system Ā′B̄ is isomorphic to that of A′B. In terms of the map’s Choi operator, no-signaling from Bob to

Alice means TrB′

[
J Ŝ
A′BAB′

]
= J Ŝ

A′A ⊗ 1B , where J Ŝ
A′A := TrBB′ [J Ŝ

A′BAB′ ]/dB .

Theorem 1 shows that randomness-assisted shadow simulation codes are equivalent to Hermitian-preserving no-
signaling bipartite maps, which is both no-signaling from Bob to Alice and no-signaling from Alice to Bob.

Theorem 1 A virtual supermap S̃ is a randomness-assisted shadow simulation code if and only if the corresponding
virtual process Ŝ is no-signaling.

Proof For the “only if” part, let ŜA′B→AB′ =
∑
j λjM

(j)
A′→A ⊗ N (j)

B→B′ denote a bipartite map associated with an

arbitrary randomness-assisted code, where M(j)
A′→A and N (j)

B→B′ are quantum channels. It is clear that the Choi oper-

ator J Ŝ
A′BAB′ =

∑
j λjJ

M(j)

A′A ⊗ JN (j)

BB′ is Hermitian, indicating that ŜA′B→AB′ is Hermitian-preserving. Furthermore,

as M(j)
A′→A and N (j)

B→B′ are trace-preserving, i.e., TrA
[
JM(j)

A′A

]
= 1A′ and TrB′

[
JN (j)

BB′

]
= 1B , we have

TrA
[
J Ŝ
A′BAB′

]
=
∑
j

λjTrA
[
JM(j)

A′A

]
⊗ JN (j)

BB′ = 1A′ ⊗
∑
j

λjJ
N (j)

BB′ (A9)
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and

TrB′

[
J Ŝ
A′BAB′

]
=
∑
j

λjJ
M(j)

A′A ⊗ TrB′

[
JN (j)

BB′

]
=
∑
j

λjJ
M(j)

A′A ⊗ 1B , (A10)

which imply that ŜA′B→AB′ is no-signaling.
For the “if” part, we first assume that ŜA′B→AB′ is Hermitian-preserving and no-signaling. By Theorem 14 in

Ref. [50], its Choi operator can be decomposed as

J Ŝ
A′BAB′ =

∑
j

λjM
(j)
A′A ⊗N

(j)
BB′ , (A11)

where, for each j, λj is a real number, and M
(j)
A′A and N

(j)
BB′ are Hermitian operators such that TrA

[
M

(j)
A′A

]
and

TrB′

[
N

(j)
BB′

]
are proportional to the identity operators 1A′ and 1B , respectively. In other words, we can treat M

(j)
A′A

and N
(j)
BB′ as Choi operators for some Hermitian-preserving and trace-scaling (HPTS) maps M̃(j)

A′→A and Ñ (j)
B→B′ ,

respectively. Here, trace-scaling means that the map scales the trace of the input operator with a constant factor.
According to Lemma 6 in Ref. [11], every HPTS map can be written as a linear combination of two quantum

channels. Thus, we can write ŜA′B→AB′ as

ŜA′B→AB′ =
∑
j

λjM̃(j)
A′→A ⊗ Ñ (j)

B→B′ (A12)

=
∑
j

λj

(
m1M(j,1)

A′→A +m2M(j,2)
A′→A

)
⊗
(
n1N (j,1)

B→B′ + n2N (j,2)
B→B′

)
(A13)

=
∑
j

2∑
k=1

2∑
l=1

λjmknlM(j,k)
A′→A ⊗N (j,l)

B→B′ , (A14)

which represents a randomness-assisted shadow simulation code. ■
Alternative to pre-shared classical randomness, forward classical communication from Alice to Bob also allows Bob

to acquire information on Alice’s local operation in each round. A shadow simulation protocol with the assistance of
forward classical communication is represented by a bipartite linear map

ŜA′B→AB′ =
∑
j

λjM(j)
A′→A ⊗N (j)

B→B′ , (A15)

where
{
M(j)

A′→A

}
j

is a quantum instrument,
{
N (j)
B→B′

}
j

is a collection of quantum channels, and each λj is a real

coefficient. In the following proposition, we show that not only ŜA′B→AB′ is Hermitian-preserving and one-way no-
signaling, but any one-way no-signaling Hermitian-preserving bipartite map represents a forward-classical-assisted
shadow simulation code. For completeness, we also consider shadow simulation codes assisted by two-way classical

communication, where both
{
M(j)

A′→A

}
j

and
{
N (j)
B→B′

}
j

are quantum instruments. Such codes are equivalent to the

set of all bipartite Hermitian-preserving maps.

Theorem 4 Consider a bipartite linear map ŜA′B→AB′ . It is Hermitian-preserving if and only if it corresponds
to a shadow simulation code assisted by two-way classical communication. It is Hermitian-preserving and B-to-A
no-signaling if and only if it corresponds to a forward-classical-assisted shadow simulation code.

This theorem tells us that shadow simulation codes with one-way classical communication are powerful enough to
simulate arbitrary quantum channels and even beyond. An intuitive explanation is that Alice can measure the initial
state ρ with an informationally complete POVM and communicate the measurement outcomes to Bob so that Bob is
able to reconstruct the expectation value of every observable on ρ transformed by any channel. Now, we prove this
theorem by proving the following two lemmas.

Lemma 5 A bipartite linear map ŜA′B→AB′ is Hermitian-preserving and B-to-A no-signaling if and only if it corre-
sponds to a forward-classical-assisted shadow simulation code.
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Proof The “if” direction is straightforward. Let ŜA′B→AB′ =
∑
j λjM

(j)
A′→A⊗N (j)

B→B′ represent a forward-classical-

assisted shadow simulation code, where each
{
M(j)

A′→A

}
j

is a quantum instrument, and each N (j)
B→B′ is a quantum

channel. Then, the Choi operator of ŜA′B→AB′ is

J Ŝ
A′BAB′ =

∑
j

λjJ
M(j)

A′A ⊗ JN (j)

BB′ . (A16)

Clearly, J Ŝ
A′BAB′ is a Hermitian operator, indicating that ŜA′B→AB′ is Hermitian-preserving. In addition, ŜA′B→AB′

is no-signaling from Bob to Alice as

TrB′

[
J Ŝ
A′BAB′

]
=
∑
j

λjJ
M(j)

A′A ⊗ TrB′

[
JN (j)

BB′

]
=
∑
j

λjJ
M(j)

A′A ⊗ 1B (A17)

due to N being trace-preserving.

For the “only if” direction, part of the proof is adapted from the proof of Theorem 14 in Ref. [50]. Let ŜA′B→AB′

be a Hermitian-preserving supermap and
{
M

(1)
A′A, . . . ,M

(D)
A′A

}
be a basis for the Hermitian operator space Herm (A′A)

on the system A′A, where D is the dimension of this space. Then, there exists a unique set of Hermitian operators{
N

(1)
BB′ , . . . , N

(D)
BB′

}
⊆ Herm (BB′) such that J Ŝ

A′BAB′ =
∑D
j=1M

(j)
A′A ⊗ N

(j)
BB′ . For each j, let H

(j)
A′A be a Hermitian

operator such that Tr
[
H

(j)
A′AM

(k)
A′A

]
̸= 0 if and only if j = k. Denoting the mapping MA′A 7→ Tr

[
H

(j)
A′AM

(k)
A′A

]
by

h(j)(MA′A), we have

(
h(j) ⊗ idBB′

)(
J Ŝ
A′BAB′

)
=

D∑
k=1

h(j)
(
M

(k)
A′A

)
⊗N

(k)
BB′ = h(j)

(
M

(j)
A′A

)
N

(j)
BB′ . (A18)

Because ŜA′B→AB′ is no-signaling from Bob to Alice, we have TrB′

[
J Ŝ
A′BAB′

]
= J Ŝ

A′A ⊗ 1B . Then,

(
h(j) ⊗ idBB′

)
TrB′

[
J Ŝ
A′BAB′

]
= h(j)

(
J Ŝ
A′A

)
⊗ 1B = h(j)

(
M

(j)
A′A

)
TrB′

[
N

(j)
BB′

]
, (A19)

where the second equality holds because the order of applying
(
h(j) ⊗ idBB′

)
and TrB′ does not affect the result as

they act on different subspaces.

It follows from Eq. (A19) that, for each j, TrB′

[
N

(j)
BB′

]
is proportional to the identity operator 1B , and thus it

serves as a Choi operator of an HPTS map, which we denote by Ñ (j)
B→B′ . According to Lemma 6 in Ref. [11], each

Ñ (j)
B→B′ can be written as a linear combination of two quantum channels, i.e.,

Ñ (j)
B→B′ = nj,1N (j,1)

B→B′ + nj,2N (j,2)
B→B′ , (A20)

where nj,1 and nj,2 are real numbers and N (j,1)
B→B′ and N (j,2)

B→B′ are quantum channels.

For each Hermitian operator M
(j)
A′A, we can write it as the difference of two positive semidefinite operators, say,

mj,1M
(j,1)
A′A − mj,2M

(j,2)
A′A , where mj,1M

(j,1)
A′A and mj,2M

(j,2)
A′A are positive semidefinite and mj,1 and mj,2 are positive

real numbers so that TrA
[
M

(j,1)
A′A

]
≤ 1A′ and TrA

[
M

(j,2)
A′A

]
≤ 1A′ . In other words, both M

(j,1)
A′A and M

(j,2)
A′A are Choi

operators of some completely positive and trace-non-increasing (CPTN) maps, say M(j,1)
A′→A and M(j,2)

A′→A, respectively.

Moreover, the scalars mj,1 and mj,2 should be chosen so that
∑D
j=1

∑2
k=1 TrA

[
M

(j,k)
A′A

]
≤ 1A′/2. We will see the reason

of this requirement later.
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Combining the decomposition of every M
(j)
A′A and every N

(j)
BB′ , we have

SA′B→AB′ =
D∑
j=1

(
mj,1M(j,1)

A′→A −mj,2M(j,2)
A′→A

)
⊗
(
nj,1N (j,1)

B→B′ + nj,2N (j,2)
B→B′

)
(A21)

=
D∑
j=1

(
mj,1nj,1M(j,1)

A′→A ⊗N (j,1)
B→B′ +mj,1nj,2M(j,1)

A′→A ⊗N (j,2)
B→B′

−mj,2nj,1M(j,2)
A′→A ⊗N (j,1)

B→B′ −mj,2nj,2M(j,2)
A′→A ⊗N (j,2)

B→B′

)
(A22)

=
4D∑
j=1

λjM(j)
A′→A ⊗N (j)

B→B′ (A23)

with appropriate relabeling, where each λj ∈ {mj,1nj,1,mj,1nj,2,−mj,2nj,1,−mj,2nj,2}j is a real number, each

M(j)
A′→A ∈

{
M(j,1)

A′→A,M
(j,2)
A′→A

}
j

is a CPTN map, and each N (j)
B→B′ ∈

{
N (j,1)
B→B′ ,N (j,2)

B→B′

}
j

is a quantum channel.

Note that

4D∑
j=1

TrA
[
JM(j)

A′A

]
= 2

D∑
j=1

2∑
k=1

TrA
[
JM(j,k)

A′A

]
≤ 1A′ (A24)

due to our choice of scalars {mj,1,mj,2}j . Let M′
A′→A be a CPTN map such that

∑4D
j=1 TrA

[
JM(j)

A′A

]
+2TrA

[
JM′

A′A

]
=

1A′ . Then,
{
M(1), . . . ,M(4D),M′,M′} is a quantum instrument and

ŜA′B→AB′ =

4D∑
j=1

λjM(j)
A′→A ⊗N (j)

B→B′ + M′
A′→A ⊗N ′

B→B′ −M′
A′→A ⊗N ′

B→B′ (A25)

for any quantum channel N ′
B→B′ . Therefore, any bipartite linear map SA′B→AB′ that is Hermitian-preserving and

B-to-A no-signaling represents a forward-classical-assisted shadow simulation code. ■

Lemma 6 A bipartite linear map ŜA′B→AB′ is Hermitian-preserving if and only if it corresponds to a shadow simu-
lation code assisted by two-way classical communication.

Proof The “if” part can be directly verified by checking that the Choi operator of a bipartite map
∑
j λjM

(j)
A′→A ⊗

N (j)
B→B′ is Hermitian, where both

{
M(j)

A′→A

}
j

and
{
N (j)
B→B′

}
j

are quantum instruments.

For the “only if” part, we follow the proof of Lemma 5 to write the Choi operator of a bipartite Hermitian-

preserving map ŜA′B→AB′ as J Ŝ
A′BAB′ =

∑D
j=1M

(j)
A′A ⊗ N

(j)
BB′ , where M

(j)
A′A and N

(j)
BB′ are Hermitian operators.

Each M
(j)
A′A or N

(j)
BB′ can be written as the difference of two positive semidefinite operators. We write each M

(j)
A′A

as mj,+M
(j,+)
A′A − mj,−M

(j,−)
A′A and each N

(j)
BB′ as nj,+N

(j,+)
BB′ − nj,−N

(j,−)
BB′ , where mj,±M

(j,1)
A′A , nj,2N

(j,±)
BB′ are positive

semidefinite and mj,±, nj,± are positive real numbers that will be fixed later. The Choi operator J Ŝ
A′BAB′ now can be

written as

J Ŝ
A′BAB′ =

D∑
j=1

(
mj,+M

(j,+)
A′A −mj,−M

(j,−)
A′A

)
⊗
(
nj,+N

(j,+)
BB′ − nj,−N

(j,−)
BB′

)
(A26)

=
D∑
j=1

∑
k∈{+,−}

∑
l∈{+,−}

(−1)1−δk,lmj,knj,lM
(j,k)
A′A ⊗N

(j,l)
BB′ , (A27)

where δk,l = 1 if k = l and δk,l = 0 otherwise. Because M
(j,±)
A′A and N

(j,±)
BB′ are positive semidefinite operators, they can

be treated as Choi operators of completely positive maps, say, M(j,±)
A′→A and N (j,±)

B→B′ . Then, we can write ŜA′B→AB′
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as

ŜA′B→AB′ =
D∑
j=1

∑
k∈{+,−}

∑
l∈{+,−}

(−1)1−δk,lmj,knj,lM(j,k)
A′→A ⊗N (j,l)

B→B′ (A28)

=
4D∑
j=1

λjM(j)
A′→A ⊗N (j)

B→B′ (A29)

with appropriate relabeling, where each λj ∈
{

(−1)1−δk,lmj,knj,l
}
j,k,l

is a real number, each M(j)
A′→A ∈

{
M(j,±)

A′→A

}
j

or N (j)
B→B′ ∈

{
N (j,±)
B→B′

}
j

is a CPTN map. We can fix the values of the coefficients mj,± and nj,± to be large enough

so that both
∑4D
j=1 M

(j)
A′→A and

∑4D
j=1 N

(j)
B→B′ are trace-non-increasing. Let M′

A′→A and N ′
B→B′ be CPTN maps

such that
∑4D
j=1 M

(j)
A′→A + 2M′

A′→A and
∑4D
j=1 N

(j)
B→B′ + 2N ′

B→B′ are CPTP. That is,
{
M(1), . . . ,M(4D),M′,M′}

and
{
N (1), . . . ,N (4D),N ′,N ′} are quantum instruments. Because we can write

ŜA′B→AB′ =
4D∑
j=1

λjM(j)
A′→A ⊗N (j)

B→B′ + M′
A′→A ⊗N ′

B→B′ −M′
A′→A ⊗N ′

B→B′ , (A30)

it follows that ŜA′B→AB′ corresponds to a shadow simulation code assisted by two-way classical communication.
Hence the proof. ■

From now on, we focus on no-signaling shadow simulation codes. We consider implementing such codes by sampling
quantum no-signaling codes. This is possible due to the following proposition.

Proposition 7 A bipartite linear map is Hermitian-preserving and no-signaling if and only if it is a linear combination
of bipartite linear maps that correspond to quantum no-signaling codes.

Proof For the “if” direction, let ŜA′B→AB′ =
∑
j S

(j)
A′B→AB′ be a linear combination of bipartite linear maps that

correspond to quantum no-signaling codes. The map ŜA′B→AB′ is Hermitian-preserving because J Ŝ
A′BAB′ , the Choi

operator of ŜA′B→AB′ , is Hermitian. Also, ŜA′B→AB′ is no-signaling from B to A, because

TrB′

[
J Ŝ
A′BAB′

]
=
∑
j

λjTrB′

[
JS(j)

A′BAB′

]
=
∑
j

λjJ
S(j)

A′A ⊗ 1B = J Ŝ
A′A ⊗ 1B , (A31)

where the second inequality follows from each S(j)
A′B→AB′ being no-signaling. Similarly, ŜA′B→AB′ is no-signaling from

A to B as

TrA
[
J Ŝ
A′BAB′

]
=
∑
j

λjTrA
[
JS(j)

A′BAB′

]
=
∑
j

λjJ
S(j)

BB′ ⊗ 1A′ = J Ŝ
BB′ ⊗ 1A′ . (A32)

Therefore, the map ŜA′B→AB′ is Hermitian-preserving and no-signaling.
For the “only if” part, let S̃A′B→AB′ be a Hermitian-preserving and no-signaling bipartite linear map. According

to Theorem 1, ŜA′B→AB′ can be decomposed as ŜA′B→AB′ =
∑
j λjM

(j)
A′→A ⊗ N (j)

B→B′ for some quantum channels

M(j)
A′→A and N (j)

B→B′ . Note that each S(j)
A′B→AB′ := M(j)

A′→A ⊗ N (j)
B→B′ is a bipartite linear map corresponding to a

quantum no-signaling code. Therefore, ŜA′B→AB′ =
∑
j λjS

(j)
A′B→AB′ is indeed a linear combination of bipartite linear

maps corresponding to quantum no-signaling codes. ■
By decomposing it into a few quantum no-signaling codes, we can implement any no-signaling shadow simulation

code by sampling quantum no-signaling codes in a way similar to the protocol given earlier in this section for realizing
randomness-assisted shadow simulation codes. The implementation of a no-signaling shadow simulation code incurs a
cost quantifying how many sampling rounds are required. Such a cost can be derived from Hoeffding’s inequality. Let
S̃ =

∑
j λjSj be a no-signaling shadow simulation code decomposed into a linear combination of quantum no-signaling

codes {Sj} so that

Tr
[(

S̃ (N )
)

(ρ)O
]

=
∑
j

λjTr [(Sj (N )) (ρ)O] (A33)
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for any quantum state ρ and any observable O. We assume that the observable is bounded as ∥O∥∞ ≤ 1 so that each
measurement outcome belongs to the interval [−1, 1]. For post-processing, we multiply each measurement outcome
by a factor of magnitude γ :=

∑
j |λj |, and the average of all the post-processed outcomes serves as an unbiased

estimator ξ for Tr
[(

S̃ (N )
)

(ρ)O
]
. According to Hoeffding’s inequality [39], the probability that the estimator has

an error larger than or equal to ϵ is bounded as

Pr (|ξ − E [ξ]| ≥ ϵ) ≤ 2 exp

(
−Mϵ2

2γ2

)
, (A34)

where M is the number of sampling rounds. Hence, we can conclude that

M ≥
2γ2 log 2

δ

ϵ2
(A35)

rounds are enough for the final estimation to have an error smaller than ϵ with a probability no less than 1 − δ.
The number of rounds M is proportional to γ2, where γ is the sum of the absolute values of the coefficients

in the decomposition of S̃. Considering that a no-signaling shadow simulation code S̃ can have many different
decompositions, we define its sampling cost as the smallest possible γ achieved by any feasible decomposition:

csmp

(
S̃
)

:= inf

∑
j

|λj |

∣∣∣∣∣∣ Ŝ =
∑
j

λjŜj , λj ∈ R, Ŝj ∈ CPTP ∩ NS

 . (A36)

Note that all the quantum no-signaling channels in the decomposition whose corresponding coefficients have the same
sign can be grouped into one single quantum no-signaling channel without changing the cost. Hence, it is sufficient
to consider all combinations in the form of Ŝ = p+Ŝ+ − p−Ŝ−, where p± are non-negative coefficients and Ŝ± are
quantum no-signaling channels:

csmp

(
S̃
)

= inf
{
p+ + p−

∣∣∣ Ŝ = p+Ŝ+ − p−Ŝ−, p± ∈ R+, Ŝj ∈ CPTP ∩ NS
}
. (A37)

Note that every conventional channel simulation protocol has a sampling cost of 1, while a shadow simulation protocol
can have a sampling cost either larger or smaller than 1, in addition to being equal to 1.

Besides sampling cost, simulation error is an important indicator on the performance of a simulation code. In the
main text, we use diamond distance between the simulated map M̃ := S̃(N ) and the target channel M to measure
this error. Here, we justify our choice.

As the target of our task is to estimate the expectation value, the most direct measure of the error is∣∣∣Tr [ORB′M̃A′→B′(ρRA′)
]
− Tr [ORB′MA′→B′(ρRA′)]

∣∣∣ (A38)

for some given observable ORB′ and quantum state ρRA′ , where R is some reference system inaccessible to Alice.
Because one simulation code should work for every quantum state and every observable, we consider the worst case
error, which maximizes the error over all quantum states and observables. Without loss of generality, we consider
only observables with ∥O∥∞ ≤ 1 since every other observable is such an observable multiplied by a scalar:

sup
ρRA′ , ORB′ :∥O∥∞≤1

∣∣∣Tr[OM̃(ρ)] − Tr[OM(ρ)]
∣∣∣ . (A39)

Observe that the worst case error is upper-bounded by diamond norm because for any observable O and state ρ, we
have ∣∣∣Tr[OM̃(ρ)] − Tr[OM(ρ)]

∣∣∣ ≤ ∣∣∣Tr[O+(M̃(ρ) −M(ρ))]
∣∣∣+
∣∣∣Tr[O−(M̃(ρ) −M(ρ))]

∣∣∣ (A40)

≤ 1

2

∥∥∥M̃(ρ) −M(ρ)
∥∥∥
1

+
1

2

∥∥∥M̃(ρ) −M(ρ)
∥∥∥
1

(A41)

=
∥∥∥M̃(ρ) −M(ρ)

∥∥∥
1

(A42)

≤
∥∥∥M̃ −M

∥∥∥
⋄
, (A43)
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where O+ and O− are positive semidefinite operators representing the positive and negative parts of O, respectively.
Furthermore, this upper bound is tight in the sense that there always exists an observable O and a quantum state ρ

that saturate this bound. Specifically, let ρ∗ be a quantum state such that
∥∥∥M̃(ρ∗) −M(ρ∗)

∥∥∥
1

=
∥∥∥M̃ −M

∥∥∥
⋄

and

O∗ ≥ 0 be an observable such that
∣∣∣Tr [O (M̃(ρ∗) −M(ρ∗)

)]∣∣∣ = 1
2

∥∥∥M̃(ρ∗) −M(ρ∗)
∥∥∥. Such state ρ∗ and observable

O∗ always exist, and they saturate the upper bound, that is

sup
ρ, O:∥O∥∞≤1

∣∣∣Tr [OM̃(ρ)
]
− Tr [OM(ρ)]

∣∣∣ =
∣∣∣Tr [O∗M̃(ρ∗)

]
− Tr [O∗M(ρ∗)]

∣∣∣ (A44)

=
∥∥∥M̃ −M

∥∥∥
⋄
. (A45)

Therefore, diamond distance is indeed the worst case error of estimating expectation values.

Appendix B: General SDPs for Minimum Error and Minimum Sampling Cost

We show that the minimum sampling cost and the minimum error of shadow simulation assisted by no-signaling
codes can be formulated as SDPs. The minimum sampling cost can be formulated as

γ∗ε,NS(N ,M) = inf p+ + p− (B1a)

s.t. Ŝ = p+Ŝ+ − p−Ŝ−, (B1b)

1

2

∥∥∥MA′→B′ − S̃ (NA→B)
∥∥∥
⋄
≤ ε, (B1c)

Ŝ± ∈ CPTP ∩ NS. (B1d)

This optimization problem can be modified to one for ε∗γ,NS (N ,M) by changing the optimization objective to ε and
adding the constraint p+ + p− ≤ γ. For a pair of quantum channels, i.e., CPTP maps, the diamond distance between

them can be efficiently computed via a simple SDP [51]. For shadow simulation, however, the map S̃ (N ) is HPTS,
which is more general than CPTP. Here, we show how to adapt the SDP for the diamond distance between two
quantum channels to compute the diamond distance between any two HPTS maps.

Let ÑA→B = p+N+
A→B−p−N−

A→B and M̃A→B = q+M+
A→B−q−M−

A→B be two HPTS maps, where p± and q± are
non-negative real numbers, and N±

A→B and M±
A→B are quantum channels. By the definition of the diamond norm,

the diamond distance between these two maps is

1

2

∥∥∥ÑA→B − M̃A→B

∥∥∥
⋄

= sup
ψRA

1

2

∥∥∥ÑA→B(ψRA) − M̃A→B(ψRA)
∥∥∥
1

(B2)

= sup
ψRA

{
sup

M :0≤M≤1
Tr
[
M
(
ÑA→B(ψRA) − M̃A→B(ψRA)

)]
− 1

2
Tr
[
ÑA→B(ψRA) − M̃A→B(ψRA)

]}
, (B3)

where ψRA is a pure state with dR = dA, and the second equality follows from the Helstrom-Holevo theorem (see, for
example, Theorem 3.13 in Ref. [52]). Defining p := p+ − p− and q := q+ − q−, we have

1

2

∥∥∥ÑA→B − M̃A→B

∥∥∥
⋄

= sup
ψRA

M :0≤M≤1

Tr
[
M
(
ÑA→B(ψRA) − M̃A→B(ψRA)

)]
− p− q

2
. (B4)

Following the proof from Sec. 3.C.2 in Ref. [52], it is easy to show that the first term on the right hand side of the
above equation can be computed using the standard SDP for the diamond distance between two quantum channels.
Hence, the diamond distance between two HPTS maps can be calculated as the result obtained from the SDP for two
quantum channels minus the normalized difference between the trace scalars of the two maps, i.e.,

1

2

∥∥∥ÑA→B − M̃A→B

∥∥∥
⋄

= inf
ZAB≥0

{
µ− p− q

2

∣∣∣∣ ZAB ≥ JÑ
AB − JM̃

AB , TrB [ZAB ] ≤ µ1A

}
, (B5)

where JÑ
AB and JM̃

AB are the Choi operators of ÑA→B and M̃A→B , respectively. Then, the minimum error ε∗γ,NS (N ,M)
and minimum sampling cost γ∗ε,NS can be written as SDPs in terms of the relevant maps’ Choi operators.
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Proposition 8 Consider two quantum channels NA→B and MA′→B′ whose Choi operators are JN
AB and JM

A′B′ ,
respectively. The minimum error of shadow simulation from N to M under no-signaling codes with a cost budget γ
is given by the following SDP:

ε∗γ,NS(N ,M) = inf ε (B6a)

s.t. JM̃
A′B′ = TrAB

[ ((
JN
AB

)T ⊗ 1A′B′

)(
J Ŝ+

A′BAB′ − J Ŝ−

A′BAB′

) ]
, (B6b)

ZA′B′ ≥ 0, ZA′B′ ≥ JM
A′B′ − JM̃

A′B′ , TrB′ [ZA′B′ ] ≤ 2ε+ 1 − p+ + p−
2

1A′ , (B6c)

J Ŝ±

A′BAB′ ≥ 0, TrAB′

[
J Ŝ±

A′BAB′

]
= p±1A′B , p+ + p− ≤ γ, (B6d)

TrB′

[
J Ŝ±

A′BAB′

]
=

1

dB
TrBB′

[
J Ŝ±

A′BAB′

]
⊗ 1B , (B6e)

TrA
[
J Ŝ±

A′BAB′

]
=

1

dA′
TrA′A

[
J Ŝ±

A′BAB′

]
⊗ 1A′ . (B6f)

Similarly, the minimum sampling cost γ∗ε,NS(N ,M) under an error tolerance ε is given by changing the optimization
objective of the above SDP to p+ + p− and removing the condition p+ + p− ≤ γ.

Appendix C: Shadow Communication

In this section, we derive the SDP for Q
(1)
γ,NS, the one-shot zero-error γ-cost shadow capacity assisted by no-signaling

codes, given in Theorem 11. To achieve this, we first need to derive SDPs for some other quantities, which are of
interest on their own.

First, we tailor the general SDPs of minimum error and minimum sampling cost for the shadow communication
task. The original SDPs are given in Proposition 8. The target channel MA′→B′ becomes idd, where d = dA′ = dB′

is the dimension of the target noiseless channel.

Lemma 9 Given a fixed dimension d = dA′ = dB′ and an error tolerance ε, the minimum error of shadow simulation
from NA→B to idd under no-signaling codes with a cost budget γ is given by the following SDP:

ε∗γ,NS(N , idd) = inf ε (C1a)

s.t. JM̃
A′B′ = Tr

[(
JN
AB

)T (
T+
AB − T−

AB

)] d2ΦA′B′ − 1A′B′

d (d2 − 1)
+ Tr

[
V +
A − V −

A

] 1A′B′ − ΦA′B′

d (d2 − 1)
, (C1b)

ZA′B′ ≥ 0, ZA′B′ ≥ J idd

A′B′ − JM̃
A′B′ , TrB′ [ZA′B′ ] ≤ 1

2

(
2ε+ 1 −

Tr
[
V +
A − V −

A

]
d2

)
1A′ , (C1c)

0 ≤ T±
AB ≤ V ±

A ⊗ 1B , TrA
[
T±
AB

]
=

Tr
[
V ±
A

]
d2

1B ,
Tr
[
V +
A + V −

A

]
d2

≤ γ. (C1d)

Similarly, the minimum sampling cost γ∗ε,NS(N , idd) with an error tolerance ε is given by changing the optimization

objective of the above SDP to Tr
[
V +
A + V −

A

]
/d2 and removing the condition Tr

[
V +
A + V −

A

]
/d2 ≤ γ.

Proof When the target identity channel has dimension d, and we denote it by idd, the minimum error and the
minimum sampling cost of shadow communication over the channel N are ε∗γ,NS(N , idd) and γ∗ε,NS(N , idd), respectively,
where ε and γ are the error tolerance and cost budget. Below, we exploit the symmetry of optimal solutions under
twirling to obtain simplified SDPs for both quantities.

Consider the SDP for minimum error in Proposition 8 with the target channel being idd first. Note that if J Ŝ±

A′BAB′

are optimal, then for any d-dimensional unitary U , the Choi operators

J̄ Ŝ±

A′BAB′ := (UA′ ⊗ UB′)J Ŝ±

A′BAB′(UA′ ⊗ UB′)† (C2)

are also optimal, where U denotes the complex conjugate of U . The optimality of J̄ Ŝ±

A′BAB′ can be checked by verifying
that they satisfy all the conditions in the original SDP while keeping the value of ε unchanged. Due to the linearity
of the constraints, any convex combination of optimal Choi operators is still optimal. Hence, we now redefine

J̄ Ŝ±

A′BAB′ :=

∫
dU(UA′ ⊗ UB′)J Ŝ±

A′BAB′(UA′ ⊗ UB′)†, (C3)
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where the integral is taken over the Haar measure on the unitary group. This new pair of Choi operators are also
optimal. It was shown in Ref. [53] that the twirling operation TA′B′ : XA′B′ 7→

∫
dU(UA′ ⊗ UB′)XA′B′(UA′ ⊗ UB′)†

has the following action:

TA′B′(XA′B′) = Tr[XA′B′ΦA′B′ ]ΦA′B′ +
Tr[XA′B′(1A′B′ − ΦA′B′)]

d2 − 1
(1A′B′ − ΦA′B′), (C4)

where ΦA′B′ = |Φ⟩⟨Φ|A′B′ is the maximally entangled state with |Φ⟩A′B′ := 1√
d

∑d−1
j=0 |j⟩A′ |j⟩B′ . Thus,

J̄ Ŝ±

A′BAB′ = ΦA′B′ ⊗ TrA′B′

[
J Ŝ±

A′BAB′ΦA′B′

]
+ (1A′B′ − ΦA′B′) ⊗

TrA′B′

[
J Ŝ±

A′BAB′(1A′B′ − ΦA′B′)
]

d2 − 1
. (C5)

Without any constraints, TrA′B′

[
J Ŝ±

A′BAB′ΦA′B′

]
and TrA′B′

[
J Ŝ±

A′BAB′(1A′B′ − ΦA′B′)
]
/
(
d2 − 1

)
can be any linear

operators. We denote them by T±
AB and W±

AB , respectively, so that

J̄ Ŝ±

A′BAB′ = ΦA′B′ ⊗ T±
AB + (1A′B′ − ΦA′B′) ⊗W±

AB . (C6)

We now express SDP (B6) in terms of T±
AB and W±

AB . The Choi operator of the simulated map M̃ in Eq. (B6b)
can be written as

JM̃
A′B′ = Tr

[
(JN
AB)T (T+

AB − T−
AB)

]
ΦA′B′ + Tr

[
(JN
AB)T (W+

AB −W−
AB)

]
(1A′B′ − ΦA′B′). (C7)

The first inequality in condition (B6d) becomes T±
AB ≥ 0 and W±

AB ≥ 0, and the equality in condition (B6d) can be
written as

1A′

d
⊗ TrA

[
T±
AB + (d2 − 1)W±

AB

]
= p±1A′B , (C8)

which is equivalent to the requirement that

TrA
[
T±
AB + (d2 − 1)W±

AB

]
= dp±1B . (C9)

For the B-to-A no-signaling condition (B6e), its left-hand side can be written as

TrB′

[
J Ŝ±

A′BAB′

]
=
1A′

d
⊗
(
T±
AB +

(
d2 − 1

)
W±
AB

)
, (C10)

and its right-hand side can be written as

1

dB
TrBB′

[
J Ŝ±

A′BAB′

]
⊗ 1B =

1A′

d
⊗ TrB

[
T±
AB +

(
d2 − 1

)
W±
AB

]
⊗ 1B

dB
. (C11)

Hence, the condition (B6e) is equivalent to

T±
AB +

(
d2 − 1

)
W±
AB = TrB

[
T±
AB +

(
d2 − 1

)
W±
AB

]
⊗ 1B

dB
. (C12)

Similarly, the right-hand side of the A-to-B no-signaling condition (B6f) can be simplified as

1A′B′

d2
⊗ TrA

[
T±
AB +

(
d2 − 1

)
W±
AB

]
=
p±1A′BB′

d
(C13)

due to Eq. (C9). Hence, the condition (B6f) is equivalent to

ΦA′B′ ⊗ TrA
[
T±
AB

]
+ (1A′B′ − ΦA′B′) ⊗ TrA

[
W±
AB

]
=
p±1A′BB′

d
. (C14)

Note that the equation above holds if and only if TrA
[
T±
AB

]
= TrA

[
W±
AB

]
= p±1B

d , which implies Eq. (C9).
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Now the original SDP has been simplified to

ε∗γ,NS(N , idd) = inf ε (C15a)

s.t. JM̃
A′B′ = Tr

[(
JN
AB

)T (
T+
AB − T−

AB

)]
ΦA′B′ + Tr

[(
JN
AB

)T (
W+
AB −W−

AB

)]
(1A′B′ − ΦA′B′),

(C15b)

ZA′B′ ≥ 0, ZA′B′ ≥ J idd

A′B′ − JM̃
A′B′ , TrB′ [ZA′B′ ] ≤ 2ε+ 1 − p+ + p−

2
1A′ , (C15c)

T±
AB ≥ 0, W±

AB ≥ 0, TrA
[
T±
AB

]
= TrA

[
W±
AB

]
=
p±1B
d

, p+ + p− ≤ γ, (C15d)

T±
AB +

(
d2 − 1

)
W±
AB = TrB

[
T±
AB +

(
d2 − 1

)
W±
AB

]
⊗ 1B

dB
. (C15e)

Denoting V ±
A := dTrB

[
T±
AB +

(
d2 − 1

)
W±
AB

]
/dB , by condition (C15e), we can write the variables W±

AB in terms of

V ±
A and T±

AB as (
d2 − 1

)
dW±

AB = V ±
A ⊗ 1B − dT±

AB . (C16)

Then, other conditions involving W±
AB can also be written as conditions on V ±

A and T±
AB . The condition W±

AB ≥ 0

becomes V ±
A ⊗ 1B ≥ dT±

AB . The condition TrA
[
W±
AB

]
= p±1B

d becomes

dTrA
[
W±
AB

]
=

Tr
[
V ±
A

]
1B − p±1B

d2 − 1
= p±1B , (C17)

which is equivalent to requiring Tr
[
V ±
A

]
= d2p±. Finally, the Choi operator of the simulated map M̃ can be written

as

JM̃
A′B′ = Tr

[(
JN
AB

)T
∆TAB

]
ΦA′B′ + Tr

[(
JN
AB

)T (∆VA ⊗ 1B − d∆TAB
d (d2 − 1)

)]
(1A′B′ − ΦA′B′) (C18)

= Tr
[(
JN
AB

)T
∆TAB

] d2ΦA′B′ − 1A′B′

d2 − 1
+ Tr

[(
JN
A

)T
∆VA

]
1A′B′ − ΦA′B′

d (d2 − 1)
, (C19)

where we denote ∆TAB := T+
AB − T−

AB , ∆VA := V +
A − V −

A , and JN
A := TrB

[
JN
AB

]
. Because NA→B is a quantum

channel, the partial trace of its Choi operator over the output system B equals 1A. Hence,

JM̃
A′B′ = Tr

[(
JN
AB

)T
∆TAB

] d2ΦA′B′ − 1A′B′

d2 − 1
+ Tr [∆VA]

1A′B′ − ΦA′B′

d (d2 − 1)
. (C20)

By further relabeling dT±
AB as T±

AB and replacing p± with Tr
[
V ±
A

]
/d2 lead to SDP (C1).

Because p+ + p− = Tr
[
V +
A + V −

A

]
/d2, by Proposition 8, we know changing the optimization objective of SDP (C1)

to Tr
[
V +
A + V −

A

]
/d2 and removing the condition Tr

[
V +
A + V −

A

]
/d2 ≤ γ gives us an SDP for γ∗ε,NS(N , idd). ■

Now, we turn to zero-error shadow communication. In this case, the preset error tolerance ε is 0. We can greatly
simplify the SDP for γ∗ε,NS(N , idd) using the fact ε = 0.

Lemma 10 The zero-error minimum sampling cost of shadow communication with NS codes is given by the following
SDP:

γ∗0,NS(N , idd) = inf
Tr
[
V +
A + V −

A

]
d2

(C21a)

s.t. Tr
[(
JN
AB

)T (
T+
AB − T−

AB

)]
= Tr

[
V +
A − V −

A

]
= d2, (C21b)

0 ≤ T±
AB ≤ V ±

A ⊗ 1B , TrA
[
T±
AB

]
=

Tr
[
V ±
A

]
d2

1B . (C21c)

Proof Consider the SDP for γ∗ε,NS(N , idd) given in Lemma 9. For ε = 0, we have

TrB′ [ZA′B′ ] ≤ 1

2

(
1 − Tr [∆VA]

d2

)
1A′ , (C22)

217



17

where ∆VA := V +
A − V −

A . On the other hand, taking the partial trace of JM̃
A′B′ over system B′, we get

TrB′

[
JM̃
A′B′

]
= Tr

[(
JN
AB

)T
∆TAB

] d1A′ − d1A′

d (d2 − 1)
+ Tr [∆VA]

d1A′ − 1A′/d

d (d2 − 1)
= Tr [∆VA]

1A′

d2
. (C23)

Then, it follows that

1

2

(
1 − Tr [∆VA]

d2

)
1A′ ≥ TrB′ [ZA′B′ ] ≥ TrB′

[
J idd

A′B′ − JM̃
A′B′

]
=

(
1 − Tr [∆VA]

d2

)
1A′ . (C24)

For ZA′B′ ≥ 0, we conclude that ZA′B′ = 0 and Tr [∆VA] = d2, implying JM̃
A′B′ = J id

A′B′ .

Note that we can also write JM̃
A′B′ as

JM̃
A′B′ = Tr

[(
JN
AB

)T ∆TAB
d

]
ΦA′B′ + Tr

[(
JN
AB

)T (∆VA ⊗ 1B − ∆TAB
d (d2 − 1)

)]
(1A′B′ − ΦA′B′) (C25)

by reorganizing Eq. (C1b) with ∆TAB := T+
AB − T−

AB . Because JM̃
A′B′ = J id

A′B′ = dΦA′B′ , it must be true that

Tr
[(
JN
AB

)T
∆TAB

]
= Tr [∆VA] = d2. (C26)

Hence the proof. ■
From this lemma, we can derive an SDP for the one-shot zero-error γ-cost shadow capacity as follows.

Theorem 11 The one-shot zero-error γ-cost shadow capacity assisted by no-signaling codes of a quantum channel
NA→B is given by the following SDP:

Q
(1)
γ,NS(N ) = sup log2

⌊√
Tr [VA]

⌋
(C27a)

s.t. Tr
[(
JN
AB

)T
TAB

]
= Tr [VA] , TrA [TAB ] = 1B , 0 ≤ TAB +RAB ≤ (VA +WA) ⊗ 1B , (C27b)

0 ≤ RAB ≤WA ⊗ 1B , TrA [RAB ] =
γ − 1

2
1B , Tr [WA] =

γ − 1

2
Tr [VA] . (C27c)

Proof The SDP given in Lemma 10 allows us to formulate Q
(1)
γ,NS(N ) as an optimization problem by replacing d2

with Tr
[
V +
A − V −

A

]
, and the objective of the optimization is to maximize log2

⌊√
Tr
[
V +
A − V −

A

]⌋
according to the

definition of Q
(1)
γ,NS:

Q
(1)
γ,NS(N ) = sup log2

⌊√
Tr
[
V +
A − V −

A

]⌋
(C28a)

s.t. Tr
[(
JN
AB

)T (
T+
AB − T−

AB

)]
= Tr

[
V +
A − V −

A

]
,
Tr
[
V +
A + V −

A

]
Tr
[
V +
A − V −

A

] ≤ γ, (C28b)

0 ≤ T±
AB ≤ V ±

A ⊗ 1B , TrA
[
T±
AB

]
=

Tr
[
V ±
A

]
1B

Tr
[
V +
A − V −

A

] , (C28c)

where the inequality in condition (C28b) corresponds to the limited cost budget. This is not an SDP, but observe
that the equality in condition (C28c) is equivalent to the following two equations:

TrA
[
T+
AB − T−

AB

]
= 1B and TrA

[
T+
AB + T−

AB

]
=

Tr
[
V +
A + V −

A

]
Tr
[
V +
A − V −

A

]1B . (C29)

In addition, the inequality in condition (C28b) can be restricted to equality without affecting the optimization result
because if T̄±

AB and V̄ ±
A form a set of optimal solution such that Tr

[
V̄ +
A + V̄ −

A

]
/Tr

[
V̄ +
A − V̄ −

A

]
= γ̄ < γ, then

T̄ ′±
AB := T̄±

AB + (γ − γ̄)1AB/2dA and V̄ ′±
A := V̄ ±

A + (γ − γ̄)Tr
[
V̄ +
A − V̄ −

A

]
1A/2dA also form a set of optimal solution

with Tr
[
V̄ ′+
A + V̄ ′−

A

]
/Tr

[
V̄ ′+
A − V̄ ′−

A

]
= γ. Note that for T̄ ′±

AB and V̄ ′±
A to be valid solution, it must be true that

Tr
[
V̄ +
A − V̄ −

A

]
≥ 1 so that V̄ ′±

A ⊗1B ≥ T̄ ′±
AB . This is indeed the case because from the constraint T±

A′B′ ≤ V ±
A ⊗1B we
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have TrA
[
T̄+
AB + T̄−

AB

]
≤ Tr

[
V̄ +
A + V̄ −

A

]
1B . For the equality TrA

[
T̄+
AB + T̄−

AB

]
= Tr

[
V̄ +
A + V̄ −

A

]
1B/Tr

[
V̄ +
A − V̄ −

A

]
to

hold, Tr
[
V̄ +
A − V̄ −

A

]
has to be larger than or equal to 1.

Now we can safely require Tr
[
V +
A + V −

A

]
= γTr

[
V +
A − V −

A

]
and thus TrA

[
T+
AB + T−

AB

]
= γ1B . Changing the

variables to TAB := T+
AB − T−

AB , RAB := T−
AB , VA := V +

A − V −
A , and WA := V −

A results in the claimed SDP. ■

In the main text, we claimed that Q
(1)
γ,NS generalizes the no-signaling-assisted one-shot zero-error quantum capacity

Q
(1)
NS in the sense that Q

(1)
1,NS(N ) = Q

(1)
NS(N ) for any quantum channel N . To see this, note that when γ = 1, variables

RAB and WA from SDP (C27) satisfy TrA [RAB ] = 0 and Tr [WA] = 0. Because both RAB and WA are positive
semidefinite operators, they can only be 0. Therefore, the original SDP (C27) reduces to

sup log2

⌊√
Tr [VA]

⌋
(C30a)

s.t. Tr
[(
JN
AB

)T
TAB

]
= Tr [VA] , TrA [TAB ] = 1B , 0 ≤ TAB ≤ VA ⊗ 1B , (C30b)

which is an SDP for Q
(1)
NS(N ) [7, 44].

Below, we provide an exact characterization of Q
(1)
γ,NS for single-qubit depolarizing channels.

Theorem 2 Let Ndepo,p(ρ) = pρ+ (1 − p)12/2 be a single-qubit depolarizing channel, where p ∈ [0, 1] is a probability
and 12 is the identity operator on C2. For γ ≥ 1, the one-shot zero-error shadow capacity assisted by no-signaling
resources is

Q
(1)
γ,NS(Ndepo,p) = log2

⌊√
2pγ + p+ 1

⌋
. (C31)

Proof The Choi operator of the depolarizing channel Ndepo,p from qubit system A to qubit system B is

J
Ndepo,p

AB = pΓAB +
1 − p

2
1AB , (C32)

where ΓAB := |Γ⟩⟨Γ|AB is the unnormalized maximally entangled state with |Γ⟩AB :=
∑1
j=0 |j⟩A|j⟩B . We first consider

the case where p ∈ (0, 1]. It is straightforward to verify that

T̄+
AB :=

d2 − 1 + p

4p
ΓAB , T̄−

AB :=
d2 − 1 − 3p

6p
1AB − d2 − 1 − 3p

12p
ΓAB , (C33)

V̄ +
A :=

d2(d2 − 1 + p)

8p
1A, V̄ −

A :=
d2(d2 − 1 − 3p)

8p
1A (C34)

form a feasible solution to the SDP for γ∗0,NS(Ndepo,p, idd) as presented in Lemma 10, implying

γ∗0,NS(Ndepo,p, idd) ≤
Tr
[
V̄ +
A + V̄ −

A

]
d2

=
d2 − 1 − p

2p
. (C35)

Using the Lagrange dual function, we can derive that the following problem is the dual problem associated with
SDP (C21):

γ∗0,NS(N , idd) ≥ sup λ− µ (C36)

s.t. M±
AB ≥ 0, M±

AB + d21A ⊗N±
B ≥ ±λ

(
JN
AB

)T
, (C37)

TrB
[
M±
AB

]
=
(
1 − Tr

[
N±
B

]
± µ

)
1A. (C38)

Again, it is straightforward to verify that, given JN
AB = J

Ndepo,p

AB ,

λ̄ :=
d2

2p
, µ̄ :=

1 + p

2p
, N̄+

B :=
1 + 3p

4p
1B , N̄−

B :=
p− 1

4p
1B , M±

AB = 0 (C39)

form a feasible solution to the dual problem, implying

γ∗0,NS(Ndepo,p, idd) ≥ λ̄− µ̄ =
d2 − 1 − p

2p
. (C40)
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Combining Eqs. (C35) and (C40), we conclude that

γ∗0,NS(Ndepo,p, idd) =
d2 − 1 − p

2p
, (C41)

which is the minimum sampling cost required to simulate the d-dimensional identity channel idd from Ndepo,p. In
other words, for any γ such that

d2 − 1 − p

2p
≤ γ <

(d+ 1)2 − 1 − p

2p
, (C42)

we have Q
(1)
γ,NS(Ndepo,p) = log2 d. Solving for the value of d in terms of γ, we obtain d =

⌊√
2pγ + p+ 1

⌋
, and hence

Q
(1)
γ,NS(Ndepo,p) = log2

⌊√
2pγ + p+ 1

⌋
. (C43)

When p = 0, the Choi operator of the depolarizing channel is simply 1AB/2. Taking this into SDP (C27), we

see that Tr[VA] can only takes a fixed value of 1. Hence, Q
(1)
γ,NS(Ndepo,p) = 0 for p = 0 and arbitrary γ, which

coincides with the value that log2

⌊√
2pγ + p+ 1

⌋
evaluates to. Therefore, Q

(1)
γ,NS(Ndepo,p) = log2

⌊√
2pγ + p+ 1

⌋
for

any p ∈ [0, 1]. ■
To further showcase the difference between shadow simulation and conventional quantum channel simulation, we in

addition consider two other common quantum channels: the single-qubit amplitude damping channel NAD with two
Kraus operators |0⟩⟨0|+√

p|1⟩⟨1| and
√

1 − p|0⟩⟨1| and the single-qubit dephasing channel Ndeph(·) = p(·)+(1−p)diag(·).
For each channel, the parameter p ∈ [0, 1] indicates the level of noise.
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FIG. 3. Comparison between the conventional no-signaling-assisted quantum communication and no-signaling-assisted shadow
communication under different cost budgets. Compared with the quantum case, where the one-shot zero-error quantum
capacities are 0 for all channels, higher one-shot zero-error shadow capacity is achieved for every channel with increased cost
budget.

In Figure 3, we present some numerical results on these channels at a low noise level (p = 0.9). For conventional
quantum communication with no-signaling codes, all these channels’ one-shot zero-error capacities are zero. For
shadow communication, on the other hand, the one-shot zero-error capacities of these three channels steadily go up
as the budget for sampling cost increases. The stepwise changes in the zero-error capacity show that we can trade
in computational resources for better performance in shadow communication, attaining computational power beyond
purely quantum protocols.

Appendix D: Shadow Simulation via Noiseless Channels

In this section, we derive the SDP for S
(1)
γ,NS, the one-shot zero-error γ-cost shadow simulation cost assisted by

no-signaling codes. Along the way, we derive SDPs for some related quantities, which are of interest on their own.
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To begin with, the minimum error and minimum sampling cost of shadow simulation with a noiseless channel can
be solved by SDPs in Lemma 12. We omit the proof here as it is very similar to the proof of Lemma 9.

Lemma 12 For an identity channel idd with dimension d and a target quantum channel MA′→B′ , the minimum
error of the simulation from idd to MA′→B′ assisted by NS codes with a cost budget γ is given by the following SDP:

ε∗γ,NS(idd,N ) = inf ε (D1a)

s.t. ZA′B′ ≥ 0, ZA′B′ ≥ JM
A′B′ − Y +

A′B′ + Y −
A′B′ , (D1b)

TrB′ [ZA′B′ ] ≤ 1

2

(
2ε+ 1 −

Tr
[
V +
B′ − V −

B′

]
d2

)
1A′ , (D1c)

0 ≤ Y ±
A′B′ ≤ 1A′ ⊗ V ±

B′ , TrB′
[
Y ±
A′B′

]
=

Tr
[
V ±
B′

]
d2

1A′ ,
Tr
[
V +
B′ + V −

B′

]
d2

≤ γ. (D1d)

Similarly, the minimum sampling cost γ∗ε,NS(idd,MA′→B′) with an error tolerance ε is given by changing the opti-

mization objective of the above SDP to Tr
[
V +
B′ + V −

B′

]
/d2 and removing the condition Tr

[
V +
B′ + V −

B′

]
/d2 ≤ γ.

Provided with Lemma 12, we now give an SDP for the zero-error minimum sampling cost of the shadow simulation
of a noisy channel via a noiseless one.

Lemma 13 The zero-error minimum sampling cost of the shadow simulation of a channel MA′→B′ via a d-
dimensional identity channel idd assisted by NS codes is given by the following SDP:

γ∗0,NS(idd,MA′→B′) = inf
Tr
[
V +
B′ + V −

B′

]
d2

(D2a)

s.t. Tr
[
V +
B′ − V −

B′

]
= d2, TrB′ [RA′B′ ] =

Tr
[
V −
B′

]
d2

1A′ , (D2b)

JM
A′B′ +RA′B′ ≤ 1A′ ⊗ V +

B′ , 0 ≤ RA′B′ ≤ 1A′ ⊗ V −
B′ (D2c)

Proof As in the shadow communication setting, the zero-error simulation of the channel M requires JN
A′B′ =

Y +
A′B′ − Y −

A′B′ and Tr
[
V +
B′ − V −

B′

]
= d2 (see the proof of Lemma 10). The equalities TrB′

[
Y ±
A′B′

]
=

Tr[V ±
B′ ]

d2 1A′ in
condition (D1d) can be equivalently written as

TrB′
[
Y +
A′B′ + Y −

A′B′

]
=

Tr
[
V +
B′ + V −

B′

]
d2

1A′ and TrB′
[
Y +
A′B′ − Y −

A′B′

]
=

Tr
[
V +
B′ − V −

B′

]
d2

1A′ . (D3)

Note that the latter equality TrB′
[
Y +
A′B′ − Y −

A′B′

]
= Tr

[
V +
B′ − V −

B′

]
1A′/d2 can be removed because it is already

implied by JN
A′B′ = Y +

A′B′ − Y −
A′B′ and Tr

[
V +
B′ − V −

B′

]
= d2 with the observation that TrB′

[
JN
A′B′

]
= 1A′ for N being

a quantum channel. Hence, we arrive at the following SDP:

γ∗0,NS(idd,MA′→B′) = inf
Tr
[
V +
B′ + V −

B′

]
d2

(D4a)

s.t. JM
A′B′ = Y +

A′B′ − Y −
A′B′ , Tr

[
V +
B′ − V −

B′

]
= d2, (D4b)

0 ≤ Y ±
A′B′ ≤ 1A′ ⊗ V ±

B′ , TrB′
[
Y +
A′B′ + Y −

A′B′

]
=

Tr
[
V +
B′ + V −

B′

]
d2

1A′ . (D4c)

Denoting RA′B′ := Y −
A′B′ , writing Y +

A′B′ as JM
A′B′ + RA′B′ , and exploiting TrB′

[
JM
A′B′

]
= 1A′ , one can obtain the

claimed SDP. ■
From this lemma, we can arrive at the following SDP for the one-shot zero-error γ-cost shadow simulation cost.

Theorem 14 The one-shot zero-error γ-cost simulation cost of a quantum channel MA′→B′ assisted by no-signaling
codes is given by the following SDP:

S
(1)
γ,NS(M) = inf log2

⌈√
Tr [VB′ ]

⌉
(D5a)

s.t. JM
A′B′ +RA′B′ ≤ 1A′ ⊗ γ + 1

2
VB′ , 0 ≤ RA′B′ ≤ 1A′ ⊗WB′ , (D5b)

TrB′ [RA′B′ ] =
γ − 1

2
1A′ , Tr [WB′ ] =

γ − 1

2
Tr [VB′ ] . (D5c)
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Proof According to the SDP given in Lemma 13, we can write the one-shot simulation cost S
(1)
γ,NS(M) as an

optimization problem by substituting d2 with Tr
[
V +
B′ − V −

B′

]
:

S
(1)
γ,NS(M) = inf log2

⌈√
Tr
[
V +
B′ − V −

B′

]⌉
(D6a)

s.t. TrB′ [RA′B′ ] =
Tr
[
V −
B′

]
Tr
[
V +
B′ − V −

B′

]1A′ ,
Tr
[
V +
B′ + V −

B′

]
Tr
[
V +
B′ − V −

B′

] ≤ γ, (D6b)

JM
A′B′ +RA′B′ ≤ 1A′ ⊗ V +

B′ , 0 ≤ RA′B′ ≤ 1A′ ⊗ V −
B′ . (D6c)

Note that the inequality in condition (D6b) can be restricted to equality while keeping the optimized value unchanged.
This is true because if RA′B′ and V̄ ±

B′ is a set of optimal solution with Tr
[
V +
B′ + V −

B′

]
/Tr

[
V̄ +
B′ − V̄ −

B′

]
= γ̄ < γ, then

R′
A′B′ := RA′B′ + (γ − γ̄)1A′B′/2dB′ and V̄ ′±

B′ := V̄ ±
B′ + (γ − γ̄)Tr

[
V̄ +
B′ − V̄ −

B′

]
1B′/2dB′ also form a set of optimal

solution such that Tr
[
V̄ ′+
B′ + V̄ ′−

B′

]
/Tr

[
V̄ ′+
B′ − V̄ ′−

B′

]
= γ. Note that for R̄′±

A′B′ and V̄ ′±
B′ to be valid solution, it must

be true that Tr
[
V̄ +
B′ − V̄ −

B′

]
≥ 1 so that 1A′ ⊗ V̄ ′−

B′ ≥ R̄′
A′B′ . This is indeed the case because from the constraint

RA′B′ ≤ 1A′ ⊗ V −
B′ we have TrB′

[
R̄A′B′

]
≤ Tr

[
V̄ −
B′

]
1A′ . For the equality TrB′

[
R̄A′B′

]
= Tr

[
V̄ −
B′

]
1A′/Tr

[
V̄ +
B′ − V̄ −

B′

]
to hold, Tr

[
V̄ +
B′ − V̄ −

B′

]
has to be larger than or equal to 1.

By changing the inequality in condition (D6b) to Tr
[
V +
B′ + V −

B′

]
/Tr

[
V +
B′ − V −

B′

]
= γ, it follows that Tr[V −

B′ ] =

(γ − 1)Tr[V +
B′ ]/(γ + 1) and thus TrB′ [RA′B′ ] = (γ − 1)1A′/2. Changing the variables to VB′ := 2V +

B′/(γ + 1) and
WB′ := V −

B′ gives the claimed SDP. ■
Similar to the one-shot zero-error shadow capacity, the SDP above implies that S(1)γ,NS is a generalization of the

no-signaling-assisted one-shot zero-error quantum simulation cost S(1)NS as it reduces to the SDP for the latter [7, 10]
when γ = 1. To showcase the difference between S(1)γ,NS and S(1)NS, we consider the two-qubit amplitude damping
channel NAD, the two-qubit dephasing channel Ndeph, and the two-qubit depolarizing channel Ndepo(·) = p(ρ) + (1−
p)14/4, where 14 denotes the four-dimensional identity operator, the parameter p ∈ [0, 1] indicates the level of noise,
and by a two-qubit amplitude damping channel we mean two single-qubit amplitude damping channels with the same
noise parameter acting independently on two qubits.
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FIG. 4. Comparison between the conventional no-signaling-assisted one-shot zero-error quantum simulation cost S
(1)
NS and

no-signaling-assisted one-shot zero-error shadow simulation cost S
(1)
γ,NS under different cost budgets γ. Compared with the

quantum case, where the simulation cost is 2 for all channels, lower simulation cost is achieved for each channel with increased
cost budget.

As in the task of shadow communication, we present numerical results on these channels at a low noise level
(p = 0.9) in Figure 4. The zero-error simulation costs of these channels decrease from 2 (quantum simulation cost) to
1 with increased cost budget. Again, the stepwise changes in the zero-error simulation cost show that we can attain
computational power beyond purely quantum protocols by trading in more computational resources.

In the main text, we presented the minimum sampling cost of simulating a high-dimensional identity channel with
a low-dimensional one. Now, we prove this result.
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Theorem 3 Given identity channels idd and idd′ with d′ ≥ d ≥ 2, the minimum sampling cost of an exact shadow
simulation of idd′ using idd and no-signaling resources is

γ∗0,NS (idd, idd′) = 2

(
d′

d

)2

− 1. (D7)

Proof The Choi operators of the noiseless channel idd from system A to system B and the noiseless channel idd′

from system A′ to system B′ are J idd

AB = ΓAB and J
idd′
A′B′ = ΓA′B′ , respectively. It is straightforward to verify that

V̄ +
B′ = d′1B′ , V̄ −

B′ =
d′2 − d2

d′
1B′ , R̄A′B′ =

d′(d′2 − d2)

(d′2 − 1)d2
1A′B′ − d′2 − d2

(d′2 − 1)d2
ΓA′B′ (D8)

form a feasible solution to the SDP for γ∗0,NS(idd, id
′
d) as given in Lemma 13, implying

γ∗0,NS(idd, id
′
d) ≤

1

d2
Tr
[
V̄ +
B′ + V̄ −

B′

]
=

2d′2

d2
− 1. (D9)

Using the Lagrange dual function, we can derive that the following problem is the dual problem associated with
SDP (D2):

γ∗0,NS(idd,MA′→B′) ≥ sup Tr
[
MA′B′JM

A′B′

]
− λ (D10a)

s.t. MA′B′ ≥ 0, NA′B′ ≥ 0, MA′B′ +NA′B′ +KA′ ⊗ 1B′ ≥ 0, (D10b)

d2TrA′ [MA′B′ ] = (1 + λ)1B′ , d2TrA′ [NA′B′ ] = (1 − λ− Tr [KA′ ])1B′ . (D10c)

It is straightforward to verify that

λ̄ = 1, M̄A′B′ =
2

d2
ΓA′B′ , N̄A′B′ = 0, K̄A′ = 0. (D11)

form a feasible solution to the dual problem for γ∗0,NS(idd, idd′), implying

γ∗0,NS(idd, idd′) ≥ Tr
[
M̄A′B′J

idd′
A′B′

]
− λ̄ =

2d′2

d2
− 1. (D12)

Combining Eqs. (D9) and (D12), we conclude that

γ∗0,NS(idd, id
′
d) =

2d′2

d2
− 1, (D13)

which completes the proof. ■
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Abstract. [Phys. Rev. Lett. 127, 050503 (2021)] showed some correlations cannot be used for standard
device-independent quantum key distribution (DIQKD), despite being nonlocal. This leads to the question
of whether there is a fundamental minimum amount of nonlocality needed for DIQKD. Here we show no such
bound exists: arbitrarily good key can be certified using correlations with arbitrarily small nonlocality.
Somewhat surprisingly we also show that it is possible to simultaneously certify both perfect key and
maximal randomness with a single set of correlations; the inequalities studied provide a direction for
improving experimental robustness for DIQKD and DI randomness expansion.

Keywords: DIQKD, self-testing, nonlocality

1 Motivation

Distributing a secret key between two separated par-
ties enables private communication over long distances.
Given access to classical resources, security can only be
established by making computational assumptions on an
adversary, which are difficult to ensure given the advent
of quantum computing. In contrast, sharing quantum
resources, such as entanglement, enables secure key dis-
tribution against an arbitrarily powerful quantum adver-
sary [1, 2, 3].

Despite the theoretical promises of quantum key dis-
tribution (QKD), its implementation security is typi-
cally dependent on well characterized devices. Any mis-
match between the physical device and this characteriza-
tion can open security loopholes (see e.g., [4]). Device-
independent (DI) QKD aims to circumvent this prob-
lem, deriving security from the input-output behaviour
of devices and without relying on their internal work-
ings [2, 5, 6, 7, 8, 9, 10]. Any observation of nonlo-
cality, that is, input-output statistics incompatible with
any classical physical model, is a certificate of quantum
behaviour within the device, and can be used to derive
security. In a sense, DI protocols certify the underlying
quantum mechanism used by the device (or enough about
it to conclude that the device can carry out the task).

A natural question to ask is, how nonlocal does a de-
vice behaviour need to be to permit DIQKD? Nonlocal-
ity is clearly necessary, but when is it sufficient, if at all?
Recently, the work of Farkas et al. [11] showed that not
all nonlocal behaviours can be used for DIQKD under a
standard class of protocols. Nevertheless, this left open
whether a fundamental bound on the minimum amount
of nonlocality needed to perform DIQKD exists.

In the related task of randomness expansion [12, 13, 14,
15, 16, 17], we recently showed that no such bound ex-

∗lewis.wooltorton@york.ac.uk
†peter.brown@telecom-paris.fr
‡roger.colbeck@york.ac.uk

ists [18] — in fact, perfect randomness expansion is possi-
ble with arbitrarily small nonlocality. The main contribu-
tion of our submission is to prove an analogous result for
DIQKD. In the 2-input 2-output scenario, we show that
for an arbitrarily small violation of the Clauser-Horne-
Shimony-Holt (CHSH) inequality, there exist extremal
quantum behaviours achieving that violation, which gen-
erate arbitrarily close to 1 secure key bit per entangled
state. Moreover, for any CHSH value between the lo-
cal bound of 2 and 5/2, there also exist quantum be-
haviours optimal for key generation. We also generalize
the constructions from [18] which achieve the maximum
of 2 random bits per entangled state. Finally, we intro-
duce quantum behaviours that generate arbitrarily good
key from one pair of measurement settings, and maxi-
mum global randomness from another, whilst exhibiting
CHSH values between 2 and 1 +

√
2. To our knowledge,

this is the first example of a quantum behaviour with this
property in the literature.

2 Methods and results

We consider a spot checking DIQKD protocol with
two inputs and two outputs per party, labeled X,Y,A,B
(all binary), and an adversary E. The figure of merit
is the asymptotic key-rate given by the Devetak-Winter
formula [19], H(A|X = 0, E) − H(A|B,X = Y = 0),
minimized over all quantum states and measurements
compatible with some observed statistics, where H is
the conditional von Neumann entropy. Key-rates of non-
asymptotic protocols can also be obtained via techniques
like the entropy accumulation theorem [20, 10]. To derive
our result, we design Bell expressions whose maximum vi-
olation is uniquely achieved by a strategy tailored to key
generation. More precisely, the maximum value of our
Bell-expressions allow us to self-test [21, 22, 23, 24, 25]
the optimal state and measurements, which in turn im-
ply that H(A|X = 0, E) = 1. Furthermore, our Bell
expressions also self-test a key generation measurement
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for Bob, from which we obtain a minimal error correc-
tion cost, i.e., H(A|B,X = Y = 0) ≈ 0. Note that we do
not require a third measurement for Bob, as is the case
for many DIQKD protocols (see [26, Section 4.4] for an
example using the CHSH inequality). In this Bell sce-
nario, the nonlocality of a behaviour is quantified by its
CHSH violation, ICHSH, and we obtain our main result
by self-testing behaviours that simultaneously lie close to
the local boundary, and generate near perfect key.

The family of Bell expressions we study first appeared
in [27, 28], and we provide an alternative self-testing
proof using Jordan’s lemma [29]. Our proof structure is
modular, self-contained, and applicable generally to the
2-input 2-output scenario. The Bell expressions take the
form:

⟨Bθ,ϕ,ω⟩=cos(θ + ϕ) cos(θ + ω)
〈
A0

(
cosωB0 − cosϕB1

)〉
+ cosϕ cosω

〈
A1

(
− cos(θ + ω)B0 + cos(θ + ϕ)B1

)〉
,
(1)

for any angles (θ, ϕ, ω) satisfying

cos(θ + ϕ) cos(ϕ) cos(θ + ω) cos(ω) < 0. (2)

For such angles, the quantum bound is given by
sin(θ) sin(ω − ϕ) sin(θ + ω + ϕ) and is uniquely achieved
up to local isometries by the two-qubit strategy:

|Φ0⟩ =
|00⟩ + |11⟩√

2

A0 = σZ , A1 = cos(θ)σZ + sin(θ)σX

B0 = sin(ϕ)σZ + cos(ϕ),

B1 = sin(ω)σZ + cos(ω)σX ,

(3)

where σZ and σX are the Pauli operators.
By carefully choosing one or more of the parameters

(θ, ϕ, ω) such that Eq. (2) holds, we can tune the self-
tested measurements of both devices to perform well at
a given task. More precisely, we obtain three sub-families
of Eq. (1) tailored for randomness generation, key gener-
ation, and both, which are saturated by behaviours ex-
hibiting an arbitrarily small CHSH violation. These are
summarized below:

(i) A two-parameter family of Bell expressions that
certifies 2 bits of global DI randomness, condi-
tioned on the input choice X = 0, Y = 1, that is
inf H(AB|X = 0, Y = 1, E) = 2. The range of
achievable CHSH violations are displayed in Fig. 1,
and cover the interval (2, 3

√
3/2], recovering the re-

sult of [18] as a special case.

(ii) A two-parameter family of Bell expressions tailored
for maximal key generation, conditioned on the in-
put choice X = Y = 0, that is inf H(A|X =
0, E) − H(A|B,X = Y = 0) = 1 − ϵ for any
ϵ > 0. CHSH violations in the interval (2, 5/2]
are achieved, which is our main result: near perfect
DIQKD is compatible with arbitrarily small nonlo-
cality. The full range of achievable CHSH values
are displayed in Fig. 2.

(iii) A one-parameter family of Bell expressions that cer-
tify near optimal key from one pair of measurement
settings, and maximum global randomness from an-
other; that is, inf H(A|X = 0, E) − H(A|B,X =
Y = 0) = 1 − ϵ, ϵ > 0, and inf H(AB|X = 0, Y =
1, E) = 2. The interval of CHSH values (2, 1 +

√
2]

is achieved, and can be seen by the dashed black
lines in Fig. 2; we see both near perfect key and
perfect randomness can be certified from a single
quantum behaviour lying arbitrarily close to the lo-
cal boundary.

Figure 1: Contour plot of nonlocality, measured using
the maximum of the 8 CHSH-type inequalities, for the
strategies in Eq. (3) with ω = π. The points inside the
dashed triangles, excluding the boundary, can be used for
perfect DIRE with a single linear Bell inequality: they
satisfy Eq. (2) and have a value in (2, 3

√
3/2] for one of

the CHSH-type inequalities, with the maximum of ICHSH

indicated with the black cross at θ = ϕ = π/3. Approach-
ing ϕ = −π/2 or ϕ = π/2 inside the corresponding region
also allows arbitrarily good DIQKD. The black contours
indicate ICHSH = 2 for at least one CHSH-type inequal-
ity.

3 Impact

Our results prove that there is no fundamental bound
on the minimum nonlocality needed to enable DIQKD.
The underlying reason for this is that there exist extremal
quantum behaviours that lie near the boundary of the lo-
cal set which can be self-tested with a single Bell expres-
sion, and consist of a measurement pair with near per-
fectly correlated outcomes. In addition, such behaviours
can have another measurement combination with per-
fectly un-correlated outcomes, giving rise to a stronger
statement concerning maximal key and randomness with
arbitrarily small nonlocality. This progresses our under-
standing of fundamental limits in DI cryptography, and
answers a question left open by Farkas et al. [11] who,
in contrast, showed there exist behaviours in the interior
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Figure 2: Contour plot of nonlocality, measured using the
maximum of the 8 CHSH-type inequalities of the strate-
gies in Eq. (3), at the limit ϕ = π/2. The contours with
CHSH values equal to 2 are the black triangular lines,
and are the limit points of correlations that achieve arbi-
trarily perfect DIQKD with a single linear Bell inequal-
ity. The black dashed lines show where perfect DIRE
can also be achieved, with the blue crosses denoting the
maximum value of ICHSH = 1 +

√
2 at θ = π/4, ω = π

and θ = 7π/4, ω = 2π. The black crosses denote the
global maximum of ICHSH = 5/2 at θ = π/3, ω = 5π/6
and θ = 5π/3, ω = 13π/6.

of the quantum set, which are nonlocal, yet cannot be
used for DIQKD under standard protocols. As we have
now shown, this fact does not imply the existence of a
fundamental bound.

In addition, we highlighted the versatility of the Bell
expressions used, and given the additional degrees of free-
dom, it would be interesting to understand their practi-
cal benefit. For example, an experimentalist could opti-
mize the Bell expression for their setup, possibly yielding
larger rates in a DI task such as randomness expansion
or key distribution. We also introduced a spot-checking
DIQKD protocol which remains in the two-input two-
output scenario, rather than adding a third measurement
for Bob as is typically done when using the CHSH in-
equality. This simpler setup removes the need for addi-
tional alignment tests, which might make the protocol
more efficient with finite numbers of rounds.

Finally, to the best of our knowledge, we have given
the first example of behaviours which exhibit near-perfect
key and perfect randomness from different measurement
combinations. It would be interesting if this could find an
application in a novel DI protocol. For example, perfect
global randomness implies a single bit of blind random-
ness per party, per round. One might hope to distill this
randomness alongside a DIQKD protocol, replenishing
the randomness consumed during key exchange.

For the full technical manuscript, please see
arXiv:2309.09650. During the writing up of this work
we became aware of a related work [30] that also shows
the possibility of key distribution with arbitrarily small
nonlocality using an alternative approach.
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[11] Máté Farkas, Maria Balanzó-Juandó, Karol
 Lukanowski, Jan Ko lodyński, and Antonio Aćın.
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Abstract. Differential-phase-shift (DPS) quantum key distribution (QKD) is one of the major QKD
protocols, and it is implementable with a simple experimental setup using a train of coherent pulses and
a passive measurement unit composed of a basic optical interferometer. Thanks to this simplicity, its
field demonstration was conducted in the Tokyo QKD network, and there are high expectations for future
practical use. However, the experimental simplicity would imply that the number of available experimental
parameters is small, and thus its information-theoretic security proof becomes challenging. In fact, all
previous security proofs needed assumptions on eavesdropper’s attacks or assumptions that compromise
the simplicity of the DPS protocol. In this work, we provide an information-theoretic security proof of
the DPS protocol in the finite-key regime while maintaining the inherent experimental simplicity of this
protocol. As a result of our security proof, we reveal that a 3 Mbit unconditionally secure key can be
distributed over 77 km in 8.3 hours, assuming typical experimental setups. This result demonstrates the
feasibility of the DPS protocol for generating secret keys over long distances in realistic experimental setups
and contributes to realizing truly secure communication. The full details of this work can be found in [1].

Keywords: quantum cryptography, finite-key security proof, concentration inequality

1 Introduction

Quantum key distribution (QKD) realizes information-
theoretically secure communication between two dis-
tant parties (Alice and Bob) against any eavesdropper
(Eve) [2, 3]. Among QKD protocols, the differential-
phase-shift (DPS) protocol [4] is a promising one, which
can be implemented with an experimentally simple setup
using a train of coherent pulses and a passive measure-
ment unit composed of a Mach-Zehnder interferometer
(see Fig. 1). Due to its simplicity, experimental demon-
strations were conducted in [5, 6, 7], and also its field
demonstration was executed in the Tokyo QKD net-
work [8]. Although the DPS protocol has an advantage of
simple implementation, establishing its security proof is a
challenging problem. This is because, in general, the se-
curity proof of QKD becomes more complex as the exper-
imental setup is simplified. To make the security proof of
the DPS protocol easier, previous works restricted Eve’s
attacks on the quantum channel [9, 10, 11] or made as-
sumptions that compromise the simplicity of the experi-
ment, such as employing a single-photon source [12] or a
phase randomized coherent source [13, 14].
In our previous work [15], we established the

information-theoretic security proof of the DPS protocol
while maintaining the inherent simplicity of this proto-
col. Unfortunately, this security proof is only valid in
the asymptotic regime, where the length of the sifted key
is assumed to be infinite. To implement the DPS pro-
tocol in the real world, it is indispensable to reveal its
key-generation efficiency with a finite key length.
Here, we solve this problem by providing the finite-

key security proof of the DPS protocol [1]. In the finite-
key analysis, it is crucial to evaluate statistical deviation
terms of concentration inequalities in deriving an upper
bound on the amount of privacy amplification NPA. In
so doing, it is important to employ a concentration in-

Laser
Beam
splitter

Long

Short
Bit 0

Bit 1

Long

Short

Block

|𝛼⟩|𝛼⟩ | − 𝛼⟩

1st TS2nd TS

Figure 1: Schematics of our DPS protocol. Alice sends
blocks of three pulses to Bob, and he receives them with
the one-bit delay Mach-Zehnder interferometer and de-
tectors. A detection event occurs if Bob obtains one pho-
ton in total among the 1st and 2nd time slots (TSs).

equality that results in a small deviation with a smaller
number of trials; otherwise the speed of convergence to
the asymptotic key rate becomes slow, leading to a poor
performance. For this, Azuma’s inequality [16] is a well-
known concentration inequality used in various security
proofs [17]-[21]. However, we reveal that the analysis
with Azuma’s inequality results in a substantially low key
rate under a realistic experimental setup. To overcome
this problem, we exploit Kato’s inequality [22, 23] and
show that the key rate is drastically improved. Specifi-
cally, our numerical simulation shows that its achievable
distance becomes more than four times longer than the
one based on the analysis using Azuma’s inequality with
typical experimental setups. Also, assuming the number
of emitted pulses that can be realized within practical
experimental times, we find that the rate does not signif-
icantly degrade from the asymptotic limit (see Fig. 2).
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2 Main result

We first describe our DPS protocol followed by stating
our main result, Theorem 1. In the following protocol de-
scription (see Fig. 1), we assume that Alice emits weak
coherent states |α⟩ of intensity µ := α2 ≪ 1 with mod-
ulating the phase either 0 or π perfectly. However, this
demanding assumption is not mandatory; as long as Al-
ice emits independent and identically distributed states,
she can securely employ them in the DPS protocol, even
without knowledge of the emitted states [24, 1]. This is
another advantage of the DPS protocol, which is impor-
tant for the implementation security of QKD [3].

(P1) Alice and Bob respectively repeat the following pro-
cedures for N rounds.

(a) Alice generates uniformly random three bits
b1b2b3 ∈ {0, 1}3 and sends three coherent
states (we call three coherent states block)

3⊗
i=1

|(−1)biα⟩Bi (1)

to Bob via a quantum channel.

(b) Bob forwards the incoming three pulses into
the Mach-Zehnder interferometer followed by
photon detection by single-photon detectors.
We call the round detected if Bob detects one
photon in total among the 1st and 2nd time
slots. The detection event at the jth time slot
determines the raw key bit d ∈ {0, 1} depend-
ing on which of the two detectors clicks.

(P2) Bob takes note of a set of detected rounds D ⊆
{1, ..., N} with length Ndet := |D|, a set of time
slots j := (ji)i∈D, and a raw key d := (di)i∈D.
Here, ji and di are j and d of the ith detected
round, respectively. Bob associates each detected
round with a code or sample round with proba-
bility t or 1 − t, respectively (0 < t < 1). He
defines the code set Dcode with length Ncode :=
|Dcode|, the sample one Dsample := D \ Dcode with
length Nsample := |Dsample|, his sifted key κB :=

(di)i∈Dcode
and the sample bit sequence κsample

B :=
(di)i∈Dsample

.

(P3) Bob announces Dcode, Dsample, j and κsample
B to Al-

ice through an authenticated public channel.

(P4) Alice calculates her sifted key κA := (bji ⊕
bji+1)i∈Dcode

and sample bit sequence κsample
A :=

(bji ⊕ bji+1)i∈Dsample
.

(P5) (Bit error correction) Using a pre-shared secret key
of length NEC, Bob corrects the bit errors in his
sifted key κB and obtains the reconciled key κrecB .
By consuming a pre-shared secret key of length ζ ′,
Alice and Bob verify the correctness of their rec-
onciled keys by comparing the output (ζ ′-bit) of a
randomly chosen universal2 hash function HEC.

(P6) (Privacy amplification) Alice and Bob conduct pri-
vacy amplification by shortening their reconciled
keys by NPA bits and respectively share the final
keys kA and kB of length Nfin = Ncode −NPA.

We define the bit error rate in the sample rounds by

ebit := wt(κsample
A ⊕ κsample

B )/Nsample.

Here, wt(·) denotes the Hamming weight. The net length
of the final key, namely, the increased length of the secret
key is ℓ = Ncode −NPA −NEC − ζ ′.

Below, we state the result of our security proof re-
vealing the amount of privacy amplification NPA =

Ncodeh
(

MU
ph

Ncode

)
against any Eve’s attack, based on

the phase-error correction approach [28] (see details in
Sec. 3). Importantly, the upper bound on the number of
phase errors MU

ph in Eq. (3) is expressed as a function of
the experimental parameters obtained in the above pro-
tocol; once the protocol is completed, this amount can be
determined. We adopt the standard composable security
framework [25, 26], where the imperfection of the final
keys kA and kB is measured by the trace distance be-
tween the actual and ideal states of Alice, Bob and Eve,
which is upper-bounded by the security parameter ϵsec.

Theorem 1 For any ζ, ζ ′ > 0 and 0 < ϵ1, ϵ2 < 1, the
above DPS protocol generates the secret key of length

ℓ = Ncode −Ncodeh
(
MU

ph/Ncode

)
−NEC − ζ ′, (2)

MU
ph :=

(3 +
√
5)tebitNsample

1− t
+ tq2N + Γ2 + (3 +

√
5)×∏

n=1,3

√
tqnN + Γn +∆n(n, ϵ1) + t∆1(D

2, ϵ1) (3)

with ϵsec = 2−ζ′
+

√
2
√
3(ϵ1 + ϵ2) + 2−ζ . Here,

∆1(x, y) :=
√
−2xNdet ln y,

D := max
{
(4 +

√
5− t)/(1− t), 1/t+ 4 +

√
5
}
,

Γn :=

[√
(ln ϵ2)

2 − 8tqnN ln ϵ2 − ln ϵ2

]
/2,

h(x) is the binary entropy function, ∆3(n, ϵ) is the devia-
tion term of Kato’s inequality [22] (see Eq. (42) [1]), and
qn denotes the probability of emitting n or more photons
in each emitted block, namely, qn =

∑∞
ν=n e

−3µ(3µ)ν/ν!
for n = 1, 2, 3.

As a result of the security proof, in Fig. 2, we present
our simulation results of the key rate R = ℓ/3N with ℓ
given in Eq. (2) as a function of the channel transmission
η including the detection efficiency. We optimize R over
the mean photon number µ of the emitted pulse and the
probability t of choosing the code round in step (P2)
for each value of η. We assume the number of detected
rounds as Ndet = 2Nηµe−2ηµ, Ncode = tNdet, Nsample =
(1 − t)Ndet, and the practical cost of error correction
being NEC = 1.16Ncodeh(ebit) with 1.16 [27] is an error

229



10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1 100

K
ey

 ra
te

 p
er

 p
ul

se

Channel transmission

, Kato’s ineq.N = 1013

, Kato’s ineq.N = 1012

, Kato’s ineq.N → ∞

Figure 2: Secret key rate R = ℓ/3N of our DPS protocol
per an emitted pulse as a function of the overall channel
transmission η. From top to bottom, we plot the key
rates for N = ∞, 1013, 1012 under the 1% bit error rate
and a typical security parameter ϵsec ≒ 10−8.1.

correction inefficiency. Also, we set ζ ′ = 28, ζ = 58, and
ϵ1 = ϵ2 = 2−58/6, which results in ϵsec ≒ 10−8.1. From
the result with N = 1013 in Fig. 2, if we assume the
overall channel transmission as η = 0.5 × 10−

0.2l
10 with l

denoting the distance between Alice and Bob and laser
diodes operating at 1 GHz repetition rate, by running our
protocol for 8.3 hours, we can generate a 3 Mbit secret
key for a channel length of 77 km under 1% bit error rate.
The results suggest the feasibility of long-distance QKD
with realistic time and experimental setups.

3 Proof idea of Theorem 1

In the proof of Theorem 1, we consider the
entanglement-based scenario, which gives the same
statistics of the final keys kA and kB as in the actual
protocol. In this scenario, instead of Alice preparing
the state in Eq. (1), she prepares the following entan-
gled state

3⊗
i=1

(|0⟩Ai
|α⟩Bi

+ |1⟩Ai
| − α⟩Bi

) /
√
2

and sends only systems B1B2B3 to Bob. Bob’s setup is
the same as in Fig. 1. When the detection event occurs at
the 1st time slot, Alice obtains her shifted key by apply-
ing the CNOT gate to qubits A1 and A2 and measuring
the target qubit A2 in the Z-basis {|0⟩, |1⟩}. Our proof
adopts the complementarity proof technique [28], and its
goal is to determine the number of phase errors Mph.
A phase error is an event where Alice fails to predict
the measurement outcome xA2 ∈ {0, 1} if qubit A2 were
measured in the complementaryX-basis instead of the Z-
basis. This prediction is a task of guessing which of the
first or second emitted pulse contained a photon. Since
the result of this X-measurement cannot be obtained di-
rectly from the actual protocol, we need to estimate the

(L, 1)

(L, 2)

𝑡୭ୠ = (S, 2)

(S, 3) (S, 2) (S, 1)(L, 3)𝐵ଵ𝐵ଷ 𝐵ଶ

𝐴ଵ𝐴ଶ𝐴ଷ

X

𝑥మ?

X

𝑥భ ⊕ 𝑥మ

Figure 3: Alice’s complementary task of predicting the
outcome xA2 ∈ {0, 1} if qubit A2 were measured in theX-
basis. A phase error occurs if she fails in the prediction.

number of failures in predicting this outcome from the ac-
tually observed quantities. For this prediction, measure-
ments that do not disturb xA2

can be performed. Hence,
to enhance the accuracy of her prediction, Alice measures
qubit A1 in the X-basis and obtains the parity informa-
tion xA1 ⊕ xA2 . Furthermore, Bob performs a measure-
ment to know which pulse contains a photon by removing
the second beam splitter and informs Alice of this infor-
mation tBob (see Fig. 3). Using the information xA1

⊕xA2

and tBob, Alice predicts xA2
. Let Yi be the binary random

variable representing the presence of a phase error in the
ith detection event and Mph =

∑Ndet

i=1 Yi be the number
of phase errors. Here, due to Eve’s attack on the quan-
tum channel, these random variables Yi are correlated
with each other, and therefore, to relate Mph to the ac-
tually observed quantities in the protocol, it is necessary
to use a concentration inequality applicable to correlated
stochastic processes.

In the case of correlated stochastic processes, Azuma’s
inequality is a well-known concentration inequality to re-
late a random variable and its expectation [17]-[21]. In
Eq. (3), tq3N +Γ3 +∆3(3, ϵ1) is the upper bound on the
random variable X3 representing the number of times
Alice emits three photons in a block and Bob obtains a
detection event. In the proof of Theorem 1, X3 appears
as the result of evaluation of its expectation E[X3]. We
reveal that applying Azuma’s inequality to this evalua-
tion results in a significant decrease in the key rate due
to the large deviation term |X3 − E[X3]| compared to
X3 (see Fig. 5 in [1]). This is because the event of emit-
ting three photons, whose probability is q3 ∼ µ3, hardly
occurs in the protocol using weak coherent states with
intensity µ ≪ 1. On the other hand, Kato’s inequality
can incorporate the knowledge of the rarity of the events
into the concentration inequality (more precisely, our es-
timation ofX3 can be reflected in the inequality), thereby
reducing the deviation term. This is the reason why we
apply Kato’s inequality to upper-bound E[X3] with X3.
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efficient decoy-state analysis
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Abstract. We propose a continuous-variable quantum key distribution (CV QKD) protocol with time-bin
encoding and present a complete security analysis using discrete-variable (DV) methods. The new protocol
is secure under the most general attacks and does not require any pilot reference, a costly requirement for
common CV QKD. We unify the security analysis of CV QKD under standard DV approaches through the
discrete photon-number tagging of the continuous optical fields. Moreover, by applying the DV technique of
decoy states to the parameter estimation, our CV QKD protocol yields short-distance key-rate performance
comparable to the state-of-the-art Bennett-Brassard-1984 implementation.

Keywords: quantum communication, quantum key distribution, coherent detection, quantum optics

1 Introduction

Continuous-variable quantum key distribution (CV
QKD) [1–3] using optical coherent detectors is practically
favorable due to its low implementation cost, flexibility
of wavelength division multiplexing [4–6], and compat-
ibility with standard coherent communication technolo-
gies [7]. However, the security analysis and parameter es-
timation of CV QKD are complicated due to the infinite-
dimensional latent Hilbert space [8]. Also, the transmis-
sion of strong reference pulses undermines the security
and complicates the experiments [9–14].
In this work, we tackle these two problems by pre-

senting a time-bin-encoding CV protocol with a simple
phase-error-based security analysis valid against general
coherent attacks [15–17]. With the key encoded into the
relative intensity between two optical modes, the need for
global references is removed. Furthermore, phase ran-
domization can be introduced to decouple the security
analysis of different photon-number components. We can
hence tag the photon number for each round, effectively
estimate the associated privacy using a carefully designed
coherent-detection method, and independently extract
encryption keys from each component [18, 19]. Simula-
tions manifest that the protocol using multi-photon com-
ponents increases the key rate by two orders of magnitude
compared to the one using only the single-photon compo-
nent. Meanwhile, the protocol with four-intensity decoy
analysis [20, 21] is sufficient to yield tight parameter esti-
mation with a short-distance key rate comparable to the
best Bennett-Brassard-1984 (BB84) implementation.

2 Protocol and security analysis outline

The protocol implementation is given in Fig. 1. Raw
keys are obtained when both Alice and Bob choose the
Z-basis, Alice chooses light intensity µa = µ, and Bob
obtains a non-abort key bit kb ̸= ∅. The Z-bases are
mainly used for key encoding and decoding, and the X-

∗peizeng@uchicago.edu

bases are used for parameter estimation. Here, we briefly
explain the ideas behind the protocol design.

2.1 Time-bin BB84-like key encoding/decoding
(Z-bases)

1. Source states:
(1) Alice’s raw key ka is encoded in the relative intensity
between two time-bin modes (0 versus µa in two modes);
(2) Joint phase randomization block-diagonalizes the
two-mode state on the total photon-number basis (ran-
dom phase parameter φa over two modes).

2. Detection:
(1) Bob’s raw key kb is decoded from light intensity mea-
surement (difference between quadrature absolute values
|q1| and |q2|);
(2) A threshold value τ in quadrature measurement is
set to tackle shot noise in homodyne detection (an abort
result kb = ∅ is allowed);
(3) LO phase randomization block-diagonalizes the
POVM elements on the total photon-number basis (ran-
dom phase parameter φb over two LOs).

The key encoding and decoding resembles the time-
bin-encoding BB84 protocol with coherent states [22],
with the difference that single-photon detectors are re-
placed with homodyne detectors. As the key is encoded
in the relative intensity, the protocol avoids the necessity
of a pilot reference pulse.

For security analysis, we set up an equivalent virtual
protocol (Fig. 2). On the source side, we set up an equiva-
lent entanglement-based key encoding. On the detection
side, we set up an equivalent squashing channel that gen-
erates the raw key with the same acceptance (kb ̸= ∅)
probability. Alice’s and Bob’s raw keys ka and kb can be
seen as Z-basis measurement results on qubit systems A′

and B′, respectively. This allows a discrete-variable-type
complementarity-based security analysis [17]: Should Al-
ice and Bob instead measure the qubit systems on the
complementary X-basis, the probability they obtain dif-
ferent results, or the phase-error rate, eX , could be used
to upper-bound the privacy amplification cost.
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Figure 1: Experimental setup. Alice’s state preparation and Bob’s detection and processing are listed in the tables.
IM: intensity modulation; PM: phase modulation; ATTN: attenuation; LO: local oscillator.

After phase randomization (blue boxes), photon-
number measurements Mna and Mnb

can be inserted
without changing the key statistics. We can hence tag
the emitted and received pulses according to the photon-
number space, allowing the Gottesman-Lütkenhaus-Lo-
Preskill (GLLP) framework [18] for analyzing the key
privacy contained in each photon-number subspace.

2.2 Reverse reconciliation

Alice reconciles her raw keys with respect to Bob’s.
Therefore, the rounds Bob receives a vacuum state be-
come secure. This is a common practice in usual CV
QKD and in accordance with the observation in Ref. [23].
Based on the above design, we have the following result.

Theorem 1 (Asymptotic limit) For the time-bin CV
QKD protocol in Fig. 1 with reverse reconciliation, the
distillable secure key rate r is lower bounded by rrev,

r ≥ rrev = Q∗,0 +

∞∑
m=1

Qm,m[1− h(eXm,m)]− fQZh(eZ),

(1)
Qm,n (gain): probability of sending an m-photon state
and accepting an n-photon state; eXm,m: phase-error rate
in the rounds where m photons are sent and m photons
are accepted; Q∗,0: gain of the rounds where Bob accepts
a vacuum state; QZ : Z-basis gain; eZ : bit-error rate; f :
efficiency of information reconciliation.

We discard the rounds where the total photon number
decreases after state transmission, as Eve can apply a
photon-number-splitting attack. In addition, we do not
account for the terms where the total photon number
increases, considering the practical lossy channels.

2.3 Parameter estimation (X-bases)

The phase-error probabilities and gains are defined by
particular Fock-basis states. For instance, the single-
photon phase-error rate is defined via the probability
that Alice transmits

∣∣Ψ±
1

〉
= (|01⟩ ± |10⟩)/

√
2 while

Bob measures
∣∣Ψ∓

1

〉
, and the two-photon phase-error

rate is defined via the probability that Alice transmits∣∣Ψ±
2

〉
= (|02⟩ ± |20⟩)/

√
2 while Bob measures

∣∣Ψ∓
2

〉
or

|11⟩. To estimate these values, we construct unbiased
estimators with the available coherent states and homo-
dyne detection settings.

1. Source: To construct the state for desired statis-
tics, we utilize coherent states from both bases,

Prµ(m)
∣∣Ψ±

m

〉 〈
Ψ±

m

∣∣
=P̂m

(
ρ̂Zµ ± 2m−2

m

m−1∑
k=0

ρ̂
2πk
m

µ ∓ 2m−2

m

m−1∑
k=0

ρ̂
2πk
m +δ

µ

)
P̂m,

(2)

where Prµ(m) gives the Poisson distribution, P̂m is the
m-photon projector, ρ̂Zµ is the Z-basis state, ρ̂φa

µ are the
X-basis states with relative phase φ1

a−φ2
a = φa, and δ =

π for oddm and π/2 for evenm. The yields for each term
can be estimated via the decoy-state method [20, 21].

2. Detection: We apply homodyne tomography to
evaluate the photon-number operators [24–29]. Unbiased
estimators can be obtained via weighted integrals over
observed statistics, p(q1, q2|φ1

b , φ
2
b), the joint probability

of quadrature measurement results on the two modes con-
ditioned on LO phases φ1

b and φ2
b .

2.4 Finite-size analysis against coherent attacks

The discrete-variable-type analysis allows the use of
mature techniques like martingale theory [30–32] for
finite-size parameter estimation under coherent attacks.
Details can be found in the attached technical version.

3 Performance

We simulate the asymptotic key rate of our protocol
with a thermal noise channel and a unit-efficiency homo-
dyne detector. Note an inefficient detector with thermal
electronic noise can be equated to a fiber section with
transmittance equal to the detector efficiency, and the
electronic noise absorbed into the channel excess noise.
The fiber attenuation is 0.2 dB/km.

3.1 Utility of multi-photon components

The rounds where Alice sends m photons and Bob re-
ceives m photons can assure secure keys. Fig. 3a plots
the asymptotic key rate of the i-photon protocol [utiliz-
ing at most m = i photon components in Eq. (1)] with
optimized setting parameters. Fig. 3b plots the key-rate
contribution of each photon component at different dis-
tances. The m-photon contribution of the i-photon pro-
tocol is defined as Qm,m/(Q∗,0 +

∑i
m=1 Qm,m) and the

vacuum contribution is Q∗,0/(Q∗,0 +
∑i

m=1 Qm,m).
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Figure 2: An equivalent protocol of key generation for security analysis.
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Figure 3: (a) Solid lines: asymptotic key rates of protocols using up to 1, 2, 3, and 4 photons. Dotted line: linear key
rate bound [33, 34]. (b) Contributions of Qm,m and Q∗,0. (c) Optimized parameters and bit error rates.

Table 1: Comparison between this work and relevant protocol designs and analyses.

protocol modulation detection pilot analysis attack against finite size distance
BB84 DV single-photon × analytical coherent ✓ long

ideal GG02
CV homo-/hyterodyne ✓

analytical coherent ✓
mid

realistic GG02 numerical ? ?
Ref. [3] DV homo- & hyterodyne ✓ analytical coherent ✓ mid
Ref. [23] DV hyterodyne × analytical indivial × short
Ref. [35] DV homodyne × numerical collective∗ × metropolitan

This work DV homodyne × analytical coherent ✓ metropolitan
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Figure 4: Two-photon protocol performances.

3.2 DV-comparable short-distance key rate

The key rate improves as we make use of the multi-
photon components, most remarkable between the one
and two-photon protocols. If we consider the protocol
with infinite photon-number components, the 0-km key
rate is around 0.31 bit/channel, and the BB84 protocol
with currently the best single-photon detector of 80%
efficiency [36, 37] has 0-km key rate 0.29 bit/channel,
based on the model from Ref. [38]. Our key rate matches
the best BB84 key rate with practically favorable devices.

3.3 Robustness

Fig. 4 illustrates the practical performances of the two-
photon time-bin CV QKD protocol. We consider the is-
sues of (1) the excess noise in transmission and detection,
(2) the mode reference misalignment, where the two opti-
cal modes generating the time-bin qubit differ by δ in the
reference phases intrinsically, and (3) a finite decoy level.
Compared to the noiseless case (blue curves), the key rate
decays mildly in the practical setup (red curves), consid-
ering reasonable parameters of excess noise ξ = 10−3 and
misalignment δ = 5◦. Moreover, an optimized 4-level de-
coy estimation is almost exact for both the noiseless and
the practical setups (optimization using linear program-
ming with a cutoff photon number 10 [39, 40]).

4 Comparison with relevant protocols

To sum up, we compare our protocol and analysis with
relevant ones (Table 1). Our protocol has the advantage
of removing the need of a reference pilot pulse, robust
implementation with practically favorable devices, and
reasonable performance in metropolitan distances. More-
over, we provide a complete analytical security analysis
valid against coherent attacks in the finite-size regime.
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Continuous-variable quantum key distribution (CV QKD) using optical coherent detectors is prac-
tically favorable due to its low implementation cost, flexibility of wavelength division multiplexing,
and compatibility with standard coherent communication technologies. However, the security anal-
ysis and parameter estimation of CV QKD are complicated due to the infinite-dimensional latent
Hilbert space. Also, the transmission of strong reference pulses undermines the security and compli-
cates the experiments. In this work, we tackle these two problems by presenting a time-bin-encoding
CV protocol with a simple phase-error-based security analysis valid under general coherent attacks.
With the key encoded into the relative intensity between two optical modes, the need for global
references is removed. Furthermore, phase randomization can be introduced to decouple the se-
curity analysis of different photon-number components. We can hence tag the photon number for
each round, effectively estimate the associated privacy using a carefully designed coherent-detection
method, and independently extract encryption keys from each component. Simulations manifest
that the protocol using multi-photon components increases the key rate by two orders of magni-
tude compared to the one using only the single-photon component. Meanwhile, the protocol with
four-intensity decoy analysis is sufficient to yield tight parameter estimation with a short-distance
key-rate performance comparable to the best Bennett-Brassard-1984 implementation.

I. INTRODUCTION

Quantum key distribution (QKD) allows the genera-
tion of random secure keys between distant communica-
tion parties, of which the security is guaranteed by quan-
tum physical laws. Apart from its theoretical advances,
QKD is also one of the few quantum information pro-
cessing technologies that can be robustly deployed in the
fields, where photonic systems are considered the most
suitable carriers of QKD operation. In general, two types
of QKD protocols exist based on the detection methods:
discrete-variable (DV) QKD [1, 2] uses the single-photon
detector or photon-number-resolving detector to generate
discrete detection information, while continuous-variable
(CV) QKD [3–5] applies optical homodyne or heterodyne
detection to generate continuous measurement informa-
tion.

CV QKD has its advantages over DV QKD in short
distances, mainly attributing to the distinct features of
the coherent detectors used. The homodyne and hetero-
dyne detectors are compatible with the standard classi-
cal communication and can be operated at much milder
conditions than single-photon detectors. The spatial-
temporal filtering of the local oscillators (LO) allows

∗ peizeng@uchicago.edu

dense wavelength-division multiplexing with intense clas-
sical channels [6–8], and the high quantum efficiency and
operation rate give CV QKD high key rates in metropoli-
tan distances [9–11]. Moreover, the feasibility of on-chip
implementations of the coherent detectors [12] promises
large-scale integrated quantum networks. CV QKD is
therefore considered highly practical and promising.
However, there exist two major limitations to the reli-

ability of CV QKD. First, the transmission of the strong
local oscillators is usually necessary to set up the phase
reference between the communication parties, yet this
complicates the implementation in the multiplexing sep-
aration and the relative phase shift calibration with the
signals [13]. The LO transmission also opens up security
loopholes where the eavesdropper Eve can affect the es-
timation of the signal variance by manipulating the LO
intensity [14, 15], input time [16] and wavelength [17].
The “local” local oscillator scheme [13, 18] is a valid so-
lution, yet it still requires the transmission of pilot pulses
and compensation in the classical post-processing layer,
which increase the experimental complexity. Second, the
security of CV QKD in the finite-data regime under co-
herent attacks is still incomplete. In fact, for the tradi-
tional entanglement-distillation approach [19], the finite-
size coherent attack security is only tackled for Gaussian-
modulated CV QKD [20], which is, however, impractical
since continuous modulation is never possible in reality.
Recently, several remarkable works on CV QKD have
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been proposed, aiming at closing its security loopholes.
In Ref. [5, 21], Matsuura et al. proposed a DV-like secu-
rity analysis for the binary phase shift keying CV QKD.
Their analysis covers finite size and coherent attack in-
trinsically since it follows the phase-error complementar-
ity approach [22], yet their protocol still assumes the
transmission of local oscillators. Qi [23] and Primaat-
maja et al. [24] respectively proposed CV QKD proto-
cols with two-mode encoding, generating dual-rail qubits
that do not require global references. Their security anal-
yses, however, do not cover the finite-data regime and
coherent attacks. In fact, Qi’s analysis requires repeated
measurements and is only valid for individual attacks,
and Primaatmaja et al.’s analysis is based on Devetak-
Winter formula [19] and is only valid for collective at-
tacks. Hence, the gap in CV QKD between theory and
practice is still a challenging problem to be tackled.

In this work, we close this gap by proposing a new time-
bin-encoding CV QKD protocol that enjoys both simple
security proof and practical implementation. We remove
the necessity of LO transmission by the two-mode encod-
ing, hence closing the security loophole while simplifying
the experimental setups. We follow the phase-error com-
plementarity approach [22, 25, 26] so that the security
naturally covers the general coherent-attack case. What
is more, the intensity-based encoding allows phase ran-
domization to be applied, where we can group the re-
ceived signals based on the transmitted photon numbers
and restore the tagging-based security analysis [27, 28]
and the decoy-state method [29, 30]. Instead of generat-
ing secure key bits from all raw key bits, we can thus take
advantage of the photon-number tags and distill key bits
from the rounds with low phase-error rate. Our tagging-
based security analysis builds a direct connection be-
tween CV QKD and the normal Bennett-Brassard-1984
(BB84) protocol: we clearly show how the multi-photon
components in the CV QKD protocol contribute to a
higher key rate in short distances. Compared with a
similar protocol in Ref. [24] with numerical optimization
under collective attacks, our protocol generates higher
key rates with simpler parameter estimation using four
decoy levels under coherent attacks.

We will start with the protocol description of the time-
bin-encoding CV QKD in Sec. II. We present its secu-
rity analysis based on phase error correction [22, 25, 26]
in Sec. III, identifying an equivalent protocol squashing
the optical modes into qubits with identical key mapping
statistics [5, 27, 31] in Sec. III A. We exploit the block-
diagonal structures of both the source and the receiver in
Sec. III B, thus invoking the photon-number tagging tech-
nique [27, 28] standard in DV QKD in this CV protocol.
In Sec. III C, we calculate the parameters in the key-rate
formula with quantities on optical modes. The estima-
tion of these quantities will be explained in Sec. IV with
homodyne tomography [32] and decoy method [29, 30].
We finally simulate the performances of the time-bin CV
QKD under realistic fiber-channel setups in Sec. V.

II. PROTOCOL DESCRIPTION

We present the proposed time-bin-encoding CV QKD
protocol in Table I and depict its schematic diagram
in Fig. 1. The two communication parties, Alice and
Bob, employ the time-bin degree of freedom to encode
keys. They use Z-basis for key generation and X-basis
for parameter estimation. At the moment, we do not
present the details of the X-basis parameter settings.
We will specify the choices of the random phase fac-
tors, φ1

a, φ
2
a, φ

1
b and φ2

b , and the light intensity, µa ∈
{µ, ν1, ν2, 0}, in Sec. IV.
Here, we briefly explain the idea behind the protocol

design. The source states of our scheme resemble the
ones in the time-bin-encoding BB84 protocol with coher-
ent states [1], where the light intensities of the consecu-
tive pulses naturally encode the key-bit information. As
the key information is encoded in the relative intensity
between the two modes, Alice does not need to send a
pilot phase reference as in common CV QKD.
In our scheme, Bob decodes the key bit information,

namely the Z-basis information, by measuring the light
intensity of the pulses using the homodyne detectors. For
instance, when Bob observes q1 to be close to 0 and q2 to
be far away from 0, he may naturally guess that the orig-
inal state sent by Alice corresponds to ka = 0. However,
unlike the key decoding with photon-number detectors,
the result of measuring a coherent state’s quadrature is
subjected to a Gaussian distribution rather than a fixed
value. The inherent shot noise of the homodyne detection
introduces an intrinsic error in distinguishing a vacuum
state from a pulse with a non-zero intensity [33]. To sup-
press the bit error, we introduce a threshold value, τ ,
in key decoding. The pulse intensity will be considered
non-zero only when the quadrature magnitude is larger
than τ . So a bit 0 will be decoded if |q1| < τ and |q2| > τ
and bit 1 if |q1| > τ and |q2| < τ . The choice of τ should
be optimized with respect to the channel transmittance
and pulse intensity. As we will show in Sec. VI, although
this key mapping scheme can be further optimized, the
performance of the simple key mapping scheme is already
near-optimal.
The X-basis is designed to estimate the information

leakage of different photon-number components of the Z-
basis. Thanks to the phase randomization for both the
sources and the detectors, the Z-basis states are block-
diagonal on the total photon-number basis on the two
optical modes after emitted from the source and be-
fore being measured by the homodyne detectors. As
we will clarify in Sec. III, we can equivalently introduce
total photon-number measurements at these two loca-
tions. As a result, Eve’s eavesdropping strategy is effec-
tively “twirled” to a photonic channel that only acts on
the states incoherently with respect to the total photon
numbers. One can thus virtually tag the emitted and
received pulses according to the photon-number space,
allowing the Gottesman-Lütkenhaus-Lo-Preskill (GLLP)
framework [27] for analyzing the key privacy contained
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TABLE I: Phase-randomized time-bin-encoding CV QKD

1. On Alice’s side (source):

• Z-basis:

(a) Randomly select a key bit ka ∈ {0, 1}, a phase factor φa ∈ [0, 2π), and a light intensity µa ∈ {µ, ν1, ν2, 0}.
(b) Prepare a coherent state of |0⟩A1 |

√
µae

iφa⟩
A2

for ka = 0 or |√µae
iφa⟩

A1
|0⟩A2 for ka = 1.

• X-basis:

(a) Randomly select two phase factors φ1
a and φ2

a and a light intensity µa ∈ {µ, ν1, ν2, 0}.
(b) Prepare a coherent state of |

√
µa/2e

iφ1
a⟩ |

√
µa/2e

iφ2
a⟩.

2. Alice sends the state through an authenticated channel to Bob.

3. On Bob’s side (detection):

• Z-basis:

(a) Randomly select a phase factor φb ∈ [0, 2π).

(b) Use homodyne detectors both with LO phases φb to measure the modes and obtain quadratures q1 and
q2.

(c) Decode the key bit as 0 if |q1| < τ ∧ |q2| > τ , 1 if |q1| > τ ∧ |q2| < τ , and ∅ otherwise.

• X-basis:

(a) Randomly select two phases φ1
b and φ2

b independently.

(b) Use homodyne detectors with LO phases φ1
b and φ2

b to measure the modes and obtain quadratures q1
and q2.

(c) Use φ1, φ2 and q1, q2 for phase-error estimation (see Sec. IV).

4. Alice and Bob perform basis sifting, where they obtain raw keys in the rounds they both choose Z-basis with light
intensity µa = µ and kb ̸= ∅.

5. Based on parameter estimation, Alice and Bob perform information reconciliation and privacy amplification to
obtain final keys.

FIG. 1: Schematic diagram of the experimental setup. The setups of Alice and Bob are shaded in green and blue,
respectively. Alice prepares two-mode phase-randomized states according to the basis choice and raw key value in
key generation rounds, as shown in the table. In this work, we consider a time-bin encoding, where one obtains two
modes via time delay. The state modulation consists of intensity modulation (IM), phase modulation (PM), and
necessary attenuation (ATTN). Upon receiving the state, Bob measures each mode with homodyne detectors. He
uses a synchronized clock to distinguish adjacent modes and applies phase modulation (PM) to the local oscillator
(LO).
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in each photon-number subspace. In particular, dealing
with photon-number spaces effectively brings our security
analysis to the DV regime. In Sec. III, we shall construct
observables to estimate the m-photon component phase-
error rates eXm,m for privacy estimation. Intuitively, the

phase-error rates eXm,m provide upper bounds on the key
information leakage to the eavesdropper, Eve.

To estimate the m-photon component phase-error
rates, eXm,m, ideally, we need a source emitting the

photon-number cat states, (|0⟩ |m⟩ ± |m⟩ |0⟩)/
√
2, and

photon-number-resolving measurements that distinguish
the cat states. While this is not directly implementable,
we can use only coherent states and homodyne measure-
ments to establish unbiased estimators of eXm,m, as shown
in Table II. On the source side, we employ a generalized
decoy-state method to estimate the behaviors of photon-
number-cat states using coherent states with various in-
tensities [29, 30], which shall be discussed in Sec. IVB.
On the detection side, ideally, we also want to measure
the photon-number-cat states to obtain unbiased estima-
tion of the phase-error rates, eXm,m. While this is not di-
rectly measurable in practice, we employ the homodyne
tomography technique and estimate the photon-number-
cat state measurement via quadrature measurement re-
sults [34–39], which shall be discussed in Sec. IVA.

We briefly remark on the performance of homodyne de-
tection. In key decoding, one may consider the homodyne
detection as ill-performed single-photon detectors that
introduce an inevitable bit-error rate. On the other hand,
homodyne detection allows for more efficient parameter
estimation than single-photon detection. As we shall dis-
cuss later, the set of all quadrature operators spans the
underlying mode, thus allowing one to express any linear
operator in terms of the quadrature operators. Therefore,
with proper transformation of the quadrature measure-
ment results, homodyne detection allows one to obtain an
unbiased estimation of linear operator expectations. This
is the reason for accurately estimating phase-error rates
with repeated homodyne measurements, including those
of the multi-photon components. In comparison, as the
single-photon detection is not information-complete, es-
timation of multi-photon observables requires more com-
plex setups such as sequential beam splitting [40], and
one can only obtain upper and lower bounds rather than
an unbiased estimation.

III. SECURITY ANALYSIS

We analyze the security of our phase-randomized time-
bin-encoding CV QKD protocol along the complementar-
ity approach [22, 26, 27]. As outlined in Fig. 2, we shall
set up a series of equivalent protocols of the realistic im-
plementation that do not change the statistics of any ob-
server, with which we define the phase-error observable
and estimate the key privacy. In Sec. III A, we shall prove
that raw key generation can be effectively regarded as
qubit measurements on a pair of entangled qubits, which

allows us to borrow the mature complementarity-based
security analysis in the DV regime. In brief, on the source
side, we transform the preparation of key states to an
entanglement-based protocol [25, 26], where a qubit mea-
surement controls the key-encoding process, as shown
in Fig. 2(b). On the detection side, we prove that the
homodyne measurement can be squashed into an effec-
tive qubit measurement, as shown in Fig. 2(c). More-
over, in Sec. III B, we shall rigorously prove that phase
randomization twirls the photonic modes into diagonal
states on the Fock basis and explain how to apply the
tagging idea of the GLLP framework [27, 28]. We also
show how to estimate the phase-error rates for different
photon-number components from Fock-basis observables
in Sec. III C. Later in Sec. IV, we show that the estima-
tion can be realized in the realistic implementation with
coherent states and homodyne detection.
To focus on the essence of security analysis, we present

the result in a single-round analysis in this section, where
one can interpret it as the quantum Shannon limit under
collective attacks. Nevertheless, the complementarity-
based security analysis is inherently adapted to the most
general case, namely the coherent attack, where the
statistics over the rounds may not be independent and
identically distributed (i.i.d.) [41]. We will discuss the
parameter estimation with non-i.i.d. finite statistics in
Sec. IVC.

A. Entanglement-based squashing protocol

Here, we show the equivalence of the time-bin CV QKD
protocol to a qubit-based entanglement distribution pro-
tocol, where the protocols generate the same transmitted
quantum states and measurement statistics. The latter
protocol enables us to simplify the security analysis and
estimate the information leakage from phase-error rates.
We first focus on the key-generation rounds in the pro-

tocol where both users choose the Z-basis, of which the
whole procedure is depicted in Fig. 2(a). In the realistic
implementation, Alice prepares phase-randomized coher-
ent states, ∫ 2π

0

dφa

2π
|Ψ(ka)φa

⟩A1A2
⟨Ψ(ka)φa

| , (1)

where

|Ψ(ka)φa⟩A1A2
=

 |0⟩A1
|√µeiφa⟩

A2
, if ka = 0,

|√µeiφa⟩
A1

|0⟩A2
, if ka = 1.

(2)

We denote the optical modes sent to Bob as A1 and A2,
which are CV systems. Throughout this paper, we treat
the phase of optical modes, φa, as fully randomized over
[0, 2π). Finite phase randomization, φa ∈ {2jπ/D}j∈[D],
suffices for a practical implementation, where its differ-
ence from the full phase randomization is negligible when
D is sufficiently large [42]. This is also the case in later
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FIG. 2: Equivalent quantum circuits in key generation rounds. Reductions in each step are plotted with red dashed
boxes. (a) The realistic implementation. The operations on Alice’s and Bob’s sides are shaded in green and blue,
respectively. Alice prepares weak coherent states on two modes, which depend on the basis choice and the raw key
value. On Bob’s side, Bob measures the two modes with homodyne detectors (HD) and obtains quadratures q1 and
q2. Afterward, Bob performs classical post-processing (CP) on the data and obtains a raw key kb probabilistically,
where the key decoding may fail due to the key mapping threshold, denoted as ∅. The blue rounded boxes represent
phase randomization processes in state preparation or for the LOs in homodyne detection. (b) Equivalent
entanglement-based state preparation. Key encoding can be interpreted as a qubit control operation on two modes
where the control qubit measurement gives Alice’s raw key ka. The joint state on the two modes is diagonal on the
Fock basis after phase randomization. One can insert a photon-number measurement, M̂na

, and read out the total
photon number, m, without changing the state. (c) Equivalent key-decoding measurement. The joint state of the
two modes becomes diagonal on the Fock basis due to detector phase randomization. In key decoding, the modes
are first squashed into a qubit probabilistically, where the failure gives the abort signal ∅. Upon successful squashing
into a qubit, the computational-basis measurement gives the raw key bit. (d) Due to detector phase randomization,

one can insert a photon-number measurement, M̂nb
, and read out the total photon number, n, without changing the

state. (e) Equivalent circuit for security analysis. After the above reductions, the key generation measurements can
be equivalently defined on a pair of (sub-normalized) qubit states.
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TABLE II: State preparation and detection settings in the ideal implementation and the realistic implementation.
For brevity, we omit the subscripts of modes and express the detection with the measurement operators. In key
generation rounds, Bob applies phase-randomized homodyne detection for key-decoding. The expression of
measurement operator Π̂(q1, q2) is given in Eq. (9), where q1 and q2 represent the quadratures of the two modes.
The operator is block-diagonal on the total photon-number basis. For parameter estimation, ideally, Alice sends
photon-number-cat states, and Bob performs a corresponding projective measurement. In the realistic setting, Alice
can only prepare phase-randomized weak coherent states, and Bob can only perform phase-randomized homodyne
measurements. The homodyne measurement operator, Q̂φ1

⊗ Q̂φ2
, is given in Eq. (6). Afterward, Bob estimates the

photon-number-cat state measurement expectations via homodyne tomography methods, as shown in Eq. (28).

basis
source detection

ideal real ideal real

Z
|0⟩ |m⟩ |0⟩ |√µeiφa⟩

Π̂(q1, q2), Eq. (9) Π̂(q1, q2)
|m⟩ |0⟩ |√µeiφa⟩ |0⟩

X 1√
2
(|0⟩ |m⟩ ± |m⟩ |0⟩) |

√
µ
2
eiφ

1
a⟩ |

√
µ
2
eiφ

2
a⟩ 1

2
(|0⟩ |m⟩ ± |m⟩ |0⟩) (⟨0| ⟨m| ± ⟨m| ⟨0|)

Q̂φ1 ⊗ Q̂φ2 , Eq. (6),

estimation via Eq. (28)

discussions on the detector phase randomization. Al-
ice’s key-state preparation can be effectively seen as an
entanglement-based protocol [25, 26]. Given the phase
value, φa, Alice first prepares the following entangled
state,

|Ψφa
⟩A′A1A2

=
1√
2

(
|0⟩A′ |Ψ(ka = 0)φa

⟩A1A2

+ |1⟩A′ |Ψ(ka = 1)φa⟩A1A2

)
,

(3)

where system A′ is a qubit system that superposes the
two possible key states. The entangled state can be
prepared by the quantum circuit in Fig. 2(b). Up to
phase randomization, systems A′ and A1A2 are initial-
ized in |+⟩ and |0⟩ |√µ⟩, and a control-swap operation
is then applied from the qubit system to the optical
modes. Alice obtains raw key bit ka by measuring
system A′ on the computational basis, and the optical
modes are prepared into the corresponding key state,
|Ψ(ka)φa

⟩. The complementary observable of Alice’s key-
generation measurement can thus be defined over qubit
system A′, which measures the complementary basis of
{|+⟩ , |−⟩} := {(|0⟩ ± |1⟩)/

√
2}.

At the detection side in Fig. 2(a), Bob receives two op-
tical modes B1 and B2, takes homodyne measurements,
and maps the quadratures to a raw key or an abort signal.
This process can be described by a trace-non-preserving
completely positive map,

FB1B2→B′

rand (ρ̂B1B2
) =

∫ 2π

0

dφb

2π

∫
R0

dq1dq2

K̂(q1,q2,φb)ρ̂B1B2K̂
(q1,q2,φb)†,

(4)

where

K̂(q1,q2,φb) := |0⟩B′ ⟨q1(φb), q2(φb)|B1,B2

+ |1⟩B′ ⟨q2(φb), q1(φb)|B1,B2
,

(5)

|q(φ)⟩ is the rotated position eigenstate of quadrature
observable

Q̂φ = âe−iφ + â†eiφ, (6)

with â and â† denoting the annihilation and creation op-
erators, respectively, and R0 ∈ R2 records the region
that decodes the real-valued tuple, (q1, q2), as kb = 0.
Note that in our protocol, R0 = {|q1| < τ} × {|q2| > τ},
and the region decodes the quadratures to kb = 1 un-
der the mapping (q1, q2) 7→ (q2, q1), which we denote as
R1 = {|q1| > τ} × {|q2| < τ}. The LOs of homodyne
measurements are synchronically randomized, as denoted
by φb in Eq. (4). As the key-decoding region does not

cover the entire parameter space, FB1B2→B′

rand is hence not

trace-preserving, where Tr[FB1B2→B′

rand (ρ̂B1B2
)] gives the

probability of obtaining raw key bit kb ∈ {0, 1}. Bob’s
raw key can be equivalently seen as obtained by measur-
ing the squashed sub-normalized qubit on the computa-
tional basis, and the probabilities are given by

Pr(kb = 0) = ⟨0| FB1B2→B′

rand (ρ̂B1B2
) |0⟩

=

∫ 2π

0

dφb

2π

∫
R0

dq1dq2 ⟨q1(φb), q2(φb)| ρ̂B1B2
|q1(φb), q2(φb)⟩ ,

Pr(kb = 1) = ⟨1| FB1B2→B′

rand (ρ̂B1B2) |1⟩

=

∫ 2π

0

dφb

2π

∫
R1

dq1dq2 ⟨q1(φb), q2(φb)| ρ̂B1B2
|q1(φb), q2(φb)⟩ .

(7)
Similar to the treatment to A′, we can define the comple-
mentary observable of Bob’s key generation measurement
on qubit system B′.
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B. Photon-number tagging of the source and
receiver

In the last section, we have shown that raw keys can
be equivalently seen as generated from qubit measure-
ments on A′ and B′. Should Alice and Bob instead mea-
sure the qubit system on the complementary bases, the
probability they obtain different results, or the phase-
error rate, eX , could be used to upper-bound the aver-
age privacy amplification cost per round as h(eX), where
h(p) = −p log p− (1− p) log(1− p) is the binary entropy
function. Nevertheless, the actual privacy leakage may be
less than the direct calculation. Note that the above pri-
vacy leakage estimation is averaged over the overall quan-
tum state transmitted from Alice to Bob. The contribu-
tion to the privacy leakage of different components in
quantum signals can differ. For instance, Eve can apply
the photon-number-splitting (PNS) attack in the rounds
in which Alice transmits two photons and Bob receives
only a single photon [43, 44]; hence no privacy should be
expected, rendering the phase-error probability to be 1/2
in these rounds. If Alice and Bob can distinguish such
rounds from the others, they can simply discard them
in privacy amplification. The GLLP framework makes
the above statement rigorous [27, 28]. Suppose Alice and
Bob can categorize the transmitted quantum signals into
different groups, or tags, and evaluate phase-error prob-
abilities separately. The privacy amplification cost can
be evaluated by

∑
iQih(e

X
i ), where Qi is the probability

that a signal in the i’th group is transmitted and de-
tected, namely the gain, and eXi is the phase-error prob-
ability of the group. Due to the concavity of the entropy
function, this estimation is no larger than h(

∑
iQie

X
i ).

In DV QKD, the tagging idea has been well practiced.
In the coherent-state-based BB84 protocol, phase ran-
domization on the source side diagonalizes the quantum
signals on the Fock basis [29, 30], and an ideal single-
photon detector naturally distinguishes the single pho-
ton components from other detected Fock components,
allowing Alice and Bob to tag the quantum states with
respect to the photon number [45]. Similarly, we now
prove that the photon-number tag can also be applied to
the phase-randomized CV QKD protocol in Table I. On
the source side, the phase randomization diagonalizes the
state on the joint Fock basis,

ρ̂Z =

∫ 2π

0

dφa

2π

1

2
|0⟩A1

⟨0| ⊗ |√µeiφa⟩A2
⟨√µeiφa |

+
1

2
|√µeiφa⟩A1

⟨√µeiφa | ⊗ |0⟩A2
⟨0|

=
∞∑

m=0

Pr(m)
1

2

(
|0m⟩A1A2

⟨0m|+ |m0⟩A1A2
⟨m0|

)
,

(8)

where Pr(m) = e−µµm/m! is the Poisson distribution.
Consequently, one can virtually insert a photon-number
measurement after phase randomization to measure the
total photon number on the two modes without changing

the state, as shown in Fig. 2(b). On the detection side,
when Bob takes the Z-basis measurement, the phase-
randomized homodyne detector POVM elements can be
expanded on the Fock basis [24],

Π̂(q1, q2)

=

∫ 2π

0

dφb

2π
|q1(φb)⟩B1

⟨q1(φb)| ⊗ |q2(φb)⟩B2
⟨q2(φb)|

=

∞∑
n=0

n∑
k0=0

n∑
l0=0

ψk0(q1)ψl0(q1)ψn−k0(q2)ψn−l0(q2)

|k0, n− k0⟩B1B2
⟨l0, n− l0| ,

(9)

where

ψn(qj) =
1√

2nn!
√
2π
Hn(qj/

√
2)e−q2j/4 (10)

is the coordinate representation of Fock state |n⟩, with
Hn being the n-th Hermite polynomial. Therefore, one
can virtually insert another photon-number measurement
after phase randomization before the squashing channel
Eq. (4) on the detection side to measure the total photon
number of the received state, as shown in Fig. 2(d).
Based on the above results, we depict a virtual quan-

tum circuit of the protocol when both Alice and Bob
chooses the Z-basis in Fig. 2(e). We denote the photon-
number measurement results on the source side and the
detection side as m and n, respectively. Alice and Bob
can thus distill secrete keys separately based on the
photon-number tag of (m,n). A lower bound on the key
rate can then be given by [27, 28]

r ≥
∞∑

m=0

Qm,m[1− h(eXm,m)]− fQZh(eZ), (11)

where Qm,m and eXm,m denote the gain and the phase-
error rate in the rounds where m photons are sent and m
photons are accepted, QZ is the Z-basis gain, eZ is the
bit-error rate, and f is the efficiency of information rec-
onciliation. Note not to confuse the gains with quadra-
ture observables. In addition, since Bob’s key decoding
succeeds probabilistically where he only accepts quadra-
tures above the threshold, we use the term “accepting” to
represent receiving a certain state and passing the post-
selection. All the gains and error rates in the key-rate
formula are restricted to the rounds with light intensity
µa = µ. We discard the rounds where the total photon
number decreases after state transmission, as the pho-
tons that are lost may come from Eve’s interception, with
which Eve can apply a PNS attack. The corresponding
phase-error probability is 1/2; hence these rounds do not
contribute to key generation. In addition, as the trans-
mission channel is naturally lossy in a usual setting, we do
not account for the terms where the total photon number
increases.
Note that the key-rate formula in Eq. (11) assumes

forward reconciliation, where Bob reconciles his raw keys
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to Alice’s, ka, and then the users perform privacy am-
plification. The rounds where Alice sends a non-vacuum
state while Bob receives a vacuum state are hence inse-
cure, since the information carriers are lost through the
channel. Instead, if reverse reconciliation is used, where
Alice reconciles her raw keys to Bob’s, the rounds where
Bob receives a vacuum state become secure. One can in-
terpret Bob’s raw keys in these rounds as generated from
local random numbers, and no information is known a
priori in transmission. This is a common practice in
usual CV QKD and in accordance with the observation
in Ref. [23]. The fact that the vacuum component can
also contribute to key rate formula is first observed in
Ref. [46]. We present as Theorem 1 the key-rate lower
bound with reverse reconciliation as the main key-rate
formula to be used throughout this paper.

Theorem 1. For the time-bin CV QKD protocol in Ta-
ble I with reverse reconciliation, in the asymptotic limit
of an infinite data size, the distillable secure key rate r is
lower bounded by rrev,

r ≥ rrev = Q∗,0 +

∞∑
m=1

Qm,m[1− h(eXm,m)]− fQZh(eZ),

(12)
where Qm,m and eXm,m denote the gain and the phase-
error rate in the rounds where m photons are sent and m
photons are accepted, QZ is the Z-basis gain, eZ is the
bit-error rate, and f is the efficiency of information rec-
onciliation. Q∗,0 represents the gain of the rounds where

Bob accepts a vacuum state for whatever state sent by
Alice.

C. Phase-error probability calculation

We now evaluate the key-rate formula in Eq. (12) with
Fock-basis observables [5]. The bit-error rate eZ can be
directly measured, as the Z-measurement statistics in
the entanglement-based squashing model are the same as
the realistic statistics. To evaluate the gains and phase-
error probabilities, we first determine the state before the
phase-error measurement under each photon-number tag.
Define P̂m as the projector onto the m-photon state on
modes A1 and A2. When sending m photons, the source
in Fig. 2(b) collapses to

P̂A1A2
m ρ̂A′A1A2 P̂

A1A2
m = Pr(m) |Ψm⟩A′A1A2

⟨Ψm| , (13)

where

|Ψm⟩A′A1A2
=

1√
2
(|0⟩A′ |0m⟩A1A2

+ |1⟩A′ |m0⟩A1A2
),

Pr(m) =
e−µµm

m!
.

(14)

Upon transmitting the m-photon state, |Ψm⟩A′A1A2
, the

n-photon state is selected on the detection side after the
squashing channel,

FB1B2→B′

rand

{
P̂B1B2
n NA1A2→B1B2

E

[
Pr(m) |Ψm⟩A′A1A2

⟨Ψm|
]
P̂B1B2
n

}
= Qm,nρ̂

(m,n)
A′B′ , (15)

where NA1A2→B1B2

E represents Eve’s channel, and Qm,n

denotes the probability of sending anm-photon state and
accepting an n-photon state, namely the gain for the
states tagged by the photon-number tuple, (m,n). Note
the probability that Bob aborts the signal is reflected in

Qm,n. The normalized state, ρ̂
(m,n)
A′B′ , is a bipartite qubit,

with which we evaluate the phase-error probability,

eXm,n = Tr
[
ρ̂
(m,n)
A′B′ (|+−⟩A′B′ ⟨+−|+ |−+⟩A′B′ ⟨−+|)

]
.

(16)
With respect to the complementary-basis measurement
result on the qubit A′, + or −, the state on modes A1

and A2 collapses to

|Ψ±
m⟩A1A2

=
1√
2
(|0m⟩ ± |m0⟩)A1A2

(17)

with equal probabilities. For the state on Bob’s systems

B1 and B2 under tag (m,n), ρ̂
(m,n)
B1B2

, the statistics of the
complementary measurement are given by

B′ ⟨±|FB1B2→B′

rand [ρ̂
(m,n)
B1B2

] |±⟩B′ = Tr
[
ρ̂
(m,n)
B1B2

M̂±

]
= Tr

[
ρ̂
(m,n)
B1B2

P̂nM̂±P̂n

]
,

(18)

where

M̂± =
1

2

∫
R0

dq1dq2

∫ 2π

0

dφb

2π

[
|q1(φb), q2(φb)⟩±

|q2(φb), q1(φb)⟩
]
[⟨q1(φb), q2(φb)| ± ⟨q2(φb), q1(φb)|] .

(19)
In the last equation in Eq. (18), we utilize the fact that

ρ̂
(m,n)
B1B2

acts on the n-photon space of system B1B2. Com-
bining the above results, we can express the phase-error
rate for each tag with observables on optical modes:

Proposition 1. The phase-error rate eXm,n of the rounds
where m photons are sent and n photons are accepted can
be calculated by:
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Qm,ne
X
m,n

Pr(m)
=
1

2
Tr
[
NA1A2→B1B2

E (|Ψ+
m⟩A1A2

⟨Ψ+
m|)P̂nM̂−P̂n +NA1A2→B1B2

E (|Ψ−
m⟩A1A2

⟨Ψ−
m|)P̂nM̂+P̂n

]
, (20)

where Qm,n denotes the probability of sending an m-
photon state and accepting an n-photon state, and Pr(m)
is the probability of the source emitting m photons. NE

denotes Eve’s channel on the two optical modes and P̂n

denotes the projector onto the n-photon subspace. |Ψ±
m⟩

and M̂± defined in Eq. (17) and (19) respectively.

We can write P̂nM̂+(−)P̂n on the Fock basis using
Eq. (9), expressing the phase-error rate as quantities on
optical modes. Here, we list the final results for a proto-
col that utilizes up to the two-photon components. The
detailed calculation is placed in Appendix A.

• For the single-photon component,

Q1,1e
X
1,1

Pr(1)
=
c1
2

{
Tr

[
NA1A2→B1B2

E (|Ψ+
1 ⟩A1A2

⟨Ψ+
1 |)

1

2
(|01⟩B1B2

− |10⟩B1B2
)(⟨01|B1B2

− ⟨10|B1B2
)

]
+Tr

[
NA1A2→B1B2

E (|Ψ−
1 ⟩A1A2

⟨Ψ−
1 |)

1

2
(|01⟩B1B2

+ |10⟩B1B2
)(⟨01|B1B2

+ ⟨10|B1B2
)

]}
,

(21)

where

c1 =

∫
R0

dq1dq2[ψ
2
0(q1)ψ

2
1(q2) + ψ2

0(q2)ψ
2
1(q1)], (22)

and gain Q1,1 is given by

Q1,1

Pr(1)
= c1Tr

{
NE

[
TrA′(|Ψ1⟩A′A1A2

⟨Ψ1|)
]
(|01⟩B1B2

⟨01|+ |10⟩B1B2
⟨10|)

}
. (23)

Up to the less-than-unity factor c1 that arises from the data post-selection in key mapping, the formulae are
the same as the complementary-basis result in the coherent-state-based BB84 protocol [47]. It can also be seen
that the phase-error rate of the rounds where Alice transmits two photons and Bob accepts one photon involves
in the probability where Alice transmits (|02⟩ ± |20⟩)/

√
2 and Bob receives (|01⟩ ∓ |10⟩)/

√
2. In a pure-loss

channel, the superimposed two-photon state (|02⟩ ± |20⟩)/
√
2 would lose coherence if one photon is lost during

the channel, thus giving 50% phase-error rate. This observation validates the intuition of the PNS attack.

• For the two-photon subspace, based on Eq. (9) and Eq. (20), we have,

Q2,2e
X
2,2

Pr(2)
=
1

2
c−2 Tr

[
NA1A2→B1B2

E (|Ψ+
2 ⟩A1A2

⟨Ψ+
2 |)

1

2
(|02⟩B1B2

− |20⟩B1B2
)(⟨02|B1B2

− ⟨20|B1B2
)

]
+

1

2
c+2 Tr

[
NA1A2→B1B2

E (|Ψ−
2 ⟩A1A2

⟨Ψ−
2 |)

1

2
(|02⟩B1B2

+ |20⟩B1B2
)(⟨02|B1B2

+ ⟨20|B1B2
)

]
+ c112 Tr

[
NA1A2→B1B2

E (|Ψ−
2 ⟩A1A2

⟨Ψ−
2 |) |11⟩B1B2

⟨11|
]
,

(24)

where

c+2 =

∫
R0

dq1dq2[ψ0(q1)ψ2(q2) + ψ2(q1)ψ0(q2)]
2,

c−2 =

∫
R0

dq1dq2[ψ0(q1)ψ2(q2)− ψ2(q1)ψ0(q2)]
2,

c112 =

∫
R0

dq1dq2[2ψ
2
1(q1)ψ

2
1(q2)],

(25)

and the two-photon gain is given by

Q2,2

Pr(2)
=c+2 Tr

{
NA1A2→B1B2

E [TrA′(|Ψ2⟩A′A1A2
⟨Ψ2|)]

1

2
(|02⟩B1B2

+ |20⟩B1B2
)(⟨02|B1B2

+ ⟨20|B1B2
)

}
+ c−2 Tr

{
NA1A2→B1B2

E [TrA′(|Ψ2⟩A′A1A2
⟨Ψ2|)]

1

2
(|02⟩B1B2

− |20⟩B1B2
)(⟨02|B1B2

− ⟨20|B1B2
)

}
+ c112 Tr

{
NA1A2→B1B2

E [TrA′(|Ψ2⟩A′A1A2
⟨Ψ2|)] |11⟩B1B2

⟨11|
}
.

(26)
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• The probability of accepting a vacuum state when employing reverse reconciliation is given by

Q∗,0 = Tr
[
P̂B1B2
0 NA1A2→B1B2

E

(
ρ̂Z
)
P̂B1B2
0

] ∫
R0

2ψ2
0(q1)ψ

2
0(q2)dq1dq2, (27)

where ρ̂Z is the Z-basis state sent by the source given in Eq. (8); hence Q∗,0 is given by the product of the
probability of receiving a vacuum-state in the Z-basis rounds and a post-selection-related integration factor.
Note that the former value is independent of the post-selection.

IV. PARAMETER ESTIMATION AND
PRACTICAL PROTOCOL

We briefly show how to estimate the parameters de-
rived in Sec. III C with a practical setup. In the actual
protocol, we do not have photon-number-resolving de-
tectors, with which one can directly measure the above
parameters. In addition, the phase-error probabilities
and gains are defined by particular Fock-basis states, yet
the actual photon source emits coherent states. Never-
theless, we can construct unbiased estimators with the
available states and detection settings to evaluate these
values. On the detection side, we apply the homodyne to-
mography technique to evaluate the photon-number ob-
servables [34–39]. The homodyne tomography allows un-
biased estimation of the expected value of a variety of
observables, including the photon-number observables, of
measuring an unknown quantum state. On the source
side, we extend the decoy-state method [29, 30] to evalu-
ate the statistics defined by the non-classical Fock states
with the use of the coherent states at hand. We will give
a practical version of the protocol at the end of this sec-
tion. A fully-detailed discussion is placed in Appendix B
on how the specific parameters related to key rate calcu-
lation can be practically estimated.

A. Effective photon-number resolving via
homodyne tomography

Since the eigenstates of the quadrature observables,
|q(φ)⟩, form a complete basis on an optical mode, one
can reconstruct a general observable on an optical mode
with homodyne measurements. In our study, the pa-
rameters to be estimated involve photon-number mea-
surements on two modes in the form of Ô1 ⊗ Ô2 =
|n1⟩B1

⟨m1| ⊗ |n2⟩B2
⟨m2|. Their measurements on an

arbitrary state, ρ̂, can be obtained from two independent
homodyne measurements with randomized LO phases,

⟨Ô1 ⊗ Ô2⟩ = Tr[(Ô1 ⊗ Ô2)ρ̂]

:=

∫ π

0

dφ1

π

∫ ∞

−∞
dq1

∫ π

0

dφ2

π

∫ ∞

−∞
dq2

R[Ô1](q1, φ1)R[Ô2](q2, φ2)p(q1, q2|φ1, φ2),

(28)

where p(q1, q2|φ1, φ2) is the joint probability of the
quadrature measurements on the two modes conditioned

on phases φ1 and φ2. The estimators, R[Ô1](q1, φ1) and

R[Ô2](q2, φ2), link the quadrature measurement statis-

tics with ⟨Ô1 ⊗ Ô2⟩. For a homodyne detector with effi-
ciency η, the estimator for observable |n⟩ ⟨n+ d| is given
by

Rη[|n⟩ ⟨n+ d|](q, φ) = eid(φ+π
2 )

√
n!

(n+ d)!∫ ∞

−∞
dk|k| exp

(
1− 2η

2η
k2 − ikq

)
kdLd

n(k
2),

(29)

where Ld
n is the generalized Laguerre polynomial. The

estimator is shown to be bounded for detector efficiency
η > 1/2 [37, 39], a mild requirement for current tech-
nologies [48, 49]. Consequently, repeated measurements
allow the users to obtain an unbiased estimation of the
photon-number observables that converges in probabil-
ity. Note that the detector imperfection does not need
to be trusted. The homodyne tomography is valid as
long as the detector is well-calibrated so that the quadra-
ture measurement is genuine. In Appendix B 1, we shall
provide more details of the homodyne tomography tech-
niques.

B. Generalized decoy-state method

To effectively realize the non-classical states on
the source side, we extend the standard decoy-state
method [29, 30]. We take advantage of two-mode coher-
ent states with simultaneous phase randomization on the
two modes. We denote the state with phase difference φ
as

ρ̂φµ =

∫ 2π

0

dθ

2π
|
√
µ

2
eiθ⟩ ⟨

√
µ

2
eiθ| ⊗ |

√
µ

2
ei(θ+φ)⟩ ⟨

√
µ

2
ei(θ+φ)|

=
∞∑

m=0

m∑
k=0,l=0

e−µ
(
µ
2

)N
ei(l−k)φ√

k!l!(m− k)!(m− l)!
|k,m− k⟩ ⟨l,m− l| ,

(30)

where we specify the light intensity with the subscript,
µ. With proper linear combination of these states, we
can effectively construct the photon-number-cat states
that we are interested in. It is well-known that (|01⟩ ±
|10⟩)/

√
2 is the single-photon component of ρ̂

0(π)
µ ,

Prµ(1) |Ψ+(−)
1 ⟩ ⟨Ψ+(−)

1 | = P̂1ρ̂
0(π)
µ P̂1, (31)
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where Prµ represents the Poisson distribution determined
by light intensity µ, as given in Eq. (14). Thus, the esti-
mation problem is transformed into the estimation of the

single-photon yields of ρ̂0µ and ρ̂πµ. For the multi-photon

components (|0m⟩±|m0⟩)/
√
2, a direct calculation shows

Prµ(m) |Ψ+
m⟩ ⟨Ψ+

m| = P̂m

(
ρ̂Zµ +

2m−2

m

m−1∑
k=0

ρ̂
2πk
m

µ − 2m−2

m

m−1∑
k=0

ρ̂
2πk
m +δ

µ

)
P̂m, (32)

Prµ(m) |Ψ−
m⟩ ⟨Ψ−

m| = P̂m

(
ρ̂Zµ − 2m−2

m

m−1∑
k=0

ρ̂
2πk
m

µ +
2m−2

m

m−1∑
k=0

ρ̂
2πk
m +δ

µ

)
P̂m, (33)

where δ = π for odd m and π/2 for even m, and ρ̂Zµ is the
state emitted from the source in a key generation round.
Consequently, the terms that define eXm,m and Qm,m can
be constructed from the statistics when emitting the
states of ρ̂Zµ and ρ̂φµ with φ ∈ {2πk/m, 2πk/m + δ}m−1

k=0 .
Notably, the extended decoy method allows estimating
the gains with the number of parameters increasing only
linearly in the photon number. In later discussions, we
shall utilize up to the two-photon components. Specifi-
cally, for m = 2,

Prµ(2) |Ψ±
2 ⟩ ⟨Ψ

±
2 | =P̂2

[
ρ̂Zµ ±

(
1

2
ρ̂0µ +

1

2
ρ̂πµ

)
∓
(
1

2
ρ̂

π
2
µ +

1

2
ρ̂

3π
2
µ

)]
P̂2.

(34)

One may notice in Eq. (34) there are states outside the
encoding subspace |02⟩ and |20⟩ being introduced, which
gives Eve possibility to distinguish the X-basis states. In
fact, the X basis is comprised of the mixture of (|02⟩ ±
|20⟩)/

√
2 and |11⟩. As a result, it is not possible for Eve

to distinguish between the Z-basis states and the (|02⟩±
|20⟩)/

√
2 states of the X basis. It is possible for Eve to

distinguish the |11⟩ state, yet it does not yield knowledge
on the encoded key information since it is orthogonal
to the |02⟩ and |20⟩ space. Hence, the standard decoy
argument still applies even if the parameter-estimation
space consists of a direct sum of the key-encoding space
and some orthogonal spaces.

C. General parameter estimation under the
coherent attack

In this section, we discuss the security analysis and
parameter estimation in the most general case. In the
most general adversarial scenario, namely the coherent
attack, Eve can apply a joint quantum operation over the
rounds for eavesdropping, which may correlate or even
entangle the states transmitted to Bob. Eve collects all
the side information leaked to her in the protocol and
then guesses the legitimate users’ keys. Under such an

attack, the measurement statistics obtained by Bob are
generally correlated over the rounds [41].

The complementarity-based security analysis remains
valid with finite statistics under a coherent attack [22].
The information leakage is quantified via the number of
phase errors, while the occurrence of a phase error in each
round may be non-i.i.d. That is, one should interpret
the gains and phase-error rates in Eq. (12) as frequen-
cies in non-i.i.d. statistics. For instance, Q1,1 should be
regarded as the frequency of the events that Alice sends
a single-photon state, and Bob accepts a single-photon
state among key generation rounds in the virtual exper-
iment. The remaining problem is to estimate these pa-
rameters via observed statistics.

To tackle the non-i.i.d. parameter estimation prob-
lem, we can apply a martingale-based analysis. We shall
present the details in Appendix C. Here, we explain its
basic idea. As the starting point, in the i’th round, the
users can evaluate the probability of choosing some ex-
perimental setting and observing a particular event con-
ditioned on the experimental history, including the events
of sending an m-photon state and accepting an n-photon
state and the occurrence of a phase error if they choose
the key generation setting, and observing a particular
homodyne detection result if they choose to perform the
parameter estimation operations. The events’ correla-
tions with the experimental history are inherently taken
into account in the definitions of conditional probabili-
ties. We can set up martingales for a series of events,
such as the occurrence of phase errors in each round of
the virtual protocol, and link their frequencies with the
associated conditional probabilities via concentration re-
sults like Azuma’s inequality [50]. Note that such con-
centration results work for general non-i.i.d. correlations.
Furthermore, the setting choices randomly chosen by Al-
ice and Bob are independent of the experimental history
and unknown to Eve. Therefore, conditioned on the ex-
perimental history, the probabilities of different possible
events in a round are linked. For instance, the proba-
bility that the users take key generation measurements
and a phase error occurs in a round is measurable via the
probability that they instead take parameter estimation
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measurements and observe certain statistics. The rela-
tion is in the form of Eq. (20), while now the probabilities
are interpreted as conditional ones that cover the corre-
lations. The relations between conditional probabilities
then link the martingales for the parameter estimation
measurement with the ones for the gains and phase-error
rates, completing the parameter estimation. In the end,
the total number of keys that can be securely distilled
from finite statistics under the coherent attack is given
by a formula of the following form:

Theorem 2 (Informal). For the CV QKD protocol with
Nzz

µ rounds for key generation, given the failure probabil-
ity in parameter estimation εpe, suppose the gains have
lower bounds QL

∗,0 and QL
m,m, and the phase-error rates

have upper bounds e
X(U)
m,m . Then, given the failure prob-

ability in privacy amplification εpa, conditioned on the
success of information reconciliation, except a total fail-
ure probability ε = εpe + εpa, the finite-size key rate r is
lower bounded by:

r ≥QL
∗,0 +

∞∑
m=1

(
QL

m,m

{
1− h[eX(U)

m,m ]
})

− fQZh(eZ)− 1

Nzz
µ

log
1

εpa
,

(35)

where f is the information reconciliation efficiency, QZ

is the Z-basis gain, and eZ is the bit error rate.

The term log εpa in the key-rate formula originates
from the failure probability in privacy amplification [22,
51]. The parameter estimation failure probability εpe
comes from the use of martingale-based concentration
results. In the asymptotic limit of infinite data size, εpe
converges to zero, and the effect of εpa on the key rate
becomes negligible; hence the key rate formula degener-
ates to that in Eq. (12). In Appendix C, we provide the
details of non-i.i.d. parameter estimation and the formal
description of the key-rate formula.

D. Practical protocol

Combining the above ingredients, we provide a prac-
tical protocol that utilizes up to the two-photon com-
ponents in Table III. In parameter estimation, Bob ap-
plies homodyne tomography to estimate the statistics
of measuring photon-number observables, including |00⟩,
(|01⟩ ± |10⟩)/

√
2, (|02⟩ ± |20⟩)/

√
2, and |11⟩, on various

states transmitted from the source, originally ρ̂Zµa
and

ρ̂φa
µ . Afterward, the users can obtain upper and lower

bounds on the gains and phase-error rates by applying
the extended decoy-state method. We provide the de-
tailed parameter estimation procedures in Appendix B
and discuss dealing with general non-i.i.d. statistics un-
der a coherent attack in Appendix C.

In the end, we make some remarks on the protocol.
Notice that in contrast to the conventional BB84-type

protocols, our protocol also uses for parameter estima-
tion the signals where Alice chooses Z basis and Bob
chooses X basis. Alice’s announcement of the relative
phase does not reveal key information since the key is
encoded in the relative intensity between the two modes.
We assume Alice and Bob apply continuous phase ran-
domization, although it is only practical to use discrete
random phases. The effect of the discretization requires
further investigation. In addition, in the X basis, Al-
ice only transmits coherent states with relative phases
in {0, π/2, π, 3π/2}. These relative phases are enough
to estimate the phase-error rate of an up-to-two-photon
protocol according to Eq. (34).

V. PERFORMANCES AND COMPARISON

We demonstrate in this section the asymptotic key
rate-distance performances of the time-bin CV QKD
protocol. We consider a thermal noise channel with a
unit-efficiency homodyne detector. An inefficient detec-
tor with thermal electronic noise can be equated to a
fiber section with transmittance equal to the detector ef-
ficiency, and the electronic noise absorbed into the chan-
nel excess noise (Eq. (D2)). The fiber attenuation is
0.2 dB/km, and the error-correction efficiency f is taken
to be 1. The simulation formulae can be found in Ap-
pendix D. According to the key rate formula Eq. (12),
the rounds where Alice sends m photons and Bob re-
ceives m photons can assure to generate secure keys. We
plot in Fig. 3a the asymptotic key rate of the i-photon
protocol assuming perfect decoy estimation and no ex-
cess noise, where in an i-photon protocol we only extract
secure keys from a maximal i-photon components. In
this ideal case, the phase error rates of all the proto-
cols are zero. The optimized source intensities µ and the
post-selection thresholds τ are listed in Table IV, as well
as the resulted Z-basis error rate. Notice that the two-
photon-protocol key rate derived from our DV method is
similar to that from Ref. [24] using CV method, both re-
versely reconciled. This implies the connection between
DV and CV security analysis, as well as the validity of
the DV reverse reconciliation idea in Section III B. To
facilitate the discussion, we also plot in Fig. 3b the con-
tribution of each photon components to the key rate at
different distances. In each group of bars, the relative
contribution of the vacuum, one, two, three, four-photon
components are plotted respectively, where them-photon
contribution of the i-photon protocol is defined to be

Qm,m/(Q∗,0 +
∑i

m=1Qm,m) and the vacuum contribu-

tion is Q∗,0/(Q∗,0 +
∑i

m=1Qm,m), i.e., the relative con-
tribution to the raw key rate.
It can be seen that the key rate improves as we make

use of the multi-photon components. The improvement
is most remarkable between the one and two-photon pro-
tocols. This is reasonable since in the one-photon pro-
tocol, the multi-photon components are considered inse-
cure, thus limiting the source intensity. The low source
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TABLE III: Practical time-bin CV QKD with decoy states using up to two photons

1. On Alice’s side (source):

• Z-basis:

(a) Randomly select a key bit ka ∈ {0, 1}, a phase factor φa ∈ [0, 2π), and a light intensity µa ∈ {µ, ν1, ν2, 0}.
(b) Prepare a coherent state of |0⟩A1 |

√
µae

iφa⟩
A2

for ka = 0 or |√µae
iφa⟩

A1
|0⟩A2 for ka = 1.

• X-basis:

(a) Randomly select a phase factor φ1
a ∈ [0, 2π) and another phase factor with relative phase φa randomly

in φ2
a − φ1

a ∈ {0, π/2, π, 3π/2}. Randomly select a light intensity µa ∈ {µ, ν1, ν2, 0}.
(b) Prepare a coherent state of |

√
µa/2e

iφ1
a⟩ |

√
µa/2e

iφ2
a⟩.

2. Alice sends the state through an authenticated channel to Bob.

3. On Bob’s side (detection):

• Z-basis:

(a) Randomly select a phase factor φb ∈ [0, 2π).

(b) Use homodyne detectors with LO phases φb to measure the modes and obtain quadratures q1 and q2.

(c) Decode the key bit as 0 if |q1| < τ ∧ |q2| > τ , 1 if |q1| > τ ∧ |q2| < τ , and ∅ otherwise.

• X-basis:

(a) Randomly select two phases φ1
b , φ

2
b ∈ [0, π).

(b) Use homodyne detectors with LO phases φ1
b and φ2

b to measure the modes and obtain quadratures q1
and q2.

4. Alice announces the light intensity in each round and relative phase between the two modes in X-basis states
φa = φ2

a − φ1
a.

5. Alice and Bob perform basis sifting, where they obtain raw keys in the rounds they both choose Z-basis with light
intensity µa = µ and kb ̸= ∅.

6. Bob estimates the gains and phase-error rates from the statistics in the rounds where Alice sends the Z-basis states
ρ̂Zµa

or X-basis states ρ̂φa
µa

with φa ∈ {0, π/2, π, 3π/2}.
7. Alice and Bob perform reverse information reconciliation and privacy amplification to obtain final keys.

intensity would result in severe bit error rate and higher
post-selection thresholds, which in turn suppress the key
rate. Whilst in the two-photon protocol where the two-
photon components are considered secure, the limit on
the source intensity can be lifted, and the bit error rate
would drop, resulting in higher key rates. This is man-
ifested in Fig. 3b, where the single-photon protocol sees
significant vacuum contribution, whilst the two-photon
protocol, at short distances, does not. Since the vacuum
component would yield 50% bit error rate, we see the
lower bit error rate of the two-photon protocol than the
single-photon protocol as in Table IV.

When we further make use of the three-photon com-
ponents, the key rate as well as the source intensity still
increase, yet less obviously. This is mainly because the
fraction of the rounds where three photons are sent and
three photons are received, decaying cubically with the
channel transmittance, are not dominating, especially at
longer distances. For example, we see in Fig. 3b that at
20 km, the contribution of the three-photon component
is less than that of the single and two-photon compo-
nents, and at 40 km the three-photon component rarely

has contribution to the key rate. This trend is justi-
fied further in the four-photon protocol, where in Fig. 3b
we see the four-photon-component contribution is quite
small for longer distances, and in turn the key rate of the
four-photon protocol only improves marginally than that
of the three-photon protocol. Simulation shows that re-
sorting to higher-than-four photon-number components
has negligible increase to the key rate. Hence, If we con-
sider the protocol with infinite photon-number compo-
nents, the 0-km key rate is around 0.31 bit/channel, and
the BB84 protocol with currently the best single-photon
detector of 80% efficiency [54, 55] has 0-km key rate 0.29
bit/channel, based on the model from Ref. [45]. Our key
rate thus matches the best BB84 key rate with practically
favorable devices.

The practical performances of the two-photon time-
bin CV QKD protocol are illustrated in Fig. 4. For a
reasonable range of excess noise ξ from 10−3 to 10−2 with
respect to channel output, the key rate decays mildly as
shown in Fig. 4a. Notice that the key rate is almost
unaffected at 0 km since no noise photon is introduced
to give phase error, and the bit error is almost unchanged
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FIG. 3: (a) The solid lines illustrate the asymptotic key rates of protocols using maximal one, two, three and four
photons to generate keys. The dotted line is the linear key rate bound [52, 53]. We plot the PLOB bound here. The
channel and devices are assumed to be ideal with no excess noise and inefficiency. (b) The relative contribution of
Qm,m, i.e. the gain of the rounds where m photons are sent and m photons are received. The m-photon
contribution of the i-photon protocol is relative to the raw key rate. Each group of bars illustrate the contribution of
vacuum, one, two, three and four-photon components of the protocol at a certain distance.

TABLE IV: The optimized intensities and post-selection thresholds of protocols using one to four photons
respectively at different distances. µi, τi and e

i
Z denote the optimized intensity, post-selection threshold and the

Z-basis error rate of the i-photon protocol. These parameters generate the four key rate plots in Fig. 3a, assuming
infinite decoy levels.

µ1 µ2 µ3 µ4 τ1 τ2 τ3 τ4 e1Z e2Z e3Z e4Z

0 km 0.356 1.487 2.395 2.395 1.437 1.641 1.845 1.845 30.95% 10.52% 5.31% 5.31%

10 km 0.137 0.924 1.887 2.395 3.476 2.253 2.457 2.457 29.80% 14.84% 5.66% 4.17%

20 km — 0.728 1.487 1.887 — 3.068 3.068 3.272 — 15.48% 6.91% 3.85%

40 km — 0.356 0.728 1.172 — 4.495 4.495 4.699 — 28.52% 17.07% 8.81%

for a negligible increase in the shot-noise variance. This
demonstrates the robustness of the phase-error analysis
to the excess noise.

Fig. 4b illustrates the key rate against the mode refer-
ence misalignment, where the two optical modes generat-
ing the time-bin qubit differ by δ in the reference phases
intrinsically. The misalignment in relative phases does
not affect the Z basis as we encode the key bits into the
relative intensities, and it only affects the X basis where
the phase error is defined as the flips in relative phases.
Our protocol thus has robustness against misalignment.

Fig. 4c illustrates the key rates of the decoy-state pro-
tocol in Sec. IVB. We set one decoy level at vacuum,
and heuristically optimize the two decoy intensities ν1
and ν2 and the signal intensity µ. The decoy estimations
are done by linear programming with a cutoff photon
number 10 [56, 57]. A detailed treatment of the decoy
estimation of the two-photon protocol is placed in Ap-
pendix B. We see for both the noiseless setup, with no

excess noise and misalignment, and the practical setup,
with 10−3 excess noise and 5◦ misalignment, the 4-level
decoy estimation is almost exact. This clearly surpassed
the practical performance of the protocol in Ref. [24],
since our protocol uses simpler estimation of the phase
error by identifying the principal components in key gen-
eration. The optimized parameters of the practical setup
are listed in Table V.

VI. REFINED KEY MAPPING SCHEME

In the time-bin-encoded CV QKD protocol in Table I,
we consider a simple key mapping strategy with a thresh-
old value τ illustrated in Fig. 5a. It can be seen that the
security analysis in Sec. III does not rely on the specific
shapes of the key mapping regions R0 and R1, as long
as they differ by a swap of the two optical modes. As a
result, we can optimize R0 and R1 for a higher key-rate
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FIG. 4: Practical performances of the two-photon protocol. (a) Key rate against excess noise with respect to
channel output, assuming infinite decoy levels. (b) Key rate against misalignment, i.e. the phase-reference difference
between the two optical modes generating the time-bin qubit, assuming infinite decoy levels. (c) Key rate derived
using decoy methods. The noiseless setup (blue curves) uses fixed decoy levels at 1.2× 10−4, 1× 10−4 and vacuum,
and the optimized protocol parameters of the practical setup (red curves) are listed in Table V.

TABLE V: Optimal protocol parameters in generating the key rate plot with 10−3 excess noise and 5◦

misalignment, using 4 decoy levels, as in Fig. 4c. The heuristically optimized signal intensity, post-selection
threshold and the decoy intensities are as given. There is one more decoy intensity set to be vacuum. The decoy
estimation is done by linear programming with cutoff photon number 10.

Distance (km) Signal intensity µ Threshold τ Decoy intensity ν1 Decoy intensity ν2

0 1.487 1.641 1.737× 10−1 1.000× 10−4

5 1.172 2.049 3.406× 10−3 2.740× 10−4

10 0.924 2.457 2.993× 10−2 1.000× 10−4

15 0.924 3.068 1.861× 10−2 1.000× 10−4

20 0.728 3.476 1.355× 10−2 2.441× 10−4

25 0.728 4.291 1.355× 10−2 1.562× 10−4
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performance indicated by r in Eq. (12).
To get a higher key rate r, we want to avoid the post-

selection of the detected signal region (q1, q2) as long as
the bit error rate eZ can be ensured low. To this end,
we introduce a maximum-likelihood-based key mapping
and analyze its performance. Corresponding to bit 0
or 1, Bob would receive coherent states |0⟩ |αeiφa⟩ or
|αeiφa⟩ |0⟩ for some randomized phase φa and α after
attenuation in a pure-loss channel. Corresponding to bit
value 0 and 1, the probability distributions f0 and f1 of
the homodyne measurement results (q1, q2) are given by

f0(q1, q2) =

∫ 2π

0

dφ

4π2
exp

[
−q21 − (q2 − 2|α| cosφ)2

]
2

,

(36)

f1(q1, q2) =

∫ 2π

0

dφ

4π2
exp

[
−q22 − (q1 − 2|α| cosφ)2

]
2

,

(37)
where φ is the difference between the source and detector
phase randomization.

Upon detecting a specific pair of quadratures (q1, q2),
the maximum-likelihood key mapping scheme requires
to decode bit 0 if f0(q1, q2) > f1(q1, q2) and bit 1 if
f1(q1, q2) > f0(q1, q2). According to Eq. (36) and (37),
the maximum-likelihood key mapping is equivalent to the
decoding of bit 0 if q21 < q22 and bit 1 if q21 > q22 . This re-
fined key mapping takes in detection results such as point
A in Fig. 5a where q21 is significantly different from q22 ,
thus reducing the post-selection loss of the gain. How-
ever, in the region where q21 and q22 are comparable, the
key mapping error will be large, making a large contri-
bution to the final bit error rate eZ . Conditioned on
the detection outcome (q1, q2), the key mapping error
eZ0 (q1, q2) in R0 is related to the likelihood function by

eZ0 (q1, q2) = Pr((q1, q2) ∈ R0|ka = 1) =
f1(q1, q2)

Q(q1, q2)
, (38)

with the key mapping gain Q(q1, q2) = f0(q1, q2) +
f1(q1, q2). We can similarly define eZ1 (q1, q2) for the R1

region. The final bit error rate eZ is

eZ =
1

2

∫
R0

dq1dq2 e
Z
0 (q1, q2)Q(q1, q2)

+
1

2

∫
R1

dq1dq2 e
Z
1 (q1, q2)Q(q1, q2).

(39)

For example, at point B in Fig. 5a, the key mapping
error is 50%. To discard the erroneous results, we can
set a threshold t > 1 and require to decode bit 0 if
f0(q1, q2) > tf1(q1, q2) and bit 1 if f1(q1, q2) > tf0(q1, q2).
The region in between will be discarded. Fig. 5b below
illustrates the numerically plotted key mapping regions
given the light amplitude α = 1 at t = 10, where the
grey region is discarded. It can be seen that the key
mapping regions are nearly isosceles right triangles with
non-zero intercepts ±τ with the quadrature axes. We

thus present the approximately maximum-likelihood key
mapping scheme as the following:

kb =


0 if (q2 − τ > ±q1) ∨ (q2 + τ < ±q1),
1 if (q1 − τ > ±q2) ∨ (q1 + τ < ±q2),
∅ otherwise.

(40)

As in Sec. V, we regard the intercept τ as a protocol
parameter. We optimize it and the source intensity µ
for each distance to yield the optimal key rate. How-
ever, numerical optimization shows that this refined key
mapping would only improve the key-rate performances
marginally. It increases the key rate at 0 km of the
ideal 2-photon protocol from 0.1261 bit/channel to 0.1314
bit/channel and that of the ideal 4-photon protocol from
0.3131 bit/channel to 0.3242 bit/channel, with almost no
increase to the maximal transmission distance. This is
due to the low gain of the newly-accepted region such as
point A in Fig. 5a. Considering the experimental cost as
well, we thus suggest that using the simple threshold key
mapping as in Sec. II is good enough in practice.

VII. CONCLUSION AND OUTLOOK

In summary, we present the time-bin-encoding CV
QKD protocol with a phase-error-based security anal-
ysis. Similar to the ideas in DV protocols [31] and
other CV protocols [5], we introduce a squashing channel
to “squash” the original privacy-estimation problem on
two optical modes to a single qubit, enabling the defi-
nition of phase-error rate. The phase randomization on
both the source and detector enables the introduction of
the photon-number-tagging method, identifying the cen-
tral components for key generation. Combined with the
decoy-state estimation, the parameter estimation is made
simple and efficient. We expect our methods of construct-
ing squashing models and applying phase randomization
can be applied to many other CV protocols.
One of our major observations is that coherent detec-

tors can be used to estimate the privacy of multi-photon
signals. This is also pointed out in Ref. [24]. Such detec-
tors may also be helpful to the DV protocols. In fact, we
may consider a hybrid protocol: single-photon detectors
for key generation and homodyne detectors for param-
eter estimation. The multi-photon components in this
protocol can contribute to key generation compared with
the single-photon BB84 protocol.
We provide a general framework for the finite-size anal-

ysis of this CV protocol based on martingale theory.
The photon-number tagging method greatly simplifies
the finite-size analysis. A direct follow-up of this work
is to complete the finite-size analysis, encompassing the
effects on the distillable key rate, the decoy-method accu-
racy, and the deviation of the homodyne tomography. In
the literature, variants of Azuma’s inequality have been
applied for faster convergence of parameter estimation in
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(a)

(b)

FIG. 5: The simple and the maximum-likelihood-based
key mapping. The two axes represent the two
homodyne measurement results (q1, q2). The yellow
region is decoded as 0 and the blue decoded as 1. The
grey region is discarded. (a) The simple key mapping
scheme used throughout this paper, being rectangular.
Point A has key mapping error 0.02% and point B 50%,
yet point A is discarded whilst B is accepted. (b) The
maximum-likelihood key mapping scheme, being
approximately triangular. The post-selection is done for
coherent light amplitude α = 1, where only the region
with likelihood ratio greater than 10 is kept in this
showcase. In this refined key mapping, point A is
accepted and point B is discarded.

quantum key distribution [58, 59], such as Kato’s inequal-
ity [60]. One can bring such techniques to the protocol
in this work for better practicality.
It is tempting to further enhance the key rate and

the maximal distance of this protocol. We may consider
the high-dimensional time-bin encoding, which is rela-
tively easy to implement experimentally [61–63]. The
high-dimensional complementarity security analysis [64]
can be invoked, and the squashing channel should map
the optical modes to a qudit. We can also apply the
trusted-noise model to alleviate the effect of the detector
noise [65, 66]. The model requires the modification of the
detector POVM, which is still block-diagonal on the Fock
basis [24]. One may also consider using squeezed states as
the light source to reduce the shot noise in one quadra-
ture and use the other only for parameter estimation.
This may tackle the large bit error rate due to the shot
noise, the issue that renders the 0-km performance of our
protocol not as good as the usual CV QKD scheme. We
can also examine the variations of our protocol based on
the combination with new DV QKD schemes such as the
measurement-device-independent-type schemes [67, 68]
and their extensions, including the twin-field-type [69–
71] and the mode-pairing schemes [72, 73].
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Appendix A: Phase-error calculation details

We give the detailed derivation of the phase-error probability expressions Eq. (21) to (27) for the zero, one and two-
photon components. According to Eq. (20), the calculation involves in expanding the X-basis measurement operator
M± based on Eq. (9). For the single-photon subspace, we have

P̂1

(∫ 2π

0

dφ

2π
|q1(φ)⟩ ⟨q1(φ)| ⊗ |q2(φ)⟩ ⟨q2(φ)|

)
P̂1 = ψ2

0(q1)ψ
2
1(q2) |01⟩ ⟨01|+ ψ2

1(q1)ψ
2
0(q2) |10⟩ ⟨10|+

ψ0(q1)ψ0(q2)ψ1(q1)ψ1(q2) |01⟩ ⟨10|+ ψ0(q1)ψ0(q2)ψ1(q1)ψ1(q2) |10⟩ ⟨01|
(A1)

P̂1

(∫ 2π

0

dφ

2π
|q2(φ)⟩ ⟨q2(φ)| ⊗ |q1(φ)⟩ ⟨q1(φ)|

)
P̂1 = ψ2

1(q1)ψ
2
0(q2) |01⟩ ⟨01|+ ψ2

0(q1)ψ
2
1(q2) |10⟩ ⟨10|+

ψ0(q1)ψ0(q2)ψ1(q1)ψ1(q2) |01⟩ ⟨10|+ ψ0(q1)ψ0(q2)ψ1(q1)ψ1(q2) |10⟩ ⟨01|
(A2)

P̂1

(∫ 2π

0

dφ

2π
|q1(φ)⟩ ⟨q2(φ)| ⊗ |q2(φ)⟩ ⟨q1(φ)|

)
P̂1 = ψ2

0(q1)ψ
2
1(q2) |01⟩ ⟨10|+ ψ2

1(q1)ψ
2
0(q2) |10⟩ ⟨01|+

ψ0(q1)ψ0(q2)ψ1(q1)ψ1(q2) |01⟩ ⟨01|+ ψ0(q1)ψ0(q2)ψ1(q1)ψ1(q2) |10⟩ ⟨10|
(A3)

P̂1

(∫ 2π

0

dφ

2π
|q1(φ)⟩ ⟨q2(φ)| ⊗ |q2(φ)⟩ ⟨q1(φ)|

)
P̂1 = ψ2

1(q1)ψ
2
0(q2) |01⟩ ⟨10|+ ψ2

0(q1)ψ
2
1(q2) |10⟩ ⟨01|+

ψ0(q1)ψ0(q2)ψ1(q1)ψ1(q2) |01⟩ ⟨01|+ ψ0(q1)ψ0(q2)ψ1(q1)ψ1(q2) |10⟩ ⟨10|
(A4)

Hence the single-photon phase-error operator is given by

P̂1M̂±P̂1 =

∫
R0

dq1dq2[ψ0(q1)ψ1(q2)± ψ0(q2)ψ1(q1)]
2 1

2
(|01⟩ ± |10⟩)(⟨01| ± ⟨10|)

=

∫
R0

dq1dq2[ψ
2
0(q1)ψ

2
1(q2) + ψ2

1(q1)ψ
2
0(q2)]

1

2
(|01⟩ ± |10⟩)(⟨01| ± ⟨10|),

(A5)

Note that the second equality is deduced as the cross terms are odd functions with respect to q1 and q2, and the
key-mapping region is symmetrical. This gives Eq. (21). The gain Q1,1 involves in measuring P̂1(M̂+ + M̂−)P̂1 which
is clearly in the form of Eq. (23).

The two-photon case involves in more terms, but we can make use of the symmetry of the key mapping region R0

to eliminate the odd terms. The calculation goes by:

P̂2

(∫ 2π

0

dφ

2π
|q1(φ)⟩ ⟨q1(φ)| ⊗ |q2(φ)⟩ ⟨q2(φ)|

)
P̂2 = ψ2

0(q1)ψ
2
2(q2) |02⟩ ⟨02|+ ψ0(q1)ψ0(q2)ψ2(q1)ψ2(q2) |02⟩ ⟨20|

+ ψ0(q1)ψ0(q2)ψ2(q1)ψ2(q2) |20⟩ ⟨02|+ ψ2
0(q2)ψ

2
2(q1) |20⟩ ⟨20|+ ψ2

1(q1)ψ
2
1(q2) |11⟩ ⟨11|+ odd terms

(A6)

The X-basis measurement is thus given by:

P̂2M̂+P̂2 =

∫
R0

dq1dq2[ψ0(q1)ψ2(q2) + ψ2(q1)ψ0(q2)]
2 1

2
(|02⟩+ |20⟩)(⟨02|+ ⟨20|)

+

∫
R0

dq1dq22ψ
2
1(q1)ψ

2
1(q2) |11⟩ ⟨11|

(A7)

P̂2M̂−P̂2 =

∫
R0

dq1dq2[ψ0(q1)ψ2(q2)− ψ2(q1)ψ0(q2)]
2 1

2
(|02⟩ − |20⟩)(⟨02| − ⟨20|) (A8)

This recovers Eq. (24), and adding the two equations together gives the expression for the gain Q2,2 as in Eq. (26).
Expanding the vacuum subspace according to Eq. (9) gives the coefficients as in Eq. (27).
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Appendix B: Parameter estimation

In this section, we show how to estimate the quantities in the key-rate formula with realistic devices. We first state
parameter estimation in terms of probabilities in a single round, and one can interpret the results as obtained from
sufficiently many rounds under a collective attack. In the next section, we will generalize the results to the finite-size
regime under a coherent attack. For convenience, we first review the terms to be estimated in the virtual protocol
that utilizes up to the two-photon component, as given in Sec. III C. As a reminder, note that we distinguish the
terms “receiving” and “accepting.”

1. Q∗,0: The probability of accepting a vacuum state, given by Eq. (27).

2. Q1,1: The probability of sending |Ψ1⟩A′A1A2
and accepting a single-photon state, given by Eq. (23).

3. Q2,2: The probability of sending |Ψ2⟩A′A1A2
and accepting a two-photon state, given by Eq. (26).

4. eX1,1: the phase-error probability when sending a single-photon state and accepting a single-photon state, deter-

mined by the probabilities of sending (|01⟩ ± |10⟩)/
√
2 and accepting (|01⟩ ∓ |10⟩)/

√
2, given by Eq. (21).

5. eX2,2: the phase-error probability when sending a two-photon state and accepting a two-photon state, determined

by the probabilities of sending (|02⟩ ± |20⟩)/
√
2 and accepting (|02⟩ ∓ |20⟩)/

√
2 and sending (|02⟩ − |20⟩)/

√
2

and accepting |11⟩, given by Eq. (24).

1. Homodyne tomography

The first issue we need to tackle is the estimation of photon-number statistics. Due to the lack of photon-number-
resolving detectors, these operators are not directly measurable. Nevertheless, we can apply homodyne tomography
and obtain unbiased estimation [34–39]. For a systematic review, we recommend the tutorial textbook of Ref. [32].

We start with a single-mode system. Consider the displacement operators given by

D̂(α) = exp(αâ† − α∗â)

= exp
[
(−ik)

(
â†eiφ + âe−iφ

)]
:= exp(−ikQ̂φ),

(B1)

where â and â† are the annihilation and creation operators of the mode, respectively, α is a complex scalar, and α∗

denotes the complex conjugate of α. In the second equation, we use the polar variables to represent α, α = −ikeiφ.
We call Q̂φ the quadrature operator. Measuring Q̂φ corresponds to the homodyne measurement, where the phase of

the LO is φ. By definition, D̂(α) is a Hermitian operator. The set of all displacement operators forms an orthogonal

and complete function basis on a mode; hence any linear operator on a mode, Ô, can be expanded with displacement
operators,

Ô =

∫ π

0

dφ

π

∫ ∞

−∞

dk|k|
4

Tr(ÔeikQ̂φ)e−ikQ̂φ . (B2)

When measuring Ô on a state, ρ̂, the expected value is given by

⟨Ô⟩ =Tr(Ôρ̂)

=

∫ π

0

dφ

π

∫ ∞

−∞

dk|k|
4

Tr(ÔeikQ̂φ)Tr(Ôe−ikQ̂φ)

:=

∫ π

0

dφ

π

∫ ∞

−∞
dqTr[ÔK(Q̂φ − q)]p(q|φ)

:=

∫ π

0

dφ

π

∫ ∞

−∞
dqR[Ô](q, φ)p(q|φ),

(B3)

where the value of the term

K(q) :=

∫ ∞

−∞

dk

4
|k|eikq (B4)
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should be determined by the Cauchy principal value, p(q|φ) is the conditional probability of obtaining quadrature q

when the phase of the homodyne measurement is φ, and R[Ô](q, φ) is the kernel function of Ô with respect to the

homodyne measurement. Eq. (B3) gives a sampling procedure to estimate ⟨Ô⟩ for a general unknown system using
homodyne measurements [36, 37, 39]. Namely,

1. Repeat the following process for N times:

(a) Choose the LO phase of the homodyne measurement, φi ∈ [0, π], uniformly at random.

(b) Measure the system and record the result, qi.

2. Calculate the average value of the kernel function with respect to the observed statistics,
∑N

i=1 R[Ô](qi, φi)/N .

When the kernel function is bounded, the law of large numbers guarantees the convergence,

⟨Ô⟩ = lim
N→∞

1

N

N∑
i=1

R[Ô](qi, φi). (B5)

Note that, when Ô is an Hermitian operator or we know that Im
(
⟨Ô⟩
)
= 0, we have

⟨Ô⟩ = Re
(
⟨Ô⟩
)

=

∫ π

0

dφ

π

∫ ∞

−∞
dqRe

(
R[Ô](q, φ)

)
p(q|φ).

(B6)

That is, we can redefine the estimator to be the real part of R[Ô](q, φ), which is still unbiased.
In our protocol, we are interested in the photon-number operators, |n⟩ ⟨n+ d|, where |n⟩ is the eigenstate of the

n-photon eigenstate. For a single mode, the estimator of this operator is given by

Rη[|n⟩ ⟨n+ d|](q, φ) =eid(φ+π
2 )

√
n!

(n+ d)!

∫ ∞

−∞
dk|k| exp

(
1− 2η

2η
k2 − ikq

)
kdLd

n(k
2), (B7)

where η is the detector efficiency, and Ld
n is the generalized Laguerre polynomial [36, 37, 74]. The kernel function

is bounded when η > 1/2, allowing for a converging tomography result by increasing samples [37, 39].homodyne
tomography can be generalized to estimate the statistics of a multiple-mode observable. In our case, one needs to
estimate separable observables on two modes, Ô1 ⊗ Ô2, where we specify the modes with subscripts. One can apply
independent homodyne measurements to each mode for the estimation. Notably, as D̂(α1)⊗ D̂(α2) forms a complete
basis on the joint system, then

Ô1 ⊗ Ô2 =

∫ π

0

dφ1

π

∫ ∞

−∞

dk1|k1|
4

Tr(Ô1e
ik1Q̂φ1 )

∫ π

0

dφ2

π

∫ ∞

−∞

dk2|k2|
4

Tr(Ô2e
ik2Q̂φ2 )(e−ik1Q̂φ1 ⊗ e−ik2Q̂φ2 ). (B8)

Consequently,

⟨Ô1 ⊗ Ô2⟩ = Tr[(Ô1 ⊗ Ô2)ρ̂]

=

∫ π

0

dφ1

π

∫ ∞

−∞
dq1

∫ π

0

dφ2

π

∫ ∞

−∞
dq2R[Ô1](q1, φ1)R[Ô2](q2, φ2)p(q1, q2|φ1, φ2).

(B9)

As a remark, note that the quantum state of the two modes, ρ̂, can generally be entangled. In the experiment, the users
simply need two independently phase-randomized homodyne detectors and record the joint conditional probability
distribution of quadratures (q1, q2) given the LO phases (φ1, φ2).

In practical homodyne measurements, due to the usage of analog-to-digital converters (ADC), the measured quadra-
ture value q will be discrete with a finite resolution ∆. In the former CV QKD protocols like Ref. [24], the parameter
estimation is done by linear programming [75] instead of optical homodyne tomography; as a result, the finite reso-
lution ∆ will not affect the estimation accuracy as long as ∆ is small.

To characterize how the finite resolution ∆ will disturb the parameter estimation by optical homodyne tomography,
we numerically estimate the bias caused by ∆. We estimate the expectation values of the (non-Hermitian) observables

Ô01 := |0⟩ ⟨1| and Ô02 := |0⟩ ⟨2| with a coherent state |√µ⟩ input (µ = 0.5). We choose Ô01 and Ô02 since they are
directly related to the phase error operator in Proposition 1.
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When the homodyne detection results is quantized with the bin width ∆, if we use the observable estimator
Rη[|n⟩ ⟨n+ d|](q, ϕ) given by Eq. (B7), the expectation value becomes

E
(
R[Ô](q, ϕ)

)
=

∫ π

0

dϕ

π

∞∑
t=−∞

Pr(q = t∆|ϕ)R[Ô](q = t∆, ϕ), (B10)

where

Pr(q = t∆|ϕ) =
∫ (t+1)∆

t∆

p(q|ϕ), (B11)

is the quantized version of the probabilistic distribution of the homodyne detection result q. The finite-bin effect is

then characterized by the estimation bias
∣∣∣E(R[Ô](q, ϕ)

)
− Ô

∣∣∣.
We plot the estimator bias of Ô01 and Ô02 with respect to the bin width ∆ in Fig. 6. We see that the bias is almost

proportional to ∆2, i.e., it decays rapidly if we reduce the bin width ∆. With a width ∆ = 0.01 shot noise unit which
is easily achievable in the experiment, the bias of Ô01 and Ô02 are smaller than 10−5. As a result, the estimation bias
is negligible with practical homodyne measurement devices.

10-310-2

Bin Width  (SNU)
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FIG. 6: Estimation bias of the observable |n⟩ ⟨n+ d| with respect to the homodyne bin width ∆. The input state is
a coherent state |√µ⟩ with µ = 0.5. The detection efficiency ηdet = 1.

2. Parameter estimation procedures

Now we present the parameter estimation procedures based on the homodyne tomography and extended decoy
methods. In the experiment, given that they choose certain bases and light intensity, the users can collect data
and evaluate the conditional probabilities for taking (φ1

b , φ
2
b) = φ⃗b and observing (q1, q2) = q⃗ in the homodyne

measurements, or the yields. For simplicity, we use notations of Y Z
µa,(φ⃗b,q⃗)

and Y φ
µa,(φ⃗b,q⃗)

. In the subscript, µa denotes

the light intensity, and (φ⃗b, q⃗) denotes the homodyne measurement results of Bob. When the superscript writes Z,
it denotes that Alice chooses the Z-basis; when the superscript writes φ, it denotes that Alice chooses the X-basis
and φ2

a − φ1
a = φ. Via homodyne tomography, these values can be used to estimate Y Z

µa,Ô
and Y φ

µa,Ô
, namely, the

expected value of measuring observable Ô conditioned on the corresponding input settings. Following Eq. (B3), the
yields are given by

Y Z
µa,Ô

=

∫ π

0

dφ1
b

∫ π

0

dφ2
b

∫ ∞

−∞
dq1

∫ ∞

−∞
dq2R[Ô](q⃗, φ⃗b)Y

Z
µa,(φ⃗b,q⃗)

,

Y φ

µa,Ô
=

∫ π

0

dφ1
b

∫ π

0

dφ2
b

∫ ∞

−∞
dq1

∫ ∞

−∞
dq2R[Ô](q⃗, φ⃗b)Y

φ
µa,(φ⃗b,q⃗)

.

(B12)
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In the second step, we apply the extended decoy state methods to estimate the gains and phase-error probabilities
in Eq. (12), the key-rate formula. With finite decoy states, the users can obtain upper and lower bounds on these
quantities [28]. We take the estimation of eX2,2 for example, which is the most complicated task for a two-photon
protocol. According to Eq. (24) we have

Q2,2e
X
2,2

Pr(2)
=

1

2
c−2 Y|Ψ+

2 ⟩,|Ψ−
2 ⟩ +

1

2
c+2 Y|Ψ−

2 ⟩,|Ψ+
2 ⟩ + c112 Y|Ψ−

2 ⟩,|11⟩. (B13)

We then invoke the extended decoy method. To upper-bound Y|Ψ+
2 ⟩,|Ψ−

2 ⟩, i.e. the probability of transmitting |Ψ+
2 ⟩

whilst receiving |Ψ−
2 ⟩, we have according to Eq. (34)

Y|Ψ+
2 ⟩,|Ψ−

2 ⟩ ≤ Y Z,U

m=2,|Ψ−
2 ⟩ +

1

2
Y φ=0,U

m=2,|Ψ−
2 ⟩ +

1

2
Y φ=π,U

m=2,|Ψ−
2 ⟩ −

1

2
Y

φ=π
2 ,L

m=2,|Ψ−
2 ⟩ −

1

2
Y

φ= 3π
2 ,L

m=2,|Ψ−
2 ⟩, (B14)

where Y
φ,U(L)

m=2,|Ψ−
2 ⟩ denotes the upper(lower) bound of the two-photon subspace contribution of Y φ

µ,|Ψ−
2 ⟩, i.e. the proba-

bility of transmitting ρφµ whilst receiving |Ψ−
2 ⟩. This is found by the following standard linear programming for decoy

analysis:

max.(min.) Y φ

m=2,|Ψ−
2 ⟩

s.t.

Nc∑
m=0

e−µa
µm
a

m!
Y φ

m,|Ψ−
2 ⟩ = Y φ

µa,|Ψ−
2 ⟩,

µa ∈ {µ, ν1, ν2, 0}.

(B15)

Note that Nc is a cut-off photon number chosen to be 10 in this work.
We list the estimation procedures and the involved quantities in Table VI. Note that the original data can be re-used

to estimate various quantities in homodyne tomography by varying the kernel function with respect to the observable
under consideration.

TABLE VI: Parameter estimation with homodyne tomography and decoy states. In our work, the light intensity is
chosen from the set µa ∈ {µ, ν1, ν2, 0}. For simplicity, we denote the photon-number operator, |n1n2⟩ ⟨n1n2|, as

|n1n2⟩ in the subscripts of the yields, and similarly for |Ψ±
n ⟩. We denote the lower and upper bounds with additional

superscripts of L and U , respectively. Note that one can directly estimate Q∗,0 in the rounds of µa = µ. The
estimation of eX2,2 involves statistics in the rounds that Alice chooses the Z-basis and X-basis with φ = kπ/2.

Original data Estimation via homodyne tomography Final estimation with decoy states

Y Z
µa,(φ⃗b,q⃗)

Y Z
µ,|00⟩ Q∗,0

Y Z
µa,|01⟩, Y

Z
µa,|10⟩ QL

1,1, Q
U
1,1

Y Z
µa,|02⟩, Y

Z
µa,|20⟩, Y

Z
µa,|11⟩ QL

2,2, Q
U
2,2

Y φ
µa,(φ⃗b,q⃗)

Y φ=π

µa,|Ψ+
1 ⟩

, Y φ=0

µa,|Ψ+
1 ⟩

, Y φ=π

µa,|Ψ−
1 ⟩

, Y φ=0

µa,|Ψ−
1 ⟩

eX,L
1,1 , eX,U

1,1

Y
φ=kπ/2

µa,|Ψ+
2 ⟩

, Y
φ=kπ/2

µa,|Ψ−
2 ⟩

, Y
φ=kπ/2

µa,|11⟩ eX,L
2,2 , eX,U

2,2

Y Z
µa,(φ⃗b,q⃗)

Y Z

µa,|Ψ+
2 ⟩, Y

Z

µa,|Ψ−
2 ⟩, Y

Z
µa,|11⟩

Appendix C: Martingale-based analysis against coherent attacks

To tackle the most general attack, namely, a coherent attack, we apply a martingale-based approach. We first
review the basics of martingale theory.

Definition 1 (Martingale). Consider a probability space, (Ω,F , P ), where Ω is the sample space, F is the event space,
and P is the probability measure, and a filtration F = {Fi}i∈N,Fi ⊆ Fj ⊆ F ,∀i ≤ j. A sequence of random variables,
X0, X1, · · · , such that ∀i,Xi is Fi-measurable, is called a martingale with respect to filtration F if ∀i,

E(|Xi|) <∞,

E(Xi+1|Fi) = Xi.
(C1)
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For a martingale, the summation of its composed random variables converges to the expected value in probability,
as shown by Azuma’s inequality [50] and its variants.

Theorem 3 (Azuma’s inequality [50]). Given a probability space, (Ω,F , P ), and a filtration, F = {Fi}i∈N, suppose
X = {Xi}i∈N is a real-valued martingale bounded by two sets of predictable processes with respect to F, A = {Ai}i∈N
and B = {Bi}i∈N, such that

Ai ≤ Xi −Xi−1 ≤ Bi,

Bi −Ai ≤ ci,
(C2)

where ci ∈ [0,∞) are constants. Then ∀δ > 0 and ∀n ∈ N+,

Pr(Xn −X0 ≥ δ) ≤ exp

(
− 2δ2∑n

i=1 c
2
i

)
,

Pr(Xn −X0 ≤ −δ) ≤ exp

(
− 2δ2∑n

i=1 c
2
i

)
.

(C3)

By applying the union bound, we have the inequality

Pr(|Xn −X0| ≥ δ) ≤ 2 exp

(
− 2δ2∑n

i=1 c
2
i

)
. (C4)

In our discussion, we also encounter martingales that may take complex values. We can apply Azuma’s inequality
for real-valued variables to the real and imaginary parts separately and bound the absolute values of the martingale
variables. In this work, we apply a result from Ref. [76].

Theorem 4. Given a probability space, (Ω,F , P ), and a filtration, F = {Fi}i∈N, suppose X = {Xi}i∈N is a complex-
valued martingale with a bounded difference, such that

X0 = 0,

|Xi −Xi−1| ≤ ci,
(C5)

where ci ∈ [0,∞) are constants. Then ∀δ > 0 and ∀n ∈ N+,

Pr(|Xn| ≥ δ) ≤ 2e2 exp

(
− 2δ2∑n

i=1 c
2
i

)
. (C6)

1. Estimation of Q1,1

In this section, we present a thorough analysis on the estimation of Q1,1, showing how to apply the martingale
analysis to obtain a non-i.i.d. estimation result that holds against coherent attacks. Note that in the finite-data-
size analysis under a coherent attack, Q1,1 should be understood as a frequency, and Nzz

µ Q1,1 is the number of key
generation rounds in the virtual experiment where Alice sends a single-photon state and Bob accepts a single-photon
state. Here, we denote the number of key generation rounds as Nzz

µ in accordance with the basis choise and light
intensity. In particular, the statistics over the rounds can be correlated. Consider the following random variable in
the i’th round,

ζ
(i)
{µ,(1,1)} =

 1, if µ
(i)
a = µ ∧ ZZ ∧ n(i) = 1 ∧m(i) = 1 ∧ (q

(i)
1 , q

(i)
2 ) ∈ R0 ∪R1 ,

0, otherwise.
(C7)

where we write ZZ to denote the bases choices, with the former denoting Alice’s choice and the latter denoting Bob’s,

and specify the round number in the superscript, (i). We call ζ
(i)
{µ,(1,1)} a counter variable, which adds one in the

virtual experiment when the light intensity is µ, both Alice and Bob choose the Z-basis, Alice sends a single-photon

state, and Bob receives a single-photon state and accepts the signal in the post-selection. Note that ζ
(i)
{µ,(1,1)} embeds

randomness from both the experimental setting and measurement outcomes. We have

N∑
i=1

ζ
(i)
{µ,(1,1)} = Nzz

µ Q1,1, (C8)
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and conditioned on the history before the i’th round, Fi−1, the expected value of ζ
(i)
{µ,(1,1)} is given by

E
[
ζ
(i)
{µ,(1,1)}|Fi−1

]
= pµpzzc1Prµ(1)Tr

{
NE

[
TrA′(|Ψ1⟩A′A1A2

⟨Ψ1|)
]
(|01⟩B1B2

⟨01|+ |10⟩B1B2
⟨10|)

}
, (C9)

where pµ is the probability that the light intensity is µ, pzz is the probability that both users choose the Z-basis,
and c1 relates to the accepting probability, as given in Eq. (22). The quantum channel controlled by Eve, NE , may
introduce correlated statistics among rounds that are not independent and identically distributed. Then, the following
random variables form a martingale,

∆
(t)
{µ,(1,1)} =

 0, if t = 0,∑t
i=1

{
ζ
(i)
{µ,(1,1)} − E

[
ζ
(i)
{µ,(1,1)}|Fi−1

]}
, if t = 1, · · · , N ,

(C10)

where N is the total number of rounds in the experiment. In addition, the martingale has a bounded difference,

−E
[
ζ
(t)
{µ,(1,1)}|Ft−1

]
≤ ∆

(t)
{µ,(1,1)} −∆

(t−1)
{µ,(1,1)} ≤ 1− E

[
ζ
(t)
{µ,(1,1)}|Ft−1

]
. (C11)

We denote cµ,(1,1) := 1. In a virtual experiment where Alice and Bob perform the photon-number measurements, the

value of ∆
(N)
{µ,(1,1)} can be bounded on both sides by applying Azuma’s inequality; hence the value of

∑N
i=1 ζ

(i)
{µ,(1,1)}

can be bounded with respect to the expected values in Eq. (C9). Given the estimation failure probability

ε{µ,(1,1)} = exp

[
−

2δ{µ,(1,1)}
2

Nc{µ,(1,1)}2

]
= exp

[
−
2δ{µ,(1,1)}

2

N

]
, (C12)

we have

Pr
{
∆

(N)
{µ,(1,1)} −∆

(0)
{µ,(1,1)} ≥ δ{µ,(1,1)}

}
= Pr

{
N∑
i=1

ζ
(i)
{µ,(1,1)} −

N∑
i=1

E[ζ(i){µ,(1,1)}|Fi−1] ≥ δ{µ,(1,1)}

}
≤ ε{µ,(1,1)},

Pr
{
∆

(N)
{µ,(1,1)} −∆

(0)
{µ,(1,1)} ≤ −δ{µ,(1,1)}

}
= Pr

{
N∑
i=1

ζ
(i)
{µ,(1,1)} −

N∑
i=1

E[ζ(i){µ,(1,1)}|Fi−1] ≤ −δ{µ,(1,1)}

}
≤ ε{µ,(1,1)}.

(C13)

For brevity, we shall use the big-O notation. Then, except a negligible failure probability, we have the upper and
lower bounds on Q1,1,

1

Nzz
µ

{
N∑
i=1

E[ζ(i){µ,(1,1)}|Fi−1]−O(
√

−N ln ε{µ,(1,1)})

}
≤ Q1,1 ≤ 1

Nzz
µ

{
N∑
i=1

E[ζ(i){µ,(1,1)}|Fi−1] +O(
√

−N ln ε{µ,(1,1)})

}
.

(C14)

Notwithstanding, the expected value, E[ζ(i){µ,(1,1)}|Fi−1], is not directly accessible. For this purpose, we link it with

the parameter estimation measurement results, which involve the decoy state method and homodyne tomography. By
applying the decoy state method, we can effectively lower and upper bound the fraction of single-photon component
in the key generation rounds,

E
[
ζ
(i)
{µ,(1,1)}|Fi−1

]
≤ pµpzzPrµ(1)

(
c1
∑
µa

dU{µa,(1,1)}Tr
{
NE

[
TrA′(ρ̂Zµa

)
]
(|01⟩B1B2

⟨01|+ |10⟩B1B2
⟨10|)

}
+ cUQ1,1

)
,

E
[
ζ
(i)
{µ,(1,1)}|Fi−1

]
≥ pµpzzPrµ(1)

(
c1
∑
µa

dL{µa,(1,1)}Tr
{
NE

[
TrA′(ρ̂Zµa

)
]
(|01⟩B1B2

⟨01|+ |10⟩B1B2
⟨10|)

}
+ cLQ1,1

)
,

(C15)

where we specify the upper and lower bounds obtained by the decoy-state method with superscripts U and L,
respectively. As discussed in Appendix B 2, by applying a linear programming either analytically or numerically [28],

we can derive the optimal coefficients in the decoy-state method for each light intensity µa, d
U(L)
{µa,(1,1)}. Note that

there may be an additional constant term returned by the linear programming, which we denote as c
U(L)
Q1,1

. Here, we
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overload the notation, µa, with the meaning of a specific light intensity in {µ, ν1, ν2, 0} and distinguish it from Alice’s

choice in a round, µ
(i)
a . Using the homodyne tomography method,

Tr
{
NE

[
ρ̂Zµa

]
|n0n1⟩B1B2

⟨n0n1|
}
=

∫ π

0

dφ1
b

π

∫ ∞

−∞
dq1

∫ π

0

dφ2
b

π

∫ ∞

−∞
dq2Rη[|n0n1⟩ ⟨n0n1|](q⃗, φ⃗b)p

Z
µa
(q⃗|φ⃗b), (C16)

where (q⃗, φ⃗b) represents the homodyne measurement result, with LO phases φ⃗b = (φ1, φ2) and quadratures q⃗ = (q1, q2)
on the two modes, and the value of Rη[|n0n1⟩ ⟨n0n1|](q⃗, φ⃗b) comes from the kernel function in homodyne tomography
by using homodyne detectors with efficiency η. The expressions of the kernel functions can be obtained through
Eq. (B7) and (B9). For the estimation of Q1,1, we shall use kernel functions with |n0n1⟩ = |01⟩ and |10⟩. To
explicitly express the quantum state being measured, namely NE

[
ρ̂Zµa

]
, we specify it with sub- and superscripts in

the probability distribution pZµa
(q⃗|φ⃗b). The measurement results are collected in the rounds where the light intensity

is chosen as µa, Alice chooses the Z-basis, and Bob chooses the X-basis. Combining Eq. (C9), (C15) and (C16), we
have

E
[
ζ
(i)
{µ,(1,1)}|Fi−1

]
≤pµpzzPrµ(1)

(
c1
∑
µa

dU{µa,(1,1)}

{∫ π

0

dφ1
b

π

∫ ∞

−∞
dq1

∫ π

0

dφ2
b

π

∫ ∞

−∞
dq2Rη[|01⟩ ⟨01|](q⃗, φ⃗b)p

Z
µa
(q⃗|φ⃗b)

+

∫ π

0

dφ1
b

π

∫ ∞

−∞
dq1

∫ π

0

dφ2
b

π

∫ ∞

−∞
dq2Rη[|10⟩ ⟨10|](q⃗, φ⃗b)p

Z
µa
(q⃗|φ⃗b)

}
+ cUQ1,1

)
,

E
[
ζ
(i)
{µ,(1,1)}|Fi−1

]
≥pµpzzPrµ(1)

(
c1
∑
µa

dL{µa,(1,1)}

{∫ π

0

dφ1
b

π

∫ ∞

−∞
dq1

∫ π

0

dφ2
b

π

∫ ∞

−∞
dq2Rη[|01⟩ ⟨01|](q⃗, φ⃗b)p

Z
µa
(q⃗|φ⃗b)

+

∫ π

0

dφ1
b

π

∫ ∞

−∞
dq1

∫ π

0

dφ2
b

π

∫ ∞

−∞
dq2Rη[|10⟩ ⟨10|](q⃗, φ⃗b)p

Z
µa
(q⃗|φ⃗b)

}
+ cLQ1,1

)
.

(C17)

Note that we assess the probability distribution pZµa
(q⃗|φ⃗b) also via a finite sample of data. For this purpose, we apply

the martingale analysis once more. Consider the following random variables for the i’th round in the experiment,

ζ
(i)
{µa,Z,|n0n1⟩} =

Rη[|n0n1⟩ ⟨n0n1|](q⃗, φ⃗b), if µ
(i)
a = µa ∧ ZX ∧ (q

(i)
1 , q

(i)
2 ) = q⃗, (φ

1(i)
b , φ

2(i)
b ) = φ⃗b,

0, otherwise,
(C18)

which relate to the parameter estimation measurements when the light intensity is µa and Alice chooses the Z-basis.

We also call ζ
(i)
{µa,Z,|n0n1⟩} counter variables. According to homodyne tomography, we have

E[ζ(i){µa,Z,|n0n1⟩}|Fi−1] = pµa
pzxTr

{
NE

[
TrA′(|Ψ1⟩A′A1A2

⟨Ψ1|)
]
(|n0n1⟩B1B2

⟨n0n1|)
}
, (C19)

and

N∑
i=1

ζ
(i)
{µa,Z,|n0n1⟩} =

∑
i:µ

(i)
a =µa,ZX

Rη[|n0n1⟩ ⟨n0n1|](q⃗(i), φ⃗(i)
b ), (C20)

where the summation of the right-hand side is taken over the rounds with light intensity µa and basis choices of Alice

choosing the Z-basis and Bob choosing the X-basis, and q⃗(i), φ⃗
(i)
b represent the observed quadrature measurement

statistics in the i’th round. While the weighted expectation with respect to the kernel function in Eq. (C16) is a real
value, in the experiment, the summation in Eq. (C20) may take a complex value due to the kernel function value.
One can simply take the real part of the summation as the estimation result. In the following discussion, we omit
this specification for brevity.

Similar to Eq. (C10), the following random variables form a martingale,

∆
(t)
{µa,Z,|n0n1⟩} =

 0, if t = 0,∑t
i=1

{
ζ
(i)
{µa,Z,|n0n1⟩} − E

[
ζ
(i)
{µa,Z,|n0n1⟩}|Fi−1

]}
, if t = 1, · · · , N .

(C21)
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For η > 1/2, the above martingale has a bounded difference. One can numerically evaluate the maximum absolute
value of Rη[|n0n1⟩ ⟨n0n1|](q⃗, φ⃗b), which we denote as r{η,|n0n1⟩}. Then, the martingale has a bounded difference,

|∆(t)
{µa,Z,|n0n1⟩} −∆

(t−1)
{µa,Z,|n0n1⟩}| < 2r{η,|n0n1⟩}. (C22)

We denote c{µa,Z,|n0n1⟩} := 2r{η,|n0n1⟩}. By applying Azuma’s inequality, we can link the observed statistics,

ζ
(i)
{µa,Z,|n0n1⟩}, with their expected values. Given the estimation failure probability

ε{µa,Z,|n0n1⟩} = 2e2 exp

[
−

2δ{µa,Z,|n0n1⟩}
2

Nc{µa,Z,|n0n1⟩}
2

]
, (C23)

we have

Pr

{∣∣∣∣∆(N)
{µa,Z,|n0n1⟩} −∆

(0)
{µa,Z,|n0n1⟩}

∣∣∣∣ ≥ δ{µa,Z,|n0n1⟩}

}
=Pr

{∣∣∣∣ N∑
i=1

ζ
(i)
{µa,Z,|n0n1⟩} −

N∑
i=1

E[ζ(i){µa,Z,|n0n1⟩}|Fi−1]

∣∣∣∣ ≥ δ{µa,Z,|n0n1⟩}

}
≤ε{µa,Z,|n0n1⟩},

(C24)

Combining all these results, we arrive at the final result: except for a given failure probability

εQ1,1
= ε{µ,(1,1)} +

∑
µa

(
ε{µa,Z,|01⟩} + ε{µa,Z,|10⟩}

)
, (C25)

Q1,1 ≤QU
1,1

:=
pµpzzPrµ(1)

Nzz
µ

[
c1
∑
µa

dU{µa,(1,1)}

pµapzx

{ ∑
i:µ

(i)
a =µa,ZX

Rη[|01⟩ ⟨01|](q⃗(i), φ⃗(i)
b ) +O

(√
−N ln ε{µa,Z,|01⟩}

)

+
∑

i:µ
(i)
a =µa,ZX

Rη[|10⟩ ⟨10|](q⃗(i), φ⃗(i)
b ) +O

(√
−N ln ε{µa,Z,|10⟩}

)}
+NcUQ1,1

+O
(√

−N ln ε{µ,(1,1)}

)]
,

(C26)

Q1,1 ≥QL
1,1

:=
pµpzzPrµ(1)

Nzz
µ

[
c1
∑
µa

dL{µa,(1,1)}

pµa
pzx

{ ∑
i:µ

(i)
a =µa,ZX

Rη[|01⟩ ⟨01|](q⃗(i), φ⃗(i)
b )−O

(√
−N ln ε{µa,Z,|01⟩}

)

+
∑

i:µ
(i)
a =µa,ZX

Rη[|10⟩ ⟨10|](q⃗(i), φ⃗(i)
b )−O

(√
−N ln ε{µa,Z,|10⟩}

)}
+NcLQ1,1

−O
(√

−N ln ε{µ,(1,1)}

)]
.

(C27)

To sum up, we depict the flowchart of estimating Q1,1 from the observed statistics in Fig. 7.

2. Estimation of Q2,2

In this section, we discuss the estimation of Q2,2. While conceptually the same as the estimation of Q1,1, the
two-photon component makes the estimation procedure complex. First, construct the counter variable in the i’th
round,

ζ
(i)
{µ,(2,2)} =

 1, if µ
(i)
a = µ ∧ ZZ ∧ n(i) = 2 ∧m(i) = 2 ∧ (q

(i)
1 , q

(i)
2 ) ∈ R0 ∪R1 ,

0, otherwise.
(C28)
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test rounds, µ
(i)
a , q⃗(i), φ⃗

(i)
b

∑
i E[ζ

(i)

(µa,Z,|n0n1⟩)|Fi−1]
∑

i E
[
ζ
(i)

{µ,(1,1)}|Fi−1

]

key generation rounds, Q1,1

Azuma’s inequality homodyne tomography

single-round analysis, Eq. (23)

decoy method

Azuma’s inequality

FIG. 7: Flowchart of martingale-based parameter estimation procedures. Here, we take the estimation of Q1,1 as an
example. The users start with the observed statistics in the test rounds and aim to estimate Q1,1. Azuma’s

inequality is applied twice in the estimation. The single-round analysis in terms of conditional probabilities links the
two martingales and hence relates the observed statistics in the test rounds with the target value in the key

generation rounds.

which adds one in the virtual experiment when the light intensity is µ, both Alice and Bob choose the Z-basis, Alice
sends a two-photon state, and Bob receives a two-photon state and accepts the signal in the post-selection. We have

N∑
i=1

ζ
(i)
{µ,(2,2)} = Nzz

µ Q2,2, (C29)

and conditioned on the history before the i’th round, Fi−1, the expected value of ζ
(i)
{µ,(2,2)} is given by

E
[
ζ
(i)
{µ,(2,2)}|Fi−1

]
= pµpzzPr(2)

(
1

2
(c+2 + c−2 )Tr

{
NE [TrA′(|Ψ2⟩A′A1A2

⟨Ψ2|)] |02⟩B1B2
⟨02|

}
+

1

2
(c+2 − c−2 )Tr

{
NE [TrA′(|Ψ2⟩A′A1A2

⟨Ψ2|)] |02⟩B1B2
⟨20|

}
+

1

2
(c+2 − c−2 )Tr

{
NE [TrA′(|Ψ2⟩A′A1A2

⟨Ψ2|)] |20⟩B1B2
⟨02|

}
+

1

2
(c+2 + c−2 )Tr

{
NE [TrA′(|Ψ2⟩A′A1A2

⟨Ψ2|)] |20⟩B1B2
⟨20|

}
+ c112 Tr

{
NE [TrA′(|Ψ2⟩A′A1A2

⟨Ψ2|)] |11⟩B1B2
⟨11|

})
.

(C30)

where pµ is the probability that the light intensity is µ, pzz is the probability that both users choose the Z-basis,
and c+2 , c

−
2 , c

11
2 relate to the accepting probability, as given in Eq. (26). Going through a similar analysis as for Q1,1,

where we construct a martingale sequence based on the variables ζ
(i)
{µ,(2,2)} and apply Azuma’s inequality, we arrive

at the estimation result that given the failure probability

ε{µ,(2,2)} = exp

[
−
2δ{µ,(2,2)}

2

N

]
, (C31)

we have

Pr

{
N∑
i=1

ζ
(i)
{µ,(2,2)} −

N∑
i=1

E[ζ(i){µ,(2,2)}|Fi−1] ≥ δ{µ,(2,2)}

}
≤ ε{µ,(2,2)},

Pr

{
N∑
i=1

ζ
(i)
{µ,(2,2)} −

N∑
i=1

E[ζ(i){µ,(2,2)}|Fi−1] ≤ −δ{µ,(2,2)}

}
≤ ε{µ,(2,2)}.

(C32)

Then, except for a negligible failure probability, we have the upper and lower bounds on Q2,2,

1

Nzz
µ

{
N∑
i=1

E[ζ(i){µ,(2,2)}|Fi−1]−O(
√

−N ln ε{µ,(2,2)})

}
≤ Q2,2 ≤ 1

Nzz
µ

{
N∑
i=1

E[ζ(i){µ,(2,2)}|Fi−1] +O(
√

−N ln ε{µ,(2,2)})

}
.

(C33)
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To estimate the sum of expected values
∑N

i=1 E[ζ
(i)
{µ,(2,2)}|Fi−1], on the source side, we apply the decoy state method.

This part is similar to the single-photon case, where we simply need to use the data where Alice chooses the Z-basis.
By running the linear programming, we shall have a result in the form of

E
[
ζ
(i)
{µ,(2,2)}|Fi−1

]
≤ pµpzzPrµ(2)

(∑
µa

dU{µa,(2,2)}

{
1

2
(c+2 + c−2 )Tr

{
NE [TrA′(ρ̂Zµa

)] |02⟩B1B2
⟨02|

}
+

1

2
(c+2 − c−2 )Tr

{
NE [TrA′(ρ̂Zµa

)] |02⟩B1B2
⟨20|

}
+

1

2
(c+2 − c−2 )Tr

{
NE [TrA′(ρ̂Zµa

)] |20⟩B1B2
⟨02|

}
+

1

2
(c+2 + c−2 )Tr

{
NE [TrA′(ρ̂Zµa

)] |20⟩B1B2
⟨20|

}
+ c112 Tr

{
NE [TrA′(ρ̂Zµa

)] |11⟩B1B2
⟨11|

}}
+ cUQ2,2

)
,

(C34)

E
[
ζ
(i)
{µ,(2,2)}|Fi−1

]
≥ pµpzzPrµ(2)

(∑
µa

dL{µa,(2,2)}

{
1

2
(c+2 + c−2 )Tr

{
NE [TrA′(ρ̂Zµa

)] |02⟩B1B2
⟨02|

}
+

1

2
(c+2 − c−2 )Tr

{
NE [TrA′(ρ̂Zµa

)] |02⟩B1B2
⟨20|

}
+

1

2
(c+2 − c−2 )Tr

{
NE [TrA′(ρ̂Zµa

)] |20⟩B1B2
⟨02|

}
+

1

2
(c+2 + c−2 )Tr

{
NE [TrA′(ρ̂Zµa

)] |20⟩B1B2
⟨20|

}
+ c112 Tr

{
NE [TrA′(ρ̂Zµa

)] |11⟩B1B2
⟨11|

}}
+ cLQ2,2

)
.

(C35)

On the detection side, nonetheless, more terms are involved. With respect to Eq. (C30), besides the Hermitian
operators |n0n1⟩B1B2

⟨n0n1| with |n0n1⟩ = |02⟩ , |20⟩ , |11⟩, we also need to use homodyne tomography to estimate the

terms with |n0n1⟩B1B2
⟨n′

0n
′
1|, namely the terms involving |20⟩ ⟨02| and |02⟩ ⟨20|. Note that though these operators

are not directly measurable, homodyne tomography allows us to link the physically measured statistics, q⃗ and φ⃗b,
with them through the kernel function. The expressions of the kernel functions can be obtained through Eq. (B7)
and (B9). Consider the following random variables for the i’th round in the experiment,

ζ
(i)
{µa,Z,|n0n1⟩⟨n′

0n
′
1|}

=

Rη[|n0n1⟩ ⟨n′0n′1|](q⃗, φ⃗b), if µ
(i)
a = µa ∧ ZX ∧ (q

(i)
1 , q

(i)
2 ) = q⃗, (φ

1(i)
b , φ

2(i)
b ) = φ⃗b,

0, otherwise,
(C36)

which relate to the parameter estimation measurements when the light intensity is µa and Alice chooses the Z-basis.

For simplicity, we write ζ
(i)
{µa,Z,|n0n1⟩} when n0 = n′0, n1 = n′1, as in the case of the single-photon term estimation.

According to homodyne tomography, we have

E[ζ(i){µa,Z,|n0n1⟩⟨n′
0n

′
1|}

|Fi−1] = pµa
pzxTr

{
NE

[
TrA′(|Ψ1⟩A′A1A2

⟨Ψ1|)
]
(|n0n1⟩B1B2

⟨n′0n′1|)
}
, (C37)

and

N∑
i=1

ζ
(i)
{µa,Z,|n0n1⟩⟨n′

0n
′
1|}

=
∑

i:µ
(i)
a =µa,ZX

Rη[|n0n1⟩ ⟨n′0n′1|](q⃗(i), φ⃗
(i)
b ), (C38)

where the summation of the right-hand side is taken over the rounds with light intensity µa and basis choices of Alice

choosing the Z-basis and Bob choosing the X-basis, and q⃗(i), φ⃗
(i)
b represent the observed quadrature measurement

statistics in the i’th round. By constructing relative martingale sequences and applying Azuma’s inequality, we can

link the observed statistics, ζ
(i)
{µa,Z,|n0n1⟩⟨n′

0n
′
1|}

, with their expected values. Given the estimation failure probability

ε{µa,Z,|n0n1⟩⟨n′
0n

′
1|} = 2e2 exp

[
−

2δ{µa,Z,|n0n1⟩⟨n′
0n

′
1|}

2

Nc{µa,Z,|n0n1⟩⟨n′
0n

′
1|}

2

]
, (C39)
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where c{µa,Z,|n0n1⟩⟨n′
0n

′
1|} := 2max |Rη[|n0n1⟩ ⟨n′0n′1|](q⃗, φ⃗b)| is a bounded value for η > 1/2, we have

Pr

{∣∣∣∣ N∑
i=1

ζ
(i)
{µa,Z,|n0n1⟩⟨n′

0n
′
1|}

−
N∑
i=1

E[ζ(i){µa,Z,|n0n1⟩⟨n′
0n

′
1|}

|Fi−1]

∣∣∣∣ ≥ δ{µa,Z,|n0n1⟩⟨n′
0n

′
1|}

}
≤ε{µa,Z,|n0n1⟩⟨n′

0n
′
1|}. (C40)

Combining all these results, we arrive at the final result: except for a given failure probability

εQ2,2
= ε{µ,(2,2)} +

∑
µa

(
ε{µa,Z,|02⟩} + ε{µa,Z,|02⟩⟨20|} + ε{µa,Z,|20⟩⟨02|} + ε{µa,Z,|20⟩} + ε{µa,Z,|11⟩}

)
, (C41)

Q2,2 ≤QU
2,2

=
pµpzzPrµ(2)

Nzz
µ

[∑
µa

dU{µa,(2,2)}

pµa
pzx

{
1

2
(c+2 + c−2 )

∑
i:µ

(i)
a =µa,ZX

Rη[|02⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +O

(√
−N ln ε{µa,Z,|02⟩}

)
+

1

2
(c+2 − c−2 )

∑
i:µ

(i)
a =µa,ZX

Rη[|02⟩ ⟨20|](q⃗(i), φ⃗(i)
b ) +O

(√
−N ln ε{µa,Z,|02⟩⟨20|}

)
+

1

2
(c+2 − c−2 )

∑
i:µ

(i)
a =µa,ZX

Rη[|20⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +O

(√
−N ln ε{µa,Z,|20⟩⟨02|}

)
+

1

2
(c+2 + c−2 )

∑
i:µ

(i)
a =µa,ZX

Rη[|20⟩ ⟨20|](q⃗(i), φ⃗(i)
b ) +O

(√
−N ln ε{µa,Z,|20⟩}

)

+ c112
∑

i:µ
(i)
a =µa,ZX

Rη[|11⟩ ⟨11|](q⃗(i), φ⃗(i)
b ) +O

(√
−N ln ε{µa,Z,|11⟩}

)}
+NcUQ2,2

+O
(√

−N ln ε{µ,(2,2)}

)]
,

(C42)

Q2,2 ≥QL
2,2

=
pµpzzPrµ(2)

Nzz
µ

[∑
µa

dL{µa,(2,2)}

pµa
pzx

{
1

2
(c+2 + c−2 )

∑
i:µ

(i)
a =µa,ZX

Rη[|02⟩ ⟨02|](q⃗(i), φ⃗(i)
b )−O

(√
−N ln ε{µa,Z,|02⟩}

)
+

1

2
(c+2 − c−2 )

∑
i:µ

(i)
a =µa,ZX

Rη[|02⟩ ⟨20|](q⃗(i), φ⃗(i)
b )−O

(√
−N ln ε{µa,Z,|02⟩⟨20|}

)
+

1

2
(c+2 − c−2 )

∑
i:µ

(i)
a =µa,ZX

Rη[|20⟩ ⟨02|](q⃗(i), φ⃗(i)
b )−O

(√
−N ln ε{µa,Z,|20⟩⟨02|}

)
+

1

2
(c+2 + c−2 )

∑
i:µ

(i)
a =µa,ZX

Rη[|20⟩ ⟨20|](q⃗(i), φ⃗(i)
b )−O

(√
−N ln ε{µa,Z,|20⟩}

)

+ c112
∑

i:µ
(i)
a =µa,ZX

Rη[|11⟩ ⟨11|](q⃗(i), φ⃗(i)
b )−O

(√
−N ln ε{µa,Z,|11⟩}

)}
+NcLQ2,2

−O
(√

−N ln ε{µ,(2,2)}

)]
.

(C43)

3. Estimation of Q∗,0

In comparison with other terms, the estimation of Q∗,0 is simple, as we do not need to apply the decoy state method.
Corresponding to Eq. (27), construct the counter variable in the i’th round,

ζ
(i)
{µ,(∗,0)} =

 1, if µ
(i)
a = µ ∧ ZZ ∧m(i) = 0 ∧ (q

(i)
1 , q

(i)
2 ) ∈ R0 ∪R1 ,

0, otherwise.
(C44)
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which adds one in the virtual experiment when the light intensity is µ, both Alice and Bob choose the Z-basis, and
Bob receives a vacuum state and accepts the signal in the post-selection. We have

N∑
i=1

ζ
(i)
{µ,(∗,0)} = Nzz

µ Q∗,0, (C45)

and conditioned on the history before the i’th round, Fi−1, the expected value of ζ
(i)
{µ,(∗,0)} is given by

E
[
ζ
(i)
{µ,(∗,0)}|Fi−1

]
= pµpzz

∫
R0

2ψ2
0(q1)ψ

2
0(q2)dq1dq2Tr

[
P̂0NE

(
ρ̂Z
)
P̂0

]
, (C46)

where pµ is the probability that the light intensity is µ, and pzz is the probability that both users choose the Z-basis.

By constructing a martingale sequence based on the variables ζ
(i)
{µ,(∗,0)} and applying Azuma’s inequality, we arrive at

the estimation result that given the failure probability

ε{µ,(∗,0)} = exp

[
−
2δ{µ,(∗,0)}

2

N

]
, (C47)

we have

Pr

{
N∑
i=1

ζ
(i)
{µ,(∗,0)} −

N∑
i=1

E[ζ(i){µ,(∗,0)}|Fi−1] ≤ −δ{µ,(∗,0)}

}
≤ ε{µ,(∗,0)}. (C48)

Then, except for a negligible failure probability, we have the lower bound on Q∗,0,

Q∗,0 ≥ QL
∗,0 :=

1

Nzz
µ

{
N∑
i=1

E[ζ(i){µ,(∗,0)}|Fi−1]−O(
√
−N ln ε{µ,(∗,0)})

}
. (C49)

On the detection side, consider the following random variables for the i’th round in the experiment,

ζ
(i)
{µ,Z,|00⟩} =

Rη[|00⟩ ⟨00|](q⃗, φ⃗b), if µ
(i)
a = µ ∧ ZX ∧ (q

(i)
1 , q

(i)
2 ) = q⃗, (φ

1(i)
b , φ

2(i)
b ) = φ⃗b,

0, otherwise,
(C50)

which relate to the parameter estimation measurements when the light intensity is µ and Alice chooses the Z-basis.

By constructing martingale sequences and applying Azuma’s inequality, we can link the observed statistics, ζ
(i)
{µ,Z,|00⟩},

with their expected values. Given the estimation failure probability

ε{µ,Z,|00⟩} = 2e2 exp

[
−

2δ{µ,Z,|00⟩}
2

Nc{µ,Z,|00⟩}2

]
, (C51)

where c{µ,Z,|00⟩} := 2max |Rη[|00⟩ ⟨00|](q⃗, φ⃗b)| is a bounded value for η > 1/2, we have

Pr

{∣∣∣∣ N∑
i=1

ζ
(i)
{µ,Z,|00⟩} −

N∑
i=1

E[ζ(i){µ,Z,|00⟩}|Fi−1]

∣∣∣∣ ≥ δ{µ,Z,|00⟩}

}
≤ε{µ,Z,|00⟩}. (C52)

Combining all these results, we arrive at the final result: except for a given failure probability

εQ∗,0 = ε{µ,(∗,0)} + ε{µ,Z,|00⟩}, (C53)

Q∗,0 ≥QL
∗,0

:=
pzz

pzxNzz
µ

∫
R0

2ψ2
0(q1)ψ

2
0(q2)dq1dq2

[ ∑
i:µ

(i)
a =µa,ZX

Rη[|00⟩ ⟨00|](q⃗(i), φ⃗(i)
b )

−O
(√

−N ln ε{µa,Z,|00⟩}

)
−O

(√
−N ln ε{µ,(∗,0)}

)]
.

(C54)
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4. Estimation of eX1,1

In this section, we discuss the estimation of eX1,1 based on the single-round result in Eq. (21). While conceptually
similar to the estimation of the gains, there are two additional issues that make its estimation more involved:

1. We shall first estimate lower and upper bounds on the value Nzz
µ Q1,1e

X
1,1, the total number of phase errors in

the virtual protocol. Afterward, combined with the estimation of Q1,1 in Appendix C 1, we obtain estimations
of eX1,1, the phase error rate in key generation rounds where the signal is accepted by Bob.

2. On the source side, to evaluate the terms |Ψ±
1 ⟩, we need to apply the extended decoy method given in Eq. (31).

This involves the rounds where Alice chooses the X-basis.

For simplicity, we shall simply list the counter variables and their estimation results. The relevant martingale
variables are constructed similarly to the above sections, which are also conditioned on the filtration {Fi}i. First,
construct the counter variable in the i’th round for the phase error variable,

ζ
(i)

{eX1,1}
=

 1, if µ
(i)
a = µ ∧ ZZ ∧ n(i) = 2 ∧m(i) = 2 ∧ (q

(i)
1 , q

(i)
2 ) ∈ R0 ∪R1∧ a phase error occurs ,

0, otherwise.
(C55)

which adds one in the virtual experiment when the light intensity is µ, both Alice and Bob choose the Z-basis, Alice
sends a single-photon state, Bob receives a single-photon state and accepts the signal in the post-selection, and a
phase error occurs. We have

N∑
i=1

ζ
(i)

{eX1,1}
= Nzz

µ Q1,1e
X
1,1, (C56)

and conditioned on the history before the i’th round, Fi−1, the expected value of ζ
(i)

{eX1,1}
is given by

E
[
ζ
(i)

{eX1,1}
|Fi−1

]
=

1

2
pµpzzc1Pr(1)

{
Tr

[
NE(|Ψ+

1 ⟩A1A2
⟨Ψ+

1 |)
1

2
(|01⟩B1B2

− |10⟩B1B2
)(⟨01|B1B2

− ⟨10|B1B2
)

]
+Tr

[
NE(|Ψ−

1 ⟩A1A2
⟨Ψ−

1 |)
1

2
(|01⟩B1B2

+ |10⟩B1B2
)(⟨01|B1B2

+ ⟨10|B1B2
)

]}
.

(C57)

Except a given failure probability ε{eX1,1}, we have upper and lower bounds on Q1,1e
X
1,1,

1

Nzz
µ

{
N∑
i=1

E[ζ(i){eX1,1}
|Fi−1]−O(

√
−N ln ε{eX1,1})

}
≤ Q1,1e

X
1,1 ≤ 1

Nzz
µ

{
N∑
i=1

E[ζ(i){eX1,1}
|Fi−1] +O(

√
−N ln ε{eX1,1})

}
.

(C58)

On the source side, we apply the decoy state method given in Eq. (31), where we need to use the data where Alice
chooses the X-basis with relative phase 0 and π between the two modes,

E
[
ζ
(i)

{eX1,1}
|Fi−1

]
=
1

2
pµpzzc1Pr(1)

{
Tr

[
NE(|Ψ+

1 ⟩A1A2
⟨Ψ+

1 |)
1

2
(|01⟩B1B2

− |10⟩B1B2
)(⟨01|B1B2

− ⟨10|B1B2
)

]
+Tr

[
NE(|Ψ−

1 ⟩A1A2
⟨Ψ−

1 |)
1

2
(|01⟩B1B2

+ |10⟩B1B2
)(⟨01|B1B2

+ ⟨10|B1B2
)

]}
=
1

2
pµpzzc1

{
Tr

[
NE [P̂1ρ̂

0
µP̂1]

1

2
(|01⟩B1B2

− |10⟩B1B2
)(⟨01|B1B2

− ⟨10|B1B2
)

]
+Tr

[
NE [P̂1ρ̂

π
µP̂1]

1

2
(|01⟩B1B2

+ |10⟩B1B2
)(⟨01|B1B2

+ ⟨10|B1B2
)

]}
,

(C59)
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which has the upper and lower bounds of

E
[
ζ
(i)

{eX1,1}
|Fi−1

]
≤1

2
pµpzzPr(1)

(
c1
∑
µa

{
dφ=0,U
{µa,(1,1)}Tr

[
NE(ρ̂

0
µa
)
1

2
(|01⟩B1B2

− |10⟩B1B2
)(⟨01|B1B2

− ⟨10|B1B2
)

]

+ dφ=π,U
{µa,(1,1)}Tr

[
NE(ρ̂

π
µa
)
1

2
(|01⟩B1B2

+ |10⟩B1B2
)(⟨01|B1B2

+ ⟨10|B1B2
)

]}
+ cφ=0,U

(1,1) + cφ=π,U
(1,1)

)
,

E
[
ζ
(i)

{eX1,1}
|Fi−1

]
≥1

2
pµpzzPr(1)

(
c1
∑
µa

{
dφ=0,L
{µa,(1,1)}Tr

[
NE(ρ̂

0
µa
)
1

2
(|01⟩B1B2

− |10⟩B1B2
)(⟨01|B1B2

− ⟨10|B1B2
)

]

+ dφ=π,L
{µa,(1,1)}Tr

[
NE(ρ̂

π
µa
)
1

2
(|01⟩B1B2

+ |10⟩B1B2
)(⟨01|B1B2

+ ⟨10|B1B2
)

]}
+ cφ=0,L

(1,1) + cφ=π,L
(1,1)

)
.

(C60)

To deal with the Fock-basis terms, we utilize the homodyne tomography results, where we construct martingales
based on the counter variables

ζ
(i)
{µa,φ,|n0n1⟩⟨n′

0n
′
1|}

=

Rη[|n0n1⟩ ⟨n′0n′1|](q⃗, φ⃗b), if µ
(i)
a = µa ∧XX ∧ φa = φ ∧ (q

(i)
1 , q

(i)
2 ) = q⃗, (φ

1(i)
b , φ

2(i)
b ) = φ⃗b,

0, otherwise,
(C61)

which relate to the parameter estimation measurements when the light intensity is µa and Alice chooses the X-basis.
According to homodyne tomography, we have

E[ζ(i){µa,φ,|n0n1⟩⟨n′
0n

′
1|}

|Fi−1] = pµa
pxxTr

{
NE

[
ρ̂φµa

]
(|n0n1⟩B1B2

⟨n′0n′1|)
}
, (C62)

and

N∑
i=1

ζ
(i)
{µa,φ,|n0n1⟩⟨n′

0n
′
1|}

=
∑

i:µ
(i)
a =µa,XX,φa=φ

Rη[|n0n1⟩ ⟨n′0n′1|](q⃗(i), φ⃗
(i)
b ), (C63)

where the summation of the right-hand side is taken over the rounds with light intensity µa, Alice choosing the

X-basis with relative phase φa = φ, and Bob choosing the X-basis, and q⃗(i), φ⃗
(i)
b represent the observed quadrature

measurement statistics in the i’th round. When homodyne detectors have an efficiency η > 1/2, except a given
estimation failure probability ε := ε{µa,φ,|n0n1⟩⟨n′

0n
′
1|}, we have

∣∣∣∣∣ ∑
i:µ

(i)
a =µa,XX,φa=φ

Rη[|n0n1⟩ ⟨n′0n′1|](q⃗(i), φ⃗
(i)
b )−

N∑
i=1

E[ζ(i){µa,φ,|n0n1⟩⟨n′
0n

′
1|}

|Fi−1]

∣∣∣∣∣ ≤ O(
√
−N ln ε). (C64)

Combining all the above results, except for a given failure probability, we have the upper bound on the phase error
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rate,

Q1,1e
X
1,1 ≤EX

1,1

:=
pµpzzPr(1)

Nzz
µ

(
1

4
c1

{∑
µa

1

pµapxx

×

[
dφ=0,U
{µa,(1,1)}

( ∑
i:µ(i)

a =µa,
XX,φa=0

Rη[|01⟩ ⟨01|](q⃗(i), φ⃗(i)
b )−

∑
i:µ(i)

a =µa,
XX,φa=0

Rη[|01⟩ ⟨10|](q⃗(i), φ⃗(i)
b )

−
∑

i:µ(i)
a =µa,

XX,φa=0

Rη[|10⟩ ⟨01|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
XX,φa=0

Rη[|10⟩ ⟨10|](q⃗(i), φ⃗(i)
b ) +O(

√
N)

)

+ dφ=π,U
{µa,(1,1)}

( ∑
i:µ(i)

a =µa,
XX,φa=π

Rη[|01⟩ ⟨01|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
XX,φa=π

Rη[|01⟩ ⟨10|](q⃗(i), φ⃗(i)
b )

+
∑

i:µ(i)
a =µa,

XX,φa=π

Rη[|10⟩ ⟨01|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
XX,φa=π

Rη[|10⟩ ⟨10|](q⃗(i), φ⃗(i)
b ) +O(

√
N)

)]}

+Ncφ=0,U
(1,1) +Ncφ=π,U

(1,1) +O(
√
N)

)
.

(C65)

For simplicity and better readability, we omit the failure probabilities in the expressions. Note that each big-O term
corresponds to uses of Azuma’s inequality. Finally, eX1,1 can be upper bounded by

eX1,1 ≤ eX,U
1,1 :=

EX
1,1

QL
1,1

, (C66)

where QL
1,1 is given by Eq. (C27).

5. Estimation of eX2,2

The estimation of eX2,2 follows the same procedures as the above quantities. This involves all the cumbersome issues,
including both the rounds where Alice chooses the Z-basis and the X-basis, the use of extended decoy state, and the
homodyne tomography for non-Hermitian operators. Nevertheless, we have shown how to tackle each issue in the
above discussions. Here, we simply present the final result. Except for a given failure probability, we have that

Q2,2e
X
2,2 ≤ EX

2,2 :=
pµpzzPrµ(2)

NZZ
µ

[N1 +N2 +N3 +O(
√
N)], (C67)
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where the big-O term here corresponds to a use of Azuma’s inequality, N1, N2, N3 refer to the upper bounds on the
numbers of three types of errors: |Ψ+

2 ⟩ received as |Ψ−
2 ⟩, |Ψ

−
2 ⟩ received as |Ψ+

2 ⟩, and |Ψ−
2 ⟩ received as |11⟩, with values

N1 =
c−2
2

∑
µa

1

pµa

{
1

2pxx

[
dφ=0,U

{µa,|Ψ−
2 ⟩}

( ∑
i:µ(i)

a =µa,
XX,φa=0

Rη[|02⟩ ⟨02|](q⃗(i), φ⃗(i)
b )−

∑
i:µ(i)

a =µa,
XX,φa=0

Rη[|02⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

−
∑

i:µ(i)
a =µa,

XX,φa=0

Rη[|20⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
XX,φa=0

Rη[|20⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

)

+dφ=π,U

{µa,|Ψ−
2 ⟩}

( ∑
i:µ(i)

a =µa,
XX,φa=π

Rη[|02⟩ ⟨02|](q⃗(i), φ⃗(i)
b )−

∑
i:µ(i)

a =µa,
XX,φa=π

Rη[|02⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

−
∑

i:µ(i)
a =µa,

XX,φa=π

Rη[|20⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
XX,φa=π

Rη[|20⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

)

−dφ=π/2,L

{µa,|Ψ−
2 ⟩}

( ∑
i:µ(i)

a =µa,
XX,φa=π/2

Rη[|02⟩ ⟨02|](q⃗(i), φ⃗(i)
b )−

∑
i:µ(i)

a =µa,
XX,φa=π/2

Rη[|02⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

−
∑

i:µ(i)
a =µa,

XX,φa=π/2

Rη[|20⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
XX,φa=π/2

Rη[|20⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

)

−dφ=3π/2,L

{µa,|Ψ−
2 ⟩}

( ∑
i:µ(i)

a =µa,
XX,φa=3π/2

Rη[|02⟩ ⟨02|](q⃗(i), φ⃗(i)
b )−

∑
i:µ(i)

a =µa,
XX,φa=3π/2

Rη[|02⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

−
∑

i:µ(i)
a =µa,

XX,φa=3π/2

Rη[|20⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
XX,φa=3π/2

Rη[|20⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

)]

+
1

pzx
dZ,U

{µa,|Ψ−
2 ⟩}

( ∑
i:µ(i)

a =µa,
ZX

Rη[|02⟩ ⟨02|](q⃗(i), φ⃗(i)
b )−

∑
i:µ(i)

a =µa,
ZX

Rη[|02⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

−
∑

i:µ(i)
a =µa,
ZX

Rη[|20⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
ZX

Rη[|20⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

)

+Ncφ=0,U

|Ψ−
2 ⟩ +Ncφ=π,U

|Ψ−
2 ⟩ +Nc

φ=π/2,U

|Ψ−
2 ⟩ +Nc

φ=3π/2,U

|Ψ−
2 ⟩ +NcZ,U

|Ψ−
2 ⟩ +O(

√
N)

}
,

(C68)
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N2 =
c+2
2

∑
µa

1

pµa

{
1

2pxx

[
− dφ=0,L

{µa,|Ψ+
2 ⟩}

( ∑
i:µ(i)

a =µa,
XX,φa=0

Rη[|02⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
XX,φa=0

Rη[|02⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

+
∑

i:µ(i)
a =µa,

XX,φa=0

Rη[|20⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
XX,φa=0

Rη[|20⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

)

−dφ=π,L

{µa,|Ψ+
2 ⟩}

( ∑
i:µ(i)

a =µa,
XX,φa=π

Rη[|02⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
XX,φa=π

Rη[|02⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

+
∑

i:µ(i)
a =µa,

XX,φa=π

Rη[|20⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
XX,φa=π

Rη[|20⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

)

+d
φ=π/2,U

{µa,|Ψ+
2 ⟩}

( ∑
i:µ(i)

a =µa,
XX,φa=π/2

Rη[|02⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
XX,φa=π/2

Rη[|02⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

+
∑

i:µ(i)
a =µa,

XX,φa=π/2

Rη[|20⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
XX,φa=π/2

Rη[|20⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

)

+d
φ=3π/2,U

{µa,|Ψ+
2 ⟩}

( ∑
i:µ(i)

a =µa,
XX,φa=3π/2

Rη[|02⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
XX,φa=3π/2

Rη[|02⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

+
∑

i:µ(i)
a =µa,

XX,φa=3π/2

Rη[|20⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
XX,φa=3π/2

Rη[|20⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

)]

+
1

pzx
dZ,U

{µa,|Ψ+
2 ⟩}

( ∑
i:µ(i)

a =µa,
ZX

Rη[|02⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
ZX

Rη[|02⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

+
∑

i:µ(i)
a =µa,
ZX

Rη[|20⟩ ⟨02|](q⃗(i), φ⃗(i)
b ) +

∑
i:µ(i)

a =µa,
ZX

Rη[|20⟩ ⟨20|](q⃗(i), φ⃗(i)
b )

)

+Ncφ=0,U

|Ψ+
2 ⟩ +Ncφ=π,U

|Ψ+
2 ⟩ +Nc

φ=π/2,U

|Ψ+
2 ⟩ +Nc

φ=3π/2,U

|Ψ+
2 ⟩ +NcZ,U

|Ψ+
2 ⟩ +O(

√
N)

}
,

(C69)

N3 =c112
∑
µa

1

pµa

{
1

2pxx

[
− dφ=0,L

{µa,|11⟩}

∑
i:µ(i)

a =µa,
XX,φa=0

Rη[|11⟩ ⟨11|](q⃗(i), φ⃗(i)
b )− dφ=π,L

{µa,|11⟩}

∑
i:µ(i)

a =µa,
XX,φa=π

Rη[|11⟩ ⟨11|](q⃗(i), φ⃗(i)
b )

+ d
φ=π/2,U
{µa,|11⟩}

∑
i:µ(i)

a =µa,
XX,φa=π/2

Rη[|11⟩ ⟨11|](q⃗(i), φ⃗(i)
b ) + d

φ=3π/2,U
{µa,|11⟩}

∑
i:µ(i)

a =µa,
XX,φa=3π/2

Rη[|11⟩ ⟨11|](q⃗(i), φ⃗(i)
b )

]

+
1

pzx
dZ,U
{µa,|11⟩}

∑
i:µ(i)

a =µa,
ZX

Rη[|11⟩ ⟨11|](q⃗(i), φ⃗(i)
b ) +Ncφ=0,U

|11⟩ +Ncφ=π,U
|11⟩ +Nc

φ=π/2,U
|11⟩ +Nc

φ=3π/2,U
|11⟩ +NcZ,U

|11⟩ +O(
√
N)

}
.
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In the above formulae, dφ=0,U

µa,|Ψ−
2 ⟩, for instance, refers to the coefficient of the upper-bound decoy-state terms for the

case where the light intensity is µa, the relative phase between the modes sent by Alice is φ = 0, and the phase error
belongs to the case that |Ψ+

2 ⟩ is measured as |Ψ−
2 ⟩. The other terms follow the same terminology rule. The big-O

terms come from applications of Azuma’s inequality. Finally, eX2,2 can be upper bounded by

eX2,2 ≤ eX,U
2,2 :=

EX
2,2

QL
2,2

, (C71)

where QL
2,2 is given by Eq. (C43).

6. Summary of the finite-size analysis

To summarize, we list the counter variables to establish martingales in parameter estimation in Fig. 8. The general
approach goes as follows: In the i’th round, for a specific experimental setting and observable Ô, consider a counter

variable, ζ
(i)

{setting,Ô}
, which is in the form of Eq. (C7) and Eq. (C18). In the figure, we list the non-trivial values

that the counter variables may take in the (virtual) experiment. Each blue box represents the outcome of a random
variable, where randomness originates from either the random choice for the experimental setting or the measurement
outcome. The counter variable takes a non-trivial value if the experiment takes the path that leads to its associating
event. Otherwise, it takes the value 0. Then, for each setting and observable, the following series of random variables
form a martingale,

∆
(t)

{setting,Ô}
=

 0, if t = 0,∑t
i=1

{
ζ
(i)

{setting,Ô}
− E

[
ζ
(i)

{setting,Ô}
|Fi−1

]}
, if t = 1, · · · , N .

(C72)

As we embed all possible randomness origins in the experiment in defining these observables, all the counter variables

in the i’th round, ζ
(i)

{setting,Ô}
, are defined over the same filtration. Therefore, we can link their expected values via the

single-round analysis and hence the parameter estimation measurement statistics with the quantities we are interested
in.

FIG. 8: The counter variables to set up martingales in parameter estimation. For each experimental setting and
observable that is involved in parameter estimation, we set up a corresponding counter random variable in each

round, ζ
(i)

{setting,Ô}
. We list the values that should be given to these random variables when an associating path is

taken in the experiment. In other circumstances, the counter variables take the value 0.

To end this section, we give a formal theorem of the finite-size key generation result.
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Theorem 5. For the time-bin CV QKD protocol in Table III with reverse reconciliation, suppose the total number of
rounds is N and the number of key generation rounds is Nzz

µ . Given the failure probability in parameter estimation

εpe ∈ (0, 1), which involves the estimation of the gains Q1,1, Q2,2, Q∗,0 and phase-error rates eX1,1, e
X
2,2, and the failure

probability in privacy amplification εpa ∈ (0, 1), then conditioned on the success of information reconciliation, except
a total failure probability ε = εpe + εpa, the number of secure key bits that can be obtained from the protocol is
lower-bounded by

n ≥ nrev = Nzz
µ

{
QL

∗,0 +QL
1,1

[
1− h

(
eX,U
1,1

)]
+QL

2,2

[
1− h

(
eX,U
2,2

)]
− fQZh(eZ)

}
− log

1

εpa
, (C73)

where QZ is the Z-basis gain, eZ is the bit error rate, f is the efficiency of information reconciliation, QL
∗,0 is the

lower bound on Q∗,0 given in Eq. (C49), QL
1,1 and QU

1,1 are the lower and upper bounds on Q1,1 given in Eq. (C27)

and (C26), QL
2,2 and QU

2,2 are the lower and upper bounds on Q2,2 given in Eq. (C43) and (C42), eX,U
1,1 is the upper

bound on eX1,1 given in Eq. (C66), and eX,U
2,2 is the upper bound on eX2,2 given in Eq. (C71).

Appendix D: Simulation formulae under thermal-noise channel

We present the simulation formulae of the asymptotic time-bin CV QKD under a thermal-noise channel with excess
noise ξ from the output. We set ℏ = 2 so that the vacuum variance is 1. A thermal noise channel is characterized as
a Gaussian completely positive map transforming the first and second moment (r̄, V ), representing the mean vector
and covariance matrix of the quadrature operators, of the input state as [33]:

r̄ 7→ √
ηr̄,

V 7→ ηV + (1− η)I+ ξI,
(D1)

where η is the channel transmittance. Two thermal channels with transmittance η and η′ and excess noise ξ and ξ′

concatenate to another thermal channel with transmittance ηη′ and excess noise (η′ξ + ξ′) since

r̄ 7→
√
η′ηr̄,

V 7→ η′(ηV + (1− η)I+ ξI) + (1− η′)I+ ξ′I
= η′ηV + (1− η′η)I+ (η′ξ + ξ′)I.

(D2)

On the bit-error side, the thermal noise can be seen as adding ξ to the unity variance of the coherent states. Hence,
if Alice transmits a coherent state |√µeiθ⟩ through a thermal-noise channel with transmittance η and excess noise ξ,
and Bob applies homodyne detection with LO phase φ, the detection result q will follow a distribution

Pr(q|µ, θ − φ) =
1√
2π

exp

{
−
[q − 2

√
ηµ cos(θ − φ)]2

2(1 + ξ)

}
. (D3)

Since both the signal states and the receiver LO are uniformly phase randomized, (θ−φ) is also uniformly randomized
with [0, 2π) in a cyclic manner. The bit error rate eZµ and the Z-basis gain QZ

µ can thus be calculated according to
the post-selection threshold τ , uniformly randomizing over [0, 2π).

The calculation of the vacuum gain Q∗,0, according to Eq. (27), requires the probability of sending the Z-basis
state whilst receiving vacuum. This can be calculated via the Wigner function for Gaussian state, and in specific

Tr
[
P̂B1B2
0 NA1A2→B1B2

E

(
ρ̂Z
)
P̂B1B2
0

]
=

(
2

2 + ξ

)2

exp

(
− 2ηµ

2 + ξ

)
. (D4)

The single- and two-photon gains, Q1,1 and Q2,2, and phase-error rates, eX1,1 and eX2,2, are more complicated in
calculation. In the infinite-decoy setup, we calculate the photon gains directly. We decompose the thermal noise ρ̂th
into Fock states,

ρ̂th =
∞∑
k=0

k̄k

(k̄ + 1)k+1
|k⟩ ⟨k| , (D5)

where k̄ = ξ/2(1 − η) is the average photon number of the thermal noise. The optical mode from Alice can be seen
as mixing with the thermal noise through an η-transmittance beam splitter. We calculate the effect of the thermal
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noise in an ensemble manner, that is, we calculate the case where the channel injects k and l noise photons to the
two consecutive optical modes respectively, and mix the results according to the noise photon-number distribution
in Eq. (D5). We set a cutoff photon-number at Nc = 3 since the thermal noise is relatively low. Simulation shows
that higher cutoffs have negligible effects on the key rate. We also account for the effects of the misalignment angle
δ, which introduces a sin2(mδ/2) error to the m-photon phase error rate. We ignore the correlation between the
misalignment and thermal noise photon as a second-order small quantity.

The calculations of the quantities of interest are listed below. The notation of (k, l) represents the conditional
probability that the thermal sources emit k and l photons respectively to the two optical modes:

1. The probability of sending (|01⟩ ⟨01|+ |01⟩ ⟨01|)/2 whilst accepting one photon in total (Eq. (23)):

Q1,1(k, l) = c1Pr(1)η
k+l−1

{
[(k + 1)η − k]2 + l(k + 1)(1− η)2

}
, (D6)

Q1,1 =

Nc∑
k=0,l=0

Pth(k)Pth(l)Q1,1(k, l), (D7)

where

Pth(k) =
k̄k

(k̄ + 1)k+1
with k̄ =

ξ

2(1− η)
. (D8)

2. The probability of sending (|01⟩ ± |10⟩)/
√
2 whilst receiving (|01⟩ ∓ |10⟩)/

√
2 (Eq. (21)):

eX1,1(k, l)Q1,1

Pr(1)
=
c1
4
ηk+l−1(1− η)2(k2 + l2 + k + l) + c1 sin

2

(
δ

2

)
, (D9)

eX1,1 =

Nc∑
k=0,l=0

Pth(k)Pth(l)e
X
1,1(k, l). (D10)

3. The probability of sending (|02⟩ ⟨02|+ |20⟩ ⟨20|)/2 whilst accepting within the (|02⟩ ⟨02|+ |20⟩ ⟨20|) and |11⟩ ⟨11|
subspace (Eq. (26)):

Q02
2,2(k, l) =

1

2
c022 Pr(2)ηk+l−2

{[
η2 − 2kη(1− η) +

1

2
k(k − 1)(1− η)2

]2
+

1

4
l2(l − 1)2(1− η)4

}
+ {k ↔ l}, (D11)

Q11
2,2(k, l) =

1

2
c112 Pr(2)ηk+l−2

[√
2(k + 1)lη(1− η)−

√
1

2
kl(k + 1)(1− η)2

]2
+ {k ↔ l}, (D12)

Q2,2 =

Nc∑
k=0,l=0

Pth(k)Pth(l)
[
Q02

2,2(k, l) +Q11
2,2(k, l)

]
, (D13)

where the expression {k ↔ l} denotes exchanging the k’s and l’s in the term ahead.

4. The probability of sending (|02⟩ ± |20⟩)/
√
2 whilst receiving (|02⟩ ∓ |20⟩)/

√
2 and |11⟩ (Eq. (24)).

e02,X2,2 (k, l)Q2,2

Pr(2)
=
c022
4
ηk+l−2

[
2(k − l)(1− η)η + (k2 − k − l2 − l)(1− η)2

]2
+ c022 sin2(δ), (D14)

e11,X2,2 (k, l)Q2,2

Pr(2)
= c112 η

k+l−2(1− η)2

{
l(k + 1)

[
η − 1

2
k(1− η)

]2
+ k(l + 1)

[
η − 1

2
l(1− η)

]2}
, (D15)

eX2,2Q2,2

Pr(2)
=

Nc∑
k=0,l=0

Pth(k)Pth(l)
[
e02,X2,2 (k, l) + e11,X2,2 (k, l)

]
. (D16)
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In the finite-decoy setup, the estimations of photon gains are derived from the statistics of coherent-state gains. We
need to calculate the probability of transmitting certain coherent states whilst receiving certain photon states. This
can be also be done by the Gaussian-state Wigner function. Let κ = 2/(2 + ξ). Denote the output of a thermal noise
channel when transmitting the coherent state |α⟩ as ρα. Its Fock-basis matrix elements are:

⟨0| ρα |0⟩ = κ exp(−κ|α|2), (D17)

⟨1| ρα |1⟩ = κ(κ2|α|2 + 1− κ) exp(−κ|α|2), (D18)

⟨0| ρα |1⟩ = −κ2α∗ exp(−κ|α|2), (D19)

⟨2| ρα |2⟩ = κ(
1

2
κ4|α|4 + 2(κ2 − κ3)|α|2 + (1− κ2)) exp(−κ|α|2), (D20)

⟨0| ρα |2⟩ = 1√
2
κ3(α∗)2 exp(−κ|α|2). (D21)

The statistics required by the decoy method are all based on the gains of separable coherent states. For example, the
probability of sending |α⟩ ⊗ |β⟩ whilst receiving (|02⟩+ |20⟩)/

√
2 can be computed by

1

2
(⟨02|+ ⟨20|)ρα ⊗ ρβ(|02⟩+ |20⟩)

=
1

2
(⟨0| ρα |0⟩ ⟨2| ρβ |2⟩+ ⟨2| ρα |2⟩ ⟨0| ρβ |0⟩+ ⟨0| ρα |2⟩ ⟨2| ρβ |0⟩+ ⟨2| ρα |0⟩ ⟨0| ρβ |2⟩) .

(D22)
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Abstract. We explore a hybrid QKD protocol that leverages advantages of discrete and continuous-
variable protocols to enhance the feasibility for near-term implementation of global quantum communica-
tions and compatibility with existing telecommunications architectures. Security proofs for hybrid protocols
inherit challenges associated with unbounded dimensions. We address these challenges by exploiting sym-
metry. Our approach enables truncation of the Hilbert space with precise control of the approximation
errors, leading to tight, semi-analytical expressions for the asymptotic key rate under collective attacks.
We explore the performance of our protocol under passive attacks, linear loss, and Gaussian noise.

Keywords: Hybrid quantum information theory, quantum key distribution, quantum networking.

Global quantum communications are in the vanguard of
early application of quantum technologies [1, 2]. A press-
ing challenge in transforming quantum cryptographic
protocols to implementation is the disparity between the-
ory and experiments. Closing this disparity in discrete-
variable (DV) and continuous-variable (CV) quantum key
distribution (QKD) has been the subject of significant
effort [3, 4]. A hybrid approach has recently emerged
as an exciting and promising solution towards practical
implementation [5, 6, 7]. The central motivation behind
hybrid protocols is to assimilate the best features of both
DV and CV protocols to generate mature security proofs,
simplify implementation, and improve compatibility with
existing telecommunication infrastructures.

An immediate difficulty in the maturity of hybrid pro-
tocols is that they inherit an infinite-dimensional Hilbert
space from CV protocols, which introduces technical
challenges for their security proofs. In this work, we ex-
plore the potential of single-photon-based hybrid QKD,
where information is encoded in discrete polarisation
variables and decoded continuously via heterodyne de-
tection. We provide the first rigorous security proof for
hybrid protocols within the collective attack framework
to establish a tight lower bound on the asymptotic key
rate, allowing for semi-analytical expressions. We con-
clude by assessing the practical implementation and de-
ployment of our hybrid protocol across large-scale quan-
tum networks. For complete details, see Ref. [8].

One of the central results in this work is our use of
state symmetries to establish novel invariant states that
are exploited in our security proof. In particular, the
symmetry we appeal to is the invariance of two-party
composite states under (U ⊗U∗) transformations, where
U belongs to the special unitary SU(2) Lie group that
physically represents a linear-optics passive unitary act-
ing on two polarisation modes. Crucially, the invariant
states we derive have a significantly reduced parameter-
isation, which provides a quadratic speedup in the nu-
merical calculation of the secret key rate [9, 10, 11] and
enables an truncation of the Hilbert space with precise
control of the approximation errors. The tightness of our

∗jsmdrsidhu@gmail.com
†cosmo.lupo@poliba.it

method enables higher key rates and increased robust-
ness to noise over previous security proofs. We quantify
this improvement within an experimentally feasible pa-
rameter space, providing insights into the current readi-
ness for implementation. Additionally, we compare the
performance of hybrid protocols with DV and CV proto-
cols to discuss their current viability for applications in
quantum networking, which remains an important open
question in the field. As such, this work is first to quan-
tify tradeoffs in the use of hybrid protocols that would
be instrumental in guiding future research into their use
for quantum networking.

To start, we provide an outline of the hybrid pro-
tocol. Two polarisation modes are used by the trans-
mitter (Alice) to encode quantum information. The re-
ceiver (Bob) uses an independent detection model to in-
fer the encoded bit value [5]. This detection model uses
a heterodyne measurement on the state to compare the
output with a given threshold value τ > 0. Thresh-
old measurements are described by the positive operator-
valued measure (POVM) elements MH = RH1 ⊗RV0 and
MV = RH0 ⊗RV1 , where

Ru0 =
1

π

∫
|β|2≤τ

d2β |β〉u〈β| =
∞∑
n=0

(1− λn) |n〉u〈n| ,

Ru1 =
1

π

∫
|β|2>τ

d2β |β〉u〈β| =
∞∑
n=0

λn |n〉u〈n| ,
(1)

with u ∈ {H,V }, λn = Γ[1 + n, τ ]/n! and Γ the incom-
plete gamma function. This inference is a key map that
identifies a horizontally (vertically) polarised photon fol-
lowing a successful detection associated to the measure-
ment outcome MH (MV ). Events corresponding to the
null outcome M0 = I −MH −MV are discarded and do
not contribute to key generation. Alice and Bob repeat
this procedure m times. The raw keys are post-processed
for parameter estimation, error correction, and privacy
amplification, in a manner equivalent to standard BB84.

We use the entanglement-based (EB) representation to
assess the security of our protocol, where Alice prepares
the entangled polarisation state

|φ〉AA′ = (|H〉A|H〉A′ + |V 〉A|V 〉A′)/
√

2 . (2)
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A noisy communication channel NA′→B maps this state
into ρAB = IA ⊗NA′→B(|φ〉AA′〈φ|) where IA is the iden-
tity channel acting on photon A. In the limit of m→∞,
the asymptotic secret key rate rate for collective attacks
is given by [9, 10, 11]

r = max
τ>0

min
ρAB∈S

D [G(ρAB)‖Z(G(ρAB))]−Qh2(E) , (3)

where D[·‖·] is the quantum relative entropy, G is a par-
tial isometry key map that gives a coherent representa-
tion of the measurement and decoding applied by the
receiver

G(ρAB) = (I ⊗K)ρAB(I ⊗K†) , (4)

with

K = |H〉B1
⊗

√
MH + |V 〉B1

⊗
√
MV , (5)

and where Z is a pinching map that induces complete
dephasing to the auxiliary system B1. The second term
in Eq. (3) accounts for the number of bits per photon
leaked during error correction and is determined through
the gain Q, which defines the probability that Bob ob-
tains a valid measurement output, and the qubit error
rate (QBER) E, with h2(x) the binary Shannon en-
tropy. Since the communication channel NA′→B is gen-
erally unknown, the asymptotic key rate is determined
from Eq. (3). The minimisation is constrained over the
set S of feasible states that are compatible with an ex-
perimental implementation. These constraints ensure:
(I) the reduced state of Alice photon remains maxi-
mally mixed, (II) the gain Bob estimates from exper-
imental data matches the trace of the state G(ρAB),
such that Q = Tr[(MH +MV )ρB ], (III) the experimen-
tally estimated error, c, matches the expectation value
Tr[(|H〉〈H|⊗MV + |V 〉〈V |⊗MH)ρAB ]/2, such that E =
2c/Q [12], and (IV) experimental estimates for the pho-
ton number distribution, Pj , of the unknown state ρAB
obtained by Bob via heterodyne detection [13] matches
Pj =

∑j
a=0 Tr[(|a〉H〈a|+ |j − a〉V 〈j − a|)ρB ] up to a cer-

tain photon number k. Constraints (II)-(IV) define an
experimentally feasible optimisation region. The key rate
in Eq. (3) is optimised over the detector threshold.

As a first example, we explore the performance of our
hybrid protocol over a pure loss channel. The communi-
cation channel NA′→B is a wiretap channel that induces
polarisation-independent loss with transmissivity factor
η ∈ [0, 1]. Since all qubits reaching Bob are secure, we
findQ = D[ρAB ] allowing a simple analytic expression for
the asymptotic secret key rate r = Q(1− h2(E)). From
this, we find that our hybrid protocol scales as O(η2)
in the limit of large communication distances (η � 1).
Most DV and CV protocols are characterised by a linear
scaling O(η). The worse scaling of hybrid protocols than
discrete-variable ones is due to decreasing gain with in-
creasing range, and is the penalty to pay for improved
compatibility with terrestrial networks. This work is the
first to quantify this tradeoff that would be instrumental
in guiding future research into the use of hybrid protocols
for quantum networking. We find the optimal value for
the detector threshold is τ ' 1.59 at large distances.

For communication channels beyond pure-loss, the key
rate must be evaluated numerically using Eq. (3) since

we no longer know ρAB . The security of our proto-
col becomes challenging on two accounts. First, since
the Hilbert space associated with the receiver is infinite-
dimensional, a cutoff into a finite-dimensional subspace
is required. Despite this, the joint state ρAB truncated
to k photons on Bob’s side, scales quadratically with k,
maintaining a significant bottleneck for efficient numeri-
cal optimisation. Second, such a truncation introduces a
cutoff error, which could impact the security of the keys.

We solve both challenges by exploiting symmetries to
make the protocol invariant under local linear-optics pas-
sive (LOP) transformations of the form (U ⊗U∗), where
U belongs to the SU(2) Lie group [14]. In the EB repre-
sentation, this invariance maps any joint state ρAB into
the invariant state,

ρ
(inv)
AB =

∫
dµU (U ⊗ U∗)ρAB(U ⊗ U∗)† , (6)

where dµU is the Haar measure on the group. Since
LOP unitaries are passive, our invariant states are block-
diagonal in the photon number basis. The invariant
states we derive have a significantly reduced parameteri-
sation from quadratic to linear in the cutoff photon num-
ber k. By symmetrising our hybrid protocol, we greatly
simplify the security analysis to provide an exact numeri-
cal optimisation with full control of the error due to finite-
dimensional cut-off, and semi-analytical expressions for
the key rate. Explicit expressions for the invariant states
associated with different photon number subspaces are
derived in our supporting technical manuscript in Ref. [8].

To take advantage of our invariant states, note that
Bob will observe a distribution of photon numbers after
a general attack. Since the invariant states are block-
diagonal in the number basis, we can write

ρ
(inv)
AB =

∞∑
j=0

Pjρ
(inv)
1:j ≥ P0ρ

(inv)
1:0 +

k∑
j=1

Pjρ
(inv)
1:j (fj) , (7)

where ρ
(inv)
1:j is an invariant state with one photon on Alice

side and j photons on Bob side, Pj is the probability of
having j, and k is the photon number cutoff. In our sup-
porting technical paper (Ref. [8]), we demonstrate that
for j = 0 the invariant state associated with the vac-
uum subspace is unique and for all j > 0 there exists a
one-parameter family of invariant states, ρ

(inv)
1:j (fj), with

fj ∈ [0, 1], which accounts for the second term within the
inequality in Eq. (7). Similarly, by linearity, constraints
(II)-(IV) generalise to a sum over each photon subspace.
Since G(ρ

(inv)
1:j ) and Z(G(ρ

(inv)
1:j )) have orthogonal support

for all j 6= j′, the relative entropy in Eq. (3) is the sum of
relative entropies evaluated on each photon subspace. By
using invariant states, the optimisation of the asymptotic
key rate in Eq. (3) for a cutoff photon number k is sup-
pressed from k2 parameters to k parameters fj ∈ [0, 1],
for j = 1, . . . , k, demonstrating a quadratic speedup.

Our key rate framework can be immediately used to
model any general communication channel N . We first
consider passive attacks, which preserve the number of
photons in the channel thereby limiting the minimisation
of the key rate to the vacuum and single-photon subspace
on Bob’s side ρ

(inv)
AB = (1− η)ρ

(inv)
1:0 + ηρ

(inv)
1:1 (f1), where η

is the channel transmissivity. We show it is possible to
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Figure 1: Protocol comparison: Asymptotic key rate vs
loss (dB) for our symmetrised hybrid protocol (solid lines)
and Ref. [5] (dotted lines), for different error probabilities,
Ed. Black line illustrates PLOB bound [15].

analytically solve the key rate optimisation in our tech-
nical manuscript, where we also derive a solution for f1
in terms of the two experimentally accessible parameters
Q and c. We also use the passive channel to compare
the performance of our symmetrised hybrid protocol with
the unsymmetrised variant in Ref. [5]. This comparison
is illustrated in Fig. 1 as a function of the detector mis-
alignment, quantified by the parameter Ed. The ideal
case of Ed = 0 reduces the key rate to that of passive
attacks and matches the result in Ref. [5]. For practical
scenarios with Ed > 0, our theory (solid lines) provides
higher rates than previous methods (dashed lines) and
can also tolerate higher channel losses.

Since electronic noise is a significant challenge for QKD
protocols based on coherent detection, we include its ef-
fects in a general communication channel to explore the
robustness of our hybrid protocol against noisy hetero-
dyne detection. We model electronic noise as a Gaussian
noise with zero mean and variance N , which transforms
each mode of the field according to map

ρ→
∫
d2α

πN
e−|α|

2/ND(α)ρD(α)† , (8)

where D(α) is the displacement operator. Note that
this map preserves (U ⊗ U∗) symmetry. The commu-
nication channel, NA′→B , we model from Alice to Bob is
a Gaussian channel that first applies a pure-loss channel
of transmissivity η, followed by mode-wise application of
the channel in Eq. (8).

The asymptotic key rate can then be lower bounded
with the number of bits per photon leaked for error cor-
rection given by Q(3)h2[2c(3)/Q(3)]. The rate must be de-
termined by choosing suitable bounds for both the gain
and error parameter, Q(3) and c(3) respectively that do
not impact the security. Since the error correction func-
tion monotonically increases with both parameters, an
upper bound on the number of bits per photon leaked
during error correction is obtained from upper bounds
on Q(3) and c(3). Suitable upper bounds are derived in
our technical paper. Note that in this example, the rate
is expected to be tight if the variance N of the Gaussian
noise is not too large, a condition that implies a small
value for the probability (1−

∑3
j=0 Pj).

The key rate is illustrated in Fig. 2. The hybrid pro-
tocol is sensitive to excess noise in the detector with
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Figure 2: Comparing with continuous-modulation:
Asymptotic key rates vs loss (dB) for our theory (solid lines)
and continuous-modulation CV QKD (dashed lines) for dif-
ferent excess noise, quantified through N .

N = 10−6 closely approximating the ideal scenario of
no electronic noise. Suppression of excess noise down to
the 10−4 regime in CV-QKD is possible through carrier
frequency switching [16]. In Fig. 2 we compare the per-
formance of our hybrid protocol with CV QKD. In par-
ticular, we used the reverse coherent information from
Ref. [17], which gives an upper bound on the key rate
achievable in CV QKD with heterodyne detection and
reverse reconciliation. For an excess noises of N = 10−4,
our scheme can tolerate losses up to ∼17 dB, correspond-
ing to an optical fibre transmission of 85 km. The proto-
col can therefore deliver high-rate QKD in terrestrial or
free-space quantum networks over metropolitan scales.

In conclusion, hybrid protocols combine the salient fea-
tures of DV and CV protocols to adopt mature security
proofs and improved compatibility with existing telecom-
munication infrastructures. Returning to the original
motivation of improving the implementation of QKD pro-
tocols, our symmetrised hybrid protocol achieves this in
a number of ways. First, in contrast to DV QKD, our
hybrid protocol allows for the use of faster receivers and
does not require sifting since a single decoding measure-
ment applies to both encoding bases. Second, in con-
trast to CV QKD, our hybrid protocol does not require
a shared local oscillator or a pilot tone. This signifi-
cantly reduces transmitter and receiver complexity and
the potential for side-channel attacks [18, 19]. Combined
with a key rate optimiser that is closely aligned to an ex-
perimental implementation, our work provides a feasible
route towards practical implementation of the protocol.

This work introduces several technical results. First,
we establish a rigorous security proof under collective at-
tacks to yield a tight lower bound on the asymptotic key
rate for single-photon-based hybrid QKD. Second, we in-
troduce a method to derive invariant states by exploiting
state symmetries allowing for a quadratic speed-up in
the numerical rate optimisation and providing a general
utility. We explore the performance of our hybrid pro-
tocol within an experimentally feasible parameter space,
to show it can deliver high rate metropolitan-scale QKD.
We also quantify the tradeoff between hybrid QKD proto-
cols and CV/DV approaches that would be instrumental
to guide future research in quantum networking. Col-
lectively, these technical results constitute an advance in
understanding the utility of hybrid QKD.
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Generation of three-dimensional cluster entangled state
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Abstract. Measurement-based quantum computing is a promising paradigm of quantum computation,
where universal computing is achieved through a sequence of local measurements. The backbone of this
approach is the preparation of multipartite entanglement, known as cluster states. While a cluster state
with two-dimensional (2D) connectivity is required for universality, a three-dimensional (3D) cluster state
is necessary for additionally achieving fault tolerance.

In this talk, I will present the experimental generation of a 3D cluster state based on the continuous-
variable optical platform (arXiv:2309.05437 (2023)). To realize 3D connectivity, we harness a crucial
advantage of time-frequency modes of ultrafast quantum light: an arbitrary complex mode basis can be
accessed directly, enabling connectivity as desired.

In the second part of my talk, I will discuss another topic: the characterization of multimode quantum
channels. Specifically, I will present our recent experiment on the complete characterization of Bosonic
Gaussian channels in multiple time-frequency modes.
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This work aims to answer the following question: what is the difference between ’low-magic’ en-
tanglement and ’high-magic’ entanglement? We take an operational approach to understanding the
relationship between magic and entanglement by studying tasks such as entanglement estimation,
distillation, and dilution. This approach reveals that magic has notable implications for entangle-
ment. Specifically, we find an operational separation that divides Hilbert space into two distinct
regimes: the entanglement-dominated (ED) phase and magic-dominated (MD) phase. Roughly
speaking, ED states have entanglement that significantly surpasses their magic, while MD states
have magic that dominates their entanglement. The competition between the two resources in these
two phases induces a computational phase separation between them: there are sample- and time-
efficient quantum algorithms for almost any entanglement task on ED states, while these tasks are
provably computationally intractable in the MD phase. Our results find applications in diverse areas
such as quantum error correction, many-body physics, and the study of quantum chaos, providing
a unifying framework for understanding the behavior of quantum systems.

Keywords: Entanglement theory, Magic-state resource theory, computational phase-transition, computation-
ally bounded observers, entanglement estimation, entanglement cost, entanglement distillation, entanglement
reversibility, entanglement witnessing, multipartite entanglement, topological entanglement, entanglement
robustness.

This work is based on Refs. [1, 2].

I. Overview

Entanglement serves as a foundational pillar in quan-
tum information theory, delineating the boundary between
what is classical and what is quantum [3, 4]. The common
assumption is that higher entanglement corresponds to a
greater degree of ‘quantumness’. However, this folk belief
is challenged by the fact that classically simulable opera-
tions, such as Clifford circuits, can create highly entangled
states [5]. The simulability of these states is suggestive:
are there qualitative differences between the ‘low-magic’ en-
tanglement generated by Clifford circuits, and ‘high-magic’
entanglement generated by non-Clifford circuits? Perhaps
there are finer-grained aspects of entanglement, even in the
bipartite case, that cannot be captured by quantifying it
along a single axis. For a full understanding of the nature
of entanglement in a state, might it be necessary to know
something about the state’s magic?

Motivated by these questions, this work presents a rig-
orous investigation on the role of magic in entanglement
theory. We take an operational approach to understanding
their relationship. While this perspective has long been used
to study entanglement [6], the role of magic has never been
addressed in such analyses; indeed, there has been no rea-
son to expect that magic has any implications for entangle-
ment tasks. In this work, we show that not only does magic
∗ andigu@g.harvard.edu
† salvatore.oliviero@sns.it
‡ lorenzo.leone@fu-berlin.de

☑ ❓

Entanglement Magic

FIG. 1. Entanglement structure of states in the ED and MD
phases.

have surprisingly strong implications for entanglement, but
we also offer a complete characterization of these implica-
tions. We find a sharp operational distinction that splits
Hilbert space into two distinct phases: the entanglement-
dominated (ED) phase and magic-dominated (MD) phase.
Roughly speaking, the ED phase contains states whose en-
tanglement significantly surpasses their magic, while the MD
phase corresponds to cases where magic dominates entangle-
ment. These two phases are demarcated by a computational
separation induced by the competition between the two re-
sources. That is, there are sample- and time-efficient quan-
tum algorithms that solve a number of entanglement detec-
tion and manipulation problems for ED states. Conversely,
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we show that entanglement detection and manipulation is
provably computationally intractable in the MD phase.

The first problem we study is the ubiquitous task of mea-
suring entanglement entropy. We begin by describing an effi-
cient algorithm to estimate the entanglement entropy of any
ED state with vanishing error, even for volume-law states;
in contrast, we show that in the MD phase, accurate en-
tanglement estimation is inefficient beyond logarithmic en-
tanglement (below this, the swap test allows for efficient
estimation). We then turn to entanglement manipulation
— specifically, entanglement distillation and dilution. We
show that within the class of ED states, we can always ef-
ficiently find a polynomial-depth circuit that distills almost
all of the entanglement into Bell pairs. We also prove the
converse, which says that, in the MD phase, it is impossible
to find such efficient and optimal distillation protocols. This
reveals a sharp computational separation in distillable en-
tanglement. Similarly, we demonstrate that we can always
identify an efficient dilution protocol that utilizes an opti-
mal number of Bell pairs to prepare any state in the ED
phase. Conversely, for MD states, we rule out the existence
of an efficient dilution protocol that consumes an optimal
number of Bell pairs. These findings reveal a computa-
tional separation in entanglement cost between ED and MD
states. Combining insights from both entanglement dilu-
tion and distillation, we uncover a sharp distinction in the
entanglement structure of ED and MD states, illustrated in
the ED-MD phase diagram (Fig. 1). Within the ED phase,
entanglement is structured in a manner that can always be
manipulated efficiently and (almost) reversibly. In contrast,
within the MD phase, entanglement manipulation is gener-
ally inefficient and irreversible.

As applications of our theory, we present efficient entan-
glement witnesses for noisy ED states, which in turn reveals
that the entanglement of ED states is far more robust than
typical states, whose entanglement robustness is limited by
the Fannes inequality. We also develop an efficient testing
algorithm which can classify states within the ED and MD
phases. To conclude, we highlight the relevance of our find-
ings in many-body physics by showcasing a broad class of
physically relevant Hamiltonians whose eigenstates are all
in the ED phase. As one application of this, we demon-
strate the robustness of topological entanglement entropy
in 3D topological models such as the X-cube model and
Haah’s code. We also find connections between stabilizer
code Hamiltonians and ED states, which extends the appli-
cability of our results to quantum error correcting codes.

II. Computational ED-MD separation

We first formally define the entanglement- and magic-
dominated phases. We note that the majority of states
in the Hilbert space are MD. However, it is well-known
that most states in Hilbert space also cannot be prepared
in polynomial time, hence are irrelevant in practice [7–9].
In contrast, ED states are ubiquitous. For instance, typi-

cal Clifford-dominated circuits with o(n) non-Clifford gates
(importantly, this far exceeds the classical simulability limit
O(log n)) produces ED states almost surely. This is just one
example; ED states can be generated by circuits that have
up to o(exp(n)) non-Clifford gates. Let us now define ED
and MD states, using stabilizer nullity ν as a measure of
magic [10] and entanglement entropy S as an entanglement
measure.

Definition 1 (Entanglement and magic-dominated phases).
Let |ψ⟩ be a state with 2n−ν Pauli stabilizers; we say that
this state has stabilizer nullity ν. Let A|B a bipartition and
let S(ψA) be the von Neumann entropy of ψA ≡ TrB |ψ⟩⟨ψ|.
|ψ⟩ is entanglement-dominated if S(ψA) = ω(ν), and it is
magic-dominated if S(ψA) = O(ν).

We will study the measurability and manipulability of
entanglement in these two classes of states. For entangle-
ment manipulation, there are two tasks: entanglement dis-
tillation and dilution. The goal of entanglement distillation
is to use LOCC to transform a state ψ into as many Bell
pairs M+ as possible. This number is the distillable entan-
glement of ψ. For the reverse of entanglement distillation,
namely entanglement dilution, the aim is to prepare ψ via
LOCC using a minimal number of Bell pairs M−, which is
called the entanglement cost of ψ.

Theorem 1 (Efficient entanglement measurement and ma-
nipulation for ED states). Let |ψ⟩ be an ED state across
the bipartition A|B. There exists sample- and time-efficient
algorithms for each of the following tasks.

1. Entanglement estimation: Estimates S(ψA) up to an
o(1) relative error.

2. Entanglement distillation: Distills M+ Bell pairs
from ψ using LOCC operations, with M+/S(ψA) =
1 − o(1). Unlike more conventional protocols [11],
this protocol requires only a single copy of the input
state and makes no error: it is a one-shot, zero error
protocol.

3. Entanglement dilution: Prepares ψ across the bi-
partition A|B using LOCC, M− Bell pairs, where
M−/S(ψA) = 1 + o(1), and NCC = o(S(ψA)) bits of
classical communication.

Theorem 2 (Hardness of entanglement estimation and ma-
nipulation for MD states). There are no sample- and time-
efficient quantum algorithms for entanglement characteriza-
tion and manipulation within the MD phase.

1. Entanglement estimation: There is no efficient pro-
tocol which can estimate S(ψA) to within a constant
relative error for arbitrary MD states.

2. Entanglement distillation: The (efficient) distillable
entanglement for general MD states is M+/S(ψA) =
o(1).

3. Entanglement dilution: The (efficient) entanglement
cost for arbitrary MD states. is M−/S(ψA) = ω(1).
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Protocol Entanglement-dominated Magic-dominated

An efficient state-agnostic protocol which produces an estimate
S̃(ψA) of the true entanglement S(ψA).

|S(ψA)−S̃(ψA)|
S(ψA)

= o(1)
|S(ψA)−S̃(ψA)|

S(ψA)
= ω(1)

An efficient state-agnostic LOCC protocol which distills M+ Bell
pairs from the state ψ.

M+/S(ψA) = 1− o(1) M+/S(ψA) = o(1)

An efficient state-agnostic LOCC protocol which usesM− Bell pairs
to prepare ψ across A|B.

M−/S(ψA) = 1 + o(1) M−/S(ψA) = ω(1)

TABLE I. Schematic of the ED-MD separation within entanglement theory. Based on Theorem 1 and Theorem 2.

III. Applications of ED-MD separation

Multipartite entanglement distillation. Besides bipar-
tite entanglement distillation, there’s also the challenge of
multipartite entanglement distillation. In this scenario, if
k parties share an entangled state, their goal is to distill
some target k-partite entangled state (e.g., a GHZ state)
using LOCC operations. Interestingly, it has been estab-
lished that this task is unachievable for the vast majority
of states [12, 13]. However, identifying a generalization of
the ED phase in k-partite setting, we show that we can de-
terministically distill many copies of a k-partite GHZ state
from ED states using an efficient LOCC protocol.

Entanglement witnessing and robustness. While pre-
cisely measuring entanglement can be a challenging and
noise-sensitive task, the less ambitious goal of merely wit-
nessing entanglement can be easier and more noise-resilient [14,
15]. The purpose of a witness is to experimentally validate
the presence of genuine entanglement in an imperfectly
prepared version of the target state. We define an entan-
glement witness for ED states that can be measured with
O(1) sample complexity. We strengthen this result by defin-
ing a similar witness for multipartite entanglement. This
witness verifies entanglement across k parties — that is,
it rules out the possibility of the state being unentangled
across any of the k given partitions. As a corollary of this,
we find that entanglement for ED states can be far more
robust than the entanglement of generic states. The reason
for this is as follows. The Fannes inequality roughly says
that |S(ρA)− S(ψA)| ≲ nAT, where T is the trace distance
between ψ and its noisy version ρ. If ψ were a generic
state with S(ψA) ∼ √

nA, then we would generally need
T < 1/

√
nA to guarantee that ρ were not separable across

A|B. On the other hand, if ψ were in the ED phase, we
show that we could tolerate up to T ≲ 1− 2−Ω(

√
nA), show-

ing that the entanglement within the ED phase is extremely
robust.

Phase classification and testing. In light of the clear
divide between ED-MD phases, one might ask whether it
is possible, given query access to an unknown state |ψ⟩, to
determine the phase in which it resides. We formalize this
task as a property testing problem and show that the sep-
aration between ED-MD phases can indeed be efficiently
tested. More precisely, we present a polynomial-time algo-
rithm that can discriminate whether |ψ⟩ is an ED state or

it is ϵ-far from any state in the ED phase and, as such, lies
in the MD phase.

Applications to physics. We conclude by discussing the
implications of our results in the context of many-body
physics by first showcasing a broad class of many-body
Hamiltonians whose eigenstates are all ED states. We use
these Hamiltonians to study the robustness of topological
entanglement entropy to perturbations in models such as the
X-cube model or Haah’s code. Taking advantage of the fact
that the topological entanglement entropy in these models
scales extensively, we show that this topological entangle-
ment persists under any perturbation to the Hamiltonian
that has a subextensive (i.e., o(n)) number of terms.

IV. Summary

We believe our findings will captivate the AQIS audience
for several reasons. Our work links two ostensibly unrelated
quantum resources — entanglement and magic. We rigor-
ously establish the surprising existence of a sharp computa-
tional separation, across various entanglement-related tasks,
between two classes of states which are characterized by the
dominance of either entanglement or magic. We introduce
a variety of innovative techniques, including a ‘deformed’
stabilizer formalism, and a new encoding strategy for pseu-
dorandom quantum states. Moreover, our approach goes
beyond the mere information-theoretic framework. The ex-
istence of these two phases has strong implications for en-
tanglement detection in noisy experiments. Additionally,
our techniques have profound consequences for many seem-
ingly unrelated areas. For instance, we apply our results to
many-body physics, showing the robustness of topological
entanglement entropy. In summary, this work not only offers
a fresh perspective on resource theories but also makes con-
ceptual and theoretical contributions to multiple research
areas.
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Notions of nonstabilizerness, or “magic”, quantify how non-classical quantum states are
in a precise sense: states exhibiting low nonstabilizerness preclude quantum advantage. We
introduce ‘pseudomagic’ ensembles of quantum states that, despite low nonstabilizerness, are
computationally indistinguishable from those with high nonstabilizerness. Our work is driven
by the observation that only quantities measurable by a computationally bounded observer –
intrinsically limited by finite-time computational constraints – hold physical significance. Ul-
timately, our findings suggest that nonstabilizerness is a ‘hide-able’ characteristic of quantum
states: some states are much more magical than is apparent to a computationally bounded
observer.

Keywords: Magic-state resource theory, computational indistinguishability, computationally
bounded observer, Clifford computation, magic-state distillation, entanglement distillation, sta-
bilizer entropy, quantum chaos, quantum scrambling, quantum cryptography, EFI pairs, property
testing

This work is based on Ref. [1].

I. Overview

The delicate and elusive boundary between quan-
tum and classical computation is a central question in
current research, with a focus on identifying uniquely
quantum resources that contribute to a quantum ad-
vantage. One such resource is so-called magic (“non-
stabilizerness”), which is a measure of the non-Clifford
resources needed to prepare a quantum state [2–4].
Among other relations, it has been shown that the
amount of magic is directly connected to the hardness
of classically simulating a quantum state [5–13], the
yield of magic state distillation protocols [2, 14–23], the
overhead required for fault-tolerant quantum computa-
tion [24–27], and is directly proportional to the degree
of chaos in a system [28–31]. Given this multitude of
interpretations, one might naturally expect that quan-
tum states with high magic are inherently different,
and operationally more non-classical, than states with
low magic. This work challenges that intuition. In-
deed, we find that the situation can be more intricate
than that. We demonstrate the surprising existence of
families of states with actually small values of magic
while they operationally appear as states with maxi-
mum values of magic. We call this phenomenon pseu-
domagic. In our work, we make a number of contri-
butions that comprehensively elucidate the remarkable
implications of this phenomenon, including an indepen-

dence theorem that allows us to tune the magic and
entanglement of pseudorandom states independently
from one another.

Pseudomagic quantum states are ensembles of
states with low magic that are computationally indis-
tinguishable in polynomial time from an ensemble of
states with maximally high magic. Because they mas-
querade as maximally-magical ensembles, we say that
these ensembles display ‘pseudomagic’. Our construc-
tion of the low-magic ensembles is simple but power-
ful: they are simply the subset phase states introduced
in Ref. [32]. Moreover, their magic can also be finely
tuned : for any value of magic strictly greater than
log(n) and up to n, we demonstrate the existence of a
pseudomagic ensemble with that amount of magic. Our
pseudomagic ensembles force us to reconsider quantum
chaos, give rise to a fundamental cryptographic prim-
itive and allow us to prove bounds on testing stabiliz-
erness and certain forms of magic-state distillation.

The astute reader may notice that the states that
display pseudomagic are the same states that display
pseudoentanglement [32]. However, this connection is
merely a happy coincidence: we show that both the en-
tanglement and magic of these ensembles can be var-
ied independently of one another to obtain any legal
value of magic and any legal value of entanglement.
Here, ‘legal’ means a value compatible with the defini-
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FIG. 1. Efficient conversion of pseudorandom states in all
four entanglement/magic quadrants.

tions of pseudomagic or pseudoentanglement. This is
not obvious–not even conceptually–as most sufficiently
general random states (Haar random states, t-designs,
etc) are expected to feature both high entanglement
and magic.

Our independence theorem allows us to make a
‘lemons-into-lemonade’ conceptual shift: the fact that
pseudomagic and pseudoentanglement can be tuned in-
dependently allows us to strengthen not only our the-
orems, but also the theorems relating to pseudoentan-
glement presented in Ref. [32]. Namely, this switch
allows us to significantly limit the possibilities for de-
vising efficient algorithms for magic state distillation
or nonstabilizerness testing that are tuned to specific
levels of entanglement in the input state. Similarly,
this imposes limits on entanglement distillation or en-
tanglement testing protocols that are tuned to specific
levels of magic in the input states. We expect our in-
dependence theorem to be an important tool in the
computational study of resource theories in the future.

We end with a meta-perspective. The field of quan-
tum computing is testament to the fact that physics
enhances our understanding of what and how we can
compute. Our work provides the philosophical coun-
terpart to this statement. It says that computational
limits should, conversely, be a sanity check for theo-
retical physics: if certain physical quantities, say those
that purport to assess quantum chaotic behaviour, are
in fact not efficiently computationally detectable, in
what sense can they be considered real?

II. Pseudomagic quantum states

We start by introducing our central object of study:

Definition 1 (Pseudomagic (informal)). For magic
measure M, we say that a pair of n-qubit state ensem-
bles A,B are a pseudomagic pair with gap (g(n), f(n))
(where f(n) > g(n)) if:

(a) A is a ‘high magic’ ensemble {|ϕk1⟩} such that
M(ϕk1) = f(n) with high probability over k1,
and

(b) B is a ‘low magic’ ensemble {|ψk2⟩} such that
M(ϕk1) = g(n) with high probability over k2;

moreover the two ensembles are indistinguishable by
any polynomial time algorithm.

Many distinct magic measures can be used to define
pseudomagic. While we elect to primarily use the sta-
bilizer Rényi entropiesMα (for non-negative integer α)
in the rest of this work, in the main text, we show that
our specific constructions also immediately extend to
other measures: robustness of magic [14], stabilizer fi-
delity [9], stabilizer extent [9] and max relative entropy
of magic [33]. We additionally identify conditions that
would guarantee that our arguments would go through
for a given magic measure.

While we typically use the Haar-random ensemble,
which has maximal magic of Θ(n) with high probabil-
ity, as the high-magic ensemble, we also construct low-
magic ensembles with tunable magic – that is, for every
value of g(n) not ruled out by computational limita-
tions, we can construct a B displaying that amount of
magic. These are known as the subset phase states, and
are indexed by a binary pseudorandom function f and
subset S ⊆ {0, 1}n of size 2k such that ω(log n) < k ≤ n

as |ψf,S⟩ = |S|−1/2∑
x∈S(−1)f(x)|x⟩. We can control

the magic in these states by varying the size of the sub-
set: Mα(ψf,S) = O(log |S|). Subset phase states were
first introduced in Ref. [32], where it was demonstrated
that they also display tunable entanglement depending
similarly on the log of the size of the subset. However,
we show that for any pseudorandom ensemble, in fact
we can tune its entanglement and magic independently,
in the following sense:

Theorem 1. For any value of magic a ∈
[poly log n, n], and any value of entanglement
b ∈ [poly log n, n], there exists an ensemble of
states that has magic a and entanglement b with
high probability with respect to the states in the
ensemble. This ensemble is also indistinguishable
from Haar-random states, which have magic Θ(n) and
entanglement Θ(n).
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The fact that magic and entanglement can be tuned
independently of one another is illustrated in Fig. 1.
This independence theorem turns out to be a powerful
tool that we will exploit to strengthen our applications,
which we now describe. Indeed, our general framework
allows for a wealth of further applications.

III. Applications of pseudomagic

Quantum chaos and scrambling. The resource the-
ory of magic is an essential component of what under-
standing we have of quantum chaos [34–36]. For a
unitary evolution to be deemed as chaotic, meaning it
attains the universal (Haar) value of out-of-time-order
correlators [37, 38], it must necessarily produce max-
imal Θ(n) magic [39, 40]. Given that, the mere exis-
tence of pseudomagic states suggests the existence of
non-chaotic unitaries that nonetheless generate states
indistinguishable from those produced by chaotic ones,
like Haar random states. We formalize this intuition in
the following theorem:

Theorem 2. Let E be an ensemble of pseudomagic
states that is also pseudorandom. Let |ψ⟩ ∈ E and let
U such that |ψ⟩ = U |0⟩⊗n. The 2k-point OTOCs of U
(for k ≥ 4) are exponentially separated from the Haar
value. Therefore, although it generates a state that
is on-average computationally indistinguishable from
Haar-random, U cannot be considered chaotic.

In other words, our pseudomagic states are provably
not chaotic, even though they are computationally in-
distinguishable from maximally chaotic Haar random
states. This apparently innocuous result carries a pro-
found implication: no physical observer, that is natu-
rally subject to computational limits, can distinguish
chaotic from non-chaotic evolution solely based on the
observed resultant state.

Implications to resource distillation. We also ex-
plore a task of significance for notions of quantum er-
ror correction. This is the transformation of generic
non-stabilizer states into specific, useful non-stabilizer
states, such as the canonical magic state vector |T ⟩, a
task we term as black-box magic-state distillation. It is
well-known that magic monotones cannot increase un-
der stabilizer operations, imposing a resource-theoretic
maximum of the number of distillable magic states
from a given starting state. As a preliminary result,
we show that this theoretical maximum is a vast over-
estimate for the output of any efficient algorithm.

Theorem 3. Given a magic monotone M, any effi-
cient stabilizer protocol that synthesizes a state |B⟩⟨B|

from an arbitrary (and potentially also mixed) input
state ρ requires
Ω(M(|B⟩⟨B|)/log1+cM(ρ)) copies of ρ, for any con-
stant c > 0.

In short, under this setting, we demonstrate a loga-
rithmic reduction in the ‘value’ of the magic in the in-
put state. One could contend, however, that our the-
orem only constrains input state agnostic algorithms
– whereas many magic state or entanglement distilla-
tion protocols are hand-crafted to work on input states
with certain assumed structure [2, 41]. Does our lower
bound in Theorem 3 still hold up against such tailored
algorithms? Could one, as Ref. [42] proposed, distill
magic from highly entangled states – if we limit our-
selves to computationally efficient distillers? We use
our independence theorem 1 to answer in the negative:

Theorem 4. Consider an entanglement distillation
protocol that distills EPR pairs from states drawn from
an ensemble {ψk}. For any f(n) ∈ [poly log n, n],
even if we are guaranteed that the states ψk have
magic Θ(f(n)) with overwhelming probability, the pro-
tocol can distill at most O(log1+c S(ρ)) Bell pairs with
high probability, where S(ρ) is the entanglement en-
tropy of an input state ρ across a bipartition of the
system that is linear in n. Similarly, the bound on
magic state distillation in Theorem 3 holds even if we
are promised that the input state ρ has entanglement
Θ(g(n)) across exponentially-many linearly-sized cuts,
with any g(n) ∈ [poly log n, n].

Remarkably, thanks to Theorem 1, it is possible to
generalize this theorem to states that display on aver-
age any amount of magic/entanglement bounded be-
tween ω(log n) and n.

Other applications A cornerstone of classical cryp-
tography is the one-way function (OWF), a function
that is easy to compute but challenging to invert.
Quantumly, however, OWFs are not essential for cer-
tain cryptographic structures to remain secure [43, 44].
Instead, we show that a candidate cryptographic build-
ing block known as “EFI pairs” [45] is implied by the
bare existence of pseudomagic pairs.

Theorem 5. Efficiently-generatable pseudo-magic en-
sembles with stabilizer 1-entropy that can be tuned be-
tween ω(log n) and n imply EFI pairs.

Finally, we consider the problem of property testing
for non-stabilizerness.

Theorem 6. Let 0 ≤ m < M ≤ n. Any tester for
the stabilizer entropy Mα that determines whether for
a given state |ψ⟩ Mα(ψ) ̸∈ [m,M ] with success proba-
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bility ≥ 2/3 requires K = Ω(2
m

4+c ) copies of |ψ⟩ for any
constant c > 0.

This restriction also extends to a number of other
magic monotones, and can be strengthened to hold
against non-stabilizerness testers designed for input
states with bounded entanglement. We may similarly
strengthen the property testing lower bounds in Sec-
tion 3 of Ref. [32] to hold for input states with bounded
magic.

IV. Summary

Pseudomagic highlights the significance of compu-
tational limitations in theoretical physics, introducing

a unique perspective where the observer plays the main
character: from a mere verifier of quantum theories to
an integral part of the theory itself. Our insights lay
the groundwork for a grand unified theory of ‘pseu-
doresourcefulness’ with pseudoentanglement and pseu-
domagic as special cases. Such a theory would be a
modern reinterpretation of the observer effect that is
at the heart of quantum mechanics: it is not only the
information the observer can obtain, but also what she
can process that matters.
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Our paper is on the arXiv [2].
Position verification or authentication is a well studied

problem in cryptography (e.g., [3]). The task comprises
to challenge a tag (or prover) to authenticate its loca-
tion by sending it communications at light speed, with
instructions to process the signals instantaneously and
return responses at light speed. If the challenges are sent
from several appropriately located test stations (or ver-
ifiers), relativistic signalling constraints can ensure that
if the tag functions correctly, but at a different location
from that expected, this will be detected by the verifiers,
because there will necessarily either be time delays or
incorrect or missing responses. Realistically, the signals
should be sent as close as possible to light speed, the
processing should be as fast as possible, and the protocol
aims to guarantee location within as small a region as
possible.
It has been shown that in a purely classical setting,

where the tag only receives and processes classical mes-
sages, unconditionally secure position verification can-
not be achieved [4]. This is because a set of spoofers
surrounding the tag can communicate with the verifiers,
faking the intended communication with the tag.
Quantum position verification or authentication (QPV

or QPA), also called quantum tagging, was first discussed
in a patent [5] published in 2006. In the idealized version,
the key idea is that the challenges sent to the tag com-
prise quantum communications. As spoofers cannot copy
quantum information chosen from a non-classical ensem-
ble (for example qubits in BB84 states), quantum tag-
ging schemes are not generally vulnerable to the simple
copy-and-redirect spoofing attacks applicable to purely
classical schemes [4]. However, they may be vulnerable
to other attacks, as we now review.
QPV was first discussed in the academic literature in-

Ref. [6], which proposed schemes that were claimed to be
unconditionally secure. However, as first pointed out in
Ref. [7], although the schemes in Refs. [5, 6] indeed pro-
tect against simple attacks that (only) copy and broad-

∗apak@damtp.cam.ac.uk
†D.Pitalua-Garcia@damtp.cam.ac.uk

cast classical signals and reroute quantum signals, they
are vulnerable to teleportation attacks, which effectively
simulate the operation of the tag at distant sites. Hence
none of them are unconditionally secure.

More generally, Ref. [8] showed that, for any scheme
in this general class, the operations carried out by the
tag can in principle be simulated (for the verifiers) by
spoofers who are located between the tag and veri-
fiers. These spoofing attacks involve non-local quantum
computations using pre-distributed quantum entangle-
ment. Since the known attacks require large amounts of
pre-distributed entanglement and error-corrected quan-
tum computation, the schemes may guarantee security
given presently very credible technological assumptions.
Nonetheless, they are not unconditionally secure.

The no-go theorem of Ref. [8] is a theoretically beau-
tiful result, one of several (im)possibility theorems in rel-
ativistic quantum information processing that are either
based on, or act as counterpoints to, fundamental results
in non-relativistic quantum information processing.

However, in many (perhaps most?) plausible scenarios
the possibility of quantum teleportation and non-local
computation attacks is either unnecessary or insufficient
to establish that practical quantum position verification
is necessarily insecure. In essence, these non-local attacks
establish that spoofers can deceive distant verifiers into
believing that a tagging device is present at the expected
location, when in fact it is not. But there is an important
prior question: do verifiers generally really care about the
location of a tagging device per se? A quantum tag is
essentially a small device that measures and perhaps ap-
plies unitaries to incoming quantum states, according to
classical instructions, following a fixed public algorithm.
As the name suggests, its purported role is to ensure the
location of a tagged object or person, and this is what
the verifiers care about.

This implies that security for any form of quantum
tagging or position verification has to be based on some
physical assumptions. For example, in principle, the tag-
ging device can be destroyed or removed from the tagged
object and replaced by another tagging device that be-
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haves identically to the original one. Thus, precluding
these attacks must necessarily make some physical as-
sumptions, for example, that such replacement of tagging
devices cannot be arbitrarily fast in practice, and that in
this way cannot pass unnoticed by the verifiers.
Since we need physical assumption anyway, we con-

sider tagging schemes based on a standard assumption
in classical and quantum cryptography, that it is possi-
ble to store secret classical data. This assumption seems
particularly justifiable in scenarios aiming to verify that
the location of the tagged object or person is within a
highly secure perimeter, for example, a military base or
a bank branch. In these scenarios, it is usually necessary
that such perimeters are able to store secret information
securely. In particular, this is a standard cryptographic
requirement if such locations are able to communicate se-
cretly with other locations (for example, with other bank
branches or other military bases).
Ref. [1] introduced tagging schemes that are uncon-

ditionally secure, modulo this assumption, in the sense
that the tag itself cannot (except with small probability)
be spoofed or replaced so long as it remains intact and
the data it contains remains secret. In this paper, we
explore further versions of this scheme with a security
analysis and discuss their practical implementation.
In our paper, we present schemes for position verifi-

cation in which the position verification queries and re-
sponses are purely classical, involving no quantum com-
munication or quantum information processing. These
communications are authenticated using a key previously
shared between the prover and verifiers. Quantum infor-
mation transmission and measurement is required only
to refresh the key via quantum key distribution. Our
schemes are practical to implement with current technol-
ogy. Their security is based on a standard assumption in
quantum cryptography, also made in QKD, that a clas-
sical key can be stored securely (by the prover in our
schemes), as initially proposed in Ref. [1].
When QPV schemes use position verification queries

and/or responses that involve quantum communications,
they typically use photons to encode quantum states.
This poses challenges, including errors in state prepa-
ration, processing and measurement, losses, and secu-
rity problems due to imperfect single-photon sources and
single-photon detectors (e.g., photon-number splitting
attacks [9, 10] and multiphoton attacks [11]) and side-
channel attacks (e.g., [11]). The problem of losses is
particularly challenging in schemes with large distances
between the tagging device and the verifiers. An advan-
tage of our schemes is that the queries and responses are
purely classical. Quantum communications are needed
only to replenish the key via QKD, which is secure
against errors and losses. Moreover, the QKD commu-
nications, unlike the position verification queries and re-
sponses, are not tightly time constrained.
Given our assumptions, our schemes are secure against

arbitrarily powerful quantum spoofers, who may share
an arbitrary amount of entanglement. This is also an ad-
vantage compared to the best known quantum schemes,

which have only been proved secure against spoofers that
share an amount of entanglement linear in the classical
information [12, 13].
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Towards practical quantum position verification.
arXiv:2309.10070, 2023.

[3] S. Capkun, M. Cagalj and M. Srivastava. Secure
Localization with Hidden and Mobile Base Stations.
In Proc. IEEE INFOCOM 2006. 25TH IEEE Inter-
national Conference on Computer Communications,
pages 1–10, 2006.

[4] N. Chandran, V. Goyal, R. Moriarty and R. Ostro-
vsky. Position based cryptography. In CRYPTO ’09,
S. Halevi, ed., Lecture Notes in Comput. Sci. 5677,
pages 391–407, 2009.

[5] A. P. Kent, W. J. Munro, T. P. Spiller and R. G. Beau-
soleil. Tagging systems. US Patent No.
US20060022832A1, 2006.

[6] R. A. Malaney. Location-dependent communica-
tions using quantum entanglement. Phys. Rev. A,
81(4):042319, 2010.

[7] A. Kent, W. J. Munro and T. P. Spiller. Quantum
tagging: Authenticating location via quantum infor-
mation and relativistic signaling constraints. Phys.
Rev. A, 84:012326, 2011.

[8] H. Buhrman, N. Chan-
dran, S. Fehr, R. Gelles, V. Goyal, R. Ostro-
vsky and C. Schaffner. Position-based quantum
cryptography: Impossibility and constructions.
SIAM J. on Comp., 43(1):150–178, 2014.

[9] B. Huttner, N. Imoto, N. Gisin and T. Mor. Quan-
tum cryptography with coherent states. Phys. Rev.
A, 51(3):1863–1869, 1995.

[10] G. Brassard, N .Lütkenhaus, T. Mor and B. C. Sanders.
Limitations on practical quantum cryptography.
Phys. Rev. Lett., 85(6):1330–1333, 2000.

[11] M. Bozzio, A. Cavaillès, E. Dia-
manti, A. Kent and D. Pitalúa-Garćıa. Multiphoton
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1Centre for Quantum Information and Foundations, DAMTP, Centre for Mathematical Sciences,

University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, U.K.
2Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada.

(Dated: November 14, 2023)

We discuss protocols for quantum position verification schemes based on the standard quantum
cryptographic assumption that a tagging device can keep classical data secure [1]Our schemes use a
classical key replenished by quantum key distribution. The position verification requires no quantum
communication or quantum information processing. The security of classical data makes the schemes
secure against non-local spoofing attacks that apply to schemes that do not use secure tags. The
schemes are practical with current technology and allow for errors and losses. We describe how a
proof-of-principle demonstration might be carried out.

I. INTRODUCTION

The task of quantum position verification or authenti-
cation (QPV or QPA), also called quantum tagging, was
first discussed in a patent [2] published in 2006. In the
idealized version, the key idea is to challenge a tag (or
prover) to authenticate its location by sending it quan-
tum and classical communications at light speed, with
instructions to process the signals instantaneously and
return responses at light speed. If the challenges are sent
from several appropriately located test stations (or ver-
ifiers), relativistic signalling constraints can ensure that
if the tag functions correctly, but at a different location
from that expected, this will be detected by the verifiers,
because there will necessarily either be time delays or
incorrect or missing responses. Realistically, the signals
should be sent as close as possible to light speed, the
processing should be as fast as possible, and the protocol
aims to guarantee location within as small a region as
possible.
As spoofers cannot copy quantum information cho-

sen from a non-classical ensemble (for example qubits in
BB84 states), quantum tagging schemes are not gener-
ally vulnerable to the simple copy-and-redirect spoofing
attacks applicable to purely classical schemes. However,
they may be vulnerable to other attacks, as we now re-
view.
QPV was first discussed in the academic literature in

Refs. [3, 4], which proposed schemes that were claimed
to be unconditionally secure. However, as first pointed
out in Ref. [5], although the schemes in Refs. [2–4] in-
deed protect against simple attacks that (only) copy and
broadcast classical signals and reroute quantum signals,
they are vulnerable to teleportation attacks, which effec-
tively simulate the operation of the tag at distant sites.
Hence none of them are unconditionally secure.
More generally, Ref. [6] showed that, for any scheme

in this general class, the operations carried out by the
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tag can in principle be simulated (for the verifiers) by
spoofers who are located between the tag and veri-
fiers. These spoofing attacks involve non-local quantum
computations using pre-distributed quantum entangle-
ment. Since the known attacks require large amounts of
pre-distributed entanglement and error-corrected quan-
tum computation, the schemes may guarantee security
given presently very credible technological assumptions.
Nonetheless, they are not unconditionally secure.

The no-go theorem of Ref. [6] is a theoretically beau-
tiful result, one of several (im)possibility theorems in
relativistic quantum information processing (e.g., [7–16])
that are either based on, or act as counterpoints to, fun-
damental results in non-relativistic quantum information
processing (e.g. [17–24]).

However, in many (perhaps most?) plausible scenarios
the possibility of quantum teleportation and non-local
computation attacks is either unnecessary or insufficient
to establish that practical quantum position verification
is necessarily insecure. In essence, these non-local attacks
establish that spoofers can deceive distant verifiers into
believing that a tagging device is present at the expected
location, when in fact it is not. But there is an important
prior question: do verifiers generally really care about the
location of a tagging device per se? A quantum tag is
essentially a small device that measures and perhaps ap-
plies unitaries to incoming quantum states, according to
classical instructions, following a fixed public algorithm.
As the name suggests, its purported role is to ensure the
location of a tagged object or person, and this is what
the verifiers care about.

In one scenario commonly considered in the literature,
a position verification protocol is defined to allow a prover
to prove their location (L) to distant verifiers. The pro-
tocol is said to be insecure if spoofers at other locations
(not including L) can simulate the actions of an honest
prover when the prover is in fact absent. This is an im-
portant scenario, which captures the type of insecurity
established by the results of Refs. [5, 6].

However it is also important to keep in mind that there
are other interesting scenarios. For example, the prover
might be mislocated but still active, with spoofers using
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the prover’s actions as part of their spoofing strategy in
order to persuade the verifiers that the prover remains
at L. The prover here might be oblivious to their mis-
location (having wandered or been unwittingly deceived
about their location), or might be cooperating with the
spoofers (if, for example, they are a tagged prisoner at-
tempting to escape confinement with outside help).

It is also crucial to note that the term “prover” is
ambiguous and potentially misleading when considering
practical applications. As used in theoretical analyses, it
generally represents the actions of a proving device (i.e.
some form of tag). However, the term suggests a per-
son or agent. If Bob carries a mobile device to respond
to challenges from Alice’s various verifying stations, but
he and the device are separable, then the protocol may
verify the device’s location but not his.

Moreover, to the extent that QPV protocols in the
prover-verifier model are secure (given suitable techno-
logical bounds on the spoofers), they only establish the
location of a suitable tagging device, not necessarily
Bob’s tagging device. Any substitute device with the
same functionality can implement the protocol correctly.
We emphasize that, in the scenario under discussion, the
spoofers know every detail of the tagging device’s opera-
tions: the teleportation attacks of Ref. [5] and the more
general non-local computation attacks of Ref. [6] require
this. So, if these attacks apply, constructing an identical
tag is indeed an option for the spoofers.

Now, if spoofers want to deceive verifiers that someone
or something is somewhere they are not, it is presumably
either because the object or person has been destroyed or
has been moved, or encouraged or deceived (perhaps by
GPS spoofing) into moving, to the wrong location. To
achieve this, one option is to detach the tag and leave
it in position, while dislocating the taggee. Another is
to dislocate or destroy both tag and taggee, leaving an
identical replica tag in the required position. Either way,
the verifiers are left with the false impression that the
tagged object remains in place, while in fact they have
been untagged and/or dislocated and/or destroyed.

It is true that, if the spoofers dislocate a tag but leave
it operational, it may continue to receive and respond
to at least some of the verifiers’ signals, and this might
alert them to interference. Alternatively, some alarm de-
vice on the tagged object might alert the verifiers by sig-
nalling to them, or the tagged person might do so (in
scenarios where they are cooperating with the verifiers).
But note that these are also issues if spoofers apply tele-
portation or non-local computation attacks. To apply
these, the spoofers must intercept (at least) quantum
signals from the verifiers and use these to generate their
spoofed responses. The prover will thus either not receive
the quantum information components of their challenges
(in which case they might send an alarm signal) or else
spoofed quantum information components generated by
the spoofers. These spoofed quantum information com-
ponents may be drawn from the same distribution as the
original challenges but will not be identical to them. So,

the prover’s responses will not generally be valid for the
original challenges. If these responses reach the verifiers,
they will, again be alerted.

However, in both cases, the spoofers can in principle
prevent any alarm or false responses reaching the verifiers
by screening the first tag and object/person, jamming all
possible communications between them and the verifiers.
We emphasize, though, that they also need to do this
if they apply teleportation [5] or non-local computation
[6] attacks, if the tag/object/person is dislocated but not
destroyed. So the need for jamming does not differentiate
between these attacks and pure dislocation attacks.

There are conceivable scenarios that do differentiate
between these attacks. For example, the prover could
be in a region that the spoofers can surround, and sig-
nal into, but not enter. The spoofers may be able to
spoof GPS within the region, causing the prover to move
to the wrong location. They may also be able to spoof
the prover’s responses to the verifiers using teleportation
or non-local computation attacks, giving the verifiers the
impression that the prover is at the correct location. And
they may be able to jam any communication from the
prover to the verifiers, so that the verifiers receive only
the spoofed responses. However, the spoofers may not
be able to apply direct attacks involving physical dislo-
cation or detachment. The security assumptions here are
somewhat delicate, because the spoofers must be able to
send physical signals into the region in order to spoof the
prover’s GPS, but the power of anything they send into
the region must be limited. They might perhaps be as-
sumed to be able to send low-energy microwave and radio
signals into the region but not, for instance, robots. This
scenario requires quite strong and specific physical limi-
tations on the spoofers, and so evidently does not allow
unconditional cryptographic security.

More generally, precluding object disloca-
tion/destruction and tag detachment/substitution
attacks inevitably requires physical assumptions. For
example, it must be hard to detach, destroy or move
the tag quickly enough that the tagging protocol can
continue with a substitute tag without an interruption
being evident. The light speed signalling bound does
give an unconditional constraint on movement. For
example, a tag responding every microsecond could
be moved no more than ≈ 300m between responses.
However, the signalling bound gives no effective uncon-
ditional constraint on attacks involving destruction and
replacement: in principle, a tag could be progressively
destroyed on one side and replaced on the other side
of a boundary that moves at near light speed, without
detection. Defences against such attacks must be based
on physical assumptions that cannot be unconditionally
guaranteed. Also, in many scenarios, the light speed
movement bound may be too weak, and stronger bounds
again rely on further physical assumptions (for example,
that the tag cannot be moved faster than the speed of
sound, or perhaps than the fastest aeroplane developed
to date).
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In summary, security for any form of quantum tagging
or position verification has to be based on some physical
assumptions. We emphasize that this is not only be-
cause of non-local computation attacks, which can only
be precluded by technological assumptions bounding the
power of spoofers. Dislocation/destruction and detach-
ment/substitution attacks can also only be precluded by
physical assumptions on the properties of the tag (and
its attachment).
Given that we need such assumptions anyway, there

are strong reasons for exploring tagging schemes based
on a physical assumption that is standard in classical
and quantum cryptography, namely that a piece of in-
frastructure (in this case the tag) is able to store secret
classical data. Ref. [1] introduced tagging schemes that
are unconditionally secure, modulo this assumption, in
the sense that the tag itself cannot (except with small
probability) be spoofed or replaced so long as it remains
intact and the data it contains remains secret. In this
paper, we explore further versions of this scheme and
discuss their practical implementation.

II. SECURITY SCENARIO

We assume that the verifiers, referred to collectively
as Alice and individually as A1, . . . , AM , and the prover
(Bob), are human or other agents, all of whom trust one
another. They have a fixed agreed reference frame F . For
simplicity, we assume that Bob is supposed to remain at a
constant location during the position verification scheme.
We assume that Alice has some prior unreliable knowl-
edge of Bob’s location (e.g. a reported GPS reading from
Bob, or knowledge of a pre-agreed location which Bob is
supposed to reach), and wishes to verify it to within as
small an error margin as possible, at some sequence of
times Tj , for j = 1, . . . , N . We assume that the Ai can
communicate with each other via authenticated channels.
In this simple scenario, the aim of the scheme is that, if

Bob does remain at a fixed location L during the scheme,
he can allow Alice to verify that he is close to L at the
given times. In more general scenarios, Bob may move
(perhaps up to some speed bound), and the aim may be
to identify his position (up to some uncertainty) at any
given time. The protocols we describe can be adapted
to these more general scenarios, but for clarity we focus
here on the simple scenario.
Position verification is non-trivial because of the po-

tential presence of adversaries, who may interfere with,
jam, or substitute signals between Alice and Bob. They
may also apply physical attacks – for example physically
dislocating Bob.
We assume spacetime is Minkowski, as is approxi-

mately the case near the Earth surface. The small general
relativistic corrections required can easily be allowed for
if needed (i.e. if they are significant enough), but we ig-
nore them here. Our discussions assume an asymmetry
between Alice, whose agents Ai each are within and con-

trol separate secure laboratories, which we might imagine
as well-resourced fixed bases, and Bob, who is a single
agent in a single laboratory. To simplify the discussion,
we suppose Alice has a master agent, A0, with whom
the Ai communicate: A0 may be Ai for some i, or at
a separate location. We assume the locations of Alice’s
laboratories are reliably known to A0 and that all Alice’s
agents (including A0) have reliable clocks within their
laboratories that are all synchronized. We also assume
that Alice’s laboratories are robust and secure enough
that destruction/dislocation attacks on them are not a
concern – or at least, that it is a reasonable working
assumption that such attacks will not succeed, perhaps
because if they did then the loss would be so devastating
that the failure to verify Bob’s location securely becomes
irrelevant. However, Bob cannot directly verify his posi-
tion: there is no trusted global GPS and any incoming
reference data he might use could be spoofed. His lab-
oratory may also be technologically more limited than
Alice’s and may be vulnerable to destruction/dislocation
attacks.

The Ai are at separate sites that are also separated
(and may be quite distant) from the location L, which
lies within their convex hull. We can consider 1D or
2D position verification, which assume that Bob and the
Ai are constrained to lie on a given line or plane. In
the 3D case, there is no such constraint, of course. In
d dimensions, we must have M ≥ (d + 1) to satisfy the
convex hull condition. The Ai send classical or quantum
signals at appropriate times. They receive classical or
quantum signals from Bob and verify that these are the
prescribed responses (up to a stipulated error rate) and
are received at the correct times (up to stipulated timing
errors).

Following Ref. [1], we additionally assume that B and
the Ai can keep some classical information secure within
their respective laboratories, i.e. that adversaries can-
not obtain this information unless and until the relevant
agent chooses to transmit it outside their laboratory. We
assume this holds true even if adversaries are able to
move or destroy Bob’s laboratory. While this is a strong
assumption, it is a standard one in quantum key dis-
tribution (QKD) and other areas of cryptography. It
effectively counters replacement attacks, since if a tag-
ging device within Bob’s laboratory contains a signifi-
cant amount of secret information, adversaries have only
a small probability of constructing an identical replace-
ment.

More precisely, there is only a small probability that
any given attempted replacement will be identical. Ad-
versaries could construct a set of replacements Ri, where
Ri contains key ki, so that each possible key is contained
within one of the replacements. This guarantees that the
tag has been precisely replicated, but does not give the
adversary a way of identifying which replacement is the
replica, and does not facilitate a useful spoofing attack.
Even for a relatively short key of 62 bits (as in the secu-
rity analysis provided in section V), a successful attack

296



4

of this form requires 262 ≈ 1018 replacements.

III. SCHEME 1: BOB CAN KEEP A CLASSICAL
KEY SECRET BUT HAS NO TRUSTED CLOCK

We work with the following slight variation of the
scheme of Ref. [1]. Let Alice have M agents A1, . . . , AM

surrounding the expected location L of Bob. We assume
this expected location L is initially known to Alice, and
may not necessarily be known to Bob. We assume that in
the absence of adversarial interference L is fixed through-
out the position verification protocol, i.e. that Bob re-
mains stationary.
Alice and Bob agree on a sufficiently large integer n,

and on a sufficiently small tolerable error rate 0 ≤ γ <<
1, which act as security parameters. In this scheme we
assume Bob does not possess a trusted clock.
We simplify the description by making the idealized

assumption that all communications take place at or near
the speed of light through vacuum, which we denote by c.
The scheme tolerates small delays, at the cost of reducing
the precision to which Alice can verify Bob’s precision.
In essence, the scheme requires Alice and Bob to au-

thenticate to each other using previously distributed se-
cret keys. For all i = 1, 2, . . . ,M , Alice’s agent Ai and B
perform the following actions.

1. At some time prior to the position verification
protocol, Ai and B share a secret key ki =
{ki1, . . . , kiN}, where each substring kij has n bits,
and N is as large as required. They keep this se-
cret from eavesdroppers, although Ai may share it
securely with other Aj . The key sharing may be
done arbitrarily far in advance. Let kij = (qij , rij),
where qij and rij are sub-strings of kij comprising
the first m bits and the last (n − m) bits of kij ,
respectively. Here ‘q’ and ‘r’ stand for ‘query’ and
‘reply’. For simplicity, we assume the key-sharing is
error-free, i.e. that Ai and B have identical versions
of ki. This can be achieved, with high probability,
by standard key reconciliation methods. A small
allowed key sharing error rate can also be incorpo-
rated in the error-tolerant (γ > 0) versions of the
position verification protocol, as described below.

2. A and B may also, prior to the position verification
protocol, share a separate secret key k. This key
may be expanded as and when needed by QKD, if
A and B have the appropriate resources, and used
to extend the secret keys ki (i.e. to increase the
number of substrings N).

The position verification protocol typically involves
many rounds of queries and replies. We describe
here round j.

3. Each Ai sends query-message-ij, comprising the
plain text ‘Query ij’ followed by qij (the query sub-
string of kij) to B. The messages are sent at light

speed, timed so that they should arrive at location
L at time Tj . The messages are sent in such a
way that, in the absence of interference, they can
be distinguished even if they arrive simultaneously.
For example, they may be sent using different fre-
quencies, or using a code that allows superimposed
classical messages to be distinguished.

4. B processes the messages purportedly received
from the various Ai sequentially, using some order-
ing algorithm for distinguishable messages received
simultaneously. We thus, in the next step, describe
his response to a single message in the sequence.

5. B receives the message (‘Query ij′’,q′ij′ ), purport-
edly from Ai. Because of possible adversarial in-
terference, we do not assume that j′ = j, even
if the message arrives at Tj, nor that Ai has in
fact sent query-message-ij, nor that q′ij′ = qij′ . B
keeps a register Ri recording the second index j of
the last query-message-ij that he received and vali-
dated with first index i. If Ri = (j′−1), then B sets
Ri to j

′. If not, he aborts the protocol (i.e. does not
continue with the steps below) and stops respond-
ing to any future queries. (Here and below, we give
the simplest response to detection of an apparent
spoofing. B stops communicating; the Ai become
aware that the protocol has failed; they presumably
take appropriate action. Of course, other ways of
proceeding are possible and in some circumstances
preferable. For example, B may continue to re-
spond to valid queries so long as the proportion
of invalid queries is smaller than some pre-agreed
threshold. With suitable adjustments of security
parameters, this modified protocol can continue to
give useful security guarantees.)

6. B checks whether the Hamming distance
d(q′ij′ , qij′ ) ≤ γm. If so, he accepts the query
as authentic. If not, he aborts, as above.

Timing: If B is indeed at location L, the messages
arrive at time Tj, and his authentication takes place
within the time interval [Tj , Tj+δ1], where δ1 is the
processing time required.

7. If B authenticates the query purporting to come
from Ai in the previous step, he sends the plain text
‘Reply ij′’ followed by rij′ (i.e, the reply sub-string
of kij′ ) to Ai. Otherwise B does not respond, and
accepts no subsequent queries from any Ai, even if
they are authenticated.

Depending on which option is more technologically
convenient, B either broadcasts his response to all
the Ai. or sends it just to the agent Ai identi-
fied by the authenticated Query ij′. (Note that
it is possible that Ai is not the sender even though
Bob has authenticated the query.) We call these re-
spectively the broadcast and narrowcast versions of
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the protocol. In the broadcast version, if B broad-
casts simultaneous messages to more than one Ai,
the messages are sent in such a way that, in the
absence of interference, they can be distinguished
even if they arrive simultaneously (as above).

Timing: If B is indeed at L, he sends his reply by
the time Tj + δ1+ δ2, where δ2 is the time taken by
B to transmit.

8. In the narrowcast version, suppose that Ai receives
(‘Reply i′j′’, r′i′j′ ), purportedly from Bob. If i = i′,

and j′ = j (where j is the current round, i.e. Ai has
received and authenticated replies from all rounds
k < j), Ai verifies that the Hamming distance
d(rij , r

′
ij) ≤ γ(n − m) and that she has received

the reply r′ij not later than the time Tj +
di

c
+ δL,

where δL has been agreed in advance by Bob and
Alice and must satisfy δL ≥ δ1 + δ2. If so, she
accepts the reply as authentic and sends the con-
firmation message ‘sij = 1’ via an authenticated
channel to the master agent A0. Otherwise, she
sends the message ‘sij = 0’.

In the broadcast version, Ai ignores all messages
not of the form (‘Reply ij′’, r′ij′ ) for some string

r′ and some j′. That is, Ai considers only replies
apparently addressed to her. For those messages,
she follows the verification steps for j′ and r′ above,
and sends confirmation messages as above.

Timing: If B is indeed at L, then Ai authenticates
his reply by the time Tj+

di

c
+δ1+δ2+δ3, where di

is the distance from L to Ai and δ3 is the time taken
for Ai to authenticate. She sends her confirmation
message at time Tj+

di

c
+δ1+δ2+δ3+δ4, where δ4

is the time taken by Alice to generate and transmit
the confirmation message.

9. If A0 receives sij = 1 and authenticates it as a
message from Ai for all i = 1, 2, . . . ,M , then she
authenticates that the location of B at time Tj was
L, within some position uncertainty given by cδL.
If she receives sij = 0 for some i then the position
verification in round j fails.

Timing: Suppose that the authenticated channel
from Ai to A0 had length d′i and that messages
travel on it at speed c′i ≤ c. A0 completes the
authentication by the time

TA = Tj +max
i

{di

c
+

d′i
c′i

}

+ δ1 + δ2 + δ3 + δ4 + δ5 ,

where δ5 is the time taken for A0 to compute
whether all confirmation messages satisfy sij = 1.

Comments on Geometry: A successful verification
by Ai guarantees that, at time Tj , B was within a ball
Bi with Ai at the centre, with radius di+ cδL. Using the
information of her agents, A0 can verify B’s location to
have been within the intersection of the balls B1, . . . , BM .

In the ideal case δL = 0, this intersection is exactly the
location L. Thus, by increasing M , and appropriately
locating Alice’s agents we can reduce the uncertainty of
B’s location in the verification scheme.
Note that a proof of principle implementation for 3D

position verification could be carried out for M = 2, with
A1 and A2 approximately collinear with L, on opposite
sides of L. If the collinearity is a good approximation,
this may verify location to good precision. The precision
is greater if we may assume A1, A2 and B are constrained
to lie exactly on a line, so that we effectively carry out
position verification in 1D.
An implementation with M = 1 can only guarantee

that B is within a ball surrounding Alice’s sole agent
A1. Nonetheless, implementation of M = 1 would allow
a proof of principle test of the technology, since we can
extrapolate the results to M > 1 and estimate the preci-
sion that would be obtained for any given configuration
of the Ai and B.
Comment on key lengths and error tolerance: It

may be useful to vary the key lengths in some scenarios,
so that kij has length nij . It may also be useful to allow
the error thresholds to vary, so that communications in
round j from Ai to B have threshold γ→ij , and from B to
Ai have threshold γ←ij . For simplicity we consider fixed
n and γ in our discussion.

IV. TIME DELAYS OF SCHEME 1

We identify three main types of time delays.

1. ∆L = δ1 + δ2 provides the uncertainty in Ai’s es-
timate of d(Ai, L), assuming that she is confident
of the value of δ3, which is determined by her own
equipment. (In practice there will presumably be
at least slight uncertainties in δ3. We neglect these
for simplicity; they can be included in the calcula-
tion of ∆L if significant.) We would like to make
∆L as short as possible in order for the location L
to be verified as precisely as possible. As mentioned
above, we require ∆L ≤ δL.

2. ∆V = δ3+δ4+δ5 comprises the delay that A0 takes
in learning Ai’s estimate d(Ai, B), after Ai receives
B’s response. During the interval ∆L + ∆V , B
could be displaced, with A0 learning this (if at all)
only later. So we would also like to make ∆V as
short as possible, all else being equal.

3. ∆R denotes the time difference between one ver-
ification and the following one, where R denotes
‘repetition’. All else being equal, we would like
to repeat the location verification protocol as fre-
quently as possible and thus minimize ∆R.

The relative importance of minimizing ∆L,∆V and
∆R, and the value of tradeoffs among them, depends on
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the scenario. One factor is whether Bob’s potential dis-
placement (either by wandering or by the action of ad-
versaries) is bounded only by c, or whether in practice a
significantly lower bound (such as the speed of sound in
air, or the speed of the fastest planes currently available)
is justified.

V. SOME POSSIBLE ATTACKS ON SCHEME 1

Our security analysis below applies for arbitrarily
powerful spoofers, who might have arbitrarily advanced
quantum technology and who could share an arbitrar-
ily large amount of entanglement. Our analysis is based
on the assumption that Bob can keep classical informa-
tion secret from spoofers. The assumption that collabo-
rating parties have laboratories in which they can keep
data secure is standard (and necessary) for quantum key
distribution schemes and many other quantum crypto-
graphic protocols. We believe it is equally reasonable in
many scenarios in which position verification is required.
Nonetheless, it is ultimately a technological assumption,
whose validity should be examined in any given applica-
tion and scenario.

A. Desynchronizing Alice’s clocks

As mentioned above, Alice’s agents must keep their
laboratories securely synchronized to a common refer-
ence frame F during the verification scheme. We assume
they trust their locations. This is reasonable in scenar-
ios in which Alice has a secure and stable infrastructure.
They also require secure clock synchronization. This is
a general issue in relativistic quantum cryptography. In
practice, it is often partially addressed by keeping clocks
synchronized using GPS devices within the required time
uncertainty [25–29]. However, adversaries may spoof the
GPS signals [30], desynchronizing Alice’s clocks.
To defend against such attacks, the Ai may initially

synchronize their clocks in a single secure laboratory (for
example A0’s) and then displace these securely to their
separate laboratories. To counter clock drift, this process
could in principle be repeated at suitably short intervals
during the protocol, ensuring that the Ai’s clocks are
repeatedly re-synchronized with new incoming synchro-
nized clocks. Note that this requires not only a supply
of accurate clocks, but also secure distribution channels
that ensure the clocks remain very well synchronized as
they are distributed.

B. Impersonating Alice and Bob

The spoofer may have multiple agents Sk at separate
locations: we refer to them collectively as S. The spoofer
S could try to impersonate B in an strategy that com-
bines spoofing Ai to B, with the aim of learning the

strings rij , and spoofing B to Ai. We consider this for
a single Ai; the discussion obviously extends to multiple
agents.
Suppose that rounds up to (j − 1) have been honestly

completed by Ai and B. Before B receives Ai’s commu-
nication for round j, S could send the plain text ‘Query
ij’ to B followed by some string q′ij of m bits. Assuming
S has no previous information about qij , with probabil-
ity 2−m, q′ij = qij and B sends rij to S. S can then
send rij to Ai, impersonating B when Ai later sends the
authentic ‘Query ij’ with string qij .
With probability 1 − 2−m, q′ij 6= qij , in which case B

does not transmit rij in following queries by S or Alice.
In this case, S generates a random guess r′ij of rij and
sends it to Ai after the plain text ‘Reply ij’, assuming
she does not have any previous knowledge about rij . S

succeeds in this case with probability 2−(n−m).
Thus, if the keys kij are perfectly random and secret,

S’s probability to succeed in impersonating B in the pre-
vious strategy is

PS =
(1

2

)m

+

[

1−
(1

2

)m
]

(1

2

)n−m

. (1)

We have assumed here that γ = 0, i.e., neither A nor
B accept errors in the received strings. PS is minimized
(for fixed even n) for m = n

2 , when,

PS = 2
(1

2

)
n

2

−
(1

2

)n

≤21−
n

2 . (2)

This gives a strong security bound of PS ≈ 10−9 with
relatively short keys of n = 62 bits.
We now consider the case γ > 0. We have

PS(γ) =
(1

2

)m

|Qγ
m|+

[

1−
(1

2

)m

|Qγ
m|

]

(1

2

)n−m

|Qγ
n−m|,

(3)
where Q

γ
N = {x ∈ {0, 1}N |w(x) ≤ γN}, and where w(x)

denotes the Hamming weight of the bit string x.
We assume that n is even and that m = n

2 . We obtain
from (3) that

PS(γ) = 2
(1

2

)m

|Qγ
m| −

(1

2

)2m
(

|Qγ
m|

)2

≤ 2(1−m)|Qγ
m|

≤ 2(1−m)2mh(γ)

= 2

[

1−m(1−h(γ))
]

, (4)

where in the third line we used that |Qγ
m| ≤ 2mh(γ), which

is shown in Sec. 1.4 of Ref. [31], and where h(γ) =
−γ log2 γ− (1− γ) log2(1− γ) is the binary entropy of γ.
For example, even with a high error tolerance, γ = 0.05

(giving h(0.05) = 0.2864) and taking n = 88, we obtain
from (4) that PS(0.05) < 10−9.
We have assumed the keys are perfectly random, i.e.,

that S has zero information about them. In practice this
will not be quite correct, but keys can be made close
enough to random to make corrections negligible.
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C. Obtaining the keys

S could try to learn the keys kij before they are used,
i.e., before B sends the kij ’s to Alice’s agents. But by
assumption the scheme is secure against these attacks:
we assume Alice and Bob generate and distribute the keys
secretly, and store them secretly until Bob communicates
the secret keys.

D. Adding time delays

S can add time delays in any communications between
any of Alice’s agents and B. This can increase the un-
certainty in B’s location authenticated by Alice and/or
delay Alice’s verification. If S thereby causes the time
delays between the Ai and B to be larger than accept-
able thresholds, or for the communications in one or both
directions to become out of sequence, then this causes the
position verification to fail. We assume in this case Al-
ice responds, for example by inspecting B’s location with
other physical means.
A limiting case is that S can jam the communications

altogether. These delay or jamming attacks are unavoid-
able in practice unless the communication channels can-
not be accessed by S. Inaccessible private channels is a
strong assumption not generally made in quantum cryp-
tography. One practical reason not to make this assump-
tion is that it requires secure laboratories linked by a
network of securely hardened channels. In position ver-
ification applications, these channels might typically be
∼ 10 − 105km long (ranging from small scale networks
on Earth to high Earth orbit satellites) and would need
to be approximately straight line. A theoretical reason
not to make it is that it trivialises position verification
(PV) as a task. Given inaccessible private channels, PV
can be securely implemented simply by exchanging mes-
sages, without using secret keys or any quantum commu-
nications, provided the channel transmission times are
reliably known.
If S adds suitably short time delays, A can verify B’s

location within tolerable error bounds. If she adds longer
time delays, she prevents A from verifying B’s position,
but alerts A to her interference. So the protocol is secure
(in the sense claimed) against delay or jamming attacks.

E. Altering Bob’s records

If S can, without detection, alter Bob’s record of
whether previous queries were authenticated, she can
send repeated queries of the form query-message-ij, al-
tering the record so that Bob has no record of each failed
authentication. Bob will thus continue the protocol after
failed authentication. S can thus continue until she suc-
cessfully guesses the query string qij , and Bob’s response
will provide her with rij . If she is able thus to obtain
rij before the authentic query-message-ij is sent, she can

spoof a response to this challenge. If she is able to do this
for all ij, she can systematically and indefinitely mislead
the Ai as to B’s location.

Timing constraints may restrict the scope of this at-
tack, since as described it requires S to make ∼ 2m

guesses at qij to obtain rij . However, if S is also able
to alter the data in Bob’s register Ri, she can set it so
that Bob will accept a query-message-ij for some value of
j that may not authentically be sent until some (perhaps
far) future time. This enlarges the time window during
which she can send guesses at query-message-ij.

Also, if S can, without detection, alter Bob’s records
of the qij , in a way that allows her to choose the altered
string (although not read the original string), she can
create new query keys qSij that she knows. If she is able
to do this before the authentic query-message-ij is sent,
she can use qSij to send a spoof query-message-ij, obtain
the response ij , and use this to spoof responses to au-
thentic queries. If she is able to do this for all ij, she can
systematically and indefinitely mislead the Ai as to B’s
location.

The protocol thus requires that B can keep classical
data secure against alteration, as well as keeping the key
strings private (i.e. secure against reading). The abil-
ity to ensure that classical data within a secured site is
unalterable is also a standard cryptographic assumption.
However it is worth noting that it neither necessarily im-
plies nor is necessarily implied by data privacy.

VI. QUANTITATIVE CONSIDERATIONS FOR
SCHEME 1

We consider for simplicity a 1D implementation in
which Alice has two agents (case M = 2), A1 and A2.
Let A1, A2 and B be on the same line, with B between
Alice’s agents at equal distance from each of them.

We assume that the communication channel between
A1 (A2) and B is optical and in free space, transmitting
at the speed of light c.

A. Bob performs information processing with
electronic circuits

Steps 6 and 7 comprise B receiving Alice’s query signal
encoded in light or other electromagnetic signals, con-
verting these to electronic signals, authenticating the re-
quest originated from Alice, and then encoding the reply
in light or other electromagnetic signals and transmit-
ting to Ai, for i = 1, 2. In practice, a circuit comprising
FPGAs could be used to perform these computations as
fast as possible. Note that the signals exchanged be-
tween Alice and Bob in the position verification protocol
are classical. Hence they can be sufficiently intense to
deal with losses and errors. This is a significant practical
advantage compared to position authentication schemes
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that need to transmit quantum states between Alice and
Bob (e.g., [2–4, 32, 33]).
As an illustration, we take n ∼ 62, with γ = 0. We note

that because our scheme only involves classical commu-
nication and classical processing, it is sensible to assume
zero errors, in contrast to schemes that require quantum
communication or quantum information processing. An
FPGA simply needs to compare received and stored key
strings. Ref. [28] performed in 2016 completed a round
including more complex computations and communica-
tion between adjacent FPGAs with a string of 128 bits
in 1.8 µs. With these devices, assuming processing time is
approximately linear in string length, our simpler com-
putation with n = 62 bits should be completed within
≤ 0.88µs, giving uncertainty of ≤ 264m in B’s location.
With state of the art FPGAs, we estimate that B’s

verification might be completed within ∼ 10ns, giving an
uncertainty of ∼ 3m in B’s location.
If verification rounds take place every µs, the light

speed signalling bound implies that the tag can move
≤ 300m between rounds. For 4 verifiers, this round fre-
quency consumes ≈ 4× 124× 106 ≈ 5× 108 key bits per
second.
If we assume, perhaps plausibly in many scenarios,

that the tag will not move faster than the speed of sound
(in air at sea level) from its expected location, verifica-
tion rounds every µs mean that the tag cannot move more
than ≈ 3 × 10−4m between rounds. With rounds every
ms, this becomes ≈ 3 × 10−1m. This round frequency
consumes ≈ 5 × 105 key bits per second. While still
demanding, these resource requirements seem achievable
with present technology, and give (modulo assumptions)
good enough location precision to be useful in many sce-
narios.

VII. SCHEME 2: BOB HAS A TRUSTED
SYNCHRONIZED CLOCK

Our second scheme introduces the assumption that B
possesses a clock synchronised with Alice’s clocks. This
allows Alice to specify a signalling schedule in advance
so B can transmit at specified times. Of course, it makes
extra technological demands on B and on the size and
security of his laboratory.
The main difference between Schemes 1 and 2, is that

Scheme 2 does not require Alice to send a query signal
every time she wishes to verify B’s location. Instead,
she shares an authenticated signalling schedule with B
in advance, with B relying on his synchronised clock to
follow the schedule. This removes the need for B to au-
thenticate each individual query from Alice in real time,
as he can authenticate the whole signalling schedule in
advance. This removes one source of delay in the pro-
tocol, namely B’s authentication time, denoted as δ1 in
the description of Scheme 1. It also potentially removes
a second source of delay, B’s transmission time δ2, since
if Bob knows δ2 he can adjust for it by starting the trans-

mission so that it completes (rather than starts) at the
time Tj stipulated for his round j communication in A’s
schedule. More precisely, it potentially replaces δ2 by the
uncertainty ∆2 in Bob’s transmission time, and typically
we expect ∆2 ≪ δ2. We assume this adjustment below.
(We consider schemes involving only classical commu-

nication between A and B here, but it is worth not-
ing that removing these delays is potentially even more
valuable for schemes involving quantum communications
from A and B and quantum measurement and/or infor-
mation processing by B, since the latter steps are po-
tentially significantly slower than their classical counter-
parts. It thus seems potentially advantageous, in scenar-
ios in which it is justifiable, also to allow B and A to
share synchronized clocks in such schemes. However, the
advantage is lost if B is not able to keep information se-
cret, since storing information for later use exposes it to
spoofers. And if B is able to keep secret, the protocols
discussed here using classical queries and responses may
generally be more efficient. So this option may perhaps
be useful only in the restricted scenario where B is able
to keep quantum information secret but not classical in-
formation.)
Scheme 2 again assumes that Alice has M agents

A1, . . . , AM surrounding the location L of B. Alice and
B agree on a sufficiently large integer n, and on a suffi-
ciently small error rate 0 ≤ γ << 1, which act as secu-
rity parameters. We also assume that all communications
take place at the speed of light through vacuum, which
we denote by c. For all i = 1, 2, . . . ,M , Alice’s agent Ai

and B perform the following actions.

1. A and B share a secret key k that is used to au-
thenticate communications and may also be used
as a one-time pad to keep communications secret.
This key may be expanded as and when needed by
QKD.

2. At some time prior to the position verification
protocol, Ai and B share a secret key ki =
{ri1, . . . , riN}, where each substring rij has n bits,
and N is as large as required. They keep this secret
from spoofers, although Ai may share it securely
with other Aj . The key sharing may be done ar-
bitrarily far in advance. For simplicity, we assume
the key-sharing is error-free, i.e. that Ai and B
have identical versions of ki. This can be achieved,
with high probability, by standard key reconcilia-
tion methods. A small allowed key sharing error
rate can also be incorporated in the error-tolerant
(γ > 0) versions of the position verification proto-
col, as described below.

3. A sends an authenticated message to B, specifying
the times at which he is required to verify his loca-
tion. This can be done arbitrarily far in advance of
step 3, and possibly after or concurrent with step
2. In the simplest version, this message is public.
Alternatively, it could be encrypted, to prevent S
from learning the verification schedule.
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4. If Tj is the j-th time B is required to verify his
location, then to each Ai he sends the plain text
‘Reply ij’ followed by rij , completing his trans-
mission at time Tj , according to his clock. As in
Scheme 1, B may either broadcast or narrowcast his
replies. We describe the narrowcast version below;
the minor modifications required for the broadcast
version are as for Scheme 1.

Timing: this takes place by the time Tj + δd +∆2,
where ∆2 is the uncertainty in the time it takes B
to transmit (consistently defined as in Scheme 1)
and δd is the time difference between Alice and B’s
clocks, which may be non-zero if they are not per-
fectly synchronised. Note that we cannot assume
δd > 0. We assume that Ai and B are confident
that their clock technology will ensure, in the ab-
sence of adversarial attacks on their clocks, there
is some bound δmax

d > 0 such that |δd| ≤ δmax
d . In

practice, this bound will be time-dependent. For
simplicity here we consider a single bound that is
valid throughout the duration of the protocol.

5. Ai receives (‘Reply i′j′’, r′i′j′ ). She verifies that

i′ = i, that j′ = j (where j is the current round,
i.e. Ai has received and authenticated replies from
all rounds k < j), that the Hamming distance
d(r′ij , rij) ≤ γ(n − m) and that she has received

the reply r′ij not later than the time Tj +
di

c
+ δ̃L,

where δ̃L has been agreed in advance by Bob and
Alice, and which must satisfy δ̃L ≥ δmax

d + ∆2. If
so, she sends the confirmation message ‘sij = 1’
together with the time that she received r′ij to A0.
Otherwise she sends the message ‘sij = 0’.

Timing: If B is indeed at L, then Ai authenticates
his reply by the time Tj+

di

c
+δd+∆2+δ3, where di

is the distance from L to Ai and δ3 is the time taken
for Ai to authenticate. She sends her confirmation
message at time Tj+

di

c
+δd+∆2+δ3+δ4, where δ4

is the time taken by Alice to generate and transmit
the confirmation message.

6. If A0 receives sij = 1 and authenticates it as a
message from Ai for all i = 1, 2, . . . ,M , then she
authenticates that the location of B was L, within
some uncertainty given by c(δ̃L − δmax

d ), at some
time T ′j , where |T ′j − Tj| ≤ δmax

d . This implies that
the location of B at time Tj was L, within some

uncertainty given by cδ̃L.

Timing: Suppose that the authenticated channel
from Ai to A0 had length d′i and that messages
travel on it at speed c′i ≤ c. A0 completes the
authentication by the time

TA = Tj +max
i

{di

c
+

d′i
c′i

}

+ δd +∆2 + δ3 + δ4 + δ5 ,

where δ5 is the time taken for A0 to compute
whether all confirmation messages satisfy sij = 1.

VIII. FURTHER ATTACKS ON SCHEME 2

As in section V, our security analysis here applies
for spoofers who may have arbitrarily advanced quan-
tum technology and share an arbitrarily large amount of
entanglement, given our assumption that Bob can keep
classical information secure from the spoofers.

A. Acting outside schedule

S may gain knowledge of the signalling schedule, po-
tentially providing her with information about ∆R, the
time difference between subsequent location requests.
This exacerbates the problem illustrated in point 3 in
section III, as S would know when she is able to move
B (or encourage him to move, by spoofed GPS or other
means) without risking a location check. This risk could
be mitigated either by keeping the schedule suitably se-
cret (by sending it encrypted) and unpredictable, or by
ensuring the scheduled times are frequent enough that S
could not move B a significant distance before the next
verification is due. Note that the first option consumes
a potentially large amount of shared secret key and the
second requires a potentially high key refresh rate.

B. Clock desynchronization

Bob’s clock may become desynchronized, either nat-
urally or as a result of S’s interference, introducing a
time difference δd between Alice and Bob’s clocks. At
least theoretically, this is a significant concern: if S is
able to move B physically at speeds arbitrarily close to
c, she can cause his clock to run arbitrarily slowly with
respect to A’s lab frame. However, slowing B’s clock
delays his responses, which means that A will not in-
correctly verify his position as guaranteed to be close to
L. In principle, S could also desynchronize B’s clock
by altering the gravitational field in his vicinity. Such
attacks are usually ignored in relativistic cryptography,
given that it is impractical to create any significant ef-
fect. In most applications of relativistic cryptography,
security is threatened only if the effect is large enough
that points believed by one party to be spacelike sepa-
rated are in fact timelike separated. In this case, though,
any degree of desynchronization affects the precision of
the position verification. However, in practice any effect
seems likely negligible compared to other uncertainties.
A and B might attempt to counter accidental or de-

liberate desynchronization by exchanging authenticated
messages to keep their clocks synchronized. This is com-
plicated by the fact that a simple synchronisation pro-
tocol requires knowledge of B’s position, or at least his
distance from the relevant Ai. Synchronization schemes
involving exchanges with several Ai in parallel still ap-
pear useful, but we will not pursue their analysis here.
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IX. CONCLUSION

We have presented schemes for position verification in
which the position verification queries and responses are
purely classical, involving no quantum communication or
quantum information processing. Quantum information
transmission and measurement is required only to refresh
the key via QKD. Our schemes are practical to imple-
ment with current technology. Their security is based
on a standard assumption in quantum cryptography, also
made in QKD, that a classical key can be stored securely,
as initially proposed in Ref. [1].

When QPV schemes use position verification queries
and/or responses that involve quantum communications,
they typically use photons to encode quantum states.
This poses challenges, including errors in state prepa-
ration, processing and measurement, losses, and secu-
rity problems due to imperfect single-photon sources and
single-photon detectors (e.g., photon-number splitting
attacks [34, 35] and multiphoton attacks [36]) and side-
channel attacks (e.g., [36]). The problem of losses is par-
ticularly challenging in schemes with large distances be-
tween the tagging device and the verifiers. An advan-
tage of our schemes is that the queries and responses are
purely classical. Quantum communications are needed
only to replenish the key via QKD, which is secure
against errors and losses. Moreover, the QKD commu-

nications, unlike the position verification queries and re-
sponses, are not tightly time constrained.
Given our assumptions, our schemes are secure against

arbitrarily powerful quantum spoofers, who may share
an arbitrary amount of entanglement. This is also an ad-
vantage compared to the best known quantum schemes,
which have only been proved secure against spoofers that
share an amount of entanglement linear in the classical
information) [32, 33].
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Abstract. Many “quantum supremacy” claims, notably by Google in 2019, rest upon the Linear Cross
Entropy Benchmarking (Linear XEB) verification metric. However, the hardness of classically spoofing
Linear XEB depends on the Cross-Entropy Quantum Threshold (XQUATH) assumption, which has been
disproven for sublinear depth circuits. System Linear Cross Entropy Score (sXES), a Linear XEB variant,
is a promising quantum supremacy verification metric for quantum Hamiltonian simulations as it relies on
a different assumption called the System Linear Cross-Entropy Quantum Threshold (sXQUATH). Here,
we disprove sXQUATH for sublinear depth circuits and construct an efficient spoofing algorithm for sXES
of sufficiently noisy experiments.
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In 2019, the Google quantum AI team claimed the first
experimental demonstration of “quantum supremacy,” [2]
or computational quantum advantage using a 53 qubits
superconducting circuit [3], signifying a major leap for-
ward in practical quantum computing and challenging
the extended Church-Turing thesis [4]. In verifying that
their circuit is correctly performing a task called quantum
random circuit sampling (RCS), they tested their sam-
ples using a metric called “Linear Cross-Entropy Bench-
marking (Linear XEB)” [5–10]. Since then, multiple
RCS experiments [11–13] have their quantum supremacy
claims verified by Linear XEB method, or a variant
thereof. Skepticism on these claims have been raised,
particularly by classical simulations of Google’s RCS ex-
periment [14–19] showing significantly shorter classical
runtime compared to their initial estimation of 10,000
years. Moreover, theoretical results on classical simula-
tion of different RCS variants [20–25] cast doubts on the
complexity-theoretic hardness of spoofing Linear XEB
that rests on the cross entropy quantum threshold as-
sumption (XQUATH) conjecture proposed by Aaronson
and Gunn [26]. Recent demonstration that XQUATH
does not hold for sublinear depth RCS [24], further di-
minishes the legitimacy of Linear XEB as a benchmark
for quantum supremacy.

In the ongoing pursuit of quantum supremacy by the
way of near-term quantum Hamiltonian simulation, a
variant of Linear XEB called the System Linear Cross
Entropy Score (sXES) has been proposed [27]. Struc-
tural difference between the circuits assessed by sXES
∗andrew.tanggara@gmail.com
†mgu@quantumcomplexity.org
‡kishor.bharti1@gmail.com

and other Linear XEB variants renders it unclear whether
existing Linear XEB spoofing methods such as [20, 22, 24]
can be used for sXES. Moreover the hardness of spoofing
sXES lies upon a complexity-theoretic conjecture known
as the System Linear Cross-Entropy Quantum Thresh-
old Assumption (sXQUATH), the formal relationship of
which to XQUATH is unknown. These fundamental dis-
tinctions from other Linear XEB variants thus renders
sXES a promising verification method in future claims of
quantum supremacy experiments.

In this work, we go beyond the technique in [24] to
show that there exists an efficient classical algorithm
that approximates the experiment sufficiently well to re-
fute sXQUATH (see Theorem 1). At the same time, we
also show explicitly that our algorithm spoofs the sXES
benchmark (see Theorem 2) for noisy experiments. Our
algorithm approximates the output probability distribu-
tion of a family of quantum circuits known as the Min-
imal Quantum Singular Value Transform (mQSVT) cir-
cuit [27], which sXES assessed upon. While the mQSVT
circuits bear the power to implement any quantum algo-
rithm that falls into the Quantum Singular Value Trans-
form (QSVT) framework [28] (such as Szegedy quantum
walk [29] and quantum solver for system of linear equa-
tions [30] and Hamiltonian simulation tasks [31, 32]), our
results suggest that a more robust benchmarking method
is necessary for any claim of quantum supremacy exper-
iment.

1 Hardness of spoofing mQSVT circuit
benchmarking

An mQSVT circuit mQSVT(U) (see Fig. 1) consists of
d “blocks”, each containing a copy of n + 1 qubit uni-
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tary U and a copy of its conjugate U †. Denote the
depth of U as dU so that we can write U = UdU

. . . U1

where Uj is the j-th layer of U . These unitaries are in-
terleaved by phase shift gates R(φ) at the top register
with carefully chosen phases (as discussed in the sup-
plementary material of [27]). Samples from an mQSVT
circuit are obtained from measuring the bottom n regis-
ters conditioned on measurement of the top register be-
ing 0. The outcome probability of an n-bit string x is
therefore p(U,x) = ∣⟨0x∣mQSVT(U)∣0n+1⟩∣2. Here we con-
sider unitaries U consisting only of two-qubit gates such
that in each layer, every qubit register is evolved by pre-
cisely one two-qubit gate without any geometric locality
assumption (hence n + 1 is even). This is the unitary ar-
chitecture assumed for the RCS simulation result in [24].

For a noisy mQSVT Hamiltonian simulation experi-
ment, a benchmarking scheme similar to XEB bench-
marking used in RCS experiment [3, 11, 12], called the
average system linear cross-entropy score (sXES) [27] was
proposed. For a given ideal mQSVT circuit mQSVT(U)
and (empirically approximated) experimental probabil-
ity pexp(U,x) of output x, its sXES is given by

EU [sXES(U)] = ∑
x≠0n

EU [p(U,x)pexp(U,x)] , (1)

where EU is expectation over random U . An experiment
with high sXES indicates a high circuit fidelity as it as-
signs a high probability pexp(U,x) to string x with high
ideal probability p(U,x), hence higher sXES.

Computational hardness of classically spoofing sXES
can be reduced to a statement which essentially says that:
The average error of any efficient classical algorithm that
takes a description of unitary U and output bit string x as
input and outputs an approximation of p(U,x) cannot be
exponentially smaller than the average error of uniformly
sampling x. This is a statement captured by the System
Linear Cross-entropy Quantum Threshold Assumption
(sXQUATH) [27], which the hardness of spoofing sXES
relies upon. More precisely, sXQUATH conjecture states
that there is no polynomial-time classical algorithm tak-
ing an efficient description of n + 1-qubit unitary U and
n bit string x as inputs and outputs an approximation
q(U,x) of mQSVT output probability p(U,x) such that

sXQ = E(p(U,X), 1

2n
) − E(p(U,X), q(U,X)) ≥ c2−3n

(2)

for some constant c and large enough n. Here, E(f, g) ∶=
EU,X[(f(U,X) − g(U,X))2] is the mean-squared error
(MSE) between functions f and g and EU,X is expec-
tation over uniformly random variable X ∈ {0,1}n/{0n}
and over Haar-random two-qubit gates in n+1-qubit uni-
tary U .

Now we present the first main result below in Theo-
rem 1, which states that sXQUATH generally does not
hold. Particularly for a single-block mQSVT circuit (i.e.
with d = 1) and a sublinear depth unitary U , one can
construct a classical algorithm running in time polyno-
mial in n with a non-negligibly less MSE than the trivial
approximation.

Theorem 1 There exists an efficient classical algorithm
taking an efficient description of n + 1-qubit unitary U
with sublinear depth dU = o(n) and n bit string x as in-
puts and outputs an approximation q(U,x) of a single-
block mQSVT circuit output probability p(U,x) that sat-
isfies eqn. (2).

Our second result further shows that the same algo-
rithm spoofs sXES for mQSVT circuits with sufficiently
large noise. As mQSVT circuits with completely depo-
larizing noise have uniform output probability, its sXES
is EU [sXES(U)] = 2−n∑x≠0EU [p(U,x)], indicating no
correlation with the ideal probability p(U,x). Our algo-
rithm spoofs sXES of all mQSVT circuits with depolar-
izing noise above a certain threshold (such that it is close
to 2−n∑x≠0EU [p(U,x)]).

Theorem 2 There exists an efficient classical algorithm
spoofing sXES for all noisy single-block mQSVT circuit
with n + 1-qubit unitary U such that its sXES is at most
2−n(∑x≠0EU [p(U,x)] + cdU ) for some constant c > 0.

If we consider mQSVT circuit corrupted with depo-
larizing noise with noise strength γ ∈ [0,1] on each of its
register in each layer, then for sufficiently large γ its sXES
score is going to be less than 2−n(∑x≠0EU [p(U,x)] +
cdU ). Theorem 2 indicates that the sXES all such noisy
mQSVT circuit is spoofed by our algorithm.

Classical algorithm that refutes sXQUATH and spoofs
sXES benchmark in Theorem 1 and Theorem 2 above is
from a family of algorithms called the Pauli path algo-
rithms. Below we discuss how the Pauli path algorithm
works in showing the theorems above. Additionally we
discuss how the existing instances of Pauli path algorithm
used to classically simulate quantum circuits [20, 24, 33]
are not directly applicable to mQSVT circuit, mainly due
to the existence of multiple copies of random unitaries.

2 Pauli path algorithm for disproving
sXQUATH and spoofing sXES

This section is slightly more technical as we define the
Pauli path algorithm, how existing results using Pauli
paths are not applicable in our case, and how can we
make the Pauli path algorithm work to show Theorem 1
and Theorem 2. Nevertheless here we only outline the
steps, for which a more rigorous treatment can be found
in the full manuscript [1].

Given an n-qubit quantum circuit C = CdCd−1 . . .C1

(where Cj is its j-th layer), Pauli path algo-
rithm classically computes its output probabilities
by expanding density matrices at every layer in
terms of normalized n-qubit Pauli matrices Pn =
{I/
√
2,X/

√
2, Y /

√
2, Z/

√
2}⊗n. At the input, we get

∣0n⟩⟨0n∣ = ∑s1∈Pn
s1Tr(s1∣0n⟩⟨0n∣). We can substitute this

expansion to the density matrix after the first layer, ρ1 ∶=
C1∣0n⟩⟨0n∣C†

1 then expand it in the same manner to get
ρ1 = ∑s1,s2∈Pn

s2Tr(s2C1s1C
†
1)Tr(s1∣0n⟩⟨0n∣). Repeating

this for the remaining layers and for measurement ∣x⟩⟨x∣,
we obtain transition amplitudes defined by ⟪s1∣0n⟫ ∶=
Tr(s1∣0n⟩⟨0n∣) and ⟪sj+1∣Cj ∣sj⟫ ∶= Tr(sj+1CjsjC

†
j ) and
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mQSVT(U)
Block 1 Block d

∣0⟩ R(φ1)

U

R(φ2)

U †

. . . R(φ2d−1)

U

R(φ2d)

U †

R(φ2d+1) ∣0⟩

∣0n⟩

. . .

∣x⟩⋮ ⋮ ⋮ ⋮ ⋮ ⋮

. . .

Figure 1: mQSVT circuit mQSVT(U) where U is a random n+ 1 qubit unitary made out of 2 qubit Haar-random unitaries and
R(φ) is Z-rotation gate with angle φ.

⟪x∣sd+1⟫ ∶= Tr(∣x⟩⟨x∣sd+1). For transition amplitude
⟪sj+1∣Cj ∣sj⟫, we call sj an input Pauli and sj+1 an out-
put Pauli. A sequence of normalized n-qubit Paulis
s = s1, s2, . . . , sd+1 is called a Pauli path. Then, the prob-
ability of n bit string x is

∣⟨x∣C ∣0n⟩∣2 = ∑
s∈Pd+1

n

f(C, s, x) , (3)

where each Pauli path defines a Fourier coefficient
f(C, s, x) = ⟪x∣sd+1⟫⟪sd+1∣Cd∣sd⟫ . . .⟪s2∣C1∣s1⟫⟪s1∣0n⟫.

In computing the output probabilities of mQSVT cir-
cuit, a Pauli path algorithm expands density matrices
at each layer in the copies of n + 1-qubit random uni-
tary U and its conjugate U †, as well as the single-qubit
rotation gates R(φ) interleaving them. So for a Pauli
path s through a mQSVT circuit with unitary U and n-
bit string output x, we denote an mQSVT circuit Fourier
coefficient as F (U, s, x), which consists of 2d(dU+1) tran-
sition amplitudes. Hence the probability of output x from
an mQSVT circuit with unitary U is

p(U,x) =∑
s

F (U, s, x) . (4)

Computing the exact output probabilities p(U,x) us-
ing Pauli paths is exponentially hard due to exponen-
tially many Fourier coefficients (one for each Pauli path
s). However it has been shown in [24] that for a uni-
tary random circuit C, a carefully chosen single Pauli
path can approximate p(C,0n) sufficiently well to refute
XQUATH and spoof Linear XEB for sublinear depth cir-
cuits. The performance of this carefully chosen Pauli
path approximation is due to the so-called “orthogo-
nality property” of Pauli paths [24, 34] which states
that the expectation of product of Fourier coefficient
between distinct Pauli paths is equal to zero. Namely,
EC[f(C, s, x)f(C, r, x)] = 0 if s ≠ r. This value appears
in both eqn. (2) and eqn. (1) when one expands the ideal
probability p(U,x) as in eqn. (4) and if q(U,x) is a Pauli
path approximation.

Unfortunately, orthogonality condition does not hold
in general for mQSVT circuits due to a random unitary
U appearing 2d number of times in a d-block mQSVT

circuit. In fact it can take positive and negative val-
ues, complicating the analysis even more. But as noted
in [34] on how the expectation of product between Fourier
coefficients are closely related to Haar-random unitary
moment matrix, we can use the random matrix theory
of unitary Weingarten calculus [35–38] to compute this
quantity for mQSVT circuits. This allows us to show
that there is a Pauli path approximation using only a
single Pauli path that disproves sXQUATH as stated in
Theorem 1, as well as spoofs sXES in the sense of The-
orem 2. This approximation for unitary U and outcome
x takes the form of

q(U,x) = 1

2n
+ F (U, r, x) , (5)

for Pauli path r = (Z⊗I⊗l−1⊗Z⊗I⊗n−l, Z⊗I⊗n, . . . , Z⊗
I⊗n) (up to normalization). With the chosen Pauli
path r, giving Fourier coefficient F (U, r, x), the MSE er-
ror E(p(U,X), q(U,X)) in the left-hand side of eqn. (2)
turns out to be cdU smaller than the MSE error of the
uniform-random sampling E(p(U,X),2−n) for some con-
stant c. By taking depth dU of unitary U to be sub-
linear, dU = o(n) eqn. (2) is then satisfied. Similarly
for eqn. (1), using approximation q(U,x) in place of ex-
perimental probability pexp(U,x) gives a nontrivial sXES
score stated in Theorem 2.

3 Future work and open questions
Our results along with [24], highlight the need for a

novel benchmarking task with a stronger complexity-
theoretic guarantee for future quantum supremacy exper-
iments. In particular, such guarantee needs to rule out
any possibility of spoofing by the Pauli algorithms. More-
over, one can also ask the question: What is the hardness
relationship between different benchmarking methods,
such as sXES, Linear XEB, XHOG, and their predecessor
HOG [5]? What is the complexity theoretic relationship
between their assumptions, sXQUATH, XQUATH, and
QUATH [5] (assumption for the hardness of HOG)? Can
one also disprove QUATH for sublinear-depth circuits us-
ing Pauli paths? To understand how to construct a more
robust benchmarking method, it would be insightful to
explore these questions.

307



References
[1] Andrew Tanggara, Mile Gu, and Kishor Bharti.

“Classically Spoofing System Linear Cross Entropy
Score Benchmarking”. In: (2024). arXiv: 2405 .
00789 [quant-ph].

[2] John Preskill. “Quantum computing
and the entanglement frontier”. In:
arXiv preprint arXiv:1203.5813 (2012).

[3] Frank Arute et al. “Quantum supremacy using
a programmable superconducting processor”. In:
Nature 574.7779 (Oct. 2019), pp. 505–510. doi: 10.
1038/s41586-019-1666-5. url: https://doi.
org/10.1038%2Fs41586-019-1666-5.

[4] Sanjeev Arora and Boaz Barak.
Computational complexity: a modern approach.
Cambridge University Press, 2009.

[5] Scott Aaronson and Lijie Chen. “Complexity-
Theoretic Foundations of Quantum Supremacy
Experiments”. In: (2016). arXiv: 1612 . 05903
[quant-ph].

[6] Sergio Boixo et al. “Characterizing quan-
tum supremacy in near-term devices”. In:
Nature Physics 14.6 (Apr. 2018), pp. 595–600.
doi: 10.1038/s41567-018-0124-x. url: https:
//doi.org/10.1038%2Fs41567-018-0124-x.

[7] Charles Neill et al. “A blueprint for demonstrating
quantum supremacy with superconducting qubits”.
In: Science 360.6385 (2018), pp. 195–199.

[8] Dominik Hangleiter et al. “Sample complex-
ity of device-independently certified “quantum
supremacy””. In: Physical review letters 122.21
(2019), p. 210502.

[9] Jens Eisert et al. “Quantum certification and
benchmarking”. In: Nature Reviews Physics 2.7
(2020), pp. 382–390.

[10] Dominik Hangleiter and Jens Eisert. “Computa-
tional advantage of quantum random sampling”. In:
Reviews of Modern Physics 95.3 (2023), p. 035001.

[11] Yulin Wu et al. “Strong quantum computational
advantage using a superconducting quantum pro-
cessor”. In: Physical review letters 127.18 (2021),
p. 180501.

[12] Qingling Zhu et al. “Quantum computational ad-
vantage via 60-qubit 24-cycle random circuit sam-
pling”. In: Science bulletin 67.3 (2022), pp. 240–
245.

[13] Lars S Madsen et al. “Quantum computational ad-
vantage with a programmable photonic processor”.
In: Nature 606.7912 (2022), pp. 75–81.

[14] Feng Pan and Pan Zhang. “Simulation of quan-
tum circuits using the big-batch tensor network
method”. In: Physical Review Letters 128.3 (2022),
p. 030501.

[15] Cupjin Huang et al. “Classical simula-
tion of quantum supremacy circuits”. In:
arXiv preprint arXiv:2005.06787 (2020).

[16] Yong Liu et al. “Closing the" quantum supremacy"
gap: achieving real-time simulation of a random
quantum circuit using a new sunway supercom-
puter”. In: Proc. of the Int’l Conference for HPC.
2021, pp. 1–12.

[17] Feng Pan, Keyang Chen, and Pan Zhang. “Solv-
ing the sampling problem of the sycamore quantum
circuits”. In: Physical Review Letters 129.9 (2022),
p. 090502.

[18] Gleb Kalachev et al. “Classical sampling of ran-
dom quantum circuits with bounded fidelity”. In:
arXiv preprint arXiv:2112.15083 (2021).

[19] Alexis Morvan et al. “Phase transi-
tion in random circuit sampling”. In:
arXiv preprint arXiv:2304.11119 (2023).

[20] Xun Gao and Luming Duan. “Efficient classical
simulation of noisy quantum computation”. In:
arXiv preprint arXiv:1810.03176 (2018).

[21] Boaz Barak, Chi-Ning Chou, and Xun
Gao. “Spoofing linear cross-entropy bench-
marking in shallow quantum circuits”. In:
arXiv preprint arXiv:2005.02421 (2020).

[22] Xun Gao et al. “Limitations of linear cross-
entropy as a measure for quantum advantage”. In:
arXiv preprint arXiv:2112.01657 (2021).

[23] Changhun Oh, Liang Jiang, and Bill Fefferman.
“Spoofing cross-entropy measure in boson sam-
pling”. In: Physical Review Letters 131.1 (2023),
p. 010401.

[24] Dorit Aharonov et al. “A polynomial-time clas-
sical algorithm for noisy random circuit sam-
pling”. In: Proceedings of the 55th ACM STOC.
2023, pp. 945–957.

[25] Joel Rajakumar, James D Watson, and Yi-Kai
Liu. “Polynomial-Time Classical Simulation of
Noisy IQP Circuits with Constant Depth”. In:
arXiv preprint arXiv:2403.14607 (2024).

[26] Scott Aaronson and Sam Gunn. “On the Clas-
sical Hardness of Spoofing Linear Cross-Entropy
Benchmarking”. In: (2020). arXiv: 1910 . 12085
[quant-ph].

[27] Yulong Dong, K. Birgitta Whaley, and Lin Lin.
“A quantum hamiltonian simulation benchmark”.
In: npj Quantum Information 8.1 (Nov. 2022). doi:
10.1038/s41534-022-00636-x. url: https://
doi.org/10.1038%2Fs41534-022-00636-x.

[28] András Gilyén et al. “Quantum singular value
transformation and beyond: exponential im-
provements for quantum matrix arithmetics”.
In: Proceedings of the 51st ACM STOC. 2019,
pp. 193–204.

308



[29] Mario Szegedy. “Quantum speed-up of
Markov chain based algorithms”. In:
45th IEEE symposium on found. of CS. IEEE.
2004, pp. 32–41.

[30] Aram W. Harrow, Avinatan Hassidim, and Seth
Lloyd. “Quantum Algorithm for Linear Systems
of Equations”. In: Physical Review Letters 103.15
(Oct. 2009). issn: 1079-7114. doi: 10 . 1103 /
physrevlett.103.150502. url: http://dx.doi.
org/10.1103/PhysRevLett.103.150502.

[31] Richard P Feynman. “Simulating physics with
computers”. In: Feynman and computation. CRC
Press, 2018, pp. 133–153.

[32] Seth Lloyd. “Universal quantum simulators”. In:
Science 273.5278 (1996), pp. 1073–1078.

[33] Michael J Bremner, Ashley Montanaro, and Dan
J Shepherd. “Achieving quantum supremacy with
sparse and noisy commuting quantum computa-
tions”. In: Quantum 1 (2017), p. 8.

[34] Aram W Harrow and Richard A Low. “Ran-
dom quantum circuits are approximate 2-designs”.
In: Communications in Mathematical Physics 291
(2009), pp. 257–302.

[35] Benoıt Collins, Sho Matsumoto, and Jonathan
Novak. “The Weingarten Calculus”. In:
NOTICES OF THE AMS 69.5 (2022).

[36] Yinzheng Gu. “Moments of random matrices and
weingarten functions”. PhD thesis. 2013.

[37] Daniel A Roberts and Beni Yoshida.
“Chaos and complexity by design”. In:
Journal of High Energy Physics 2017.4 (2017),
pp. 1–64.

[38] Yinchen Liu. “Moments of random quantum cir-
cuits and applications in random circuit sampling”.
MA thesis. University of Waterloo, 2021.

309



Robust and efficient verification of measurement-based quantum
computation

Zihao Li1 Huangjun Zhu1 ∗ Masahito Hayashi2 †

1Department of Physics and State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and
Quantum Computing, Center for Field Theory and Particle Physics, Fudan University

2School of Data Science, The Chinese University of Hong Kong, Shenzhen, International Quantum Academy
(SIQA), and Graduate School of Mathematics, Nagoya University

Abstract. To achieve reliable measurement-based quantum computation, it is crucial to verify whether
the resource graph states are accurately prepared in the adversarial scenario. Previous verification protocols
for this task are resource consuming or noise susceptible. Here, we propose a robust and efficient protocol
for verifying arbitrary graph states with any prime local dimension in the adversarial scenario, which can
be applied immediately to verifying measurement-based quantum computation. Our protocol requires only
local Pauli measurements and is easy to realize with current technologies. It achieves the optimal scaling
behaviors with respect to the system size and the target precision, and exponentially enhances the scaling
behavior with the significance level.

Keywords: robust verification, MBQC, graph state, adversarial scenario

The technical version of this work is available on
arXiv:2305.10742.

1 Introduction

Quantum computation offers the promise of exponen-
tial speedups over classical computation on certain im-
portant problems [1–3]. The very power of quantum com-
putation raises the challenging problem of verifying the
correctness of computation results. This problem lies at
the heart of the active research field of quantum char-
acterization, verification, and validation (QCVV) [4–9].
However, it is extremely difficult to construct robust
and efficient verification protocols that apply to noisy,
intermediate-scale quantum (NISQ) devices [3, 10,11].

Measurement-based quantum computation (MBQC)
[12–16] is a powerful and flexible model of quantum com-
putation, where graph states are used as resources and
local projective measurements on qudits are used to drive
the computation. Compared with the preparation of mul-
tipartite entangled states, it is in general much easier
to perform local projective measurements accurately. So
the main challenge in the verification of MBQC lies in
the verification of the underlying resource states.

In this paper, we consider the problem of verifying
the resource graph states in the following adversarial sce-
nario [17–23], which is pertinent to blind and cloud quan-
tum computing [19,24–26]: Alice is a client who can only
perform single-qudit projective measurements, and Bob
is a server who can prepare arbitrary quantum states. To
perform MBQC, Alice delegates the preparation of the
resource graph state |G〉 ∈ H to Bob, who then prepares
a state ρ on the whole system H⊗M and sends it to Alice
qudit by qudit. If Bob is honest, then he is supposed to
generate M copies of |G〉; while if he is malicious, then he
can mess up the computation of Alice by generating an
arbitrary correlated or even entangled state. To obtain

∗zhuhuangjun@fudan.edu.cn
†hmasahito@cuhk.edu.cn

reliable computation results, Alice needs to verify the re-
source state prepared by Bob with suitable tests on some
systems of ρ. If the test results satisfy certain conditions,
then she can guarantee that the reduced state on the re-
maining system is close enough to |G〉, and can safely use
it for MBQC; otherwise, she rejects Bob’s state. Since
there is no communication from Alice to Bob after the
preparation of ρ, the client’s privacy is kept against the
server by the no-signaling principle [24]. Hence, the pro-
cedure above is also suitable to verifying blind MBQC.

According to the above discussion, the problem of ver-
ifying MBQC reduces to the problem of verifying the re-
source graph state in the adversarial scenario [17,19,27].
However, it is highly nontrivial to construct robust and
efficient verification protocols in the adversarial scenario.
Although various protocols have been proposed [17–23],
most protocols known so far are too resource consuming.
Moreover, most protocols are not robust to experimental
noise: the state prepared by Bob will be rejected with
a high probability even if it has a very small deviation
from the ideal state |G〉. However, in practice, it is unre-
alistic to ask honest Bob to generate the perfect resource
state. In addition, if the state deviation from |G〉 is small
enough, then it is still useful for MBQC [21, 22]. There-
fore, a practical protocol should accept nearly ideal quan-
tum states with a sufficiently high probability. Other-
wise, Alice needs to repeat the verification protocol many
times to accept such states, which may substantially in-
crease the sampling complexity. Unfortunately, no proto-
col known in the literature can achieve this goal. A fault-
tolerant verification protocol [26] that accepts noisy but
still error-correctable states has been proposed, but it is
robust only to certain correctable errors, and is difficult
to realize in the current era of NISQ devices [3, 10,11].

In this work, we propose a robust and efficient protocol
for verifying blind MBQC. To achieve this goal we pro-
pose a robust and efficient protocol for verifying general
qudit graph states with a prime local dimension in the
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adversarial scenario. Our protocol is appealing to prac-
tical applications because it only requires stabilizer tests
based on local Pauli measurements, which are easy to im-
plement with current technologies. It is robust against
arbitrary types of noise in state preparation, as long as
the fidelity is sufficiently high. Moreover, our protocol
can achieve optimal scaling behaviors with respect to the
system size and target precision, and the sampling cost
is comparable to the counterpart in the nonadversarial
scenario. As far as we know, such a high efficiency has
never been achieved before when robustness is taken into
account. In addition to verifying MBQC, our approach
can also be applied to verifying many other important
quantum states in the adversarial scenario.

2 Verification of MBQC

Recently, a homogeneous strategy [17, 27] for testing
qudit stabilizer states was proposed [17,28]. Here we use
a variant strategy for testing qudit graph states (d is a
prime), which serves as an important subroutine of our
verification protocol. The strategy is based on stabilizer
tests with local Pauli measurements (see the technical
version for details), and can be characterized by a two-
outcome measurement {Ω, I− Ω}, where the outcome Ω
corresponds to passing the test, and the outcome I − Ω
corresponds to the failure. The operator Ω is called a
strategy, and can be constructed as the form

Ω = |G〉〈G|+ λ(I− |G〉〈G|) (1)

for any 1/d ≤ λ < 1. We denote by ν := 1 − λ the
spectral gap of Ω from the largest eigenvalue.

Suppose Alice intends to perform MBQC on the graph
state |G〉 prepared by Bob. Our verification protocol runs
as follows. First, Bob produces a state ρ on the whole
space H⊗(N+1) with N ≥ 1 and sends it to Alice. After
receiving the state, Alice randomly permutes the N + 1
systems of ρ (due to this procedure, we can assume that
ρ is permutation invariant without loss of generality) and
applies the strategy Ω in Eq. (1) to the first N systems. If
at most k failures are observed among the N tests, Alice
accepts the reduced state σN+1 on the remaining system
and uses it for MBQC; otherwise, she rejects it. Here the
integer k is called the number of allowed failures, which
is chosen by Alice before performing the tests.

With this verification protocol, Alice aims to achieve
three goals: completeness, soundness, and robustness.
The completeness means Alice does not reject the cor-
rect state. Since |G〉 can always pass each test, this goal
is automatically guaranteed. The soundness means the
following: once accepting, Alice needs to ensure with a
small significance level δ that her state σN+1 for MBQC
has a sufficiently high fidelity (at least 1 − ε) with |G〉.
The threshold ε is called the target infidelity, which to-
gether with δ characterize the target verification preci-
sion. Among all known verification protocols, only the
protocol of Refs. [17, 27] achieves the optimal sampling
complexity with respect to all δ, ε, and the qudit num-
ber n of |G〉, even without considering the robustness.
Although the condition of soundness looks simple, it is

highly nontrivial to determine the degree of soundness.
Even in the special case k = 0, this problem was resolved
only very recently after quite a lengthy analysis [17, 27].

To characterize the robustness of a protocol, we need
to consider the case in which honest Bob prepares in-
dependent and identically distributed (i.i.d.) quantum
states, that is, ρ = τ⊗(N+1) with τ ∈ D(H). Due to
inevitable noise, τ may not equal the ideal state |G〉〈G|.
Nevertheless, if the infidelity ετ := 1−〈G|τ |G〉 is smaller
than ε, then τ is still useful for MBQC. For a robust ver-
ification protocol, such a state should be accepted with
a high probability. On the other hand, the probability
that Alice accepts τ reads

piidN,k(τ) = BN,k
(
1− tr(Ωτ)

)
= BN,k(νετ ), (2)

where N is the number of tests, k is the number of al-
lowed failures, and BN,k(p) :=

∑k
j=0

(
N
j

)
pj(1 − p)N−j is

the binomial cumulative distribution function.
To construct a robust verification protocol, k should

be sufficiently large, so that piidN,k(τ) is sufficiently high.
However, most previous protocols can only reach a mean-
ingful conclusion when k = 0 [17–20, 27], in which case
the probability piidN,k=0(τ) = (1 − νετ )N decreases expo-
nentially withN , which is not satisfactory. Consequently,
many repetitions are necessary to ensure that Alice ac-
cepts the state τ at least once. When ετ = ε/2 for exam-
ple, the number of repetitions is at least Θ(exp[1/(4δ)])
for the protocol in [19] and Θ(δ−1/2) for the protocol
in [17, 27] as shown in the technical version, which sub-
stantially increases the actual sampling cost. Therefore,
although some protocols known in the literature are rea-
sonably efficient in achieving the soundness, they are not
useful in verifying blind MBQC in a realistic scenario.

3 Results

3.1 Guaranteed infidelity

Suppose ρ is permutation invariant. Then the proba-
bility that Alice accepts ρ reads

pk(ρ) =
k∑
i=0

(
N

i

)
tr
([

Ω⊗(N−i) ⊗ Ω
⊗i ⊗ I

]
ρ
)
, (3)

where Ω := I − Ω. Denote by σN+1 the reduced state
on the remaining system when at most k failures are ob-
served. The fidelity between σN+1and the ideal state |G〉
reads Fk(ρ) = fk(ρ)/pk(ρ) [assuming pk(ρ) > 0], where

fk(ρ) =
k∑
i=0

(
N

i

)
tr
([

Ω⊗(N−i) ⊗ Ω
⊗i ⊗ |G〉〈G|

]
ρ
)
. (4)

The actual verification precision can be characterized by
the following figure of merit with 0 < δ ≤ 1,

ε̄λ(k,N, δ) := 1−min
ρ
{Fk(ρ) | pk(ρ) ≥ δ} , (5)

where λ is determined by Eq. (1), and the minimization
is taken over permutation-invariant states ρ on H⊗(N+1).
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If Alice accepts the state prepared by Bob, then she
can guarantee (with significance level δ) that the reduced
state σN+1 has infidelity at most ε̄λ(k,N, δ) with |G〉.
Consequently, the deviation of any measurement out-
come probability from the ideal value is not larger than√
ε̄λ(k,N, δ). In the technical version we present the ana-

lytical formula and many useful properties of ε̄λ(k,N, δ).

3.2 Verification with a fixed error rate

Now we set the number k to be proportional to the
number of tests, that is, k = bsνNc, where 0 ≤ s < 1
is the error rate. In this case, when Bob prepares i.i.d.
states τ with infidelity ετ < s, the acceptance probability
approaches one as N increases. In addition, we have the
following theorems as proved in the technical version.

Theorem 1 Suppose 0 < s, λ < 1, 0 < δ ≤ 1/4. Then

s− 1

νN
< ε̄λ(bνsNc, N, δ)

≤ s+
1

νλ

√
s ln δ−1

N
+

ln δ−1

2ν2λN
+

2

λN
. (6)

Theorem 1 implies that ε̄λ(bνsNc, N, δ) converges to s
when the numberN of tests gets large. To achieve a given
ε and δ, which means ε̄λ(bνsNc, N, δ) ≤ ε, it suffices to
set s < ε and choose a sufficiently large N .

Theorem 2 Suppose 0 < δ ≤ 1/2, 0 ≤ s < ε < 1, and
0 < λ < 1. Then we have ε̄λ(bνsNc, N, δ) ≤ ε as long as

N ≥ ε

[λν(ε− s)]2
(
ln δ−1 + 4λν2

)
. (7)

Notably, if the ratio s/ε is a constant, then the sampling
cost is only O(ε−1 ln δ−1), which is optimal with respect
to all parameters ε, δ, and the qudit number n.

3.3 Sampling complexity of robust verification

Let ρ be the state on H⊗(N+1) prepared by Bob and
σN+1 be the reduced state after Alice performs suitable
tests and accepts the state ρ. To verify the target state
within infidelity ε, significance level δ, and robustness r
(with 0 ≤ r < 1) entails the following two conditions.

1. (Soundness) If the infidelity of σN+1 with the |G〉 is
larger than ε, then the acceptance probability < δ.

2. (Robustness) If ρ = τ⊗(N+1) with τ ∈ D(H) and
ετ ≤ rε, then the acceptance probability ≥ 1− δ.

Let k be the number of allowed failures; then the condi-
tions of soundness and robustness can be expressed as

ε̄λ(k,N, δ) ≤ ε, BN,k(νrε) ≥ 1− δ. (8)

Denote by Nmin(ε, δ, λ, r) the minimum positive integer
N such that Eq. (8) holds for some k ≤ N − 1. Then
Nmin(ε, δ, λ, r) is the minimum number of tests required
for robust verification; it can be calculated numerically
by using Algorithm 1 presented in the technical version.

Our following theorem provides an informative upper
bound for Nmin(ε, δ, λ, r) and clarifies the sampling com-
plexity of robust verification.

  
    

        
               

        

Ref. [19]
Ref. [17]
Our (10)
Our Nmin Our Nmin

10 1000 105 107
1000

105

107

109

1011

1013

δ-1

Te
st
nu
m
be
r

Figure 1: Number of tests required to verify a qudit
graph state in the adversarial scenario within infidelity
ε = 0.01, significance level δ, and robustness r = 1/2.
The red dots correspond to Nmin(ε, δ, λ, r) with λ = 1/2;
the red dashed curve corresponds to the RHS of Eq. (10),
which is an upper bound for Nmin(ε, δ, λ, r). The blue
curve corresponds to the protocol in [19]; and the green
curve corresponds to the protocol in [17] with λ = 1/2.
The performances of the protocols in [21, 22] are not
shown since the numbers of tests required are too large.

Theorem 3 Suppose 0 < λ, ε < 1, 0 < δ ≤ 1/2, and
0 ≤ r < 1. Then the conditions in Eq. (8) hold as long as

k =

⌊(
λ
√

2ν + r

λ
√

2ν + 1

)
νεN

⌋
, (9)

N ≥

⌈[
λ
√

2ν + 1

λν(1− r)

]2
ln δ−1 + 4λν2

ε

⌉
. (10)

For given λ and r, the minimum number of tests is only
O(ε−1 ln δ−1), which is independent of the qudit number
n of |G〉 and achieves the optimal scaling behaviors with
respect to the infidelity ε and significance level δ. If we
choose r = λ = 1/2 for example, then Theorem 3 implies
that Nmin(ε, δ, λ, r) ≤ d144 ε−1(ln δ−1 + 0.5)e, while nu-
merical calculation shows Nmin(ε, δ, λ, r) ≤ 67 ε−1 ln δ−1.
Compared with previous protocols [17, 19, 27], our pro-
tocol improves the scaling behavior with respect to the
significance level δ exponentially and even doubly expo-
nentially, as illustrated in Fig. 1.

4 Discussion

We have proposed a highly robust and efficient proto-
col for verifying qudit (d is a prime) graph states in the
adversarial scenario, which can be applied immediately
to verifying blind MBQC. In addition to graph states, our
protocol can also be used to verify many other important
pure quantum states in the adversarial scenario (see the
technical version for details), where the state preparation
is controlled by a potentially malicious adversary, who
can produce an arbitrary correlated or entangled state ρ
on the whole systemH⊗(N+1). Therefore, our verification
protocol is of interest not only to blind MBQC, but also
to many other tasks in quantum information processing
that entail high-security.
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Abstract. In this work, we discover a quantum pseudo-telepathy phenomenon that requires quantum
magic, the essential ingredient for universal quantum computation. Translating the nonlocal phenomenon
into a relation task, we provide the first unconditional proof of quantum magic advantage in computation.
With recent experimental progress, we expect the computational task in this work to be faithfully realized
on an upcoming early fault-tolerant quantum computing platform. We hope our results can inspire further
explorations in this direction, eventually going beyond shallow circuits and solidifying the “magic” of
universal quantum computation.

Keywords: quantum magic, shallow circuit computation, binary constraint system, quantum nonlocality

1 Introduction

Quantum theory promises computational speed-ups
than classical means. The celebrated Gottesman-Knill
Theorem implies that the full power of quantum compu-
tation resides in the specific resource of “magic” states
— the secret sauce to establish universal quantum com-
putation [1–3]. However, it is still questionable whether
“magic” indeed brings the believed quantum advantage,
ridding unproven complexity assumptions or black-box
oracles. In this work, we study this issue and demon-
strate the first unconditional magic advantage: a sepa-
ration between the power of generic constant-depth or
“shallow” quantum circuits and magic-free counterparts.
To establish the unconditional separation, we link the

shallow circuit computation with the strongest form of
quantum nonlocality — quantum “pseudo-telepathy,” [4]
where distant non-communicating observers generate
perfectly synchronous statistics. Inspired by the linear
binary constraint system [5], for the first time, we explic-
itly construct a quantum pseudo-telepathy correlation re-
quiring magic resources and prove strict upper bounds on
the correlation strength of solely magic-free operations.
Then, we design a computational task that requires the
output and the input to satisfy the constructed magic-
necessary pseudo-telepathy correlations. This task sepa-
rates the capabilities of generic quantum shallow circuits
and their magic-free counterparts. We summarized our
approach in Fig. 1.
As a by-product, we provide an efficient algorithm to

solve a general linear binary constraint system over the
Pauli group, in contrast to the broad undecidability in
constraint systems [6, 7].

2 Basic Notions

2.1 Quantum magic

Quantum magic originates from the study of the classi-
cal simulation of quantum computation, closely related to
the stabilizer formalism [1]. Consider an n-qubit quan-

∗zxj24@hku.hk
†pzk20@mails.tsinghua.edu.cn
‡lgd22@mails.tsinghua.edu.cn

tum system. The Clifford group Cn is defined as the
normalizer group of the Pauli group Pn, namely the set
of unitary operators that map a Pauli operator P ∈ Pn

to a Pauli operator. Elements in the Clifford group are
called Clifford operators or gates. A quantum circuit
initialized in a computational-basis state and containing
only Clifford gates and Pauli measurements is called a
stabilizer circuit. Clearly, some unitary operators do not
belong to the Clifford group, termed non-Clifford gates.
Correspondingly, there are quantum states that cannot
be prepared by any stabilizer circuit, even allowing post-
selecting a subsystem upon Pauli measurement results.
We call such states “magic” states [2].

2.2 Circuit classes

To realize universal quantum computation and achieve
quantum advantage, some sort of “magic” must be in-
volved, which can be either some magic states or non-
Clifford gates [2, 3, 8–10]. In later discussions, we con-
sider a model where all the magic comes from the non-
Clifford gates. That is, the quantum state is initialized
in |0⟩⊗n

, and the quantum measurement is performed on
the computational basis. Depending on the type of com-
putational resources, we categorize the circuits into three
types. In a generic quantum circuit, the state undergoes
operations in a universal gate set. Without quantum sub-
systems, the circuit degenerates into a classical one. In
between, we define the Clifford or magic-free circuit, in
which the quantum gates must be Clifford.

When the circuit is restricted to a constant depth, we
call it a “shallow circuit.” Furthermore, we consider the
fan-in of gates to be bounded. Corresponding to a generic
quantum circuit [11], a Clifford circuit, and a classical
circuit [12, 13], we categorize the shallow circuits into
classes of QNC0, ClifNC0, and NC0, respectively.

2.3 Binary constraint systems (BCS)

Our starting point will be a special nonlocal game orig-
inating from the linear BCS [5]. A BCS comprises a set of
Boolean functions, namely constraints, over binary vari-
ables vγ ∈ {+1,−1}. For a linear BCS, the constraints
are given in the form of

∏
γ∈Sα

vγ = cα ∈ {+1,−1},
where Sα defines a subset of the variables. We say the
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Figure 1: (a) A general BCS nonlocal game with non-communicating players. (b) Different game strategies. The
three subfigures correspond to classical strategies, Clifford strategies, and general quantum strategies. (c) Solving a
relation problem via a shallow circuit with bounded fan-in gates. (d) Categories of shallow circuits. Roughly speaking,
the shallow circuit power corresponds to the corresponding strategies in nonlocal games given in (b).

BCS has a classical solution iff there exists a satisfying
assignment to all the variables. The BCS can be gener-
alized to an operator-valued set of functions, where the
scalar variables are replaced with Hermitian operators
Aγ with eigenvalues {+1,−1}, and the constraints are
given in terms of

∏
γ∈Sα

Aγ = cαI with I an identity op-
erator of a finite dimension. In addition, the operators
in each constraint need to be simultaneously measurable.
We say the BCS has an operator-valued solution iff there
exists an operator-valued satisfying assignment to all the
Hermitian operators with an appropriate dimension.

2.4 BCS-based nonlocal games

Given a linear BCS, consider a corresponding nonlo-
cal game with two non-communicating parties, Alice and
Bob [Fig. 1(a)]. In each round of the game, a referee picks
a constraint from the BCS labelled by α and a variable
labelled by β ∈ Sα. The referee asks Alice to assign val-
ues to the variables satisfying the constraint and Bob to
assign a value for vβ . The players win the game if and
only if Alice gives a satisfying assignment for the con-
straint, and her assignment to vβ coincides with Bob’s.
Alice and Bob can agree on a game strategy in advance.
We consider a hierarchy of their capabilities [Fig. 1(b)]:

1. Classical strategies: Players share common ran-
domness and apply local classical operations;

2. Clifford strategies: Players share entanglement cre-
ated by Clifford circuits and apply local Clifford
operations and Pauli measurements;

3. General strategies: Players share general entangle-
ment and apply general local quantum operations.

In the field of nonlocality, a perfect winning quantum
strategy is termed “quantum pseudo-telepathy” [4]. The
existence of a perfect winning classical/quantum strat-
egy in the nonlocal game is equivalent to the existence
of a classical/operator-valued solution to the underlying

BCS [5, 14]. Specifically, a perfect winning Clifford strat-
egy corresponds to a Pauli-string solution.

3 Main Results

Previously, a strict inclusion between NC0and
QNC0was proved [15, 16]. In this work, we uncondi-
tionally confirm magic makes a strict hierarchy among
shallow circuits [Fig. 1(d)]:

ClifNC0 ⊂ QNC0. (1)

We take the following steps toward this main result: (1)
Find a BCS that does not have classical or Pauli-string
solutions but has generic observable solutions; (2) Based
on the above BCS, construct a nonlocal game in which
magic is necessary to win perfectly; (3) Transform the
magic-necessary BCS nonlocal game to a relation prob-
lem separating ClifNC0and QNC0(Sec. 3.3).

For step (1), we develop an efficient approach to solving
a linear BCS over the Pauli group (Sec. 3.1), which can
then rule out BCS nonlocal games with perfect-winning
Clifford/classical strategies. Afterward, we construct a
BCS that has a non-trivial magic-necessary operator-
valued solution and complete step (2) (Sec. 3.2).

3.1 Solving linear BCS over the Pauli group

To study Clifford strategies in the BCS nonlocal game,
note that the Pauli strings are either anti-commuting,
like {X,Z} = 0, or commuting, like [X ⊗ X,Z ⊗ Z] =
0. In addition, for two Pauli strings A,B, we have
⟨Φ+|A ⊗ B |Φ+⟩ = tr

(
ABT

)
/d ∈ {0,±1}, where d is

the system dimension. When restricting solving the
BCS over the Pauli group, we can transform the orig-
inal operator-valued BCS into a classically valued BCS
for the commutators between the variables. We prove the
following results for general linear BCS.

Theorem 1 Given a linear BCS with l variables and m
constraints, there exists a classical algorithm that finishes
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in poly(l,m) steps to determine whether the BCS has a
Pauli-string operator-valued solution. If the answer is
affirmative, the algorithm returns one such solution.

Theorem 2 Suppose a linear BCS does not have a
Pauli-string solution. Then, for its associated nonlocal
game, if Alice and Bob are restricted to Clifford strate-
gies, either Alice fails to give satisfying assignments for
all the constraints, or there exists one pair of questions
(α, β), where the probability that Alice and Bob’s assign-
ments to vβ coincide does not exceed 1/2.

3.2 Magic-necessary BCS

Next, we construct a BCS family, some of which have
a general quantum solution but no Pauli-string solution.
This result explicitly falsifies a previous conjecture [17].
We present the BCS family in the language of graph

theory. Consider an undirected complete graph G =
(V,E) with n vertices. The BCS contains the follow-
ing variables: (1) Each vertex v ∈ V corresponds to one
variable av; (2) Each undirected edge e = (u, v) ∈ E cor-
responds to three variables xuv, yuv, and zuv; (3) Every
two disjoint edges e1 = (u, v) ∈ E and e2 = (s, t) ∈ E,
where s, t, u, and v are different vertices, correspond to
(i) variable be1e2 ≡ buv|st, where be1e2 = be2e1 ; (ii) vari-
ables ce1e2 ≡ cuv|st and ce2e1 ≡ cst|uv, where ce1e2 ̸= ce2e1
in general. The smallest non-trivial BCS is defined on a
graph with four vertices (Fig. 2). Based on these vari-
ables, the BCS contains the following constraints,

auavyuv = 1,∀(u, v) ∈ E,

xuvyuvzuv = 1,∀(u, v) ∈ E,

xuvxstbuv|st = 1,∀(u, v), (s, t) ∈ E,

xuvzstcuv|st = 1,∀(u, v), (s, t) ∈ E,

buv|stbvs|utbsu|vt = 1,∀u, v, s, t ∈ V,

cuv|stcvs|utcsu|vt = 1,∀u, v, s, t ∈ V,∏
v∈V

av = −1.

(2)

This BCS family exhibits a hierarchy among classical,
Clifford, and general quantum resources. Based on the
BCS nonlocal game construction, we state the result in
terms of perfect winning strategies in the nonlocal games.

u

v s

t

Figure 2: A subgraph illustrating the variables in Eq. (2).

Theorem 3 For the nonlocal game defined through the
BCS in Eq. (2),

1. n = 4: ∃ perfect-winning Clifford strategy, but it
does not have a perfect-winning classical strategy;

2. n ∈ 2N+ 5: ∃ perfect-winning classical strategy;

3. n ∈ 2N+6: ∃ strategies that exploit quantum magic
to win perfectly, but it does not have a perfect-
winning Clifford or classical strategy.

As a corollary of Theorem 2, for the nonlocal game
with n ∈ 2N + 6, with uniformly distributed random
questions, the winning probabilities of all Clifford and
classical strategies can be upper-bounded by

pClif ≤ 1− 1

2|Q|
, (3)

where Q denotes the set of questions.
Here, we present one operator-valued solution to the

BCS when n = 8. Labelling the vertices from 1 to 8, a
realization of av and xuv in the above BCS is

av = I8 − 2evv, v = 1, · · · , 8,
xuv = I8 − euu − evv + euv + evu, u, v = 1, · · · , 8, u ̸= v,

(4)

where I8 is an eight-dimensional identity operator, and
eij denotes an elementary matrix. The other operators
can be determined via av’s and xuv’s. The measure-
ments corresponding to xuv require non-Clifford oper-
ations, which can be realized by applying a Toffoli gate
up to a local unitary operation, which is a non-Clifford
gate, followed by the computational-basis measurement.

3.3 Magic advantage in shallow circuits

Building on the BCS nonlocal game defined through
Eq. (2), we design a computational task that requires
the output and the input to satisfy the constructed
magic-necessary pseudo-telepathy correlations. Roughtly
speaking, consider a relation problem with 2N sites: two
randomly chosen computing sites 2j−1 and 2k are input
with α and β and required to output the desired nonlo-
cal outputs up to an allowed transformation depending
on other sites [Fig. 1(c)]. Using a light-cone-type argu-
ment [15, 16], we prove that the only way a shallow cir-
cuit solves the relation problem is to apply the quantum
pseudo-telepathy strategy as a subroutine, which neces-
sarily requires magic.

Theorem 4 (Informal) Given the nonlocal game de-
fined by the BCS in Eq. (2) with size n ∈ 2N + 6, ∃
relation problem Rn

N and a constant K, such that for
circuits restricted to K-bounded fan-in gates,

• Rn
N can be perfectly solved by a QNC0circuit, where

some gates are non-Clifford operations;

• Any Clifford circuit that solves Rn
N with probability

larger than (1 + pClif)/2 with pClif given in Eq. (3)
must have a circuit depth Ω(logN).
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Quantum theory promises computational speed-ups than classical means. The celebrated
Gottesman-Knill Theorem implies that the full power of quantum computation resides in the spe-
cific resource of “magic” states — the secret sauce to establish universal quantum computation.
However, it is still questionable whether “magic” indeed brings the believed quantum advantage,
ridding unproven complexity assumptions or black-box oracles. In this work, we demonstrate the
first unconditional magic advantage: a separation between the power of generic constant-depth or
“shallow” quantum circuits and magic-free counterparts. For this purpose, we link the shallow cir-
cuit computation with the strongest form of quantum nonlocality — quantum “pseudo-telepathy,”
where distant non-communicating observers generate perfectly synchronous statistics. We prove
quantum magic is indispensable for such correlated statistics in a specific nonlocal game inspired
by the linear binary constraint system. Then, we translate generating quantum pseudo-telepathy
into a relation problem, where magic is necessary for a shallow circuit to solve it perfectly. As a
by-product, we provide an efficient algorithm to solve a general linear binary constraint system over
the Pauli group, in contrast to the broad undecidability in constraint systems. We anticipate our
results will enlighten the final establishment of the unconditional advantage of universal quantum
computation.

I. INTRODUCTION

Starting from Richard Feynman’s proposal of simu-
lating physics with quantum means [1], it has been an
appealing quest to exploit phenomena unique to quan-
tum theory to accelerate computation. A series of re-
sults, such as Shor’s factoring algorithm [2] and Grover’s
search [3], strengthen the belief in the power of quantum
computation. Notwithstanding the prosperity in the zoo
of quantum algorithms, it is still intriguing to answer
the basic questions: Does quantum theory really bring a
computational advantage over classical means, and if yes,
what is the origin of such power? A well-known state-
ment that seems to respond to both questions is quantum
“magic” [4]. The so-called quantum magic states are be-
yond the reach of stabilizer circuits, the ones initialized
in the computational-basis state and composed of only
Clifford gates and Pauli measurements. The Gottesman-
Knill Theorem shows that stabilizer circuits can be per-
fectly simulated by classical computers in a polynomial
time of the input size, deemed as efficient [5–7]. On the
other hand, attempts from the simulation field suggest
a strong relevance between the quantity of magic and
the extent of quantum advantage [8–16]. Quantum al-
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gorithms richer in magic are often more difficult for a
classical computer to simulate.

Indeed, considering the structure of quantum state
space, magic states, or equivalently non-Clifford oper-
ations, is indispensable for a complete picture [4, 17].
In contrast, whether they bring a super-polynomial or
even an exponential quantum computational advantage
as promised remains to be proved. Despite numerous
good reasons to believe in its validity [18, 19], unfortu-
nately, explorations to date have not got rid of assump-
tions of unproven hardness for classical algorithms, such
as factoring a large number in Shor’s algorithm [2], or
reliance on queries to a black-box oracle as in Grover’s
search [3], where the oracle construction may be hard
work.

To firmly establish the quantum advantage, one may
alternatively start from a more restrictive regime in com-
plexity. Instead of defining “efficient” as a polynomially
growing time, a notable regime is the set of shallow cir-
cuits [20, 21], where the circuit depth, or equivalently the
computing time, is restricted to a constant irrelevant to
the problem size. The consideration of quantum shallow
circuits was partly attributed to an experimental per-
spective, as it is relatively simpler to deal with system
decoherence within a fixed time [22]. More importantly,
theorists have rich toolkits from quantum information
theory to aid the investigations. A particular instrument
is quantum nonlocality, a most distinguishing property
of quantum theory [23, 24]. As shown by the renowned
Bell theorem [25], entanglement leads to purely quantum
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correlations between nonlocal observers beyond the scope
of classical physics [26]. One can translate quantum non-
locality into a computational task to generate nonlocal
statistics among distant computing sites [27–30]. While
classical circuits require a growing time with respect to
the input size to scramble the information for computa-
tion, quantum shallow circuits are competent to the task,
bringing an unconditional advantage.

Despite the recent progress in shallow circuits, a vague
question arises: Is “magic” indispensable for the full
power of quantum computation in the low-complexity
regime? Indeed, among all the existing explorations of
quantum shallow circuits, the essential ingredient for the
quantum advantage — long-range entanglement, can be
generated with Clifford circuits without using the magic
resource [31]. On the other hand, though not rigorous,
with our experiences in the complexity theory such as the
padding argument [32], we may be inclined to think of
a collapse of the power of universal quantum computa-
tion if magic makes no difference in the low-complexity
regime. Following the logic of relating nonlocality with
shallow circuit computation, a relevant question is the
role of quantum magic in nonlocality, which is much un-
explored compared to the more prevalent quantum fea-
tures like entanglement.

In this work, we unconditionally confirm that quan-
tum magic brings an advantage, at least in a shallow cir-
cuit. For this purpose, we consider the strongest form
of nonlocality, where nonlocal observers generate per-
fectly synchronous statistics, namely quantum “pseudo-
telepathy” [23]. For the first time, we explicitly construct
a quantum pseudo-telepathy correlation requiring magic
resources and prove strict upper bounds on the corre-
lation strength of solely magic-free operations. Then,
we design a computational task that requires the output
and the input to satisfy the constructed magic-necessary
pseudo-telepathy correlations. This task separates the
capabilities of generic quantum shallow circuits and their
magic-free counterparts. We summarize our approach in
Fig. 1.

II. BASIC NOTIONS AND MAIN RESULT

The concept of quantum magic originates from the
study of the classical simulation of quantum computa-
tion, closely related to the stabilizer formalism [5]. Con-
sider an n-qubit quantum system on which the Pauli
group is defined as the set of operators

Pn = {±1,±i} × {I, σx, σy, σz}⊗n, (1)

together with operator multiplication. Here, I is the
two-dimensional identity operator, and σx, σy, σz are the
qubit Pauli matrices. The Clifford group is defined as
the normalizer group of the Pauli group Pn:

Cn = {C ∈ Un|∀P ∈ Pn, CPC
† ∈ Pn}, (2)

where Un is the set of all n-qubit unitary operators.
Elements in the Clifford group are called Clifford op-
erators or gates. A quantum circuit initialized in
the computational-basis state and containing only Clif-
ford gates and Pauli measurements is called a stabi-
lizer circuit. Note that the Pauli measurements are
equivalent to applying some Clifford gates, followed by
computational-basis measurements. The Gottesman-
Knill theorem states that the measurement results can
be well-simulated by a classical circuit running in a time
that is polynomial in the number of qubits [5, 6].
Clearly, there are unitary operators that do not belong

to the Clifford group. Well-known non-Clifford opera-
tions include the T-gate, which adds a non-trivial relative
phase to basis state superposition:

a |0⟩+ b |1⟩ → a |0⟩+ eiπ/4b |1⟩ , (3)

and the Toffoli gate, the quantum generalization of the
NAND gate:

|c1⟩ |c2⟩ |t⟩ → |c1⟩ |c2⟩ |t⊕ (c1 · c2)⟩ , (4)

where c1, c2, t ∈ {0, 1} represent the values in the two
control qubits and the target qubit, respectively. Cor-
respondingly, there are quantum states that cannot be
prepared by any stabilizer circuit, even allowing post-
selecting a subsystem upon Pauli measurement results.
We call such states “magic” states. As an example, the
state

|H⟩ = cos
π

8
|0⟩+ sin

π

8
|1⟩ (5)

is a qubit magic state.
To realize universal quantum computation and achieve

quantum advantage, some sort of “magic” must be in-
volved, which can be either some magic states or non-
Clifford gates [4, 6, 9, 33, 34]. In later discussions, we con-
sider a model where all the magic comes from the gates.
That is, the quantum state is initialized in |0⟩⊗n

, and
the quantum measurement is performed on the compu-
tational basis. Depending on the type of computational
resources, we categorize the circuits into three types. In
a generic quantum circuit, the state undergoes opera-
tions in a universal gate set. Without quantum subsys-
tems, the circuit degenerates into a classical one. We
further define the Clifford or magic-free circuit, in which
the quantum gates must be Clifford. Note that in generic
quantum circuits or magic-free circuits, we also allow in-
termediate quantum measurements for feedback and clas-
sically controlled operations for assistance. In Clifford
circuits, we restrict the classical feedback to perform the
logical operations of parity and negation and controlled-
Pauli operations [35].
Besides the accessible computational resources, the

power of a circuit is also influenced by the circuit depth
and the gate fan-in. The circuit depth is defined as the
number of steps to perform all the gates and measure-
ments. Note that in one step, multiple gates acting on
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FIG. 1: (a) A general BCS nonlocal game with non-communicating players. Given a BCS, the input or the question
to Alice is a constraint indexed by α, and the question to Bob is a variable indexed by β, with β ∈ Sα, where Sα

corresponds to the set of variables in constraint labeled with α. The players win the game if and only if Alice outputs
an assignment to the variables {vγ}γ satisfying the constraint

∏
γ∈Sα

vγ = cα, and Alice and Bob give an identical

assignment to vβ . (b) Different game strategies. (1) Classical strategy: players share randomness and apply local
classical operations. (2) Clifford strategy: players share entanglement prepared by stabilizer circuits and apply local
Clifford operations and local Pauli measurements. The set of stabilizer states forms a convex polytope [7, 8]. (3)
General strategy: players share a general entangled state and apply general local quantum operations. The set of
all quantum states is a convex set. There is a hierarchy among the maximum winning probabilities in each level:
pC ≤ pClif ≤ pQ. We present a family of nonlocal games via Eq. (9), which manifest levelled quantum pseudo-
telepathy, namely pC < pClif = 1 and pClif < pQ = 1 under different game parameters. (c) Solving a relation problem
via a shallow circuit with bounded fan-in gates. The circuit depth D and the maximum gate fan-in K are both
fixed constants. The BCS nonlocal game can be translated to a relation problem on 2N sites: two randomly chosen
computing sites 2j − 1 and 2k are input with α and β and required to output fA(α, β) and fB(α, β), respectively,
up to a transformation depending on other sites. The bounded fan-in and constant depth conditions restrict each
output site to be affected only by a constant number of input sites, as shown by the lightcone shaded in green. (d)
Categories of shallow circuits. (1) NC0: classical shallow circuits with bounded fan-in gates, comprising classical gates
like AND,OR,NOT,NAND. (2) ClifNC0: magic-free shallow circuits with bounded fan-in gates, comprising a magic-
free initial quantum state, Clifford gates like H,S,CNOT, and (intermediate) Pauli measurements. Classical feedback
is allowed. (3) QNC0: general quantum shallow circuits with bounded fan-in gates, allowing a generic initial state and
non-Clifford gates like the T gate and the Toffoli gate. In this work, we prove the strict inclusion of ClifNC0 ⊂ QNC0.

different subsystems can be implemented in parallel. The
gate fan-in is defined as the number of input (quantum)
bits a gate can act on. For instance, the T gate has fan-
in 1, and the Toffoli gate has fan-in 3. In our definition,
the fan-in includes both classical bits and qubits, as de-
picted and explained in Fig. 2, e.g., a T gate controlled
by a classical bit has fan-in 2. In this way, we unify
the discussions for classical logical gates, quantum gates,
classically controlled quantum gates, and measurements.

In this work, we are interested in the computational
power of shallow circuits with bounded fan-in gates.
That is, the circuit depth is a constant, and the fan-in
of all the operations in the circuit has a constant up-
per bound. Within this restriction, we denote the classes
of classical circuits [20, 36], Clifford circuits, and generic
quantum circuits [37] as NC0, ClifNC0, and QNC0, respec-
tively. We depict examples of these circuits in Fig. 1(d).
As a remark, we overuse the complexity class notations

for the associated circuits, like previous works in the field.
Previously, a strict inclusion between NC0and

QNC0was proved [27, 28]. Here, we show magic makes a
strict hierarchy among shallow circuits:

ClifNC0 ⊂ QNC0. (6)

III. BINARY-CONSTRAINT-
SYSTEM-BASED NONLOCAL GAMES

A. Preliniminaries of binary constraint systems

To prove the main result in Eq. (6), essentially, we
manifest nonlocal correlations where magic states or non-
Clifford operations play a non-trivial role. Our starting
point is a special nonlocal game originating from the lin-

320



4

𝑛𝑐

𝑛𝑞

bounded

fan-in
𝑛𝑐 + 𝑛𝑞 ≤ 𝐾

FIG. 2: A general K-bounded fan-in gate. In general, it
acts on nc bits and nq qubits, with nc + nq ≤ K. When
nc = 0, it becomes a normal quantum gate characterized
by a unitary operation. When nq = 0, it becomes a
normal classical gate.

ear binary constraint system (BCS) [38]. A BCS com-
prises a set of Boolean functions, namely constraints,
over binary variables vγ . We take the variable values
over {+1,−1} for later convenience. For a linear BCS,
the constraints are given by functions in the form of∏

γ∈Sα
vγ = cα ∈ {+1,−1}, where Sα defines a subset

of the variables. Given a linear BCS, consider a corre-
sponding nonlocal game with two parties, Alice and Bob,
as shown in Fig. 1(a). In each round of the game, a ref-
eree picks a constraint from the BCS labeled by α and a
variable labeled by β ∈ Sα. The referee asks Alice to as-
sign values to the variables satisfying the constraint and
Bob to output a value for vβ . The nonlocal players win
the game if and only if

1. Alice gives a satisfying assignment for the con-
straint cα, and

2. Alice’s assignment to vβ coincides with Bob’s.

Alice and Bob cannot communicate with each other once
the game starts. Nevertheless, they can agree on a game
strategy in advance.

Naturally, the existence of a perfect winning strategy
is related to the properties of the underlying linear BCS.
If and only if the linear BCS has a solution where a fixed
value assignment to the variables satisfies all the con-
straints, Alice and Bob can win the associated nonlocal
game with certainty by classical means [38]. Otherwise,
the winning probability by any classical strategy, where
the players are restricted to shared randomness and local
classical operations, is strictly upper-bounded from 1.

Notwithstanding, even if a fixed satisfying assignment
does not exist, the nonlocal players may still win the
game perfectly by exploiting quantum strategies. For a
systematic study, we first generalize the BCS to a set
of operator-valued functions. The scalar variables are re-
placed with Hermitian operators Aγ of a finite dimension
with eigenvalues {+1,−1}, and the constraints become∏

γ∈Sα
Aγ = cαI with I an identity operator. In addi-

tion, the observables corresponding to the variables in
each constraint are required to be compatible, namely
jointly measurable. The existence of a quantum per-
fect winning strategy is equivalent to the operator-valued
BCS having a solution [38]. Suppose the solution to the
operator-valued BCS is given by a set of d-dimensional
operators, {Aγ}γ , then the perfect winning strategy in

the corresponding nonlocal game goes as follows:

1. Alice and Bob first share a maximally entangled

state, |Φ+⟩ =
∑d−1

i=0 |ii⟩ /
√
d;

2. After the game starts, Alice measures the observ-
ables {Aγ}γ , and Bob measures the observables
{AT

γ }γ to assign values to the variables, where T
denotes the operator transpose.

By construction, Alice’s measurement results satisfy the
constraint. Also, as the maximally entangled state has
the property〈

Φ+
∣∣Aγ ⊗AT

γ

∣∣Φ+
〉
=

1

d
tr
(
A2

γ

)
= 1, (7)

the assignments of Alice and Bob to the same variable
thus coincide.
Due to the intrinsic randomness in quantum measure-

ments, an observable may take different outcomes in each
constraint, hence assigning a different value to the same
variable. Such flexibility brings an advantage over classi-
cal means, where quantum resources bring Alice and Bob
“pseudo-telepathy” as if they knew what was going on at
the other side via a “spooky action” [23]. We shall fur-
ther discuss this issue and review relevant existing results
in the Supplementary Information (SI) Sec. IB, such as
the famous Mermin-Peres nonlocal game [39, 40].

B. Clifford strategies in BCS-based nonlocal games

Among quantum strategies for the nonlocal game,
there are different levels of capabilities, as shown in
Fig. 1(b). Instead of having access to all quantum states
and operations, we consider constraining the players to
apply only Clifford strategies. Specifically, Alice and Bob
can apply Clifford operations to a state initialized in |0⟩
before the nonlocal game to create entanglement. After-
ward, they each take a share of the state and apply only
Pauli-string measurements to the state for the game. If
the nonlocal game has a Clifford strategy that wins per-
fectly, then the underlying BCS has a Pauli-string solu-
tion, and vice versa. Notably, we derive the following
results for general linear BCS. We prove Theorem 1 in SI
Sec. VB and Theorem 2 in SI Sec. III.

Theorem 1. Given a linear BCS with l variables and m
constraints, there exists a classical algorithm that finishes
in poly(l,m) steps to determine whether the BCS has a
Pauli-string operator-valued solution. If the answer is
affirmative, the algorithm returns one such solution.

Theorem 2. Suppose a linear BCS does not have a
Pauli-string solution. Then, for its associated nonlocal
game, if Alice and Bob are restricted to Clifford strate-
gies, either Alice fails to give satisfying assignments for
all the constraints, or there exists one pair of questions
(α, β), where the probability that Alice and Bob’s assign-
ments to vβ coincide does not exceed 1/2.
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Theorem 1 improves previous attempts of searching
for a Pauli-string solution to a linear BCS [41, 42], which
poses additional requirements on the appeared times of
each variable. Besides, Theorem 1 sharply contrasts the
common undecidability in the field of constraint sys-
tems, such as determining the existence of an operator-
valued solution to a general BCS, which may not be Pauli
strings [43].

Theorem 2 constraints the capability of Clifford strate-
gies when the underlying BCS does not have Pauli-string
solutions. In later discussions, we will apply Theorem 2
to compute the maximum winning probability of Clifford
strategies playing magic-necessary BCS nonlocal games.

Here, we describe the algorithm for finding Pauli-string
solutions to a general linear BCS. The algorithm highly
relies on the following properties of Pauli operators, as
shown by the following lemma.

Lemma 1. Suppose A1, A2, · · · , Al are Pauli-string ob-
servables. For j, k = 1, · · · , l, define Cjk = AjAkAjAk

as the commutator between Aj and Ak. Then, Cjk’s have
the following properties:

1. Cjk ∈ {±I}. Specifically, Cjk = I when AjAk −
AkAj = 0, and Cjk = −I when AjAk +AkAj = 0;

2. Cjk = Ckj and Cjj = I;

3. AjAk = CjkAkAj.

The proof of Lemma 1 is straightforward. Now, sup-
pose there exists a Pauli-string solution to the BCS with
l variables and m constraints. Using this lemma, we can
apply variable substitution and exchange the order be-
tween variables Aj and Ak similarly as solving a classical
linear BCS, up to a sign change due to the Pauli operator
commutation. In the end, we can express each variable
Ai in the BCS via a set of independent variables {Ar}r
and sign variables Ci’s. In SI Sec. VB, we prove that with
a further substitution of the expressions into the original
BCS, we can transform the BCS into a linear BCS of
solely the sign variables Ci’s and commutators Cjk’s be-
tween independent variables. The substitution thus far is
efficient, namely in poly(l,m) steps. Since the new BCS
is defined over Z2, it can be efficiently solved. If the new
BCS does not have a solution, then by contradiction, the
original BCS does not have a Pauli-string solution.

If the new BCS has a solution, we can assign Pauli-
string operators to the independent variables {Ar}r in
the original BCS, which satisfies the required commuta-
tion conditions. Here, we give an explicit construction.
Suppose there are p commutators equal to −1, given by
Cj1k1

, Cj2k2
, · · · , Cjpkp

. Then, we can construct Pauli
strings over p qubits according to the following rule: For
every q’th qubit in each Pauli string, where 1 ≤ q ≤ p,
assign σx for Ajq and σz for Akq

; assign all the other
qubits as I. That is,

the q’th qubit of Ar =


σx, if r = jq,

σz, if r = kq,

I, otherwise.

(8)

It can be directly checked that this construction satisfies
the requirements. The rest of the variables are then de-
termined by the independent variables and sign variables
Ci’s. This finishes the algorithm.

IV. MAGIC-NECESSARY QUAN-
TUM PSEUDO-TELEPATHY

A. Magic-necessary BCS

Previously, it was conjectured that whenever a linear
BCS nonlocal game has a perfect winning strategy, it is
either a Clifford or a classical one [41]. Recent group em-
bedding results evidence the falseness of the above con-
jecture [43, 44]. Here, we take a relevant yet different ap-
proach and directly present a linear BCS nonlocal game
to disprove the conjecture. To make it illustrative, we
state the underlying BCS in the language of graph the-
ory. Consider an undirected complete graph G = (V,E)
with n vertices. An undirected graph indicates that for
any two connected vertices, u and v, the tuples (u, v)
and (v, u) represent the same edge. The BCS contains
the following variables:

1. Each vertex v ∈ V corresponds to one variable av.

2. Each undirected edge, denoted by e = (u, v) ∈ E,
corresponds to three variables xuv, yuv, and zuv.

3. Every two disjoint edges, denoted by e1 = (u, v) ∈
E and e2 = (s, t) ∈ E, where s, t, u, and v are
different vertices, correspond to

(a) one variable be1e2 ≡ buv|st, where be1e2 =
be2e1 ;

(b) two variables ce1e2 ≡ cuv|st and ce2e1 ≡ cst|uv,
where ce1e2 ̸= ce2e1 in general.

For clarity, we express the variables with respect to the
underlying vertices and denote the BCS (nonlocal game)
size with the number of vertices. The smallest non-trivial
BCS is defined on a graph with four vertices, as shown
in Fig. 3. Based on these variables, the BCS contains the
following constraints,

auavyuv = 1,∀(u, v) ∈ E,

xuvyuvzuv = 1,∀(u, v) ∈ E,

xuvxstbuv|st = 1,∀(u, v), (s, t) ∈ E,

xuvzstcuv|st = 1,∀(u, v), (s, t) ∈ E,

buv|stbvs|utbsu|vt = 1,∀u, v, s, t ∈ V,

cuv|stcvs|utcsu|vt = 1,∀u, v, s, t ∈ V,∏
v∈V

av = −1.

(9)

This family of BCS’s exhibits a hierarchy among classical,
Clifford, and general quantum resources, as shown by the
following theorem.
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u

v s

t

FIG. 3: A subgraph with four vertices to illustrate the
BCS variables in Eq. (9). Each vertex v corresponds
to one variable av, and there are four such variables in
the subgraph. Each undirected edge e = (u, v) corre-
sponds to three variables xuv, yuv, zuv. With six edges in
the subgraph, there are six variables for each kind. Ev-
ery two disjoint edges e1 = (u, v), e2 = (s, t) correspond
to two kinds of variable buv|st = bst|uv and cuv|st, cst|uv.
The subgraph has three sets of disjoint edges, denoted
by black solid lines, blue dashed lines, and orange dotted
lines, respectively. Consequently, there are three vari-
ables of the kind buv|st and six variables of the kind cuv|st.

Theorem 3. For the nonlocal game defined through the
BCS in Eq. (9),

1. when n = 4, it has a perfect-winning Clifford strat-
egy, but it does not have a perfect-winning classical
strategy;

2. when n ∈ 2N + 5 = {5, 7, 9, · · · }, it has a perfect-
winning classical strategy;

3. when n ∈ 2N + 6 = {6, 8, 10, · · · }, it has strategies
that exploit quantum magic to win perfectly, but it
does not have a perfect-winning Clifford strategy or
classical strategy.

The full proof of Theorem 3 is presented in SI Sec. II.
One can apply Theorem 1 to check that the BCS defined
in Eq. (9) with n ∈ 2N+6 does not have Pauli-string so-
lutions. As a consequence, the associated nonlocal game
does not have a perfect-winning Clifford strategy or clas-
sical strategy.

As a corollary of Theorem 2, for the nonlocal game
with n ∈ 2N + 6, with uniformly distributed random
questions, the winning probabilities of all Clifford and
classical strategies can be upper-bounded by

pClif ≤ 1− 1

2|Q|
, (10)

where Q denotes the set of questions in the nonlocal
game. For the BCS given in Eq. (9), we denote the

set of questions for Alice as Q̃A, namely the BCS con-
straints, and the set of questions for Bob as Q̃B , namely
the BCS variables. In Table I and II, we give the ex-
pressions to calculate the set sizes. We also provide the
concrete numbers for the case of n = 8. For the BCS
game of size n with uniformly distributed questions, by
applying Theorem 2, we obtain a direct upper bound

on the average winning probability of Clifford strategies
as 1 − 1/(2[3(|Q̃A| − 1) + n]). Note that the constraint∏

v∈V av = −1 comprises n variables, while every other
constraint consists of three variables.

constraint format expression number (n = 8)

aa′y = 1
(
n
2

)
28

xyz = 1
(
n
2

)
28

xx′b = 1
(
n
4

)
· 3 210

xzc = 1
(
n
4

)
· 3 · 2 420

bb′b′′ = 1
(
n
4

)
70

cc′c′′ = 1
(
n
4

)
· 4 280∏

a = −1 1 1

total |Q̃A| 1037

TABLE I: Number of constraints in the BCS game.

variable type expression number (n = 8)

a n 8

x
(
n
2

)
28

y
(
n
2

)
28

z
(
n
2

)
28

b
(
n
4

)
· 3 210

c
(
n
4

)
· 3 · 2 420

total |Q̃B | 722

TABLE II: Number of variables in the BCS game.

B. Non-Clifford gates to re-
alize the magic-necessary BCS

In SI Sec. II, we present a group-theoretic method
to determine the magic-necessary perfect-winning strate-
gies [45, 46] when n ∈ 2N + 6. A notable property is
that there are non-unique solutions to the BCS and thus
nonequivalent perfect winning quantum strategies in gen-
eral. Here, we present one operator-valued solution to the
BCS when n = 8. Labelling the vertices from 1 to 8, a
realization of av and xuv in the above BCS is

av = I8 − 2evv, v = 1, · · · , 8,
xuv = I8 − euu − evv + euv + evu, u, v = 1, · · · , 8, u ̸= v

(11)

where I8 is an eight-dimensional identity operator, and
eij denotes an elementary matrix, of which the element
in the i’th row and j’th column is one, and all the other
elements are zero. The other operators can be deter-
mined via av’s and xuv’s. The perfect winning strategy of
the nonlocal game thus takes three pairs of the Einstein-
Podolsky-Rosen (EPR) state, (|00⟩ + |11⟩)/

√
2. In this

strategy, the measurements corresponding to xuv require
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non-Clifford operations, which can be realized by apply-
ing a Toffoli gate up to a local unitary operation followed
by the computational-basis measurement.

To illustrate the circuit operations for the nonlocal
game, in Fig. 4, we depict the observables of x78, y78, z78
and the implementation for the constraint x78y78z78 = 1.
The observable x78 is the same as the Toffoli gate. To
measure this observable, one can use the Hadamard test,
in which the required non-Clifford gate is the controlled-
controlled-controlled-X (CCCX) gate. Similarly, the
non-Clifford gates required to measure y78 and z78 are the
controlled-controlled-Z (CCZ) and controlled-controlled-
controlled-(-X) gates, respectively.

𝜎!

𝜎!

𝜎!

𝑥"#

𝑦"#

𝑧"#𝐻 𝐻|0⟩

𝜎!

𝐻 𝐻|0⟩

𝐻 𝐻|0⟩

-𝜎$𝜎$

FIG. 4: The circuit with non-Clifford gates to realize the
simultaneous measurement of x78, y78, and z78 by using
the Hadamard test. The Hadamard test uses an ancilla
initialized in |0⟩, followed by a Hadamard gate, applying
controlled-O and again a Hadamard gate, and measuring
in the computational basis to get measurement results of
O. Here, the non-Clifford gates are CCCX, CCZ, and
CCC(-X) for x78, y78, and z78, respectively.

C. Modified BCS for shallow circuit computation

For the convenience of the shallow circuit computa-
tional task, we slightly modify the BCS in Eq. (9). For
the n-variable constraint

∏
v∈V av = −1, we can intro-

duce (n− 3) new variables and turn them into an equiv-
alent set of (n− 2) constraints with three variables each.
That is, we introduce new variables a12, a123, · · · , a1···n−2

and convert the constraint as

a1a2a3 · · · an = −1 ⇐⇒



a1a2a12 = 1

a12a3a123 = 1

· · ·
a1···n−3an−2a1···n−2 = 1

a1···n−2an−1an = −1.
(12)

Note that the commutation requirement between vari-
ables au and av in the original constraint is preserved,

since they also need to satisfy the constraint of auavyuv =
1. Denote the set of constraints in the modified BCS as
QA. Suppose the original BCS with size n consists of
|Q̃A| constraints. In correspondence with Eq. (10) in the
main text, there are |Q| = 3|QA| sets of questions in the
modified BCS nonlocal game, with

|QA| = |Q̃A|+ n− 3

= 2

(
n

2

)
+ 14

(
n

4

)
+ n− 2.

(13)

V. MAGIC COMPUTATIONAL AD-
VANTAGE IN SHALLOW CIRCUITS

A. Outline

As shown in Theorem 3, the nonlocal game defined
through the BCS in Eq. (9) separates the capabilities be-
tween a generic quantum world and the magic-free world
to generate correlations. Now, we translate correlation
generation into a computational task of a relation prob-
lem and show the magic advantage. As a reminder, the
computational task is a single-user one. “Alice” and
“Bob” in the nonlocal game now refer to parts of the
circuit, which is merely for intuitive thinking. In partic-
ular, one should not consider the task as a distributed
computation.

Briefly speaking, a relation problem randomly selects
an input bit string zin from a set and asks the compu-
tation to output a bit string zout, such that zout always
satisfies a certain relation with respect to zin. The high-
level idea to analyze the shallow circuit capabilities is as
follows: In a circuit comprising K-bounded fan-in gates,
where each gate can act on at most K inputs, the value
K mimics the light speed for information scrambling [47].
Furthermore, if the circuit is shallow, where the circuit
depth is a constant independent of the problem size, it
restricts the “time” for information scrambling; hence,
many sites in the circuit are “space-like” separated from
each other. If the relation problem is defined via a non-
local game, where randomly chosen computing sites of
“Alice” and “Bob” are required to generate nonlocal cor-
relations, then the circuit must be capable of winning
the game between “space-like” separated sites without
communication. Suppose the underlying nonlocal game
cannot be won perfectly without a particular resource.
In that case, the players must communicate to exchange
information and generate the desired correlation, which
takes “time.” Therefore, the shallow circuit should fail
in the task. On the contrary, things become different
if the nonlocal game can be won perfectly. Entangle-
ment can be created and distributed between two arbi-
trary sites via entanglement swapping with bounded fan-
in quantum gates in constant steps [28, 30], and quantum
“pseudo-telepathy” completes the remaining task.
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B. Relation problem separating QNC0and ClifNC0

Given a nonlocal game with size n, we can define a
relation problem labeled by n, Rn

N . In the following dis-
cussions, we focus on the relation problem R8

N , namely
the problem that embeds the BCS nonlocal game with
size n = 8. Other values of n can be studied similarly.
We describe the task by giving the quantum circuit that
perfectly solves the computational problem. As shown
in Fig. 5(b), consider a quantum circuit containing 2N
computing sites labeling from 1 to 2N . Imagine the cir-
cuit is divided into two parts, Alice and Bob, where Alice
holds the odd-valued sites, and Bob holds the even-valued
sites. Each site consists of a set of classical wires to re-
ceive the input of R8

N and quantum wires initialized in
|0⟩ for three qubits. Throughout this work, we denote the
classical systems by double wires and quantum systems
by single wires.

In the computation, Alice and Bob first prepare three
pairs of the EPR state, (|00⟩ + |11⟩)/

√
2, between their

adjacent sites (2i − 1, 2i), i ∈ N+, as shown by the blue
boxes. Next, given an input instance (j, k, α, β), Alice
and Bob perform three Bell-state measurements (BSM)
between the three pairs of qubits on their adjacent sites
(2j, 2j+1), · · · , (2k−2, 2k−1) in a concatenated manner,
as shown by the white boxes. A BSM projects two qubits
into one of the four orthogonal Bell states,

∣∣Φ+
〉
=

|00⟩+ |11⟩√
2

,

∣∣Φ−〉 = |00⟩ − |11⟩√
2

,

∣∣Ψ+
〉
=

|01⟩+ |10⟩√
2

,

∣∣Ψ−〉 = |01⟩ − |10⟩√
2

,

(14)

and the measurement can be realized by a CNOT gate
with Pauli measurements. When the BSM is performed
jointly on one qubit of two Bell states each, the remain-
ing two qubits become one of the Bell states with equal
probability conditioned on the measurement outcome, a
phenomenon called entanglement swapping [48]. After-
ward, Alice and Bob perform the perfect-winning strat-
egy for the nonlocal game at sites 2j − 1 and 2k with
respect to the questions α and β, respectively, as shown
by the orange boxes.

To win the BCS nonlocal game, we hope the
post-measurement state after entanglement swapping

is |Φ+⟩⊗3
, three pairs of the EPR state, such that

⟨Φ+|⊗3
Aγ ⊗ AT

γ |Φ+⟩⊗3
= 1. However, a subtle is-

sue is the so-called bit and phase flips in entanglement
swapping. Due to the randomness in BSM, the post-
measurement state may differ from the EPR state |Φ+⟩,
experiencing a rotation of a Pauli operator. Note that
different from the case of Pauli measurements, where for
any |ψ⟩ ∈ {|Φ+⟩ , |Φ−⟩ , |Ψ+⟩ , |Ψ−⟩} and any Pauli op-

erator P , ⟨ψ|P ⊗ PT |ψ⟩ = ±1, such a Pauli error to-
tally ruins the measurement statistics of Alice and Bob
in the nonlocal game and results in random outcomes.
To fix this issue, we compromise by embedding the cir-
cuit outcomes in these cases to the allowed relation for
the computational problem while requiring the circuit
to generate the desired nonlocal game statistics with a
non-negligible probability. For the quantum circuit that
takes the pseudo-telepathy as a sub-routine, the desired
statistics can be generated with probability 1/64. On the
contrary, any magic-free is incompetent to generate the
desired statistics with any constant probability. We give
the proof in SI Sec. IV.
With the above quantum circuit, we define the com-

putational problem, as rigorously stated in Fig. 5(a).
Strictly speaking, our problem not only requires the cir-
cuit to return an output that satisfies certain criteria but
also to return one specific output with a non-negligible
probability. This differs from the standard relation prob-
lem, where it suffices for the algorithm to return a valid
output. A more accurate statement of our results can be
given in terms of a sampling problem. Nevertheless, we
shall keep using the term “a relation problem,” which is
more intuitive.
Building on the nonlocal games defined through

Eq. (9), the following theorem illustrates the separation
between QNC0and ClifNC0circuits in solving the BCS re-
lation computational problem. We provide the analysis
details in SI Sec. IV.

Theorem 4. Given the nonlocal game defined by the
BCS in Eq. (9) with size n ∈ 2N + 6, there is a rela-
tion problem Rn

N and a constant Kth independent of N ,
such that for any integer K > Kth,

• Rn
N can be perfectly solved by a QNC0circuit with

K-bounded fan-in geometrically local gates, where
some gates are non-Clifford operations.

• Any Clifford circuit with K-bounded fan-in gates
that solves Rn

N with probability larger than (1 +
pClif)/2 with pClif given in Eq. (10) must have a
circuit depth at least increasing logarithmically with
respect to the problem size N , where the gates can
be non-geometrically local.

By this, we prove the main result in Eq. (6). In the
second part of the theorem, the logarithmic separation is
tight. That is, a magic-free circuit with bounded fan-in
gates can solve the problem, of which the depth grows
logarithmically. For a straightforward solution, all the
computing sites send their input to a fixed ancilla, which
performs the nonlocal game calculation and sends back
the result to the specified sites.

VI. DISCUSSIONS AND OUTLOOK

In summary, we discover a family of nonlocal games
that require quantum magic to win perfectly and trans-

325



9

Input of R8
N :

An instance of (j, k, α, β) defining

αi =

{
α, if i = j,

⊥, if i ̸= j,

βi =

{
β, if i = k,

⊥, if i ̸= k,

where 1 ≤ j < k ≤ N, α ∈ QA, β ∈ QB .

Valid outputs of R8
N :

Bit strings {rAi (l)}i and {rBi (l)}i, l ∈ {1, 2, 3},
Case I: Long-range nonlocal game∏

j<i≤k

rAi (l) = +1, ∀l ∈ {1, 2, 3},

∏
j≤i<k

rBi (l) = +1, ∀l ∈ {1, 2, 3},

(rAj , r
B
k ) = f(α, β),

where rAi = (rAi (1), r
A
i (2), r

A
i (3)) ∈ {±1}3 and similar to rBi ,

f(α, β) is the satisfying assignment in the nonlocal game.

Case II: Entanglement swapping flips
There exists l ∈ {1, 2, 3}, such that∏

j<i≤k

rAi (l) = −1, or
∏

j≤i<k

rBi (l) = −1.

Additional requirement:
Both cases occur with a non-negligible probability,
for all (j, k, α, β)

(a)

2𝑗 − 1 |0⟩

2𝑘 − 2 |0⟩

2𝑘 − 1 |0⟩

2𝑘 0

2𝑗 − 1 |0⟩

2𝑗 0

2𝑗 + 1 |0⟩

2𝑗 0
… ……

… ……

𝛼

⊥

⊥

β

r𝑗
𝐴

r𝑗
𝐵, r𝑗+1

𝐴

r𝑘
𝐵

r𝑘−1
𝐵 , r𝑘

𝐴

nonlocal

game

(Alice)

nonlocal

game

(Bob)

EPR

prepare

EPR

prepare

… ……

BSM

BSM

(b)

FIG. 5: (a) Description of the shallow-circuit computation task R8
N . (b) A quantum shallow circuit that realizes R8

N .

late it into an unconditional proof of magic computa-
tional advantage. While not being the purpose of this
work, by applying the “game gluing” technique [46, 49],
one can combine games with different sizes in the family
and construct a nonlocal game with a strict separation
between the winning probabilities of classical, Clifford,
and general quantum strategies. We consider this to be
of independent interest to some research. In addition, we
believe other nonlocal games exist that can demonstrate
magic advantage. For instance, following the method of
embedding a general group into a BCS in Ref. [43], one
can obtain candidate BCS nonlocal games. In SI Sec. VA,
we review the procedure. Combined with Theorem 1, one
can efficiently check whether they have perfect-winning
Clifford strategies.

To compute the relation problem in a realistic exper-
iment, one shall further consider the noise. For this
purpose, noise-tolerant methods, such as error correc-
tion and mitigation in a shallow circuit, need to be
developed. With recent experimental progress, prepar-
ing magic states and implementing a few layers of non-

Clifford gates are becoming easy [50, 51]. We expect that
the computational task in this work can be faithfully re-
alized on an upcoming early fault-tolerant quantum com-
puting platform [52–54].
This work takes the first step in proving the compu-

tation necessity of quantum magic unconditioned on any
complexity assumption. We hope our results can inspire
further explorations in this direction, eventually going
beyond the regime of shallow circuits and solidifying the
“magic” of universal quantum computation.
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We prove the results presented in the main text in this Supplementary Information. In Sec. I,
we present the necessary preliminaries for the notions in this work. In Sec. II, we analyze the new
binary constraint system (BCS) proposed in this work along a group-theoretic approach. In Sec. III,
we analyze the capabilities of Clifford strategies in the BCS-based nonlocal game. In Sec. IV, we
introduce the relation problem based on the BCS nonlocal game, construct a shallow circuit solution
that requires quantum magic, and prove the complexity hardness for magic-free circuits. In Sec. V,
we review a group embedding result in Ref. [1] and provide an efficient algorithm to solve a linear
BCS over the Pauli group.

I. PRELIMINARIES

In this section, we review preliminary concepts for this work. We assume readers are familiar with the basic notions
of linear algebra, graph theory, and group theory, and the basic description of quantum systems. For completeness,
we restate some basic notions that are listed in the main text.

In the Appendix, we overuse some letters such as n and i when expressing the total number of items or labelling
the variables; nevertheless, their meaning can be specified from the context.

A. Quantum magic and non-Clifford operations

We first briefly review the concept of quantum magic and related notions. For simplicity, we only consider the
n-qubit system based on the Pauli group. Nevertheless, the results can be easily generalized to systems with a prime
dimension by using the Weyl-Heisenberg algebra. Readers who are interested in the topic may refer to the Ph.D.
thesis of Gottesman [2] and its following works for a more in-depth discussion.

Let us start with the definition of the Pauli observables on a single qubit:

I =
(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (1)

where I is the identity operator, and the other three observables σx, σy, and σz are always named nontrivial Pauli
observables. The n-qubit Pauli group is defined as the set of operators

Pn = {±1,±i} × {I, σx, σy, σz}⊗n, (2)

together with the operator multiplication. The Clifford group is defined as the normalizer of the Pauli group Pn:

Cn = {C ∈ Un|∀P ∈ Pn, CPC
† ∈ Pn}, (3)

where Un is the n-qubit unitary group. Operators in the Clifford group are called Clifford operations or gates. A
highly related concept is the stabilizer state, which is generated by applying Clifford gates on the computational basis
states, or equivalently the eigenstates of σ⊗nz . If a state cannot be prepared in this way or by mixing stabilizer states,
the state is said to contain quantum “magic” [3].

∗ zxj24@hku.hk
† pzk20@mails.tsinghua.edu.cn
‡ lgd22@mails.tsinghua.edu.cn

328



2

B. General binary constraint systems

In this section, we review the definition of a binary constraint system (BCS). A BCS consists of n binary variables
v1, · · · , vn and m constraints c1, · · · , cm, where each cj is a Boolean equation with respect to a subset of vi’s, vi ∈ Sj .
In later discussions, we shall specify a constraint by cj . Note that BCS with general Boolean constrains can describe
general systems of equations [4]. In a linear BCS, all the constraints are given by addition over Z2, or the parity
operation over Boolean variables ranging in Z2 = {0, 1}. In the literature, such a BCS is also called a parity BCS. For
convenience of a quantum generalization, it is equivalent to define the BCS over sign variables ranging in {+1,−1}.
In this case, a Boolean function can be equivalently given by a multilinear function of a subset of variables on R. For
a linear BCS, the parity constraint becomes a product of the variables. In accordance with the notations in the main
text, we mainly use the sign variables and denote each constraint cj as a multilinear function of a set of variables
{vi : i ∈ Sj}, namely in the form of

∏
i∈Sj vi = cj ∈ {+1,−1}. Nevertheless, it is sometimes more convenient to use

the Boolean variables to represent a BCS. In correspondence to the sign variables,

vivj = +1 ⇔ vi ⊕ vj = 0,

vivj = −1 ⇔ vi ⊕ vj = 1,
(4)

where the LHS are the notations using sign variables and the RHS are the notations using Boolean variables. We
shall specify the notations if we resort to the Boolean variables.

If a BCS has a satisfying assignment, namely a fixed assignment to the variables that satisfies all the constraint,
we say it has a classical solution. Note that if all the constraints are cj = +1, the BCS can be trivially satisfied by
assigning all the variables to be +1. With respect to the BCS size, searching for a classical solution to a general BCS
is NP-hard. On the other hand, the problem is in P for linear BCS, where one can apply Gaussian elimination or the
replacement method to efficiently solve the system.

The quantum generalization of a BCS is an operator-valued constraint system. The variables vj ’s are replaced with
linear operators Aj ’s acting on a Hilbert space H with a finite dimension, such that

1. Each Aj is Hermitian with eigenvalues in {1,−1}, i.e., Aj = A†j and A2
j = I for all j.

2. Aj ’s satisfy all the constraints with ci replaced with ciI, where I is the identity operator on H.

3. If Ai and Aj appear in the same constraint, they commute with each other, i.e., AiAj = AjAi.

If there exists a Hilbert space H with dimension d and a set of linear operators following the above requirements,
we say the BCS has a d-dimensional quantum satisfying assignment, or simply a quantum solution. As a side
remark, the requirement that the operator variable acts on a finite-dimensional Hilbert space can be relaxed in several
directions, including allowing an infinite dimension and limits of finite-dimensional systems. We do not discuss such
generalizations and refer readers to Ref. [1, 5] for a more detailed definition.

If a BCS has a quantum solution, one can apply quantum measurements to realize it in an experiment, where
they prepare independently and identically many copies of a quantum state and measure the observables in each
constraint. For each constraint, the measurement results shall satisfy the relation in the fashion of classical variables.
Note that the requirement for a quantum solution guarantees the validity of a joint measurement for each constraint.
Due to the intrinsic randomness in quantum measurements, the same variable may take different values in different
constraints. It is worth mentioning that measuring the set of observables on any state, including a maximally mixed
state, generates the desired statistics for the constraints. The quantum satisfying assignment is also called a state-
independent contextuality of the observables [6].

As the dimension can be arbitrary, searching for a quantum solution is undecidable [1, 7]. A helpful way of thinking
is to regard the BCS as a group presentation statement [8, 9].

Definition 1 (Group presentation). Given a set S, let F(S) be the free group on S and R a set of words on S, and
denote the quotient group of F(S) by the smallest normal subgroup containing each element in R as ⟨S : R⟩. A group
G is said to have the presentation ⟨S : R⟩ if it is isomorphic to ⟨S : R⟩.

In the group presentation, the elements in S are called generators, and the elements in R are called relators. Given
a linear BCS, one can regard the constraints as a group presentation.

Definition 2 (Solution group of a linear BCS). Given a linear BCS with n binary variables {vi} and m constraints
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{cj}, the solution group of the BCS is defined as the group with the following presentation:

Γ = {{J, gi : i ∈ [n]} : {g2i = e,∀i ∈ [n],

J2 = e,

∀j ∈ [m], gkgl = glgk,∀k, l ∈ Sj ,

Jgi = giJ,∀i ∈ [n],∏
i∈Sj

gi = Jχ(cj=−1),∀j ∈ [m]}},

(5)

where the group element J corresponds to −1 in the BCS, e defines the identity operator of the group, and χ(·) is the
indicator function that takes the value 1 if the argument is true and 0 if the argument is false.

Note that if J = e, the solution group is trivial, as the assignment of all the group elements to be e satisfies all the
relators. On the contrary, should J ̸= e, the solution group is non-trivial, and the group presentation corresponds to
a valid operator-valued solution to the underlying BCS, as stated by the following lemma.

Lemma 1 ([9, 10]). Given a linear BCS that defines a solution group with the group element J corresponding to −1, if
J is non-trivial in some finite-dimensional representation of the solution group, then the BCS has a finite-dimensional
quantum satisfying assignment. The converse is also true.

The irreducible representation of the generators in the solution group determines the quantum realization [9, 11].
Here, a representation of the group refers to a group homomorphism of the group to a set of unitary operators on
a Hilbert space, and an irreducible representation refers to a representation that does not have a non-trivial group-
invariant subspace [12]. For a classical solution, it can be described by the Abelian group, where all the group elements
commute with each other.

As an example of linear BCS, we review the Mermin-Peres BCS, also widely known as the “magic-square” system [13,
14]. Note that one should not mistake the name “magic” for the quantum resource of magic states. The Mermin-Peres
BCS involves n = 9 variables and m = 6 constraints. In terms of sign variables ranging in {+1,−1}, the BCS is
defined as follows:

v1v2v3 = 1,

v4v5v6 = 1,

v7v8v9 = 1,

v1v4v7 = 1,

v2v5v8 = 1,

v3v6v9 = −1.

(6)

This BCS does not have a classical solution. On the other hand, it has a unique quantum solution over the Pauli
group. We denote the operator that corresponds to vi as Ai in accordance with the notations above. The quantum
solution is given as follows [10, 15]:

A1 = σz ⊗ I,
A2 = I⊗ σz,

A3 = σz ⊗ σz,

A4 = I⊗ σx,

A5 = σx ⊗ I,
A6 = σx ⊗ σx,

A7 = σz ⊗ σx,

A8 = σx ⊗ σz,

A9 = σy ⊗ σy,

(7)

where ⊗ stands for the tensor product operation.
Given a BCS, one can define an associated nonlocal game [8]. In the nonlocal game, there are two cooperating

players, Alice and Bob, who cannot communicate with each other once the game starts. With respect to a probability
distribution, a referee randomly selects one constraint, cs, and one variable, vt, contained in the constraint. In our
work, we always take the probability distribution to be uniform. The referee send s to Alice and t to Bob. Then,
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Alice returns an assignment to each variable vi in cs that satisfies the constraint and Bob returns an assignment to
variable vt. They win the game if and only if the assignments of Bob and Alice to vt are the same. This type of
nonlocal game extends the well-known Clauser-Horne-Shimony-Holt (CHSH) game [16], where the underlying BCS
involves two binary variables and two multi-linear constraints,

v1v2 = 1,

v1v2 = −1.
(8)

This BCS game is equivalent to the CHSH game in the sense of the probability distribution that Alice and Bob can
achieve. Note that this BCS does not have either a classical solution or a quantum solution. Still, quantum strategies
for the game can bring a higher winning probability than classical ones.

To maximize the winning probability, Alice and Bob can agree on a strategy for playing the game. We call a
strategy is perfect if it wins with probability 1. We say Alice and Bob apply a classical strategy if they can access only
shared and local randomness. In quantum theory, Alice and Bob can pre-share entanglement and apply local quantum
operations. In general, when a BCS does not have a solution, it is possible that Alice assigns different values to the
same variable upon different questions of constraint. However, it brings limited advantages. For classical strategies,
using basic linear algebra analysis, it is not hard to prove that a BCS game has a perfect classical strategy if and
only if the corresponding BCS has a solution. It follows that to decide whether a general BCS game has a perfect
classical strategy is in NP-hard for general Boolean constraints and in P for linear constraints with respect to the
BCS size. In the above examples, the CHSH game has a maximal winning probability of 3/4, and the Mermin-Peres
game has a maximal winning probability of 8/9. In the quantum case, if the BCS does not have an operator-valued
solution, then there does not exist a perfect winning strategy for the associated nonlocal game, and vice versa.
This fact is first proved in Ref. [8]. If the BCS has a quantum solution, it is linked to a perfect quantum winning
strategy in a one-to-one correspondence. Suppose the quantum solution to the BCS is given by observables {Ai}i
acting on a d-dimensional system. Alice and Bob first share a maximally entangled state, |Φ+⟩ =

∑d−1
i=0 |ii⟩ /

√
d.

When the nonlocal game starts, upon receiving the constraint cs, Alice measures the observables Ai belonging to the
constraint, and upon receiving the variable vt, Bob measures the transpose of the observable At, denoted by AT

t . The
measurement statistics satisfy the winning condition.

For the well-known existing BCS that are solvable, it either has a classical solution, which corresponds to an Abelian
group, or a quantum solution of Pauli strings as in the case of the Mermin-Peres magic square, which corresponds to
the Pauli group. In Ref. [17], the author provides an efficient algorithm to determine perfect quantum solutions to
a special type of linear BCS, where each variable shows up in exactly two constraints. Moreover, if such a BCS has
a solution, the solution is necessarily given by Pauli strings, i.e., the solution is in the Pauli group. Following this
result, it was conjectured that any linear BCS with an operator-valued satisfying assignment belongs to either of the
two cases [17]. As mentioned in the main text, this conjecture has been suggested false [1, 7]. In the next section, we
directly disprove this conjecture with a specific linear BCS.

II. GROUP-THEORETIC ANALYSIS OF THE BINARY CONSTRAINT SYSTEM

In this section, we apply group-theoretic tools to analyse the properties of the proposed linear BCS in the main
text. We first review the BCS proposed in this work. Given an undirected complete graph G = (V,E) with n vertices,
it defines the following variables:

1. Each vertex v ∈ V corresponds to one variable av.

2. Each undirected edge, denoted by e = (u, v) ∈ E, corresponds to three variables xuv, yuv, zuv.

3. Every two disjoint edges, denoted by e1 = (u, v) ∈ E and e2 = (s, t) ∈ E, where s, t, u, v are different vertices,
correspond to

(a) one variable buv|st ≡ bst|uv, where be1e2 = be2e1 ;

(b) two variables ce1e2 ≡ cuv|st and ce2e1 ≡ cst|uv, where ce1e2 ̸= ce2e1 in general.
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Based on these variables, the BCS contains the following constraints,

auavyuv = 1,∀(u, v) ∈ E,

xuvyuvzuv = 1,∀(u, v) ∈ E,

xuvxstbuv|st = 1,∀(u, v), (s, t) ∈ E,

xuvzstcuv|st = 1,∀(u, v), (s, t) ∈ E,

buv|stbvs|utbsu|vt = 1,∀(u, v), (s, t) ∈ E,

cuv|stcvs|utcsu|vt = 1,∀(u, v), (s, t) ∈ E,∏
v∈V

av = −1.

(9)

For a nontrivial BCS, the system size is at least n = 4. If the BCS has a solution, then the other variables can be
generated by a′s and x′s. For convenience, we label the vertices with natural numbers from 1 to n. For each vertex
v and each edge (u, v), u ̸= v, we can use transpositions between elements in the set [2n] to represent the generators,
where av = (2v− 1 2v) and xuv = (2u− 1 2v− 1)(2u 2v). Here, (i j) represents a transposition between i and j. We
have the following results for the BCS.

Theorem 1. For any BCS of the above form with n ∈ 2N+ 5 = {5, 7, 9, · · · }, it has a classical solution.

Proof. When n ∈ 2N + 5, the BCS can be satisfied by assigning all the variables av’s to be −1 and all the other
variables to be 1.

Theorem 2. When n = 4, this BCS has a two-qubit Pauli-string solution. On the other hand, the BCS does not
have a classical solution or a single-qubit Pauli solution in this case.

Proof. The BCS having no classical solution can be directly checked by solving the BCS on the binary field. By using
the fact that there is no state-independent contextuality in a qubit system, one can prove that the BCS does not have
a single-qubit Pauli solution either [18–20]. Later, we prove this statement under the context of linear BCS.

For the former statement, here is one construction of the two-qubit Pauli-string solution. We abbreviate the Pauli
operators I, σx, σy, σz as I,X, Y, Z, respectively, and omit the tensor-product operator in the expressions.

a1 a2 a3 a4

−ZZ II ZI IZ

x12 x13 x14 x23 x24 x34

−Y Y XI IX II II ZZ

y12 y13 y14 y23 y24 y34

−ZZ −IZ −ZI ZI IZ ZZ

z12 z13 z14 z23 z24 z34

−XX −XZ −ZX ZI IZ II

b12|34 b13|24 b14|23

XX XI IX

c12|34 c13|24 c14|23 c34|12 c24|13 c23|14

−Y Y XZ ZX Y Y −XZ −ZX

TABLE I: A two-qubit Pauli-string solution for the BCS when n = 4.

Theorem 3 (A special case of the results in Ref. [18–20]). If a linear BCS has a single-qubit operator-valued solution,
then it has a classical solution.

Proof. Two-dimensional matrices have such a special property: Suppose A,B ∈ C2×2 and [A,B] = AB − BA = 0.
At least one of the following cases would happen (1) A = cI for some c ∈ C; (2) B = cI for some c ∈ C; (3) A = cB
for some c ∈ C. Therefore, all two-dimensional matrices that are not proportional to the identity matrix I can be
classified into different equivalence classes, with elements in a class proportional to each other.
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Given a single-qubit operator-valued solution, denote the first equivalent class as {c1O, c2O, · · · |c1, c2, · · · = ±1}
where O ̸= ±I and O2 = I. Substituting {c1O, c2O, · · · |c1, c2, · · · = ±1} with {c1I, c2I, · · · |c1, c2, · · · = ±1} and not
changing other variables also provides a solution. This is because (1) variables in different equivalent classes do not
show up in the same constraint; (2) the constraints among the variables proportional to I and in the first equivalent
class are not violated after the substitution. Similarly, we can set all variables proportional to I to give a solution.
The proportional coefficient is a valid classical solution.

Theorem 4. For any BCS of the above form with n ∈ 2N+6 = {6, 8, 10, · · · }, it does not have a Pauli-string solution.

Proof. Later we shall present a general method to determine whether a general linear BCS has a Pauli-string solution,
where the current result can be regarded as a special case. Nevertheless, here we present a graph-based proof specific
to this BCS, which is more illustrative.

We first specify the commutation properties of Pauli strings. The Pauli group elements are either anti-commuting,
like {X,Z} = XZ+ZX = 0, or commuting, like [X⊗X,Z⊗Z] = (X⊗X)(Z⊗Z)−(Z⊗Z)(X⊗X) = 0. Therefore, if
we swap any two operators in a multiplication of some Pauli-string operators, the operator value of the multiplication
would at most differ with a sign.

Now we prove the theorem by contradiction. Assume the BCS described in the theorem has a Pauli-string solution.
Without loss of generality, with respect to the correspondence between the BCS variables and vertices in a fully
connected undirected graph, let us consider the sets of variables and constraints corresponding to a subgraph with
five vertices, labeled with 1 through 5. For the quadrangle {1, 2, 4, 5}, we have the equation b12|45b24|15b41|25 = I.
Substituting all the b-type variables by xuvxstbuv|st = I, we have

x12x45x24x15x41x25 = I. (10)

Similarly, for the quadrangles {1, 3, 4, 5} and {2, 3, 4, 5}, we have the equations

x13x45x34x15x41x35 = I. (11)

x23x45x34x25x42x35 = I. (12)

Next, by multiplying the left and right sides of Eqs. (10)(11) and (12), respectively, swapping the order of the variables,
and eliminating the adjacent two variables that are the same, we get

x12x13x23x45 = ±I, (13)

where “±” denotes that either case would happen. In this step, we have used the commutation properties of Pauli
strings. In other words,

x45 ∈ {±x12x13x23}. (14)

As a reminder, xuv and xvu represent the same variable. Note that there is nothing special about the choice of x45
among the variables, and a similar result can be obtained with an arbitrary specification of a subgraph with five
vertices. For instance, we can get

x46 ∈ {±x12x13x23}. (15)

Combining the above two equations, we have x45 = ±x46. For n ≥ 6, following the above procedure and enumerating
all such identities, one shall find that all the x-type variables differ from each other up to a sign, i.e., xuv ∈ {±x} for
all (u, v) ∈ E. Thus we can assume that xuv = x′uvx where x′uv ∈ {±1}.

Following the specification of the x-type variables, for any four distinct vertices u, v, s, t ∈ V , we have the following
expressions:

buv|st = xuvxst = x′uvx
′
stI,

cuv|st = xuvzst = xuvxstyst = x′uvx
′
styst = x′uvx

′
stasat.

(16)

Consequently,

buv|stbvs|utbsu|vt = x′uvx
′
stx
′
vsx
′
utx
′
sux
′
vt = 1,

cuv|stcvs|utcsu|vt = x′uvx
′
stx
′
vsx
′
utx
′
sux
′
vtasatauatavat = 1.

(17)

Note that all the a-type variables commute with each other, since they simultaneously appear in the last equation of
the BCS. We hence derive that auavasat = 1 for all four distinct vertices u, v, s, t ∈ V , which is equivalent to

au = avasat. (18)
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By applying a similar argument as for the x-type variables, we shall find that all the a-type variables are identical, i.e.,
av ≡ a,∀v ∈ V . This contradicts the constraint

∏
v∈V av = −1 when n, the number of vertices, is even. Therefore,

the BCS of the above form with n ∈ 2N+ 6 does not have a Pauli-string solution.

Theorem 5. For any BCS of the above form with n ≥ 4, label the vertices from 1 to n. The BCS has a solution over
the centralizer group of element J = (1 2)(3 4) · · · (2n− 1 2n) in the permutation group S2n.

Proof. Consider x(u,v) = (2u − 1 2v − 1)(2u 2v), av = (2v − 1 2v), and all the other variables generated by them.
One can easily check that the assignment satisfies the constraints. As J does not map to the identity element of the
group, this is a non-trivial quantum solution following Lemma 1. The solution group corresponds to the centralizer
of J in the permutation group, given by

CJ = Sn ⋉ Zn
2 , (19)

which is the semi-product of the permutation group Sn generated by x(u,v), and an Abelian group Zn
2 generated by

av.

Now we solve the irreducible representations of the solution, which gives the quantum realizations. We have the
following theorem.

Theorem 6. An irreducible representation of Sn ⋉ Zn
2 can be labeled by

(
m, θ(m), ρ(n−m)

)
where m is an integer in

[0, n], θ(m) and ρ(n−m) are two irreducible representations of permutation groups Sm and Sn−m, respectively. Given
label

(
m, θ(m), ρ(n−m)

)
, we first get an irreducible representation of group Sm × Sn−m ⋉ Zn

2 , which is given by

ϕ(m,θ,ρ) : Sm × Sn−m ⋉ Zn
2 →Mdim θ(m)×dim ρ(n−m)(R)

x ∈ Sm, y ∈ Sn−m, z ∈ Zn
2 , (x, y, z) 7→ θ(m)(x)⊗ ρ(n−m)(y)⊗ φ(m)(z).

(20)

Here, φ(m) is an irreducible representation of Zn
2 such that for any element z = (z1, z2, · · · , zn) ∈ Zn

2 where ∀j, zj ∈
{0, 1},

φ(m)(z) =
m∏
j=1

(−1)zj . (21)

The irreducible representation of Sn⋉Zn
2 labeled by

(
m, θ(m), ρ(n−m)

)
, denoted as Φ(m,θ,ρ), is the induced representation

of ϕ(m,θ,ρ). Specifically, one first finds the left coset of Sm × Sn−m ⋉ Zn
2 in Sn ⋉ Zn

2 , given by{
g1Sm × Sn−m ⋉ Zn

2 , g2Sm × Sn−m ⋉ Zn
2 , · · · , g(n

m)
Sm × Sn−m ⋉ Zn

2

}
, (22)

where
{
g1, g2, · · · , g(nn)

}
are representative elements and g1 is the identity. Then, the induced representation Φ(m,θ,ρ)

is defined on the bases
{
gie⃗j |1 ≤ i ≤

(
n
m

)
, 1 ≤ j ≤ dimϕ(m,θ,ρ)

}
where e⃗j is a basis of the representation space of

ϕ(m,θ,ρ). That is, for any element g ∈ Sn ⋉ Zn
2 , suppose that ggi ∈ gσ(i)Sm × Sn−m ⋉ Zn

2 and set hi = g−1σ(i)ggi where

σ is a permutation on
{
1, 2, · · · ,

(
n
m

)}
, then

Φ(m,θ,ρ)(g) =
(
Πσ ⊗ Idimϕ(m,θ,ρ)

)( n⊕
i=1

ϕ(m,θ,ρ)(hi)

)
. (23)

Here, Πσ is a permutation matrix defined on the computational basis |1⟩ , |2⟩ , · · · ,
∣∣(n

m

)〉
and transforms |i⟩ to |σ(i)⟩.

Proof. This theorem is a direct corollary of Proposition 25 in [12]. To get an irreducible representation of CJ = Sn⋉Zn
2 ,

we start from the irreducible representation of Zn
2 . Note that Zn

2 = ⟨a1⟩ × ⟨a2⟩ × · · · × ⟨an⟩ is generated by n two-
order elements a1, a2, · · · , an. Any irreducible representation of Zn

2 can be labeled by a vector with length n, like
(1,−1, · · · , 1), denoting the values that n generators would be mapped to in the representation. Meanwhile, we
call two irreducible representations equivalent if they can be mutually transformed via Sn. In other words, two
irreducible representations are equivalent if and only if the corresponding vectors have the same number of -1. To
obtain an irreducible representation of CJ , we only need to consider inequivalent irreducible representations of Zn

2

under the transformation of Sn. Without loss of generality, we choose these irreducible representations as (1, 1, · · · , 1),
(−1, 1, · · · , 1), (−1,−1, · · · , 1), and · · · , (−1,−1, · · · ,−1) and label them with the number of -1, that is, {0, 1, · · · , n}.
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For a numberm ∈ {0, 1, · · · , n}, we get an irreducible representation of Zn
2 , denoted as φ(m), mapping the generators

ai to φ
(m)(ai) = (−1)1i≤m . Then, we consider a subgroup of Sn, such that any element h in this subgroup satisfies

∀z ∈ Zn
2 ,

φ(m)(gzg−1) = φ(m)(z), (24)

or equivalently, 1 ≤ i ≤ n,

φ(m)(gaig
−1) = φ(m)(ai). (25)

Clearly, this subgroup must be Sm × Sn−m. Then, one can define the irreducible representation of Sm × Sn−m ⋉ Zn
2

as

ϕ(m,θ,ρ) : Sm × Sn−m ⋉ Zn
2 →Mdim θ(m)×dim ρ(n−m)(R)

x ∈ Sm, y ∈ Sn−m, z ∈ Zn
2 , (x, y, z) 7→ θ(m)(x)⊗ ρ(n−m)(y)⊗ φ(m)(z),

(26)

where θ(m) and ρ(n−m) are two irreducible representations of permutation groups Sm and Sn−m, respectively. Note
that ϕ(m,θ,ρ) is a well-defined group homomorphism due to the condition of Eq. (24). Proposition 25 in [12] tells
us that any irreducible representation of Sn ⋉ Zn

2 can be constructed by the induced representation of ϕ(m,θ,ρ) by
traversing m, θ, and ρ. Proof is done.

For a perfect strategy of the non-local game, the element J must be mapped to a non-identity element. Note that
any element in CJ commutes with J . Via Theorem 6, one can obtain the following result:

Φ(m,θ,ρ)(J) = φ(m)(J)IdimΦ

= φ(m)

(
n∏

i=1

ai

)
IdimΦ

=
n∏

i=1

φ(m)(ai)IdimΦ

= (−1)mod(m,2)IdimΦ,

(27)

where dimΦ =
(
n
m

)
dimϕ =

(
n
m

)
dim θ(m) dim ρ(n−m) ≥

(
n
m

)
. Thus, Φ(m,θ,ρ)(J) corresponds to a perfect measurement

strategy if and only if m is odd. The smallest dimension of the quantum system for a perfect strategy is n when
m = 1 or m = n− 1 and dim θ(m) = dim ρ(n−m) = 1.

The quantum realization of the BCS in Eq. (9) is not unique. The underlying reason is that unlike the Pauli
group, the permutation group has more than one inequivalent irreducible representations [12]. For n = 8, which is the
smallest size for a non-trivial result where there is not a Pauli-string solution to the BCS, we consider the case where
m = 1 and θ and ρ are both trivial representations, in which the dimension of the quantum system is 8. It implies
that the corresponding non-local game can be realized with only 3 EPR pairs. The representations of the generators
are given by the following:

a1 =


−1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 , a2 =


1 0 · · · 0

0 −1 · · · 0
...

...
. . .

...

0 0 · · · 1

 , · · · , a8 =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · −1

 , (28)

x12 =


0 1 0 · · · 0

1 0 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 , x13 =


0 0 1 · · · 0

0 1 0 · · · 0

1 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 , · · · , x18 =


0 0 0 · · · 1

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

 . (29)

The value of xuv equals x1ux1vx1u = I8 − euu − evv + euv + evu, where I8 is an eight-dimensional identity operator,
and eij denotes an elementary matrix, of which the element in the i’th row and j’th column is one, and all the other
elements are zero.
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From the expression of the generators, we can see that the measurement observables do not belong to the Pauli
group and need magic to realize. Following the same derivation, one can prove that the smallest non-trivial irreducible
representation of the solution to the BCS defined over n vertices requires an n-dimensional system. Thus, we obtain
an upper bound of the smallest number of qubits to win the non-local game.

Corollary 1. The smallest number of qubits to win the associated nonlocal game of Eq. (9) is O(log n).

III. CAPABILITIES OF CLIFFORD STRATEGIES IN THE NONLOCAL GAME

In proving the “magic” advantage in shallow circuit quantum computation, we need to specify the capabilities of
Clifford strategies in the nonlocal BCS game. Thanks to the algebraic structure of BCS, we can use mature techniques
from linear algebra to obtain quantitative results.

Suppose the players in a nonlocal game are restricted to Clifford operations only, or that they do not have access
to quantum magic resources. In this case, the most general strategy they can apply to playing the nonlocal game is
as follows:

• Before the nonlocal game starts:

1. Alice and Bob prepares an n-qubit state and initialize it in |0⟩.
2. Alice and Bob apply joint Clifford operations and Pauli-string measurements to the state and evolve it into

an entangled state ρAB , where the subscripts denote the subsystems they each will hold in the game.

• After the nonlocal game starts: Alice and Bob each applies Pauli-string measurements to their own quantum
system.

In our discussions, we allow an arbitrarily large n. Using a convexity argument, we know that a mixed state does
not bring any advantage to Alice and Bob in winning the nonlocal game, and we can hence take ρAB as a pure state
|ψ⟩ without loss of generality. By further applying the Schmidt decomposition result, a pure state can be written as

|ψ⟩ =
d−1∑
i=0

αi |ii⟩ , (30)

where ∀i, αi ≥ 0, and
∑d−1

i=0 α
2
i = 1. Note that the maximally entangled state, which is

∣∣Φ+
〉
=

d−1∑
i=0

1√
d
|ii⟩ , (31)

can be prepared by applying control-NOT operations to |0⟩, which is a Clifford operation. Therefore, a general
bipartite entangled state |ψ⟩ shared by Alice and Bob can only be linked with |Φ+⟩ with a Clifford operation, i.e.,
|ψ⟩ = UC |Φ+⟩.

Based upon the above observations, we discuss the capabilities of Clifford operations in playing a parity BCS
nonlocal game. In demonstrating the magic advantage, we are interested in the parity BCS that do not have a
Pauli-string quantum satisfying assignment. We have the following result for these instances.

Theorem 7. Suppose a parity BCS does not have a satisfying assignment with Pauli-string observables. Then, for
any Clifford strategy, there exist a constraint labelled by cs and a variable in it labelled by vt, where the probability
that the assignments of Alice and Bob to vt under the constraint cs are identical does not exceed 1/2.

Proof. In the first part of the proof, we prove the case where Alice and Bob initially share a maximally entangled
state |Φ+⟩ in Eq. (31) of an arbitrary dimension and then generalize the result to general Clifford strategies. In the
BCS nonlocal game, without loss of generality, upon receiving the constraint labelled by s, Alice shall measure a set of
commuting Pauli-string observables that return a satisfying assignment to the constraint, since a failure in satisfying
the constraint results in a loss in the nonlocal game. On the other hand, the observables that she measures for the
same variable, e.g., vt, in different constraints can be different. To specify her strategy, we denote the observable

Alice measures for vairable vt in the constraint cs as A
(s)
t . On Bob’s side, we denote the observable he measures for

variable vt as Bt.
Now, suppose Alice and Bob initially share the maximally entangled state |Φ+⟩. Assume there exists a Clifford

strategy, such that ∀s, t, 〈
Φ+
∣∣A(s)

t ⊗Bt

∣∣Φ+
〉
> 0. (32)
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Since Alice and Bob apply a Clifford strategy, A
(s)
t and Bt are both Pauli strings, so is A

(s)
t BT

t . Using the property

of |Φ+⟩, the left-hand side of the above equation equals ⟨Φ+|A(s)
t BT

t ⊗ I |Φ+⟩ = tr
(
A

(s)
t BT

t

)
/d, where d is the system

dimension. Since A
(s)
t BT

t is a Pauli string, we have tr
(
A

(s)
t BT

t

)
/d ∈ {0,±1}. According to our assumption, we

conclude that A
(s)
t = BT

t and ⟨Φ+|A(s)
t ⊗Bt |Φ+⟩ = 1 for all s, t. Besides,〈

Φ+
∣∣A(s1)

t A
(s2)
t ⊗ I

∣∣Φ+
〉
=
〈
Φ+
∣∣ (A(s1)

t ⊗ I)(A(s2)
t ⊗ I)

∣∣Φ+
〉

=
〈
Φ+
∣∣ (A(s1)

t ⊗ I)(A(s2)
t ⊗ I)

∣∣Φ+
〉 〈

Φ+
∣∣ (I⊗Bt)(I⊗Bt)

∣∣Φ+
〉

≥
〈
Φ+
∣∣A(s1)

t ⊗Bt

∣∣Φ+
〉 〈

Φ+
∣∣A(s2)

t ⊗Bt

∣∣Φ+
〉

> 0,

(33)

which holds for all s1, s2 and t. In the third line, we apply the Cauchy-Schwarz inequality. The only value that the

above equation can take is hence 1, indicating that A
(s1)
t = A

(s2)
t . Thus we can omit the superscript (s).

Since the linear BCS does not have a satisfying assignment with Pauli-string observables, we can use the com-
mutation properties of Pauli operators and the substitution method and derive an expression At1At2 · · ·Atm = −I
for a set of variables that leads to a contradiction of I = −I. The proof of this statement shall be given in Corol-
lary 2 in Appendix VB. Therefore, for any Clifford strategy, there exists a particular pair of inputs s, t such that

⟨Φ+|A(s)
t ⊗Bt |Φ+⟩ ≤ 0. Consequently,

Pr[win | s, t] = 1

2

(
1 +

〈
Φ+
∣∣A(s)

t ⊗Bt

∣∣Φ+
〉)

≤ 1

2
. (34)

Therefore, the average winning probability of the game is

Pr[win] =
∑
s′,t′

Pr[win|s′, t′] Pr[s′, t′] ≤ 1− 1

2
Pr[s, t]. (35)

In the second part of the proof, we use the definition of Clifford operations that map a Pauli-string observable to a
Pauli-string observable. For any initial state |ψ⟩ that Alice and Bob may share in advance, it is linked with |Φ+⟩ via
a Clifford operation UC . Then for any Pauli-string observables At, Bt,

⟨ψ|At ⊗Bt |ψ⟩ =
〈
Φ+
∣∣U†C(At ⊗Bt)UC

∣∣Φ+
〉
≡
〈
Φ+
∣∣A′t ⊗B′t

∣∣Φ+
〉
, (36)

where A′t and B′t are also Pauli-string observables that adapt to the systems of Alice and Bob, respectively. Then,
either {A′t} fails in yielding a satisfying assignment to one of the constraints, or the proof dates back to the first part.
This finishes the proof.

IV. 1D MAGIC BCS RELATION PROBLEM

In this part, we introduce the relation problem in detail by embedding the BCS nonlocal game into a one-dimensional
grid. We will prove Theorem 4 in the main text, showing this problem can be solved by a generic constant-depth
quantum circuit with only bounded fan-in gates, while any magic-free circuit requires a circuit depth that increases
at least logarithmically to the input size. For simplicity, we consider the non-trivial BCS game with size n = 8. Three
pairs of qubits suffice to realize the nonlocal game associated with this BCS, as shown in Section II. One can consider
other values of n, where the proofs are similar.

In the shallow circuit computation, we apply the modified BCS given in Methods. That is, the constraint of∏
v∈V av = −1 is replaced with the set of constraints

a1a2a12 = 1

a12a3a123 = 1

· · ·
a1···n−3an−2a1···n−2 = 1

a1···n−2an−1an = −1.

(37)

For the modified BCS with size n = 8, by applying Theorem 7, we have the following result.
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Lemma 2. In the modified BCS game with n = 8, suppose the questions are picked up uniformly at random. Then,
the maximal winning probability for all Clifford strategies is upper-bounded by

pClif ≤ 1− 1

6252
. (38)

Now we introduce the relation problem RN , which is labeled with a number N representing the problem size. One
can assume that two players, Alice and Bob, collaborate with each other to solve RN . The input and output of RN

are given as follows.

1. Input: in each round, Alice and Bob are given a question,

q = (α1, β1, · · · , αN , βN ), αi ∈ QA ∪ {⊥}, βi ∈ QB ∪ {⊥}, (39)

where q stands for “question”, αi is the input on Alice’s side at site i ∈ [N ], and βi is the input on Bob’s side
at site i ∈ [N ]. QA consists of the set of constraints in the BCS, and QB consists of the set of variables in the
BCS. Here, {⊥} represents a null input.

2. Output: in each round, Alice and Bob need to return a reaction to the question,

r = (rA1 , r
B
1 , · · · , rAN , rBN ), (40)

where r stands for “reaction”, rAi = (rAi (1), r
A
i (2), r

A
i (3)) ∈ {±1}3 is the output on Alice’s side at site i, and

similarly on Bob’s side.

Now, we define the 1D magic BCS relation problem RN . In the computation task, Alice and Bob are promised to
receive an instance given by a tuple (j, k, α, β), 1 ≤ j < k ≤ N , which defines the input as

αi =

{
α, if i = j,

⊥, if i ̸= j,
βi =

{
β, if i = k,

⊥, if i ̸= k.
(41)

That is, we require the sites j on Alice’s side and k on Bob’s side to play the BCS nonlocal game with questions α
and β, respectively. Alice and Bob are required to give an output satisfying either of the following requirements:

Case 1 For any l ∈ {1, 2, 3}, ∏
j<i≤k

rAi (l) = +1,

∏
j≤i<k

rBi (l) = +1,
(42)

and

(rAj , r
B
k ) = f(α, β), (43)

where f is the relation defined by the BCS nonlocal game.

Case 2 There exists l ∈ {1, 2, 3} such that, ∏
j<i≤k

rAi (l) = −1, (44)

or ∏
j≤i<k

rBi (l) = −1. (45)

In addition, we require that Case 1 occurs with a probability no smaller than a positive constant value p ∈
(0, 1/64]. By constant, we mean that p cannot be negligibly small, where there exists a sequence of positive val-
ues {p1, · · · , pt, · · · } such that p = limt→∞ pt = 0+.

Below, we show that the 1D magic relation problem RN can be solved by a QNC0circuit but cannot be solved by
any ClifNC0circuit. We first show that there exists a shallow circuit with generic bounded fan-in quantum gates that
perfectly completes this task. Now consider the following strategy:
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1. Alice and Bob share 3N pairs of EPR states, |Φ+⟩⊗3N , where |Φ+⟩ = (|00⟩ + |11⟩)/
√
2, and arrange them in

three layers, denoted by q2i−1(l), q2i(l), i ∈ [N ], l ∈ {1, 2, 3}, where qubits q2i−1(l) and q2i(l) reside in the state
|Φ+⟩. Alice holds the qubits q2i−1(l) and Bob holds the qubits q2i(l).

2. For any j ≤ i ≤ k − 1, perform an entanglement swapping operation between pairs of EPRs with a BSM on
qubits q2i(l) and q2i+1(l). Denote the Bell state measurement results on the pair of adjacent qubits q2i(l) and
q2i+1(l) as r

B
i (l) and rAi+1(l), respectively.

3. On the three pairs of qubits q2j−1(l) and q2k(l), Alice and Bob perform the measurements corresponding to the
winning strategy in the BCS nonlocal game and obtain outputs (rAj (l), r

B
k (l)).

4. Take an arbitrary measurement on the qubits that are not measured and record the measurement results with
respect to the site indices.

Note that at the end of the entanglement swapping operations, qubits q2j−1(l) and q2k(l) reside in |Φ+⟩ with
probability 1/4 for each l ∈ {1, 2, 3}. By construction, this strategy naturally meets the problem requirements, and
the first requirement defined through Eq. (42) and (43) is met with probability 1/64. One can also see the reason
that we modify the underlying BCS game: Alice needs to output an assignment to all the variables that appear in
the constraint. As Alice can only output 3 bits in the relation problem, we need to decompose the original n-variable
constraint into smaller ones. Measuring the observables in the winning strategy of the BCS nonlocal game thus results
in the desired statistics. Moreover, the above strategy can be realized in a constant depth with finite fan-in operations
and a computational basis measurement. Nevertheless, there is a minimal fan-in size of the gates to realize the above
strategy. The following theorem gives a sufficient gate fan-in size.

Theorem 8. Suppose the quantum computation circuits act on qubits or bits. Then, the fan-in size K = 14 is
sufficient for the above strategy.

Proof. As counted in Methods, in the modified BCS nonlocal game for the relation problem R8
N , the number of

variables is 727 + 1 < 210, and the number of constraints is 1042 + 1 < 211, where we also need to consider the null
input ⊥. Thus, all possible inputs αi, βi at site i ∈ [N ] can be encoded as 11 bits.

Next, we prove that all the operations in the above strategy can be implemented by K-bounded fan-in gates with
K = 14. Note that all constant input size boolean function can be computed in NC0, so we only care about the
classically controlled quantum gates [Fig. 1(b)] and quantum measurements [Fig. 1(c)]. We analyze the algorithm
step by step:

1. EPR preparation: No classical bit is involved. The quantum circuit involves simply one or two-qubit quantum
gates, hence K ≥ 0 + 2 = 2 in this step.

2. BSM: First determine whether the input is ⊥ through classical computing. Then perform BSM if it so and do
nothing if not. This step requires K ≥ 1 + 2 = 3.

3. Nonlocal game: 11 classical bits are needed to control 3-qubit quantum gates. This step requiresK ≥ 11+3 = 14.

Therefore, all the operations in the shallow-circuit strategy to solve the computational problem can be implemented
using K bounded fan-in gates with K = 14. This finishes the proof.

As a side remark, note that a classically controlled quantum gate with a constant number of classical control bits
can be decomposed into compositions of single-bit classically controlled quantum gates within a constant depth where
the quantum part acts on up to two qubits [21]. Thus, actually, K = 3 is sufficient, albeit a compromise of a few
circuit layers.

Below, we prove the hardness of the problem for a ClifNC0circuit with only bounded fan-in classical gates and
Clifford gates, including classically controlled Clifford gates and constant-weight Pauli-string measurements. We
illustrate these two types of bounded fan-in gates in Fig. 1. The bounded fan-in classically controlled quantum gates
require the numbers of classical input bits and the controlled qubits to be both finite, and the controlled gate is
Clifford in a ClifNC0circuit. The circuit allows intermediate measurements, and the measurement results can be used
to control subsequent quantum gates. The constant-weight Pauli measurement measures a Pauli observable on a
constant number of qubits, where the POVM element is a stabilizer state. As a constant-weight Pauli measurement is
equivalent to implementing a constant-depth Clifford gate followed by the computational basis measurement on the
first qubit and implementing the inverse of the Clifford gate, we can take all measurements as computational basis
measurements, or σz measurements.

Now, consider a magic-free circuit with depth D, and the gates within it have fan-in bounded by K, which means
the total number of input classical bits and qubits of the gates is no larger than K. Denote the qubit or bit value at
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bounded
fan-in

(a) (b)

POVM

(c)

FIG. 1: (a) A general K-bounded fan-in gate acting on nc bits and nq qubits, with nc+nq ≤ K. There are two types
of gates with nq > 0: (b) Classically controlled quantum gates. The classical input i controls whether to apply the
quantum gate Ui to the quantum input state |ψ⟩; (c) Quantum measurement characterized by a positive operator-
valued measure (POVM). The classical system acts as a register to record the measurement result. In a ClifNC0circuit,
Ui within the classically controlled gate is restricted to a Clifford operation. Meanwhile, in a ClifNC0circuit, each
measurement element Ei should be a mixture of stabilizer states. Equivalently, for a magic-free quantum input state
|ψ⟩, the post-measurement state |ϕi⟩ in a ClifNC0circuit still does not contain quantum magic. In this work, we simply
consider projective measurements. Both (b) and (c) are special cases of (a).

index v as iv and suppose E1 is the gate of the first layer that contains iv as an input. Then, supp(E1(iv)) determines
a set of qubits and bits after the first layer of the circuit that may be affected by iv. Similarly, we can consider the
qubits and bits that may be affected in the next layer of the circuit. Denote the gates in each circuit layer are given
by {E1, E2, · · · , ED}. In the end, we call the set of qubits and bits

L→C (iv) = supp(ED(supp(· · · supp(E2(supp(E1(iv))))))) (46)

the forward light cone of iv.
The backward light cone of an output bit or qubit, ow, at index b can be defined with the reverse of the forward

light cone of the input and given by

L←C (ow) := {iv|ow ∈ L→C (iv)}. (47)

The backward light cone of an output set, O, is defined as

L←C (O) :=
⋃
o∈O

L←C (o). (48)

Note that if a depth-D quantum circuit, C, only comprises gates with fan-in bounded by K, then

|L←C (o)| ≤ KD, (49)

and

|L←C (O)| ≤ |O|KD. (50)

Note that the input of the relation problem RN is classical and given by q = (α1, β1, · · · , αN , βN ). Before acting
gates, there are also an arbitrary number of classical ancillas with value 0 and quantum ancillas at state |0⟩, which
do not contain any input information. With the circuit’s evolution, the input information will spread among classical
bits and qubits via classically controlled quantum gates. Nonetheless, due to the gates being bounded fan-in and the
circuit being at constant depth, the input information cannot spread a lot. The output of RN can be read out from
the classical bits after constant-depth circuit evolution. Without loss of generality, we can assume the output of RN

is read out from the first 6N bits at the last step of the circuit, which is r = (rA1 , r
B
1 , · · · , rAN , rBN ) as mentioned above.

We depict this procedure in Fig. 2(a).
Using the idea of information not spreading a lot, we will show that with high probability, an input value αj (βk) is

independent of the output rBk (rAj ), as presented in Lemma 4. Before proving it, we first present the following lemma.

Lemma 3. Let C be a depth-D circuit with classical inputs and an arbitrary number of quantum and classical ancillas,
which comprises gates with fan-in upper bounded by K. The output of C is read out from the classical bits at the end
of the circuit. Then, the following holds:

Let O be a fixed subset of output bit indices, and suppose I is a randomly chosen subset of input bit indices such
that for any input bit index v,

Pr
I
[v ∈ I] ≤ η. (51)
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FIG. 2: (a) A circuit to solve relation problem RN . The input comprises classical bits (α1, β1, · · · , αN , βN ). Note
that αi takes value from QA∪{⊥} and contains log

(
|QA|+ 1

)
bits. The case is similar for βi. Besides, the circuit also

has an arbitrary number of bits 0 and qubits |0⟩ as ancillas. The output of the relation problem comprises classical
bits (rA1 , r

B
1 , · · · , rAN , rBN ). Each rAi or rBi contains three bits. Other qubits and bits within the circuit are discarded.

(b) Diagram to label a subset of the input bits, a subset of the output bits, and an input bit. In Lemma 4, the subset
of the input bits I is the set that takes value in QA or QB and does not take value of ⊥. The subset of the output
bits O is the set of bits outputting rAj or rBk .

Then

Pr
I
[O ∩ L→C (I) ̸= ∅] ≤ η|O|2|O|KD. (52)

Proof.

Pr
I
[O ∩ L→C (I) ̸= ∅] =

∑
P⊆O,P ̸=∅

Pr
I
[O ∩ L→C (I) = P ]

≤
∑

P⊆O,P ̸=∅

Pr
I
[I ∩ L←C (P ) ̸= ∅]

≤
∑

P⊆O,P ̸=∅

∑
v∈L←C (P )

Pr
I
[v ∈ I]

≤
∑

P⊆O,P ̸=∅

∑
v∈L←C (P )

η

≤
∑

P⊆O,P ̸=∅

|L←C (P )|η

≤
∑

P⊆O,P ̸=∅

|P |KDη

≤ 2|O||O|KDη.

(53)

Lemma 4. Consider a depth-D circuit composed of gates of fan-in at most K. The input of the circuit q =
(α1, β1, · · · , αN , βN ) is determined by a tuple (j, k, α, β) with 1 ≤ j < k ≤ N and given by Eq. (41). We denote
the set of all possible inputs as S. The output of the circuit is given by r = (rA1 , r

B
1 , · · · , rAN , rBN ). Define the event

EC ⊂ S in which the input parameters satisfy

supp(rAj ) ∩ L→C (supp(βk)) = ∅ and supp(rBk ) ∩ L→C (supp(αj)) = ∅. (54)
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Here, supp(x) means the bits carrying on the value x. Under a uniform choice of input from S, the event EC occurs

with probability Pr[EC ] ≥ 1− 48KD

N .

Proof. We consider a random input from the set S, which is constructed by a randomly generated tuple (j, k, α, β).
Note that j and k are two different numbers uniformly and randomly picked from {1, 2, · · · , N} while α and β are
randomly and uniformly picked from QA and QB , respectively. Consider the input bit set as I = supp(αj) as the set
that takes value in QA and does not take value of ⊥ in Lemma 3 and suppose the input bit v is located at site j∗, as
shown in Fig. 2(b). We have

Pr
supp(αj)

[v ∈ supp(αj)] = Pr
1≤j≤N

[j = j∗] =
1

N
. (55)

Meanwhile, consider the subset of the output bits O is the set of bits outputting rBk , based on Lemma 3, we obtain

Pr
supp(αj)

[supp(rBk ) ∩ L→C (supp(αj)) ̸= ∅] ≤ 2|r
B
k ||rBk |KD 1

N
. (56)

Note that rBk only has 3 output bits, then

Pr
supp(αj)

[supp(rBk ) ∩ L→C (supp(αj)) ̸= ∅] ≤ 24KD

N
. (57)

Similarly, we get

Pr
supp(βk)

[supp(rAj ) ∩ L→C (supp(βk)) ̸= ∅] ≤ 24KD

N
. (58)

Thus,

Pr
q
[EC ] = Pr

supp(αj),supp(βk)
[rAj ∩ L→C (βk) = ∅ ∩ rBk ∩ L→C (αj) = ∅]

= 1− Pr
supp(αj),supp(βk)

[rAj ∩ L→C (βk) ̸= ∅ ∪ rBk ∩ L→C (αj) ̸= ∅]

≥ 1− Pr
supp(βk)

[rAj ∩ L→C (βk) ̸= ∅]− Pr
supp(αj)

[rBk ∩ L→C (αj) ̸= ∅]

≥ 1− 48KD

N
.

(59)

With Lemma 4, we are able to achieve our ultimate goal to prove the hardness of RN for magic-free shallow circuits.
The main idea is that with high probability, the event defined in Lemma 4 would happen, and if this event happens,
the magic-free circuit cannot give a correct output as the nonlocal game requires magic to win with certainty.

Theorem 9. Let C be a depth-D circuit with classical input values and classical and quantum ancillas, which
only comprises magic-free operations with fan-in upper bounded by K. Now, consider the classical input q =
(α1, β1, · · · , αN , βN ) determined by Eq. (41) with αj and βk selected uniformly at random from QA and QB. Then
for any constant value p ∈ (0, 1), the average probability that C outputs r = (rA1 , r

B
1 , · · · , rAN , rBN ) such that

(1) r and q satisfy the requirements in Case 1 and Case 2,

(2) outputs Case 1 with probability no smaller than p,

is at most 48KD

N + pClif , with pClif given in Lemma 2. To meet the requirements with a success probability larger than
(1 + pClif)/2, the circuit depth requirement is Θ(logN).
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Proof. The average success probability of C to output a correct relation between r and q is

Pr
q
[success] =Pr

q
[Case 1] Pr

q
[success|Case 1] + Pr

q
[Case 2] Pr

q
[success|Case 2]

=Pr
q
[Case 1](Pr

q
[EC |Case 1] Pr

q
[success|Case 1, EC ] + Pr

q
[EC
C |Case 1] Pr

q
[success|Case 1, EC

C ])

+ Pr
q
[Case 2] Pr

q
[success|Case 2]

≤Pr
q
[Case 1](Pr

q
[EC |Case 1] Pr

q
[success|Case 1, EC ] + 1− Pr

q
[EC |Case 1]) + Pr

q
[Case 2]

=1− Pr
q
[Case 1] Pr

q
[EC |Case 1](1− Pr

q
[success|Case 1, EC ])

=1− Pr
q
[EC ](1− Pr

q
[success|Case 1, EC ])

=1− Pr
q
[EC ] + Pr

q
[EC ] Pr

q
[success|Case 1, EC ]

≤48KD

N
+ Pr

q
[success|Case 1, EC ].

(60)

Here, EC is the event defined in Lemma 4 and EC
C is the complementary set of EC . From the above inequality, notice

that the upper bound on the average success probability is irrelevant with the probability for Case 1 to occur, i.e.,
the value of p. Now, we only need to investigate the value of Prq[success|Case 1, EC ].

When Case 1 happens, the success condition is making the inputs αj and βk and the outputs rAj and rBk satisfy the

relation defined by the BCS game, i.e., Eq. (43). Also, when EC happens, the output r
A
j only depends on αj and does

not depend on βk. And the reverse is true for rBk . It reduces to the case that Alice and Bob are trying to win the BCS
non-local game without classical communication. As the circuit only comprises |0⟩ as input quantum states, Clifford
gates, and Pauli measurements, it means that Alice and Bob need to win this non-local game with Pauli measurements
and magic-free states, whose winning probability is upper-bounded by pClif . That is, Prq[success|Case 1, EC ] ≤ pClif .
Then, we conclude that the average success probability of C to output a correct relation between r and q is

Pr
q
[success] ≤ 48KD

N
+ pClif . (61)

To output the correct relation with a success probability larger than (1 + pClif)/2, the circuit depth D has a lower
bound as below.

48KD

N
+ pClif ≥

1 + pClif

2
⇔ D ≥

logN + log 1−pClif

96

logK
= Ω(logN). (62)

On the other hand, as stated in the main text, there is a classical circuit with circuit depth O(logN) that solves the
problem. Therefore, the bound on the circuit depth for magic-free circuits to solve the problem is tight. This finishes
the proof.

V. FINDING POTENTIAL MAGIC-NECESSARY LINEAR BINARY CONSTRAINT SYSTEMS

In this section, we discuss finding other instances of linear BCS that require magic for a perfect quantum solution.
It is challenging to develop a general procedure for this target. Instead, we provide a “guess-and-check” procedure:
(1) First, obtain a potential BCS, and (2) Second, verify whether the BCS has a solution over the Pauli group. For
the first step, one can use the group embedding results in Ref. [1]. Building on the group-theoretic results, including
Ref. [8, 9], Ref. [1] provides an efficient procedure to embed a group into a BCS, which is a group homomorphism of
the original group to a non-trivial BCS solution group; hence the procedure constructs a BCS that necessarily has
a (quantum) solution. In particular, the output solution group inherits the representation properties of the original
group. However, such a BCS may have a classical solution or a quantum solution over the Pauli group, where magic
is absent. We develop an efficient classical algorithm for this issue to decide whether a linear BCS has a Pauli-string
solution. Besides aiding the search for non-trivial linear BCS, we hope this result can help explore the decidability
problems for general BCS and nonlocal games [5].
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A. Slofstra’s group embedding procedure

A group G is said to be embedded into group K if there exists an injective group homomorphism ϕ : G → K.
One can pose additional requirements to the group embedding to guarantee the inheritance of group representation
properties; see Definitions 10 and 14 in Ref. [1] for example. This is also one of the core issues in the group embedding
procedure in Ref. [1]. For our purpose of finding magic-necessary BCS, some analysis on the group representation
inheritance issue may be redundant. Nevertheless, we faithfully review the group embedding results of Ref. [1] here
and leave the problem of simplifying the procedure to future work. For the convenience of stating the group embedding
results, we use the Boolean variables and parity constraints instead of the sign variables and multilinear constraints
in this subsection. The conversion between sign variables and Boolean variables is given in Eq. (4).

As we now use the Boolean variable notation, a BCS can be compactly written as Mv⃗ = c⃗, where M is an m× n
Boolean matrix, v⃗ = (v1, · · · , vn)T is the vector of variables, and c⃗ = (c1, · · · , cm)T is the vector of constraints. The
non-zero elements in the j’th row of M define the set of variables presented in the j’th constraint, Sj . We first define
several classes of groups, including a restatement of the BCS solution group with the current notations.

Definition 3 (Solution group of a linear BCS using Boolean variables). Given a linear BCS with n binary variables
{vi} and m constraints {cj} specified by Mv⃗ = c⃗, the solution group of the BCS is defined as the group with the
following presentation:

Γ(M, c⃗) = {{J, gi : i ∈ [n]} : {g2i = e,∀i ∈ [n],

J2 = e,

∀j ∈ [m], gkgl = glgk,∀k, l ∈ Sj ,

Jgi = giJ,∀i ∈ [n],∏
i∈Sj

gi = Jcj ,∀j ∈ [m]}},

(63)

where e defines the identity operator of the group. We take the convention that J0 = e.

Definition 4 (Linear-plus-conjugacy group). Given a linear BCS with n binary variables {vi} and m constraints
{cj} specified by Mv⃗ = c⃗, and C ⊆ [n]× [n]× [n] with [n] = {1, · · · , n}, the linear-plus-conjugacy group Γ(M, c⃗, C) is
defined as

Γ(M, c⃗, C) ≡ ⟨Γ(M, c⃗) : gigjgi = gk,∀(i, j, k) ∈ C⟩, (64)

where the relators gigjgi = gk are additionally posed to the solution group Γ(M, c⃗).

Definition 5 (Homogeneous linear-plus-conjugacy group). Given an m× n Boolean matrix M where the set of non-
zero elements in the j’th row is given by Sj, and C ⊆ [n] × [n] × [n], the homogeneous linear-plus-conjugacy group
Γ0(M, C) is defined as

Γ0(M, C) = {{gi : i ∈ [n]} : {g2i = e,∀i ∈ [n],

∀j ∈ [m], gkgl = glgk,∀k, l ∈ Sj ,∏
i∈Sj

gi = e,∀j ∈ [m],

gigjgi = gk,∀(i, j, k) ∈ C}}.

(65)

Definition 6 (Extended homogeneous linear-plus-conjugacy group). Given an m × n Boolean matrix M , C0 ⊆
[n]× [n]× [n], C1 ⊆ [l]× [n]× [n], and L an l× l lower-triangular matrix with non-negative integer entries, the extended
homogeneous linear-plus-conjugacy group EΓ0(M, C0, C1, L) is defined as

EΓ0(M, C0, C1, L) ≡ ⟨Γ0(M, C0), h1, · · · , hl : higjh−1i = gk,∀(i, j, k) ∈ C1,

hihjh
−1
i = h

Lij

j ,∀i > j ∧ Lij > 0⟩,
(66)

where Lij refers to the element on the i’th row and j’column of matrix L.

With the above definition, Ref. [1] proves the following embedding results:

Theorem 10 ([1]). Suppose a group G has a presentation in the form of an extended homogeneous linear-plus-
conjugacy group given by EΓ0(M, C0, C1, L). Then there are the following group embedding results:
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1. There exists a group embedding of EΓ0(M, C0, C1, L) into a homogeneous linear-plus-conjugacy group (Proposi-
tion 33 in Ref. [1]):

EΓ0(M, C0, C1, L) → Γ0(M
′, C), (67)

where Γ0(M
′, C) is a homogeneous linear-plus-conjugacy group.

2. The extended Γ0(M
′, C) can be transformed into a linear-plus-conjugacy group (see the remark after Definition

31 in Ref. [1]):

Γ0(M
′, C)× Z2 = Γ(M ′, 0, C). (68)

3. By adding relations with respect to one group element J ∈ Γ(M ′, 0, C), J ̸= e, which extends the matrix M ′ into
N and adds non-homogeneous linear constraints that involve J , extend the linear-plus-conjugacy group:

Γ(M ′, 0, C) → Γ(N, c⃗, C′), (69)

where c⃗ ̸= 0, with some entries equal to J .

4. There exists a group embedding of Γ(N, c⃗, C′) into a linear group (Proposition 27 in Ref. [1]):

Γ(N, c⃗, C) → Γ(N ′, c⃗′), (70)

which defines a BCS solution group that has a non-trivial group element J ̸= e.

The proof is constructive, thus one can derive the concrete groups in each step. In brief, as long as a group can be
presented in the form of Def. 6, which is an extended homogeneous linear-plus-conjugacy group, it can be converted
into a BCS solution group after a series of group embeddings and a proper construction of non-trivial relators with
respect to a group element J ̸= e, which is set to correspond to −1 in the BCS. As promised by Lemma 1, the
underlying BCS of the solution group has an (operator-valued) solution.

B. Efficient algorithm for finding perfect Pauli-string solutions to linear BCS

Next, we provide an efficient algorithm to determine the existence of a Pauli-string solution to a general linear BCS.
Combined with Slofstra’s group embedding procedure, one can guess and test BCS instances to search for a potential
BCS that has a non-trivial solution group other than the Pauli group.

We first present some fundamental properties of Pauli-string observables.

Lemma 5. Suppose A1, A2, · · · , An are Pauli-string observables. For i, j ∈ [n], define Cij = AiAjAiAj as the
commutator between Ai and Aj. Then, Cij’s have the following properties:

1. Cij ∈ {±I}. Specifically, Cij = I when AiAj −AjAi = 0, and Cij = −I when AiAj +AjAi = 0;

2. Cij = Cji and Cii = I;

3. AiAj = CijAjAi.

The proof of Lemma 5 is straightforward, and we leave it to the readers as an exercise. According to the first
property, Cij is always proportional to I and thus commute with all the Ai’s. We can treat Cij ’s as numbers ±1
for simplicity. The second property shows that for a group of n Ai’s, the number of independent commutators Cij ’s
among them is at most n(n− 1)/2. The third property shall be vital for our later discussions, as it allows us to swap
two adjacent variables Ai and Aj in a product of Pauli strings up to an additional coefficient Cij . Together with the
first property, for a product of Pauli-string variables, we can arbitrarily rearrange their order up to a change in the
sign.

Given a linear BCS, we first determine if it has a classical solution, i.e., Ai ∈ {±1} for all i ∈ [n]. This is equivalent
to solving a system of linear equations over Z2, which can be done in poly(n) steps through, for example, the Gaussian
elimination method. Going back to determine if the BCS has a Pauli-string solution, if we hope to apply a similar
procedure, the only obstacle is that the variables might not commute with each other. Nevertheless, thanks to the
nice properties of Pauli strings in Lemma 5, we can do the same thing as finding a classical solution with at most a
difference in sign, which we record as a sign variable Ci. Should the BCS have a Pauli-string solution, at the end of
the elimination, we can express each variable Ai as a product of some variables, which we term the “free variables,”
multiplied by a plus or minus sign Ci ∈ {±1}. We use the terminology “free variables” as they are allowed to take
any value, while the remaining variables depend on their values. Now we give the rigorous statement and prove it.
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Lemma 6. For a linear BCS with n variables A1, · · · , An and m constraints, if it has a Pauli-string solution, then
there exists a set of free variables {Aik}k, such that each variable in the BCS can be represented in the form of
Ai = CiAi1Ai2 · · ·Aik · · · , where Ci ∈ {±1} and Aik ’s are arranged with the subscript k from small to large. This
result can be obtained in poly(n,m) steps.

Proof. When finding an operator-valued solution to a linear BCS, we require the variables in the same constraint to be
compatible, as discussed in Appendix IB. Now we prove a stronger statement that does not rely on this requirement.

We prove the lemma by mathematical induction on m. The statement holds when m = 1, where A1A2 · · ·An = ±1.
Clearly, A1 = ±A2 · · ·An, and we can take A2 · · ·An as free variables. We use the first property in Lemma 5 when
there is a need to change the order of two variables, which finishes in poly(n) steps using a sorting algorithm. Now
assume the statement holds for m = k. When m = k+1, without loss of generality, suppose the first constraint is the
added constraint with A1A2 · · ·Al = ±1. Thus, A1 = ±A2 · · ·Al. Substitute this expression into the other equations
and simplify them using Lemma 5, which finishes in poly(n,m) steps using Gaussian elimination. Then, we get a
set of k constraints. According to the induction hypothesis, every variable Ai can be represented as a product of
free variables up to a sign. So we can plug the free variables into the added constraint A1 = ±A2 · · ·Al and get the
expression for A1 in terms of free variables. Therefore, the statement holds for m = k + 1.

Now, we get the expression for each variable in terms of a set of free variables, resulting in a linear BCS over Ai’s
and additional sign variables Ci’s.

We further consider the conditions in the original linear BCS and eliminate all the non-free variable Ai’s. Using
Lemma 6, we find a set of free variables and use them to express all the other variables. Then, we substitute the
expressions into the original BCS and obtain a new BCS containing the free variables and Ci’s. By the definition of
the free variable, every free variable occurs for an even number of times in each constraint of the new BCS by this
step, otherwise, it is determined by the other variables through their commutators. By further applying Lemma 5, we
can get rid of all the Ai variables and obtain a set of equations of Ci’s and Ckl’s where k, l are the commutators of the
free variables Ak and Al. In addition, if Ai and Aj appear in the same constraint of the original BCS, they commute
with each other, i.e., AiAjAiAj = 1. For each pair of Ai and Aj , by applying Lemma 6, replace them in the equation
AiAjAiAj = 1 via their expressions in terms of the free variables and obtain the other equations of Ckl’s where k, l
are indices of free variables. In the end, we convert the original linear BCS to an equivalent set of equations of Ci’s
(i ∈ [n]) and Ckl’s (k, l are indices of free variables), which is just a system of linear equations over Z2. Note that
all the procedures are simply substitutions and the order swaps between variables, which finish in poly(n,m) steps.
Should the original BCS have a Pauli-string solution, we can efficiently solve the newly derived linear equations and
get a set of valid values for Ci’s and Ckl’s.

Note that by this step, we have not finished solving the original BCS over the Pauli group, as we have not determined
the operator values of Ai’s. The following lemma gives a systematic method to assign legitimate Pauli-string values
for all the free variables and, hence, all the variables in the original BCS.

Lemma 7. For any given set of sign variables {Cij = ±1}1≤i<j≤n, there exists a set of Pauli strings {Ai}1≤i≤n,
such that for any 1 ≤ i < j ≤ n, AiAjAiAj = Cij. That is, the commutator between Ai and Aj is Cij.

Proof. We give an explicit construction. Suppose there are p sign variables equal to −1, given by Ci1j1 , Ci2j2 , · · · , Cipjp .
Then, we can construct Pauli strings over p qubits according to the following rule: for every q’th qubit in each Pauli
string, where 1 ≤ q ≤ p, assign σx for Aiq and σz for Ajq ; assign all the other qubits as I. That is,

the q’th qubit of Ak =


σx, if k = iq,

σz, if k = jq,

I, otherwise.

(71)

It can be directly checked that this construction satisfies the requirements.

Later, we take the Mermin-Peres magic square BCS as an example to exhibit the entire procedure. As a side note,
the correspondence between traceless symmetric matrices over Zn×n

2 and Pauli strings was implicitly used in Lemma 7
in Ref. [4].

Now we summarize the results for determining the Pauli-string solution to a linear BCS.

Theorem 11. For a linear BCS with n variables and m constraints, there exists a classical algorithm that determines
whether it has a perfect quantum strategy on the Pauli group in poly(n,m) steps.

The procedures can be summarized as follows:
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1. Solve the BCS as if it is a classical one, with a recording of the commutator and sign changes in each step. Get
an expression for each variable in terms of a set of free variables.

2. Substitute the expressions into the original BCS. Get a system of linear functions of Ci’s and Ckl’s and solve
them over Z2.

3. Assign a Pauli string to every free variable. Then derive the operator values of all the variables according to
the expressions in step 1.

On the other hand, if there is not a Pauli-string solution to the linear BCS, we shall come to a contradiction
somewhere in the procedures.

Corollary 2. Suppose a linear BCS does not have a satisfying assignment with Pauli-string observables. On the one
hand, we can use the substitution method of solving a BCS and obtain a relation for a subset of variables,

At1At2 · · ·Atk = −I. (72)

On the other hand, by posing the commutation properties of Pauli strings to the BCS variables, the left-hand side can
be eliminated to I, resulting in a contradiction.

The proof of this corollary is similar to Lemma 6. In brief, in the algorithm for finding Pauli-string solutions,
we only use two operations throughout the process: (1) substitution of expressions and (2) swapping two variables
in an expression according to Lemma 5. If the algorithm cannot find a Pauli-string solution, it must result in a
contradiction. As we keep the right-hand side of each formula to be ±I, the contradiction is thus the form of the
statement in the corollary.

As an example, we apply the algorithm to find a Pauli-string solution to the Mermin-Peres magic square BCS. The
original BCS is given by

A1A2A3 = 1,

A4A5A6 = 1,

A7A8A9 = 1,

A1A4A7 = 1,

A2A5A8 = 1,

A3A6A9 = −1.

(73)

After the first step, we find that the BCS variables can be determined by a set of free variables {A5, A6, A8, A9}:

A1 = C1A5A6A8A9,

A2 = C2A5A8,

A3 = C3A6A9,

A4 = C4A5A6,

A7 = C7A8A9.

(74)

Substituting these expressions into the original BCS, we obtain the set of equations

A1A2A3 = C1C2C3C59C56C58C69C89 = 1,

A4A5A6 = C4C56 = 1,

A7A8A9 = C7C89 = 1,

A1A4A7 = C1C4C7C59C68C56C58C69C89 = 1,

A2A5A8 = C2C58 = 1,

A3A6A9 = C3C69 = −1.

(75)

Using the commutation conditions between variables in the same constraint as the original BCS, we have the equations

A1A2A1A2 = C69 = 1,

· · ·
A4A7A4A7 = C59C68C56C58C69C89 = 1,

· · ·
A8A9A8A9 = C89 = 1.

(76)
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Solving Eq. (75) and (76) over Z2, we have

C1 = C2 = C4 = C7 = 1,

C3 = −1,

C56 = C58 = C69 = C89 = 1,

C59 = C68 = −1.

(77)

With respect to the commutators among the free variables, we obtain two commutators that are equal to −1. Assign
the free variables as two-qubit Pauli strings,

A5 = σx ⊗ I,
A6 = I⊗ σx,

A8 = I⊗ σz,

A9 = σz ⊗ I,

(78)

and the other variables are then determined as

A1 = −σy ⊗ σy,

A2 = σx ⊗ σz,

A3 = −σz ⊗ σx,

A4 = σx ⊗ σx,

A7 = σz ⊗ σz.

(79)

This solution is equivalent to the solution in Eq. (7) in the sense of a unitary transformation, or a relabelling of the
variables.
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Abstract. Quantum mechanics imposes limits on the statistics of certain observables. The most famous
example is the uncertainty principle. Similar trade-offs exist for the simultaneous violation of multiple Bell
inequalities. In the simplest case of three observers, violating one inequality precludes the violation of any
other inequality, a property called monogamy of Bell violations. We show that the Bell-monogamy does
not hold universally and the only monogamous situation exists only for three observers. Consequently,
the nature of quantum nonlocality is truly polygamous. The identified polygamous inequalities are experi-
mentally violated and may be exploited for quantum cryptography or simultaneous self-testing of multiple
nodes in a quantum network.

Keywords: quantum correlations, Bell inequalities, Bell monogamy, self-testing, quantum network

1 Introduction

Quantum nonlocality is one of the most intriguing fea-
tures of quantum theory. Starting from its beginnings
and the famous EPR argument [1], through the first
works of John Bell [2] to various experiments [3–12], it
reveals the impossibility of a local-realistic description
of quantum phenomena. Violation of a Bell inequality
serves now not only as fundamental test for the state-
ments about the nature of reality but also finds ap-
plications in many areas of modern quantum technolo-
gies [13–19]. One crucial concept in the study of quantum
nonlocality is the monogamy principle, which states that
it is impossible to simultaneously violate all k-partite
(k < N) two-setting Bell inequalities among N differ-
ent parties. After the early findings by Scarani and
Gisin [20], and later by Toner and Verstraete [21] (see
also [22,23]), it became a fundamental result in the field
and the subject of many extensive studies [24–38].

However, as shown here, the monogamy principle is not
fundamental. Rather, it is a mere consequence of the spe-
cific mathematical structure of certain inequalities, which
are not universal. To support our claim, we develop a
systematic method to construct Bell inequalities among
N − 1 observers that do not adhere to the monogamy
principle for all N > 3. Furthermore, we provide an in-
teresting minimalistic polygamous scenario based only on
bipartite correlations between all pairs of observers. We
show that the simultaneous violation of all inequalities is
possible if the number of parties is N = 18. Recognising
the practical challenges associated with generating high-
fidelity quantum states in experimental setups, we could
still identify inequalities that are violated experimentally
by noisy six-qubit Dicke states. The polygamous nature
of quantum nonlocality is therefore proven theoretically
and confirmed in experiments.

∗wieslaw.laskowski@ug.edu.pl

2 Three parties and strict monogamy

We begin by recalling the standard results on Bell
monogamy between three observers. Consider a sce-
nario in which party A tries to simultaneously violate
the CHSH inequalities [39] with parties B and C using a
three-qubit quantum state. We denote the value of the
CHSH-Bell parameters by BAB and BAC , respectively.
Quantum mechanics predicts that these parameters obey
the relation [20,21]

B2AB + B2AC ≤ 8. (1)

Note that if one of the inequalities is violated, e.g. BAB >
2, then the other one cannot be violated, BAC < 2. This
is the statement of monogamy of Bell inequality viola-
tions.

a) b)

A

B C

Figure 1: Visual representation of monogamy be-
tween CHSH inequality violations for three parties.
a) Schematic of the arrangement where three observers
(A, B, C) try to violate two inequalities (red and orange
edges). b) Accessible values of Bell parameters BAB and
BAC for parties AB and AC. According to local realistic
models, the bound on each inequality is given by 2 and
hence its predictions are confined to the square with a
side length of 4. Quantum predictions lie within a circle
of a radius 2

√
2.
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3 Polygamy of Bell violation

To demonstrate the polygamous nature of Bell nonlo-
cality, we generalise the Toner-Verstraete scenario [21] to
the case of N observers where each of them can perform

measurements of two dichotomic observables A
(i)
1 , A

(i)
2

(i = 1, . . . , N). Then, we analyze the simultaneous vi-
olation of Bell inequalities between N − 1 observers in
all possible N configurations. One strategy to find Bell
inequalities that do not satisfy the monogamy principle
is by imposing permutation symmetry. Let N observers
share an N -qubit quantum state that is permutationally
invariant, and they perform measurements of the same

observables on it, i.e., A
(i)
j = A

(1)
j (j = 1, 2; i = 2, ..., N).

In such a situation, if we find a Bell inequality that is vi-
olated by the reduced state, it immediately implies that
all inequalities under consideration are violated. This
does not necessarily exclude correlation trade-offs, but it
clearly rules out monogamy.

Polygamy of Mermin inequalities (N ≥ 5). Let
us now use this framework to show that the violation
of multi-particle Mermin inequalities is polygamous. Let
each of the N observers simultaneously measure a Mer-
min parameterMN−1 [40] involving N − 1 parties. Cor-
respondingly, there areN such parameters. The violation
of all N (N − 1)-qubit Mermin inequalities is the highest
for the state |ψmax〉 = 1√

2
(|D1

N 〉 + |1...1〉) and achieves

the value equal to

Mmax
N−1 =

2(N−2)/2√
N

. (2)

Note that for N = 3 and N = 4 our result is consistent
with [21] and [29], and we do not observe simultaneous
violation of the Mermin inequalities. However, already
from N = 5 onwards such a violation is possible and it
increases exponentially with the number of qubits. Re-
markably, in the limit of many particles, not only is there
no monogamy of violations, but in fact every inequality
is violated maximally.

Polygamy for four parties (N = 4). As shown in the
previous section, it is not possible to violate all four three-
qubit Mermin inequalities for observers (ABC, ABD,
ACD, BCD) in a four-party system (A,B,C,D), where for
simplicity A(1) ≡ A,A(2) ≡ B, etc. However, it is pos-
sible to find another set of two-setting Bell inequalities
that have this feature.

Using an original method based on linear programming
we found a three-qubit inequality 〈IABC〉 ≤ 6, where

IABC = 2 sym[A1]− sym[A1B1]− sym[A1B2] (3)

+ sym[A2B2] + 2A1B1C1 + sym[A2B1C1]

− 2 sym[A2B2C1]−A2B2C2.

We use here a compact notation for symmetrising over
different observers

sym[AkBlCm] =
∑

π(k,l,m)

AkBlCm, (4)

where the sum is over all permutations of (k, l,m), de-
noted as π(k, l,m), assuming A0 = B0 = C0 = 1, e.g.,
sym[A1B1] = A1B1 + A1C1 + B1C1 being the permu-
tations of k = 1, l = 1,m = 0. Analogous expressions
can be formulated for IABD, IACD, IBCD inequalities.
It can be directly verified that all of them are simul-
taneously violated by the four-qubit state of the form
|ψ〉 = cos θ|D1

4〉 + sin θ|1111〉. The maximal violation of
6.154 > 6 is observed for θ = 0.144, and observables lying
in the xz plane. We emphasise the relative simplicity, as
every observer measures the same set of two observables.
The above example shows that, already for a system of
four particles, one can define inequalities involving three
observers such that all of them are simultaneously vio-
lated.

Polygamy with two-body correlators. The viola-
tion of monogamy is by no means limited to the case of
higher-order correlations. Here we focus on a minimalist
scenario based on the measurements between each pair
of observers. Again, we approach this problem through
the linear programming technique described in Methods.
As a result, the (N − 1)-partite two-body Bell inequal-
ity was found to be 〈IN−1〉 ≥ 0. The corresponding Bell
operator is given as

IN−1 = L+ α (sym[A1] + sym[A2]) (5)

+ sym[A1B1] + 4 sym[A1B2] + sym[A2B2],

where L and α are defined by L = 3((N − 4)2 + N − 2)
and α = −3(N − 4), respectively.

To determine the violation of (5) one has to minimize
the Bell expression in (5) for the (N − 1)-partite reduced
state of some N -partite symmetric state, e.g.,

∣∣D1
N

〉
, us-

ing observables in the xz plane. By substituting N = 18
and plugging in the optimal observables we obtain

〈IA1A2〉ρ2 = − 4

99
. (6)

Therefore, the two-body Bell inequality (5) is clearly vi-
olated. This implies that the 18-qubit state

∣∣D1
18

〉
can si-

multaneously violate all 17-qubit two-body Bell inequal-
ities and thus the monogamy principle does not hold.
Note that here any exchange of information happens only
between the pairs of observers.

Experimental demonstration of Bell polygamy.
Although the polygamous character of Bell inequality
violations is already present in four-qubit systems, an
experimental demonstration of such phenomena would
require an experiment with very low experimental errors.
For this reason, we construct five-party inequalities for
N = 6 observers with far less demanding visibility re-
quirement and demonstrate in an optical experiment that
they are violated in all six five-party subsystems. Again,
by the linear programming method used before we arrive
at the five-qubit inequality 〈IABCDE〉 ≤ 6 with

IABCDE = − sym[A1B1]− sym[A2B2] (7)

+ sym[A1B1C1D1] + sym[A1B1C1D2]

− sym[A1B2C2D2] + sym[A2B2C2D2].
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It is worth noting that although these inequalities are
defined for five qubits (they constitute the facet of a five-
party Bell-Pitovsky polytope), they do not involve five-
qubit correlations.

We experimentally demonstrate the existence of polyg-
amous Bell-type correlations using five-party subsystems
of a six-qubit Dicke state |D3

6〉 prepared with polarisa-
tion entangled photons. A detailed description of the
experimental setup can be found in Refs. [41, 42]. All
six five-party Bell inequalities are simultaneously vio-
lated (see Table 1) by at least one standard deviation
using the same settings. The observed average violation
is 37.5787/6 > 6.

Table 1: Experimental polygamy of nonlocality. Simul-
taneous violation of all six five-party Bell inequalities (7),
with the local realistic bound of 6, where each observer
measures the same settings in the xz plane. All inequal-
ities are violated by at least one standard deviation.

Partition Violation Std. dev.
ABCDE 6.315 0.133
ABCDF 6.204 0.131
ABCEF 6.479 0.137
ABDEF 6.307 0.137
ACDEF 6.146 0.125
BCDEF 6.128 0.128

Figure 2 shows how the violation depends on the choice
of measurement settings (the same for every observer)
both for the theoretical prediction as well as for the ex-
perimentally prepared and measured state. A small, yet
clearly visible, region of settings shows where the simul-
taneous violation of all inequalities is indeed possible.

The full manuscript is available at https://arxiv.

org/abs/2312.04373.
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Abstract. The characterisation of rates of quantum information-theoretic tasks underlies the efficient
use of quantum systems in information processing. Such tasks typically rely on the involved parties
making a measurement and attempting to distinguish different states or communicated messages. Here
we investigate a modified setting in which the parties are allowed an additional ‘inconlusive’ measurement
outcome, which indicates that they do not make a guess, and the error probabilities are conditioned on
conclusive attempts only. Such a scenario is equivalent to quantum information processing assisted by the
resource of postselection.

We completely characterise two of the most important quantum information-theoretic tasks — quantum
hypothesis testing and entanglement-assisted communication over quantum channels — in the postselected
setting, giving exact solutions already in the single-shot cases and establishing computable, single-letter
expressions for the asymptotic rates. Notably, we show that postselection considerably simplifies the
framework of quantum information theory, resulting in markedly simplified solutions and properties. We
prove in particular that the asymptotic error exponent of discriminating any two quantum states 𝜌 and 𝜎
is given by the Hilbert projective metric 𝐷max (𝜌∥𝜎) +𝐷max (𝜎∥𝜌) in asymmetric hypothesis testing, and by
the Thompson metric max{𝐷max (𝜌∥𝜎), 𝐷max (𝜎∥𝜌)} in symmetric hypothesis testing. This endows these
two quantities with fundamental operational interpretations in quantum state discrimination. Similarly,
we show that the entanglement- and nonsignalling-assisted capacities of quantum channels are given by
a variant of mutual information based on the Hilbert projective metric. Our hypothesis testing results
extend to very general settings of composite hypotheses and channel discrimination, allowing for solutions
to be obtained even in cases where the rates are not known in conventional quantum Shannon theory. Our
achievability bounds for communication make use of a novel postselected teleportation-based protocol.

We thus obtain fundamental limits on the performance of quantum information processing even under
the powerful resource of postselection. Joint submission of arXiv:2209.10550 and arXiv:2308.02583.

Keywords: Postselection; hypothesis testing; quantum state discrimination; quantum channel discrimi-
nation; entanglement-assisted communication; quantum channel capacity.

1 Background
The main aim of quantum information science is to

understand how quantum physical resources can be used
to enhance our ability to manipulate and transmit in-
formation. This study has been particularly fruitful in
delineating the ultimate limits of such advantages: for in-
stance, the standard approach of quantum Shannon the-
ory is to study asymptotic transformation rates, which
describe the limit where one has access to an unbounded
number of quantum state or channel uses. Although ide-
alised, such limits led to a substantial simplification of
the evaluation of many operational quantities, while at
the same time precisely characterising the extent of ad-
vantages that quantum resources can provide even un-
der permissive assumptions. They have thus formed the
foundation of quantum communication theory and are
the bedrock of our understanding of quantum informa-
tion processing. It was further realised that providing ad-
ditional resources — for instance, allowing two communi-
cating parties to share quantum entanglement [1, 2, 3] —
not only can significantly enhance our ability to perform

∗kj264@cornell.edu
†bartosz.regula@gmail.com
‡ludovico.lami@gmail.com
§wilde@cornell.edu

quantum information processing tasks, but also, again,
drastically simplify the computation of the operational
quantities, overcoming problems such as the (in)famous
nonadditivity [4, 5] and superactivation [6, 7] phenomena
which hinder the evaluation of quantum channel capaci-
ties.

It thus becomes a fundamental problem to understand
two aspects of this question: on the one hand, how al-
lowing additional resources can enhance quantum infor-
mation processing, and on the other, how it can simplify
the complex mathematical problems underlying its oper-
ational characterisation.

2 Summary
To gain insight into the limits of quantum advantages

in communication and information processing, here we
initiate the study of quantum Shannon theory enhanced
by the resource of postselection. In its basic form, it
simply corresponds to a situation where a party in a given
task is allowed an additional ‘inconclusive’ measurement
outcome — representing, for example, situations in which
a given process does not conclusively distinguish between
some states in consideration, resulting in no guess being
made. Crucially, we only consider results conditioned on
a conclusive outcome — that is, postselected — and do
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not penalise the parties for an inconclusive result.
Focusing on the tasks of quantum hypothesis testing

as well as communication over quantum channels assisted
by shared correlations, our main finding is the exact
evaluation of the optimal performance of these
tasks in all relevant settings. In particular: we obtain
not only asymptotic results but also tightly characterise
the one-shot and many-copy performance of the tasks;
we characterise hypothesis testing error probabilities in
both symmetric and asymmetric discrimination settings,
for both quantum states and channels; we evaluate quan-
tum channel capacities, both quantum and classical, in
both one-shot and asymptotic cases, assisted by both en-
tanglement and nonsignalling resources. The framework
is shown to enjoy remarkably simplified properties
compared to conventional quantum Shannon theory, al-
lowing us to give closed-form, single-letter, SDP-
computable expressions for all considered quan-
tities. Our methods extend even to settings where re-
sults in conventional Shannon theory are not known: for
instance, composite hypothesis testing, strong converse
channel discrimination rates, or an exact one-shot char-
acterisation of entanglement-assisted channel capacities
and their equivalence with nonsignalling-assisted ones.
Here we focus in particular on applications to communi-
cation, discussing achievable protocols in detail and de-
vising a postselected teleportation-based coding scheme.

The price to pay in our approach is the need to allow
one communicating party arbitrary access to postselec-
tion. Such a concession is known to significantly enhance
the power of quantum mechanics in many contexts such
as computation and metrology [8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19], even being equivalent to having access
to postselected closed timelike curves [20, 21, 22]. How-
ever, due to the remarkable simplifications that follow,
postselection can be very useful in understanding the ul-
timate power of quantum information processing, and it
has already found use, e.g., as the conceptual founda-
tion of the hardness arguments that underlie quantum
supremacy experiments [23]. In a similar manner, we
hope that our results can find use both in the formalisa-
tion of the foundations of quantum theory, as well as in
the study of the limits of practical information processing
protocols even in permissive settings.

3 Framework
Postselected hypothesis testing. Given a state

that is promised to be either 𝜌 or 𝜎, the experimenter’s
goal is to guess which one the state actually is, with an
additional option of making no guess. In this situation,
the experimenter’s strategy can in general be described
by a three-outcome measurement {𝑃,𝑄, 1 − 𝑃 −𝑄}, such
that the first two outcomes correspond to guessing 𝜌

and guessing 𝜎, respectively, and the last outcome corre-
sponds to being inconclusive. In the asymmetric setting,
no prior probabilities of 𝜌 or 𝜎 are assumed. The post-
selected type I error probability (for mistaking 𝜌 as 𝜎)
is given by Tr[𝑄𝜌]/Tr[(𝑃 + 𝑄)𝜌], and the postselected
type II error probability (for mistaking 𝜎 as 𝜌) is given

Figure 1: Postselected entanglement-assisted (pEA) com-
munication.

by Tr[𝑃𝜎]/Tr[(𝑃+𝑄)𝜎]. The optimal type II error with
constraints on the type I error is represented by the post-
selected 𝜀-hypothesis testing relative entropy :

𝐷 𝜀
pH (𝜌∥𝜎) ≔

− log2 inf
𝑃,𝑄≥0

{
Tr[𝑃𝜎 ]

Tr[ (𝑃+𝑄)𝜎 ] :
Tr[𝑄𝜌]

Tr[ (𝑃+𝑄)𝜌] ≤ 𝜀, 𝑃 +𝑄 ≤ 1
}
.

In the symmetric setting, the prior probabilities of 𝜌 and
𝜎 are known to be 𝑝 and 𝑞 ≡ 1 − 𝑝, respectively. Then
the minimum postselected error probability is given by
𝑝err (𝜌, 𝜎 |𝑝, 𝑞) ≔ inf

𝑃,𝑄≥0

{
𝑝Tr[𝑄𝜌]+𝑞Tr[𝑃𝜎 ]
Tr[ (𝑃+𝑄) (𝑝𝜌+𝑞𝜎) ] : 𝑃 +𝑄 ≤ 1

}
.

Postselected entanglement-assisted (pEA) com-
munication. In pEA communication, Alice (the sender)
and Bob (the receiver) aim at transmitting a quantum
or classical message from her system 𝑀 to his system
𝑀 � 𝑀 through a given quantum channel N𝐴→𝐵. See
Fig. 1. As in conventional entanglement-assisted com-
munication [1, 24, 25], they are allowed to share an un-
bounded amount of entanglement to assist the transmis-
sion. What differs from the conventional setting is that
we now assume that Bob’s decoding operation has the ad-
ditional option of being inconclusive about the message
being transmitted. The postselected error probability of
the transmission is then defined to be conditioned on him
being conclusive. We define the one-shot 𝜀-error post-
selected entanglement-assisted (pEA) quantum capacity
and the asymptotic pEA quantum capacity of the chan-
nel N𝐴→𝐵, respectively, as

𝑄𝜀
pEA(N) ≔ sup

Θ∈pEA
{log2 𝑑𝑀 : 𝑃err (Θ;N) ≤ 𝜀} ,

𝑄pEA(N) ≔ inf
𝜀∈ (0,1)

lim inf
𝑛→∞

1
𝑛
𝑄𝜀

pEA(N
⊗𝑛),

where, in the first equation, 𝑑𝑀 is the dimensionality of
the system 𝑀, 𝑃err (Θ;N) is the worst-case postselected
error probability with respect to a protocol Θ over the
channel N , and the supremum is over all pEA protocols.
If we only consider transmission of classical messages
(i.e., if 𝑀 is classical), the capacities similarly defined are
called the one-shot and asymptotic pEA classical capac-
ities, denoted by 𝐶 𝜀

pEA(N) and 𝐶pEA(N), respectively.
Postselected nonsignalling-assisted (pNA) com-

munication. The only difference with pEA communi-
cation is that now Alice and Bob can be assisted by
general nonsignalling correlations, which is a broader
class of correlations than shared entanglement. The
resulting one-shot quantum and classical capacities are
denoted by 𝑄𝜀

pNA(N) and 𝐶 𝜀
pNA(N), and the result-

ing asymptotic quantum and classical capacities are de-
noted by 𝑄pNA(N) and 𝐶pNA(N). Nonsignalling-assisted
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communication was studied in the conventional (non-
postselected) framework in [26, 27, 28].

4 Results
Our results are expressed in terms of the fol-

lowing information-theoretic measures. Denoting the
max-relative entropy [29] between two states 𝜌 and
𝜎 by 𝐷max (𝜌∥𝜎), the Hilbert projective metric [30,
17] between 𝜌 and 𝜎 is defined as 𝐷Ω (𝜌∥𝜎) ≔

𝐷max (𝜌∥𝜎) + 𝐷max (𝜎∥𝜌), and the Thompson met-
ric [31] between 𝜌 and 𝜎 is defined as 𝐷Ξ (𝜌∥𝜎) ≔

max {𝐷max (𝜌∥𝜎), 𝐷max (𝜎∥𝜌)}. We define the projective
mutual information of a channel N𝐴→𝐵 as

𝐼Ω (N) ≔ sup
𝜌𝑅𝐴

𝐼Ω (𝑅; 𝐵)N𝐴→𝐵 [𝜌𝑅𝐴] ,

where 𝐼Ω (𝑅; 𝐵)𝜔𝑅𝐵
≔ inf𝜎𝐵

𝐷Ω (𝜔𝑅𝐵∥𝜔𝑅 ⊗ 𝜎𝐵) is a vari-
ant of the mutual information of a bipartite state 𝜔𝑅𝐵

derived from the Hilbert projective metric. We note that
all the above measures can be evaluated using semidefi-
nite programs (SDPs).

Postselected hypothesis testing. In the asymmet-
ric setting, we show that the error exponent in postse-
lected hypothesis testing can be precisely characterised
in terms of the Hilbert projective metric:

𝐷 𝜀
pH (𝜌∥𝜎) = log2

(
𝜀

1−𝜀
2𝐷Ω (𝜌∥𝜎) + 1

)
∀𝜀 ∈ (0, 1). (1)

By the additivity of 𝐷Ω (𝜌∥𝜎), the one-shot characteri-
sation readily gives rise to the counterpart of quantum
Stein’s lemma [32, 33] in the postselected framework:
lim
𝑛→∞

1
𝑛
𝐷 𝜀

pH (𝜌
⊗𝑛∥𝜎⊗𝑛) = 𝐷Ω (𝜌∥𝜎) ∀𝜀 ∈ (0, 1). In the

symmetric setting, we show that the minimum postse-
lected error probability is precisely characterised by the
Thompson metric: 𝑝err (𝜌, 𝜎 |𝑝, 𝑞) = (2𝐷Ξ (𝜌∥𝜎) + 1)−1.
This helps establish the counterpart of the quantum
Chernoff bound [34, 35] in the postselected framework:
lim
𝑛→∞

− 1
𝑛
log2 𝑝err (𝜌⊗𝑛, 𝜎⊗𝑛 |𝑝, 𝑞) = 𝐷Ξ (𝜌∥𝜎) ∀𝑝 ≡ 1 − 𝑞 ∈

(0, 1). These results in particular endow 𝐷Ω and 𝐷Ξ with
explicit operational meanings in state discrimination.

It is noteworthy that in both the asymmetric and sym-
metric settings of postselected hypothesis testing, the
one-shot results imply that the multi-shot postselected
error probabilities contain no terms of order lower than
linear in 𝑛, which strongly contrasts with the situation
encountered in the conventional framework [36, 37].

Furthermore, all our results for postselected hypothe-
sis testing are straightforwardly extended to more general
settings such as composite hypothesis testing and strong
converse channel hypothesis testing, contrasting with the
extraordinary complications of similar settings in the con-
ventional framework [38, 39, 40, 41, 42, 43, 44, 45]. In
the discrimination of channels, we show in particular
that parallel protocols are always optimal: both in non-
asymptotic and asymptotic channel discrimination, no
advantage can be gained by using adaptive or even more
general discrimination schemes, such as those involving
indefinite causal order.

Postselected entanglement & nonsignalling-
assisted (pEA & pNA) communication. Our main
results are tight upper and lower bounds on the one-shot
𝜀-error quantum and classical capacities of any channel
N𝐴→𝐵 in both the pEA and pNA scenarios. Our bounds
show that all these capacities are approximately charac-
terised by an analytical expression in terms of the post-
selected error probability 𝜀 and the channel’s projective
mutual information 𝐼Ω (N):

𝐶 𝜀
pEA(N) ≈ 𝐶 𝜀

pNA(N) ≈ 2𝑄𝜀
pEA(N) ≈ 2𝑄𝜀

pNA(N)

≈ log2

(
𝜀

1−𝜀
2𝐼Ω (N) + 1

)
∀𝜀 ∈ (0, 1).

(2)

Our proof technique is sketched as follows. First of all,
we propose a postselected entanglement-assisted coding
scheme based on probabilistic teleportation, and this con-
structively proves the lower bound on 𝑄𝜀

pEA(N). Di-
verging from typical coding schemes in the conventional
framework, the postselected teleportation-based coding
follows the idea of (1) teleporting the message entirely
through the shared entangled systems and (2) encoding
the classical information of whether the teleportation suc-
ceeded into the input system 𝐴 of the channel N . As Bob
decodes this classical information, he would gain insight
into whether the message was teleported successfully, and
he makes a guess about the message only if he believes
there was a success. We then prove a non-trivial connec-
tion between the optimal performance of this scheme and
𝐼Ω (N). For the converse direction, we establish an upper
bound on 𝐶 𝜀

pNA(N) based on the postselected hypothe-
sis testing relative entropy, which, by invoking Eq. (1),
is given by the rightmost terms in Eq. (2). By linking
the one-shot quantum and classical capacities via super-
dense coding, we observe that the derived upper and
lower bounds match, resulting in Eq. (2).

We then prove that the projective mutual information
of channels is additive, using which our one-shot results
give rise to a single-letter characterisation of the asymp-
totic capacities in both the pEA and pNA scenarios:

𝐶pEA(N) = 𝐶pNA(N) = 2𝑄pEA(N) = 2𝑄pNA(N) = 𝐼Ω (N).

The simplicity of our asymptotic results parallels that
of Shannon’s celebrated noisy-channel coding theorem
for classical channels [46] and the entanglement-assisted
capacity theorem for quantum channels in the conven-
tional framework [1, 24], but the postselected results en-
joy significantly simpler proofs. Furthermore, we find
that the strong converses of all the capacities above are
the same as the capacities themselves, and that feedback
assistance does not provide any additional advantage in
both the asymptotic and non-asymptotic regimes. Analo-
gies of such findings are known for both classical chan-
nels [47, 48] and quantum channels in the conventional
framework [2, 49, 50, 51, 52, 53], although they were much
more difficult to establish there. In addition, the opti-
mum rates of pEA and pNA communication feature only
the capacity term and another 𝑂 ( 1

𝑛
) term, which echoes

the same property in postselected hypothesis testing and
contrasts with the non-trivial second-order asymptotics
in the conventional framework [54].
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Abstract. Identification of possible transformations of quantum objects including quantum states and quan-
tum operations is indispensable in developing quantum algorithms. Universal transformations, defined as input-
independent transformations, appear in various quantum applications. Such is the case for universal transforma-
tions of unitary operations. However, extending these transformations to non-unitary operations is nontrivial and
largely unresolved. Addressing this, we introduce isometry adjointation protocols that convert an input isometry
operation into its adjoint operation, which include both unitary operation and quantum state transformations.
The paper details the construction of parallel and sequential isometry adjointation protocols, derived from unitary
inversion protocols using quantum combs, and achieving optimal approximation error. This error is shown to be
independent of the output dimension of the isometry operation. In particular, we explicitly obtain an asymptot-
ically optimal parallel protocol achieving an approximation error ϵ = Θ(d2/n), where d is the input dimension
of the isometry operation and n is the number of calls of the isometry operation. The research also extends to
isometry inversion and universal error detection, employing semidefinite programming to assess optimal perfor-
mances. The findings suggest that the optimal performance of general protocols in isometry adjointation and
universal error detection is not dependent on the output dimension, and that indefinite causal order protocols
offer advantages over sequential ones in isometry inversion and universal error detection. The full paper of this
work is on arXiv [1].

Keywords: Higher-order quantum transformations, Quantum supermaps, Isometry operations, Adjoint opera-
tions, Encoding and decoding of quantum information

1 Problem setting and main results
Quantum protocols dealing with unknown quantum states

have been extensively studied, such as state cloning [2]. Pos-
sibility and impossibility of such protocols have played an im-
portant role in implementing cryptographic protocols [3, 4].
Unknown quantum operations are also utilized in various
quantum protocols, such as oracle quantum computation
[5], unitary property testing [6], and higher-order quantum
transformations [7]. In general, it is difficult to utilize un-
known quantum states and operations in quantum proto-
cols since we require an extra resource overhead to estimate
their description via process tomography [8, 9]. Previous
works have invented subroutines to deal with unknown quan-
tum states or unitary operations such as swap test [10], am-
plitude amplification [11], and transformations of unknown
unitary operations [12–19]. However, their extension to gen-
eral quantum operations are not well investigated. One of
the most important class of quantum operations are isome-
try operations, which represent encoding of quantum infor-
mation into a higher-dimensional system. Mathematically,
they include unitary operations and pure quantum states
as special cases, namely, Viso(d,D) ≃ U(d) for D = d and
Viso(d,D) ≃ CD for d = 1 hold, where Viso(d,D) is the set
of isometry operators V : Cd → CD and U(d) is the set of
d-dimensional unitary operators. In this work, we define the

∗satoshiyoshida.phys@gmail.com
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Figure 1: Definition of the task isometry adjointation.

task isometry adjointation given as follows.

Definition 1 (Isometry adjointation). Given n calls of an
unknown isometry operation Vin ∈ Viso(d,D), the task is to
implement a quantum instrument {ΦI ,ΦO}1 such that ΦI

approximates the adjoint operation V †
in

2.

The adjoint operation can be written as V †
inρinVin =

V−1
in (ΠImVin

ρinΠImVin
), where V−1

in is a CPTP map satisfying
V−1
in ◦ Vin = 1d, and ΠImVin

is an orthogonal projector onto
the image ImVin. Thus, an isometry adjointation protocol
checks whether the input quantum state is within the sub-
space ImVin specified by the unknown isometry operation
Vin, and if the input state is in the subspace, it applies the

1The measurement outcomes I and O stand for “in ImVin” and “out
of ImVin”, respectively (see also Fig. 1).

2We also demand that the one-side error condition ΦO ◦ Vin = 0,
i.e., when ρin ∈ L(ImVin), we obtain the measurement outcome a = I
with a unit probability.
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Figure 2: (a) Construction of a parallel isometry adjointation protocol from a covariant unitary estimation protocol. (b)
Construction of a sequential isometry adjointation protocol from a unitary inversion protocol.

inverse operation V−1
in on the input state (Fig. 1). This task

reduces to unitary inversion [15–19] (U ∈ U(d) 7→ U−1) for
D = d and swap test [10], or programmable projective mea-
surement [20] (|ψ⟩ ∈ CD 7→ {|ψ⟩⟨ψ| ,1 − |ψ⟩⟨ψ|}) for d = 1.
We show two ways to construct isometry adjointation pro-
tocols, one of which utilizes the input isometry operations
in parallel, and the other utilizes them in sequence. The
parallel protocol is constructed from a unitary estimation
protocol, and the sequential protocol is from a unitary in-
version protocol (Fig. 2). Both of them achieve the optimal
performances among all parallel or sequential protocols.

Theorem 2. The parallel or sequential protocols shown in
Fig. 2 implement the quantum instrument {ΦI ,ΦO} satisfy-
ing

ΦI(ρin) =(1− p)V †
inρinVin

+
1d

d
Tr{[pΠImVin + α(1D −ΠImVin)]ρin}, (1)

where p, α ∈ [0, 1] are obtained from the original uni-
tary estimation or unitary inversion protocol. The
worst-case diamond-distance error is given by ϵ =
1
2 supVin∈Viso(d,D) ∥Φ − Vadjoint∥⋄ = max{ 1

2 (1 − d−2)p, α},
where Φ and Vadjoint are CPTP maps defined by Φ :=
ΦI ⊗ |0⟩⟨0| + ΦO ⊗ |1⟩⟨1| and Vadjoint := V† ⊗ |0⟩⟨0| +
1d

d Tr[(1D −ΠImVin)·]⊗ |1⟩⟨1|.

Theorem 3. For given d,D, n, the protocols shown in
Figs. 2 achieve the optimal worst-case diamond-distance er-
ror among all parallel or sequential protocols, respectively.

In particular, p, α in (1) is given in Theorems 5 and 6 of
the technical manuscript [1], which do not depend on the
output dimension D of the isometry. Thus, we obtain the
following Lemma.

Lemma 4. The optimal approximation error ϵ of parallel
or sequential isometry adjoinattion using n calls of the input
isometry operation Vin ∈ Viso(d,D) do not depend on D.

2 Construction of parallel and sequential
isometry adjointation protocols

We construct a quantum instrument {Ψa : L(CD)⊗n+1 →
L(Cd)⊗n+1}a∈{I,O} using the quantum Schur transform [21–
24] satisfying the following equation [25]:

ΨI [V⊗n
in (ϕ)⊗ ρ] =

∫
U(d)

dUU⊗n(ϕ)⊗ (U ◦ V†
in)(ρ)

+ Tr
[
(1D −ΠImVin))ρ

]
ΨI(ϕ), (2)

where Vin(·) := Vin · V †
in, U(·) := U · U†, dU is the Haar

measure on U(d), and ΨI is a completely positive trace
non-increasing (CPTNI) map. To cancel out U after V†

in

in (2), a unitary estimation protocol is combined as shown
in Fig. 2 (a). The left panel of Fig. 2 (a) shows a paral-
lel protocol for unitary inversion using a unitary estimation
protocol. The input unitary operation Uin is estimated as
Ûi from the measurement outcome i of a POVM {Mi} on
the state U⊗n

in ⊗ 1(ϕ). The inverse operation Ri := Û−1
i

of the estimated operation is applied to the input quantum
state ρin. Assuming that the unitary estimation protocol is
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covariant, we can show that the quantum circuit shown in
the right panel of Fig. 2 (a) implements a quantum oper-
ation (1) with p = d2

d2−1 (1 − Fest) and α = TrΨI [TrA(ϕ)]
where Fest is the entanglement fidelity of unitary estima-
tion and ϕ is shown in Fig. 2. From covariant unitary
estimation protocols presented in Refs. [26–29], we show
the isometry adjointation protocol achieving p = O(d4/n2),
α = O(d2/n) in (1). Thus, for n ≫ d2, this protocol
achieves ϵ = O(d2/n), and in particular for the case of
d = 2, this is given by ϵ = 6.2287/n + O(n−2). Therefore,
we can achieve an approximation error ϵ by n = O(d2/ϵ)
calls of the input isometry operation. We also show that
this scaling is optimal among all possible parallel protocols,
i.e., infparallel protocol ϵ = Θ(d2/n).

From a given sequential unitary inversion protocol, we
construct an isometry adjointation protocol as shown in
Fig. 2 (b). This construction is done by inserting the set
of quantum operations Γ(i) (red one) to the unitary inver-
sion protocol composed of Λ′(i) (blue one). The sequence of
Λ′(i) transforms the action of n calls of Vin to V†

in and ran-
domized unitary operation, similarly to (2). We can show
that the resulting protocol implements a quantum operation
(1) if the original unitary inversion protocol is covariant [25].

Our constructions of isometry adjointation protocols are
transformations from the unitary inversion protocols. Since
the unitary inversion protocols are transformations of quan-
tum operations, or quantum supermaps [30], such transfor-
mations are called quantum supersupermaps. Using the idea
of quantum supersupermaps, the problem to design an isom-
etry adjointation protocol reduces to designing a unitary
inversion protocol, which is extensively studied in previous
works [15–19]. Note that a similar idea is used in Ref. [31],
which presents transformation of the function applied on
block-encoding unitary operation in quantum singular value
transformations.

3 Reduction to isometry inversion, univer-
sal error detection, and programmable
projective measurement

By discarding the measurement outcome of isometry ad-
jointation protocols in Fig. 2, we can implement isometry
inversion [32]. Isometry inversion is the task to implement
the inverse operation V−1

in of the input isometry operation
Vin ∈ Viso(d,D), where the inverse operation is defined as a
CPTP map such that V−1

in ◦ Vin = 1d. We can show that
the obtained isometry inversion protocol has the approxima-
tion error ϵ that is the same as the original unitary inver-
sion protocol. Since d-dimensional unitary inversion with ap-
proximation error ϵ can be done using n = O(poly(d)ϵ−1/2)
(parallel) or n = O(poly(d) log ϵ−1) calls of the input uni-
tary operation [17], we can construct the isometry inversion
protocol with the same number of the input operations. In
particular for the case of d = 2, our construction with the
deterministic exact unitary inversion [19] gives deterministic
and exact isometry inversion.

By discarding the output state of isometry adjointation

protocols in Fig. 2, we can implement universal error detec-
tion, which is a task to implement the POVM {ΠImVin

,1D−
ImVin} approximately. In particular, it implements the
POVM {ΠImVin + α(1D − ΠImVin), (1 − α)(1D − ΠImVin)},
where α is given in (1), which quantifies the approximation
error of the protocol. The minimal value of α among par-
allel protocols is explicitly given in Theorem 12 of the tech-
nical manuscript [1], which scales as infparalell protocol α =
Θ(d2/n). The special case (d = 1) of universal error detec-
tion reduces to a programmable projective measurement [20],
which transforms an input unknown pure state |ψin⟩ ∈ CD to
the corresponding POVM {|ψin⟩⟨ψin| ,1D − |ψin⟩⟨ψin|}. The
optimal approximation error is obtained in Ref. [20], which
corresponds to the d = 1 case of our explicit expression of
α [25].
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Identification of possible transformations of quantum objects including quan-
tum states and quantum operations is indispensable in developing quantum
algorithms. Universal transformations, defined as input-independent transfor-
mations, appear in various quantum applications. Such is the case for universal
transformations of unitary operations. However, extending these transforma-
tions to non-unitary operations is nontrivial and largely unresolved. Addressing
this, we introduce isometry adjointation protocols that convert an input isom-
etry operation into its adjoint operation, which include both unitary operation
and quantum state transformations. The paper details the construction of
parallel and sequential isometry adjointation protocols, derived from unitary
inversion protocols using quantum combs, and achieving optimal approxima-
tion error. This error is shown to be independent of the output dimension of
the isometry operation. In particular, we explicitly obtain an asymptotically
optimal parallel protocol achieving an approximation error ϵ = Θ(d2/n), where
d is the input dimension of the isometry operation and n is the number of calls
of the isometry operation. The research also extends to isometry inversion
and universal error detection, employing semidefinite programming to assess
optimal performances. The findings suggest that the optimal performance of
general protocols in isometry adjointation and universal error detection is not
dependent on the output dimension, and that indefinite causal order protocols
offer advantages over sequential ones in isometry inversion and universal error
detection.

1 Introduction
The possibility and impossibility of universal transformation of unknown quantum states
have played a major role in quantum information and foundations (e.g., state cloning
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Figure 1: Definition of the task isometry adjointation.

[1], universal NOT [2], and swap test [3] or programmable projective measurement [4]).
Recently, transformations of quantum operations, namely, quantum supermaps, have been
investigated to aim for higher-order quantum computataion [5], which is a candidate for the
quantum generalization of higher-order functions [6], as well as its connections to channel
resource theory [7], quantum thermodynamics [8], and causal structure [9]. Since univer-
sal transformation of quantum operations can be utilized as an elementary operation in
higher-order quantum computation, the full characterization of possible universal trans-
formations of quantum operations is indispensable. Although universal transformations
of unitary operations have been extensively studied [10–33], their generalization to non-
unitary operations have not been well investigated except for a few examples (Ref. [34] for
POVM measurements and Ref. [35] for isometry operations). In particular, isometry oper-
ations represent encoding of quantum information, and universal transformation of them
would be useful as an elementary building block in higher-order quantum computation.

This work extends one of the most important task of universal transformation of unitary
operations, called unitary inversion [10, 25–33], to isometry operations. Unitary inversion
is a task to transform an unknown unitary operation Uin into its inverse operation U−1

in ,
where Uin is given by Uin(·) := Uin · U †

in for a unitary operator Uin. Since the inverse of
a unitary operator Uin can be given by the adjoint operator U †

in, one natural extension of
unitary inversion to isometry operations is given by isometry adjointataion. We consider
an isometry operation Vin(·) := Vin · V †

in, where Vin : Cd → CD is an isometry operator
satisfying V †

inVin = 1d for the identity operator 1d. We denote the set of isometry operators
Vin : Cd → CD by Viso(d,D), and the set of d-dimensional unitary operators by U(d) =
Viso(d, d). Isometry adjointation is a task to transform an unknown isometry operation Vin
to a quantum instrument {Φa}a∈{I,O}

1 such that ΦI approximates the adjoint operation
V†

in, where V†
in is given by V†

in(·) := V †
in · Vin. The adjoint operation V†

in(·) is given as

V†
in(ρin) = V−1

in (ΠImVinρinΠImVin), (1)

where V−1
in is the inverse operation satisfying V−1

in ◦ Vin(ρ) = ρ for all ρ ∈ L(Cd), and
ΠImVin is the orthogonal projector onto ImVin. It implements the projective measurement
{ΠImVin ,1−ΠImVin} and the inverse operation V−1

in at the same time (see Fig. 1). Isometry
adjointation can be reduced to two relevant tasks called isometry inversion [35] and uni-
versal error detection, where the former is the task to implement the inverse operation V−1

in ,
and the latter is the task to implement the projective merasurement {ΠImVin ,1−ΠImVin},
from an unknown isometry operation Vin.

We construct parallel and sequential protocols for isometry adjointation by transform-
ing the corresponding unitary inversion protocol (Fig. 2 and Theorems 6 and 5). Isometry
inversion and universal error detection protocols are constructed by discarding the mea-
surement outcome and output quantum state, respectively, from the isometry adjointation

1Measurement outcomes a ∈ {I, O} stand for “in ImVin” and “out of ImVin.”
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Figure 2: Left panel (unitary inversion): Transformation of a unitary operation Uin into its inverse
operation U−1

in . Right panel (isometry adjointation): Transformation of an isometry operation Vin into
its adjoint operation V †

in. The isometry adjointation protocol is constructed by transforming the unitary
inversion protocol (shown in blue) using a quantum comb shown in red.

protocol (Corollaries 7 and 8). We analyze the optimality of the constructed protocols,
and we show the following properties:

• Our construction of parallel and sequential protocols gives the optimal performances
among all parallel or sequential protocols (Theorem 10).

• Optimal parallel protocol for universal error detection is explicitly given (Theorem
12).

• A parallel protocol for isometry adjointation is given, which achieves an asymptoti-
cally optimal approximation error ϵ = Θ(d2n−1) (Theorem 14).

We also give semidefinite programming (SDP) to obtain the optimal performances for
these tasks using parallel, sequential, and general protocols including indefinite causal
order [9, 36, 37] (Section 4.3).

The rest of this work is organized as follows. Section 2 defines the tasks isometry ad-
jointation, isometry inversion, and universal error detection, and corresponding figures of
merit. Section 3.1 introduces the technical details to obtain the main result of this paper
(Theorem 5) in Section 3.2, constructing the isometry adjointation protocol. Section 3.3
constructs isometry inversion and universal error detection protocols from the isometry
adjointation protocol. Section 4.1 introduces the Choi operator of the general quantum
supermap and shows that the Choi operators corresponding to optimal protocols for isom-
etry adjointation, isometry inversion, and universal error detection have the unitary group
symmetry. Section 4.2 analyzes the optimal performances using analytical methods based
on group theory. Section 4.3 numerically investigates the optimal performances using
semidefinite programming. Section 5 concludes the work.

2 Problem setting
We consider the following tasks for the given unknown input state ρin ∈ L(CD) and the
unknown isometry operation V(·) := V · V † for V ∈ Viso(d,D) (see Sections 2.1 – 2.3 for
the detail):

• Probabilistic exact isometry inversion
Promise: The input state ρin is within the code space L(ImV ).
Task: Output the quantum state V−1(ρin) with probability p.

• Deterministic isometry inversion
Promise: The input state ρin is within the code space L(ImV ).
Task: Output a quantum state close to V−1(ρin).
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• Universal error detection
Task: Output the measurement outcome a ∈ {I,O}2 with probability close to
Tr(ΠImVinρin) (a = I), and Tr[(1D −ΠImVin)ρin] (a = O), where ΠImVin is the or-
thogonal projectors onto the subspace ImVin.

• Isometry adjointation
Task: Output the quantum state probabilistically with the measurement outcome a ∈
{I,O} with probability close to Tr(ΠImVinρin) (a = I), and Tr[(1D −ΠImVin)ρin] (a =
O). When ρin ∈ L(ImV ), the measurement outcome a = I is obtained with a unit
probability with an output quantum state close to V−1(ρin). When the measurement
outcome a = O is obtained, an output quantum state is given by a fixed quantum
state, e.g., the maximally mixed state.

We define the details of the task in the following subsections. To this, we introduce the
notion of quantum supermaps, representing the transformations of quantum channels. We
first consider a deterministic transformation from n quantum channels Φ(i)

in : L(Ii)→ L(Oi)
for i ∈ {1, · · · , n} to a quantum channel Φout : L(P)→ L(F), where Ii, Oi, P, and F are
Hilbert spaces3. Such a transformation is represented as a linear supermap

C :
n⊗
i=1

[L(Ii)→ L(Oi)]→ [L(P)→ L(F)], (2)

where [L(H1) → L(H2)] is a set of linear maps from L(H1) to L(H2). A probabilistic
transformation of quantum channels is represented as a set {Ca}a, where a corresponds to
the classical outcome. We consider three classes of transformations, as shown below.

• Parallel protocol
We call C is implemented by a parallel protocol when input operations are used in
parallel as follows:

C
[
Φ(1)

in ⊗ · · · ⊗ Φ(n)
in

]
= Λ(2) ◦

[
n⊗
i=1

Φ(i)
in ⊗ 1A

]
◦ Λ(1), (3)

where Λ(1) : L(P) → L(In ⊗ A) and Λ(2) : L(On ⊗ A) → L(F) are quantum
channels, A is an auxiliary Hilbert space, and In and On are joint Hilbert spaces
defined by In :=

⊗n
i=1 Ii and On :=

⊗n
i=1Oi, respectively. Similarly, we consider

the implementation of a probabilistic transformation of {Ca}a in a parallel protocol
given by

Ca
[
Φ(1)

in ⊗ · · · ⊗ Φ(n)
in

]
= Λ(2)

a ◦
[
n⊗
i=1

Φ(i)
in ⊗ 1A

]
◦ Λ(1), (4)

where {Λ(2)
a }a is a quantum instrument4. We also consider a subclass of parallel

protocols called parallel delayed input-state protocols, which are realized as

C
[
Φ(1)

in ⊗ · · · ⊗ Φ(n)
in

]
(ρin) = Λ

[
ρin ⊗

(
n⊗
i=1

Φ(i)
in ⊗ 1A

)
(ϕ)
]
, (5)

2I stands for “in ImV ” and O stands for “out of ImV .”
3P stands for “global past” and F stands for “global future.”
4A quantum instrument is a set of completely-positive maps that sum up to a completely-positive and

trace-preserving map [38].
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where ρin ∈ L(P) is an input quantum state and ϕ ∈ L(In ⊗A) is a quantum state.
Similarly, we consider the parallel delayed input-state protocol of a probabilistic
transformation given by

Ca
[
Φ(1)

in ⊗ · · · ⊗ Φ(n)
in

]
(ρin) = Λa

[
ρin ⊗

(
n⊗
i=1

Φ(i)
in ⊗ 1A

)
(ϕ)
]
. (6)

• Sequential protocol (quantum comb [39])
We call C is implemented by a sequential protocol or a quantum comb [39] when
input operations are used sequentially as follows:

C
[
Φ(1)

in ⊗ · · · ⊗ Φ(n)
in

]
= Λ(n+1) ◦

[
Φ(n)

in ⊗ 1An

]
◦ Λ(n) ◦ · · · ◦ Λ(2) ◦

[
Φ(1)

in ⊗ 1A1

]
◦ Λ(1),

(7)

where Λ(1) : L(P) → L(I1 ⊗ A1),Λ(2) : L(O1 ⊗ A1) → L(I2 ⊗ A2), · · · ,Λ(n) :
L(On−1⊗An−1)→ L(In⊗An),Λ(n+1) : L(On⊗An)→ L(F) are quantum channels
and A1, · · · ,An are auxiliary Hilbert spaces. Similarly, we consider the implementa-
tion of a probabilistic transformation of {Ca}a in a sequential protocol given by

Ca
[
Φ(1)

in ⊗ · · · ⊗ Φ(n)
in

]
= Λ(n+1)

a ◦
[
Φ(n)

in ⊗ 1An

]
◦ Λ(n) ◦ · · · ◦ Λ(2) ◦

[
Φ(1)

in ⊗ 1A1

]
◦ Λ(1),

(8)

where {Λ(n+1)
a }a is a quantum instrument.

• General protocol
We consider the most general case, where C satisfies the following properties:

1. Completely CP preserving: (C ⊗ 1)
[
Φ(1)

in ⊗ · · · ⊗ Φ(n)
in

]
is completely positive

(CP) for all CP maps Φ(1)
in : L(I1⊗A1)→ L(O1⊗B1), · · · ,Φ(n)

in : L(In⊗An)→
L(On⊗Bn), where A1, · · · ,An and B1, · · · ,Bn are auxiliary Hilbert spaces and
1 is the identity supermap defined by 1(Φ) = Φ for all Φ : L [

⊗n
i=1Ai] →

L [
⊗n

i=1 Bi].

2. TP preserving: C
[
Φ(1)

in ⊗ · · · ⊗ Φ(n)
in

]
is trace preserving (TP) for all TP maps

Φ(1)
in : L(I1)→ L(O1), · · · ,Φ(n)

in : L(In)→ L(On).

We say that C is a quantum superchannel [39] if it satisfies the above conditions. For a
probabilistic transformation, we consider the case when {Ca}a is given by a quantum
superinstrument, namely, Ca is completely CP preserving and

∑
a Ca is TP preserving.

The classes of quantum superchannel and superinstrument include indefinite causal
order [9, 36, 37], which is not realizable in a conventional quantum circuit model.

2.1 Isometry inversion
We consider a probabilistic exact or deterministic implementation of isometry inversion.
For a probabilistic exact implementation, we require that the output state is V−1(ρin)
for all ρin ∈ L(ImV ) with probability p. For a deterministic implementation, we require
that the output state is obtained deterministically for all ρin ∈ L(ImV ). We consider the
worst-case channel fidelity defined by

Fworst = inf
V ∈Viso(d,D)

Fch[C[V⊗n] ◦ V,1d], (9)
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where Fch is the channel fidelity [40] and 1d is the identity operation. The channel fidelity
between a quantum channel Λ on a d-dimensional system and a d-dimensional unitary
operation U(·) = U · U † is given by

Fch(Λ,U) = 1
d2 Tr[JΛ|U⟩⟩⟨⟨U |], (10)

where JΛ and |U⟩⟩ are the Choi operator of Λ and the Choi vector of U [41, 42], respectively,
defined by

JΛ :=
∑
i,j

|i⟩⟨j| ⊗ Λ(|i⟩⟨j|), (11)

|U⟩⟩ :=
∑
i

|i⟩ ⊗ U |i⟩ (12)

using the computational basis {|i⟩} of the input system (see Section 3.1.1 for the detail of
the Choi representation). Therefore, Fch(Λ,U) is linear with respect to Λ. The channel
fidelity is invariant under the action of unitary operations, i.e.,

Fch(U ′ ◦ Λ(1) ◦ U ,U ′ ◦ Λ(2) ◦ U) = Fch(Λ(1),Λ(2)) (13)

holds for any quantum channels Λ(1) and Λ(2) and unitary operations U and U ′. Therefore,
when D = d, the definition (9) of the figure of merit for deterministic isometry inversion
corresponds to the worst-case channel fidelity for deterministic unitary inversion introduced
in Ref. [29] given by

Fworst = inf
U∈U(d)

Fch[C(U⊗n),U−1]. (14)

We denote the optimal success probability of isometry inversion in parallel, sequential,
and general protocols by p(x)

opt(d,D, n) for x = PAR (parallel), x = SEQ (sequential), and
x = GEN (general), respectively. Similarly, we denote the optimal fidelity of isometry
inversion by F (x)

opt(d,D, n).

2.2 Universal error detection
We define the task to implement the POVM {ΠI ,ΠO} given by

ΠI = ΠImVin + α(1D −ΠImVin), (15)
ΠO = (1− α)(1D −ΠImVin), (16)

i.e., we require the one-sided error condition such that we obtain the measurement outcome
a = I with a unit probability when ρin ∈ L(ImVin) holds. We denote the minimal value
of α in parallel, sequential, and general protocols as α(x)

opt(d,D, n) for x = PAR (parallel),
x = SEQ (sequential), and x = GEN (general), respectively.

2.3 Isometry adjointation
We demand the quantum superinstrument {CI , CO} satisfies

Tr CI [V⊗n](ρin) = 1 ∀ρin ∈ D(ImV ), (17)

6
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which corresponds to the one-sided error condition in universal error detection. We de-
fine the quantum channels corresponding to the output quantum instrument and adjoint
operation by

C[V⊗n](·) := CI [V⊗n](·)⊗ |0⟩⟨0|+ CO[V⊗n](·)⊗ |1⟩⟨1| , (18)

Vadjoint(·) := V † · V ⊗ |0⟩⟨0|+ Tr[(1D −ΠImV )·]1
d
⊗ |1⟩⟨1| , (19)

and define the figure of merit by the worst-case diamond-distance error:

ϵ = sup
V ∈Viso(d,D)

1
2

∥∥∥C[V⊗n]− Vadjoint
∥∥∥

⋄
, (20)

where ∥·∥⋄ is the diamond norm [43]. We denote the minimal value of ϵ in parallel, sequen-
tial, and general protocols by ϵ(x)

opt(d,D, n) for x = PAR (parallel), x = SEQ (sequential),
and x = GEN (general), respectively.

3 Construction of isometry adjointation protocols and reduction to isom-
etry inversion and universal error detection

In Section 3.1, we introduce the Choi representation to represent quantum channels and
quantum supermaps. We also introduce the link product to represent their compositions.
Then, we introduce the group theoretic technique called the Schur-Weyl duality. In Sec-
tion 3.2, we construct isometry adjointation protocols by transforming unitary inversion
protocols using the quantum comb derived from the Schur-Weyl duality. We also derive
isometry inversion and universal error detection protocols from the isometry adjointation
protocol.

In the following discussions, we suppose I1 = · · · In = F = O′
1 = · · · = O′n = P ′ = Cd,

O1 = · · · = On = P = CD, and denote the joint Hilbert spaces by Ii :=
⊗i

j=1 Ij ,
O′i :=

⊗i
j=1O′

j , and Oi =
⊗i

j=1Oj for j ∈ {1, · · · , n}. To illustrate the dimensions of the
Hilbert spaces corresponding to the wires in the quantum circuits shown in this Section,
we utilize the following color code of wires: a red wire corresponds to a d-dimensional
Hilbert space, a blue wire corresponds to a D-dimensional Hilbert space, and a black wire
corresponds to a Hilbert space with an arbitrary dimension. The dual wires in the quantum
circuits represent classical information transmissions.

3.1 Preliminaries
3.1.1 Choi representation and link product

Any quantum channel Λ : L(I) → L(O) can be represented by the Choi operator JΛ ∈
L(I ⊗ O) defined by [41, 42]

JΛ :=
∑
i,j

|i⟩⟨j|I ⊗ Λ(|i⟩⟨j|)O, (21)

where {|i⟩} is the computational basis of I. In particular, the Choi operator JV of an
isometry operation V(·) := V · V † for an isometry operator V : I → O is represented as

JV = |V ⟩⟩⟨⟨V |, (22)
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where |V ⟩⟩ ∈ I ⊗ O is the Choi vector of V defined by

|V ⟩⟩ :=
∑
i

|i⟩I ⊗ (V |i⟩)O. (23)

A composition of two quantum channels Λ(1) : L(I) → L(O1) and Λ(2) : L(O1) → L(O2)
can be represented in terms of the corresponding Choi operators as

JΛ(2)◦Λ(1) = JΛ(2) ⋆ JΛ(1) , (24)

where ⋆ is the link product [44] defined by

A ⋆ B := TrB[(ATB ⊗ 1C)(1A ⊗B)] (25)

for A ∈ L(A⊗B) and B ∈ L(B⊗C), and ATB is the partial transpose of A with respect to
the subsystem B. The link product satisfies the commutativity and associativity relations
by definition, given as

A ⋆ B = B ⋆ A, (26)
(A ⋆ B) ⋆ C = A ⋆ (B ⋆ C) (27)

for A ∈ L(A⊗ B), B ∈ L(B ⊗ C), and C ∈ L(C ⊗ D). If the two operators A and B does
not have an overlap subsystem, i.e., A ∈ L(A) and B ∈ L(B) for A ̸= B, the link product
of A and B becomes the tensor product:

A ⋆ B = A⊗B. (28)

Using the Choi operator and the link product, we can represent the quantum combs
defined in Eq. (7). The Choi operator of the quantum channel shown in the right-hand
side of Eq. (7) is given by

JΛ(n+1) ⋆ JΦ(n)
in
⋆ JΛ(n) ⋆ · · · ⋆ JΛ(2) ⋆ JΦ(1)

in
⋆ JΛ(1) . (29)

Using Eqs. (26)-(28), this can be rewritten as

C ⋆
n⊗
i=1

JΦ(i)
in
, (30)

where C ∈ L(In ⊗On ⊗ P ⊗ F) is the Choi operator of the quantum comb C defined by

C := JΛ(n+1) ⋆ JΛ(n) ⋆ · · · ⋆ JΛ(1) . (31)

Therefore, the action of a quantum comb C on input quantum operations {Φ(1)
in , · · · ,Φ

(n+1)
in }

is given in the Choi representation by

JC[Φ(1)
in ⊗···⊗Φ(n)

in ] = C ⋆
n⊗
i=1

JΦ(i)
in
. (32)

The following Theorem characterizes the set of Choi operators of quantum combs.

Theorem 1. [44, 45] Suppose P,F , Ii,Oi for i ∈ {1, · · · , n} are Hilbert spaces and define
the joint Hilbert spaces by In :=

⊗n
i=1 Ii and On :=

⊗n
i=1Oi. The operator C ∈ L(In ⊗

On ⊗ P ⊗ F) can be written as Eq. (31) using quantum channels Λ(1) : L(P) → L(I1 ⊗
A1),Λ(2) : L(O1 ⊗A1)→ L(I2 ⊗A2), · · · ,Λ(n) : L(On−1 ⊗An−1)→ L(In ⊗An),Λ(n+1) :
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L(On⊗An)→ L(F) and auxiliary Hilbert spaces A1, · · · ,An if and only if C satisfies the
following equations:

C ≥ 0, (33)
TrIi C

(i) = C(i−1) ⊗ 1Oi−1 ∀i ∈ {1, · · · , n+ 1}, (34)

where O0 and In+1 are defined by O0 := P and In+1 := F , and C(i) for i ∈ {0, · · · , n+ 1}
are defined by C(n+1) := C, C(i−1) := TrOi−1Ii C

(i)/ dimOi−1 and C(0) := 1.

The probabilistic transformation {Ca}a in a sequential protocol given by Eq. (8) can
be similarly represented by

JCa[Φ(1)
in ⊗···⊗Φ(n)

in ] = Ca ⋆
n⊗
i=1

JΦ(i)
in
, (35)

where Ca is the Choi operator of the probabilistic transformation {Ca}a defined by

Ca := JΛ(n+1)
a

⋆ JΛ(n) ⋆ · · · ⋆ JΛ(1) . (36)

The following Theorem characterizes the set of Choi operators of probabilistic transforma-
tions implemented in sequential protocols.

Theorem 2. [44, 45] Suppose P,F , Ii,Oi for i ∈ {1, · · · , n} are Hilbert spaces and define
the joint Hilbert spaces by In :=

⊗n
i=1 Ii and On :=

⊗n
i=1Oi. The set of operators

{Ca}a ⊂ L(In ⊗ On ⊗ P ⊗ F) can be written as Eq. (31) using quantum channels Λ(1) :
L(P) → L(I1 ⊗ A1),Λ(2) : L(O1 ⊗ A1) → L(I2 ⊗ A2), · · · ,Λ(n) : L(On−1 ⊗ An−1) →
L(In⊗An), a quantum instrument {Λ(n+1)

a }a : L(On⊗An)→ L(F) and auxiliary Hilbert
spaces A1, · · · ,An if and only if C satisfies the following equations:

Ca ≥ 0, (37)
TrIi C

(i) = C(i−1) ⊗ 1Oi−1 ∀i ∈ {1, · · · , n+ 1}, (38)

where O0 and In+1 are defined by O0 := P and In+1 := F , and C(i) for i ∈ {0, · · · , n+ 1}
are defined by C(n+1) :=

∑
aCa, C(i−1) := TrOi−1Ii C

(i)/ dimOi−1 and C(0) := 1.

The link product also represents the composition of two quantum combs. We consider
two quantum combs C′ and T defined by

C′
[
Φ′(1)

in ⊗ · · · ⊗ Φ′(n)
in

]
:= Λ′(n+1) ◦ (Φ′(n)

in ⊗ 1An) ◦ · · · ◦ Λ′(2) ◦ (Φ′(1)
in ⊗ 1A1) ◦ Λ′(1), (39)

T
[
Φ′′(1)

in ⊗ · · · ⊗ Φ′′(n)
in

]
:= Γ(n+1) ◦ (Φ′′(n)

in ⊗ 1Bn) ◦ · · · ◦ Γ(2) ◦ (Φ′′(1)
in ⊗ 1B1) ◦ Γ(1), (40)

where Ai and Bi for i ∈ {1, · · · , n} are auxiliary Hilbert spaces and Λ′(1) : L(P)→ L(I1⊗
A1), Λ′(i) : L(O′

i−1⊗Ai−1)→ L(Ii⊗Ai) for i ∈ {2, · · · , n}, Λ(n+1) : L(O′
n⊗An)→ L(F),

Γ(1) : L(P) → L(P ′ ⊗ B1), Γ(i) : L(Oi−1 ⊗ Bi−1) → L(O′
i−1 ⊗ Bi) for i ∈ {2, · · · , n}, and

Γ(n+1) : L(On ⊗ Bn) → L(O′
n) are quantum channels. We define the composed quantum

comb C by

C
[
Φ(1)

in , · · · ,Φ
(n)
in

]
:= Λ(n+1) ◦ (Φ(n)

in ⊗ 1AnBn) ◦ · · · ◦ Λ(2) ◦ (Φ(1)
in ⊗ 1A1B1) ◦ Λ(1), (41)

Λ(i) := (Λ′(i) ⊗ 1Bi) ◦ (Γ(i) ⊗ 1Ai−1) ∀i ∈ {1, · · · , n+ 1}. (42)

In terms of the Choi operator, this composition can be written as

C = C ′ ⋆ T, (43)

where C ′, T , and C are Choi operators of C′, T , and C, respectively.
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3.1.2 Schur-Weyl duality

We introduce the Schur-Weyl duality as follows. We consider representations of the special
unitary group U(d) and the permutation group Sn on a n-fold Hilbert space (Cd)⊗n defined
by

U(d) ∋ U 7→ U⊗n ∈ L(Cd)⊗n, (44)
Sn ∋ π 7→ Pπ ∈ L(Cd)⊗n, (45)

where Pπ is a permutation operator on (Cd)⊗n defined by

Pπ(|ψ1⟩ ⊗ · · · ⊗ |ψn⟩) :=
∣∣∣ψπ−1(1)

〉
⊗ · · · ⊗

∣∣∣ψπ−1(n)
〉
∀ |ψ1⟩ , · · · , |ψn⟩ ∈ Cd. (46)

The Schur-Weyl duality asserts a simultaneous irreducible decomposition of the two rep-
resentations U⊗n and Pπ given by

(Cd)⊗n =
⊕
µ∈Yd

n

U (d)
µ ⊗ Sµ, (47)

U⊗n =
⊕
µ∈Yd

n

(Uµ)U(d)
µ
⊗ 1Sµ , (48)

Pπ =
⊕
µ∈Yd

n

1U(d)
µ
⊗ (πµ)Sµ , (49)

where µ runs in the set of Young diagrams with n boxes whose depth is less than or equal
to d, denoted by Ydn, and Uµ and πµ are irreducible representations of U(d) and Sn on
the linear spaces U (d)

µ and Sµ, respectively.5 We denote the dimensions of the irreducible
representation spaces U (d)

µ and Sµ by m(d)
µ and dµ, respectively.6 They are given by [46]

dµ = n!
hook(µ) , (50)

m(d)
µ =

∏
(i,j)∈µ(d+ j − i)

hook(µ) , (51)

where hook(µ) for µ ∈ Ydn is defined by

hook(µ) =
∏

(i,j)∈µ
(µi + µ′

j − i− j + 1), (52)

and (i, j) is the coordinate of a box in the Young diagram µ such that i represents the row
number running from bottom to top and j represents the column number running from
left to right. The numbers µi and µ′

j are the numbers of boxes in the i-th row and the
j-th column, respectively. The n-fold isometry operator V ⊗n for V ∈ Viso(d,D) can also
be decomposed as

V ⊗n =
⊕
µ∈Yd

n

(Vµ)U(d)
µ →U(D)

µ
⊗ 1Sµ , (53)

5The superscript d is put on U (d)
µ since the properties of the representation space U (d)

µ , e.g., the dimen-
sion, depends on the local dimension d. On the other hand, we do not put the superscript d on Sµ like
S(d)

µ since the representation space S(d)
µ is automorphic to S(d′)

µ for an arbitrary local dimension d′.
6The dimension of U (d)

µ is denoted by m
(d)
µ since U (d)

µ is the multiplicity space corresponding to the
irreducible representation space Sµ [see Eq. (47)].
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where Vµ : U (d)
µ → U (D)

µ is an isometry operator, as shown in Ref. [35].
Due to Schur’s lemma, any operator commuting with U⊗n for all U ∈ U(d) can be

written as a linear combination of the operators Eµ,dij defined by

Eµ,dij := 1U(d)
µ
⊗ |µ, i⟩⟨µ, j|Sµ

(54)

for i, j ∈ {1, · · · , dµ}, where {|µ, i⟩} is an orthonormal basis of Sµ. Then, the following
relation holds:

TrEµ,dij = m(d)
µ δij , Eµ,dij E

ν,d
kl = δµνδjkE

µ,d
il , (55)

where δij is Kronecker’s delta defined by δii = 1 and δij = 0 for i ̸= j. In particular,
{m(d)−1/2

µ Eµ,dij } forms an orthonormal basis of the set of operators commuting with U⊗n

for all U ∈ U(d) under the Hilbert-Schmidt inner product ⟨X,Y ⟩ := Tr
(
X†Y

)
. Thus, any

operator ρ commuting with U⊗n for all U ∈ U(d) can be represented as

ρ =
∑
µ∈Yd

n

dµ∑
i,j=1

Tr
(
Eµ,dji ρ

)
m

(d)
µ

Eµ,dij . (56)

Also, we define the Young projector Πµ by

Π(d)
µ :=

dµ∑
i=1

Eµ,dii , (57)

which is an orthonormal projector onto the subspace U (d)
µ ⊗ Sµ.

In particular, we consider the Schur basis of (Cd)⊗n defined by

|µ, u, i⟩ := |µ, u⟩U(d)
µ
⊗ |µ, i⟩Sµ

, (58)

where {|µ, u⟩} is the Gelfand-Zetlin basis of U (d)
µ and {|µ, i⟩} is the Young-Yamanouchi

basis of Sµ. The change of the basis from the computational basis to the Schur basis
is called the quantum Schur transform [47–52], denoted by VSch. The standard tableaux
with frame µ is indexed by i ∈ {1, · · · , dµ} and the i-th standard tableau is denoted by
sµi . Each element in the Young-Yamanouchi basis {|µ, i⟩} is associated with the standard
tableaux sµi . We also define the set of operators {Eλ,dab } on (Cd)⊗n−1 for λ ∈ Ydn−1 and
a, b ∈ {1, · · · , dλ}. To express the relation between {Eµ,dij } and {Eλ,dab }, we introduce the
following notations on the Young diagrams. We denote the set of Young diagrams obtained
by adding (removing) a box to λ by λ+□ (λ−□), and the index of the standard tableau
sµ
aλ

µ
obtained by adding a box n to a standard tableau sλa by aλµ. Then, the following

Lemma holds.

Lemma 3. [21, 30, 53, 54] The tensor product Eλ,dab ⊗ 1d and the partial trace of Eµ,dij in
the last system for λ ∈ Ydn−1 and µ ∈ Ydn are given by

Eλ,dab ⊗ 1d =
∑

µ∈λ+□

Eµ,d
aλ

µb
λ
µ
, TrnEµ,daλ

µb
κ
µ

= δλκ
m

(d)
µ

m
(d)
λ

Eλ,dab . (59)
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3.2 Construction of isometry adjointation protocol
3.2.1 Transformation from unitary inversion to isometry inversion

In this section, we derive a probabilistic quantum comb {TI , TO} transforming a unitary
inversion protocol to an isometry adjointation protocol as

C ′ ⋆ |Uin⟩⟩⟨⟨Uin|⊗nInO′n ≈ |U−1
in ⟩⟩⟨⟨U

−1
in |P ′F ∀Uin ∈ U(d)

=⇒ TI ⋆ C
′ ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn ≈ |V †

in⟩⟩⟨⟨V
†

in|PF ∀Vin ∈ Viso(d,D), (60)

where C ′ is the Choi operator corresponding to a quantum comb implementing unitary
inversion, and TI is the Choi operator corresponding to TI .

We define TI , TO ∈ L(P ′ ⊗ O′n ⊗ P ⊗ On) using the operators {Eµ,dij } introduced in
Section 3.1.2 by

TI :=
∑

µ∈Yd
n+1

dµ∑
i,j=1

(Eµ,dij )P ′O′n ⊗ (Eµ,Dij )POn

m
(d)
µ

, (61)

TO :=
n∑
t=d

∑
µn+1∈···∈µt

µt∈Yd
t ,µt+1 /∈Yd

t+1

dµt∑
a,b=1

(Eµt,d
ab )P ′O′t−1 ⊗ 1O′

t···O′
n
⊗ (Eµi,D

a
µt
µt+1···µn+1b

µt
µt+1···µn+1

)POn

dn+1−tm
(d)
µt

,

(62)

where µj ∈ µj+1 for j = t, · · · , n represents that µj+1 is a Young diagram obtained by
adding a box to µj , and aµt

µt+1···µn+1 is defined by aµt
µt+1···µn+1 := (· · · (aµt

µt+1)µt+1
µt+2) · · · )µn

µn+1 ,
namely, the index of the standard tableau obtained by recursively adding a box j + 1 to
s
µj
a for j = t, · · · , n. Then, {TI , TO} satisfies the quantum comb condition as shown in the

following Lemma.

Lemma 4. The set of operators {TI , TO} defined in Eqs. (61) and (62) satisfies

TI ≥ 0, TO ≥ 0, (63)
TrO′

i−1
T (i) = T (i−1) ⊗ 1Oi−1 ∀i ∈ {1, · · · , n+ 1}, (64)

where O0 and O′
0 are defined by O′

0 := P ′ and O0 := P, and T (i) are defined by T (n+1) :=
TI + TO, T (i) := TrO′

iOi
T (i+1)/D for i ∈ {1, · · · , n+ 1}, and T (0) := 1.

Proof. See Appendix A.1 for the proof.

Lemma 4 imply the existence of quantum channels Γ(1) : L(P) → L(I1 ⊗ B1),Γ(2) :
L(O1⊗B1)→ L(O′

2⊗B2), · · · ,Γ(n) : L(On−1⊗Bn−1)→ L(O′
n⊗Bn), a quantum instrument

{Γ(n+1)
I ,Γ(n+1)

O } : L(On ⊗ Bn) → L(F) and auxiliary Hilbert spaces B1, · · · ,Bn such that
(see Theorem 2)

Ta = JΓ(n+1)
a

⋆ JΓ(n) ⋆ · · · ⋆ JΓ(1) ∀a ∈ {I,O}, (65)

where JΓ is the Choi operator of Γ ∈ {Γ(1), · · · ,Γ(n),Γ(n+1)
a }.

We compose the probabilistic quantum comb {TI , TO} with the unitary inversion pro-
tocol to implement isometry adjointation. Suppose a quantum comb C′ :

⊗n
i=1[L(Ii) →

L(O′
i)]→ [L(P ′)→ L(F)] given by [see Fig. 3 (a-1)]

C′
[
Φ(1)

in , · · · ,Φ
(n)
in

]
:= Λ′(n+1) ◦ (Φ(n)

in ⊗ 1An) ◦ · · · ◦ Λ′(2) ◦ (Φ(1)
in ⊗ 1A1) ◦ Λ′(1) (66)
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implements deterministic unitary inversion approximately:

C′(U⊗n
in ) ≈ U−1

in ∀Uin ∈ U(d). (67)

Reference [29] shows that the optimal worst-case channel fidelity of unitary inversion is
achieved with the protocol whose Choi operator C ′ satisfies the U(d) × U(d) symmetry
given by

[C ′, U ′⊗n+1
InF ⊗ U ′′⊗n+1

P ′O′n ] = 0 ∀U ′, U ′′ ∈ U(d). (68)

From the sequential unitary inversion protocol satisfying the U(d)× U(d) symmetry (68),
we define a probabilistic transformation as follows [see Fig. 3 (b)]:

Ca
[
Φ(1)

in , · · · ,Φ
(n)
in

]
:= Λ(n+1)

a ◦ (Φ(n)
in ⊗ 1AnBn) ◦ · · · ◦ Λ(2) ◦ (Φ(1)

in ⊗ 1A1B1) ◦ Λ(1), (69)

Λ(i) := (Λ′(i) ⊗ 1Bi) ◦ (Γ(i) ⊗ 1Ai−1) ∀i ∈ {1, · · · , n}, (70)
Λ(n+1)
a := (Λ′(n+1) ⊗ 1Bn+1) ◦ (Γ(n+1)

a ⊗ 1An), (71)

where Γ(1), · · · ,Γ(n) and {Γ(n+1)
a }a are quantum channels and a quantum instrument com-

posing the quantum supersupermap {Ta}a and Λ′(1), · · · ,Λ′(n+1) are quantum channels
composing the unitary inversion quantum comb C′ [see Eqs. (65) and (66)]. The supermap
{Ca}a implements isometry adjointation as shown in the following Theorem.

Theorem 5. The sequential protocol shown in Fig. 3 (b) implements an isometry adjoin-
tation with the worst-case diamond-norm error given by

ϵ = max{αC′ , 1− FUI}, (72)

where αC′ is defined by

αC′ := Tr
[
TrF (C ′)Σ

]
, (73)

Σ is defined by

Σ :=
∑
λ∈Yd

n

∑
µ∈λ+□

dλ∑
a,b=1

hook(λ)
hook(µ)(Eλ,dab )In ⊗

(Eµ,d
aλ

µb
λ
µ
)O′nP ′

m
(d)
µ

, (74)

and FUI is the worst-case channel fidelity of the unitary inversion.

Proof sketch. We show that the probabilistic quantum comb {TI , TO} derived in this sec-
tion satisfies

TI ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn ≈
∫
U(d)

dU |UV †
in⟩⟩⟨⟨UV

†
in|PP ′ ⊗ |U⟩⟩⟨⟨U |⊗nInO′n , (75)

where dU is the Haar measure of U(d). Then, Eq. (60) holds since

TI ⋆ C
′ ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn ≈ C ′ ⋆

∫
U(d)

dU |UV †
in⟩⟩⟨⟨UV

†
in|PP ′ ⊗ |U⟩⟩⟨⟨U |⊗nInO′n (76)

≈
∫
U(d)

dU |UV †
in⟩⟩⟨⟨UV

†
in|PP ′ ⋆ |U−1⟩⟩⟨⟨U−1|P ′F (77)

= |V †
in⟩⟩⟨⟨V

†
in|PF . (78)

See Appendix A.2 for the detail.
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(c) Isometry inversion� �
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� �
Figure 3: (a) Sequential protocols for deterministic and probabilistic exact unitary inversion. (b) A
sequential isometry adjointation protocol is constructed by transforming the unitary inversion protocol
using a quantum supersupermap. (c, d) Reduction to isometry inversion and universal error detection
by discarding the measurement outcome and the output state of the isometry adjointation protocol,
respectively.
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3.2.2 Asymptotically optimal parallel protocol for isometry adjointation

We construct an asymptotically optimal parallel protocol for isometry adjointation by
transforming the parallel protocol for unitary inversion. The optimal parallel protocol for
deterministic unitary inversion is investigated in Ref. [29], which shows that the estimation-
based protocol achieves the optimal worst-case channel fidelity among all parallel protocols.
In the estimation-based unitary inversion protocol, one first estimates the input unitary
operation Uin by applying Uin in parallel to a quantum state ϕ ∈ L(In ⊗A), and measure
the output state by a POVM {Mi} ⊂ L(O′n ⊗A), where A is an auxiliary Hilbert space.
We define the measurement channel {Mi}i corresponding to the POVM {Mi} defined by
Mi(·) := Tr(Mi·). Then, one calculates the inverse operation Ri of the estimated unitary
operation and applies Ri on the input quantum state ρin. This protocol can be expressed
as [see Fig. 4 (a-1)] ∑

i

(Ri ⊗Mi)[ρin ⊗ (U⊗n
in ⊗ 1A)(ϕ)] ≈ U−1

in (ρin) (79)

for all Uin ∈ U(d) and ρin ∈ L(Cd). The worst-case channel fidelity of the unitary inversion
is the same as the entanglement fidelity of the unitary estimation protocol given by

Fest := inf
Uin∈U(d)

Fch[EUin ,Uin]. (80)

Here, EUin is the measure-and-prepare channel defined by

EUin :=
∑
i

p(Ûi|Uin)Ûi, (81)

where p(Ûi|Uin) is the probability to estimate the input unitary operation Uin as Ûi. The
optimal estimation is shown to be done with the covariant protocol [55], satisfying

p(U ′ÛiU
′′|U ′UinU

′′) = p(Ûi|Uin) ∀U ′, U ′′ ∈ U(d). (82)

By transforming the estimation-based protocol (79) using the covariant unitary esti-
mation as shown in Eq. (60), we obtain an isometry adjointation protocol given by [see
Fig. 4 (b)]

Ca[V⊗n
in ](ρin) :=

∑
i

(Ri ⊗Mi) ◦ (Ψa ⊗ 1A)[ρin ⊗ (V⊗n
in ⊗ 1A)(ϕ)] (83)

for all a ∈ {I,O}, Vin ∈ Viso(d,D) and ρin ∈ L(CD), where Ψa : L(On⊗P)→ L(O′n⊗P ′)
is a quantum instrument implemented by Algorithm 1. The approximation error ϵ of
isometry adjointation is given in the following Theorem.

Theorem 6. The parallel protocol shown in Fig. 4 (b) implements an isometry adjointa-
tion with the worse-case diamond-norm error given by

ϵ = max{αϕ, 1− Fest}, (84)

where αϕ is defined by

αϕ :=
∑
λ∈Yd

n

Tr
[
TrA(ϕ)Π(d)

λ

] ∑
µ∈λ∩□∩Yd

n+1

hook(λ)
hook(µ) (85)

=
∑
λ∈Yd

n

Tr
[
TrA(ϕ)Π(d)

λ

] 1−
∑

µ∈λ+□\Yd
n+1

hook(λ)
hook(µ)

 , (86)

hook(µ) is defined by Eq. (52), and Fest is the entanglement fidelity of the covariant unitary
estimation.
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Algorithm 1 Implementation of the quantum instrument {Ψa}a utilized in the parallel
protocol (83) for isometry adjointation.
Input: Quantum state ρin ∈ L(CD)⊗n+1

Output: Quantum state ρout ∈ L(Cd)⊗n+1 with a measurement outcome a ∈ {I,O}
1: Apply the quantum Schur transform VSch on the input quantum state ρin.
2: Measure the Young diagram register to obtain the measurement outcome µ.
3: Trace out the unitary group register.
4: Let τµ ∈ L(Sµ) be the quantum state in the symmetric group register.
5: if µ ∈ Ydn+1 then
6: a← I.
7: Prepare a quantum state |µ⟩⟨µ| ⊗ 1U(d)

µ
/m

(d)
µ .

8: Apply the inverse quantum Schur transform V †
Sch on the joint state |µ⟩⟨µ| ⊗

1U(d)
µ
/m

(d)
µ ⊗ τµ to obtain the output quantum state ρout.

9: else
10: a← O.
11: Trace out the quantum state τµ ∈ L(Sµ).
12: ρout ← 1⊗n+1

d /dn+1.
13: end if
14: return ρout, a

Proof. See Appendix A.3 for the proof.

For d = 2, one can utilize the maximum-likelihood qubit-unitary estimation presented
in Refs. [55–57] to achieve

ϵ = 6.2287
n

+O(n−2). (87)

For a higher dimension d > 2, we can utilize the unitary estimation presented in Ref. [14]
to achieve the following scaling:

ϵ = 3 ln 2
2

d2

n
+O(d4n−2, dn−1) (88)

= 1.0397d
2

n
+O(d4n−2, dn−1). (89)

See Appendix B.3 for the details. As shown later (Theorem 14), these protocols achieve
the asymptotically optimal worse-case diamond-norm error ϵ = Θ(d2/n).

3.3 Reduction to isometry inversion and universal error detection
By discarding the measurement outcome from the isometry adjointation protocols, we
obtain deterministic isometry inversion protocols shown in Figs. 3 (c-1) and 4 (c-1), which
are given by replacing Γ(n+1)

a and Ψa in the original isometry adjointation protocols with
Γ(n+1) :=

∑
a Γ(n+1)

a and Ψ :=
∑
a Ψa, respectively. The worst-case channel fidelity of the

derived isometry inversion protocol is shown to be the same as the original unitary inversion
protocol (see Appendix A.4.1). By replacing the original unitary inversion protocol with
the probabilistic exact one, we obtain the probabilistic exact isometry inversion protocols
as shown in Figs. 3 (c-2), 4 (c-2). The parallel protocol for probabilistic exact isometry
inversion is the same as that shown in Ref. [35]. The derived protocols achieve the same
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(c) Isometry inversion� �
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(d) Universal error detection� �
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Figure 4: (a) [1] The estimation-based protocol using covariant unitary estimation achieves the optimal
protocol for deterministic unitary inversion among all parallel protocols. [2] The delayed input-state
protocol achieves the optimal protocol for probabilistic exact unitary inversion among parallel protocols.
(b) A parallel isometry adjointation protocol is constructed by transforming the unitary inversion protocol
using the quantum supersupermap. (c, d) Reduction to isometry inversion and universal error detection
by discarding the measurement outcome and the output state of the isometry adjointation protocol,
respectively.
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success probability as the untiary inversion protocol (see Appendix A.4.2). In conclusion,
we obtain the following Corollary.

Corollary 7. Suppose there exists a parallel or sequential protocol for probabilistic exact
(deterministic) d-dimensional unitary inversion achieving success probability pUI (average-
case channel fidelity FUI) using n calls of Uin ∈ U(d). Then, we can construct a paral-
lel protocol for probabilistic exact (deterministic) isometry inversion for Vin ∈ Viso(d,D)
achieving success probability p = pUI (worst-case channel fidelity F = FUI) using n calls
of Vin ∈ Viso(d,D).

Reference [30] shows a deterministic exact sequential protocol for qubit-unitary inver-
sion using four calls of the input qubit-unitary operation Uin ∈ U(2). Combining this
protocol with Theorem 7, we can construct a deterministic exact sequential protocol for
qubit-encoding isometry inversion using four calls of the input qubit-encoding isometry
operation Vin ∈ Viso(2, D) for any D ≥ 2.

By discarding the output state from the isometry adjointation protocols, we obtain
universal error detection protocols shown in Figs. 3 (d) and 4 (d). The sequential protocol
shown in Fig. 3 (d) is obtained by discarding Λ′′(n+1) in the original isometry adjointation
protocol and replacing Γ(n+1)

a and Λ′(n) with the POVM measurement Ga := Tr ◦Γ(n+1)
a

and the quantum channel Λ′′(n) := TrAn ◦Λ′(n), respectively. The parallel protocol shown
in Fig. 4 (d) is obtained by discarding Ri and Mi in the original isometry adjointation
protocol, and replacing ϕ and Ψa with the quantum state ϕ′ := TrA(ϕ) and the POVM
measurement Pa := Tr ◦Ψa, respectively. The approximation errors of the derived protocols
are shown in the following Corollary (see Appendix A.4.3).

Corollary 8. The sequential and parallel protocols shown in Figs. 3 (d) and 4 (d) imple-
ment a universal error detection with the approximation errors α(x) for x = SEQ (sequen-
tial protocol) and x = PAR (parallel protocol) given by

α(SEQ) = Tr
(
C ′′Σ′), (90)

α(PAR) =
∑
λ∈Yd

n

Tr
(
ϕ′Π(d)

λ

) ∑
µ∈λ+□∩Yd

n+1

hook(λ)
hook(µ) (91)

=
∑
λ∈Yd

n

Tr
(
ϕ′Π(d)

λ

)1−
∑

µ∈λ+□\Yd
n+1

hook(λ)
hook(µ)

 , (92)

where C ′′ is the Choi operator of the quantum comb given by C ′′ := JΛ′(1)⋆JΛ′(2)⋆· · ·⋆JΛ′′(n),
Σ′ is defined by Σ′ := TrO′

n
Σ using Σ defined in Eq. (74), and ϕ′ is a quantum state shown

in the protocol 4 (d).

3.4 Relationship to programmable projective measurement
Reference [4] considers a task to construct a projective measurement {|ψ⟩⟨ψ| ,1 − |ψ⟩⟨ψ|}
from n copies of an unknown quantum state |ψ⟩ ∈ CD. The task is to construct a mea-
surement {ΠI ,ΠO} such that

Tr(ΠI |ψ⟩⟨ψ|) = 1, (93)

Tr
(
ΠI

∣∣∣ψ⊥
〉〈
ψ⊥
∣∣∣) = α (∀

∣∣∣ψ⊥
〉
⊥ |ψ⟩). (94)
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This task can be considered as a special case (d = 1) of universal error detection. Reference
[4] shows that the optimal failure probability is given by

α = 1
n+ 1 . (95)

The optimal success probability is achieved by a protocol shown in Fig. 5, where M =
{MI ,MO} is a POVM defined by MI = Πsym and MO = 1 − Πsym, where Πsym is an
orthonormal projector onto the totally symmetric subspace of (CD)⊗n+1. This protocol
corresponds to the universal error detection protocol for d = 1. The universal error de-
tection protocol is a generalization of programmable projective measurement for rank-d
(destructive) projective measurement given by {ΠImVin ,1−ΠImVin} using an isometry op-
erator Vin : Cd → CD. In particular, the parallel protocol shown in Fig. 4 (d) can be
regarded as an implementation of the rank-d projective measurement using a program
state V⊗n

in (ϕ′).

ρin

Pa
|ψ⟩⟨ψ|

... a

|ψ⟩⟨ψ|

Figure 5: Optimal protocol for programmable projective measurement shown in Ref. [4].

4 Analysis of the optimal protocols
In Section 4.1, we reintroduce the Choi operator of the quantum supermap to describe the
general superinstrument that is not implementable by the quantum circuit. We show that
the optimal protocols for isometry adjointation, isometry inversion, and universal error
detection can be found in the Choi operators satisfying the unitary group symmetry. We
utilize the unitary group symmetry to investigate the optimal performances analytically in
Section 4.2 and numerically in Section 4.3.

4.1 Choi representation of general superinstruments and U(d) × U(D) symmetry of
the tasks

Similarly to Eq. (32) for a sequential protocol, a general superchannel C :
⊗n

i=1[L(Ii) →
L(Oi)]→ [L(P)→ L(F)] can be represented in the Choi operator C satisfying

JC[Φ(1)
in ⊗···⊗Φ(n)

in ] = C ⋆
n⊗
i=1

JΦ(i)
in
, (96)

where JΦ is the Choi operator of a quantum channel Φ, and C ∈ L(In ⊗On ⊗ P ⊗ F) is
the Choi operator of C. The set of superchannels implemented by parallel (x = PAR) and
sequential (x = SEQ) protocols, and the set of general superchannel (x = GEN) can be
characterized by the positivity and linear conditions on C as

C ≥ 0, (97)
C ∈ W(x), (98)
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whereW(x) is a linear subspace of L(In⊗On⊗P⊗F) [see Appendix E.1 for the definition
of W(x)]. The case x = SEQ corresponds to Theorem 1. A general superinstrument
Ca :

⊗n
i=1[L(Ii)→ L(Oi)]→ [L(P)→ L(F)] can also be represented in the Choi operator

Ca satisfying

JCa[Φ(1)
in ⊗···⊗Φ(n)

in ] = Ca ⋆
n⊗
i=1

JΦ(i)
in
. (99)

The set of superinstruments implemented by parallel (x = PAR) and sequential (x = SEQ)
protocols, and the set of general superinstrument (x = GEN) can be characterized by the
positivity and linear conditions on C :=

∑
aCa as

Ca ≥ 0, (100)
C :=

∑
a

Ca ∈ W(x). (101)

The case x = SEQ corresponds to Theorem 2.
The protocols for isometry inversion, universal error detection, and isometry adjoin-

tation can be represented by the Choi operators of the corresponding superchannel or
superinstrument given by

C ∈ L(In ⊗On ⊗ P ⊗ F) (deterministic isometry inversion)
{CS , CF } ⊂ L(In ⊗On ⊗ P ⊗ F) (probabilistic exact isometry inversion)
{CI , CO} ⊂ L(In ⊗On ⊗ P) (universal error detection)
{CI , CO} ⊂ L(In ⊗On ⊗ P ⊗ F) (isometry adjointation)

. (102)

The optimization of the Choi operators can be done under the U(d)× U(D) symmetry as
shown in the following Theorem.

Theorem 9. The optimal performances of isometry inversion, universal error detection,
and isometry adjointation can be searched within Choi operators satisfying

[C,U ′⊗n+1
InF ⊗ U ′′⊗n+1

POn ] = 0 (deterministic isometry inversion)
[Ca, U ′⊗n+1

InF ⊗ U ′′⊗n+1
POn ] = 0 ∀a ∈ {S, F} (probabilistic exact isometry inversion)

[Ca, U ′⊗n
In ⊗ U ′′⊗n+1

POn ] = 0 ∀a ∈ {I,O} (universal error detection)
[Ca, U ′⊗n+1

InF ⊗ U ′′⊗n+1
POn ] = 0 ∀a ∈ {I,O} (isometry adjointation)

(103)

for all U ′ ∈ U(d) and U ′′ ∈ U(D).

Proof. See Appendix B.1 for the proof.

4.2 Optimal construction of isometry inversion, universal error detection, and isometry
adjointation protocols

We show that the construction of parallel or sequential protocols of isometry adjointation,
isometry inversion, and universal error detection are the optimal, as shown in the following
Theorem.

Theorem 10. The parallel or sequential protocols for probabilistic exact isometry inver-
sion, deterministic isometry inversion, universal error detection, and isometry adjointa-
tion shown in Theorems 5 and 6 and Corollaries 7 and 8 achieve the optimal performances
among all parallel or sequential protocols, respectively.
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Figure 6: (a) Optimal success probability p(GEN)
opt and (b) optimal worst-case channel fidelity F (GEN)

opt of
isometry inversion among general protocols including indefinite causal order. Solid lines represent the
case D = d (unitary inversion), and dashed lines represent the case D = d+1 for d = 2 (•), d = 3 (▲),
and d = 4 (■). The optimal values shown here are obtained by numerical calculations, and numerical
values are shown in Appendix D.

Proof. See Appendix C for the proof.

Since the figure of merits shown in Theorems 5 and 6 and Corollaries 7 and 8 do not
depend on D, we can show that the optimal performances do not depend on D.

Corollary 11. For D > d and x ∈ {PAR,SEQ}, the following relations hold:

ϵ
(x)
opt(d,D, n) = ϵ

(x)
opt(d, d+ 1, n), (104)

F
(x)
opt(d,D, n) = F

(x)
opt(d, d, n), (105)

p
(x)
opt(d,D, n) = p

(x)
opt(d, d, n), (106)

α
(x)
opt(d,D, n) = α

(x)
opt(d, d+ 1, n). (107)

Using Theorem 10, we analyze the optimal protocols for isometry inversion, universal
error detection, and isometry adjointation in the following subsections.

4.2.1 Isometry inversion

The optimal success probability and fidelity of isometry inversion are given by those of
unitary inversion when we use parallel or sequential protocols, as shown in Corollary 11.
It is already shown in Ref. [35] for the parallel protocol, but the sequential protocol case
is newly shown in this work, which is conjectured in Ref. [35].

To investigate the generalization of Corollary 11 for general protocols including in-
definite causal order, we calculate the optimal probability or worst-case channel fidelity
numerically (see Section 4.3 for the detail). Numerical results show that a similar equation
does not hold for general protocols including indefinite causal order, i.e., p(GEN)

opt (d,D, n) <
p

(GEN)
opt (d, d, n) or F (GEN)

opt (d,D, n) < F
(GEN)
opt (d, d, n) hold for some cases (see Fig. 6). This

behavior is compatible with the fact that the composition of a general quantum supermap
with a quantum comb does not yield a valid quantum supermap in general [58], so the con-
struction of isometry inversion protocols shown in Fig. 3 (c) cannot be applied for general
protocols.

4.2.2 Universal error detection

The optimal performance of parallel protocol α(PAR)
opt (d,D, n) is given as follows.
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Theorem 12.

α
(PAR)
opt (d,D, n) = 1

d+ k + 1

(
d+ d− l

d+ k − l

)
= d2

n
+O(d2n−2), (108)

where k and l are given by n = kd+ l (k ∈ Z, 0 ≤ l < d).

Proof. See Appendix B.2 for the proof.

From Theorem 12 and the result in Ref. [4], we can show the following property on the
scaling of α(x)

opt(d,D, n) with respect to n.

Corollary 13.

α
(x)
opt(d,D, n) = Θ(n−1) ∀D > d, ∀x ∈ {PAR,SEQ,GEN} (109)

holds for an arbitrary fixed value of d.

Proof. From Theorem 12, we obtain

α
(x)
opt(d,D, n) ≤ α(PAR)

opt (d,D, n) = O(n−1). (110)

The Hilbert space CD can be embedded onto Viso(d,D) by identifying |ψ⟩ ∈ CD with
V = |ψ⟩⟨0|+

∑d−1
i=1 |ψi⟩⟨i| ∈ Viso(d,D) for a set of orthonormal vectors {|ψi⟩}d−1

i=1 satisfying
⟨ψi|ψ⟩ = 0 for all i ∈ {1, · · · , d − 1}. Therefore, a universal error detection protocol for
V ∈ Viso(d,D) can simulate a programmable projective measurement for |ψ⟩ ∈ CD, which
leads to

α
(x)
opt(d,D, n) ≥ 1

n+ 1 = Ω(n−1). (111)

Thus, we obtain α
(x)
opt(d,D, n) = Θ(n−1).

4.2.3 Isometry adjointation

The optimal scaling of the approximation error of parallel isometry adjointation is given
as follows.

Theorem 14.

ϵ
(PAR)
opt (d,D, n) = Θ(d2n−1). (112)

Proof. First, ϵ(PAR)
opt (d,D, n) ≥ α

(PAR)
opt holds since any isometry adjointation protocol can

be transformed to an error detection protocol by discarding the output state of an isometry
adjointation protocol. Thus, we obtain ϵ(PAR)

opt (d,D, n) = Ω(d2n−1) from Theorem 12. On
the other hand, from the construction shown in Section 3.2.2, we see that ϵ(PAR)

opt (d,D, n) =
O(d2n−1) (see Appendix B.3). Thus, we obtain ϵ

(PAR)
opt (d,D, n) = Θ(d2n−1).
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4.3 Numerical results for the optimal protocols
From numerical calculations, we investigate the optimal protocols for isometry inversion,
universal error detection, and isometry adjointation. We represent the protocols imple-
menting isometry inversion, universal error detection, and isometry adjointation by their
Choi operators and formulate the optimization of the figure of merits within the possible
protocols as SDP. We utilize a U(d)× U(D) symmetry of the Choi operator (Theorem 9)
to simplify the SDP, which is a similar technique presented in Ref. [30] (see also Ref. [59]).
See Appendix E for the details of the derivation of the SDP. We calculate the derived SDP
in MATLAB [60] using the interpreter CVX [61, 62] with the solvers SDPT3 [63–65],
SeDuMi [66] and MOSEK [67]. Group-theoretic calculations to write down the SDP
are done with SageMath [68]. See Appendix D for the numerical results. All codes are
available at Ref. [69] under the MIT license [70].

The optimal performances for parallel or sequential protocols are calculated for the
case of D = d + 1 since they do not depend on D (see Corollary 11), which is shown by
the construction of protocols shown in Figs. 3 and 4. Although the same construction
is impossible for general protocols including indefinite causal order, we also see that the
optimal performances for general protocols do not depend on D as long as D ≥ d + 1
holds by checking the values for D = d + 1, · · · , d + 10. However, the maximum success
probability (channel fidelity) of probabilistic exact (deterministic) isometry inversion for
the case of D = d (unitary inversion) is different from those for the case of D = d + 1
(isometry inversion), as shown in Tables 5 and 6 (corresponding to Fig. 6 in Section 4.2.1).
We also see the advantage of indefinite causal order over sequential protocols in isometry
inversion and universal error detection, but the advantage disappears in the case of isometry
adjointation.

5 Conclusion
In this work, we investigate the universal transformation of isometry operations to ex-
plore the possible transformation in higher-order quantum computation. We define the
task called isometry adjointation, which is to transform the isometry operation into its
adjoint operation. The isometry adjointation protocol is constructed by transforming the
unitary inversion protocol using the probabilistic quantum comb {TI , TO}. Using the idea
of composition of quantum combs, the problem of designing isometry adjointation protocol
reduces to designing a unitary inversion protocol, which is extensively studied in previous
works [10, 25–33]. In special cases, the isometry adjointation reduces to unitary inversion
(transformation of unitary operations) and programmable projective measurement (trans-
formation of pure states). Due to such reducibility, isometry adjointation is a useful task
to understand the difference between higher-order quantum computation and “lower-order”
quantum computation (i.e., transformation of states), which are exhibited in several ex-
amples such as distinguishability [71] and superreplication [17, 18, 72], under a unified
formulation. We also construct isometry inversion and universal error detection protocols
by discarding measurement outcome and output quantum state, respectively. We show that
our construction gives the optimal performances among all parallel or sequential protocols,
which implies that the optimal performances among parallel or sequential protocols do not
depend on the output dimension D of the isometry operation. We analyze the optimal
performances of isometry adjointation and show that the optimal approximation error ϵ of
the parallel isometry adjointation protocol is given by ϵ = Θ(d2n−1), where d is the input
dimension of the isometry operation, and n is the number of calls of the input operation.

23

385



To investigate the general protocols including indefinite causal order, we also provide the
numerical results for the optimal performances of isometry adjointation, isometry inver-
sion, and universal error detection using the semidefinite programming combined with the
unitary group symmetry. The optimal performances of probabilistic exact (deterministic)
unitary inversion (D = d) are different from those of isometry inversion (D ≥ d + 1),
which is compatible with the impossibility of the composition of a general supermap with
a quantum comb. However, numerical results also show that the optimal performances
of isometry adjointation and universal error detection using the general protocol do not
depend on D. We also see the advantage of indefinite causal order protocols over sequential
protocols in isometry inversion and universal error detection, but the advantage disappears
in isometry adjointation.
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A Construction of isometry adjointation protocols
A.1 Proof of Lemma 4
By definition of Eµ,dij given in Eq. (54), TI and TO can be written as

TI =
∑

µn+1∈Yd
n+1

1U(d)
µn+1

⊗ 1U(D)
µn+1

⊗
∣∣ϕµn+1

〉〈
ϕµn+1

∣∣
Sµn+1 Sµn+1

m
(d)
µn+1

, (113)

TO =
n∑
t=d

∑
µn+1∈···∈µt

µt∈Yd
t ,µt+1 /∈Yd

t+1

1U(d)
µt

⊗ 1O′
t···O′

n
⊗ 1U(D)

µn+1
⊗
∣∣ϕµt
µt+1···µn+1

〉〈
ϕµt
µt+1···µn+1

∣∣
Sµt Sµn+1

dn+1−tm
(d)
µt

,

(114)

where
∣∣ϕµn+1

〉
and

∣∣ϕµt
µt+1···µn+1

〉
are defined by

∣∣ϕµn+1

〉
:=

dµn+1∑
m=1

|µn+1,m⟩Sµn+1
⊗ |µn+1,m⟩Sµn+1

, (115)

∣∣∣ϕµt
µt+1···µn+1

〉
:=

dµt∑
a=1
|µt, a⟩Sµt

⊗
∣∣∣µn+1, a

µt
µt+1···µn+1

〉
Sµn+1

. (116)

Therefore, TI ≥ 0 and TO ≥ 0 hold.
We next show Eq. (64) by redefining operators T (i)

I , T
(i)
O ∈ L(P ′ ⊗ O′i−1 ⊗ P ⊗ Oi−1)
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for i ∈ {1, · · · , n+ 1} by

T
(i)
I :=

∑
µi∈Yd

i

dµi∑
m,n=1

(Eµi,d
mn )P ′O′i−1 ⊗ (Eµi,D

mn )POi−1

m
(d)
µi

, (117)

T
(i)
O :=

i−1∑
t=d

∑
µi∈···∈µt

µt∈Yd
t ,µt+1 /∈Yd

t+1

dµt∑
a,b=1

(Eµt,d
ab )P ′O′t−1 ⊗ 1O′

t···O′
i−1
⊗ (Eµi,D

a
µt
µt+1···µi

b
µt
µt+1···µi

)POi−1

di−tm
(d)
µt

,

(118)

which correspond to TI = T
(n+1)
O and TO = T

(n+1)
O for TI , TO defined in Eqs. (61) and

(62). We show that T (i)
I , T

(i)
O defined in Eqs. (117) and (118) satisfy Eq. (64).

When i = 1, T (1) is given by

T (1) = 1P ⊗ 1P ′

d
. (119)

Thus, TrP ′ T (1) = 1P = T (0) ⊗ 1P holds.
When i > 1, T (i) decomposes into three parts:

T (i) = T
(i)
I + T

(i)
t=i−1 + T

(i)
d≤t<i−1, (120)

where T (i)
t=i−1 and T (i)

d≤t<i−1 are defined by

T
(i)
t=i−1 :=

∑
µi∈µi−1

µi−1∈Yd
i−1,µi /∈Yd

i

dµi−1∑
a,b=1

(Eµi−1,d
ab )P ′O′i−2 ⊗ 1O′

i−1
⊗ (Eµi,D

a
µi−1
µi

b
µi−1
µi

)POi−2

dm
(d)
µi−1

, (121)

T
(i)
d≤t<i−1

:=
i−2∑
t=d

∑
µi∈···∈µt

µt∈Yd
t ,µt+1 /∈Yd

t+1

dµt∑
a,b=1

(Eµt,d
ab )P ′O′t−1 ⊗ 1O′

t···O′
i−1
⊗ (Eµi,D

a
µt
µt+1···µi

b
µt
µt+1···µi

)POi−1

di−tm
(d)
µt

. (122)

Partial traces of T (i)
I , T (i)

t=i−1 and T (i)
d≤t<i−1 over the subsystem O′

i−1 are obtained as follows:

TrO′
i−1

T
(i)
I =

∑
µi∈µi−1
µi∈Yd

i

dµi−1∑
a,b=1

(Eµi−1,d
ab )P ′O′i−2 ⊗ (Eµi,D

a
µi−1
µi

b
µi−1
µi

)POi−1

m
(d)
µi−1

, (123)

TrO′
i−1

T
(i)
t=i−1 =

∑
µi∈µi−1

µi−1∈Yd
i−1,µi /∈Yd

i

dµi−1∑
a,b=1

(Eµi−1,d
ab )P ′O′i−2 ⊗ (Eµi,D

a
µi−1
µi

b
µi−1
µi

)POi−2

m
(d)
µi−1

, (124)

25

387



TrO′
i−1

T
(i)
d≤t<i−1

=
i−2∑
t=d

∑
µi−1∈···∈µt

µt∈Yd
t ,µt+1 /∈Yd

t+1

dµt∑
a,b=1

∑
µi∈µi−1+□

(Eµt,d
ab )P ′O′t−1 ⊗ 1O′

t···O′
i−2
⊗ (Eµi,D

a
µt
µt+1···µi

b
µt
µt+1···µi

)POi−1

di−1−tm
(d)
µt

(125)

=
i−2∑
t=d

∑
µi−1∈···∈µt

µt∈Yd
t ,µt+1 /∈Yd

t+1

dµt∑
a,b=1

(Eµt,d
ab )P ′O′t−1 ⊗ 1O′

t···O′
i−2
⊗ (Eµi−1,D

a
µt
µt+1···µi−1b

µt
µt+1···µi−1

)POi−2 ⊗ 1Oi−1

di−1−tm
(d)
µt

(126)

Therefore, one obtains

TrO′
i−1

[T (i)
I + T

(i)
t=i−1] =

∑
µi−1∈Yd

i−1

dµi−1∑
a,b=1

∑
µi∈µi−1+□

(Eµi−1,d
ab )P ′O′i−2 ⊗ (Eµi,D

a
µi−1
µi

b
µi−1
µi

)POi−1

m
(d)
µi−1

(127)

=
∑

µi−1∈Yd
i−1

dµi−1∑
a,b=1

(Eµi−1,d
ab )P ′O′i−2 ⊗ (Eµi−1,D

ab )POi−2 ⊗ 1Oi−1

m
(d)
µi−1

(128)

= T
(i−1)
I ⊗ 1Oi−1 , (129)

TrO′
i−1

T
(i)
d≤t<i−1 = T

(i−1)
O ⊗ 1Oi−1 . (130)

Thus, we obtain

TrO′
i−1

T (i) = TrO′
i−1

[T (i)
I + T

(i)
t=i−1 + T

(i)
d≤t<i−1] (131)

= [T (i−1)
I + T

(i−1)
O ]⊗ 1Oi−1 , (132)

= T (i−1) ⊗ 1Oi−1 . (133)

A.2 Proof of Theorem 5: Construction of a sequential isometry adjointation protocol
First, we show that the probabilistic quantum comb {TI , TO} satisfies

TI ⋆ |V ⟩⟩⟨⟨V |⊗nInOn =
∫
U(d)

dU |UV †⟩⟩⟨⟨UV †|PP ′ ⊗ |U⟩⟩⟨⟨U |⊗nInO′n + (1D −ΠImV )TP ⊗ Σ (134)

for all V ∈ Viso(d,D), where dU is the Haar measure on U(d) and Σ is defined in Eq. (74).
By definition (61) of TI , it satisfies

[TI ,1P ′O′n ⊗ U ′⊗n+1
POn ] = 0 ∀U ′ ∈ U(D). (135)

Therefore,

TI ⋆ |V ⟩⟩⟨⟨V |⊗nInOn = (1P ′O′n ⊗ U ′⊗n+1
POn )(TI) ⋆ |V ⟩⟩⟨⟨V |⊗nInOn (136)

= (1P ′O′nIn ⊗ U ′
P)(TI ⋆ |U ′TV ⟩⟩⟨⟨U ′TV |⊗nInOn) (137)

Since U ′TV = V holds for U ′T = 1ImV ⊕ U ′′
(ImV )⊥ using U ′′ ∈ U(D − d), we obtain

[TI ⋆ |V ⟩⟩⟨⟨V |⊗nInOn ,1P ′O′nIn ⊗ (1ImV ⊕ U ′′
(ImV )⊥)TP ] = 0 ∀U ′′ ∈ U(D − d). (138)
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Therefore, TI ⋆ |V ⟩⟩⟨⟨V |⊗nInOn satisfies

TI ⋆ |V ⟩⟩⟨⟨V |⊗nInOn =[1P ′O′nIn ⊗ (ΠT
ImV )P ](TI ⋆ |V ⟩⟩⟨⟨V |⊗nInOn)[1P ′O′nIn ⊗ (ΠT

ImV )P ]
+ (1D −ΠImV )TP ⊗ Σ, (139)

where Σ ∈ L(P ′O′nIn) is given by

Σ = 1
D − d

TI ⋆ |V ⟩⟩⟨⟨V |⊗nInOn ⋆ (1D −ΠImV )P . (140)

Since ΠImV = V V † holds, the first term in Eq. (137) can be evaluated as

[1P ′O′nIn ⊗ (ΠT
ImV )P ](TI ⋆ |V ⟩⟩⟨⟨V |⊗nInOn)[1P ′O′nIn ⊗ (ΠT

ImV )P ]

=
∑

µ∈Yd
n+1

dµ∑
i,j=1

(Eµ,dij )P ′O′n

m
(d)
µ

⊗ (1On ⊗ V∗
P ′′→P ◦ VTP→P ′′)(Eµ,Dij )POn ⋆ |V ⟩⟩⟨⟨V |⊗nInOn (141)

=
∑

µ∈Yd
n+1

dµ∑
i,j=1

(Eµ,dij )P ′O′n

m
(d)
µ

⊗ (1In ⊗ V∗
P ′′→P) ◦ VT⊗n+1

POn→P ′′In(Eµ,Dij )POn (142)

=
∑

µ∈Yd
n+1

dµ∑
i,j=1

(Eµ,dij )P ′O′n

m
(d)
µ

⊗ (1In ⊗ V∗
P ′′→P)(Eµ,dij )P ′′In (143)

=
∫
U(d)

dU(1P ′ ⊗ V∗
P ′′→P)(|U⟩⟩⟨⟨U |P ′′P ′)⊗ |U⟩⟩⟨⟨U |⊗nInO′n (144)

=
∫
U(d)

dU |UV †⟩⟩⟨⟨UV †|PP ′ ⊗ |U⟩⟩⟨⟨U |⊗nInO′n , (145)

where P ′′ is a Hilbert spaces given by P ′′ = Cd, dU is the Haar measure on U(d), and we
have utilized the following relations:

V †⊗n+1Eµ,Dij V ⊗n+1 =
{
Eµ,dij (µ ∈ Ydn+1)
0 (µ /∈ Ydn+1)

, (146)

∫
U(d)

dU |U⟩⟩⟨⟨U |⊗n+1
P ′′In,P ′O′n =

∑
µ∈Yd

n+1

dµ∑
i,j=1

(Eµ,dij )P ′O′n ⊗ (Eµ,dij )P ′′In

m
(d)
µ

, (147)

the former of which follows from the decomposition of V ⊗n+1 shown in Eq. (53) and the
definition (54) of Eµ,dij , and the latter of which is shown in Ref. [29]. The operator Σ defined
in Eq. (140) is shown to be the same as Eq. (74) by the following calculation:

Σ = 1
D − d

TI ⋆ |V ⟩⟩⟨⟨V |⊗nInOn ⋆ (1D −ΠImV )P

= 1
D − d

[
(1P ′O′nP ⊗ VT⊗n

On→In)(TrP TI)− TrP ′′ ◦(1P ′O′n ⊗ VT⊗n+1
POn→P ′′In)(TI)

]
(148)

= 1
D − d

∑
λ∈Yd

n

∑
µ∈λ+□

dλ∑
a,b=1

[
m

(D)
µ

m
(D)
λ

− m
(d)
µ

m
(d)
λ

]
(Eλ,dab )In ⊗

(Eµ,d
aλ

µb
λ
µ
)O′nP ′

m
(d)
µ

, (149)

where we have utilized Lemma 3 and Eq. (146). To calculate it further, we employ the
dimension formula of the irreducible representation U (D)

µ of U(D) given by Eq. (51). In
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particular, for µ ∈ λ+ □, the ratio of m(d)
µ and m(d)

λ is given by

m
(d)
µ

m
(d)
λ

= (d+ j − i)hook(λ)
hook(µ) , (150)

where (i, j) is a coordinate of the box added to obtain µ from λ, i.e.,

m
(D)
µ

m
(D)
λ

− m
(d)
µ

m
(d)
λ

= (D − d)hook(λ)
hook(µ) (151)

holds. Thus, we obtain Eq. (134).
We evaluate the Choi operator of Ca[V⊗n

in ] given by

JCa[V⊗n
in ] = C ′ ⋆ Ta ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn (152)

to show Theorem 5. From Eq. (134), it is given by

JCI [V⊗n
in ] = C ′ ⋆

∫
U(d)

dU |UV †
in⟩⟩⟨⟨UV

†
in|PP ′ ⊗ |U⟩⟩⟨⟨U |⊗nInOn + (1D −ΠImVin)TP ⊗ C ′ ⋆ Σ.

(153)

Since C ′ is the Choi operator of the covariant unitary inversion protocol, we obtain [29]

C ′ ⋆ |U⟩⟩⟨⟨U |⊗nInOn = d2FUI − 1
d2 − 1 |U−1⟩⟩⟨⟨U−1|P ′F + d2(1− FUI)

d2 − 1
1F
d
⊗ 1P ′ . (154)

Thus, the first term in Eq. (153) is given by

C ′ ⋆

∫
U(d)

dU |UV †
in⟩⟩⟨⟨UV

†
in|PP ′ ⊗ |U⟩⟩⟨⟨U |⊗nInOn

=
∫
U(d)

dU |UV †
in⟩⟩⟨⟨UV

†
in|PP ′ ⋆

[
d2FUI − 1
d2 − 1 |U−1⟩⟩⟨⟨U−1|P ′F + d2(1− FUI)

d2 − 1
1F
d
⊗ 1P ′

]
(155)

= d2FUI − 1
d2 − 1 |V †

in⟩⟩⟨⟨V
†

in|PF + d2(1− FUI)
d2 − 1

1F
d
⊗ (ΠT

ImVin)P . (156)

Since C ′ and Σ satisfy the U(d) symmetry, namely,

[C ′, U ′⊗n+1
InF ⊗ 1P ′O′n ] = 0, (157)

[Σ, U ′⊗n+1
In ⊗ 1P ′O′n ] = 0 (158)

for all U ′ ∈ U(d), C ′ ⋆ Σ satisfies

[C ′ ⋆ Σ, U ′
F ] = 0 (159)

for all U ′ ∈ U(d), i.e., it is proportional to the identity operator. Thus, the second term in
Eq. (153) is given by

(1D −ΠImVin)TP ⊗ C ′ ⋆ Σ = (1D −ΠImVin)TP ⊗ Tr
[
C ′ ⋆ Σ

]1F
d

(160)

= (1D −ΠImVin)TP ⊗ Tr
[
TrF (C ′)Σ

]1F
d
, (161)
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where we utilize the fact that Σ = ΣT . Combining Eqs. (153), (156), and (161), we obtain

JCI [V⊗n
in ] = d2FUI − 1

d2 − 1 |V †
in⟩⟩⟨⟨V

†
in|PF + 1F

d
⊗
[
d2(1− FUI)
d2 − 1 (ΠT

ImVin)P + αC′(1D −ΠImVin)TP

]
,

(162)

where αC′ is defined by

αC′ := Tr
[
TrF (C ′)Σ

]
. (163)

Therefore, we obtain

CI [V ⊗n
in ](ρin) = d2FUI − 1

d2 − 1 V†
in(ρin) + 1d

d
Tr
{[

d2(1− FUI)
d2 − 1 ΠImVin + αC′(1D −ΠImVin)

]
ρin

}
.

(164)

Since CI [V ⊗n
in ] + CO[V ⊗n

in ] is a CPTP map and

Tr CI [V ⊗n
in ](ρin) = Tr {[ΠImVin + αC′(1D −ΠImVin)] ρin} (165)

holds, Tr CO[V ⊗n
in ](ρin) = (1−αC′) Tr[(1D −ΠImVin)ρin] holds. Since CO[V ⊗n

in ] is a CP map,
we obtain

CO[V ⊗n
in ](ρin) = CO[V ⊗n

in ](Π(ImVin)⊥ρinΠ(ImVin)⊥). (166)

Due to the U(d)× U(D) symmetries of C ′ and TO,

[C ′ ⋆ TO, U
′⊗n+1
InF ⊗ U ′′⊗n+1

POn ] = 0 ∀U ′ ∈ U(d), U ′′ ∈ U(D) (167)

holds. Thus, we obtain

CO[V ⊗n
in ](ρin) = U ′ ◦ CO[(U ′′VinU

′)⊗n] ◦ U ′′(ρin) ∀U ′ ∈ U(d), U ′′ ∈ U(D). (168)

In particular, for all U ′ ∈ U(d), we take U ′′ = U ′′′
ImVin

⊕ 1(ImVin)⊥ for U ′′′ ∈ U(d) such that
U ′′VinU

′ = Vin. From Eqs. (166) and (168), we obtain

CO[V ⊗n
in ](ρin) = U ′ ◦ CO[V ⊗n

in ](ρin) ∀U ′ ∈ U(d), (169)

thus, CO[V ⊗n
in ](ρin) ∝ 1d

d . From Eq. (166), we obtain

CO[V ⊗n
in ](ρin) = 1d

d
(1− αC′) Tr[(1D −ΠImVin)ρin]. (170)

We evaluate the diamond norm ∥C[V⊗n
in ]−Vadjoint∥⋄ to complete the proof, where C[V⊗n

in ]
and Vadjoint are defined as

C[V⊗n
in ](·) := CI [V⊗n

in ](·)⊗ |0⟩⟨0|+ CO[V⊗n
in ](·)⊗ |1⟩⟨1| , (171)

Vadjoint(·) := V †
in · Vin ⊗ |0⟩⟨0|+ Tr[(1D −ΠImVin)·]1

d
⊗ |1⟩⟨1| . (172)

First, C[V⊗n
in ]− Vadjoint decomposes into two completely positive maps Φ1 and Φ2 as

C[V⊗n
in ]− Vadjoint = Φ1 + Φ2, (173)

Φ1(ρin) := −d
2(1− FUI)
d2 − 1 [V†

in(ρin)− Tr(ΠImVinρin)]⊗ |0⟩⟨0| , (174)

Φ2(ρin) := αC′ Tr[(1D −ΠImVin)ρin]
(
1d

d
⊗ |0⟩⟨0| − 1d

d
⊗ |1⟩⟨1|

)
, (175)
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whose kernels do not intersect, i.e., ker Φ1∩ker Φ2 = ∅. Since the diamond norm ∥Φ1+Φ2∥⋄
is defined by

∥Φ1 + Φ2∥⋄ := sup
ψ∈L(P⊗A),∥ψ∥1≤1

∥(Φ1 + Φ2)⊗ 1A(ψ)∥1 (176)

using an auxiliary Hilbert space A and the trace norm ∥ · ∥1, it is given by

∥Φ1 + Φ2∥⋄
= sup

ψi∈ker Φi⊗L(A),∥ψ1+ψ2∥1≤1
∥(Φ1 + Φ2)⊗ 1A(ψ1 + ψ2)∥1 (177)

= max
0≤x≤1

[x sup
ψ1∈ker Φ1⊗L(A)

∥ψ1∥1≤1

∥Φ1 ⊗ 1A(ψ1)∥1 + (1− x) sup
ψ2∈ker Φ2⊗L(A)

∥ψ2∥1≤1

∥Φ1 ⊗ 1A(ψ2)∥1] (178)

= max{∥Φ1∥⋄, ∥Φ2∥⋄}. (179)

The diamond norm ∥Φ1∥⋄ is given by

∥Φ1∥⋄ = ∥Φ1 ◦ Vin∥⋄ (180)
= ∥1d −Dq∥⋄ (181)
= 2(1− FUI), (182)

where Dq is the depolarizing channel

Dq(ρ) := (1− q)ρ+ q
1d

d
Tr(ρ), (183)

q is given by q := d2

d2−1(1− Fest), and we utilize the fact that [73]

∥1d −Dq∥⋄ = 2(d2 − 1)
d2 q. (184)

The diamond norm ∥Φ2∥⋄ is given by

∥Φ2∥⋄

= sup
ψ∈L(P⊗A),∥ψ∥1≤1

∥αC′ TrP [(1D −ΠImVin)ψ]⊗ (1d
d
⊗ |0⟩⟨0| − 1d

d
⊗ |1⟩⟨1|)∥1 (185)

= 2αϕ. (186)

Thus, we obtain

ϵ := 1
2 sup
Vin∈Viso(d,D)

∥C[V⊗n
in ]− Vadjoint∥⋄ (187)

= max{αC′ , 1− FUI}. (188)

A.3 Proof of Theorem 6: Construction of a parallel isometry adjointation protocol
The parallel protocol shown in Theorem 6 corresponds to the special case of the sequential
protocol such that the Choi operator of the original untiary inversion protocol is given by

C ′ = ϕInA ⋆
∑
i

(MT
i )O′nA ⊗ (JRi)P ′F . (189)
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Since the Choi operator of a CPTP map Ri satisfies TrF (JRi)P ′F = 1P ′ , we obtain

TrF (C ′) = ϕInA ⋆
∑
i

(MT
i )O′nA ⊗ 1P ′ (190)

= ϕInA ⋆ 1O′nA ⊗ 1P ′ (191)
= TrA(ϕ)⊗ 1O′nP ′ . (192)

Then, αC′ shown in Eq. (73) reduces to αϕ given by

αϕ := Tr[TrA(ϕ) TrO′nP ′(Σ)] (193)

=
∑
λ∈Yd

n

Tr
[
TrA(ϕ)Π(d)

λ

] ∑
µ∈λ∩□∩Yd

n+1

hook(λ)
hook(µ) (194)

=
∑
λ∈Yd

n

Tr
[
TrA(ϕ)Π(d)

λ

] 1−
∑

µ∈λ\□∩Yd
n+1

hook(λ)
hook(µ)

 , (195)

where we have utilized Lemma 3, Eq. (74), and the equality∑
ν∈λ+□

hook(λ)
hook(ν) = 1, (196)

shown as follows. From Lemma 3,

Eλ,Daa ⊗ 1D =
∑

µ∈λ+□

Eµ,D
aλ

µa
λ
µ

(197)

holds for a ∈ {1, · · · , dλ}. By taking the trace of the both-hand side, we obtain

Dm
(D)
λ =

∑
µ∈λ+□

m(D)
µ . (198)

By using Eqs. (51) and (198), we show Eq. (196) as

∑
ν∈λ+□

hook(λ)
hook(ν) = lim

D→∞

∑
ν∈λ+□m

(D)
ν

Dm
(D)
λ

(199)

= 1. (200)

Thus, the approximation error of isometry adjointation is given by

ϵ = max{αϕ, 1− Fest}. (201)

A.4 Reduction to isometry inversion and universal error detection
A.4.1 Deterministic isometry inversion

By discarding the measurement outcome of the isometry adjointation protocol shown in
Eqs. (164) and (169), we obtain the following protocol:

C[V⊗n
in ] = CI [V⊗n

in ] + CO[V⊗n
in ] (202)

This protocol satisfies

C[V⊗n
in ] ◦ Vin(ρin) = d2FUI − 1

d2 − 1 ρin + 1d

d

(
1− d2FUI − 1

d2 − 1

)
Tr(ρin). (203)

Thus, the worst-case channel fidelity of isometry inversion is given by

Fch(C[V⊗n
in ] ◦ Vin,1d) = FUI. (204)
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A.4.2 Probabilistic exact isometry inversion

The construction of deterministic exact unitary inversion protocol can be rewritten in terms
of the Choi operator as

C ′ ⋆ |Uin⟩⟩⟨⟨Uin|⊗nInO′n ≈ |U−1
in ⟩⟩⟨⟨U

−1
in |P ′F ∀Uin ∈ U(d)

=⇒ T ⋆ C ′ ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn ⋆ |Vin⟩⟩⟨⟨Vin|P ′′P

= d2FUI − 1
d2 − 1 |1d⟩⟩⟨⟨1d|P ′′F + 1P ′′P

d

(
1− d2FUI − 1

d2 − 1

)
∀Vin ∈ Viso(d,D), (205)

where P ′′ is a Hilbert space given by P ′′ = Cd. By replacing C ′ with the probabilistic
exact unitary inversion comb {C ′

S , C
′
F } with the success probability pUI satisfying

C ′
S ⋆ |Uin⟩⟩⟨⟨Uin|⊗nInO′n = pUI|U−1

in ⟩⟩⟨⟨U
−1
in |P ′F ∀Uin ∈ U(d), (206)

we obtain the probabilistic exact isometry inversion protocol given by

T ⋆ C ′
S ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn ⋆ |Vin⟩⟩⟨⟨Vin|P ′′P = pUI|1d⟩⟩⟨⟨1d|P ′′F

∀Vin ∈ Viso(d,D). (207)

A.4.3 Universal error detection

By discarding the output state of the isometry adjointation protocol shown in Eqs. (164)
and (169), we obtain the following protocol:

Tr(Πaρin) = Tr ◦Ca[V⊗n
in ](ρin), (208)

This protocol satisfies

ΠI = ΠImVin + αC′(1D −ΠImVin), (209)
ΠO = (1− αC′)(1D −ΠImVin). (210)

Since C ′ corresponds to C ′ = C ′′ ⊗
1O′

nF
d using C ′′ shown in Corollary 8, αC′ is given by

α′
C = Tr

(
C ′′Σ′). (211)

B Analysis on the optimal protocols
B.1 Proof of Theorem 9: U(d)× U(D) symmetry of the tasks
We show Theorem 9 using the idea of a twirling map [74] similarly to Refs. [27, 29]. Assume
that the Choi operators (102) achieve the optimal performances in parallel, sequential or
general protocols including indefinite causal order. We define the U(d)×U(D)-twirled Choi
operators by
C ′ :=

∫
U(d) dU ′ ∫

U(D) dU ′′U ′⊗n+1
InF ⊗ U ′′⊗n+1

POn (C) (deterministic isometry inversion)
C ′
a :=

∫
U(d) dU ′ ∫

U(D) dU ′′U ′⊗n+1
InF ⊗ U ′′⊗n+1

POn (Ca) (probabilistic exact isometry inversion)
C ′
a :=

∫
U(d) dU ′ ∫

U(D) dU ′′U ′⊗n
In ⊗ U ′′⊗n+1

POn (Ca) (universal error detection)
C ′
a :=

∫
U(d) dU ′ ∫

U(D) dU ′′U ′⊗n+1
InF ⊗ U ′′⊗n+1

POn (Ca) (isometry adjointation)

,

(212)
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where dU ′ and dU ′′ are the Haar measures of U(d) and U(D), respectively. Then, these
operators satisfy C ′

a ≥ 0 and C ′ =
∑
aC

′
a ∈ W(x), and the U(d) × U(D) symmetry given

by
[C ′, U ′⊗n+1

InF ⊗ U ′′⊗n+1
POn ] = 0 (deterministic isometry inversion)

[C ′
a, U

′⊗n+1
InF ⊗ U ′′⊗n+1

POn ] = 0 ∀a ∈ {S, F} (probabilistic exact isometry inversion)
[C ′
a, U

′⊗n
In ⊗ U ′′⊗n+1

POn ] = 0 ∀a ∈ {I,O} (universal error detection)
[C ′
a, U

′⊗n+1
InF ⊗ U ′′⊗n+1

POn ] = 0 ∀a ∈ {I,O} (isometry adjointation)
(213)

for all U ′ ∈ U(d) and U ′′ ∈ U(D). Then, we can show Theorem 9 by showing that the
U(d) × U(D)-twirling does not decrease performances of each task. We show this in the
following subsections.

B.1.1 Deterministic isometry inversion

The worst-case fidelity Fworst is given using the Choi operator C of the quantum super-
channel by

Fworst = inf
Vin∈Viso(d,D)

Fch[C(V⊗n
in ) ◦ Vin,1d] (214)

= 1
d2 inf

Vin∈Viso(d,D)
Tr
[
C ⋆ (|Vin⟩⟩⟨⟨Vin|P ′′P ⊗ |Vin⟩⟩⟨⟨Vin|⊗nInOn)|1d⟩⟩⟨⟨1d|P ′′F

]
(215)

= 1
d2 inf

Vin∈Viso(d,D)
Tr
[
C(|V ∗

in⟩⟩⟨⟨V ∗
in|FP ⊗ |V ∗

in⟩⟩⟨⟨V ∗
in|⊗nInOn)

]
. (216)

Then, the worst-case channel fidelity of the U(d)×U(D)-twirled Choi operator is given by

F ′
worst = 1

d2 inf
Vin∈Viso(d,D)

∫
U(d)

dU ′
∫
U(D)

dU ′′

Tr
[
U ′⊗n+1

InF ⊗ U ′′⊗n+1
POn (C)(|V ∗

in⟩⟩⟨⟨V ∗
in|FP ⊗ |V ∗

in⟩⟩⟨⟨V ∗
in|⊗nInOn)

]
(217)

≥ 1
d2

∫
U(d)

dU ′
∫
U(D)

dU ′′ inf
Vin∈Viso(d,D)

Tr
[
CU ′†⊗n+1

InF ⊗ U ′′†⊗n+1
POn (|V ∗

in⟩⟩⟨⟨V ∗
in|FP ⊗ |V ∗

in⟩⟩⟨⟨V ∗
in|⊗nInOn)

]
(218)

= 1
d2

∫
U(d)

dU ′
∫
U(D)

dU ′′ inf
Vin∈Viso(d,D)

Tr
[
C(|U ′′†V ∗

inU
′∗⟩⟩⟨⟨U ′′†V ∗

inU
′∗|FP ⊗ |U ′′†V ∗

inU
′∗⟩⟩⟨⟨U ′′†V ∗

inU
′∗|⊗nInOn)

]
(219)

=
∫
U(d)

dU ′
∫
U(D)

dU ′′Fworst (220)

= Fworst. (221)

B.1.2 Probabilistic exact isometry inversion

Suppose a Choi operator CS satisfies

CS ⋆ (|Vin⟩⟩⟨⟨Vin|P ′′P ⊗ |Vin⟩⟩⟨⟨Vin|⊗nInOn) = p|1d⟩⟩⟨⟨1d|P ′′F ∀Vin ∈ Viso(d,D). (222)
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Then, the U(d)× U(D)-twirled Choi operator also satisfies

C ′
S ⋆ (|Vin⟩⟩⟨⟨Vin|P ′′P ⊗ |Vin⟩⟩⟨⟨Vin|⊗nInOn)

=
∫
U(d)

dU ′
∫
U(D)

dU ′′U ′⊗n+1
InF ⊗ U ′′⊗n+1

POn (CS) ⋆ (|Vin⟩⟩⟨⟨Vin|P ′′P ⊗ |Vin⟩⟩⟨⟨Vin|⊗nInOn) (223)

=
∫
U(d)

dU ′
∫
U(D)

dU ′′CS ⋆ U ′T⊗n+1
InF ⊗ U ′′T⊗n+1

POn (|Vin⟩⟩⟨⟨Vin|P ′′P ⊗ |Vin⟩⟩⟨⟨Vin|⊗nInOn) (224)

=
∫
U(d)

dU ′
∫
U(D)

dU ′′CS ⋆ (|U ′′TVinU
′⟩⟩⟨⟨U ′′TVinU

′|P ′′P ⊗ |U ′′TVinU
′⟩⟩⟨⟨U ′′TVinU

′|⊗nInOn)

(225)

=
∫
U(d)

dU ′
∫
U(D)

dU ′′p|1d⟩⟩⟨⟨1d|P ′′F (226)

= p|1d⟩⟩⟨⟨1d|P ′′F , (227)

i.e., it implements isometry inversion with success probability p.

B.1.3 Universal error detection

Suppose a supermap CI satisfies

CI [V⊗n
in ](ρ) = Tr[(ΠImVin + α(1D −ΠImVin))ρ] (228)

for all Vin ∈ Viso(d,D). In terms of the Choi operator, this relation is given by

CI ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn = (ΠT
ImVin)P + α(1D −ΠImVin)TP . (229)

Then, the U(d)× U(D)-twirlied Choi operator also satisfies

C ′
I ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn

=
∫
U(d)

dU ′
∫
U(D)

dU ′′U ′⊗n
In ⊗ U ′′⊗n+1

POn (CI) ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn (230)

=
∫
U(d)

dU ′
∫
U(D)

dU ′′U ′′
P [CI ⋆ U ′T⊗n

In ⊗ U ′′T⊗n
On (|Vin⟩⟩⟨⟨Vin|⊗nInOn)] (231)

=
∫
U(d)

dU ′
∫
U(D)

dU ′′U ′′
P(CI ⋆ |U ′′TVinU

′⟩⟩⟨⟨U ′′TVinU
′|⊗nInOn) (232)

=
∫
U(d)

dU ′
∫
U(D)

dU ′′U ′′
P [(ΠT

ImU ′′TVinU ′)P + α(1D −ΠImU ′′TVinU ′)TP ] (233)

=
∫
U(d)

dU ′
∫
U(D)

dU ′′U ′′
P ◦ U

′′†
P [(ΠT

ImVin)P + α(1D −ΠImVin)TP ] (234)

= (ΠT
ImVin)P + α(1D −ΠImVin)TP , (235)

i.e., it implements a universal error detection with the same performance as CI .

B.1.4 Isometry adjointation

We introduce the notation to represent the diamond norm of a quantum channel Φ in
terms of its Choi operator JΦ, i.e., we define D[JΦ] by

D[JΦ] := ∥Φ∥⋄. (236)
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Then, D[JΦ] satisfies the following properties:

D[(UI ⊗ U ′
O)JΦ(UI ⊗ U ′

O)†] = D[JΦ] ∀U ∈ U(dim I), U ′ ∈ U(dimO), (237)
D[aJΛ(1) + bJΛ(2) ] ≤ aD[JΛ(1) ] + bD[JΛ(2) ] ∀a, b ≥ 0, (238)

which corresponds to the following properties of the diamond norm:

∥U ′ ◦ Φ ◦ U∥⋄ = ∥Φ∥⋄ ∀U ∈ U(dim I), U ′ ∈ U(dimO), (239)
∥aΛ(1) + bΛ(2)∥⋄ ≤ a∥Λ(1)∥⋄ + b∥Λ(2)∥⋄ ∀a, b ≥ 0, (240)

The worst-case diamond-norm error ϵ is given using the Choi operator CI by

ϵ = inf
Vin∈Viso(d,D)

D[C ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn ⊗ |0⟩⟨0| − |V †
in⟩⟩⟨⟨V

†
in|PF ⊗ |0⟩⟨0|A −

1P ⊗ 1F
d

⊗ |1⟩⟨1|A],

(241)

where C ′ := CI ⊗ |0⟩⟨0|A +CO ⊗ |1⟩⟨1|A and A = C2. Thus, the worst-case diamond-norm
error of the U(d)× U(D)-twirled Choi operator is given by

ϵ′ = inf
Vin∈Viso(d,D)

D[
∫
U(d)

dU ′
∫
U(D)

dU ′′U ′⊗n+1
InF ⊗ U ′′⊗n+1

POn ⊗ 1A(C) ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn

− |V †
in⟩⟩⟨⟨V

†
in|PF ⊗ |0⟩⟨0|A −

1P ⊗ 1F
d

⊗ |1⟩⟨1|A] (242)

≤
∫
U(d)

dU ′
∫
U(D)

dU ′′ inf
Vin∈Viso(d,D)

D[U ′⊗n+1
InF ⊗ U ′′⊗n+1

POn ⊗ 1A(C) ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn

− |V †
in⟩⟩⟨⟨V

†
in|PF ⊗ |0⟩⟨0|A −

1P ⊗ 1F
d

⊗ |1⟩⟨1|A] (243)

=
∫
U(d)

dU ′
∫
U(D)

dU ′′ inf
Vin∈Viso(d,D)

D[C ⋆ U ′T⊗n
In ⊗ U ′′T⊗n

On (|Vin⟩⟩⟨⟨Vin|⊗nInOn)

− U ′†
F ⊗ U

′′†
P ⊗ 1A(|V †

in⟩⟩⟨⟨V
†

in|PF ⊗ |0⟩⟨0|A + 1P ⊗ 1F
d

⊗ |1⟩⟨1|A)] (244)

=
∫
U(d)

dU ′
∫
U(D)

dU ′′ inf
Vin∈Viso(d,D)

D[C ⋆ (|U ′′TVinU
′⟩⟩⟨⟨U ′′TVinU

′|⊗nInOn)

− |U ′†V †
inU

′′∗⟩⟩⟨⟨U ′†V †
inU

′′∗|PF ⊗ |0⟩⟨0|A −
1P ⊗ 1F

d
⊗ |1⟩⟨1|A] (245)

=
∫
U(d)

dU ′
∫
U(D)

dU ′′ϵ (246)

= ϵ, (247)

i.e., it implements isometry adjointation with approximation error ϵ′ ≤ ϵ.

B.2 Proof of Theorem 12: Optimal parallel protocol for universal error detection
Due to Theorem 10, the optimal performance α of parallel error detection is given by
minimizing αϕ shown in Theorem 8:

α
(PAR)
opt = min

Tr(ϕ)=1,ϕ≥0

∑
λ∈Yd

n

Tr(ϕΠλ)

1−
∑

µ∈λ+□\Yd
n+1

hook(λ)
hook(µ)

 . (248)

The right-hand side has the minimum value

α
(PAR)
opt = 1− max

λ∈Yd
n

∑
µ∈λ+□\Yd

n+1

hook(λ)
hook(µ) (249)
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at ϕ = Πλ/Tr Πλ, where λ is given by

λ = arg max
λ∈Yd

n

∑
µ∈λ+□\Yd

n+1

hook(λ)
hook(µ) . (250)

We define f(λ) for λ ∈ Ydn by

f(λ) :=
∑

µ∈λ+□\Yd
n+1

hook(λ)
hook(µ) , (251)

and derive the maximum value of f(λ). We denote the number of boxes in the i-th
row of λ and µ by λi and µi, respectively. By definition of Young diagrams, λi satisfies
λ1 ≥ · · ·λd ≥ 0 and

∑
i λi = n. If λd = 0, any Young diagram in the set λ+ □ has depth

smaller than or equal to d, i.e., f(λ) = 0. If λ1 ≥ · · ·λd ≥ 1 holds, the set λ + □ \ Ydn+1
is a one-point set whose element µ is given by µi = λi for i ∈ {1, · · · , d} and µd+1 = 1.
Therefore, f(λ) is given by

f(λ) = hook(λ)
hook(µ) =

d∏
i=1

λi + d− i
λi + d+ 1− i . (252)

We derive the maximum value of f(λ) for λ1, · · · , λd such that λ1 ≥ · · · ≥ λd ≥ 1 and∑
i λi = n. We show that λ giving the maximum value of f(λ) should satisfy |λi1−λi2 | ≤ 1

for any 1 ≤ i1 < i2 ≤ d by contradiction. If there exists 1 ≤ i1 < i2 ≤ d such that
λi1 ≥ λi2 + 2, at least one of the following conditions holds:

1. There exists i′1 ∈ {1, · · · , d} such that λi′1 ≥ λi′1+1 + 2

2. There exists i′1, i′2 ∈ {1, · · · , d} such that i′1 + 1 ≤ i′2 − 1, λi′1 ≥ λi′1+1 + 1 and
λi′2−1 ≥ λi′2 + 1

If the first condition holds, we define i′2 := i′1 + 1. Then, κ1, · · · , κd defined by

κi =


κi (i ̸= i′1, i

′
2)

κi′1 − 1 (i = i′1)
κi′2 + 1 (i = i′2)

(253)

satisfies κ1 ≥ · · · ≥ κd,
∑
i κi = n, and

f(κ)
f(λ) =

λi′1 + d− i′i − 1
λi′1 + d− i′1 + 1

λi′2 + d− i′2 + 2
λi′2 + d− i′2

> 1, (254)

i.e., λ cannot give the maximum value of f(λ). Therefore, the Young diagram λ giving the
maximal value of f(λ) should satisfy |λi1 −λi2 | ≤ 1 for any 1 ≤ i1 < i2 ≤ d. Such a Young
diagram is uniquely determined as

λi =
{
k + 1 (i ∈ {1, · · · , l})
k (i ∈ {l + 1, · · · , d})

, (255)

where k ∈ Z and l ∈ {0, · · · , d− 1} are defined by n = kd+ l. Then, we obtain

α
(PAR)
opt = 1− max

λ∈Yd
n

f(λ) = 1
d+ k + 1

(
d+ d− l

d+ k − l

)
. (256)
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B.3 Proof of Theorem 14: Asymptotically optimal parallel protocol for isometry ad-
jointation

For d = 2, Refs. [55, 57] present the maximum-likelihood qubit-unitary estimation proto-
col achieving the entanglement fidelity Fest = 1 − O(n−2) using n calls of input unitary
operation. Although Refs. [55, 57] do not present the explicit form of the probe state, one
can utilize the resource state for entanglement-assisted alignment of the reference frames
presented in Ref. [56] to achieve the same asymptotic scaling of the entanglement fidelity
Fest = 1−O(n−2). The resource state presented in Ref. [56] is given by

|ϕ⟩ = 2√
n+ 3

n/2∑
j=0(1/2)

1√
2j + 1

sin (2j + 1)π
n+ 3

j∑
m=−j

|jm⟩In |jm⟩A , (257)

where j and m represents total angular momentum and z-component of total angular
momentum of a n-qubit system. The summation of j starts from 0 if n is even and 1/2 if
n is odd. These values correspond to the Schur basis, where j corresponds to the Young
diagram λ whose number of boxes in i-th row, denoted by λi (i = 1, 2), is determined by
j = (λ1 − λ2)/2, and m corresponds to an element in U (2)

λ . Then, the value αϕ shown in
Theorem 6 is calculated as

αϕ = 4
n+ 3

n/2∑
j=0(1/2)

sin2 (2j + 1)π
n+ 3

[
1−

(n2 + j + 1)(n2 − j)
(n2 + j + 2)(n2 − j + 1)

]
. (258)

To evaluate αϕ in the asymptotic limit n → ∞, we introduce the variable x = 2j
n and

approximate the sum in Eq. (258) by the integral over x as

αϕ = 4
n+ 3

∫ 1

0
dxn2 sin2 (x+ 1

n)π
1 + 3

n

[
1−

(1 + x+ 2
n)(1− x)

(1 + x+ 4
n)(1− x+ 2

n)

]
+O(n−2) (259)

= 8
n

∫ 1

0
dxsin2(xπ)

1− x2 +O(n−2) (260)

≈ 6.2287
n

+O(n−2), (261)

where the integral is evaluated by Mathematica [75]. Thus, utilizing this estimation
method to construct the parallel isometry adjointation protocol, one can achieve

ϵ = max{αϕ, 1− Fest} = 6.2287
n

+O(n−2). (262)

For a higher-dimension d > 2, Ref. [14] presents an asymptotically optimal unitary
estimation protocol achieving the entanglement fidelity Fest = 1−O(d4n−2). This protocol
utilizes the probe state given by

|ϕ⟩ =
∑

λ∈Syoung

√
qλ

dλm
(d)
λ

dλ∑
i=1

m
(d)
λ∑

u=1
(|λ, i⟩Sλ

⊗ |λ, u⟩U(d)
λ

)In ⊗ (|λ, i⟩Sλ
⊗ |λ, u⟩U(d)

λ

)A, (263)

where {qλ} is a probability distribution over the set Syoung ⊂ Ydn defined by

Syoung := {λ ∈ Ydn|λi = µ0,i +N(2d− 3) + 1− (N + 1)(i− 1) + λ̃i

∀i ≤ d− 1,∃λ̃ ∈ {0, · · · , N − 1}d−1}. (264)
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Here, λi represents the number of boxes in the i-th row of λ, N is defined by N :=
⌊ 1

3d−2( 2n
d−1 + d − 2)⌋, µ0,i is defined by µ0,i := ⌊n0

d ⌋ + 1 for i ∈ {1, · · · , n0 − ⌊n0
d ⌋d} and

µ0,i := ⌊n0
d ⌋ for i ∈ {n0−⌊n0

d ⌋d+1, · · · , d}, and n0 is defined by n0 := n− ((3d−2)N−d+2)(d−1)
2 .

Then, the value αϕ shown in Theorem 6 is evaluated as

αϕ =
∑

λ∈Syoung

qλ

1−
∑

µ∈λ+□\Yd
n+1

hook(λ)
hook(µ)

 (265)

=
∑

λ∈Syoung

qλ

[
1−

d∏
i=1

λi + d− i
λi + d− i+ 1

]
. (266)

We evaluate αϕ in the asymptotic limit n→∞. In this region, λi is given by

λi = 4n
3d −

2n
3d2 (i− 1) +O(d, d−2n). (267)

Thus, αϕ is evaluated as follows.

αϕ = 1−
d∏
i=1

[
1− 3d

2n
1 +O(d2n−1, d−1)

2− i−1
d

]
(268)

= 3d
2n

d∑
i=1

1
2− i−1

d

+O(d4n−2, dn−1). (269)

= 3d2

2n

∫ 1

0

dx
2− x +O(d4n−2, dn−1) (270)

= 3 ln 2
2

d2

n
+O(d4n−2, dn−1). (271)

Thus, utilizing this estimation method to construct the parallel isometry adjointation pro-
tocol, one can achieve

ϵ = max{αϕ, 1− Fest} = 3 ln 2
2

d2

n
+O(d4n−2, dn−1). (272)

C Proof of Theorem 10: Optimal construction of isometry inversion,
universal error detection, and isometry adjointation protocols

We show Theorem 10 by constructing the parallel or sequential protocol for isometry inver-
sion, universal error detection, and isometry adjointation in the forms shown in Theorems
5 and 6 and Corollaries 7 and 8 achieving the optimal performances among parallel or
sequential protocols. To this end, we utilize Theorem 9 to write down the U(d) × U(D)
symmetric Choi operators of parallel or sequential protocols achieving the optimal perfor-
mances. Then we construct the protocols in the forms shown in Theorems 5 and 6 and
Corollaries 7 and 8 by constructing the corresponding Choi operators.

Suppose I1 = · · · = In = F = Cd, O1 = · · · = On = P = CD, O′
1 = · · · = O′

n =
P ′ = Cd, and we define the joint Hilbert spaces In :=

⊗n
i=1 Ii, On :=

⊗n
i=1Oi, and

O′n :=
⊗n

i=1O′
i. We assume that

C ∈
{
L(In ⊗On ⊗ P ⊗ F) (isometry inversion, isometry adjointation)
L(In ⊗On ⊗ P) (universal error detection)

(273)
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is the Choi operator satisfying the U(d)×U(D) symmetry (320), which can be written as
Eqs. (321) or (322) using {Cµν} or {Cλν}. If C is the Choi operator of parallel or sequential
protocol, i.e., C ∈ W(x) for x ∈ {PAR, SEQ}, the Choi operator

C ′ ∈
{
L(In ⊗O′n ⊗ P ′ ⊗F) (isometry inversion, isometry adjointation)
L(In ⊗O′n ⊗ P ′) (universal error detection)

(274)

defined by

C ′ :=
∑

µ∈Yd
n+1

∑
ν∈Yd

n+1

dµ∑
i,j=1

dν∑
k,l=1

[Cµν ]ik,jl
m

(d)
µ m

(D)
ν

(Eµ,dij )InF ⊗ (Eν,dkl )P ′O′n (275)

for isometry inversion or isometry adjointation, and

C ′ :=
∑
λ∈Yd

n

∑
ν∈Yd

n+1

dλ∑
a,b=1

dν∑
k,l=1

[Cλν ]ak,bl
m

(d)
λ m

(D)
ν

(Eλ,dab )In ⊗ (Eν,dkl )P ′O′n (276)

for universal error detection, satisfies C ′ ∈ W(x) [see Eqs. (330) and (331)]. We utilize this
fact to show the construction of the protocols in the forms shown in Theorems 5 and 6 and
Corollaries 7 and 8.

C.1 Probabilistic exact isometry inversion
Assume that {CS , CF } ⊂ L(In⊗On⊗P⊗F) is the U(d)×U(D) symmetric Choi operator
of parallel (x = PAR) or sequential (x = SEQ) protocol achieving the optimal success
probability p

(x)
opt(d,D, n) of isometry inversion, which can be written as Eqs. (403) and

(404). Defining {C ′
S , C

′
F } ⊂ L(In ⊗O′n ⊗ P ′ ⊗F) by

C ′
S =

∑
µ∈Yd

n+1

∑
ν∈Yd

n+1

dµ∑
i,j=1

dν∑
k,l=1

[Sµν ]ik,jl
m

(d)
µ m

(D)
ν

(Eµ,dij )InF ⊗ (Eν,dkl )P ′O′n , (277)

C ′
F =

∑
µ∈Yd

n+1

∑
ν∈Yd

n+1

dµ∑
i,j=1

dν∑
k,l=1

[Fµν ]ik,jl
m

(d)
µ m

(D)
ν

(Eµ,dij )InF ⊗ (Eν,dkl )P ′O′n , (278)

C ′
S , C

′
F ≥ 0 and C ′ := C ′

S +C ′
F ∈ W(x) holds. Thus, the corresponding supermap {CS , CF }

can be implemented in a parallel (x = PAR) or sequential (x = SEQ) protocol. In partic-
ular for the case x = PAR, since its Choi operator satisfies the U(d)× U(d) symmetry, it
can be implemented using a delayed input-state protocol [27, 28]. Since {CS , CF } achieves
the optimal success probability p(x)

opt(d,D, n), it satisfies [see Eq. (402)]

Tr(CSΩ) = p
(x)
opt(d,D, n), (279)

Tr(CSΩ) = Tr[CS(Ξ⊗ 1F )]. (280)
Defining Ω′ and Ξ′ by replacing POn and D in Eqs. (394) and (396) with P ′O′n and d,
respectively, {C ′

S , C
′
F } satisfies

Tr
(
C ′
SΩ′) = p

(x)
opt(d,D, n), (281)

Tr
(
C ′
SΩ′) = Tr

[
C ′
S(Ξ′ ⊗ 1F )

]
, (282)

which implies {C ′
S , C

′
F } implements probabilistic exact d-dimensional unitary inversion

with success probability p(x)
opt(d,D, n). Therefore, we can construct a parallel or sequential

protocol achieving the optimal success probability p(x)
opt(d,D, n) of isometry inversion using

the construction shown in Theorem 7.
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C.2 Deterministic isometry inversion
Assume that C ∈ L(In⊗On⊗P⊗F) is the U(d)×U(D) symmetric Choi operator of parallel
(x = PAR) or sequential (x = SEQ) protocol achieving the optimal worst-case channel
fidelity F (x)

opt(d,D, n), which can be written as Eq. (321). Defining C ′ ∈ L(In⊗O′n⊗P ′⊗F)
by Eq. (275), C ′ ≥ 0 and C ′ ∈ W(x) holds. Thus, the corresponding supermap C can be
implemented in a parallel or sequential protocol. In particular for the case x = PAR,
since its Choi operator satisfies the U(d) × U(d) symmetry, it can be implemented using
an estimation-based protocol [29]. Since C achieves the optimal worst-case channel fidelity
F

(x)
opt(d,D, n), it satisfies [see Eq. (410)]

Tr(CΩ) = F
(x)
opt(d,D, n). (283)

Defining Ω′ by replacing POn and D in Eq. (394) with P ′O′n and d, respectively, C ′

satisfies

Tr
(
C ′Ω′) = F

(x)
opt(d,D, n), (284)

which implies C ′ implements deterministic d-dimensional unitary inversion with worst-case
channel fidelity p(x)

opt(d,D, n). Therefore, we can construct a parallel or sequential protocol
achieving the optimal worst-case channel fidelity F (x)

opt(d,D, n) of isometry inversion using
the construction shown in Theorem 7.

C.3 Universal error detection
Assume that {CI , CO} ⊂ L(In ⊗ On ⊗ P) is the U(d) × U(D) symmetric Choi operator
of a parallel (x = PAR) or sequential (x = SEQ) protocol achieving the optimal error
α

(x)
opt(d,D, n), which can be written as Eqs. (413) and (414). Defining C ′′ ∈ L(In⊗O′n⊗P ′)

by Eq. (276) for Cλν := Iλν +Oλν for λ ∈ Ydn and ν ∈ Ydn+1, C ′′ ≥ 0 and C ′′ ∈ W(x) hold.
Characterization of W(x) shown in Eqs. (318) and (319) for the case F = C (no global
future) and the U(d)× U(d) symmetry of C ′′ implies that C ′′ can be written as

C ′′ =
{
ϕIn ⊗ 1P ′O′n (x = PAR),
C ′ ⊗ 1On (x = SEQ),

(285)

where ϕ ∈ L(In) is a quantum state and C ′ ∈ L(In ⊗O′n−1 ⊗P ′) is the Choi operator of
a (n− 1)-slot sequential protocol. Since {CI , CO} achieves the optimal error α(x)

opt(d,D, n),
it satisfies [see Eq.(412)]

Tr(CIΣ) = α
(x)
opt(d,D, n), (286)

Tr(CIΞ) = 1. (287)

Since Eq. (287) corresponds to the condition

Tr CI(V⊗n
in )(ρin) = 1 ∀ρin ∈ L(ImVin), (288)

it can be replaced with the equivalent condition

Tr CO(V⊗n
in )(ρin) = 0 ∀ρin ∈ L(ImVin), (289)
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which can be represented as

Tr(COΞ) = 0. (290)

Therefore, we obtain [see Eq. (396)]

0 =
∑
λ∈Yd

n

∑
ν∈Yd

n+1

Tr(OλνΞλν) (291)

=
∑

ν∈Yd
n+1

∑
λ∈ν−□

dλ∑
a,b=1

dν∑
k,l=1

m
(d)
ν

dm
(D)
ν m

(d)
λ

[πν ]∗aλ
νk

[πν ]lbλ
ν
[Oλν ]ba,lk, (292)

which leads to

dλ∑
a,b=1

dν∑
k,l=1

[πν ]∗aλ
νk

[πν ]lbλ
ν
[Oλν ]ba,lk = 0 ∀ν ∈ Ydn+1, λ ∈ ν −□. (293)

Thus, we obtain [see Eq. (401)]

Tr(OλνΣλν) = 0 ∀ν ∈ Ydn+1, λ ∈ ν −□. (294)

Since Eq. (401) reduces to Σ defined in Eq. (74) by replacing POn and D with P ′O′n and
d,

Tr
(
C ′′Σ

)
=

∑
ν∈Yd

n+1

∑
λ∈ν−□

Tr(CλνΣλν) (295)

=
∑

ν∈Yd
n+1

∑
λ∈ν−□

Tr(IλνΣλν) (296)

≤ Tr(CIΣ) (297)

= α
(x)
opt (298)

holds. Substituting Eq. (285) for x = PAR, SEQ to Eq. (298), we obtain

α
(PAR)
opt ≥ Tr(ϕTrP ′O′n(Σ)) (299)

=
∑
λ∈Yd

n

∑
ν∈λ+□∩Yd

n+1

Tr
(
ϕΠ(d)

λ

)hook(λ)
hook(ν) (300)

= αϕ, (301)

α
(SEQ)
opt ≥ Tr

(
C ′ TrO′

n
(Σ)

)
(302)

= Tr
(
C ′Σ′) (303)

= αC′ , (304)

where αϕ and αC′ are defined in Theorem 8, respectively. Thus, the parallel and sequential
protocols constructed in Theorem 8 achieves the optimal error α(x)

opt(d,D, n).

C.4 Isometry adjointation
Assume that {CI , CO} ⊂ L(In⊗On⊗P⊗F) is the U(d)×U(D) symmetric Choi operator
of parallel (x = PAR) or sequential (x = SEQ) protocol achieving the optimal worst-
case diamond-norm error ϵ(x)

opt(d,D, n) of isometry adjointation, which can be written as
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Eqs. (419) and (420). Defining C ′ ∈ L(In⊗O′n⊗P ′⊗F) by Eq. (275) for Cµν := Iµν+Oµν
for µ, ν ∈ Ydn+1, C ′ ≥ 0 and C ′ ∈ W(x) hold. Thus, the corresponding supermap C′′ can
be implemented by a parallel (x = PAR) or sequential (x = SEQ) protocol. In particular,
for the case x = PAR, since its Choi operator satisfies the U(d) × U(d) symmetry, it
can be implemented using a covariant-estimation-based protocol as shown in Fig. 4 (a-1)
[14, 29]. Since {CI , CO} achieves the optimal worst-case diamond-norm error ϵ(x)

opt(d,D, n)
of isometry adjointation, it satisfies [see Eq. (418)]

1− Tr(CIΩ) ≤ ϵ(x)
opt(d,D, n), (305)

Tr[CI(Σ⊗ 1F )] ≤ ϵ(x)
opt(d,D, n), (306)

Tr[CI(Ξ⊗ 1F )] = 1. (307)

Similarly to Sections C.2 and C.3, defining Ω′ by replacing POn and D in Eq. (394) with
P ′O′n and d, we obtain

1− Tr
(
C ′Ω′) ≤ ϵ(x)

opt(d,D, n), (308)

Tr
[
C ′(Σ⊗ 1F )

]
≤ ϵ(x)

opt(d,D, n). (309)

For the case x = PAR, C ′ can be implemented by a covariant unitary-estimation
protocol achieving the average fidelity Fest = Tr(C ′Ω′) [14, 29]. Tr[C ′(Σ⊗ 1F )] can be
evaluated by the probe state ϕ ∈ L(In ⊗A) of the unitary estimation protocol as

Tr
[
C ′(Σ⊗ 1F )

]
= Tr[TrF (C)Σ] (310)
= Tr(TrA(ϕ) TrP ′O′n(Σ)) (311)

=
∑
λ∈Yd

n

Tr
[
TrA(ϕ)Π(d)

λ

] 1−
∑

ν∈λ+□\Yd
n+1

hook(λ)
hook(ν)

 (312)

= αϕ, (313)

where αϕ is defined in Theorem 6. Thus, the parallel protocol constructed in Theorem 6
achieves the optimal worst-case diamond-norm error ϵ(PAR)

opt (d,D, n).
For the case x = SEQ, Tr(C ′Ω′) represents the worst-case channel fidelity of d-

dimensional unitary inversion, and Tr[C ′(Σ⊗ 1F )] can be evaluated as [see Eq. (319)]

Tr
[
C ′(Σ⊗ 1F )

]
= Tr

[
TrF (C ′)Σ

]
(314)

= αC′ , (315)

where αC′ is defined in Theorem 5. Thus, the sequential protocol constructed in Theorem
5 achieves the optimal worst-case diamond-norm error ϵ(SEQ)

opt (d,D, n).

D Numerical results
We show the numerical results on the optimal performances of probabilistic exact isom-
etry inversion, deterministic isometry inversion, universal error detection, and isometry
adjointation using n calls of an input isometry operation Vin ∈ Viso(d,D) with parallel,
sequential, or general protocols including indefinite causal order in Tables 1, 2, 3 and 4.
The obtained values are compatible with the previous works [27, 29, 30, 35], where Ref. [27]
shows the maximum success probability of unitary inversion for the cases of d = 2, n ≤ 3
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and d = 3, n ≤ 2, Ref. [29] shows the maximum channel fidelity of unitary inversion for the
cases of d = 2, n ≤ 3 and d = 3, n ≤ 2, Ref. [27] shows the maximum success probability
of isometry inversion for the cases of d = 2, n ≤ 3 and d = 3, n ≤ 2, and Ref. [30] shows
the maximum channel fidelity of unitary inversion for parallel and sequential protocols for
the cases of d ≤ 6 and n ≤ 5.

p
(x)
opt

Parallel (x = PAR) Sequential (x = SEQ) General (x = GEN)

d = 2 d = 3 d = 4 d = 2 d = 3 d = 4 d = 2 d = 3 d = 4

n = 1 0.2500 0.0000 0.0000 0.2500 0.0000 0.0000 0.2500 0.0000 0.0000

n = 2 0.4000 0.1111 0.0000 0.4286 0.1111 0.0000 0.4286 0.1111 0.0000

n = 3 0.5000 0.1385 0.0625 0.7500 0.1861 0.0625 0.9415 0.2093 0.0625

n = 4 0.5715 0.2000 0.0708 1.0000 0.2674 0.1064 1.0000 0.2915 0.1419

n = 5 0.6250 0.2408 0.0865 1.0000 0.4662 0.1447 - - -

Table 1: The maximum success probability of isometry inversion using n calls of an input isometry
operation Vin ∈ Viso(d,D) (D ≥ d+ 1) in parallel, sequential, and general protocols.

F
(x)
opt

Parallel (x = PAR) Sequential (x = SEQ) General (x = GEN)

d = 2 d = 3 d = 4 d = 2 d = 3 d = 4 d = 2 d = 3 d = 4

n = 1 0.5000 0.2222 0.1250 0.5000 0.2222 0.1250 0.5000 0.2222 0.1250

n = 2 0.6545 0.3333 0.1875 0.7500 0.3333 0.1875 0.7500 0.3333 0.1875

n = 3 0.7500 0.4310 0.2500 0.9330 0.4444 0.2500 0.9851 0.4444 0.2500

n = 4 0.8117 0.5131 0.3105 1.0000 0.5556 0.3125 1.0000 0.5556 0.3125

n = 5 0.8536 0.5810 0.3675 1.0000 0.6667 0.3750 - - -

Table 2: The maximum worst-case channel fidelity of isometry adjointation using n calls of an input
isometry operation Vin ∈ Viso(d,D) (D ≥ d+ 1) in parallel, sequential, and general protocols.
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α
(x)
opt

Parallel (x = PAR) Sequential (x = SEQ) General (x = GEN)

d = 2 d = 3 d = 4 d = 2 d = 3 d = 4 d = 2 d = 3 d = 4

n = 1 1 1 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

n = 2 2/3 1 1 0.6667 1.0000 1.0000 0.6667 1.0000 1.0000

n = 3 5/8 3/4 1 0.5000 0.7500 1.0000 0.4375 0.7500 1.0000

n = 4 1/2 11/15 4/5 0.4000 0.6000 0.8000 0.3600 0.4667 0.8000

n = 5 7/15 7/10 19/24 0.3333 0.5000 0.6667 - - -

Table 3: The minimum approximation error of universal error detection using n calls of an input isometry
operation Vin ∈ Viso(d,D) (D ≥ d+ 1) in parallel, sequential, and general protocols. Bold values are
obtained analytically.

ϵ
(x)
opt

Parallel (x = PAR) Sequential (x = SEQ) General (x = GEN)

d = 2 d = 3 d = 4 d = 2 d = 3 d = 4 d = 2 d = 3 d = 4

n = 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

n = 2 0.6736 1.0000 1.0000 0.6667 1.0000 1.0000 0.6667 1.0000 1.0000

n = 3 0.6250 0.7822 1.0000 0.5000 0.7500 1.0000 0.5000 0.7500 1.0000

n = 4 0.5169 0.7373 0.8448 0.4444 0.6429 0.8000 0.4444 0.6429 0.8000

Table 4: The minimum approximation error of isometry adjointation using n calls of an input isometry
operation Vin ∈ Viso(d,D) (D ≥ d+ 1) in parallel, sequential, and general protocols.

p
(GEN)
opt

d = 2 d = 3 d = 4

D = 2 D = 3 D = 3 D = 4 D = 4 D = 5

n = 2 0.4444 0.4286 0.1111 0.1111 0.0000 0.0000

n = 3 0.9415 0.9415 0.3262 0.2093 0.0625 0.0625

n = 4 1.0000 1.0000 0.5427 0.2915 0.2609 0.1419

Table 5: Comparison with the maximum success probabilities of unitary inversion (D = d) and isometry
inversion (D = d+ 1) in general protocols.

F
(GEN)
opt

d = 2 d = 3 d = 4

D = 2 D = 3 D = 3 D = 4 D = 4 D = 5

n = 2 0.8249 0.7500 0.3333 0.3333 0.1875 0.1875

n = 3 0.9921 0.9851 0.5835 0.4444 0.2500 0.2500

n = 4 1.0000 1.0000 0.7874 0.5556 0.4567 0.3125

Table 6: Comparison with the maximum worst-case channel fidelities of unitary inversion (D = d) and
isometry inversion (D = d+ 1) in general protocols.
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E Semidefinite programming to obtain the optimal transformations of
isometry operations with the U(d)× U(D) symmetry

As shown in Theorem 9, the optimal protocols for isometry inversion, universal error de-
tection and isometry adjointation can be searched within the Choi operators having the
U(d) × U(D) symmetry. To utilize this symmetry for a numerical search of the optimal
protocols, we derive the characterization of the quantum superchannels and the condi-
tions for isometry inversion, universal error detection, and isometry adjointation under the
U(d) × U(D) symmetry. Then, we derive the SDPs giving the optimal performances of
these tasks, which are shown below.

E.1 Choi representation of general superchannels and U(d)× U(D) symmetry
As shown in Section 4.1, the Choi operator C of a quantum superchannel C :

⊗n
i=1[L(Ii)→

L(Oi)] → [L(P) → L(F)] implemented by parallel (x = PAR) and sequential (x = SEQ)
protocols, and general superchannels (x = GEN) can be represented by a Choi operator
C ∈ L(In ⊗On ⊗ P ⊗ F) satisfying

C ≥ 0, (316)
C ∈ W(x). (317)

The set W(x) for x ∈ {PAR,SEQ} are given by [27, 44]

C ∈ W(PAR) ⇐⇒
{

TrF C = TrOn C ⊗ 1On/ dimOn

TrInOn C = dimOn1P
, (318)

C ∈ W(SEQ) ⇐⇒ TrIi C
(i) = C(i−1) ⊗ 1Oi−1 ∀i ∈ {1, · · · , n+ 1}, (319)

where O0 and In+1 are defined by O0 := P and In+1 := F , and C(i) for i ∈ {0, · · · , n +
1} are defined by C(n+1) := C, C(i−1) := TrOi−1Ii C

(i)/ dimOi−1 and C(0) := 1. The
characterization of the set W(GEN) is shown in Ref. [76].

We consider the case I1 = · · · = In = F = Cd,P = O1 = · · · = On = CD (isometry
inversion, isometry adjointation) and I1 = · · · = In = Cd,P = O1 = · · · = On = CD,F =
C (universal error detection), and characterize the Choi operator C ∈ L(In⊗On⊗P⊗F)
under the U(d)× U(D) symmetry given by{

[C,U⊗n+1
InF ⊗ U ′⊗n+1

POn ] = 0 (isometry inversion, isometry adjointation)
[C,U⊗n

In ⊗ U ′⊗n+1
POn ] = 0 (universal error detection)

(320)

for all U ∈ U(d) and U ′ ∈ U(D) (see Theorem 9). Due to this symmetry, the Choi operator
C can be written using the operator Eµ,dij introduced in Eq. (54) as

C =
∑

µ∈Yd
n+1

∑
ν∈YD

n+1

dµ∑
i,j=1

dν∑
k,l=1

[Cµν ]ik,jl
m

(d)
µ m

(D)
ν

(Eµ,dij )InF ⊗ (Eν,Dkl )POn (321)

for isometry inversion or isometry adjointation, and

C =
∑
λ∈Yd

n

∑
ν∈YD

n+1

dλ∑
a,b=1

dν∑
k,l=1

[Cλν ]ak,bl
m

(d)
λ m

(D)
ν

(Eλ,dab )In ⊗ (Eν,Dkl )POn (322)
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for universal error detection using a dµdν (dλdν)-dimensional square matrix Cµν (Cλν),
where ik (ak) and jl (bl) are the indices for row and column numbers, respectively. The
characterization of quantum superchannels is rewritten in terms of Cµν or Cλν as follows.
By definition of Eµ,dij in Eq. (54), the positivity of C is written as{

Cµν ≥ 0 ∀µ ∈ Ydn+1, ν ∈ YDn+1 (isometry inversion, isometry adjointation)
Cλν ≥ 0 ∀λ ∈ Ydn, ν ∈ YDn+1 (universal error detection)

. (323)

Using Lemma 3, the condition C ∈ W(x) for x ∈ {PAR,SEQ} is given by

C ∈ W(x) ⇐⇒

{Cµν} ∈ W
(x)
sym (isometry inversion, isometry adjointation)

{Cλν} ∈ W
(x)
sym (universal error detection)

, (324)

where W(x)
sym is given by

{Cµν} ∈ W(PAR)
sym ⇐⇒

∑
µ∈λ+□

(Xλ
µ ⊗ 1dν ) Cµν

m
(D)
ν

(Xλ
µ ⊗ 1dν )† = Dλ ⊗

1dν

Dn+1 ∀λ ∈ Ydn, ν ∈ YDn+1∑
µ∈Yd

n+1

∑
ν∈YD

n+1

Tr(Cµν) = Dn+1 , (325)

{Cµν} ∈ W(SEQ)
sym ⇐⇒

∑
λ∈γ+□

(Xγ
λ ⊗ 1dκ) C

(i)
λκ

m
(D)
κ

(Xγ
λ ⊗ 1dκ)† =

∑
δ∈κ−□

(1dγ ⊗Xδ
κ)†C

(i−1)
γδ

m
(D)
δ

(1dγ ⊗Xδ
κ)

∀i ∈ {1, · · · , n+ 1}, γ ∈ Ydi−1, κ ∈ YDi
C

(0)
∅∅ = 1

(326)

for isometry inversion and isometry adjointation, where Dλ for λ ∈ Ydn are defined by

Dλ :=
∑

µ∈λ+□

∑
ν∈YD

n+1

Trν [(Xλ
µ ⊗ 1dν )Cµν(Xλ

µ ⊗ 1dν )†] (327)

C
(i)
λκ for λ ∈ Ydi , κ ∈ YDi are defined by

C
(i)
λκ :=

{
Cλκ (i = n+ 1)
1
D

∑
µ∈λ+□,ν∈κ+□(Xλ

µ ⊗Xκ
ν )C(i+1)

µν (Xλ
µ ⊗Xκ

ν )† (0 ≤ i ≤ n)
, (328)

Xγ
λ for λ ∈ γ + □, γ ∈ Ydi−1 are dγ × dλ matrices defined by

[Xγ
λ ]c,a := δcγ

λ
,a, (329)

cγλ is the index of the standard tableau sλ
cγ

λ
obtained by adding a box i to the standard
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tableau sγc , and ∅ represents the Young tableau with zero boxes. The set W(x)
sym is given by

{Cλν} ∈ W(PAR)
sym ⇐⇒

Cλν

m
(D)
ν

= Dλ ⊗
1dν

Dn+1 ∀λ ∈ Ydn, ν ∈ YDn+1∑
λ∈Yd

n+1

∑
ν∈YD

n+1

Tr(Cλν) = Dn , (330)

{Cλν} ∈ W(SEQ)
sym ⇐⇒

Cλν

m
(D)
ν

=
∑

κ∈ν−□

(1dλ
⊗Xκ

ν )† C
(n)
λκ

m
(D)
κ

(1dλ
⊗Xκ

ν ) ∀λ ∈ Ydn, ν ∈ YDn+1

∑
λ∈γ+□

(Xγ
λ ⊗ 1dκ) C

(i)
λκ

m
(D)
κ

(Xγ
λ ⊗ 1dκ)† =

∑
δ∈κ−□

(1dν ⊗Xδ
κ)†C

(i−1)
γδ

m
(D)
δ

(1dν ⊗Xδ
κ)

∀i ∈ {1, · · · , n}, γ ∈ Ydi−1, κ ∈ YDi
C

(0)
∅∅ = 1

(331)

for universal error detection, where Dλ for λ ∈ Ydn are defined by

Dλ :=
∑

ν∈YD
n+1

Trν(Cλν), (332)

C
(i)
λκ for λ ∈ Ydi , κ ∈ YDi are defined by

C
(i)
λκ :=

{ 1
D

∑
ν∈κ+□(1dλ

⊗Xκ
ν )Cλν(1dλ

⊗Xκ
ν )† (i = n)

1
D

∑
µ∈λ+□,ν∈κ+□(Xλ

µ ⊗Xκ
ν )C(i+1)

µν (Xλ
µ ⊗Xκ

ν )† (0 ≤ i ≤ n− 1)
, (333)

and Xγ
λ are defined in Eq. (329).

E.2 Conditions for isometry inversion, universal error detection, and isometry adjointa-
tion under the U(d)× U(D) symmetry

We consider the action of a supermap C on n calls of an isometry operation Vin ∈ Viso(d,D)
when its Choi operator C satisfies the U(d)×U(D) symmetry (320). Then, C(V⊗n

in ) is given
in the following form.

Lemma 15. If the Choi operator of a quantum supermap C, denoted by C, satisfies the
U(d)× U(D) symmetry (320), then C(V⊗n

in ) for Vin ∈ Viso(d,D) is given by

C(V⊗n
in )(ρin) =


xV †

inρinVin + 1F
d

Tr[ρin(yΠImVin + z(1D −ΠImVin))]
(isometry inversion, isometry adjointation)

Tr[ρin(vΠImVin + w(1D −ΠImVin))] (universal error detection)
(334)

for all Vin ∈ Viso(d,D) and ρin ∈ L(Cd), where ΠImVin and (1D − ΠImVin) are orthogonal
projectors onto the image ImVin of Vin and its complement (ImVin)⊥, and x, y, z, v, w ∈ C
are constant numbers given by

x := 1
d2 − 1 Tr

[
C(d2Ω− Ξ⊗ 1F )

]
, (335)

y := d2

d2 − 1 Tr[C(Ξ⊗ 1F − Ω)], (336)

z := Tr[C(Σ⊗ 1F )], (337)
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for isometry inversion and isometry adjointation, and

v := Tr(CΞ), (338)
w := Tr(CΣ), (339)

for universal error detection, Ω,Ξ,Σ are defined by

Ω :=
∑

µ∈Yd
n+1

dµ∑
i,j,k,l=1

[Ωµ]ik,jl(Eµ,dij )InF ⊗ (Eµ,Dkl )POn , (340)

Ξ :=
∑
λ∈Yd

n

∑
ν∈λ+□∩Yd

n+1

dλ∑
a,b=1

dν∑
k,l=1

[Ξλν ]ak,bl(Eλ,dab )In ⊗ (Eν,Dkl )POn (341)

Σ :=
∑
λ∈Yd

n

∑
ν∈λ+□

dλ∑
a,b=1

dν∑
k,l=1

[Σλν ]ak,bl(Eλ,dab )In ⊗ (Eν,Dkl )POn , (342)

and Ωµ ∈ L(Cdµ ⊗ Cdµ) and Ξλν ,Σλν ∈ L(Cdλ ⊗ Cdν ) are defined by

[Ωµ]ik,jl := [πµ]∗ik[πµ]lj
d2m

(D)
µ

, (343)

[Ξλν ]ak,bl := m
(d)
ν

dm
(D)
ν m

(d)
λ

[πν ]∗aλ
νk

[πν ]lbλ
ν
, (344)

[Σλν ]ak,bl := 1
D − d

[
1

m
(D)
λ

− δν∈YD
n+1

m
(d)
ν

m
(D)
ν m

(d)
λ

]
[πν ]∗aλ

νk
[πν ]lbλ

ν
, (345)

where [πµ]ij are matrix elements of the irreducible representation πµ for π := (12 · · ·n +
1) ∈ Sn+1 shown in Eq. (49) defined by [πµ]ij := ⟨µ, i|πµ |µ, j⟩, δν∈YD

n+1
is defined by

δν∈YD
n+1

= 1 for ν ∈ YDn+1 and δν∈YD
n+1

= 0 for ν /∈ Ydn+1, and aλν is the index of the
standard tableau sν

aλ
ν

obtained by adding a box n+ 1 to the standard tableau sλa.

Proof. First, we consider the Choi operator C satisfying

[C,U⊗n+1
InF ⊗ U ′⊗n+1

POn ] = 0 (346)

for all U ∈ U(d) and U ′ ∈ U(D). Then, C ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn for Vin ∈ Viso(d,D) satisfies

C ⋆ |U ′VinU⟩⟩⟨⟨U ′VinU |⊗nInOn

= C ⋆ (UT⊗n
In ⊗ U ′⊗n

On )|Vin⟩⟩⟨⟨Vin|⊗nInOn(UT⊗n
In ⊗ U ′⊗n

On )† (347)
= (UT⊗n

In ⊗ 1F ⊗ 1P ⊗ U ′⊗n
On )TC(UT⊗n

In ⊗ 1F ⊗ 1P ⊗ U ′⊗n
On )∗ ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn (348)

= (1In ⊗ U †
F ⊗ U

′∗
P ⊗ 1On)C(1In ⊗ U †

F ⊗ U
′∗
P ⊗ 1On)† ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn (349)

= (U ′∗
P ⊗ U

†
F )[C ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn ](U ′∗

P ⊗ U
†
F )† (350)

for all U ∈ U(d) and U ′ ∈ U(D). For U ∈ U(d) and U ′′ ∈ U[(ImVin)⊥], U ′ := VinUV
†

in +U ′′

is a unitary operator and U ′VinU = Vin holds. By substituting U and U ′ = VinUV
†

in + U ′′

to Eq. (350), we obtain

[(VinUV
†

in + U ′′)∗
P ⊗ U

†
F ][C ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn ][(VinUV

†
in + U ′′)∗

P ⊗ U
†
F ]† = C ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn .

(351)
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Decomposing C ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn as

C ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn = (V ∗
in ⊗ 1F )P (V ∗

in ⊗ 1F )† + (V ∗
in ⊗ 1F )Q+R(V ∗

in ⊗ 1F )† + S (352)

using linear operators P ∈ L(Cd ⊗ F), Q : (ImVin)⊥ ⊗ F → Cd ⊗ F , R : Cd ⊗ F →
(ImVin)⊥ ⊗F , and S ∈ L((ImVin)⊥ ⊗F), Eq. (351) is written as

(U∗ ⊗ U)A(U∗ ⊗ U)† = A, (353)
(U∗ ⊗ U)B(U ′′T ⊗ U)† = B, (354)
(U ′′T ⊗ U)C(U∗ ⊗ U)† = C, (355)

(U ′′T ⊗ U)D(U ′′T ⊗ U)† = D. (356)

Therefore, P is written as a linear combination of |1d⟩⟩⟨⟨1d| and 1d ⊗ 1d, Q = 0, R = 0,
and S is proportional to 1(ImVin)⊥ ⊗ 1F . Therefore, C ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn can be expressed
by three parameters xVin , yVin , and zVin as

C ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn = xVin |V
†

in⟩⟩⟨⟨V
†

in|PF + yVin(ΠT
ImVin)P ⊗

1F
d

+ zVin(ΠT
(ImVin)⊥)P ⊗

1F
d
.

(357)

From Eq. (350), we obtain

xU ′VinU |(U ′VinU)†⟩⟩⟨⟨(U ′VinU)†|PF + yU ′VinU (ΠT
Im(U ′VinU))P ⊗

1F
d

+ zU ′VinU (ΠT
(Im(U ′VinU))⊥)P ⊗

1F
d

= (U ′∗
P ⊗ U

†
F )[xVin |V

†
in⟩⟩⟨⟨V

†
in|PF + yVin(ΠT

ImVin)P ⊗
1F
d

+ zVin(ΠT
(ImVin)⊥)P ⊗

1F
d

](U ′∗
P ⊗ U

†
F )†

(358)

= xVin |(U ′VinU)†⟩⟩⟨⟨(U ′VinU)†|PF + yVin(ΠT
Im(U ′VinU))P ⊗

1F
d

+ zVin(ΠT
(Im(U ′VinU))⊥)P ⊗

1F
d
,

(359)

thus, xVin , yVin and zVin does not depend on Vin. By rewriting xVin = x, yVin = y and
zVin = z, we obtain

C ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn = x|V †
in⟩⟩⟨⟨V

†
in|PF + y(ΠT

ImVin)P ⊗
1F
d

+ z(ΠT
(ImVin)⊥)P ⊗

1F
d
. (360)

This Choi operator corresponds to the map

C(V⊗n
in )(ρin) = xV †

inρinVin + 1F
d

Tr[ρin(yΠImVin + z(1D −ΠImVin))]. (361)

We calculate x, y and z as follows. Equation (360) is written as

TrInOn [C(1PF ⊗ |V ∗
in⟩⟩⟨⟨V ∗

in|⊗nInOn)]

= x|V †
in⟩⟩⟨⟨V

†
in|PF + y(ΠT

ImVin)P ⊗
1F
d

+ z(ΠT
(ImVin)⊥)P ⊗

1F
d
. (362)

Taking the Hilbert-Schmidt inner product with |V ∗
in⟩⟩⟨⟨V ∗

in|FP , (ΠImVin)∗
P ⊗ 1F and ((1D −

ΠImVin))∗
P ⊗ 1F , we obtain

Tr
[
C|V ∗

in⟩⟩⟨⟨V ∗
in|⊗nInOn ⊗ |V ∗

in⟩⟩⟨⟨V ∗
in|FP

]
= d2x+ y, (363)

Tr
[
C|V ∗

in⟩⟩⟨⟨V ∗
in|⊗nInOn ⊗ (ΠImVin)∗

P ⊗ 1F
]

= d(x+ y), (364)

Tr
[
C|V ∗

in⟩⟩⟨⟨V ∗
in|⊗nInOn ⊗ ((1D −ΠImVin))∗

P ⊗ 1F
]

= (D − d)z. (365)

49

411



Taking the Haar integral dVin on Viso(d,D), we obtain

Tr(CΩ) = x+ y

d2 , (366)

Tr[C(Ξ⊗ 1F )] = x+ y, (367)
Tr[C(Σ⊗ 1F )] = z, (368)

where Ω, Ξ and Σ are defined by

Ω := 1
d2

∫
Viso(d,D)

dV |V ⟩⟩⟨⟨V |⊗nInOn ⊗ |V ⟩⟩⟨⟨V |FP , (369)

Ξ := 1
d

∫
Viso(d,D)

dV |V ⟩⟩⟨⟨V |⊗nInOn ⊗ (ΠImV )P , (370)

Σ := 1
D − d

∫
Viso(d,D)

dV |V ⟩⟩⟨⟨V |⊗nInOn ⊗ ((1D −ΠImV ))P . (371)

Therefore, x, y and z are given by

x = 1
d2 − 1 Tr

[
C(d2Ω− Ξ⊗ 1F )

]
, (372)

y = d2

d2 − 1 Tr[C(Ξ⊗ 1F − Ω)], (373)

z = Tr[C(Σ⊗ 1F )]. (374)

Next, we consider the Choi operator C satisfying

[C,U⊗n
In ⊗ U ′⊗n+1

POn ] = 0 (375)

for all U ∈ U(d) and U ′ ∈ U(D). Defining C ′ := C ⊗ 1F
d , C ′ satisfies

[C ′, U⊗n+1
InF ⊗ U ′⊗n+1

POn ] = 0 (376)

for all U ∈ U(d) and U ′ ∈ U(D). Therefore, we can show that there exist constant numbers
u, v, and w such that

C ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn ⊗
1F
d

= C ′ ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn (377)

= u|V †
in⟩⟩⟨⟨V

†
in|PF + v(ΠT

ImVin)P ⊗
1F
d

+ w(ΠT
(ImVin)⊥)P ⊗

1F
d
, (378)

i.e., u = 0 and

C ⋆ |Vin⟩⟩⟨⟨Vin|⊗nInOn = v(ΠT
ImVin)P + w(ΠT

(ImVin)⊥)P (379)

holds. We calculate v and w as follows. Equation (379) is written as

TrInOn [C(1P ⊗ |V ∗
in⟩⟩⟨⟨V ∗

in|⊗nInOn)] = v(ΠT
ImVin)P + w(ΠT

(ImVin)⊥)P . (380)

Taking the Hilbert-Schmidt inner product with Π∗
ImVin

and (1D −ΠImVin)∗, we obtain

Tr
[
C|V ∗

in⟩⟩⟨⟨V ∗
in|⊗nInOn ⊗ (ΠImVin)∗

P

]
= dv, (381)

Tr
[
C|V ∗

in⟩⟩⟨⟨V ∗
in|⊗nInOn ⊗ ((1D −ΠImVin))∗

P

]
= (D − d)w. (382)
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Taking the Haar integral dVin on Viso(d,D), we obtain

Tr(CΞ) = v, (383)
Tr(CΣ) = w. (384)

We calculate Ω, Ξ and Σ as follows. First, due to the left- and right-invariance of the
Haar measure dV given by dV = d(U ′V U) for all U ∈ U(d) and U ′ ∈ U(D), Ω and Ξ
satisfies the U(d)× U(D) symmetry given by

[Ω, U⊗n+1
InF ⊗ U ′⊗n+1

POn ] = 0 (385)

for all U ∈ U(d) and U ′ ∈ U(D). Thus, they can be written as

Ω =
∑

µ∈Yd
n+1

∑
ν∈YD

n+1

dµ∑
i,j=1

dν∑
k,l=1

Ωµν
ijkl(E

µ,d
ij )InF ⊗ (Eν,Dkl )POn , (386)

using complex coefficients Ωµν
ijkl ∈ C. The coefficients can be calculated as

Ωµν
ijkl

= 1
m

(d)
µ m

(D)
ν

Tr
[
Ω(Eµ,dji )InF ⊗ (Eν,Dlk )POn

]
(387)

= 1
m

(d)
µ m

(D)
ν

Tr
[
Ω(Eµ,dji )InF ⊗ (P †

πE
ν,D
lk Pπ)OnP

]
(388)

= 1
m

(d)
µ m

(D)
ν

dν∑
k′,l′=1

1
d2

∫
Viso(d,D)

dV Tr
[
|V ⟩⟩⟨⟨V |⊗n+1

InF ,OnP(Eµ,dji )InF ⊗ [πν ]ll′(Eν,Dl′k′ )OnP [πν ]∗k′k

]
(389)

= 1
m

(d)
µ m

(D)
ν

dν∑
k′,l′=1

1
d2

∫
Viso(d,D)

dV Tr
[
|1d⟩⟩⟨⟨1d|⊗n+1(Eµ,dji )⊗ [πν ]ll′V †⊗n+1(Eν,Dl′k′ )V ⊗n+1[πν ]∗k′k

]
,

(390)

where Pπ is the permutation of Hilbert spaces defined in Eq. (49) for π = (12 · · ·n +
1) ∈ Sn+1, [πµ]ij are matrix elements of the irreducible representation πµ defined by
[πµ]ij := ⟨µ, i|πµ |µ, j⟩. As shown in Eq. (146) in Appendix A.2, V †⊗n+1(Eν,Dl′k′ )V ⊗n+1 is
given by (Eν,dl′k′)δν∈YD

n+1
. We consider the Schur basis introduced in Section 3.1.2. Since

the quantum Schur transform is a real matrix, the maximally entangled state in the Schur
basis is the same as that in the Schur basis, i.e.,

|1d⟩⟩⊗n+1 =
∑

µ∈Yd
n+1

m
(d)
µ∑

u=1

dµ∑
i=1
|µ, u⟩U(d)

µ
⊗ |µ, i⟩Sµ

⊗ |µ, u⟩U(d)
µ
⊗ |µ, i⟩Sµ

. (391)

Thus, Ωµν
ijkl is further calculated as

Ωµν
ijkl =

δν∈YD
n+1

m
(d)
µ m

(D)
ν

dν∑
k′,l′=1

1
d2 Tr

[
|1d⟩⟩⟨⟨1d|⊗n+1(Eµ,dji )⊗ [πν ]ll′(Eν,dl′k′)[πν ]∗k′k

]
(392)

= δµν [πµ]∗ik[πµ]lj
d2m

(D)
µ

, (393)
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Therefore, Ω is given by

Ω =
∑

µ∈Yd
n+1

dµ∑
i,j,k,l=1

[πµ]∗ik[πµ]lj
d2m

(D)
µ

(Eµ,dij )InF ⊗ (Eµ,Dkl )POn . (394)

Since (ΠImV )P = TrF |V ⟩⟩⟨⟨V |FP holds, Ξ is calculated using Lemma 3 as

Ξ = dTrF Ω (395)

=
∑

ν∈Yd
n+1

∑
λ∈ν−□

dλ∑
a,b=1

dν∑
k,l=1

m
(d)
ν

dm
(D)
ν m

(d)
λ

[πν ]∗aλ
νk

[πν ]lbλ
ν
(Eλ,dab )In ⊗ (Eν,Dkl )POn . (396)

Since ((1D −ΠImV ))P = 1P − (ΠImV )P holds, Σ is calculated using Lemma 3 as

Σ = 1
D − d

[ ∫
dV |V ⟩⟩⟨⟨V |⊗nInOn ⊗ 1P − dΞ

]
(397)

= 1
D − d

∑
λ∈Yd

n

dλ∑
a,b=1

[
(Eλ,dab )In ⊗ (Eλ,Dab )On

m
(D)
λ

⊗ 1P

−
∑

ν∈λ+□∩Yd
n+1

dν∑
k,l=1

m
(d)
ν

m
(D)
ν m

(d)
λ

[πµ]∗aλ
νk

[πµ]lbλ
ν
(Eλ,dab )In ⊗ (Eν,Dkl )POn

]
(398)

= 1
D − d

∑
λ∈Yd

n

dλ∑
a,b=1

∑
ν∈λ+□

[(Eλ,dab )In ⊗ (P †
πE

ν,D
aλ

ν b
λ
ν
Pπ)POn

m
(D)
λ

− δν∈Yd
n+1

dν∑
k,l=1

m
(d)
ν

m
(D)
ν m

(d)
λ

[πν ]∗aλ
νk

[πν ]lbλ
ν
(Eλ,dab )In ⊗ (Eν,Dkl )POn

]
(399)

= 1
D − d

∑
λ∈Yd

n

∑
ν∈λ+□

dλ∑
a,b=1

dν∑
k,l=1

[
1

m
(D)
λ

− δν∈Yd
n+1

m
(d)
ν

m
(D)
ν m

(d)
λ

]
[πν ]∗aλ

νk
[πν ]lbλ

ν
(Eλ,dab )In ⊗ (Eν,Dkl )POn

(400)

=
∑
λ∈Yd

n

∑
ν∈λ+□

dλ∑
a,b=1

dν∑
k,l=1

1
m

(D)
ν

hook(λ)
hook(ν) [πν ]∗aλ

νk
[πν ]lbλ

ν
(Eλ,dab )In ⊗ (Eν,Dkl )POn . (401)

The parameters x, y, z, v, w in Lemma 15 are related to the constraints and the figure
of merit of each task considered in this work as follows:

• Probabilistic exact isometry inversion: x = p and y = 0.

• Deterministic isometry inversion: x+ y/d2 = Fworst.

• Universal error detection: v = 1, w = α.

• Isometry adjointation: x+ y = 1, max{1− x− y/d2, z} = ϵ.

Using this property, we derive the SDP to obtain the optimal transformations of isometry
operations in the next section.
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E.3 Derivation of the SDP to obtain optimal transformation of isometry operations
E.3.1 Probabilistic exact isometry inversion

From Theorem 9 and Appendix E.2, the optimization problem of the success probability
for isometry inversion is formulated as follows:

max Tr(CSΩ)
s.t. 0 ≤ CS , CF ∈ L(In ⊗On ⊗ P ⊗ F),

C := CS + CF ∈ W(x),

Tr(CSΩ) = Tr[CS(Ξ⊗ 1F )],
[Ca, U⊗n+1

InF ⊗ U ′⊗n+1
POn ] = 0 ∀U ∈ U(d), U ′ ∈ U(D), a ∈ {S, F}.

(402)

Using the U(d) × U(D) symmetry of {CS , CF }, we write {CS , CF } similarly to Eq. (321)
as

CS =
∑

µ∈Yd
n+1

∑
ν∈YD

n+1

dµ∑
i,j=1

dν∑
k,l=1

[Sµν ]ik,jl
m

(d)
µ m

(D)
ν

(Eµ,dij )InF ⊗ (Eν,Dkl )POn , (403)

CF =
∑

µ∈Yd
n+1

∑
ν∈YD

n+1

dµ∑
i,j=1

dν∑
k,l=1

[Fµν ]ik,jl
m

(d)
µ m

(D)
ν

(Eµ,dij )InF ⊗ (Eν,Dkl )POn . (404)

Then, Tr(CSΩ) and Tr[CS(Ξ⊗ 1F )] are given by

Tr(CSΩ) =
∑

µ∈Yd
n+1

Tr(SµµΩµ), (405)

Tr[CS(Ξ⊗ 1F )] = Tr[TrF (CS)Ξ] (406)

=
∑
λ∈Yd

n

∑
µ∈λ+□

∑
ν∈YD

n+1

dλ∑
a,b=1

dν∑
k,l=1

[Sµν ]aλ
µk,b

λ
µl

m
(d)
µ m

(D)
ν

Tr
[
(Eλ,dab )In ⊗ (Eν,Dkl )POnΞ

]
(407)

=
∑
λ∈Yd

n

∑
µ∈λ+□

∑
ν∈Yd

n+1

Tr
[
(Xλ

µ ⊗ 1dν )Sµν(Xλ
µ ⊗ 1dν )†Ξλν

]
, (408)

where Xλ
µ is defined in Eq. (329) and aλµ is the index of the standard tableau sµ

aλ
µ

obtained

by adding a box n+ 1 to the standard tableau sλa . Therefore, the SDP (402) is written
as

max
∑

µ∈Yd
n+1

Tr(SµµΩµ)

s.t. 0 ≤ Sµν , Fµν ∈ L(Cdµ ⊗ Cdν ) ∀µ ∈ Ydn+1, ν ∈ YDn+1,

{Cµν} := {Sµν + Fµν} ∈ W(x)
sym,∑

µ∈Yd
n+1

Tr(SµµΩµ) =
∑
λ∈Yd

n

∑
µ∈λ+□

∑
ν∈Yd

n+1

Tr
[
(Xλ

µ ⊗ 1dν )Sµν(Xλ
µ ⊗ 1dν )†Ξλν

]
.

(409)
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E.3.2 Deterministic isometry inversion

From Theorem 9 and Appendix E.2, the optimization problem of the fidelity of determin-
istic isometry inversion is formulated as follows:

max Tr(CΩ)
s.t. 0 ≤ C ∈ L(In ⊗On ⊗ P ⊗ F),

C ∈ W(x),

[C,U⊗n+1
InF ⊗ U ′⊗n+1

POn ] = 0 ∀U ∈ U(d), U ′ ∈ U(D).

(410)

Similarly to probabilistic isometry inversion, this SDP can be rewritten as follows:

max
∑

µ∈Yd
n+1

Tr(CµµΩµ)

s.t. 0 ≤ Cµν ∈ L(Cdµ ⊗ Cdν ) ∀µ ∈ Ydn+1, ν ∈ YDn+1,

{Cµν} ∈ W(x)
sym.

(411)

E.3.3 Universal error detection

From Theorem 9 and Appendix E.2, the optimization problem of λ of universal error
detection is formulated as follows:

min Tr(CIΣ)
s.t. 0 ≤ CI , CO ∈ L(In ⊗On ⊗ P),

C := CI + CO ∈ W(x),

Tr(CIΞ) = 1,
[Ca, U⊗n

In ⊗ U ′⊗n+1
POn ] = 0 ∀U ∈ U(d), U ′ ∈ U(D), a ∈ {I,O}.

(412)

Using the U(d)×U(D) symmetry of {CI , CO}, we write {CI , CO} similarly to Eq. (322)
as

CI =
∑
λ∈Yd

n

∑
ν∈YD

n+1

dµ∑
a,b=1

dν∑
k,l=1

[Iλν ]ak,bl
m

(d)
λ m

(D)
ν

(Eλ,dab )In ⊗ (Eν,Dkl )POn , (413)

CO =
∑
λ∈Yd

n

∑
ν∈YD

n+1

dµ∑
a,b=1

dν∑
k,l=1

[Oλν ]ak,bl
m

(d)
λ m

(D)
ν

(Eλ,dab )In ⊗ (Eν,Dkl )POn . (414)

Then, Tr(CIΣ) and Tr(CIΞ) are given by

Tr(CIΣ) =
∑
λ∈Yd

n

∑
ν∈YD

n+1

Tr(IλνΣλν), (415)

Tr(CIΞ) =
∑
λ∈Yd

n

∑
ν∈Yd

n+1

Tr(IλνΞλν). (416)

Therefore, the SDP (412) is written as
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min
∑
λ∈Yd

n

∑
ν∈YD

n+1

Tr(IλνΣλν)

s.t. 0 ≤ Iλν , Oλν ∈ L(Cdλ ⊗ Cdν ) ∀λ ∈ Ydn, ν ∈ YDn+1,

{Cλν} := {Iλν +Oλν} ∈ W(x)
sym,∑

λ∈Yd
n

∑
ν∈Yd

n+1

Tr(IλνΞλν) = 1.

(417)

E.3.4 Isometry adjointation

From Theorem 9 and Appendix E.2, the optimization problem of ϵ of isometry adjointation
is formulated as follows:

min max{1− Tr(CIΩ),Tr[CI(Σ⊗ 1F )]}
s.t. 0 ≤ CI , CO ∈ L(In ⊗On ⊗ P ⊗ F),

C := CI + CO ∈ W(x),

Tr[CI(Ξ⊗ 1F )] = 1,
[Ca, U⊗n+1

InF ⊗ U ′⊗n+1
POn ] = 0 ∀U ∈ U(d), U ′ ∈ U(D), a ∈ {I,O}.

(418)

Using the U(d)×U(D) symmetry of {CI , CO}, we write {CI , CO} similarly to Eq. (321)
as

CI =
∑

µ∈Yd
n+1

∑
ν∈YD

n+1

dµ∑
i,j=1

dν∑
k,l=1

[Iµν ]ik,jl
m

(d)
µ m

(D)
ν

(Eµ,dij )InF ⊗ (Eν,Dkl )POn , (419)

CO =
∑

µ∈Yd
n+1

∑
ν∈YD

n+1

dµ∑
i,j=1

dν∑
k,l=1

[Oµν ]ik,jl
m

(d)
µ m

(D)
ν

(Eµ,dij )InF ⊗ (Eν,Dkl )POn . (420)

Then, similarly for the case of probabilistic exact isometry inversion, the SDP (418) as
follows:

min max
{

1−
∑

µ∈Yd
n+1

Tr(IµµΩµ),
∑
λ∈Yd

n

∑
µ∈λ+□

∑
ν∈YD

n+1

Tr
[
(Xλ

µ ⊗ 1dν )Iµν(Xλ
µ ⊗ 1dν )†Σλν

]}
s.t. 0 ≤ Iµν , Oµν ∈ L(Cdµ ⊗ Cdν ) ∀µ ∈ Ydn+1, ν ∈ YDn+1,

{Cµν} := {Iµν +Oµν} ∈ W(x)
sym,∑

λ∈Yd
n

∑
µ∈λ+□

∑
ν∈Yd

n+1

Tr
[
(Xλ

µ ⊗ 1dν )Iµν(Xλ
µ ⊗ 1dν )†Ξλν

]
= 1.

(421)

E.4 Derivation of the dual problems
We derive the dual problems of the SDPs to obtain the optimal transformations of isometry
operations. Due to the strong duality, the dual problems gives the same optimal value as
the corresponding primal problems. To this end, we first introduce the dual set of the Choi
operators of quantum superchannels. Then, we derive the dual problems using the dual
set. Finally, we simplify the derived dual problems using the U(d)× U(D) symmetry.
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E.4.1 Characterization of the dual processes

We define the dual set W(x) of W(x) for x ∈ {PAR,SEQ,GEN} by

C ∈ W(x) ⇐⇒ Tr
(
CC

)
= 1 ∀C ∈ W(x). (422)

Introducing the basis {Cj} of W(x), this relation leads to

C ∈ W(x) ⇐⇒ Tr
(
CCj

)
= 1 ∀j. (423)

As shown in Ref. [77], W(x) are given by

C ∈ W(PAR) ⇐⇒


C = W ⊗ 1F

TrOn W = TrInOn W ⊗ 1In/ dim In

TrW = dim In
, (424)

C ∈ W(SEQ) ⇐⇒


C = W ⊗ 1F

TrOi W
(i) = 1Ii ⊗W (i−1), ∀i ∈ {1, · · · , n}

TrW = dim In
, (425)

C ∈ W(GEN) ⇐⇒


C = W ⊗ 1F

TrOi W = TrIiOi W ⊗ 1Ii/dim Ii ∀i ∈ {1, · · · , n}
TrW = dim In

, (426)

where W (i) are defined by

W (i) :=
{
W (i = n)
TrIi+1Oi+1 W

(i+1)/ dim Ii+1 ∀i ∈ {0, · · · , n} (i ∈ {0, · · · , n− 1})
. (427)

We also introduce the set Cone[W(x)] of the dual sets W(x) defined by

Cone[W(x)] = {λC|λ ∈ C, C ∈ W(x)}. (428)

E.4.2 Probabilistic exact isometry inversion

We write down the dual problem of the SDP (402). To this end, we note that the U(d)×
U(D) symmetry does not change the optimal value of the SDP (402), so we can remove
it when we consider the dual problem. Then, the SDP (402) corresponds to the following
optimization problem:

max Tr(CSΩ)
s.t. 0 ≤ CS , CF ∈ L(In ⊗On ⊗ P ⊗ F),

Tr(CSΩ) = Tr[CS(Ξ⊗ 1F )],

Tr
[
(CS + CF )Cj

]
= 1, ∀j.

(429)
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By introducing the Lagrange multipliers ω, λj ∈ R and 0 ≤ ΓS ,ΓF ∈ L(In⊗On⊗P ⊗F),
we can write down the corresponding Lagrangian

L = Tr(CSΩ) + [Tr[CS(Ξ⊗ 1F )]− Tr(CSΩ)]ω + Tr(CSΓS) + Tr(CFΓF )

+
∑
j

[1− Tr
[
(CS + CF )Cj

]
]λj (430)

=
∑
j

λj + Tr

CS(Ω− ωΩ + ωΞ⊗ 1F + ΓS −
∑
j

λjCj)

+ Tr

F (ΓF −
∑
j

λjCj)

,
(431)

which gives the SDP (429) as the following optimization:

max
CS ,CF ≥0

min
ω,λj∈R,ΓS ,ΓF ≥0

L. (432)

This optimization problem corresponds to the following dual problem:

min
∑
j

λj

s.t. ω, λj ∈ R, 0 ≤ ΓS ,ΓF ∈ L(In ⊗On ⊗ P ⊗ F),
(1− ω)Ω + ωΞ⊗ 1F + ΓS −

∑
j

λjCj = 0,

ΓF −
∑
j

λjCj = 0.

(433)

The variables ΓS ,ΓF can be removed, and the variables λj and Cj can be replaced with
C :=

∑
j λjCj . Since TrCj = dn+1 holds for Cj ∈ W

(x),
∑
j λj can be replaced with

TrC/dn+1, which gives the following dual problem:

min TrC/dn+1

s.t. ω ∈ R, 0 ≤ C ∈ L(In ⊗On ⊗ P ⊗ F),

C ∈ Cone[W(x)],
C ≥ (1− ω)Ω + ωΞ⊗ 1F .

(434)

E.4.3 Deterministic isometry inversion

Similarly to the case of probabilistic isometry inversion, the SDP (410) can be rewritten
as the following optimization problem:

max Tr(CΩ)
s.t. 0 ≤ C ∈ L(In ⊗On ⊗ P ⊗ F),

Tr
[
CCj

]
= 1, ∀j.

(435)

By introducing the Lagrange multipliers λj ∈ R and 0 ≤ Γ ∈ L(In⊗On⊗P ⊗F), we can
write down the corresponding Lagrangian

L = Tr(CΩ) + Tr(CΓ) +
∑
j

[1− Tr
[
CCj

]
]λj (436)

=
∑
j

λj + Tr

C(Ω + Γ−
∑
j

λjCj)

, (437)
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which gives the SDP (410) as the following optimization:

max
C≥0

min
λj∈R,Γ≥0

L. (438)

This optimization problem corresponds to the following dual problem:

min
∑
j

λj

s.t. λj ∈ R, 0 ≤ Γ ∈ L(In ⊗On ⊗ P ⊗ F),
Ω + Γ−

∑
j

λjCj = 0.
(439)

The variable Γ can be removed, and the variables λj and Cj can be replaced with C :=∑
j λjCj as

min TrC/dn+1

s.t. C ∈ L(In ⊗On ⊗ P ⊗ F),

C ∈ Cone[W(x)],
C ≥ Ω.

(440)

E.4.4 Universal error detection

Similarly to the case of probabilistic isometry inversion, the SDP (412) can be rewritten
as the following optimization problem:

min Tr(CIΣ)
s.t. 0 ≤ CI , CO ∈ L(In ⊗On ⊗ P),

Tr(CIΞ) = 1,

Tr
[
(CI + CO)Cj

]
= 1 ∀j.

(441)

By introducing the Lagrange multipliers ξ, λj ∈ R and 0 ≤ ΓI ,ΓO ∈ L(In ⊗On ⊗ P), the
corresponding Lagrangian is given by

L = Tr(CIΣ)− Tr(CIΓI)− Tr(COΓO) + [1− Tr(CIΞ)]ξ +
∑
j

[1− Tr
[
(CI + CO)Cj

]
]λj

(442)

=
∑
j

λj + ξ + Tr
[
CI
(
Σ− ΓI − ξΞ−

∑
j

λjCj
)]

+ Tr

CO(−ΓO −
∑
j

λjCj)

, (443)

which gives the SDP (412) as the following optimization:

min
CI ,CO≥0

max
ξ,λj∈R,ΓI ,ΓO≥0

L. (444)

The corresponding dual problem is given by

max
∑
j

λj + ξ

s.t. Σ− ΓI − ξΞ−
∑
j

λjCj = 0,

− ΓO −
∑
j

λjCj = 0.

(445)
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The variable Γ can be removed, and the variables λj and Cj can be replaced with C :=
−
∑
j λjCj as

max ξ − TrC/dn

s.t. ξ ∈ R, 0 ≤ C ∈ L(In ⊗On ⊗ P),

C ∈ Cone[W(x)],
C ≥ ξΞ− Σ.

(446)

E.4.5 Isometry adjointation

Similarly to the case of probabilistic isometry inversion, the SDP (418) can be rewritten
as the following optimization problem:

min p
s.t. 0 ≤ CI , CO ∈ L(In ⊗On ⊗ P ⊗ F),

1− Tr(CIΩ) ≤ p,
Tr[CI(Σ⊗ 1F )] ≤ p
Tr[CI(Ξ⊗ 1F )] = 1,

Tr
[
(CI + CO)Cj

]
= 1 ∀j.

(447)

By introducing the Lagrange multipliers ω, σ ∈ R≥0, ξ, λj ∈ R and 0 ≤ ΓI ,ΓO ∈ L(In ⊗
On ⊗ P ⊗ F), the corresponding Lagrangian is given by

L =p− Tr(CIΓI)− Tr(COΓO) + [1− Tr(CIΩ)− p]ω + [Tr[CI(Σ⊗ 1F )]− p]σ

+ [1− Tr[CI(Ξ⊗ 1F )]]ξ +
∑
j

[1− Tr
[
(CI + CO)Cj

]
]λj (448)

=
∑
j

λj + ω + ξ + p(1− ω − σ) + Tr

CI(−ΓI − ωΩ + σΣ⊗ 1F − ξΞ⊗ 1F −
∑
j

λjCj)


+ Tr

F (−ΓO −
∑
j

λjCj)

. (449)

The corresponding dual problem is given by

max
∑
j

λj + ω + ξ

s.t. ω + σ = 1,
− ΓI − ωΩ + σΣ⊗ 1F − ξΞ⊗ 1F −

∑
j

λjCj = 0,

− ΓO −
∑
j

λjCj = 0.

(450)

The variables ΓI ,ΓO, σ can be removed, and the variables λj and Cj can be replaced with
C := −

∑
j λjCj as

maxω + ξ − TrC/dn+1

s.t. ξ ∈ R, 0 ≤ ω ≤ 1, 0 ≤ C ∈ L(In ⊗On ⊗ P ⊗ F)

C ∈ Cone[W(x)],
C ≥ ωΩ + ξΞ⊗ 1F − (1− ω)Σ⊗ 1F .

(451)
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E.4.6 Simplification of the dual problems using U(d)× U(D) and permutation symmetry

In the dual SDPs (434), (440), (446) and (451), we can impose the U(d)×U(D) symmetry
given by{

[C,U⊗n+1
InF ⊗ U ′⊗n+1

POn ] = 0 (isometry inversion,universal error detection)
[C,U⊗n

In ⊗ U ′⊗n+1
POn ] = 0 (isometry adjointation)

(452)

for all U ∈ U(d) and U ′ ∈ U(D), since for the optimal Copt, the U(d) × U(D)-twirled
operator C ′

opt given by

C
′
opt :=


∫
U(d) dUU⊗n+1

InF ⊗ U ′⊗n+1
POn (C) (isometry inversion, universal error detection)∫

U(d) dUU⊗n
In ⊗ U ′⊗n+1

POn (C) (isometry adjointation)
(453)

also gives the optimal values of the dual SDPs. For the case of x = GEN, we can also
impose the permutation symmetry given by{

[C, (Pπ)In ⊗ (Pπ)On ⊗ 1P ⊗ 1F ] = 0 (isometry inversion,universal error detection)
[C, (Pπ)In ⊗ (Pπ)On ⊗ 1P ] = 0 (isometry adjointation)

(454)

for all π ∈ Sn and Pπ is given in Eq. (49) since the Sn-twirled operator C ′′
opt given by

C
′′
opt :=

{∑
π∈Sn

(Pπ)In ⊗ (Pπ)On ⊗ 1P ⊗ 1F (C) (isometry inversion, universal error detection)∑
π∈Sn

(Pπ)In ⊗ (Pπ)On ⊗ 1P(C) (isometry adjointation)
(455)

also gives the optimal values of the dual SDPs.
We characterize the set W(x) under the U(d)×U(D) symmetry (452) [and the permu-

tation symmetry (454) for x = GEN]. Using the U(d) × U(D) symmetry (452), we write
C using the operator Eµ,dij introduced in Eq. (54) as

C =
∑

µ∈Yd
n+1

∑
ν∈YD

n+1

dµ∑
i,j=1

dν∑
k,l=1

[Cµν ]ik,jl(Eµ,dij )InF ⊗ (Eν,Dkl )POn (456)

for isometry inversion or isometry adjointation, and

C =
∑
λ∈Yd

n

∑
ν∈YD

n+1

dλ∑
a,b=1

dν∑
k,l=1

[Cλν ]ak,bl(Eλ,dab )In ⊗ (Eν,Dkl )POn (457)

for universal error detection using a dµdν (dλdν)-dimensional square matrix Cµν (Cλν),
where ik (ak) and jl (bl) are the indices for row and column numbers, respectively. We
also write W and W (i) appearing in the characterization of W(x) as

W =
∑
λ∈Yd

n

∑
ν∈YD

n+1

dλ∑
a,b=1

dν∑
k,l=1

[Wλν ]ak,bl(Eλab)In ⊗ (Eνkl)POn , (458)

W (i) =
∑
λ∈Yd

i

∑
ν∈YD

i+1

dλ∑
a,b=1

dν∑
k,l=1

[W (i)
λν ]ak,bl(Eλab)Ii ⊗ (Eνkl)POi . (459)
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Using Lemma 3, the condition C ∈ W(x) for x ∈ {PAR,SEQ,GEN} are given by

C ∈ W(x) ⇐⇒

{Cµν} ∈ W
(x)
sym (isometry inversion, isometry adjointation)

{Cλν} ∈ W
(x)
sym (universal error detection)

, (460)

where W(x)
sym is given by

{Cµν} ∈ W
(PAR)
sym ⇐⇒

Cµν =
∑

λ∈µ−□

(Xµ
λ ⊗ 1dν )Wλν(Xµ

λ ⊗ 1dν )† ∀µ ∈ Ydn+1, ν ∈ YDn+1∑
ν∈YD

n+1

m(D)
ν Trν(Wλν) = 1dλ

∀λ ∈ Ydn
, (461)

{Cµν} ∈ W
(SEQ)
sym ⇐⇒

Cµν =
∑

λ∈µ−□

(Xµ
λ ⊗ 1dν )Wλν(Xµ

λ ⊗ 1dν )† ∀µ ∈ Ydn+1, ν ∈ YDn+1∑
ν∈κ+□

m(D)
ν (1dλ

⊗Xκ
ν )W (i)

λν (1dλ
⊗Xκ

ν )† =
∑

γ∈λ−□

m(D)
κ (Xλ

γ ⊗ 1dκ)W (i−1)
γκ (Xλ

γ ⊗ 1dκ)†

∀i ∈ {1, · · · , n}, λ ∈ Ydi , κ ∈ YDi
W

(0)
∅□ = 1

D

,

(462)

{Cµν} ∈ W
(GEN)
sym ⇐⇒

Cµν =
∑

λ∈µ−□

(Xµ
λ ⊗ 1dν )Wλν(Xµ

λ ⊗ 1dν )† ∀µ ∈ Ydn+1, ν ∈ YDn+1

[Wλν , πλ ⊗ π′
ν ] = 0 ∀π ∈ Sn,∑

ν∈κ+□

m(D)
ν (1dλ

⊗Xκ
ν )Wλν(1dλ

⊗Xκ
ν )† =

∑
γ∈λ−□

m(D)
κ (Xλ

γ ⊗ 1dκ)W (n−1)
γκ (Xλ

γ ⊗ 1dκ)†

∀λ ∈ Ydn, κ ∈ YDn∑
λ∈Yd

n

∑
ν∈YD

n+1

m
(d)
λ m(D)

ν Tr(Wλν) = dn

(463)

for isometry inversion and isometry adjointation, where W (i)
γκ for γ ∈ Ydi and κ ∈ YDi+1 are

defined by

W (i)
γκ :=


Wγκ (i = n)
1
d

∑
λ∈γ+□

∑
ν∈κ+□

m
(d)
λ
m

(D)
ν

m
(d)
γ m

(D)
κ

(Xγ
λ ⊗Xκ

ν )W (i+1)
λν (Xγ

λ ⊗Xκ
ν )† (i ∈ {0, · · · , n− 1})

,

(464)

πλ is the irreducible representation of π given in Eq. (49), and π′
ν is the irreducible repre-

sentation of π′ defined by π′(1) = 1 and π′(i + 1) = π(i) + 1 for i ∈ {1, · · · , n}. The set
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W(x)
sym is given by

{Cλν} ∈ W
(PAR)
sym ⇐⇒

Cλν = Wλν ∀λ ∈ Ydn, ν ∈ YDn+1∑
ν∈YD

n+1

m(D)
ν Trν(Wλν) = 1dλ

∀λ ∈ Ydn , (465)

{Cλν} ∈ W
(SEQ)
sym ⇐⇒

Cλν = Wλν ∀λ ∈ Ydn, ν ∈ YDn+1∑
ν∈κ+□

m(D)
ν (1dλ

⊗Xκ
ν )W (i)

λν (1dλ
⊗Xκ

ν )† =
∑

γ∈λ−□

m(D)
κ (Xλ

γ ⊗ 1dκ)W (i−1)
γκ (Xλ

γ ⊗ 1dκ)†

∀i ∈ {1, · · · , n}, λ ∈ Ydi , κ ∈ YDi
W

(0)
∅□ = 1

D

,

(466)

{Cλν} ∈ W
(GEN)
sym ⇐⇒

Cλν = Wλν ∀λ ∈ Ydn, ν ∈ YDn+1
[Wλν , πλ ⊗ π′

ν ] = 0 ∀π ∈ Sn,∑
ν∈κ+□

m(D)
ν (1dλ

⊗Xκ
ν )Wλν(1dλ

⊗Xκ
ν )† =

∑
γ∈λ−□

m(D)
κ (Xλ

γ ⊗ 1dκ)W (n−1)
γκ (Xλ

γ ⊗ 1dκ)†

∀λ ∈ Ydn, κ ∈ YDn∑
λ∈Yd

n

∑
ν∈YD

n+1

m
(d)
λ m(D)

ν Tr(Wλν) = dn

(467)

for universal error detection. Using this characterization of W(x) with the U(d) × U(D)
and permutation symmetry, the dual SDPs (434), (440), (446) and (451) can be simplified
as follows:

• Probabilistic exact isometry inversion

min
∑

µ∈Yd
n+1

∑
ν∈YD

n+1

TrCµν/dn+1

s.t. ω ∈ R, 0 ≤ Cµν ∈ L(Cdµ ⊗ Cdν ) ∀µ ∈ Ydn+1, ν ∈ YDn+1,

{Cµν} ∈ Cone[W(x)
sym],

Cµν ≥ δµν(1− ω)Ωµ + ω
∑

λ∈µ−□

(Xλ
µ ⊗ 1dµ)†Ξλν(Xλ

µ ⊗ 1dµ) ∀µ ∈ Ydn+1, ν ∈ YDn+1.

(468)

• Deterministic isometry inversion

min
∑

µ∈Yd
n+1

∑
ν∈YD

n+1

TrCµν/dn+1

s.t. ω ∈ R, 0 ≤ Cµν ∈ L(Cdµ ⊗ Cdν ) ∀µ ∈ Ydn+1, ν ∈ YDn+1,

{Cµν} ∈ Cone[W(x)
sym],

Cµµ ≥ Ωµ ∀µ ∈ Ydn+1.

(469)
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• Universal error detection

max ξ −
∑
λ∈Yd

n

∑
ν∈YD

n+1

TrCλν/dn

s.t. ξ ∈ R, 0 ≤ Cλν ∈ L(Cdλ ⊗ Cdν ) ∀λ ∈ Ydn, ν ∈ YDn+1,

{Cλν} ∈ Cone[W(x)
sym],

Cλν ≥ ξΞλν − Σλν ∀λ ∈ Ydn, ν ∈ YDn+1.

(470)

• Isometry adjointation

maxω + ξ −
∑

µ∈Yd
n+1

∑
ν∈YD

n+1

TrCµν/dn+1

s.t. ξ ∈ R, 0 ≤ ω ≤ 1, 0 ≤ Cµν ∈ L(Cdµ ⊗ Cdν ) ∀µ ∈ Ydn+1, ν ∈ YDn+1,

{Cµν} ∈ Cone[W(x)
sym],

Cµν ≥ δµνωΩ +
∑

λ∈µ−□

(Xλ
µ ⊗ 1dν )†[ξΞλν − (1− ω)Σλν ](Xλ

µ ⊗ 1dν ) ∀µ ∈ Ydn+1, ν ∈ YDn+1.

(471)
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Extended abstract: Learning and testing possibly magical fermions
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Abstract. The experimental realization of increasingly complex quantum states underscores the pressing
need for new methods of state testing and learning. We show that any algorithm capable of testing if a
state is a possibly mixed free-fermionic states or not would inevitably be inefficient, but we then present
an efficient algorithm for testing low-rank free-fermionic states. We also prove improved bounds on the
sample complexity for tomography of pure free-fermionic states, and we also generalize the algorithm to the
mixed-scenario and to the case of states prepared by free-fermionic evolutions doped with a few fermionic
magic gates.

Keywords: Quantum Learning, Tomography, Testing, Magic, Perturbation bounds, Fermions

1 Introduction

Note: This submission is based on this work recently
posted on ArXiv [1] and also on another work that we
will post shortly [2].
Ubiquitous in various domains of physics, from con-

densed matter theory to quantum chemistry, free-
fermionic states, also known as fermionic Gaussian states
or states prepared by matchgates circuits, are unique for
quantum computation because they belong to a nontriv-
ial class of efficiently classically simulable states [3, 4].
While these states may be considered ineffective for ad-
vantageous quantum computation, they serve as an es-
sential milestone in the ongoing construction of fault-
tolerant quantum devices: their efficiency in classical sim-
ulation provides a powerful tool for classical benchmark-
ing quantum computation to ensure the correct func-
tionality of quantum chips. However, before implement-
ing any quantum benchmarking protocol based on free-
fermionic states, experimentalists must verify that the
state prepared on a quantum device is indeed close to
a free-fermionic state. Addressing this concern, we for-
malize the problem as a property testing problem, aim-
ing to distinguish situations where a given state (gen-
erally mixed) is close to the set of free-fermionic states
from those where it is far. In the same fashion, given
access to an unknown free-fermionic state, experimental-
ists must be able to learn a classical description of the
state – a problem formalized as quantum state tomogra-
phy. Our work comprehensively addresses the problem
of testing and tomography of free-fermionic states, pro-
viding scenarios with provable efficiency guarantees and
ruling out situations in which the aforementioned tasks
are hard to perform. We also extend the learning and
testing problem to the scenario of states prepared by ar-

∗bittel@fu-berlin.de
†jense@fu-berlin.de
‡yaroslav@cwi.nl
§lorenzo.leone@fu-berlin.de
¶a.mele@fu-berlin.de

bitrary many free-fermionic evolutions and at most t lo-
cal non-free evolutions, that we call t-doped fermionic
Gaussian states (or t-doped free-fermionic/matchgates
states). By Jordan-Wigner mapping, this also includes
n-qubit states prepared by nearest-neighbour matchgate
circuits with at most t SWAP-gates. The workhorse of
our results is provided by new insights into free-fermionic
states: Specifically, we show lower and upper bound on
the minimum trace distance between a state and the set
of free-fermionic states, which also serve as efficiently
computable measures of ‘non-Gaussianity’ for the state.
We derive useful bounds on the trace distance between
two possibly mixed free-fermionic states in terms of the
norm difference of their correlation matrices. Further-
more, we show that all the ‘magic’ in a t-doped free-
fermionic state can be compressed via a free-fermionic
unitary to a localized region of the system.

2 Fundamental insights

Imagine one aims to prepare a pure free-fermionic state
on a quantum processor. In practice, an imperfect, non-
Gaussian, yet close version of the state is actually pre-
pared. The task of quantum state certification is to verify
the almost correct preparation of the target state based
on the operational distance between the two, i.e., the
trace distance. However, since the distance between a
theoretical quantum state ψ and a quantum state ρ is
generally hard to measure, we aim to understand how
the trace distance between two “close” quantum states is
controlled by their respective correlation matrices, which
can be efficiently measured in practical scenarios. Be-
low, we upper bound the trace distance between a perfect
pure free-fermionic state ψ and a non-Gaussian (possibly
mixed) imperfect realization ρ through their respective
covariance matrices.

Proposition 1 Let ψ be a free fermionic pure state and
ρ be a arbitrary quantum state with correlation matrices
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Γ(ψ),Γ(ρ) respectively. Then:

∥ψ − ρ∥1 ≤
√

∥Γ(ψ)− Γ(ρ)∥1. (1)

Given that the correlation matrix Γ(ψ) is known and effi-
ciently classically encoded, Eq. (1) offers an efficient and
direct method to verify the accurate preparation of ψ
within a marginal error ε, as it is sufficient to measure
Γ(ρ) up to O(ε2) precision that require poly(n, 1/ε) re-
sources.
Next, we introduce two perturbation bounds for the

trace distance between two free-fermionic states in rela-
tion to the distance between their covariance matrices.

Theorem 2 (Trace distance bounds)

• Let |ψ⟩ , |ϕ⟩ be two pure free-fermionic states, then:
∥ψ − ϕ∥1 ≤ 1

2∥Γ(ψ)− Γ(ϕ)∥2 ,

• Let ρ, σ be two mixed free-fermionic states, then:

∥ρ− σ∥1 ≤
√

∥Γ(ρ)− Γ(σ)∥1 + 1
2∥Γ(ρ)− Γ(σ)∥22 .

In our technical manuscript, we also lower bound the
quantity M(ρ) = minσ∈G ∥ρ− σ∥1, where G is the set
of free-fermionic states (pure or mixed), in terms of the
correlation matrix of the state ρ. This also serve as an
efficient to estimate measure of non-Gaussianity for the
given state.
We moreover establish a property of states prepared

by arbitrary many free-fermionic evolutions (also called
matchgates or Gaussian gates) and at most t local non
free-fermionic gates (e.g., SWAP gates), that we denote
as t-doped free-fermionic states (or, t-doped fermionic
Gaussian state).

Theorem 3 (Magic compression) For any t-doped
free-fermionic state |ψ⟩, there exists a Gaussian opera-
tion G such that

G |ψ⟩ = |ϕ⟩ ⊗
∣∣0n−κt

〉
, (2)

where |ϕ⟩ is a state supported exclusively on κt qubits and
κ is a constant.

Besides being fundamental for the efficiency of subse-
quent testing and tomography algorithms, we expect that
these results have extensive applicability in the context
of free fermions, in both theoretical and experimental
realms. For example, the latter theorem sheds light also
on the efficient circuit compilation of this class of states.

3 Testing free-fermionic states

Given copies of an unknown quantum state ρ, how to
understand if it close or far from the set of free fermionic
states? Our goal is to identify scenarios in which ad-
dressing the aforementioned question is feasible in terms
of resources, to provide algorithms with provable effi-
ciency guarantees, and to delineate situations in which
answering the question is challenging. First of all, let us
formulate the problem in a rigorous fashion.
Problem 1 Let εB > εA ≥ 0. Given N copies of an
unknown quantum state ρ with the promise that it falls
into one of two distinct situations:

• Case A: There exists a free-fermionic state σ ∈ G
such that ∥ρ− σ∥1 ≤ εA.

• Case B: ρ is εB-far from all free-fermionic states
σ, indicating minσ∈G ∥ρ− σ∥1 > εB .

Determine whether the state is in Case A or Case B
through measurements performed on the provided N
state copies. Further specifications regarding the rank of
the state ρ and the set of free-fermionic states G ≡ Gpure,
Gmixed, GR (being pure, mixed and bounded rank R free-
fermionic states respectively) must be provided.

When no prior assumptions on the state ρ and no re-
strictions on the set of free-fermionic states G are pro-
vided, we establish the general hardness for Problem 1,
demonstrating that N = Ω(2n) copies of the state ρ are
necessary. Below, we present a more refined version of
the mentioned no-go result.

Theorem 4 (Hardness of testing) Let εB > 0. Let ρ
denote the unknown state and G the set of free fermionic
states considered. To solve Problem 1, with at least a 2/3
probability of success, N = Ω(R/ε2B) copies are necessary
if either of the following hypotheses is assumed:

• ρ is such that rank(ρ) ≤ R,

• G ≡ GR.

In particular, for R = exp(Ω(n)) the sample complexity
grows exponentially in the number of modes n.

Given this hardness results, Theorem 4 prompts the
natural question of whether an algorithm exists that
scales polynomially with the rank R, which solve the
property testing problem under the assumption that ρ
has a rank at most R or when restricting to the set GR.
In response to this, we present the following theorem.

Theorem 5 (Efficient free-fermionic testing))
Problem 1 can be solved with N = poly(n,R) copies of ρ
in the following scenarios:

1. the given state ρ is such that rank(ρ) ≤ R;

2. the set of Gaussian states is restricted to GR.

We provide algorithms for case (i) and (ii) that use N
samples and poly(n,R) computational resources.

Let us summarize our findings. In its full generality,
that is, without rank assumptions on the state ρ and
considering G ≡ Gmixed, Problem 1 requires N = Ω(2n)
samples of the state to be solved. However, as claimed
in Theorem 5, we have established that Problem 1 can
be efficiently addressed both sample-wise and computa-
tionally under two specific scenarios: (i) when the given
state ρ has a rank R that scales polynomially with the
number of modes n, or (ii) when the focus is solely on
quantifying closeness to the set of Gaussian states with
polynomially bounded rank GR.
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4 Learning free-fermionic states

We present a simple algorithm for efficiently learning
a unknown n-qubit free-fermionic state either pure or
mixed. More rigorously, we are concerned with the fol-
lowing problem: let ρ ∈ G, with G = Gmixed,Gpure, be
a unknown (either pure or mixed) free-fermionic state,
design a computationally efficient quantum learning al-
gorithm that consumes N copies of ρ and output a clas-
sical description ρ̂ that is ε-close in trace distance to
ρ with failure probability of at most δ. Some earlier
works [6, 5, 7] have already tackled this problem, but
their analyses have been limited to the specific case of
ρ being a pure free fermionic state. We first provide
a better sample complexity upper bound limited to the
case of pure states that significantly improves upon pre-
vious work. What is more, our approach extends to the
more realistic mixed state scenario, significantly broad-
ening the scope of such result. This extension, as well as
the improved algorithm for pure state case, heavily rely
on the toolkit developed and discussed in this paper, in
particular Theorem 2.

Theorem 6 (Pure Gaussian states tomography)
Let ψ be a pure free-fermionic quantum state. For
ε, δ ∈ (0, 1), there exist a learning algorithm that utilizes
N = O((n3/ε2) log

(
n2/δ

)
) copies of the state and only

single-copies measurements to learn an efficient classical
representation of the state ψ̂ obeying ∥ψ − ψ̂∥1 ≤ ε, with
a success probability of at least 1− δ.

Thus, our scalingO(n3/ε2) improves upon the previous
best scaling of Ref. [7] that was O(n3m2/ε4) (where m
represents the fixed number of particles of the fermionic
state). We now present the theorem for the mixed case
scenario.

Theorem 7 (Mixed Gaussian states tomography)
Let ρ be a mixed free-fermionic quantum state. For
ε, δ ∈ (0, 1), there exist a learning algorithm that,
utilizing N = O((n5/ε4) log

(
n2/δ

)
) copies of the state

ρ and single-copies measurements, learns a classical
representation ρ̂ of the state ρ obeying ∥ρ̂− ρ∥1 ≤ ε,
with a success probability of at least 1− δ.

5 Learning and testing magical fermions

As in the case of Clifford circuits, for which the in-
troduction of magic gates, such as T-gates, allows to
reach universal quantum computation, also for the case
of Gaussian (i.e., free-fermionic or matchgates) circuits
the inclusion of certain magic gates, for example SWAP
gates [8], allows to reach universality. If the number
t of T-gates in a Clifford circuit is low, the resulting
states can still be efficiently simulated classically [9]; it
has also been recently demonstrated that such states,
termed as t-doped stabilizer states, are still efficiently
learnable [10, 11, 12]. Similarly, in the past year, it has
been shown that matchgates circuits with a few magic
gates are also classically simulable [13, 14, 15]. How-
ever, the learnability of such “t-doped fermionic states”

remains unknown and this motivates the question: Can
we efficiently learn states prepared by Gaussian opera-
tions (e.g. matchgates) and a few magic gates?

We answer it by proposing a sample and time efficient
quantum learning algorithm of polynomial time and sam-
ple complexity that uses only single-copy measurements
and learns a classical description of a t-doped fermionic
Gaussian state; the learned state is guaranteed to be close
to the true state in trace distance.

Theorem 8 (t-doped tomography) Let |ψ⟩ be a t-
doped Gaussian state, and ε, δ ∈ (0, 1]. Utilizing
O(poly(n, 2t)) single-copy measurements and computa-
tional time, there exists an algorithm which outputs a
classical representation of a state which is guaranteed to
be at least ε close in trace distance to |ψ⟩, with probability
≥ 1− δ.

Our learning algorithm may also be feasible to imple-
ment in near-term fermionic analog quantum simulators,
like cold atoms in optical lattices, since we only utilize
time evolutions of simple few-body fermionic Hamilto-
nians. The core of our algorithm relies on Theorem 3.
Informally, it says that all the magic of such states can
be compressed to a few qubits via a free-fermionic opera-
tion. The proof of this compression theorem is construc-
tive, which has implications for the circuit complexity
of |ψ⟩ and for improved preparation of doped fermionic
Gaussian states. The high level idea of the learning al-
gorithm is to first learn a Gaussian unitary which com-
presses the magic, apply it to the state, and then perform
full state state tomography on the first few qubits alone.
Our learning algorithm is efficient for t = O(log(n)) and
no longer efficient if the number of non-Gaussian gates
is larger. However, we show that any algorithm to learn
such states doped with a slightly more than than loga-
rithmic number of non-Gaussian gates, must be necessar-
ily inefficient, based on common cryptographic assump-
tions [16].

Theorem 9 (Time-complexity lower bound)
Under a common cryptographic assumption, there is no
time efficient algorithm to learn a general ω̃(log(n))-
doped Gaussian state.

To obtain this result, we exploit the theory of
pseudorandom-quantum states [17, 18], so far consid-
ered only for qubit-based systems, by bringing it into
the fermionic realm.

Furthermore, our algorithm extends to all compress-
ible states, i.e., those which can be written as |ψ⟩ =
G |ϕ⟩⊗ |0n−t⟩, where G is a Gaussian unitary and |ϕ⟩ an
arbitrary state supported solely on t-qubits (or fermionic
modes). We also propose an efficient method to test if
a given state is close or far from the set of compress-
ible states, by showing an efficiently estimatable quantity
that lower bounds the distance to this set.
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Testing whether a quantum state is far from a classically efficiently tractable set of states is a fundamental
task in quantum information. A physically relevant instance of such a set of states is given by free-fermionic
states, also known as fermionic Gaussian states or states prepared by matchgate circuits. In this study, we
analyze property testing of free-fermionic states, specifically the task of determining, through measurements,
whether an unknown state is close to or far from the set of free-fermionic states. We first show that any
algorithm capable of testing possibly mixed free-fermionic states would inevitably be inefficient. However,
we then turn to presenting an efficient algorithm to test low-rank free-fermionic states. We prove improved
bounds on the sample complexity for tomography of pure free-fermionic states, and we also generalize the
algorithm to the mixed-scenario. The workhorse of our results is provided by new insights into fermionic
Gaussian states: Specifically, we show lower and upper bound on the minimum trace distance between a state
and the set of free-fermionic states, which also serve as efficiently computable measures of ‘non-Gaussianity’
for the state. Furthermore, we derive useful bounds on the trace distance between two possibly mixed free-
fermionic states in terms of the norm difference of their correlation matrices.

I. Introduction

As the construction of quantum devices such as quantum
computers and simulators progresses, there is a growing em-
phasis on developing efficient learning schemes to extract
key diagnostic information from quantum systems. The tasks
of quantum certification [1] and benchmarking [2] are crucial
in any effort that aims are manipulating or preparing quan-
tum states to utmost precision – and hence to achieve pre-
dictive power of a sort. Extracting information from quan-
tum systems is generally a challenging task, marred by ob-
structions in sample and computational complexity, but real-
world scenarios often defy general no-go results. States pre-
pared on current quantum devices commonly feature a lot of
structure; they possess specific properties and symmetries,
diverging from general states which oftentimes can be seen
largely as abstractions. Within the realm of fermionic quan-
tum computation, free-fermionic [3] (or Gaussian) quantum
states play a crucial role. Ubiquitous in various domains of
physics, ranging from condensed matter theory [4] – then
often referred to as arising in “non-interacting” settings –
over the study of analog quantum simulators with ultra-cold
fermionic atoms [5, 6] to quantum chemistry [7] what makes
free-fermionic states unique for quantum computation is that
they belong to a non-trivial class of efficiently classically sim-
ulable states [8–10]. While these states may be considered in-
effective for advantageous quantum computation, they serve
as an essential milestone in the ongoing construction of fault-
tolerant quantum devices: Their efficiency in classical simu-
lation provides a powerful tool for classical benchmarking
quantum computation to ensure the correct functionality of
quantum chips. This situation is not dissimilar from that of
Clifford circuits and stabilizer states in the quantum comput-
ing domain.
However, before implementing any quantum benchmark-
ing protocol based on free-fermionic states, experimentalists

∗ {l.bittel, a.mele, jense, lorenzo.leone}@fu-berlin.de

must usually verify that the state prepared on a quantum de-
vice is indeed close to a free-fermionic state in the first place.
Addressing this concern, we formalize the problem as a prop-
erty testing problem, aiming to distinguish situations where
a given state (generally mixed) is close to the set of free-
fermionic states from those where it is far. We not only pro-
vide a meticulous analysis, identifying scenarios for which it
can be efficiently executed while ruling out cases in which
it is computationally hard, but also provide polynomial-time
algorithms to test

(i) whether a general state is close to or far from the set
of free-fermionic low-rank states and

(ii) whether a low-rank state is close of far to the full set
of free-fermionic states. Although seemingly similar,
the two approaches differ significantly both conceptu-
ally and operationally. Ultimately, the choice between
them rests entirely with the user and on the amount
of prior knowledge that she has on the state, which
we carefully discuss below. Moreover, these algorithms
employ single-copy measurements, making them exe-
cutable on near-term devices in a noise-resilient fash-
ion.

(iii) Furthermore, we present information-theoretic
bounds that hold independent interest from both the-
oretical and experimental perspectives. In particular,
we offer efficiently computable and experimentally
measurable lower bounds for the minimum distance
between a given state and the set of free-fermionic
states. These bounds effectively probe the degree of
non-Gaussianity (or magic) of a given state.

(iv) Moreover, for general mixed free-fermionic states, we
demonstrate that the maximal information-theoretic
difference (trace distance) between two states is, at
most, as large as the distance quantified by their re-
spective correlation matrices, encoding two-body Ma-
jorana correlation functions. This relation is rigorously
established with a optimal perturbation bound between
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the (Uhlmann) fidelity between two free-fermionic
states and the operator norm difference between the
respective correlation matrices. Beyond contributing
to our testing algorithms, this result has significant
implications for experimental perspectives, as Majo-
rana correlations are easily measurable with single-
copy Pauli measurements.

(v) Confining our analysis to pure states, we enhance this
bound by offering an optimal perturbation bound for
the overlap between two pure free-fermionic states.
This is expressed in terms of the Hilbert-Schmidt norm
difference between the correlation matrices of the
states. Remarkably, the two bounds for pure and mixed
states respectively are optimal in their respective do-
mains, and they differ, making their effective merging
unattainable. As an additional consequence of these
perturbation bounds result, we develop a straight-
forward tomography algorithm that extends beyond
and significantly improve previous known results [11],
which were focused on pure and particle-preserving
Gaussian states. In particular, for pure states, we sig-
nificantly enhance the scaling compared to Ref. [11],
and we extend the tomography algorithm for com-
pletely general mixed free-fermionic states.

A. Setup, preliminaries and definitions

In this section, we briefly provide the basic definitions nec-
essary for the main results of this work, which are presented
later on. We consider systems of n fermionic modes (or
qubits, by virtue of the Jordan-Wigner representation). Ma-
jorana operators are defined, through standard Pauli single
qubit operators {Xi, Zi, Yi, I}, as

γ2k−1 := (
k−1∏
j=1

Zj)Xk , γ2k := (
k−1∏
j=1

Zj)Yk (1)

for k ∈ [n], where [n] := {1, . . . , n}. Given a quantum state
ρ, its correlation matrix (or covariance matrix) Γ(ρ) is a 2n×
2n matrix with elements

[Γ(ρ)]j,k = − i

2
Tr ([γj , γk] ρ) , (2)

where j, k ∈ [2n]. Correlation matrices are real and anti-
symmetric, with eigenvalues in absolute value contained in
the interval [0, 1].
LetO(2n) denote the orthogonal group on a 2n-dimensional
vector space. There is bijection between O(2n) and free-
fermionic unitaries (or Gaussian) acting a on n qubits system:
For any orthogonal matrix Q ∈ O(2n), a free-fermionic uni-
tary UQ is a unitary satisfying

U†
QγµUQ =

2n∑
ν=1

Qµ,νγν (3)

for any µ ∈ [2n]. This is a mild generalization of the
SO(2n) case, which is associated with physical parity pre-
serving Gaussian unitaries. For the sake of generality, we
always present our results in the context of O(2n). Under
free fermionic unitaries UQ with associated orthogonal ma-
trix Q ∈ O(2n), correlation matrices transform simply as

Γ(UQρU
†
Q) = QΓ(ρ)QT . (4)

A free fermionic state ρ is a state which can be expressed as

ρ = UQ

n⊗
j=1

(
I + λjZj

2

)
U†
Q, (5)

for UQ being the free-fermionic unitary associated with Q ∈
O(2n) and {λj}nj=1, dubbed as normal eigenvalues, being real
numbers with |λj | ≤ 1. For more details, refer to Section II.
In the remainder of this work, we frequently employ the
Schatten p-norms as matrix norms, defined as ∥A∥p :=

tr(|A|p)1/p, for |A| :=
√
A†A. From this, the trace distance

between two quantum states ρ and σ is the distance in the
1-norm and is defined as

∥ρ− σ∥1 := tr
(√
ρ− σ

)
. (6)

The trace distance has a nice operational significance: it is the
maximum probability of distinguishing two states via gener-
alized quantum measurements. Related to the trace distance,
there is the fidelity that quantifies the closeness of two quan-
tum states and is defined as

F(ρ, σ) := Tr

(√√
σρ

√
σ

)2

. (7)

Notice that for ρ, σ being pure, it reduces to the square over-
lap between the state vectors. The trace distance and the fi-
delity are related by the Fuchs van de Graaf inequality [12]

1−
√

F(ρ, σ) ≤ 1

2
∥ρ− σ∥1 ≤

√
1−F(ρ, σ). (8)

Before concluding the section, let us introduce the set of free-
fermionic states. In particular, in the rest of this work, two
sets of free-fermionic states are considered: Gmixed, compris-
ing all free-fermionic quantum states, and GR, encompass-
ing free-fermionic states with a rank at most R = 2r , where
r ∈ [n]. We denote Gpure the set GR for R = 1. As a matter
of fact, we have Gpure ⊂ GR ⊂ Gmixed for 1 < r < n.

B. Overview of the main results

In this section, we present the main results of this work in
a relatively informal fashion, omitting their proofs. As men-
tioned earlier, the primary motivation behind this work is
to provide a robust method for testing free-fermionic states.
In achieving this goal, we have derived novel and optimal
information-theoretic bounds between the trace distance and
covariance matrices associated with fermionic states. These
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bounds are of independent interest and are instrumental for
the main algorithms of this work, namely property test-
ing and tomography of Gaussian states. Therefore, we first
present the information-theoretic bounds below and briefly
comment on their potential usage in other contexts beyond
the scope of this work. Later on, we informally discuss
the testing algorithm and the tomography algorithm in their
simplest version. For a more detailed treatment and formal
proofs, the interested reader is then referred to the more tech-
nical part of this work in Sections II, III, IV and V for detailed
derivations.

A bound for optimal free-fermionic state certification.
Imagine one aims to prepare a pure free-fermionic state on a
quantum processor. In practice, an imperfect, non-Gaussian,
yet close version of the state is actually prepared. The task
of quantum state certification [1] is to verify the almost cor-
rect preparation of the target state based on the operational
distance between the two, i.e., the trace distance. However,
since the distance between a theoretical quantum state ψ and
a quantum state ρ is generally hard to measure, we aim to un-
derstand how the trace distance between two “close” quan-
tum states is controlled by their respective correlation ma-
trices, which can be efficiently measured in practical scenar-
ios. Below, we upper bound the trace distance between a per-
fect pure free-fermionic state ψ and a non-Gaussian (possi-
bly mixed) imperfect realization ρ through their respective
covariance matrices.

Lemma 1 (Closeness of quantum states in terms of correla-
tion matrices). Let ψ ∈ Gpure be a free fermionic pure state
and ρ be an arbitrary (possibly non-Gaussian) quantum state.
Then

∥ψ − ρ∥1 ≤
√
∥Γ(ψ)− Γ(ρ)∥1, (9)

further discussed and proved in Section III. Therefore, given
that the correlation matrix Γ(ψ) is known and efficiently
classically encoded, Eq. (9) offers an efficient and direct
method to verify the accurate preparation of ψ within a
marginal error ε, as it is sufficient to measure Γ(ρ) up to
O(ϵ2) precision that require poly(n) resources.
Optimal perturbation bounds for free-fermionic states.
Next, we introduce two perturbation bounds for the fidelity
of two close free-fermionic states in relation to the distance
between their covariance matrices.

Theorem 1 (Optimal perturbation bounds for free-fermionic
states). Let |ψ⟩ , |ϕ⟩ ∈ Gpure two pure free-fermionic state vec-
tors, then

1− |⟨ψ|ϕ⟩|2 ≤ 1

16
∥Γ(ψ)− Γ(ϕ)∥22, (10)

while for ρ, σ ∈ Gmixed being two mixed free fermionic states,
we find

1−F(ρ, σ) ≤ 1

4
∥Γ(ρ)−Γ(σ)∥1 +

1

8
∥Γ(ρ)−Γ(σ)∥22. (11)

The proof has to be found in Section III. Both inequalities
(10) and (11) are optimal, i.e., they are saturated for pure and
mixed states respectively. Indeed the pure bound is tight (ex-
act) for all two mode Gaussian states of the the same parity,
while the the mixed state bound is tight for general 1 mode
Gaussian states.
Besides being fundamental for the efficiency of subsequent
testing and tomography algorithms, we anticipate Theo-
rem 1’s inequality to have extensive applicability in the con-
text of free fermions, in both theoretical and experimental
realms. It operationally quantifies the closeness between two
Gaussian states using their correlation matrices, which can
be efficiently measured and computed with polynomial ef-
forts.

Distance from the set of free-fermionic states: com-
putable measures of non-Gaussianity. Given a quantum
state ρ, the minimal distance from the set of free-fermionic
states provides an operational measure of non-Gaussianity
for fermionic systems. We recall that the minimal trace dis-
tance from a given set of free states constitutes a universally
valid measure that respects all the desired properties of re-
source monotones [13]. However, the problem with such a
measure is that it is neither computable, involving a mini-
mization procedure, nor experimentally measurable. Here,
we present lower bounds on the trace distance between a
quantum state ρ and the set of free-fermionic states, that al-
low for the efficient estimation of non-Gaussianity in practi-
cal and experimental settings.

Lemma 2 (Lower bounds to trace distances). Let ρ be an ar-
bitrary quantum state and let λr+1 be the (r + 1)-th smallest
normal eigenvalue of its correlation matrix Γ(ρ), then

min
σ∈GR

∥ρ− σ∥1 ≥ 1− λr+1, (12)

where the extremum is taken over GR. Conversely, if ρ is a
arbitrary quantum state with rank(ρ) ≤ 2r for r ∈ [n], then

min
σ∈Gmixed

∥ρ− σ∥1 ≥ (1− λr+1)
r+1

1 + (r + 1)(1− λr+1)r
. (13)

Note that Eq. (12) requires no assumption on the state ρ, and
it lower bounds the distance from the set GR. Conversely,
with the promise that ρ has a rank at most R := 2r with
r ∈ [n], Eq. (13) establishes a lower bound on the distance
from the set of all free-fermionic states Gmixed. The proof for
the above results can be found in Section III A.
As discussed in Section II, estimating the normal eigenvalues
of the correlation matrix of a quantum state can be done effi-
ciently by employing single-qubit Pauli measurements. Thus,
the above inequalities provide an efficient procedure to quan-
tify how far a state is from the set of free-fermionic states
in practical scenarios. Additionally, in Section III A, we ob-
serve that if we randomly sample a state from certain distri-
butions (e.g., 2-design distributions [14] like states prepared
by random quantum circuits of polynomial size or Haar ran-
dom states), the aforementioned lower bounds are signifi-
cantly larger than zero with high probability. This implies
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the detectability of the proposed quantity for most states in
such distributions. Also, using such inequalities, we rigor-
ously show that most of pure states are far from being free-
fermionic.

Property testing for free-fermionic states. The question
that stands behind the main motivation of our work is the
following.

Given an unknown quantum state ρ, is it close to or far from
the set of free fermionic states?

Specifically, our goal is to identify scenarios in which ad-
dressing the aforementioned question is feasible in terms
of resources, to provide algorithms with provable efficiency
guarantees, and to delineate situations in which answering
the question is challenging. First of all, let us formulate the
problem in a rigorous fashion.

Problem 1 (Property testing of free-fermionic states). Let
εB > εA ≥ 0. GivenN copies of an unknown quantum state ρ
with the promise that it falls into one of two distinct situations:

• Case A: There exists a free-fermionic state σ ∈ G such
that ∥ρ− σ∥1 ≤ εA.

• Case B: The state ρ is εB-far from all free-fermionic
states σ, indicatingminσ∈G ∥ρ− σ∥1 > εB .

Determine whether the state is in Case A or Case B through
measurements performed on the provided N state copies. Fur-
ther specifications regarding the rank of the state ρ and the set
of free-fermionic states G ≡ Gpure,Gmixed,GR must be pro-
vided.

While we show that solving Problem 1 in its full generality
requires an exponential amount of resources, rendering it un-
feasible for practical purposes, we present algorithms capable
of efficiently solving it under certain assumptions about the
state under examination or by restricting the set of consid-
ered Gaussian states.
When no prior assumptions on the state ρ and no restric-
tions on the set of free-fermionic states G are provided, we
establish the general hardness for Problem 1, demonstrating
that N = Ω(2n) copies of the state ρ are necessary. Below,
we present a more refined version of the mentioned no-go
result.

Theorem 2 (Hardness of testing bounded rank
free-fermionic states). Let εB > 0 and r ∈ [n]. Let ρ
denote the unknown state and G the set of free fermionic states
considered. To solve Problem 1, with at least a 2/3 probability
of success, N = Ω(2r/ε2B) copies are necessary if either of the
following hypotheses is assumed:

• ρ is such that rank(ρ) ≤ 2r with r ∈ [n],

• G ≡ GR with R ≤ 2r .

In particular, for r = Ω(n) the sample complexity grows expo-
nentially in the number of modes n.

While the formal proof has to be found Section IV B, the gen-
eral idea at core of this complexity arises from recognizing
that the maximally mixed state is free-fermionic. This fact
allows us to leverage the hardness of distinguishing whether
the underlying state is the maximally mixed state or far from
it in trace distance, which is a notoriously hard problem [15].
The above theorem establishes necessary conditions on the
samples N to be spent to solve Problem 1 given assump-
tions either on ρ or on G. Given these results, Theorem 2
prompts the natural question of whether an algorithm exists
that scales exponentially with r (polynomially with the rank),
which solve the property testing problem under the assump-
tion that ρ has a rank at most R = 2r or when restricting
to the set GR. In response to this, we propose two learning
algorithms that scale as O(poly(n, 2r)), and summarize our
findings in the following informal theorem.

Theorem 3 (Efficient free-fermionic testing - Informal ver-
sion of Theorems 16 and 17). Problem 1 can be solved with
N = poly(n, 2r) copies of ρ in the following scenarios:

(i) The given state ρ is such that rank(ρ) ≤ 2r .

(ii) The set of Gaussian states is restricted toGR withR ≤ 2r .

We provide algorithms for case (i) and (ii) that useN samples
and poly(n, 2r) computational resources.

The core idea behind the efficiency of low-rank free-
fermionic states lies in the fact that any free-fermionic state,
up to a free-fermionic unitary, is equivalent to a product state.
Thus, the algorithm first identifies this free-fermionic unitary
to factorize the state. This reduction allows the problem to be
simplified to testing whether the underlying state is a (free-
fermionic) product state or not. This can be solved with a
complexity that scales polynomially with the rank of the state
2r . For instance, this can be achieved by employing full state
tomography on only r+ 1 qubits. Additional details, includ-
ing assumptions on εA and εB , the algorithms presented in a
pseudocode fashion, as well as the sample and computational
analyses have to be found in Section IV.
Let us summarize our findings. In its full generality, that
is, without rank assumptions on the state ρ and considering
G ≡ Gmixed, Problem 1 requires N = Ω(2n) samples of the
state to be solved. However, as claimed in Theorem 3, we
have established that Problem 1 can be efficiently addressed
both sample-wise and computationally under two specific
scenarios: (i) when the given state ρ has a rank that scales
polynomially with the number of modes n, or (ii) when the
focus is solely on quantifying closeness to the set of Gaussian
states with polynomially bounded rank.
Although these two approaches share similarities in prin-
ciple, they differ significantly both conceptually and opera-
tionally. Ultimately, the choice between them rests entirely
with the user. Specifically, if they possesses guarantees that
the prepared state predominantly occupies a relatively small
subspace of the Hilbert space, then we provided provable
guarantees in probing the distance concerning all Gaussian
states Gmixed. Conversely, if an experimentalist lacks a clear
understanding of the nature of the state due to imprecisions
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or noise, they only have reliable assurances in determining
whether the state is close to or far from the set of Gaussian
states with polynomially bounded rank. Although seemingly
less satisfactory, the latter approach is more general and ap-
plicable in completely agnostic situations.

Efficient tomography of free-fermionic states. We con-
clude this work by presenting a simple algorithm for effi-
ciently learning a unknown n-qubit free-fermionic state ei-
ther pure or mixed. More rigorously, we are concerned with
the following problem: let ρ ∈ G, with G = Gmixed,Gpure, be
a unknown free-fermionic state, design a computationally ef-
ficient quantum learning algorithm that consumes N copies
of ρ and output a classical description ρ̂ that is ε-close in trace
distance to ρ with failure probability of at most δ. Some ear-
lier works [11, 16, 17] have already tackled this problem, but
their analysis has been limited to the specific case of ρ be-
ing a pure free fermionic state. We first provide an algorithm
limited to the case of pure states that significantly improves
upon previous work. What’s more, our approach extends to
the more realistic mixed state scenario, significantly broad-
ening the scope of such result. This extension, as well as the
improved algorithm for pure state case, heavily rely on the
toolkit developed and discussed in the first part of this work,
in particular Theorem 1.

Proposition 1 (Tomography of pure free-fermionic states).
Let ψ be a pure free-fermionic quantum state. For ε ∈ (0, 1)
and δ ∈ (0, 1] there exist a learning algorithm that utilize
N = 32(n3/ε2) log

(
4n2/δ

)
copies of the state and only

single-copies measurements to learn an efficient classical rep-
resentation of the state ψ̂ obeying ∥ψ − ψ̂∥1 ≤ ε.

Therefore the overall scaling can be enhanced from
O(n3m2/ε4) (wherem represents the fixed number of parti-
cles) to O(n3/ε2) significantly improving over the results of
Ref. [11]. A more detailed analysis is conducted in Section V.
The following theorem is a direct consequence of Theorem 1.

Theorem 4 (Tomography of mixed free-fermionic states).
Let ε ∈ (0, 1) and δ ∈ (0, 1] and ρ ∈ Gmixed. There ex-
ists a computationally efficient quantum algorithm that, em-
ployingN = O

(
(n5/ε4) log

(
n2/δ

))
copies of the state ρ and

single-copies Gaussian measurements, learns a classical repre-
sentation ρ̂ of the state ρ obeying ∥ρ̂− ρ∥1 ≤ ε, with a success
probability of at least 1− δ.

In fact, we can even strengthen this result under specific as-
sumptions on the input state ρ. Under the assumption that
the underlying state is an n-modes fermionic state with a
fixed number of particlesm, the sample complexity of the pro-
tocol can be similarly demonstrated to be O(n3m2).

C. Related work

The main motivation behind this work is to provide practi-
cal and efficient quantum algorithms for free-fermionic state
testing. However, we also consider the task of quantum state

tomography for free-fermionic states. In this section, we dis-
cuss previous work and position our algorithms in the cur-
rent literature. Addressing the testing of specific properties
in quantum states spans various contexts. A property tester
for a quantum state classC involves taking copies of a state ρ
as input and determining either A) whether ρ belongs toC or
B) if ρ is ϵ-far in trace distance from all states in C , provided
that one of these scenarios is true. The property testing prob-
lem is particularly intriguing due to its potential experimen-
tal applicability. Indeed, under relatively weak assumptions,
it provides a direct means to experimentally verify if a given
property holds.
In Ref. [15], the identity testing problem was explored with
the goal of distinguishing whether the underlying state be-
longs to the class C of states close to maximally mixed states
or is far from it. The problem, in its full generality, was shown
to require a sample complexity scaling exponentially with the
number of qubits, i.e., Ω(2n). Simultaneously, an algorithm
performing identity testing usingO(2n) samples was demon-
strated, thus showing optimality. Building on this hardness,
product state testing has been examined in Ref. [18], focus-
ing on the class C being the one of product states. Given the
significance of testing genuine multipartite entanglement in
quantum states, it is crucial to determine whether the under-
lying state is a product state or not. In Ref. [18], the authors
have established a lower bound on the sample complexity
of Ω(2n), as well as an algorithm achieving the task using
O(2n) copies by using entangled measurements over many
specimens or “copies” and O(4n) unentangled (single-copy)
measurements.
In a similar spirit to our work, there exists another relevant
class of non-trivial classically simulatable states known as
stabilizer states [19]. Stabilizer states are eigenstates of n
independent and mutually commuting Pauli operators. In
Ref. [20], considering the class C as the set of pure stabilizer
states, a property testing algorithm was demonstrated that
requires onlyO(1) samples of the state. This remarkable effi-
ciency is ultimately attributed to the use of entangling (Bell)
measurements and techniques known as Bell difference sam-
pling. In a slightly more general and practically applicable
problem considered in Ref. [21], where the classC consists of
states ε-close in trace distance to pure stabilizer states, it was
shown thatO(1) copies of the state are sufficient for the test-
ing algorithm to succeed. Similar settings in the free-bosonic
realm have also been considered [22].
Quantum state tomography is the other learning problem ad-
dressed in this work. Given N copies of an unknown quan-
tum state ρ, the aim of quantum state tomography is, through
arbitrary measurements, to produce a classical description ρ̂
of the state that is ε-close in trace distance to ρ with a fail-
ure probability of at most δ. In Ref. [23], a sample-optimal
quantum state tomography algorithm has been introduced.
Specifically, it has been shown that Ω(4n) copies of the state
are necessary for any quantum tomography algorithm to suc-
ceed. They have presented a sample-optimal algorithm scal-
ing as O(n4n), thereby matching the lower bound up to a
linear scaling factor in the number of qubits (modes) n.
Given the intrinsic inefficiency of quantum state tomography

437



6

algorithm for general states, a natural question is whether
if one restricts the class of input quantum states, whether
quantum state tomography can be conducted both sample
and computationally efficiently. In this regard, a number of
insightful work has been produced that demonstrates sam-
ple and computational efficiency for specific class of states,
which include: Pure stabilizer states [24], t-doped stabi-
lizer states [25? , 26] (states obtained by at most t non-
Clifford gates), matrix product states [27–31], quantum phase
states [? ] and more. Relevant for the current work is the re-
cent efficient learning algorithm for n free-fermionic states
with fixed particle number m presented in Ref. [11], which
we significantly improve in scope and efficiency. The algo-
rithm presented in Ref. [11] focuses only on learning pure
free-fermionic states with fixed particle number m, with a
scaling O(n3m2ε−4). In this work, we not only improve the
scaling from O(n3m2ε−4) to O(n3ε−2), but we broaden the
scope of the tomography algorithm to more practical sce-
narios and consider the case of mixed free-fermionic states.
Notably, the analogous problem of learning mixed Gaussian
states was previously unresolved also in the bosonic context.
However, in a parallel work [32], together with other coau-
thors, we fill this gap in the bosonic literature.

D. Discussion and open questions

In this work, we have demonstrated an efficient method for
discerning whether a quantum state is free-fermionic or not,
utilizing experimentally feasible measurements. Addition-
ally, we have introduced lower bounds, that can be efficiently
estimated, on the distance of a state from the set of free-
fermionic states. These bounds offer valuable insights into
quantifying the extent of non-free fermionic features present
in a quantum system. Furthermore, we have formally ex-
tended a series of algorithms algorithms previously proposed
for learning free-fermionic pure states to the more complex
mixed-state scenario. We posit that the findings presented in
this work can serve as a valuable resource for designing and
conducting quantum simulation experiments.
Furthermore, while our analysis comprehensively addresses
the literature on testing and tomography of free-fermionic
states, providing scenarios with provable efficiency guaran-
tees and ruling out situations in which the aforementioned
tasks are hard to perform, there remain several open ques-
tions related to the topics discussed in this paper.

• As discussed above, one particularly relevant class of
classically simulatable states is the class of stabilizer
states. While testing whether a given pure state is close
or far in trace distance to the set of pure stabilizer states
has been addressed, provable efficiency guarantees, as
well as sample complexity lower bounds, are still miss-

ing for the more general and practical case of mixed
states. Exploring this avenue would be interesting, es-
pecially in light of the algorithms discussed and devel-
oped in the manuscript.

• Within the class of classically simulatable states, there
are subclasses representing “small” deviations from the
sets of free-fermionic states or stabilizer states. Typi-
cally, such “small” deviations can be characterized by
various notions related to the non-Gaussianity or non-
stabilizerness of the given states, such as Gaussian
rank (resp. stabilizer rank), doping the states with non-
Gaussian (resp. non-Clifford) operations, or Gaussian
extent (resp. stabilizer extent). Exploring these more
general scenarios is therefore essential for both testing
problems and quantum state tomography problems.

• The technical aspect of our work heavily relies on novel
matrix inequalities proven here. In particular, The-
orem 1 presents two optimal bounds relating the fi-
delity and the norm distance between the correlation
matrices of pure and mixed Gaussian states, respec-
tively. However, as also noted below Theorem 1, the
two bounds cannot be merged. However, if we trans-
fer the perturbation bound through the Fuchs-van de
Graaf inequality to the trace distance, from Eq.(11) we
obtain different results for the pure and mixed cases,
respectively,

∥ψ − ϕ∥1 ≤ 4−1∥Γ(ψ)− Γ(ϕ)∥2, pure states,
∥ρ− σ∥1 ≲ 2−1

√
∥Γ(ρ)− Γ(σ)∥1, mixed states.

Moreover, for the restrictive case in which [ρ, σ] = 0,
in Theorem 15, we can tighten Eq. (11) to

∥ρ− σ∥1 ≤ 2−1∥Γ(ρ)− Γ(σ)∥1. (14)

Therefore, we conclude that it should be plausible that,
for the trace-distance bound, there should be a univer-
sal bound for the pure and mixed cases that goes as

|ρ− σ| ≲ α∥Γ(ρ)− Γ(σ)∥1, (universal bound?)

with α = Θ(1). Finding such a bound would guar-
antee optimal perturbation bounds for the trace norm
difference as well and will be a matter of exciting future
investigation.
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II. Preliminaries

A. Notation and basic definitions

We use the following notation throughout our work. We denote with Cd×d the set of d × d complex matrices, with d ∈ N.
The notation [d] denotes the set of integers from 1 to d, i.e., [d] := {1, . . . , d}. We denote as I the identity operator, with a
subscript specifying the dimension when necessary for clarity. The Schatten p-norm of a matrix A ∈ Cd×d, with p ∈ [1,∞], is
given by

∥A∥p := Tr((
√
A†A )p)1/p, (S15)

which corresponds to the p-norm of the vector of singular values of A. The operator norm of a matrix A ∈ Cd is equal to
its largest singular value. We denote the Hilbert-Schmidt scalar product as ⟨A,B⟩HS := Tr

(
A†B

)
. We denote as O(2n) the

group of real orthogonal 2n× 2n matrices. We denote the n-qubits Pauli operators as the elements of the set {I,X, Y, Z}⊗n,
where I,X, Y, Z represent the standard single qubits Pauli. Pauli operators are traceless, Hermitian, square to the identity
and form an orthogonal basis with respect the Hilbert-Schmidt scalar product for the space of linear operators. We define the
set of quantum states as S

(
Cd
)
:={ρ ∈ Cd×d : ρ ≥ 0, Tr(ρ) = 1}. A state ρ is pure if and only if ρ2 = ρ.

B. Free-fermionic states

In this subsection we provide definitions and Lemmas on free-fermionic states, which are useful for deriving our results. While
we define these concepts in terms of qubits, it is worth noting that they can also be directly expressed in terms of fermions via
the Jordan-Wigner mapping. In the following we consider ann-qubits system (or equivalently, n fermionic modes). Throughout
this discussion, we focus on an n-qubit system. To begin, we introduce the definition of Majorana operators in relation to Pauli
matrices.
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Definition 1 (Majorana operators). For each k ∈ [n], Majorana operators can be defined as

γ2k−1 :=

k−1∏
j=1

Zj

Xk, γ2k :=

k−1∏
j=1

Zk

Yk. (S16)

As can be readily verified, Majorana operators are Hermitian, traceless, and they square to the identity

γµ = γ†µ, Tr(γµ) = 0, γ2µ = I (S17)

for all µ ∈ [2n]. Moreover, they anti-commute and are orthogonal with respect to the Hilbert-Schmidt inner product

{γµ, γν} = 2δµ,νI, ⟨γµ, γν⟩HS = 0 (S18)

for allµ, ν ∈ [2n]. As such, operators defined by Jordan-Wigner transformation conforms with the Majorana anti-commutation
relations. A useful and easy to verify identity is iZj = γ2j−1γ2j .

Definition 2 (Majorana products). Let S be the set S := {µ1, . . . , µ|S|} ⊆ [2n] with 1 ≤ µ1 < · · · < µ|S| ≤ 2n. We define

γS := γµ1
· · · γµ|S|

if S ̸= ∅ and γ∅ = I otherwise.

It is worth noting that the number of different sets S ∈ [2n] and hence Majorana products is 4n. For any set S, S′ ⊆ [2n],
Majorana products are orthogonal

⟨γS , γS′⟩HS = 2nδS,S′ .

Hence, they form a basis for Cd×d.

Definition 3 (Free-fermionic unitary). For any orthogonal matrix Q ∈ O(2n), a free-fermionic unitary UQ (also known as
Gaussian unitary) is a unitary which satisfies

U†
QγµUQ =

2n∑
ν=1

Qµ,νγν (S19)

for any µ ∈ [2n].

From this definition, it follows that U†
Q = UQT . Since product of Majorana operators γµ with µ ∈ [2n] form a basis for the

linear operators Cd×d, it suffices to specify how a unitary acts on the 2n Majorana operators γµ with µ ∈ [2n] to uniquely
specify the unitary up to a phase. Specifically, for a given orthogonal matrix, there exists a known exact implementation of the
associated free-fermionic unitary, which can be achieved using either O(n2) local 2-qubit gates [33] or O(n2) local 2-modes
free-fermionic unitary Majorana evolutions [34]. From the previous definition, it follows the following.

Lemma 3 (Adjoint action of Gaussian unitary on a Majorana product). For any S ⊆ [2n] and UQ free-fermionic unitary with
Q ∈ O(2n), we have

U†
QγSUQ =

∑
S′⊆([2n]

|S| )

det(Q|S,S′)γS′ (S20)

where
(
[2n]
|S|
)
is defined as the set of subsets of [2n] of cardinality |S|, while Q|S,S′ is the restriction of the matrix Q to rows and

columns indexed by S and S′ respectively.

Proof. See Ref. [35] for a proof.

We now give the definition of free-fermionic states (also known as fermionic Gaussian states).

Definition 4 (Free-fermionic states). A free-fermionic state (also known as Gaussian state) in the Jordan-Wigner mapping can
be defined as

ρ = UQρ0U
†
Q, with ρ0 :=

n⊗
j=1

(
I + λjZj

2

)
(S21)

where λj ∈ [0, 1] for each j ∈ [n] and UQ is the free-fermionic unitary associated to the orthogonal matrix Q ∈ O(2n).
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This definition is slightly more general than defining a free-fermionic state like a state of the form
exp(−βH)/Tr(exp(−βH))), where β ∈ R and H is a quadratic Hamiltonian in the Majorana operators. From the previous
definition, it follows that ρ is pure if and only if λj ∈ {−1, 1} for each j ∈ [n]. In such pure case, the state will beUQ |x⟩, where
|x⟩ :=

⊗n
i=1 |xi⟩ is a computational basis state with xi := (1 − λi)/2. Since X1 and {XjXj+1}nj=1 = {−iγ2jγ2j+1}nj=1

are fermionic Gaussian unitaries, and the product of Gaussian unitaries is Gaussian, it follows that {Xj}nj=1 are Gaussian
unitaries. Thus, without loss of generality, any pure fermionic Gaussian state can be written as UQ |0n⟩, which is uniquely
specified by an orthogonal matrix Q ∈ O(2n).
We can define now the correlation matrix of any (possibly non-free-fermionic) state.

Definition 5 (Correlation matrix). Given a (general) state ρ, we define its correlation matrix Γ(ρ) as:

[Γ(ρ)]j,k := − i

2
Tr ([γj , γk] ρ) , (S22)

where j, k ∈ [2n].

The correlation matrix of any state is real and anti-symmetric, thus it has eigenvalues in pairs of the form ±iλj for j ∈ [2n],
where λj are real numbers such that |λj | ≤ 1. Under free-fermionic unitaries, the correlation matrix of any quantum state
changes by the adjoint action with the associated orthogonal matrix, as expressed in the following proposition.

Lemma 4 (Transformation of the correlation matrix under free-fermionic unitary). For any state ρ, we have

Γ(UQρU
†
Q) = QΓ(ρ)QT , (S23)

for any free-fermionic unitary UQ associated to an orthogonal matrix Q ∈ O(2n).

This is easily verified by the definition of correlation matrix and free-fermionic unitary. We denote as Λ the correlation matrix
of the |0n⟩ state vector, namely

Λ :=
n⊕

j=1

(
0 1
−1 0

)
=

n⊕
j=1

(iY ). (S24)

The correlation matrix of a computational basis state |x⟩ with x ∈ {0, 1}n is Γ(|x⟩) =
⊕n

j=1(−1)xi(iY ). It turns out that any
real anti-symmetric matrix can be diagonalized with an orthogonal matrix, in particular we have the following result.

Lemma 5 (Normal decomposition of real anti-symmetric matrices [3]). Any real anti-symmetric matrix Γ can be decomposed
in the so-called normal form

Γ = Q

n⊕
j=1

(
0 λj

−λj 0

)
QT , (S25)

for an orthogonal matrix Q ∈ O(2n) and {λj}nj=1 ∈ R real numbers ordered in increasing order. Thus, the eigenvalues of Γ are
±iλj for any j ∈ [n]. We denote {λj}nj=1 as normal eigenvalues.

The decomposition in Lemma 5 can be always performed in such a way that the orthogonal matrix Q ∈ SO(2n) (i.e., its
determinant is one). In fact, if that is not the case, then we can write Q = Q′diag(−1, 1, . . . , 1), for a matrix Q′ ∈ SO(2n)
(note that this matrix Q′ exists because the product of two orthogonal matrix is an orthogonal matrix and because of the
Cauchy–Binet formula of the determinant).
Using Lemma 5, we can show that the correlation matrix of any state ρ has normal eigenvalues less than one (and thus also
the absolute values of its eigenvalues). In fact, let Γ(ρ) = Q(

⊕n
j=1 iλjY )QT be the correlation matrix expressed in its normal

form. Then, we have

λj = (QTΓ(ρ)Q)2j−1,2j = (Γ(U†
QρUQ))2j−1,2j = Tr

(
U†
QρUQZj

)
. (S26)

Thus, because of Holder inequality we have |λj | ≤ ∥U†
QρUQ∥1∥Zj∥∞ = 1

Furthermore, by using Lemma 5, we establish a bijection between the set of free-fermionic states and the set of real-anti-
symmetric matrices with eigenvalues smaller than one in absolute value.
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Lemma 6 (Bijection between free-fermionic states and correlation matrices). Given a free-fermionic state of the form

ρ = UQρ0U
†
Q, with ρ0 :=

n⊗
j=1

(
I + λjZj

2

)
(S27)

where λj ∈ [−1, 1] for each j ∈ [n] and UQ is the free-fermionic unitary associated to the orthogonal matrix Q ∈ O(2n), then
its correlation matrix is

Γ = Q

n⊕
j=1

(
0 λj

−λj 0

)
QT , (S28)

which is a real and anti-symmetric matrix, with eigenvalues ±iλj in pairs such that λj ∈ [−1, 1] for any j ∈ [n]. Conversely,
given a real, anti-symmetric matrix Γ, it can be decomposed as in Eq. (S28), in particular, its eigenvalues are of the form ±iλj in
pairs. If λj ∈ [−1, 1], then Γ uniquely defines a state ρ of the form of Eq. (S27).

The previous theorem ensures that by specifying a valid correlation matrix (i.e., real, anti-symmetric, with eigenvalues smaller
than one), we uniquely specify a free-fermionic state. Vice versa, having a free-fermionic state, it uniquely defines a correlation
matrix. In particular, any pure free-fermionic state |ψ⟩ = UQ |0n⟩ is specified by an orthogonal matrix Q ∈ O(2n), and its
correlation matrix will be Γ(ψ) = QΛQT , where Λ is defined in Eq. (S24). From this, it follows:

Remark 1. The correlation matrix Γ(ψ) of a pure free-fermionic state ψ satisfies det(Γ(ψ)) = 1, is an orthogonal matrix and its
normal eigenvalues are all equal to one in absolute value.

Moreover, we also have that the rank of a mixed free-fermionic state is related to the number of normal eigenvalues strictly
smaller than one in absolute value, as it follows by Lemma 6.

Remark 2 (Relation between rank and normal eigenvalues of a free-fermionic state). Let ρ be a free-fermionic state, expressed
as ρ = UQ

(⊗n
j=1(I + λjZj)/2

)
U†
Q, where {λj}nj=1 ⊆ [−1, 1] and UQ is a free-fermionic unitary. Let m be the number of

elements in {λ1, . . . , λn} that are in absolute value smaller than one. We then have rank(ρ) = 2m.

In our analysis the notion of Pfaffian will be useful.

Definition 6 (Pfaffian of a matrix). Let C be a 2n× 2n anti-symmetric matrix. Its Pfaffian is defined as

Pf(C) =
1

2nn!

∑
σ∈S2n

sgn(σ)
n∏

i=1

Cσ(2i−1),σ(2i), (S29)

where S2n is the symmetric group of order (2n)! and sgn(σ) is the signature of σ. The Pfaffian of anm×m antisymmetric matrix
withm odd is defined to be zero.

Well-known properties are the following. For any matrix B, we have Pf(BCBT ) = det(B) Pf(C) and Pf(λC) = λn Pf(C),
where C is a 2n× 2n anti-symmetric matrix and λ ∈ C. Moreover, it holds that Pf(C)2 = det(C) (note that this is consistent
with the fact that the Pfaffian of an odd anti-symmetric matrix is defined to be zero, since the determinant of an odd anti-
symmetric matrix is zero). Another useful identity is

Pf

 n⊕
j=1

(
0 λj

−λj 0

) =
n∏

j=1

λj . (S30)

Now we recall the well-known Wick’s theorem, which states that the any Majorana product expectation value over a free-
fermionic state can be computed efficiently given access to its correlation matrix.

Lemma 7 (Wick’s Theorem [3, 36]). Let ρ be a free-fermionic state with the associated correlation matrix Γ(ρ). Then, we have

Tr(γSρ) = i|S|/2 Pf(Γ(ρ)|S), (S31)

where γS = γµ1
· · · γµ|S| , and S = {µ1, . . . , µ|S|} ⊆ [2n] with 1 ≤ µ1 < · · · < µ|S| ≤ 2n, while Γ(ρ)|S is the restriction of the

matrix Γ(ρ) to the rows and columns corresponding to elements in S.

Note that, since, for anyS ⊆ [2n] the restriction of the correlation matrixΓ|S is still anti-symmetric, its Pfaffian is well-defined.
The Pfaffian of Γ|S can be computed efficiently in time Θ(|S|3).
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Definition 7 (Parity). The parity operator is defined as the operator:

Z⊗n = (−1)nγ1γ2 · · · γ2n−1γ2n. (S32)

The parity of a quantum state ρ is defined as the expectation values of the parity operator, i.e.,

Parity(ρ) := Tr
(
Z⊗nρ

)
.

Lemma 8 (Gaussian states are eigenstates of the parity operator). Any Gaussian pure state |ψQ⟩ := UQ |0n⟩ associated with
the orthogonal matrix Q ∈ O(2n) satisfies:

Z⊗n |ψQ⟩ = det(Q) |ψQ⟩ . (S33)

Thus, we also have Parity(ψQ) = det(Q).

Proof. We have

Z⊗n |ψQ⟩ = (−i)nγ[2n] |ψQ⟩ = (−i)nUQU
†
Qγ[2n]UQ |0n⟩ = (−i)n det(Q)UQγ[2n] |0n⟩ (S34)

= det(Q)UQZ
⊗n |0n⟩ = det(Q) |ψQ⟩ , (S35)

where the first step follows from Jordan-Wigner, and we defined γ[2n] :=
∏n

j=1 γj . The third step follows from Eq. S20.

From this lemma, it follows that if two pure fermionic Gaussian states have different parity, then they have also zero overlap
(however, the viceversa is not true: two pure Gaussian states with the same parity can have zero overlap, e.g., |00⟩ and |11⟩).
This result can also be derived using Wick’s Theorem (Lemma 7). In fact, for a possibly mixed free-fermionic state ρ, we have

Parity(ρ) = Tr
(
Z⊗nρ

)
= Pf(Γ(ρ)). (S36)

Furthermore, according to the properties of the Pfaffian, we obtain:

Pf(Γ(ρ)) = (
n∏

j=1

λj) det(Q), (S37)

whereQ ∈ O(2n) and {λj}nj=1 are respectively the orthogonal matrix and the normal eigenvalues associated with the normal
form of Γ(ρ). If the Gaussian state ρ is pure, then all the normal eigenvalues are equal to one, hence the parity is equal to
det(Q).
We now mention an important formula that relates the overlap of two pure fermionic Gaussian states to their correlation
matrices [36].
Lemma 9 (Overlap between two pure Gaussian states [36]). The overlap between two pure Gaussian states |ψ1⟩ , |ψ2⟩ is:

| ⟨ψ1|ψ2⟩ |2 =

∣∣∣∣Pf (1

2
(Γ(ψ1) + Γ(ψ2))

)∣∣∣∣ . (S38)

It can be shown that the preceding formula is consistent with the fact that two Gaussian states with opposite parity have zero
overlap: in fact, the Pfaffian of the sum of the correlation matrices associated to the two pure Gaussian states with opposite
parity must be zero, as follows from Corollary 2.4.(b) of Ref. [37].
In our discussion, we leverage the following lemma, which is available in the literature in various forms (for instance, see Ref.
[38]).
Lemma 10 (Purification of a mixed free-fermionic state.). Any n-qubits mixed free-fermionic state ρ can be purified into a pure
free-fermionic state |ψρ⟩ of 2n-qubits. Specifically, the purified state vector |ψρ⟩ corresponds to the free-fermionic state associated
with the correlation matrix

Γ(ψρ) =

(
Γ(ρ)

√
I2n + Γ2(ρ)

−
√
I2n + Γ2(ρ) −Γ(ρ)

)
. (S39)

Proof. Since any free-fermionic state is fully specified by its correlation matrix, we only need to demonstrate that Γ(|ψ⟩⟨ψ|)
is a valid correlation matrix corresponding to a pure state, and that the partial trace of this pure state corresponds to ρ. This
latter assertion is trivial, as taking the partial trace with respect to qubits indexed by E := {n+ 1, . . . , 2n} of |ψ⟩⟨ψ| involves
considering only the restriction of Γ(|ψ⟩⟨ψ|) to the first diagonal block, corresponding to Γ(ρ), and thus yielding the state ρ [3].
Therefore, we are left to demonstrate that Γ(|ψ⟩⟨ψ|) is a valid correlation matrix corresponding to a pure state. In particular,
we need to show that it is real-anti-symmetric with eigenvalues {±i}2nj=1. The fact that it is anti-symmetric follows from the
fact that

√
I2n + Γ2(ρ) is Hermitian. Since it is anti-symmetric and real, its eigenvalues are purely imaginary. We are left to

show that the eigenvalues are all one in absolute value. This follows from the fact that Γ(|ψ⟩⟨ψ|) is unitary, as can be verified
by inspection.
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Particle-number preserving fermionic states

In this section, we introduce standard notions related to particle-number preserving fermionic states, which form a common
subset of fermionic states often considered in condensed matter physics. This concept will be useful for deriving a particle-
number preserving version of the inequality we establish for general free-fermionic states in the subsequent section.

Definition 8 (Creation and annihilation operators). The annihilation operators {aj}nj=1 and creation operators {a†j}nj=1 are
defined as:

aj :=
γ2j−1 + iγ2j

2
, a†j :=

γ2j−1 − iγ2j
2

. (S40)

for all j ∈ [n].

They satisfy the commutation relations {ak, al} = 0, {ak, a†l } = δk,l for each k, l ∈ [n]. Moreover, they satisfy a†kak =
1
2 (I − Zj) = |1⟩⟨1|k for each k ∈ [n]. Majorana operators can be then written as γ2k−1 = aj + a†j and γ2j = −i(aj − a†j) for
each k ∈ [n].

Definition 9 (Particle number operator). The operator N̂ :=
∑n

i=1 a
†
iai is denoted as the particle number operator.

The computational basis forms a set of eigenstates for the particle number operator:

N̂ |x1, . . . , xn⟩ = (x1 + · · ·+ xn) |x1, . . . , xn⟩ , (S41)

where x1, . . . , xn ∈ {0, 1}. The eigenvalue |x| := x1 + · · · + xn of the particle-number operator is the Hamming weight of
the bitstring x := (x1, . . . , xn).

Definition 10 (Particle number preserving states). A state ρ is is said to be particle number preserving if and only if it commutes
with the particle number operator, i.e., [N̂ , ρ] = 0.

From this definition, it follows that any particle-number preserving pure state is an eigenstate of the particle-number operator
N̂ , and, more generally, any particle-number preserving mixed state can be written as a convex combination of eigenstates of
the particle-number operator.
We now define the particle-number preserving correlation matrix of a quantum state ρ.

Definition 11 (Particle-number preserving correlation matrix). Given a state ρ, we define its particle number-preserving corre-
lation matrix C(ρ) as the n× n matrix such that, for each j, k ∈ [n], we have:

[C(ρ)]j,k := Tr
(
a†jakρ

)
, (S42)

It is easy to see that the particle-number preserving correlation matrix is an Hermitian matrix. In fact, for each j, k ∈ [n], we
have

[C(ρ)]∗j,k = Tr
(
(a†jakρ)

∗
)
= Tr

(
(a†jakρ)

†
)
= Tr

(
ρa†kaj

)
= [C(ρ)]k,j , (S43)

Thus, it can be unitarily diagonalized.

Lemma 11 (Relation between the correlation matrix and the particle-number preserving one of a particle-number preserving
state). Let ρ be a particle-number preserving quantum state. The correlation matrix Γ(ρ) can be written in terms of the particle-
number preserving correlation matrix C(ρ) as follows:

Γ(ρ) = (I − 2Re(C(ρ))⊗ iY + (2 Im(C(ρ)))⊗ I, (S44)

where Re(·) and Im(·) are the entry-wise real and immaginary part.

Proof. Since ρ is a particle-number preserving quantum state, then it commutes with the particle-number operator [N̂ , ρ] = 0,
which implies that ρ can be diagonalized as ρ =

∑2n

j=1 pj |ψj⟩⟨ψj |, where {pj}2
n

j=1 are non-negative numbers which add up to
one and {|ψj⟩}2

n

j=1 are eigenstates of the particle number operators. Hence, for all j, k ∈ [n], we have that:

Tr
(
ρa†ia

†
j

)
=

2n∑
m=1

pm ⟨ψm| a†ia
†
j |ψm⟩ = 0, (S45)

445



14

where the last equality follows from the fact that |ψm⟩ and a†ia
†
j |ψm⟩ are two vectors which are in the span of two different

orthogonal eigenspaces of the particle number operator (i.e., associated with two different Hamming weight). Similarly, we
have Tr

(
ρa†ia

†
j

)
= 0.

For all j, k ∈ [n], we have:

[Γ(ρ)]2j−1,2k = −iTr(γ2j−1γ2kρ) = Tr
(
(aj + a†j)(a

†
k − ak)ρ

)
= Tr

(
aja

†
kρ
)
− Tr

(
a†jakρ

)
(S46)

= δj,k − Tr
(
a†kajρ

)
− Tr

(
a†jakρ

)
= δj,k − [C(ρ)]∗j,k − [C(ρ)]j,k (S47)

= [I − 2Re(C(ρ)]j,k, (S48)

where in the third step we have used Eq. (S45), in the fourth step we have used the commutation relation of annihilation and
creation operators, in the fifth step we have used the definition of C(ρ) and the fact that it is Hermitian. For all j, k ∈ [n], we
also have:

[Γ(ρ)]2j,2k−1 = −[Γ(ρ)]2k−1,2j = −[I − 2Re(C(ρ)]k,j = −[I − 2Re(C(ρ)]j,k, (S49)

where in the first step we use the fact that Γ(ρ) is anti-symmetric, in the second step we used Eq.(S48), and in the last step the
fact that I − 2Re(C(ρ) is a symmetric matrix. Moreover, for all j ̸= k ∈ [n], it follows that:

[Γ(ρ)]2j−1,2k−1 = −iTr(γ2j−1γ2k−1ρ) = −iTr
(
(aj + a†j)(ak + a†k)ρ

)
= −iTr

(
aja

†
kρ
)
− iTr

(
a†jakρ

)
(S50)

= i[C(ρ)]∗j,k − i[C(ρ)]j,k = [2 Im(C(ρ)]j,k, (S51)

Similarly, we also have, for all j ̸= k ∈ [n]:

[Γ(ρ)]2j,2k = −iTr(γ2jγ2kρ) = iTr
(
(aj − a†j)(ak − a†k)ρ

)
= −iTr

(
aja

†
kρ
)
− iTr

(
a†jakρ

)
= [2 Im(C(ρ)]j,k, (S52)

Thus, Eq.(S44) follows.

From the previous Lemma, it follows that for two particle-number preserving state ρ and σ and any p-norms with p ∈ [1,∞],
we have:

∥Γ(ρ)− Γ(σ)∥p = 2∥Re(C(ρ)− C(σ))⊗ iY + Im(C(ρ)− C(σ))⊗ I∥p (S53)

≤ 2 21/p∥Re(C(ρ)− C(σ))∥p + 221/p∥Im(C(ρ)− C(σ))∥p, (S54)

≤ 4 21/p∥C(ρ)− C(σ)∥p, (S55)

where in the second step we have used the triangle inequality and the fact that ∥A⊗B∥p = ∥A∥p∥A∥p, and in the last step
the fact that Re(A) = (A+A∗)/2 and Im(A) = −i(A−A∗)/2 .
Lemma 12 (Relation between eigenvalues of the correlation matrices). Let ρ be a particle-number preserving quantum state.
Let {Dj}nj=1 be the eigenvalues of the particle-number preserving correlation matrix C(ρ). There exists an orthogonal matrix
which puts the correlation matrix Γ(ρ) in the normal form (as in Lemma 5) with normal eigenvalues

λj = 1− 2Dj ,

for each j ∈ [n].

Proof. SinceC(ρ) is Hermitian, for the spectral theorem, there exists u ∈ U(n), such thatC(ρ) = uDu†, whereD is a diagonal
(real) matrix. We now define the matrix O

O = Re(u)⊗ I + Im(u)⊗ iY. (S56)

This matrix O is orthogonal (and symplectic), as it can be verified by using that

Re(u)Re(u)t + Im(u) Im(u)t = I, Re(u) Im(u)t − Im(u)Re(u)t = 0, (S57)

which follow from the unitarity of u. Now, using Eq.(S56), Eq.(S57) and the fact that for particle-preserving states, Γ(ρ) can
be written in terms of C(ρ) as in Eq.(S44), it can be verified by inspection that

OTΓ(ρ)O = diag(1− 2D1, . . . , 1− 2Dn)⊗ iY. (S58)

Thus, the normal eigenvalues of Γ(ρ) are {1− 2Dj}nj=1, where Dj are the eigenvalues of C(ρ).

Using the upper bound in Eq.(S55) and the eigenvalues relation in Lemma 12, we can directly transfer many of the inequalities
that we show in the following section to the particle-preserving case.
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III. Norm inequalities for free and non-free fermionic states

In this section, we derive key relations concerning free-fermionic states, laying the groundwork for our subsequent analysis
of property testing and tomography. We start by introducing a key lemma which will be pivotal in our proofs.

Lemma 13 (Gentle measurement lemma (or quantum union bound) [39]). Let ε1, . . . , εM > 0, whereM ∈ N. Consider the
projectors {Pi}Mi=1. Let ρ be a quantum state. If Tr(Piρ) ≥ 1− εi holds for all i ∈ [n], then∥∥∥∥ρ− Pn . . . P1ρP1 . . . PM

Tr(Pn . . . P1ρP1 . . . PM )

∥∥∥∥
1

≤ 2

√∑
i∈[M ]

εi . (S59)

We leverage the gentle measurement lemma to establish the following result.

Lemma 14 (Trace distance between a pure free-fermionic state and an arbitrary state). For a pure free-fermionic state |ψ⟩ and
an arbitrary (possibly non-free-fermionic) state ρ, it holds that

∥ρ− |ψ⟩⟨ψ| ∥1 ≤
√
∥Γ(ρ)− Γ(|ψ⟩⟨ψ|)∥1 . (S60)

Proof. Since |ψ⟩ is a free-fermionic state, it can be expressed as |ψ⟩ = UQ |0n⟩ for a free-fermionic unitary associated with
Q ∈ O(2n). Define ρ′ := U†

QρUQ. For any j ∈ [n], we have

Tr
(
|0⟩⟨0|j ρ

′
)
=

1

2
+

1

2
[Γ(ρ′)]2j−1,2j =: 1− εj , (S61)

where we have used |0⟩⟨0|j = (I + Zj)/2 = (I − iγ2j−1γ2j)/2 and εj := (1− [Γ(ρ′)]2j−1,2j)/2. Now, we have

∥ρ− |ψ⟩⟨ψ| ∥1 = ∥ρ′ − |0n⟩⟨0n| ∥1 ≤ 2

√√√√ n∑
j=1

εj = 2

√√√√ n∑
j=1

1− [Γ(ρ′)]2j−1,2j

2
, (S62)

where we used the unitary invariance of the one-norm and the gentle measurement Lemma 13. Let Λ be the matrix Λ :=⊕n
j=1

(
0 1
−1 0

)
= Γ(|0n⟩⟨0n|). Observe that

∑n
j=1 [Γ(ρ

′)]2j−1,2j =
1
2 Tr

(
Λ†Γ(ρ′)

)
. Using this and Eq.(S62), we have

∥ρ− |ψ⟩⟨ψ| ∥1 ≤
√
Tr (I2n − Λ†Γ(ρ′))

≤
√
∥I2n − Λ†Γ(ρ′)∥1

=
√
∥Λ− Γ(U†

QρUQ)∥1

=
√
∥Λ−QTΓ(ρ)Q∥1

=
√
∥Γ(|ψ⟩⟨ψ|)− Γ(ρ)∥1, (S63)

where in the second step we used Hölder inequality, in the third step the definition of one-norm, in the third step the unitary
invariance of the one-norm and the definition of ρ′, in the fourth step the fact that Γ(U†

QρUQ) = QTΓ(ρ)Q, and in the last
step the unitary invariance of the one-norm and the fact that Γ(|ψ⟩⟨ψ|) = QΓ(|0n⟩⟨0n|)QT .

Lemma 15 (Trace distance between a free-fermionic state and the maximally mixed state). Let σ be an n-qubits free-fermionic
state, and d := 2n. Then we have ∥∥∥∥σ − Id

d

∥∥∥∥
1

≤ 1

2
∥Γ(σ)∥1 . (S64)

Proof. Since σ is a free-fermionic state, it can be expressed as σ = UQ

⊗n
j=1

(
I+λjZj

2

)
U†
Q, where UQ is a free-fermionic
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unitary with Q ∈ O(2n), and {λj}nj=1 ∈ [−1, 1]. Therefore, we have

∥∥∥∥σ − Id
d

∥∥∥∥
1

=

∥∥∥∥∥∥
n⊗

j=1

(
I + λjZj

2

)
− Id

d

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
n⊗

j=1

(
I + λjZj

2

)
−

n⊗
j=1

I

2

∥∥∥∥∥∥
1

≤
n∑

j=1

∥∥∥∥I + λjZj

2
− I

2

∥∥∥∥
1

=
n∑

j=1

|λj | , (S65)

where the first step utilizes the unitary invariance of the one-norm, and the second step applies the triangle inequality. We
conclude by observing that

∥Γ(σ)∥1 =

∥∥∥∥∥∥
n⊕

j=1

(
0 λj

−λj 0

)∥∥∥∥∥∥
1

= 2
n∑

j=1

|λj | . (S66)

Lemma 16 (Lower bound on trace distance in terms of correlation matrices). Given two quantum states ρ and σ, their trace
distance is lower bounded by the operator norm difference

∥ρ− σ∥1 ≥ ∥Γ(ρ)− Γ(σ)∥∞ (S67)

of their correlation matrices Γ(ρ) and Γ(σ).

Proof. Due to Hölder’s inequality, we have

∥ρ− σ∥1 ≥ sup
∥W∥∞=1

|Tr(W (ρ− σ))|. (S68)

Now, let us restrict the operators W to the form W = U†
QiγjγkUQ, where j, k ∈ [2n] and UQ is a free-fermionic unitary

associated with an orthogonal matrix Q ∈ O(2n). Indeed, note that ∥U†
QiγjγkUQ∥∞ = ∥iγjγk∥∞ = 1. It holds that

∥ρ− σ∥1 ≥ sup
∥W∥∞=1

|Tr(W (ρ− σ))| = sup
j,k∈[2n]
Q∈O(2n)

|Tr
(
U†
QiγjγkUQ(ρ− σ)

)
|. (S69)

We then have

sup
j,k∈[2n]
Q∈O(2n)

|Tr
(
U†
QiγjγkUQ(ρ− σ)

)
| = sup

j,k∈[2n]
Q∈O(2n)

|Tr
(
iγjγkUQ(ρ− σ)U†

Q

)
| (S70)

= sup
j,k∈[2n]
Q∈O(2n)

|(Q(Γ(ρ)− Γ(σ))QT )j,k|,

where in the last step we used thatΓ(UQρU
†
Q) = QΓ(ρ)QT . SinceΓ(ρ)−Γ(σ) is real and anti-symmetric, it can be brought into

a normal form Γ(ρ)− Γ(σ) = O′Λ′O′T , where Λ′ =
⊕n

i=1

(
0 λ′i

−λ′i 0

)
and {±iλ′i}ni=1 are the purely imaginary eigenvalues

of Γ(ρ)− Γ(σ). By choosing Q = O′T , we have

sup
j,k∈[2n]
Q∈O(2n)

|(Q′(Γ(ρ)− Γ(σ))Q′T )j,k| ≥ sup
j,k∈[2n]

|Λ′
j,k| = sup

i∈[n]

|λ′i| = ∥Γ(ρ)− Γ(σ)∥∞ (S71)

that concludes the proof.
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Lemma 17. Let A and B be two 2n × 2n anti-symmetric real matrices with eigenvalues {±iλk(A)}nk=1 and {±iλk(B)}nk=1
respectively, where λ(A)1 ≤ · · · ≤ λn(A) and λ(B)1 ≤ · · · ≤ λn(B). We then have

∥A−B∥∞ ≥ |λk(A)− λk(B)|, (S72)

for any k ∈ [n].

Proof. This follows from the fact that C := iA and D := iB are Hermitian matrices. Applying Weyl’s perturbation theorem
(see Ref. [40], section VI), which states that given two 2n× 2n Hermitian matrices C and D with eigenvalues c1 ≤ · · · ≤ c2n
and d1 ≤ · · · ≤ d2n, we have

∥C −D∥∞ ≥ |cj − dj |, (S73)

for any j ∈ [2n]. This implies that

∥A−B∥∞ = ∥C −D∥∞ ≥ max
j∈[2n]

|cj − dj | = max
k∈[n]

|λk(A)− λk(B)|. (S74)

Theorem 5 (Trace distance upper bound between two pure free-fermionic states). Let ψ1, ψ2 be two pure free-fermionic states
with correlation matrices Γ(ψ1),Γ(ψ2). Assuming that ∥Γ(ψ1)− Γ(ψ2)∥∞ < 2, it holds that

∥ψ1 − ψ2∥1 ≤ 1

2
∥Γ(ψ1)− Γ(ψ2)∥2. (S75)

Otherwise, if the quantity ∥Γ(ψ1)− Γ(ψ2)∥∞ (which is always ≤ 2) is equal to 2, then we simply have ∥ψ1 − ψ2∥1 = 2.

Proof. First of all, we have

∥ψ1 − ψ2∥1 = 2

√
1− |⟨ψ1|ψ2⟩|2. (S76)

This can be seen by considering Q := ψ1 − ψ2. The Hermitian matrix Q has a rank of at most 2, which means it can have at
most two non-zero eigenvalues denoted as λ1 and λ2. Since the trace of Q is zero, we have λ2 = −λ1. Additionally, we know
that Tr

(
Q2
)
= λ21 + λ22 = 2λ21, and Tr

(
Q2
)
= 2(1− |⟨u|v⟩|2). Therefore, we can conclude that λ1 =

√
1− |⟨ψ1|ψ2⟩|2. The

1-norm of Q is given by ∥Q∥1 = |λ1|+ |λ2|, which simplifies to ∥Q∥1 = 2
√

1− | ⟨ψ1|ψ2⟩ |2. From Lemma 9, it follows that:

| ⟨ψ1|ψ2⟩ |2 =

√
det

(
Γ(ψ1) + Γ(ψ2)

2

)
, (S77)

where we used that (Pf(A))2 = det(A) (note that the determinant of an antisymmetric matrix is positive). Thus, we have

| ⟨ψ1|ψ2⟩ |2 =

√
det(Γ(ψ1)T )det

(
Γ(ψ1) + Γ(ψ2)

2

)
=

√
det

(
1 + Γ(ψ1)TΓ(ψ2)

2

)
=

√
det

(
1 +X

2

)
(S78)

where the first step follows because det
(
Γ(ψ1)

T
)

= det(Γ(ψ1)) = 1 (see Remark 1), the second step follows from
det(A) det(B) = det(AB) and the fact that Γ(ψ1) is an orthogonal matrix (see Remark 1). In the last step, we defined
X := Γ(ψ1)

TΓ(ψ2), which is also an orthogonal matrix (being product of two orthogonal matrices). Since X is an normal
matrix, also 2−1(1 +X) is normal, thus its determinant is equal to the product of its eigenvalues. Thus:

| ⟨ψ1|ψ2⟩ |2 =

√
det

(
1 +X

2

)
=

√√√√ 2n∏
j=1

(
1 + λj(X)

2

)
, (S79)

where we denoted as {λj(X)}2nj=1 the eigenvalues of X . Since X is orthogonal, we also have that for each j ∈ [2n], there
exists ϕj ∈ R such that λj(X) = eiϕj .
We are now going to show that all eigenvalues of X have multiplicity two. Let |v⟩ be an eigenstate of X corresponding to the
eigeinvalue λ:

X |v⟩ = λ |v⟩ . (S80)
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We also have that:

X(Γ(ψ2) |v⟩∗) = Γ(ψ1)
TΓ(ψ2)

2 |v⟩∗ = −Γ(ψ1)
T |v⟩∗ = −Γ(ψ1)

T 1

λ∗
(X |v⟩)∗ = λ(Γ(ψ2) |v⟩∗), (S81)

where the third step follows from the fact that Γ(ψ2) is anti-symmetric and orthogonal and the fifth step from the fact that
λ−1 = λ∗. Thus, Γ(ψ2) |v⟩∗ and |v⟩ are both eigenstates of X with eigenvalue λ. Note that they must be different vectors. In
fact, if it holds that Γ(ψ2) |v⟩∗ = eiθ |v⟩ for θ ∈ [0, 2π], then multiplying by Γ(ψ2) we also have

− |v⟩∗ = eiθΓ(ψ2) |v⟩ = eiθ(Γ(ψ2) |v⟩∗)∗ = eiθ(eiθ |v⟩)∗ = |v⟩∗ , (S82)

Thus, we have |v⟩∗ = − |v⟩∗, which is an absurd. Thus we have shown that all eigenvalues of X have multiplicity two. Thus,
without loss of generality, we can assume that λn+k(X) = λk(X) for k ∈ [n]. Hence, from Eq. S79, we have

| ⟨ψ1|ψ2⟩ |2 =
n∏

j=1

(
1 + λj(X)

2

)
, (S83)

If an eigenvalue λj(X) = eiϕj is not real (which implies that its associated eigenstate is not a real vector), then also λ∗j (X) =

e−iϕj will be a distinct eigenvalue of X (as follows by simply taking the complex conjugate of Eq. (S80)). The remaining
eigenvalues will be +1 or −1. Let us denote with 2nc the number of not-real eigenvalues (they are even, as they come in
pairs), with n+ the number of +1 eigenvalues, and with n− the number of −1 eigenvalues. So that we have

n+ + n− + 2nc = n. (S84)

Thus, the X’s eigenvalues will be

{λ1(X), . . . , λn(X)} = {eiϕ1 , e−iϕ1 , . . . , eiϕnc , e−iϕnc︸ ︷︷ ︸
2nc

,+1, . . . ,+1︸ ︷︷ ︸
n+

,−1, . . . ,−1︸ ︷︷ ︸
n−

}, (S85)

where {eiϕj}nc
j=1 are not real (without loss of generality). Hence, we find

| ⟨ψ1|ψ2⟩ |2 = δn−,0

nc∏
j=1

1

4

(
1 + eiϕj

) (
1 + e−iϕj

)
(S86)

= δn−,0

nc∏
j=1

1

2
(1 + cos(ϕj))

= δn−,0

nc∏
j=1

(
1− sin2(ϕj)

)

≥ δn−,0

1−
nc∑
j=1

sin2(ϕj)

 ,

where in the last step we used Weierstrass product inequality. Next, we can rewrite

∥Γ(ψ1)− Γ(ψ2)∥22 = ∥1− Γ(ψ1)
TΓ(ψ2)∥22 (S87)

= ∥1−X∥22

=
2n∑
j=1

|1− λj(X)|2

= 2

n∑
j=1

|1− λj(X)|2

= 2

 nc∑
j=1

(
|1− eiϕj |2 + |1− e−iϕj |2

)
+

n+∑
j=1

0 +

n−∑
j=1

2


= 16

nc∑
j=1

sin2(ϕj/2) + 4n−,
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where in the last step we used that |1 − eiϕj | = 2| sin(ϕj/2)|. If n− > 0, Eq.(S86) implies that | ⟨ψ1|ψ2⟩ |2 = 0. Thus, using
Eq.(S76), we have

∥ψ1 − ψ2∥1 = 2, if n− > 0. (S88)

If n− = 0, Eqs. (S86),(S87) imply that:

| ⟨ψ1|ψ2⟩ |2 ≥ 1− 1

16
∥Γ(ψ1)− Γ(ψ2)∥22, (S89)

Thus, by Eq.(S76), we arrive at

∥ψ1 − ψ2∥1 ≤ 1

2
∥Γ(ψ1)− Γ(ψ2)∥2, if n− = 0. (S90)

We are now only left to show that the condition n− = 0 is satisfied if and only if it holds that ∥Γ(ψ1)− Γ(ψ2)∥∞ < 2. This
is indeed the case, since the quantity (which is always ≤ 2)

∥Γ(ψ1)− Γ(ψ2)∥∞ = ∥1−X∥∞ (S91)

can be equal to 2 if and only if X has at least a −1 eigenvalues if and only if n− > 0.

Remark 3 (Saturation of the inequality). We note that the above upper bound is saturated for all pure free-fermionic state ψ1, ψ2

with number of modes/qubits n ≤ 3. Thus, we get

∥ψ1 − ψ2∥1 =

{
1
2∥Γ(ψ1)− Γ(ψ2)∥2, if ∥Γ(ψ1)− Γ(ψ2)∥∞ < 2,

2, if ∥Γ(ψ1)− Γ(ψ2)∥∞ = 2.
(S92)

Proof. The case ∥Γ(ψ1)− Γ(ψ2)∥∞ = 2 is analogous to the previous proof, so let us focus on ∥Γ(ψ1)− Γ(ψ2)∥∞ < 2. Using
the same notation of the previous proof, we have that n− = 0, i.e., the number of −1 eigenvalues of X := Γ(ψ1)

TΓ(ψ2) is
zero. Hence, because of Eq. (S86), we have

| ⟨ψ1|ψ2⟩ |2 =

nc∏
j=1

(
1− sin2(ϕj)

)
. (S93)

From Eq.(S84) and using that n ≤ 3, we get

2nc + n+ ≤ 3, (S94)

which implies that nc = 0 or nc = 1.
If nc = 0, we have | ⟨ψ1|ψ2⟩ |2 = 1, which implies ∥ψ1 − ψ2∥1 = 0. Furthermore, because of Eq. (S87), we also have
1
2∥Γ(ψ1)− Γ(ψ2)∥2 = 0.
If nc = 1, we then have

| ⟨ψ1|ψ2⟩ |2 = 1− sin2(ϕ1) = 1− 1

16
∥Γ(ψ1)− Γ(ψ2)∥22, (S95)

where in the first step we have used Eq. (S93), and in the second step we have used Eq. (S87). Thus, we reach the conclusion
by using that ∥ψ1 − ψ2∥1 = 2

√
1− |⟨ψ1|ψ2⟩|2.

Next, we present an upper bound on the trace distance between two (possibly mixed) Gaussian states in terms of the norm
difference of their respective correlation matrices.

Theorem 6 (Trace distance upper bound between two mixed free-fermionic states). Let ρ, σ be two (possibly mixed) free-
fermionic states. Then it holds

∥ρ− σ∥1 ≤
√

∥Γ(ρ)− Γ(σ)∥1 +
1

2
∥Γ(ρ)− Γ(σ)∥22. (S96)

Moreover, we also have

F(σ, ρ) ≥ 1− 1

8
∥Γ(ρ)− Γ(σ)∥22 −

1

4
∥Γ(ρ)− Γ(σ)∥1, (S97)

where F(ρ, σ) := Tr
(√√

σρ
√
σ
)2

is the fidelity between ρ and σ.
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Proof. By using Lemma 10, we can purify ρ and σ to two pure free-fermionic states ψρ and ψσ with correlation matrix

Γ(ψρ) =

(
Γ(ρ)

√
I + Γ(ρ)2

−
√
I + Γ(ρ)2 −Γ(ρ)

)
. (S98)

This means

∥Γ(ψρ)− Γ(ψσ)∥22 = 2∥Γ(ρ)− Γ(σ)∥22 + 2∥
√
I + Γ(ρ)2 −

√
I + Γ(σ)2∥22 (S99)

≤ 2∥Γ(ρ)− Γ(σ)∥22 + 2∥Γ(ρ)2 − Γ(σ)2∥1
≤ 2∥Γ(ρ)− Γ(σ)∥22 + 2∥Γ(ρ)(Γ(ρ)− Γ(σ))∥1 + 2∥(Γ(ρ)− Γ(σ))Γ(σ)∥1
≤ 2∥Γ(ρ)− Γ(σ)∥22 + 4∥Γ(ρ)− Γ(σ)∥1,

where in the first step we have used that the square of the 2-norm of the entire matrix is given by the sum of the square
of the 2-norm of each sub-block (as follows by the fact that, if A1 and A2 are orthogonal with respect the Hilbert-Schmidt
scalar product, then ∥A1 ⊗B1 +A2 ⊗B2∥22 = ∥A1 ⊗B1∥22 + ∥A2 ⊗B2∥22). In the second step we have used the inequality
(Ref. [40], Eq. X.23)

∥A1/t −B1/t∥p ≤ ∥A−B∥1/tp/t., (S100)

which is valid for each t ∈ [1,∞), p ∈ [1,∞] and positive matrix A and B. In particular, for our case we use p = t = 2. In the
third step we have used triangle inequality, and in the fourth step the Holder inequality for the one-norm

∥AB∥1 ≤ min(∥A∥∞∥B∥1, ∥B∥∞∥A∥1), (S101)

and the fact that the infinity norm of any correlation matrix is upper bounded by 1. From the fact that the fidelity of two mixed
state is the maximum over all the possible purifications, we conclude that

F(σ, ρ) ≥ |⟨ψρ|ψσ⟩|2 = 1− 1

4
∥ψρ − ψσ∥21, (S102)

where we used Eq.(S76). By using Theorem 5, we have that, if ∥Γ(ψρ)− Γ(ψσ)∥∞ < 1, then

∥ψρ − ψσ∥1 ≤ 1

2
∥Γ(ψρ)− Γ(ψσ)∥2. (S103)

The condition ∥Γ(ψρ)− Γ(ψσ)∥∞ < 1 is satisfied if and only if the number of −1 eigenvalues of X := Γ(ψρ)
†Γ(ψσ) is zero

(as discussed also in the proof of Theorem 5). However, in this case, we can assume that X has always zero −1 eigenvalues
Thus, by Eq.(S102) and Eq.(S103), we have:

F(σ, ρ) ≥ 1− 1

16
∥Γ(ψρ)− Γ(ψσ)∥22 (S104)

≥ 1− 1

8
∥Γ(ρ)− Γ(σ)∥22 −

1

4
∥Γ(ρ)− Γ(σ)∥1, (S105)

where in the last step we used Eq.(S99). Thus, by using Fuchs van de Graaf inequality (Eq.(8)), we have

∥ρ− σ∥1 ≤
√
∥Γ(ρ)− Γ(σ)∥1 +

1

2
∥Γ(ρ)− Γ(σ)∥22 ≤

√
3

2
∥Γ(ρ)− Γ(σ)∥1, (S106)

If in the previous Theorem we have the additional assumption that ∥Γ(ρ)− Γ(σ)∥1 < 1, then it follows that

∥ρ− σ∥1 ≤
√

3

2
∥Γ(ρ)− Γ(σ)∥1. (S107)
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A. Quantifying non-Gaussianity: Distance from the set of free-fermionic states

In this section, our objective is to establish lower bounds on the minimum trace distance between a state ρ and the set of
free-fermionic states. This distance serves as a metric for the inherent “magic” in a given state, providing a precise quan-
tification of its “non-free-fermionic” or “non-Gaussianity” degree. The presented lower bounds on the proposed measure of
non-free-fermionic degree are carefully designed to enable time and sample-efficient estimation up to a constant precision
in an experimental setting. This capability is crucial for quantifying the extent to which a state exhibits non-free-fermionic
behavior in experimental scenarios.
We will derive bounds in different scenarios: one without prior assumptions on the state ρ and another assuming that ρ is
pure or, more generally, has a rank at mostR. Moreover, we consider two distinct sets of free-fermionic states: Gmixed and GR.
Here, Gmixed represents the set of all free-fermionic states, while GR represents the set of free-fermionic states constrained to
those with a rank at most R. We begin with a simple result, addressing the case where ρ is an arbitrary state and we consider
its distance from the set GR.

Theorem 7 (Lower bound on the distance of an arbitrary state from the set of free-fermionic states with rank at most R). Let
ρ be an arbitrary quantum state. Denote with GR the set of free-fermionic states restricted to those states with rank at most R. Let
λκ(Γ(ρ)) with κ := ⌈log2(R)⌉+ 1 denote the (possibly negative) κ-th smallest normal eigenvalue of the correlation matrix of ρ.
We then have

min
σ∈GR

∥ρ− σ∥1 ≥ 1− λκ(Γ(ρ)). (S108)

Proof. By virtue of Lemma 16, we further establish

∥ρ− σ∥1 ≥ ∥Γ(ρ)− Γ(σ)∥∞. (S109)

Furthermore, according to Lemma 17, the infinity norm difference serves as a lower bound for the difference in eigenvalues

∥Γ(ρ)− Γ(σ)∥∞ ≥ |λj(Γ(ρ))− λj(Γ(σ))|, (S110)

where {λj(Γ(ρ))}nj=1 and {λj(Γ(σ))}nj=1 are the normal eigenvalues of the two correlation matrices ordered in increasing
order. We then have

∥Γ(ρ)− Γ(σ)∥∞ ≥ |λκ(Γ(ρ))− 1| = 1− λκ(Γ(ρ)), (S111)

where we used that because of Lemma 2 λj(Γ(σ)) = 1 for all j ∈ {κ, . . . , n} and for all σ ∈ GR. The result thus follows.

From this, it follows the results when restricting to the set of pure free-fermionic states Gpure ≡ GR=1.

Corollary 1 (Lower bound on the distance of an arbitrary state from the set of pure free-fermionic states). Let ρ be a quantum
state. Let λmin denote the smallest normal eigenvalue of the correlation matrix of ρ. We then have

min
σ∈Gpure

∥ρ− σ∥1 ≥ 1− λmin. (S112)

Next, we establish a lower bound on the distance between a quantum state ρ and the set of all free-fermionic states Gmixed.
It is crucial to mention that in our previous discussion, we focused on the set of free-fermionic states with a rank no greater
than R. For pedagogical reasons, we begin by assuming that ρ is pure. Later, we will extend our analysis to ρ having a rank at
most R.

Theorem 8 (Lower bound on the distance of a pure state from the set of all free-fermionic states). Let ρ be a pure state. Let
λmin denote the (possibly negative) smallest normal eigenvalue of the correlation matrix of ρ. Then, we have

min
σ∈Gmixed

∥ρ− σ∥1 ≥ 1

2
(1− λmin) . (S113)

Here, Gmixed is the set of all free-fermionic states.

Proof. Because of Lemma 16, we can write for any σ ∈ Gmixed the lower bound

∥ρ− σ∥1 ≥ ∥Γ(ρ)− Γ(σ)∥∞ (S114)
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to the 1-norm. Let us denote as {λρi }ni=1 the eigenvalues of Γ(ρ) and {λσi }ni=1 the eigenvalues of Γ(σ) for an arbitrary free-
fermionic state σ. The bound in Eq. (S114) translates to ∥ρ− σ∥1 ≥ maxi |λρi − λσi | using the fact that the infinity norm
difference serves as a lower bound for the difference in eigenvalues [41]. Contrasting this, we also have that [41]

∥ρ− σ∥1 ≥ ∥diag(1, 0, . . . , 0)− diag(zmax, . . . , zd)∥1 = |1− zmax|+
d∑

i=2

zi = 2(1− zmax), (S115)

where {zi}ni=1 are the ordered eigenvalues of the (in general) mixed free-fermionic state σ. We know that the eigenvalues zi
of σ are related to the (positive) normal eigenvalues {λσi }ni=1 of the correlation matrix Γ(σ) because the diagonal form of σ
reads

⊗n
i=1

I+λσ
i Zi

2 . Therefore,

zmax =

n∏
i=1

1

2
(1 + λσi ) ≤

1 + mini∈[n] λ
σ
i

2
. (S116)

Plugging this upper bound on zmax into Eq. (S115), we get, for any σ ∈ Gmixed, the lower bound

∥ρ− σ∥1 ≥ (1− min
i∈[n]

λσi ) (S117)

to the 1-norm distance. Therefore, we have two lower bounds to the 1-norm distance ∥ρ− σ∥1, and we can consider the
extremum over σ and lower bound it with the maximum between these two universal lower bounds (valid for any σ). We thus
write

min
σ∈Gmixed

∥ρ− σ∥1 ≥ min
σ∈Gmixed

max{max
i∈[n]

|λρi − λσi |,max
i∈[n]

(1− λσi )} (S118)

= min
λ⃗σ∈[−1,1]n

max
i∈[n]

max{|λρi − λσi |, (1− λσi )}

= max
i∈[n]

min
λσ∈[−1,1]

max{|λρi − λσ|, (1− λσ)}

= max
i∈[n]

1− λρi
2

.

We can exchange the minimum and maximum because they act independently, and the last step follows because the function
is maximized for λσ =

1+λρ
i

2 . Therefore, we obtain the lower bound

min
σ∈Gmixed

∥ρ− σ∥1 ≥ 1−mini λ
ρ
i

2
≡ 1

2
(1− λmin) (S119)

on the minimal trace norm. This proves our claim.

Theorem 9 (Lower bound on the distance of a bounded rank state from the set of all free-fermionic states). Let ρ be a quantum
state with rank rank(ρ) ≤ R. Let σ ∈ Gmixed. Let Γ(ρ) be the correlation matrix associated to ρ and let λρ1, λ

ρ
2, . . . , λ

ρ
n be its

normal eigenvalues in decreasing order. Assume that R ≤ 2r for some r ∈ [0, n] and denote λ̄ = λρr+1. Then the trace distance is
lower bounded by

min
σ∈Gmixed

∥ρ− σ∥1 ≥ (1− λ̄)r+1

1 + (r + 1)(1− λ̄)r
. (S120)

In particular, this implies for λ̄ ≥ 1
2 ,

min
σ∈Gmixed

∥ρ− σ∥1 ≥ (1− λ̄)r+1

2
. (S121)

For R = 1 it reduces to the bound in Theorem 8 valid for pure states ρ.

Proof. First of all, let us make use of Lemma 16 to bound ∥ρ− σ∥1 ≥ ∥Γ(ρ)− Γ(σ)∥∞ ≥ |λ̄ − λσlog2 R+1| for a arbitrary
free-fermionic state σ ∈ Gmixed. Then, similar to Eq. (S115), we can lower bound [41]

∥ρ− σ∥1 ≥
∥∥diag(zρ1 , . . . , zρR, 0, . . . , 0)− diag(zσ1 , . . . , z

σ
R, z

σ
R+1, . . . , z

σ
d )
∥∥
1

(S122)

=
R∑
i=1

|zρi − zσi |+
d∑

i=R+1

zσi ≥ 1−
R∑
i=1

zσi +
d∑

i=R+1

zσi = 2− 2
R∑
i=1

zσi ,
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where zσi are the non-increasingly ordered eigenvalues of σ. We also have that
R∑
i=1

zi =: ∥σ∥KF,R (S123)

is a Ky Fan norm of σ. In the eigenbasis of σ, we can define

σ =
r+1⊗
i=1

1− λiZi

2
⊗

n⊗
i=r+2

1− λiZi

2
=: σ1 ⊗ σ2. (S124)

It follows that

∥σ∥KF,R = ∥σ1 ⊗ σ2∥KF,R =

∥∥∥∥∥∥σ1 ⊗
2n−r−1∑
k=1

αk |Ψk⟩ ⟨Ψk|

∥∥∥∥∥∥
KF,R

≤
2n−r−1∑
k=1

αk ∥σ1 ⊗ |Ψk⟩ ⟨Ψk|∥KF,R (S125)

≤
2n−r−1∑
k=1

αk∥σ1∥KF,R ≤ ∥σ1∥KF,R

where σ2 =
∑2n−r−1

k=1 αk |Ψk⟩ ⟨Ψk| is the spectral decomposition of σ2 and we have used that ∥ρ⊗ |Ψ⟩ ⟨Ψ|∥KF,R = ∥ρ∥KF,R

as well as the norm inequality. As such, ∥σ∥KF,R is maximal, if σ2 is pure, i.e., λk = 1 for k > r + 1. In general, we have for
any state σ′ ∥∥∥∥σ′ ⊗

(
α

1 + λ̄Z

2
+ (1− α)

1
2

)∥∥∥∥
KF,R

≤ α

∥∥∥∥σ′ ⊗ 1 + λ̄Z

2

∥∥∥∥
KF,R

+ (1− α)

∥∥∥∥σ′ ⊗ 1
2

∥∥∥∥
KF,R

(S126)

= α

∥∥∥∥σ′ ⊗ 1 + λ̄Z

2

∥∥∥∥
KF,R

+ (1− α) ∥σ′∥KF,R/2

≤
∥∥∥∥σ′ ⊗ 1 + λ̄Z

2

∥∥∥∥
KF,R

where we have used that ∥σ′ ⊗ 1/2∥KF,R = ∥σ′∥KF,R/2 since appending the maximally mixed state doubles multiplicity of
the singular values, while halving their respective value. In the last line we used that for any 2 level state ρ2, ∥ρ1⊗ρ2∥KF,R ≥
∥ρ∥KF,R/2. Since λi ≤ λ, we can use this procedure to upper-bound the norm of σ1 by σ̃ =

⊗r+1
i=1

1+λ̄Z
2 .

∥σ1∥KF,R ≤ ∥σ̃∥KF,R = max
S̄⊂{0,1}r+1,|S|=R

∑
s∈S̄

r+1∏
i=1

(
1 + (−1)si λ̄

2

)
(S127)

= 1− min
S̄c⊂{0,1}r+1,|Sc|=2r+1−R

∑
s∈S̄

r+1∏
i=1

(
1 + (−1)si λ̄

2

)

≤ 1− (2r+1 −R)

(
1− λ̄

2

)r+1

≤ 1−
(
1− λ̄

)r+1

2

where we have bounded the sum by its smallest term. Therefore, we can write the following two bounds we need to optimize
over for ∥ρ− σ∥1 and σ ∈ Gmixed

∥ρ− σ∥1 ≥ max
λ∈[0,1]

min
(
(1− λ)r+1, |λ− λ̄|

)
(S128)

= min
λ∈[0,1]

max
(
(1− λ)r+1, |λ− λ̄|

)
.

We can find a lower bound for this expression by inserting a particular λ. For this we use the difference function of the two
expressions f(λ) = (1−λ)r+1−(x+ λ̄) which holds for λ ∈ [λ̄, 1] which is the area of interest. By applying Newtons method
once starting with λ0 = λ̄, we obtain

λ1 = λ̄+
(1− λ̄)r+1

1 + (r + 1)(1− λ̄)r
. (S129)
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Since f(λ) monotonously decreases and is convex on the interval, we can be sure that λ1 ≤ λ∗, the root of f . This means that
(1− λ1)

r+1 ≥ |λ1 − λ̄|, which allows us to conclude that

∥ρ− σ∥1 ≥ (1− λ̄)r+1

1 + (r + 1)(1− λ̄)r
. (S130)

In particular, we have for λ̄ ≥ 1/2

1 + (r + 1)(1− λ̄)r ≤ 1 +
r + 1

2r
≤ 2 (S131)

which concludes the proof.

IV. Property testing of free-fermionic states

In this section, we address the problem of property testing free-fermionic states. Our goal is to determine whether a given
quantum state ρ is close to or far from the set of all free-fermionic states Gmixed. To enable an efficient testing algorithm, we
must make certain assumptions about the rank of the state ρ, as we show. Assuming that ρ is pure (i.e., rank one), we present
an efficient learning algorithm that relies solely on single-qubit measurements (as detailed in Subsection IV A). However,
when no assumptions are made about the rank of the state ρ, we establish the general hardness of the problem. Information-
theoretically, it requires Ω(rank(ρ)) copies to be solved (as discussed in Subsection IV B). Moreover, we provide a matching
upper bound by introducing a single-copy algorithm. This algorithm utilizes only single-copy or free-fermionic measurements
and is efficient as long as rank(ρ) = O(poly(n)) (explored in Subsection IV C).
Similarly, we show that there is an efficient property-testing algorithm in the case when ρ is an arbitrary quantum state and
the goal is to determine whether a given quantum state ρ is close to or far from the set of pure free-fermionic states Gpure. We
also show an information theoretic lower bound to solve the property testing problem when ρ is arbitrary and consider GR,
that is, the set of all free-fermionic states with rank at most R. This section concludes by providing a matching upper bound
for the above scenario. We formalize the property testing problem as follows

Problem 2 (Property testing of free-fermionic states). GivenN copies of an unknown quantum state ρ, with the promise that it
falls into one of two distinct scenarios εB > εA ≥ 0.

• Case A:There exists a free-fermionic state σ ∈ G such that ∥ρ− σ∥1 ≤ εA.

• Case B:The state ρ is εB-far from all free-fermionic states σ, i.e.,minσ∈G ∥ρ− σ∥1 > εB .

Determine whether we are in Case A or Case B by performing arbitrary measurements on the queried copies of the state ρ.

Further restrictions on the state ρ and precise specifications regarding the set of free-fermionic states G considered (e.g.,
G = Gpure, G = Gmixed, G = GR) must be provided as input to the problem. Before delving into more details, we establish a
preliminary lemma that will be instrumental later.

Lemma 18 (Sample complexity for infinity norm approximation of the correlation matrix via Pauli measurements). Let N ≥
16(n4/ε2stat) log

(
n2/δ

)
be the number of copies of an n-qubit state ρ. Through single-qubit Pauli-basis measurements, we can

find a real and anti-symmetric matrix Γ̂ such that, with probability at least 1− δ, it holds that∥∥∥Γ̂− Γ(ρ)
∥∥∥
∞
< εstat. (S132)

Proof. For j < k ∈ [2n], we estimate [Γ(ρ)]j,k = −Tr(iγjγkρ). For each iγjγk , which are M := n(2n − 1) in total, we
measure

N ′ ≥ 2

ε2
log

(
2M

δ

)
(S133)

many copies of ρ in the Pauli basis, obtaining outcomes {X̂m}N ′

m=1, where X̂m ∈ {−1,+1}. Define Γ̂j,k := 1
N ′

∑N ′

m=1 X̂m.
By Hoeffding’s inequality, we have

Pr
(
|Γ̂j,k − [Γ(ρ)]j,k| ≥ ε

)
≤ 2 exp

(
− 2N ′ε2

(b− a)2

)
(S134)
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where a := −1 and b := 1. By the union bound, we have

Pr
(
∀ j < k : |Γ̂j,k − [Γ(ρ)]j,k| < ε

)
= 1−

∑
i<j

Pr
(
|Γ̂j,k − [Γ(ρ)]j,k| ≥ ε

)
≥ 1− 2M exp

(
−N

′ε2

2

)
. (S135)

By using that N ′ ≥ 2
ε2 log

(
2M
δ

)
, we have that this probability is greater than 1 − δ. The total number of measurements is

N = N ′M . Finally, employing the Gershgorin circle theorem, we have∥∥∥Γ̂− Γ(ρ)
∥∥∥
∞

≤ 2nε. (S136)

By choosing ε = εstat/2n, we can draw our conclusions. Moreover, note that by construction Γ̂ is real and anti-symmetric.

While sequentially estimating correlation matrix entries in the Pauli basis may not be the most sample-efficient, it proves con-
venient for experiments due to its easy implementation. Alternatively, measuring commuting observables simultaneously [42]
reduces sample complexity by n but requires a slightly more intricate setup. For completeness, we present a Lemma establish-
ing a sample complexity upper bound for estimating the correlation matrix using this refined measurement scheme. The idea
is to partition observables O(j,k) := −iγjγk into 2n− 1 sets of commuting observables. Commuting Pauli observables can be
measured simultaneously via a Clifford Gaussian measurements [42]. Notably, different Pauli observables −iγjγk commute
only if associated with different Majorana operators. This allows us to partition M = (2n − 1)n observables into 2n − 1
sets, each containing n commuting Pauli observables. We refer to Ref. [42], Appendix C, for partition details, omitted here for
brevity.

Lemma 19 (Sample complexity for infinity norm approximation of the correlation matrix via commuting observables). Let
εstat, δ > 0. Assume access to N ≥

⌈
(8n3/ε2stat) log

(
4n2/δ

)⌉
copies of an n-qubit state ρ. Using N single-copy measurements,

with probability ≥ 1− δ, we can construct an anti-symmetric real matrix Γ̂ such that∥∥∥Γ̂− Γ(ρ)
∥∥∥
∞

≤ εstat. (S137)

Proof. For each of the 2n−1 sets of commuting Pauli, find the Clifford C allowing simultaneous measurement of such observ-
ables, and measure N ′ copies of CρC† in the computational basis. Note that we can choose such Clifford to be also Gaussian.
This because such Clifford diagonalizes the free fermionic Hamiltonian given by the sum of the commuting Pauli, hence it can
be chosen to be Gaussian. For each A(j,k), obtain outcomes {A(j,k)

m }N ′

m=1, where A(j,k)
m ∈ {−1,+1}. The unbiased estimators

are

Γ̂j,k :=
1

N ′

N ′∑
m=1

A(j,k)
m . (S138)

Hoeffding’s inequality and union bound imply

N ′ ≥ 2

ε2stat
log

(
4n

δ

)
(S139)

suffices to ensure |Γ̂j,k − Tr(A(j,k)ρ)| < εstat for each j < k ∈ [2n] with probability at least 1 − δ. The total number of
measurements needed is N = N ′(2n− 1), concluding as in the previous lemma.

Analogously, we get also the following by just using that ∥B∥2 ≤ 2nmaxi,j∈[2n] |Bi,j | for any matrix B ∈ C2n×2n.

Lemma 20 (Sample complexity for 2-norm approximation of the correlation matrix via commuting observables). Let εstat, δ >
0. Assume access to N ≥

⌈
(8n3/ε2stat) log

(
4n2/δ

)⌉
copies of an n-qubit state ρ. Using N single-copy measurements, with

probability ≥ 1− δ, we can construct an anti-symmetric real matrix Γ̂ such that∥∥∥Γ̂− Γ(ρ)
∥∥∥
2
≤ εstat. (S140)
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Algorithm 1: Property testing algorithm for pure free-fermionic states
Input: Error thresholds εA, εB , failure probability δ. N := ⌈8(n3/ε2stat) log

(
4n2/δ

)
⌉ copies of the pure state ρ, where

εstat <
1
2
(
ε2B
2n

− 2εA). Let εT := 1
2

(
ε2B
2n

+ 2εA
)

.
Output: Output either Case A or Case B.

1 Step 1: Estimate the entries of the correlation matrix using N single-copy measurements, resulting in the estimated 2n× 2n matrix Γ̂;
2 Step 2: Find λ̂min, which corresponds to the smallest singular value of Γ̂;
3 Step 3: if λ̂min ≥ 1− εT then
4 Output: Case A
5 else
6 Output: Case B

A. Efficient testing of pure free-fermionic states

We will now show an efficient quantum learning algorithm to solve Problem 2 when ρ is a assumed to be pure, having as
assumption that εB , εA ∈ (0, 1) are such that εB > 2

√
nεA. The proposed algorithm uses only single copies of the state ρ.

The set of free-fermionic state G that will be considered can be either the set of all free-fermionic states Gmixed or the set of
free-fermionic states restricted to the pure ones Gpure. The high-level idea of the algorithm is to output A (the state is close to
the free-fermionic set) if the eigenvalues of the estimated correlation matrix are all close to 1, while outputting B otherwise.
We present now the following Theorem which show the correctness of the algorithm presented in Table 1.

Theorem 10 (Efficient pure free-fermionic testing). Let ρ be an n-qubit pure state. Assume εB , εA ∈ (0, 1) such that εB >

2
√
nεA, δ ∈ (0, 1], and εstat < 1

2 (
ε2B
2n − 2εA). Assume that ρ is one of the two cases detailed in Problem 2, i.e., there exists a

free-fermionic state σ ∈ G such that ∥ρ − σ∥1 ≤ εA or minσ∈G ∥ρ − σ∥1 > εB . The set G considered here can be either the set
of all free-fermionic states Gmixed or the set of pure free-fermionic states Gpure. Then there exists a quantum learning algorithm
(1) which can solve Problem 2 using N = 8(n3/ε2stat) log

(
4n2/δ

)
single-copies measurements of the state ρ with a probability of

success at least 1− δ.

Proof. Let εstat > 0 be an accuracy parameter to be fixed later. By Lemma 18, with N ≥ 8(n3/ε2stat) log
(
4n2/δ

)
, single-qubit

Pauli-basis measurements we can find a matrix Γ̂ such that, with probability at least 1− δ, it holds that
∥∥∥Γ̂− Γ(ρ)

∥∥∥
∞
< εstat.

This implies that for all k ∈ [n] [41]

|λ̂k − λk| < εstat, (S141)

where {λ̂k}nk=1, {λk}nk=1 are the normal eigenvalues of Γ̂ and Γ(ρ), respectively. We can put Γ̂ in its normal form

Γ̂ = ÔΛ̂ÔT , (S142)

where

Λ̂ =

n⊕
i=1

(
0 λ̂i

−λ̂i 0

)
(S143)

and find its eigenvalues. Our algorithm now works as follows. Let εT be a parameter to fix later. If for all k ∈ [n], we have
λ̂k ≥ 1− εT, then we output A, otherwise B. In case we output A, we need to proof that there exists a free-fermionic state σ
such that ∥ρ− σ∥1 ≤ εB . From Eq.(S141), we have that for all k ∈ [2n]

λk ≥ λ̂k − εstat ≥ 1− εT − εstat. (S144)

The anti-symmetry of the correlation matrix Γ(ρ) implies the existence of an orthogonal matrix O such that Γ(ρ) = OΛOT ,

where Λ =
⊕n

i=1

(
0 λi

−λi 0

)
. Moreover, we have Γ(U†

OρUO) = Λ, where UO is the free-fermionic unitary associated with

O. This leads to

Tr
(
ZkU

†
OρUO

)
= Γ(U†

OρUO)2k−1,2k = Λ2k−1,2k = λk. (S145)
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Consequently, we obtain

Tr
(
|0⟩⟨0|k U

†
OρUO

)
≥ 1 + λk

2
≥ 1− εT + εstat

2
, (S146)

where we used that |0⟩⟨0|k = (I + Zk)/2. Applying the quantum union bound (Lemma 13), we deduce

∥∥∥U†
OρUO − |0n⟩⟨0n|

∥∥∥
1
≤ 2

√
n

(
εT + εstat

2

)
. (S147)

Taking σ := UO |0n⟩⟨0n|U†
O , we have successfully demonstrated the existence of a free-fermionic state σ that closely approx-

imates ρ in terms of the one-norm distance, i.e., ∥ρ− σ∥1 ≤
√

2n (εT + εstat). To ensure the validity of this approximation,
we must impose the condition √

2n(εT + εstat) ≤ εB , (S148)

which constitutes the initial requirement for determining the values of εT and εstat, which we will fix at a later stage. Let us
analyze the case in which we output case B, i.e., we observe there exists k ∈ [2n] such that λ̂k < 1 − εT. In this case, from
Eq. (S141), we have

λk ≤ λ̂k + εstat < 1− εT + εstat. (S149)

Using Theorem 7 and Theorem 8, we establish the following inequality

min
σ∈G

∥ρ− σ∥1 ≥
1− min

k∈[n]
(λk)

2
, (S150)

where G can represent either the set of all free-fermionic states, denoted as Gmixed, or the set of all pure free-fermionic states,
denoted as Gpure. If we had considered only the set of pure free-fermionic states, the lower bound would be 1 − min

k∈[n]
λk ,

without the factor of one-half, as indicated by Lemma 7. However, Eq. (S150) holds true for both Gmixed and Gpure. From this
and Eq. (S149) we have that

min
σ∈G

∥ρ− σ∥1 ≥ 1− (1− εT + εstat)

2
=
εT − εstat

2
. (S151)

Therefore we impose that

εT − εstat
2

> εA. (S152)

Putting together the two inequalities in Eq. (S148) and Eq.(S152), we have

2εA + εstat < εT ≤ ε2B
2n

− εstat. (S153)

Therefore, assuming εB >
√
4nεA, we can choose

εT =
1

2
(
ε2B
2n

+ 2εA) (S154)

and

εstat <
1

2
(
ε2B
2n

− 2εA). (S155)

The preceding theorem was presented under the assumption that ρ is pure, and the set of free-fermionic states considered
can either be the set of all (possibly mixed) free-fermionic states Gmixed or the more restricted set of all pure free-fermionic
states Gpure. However, if we focus solely on the set of all pure free-fermionic states Gpure, we can establish an analogous result
without assuming that ρ is pure; i.e., it can be an arbitrary quantum state. The theorem is detailed as follows, and the algorithm
is the same as Algorithm 1 with slightly different accuracy parameters, as detailed below.
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Theorem 11 (Efficient Pure free-fermionic testing with arbitrary input states). Let ρ be an arbitrary n-qubit state. Assume
εB , εA ∈ (0, 1) such that εB >

√
2nεA, δ ∈ (0, 1], and εstat := 1

4 (
ε2B
2n − εA). Assume that ρ satisfies one of the two cases

detailed in Problem 2, i.e., there exists a free-fermionic state σ ∈ Gpure such that ∥ρ− σ∥1 ≤ εA or minσ∈Gpure
∥ρ− σ∥1 > εB .

Then, there exists a quantum learning algorithm which, utilizing only single-copies measurements, can solve Problem 2 using
N = 8(n3/ε2stat) log

(
4n2/δ

)
copies of the state ρ with a probability of success at least 1− δ.

Proof. The proof is analogous to the one of the previous theorem, but instead of Eq. (S150), it utilizes Lemma 8, which has no
assumptions on the state ρ and provides the inequality

min
σ∈Gpure

∥ρ− σ∥1 ≥ 1− min
k∈[n]

(λk). (S156)

Following the same steps as before, we conclude that, assuming εB >
√
2nεA, we can choose εT = 1

2 (
ε2B
2n + εA) and εstat =

1
4 (

ε2B
2n − εA). Note that, throughout the proof of Theorem 10, there was no need to assume that ρ is a pure state.

B. Hardness of testing general mixed free-fermionic states

In this section, we establish the general hardness of the free-fermionic property testing problem 2, demonstrating the necessity
for Ω(2n) copies of the state when no prior assumptions on the state and no restrictions on the set of all free-fermionic states
are provided. This is a constraint in sample complexity. The core of this complexity arises from recognizing that the maximally
mixed state is free-fermionic. This insight allows us to leverage the hardness of identity testing, that is, to reduce the free-
fermionic testing problem to distinguishing whether the underlying state is the maximally mixed state or far from it in trace
distance, which is a notoriously hard problem. The following theorem is essential in our reduction:

Theorem 12 (Hardness of identity testing ([15])). Let ρ ∈ S
(
Cd
)
be a d-dimensional quantum state. Then 0.15 d

ε2 copies are
necessary to test whether it is the maximally mixed state Id

d or
∥∥ρ− Id

d

∥∥
1
> ε, with at least a 2/3 probability of success.

The subsequent theorem delineates the hardness of testing free-fermionic states, providing a reduction to identity testing as
outlined in Algorithm 2.

Algorithm 2: Reduction of testing free-fermionic states to identity testing
Input: Error threshold ε > 0. N := ⌈(8(36n3/ε2) log

(
400n2

)
+Nfree testing)⌉ copies of ρ, where Nfree testing is the number of

copies sufficient to solve property testing of free-fermionic state (problem 2).
Output: Output either Id

d
or

∥∥∥ρ− Id
d

∥∥∥
1
> ε.

1 Step 1: Estimate the entries of the correlation matrix of ρ using 8(n3/ε2stat) log
(
400n2

)
single-copy measurements, resulting in the

estimated 2n× 2n matrix Γ̂;
2 Step 2: if

∥∥∥Γ̂∥∥∥
∞

> ε/2 then

3 Output:
∥∥∥ρ− Id

d

∥∥∥
1
> ε.

4 else
5 Step 3: Run the free-fermionic property testing algorithm using Nfree testing copies of ρ, which returns that ρ is “Free-fermions” or

“Far from free-fermions”;
6 if “Free-fermions” then
7 Output: ρ = Id

d
.

8 else
9 Output:

∥∥∥ρ− Id
d

∥∥∥
1
> ε.

Theorem 13 (Hardness of testing free-fermionic states (Problem 2)). At least N = Ω( 2
n

ε2B
) copies of the state ρ are necessary

to solve the free-fermionic property testing problem (Problem 2) with a probability of success at least 2
3 . This holds when no prior

assumptions about ρ are provided, and the set G considered is that of all free-fermionic states.

Proof. In the following, we establish that the existence of an efficient solver for the free-fermionic testing Problem 2 (requiring
O(poly(n)) copies of the state for resolution) implies the existence of an efficient solver for the Identity testing problem,
a known hard problem (Theorem 12). Let ε > 0. Let ρ be an n-qubit quantum state with the promise that ρ is either the
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maximally mixed state Id
d or

∥∥ρ− Id
d

∥∥
1
> ε. The reduction outlined in Table 2 commences by estimating the correlation

matrix Γ(ρ) using 8(n3/ε2stat) log
(
400n2

)
copies of ρ, yielding a real anti-symmetric matrix Γ̂ guaranteed to satisfy (due to

Lemma 18) ∥Γ̂ − Γ(ρ)∥∞ ≤ εstat with at least 0.99 probability of success, where εstat is a parameter to be fixed later. Our
primary criterion involves assessing ∥Γ̂∥∞. If ∥Γ̂∥∞ > εT (where εT is a fixed threshold to be determined later), we output
that ρ is far from the maximally mixed state, i.e.,

∥∥ρ− Id
d

∥∥
1
> ε; otherwise, we proceed. We aim to prove that if ∥Γ̂∥∞ > εT,

then ρ cannot be the maximally mixed state. This is substantiated by the inequality

∥ρ− Id
d
∥1 ≥ ∥Γ(ρ)− Γ(Id/d)∥∞ = ∥Γ(ρ)∥∞ ≥ ∥Γ̂∥∞ − εstat > εT − εstat, (S157)

where the first step utilizes the inequality in Lemma 16 and the second step the fact that Γ( Idd ) = 0. By choosing εT > εstat,
we can ensure that ∥ρ − Id

d ∥1 > 0, implying that we are not in the case where ρ corresponds to the maximally mixed state
but in the other case. Subsequently, if ∥Γ̂∥∞ ≤ εT, we proceed to employ a free-fermionic testing solver for Problem 2 with
an accuracy parameter εB = ε and εA = 0, consuming Nfree testing copies of the state ρ. If the output indicates that the
underlying state is a free-fermionic state, we output that ρ is the maximally mixed state; otherwise, if the solver outputs that
the state is far from the free-fermionic set, we output that ρ is far from the maximally mixed state. To validate that we cannot
be in the case that ρ is the maximally mixed state when outputting that the state is far from free-fermionic, we note that the
maximally mixed state is free-fermionic, and therefore it holds that

ε < min
σ∈G

∥ρ− σ∥1 ≤
∥∥∥∥ρ− Id

d

∥∥∥∥
1

. (S158)

Conversely, if the output of the free-fermionic testing solver indicates that the state is free-fermionic, we need to demonstrate
that we cannot be in the case that

∥∥ρ− Id
d

∥∥
1
> ε. This follows from the inequality

∥ρ− Id
d
∥1 ≤ 1

2
∥Γ(ρ)∥1 ≤ n∥Γ(ρ)∥∞ ≤ n

(∥∥∥Γ̂− Γ(ρ)
∥∥∥
∞

+
∥∥∥Γ̂∥∥∥

∞

)
≤ n(εstat + εT), (S159)

where the first step uses Lemma 15, and the second step utilizes the fact that ∥Γ(ρ)∥1 ≤ 2n∥Γ(ρ)∥∞. To satisfy the condition
n(εT + εstat) ≤ ε, we set εstat = εT/2, which implies εT ≤ 2ε/(3n). Consequently, choosing εT = ε/(3n) is adequate to
conclude the reduction. Hence, in accordance with Theorem 12, we infer that Nfree testing must satisfy Nfree testing = Ω( 2

n

ε2 )
for solving the free-fermionic testing problem with at least a 2/3 probability of success.

As the reader can appreciate from the proof of the hardness of Problem 2, the difficulty arises from the unknown quantum state
being arbitrarily close to the maximally mixed state, which is known to be challenging to test. Therefore, a natural assumption
to facilitate Problem 2 is to assume the state ρ to have at most a fixed rank. In this context, we establish a fundamental lower
bound on the number of copies required to solve the free-fermionic testing problem, which depends on the rank of the quantum
state.

Theorem 14 (Lower bound for free-fermionic testing of states with bounded rank). Let εB > 0. Let ρ be a quantum state such
that rank(ρ) ≤ 2r with r ∈ [n]. To solve the free-fermionic testing property testing (Problem 2) with at least a 2/3 probability of
success, N = Ω(2r/ε2B) copies are necessary. This holds when considering the set G in Problem 2 corresponding to the set of all
free-fermionic states Gmixed.

Proof. Choose ρ of the form ρ = ρr ⊗ |χ⟩⟨χ|, where |χ⟩ is a pure free-fermionic state on (n− r)-qubits. Moreover, impose the
promise that ρr is either the maximally mixed state on the first r-qubits, i.e., ρr = 2−rI2r , or ρr satisfies ∥ρr − 2−rI2r∥1 > εB .
In both cases, it is clear that ρ has at most rank 2r . By Theorem 12, to solve this problem with at least a 2/3 probability of
success, N = Ω(2r/ε2B) copies of the state ρr are necessary. The proof now follows the same lines as the proof of Theorem 13,
but on an effective space of r qubits.

The same lower bound applies when considering the state ρ to be an arbitrary state, while restricting the set G in Problem 2
to be the set of all free-fermionic states with rank at most R, denoted by GR.

Theorem 15 (Lower bound for free-fermionic testing with respect to the set of bounded rank free-fermionic states GR). Let
εB > 0. For an arbitrary quantum state ρ, if we consider G in Problem 2 to correspond to the set GR of all free-fermionic states
with rank at most R := 2r , where r ∈ [n], then to solve the free-fermionic testing property testing (Problem 2) with at least a 2/3
probability of success, N = Ω(2r/ε2B) copies are necessary.

Proof. The proof follows the same lines as the previous theorem, and everything holds analogously, even with the assumption
that the set to be considered is GR instead of Gmixed.
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C. Efficient testing of low-rank free-fermionic states

In the preceding subsection, we established information-theoretic lower bounds for solving the free-fermionic property testing
problem. Specifically, we demonstrated that when the input n-qubit state ρ has a rank less than or equal to 2r , where r ∈ [n],
a minimum of Ω(2r) copies is required. Similarly, when no assumptions are made about ρ, but G in Problem 2 corresponds to
the set GR of all free-fermionic states with rank at most R := 2r , then N = Ω(2r) copies are necessary.
Now, we address the question of whether an algorithm can match these information-theoretic lower bounds. We notice that
if r = O(log(n)), i.e., R = O(poly(n)), then such an algorithm would be efficient. The following theorem provides an
affirmative answer to this question.

Theorem 16 (Upper bound for free-fermionic testing with respect to the set of bounded rank free-fermionic states GR). Let ρ
be any n-qubit state. Assume error thresholds εB , εA ∈ (0, 1) such that

εB >
√

25(n− r)εA, (S160)

and consider a failure probability δ ∈ (0, 1]. Suppose ρ falls into one of two cases in Problem 2: either there exists a free-fermionic
state σ ∈ GR with ∥ρ− σ∥1 ≤ εA (Case A), orminσ∈GR

∥ρ− σ∥1 > εB (Case B), where R := 2r with r ∈ [n].
Then, a quantum learning algorithm (Algorithm 3) can solve Problem 2 using

N := ⌈8(n3/ε2stat) log
(
8n2/δ

)
+Ntom(εtom, δ/2, r)⌉ (S161)

copies of the state ρ with a success probability at least 1 − δ. Here, Ntom(εtom, δ/2, r) is the number of copies sufficient for a
full state tomography algorithm (e.g., [43]) of an r-qubit state with accuracy εtom and failure probability at most δ/2. Here,
εstat <

1
2

(
ε2B

25(n−r) − εA

)
and εtom := 1

2 (
εB
2 − εA).

Algorithm 3: Property testing algorithm for bounded rank free-fermionic states
Input: Let R = 2r , with r ∈ [n]. Error thresholds εA, εB such that εB >

√
25(n− r)εA, failure probability δ.

N := ⌈8(n3/ε2stat) log
(
8n2/δ

)
+Ntom(εtom, δ/2, r)⌉ copies of ρ. Here, Ntom(εtom, δ/2, r) is the number of copies sufficient

for full state tomography of an r-qubit state with accuracy εtom and failure probability at most δ/2. Let
εstat <

1
2

(
ε2B

25(n−r)
− εA

)
, εT > (εstat + εA), εtom := 1

2
( εB

2
− εA) and εT,2 ≤ 1

2
( εB

2
+ εA).

Output: Output either Case A or Case B.
1 Step 1: Estimate the entries of the correlation matrix of ρ using ⌈8(n3/ε2stat) log

(
8n2/δ

)
⌉ single-qubit measurements, resulting in the

matrix Γ̂ ;
2 Step 2: Find λ̂r+1, the (r + 1)-th smallest singular value of Γ̂ ;
3 Step 3: if λ̂r+1 ≤ 1− εT then
4 Output: Case B
5 else
6 Step 4: Evolve ρ with the free-fermionic unitary UÔ , where Ô is the orthogonal matrix that puts Γ̂ in its normal form. ;
7 Step 5: Full state tomography on the first r qubits of UÔρU

†
Ô

, which returns the state ρ̂′r with correlation matrix Γr ;
8 Output: Case B if ∥ρ̂′r − σ(Γ̂r)∥ > εT,2, else Case A. Here, σ(Γ̂r) is the free-fermionic state associated with the correlation

matrix Γ̂r of ρ̂′r .

Proof. Let εstat be an accuracy parameter, yet to be determined. According to Lemma 18, with N ≥ 8(n3ε2stat) log
(
8n2/δ

)
single-qubit measurements, we can construct a matrix Γ̂ such that, with a probability of at least 1 − δ/2, it satisfies ∥Γ̂ −
Γ(ρ)∥∞ < εstat. Consequently, for each sorted (normal) eigenvalue λk of the correlation matrix, it holds that |λ̂k−λk| < εstat,
where λ̂k is the k-th eigenvalue of Γ̂. Now, consider that if ρ were a free-fermionic state with rank bounded by R, the first
r eigenvalues could potentially be less than one, while the remaining n − r should be one (as per Lemma 2). We proceed to
perform our first check. If λ̂r+1 ≥ 1− εT, we continue; otherwise, we outputB, where εT > 0 is an error threshold to be fixed
later. In case we output B, let us demonstrate that we cannot be in case A. We need to show that minσ∈GR

∥ρ − σ∥1 > εA.
We have

min
σ∈GR

∥ρ− σ∥1 ≥ 1− λr+1 ≥ 1− λ̂r+1 − εstat > εT − εstat, (S162)
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where the first inequality follows from Theorem 7. Therefore, by choosing

εT − εstat > εA, (S163)

we successfully ensure that ρ cannot be in case A. This condition forms the first criterion for determining the accuracy
parameter εstat and the threshold εT. To proceed, we define Ô as the orthogonal matrix such that ÔΓ̂ÔT = Λ̂, where

Λ̂ :=
n⊕

k=1

(
0 λ̂k

−λ̂k 0

)
(S164)

and define UÔ as the associated free-fermionic unitary. Consider the state ρ′ := UÔρU
†
Ô

. We observe that

|Γ(ρ′)j,k − (Λ̂)j,k| ≤ ∥Γ(ρ′)− Λ̂∥∞ ≤ ∥Γ(ρ)− Γ̂∥∞ ≤ εstat, (S165)

leveraging the relationships Γ(ρ′) = ÔΓ(ρ)ÔT and Λ̂ = ÔΓ̂ÔT , Cauchy-Schwartz, and the definition of the infinity norm.
Consequently, we establish Γ(ρ′)j,k ≥ (Λ̂)j,k − εstat. Specifically, for k ≥ r + 1, we find:

Tr(Zkρ
′) = Γ(ρ′)2k−1,k ≥ (Λ̂)2k−1,2k − εstat = λ̂k − εstat ≥ 1− εT − εstat, (S166)

where Zk = −iγ2k−1γ2k represents theZ-Pauli operator acting on the k-th qubit. Consequently, we also find Tr(|0⟩⟨0|k ρ′) ≥
1− (εT + εstat)/2. Employing Lemma 13, we derive:∥∥ρ′ − ϕ⊗

∣∣0n−r
〉〈
0n−r

∣∣∥∥
1
≤ 2
√

(n− r)(εT + εstat)/2, (S167)

whereϕ⊗|0n−r⟩⟨0n−r| represents the post-measurement state obtained after measuring the outcomes corresponding to |0n−r⟩
in the last n− r qubits. Define the subsystem E with sites E = [r + 1, . . . , n] and define

ρ′r := trE [ρ
′] = trE [UÔρU

†
Ô
]. (S168)

We also have ∥∥ρ′ − ρ′r ⊗
∣∣0n−r

〉〈
0n−r

∣∣∥∥
1
≤
∥∥ρ′ − ϕ⊗

∣∣0n−r
〉〈
0n−r

∣∣∥∥
1
+ ∥ϕ− ρ′r∥1 (S169)

≤
∥∥ρ′ − ϕ⊗

∣∣0n−r
〉〈
0n−r

∣∣∥∥
1
+
∥∥ϕ⊗

∣∣0n−r
〉〈
0n−r

∣∣− ρ′
∥∥
1

≤ 4
√

(n− r)(εT + εstat)/2,

where in the first step, we used the triangle inequality, in the second step, the data-processing inequality (∥ trE(ρ − σ)∥1 ≤
∥ρ− σ∥1 for any quantum states ρ, σ), and in the last step, we used Eq.(S167). We now perform full-state tomography on the
first r qubits of ρ′. More precisely, using copies of ρ′r , we can output a state ρ̂′r such that, with a probability of at least 1− δ/2,
we find that

∥ρ̂′r − ρ′r∥1 ≤ εtom. (S170)

There are various algorithms for full-state tomography that utilize single-copy measurements (see, e.g., Ref. [43]), all having
sample complexity that scales exponentially with the number of qubits constituting the quantum state, in our case, r. Further-
more, through the computation of the correlation matrix of ρ̂′r , we can compute its correlation matrix Γ̂r , which satisfies∥∥∥Γ̂r − Γ(ρ′r)

∥∥∥
∞

≤ ∥ρ̂′r − ρ′r∥1 ≤ εtom, (S171)

where we have invoked Lemma 16. Now, let us consider the free-fermionic state σ(Γ̂r) associated with the correlation matrix
Γ̂r . Our second discrimination test hinges on the quantity

∥∥∥ρ̂′r − σ(Γ̂r)
∥∥∥
1
, which can be computed with a time complexity

scaling as O(exp(r)), which is efficient as long as the rank of ρ is O(poly(n)). If
∥∥∥ρ̂′r − σ(Γ̂r)

∥∥∥
1
≤ εT,2, we output A;

otherwise, we output B. In the case of outputting A, our goal is to demonstrate that we cannot be in case B. Specifically,
we show that there exist a free-fermionic state closer, in trace distance, than εB to ρ. Consider the free-fermionic state
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U†
Ô

(
σ(Γ̂r)⊗ |0n−r⟩⟨0n−r|

)
UÔ , which is readily free-fermionic. We have∥∥∥ρ− U†

Ô

(
σ(Γ̂r)⊗

∣∣0n−r
〉〈
0n−r

∣∣)UÔ

∥∥∥
1

(S172)

=
∥∥∥ρ′ − σ(Γ̂r)⊗

∣∣0n−r
〉〈
0n−r

∣∣∥∥∥
1

≤
∥∥ρ′ − ρ′r ⊗

∣∣0n−r
〉〈
0n−r

∣∣∥∥
1
+
∥∥∥ρ′r − σ(Γ̂r)

∥∥∥
1

≤
∥∥ρ′ − ρ′r ⊗

∣∣0n−r
〉〈
0n−r

∣∣∥∥
1
+ ∥ρ′r − ρ̂′r∥1 +

∥∥∥ρ̂′r − σ(Γ̂r)
∥∥∥
1

≤ 4
√

(n− r)(ϵT + ϵstat)/2 + ϵtom + εT,2,

where in the first inequality, we used the unitary invariance of the trace norm; in the second and third steps, we applied the
triangle inequality; and in the last step, we used the previously derived bound. Now, we must ensure

4
√

(n− r)(ϵT + ϵstat)/2 + ϵtom + εT,2 ≤ εB . (S173)

Now, let us explore the scenario where we output case B. Considering that the application of a free-fermionic unitary UÔ and
the partial trace map a free-fermionic state into another free-fermionic state [3], we employ the data processing inequality,
leading to the inequality

min
σ∈GR

∥ρ− σ∥1 = min
σ∈GR

∥ρ′ − σ∥ ≥ min
σR∈GR

∥ρR − σR∥. (S174)

Now, let us demonstrate that if ∥ρ̂′R − σ(Γ̂R)∥ > εT,2, we cannot be in case A. To establish this, let us first express the lower
bounds

∥ρ′R − σR∥1 ≥


∥∥∥Γ̂R − Γ(σR)

∥∥∥
∞

− εtom∥∥∥ρ̂′R − σ(Γ̂R)
∥∥∥
1
− εtom − α

∥∥∥Γ̂R − Γ(σR)
∥∥∥1/2
∞

, (S175)

where, for the first bound, we utilize Lemma 16 and the triangle inequality, namely

∥ρ′R − σR∥1 ≥ ∥Γ(ρ′R)− Γ(σR)∥∞ ≥
∥∥∥Γ̂R − Γ(σR)

∥∥∥
∞

− εtom, (S176)

and for the second bound, by utilizing Theorem 6 and triangle inequality, we have

∥ρ′R − σR∥1 ≥ ∥ρ′r − σ(Γ̂R)∥1 − ∥σ(Γ̂R)− σR∥1
≥ ∥ρ′R − σ(Γ̂R)∥1 − α∥Γ̂R − Γ(σR)∥1/2∞ ,

(S177)

with α := 2
√
n. Our objective is to optimize and find the threshold corresponding to a universal lower bound. To achieve this,

we solve the equation ∥∥∥ρ̂′R − σ(Γ̂R)
∥∥∥
1
− εtom − α

∥∥∥Γ̂R − Γ(σR)
∥∥∥1/2
∞

=
∥∥∥Γ̂R − Γ(σR)

∥∥∥
∞

− εtom, (S178)

for ∥Γ̂R − Γ(σR)∥∞. Let y := ∥Γ̂R − Γ(σR)∥1/2∞ and b := ∥ρ̂′R − σ(Γ̂R)∥1. Solving such equation reduces to solving
y2 + αy − b = 0. Substituting the solution in the previous inequality, we obtain

min
σR∈GR

∥ρ′R − σR∥1 ≥ ∥ρ′R − σ(Γ̂R)∥1 − 2
√
n(

√
n+ ∥ρ′R − σ(Γ̂R)∥1 −

√
n)− εtom

≥ ∥ρ′R − σ(Γ̂R)∥1 −
1

6n
∥ρ′R − σ(Γ̂R)∥21 − εtom

(S179)

where we have used the inequality
√
1 + x ≤ 1 + x

2 − x2

32 valid for x ∈ [0, 8]. Now, we only need to impose that, given∥∥∥ρ̂′R − σ(Γ̂R)
∥∥∥
1
> εT,2, we cannot be in case A and, therefore, impose

εT,2 −
ε2T,2

6n
− εtom > εA. (S180)
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To satisfy the constraints in Eq. (S163), (S173), and (S180), we need to choose the constants εstat, εT, εtom, and εT,2. We start
by imposing the two inequalities (which implies Eq. (S173))

4
√

(n− r)(ϵT + ϵstat)/2 ≤ εB
2
, (S181)

ϵtom + εT,2 ≤ εB
2
. (S182)

Therefore, we have “disentangled” the three inequalities in Eq. (S163), (S173), and (S180) into two systems of two inequalities,
the first containing stat and ϵT involving Eq. (S163) and (S181), and the other one containing ϵtom and εT,2 involving Eq. (S180)
and (S182). By solving the one involving Eq. (S163) and (S181), we get

εT > (εstat + εA), (S183)

εstat <
1

2

(
ε2B

25(n− r)
− εA

)
. (S184)

Moreover, by solving the one involving Eq. (S180) and (S182), we get

ϵtom ≤ εB
2

− εT,2, (S185)

εT,2 ≤ 6n

(
1−

√
1−

εB
2 + εA

6n

)
. (S186)

The latter inequality is satisfied by choosing εT,2 ≤ 1
2 (

εB
2 + εA), which implies

ϵtom ≤ 1

2

(εB
2

− εA

)
. (S187)

By union bound, the total failure probability of the protocol is at most 1− δ.

The previous theorem was presented under the assumption that ρ is an arbitrary n-qubit state, and the set of free-fermionic
states considered is GR, i.e., the set of free-fermionic states with rank at most R = 2r , where r ∈ [n]. However, if we assume
that ρ has at most rank R, then we can consider the largest set Gmixed, and we can establish an analogous result. The theorem
is detailed as follows, and the algorithm is the same as Algorithm 3 with slightly different accuracy parameters, as detailed
below.

Theorem 17 (Upper bound for free-fermionic testing for a bounded rank quantum state). Let ρ be any n-qubit state with rank
at most 2r , where r ∈ [n]. Assume error thresholds εB , εA ∈ (0, 1) such that εB >

√
25(n− r)(2εA)1/(r+1), and consider a

failure probability δ ∈ (0, 1]. Suppose ρ falls into one of two cases in Problem 2: either there exists a free-fermionic state σ ∈ Gmixed

with ∥ρ − σ∥1 ≤ εA (Case A), or minσ∈Gmixed
∥ρ − σ∥1 > εB (Case B). Then, a quantum learning algorithm (Algorithm 3) can

solve Problem 2 using

N := ⌈8(n3/ε2stat) log
(
8n2/δ

)
+Ntom(εtom, δ/2, r)⌉

copies of the state ρ with a success probability at least 1− δ. Here, Ntom(εtom, δ/2, r) is the number of copies sufficient for a full
state tomography algorithm ( see, e.g., Ref. [43]) of an r-qubit state with accuracy εtom and failure probability at most δ/2. Here,
we impose

εT > (εstat + (2εA)
1

r+1 ), (S188)

εstat <
1

2

(
ε2B

25(n− r)
− (2εA)

1
r+1

)
, (S189)

εT,2 ≤ 1

2
(
εB
2

+ εA), (S190)

ϵtom ≤ 1

2

(εB
2

− εA

)
(S191)

Proof. The proof is the same as the one of the previous theorem, but this time we have utilized instead of Eq.(S162) the expres-
sion

min
σ∈Gmixed

∥ρ− σ∥1 ≥ 1

2
(1− λr+1)

r+1, (S192)
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which follows from Lemma 9. From this, it follows that (using the same notation as in the previous proof)

min
σ∈Gmixed

∥ρ− σ∥1 >
1

2
(εstat − εT)

r+1. (S193)

Hence, we have the condition

(εT − εstat)
r+1 > 2εA. (S194)

This is the only condition that is different from the ones in the previous Theorem. We impose

εT > (εstat + (2εA)
1

r+1 ), (S195)

εstat <
1

2

(
ε2B

25(n− r)
− (2εA)

1
r+1

)
, (S196)

εT,2 ≤ 1

2
(
εB
2

+ εA), (S197)

ϵtom ≤ 1

2

(εB
2

− εA

)
(S198)

and this suffices to satisfy all the constraints.

V. Efficient tomography of mixed free-fermionic states and improved pure states tomography

In this section, we present an algorithm for learning n-qubit mixed free-fermionic states in trace distance. The algorithm
is efficient in terms of samples, time, and memory, and is a straightforward consequence of Lemma 6, which establishes a
relationship between the trace distance of mixed free-fermionic states and the one-norm difference of their correlation matrices.
It is worth noting that previous works have provided sample complexity bounds to learn free-fermionic states [11, 16, 17] (in
parts by the same authors), but they are limited to the pure case scenario. Moreover, we improve over their sample complexity
for the pure case scenario as well.

Algorithm 4: Learning mixed free-fermionic states
Input: Error threshold ε > 0, failure probability δ > 0. N = ⌈128(n5/ε4) log

(
4n2/δ

)
⌉ copies of the mixed free-fermionic state ρ.

Output: A classical description of a state ρ̂, such that ∥ρ̂− ρ∥1 ≤ ε with at least 1− δ success probability.
1 Step 1: Estimate the entries of the correlation matrix of ρ using N single-copy measurements, resulting in the estimated 2n× 2n

matrix Γ̂;
2 Step 2: Put Γ̂ in its normal form Γ̂ = ÔΛ̂ÔT , where Ô ∈ O(2n), and Λ̂ is the matrix determined by the normal eigenvalues {λ̂j}nj=1. ;
3 return Ô and {λ̂i}ni=1, so that ρ̂ := GÔ

(⊗n
j=1

I+λ̂jZj

2

)
G†

Ô
, where GÔ is the free-fermionic unitary associated with Ô.

Theorem 18 (Tomography of free-fermionic mixed states). Let ρ be a free-fermionic state. For ε ∈ (0, 1) and δ ∈ (0, 1], there
exists a quantum learning algorithm (outlined in table 4) that, utilizing N = ⌈128(n5/ε4) log

(
4n2/δ

)
⌉ single-copies of the state

ρ learns an efficient representation of a state ρ̂ such that:

∥ρ̂− ρ∥1 ≤ ε, (S199)

with a probability of success at least 1− δ.

Proof. Let εstat > 0 be an accuracy parameter to be fixed later. By Lemma 19, with N ≥ 8(n3/ε2stat) log
(
4n2/δ

)
copies of

the state, we can find a matrix Γ̂ such that, with probability at least 1 − δ, it holds that
∥∥∥Γ̂− Γ(ρ)

∥∥∥
∞
< εstat. Since Γ̂ is a

valid correlation matrix, i.e., it is real-anti-symmetric and has normal eigenvalues in absolute value less than or equal to one,
it corresponds to a free-fermionic state ρ̂ (due to Lemma 6). Therefore, the matrix Γ(ρ̂) := Γ̂ fully identifies the free-fermionic

state ρ̂. In particular, Γ̂ can be expressed in its normal form Γ̂ = ÔΛ̂ÔT , where Ô ∈ O(2n), and Λ̂ =
⊕n

k=1

(
0 λ̂k

−λ̂k 0

)
, and

ρ̂ assumes the form

ρ̂ := GÔ

 n⊗
j=1

I + λ̂jZj

2

G†
Ô
, (S200)
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where GÔ is the free-fermionic unitary associated with Ô. By Theorem 6, we have

∥ρ̂− ρ∥1 ≤ 2
√
n∥Γ(ρ̂)− Γ(ρ)∥∞. (S201)

By choosing εstat = ε2/(4n), we can conclude.

Corollary 2 (Tomography of free-fermionic states via single Pauli measurements). Let ρ be a free-fermionic quantum state.
For ε ∈ (0, 1) and δ ∈ (0, 1] there exist a learning algorithm that utilize N = 256(n6/ε4) log

(
4n2/δ

)
copies of the state and

only single-qubit Pauli measurements to learn an efficient classical representation ρ̂ of the state ρ obeying ∥ρ− ρ̂∥1 ≤ ε.

Proof. The proof follows identically to that of Theorem 18. The only difference lies in the estimation of the correlation matrix
Γ̂, which, if estimated through single-qubit Pauli measurements, requires N = 16(n4/ε2stat) log

(
4n2/δ

)
copies of the state ρ,

as detailed in Lemma 18.

We now show also the following improved learning algorithm for pure free-fermionic states, which is a direct implication of
Lemma 20 and our novel inequality valid for pure Gaussian states (Theorem 5):

Proposition 2 (Tomography of pure free-fermionic states). Letψ be a free-fermionic quantum state. For ε ∈ (0, 1) and δ ∈ (0, 1]
there exist a learning algorithm that utilize N = 32(n3/ε2) log

(
4n2/δ

)
copies of the state and only single-copies measurements

to learn an efficient classical representation of the state ψ̂ obeying ∥ψ − ψ̂∥1 ≤ ε.
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The experimental realization of increasingly complex quantum states underscores the pressing need for new
methods of state learning and verification. In one such framework, quantum state tomography, the aim is to learn
the full quantum state from data obtained by measurements. Without prior assumptions on the state, this task
is prohibitively hard. Here, we present an efficient algorithm for learning states on n fermion modes prepared
by any number of Gaussian and at most t non-Gaussian gates. By Jordan-Wigner mapping, this also includes
n-qubit states prepared by nearest-neighbour matchgate circuits with at most t SWAP-gates. Our algorithm is
based exclusively on single-copy measurements and produces a classical representation of a state, guaranteed to
be close in trace distance to the target state. The sample and time complexity of our algorithm is poly(n, 2t);
thus if t = O(log(n)), it is efficient. We also show that, if t scales slightly more than logarithmically, any
learning algorithm to solve the same task must be inefficient, under common cryptographic assumptions. We
also provide an efficient property testing algorithm that, given access to copies of a state, determines whether
such state is far or close to the set of states for which our learning algorithm works. Beyond tomography, our
work sheds light on the structure of states prepared with few non-Gaussian gates and offers an improved upper
bound on their circuit complexity.

Introduction

Quantum state tomography is the task of reconstructing a classical description of a quantum state from experimental data [1,
2]. Beyond its foundational significance in quantum information theory, it stands as the gold standard for verification and
benchmarking of quantum devices [2]. However, in the absence of any prior assumptions on the state to be learned, one
encounters necessarily the curse of dimensionality of the Hilbert space: learning the classical description of a generic quantum
state demands resources that grow exponentially with the number of qubits [1, 3]. Simply storing and outputting the density
matrix of a state already results in an exponential cost in time. This raises the crucial question of identifying classes of quantum
states that can be efficiently learned using a number of state copies and time scaling at most polynomially with the system size.
Only a few classes of states are currently known to be efficiently learnable — in particular, matrix product states [2, 4], finitely-
correlated states [5], high-temperature Gibbs states [6], states prepared by shallow quantum circuits [7], stabilizer states [8],
quantum phase states [9], and fermionic Gaussian states [10, 11]. The latter class of states comprises those prepared by fermionic
Gaussian circuits [12], also referred to as free fermionic evolutions or fermionic linear-optics circuits [13, 14]. Via Jordan-Wigner
mapping, such states on n fermionic modes can also be viewed as n-qubit states, prepared by generalized matchgate circuits [14–
16]. Fermionic Gaussian states states play a key role in condensed matter physics and quantum chemistry, via the Hartree-Fock
method and in the context of Fermi Liquid and Bardeen-Cooper-Schrieffer theories [17–20]. These states are also essential
in understanding many exactly solvable spin models [21–23]. In quantum computing, fermionic Gaussian states are primarily
recognized for their efficient classical simulability [13, 15, 16]. As in the case of Clifford circuits, for which the introduction
of magic gates, such as T-gates, allows to reach universal quantum computation [24], also for the case of Gaussian circuits the
inclusion of certain magic gates [25–27], for example SWAP gates [26], allows to reach universality. If the number t of T-gates
in a Clifford circuit is low, the resulting states can still be efficiently simulated classically [28–30]; it has also been recently
demonstrated that such states, termed as t-doped stabilizer states [31, 32], are still efficiently learnable [33–35]. Similarly, in the
past year, it has been shown that Gaussian circuits with a few magic gates are also classically simulable [36–38]. However, the
learnability of such “t-doped fermionic Gaussian states” remains unknown and this motivates the core-question of our work:

Can we efficiently learn states prepared by Gaussian operations (e.g. matchgates) and a few magic gates?

We answer it by proposing a quantum algorithm of polynomial time and sample complexity that uses only single-copy mea-
surements and learns a classical description of a t-doped fermionic Gaussian state; the learned state is guaranteed to be close
to the true state in trace distance. Our presentation is framed in the language of qubits, but the results seamlessly translate into
the fermionic formalism. Our learning algorithm may also be feasible to implement in near-term fermionic analog quantum
simulators [39, 40], like cold atoms in optical lattices [41], since we only utilize time evolutions of simple few-body fermionic
Hamiltonians [42]. The core of our algorithm relies on a result of independent interest, elucidating the structure of states in
question. In particular, for any t-doped fermionic Gaussian state |ψ⟩ we show that there exists a Gaussian operation G such that
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G† |ψ⟩ = |ϕ⟩⊗ |0n−κt⟩ , where |ϕ⟩ is supported on κt qubits and κ is a small constant. Informally, this says that all the magic of
such states can be compressed to a few qubits via a Gaussian operation. The proof of our compression theorem is constructive,
which has implications for the circuit complexity of |ψ⟩ and for improved preparation of doped fermionic Gaussian states.

The high level idea of the learning algorithm is to first learn a Gaussian unitary G which compresses the magic, apply it to the
state, and then perform full state state tomography on the first few qubits alone. Our learning algorithm has a time complexity
O(poly(n, 2t)), i.e. it scales polynomially in the system size n and exponentially in the number of non-Gaussian gates t. Thus
it is efficient as long as the number of non-Gaussian gates is t = O(log(n)). Furthermore, we establish that the task of learning
such states is computationally intractable when the number of non-Gaussian gates scales slightly more than logarithmically,
under a common cryptography assumption [43–46]. We show the latter result using the theory of pseudorandom quantum
states [47, 48] and qubit-to-fermion mappings [23]. In doing that, we bring pseudorandom quantum states, so far explored only
for qubit-based systems, to the fermionic realm. Our learning algorithm generalizes the one presented by Aaronson et al. [33],
which is tailored to learn only those states prepared by particle-number conserving Gaussian gates and t = 0 (in our work we
relax both of these assumptions). Furthermore, our algorithm extends to all compressible states, i.e., those which can be written
as |ψ⟩ = G |ϕ⟩⊗ |0n−κt⟩. We also propose an efficient method to test if a given state is close or far from the set of compressible
states, by showing an efficiently estimatable quantity that lower bounds the distance to this set.

It should be noted that the concept of magic compression was first introduced in the context of Clifford+T circuits by Leone,
Oliviero et al. [49, 50] and later exploited for learning t-doped stabilizer states [33, 34]. Our strategy of proving non-Gaussianity
compression and applying it to quantum state tomography was inspired by these earlier works. It is an intriguing fact that a
similar compression theorem holds in our context, even though the mathematical structures of stabilizer states and fermionic
Gaussian states appear quite different.

In the next sections we summarize our findings, stating more precisely our results and the essential ideas that underlie them.
In the Supplementary Material, we provide the technical details.

Preliminaries

Our work can be applied to two distinct and naively separate settings: a system of n qubits with 1D matchgates circuits and
their magic gates (e.g., SWAP gates), or a native fermionic system of n modes with states prepared by fermionic Gaussian
evolutions and local non-Gaussian evolutions. These two perspectives are mathematically related through the Jordan-Wigner
mapping. We will use it now as a definition of Majorana operators, thus directly aligning our discussion with the qubit language.
Majorana operators, denoted as γ2k−1 and γ2k for k ∈ [n] := {1, . . . , n}, are defined in terms of standard Pauli operators
as γ2k−1 := (

∏k−1
j=1 Zj)Xk and γ2k := (

∏k−1
j=1 Zj)Yk. Alternatively, they can be defined in the fermionic language through

their anticommutation relations [13, 51]. A fermionic Gaussian unitary G is a unitary that satisfies G†γµG =
∑2n
ν=1Oµ,νγν

for any µ ∈ [2n], where O ∈ O(2n) is an orthogonal matrix. The product of two Gaussian unitaries is Gaussian. Notably, a
one-to-one correspondence exists between Gaussian unitaries up to a global phase and O(2n) orthogonal matrices. Given an
orthogonal matrix, it is known how to exactly implement the associated Gaussian unitary using O(n2) 2-local qubits or 2-local
fermionic Gaussian operations [36, 52]. A pure fermionic Gaussian state can be defined as |ψ⟩ = G |0n⟩, where G is a Gaussian
unitary and |0n⟩ denotes the zero computational basis state. Given a quantum state ρ, its correlation matrix C(ρ) is defined
as the real anti-symmetric 2n × 2n matrix with elements [C(ρ)]j,k := − i

2 Tr (γjγkρ), for any j < k ∈ [2n]. We have that
C(GρG†) = OC(ρ)OT , for any Gaussian unitary G associated with O ∈ O(2n). A well-known result in linear algebra [53]
asserts that any real anti-symmetric matrix C can be decomposed in the so-called ‘normal form’:

C = O
n⊕
j=1

(
0 λj

−λj 0

)
OT , (1)

whereO is an orthogonal matrix in O(2n) and λj ≥ 0, for any j ∈ [n], are dubbed as ‘normal’ eigenvalues, ordered in increasing
order. We denote the trace distance between two quantum states |ψ⟩ and |ϕ⟩ as dtr(|ψ⟩ , |ϕ⟩) := 1

2∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥1. Given
a matrix A, its operator norm ∥A∥∞ is defined as its largest singular value. We refer to the Supplementary Material (SM) for
more preliminaries.

Structure of t-doped Gaussian states

States prepared by Gaussian circuits applied to a computational basis state are efficiently simulable classically. However, by
incorporating ‘non-Gaussian’, or ‘magic’ operations, such as SWAP-gates [15, 26], one can render Gaussian circuits universal
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for quantum computation. The term ‘magic gate’ comes from a loose parallel to Clifford circuits, which are efficiently simulable
per se but become universal upon introduction of ‘magic’ non-Clifford T-gates.

Here we consider non-Gaussian operations generated by κ Majorana operators {γµ(r)}κr=1, where µ(1), . . . , µ(κ) ∈ [2n].
Examples of such non-Gaussian operations for κ = 4 are the SWAP-gate or a unitary exp(iθγ1γ5γ6γ8) for θ ∈ R; for κ = 3,
an example is exp(θγ2γ6γ7). We refer to κ as the maximum Majorana locality of the employed non-Gaussian gates.

Definition 1 (t-doped fermionic Gaussian state). A state |ψ⟩ is a (t, κ)-doped Gaussian state if it can be prepared by Gaussian
unitaries {Gi}ti=0 and t non-Gaussian κ-local gates {Wi}ti=1, specifically

|ψ⟩ = GtWt · · ·G1W1G0 |0n⟩ , (2)

where κ-local means that each non-Gaussian gate involves at most κ Majorana operators. Informally, a state is t-doped
Gaussian if it is (t, κ)-doped Gaussian for some fixed constant κ.

Similarly, we denote the unitary Ut := GtWt · · ·G1W1G0 as a t-doped Gaussian unitary. We now present our main result
concerning the structure of t-doped Gaussian states: it is possible to compress all the ‘non-Gaussianity’ of the state into a
localized region of the system via a Gaussian operation. This motivates the following definition.

Definition 2 (t-compressible Gaussian state). Let t ∈ [n]. A state |ψ⟩ is (Gaussian) t-compressible if and only if

|ψ⟩ = G(|ϕ⟩ ⊗
∣∣0n−t〉), (3)

where G is a Gaussian operation, and |ϕ⟩ is a state supported solely on the first t qubits.

In the following, we assume κt ≤ n.

Theorem 3 (Magic compression in t-doped Gaussian states). Any (t, κ)-doped Gaussian state is κt-compressible.

Proof sketch. Let Ut |0n⟩ be the t-doped state, where Ut = (
∏t
t′=1Gt′Wt′)G0 is the t-doped unitary. We rearrange Ut as Ut =

G̃tGaux

∏t
t′=1(G

†
auxW̃t′Gaux)G

†
aux, introducing a Gaussian operation Gaux to be fixed and defining W̃t′ := G̃†

t′−1Wt′G̃t′−1

and G̃t′ := Gt′ ..G0. We require that Gaux satisfies G†
aux |0n⟩ = |0n⟩, and that each G†

auxW̃t′Gaux is supported non-trivially
only on the first κt qubits. The latter is enforced by demanding that the Heisenberg evolution, via G̃t′−1Gaux, of each Majorana
operator involved in the Hamiltonian generating Wt′ , has non-trivial support exclusively on the first κt qubits. The existence
of Gaux is shown by demonstrating the existence of its associated orthogonal matrix Oaux. The requirements on Gaux translate
into the demand that Oaux must be symplectic and such that it sends κt fixed vectors to the span of the first 2κt canonical basis
vectors. The existence of such Oaux can be proven via the isomorphism between real 2n × 2n symplectic orthogonal matrices
and n× n unitaries [54]. Additional details are provided in the Supplementary Material (see Theorem 27).

Note that while a (t, κ)-doped Gaussian state is a κt-compressible Gaussian state, the reverse implication does not hold due
to circuit complexity arguments. Similarly to Theorem 3, we show that any t-doped Gaussian unitary can be represented as:

Ut = GA(ut ⊗ I)GB , (4)

where GA and GB denote Gaussian operations, and ut is a unitary operator supported on ⌈κt/2⌉ qubits (with ⌈·⌉ denoting
rounding to the next integer), as elaborated in the Supplementary Material (Theorem 26). Notably, if Ut is a particle number
conserving unitary [13], then GA, ut and GB can also be chosen as such.

Our proof of Theorem 3 is constructive, i.e., given a classical description of the circuit that prepares |ψ⟩, it provides an
efficient procedure for finding the compressing Gaussian circuit G and the state |ϕ⟩. The decomposition of t-doped Gaussian
states (unitaries) reveals also that they have a circuit complexity, i.e., number of local gates needed for implementing the state
(unitary), upper bounded by O(n2+t3) (Proposition 30 in SM). This provides a better circuit complexity upper bound compared
to the naive O(n2t) implied by definition 1 for κ = O(1). Hence, our construction reveals also a method to compress the circuit
depth (and not only the magic). Remarkably, analogous results hold for the Clifford+T gates circuits [50].

In the Clifford case [33], the notion of stabilizer dimension was introduced for quantifying the degree of “stabilizerness”.
Here, in analogy to this, we define the Gaussian dimension of a state as the number of normal eigenvalues of its correlation
matrix that are equal to one. By using Eq.(1), it can be shown that a state has a Gaussian dimension of n − t if and only if it is
t-compressible. Therefore, (t, κ)-doped Gaussian states have a Gaussian dimension of n− κt.
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Learning Algorithm

We present an algorithm for learning t-compressible Gaussian states, or, equivalently, quantum states with n − t Gaussian
dimension. Note that this is a broader class than t-doped Gaussian states; as an example unrelated to t-doped states, ground states
of quantum impurity models are approximately of this form (as shown in [55]). By definition, any t-compressible Gaussian state
|ψ⟩ can be factorized as G† |ψ⟩ = |ϕ⟩ ⊗ |0n−t⟩, where G† is Gaussian and |ϕ⟩ is a state on t qubits. At a high level, our strategy
is to learn the Gaussian unitary G†, apply it to |ψ⟩, and then perform full state tomography solely on the first t qubits to learn
|ϕ⟩. Since full state tomography algorithms scale exponentially with the number of qubits [56], for t = O(log(n)) our algorithm
will be efficient.

Algorithm 1: Learning Algorithm
Input: O(poly(2t, n)) copies of |ψ⟩, accuracy ε, failure probability δ.
Output: A classical description of |ψ̂⟩, such that dtr(|ψ̂⟩, |ψ⟩) ≤ ε with probability at least 1− δ.

1 Estimate the correlation matrix of |ψ⟩ using ⌈256n5

ε4
log

(
12n2

δ

)
⌉ copies, yielding Ĉ;

2 Expressing Ĉ in its normal form (Eq.(1)), find the Gaussian unitary Ĝ associated with Ô ∈ O(2n);
3 Set Nt := ⌈2Ntom(t, ε

2
, δ
3
) + 24 log

(
3
δ

)
⌉ (where Ntom is the number of copies for t-qubit state tomography);

4 for i← 1 to Nt do
5 Apply Ĝ† to |ψ⟩;
6 Measure the last n− t qubits in the computational basis;
7 If the outcome is

∣∣0n−t
〉
, proceed; otherwise, discard and move to the next iteration;

8 Perform a step of state tomography [56, 57] on the remaining t qubits;

9 Consider the t-qubit state |ϕ̂⟩ obtained from tomography;
10 return Ĝ and |ϕ̂⟩, which identify |ψ̂⟩ := Ĝ(|ϕ̂⟩ ⊗

∣∣0n−t
〉
);

To delve deeper, the initial phase of our learning algorithm entails estimating the correlation matrix entries through single-copy
measurements. This can be achieved using different methods outlined in the Supplementary Material, such as measurements
in the Pauli basis, global Clifford Gaussian measurements [58], or fermionic classical shadows [52, 59, 60]. The estimated
correlation matrix Ĉ is subsequently transformed into its normal form in Eq.(1) to yield the corresponding orthogonal matrix
Ô associated with the Gaussian operation Ĝ. (We use the hat symbol to denote the objects estimated from the measurements.)
Applying the inverse operation Ĝ† to |ψ⟩ results in a state that exhibits high fidelity with a state, which is tensor product of
an arbitrary state on the first t qubits and the zero computational basis state on the remaining n − t qubits. Consequently, the
learning algorithm queries multiple copies of |ψ⟩ (one at a time), applies Ĝ† to them and measures the last n − t qubits. If the
outcome of such measurements correspond to |0n−t⟩, then the algorithm proceeds with a step of pure state tomography [56, 57]
on the t-qubits state. The state tomography routine performed in the compressed space yields the state |ϕ̂⟩. The final output of
the learning algorithm is |ψ̂⟩ := Ĝ(|ϕ̂⟩ ⊗ |0n−t⟩), and an efficient classical representation can be provided if t = O(log(n)).
Namely, to specify |ψ̂⟩, it is sufficient to provide the complete description of the t-qubit state |ϕ̂⟩ and the orthogonal matrix
Ô ∈ O(2n) associated with Ĝ.

We now present a theorem which formalizes and proves the efficiency of the discussed procedure, outlined in Algorithm 1, to
learn doped Gaussian states or, more generally, t-compressible Gaussian states.

Theorem 4 (Learning algorithm guarantees). Let |ψ⟩ be a t-compressible Gaussian state, and ε, δ ∈ (0, 1]. Utilizing
O(poly(n, 2t)) single-copy measurements and computational time, Algorithm 1 outputs a classical representation of a state
|ψ̂⟩, such that dtr(|ψ̂⟩, |ψ⟩) ≤ ε with probability ≥ 1− δ.

Proof sketch. Using O(poly(n)) copies of |ψ⟩, we estimate its correlation matrix C, yielding Ĉ such that ∥Ĉ − C∥∞ ≤ εc
with a failure probability ≤ δ

3 , where εc := ε2/(4(n − t)). Expressing Ĉ in its normal form (Eq.(1)), we find the Gaussian
unitary Ĝ associated to Ô ∈ O(2n). Let |ψ′⟩ := Ĝ† |ψ⟩. As detailed in the Supplementary Material, we derive ⟨ψ′|Zk |ψ′⟩ ≥
1 − 2εc for each k ∈ {t + 1, . . . , n} and, by Quantum Union Bound [61] we get dtr(|ϕ⟩ ⊗ |0n−t⟩ , |ψ′⟩) ≤ ε

2 , where |ϕ⟩ ⊗
|0n−t⟩ corresponds to the state obtained by measuring the last n − t qubits of Ĝ† |ψ⟩ in the computational basis and obtaining
the outcome corresponding to |0n−t⟩, an event which occurs with probability ≥ 1 − ε2/4. By querying ⌈2Ntom(t,

ε
2 ,

δ
3 ) +

24 log
(
3
δ

)
⌉ copies of |ψ⟩, and, for each copy, applying Ĝ† and measuring the last n − t qubits, we get the outcome |0n−t⟩ at

least Ntom(t,
ε
2 ,

δ
3 ) times, with failure probability ≤ δ

3 due to Chernoff bound. Here, Ntom(t,
ε
2 ,

δ
3 ) is the number of copies

sufficient for full state tomography [56] of a t-qubit state with an ε
2 accuracy and a failure probability ≤ δ

3 . Performing the
t-qubit tomography on all the copies where the outcome |0n−t⟩ occurred yields |ϕ̂⟩ such that dtr(|ϕ̂⟩, |ϕ⟩) ≤ ε

2 , with a failure
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probability ≤ δ
3 . Defining |ψ̂⟩ := Ĝ(|ϕ̂⟩ ⊗ |0n−t⟩), we have dtr(|ψ̂⟩, |ψ⟩) ≤ dtr(|ϕ̂⟩, |ϕ⟩) + dtr(|ϕ⟩ ⊗ |0n−t⟩ , Ĝ† |ψ⟩). This is

≤ ε if the algorithm does not fail, an event occurring with probability ≥ 1− δ due to the union bound.

Theorem 4 is re-stated and rigorously proven in the Supplemental Material as Theorem 44. The sample, time and memory
complexity of our algorithm for learning t-compressible states exhibits a polynomial dependence on n and an exponential
dependence on t: specifically, the poly(n) contribution (specifically an O(n5) scaling) arises solely from estimating and post-
processing the correlation matrix, while the exp(t) contribution arises from full state tomography on t-qubits. It is easy to see
that the dependence on t is optimal, because learning t-compressible states is at least as hard as learning an arbitrary pure state
on t qubits and thus requires at least Ω(exp(t)) copies of the state [3].

However, if we focus on the subclass of t-doped Gaussian states, a classical shadow tomography based algorithm presented
in [62, 63] achieves O(poly(n, t)) sample complexity. Specifically, this algorithm requires a number of copies that scales
polynomially with the circuit complexity of the state, and t-doped states have a circuit complexity O(poly(n, t)). However,
the time complexity of the algorithm in [62, 63] scales exponentially with the number of qubits n, while our algorithm’s time
complexity scales only polynomially (although always exponentially in t). This observation also applies to t-doped stabilizer
states learning analyzed in recent works [33, 34].

Time complexity lower bound

It is natural to wonder whether there exist algorithms for learning t-doped Gaussian states with time complexity scaling in
t as O(poly(t)). We establish that the answer is no (see Proposition 50 in SM), relying on a widely-believed cryptography
assumption. Specifically, we show that certain families of pseudorandom quantum states [47, 48] can be generated using a
polynomial number of local non-Gaussian gates. This implies that if there were an algorithm with polynomial time complexity
in t for learning t-doped Gaussian states, quantum computers could solve RingLWE [64] in polynomial time, which is considered
unlikely [43–45, 64–66]. While this rules out the existence of efficient algorithms if t scales polynomially with the number of
qubits n, it does not yet preclude the existence of efficient algorithms if t grows slightly more than logarithmically, for example
t = O((log n)2). However, we can rule out this possibility by making the stronger assumption that quantum computers cannot
solve RingLWE in sub-exponential time [43–46]. This implies that the time complexity of any algorithm to learn Õ(t)-doped
Gaussian states (where Õ(·) hides polylogarithmic factors) would necessarily be exp(Ω(t)). In other words, the following holds.

Theorem 5 (Time-complexity lower bound, informal). Assuming that quantum computers cannot solve RingLWE in sub-
exponential time, then there is no time efficient algorithm to learn ω̃(log(n))-doped Gaussian state which outputs a description
of an efficiently preparable quantum state. Here, ω̃(log(n)) := ω(log(n)polyloglog(n)).

This would prove that the time complexity in t of our algorithm is essentially optimal, because our algorithm is efficient as
long as t = O(log(n)). We show Theorem 5 by efficiently encoding the pseudorandom quantum states constructions [63] via
a specific qubits-to-fermions mapping [23] into other states produced by the same number of gates, all of which are now local
non-Gaussian. Crucially for our construction, this mapping sends local qubit operations to local fermionic operations with only
a constant overhead in the number of qubits. Please refer to the Supplementary Material (Proposition 52) for more details.

Testing Gaussian dimension

We have introduced an algorithm for efficiently learning states with a high Gaussian dimension, specifically those promised
to be t-compressible with a small t. A natural question arises: How can we test the Gaussian dimension of a state? In other
words, how can we determine if the underlying state is close or far from the set of t-compressible states? In our Supplementary
Material, using ideas developed in [67] for the case of Gaussian states (t = 0), we establish that the minimum trace distance
between a state |ψ⟩ and the set of t-compressible Gaussian states, denoted by Gt, satisfies:

1− λt+1

2
≤ min

|ϕt⟩∈Gt

dtr(|ψ⟩ , |ϕt⟩) ≤

√√√√ n∑
k=t+1

1− λk
2

, (5)

where {λk}nk=1 represents the normal eigenvalues of the correlation matrix of |ψ⟩ ordered in increasing order. These inequalities
imply that |ψ⟩ is close in trace distance to the set Gt if and only if λt+1 is close to one. In particular, assuming that |ψ⟩ is either
a state in Gt or min|ϕt⟩∈Gt

dtr(|ψ⟩ , |ϕt⟩) ≥ ε, we can determine with at least 1 − δ probability which of the two cases is true
by accurately estimating λt+1. Specifically, O((n5/ε4) log

(
n2/δ

)
) copies of the state suffice for this purpose. Notably, this

complexity scaling for testing is independent from t, in contrast to learning.
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Conclusions

In this work, we have presented an algorithm for efficiently learning t-doped fermionic Gaussian states, with sample and
time complexity scaling as O(poly(n, 2t)). Additionally, we have established, under standard cryptography assumptions, that
there is no learning algorithm for such class of states with a polynomial dependence on t in the time complexity. Crucially,
our algorithm utilizes solely experimentally feasible single-copy measurements. Its working idea is based on a theorem that we
prove, which says that all the non-Gaussianity in a t-doped fermionic Gaussian state can be efficiently compressed onto O(t)
qubits through a Gaussian operation. This observation carries potential significance beyond the scope of learning, particularly
within the context of quantum many-body theory or within circuit compilation. Thus, the results presented in this work, besides
being directly relevant to device verification and benchmarking, among other tasks, hold fundamental significance for quantum
information theory, as they reveal more about the structure of Gaussian states with fermionic magic gates. Additionally, we
introduce a variety of useful analytical techniques, such as new ways to leverage the Quantum Union Bound [61] in the context
of fermionic states, which are likely to find applications in future research.

Our work offers new directions for further research. For instance, an open question arising from this work is to study the
noise-robustness of our protocol, and whether t-doped Gaussian unitaries can be efficiently learned in the scenario where the
input states to the unitary and measurements at the end can be chosen: the particular case of t = 0 has already been solved in
Ref. [68] and it would be interesting to generalize it. Additionally, a promising future direction is the one of extending the results
presented in this work to the domain of continuous variable systems and bosonic Gaussian states. Finally, an intriguing question
to explore is whether the classical simulability of a class of states, under precise notions of classical simulability, generally
implies learnability in trace distance.
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Supplementary Material

In this supplementary material, we provide a more comprehensive level of detail and explanation for certain aspects covered
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Supplementary Material I: Preliminaries

A. Notation and basics

In this work, we employ the following notation. L(Cd) denotes the set of linear operators acting on the d-dimensional
complex vector space Cd. Additionally, we use [d] to represent the set of integers from 1 to d, i.e., [d] := {1, . . . , d}. We denote
with Mat(d,F) the set of d × d matrices over the field F. Let v ∈ Cd be a vector, and let p ∈ [1,∞]. The p-norm of v is
denoted by ∥v∥p, defined as ∥v∥p := (

∑d
i=1 |vi|p)1/p. The Schatten p-norm of a matrix A ∈ Cd, with p ∈ [1,∞], is given

by ∥A∥p := Tr
(
(
√
A†A)p

)1/p
, corresponding to the p-norm of the vector of singular values of A. The trace norm and the

Hilbert-Schmidt norm are important instances of Schatten p-norms, denoted as ∥·∥1 and ∥·∥2 respectively. The Hilbert-Schmidt
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norm is induced by the Hilbert-Schmidt scalar product ⟨A,B⟩HS := Tr
(
A†B

)
for A,B ∈ L(Cd). The infinity norm, ∥·∥∞, of

a matrix is defined as its largest singular value. This norm can be interpreted as the limit of the Schatten p-norm of the matrix as
p approaches infinity. For any unitaries U and V , and a matrix A, we have the unitary invariance property ∥UAV ∥p = ∥A∥p.
Also, ∥A⊗B∥p = ∥A∥p∥B∥p for A,B ∈ L(Cd). We denote with U(n) the group of n×n unitary matrices. We denote O(2n)
as the group of real orthogonal 2n×2n matrices. Sp(2n,R) denotes the group of symplectic matrices over the real field, defined
as

Sp(2n,R) := {S ∈ Mat(2n,R) : SΩST = Ω}, (S1)

where Ω :=
⊕n

i=1

(
0 1
−1 0

)
. The n-qubits Pauli operators are represented as elements of the set {I,X, Y, Z}⊗n, where

I,X, Y, Z represent the standard single qubit Pauli. Pauli operators are traceless, Hermitian, they square to the identity, and
form an orthogonal basis with respect to the Hilbert-Schmidt scalar product for the space of linear operators. We define the
set of quantum states as S(Cd) := {ρ ∈ L(Cd) : ρ ≥ 0, Tr(ρ) = 1}. The trace distance between two pure quantum states
|ψ⟩ , |ϕ⟩ ∈ Cd is defined as dtr(|ψ⟩ , |ϕ⟩) := 1

2∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥1.
For a function f(n), if there exists a constant c and a specific input size n0 such that f(n) ≤ c · g(n) for all n ≥ n0, where

g(n) is a well-defined function, then we express it as f(n) = O(g(n)). This notation signifies the upper limit of how fast a
function grows in relation to g(n).

For a function f(n), if there exists a constant c and a specific input size n0 such that f(n) ≥ c · g(n) for all n ≥ n0, where
g(n) is a well-defined function, then we express it as f(n) = Ω(g(n)). This notation signifies the lower limit of how fast a
function grows in relation to g(n).

For a function f(n), if for any constant c, there exists an input size n0 such that f(n) > c · g(n) for all n ≥ n0, where g(n) is
a well-defined function, then then we express it as f(n) = ω(g(n)). This notation implies that the function grows strictly faster
than the provided lower bound.

B. Basics of probability theory

In this section, we present fundamental results from probability theory useful in our work.

Lemma 6 (Union Bound). Let A1, A2, . . . , AM be events in a probability space. The probability of the union of these events is
bounded by the sum of their individual probabilities:

Pr

(
M⋃
i=1

Ai

)
≤

M∑
i=1

Pr(Ai).

Lemma 7 (Chernoff Bound). Consider a set of independent and identically distributed random variables {Xi}Ni=1 with binary
outcomes, taking values in {0, 1}. Define X :=

∑N
i=1Xi and µ := E[X]. For any α ∈ (0, 1), the probability of X being less

than (1− α) times its expected value is exponentially bounded as follows:

Pr [X ≤ (1− α)µ] ≤ exp

(
−α

2µ

2

)
.

Lemma 8 (Hoeffding’s Inequality). Let {Xi}Ni=1 be independent and identically distributed (i.i.d) random variables with values
in [a, b] ⊆ R. For any ε > 0, the probability of the deviation of X̂ := (

∑N
i=1Xi)/N from its expected value is exponentially

bounded as follows:

Pr

(∣∣∣∣∣ 1N
N∑
i=1

Xi − E[X̂]

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2Nε2

(b− a)2

)
.

Corollary 9. For any ε > 0 and δ > 0, let {Xi}Ni=1 be i.i.d. random variables with values in [a, b] ⊆ R and X̂ :=

(
∑N
i=1Xi)/N . According to Hoeffding’s inequality, a sample size N satisfying

N ≥ (b− a)2

2ε2
log

(
2

δ

)
suffices to guarantee that | 1N

∑N
i=1Xi − E[X̂]| < ε with a probability of at least 1− δ.
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C. Fermionic Gaussian states

In this section, we explore the definitions and essential properties of fermionic Gaussian states. We focus on a system
consisting of n qubits or n fermionic modes, resulting in a Hilbert space dimension of 2n. More precisely, our work is approached
from two perspectives: examining a system of n qubits with 1D matchgates circuits and their magic gates (e.g., SWAP gates),
or an equivalent native fermionic system of n modes with states prepared by fermionic Gaussian evolutions and local non-
Gaussian evolutions. These perspectives are mathematically connected through the Jordan-Wigner mapping, which we use now
for defining Majorana operators in terms of Pauli operators.

Definition 10 (Majorana Operators). For each k ∈ [n], Majorana operators are defined as:

γ2k−1 :=

k−1∏
j=1

Zj

Xk, γ2k :=

k−1∏
j=1

Zj

Yk. (S2)

Majorana operators can also be defined directly in the fermionic language through their anticommutation relations [13, 51].
Majorana operators are Hermitian, traceless, and their squares yield the identity, as deducible from their definitions. Moreover,
distinct Majorana operators exhibit anticommutativity and orthogonality with respect to the Hilbert-Schmidt inner product.

Definition 11 (Majorana Ordered Products). Given a set S := {µ1, . . . , µ|S|} ⊆ [2n] with 1 ≤ µ1 < · · · < µ|S| ≤ 2n, we
define the Majorana product operator as γS = γµ1 · · · γµ|S| if S ̸= ∅, and γ∅ = I otherwise.

The 4n distinct ordered Majorana products are orthogonal to each other with respect the Hilbert-Schmidt inner product,
therefore they form a basis for the linear operators L

(
C2n

)
.

Definition 12 (Fermionic Gaussian Unitary (FGU)). A fermionic Gaussian unitary GO is a unitary operator satisfying:

G†
OγµGO =

2n∑
ν=1

Oµ,νγν (S3)

for any µ ∈ [2n], where O ∈ O(2n) is an orthogonal matrix.

Since the ordered products of Majorana operators γµ with µ ∈ [2n] form a basis for the linear operators, it is sufficient to
specify how a unitary acts under conjugation on the 2n Majorana operators γµ, where µ ∈ [2n], to uniquely determine the
unitary up to a phase. Thus, there is a one-to-one mapping between n-qubit fermionic Gaussian unitaries (up to a global phase)
and orthogonal matrices O(2n). In particular, given O ∈ O(2n), it is possible to build the associated unitary using at most
O(n(n − 1)/2) 2-qubit FGU operations. For a more detailed explanation on how to map an O(2n) matrix to a fermionic
Gaussian unitary, refer to [36, 52, 69]. From the previous definition, it readily follows that G†

O = GOT . Moreover we have
that the product of two Gaussian unitaries is Gaussian, namely (GO1GO2)

†γµGO1GO2 =
∑2n
ν=1(O1O2)µ,νγν . To streamline

notation, we will frequently refer to fermionic Gaussian unitariesGO simply asGwhen there is no need to specify the associated
orthogonal matrix. Now, we define a fermionic Gaussian state.

Definition 13 (Fermionic Gaussian State). An n-qubit state |ψ⟩ is a (pure) fermionic Gaussian state if it can be expressed as
|ψ⟩ = G |0n⟩, where G is a fermionic Gaussian unitary.

It is noteworthy that any computational basis state |x⟩ is a Gaussian state. This stems from the observation that each Pauli Xi

gate acting on the i-th qubit, where i ∈ [n], is a fermionic Gaussian unitary. An additional useful identity is Zj = −iγ2j−1γ2j .
Thus, the density matrix of a pure fermionic Gaussian state associated to an orthogonal matrix O ∈ O(2n) can be written as:

GO |0n⟩⟨0n|G†
O = GO

 n∏
j=1

I − iγ2j−1γ2j
2

G†
O =

n∏
j=1

(
I − iγ̃2j−1γ̃2j

2

)
, (S4)

where γ̃µ := GOγµG
†
O =

∑2n
ν=1O

T
µ,νγν for each µ ∈ [2n].

We now proceed to define the correlation matrix for any (possibly non-Gaussian) state.

Definition 14 (Correlation Matrix). For any n-qubit quantum state ρ, its correlation matrix C(ρ) is defined as:

[C(ρ)]j,k := − i

2
Tr ([γj , γk] ρ) , (S5)

where j, k ∈ [2n].
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The correlation matrix of any state is real and anti-symmetric, possessing eigenvalues in pairs ±iλj for j ∈ [2n], where λj are
real numbers such that |λj | ≤ 1. The correlation matrix of a quantum state, when evolved using fermionic Gaussian unitaries,
undergoes a transformation through conjugation with the corresponding orthogonal matrix, as articulated in the following lemma.

Lemma 15 (Transformation of the Correlation Matrix under FGU). For a given n-qubit state ρ, we have:

C(GOρG
†
O) = OC(ρ)OT , (S6)

for any orthogonal matrix O ∈ O(2n) and associated fermionic Gaussian unitary GO.

This result is readily verified through the definitions of the correlation matrix and fermionic Gaussian unitary. The state |x⟩ is
characterized by a correlation matrix of the form:

C(|x⟩⟨x|) =
n⊕
j=1

(
0 (−1)xi

−(−1)xi 0

)
. (S7)

Hence, for a fermionic Gaussian state |ψ⟩ := GO |0n⟩, the correlation matrix takes the form:

C(|ψ⟩⟨ψ|) = O
n⊕
j=1

(
0 1
−1 0

)
OT . (S8)

In the subsequent discussion, we will use C(|ψ⟩) to denote the correlation matrix of a pure state |ψ⟩. If the state |ψ⟩ is a pure
Gaussian state, then each of the eigenvalues of C(|ψ⟩) is one in absolute value. Moreover, it is worth noting that every real
anti-symmetric matrix can be decomposed in the following form:

Lemma 16 (Normal form of Real Anti-Symmetric Matrices [53]). Any real anti-symmetric matrix C can be decomposed in the
so-called ‘normal-form’:

C = O

n⊕
j=1

(
0 λj

−λj 0

)
OT , (S9)

where O is an orthogonal matrix in O(2n) and λj ≥ 0 ∈ R, for any j ∈ [n], are ordered in increasing order. The eigenvalues of
C are ±iλj where λj ∈ R for any j ∈ [n].

Definition 17 (Normal eigenvalues). Given a real-antisymmetric matrix decomposed as in the previous Lemma 16, {λj}nj=1 are
dubbed as the ‘normal eigenvalues’ of the matrix.

D. Particle-number preserving unitaries

In this section, we introduce the concept of particle-number preserving fermionic unitaries and establish definitions and facts
useful for subsequent discussions. We begin by defining creation and annihilation operators.

Definition 18 (Creation and Annihilation Operators). The annihilation operators are defined as:

aj :=
γ2j−1 + iγ2j

2
, (S10)

for any j ∈ [n]. The creation operators {a†j}nj=1 are defined as the adjoints of the annihilation operators.

Definition 19 (Particle Number Operator). The operator N̂ :=
∑n
i=1 a

†
iai is denoted as the particle number operator.

The computational basis forms a set of eigenstates for the particle number operator:

N̂ |x1, . . . , xn⟩ = (x1 + · · ·+ xn) |x1, . . . , xn⟩ , (S11)

where x1, . . . , xn ∈ {0, 1}.

Definition 20 (Particle Number Preserving Unitaries). A unitary U is said to be particle number preserving if and only if

U†N̂U = N̂ , (S12)

where N̂ :=
∑n
i=1 a

†
iai is the particle number operator.
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Definition 21 (Symplectic Group). The group of real symplectic matrices, denoted as Sp(2n,R), is defined as

Sp(2n,R) := {S ∈ Mat(2n,R) : SΩST = Ω}, (S13)

where Ω :=
⊕n

i=1

(
0 1
−1 0

)
=
⊕n

i=1 iY .

It is often convenient to express Ω as Ω = In ⊗ iY , where In denotes the n × n identity matrix. Note that Ω in the

literature is sometimes defined (see, e.g., [54]) as iY ⊗In =

(
0n In
−In 0n

)
, but the two definitions are equivalent up to orthogonal

transformation.
Now, we state an important proposition that will be useful in the subsequent section.

Proposition 22 (U(n) is Isomorphic to O(2n)∩Sp(2n,R)). The set of unitaries U(n) is isomorphic to the set of real symplectic
orthogonal matrices O(2n) ∩ Sp(2n,R).

In particular, any orthogonal symplectic matrix O ∈ O(2n) ∩ Sp(2n,R) can be written as follows:

O = Re(u)⊗ I + Im(u)⊗ iY, (S14)

where u ∈ U(n) is an n× n unitary.

Proof. We refer the reader to Appendix B.1. of the book [54].

We now present a Lemma, which shows (some) equivalent definitions of a particle-number preserving fermionic Gaussian
unitary.

Lemma 23 (Particle Number Preserving Gaussian Unitary). Let G be a fermionic Gaussian unitary associated with the orthog-
onal matrix O ∈ O(2n). The following points are equivalents:

1. G is particle number-preserving,

2. G |0n⟩⟨0n|G† = |0n⟩⟨0n|,

3. O is symplectic orthogonal, i.e., O ∈ O(2n) ∩ Sp(2n,R).

Proof. If G is particle number-preserving, then

G†N̂G |0n⟩ = N̂ |0n⟩ = 0, (S15)

where the first equality uses Definition 20. This implies N̂G |0n⟩ = 0. Since the ground space corresponding to the zero
eigenvalue of the particle number operator N̂ is one-dimensional and spanned by |0n⟩, it follows that G |0n⟩ is equal to |0n⟩, up
to a phase. Thus, 1. implies 2.

Noting that |0n⟩⟨0n| is a Gaussian state with a correlation matrix Ω =
⊕n

j=1 iY , we deduce that the correlation matrix of
G |0n⟩⟨0n|G† is OΩOT . Therefore the condition G |0n⟩⟨0n|G† = |0n⟩⟨0n| is equivalent to OΩOT = Ω, i.e., O is a real
symplectic orthogonal matrix. This proves that 2. is equivalent to 3.

Now, let us assume that O ∈ O(2n) ∩ Sp(2n,R). Then, we have for l ∈ [n]:

G†alG = G†
(
γ2l−1 + iγ2l

2

)
G =

2n∑
j=1

(O2l−1,j + iO2l,j)
γj
2

(S16)

=
n∑
j=1

(O2l−1,2j−1 + iO2l,2j−1)
γ2j−1

2
+

n∑
j=1

(O2l−1,2j + iO2l,2j)
γ2j
2
, (S17)

=

n∑
j=1

(Re(u)l,j + i Im(u)l,j)
γ2j−1

2
+

n∑
j=1

(− Im(u)l,j + iRe(u)l,j)
γ2j
2
, (S18)

=

n∑
j=1

ul,j
(γ2j−1 + iγ2j)

2
=

n∑
j=1

ul,jaj . (S19)

where in the fourth equality we used that O ∈ O(2n) ∩ Sp(2n,R), and so, because of Proposition 22, it can be written as
O = Re(u)⊗ I + Im(u)⊗ iY where u ∈ U(n) is a n× n unitary. Similarly, we have G†alG =

∑n
j=1 u

∗
l,ja

†
j . This implies

G†N̂G =
n∑
l=1

G†a†l alG =
n∑

l,j,k=1

u∗l,jul,ka
†
jak =

n∑
j=1

a†jaj = N̂ , (S20)

where we used the unitarity of u in the last step. This proves that 3. implies 1.
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Supplementary Material II: Structure of t-doped Gaussian unitaries and states

In this section, we analyze the concept of t-doped fermionic Gaussian unitaries and states.

Definition 24 (t-Doped Fermionic Gaussian Unitary). A unitary Ut is a (t, κ)-doped fermionic Gaussian unitary if it can be
decomposed in terms of Gaussian unitaries {Gi}ti=0 and at most t non-Gaussian κ-local gates {Wi}ti=1, specifically

Ut = GtWt · · ·G1W1G0. (S21)

Here κ-local refers to the number of distinct Majorana operators that generate each non-Gaussian gate. Informally, a unitary
is t-doped Gaussian if it is (t, κ)-doped Gaussian for some fixed constant κ.

In our work, we consider non-Gaussian gates Wt′ for t′ ∈ [t], each generated by κ ≤ 2n in κ fixed Majorana opera-
tors {γµ(t′,j)}κj=1, where µ(t′, 1), . . . , µ(t′, κ) ∈ [2n]. For κ = 3, an example of a non-Gaussian gate is exp(θγ1γ2γ3) =
exp(−iY1θ), where θ ∈ R, and for κ = 4, an example is the SWAP-gate.

Definition 25 (t-Doped Fermionic Gaussian State). An n-qubit state |ψ⟩ is a (t, κ)-doped (informally, t-doped) fermionic Gaus-
sian state if it can be expressed as |ψ⟩ = Ut |0n⟩, where Ut is a (t, κ)-doped (t-doped) fermionic Gaussian unitary.

A. Compression of t-doped Gaussian unitaries and states

We start by presenting a Theorem which shows how all non-Gaussianity in a t-doped unitary can be ‘compressed’ or ‘moved’
to the first few qubits.

Theorem 26 (Compression of Non-Gaussianity in t-Doped Unitaries). Any (t, κ)-doped fermionic Gaussian unitary Ut can be
expressed as:

Ut = GA(ut ⊗ I)GB , (S22)

where GA, GB are Gaussian unitaries, and ut is a unitary supported exclusively on ⌈κt2 ⌉ qubits.

Proof. Let us denote M := κt. We express the t-doped unitary as Ut = (
∏t
t′=1Gt′Wt′)G0. Rearranging it, we have

Ut = G̃t

t∏
t′=1

W̃t′ , (S23)

where W̃t′ := G̃†
t′−1Wt′G̃t′−1 and G̃t′ := Gt′ ..G0. Informally, the idea behind this rewriting is that Gaussian operations act

nicely under conjugation. Next, we rewrite

Ut = G̃tGaux

t∏
t′=1

(G†
auxW̃t′Gaux)G

†
aux, (S24)

by introducing a Gaussian operation Gaux that we fix later and that will be responsible for moving all the non-Gaussian gates to
the first qubits. Now, we set:

GA := G̃tGaux (S25)

ut :=
t∏

t′=1

(G†
auxW̃t′Gaux) (S26)

GB := G†
aux. (S27)

Note that GA so-defined is Gaussian because the product of Gaussian unitaries is Gaussian, and GB is clearly Gaussian because
the adjoint of a Gaussian unitary is Gaussian. We need to show that it is possible to choose Gaux such that ut is supported only
on the first ⌈M/2⌉ qubits.

More precisely, we will require that Gaux ensures that each G†
auxW̃t′Gaux is generated by the first M Majorana operators

alone. We will achieve it by ensuring that the Heisenberg evolution under G̃t′−1Gaux, of each Majorana that generates Wt′ ,
has non-trivial support exclusively on the first M Majorana operators. To find Gaux with the desired property, we will find the
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associated orthogonal matrix Oaux. Let {µ(t′, r)}t′∈[t],r∈[κ], with µ(t′, r) ∈ [2n], be the set of indices of Majorana operators
generating the t′-th non-Gaussian gate (listed in increasing order). For example, consider κ = 4 and the t′-th non-Gaussian
gate Wt′ := exp(iγ2γ4γ6γ9 + iγ4). In this case, µ(t′, 3) = 6. For each such Majorana operator γµ(t′,r), where r ∈ [2n], its
Heisenberg evolution yields

G†
auxG̃

†
t′−1γµ(t′,r)G̃t′−1Gaux =

2n∑
m=1

(Ot′−1Oaux)µ(t′,r),mγm, (S28)

where Ot′−1 is the orthogonal matrix associated with G̃t′−1. Our demand on the support of Heisenberg-evolved γµ(t′,r) implies

(Ot′−1Oaux)µ(t′,r),m = (OTauxO
T
t′−1)m,µ(t′,r) = 0 (S29)

for any m ∈ {M + 1, . . . , 2n}.
Let us denote as {ei}2ni=1 the canonical basis vectors of R2n. For easy notation, we now denote the unit norm vectors

{OTt′−1eµ(t′,r)}t′∈[t],r∈[κ] with the set of vectors {vj}Mj=1 (remember that M = κt). We can prove the existence of such
Oaux by proving the existence of its transpose O := OTaux. In such notation, the condition in Eq.(S29) reads as:

eTmOvj = 0, (S30)

for any j ∈ [M ] and m ∈ {M + 1, . . . , 2n}. In other words, we need to prove the existence of an orthogonal matrix O that
maps any given real vectors v1, . . . ,vM ∈ R2n, where M ≤ 2n, to the span of the first M canonical basis vectors of R2n. The
existence of such a matrix is readily established by selecting an orthonormal basis for W := Span(v1, . . . ,vM ) and defining
the orthogonal matrix that maps this orthonormal basis to the first dim(W ) ≤ M canonical basis vectors. This concludes the
proof.

The subsequent Theorem 27 demonstrates the compression of t-doped Gaussian states.

Theorem 27 (Compression of Non-Gaussianity in t-doped Gaussian states). Any (t, κ)-doped fermionic Gaussian state |ψ⟩ can
be represented as:

|ψ⟩ = G(|ϕ⟩ ⊗
∣∣0n−κt〉), (S31)

where G is a Gaussian unitary, and |ϕ⟩ is a state supported exclusively on κt qubits.

Proof. Let |ψ⟩ := Ut |0n⟩, where Ut = (
∏t
t′=1Gt′Wt′)G0 is a t-doped fermionic Gaussian unitary. The proof begins analo-

gously to the one of the previous Theorem 26 and it uses the same notation. In particular, we have:

Ut = G̃tGaux

t∏
t′=1

(G†
auxW̃t′Gaux)G

†
aux, (S32)

where W̃t′ := G̃†
t′−1Wt′G̃t′−1 and G̃t′ := Gt′ ..G0. We set, as before

GA := G̃tGaux (S33)

ut :=

t∏
t′=1

(G†
auxW̃t′Gaux) (S34)

GB := G†
aux. (S35)

However, now, we require that ut has support on the first M qubits, where M := κt (while in the previous proof of Theorem 26
we requested ⌈M/2⌉), or, equivalently, we request that the generators of G†

auxW̃t′Gaux for any t′ ∈ [t] involve only the first 2M
Majorana operators.

This time we also impose that G†
aux |0n⟩ = |0n⟩. This implies that OTaux ∈ Sp(2n,R) (where Oaux is the orthogonal matrix

associated to Gaux), i.e. OTaux must be a symplectic orthogonal matrix, because of Lemma 23. We now define O := OTaux.
Similarly to the previous theorem and using the same notation, we can ensure that ut is supported only on the first M qubits

by demonstrating the existence of an orthogonal, but this time also symplectic, matrix O that satisfies:

eTmOvj = 0, (S36)

for any j ∈ [M ] with arbitrary v1, . . . ,vM real vectors, and m ∈ {2M + 1, . . . , 2n}. The existence of such O follows from the
subsequent Lemma 28, which crucially uses the isomorphism between 2n× 2n symplectic orthogonal real matrices and n× n
unitaries [54].
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Lemma 28 (Compression via Symplectic Orthogonal Transformations). Let {ei}2ni=1 be the canonical basis of R2n. Let
v1, . . . ,vM ∈ R2n be a set of unit-norm real vectors, where M ≤ n. There exists an orthogonal symplectic matrix O ∈
O(2n) ∩ Sp(2n,R) such that

eTi Ovj = 0, (S37)

for all i ∈ {2M + 1, . . . , 2n} and j ∈ [M ], meaning that all {Ovj}Mj=1 are exclusively supported on the span of the first 2M
canonical basis vectors.

Proof. Orthogonal symplectic matricesO ∈ O(2n)∩Sp(2n,R) have a bijective correspondence with unitary matricesU ∈ U(n)
through a well-defined vector space mapping [54] (see Proposition 22). Specifically, for a 2n-dimensional real vector w :=
(w1, . . . , w2n), there exists a bijective mapping to an n-dimensional complex vector f(w) := (w1 − iw2, . . . , w2n−1 − iw2n).
A unitary transformation U in this n-dimensional complex space corresponds to an orthogonal symplectic transformation O in
the corresponding 2n-dimensional real space, and vice versa. Thus, finding a unitary U that maps the span of f(v1), . . . , f(vM )
to the span of the first M canonical basis vectors of this n-dimensional complex space implies the existence of a symplectic
orthogonal matrix O that maps v1, . . . ,vM to the span of the first 2M canonical basis vectors of the 2n-dimensional real space.
To establish the existence of such a unitary, consider the complex vector subspace W := Span(f(v1), . . . , f(vM )) of dimension
at most M . By selecting an orthonormal basis for this subspace, we can construct a unitary matrix U that maps this basis to
the first dim(W ) ≤ M canonical basis vectors. Hence, the existence of the required unitary matrix is confirmed, implying the
existence of a symplectic orthogonal matrix O that maps v1, . . . ,vM to the span of the first 2M canonical basis vectors. This
concludes our proof.

It is noteworthy that the ‘compressed size’ obtained for t-doped unitaries, which is ⌈κt/2⌉, is less than κt which we proved
for t-doped Gaussian states.

B. Compression of t-doped Gaussian particle-number preserving unitaries

The subsequent Proposition 29 demonstrates that the compression of t-doped Gaussian unitaries can also be achieved in the
particle-number preserving case.

Proposition 29 (Particle number preserving t-doped unitaries). Let Ut be a t-doped fermionic Gaussian unitary, as per Defini-
tion 24, where all the unitaries that compose Ut are particle-number preserving. Then Ut can be decomposed as:

Ut := GA(ut ⊗ I)GB , (S38)

whereGA andGB are Gaussian unitaries which preserve the number of particles (see Definition 20) and ut is a particle-number
preserving possibly non-Gaussian unitary supported on κt qubits.

Proof. The proof of such proposition follows the same lines as the one of Theorem 27. In fact, by inspecting the proof, it readily
follows that the so-defined GA is particle-number preserving. The fact that GB and ut are particle-number preserving follows
from the condition G†

aux |0n⟩ = |0n⟩, where GB := G†
aux and by Lemma 23.

C. Circuit complexity of t-doped Gaussian unitaries and states

The circuit complexity of a unitary (state) is defined as the minimum number of O(1)-local gates needed for implementing
the unitary (state). We will consider locality both in the qubit and in the fermionic sense; in the latter case it refers to the number
of distinct Majorana operators that generate each non-Gaussian gate. Our subject of interest is the scaling of the complexity of a
t-doped unitary. Throughout this section, we assume κ = O(1) and let t = t(n) change in some way with n. By Definition 24,
a t-doped Gaussian unitary Ut can be written as Ut = GtWt · · ·G1W1G0, where {Gi}ti=0 are Gaussian unitaries and {Wi}ti=1

are, possibly non-Gaussian, κ-local fermionic gates. From this definition and using the fact that any Gaussian unitary can be
decomposed as the product of ≤ 2n(2n − 1)/2 (fermionic) 2-local gates [36, 52], the fermionic circuit complexity of t-doped
Gaussian unitaries is upper-bounded by O(n2t). The same can be shown for qubit circuit complexity (see below). But more
importantly, we have proven earlier that a t-doped Gaussian unitary can be decomposed as Ut = GA(ut⊗I)GB , whereGA, GB
are Gaussians and ut is a unitary on ⌈κt2 ⌉ qubits. In the following, we show that such decomposition reveals an improved upper
bound on the circuit complexity of t-doped Gaussian unitaries.
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Proposition 30 (Circuit complexity of t-doped Gaussian unitaries). The circuit complexity C(Ut) of a t-doped Gaussian unitary
Ut is (both in the qubit and fermionic sense):

C(Ut) =

{
O(n2 + t3), if κt ≤ n

O(n2t), otherwise.
(S39)

Proof. Let us assume that κt ≤ n. Then, Ut can be written as Ut = GA(ut ⊗ I)GB , where GA, GB are Gaussians and ut
is a unitary on ⌈κt2 ⌉ qubits. In fact, ut is itself a (t, κ)-doped Gaussian unitary on ⌈κt2 ⌉ qubits. It is not directly obvious, but
will be shown momentarily; this will imply the desired circuit complexity O(t3). We recall our definitions used in the proof of
Theorem 26. We have G̃t′ := Gt′ ..G0 for t′ ∈ [t] and a Gaussian unitary Gaux, and set

ut :=
t∏

t′=1

(G†
auxG̃

†
t′−1Wt′G̃t′−1Gaux) =

t∏
t′=1

wt′ , (S40)

where we defined the unitaries wt′ := G†
auxG̃

†
t′−1Wt′G̃t′−1Gaux which act only on the first ⌈κt2 ⌉ qubits (equivalently, fermionic

modes). We note that wt′ is generated by κMajorana operator superpositions of form
∑κt
i=1[ṽj ]iγi, j ∈ [κ(t′−1)+1, κt′]; here

ṽj := Ovj (cf. notation O and vj from the proof of Theorem 26). Hence, for each of these (non-local) non-Gaussian unitaries
wt′ , we can find a Gaussian operation gt′ on the first ⌈κt2 ⌉ qubits whose associated orthogonal matrix rotates vectors ṽj into the
span of the first κ basis vectors. As a result, we have wt′ = g†t′w̃t′gt′ , where w̃t′ is now a κ-local non-Gaussian unitary generated
by the first κ Majorana operators. By implication, it is also a local qubit gate acting on the first ⌈κ2 ⌉ qubits. From this it follows
that the circuit complexity of each wt′ scales as that of a Gaussian gt′ . As gt′ acts on the first O(t) qubits/fermionic modes, its
circuit complexity is O(t2) both in the qubit and the fermionic sense. Therefore, the circuit complexity of ut is tO(t2) = O(t3).
Moreover, the circuit complexity (both qubit and fermionic) to implement GA and GB is O(n2). Putting the above observations
together, it follows that the circuit complexity of Ut is O(n2 + t3). As long as κt ≤ n, this upper bound is tighter than the one
which proof follows from the t-doped definition, namely O(n2t).

The qubit (and not only fermionic) circuit complexity of O(n2t) for κt > n can be found in a similar way as the complexity
of O(t3) we showed for ut above. In particular, consider any κ-local non-Gaussian fermionic unitary Wt′ which participates in
Ut. Using auxilliary Gaussian rotations, its generating Majorana operators can be mapped to {γ1, .., γκ}, resulting in a unitary
supported by the first ⌈κ2 ⌉ qubits alone. The asymptotic qubit complexity of Ut is thus determined by that of remaining t
Gaussian layers, yielding O(n2t) as promised.

This Proposition reveals that t-doped fermion Gaussian unitaries allow not only a ‘spatial compression for the magic’, but
also a compression of the circuit depth.

D. t-compressible Gaussian states

We now introduce the notion of t-compressible fermionic Gaussian state, a class of states that includes the one of t-doped
Gaussian states. We now reiterate Definition 2 for convenience. Throughout this section, we assume that t ∈ [n].

Definition 31 (t-compressible Gaussian state). A state |ψ⟩ is a t-compressible (Gaussian) state if and only if it can be represented
as |ψ⟩ = G(|ϕ⟩ ⊗ |0n−t⟩), where G is a Gaussian operation, and |ϕ⟩ is a pure state supported solely on the first t qubits.

A t-doped Gaussian state is also a κt-compressible Gaussian state because of Theorem 27. However, the reverse is not true
because of circuit complexity arguments: t-doped Gaussian states exhibit a circuit complexity of at most O(n2t). In contrast, a
t-compressible state features a circuit complexity of O(n2 + exp(t)), representing the complexity needed for implementing a
single Gaussian operation and preparing a generic state supported on t qubits.

In the subsequent Proposition, we elucidate the structure of the correlation matrix of any t-compressible state, such as t-doped
states.

Proposition 32 (Correlation Matrix of a t-compressible Gaussian State). The correlation matrix C(|ψ⟩) of a t-compressible
Gaussian state |ψ⟩ can be expressed as:

C(|ψ⟩) = O

n⊕
j=1

(
0 λj

−λj 0

)
OT , (S41)

where λj ≤ 1 for j ∈ [t] and λj = 1 for j ∈ {t+ 1, . . . , n}, and O ∈ O(2n) is an orthogonal matrix.
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Proof. As per Definition 31, we represent |ψ⟩ as |ψ⟩ = G(|ϕ⟩⊗ |0n−t⟩), where G is a Gaussian operation and |ϕ⟩ is a pure state
supported solely on the first t qubits. Utilizing Lemma 16, we can express the correlation matrix C(|ψ⟩) as follows:

C(|ψ⟩) = QC(|ϕ⟩ ⊗
∣∣0n−t〉)QT (S42)

= Q
(
C(|ϕ⟩)⊕ C(

∣∣0n−t〉))QT , (S43)

where Q ∈ O(2n) is the orthogonal matrix associated to the Gaussian unitary G. By Eq.(S7), we have:

C(
∣∣0n−t〉) = n−t⊕

j=1

(
0 1
−1 0

)
. (S44)

Since C(|ϕ⟩) is an antisymmetric real matrix, we can decompose it into its normal form (Lemma 16):

C(|ϕ⟩) = Ot

t⊕
j=1

(
0 λj

−λj 0

)
OTt (S45)

The proof concludes by definining O := Q(Ot ⊕ I2n−2t).

The previous proposition reveals that t-compressible states exhibit at least n − t normal eigenvalues which are exactly one.
This motivates the following definition, in analogy to the stabilizer dimension defined in the stabilizer case [33].

Definition 33 (Gaussian dimension of a state). The Gaussian dimension of a state is defined as the number of the normal
eigenvalues of its correlation matrix which are equal to one.

In the following, we show that this is also a sufficient condition for a state to be Gaussian t-compressible.

Lemma 34 (Sufficient Condition for t-Compressibility). Let |ψ⟩ be an n-qubit quantum state. If |ψ⟩ has Gaussian dimension
of n− t, then |ψ⟩ is a t-compressible Gaussian state.

Proof. The correlation matrix of |ψ⟩ can be written in its normal form as C(|ψ⟩) = OΛOT , where Λ :=
⊕n

j=1

(
0 λj

−λj 0

)
, and

O ∈ O(2n). The {λj}ni=1 are the normal eigenvalues such that the last n− t are equal to one. Consider the state |ψ′⟩ := G†
O |ψ⟩

where GO is the Gaussian unitary associated with O. Then, C(ψ′) = OTC(|ψ⟩)O = Λ. In particular,

Tr(|ψ′⟩⟨ψ′|Zk) = C(ψ′)2k−1,2k = Λ2k−1,2k = 1, (S46)

for each k ∈ {t+ 1, . . . , n}. Therefore, |ψ′⟩ must be of the form |ψ′⟩ = |ϕ⟩ ⊗ |0n−t⟩, where |ϕ⟩ is an arbitrary state on the first
t qubits. Therefore, we have |ψ⟩ = GO(|ϕ⟩ ⊗ |0n−t⟩), which is a t-compressible state.

Hence, Proposition 32 and Lemma 34 prove the following.

Proposition 35 (Equivalence between t-compressibily and n− t Gaussian dimension). A n-qubit state is t-compressible if and
only if its Gaussian dimension is n− t.

Note that Proposition 35 also proves that a quantum state is a pure Gaussian state if and only if its Gaussian dimension is
n. Furthermore, as a direct consequence of the proof of Lemma 34, we establish that the Gaussian unitary associated with
a t-compressible Gaussian state can be selected as the Gaussian unitary corresponding to any orthogonal matrix placing its
correlation matrix in the normal form (Lemma 16). This is summarized as follows:

Lemma 36. Every t-compressible Gaussian state |ψ⟩ can be written as |ψ⟩ := GO(|ϕ⟩ ⊗ |0n−t⟩), where GO is chosen as the
Gaussian unitary associated with an orthogonal matrix O ∈ O(2n) that arranges its correlation matrix in the normal form
described in Lemma 16, and |ϕ⟩ is a state supported on t qubits.

Supplementary Material III: Tomography algorithm

In this section, we present a detailed and rigorous analysis of the tomography algorithm for t-compressible states outlined in
the main text (Algorithm 1) and reiterated in Algorithm 2 for ease of reference and to include extra details. Throughout this
section, we assume that t ∈ [n].
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Algorithm 2: Learning Algorithm for t-compressible fermionic Gaussian states

Input: Accuracy ε, failure probability δ, N := ⌈ 256n
5

ε4
log

(
12n2

δ

)
+ 2Ntom

(
t, ε

2
, δ
3

)
+ 24 log

(
3
δ

)
⌉ copies of the t-compressible state

|ψ⟩, where Ntom is the number of copies needed for t-qubit pure state tomography with accuracy ε
2

and failure probability δ
3

.
Output: A classical description of |ψ̂⟩, ensuring dtr(|ψ̂⟩, |ψ⟩) ≤ ε with probability at least 1− δ.

1 Estimate the correlation matrix of |ψ⟩ using ⌈ 256n
5

ε4
log

(
12n2

δ

)
⌉ single-copy measurements (see Lemma 38), obtaining Ĉ;

2 Express Ĉ in its normal form Ĉ = ÔΛ̂ÔT (Eq.(1)) and find the Gaussian unitary GÔ associated with Ô ∈ O(2n);
3 for i← 1 to ⌈2Ntom(t, ε

2
, δ
3
) + 24 log

(
3
δ

)
⌉ do

4 Apply G†
Ô

to |ψ⟩;
5 Measure the last n− t qubits in the computational basis;
6 if the outcome corresponds to

∣∣0n−t
〉

then
7 Proceed;

8 else
9 Discard and move to the next iteration;

10 Perform a step of pure state tomography [56] on the remaining t qubits;

11 Obtain the t-qubit state |ϕ̂⟩ from tomography;
12 return Ô and |ϕ̂⟩, which identify |ψ̂⟩ := G†

Ô
(|ϕ̂⟩ ⊗

∣∣0n−t
〉
);

A. Useful lemmas and subroutines

Let us start with a Lemma, which gives a sample complexity upper bound to estimate the correlation matrix of a state using
single-qubit Pauli-basis measurements. We recall that the correlation matrix of a state ρ is a real antisymmetric matrix, defined
as:

[C(ρ)]j,k = Tr(O(j,k)ρ), (S47)

where O(j,k) := −iγjγk, for j < k ∈ [2n] (and the other elements are given by the antisymmetricity of the matrix). Note that
O(j,k) are Pauli observables. Thus, we have a total of M := n(2n− 1) Pauli expectation values to estimate.

Lemma 37 (Sample Complexity for Estimating the Correlation Matrix by Pauli measurements). Let εc, δ > 0. Assume to have
access to N ≥ Nc(n, εc, δ), with

Nc(n, εc, δ) :=

⌈
8n3(2n− 1)

ε2c
log

(
2n(2n− 1)

δ

)⌉
, (S48)

copies of an n-qubit state ρ. Utilizing only N single-copies measurements in the Pauli basis, with probability ≥ 1 − δ, we can
construct an anti-symmetric real matrix Ĉ such that it satisfies:∥∥∥Ĉ − C(ρ)

∥∥∥
∞

≤ εc. (S49)

Proof. Let ε > 0 an accuracy parameter to be fixed. For each j < k ∈ [2n], we measure N ′ copies of ρ in the Pauli basis cor-
responding to O(j,k), obtaining outcomes {X(j,k)

m }N ′

m=1, where X(j,k)
m ∈ {−1,+1}. Let Ĉj,k := 1

N ′

∑N ′

m=1X
(j,k)
m . Hoeffding’s

inequality (specifically Corollary 9) implies that N ′ ≥ (4/(2ε2)) log(2M/δ) suffices to guarantee that, with probability at least
1− δ/M , we have |Ĉj,k −Tr(O(j,k)ρ)| < ε. By using the union bound, we conclude that the probability that this holds for any
j < k ∈ [2n] is at least 1− δ. More specifically:

Pr
(
∀ j < k ∈ [2n] : |Ĉj,k − Tr(O(j,k)ρ)| < ε

)
= 1− Pr

(
∃ j < k ∈ [2n] : |Ĉj,k − Tr(O(j,k)ρ)| ≥ ε

)
(S50)

≥ 1−
∑

j<k∈[2n]

Pr
(
|Ĉj,k − Tr(O(j,k)ρ)| ≥ ε

)
(S51)

≥ 1− δ. (S52)

Therefore, the total number of measurements needed is N = N ′M . Now, we can conclude by transferring the error to the
operator norm. Let A := Ĉ − C(ρ). For the definition of the operator norm, we have ∥A∥∞ := sup|ψ⟩

√
|⟨ψ|A†A |ψ⟩|. Thus,
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we have:

∣∣⟨ψ|A†A |ψ⟩
∣∣ ≤ 2n∑

i,j,k=1

∣∣⟨ψ| |i⟩⟨i|A† |j⟩⟨j|A |k⟩⟨k| |ψ⟩
∣∣ = 2nε2

2n∑
i,k=1

|⟨ψ|i⟩| |⟨k|ψ⟩| ≤ 4n2ε2 (S53)

where, in the first step, we inserted the resolution of the identity and applied the triangle inequality, in the second step, we
applied the upper bound on each matrix element, and, in the last step, we used the Cauchy-Schwartz inequality. Hence, we have∥∥∥Ĉ − C(ρ)

∥∥∥
∞

≤ 2nε. We conclude by choosing εc := ε/2n.

While the sequential estimation of individual correlation matrix entries by measurements in the Pauli basis, as described
above, may not be the most sample-efficient approach, it might be convenient to adopt in an experiment because of its easy
implementation scheme. However, instead of independently estimating each correlation matrix entry, one could choose to
simultaneously measure mutually commuting observables [58] or utilize the fermionic classical shadow protocol introduced
in [52, 59, 60]. This refinement would lead to a reduction in sample complexity by a factor of n, at the cost of implementing a
slightly more complicated measurement scheme.

For completeness, we present now a Lemma which gives a sample complexity upper bound for estimating the correlation
matrix using a commuting observables measurement scheme. The idea is to partition the observables O(j,k) := −iγjγk, for
j < k ∈ [2n] into disjoint sets of commuting observables. Subsequently, one employs the fact that commuting Pauli observables
can be measured simultaneously via a Clifford measurement [58, 70]. A crucial observation is that two different Pauli observables
of the form −iγjγk commute if and only if they are associated with different Majorana operators. Using this observation, we
can partition these M = (2n − 1)n observables into 2n − 1 disjoint sets, each containing n commuting Pauli observables. We
refer to [58] Appendix C for details of such a partition, and we omit repeating the construction here. However, we point out that
the required Clifford transformations can be chosen to be Gaussian as well.

Lemma 38 (Sample Complexity for Estimating the Correlation Matrix by Grouping Commuting Observables). Let εc, δ > 0.
Assume to have access to N ≥ Nc(n, εc, δ), with

Nc(n, εc, δ) :=

⌈
8n2(2n− 1)

ε2c
log

(
2n(2n− 1)

δ

)⌉
, (S54)

copies of an n-qubit state ρ. Utilizing N single-copy (Gaussian) measurements, with probability ≥ 1 − δ, we can construct an
anti-symmetric real matrix Ĉ such that it satisfies: ∥∥∥Ĉ − C(ρ)

∥∥∥
∞

≤ εc. (S55)

Proof. For each of the 2n − 1 sets of commuting Pauli, we find the Clifford U that allows us to simultaneously measure such
commuting Pauli in the given set, i.e. we map each of the n Pauli to {Zk}nk=1. Now this Clifford can also be chosen to be
Gaussian. Indeed, the key constraint on U is that each of the different Paulis of the form −iγjγk with j < k ∈ [2n] (where pairs
(j, k) are non-overlapping since these Paulis commute) is mapped to {Zk}nk=1 with Zk := −iγ2k−1γ2k. This constraint can
be satisfied by using a Gaussian operation associated to the orthogonal matrix which is a permutation of the Majorana indices
from the commuting Paulis into the Majorana indices from the Z-Paulis. Consequently, we measure N ′ copies of UρU† in
the computational basis. Thus, for each O(j,k), we obtain outcomes {X(j,k)

m }N ′

m=1, where X(j,k)
m ∈ {−1,+1}. The unbiased

estimators are Ĉj,k := 1
N ′

∑N ′

m=1X
(j,k)
m . As before, Hoeffding’s inequality and union bound imply thatN ′ ≥ (2/ε2) log(2M/δ)

suffices to guarantee that the probability of |Ĉj,k − Tr(O(j,k)ρ)| < ε holding for each j < k ∈ [2n] is at least 1− δ. Therefore,
the total number of measurements needed is N = N ′(2n− 1). We can conclude as in the previous Lemma.

Lemma 39 (Perturbation bounds on the normal eigenvalues of correlation matrices). LetA andB be two 2n×2n anti-symmetric
real matrices with normal eigenvalues {λk(A)}nk=1 and {λk(B)}nk=1 respectively ordered in increasing order. Then, we have:

|λk(A)− λk(B)| ≤ ∥A−B∥∞, (S56)

for any k ∈ [n].

Proof. This follows from the fact that C := iA and D := iB are Hermitian matrices. Applying Weyl’s Perturbation Theorem
(see Ref. [71], section VI), which states that two 2n × 2n Hermitian matrices C and D, with eigenvalues c1 ≤ · · · ≤ c2n and
d1 ≤ · · · ≤ d2n, satisfy:

∥C −D∥∞ ≥ max
j∈[n]

|cj − dj |. (S57)
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SinceA andB are antisymmetric, their eigenvalues are {±iλk(A)}nk=1 and {±iλk(B)}nk=1 respectively. Hence, the eigenvalues
of C and D are {±λk(A)}nk=1 and {±λk(B)}nk=1 respectively. This implies that:

∥A−B∥∞ = ∥C −D∥∞ ≥ max
j∈[2n]

|cj − dj | = max
k∈[n]

|λk(A)− λk(B)|. (S58)

To formalize our learning algorithm, it is useful to invoke the following well-known lemma.

Lemma 40 (Quantum Union Bound (Adapted) [61, 72, 73]). Let ρ := |ψ⟩⟨ψ| be a pure state, and let {εi}ni=1 ∈ [0, 1]. Consider a

subset of qubit indices Q ⊆ [n]. If tr
(
|0⟩⟨0|q ρ

)
≥ 1− εi for each q ∈ Q, then, when the qubits in Q are sequentially measured

in the computational basis, all outcomes correspond to |0⟩ with a probability of at least 1 −
∑n
i=1 εi. If all measurements

correspond to |0⟩, the trace distance between the post-measurement state |ψpost⟩ and the initial state |ψ⟩ is given by:

dtr(|ψ⟩ , |ψpost⟩) ≤

√√√√ n∑
i=1

εi, (S59)

where P =
⊗

q∈Q |0⟩⟨0|q , and |ψpost⟩ := P |ψ⟩ /∥P |ψ⟩∥2.

We now leverage this known lemma to prove the following.

Lemma 41. Let |ψ⟩ be a t-compressible Gaussian state. Given an estimate Ĉ for the correlation matrix C(|ψ⟩), there exists a
Gaussian operation Ĝ such that:

dtr(|ϕ⟩⊗
∣∣0n−t〉, Ĝ†|ψ⟩) ≤

√
(n− t)

∥∥∥Ĉ − C(|ψ⟩)
∥∥∥
∞
, (S60)

where |ϕ⟩ ⊗ |0n−t⟩ corresponds to the post-measurement state obtained by measuring the last n − t qubits of the state Ĝ† |ψ⟩
in the computational basis and obtaining the outcome corresponding to |0n−t⟩. This event occurs with a probability of at least

1− (n− t)
∥∥∥Ĉ − C

∥∥∥
∞

.

Proof. According to Proposition 32, the correlation matrix C := C(|ψ⟩) can be put in the form C = OΛOT, where O ∈ O(2n)
and Λ = i

⊕n
j=1 λj(C)Y . Here, λj ≤ 1 for j ∈ [t] and λj = 1 for j ∈ {t+ 1, . . . n}, and Y represents the Y -Pauli matrix. Let

εc :=
∥∥∥Ĉ − C

∥∥∥
∞

, then we have (because of Lemma 39) that |λj(Ĉ) − λj(C)| ≤ εc, where {±λj(Ĉ)}nj=1 and {±λj(C)}nj=1

are the normal eigenvalues of the matrices Ĉ and C respectively. Thus, we have:

λm(Ĉ) ≥ 1− εc, (S61)

form ∈ {t+1, . . . n}. We can now express the real anti-symmetric matrix Ĉ in its normal form Ĉ = ÔΛ̂ÔT , where Ô ∈ O(2n)
is an orthogonal matrix and Λ̂ is a matrix of the form Λ̂ = i

⊕n
j=1 λj(Ĉ)Y , with λj(Ĉ) ∈ R for any j ∈ [n]. Next, consider

the state |ψ′⟩ := Ĝ† |ψ⟩, where Ĝ is the Gaussian unitary associated to ÔT . It holds that |C(ψ′)j,k − (Λ̂)j,k| ≤ εc, where
we used that C(ψ′) = ÔTC(|ψ⟩)Ô, Λ̂ = ÔT ĈÔ, Cauchy-Schwarz and the definition of infinity norm. Therefore, we have
C(ψ′)j,k ≥ (Λ̂)j,k − εc. In particular, for m ∈ {t+ 1, . . . , n}, we get:

Tr(Zmψ
′) = C(ψ′)2m−1,2m (S62)

≥ (Λ̂)2m−1,2m − εc (S63)

= λm(Ĉ)− εc (S64)
≥ 1− 2εc, (S65)

where Zm = −iγ2m−1γ2m is the Z-Pauli operator acting on the m-th qubit and in the last step we used Eq.(S61). Therefore,
we also have Tr(|0⟩⟨0|m ψ′) ≥ 1− εc. By using the Quantum Union Bound (Lemma 40), we have:

dtr(|ψ′⟩ , |ϕ⟩ ⊗
∣∣0n−t〉) ≤√(n− t)εc, (S66)

where |ϕ⟩ ⊗ |0n−t⟩ is the post-measurement state after having measured the outcomes corresponding to |0n−t⟩ in the last n− t
qubits. By Lemma 40, this scenario occurs with probability at least 1− (n− t)εc.
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In the following, we mention the guarantees of a full pure state tomography algorithm, which demonstrates optimal depen-
dence on the number of qubits and uses only single-copies measurements, albeit with a trade-off in accuracy compared to other
algorithms [3, 74]. This is an example of a procedure that we can utilize in our t-qubits full state tomography step of our learning
algorithm.

Lemma 42 (Fast State Tomography [56]). For any unknown n-qubit pure state |ψ⟩, there exists a quantum algorithm that,
utilizing Ntom(n, ε, δ) := O

(
2nn log(1/δ)ε−4

)
copies of |ψ⟩ and Ttom(n, ε, δ) := O

(
4nn3 log(1/δ)ε−5

)
time, generates a

classical representation of a state |ψ̃⟩ that is ε-close to |ψ⟩ in trace distance with probability at least 1 − δ. Furthermore, the
algorithm requires only single-copy Clifford measurements and classical post-processing.

Next, we provide a lemma that is useful in the proof of the subsequent Theorem 44.

Lemma 43 (Boosting the probability of success). Let δ > 0 and N ′ ∈ N. Consider an algorithm A that succeeds with a
probability of psucc ≥ 3

4 . If we execute A a total of m ≥ ⌈2N ′ + 24 log
(
1
δ

)
⌉ times, then A will succeed at least N ′ times with a

probability of at least 1− δ.

Proof. We will employ a Chernoff bound 7 to establish this result. Define binary random variables {Xi}mi=1 as follows:

Xi =

{
1 if A succeeds,
0 if A fails.

(S67)

Define X̂ :=
∑m
i=1Xi. We have E[X̂] = mpsucc. Moreover, we aim to upper bound by δ the probability that A succeeds

fewer than N ′ times, which is Pr
(
X̂ ≤ N ′

)
. We first write it as Pr

(
X̂ ≤ N ′

)
= Pr

(
X̂ ≤ (1− α)E[X̂]

)
, where we defined

α := 1− N ′

mpsucc
. Note that α satisfies α ≥ 1

3 , if

m ≥ 2N ′, (S68)

exploiting the fact that psucc ≥ 3
4 . Applying the Chernoff bound, we obtain:

Pr
(
X̂ ≤ (1− α)E[X̂]

)
≤ exp

(
−α

2E[X̂]

2

)
= exp

(
−α

2

2
psuccm

)
. (S69)

This is upper bounded by δ if

m ≥ 2

psuccα2
log

(
1

δ

)
. (S70)

Therefore, choosing m as follows satisfies Eq. (S68) and Eq. (S70):

m ≥ 2N ′ +
2(

3
4

) (
1
3

)2 log

(
1

δ

)
= 2N ′ + 24 log

(
1

δ

)
, (S71)

where we used the fact that psucc ≥ 3
4 and α ≥ 1

3 .

B. Joining the pieces: proof of correctness

We now present the main theorem which puts together the lemmas we have discussed. It demonstrates that to learn t-
doped fermionic Gaussian states, or more generally t-compressible Gaussian states, with t = O(log(n)), only resources scaling
polynomially in the number of qubits are required.

Theorem 44 (Efficient Learning of t-Compressible Gaussian States). Let |ψ⟩ be a t-compressible Gaussian state, and consider
ε, δ ∈ (0, 1]. By utilizing

N ≥ 256n5

ε4
log

(
12n2

δ

)
+ 2Ntom

(
t,
ε

2
,
δ

3

)
+ 24 log

(
3

δ

)
(S72)
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single-copy measurements and

T ≥ O(n3) + Ttom

(
t,
ε

2
,
δ

3

)
(S73)

computational time, Algorithm 2 yields a classical representation of a state |ψ̂⟩, satisfying dtr(|ψ̂⟩, |ψ⟩) ≤ ε with probability
≥ 1− δ.

Here,Ntom(t,
ε
2 ,

δ
3 ) and Ttom(t, ε2 ,

δ
3 ) respectively denote the number of copies and computational time sufficient for full state

tomography of a t-qubit state with an ε/2 accuracy and a failure probability of at most δ/3 (using the notation of Lemma 42).

Proof. The learning procedure is outlined in Algorithm 2 (or Algorithm 1 in the main text). We now establish its efficiency
and correctness. According to Lemma 38, Nc(n, εc, δ/3) single copies of |ψ⟩ are sufficient to construct an anti-symmetric real
matrix Ĉ such that

∥∥∥Ĉ − C
∥∥∥
∞

≤ εc with a probability of at least 1 − δ/3. Here, we set εc := ε2/(4(n − t)). Then, we can

find the orthogonal matrix Ô ∈ O(2n) such that it puts Ĉ in its normal form Eq.(1), which can be performed in O
(
n3
)

time.
Employing this, we construct the associated Gaussian unitary Ĝ (a task achievable in time O

(
n3
)
, see [36, 52]). Subsequently,

we consider the state Ĝ† |ψ⟩. As per Lemma 41, we have

dtr(|ϕ⟩ ⊗
∣∣0n−t〉 , Ĝ† |ψ⟩) ≤ ε

2
, (S74)

where |ϕ⟩ ⊗ |0n−t⟩ corresponds to the post-measurement state obtained by measuring the last n − t qubits of the state Ĝ† |ψ⟩
in the computational basis and obtaining the outcome corresponding to |0n−t⟩. The probability of such an occurrence, as per
Lemma 41, is at least 1 − ε2/4 ≥ 3/4. Thus, the algorithm proceeds iteratively by querying a total of m copies of |ψ⟩. In
each iteration, it applies the unitary Ĝ† to |ψ⟩ and computational basis measurements on the last n − t qubits. By choosing
m := ⌈2Ntom(t, ε/2, δ/3) + 24 log(3/δ)⌉, it is guaranteed that the measurements outcome corresponding to |0n−t⟩ occurred at
least Ntom(t, ε/2, δ/3) with probability at least 1 − δ/3 (this follows by Lemma 43). Applying the tomography algorithm of
Lemma 42 to the first t qubits of all the copies where we obtained the outcome corresponding to |0n−t⟩, we obtain an output
state |ϕ̂⟩ such that it is guaranteed that:

dtr(|ϕ̂⟩, |ϕ⟩) ≤
ε

2
, (S75)

with a probability of at least 1 − δ/3. Our output state is |ψ̂⟩ := Ĝ(|ϕ̂⟩ ⊗ |0n−t⟩), and the information about such a state is
provided in the output by providing the orthogonal matrix Ô ∈ O(2n), which identifies Ĝ, and the t-qubit state |ϕ̂⟩.

Considering the trace distance between |ψ̂⟩ and |ψ⟩ and applying the triangle inequality with Ĝ(|ϕ⟩⊗ |0n−t⟩) as the reference
state, we have:

dtr(|ψ̂⟩, |ψ⟩) ≤ dtr(|ϕ̂⟩, |ϕ⟩) + dtr(|ϕ⟩ ⊗
∣∣0n−t〉 , Ĝ† |ψ⟩), (S76)

where in the last step we use the unitary-invariance of the trace distance and dtr(|ϕ̂⟩ ⊗ |0n−t⟩ , |ϕ⟩ ⊗ |0n−t⟩) = dtr(|ϕ̂⟩, |ϕ⟩).
The algorithm’s overall failure probability is contingent on the potential failure of any of the three subroutines—specifically,
correlation matrix estimation, measurement of the last n− t qubits, and the tomography protocol. Each subroutine is associated
with a failure probability of at most δ/3. Consequently, by the union bound, the algorithm’s total failure probability is at most δ.
Utilizing Eqs.(S74),(S75),(S76) and assuming the case in which the algorithm does not fail, we deduce dtr(|ψ̂⟩, |ψ⟩) ≤ ε. The
overall sample complexity is determined by the number of copies needed to estimate the correlation matrix Nc(n, εc, δ/3) plus
the copies m for tomography, i.e., a total number of copies

N =

⌈
256n5

ε4
log

(
12n2

δ

)
+ 2Ntom

(
t,
ε

2
,
δ

3

)
+ 24 log

(
3

δ

)⌉
, (S77)

suffices, which is O(poly(n) + exp(t)). On the other hand, the time complexity involves post-processing of the estimated
correlation matrix, requiring O(n3) time, and the time-complexity for full-state tomography which is O(exp(t)).

Remark 45. The output state of Algorithm 1 is |ψ̂⟩ := Ĝ(|ϕ̂⟩ ⊗ |0n−t⟩). Specifically, to provide a classical representation of
|ψ̂⟩ in the output, it suffices to give the orthogonal matrix Ô ∈ O(2n) associated with Ĝ and the classical description of the
t-qubit state |ϕ̂⟩. Therefore, the memory necessary to store the classical description of the state outputted by Algorithm 1 is
O(poly(n, 2t)), similarly to its time and sample complexity.
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Supplementary Material IV: Testing t-compressible states

In this section, we address property testing problem, i.e. the problem of determining whether a state is close or far from the
set of states t-compressible states (or equivalently we test the Gaussian dimension of a state). We begin by establishing an upper
bound on the trace distance between a state and the set of t-compressible Gaussian states. Subsequently, we present a lower
bound on the same quantity. Finally, we leverage these two bounds to develop a testing algorithm for t-compressible Gaussian
states.

We note that the testing problem in the context of fermionic Gaussian states (t = 0) was also unsolved. However, a forthcom-
ing paper [67] addresses the testing problem for general, possibly mixed, fermionic Gaussian states. Here, we generalize the
results presented in [67] regarding pure Gaussian testing to the scenario of t-compressible Gaussian states, using ideas developed
in [67].

A. Approximate t-compressible state

We observed in Lemma 34 that when n− t normal eigenvalues of a state’s correlation matrix are precisely one, the state is a
t-compressible state. However, when these eigenvalues are close to one, we may inquire about the existence of a t-compressible
state in close proximity. This inquiry is formalized in the subsequent Proposition 46.

Proposition 46 (Check the closeness to a t-compressible Gaussian state). Let |ψ⟩ be a quantum state. Let {λi}ni=1 be the normal
eigenvalues of its correlation matrix ordered in increasing order. Then, there exists a t-compressible Gaussian state |ψt⟩ such
that:

dtr(|ψt⟩ , |ψ⟩) ≤

√√√√ n∑
k=t+1

1

2
(1− λk). (S78)

In particular, |ψt⟩ can be chosen as |ψt⟩ := GO(|ϕ⟩⊗|0n−t⟩), whereGO is the Gaussian unitary associated with the orthogonal
matrix O ∈ O(2n) that puts the correlation matrix of |ψ⟩ in its normal form (Lemma 16), and |ϕ⟩ ⊗ |0n−t⟩ is the state obtained
by projecting the state G†

O |ψ⟩ onto the zero state on the last n− t qubits.

Proof. We can define the state |ψ′⟩ := G†
O |ψ⟩. We have:

Tr(|ψ′⟩⟨ψ′|Zk) = C(ψ′)2k−1,2k = Λ2k−1,2k = λk = 1− (1− λk), (S79)

for each k ∈ {t+ 1, . . . , n}. By using that Zk = 2 |0⟩⟨0|k − I , we have:

Tr(|ψ′⟩⟨ψ′| |0⟩⟨0|k) = 1− (1− λk)

2
(S80)

By Quantum Union Bound (Lemma 40), we have:

dtr(|ψ′⟩ , |ϕ⟩ ⊗
∣∣0n−t〉) ≤

√√√√ n∑
k=t+1

(1− λk)

2
. (S81)

Therefore, by using the unitarity invariance of the trace-norm, we can conclude.

From this, it readily follows that trace distance between the state and the set of t-compressible pure Gaussian states Gt is upper
bounded by:

min
|ϕt⟩∈Gt

dtr(|ψ⟩ , |ϕt⟩) ≤
√

(n− t)
(1− λt+1)

2
. (S82)

B. Lower bound on the trace distance from the set of t-compressible states

In this section, we establish a lower bound on the trace distance of a state from the set of t-compressible Gaussian states.
We denote the set of pure t-compressible Gaussian states as Gt. In the following proof, we follow the derivation presented in
Ref. [67] for the case of pure Gaussian states (t = 0), extending it to t-compressible states.
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Proposition 47. Let |ψ⟩ be a quantum state, and let {λi}ni=1 be the normal eigenvalues of its correlation matrix, ordered in
increasing order. The lower bound on the trace distance between the state and the set of t-compressible pure Gaussian states Gt
is given by:

min
|ϕt⟩∈Gt

dtr(|ψ⟩ , |ϕt⟩) ≥
1

2
(1− λt+1) (S83)

Proof. Consider an arbitrary operator O with ∥O∥∞ ≤ 1, to be fixed later. Then, we have:

min
|ϕt⟩∈Gt

dtr(|ψ⟩ , |ϕt⟩) = min
|ϕt⟩∈Gt

1

2
∥ |ψ⟩⟨ψ| − |ϕt⟩⟨ϕt| ∥1 (S84)

≥ min
|ϕt⟩∈Gt

1

2
|Tr(O(|ψ⟩⟨ψ| − |ϕt⟩⟨ϕt|))|, (S85)

where in the last step, we used Holder’s inequality.
Let C(|ψ⟩) and C(|ϕt⟩) be the correlation matrices of |ψ⟩ and |ϕt⟩, respectively. Since C(|ψ⟩) − C(|ϕt⟩) is real and anti-

symmetric, it can be brought into its normal form C(|ψ⟩) − C(|ϕt⟩) = QTΛ′Q, where Λ′ =
⊕n

j=1 iσ
′
jY and {σ′

j}nj=1 are the
normal eigenvalues of C(|ψ⟩)− C(|ϕt⟩) and Q ∈ O(2n) is an orthogonal matrix (Lemma 16).

Now, choose the operator O in the form O = U†
Qiγ2k−1γ2kUQ, where k ∈ [n] and UQ is a Gaussian unitary associated with

the orthogonal matrix Q ∈ O(2n). Note that ∥O∥∞ = 1. Fix k as a value of j that maximizes |σ′
j |. Thus, we have:

|Tr(O(|ψ⟩⟨ψ| − |ϕt⟩⟨ϕt|))| = |[C(UQ |ψ⟩)− C(UQ |ϕt⟩)]2k−1,2k| (S86)

= |[Q(C(|ψ⟩)− C(|ϕt⟩))QT ]2k−1,2k| (S87)
= |σ′

k| (S88)
= max

j∈[n]
|σ′
j | (S89)

= ∥C(|ψ⟩)− C(|ϕt⟩)∥∞, (S90)

where in the first step we used the definition of correlation matrix, in the second step we used Lemma 15 and in the last step
we used the fact that the largest normal eigenvalues of an anti-symmetric matrix corresponds to the infinity norm of the matrix.
Therefore, combining with (S85), we have:

min
|ϕt⟩∈Gt

dtr(|ψ⟩ , |ϕt⟩) ≥
1

2
min

|ϕt⟩∈Gt

∥C(|ψ⟩)− C(|ϕt⟩)∥∞. (S91)

Now, by applying Lemma 39, we have:

∥C(|ψ⟩)− C(|ϕt⟩)∥∞ ≥ |λ(C(|ψ⟩)t+1 − λ(C(|ϕt⟩)t+1|, (S92)

where λ(C)t+1 denotes the t+1-th smallest normal eigenvalue of a correlation matrixC. Since |ϕt⟩ is a t-compressible Gaussian
state, its Gaussian dimension is n − t (because of Proposition 35), hence its t + 1-th smallest normal eigenvalue must be one.
Therefore, the desired lower bound is obtained.

C. Testing the Gaussian dimension of a state

We present an efficient algorithm (Algorithm 3) for property testing of t-compressible states, where Gt represents the set of
n-qubits t-compressible Gaussian states, or equivalently the set of states with n − t Gaussian dimension. The algorithm takes
copies of a state |ψ⟩ as input and determines whether min|ϕt⟩∈Gt

dtr(|ψ⟩ , |ϕt⟩) ≤ εA or min|ϕt⟩∈Gt
dtr(|ψ⟩ , |ϕt⟩) ≥ εB , with

the promise that one of these cases is true, where εB > εA ≥ 0.
We provide the details of the testing algorithm in Algorithm 3. The correctness of this algorithm is established by the following

theorem, the proof of which follows the same steps as proofs presented in [67].

Theorem 48 (Efficient t-Compressible Gaussian Testing). Let |ψ⟩ be an n-qubit pure state. Assume εB , εA ∈ [0, 1] such
that εB >

√
(n− t)εA, δ ∈ (0, 1], and εcorr = (

ε2B
n−t − εA). Assume that |ψ⟩ is such that min|ϕt⟩∈Gt

dtr(|ψ⟩ , |ϕt⟩) ≤
εA or min|ϕt⟩∈Gt

dtr(|ψ⟩ , |ϕt⟩) > εB . Then, Algorithm 3 can discriminate between these two scenarios using N =

⌈16(n3/ε2corr) log
(
4n2/δ

)
⌉ single-copy measurements of the state |ψ⟩ with a probability of success at least 1− δ.
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Algorithm 3: Property Testing Algorithm for t-Compressible Gaussian States
Input: Error thresholds εA, εB , failure probability δ. N := ⌈16(n3/ε2corr) log

(
4n2/δ

)
⌉ copies of the pure state |ψ⟩, where

εcorr = (
ε2B
n−t
− εA). Let εtest :=

(
ε2B
n−t

+ εA
)

.
Output: Output either “εA-close to the set of t-compressible states” or “εB-far from t-compressible states set”.

1 Step 1: Estimate the entries of the correlation matrix using N single-copy measurements, resulting in the estimated 2n× 2n matrix Γ̂;
2 Step 2: Find {λ̂k}nk=1, which corresponds to the ordered normal eigenvalues of Γ̂;
3 Step 3: if λ̂t+1 ≥ 1− εtest then
4 Output: “εA-close to the set of t-compressible states”.

5 else
6 Output: “εB-far from t-compressible states set.”

Proof. Let εcorr > 0 be an accuracy parameter to be fixed later. By Lemma 38, with N ≥ 8(n3/ε2corr) log
(
4n2/δ

)
single-copy

measurements, we can find a matrix Γ̂ such that, with probability at least 1 − δ, it holds that
∥∥∥Γ̂− Γ(|ψ⟩)

∥∥∥
∞

≤ εcorr. This

implies that for all k ∈ [n], we have |λ̂k − λk| ≤ εcorr, where {λ̂k}nk=1, {λk}nk=1 are the normal eigenvalues of Γ̂ and Γ(|ψ⟩)
respectively. Let εtest be a parameter to fix later. If λ̂t+1 ≥ 1 − εtest, we aim to show that min|ϕt⟩∈Gt

dtr(|ψ⟩ , |ϕt⟩) ≤ εB ,
otherwise, we aim to show that min|ϕt⟩∈Gt

dtr(|ψ⟩ , |ϕt⟩) > εA. Thus, we first assume that λ̂t+1 ≥ 1− εtest. From Lemma 46,
we have that:

min
|ϕt⟩∈Gt

dtr(|ψ⟩ , |ϕt⟩) ≤
√

(n− t)

2
(1− λt+1) ≤

√
(n− t)

2
(1− λ̂t+1 + εcorr) ≤

√
(n− t)

2
(εtest + εcorr). (S93)

Therefore we need to ensure that
√

(n−t)
2 (εtest + εcorr) ≤ εB . Let us analyze now the case in which λ̂t+1 < 1 − εtest. From

Lemma 47, we have:

min
|ϕt⟩∈Gt

dtr(|ψ⟩ , |ϕt⟩) ≥
1

2
(1− λt+1) ≥

1

2
(1− λ̂t+1 − εcorr) >

1

2
(εtest − εcorr) (S94)

Therefore, we impose that εtest−εcorr2 ≥ εA. The two mentioned inequalities are satisfied by choosing εtest = (
ε2B
n−t + εA) and

εcorr = (
ε2B
n−t − εA), by assuming that εB >

√
(n− t)εA.

Supplementary Material V: Pseudorandomness from t-doped Gaussian states and time complexity lower bound

We have presented an algorithm for learning t-doped fermionic Gaussian states with a time complexity scaling as O(poly(n, 2t))
(assuming that the Majorana locality κ of each non-Gaussian gate is constant in the number of qubits). Thus, as long as
t = O(log(n)), the algorithm is efficient, i.e., the total run-time is polynomial in the number of qubits. In this section, we
delve into establishing lower bounds on the time complexity for learning t-doped fermionic Gaussian states. We begin by
demonstrating that, under a well-believed cryptography assumption [43–45, 64–66], no algorithm can learn t-doped fermionic
Gaussian states with time complexity scaling in t as O(poly(t)). This rules out efficient algorithms if t scales polynomially
with the number of qubits n. However, under a stronger cryptography assumption [43–46], we can establish that when t scales
slightly faster than logarithmically in the number of qubits n, i.e., t = ω̃(log(n)), there exists no efficient algorithm to learn
t-doped fermionic Gaussian states, where we defined ω̃(log(n)) := ω(log(n)polyloglog(n)).

A. t-doped Gaussian states cannot be learned in polynomial time in t

Our cryptography assumption relies on the conjecture that a specific problem, namely “Learning With Errors over Rings”
RingLWE [64], is hard to solve by quantum computers [43–45, 64–66]. Detailed definitions and discussions about RingLWE
can be found in [64]. Informally, RingLWE is a variant of the more general “Learning With Errors” (LWE) problem specialized
to polynomial rings over finite fields, where the LWE problem is to distinguish random linear equations, perturbed by a small
amount of noise, from truly uniform ones.

Crucial to our proof is a lemma, adapted from [63] (which strongly relies on previous work [43, 47, 48]), presented below:
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Lemma 49 (Adapted from Theorem 14 in [63]). Assume that RingLWE cannot be solved by quantum computers in polynomial
time. Then, there exists a set SPRS of k-qubits pure quantum states, known as pseudorandom quantum states, with the following
properties:

1. Any state in SPRS can be prepared using Õ(k) Toffoli and Hadamard gates (here, Õ(·) hides polylog(·) factors).

2. States in the set SPRS cannot be learned in time complexity O(poly(t)) by quantum computers. More specifically, let
ρ ∈ SPRS be an unknown quantum state. Then there is no quantum algorithm that, using O(poly(k)) copies of ρ and
computational time, with probability at least 2/3 outputs a classical description of a state ρ̂ which can be prepared in
polynomial time on a quantum computer such that dtr(ρ, ρ̂) ≤ 1/8.

Now we use this Lemma to show that there is no algorithm for learning t-doped states with a O(poly(t)) computational time
scaling in t.

Proposition 50 (No poly(t) algorithm to learn t-doped states). Assume that RingLWE cannot be solved by quantum computers
in polynomial time. Then there is no quantum algorithm that, given access to copies of a t-doped fermionic Gaussian n-qubits
state ρ and with a time complexity scaling in t as O(poly(t)), outputs a classical description of a quantum state ρ̂ such that it
can be prepared in polynomial time on a quantum computer and, with probability at least 2/3, it holds that dtr(ρ, ρ̂) ≤ 1/8.

Proof. Consider an n-qubit state of the form |ϕ⟩ ⊗
∣∣0n−k〉, where |ϕ⟩ is a k-qubit state in the set SPRS defined in Lemma 49.

Let |ϕ⟩ = UPRS

∣∣0k〉, prepared by a unitary UPRS that can be implemented using Õ(k) Hadamard and Toffoli gates, as per
Lemma 49. The Toffoli gates can be implemented in turn using Hadamard, CNOT, T-gates, and T-gates inverse. For each
gate in the system, utilizing a standard SWAP-exchange trick, we can make any gate acting on some qubits of the system to
act only on the first two qubits through a cascade of SWAP gates. This incurs a total overhead factor of O(k) in the total
number of gates. The SWAP gates between nearest-neighbor qubits are local non-Gaussian gates, since they can be expressed as
SWAPi,i+1 = e−i

π
4 exp

(
iπ4 (XiXi+1 + YiYi+1 + ZiZi+1)

)
, which have Majorana locality equal to 4 (due to the Jordan-Wigner

mapping). Also the other gates, now acting on the first two qubits, are (possibly) non-Gaussian gates with Majorana locality at
most 4. This is because the Pauli operators in the generator of each gate can be expressed in terms of Majorana operators via
the Jordan-Wigner transformation. This results in a total of t = Õ(k2) local non-Gaussian gates required to prepare the state.
Thus, the |ϕ⟩ is a t-doped Gaussian state with κ = 4 Majorana local non-Gaussian gates. Now, due to Lemma 49, there exists no
learning algorithm to learn such a state in time O(poly(k)) = O(poly(t)), with error less than 1/8 and probability of success at
least 2/3.

B. Learning ω̃(log(n))-doped Gaussian states is hard

The previous Proposition rules out efficient algorithms when t = Ω(poly(n)). However, our proposed algorithm is not
anymore efficient when t = ω̃(log(n)), while it is efficient for t = O(log(n)). If we were to make the stronger assumption,
namely that RingLWE cannot be solved by quantum computers in sub-exponential time [43–46], then we can rule out that
efficient algorithm for t = ω̃(log(n)) exists (which means faster than ω(log(n)) but hiding polyloglog factors). For showing
this, we need first the following Lemma adapted by [63].

Lemma 51 (Adapted from Theorem 14 and 15 in [63]). Assume that RingLWE cannot be solved by quantum computers in
sub-exponential time. Then, there exists a set SPRS of k-qubit pure quantum states, known as pseudorandom quantum states,
with the following properties:

1. Any state in SPRS can be prepared using Õ(k) Toffoli and Hadamard gates (here, Õ(·) hides polylog(·) factors).

2. Any algorithm to learn states from the set SPRS must have exp(Ω(k)) time complexity. More specifically, let ρ ∈ SPRS

be an unknown quantum state. Then any quantum algorithm that, by querying copies of ρ, with probability at least 2/3
outputs a classical description of a state ρ̂ which can be prepared in sub-exponential time on a quantum computer such
that dtr(ρ, ρ̂) ≤ 1/8, must have exp(Ω(k)) time-complexity.

Now we use this to prove the following Proposition, also stated informally in the main text as Theorem 5. It reaches stronger
conclusion than Proposition 50, but at the cost of stronger cryptography assumption. The idea of the following proof is to
use a more compact qubits-to-fermion mapping than Jordan-Wigner, namely a modification of the one introduced by Kitaev
[23], which would allow to create pseudorandom quantum states with no overhead in the number of non-Gaussian gates com-
pared to the number of Toffoli and Hadamard gates. In the following, we recall that ω̃(log(n)) is defined as ω̃(log(n)) :=
ω(log(n)polyloglog(n))).
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Proposition 52 (Learning ω̃(log(n))-doped Gaussian states is hard). Assume that RingLWE cannot be solved by quantum
computers in sub-exponential time. Then, there is no efficient (i.e., O(poly(n)) time) quantum algorithm that, by querying
copies of a ω̃(log(n))-doped Gaussian state ρ, with probability at least 2/3 outputs a description of a state ρ̂ which can be
prepared in polynomial time on a quantum computer such that dtr(ρ, ρ̂) ≤ 1/8.

Proof. Following a similar approach as in the proof of Proposition 50, we begin by defining a state |ϕ⟩ ⊗
∣∣0n−k〉, where

|ϕ⟩ = UPRS

∣∣0k〉 represents a k-qubit state in the set SPRS as defined in Lemma 51. This state can be efficiently prepared using
a unitary UPRS with Õ(k) Hadamard and Toffoli gates, which, in turn, can be implemented using Hadamard gates, CNOTs,
T-gates, and their inverses. In contrast to the previous proof in Proposition 50, an application of the same argument would not
yield the desired conclusion due to the unfavorable quadratic overhead introduced by the SWAP-exchange trick in the number
of non-Gaussian gates. That trick was necessary due to the use of Jordan-Wigner transformation. However, we can employ a
more efficient qubits-to-fermions mapping, specifically a modified version of the one introduced by Kitaev [23]. Hereafter, we
will refer to it as the “Kitaev encoding.” Our objective is to construct a fermionic state encoding |ϕ⟩ using a circuit of size Õ(k)
composed of Gaussian and κ = 4 local non-Gaussian gates. We employ a mapping of k qubits into 2k fermionic modes using
Majorana operators {γα,j | j ∈ [k], α ∈ {0, x, y, z}}. These 4k Majorana operators are defined in terms of 4k Pauli strings via
Jordan-Wigner, with an arbitrarily fixed operator ordering. We are now going to leverage the formalism and basics of stabilizer
codes, for more in-depth information, refer to [75]. The Kitaev encoding involves defining a stabilizer code of 2k physical
qubits encoded in k logical qubits, characterized by the following k stabilizer generators {sj}kj=1 and logical Pauli operators
{XKE

j , ZKE
j }kj=1:

sj := γ0,jγx,jγy,jγz,j , (S95)

XKE
j := iγy,jγz,j , (S96)

ZKE
j := iγx,jγy,j . (S97)

for each j ∈ [k]. Note that these operators explicitly satisfy the algebraic conditions on stabilizer generators and logical Pauli
operators. The Kitaev encoding is associated to a Clifford transformation VKE such that:

VKEXjV
†
KE = XKE

j , (S98)

VKEZjV
†
KE = ZKE

j , (S99)

for each j ∈ [k], and:

VKEZjV
†
KE = sj , (S100)

for each j ∈ {k + 1, . . . , 2k}. The last equation ensures that VKE

∣∣02k〉 is an eigenstate with +1 eigenvalue for each of the
stabilizer generators {sj}kj=1, while Eq.(S99) implies that VKE

∣∣02k〉 is an eigenstate with +1 eigenvalue for each {ZKE
j }kj=1.

Thus, VKE

∣∣02k〉 is a valid “logical zero” stabilizer state. Exploiting the fact that VKE

∣∣02k〉 is an eigenstate with +1 eigenvalues
of {ZKE

j }kj=1 and {sjZKE
j }kj=1, its density matrix can be written as:

VKE

∣∣02k〉〈02k∣∣V †
KE =

k∏
j=1

(
I + sjZ

KE
j

2

)
2k∏
j=k

(
I + ZKE

j

2

)
=

k∏
j=1

(
I − iγ0,jγz,j

2

) 2k∏
j=k

(
I + iγx,jγy,j

2

)
. (S101)

From this, we observe that VKE

∣∣02k〉 is a fermionic Gaussian state because it can be written in the form of Eq.(S4), noting
that signed permutation matrices are orthogonal matrices. Moreover, we denote Y KE

j := −iZKE
j XKE

j = iγx,jγz,j . The Kitaev
encoding, as defined, ensures that the local qubit gates are mapped onto local fermionic ones. In particular, the gates of the
circuit UPRS that prepares the pseudorandom state |ϕ⟩ = UPRS

∣∣0k〉— the Hadamard H, CNOT, and T-gate — are, up to an
overall phase, mapped onto

HKE
j := VKEHjV

†
KE = VKE

(
Zj
I + iYj√

2

)
V †
KE = ZKE

j

I + iY KE
j√
2

= e−
π
2 γx,jγy,je−

π
4 γz,jγx,j , (S102)

CNOTKE
j,l := VKECNOTj,lV

†
KE = ei

π
4 (1−ZKE

j )(I−XKE
l ) = ei

π
4 (I−iγx,jγy,j)(I−iγy,lγz,l), (S103)

TKE
j := VKETjV

†
KE = ei

π
8 Z

KE
j = e−

π
8 γx,jγy,j , (S104)

for each j ̸= l ∈ [k]. The only non-Gaussian among these is the encoding of the CNOT gate, which has Majorana locality κ = 4.
This implies that the encoding of the circuit UPRS, i.e. UKE

PRS := VKEUPRSV
†
KE, is a t-doped fermionic Gaussian unitary with
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local non-Gaussian gates and t = Õ(k). Thus, we have that the Kitaev encoding of the pseudorandom state |ϕ⟩ = UPRS

∣∣0k〉 is:

|ϕ⟩KE := VKE |ϕ⟩ ⊗
∣∣0k〉 = VKEUPRS

∣∣02k〉 = UKE
PRSVKE

∣∣02k〉 . (S105)

Since VKE

∣∣02k〉 is a Gaussian state and UKE
PRS is a t-doped Gaussian unitary with t = Õ(k), then VKE |ϕ⟩ ⊗

∣∣0k〉 is a t-doped
Gaussian state with t = Õ(k). The Majorana locality of each non-Gaussian gate is at most 4.

Using an arbitrary algorithm A for learning a t-doped fermionic Gaussian state, we will now define a protocol for learning
the pseudorandom state |ϕ⟩. Given a copy of a state |ϕ⟩ on k qubits, we use k auxiliary qubits in state |0⟩ and apply the Clifford
transformation VKE. This means it can be produced by a circuit with O(k2) 2-qubit gates [76]. The resulting |ϕ⟩KE can be
input to A as a copy of a t-doped fermionic Gaussian state for t = Õ(k). Using the number of copies of |ϕ⟩ given by sample
complexity of A, we learn a description of a state ρ̂KE which, with probability at least 2/3, satisfies:

dtr(ρ̂KE, ρKE) ≤
1

8
, (S106)

where we defined ρKE to be the density matrix associated with |ϕ⟩KE. By defining ρ̂ := Tr{k+1,...,2k}

(
V †
KEρ̂KEVKE

)
, where

Tr{k+1,...,2k}(·) indicates the partial trace with respect to the qubits {k + 1, . . . , 2k}, we also have:

dtr(ρ̂, |ϕ⟩⟨ϕ|) ≤ dtr(V
†
KEρ̂KEVKE, |ϕ⟩⟨ϕ| ⊗

∣∣0k〉〈0k∣∣) = dtr(V
†
KEρ̂KEVKE, V

†
KEρKEVKE) = dtr(ρ̂KE, ρKE) ≤

1

8
, (S107)

where in the first step we used that the partial trace does not increase the trace distance between two states [77]. Hence, we
found a state ρ̂ which is in trace distance close to the target state |ϕ⟩⟨ϕ|. To recap, we produced the learning algorithm for
a pseudorandom state |ϕ⟩ from a learning algorithm for t-doped fermionic Gaussian states. The pseudorandom state learning
algorithm has the same sample complexity as the fermionic one, and the time complexity TPRS = Sf ·O(k2)+Tf where Tf and
Sf are time and sample complexity of the fermionic learner. If there is a fermionic learner whose time and sample complexity
scale subexponentially in k, the same property carries over to the pseudorandom states learner. By Lemma 51, this would
contradict the cryptographic assumption that RingLWE cannot be solved by quantum computers in sub-exponential time. Hence,
the time complexity of the fermionic learner needs to be exp(Ω(k)). If k = ω(log(n)), then this implies that any algorithm to
learn t-doped fermionic Gaussian states with t = Õ(k) = ω(log(n)polyloglog(n)) must be inefficient, i.e., its time complexity
must be ω(poly(n)).
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Classical learning of the expectation values of observables for quantum states is a natural variant
of learning quantum states or channels. While the current learning-theoretic framework establishes
the sample complexity and the number of measurement shots per sample required for learning such
statistical quantities, the interplay between these two variables has not been adequately quantified
before. In this work, we quantify and demonstrate the asymmetrical effects of the two variables on
the performance of concept learning. Specifically, increasing the sample size enhances the learning
performance of classical machines, even with single-shot estimates, while the improvements from
increasing measurements become asymptotically trivial beyond a constant factor. When the total
queries to quantum systems is fixed, such asymmetrical effects imply an asymmetrical trade-off
between them. Through bias-variance-noise decomposition, we further show the practical impact of
finite measurement noise on the training of classical machines. Finally, we apply the framework to
study the impact of measurement noise on the classical surrogation of parameterized quantum circuit
models. Our work provides new tools to analyse the operational influence of finite measurement
noise in classical learning of quantum systems.

I. INTRODUCTION

The potential computational capabilities of quantum
computers have garnered much interest in recent years
from both academia and industry. In particular, it has
been suggested that quantum computers have the po-
tential to simulate quantum systems with an exponential
speedup compared to classical computers [1, 2]. However,
these hard-to-simulate computational tasks could poten-
tially be efficiently learned by classical machines given ac-
cess to data extracted from the associated quantum pro-
cesses [3–11]. Such a learning task relies on quantum and
classical computers alike to extract relevant information
from quantum states via quantum measurements [12, 13]
and subsequently to conduct learning of the desired prop-
erties of quantum states. Some of these quantum prop-
erties can be formulated and represented by mathemat-
ical models, which we can learn using classical learning
algorithms. Examples of such quantum models include
expectation values of quantum observables given a vari-
ational quantum circuit [14] or ground state properties
of quantum systems [9–11]. Understanding how classical
machines can learn quantum models is therefore essen-
tial, as it sheds light on the potential and limitations of
quantum information processing.

Quantum systems exhibit inherent probabilistic be-
haviour, and measurements on such systems are typically
subjected to statistical fluctuations. When only a limited
number of measurements are made on a quantum model,
the observed outcomes may deviate from the true un-

∗ gan.bengyee@u.nus.edu
† patrick@comp.nus.edu.sg

derlying quantum models due to the measurement/shot
noise. Hence, apart from the number of training data
inputs N1, the number of measurement shots (per data
input) Ns is also a key quantity in determining the learn-
ing performance of classical learners. Current works of-
ten consider shot noise as an error term that needs to be
mitigated and rely on its minimization to ensure learn-
ability [8, 9, 11]. In these scenarios, the effects of altering
N1 and Ns are typically discussed separately, with Ns as-
sumed to be sufficient enough as to not affect the analysis
regarding N1 and the learning performance.
In this work, we discuss asymmetrical effects that these

two quantities have on the performance of classical ma-
chines in learning quantum models. That is, increasing
N1 enhances the learning performance of classical mod-
els, even when observed outcomes are estimated with lim-
ited measurement shots, e.g., in the single-shot limit [15]
when Ns = 1. On the other hand, for a fixed training
data size N1, we find that improvements in learning per-
formances from increasing the number of measurement
shots Ns become asymptotically trivial beyond a con-
stant factor.
In practice, extrinsic factors such as monetary budgets

force one to fix the total number of queries to quantum
models, thereby coupling N1 and Ns since increasing N1

will reduce Ns and vice versa1. This poses an interest-
ing learning-theoretic question: given a fixed number of
queries to quantum models, will classical machines learn
better with training datasets consisting of more inputs
with noisier labels (larger N1 but smaller Ns) or fewer in-

1 The simplest method of defining the total cost of querying the
quantum model we wish to learn is N = N1Ns.
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puts with cleaner labels (smaller N1 but larger Ns)? Our
analytical results show that, asymptotically, it is always
better to sample from different inputs when sampling a
data point incurs the same cost as conducting a dupli-
cate measurement. The optimal performance is achieved
when labels are estimated with only one measurement
shot. As shown in Figure 1, our classical machines learn
better with training datasets consisting of more inputs
with the noisiest labels. Yet, realistically, it is cheaper
to produce more samples for a fixed parameter setting
in quantum models than to change the parameter set-
tings each time. In this scenario, we analytically show
that there exists an optimal pair of N1 and Ns that will
maximize the performance of the classical models.

Our analysis is based on the learning-theoretic frame-
work of probabilistic concepts (p-concept) [16]. Stemming
from the probabilistic nature of quantum measurements,
there is no deterministic mapping of the input data to the
observed outcomes (known in statistical learning theory
as a concept [17]) that can capture the behaviour of the
quantum model. Nonetheless, there is some structure to
this uncertainty. That is, quantum models represent the
conditional expectation of their unbiased estimators. As
this is precisely how p-concepts are defined, one could
formulate quantum models as p-concepts.

The p-concept setting was first introduced in a quan-
tum setup in Scott Aaronson’s seminal paper [18] and
subsequently in Refs. [19–22]. While these works, along
with our own, identify shot noise as structural random-
ness that allows us to cast quantum models as p-concepts,
they primarily focus on the usage of the fat-shattering
dimension, a complexity measure that shows the expres-
siveness of the set of p-concepts we are interested in learn-
ing. In these prior work, the fat-shattering dimension is
used to quantify the difficulty of learning quantum states
[18–20], measurements [21], and quantum circuits [22]. In
contrast, our work utilizes kernel theory and the respec-
tive learnability results to investigate the impact of shot
noise in learning quantum models using classical machine
learning models. Furthermore, our framework disentan-
gles the contributions of the classical representation of
quantum models, the size of the training dataset, and
the number of measurement shots, providing a new per-
spective to investigate their individual roles in learning
quantum models.

We further assess the impacts of shot noise on the ac-
tual training of classical machines. Following the bias-
variance-noise decomposition, we show the implicit im-
pacts of shot noise on the bias and variance of classical
models. Specifically, high shot noise will lead to high
variance in classical models, which is consistent with ob-
servations in the literature [23, 24]. Finally, we apply
our framework to numerically study the impact of shot
noise on the classical surrogation of parameterized quan-
tum circuit models. The numerical results are consistent
with our theoretical predictions.

Many samples, one shot per sample Few samples, many shots per sample

FIG. 1. Fixing the total number of queries to quantum models
imposes constraints on the number of inputs and the number
of shots per input: noisier (more accurate) estimates [blue
dots] of the target function [black-dashed line] are ac-
quired if more (fewer) inputs are considered. Classical ma-
chines trained with these inputs and associated function esti-
mates will output the prediction [red solid line].

II. PRELIMINARIES

In this section, we will first introduce two frameworks
in statistical learning theory that we use to provide learn-
ing guarantees, the deterministic concept learning frame-
work and the probabilistic concept learning framework.
Then, we will provide a brief introduction to the types of
quantum models considered in this work.

A. Probabilistic concept learning

Let X = Rm and Y ⊂ R be the data and label spaces,
respectively. Further, we assume that data points x are
independently and identically distributed (i.i.d.) accord-
ing to some unknown but fixed distribution p(x) and the
label space Y is a compact and convex subspace of R.
In the learning-theoretic setting, there are two types

of functions of interest: concept and hypothesis. A con-
cept c is a function that maps the data space to the la-
bel space, i.e., c : X → Y. A particular set of these
functions with specific properties forms a concept class
C ⊆ YX . In the deterministic learning setting, a con-
cept maps data points x ∈ X to associated labels y ∈ Y,
i.e., a data sample is given by (x, y) where x is sam-
pled from p(x) and y = c(x). Similarly, a hypothesis is
defined as h : X → Y, and a subset of these functions
forms a hypothesis class H ⊆ YX . Then, given a col-
lection of samples S = (xi, c(xi))

N1
i=1where xi ∼ p(x), a

learning algorithm selects a hypothesis h ∈ H such that
the difference between h(x) and the corresponding label
y = c(x) is low under some performance measure.
The probabilistic concept (p-concept) and the p-

concept class are defined in a similar fashion.

Definition 1 (p-concept). Let Px(Y) be a conditional
probability distribution over the label space Y, with prob-
ability density specified as p(y|x) for each input x ∈ X .

498



3

We call p-concept a function c : X → Y defined as the
conditional expectation value of y given x arising from p:

c : X → Y (1)

x 7→ c(x) = Ey∼p(y|x)[y]. (2)

Definition 2 (p-concept class). Let P ⊆ {Px(Y)} be
a subset of all conditional probability distributions over
the label space. For each distribution Px(Y) ∈ P, which
specifies the conditional distribution p(y|x) of y given x,
the corresponding p-concept is defined as per Definition 1.
Then, a p-concept class is the class of functions C that
corresponds to all functions arising from the set P of
probability distributions:

C := {c : x 7→ Ey∼p(y|x)[y] |Px(Y) ∈ P}. (3)

Noteworthy is that defining this concept class explic-
itly from a set of conditional distributions does not im-
pose any limitations on what these functions can be.
For any function f ∈ YX , one can always interpret it
as a p-concept in an infinite number of ways. For in-
stance, one could consider simply the probability dis-
tribution that always returns the value of the function
p(y|x) = δ(y − f(x))2. Alternatively, one could consider
any random function ξ(x) with zero mean E[ξ(x)] = 0,
and then one obtains a p-concept as the expectation value
of the random function f(x)+ξ(x). Indeed, there are in-
finitely many different probability distributions that give
rise to the same p-concept class3. Nonetheless, some of
these distributions can be generated via physically real-
izable processes, which are the focus of this work.

Contrasting with the deterministic learning setting, in
the p-concept learning setting, the samples (x, y) are ob-
tained by sampling the joint distribution D = p(x)p(y|x)
with c(x) = Ey∼p(y|x)[y]. In this work, we further con-
sider a flexible setting that allows for access to p(y|x).
That is, given a data point x, we can obtain multiple i.i.d.
random labels from p(y|x), e.g., y1, . . . , yNs

∼ p(y|x),
and use these labels to estimate the empirical mean of

the random labels ȳNs
= 1

Ns

∑Ns

i=1 yi. Such sampling
then averaging procedure can be directly modelled as the
sampling process (x, ȳNs

) ∼ D̄Ns
= p(x)p(ȳNs

|x) where
ȳNs

is distributed with variance σ2
ȳNs |x

= σ2
y|x/Ns and

σ2
y|x = Vary∼p(y|xi)[y]. By construction, for all Ns ∈ N,

p(ȳNs
|x) gives the same p-concept as p(y|x), i.e.,

c(x) = Ey∼p(y|x)[y] = EȳNs∼p(ȳNs |x)[ȳNs
]. (4)

2 In this case, the p-concepts reduce to the “regular” concepts
defined in Ref. [17].

3 The original definition of p-concepts given by Kearns and
Schapire [16] is simply a generalization of concepts in PAC learn-
ing [17] in terms of the function range, while the actual proba-
bilistic component is defined with the learnability of p-concept
classes. Here we take a slightly different approach and define p-
concepts such that the element of probability is captured within
the definition of p-concepts itself.

For ease of notation, we let c(x) := EȳNs
[ȳNs

|x] and im-

plicitly assume the dependence of ȳNs
and D̄Ns

on Ns,
and denote them as ȳ and D̄, respectively.
In the p-concept learning setting, a learning algorithm

similarly select a hypothesis h from a hypothesis class
H such that the difference between h(x) and the corre-
sponding p-concept c(x) is low under some performance
measure. Here, we define two different performance mea-
sures: explicit and implicit loss. In particular, the ex-
plicit loss of h is defined as

ℓexpl(h) = (h(x)− c(x))2 (5)

while the implicit loss of h is defined as

ℓimpl(h) = (h(x)− ȳ)2. (6)

That is, the explicit loss directly measures the perfor-
mance of h concerning the target p-concept c(x), while
the implicit loss indirectly quantifies the differences be-
tween h(x) and c(x) through the noisy labels ȳ as c(x) =
Eȳ[ȳ|x]. Averaging both losses over all data points yields
their respective risks: explicit risk

Rexpl(h) := E
(x,ȳ)∼D̄

[(h(x)− c(x))2] (7)

and implicit risk

Rimpl(h) := E
(x,ȳ)∼D̄

[(h(x)− ȳ)2]. (8)

The decomposition of Rimpl(h), i.e.,

Rimpl(h) = Rexpl(h) + E
(x,ȳ)∼D̄

[(Eȳ[ȳ|x]− ȳ)2] (9)

= Rexpl(h) +Rimpl(Eȳ[ȳ|x]), (10)

shows that the implicit and explicit risks are related by
a constant shift. Hence, a small Rimpl(h) implies a small
Rexpl(h) and vice versa.

In practice, the distribution D̄ and the exact p-concept
c(x) are inaccessible as we only have access to finite sam-

ples drawn from the distribution S = (xi, ȳi)
N1
i=1 with

(xi, ȳi) ∼ D̄ and c(x) = Eȳ[ȳ|x]. Therefore, instead of
minimizing the implicit or explicit risks, we will minimize
the empirical (implicit) risk

R̂(h) :=
1

N1

N1∑
i=1

(h(xi)− ȳi)
2. (11)

using samples S to obtain the optimal hypothesis that
well approximates the underlying p-concept rather than
the noisy label. That is, we aim to achieve low Rexpl by

minimizing R̂. Note that we have provide a glossary of
error definitions in Table I for ease of reference.
There is nothing that formally distinguishes a p-

concept from a “regular” concept in the probably approx-
imately correct (PAC) framework [16, 17]. Instead, the
role of the probability distribution only comes forward
when we talk about the learnability of such concepts.
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Name Notation Definition

Explicit loss ℓexpl(h) (h(x)− c(x))2

Implicit loss ℓimpl(h) (h(x)− ȳ)2

Explicit risk Rexpl(h) E(x,ȳ)∼D̄[(h(x)−c(x))2]
Implicit risk Rimpl(h) E(x,ȳ)∼D̄[(h(x)− ȳ)2]

Empirical risk R̂(h) 1
N1

∑N1
i=1(h(xi)− ȳi)

2

TABLE I. Glossary of error terms used in our paper. Explicit
(implicit) loss and risk are associated with the p-concept c(x)
(noisy labels ȳ), while the empirical risk is the empirical ver-
sion of the implicit risk. We have subsumed the subscript in
the empirical risk for ease of notation.

Definition 3 (p-concept learning). Let Ns ∈ N be the
number of random labels (per data input) and P =
{p(ȳ|x)} be a set of conditional probability distributions
over Y associated with a p-concept class

C := {c : x 7→ Eȳ∼p(ȳ|x)[ȳ] | p(ȳ|x) ∈ P}. (12)

We say C is p-concept learnable if there exists an algo-
rithm A such that:

1. for any error tolerance ε and success probability δ,

2. for any conditional distribution p(ȳ|x) ∈ P and
corresponding p-concept c ∈ C in the class, and

3. for any probability distribution p(x),

the learning algorithm A, when given as input a training
set S = (xi, ȳi)

N1
i=1, where (xi)

N1
i=1 ∼ DN1 , and each ȳi ∼

p(ȳ|x), produces a hypothesis h fulfilling

P (Rexpl(h) ≤ ε) ≥ 1− δ, (13)

where Rexpl(h) is the risk functional defined in Equa-
tion (7) and the probability is over both: the sampling

of training sets (xi)
N1
i=1 of size N1 and the sampling of

random labels ȳ conditional on each xi.
Further, C is efficiently p-concept learnable if A has

runtime polynomial in 1/ε, 1/δ, and σ2
ȳ|x, the conditional

variance of ȳ given xi for each i ∈ {1, . . . , N1}. (Runtime
efficiency implies sample efficiency, runtime of A upper-
bounds N1).

When there is no uncertainty in the given label, the p-
concept learning model will reduce to the PAC learning
model [17]. This is captured in Definition 3 by letting
Ns → ∞, and in this regime, we have Rimpl(Eȳ[ȳ|x]) = 0
hence Rexpl(h) = Rimpl(h).

1. Hypothesis class for modelling probabilistic concepts

To model the p-concepts, we consider the following hy-
pothesis class

H = {h(x) = u(⟨w,ϕ(x)⟩) ; w,ϕ(x) ∈ Rp} , (14)

where u : R → Y is an L-Lipschitz function that matches
the label space Y, w are weight vectors with bounded
2-norm ∥w∥2 ≤ B and ϕ : Rm → Rp is the feature map
that maps x to a higher dimensional feature space with
p > m and ∥ϕ(x)∥2 ≤ 1, and ⟨· , ·⟩ is the usual inner
product. This hypothesis class consists of two compo-
nents (i) the feature map ϕ(x) and (ii) the link function
u, each serving different roles.

The feature map dictates the class of realizable func-
tions and given two feature vectors ϕ(x),ϕ(x′), their in-
ner product is equal to the kernel function

k(x,x′) = ⟨ϕ(x),ϕ(x′)⟩. (15)

Interestingly, one could express the same class of func-
tions in terms of the kernel. Computing the kernel func-
tion k(x,x′) directly without explicitly evaluating the
feature vectors and their inner products is known as the
kernel trick. Note that H reduces to the typical kernel
machines when u is set to be the identity function.

The function u, on the other hand, provides us ex-
tra flexibility to incorporate the information about the
p-concepts. As discussed, one does not necessarily have
access to the exact p-concept c(x) but rather to the sam-
ples (x, ȳ) ∼ D̄ = p(x)p(ȳ|x). Direct optimizing kernel

machines with the empirical risk R̂(·) using the training

samples S = (xi, ȳi)
N1
i=1 yields

g(x) =

N1∑
i=1

aik(x,xi). (16)

However, this kernel-based model might be too expressive
for p-concept modelling as it tends to overfit the noisy
labels. Crucially, the link function u can be used to re-
strict the size of the model class, allowing us to suppress
their tendency to overfit. For the sake of clarity, we will
postpone the illustrations of the above-mentioned role of
u to the latter sections as the examples could be more
appropriately understood in the quantum context.

Now, we are ready to express the p-concepts in terms
of the hypothesis class. That is,

Eȳ[ȳ|x] = c(x) = u(⟨w,ϕ(x)⟩+ ξ(x)), (17)

where ξ(x) ∈ [−M,M ] is some noise function with
Ex[ξ(x)

2] ≤ ϵ1 that captures how well one can approx-
imate p-concepts using hypotheses from H. By the L-
lipschitz property of u and Ex[ξ(x)

2] ≤ ϵ1, we have

Rexpl(h) = ED̄[(h(x)− c(x))2] ≤ L2ϵ1. (18)

That is, low ϵ1 implies low approximation error of c(x)
using h ∈ H. This approximation enables us to systemat-
ically reduce the learning task to the search of appropri-
ate feature map ϕ(x), the link function u and the design
of efficient algorithms to learn the weight vector w.
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B. The family of parameterized quantum models

In this work, we are interested in learning a family of
parameterized quantum models fθ(x)

F = {fθ(x) = tr(ρθ(x)O) |θ ∈ Θ} . (19)

where ρθ(x) are parameterized quantum states with pa-
rameters θ ∈ Θ = Rr and input data x ∈ X = Rm while
O is an arbitrary Hermitian observable. The quantum
states ρθ(x) = Mθ,x(ρ0) could be prepared by applying
parameterized quantum channels Mθ,x(·) on some initial
state ρ0. In particular, we will focus on specific quantum
channels that are generated by parameterized quantum
circuits (PQCs). We remark that our analysis can be
directly extended to other quantum channels including
ground state preparation channels [9–11].

1. PQCs and their classical Fourier representations

Let x = (x1, . . . , xm) ∈ X = [0, 2π)m be a vector of
data points, θ = (θ1, . . . , θm) ∈ Θ = [0, 2π)r be a vector
of parameters, U(x,θ) be the unitary that represents the

PQCs, |0⟩ = |0⟩⊗n
and O be an arbitrary Hermitian

observable. We define the PQC model as

fθ(x) = ⟨0|U†(x,θ)OU(x,θ) |0⟩ . (20)

For a given U(·,θ) and O, we define the PQC model class
FU,O as

FU,O =
{
fθ(·) = ⟨0|U†(·,θ)OU(·,θ) |0⟩ |θ ∈ Θ

}
(21)

for all x ∈ X .
The parameterized unitary U(x,θ) consists of a se-

quence of two different types of parameterized quantum
gates. The first type of parameterized quantum gates is
controlled by parameters θ, while the second type em-
beds data points xi into the PQCs via unitary evolution

V(j,k)(xj) = e−iH
(j)
k xj , (22)

generated by some Hamiltonian H
(j)
k . Given this param-

eterization strategy, it is well-known that PQC models
could be written as a Fourier series4 [29, 30]

fθ(x) =
∑
ω∈Ω̃

cω(θ)e
i⟨ω,x⟩, (23)

where the frequency spectrum Ω̃ is determined by
the ensemble of eigenvalues of embedding Hamiltonian

4 The Fourier expansion in this work mainly follows the treatment
in Ref. [25, 26] but equivalent Fourier representation of PQC
models can be obtained by other Fourier expansion methods [27,
28]

{H(j)
k }j,k and the coefficients cω(θ) depend on the quan-

tum gates parameterized by θ.
Equation (23) can be further simplified by noting that

the non-zero frequencies in Ω̃ come in pairs, i.e., ω,−ω ∈
Ω̃, allowing us to split Ω̃ into two components. That
is, Ω̃ := Ω ∪ (−Ω) with Ω ∩ (−Ω) = {ω0}, where

ω0 = (0, . . . , 0) ∈ Ω̃ is the vector of zero frequencies. Let
Ω = {ω0,ω1, . . . ,ω|Ω|} and for all ω ∈ Ω\{ω0}, we have

aω(θ) := cω(θ) + c−ω(θ) (24)

bω(θ) := i(cω(θ)− c−ω(θ)). (25)

Given this definition, Equation (23) can be equivalently
written as

fθ(x) = cω0
(θ) +

|Ω|−1∑
i=1

(aωi
(θ) cos(⟨ωi,x⟩)+

bωi
(θ) sin(⟨ωi,x⟩)) (26)

Identifying the corresponding weight vectors w

wF (θ) =
√

|Ω|



cω0(θ)
aω1

(θ)
bω1

(θ)
...

aω|Ω|−1
(θ)

bω|Ω|−1
(θ)



⊺

(27)

and the trigonometric polynomial feature map

ϕF (x) =
1√
|Ω|



1
cos(⟨ω1,x⟩)
sin(⟨ω1,x⟩)

...
cos
(
⟨ω|Ω|−1,x⟩

)
sin
(
⟨ω|Ω|−1,x⟩

)


(28)

enables us to express the PQC model as a linear model
with respect to the feature map ϕF , i.e.,

fθ(x) = ⟨wF (θ),ϕF (x)⟩, (29)

and the associated kernel function is given by kF (x,x
′) =

⟨ϕF (x),ϕF (x
′)⟩.

2. Data extraction from parameterized quantum models

In general, one does not have direct access to fθ(x).
Instead, they are estimated using finite samples from
measurement procedures such as direct measurement or
classical shadow methods, as described in Appendix A.
We denote outputs of such estimation procedures as ȳ
and their dependency on the data point x, parameter θ,
and the number of measurement shots Ns are implicitly
assumed. In addition, they are unbiased estimators of
fθ(x), i.e.,

fθ(x) = Eȳ[ȳ|x,θ]. (30)
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FIG. 2. Concept learning of parameterized quantum models. (a) To learn quantum models, one needs to probe the quantum
model with N different input data points x, and construct an estimator of the quantum model y = f(x) conditioned on the
input. Such estimators ȳ can be constructed by taking the average over Ns duplicate quantum measurements. (b) Using data
pairs (xi, ȳi) collected from the quantum model, the task is to classically learn a representation h∗ of the quantum model such
that the output of classical representation h(x) is close to the underlying expected output y = f(x) of the quantum model for
any arbitrary x. As illustrated in (c), the number of measurement shots NS will determine the closeness between the estimator
ȳ (blue dots) and the underlying expected value f(x) (black solid line).

For ease of notation, we will drop the conditional depen-
dency of the expectation on θ from now on.

Now, we describe the procedures for obtaining labelled
data points from a given fθ. Without loss of generality,
we let p(x) be a uniform distribution of input x. As de-
picted in Figure 2 (a), a set of N i.i.d. samples of x is first
drawn from p(x) and subsequently input to the quantum
model to collect their associated labels ȳ via the proce-
dures described in Appendix A using Ns measurement
repetitions. This gives the set of data S = {xi, ȳi}Ni=1.
Shown in Figure 2 (c) are the labels ȳ estimated with
Ns = 1, 10, 100.

III. PARAMETERIZED QUANTUM MODELS
AS PROBABILISTIC CONCEPTS

One can immediately deduce from Equation (30) that
parameterized quantum models (PQMs) are p-concepts.
Now, we will show that the hypothesis class defined in
Section IIA 1 is an appropriate model class for the learn-
ing of PQMs. Modelling PQMs using the hypothesis from
H, as defined in Equation (14), assumes the following:
there exist a feature map ϕ(x), a function u, a weight
vector w, and a noise function ξ(x) such that the PQMs

Algorithm 1: The learning algorithm

Input: Labelled training data {(xi, ȳi)}N1
i=1 ∈ X × Y,

non-decreasing L-Lipschitz function
u : R → Y, kernel function k corresponding to
feature map ϕ, learning rate λ > 0, number of
iterations T , labelled held-out data of size N2

{(pj , q̄j)}
N2
j=1 ∈ X × Y

1 αi := 0 ∈ RN1

2 for t = 1, . . . , T do

3 ht(x) := u
(∑N1

i=1 α
t
ik(x,xi)

)
4 for i = 1, 2, . . . , N1 do
5 αt+1

i := αt
i +

λ
N1

(ȳi − ht(xi))

Output: hr where
r = argmint∈{1,...,T}

1
N2

∑N2
j=1(q̄j − ht(pj))

2

can be expressed as

Eȳ[ȳ|x] = tr(ρθ(x)O) = u(⟨w,ϕ(x)⟩+ ξ(x)), (31)

with ||w||2 ≤ B, ξ(x) ∈ [−M,M ], and Ex[ξ(x)
2] ≤ ϵ1.

Hence, the aim here is to find an appropriate function
u that contains information on the PQM as well as con-
struct the feature map ϕ(x) that efficiently approximates
a PQM.
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A. Algorithm for concept learning of
parameterized quantum models

By expressing the PQMs in terms of the hypothesis in
H, we systematically reduce the modelling problem to the
search of the appropriate feature map ϕ(x), link function
u, and optimal weight w∗. As the first two attributes are
highly dependent on the problem at hand, we will defer
their discussion to Section IV. In this section, we will
assume ϕ(x) and u are known and focus on the algorithm
part of the problem.

Consider a PQM tr(ρ(x)O) that can be approximated
by a feature map ϕ(x) and a known L-Lipschitz non-
decreasing function u : R → Y, as per Equation (31).
The task of learning PQMs could be formulated as the
search of the optimal weight vector w∗ such that the
output hypothesis h∗(x) = u(⟨w∗,ϕ(x)⟩) minimizes the
explicit risk

Rexpl(h
∗) = ED̄[(u(⟨w∗,ϕ(x)⟩)− tr(ρ(x)O))2]. (32)

As discussed in Section IIA, we will only have access to
finite samples drawn from the distribution D̄. Hence,

we will be minimizing the empirical risk R̂(h) in Equa-

tion (11) using some training samples S = (xi, ȳi)
N1
i=1

with (xi, ȳi) ∼ D̄ instead of Rexpl(h). Note that the ex-
tra u in the empirical risk makes the optimization non-
convex. As detailed in Figure 2 (b), while the classical
machine learns from a noisy dataset consisting of shot
noise from quantum measurements, our objective is to
enable the classical machine to approximate the under-
lying p-concept of the PQM, i.e., the expected value of
the measured outcomes of PQMs.

Shown in Algorithm 1 is an iterative-based method
that learns PQMs under some mild assumptions. While
our algorithm is derived from the iterative method in
Ref. [31], we extended the provable guarantee of the orig-
inal algorithm to include the number of measurement
shots Ns used to estimate ȳ and show its operational
role in the algorithm. The analytical guarantee enables
us to understand the contributions of errors and the intu-
itive explanation of the working principle of Algorithm 1
is provided in Appendix B 1.

Theorem 1 (p-concept learnability of PQMs). We are
given a quantum observable O such that ∥O∥∞ = ∆.
With this observable, we have quantum model whose ex-
pected output can be expressed as a classical representa-
tion as follows: tr(ρ(x)O) = u(⟨w,ϕ(x)⟩+ ξ(x)), where
u : R → [−∆,∆] is a known L-Lipschitz non-decreasing
function, ξ : Rm → [−M,M ] such that Ex[ξ(x)

2] ≤ ϵ1,
∥w∥2 ≤ B, and ∥ϕ(x)∥2 ≤ 1. Considering a training
dataset of N1 i.i.d. samples of x as input to the quan-
tum model, and whose label is the sample mean of the
output of the quantum model sampled over Ns measure-
ments. Let the conditional variance of an individual mea-
surement averaged over all x be σ̄. For δ ∈ (0, 1), with
probability 1−δ, setting the learning rate λ = 1

L and given

a validation dataset size of N2 = O(N1∆
2 log

(
T
δ

)
), after

T = O(BL
ϵ4

) iterations, Algorithm 1 outputs a hypothesis
h ∈ H such that

Rexpl(h) ≤ O(L∆
√
ϵ1 + L∆Mϵ2

+ LB∆ϵ3 + LBϵ4 +∆2ϵ5), (33)

where ϵ2 =
4

√
log( 1

δ )
N1

, ϵ3 =
√

1
N1

, ϵ4 =

√
σ̄ log( 1

δ )
N1Ns

, ϵ5 =√
log( 1

δ )
N1

, and σ̄ = Ex[σ
2
y|x].

The proof of this theorem can be found in Ap-
pendix B 2. As shown in Equation (33), four different
error sources will affect the performance of the models:
(i) the approximation error ϵ1, (ii) the data sampling er-
rors ϵ2 and ϵ5, (iii) the learnability error ϵ3, and (iv) the
label sampling error ϵ4. Firstly, the approximation error
ϵ1 captures the intrinsic error that can be achieved by our
hypothesis class as it tells us how far away our hypothesis
h(x) is from the true function tr(ρ(x)O) we wish to learn,
i.e., Ex[ξ(x)

2] ≤ ϵ1. It is therefore impossible to obtain
a small risk if the approximation error is high to begin
with. On the other hand, the data sampling errors ϵ2
and ϵ5 capture the statistical noise arising from the finite
data samples provided to the learning algorithm while
the learnability error ϵ3 stems from Rademacher com-
plexity and quantifies the hardness of learning with the
given hypothesis class. Both of these errors can be mini-
mized by providing more data samples. Lastly, the label
sampling error ϵ4 is influenced by three attributes, the
averaged variance Ex[σ

2
y|x], the number of training data

points N1, and the number of measurement shots Ns. In-
creasing either N1 or Ns could reduce the label sampling
error. Additionally, a measurement scheme that results
in smaller variance will require fewer training data points
and measurement shots to achieve a smaller ϵ4 error.

B. Asymmetrical effects of N1 and Ns

While the individual implications of all four types of
errors are straightforward to deduce, jointly analysing
the last three sources of error leads to an interesting ob-
servation regarding the asymmetrical effects of N1 and
Ns on classical learning of quantum models. On the one
hand, increasing Ns can only decrease the label sampling
error ϵ4 but not the data sampling errors ϵ2 and ϵ5 and
the learnability error ϵ3. On the other hand, increasing
N1 will simultaneously decrease all three errors, and ϵ4
approaches 0 regardless of the value of Ns. Consequently,
one could set Ns = 1 when N1 is sufficiently large. This
observation aligns with intuition, as the labels are depen-
dent on the parameters. By sampling across the train-
ing points, one effectively samples across various labels,
thereby providing a reasonable estimation of quantum
models. In contrast, increasing the resolution of the la-
bels does not provide extra information on other data
points. This observation is summarised in Corollary 1

503



8

and numerically illustrated in Figure 3 (a). For simplic-
ity, we assume δ = 0.01, and σ̄ = L = B = ∆ = 1.

Corollary 1 (Asymmetrical effects of N1 and Ns). Let
all variables defined as per Theorem 1. For the hypoth-
esis class H with link function u, feature map ϕ(x) and
weight vector w with tr(ρ(x)O) = u(⟨w,ϕ(x)⟩) ∈ H,
i.e., Ex[ξ(x)

2] = 0, Algorithm 1 will output a hypothesis
h ∈ H such that

Rexpl(h) ≤ c1

√
1

N1
+ c2

√
1

N1Ns
+ c3

√
1

N1
, (34)

where c1 = O(LB∆), c2 = O
(
LB
√
σ̄ log

(
1
δ

))
, c3 =

O
(
∆2 log

(
1
δ

))
, and N1 and Ns contribute asymmetrically

to R(h). That is, for a constant N1, R(h) ̸→ 0 when
Ns → ∞, but R(h) → 0 when N1 → ∞ regardless of
the value of Ns. Note that ϵ1 = 0 implies M = 0 by
definition.

The overall analysis shows that for a sufficiently large
N1, classical models can learn quantum models that
have efficient classical representation even when target la-
bels are estimated with limited measurement shots, e.g.,
Ns = 1. Conversely, when such efficient classical rep-
resentation cannot be found, tr(ρ(x)O) is not learnable
even when N1 and Ns are infinite. Corollary 1 further
shows that Ns plays a less significant role than N1 in the
classical learning of quantum models. In other words,
shot noise is not a fundamental concern in classical learn-
ing of quantum models as its role can be easily substi-
tuted by N1.

C. Trade-offs between N1 and Ns

In an ideal world, one would choose N1 and Ns as large
as possible to minimize the explicit risk. However, exter-
nal constraints like financial budgets and time limitations
might significantly restrict the total number of queries to
a quantum model. Thus, a more realistic setting is to first
consider a fixed number of queries to quantum models,
and N1 and Ns are subsequently decided.

In general, producing more samples for a fixed param-
eter setting in an experiment is much cheaper and faster
than changing the parameter settings each time. Chang-
ing parameters incurs an additional cost that may stem
from preprocessing subroutines, classical transpilation
and optimization of the circuits or platform-dependent
factors regarding the hardware we are executing the
quantum circuits on. For example, the penalty cost
for superconducting quantum computers would be larger
than for trapped-ion quantum computers, as it is rela-
tively cheaper to produce more samples for a fixed pa-
rameter set than to change the parameter setting each
time in the former platform [32]. To quantify such costs
for easier discussion, we assume that these costs can be
quantitatively evaluated to be some multiple γ ∈ R+

of the cost to run a repetition of quantum circuits that

have already been configured. That is, we assume chang-
ing the parameter setting once will incur extra cost of γ
shots.
Considering the total measurement budget for train-

ing, we find that Ntot = N1 · (Ns + γ). Fixing the
total measurement budget Ntot implies a trade-off be-
tween N1 and Ns: increasing N1 will reduce Ns and
vice versa. This poses an interesting learning-theoretic
question: given a fixed Ntot, will classical machines
learn better with training datasets consisting of more in-
puts/parameters with noisier labels (larger N1 but smaller
Ns) or fewer inputs with cleaner labels (smaller N1 but
larger Ns)? As shown in Corollary 2, when N1 and Ns

are treated equally (γ = 0), asymptotically, it is generally
better to sample more inputs, i.e., (N∗

1 , N
∗
s ) = (Ntot, 1).

When there is an extra cost for changing the parameter
settings, i.e., γ > 0, there exists a pair of optimal input
size N∗

1 and the shot number N∗
s that minimize the ex-

plicit risk. These observations are numerically illustrated
in Figure 3 (b). For simplicity, we assume δ = 0.01, and
σ̄ = L = B = ∆ = 1.

Corollary 2 (Trade-off between N1 and Ns). Consider
the setting as per Corollary 1. For a given fix total
measurement budget for training Ntot ∈ N and a fix
penalty cost γ ∈ R+, N1 and Ns are determined by
Ntot = N1 · (Ns + γ). Respecting this constraint, Al-
gorithm 1 will output a hypothesis h ∈ H such that

Rexpl(h) ≤ c1

√
Ns + γ

Ntot
+ c2

√
Ns + γ

NtotNs
+ c3

√
Ns + γ

Ntot
.

(35)

When γ = 0, the upper bound of the explicit risk Rexpl(h)
reduces to

Rexpl(h) ≤ c1

√
Ns

Ntot
+ c2

√
1

Ntot
+ c3

√
Ns

Ntot
(36)

which is minimized when Ns = 1. When γ > 0, there
exists a pair of optimal input data size and shot number
(N∗

1 , N
∗
s ) where

N∗
1 =

Ntot

N∗
s + γ

and N∗
s =

(
c2γ

c1 + c3

) 2
3

(37)

that minimizes our upper bound of Rexpl(h).

Note that the optimal value of Ns does not correlate
with Ntot, but depends on the constant penalty cost γ.
Hence, setting Ns = 1 regardless of the value of γ would
only increase Rexpl(h) by a factor of

√
1 + γ, retaining

learnability up to a constant factor for single measure-
ment learning.
Taking a closer examination at Ns, we check whether

other factors apart from the device-dependent cost γ af-
fect the value of Ns. Delving into the definitions of the
terms c1, c2, and c3, we note that the terms L, ∆, and δ
are constants that either depend on the problem setting
or can be set arbitrarily. B, on the other hand, is directly
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(a)

(b)

FIG. 3. The respective numerical illustrations of Corollary 1
and Corollary 2 with δ = 0.01, and σ̄ = L = B = ∆ = 1.
(a) The plot shows the asymmetrical effect of the number of
training samples N1 and the number of measurement shots Ns

to the explicit risk Rexpl(h). (b) For a fixed total measurement
budget Ntot, the optimal pair of N1 and Ns will change with
γ. When γ = 0, the optimal shot number is Ns = 1 but it
depends on γ when γ > 0. All curves are computed with
Ntot = 600 and Ns = {1, 2, 3, . . . , 24, 25}.

related to the expressibility of the hypothesis h used to
model the quantum model. Does the expressibility B of
the hypothesis h affect the number of shots Ns required?

Plugging in c1 = O(B), c2 = O(B), c3 = O(1), we

note that in terms of B, Ns = O
(

B
B+K

)
, where K is a

constant. While Ns is indeed dependent on B, its depen-
dency can be upper bounded by a constant as Ns → O(1)
as B grows. Hence, even in cases where the expressibility
of the hypothesis h we use to exactly model the quantum
model scales exponentially, the number of shots required
to sample each data is still limited to a constant value.

D. Shot-noise dependent bias-variance trade-off

An alternative framework for analyzing the occur-
rences of different error terms commonly seen in machine
learning analysis is the bias-variance-noise decomposi-
tion. Here, we provide a summary with the full intro-

duction deferred to Appendix C.

Optimizing the empirical risk R̂(h) using different
training datasets S would yield different trained models
hS(x). The bias then measures, on average, how much
hS deviates from the ground truth f

BiasS := ES [hS(x)]− f(x), (38)

while the variance

VarS := ES

[
(ES [hS(x)]− hS(x))

2
]

(39)

measures the fluctuations among the trained models. As
the expectation is taken over all possible training datasets
of the same size, therefore, the bias and variance will be
dependent on the complexity of the hypothesis class, the
number of training data points N1 and the number of
random labels Ns.

The average of the explicit risk over all possible train-
ing datasets will then have the following decomposition,
whose derivation is also found in Appendix C:

ES [Rexpl(hS)] = Ex

[
Bias2S

]
+ Ex [VarS ] . (40)

where

Ex

[
Bias2S

]
:= Ex

[
(ES [hS(x)]− f(x))

2
]

and (41)

Ex [VarS ] := Ex,S

[
(ES [hS(x)]− hS(x))

2
]

(42)

are the averaged bias squared and averaged variance, re-
spectively. This decomposition shows that the shot noise
has an indirect impact on the performance of classical
machine learning models and this impact can be studied
by analysing the statistical quantities Bias2S and VarS .
Intuitively, high shot noise implies high variance in the
labels, indirectly leading to high variance in the models,
and further induces overfitting. We will provide a simple
example in Section IV to illustrate how shot noise affects
the bias-variance trade-off.

Equation (33) and Equation (40) appear to be unre-
lated to each other. On the one hand, the algorithm-
specific Equation (33) gives a probabilistic guarantee on
the performance of each trained model. On the other
hand, the algorithm-agnostic Equation (40) provides an
understanding of the average behaviour of the overall hy-
pothesis class. One can however observe the similarities
between the two by directly comparing Equation (33)
and Equation (40). Specifically, the first term in Equa-
tion (33) can be understood as the bias of the models
since it quantifies the asymptotic error that is achievable
by the models while the second term captures the finite
sampling noise of the bias; the other three terms inform
on the variance of the model. Interestingly, the shot-noise
dependent variance is captured by ϵ4 and Figure 3 essen-
tially captures the variance dependence on the number of
training data points and number of measurement shots.
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IV. CLASSICAL SURROGATES OF PQC
MODELS AS PROBABILISTIC CONCEPTS

As a direct example, we apply our theoretical frame-
work to create a classical surrogate of parameterized
quantum circuit (PQC) models [8]. Treating PQC mod-
els as p-concepts enables us to study the impact of shot
noise on constructing their corresponding classical sur-
rogates. In particular, we observed asymmetrical effects
from both the number of training data points and the
number of measurement shots, as well as the potential
for using a relatively small number of measurement shots
to surrogate PQC models. As predicted by our theoret-
ical analysis, the bias and variance of the classical sur-
rogates are highly dependent on the strength of the shot
noise. Finally, we highlight the role of the link function
in our surrogate models in suppressing their variance in
the presence of the shot noise.

We wish to emphasize that our work aims to provide a
generic framework to analyse the learnability of PQMs in
the presence of shot noise. Therefore, in this example, we
will consider the feature map proposed in the literature
[29, 30], but our framework is readily adaptable to future
proposals of efficient feature maps. In addition, our re-
sults can be easily extended to other types of PQMs by
replacing the quantum channel with appropriate substi-
tutes.

A. Classical approximation of PQC models

In this section, we will briefly discuss the existing
methods for approximating PQC models classically. As
described in Section II B 1, PQC models can be written
as fθ(x) = ⟨wF (θ),ϕF (x)⟩. Therefore, the immediate
choice of feature map for modelling PQC models clas-
sically is the full trigonometric polynomial feature map
ϕF (x). However, the associated model class could be
too expressive thus it might overfit the training data
points [8]. In addition, the size of the frequency spec-
trum could be exponential in the data dimension, which
becomes intractable for classical computers. Instead, one
could hope to exploit some structure of the PQC to con-
struct an efficient feature map ϕ(x) to approximate the
PQC models

⟨0|U†(x,θ)OU(x,θ) |0⟩ ≈ ⟨w,ϕ(x)⟩. (43)

According to our notation above, we would use the
noise function ξ(x) to refer to the approximation error
ξ(x) = ⟨wF ,ϕF (x)⟩− ⟨w,ϕ(x)⟩. We drop the explicit θ
dependence of wF and ξ for ease of notation.

One approach would be to construct ϕ as a truncated
version of ϕF . This would take advantage of the fact
that the high-frequency components of PQC models that
are subjected to Pauli noise [27] typically make smaller
contributions than lower frequency terms. Thus, Fourier
series with an appropriate level of truncation can be used

to model PQC models without compromising much of the
accuracy. This approach assumes that we know which
components to truncate ahead of time, though, and that
might be unrealistic for practical scenarios.
As an alternative, one can utilize a popular technique

from machine learning called Random Fourier Features
(RFF) [33], used to efficiently approximate the high-
dimensional inner product ⟨wF (θ),ϕF (x)⟩ by randomly
selecting only a few of its dominant terms [25, 26]. Using
RFF amounts to performing a truncation of the Hilbert
space, with the only difference being that the selection
of components that are kept is probabilistic. RFF has
been proposed as an approach to “dequantize” PQC-
based quantum machine learning models by exploiting
the efficient low-dimensional feature map ϕ in Ref. [25].
On the other hand, Ref. [26] discusses the applicability of
RFF in terms of which PQCs are likely to admit the effi-
cient approximation. In both these references, the task is
not to learn the classically efficient representation of the
PQC but rather to show that a given downstream task
can be learned efficiently classically, without ever running
the PQC. Even though the specific task is not the same,
we observe that the main limitation in learning quantum
models comes from an efficient classical representation,
which deeply aligns with the use of RFF. In Appendix D
we formally discuss how the performance guarantees of
RFF bring about learnability in the sense introduced in
Sections II and III. Also, we wish to emphasize that the
efficient classical representation of PQCs is still under ac-
tive research, but our work could be directly adapted if
efficient feature maps were found.

B. Modelling PQCs with and without link
functions

In this section, we will discuss the operational role of
the link function u in the surrogation of PQC models.
Without loss of generality, we let O = |0⟩ ⟨0|, hence we
have

fθ(x) = |⟨0|U(x,θ) |0⟩|2 = ⟨w,ϕRFF(x)⟩+ ξ(x), (44)

and fθ(·) ∈ FU,|0⟩⟨0|. To model the probabilistic function
fθ(x), we consider the following hypothesis class

HRFF = {h(x) = u(⟨w,ϕRFF(x)⟩), ∥w∥2 ≤ B} (45)

where u is the clipping function

u(x) =


0, x < 0

x, 0 ≤ x ≤ 1

1, x > 1

, (46)

a 1-Lipschitz function that enforces the matching of co-
domains of the hypothesis class H and |⟨0|U(x,θ) |0⟩|2
while ensuring the output of the linear hypothesis h
within range [0, 1] is not distorted. Note that the link
function has no impact on fθ(x) since fθ(x) ∈ [0, 1].
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To provide context regarding the value of B, we note
that similar to the full Fourier representation of PQC
models, the weight vectors of the RFF feature map can
also be written as

w =
√
D


aω̃1

(θ)
bω̃1

(θ)
...

aω̃D
(θ)

bω̃D
(θ)


⊺

(47)

where D is the dimension of the random Fourier fea-
ture map ϕRFF and ω̃i ∈ Ω are the sampled frequencies
from the original Fourier spectrum Ω. Following general
algorithm-independent results in statistical learning the-
ory on RFFs [34, 35], we assume that the value |aω̃i

(θ)|
and |bω̃i

(θ)| are bounded by some constant K. Note that
∥w∥2 ≤ KD ∈ O(D).

Combining Theorem 1 with the results from the RFF
approximation yield Corollary 3.

Corollary 3. Consider the hypothesis class HRFF as
defined in Equation (45), a target function f(x) ∈
FU,|0⟩⟨0|, and variables as defined in Theorem 1. Let

S = (xi, ȳi)
N1
i=1 be the training dataset with ȳi estimated

with Ns measurement shots. Running Algorithm 1 with
S will yield h ∈ HRFF such that

Rexpl(h) ≤ O (
√
ϵ1 +Mϵ2 +D [ϵ3 + ϵ4] + ϵ5) , (48)

where ϵ2 =
4

√
log( 1

δ )
N1

, ϵ3 =
√

1
N1

, ϵ4 =

√
σ̄ log( 1

δ )
N1Ns

, ϵ5 =√
log( 1

δ )
N1

, and σ̄ = Ex[σ
2
λ|x].

Here, we exploited the information about the co-
domain of the target p-concepts to design an appropriate
link function u that restricts the size of the hypothesis
class. To illustrate the impact of limiting the hypothesis
class size, we relax the co-domains matching constraint,
i.e., set u to be the identity map, hence the hypothesis
class considered becomes

GRFF = {g(x) = ⟨w,ϕRFF(x)⟩, ∥w∥2 ≤ B} . (49)

The most straightforward method to learn fθ(x) un-
der this relaxed formulation is to directly minimize the

empirical risk R̂(h) given a sample S sampled from the
distribution D̄, which we call empirical risk minimization
(ERM).

We can formulate the above as a quadratically con-
strained quadratic program as follows:

w∗ = argmin
w,∥w∥2≤B

1

|S|
∑

(x,ȳ)∈S

|⟨w,ϕ(x)⟩ − ȳ|2, (50)

which can be efficiently solved by convex optimization
methods such as interior point methods [36] or projected

gradient descent. Alternatively, by including the con-
straint in the loss with Lagrangian multipliers, the prob-
lem can be formulated as a ridge regression task. Various
prior work use this formulation to tackle learning prob-
lems involving PQCs [8, 25, 26].

Lemma 1. Consider the hypothesis class GRFF as de-
fined in Equation (49), a target function f(x) ∈ FU,|0⟩⟨0|,
and variables as defined in Theorem 1. Let S =
(xi, ȳi)

N1
i=1 be the training dataset with ȳi estimated with

Ns measurement shots. Optimizing Equation (50) with
S will yield gERM

S ∈ GRFF such that

Rexpl(g
ERM
S ) ≤ O

ϵ1 +D2

√
log 1

δ

N1

 . (51)

The proof of this lemma can be found in Appendix E.
Similar to Equation (48), one could understand Equa-
tion (51) from the bias and variance perspective, i.e., the
first term informs the bias of the model while the second
term tells us about the model’s variance. Firstly, the in-
clusion of the link function u in the hypothesis class H
results in a class of model that has higher bias as com-
pared to hypothesis class G hence leads to a quadratic
increase in error ϵ1. Consequently, H that is higher in
bias will have a lower variance, and we can observe the
separate and asymmetrical effects of the data sampling
and shot noises on the explicit risk. Removing the link
function leads to higher variance in G, and the sensitivity
to shot and data sampling noises becomes indistinguish-
able. The relationship between errors in these two gener-
alization bounds essentially manifests the bias-variance
trade-off. Further, such results showcase the fact the
ERM-based hypothesis selection can still generalize with
a constant number of measurements provided that we
have abundant data points.
We note that without the application of the link func-

tion u in our modelling, classical models are much more
susceptible to shot noise. Our theoretical results of Corol-
lary 2 and Lemma 1 imply that in order to learn labels
obtained from constant number measurements, without
the link function u, classical algorithms may require up
to data points N1 that are square of what is needed for
models with the link function u. In the following section,
we numerically showcase this property.

V. NUMERICAL VALIDATION ON THE ROLE
OF SHOT NOISE

In this section, we will provide numerical verifications
of our theoretical results, validating the operational roles
of shot noise in learning quantum models.

A. Numerical settings

We consider the data re-uploading model [37] for one-
dimensional data points x in our numerical demonstra-
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(a)
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𝑁𝑠 = 100

𝑁𝑠 = 10

𝑁𝑠 = 1

𝑁𝑠 = 100

𝑁𝑠 = 10

𝑁𝑠 = 1
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(c)

FIG. 4. (a) The averaged explicit risk for different numbers of training data points N1 and number of measurement shots Ns.
The overall trends agreed with the theoretical prediction in Figure 3: for a fixed N1, the explicit risk saturated after some
threshold value of Ns, but the explicit risk can be reduced by increasing N1 regardless of the value of Ns. (b) When the model
in H10 are presented with a sufficiently large dataset, i.e., N1 = 24000, the exact function (black dashed line) can be learned
even if the labels are estimated with one measurement shot. (c) Twenty different trained models (dotted dashed line of various
colours) from H10 and their mean predictors (solid red line) for N1 = 1, 10, 100. Increasing Ns reduces the shot noise, hence
reducing the spread of the trained models. (d) The bias-variance trade-off curve. The bias and variance of the trained models
in (c) are calculated and plotted in the purple dotted box. The rest of the values are computed using similar procedures as per
(c) for Hd with d = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Both the bias and variance decrease when Ns increases, illustrating the shot-noise
dependent bias-variance trade-off. (e) Bias and variance for models with and without the link function u. The models without
the link function are more expressive, hence they are more susceptible to the shot noise, i.e., they have a higher tendency to
overfit the shot noise. Increasing Ns will reduce the shot noise, hence suppressing the shot-noise-induced variance. Note that
the same target function is considered in all these numerical experiments.

tion

fθ(x) =
∣∣∣⟨0|Rot(θLr+1

)
ΠLr

l=1

[
RX(x)Rot

(
θl
)]

|0⟩
∣∣∣2 ,
(52)

where θ = (θ1, . . . ,θLr+1) is the set of rotational an-

gles, Rot(θl) = RZ(θ
l
3)RY (θ

l
2)RZ(θ

l
1) is the universal

single qubit unitary gate, Lr is the number of layer rep-
etitions, and RP (·) are the Pauli rotation unitary gates
with P ∈ {X,Y, Z}. While we considered only the sin-
gle qubit data re-uploading model with one-dimensional
data points, it is straightforward to generalize our results
to the multi-qubit model or with multi-dimensional data
points. As described, the data re-uploading model can
be expressed as a truncated Fourier series

fθ(x) = c0(θ) +

Lr∑
ω=1

aω(θ) cos(ωx) + bω(θ) sin(ωx),

(53)

with Fourier spectrum Ω+
Lr

= {1, . . . , Lr} while the
Fourier coefficients are dependent solely on θ and their
associated unitaries.

Now, we will describe our numerical setting. Firstly,
we considered fixed randomly generated angles θ in our
numerical demonstrations, and this set of angles is used
for all numerical experiments. Therefore, we will drop the
dependency on θ from now on. In addition, we set Lr =
10 for the data re-uploading model to generate a degree
10 Fourier series. Such a target function is sufficiently
complex for us to observe various impacts of shot noise
in learning f(x). Finally, this numerical example does
not require the utilization of random Fourier features, as
the model under consideration is rather straightforward;
therefore, the truncation method suffices. Specifically,
we consider the following truncated Fourier series as our
hypothesis class

Hd =

{
hd(x) = u

(
ν0 +

d∑
ω=1

αω cos(ωx) + βω sin(ωx)

)}
(54)

where ν0, αω, βω ∈ R, u(·) is the clipping function as
defined in Equation (46) and d ∈ N controls the degree of
the truncated Fourier series, hence the complexity of Hd.
For all numerical experiments, the number of training
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steps T is fixed as 50, and 500 testing data points are
used to evaluate the performance of trained models. To
distinguish the hypothesis class with and without the link
function, we denote Hd with the identity link function
as Gd. Note that all datasets are extracted using the
procedures described in Section II B 2.

B. Asymmetrical effects of N1 and Ns

To begin with, we investigate the asymmetry depen-
dent of the explicit risk on the number of training data
points N1 and the number of measurement shots Ns. In
particular, we set d = 10 such that the approximation
error ϵ1 = 0, i.e., when ν0 = c0, αω = aω, and βω = bω
for all ω ∈ Ω+

10, enabling us to isolate the impact of these
two attributes. In this example, the ratio of the num-
ber of training data points N1 to the number of vali-
dation data points N2 is N1:N2 = 8:2 with total data
points N = {10, 15, 25, 50, 75, 100, 200, 300}. That is, we
trained the model in H10 with different pairwise com-
binations of N1 = {8, 12, 20, 40, 60, 80, 160, 240} training
data points and Ns = {1, 5, 10, 25, 50, 75, 100, 200} mea-
surement shots using Algorithm 1 under T = 50 train-
ing iterations, and the optimal model is chosen using
N2 = {2, 3, 5, 10, 15, 20, 40, 60} validation data points for
the respective value of N1. Finally, the explicit risk is
estimated with 500 testing data points and we averaged
the explicit risk over 5 random instances of training and
validation datasets.

The results shown in Figure 4 (a) agreed with our the-
oretical prediction in Figure 3, validating the asymmet-
rical effects of N1 and Ns as described in Corollary 1.
In particular, it shows the decreasing trend of explicit
risk with the increase of N1 while keeping Ns = 1. This
observation is further validated by Figure 4 (b), where
the exact function can be learned when the model is pre-
sented with sufficiently large training data points with
labels estimated using one measurement repetition, i.e.,
N1 = 2.4 × 104 and Ns = 1. The three solid curves in
Figure 4 (b) are the mean predictors obtained using train-
ing datasets of size N1 = {40, 800, 24000} and validation
datasets of size N2 = {10, 200, 600} respectively. Each of
these mean predictors is averaged over 5 different train-
ing instances and the shaded regions are the standard
deviations of the predictions. As expected, increasing
N1 reduces the standard deviations of the predictors and
improves the mean predictions.

C. Shot-noise dependent bias-variance trade-off

As discussed in Section IIID, training models with
different finite-size training datasets will yield different
trained models. This phenomenon is observed in Fig-
ure 4 (c) where 20 distinct trained models from H10, i.e.,
dashed-dotted lines of different colours, each trained with
different training datasets of size 40 are different across

Ns = 1, 10, 100. In addition, the reducing fluctuations of
the trained models with increasing Ns demonstrated the
Ns-dependent relationship between these trained mod-
els. As N1 is sufficiently large, the prediction accuracy
can be improved by increasing Ns and this is reflected in
Figure 4 (c) where the mean predictor is approaching the
exact function as Ns increases. These two observations
can otherwise be captured by computing two statistical
quantities, the squared bias

Ex

[
Bias2S

]
:= Ex

[
(ES [hS(x)]− f(x))

2
]

(55)

and the variance

Ex [VarS ] := Ex,S

[
(ES [hS(x)]− hS(x))

2
]
. (56)

In particular, we compute their empirical versions using
the trained models as per Figure 4 (c) using 500 testing
data points. The computed values are plotted in Fig-
ure 4 (d) at d = 10, i.e., the points in the purple dotted
box. As expected the bias and variance reduce when Ns

increases.
These exact settings and procedures as per Figure 4 (c)

are repeated to obtain trained models from Hd for d =
{1, 2, 3, 4, 5, 6, 7, 8, 9}, and these models are then used
to compute their respective bias and variance. Plotting
their bias and variance yields the bias-variance trade-off
curve, as shown in Figure 4 (d). Across Ns = 1, 10, 100,
the bias (variance) consistently decreases (increases) with
increasing d. This observation is consistent with the bias-
variance trade-off concept, where less complex models (in
our case, Hd with lower d) will have higher bias but with
lower variance. In contrast, the highly complicated mod-
els will have lower bias but with higher variance. The
former type of model tends to underfit the training data
while the latter is more likely to overfit the training data.
In addition, Figure 4 (d) illustrates the shot-noise depen-
dent bias-variance trade-off as described in Section IIID:
Increase Ns will reduce the bias and variance of the mod-
els.

Using the same settings as per Figure 4 (d) but a
different training procedure, we extract the bias and
variance of the hypothesis without the link function
u, i.e., Gd. Specifically, there is an exact analyti-
cal solution if we solve Equation (50) using kernel
ridge regression and we use the validation dataset to
choose the optimal regularization strength out of C =
{0.006, 0.015, 0.03, 0.0625, 0.125, 0.25, 0.5, 1.0, 2.0, 5.0, 8.0,
16.0, 32.0, 64.0, 128.0, 256, 512, 1024}. Then, their bias
and variance are compared against the hypothesis
equipped with the link function in Figure 4 (e) and these
numerical results are in agreement with the theoretical
analysis in Section IVB. That is, the variance of Gd is
significantly higher than their counterpart when Ns is
low. High shot noise implies that the estimated labels
would be very different from their exact values and a
more expressive model class like Gd will have a higher
tendency to overfit the shot noise, lending to a higher
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FIG. 5. The trade-off between N1 and Ns is considered
under a fixed total measurement budget of Ntot = 600 for
γ = {0, 1, 2, 3, 4, 5} and Ns = {1, 2, 3, . . . , 24, 25}. When N1

and Ns are treated equally, i.e., γ = 0, the optimal pair of
N1 and Ns is given by (N∗

1 , N
∗
s ) = (600, 1). As γ increases,

more measurement shots are required, hence smaller N1, to
achieve better model performance. However, there will be a
threshold beyond which the performance of models worsens.

variance. Increasing Ns reduces the shot noise but the
finite data sampling noise remains. This explains the
reducing but non-vanishing variance for both Hd and
Gd when Ns increases as well as the success of current
learning protocol using Gd [8, 10, 11]. Interestingly, the
model’s bias with the link function matches well with
the one without. In summary, the link function helps
suppress the shot noise-induced variance by restricting
the expressivity of the hypothesis class.

D. Trade-off between N1 and Ns

Finally, we numerically investigate the trade-off be-
tweenN1 andNs under a fixed total measurement budget
of Ntot. Recall that the relationship between Ntot, N1,
and Ns is given by Ntot = (N1 + N2)(Ns + γ), where
γ is the penalty cost and N2 is the size of validation
dataset. The inclusion of N2 captures the resource con-
straint for choosing the optimal time step T ∗. Here, we
let Ntot = 600, γ = {0, 1, 2, 3, 4, 5}, and the ratio of N1 to
N2 be 8:2. Furthermore, we set Ns = {1, 2, 3, . . . , 24, 25}
giving different combinations of N1 and N2. Repeating
the similar procedures as per Figure 4 (a) over 60 ran-
dom instances of training and validation datasets for the
above-mentioned settings yields Figure 5. As predicted
by Corollary 2, for a fixed Ntot and when γ = 0, the
performance of classical machines can be enhanced by re-
ducing Ns, and the optimality is achieved when Ns = 1.
On the other hand, the optimal pair of N1 and Ns de-
pends on the penalty cost when γ > 0; the larger the
γ, the higher the Ns required to achieve optimal model
performance.

VI. DISCUSSION

Finite measurement or shot noise is an intrinsic quan-
tum phenomenon. Such noise is always present in the
estimation of quantum models; hence, classical machines
will unavoidably encounter shot noise when learning
quantum models. Therefore, it is crucial to understand
whether shot noise could increase the difficulty for clas-
sical machines to learn quantum models, or if it is just
a statistical feature that can be well-handled by classical
models.
By formulating parameterized quantum models as

probabilistic concepts, we show that classical machines
can learn quantum models with efficient classical repre-
sentation in the presence of shot noise. Said otherwise,
the fundamental hardness of learning quantum models
depends on the existence of efficient classical representa-
tion, while the impact of shot noise is only prominent
when there is an insufficient number of training data
points. When sufficient training data points are pro-
vided, classical learning of quantum models is possible
even when the labels are estimated with limited mea-
surement shots. This asymmetrical effect of the number
of training data and measurement repetitions arises from
the differences in information gained when sampling each
component. That is, one effectively samples across vari-
ous labels when sampling across the training points but
increasing the resolution of the labels does not provide
extra information on other data points.
Each quantum measurement, be it on a fixed or dif-

ferent parameter setting, counts as a query to quantum
models. While unlimited queries to quantum models are
desired, our limited time and monetary resources force us
to wisely distribute our budget to maximize the informa-
tion extracted from quantum models. That is, one has to
choose to train the classical machines with datasets con-
sisting of either more inputs with noisier labels or fewer
inputs with cleaner labels. If sampling across parameter
settings does not incur extra cost compared to sampling
quantum models with the same parameter setting, then
the classical machine would learn better with datasets
consisting of more inputs but with the noisiest labels.
Otherwise, the optimal budget partition would depend
on the cost differences between measurements with fixed
and different parameter settings.
While the hardness of learning quantum models clas-

sically is not dictated by the shot noise, it has an im-
pact on the actual training of classical machines. For a
given set of training data points {xi}N1

i=1, different label
sampling instances will yield different training datasets,
i.e., S = (xi, ȳi)

N1
i=1 or S ′ = (xi, ȳ

′
i)

N1
i=1. Each dataset

will produce an associated trained model. We capture
this model’s sensitivity to variation of labels through the
bias-variance-noise decomposition and show that the link
function can suppress this undesired sensitivity by re-
stricting the size of the hypothesis class. Finally, we use
our framework for the classical surrogation of parameter-
ized quantum circuit models, and our theoretical analysis
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correctly predicts the behaviours of classical surrogates
in the presence of shot noise.

Viewed from other angles, our work provides a frame-
work to study the impact of classical approximation and
shot noise on learning quantum models classically. Fu-
ture works could focus on searching for good classical
approximations, and our framework could be directly
adapted to handle shot noise. An interesting direction is
to combine our framework with the analysis in Ref. [38] to
investigate the classical learnability of the parameterized
quantum circuit models that are free of barren plateaus.
This will provide an alternative perspective on the re-
lationship between classical simulability and learnability
of parameterized quantum models [39]. Shallow param-
eterized quantum circuits usually admit efficient classi-
cal representation, yet they might experience exponential
concentration if observables are not chosen carefully [40].
This setting is suitable to push the limits of our frame-
work to check if classical machines can still learn such
models under the influence of exponential concentration.

Finally, the core of our framework is the assumption

that the parameterized quantum models represent the
conditional unbiased expectation of their unbiased esti-
mators. However, estimators might not be unbiased af-
ter some post-processing operations. An example of such
post-processing operations is quantum error mitigation.
It will be interesting to investigate the role of shot noise
in the biased regime.
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Appendix A: Sampling and estimation methods on PQMs

1. Direct sampling-based estimation

The most straightforward method is to generate estimations by directly conducting measurements on the target

observable. Plugging in the eigendecomposition of the observable O, i.e., O =
∑K

k=1 λ
(k)
∣∣λ(k)

〉 〈
λ(k)

∣∣ in f(x) =
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tr(ρ(x)O) yields

f(x) =
K∑

k=1

λ(k)
〈
λ(k)

∣∣∣ ρ(x) ∣∣∣λ(k)
〉
, (A1)

where 0 ≤
〈
λ(k)

∣∣ ρ(x) ∣∣λ(k)
〉
≤ 1 ∀k, λ(k) ∈ R, and

∑K
k=1

〈
λ(k)

∣∣ ρ(x) ∣∣λ(k)
〉
= 1. The random measurement processes

of ρ(x) in the eigenbasis
∣∣λ(k)

〉
can be modelled as sampling of eigenvalue λ(k) from the associated probability

distribution, i.e., λ ∼ px(λ) with λ ∈ Λ = {λ(k)}Kk=1 and px(λ) = ⟨λ| ρ(x) |λ⟩.
Given Ns i.i.d. measurement outcomes {λi}Ns

i=1, one could estimate f(x) by the empirical mean

ȳD =
1

Ns

Ns∑
i=1

λi. (A2)

where we have implictly assumed the dependence of ȳD on x, i.e., ȳD ≡ ȳD(x). The finite-measurement-outcome
mean ȳD is an unbiased estimator of f(x)

f(x) = EȳD
[ȳD|x] (A3)

with variance σ2
ȳD|x = σ2

λ|x/Ns.

It is however generally hard to measure ρ(x) in the eigenbasis of the observable. In typical scenarios, one would

normally consider a linear combination of M Pauli observables Pi, i.e., O =
∑M

i=1 aiPi with ai ∈ R, and the eigen-
basis of such an observable is non-trivial to find. To estimate the original observable expectation value, one will
typically measure the expectation value of ρ(x) against each Pauli observable and then linearly combine them with
the associated weights ai

tr(ρ(x)O) =
M∑
i=1

ai tr(ρ(x)Pi). (A4)

While each Pauli estimator is unbiased for the associated Pauli observable, the joint estimators of tr(ρ(x)O) con-
structed by summing these Pauli estimators need not be unbiased.

2. Shadow-based estimation

Alternatively, estimating measurement results using classical shadows [41] also introduces structural noise to our
framework, allowing training based on random measurements as opposed to direct measurements, which may be much
more costly in practice.

Recall that in the classical shadows protocol, to estimate properties of a quantum state ρ, one first evolves the quan-
tum state using a unitary U sampled from a tomographically complete unitary ensemble U and performs measurements

on the computational basis |b̂⟩ ∈ {0, 1}n and the bit-string b is observed with probability Pr
[
b̂ = b

]
= ⟨b|UρU†|b⟩.

From the measurement outcome, one can construct a classical snapshot ρ̂ = M−1
U (U†|b̂⟩⟨b̂|U) where we apply an in-

verted quantum channel M−1
U determined by the unitary ensemble U . This classical snapshot is an unbiased estimator

for the density matrix, i.e., ρ = EU,|b̂⟩[ρ̂].
The classical snapshot serves as a good estimator for the parameterized quantum state when applied to a suitable

set of Hermitian observables {H1, H2, · · · , HM}. For example, the classical snapshots can be used to estimate the

function f(x) = tr(ρ(x)O) with O =
∑M

i=1 aiPi, i.e., ȳCS = tr(ρ̄(x)O) where ρ̄ = 1
Ns

∑Ns

i=1 ρ̂i is the averaged sum of

Ns classical snapshots. It is straightforward to show that such an estimator is an unbiased estimator of f(x)

f(x) = EȳCS
[ȳCS |x] . (A5)

Other unbiased shadow estimation techniques based on random sampling such as operator shadows [42] can also be
used to produce the unbiased estimators for the quantum models.
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Appendix B: Details on the learning algorithm

1. Intuitive understanding on the working principle of Algorithm 1

Algorithm 1 works similarly to gradient descent algorithm. Take the following empirical risk

R̂ =
1

2N1

N1∑
j=1

|yj − u (⟨w,ϕ(xj)⟩)|2 (B1)

We can then upper bound the gradient as follows:

∂R̂

∂w
≤ L

N1

N1∑
j=1

(u(⟨w,ϕ(xj)⟩)− yj)ϕ(xj) (B2)

By introducing kernelization to linear models, one can set w =
∑N1

i=1 αiϕ(xi). Setting the upper bound as the
gradient step with a learning rate of 1

L2 , we see that in each step, the value of αj has an update of

∆αj =
u(⟨w,ϕ(xj)⟩)− yj

LN1
=

u(⟨w,ϕ(xj)⟩)− yj
LN1

=
u
(∑N1

i=1 αik(xi,xj)
)
− yj

LN1
, (B3)

giving us the update in Algorithm 1.
Due to initialization of parameters to zero, which is akin to interior point methods, the algorithm provides implicit

norm regularization of the parameters. This property, in addition to the limitation of gradient steps taken, provides
the theoretical guarantees as shown in Theorem 1, which we show in the following section.

2. Proof of Theorem 1

We are given the output range Y = [−∆,∆]. Let Γ̄ := 1
N1

∑N1

i=1(ȳi−u(⟨w,ϕ(xi)⟩+ξ(xi)))ϕ(xi), Γ̄
t := 1

N1

∑N1

i=1(ȳi−
u(⟨wt,ϕ(xi)⟩))ϕ(xi) and χ := 1

N1

∑N1

i=1 ξ(xi)
2. We apply the Lemma 11 from Ref. [31] to the empirical mean ȳ.

Lemma B.1. At iterative t in Algorithm 1, suppose ∥wt −w∥ ≤ B for B > 1, then if ∥Γ̄∥ ≤ ϵ4 < 1, then

∥wt −w∥2 − ∥wt+1 −w∥2 ≥ λ

((
2

L
− λ

)
R̂(ht)− 2∆

√
χ− 2Bϵ4 − λϵ24 − 2∆λϵ4

)
, (B4)

where λ is the regularization parameter.

Using Lemma B.1 with λ = 1/L, we have

∥wt −w∥2 − ∥wt+1 −w∥2 ≥ 1

L

(
R̂(ht)

L
− 2∆

√
χ− 2Bϵ4 −

ϵ24
L

− 2∆ϵ4
L

)
. (B5)

For each iteration t of Algorithm 1, one of the following two cases needs to be satisfied

Case 1: ∥wt −w∥2 − ∥wt+1 −w∥2 >
Bϵ4
L

(B6)

Case 2: ∥wt −w∥2 − ∥wt+1 −w∥2 ≤ Bϵ4
L

. (B7)

Let t∗ be the first iteration where Case 2 holds. We show that such an iteration exists. Assume the contradictory,
that is, Case 2 fails for each iteration. Since ∥w0 −w∥22 = ∥0−w∥22 ≤ B2 by assumption, however,

B2 ≥ ∥w0 −w∥22 ≥ ∥w0 −w∥22 − ∥wk −w∥22 (B8)

=

k−1∑
t=0

(
∥wt −w∥22 − ∥wt+1 −w∥22

)
≥ kBϵ4

L
, (B9)
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for k iterations. Hence, in at most T ≥ BL
ϵ4

iterations Case 1 will be violated and Case 2 will have to be true.

Combining Equation (B5) and Case 2 yield

R̂(ht) ≤ 2L∆
√
χ+ 3BLϵ4 + ϵ24 + 2∆ϵ4 (B10)

What remains to be done is to bound χ and to obtain Ns in terms of ϵ4. Similar to Ref. [31], we could bound χ using
Hoeffding’s inequality

√
χ ≤

√
ϵ1 +O

M
4

√
log(1/δ)

N1

 , (B11)

and therefore by observing that B ∝ ∆, we have

R̂(ht) ≤ O

L∆
√
ϵ1 + LM

4

√
log(1/δ)

N1
+BLϵ4

 . (B12)

By definition, we have that (ȳi − u(⟨w,ϕ(xi)⟩ + ξ(xi)))ϕ(xi) are zero mean i.i.d. random variables with bounded
norm, so we can use the following vector Bernstein inequality to bound the norm of Γ̄.

Lemma B.2 (Vector Bernstein inequality (Lemma 18 from [43])). Let x1, . . . ,xN be independent zero-mean vector-
valued random variables with common dimension d and they are uniformly bounded and also the variance is bounded
above E[∥xi∥2] ≤ σ2. Let

z =
1

N

∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

xi

∣∣∣∣∣
∣∣∣∣∣
2

. (B13)

Then we have for 0 ≤ ϵ ≤ σ2/µ

P [∥z∥ ≥ ϵ] ≤ exp

(
−Nϵ2

8σ2
+

1

4

)
. (B14)

Before using the vector Bernstein inequality, we need to compute the variance of ∥(ȳ − Eȳ[ȳ|x])ϕ(x)∥ where
Eȳ[ȳ|x] = u(⟨w,ϕ(x)⟩+ξ(x)), i.e., ED̄[∥(ȳ−Eȳ[ȳ|x])ϕ(x)∥2] as ED̄[∥(ȳ−Eȳ[ȳ|x])ϕ(x)∥] = 0 by definition. Therefore,

ED̄
[
∥(ȳ − Eȳ[ȳ|x])ϕ(x)∥2

]
= ED̄

[
(ȳ − Eȳ[ȳ|x])2∥ϕ(x)∥2

]
(B15)

≤ ED̄
[
(ȳ − Eȳ[ȳ|x])2

]
(B16)

= ED̄
[
ȳ2 − 2ȳEȳ[ȳ|x] + Eȳ[ȳ|x]2

]
(B17)

= ExEȳ|x
[
ȳ2 − 2ȳEȳ[ȳ|x] + Eȳ[ȳ|x]2

]
(B18)

= Ex

[
Eȳ[ȳ

2|x]− Eȳ[ȳ|x]2
]

(B19)

= Ex

[
σ2
ȳ|x

]
(B20)

=
Ex

[
σ2
y|x

]
Ns

(B21)

We can therefore bound ∥Γ̄∥ by letting σ =
Ex[σ2

y|x]
Ns

P (∥Γ̄∥ ≤ ϵ4) ≥ 1− exp

− N1Nsϵ
2
4

8Ex

[
σ2
y|x

] + 1

4

 . (B22)

For a probability of 1− δ, number of training samples N1, and number of measurement repetitions Ns, we can achieve
∥Γ̄∥ ≤ ϵ4 with

ϵ4 =

√√√√8Ex

[
σ2
y|x

]
N1Ns

(
log

(
1

δ

)
+

1

4

)
. (B23)

To bound R(ht∗) with R̂(ht∗), we require the following results:

515



20

Theorem B.1 (Theorem 8, [44]; Formulation of Theorem 21, [31]). Let L : Y ′ × Y → R+ be a loss function upper
bounded by b > 0 and such that for any fixed y, y′ → L(y′, y) is L-Lipschitz for some L > 0. Given function class
F ⊂ (Y ′)X , for any f : X → Y ′ ∈ F , and for any sample S from distribution D of size N ,∣∣∣∣∣∣ED [L(f(x), y)]− 1

N

∑
(x,y)∈S

L(f(x), y)

∣∣∣∣∣∣ ≤ 4LRN (F) + 2b

√
log 2/δ

2N
, (B24)

where RN (H) is the expected value of the empirical Rademacher complexity of the function class F over all samples
of size N .

Plugging the generalization, we have the following result for all hypotheses h ∈ H.

Rexpl(h) ≤ R̂(h) + 8∆RN1(H) + 2∆2

√
log
(
2
δ

)
2N1

. (B25)

Next, to compute the empirical Rademacher complexity of H, we use the following results:

Theorem B.2 (Lemma 22, [44] or Theorem 1, [45]; Formulation of Theorem 22, [31]). Let X be a subset of an inner
product space such that for all x ∈ X , ∥x∥2 ≤ X, and let W = {x → ⟨w,x⟩, ∥w∥2 ≤ W}. Then it holds that

RN (W) ≤ XW√
N

, (B26)

Lemma B.3 (Talagrand’s lemma, Corollary 3.17, [46]; Formulation of Lemma 5.7, [47]). Let Φ : R → R be a
L-Lipschitz function. Then for any hypothesis set F of real-valued functions, the following holds:

RN (Ψ ◦ F) ≤ LRN (F), (B27)

Noting that our hypothesis class H in question is a linear class with a L-Lipschitz function applied to it, with the
constraints ∥w∥2 ≤ B and ∥ϕ(x)∥2 ≤ 1 combining the above two results, we get

RN1(H) ≤ BL√
N1

, (B28)

Finally, we can make use of Rademacher complexity to bound R(ht)

Rexpl(h
t∗) ≤ R̂(ht∗) +O

BL∆

√
1

N1
+∆2

√
log(1/δ)

N1

 (B29)

= O

L∆
√
ϵ1 + L∆M

4

√
log(1/δ)

N1
+BL∆

√
1

N1
+BL

√
σ̄

N1Ns

(
log

(
1

δ

))
+∆2

√
log(1/δ)

N1

 (B30)

where σ̄ = Ex

[
σ2
y|x

]
. The last step is to show that we can indeed find a hypothesis satisfying the above guarantee.

Using the Hoeffding inequality and union bound, one could show that N2 ≥ O
(
N1∆

2 log
(
T
δ2

))
validation data points

suffice to choose the optimal hypothesis ht∗ at time step t∗ that satisfies Equation (B30).

Appendix C: Bias-variance-noise decomposition

For a given training dataset S = (xi, ȳi)
N1
i=1, one would obtain an associated trained model hS(x) by optimizing

the empirical risk R̂(h) using some optimization methods such as the gradient descent algorithm. Further, different
training datasets S ′ would yield different trained models hS′(x), each associated with explicit risk Rexpl(hS) and
Rexpl(hS′), respectively. This observation begs the question of how these trained models are related to each other and
the target concept c(x) = Eȳ[ȳ|x].

To address the above-mentioned questions, we introduce a machine learning concept known as the bias-variance
trade-off. The bias of machine learning models informs their consistent errors and it is defined as

BiasS := ES [hS(x)]− f(x). (C1)
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Since f(x) is independent of S, one could express the bias as BiasS = ES [hS(x)− f(x)]. Low bias suggests that on
average the trained models hS(x) are close to the target function, and typically machine learning models with larger
model class sizes will have lower bias. Yet, models with low bias need not be optimal as they tend to be more sensitive
to variations in training data; such models are said to have high variance where the variance of the model is defined
as

VarS := ES

[
(ES [hS(x)]− hS(x))

2
]
. (C2)

It should be clear from the definition that the bias and variance are dependent on the complexity of the hypothesis
class, the number of training data points N1 and the number of random labels Ns.

The above-mentioned bias-variance trade-off can be studied by analysing the average behaviour of the trained
models under the constraints of finite training data points and labels, which we capture by taking the expectation
value over all possible training data sets S with the same N1 and Ns, which we denote ES|N1,Ns

[Rimpl(hS)] where

Rimpl(hS) = ED̄[(hS(x)− ȳ)2] is the implicit risk of hS(·) as defined in Equation (8).
This averaged risk quantifies the overall performance of the hypothesis class H under all realization of training

datasets of size N1, with empirical means estimated using Ns random labels. Furthermore, Rimpl(h) = Rexpl(h)+ σ̄NS

implies

ES|N1,Ns
[Rimpl(hS)] = ES|N1,Ns

[Rexpl(hS)] + σ̄NS
, (C3)

where ES|N1,Ns
[Rexpl(hS)] is the averaged explicit risk and Rimpl(Eȳ[ȳ|x]) := σ̄NS

= Ex

[
σ2
ȳ|x

]
= 1

Ns
Ex

[
σ2
y|x

]
is

the irreducible error that lower bounds the implicit risk on unseen sample. Note that in the asymptotic regime
(N1 → ∞), the variance goes to 0 as the finite data sampling noise diminishes, and one would consistently obtain
the optimal model in H that achieves the optimal explicit risk Rexpl(h). In addition, the strength of the irreducible
error is controllable by the number of random samples Ns. In particular, σ̄NS

→ 0 as Ns → ∞ and therefore
ES|N1,Ns→∞[Rimpl(hS)] → ES|N1,Ns→∞[Rexpl(hS)].

We can then further decompose the explicit risk averaged over all dataset.

ES [Rexpl(hS)] = Ex,S

[
(hS(x)− c(x))

2
]

(C4)

= Ex,S

[
(hS(x)− ES [hS(x)] + ES [hS(x)]− c(x))

2
]

(C5)

= Ex

[
(ES [hS(x)]− c(x))

2
]
+ Ex,S

[
(ES [hS(x)]− hS(x)])

2
]

(C6)

= Ex

[
Bias2S

]
+ Ex [VarS ] . (C7)

In summary, we have

ES|N1,Ns
[Rexpl(hS)] = Ex

[
Bias2S

]
+ Ex [VarS ] , and (C8)

ES|N1,Ns
[Rimpl(hS)] = Ex

[
Bias2S

]
+ Ex [VarS ] + σ̄Ns

. (C9)

Appendix D: Random Fourier feature models

1. Classical approximation of PQC functions

Let FU,O and ϕF (x) be the PQC concept class and feature map as defined in Equation (21) and Equation (28),
respectively. In addition, let kF (x,x

′) = ⟨ϕF (x),ϕF (x
′)⟩ be the kernel of ϕF (x).

Our goal of learning PQCs corresponds to taking FU,O as our concept class. It is a still-unresolved question which
PQCs provably give rise to function families that can or cannot be well approximated by kernel-based function families,
but it is known that PQCs exist which cannot. Nonetheless, we offer a generic PQC construction whose functions
are guaranteed to be well-approximated by a kernel-based hypothesis family. The recipe we propose does not exactly
match the typical PQCs used by practitioners, but it is generic enough that it may become useful in the future.
The construction relies on the Linear Combination of Unitaries (LCU) framework [48] and resembles constructions
proposed in e.g. Refs. [49, 50].
Let kF be a kernel that can be well-approximated as an Embedding Quantum Kernel (EQK) [49] on n qubits,

meaning there exists a data-dependent unitary gate U(x) such that

sup
x,x′∈X

∣∣kF (x,x′)− |⟨0|U†(x)U(x′)|0⟩|2
∣∣2 ≤ ϵ (D1)
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for almost every x,x′ ∈ X . Then, given N ∈ N, a vector of real numbers α = (αi)
N
i=1, and a set of inputs x1, . . . ,xN ,

consider a PQC over n + ⌈log(N)⌉ qubits. The circuit starts on the all-0 state, and the unitary U(x) is applied on
the first n-qubits. In parallel, we perform amplitude encoding of α on the other ⌈log(N)⌉ qubits of the auxiliary
register. Next, we define a controlled operation CUi which, conditional on the auxiliary register being in state |i⟩ for
i ∈ {1, . . . , N} applies U†(xi) on the main register. It follows that these controlled operations commute [CUi, CUj ] = 0.

We need only apply all such controlled gates in sequence, then:
∏N

i=1 CUi, and measure the probability of the first
n-qubits being in the all-0 state at the end (together with a diagonal observable on the auxiliary register that takes
care of the negative signs in α). For notational ease, we do not explicitly write the extra observable on the auxiliary
register, and we write only the projector on the all-0 state. This means that the functions can take negative values
even though they are defined as the absolute square of a complex number. This way, given α and x,x1, . . . ,xN we
have defined a PQC in the form of a unitary W (α,x, (xi)i), and produces as output a function in the kernel-based
hypothesis family:

|⟨0|W (α,x, (xi)i)|0⟩|2 =
N∑
i=1

αi|⟨0|U†(x)U(x′)|0⟩|2. (D2)

From the ϵ-approximation of the initial kernel kF via the EQK defined by U , it follows that each function of the form∑N
i=1 αik(x,xi) can be approximated by a function in FW,|0⟩⟨0|, by taking the same α vector and the same set of

inputs (xi)i. Without loss of generality, we assume the parameter vector α has bounded norm ∥α∥22 ≤ B:

sup
x∈X

∣∣∣∣∣
(

N∑
i=1

αikF (x,xi)

)
− |⟨0|W (α,x, (xi)i)|0⟩|2

∣∣∣∣∣
2

(D3)

= sup
x∈X

∣∣∣∣∣
N∑
i=1

αi

(
kF (x,xi)− |⟨0|U†(x)U(xi)|0⟩|2

)∣∣∣∣∣
2

(D4)

≤∥α∥2
N∑
i=1

sup
x∈X

∣∣kF (x,xi)− |⟨0|U†(x)U(xi)|0⟩|2
∣∣2 (D5)

≤B2ϵ (D6)

Altogether, this recipe allows us to construct a PQC whose associated function family is the same as a given kernel-
based function family. For Algorithm 1 to succeed as a classical learner of this function family, then, we need only be
able to evaluate the kernel kF efficiently classically. It is known that the complexity of evaluating the trigonometric
kernels that result from quantum embeddings is upper-bounded by the cardinality of the frequency spectrum Ω̃ arising
from the encoding strategy.

2. Approximating PQCs with random Fourier features

If the PQC U(x,θ) is such that its corresponding feature map is of polynomial dimension |Ω̃| ∈ O(poly(m)), then we
know we can classically express the corresponding function exactly: ⟨0|U†(x,θ)OU(x,θ) |0⟩ = ⟨wF ,ϕF (x)⟩, where
the real-valued vector wF is efficiently storable in classical memory. Refs. [8, 51] offer a discussion on what encoding
strategies connected to families of PQCs will result in Fourier spectra of polynomial size. It is nevertheless known
that many natural encoding strategies result in an exponentially large Fourier spectrum, where we cannot rely on
an exact realization of the PQC function as a classical linear map. Some of these cases have been recently analyzed
in Refs. [26, 27] under the lens of Random Fourier Features (RFF) [33]. The main idea in RFF is to efficiently
approximate the high-dimensional inner product ⟨wF ,ϕF (x)⟩ by sampling a few of its dominant terms.
For instance, consider an encoding strategy which gives rise to an exponentially large Fourier spectrum |Ω| ∝ exp(m).

Then, the inner product

⟨w,ϕF (x)⟩ =
2|Ω|−1∑
j=1

wjϕF,j(x) (D7)

cannot be classically evaluated in general due to its containing many terms. Now consider a specific PQC U(x,θ) with
this encoding strategy, but which is structured enough that we know that some entries of the weight vector are more
dominant than others, in that they contribute more to the sum. One way to capture this would be by considering a
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probability distribution over the Fourier spectrum P (Ω), where the probability associated with a specific frequency is
proportional to the magnitude squared of its coefficients p(ω) = a2ω + b2ω. Without loss of generality, we assume the
coefficients are alreadyproperly normalized. Then, what the RFF algorithm prescribes we do is sample a number D of
frequencies from such a distribution ω̃ ∼ PD, and then consider the classical efficient feature map ϕRFF(x) consisting
of only those frequencies:

ϕRFF(x) =
1√
D


cos⟨ω̃1,x⟩
sin⟨ω̃1,x⟩

...
cos⟨ω̃D,x⟩
sin⟨ω̃D,x⟩

 . (D8)

The sampled frequencies ω̃ are all in the original Fourier spectrum ω̃i ∈ Ω, so ϕRFF(x) is just an appropriately
renormalized subvector of the full ϕF (x). This smaller feature map gives rise to the hypothesis family:

HRFF = {u(⟨w,ϕRFF(x)⟩) |w ∈ RD}. (D9)

Then, if the PQC function is such that it can in principle be approximated as a linear map of rank D [52], it follows
from Refs. [25, 26, 33] that the RFF hypothesis family should contain a good approximation to the function. In the
context of this work, this means that Algorithm 1 should be able to learn the initial PQC function by using HRFF as
a hypothesis class.

The remaining question is, again, how to specify the right HRFF for a given PQC of interest, modelled by the
function family FU,O. The ultimate general-case answer is not fully resolved [26], but we provide a recipe to, given
an RFF-approximable EQK k, construct a corresponding PQC.

Let k be a kernel that can be approximated as the inner product of a feature map ϕ of polynomial size (in particular,
this could be the randomized feature map produced by the RFF algorithm):

sup
x,x′∈X

|k(x,x′)− ⟨ϕ(x),ϕ(x′)⟩|2 ≤ ϵ, (D10)

for almost every x,x′ ∈ X . Let further U(x) be a quantum embedding that implements the feature map ϕ(x) (w.l.o.g.
we take ϕ to be properly normalized):

sup
x,x′∈X

∣∣⟨0|U†(x)U(x′)|0⟩|2 − ⟨ϕ(x),ϕ(x′)⟩
∣∣2 ≤ ϵ′. (D11)

Then the same LCU construction we used before also results in a PQC whose function family approximates the
function family of the RFF-based kernel, which in turn approximates the function family of the original kernel. With
triangular inequality, it follows that this PQC construction approximates the original kernel-based function family.
Since Algorithm 1 can provably learn the kernel-based function family, it follows it can also learn this PQC family.

Appendix E: Proof of Lemma 1

To discuss the explicit risk of the ERM given the hypothesis class H in Equation (45), we use the following result
in statistical learning theory:

Proposition E.1 (Proposition 4.1, [47]). Let D be a distribution over X ×Y. Let L : Y ′×Y → R+ be a loss function.
Considering a hypothesis class F that maps X to Y ′, For any sample S from distribution D, for hypotheses f ∈ F ,
the following holds:

ED[L(fERM
S (x), y)]− inf

f∈F
ED[L(f(x), y)] ≤ 2 sup

f∈F

∣∣∣∣∣∣ED[L(f(x), y)]−
1

|S|
∑

(x,y)∈S

L(f(x), y)

∣∣∣∣∣∣ . (E1)

Considering the implicit loss function ℓimpl for the loss function L in the above proposition, we get

Rimpl(h
ERM
S )− inf

h∈H
Rimpl(h) ≤ 2 sup

h∈H
|Rimpl(h)− R̂(h)|. (E2)
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Noting that Rimpl(h) = Rexpl(h) +Rimpl(Eȳ[ȳ|x]), we can see that

Rexpl(h
ERM
S )− inf

h∈H
Rexpl(h) ≤ 2 sup

h∈H
|Rimpl(h)− R̂(h)|. (E3)

By definition, we know that

inf
h∈H

Rexpl(h) = inf
h∈H

ED̄[(h(x)− c(x))2] ≤ ED̄[(⟨w,ϕ(x)⟩ − ⟨w,ϕ(x)⟩+ ξ(x))2] = ED̄[ξ(x)
2] ≤ ϵ1. (E4)

Hence we see that

Rexpl(h
ERM
S ) ≤ ϵ1 + 2 sup

h∈H
|Rimpl(h)− R̂(h)|. (E5)

We now find error bounds on the right-hand side of the previous proposition. To do so, we require the following
results obtainable by combining Theorem 8 and Lemma 22 from [44]:

Theorem E.1 (Theorem 11.11, [47]). Given distribution D over X ×Y, let k : X ×X → R be a positive semidefinite
kernel, Φ : X → H be the feature map associated with kernel k, and hypothesis class H = {x → ⟨w,ϕ(x)⟩, ∥w∥H ≤ Λ}.
Assume there exists r,M > 0 such that k(x,x) ≤ r2 and for all hypotheses h : X → Y ′ ∈ H and all (x, y) ∈ D,
|h(x)− y| ≤ M . Then for any sample S from D of size N , the generalization bound is as follows:∣∣∣∣∣∣ E

(x,y)∼D

[
|h(x)− y|2

]
− 1

N

∑
(x,y)∈S

|h(x)− y|2
∣∣∣∣∣∣ ∈ O

MΛr√
N

+M2

√
log 1

δ

N

 . (E6)

Plugging in our error losses and range of H, we note that Λ,M ∈ O(D) and r = 1. We then obtain the following
generalization bound for H.

|Rimpl(h)− R̂(h)| ∈ O

D2

√
log 1

δ

N1

 , (E7)

Note that this result yields a better result than the Rademacher-based generalization bound proposed by Caro et al.
[51] by a logarithmic factor if we use the entire Fourier spectrum instead of RFF. We can then write the explicit risk
for the ERM as follows:

Rexpl(h
ERM
S ) ∈ O

ϵ1 +D2

√
log 1

δ

N1

 . (E8)
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Abstract. A key milestone of quantum machine learning (QML) is to demonstrate its advantage over
classical methods in accelerating supervised learning with classical data. Previously, QML’s proven advan-
tages were limited to learning tasks constructed based on Shor’s algorithms. We here construct supervised
learning tasks with provable advantage based on general quantum computational advantages beyond Shor’s
algorithms. We construct a polynomial-time QML algorithm for solving these tasks even though these tasks
have exponentially many candidates of functions to be learned. At the same time, we prove the hardness
of achieving these tasks for any polynomial-time classical method. We also clarify protocols for preparing
classical data of this learning task for its experimental demonstration. These results pave the way to exploit
various quantum advantages in computing functions for demonstrating QML’s advantages.

Keywords: Quantum machine learning, PAC learning, Quantum advantage, Supervised learning

1 Introduction

Machine learning supervised by big data supports our
daily lives in today’s world. Quantum machine learning
(QML) attracts growing attention as an emerging field
of research to further accelerate and scale up the learn-
ing by taking advantage of quantum computation [1, 2].
Due to its importance and potential, QML has gath-
ered substantial attention among the community of re-
cent AQIS conferences [3–5]. Quantum computation is
believed to achieve significant speedup in solving vari-
ous computational problems over conventional classical
computation [6, 7]. The central goal of supervised learn-
ing is, however, not solving the computational problems
themselves but finding and making a correct prediction
on unseen data under the supervision of given sample
data [8–11]. A far-reaching milestone in the field of QML
is to demonstrate the advantage of QML, i.e., an end-to-
end acceleration in accomplishing this goal of learning in
such a way that any possible classical learning method
would never be able to achieve.
However, it has been challenging to realize this mile-

stone due to our limited theoretical understanding of the
learning tasks with the advantage of QML. Representa-
tive QML algorithms such as those in Refs. [12–17] have
theoretically guaranteed upper bounds of their runtime,
and it is indeed hard for existing classical algorithms to
achieve the same learning tasks as these QML algorithms
within a comparable runtime; nevertheless, these facts
are insufficient to provably rule out the possibility of the
potential existence of classical learning methods achiev-
ing the comparable runtime. For example, the quan-
tum algorithm for recommendation systems was initially
claimed to achieve an exponential speedup compared to
the existing classical algorithms at the time [13], but it
turned out in later research that the quantum algorithm
achieves only a polynomial speedup compared to the best

∗hayata.yamasaki@gmail.com
†natsuto.isogai@phys.s.u-tokyo.ac.jp
‡murao@phys.s.u-tokyo.ac.jp

possible classical algorithm due to a breakthrough in de-
signing a quantum-inspired classical algorithm for solving
the same task [18]. Prior to our work, the advantage of
QML based on general types of quantum computational
advantages has only shown for a limited class of learning
problems that can be simply solved by a brute-force algo-
rithm trying each solution candidate one by one [19, 20];
however, in practice, machine learning algorithms never
try all the possible candidates of the functions to be
learned, which is infeasible in many cases. Of interest
here are more difficult yet common learning problems
where the number of candidates is exponential. In this
regime, the advantage of QML in accelerating supervised
learning with classical data has been proven only based
on the quantum computational advantage of Shor’s algo-
rithms [21–23] to solve integer factoring and discrete log-
arithms [19, 20, 24–26]. The existing techniques to prove
the hardness of learning for all possible classical meth-
ods use a cryptographic argument essentially depending
on the specific mathematical structure of discrete loga-
rithms and integer factoring [8, 9, 19, 20, 24–27], which
do not straightforwardly generalize. A fundamental open
question in the theory of QML has been what types
of quantum computational advantages, beyond that of
Shor’s algorithms, lead to learning tasks to demonstrate
the end-to-end acceleration of the learning; to address
this question, novel techniques need to be established to
prove the classical hardness of learning beyond the realm
of Shor’s algorithms.

Also from a practical perspective, toward the ex-
perimental demonstration of the advantages of QML,
Shor’s algorithms are challenging to realize with near-
term quantum technologies [28], confronting as an ob-
stacle to the demonstration. One reason for this practi-
cal challenge is rooted in the fact that Shor’s algorithms
need to compete with the well-established classical algo-
rithms for integer factoring that run only within subex-
ponential time, which is much shorter than exponential
time [29–31]. For this reason, a milestone in realizing
Shor’s algorithms is often set to factorize a relatively
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large integer, such as a 2048-bit integer [28]. On the
other hand, apart from Shor’s algorithms, polynomial-
time quantum algorithms can also solve other types of
computational problems that are potentially harder for
classical algorithms, such as those relevant to topological
data analysis (TDA) [32–36], Pell’s equation [37, 38], and
BQP-complete problems [39–45]. For the classically hard
problems, one could potentially use a much smaller size of
the problem instance, e.g., with much less than 2048-bit
inputs, to demonstrate the quantum computational ad-
vantages. In view of this, the solution to the above open
question on the relation between quantum computational
advantages and the advantage of QML will also consti-
tute a significant step to the practical demonstration as
well as the fundamental understanding of QML.

2 Summary of Main Result

In this work, we address this open question by showing
that quantum advantages in computing functions in gen-
eral lead to the provable end-to-end advantage of QML in
conducting supervised learning with classical data, with-
out specifically depending on Shor’s algorithms. Signifi-
cantly, our results hold for learning problems with expo-
nentially many candidates of the functions to be learned
in terms of the problem size.
To address the above question, we explicitly construct

a family of classification tasks in a conventional set-
ting of supervised learning with classical sample data,
i.e., in a probably approximately correct (PAC) learning
model [8, 9, 46], using a general class of functions that
can be computed efficiently in polynomial time for a large
fraction of inputs by quantum algorithms but not by any
classical algorithm (even under the supervision of data).
In a classification task, for an unknown function c to be
learned (called a concept), one is initially given sample
data of inputs x from a target distribution x ∼ D and
the corresponding outputs c(x) = 0 or c(x) = 1 of binary
labels. Using these samples, the classification task aims
to find and make a correct prediction (called a hypoth-
esis) that should coincide with c(x) for a large fraction
of x ∼ D. We study classification tasks that have a
common structure to those widely appearing in conven-
tional machine learning; in particular, we consider tasks
that can be solved by a commonly used learning method
called feature mapping and linear separation (see Fig. 1
of Technical Manuscript). In this approach, the learning
algorithm first maps an input x to another vector f(x)
and subsequently classifies x in the space of f(x). This
mapping f is known as a feature map, transforming x
in the input space into the corresponding feature f(x) in
the feature space that encapsulates essential information
for the classification. The sets of x satisfying c(x) = 0
and c(x) = 1 are mapped into F0 and F1 of f(x), re-
spectively. The feature map here should be designed so
that F0 and F1 have linear separability, i.e, the property
that a hyperplane in the feature space should be able
to distinguish between F0 and F1 [47]. The goal of the
learning task is to find the hyperplane and use it to make
a correct prediction for x ∼ D.

Our key discovery is that the advantage of QML stems
from the feature mapping that makes the learning feasible
for quantum computation but hard for classical computa-
tion; in our QML framework, we convert the input x into
a bit string representing their feature f(x) by a feature
map f that can be computed efficiently by quantum com-
putation but not by classical computation. The feature
space for these bit strings is represented as a vector space
over a finite field (see Technical Manuscript for details).
Remarkably, for our learning task, we show that f can be
arbitrarily chosen from a general class of functions that
can be, roughly speaking, computed efficiently within a
polynomial time by quantum algorithms (for a large frac-
tion of inputs x ∼ D with a high probability) but not by
classical algorithms (even with a polynomial-size advice
string, e.g., sample data). We call a function in this class
a quantumly advantageous function (see also Technical
Manuscript for the precise definition). In the previous
work on the provable advantage of QML, the choice of
such a feature map was limited to those computed by
Shor’s algorithms, which has been undermining the ap-
plicability of QML. By contrast, our results make it pos-
sible to use arbitrary quantumly advantageous functions
as feature maps in QML to obtain the following theorem.

Theorem 1 (informal, see also Technical Manuscript):
Advantage of QML from general computational advan-
tages. For any quantumly advantageous function f un-
der any target distribution D, we construct a quantum
algorithm that can find and make a correct prediction in
our learning task within a polynomial time; by contrast,
we prove that no polynomial-time classical algorithm can
achieve this.

Construction of polynomial-time QML algorithm.
We construct a polynomial-time quantum algorithm for
solving our learning task using a polynomial amount of
classical sample data. This quantum algorithm is simply
implementable by a variant of the conventional learning
method: feature mapping by quantum computation to
map the input classical data into the corresponding bit
strings representing their features, followed by linear sep-
aration by classical computation to find an appropriate
hyperplane in the feature space to achieve the classifi-
cation. While the feature space of these bit strings is
discrete, our algorithm finds a hyperplane by solving a
system of linear equations using Gaussian elimination.
A technical challenge in constructing our algorithm is
that the learning algorithm does not necessarily find the
true hyperplane of the unknown concept c to be learned
but may output an approximate estimate of the hyper-
plane; nevertheless, our analysis shows that any hyper-
plane learned by our algorithm leads to a correct predic-
tion for a large fraction of x ∼ D with a high probability
to achieve the learning task (see Technical Manuscript
for details).

Provable classical hardness At the same time, un-
der the assumption that no polynomial-time classical al-
gorithm can compute the quantumly advantageous func-
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tion used in our construction (yet, importantly, without
any cryptographic assumption specifically depending on
Shor’s algorithms), we prove that no polynomial-time
classical algorithm can accomplish this learning task.
The feature mapping and the linear separation may also
be applicable to some of the previous works on the ad-
vantage of QML [24], but a more crucial difference arises
from the techniques for proving the classical hardness.
In particular, a feature map constructed in Ref. [24] used
Shor’s algorithms to transform an input into a feature in
a feature space, which was taken as a space of functions
called the reproducing kernel Hilbert space (RKHS) in
the kernel method [10, 11] to show a polynomial-time
quantum learning algorithm. However, the existing tech-
niques for proving the classical hardness of such learn-
ing tasks needed to use a cryptographic argument on the
hardness of solving computational problems depending
on the specific mathematical structure of discrete loga-
rithms and integer factoring [8, 9, 19, 20, 24–27] and do
not straightforwardly generalize. By contrast, we develop
techniques for analyzing our learning task with its feature
space formulated as the vector space of bit strings (i.e.,
the vector space over a finite field), making it possible to
prove the classical hardness for any quantumly advanta-
geous function in general (see Technical Manuscript for
details).

Protocol for demonstrating the provable advan-
tage of QML Furthermore, we clarify a protocol for
preparing the classical sample data to demonstrate this
provable advantage of QML in the experiments. For
the demonstration, we propose a two-party setup, where
a party A is in charge of preparing the classical sam-
ple data, and the other party B receives the data from
A to perform the learning (see also Fig. 2 of Technical
Manuscript). We here put A and B on equal footing by
allowing both to compute the feature map f by quantum
computation. Note that in the previous work on the ad-
vantage of QML based on Shor’s algorithms [19, 20, 24–
26], the data for their learning tasks were able to be pre-
pared by classical computation, but this classical data
preparation was possible by assuming a special property
of cryptographic primitives (i.e., classically one-way per-
mutation, which is hard to invert efficiently by classical
computation but is invertible efficiently by quantum com-
putation). We also show that A’s data preparation for
our task is possible in the same way by only using classical
computation if we use the classically one-way permuta-
tions for f (see Technical Manuscript for details). These
results pave the way to the practical demonstration of
the provable advantage of QML in experiments, via real-
izing any quantum algorithms for computing quantumly
advantageous functions without necessarily depending on
Shor’s algorithms.

3 Impact

In conclusion, our work successfully bridges the gap
between the advantage of QML (in finding and making
a correct prediction from given samples) and quantum

computational advantages (in computing functions), dis-
closing the origin of the advantage of QML stemming
from the computation of any quantumly advantageous
functions. The existing works on the provable advan-
tages of QML were limited to the realm of Shor’s al-
gorithms [19, 20, 24–26] or to that of brute-force algo-
rithms that are not applicable to the super-polynomial
number of candidates [19, 20]. By contrast, our re-
sults open vast opportunities to use a general class of
quantum algorithms beyond Shor’s algorithms to enjoy
the provable advantage of QML, such as those relevant
to topological data analysis (TDA) [32–36], Pell’s equa-
tion [37, 38], and BQP-complete problems [39–45] (see
Technical Manuscript for details of these examples). In
different settings from ours, advantages of using quantum
computation have been shown in a learning setting with
quantum data obtained from quantum experiments [48–
53] and also in a distribution learning setting [54–56];
still, it is not straightforward to apply these quantum
algorithms to accelerate the common learning tasks in
the era of big data, as represented by supervised learning
with classical data. By contrast, our approach offers a
QML framework that can address this common type of
learning task. A merit of our QML framework is that it
is simply implementable by using any quantumly advan-
tageous function for feature mapping, followed by classi-
cally performing linear separation in the feature space.

Also from a broader perspective, in applications of ma-
chine learning, state-of-the-art classical learning meth-
ods such as deep learning heuristically design the feature
maps, e.g., by adapting the architectures of deep neu-
ral networks [57]. The theoretical analysis of optimized
choices of feature maps for given data is challenging even
in classical cases, but empirical facts suggest that the
classification tasks for real-world data often reduce to
applying feature maps designed by such artificial neural
networks followed by linear separation [57]. In view of
the success of the artificially designed feature maps, it is
crucial to allow as large classes of functions as possible
to create more room for the heuristic optimization of the
feature maps. Advancing ahead, our QML framework
makes it possible to design the feature maps flexibly, us-
ing arbitrary quantumly advantageous functions to attain
the provable advantage of QML. Toward the demonstra-
tion of the advantage of QML, an experimental challenge
still remains in seeking how to realize quantum compu-
tation to surpass the capability of classical computation,
and yet our QML framework opens a way to transcend
all possible classical learning methods by exploiting any
realization of quantumly advantageous functions for the
feature maps.

Note: After this work had appeared in arXiv, Ref. [58]
also showed a result in a similar direction, i.e., shows
a provable advantage of QML over any classical meth-
ods for learning problems with exponentially many can-
didates, using another technique. We believe that this
fact also supports a common interest and a high impact
of our results in the field of QML.
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An overarching milestone of quantum machine learning (QML) is to demonstrate the advantage
of QML over all possible classical learning methods in accelerating a common type of learning
task as represented by supervised learning from classical data. However, the provable advantages
of QML in supervised learning have been known so far only for the learning tasks designed for
using the advantage of specific quantum algorithms, i.e., Shor’s algorithms. Here we explicitly
construct an unprecedentedly broader family of supervised learning tasks with classical data to offer
the provable advantage of QML based on general quantum computational advantages, progressing
beyond Shor’s algorithms. Our learning task is feasibly achievable by executing a general class
of functions that can be computed efficiently in polynomial time for a large fraction of inputs
by arbitrary quantum algorithms but not by any classical algorithm. We prove the hardness of
achieving this learning task for any possible polynomial-time classical learning method. We also
clarify protocols for preparing the classical data to demonstrate this learning task in experiments.
These results open vast opportunities to exploit a variety of quantum advantages in computing
functions for the realization of provably advantageous QML.

Introduction.— Machine learning technologies super-
vised by big data serve as one of the core infrastructures
to support our daily lives. Quantum machine learning
(QML) attracts growing attention as an emerging field
of research to further accelerate and scale up the learn-
ing by taking advantage of quantum computation [1, 2].
Quantum computation is believed to achieve significant
speedup in solving various computational problems over
conventional classical computation [3, 4]. The central
goal of supervised learning is, however, not solving the
computational problems themselves but finding and mak-
ing a correct prediction on unseen data under the supervi-
sion of given sample data [5–8]. A far-reaching milestone
in the field of QML is to demonstrate the advantage of
QML, i.e., an end-to-end acceleration in accomplishing
this goal of learning in such a way that any possible clas-
sical learning method would never be able to achieve.

However, it has been challenging to realize this mile-
stone due to our limited theoretical understanding of the
learning tasks with the advantage of QML. Representa-
tive QML algorithms such as those in Refs. [9–14] have
theoretically guaranteed upper bounds of their runtime,
and it is indeed hard for existing classical algorithms to
achieve the same learning tasks as these QML algorithms
within a comparable runtime; nevertheless, these facts
are insufficient to provably rule out the possibility of the
potential existence of classical learning methods achiev-
ing the comparable runtime. For example, the quan-
tum algorithm for recommendation systems was initially
claimed to achieve an exponential speedup compared to
the existing classical algorithms at the time [10], but it
turned out in later research that the quantum algorithm
achieves only a polynomial speedup compared to the best

∗ hayata.yamasaki@gmail.com

possible classical algorithm due to a breakthrough in de-
signing a quantum-inspired classical algorithm for solving
the same task [15]. It is possible to prove the advan-
tage of QML in accelerating particular types of super-
vised learning with classical data, as shown in Refs. [16–
20]; yet problematically, such learning tasks are mostly
based on the quantum computational advantage of Shor’s
algorithms to solve integer factoring and discrete loga-
rithms [21–23], and the techniques to prove the hardness
of learning for all possible classical methods use a cryp-
tographic argument essentially depending on the specific
mathematical structure of discrete logarithms and integer
factoring [5, 6, 16–20, 24], which do not straightforwardly
generalize. References [18, 19] also study the advantage
of QML based on more general quantum computational
advantages than that of Shor’s algorithms, but this tech-
nique was limited to learning problems with only poly-
nomially many possible functions to be learned, which
are learnable just by a brute-force algorithm. By con-
trast, of interest here are the learning problems with ex-
ponentially many possible functions to be learned, which
require more efficient learning algorithms than such a
brute-force approach yet commonly appear in practical
machine learning. A fundamental open question in the
theory of QML has been what types of quantum com-
putational advantages, beyond that of Shor’s algorithms,
lead to the end-to-end quantum acceleration in solving
such learning problems with exponentially many possi-
bilities; to address this question, novel techniques need
to be established to prove the classical hardness of learn-
ing beyond the realm of Shor’s algorithms.

Also from a practical perspective, toward the ex-
perimental demonstration of the advantages of QML,
Shor’s algorithms are challenging to realize with near-
term quantum technologies [25], confronting as an obsta-
cle to the demonstration. One reason for this practical
challenge is rooted in the fact that Shor’s algorithms need
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to compete with the well-established classical algorithms
for integer factoring that run only within subexponential
time, which is much shorter than exponential time [26–
28]. For this reason, a milestone in realizing Shor’s al-
gorithms is often set to factorize a relatively large inte-
ger, such as a 2048-bit integer [25]. On the other hand,
apart from Shor’s algorithms, polynomial-time quantum
algorithms can also solve other types of computational
problems that are potentially harder for classical algo-
rithms, such as those relevant to topological data analy-
sis (TDA) [29–33], BQP-complete problems [34–40], and
Pell’s equation [41, 42]. For the classically hard prob-
lems, one could potentially use a much smaller size of
the problem instance, e.g., with much less than 2048-bit
inputs, to demonstrate the quantum computational ad-
vantages. In view of this, the solution to the above open
question on the relation between quantum computational
advantages and the advantage of QML will also consti-
tute a significant step to the practical demonstration as
well as the fundamental understanding of QML.

In this work, we address this open question by showing
that quantum advantages in computing functions in gen-
eral lead to the provable end-to-end advantage of QML
in supervised learning with classical data, even for ex-
ponentially many possible functions to be learned. Our
results do not specifically depend on Shor’s algorithms.
In particular, using a general class of functions that can
be computed efficiently in polynomial time for a large
fraction of inputs by quantum algorithms but not by any
classical algorithm (even under the supervision of data),
we explicitly construct a family of classification tasks in
a conventional setting of supervised learning from classi-
cal sample data, i.e., in a probably approximately correct
(PAC) learning model [5, 6, 43]. This classification task
may require finding a correct classifier function among
exponentially many possibilities for labeling the input
data. We construct a polynomial-time quantum algo-
rithm for solving our learning task using a polynomial
amount of classical sample data. This quantum algo-
rithm is simply implementable by a variant of the con-
ventional learning method: feature mapping by quan-
tum computation to map the input classical data into
the corresponding bit strings representing their features,
followed by linear separation by classical computation to
find an appropriate hyperplane in the feature space to
achieve the classification. At the same time, we prove
that no polynomial-time classical algorithm can accom-
plish this learning task. Furthermore, we provide a proto-
col for preparing the classical sample data to demonstrate
this advantage of QML in the experiments. These re-
sults open vast opportunities for anyone to use a general
class of quantum algorithms of their favorite to achieve
provably advantageous QML over any classical learning
method even for the learning problems with exponen-
tially many possibilities, progressing beyond the previous
approach in Refs. [16–20].

Formulation of learning tasks.— We describe the set-
ting of learning and the formulation of our learning task.

Our analysis is based on a conventional setting of super-
vised learning, i.e., the PAC learning model [5, 6, 43]. See
Methods on the definition of the PAC learning model.
Following the convention of the PAC learning, we for-

mulate our concept class CN , i.e., a set of functions c ∈
CN to be learned, which classify an N -bit input x coming
from a target probability distribution DN into binary-
labeled categories specified by c(x) = 0 or c(x) = 1. Our
formulation is in line with a conventional learning ap-
proach based on feature mapping and linear separation
(Fig. 1). In this approach, the learning algorithm first
maps an input x to another vector f(x) and subsequently
classifies x in the space of f(x). This mapping f is known
as a feature map, transforming x in the input space into
the corresponding feature f(x) in the feature space that
encapsulates essential information for the classification.
The sets of x satisfying c(x) = 0 and c(x) = 1 are mapped
into F0 and F1 of f(x), respectively. The feature map
here should be designed so that F0 and F1 have linear
separability, i.e, the property that a hyperplane in the
feature space should be able to distinguish between F0

and F1 [44]. More formally, there should exist a vector s
in the feature space and a threshold t such that

f(x) · s ≤ t for c(x) = 0; f(x) · s > t for c(x) = 1.
(1)

The equation f(x) · s = t represents the hyperplane to
separate F0 and F1 specified by the unknown target con-
cept c to be learned. The concept class of c is learnable
by converting the given input samples using the feature
map, followed by finding this hyperplane, i.e., its param-
eter s, using the corresponding output samples. Once we
find s, for a new input x drawn from DN , we can make
a correct prediction of c(x) by evaluating a hypothesis
h(x) in a hypothesis class, which classifies x based on
the value of f(x) · s.
Based on this approach, we construct our concept class

CN = {cs}s parameterized by s in the vector space FD
2

over a finite field, where F2 = {0, 1} is the finite field
representing a bit, and D is the dimension of the feature
space FD

2 . Each concept cs is a function from the input
space {0, 1}N to binary labels {0, 1}. With some choice
of the feature map fN : {0, 1}N → FD

2 , we here define cs
as

cs(x) := fN (x) · s ∈ F2 = {0, 1}, (2)

where fN (x) · s is the bitwise inner product in FD
2 . This

concept class is designed in accordance with the conven-
tion in machine learning based on feature mapping and
linear separation as in (1), yet using the finite fields as
the feature space (i.e., fN (x) ·s = t := 0 or fN (x) ·s = 1).

Advantage of QML from general quantum computa-
tional advantages.— To seek the advantage of QML, we
study our concept class in (2) with an appropriate choice
of the feature map fN . Remarkably, for our concept class,
we show that fN can be arbitrarily chosen from, roughly
speaking, a general class of functions that can be com-
puted efficiently within a polynomial time by quantum
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Input space

Feature space

Hyperplane

Map input data with
quantumly advantageous function

FIG. 1. A conventional learning approach based on feature
mapping and linear separation, which our work also follows.
Inputs x in the input space (red circles with output labels
c(x) = 0 and blue squares with c(x) = 1) are mapped into the
corresponding features f(x) in the feature space by a feature
map f . Then, using the features f(x) of the input samples and
the corresponding output samples c(x), we find a hyperplane
linearly separating the sets of features for c(x) = 0 and c(x) =
1 as in (1) to achieve the learning. In our learning tasks, we
use quantumly advantageous functions as f .

algorithms but not by classical algorithms. In the fol-
lowing, we introduce this general class of functions for
fN , followed by describing how the advantage of QML
emerges from this general quantum advantage in com-
puting fN .

Under a target distribution DN , we choose the feature
map fN to be any function in a general class denoted by

{(fN ,DN )}N ∈ HeurFBQP \(HeurFBPP/rpoly), (3)

as defined more precisely in the following (see also Sup-
plementary Information for more details). We call a func-
tion in this class a quantumly advantageous function un-
der DN .

In (3), we require that fN (x) should be efficiently
computable by a quantum algorithm for a large frac-
tion of x drawn from DN , and the set HeurFBQP of
pairs of the function fN and the distribution DN rep-
resents those satisfying this requirement. In the com-
putational complexity theory, a (worst-case) complexity
class FBQP [45] conventionally represents a set of func-
tions fN (x) that is efficiently computable by a quantum
algorithm for all x even for the worst-case input 1, but
for PAC learning, it suffices to work on a heuristic com-
plexity class HeurFBQP that requires the efficiency not
all but only a large fraction of x [46, 47]. More pre-
cisely, {(fN ,DN )}N ∈ HeurFBQP requires that there
exists a quantum algorithm A(x, µ, ν) that should run,

1 Note that Ref. [45] defines FBQP as a class of search problems,
i.e., computation of functions having a set of multiple outputs
for each input, but we consider fN to have a single output fN (x)
for each input x.

for any N and 0 < µ, ν < 1, within a polynomial run-
time O(poly(N, 1/µ, 1/ν)) to output fN (x) correctly for
a large fraction 1− µ of inputs x drawn from DN with a
high probability at least 1− ν, i.e.,

Pr
x∼DN

[Pr [A(x, µ, ν) = fN (x)] ≥ 1− ν] ≥ 1− µ, (4)

where the inner probability is taken over the randomness
of A.
At the same time, in (3), we require that fN (x) should

not be efficiently computable by any classical (random-
ized) algorithm for the large fraction of x even with
the help of the sample data, and to meet this require-
ment, it suffices to consider the relative complement of
the set HeurFBPP/rpoly as in (3). In the complexity
theory, HeurFBPP can be considered to be the classical
analog of HeurFBQP while FBPP the classical analog of
FBQP, indicating that the functions fN (x) are efficiently
computable from the given input x by a classical ran-
domized algorithm. Additionally, in the setting of PAC
learning, the sample data are also initially given apart
from x. The use of the sample data is not necessar-
ily limited to the learning, but the data may also po-
tentially help the classical algorithm to compute fN (x)
itself more efficiently [18, 19, 48]. The parameters of
hypotheses learned from the data given according to a
data distribution can be seen as a random bit string of
polynomial length O(poly(N, 1/µ, 1/ν, 1/ξ)) that could
potentially make the computation more efficient with a
high probability at least 1 − ξ, known as the random-
ized advice string α in the complexity theory [49]. To
address this issue, we require that fN (x) should remain
hard to compute by any classical algorithm even with an
arbitrary polynomial-length randomized advice string α.
More precisely, {(fN ,DN )}N /∈ HeurFBPP/rpoly requires
that no classical (randomized) algorithm A(x, α, µ, ν, ξ)
with a randomized advice α ∼ Dadv

N,µ,ν,ξ of length

O(poly(N, 1/µ, 1/ν, 1/ξ)) sampled from an advice distri-
bution Dadv

N,µ,ν,ξ should run, for any N and 0 < µ, ν, ξ < 1,

in a polynomial time O(poly(N, 1/µ, 1/ν, 1/ξ)) to output
fN (x) correctly with a high probability at least 1− ν for
a large fraction 1− ξ of α for a large fraction 1− µ of x
from DN , i.e.,

Pr
x∼DN

[
Pr

α∼Dadv
N,µ,ν,ξ

[Pr [A(x, α, µ, ν, ξ) = fN (x)]

≥ 1− ν] ≥ 1− ξ] ≥ 1− µ, (5)

where the most inner probability is taken over the ran-
domness of A. The previous work on the advantage of
QML [16–20] used a cryptographic argument specifically
depending on discrete logarithms and integer factoring
to prove the classical hardness of their learning tasks,
but we here identify that we can use the heuristic com-
plexity class HeurFBPP/rpoly to rule out the existence
of polynomial-time classical learning algorithms for our
learning tasks. Note that the heuristic complexity class
was also used in Refs. [18, 19] for providing conditions
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of the concept classes that offer the advantage of QML,
but their results were limited to polynomial-size concept
classes learnable by a brute-force algorithm that just tries
all the concepts in the concept class; by contrast, we here
apply the heuristic complexity class to the computation
of feature maps, which makes it possible to construct
exponential-size concept classes beyond the reach of such
a brute-force approach.

Our main result proves that for any choice of the quan-
tumly advantageous functions fN in (3), our exponential-
size concept class in (2) leads to the advantage of QML.
In particular, the main result is summarized as follows.
(See also Methods for the more precise definitions of the
efficient learnability of the concept and the efficient eval-
uatability of the hypothesis.)

Theorem 1 (Advantage of QML from general compu-
tational advantages). Under any target distribution DN

over N -bit inputs, for any quantumly advantageous func-
tion fN under DN , the concept class CN defined in (2)
with fN is quantumly efficiently learnable, and for this
CN , we can construct a quantumly efficiently evaluatable
hypothesis class. By contrast, CN is not classically effi-
ciently learnable by any classically efficiently evaluatable
hypothesis class.

Importantly, Theorem 1 establishes the advantage of
QML in supervised learning with exponential-size con-
cept classes using arbitrary quantumly advantageous
functions, in contrast with the fact that the existing
techniques for proving the advantage of QML [16–20]
were limited to using the advantage of Shor’s algorithms.
In Methods, to prove Theorem 1, we explicitly con-
struct polynomial-time quantum algorithms for learning
the concept and evaluating the hypothesis; at the same
time, we prove that no classical algorithm can evaluate
hypotheses that correctly predict the concepts in our con-
cept class.

For our concept, the quantum algorithms for the learn-
ing and the evaluation are implementable by the simple
approach of feature mapping and linear separation: in
our case, the feature mapping uses the quantum algo-
rithm in (4), and the linear separation is performed only
by classical computing. A technical challenge in con-
structing our algorithms is that the learning algorithm
does not necessarily find the true parameter s of the tar-
get concept cs but may output an estimate s̃ with s̃ ̸= s;
nevertheless, our analysis shows that the parameter s̃
learned by our algorithm leads to a correct hypothesis
hs̃ satisfying hs̃(x) = cs(x) for a large fraction of x with
high probability (see Methods for details).

The feature mapping and the linear separation may
also be applicable to some of the previous works on the
advantage of QML [16], but a more crucial difference
arises from the techniques for proving the classical hard-
ness. In particular, a feature map constructed in Ref. [16]
used Shor’s algorithms to transform an N -bit input into
a feature in a feature space, which was taken as a space
of functions called the reproducing kernel Hilbert space

Initially Given

A

Preparing data

B

Learning from data

Quantum Classical

or

DataData Hypothesis

Sample size
s.t.

Send

Send

Quantum Classical

or

FIG. 2. A setup for demonstrating the advantage of QML
in supervised learning by two parties A and B, where A is
in charge of preparing the classical sample data, and B re-
ceives the data from A to perform the learning. The parties
A and B are initially given the problem size N , the error
parameter ϵ, the significance parameter δ, and the concept
class CN = {cs}s in (2) by choosing the feature map as a
quantumly advantageous function fN . The party A chooses
a D-bit parameter s of the target concept cs, which is kept as
A’s secret. To learn cs, the party B decides the number M of
sample data to be used for B’s learning and lets A know M .
Then, A prepares M input-output sample data as described
in the main text and sends the data to B. Using the given
data, B performs the algorithms in Theorem 1 to find a D-bit
string s̃ and make a prediction for new inputs x by the hy-
pothesis hs̃(x) = fN (x) · s̃ so that the error in estimating true
cs(x) should be below ϵ with high probability at least 1− δ.

(RKHS) in the kernel method [7, 8] to show a polynomial-
time quantum learning algorithm. However, the exist-
ing techniques for proving the classical hardness of such
learning tasks needed to use a cryptographic argument
on the hardness of solving computational problems de-
pending on the specific mathematical structure of dis-
crete logarithms and integer factoring [5, 6, 16–20, 24]
and do not straightforwardly generalize. By contrast, we
develop techniques for analyzing our learning task with
its feature space formulated as the vector space over a
finite field, making it possible to prove the classical hard-
ness for any quantumly advantageous function in general
(see Methods for details).

Lastly, due to the generality of the quantumly advan-
tageous functions, Theorem 1 opens unprecedented op-
portunities for realizing the provable advantages of QML
in supervised learning beyond the realm of Shor’s algo-
rithms, e.g., in the fields relevant to TDA [29–33], BQP-
complete problems [34–40], and Pell’s equation [41, 42].
See Methods for more details.

Protocol for preparing classical sample data for the ex-
perimental demonstration.— To embody the opportuni-
ties of demonstrating the advantage of QML in experi-
ments, we clarify the protocol for preparing the classical
sample data for our concept class CN in (2).

For the demonstration, we consider a two-party set-
ting, where a party A is in charge of preparing the classi-
cal sample data, and the other party B receives the data
from A to perform the learning (Fig. 2). Initially, A and
B are given the problem size N , the error parameter ϵ,
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and the significance parameter δ. Let DN be a target dis-
tribution, and suppose that A can load a sequence of in-
puts x sampled from DN (e.g., from some input data stor-
age), with each x loadable in a unit time. Note that the
exact description of the true distribution DN may be un-
known to both A and B throughout the learning. In addi-
tion, A and B are given the concept class CN determined
by choosing the feature map fN as a quantumly advan-
tageous function under DN . Given this initial setup, B
decides the number M = O(poly(N, 1/ϵ, 1/δ)) of sample
data to be used for B’s learning and lets A know M (see
Supplementary Information for the precise choice of M).
Then, A chooses the parameter s ∈ FD

2 of the target con-
cept cs ∈ CN arbitrarily (e.g., by sampling s uniformly at
random). For the given M and this choice of cs, A is in
charge of preparing M input-output pairs of sample data
and giving the data to B while keeping s as A’s secret.
The task for B is to find a vector s̃ ∈ FD

2 using the M
data sent from A and make a prediction for new inputs
x drawn from DN by the hypothesis hs̃(x) = fN (x) · s̃ so
that the error in estimating true cs(x) should be below ϵ
with high probability at least 1− δ.

For A, we propose a data-preparation protocol using
quantum computation in the same way as B using quan-
tum computation for learning, while we will also discuss
another protocol using only classical computation later.
To prepare the data, A first loads M inputs x1, . . . , xM

drawn from DN . Then, using the quantum algorithm (4)
for computing fN , A prepares the corresponding M out-
puts denoted by A(x1), . . . ,A(xM ). While the outputs
A(x) may not always be the same as fN (x) due to
the randomness of the quantum algorithm, our analy-
sis shows that, with an appropriate choice of parameters
µ and ν in (4), A can make the error in these M out-
puts negligibly small by only using a polynomial time of
quantum computation (see Supplementary Information
for details). Finally, A send {xm,A(xm)}Mm=1 to B as
the M data.

Note that in the previous work on the advantage of
QML based on Shor’s algorithms [16–20], the data for
their learning tasks were able to be prepared by classical
computation, but we here put A and B on equal footing
by allowing both to compute fN by quantum computa-
tion. In the previous work, the data were prepared by
assuming a special property of cryptographic primitives
(i.e., classically one-way permutation, which is hard to
invert efficiently by classical computation but is invertible
efficiently by quantum computation). In Supplementary
Information, we show that the data preparation for our
concept class is also possible by only using classical com-
putation if we construct fN using the classically one-way
permutations.

Then, the protocol for achieving B’s task reduces to
running the quantum learning and evaluation algorithms
in Theorem 1. To compare these quantum algorithms
with classical algorithms, we also propose to perform B’s
task by only using classical computation for several small
problem sizes N . In particular, from the (superpolyno-

mial) runtimes of classically computing fN for the several
choices of small N , we propose to perform extrapolation
to estimate the constant factors in the (superpolynomial,
potentially exponential) scaling of the runtime of this
classical method for larger N . The demonstration of the
advantage of QML is successfully achieved by realizing
the polynomial-time quantum algorithms in experiments
for an appropriate choice of N to outperform the classical
algorithms with the estimated superpolynomial runtime.

Discussion and outlook.— In this work, we have
proved that a general class of quantum advan-
tages in computing functions, characterized by
HeurFBQP \(HeurFBPP/rpoly) in (3), lead to the
end-to-end advantage of QML in a task of supervised
learning with classical data, even for exponentially many
possible functions to be learned. We have clarified the
polynomial-time quantum algorithms to find and make
a correct prediction and have also proved the hardness
of this learning task for any possible polynomial-time
classical method. Whereas such advantage of QML was
shown only for specific cases of using the advantage
of Shor’s algorithms in previous research [16–20], our
results make it possible to use the general quantum
advantages in computing functions beyond that of Shor’s
algorithms, such as those relevant to topological data
analysis (TDA), BQP-complete problems, and Pell’s
equation. Furthermore, we propose protocols to prepare
the classical sample data for the experimental demon-
stration of this advantage of QML. These results solve
the fundamental open question about characterizing
which types of quantum computational advantages lead
to the advantage of QML in accelerating supervised
learning, making it possible to exploit all the quantumly
advantageous functions for QML.

Our results also constitute a significant step toward the
practical demonstration of the advantage of QML in ex-
periments. For implementation with near-term quantum
technologies, heuristic QML algorithms have been stud-
ied widely [50–53], but no analysis provides a classically
hard (yet quantumly feasible) instance of the learning
tasks; even more problematically, no analysis provides
bounds of the runtime and the success probability of
these heuristic QML algorithms. In different settings, ad-
vantages of using quantum computation have been shown
in a learning setting with quantum data obtained from
quantum experiments [54–59] and also in a distribution
learning setting [60–62]; still, it is not straightforward to
apply these quantum algorithms to accelerate the com-
mon learning tasks in the era of big data, as represented
by supervised learning from classical data. By contrast,
our approach offers a QML framework that can address
this type of learning task. A merit of our QML frame-
work is that it is simply implementable by using any
quantumly advantageous function for feature mapping,
followed by classically performing linear separation in the
feature space, which our framework takes as the space of
bit strings representing features.

Also from a broader perspective, in applications of ma-
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chine learning, state-of-the-art classical learning meth-
ods such as deep learning heuristically design the feature
maps, e.g., by adapting the architectures of deep neu-
ral networks [63]. The theoretical analysis of optimized
choices of feature maps for given data is challenging even
in classical cases, but empirical facts suggest that the
classification tasks for real-world data often reduce to
applying feature maps designed by such artificial neural
networks followed by linear separation [63]. In view of
the success of the artificially designed feature maps, it
is crucial to allow as large classes of functions as possi-
ble to create more room for the heuristic optimization
of the feature maps. Advancing ahead, our QML frame-
work makes it possible to design the feature maps flexibly,
using arbitrary quantumly advantageous functions to at-
tain the provable advantage of QML. It also turns out
that a large dimension of the feature space is not even a
prerequisite for the advantage of QML in our framework,
as opposed to a common yet unproven folklore on the po-
tential relevance of large dimension [50–53]; after all, we
have proved that the advantage of QML stems solely from
the quantum advantages in computing functions without
any further requirement for their mathematical structure.
Toward the demonstration of the advantage of QML, an
experimental challenge still remains in seeking how to
realize quantum computation to surpass the capability
of classical computation, and yet our QML framework
opens a way to transcend all possible classical learning
methods by exploiting any realization of quantumly ad-
vantageous functions for the feature maps.
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METHODS

In Methods, we summarize the probabilistically ap-
proximately correct (PAC) learning model, sketch the
proof of our main result, i.e., Theorem 1 in the main
text, and provide examples of new directions of quantum
machine learning (QML) based on Theorem 1.
Throughout the paper, we use the following notations.

Let N be the set of all natural numbers 1, 2, . . .. Let
F2 = {0, 1} denote the finite field of order 2, i.e., for
0, 1 ∈ F2,

0 + 0 = 0, 0× 0 = 0,

0 + 1 = 1, 0× 1 = 0,

1 + 0 = 1, 1× 0 = 0,

1 + 1 = 0, 1× 1 = 1.

(6)

Note that {0, 1} and F2 may be the same set, but we will
use F2 for representing the feature space, where we use
the bitwise arithmetics in (6), while we will use {0, 1} in
the other cases. Let poly(x) denote a polynomial of x.
Unless otherwise stated, we use N as the length of input
bit strings for a family of computational problems. For a
probability distribution D over the set X , we denote by
x ∼ D to mean that x is drawn from the distribution D.
A probabilityPrx∼D[· · · ] indicates that the probability is
taken for the random draw of x according to distribution
D.

PAC learning model.— We summarize the definition
of the PAC learning model based on Ref. [6]. See also
Supplementary Information for further details.

In the PAC learning model, for a problem size N , a
specification of a set of functions CN , called a concept
class, is initially given. Each function c ∈ CN is called
a concept, which maps an N -bit input x to a Boolean-
valued output c(x) ∈ {0, 1} (i.e., a label of x in classifi-
cation). For some unknown choice of a concept c ∈ CN
called the target concept, the learning algorithm is given
a polynomial number of samples {xm, c(xm)}Mm=1, which
are pairs of inputs with each xm drawn from a target
probability distribution DN and the corresponding out-
puts c(xm). Note that the previous work [16–19] on the
advantage of QML studied a restricted setting that only
allows for uniform distribution in the choice of the target
distribution DN , but in our work, DN can be an arbitrary
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distribution over the N bits without this restriction. Us-
ing the given sample data, the learning algorithm is de-
signed to find a function, termed a hypothesis h, from
a set HN of functions called a hypothesis class, so as to
make a correct prediction on c by h.

In the PAC learning model, the ability to find the cor-
rect hypothesis for the target concept using the given
samples is called the learnability of a concept class un-
der a target distribution [6]. In particular, for the prob-
lem size N , the error parameter ϵ > 0, and a confi-
dence parameter δ > 0, a concept class CN is quantumly
(classically) efficiently learnable under DN if there exists
a quantum (classical randomized) learning algorithm A
that finds a hypothesis h such that

error(h) := Pr
x∼DN

[h(x) ̸= c(x)] < ϵ. (7)

with high probability at least 1 − δ, using a poly-
nomial number of samples {xm, c(xm)}Mi=1 (M =
O(poly(N, 1/ϵ, 1/δ))) within a polynomial time complex-
ity tA = O(poly(N, 1/ϵ, 1/δ)) (see also Supplementary
Information for more details).

The ability to efficiently evaluate the hypothesis iden-
tified from the samples is also crucial in the PAC learning
model, which is called evaluatability [6]. By definition of
the learnability, the learned hypothesis may inevitably
have some error on a nonzero fraction ϵ of x drawn from
DN , and the definition of evaluatability here also inher-
its this point. In particular, for ϵ, δ > 0, we say that a
hypothesis class HN is quantumly (classically) efficiently
evaluatable under DN if, given a hypothesis h, there ex-
ists a quantum (classical randomized) evaluation algo-
rithm A that can compute h(x) for a large fraction 1− ϵ
of new inputs x drawn from DN with high probability at
least 1 − δ in terms of the randomness of the (random-
ized) algorithm A, within a polynomial time complexity
tA = O(poly(N, 1/ϵ, 1/δ)) (see also Supplementary Infor-
mation for more details).

Quantum learning and evaluation algorithms and clas-
sical hardness for our concept class.— Within the PAC
learning model, we sketch the proof of our main result,
i.e., Theorem 1 in the main text. In particular, for our
concept class, we construct a polynomial-time quantum
algorithm for learning the concept to output the corre-
sponding hypothesis in a hypothesis class. Then, we also
construct a polynomial-time quantum algorithm for eval-
uating the hypothesis in the hypothesis class. Finally, we
prove the hardness of the evaluation of the hypotheses
in the hypothesis class for any possible polynomial-time
classical algorithm. See also Supplementary Information
for more details.

Our quantum learning algorithm starts with using a
quantum algorithm A in (4) to compute the feature map
fN (xm) for each of the given samples {(xm, cs(xm))}Mm=1.
Note that the features output by A, denoted by
{A(xm)}Mm=1, may not exactly coincide with the fea-
tures {fN (xm)}Mm=1 in general due to the randomness of
the quantum algorithm, but our analysis shows that the

learning algorithm can feasibly make the failure proba-
bility negligibly small. Our learning algorithm then clas-
sically performs Gaussian elimination to solve a system
of linear equations for a variable s̃ ∈ FD

2

A(x1) · s̃ = cs(x1),

A(x2) · s̃ = cs(x2),

...

A(xM ) · s̃ = cs(xM ),

(8)

subsequently outputting a solution s̃ as an estimate of
the parameter of the hypothesis. For s̃, we construct the
hypothesis hs̃ by

hs̃(x) := fN (x) · s̃. (9)

A technical challenge in our construction of the learn-
ing algorithm arises from the fact that the solutions s̃
of the system of the linear equations in (8) may not be
unique. After all, we work on a general setting allowing
any target distribution DN , any quantumly advantageous
function fN , and any quantum algorithm A to compute
fN approximately as in (4); thus, it may happen that

s̃ ̸= s. (10)

For the worst-case input x ∈ {0, 1}N , it may indeed hap-
pen that

hs̃(x) ̸= cs(x). (11)

It is thus nontrivial to prove that the hypothesis hs̃ given
by (9) can predict the target concept cs correctly as re-
quired for the learnability. We nevertheless prove that
any of the solutions s̃ of (8) (even if (10) is the case)
leads to a correct hypothesis

hs̃(x) = cs(x) (12)

for a large fraction of input x drawn from DN with a high
probability. In other words, our analysis proves that the
fraction of x causing (11) can be made negligibly small by
our polynomial-time quantum learning algorithm, lead-
ing to the quantumly efficient learnability of our concept
class (see Supplementary Information for details).

As for the quantum algorithm for evaluating the hy-
pothesis, with the parameter s̃ learned, the evaluation
algorithm aims to estimate fN (x) · s̃ in (9). For a new
input x drawn from DN , our evaluation algorithm simply
uses the quantum algorithm A in (4) to compute A(x),
i.e., an estimate of fN (x). The output A(x) of A may be
different from fN (x) in general due to the randomness
of the quantum algorithm, but we show that the error
can be made negligibly small within a polynomial time.
Then, our algorithm takes the (bitwise) inner product of
A(x) and the given parameter s̃, which we prove leads to
a correct evaluation of h(x) for a large fraction of input
x with a high probability, leading to the quantumly effi-
cient evaluatability (see Supplementary Information for
details).
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Finally, the classical hardness is proved by contradic-
tion, as with the established arguments in the compu-
tational learning theory [5, 6]. In particular, we prove
that if all concepts cs(x) (s ∈ FD

2 ) of our concept class
in (2) were classically efficiently learnable by some hy-
potheses hs(x) that are classically efficiently evaluatable
by polynomial-time classical algorithms, then the feature
map fN (x) in (2) would be computed by a polynomial-
time classical algorithm using these classical evaluation
algorithms, contradicting to the assumption that fN is
a quantumly advantageous function. To prove the clas-
sical hardness of learning for the exponential-size con-
cept classes as in our case, the previous work on the
advantage of QML relied on a cryptographic argument
that specifically depends on Shor’s algorithms [16–20];
by contrast, our proof technique developed here does not
depend on such a specific property of Shor’s algorithms
but is applicable to any quantumly advantageous func-
tion in general.

For this development, our key idea is to use the prop-
erty of the vector space FD

2 over the finite field used
as the feature space in our construction. In particu-
lar, for the standard basis {sd}Dd=1 of this D-dimensional
vector space FD

2 (i.e., s1 = (1, 0, . . . , 0, 0)⊤, . . . , sD =
(0, 0, . . . , 0, 1)⊤), suppose that the concepts csd(x) for
d = 1, . . . , D are efficiently learnable by classically ef-
ficiently evaluatable hypotheses hsd(x). Then, observing
that the bitwise inner product csd(x) = fN (x) · sd yields
the dth bit of fN (x), we use the corresponding hypothe-
ses hsd(x) to construct an estimate of fN (x) as

f̃N (x) =


hs1(x)
hs2(x)

...
hsD (x)

 ∈ FD
2 . (13)

Thus, the polynomial-time classical algorithms for eval-
uating the hypotheses would be able to compute each
element of this vector and thus approximate fN (x) well
with high probability, which contradicts the fact that
fN is a quantumly advantageous function. Therefore,
our concept class that includes the concepts csd(x) for
d = 1, . . . , D is not classically efficiently learnable by
any classically efficiently evaluatable hypothesis class (see
Supplementary Information for details).

New directions of QML based on quantumly advanta-
geous functions.— Our results in Theorem 1 of the main
text open unprecedented opportunities for using a vari-
ety of quantum algorithms to demonstrate the advantage
of QML, progressing beyond Shor’s algorithms. We here
propose several promising candidates of such quantum
algorithms relevant to the following different areas.

1. Topological data analysis (TDA).— Quantum algo-
rithms for computing an estimation of normalized
Betti numbers and other topological invariants [29–
33] gather considerable attention due to their po-
tential applications to TDA, an area of data science

using mathematical tools on topology. The func-
tions computed by these quantum algorithms are
leading candidates of the quantumly advantageous
functions since techniques for proving the compu-
tational hardness are also known in multiple rele-
vant cases under conventional assumptions in the
complexity theory [64–69]. Classical sample data
given in terms of bit strings can also be used as the
input to some of these quantum algorithms, with-
out necessarily using oracles for the input to these
algorithms; for example, given N input points con-
stituting a Vietoris-Rips (VR) complex, the quan-
tum algorithm in Ref. [30] computes an approx-
imation of the normalized persistent Betti num-
ber with accuracy O(1/poly(N)) with probability
at least 1−O(1/poly(N)). In this case, the function
that this quantum algorithm computes can be used

as a feature map fN : {0, 1}O(poly(N)) → FO(log(N))
2 ,

from which we can construct our concept class ac-
cording to (2). Note that the normalized persistent
Betti number may have a different value from the
(original) persistent Betti number due to the nor-
malization factor, but independently of such math-
ematical structure, our results lead to the advan-
tage of QML for our concept class.

2. BQP-complete problems.— It is indeed a variant of
long-standing open problems in the complexity the-
ory to prove the existence of the quantumly ad-
vantageous functions unconditionally without any
computational hardness assumption; however, a
natural candidate for the quantumly advantageous
functions is the functions relevant to the hardest
problems in the scope of the polynomial-time quan-
tum algorithms, known as BQP-complete prob-
lems [34–40]. For instance, the function used
for the local unitary-matrix average eigenvalue
(LUAE) problem in Ref. [35] yields such a candi-
date. Given an N -bit string b and a O(poly(N))-
bit string representing an O(poly(N))-size quan-
tum circuit to implement a 2N × 2N unitary
matrix U , let {λj}j denote the set of eigen-
values of U with the corresponding set {|νj⟩}j
of eigenvectors. Then, the LUAE problem in-
volves computation of an estimate of the aver-

age eigenvalue λ̄ =
∑2N

j=1 | ⟨b|νj⟩ |2λj up to pre-

cision O(1/poly(N)) with probability at least 1 −
O(1/poly(N)) [35]. Thus, the function to be com-
puted in the LUAE problem provides a feature map

fN : {0, 1}O(poly(N)) → FO(log(N))
2 , from which we

can construct our concept class according to (2).
We remark that this construction is based on the
worst-case complexity class BQP, but for our con-
cept class, we can indeed choose fN based on the
hardest problems in the heuristic complexity class
HeurFBQP, which is potentially even broader than
the worst-case complexity class. Also note that
Refs. [18, 19] considered using instances of BQP-
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complete problems themselves as the polynomial-
size concept classes that provide the advantage
of QML, but since their construction uses BQP-
complete problems directly as the concept classes,
the connection between quantum advantages in
the learning of concept classes and the compu-
tation of functions was elusive; by contrast, our
contribution is to bridge this connection by us-
ing quantumly advantageous functions appearing
in the BQP-complete problems to introduce new,
different concept classes.

3. Cryptographic problems beyond the scope of Shor’s
algorithms.— Shor’s algorithms [21–23] stand as
polynomial-time quantum algorithms to solve in-
teger factoring and discrete logarithms relevant to
Rivest–Shamir–Adleman (RSA) cryptosystem [70],
and no existing classical algorithm can solve these
problems within a polynomial time. But it still
remains an unsolved open problem whether these
are hard to compute for any possible polynomial-
time classical algorithm apart from the existing
ones. If an efficient classical algorithm for solv-
ing these problems were found in the future, the
previously known advantage of QML depending on
Shor’s algorithms would also cease to survive. Even
in such a case, our results open a chance that the
advantage of QML can still survive based on an-
other cryptographic problem that can be harder
than those solved by Shor’s algorithms. For exam-
ple, given an N -bit nonsquare positive integer d for
Pell’s equation x2 − dy2 = 1, the first O(poly(N))

digits of ln
(
x1 + y1

√
d
)
for its least positive solu-

tion (x1, y1) can be computed with a high probabil-
ity exponentially close to one by a polynomial-time
quantum algorithm [41, 42]; at the same time, even
if one has a polynomial-time classical algorithm for
solving integer factoring and discrete logarithms,
it is unknown if one can obtain a polynomial-time
classical algorithm for this computation, which is
relevant to a key exchange system based on the
principal ideal problem [71] (see Refs. [41, 42] for
details). This computations yields a feature map

fN : {0, 1}N → FO(poly(N))
2 , from which we can con-

struct our concept class according to (2). This con-
struction provides an example of exponential-size
concept classes in N leading to the advantage of
QML without depending on the computational ad-
vantage of Shor’s algorithms, which has been chal-
lenging to establish as long as one uses techniques
in the existing work [16–20].

DATA AVAILABILITY
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SUPPLEMENTARY INFORMATION

Supplementary Information of “Advantage of Quan-
tum Machine Learning from General Computational Ad-
vantages” is organized as follows. Section A gives settings
and definitions of a learning model and quantum compu-
tational advantage. Section B provides our learning task
and proof of the advantage of quantum machine learning
(QML) in solving our learning task. Section C describes
a setup for demonstrating this advantage of QML and
presents protocols for preparing the classical sample data
for the demonstration.

Appendix A: Setting and definition

In this section, we present settings and definitions rel-
evant to our work. In Section A1, we define a model
of probably and approximately correct (PAC) learn-
ing [5, 6, 43] to be analyzed in this work and also define
the advantage of QML. In Section A2, we define quan-
tum advantages in computing a function, which we will
use to show the advantage of QML.

1. PAC learning model

The analysis in our work will be based on a conven-
tional model of learning called the PAC learning model
in Ref. [6]. Let DN be any unknown target probability
distribution supported on an input space XN ⊆ {0, 1}N
of N bits. In our work, a concept class CN over XN

is a set of functions from the input space to the set of
binary labels. Consequently, a concept c ∈ CN is a func-
tion such that c : XN → {0, 1}. A sample is denoted
as (x, c(x)), which is a pair of the input and the output
for the concept. Let EX(c,DN ) be a procedure (oracle)
that returns a labeled sample (x, c(x)) within a unit time
upon each call, where x is drawn randomly and indepen-
dently according to DN . Note that the samples (x, c(x))
from EX(c,DN ) are given in terms of classical bit strings
throughout this paper. In this setting, we can consider
X =

⋃
N≥1 XN and C =

⋃
N≥1 CN to define an infinite

family of learning problems of increasing input lengths.
In the PAC learning model, a learning algorithm will

have access to samples from EX(c,DN ) for an unknown
target concept c, which is chosen from a given concept
class CN . Using the samples, the learning algorithm will
find a hypothesis h from a hypothesis class HN so that h
should approximate c. We define a measure of approxi-
mation error between hypothesis h and unknown concept
c as

error(h) = Prx∼DN
[c(x) ̸= h(x)]. (A1)

The learning algorithm only sees input-output sam-
ples of the unknown target concept c. The algorithm
may not have to directly deal with the representation

of true c, i.e., a symbolic encoding of c in terms of a bit
string. However, it still matters which representation the
algorithm chooses for its hypothesis h since the learning
algorithm needs to output the representation of h. To
deal with these representations more formally, consider
a representation scheme R for a concept class CN , which
is a function R : Σ∗ → CN with Σ = {0, 1} denoting a
bit and Σ∗ :=

⋃
N≥1 Σ

N denoting the set of bit strings.

We call any string σ ∈ Σ∗ such that R(σ) = c a repre-
sentation of c. For R, we here consider the length of the
bit string σ ∈ Σ∗ to be the size of each representation σ,
which we write size(σ). A representation of hypothesis h
can be formulated in the same way by replacing c with h
and CN with HN .

The learning task is divided into two main parts. One
is to find, using the samples, a representation of the hy-
pothesis h that approximates the target concept c well,
and the other is to make a prediction by evaluating h(x)
correctly for a new input x ∈ XN and the learned rep-
resentation of h. First, we define efficient learnability as
shown below. This definition requires that the algorithm
find and output the representation of the appropriate hy-
pothesis h for the target concept c within a polynomial
time. Note that this definition implies that the represen-
tation of the hypotheses h should also be of at most poly-
nomial length. Conventionally, the PAC learning model
may require that it be learnable for all distributions [6],
but we can here observe that learning tasks in practice
usually deal with data given from a particular distribu-
tion; for example, in the classification of images of dogs
and cats, the learning algorithm does not have to work for
any distribution over the images, but it suffices to deal
with a given distribution supported on the meaningful
images such as those of dogs and cats. Based on this
observation, our model requires that it be learnable for a
given (unknown) target distribution. Note that through-
out the learning, the learning algorithm does not have to
estimate the description of the target distribution itself,
but it only suffices to learn the target concept c by the
hypothesis h.

Definition S1 (Efficient learnability). For any problem
size N ∈ N, let CN be a concept class and DN be a tar-
get distribution over an input space XN ⊆ {0, 1}N of N
bits. We say that CN is quantumly (classically) efficiently
learnable under the target distribution DN if there exists
a hypothesis class HN and a quantum (classical random-
ized) algorithm A with the following property: for every
concept c ∈ CN , and for all 0 < ϵ, δ < 1, if A is given
access to EX(c,DN ) in addition to ϵ and δ, then A runs
in a polynomial time

tA(EX, ϵ, δ) = O(poly(N, 1/ϵ, 1/δ)), (A2)

to output a representation of hypothesis h ∈ HN satisfy-
ing, with probability at least 1− δ,

error(h) ≤ ϵ, (A3)

where the left-hand side is given by (A1). The probabil-
ity is taken over the random examples drawn from the
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calls of EX(c,DN ) and the randomness used in the ran-
domized algorithm A. The number of calls of EX(c,DN )
(i.e., the number of samples) and the size of the output
representation of the hypothesis are bounded by the run-
time.

As for the evaluation of the learned hypothesis, we give
a definition of efficient evaluatability below. This defini-
tion requires that, given an input x and a representation
σh of a hypothesis h, the algorithm should evaluate h(x)
correctly in a polynomial time for a large fraction of x
with high probability. The representation of a hypothe-
sis used in this definition can be, in general, an arbitrary
polynomial-length bit string representing the hypothesis.
In particular, in the case of the previous work [16–20] on
the advantage of QML using Shor’s algorithms for solving
integer factoring and discrete logarithms [21–23], a classi-
cal algorithm may be able to prepare samples on its own;
by contrast, in our general setting, samples are given from
the oracleEX as in Definition S1, and we do not necessar-
ily require that the evaluation algorithms should be able
to simulate EX to prepare the samples on their own. (For
example, in Section C 2, we will discuss the preparation
of samples by quantum computation rather than classi-
cal computation, so the classical algorithm may not be
able to prepare the samples on its own.) In this learning
setting, at best, an evaluation algorithm may be able to
use the given samples encoded in the polynomial-length
representation of the hypothesis as an extra input to the
algorithm, which may not be prepared by the algorithm
on its own but can be used for the algorithm to com-
pute h(x) more efficiently [18, 19, 48]. In addition to
this encoding of a polynomial amount of sample data
used in the learning, the representation of the hypoth-
esis can even include any polynomial-length bit string
to help the evaluation algorithm compute the hypothesis
even more efficiently (which may be prepared potentially
using an exponential runtime if we do not assume effi-
cient learnability). In complexity theory, such an extra
probabilistic input (apart from x) to make the computa-
tion potentially more efficient is known as a randomized
advice string [49], as described in more detail in Sec-
tion A2. Note that it would be more conventional in the
computational complexity theory to use an advice string
given deterministically [4], but we here consider the sam-
ples and the representation of the hypothesis obtained
from the samples as special instances of the randomized
advice string since the samples in the PAC learning are
given probabilistically from a data distribution. Also,
in a conventional setting, efficient evaluation in the PAC
model may mean that the hypothesis can be evaluated
in worst-case polynomial time [6]. However, recalling the
above observation that practical learning tasks deal with
data from a more specific target distribution, we see that
it may be too demanding to require that the hypothesis
h should be evaluated efficiently for all possible x ∈ XN

even in the worst case; rather, it makes more sense to re-
quire that we should be able to evaluate h(x) efficiently
for x drawn from the target distribution of interest with

a sufficiently high probability. In the complexity theo-
retical terms, this requirement can be captured by the
notion of heuristic polynomial time [46, 47]; accordingly,
we define efficient evaluatability based on heuristic com-
plexity, as shown below. Since the heuristic hardness
implies the worst-case hardness, proving the hardness of
efficient evaluation for our learning model immediately
leads to the conventional worst-case hardness of efficient
evaluation in the learning (see also Section A2 for more
discussion on the difference and relation between these
hardness results).

Definition S2 (Efficient evaluatability). For any prob-
lem size N ∈ N, let CN be a concept class and DN be a
target distribution over an input space XN ⊆ {0, 1}N of
N bits. We say that the hypothesis class HN is quantumly
(classically) efficiently evaluatable under the target distri-
bution DN if there exists a quantum (classical random-
ized) algorithm A such that for all N ∈ N, 0 < ϵ, δ < 1,
and a O(poly(N, 1/ϵ, 1/δ))-length bit string σh represent-
ing any hypothesis h ∈ HN , A runs in a polynomial time
for all x ∈ XN

tA(x, σh, ϵ, δ) = O(poly(N, 1/ϵ, 1/δ)), (A4)

to output A(x, σh, ϵ, δ) satisfying

Pr
x∼DN

[Pr [A(x, σh, ϵ, δ) = h(x)] ≥ 1− δ] ≥ 1− ϵ, (A5)

where the inner probability is taken over the randomness
of the randomized algorithm A.

From Definitions S1 and S2, a learning task can be di-
vided into four categories CC, CQ, QC, and QQ [18, 19],
which means that whether the learning task is classically
or quantumly efficiently learnable and whether it is clas-
sically or quantumly efficiently evaluatable, respectively.
It is known that the categories CQ and QQ are equiva-
lent unless the hypothesis class is fixed [19]. Note that
Refs. [19] defined these categories based on the worst-case
complexity, but the categories for our definitions may be
different in that Definitions S1 and S2 are given based on
the heuristic complexity. In our work, we will study the
advantage of QML in the sense of CC /QQ separation,
following the previous work [16, 17] on the advantage of
QML; i.e., we will construct a learning task in QQ but
not in CC.

Finally, we remark that the learnability and the evalu-
atability are different in that Definition S1 requires that
the hypothesis h should be found in polynomial time
with a high probability, and Definition S2 requires that
h should be evaluated. Efficient learnability itself does
not require that the learned hypothesis should be effi-
ciently used for making a prediction via its evaluation,
and efficient evaluatability itself does not require that the
representation of the hypothesis should be obtained effi-
ciently in learning from the samples. However, to achieve
the end-to-end acceleration of QML, we eventually need
both quantumly efficient learnability and quantumly ef-
ficient evaluatability simultaneously, which our analysis
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aims at. Correspondingly, for the classical hardness of
the learning tasks, our interest is to rule out the pos-
sibility that the best classical method achieves efficient
learnability and efficient evaluatability simultaneously.

2. Quantum computational advantage

In this section, we present the computational complex-
ity classes relevant to our analysis of the advantage of
QML. Our analysis will use a general class of functions
that are efficient to compute by quantum computation
but hard by classical computation, based on the com-
plexity classes defined here.

In the following, we will start by presenting the worst-
case, average-case, and heuristic computational complex-
ity classes [46, 47], whose difference arises from the frac-
tion of the inputs for which the problem can be solved
in polynomial time. Then, we will present the complex-
ity classes for computing functions by classical random-
ized algorithms and quantum algorithms. Finally, we will
explain advice strings, which are, roughly speaking, bit
strings given to the algorithm in addition to the input to
help solve the problem efficiently.

We introduce three cases of complexity classes: worst-
case, average-case, and heuristic polynomial time. A
complexity class is conventionally defined as a worst-case
class; for example, the class P of (worst-case) polyno-
mial time is a family of decision problems such that all
the inputs of the problems in the family can be solved
within a polynomial time in terms of the length of the
input bit strings (even for the worst-case choice of the
input) [4]. Accordingly, the existing analyses of the ad-
vantage of QML in previous research were also based on
the worst-case complexity classes, requiring that the al-
gorithm should be able to evaluate the hypothesis h(x)
for all x ∈ XN [16–19]. However, this requirement is
too demanding in our setting; after all, the PAC learn-
ing model allows for errors depending on a given target
distribution. In the learning as in Definitions S1 and S2,
it suffices to learn and evaluate h(x) efficiently only for
a sufficiently large fraction of x on the support of the
given target distribution, rather than all x. Intuitively,
in the classification of images for example, it suffices to
learn and evaluate h(x) efficiently for meaningful im-
ages on the support of the true probability distribution
of samples, and whether h(x) can be evaluated for all
possible images including those never appearing in the
real-world data is irrelevant in practice. To capture this
difference, we here take into account average-case and
heuristic complexity classes [46, 47]. The class of worst-
case polynomial time is the class of decision problems
that are solvable in polynomial time. Whereas P is a
class of decision problems, average-case polynomial time
AvgP and heuristic polynomial time HeurP are the classes
of distributional decision problems that consist not only
of decision problems but also of the target probability
distributions of the input. In solving the distributional

problems, the runtime of an algorithm may probabilisti-
cally change depending on the input given from the dis-
tribution. The runtime of solving the problem in AvgP
should be polynomial in input length on average over in-
puts given from the distribution [72], which may allow,
e.g., an exponentially long runtime to obtain a correct
answer for an exponentially small fraction of the inputs.
On the other hand, HeurP requires that the runtime of
correctly solving the problem should be polynomial only
for a sufficiently large fraction of (yet not all) the inputs
from the distribution, and for the rest of the small frac-
tion of the inputs, the algorithm may output a wrong
answer [46, 47]. Note that in the heuristic class, the av-
erage runtime of correctly solving the problem is not nec-
essarily bounded. By definition, the worst-case complex-
ity class is contained in the average-case class, and the
average-case class in the heuristic class; i.e., it is shown
that P ⊆ AvgP ⊆ HeurP [73]. More formally, we define
the worst-case, average-case, and heuristic classes with
reference to P as follows. Note that for our analysis of
learning, only the worst-case and heuristic classes are rel-
evant, while the average-case classes are discussed here
for clarity of presentation; thus, we may stop mentioning
the average-case classes after this definition.

Definition S3 (Worst-case, average-case, and heuristic
polynomial time [46, 47, 72]). We define the worst-case,
average-case, and heuristic complexity classes, namely,
P, AvgP, and HeurP, respectively, as follows.

1. A decision problem, i.e., a function L : {0, 1}∗ →
{0, 1} with a single-bit output, is in P if there exists
a deterministic classical algorithm A such that for
every N and every input x ∈ {0, 1}N , A outputs
L(x) in poly(N) time.

2. A distributional problem (L,D) is in AvgP if there
exists a deterministic classical algorithm A and a
constant d such that for every N

Ex∼DN

[
tA(x)

1
d

N

]
= O(1), (A6)

where tA(x) is the time taken to calculate L(x) by
A, and Ex∼DN

[· · · ] is the expected value over x
drawn from DN .

3. A distributional problem (L,D) is in HeurP if there
exists a deterministic classical algorithm A such
that for every N and all 0 < µ < 1, the runtime
tA(x, µ) of A for every input x in the support of
DN is tA(x, µ) = O(poly(N, 1/µ)), and the output
A(x, µ) of A satisfies

Pr
x∼DN

[A(x, µ) = L(x)] ≥ 1− µ. (A7)

Next, we define the classes of problems solvable by a
(classical) randomized algorithm. In Definition S3, we
use a deterministic classical algorithm to solve problems.
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By contrast, in the randomized algorithms, we need to
take into account errors arising from the randomization.
Corresponding to P and HeurP, we define the two classes
of problems for randomized algorithms as follows.

Definition S4 (Worst- and heuristic bounded-error
probabilistic polynomial time [46, 47]). We define a
worst-case class BPP and a heuristic class HeurBPP for
classical randomized algorithms as follows.

1. A decision problem L is in BPP if there exists a
classical randomized algorithm A such that for ev-
ery N and every input x ∈ {0, 1}N , the runtime
tA(x) of A is tA(x) = O(poly(N)), and the output
A(x) of A satisfies

Pr[A(x) = L(x)] ≥ 2/3, (A8)

where the probability is taken over the randomness
of A.

2. A distributional problem (L,D) is in HeurBPP if
there exists a classical randomized algorithm such
that for every N and all 0 < µ < 1, the runtime
tA(x, µ) of A for every input x in the support of
DN is tA(x, µ) = O(poly(N, 1/µ)), and the output
A(x, µ) of A satisfies

Pr
x∼DN

[Pr[A(x, µ) = L(x)] ≥ 2/3] ≥ 1− µ, (A9)

where the inner probability of A(x, µ) = L(x) is
taken over randomness of A.

Whereas we have so far explained complexity classes
of decision problems, i.e., those for computing functions
with a single-bit output, our analysis will use a Boolean
function with a single multi-bit output for each N -bit
input

fN : {0, 1}N → {0, 1}D(N), (A10)

where D : N → N is any function satisfying D(N) =
O(poly(N)), and we may abbreviate D(N) as D in the
following of this paper. Accordingly, we define the com-
plexity classes of function problems, i.e., problems of
computing such multi-bit output functions fN . For the
heuristic complexity class, we also refer to a family of
problems {(fN ,DN )}N∈N as distributional function prob-
lems. Whenever fN is used in the following of this paper,
it refers to a function with a single multi-bit output for
each input. Note that the complexity classes of function
problems may also be defined as those of search problems,
which can be considered to be the problems of comput-
ing functions with many possible outputs for each input,
and the algorithms aim to search for one of the possi-
ble outputs for a given input. But even if one considers
such a more general definition, functions fN relevant to
our analysis are those with a single output for each input;
correspondingly, we here present the definitions using the
single-output functions for simplicity.

Definition S5 (Worst-case and heuristic distributional
function bounded-error polynomial time). We define a
worst-case class FBPP and a heuristic class HeurFBPP
for computing multi-bit output functions as follows.

1. Given RN := {(x, fN (x))}x∈{0,1}N and R :=⋃
N RN , the relation R is in FBPP if there ex-

ists a randomized classical algorithm A such that
for all N , every input x ∈ {0, 1}N , and all 0 <
ν < 1, the runtime tA(x, ν) of A is tA(x, ν) =
O(poly(N, 1/ν)), and the output A(x, ν) of A sat-
isfies

Pr[(x,A(x, ν)) ∈ RN ] ≥ 1− ν, (A11)

where the probability is taken over the randomness
of A.

2. A distributional function problem F =
{(fN ,DN )}N∈N is in HeurFBPP if there exists a
classical randomized algorithm A such that for all
N and all 0 < µ, ν < 1, the runtime tA(x, µ, ν) of
A for every input x ∈ {0, 1}N in the support of
DN is tA(x, µ, ν) = O(poly(N, 1/µ, 1/ν)), and the
output A(x, µ, ν) of A satisfies

Pr
x∼DN

[Pr[A(x, µ, ν) = fN (x)] ≥ 1− ν] ≥ 1− µ, (A12)

where the inner probability of A(x, µ, ν) = fN (x) is
taken over randomness of A.

We next define the classes FBQP and HeurFBQP of
problems efficiently solvable by quantum algorithms.
The classes defined so far are the computational com-
plexity classes for deterministic or randomized classical
algorithms, but we here define FBQP and HeurFBQP us-
ing quantum algorithms in place of the classical algo-
rithms. The class HeurFBQP will be used for our con-
struction of learning tasks in Definition S8 of Section B 1
to prove the advantage of QML. Note that we have
FBQP ⊆ HeurFBQP in the same way as P ⊆ HeurP.
Working on HeurFBQP, we aim to make it possible to
use a potentially larger class of computational advantages
of heuristic quantum algorithms captured by HeurFBQP
rather than FBQP, so as to achieve a wider class of learn-
ing tasks more efficiently.

Definition S6 (Worst-case and heuristic distributional
function bounded-error quantum polynomial time). We
define a worst-case class FBQP and a heuristic class
HeurFBQP for quantum algorithms as follows.

1. Given RN = {(x, fN (x))}x∈{0,1}N and R =⋃
N RN , the relation R is in FBQP if there exists a

quantum algorithm A such that for all N , every in-
put x ∈ {0, 1}N , all 0 < ν < 1, the runtime tA(x, ν)
of A is tA(x, ν) = O(poly(N, 1/ν)), and the output
A(x, ν) of A satisfies

Pr[(x,A(x, ν)) ∈ RN ] ≥ 1− ν, (A13)

where the probability is taken over the randomness
of A.
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2. A distributional function problem F =
{(fN ,DN )}N∈N is in HeurFBQP if there ex-
ists a quantum algorithm A such that for all N
and all 0 < µ, ν < 1, the runtime tA(x, µ, ν) of A
for every input x ∈ {0, 1}N in the support of DN is
tA(x, µ, ν) = O(poly(N, 1/µ, 1/ν)), and the output
A(x, µ, ν) of A satisfies

Pr
x∼DN

[Pr[A(x, µ, ν) = fN (x)] ≥ 1− ν] ≥ 1− µ, (A14)

where the inner probability of A(x, µ, ν) = fN (x) is
taken over randomness of A.

Finally, we introduce the complexity classes with ran-
domized advice strings [49]. As discussed in Section A1,
the analysis of the efficient evaluatability in the PAC
learning model needs to take into account the ran-
domized advice strings of at most O(poly(N, 1/ϵ, 1/δ))
length [18, 19, 48]. To capture the power of the bit strings
representing the hypotheses to be evaluated, we consider
the complexity classes with a polynomial-length random-
ized advice string as follows.

Definition S7 (Worst-case and heuristic distributional
function bounded-error polynomial time with random-
ized advice). We define a worst-case class FBPP/rpoly
and a heuristic class HeurFBPP/rpoly with advice as fol-
lows.

1. Given RN = {(x, fN (x))}x∈{0,1}N and R =⋃
N RN , the relation R is in FBPP/rpoly if there

exists a randomized classical algorithm A such
that for all N , every input x ∈ {0, 1}N , and all
0 < ν, ξ < 1, there exists an advice distribu-
tion Dadv

N,ν,ξ over {0, 1}O(poly(N,1/ν,1/ξ)) such that

the runtime tA(x, α, ν, ξ) of A is tA(x, α, ν, ξ) =
O(poly(N, 1/ν, 1/ξ)), and the output A(x, α, ν, ξ) of
A satisfies

Pr
α∼Dadv

N,ν,ξ

[Pr[(x,A(x, α, ν, ξ)) ∈ RN ]

≥ 1− ν] ≥ 1− ξ, (A15)

where the inner probability is taken over the ran-
domness of A.

2. A distributional function problem F =
{(fN ,DN )}N∈N is in HeurFBPP/rpoly if there
exists a randomized classical algorithm A
such that for all N and all 0 < µ, ν, ξ < 1,
there exists an advice distribution Dadv

N,µ,ν,ξ

over {0, 1}O(poly(N,1/µ,1/ν,1/ξ)) such that the
runtime tA(x, α, µ, ν, ξ) of A for every in-
put x ∈ {0, 1}N in the support of DN is
tA(x, α, µ, ν, ξ) = O(poly(N, 1/µ, 1/ν, 1/ξ)),
and the output A(x, α, µ, ν, ξ) of A satisfies

Pr
x∼DN

[
Pr

α∼Dadv
N,µ,ν,ξ

[Pr[A(x, α, µ, ν, ξ) = fN (x)]

≥ 1− ν] ≥ 1− ξ] ≥ 1− µ, (A16)

where the probability of A(x, α, µ, ν, ξ) = fN (x) is
taken over randomness of A.

We similarly define other possible classes such as FP
by combining the above definitions.

Appendix B: Advantage of QML from general
quantum computational advantages

In this section, we prove that, for general quantum
computational advantages, we can correspondingly con-
struct learning tasks that are hard for classical compu-
tation but can be efficiently solved by quantum com-
putation, within the conventional framework of super-
vised learning (i.e., in the PAC model formulated in
Section A1). In previous work [16–20], the advantage
of QML was observed under the computational hard-
ness assumption for a specific type of problem, such as
that solved by Shor’s algorithms. References [18, 19]
also provide a learning problem with the advantage of
QML based on more general quantum computational ad-
vantages than that of Shor’s algorithms, but the con-
cept class therein was limited to be polynomial-size
ones, which can be straightforwardly solved by a brute-
force algorithm. In contrast, the learning tasks intro-
duced here will have exponential-size concept classes
and yet will still be based on general types of quan-
tum computational advantages, i.e., arbitrary functions
in HeurFBQP \(HeurFBPP/rpoly) rather than just that
of Shor’s algorithms. In Section B 1, we explicitly give
the concept class of these learning tasks as linear sepa-
ration problems in the space of bits. In Section B 2, we
construct polynomial-time quantum algorithms for learn-
ing and evaluation in our learning tasks. In Section B 3,
we rigorously prove the classical hardness of the learning
tasks.

1. Formulation of learning tasks

In this section, we construct learning tasks using gen-
eral types of quantum advantages based on complexity
classes introduced in Section A2.

First, we define the general complexity class of func-
tions to be used for formulating our learning task. Al-
though Refs. [18, 19] studied conditions on the complex-
ity classes that potentially lead to the advantage of QML,
the analyses in Refs. [18, 19] were based on worst-case
complexity [18, 19] and were not able to explicitly con-
struct the learning tasks satisfying their conditions in
general. By contrast, we here identify an appropriate
class of functions using the heuristic complexity classes,
so that we can use any functions in this class for our
explicit construction of the learning tasks with the prov-
able advantage of QML. The class that we use is given
as follows.
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Definition S8 (Quantumly advantageous functions).
For a distributional functions problem {(fN ,DN )}N∈N in

{(fN ,DN )}N ∈ HeurFBQP \(HeurFBPP/rpoly), (B1)

we call fN a quantumly advantageous function under the
target distribution DN .

As presented in the main text, the quantumly ad-
vantageous functions may include various functions be-
yond those computed by Shor’s algorithms. Since we
use heuristic complexity classes, the class of functions in
Definition S8 is even larger than the class defined by the
worst-case complexity classes, as discussed in Section A2.
For example, our definition does not rule out the possi-
bility of using heuristic quantum algorithms such as the
variational quantum algorithms (VQAs) for seeking evi-
dence of the utility of QML based on the heuristic com-
plexity class [74], in case one finds a variant of such quan-
tum algorithms that are faster than classical algorithms
for most of the inputs.

We define our concept class using the quantumly ad-
vantageous functions below. In the existing work [16–19]
on the advantage of QML, the target distribution was
limited to the uniform distribution, and the task was de-
pendent on the specific mathematical structure of the
functions computed by Shor’s algorithms; by contrast,
we allow for an arbitrary target distribution DN over N
bits, and we can use an arbitrary quantumly advanta-
geous function without specifically depending on Shor’s
algorithms.

Definition S9 (Concept class for the advantage of QML
from general computational advantages). For any N ,
D = O(poly(N)), any target distribution DN over an
input space XN ⊆ {0, 1}N of N bits, and any quantumly
advantageous function fN : {0, 1}N → FD

2 under DN ,
we define a concept class CN over the input space XN as
CN = {cs}s∈FD

2
with its concept cs for each parameter

s ∈ FD
2 given by

cs(x) := fN (x) · s ∈ F2 = {0, 1}, (B2)

where fN (x) · s for fN (x), s ∈ FD
2 = {0, 1}D is a bitwise

inner product in the vector space FD
2 over the finite field.

2. Construction of polynomial-time quantum
algorithms for learning and evaluation

In this section, we show polynomial-time quantum al-
gorithms for learning concepts in the concept class in Def-
inition S9 and for evaluating hypotheses in the hypothesis
class for this concept class. A challenge here arises from
the fact that our concept class CN in Definition S9 may
have an exponential size in N . To see the importance
of addressing this challenge, recall that, for example,
Refs. [18, 19] also analyzed the advantage of QML based
on general quantum computational advantages, but their
results were only applicable to polynomial-size concept

classes so that their concept classes should be efficiently
learnable by a brute-force quantum algorithm that just
tries all the concepts in the concept class. However, our
interest here is whether QML can learn concepts with-
out such a brute-force approach. Advancing ahead, our
results overcome such limitations by constructing QML
algorithms achieving efficient learning and evaluation for
the exponential-size concept classes, of which we will also
prove the hardness for any classical learning methods in
Sec. B 3. Below, we first describe our learning algo-
rithm (Algorithm S1) and prove the quantum efficient
learnability for our concept class. We then describe our
evaluation algorithm (Algorithm S2) and prove the quan-
tum efficient evaluatability for the hypothesis class con-
structed for our concept class.
We first describe our quantum algorithm for learn-

ing. Our algorithm for learning a target concept in
our concept class is given by Algorithm S1. The con-
cept class CN = {cs : s ∈ FD

2 } is defined in Defini-
tion S9 for any (unknown) target distribution DN over
XN ⊆ FN

2 and any quantumly advantageous function
fN : {0, 1}N → FD

2 . Let cs denote the unknown target
concept to be learned from the samples by the algorithm,
where s is the true parameter of the target concept. For
any ϵ > 0 and δ > 0, our algorithm aims to achieve
the learning in Definition S1, i.e., to output s̃ so that a
hypothesis hs̃ represented by s̃ should satisfy

Pr
x∼DN

[hs̃(x) ̸= cs(x)] ≤ ϵ (B3)

with a high probability greater than or equal to 1−δ. To
this goal, we set the internal parameters in Algorithm S1
as

M =

⌈
D

ϵ
− 1

⌉
, (B4)

µ =
δ

2M
, (B5)

ν =
δ

2M
, (B6)

where ⌈x⌉ is the ceiling function, i.e., the smallest integer
greater than or equal to x.
In Algorithm S1, M samples are initially loaded as

the input, obtained from the oracle EX in the setting of
the PAC learning model described in Section A1. The
M samples are denoted by {(xm, cs(xm))}Mm=1, where cs
is the (unknown) target concept to be learned from the
samples by the algorithm. Then, the algorithm proba-
bilistically computes the quantumly advantageous func-
tion fN for each of the M input samples x1, . . . , xM . By
definition of the quantumly advantageous function fN in
HeurFBQP of (A14), we have a quantum algorithm A to
achieve

Pr
x∼DN

[Pr [A(x, µ, ν) = fN (x)] ≥ 1− ν] ≥ 1− µ, (B7)

with runtime

tA(x, µ, ν) = O

((
N

µν

)α)
, (B8)
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where α > 0 is an upper bound of the degree of the
polynomial runtime. To compute fN , Algorithm S1 ap-
plies the quantum algorithm A to each of x1, . . . , xM .
We write the outputs of A as A(x1), . . . ,A(xM ) ∈ FD

2 ,
respectively, where we will omit µ and ν for simplicity
of notation if it is obvious from the context. Note that
A may not be a deterministic algorithm, and thus, we
may have A(xm) = fN (xm) only probabilistically. Us-
ing A(x1), . . . ,A(xM ) obtained from these computations,
the algorithm performs Gaussian elimination by classical
computation to solve a system of linear equations

A(x1) · s̃ = cs(x1),

A(x2) · s̃ = cs(x2),

...

A(xM ) · s̃ = cs(xM ),

(B9)

where the left-hand sides of the system of linear equa-
tions are the bitwise inner product in the space FD

2 of
the D-dimensional vectors over the finite field. This step
provides a solution

s̃ =


s̃1
s̃2
...
s̃D

 ∈ FD
2 (B10)

of the system of linear equations. This system of linear
equations always has the true parameter s of the target
concept cs as a solution but may have more than one
solution if the set {A(x1), . . . ,A(xM )} does not include
a spanning set of D vectors in the D-dimensional vector
space FD

2 . The non-spanning cases indeed occur in our
setting, especially when the support of DN or the range
of fN is small, on which we impose no assumption for
the generality of our learning task. Even if the system
of linear equations has more than one solution, the algo-
rithm can nevertheless adopt any solution of (B9) as s̃
in (B10). The learning algorithm outputs this parameter
s̃ as a representation of the hypothesis given by

hs̃(x) = fN (x) · s̃, (B11)

where the right-hand side is the bitwise inner product in
FD
2 . The hypothesis class is then given by

HN := {hs̃ : s̃ ∈ FD
2 }. (B12)

In the following, we will prove the efficient learnability
of our concept class CN by Algorithm S1. The proof is
nontrivial since the parameter s̃ in (B10) output by our
learning algorithm may not be exactly equal to true s of
the target concept cs but can be any of multiple possible
solutions of the system of linear equations in (B9); i.e.,
we need to take into account the cases of

s̃ ̸= s. (B13)

Algorithm S1 Quantum algorithm for learning a
concept in the concept class in Definition S9

Input: Samples loaded from the oracle EX, ϵ > 0, and δ > 0.
Output: A D-bit representation s̃ ∈ FD

2 of the hypothesis
hs̃ in (B11) in the hypothesis class in (B12) achieving
the error below ϵ with high probability at least 1 − δ, as
in (B3).

1: Load M samples (x1, cs(x1)), . . . , (xM , cs(xM )) from the
oracle EX with M given in (B4).

2: for m = 1, . . . ,M do
3: Perform the quantum algorithm A in (B7) for the input

xm with the parameters µ and ν in (B5) and (B6),
respectively, to obtain A(xm).

4: end for
5: Perform Gaussian elimination by classical computation

for solving the system of linear equations in (B9), using
A(x1), . . . ,A(xM ) obtained in the previous steps and the
output samples cs(x1), . . . , cs(xM ) loaded initially, to ob-
tain a solution s̃ in (B10).

6: return s̃.

Algorithm S2 Quantum algorithm for evaluating a
hypothesis in the hypothesis class for the concept class

in Definition S9
Input: A new input x ∈ XN sampled from the target dis-

tribution DN , a parameter s̃ ∈ FD
2 of the hypothesis hs̃

in (B11) in the hypothesis class (B12), ϵ > 0, and δ > 0.

Output: An estimate h̃ ∈ {0, 1} of the hypothesis hs̃(x) for
the input x achieving the error below ϵ with high proba-
bility at least 1− δ, as in (B41).

1: Perform the quantum algorithm A in (B7) for the input
x with the parameters µ and ν in (B42) and (B43), re-
spectively, to obtain A(x).

2: return h̃ = AN (x) · s̃ in (B44).

We will nevertheless prove that we have

hs̃(x) = cs(x) (B14)

for a large fraction of x with a high probability as required
for the efficient learnability in Definition S1.
To achieve this proof, our key technique is to use the

lemma below, which indicates that if we have sufficiently
many samples x1, . . . , xM , then for a new (M+1)th input
xM+1 to be given in the future, we will be able to repre-
sent its feature yM+1 = fN (x) ∈ FD

2 as a linear combina-
tion of those of the M samples, y1 = fN (x1), . . . , yM =
fN (xM ) ∈ FD

2 , with a high probability. Using this
lemma, in our proof of efficient learnability, we will show
that the learned hypothesis hs̃(x) = fN (x) · s̃ with s̃
estimated from y1, . . . , yM will coincide with the target
concept cs(x) = fN (x)·s with true s, by expanding fN (x)
therein as the linear combination of fN (x1), . . . , fN (xM ).
In particular, we here give the following lemma.
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Lemma S10 (Probability of linear combination). Sup-
pose that M vectors y1, . . . , yM ∈ FD

2 are sampled from
any probability distribution on a D-dimensional vector
space FD

2 over the finite field in an identically and iden-
tically distributed (IID) way. If the (M + 1)th vector y
is sampled from the same distribution, then y can be rep-
resented by a linear combination of the other M vectors
y1, . . . , yM , i.e.,

y =
M∑

m=1

αmym for some αm ∈ F2 = {0, 1}, (B15)

with a high probability greater than or equal to

1− D

M + 1
. (B16)

Proof. We write yM+1 := y. Given any sequence
y1, . . . , yM+1 of the M +1 vectors, let m′ be the number
of nonzero vectors in (y1, . . . , yM+1) such that the vec-
tor cannot be represented by a linear combination of the
other M vectors. Let p(m′) denote the probability that
the sequence y1, . . . , yM+1 randomly chosen by the IID
sampling includes exactly m′ vectors that cannot be rep-
resented by a linear combination of the other M . Since
the space FD

2 is D-dimensional, we always have

m′ ≤ D, (B17)

that is,

D∑
m′=0

p(m′) = 1. (B18)

For example, we may have m′ = D in the cases where
the sequence includes the D vectors that form a basis of
the vector space FD

2 , and the other N − D vectors are
zero vectors.

Conditioned on having thesem′ vectors in the sequence
of M +1 vectors, the probability of (B15) is bounded by
the probability of having one of the m′ vectors out of the
M + 1 vectors as the (M + 1)th vector, i.e.,

Pr

[
yM+1 ̸=

M∑
m=1

αmym ∀αm ∈ F2

∣∣∣∣∣m′

]

=
m′

M + 1
(B19)

≤ D

M + 1
, (B20)

where the first equality follows from the assumption
of IID sampling, and the inequality in the last line
from (B17). Therefore, it holds that

Pr

[
yM+1 ̸=

M∑
m=1

αmym ∀αm ∈ F2

]

=
M∑

m′=0

p(m′)Pr

[
yM+1 ̸=

M∑
m=1

αmym ∀αm ∈ {0, 1}

∣∣∣∣∣m′

]

≤

(
M∑

m′=0

p(m′)

)
D

M + 1
(B21)

=
D

M + 1
, (B22)

which yields the conclusion.

Using Lemma S10, we prove that the concept class
CN in Definition S9 is quantumly efficiently learnable as
follows.

Theorem S11 (Quantumly efficient learnability). For
any N , D = O(poly(N)), any target distribution DN over
the N -bit input space XN ⊆ {0, 1}N , and any quantumly
advantageous function fN : {0, 1}N → FD

2 under DN , the
concept class CN in Definition S9 with fN is quantumly
efficiently learnable by Algorithm S1.

Proof. In the following, we will first discuss the success
probability of our algorithm and then analyze the error
in the learning. Finally, we will provide an upper bound
of the runtime.
Regarding the success probability of Algorithm S1, the

probabilistic parts of the learning algorithm are the load-
ing of the M samples (x1, cs(x1)), . . . , (xM , cs(xM )) from
the oracle EX and the computations of fN (x) for all
x ∈ {x1, . . . , xM} by the quantum algorithm A. The
other parts, such as the Gaussian elimination, are deter-
ministic, as shown in Algorithm S1. In loading the M
samples, based on Lemma S10, we require that the fea-
ture map fN (x) for the next (M + 1)th sample x from
the same target distribution DN , which is to be evalu-
ated after the learning from the M samples, should be
represented as a linear combination of those of the M
samples, fN (x1), . . . , fN (xM ), with a high probability at
least 1− ϵ; i.e., it should hold that

Pr
x∼DN

[
fN (x) =

M∑
m=1

αmfN (xm)

]
≥ 1− ϵ. (B23)

Using Lemma S10 with y1 = fN (x1), . . . , yM = fN (xM ),
and y = fN (x), we see that, with M given by (B4), this
requirement is fulfilled. Also, in the computations of fN ,
we require that the probabilistic quantum algorithm A
should simultaneously achieve

A(x1) = fN (x1), . . . ,A(xM ) = fN (xM ), (B24)

with a high probability of at least 1 − δ. For each m ∈
{1, . . . ,M}, due to (B7) and the union bound, we have
A(xm) = fN (xm) with a probability at least

1− (µ+ ν); (B25)

then, due to the union bound, the probability of hav-
ing (B24) simultaneously is at least

1−M(µ+ ν). (B26)

Thus, with µ chosen as (B5) and ν as (B6), the require-
ment in (B24) is fulfilled. As a whole, the requirement
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in (B23) is always satisfied for our choice of M , and the
requirement in (B24) is satisfied with a high probability
at least 1 − δ for our choice of µ and ν, which guaran-
tees that the overall success probability of the learning
algorithm is lower bounded by 1− δ.

Given that the requirements in (B23) and (B24) are
fulfilled, the error in learning as in Definition S1 is
bounded as follows. Under (B23) and (B24), for any
x satisfying

fN (x) =
M∑

m=1

αmfN (xm), (B27)

the hypothesis hs̃ in (B11) parameterized by s̃ ∈ FD
2

output by Algorithm S1 can correctly classify x as

hs̃(x) = fN (x) · s̃ (B28)

=

M∑
m=1

αmfN (xm) · s̃ (B29)

=
M∑

m=1

αmA(xm) · s̃ (B30)

=
M∑

m=1

αmcs(xm) (B31)

=
M∑

m=1

αmfN (xm) · s (B32)

= fN (x) · s (B33)

= cs(x), (B34)

where (B29) follows from (B27), (B30) from (B24),
and (B31) from (B9). Therefore, due to the requirement
of (B23), we have

Pr [h(x) = cs(x)] ≥ 1− ϵ; (B35)

that is, the error in (A1) is bounded by

error(h) = Pr [h(x) ̸= cs(x)] ≤ ϵ, (B36)

as required for the learnability in Definition S1.
The runtime of Algorithm S1 is dominated by the com-

putations of fN by A and the Gaussian elimination. We
first consider the runtime of computing fM for the M
samples x1, . . . , xM . For each xm with m ∈ {1, . . . ,M},
the runtime of the quantum algorithm A for computing
fN is given by tA(xm) in (B8); thus, the runtime of the
M calculations is

M∑
m=1

tA(xm) = O

(
M

(
N

µν

)α)
. (B37)

In addition, the runtime of performing the Gaussian elim-
ination to find a solution s̃ ∈ FD

2 of the system ofM linear
equations in (B9) (with D ≤ M due to (B4)) is

O(M3). (B38)

In total, for M in (B4), µ in (B5), ν in (B6), and
D = O(poly(N)) = O(Nβ) with some β > 0, the overall
runtime of Algorithm S1 is upper bounded by

O

(
M

(
N

µν

)α)
+O(M3)

= O

(
N2αβ+α+β

δ2αϵ2α+1
+

N3β

ϵ3

)
(B39)

= O

(
poly

(
N,

1

ϵ
,
1

δ

))
, (B40)

as required for efficient learnability in Definition S1.

Next, we describe our quantum algorithm for evaluat-
ing the hypotheses for our concept class. Our quantum
algorithm for evaluating a hypothesis hs̃ in (B11) with
the learned parameter s̃ is given by Algorithm S2, where
the hypothesis class is in (B12). In our case, the parame-
ter s̃ serves as the D-bit representation of the hypothesis,
corresponding to σh in Definition S2 of the efficient eval-
uatability. For any ϵ > 0 and δ > 0, our evaluation
algorithm aims to achieve the efficient evaluation in Def-
inition S2; in particular, the evaluation algorithm aims
to output an estimate h̃ ∈ {0, 1} of the hypothesis hs̃(x)
for the input x so as to satisfy

Pr
x∼DN

[
Pr
[
h̃ = hs̃(x)

]
≥ 1− δ

]
≥ 1− ϵ, (B41)

where the inner probability is taken over the randomness
of the evaluation algorithm. To this goal, we set the
internal parameters in Algorithm S2 as

µ =ϵ (B42)

ν =δ. (B43)

In algorithm S2, an unseen input x is initially given
by sampling from the target distribution DN . Then, the
algorithm probabilistically computes the quantumly ad-
vantageous function fN for the input x, using the same
quantum algorithm A as that used in our learning algo-
rithm, i.e., that in (B7) and (B8), yet with the param-
eters µ in (B42) and ν in (B43). We let A(x) denote
the output of A in (B7) for the input x, where we will
omit µ and ν for simplicity of notation if it is obvious
from the context. Note that A may not be a determin-
istic algorithm; that is, we may have A(x) = fN (x) only
probabilistically, as shown in (B7). Finally, using the
given parameter s̃ of the hypothesis hs̃, the evaluation
algorithm calculates the bitwise inner product of A(x)
obtained from the above computation and s̃, so as to
output

h̃ := A(x) · s̃. (B44)

We now prove the quantumly efficient evaluatability
of the hypothesis class HN in (B12) by Algorithm S2 as
follows.
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Theorem S12 (Quantumly efficient evaluatability). For
any N , D = O(poly(N)), any target distribution DN over
the N -bit input space XN ⊆ {0, 1}N , and any quantumly
advantageous function fN : {0, 1}N → FD

2 under DN ,
the hypothesis class HN in (B12) with fN , parameter-
ized by s̃ ∈ FD, is quantumly efficiently evaluatable by
Algorithm S2.

Proof. In the following, we will first discuss the success
probability of our evaluation algorithm and then provide
an upper bound of the runtime.

The probabilistic part of Algorithm S2 is confined
solely to the computation of fN (x) by the quantum al-
gorithm A, and the other parts, such as the bitwise
inner product, are deterministic. The requirement for
this probabilistic part is that the quantum algorithm A
should compute fN (x) correctly for a large fraction 1− ϵ
of the given input x with high probability at least 1− δ,
i.e.,

Pr
x∼DN

[Pr [A(x) = fN (x)] ≥ 1− δ] ≥ 1− ϵ. (B45)

Using A in (B7) with µ chosen as (B42) and ν as (B43),
we fulfill this requirement. Conditioned on having

A(x) = fN (x), (B46)

the output h̃ in (B44) becomes

h̃ = A(x) · s̃ = fN (x) · s̃ = hs̃(x). (B47)

Consequently, Algorithm S2 outputs h̃ satisfying

Pr
x∼DN

[
Pr
[
h̃ = hs̃(x)

]
≥ 1− δ

]
≥ 1− ϵ, (B48)

as required for the evaulatability in Definition S2.
The runtime of Algorithm S2 is dominated by the com-

putation of fN by A and the bitwise inner product. We
first consider the runtime tA of A for the input x. We
have the algorithm A satisfying (B8). Accordingly, with
µ chosen as (B42) and ν as (B43), we have

tA(x) = O

((
N

µν

)α)
(B49)

= O

((
N

ϵδ

)α)
. (B50)

Also, the runtime of the bitwise inner product of vector
in the D-dimensional vector space FD

2 over the finite field
in (B44) is

O(D). (B51)

Thus, for µ in (B42), ν in (B43), and D = O(poly(N)) =
O(Nβ) with some β > 0, the overall runtime of Algo-
rithm S2 is upper bounded by

O

((
N

ϵδ

)α)
+O(D) (B52)

= O

((
N

ϵδ

)α)
+O

(
Nβ
)

(B53)

= O

(
poly

(
N,

1

ϵ
,
1

δ

))
, (B54)

as required for the efficient evaluatablity in Definition S2.

3. Provable hardness for any polynomial-time
classical algorithm

In this section, we prove the classical hardness of ef-
ficient learning and efficient evaluation for our concept
class in Definition S9. Our proof is given by contradic-
tion; that is, we will prove that, assuming that there
exists a classically efficient evaluatable hypothesis class
(Definition S2) for classically efficient learnability (Defi-
nition S1) of our concept class, one would be able to con-
struct a polynomial-time classical algorithm to compute
a quantumly advantageous function fN in Definition S8
using the polynomial-time classical algorithms for evalu-
ating the hypotheses in this hypothesis class. This clas-
sical algorithm is presented in Algorithm S3. The rest of
this section first describes this classical algorithm for the
reduction of evaluating hypotheses to computing fN and
then provides the full proof of the classical hardness.
To see the significance of our construction of this clas-

sical algorithm for the reduction, recall that it has been
challenging to prove the classical hardness of learning
without relying on discrete logarithms or integer fac-
toring, which are solved by Shor’s algorithms; by con-
trast, our proof of the classical hardness is applicable
to any quantumly advantageous function beyond the
scope of Shor’s algorithms. Note that, in this direc-
tion, Refs. [18, 19] have also considered a concept class to
show the advantage of QML based on general quantum
computational advantages, but their results were appli-
cable only to polynomial-size concept classes that can
be learned by a brute-force algorithm, and our inter-
est here is exponential-size concept classes that cannot
be learned in such a brute-force approach. The tech-
nique of the proof by contradiction itself may be well
established in the complexity theory and also used info
showing the classical hardness of learning in the previous
works [5, 6, 16–20, 24]. However, the existing proofs of
the classical hardness in these previous works essentially
depend on a specific mathematical structure of discrete
logarithms and integer factoring, so as to go through a
cryptographic argument based on these computational
problems. To go beyond the realm of Shor’s algorithms,
novel techniques without relying on the existing cryp-
tographic approach need to be developed. In contrast
with these existing works, for our exponential-size con-
cept class with its feature space formulated as the space
of bit strings, which is quantumly efficiently learnable
and evaluatable as shown in Sec. B 2, we prove the classi-
cal hardness based on any quantumly advantageous func-
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Algorithm S3 Classical algorithm for the reduction of
evaluating the hypotheses for the concept class in

Definition S9 to computing the quantumly
advantageous function in Definition S8

Input: A new input x ∈ XN sampled from the target dis-
tribution DN , µ, ν, ξ > 0, a randomized advice string
α ∼ Dadv

N,µ,ν,ξ in (B67) providing the representations α =
(σhs1

, . . . , σhsD
) of D hypotheses hs1 , . . . , hsD in (B62)

for the concept class CN in Definition S9.
Output: An estimate f̃ of a quantumly advantageous func-

tion f̃N (x) for CN achieving (B55) and (B56).
1: for d = 1, . . . , D do
2: Perform the quantum algorithm A in (B64) and (B65)

for x, σhs1
, ϵ in (B59), and δ in (B60), to compute an

estimate h̃sd ∈ {0, 1} of hsd(x).
3: end for

4: return f̃ =
(
h̃s1 , . . . , h̃s1

)⊤
in (B66).

tions in Definition S8, without depending on any specific
quantum algorithm such as Shor’s algorithms.

To show this, for any target distributionDN , any quan-
tumly advantageous function fN : {0, 1}N → FD

2 under
DN in Definition S8 with D = O(poly(N)), and our con-
cept class CN in Definition S9, we assume that CN is
classically efficiently learnable as in Definition S2 by a
hypothesis class HN , and the hypothesis class HN is clas-
sically efficiently evaluatable as in Definition S2. Under
this assumption, we construct a polynomial-time classi-
cal algorithm for the reduction of the efficient evaluation
of the hypotheses in HN to the computation of fN , as
shown in Algorithm S3, which will lead to the contradic-
tion. Given an input x drawn from DN and an appro-
priate choice of a polynomial-length randomized advice
string α sampled from a advice distribution Dadv

N,µ,ν,ξ as

in the definition of HeurFBPP/rpoly in (A16), the goal
of Algorithm S3 is, for all 0 < µ < 1, 0 < ν < 1, and
0 < ξ < 1, to output an estimate f̃ ∈ FD

2 of fN (x) satis-
fying

Pr
x∼DN

[
Pr

α∼Dadv
N,µ,ν,ξ

[Pr[A(x, α, µ, ν, ξ) = fN (x)]

≥ 1− ν] ≥ 1− ξ] ≥ 1− µ, (B55)

within runtime

tA(x, α, µ, ν, ξ) = O

(
poly

(
N,

1

µ
,
1

ν
,
1

ξ

))
, (B56)

where α will be given from distributions of the represen-
tations of D hypotheses in HN as described below. To
this goal, we set the internal parameters in Algorithm S3
as

ϵlearn =
µ

2D
, (B57)

δlearn =
ξ

D
, (B58)

ϵeval =
µ

2D
, (B59)

δeval =
ν

D
. (B60)

In Algorithm S3, an input x drawn from the distri-
bution DN is initially given, and the representations of
hypotheses for D concepts in our concept class CN are
also initially given. In particular, let

{sd ∈ FD
2 }d=1,...,D (B61)

denote the standard basis of the D-dimensional vector
space FD

2 , where the dth element of the vector sd ∈ FD
2

is 1, and all the other elements of sd are 0. Then, under
the assumption of the classically efficient learnability of
CN , for each sd and all 0 < ϵlearn, δlearn < 1, there should
exist a classical algorithm that outputs, with a high prob-
ability of at least 1 − δlearn, a representation σhsd

of a
hypothesis hsd such that

Pr
x∼DN

[hsd(x) ̸= csd(x)] ≤ ϵlearn, (B62)

and σhsd
should be of polynomial length

size
(
σhsd

)
= O

((
N

ϵlearnδlearn

)η)
, (B63)

where η > 0 is an upper bound of the degree of the poly-
nomial length. Note that our proof of the hardness does
not use the learning algorithm directly in Algorithm S3,
but the assumption of classically efficient learnability is
used to guarantee the existence of the hypotheses that ap-
proximate the concepts well and have polynomial-length
representations, as in (B62) and (B63).
Furthermore, under the assumption of the classically

efficient evaluatability of this hypothesis class, there
should exist a classical (randomized) algorithm A such
that for the representation σhsd

of each hypothesis hsd

with sd in (B61), and all 0 < ϵeval, δeval < 1, the al-

gorithm A outputs an estimate h̃sd ∈ {0, 1} of hsd(x)
satisfying

Pr
x∼DN

[
Pr
[
h̃sd = hsd(x)

]
≥ 1− δeval

]
≥ 1− ϵeval,

(B64)

within polynomial runtime for all x in the support of DN

tA

(
x, σhsd

, ϵeval, δeval

)
= O

((
N

ϵevalδeval

)γ)
, (B65)

where γ > 0 is an upper bound of the degree of the
polynomial runtime.
Under this assumption on the classically efficient learn-

ability and the classically efficient evaluatability, Algo-
rithm S3 uses the classical evaluation algorithm A to
compute each of the D hypotheses hs1(x), . . . , hsD (x)

for the input x, to obtain h̃s1 , . . . , h̃sD . Note that A
may not be a deterministic algorithm, and thus, we may
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have h̃sd = hsd(x) only probabilistically. But if it holds

that h̃sd = hsd(x) = csd(x), then h̃sd is the dth bit of
fN (x) ∈ FD

2 , as can be seen from (B2). Using this prop-
erty of the vector space of bit strings, from the computed
values h̃s1 , . . . , h̃sD ∈ {0, 1}, Algorithm S3 outputs

f̃ :=


h̃s1

h̃s2
...

h̃sD

 ∈ FD
2 (B66)

as an estimate of fN (x).
Using the reduction achieved by Algorithm S3, we

prove that our concept class CN is not classically ef-
ficiently learnable by any classically efficiently evaluat-
able hypothesis class. We also note that, in previous
works [5, 16, 17, 24] of the classical hardness of learn-
ing tasks, efficient evaluatability was defined in terms
of worst-case complexity; by contrast, motivated by the
practical applicability as discussed in Section A1, our
definition of efficient evaluatablity in Definition S2 is in
terms of heuristic complexity. Since the heuristic com-
plexity classes include the corresponding worst-case com-
plexity classes as discussed in Section A2, our proof of the
classical hardness of our learning tasks for the heuristic
complexity implies the more conventional classical hard-
ness for the worst-case complexity as well.

Theorem S13 (Classical hardness). For any N , D =
O(poly(N)), any target distribution DN over the N -bit
input space XN ⊆ {0, 1}N , and any quantumly advanta-
geous function fN : {0, 1}N → FD

2 under DN , the concept
class CN in Definition S9 with fN is not classically effi-
ciently learnable by any classically efficiently evaluatable
hypothesis class.

Proof. We prove the statement by contradiction; i.e., we
show that, under the assumption that CN is classically
efficiently learnable by some classically efficiently eval-
uatable hypothesis class, there should exist a classical
randomized algorithm (Algorithm S3) with a polynomial-
length randomized advice string α achieving (B55) and
(B56) for the reduction to computing the quantum ad-
vantageous function fN . In the following, we first analyze
the length of α. Then, we consider the success probabil-
ity of our algorithm for the reduction. Finally, we discuss
the runtime of our algorithm for the reduction.

The length of the randomized advice string α is
bounded as follows. We let the advice distribution
Dadv

N,µ,ν,ξ be the output distribution of the classical ran-
domized algorithm for efficient learning that outputs
the representations of the D hypothesis satisfying (B62)
and (B63), and we use these representations as the ran-
domized advice string

α :=
(
σhs1

, . . . , σhsD

)
. (B67)

Due to (B63), (B57), (B58), and D = O(poly(N)) = Nβ

for some β > 0, the total length of α is

D∑
d=1

size(σhsd
) = O

(
D ×

(
N

ϵlearnδlearn

)η)
(B68)

= O

(
Nβη+β+η

µη

)
, (B69)

as required for HeurFBPP/rpoly in (A16).
Regarding the success probability of Algorithm S3,

conditioned on having α in (B67) with (B62) satisfied for
all d ∈ {1, . . . , D} as in (B72), the remaining probabilis-
tic parts of the algorithm are the input x from DN induc-
ing the error between the hypotheses hs1(x), . . . , hsD (x)
and the true concepts cs1(x), . . . , csD (x) in (B62), and

the computations of the estimates h̃s1 , . . . , h̃sD of the
hypotheses hs1(x), . . . , hsD (x) by the evaluation algo-
rithm A in (B64). The other parts, such as the out-

put of f̃ from h̃s1 , . . . , h̃sD in (B66), are determin-
istic, as shown in Algorithm S3. In Algorithm S3,
we require that the representation α in (B67) of the
D hypothesis hs1(x), . . . , hsD (x) sampled from Dadv

N,µ,ν,ξ
should simultaneously coincide with the true concepts
cs1(x), . . . , csD (x), i.e.,

hs1(x) = cs1(x), . . . , hsD (x) = csD (x). (B70)

With our choice of ϵlearn in (B57) and δlearn in (B58),
due to (B62) and the union bound, this requirement is
fulfilled for a large fraction of x at least

1−Dϵlearn = 1− µ

2
, (B71)

for a large fraction of the randomized advice string at
least

1−Dδlearn = 1− ξ. (B72)

In addition, we require that the estimates h̃s1 , . . . , h̃sD

simultaneously coincides with these hypotheses
hs1(x), . . . , hsD (x), i.e.

h̃s1 = hs1(x), . . . , h̃sD = hsD (x). (B73)

With our choice of ϵeval in (B59) and δeval in (B60), due
to (B64) and the union bound, this requirement is ful-
filled for a large fraction of x at least

1−Dϵeval = 1− µ

2
, (B74)

with a high probability of at least

1−Dδeval = 1− ν. (B75)

Given the requirements in (B70) and (B73), due to (B66),
the output of Algorithm S3 is

f̃ =


h̃s1

h̃s2
...

h̃sD

 =


cs1(x)
cs2(x)

...
csD (x)

 = fN (x), (B76)
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where the last equality follows from (B2) since {sd}d is
the standard basis of the D-dimensioanl vector space FD

2 .
Consequently, due to (B71), (B72), (B74), (B75), and the
union bound, the requirements in (B70) and (B73) are
simultaneously fulfilled for a large fraction of x at least

1− µ, (B77)

for a large fraction of α at least

1− ξ, (B78)

with a high probability of at least

1− ν, (B79)

which yields the success probability of our algorithm as
required for HeurFBPP/rpoly in (A16).

The runtime of Algorithm S3 is determined by the eval-
uations of the D hypotheses and the bitwise inner prod-
uct. For any x and every d ∈ 1, . . . , D, the runtime of
the classical algorithm A for computing hsd is given by

tA

(
x, σhsd

, ϵeval, δeval

)
= O

((
N

ϵevalδeval

)γ)
, (B80)

as shown in (B65). Thus, the runtime of the D evalua-
tions is

D∑
d=1

tA

(
x, σhsd

, ϵeval, δeval

)
= O

(
D

(
N

ϵevalδeval

)γ)
.

(B81)

In addition, the runtime of the output of the D-
dimensional vector f̃ in (B66) is

O(D). (B82)

Due to (B81) and (B82), for ϵeval in (B59), δeval in (B60),
and D = O(Nβ) with some constant β > 0, the overall
runtime of Algorithm S3 is upper bounded by

O

(
D

(
N

ϵevalδeval

)γ)
+O(D)

= O

(
Nβ

(
NγNβγNβγ

µγνγ

))
= O

(
N2βγ+β+γ

µγνγ

)
= O

(
poly

(
N,

1

µ
,
1

ν

))
,

(B83)

as required for HeurFBPP/rpoly in (A16).
Consequently, under the assumption that CN is clas-

sically efficiently learnable by some classically efficiently
evaluatable hypothesis class, one would be able to con-
struct Algorithm S3 achieving (B55) and (B56); that is,
the problem {(fN ,DN )} would be in HeurFBPP/rpoly.
This contradicts Definition S8 of the quantum advanta-
geous function fN .

Appendix C: Data-preparation protocols for
demonstrating advantage of QML from general

computational advantages

In this section, we propose protocols for preparing the
sample data for our learning tasks studied in Section B
so as to demonstrate the advantage of QML using our
learning tasks. A nontrivial part of our analysis of this
data preparation is that the sample data can be pre-
pared only probabilistically in our general setting; after
all, the quantumly advantageous functions used for our
concept class in Definition S9 are defined for probabilis-
tic algorithms and heuristic complexity classes in gen-
eral. Nevertheless, we provide feasible conditions for the
correct data preparation. The rest of this section is orga-
nized as follows. In Section C 1, we provide a two-party
setup for demonstrating the advantage of QML with one
party preparing the data and the other learning from
the data. In Section C 2, we describe a protocol us-
ing quantum computation to prepare the correct sample
data with a high success probability for the demonstra-
tion. In Section C 3, we describe another protocol using
classical computation to prepare the sample data with a
high success probability for the demonstration, in special
cases where the quantumly advantageous function is con-
structed based on a class of one-way permutation that is
hard to invert by a polynomial-time classical algorithm
but can be inverted by a polynomial-time quantum algo-
rithm.

1. Setup for demonstrating advantage of QML
from general computational advantages

This section provides a setup for demonstrating the
advantage of QML. In other words, we propose a learning
setting including data preparation.
In our setup, we consider two parties; a party A is

in charge of data preparation, and the other party B re-
ceives sample data fromA to perform learning. The party
A uses either quantum or classical computers to prepare
the data while B does not know how A has prepared the
data. The data should be prepared in such a way that
B can achieve the learning if B uses the quantum learn-
ing algorithm in Section B 2 but cannot if B is limited
to any polynomial-time classical learning method as in
Section B 3. See also the main text for an illustration of
the setup.
The overall protocol for A and B demonstrating the

advantage of QML in this setup is as follows. First, two
parties A and B are given the problem size N , the con-
cept class CN = {cs}s∈FD

2
specified by the quantumly

advantageous function fN : FN
2 → FD

2 under a target
distribution DN in Definition S9, the error parameter ϵ
and the confidence parameter δ, where D = O(poly(N)).
Note that the description of DN may be unknown to A
and B throughout the protocol, but A has access to (an
oracle to load) an O(poly(N, 1/ϵ, 1/δ)) amount of the in-
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puts x sampled from DN within a unit time per loading
each input. Given these parameters, based on (B4), B
determines the number of samples for learning as

M =

⌈
D

ϵ
− 1

⌉
, (C1)

where ⌈ · · · ⌉ is the ceiling function, and send M to A.
Then, A decides the parameter s of the target concept cs
arbitrarily and keeps s as A’s secret. For M and s, the
task of A is to correctly prepare the M sample data

{(xm, cs(xm))}Mm=1, (C2)

using a quantum or classical computer. After preparing
the M data in (C2), A sends the data to B. Using the
given sample data, the task of B is to find a parameter
s̃ ∈ FD

2 and make a prediction for new input x drawn
from DN by the hypothesis hs̃(x) = f(x) · s̃ so that the
error should satisfy

Pr
x∼DN

[hs̃(x) ̸= cs(x)] ≤ ϵ (C3)

with a high probability of at least 1− δ.
Using Algorithm S1 and Algorithm S2, B can achieve

this task with quantum computation within a polynomial
time

O(poly(N, 1/ϵ, 1/δ), (C4)

and our analysis in Section B 3 shows that B can-
not achieve this task with any polynomial-time classical
method. In the following sections, we will construct A’s
algorithms for preparing the data in (C2) with a high
probability of at least 1− δ within a polynomial time

O(poly(N, 1/ϵ, 1/δ)). (C5)

With a sufficient amount of correct data, one can con-
duct the learning and test the learned hypothesis. Thus,
with A’s data-preparation algorithm and B’s learning
and evaluation algorithms, our protocol in the above
setup can demonstrate the advantage of QML.

2. Quantum algorithm for preparing data

In this section, we show how to prepare the sam-
ple data in (C2) for the concept class in Definition S9
based on a quantumly advantageous function fN in Def-
inition S8, using a quantum algorithm.

The data-preparation algorithm is shown in Algo-
rithm S4. As described in Section C 1, given the prob-
lem size N , the concept class CN in Definition S9 with
a quantumly advantageous function fN , the error pa-
rameter ϵ, the significance parameter δ, the number
M = O(poly(N, 1/ϵ, 1/δ)) of samples to be prepared
(e.g., given by (C1), yet we here describe the algorithm
for general M), and the true parameter s of the tar-
get concept, we assume that Algorithm S4 has access

Algorithm S4 Quantum algorithm for data
preparation

Input: The problem size N , the concept class CN in Defi-
nition S9 with a quantumly advantageous function fN ,
ϵ > 0, δ > 0, the number M = O(poly(N, 1/ϵ, 1/δ)) of
samples to be prepared (e.g., given by (C1)), the true pa-
rameter s of the target concept, inputs sampled from a
target distribution DN to be loaded from an oracle.

Output: An estimate {(xm, c̃m)}Mm=1 of the M sample data
{(xm, cs(xm))}Mm=1 satisfying (C6) with a high probability
at least 1− δ.

1: for m = 1, . . . ,M do
2: Load an input xm sampled from the target distribution

DN (with access to the oracle).
3: Perform the quantum algorithm A in (B7) for comput-

ing fN for the input xm with the parameters µ and ν
in (C7) and (C8), respectively, to obtain A(xm).

4: Compute c̃m = A(xm) · s in (C9).
5: end for
6: return {(xm, c̃m)}Mm=1.

to (an oracle to load) an O(poly(N, 1/ϵ, 1/δ)) amount
of the inputs x sampled from DN within a unit time
per loading each input. Then, the goal of Algorithm S4
is to output an estimate {(xm, c̃m)}Mm=1 of the data
{(xm, cs(xm))}Mm=1 in (C2) with xm drawn from the tar-
get distribution DN , so that it should hold with a high
probability at least 1− δ that, for all m,

c̃m = cs(xm). (C6)

Note that the error parameter ϵ is not explicitly relevant
to Algorithm S4 except for the possibility ofM depending
on ϵ. To this goal, we set the internal parameters in
Algorithm S4 as

µ =
δ

2M
, (C7)

ν =
δ

2M
. (C8)

In Algorithm S4, for each m = 1, . . . ,M , we start with
sampling xm from the target distribution DN . Then, we
use the quantum algorithm A in (B7) to compute the
quantumly advantageous function fN with µ in (C7) and
ν in (C8), to obtain A(xm) within a polynomial run-
time in (B8), where µ and ν in (B7) may be omitted for
simplicity of the presentation if obvious from the context.
Finally, Algorithm S4 computes an estimate c̃m of cs(xm)
by

c̃m := A(xm) · s, (C9)

in accordance with the definition of cs in (B2). After
performing these computations for all m, the algorithm
outputs

{(xm, c̃m)}Mm=1 (C10)
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as an estimate of the data {(xm, cs(xm))}Mm=1 in (C2).
The following theorem shows that this algorithm pre-

pares the data in (C2) correctly with a high probability
1− δ within a polynomial time.

Theorem S14 (The polynomial-time data preparation
with a quantum algorithm). Given any N , ϵ, and δ, for
any M = O(poly(N, 1/ϵ, 1/δ)), Algorithm S4 outputs the
M sample data {(xm, cs(xm))}Mm=1 in (C2) with a high
probability at least 1− δ within a polynomial time

O(poly(N, 1/ϵ, 1/δ)). (C11)

Proof. We will first discuss the success probability of Al-
gorithm S4 and then provide an upper bound of the run-
time.

The probabilistic parts of Algorithm S4 are the compu-
tations of fN by the quantum algorithm A. We require
that for all m ∈ {1, . . . ,M}, the output A(xm) of this
quantum algorithm should coincide with fN (xm) simul-
taneously, i.e.

A(x1) = fN (x1), . . . ,A(xM ) = fN (xM ). (C12)

Given this requirement, the output of Algorithm S4 co-
incides with the data in (C2); that is, c̃m in (C9) satisfies

c̃m = A(xm) · s = fN (xm) · s = cs(xm), (C13)

by definition of cs in (B2). With our choice of µ in (C7)
and ν in (C8), due to the union bound, this requirement
is fulfilled with a high probability at least

1−M(µ+ ν) = 1− δ, (C14)

which yields the desired success probability.
The runtime of Algorithm S4 is determined by the com-

putations of fN and the bitwise inner product. Due to
(B8) with the choice of µ in (C7) and ν in (C8), for
D = O(Nβ) with β > 0 and M = O((Nϵδ )

λ) with λ > 0,
we have the overall runtime

O

(
M

((
N

µν

)α

+D

))
(C15)

= O

(
Nα+2αλ+λ

ϵ(2α+1)λδ2αλ+2α+λ
+

Nβ+λ

ϵλδλ

)
(C16)

= O (poly (N, 1/ϵ, 1/δ)) , (C17)

which yields the conclusion.

3. Classical algorithm for preparing data based on
classically one-way permutation

In this section, we show how to prepare the sample
data in (C2) using a classical algorithm, for a concept
class derived by replacing the quantumly advantageous
function used in Definition S9 with an inverse of a clas-
sically one-way permutation introduced in the following.

We define the classically one-way permutation to de-
rive the concept class for preparing the data with the
classical algorithm.

Definition S15 (Classically one-way permutation). For
N , let fOWP

N : {0, 1}N → {0, 1}N be a permutation (i.e.,
an N -bit one-to-one function), where we may write FN

2 =
{0, 1}N . We write

x = fOWP
N (y), (C18)

where sampling x from a probability distribution DN with

computing y = fOWP−1

N (x) is equivalent to sampling y
from a probability distribution DY

N with computing (C18)
under the condition that

DN = fOWP
N (DY

N ). (C19)

We say that a permutation fOWP
N is a classically

one-way permutation fOWP
N under DN if the relation

R := {RN}N∈N with RN := {
(
y, fOWP

N (y)
)
}y∈{0,1}N

is in FP, and the distributional function problem

{(fOWP−1

N ,DN )}N∈N is in HeurFBQP but not in
HeurFBPP/rpoly.

We then introduce the following concept class by re-
placing the quantumly advantageous function in the con-
cept class of Definition S9 with the classically one-way
permutation in Definition S15.

Definition S16 (Concept class based on classically
one-way permutation). For any N , any probability dis-
tribution DN over FN

2 , and any classically one-way per-
mutation fOWP

N : FN
2 → {0, 1}N under DN in Defini-

tion S15, we define a concept class COWP
N over the input

space XN as COWP
N := {cs}s∈FN

2
, where XN is the support

of DN in (C19), and cs is a concept given by

cs(x) := fOWP−1

N (x) · s ∈ F2 = {0, 1}, (C20)

with fOWP−1

N (x) · s denoting a bitwise inner product in
the vector space FN

2 over the finite field.

By definition, the inverse fOWP−1

N of the classically
one-way permutation fOWP

N in Definition S16 is a special
case of the quantumly advantageous functions in Def-
inition S9. Therefore, the quantum efficient learnabil-
ity, the quantum efficient evaluatability, and the classical
hardness for this concept class follow from the same ar-
gument as Section B. Note that particular variants of
classically one-way permutations fOWP

N that can be in-
verted by Shor’s algorithms are used in the previous work
on the advantage of QML [16–19]. Since fOWP

N is a per-
mutation, if the target distribution DN is uniform, then
Algorithm S5 simply samples from the uniform distribu-
tion, which is assumed in Refs. [16–19]. By contrast, our
analysis does not assume the uniform distribution, gen-
eralizing the settings in Refs. [16–19]. And even more
importantly, the concept class in Definition S16 does not
depend on specific cryptographic techniques for the clas-
sically one-way permutation fOWP

N such as those invert-
ible by Shor’s algorithms, in the same way as the concept
class in Definition S9 without depending on the specific
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Algorithm S5 Classical algorithm for data preparation
with classically one-way function

Input: The problem size N , the concept class CN in Defi-
nition S16 with a classically one-way permutation fOWP

N ,
ϵ > 0, δ > 0, the number M = O(poly(N, 1/ϵ, 1/δ)) of
samples to be prepared (e.g., given by (C1)), the true
parameter s of the target concept, and parameters y sam-
pled from a probability distribution DY

N in (C19) to be
loaded from an oracle.

Output: The M sample data {(xm, cs(xm))}Mm=1 in (C21).
1: for m = 1, . . . ,M do
2: Load a parameter ym sampled from the distribution

DY
N (with access to the oracle).

3: Perform the deterministic classical algorithm in (C22)
to compute fOWP

N for ym, to obtain xm = fOWP
N (ym).

4: Compute cs(xm) = ym · s in (C24).
5: end for
6: return {(xm, cs(xm))}Mm=1.

mathematical structure of quantumly advantageous func-
tions.

In the following, based on the setup described in
Section C 1, we modify the protocol in such a way
that the concept class is replaced with the above con-
cept class based on a classically one-way permutation,
and the party A has access to (an oracle to load) an
O(poly(N, 1/ϵ, 1/δ)) amount of the parameters y in (C18)
sampled from DY

N in (C19), in place of loading x, within
a unit time per loading each y.

The classical data-preparation algorithm is shown in
Algorithm S5. Given the problem size N , the concept
class CN in Definition S16 with a classically one-way per-
mutation fOWP

N under the probability distribution DN

in Definition S15, the error parameter ϵ, the significance
parameter δ, the number M = O(poly(N, 1/ϵ, 1/δ)) of
samples to be prepared (e.g., given by (C1), yet we here
describe the algorithm for general M), the true parame-
ter s of the target concept, and the parameters y to be
loaded as assumed above, the goal of Algorithm S5 is to
output M pairs of data

{(xm, cs(xm))}Mm=1, (C21)

with each xm drawn from the distribution DN , where
(C21) is a variant of (C2) up to the change of the con-
cept class to (C20). Note that the error parameter ϵ and
the significance parameter δ are not explicitly relevant to
Algorithm S5 except for the possibility of M depending
on ϵ and δ. In Algorithm S5, for each m = 1, . . . ,M ,

we start with loading ym sampled from the distribution
DY

N . Then, the algorithm computes the classically one-
way permutation fOWP

N for ym. By definition of the clas-
sically one-way permutation {fOWP

N }N∈N ∈ FP, we have
a polynomial-time deterministic classical algorithm A to
compute

xm = A(ym) = fOWP
N (ym) (C22)

within runtime

tA(ym) = O
(
Nζ
)
, (C23)

where ζ > 0 is an upper bound of the degree of the poly-
nomial runtime. Finally, Algorithm S5 computes cs(xm)
by

cs(xm) = ym · s, (C24)

following the definition of cs in (C20). After performing
these computations for all m, Algorithm S5 outputs the
data in (C21), i.e.,

{(xm, cs(xm))}Mm=1. (C25)

The following theorem shows that Algorithm S5 pre-
pares the data in (C21) correctly within a polynomial
time.

Theorem S17 (The polynomial-time data preparation
with a classical algorithm based on classically one-way
functions). Given any N , ϵ, and δ, for any M =
O(poly(N, 1/ϵ, 1/δ)), Algorithm S5 outputs the M sam-
ple data {(xm, cs(xm))}Mm=1 in (C21) within a polynomial
time

O(poly(N, 1/ϵ, 1/δ)). (C26)

Proof. Algorithm S5 is a deterministic algorithm and has
no error; thus, it suffices to discuss the runtime. The
runtime of Algorithm S5 is determined by computing the
classically one-way permutation fOWP

N in Definition S15
for M inputs y1, . . . yM and bitwise inner product. Due
to (C23), for M = O((Nϵδ )

λ) with λ > 0, we have the
overall runtime

O
(
M
(
Nζ +N

))
(C27)

= O

(
Nζ+λ

ϵλδλ

)
(C28)

= O

(
poly

(
N

ϵδ

))
, (C29)

which yields the conclusion.
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This is an extended, non-technical abstract for AQIS.2024. It is for a presentation aimed to
be an birds-eye overview on a generalized recipe for reverse processes via Bayesian inference. It
takes most from PRX Quantum.5.010332 [1]. Some figures are also appended to the end of the
document.

I. QUESTIONS TO SET THE STAGE

Reversibility is a central concept in physics and information science, from entropy to state recov-
ery, noise and dissipation [2–8]. That said, there exists a plurality of approaches for characterizing
it, some of which only apply in strictly defined, classical contexts. Given reversibility’s funda-
mentality, a question arises: can we formalize the definition of reverse processes for any processes,
classical or quantum?

This question is enhanced by a further puzzle: introducing an ancillary system, every irreversible
process can always be seen as a marginal of a larger reversible global process [9, 10]. This is
sometimes called the dilation of a channel (as in Stinespring dilations).

E [•] = TrB

[
U(• ⊗ β)U †

]
(1)

How, then, does reversal on marginal level compare to that in the global, dilated picture? Does
“reversal and marginalization commute”? This has implications in physical implementation of
recovery protocols, as it relates to the question of when can I reverse a process R[E ] with the same
global dynamics (i.e. some unitary U) I used for the forward process E . That is,

R[E ][•] !
= TrB[U

†(• ⊗ β′)U ]. (2)

We may call this condition tabletop time-reversibility. Most notably, this is satisfied by
Gibbs-preserving maps in thermal operations [2]. The question is where else does this hold?
Put another way, “how special are thermal operations, with regard to reversibility?”

II. RESPONSES & RESULTS

In this work, we answer these three questions. Firstly, we adopt the perspective that the
physically viable, universally applicable and axiomatically valid characterization of classical and
quantum reversibility lies in Bayes’ rule [11, 12]]

φ̂γ(a|a′) = φ(a′|a) γ(a)

φ[γ](a′)
, (3)
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and the Petz Recovery map [13–15]

Êα[•] =
√
α E†

[
1√
E [α]

• 1√
E [α]

]
√
α. (4)

respectively, which has been fruitful in comparing reversal across regimes and the derivation of
fluctuation relations [16, 17]. Noting that the Petz Map has been seen as the prime candidate for
the quantum generalization of Bayes’ rule [18–23].

Doing so, we show by using these Bayesian tools to define reverse processes, this approach

1. Recovers the typical examples of reverse processes (eg. bijections and reversible
processes go to inversions, bistochastic and unital processes go to their transpose and adjoint
respectively and so on). Furthermore, it gives insights to why these forward maps give reverse
processes they do.

2. Shows that reversal and marginalization (in both classical and quantum regimes) do commute
as long as one takes into propagated correlations formed between the ancillary system and the
reference of the reversal. In other words, the Bayesian and open system perspectives
on irreversibility coincide. This is proven through the decomposition of these forward
maps

φ(a′|a) =
∑
bb′

Φ(a′, b′|a, b)β(b), φ = ΣB ◦ Φ ◦ Σ̂B,□⊗β (5)

E [•] = TrB

[
U(• ⊗ β)U †

]
= TrB ◦ U ◦ T̂rB,□⊗β[•], (6)

in terms of assignment maps:

Σ̂B,Λ[•A] = •A ·
(

Λ

ΣB[Λ]

)
B|A

, (7)

T̂rB,Ω[•A] =
√
Ω

[(
1√

TrB[Ω]
•A

1√
TrB[Ω]

)
⊗ 1B

]
√
Ω (8)

The proofs, theorems and technical details can be found in the main text [1].

3. Finally, we show that tabletop time-reversibility is a remarkably special condition,
identifying families of this condition for qubit channels and beyond. We also find physically
insightful theorems [1] pertaining to a generalization of thermal operations, its relationship
with correlations and its implications on energetics in the quantum regime.

III. IMPACT

Finally, we make some qualitative remarks on the impacts of this work.

1. It provides a practical benefit by identifying scenarios where reversal (and thus, information
recovery) can be done with the same unitary that defines the dilation of the transformation.
This is significant as it is well known that, in general, this is an extremely complex process
to implement.
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2. It gives a conceptual basis for the definition of reverse processes for quantum fluctuation
theorems, giving a quantum informational perspective [8, 16, 17, 24].

3. It helps quantify how irreversibility can be seen as a function of the reverse process’ depen-
dence on reference prior. In other words, it gives a quantitative meaning to the connection of
irreversibility (and entropy) to prior information. Something illustrated by famous physics
puzzles like Landauer Erasure and even Laplace’s and Maxwell’s Demons.
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𝜏

𝜏


FIG. 1: Illustrations for standard examples of reversal. Bayesian inversion or “retrodiction” is a
formal recipe that reproduce results of standard reverse processes for any characterized process,

and any under setting as captured by a reference state.

FIG. 2: An illustration of tabletop time-reversibility. Any channel E can be dilated to on a global
U and a bath. Bayesian retrodiction associates a reverse channel Êα to E , which can itself be

dilated into a larger unitary process V. However, V ̸= U† is in general—informally speaking, such
that “a different experimental setup” would be required to implement the forward and reverse
channels. Tabletop reversible channels are when V = U†: informally, when we can “run the

experimental setup backwards” to implement the reverse channel.
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FIG. 3: Two routes for Bayesian retrodiction illustrated. One can show that these two protocols
always give the same reverse process, as long as the propagated correlations formed across the

reference prior and the ancillary environment is accounted for. This is captured by the
retrodictive assignment map (7).
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Abstract. Tsirelson’s precession protocol certifies the nonclassicality of a system by asking how often
a uniformly-precessing variable is positive at one of three equally-spaced points in time [1]. It does not
require simultaneous or sequential measurements like other nonclassicality tests, and has also been shown
to be useful for detecting Wigner negativity and entanglement. Here, we present two recent results about
the protocol. The first result is a theory-independent bound for systems with finitely many outcomes
[2]. We show that, unlike Bell and noncontextuality inequalities, quantum theory saturates the general
bound. As such, the precession protocol falsifies any general theory that does not also saturate this bound.
The second result involves previously-proposed generalisations of the protocol. We characterise all such
protocols with three probing times for the quantum harmonic oscillator. An open question about the
maximum violation of these generalised protocols is partially answered, the exact relationship between
violating states of different protocols is also found. This characterises the wider class of states whose
Wigner negativity and entanglement can be detected by the precession protocol.

Keywords: harmonic oscillator, spin angular momentum, theory-independent bound, general probabilis-
tic theories

Background and Motivation. The time evolution
of uniformly-precessing variables (Ax(t), Ay(t))—like the
position and momentum of the harmonic oscillator, or
components of a vector rotating with a fixed angular
momentum—is the same in both classical and quantum
theory. Both the classical observables and the corre-
sponding quantum operators in the Heisenberg represen-
tation satisfy

Ax(t) = cos(2πtT )Ax(0) + sin( 2πtT )Ay(0)

Ay(t) = cos(2πtT )Ay(0)− sin( 2πtT )Ax(0)
(1)

for the period T . As the dynamics are the same in both
classical and quantum theory, one does not expect to find
quantumness in the dynamics of the harmonic oscillator.
Tsirelson showed that, on the contrary, the nonclassi-

cality of a system can be certified by simply asking how
often a uniformly-precessing variable is positive [1]. The
precession protocol involves many rounds, where Ax(t)
is measured at a randomly-chosen time tk = kT/3 for
k ∈ {0, 1, 2} in each round, and after many rounds, the
score

P3 :=
1

3

2∑
k=0

{
Pr

[
Ax(

kT
3 ) > 0

]
+

1

2
Pr

[
Ax(

kT
3 ) = 0

]}
(2)

is calculated. The nonclassicality of the system is certi-
fied if the observed value P3 violates the classical bound
P3 > 2/3 =: Pc

3 [1].
Violations of the classical bound have been shown for

specific examples of quantum systems. The maximum
quantum violation is P3 ≈ 0.709 for the quantum har-
monic oscillator, and conjectured to be P3 = 0.75 for
spin systems [4]. An open question here is the maximum

∗htoo@zaw.li

violation by quantum theory: is P3 = 0.75 the best that
quantum theory can do, or are there uniformly-precessing
quantum variables that do better?

Since the first few works on Tsirelson’s precession
protocol, some generalisations have also been proposed.
They include probing the system at kT̃ /3 for some T̃ ̸= T
[5], which captures the situation where the period of the
prcession is not precisely known, and studying the classi-
cal bound as a facet in a constrained conditional proba-
bility polytope [6], which gives rise to the so-called Type
I inequality (nonclassical when PI > 2/3) and Type II
inequality (nonclassical when PII > 1/3), where

PI :=
1

3

2∑
k=0

{
Pr

[
Ax(

2kT
5 ) > 0

]
+

1

2
Pr

[
Ax(

2kT
5 ) = 0

]}

PII :=
1

3

2∑
k=0

(−1)k
{
Pr

[
Ax(

kT
5 ) > 0

]
+

1

2
Pr

[
Ax(

kT
5 ) = 0

]}
.

(3)
An open question here is the maximum possible violation
of these generalised protocols: unlike the original preces-
sion protocol, estimates of the maximum score have yet
to be found for specific quantum systems, let alone quan-
tum theory in general.

Practical Applications. The precession protocol
bounds the Wigner negativity volume [4], which is a mea-
sure of the amount of non-Gaussian resource required for
quantum information processing [7, 8]. As the protocol
only requires quadrature measurements, it is straight-
forward to perform in optical systems with homodyne
measurements and optomechanics with position measure-
ments at different times. When applied to collective
modes of coupled oscillators, it has also been shown to
witness non-Gaussian entanglement between coupled os-
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cillators [9]. Finally, for spin ensembles, it solves an open
problem about the detection of the genuine multipartite
entanglement of GHZ states using only measurements of
the total angular momentum of the system [10].

Foundational Applications. Unlike other nonclassi-
cality tests like noncontextual or Leggett–Garg inequal-
ities [11, 12], the precession protocol does not require
simultaneous or sequential measurements. Furthermore,
the precession protocol is not susceptible to the so-called
“clumsiness loophole” [13]. As such, it offers a more
straightforward experimental test of nonclassicality in
situations where the measured variable is certain to be
uniformly-precessing.

Contributions. There are several related open ques-
tions for the precession protocol: What is the maximum
possible violation of the original protocol (or its exten-
sions) for a specific quantum system (or quantum theory
in general)? Our contributions answer one open ques-
tion, and partially answer another.
Our first contribution is to derive a theory-independent

bound for the original precession protocol for systems
with a finitely many outcomes [2]. The derivation relies
only on the linearity of the expectation value with respect
to the observables, which is an assumption satisfied by all
general probabilistic theories [14]. The derived general
bound depends only on the spectrum of the measured
observable, where spectrum is defined in a purely theory-
independent manner as the set of all possible outcomes.
We then prove by construction that the general bound

is saturated by quantum mechanics, which answers the
question about the maximum possible violation of the
original precession protocol by quantum theory. This
means that no general theory can outperform quantum
theory in the precession protocol. As the cat state of a
spin-3/2 particle saturates this bound, and the cat state
is commonly prepared for its metrological properties [15],
this provides a simple test that can experimentally falsify
general theories that do not also saturate this bound.
Our second contribution is to characterise the family

of precession protocols with three probing times, which
include the type I and type II inequalities [3]. For the
quantum harmonic oscillator, we not only show how the
maximum quantum violation for every such protocol is
related to the violation of the original precession protocol,
but also derive the exact unitary relationship between
violating states of different protocols.
In particular, denoting P∞

3 , P∞
I , and P∞

II as the maxi-
mum quantum score for the quantum harmonic oscillator
with the original, type I, and type II inequalities respec-
tively, we show that P∞

I = P∞
3 and P∞

II = P∞
3 − 1/3.

This partially answers the open question about the max-
imum quantum violation for generalisations of the pre-
cession protocol for the quantum harmonic oscillator.
In terms of applications, our results expand the class

of states that can be detected by the family of preces-
sion protocols. From the derived relationship between
the different protocols, we can show that if a state is de-

tected by one protocol, a squeezed version of that state
will be detected by another protocol. This is particularly
useful when information is encoded in superpositions of
coherent states, as is common in the field of continuous
variable quantum information processing, where squeez-
ing has been recently introduced as a technique to pro-
tect the encoded state against photon loss [16, 17]. As
previous work has shown that the entanglement of the
three-headed cat state can be detected by the original
precession protocol [9], our results therefore imply that
the same state, protected via squeezing, can be detected
by other members of the family of precession protocols
with three probing times.
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Abstract. Although the similarity between non-stabilizer states—also known as magic states—in
discrete-variable systems and non-Gaussian states in continuous-variable systems has widely been
recognized, the precise connections between these two notions have still been unclear. We establish
a fundamental link between these two quantum resources via the Gottesman-Kitaev-Preskill (GKP)
encoding. We show that the negativity of the continuous-variable Wigner function for an encoded
GKP state coincides with a magic measure we introduce, which matches the negativity of the discrete
Wigner function for odd dimensions. We also provide a continuous-variable representation of the
stabilizer Rényi entropy—a recent proposal for a magic measure for multi-qubit states. With this
in hand, we give a classical simulation algorithm with runtime scaling with the resource contents,
quantified by our magic measures. We also employ our results to prove that implementing a multi-
qubit logical non-Clifford operation in the GKP code subspace requires a non-Gaussian operation
even at the limit of perfect encoding, despite the fact that the ideal GKP states already come with
much non-Gaussianity.

Keywords: resource theories, magic states, non-Gaussianity, GKP encoding

1 Background and motivation
Quantum computing is predicted to give a computa-

tional speed-up compared to classical computation. It
is still an open problem to find and pinpoint the origins
of the speed-up or what manifestation would allow for
such phenomena. This fact becomes even more impor-
tant, as in reality every quantum information process-
ing task will be restricted in a certain way given that
they will be implemented in a physical system.

One of the promising platforms for quantum infor-
mation processing is to utilize a quantum optical sys-
tem, which is equipped with an infinite-dimensional
Hilbert space accommodating continuous-variable
systems. There, the non-Gaussian states have been
identified as necessary resources for quantum com-
putational advantages [1], as computation solely run
by Gaussian resources can be efficiently simulated
classically. The most prominent measure that quan-
tifies non-Gaussian features [2–7] is the negativity of
Wigner function [4, 8, 9] that also captures the hard-
ness of classical simulability. Other natural platforms,
such as superconducting and ion-trap-based archi-
tectures, assume discrete-variable systems, in which
quantum information is encoded in finite-dimensional
Hilbert spaces. Among many relevant quantum re-
sources needed for efficient quantum information pro-
cessing, one peculiar quantity necessary for quantum
speedup is the non-stabilizerness, also known as quan-
tum magic, as quantum circuits only consisting of sta-
bilizer states and Clifford operations can be efficiently
simulatable by classical computers. Interestingly, the

∗oliver.hahn@chalmers.se
†ryujitakagi.pat@gmail.com

magicness of discrete-variable states can also be stud-
ied by looking at a discrete version of the Wigner func-
tion [10, 11]. Indeed, the negativity of the discrete
Wigner function [12] has been shown to be a valid
magic measure when the underlying Hilbert space has
odd dimensions.

Although it has been pointed out that there is a
conceptual similarity between non-Gaussianity and
magic in terms of necessary resources for universal
quantum computation, the direct quantitative connec-
tion between these two resources has still been elu-
sive. In particular, constructing a map between non-
Gaussianity and magic will not only solidify the re-
lation between two main operational frameworks that
are important for quantum computing but also provide
a novel approach where one resource could be ana-
lyzed by employing a tool developed for analyzing the
other.

2 Bridging magic and non-Gaussianity
In this work, we accomplish this by finding

a fundamental relation between the discrete and
continuous-variable distributions via the Gottesman-
Kitaev-Preskill (GKP) encoding [13], which is one
of the standard error-correcting codes for continuous-
variable systems. Our results therefore recover and
significantly extend a recent finding of the relation
between multi-qubit systems and continuous-variable
systems [14]. We accomplish this by introducing a
new operator basis for qudit systems. For l,m ∈ Z2d,
let Ol,m be an operator defined by

Ol,m = ω
−ml/2
d MlZ

m
d (1)
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where Ml =
∑

u,v∈Zd
u+v mod d=l

|u⟩ ⟨v| and Zd the d-

dimensional Pauli Z operator. This can easily be ex-
tended to n-qudit systems, where we define Ol,m =∏
Oli,mi

for l,m ∈ Zn
2d. The newly defined

operators are hermitian and unitary operators that
are orthogonal in the Hilbert-Schmidt inner product
Tr (Ol,mOl′,m′) = δmm′δll′d. Let us now define the
distribution

xρ(l,m) := d−n Tr(Ol,mρ) (2)

which corresponds to the coefficients for Ol,m when
expanding the state ρ with this operator basis.

This distribution is inherently connected to GKP
states, which form an error correction code for bosonic
systems. The peculiar property of the Wigner function
of GKP states is that it comes with an atomic form,
where the Dirac distribution has disjoint support

WCV
ρGKP

(r) =

√
d
n

√
8π

n

∑
l,m

cρGKP(l,m)

× δ

(
rp −m

√
π

2d

)
δ

(
rq − l

√
π

2d

)
(3)

where ρGKP refers to a GKP state that encodes a qudit
state ρ, and cρGKP(l,m) is a coefficient serving as a
weight for each peak in the Wigner function of a GKP
state ρGKP. We show that this coefficient exactly co-
incides with the distribution introduced above, i.e.,

cρGKP
(l,m) = xρ(l,m). (4)

Using this connection we can now state the first theo-
rem. We will use the periodicity of the GKP Wigner
function and only consider one unit cell of the lat-
tice and are thus restricting to a hypercube rqi ∈
[0,

√
2dπ), rpi ∈ [0,

√
2dπ) in the phase space. This

motivates us to consider an lp-norm of a function f de-

fined for a unit cell ∥f∥p,cell :=
(∫

cell
dr|f(r)|p

)1/p
where

∫
cell

refers to the integral over the unit hyper-
cube. We then obtain the following result that directly
connects discrete- and continuous-variable quantum
resources.

Theorem 1. For an n-qudit state ρ on a dn-
dimensional space and for an arbitrary p > 0, it holds
that

dn(1−1/p)∥xρ∥p =
∥WCV

ρGKP
∥p,cell

∥WCV
STABn,GKP∥p,cell

, (5)

where ∥WCV
STABn,GKP∥p,cell is the quantity that takes

the same value for every n-qudit pure stabilizer state
ϕ. When d is odd, we further have

dn(1−1/p)∥WDV
ρ ∥p =

∥WCV
ρGKP

∥p,cell
∥WCV

STABn,GKP∥p,cell
. (6)

with WDV
ρ being the discrete Wigner function.

Theorem 1 relates the lp-norm of GKP states to the
lp-norm of xρ for a discrete-variable state ρ, which
quantifies the magicness in ρ, and therefore establishes
a direct connection between the Wigner negativity of a
qudit encoded in GKP and a magic quantifier in finite
dimensions. The case of p = 1, i.e.,

∥xρ∥1 =
∥WCV

ρGKP
∥1,cell

∥WCV
STABn,GKP∥1,cell

, (7)

is particularly insightful. In this case, the 1-norm
of the continuous-variable Wigner function coincides
with the continuous-variable Wigner negativity, which
is known to be a valid measure of non-Gaussianity [4,
9]. The quantity in Theorem 1 is then the amount of
non-Gaussianity renormalized by the negativity of the
GKP states encoding stabilizer states. This renormal-
ization is necessary, as even stabilizer states encoded
in GKP have non-zero continuous Wigner negativity.

Its property as a magic quantifier depends on
whether the dimension of the discrete-variable systems
is odd or even. For odd dimensions, ∥xρ∥1 coincides
with the discrete Wigner negativity [12]. On the other
hand, for the case of even dimensions, ∥xρ∥p does not
reduce to known magic measures in general. However,
for the special case of d = 2, it is equivalent to the sta-
bilizer Rényi entropy [15], a recent proposal for com-
putable magic measures for multi-qubit systems. We
discuss further properties of this quantity in the tech-
nical manuscript.

In addition to the Wigner function, we also find that
lp-norm of the discrete-variable characteristic function
χDV
ρ (which corresponds to the coefficients of the gen-

eralized Pauli operators) exactly corresponds to that of
continuous-variable characteristic functions. This par-
ticularly provides a new interpretation of the stabilizer
Rényi entropy—which is precisely defined by the lp
norm of the Pauli coefficients—in terms of GKP en-
coding, and naturally extends it to all dimensions.

Theorem 2. Let ρ be an n-qudit state on a dn-
dimensional space. Then,

dn(1−1/p)∥χDV
ρ ∥p =

∥χCV
ρGKP

∥p,cell
∥χCV

STAB,GKP∥p,cell
(8)

where χDV,CV
ρ is the discrete- and continuous-

variable characteristic functions, and
∥χCV

STAB,GKP∥p,cell is the quantity that takes the
same value for every pure stabilizer state ϕ.

This result particularly establishes an insightful rela-
tion between continuous characteristic functions and
stabilizer Rényi entropies [15]

Mα(ρ) =
2α

1− α
log

∥χCV
ρGKP

∥2α,cell
∥χCV

STAB,GKP∥2α,cell
− αn log d

1− α
(9)

where Mα(ρ) := α(1 − α)−1 log ∥Ξ(ρ)∥α − n log d

with ΞP (ρ) = 1
dn Tr (ρP )

2 is α-stabilizer Rényi en-
tropy.
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3 Applications
Simulation algorithms Employing our framework,
we introduce a classical simulation algorithm that
runs with the cost quantified by the magic quanti-
fiers we introduce, extending the previous approaches
of classical simulation based on quasiprobability dis-
tributions [16, 17] to all dimensions. See technical
manuscript for details of the algorithm.

The simulation time scales with the amount of neg-
ativity in the entire circuit defined as

M→ = ∥xρ∥1
T∏

t=1

max
λt

∥xUt
(λt)∥1 max

λT

|xΠ(λT )|

(10)

where the maximum is taken over all trajectories and

xρ(λ) = Tr

(
ρ
Oλ

dn

)
(11)

xU (λ
′, λ) = Tr

(
Oλ′

dn
UOλU

†
)

(12)

xΠ(λ) = Tr (ΠOλ). (13)

are the coefficients related to the input state ρ, the uni-
tary evolution U and the measurement effect Π with
λ = (l,m) ∈ Z2n

d . The number of samples K that
achieves precision ϵ with a failure probability pf is
given by

K ≥ 2M2
→

1

ϵ2
ln

(
2

pf

)
. (14)

This shows that the number of samples directly scales
with the resourcefulness of the input state ∥xρ∥1 if we
evolve using the free operations of our magic quanti-
fiers like Clifford unitaries. This result gives a nice op-
erational interpretation of the quantifiers discussed in
this work, as already noted in the case for the discrete
Wigner negativity [16].

Magic needs non-Gaussianity It has been known
since the original GKP paper [13] that one can imple-
ment the logical T -gate and thus get an H-type magic
state by using a cubic phase state or cubic interaction
eicQ

3

. However, this is merely one possibility for im-
plementing a non-Gaussian interaction, and this does
not show the necessity of non-Gaussianity to imple-
ment a non-Clifford operation on the code subspace.
This is a widely held belief based on the correspon-
dence between a pair of Pauli and displacement op-
erators and that of Clifford and Gaussian operations,
where displacement operators and Pauli operators are
both Heisenberg-Weyl operators. However, this “be-
lief” has not been proven in general, beyond specific
scenarios in qubit systems [18]. Indeed, GKP states
have much Wigner negativity and thus a priori addi-
tional non-Gaussianity may not be required, making

the necessity of non-Gaussian operation to implement
a non-Clifford operation nontrivial.

Nevertheless, the results established above allow
us to show that non-Gaussian operations are essen-
tial to implement non-stabilizer operations in the
GKP code space. In fact, we find that the Gaus-
sian protocols [9]—a class of quantum channels larger
than Gaussian operations, which also admits feed-
forwarded Gaussian operations conditioned on the out-
comes of Gaussian measurements—are not able to im-
plement non-stabilizer operations in the GKP code
space. Importantly, Gaussian protocols include a gate
teleportation circuit involving a Gaussian measure-
ment and a feed-forwarded Gaussian unitary, which
itself is not a Gaussian operation. An immediate con-
sequence of this result is that a Gaussian protocol can-
not implement non-Clifford unitary gates determinis-
tically.

Theorem 3. Let Λ be a quantum channel with n-qubit
input and output systems. If there exists a pure stabi-
lizer state ϕ and a pure non-stabilizer state ψ such that
Λ(ϕ) = ψ, Λ cannot be implemented in a GKP code
space by a Gaussian protocol. Also, for a quantum
channel Λ with n-qudit input and output systems with
odd local dimensions, the condition can be relaxed to
the existence of a (potentially mixed) stabilizer state σ
and a state ρ with ∥WDV

ρ ∥1 > 1 such that Λ(σ) = ρ.

4 Conclusions
We established a fundamental quantitative relation

between discrete- and continuous-variable systems via
the GKP encoding. We introduced a magic measure
for discrete-variable systems and showed that it cor-
responds to the non-Gaussianity measure defined by
the continuous-variable Wigner function that encodes
the same qudit states via GKP encoding. Our distri-
butions allow for a magic quantifier for all dimensions
and extend the discrete Wigner negativity defined for
odd dimensions in a unified manner. Furthermore, we
present an analogous relation for characteristic func-
tions, providing a new representation of the stabilizer
Rényi entropy in terms of continuous-variable charac-
teristic function.

Employing our framework, we introduced a clas-
sical simulation algorithm, where the run time scales
with the magic quantifiers we introduced. We utilized
our findings to demonstrate that achieving a determin-
istic implementation of a logical non-Clifford opera-
tion, with identical input and output dimensions within
the GKP code subspace, necessitates a non-Gaussian
operation, even when operating at the theoretical limit
of ideal GKP state input.

Our work suggests various interesting future direc-
tions, including the extension of our results to realistic
GKP states with finite squeezing, as well as the appli-
cation of our framework to other bosonic codes.
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Bridging magic and non-Gaussian resources via Gottesman-Kitaev-Preskill encoding
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Although the similarity between non-stabilizer states—also known as magic states—in discrete-variable sys-
tems and non-Gaussian states in continuous-variable systems has widely been recognized, the precise connec-
tions between these two notions have still been unclear. We establish a fundamental link between these two
quantum resources via the Gottesman-Kitaev-Preskill (GKP) encoding. We show that the negativity of the
continuous-variable Wigner function for an encoded GKP state coincides with a magic measure we introduce,
which matches the negativity of the discrete Wigner function for odd dimensions. We also provide a continuous-
variable representation of the stabilizer Rényi entropy—a recent proposal for a magic measure for multi-qubit
states. With this in hand, we give a classical simulation algorithm with runtime scaling with the resource con-
tents, quantified by our magic measures. We also employ our results to prove that implementing a multi-qubit
logical non-Clifford operation in the GKP code subspace requires a non-Gaussian operation even at the limit of
perfect encoding, despite the fact that the ideal GKP states already come with much non-Gaussianity.

I. INTRODUCTION

The difference between what constitutes quantum and clas-
sical physics is often hard to grasp. The hope is to leverage
quantum mechanics in order to get a computational speed-up
when using quantum computing compared to classical com-
putation. Finding and pinpointing the origins of the speed-up
or what property allows for such a phenomenon is still an open
problem. Aside from an academic interest, this undertaking
would allow us to identify and quantify what resources are re-
quired to do a certain computational task. This fact becomes
even more important, as in reality every quantum information
processing task will be restricted in a certain way given that
they will be implemented in a physical system.

One of the promising platforms for quantum information
processing consists of quantum optical systems [1], which is
equipped with an infinite-dimensional Hilbert space associ-
ated with observable possessing a continuous-variable spec-
trum. In such systems, non-Gaussian components have been
identified as necessary resources for quantum computational
advantages [2], as computation solely run by Gaussian re-
sources can be efficiently simulated classically. Such non-
Gaussian features in e.g. quantum states can be quantified
by several measures of non-Gaussianity [3–9], among which
the negativity of Wigner function [5, 6, 10] has been known
as the computable measure that also captures the hardness of
classical simulability [11].

The other paradigm for quantum information processing as-
sumes discrete-variable systems, in which quantum informa-
tion is encoded in finite-dimensional Hilbert spaces. Promis-
ing platforms implementing discrete-variables systems in-
clude superconducting [12] and ion-trap-based [13] architec-
tures. Among many relevant quantum resources needed for
efficient quantum information processing in discrete-variable
systems, one peculiar quantity necessary for quantum speedup

∗ oliver.hahn@chalmers.se
† ryujitakagi.pat@gmail.com

is the non-stabilizerness [14], also known as quantum magic,
which stems from the fact that quantum circuits only consist-
ing of stabilizer states and Clifford operations can be effi-
ciently simulable by classical computers [15]. Interestingly,
the magicness of discrete-variable states can also be stud-
ied by looking at a discrete version of the Wigner func-
tion [16, 17] analogously to the case of continuous-variable
systems. Indeed, the negativity of the discrete Wigner func-
tion [18, 19] has been shown to be a valid magic measure
when the underlying Hilbert space has odd dimensions. For
even dimensions, one needs to consider other quantifiers [20–
33], as there is no known quasiprobability distribution that
easily connects to magic.

Although some conceptual similarities between non-
Gaussianity and magic resources have been observed [17, 33–
35], the direct quantitative connection between these two re-
sources has still been elusive. In particular, constructing a map
between magic and non-Gaussianity would strengthen the re-
lation between two main operational frameworks that are im-
portant for quantum computing and provide a novel approach
where one resource could be analyzed by employing a tool
developed for analyzing the other.

In this work, we accomplish this mapping by finding a
fundamental relation between the discrete and continuous-
variable systems via the Gottesman-Kitaev-Preskill (GKP)
encoding [36], which is one of the most promising error-
correcting codes for continuous-variable systems. We intro-
duce a family of distributions for discrete-variable systems
and show that their lp-norm exactly corresponds to that of the
continuous-variable Wigner function for the GKP state en-
coding the original discrete-variable qudit. Specifically for
odd dimension, the l1 norm of the qudit distributions yields
the negativity of the associated Wigner function for both dis-
crete and continuous-variable settings. The connection is even
stronger as the continuous Wigner function can be directly
represented using the discrete Wigner function of the encoded
state. On the other hand, our distributions yield a magic quan-
tifier for all dimensions, which encompasses the negativity of
the discrete Wigner function defined for odd dimensions and
the stabilizer Rényi entropy [28] defined for multi-qubit sys-
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tems in a unified manner. Our results, therefore, allow for
recovering and significantly extending a recent finding of the
relation between multi-qubit systems and continuous-variable
systems [29].

In addition to the Wigner function, we also find that lp-
norm of the discrete-variable characteristic function (which
corresponds to the coefficients of the generalized Pauli op-
erators) exactly corresponds to the one of continuous-variable
characteristic functions of GKP-encoded states. This provides
a new interpretation of the stabilizer Rényi entropy—which is
precisely defined by the lp norm of the Pauli coefficients—in
terms of GKP encoding, and naturally extends it to all dimen-
sions.

Employing our framework, we introduce a classical simula-
tion algorithm that runs with the cost quantified by the magic
measure we introduce, extending the previous approaches
of classical simulation based on quasiprobability distribu-
tions [37, 38] to all dimensions. We also apply our results to
prove that the deterministic implementation of a logical non-
Clifford operation with the same input and output systems in
the GKP code subspace requires a non-Gaussian operation
even at the limit of ideal GKP state input. Since ideal GKP
states have unbounded non-Gaussianity, it is not a priori ob-
vious that more non-Gaussianity is needed to apply a logical
non-Clifford operation. Our result shows that this is actually
the case in general, extending an observation for specific non-
Clifford gates in multi-qubit systems [39] to the general class
of non-Clifford gates on all dimensions.

II. PRELIMINARIES

Here we briefly review the relevant formalism for discrete-
and continuous-variable quantum computing.

A. Discrete variables

Qubits are ubiquitous in quantum information processing
and are d = 2 level systems. Qudits are an intuitive general-
izations to d dimensions. A general pure qudit state is defined
as

|ψ⟩ =
d−1∑
i=0

αi |i⟩ (1)

with normalization condition
∑d−1
i=0 |αi|2 = 1 and |i⟩ a com-

putational basis state. The Pauli group can be defined for
arbitrary dimensions in analogy to the qubit case as Pd =
{ωuDXv

dZ
w
d : v, w ∈ Zd, u ∈ ZD} where ωd = e2πi/d is the

d th root of unity and

D =

{
d : for d odd
2d : for d even

(2)

withZd being the integers modulo d. The d dimensional Pauli
operators Zd, Xd, sometimes also called shift and clock oper-
ators, are a way to generalize the qubit Pauli operators Z2, X2

and are defined as

Xd =

d−1∑
j=0

|j + 1⟩ ⟨j| (3)

Zd =
d−1∑
j=0

ωjd |j⟩ ⟨j| (4)

with the property Xd
d = Zdd = 1 [40].

We use the generalized Pauli operators Xd, Zd to define the
operators of the d-dimensional Heisenberg-Weyl group as [16,
17]

Pd(a, b) = ω
1
2ab

d Xa
dZ

b
d (5)

with a, b ∈ Zd. Then, the commutation relations are

Pd(a, b)Pd(c, d) = ω
(a,b)Ω(c,d)T

d Pd(c, d)Pd(a, b), (6)

where

Ω =

(
0 1
−1 0

)
(7)

is the symplectic form.
For n-qudit systems, the Heisenberg-Weyl operators are

written by

Pd(u) = ⊗ni=1Pd(ai, bi) (8)

with u = (a, b) ∈ Z2n
d , which satisfy the orthogonality rela-

tion

Tr
[
Pd(u)P

†
d (v)

]
= dnδu,v. (9)

The d dimensional n qudit Clifford group is generated by the
following unitary operations

R =
d−1∑
j,s=0

ωjsd |s⟩ ⟨j|

P =
d−1∑
j=0

ω
j2/2
d (ωDω

−1
2d )

−j |j⟩ ⟨j|

SUM =
d−1∑
i,j=0

|i⟩ ⟨i| ⊗ |i+ j mod d⟩ ⟨j| .

(10)

For d = 2, these operators reduce to the Hadamard, Phase,
and CNOT gate [40] respectively. A Clifford unitary UC acts
on the Heisenberg-Weyl operator in a simple way

UCPd(u)U
†
C = Pd(Su) (11)

where S ∈ SP(2n,ZD) is a symplectic matrix [40] associated
with the Clifford unitary UC .

Using the discrete Heisenberg-Weyl operators, we define
the characteristic function [17]

χDV
ρ (u) = d−nTr

[
ρPd(u)

†]. (12)
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Odd-dimensional systems allow for a simple way to define the
discrete Wigner function by the discrete symplectic Fourier
transform of the characteristic function

WDV
ρ (u) = d−n

∑
v∈Z2n

d

ω−uΩnv
T

d χDV
ρ (v) (13)

= d−nTr [A(u)ρ], (14)

where Ωn now takes the form

Ω =

(
0 1n

−1n 0

)
(15)

and 1n is the n × n identity matrix. The phase space point
operator in (10) can be written by

A(u) = d−n
∑

v∈Z2n
d

ω−uΩnv
T

d Pd(u)
†. (16)

The discrete Wigner function in odd dimensions has many
useful properties. It is covariant under Clifford unitaries UC
meaning that

WDV
UCρU

†
C

(u) =WDV
ρ (Su) (17)

with S ∈ Sp(2n,Zd) being the symplectic matrix associ-
ated with Clifford unitary UC . The discrete Wigner function
Wρ(u) is a quasiprobability distribution and is thus not neces-
sarily positive. Nevertheless, it constructs a valid probability
distribution for an arbitrary stabilizer state. This property was
utilized to introduce a magic measure— a quantifier for non-
stabilizerness—given by

∥WDV
ρ ∥1 =

∑
u

∣∣WDV
ρ (u)

∣∣ (18)

which is known as the negativity of the Wigner function [19].
This is a resource monotone under Clifford operations in the
sense of resource theories [41], meaning that this does not in-
crease under Clifford operations. The negativity of the Wigner
function (18) can be considered as a l1-norm of the function
WDV
ρ : Z2n

d → R. In the following, we also consider the
lp-norm of a function f : Z2n

d → C defined by

∥f∥p =

 ∑
u∈Z2n

d

|f(u)|p
1/p

(19)

for a real number p > 0.

B. Continuous variables

A related but inherently different paradigm in quantum in-
formation processing uses infinite dimensional systems. The
central observables in these systems are commonly called po-
sition Q and momentum P operators that fulfill the canonical
commutation relations

[Q,P ] = i. (20)

These operators have continuous spectra, which is why this
type of quantum information processing is often called con-
tinuous variables, in contrast to discrete-variable systems de-
scribed in the previous section. For a n-mode system, the
infinite-dimensional Heisenberg-Weyl operators, also known
as displacement operators, are defined by

D(r) =
n∏
j=1

e−irpj rqj /2e−irqjPjeirpjQj (21)

where r = (rq1 , ..., rqn , rp1 , ..., rpn) = (rq, rp) and Qj , Pj
are position and momentum operators for j th mode. Dis-
placement operators fulfill the commutation relation

D(r)D(r′) = e−irΩnr
′T
D(r′)D(r). (22)

Similarly to the discrete case, we can use the continuous
Heisenberg-Weyl operators to define the characteristic func-
tion

χCV
ρ (r) = Tr [ρD(−r)] (23)

and the Wigner function as its symplectic Fourier transform

WCV
ρ (r) =

1

(2π)n

∫
dr′eirΩnr

′
χρ(r

′)

=
1

(2π)n

∫ ∞

−∞
dnxeirpx

〈
rq +

x

2

∣∣∣ ρ ∣∣∣rq − x

2

〉
Q
.

(24)
The continuous Wigner function is a quasi-probability distri-
bution and the Wigner negativity [10]

∥WCV
ρ ∥1 =

∫
dr
∣∣WCV

ρ (r)
∣∣ (25)

can be used as a valid quantifier for non-Gaussianity [5, 6].
Similarly to the case of discrete variables, we also consider a
lp-norm for a function f : R2n → C defined by

∥f∥p =
(∫

dr|f(r)|p
)1/p

, (26)

which gives back the Wigner negativity (25) as the l1-norm of
the Wigner function.

A family of states playing a major role in this work are
the Gottesman-Kitaev-Preskill (GKP) states [36]. They were
originally introduced as error correction codes for bosonic
quantum systems. In this work, we employ this encoding as a
platform to map magic and non-Gaussian resources, extend-
ing a prior attempt for multiqubit systems [29].

In the following, we use a subscript to denote a continuous-
variable state that encodes a discrete-variable state. For in-
stance, ρGKP refers to a continuous-variable state that encodes
a qudit state ρ by the GKP encoding. The computational basis
state |j⟩ is encoded in the GKP code as an infinite superposi-
tion of position eigenstates as

|j⟩GKP =

∞∑
s=−∞

|Q = α(j + ds)⟩ , (27)
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which is equipped with a Wigner function

WCV
|j⟩⟨j|GKP

(rq, rp)

=
1

2π

∫ ∞

−∞
dxeirpxψj

(
rq +

x

2

)∗
ψj
(
rq −

x

2

)
∝

∞∑
s,t=−∞

(−1)stδ
(
rp −

π

dα
s
)
δ

(
rq − αj − dα

2
t

) (28)

with α =
√

2π
d . A useful property of the GKP code is that all

Clifford unitaries on the code subspace can be implemented
using Gaussian unitaries.

As can be seen in (28), the Wigner function of a GKP state
consists of a collection of delta functions. This comes with
an unbounded negativity, which reflects the fact that an ideal
GKP state is unnormalizable. Nevertheless, one can see that
the delta peaks are periodically positioned with the unit cell
of the size

√
2dπ ×

√
2dπ. This motivates us to consider an

lp-norm of a function f considered for a unit cell, defined by

∥f∥p,cell :=
(∫

cell

dr|f(r)|p
)1/p

(29)

where
∫
cell

refers to the integral over the domain restricted to
a hypercube rqi ∈ [0,

√
2dπ), rpi ∈ [0,

√
2dπ) in the phase

space.
We also note that there is a subtlety when we compute lp-

norm of a function that involves a delta function. We describe
the procedure to perform such integrals in Appendix A.

III. BRIDGING MAGIC AND NON-GAUSSIANITY

In this section, we present our results that directly connect
the resource content of the discrete-variable state with that
of the continuous one, establishing a quantitative relation be-
tween magic and non-Gaussianity.

A. Via Wigner function

The first path to connect magic and non-Gaussianity uses
the continuous Wigner function.

In order to make this connection, we start by introducing
a new operator basis for qudit systems. For l,m ∈ Z2d, let
Ol,m be an operator defined by

Ol,m = ω
−ml/2
d MlZ

m
d (30)

where

Ml =
∑

u,v∈Zd
u+v mod d=l

|u⟩ ⟨v| . (31)

This can easily be extended to n-qudit systems, where we de-
fine Ol,m =

∏n
i=1Oli,mi

for l,m ∈ Zn2d.

Let us now define the distribution

xρ(l,m) := d−nTr(Ol,mρ) (32)

which corresponds to the coefficients for Ol,m when expand-
ing the state ρ with this operator basis. Although l,m are
elements of Z2d in general, the operators Ol,m, and corre-
spondingly xρ(l,m), can only gain a phase factor by a trans-
lation li → li+d and mi → mi+d for any i = 1, . . . , n, and
that the operators {Ol,m}l,m∈Zn

d
form an operator basis of a

n-qudit system. We consider the lp-norm for this distribution
over the restricted domain l,m ∈ Znd , i.e.,

∥xρ∥p =

 ∑
l,m∈Zn

d

|xρ(l,m)|p
1/p

. (33)

The following result connects the lp-norm of the continuous
Wigner function of a qudit encoded in GKP with the lp norm
of the distribution defined in (32).

Theorem 1. For an n-qudit state ρ on a dn-dimensional space
and for an arbitrary real number p > 0, it holds that

dn(1−1/p)∥xρ∥p =
∥WCV

ρGKP
∥p,cell

∥WCV
STABn,GKP∥p,cell

, (34)

where

∥WCV
STABn,GKP∥p,cell := ∥WCV

ϕGKP
∥p,cell

= (4d)n/p/(8πd)n/2
(35)

is a quantity that takes the same value for every n-qudit pure
stabilizer state ϕ. When d is odd, an even stronger result holds

dn(1−1/p)∥WDV
ρ ∥p =

∥WCV
ρGKP

∥p,cell
∥WCV

STABn,GKP∥p,cell
. (36)

We prove Theorem 1 later in this section using the follow-
ing general relation between the discrete Wigner function of
the corresponding encoded state and the continuous-variable
Wigner function for GKP states, which may be of interest on
its own. The peculiar property of the Wigner function of GKP
states is that it comes with an atomic form, where the Dirac
distribution has disjoint support

WCV
ρGKP

(r)

=

√
d
n

√
8π

n

∑
l,m

cρGKP
(l,m)δ

(
rp −m

√
π

2d

)
δ

(
rq − l

√
π

2d

)
(37)

where cρGKP
(l,m) is a coefficient serving as a weight for

each peak in the Wigner function of a GKP state ρGKP.
We show how to derive Eq. (37) from (28) in Appendix B.
This Wigner function forms a lattice, so we restrict it to one
unit cell and focus on li,mi ∈ [0, 2d − 1] or equivalently
li,mi ∈ Z2d for each i = 1, . . . , n.

The following result shows that the weight cρGKP
(l,m) in

the domain l,m ∈ Znd exactly coincides with the distribution
defined in (32).
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Proposition 2. For l,m ∈ Zn2d, it holds that

cρGKP(l,m) = xρ(l,m). (38)

The proof of Proposition 2 can be found in Appendix B.
This establishes the fundamental relation between discrete-
variable and continuous-variable representations of an arbi-
trary state ρ. As we will see later in this section, for odd di-
mensions Proposition 2 directly connects the discrete Wigner
function of an arbitrary state ρ and the continuous Wigner
function of the GKP state that encodes ρ.

Theorem 1 relates the lp-norm of GKP states to the lp-
norm of xρ for a discrete-variable state ρ, which quantifies
the magicness in ρ, and therefore establishes a direct con-
nection between the Wigner negativity of a qudit encoded in
GKP and a finite-dimensional magic measure. The case of
p = 1 is particularly insightful. In this case, the 1-norm of
the continuous-variable Wigner function coincides with the
continuous-variable Wigner negativity, which is known to be a
valid measure of non-Gaussianity [5, 6]. The quantity in The-
orem 1 is then the amount of non-Gaussianity renormalized
by the negativity of the GKP states encoding stabilizer states.
This renormalization is necessary, as even stabilizer states en-
coded in GKP have non-zero continuous Wigner negativity.

Its property as a magic measure depends on whether the di-
mension of the discrete-variable systems is odd or even. For
odd dimensions, ∥xρ∥1 coincides with the discrete Wigner
negativity [17, 19]. This is a magic measure defined for gen-
eral mixed states that is monotonically non-increasing under
stabilizer protocols [19], which consists of (1) Clifford uni-
taries (2) composition with stabilizer states (3) Pauli measure-
ments (4) partial trace (5) the above operations conditioned on
the outcomes of Pauli measurements or classical randomness.
Moreover, it is faithful for pure states, i.e., ∥xψ∥1 = 1 if and
only if ψ is a stabilizer state for an arbitrary pure state ψ [17].

On the other hand, for the case of even dimensions, ∥xρ∥p
does not reduce to known magic measures in general—the
definition of a discrete Wigner function in even dimensions
is more challenging and involves expanding the set of phase-
space point operators to an over-complete basis [42]. In ad-
dition, the phase space point operators always have a unit
trace [17, 42], while it is not the case for Ol,m in even di-
mensions, indicating the subtlety of connecting it to Wigner
functions. However, for the special case of d = 2, it is evident
by definition that ∥xρ∥p is equivalent to the stabilizer Rényi
entropy [28], as the operator {Ol,m}l,m reduces to the Pauli
operators. Indeed, the core properties that motivate the stabi-
lizer Rényi entropy as “magic measures” can also be extended
to ∥xρ∥1 for all dimensions as follows.

1. Invariance under Clifford unitaries UC :∥∥∥xUCρU
†
C

∥∥∥
1
= ∥xρ∥1

2. Multiplicativity: ∥xρ⊗σ∥1 = ∥xρ∥1∥xσ∥1

3. Stabilizer states achieve the minimum value:
∥xϕ∥1 = 1 for every pure stabilizer state ϕ, and
∥xψ∥1 ≥ 1 for every pure state ψ.

The first two properties directly follow from the properties of
the continuous Wigner function together with Theorem 1, or
equivalently from the properties of the newly defined opera-
tors Ol,m. We show the third property in Appendix C.

In addition, for odd dimensions and multi-qubit systems,
we have the following property.

4. Faithfulness: For a pure state ϕ, ∥xϕ∥1 = 1 if and only
if ϕ is a stabilizer state.

This follows from the discrete Hudson’s theorem [17] for
odd dimensions and the faithfulness of stabilizer Rényi en-
tropy [28] for multi-qubit systems.

The operators Ol,m are involutions that are orthogonal in
the Hilbert-Schmidt inner product and therefore form a basis.
Furthermore, they are closed under Clifford unitaries. We will
delve more into the properties of the operators Ol,m in the
next subsection.

Evidently, the major dividing line between even and odd
dimensions for the above magic measures is the question of
monotonicity under Pauli measurement and the inclusion of
mixed states. The magic measures for odd dimensions are
non-increasing under Pauli measurements, and they are valid
magic measures for general mixed states. On the other hand,
for even dimensions, they are designed solely for pure states,
and the monotonicity under Pauli measurements does not hold
in general [43]. In particular, it is an important problem to
find a computable magic measure for multi-qubit systems that
is non-increasing even under Pauli measurements. One such
measure is known as stabilizer nullity [26], but it is a highly
discontinuous measure unstable under an infinitesimally small
perturbation. Finding a continuous computable measure with
full monotonicity will thus make an interesting future direc-
tion. This problem also generalizes to all even dimensions in
an equivalent way.

1. Properties of operator basis

Since the operators Ol,m defined in Eq. 30 are of inter-
est in their own way and play a central role in connecting
the continuous-variable and discrete-variable worlds as can
be seen in Theorem 1 and Proposition 2, let us investigate
their properties. A proof of the properties outlined here can
be found in Appendix D.

In general, l,m ∈ Z2d are defined over mod 2d. How-
ever, for most applications, one can restrict to Zd. For a value
above d, the operators are periodic in d

Ml =Ml+d (39)

Zmd = Zm+d
D (40)

but can have different phases

Ol+d,m = (−1)mOl,m

Ol,m+d = (−1)lOl,m

Ol+d,m+d = (−1)l+m+dOl,m
(41)
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Therefore, if one is only interested in the operators indepen-
dent of the sign, one can restrict the domain of l,m.

In general, Ol,m and Zd are unitary, and Ml is Hermitian.
Thus, it holds that

Ol,mO
†
l,m = 1. (42)

The operator Ol,m is also Hermitian O = O† and thus

Ol,mOl,m = 1, (43)

implying that the spectrum is ±1.
These operators are orthogonal in the sense of the Hilbert-

Schmidt inner product

Tr (Ol,mOl′m′) = δmm′δll′d. (44)

Furthermore, the action of Clifford unitaries on the operators
Ol,m is equivalent to a symplectic linear transformation on
the coordinates (l,m) and constant shifts. We show this in
Appendix D 2. For d = 2, one recovers the standard Pauli
operators. Therefore, Ol,m can be seen as a Hermitian gener-
alization of the Pauli operators to arbitrary dimensions.
Ml contains d 1s for any dimension, but they behave differ-

ently for even and odd dimensions. Whether the operator is
traceless for even dimensions depends on whether l is even or
odd—Ml is traceless for odd l, while it has trace 2 for even l.
For odd dimensions, the matrices Ml have trace 1.

Using the properties of Ml and the known properties of Zd,
we can now give a summary of the properties of Ol,m

Tr[Ol,m] =

{
1 + (−1)m d, l even
(−1)ml d odd

(45)

Ol,m = O†
l,m (46)

O2
l,m = 1 (47)

Tr (Ol,mOl′m′) = δmm′δll′d (48)

As we have seen that the operators are orthogonal under
the Hilbert-Schmidt norm and form a basis, we can expand
operators in that basis. We restrict to l,m ∈ Zd, since the
operators for other l,m are the same modulo a potentially
different sign that can be absorbed in the coefficients.

We can represent every quantum state in basis the operators
Ol,m such that

ρ =
∑
m,l

Tr

[
ρ
Ol,m

dn

]
Ol,m

=
∑
l,m

xρ(l,m)Ol,m

(49)

Given by the spectrum ofOl,m, we can bound the value of the
coefficients

− 1

dn
≤ xρ(l,m) ≤ 1

dn
. (50)

We can further bound xρ(l,m) using Tr(ρ) = 1 as

Tr (ρ) =
∑
l,m

xρ(l,m) Tr (Ol,m)

=

{∑
l,m(−1)l·mxρ(l,m) = 1 odd∑
l,m:even 2

nxρ(l,m) = 1 even

(51)

where l ·m =
∑n
i=1 limi.

Interestingly, we find the following characterization of pure
stabilizer states, which we prove in Appendix D 3.

Proposition 3. For an arbitrary pure stabilizer state ϕ,
xρ(l,m) have the same magnitude |xρ(l,m)| = 1

dn with dn

non-zero coefficients over l,m ∈ Znd .

We note that, because of the property (41), the non-zero
coefficients in the larger domain m, l ∈ Zn2d for a pure stabi-
lizer state still solely takes the value d−n, and the number of
non-zero coefficients increases to (4d)n.

We see that xρ(l,m) is not directly a quasi-probability dis-
tribution but can easily be modified to be one for odd dimen-
sions. In the case of odd dimensions, we can show a direct
connection between the operators Ol,m and the phase space
operators A(a1, a2). The precise connection is

O2a2,−2a1 = A(a1, a2), (52)

where now the index 2a2,−2a1 ∈ Z2d go over numbers
mod 2d, to get the sign correct. We can make the connection
even more explicit by correcting the trace ofOl,m and remem-
bering that otherwise the phase space operators and Ol,m are
reordered versions of each other

(−1)a1a2Oa1,a2 = A(σ[a1, a2]
T ) (53)

where σ is some permutation matrix over Z2
d. This result di-

rectly connects the discrete Wigner function WDV
ρ with the

distribution xρ via

xρ(a1,a2) = (−1)a1·a2WDV
ρ (σ[a1,a2]

T ). (54)

2. Proof of Theorem 1

We are now ready to show Theorem 1.

Proof of Theorem 1. Using Propositions 2 and 3, we get for
an arbitrary pure stabilizer state ϕ that

∥WCV
ϕGKP

∥p,cell =

[
(4d)n

{(
d

8π

)n/2
d−n

}p]1/p

=
(4d)n/p

(8πd)n/2
.

(55)
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Proposition 2 gives

∥WCV
ρGKP

∥p,cell =

 ∑
l,m∈Zn

2d

{(
d

8π

)n/2
|xρ(l,m)|

}p1/p

=

4n ∑
l,m∈Zn

d

{(
d

8π

)n/2
|xρ(l,m)|

}p1/p

= 4n/p
(
d

8π

)n/2
∥xρ∥p

= dn(1−1/p)∥WCV
ϕGKP

∥p,cell∥xρ∥p,
(56)

which shows (34).
For odd-dimensional cases, we can employ (53) to get

ρ =
∑
a1,a2

WDV
ρ (a1,a2)A(a1,a2)

=
∑
a1,a2

xρ(a1,a2)Oa1,a2

=
∑
a1,a2

xρ(a1,a2)(−1)a1·a2A(σ[a1,a2]
T ).

(57)

This particularly gives

∥∥WDV
ρ

∥∥
p
=

(∑
a1,a2

∣∣WDV
ρ (a1,a2)

∣∣p)1/p

=

∑
l,m

∣∣(−1)l·mxρ(l,m)
∣∣p1/p

= ∥xρ∥p.

(58)

This, together with (34), shows (36), completing the proof.

This concludes the section on establishing a connection be-
tween magic and non-Gaussianity with Wigner functions.

B. Via characteristic function

In this section, we use the formalism of characteristic
functions to establish a connection between magic and non-
Gaussianity similar to the one found in the previous section.

The characteristic function of a qudit state ρ =∑
u,v∈Zn

d
ρu,v |u⟩ ⟨v| encoded in GKP offers a striking con-

nection to finite-dimensional systems as well. The character-
istic function of a qudit encoded in GKP can then be written
as

χCV
ρGKP

(r)

=

√
2π

d

∞∑
l,m=−∞

γρGKP
(l,m)δ

(
p−m

√
2π

d

)
δ

(
q − l

√
2π

d

)
.

(59)

We show the derivation in Appendix E.
The following result establishes the fundamental connec-

tion between the discrete characteristic function and the
continuous-variable characteristic function of GKP states that
encodes the discrete-variable state.

Theorem 4. Let ρ be an n-qudit state on a dn-dimensional
space. For l,m ∈ Zn2d, it holds that

γρGKP
(l,m) = dnω

−l·m/2
d ω

−l·m/2
D χDV

ρ (l,m)∗ (60)

In particular,

dn(1−1/p)∥χDV
ρ ∥p =

∥χCV
ρGKP

∥p,cell
∥χCV

STAB,GKP∥p,cell
(61)

where

∥χCV
STAB,GKP∥p,cell := ∥χCV

ϕGKP
∥p,cell

=

(
2π

d

)n/2
(4d)n/p

(62)

is a quantity that takes the same value for every pure stabilizer
state ϕ.

The proof can be found in Appendix E. This gives us a
direct connection to the α−stabilizer Rényi entropy defined
for multi-qubits [28], which has recently been shown to be a
magic monotone under stabilizer protocols for α ≥ 2 [44].
Our result also provides an immediate generalization to all di-
mensions. The natural extension of the α−stabilizer Rényi
entropy to n-qudit state is

Mα(ρ)

= (1− α)−1 log

d−nα ∑
P∈P∗

n

|Tr (ρP )|2α
− n log d

= α(1− α)−1 log ∥Ξ(ρ)∥α − n log d
(63)

where P∗
n is the projective generalized Pauli (Heisenberg-

Weyl) group which only contains +1 phase, ΞP (ρ) =
1
dn Tr (ρP )

2 forms a probability distribution when ρ is pure.
Thus, we see immediately by comparison that we can

write all α-stabilizer Rényi entropies with the l2α-norm of the
continuous-variable characteristic function for the qudit state
that the GKP state encodes. Specifically, we have

Mα(ρ) =
2α

1− α
log ∥χDV

ρ ∥2α − n log d

=
2α

1− α
log

∥χCV
ρGKP

∥2α,cell
∥χCV

STAB,GKP∥2α,cell
− αn log d

1− α

(64)

where in the second equality we used Theorem 4.

IV. SIMULATION ALGORITHMS

In this section, we provide simulation algorithms that use
magic measures based on the connections we established with
the Wigner and characteristic functions. We give the technical
details in Appendix F.
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A. Wigner function

The magic measures that were inspired by the continuous
Wigner function allow for a nice operational interpretation of
the simulation cost of a quantum circuit. Pashayan et al. [37]
introduced a simulation algorithm for quasi-probability distri-
butions that strictly resemble the discrete Wigner functions in
odd dimensions. These ideas were used to adapt the simula-
tor to multi-qubit cases by Rall et al. [38]. Using our unified
approach that works for all dimensions, we can extend the
simulator by Pashayan et al. to all dimensions and recover the
simulator of Rall et al. for d = 2 (see Appendix F). The sim-
ulation time scales with the amount of negativity in the entire
circuit defined as

M→ = ∥xρ∥1
T∏
t=1

max
λt

∥xUt
(λt)∥1 max

λT

|xΠ(λT )| (65)

where the maximum is taken over all trajectories and

xρ(λ) = Tr

(
ρ
Oλ

dn

)
(66)

xU (λ
′, λ) = Tr

(
Oλ′

dn
UOλU

†
)

(67)

xΠ(λ) = Tr (ΠOλ). (68)

are the coefficients related to the input state ρ, the unitary evo-
lution U and the measurement effect Π with λ = (l,m) ∈
Z2n
d . The number of samples K that achieves precision ϵ with

a failure probability pf is given by

K ≥ 2M2
→

1

ϵ2
ln

(
2

pf

)
. (69)

This shows that the number of samples directly scales with
the resourcefulness of the input state ∥xρ∥1 if we evolve us-
ing the free operations of our magic quantifiers like Clifford
unitaries. This result gives a nice operational interpretation of
the quantifiers discussed in this work, as already noted in the
case for the discrete Wigner negativity [37].

A few comments on the difference between even and odd
dimensional systems are in order. For odd dimensional sys-
tems, it holds ∥xρ∥1 ≥ 1, whereas it is possible for qubits
that ∥xρ∥1 ≤ 1 for specific states which reduce the number
of samples needed. These qubit states are discussed in [38]
and are called hyperoctahedral states. We show that this phe-
nomenon exists in all even dimensions and call these states
hyperpolyhedral states. See Appendix G for details. How-
ever, for pure states, it holds that ∥xρ∥1 ≥ 1.

Another interesting difference between even and odd di-
mensions when Pauli measurements are involved is that the
simulator is less competitive in even dimensions. The cost of
measurements is taken into account via the term

max
λT

|xΠ(λT )|. (70)

Since for odd-dimensional systems Ol,m has trace 1, com-
putational basis measurements do not increase the simulation

time. This is not the case for even dimensions. In this case,
the measurements increase simulation time, as was noted by
Rall et al. [38].

Let us assume that we would like to measure k-qudits of our
n-qudit system in a computational basis state |i⟩. The mea-
surement effect then is given as Π = 1n−k ⊗ |i⟩⟨i|. Without
loss of generality, assume the measurement of the state |1⟩⟨1|,
the state with all measured qudit in the 1 state. The expansion
of a qudit in the operators Ol,m is |1⟩⟨1| = 1

d

∑d−1
i=1 O2,i. The

cost inferred from the measurement is then

max
λT

|xΠ(λT )| = max
l,m

|Tr [Ol,m1n−k ⊗ |1⟩⟨1|]| (71)

= max
ln−k,mn−k

∣∣Tr [Oln−k,mn−k

]∣∣ max
lk,mk

|Tr [Olk,mk
|1⟩⟨1|]|

(72)

The maximum trace |Tr [Olk,mk
|1⟩⟨1|]| is 1 for both even and

odd dimensions. However, for the first term there is a big dif-
ference between even and odd dimensions. For odd dimen-
sions the trace of Ol,m is ±1, so unmeasured qudits do not
add to the simulation cost in any way. This is not the case for
even dimensions. In even dimensions the trace of a single qu-
dit operator Ol,m is either 0 or 2. Therefore, the maximum of
the first term

∣∣Tr [Oln−k,mn−k

]∣∣ is 2n−k, and thus the num-
ber of unmeasured qudits increase the number of samples re-
quired exponentially.

B. Characteristic function

The same ideas can be used to construct a simulator that is
based on characteristic functions. It will reduce to the simu-
lator by Rall et al. [38] for d = 2. The simulation cost scales
with a resource quantified using magic measures based on the
connection of the characteristic functions.

Instead of representing the quantum state in the basis of
Ol,m, we use the Heisenberg-Weyl operators Pd(l,m) de-
fined in (8) as our basis. Since they are unitary and traceless
(with the exception of the identity operator) a few small mod-
ification are in order. A qudit state ρ and its characteristic
function χDV

ρ can be written as

ρ =
1

d

∑
l,m

χDV
ρ (l,m)Pd(l,m) (73)

with χDV
ρ (0,0) = 1, since Pd(0,0) = 1. Furthermore, since

the density operator is Hermitian, it holds that∑
l,m

χDV
ρ (l,m)Pd(l,m) =

∑
l,m

[
χDV
ρ (l,m)

]∗
Pd(l,m)†.

(74)
Therefore, many coefficients in the decomposition are redun-
dant. For Heisenberg-Weyl operators it holds that

P †(l,m) = ωl·m
D P (−l,−m) (75)

and therefore[
χDV
ρ (l,m)

]∗
= ωl·m

D χDV
ρ (−l,−m). (76)
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This implies that we have only d2−1
2 independent coefficients

in the decomposition. Thus, we can only sample from the
independent coefficients, since they are pairwise dependent.

The rest of the algorithm works equivalently. The simula-
tion times scale with the negativity of the entire circuit which
is here re-expressed as

Mχ
→ =

∥∥χDV
ρ

∥∥
1

∏
t=1

max
λt

∥∥χDV
Ut

(λt)
∥∥
1
max
λT

∣∣χDV
Π (λT )

∣∣
(77)

with

χDV
ρ (λ) = Tr

(
ρ
P †(λ)

dn

)
(78)

χDV
U (λ′, λ) = Tr

(
P †(λ′)

dn
UP (λ)U†

)
(79)

χDV
Π (λ′) = Tr (ΠP (λ)). (80)

The simulator behaves similarly to the previous one for even
dimensions. The same simulation time increase happens for
unmeasured qudits, and the operations that do not increase the
runtime are quite limited.

V. MAGIC NEEDS NON-GAUSSIANITY

It has been known since the original GKP paper [36] that
one can implement the logical T -gate and thus get an H-type
magic state by using a cubic phase state or cubic interaction
eicQ

3

. However, this is merely one possibility for implement-
ing a non-Gaussian interaction, and this does not show the
necessity of non-Gaussianity to implement a non-Clifford op-
eration on the code subspace. This is a widely held belief
based on the correspondence between a pair of Pauli and dis-
placement operators and that of Clifford and Gaussian oper-
ations, where displacement operators and Pauli operators are
both Heisenberg-Weyl operators. However, this “belief” has
not been proven in general, beyond specific scenarios in qubit
systems [39]. Indeed, GKP states have much Wigner negativ-
ity and thus a priori additional non-Gaussianity may not be
required, making the necessity of non-Gaussian operation to
implement a non-Clifford operation nontrivial.

Nevertheless, the results established above allow us to show
that non-Gaussian operations are essential to implement non-
stabilizer operations in the GKP code space. In fact, we find
that the Gaussian protocols [5]—a class of quantum chan-
nels larger than Gaussian operations, which also admits feed-
forwarded Gaussian operations conditioned on the outcomes
of Gaussian measurements—are not able to implement non-
stabilizer operations in the GKP code space. Importantly,
Gaussian protocols include a gate teleportation circuit involv-
ing a Gaussian measurement and a feed-forwarded Gaussian
unitary, which itself is not a Gaussian operation [45].

Theorem 5. Let Λ be a quantum channel with n-qubit input
and output. If there exists a pure stabilizer state ϕ and a pure
non-stabilizer state ψ such that Λ(ϕ) = ψ, Λ cannot be im-
plemented in a GKP code space by a Gaussian protocol. Also,

for a quantum channel Λ with n-qudit input and output sys-
tems with odd local dimensions, the condition can be relaxed
to the existence of a (potentially mixed) stabilizer state σ and
a state ρ with ∥WDV

ρ ∥1 > 1 such that Λ(σ) = ρ.

Proof. Suppose that Λ can be implemented in the GKP code
space by a Gaussian protocol G, i.e., G(σGKP) = ρGKP for
qudit states σ and ρ such that Λ(σ) = ρ. Since ∥WCV

ρGKP
∥1,cell

does not increase under Gaussian protocols [5, 6, 29], we get

∥WCV
ρGKP

∥1,cell = ∥WCV
G(σGKP)∥1,cell ≤ ∥WCV

σGKP
∥1,cell. (81)

Because of the assumption that ρ is also an n-qudit state, The-
orem 1 and (81) imply that

∥xσ∥1 =
∥WCV

σGKP
∥1,cell

∥WCV
STABn,GKP∥1,cell

≥
∥WCV

ρGKP
∥1,cell

∥WCV
STABn,GKP∥1,cell

= ∥xρ∥1.

(82)

Suppose that the input state σ is a pure stabilizer state de-
noted by ϕ and the output state ρ is a pure non-stabilizer
state ψ. Since ∥xξ∥1 is faithful for pure states as shown in
Sec. III A, i.e., for a pure state ξ, ∥xξ∥1 = 1 if and only if ξ is
a stabilizer state, we get ∥xϕ∥1 = 0 and ∥xψ∥1 > 0. This is a
contradiction with (82), showing that such a channel Λ cannot
be implemented by a Gaussian protocol.

The statement for odd dimensions follows by the same ar-
gument using the relation (36).

An immediate consequence is that a Gaussian protocol
cannot implement non-Clifford unitary gates deterministi-
cally. This does not contradict the protocol by Baragiola et
al. [46], which requires many auxiliary GKP states—making
the whole operation involving the preparation of such an-
cillary states highly non-Gaussian—to apply a single non-
Clifford gate. In addition, their protocol is probabilistic and,
therefore, does not directly fall into the scope of our result,
which is pertinent to deterministic operations.

VI. CONCLUSION AND OUTLOOK

In this work, we established a fundamental relation between
discrete- and continuous-variable systems via the Gottesman-
Kitaev-Preskill encoding. We introduced a family of distribu-
tions for discrete-variable systems and showed that their lp-
norm exactly corresponds to that of the continuous Wigner
function that encodes the same qudit states via GKP encod-
ing. Notably, the discrete-variable distribution coincides with
the discrete Wigner function for odd dimensions, allowing us
to connect the negativity of Wigner functions of discrete and
continuous variables for p = 1. More generally, our distribu-
tions allow for defining a magic quantifier for all dimensions
and extend the discrete Wigner negativity defined for odd di-
mensions and the stabilizer Rényi entropy defined for multi-
qubit systems in a unified manner. Furthermore, we showed
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that the lp-norm of the discrete-variable characteristic func-
tion corresponds to the characteristic function of a GKP state
that encodes the same qudit state. This provides a new inter-
pretation of the stabilizer Rényi entropy in terms of the GKP
encoding and naturally extends it to all dimensions. Employ-
ing this framework, we introduced a classical simulation al-
gorithm, where the run time scales with the magic measures
we introduced. The first algorithm is based on the magic mea-
sures connected to the continuous Wigner function and recov-
ers the simulator in Ref. [37], while the second one is based on
the magic measures connected to the continuous characteristic
function. Both algorithms give a strong operational interpre-
tation to the magic measures we introduced. We utilized our
findings to demonstrate that achieving a deterministic imple-
mentation of a logical non-Clifford operation, with identical
input and output dimensions within the GKP code subspace,
necessitates a non-Gaussian operation, even when operating
at the theoretical limit of ideal GKP state input.

Our framework offers a novel approach to analyzing magic
and non-Gaussian resources by employing tools developed for
the other. This begs the question of whether we can investigate
more properties of finite-dimensional systems using infinite-
dimensional ones or vice versa. Furthermore, we have seen
that the magic measures defined in this work behave differ-
ently for even and odd dimensions. An interesting future di-
rection is to further investigate the origin of this behavior. Fi-
nally, being able to investigate and see the dependence of the
dimensionality could shed new light on the source of quantum
speed-ups.

Note added.—During the completion of this manuscript, a
related independent work by Lingxuan Feng and Shunlong
Luo [47] was brought to our attention, where the authors
found a complementary relation between the description of
a qudit state and continuous-variable Wigner function of the
corresponding GKP state.
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Appendix A: lp norm and renormalization

In this section, we formalize a way to compute the lp norm
of the characteristic function as well as the Wigner function of
GKP states. Note here that the l1 norm of the Wigner function
is the Wigner negativity. The lp norm is defined as

∥f∥p =
(∫

dx|f(x)|p
) 1

p

. (A1)

We are interested in computing the lp-norm of characteristic
and Wigner functions of GKP states, so we deal with sums of
Dirac distribution, where the distributions have disjoint sup-
port(∫ ∞

−∞
dx

∣∣∣∣∣∑
i

fi(x)δ(x− xi)

∣∣∣∣∣
p) 1

p

=

(∑
i

|fi(xi)|pδ(0)p−1

) 1
p

=

(∑
i

|fi(xi)|p
) 1

p

δ(0)
p−1
p .

(A2)
This integral evaluates to the same Dirac distribution
δ(0)(p−1)/p for all GKP states, which will be canceled by
dividing it by the lp-norm for another GKP state as in The-
orems 1 and 4. Therefore, we will define the norm as(∫ ∞

−∞
dx

∣∣∣∣∣∑
i

fi(x)δ(x− xi)

∣∣∣∣∣
p) 1

p

=

(∫ ∞

−∞
dx

∣∣∣∣∣∑
i

fi(x)

∣∣∣∣∣
p

δ(x− xi)

) 1
p

=

(∑
i

|fi(xi)|p
) 1

p

(A3)

as a kind of regularization.

Appendix B: Proof of Proposition 2

In this section, we derive the atomic form of a n-qudit state
encoded in the Gottesman-Kitaev-Preskill (GKP) code. We
call the representation atomic if each Dirac distribution with
different support appears only once in the summation, thus all
Dirac distributions are distinct. We start deriving the atomic
form for one qudit encoded in GKP and then generalize it to
n-qudit systems.

1. One Qudit

For a single qudit, the Wigner function of a computational
basis state |j⟩⟨j| encoded in GKP are

WCV
|j⟩⟨j|GKP

(rq, rp)

∝
∞∑

s,t=−∞
(−1)stδ(rp −

π

dα
s)δ(rq − αj − dα

2
t).

(B1)

574



11

In order to derive the Wigner function of an arbitrary qudit
state ρ =

∑
u,v∈Zd

ρu,v |u⟩ ⟨v| encoded in the GKP code, we
expand our state in the computational basis

WCV
ρGKP

(rq, rp) =
∑

u,v∈Zd

ρuv
1

2π

∫ ∞

−∞
dx eirpx

[ ∞∑
s=−∞

δ

(
rq +

x

2
−
√

2π

d
(u+ ds)

)][ ∞∑
t=−∞

δ

(
rq −

x

2
−
√

2π

d
(v + dt)

)]
.

(B2)

We then use the linearity of the Wigner function and get cross terms between the computational basis states j and k

WCV
|j⟩⟨k|GKP

(rq, rp) =
1

2π

∫ ∞

−∞
dxeirpx

[ ∞∑
s=−∞

δ

(
rq +

x

2
−
√

2π

d
(j + ds)

)][ ∞∑
t=−∞

δ

(
rq −

x

2
−
√

2π

d
(k + dt)

)]

=
1

2 · 2π
∑
s,t

e2irp(rq−
√

2π
d (k+dt))δ

(
rq −

√
π

2d
[j + k + ds+ dt]

)

=
1

2 · 2π
∑
s,t

e2irp(q−
√

2π
d (k+dt−ds))δ

(
rq −

√
π

2d
[j + k + dt]

)

=
1

2 · 2π
∑
s,t

e2irp
√

2π
d dse2irp(rq−

√
2π
d (k+dt))δ

(
rq −

√
π

2d
(j + k + dt)

)

=
1

2 · 2π
∑
s,t

δ

(√
2d

π
rp − s

)
δ

(
rq −

√
π

2d
(j + k + dt)

)
e2irp(

√
π
2d (j+k+dt)−

√
2π
d (k+dt))

=
1

2
√
2πd

∑
s,t

δ

(
rp − s

√
π

2d

)
δ

(
rq −

√
π

2d
(j + k + dt)

)
eirp

√
2π
d (j−k−dt),

(B3)

where we used the Poisson resummation formula

∞∑
n=−∞

ei2πnx =
∞∑

k=−∞

δ(x− k). (B4)

We simplify (B2) by using (B3) and arrive at

WCV
ρGKP

(rq, rp) =
1√
8πd

d−1∑
u,v=0

ρu,v
∑
s,t

(−1)s(u−v−dt)/dδ

(
rp − s

√
π

2d

)
δ

(
rq −

√
π

2d
(u+ v + dt)

)
. (B5)

We need to find the coefficients cρGKP
(l,m) such that

WρGKP
(rq, rp)

=

√
d√
8π

∑
l,m

cρGKP
(l,m)δ

(
rp −m

√
π

2d

)
δ

(
rq − l

√
π

2d

)
(B6)

only has disjoint support for each Dirac distribution in the
summation.

By inspection of Eq. (B5), we immediately see that
δ
(
rp − s

√
π
2d

)
is already in the correct form and thus will

only contribute a phase with s = m. Furthermore, we restrict
the GKP state to one until the cell of length

√
2dπ, so each

m, l can have 2d values m, l ∈ {0, 1, ..., 2d − 1}. For now,
let us consider s = m = 0. Then we get the same Dirac dis-
tribution for q if u + v + dt = l. This requirement can be
simplified if we remember that we consider only a unit cell
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and thus u+ v mod d = l. Consequently the matrix element
cρGKP

(l, 0) will be a sum of ρu,v with u+ v mod d = l. We
can write this as

cρGKP
(l, 0) = d−1 Tr (ρMl) (B7)

with

Ml =
∑

u,v∈Zd
u+v mod d=l

|u⟩ ⟨v| . (B8)

As an example, if we take qubits d = 2

M0 =

(
1 0
0 1

)
M1 =

(
0 1
1 0

)
(B9)

so we retrieve the identity and Pauli X . For qutrits d = 3 we
get

M0 =

1 0 0
0 0 1
0 1 0

 M1 =

0 1 0
1 0 0
0 0 1

 M2 =

0 0 1
0 1 0
1 0 0


(B10)

We now consider the general case with m ̸= 0. Recalling
l = u + v + dt, the contribution for m ̸= 0 is given by the

phase factor∑
m

(−1)m(u−v−dt)/d =
∑
m

(−1)m(2u−l)/d

=
∑
m

eiπm(2u−l)/d = ω
−ml/2
d ωmud

(B11)
where ωd = e2πi/d is the d th root of unity. This allows us to
obtain the general form of matrix elements in (B6) as

cρGKP(l,m) = d−1ω
−ml/2
d Tr (MlZ

m
d ρ) (B12)

= d−1 Tr (Oρ(l,m)ρ) (B13)
= xρ(l,m). (B14)

This shows Proposition 2 in the case of n = 1.

2. n-Qudits

In this section, we will derive the multi-qudit atomic form
of GKP states. The state of an arbitrary n-qudit state is given
as ρ =

∑
u,v∈Zn

d
ρu,v |u⟩ ⟨v|. The Wigner function for the

GKP state that encodes this n-qudit state is then

WCV
ρGKP

(r)

=
∑

u,v∈Zn
d

ρu,v

n∏
i=1

1

2π

∫ ∞

−∞
drxi e

irpirxi

[ ∞∑
si=−∞

δ

(
rqi +

rxi

2
−
√

2π

d
(ui + dsi)

)][ ∞∑
ti=−∞

δ

(
rqi −

rxi

2
−
√

2π

d
(vi + dti)

)]

=
1

(
√
8πd)n

∑
u,v∈Zn

d

ρu,v

n∏
i=1

[∑
si,ti

(−1)
si
d (ui−vi−dti)δ

(
rpi −

√
π

2d
si

)
δ

(
rqi −

√
π

2d
(dti + ui + vi)

)]
.

(B15)

We are now ready to show Proposition 2 by confirming that

WCV
ρGKP

(r) =

√
d
n

√
8π

n

∑
l,m

cρGKP
(l,m)

× δ

(
rp −m

√
π

2d

)
δ

(
rq − l

√
π

2d

)
(B16)

coincides with (B15) by taking cρGKP
(l,m) = xρ(l,m). We

note that

xρ(l,m)

= d−nω
−m·l/2
d Tr (Ml1 ⊗ ...⊗MlnZ

m1

d ⊗ ...⊗ Zmn

d ρ)

= d−nω
−m·l/2
d Tr (MlZ

m
d ρ)

(B17)

with

Tr (MlZ
m
d ρ)

=
∑

u,v∈Zn
d

ρu,v ⟨v|Ml1 ⊗ ...⊗MlnZ
m1

d ⊗ ...⊗ Zmn

d |u⟩

=
∑

u,v∈Zn
d

ρu,vω
m1u1

d ...ωmnun

d ⟨v|Ml1 ⊗ ...⊗Mln |u⟩ .

(B18)
Note that ⟨v|Ml1 ⊗ ...⊗Mln |u⟩ = 1 when

ui + vi + dti = li (B19)

and ⟨v|Ml1 ⊗ ...⊗Mln |u⟩ = 0 otherwise. Consequently, the
Wigner function (B16) with the coefficients (B17) becomes
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WCV
ρGKP

(r) =

√
d
n

√
8π

n

∑
l,m

xρ(l,m)δ

(
rp −m

√
π

2d

)
δ

(
rq − l

√
π

2d

)

=
1

√
8πd

n

∑
l,m

∑
u,v∈Zn

d

ρuvω
−m·l/2
d ωm1u1

d ...ωmnun

d ⟨v|Ml1 ⊗ ...⊗Mln |u⟩
(
rp −m

√
π

2d

)
δ

(
rq − l

√
π

2d

)

=
1

√
8πd

n

∑
u,v∈Zn

d

ρuv

n∏
i=1

∑
mi,ti

ω
−mi(ui+vi+dti)/2
d ωmiui

d

(
rpi −mi

√
π

2d

)
δ

(
rqi −

√
π

2d
(ui + vi + dti)

)

=
1

√
8πd

n

∑
u,v∈Zn

d

ρuv

n∏
i=1

∑
mi,ti

(−1)mi(ui−vi−dti)/d
(
rpi −mi

√
π

2d

)
δ

(
rqi −

√
π

2d
(ui + vi + dti)

)
(B20)

which coincides with (B15). This completes the proof of
Proposition 2.

Appendix C: Proof of Property 3 of ∥xρ∥1

In this section, we prove a property of ∥xρ∥1 among those
listed in Sec. III, specifically that ∥xϕ∥1 = 1 for every pure
stabilizer state ϕ and ∥xψ∥1 ≥ 1 for every pure state ψ.

We have the requirement for a pure state ψ that

Tr
(
ψ2
)
=
∑
l,m

xψ(l,m)2dn = 1, (C1)

which implies ∑
l,m

Tr(Ol,mψ)
2
= dn. (C2)

Recalling that Ol,m has eigenvalues ±1, it holds that
|Tr(Ol,mψ)| ≤ 1, ∀l,m. This gives∑

l,m

|Tr(Ol,mψ)| ≥
∑
l,m

Tr(Ol,mψ)
2
= dn, (C3)

showing ∥xψ∥1 ≥ 1 for every pure state ψ.
Let ϕ be an arbitrary pure stabilizer state. Proposition 3

ensures that |xϕ(l,m)| = 1/dn for dn elements, leading to

∥xϕ∥1 =
∑
l,m

|xϕ(l,m)| = 1

dn
· dn = 1, (C4)

completing the proof.

Appendix D: Properties of the operator basis

1. Basic properties

In this section, we will show the properties of the operator

Ol,m = ω
−ml/2
d MlZ

m
d . (D1)

As mentioned in the main text, the parameters are l,m ∈ Z2d.
We will first show a property that involves all l,m ∈ Z2d. It
holds that

∑
l,m∈Z2d

Ol,m =
∑

l,m∈Z2d

d−1∑
x=0

ω
−m( l

2−x)
d |−x+ l⟩⟨x| (D2)

=
∑
l∈Z2d

d−1∑
x=0

∑
m∈Z2d

ω
−m( l

2−x)
d |−x+ l⟩⟨x|

(D3)

=

d−1∑
x=0

∑
l∈Z2d

δl,2x |−x+ l⟩⟨x| (D4)

= 1. (D5)

Thus by summing over all l,m ∈ Z2d we can resolve the iden-
tity using the operators Ol,m. Using the operators, however,
as an operators basis we do not need all l,m ∈ Z2d. It suffices
to restrict to l,m ∈ Zd. If we now have a value above d, we
have

Ml =Ml+d (D6)

Zmd = Zm+d
d . (D7)

However, the phases can be different

Ol+d,m = ω
−m(l+d)/2
d MlZ

m
d

= (−1)mOl,m

Ol,m+d = ω
−l(m+d)/2
d MlZ

m
d

= (−1)lOl,m

Ol+d,m+d = ω
−(l+d)(m+d)/2
d MlZ

m
d

= (−1)l+m+dOl,m.

(D8)

So we get the same operators with a different sign.
It is easy to see that Ml is Hermitian. Ml is also an involu-

tion meaning M2
l = 1

MlMl =
∑

u+v mod d=l
u′+v′ mod d=l

|u⟩ ⟨v|u′⟩ ⟨v′| (D9)
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=
∑

u+v mod d=l
v+v′ mod d=l

|u⟩ ⟨v′| (D10)

=
∑

u=v′ mod d

|u⟩ ⟨v′| (D11)

=
∑
u

|u⟩⟨u| . (D12)

Therefore,

Ol,mO
†
l,m =MlZ

m
d (Zmd )

†
M†
l

=MlMl

= 1.

(D13)

This confirms that Ol,m is unitary. The operator Ol,m is also
Hermitian

O†
l,m =

[
ω
−ml/2
d MlZ

m
d

]†
=

[
ω
−ml/2
d

∑
u+v mod d=l

ωvmd |u⟩ ⟨v|

]†
= ω

ml/2
d

∑
u+v mod d=l

ω−vm
d |v⟩ ⟨u|

= ω
−ml/2
d

∑
u+v mod d=l

ω
m(l−v)
d |v⟩ ⟨u|

= ω
−ml/2
d

∑
u+v mod d=l

ωumd |v⟩ ⟨u|

= Ol,m

(D14)

and thus also an involution

Ol,mOl,m = 1 (D15)

because of (D13). This implies that its eigenvalue is ±1.

The operators are orthogonal under the Hilbert-Schmidt in-
ner product

Tr (Ol,mOl′,m′) = ω
−ml/2
d ω

−m′l′/2
d Tr

(
MlZ

m
d Ml′Z

m′

d

)
= ωmvd ωm

′v′

d ω
−ml/2
d ω

−m′l′/2
d

× Tr

 ∑
u+v mod d=l
v′+v mod d=l′

|u⟩ ⟨v′|


=

∑
u+v mod d=l
u+v mod d=l′

ωmv+m
′u

d ω
−ml/2
d ω

−m′l′/2
d .

(D16)
This is 0 if l ̸= l′ because l, l′ ∈ [0, d−1]. Now assume l = l′,

then we get

Tr (Ol,mOl,m′) =
∑

u+v mod d=l

ωmvd ωm
′u

d ω
−ml/2
d ω

−m′l/2
d

=
∑

u+v mod d=l

ω
(m−m′)(v−u)/2
d

=
∑
v∈Zd

ωm̃vd e−iπm̃l/d

= e−iπm̃l/d
∑
v∈Zd

ωm̃vd

(D17)
where we set m̃ := m−m′. This is 0 if m̃ ̸= 0, i.e., m ̸= m′

because a sum over roots of unity is 0. On the other hand,
when l = l′ and m = m′ we get

Tr (Ol,mOl,m) =
∑
v∈Zd

1 = d. (D18)

In conclusion, we have

Tr (Ol,mOl′,m′) = δmm′δll′d. (D19)

As we have seen earlier, Ol,m are the standard Pauli opera-
tors for d = 2. So for d > 2 the operators Ol,m are a general-
ization of the Pauli operators to arbitrary dimensions with the
property of being an involution and Hermitian. In general, Ml

and Ol,m behave differently for even and odd dimensions, so
we will separate the discussion.

a. Odd dimensions

In this section, we assume that the dimension d is odd.
Then, the trace is

Tr (Ol,m) =
∑

2x mod d=l

ω
−ml/2
d ωmxd . (D20)

When l is even, the solution for 2x mod d = l is x = l/2
and gives Tr(Ol,m) = 1. When l is odd, the solution for 2x
mod d = l is x = (d+l)/2, which gives Tr(Ol,m) = (−1)m.
These can concisely be written as

Tr (Ol,m) = (−1)ml. (D21)

The operatorMl has more structure, as seen in Eq. 31 which
we report here for convenience

Ml =
∑

u+v mod d=l

|u⟩ ⟨v| (D22)

There are d possibilities to fulfill this equation, so the ma-
trix representation of Ml in computational basis will have d
ones and the rest 0. Furthermore, the diagonal entries 2u
mod d = l have only one solution for every l. Therefore,
the matrix Ml has one diagonal term 1 and is zero otherwise.
Consequently Tr (Ml) = 1.

Recall that we introduced the operators Ol,m as the ones
that connect the GKP state to the qudit state it encodes. Re-
markably, we can establish a direct connection between this
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and the phase space point operators in odd dimensions, which
a priori may not have anything to do with the operators Ol,m.
The phase space point operators are defined as

A(a1, a2) = d−1
d−1∑

b1,b2=0

e−2iπd (a1,a2)Ωd(b1,b2)
T

ei
π
d b1b2

×
(
X†
d

)b2 (
Z†
d

)b1
= d−1

∑
b1,b2

ωa2b1d ω
b2(

1
2 b1−a1)

d

(
X†
d

)b2 (
Z†
d

)b1
.

(D23)
Using the expansion of Zd and Xd in the computational basis

Zbd =
∑
x

ωbxd |x⟩⟨x|

Zb,†d =
∑
x

ω−bx
d |x⟩⟨x| = Z(−b)

Xb
d =

∑
x

|x+ b⟩ ⟨x|

Xb†
d =

∑
x

|x⟩ ⟨x+ b| = X(−b)

(D24)

we can write the phase space point operator as

A(a1, a2) = d−1
∑
x

∑
b1b2

ω
b1(a2+

1
2 b2)

d ω−a1b2
d X−b2

d Z−b1
d

= d−1
∑
x

∑
b1b2

ω
b1(a2−x+ 1

2 b2)

d ω−a1b2
d |x− b2⟩ ⟨x| .

(D25)
In order to further simplify, we need the discrete resummation
formula

1

d

d−1∑
k=0

e2iπ
kn
d = δ0,n. (D26)

The phase space point operators can then be simplified to

A(a1, a2)

= d−1
∑
x

∑
b1b2

ω
b1(a2−x+ 1

2 b2)

d ω−a1b2
d |x− b2⟩ ⟨x|

=
∑
x

∑
b2

δ0,a2−x+ 1
2 b2
ω−a1b2
d |x− b2⟩ ⟨x|

=
∑
x

∑
b2

δb2,2(x−a2)ω
−a1b2
d |x− b2⟩ ⟨x|

=
∑
x

ω
−2a1(x−a2)
d |x− 2(x− a2)⟩ ⟨x|

=
∑
x

ω2a1a2
d ω−2a1x

d |−x+ 2a2⟩ ⟨x| .

(D27)

Using the following substitutions

u = −x+ 2a2

v = x

u+ v = 2a2 = l

(D28)

we rewrite the phase space point operators as

A(a1, l) =
∑

u+v mod d=l

ω−a1l
d ω−2a1v

d |u⟩ ⟨v|

=
∑

u+v mod d=l

ωa1ld ω−2a1u
d |u⟩ ⟨v| .

(D29)

By comparing this equation with the definition of Ol,m, we
can identify m = −2a1 and we get

A(a1, a2) = O2a2,−2a1 . (D30)

This shows that the operator basis {Ol,m}l,m∈Zd
is equiva-

lent to the phase space point operators {A(a1, a2)}a1,a2∈Zd

up to permutation and phase factors. Indeed, the oddness of
d and (D8) ensure that there is a one-to-one correspondence
between a1, a2 ∈ Zd and l,m ∈ Zd such that A(a1, a2) =
O2a2,−2a1 ∝ Ol,m up to phase, as 2a2 and −2a1 respec-
tively takes all values in Zd by changing a1, a2 ∈ Zd, and
Ol1,m1

and Ol2,m2
coincide up to phase if l1 = l2 mod d and

m1 = m2 mod d.

b. Even dimensions

Now we investigate the operatorsOl,m for the case of even-
dimensional systems. The trace is

Tr (Ol,m) =
∑
x

ω−ml/2
∑

u+v mod d=l

ωmu ⟨x|u⟩ ⟨v|x⟩

(D31)

=
∑

2x mod d=l

ω−ml/2ωmx, (D32)

which vanishes if l is odd. Suppose l is even and write l = 2k.
Then we get

Tr (Ol,m) =
∑

2x mod d=l

ω−ml/2ωmx (D33)

= ω−mk
(
ωmk + ωm(k+ d

2 )
)

(D34)

= 1 + ωm
d
2 (D35)

= 1 + (−1)m. (D36)

We have the same behavior for the operators Ml. For odd
dimensions the equation u + v mod d = l has d solutions.
Therefore, the matrix representation in computational basis
will have d 1’s with the rest being 0. For odd l, the equation 2u
mod d = l has no solution, implying Tr (Ml) = 0 for odd
l. For even l, the equation 2u mod d = l has two solutions,
u = l/2 and u = l/2+d/2. Therefore, we have Tr (Ml) = 2.

We can make here an interesting observation. It is known
that for odd dimensions the phase space point operator at the
origin A(0, 0) acts as the parity operation

A(0, 0) |x⟩ = |−x⟩ (D37)
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for a computational basis state x. The operators Ol,m show
the same behavior for even dimensions and thus for all di-
mensions

O0,0 |x⟩ =M0 |x⟩ = |−x⟩ . (D38)

2. Clifford Covariance

This section investigates how the operators Ol,m transform
under Clifford unitaries. We will see that they behave almost
equivalently to the Heisenberg-Weyl operators.
Xd, Zd generate the d−dimensional Heisenberg-Weyl

group and R,P,SUM the d−dimensional Clifford unitaries.
their action of computational basis state are [40]

Xd : |j⟩ → |j + 1⟩ (D39)

Zd : |j⟩ → ωjd |j⟩ (D40)

R : |j⟩ →
d−1∑
s=0

ωjsd |s⟩ (D41)

P : |j⟩ → ω
j2/2
d (ωDω

−1
2d )

−j |j⟩ (D42)
SUM : |i⟩ |j⟩ → |i⟩ |i+ j mod d⟩ (D43)

A Clifford unitary UC maps the Heisenberg-Weyl operators

Pd(a, b) = ω
1
2ab

d Xa
dZ

b
d (D44)

in the following way

UCPd(u)U
†
C = Pd(Su) (D45)

where S is a 2n×2nmatrix with entries overZD withD = d
for d odd and D = 2d for d even. Heisenberg-Weyl operators
have the following commutation relations(

Xa
dZ

b
d

)(
Xa′

d Z
b′

d

)
= ω

(a,b)Ω(a′,b′)T

d

(
Xa′

d Z
b′

d

)(
Xa
dZ

b
d

)
.

(D46)

We are now interested in how Clifford unitaries and Pauli
operators transform

Ol,m =
d−1∑
x=0

ω
−m( l

2−x)
d |−x+ l⟩ ⟨x| (D47)

with l,m ∈ [0, 2d − 1] or equivalently Z2d. The values the
computational basis states can have are mod d and the op-
erators Zmd ,Ml are repeating for m, l ≥ d. The difference for
m, l ≥ d is the phase factor ω−ml/2

d that repeats after 2d. This
phase factor is important for the action of Clifford unitaries on
the operators Ol,m, while it can be essentially neglected if we
only want to use them as a basis. We expect by our construc-
tion through GKP that Clifford unitaries map Ol,m to another
Ol′,m′ and therefore keeps the negativity invariant.

The QFT gate R transforms the operator Ol,m as

ROl,mR
† =

d−1∑
x=0

ω
−m( l

2−x)
d R |−x+ l⟩ ⟨x|R† (D48)

=
∑
s,s′

ω
−ml/2
d ωsld

∑
x

ω
x(m−s−s′)
d |s⟩ ⟨s′| (D49)

=
∑
s,s′

ω
−ml/2
d ωsld δs,m−s′ |s⟩ ⟨s′| (D50)

=
∑
s′

ω
−ml/2
d ωmld ω−ls′

d |m− s′⟩ ⟨s′| (D51)

=
∑
x

ω
ml/2
d ω−lx

d |m− x⟩ ⟨x| (D52)

and therefore transforms the coordinates like

m→ −l (D53)
l → m. (D54)

The Phase gate P behaves differently for even and odd di-
mensions. For odd dimensions, we get

POl,mP
† =

∑
x

ω
−ml/2
d ωmxd ω

(−x+l)(−x+l−1)/2
d ω

−x(x−1)/2
d

× |−x+ l⟩ ⟨x|

=
∑
x

ω
−ml/2
d ωmxd ω

(l2−l)/2
d ω

x(1−l)
d |−x+ l⟩ ⟨x|

=
∑
x

ω
−l(m−l+1)/2
d ω

x(m−l+1)
d |−x+ l⟩ ⟨x|

(D55)
with the coordinates transforming like

m→ m− l + 1 (D56)
l → l. (D57)

For even dimensions we nearly get the same result

POl,mP
† =

∑
x

ω
−ml/2
d ωmxd ω

(−x+l)2/2
d ω

−x2/2
d |−x+ l⟩ ⟨x|

(D58)

=
∑
x

ω
−ml/2
d ωmxd ω

(l2)/2
d ω−xl

d |−x+ l⟩ ⟨x|

(D59)

=
∑
x

ω
−l(m−l)/2
d ω

x(m−l)
d |−x+ l⟩ ⟨x| (D60)

and

m→ m− l (D61)
l → l. (D62)

The action of Zd transform Ol,m as

ZdOl,mZ
†
d =

∑
x

ω
−ml/2
d ωmxd ω−x+l

d ω−x
d |−x+ l⟩ ⟨x|

(D63)

=
∑
x

ω
−l(m−2)/2
d ω

x(m−2)
d |−x+ l⟩ ⟨x| (D64)

with the coordinates transforming as

m→ m− 2 (D65)
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l → l. (D66)

Similarly for Xd we get

XdOl,mX
†
d =

∑
x

ω
−ml/2
d ωmxd |−x+ l + 1⟩ ⟨x+ 1|

(D67)

=
∑
x

ω
−ml/2
d ω

m(x−1)
d |−x+ l + 2⟩ ⟨x| (D68)

=
∑
x

ω
−m(l+2)/2
d ωmxd |−x+ l + 2⟩ ⟨x| (D69)

and

m→ m (D70)
l → l + 2. (D71)

The missing gate for the full Clifford group is the SUM gate

SUMOl,m ⊗Ol′,m′SUM† =
∑
x,y

ω
−ml/2
d ω

−m′l′/2
d ωmxd ωm

′y
d |−x+ l,−y − x+ l′⟩ ⟨x, y + x| (D72)

=
∑
x,y′

ω
−ml/2
d ω

−m′l′/2
d ωmxd ω

m′(y′−x)
d |−x+ l,−y′ + l′ + l⟩ ⟨x, y′| (D73)

=
∑
x,y′

ω
−ml/2
d ω

−m′l′/2
d ω

x(m−m′)
d ωm

′y′

d |−x+ l,−y′ + l′ + l⟩ ⟨x, y′| (D74)

and

m→ m−m′ (D75)
l → l (D76)

m′ → m′ (D77)
l′ → l′ + l. (D78)

So we can write down the matrices that transform the coor-
dinates under the action of Clifford unitaries UCOl,mU

†
C =

OMUC
[l,l′,m,m′]T . The matrices have the basis (l,m) or

l, l′,m,m′, without the constant shifts and are given as

P :

(
1 0
−1 1

)
(D79)

R :

(
0 1
−1 0

)
(D80)

SUM :

1 0 0 0
1 1 0 0
0 0 1 −1
0 0 0 1

 (D81)

These matrices are all symplectic and therefore they fulfill
the relation

MTΩM = Ω (D82)

Ω =

(
0 1

−1 0.

)
(D83)

Interestingly, Clifford unitaries act on the Heisenberg-Weyl
operators in a very similar way. The matrices S in the basis

a, b and a1, a2, b1, b2 are given as [40]

P ′ :

(
1 0
1 1

)
(D84)

R′ :

(
0 −1
1 0

)
(D85)

SUM :

1 0 0 0
1 1 0 0
0 0 1 −1
0 0 0 1

 (D86)

where these matrices are over ZD (D = d for odd D = 2d
for even). It was shown that these matrices generate the sym-
plectic group over ZD. We can connect our matrices (up to
constant shifts) to these matrices

R3 = R′ =

(
0 −1
1 0

)
(D87)

P d−1 = P ′ =

(
1 0
1 1

)
(D88)

while the SUM gate is already in the correct form. So the
action of a Clifford unitary on Ol,m is a symplectic transfor-
mation over Z2d of l,m. There is, however, a constant shift
for P in the odd dimensional case.

3. Stabilizer states (Proof of Proposition 3)

This section shows that pure stabilizer states are flat when
decomposing in the operators Ol,m meaning all operators
have the same weight modulo signs. We can write the zero
state in all dimensions as
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|0⟩⟨0| = |0⟩⟨0|+ 1

d

∑
j

∑
u+v mod d=0

v ̸=0

wjvd |u⟩ ⟨v| = 1

d

d−1∑
j=0

O0,j =
1

d

∑
j

M0Z
j
d =

1

d

∑
j

∑
u+v mod d=0

ωjvd |u⟩ ⟨v| (D89)

where we used that

d−1∑
j=0

ωjvd = 0 (D90)

for v ̸= 0. We see that all Ol,m have the same weight. Using
that the operators Ol,m are covariant under Clifford unitaries
as shown in Appendix D 2, we see that every pure stabilizer
state has a flat weight.

Appendix E: Proof of Theorem 4

We compute the characteristic function for a qudit state ρ
encoded in a GKP state. We need to use the following prop-

erty of the displacement operator

D(r) =
n∏
j=1

eirqj rpj /2eirqjPje−irpjQj ; (E1)

Then, the characteristic function of a qudit encoded in a GKP
state is given as

χCV
ρGKP

(r) = Tr [ρD(−r)]

=
∑

u,v∈Zd

ρu,v ⟨u|D(−r) |v⟩

=
∑

u,v∈Zd

ρu,v

∞∑
s,t=−∞

〈√
2π

d
(u+ ds)

∣∣∣∣∣D(−r)

∣∣∣∣∣
√

2π

d
(v + dt)

〉
q

=
∑
u,v

∑
s,t

ρu,ve
irqrp/2eirp

√
2π
d (v+dt)

〈√
2π

d
(u+ ds)

∣∣∣∣∣
√

2π

d
(v + dt) + rq

〉
q

=
∑
u,v

∑
s,t

ρu,ve
irqrp/2eirp

√
2π
d (v+dt)δ

(
rq −

√
2π

d
(u− v − d(t− s))

)

=
∑
u,v

∑
s,t

ρu,ve
i2πs(rp

√
d
2π )ei

rp
2 (rq+2

√
2π
d (v+dt))δ

(
rq −

√
2π

d
(u− v − dt)

)

=

√
2π

d

∑
u,v

∑
s,t

ρu,vδ

(
rp −

√
2π

d
s

)
δ

(
rq −

√
2π

d
(u− v − dt)

)
ei

rp
2 (rq+2

√
2π
d (v+dt))

=

√
2π

d

∑
u,v

∑
s,t

ρu,ve
iπd s(u+v+dt)δ

(
rp −

√
2π

d
s

)
δ

(
rq −

√
2π

d
(u− v − dt)

)
.

(E2)

With this expression, we aim at finding the coefficient γρGKP(l,m) for l,m ∈ Zd such that

χCV
ρGKP

(r)

=

√
2π

d

∞∑
l,m=−∞

γρGKP(l,m)

× δ

(
rp −m

√
2π

d

)
δ

(
rq − l

√
2π

d

)
.

(E3)
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Similarly to the case for the Wigner function, we restrict to
one unit cell. Thus, the requirement for l is

u− v − dt = l (E4)
u− v mod d = l (E5)

and therefore

γρGKP(l, 0) =
∑

u−v mod d=l

⟨v| ρ |u⟩ = Tr
[
X l
dρ
]
. (E6)

By simplifying the phase factor

ei
π
d s(v+u+dt) = ei

π
d s(−l+2u) = ω

−sl/2
d ωsud (E7)

we can write the coefficients as

γρGKP(l,m) = ω
−lm/2
d Tr

[
ρX l

dZ
m
d

]
. (E8)

Therefore, the coefficients are given by the trace over the Pauli
operators in d dimensions. This can be generalized to n qudits
as

γρGKP
(l,m) = ω

−l·m/2
d Tr

[
ρXlZm

]
= dnω

−l·m/2
d ω

−l·m/2
D χDV

ρ (l,m)∗,
(E9)

which shows (60).
Using (60) and the fact that |χDV

ϕ (l,m)| = d−n for (4d)n

elements in l,m ∈ Zn2d and zero otherwise, we can get for a
pure qudit state ϕ that

∥χCV
ϕGKP

∥p,cell = (4d)n/p
(
2π

d

)n/2
. (E10)

We then get, again by using (60), that

∥χCV
ρGKP

∥p,cell =

 ∑
l,m∈Zn

2d

{(
2π

d

)n/2
dn|χDV

ρ (l,m)|

}p1/p

=

4n ∑
l,m∈Zn

d

{
(2πd)

n/2 |χDV
ρ (l,m)|

}p1/p

= 4n/p(2πd)n/2∥χDV
ρ ∥p

= dn(1−1/p)∥χDV
ρ ∥p,

(E11)
completing the proof.

Appendix F: Simulation algorithm

For the convenience of the reader we will use the frame
notation from the works of [37]

F (λ) =
Oλ
dn

(F1)

G(λ) = Oλ (F2)

ρ =
∑
λ

Tr

(
ρ
Oλ
dn

)
Oλ =

∑
λ

G(λ) Tr (ρF (λ)). (F3)

Unitary evolution of a state can be rewritten in this notation as

UρU† =
∑
λ

UG(λ)U† Tr (ρF (λ)) (F4)

=
∑
λ,λ′

G(λ′) Tr
(
F (λ′)UG(λ)U†)Tr (ρF (λ)) (F5)

and the output of a measurement Π is

Tr
(
ΠUρU†) =∑

λ,λ′

xΠ(λ
′)xU (λ

′, λ)xρ(λ) (F6)

with

xρ(λ) = Tr (ρF (λ)) (F7)

xU (λ
′, λ) = Tr

(
F (λ′)UG(λ)U†) (F8)

xΠ(λ) = Tr (ΠG(λ)). (F9)

Out of these quantities we can define the following probability
distributions

P (λ|ρ) = |xρ(λ)|
∥xρ∥1

(F10)

P (λ′|U, λ) = |xU (λ′, λ)|
∥xU (λ)∥1

(F11)

∥xU (λ)∥1 =
∑
λ′

|xU (λ′, λ)| (F12)

∥xρ∥1 =
∑
λ

|xρ(λ)| (F13)

Thus we can rewrite the Born rule probability as

P (Π|UρU†) =
∑
λ,λ′

xΠ(λ
′)xU (λ

′, λ)xρ(λ) (F14)

=
∑
λ,λ′

Mλ,λ′P (λ′|U, λ)P (λ|ρ) (F15)

withMλ,λ′ = sign(xΠ(λ′)xU (λ′, λ))xΠ(λ′)∥xU (λ)∥1∥xρ∥1.
The simulation strategy is to sample λ from P (λ|ρ) and

then consider a possible transition to λ′ from P (λ′|U, λ). This
can easily be generalized to a sequence of unitaries of length
T as well. We then define a random variable as

Mλ⃗ = xΠ(λT )sign(xρ(λ0))∥xρ∥1 (F16)

×
T∏
t=1

sign(xUt
(λt, λt−1))∥xUt

(λt−1)∥1. (F17)

The expectation value of this random variable is

E(Mλ⃗) =
∑
λ⃗

P (λ0|ρ)
T∏
t=1

P (λt|Ut, λt−1)Mλ⃗ (F18)

=
∑
λ⃗

xΠ(λT )
T∏
t=1

xUt
(λt, λt−1)xρ(λ0) (F19)

583



20

which is exactly the Born probability we want to estimate.
The random variable output from our sampling algorithm is
an unbiased estimator for the Born probability. The number
of samples needed to achieve a given precision can be com-
puted using the Hoeffding inequality Given a sequence of K
iid random variables Xj bounded by |Xj | ≤ b and expected
mean E(X), the probability that

∑K
j=1Xj/K deviated from

the mean by more than ϵ is upper bounded by

P

∣∣∣∣∣∣E(X)−
K∑
j=1

Xj

K

∣∣∣∣∣∣ ≥ ϵ

 ≤ 3 exp

(
−Kϵ

2

2b2

)
(F20)

or equivalently we can achieve precision∣∣∣E(X)−
∑K
j=1

Xj

K

∣∣∣ ≤ ϵ with probability at least (1− pf ) by
setting the number of samples as

K =

⌈
2b2

1

ϵ2
ln

(
2

pf

)⌉
. (F21)

We then define the negativity of the entire circuit as

M→ = ∥xρ∥1
∏
t=1

max
λt

∥xUt(λt)∥1 max
λT

|xΠ(λT )| (F22)

so it is the maximum negativity over all trajectories. This
bounds the random variable from above, so we need at least

K ≥ 2M2
→

1

ϵ2
ln

(
2

pf

)
(F23)

samples.

Appendix G: Hyperpolyhedral states

In this section, we investigate the phenomena of hyper-
polyhedral states. In [38] the authors encounter hyperocta-
hedral states for qubit systems. They define these states as
the states which have the stabilizer norm smaller than 1 or
in our formulation

∑
l,m |xl,m| < 1. For odd dimensional

states these states are equivalent to Wigner positive states∑
l,m |xl,m| = 1. This set is strictly bigger than the set of

stabilizer states.
For even dimensions, the question of a Wigner function

is more difficult, especially related to computability, even
though one can define such a quantity [42, 48, 49]. We de-
fine the Hyperpolyhedral states similarly to the qubit case for
all even dimensions with

∑
l,m |xl,m| ≤ 1. Here we show

that hyperpolyhedral states exist for all even dimensions and
that they are not equivalent to stabilizer states.

The computational basis states can be expanded in the op-
erators Ol,m as

|0⟩⟨0| = 1

d

d−1∑
i=0

O0,i (G1)

|1⟩⟨1| = Xd |0⟩⟨0|X†
d =

1

d

d−1∑
i=0

O2,i (G2)

... (G3)∣∣∣∣d2
〉〈

d

2

∣∣∣∣ = X
d
2

d |0⟩⟨0|X
d
2 †
d (G4)

=
1

d

d−1∑
i=0

O(d, i) =
1

d

d−1∑
i=0

(−1)iO0,i (G5)

... (G6)

|d− 1⟩⟨d− 1| = Xd−1
d |0⟩⟨0|Xd−1†

d (G7)

=
1

d

d−1∑
i=0

(−1)iOd−1,i (G8)

Thus, we can reorder them to pairs in the following way

|0⟩⟨0|+
∣∣∣∣d2
〉〈

d

2

∣∣∣∣ = 1

d

d−1∑
i=0

(1 + (−1)i)O0,i (G9)

... (G10)

|k⟩⟨k|+
∣∣∣∣k + d

2

〉〈
k +

d

2

∣∣∣∣ = 1

d

d−1∑
i=0

(1 + (−1)i)Ok,i (G11)

The maximally mixed state is 1
d = 1

d

∑d−1
i=0 |i⟩⟨i|. Therefore,

if we compute

d−1∑
l,m=0

∣∣∣∣Tr [1dOl,m
]∣∣∣∣ = 1

d
, (G12)

we get a value that is smaller than the one for a pure stabilizer
state. Therefore, one can “hide” magic in a product state of a
magic state and the maximally mixed state or similarly includ-
ing Clifford equivalent states. Since this quantity goes directly
into the simulator cost, we see that the hyperpolyhedral states
are easier to simulate than pure stabilizer states.

Appendix H: Decompositions of stabilizer states

In this section, we show how to obtain the decompositions
of stabilizer states in the basis of Ol,m given their stabilizers.

Every stabilizer state with a dn dimensional stabilizer group
S fulfills the following eigenvalue equations [16]

ωvΩmT

d Pd(m) |MS , v⟩ = |MS , v⟩ (H1)

where MS is the space of coordinates associated with the sta-
bilizer group and v is the coordinate of one Heisenberg-Weyl
operator. Note that m ∈ Z2n

d and that the phases are taken
care of by the phase factor ωvΩmT

d . This v takes care of the
phase in front of the Heisenberg-Weyl operator. The stabilizer
group S and in turn the set of coordinates are generated by n
Heisenberg-Weyl operators S = ⟨S1, ..., Sn⟩ or n coordinates
MS = ⟨s1, ..., sn⟩ respectively. The set MS includes a linear
combinations involving the n generators si with coefficients
ki ∈ Zd. The characteristic function of a stabilizer state |ϕ⟩⟨ϕ|
can be represented as [17]

χDV
|ϕ⟩⟨ϕ|(a) =

1

dn
ωvΩaT

d δMS
(a) (H2)
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where δMS
(a) is the indicator function that δMS

(a) = 1, iff
a ∈MS and 0 otherwise.

For odd dimensions, the phase space point operators
A(a1, a2) had a one-to-one correspondence with the operators
Ol,m. Something similar holds for even dimensions as well.
In that case, the operators Ol,m are directly connected with
operators Ã(a1, a2) that are identically defined as the phase
space point operators but do not fulfill the same set of proper-
ties.

In the proof to show the connection between the phase
space point operators in odd dimensions and the operators
Ol,m, we used the resummation formula

1

d

d−1∑
k=0

e2πi
kn
d = δ0,n. (H3)

For even dimensions, the sums appear with 2d instead of
just d and then

1

d

d−1∑
k=0

e2πi
kn
2d ̸= δ0,n, (H4)

so one cannot easily use the discrete resummation formula.
However, the equation can be modified to hold in all dimen-
sions. In even dimensions, it holds that

1

2d

2d−1∑
k=0

e2πi
kn
2d =

1

d̃

d̃−1∑
k=0

e2πi
kn
d̃ = δ0,n. (H5)

We see that by doubling the domain of the sum, we recover
the discrete resummation formula. So we can use the discrete
resummation formula in all dimensions by considering

1

D

D−1∑
k=0

e2πi
kn
D = δ0,n (H6)

and in consequence

1

Dn

∑
x∈Z2n

D

ω
−(u+v)ΩxT

D = δ0,u+v. (H7)

We define the symplectic Fourier transform as

(Ff)(a) = 1

Dn

∑
b∈Z2n

D

ω−aΩbT

D f(b). (H8)

We see here again that the parameters a are not over Z2n
d

but over Z2n
D as mentioned before. In order to differentiate

between the phase-space point operators in odd dimensions
A(a) = 1

dn

∑
b∈Z2n

d
ω−aΩbT

d P †
d (b) with their intimate rela-

tion with the discrete Wigner function, we define the equiv-
alently defined operator Ã(a) = 1

Dn

∑
b∈Z2n

D
ω−aΩbT

D P †(b)

for even dimensions.
Then consequently for even dimension, we can rewrite

Ã(a) as

Ã(a) =
1

D

∑
b∈Z2n

D

ω−aΩbT

D P †
d (b) (H9)

=
1

D

∑
b∈Z2n

D ,x∈Zn
d

ω
b1(

a2
2 +

b2
2 −x)

d ω−a1b2

D |x− b2⟩ ⟨x|

(H10)

=
1

D

∑
b2∈Z2n

D ,x∈Zn
d

δb2,2x−a2ω
−a1b2

D |x− b2⟩ ⟨x|

(H11)

=
1

D

∑
x∈Zn

d

ω
a1a2/2
d ω−a1x

d |a2 − x⟩ ⟨x| (H12)

which is equivalent to Ol,m for l = a2,m = −a1.
We transform the characteristic function to get the coeffi-

cients x|ϕ⟩⟨ϕ| corresponding to the operators Ol,m for a stabi-
lizer state ϕ as

F(χDV
|ϕ⟩⟨ϕ|)(a) =

1

(2d)n
1

dn

∑
b∈Z2n

2d

ω−aΩbT

2d δMs
(b)ωvΩbT

d

(H13)

=
1

(2d)n
1

dn

∑
b∈MS∪MS+d

ω
−(a−2v)ΩbT

2d .

(H14)

We used that MS was defined on Z2n
d , but the sum goes over

Z2n
2d so we need to take this into account when dealing with

the phase factors. We write MS ∪MS + d as the extension
fromZ2n

d toZ2n
2d . This set is generated by the same generators

si but includes now lienar combinations with coefficients ki ∈
Z2d. We can simplify the sum by using the generators of the
coordinate space MS = ⟨s1, ..., sn⟩ to

F(χDV
|ϕ⟩⟨ϕ|)(a) =

1

(2d)n
1

dn

∑
b∈MS∪MS+d

ω
−(a−2v)ΩbT

2d

(H15)

=
n∏
i=1

(
2d−1∑
ki=0

ω
−(a−2v)Ω[kisi]

T

2d

)
(H16)

=
n∏
i=1

(
2d−1∑
ki=0

ω
−ki(a−2v)ΩsT

i

2d

)
(H17)

=
1

dn
δMS+2v(a). (H18)

From the first to the second line we decomposed the elements
b ∈MS ∪MS + d using the generators MS ∪MS + d. Each
element b can be decomposed into a linear combination of the
generators si and coefficients ki ∈ Z2d. In the last line, we
used the resummation formula (H7) and saw that the sum is 0
by using except in the case where (a− 2v)ΩbT = 0 and thus
the Pauli operators in the stabilizer group commute with Pauli
operators with coordinates a−2v. This implies that a−2v ∈
MS since S is a stabilizer group with the maximal number of
commuting Pauli operators. As shown in (H12), the expres-
sion in Eq. (H18) coincides with x|ϕ⟩⟨ϕ|(l = a2,m = −a1).
A few comments are in order. We have shown that we can
write every pure stabilizer state using dn operators Ol,m that
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all have the phase +1

|ϕ⟩⟨ϕ| =
∑

(l,m)∈Z2n
2d

x|ϕ⟩⟨ϕ|(l,m)Ol,m (H19)

=
1

dn

∑
(−m,l)∈Ms+2v

Ol,m. (H20)

Note that the sums go over D and not d, which makes a dif-
ference in even dimensions. As we know, the operators Ol,m

repeat with period d with the opposite sign. Let us take the
example of qubits Z2 = O0,1 while −Z2 = O2,1. So if we
constrain (l,m) ∈ Z2n

d we can get phases ±1, while if we
allow for all (l,m) ∈ Z2n

D we get decompositions with only
+1 signs.
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The search for a unique measure of entanglement:
A story of entropy, reversibility, and hypothesis testing

Bartosz Regula1 ∗

1 RIKEN Center for Quantum Computing, Japan

Abstract. The methods to characterise quantum resources such as entanglement are often based on
our understanding of thermodynamics. Such connections hinted at the possibility of a unique measure of
entanglement emerging in a suitable regime, which would exactly mirror the role that entropy plays in the
second law of thermodynamics. This conjecture turned out to be deeply related to an important problem
in quantum hypothesis testing of entangled states, whose seminal solution in 2010 inspired a large body
of work in the study of quantum resources. However, 12 years later, this claimed solution was found to be
incorrect, casting doubt on the whole supposed parallel between entanglement and thermodynamics, and
reopening the search for a unique measure of entanglement.

In this talk, I will overview the motivations for these fundamental conjectures, the recent developments
surrounding the problems, and the remaining open questions. In particular, I will discuss how a ’second
law of entanglement’ — if at all possible — must be fundamentally different from the second law of
thermodynamics, and how the conjectured unique measure of entanglement can indeed be proven to be
true when certain relaxed assumptions are taken.
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Learning quantum states and unitaries of bounded gate complexity
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Abstract. While quantum state tomography is notoriously hard, most states hold little interest to
practically-minded tomographers, as those appearing in Nature have bounded gate complexity. In this
work, we prove that to learn a state/unitary with gate complexity G to a small trace/average-case distance,
the optimal sample complexity scales linearly in G. In contrast, the computational complexity must scale
exponentially in G under cryptographic conjectures. These results establish fundamental limitations on
quantum machine learning models and provide new perspectives on no-free-lunch theorems. Together, our
results relate the complexity of learning quantum states and unitaries to that of creating them.
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The tasks of general state and process tomography –
that is, determining an unknown quantum state/unitary
from copies of it/queries to it – are practically ubiqui-
tous [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] but expo-
nentially costly [14, 15, 16]. Despite this theoretical ob-
stacle, there is hope that e�cient tomography remains
within reach, since the vast majority of states and uni-
taries are not of immediate physical interest [17, 18, 19].
Indeed, practitioners may be able to leverage prior knowl-
edge about the unknown state or process. Previous works
have demonstrated e�cient learning if the unknown state
is known to be a stabilizer [20, 21, 22, 23], of limited T-
gate count [24, 25, 26, 27], or the output of a shallow
circuit [28]; or if the unknown process is a local Pauli
noise channel [29].

Our work centers around a prior that is fundamental in
physics and timely to the current state of quantum tech-
nology, albeit underexplored in tomography: gate com-
plexity. While the vast majority of many-body states and
unitaries have exponential gate complexity, those that
can even be prepared “in Nature” [17, 18, 19] are likely
to have at most polynomial gate complexity. This raises
the following question:

What is the complexity of learning states/unitaries with
bounded gate complexity?

We first study the sample/query complexity of learning
an n-qubit state/unitary implemented by G two-qubit
gates: the number of samples collected from the system
or queries to the process required to output an ✏-accurate
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‡ikannan@caltech.edu
§yquek@mit.edu
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classical description of the unknown object. Previously,
[30] showed that the state learning task can be accom-
plished with sample complexity Õ(nG2/✏4). However, it
is not known if this is the optimal sample complexity for
the state learning task. In this work, we fully resolve this
problem by proving a matching upper and lower bound
(up to log factors) of ⇥̃(G/✏2) for learning n-qubit states
generated by G gates to trace distance ✏. For learning
unitaries, we establish a query complexity scaling linear
in the gate complexity G and independent of the system
size n, which is optimal in the scaling of G (up to log
factors). Turning to the question of computational com-
plexity, we demonstrate that any quantum learning algo-
rithm requires computational time scaling exponentially
in G.

Our results pose fresh implications in other subfields of
quantum information. Firstly, the Brown-Susskind con-
jecture [31, 32, 33, 34, 35, 36] states that the complexity
of a generic local quantum circuit grows linearly with
the number of gates for an exponentially long time, holo-
graphically dual to the steady growth of a wormhole’s
volume in the bulk theory. This conjecture has recently
been confirmed [37, 38] with “complexity” understood as
(exact) “circuit complexity” [35]. Our work suggests that
this conjecture may also be true for an alternative notion
of complexity – that of learning the quantum circuit. Sec-
ondly, our work completely characterizes the complexity
of inferring a classical circuit description of a quantum
circuit from limited copies of its output state: yet such a
description holds the key to computing arbitrarily many
more properties of this state (via classical simulation al-
gorithms) than would have been possible by using the
limited state copies directly. We thus expect our results
to shed light on the link between classical simulability
and learnability of quantum states [39, 40]. They also
provide a learning perspective on the celebrated recent
notion of state complexity classes [41, 42], which ask what
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states can be synthesized by polynomial-space quantum
circuits.

1 Learning quantum states and unitaries
Learning quantum states. First, we consider learn-
ing quantum states of bounded complexity. Let | i =
U |0i⌦n be an n-qubit pure state generated by a uni-
tary U consisting of G two-qubit gates. Given N copies
of ⇢ , | ih |, we aim to learn a classical circuit de-
scription ⇢̂ of ⇢ that is ✏-close to ⇢ in trace distance:
dtr(⇢̂, ⇢) = k⇢̂� ⇢k1/2 < ✏. We fully characterize the
sample complexity in the following theorem.

Theorem 1 (State learning) N = ⇥̃
�
G/✏2

�
copies of

an n-qubit pure state with circuit complexity G are nec-
essary and su�cient to learn it to within ✏ trace distance
with high probability.

This result also resolves an open question from [43] and
improves [30] to achieve the optimal scaling. In the
regime where G = O(poly(n)), our algorithm improves
substantially over the sample complexity N = O(2n)
of the sample-optimal result for arbitrary pure quantum
states [14, 15]. Note that we do not need to have access
to the unitary U which generates the unknown state | i.

While our algorithm to learn the unknown quantum
state | i is sample-e�cient and sample-optimal, it is
computationally ine�cient. We prove that this cannot be
avoided in general: any quantum algorithm that learns
| i given access to copies of this state must use time
exponential-in-G, under the commonly-believed crypto-
graphic assumption that RingLWE [44] cannot be solved
by a quantum computer in sub-exponential time. This
imposes strong computational complexity limitations on
learning even comparatively simple states, in stark con-
trast with our sample complexity results. Meanwhile, we
show that the learning task is computationally-e�ciently
solvable for G = O(log n), implying a transition point of
computational e�ciency. Previous work [45, 46] arrives
at related hardness results for G = poly(n), but our de-
tailed analysis allows us to sharpen the computational
lower bound and obtain this transition point.

Theorem 2 (Computational hardness; States)
Any quantum algorithm that learns an n-qubit state
with circuit complexity G to within ✏ trace distance
requires exp(⌦(min(G,n))) time, assuming the quantum
sub-exponential hardness of RingLWE. Meanwhile, for
G = O(log n), an e�cient learning algorithm exists.

Learning quantum unitaries. Next, we consider
learning unitaries of bounded complexity. Let U be a uni-
tary consisting of G two-qubit gates. Given query access
to U , we aim to learn a classical circuit description Û of U
that is ✏-close to U . A natural distance metric analogous
to the trace distance for states is the diamond distance
d⌃(U, V ) = max⇢ k(U⌦I)⇢(U⌦I)†�(V ⌦I)⇢(V ⌦I)†k1.
We find that in this worst-case learning task, a number
of queries exponential in G is necessary.

Theorem 3 (Worst-case unitary learning) Any
quantum algorithm learning an n-qubit unitary with
circuit complexity G in diamond distance with high

probability must use at least ⌦
�
2min{G/(2C),n/2}/✏

�
queries,

where C > 0 is a universal constant. Meanwhile, there
exists such an algorithm using Õ(2nG/✏) queries.

Having established this no-go theorem for worst-
case learning, we turn to a more realistic average-
case learning alternative. Here, the accuracy is mea-
sured using the average-case metric, davg(U, V ) =p
E| i[dtr(U | i , V | i)2]. This metric characterizes the

average error when testing the learned unitary on Haar-
random inputs. We find that, similarly to the state learn-
ing task, linear-in-G many queries is optimal.

Theorem 4 (Average-case unitary learning) N =
Õ
�
Gmin{1/✏2,

p
2n/✏}

�
queries are su�cient to learn an

n-qubit unitary with circuit complexity G to ✏ root mean
squared trace distance with high probability. Meanwhile,
at least ⌦ (G/✏) queries to the unitary, its inverse, or the
controlled versions are necessary.

The similar linear-in-G sample/query complexity in
Theorems 1 and 4 hints at a common underlying source of
complexity. However, in contrast to state learning, uni-
tary learning comes with two natural such sources: (1)
to readout input and output states, and (2) to learn the
mapping from inputs to outputs. Our results suggest that
the former may encapsulate the central di�culty whereas
the latter may be easy. This seemingly contradicts recent
quantum no free lunch theorems [47, 48], which state that
⌦(2n) samples are required to learn a generic unitary
even from classically described input-output state pairs.
To resolve this, we reformulate the quantum no free lunch
theorem from an information-theoretic perspective.

Theorem 5 (Learning with classical descriptions)
O(2n/r) classically described samples with mixed (en-
tangled) input states of (Schmidt) rank r are su�cient
to learn any n-qubit unitary to any accuracy with high
probability. Moreover, any such algorithm that is robust
to noise needs at least ⌦(2n/r) samples.

Similarly to state learning, our average-case unitary
learning algorithm is not computationally e�cient. This
is again inevitable, and the same is true for worst-case
unitary learning. Moreover, the hard instances we con-
struct are implementable with Cli↵ord+T circuits with
!̃(log n) T gates [24], so, together with Theorem 2, this
gives a negative answer to an open question (the fifth
question) in the survey [39].

Theorem 6 (Computational hardness; Unitaries)
Any quantum algorithm that learns an n-qubit unitary
with circuit complexity G requires exp(⌦(min(G,n)))
time, assuming the quantum sub-exponential hardness
of RingLWE. Meanwhile, for G = O(log n), an e�cient
learning algorithm exists.

Apart from learning quantum states and dynamics
themselves, a more classically minded learner may care
more about learning classical functions resulting from
quantum processes. We define these physical functions
f(x) : [0, 1]⌫ ! R in three steps: (1) a fixed state prepa-
ration procedure that can depend on x; (2) a unitary
evolution consisting of G tunable two-qubit gates and
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arbitrary fixed unitaries that can depend on x, arranged
in a circuit structure; (3) the measurement of a fixed ob-
servable, whose expectation is the function output. De-
spite the generality of this setup, we find that certain
well-behaved functions are actually not physical: they
cannot be e�ciently approximated or learned via physi-
cal functions. This reveals a fundamental limitation on
the functional expressivity of both nature and practical
quantum machine learning models [49, 50, 51, 52].
Theorem 7 (Learning physical functions) At least
G � ⌦̃(1/✏⌫/2) gates and N � ⌦(1/✏⌫) samples are needed
to approximate and learn arbitrary 1-bounded and 1-
Lipschitz R-valued functions on [0, 1]⌫ to accuracy ✏ in
k · k1 with high probability using physical functions.

2 Proof ideas
Sample complexity upper bounds. We prove the

upper bounds in Theorems 1 and 4 by explicitly con-
structing learning algorithms using a hypothesis selection
protocol [53] based on classical shadow tomography [54].
Specifically, we construct a covering net N over the set of
states/unitaries with gate complexity G such that for any
such state/unitary, there exists a candidate in N that is
✏-close in trace/average case distance to it, respectively.
To select the candidate closest to our unknown object, we
utilize classical shadows with random Cli↵ord measure-
ments to estimate all distances simultaneously to ✏ er-
ror using O(log |N |/✏2)  Õ(G/✏2) copies/queries. The
last inequality follows because we are able to prove that
|N |  eÕ(G). Finally, we output the closest candidate.
The above strategy leads to a sample complexity that

depends logarithmically on n, which is undesirable when
G is smaller than n/2 (i.e., when some qubits are un-
touched by the circuit). We improved upon this by first
performing a junta learning step [55] to identify which
qubits are acted upon non-trivially. After identifying the
non-trivial qubits, we perform a measure-and-postselect
step. This allows us to construct a covering net only over
the qubits acted upon non-trivially, whose cardinality no
longer depends on n. Proceeding as before, we can re-
move the n dependence in the sample complexity.

Furthermore, for unitary learning, we improve the ✏
dependence to the Heisenberg scaling Õ(1/✏) via a boot-
strap method [16], using the above learner as a sub-
routine. We iteratively refine our learning outcome Û
by performing hypothesis selection over a covering net
of (UÛ†)p, with p increasing exponentially as the itera-
tion proceeds. Although the circuit complexity of (UÛ †)p

grows with p, a covering net with p-independent cardi-
nality can be constructed based on the one-to-one corre-
spondence with U . However, unlike the diamond distance
learner in [16], which has fine control over every eigen-
value of the unitaries, our average-case learner only has
average control over eigenvalues. Thus for the bootstrap
to work (i.e., for the learning error to decrease with in-
creasing p), the average-case learner has to work in an ex-
ponentially small error regime, which results in a dimen-
sional factor in the final sample complexity Õ(

p
2nG/✏).

Sample complexity lower bounds. We prove the
lower bounds in Theorems 1 and 4 by reduction to

a distinguishing task: if we can approximately learn
states/unitaries, then we can use this learning algorithm
to distinguish a set of states/unitaries that are far apart
from each other. Hence a lower bound on the sample
complexity of distinguishing states/unitaries in a pack-
ing net implies a lower bound for learning.

For state learning, we construct a packing net M of
the set of (log2 G)-qubit states. These states have cir-
cuit complexity ⇠ G because O(2k) two-qubit gates can
implement any pure k-qubit states [56]. We prove that
|M| � e⌦(G), which means that to distinguish these
states, one has to gather ⌦(log |M|) � ⌦(G) bits of
information. Meanwhile, Holevo’s theorem [57] asserts
that the amount of information carried by each sample
is upper bounded by Õ(✏2) [58]. Hence, we need at least
⌦̃(G/✏2) copies of the unknown state.

Similarly, for unitary learning, we construct a packing
net by stacking all the gates into log4 G qubits, using
the fact that O(4k) two-qubit gates can implement any
k-qubit unitaries [59]. Lacking an analog of Holevo’s the-
orem for unitary queries, we turn to a recently established
bound on the success probability of unitary discrimina-
tion [60] and obtain an ⌦(G) sample complexity lower
bound for constant ✏. To incorporate the ✏ dependence,
we follow [16] and map the problem into a fractional
query problem. We show that with N queries, we can
use the learning algorithm to simulate [61, 62] an O(✏N)
query algorithm that solves the above constant-error dis-
tinguishing problem. This gives us the desired ⌦(G/✏)
lower bound.

Computational hardness. We prove the com-
putational complexity lower bounds in Theorems 2
and 6 by reduction to the task of distinguishing pseu-
dorandom states/functions [63, 64] from truly random
states/functions. The hardness of this task relies on the
computational assumption that Ring Learning with Er-
rors (RingLWE) cannot be solved e�ciently with a quan-
tum computer [65]. In particular, if we consider learn-
ing a pseudorandom state or a unitary implementing
a pseudorandom function, then an e�cient learner im-
plies an e�cient distinguisher from Haar-random states
or truly random functions, thus contradicting the pseudo-
randomness assumption. The circuit complexity at which
this computational hardness kicks in is the complex-
ity of the circuit required to implement pseudorandom
states/functions. Indeed, we show that the pseudoran-
dom functions constructed in [65] based on the hardness
of RingLWE can be implemented with G = O(poly(n))
gates and depth O(polylog(n)), Then, we can also con-
struct pseudorandom quantum states from these pseudo-
random functions [66], which can be implemented with
G = O(poly(n)) gates and depth O(polylog(n)). We can
boost this to our exponential computational complexity
lower bound by assuming the sub-exponential hardness
of RingLWE rather than just polynomial hardness. The
e�cient learning algorithm at G = O(log n) follows by
junta learning [55] and standard tomography methods.
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While quantum state tomography is notoriously hard, most states hold little interest to practically-
minded tomographers. Given that states and unitaries appearing in Nature are of bounded gate
complexity, it is natural to ask if efficient learning becomes possible. In this work, we prove that
to learn a state generated by a quantum circuit with G two-qubit gates to a small trace distance, a
sample complexity scaling linearly in G is necessary and sufficient. We also prove that the optimal
query complexity to learn a unitary generated by G gates to a small average-case error scales linearly
in G. While sample-efficient learning can be achieved, we show that under reasonable cryptographic
conjectures, the computational complexity for learning states and unitaries of gate complexity G

must scale exponentially in G. We illustrate how these results establish fundamental limitations on
the expressivity of quantum machine learning models and provide new perspectives on no-free-lunch
theorems in unitary learning. Together, our results answer how the complexity of learning quantum
states and unitaries relate to the complexity of creating these states and unitaries.

I. INTRODUCTION

A central problem in quantum physics is to characterize a quantum system by constructing a full
classical description of its state or its unitary evolution based on data from experiments. These two tasks,
named quantum state tomography [1–4] and quantum process tomography [5–9], are (in)famous for being
ubiquitous yet highly expensive. The applications of tomography include quantum metrology [10, 11],
verification [12, 13], benchmarking [5–8, 14–17], and error mitigation [18]. Yet tomography provably
requires exponentially many (in the system size n) copies of the unknown state [19, 20] or runs of the
unknown process [21]. This intuitively arises from the exponential scaling of the number of parameters
needed to describe an arbitrary quantum system.

But the situation is less dire than it theoretically appears. In practice, tools for analyzing many-body
systems often exploit known structures cleverly to predict their phenomenology or classically simulate
them. Notable examples include the BCS theory for superconductivity [22], tensor networks [23, 24],
and neural network [25–27] Ansätze. Indeed, while most of the states or unitaries may have exponential
gate complexity [28], such objects are also unphysical: an exponentially-complex state or unitary cannot
be produced in Nature with a reasonable amount of time [29]. In particular, [29] shows that quantum
states/unitaries with bounded gate complexity are precisely those that can be produced by bounded-time
evolution of time-dependent local Hamiltonians.

In this work, we study if tomography, too, can benefit from the observation that Nature can only
produce states and unitaries with bounded complexity. This gives rise to the following main question.

Can we efficiently learn states/unitaries of bounded gate complexity?
In particular, we consider the following two tasks:

1. Given copies (samples) of a pure quantum state | i generated by G two-qubit gates, learn | i to
within ✏ trace distance; see Figure 1(a).

2. Given uses (queries) of a unitary U composed of G two-qubit gates, learn U to within ✏ root mean
squared trace distance between output states (average-case learning); see Figure 1(b).

Note that the G quantum gates can act on arbitrary pairs of qubits without any geometric locality
constraint. By allowing general gates beyond discrete gate sets, this setting encompasses continuous
time-dependent Hamiltonian dynamics via Trotterization [29] and thus analog quantum simulation [30].
It also includes states heavily studied in condensed matter such as symmetry-protected topologically
?
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Figure 1. (a)-(c) Schematic overview of the learning models in this work. (a) Learning quantum states with
bounded circuit complexity G. (b) Learning unitaries with bounded circuit complexity G. (c) Learning classical
functions from quantum experiments with bounded circuit complexity G. (d) Sample complexity of learning
states in trace distance and unitaries in average-case distance scales linearly with circuit complexity, while that
of learning unitaries in worst-case distance scales exponentially.

ordered states [31–33] and tensor network states [34–36]. Previously, [37] showed that Task 1 can be ac-
complished with a sample complexity of Õ(nG2/✏4). In our work, we present algorithms for both of these
tasks that use a number of samples/queries linear in the circuit complexity G up to logarithmic factors.
Moreover, the sample complexity is independent of system size. Thus, for G scaling polynomially with
the number of qubits, our learning procedures improve upon previous work [37] and have significantly
lower sample/query complexities than required for general tomography, answering our central question
affirmatively. We also prove matching lower bounds (up to logarithmic factors), showing that our algo-
rithms are effectively optimal. Moreover, we show that the focus on average-case learning is crucial in the
case of unitaries: unitary tomography up to error ✏ in diamond distance (a worst-case metric over input
states) requires a number of queries scaling exponentially in G, establishing an exponential separation
between average and worst case.

While our learning algorithms for bounded-complexity states and unitaries are efficient in terms of
sample/query complexity, they are not computationally efficient. We prove that this is unavoidable.
Assuming the quantum subexponential hardness of Ring Learning with Errors (RingLWE) [38–43], any
quantum algorithm that learns arbitrary states/unitaries with Õ(G) gates requires computational time
scaling exponentially in G. This result highlights a significant computational complexity limitation on
learning even comparatively simple states and unitaries. This result also answers an open question
in [44]. Meanwhile, we show that poly(n)-time algorithms are possible for G = O(log n). Together,
this establishes a crossover in computational hardness at G ⇠ log n, kicking in far before the sample
complexity becomes exponential (at G = exp(n)). This means that relatively few samples/queries
already contain enough information for the learning task, but it is hard to retrieve the information.

Finally, we study two variations of unitary learning which deepen our insights about the problem. The
first variation utilizes classical (not quantum) descriptions of input and output pairs, and explains why
both learning states and unitaries display a linear-in-G sample complexity: The underlying source of
complexity in learning unitaries is, in fact, the readout of input and output quantum states, rather than
learning the mapping. We generalize recent quantum no-free lunch theorems [45, 46] to reach this conclu-
sion. For the second variation we study quantum machine learning (QML) models. We focus on learning
classical functions that map variables controlling the input states and the evolution to some experimen-
tally observed property of the outputs (Figure 1(c)). Surprisingly, we find that certain well-behaved
many-variable functions can in fact not (even approximately) be implemented by quantum experiments
with bounded complexity. This highlights a fundamental limitation on the functional expressivity of
both Nature and practical QML models.
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Sample complexity State Unitary (average-case) Unitary (worst-case)

Upper bound Õ
�
G/✏

2
�

Õ
�
Gmin

�
1/✏2,

p
2n/✏

 �
Õ (2nG/✏)

Lower bound ⌦̃
�
G/✏

2
�

⌦ (G/✏) ⌦
⇣
2min{G/(2C),n/2}

/✏

⌘

Table I. Sample complexity of learning n-qubit states and unitaries with circuit complexity G. The
learning accuracy ✏ is measured in trace distance for states, root mean squared trace distance for average case
unitary learning, and diamond distance for worst case. Here, C > 0 is some universal constant. Throughout the
manuscript, Õ, ⇥̃ and ⌦̃ denote that we are suppressing non-leading logarithmic factors.

II. RESULTS

In this section, we discuss our rigorous guarantees for learning quantum states and unitaries with
circuit complexity G. Our sample complexity results are summarized in Table I and Figure 1(d).

We also present computational complexity results, where we establish the exponential-in-G growth of
computational complexity, implying that log n gate complexity is a transition point at which learning
becomes computationally inefficient. In particular, we prove that for circuit complexity Õ(G), any
quantum algorithm for learning states in trace distance or unitaries in average-case distance must use
time exponential in G, under the conjecture that RingLWE cannot be solved by a quantum computer
in sub-exponential time. Hence, for a number G of gates that scales slightly higher than log n, the
learning tasks cannot be solved by any polynomial-time quantum algorithm under the same conjecture.
Meanwhile, for G = O(log n), both learning tasks can be solved efficiently in polynomial time.

A. Learning quantum states

We consider the task of learning quantum states of bounded circuit complexity. Let | i = U |0i⌦n

be an n-qubit pure state generated by a unitary U consisting of G two-qubit gates acting on the zero
state. Throughout this section, we denote ⇢ , | ih |. Given N identically prepared copies of ⇢, the goal
is to output a classical circuit description of a quantum state ⇢̂ that is ✏-close to ⇢ in trace distance:
dtr(⇢̂, ⇢) = k⇢̂� ⇢k1/2 < ✏. We establish the following theorem, which states that linear-in-G many
samples (up to logarithmic factors) are both necessary and sufficient to learn the unknown quantum
state | i within a small trace distance.
Theorem 1 (State learning). Suppose we are given N copies of an n-qubit pure state ⇢ = | ih |, where
| i = U |0i⌦n is generated by a unitary U consisting of G two-qubit gates. Then, N = ⇥̃

�
G/✏2

�
copies

are necessary and sufficient to learn the state within ✏-trace distance dtr with high probability.

Previous work [37] obtained a sample complexity of Õ(nG2/✏4) for this task, which we show to be sub-
optimal. Notably, our result achieves the optimal scaling in both G and ✏ up to logarithmic factors and
is independent of the system size n. Thus, we completely characterize the sample complexity, resolving
an open question from [47]. We prove the upper bound in Appendix B 1, utilizing covering nets [48] and
quantum hypothesis selection [49]. Our proposed algorithm first creates a covering net over the space
of all unitaries consisting of G two-qubit gates. This can easily be transformed into a covering net over
the space of all quantum states generated by G two-qubit gates by applying each element of the unitary
covering net to the zero state. Thus, any quantum state generated by G two-qubit gates is close (in trace
distance) to some element of the covering net. We can then apply quantum hypothesis selection [49] to
the covering net, which allows us to identify the element in the covering net that is close to the unknown
target state | i and achieve the optimal ✏ dependence. We also note that our algorithm for learning
quantum states does not require knowledge of or access to the unitary U which generates the unknown
state | i. Only the condition that some unitary U consisting of G gates generates | i is needed. The
lower bound is proven in Appendix B 2 by using an information-theoretic argument via reduction to
distinguishing a packing net over G-gate states [19].

Our algorithm to learn the unknown quantum state | i is computationally inefficient, as it requires a
search over a covering net whose cardinality is exponential in G. We show that for circuits of size Õ(G),
any quantum algorithm that can learn | i to within a small trace distance given access to copies of
this state must use time exponential in G, under commonly-believed cryptographic assumptions [38–43].
Meanwhile, the learning task is computationally-efficiently solvable for G = O(log n) via junta learning
[50] and standard tomography methods. This implies a transition point of computational efficiency at
log n circuit complexity. Previous work [51, 52] arrives at similar hardness results for polynomial circuit
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complexity, but our detailed analysis allows us to sharpen the computational lower bound and obtain
this transition point. [53] also proves computational complexity lower bounds for distribution learning
that are similar in spirit.

Theorem 2 (State learning computational complexity). Suppose we are given N copies of an unknown n-
qubit pure state | i = U |0i⌦n generated by an arbitrary unknown unitary U consisting of Õ(G) two-qubit
gates. Suppose that RingLWE cannot be solved by a quantum computer in sub-exponential time. Then,
any quantum algorithm that learns the state to within ✏ trace distance dtr must use exp(⌦(min{G,n}))
time. Meanwhile, for G = O(log n), the learning task can be solved in polynomial time.

B. Learning quantum unitaries

For learning unitaries, a natural distance metric analogous to the trace distance for states is the
diamond distance d⌃(U, V ) = max⇢ k(U ⌦ I)⇢(U ⌦ I)† � (V ⌦ I)⇢(V ⌦ I)†k1, where ⇢ is over any
arbitrarily extended Hilbert space. It characterizes the optimal success probability for discriminating
between two unitary channels. Moreover, it can be reinterpreted in terms of the largest distance between
U | i and V | i over all input states | i, and thus represents the error we make in the worst case over
input states. We find that in this worst-case learning task, a number of queries exponential in G is
necessary to learn the unitary.
Theorem 3 (Worst-case unitary learning). To learn an n-qubit unitary composed of G two-qubit gates
to accuracy ✏ in diamond distance d⌃ with high probability, any quantum algorithm must use at least
⌦
�
2min{G/(2C),n/2}/✏

�
queries to the unknown unitary, where C > 0 is a universal constant. Meanwhile,

there exists such an algorithm using Õ(2nG/✏) queries.

The complete proof is given in Appendix C 1 and relies on the adversary method [54–57]. We construct
a set of unitaries that a worst-case learning algorithm can successfully distinguish, but that only make
minor differences when acting on states so that a minimal number of queries have to be made in order
to distinguish them. The upper bound is achieved by the average-case learning algorithm in Theorem 4
below when applied in the regime of exponentially small error.

Having established this no-go theorem for worst-case learning, we turn to a more realistic average-
case learning alternative. Here, the accuracy is measured using the root mean squared trace distance
between output states over Haar-random inputs, davg(U, V ) =

p
E| i[dtr(U | i , V | i)2]. This metric

characterizes the average error when testing the learned unitary on randomly chosen input states.
We find that, similarly to the state learning task, linear-in-G many queries are both necessary and

sufficient to learn a unitary in the average case.

Theorem 4 (Average-case unitary learning). There exists an algorithm that learns an n-qubit unitary
composed of G two-qubit gates to accuracy ✏ in root mean squared trace distance davg with high probability
using Õ

�
Gmin{1/✏2,

p
2n/✏}

�
queries to the unknown unitary. Meanwhile, ⌦ (G/✏) queries to the unitary

or its inverse or the controlled versions are necessary for any such algorithm.

We show the upper bound in Appendix C 2 by combining a covering net with quantum hypothesis
selection similarly to the upper bound in Theorem 1. Our algorithm achieving the query complexity
Õ(G/✏2) uses maximally entangled states and the Choi–Jamiołkowski duality [58–60]. With a bootstrap
method similar to quantum phase estimation [21], we improve the ✏-dependence to the Heisenberg scaling
Õ(1/✏), albeit at the cost of a dimensional factor. Without auxiliary systems, we prove a query complexity
bound of Õ(Gmin{1/✏4, (

p
2n)3/✏}). The lower bound is proven in Appendix C 3 by mapping to a fractional

query problem [21, 61, 62] and making use of a recent upper bound on the success probability in unitary
distinguishing tasks [63]. In the case of learning generic unitaries, our result yields a ⌦(4n/✏) lower
bound, improving upon the ⌦(4n/n2) bound from the recent work [51], which studies the hardness of
learning Haar-(pseudo)random unitaries.

As Haar-random states are hard to generate in practice, we also discuss other input state ensembles of
physical interest. Relying on the equivalence of root mean squared trace distances over different locally
scrambled ensembles [64, 65], recently established in [66], our algorithm achieves the same average-case
guarantee over any such ensemble. Notable examples of locally scrambled ensembles include products of
Haar-random single-qubit states or of random single-qubit stabilizer states, 2-designs on n-qubit states,
and output states of random local quantum circuits with any fixed architecture.

The similar linear-in-G sample/query complexity scaling in Theorems 1 and 4 hints at a common
underlying source of complexity. However, in contrast to state learning, unitary learning comes with
two natural such sources: (1) to readout input and output states, and (2) to learn the mapping from
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inputs to outputs. The similarity between learning states and unitaries in terms of complexities suggests
that the former may encapsulate the central difficulty in unitary learning whereas the latter may be
easy. This seemingly contradicts recent quantum no-free-lunch theorems [45, 46, 67], which state ⌦(2n)
samples are required to learn a generic unitary even from classical descriptions of input-output state
pairs, highlighting the difficulty of (2).

To resolve this apparent contradiction, we reformulate the quantum no-free-lunch theorem (Theo-
rem 17) from a unifying information-theoretic perspective in Appendix C 4. We highlight that enlarging
the space for the classically described data allows to systematically reduce the sample complexity until
a single sample suffices to learn a general unitary. Therefore, the difficulty of learning the mapping, as
indicated by quantum no-free-lunch theorems, vanishes when we allow auxiliary systems and query access
to the unitary. Inspired by this observation, we give two ways of enlarging the representation space with
auxiliary systems. The first is fundamentally quantum, making use of entangled input states [46]. The
other is purely classical, relying on mixed state inputs [68].

Theorem 5 (Learning with classical descriptions). There exists an algorithm that learns a generic n-
qubit unitary with any non-trivial accuracy and with high success probability using O(2n/r) classically
described input-output pairs with mixed (entangled) input states of (Schmidt) rank r. Moreover, any such
algorithm that is robust to noise needs at least ⌦(2n/r) samples.

Similarly to the case for state learning, our average-case unitary learning algorithm is not compu-
tationally efficient. We show that this cannot be avoided. Under commonly-believed cryptographic
assumptions [38–43], any quantum algorithm that can learn unknown unitaries with circuit size Õ(G)
to a small error in average-case distance from queries must have a computational time exponential in
G. This implies the same computational hardness for worst-case unitary learning, and a log n transition
point of computational efficiency. Note that the hard instances we construct are implementable with
a similar number of Clifford and T gates [69]. Therefore, together with Theorem 2, this implies that
there is no polynomial time quantum algorithms for learning Clifford+T circuits with !̃(log n) T gates,
answering an open question (the fifth question) in the survey [44] negatively.

Theorem 6 (Unitary learning computational complexity). Suppose we are given N queries to an ar-
bitrary unknown n-qubit unitary U consisting of Õ(G) two-qubit gates. Assume that RingLWE cannot
be solved by a quantum computer in sub-exponential time. Then, any quantum algorithm that learns
the unitary to within ✏ average-case distance davg must use exp(⌦(min{G,n})) time. Meanwhile, for
G = O(log n), the learning task can be solved in polynomial time.

C. Learning physical functions

Apart from learning quantum states and dynamics themselves, a more classically minded learner may
care more about learning classical functions resulting from quantum processes. We define these physical
functions in Appendix D as functions f(x, {Ui}

G
i=1, a) mapping x 2 [0, 1]⌫ to R resulting from a physical

experiment consisting of three steps: (1) a fixed state preparation procedure that can depend on x; (2)
a unitary evolution consisting of G tunable two-qubit gates {Ui}

G
i=1 and arbitrary fixed unitaries that

can depend on x, arranged in a circuit architecture a; (3) the measurement of a fixed observable, whose
expectation is the function output. By tuning the local gates {Ui}

G
i=1 and potentially changing archi-

tecture a, we obtain a resulting class of functions that can be implemented in this general experimental
setting. Despite the generality of this setup, we find that certain well-behaved functions are actually not
physical in this sense: they cannot be efficiently approximated or learned via physical functions.
Theorem 7 (Approximating and learning with physical functions). To approximate and learn arbitrary
1-bounded and 1-Lipschitz R-valued functions on [0, 1]⌫ to accuracy ✏ in k · k1 with high probability,
using physical functions with G gates and variable circuit structures, we must use G � ⌦̃(1/✏⌫/2) gates
and collect at least ⌦(1/✏⌫) samples.

We prove this in Appendix D by noting that to approximate arbitrary 1-bounded and 1-Lipschitz
functions well, the complexity of experimentally implementable functions cannot be too small, as mea-
sured by pseudo-dimension [70] or fat-shattering dimension [71]. Then the gate complexity lower bound
follows because the function class complexity is limited by the circuit complexity [72], and we can appeal
to results in classical learning theory [73] to obtain our sample complexity lower bound.

It has been established that a classical neural network can learn to approximate any 1-bounded and
1-Lipschitz functions to accuracy ✏ in k · k1 with ⇥̃(1/✏⌫) parameters, exponential in the number of
variables ⌫, known as the curse of dimensionality [74]. Our results show that quantum neural networks
can do no better. This result not only is relevant to the practical implementation of quantum machine

599



6

learning, complementing existing results on the universal approximation of quantum neural networks [75–
78], but also has deep implications to the physicality of the function class at consideration. It means
that there are some many-variable 1-bounded and 1-Lipschitz functions that cannot be implemented in
Nature efficiently. On the other hand, certain more restricted function classes can be approximated using
only O(1/✏2) parameters with both classical [74] and quantum neural networks [75], independent of the
number of variables. This reveals a fundamental limitation on the functional expressivity of Nature,
practical QML models, and quantum signal processing algorithms [79, 80].

III. DISCUSSION

Our work provides a new, more fine-grained perspective on the fundamental problems of state and
process tomography by analyzing them for the broad and physically relevant class of bounded-complexity
states and unitaries. It complements existing literature on learning restricted classes of states/unitaries
or their properties. Examples include stabilizer circuits and states [81–84], Clifford circuits with few non-
Clifford T gates and their output states [69, 85–88], matrix product operators [24] and states [89–91],
phase states [82, 92–94], permutationally invariant states [95–97], outputs of shallow quantum circuits
[98], PAC learning quantum states [99], shadow tomography [37], classical shadow formalism [14, 100–
102], and property prediction of the outputs of quantum processes [103–105]. It also raises many inter-
esting questions for future research.

Firstly, to account for decoherence and imperfections in realistic experiments, it is natural to generalize
our results to mixed states and channels. As our learning algorithms based on hypothesis selection and
classical shadows rely on the purity/unitarity of the unknown state/process, it seems that different
algorithmic approaches would be needed to go beyond states of constant rank. Moreover, while our
results show that learners using only single-copy measurements and no coherent quantum processing can
achieve optimal sample/query complexity (in G) for pure state/unitary learning (in line with the state
tomography protocol in [20], which uses at most rank(⇢) copies at a time for the tomography of general
state ⇢), quantum-enhanced learners, using multi-copy measurements and coherent processing, may have
an advantage in the case of mixed states and channels. Such a quantum advantage is known for general
mixed state tomography [106, 107] and in certain channel learning scenarios [103, 105, 108–112], however,
to our knowledge not yet under assumptions of bounded complexity.

Secondly, there are several regimes of interest in which our results may be further extended. For in-
stance, while we establish computational efficiency transition for state and unitary learning at logarith-
mic circuit complexity, we leave open the question of computationally efficient learning with constraints
beyond circuit complexity (e.g., constant-depth circuits where the gates are spread out). Another poten-
tial improvement related to the computational complexity is in regards to average-case computational
hardness. While our computational lower bounds hold in the worst-case, this does not tell us if most
states/unitaries of bounded gate complexity are computationally hard to learn. Are there a worst-case
to average-case reduction for this problem? Or perhaps is there an average-case notion of pseudorandom-
ness that one could leverage here? An additional regime where our work can be extended is as follows.
Our adaptation of the bootstrap strategy from [21] to average-case unitary learning achieves Heisenberg
scaling only at the cost of a dimension-dependent factor. Given recent work in state shadow tomography
[113–115], it may not be possible to find a learner free from this dimensional factor while achieving the
✏�1 scaling. Finding such a learner or disproving its existence could serve as an important contribution
to recent progress on Heisenberg-limited learning in different scenarios [116–118].

Thirdly, can we make learning even more efficient if the circuit structure is fixed and known in advance?
Our upper bound already implies an algorithm with Õ(G) sample complexity for fixed circuit structure,
but the lower bound proof crucially relies on the ability to place gates freely in the construction of the
packing net. A particular fixed circuit structure of physical relevance is the brickwork circuit [119]. In
Appendix E, we give preliminary results showing that if an n-qubit G-gate brickwork circuit suffices
to implement an approximate unitary t-design [120], then the metric entropy of this unitary class with
respect to davg is lower bounded by ⌦(tn). Considering the known lower bound of G � ⌦̃(tn) on the size
of brickwork circuits implementing t-designs [120], whose tightness is still an open problem [121], this
may hint at a similar ⇥̃(G) sample complexity of learning brickwork circuits.

Lastly, we outline a potential connection to the Brown-Susskind conjecture [122, 123] originating from
the wormhole-growth paradox in holographic duality [124–127]. Informally, the conjecture states that
the complexity of a generic local quantum circuit grows linearly with the number of 2-qubit gates for
an exponentially long time, dual to the steady growth of a wormhole’s volume in the bulk theory. With
“complexity” understood as “circuit complexity” [126], this conjecture has recently been confirmed for
exact circuit complexity [128, 129] while the case of approximate circuit complexity is only partially re-
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solved [130, 131]. Our work suggests an alternative approach to the Brown-Susskind conjecture. Namely,
we have demonstrated that the complexity of learning quantum circuits grows linearly with the number
of local gates in the worst case. If our bounds were extended to hold with high probability over random
circuits with G gates, this would yield a sample complexity version of the Brown-Susskind conjecture,
suggesting the complexity of learning as a dual of the wormhole volume.

Via these open questions, tomography problems dating back to the early days of quantum computation
and information connect closely to different avenues of current research in the field. Consequently,
answering these questions will shed new light on fundamental quantum physics as well as on the frontiers
of quantum complexity and quantum learning.

IV. METHODS

In this section, we discuss the main ideas behind the proof of our results on the sample complexity
of learning states (Theorem 1) and unitaries (Theorem 4), along with the computational complexity
(Theorems 2 and 6).

A. Sample complexity upper bounds

We prove the upper bounds in Theorems 1 and 4 using a hypothesis selection protocol similar to [49],
but now based on classical shadow tomography [100] that enables a linear-in-G scaling.

a. State learning For state learning, we first take a minimal covering net N over the set of states
with bounded circuit complexity G such that for any such state | i, there exists a state in the covering
net that is ✏-close to | i in trace distance. This net then serves as a set of candidate states from which
the learning algorithm will select one. Importantly, we prove that the cardinality of N can be upper
bounded by |N |  eÕ(G). Here, note that the tilde hides a logarithmic factor in terms of system size,
which we remove using a more detailed analysis with ideas from junta learning [50].

Next, we use classical shadows created via random Clifford measurements [100] to estimate the trace
distance between the unknown state and each of the candidates in N . This is achieved by estimating
the expectation value of the Helstrom measurement [132], which is closely related to the trace distance
between two states. As the rank of Helstrom measurements between pure states is at most 2, Clifford
classical shadows can efficiently estimate all

�
|N |

2

�
of them simultaneously to ✏ error using O(log |N |/✏2) 

Õ(G/✏2) copies of | i. Then we select the candidate that has the smallest trace distance from | i as the
output.

The above strategy leads to a sample complexity upper bound that depends logarithmically on the
number of qubits n. This is undesirable when the circuit complexity G is smaller than n/2 (i.e., when
some of the qubits are in fact never influenced by the circuit). We improve our algorithm in this small-
size regime by first performing a junta learning step [50] to identify which of the qubits are acted on
non-trivially. After that, we enhance our protocol with a measure-and-postselect step. This allows us
to construct a covering net only over the qubits acted upon non-trivially whose cardinality no longer
depends on n. We then perform the hypothesis selection as before. In this way, we are able to achieve a
sample complexity independent of system size.

b. Unitary learning The algorithm for unitary learning is similar to the state learning protocol.
When allowing the use of an auxiliary system, we utilize the fact that the average-case distance between
unitaries is equivalent to the trace distance between their Choi states. This way, we can reduce the
problem to state learning of the Choi states and achieve the Õ(G/✏2) sample complexity. Without
auxiliary systems, we can sample random input states and perform one-shot Clifford shadows on the
outputs to estimate the squared average-case distance, resulting in an Õ(G/✏4) sample complexity with
a sub-optimal ✏-dependence.

Furthermore, we improve the ✏ dependence in unitary learning to the Heisenberg scaling Õ(1/✏) via
a bootstrap method similar to [21], using the above learning algorithm as a sub-routine. Specifically,
we iteratively refine our learning outcome Û by performing hypothesis selection over a covering net of
(UÛ†)p, with p increasing exponentially as the iteration proceeds. Although the circuit complexity of
(UÛ †)p grows with p, a covering net with p-independent cardinality can be constructed based on the
one-to-one correspondence to U . However, unlike the diamond distance learner considered in [21], which
has fine control over every eigenvalue of the unitaries, our average-case learner only has control over the
average of the eigenvalues. Thus for the bootstrap to work (i.e., for the learning error to decrease with
increasing p), the average-case learner has to work in an exponentially small error regime, which results
in a dimensional factor in the final sample complexity Õ(

p
2nG/✏).
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B. Sample complexity lower bounds

We prove the sample complexity lower bounds in Theorems 1 and 4 by reduction to distinguishing
tasks. Specifically, if we can learn the state/unitary to within ✏ error, then we can use this learning
algorithm to distinguish a set of states/unitaries that are 3✏ far apart from each other. Hence a lower
bound on the sample complexity of distinguishing states/unitaries from a packing net implies a lower
bound for the learning task.

a. State learning For state learning, we construct a packing net M of the set of (log2 G)-qubit
states, which we later tensor product with zero states on the remaining qubits. These states have circuit
complexity ⇠ G because O(2k) two-qubit gates can implement any pure k-qubit states [133]. We prove
that the cardinality of M can be lower bounded by e⌦(G). This means that to distinguish the states in
M, one has to gather ⌦(log |M|) � ⌦(G) bits of information. Meanwhile, Holevo’s theorem [134] asserts
that the amount of information carried by each sample is upper bounded by Õ(✏2) [135]. Hence, we need
at least ⌦̃(G/✏2) copies of the unknown state.

b. Unitary learning Similarly, for unitary learning, we construct a packing net by stacking all the
gates into log4 G qubits, using the fact that O(4k) two-qubit gates suffice to implement any k-qubit
unitaries [136]. Lacking an analogue of Holevo’s theorem for unitary queries, we turn to a recently
established bound on the success probability of unitary discrimination [63] and obtain an ⌦(G) sample
complexity lower bound for constant ✏. To incorporate the ✏ dependence, we follow [21] and map the
problem into a fractional query problem. We show that with N queries, we can use the learning algorithm
to simulate [61, 62] an O(✏N) query algorithm that solves the above constant-accuracy distinguishing
problem. This gives us the desired N � ⌦(G/✏) lower bound.

C. Computational hardness

We prove the computational complexity lower bounds in Theorems 2 and 6 again by reduction to dis-
tinguishing tasks, whose hardness relies on cryptographic primitives in this case. In particular, we show
that if we can learn the state/unitary in polynomial time, then we can use this learning algorithm to
efficiently distinguish between pseudorandom states/functions [137, 138] and truly random states/func-
tions. We note that similar ideas have been used to establish a cryptographic no-cloning theorem [137]
for PRS, but without gate complexity dependence and the unitary counterpart. The RingLWE hard-
ness assumption here may also be relaxed to the existence of appropriate quantum-secure PRS/PRF
constructions that have the same gate complexity discussed below.

Our proofs rely on the construction of quantum-secure pseudorandom functions (PRFs) that can be
implemented using TC0 circuits, subject to the assumption that Ring Learning with Errors (RingLWE)
cannot be solved by a quantum computer in sub-exponential time [40]. We show that the circuit con-
struction of [40] can be implemented quantumly using G = O(npolylog(n)) gates by converting this TC0

circuit into a quantum circuit that computes the same function. With this construction, we can prove
the computational hardness of learning when G = O(npolylog(n)) as follows.

a. State learning For state learning, we utilize these quantum-secure PRFs to construct pseudoran-
dom quantum states (PRS), in particular binary phase states from [137, 139], with G = O(npolylog(n))
gates. Given copies of some unknown quantum state that is promised to either be a PRS or a Haar-
random state, we design a procedure that can distinguish these two cases. The distinguisher uses our
algorithm for learning states along with the SWAP test applied to the learned state and the given
state [140, 141]. Thus, we show that if our learning algorithm was able to computationally efficiently
learn PRS, then we would have an efficient distinguisher between PRS and Haar-random states, contra-
dicting the definition of a PRS [137].

b. Unitary learning The proof idea in the unitary setting is similar. In this case, we consider PRFs
directly rather than the PRS construction. Given query access to some unknown unitary that is promised
to be the unitary oracle of either a PRF or a uniformly random Boolean function, we design a procedure
that can distinguish these two cases. The distinguisher uses our algorithm for learning unitaries along
with the SWAP test [140, 141]. Here, we query the given/learned unitaries on a random tensor product
of single-qubit stabilizer states and conduct the SWAP test between the output states. This way, we
show that if our learning algorithm was able to computationally efficiently learn a unitary implementing
a PRF, then we would have an efficient distinguisher between PRFs and uniformly random functions,
which contradicts the definition of a PRF [138].

We then go one step further and show computational hardness for circuit size Õ(G). To do this we
rely critically on the assumption that RingLWE is hard not just to polynomial-time quantum algorithms,
but even to quantum algorithms that run for longer (sub-exponential) time. This allows us to take a
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much smaller input size to the PRS/PRF in our previous constructions (i.e., over O(G) qubits which
can be implemented with Õ(G) gates). The sub-exponential computational hardness of RingLWE then
implies that solving the learning tasks requires time exponential in G.

Meanwhile, for G = O(log n), the learning tasks can be solved efficiently by junta learning and standard
tomography methods. This establishes log n circuit complexity as a transition point of computational
efficiency. This also implies that the circuit complexity of the PRS/PRF constructions in [40, 139]
is optimal up to logarithmic factors, otherwise it would contradict efficient tomography of O(log n)-
complexity states/unitaries. Finally, we note that the PRS/PRF we consider can be implemented with
a similar number of Clifford and T gates, extending our results to Clifford+T circuits.
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Appendix A: Preliminaries

Throughout the appendices, we use d = 2n to denote the dimension of the n-qubit Hilbert space unless
otherwise stated.

1. Distance metrics

Here we review some distance metrics and their properties used throughout our proofs. In the main
text we have already introduced the trace distance

dtr(| i , |�i) =
1

2
k | ih |� |�ih�| k1 , (A.1)

which is analogously defined for density matrices as dtr(⇢,�) = k⇢� �k1/2, the diamond distance

d⌃(U, V ) = max
⇢

k(U ⌦ I)⇢(U ⌦ I)† � (V ⌦ I)⇢(V ⌦ I)†k1 , (A.2)

and the root mean squared trace distance

davg(U, V ) =
r

E
| i

[dtr(U | i , V | i)2] (A.3)
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where the expectation is taken over Haar measure2.
Apart from these, we also use the following auxiliary distance metrics. We define the quotient spectral

distance

d02(U, V ) = min
ei�2U(1)

kU � ei�V k (A.4)

to be the spectral distance d2(U, V ) = kU � V k up to a global phase. Similarly, we define the quotient
normalized Frobenius distance

d0F (U, V ) = min
ei�2U(1)

1
p
d
kU � ei�V kF (A.5)

as the normalized Frobenius norm distance dF (U, V ) = 1
p
d
kU � V kF up to a global phase.

The following lemma shows that (quotient) spectral distance and diamond distance are equivalent.

Lemma 1 (Spectral and diamond distance of unitaries, variant of [142, Lemma B.5]). For any two
d-dimensional unitaries U and V , we have

1
p
2
d02(U, V ) 

1

2
d⌃(U, V )  d02(U, V )  kU � V k. (A.6)

Proof. Since stabilization is not necessary for computing the diamond distance of two unitary chan-
nels [143], we have

1

2
d⌃(U, V ) = max

| i

1

2
kU | ih |U †

� V | ih |V †
k1 = max

| i

q
1� | h |U†V | i |2

= max
| i

q
(1 + | h |U †V | i |)(1� | h |U†V | i |) � max

| i

1
p
2

q
2(1� | h |U†V | i |)

=
1
p
2

min
ei�2U(1)

max
| i

kU | i � ei�V | i k2 =
1
p
2

min
ei�2U(1)

kU � ei�V k =
1
p
2
d02(U, V ),

(A.7)

where we have used
��⌦ 
��U †V | 

↵�� � 0 and the standard conversion between trace distance and fidelity.
This proves the first inequality. Similarly, we have

1

2
d⌃(U, V ) = max

| i

1

2
kU | ih |U †

� V | ih |V †
k1 = max

| i

q
1� | h |U†V | i |2

= max
| i

q
(1 + | h |U †V | i |)(1� | h |U†V | i |)  max

| i

q
2(1� | h |U†V | i |)

= min
ei�2U(1)

max
| i

kU | i � ei�V | i k2 = min
ei�2U(1)

kU � ei�V k = d02(U, V ),

(A.8)

where we have used
��⌦ 
��U †V | 

↵��  1, proving the second inequality. The third inequality follows
immediately from d02(U, V ) = minei�2U(1) kU � ei�V k  kU � V k.

We will also utilize the subadditivity of the diamond distance.

Lemma 2 (Subadditivity of diamond distance [144, Prop. 3.48]). For any d-dimensional unitaries
U1, U2, V1, V2, we have the following inequality:

d⌃(U2U1, V2V1)  d⌃(U2, V2) + d⌃(U1, V1). (A.9)

From the standard relationship between different p-norms, we have the following relation between d02
and d0F .

Lemma 3 (Norm conversion between quotient spectral and normalized Frobenius distance). For any
two d-dimensional unitaries U and V , we have

1
p
d
d02(U, V )  d0F (U, V )  d02(U, V ). (A.10)

2
Due to the concentration of Lipschitz functions on inputs drawn from the Haar measure, controlling this root mean

squared distance also leads to error bounds that hold with high probability over random input states.
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Proof. For any ei� 2 U(1), the standard relation between matrix norms gives us

kU � V ei�k  kU � V ei�kF 

p

dkU � V ei�k. (A.11)

Taking the minimum of kU � V ei�kF over ei� in the first inequality and dividing by
p
d, we obtain

1
p
d
d02(U, V ) 

1
p
d
kU � V ei�k  d0F (U, V ). (A.12)

Similarly, taking the minimum of kU �V ei�k over ei� in the second inequality and dividing by
p
d yields

d0F (U, V ) 
1
p
d
kU � V ei�kF  d02(U, V ). (A.13)

Thus we have the desired results.

The following lemma collects some useful properties of d0F and in particular shows that d0F and davg
are equivalent.

Lemma 4 (Properties of quotient normalized Frobenius distance). For any two d-dimensional unitaries
U and V , we have:

1. 1
2d
0

F (U, V )  davg(U, V )  d0F (U, V ).

2. For any integer p � 1, d0F (Up, V p)  pd0F (U, V ).

3. For any integer p � 1, if d0F (U, I), d0F (V, I) 
4/(25⇡)
p
d

, then d0F (U
1/p, V 1/p)  2

pd
0

F (U, V ).

Item 3 can be viewed as a version of [21, Lemma 3.1].

Proof. Item 1: From properties of the Haar integral (see e.g., [145, Example 50]), we have

davg(U, V )2 = 1�
d+ | tr

�
U†V

�
|
2

d(d+ 1)
. (A.14)

On the other hand, we have

d02F (U, V ) = min
ei�2U(1)

1

d
kU � V ei�k2F = min

ei�2U(1)
2�

2

d
Re[tr

�
U †V ei�

�
] = 2�

2

d
| tr
�
U †V

�
|. (A.15)

Combining them, we get

davg(U, V )2 =
d

d+ 1
d02F (U, V )

✓
1�

d02F (U, V )

4

◆
2


1

4
d02F (U, V ), d02F (U, V )

�
, (A.16)

because d02F (U, V ) 2 [0, 2]. Thus we have established Item 1.
Item 2: From triangle inequality, we have

d0F (U
p, V p) 

pX

k=1

d0F (U
p+1�kV k�1, Up�kV k) =

pX

k=1

d0F (U, V ) = pd0F (U, V ) , (A.17)

where we have used the unitary invariance of d0F . This proves Item 2.
Item 3: We first prove the following modified version without the global phase: “If dF (U, I), dF (V, I) 

4/(5⇡)
p
d

, then dF (U1/p, V 1/p)  2
pdF (U, V ).” Let U = eX , V = eY with kXk, kY k  ⇡. We can refine the

bound on kXk, kY k by noting the following

kXk 
⇡

2
keX � Ik 

⇡

2
kU � IkF =

⇡
p
d

2
dF (U, I) 

2

5
, (A.18)

where the first inequality can be seen from eigenvalue analysis as follows: Let i✓k be the eigenvalues of
X with |✓k|  ⇡. Then we have

kXk = max
k

|✓k|  ⇡max
k

����sin
✓k
2

���� =
⇡

2
max

k

��ei✓k � 1
�� = ⇡

2
keX � Ik. (A.19)
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Similarly, we have kY k  2/5.
Next, we prove the following inequality when kXk, kY k  2/5 (similar to [146, Appendix D]):

1

2
kX � Y kF  keX � eY kF  kX � Y kF . (A.20)

For the upper bound, we use the triangle inequality and a telescoping sum representation: For any
m 2 N,

keX � eY kF 

mX

k=1

ke(k�1)X/m(eX/m
� eY/m)e(m�k)Y/m

kF = mkeX/m
� eY/m

kF , (A.21)

and by taking m ! 1 we arrive at the upper bound. For the lower bound, note that by triangle
inequality, we have

keX � eY kF =

�����

1X

k=1

1

k!
(Xk

� Y k)

�����
F

� kX � Y kF �

�����

1X

k=2

1

k!
(Xk

� Y k)

�����
F

. (A.22)

The second term can be upper bounded by
�����

1X

k=2

1

k!
(Xk

� Y k)

�����
F

=

�����

1X

k=2

kX

l=1

1

k!
X l�1(X � Y )Y k�l

�����
F



1X

k=2

k

k!

✓
2

5

◆k

kX � Y kF

= (e2/5 � 1)kX � Y kF ,

(A.23)

where we have used kABkF  kAk · kBkF and kXk, kY k  2/5. Plugging this bound back in, we arrive
at the lower bound

keX � eY kF � (2� e2/5)kX � Y kF �
1

2
kX � Y kF . (A.24)

Equation (A.20) in particular implies

dF (U
1/p, V 1/p) 

1

p
p
d
kX � Y kF 

2

p
dF (U, V ) , (A.25)

and thus the modified version of our claim.
Finally, we deal with the global phase and prove the d0F version, where we assume d0F (U, I), d

0

F (V, I) 
4/(25⇡)
p
d

. Let ei�U , ei�V , ei� 2 U(1) denote the global phases that minimize dF (U, Iei�U ), dF (V, Iei�V ) and

dF (Ue�i�U , V e�i�V ei�), respectively. Then dF (U, Iei�U ), dF (V, Iei�V ) 
4/(25⇡)
p
d

by assumption, and

dF (Ue�i�U , V e�i�V )  dF (U, Iei�U ) + dF (V, Iei�V )  8/(25⇡)
p
d

. Therefore,

dF (e
i�, I)  dF (e

i�, (V e�i�V )†(Ue�i�U )) + dF ((V e�i�V )†(Ue�i�U ), I)

= dF (Ue�i�U , V e�i�V ei�) + dF (Ue�i�U , V e�i�V )

 2dF (Ue�i�U , V e�i�V )


16/(25⇡)

p
d

.

(A.26)

This means that dF (Ue�i�U e�i�, I)  dF (U, Iei�U ) + dF (ei�, I) 
(4+16)/(25⇡)

p
d

= 4/(5⇡)
p
d

. We also know

that dF (V e�i�V , I) 
4/(25⇡)
p
d


4/(5⇡)
p
d

. Thus the two matrices Ue�i�U e�i� and V e�i�V satisfy the
condition of the modified version without global phase, and we thus have

d0F (U
1/p, V 1/p)  d0F (U

1/p, V 1/p(e�i�V )1/p(ei�U )1/p(ei�)1/p)

= dF ((Ue�i�U e�i�)1/p, (V e�i�V )1/p)


2

p
dF (Ue�i�U e�i�, V e�i�V ) = d0F (U, V ).

(A.27)

This concludes the proof of Item 3.
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Haar-random states are in general hard to generate. One may want to use other ensembles of input
states and the associated distance metric for average-case learning. A class of ensembles of physical
interest is that of locally scrambled ensembles [64, 65] defined as follows:

Definition 1 (Locally scrambled ensembles up to the second moment). An ensemble S of (i.e., a
distribution over) n-qubit states is called a locally scrambled ensemble up to the second moment if it
is of the form S = U |0i⌦n, where U is an ensemble of unitaries that is locally scrambled up to the
second moment. That is, there exists another unitary ensemble U

0, such that: (1) for any U 0 randomly
sampled from U

0 and for any tensor product of single-qubit unitaries ⌦
n
i=1Ui, U 0 ⌦n

i=1 Ui follows the
same distribution of U

0; and (2) for any 2n-qubit density matrices ⇢, we have EU⇠U [U⌦2⇢(U†)⌦2] =

EU 0⇠U 0 [U 0⌦2⇢(U 0†)⌦2]. We use S(2)LS to denote the set of all such state ensembles.

Notable examples of these ensembles include n-qubit Haar-random states, products of Haar-random
single-qubit states, products of random single-qubit stabilizer states, 2-designs on n-qubit states, and
output states of random local quantum circuits with any fixed architecture. The following lemma from
the study of out-of-distribution generalization [66] shows that these ensembles lead to mutually equivalent
average-case distance metrics.

Lemma 5 (Equivalence of locally scrambled average-case distances [66, Theorem 1]). We denote by
dP (U, V ) =

p
E| i⇠P [dtr(U | i , V | i)2] the root mean squared trace distance with respect to an ensemble

P . For any P,Q 2 S(2)LS and for any unitaries U, V , we have

1
p
2
dQ(U, V )  dP (U, V ) 

p
2dQ(U, V ). (A.28)

The following lemma shows that the triangle inequality holds for dP (and in particular, davg).

Lemma 6 (Triangle inequality for average-case distance). Let dP (U, V ) =
p
E| i⇠P [dtr(U | i , V | i)2]

be the root mean squared trace distance with respect to an ensemble P . For any three unitaries U, V and
W , we have the triangle inequality

dP (U, V )  dP (U,W ) + dP (W,V ). (A.29)

Proof. Note that

d2P (U, V ) = E| i⇠P [dtr(U | i , V | i)2]  E| i⇠P [(dtr(U | i ,W | i) + dtr(W | i , V | i))2]

= d2P (U,W ) + d2P (W,V ) + 2E| i⇠P [dtr(U | i ,W | i) dtr(W | i , V | i)]

 d2P (U,W ) + d2P (W,V ) + 2
q
E| i⇠P [dtr(U | i ,W | i)2] ·

q
E| i⇠P [dtr(W | i , V | i)2]

= (dP (U,W ) + dP (W,V ))2 ,

(A.30)

where we have used the triangle inequality for dtr and the Cauchy-Schwartz inequality. Taking the square
root gives us the desired result.

2. Covering and packing nets

Our results in state and unitary learning utilize a tool from high-dimensional probability theory, namely
covering and packing nets. We employ covering nets in our proofs of the sample complexity upper bounds
and packing nets in our proofs of sample complexity lower bounds. Intuitively, covering and packing
nets characterize the complexity of a space by discretizing it with small balls of a given resolution. We
formally define these concepts below.

Definition 2 (Covering net/number and metric entropy). Let (X, d) be a metric space. Let K ✓ X be
a subset and ✏ > 0. Then, define the following.

• N ✓ K is an ✏-covering net of K if for any x 2 K, there exists a y 2 N such that d(x, y)  ✏.

• The covering number N (K, d, ✏) of K is the smallest possible cardinality of an ✏-covering net of K.

• The metric entropy is logN (K, d, ✏).
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We can similarly define a packing net.

Definition 3 (Packing net/number). Let (X, d) be a metric space. Let K ✓ X be a subset and ✏ > 0.
Then, define the following.

• N ✓ K is an ✏-packing net of K if for any x, y 2 N , d(x, y) > ✏.

• The packing number M(K, d, ✏) of K is the largest possible cardinality of an ✏-packing net of K.

The following equivalence between covering and packing numbers is often useful.

Lemma 7 (Covering and packing are equivalent, [48, Section 4.2]). Let (X, d) be a metric space. Let
K ✓ X and ✏ > 0. We have

N (K, d, ✏/2) � M(K, d, ✏) � N (K, d, ✏). (A.31)

Covering numbers also have the following monotonicity property.

Lemma 8 (Monotonicity of covering number, [48, Section 4.2]). Let (K, d) be a metric space. If L ✓ K,
then N (L, d, ✏)  N (K, d, ✏/2).

For our purposes, we need the following upper and lower bounds on the covering number of the unitary
group. Since the states that we consider can be generated by unitaries applied to a fixed input state, a
covering number upper bound for unitaries with respect to the diamond distance implies a corresponding
covering number upper bound for states with respect to the trace distance.

Lemma 9 (Covering number of the unitary group, [147, Proposition 7], [146, Lemma 1] and [142, Lemma
C.1]). Let k·k

0 be any unitarily invariant norm. there exist universal constants c1, c2 > 0 such that for
any ✏ 2 (0, 2], the covering number of the d-dimensional unitary group U(d) with respect to the norm
k·k
0 satisfies:

⇣c1
✏

⌘d2

 N (U(d), k·k0, kIk0✏) 
⇣c2
✏

⌘d2

. (A.32)

In particular, for the spectral norm k·k, we have the upper bound N (U(d), k·k, ✏)  (6/✏)2d
2

. For the
Frobenius norm k·kF , we have (c1/✏)

d2

 N (U(d), k·kF ,
p
d✏)  (c2/✏)

d2

.

We can use this result to bound the covering number for n-qubit unitaries consisting of G two-qubit
gates.

Theorem 8 (Covering number of G-gate unitaries). Let UG
✓ U(2n) be the set of n-qubit unitaries

that can be implemented by G two-qubit gates. Then for any ✏ 2 (0, 1], there exist universal constants
c1, c2, C > 0 such that for 1  G/C  4n+1, the metric entropy of UG with respect to the normalized
Frobenius distance dF can be bounded as

G

4C
log
⇣c1
✏

⌘
 logN (UG, dF , ✏)  16G log

✓
c2G

✏

◆
+ 2G log n. (A.33)

Moreover, the metric entropy with respect to diamond distance d⌃ can be explicitly upper bounded by

logN (UG, d⌃, ✏)  32G log

✓
12G

✏

◆
+ 2G log n. (A.34)

Proof. The proof of the upper bounds is similar to the proof of Theorem C.1 in [142]. We first prove the
upper bound for diamond distance.

Let ✏ 2 (0, 1], and define ✏0 = ✏/2G. Then by Lemma 9, there exists an ✏0-covering net Ñ✏0 of the set
of two-qubit unitaries U(22) with respect to the spectral norm k·k of size

|Ñ✏0 | 

✓
6

✏0

◆32

=

✓
12G

✏

◆32

. (A.35)

This bound applies when the two-qubit unitary acts on a fixed set of two qubits. We can consider two-
qubit unitaries that act on any of the n qubits. Let U2q

⇢ U(2n) denote this set of two-qubit unitaries
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that can act on any pair of the n qubits of the system. Because there are
�n
2

�
pairs of qubits that the

unitary could act on, the size of the covering net Ñ✏0,n of U2q is bounded by

|Ñ✏0,n| 

✓
n

2

◆✓
12G

✏

◆32

. (A.36)

Recall that we want to find a covering net for the set UG of n-qubit unitaries consisting of G two-qubit
gates. Any unitary U 2 UG can be written as UGUG�1...U1 for Ui 2 U2q, where we suppress the tensor
product with identity for readability. We consider the set of unitaries obtained by multiplying elements
of the covering net Ñ✏0,n of U2q. Namely, we define

N✏ , {UGUG�1...U1|Ui 2 Ñ✏0,n, 1  i  G} . (A.37)

Let U 2 UG be any arbitrary unitary that can be implemented by G two-qubit gates, i.e., it can be
written as U = UGUG�1...U1 for Ui 2 U2q. As Ñ✏0,n is an ✏0-covering net of the set U2q of two-qubit
unitaries, for each Ui comprising the circuit U , we can find a Ũi 2 Ñ✏0,n such that kUi � Ũik  ✏0 for all
1  i  G, where k·k denotes the spectral norm. Then, the unitary Ũ , ŨGŨG�1...Ũ1 2 N✏1 satisfies

d⌃(U, Ũ) 
GX

i=1

d⌃(Ui, Ũi)  2
GX

i=1

���Ui � Ũi

���  2G✏0 = ✏, (A.38)

where we have employed the subadditivity of the diamond distance (Lemma 2) in the first inequality
and then used the relationship between the diamond norm and spectral norm in the second inequality
(Lemma 1). In the last inequality, we used that

���Ui � Ũi

���  ✏0 and ✏0 = ✏/2G.
Thus, N✏ is an ✏-covering net of the set UG of n-qubit unitaries that can be implemented by G two-

qubit gates with respect to the diamond distance. By definition of N✏, we have |N✏| = |Ñ✏0,n|
G, since

each unitary in the length G strings of unitaries comprising elements of N✏ are chosen from Ñ✏0,n. Then

|N✏| 

✓
n

2

◆G✓12G

✏

◆32G

 n2G

✓
12G

✏

◆32G

. (A.39)

Taking the logarithm gives the desired result for diamond distance.
We can argue similarly for the normalized Frobenius distance dF . Specifically, we make use of the

subadditivity of k · kF : 8U1, V1, U2, V2 2 U(2n), we have

kU2U1 � V2V1kF  kU2U1 � U2V1kF + kU2V1 � V2V1kF = kU1 � V1kF + kU2 � V2kF , (A.40)

where we have used triangle inequality and k · kF being unitary invariant.
Consider any U 2 UG, U = UG · · ·U1, where Ui, 1  i  T are 2-qubit unitaries acting on some pair

of qubits. Take ✏0 = ✏/G and let N✏0 be an ✏0-covering net of U(22) with respect to k · kF . Then there
exist Vi 2 N , 1  i  G, such that kUi � Vik  ✏/G when the Vi are placed on the corresponding qubits.
Let V = VG · · ·V1. By sub-additivity, we have

kU � V kF 

GX

i=1

p

2n�2kUi � VikF 

p

2n�2G✏0 =
p

2n�2✏, (A.41)

where we have used the facts that the Frobenius norm is multiplicative w.r.t. tensor products and that
an (n�2)-qubit identity has Frobenius norm equal to

p
2n�2. Therefore, the set of V = VG · · ·V1, where

Vi 2 U(22) and acting on all possible pair of qubits is a (2n�2✏)-covering net of UG. Since the number
of choices for qubits to act on is

�n
2

�
for each Vi, we have

N (UG, k · kF ,
p

2n�2✏) 

✓
n

2

◆
N (U(22), k · kF , ✏/G)

�G
 n2G

 
c2G

p
22

✏

!16G

, (A.42)

where we have used Lemma 9. Redefining ✏ to be ✏/
p
22 and switching to the normalized dF , we obtain

logN (UG, dF , ✏)  16G log

✓
c2G

✏

◆
+ 2G log n. (A.43)
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Finally, we prove the lower bound. For this, we consider a particular set of circuit structures where all
the G gates are placed on the first k  n qubits. The set of unitaries that can be implemented by such
circuits is denoted by UkG ✓ UG. From the theory of universal quantum gates (see [136]), we know that
to implement an arbitrary k-qubit unitary, we only need Gk = O(4k) two-qubit gates that can implement
single-qubit gates and CNOT. That is, there exists a universal constant C > 0, such that C4k � Gk.
Therefore, for any integer k  n satisfying C4k  G, we have G � Gk. Then all possible k-qubit
unitaries can be implemented with these G gates: Un(2k) = {U ⌦ I2n�k : U 2 U(2k)} ✓ UkG ✓ UG,
where Un(2k) denotes the set obtained by embedding the k-qubit unitaries into the n-qubit unitaries via
tensor-multiplication with the identity. Thus N (UG, k · kF , ✏) � N (Un(2k), k · kF , 2✏) by monotonicity.

Next, we prove that N (Un(2k), k · kF , 2✏) � N (U(2k), k · kF , 2✏/
p

2n�k). To do this, we take a
minimal 2✏-covering net N of Un(2k) with |N | = N (Un(2k), k · kF , 2✏). Hence 8U 2 U(2k), U ⌦ I2n�k 2

Un(2k), 9V ⌦I2n�k 2 N , such that kU�V kF = kU⌦I2n�k�V ⌦I2n�kkF /
p

2n�k  2✏/
p

2n�k. Therefore,
{V : V ⌦ I2n�k 2 N} forms a 2✏/

p

2n�k-covering net of U(2k), and we have N (Un(2k), k · kF , 2✏) �

N (U(2k), k · kF , 2✏/
p

2n�k).
Combining the above inequalities, we have

logN (UG, k·kF , ✏) � logN (Un(2k), k·kF , 2✏) � logN (U(2k), k·kF , 2✏/
p

2n�k) � 22k log
c1
p
2n

2✏
, (A.44)

where the last inequalities follow from Lemma 9. The largest possible k is given by k = blog4(G/C)c �
log4 G/(4C). Thus, by redefining ✏ to be ✏/

p
2n and switching to dF , we arrive at

logN (UG, dF , ✏) �
G

4C
log

c1
2✏

. (A.45)

This completes the proof of Theorem 8.

The dF covering number bounds in Theorem 8 do not yet properly take into account the global U(1)
phase. To obtain covering number for the average-case distance davg, which is equivalent to the quotient
normalized Frobenius distance d0F (Lemma 4 Item 1), we need to quotient out the global phase. This is
formalized in the following lemma.

Lemma 10 (Packing number of quotient distance metric, variant of [146, Lemma 4]). For any d-
dimensional unitaries U and V , let dF (U, V ) = kU � V kF /

p
d be the normalized Frobenius distance, and

d0F (U, V ) = minW2U(1) dF (U, V W ) be the corresponding quotient distance. Then there exists a universal
constant c2 > 0 such that the packing number of any set U ✓ U(d) with respect to dF and d0F satisfies

logM(U , dF , 4✏)� log(c2/✏)  logM(U , d0F , ✏)  logM(U , dF , ✏). (A.46)

Proof. We focus on the lower bound first. Take a minimal ✏-covering N1 of U with respect to d0F and a
minimal ✏-covering N2 of U(1) with respect to the absolute value distance dA(ei�, e�i�

0
) = |ei� � e�i�

0
|.

Then, for any U 2 U , there exists V 2 N1 such that d0F (U, V )  ✏. Let ei�
?

= argminei� dF (U, V ei�).
Then dF (U, V ei�

?

)  ✏, and there exists ei�
0
2 N2 such that dA(ei�

?

, ei�
0
)  ✏. Therefore,

dF (U, V ei�
0
)  dF (U, V ei�

?

) + dF (V ei�
?

, V ei�
0
) = dF (U, V ei�

?

) + dF (Ie
i�?

, Iei�
0
)  2✏, (A.47)

where we have used the triangle inequality, dF being unitary invariant, and dF (Iei�
?

, Iei�
0
) = 1

p
d
kIei�

?

�

Iei�
0
kF = kIkF

p
d
|ei�

?

� ei�
0
| = dA(ei�

?

, ei�
0
)  ✏. Hence, the set {V ei�

0
: V 2 N1, ei�

0
2 N2} is a (2✏)-

covering of U with respect to dF . Then

N (U , dF , 2✏)  N (U , d0F , ✏)N (U(1), dA, ✏). (A.48)

Therefore, using the equivalence of covering and packing (Lemma 7) and the covering number bound for
U(1) (Lemma 9), we arrive at

logM(U , d0F , ✏) � logM(U , d0F , 4✏)� log(c2/✏). (A.49)

For the upper bound, note that 8U, V 2 U , we have

d0F (U, V ) = min
ei�2U(1)

dF (U, V ei�)  dF (U, V ). (A.50)

Therefore, a maximal ✏-packing net with respect to d0F is an ✏-packing net with respect to dF . Therefore,

M(U , d0F , ✏)  M(U , dF , ✏). (A.51)

This concludes the proof of Lemma 10.
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With Lemma 10, we can obtain the covering number of G-gate unitaries with respect to the average-
case distance.

Corollary 1 (Covering number with average-case distance). Let UG
✓ U(2n) be the set of n-qubit

unitaries that can be implemented by G two-qubit gates. Then for any ✏ 2 (0, 1], there exist universal
constants c1, c2, C > 0 such that for 1  G/C  4n+1, the metric entropy of UG with respect to the
average-case distance davg(U, V ) =

p
E| i[dtr(U | i , V | i)2], where the expectation value is over Haar

measure, can be bounded as

G

4C
log
⇣ c1
8✏

⌘
� log

⇣ c2
2✏

⌘
 logN (UG, davg, ✏)  16G log

✓
c2G

✏

◆
+ 2G log n. (A.52)

Proof. The corollary follows directly from Theorem 8, Lemma 10, and the equivalence of d0F and davg
(Lemma 4 Item 1).

3. Classical shadows and hypothesis selection

Our proofs of the sample complexity upper bounds crucially rely on a known algorithm for quantum
hypothesis selection [148]. The high-level idea is to find a covering net over all unitaries consisting of only
G two-qubit gates and to then use quantum hypothesis selection to identify a candidate in the covering
net close to the unknown target state/unitary. A similar idea has previously appeared in [103]. In
this section, we discuss the quantum hypothesis selection algorithm from [148] and prove a performance
guarantee when basing it on classical shadow tomography [100].

The quantum hypothesis selection algorithm takes as input (classical descriptions of) a set of hypoth-
esis states �1, . . . ,�m and quantum copies of an unknown state ⇢. Using these copies, the algorithm
identifies a hypothesis state �k that is close to the unknown state ⇢ in trace distance. Importantly,
quantum hypothesis selection black-box reduces to shadow tomography [37], i.e., one can use the shadow
tomography protocol as a black-box to solve quantum hypothesis selection. To obtain a better sample
complexity scaling, we instead utilize classical shadow tomography [100].

Recall that a classical shadow is a succinct classical description of a quantum state that allows us
to predict many expectation values accurately. One can construct this classical shadow description by
applying a random unitary to the quantum state and measuring in the computational basis. The most
prevalent examples are random Clifford measurements, where the random unitary is chosen to be a
random Clifford circuit, or random Pauli measurements, where the random unitary is chosen to be a
tensor product of random Pauli gates. Moreover, we have the following rigorous guarantee for using
classical shadows to predict expectation values.

Theorem 9 (Theorem 1 in [100]). Let O1, . . . , OM be Hermitian 2n ⇥ 2n matrices, and let ✏, � 2 [0, 1].
Then,

N = O

 
log(M/�)

✏2
max

1iM

����Oi �
tr(Oi)

2n
I
����
2

shadow

!
(A.53)

copies of an unknown quantum state ⇢ suffice to predict ôi such that

|ôi � tr(Oi⇢)|  ✏ (A.54)

for all 1  i  M , with probability at least 1� �.

Here, k·kshadow denotes the shadow norm, which depends on the ensemble of unitary transformations
used to create the classical shadow. For instance, in the case of random Cliffords, the shadow norm can
be controlled via the (unnormalized) Frobenius norm, compare [100, Proposition S1].

Now, we can prove a new guarantee for the quantum hypothesis selection by replacing shadow tomog-
raphy with classical shadow in the proof in [148].

Proposition 1 (Proposition 5.3 in [148]; Classical Shadow Version). Let 0 < ✏, � < 1/2. Given access to
unentangled copies of a pure quantum state ⇢ and classical descriptions of m fixed pure hypothesis states
�1, . . . ,�m, there exists a quantum algorithm that selects �k such that dtr(⇢,�k)  3⌘+ ✏ with probability
at least 1� �, where ⌘ = mini dtr(⇢,�i). Moreover, this algorithm uses

N = O

✓
log(m/�)

✏2

◆
(A.55)

copies of the quantum state ⇢.
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In [148], they prove the guarantee on the quantum hypothesis selection algorithm using Helstrom’s
Theorem. We follow a similar proof. Thus, we first state Helstrom’s Theorem and recall a corollary of
it, which will be useful in the proof of Prop. 1.

Theorem 10 (Helstrom’s Theorem [132]). Consider two d-dimensional quantum states ⇢ and �. Then,
the trace distance between ⇢ and � can be written as

1

2
k⇢� �k1 = max

kOk11
| tr(O⇢)� tr(O�)|, (A.56)

where the maximum is taken over all observables O 2 Cd⇥d.

Corollary 2. Consider two d-dimensional quantum states ⇢ and �. Then, there exists an observable A
achieving the maximum such that

tr(A⇢)� tr(A�) =
1

2
k⇢� �k1. (A.57)

Proof of Corollary 2. We will construct an observable A that maximizes tr(O(⇢� �)) over all observables
O with kOk

1
 1. Choose a representation of ⇢�� in terms of eigenstates |vi. Suppose the eigenvalues

are discrete:

(⇢� �) |vi = �v |vi . (A.58)

Then, we can write the quantity we wish to maximize as

tr(O(⇢� �)) =
X

v

�v hv|O|vi . (A.59)

We can maximize this by choosing A such that

hv|A|vi =

(
1 if �v > 0

0 if �v  0.
(A.60)

In this way, we can write A as a sum of projectors

A =
X

v:�v>0

|vihv| . (A.61)

This maximizes tr(O(⇢� �)), so the corollary has been proven.

With this, we can now prove Prop. 1.

Proof of Prop. 1. The proof of Proposition 5.3 in [148] uses shadow tomography as a black box. We follow
the same strategy but use classical shadow tomography [100] instead of shadow tomography. Recall that
in [148], they run the shadow tomography algorithm from [37] with observables given by Helstrom’s
Theorem [132]. This is the key step that uses samples of the unknown quantum state ⇢, so we need to
analyze it when using classical shadow instead of shadow tomography. In our setting, Corollary 2 states
that for any i 6= j, there exists an observable Aij such that

tr(Aij�i)� tr(Aij�j) =
1

2
k�i � �jk1. (A.62)

Thus, the algorithm in [148] uses M =
�m
2

�
= O(m2) observables {Aij} to select the hypothesis state,

where m is the size of the hypothesis set. Using classical shadow instead of shadow tomography requires

N = Õ

 
log(M/�)

✏2
max
i,j

����Aij �
tr(Aij)

2n
I
����
2

shadow

!
(A.63)

copies of ⇢ by Theorem 9, where M is the number of observables Aij that we want to predict. Here,
M = O(m2) so that we require

N = Õ

 
log(m/�)

✏2
max
i,j

����Aij �
tr(Aij)

2n
I
����
2

shadow

!
(A.64)
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copies of ⇢. We claim that

max
i,j

����Aij �
tr(Aij)

2n
I
����
2

shadow

= O(1). (A.65)

The lemma then follows from this claim. We can prove this bound on the shadow norm using the
construction of the observables Aij from Helstrom’s Theorem, as seen in Corollary 2. In our case, the
states �i are pure, and hence of rank 1. Thus, the rank of �i � �j is at most 2 so that Aij is a projector
of rank at most 2. Thus, the Frobenius norm of every Aij is O(1) and, by [100, Proposition S1], the
same holds for the shadow norm of the centered version of Aij .

4. Characterizing the complexity of function classes

In the proof of Theorem 7 (in Appendix D), we will need to characterize the complexity of certain
function classes. The following definitions will be useful. Throughout the work, we use Y

X to denote
the set of functions from X to Y.

Definition 4 (Growth function, [149]). Let F ✓ Y
X be a class of functions with finite target space Y. For

every subset ⌅ ✓ X, define the restriction of F to ⌅ as F|⌅ = {f 2 Y
⌅ : 9F 2 F , 8x 2 ⌅, f(x) = F (x)}.

We define the growth function � of F as

�(µ) = max
⌅✓X :|⌅|µ

|F|⌅| (A.66)

for any µ 2 N.

The growth function characterizes the size of F when restricted to a domain of µ points. With growth
function, we can define the VC dimension that characterizes the complexity of binary functions.

Definition 5 (VC dimension, [149]). The Vapnik-Chervonenkis (VC) dimension of a function class
F ✓ {0, 1}X is defined as

VCdim(F) = max{µ 2 N : �(µ) = 2µ}, (A.67)

or 1 if the maximum does not exist. Here �(µ) is the growth function of F . Or equivalently, VCdim(F)
is the largest D 2 N [ {1} such that there exists a set of points {xi}

D
i=1 ✓ X that for all C ✓ [D], there

is a function f 2 F satisfying

f(xi) = 1 () i 2 C. (A.68)

These points are said to be shattered by F .

To go beyond binary functions, we can use pseudo dimension defined below.

Definition 6 (Pseudo dimension, [70]). The pseudo dimension of a real-valued function class F ✓ RX

is defined as

Pdim(F) = VCdim({X ⇥ R 3 (x, y) ! sgn[f(x)� y] : f 2 F}). (A.69)

Or equivalently, Pdim(F) is the largest D 2 N[{1} such that there exists a set of points {(xi, yi)}Di=1 ✓

X ⇥ R that for all C ✓ [D], there is a function f 2 F satisfying

f(xi) � yi () i 2 C. (A.70)

These points are said to be pseudo-shattered by F .

We will also use the fat-shattering dimension, a scale-sensitive variant of the pseudo-dimension.

Definition 7 (Fat-shattering dimension, [71]). Let ↵ > 0. The ↵-fat-shattering dimension fat(F ,↵) of
a real-valued function class F ✓ RX is defined as the largest D 2 N[ {1} such that there exists a set of
points {(xi, yi)}Di=1 ✓ X ⇥ R that for all C ✓ [D], there is a function f 2 F satisfying

f(xi) � yi + ↵ if i 2 C,

f(xi)  yi � ↵ if i /2 C.
(A.71)

Such a set of points is said to be ↵-fat-shattered by F .
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5. Cryptography

Our computational complexity lower bounds rely on cryptographic primitives such as pseudorandom
functions [138] and pseudorandom quantum states [137, 139]. A family of pseudorandom functions is
a set of functions such that sampling from this family is indistinguishable from a uniformly random
function. We present the formal definition below, following the presentation in [40].

Definition 8 (Pseudorandom functions (PRFs) [138]). Let � denote the security parameter. Let K =
{K�}�2N be an efficiently sampleable key space. Let X = {X�}�2N, {Y�}�2N be collections of finite sets.
Let F = {f�}�2N be a family of efficiently-computable keyed functions f� : K� ⇥ X� ! Y�. F is a
pseudorandom function if for every polynomial-time probabilistic algorithm Adv, there exists a negligible
function negl(·) such that for every security parameter � 2 N

���� Pr
k K�

[Advf(k,·)(·) = 1]� Pr
g2U�

[Advg(·) = 1]

����  negl(�), (A.72)

where the key k is picked uniformly at random from the key space K� and g is picked uniformly at
random from U�, the set of all functions from X� to Y�. Here, negl(�) denotes a negligible function, i.e.,
a function that grows more slowly than any inverse polynomial in �.

Concretely, it is common to take the input and output spaces to be X� = {0, 1}m and Y� = {0, 1}
for some input length m = m(�) that depends on the security parameter �. We consider this setting
throughout the work.

Definition 9 (Quantum secure PRFs [40]). Let � denote the security parameter. A pseudorandom
function is quantum secure against t(�) adversaries if it satisfies Definition 8 where Adv is a t(�)-time
quantum algorithm with quantum query access to fk and g. When t(�) = poly(�), we say that the PRF
is quantum secure.

There are several constructions for implementing PRFs with low-depth circuits [40, 150, 151]. We
will focus on the construction of [40], which relies on the assumption that the Ring Learning with
Errors (RingLWE) problem [38] is hard even for quantum computers. Specifically, we assume that
RingLWE cannot be solved by a quantum computer in sub-exponential time, which is a commonly be-
lieved cryptographic assumption [39–43]. Here, RingLWE is a variant of the more well-known Learning
with Errors problem [39] over polynomial rings. The RingLWE problem is to find a secret ring element
s 2 Rq , Zq[x]/hx� � 1i given pairs (a, a · s + e mod Rq), where � denotes the security parameter, e is
some error, q is a parameter of the problem. We only state this informally here and refer the reader to [38]
for a formal definition and discussion. In [40], assuming that RingLWE cannot be solved by quantum
computers in t(�) time, their construction produces a PRF secure against O(t(�)) quantum adversaries
that is implementable by constant-depth, polynomial-size circuits. We state the precise result below.

Theorem 11 (Lemmas 3.15 and 3.16 in [40]). Let � denote the security parameter. Let the input size be
m = m(�) = !(log �) and set the parameter q = �!(1) to be a power of two such that log(q)  O(poly(�)).
Let K = {K�}�2N, where K� = Rm+1

q . There exists a PRF RF = {f�}�2N, where f� : Rm+1
q ⇥{0, 1}m !

{0, 1}, satisfying the following two properties.

1. Every f�(k, ·) 2 RF with k 2 K� can be computed by a TC0 circuit.

2. Suppose there exists a distinguisher D for RF , i.e., there exists an O(t(�))-time quantum algorithm
D that satisfies

���� Pr
k K�

[D|f�(k,·)i(·) = 1]� Pr
g2U

[D|gi(·) = 1]

���� > negl(�), (A.73)

where the key k is picked uniformly at random from the key space K�, g is picked uniformly at
random from U , the set of all functions from X� to Y�, and D

|f�(k,·)i indicates that D has quantum
oracle access to the function f�(k, ·). Then, there exists a t(�)-time quantum algorithm that solves
RingLWE.

In Property 2, this is equivalent to saying that the PRF is quantum secure against O(t(�)) adversaries,
assuming that RingLWE cannot be solved by a t(�)-time quantum algorithm. Also, note that in Property
1, TC0 circuits refer to constant-depth, polynomial-size circuits with unbounded fan-in AND, OR, NOT,
and MAJORITY gates. We claim that every TC0 circuit has a quantum circuit computing the same
function with poly-logarithmic overhead in depth.
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Proposition 2 (Quantum circuits for TC0). Let C be a TC0 circuit on m inputs computing some Boolean
function f : {0, 1}m ! {0, 1}. Then, there exists a quantum circuit C 0 on n = O(poly(m)) qubits of size
O(npolylog(n)) and depth O(polylog(n)) that implements f .

Here, when we say that C 0 implements the function f , we mean that C 0 |xi |zi = C 0 |xi |z � f(x)i.

Proof. Note that the number of qubits is n = O(poly(m)) because after each gate in the classical circuit C,
we must store the result in an ancilla qubit to maintain unitarity. Recall that TC0 circuits are constant-
depth, polynomial-size circuits with unbounded fan-in AND, OR, NOT, and MAJORITY gates. Thus, it
suffices to find the depth of implementing each of these gates quantumly. The size then follows because
a circuit of depth d on n qubits can have at most nd gates. NOT gates can clearly be implemented in
constant depth since this is just an X gate. An AND gate with m inputs can be completed in logarithmic
depth by computing AND pairwise with CNOT. Similarly, we can compute an OR gate with the same
logarithmic depth. It remains to analyze the depth needed for computing a MAJORITY gate. Recall
that the MAJORITY gate is defined as

MAJ(x1, . . . , xm) =

�
1

2
+

(
Pm

i=1 xi)� 1/2

m

⌫
=

�
1

2
+

Pm
i=1 xi

m
�

1

2m

⌫
. (A.74)

Here, addition is done over the integers and xi 2 {0, 1}. We first analyze the depth/size required for
the addition

Pm
i=1 xi. Note that the maximum value of this sum is m, which can be stored in O(logm)

bits. Thus, we can write each of the xi in binary using logm bits by padding with zeros and perform
addition in this way. We can perform the addition of the m inputs pairwise, parallelized to O(logm)
depth and requiring O(m) addition operations. Moreover, one can perform these addition operations
using quantum circuits of size and depth O(logm) [152]. The construction in [152] uses Toffoli gates,
but these can be decomposed into two-qubit gates with constant overhead [153]. In total, we have thatPm

i=1 xi can be implemented by a quantum circuit of depth O(log2 m).
To divide this sum by m, note that there exist classical Boolean circuits for integer division of depth

O(log logm) since our inputs can be represented in binary using logm bits [154]. These Boolean circuits
use only standard AND, OR, and NOT gates. As explained previously, these can be implemented quan-
tumly, and for fan-in-2 AND and OR gates, this can be done with constant overhead. Thus, this division
step requires depth O(log logm) in total.

Finally, we need to compute the remaining addition/subtraction and floor operations. The addition/-
subtraction can be ignored since they only occur once so that the depth is dominated by the other
additions. For the floor, because the quantity inside can only be less than or equal to 1, then this is
the same as deciding whether the quantity inside is less than 1 or not. This can be done in a constant
number of operations.

Putting everything together, we see that the circuit depth for implementing a MAJORITY gate is
dominated by O(log2 m).

Recall again that TC0 describes constant-depth, polynomial-size circuits with unbounded fan-in AND,
OR, NOT, and MAJORITY gates. We just analyzed the depth for each of these gates individually. In
summary, we computed that O(logm) quantum depth is sufficient for AND and OR. Constant O(1) depth
is sufficient for NOT. Finally, O(log2 m) depth is sufficient for MAJORITY. In the overall circuit, this
totals to O(polylog(m)) depth. Because a circuit of depth d on n qubits can have at most nd gates, then
the size of this circuit is O(npolylog(m)) gates. Then, because n = O(poly(m)), we obtain the claim.

Alternatively, we note that one can obtain a similar result using [155]. As a simple corollary of this
along with Theorem 11, we can bound the depth/size of a quantum circuit for computing a PRF.

Corollary 3. Let � = n denote the security parameter. Assuming that RingLWE cannot be solved in t(n)
time by a quantum computer, there exists a PRF F = {f�}�2N that is secure against O(t(n)) quantum
adversaries such that for keys k 2 K� (for the same key space as in Theorem 11), f�(k, ·) : {0, 1}m !

{0, 1} is computable by an n-qubit quantum circuit of size O(npolylog(n)) and depth O(polylog(n)).

Note here that by the above analysis, we have m = !(log(�)). Since O(poly(m)) qubits suffice to
implement these PRFs, we can take n = �, similar to [139].

Our proofs also require the notion of pseudorandom quantum states. Informally, pseudorandom quan-
tum states are ensembles of quantum states that are indistinguishable from Haar-random states to any
efficient (quantum) algorithm. Moreover, it is known how to construct these states using efficient quan-
tum circuits. Recently, pseudorandom quantum states have been of great interest in quantum cryptog-
raphy [156–158] and complexity theory [159]. We define them formally below, following the presentation
in [137, 139].
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Definition 10 (Pseudorandom quantum states (PRS) [137]). Let � = n denote the security parameter.
Let K = {K�}�2N be the key space. A keyed family of pure quantum states {|�ki}k2K�

is pseudorandom
against t(n) adversaries if the following two conditions hold:

1. (Efficient generation). There is a polynomial-time quantum algorithm Gen that generates state |�ki
on input k. That is, for all � 2 N and for all k 2 K�,Gen(1�, k) = |�ki.

2. (Pseudorandomness). Any polynomially many copies of |�ki with the same random k 2 K� are
computationally indistinguishable from the same number of copies of a Haar-random state. More
precisely, for any t(n)-time quantum algorithm D and any N = poly(�), there exists a negligible
function negl(·) such that for all � 2 N,

���� Pr
k K�

h
D

⇣
|�ki

⌦N
⌘
= 1
i
� Pr

| i µ

⇥
D
�
| i⌦N

�
= 1
⇤����  negl(�), (A.75)

where µ is the Haar measure over pure states on n qubits.

When t(n) = poly(n), we simply say that the states are pseudorandom.

There exist efficient procedures to generate pseudorandom quantum states under standard crypto-
graphic assumptions. In particular, we consider the construction by [139], which assumes the existence
of quantum-secure pseudorandom functions.

Proposition 3 (Corollary of Claims 3 and 4 in [139]). Let � = n denote the security parameter and
t(n) � poly(n). Assuming that RingLWE cannot be solved by a quantum computer in t(n) time, pseudo-
random quantum states secure against O(t(n)) adversaries with key space K (for the same key space
as in Theorem 11) can be prepared using n-qubit quantum circuits of depth O(polylog(n)) and size
O(npolylog(n)).

Proof. Note that using the PRF from [40] and tracing through the proof of Claim 3 in [139], one can
clearly see that security holds for O(t(n)) adversaries rather than only efficient adversaries. We need to
prove that the size and depth are as stated for the construction of pseudorandom quantum states in [139]
using the PRF from [40]. To obtain the depth and size bounds, we analyze the construction in [139]. In
Claim 3 of [139], they show that their constructed states can be prepared by applying a single layer of
Hadamard gates followed by applying a quantum-secure PRF. First, the layer of Hadamards has depth
1 and size n. Using the construction from Corollary 3, applying the PRF can then be implemented in
O(polylog(n)) depth and O(npolylog(n)) size. Thus, overall, the depth and size are dominated by the
cost of evaluating the PRF. Moreover, in Claim 4 of [139], they prove that this is indeed constructs a
pseudorandom quantum state.

Note again that the number of qubits n in the quantum circuit depends on the security parameter �.
In fact, due to the construction used, the n depends on � in the same way as for the PRF construction.
Also note that the above constructions of PRF/PRS can be implemented using a number of Clifford and
T gates of the same order. This is because the TC0 circuits in the PRF constructions are classical circuits
which can be implemented exactly by Toffoli gates, and Toffoli gates can be constructed using a constant
number of Clifford and T gates. Also in the PRS construction, the remaining gates are Hadamard gates
which are Clifford gates. Therefore, the computational hardness results in Appendices B 3 and C5 also
apply to Clifford+T circuits of the same gate complexity.

Appendix B: Learning quantum states

Recall that, given copies of a pure state of bounded circuit complexity, we wish to find a classical
description for a quantum circuit that approximately implements this state. It is natural to require the
learner to output a circuit description since this ensures that the output of the learner can indeed be
used to prepare (approximate) copies of the unknown state. This model is similar-in-spirit to learning
an (approximate) generator for an unknown classical probability distribution [160]. Nevertheless, our
sample complexity results hold for learning classical descriptions beyond circuit descriptions, and our
computational complexity results immediately extend to learners that output classical descriptions from
which a circuit description can be derived efficiently (e.g., matrix product states/operators with constant
bond dimension [34, 35], stabilizer descriptions, etc.).

Specifically, let | i = U |0i⌦n, where U is a unitary consisting of G two-qubit gates. Throughout this
section, we denote ⇢ , | ih |. Suppose we are given N identically prepared copies of ⇢. The goal is
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to learn a classical circuit description of a quantum state ⇢̂ that is ✏-close to ⇢ in trace distance, i.e.,
dtr(⇢̂, ⇢) = k⇢̂� ⇢k1/2  ✏.

In this appendix, we provide a proof of Theorem 1, which characterizes the sample complexity for this
task. We restate the theorem below.

Theorem 12 (State learning, detailed restatement of Theorem 1). Let ✏, � > 0. Suppose we are given
N copies of a pure n-qubit state density matrix ⇢ = | ih |, where | i = U |0i⌦n is generated by a unitary
U consisting of G two-qubit gates. Then, any algorithm that can output ⇢̂ such that dtr(⇢̂, ⇢)  ✏ with
probability at least 1� � requires at least

N = ⌦

✓
min

✓
2n

✏2
,

G(1� �)

✏2 log(G/✏)

◆
+

log(1/�)

✏2

◆
. (B.1)

Meanwhile, there exists such an algorithm using

N = O

✓
min

✓
2n log(1/�)

✏2
,
G log(G/✏) + log(1/�)

✏2

◆◆
. (B.2)

Here, the minimum with 2n/✏2 corresponds to the sample-optimal approaches for full quantum state
tomography [19, 20]. The theorem in the main text corresponds to � = O(1) so that the upper and lower
bounds are equal up to logarithmic factors.

In Appendix B 1 we prove the sample complexity upper bound, and in Appendix B 2, we show the
sample complexity lower bound. Moreover, in Appendix B 3, we prove Theorem 2, which gives a lower
bound on the computational complexity required for this task.

1. Sample complexity upper bound

In this section, we prove the sample complexity upper bound for Theorem 12. We provide an algorithm
for learning the unknown quantum state within trace distance ✏ by constructing a covering net over the
space of all unitaries consisting of G two-qubit gates. We can then obtain a covering net over all pure
quantum states generated by G two-qubit gates by applying each element of the unitary covering net to
the zero state. With this covering net, we can use quantum hypothesis selection [148] based on classical
shadows [100] (discussed in Appendix A 3) to identify a state in the covering net that is close to the
unknown target state. We note that this strategy may be adapted to other restricted state/unitary
classes as long as we can construct a covering net with bounded cardinality.

Proposition 4 (State learning upper bound). Let ✏, � > 0. Suppose we are given N copies of a pure
n-qubit state density matrix ⇢ = | ih |, where | i = U |0i⌦n is generated by a unitary U consisting of G
two-qubit gates. Then, there exists an algorithm that can output ⇢̂ such that dtr(⇢̂, ⇢)  ✏ with probability
at least 1� � using

N = O

✓
min

✓
2n log(1/�)

✏2
,
G log(G/✏) + log(1/�)

✏2

◆◆
(B.3)

samples of | i.

Here, we take the minimum with 2n/✏2, as this is the upper bound achieved for full quantum state
tomography on an arbitrary n-qubit pure state [19, 20]. Thus, we focus on proving the second term in
the minimum. We prove this upper bound by considering two cases: (1) G � n/2 and (2) G < n/2. The
upper bounds for each case agree and are given by Equation (B.3). We first prove the proposition for
Case (1) and indicate what changes for Case (2).

Proof of Case (1). As previously described, this follows by first creating a covering net over all unitaries
consisting of G two-qubit gates and then using quantum hypothesis selection [148].

By Theorem 8, we know that there exists an (✏/6)-covering net N✏/6 of the space of unitaries im-
plemeted by G two-qubits gates with respect to the diamond distance d⌃ with metric entropy bounded
by

log
�
|N✏/6|

�
 32G log

✓
72G

✏

◆
+ 2G log(n). (B.4)
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Applying each unitary V 0 2 N✏/6 to the zero state, we obtain a new covering net

N
0

✏/6 = {V 0 |0ih0|⌦n V 0† : V 0 2 N✏/6} (B.5)

for the set of pure quantum states generated by G two-qubit gates with respect to trace distance. We
argue that this is true as follows. Any pure quantum state generated by G two-qubit gates can be written
as |�i = V |0i⌦n for some unitary V implemented by G two-qubit gates and let � = |�ih�|. Using the
definition of the covering net N✏/6, there exists a unitary V 0 2 N✏/6 such that d⌃(V, V 0) < ✏/6. Consider
|�0i = V 0 |0i⌦n and let �0 = |�0ih�0| 2 N

0

✏/6. By the definition of the diamond distance in terms of a
worst case over input states, we also have dtr(�,�0)  d⌃(V, V 0)  ✏/12 < ✏/6. Thus, N 0✏/6 satisfies the
definition of a covering net over the pure quantum states generated by G two-qubit gates with respect
to trace distance dtr. Moreover, we clearly see that |N

0

✏/6|  |N✏/6|.
We can consider this covering net N 0✏/6 as the set of hypothesis states in Proposition 1. Let ⇢ = | ih |

be the unknown quantum state that we have copies of. By Proposition 1, there exists an algorithm to
learn ⇢̃ such that

dtr(⇢, ⇢̃)  3 ·
✏

6
+
✏

2
= ✏ (B.6)

with probability at least 1 � �. Here, note that we used ⌘ = ✏/6 in Proposition 1 by definition of an
(✏/6)-covering net. Furthermore, we may choose ✏2 = ✏/2 and �1 = �/2. In this way, we obtain ⇢̃ such
that dtr(⇢, ⇢̃)  ✏ with probability at least 1 � �. Moreover, by Proposition 1, this algorithm to find ⇢̃
requires at most

N = O

0

@
log
⇣
|N
0

✏/6|/�
⌘

✏2

1

A = O

✓
G log(G/✏) +G log(n) + log(1/�)

✏2

◆
(B.7)

copies of ⇢, where the second equality follows from Eq. (B.4). Because we are considering G � n/2 in
this case, then we have

N = O

✓
G log(G/✏) + log(1/�)

✏2

◆
, (B.8)

as claimed.

Notice in the above proof that we used G � n/2 in the last step to remove the extra log(n) factor.
However, in Case (2), we can no longer execute this step and must consider a more careful strategy to
remove the dependence on system size n. The key observation is that if G < n/2, some qubits in the
system will be left in the zero state because no gate has acted upon them (for G two-qubit gates, at most
2G < n qubits are acted upon nontrivially). Notice that we only need to learn the quantum state on
these 2G qubits rather than the whole system, since we can simply tensor product with the zero state
for the remaining qubits. Thus, we require the ability to discern which qubits have been acted upon by
the G two-qubit gates. Once we find this set of qubits, the idea is to consider a covering net for the set
of pure quantum states generated by G two-qubit gates on this restricted system. Then, we can follow a
similar argument to the above proof of Case (1).

We prove Case (2) of Proposition 4 in the following sections. For the rest of this section, let ⇢ = | ih |.
In Appendix B 1 a, we discuss an algorithm that identifies the qubits acted on nontrivially by the G two-
qubit gates with high probability and show that restricting to these identified qubits does not cause
much error. In Appendix B 1 b, we resolve a technical issue for defining the covering net on the restricted
system, which stems from the algorithm possibly not identifying all qubits. Finally, in Appendix B 1 c,
we combine these pieces to provide the full proof of Case (2).

a. Postselection

First, we present an algorithm to determine which qubits of the unknown quantum state ⇢ = | ih |
have been acted upon nontrivially by the G two-qubit gates. We then prove a guarantee about the
number of samples of ⇢ needed to determine these qubits with high probability. We also show that
considering ⇢ to be the zero state on the rest of the qubits does not incur much error.

Suppose that the true set of qubits acted upon by the G two-qubit gates is denoted as A. To determine
which qubits are in the set A, consider the procedure given in Algorithm 1. The idea behind this algorithm
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Algorithm 1: Identify qubits acted upon nontrivially (state version)
Input: Copies of unknown n-qubit quantum state ⇢.
Output: List Â ✓ [n] of qubits.

1 Initialize Â = ;.
2 Repeat the following N = O

⇣
G+log(1/�1)

✏1

⌘
times:

(a) Measure all qubits of the unknown state ⇢ in the computational basis.
(b) Given the measurement outcome |xi, set Â Â [ supp(x), where supp(x) = {i 2 [n] : xi 6= 0}.

is simple. If we measure a qubit in the computational basis and receive a nonzero measurement outcome,
then it must have been acted upon by one of the G two-qubit gates because the quantum state is assumed
to have been initialized in the zero state. We prove that O

⇣
G+log(1/�1)

✏1

⌘
copies of ⇢ suffice to obtain,

with high probability 1 � �1, the desired property that measuring the qubits in B̂ , [n] \ Â of ⇢ yields
the all zero bit string with high probability 1� ✏1.

Lemma 11. Let ✏1, �1 > 0. Suppose we are given copies of a pure n-qubit quantum state ⇢ = | ih |
generated by G two-qubit gates acting on a subset of the qubits A ✓ [n]. Then, Algorithm 1 uses
N = O

⇣
G+log(1/�1)

✏1

⌘
copies of ⇢ and outputs with probability at least 1� �1 a list Â ⇢ [n] such that

⌦
0B̂
��⇢B̂
��0B̂
↵
� 1� ✏1, (B.9)

where ⇢B̂ denotes the reduced density matrix of ⇢ when tracing out all qubits other than those in the set
B̂ = [n] \ Â and

��0B̂
↵

denotes the zero state on all qubits in B̂.

Proof. Let A0 be any possible set that could be output by Algorithm 1. Let B0 , [n] \ A0. We first
define some random variables to state our claim more precisely. Let Ei,A0 be the event that round i of
measurement of the qubits in B0 = [n] \A0 in Algorithm 1 yields the all zero bitstring. Let Xi,A0 be the
indicator random variable corresponding to the event Ei,A0 . Then, we have that X̄A0 , 1

N

PN
i=1 Xi,A0

is the number of times the qubits in B0 are all measured to be zero divided by the total number of
measurements. In other words, X̄A0 is an empirical estimate for the overlap that the state ⇢B0 on qubits
in B0 has with the all zero state. Moreover, we have

E[XA0 ] , E[Xi,A0 ] = h0B0 |⇢B0 |0B0i (B.10)

for all A0. Note that the first definition makes sense because for any i, the Xi,A0 are identically distributed.
This says that the true expectation of our random variables is the true overlap of the state ⇢B0 with the
all zero state.

We claim that for any A0, if the true overlap is less than 1 � ✏1, then the estimated overlap is less
than 1 � ✏1/2 with high probability. Formally, in terms of our random variables, this is the following
statement:

Claim 1. For any set A0 that could be output by Algorithm 1, if E[XA0 ] < 1� ✏1, then X̄A0 < 1� ✏1/2
with probability at least 1� �1.

Thus, we have reduced our task to a concentration problem. Note that it suffices to prove this because
the set Â actually identified by Algorithm 1 has X̄Â = 1. This is true because a qubit is only added to
the set Â in the algorithm if it measured and observed a nonzero outcome. Thus, all qubits in B̂ = [n]\Â
must have given zero when measured throughout all rounds of measurement. By definition, this gives us
that X̄Â = 1. Then, by the contrapositive of Claim 1, we see that E[XÂ] =

⌦
0B̂
��⇢B̂
��0B̂
↵
� 1� ✏1, with

probability at least 1� �1. We now prove this claim using classical concentration inequalities.

Proof of Claim 1. First, fix some set A0 that could be output by Algorithm 1. Suppose

E[XA0 ] , 1� a < 1� ✏1, (B.11)

where a > ✏1. Recall the Bhatia-Davis Inequality, which states that for X 2 [b, d] that

Var(X)  (d� E[X])(E[X]� b). (B.12)

In our case, we have XA0 2 [0, 1] since they are indicator random variables so that the inequality gives
us

Var(XA0)  (1� E[X])E[X]  1� E[X] = a. (B.13)
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Now, recall Bernstein’s Inequality, which states that for independent random variables Xi with |Xi|  c

and �2 = 1
N

PN
i=1 Var(Xi), we have for any t > 0,

Pr

 
1

N

NX

i=1

Xi � E[X] > t

!
 exp

✓
�

Nt2

2�2 + 2ct/3

◆
. (B.14)

In our case, c = 1,�2
 a, and t = a/2. Then, Bernstein’s Inequality results in

Pr
⇣
X̄A0 � E[X] >

a

2

⌘
 exp

✓
�

Na2/4

2a+ a/3

◆
. (B.15)

Plugging in E[X] = 1� a and simplifying, we have

Pr
⇣
X̄A0 > 1�

a

2

⌘
 exp

✓
�
3Na

28

◆
 exp

✓
�
3N✏1
28

◆
. (B.16)

Since a > ✏1, then 1� a/2 < 1� ✏1/2 so that we have

Pr
⇣
X̄A0 > 1�

✏1
2

⌘
 exp

✓
�
3N✏1
28

◆
. (B.17)

Plugging in N =
28 log(22G/�1)

3✏1
, we have

Pr
⇣
X̄A0 > 1�

✏1
2

⌘


�1
22G

. (B.18)

Recall that this inequality was for a single fixed set A0, but we want our claim to hold for any set A0.
Thus, we need to union bound overall possible sets A0 output by Algorithm 1.

We claim that the number of such sets is at most 22G. This is clear because if A0 is output by the
algorithm, then A0 ✓ A, where A is the true set of qubits that the G gates act nontrivially on. This
is true by construction because in order for a qubit to be added to the set output by Algorithm 1, its
result upon measurement must have yielded a nonzero outcome so that a gate must have acted upon
this qubit. Hence A0 ✓ A, and because |A|  2G, the number of possible subsets A0 of A is at most 22G.

Thus, applying a union bound to Eq. (B.18), we see that the probability that, for any A0, X̄A0 is
greater than 1 � ✏1/2 is at most �1. In other words, X̄A0 is less than 1 � ✏1/2 with probability at least
1� �1. Moreover, here we used

N =
28 log

�
22G/�1

�

3✏1
= O

✓
G+ log(1/�1)

✏1

◆
. (B.19)

This concludes the proof of the claim, which gives the result in Lemma 11 as explained previously.

With this, we know that measuring qubits in B̂ = [n] \ Â of ⇢ yields the all zero bistring with high
probability. We want to show that, in fact, we can consider ⇢B̂ as being the zero state without incurring
much error. In particular, we want to show the following lemma.

Lemma 12. Let ✏, �1 > 0. Suppose we are given N = O

⇣
G+log(1/�1)

✏2

⌘
copies of an n-qubit quantum state

⇢ generated by G gates. Let Â ⇢ [n] be as in Algorithm 1 and B̂ = [n] \ Â. Then, for ⇤ =
��0B̂
↵⌦
0B̂
��⌦ IÂ

(where
��0B̂
↵

denotes the zero state on all qubits in B̂) and for the post-measurement state

⇢0 ,
p
⇤⇢

p
⇤

Tr(⇤⇢)
, (B.20)

we have

dtr(⇢, ⇢
0) 

✏

24
(B.21)

with probability at least 1� �1.
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In other words, we want to show that our original state ⇢ is not far in trace distance from the new
state ⇢0, where ⇢0 is the state ⇢ with the qubits in B̂ projected to the zero state. In this way, we can
effectively only consider the system on qubits in Â when defining the covering net and using hypothesis
selection. This turns out to be a bit more nuanced, but this is the general idea. To show this, we will
use the Gentle Measurement Lemma, following the presentation in [143].

Lemma 13 (Lemma 9.4.1 in [143]). Consider a density operator ⇢ and a measurement operator ⇤, where
0  ⇤  I. The measurement operator could be an element of a POVM. Suppose that the measurement
operator ⇤ has a high probability of detecting the state ⇢:

Tr(⇤⇢) � 1� ✏, (B.22)

where ✏ 2 [0, 1] (the probability of detection is high if ✏ is close to zero). Then the post-measurement
state

⇢0 ,
p
⇤⇢

p
⇤

Tr(⇤⇢)
(B.23)

is
p
✏-close to the original state ⇢ in trace distance:

dtr(⇢, ⇢
0) 

p
✏. (B.24)

Thus, the measurement does not disturb the state ⇢ by much if ✏ is small.

With this, we can now prove Lemma 12.

Proof of Lemma 12. As stated above, let Â ⇢ [n] be as in Algorithm 1, and let A ⇢ [n] be true the set
of qubits acted non-trivially on by the G gates. Let B̂ , [n] \ Â and let B , [n] \A.

In order to apply the Gentle Measurement Lemma, we need to show that

Tr(⇤⇢) � 1�
⇣ ✏

24

⌘2
. (B.25)

Since ⇤ =
��0B̂
↵⌦
0B̂
��⌦ IÂ, where

��0B̂
↵

denotes the zero state on all qubits in B̂, we have

Tr(⇤⇢) = Tr
�
(
��0B̂
↵⌦
0B̂
��⌦ IÂ)⇢

�
= Tr

���0B̂
↵⌦
0B̂
�� ⇢B̂

�
=
⌦
0B̂
��⇢B̂
��0B̂
↵
, (B.26)

where ⇢B̂ denotes the reduced density matrix obtained by tracing out all qubits in [n] \ B̂. Thus, it
suffices to show that

⌦
0B̂
��⇢B̂
��0B̂
↵
� 1�

⇣ ✏

24

⌘2
. (B.27)

Intuitively, this makes sense because in Algorithm 1, we identified the qubits in B̂ as those being close to
the zero state. Indeed, this holds by Lemma 11 when choosing ✏1 = (✏/24)2. Thus, the result follows.

b. Permutation

Before we can prove Proposition 4, we must resolve a technical issue. Namely, ideally, we would like to
consider a covering net on the subsystem of qubits in the set A (the true set of qubits that the G gates
generating the unknown state ⇢ act nontrivially on). In this way, because Â ✓ A, where Â is the set of
qubits identified by Algorithm 1, then our postselected state ⇢0 from Lemma 12 should be close to some
state in this covering net on the subsystem. This nearby state in the covering net can then be identified
via quantum hypothesis selection [49]. By Lemma 12, this state from hypothesis selection is also close
to the original unknown state ⇢.

However, the problem with the above is that we do not know the true set of qubits A; we only know the
identified set of qubits Â. Moreover, it is possible that Â ( A, i.e., Algorithm 1 may not have been able
to detect certain qubits as having been acted upon nontrivially by the G gates. For example, suppose
that when preparing the unknown state ⇢, certain qubits are used as workspace ancillas and are reset to
the zero state at the end of the computation.

In order to define a covering net on a system on which the G gates act (the setting of Lemma 9), we
need to somehow identify the qubits in A \ Â that are undetected by the algorithm. To do so, we argue

628



35

that we can permute the qubits outside of the set Â and not deviate much from the original state ⇢. In
this way, without loss of generality, we can permute the qubits such that those in A \ Â are grouped
together in some fixed set of qubits. Then, we can define a covering net on the system of qubits defined
by this fixed set containing the qubits in A \ Â and our identified set Â. By construction, we know that
the G gates act on this subset of qubits, so this is the correct setting of Lemma 9. We note that the
permutations used in the proof are a mathematical tool for the analysis, but the learner has to neither
know nor perform these permutations.

To formalize this, we first define a permutation and claim that permuting the qubits outside of the set
Â does not change the post selected state ⇢0.

Definition 11 (Permutation). A unitary W 2 U(2n) is a permutation unitary if it satisfies the following
property: W corresponds to a permutation �W 2 Sn of order 2, where Sn is the symmetric group of size
n, and W acts as

W |x1 . . . xni =
��x�W (1) · · ·x�W (n)

↵
, (B.28)

where x = x1 · · ·xn 2 {0, 1}n. Moreover, we use WS for a set S ✓ {1, . . . , n} to denote a permutation
unitary where the corresponding permutation �WS is such that �WS |S = id, where S = [n] \ S. In other
words, �WS only permutes the elements in S.

It is easy to see here that because the corresponding permutation is of order 2, W is Hermitian. Our
next lemma shows that such permutations when acting only on B̂ do not change our post selected state.

Lemma 14. Let ⇢0 be as in Lemma 12. Explicitly, let Â ⇢ [n] be as in Algorithm 1 and B̂ = [n] \ Â.
Then, for ⇤ =

��0B̂
↵⌦
0B̂
��⌦ IÂ (where

��0B̂
↵

denotes the zero state on all qubits in B̂), define

⇢0 =

p
⇤⇢

p
⇤

Tr(⇤⇢)
. (B.29)

Then, we have

⇢00 , WB̂⇢
0WB̂ = ⇢0, (B.30)

where WB̂ is any permutation unitary which only permutes qubits in B̂.

Proof. To see the claim, we can simply expand the expression for ⇢00:

⇢00 = WB̂⇢
0WB̂ (B.31)

= WB̂

p
⇤⇢

p
⇤

Tr(⇤⇢)
WB̂ (B.32)

= WB̂

⇤⇢⇤

Tr(⇤⇢)
WB̂ (B.33)

=
WB̂(

��0B̂
↵⌦
0B̂
��⌦ I)⇢(

��0B̂
↵⌦
0B̂
��⌦ I)WB̂

Tr(⇤⇢)
(B.34)

=
(
��0B̂
↵⌦
0B̂
��⌦ I)⇢(

��0B̂
↵⌦
0B̂
��⌦ I)

Tr(⇤⇢)
(B.35)

= ⇢0, (B.36)

where in the third line we used that ⇤ is a projector so that
p
⇤ = ⇤, and in the fifth line, we used the

WB̂ only permutes the qubits in B̂, which does not have any effect because here all qubits in B̂ are in
the zero state.

Lemma 15. Let ✏, �2 > 0. The trace distance between ⇢ and the permuted state ⇢̃ = WB̂⇢WB̂, where
WB̂ is any permutation unitary which only permutes qubits in B̂, is less than ✏/24:

dtr(⇢, ⇢̃) 
✏

12
(B.37)

with probability at least 1� �2.
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Proof. This proof combines Lemmas 12 and 14. The idea is the following. We know from Lemma 12
that ⇢ and the post selected state ⇢0 are close in trace distance. Moreover, by Lemma 14, we know that
the post selected state ⇢0 and the permuted post selected state ⇢00 are the equal (without error). We can
also show similarly to Lemma 12 that the permuted state ⇢̃ is close to the post selected state ⇢̃0, where
this postselection is done in the same way as Lemma 12 by replacing ⇢ with ⇢̃. Moreover, we can see
that ⇢00 = ⇢̃0, so the claim then follows by triangle inequality.

Now, let us formalize this. By Lemma 12, we have

dtr(⇢, ⇢
0) 

✏

24
, (B.38)

with probability at least 1� �2/2 (choosing �1 = �2/2) where

⇢0 =

p
⇤⇢

p
⇤

Tr(⇤⇢)
(B.39)

for ⇤ =
��0B̂
↵⌦
0B̂
��⌦ IÂ. By Lemma 14, we know that

⇢00 , WB̂⇢
0WB̂ = ⇢0, (B.40)

where WB̂ is a permutation that only affects qubits in B̂. Now, consider the permuted state ⇢̃ = WB̂⇢WB̂ .
Recall that in the proof of Lemma 12, to obtain Eq. (B.38), it sufficed to show that Tr(⇤⇢) � 1�(✏/24)2,
and the result followed by the Gentle Measurement Lemma (Lemma 13). Thus, by the same proof, as
long as Tr(⇤⇢̃) � 1� (✏/24)2, then we also have

dtr(⇢̃, ⇢̃
0) 

✏

24
, (B.41)

with probability at least 1� �2/2, where

⇢̃0 ,
p
⇤⇢̃

p
⇤

Tr(⇤⇢̃)
. (B.42)

We can clearly see that this condition holds:

Tr(⇤⇢̃) = Tr
�
(
��0B̂
↵⌦
0B̂
��⌦ IÂ)WB̂⇢WB̂

�
= Tr

�
(
��0B̂
↵⌦
0B̂
��⌦ IÂ)⇢

�
= Tr(⇤⇢) � 1� (✏/24)2, (B.43)

where the second equality follows because WB̂ only permutes qubits in B̂, which (rearranging with the
trace) does not have any effect on

��0B̂
↵⌦
0B̂
�� because all qubits in B̂ are in the zero state. Thus, Eq. (B.41)

holds.
We also claim that ⇢00 = ⇢̃0. This follows by effectively the same proof as Lemma 14.
Putting everything together, we have that ⇢0 = ⇢00 = ⇢̃0. Thus, by Eq. (B.38),

dtr(⇢, ⇢̃
0) 

✏

24
(B.44)

with probability at least 1� �2/2. By triangle equality with Eq. (B.41), we then obtain the claim:

dtr(⇢, ⇢̃) 
✏

12
(B.45)

with probability at least 1� �2.

c. Proof of Case (2) of Proposition 4

With this, we can prove Case (2) of Proposition 4. Recall that in Case (2), we require that G < n/2.
We provided a sketch of the argument throughout the previous sections, so we put everything together
here.

Proof of Case (2) of Proposition 4. Let ✏, � > 0. Consider G < n/2. Because G is small compared to
n, there exist some qubits that have not been acted upon by the G gates used to generate the state
⇢ = | ih |. Thus, since we assume that the unknown quantum state ⇢ is constructed by applying a
unitary to the all zero state, then these qubits not acted upon by the G gates remain in the zero state.
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Using the techniques in Appendix B 1 a, we can find the qubits that are acted on nontrivially by the
G gates. Then, we want to consider the covering net on only this set of qubits. However, because
our algorithm does not necessarily find all qubits acted on nontrivially by the G gates, we argue in
Appendix B 1 b that we can permute the qubits in the system without significantly affecting the original
state ⇢. In this way, we can consider a permutation which gathers those qubits acted upon nontrivially
that our algorithm did not find into some fixed set. We can then define the covering net on the subsystem
consisting of this fixed set along with the identified set of qubits.

Let us now formalize these ideas. Let Â be the set of qubits identified by Algorithm 1, and let A be
the true set of qubits acted on nontrivially by the G gates. Let WB̂ be a permutation only affecting the
qubits in B̂ , [n] \ A (Definition 11) which gathers the qubits in A \ Â into some fixed set of qubits C.
Since |C|+ |Â| = |A \ Â|+ |Â| = |A|  2G, then C [ Â has at most 2G qubits and these qubits are acted
upon by G gates.

By Theorem 8 we know that there exists an (✏/12)-covering net N✏/12 of the space of unitaries imple-
mented by G two-qubit gates on the permuted system consisting of only qubits in C [ Â with respect to
the diamond distance d⌃ = max⇢

��(U ⌦ I)⇢(U ⌦ I)† � (V ⌦ I)⇢(V ⌦ I)†
��
1
. Moreover, this covering net

has metric entropy bounded by

log
�
|N✏/12|

�
 32G log

✓
144G

✏

◆
+ 2G log(2G) = O (G log(G/✏)) . (B.46)

We can instead consider

N
0

✏/12 = {V 0
��0C[Â

↵⌦
0C[Â

��V 0† : V 0 2 N✏/12}, (B.47)

where
��0C[Â

↵
denotes the zero state on all qubits in our subsystem C [ Â. By the same argument as

in Case (1), N 0✏/12 defines a covering net over the set of pure quantum states on the subsystem C [ Â

generated by G two-qubit gates with respect to trace distance. Moreover, |N 0✏/12|  |N✏/12|.
Since this covering net N

0

✏/12 is only for states on at most 2G qubits, let N
00

✏/12 be the set of states
where each state in N

0

✏/12 is tensored with the zero state for qubits in [n] \ (C [ Â). Let ⇢̃ = WB̂⇢WB̂ be
the original state on this permuted system. By definition of a covering net, we know that there exists
some �i 2 N

00

✏/12 such that

dtr(⇢̃,�i) 
✏

12
. (B.48)

We justify this further in the following. By definition, the only qubits in the state ⇢̃ that are acted on
nontrivially by the G gates are those in C [ Â. Since no gates act on qubits outside of C [ Â, then the
other qubits in ⇢̃ must be in the zero state. Hence, we can write ⇢̃ = ⇢̃C[Â⌦ |0ih0|⌦(n�|C[Â|), where ⇢̃C[Â
denotes the state of the qubits in C [ Â which are acted upon by the G gates. Moreover, by definition
of a covering net, then there exists some �i,C[Â 2 N

0

✏/12 such that

dtr(⇢̃C[Â,�i,C[Â) 
✏

12
, (B.49)

where similarly �i,C[Â is a state on the qubits in C [ Â which are acted upon by G gates. Taking the
tensor product with the zero state on the remaining qubits does not affect the trace distance. Thus, we
can write �i = �i,C[Â ⌦ |0ih0|⌦(n�|C[Â|)

2 N
00

✏/12, where this satisfies

dtr(⇢̃,�i) = dtr(⇢̃C[Â,�i,C[Â) 
✏

12
, (B.50)

as claimed. Moreover, by Lemma 15, choosing �2 = �/2, we know that

dtr(⇢, ⇢̃) 
✏

12
(B.51)

with probability at least 1� �/2. Recall that this approximation requires only

N1 = O

✓
G+ log(1/�)

✏2

◆
(B.52)
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copies of ⇢ (from Lemma 12) for identifying the set Â. By triangle inequality, we have that there exists
some �i 2 N

00

✏/12 such that

dtr(⇢,�i) 
✏

6
(B.53)

with probability at least 1� �/2.
Using hypothesis selection on the covering net N 00✏/12 and the unknown state ⇢, by Proposition 1, there

exists an algorithm to learn � such that

dtr(⇢,�)  ✏ (B.54)

with probability at least 1� �, where we chose ⌘ = ✏/6 and ✏/2, �/2 for the parameters in Proposition 1.
Moreover, by Proposition 1 and Equation (B.46), this algorithm requires only

N2 = O

✓
G log(G/✏) + log(1/�)

✏2

◆
(B.55)

copies of ⇢. Putting everything together, we have that

dtr(⇢,�)  ✏ (B.56)

with probability at least 1� �, where our algorithm to find � requires only

N = N1 +N2 = O

✓
G log(G/✏) + log(1/�)

✏2

◆
. (B.57)

This matches our upper bound for Case (1) and thus concludes the proof of Proposition 4.

2. Sample complexity lower bound

In this section, we prove the sample complexity lower bound for Theorem 12.

Proposition 5 (State learning lower bound). Let ✏, � > 0. Suppose we are given N copies of an n-qubit
pure state density matrix ⇢ = | ih |, where | i = U |0i⌦n is generated by a unitary U consisting of G
two-qubit gates. Then, any algorithm that can output ⇢̂ such that dtr(⇢̂, ⇢)  ✏ with probability at least
1� � requires at least

N = ⌦

✓
min

✓
2n

✏2
,

G(1� �)

✏2 log(G/✏)

◆
+

log(1/�)

✏2

◆
(B.58)

samples of | i.

Here, similarly to the upper bound, we take the minimum with ⌦(2n/✏2), as this is the lower bound
achieved for full quantum state tomography [19, 20]. We thus focus on the second term in the minimum.
We first consider the number of samples required to learn n-qubit pure quantum states generated by
G gates applied only to the first blog2(G/C)c qubits (for some constant C specified later) of the n �

blog2(G/C)c qubits in total. Denote this set of states as S1. Note that if n  blog2(G/C)c, then we can
simply import the lower bound for full quantum state tomography [19, 20]. We later reduce the general
case, where the G gates can be applied on any of the qubits, to this case. Namely, we prove the following
proposition.

Proposition 6. Let ✏, � > 0. Suppose we are given N copies of an n-qubit pure state density matrix
⇢ = | ih |, where | i = (U ⌦ I) |0i⌦n 2 S1 is generated by a unitary U consisting of G two-qubit gates
applied only to the first blog2(G/C)c qubits for some constant C. Then, any algorithm that can output
⇢̂ such that dtr(⇢̂, ⇢)  ✏ with probability at least 1� � requires at least

N = ⌦

✓
min

✓
2n

✏2
,

G(1� �)

✏2 log(G/✏)

◆
+

log(1/�)

✏2

◆
(B.59)

samples of | i.
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We note that for constant error ✏, the ⌦(G/ logG) lower bound can be improved to ⌦(G) using
[161, 162]. We prove Proposition 6 by combining results from [19, 133]. Namely, the lower bound in [19]
works by lower bounding the sample complexity of learning any rank r, d-dimensional quantum state
in terms of the packing number of this space of states. We apply their results to our setting, where
the space of states that the packing net is defined over is S1 instead. We first recall important results
from [19, 133] that we use throughout the proof. [19] lower bounded the sample complexity of learning
a d-dimensional pure state as follows.

Theorem 13 (In Proof of Theorem 3 in [19]). Let ✏ 2 (0, 1) and � 2 (0, 1). Suppose there exists a
POVM {M�d�} on (Cd)⌦N such that for a pure quantum state ⇢ 2 Cd⇥d,

Z

dtr(�,⇢)✏
d�Tr

⇥
M�⇢

⌦N
⇤
� 1� �. (B.60)

Then

N �
(1� �) lnm� ln 2

�0
, (B.61)

where m is the size of an (2✏)-packing net of the space of d-dimensional pure state density matrices, and

�0 , S(EU [U⇢xU ])� S(⇢x) (B.62)

is the Holevo information, where ⇢x is any element of the (2✏)-packing net, S is the von Neumann
entropy, and the expectation is taken over the Haar measure.

This states that any measurement procedure which can identify a state ⇢ up to ✏-trace distance requires
at least N copies of ⇢, where N is given by Equation (B.61) and depends on the size of an (2✏)-packing
net of the space of d-dimensional pure state density matrices. Moreover, [19] bounded the size of such a
packing net.

Lemma 16 (Lemma 5 in [19]). There exists an ✏-packing net {⇢1, . . . , ⇢m} of the space of d-dimensional
pure state density matrices satisfying

c lnm � d, (B.63)

for c a sufficiently large constant and d > 3. This packing net also satisfies

�0

c
 ✏2 ln

✓
d

✏

◆
(B.64)

for a sufficiently large constant c > 0, where �0 is given by Equation (B.62).

Finally, the last result we will need gives a bound on the number of gates needed to generate an
arbitrary n-qubit pure state.

Lemma 17 (Section 4 of [133]). Any n-qubit pure quantum state can be recursively defined as the result
of a quantum circuit implemented by O(2n) two-qubit gates applied to the |0i⌦n state. Explicitly, this
quantum circuit has at most C · 2n two-qubit gates for some constant C.

With these results, we can prove Proposition 6. The idea is that using Lemma 17, any pure state
on the first k ⇠ log2 G qubits can be generated by G gates. Then, we can use the same packing net
construction as [19] from Lemma 16. Plugging into Theorem 13 then gives our lower bound. We also
add an additional term to account for expected asymptotic � behavior.

Proof of Proposition 6. We wish to construct a (2✏)-packing net over the space S1 of n-qubit pure quan-
tum states generated by applying G gates to the first k = blog2(G/C)c qubits, where C is taken to be the
same constant as in Lemma 17. First, consider only the subsystem consisting of the first k qubits. Notice
that by Lemma 17, any k-qubit pure state can be generated by at most G gates. Thus, the space of
k-qubit pure states is the same as the space of k-qubit pure states generated by at most G gates. In this
way, we can construct a packing net for our subsystem of only the first k qubits by constructing a packing
net for all k-qubit pure states. By Theorem 13, there exists an (2✏)-packing net M2✏ = {�1, . . . ,�m} of
the space of k-qubit pure state density matrices satisfying

lnm �
2k

c
, �0  4c✏2 ln

✓
2k�1

✏

◆
. (B.65)
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From this, we can construct a packing net for our entire n-qubit system as follows.

M
0

2✏ , {�i ⌦ |0ih0|⌦(n�k) : �i 2 M2✏}; (B.66)

We claim that this is indeed a (2✏)-packing net of S1. Let | i = (U ⌦ I) |0i⌦n 2 S1 and let ⇢ = | ih |.
Because U only acts on the first k qubits, then we can write ⇢ = ⇢k⌦|0ih0|⌦(n�k), where ⇢k = U |0ih0|⌦k U .
Thus, we can see that M0

2✏ ✓ S1. Importantly, all elements of M0
2✏ are n-qubit pure states generated by

G gates on the first k qubits. Moreover, for any �0i,�0j 2 M
0
2✏, we have

dtr(�
0

i,�
0

j) = dtr(�i ⌦ |0ih0|⌦(n�k) ,�j ⌦ |0ih0|⌦(n�k)) = dtr(�i,�j) > 2✏, (B.67)

where the first equality follows by definition of M0
2✏ and the last inequality follows because �i,�j 2 M2✏.

Hence, M0
2✏ is indeed a (2✏)-packing net of S1, which is the set of states we wish to learn. Moreover, it

is of the same size as M2✏, which had cardinality m satisfying Equation (B.65). Plugging Equation (B.65)
into Theorem 13, we have that in order to learn ⇢ up to ✏-trace distance, we require

N1 �
(1� �) 2

k

c � ln 2

4c✏2 ln(2k�1/✏)
� C1

(1� �)G� C2

✏2 ln(G/(2✏))
= ⌦

✓
G(1� �)

✏2 log(G/✏)

◆
, (B.68)

where in the second inequality, C1 and C2 are constants, where C1 depends on c.
This concludes the proof for the second term in the minimum in Proposition 6. Again, for n <

blog2(G/C)c, we can appeal to the full quantum state tomography lower bound of [19, 20]. Thus, we
obtain the lower bound

N1 = ⌦

✓
min

✓
2n

✏2
,

G(1� �)

✏2 log(G/✏)

◆◆
. (B.69)

Notice, however, that in the limit as � ! 0 one should find N ! 1. This behavior is not captured in
Theorem 13 due to the use of the classical Fano’s inequality, which treats the measurement procedure as
a classical random variable. This behavior is also not present in lower bounds from [19, 20], where they
assume that � = ⇥(1). In order to recover the dependence on �, we prove the following lemma.

Lemma 18. Let | 0i , | 1i be any two n-qubit pure quantum states. Suppose that | 0i and | 1i satisfy
dtr(| 0i , | 1i) � ✏. Then, for � 2 (0, 1],

N2 = ⌦

✓
log(1/�)

✏2

◆
(B.70)

copies of | i 2 {| 0i , | 1i} are needed to distinguish whether | i = | 0i or | i = | 1i with probability
at least 1� �.

Proof. For pure states, we know that the relationship between fidelity and trace distance is given by

dtr(|↵i , |�i) =
p

1� | h↵|�i |2. (B.71)

In our case, because dtr(| 0i , | 1i) � ✏, then we have

| h 0| 1i |
2
 1� ✏2. (B.72)

Using the Holevo-Helstrom Theorem [132, 163], in order to distinguish | 0i from | 1i with probability
at least 1� �, one requires at least N2 copies of | i 2 {| 0i , | 1i} satisfying

1� � 
1

2
+

1

2

q
1� |h 0| 1i|

2N2 (B.73)

Rearranging this inequality, we have

N2 �
log(4�(1� �))

log(|h 0| 1i|
2)

=
log
⇣

1
4�(1��)

⌘

log
⇣

1
|h 0| 1i|

2

⌘ (B.74)

By Equation (B.72), this in particular requires

N2 �

log
⇣

1
4�(1��)

⌘

log
⇣

1
1�✏2

⌘ = ⌦

✓
log(1/�)

✏2

◆
. (B.75)
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In our case, note that the conditions of Lemma 18 hold by the existence of the packing net in Equa-
tion (B.66), where | 0i , | 1i can be any two states in the packing net. Moreover, because approximating
the unknown | i to (✏/3)-trace distance suffices to solve the distinguishing task in Lemma 18, then
this lower bound also applies for the task of learning a state | i. Thus, combining Lemma 18 with
Equation (B.69), we have

N = ⌦

✓
max

✓
N1,

log(1/�)

✏2

◆◆
= ⌦

✓
min

✓
2n

✏2
,

G(1� �)

✏2 log(G/✏)

◆
+

log(1/�)

✏2

◆
, (B.76)

as claimed.

This concludes the proof of Proposition 6. Recall that we are seeking a sample complexity lower bound
for states for which we allow our G gates to act on any pair of the n qubits rather than only the first
blog2(G/C)c qubits. We complete the proof of Proposition 5 by reducing to the case of Proposition 6.

Proof of Proposition 5. As before, denote the set of n-qubit quantum states generated by G gates applied
to only the first blog2(G/C)c qubits as S1. Similarly, denote the set of n-qubit quantum states generated
by G gates (applied to any of the qubits) as S2. Our claim is that the sample complexity of learning
states in S2 is at least the sample complexity of learning states in S1.

By Proposition 6, we know that the sample complexity of learning states in S1 is

N = ⌦

✓
min

✓
2n

✏2
,

G(1� �)

✏2 log(G/✏)

◆
+

log(1/�)

✏2

◆
(B.77)

By the definition of sample complexity, this means that there exists some state ⇢ 2 S1 requiring N copies
to learn within ✏ trace distance. Then, because S1 ✓ S2, then ⇢ 2 S2 as well. Thus, there exists a state
⇢ 2 S2 that requires N copies to learn, so the sample complexity of learning states within S2 is at least
N as well.

3. Computational complexity

Theorem 12 states that the sample complexity for learning a description of an unknown n-qubit pure
quantum state is linear (up to logarithmic factors) in the number of gates G used to generate the state.
Nevertheless, the algorithm described in Appendix B 1 is not computationally efficient, as it constructs
and searches over an exponentially large (in G) covering net for all pure states generated by G two-qubit
gates. This raises the question: Does there exist a computationally efficient algorithm?

In this section, we first show that there is no polynomial-time algorithm for learning states generated
by G = O(npolylog(n)) gates, assuming RingLWE cannot be solved efficiently on a quantum computer.
This result also holds for states generated by a depth d = O(polylog(n)) circuit. Then we invoke a
stronger assumption that RingLWE cannot be solved by any sub-exponential-time quantum algorithm,
and show that any quantum algorithm for learning states generated by Õ(G) gates must use exp(⌦(G))
time. This means that the computational hardness already kicks in at G = !̃(log n). Finally, we explicitly
construct an efficient learning algorithm for G = O(log n), thus establishing log n gate complexity as a
transition point of computational efficiency. Previous work [51, 52] arrives at similar hardness results for
polynomial circuit complexity, but our detailed analysis allows us to sharpen the computational lower
bound and obtain this transition point.

Theorem 14 (State learning computational complexity lower bound assuming polynomial hardness of
RingLWE). Let � = n be the security parameter and K be the key space parametrized by �. Let U be
a unitary consisting of G = O(npolylog(n)) gates (or a depth d = O(polylog(n)) circuit) that prepares
a pseudorandom quantum state |�ki for some randomly chosen key k 2 K. Such a unitary U exists by
Proposition 3 assuming that RingLWE cannot be solved by polynomial-time quantum algorithms. Suppose
we are given N = poly(�) copies of |�ki = U |0i⌦n. There does not exist a polynomial-time algorithm
for learning a circuit description of |�ki to within ✏  1/8 trace distance with success probability at least
2/3.

Proof. Suppose for the sake of contradiction that there is an efficient algorithm A0 that can learn a
description of |�ki to within ✏ trace distance. Then by standard boosting of success probability (see e.g,
[21, Proposition 2.4]), there is an efficient algorithm A that can learn |�ki to the same accuracy with
probability at least p = 1 � 1/128 with only a constant factor overhead in time complexity. Note that
this boosting requires the distance metric to be efficiently computable, which is guaranteed by the SWAP
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Algorithm 2: Distinguisher D for PRS
Input: ⇢⌦N = | ih |

⌦N

Output: b 2 {0, 1}
1 Store one copy of ⇢ in quantum memory.
2 Run A on inputs ⇢⌦(N�1), receiving ⇢̂.
3 Run the SWAP test on the remaining copy ⇢ and ⇢̂, receiving a bit b 2 {0, 1}.
4 Output b.

test elaborated below. We will construct a polynomial-time quantum distinguisher D that invokes A to
distinguish between |�ki and a Haar-random state |�i. This contradicts Definition 10.

The distinguisher D operates according to Algorithm 2.
Recall that the SWAP test [140, 141] takes two quantum states �1,�2 as input and outputs 1 with

probability (1+tr(�1�2))/2. We denote this algorithm as SWAP(�1,�2). Note that here we have switched
the labels of 0 and 1 compared to the canonical SWAP test presented in [140, 141].

Notice that the hypothetical efficient learner A always produces the circuit description of the output
state ⇢̂ in polynomial time. This means that the circuit description and thus the state ⇢̂ must also be
efficiently implementable. As the SWAP test is also efficient, Step 3 of Algorithm 2 can thus indeed be
performed efficiently on a quantum computer. Hence, the distinguisher is indeed an efficient quantum
algorithm.

Throughout this section, we denote ⇢ = | ih |. We analyze the probability that the distinguisher D

outputs 1 when given the pseudorandom state |�ki versus the Haar-random state |�i.
Case 1: | i = |�ki, for a randomly chosen k 2 K. We have ⇢ = | ih | = |�kih�k|. By the guarantees

of A, with probability at least p, we have dtr(⇢̂, ⇢)  ✏, where ⇢̂ is the (potentially mixed) quantum state
learned by algorithm A. We can rewrite this as

h |⇢̂| i � 1� ✏ (B.78)

where we used the relationship between fidelity and trace distance (when one state is pure)

dtr(⇢, ⇢̂) � 1� h |⇢̂| i . (B.79)

Then it immediately follows from Equation (B.78) that
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where the probability is taken over the random choice of the key k 2 K, the randomness in the learning
algorithm A when run on samples |�ki

⌦N , and the randomness in the SWAP test. In the inequality, we
split the probability into two terms conditioned on the success and failure of A, and we lower bound the
term conditioned on the failure of A by zero.

Case 2: | i = |�i ⇠ µ, where µ is the Haar measure over pure quantum states. We have ⇢ =
| ih | = |�ih�|. We want to upper bound the probability that the distinguisher D outputs 1 when given
copies of |�i. The intuition is that a Haar-random state is likely to be far from any state generated by
a circuits with a polynomial-sized description, the space in which output of A lie. Let SA(|�i) be the
set of quantum states corresponding to all possible outputs of the algorithm A when run on N copies of
|�i. We follow a similar reasoning as in Equation (B.80) and obtain
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where in the first line we split the probability according to whether A succeeds or fails, and we upper
bound the failing term by (1� p), and in the last line we define the random variable

O� , max
⇢̂2SA(|�i)

h�|⇢̂|�i . (B.84)

Furthermore, we can split E|�i⇠µ[O�] into two parts by introducing a cut-off ✓:
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where in the first inequality, we used that O�  1. Plugging this into our previous expression, we have
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We aim to upper bound the probability Pr[O� > 1� ✓/2]. Notice that we have
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where Np
✓/2

be a minimal (
p
✓/2)-covering net with respect to trace distance of the set SA(|�i) of

quantum states corresponding to all possible outputs of the algorithm A when run on N copies of |�i.
We can bound this probability using concentration results. Let d = 2n.
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Here, the first two lines follow from the following inequality, which holds for ↵ > 0 and a random variable
X:

Pr[X � ✏]  Pr[exp(↵X) � exp(↵✏)]  exp(�↵X)E[exp(↵X)]. (B.94)

The third line follows from the Taylor expansion of exp(x). The fourth line follow from the identity
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where we chose O = ⇢̂ and P (d,k)
sym is the orthogonal projector onto the symmetric subspace of (Cd)⌦k.

See, e.g., Example 50 in [145] for a proof of this identity. The fifth line follows from the inequality
1/
�k+d�1

k

�
 k!/dk. Finally, the last line is true by the following inequalities:
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 1, (B.99)

which follows via properties of the trace norm and because P (d,k)
sym is a projector. Plugging this back into

Equation (B.87), we have
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Moreover, since SA(|�i) is the set of quantum states corresponding to all possible outputs of the
algorithm A when run on |�i⌦N , then all states in SA(|�i) must have a poly(n)-size circuit description
(because A is assumed to be efficient). Thus our covering number upper bound (setting G = poly(n) in
Appendix B 1) implies

N (SA(|�i), dtr,
p
✓/2) = O
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⌘
. (B.102)

Thus, the above bounds along with Equation (B.101) gives us,
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where negl(n) denotes a negligible function in n. Putting everything together with Equation (B.86), we
have
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Combining with Equation (B.80), we conclude that
������

Pr
k K

A,SWAP

h
D

⇣
|�ki

⌦N
⌘
= 1
i
� Pr

|�i⇠µ
A,SWAP

h
D

⇣
|�i⌦N

⌘
= 1
i
������
� p

⇣
1�

✏

2

⌘
� 2 +

✓

4
+ p� negl(n) (B.105)

�
1

16
� negl(n) (B.106)

�
1

32
, (B.107)

where we have taken ✓ = 1/2, ✏  1/8, p = 1 � 1/128, and the last inequality follows by taking n large
enough. This contradicts the assumption that {|�ki}k K are pseudorandom quantum states under the
assumption that RingLWE cannot be solved by polynomial-time quantum algorithms.

Next, we invoke the stronger assumption that RingLWE cannot be solved by any sub-exponential-time
quantum algorithm and show that learning states generated by Õ(G) gates requires exponential-in-G
time.
Theorem 15 (State learning computational complexity lower bound assuming sub-exponential hard-
ness of RingLWE, restatement of lower bound in Theorem 2). Let � = l = ⇥(G) with l  n be
the security parameter and K be the key space parametrized by �. Let U be an l-qubit unitary con-
sisting of O(lpolylog(l)) = O(Gpolylog(G)) gates (or a depth d = O(polylog(G)) circuit) that pre-
pares an l-qubit pseudorandom quantum state |�ki against sub-exponential adversaries for some ran-
domly chosen key k 2 K. Such a unitary U exists by Proposition 3 assuming that RingLWE can-
not be solved by sub-exponential quantum algorithms. Suppose we are given N = poly(�) copies of
| ki = |�ki ⌦ |0i⌦(n�l) = U |0i⌦n. Any quantum algorithm for learning a circuit description of | ki to
within ✏  1/8 trace distance with success probability at least 2/3 must use exp(⌦(min{G,n})) time.
Proof. With polynomial hardness of RingLWE replaced by sub-exponential hardness, Theorem 14 asserts
that there are no sub-exponential (in l) quantum algorithms that can learn the l-qubit pseudorandom
state |�ki to within trace distance ✏ < 1/8 with success probability at least 2/3. That is, any such
learning algorithms must use time at least exp(⌦(l)) = exp(⌦(min{G,n})) time, since l  n. Meanwhile,
a learning algorithm for the n-qubit state | ki can be used to learn the l-qubit state |�ki in the same
runtime by post-selecting on the last (n � l) qubits being |0i, because trace distance does not increase
under such an operation. This implies the exp(⌦(min{G,n})) time lower bound for the n-qubit learning
algorithm.
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Finally, we briefly show that learning becomes efficient when G = O(log n). The idea is that with
O(log n) gates, there can only be at most O(log n) qubits affected. Thus we can focus on these qubits
and learning the states amounts to manipulating vectors of size at most 2O(logn) = poly(n), which is
efficient. Specifically, we have the following statement.

Proposition 7 (Learning states with logarithmic circuit complexity efficiently, restatement of upper
bound in Theorem 2). Let ✏ > 0. Suppose we are given N copies of a pure n-qubit state ⇢ = | ih |,
where | i = U |0i⌦n is generated by a unitary U consisting of G = O(log n) two-qubit gates. There
exists a learning algorithm that outputs a ⇢̂ such that dtr(⇢, ⇢̂)  ✏ with probability at least 2/3 using
poly(n, 1/✏) copies and time.

Proof. We prove this by explicitly constructing a learning algorithm based on junta learning (Ap-
pendix B 1) and standard tomography methods as follows.

Firstly, we execute Algorithm 1 on copies of ⇢ and post-select on the trivial qubits being zero as
in Appendix B 1. This step uses poly(n, 1/✏) copies and time, and gives us post-selected states ⇢0 =
⇢00 ⌦ (|0ih0|)⌦(n�2G) that satisfies dtr(⇢, ⇢0)  ✏/4 by appropriate choice of accuracy. Here ⇢00 is a state
on 2G = O(log n) qubits.

Next, we carry out the most straightforward tomography method of measuring all the Pauli coefficients.
Concretely, we can represent ⇢00 =

P
P ↵PP as a linear combination of all Pauli strings over the 2G

qubits. Using this representation, we estimate all the coefficients ↵P by measuring tr(⇢0P ) and obtain a
⇢̂ = ⇢̂00⌦ (|0ih0|)⌦(n�2G). By measuring all Pauli string expectation values tr(⇢0P ) to accuracy O(✏/42G),
we have dtr(⇢0, ⇢̂)  ✏/4 and thus dtr(⇢, ⇢̂)  ✏/2. From standard Chernoff-Hoeffding concentration
inequalities, this can be achieved with O(42G/(✏/42G)2) = poly(n, 1/✏) copies. Finally, we diagonalize
⇢̂00 and calculate its eigenvector ˆ| 00i with the largest eigenvalue, such that ˆ| 00i is the pure state closest
to ⇢̂00 in trace distance. Let ˆ| i = ˆ| 00i ⌦ |0i⌦(n�2G). Recall that dtr(⇢, ⇢̂)  ✏/2 and ⇢ is a pure state.
Therefore, dtr( ˆ| i ˆh |, ⇢̂)  dtr(⇢, ⇢̂)  ✏/2 and thus dtr( ˆ| i ˆh |, ⇢)  ✏. We output ˆ| i as the learning
outcome whose circuit description can be found by finding a unitary with ˆ| 00i as its first column using
orthogonalization. Since we are manipulating matrices of size O(22G) = poly(n), the computational
complexity is also O(n, 1/✏).

Appendix C: Learning quantum unitaries

In this appendix, we give detailed proofs of Theorem 3 for worst-case unitary learning, Theorem 4 for
average-case unitary learning, and Theorem 5 for learning with classically described data.

1. Worst-case learning

We begin with the worst-case unitary learning problem, which measures reconstruction error in terms
of the diamond distance d⌃(U, V ) = max⇢ k(U ⌦ I)⇢(U ⌦ I)† � (V ⌦ I)⇢(V ⌦ I)†k1. In particular, we
consider the task of using queries to an unknown unitary U with bounded circuit complexity G to output
a classical circuit description Û such that d⌃(Û , U)  ✏ with probability at least 2/3. The diamond
distance has a similar operational meaning as the trace distance in state learning. It characterizes the
ability to distinguish two processes with arbitrary input states and measurements. If we can learn the
unitary with small error in the diamond distance, then we will only make small error even if we test Û
against U on the worst choice of input states. However, we find the following result stating that this task
necessarily requires a number of queries exponential in G, indicating the hardness of worst-case unitary
learning.

Theorem 16 (Worst-case unitary learning, restatement of Theorem 3). Given query access to an n-qubit
unitary U composed of G two-qubit gates, any algorithm that can output a unitary Û such that d⌃(Û , U) 
✏ 2 (0, 1/4] with probability at least 2/3 must query U at least ⌦

�
2min{G/(2C),n/2}/✏

�
times, where C > 0

is a universal constant. Meanwhile, there exists such an algorithm using O(2nG log
�p

2nG/✏
�
/✏) queries.

Proof. The upper bound follows from the average-case learning algorithm (Theorem 4, proved below)
when working in the exponentially small error regime. Specifically, Theorem 4 gives us an algorithm that
uses O(G

p
d log(G/✏0)/✏0) queries to output a Û that satisfies davg(Û , U)  ✏0. Meanwhile, from Lemma 1,

Lemma 3 and Lemma 4, we know that d⌃(Û , U)  2d02(Û , U)  2
p
dd0F (Û , U)  4

p
d davg  4

p
d✏0.

Setting ✏ = 4
p
d✏0, we arrive at the desired worst-case learning query complexity.
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The proof of the lower bound is inspired by the adversary method [54, Chapter 6] and the optimality
of Grover’s algorithm [164]. The idea is to construct a set of unitaries that can be distinguished by the
worst-case learning algorithm, but only make minor difference when acting on states so that a minimal
number of queries have to be made in order to distinguish them.

Specifically, we consider all the length-2k bit-strings x that have Hamming weight 1, i.e., xi = 1 for
some i 2 [2k] and all the other bits are 0. We focus on the task of distinguishing this set of strings,
denoted by X, from the all zero string Y = {0 . . . 0}. We access any such bit-strings x through a phase
oracle, which is defined as a k-qubit unitary Ux that obeys Ux |ji = ei✏

0xj |ji for all j 2 [2k]. In other
words, Ux is diagonal and each diagonal element is ei✏

0
if the corresponding bit is 1 and is 1 if the bit is

0. The unitary for the all zero string is the identity.
To implement such unitaries with 2-qubit gates, we note that since the strings have Hamming weight

at most one, each of the unitaries is equivalent to a (k � 1)-controlled phase gate with proper control
rule. The control rule can be realized by O(k) pairs of 1-qubit gates acting on each qubit, and the
(k � 1)-controlled phase gate can be decomposed into O(k) 2-qubit gates [165]. Therefore, with O(k)
gates, one can implement Ux for any 2k-bit string x with Hamming weight at most one.

Suppose Ck gates suffice to implement these Ux. Set k = min{bG/Cc , n}. Then for any x 2 X [ Y ,
Ux ⌦ In�k is an n-qubit gate composed of at most G gates. Meanwhile, the unitaries for X are far apart
from that for Y , because for any x 2 X, suppose xj = 1, we can take another x0 6= x from X with
x0j0 = 1, and let | jj0i = (|ji+ |j0i)/

p
2. Then we have

d⌃(Ux, U0...0) � kUx | jj0i h jj0 |U
†

x � U0...0 | jj0i h jj0 |U
†
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2
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2
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1

= 2 sin
✏0

2
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✏0

2
,
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for ✏0 2 (0, 1]. Therefore, if we have a learning algorithm that can learn Un
T using m queries with accuracy

✏ = ✏0/4 2 (0, 1/4] in diamond norm with probability 2/3, it can also distinguish X from Y with the
same probability. Note that this also works if the learning algorithm is for (quotient) spectral distance,
but not for davg because davg(Ux, U0...0) is exponentially small for every x with Hamming weight one.

In addition, we have the following query complexity lower bound from the adversary method.

Lemma 19. (Phase adversary method, [54, Lemma 6.4]). Let D be a finite set of functions from a finite
set Q to R. To each function x 2 D, assign an oracle Ux of the form Ux |qi = eix(q) |qi. Let X and
Y be two disjoint subsets of D. Let R ✓ X ⇥ Y be a binary relation on X ⇥ Y . For x 2 X, we write
R(x) = {y 2 Y : (x, y) 2 R}, and similarly R(y) for y 2 Y . Define

m = min
x2X

|R(x)|, m0 = min
y2Y

|R(y)|, lq,x =
X

y2R(x)

|x(q)� y(q)|, lq,y =
X

x2R(y)

|x(q)� y(q)|,

and let lmax = maxq2Q,x2X,y2Y lq,xlq,y. Then to distinguish X and Y with success probability at least
2/3, any algorithm needs at least

⌦

 r
mm0

lmax

!
(C.2)

queries to the oracle.

For our problem, let R = X ⇥ Y . For all bit-strings x, define x(q) = ✏xq. Then we have m =
|Y | = 1,m0 = |X| = 2k, lq,x = ✏xq, lq,y = ✏ because for a specific q, only one x 2 R(y) = X has
xq = 1. Thus lmax = ✏2. Plugging these into the above lemma, we obtain a query complexity lower
bound of ⌦(

p

2k/✏). Since k = min{bG/Cc , n}, we arrive at the final query complexity lower bound
⌦
�
2min{G/(2C),n/2}/✏

�
.

2. Average-case query complexity upper bounds

Having seen that worst-case unitary learning is hard, we move on to the setting of average-case learn-
ing. In particular, we consider the task of using queries to an unknown unitary U with bounded cir-
cuit complexity G to output the classical circuit description of a unitary Û such that davg(Û , U) =q

E| i[dtr(Û | i , U | i)2]  ✏ with probability at least 2/3. In the following, we give explicit algorithms
that solve this learning task with linear-in-G queries, using similar hypothesis selection techniques as in
the state learning task (Appendix B 1).
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Proposition 8 (Average case unitary learning upper bounds, upper bounds in Theorem 4). There exists
an algorithm that, given query access to an n-qubit unitary U composed of G two-qubit gates, can output
a unitary Û such that davg(Û , U)  ✏ with probability at least 2/3 using

O

 
min

(
4n

✏
,
G log(G/✏)

✏2
,

p
2nG log(G/✏)

✏

)!
(C.3)

queries to the unknown unitary U . Moreover, there is another such algorithm that uses O(G log(G/✏)/✏4)
queries without employing auxiliary quantum systems.

The O(4n/✏) scaling comes from the diamond norm learning algorithm in [21, Theorem 1.1], which
directly implies an average-case learning algorithm because davg(U, V )  d0F (U, V )  d02(U, V ) 
1
p
2
d⌃(U, V ) from Lemmas 1, 3 and 4. Note that this part of the bound does not make use of the promise

that the unknown unitary can be implemented with G two-qubit gates. In the following, we prove the
G-dependent parts of the upper bound.

a. Unitary learning without ancillary systems

We begin by describing the learning algorithm without ancillary systems. The algorithm works simi-
larly to the state learning procedure. It constructs a covering net over G-gate unitaries with respect to
davg, and regards them as candidates for the unknown unitary. In contrast to our state learning proce-
dure, where the algorithm estimates the trace distance between states, here the algorithm estimates the
overlap between unitaries by inputting random states and apply single-shot Clifford classical shadow,
which translates into davg. Then, we select the candidate closest to the unknown unitary as the learning
outcome.

Specifically, we consider a
p
✏0-covering net N of the set of n-qubit unitaries implemented by G two-

qubit gates with respect to davg as in Corollary 1, and regard the elements Ui 2 N as potential candidates
for the unknown unitary U . Our strategy is to use classical shadow to estimate the distances davg(Ui, U)
for every Ui in the covering net. Then we can find the one with minimal distance as the output of our
learning algorithm.

To achieve this, consider a randomly sampled tensor product of 1-qubit stabilizer states

|xi = Ux |0i
⌦n

⇠ Q = Uniform[{|0i , |1i , |x+i , |x�i , |y+i , |y�i}
⌦n], (C.4)

where Ux = ⌦
n
i=1Uxi is the state preparation unitary, and x 2 Zn

6 labels the state. We apply the
unknown unitary U to it and obtain U |xi. Then we invoke a single use of the Clifford classical shadow
protocol [100]: We randomly sample an n-qubit Clifford gate C and apply it to U |xi, and then measure
in the computational basis to get an outcome |bi , b 2 {0, 1}n, with probability | hb|CU |xi |2. Let ⇢̂ =
(2n+1)C†

|bi hb|C�I. From [100], we know that EC,b[⇢̂] = U |xi hx|U†. Now we consider the observable
Oi = Ui |xi hx|U

†

i and the estimator ôi = tr(Oi⇢̂). Then we have the expectation value

E
|xi,C,b

[ôi] = E
|xi


tr

✓
Oi E

C,b
[⇢̂]

◆�
= E

|xi

h
| hx|U †

i U |xi |2
i
= 1� d2Q(Ui, U) , (C.5)

where dQ(Ui, U) =
p

E| i⇠Q[dtr(Ui | i , U | i)2] is the root mean squared trace distance with respect to
Q as defined in Lemma 5. Next, we show that ôi has bounded variance. Note that

Var[ôi] = E
|xi,C,b

[ô2i ]�

✓
E

|xi,C,b
[ôi]

◆2

 E
|xi


E
C,b

[ô2i ]

�
 E

|xi
[3 tr

�
O2

i

�
] = 3, (C.6)

where we have used the variance bound for Clifford shadows [100, Lemma S1 and Proposition S1] and
the fact that tr

�
O2

i

�
= tr(Oi) = 1.

To estimate the expectation values of ôi, we can draw m i.i.d. samples of such input states {|xji}
m
j=1

from Q, construct the observables Oij = Ui |xji hxj |U
†

i and carry out the above protocol to get the
estimators ôij for 1  i  |N |, 1  j  m. Suppose we take m = NK and construct a median-of-mean
estimator

ôi(N,K) = median{ô(1)i , . . . , ô(K)
i }, where ô(k)i =

1

N

NkX

j=N(k�1)+1

ôij , 1  k  K. (C.7)
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Then, with the same reasoning as in [100, Theorem S1], we have the following concentration guarantee:
For any 0 < ✏0, � < 1, if K = 2 log(2|N |/�) and N = 102/✏02, then

|ôi(N,K)� (1� d2Q(Ui, U))|  ✏0 for all 1  i  |N | (C.8)

with probability at least 1� �.
With ôi in hand, we can select i? 2 argmaxiôi, and output Ui? . Then we have

davg(Ui? , U) 
p
2dQ(Ui? , U) 

p
2(1� ôi? + ✏0)

=
q
2(✏0 +min

i
(1� ôi)) 

q
2(✏0 +min

i
(d2Q(Ui, U) + ✏0)) 

p

8✏0
(C.9)

with probability at least 1 � �, where we have used the concentration guarantee, Lemma 5, and
mini d2Q(Ui, U)  mini 2 davg(Ui, U)2  2✏0 because N is a

p
✏0-covering net with respect to davg. Setting

✏0 = ✏2/8, we arrive at a learning algorithm that uses

m = NK = O(log(|N |/�)/✏4) (C.10)

samples to learn the unknown unitary with accuracy ✏ and success probability at least 1� �.
If we plug in the covering number upper bound logN  O(G log(G/✏) +T log n) from Corollary 1, we

have sample complexity

O

✓
G log(G/✏) + log(1/�)

✏4

◆
(C.11)

for large G, say G � n/10, as desired.
For G < n/10, a direct application of the above strategy will give us a suboptimal sample complexity of

O(G log(n/✏)/✏4). To overcome this issue, we can carry out a junta learning step similar to Algorithm 1
and [50] to identify the subset of qubits A ⇢ [n] that U acts non-trivially on. Since U only has G 2-qubit
gates, we must have |A|  2G. The specific procedure is listed in Algorithm 3.

Algorithm 3: Identify qubits acted upon nontrivially (unitary version)
Input: Query access to the unknown unitary U with G two-qubit gates.
Output: List Â ✓ [n] of qubits.

1 Initialize Â = ;.
2 Repeat the following N = O

⇣
G+log(1/�)

✏2

⌘
times:

(a) Sample a random tensor product of 1-qubit stabilizer states |xi = Ux |0i
⌦n, apply U and U

†
x, and

obtain U
†
xUUx |0i

⌦n

(b) Measure in the computational basis and obtain a bit string |bi , b 2 {0, 1}n

(b) Given the measurement outcome |bi, set Â Â [ supp(b), where supp(b) = {i 2 [n] : bi 6= 0}.

Similar to Appendix B 1 a, we use Algorithm 3 to identify the non-trivial qubits with high probability.
Importantly, from Lemma 11, we have the following guarantee that shows the expected state on the
estimated trivial qubits is close to zero.

Lemma 20. Let ✏, � > 0. Suppose we are given query access to an n-qubit unitary U composed of G
two-qubit gates acting on a subset of the qubits A ✓ [n]. Let |xi = Ux |0i

⌦n be a random tensor product
of 1-qubit stabilizer states. Let ⇢x = U†

xUUx |0ih0|U †
xU

†Ux. Then, Algorithm 3 uses N = O

⇣
G+log(1/�)

✏2

⌘

queries to U and outputs, with probability at least 1� �, a list Â ⇢ [n] such that
⌦
0B̂
��E
x
[⇢x

B̂
]
��0B̂
↵
� 1� ✏2, (C.12)

where ⇢B̂ denotes the reduced density matrix of ⇢ when tracing out all qubits other than those in the set
B̂ = [n] \ Â and

��0B̂
↵

denotes the zero state on all qubits in B̂.

Proof. This follows directly from the proof of Lemma 11 because Algorithm 3 is the same as executing
Algorithm 1 on the mixed state Ex[⇢x], and for the trivial qubits, the U†

x following Ux and U restores
the state to |0i. So the proof goes verbatim as in Lemma 11.
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With this, we can show that ignoring the rest of the qubits B̂ = [n] \ Â does not make much of a
difference. Let B = [n] \A. We again consider a randomly sampled 1-qubit stabilizer state and apply U

to get | xi = UUx |0i
⌦n. Let ⇢x = | xi h x| be the associated density matrix, and let U B̂

x = ⌦j2B̂Uxj be
the part of Ux that acts on B̂. Now we measure the qubits in B̂ in the basis U B̂

x |biB̂ , where b 2 {0, 1}|B̂|.
Note that for qubits in B̂, the reduced density matrix in the basis U B̂

x |biB̂ is the same as the ⇢x
B̂

from
Lemma 20 in the junta learning step. So we have

⌦
0B̂
��Ex[⇢xB̂ ]

��0B̂
↵
� 1 � ✏2. After the measurement

of the qubits in B̂, we do a post-selection on the observed measurement outcomes being U B̂
x |0iB̂ . This

post-selection is represented by ⇤ = IA ⌦ (U B̂
x |0iB̂ h0|U B̂†

x ), with ⇤2 = ⇤. Let ⇢0x =
p
⇤⇢x
p
⇤

tr(⇤⇢x)
be the

post-selected state. Now we want to show ⇢0x is close to ⇢x on average. We invoke the following gentle
measurement lemma for normalized ensembles.

Lemma 21 (Gentle measurement lemma for normalized ensembles, variant of [166, Lemma 9.4.3]). Let
{x, ⇢x} be an ensemble of states. If ⇤ is a positive semi-definite operator with ⇤  I and tr(⇤Ex[⇢x]) �
1� ✏ where ✏ 2 [0, 1], then

Ex

�����⇢x �

p
⇤⇢x

p
⇤

tr(⇤⇢x)

�����
1

 3
p
✏. (C.13)

Proof. Let ⇢0x =
p
⇤⇢x
p
⇤

tr(⇤⇢x)
. From [166, Lemma 9.4.3], we know that Ex

���⇢x �
p
⇤⇢x

p
⇤
���
1
 2

p
✏. Note

that the left hand side can be lower bounded by

Ex

���⇢x �

p

⇤⇢x
p

⇤
���
1
= Ex

���⇢x � ⇢0x + ⇢0x �

p

⇤⇢x
p

⇤
���
1

� Exk⇢x � ⇢0xk1 � Exk⇢
0

x �

p

⇤⇢x
p

⇤k1
= Exk⇢x � ⇢0xk1 � Ex(1� tr(⇤⇢x))k⇢

0

xk1 � Exk⇢x � ⇢0xk1 � ✏,

(C.14)

where we have used triangle inequality, k⇢0xk1 = 1, and tr(⇤Ex[⇢x]) � 1� ✏. Therefore, we arrive at

Exk⇢x � ⇢0xk1  2
p
✏+ ✏  3

p
✏, (C.15)

because ✏ 2 [0, 1], concluding the proof of Lemma 21.

Using Lemma 21 for our scenario, we have Exk⇢x�⇢0xk1  3✏ with probability at least 1� �. After the
post-selection, we apply the same Clifford shadow strategy as in the T � n/10 case, with two differences.
Firstly, note that after post-selection, the action on every qubit in B̂ is identity. So we can without loss
of generality pick an arbitrary subset A0 of those qubits in B̂ as A \ Â, and consider an

p
✏-covering net

N of G gate unitaries on qubits Â [ A0 with respect to davg, with |Â [ A0| = |A|  2G. Then we have
minUi2N davg(Ui, U)  ✏, and log |N |  O(G log(G/✏) +G log(|A [A0|))  O(G log(G/✏)). Secondly, for
each element Ui in the covering net, we can construct an observable Oi = Ui |xi hx|U

†

i similar to before,
but now the estimator will concentrate around a slightly different expectation value. Specifically, if we
use a median-of-mean estimator ôi(N,K) with K = 2 log(2|N |/�) and N = 102/✏2, then we have

|ôi(N,K)� Ex[tr(⇢
0

xOi)]|  ✏ for all 1  i  |N |, (C.16)

with probability at least 1� �. Nevertheless, since ⇢0x and ⇢x are close on average, we have

|ôi(N,K)� (1� d2Q(Ui ⌦ I, U))| = |ôi(N,K)� Ex[tr(⇢
0

xOi)] + Ex[tr(⇢
0

xOi)]� Ex[tr(⇢xOi)]|

 |ôi(N,K)� Ex[tr(⇢
0

xOi)]|+ Ex[| tr(⇢
0

xOi)� tr(⇢xOi)|]

 ✏+ Ex[k⇢
0

x � ⇢xk1kOik]  ✏+ 3✏ = 4✏, for all 1  i  |N |,
(C.17)

with probability at least 1�2�, where we have used triangle inequality, kOik = 1, and Exk⇢x�⇢0xk1  3✏.
With this concentration guarantee, we can select the candidate with the largest ôi: i? 2 argmaxiôi and
output Ui? ⌦ I. As before, we have with probability at least 1� 2�,

davg(Ui? ⌦ I, U) 
p
2dQ(Ui? ⌦ I, U) 

p
2(4✏+ 2✏+ 4✏) =

p
20✏. (C.18)
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Redefining 20✏ to be ✏2 and 2� to be �, we arrive at a learning algorithm that uses

m = O

✓
G+ log(1/�)

✏4

◆
+NK = O

✓
G log(G/✏) + log(1/�)

✏4

◆
(C.19)

queries to the unitary to learn it with accuracy ✏ in davg and success probability at least 1 � � when
G < n/10. Combined with the case of G � n/10, this concludes the learning algorithm without ancillary
system in Proposition 8.

b. Unitary learning with ancillary systems

The above O(1/✏4) scaling is suboptimal. It arises from the fact that in the classical shadow estimation,
the estimated quantity is the square of davg rather than davg itself. To improve the ✏-dependence, we
make use ancillary systems via the Choi–Jamiołkowski duality [58–60]. Specifically, we consider the
maximally entangled state over a pair of n-qubit systems |�i = 1

p
d

P2n

i=1 |ii ⌦ |ii and define the Choi
state |U� corresponding to a unitary U as |U� = (U ⌦ I) |�i. That is, the Choi state |U� of an n-qubit
unitary U is a pure (2n)-qubit state constructed by applying U on half of the qubits in n EPR pairs.
For any subset A ✓ [n] of the qubits that are acted upon by U , we refer to the corresponding |A| qubits
in the EPR pairs as the entangled qubits corresponding to A. We note the following fact, which relates
the trace distance between Choi states to the average-case distance between the unitaries.

Lemma 22 (Equivalence of trace distance between Choi states and average-case distance). Let U, V 2

U(2n) be two n-qubit unitaries, |�i = 1
p
d

P2n

i=1 |ii ⌦ |ii be a maximally entangled state, and |U� =

(U ⌦ I) |�i , |V � = (V ⌦ I) |�i be the corresponding Choi states. Then we have

1
p
2
dtr(|U�, |V �)  davg(U, V )  dtr(|U�, |V �). (C.20)

Proof. By the standard conversion between fidelity and the trace distance between pure states, we have

dtr(|U�, |V �) =p1� |�U |V �|2 =

r
1�

1

d2
| tr(U †V )|2. , (C.21)

where the last step used that h�|A⌦ B |�i = 1
d tr
⇥
ATB

⇤
, compare for instance [167, Example 1.2]. On

the other hand, from Equation (A.14), we have

davg(U, V ) =

s

1�
d+ | tr(U †V )|2

d2 + d
. (C.22)

Combining these two equations, we get

davg(U, V ) =

r
d

d+ 1
dtr(|U�, |V �) 2


1
p
2
dtr(|U�, |V �), dtr(|U�, |V �)

�
. (C.23)

With Lemma 22, we construct a covering net over Choi states corresponding to G-gate unitaries as
follows. From Corollary 1, we take an ✏0-covering net N of G-gate unitaries with respect to davg that
has cardinality |N |  O(G log(G/✏) + G log n). Then for any G-gate unitary U , there exists a Ui 2 N

such that davg(U,Ui)  ✏0. Hence dtr(|U�, |Ui�)  p
2 davg(U,Ui) 

p
2✏0 by Lemma 22. Therefore, the

Choi states of the unitaries in N form a (
p
2✏)-covering net of the Choi states of G-gate unitaries.

Now, we can use these pure Choi states as candidates for hypothesis selection. By Proposition 1,
the hypothesis selection algorithm based on classical shadow uses O(log(|N |/�)/✏02) samples of the Choi
state |U� to output a candidate |Û�, Û 2 N , such that dtr(|U�, |Û�)  3

p
2✏0 + ✏0 with probability at

least 1��. Setting (3
p
2+1)✏0 = ✏, we find a Û such that davg(Û , U)  dtr(|U�, |Û�)  ✏ with probability

at least 1� � using

O

✓
G log(G/✏) +G log n+ log(1/�)

✏2

◆
(C.24)

queries to the unknown unitary U . When G � n/10, this gives the desired O((G log(G/✏)+log(1/�))/✏2)
query complexity.
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Algorithm 4: Identify qubits acted upon nontrivially (Choi version)
Input: Query access to the unknown unitary U with G two-qubit gates.
Output: List Â ✓ [n] of qubits.

1 Initialize Â = ;.
2 Repeat the following N = O

⇣
G+log(1/�)

✏2

⌘
times:

(a) Prepare the Choi state |U� by applying U ⌦ I to the maximally entangled state |�i
(b) Measure in the basis of Pauli Choi states |�x� = ⌦n

i=1(�xi ⌦ I) |�i , x 2 Zn
4 , and obtain a string

|bi , b 2 {0, 1, 2, 3}n

(b) Given the measurement outcome |bi, set Â Â [ supp(b), where supp(b) = {i 2 [n] : bi 6= 0}.

For G < n/10, we again need a junta learning step to identify the set of qubits A ✓ [n] that are acted
on non-trivially. To do this, we follow the idea of Algorithm 1, Algorithm 3 and [50, Algorithm 8] and
consider the following procedure that makes use of Choi states of Pauli matrices �0 = I,�1 = X,�2 =
Y,�3 = Z.

Similarly to Lemma 11 and Lemma 20, we have the following guarantee that the Choi state on the
estimated trivial qubits is close to the Choi state of the identity.

Lemma 23. Let ✏, � > 0. Suppose we are given query access to an n-qubit unitary U composed of G
two-qubit gates acting on a subset of the qubits A ✓ [n]. Let ⇢ = |U��U | be the Choi state of U . Then,
Algorithm 4 uses N = O

⇣
G+log(1/�)

✏2

⌘
queries to U and outputs, with probability at least 1 � �, a list

Â ⇢ [n] such that

�IB̂ |⇢B̂ |IB̂� � 1� ✏2, (C.25)

where ⇢B̂ denotes the reduced density matrix for ⇢ by tracing out all qubits other than those in the set
B̂ = [n] \ Â and the corresponding entangled qubits, and |IB̂� denotes the Choi state of the identity on
qubits in B̂.

Proof. The proof goes similarly to that of Lemma 11 except that |0i is replaced by |I�. The measurement
over Pauli Choi states in Algorithm 4 can be understood as measuring each entangled pair of qubits in
the basis {|I�, |X�, |Y �, |Z�} and gives an element from {0, 1, 2, 3} = Z4. Specifically, let A0 be any
set that could be output by Algorithm 4. We want to identify A0 with the actual identified set Â. Let
B0 , [n] \ A0. Let Ei,A0 be the event that round i of measurement of the qubits in B0 = [n] \ A0 in
Algorithm 4 yields the all zero Z4 string. Let Xi,A0 be the indicator random variable corresponding to
the event Ei,A0 . Then, we have that X̄A0 , 1

N

PN
i=1 Xi,A0 is the number of times the entangled pair in

B0 are all measured to be zero divided by the total number of measurements. In other words, X̄A0 is the
estimated overlap that the state ⇢B0 on qubits in B0 has with the identity Choi state on B0. Moreover,
we have

E[XA0 ] , E[Xi,A0 ] = �IB0 |⇢B0 |IB0� (C.26)

for all A0. This says that the true expectation of our random variables is the true overlap of the state
⇢B0 with the identity Choi state on B0. Then we have the same Claim 1 as in Lemma 11 and Lemma 23
follows.

With this, we can again show that ignoring the rest of the qubits B̂ = [n] \ Â does not make much
difference. Let B = [n] \ A. We prepare the Choi state ⇢ = |U��U |, |U� = (U ⌦ I) |�i, and measure in
the basis of Pauli Choi states over the qubits in B̂: {|�x�B̂ : x 2 Z|B̂|

4 }. After the measurement, we do
a post-selection on the observed measurement outcomes being |IB̂�. This post-selection is represented
by ⇤ = I ⌦ |IB̂��IB̂ |, with ⇤2 = ⇤, and the first identity over the entangled pairs outside B̂. Let
⇢0 =

p
⇤⇢
p
⇤

tr(⇤⇢) be the post-selected state. Now we want to show ⇢0 is close to ⇢. From Lemma 23, we know
that tr(⇤⇢) � 1�✏2 with probability at least 1��. Then by the gentle measurement lemma (Lemma 13),
we have dtr(⇢0, ⇢)  ✏ with the same probability.

Now we can apply the hypothesis selection protocol to ⇢0 as in the G > n/10 case, but with a
different covering net. Specifically, note that after post-selection, the action on every entangled pair
in B̂ is identity. So we can with loss of generality pick an arbitrary subset A0 of those qubits in B̂ as
A \ Â, and consider an ✏-covering net N of G gate unitaries on qubits Â [A0 with respect to davg, with
|Â [ A0| = |A|  2G, with each element tensor product with identity over the rest qubits. Then we
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have minUi2N dtr(|Ui�, |U�)  p
2 davg(Ui, U) 

p
2✏, and log |N |  O(G log(G/✏) + G log(|A [A0|)) 

O(G log(G/✏)). Since dtr(⇢0, ⇢)  ✏, we also have minUi2N dtr(|Ui��Ui|, ⇢0)  ✏+
p
2✏ = (

p
2 + 1)✏.

With this covering net, we apply the hypothesis selection based on classical shadow (Proposition 1) to
⇢0. This procedure uses O(log(|N |/�)/✏2) copies of ⇢0 (each prepared using one query to U) and output
a |Ui?� such that dtr(|Ui?��Ui? |, ⇢0)  3(

p
2 + 1)✏+ ✏ = (3

p
2 + 4)✏ with probability at least 1� �. This

means that

davg(Ui? , U)  dtr(|Ui?�, |U�)  dtr(|Ui?��Ui? |, ⇢
0) + dtr(⇢

0, ⇢)  (3
p
2 + 4)✏+ ✏ = 4(

p
2 + 1)✏ (C.27)

with a total probability at least 1� 2� (considering both the junta learning and hypothesis selection).
Therefore, by redefining 4(

p
2+1)✏ to be ✏ and 2� to be �, we arrive at a desired algorithm for G  n/10

that uses in total

O

✓
G+ log(1/�)

✏2

◆
+O

✓
G log(G/✏) + log(1/�)

✏2

◆
= O

✓
G log(G/✏) + log(1/�)

✏2

◆
(C.28)

queries to the unknown unitary U . Combined with the G � n/10 case, we conclude the learning algorithm
with ancillary system that achieves the O((G log(G/✏)+ log(1/�)/✏2) query complexity in Proposition 8.

c. Bootstrap to improve ✏-dependence

To further improve the ✏-dependence, we modify the bootstrap method in [21] and achieve a Heisenberg
scaling Õ(1/✏). However, with our average case distance, which can only control the average behavior
of the eigenvalues of the unitaries, we are not able to perform the bootstrap for general ✏. Instead, the
bootstrap works only when the error is exponentially small, ✏ = O(1/

p
d), and achieves the Heisenberg

scaling at the cost of a dimensional factor, leading to a query complexity of

O

 p
2n(G log(G/✏) + log(1/�))

✏

!
. (C.29)

Whether a general Heisenberg scaling without dimension-dependent scaling is achievable remains open.
Now we state the bootstrap method in Algorithm 5, which uses the unitary learning algorithm with

ancillary systems (Appendix C 2 b) as a sub-routine. We need to prove two things about Algorithm 5:
(1) it outputs a Û that satisfies davg(Û , U)  ✏ with probability at least 1� �; (2) the query complexity
is O

⇣p
d(G log(G/✏) + log(1/�))/✏

⌘
.

Algorithm 5: Bootstrapping to Heisenberg scaling
Input: Query access to the unknown n-qubit G-gate unitary U .

An error parameter ✏ 2 (0, 1/
p
d).

Output: A unitary Û .
1 Let t  

l
log2(1/(✏

p
d))

m
.

2 Let V0  I.
3 Let N  an (✏/105)-covering net of G-gate unitaries with respect to davg.
4 for j  0 to t do
5 Let pj  2j .
6 Let ⌘j  8j�t�1

�.
7 Use the algorithm A in Appendix C 2 b with success probability 1� ⌘j and accuracy 1/(25000

p
d) to

find a candidate Rj in {(UiV
†
j )

pj | Ui 2 N} that is closest to (UV
†
j )

pj in davg.
8 Let Vj+1  R

1/pj
j Vj .

9 return Û  Vt+1

We first prove (1) by induction. Before doing so, we need to show that the learning algorithm A can
indeed learn (UV †

j )
pj well for all j. Let c = 10�5. Note that with the definition of N , we know that for

any G-gate unitary U , 9Ui 2 N such that davg(U,Ui)  c✏, and therefore

davg((UiV
†

j )
pj , (UV †

j )
pj )  d0F ((UiV

†

j )
pj , (UV †

j )
pj )  pjd

0

F (Ui, U)  2pj davg(Ui, U)  4c/
p

d, (C.30)
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where we have used Item 1 and 2 in Lemma 4, unitary invariance of d0F , and pj = 2j  2t 

2/(✏
p
d). Thus {(UiV

†

j )
pj , Ui 2 N} forms an 4c/

p
d-covering net of {(UV †

j )
pj | U is a G-gate unitary},

which can be used by the hypothesis selection algorithm A as set of candidates. The output Rj

of A satisfies d0F (Rj , (UV †

j )
pj )  2 davg(Rj , (UV †

j )
pj )  4(

p
2 + 1) · 4c/

p
d < 40c/

p
d (see Equa-

tion (C.27)). The number of queries to U that this procedure uses is O

⇣
pj

G log(G/c✏)+log(1/⌘j)

(4c/
p
d)2

⌘
=

O (pjd(G log(G/✏) + log(1/⌘j))).
Now we proceed to prove (1) by induction. Let’s assume that the learning algorithm succeeds for all

j = 1, . . . , t. Let �j = d0F (U, Vj) = d0F (UV †

j , I) be the error after iteration j � 1. We will prove that
�k  2�k�5/

p
d. For iteration 0, we have p0 = 1, and by the accuracy of A, we know �1 = d0F (U, V1) <

40c/
p
d < 2�6/

p
d. Now we assume �k  2�k�5/

p
d and prove �k+1  2�k�6/

p
d. Note that (UV †

k )
pk

and Rk are sufficiently close to identity in the sense that

d0F ((UV †

k )
pk , I)  pkd

0

F (UV †

k , I) = pk�k 
2�5
p
d

<
4/(25⇡)

p
d

, (C.31)

and

d0F (Rk, I)  d0F (Rk, (UV †

k )
pk) + d0F ((UV †

k )
pk , I) 

40c
p
d
+

2�5
p
d

<
4/(25⇡)

p
d

. (C.32)

Thus, we can invoke Item 3 of Lemma 4 and obtain

�k+1 = d0F (U, Vk+1) = d0F (UV †

k , R
1/pk

k ) 
2

pk
d0F ((UV †

k )
pk , Rk) 

80c

pk
p
d
<

2�k�6
p
d

. (C.33)

Therefore, by induction, we have shown that �k  2�k�5/
p
d. At the end of the iteration, when k = t =l

log2(1/(
p
d✏))

m
, we have

�t+1 = d0F (U, Vt+1) 
2�t�6
p
d

< ✏. (C.34)

The above accuracy is conditioned on the success of all executions of the learning algorithm. By the
union bound, the failure probability is upper bounded by

tX

j=0

⌘j = �
tX

j=0

8�(t�j)�1 = �
tX

j=0

8�j�1 < �. (C.35)

This concludes the proof of (1).
Next we move on to (2) and count the overall number of queries to the unknown unitary. Summing

over all iterations, the number of queries is

O

0

@
tX

j=0

pjd(G log(G/✏) + log(1/⌘j))

1

A

= O

0

@dG log(G/✏)
tX

j=0

2j + d log(1/�)
tX

j=0

2j(t� j + 1)

1

A

= O
�
d(G log(G/✏) + log(1/�))2t

�
= O

 p
d(G log(G/✏) + log(1/�))

✏

!
.

(C.36)

This concludes the proof of the O(1/✏) scaling algorithm in Proposition 8.
Finally, we note that an analogous bootstrap method can also be applied to improve the ✏-dependence

for our unitary learning procedure without auxiliary systems, albeit again incurring a dimension
factor. Namely, a variant of Algorithm 5 relying on the algorithm of Appendix C 2 a as a subrou-
tine succeeds at outputting a Û that satisfies davg(Û , U)  ✏ with probability at least 1 � � using
O
�
d3/2(G log(G/✏) + log(1/�))/✏

�
queries to the unknown unitary U , assuming ✏ < 1/d3/2.
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3. Average-case query complexity lower bounds

For the lower bound, we construct a packing net consisting of G-gate unitaries that are pairwise
sufficiently far apart, so that an average-case learning algorithm can discriminate them. Meanwhile,
the success probability of distinguishing a set of unitaries is upper bounded by the number of queries
made [63]. This gives us an ⌦(G) query complexity lower bound. To incorporate ✏-dependence, we follow
[21] and map the problem to a fractional query problem [61, 62]. This way, we arrive at the following
result.

Proposition 9 (Average case unitary learning lower bound, lower bound in Theorem 4). Let U be
an n-qubit unitary composed of G two-qubit gates. Any algorithm that, given query access to U , U†,
cU = |0ih0| ⌦ I + |1ih1| ⌦ U and cU† = |0ih0| ⌦ I + |1ih1| ⌦ U†, can output a unitary Û such that
davg(Û , U)  ✏ 2 (0, 1/32) with probability at least 2/3, must use at least ⌦(G/✏) queries.

Note that the lower bound holds even for learning algorithms that have a stronger form of access to
U than considered for our upper bounds. There, we only assumed query access to U . In contrast, the
lower bound holds even assuming query access to U and U† as well as controlled versions thereof.

Proof of Proposition 9. The proof builds on the following lemma that maps the problem to a fractional
query one [21].

Lemma 24 (Reduction to fractional query algorithms, [21, Lemma 4.5 and proof of Theorem 1.2]). Let
R 2 U(d) be a Hermitian unitary (i.e., R2 = I). Define R↵ = (I + R)/2 + e�i⇡↵(I � R)/2 for some
↵ 2 (0, 1]. Suppose there exists an algorithm A that uses Q queries to R↵ or R↵† and produces some
output with probability at least 2/3. Then there exists another algorithm A

0 that uses 50+100↵Q queries
to controlled-R and produces the same output with probability at least exp(�↵⇡Q)/2.

To use this lemma, we need to construct a packing net of Hermitian unitaries, and give an upper
bound on the maximum probability of successfully distinguishing them. Thus we need the following two
lemmas.

Lemma 25 (Packing net of Hermitian unitaries, variant of [21, Proposition 4.1]). There exists a set of
Hermitian unitaries P = {Ri}i ⇢ U(d) with log |P | � ⌦(d2) and R2

i = I for Ri 2 P, such that for any
Ri 6= Rj 2 P, d0F (Ri, Rj) � 1/8.

Proof. Let d = 2r+1 if d is odd, or d = 2r+2 if d is even. [135, Lemma 7] (or Lemma 8 in [19]) asserts
that there exists a set of rank r density matrices in dimension 2r with cardinality at least exp

�
r2/8

�
,

such that all the non-zero eigenvalues are equal to 1/r, and any two different density matrices have trace
distance at least 1/4. We can write this set as {(I2r + Vi)/(2r), i = 1, . . . , N}, where Vi 2 U(2r) is a
Hermitian unitary of trace zero. Then N � exp

�
r2/8

�
, and 8i 6= j,

1

4


1

2

����
I2r + Vi

2r
�

I2r + Vj

2r

����
1

=
1

4r
kVi � Vjk1 

1
p
2r

kVi � VjkF . (C.37)

where we have used kVik1 
p
2rkVikF . Then we embed Vi ! Ri = Vi � Ib 2 U(d), where b = 1 or 2,

depending on whether d is odd or even. We have

dF (Ri, Rj) =
1
p
d
kRi �RjkF �

1

4

r
2r

2r + b
�

1

8
. (C.38)

Now we would like to translate dF into d0F . From Lemma 10, we know that changing to the quotient
metric for any set of unitaries only decreases logN by an additive constant (since here we consider
constant ✏). Therefore, we still have log |P | � ⌦(d2) for d0F (Ri, Rj) �

1
8 .

Lemma 26 (Upper bound on success probability of distinguishing unitaries, [63, Theorem 5]). Let
P ✓ U(d) be a set of unitaries. Let A be any algorithm that uses Q queries to an input unitary Ux and
output a guess x̂. Suppose the input unitary is randomly picked from P with uniform probability. Then
the maximal probability that the output satisfies x̂ = x is upper bounded by 1

|P|

�Q+d2
�1

Q

�
.

Now we can proceed to prove the lower bound in Proposition 9. Suppose we have a learning algorithm
A that uses Q queries and outputs a Û that has accuracy ✏ in davg with success probability at least
2/3. From the theory of universal gates [136], we know that G = O(4k) gates suffice to implement an
arbitrary k-qubit unitary, i.e., there exists constant C such that G gates can implement arbitrary unitary
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on k = blog4(G/C)c qubits. Let d = min{2n, 2k}, and focus on the first min{n, k} qubits. The algorithm
A thus is able to learn any unitary on these qubits.

Consider the packing net P = {Ri} from Lemma 25 for this choice of d. We want to identify R 2 P,
but using only access to R↵ for 1/↵ = b1/32✏c > 1. If we apply A to R↵, then with probability at least
2/3, the output U satisfies davg(U,R↵)  ✏. From the equivalence of davg and d0F (Lemma 4), and the
triangle inequality and unitary invariance of d0F , we have

d0F (U
1/↵, R) 

1/↵X

p=1

d0F (U
pR1�↵p, Up�1R1�↵p+↵) =

2

↵
davg(U,R

↵) 
2✏

↵


1

16
. (C.39)

Since R 2 P have pairwise distance at least 1/8, the algorithm can identify R with success probability
at least 2/3 by finding the closest element of P to U1/↵.

Now, via Lemma 24, we know that there is a learning algorithm A
0 that can use 50+100↵Q queries to

controlled-R to identify R with success probability at least exp(�↵⇡Q)/2. On the other hand, we know
the success probability cannot exceed the upper bound

�Q+d2
�1

Q

�
/|P| set by Lemma 26 with log |P | �

⌦(d2). Combined with a technical lemma [21, Lemma 4.3], this means that the number of queries must
be at least ⌦(d2). That is,

50 + 100↵Q � ⌦(d2) =) Q � ⌦

✓
d2

↵

◆
= ⌦

✓
d2

✏

◆
= ⌦

✓
min{4n, G}

✏

◆
. (C.40)

This concludes the proof of Proposition 9.

We comment on the connection of our results to the recent work [51] on the hardness of learning Haar-
random unitaries, where the authors proved a sample complexity lower bound ⌦

⇣
d2

log2 d

⌘
for learning

d-dimensional Haar-random unitaries to constant accuracy w.r.t. d0F . The direct consequence of our
lower bound when applied to learning the whole unitary group U(d), without assumptions of limited
complexity, is a lower bound of ⌦

�
d2
�
, which is stronger than that of [51, Theorem 1] by a factor

of log2 d. We note that this difference is a consequence of proof techniques that comes about in two
ways. One log d factor comes from their analysis of the differential entropy, which only calculated the
contribution of ⇥

⇣
d

log d

⌘
columns of the matrix elements, instead of all d columns. This issue does not

arise for us because we focus on the discrete entropy with the use of a packing net. The other log d
comes from the mutual information upper bound, where they use the straightforward Holevo bound:
Each d-dimensional quantum state can carry at most O(log d) bits of information. We manage to get
rid of this factor by making use of a more refined bound on success probability as in Lemma 26.

Lastly, we remark on the proof technique used here compared to the Holevo information bound in
the state learning case (Appendix B 2). The Holevo bound is particularly useful in proving these lower
bounds because, combined with the data processing inequality, it gives an upper bound on the amount of
information that can be extracted from quantum states. In particular, it asserts that, given an ensemble
of d-dimensional states {⇢X} with random classical labels X 2 [M ], the maximal mutual information
with the underlying random label when using k copies of the state is upper bounded by �(X; ⇢⌦kX ) ,
S(EX [⇢⌦kX ]) � EX [S(⇢⌦kX )]. Meanwhile, the information needed to distinguishing a packing net of d-
dimensional states is lower bounded by ⌦(d). Thus, upper bounding the Holevo � via the number of
samples k can give us sample complexity lower bounds. A naive upper bound is �  S(EX [⇢⌦kX ])  k log d
because EX [⇢⌦kX ] is a dk-dimensional mixed state and thus has entropy at most k log d. This gives us
a ⌦(d/ log d) sample complexity lower bound with a sub-optimal logarithmic factor. To get rid of the
log d factor, [168] noted that k copies of a d-dimensional pure state live in the symmetric subspace of
the k-fold tensor power of d-dimensional Hilbert space. Therefore, the first term S(EX [⇢X ]), along with
the Holevo �, can be more tightly upper bounded by log

�k+d�1
k

�
, where the binomial coefficient is the

dimension of the symmetric subspace. This can then be used to prove a ⌦(d) lower bound, which is
optimal in d.

However, an analogous result for unitaries (or more generally channels) queries is still lacking. Consider
an ensemble of channels {CX} labeled by a classical random variable X 2 [M ]. In general, one can
sequentially query the channel k times interleaved with processing operations to prepare a state carrying
the information extracted from the queries. This then has the form ⇢kX = CkCXCk�1CX · · · C1CX(⇢0),
where Ci are fixed channels independent of X, and ⇢0 is some fixed state. Then the amount of information
that one can extract is given by the Holevo information �(X; ⇢kX) = S(EX [⇢kX ]) � EX S([⇢kX ]). Upper
bounding this quantity is in general difficult. [169] used induction and obtained �  k log

�
d2
�

which
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corresponds to the naive upper bound in the state case. Using this, however, can only give us a suboptimal
⌦(d2/ log d) query complexity lower bound. We suspect that an improved method, similar in spirit to
[168], making use of the fact that all k queries are to the same channel CX should be possible and give a

�(X; ⇢kX)  log

✓
k + d2 � 1

k

◆
(C.41)

upper bound. This would then also give an information-theoretic perspective on the binomial coefficient
appearing in the unitary discrimination result Lemma 26 originally proved by positive-semi-definite
programming. We leave the proof of this Holevo information bound as an open problem for future work.

4. Learning from classically described data

As we have seen in Theorems 1 and 4, the sample complexity of learning G-gate states and unitaries
are both ⇥̃(G). This suggests that they have similar source of complexity. However, differently from
state learning, we can identify two sources of difficulty in unitary learning: (1) reading out the input and
output quantum states, and (2) learning the mapping from inputs to outputs. The similar complexity
⇥̃(G) of both state and unitary learning suggests that learning the mapping is actually easy and may
only need a constant number of queries to the unknown unitary.

To formalize this idea, we consider a different access model for the unitary learning task: We focus on
learning the mapping by assuming training data that contains classical descriptions of input and output
states. Specifically, we consider a learning algorithm H that selects N input n-qubit states {|xii}

N
i=1,

and queries the unknown unitary to get {U |xii}
N
i=1, where we have (repeated) access to the classical

descriptions of all these input and output states. Based on these classically described data, we want to
use the learning algorithm H to output a Û that satisfies davg(Û , U)  ✏.

A recent line of research on the quantum no-free-lunch theorem [45, 46] implies that the above task of
learning the mapping from classically described data in the average-case distance requires at least ⌦(2n)
samples. This seems to contradict our idea that learning the mapping should be easy. However, [46] also
demonstrated how to circumvent the quantum no-free-lunch theorem. In particular, they showed that
by entangling our input states with an ancillary system, applying the unitary on the original system,
and collecting the output entangled states, we can reduce the sample requirement by a factor equal to
the Schimidt rank r of the entangled states. In the limit of maximally entangled state where r = 2n,
the output state is in fact the Choi–Jamiołkowski state of the unitary, which already contains all the
matrix elements of the unitary. Therefore, [46] concluded that using entangled data can reduce the
data requirements and eventually make the unitary learning task easy, requiring only one sample with a
maximally entangled input state.

Here, we aim to go beyond this result and provide a unified information-theoretic reformulation of the
quantum no-free-lunch theorem (Theorem 17), which is not limited to entangled data. We find that the
key ingredient to reduce the sample complexity of learning with classical description is to enlarge the
representation space (i.e., the space that the output states live in). While entanglement is one way to
achieve such an enlargement, it is not the only one. In fact, we find an alternative method that only uses
classically mixed states and achieve the same reduction in sample complexity. Specifically, we establish
the following theorem.

Proposition 10 (Upper bounds in learning with classical descriptions, restatement of upper bounds in
Theorem 5). There exists a learning algorithm Hentangle that, for any n-qubit unitary U 2 U(2n), uses
N = d2n/re classically described data {(|xii , (U ⌦ I) |xii)}Ni=1, where |xii are bipartite entangled states
over two n-qubit systems with Schmidt rank at most r, to output a Û such that davg(Û , U)  ✏ for any
✏ > 0.

Similarly, there exists a learning algorithm Hmixed that, for any n-qubit unitary U 2 U(2n), uses
N = d2n/re classically described data {(⇢i, (U ⌦ I)⇢i(U ⌦ I)†)}Ni=1, where ⇢i are classically mixed states
over two n-qubit systems with rank at most r of the form

⇢i =
rX

j=1

pij |�ijih�ij |⌦ | ijih ij | , (C.42)

to output a Û such that davg(Û , U)  ✏ for any ✏ > 0.

Note that, since the number N of training data points in Proposition 10 is independent of the desired
accuracy ✏ > 0, we can also learn w.r.t. d⌃. In fact, we can even learn the unknown unitary exactly.
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We prove Proposition 10 by explicitly constructing the learning algorithms. We remark that the r = 2n

case for entangled data has previously appeared in [46], and a different strategy using mixed states was
proposed in [68].

Proof. Let d = 2n. We begin by describing the algorithm for entangled data. We consider the following
set of input states

|xji =
1p
Zj

min{jr,d}X

i=(j�1)r+1

|ii ⌦ |ii , j = 1, . . . , dd/re . (C.43)

where the normalization Zj = r for 1  j  dd/re � 1 and Zj = d � (dd/re � 1)r for j = dd/re. They
all have Schmidt rank at most r. If we apply U ⌦ I on |xji, the output state reads

(U ⌦ I) |xji =
1p
Zj

min{jr,d}X

i=(j�1)r+1

dX

k=1

hk|U |ii |ki ⌦ |ii . (C.44)

Since we have the classical description, we can directly read off the matrix elements hk|U |ii with 1  k  d
and (j� 1)r+1  i  min{jr, d}. Combining different j, we can gather all the matrix elements we need
to learn U .

Next, we describe the algorithm for mixed state data. We consider the input states to be

⇢j =

min{jr,d}X

i=(j�1)r+1

pj |iii hii| , j = 1, . . . , dd/re . (C.45)

where the uniform mixing probability pj = 1/r for 1  j  dd/re � 1 and pj = 1/(d� (dd/re � 1)r) for
j = dd/re. Then all ⇢j have rank at most r. If we apply U ⌦ I on |xji, the output state becomes

⇢j =

min{jr,d}X

i=(j�1)r+1

pj(U ⌦ I) |iii hii| (U ⌦ I)†, j = 1, . . . , dd/re . (C.46)

We can interpret this output mixed state as randomly choosing a basis state in the ancillary system and
applying the unitary to the same state in the original system. Since we have the classical description,
we can use the ancillary system as a label for which state we inputted (e.g, |ii), and read off all the
amplitudes of U |ii on the original system, i.e., a column of the U matrix. Then by combing all the
different basis elements |ii, 1  i  d, we obtain all the matrix elements of U .

Now we move on to the lower bound, which states that any noise-robust unitary learning algorithm
needs at least ⌦(2n/r) samples to learn an arbitrary unknown unitary from classically described data.
The noise-robust requirement here is in accordance with realistic learning scenarios where the tomography
of input and output states necessarily involves reconstruction imperfection and noise. Specifically, we
have the following proposition.

Proposition 11 (Lower bounds in learning with classical descriptions, restatement of lower bounds
in Theorem 5). Let ✏ 2 (0, 1), ⌘ = ⇥(✏). Let Hentangle be any learning algorithm that, for any n-qubit
unitary U 2 U(2n), uses classically described data {(|xii , |yii)}Ni=1, where |xii are bipartite entangled
states over two n-qubit systems with Schmidt rank at most r and |yii are ⌘-noisy versions of (U ⌦ I) |xii

satisfying dtr(|yii , (U ⌦ I) |xii)  ⌘, to output a Û such that davg(Û , U)  ✏. Then Hentangle needs at
least N � ⌦(2n/r) samples.

Similarly, let Hmixed be any learning algorithm that, for any n-qubit unitary U 2 U(2n), uses classically
described data {(⇢i,�i)}Ni=1, where ⇢i are classically mixed states over two n-qubit systems with rank at
most r of the form

⇢i =
rX

j=1

pij |�ijih�ij |⌦ | ijih ij | (C.47)

and �i are ⌘-noisy versions of (U ⌦ I)⇢i(U ⌦ I)† satisfying dtr(�i, (U ⌦ I)⇢i(U ⌦ I)†))  ⌘, to output a
Û such that davg(Û , U)  ✏. Then Hmixed needs at least N � ⌦(2n/r) samples.
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Proposition 11 is a consequence of the following information-theoretic reformulation of the quantum
no-free-lunch theorem. The intuition behind this theorem is simple. On the one hand, to learn a unitary,
we have to gather enough information to specify it. This required amount of information is quantified by
the metric entropy of the unitary class. On the other hand, the information provided by each sample is
limited and can be characterized by the metric entropy of the output state space. Therefore, the number
of samples needed to learn the unitary is given by the former divided by the latter. In particular, we can
see that the data requirement can be reduced if we increase the amount of information carried by each
sample, represented by the metric entropy in the denominator.

Theorem 17 (Information-theoretic reformulation of quantum no-free-lunch theorem). Let ⌘, ✏ 2 (0, 1).
Let S be a set of input states (possibly with ancillas) and P be a distribution over S. Let {⇢i}Ni=1 ⇢

SN be N classically described input states. Suppose that after applying the unknown n-qubit unitary
U from a class U ✓ U(2n) of unitaries, they are transformed into the output states {�i}Ni=1 through
the map fU : ⇢i 7! �i = fU (⇢i). Let �̃i be an ⌘-noisy version of �i satisfying dtr(�̃i,�i)  ⌘. Let
N⌘ = sup⇢2S N ({fV (⇢) : V 2 U}, dtr, ⌘) be the maximal covering number of the set of all possible
output states with different unitary acting on the input states. Let FU = {fV : V 2 U} be the set of
maps and dP (fV , fW ) =

p
E⇢⇠P [dtr(fV (⇢), fW (⇢))2] be the root mean squared trace distance. Then any

learning algorithm H that uses the ⌘-noisy classically described data {⇢i, �̃i}Ni=1 and outputs a Û such
that dP (fÛ , fU )  ✏ with probability at least 2/3 needs at least

N � ⌦

✓
logM(FU , dP , 2✏+ 6⌘)

logN⌘

◆
(C.48)

samples.
In particular, if ⌘ = ⇥(✏), U = U(2n), P is a locally scrambled ensemble up to the second moment

over n-qubit pure states (e.g., n-qubit Haar measure), S is the support of P , and fU (⇢) = U⇢U †, then
at least ⌦(2n) samples are needed.

We remark that ⌘ = ⇥(✏) is a convenient choice of noise level for stating the results, but in fact a
weaker assumption log(1/⌘) = ⇥(log(1/✏)) suffices.

In the following, we will first show that Theorem 17 implies Proposition 11 (the lower bounds in
Theorem 5). Then we will turn to the proof of Theorem 17.

Proof of Proposition 11. In both cases (entangled or mixed), we prove the ⌦(2n/r) lower bound in two
steps via Theorem 17: (1) show that the numerator logM(FU , dP , 2✏ + 6⌘) in Theorem 17 is at least
⌦(4n log(1/✏)); and (2) show that the denominator N✏ is at most O(2nr log(1/✏)) when the input states
are either entangled pure states of Schmidt rank at most r or mixed states of rank at most r. Then the
desired results follow.

For step (1), we begin by defining the distribution P with respect to which the performance in Theo-
rem 17 is measured. For both entangled and mixed cases, we define P to be the distribution of | i⌦|0i⌦n

where | i is a Haar-random state on the original system, and |0i⌦n is a fixed state on the ancillary sys-
tem. Note that this state is indeed both a bipartite entangled state with Schmidt rank at most r and of
the form Equation (C.47) with rank at most r. Moreover, since in both cases, the map fU is given by
acting the unitary U on the original system and the identity on the ancillary system, the distance metric
dP (fV , fW ) is the same as davg. Therefore, the packing number satisfies

M(FU(2n), dP , 2✏+ 6⌘) = M(U(2n), davg, 2✏+ 6⌘). (C.49)

To find the packing number M(U(2n), davg, 2✏+6⌘), we invoke the covering number bound for U(2n)
with respect to the normalized Frobeinus norm dF (Lemma 9), the fact that quotient out global phase
only change the metric entropy by a constant (Lemma 10), and the equivalence of d0F and davg (Lemma 4,
Item 1). We have

logM(FU(2n), dP , 2✏+ 6⌘) = logM(U(2n), davg, 2✏+ 6⌘) � ⌦

✓
4n log

1

✏

◆
, (C.50)

where we used ⌘ = ⇥(✏).
Next, for step (2), we compute N⌘. For entangled data, note that applying unitaries on only the first

n qubits does not change the bipartite Schmidt rank r, so the output states are pure states of the form
|�i =

P2n

i,j=1 Aij |ii ⌦ |ji, where kAkF = 1 because of normalization, and the rank of A corresponds to
the Schmidt rank which is at most r. Furthermore, the Euclidean distance between the output states is
equal to the Frobenius distance between the corresponding A-matrices. With this correspondence, we can
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explicitly construct a covering net over the output states as follows. We take a minimal ⌘-covering net
N
0 over the set of complex matrices A with bounded rank r and kAkF = 1 with respect to the Frobenius

distance. Since they are contained in the unit ball (kAkF  1) in a real linear space of dimension 2 ·2n ·r
[170, Theorem 1], by the monotinicity of covering number and the standard covering number bound
for Euclidean balls via a volume argument [48, Corollary 4.2.13], we have log |N 0|  O(2nr log(1/⌘)).
Meanwhile, similar to the proof in Lemma 1, the trace distance between any two pure states | i , |�i
are bounded by the Euclidean distance, and thus the Frobenius distance between the corresponding A
matrices:

dtr(| i , |�i) =
p
1� | h |�i |2 

p
2(1� | h |�i |) 

p
2(1� Re[h |�i]) = k| i � |�ik2. (C.51)

Therefore N
0 gives an ⌘-covering net over the output states with respect to the trace distance dtr. Hence,

logN⌘  log |N 0|  O(2nr log(1/⌘)) = O(2nr log(1/✏)) since ⌘ = ⇥(✏), and from Theorem 17 we have
the desired lower bound

N � ⌦

✓
4n log(1/✏)

2nr log(1/✏)

◆
= ⌦

✓
2n

r

◆
. (C.52)

The case of mixed states is similar. For a given input state ⇢ =
Pr

i=1 pi |�iih�i|⌦ | iih i|, the output
state reads

� =
rX

i=1

piU |�iih�i|U
†
⌦ | iih i| . (C.53)

Now we take a minimal ⌘-covering net N 00 over all pure n-qubit states with respect to Euclidean distance,
which is a unit ball in a 2 · 2n dimensional real linear space. By standard covering number bound for
Euclidean balls, we know log |N 00|  O(2n log(1/⌘)) = O(2n log(1/✏)). Then for any U |�ii, there exists
a |⌘ii 2 N

00 such that kU |�1i � |⌘1ik2  ⌘. Let �0 =
Pr

i=1 pi |⌘iih⌘i|⌦ | iih i|. Then the trace distance
is bounded by

1

2
k� � �0k1 

1

2

rX

i=1

pi
��U |�iih�i|U

†
⌦ | iih i|� |⌘iih⌘i|⌦ | iih i|

��
1


1

2

rX

i=1

pikU |�ii ⌦ | ii � |⌘ii ⌦ | iik2

=
1

2

rX

i=1

pikU |�ii � |⌘iik2 
⌘

2

rX

i=1

pi =
⌘

2
,

(C.54)

where we have used the subadditivity of trace norm, the fact that trace distance is upper bounded by
Euclidean norm for pure states, and

Pr
i=1 pi = 1. Hence the set

(
rX

i=1

pi |⌘iih⌘i|⌦ | iih i| : |⌘ii 2 N
00, 1  i  r

)
(C.55)

forms an ⌘/2-covering net of set of the output states and has cardinality |N
00
|
r. Therefore, we have

logN⌘ = r log |N 00| = O(2nr log(1/✏)). From Theorem 17, we again arrive at the desired result

N � ⌦

✓
4n log(1/✏)

2nr log(1/✏)

◆
= ⌦

✓
2n

r

◆
. (C.56)

This concludes the proof of Proposition 11, and together with Proposition 10, we have proved Theorem 5.

Now we move on to prove our quantum no-free-lunch theorem (Theorem 17). We first establish the
following information-theoretic lower bound on the sample complexity of learning discrete functions. We
remark that a version for binary-valued functions was proved in a different fashion in [171, Proposition
8] and [172, Lemma 4.8].

Proposition 12 (Information-theoretic lower bound for learning discrete functions). Let ✏ > 0, k 2 N
and F be a class of functions mapping X to Y = {1, . . . , k} with a distance metric d. Any learning

653



60

algorithm H that uses N samples {xi 2 X , yi = f(xi)}Ni=1 and outputs an f̂ such that d(f̂ , f)  ✏ with
probability at least 2/3 for any f 2 F must use at least

N � ⌦

✓
logM(F , d, 2✏)

log k

◆
(C.57)

samples.

Proof of Proposition 12. We begin by taking a maximal 2✏-packing P of F , i.e., |P| = M(F , d, 2✏) and
for any fi 6= fj 2 P, d(fi, fj) > 2✏. Now we design a communication protocol between two parties, Alice
and Bob, as follows. The packing P is shared by both parties. Alice takes a random variable W uniformly
sampled from {1, . . . ,M(F , d, 2✏)} and picks the corresponding function fW from the packing P. She then
feeds the inputs x = (x1, . . . , xN ) into fW , generating a dataset Z = ((x1, fW (x1)), . . . , (xN , fW (xN ))),
and sends the dataset to Bob. Bob’s task is to use this dataset to determine which function Alice used.
Suppose Bob is given a learning algorithm described as in the proposition. The algorithm will learn from
the dataset and output a hypothesis function f̂ that satisfies

P[d(f̂ , fW )  ✏] � 2/3 , (C.58)

no matter which W was chosen by Alice. With f̂ in hand, Bob can make the guess

Ŵ = argminfw2Pd(f̂ , fw). (C.59)

Note that as long as d(f̂ , fW )  ✏, then for any fi 6= fW 2 P,

d(f̂ , fi) � d(fW , fi)� d(f̂ , fW ) > 2✏� ✏ = ✏ � d(f̂ , fW ). (C.60)

Therefore, the error probability of Bob’s guess is bounded by

P[Ŵ 6= W ] = P[9i 6= W : d(f̂ , fi)  d(f̂ , fW )]  P[d(f̂ , fW ) > ✏]  1/3. (C.61)

By Fano’s inequality [173, Theorem 2.10.1], the conditional entropy S(W |Ŵ )  s2(1/3)+
1
3 logM(F , d, 2✏),

where s2(�) = �� log � � (1� �) log(1� �) is the binary entropy function. Then the mutual information
is at least

I(W ; Ŵ ) = S(W )� S(W |Ŵ ) � (2/3) logM(F , d, 2✏)� s2(1/3). (C.62)

On the other hand, the sample size N controls the amount of information that Bob has access to. Since
Bob’s guess is produced by the dataset Z, by the data processing inequality [173, Theorem 2.8.1], we
have

I(W ; Ŵ )  I(W ;Z) = S(Z)� S(Z|W ) = S(fW (x1), . . . , fW (xN ))  N log k, (C.63)

where we used S(Z|W ) = 0, since Z is determined by W , and the fact that (fW (x1), . . . , fW (xN )) can
take no more than kN different values. Combining the above two inequalities, we arrive at

N � ⌦

✓
M(F , d, 2✏)

log k

◆
. (C.64)

With Proposition 12, we can prove Theorem 17 by quantizing the output states to the nearest elements
in covering nets, similar to an idea employed in [174].

Proof of Theorem 17. Let k = N⌘. Since N⌘ � N ({fV (⇢), V 2 U}, dtr, ⌘) for every ⇢ 2 S, we can find
an ⌘-covering net N⇢ of size k for each ⇢ 2 S. We label the elements of N⇢ using {1, . . . , k} and define
L⇢(�) 2 [k] as the label of a covering net element � 2 N⇢.

Now we define the quantized function QfU that maps an input state ⇢ to an element of the covering
net N⇢. Specifically, for any ⇢ 2 S and any � 2 {fV (⇢), V 2 U}, there exists a �0 2 N⇢, such that
dtr(�,�0)  ⌘. For any unitary U 2 U , we define

QfU (⇢) = argmin�2N⇢
dtr(fU (⇢),�) (C.65)

and LQfU (⇢) = L⇢[QfU (⇢)] be the corresponding label. (Ties are broken arbitrarily.) Then LQfU is a
discrete-output function mapping input states S to labels [k] and it is in one-to-one correspondence with
QfU . We use F

Q to denote all these labeled quantized functions, FQ = {LQfU , U 2 U}, and define the
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distance metric on labeled functions as dL(LQfV , LQfW ) = dP (QfV , QfW ). A useful property is that
for any unitary U 2 U , we have

dP (fU , QfU ) =
q

E⇢⇠P [dtr(fU (⇢), QfU (⇢))2] 
q
E⇢⇠P [⌘2] = ⌘. (C.66)

Now we claim that if there exists a noise-robust learning algorithm H for U to accuracy ✏ in dP with
probability at least 2/3, then we can use it to construct a learning algorithm HQ for F

Q to accuracy
✏+ 2⌘ in dL with success probability at least 2/3. Hence, the sample complexity for U must satisfy

N � ⌦

✓
logM(FQ, dL, 2✏+ 4⌘)

log k

◆
, (C.67)

by Proposition 12.
To show this claim, we construct HQ as follows. For any LQfU 2 F

Q, let the dataset be

Z = (⇢1, QfU (⇢1)), . . . , (⇢N , QfU (⇢N )). (C.68)

From the definition of quantized functions, we know that the QfU (⇢i) are ⌘-noisy version of fU (⇢i)
because dtr(QfU (⇢i), fU (⇢i))  ⌘. Now we define HQ as

HQ[Z] = LQfH[Z]. (C.69)

Since the learning algorithm H is ⌘-noise-robust, we have dP (fH[Z], fU )  ✏ and thus dP (fH[Z], QfU ) 
dP (fH[Z], fU ) + dP (fU , QfU )  ✏ + ⌘ with probability at least 2/3. Then by the triangle inequality
(proved similarly as in Lemma 6), we have

dL(H
Q[Z], LQfU ) = dP (QfH[Z], QfU )  dP (QfH[Z], fH[Z]) + dP (fH[Z], QfU )  ✏+ 2⌘ (C.70)

with probability at least 2/3. Thus the claim is proved.
At this point, it remains to prove that

M(FQ, dL, 2✏+ 4⌘) � M(FU , dP , 2✏+ 6⌘). (C.71)

To prove this, we can take a maximal (2✏ + 6⌘)-packing P of FU with respect to dP , with |P| =
M(FU , dP , 2✏+ 6⌘). Then 8fU1 6= fU2 2 P, we have

2✏+ 6⌘ < dP (fU1 , fU2)  dP (fU1 , QfU1) + dP (QfU1 , QfU2) + dP (QfU2 , U2)  2⌘ + dP (QfU1 , QfU2).
(C.72)

Therefore, dL(LQfU1 , LQfU2) = dP (QfU1 , QfU2) > 2✏+ 4⌘. Hence,

M(FQ, dL, 2✏+ 4⌘) � |{LQfU , U 2 P}| = |P| = M(FU , dP , 2✏+ 6⌘). (C.73)

This concludes the proof of the main part in Theorem 17.
Finally, we illustrate the special case where ⌘ = ⇥(✏), U = U(2n) is the whole unitary group, P is a

locally scrambled ensemble up to the second moment over n-qubit pure states (e.g., n-qubit Haar measure,
see Definition 1), S is the support of P , and fU (⇢) = U⇢U†. We show that at least ⌦(2n) samples are
needed, thus reproducing the quantum no-free-lunch theorem in the usual sense and generalizing it to
locally scrambled ensembles.

To see this, we first compute logM(FU(2n), dP , 2✏+ 6⌘). From the covering number bound for U(2n)
with respect to the normalized Frobeinus norm dF (Lemma 9), the fact that quotienting out the global
phase only changes the metric entropy by an additive O(log(1/(2✏+ 6⌘))) term (Lemma 10), and by the
equivalence of d0F , davg, and dP (Lemma 4 Item 1 and Lemma 5), we know that logM(FU(2n), dP , 2✏+
6⌘) � ⌦ (4n log(1/✏)), where we used ⌘ = ⇥(✏).

Next, we move on to N⌘. Since the output states are still n-qubit pure states, N⌘ is the covering
number of the set of pure states with respect to dtr. Considering that 1

2k| ih |k1 is less than one for any
pure state | i, the covering number is upper bounded by the covering number of a unit Euclidean ball
in a ⇥(2n) dimensional linear space. Therefore, we have logN⌘  O(2n log(1/⌘)) = O(2n log(1/✏)) since
⌘ = ⇥(✏). Hence we arrive at

N � ⌦

✓
4n log(1/✏)

2n log(1/✏)

◆
= ⌦(2n). (C.74)

This concludes the proof of Theorem 17.

The information theoretic version of quantum no-free-lunch theorem (Theorem 17) also gives us a
way to generalize quantum no-free-lunch to a restricted unitary class. For example, for unitaries with
bounded circuit complexity G, the packing number in the enumerator is lower bounded by ⌦(G), while
the covering number in the denominator is upper bounded by O(min{G logG+G log n, 2n}). This gives
us a quantum no-free-lunch theorem for G-gate unitaries, where the sample complexity is lower bounded
by ⌦(1) for G  O(2n), by ⌦(G/2n) for ⌦(2n) < G  O(4n) and ⌦(2n) for G � ⌦(4n).
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5. Computational complexity

Similar to the state learning case, our algorithm for average-case unitary learning described in Ap-
pendix C 2 is not computationally efficient. In this section, we follow Appendix B 3 and first show that
there is no polynomial-time algorithm for learning unitaries composed of G = O(npolylog(n)) two-qubit
gates, assuming RingLWE cannot be solved efficiently on a quantum computer. This result also holds for
unitaries with circuit depth O(polylog(n)). Then we invoke a stronger assumption that RingLWE cannot
be solved by any sub-exponential-time quantum algorithm, and show that any quantum algorithm for
learning unitaries composed of Õ(G) gates must use exp(⌦(G)) time. Finally, we explicitly construct
an efficient learning algorithm for G = O(log n), thus establishing log n gate complexity as a transition
point of computational efficiency.

Theorem 18 (Unitary learning computational complexity lower bound assuming polynomial hardness
of RingLWE). Let � = n be the security parameter. Let U be a unitary consisting of G = O(npolylog(n))
gates (or a depth d = O(polylog(n)) circuit) that implements a pseudorandom function in RF . Such
a unitary U exists by Corollary 3. There exists no polynomial-time quantum algorithm for learning a
circuit description of U to within ✏  1/64 average-case distance davg with probability at least 2/3 from
N = poly(�) queries, if quantum computers cannot solve RingLWE in polynomial time.

Proof. Suppose for the sake of contradiction that there is an efficient algorithm A0 that can learn a
description of U to within ✏ average-case distance with probability at least 2/3. Then by standard
boosting of success probability (see e.g, [21, Proposition 2.4]), there is an efficient algorithm A that can
learn U to the same accuracy with probability at least p = 1�1/8192 with only a constant factor overhead
in time complexity. Note that this boosting requires the distance metric to be efficiently computable,
which is guaranteed by the SWAP test elaborated below. We will construct a polynomial-time quantum
distinguisher D that invokes A to distinguish between U and the unitary V 2 U corresponding to a
random classical function. This contradicts Theorem 11 Item 2.

The distinguisher D operates according to Algorithm 6.

Algorithm 6: Distinguisher D for PRF
Input: N query access to U

Output: b 2 {0, 1}
1 Run A using (N � 1) queries to U , receiving Û .
2 Prepare a random tensor product of 1-qubit stabilizer states |xi , x 2 Zn

6 .
3 Query U one more time to prepare U |xi.
4 Run the SWAP test on U |xi and Û |xi, receiving a bit b 2 {0, 1}.
5 Output b.

Recall that the SWAP test [140, 141] takes two quantum states |↵i , |�i as input and outputs 1 with
probability (1 + | h↵|�i |2)/2. We denote this algorithm as SWAP(|↵i , |�i).

Note that Step 2 in Algorithm 6, the preparation of tensor product of 1-qubit stabilizer states |xi , x 2

Zn
6 , is computationally efficient, because it can be achieved by random one-qubit gates acting on each

of the n qubits. Moreover, Step 4 can be implemented efficiently on a quantum computer because Û is
given in terms of efficient circuit description and because the SWAP test is efficiently implementable.
Thus, assuming the hypothetical learner A to be efficient, the distinguisher D is efficient as well.

We analyze the probability that the distinguisher D outputs 1 when given the pseudorandom function
U versus the random classical Boolean function V . We denote the distribution of |xi by Q. From
Lemma 5, we have

dQ(U, Û) =
q

E|xi⇠Q[dtr(U |xi , Û |xi)2] 
p
2 davg(U, Û). (C.75)

Case 1: U 2 RF . By the guarantees of A, with probability at least p, we have davg(Û , U)  ✏  1/64,
where Û is the unitary learned by algorithm A. This implies

E
|xi⇠Q

| hx| Û †U |xi |2 = 1� d2Q(U, Û) � 1� 2✏2, (C.76)

where we used the relationship between fidelity and trace distance. Then it immediately follows from
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Equation (C.76) that

Pr
U2RF,D

h
D

|Ui(·) = 1
i
= Pr

U2RF,|xi⇠Q
A,SWAP

h
SWAP

⇣
U |xi , Û |xi

⌘
= 1
i

= E
U2RF,|xi⇠Q


Pr

A,SWAP

h
SWAP

⇣
U |xi , Û |xi

⌘
= 1
���U, |xi

i�

� p E
U2RF

"
1

2
+

1

2
E

Û,|xi⇠Q

h
| hx| Û †U |xi |2

i#

� p E
U2RF


1

2
+

1

2
(1� 2✏2)

�
= p(1� ✏2) >

8189

8192
,

(C.77)

where in the first inequality we split the probability into two terms conditioned on the success and failure
of A, and we lower bound the failure term by zero, and in the last inequality we have used the fact that
p(1� ✏2) � (1� 1/8192)(1� 1/4096) > 8189/8192.

Case 2: U = V 2 U , where V is the n-qubit unitary implementing a randomly chosen classical
function. We want to upper bound the probability that the distinguisher D outputs 1 when given
queries to V . Let C be the set of all possible output unitaries of A. We follow the same reasoning as in
Equation (C.77) and note that

Pr
V 2U,D

h
D

|V i(·) = 1
i
 E

V 2U


max
W2C

E
|xi⇠Q


1

2
+

1

2
| hx|V †W |xi |2

��
+ (1� p)

 E
V 2U


max
W2C


1�

1

4
davg(V,W )2

��
+ (1� p)

, E
V 2U

[OV ] + (1� p),

(C.78)

where we define OV = maxW2C
⇥
1� 1

4 davg(V,W )2
⇤
. Furthermore, we can split the right hand side into

two parts by introducing a constant ✓:

E
V 2U

[OV ]  Pr


OV  1�

✓2

4

�
·

✓
1�
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4

◆
+Pr


OV > 1�

✓2

4

�
· 1  1�

✓2

4
+Pr


OV > 1�

✓2

4

�
, (C.79)

where we have used the fact that OV  1. Note that

Pr


OV > 1�

✓2

4

�
 Pr

V 2U
[9W 2 C : davg(V,W ) < ✓]



X

W2N

Pr
V 2U

[davg(V,W ) < ✓]

=
X

W2N

1

|U|

X

V 2U

1 {davg(V,W ) < ✓}


|N |maxW2N NW,✓

|U|
.

(C.80)

In the second line, we define N be a minimal ✓-covering net over C with respect to davg. Also, in the
last line, we define NW,✓ ,

P
V 2U 1{davg(V,W ) < ✓} to be the number of V 2 U that are ✓-close to W

in davg.
Now we aim to upper bound NW,✓ by counting. We first note that NW,✓  maxV 2U NV,4✓ +1. This is

because, by definition of NW,✓, there exist V1, . . . , VNW,✓ 2 U such that davg(Vi,W ) < ✓, 1  i  NW,✓.
Then for V1 and any Vi, 2  i  NW,✓, we have

davg(V1, Vi)  d0F (V1, Vi)  d0F (V1,W ) + d0F (Vi,W )  2 davg(V1,W ) + 2 davg(Vi,W ) < 4✓. (C.81)

This means that there are at least NW,✓ � 1 elements of U that are (4✓)-close to V1. Therefore, NV1,4✓ �

NW,✓ � 1 and hence NW,✓  maxV 2U NV,4✓ + 1.
Next, we upper bound NV,4✓ for any V 2 U . Recall that each V 2 U is an oracle unitary of a Boolean

function on {0, 1}n. We can represent it by fV (i) 2 {0, 1}, 1  i  2n. Consider a different V 0 2 U

corresponding to the Boolean function fV 0 . If fV and fV 0 differ on at least
⌃
64✓2 · 2n

⌥
of the 2n possible

inputs i 2 [2n], then the corresponding columns of the unitaries V and V 0 must also differ. In particular,
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in each of these columns, there will be a matrix element that is 1 for V but 0 for V 0. This means that
V and V 0 are 4✓ apart from each other w.r.t. davg:

davg(V, V
0) �

1

2
min

ei�2U(1)

��V � V 0ei�
��
F
�

1

2
p
d

min
ei�2U(1)

q
64✓2 · 2n|1� 0 · ei�|2 = 4✓. (C.82)

Therefore, all functions fV 0 corresponding to the V 0 2 U counted in NV,4✓ must differ from fV on strictly
less than

⌃
64✓2 · 2n

⌥
of the 2n inputs. This gives us

NV,4✓ 

d64✓
2
·2neX

k=0

✓
2n

k

◆
, (C.83)

where each term represents choosing k inputs where the output is different from fV . The right hand side
can be further bounded as

d64✓
2
·2neX

k=0

✓
2n

k

◆


✓
e2n

d64✓2 · 2ne

◆d64✓2·2ne
 2(64✓

2
·2n+1) log2(e/64✓

2). (C.84)

Note that when ✓ = 1/16, we have 64✓2 = 1/4 and 64✓2 log2(e/64✓
2) = log2(4e)/4 < 0.87. Therefore,

recalling that the set of all n-bit classical Boolean functions has size |U| = 22
n

, we obtain

Pr


OV > 1�

✓2

4

�
 |N |2�0.13·2

n+log2(4e)+1, (C.85)

where the extra one in the exponent takes the one in NW,✓  maxV 2U NV,4✓ + 1 into account.
Finally, we move on to bound |N |. Similar to Equation (B.102) in the state learning case, since our

learning algorithm is a polynomial time algorithm that can only output circuit descriptions with size
poly(n), we must have

|N |  O

⇣
(1/✓)poly(n)

⌘
= O

⇣
2poly(n)

⌘
. (C.86)

Thus we arrive at

Pr


OV > 1�

✓2

4

�
 O

⇣
2poly(n)�0.13·2

n
⌘
= negl(n) (C.87)

and therefore

Pr
h
D

|V i(·) = 1
i
 1�

✓2

4
+ negl(n) + (1� p) =

8185

8192
+ negl(n), (C.88)

where we have used ✓ = 1/16 and p = 1� 1/8192.
Combining Equation (C.77) and Equation (C.87), we have

���� Pr
U2RF

[D|Ui(·) = 1]� Pr
V 2U

[D|V i(·) = 1]

���� �
4

8192
� negl(n) �

1

4096
(C.89)

for large n. This contradicts the defining property of pseudorandom functions RF (Theorem 11 Item 2)
under the assumption that RingLWE is hard.

Next, we invoke the stronger assumption that RingLWE cannot be solved by any sub-exponential-time
quantum algorithms and show that learning unitaries composed of G = O(log n · polyloglogn) gates is
computationally hard.

Theorem 19 (Unitary learning computational complexity lower bound assuming sub-exponential hard-
ness of RingLWE, restatement of lower bound in Theorem 6). Let � = l = ⇥(G) with l  n be the
security parameter. Let V be an l-qubit unitary consisting of O(lpolylog(l)) = O(Gpolylog(G)) gates (or
a depth d = O(polylog(G)) circuit) that implements a pseudorandom function in RF . Such a unitary V
exists by Corollary 3. Let U = V ⌦ I, where the identity I is over the last (n� l) qubits. Any quantum
algorithm for learning a circuit description of the n-qubit unitary U to within ✏  1/64 average-case
distance davg with probability at least 2/3 from N = poly(�) queries to U must use exp(⌦(min{G,n}))
time, if quantum computers cannot solve RingLWE in sub-exponential time.
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Proof. With polynomial hardness of RingLWE replaced by sub-exponential hardness, Theorem 18 asserts
that there are no sub-exponential (in l) quantum algorithms that can learn the l-qubit unitary V to
within average case distance ✏ < 1/64 with success probability at least 2/3. That is, any such learning
algorithms must use time at least exp(⌦(l)) = exp(⌦(min{G,n})), since l  n. Meanwhile, a polynomial
learning algorithm for the n-qubit unitary U = V ⌦ I can be used to learn the l-qubit unitary V in
the same runtime by discarding the last (n � l) qubits, because trace distance does not increase under
such operation and thus neither does davg. This implies the exp(⌦(min{G,n})) time lower bound for
the n-qubit learning algorithm.

Finally, we briefly show that learning becomes efficient when G = O(log n). The idea is that with
O(log n) gates, there can only be at most O(log n) qubits affected. Thus we can focus on these qubits
and learning the unitary amounts to manipulating at most 2O(logn) = poly(n) size matrices, which is
efficient. Specifically, we have the following statement.

Proposition 13 (Learning unitaries with logarithmic circuit complexity efficiently, restatement of upper
bound in Theorem 6). Let ✏ > 0. Suppose we are given N queries to an n-qubit unitary U consisting of
G = O(log n) two-qubit gates. There exists a learning algorithm that outputs a Û such that davg(U, Û)  ✏
with probability at least 2/3 using poly(n, 1/✏) queries and time.

Proof. We prove this by a learning algorithm similar to Proposition 7 via junta learning based on Choi
states (Appendix C 2 b) as follows.

Firstly, we prepare the Choi state of U by applying it to a maximally entangled state over 2n qubits,
execute Algorithm 4, and post-select on the trivial qubits being in the state |I� as in Appendix C 2 b.
This step uses poly(n, 1/✏) queries and time, and gives us the post-selected Choi state which is non-trivial
on only 4G = O(log n) qubits. Then we use the Pauli tomography method as in Proposition 7 to learn
a trace-distance approximation to the 4G-qubit Choi state |V̂ � using poly(n, 1/✏) queries and time. We
can enforce this approximation to be a valid Choi state by projecting it to the subspace spanned by
(A⌦ I) |�i and normalize the projected state, where A is an arbitrary matrix and |�i is the maximally
entangled state. This can be done via a projector which is a 24G = poly(n) dimensional matrix. Finally,
we calculate the corresponding unitary V̂ and set Û = V̂ ⌦ I. Note that this step is efficient as it only
involves manipulating matrices of size 24G = poly(n). Since the trace distance between Choi states is
equivalent to the average-case distance between the corresponding unitaries, this gives us a poly(n, 1/✏)
learning algorithm for average-case unitary learning.

Appendix D: Learning physical functions

As stated in the main text, learning classical functions that map variables controlling the input states
and evolution to some property of the outputs is an alternative way of learning about Nature. Learning
such functions has long been a central task of statistics and, more recently, classical and quantum machine
learning. However, the physical mechanism that gives rise to these functions has largely been overlooked
for the convenience of mathematical abstraction.

In fact, we can formulate the physical mechanism underlying a classical function as an experiment
procedure involving a unitary with bounded circuit complexity. Specifically, we consider the following
general experimental setting.

1. Given a set of ⌫ variables x 2 [0, 1]⌫ , we prepare a pure state that can depend on x in a fixed way.

2. We evolve the state using a unitary U(x; {Ui}
G
i=1, a) that contains at most G two-qubit gates

{Ui}
G
i=1, which can be tuned arbitrarily, and any number of fixed unitaries, which can depend on

x, according to a circuit architecture a in an architecture class A.

3. We measure the output state with a fixed observable O and read out the expectation value as the
function output.

We can w.l.o.g. absorb the state preparation into the unitary. Then the experiment gives rise to the
function

f(·; {Ui}, a) : [0, 1]
⌫
3 x 7! f(x; {Ui}, a) =

⌦
0n
��U(x; {Ui}, a)

†OU(x; {Ui}, a)|0
n
↵
. (D.1)

We define

F
⌫
G,A = {f(·, {Ui}, a) : a 2 A,Ui 2 U(22), i = 1, . . . , G} ✓ R[0,1]⌫ (D.2)
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to be the function class given by a class of architectures A for G-gate unitaries. We call such functions
physical functions, and F

⌫
G,A the class of ⌫-variable physical functions with G gates and architectures A.

This experiment can also be understood as a quantum machine learning problem, where we want
to collect training data {x, f(x)} to learn to approximate certain functions in a function class using
the ansatz described above. Then, the tunable gates {Ui} can be understood as variational/trainable
parameters of our quantum neural network. We note that the data encoding unitaries may simply use
x as the angles for rotation, or it can also be arbitrarily complex (e.g., complex enough to implement a
quantum random access memory [175] that prepares the amplitude encoding of the data) as long as it is
not trainable. This encompass the case where the input data are classical descriptions of the input pure
state. Also the order of the data encoding unitaries and the trainable unitaries can be arbitrary, thus
accommodating data re-uploading strategies [176, 177].

We will show that to approximate a certain class of functions well, we need a minimal number of
samples to learn and a minimal number of gates G (Theorem 7). In particular, we consider the class of
1-bounded and 1-Lipschitz functions on [0, 1]⌫ , which can (up to equivalence classes) be represented by
the unit ball B1,1 in the Sobolev space W 1,1

[0,1]⌫ . We establish the following theorem, where the learning
criterion is the standard one for learning real functions [73, Definition 16.1].

Theorem 20 (Sample and gate complexity lower bounds on functions given by G-gate unitaries to
approximate bounded Lipschitz functions, restatement of Theorem 7). Let F⌫

G,A ✓ R[0,1]⌫ be the function
class given by an architecture class A of G two-qubit unitaries. Let ✏ 2 (0, 1) and let l(|h(x) � y|) be a
loss function where l is a strictly increasing function with derivative larger than some positive constant
on [1,1). Suppose for any 1-bounded and 1-Lipschitz function f 2 B1,1, there exists an h 2 F

⌫
G,A such

that kf � hk1 < ✏. Then the smallest training data size N such that there exists a learning algorithm
H : ([0, 1]⌫ , [0, 1])N ! F

⌫
G,A that satisfies

PS⇠PN

(
E(X,Y )⇠P l(|H[S](X)� Y |)� inf

f2F⌫
G,A

E(X,Y )⇠P l(|f(X)� Y |)  ✏

)
� 0.99, (D.3)

for any probability distribution P over [0, 1]⌫ ⇥ [0, 1] must be at least

N � ⌦

✓
1

✏⌫

◆
. (D.4)

Moreover, we need at least

G � ⌦̃

✓
1

✏⌫/2

◆
(D.5)

two-qubit unitaries if A contains variable circuit structures, or G � ⌦̃(1/✏⌫) if the circuit structure is
fixed. The ⌦̃ for variable circuit structures hides logarithmic factors in ✏ as well as in the number of
qubits n, while the ⌦̃ for fixed structure only hides logarithmic factors in ✏.

This means that to approximate 1-bounded and 1-Lipschitz functions in ⌫-variables well to O(1/nD)
accuracy, we need at least ⌦̃(n⌫D/2) two-qubit unitaries and ⌦(n⌫D) samples to train on. And ⇠ 1/ exp(n)
accuracy can only be achieved with exponential-size quantum circuits and exponentially many samples.
This result establishes a limitation on the maximal efficiency of using parameterized quantum circuits
to approximate functions, complementary to existing works on universal approximation theorems for
parameterized quantum circuits [75–78].

The exponential dependence on the number of variables N suggests that if one has an extensively large
input vector (whose length scales with n), then the number of samples and gates needed to approximate
such functions is exponentially large. Moreover, if the variables are encoded using amplitude encoding
(e.g., via QRAM), which accommodates exponentially many variables (⇠ 2n), then the gate and sample
requirement would grow double exponentially in 1/✏. This phenomenon, named curse of dimensionality,
was also established in the theory of classical neural networks [74, Chapter 3]. We show that it still
exists in quantum machine learning.

This curse can be circumvented by introducing more structure or constraints on the function class. For
example, if we constrain to Fourier-integrable functions, a ⌫-independent number of O(1/✏2) parameters
suffice for both classical [74, Theorem 3.9] and quantum [75] machine learning. However, the curse of
dimensionality shows that many-variable 1-bounded and 1-Lipschitz functions are not physical [45, 146]
because Nature cannot efficiently implement them.
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In order to prove Theorem 20, we proceed in three steps. Firstly, we show that the complexity of the
function class F

⌫
G,A is limited by the number of gates G. Then we prove that to approximate certain

functions (1-bounded and 1-Lipschitz functions) well enough, the complexity must not be too small.
Finally, we show that to learn a function class from data, the number of samples we need is lower
bounded by the complexity of the function class.

1. Circuit complexity and function complexity

The complexity of the function class F
⌫
G,A, measured by the pseudo-dimension or fat-shattering di-

mension [178, 179], is limited by the number of trainable gates G and the size of the architecture class
A. This is because from the linearity of quantum mechanics, the function f(x; {Ui}, a) is a polynomial
in the matrix elements of the trainable unitaries {Ui}, and the degree of this polynomial is limited by
G. Following the idea of [72], we formalize this idea into the following lemma.

Lemma 27 (Functions given by G-gate unitaries are bounded degree polynomials). Let F
⌫
G,A be the

function class given by an architecture class A of G two-qubit unitaries. Then there exists a set of
functions P ⌫G,A in 32G + ⌫ real variables with size |P ⌫G,A| = |A| such that the following two properties
hold.

1. 8f 2 F
⌫
G,A, there exist a p 2 P ⌫G,A and an assignment of the first 32G variables such that p under

this assignment is the same as f in the last ⌫ variables;

2. Each p 2 P ⌫G,A depends polynomially on the first 32G variables with degree at most 2G.

Proof. We begin by noting that for any fixed architecture a 2 A, the function f(x, {Ui}, a) is a function
of 32G+ ⌫ real variables, where the first 32G = 2 · 22 · 22 ·G variables are the real and imaginary parts
of the matrix elements of {Ui 2 U(22)}, and the last ⌫ variables are the input data x 2 [0, 1]⌫ .

Next, we aim to prove that f is a bounded degree polynomial in the unitary matrix elements. We follow
the idea of [72, Lemma 1] and analyze the function f(x, {Ui}, a) gate by gate. We note the following
fact from linear algebra: for any state | i and matrix U , the product U | i is a state whose amplitudes
are linear combinations of the amplitudes of | i and of matrix elements of U . Therefore, by applying
{Ui}

G
i=1 and other unitaries that do not depend on {Ui} sequentially according to the architecture a,

we get a state whose amplitude is a polynomial of the matrix elements of {Ui} with degree at most G.
Hence, the output scalar

⌦
0n
��U(x; {Ui}, a)†OU(x; {Ui}, a)|0n

↵
is a polynomial of the matrix elements of

{Ui} with degree at most 2G. Fixing those 32G variables corresponds to fixing {Ui} and thus specifying
any particular function in F

⌫
G,A with this architecture a. Taking into account the dependence on x and

gathering the function for each architecture a 2 A, we arrive at the desired set of functions P ⌫G,A with
|P ⌫G,A| = |A|.

The fact that these functions are of bounded degree in the variables specifying the trainable unitaries
implies an upper bound on pseudo-dimension. We prove this with a reasoning analogous to [180] and
[72, Theorem 2].

Proposition 14 (Pseudo-dimension upper bound for functions given by G-gate unitaries). Let F⌫
G,A be

the function class given by an architecture class A of G two-qubit unitaries. Then the pseudo-dimension
of F⌫

G,A is at most 128G log2(16eG|A|).

Proof. Let {(xi, yi)}mi=1 ✓ [0, 1]⌫ ⇥R be a set of data points satisfying that for any C ✓ {1, . . . ,m}, there
exists fC 2 F

⌫
G,A such that f(xi)� yi � 0 if and only if i 2 C. That is, {(xi, yi)}mi=1 is pseudo-shattered

by F
⌫
G,A. From Lemma 27 we know that there exists a set of functions P in 32G + ⌫ real variables

with size |P | = |A| such that for every C, there is a pC 2 P and an assignment ⌅C to the first 32G
variable that satisfies pC(⌅C , xi) � yi � 0 if and only if i 2 C. This means that the set of functions
{p(·, xi)�yi : i = 1, . . . ,m, p 2 P} is a set of m|A| polynomials of degree at most 2G in 32G real variables
that has at least 2m different consistent sign assignments3. Now we invoke the following technical lemma.

Lemma 28 (Bounded degree polynomials have a bounded number of consistent sign assignments, [72,
180, 181]). Let P be a set of real polynomials in v variables with |P | � v, each of degree at most D � 1.
Then the number of consistent sign assignments to P is at most (8De|P |/v)v.
3

A consistent sign assignment to a set of polynomials p1, . . . , pk is a vector b 2 {�1, 0, 1}k such that there exists a set of

input variables z1, . . . , zN 2 R such that sgn[pi(z1, . . . , zN )] = bi for all 1  i  k.
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Thus we have

2m 

✓
8 · 2G · em|A|

32G

◆32G

. (D.6)

Taking the logarithm yields

m  32G(log2(16eG|A|) + log2(m/(32G))). (D.7)

Let’s first assume m � 32G. If log2(16eG|A|) � log2(m/(32G)), then we have m  64G log2(16eG|A|).
Otherwise, log2(16eG|A|) < log2(m/(32G)) and we have m  64G log2(m/(32G)), which translates into
log2(m/(32G))

m/(32G) �
1
2 . Thus m/(32G)  4 and m  128G. In both cases, we have m  128G log2(16eG|A|).

If m < 32G, this is also true. Therefore, we have pseudo-dimension (by definition in Definition 6) at
most 128G log2(16eG|A|).

A special case is for fixed circuit architecture |A| = 1, where we have pseudo-dimension at most
128G log2(16eG). On the other hand, if we allow variable structure of the trainable unitaries, then
|A| 

�n
2

�G
 n2G, and we have pseudo-dimension at most 128G log2(16eG) + 256G2 log2(16eGn).

2. Function complexity and approximation power

Now that we know the pseudo-dimension of such function class is upper bounded via the number of
gates G, we can derive the minimal number of gates needed to obtain certain function approximation
power. Consider the class of 1-bounded and 1-Lipschitz functions on [0, 1]⌫ , which can be represented
by the unit ball B1,1 in the Sobolev space W 1,1

[0,1]⌫ . In order to approximate these functions well, the
pseudo-dimension (and also the fat-shattering dimension) of our function class cannot be too small.

Lemma 29 (Pseudo/fat-shattering dimension and approximation power, variant of [179, Theorem 2.10]
and [182, Theorem 4]). Let ✏ > 0 and F ✓ R[0,1]⌫ be a class of functions such that for any f 2 B1,1,
there is an h 2 F such that kf � hk1 < ✏. Then the pseudo-dimension of F must be at least 1/(4✏)⌫ .
The ✏-fat-shattering dimension of F must be at least 1/(8✏)⌫ .

Proof. Let m 2 N to be chosen later. Let x1, . . . , xM 2 [0, 1]d be M = (m+ 1)⌫ points on a cubic lattice
such that kxi � xjk � 1/m for all i 6= j. Let y 2 RM , and we will now construct a smooth function that
takes the y values at these lattice points. Specifically, we define

f(x) =
MX

i=1

yi�(m(x� xi)), (D.8)

where �(z) =
Q⌫

j=1 '(zj) and ' is a smoothed version of the triangular function that takes value 0 at
|z| � 1/2 and value 1 at z = 0 and |@j�(z)|  C for any C > 2. In this way, we have f(xi) = yi for all
1  i  M .

Next, for any ↵ 2 {0, 1}M , set yi = ↵i/(Cm). This means that |yi|  1/(Cm) and thus f 2

B1,1. Then by assumption there must be an h 2 F such that kf � hk1 < ✏. In particular, we have
|f(xi)� h(xi)| = |yi � h(xi)| < ✏ for all i.

Now, for the pseudo-dimension, we can choose m large enough (say, m =
⌅
1/(C2✏)

⇧
) such that ✏ <

1/(2Cm). Then

h(xi) �
1

2Cm
() ↵i = 1, yi =

1

Cm
. (D.9)

Therefore, by definion in Definition 6, {x1, . . . , xM} is pseudo-shattered by F , and thus the pseudo-
dimension of F is at least M = (m + 1)⌫ � 1/(C2✏)⌫ . Taking the limit C ! 2 yields the desired
result.

For fat-shattering dimension, we can choose m large enough (say, m =
⌅
1/(C3✏)

⇧
) such that ✏ <

1/(4Cm). Then

↵i = 1 =) h(xi) �
1

Cm
� ✏ �

1

2Cm
+ ✏, (D.10)

and

↵i = 0 =) h(xi)  ✏ 
1

2Cm
� ✏. (D.11)
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Therefore, by definion in Definition 7, {x1, . . . , xM} is ✏-fat-shattered by F , and thus the ✏-fat-shattering
dimension of F is at least M = (m + 1)⌫ � 1/(C3✏)⌫ . Taking the limit C ! 2 yields the desired
result.

3. Function complexity and sample complexity

Now we aim to show that in order to learn a function class, the number of samples we need is lower
bounded by its complexity. In particular, we achieve this through the fat-shattering dimension.

Proposition 15 (Sample complexity lower bound for real-valued functions by fat-shattering dimension,
variant of [73, Theorem 19.5]). Let F ✓ [0, 1]X with loss function lh(x, y) = l(|h(x)�y|). Suppose l is an
increasing (almost everywhere) differentiable function, i.e., C = inft�1 l0(t) > 0. For 0 < ✏ < 1, 0 < � 
0.01, the smallest training data size N such that there exists a learning algorithm H : (X , [0, 1])N ! F

that satisfies

PS⇠PN

⇢
E(X,Y )⇠P l(|H[S](X)� Y |)� inf

f2F
E(X,Y )⇠P l(|f(X)� Y |)  ✏

�
� 1� �, (D.12)

for any probability distribution P over X ⇥ [0, 1] must be at least

N � C
fat(F , ✏/↵)� 1

32↵
, 8↵ 2 (0, 1/4). (D.13)

Note that this contains Lp loss functions as a special case, where lh(x, y) = |h(x) � y|p, and l0(t) =
ptp�1 � p = C.

Proof. Similarly to the proof of Theorem 19.5 in [73], the idea is to reduce the problem to a discrete
classification problem. Consider the class Hd of all functions mapping from a finite set {x1, . . . , xd} ⇢ X

to {0, 1}. It’s known that any learning algorithm for Hd has sample complexity at least (d � 1)/(32✏)
for small ✏, � ([73, Theorem 5.3]). Here we show that, for any fixed ↵ between 0 and 1/4, any learning
algorithm for F to accuracy ✏ can be used to construct a learning algorithm for Hd to accuracy ↵/C,
where d = fat(F , ✏/↵). Then the proposition follows.

To see this, suppose {x1, . . . , xd} is ✏/↵-shattered by F , witnessed by r1, . . . , rd. Suppose L is a
learning algorithm for F , then we can construct a learning algorithm for Hd as follows. For each labeled
example (xi, yi), assuming yi is deterministic given xi, the algorithm passes to L the labeled example
(xi, ỹi), where ỹi = 2 if yi = 1 and ỹi = �1 if yi = 0. Let P be the original distribution on X ⇥ {0, 1},
and P̃ the induced distribution on X ⇥ {�1, 2}. Then suppose L produces a function f : X ! [0, 1], the
learning algorithm for Hd then outputs h : X ! {0, 1}, where h(xi) = 1 if and only if f(xi) > ri. Thus
we only need to prove if EP̃ lf � infg2F EP̃ lg < ✏, then EP 1(h(x) 6= y)  ↵/C.

To show this, we claim that

inf
g2F

EP̃ lg = inf
g2F

EP̃ l(|g(x)� ỹ|)  EP̃ min{l(|ŷ � ỹ|), ŷ 2 {r(x)± ✏/↵}}, (D.14)

where r(xi) = ri. This is because that P̃ is concentrated on the shattered set. Then for any assignment
{ŷi 2 {ri ± ✏/↵}, i = 1, . . . , d}, there exists a g 2 F s.t. g(xi) � ŷi if ŷi = ri + ✏/↵ and g(xi)  ŷi if
ŷi = ri � ✏/↵. In particular, we consider the assignment of ŷi s.t. l(|ŷi � ỹi|) is minimized. Then there
exists a function g⇤ staistifying the following property. If ỹi = �1, then the minimizer is ŷi = ri � ✏/↵,
and we have l(|g⇤(xi)� ỹi|)  l(|ŷ � ỹi|) since ỹi < g⇤(xi)  ŷi. Similarly, if ỹi = 2, then the minimizer
is ŷi = ri + ✏/↵, and we still have l(|g⇤(xi)� ỹi|)  l(|ŷ � ỹi|) since ŷi  g⇤(xi)  ỹi. Therefore, since ỹi
and yi is deterministic given xi, we have found a single g⇤ s.t. EP̃ l(|g

⇤(x)� ỹ|)  EP̃ min{l(|ŷ � ỹ|), ŷ 2

{r(x)± ✏/↵}}. Hence, the infimum over g 2 F infg2F EP̃ l(|g(x)� ỹ|)  EP̃ l(|g
⇤(x)� ỹ|)  EP̃ min{l(|ŷ�

ỹ|), ŷ 2 {r(x)± ✏/↵}}. Therefore,

EP̃ lf � inf
g2F

EP̃ lg � E[l(|f(x)� ỹ|)�min{l(|ŷ � ỹ|), ŷ 2 {r(x)± ✏/↵}}]. (D.15)

Consider the quantity inside the expectation, for x = xi with y = 0, ỹ = �1, let a = f(xi) + 1, b =
ri � ✏/↵+ 1. Then by Lagrange’s mean value theorem, there exists a c between a and b, such that this
quantity can be written as

l(a)� l(b) = l0(c)(a� b) = l0(c)(f(xi)� ri + ✏/↵). (D.16)
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If l(|f(x)� ỹ|)�min{l(|ŷ � ỹ|), ŷ 2 {r(x)± ✏/↵}} < C✏/↵, then

f(xi)� ri <
✏

↵

C � l0(c)

l0(c)
< 0, (D.17)

and we have f(xi) < ri and h(xi) = 0 = yi. Similar arguments apply for y = 1. Thus,

EP 1(h(x) 6= y)  P̃ [|f(x)� ỹ|p �min{|ŷ � ỹ|p, ŷ 2 {r(x)± ✏/↵}} � C✏/↵] (D.18)


↵

C✏
EP̃ [|f(x)� ỹ|p �min{|ŷ � ỹ|p, ŷ 2 {r(x)± ✏/↵}}] (D.19)


↵

C✏
(EP̃ lf � inf

g2F
EP̃ lg) 

↵

C
. (D.20)

This completes the proof of Proposition 15.

With Proposition 14, Lemma 29 and Proposition 15, we can finally proceed to prove Theorem 20.

Proof of Theorem 20. To show the gate number lower bound, note that from Proposition 14, Pdim(F⌫
G,A)

is upper bounded by 128G log2(16eG) + 256G2 log2(16eGn) for variable circuit structures and by
128G log2(16eG) for fixed circuit structure. Meanwhile, from Lemma 29, we know that to approximate
any ⌫-variable 1-bounded and 1-Lipschitz functions to ✏ error in k·k

1
, we must have Pdim(F⌫

G,A) �

1/(4✏)⌫ and fat(F⌫
G,A, ✏) � 1/(8✏)⌫ . Therefore, for variable circuit structures, we have

1/(4✏)⌫  Pdim(F⌫
G,A)  128G log2(16eG) + 256G2 log2(16eGn), (D.21)

and thus G � ⌦̃(1/(✏)⌫/2). Similarly, for fixed circuit structure, we have G � ⌦̃(1/✏⌫).
To show the sample complexity lower bound, note that from Proposition 15, we have the sample

complexity N � C
fat(F⌫

G,A,✏/↵)�1

32↵ . Setting ↵ = 1/8 and using the fat-shattering bound from Lemma 29,
we arrive at N � ⌦(1/✏⌫).

Appendix E: Preliminary results on learning brickwork circuits

As stated in the outlook section, an interesting circuit structure is the brickwork circuit, which is
generated by repeatedly applying the following two layers of gates (suppose n is even): (1) U1,2 ⌦U3,4 ⌦

· · ·⌦Un�1,n and (2) U2,3 ⌦U4,5 ⌦ · · ·⌦Un�2,n�1, where Ui,j denotes a 2-qubit unitary acting on the ith
and jth qubit. Here we utilize the tools from unitary t-designs [120] to prove that the metric entropy
of G-gate brickwork circuits is lower bounded by ⌦(tn), if they can implement (approximate) unitary
t-designs. Specifically, we have the following result.

Proposition 16 (Metric entropy lower bound of brickwork circuits). Let Un,brick
G ✓ U(2n) be the set

of n-qubit unitaries that can be implemented with G-gate brickwork circuits. Suppose that the uniform
distribution over Un,brick

G forms an ✏-approximate t-design of U(2n) for some ✏ 2 (0, 1/2). Then we have

logM(Un,brick
G , davg, ✏) � ⌦(tn). (E.1)

Proof. Suppose Un,brick
G with the uniform distribution forms an ✏-approximate t-design E of U(2n). We

begin by recalling a moment bound for approximate unitary designs.

Lemma 30 (Moment bound of approximate unitary designs, [28, proof of Lemma 1]). Suppose E is an
✏-approximate unitary t-design of U(d). Then for any unitary V 2 U(d), we have

EU⇠E

⇥
| tr
�
U†V

�
|
2t
⇤
 (1 + ✏)t! . (E.2)

Consequently, by Markov’s inequality, we have the following lemma saying that a random element of
a design is far apart from a fixed unitary with high probability.

Lemma 31. (Design elements are far away from any fixed unitary). Suppose E is an ✏-approximate
unitary t-design of U(d). Then for any unitary V 2 U(d), we have

PU⇠E

⇥
kU � V k

2
F  2d(1��)

⇤
 PU⇠E

⇥
| tr
�
U†V

�
| � d�

⇤


1 + ✏

�2t

t!

d2t
. (E.3)

664



71

Proof. To prove this, we use the above moment bound and Markov’s inequality:

PU⇠E

⇥
| tr
�
U†V

�
| � d�

⇤
= PU⇠E

⇥
| tr
�
U†V

�
|
2t

� d2t�2t
⇤


EU⇠E

⇥
| tr
�
U†V

�
|
2t
⇤

d2t�2t


1 + ✏

�2t

t!

d2t
. (E.4)

Furthermore, since kU�V k
2
F = 2d�2Re[tr

�
U†V

�
]  2d(1��) implies | tr

�
U†V

�
| � Re[tr

�
U †V

�
] � d�,

Lemma 31 follows.

Now, we apply a probabilistic argument by randomly choosing M i.i.d. unitaries U1, . . . , UM from E .
The probability that any two of them are far away from each other is given by

PU1,...,UM⇠E [81  i 6= j  M, kUi � Ujk
2
F � 2d(1��)] (E.5)

= 1� PU1,...,UM⇠E [91  i 6= j  M, kUi � Ujk
2
F  2d(1��)] (E.6)

� 1�
X

1i6=jM

PU1,...,UM⇠E [kUi � Ujk
2
F  2d(1��)] (E.7)

� 1�
M(M � 1)

2

1 + ✏

�2t

t!

d2t
(E.8)

� 1�M2 1 + ✏

�2t

t!

d2t
, (E.9)

where we have used the union bound in the first inequality and Lemma 31 in the last. Therefore, as long

as we take M <

rj
�2t

1+✏
d2t

t!

k
, we have

PU1,...,UM⇠E [81  i 6= j  M, kUi � Ujk
2
F � 2d(1��)] > 0. (E.10)

Hence there must be at least one instance V1, . . . , VM 2 E such that kVi �Vjk
2
F � 2d(1��) for any pair

Vi, Vj . These unitaries form a
p
2d(1��)-packing net of Un,brick

G with respect to k · kF . Thus we have

logM(Un,brick
G , k · kF ,

p
2d(1��)) � ⌦

✓
1

2
log

�
�2t

1 + ✏

d2t

t!

⌫◆
. (E.11)

If we set
p

2d(1��) =
p
d✏ (i.e., � = 1� ✏2/2), we arrive at

logM(Un,brick
G , dF , ✏) � ⌦(tn). (E.12)

From the fact that quotienting out a global phase only changes the metric entropy by an additive
⌦(log(1/✏)) terms (Lemma 10) and the equivalence of d0F and davg (Lemma 4 Item 1), we arrive at the
desired result.
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We initiate the study of quantum state tomography with minimal regret. A learner has
sequential oracle access to an unknown pure quantum state, and in each round selects a pure
probe state. Regret is incurred if the unknown state is measured orthogonal to this probe,
and the learner’s goal is to minimise the expected cumulative regret over T rounds. The
challenge is to find a balance between the most informative measurements and measurements
incurring minimal regret. We show that the cumulative regret scales as Θ(polylog T ) using
a new tomography algorithm based on a median of means least squares estimator. This
algorithm employs measurements biased towards the unknown state and produces online
estimates that are optimal (up to logarithmic terms) in the number of observed samples.

1. INTRODUCTION

Quantum state tomography is one of the most fundamental tasks in quantum learning, playing
a critical role in the characterization and validation of quantum states. Given t copies of some
unknown d-dimensional quantum state ρ, the goal of a quantum state tomography algorithm is to
decide which measurements to perform on ρ and use classical post-processing with the outcomes of
these measurements to produce an estimate ρ̂ that is close to ρ in some distance metric. Two of the
most relevant distances for this task are the trace distance and infidelity. The sample complexity
of this problem (i.e., how many copies are sufficient to estimate ρ up to some precision on these
distances) is well understood for both coherent measurements (allowing for joint measurements on
multiple copies of the state) and incoherent measurements (only allowing measurements on single
copies of the state) [9, 13, 23, 27].

For incoherent measurements, the most general algorithms are adaptive. Such algorithms can
sequentially measure copies of ρ, deciding which measurement to perform based on the outcomes
of the previous measurements. While adaptive algorithms are strictly more general than non-
adaptive ones, it was early understood [4, 5, 11] that there is no separation in sample complexity
when learning pure quantum states. Recently, it was shown in [9] that there is no separation in
sample complexity between adaptive and non-adaptive algorithms for trace distance when learning
both mixed and pure quantum states. The only regime where adaptive algorithms outperform
non-adaptive ones is when learning “almost” pure quantum states [5, 15, 21]. For non-adaptive
algorithms it was known that the rate Ω(1/

√
t) is unavoidable [13]; however, in [9] they constructed

an adaptive algorithm that achieves the rate O(1/t) both for mixed and pure states.

∗ josep.lumbreras@u.nus.edu
† mikhail.terekhov@epfl.ch
‡ marco.tomamichel@nus.edu.sg
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In this work we take a different perspective on the adaptive incoherent setting of quantum
state tomography, where we not only try to learn the state efficiently but also use measurements
that only minimally disturb the state. Specifically, we have sequential access to an unknown pure
quantum state |ψ⟩ and at each round t we select a probe state |ψt⟩ and perform a measurement
in the direction of the probe state. The goal is to efficiently learn the unknown state while per-
forming measurements that align well with the unknown state. Mathematically, this problem
can be modelled as a bandit problem [17] since fundamentally we are interested in optimising an
exploration–exploitation trade-off. The “exploration–exploitation” is one of the most fundamental
concepts in reinforcement learning and decision-making captured by the bandit framework and the
rigorous study was initiated almost one century ago in the early work by Thompson [26]. In our
setting the exploration is related to the learning of the unknown state |ψ⟩ through the selection of
probes that are sufficiently informative, and the exploitation to performing measurements on the
direction of |ψ⟩.

Formally the measurements on the direction of the probe |ψt⟩ are described by a two outcome
rank-1 POVM {Πt, I − Πt} with corresponding outcomes rt ∈ {1, 0} and Πt = |ψt⟩⟨ψt|. In order
to quantify the penalty that the learner suffers for selecting probes that are orthogonal to the
unknown state we use as a figure of merit the regret, which is defined as

Regret(T ) =
T∑
t=1

1− ⟨ψ|Πt|ψ⟩, (1)

where F (Π,Πt) = ⟨ψ|Πt|ψ⟩ is the fidelity between the environment Π = |ψ⟩⟨ψ| and the selected
probe Πt = |ψt⟩⟨ψt| at time step t ∈ [T ]. It is important to note that the regret is defined as
the cumulative sum of infidelities γt = 1− ⟨ψ|Πt|ψ⟩, which means that there is a high penalty for
measuring on directions orthogonal to the environment. The goal of the learners is to minimise the
regret and we can frame this task as pure quantum state tomography with minimal regret since
minimizing the individual contributions to the regret 1− ⟨ψ|Πt|ψ⟩ implies finding Πt close to Π in
infidelity distance.

We note that the task of minimizing the regret (1) is captured by the multi-armed quantum
bandit (MAQB) framework initiated in [6, 19], where some of the present authors consider the
exploration–exploitation trade-off when learning properties of quantum states using classical al-
gorithms. The work [19] considers a more general problem where the environment can be mixed
or pure and the measurements are not only restricted to rank-1 projectors. They showed that for
almost all cases the regret suffers a square root lower bound Regret(T ) = Ω(

√
T ) in a worst-case

scenario. However, this bound does not apply to our case and the reason is due to the noise model
of the outcomes given by Born’s rule. For our particular model Born’s rule gives that the outcomes
become more deterministic as |ψt⟩ gets close to |ψ⟩ and the lower bounds considered in [20] rely
on the fact that the variance of the outcomes rt can not get arbitrary close to deterministic. Since
our problem is closely related to the MAQB problem we name it pure state multi-armed quantum
bandit (PSMAQB) and we use it to study the following questions at the intersection of the fields
of quantum state tomography and linear stochastic bandits.

• Question 1. Can we perform single copy sample-optimal state tomography in infidelity and
achieve at the same time sublinear regret? How much adaptiveness is needed for this task?

It is important to note that adaptiveness plays a huge role for algorithms that try to minimise
the regret of the PSMAQB problem and peform sample-optimal state tomography. We could try to
adapt one of the existing sample-optimal algorithms in the incoherent setting such as [12, 13, 16] for
the PSMAQB problem but since all these algorithms use fixed basis or randomized measurements
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this will lead inevitably to the linear scaling Regret(T ) = O(T ) (we omit dimensional dependences).
In [19] a simple algorithm with one round of adaptiveness was proposed for the PSMASQ problem
that achieves Regret(T ) = O(

√
T ) but gives the infidelity scaling γt = O(1/

√
T ). Thus, it is

interesting to see how adaptiveness can help in order to keep γt = O(1/T ) and at the same time
achieve a sublinear regret.

For the qubit case we can relate the PSMAQB problem to a linear bandit with the action set
being the unit sphere S2 = {x ∈ R3 : ∥x∥2 = 1} and this motivates the following question that is
related to fundamental bounds for linear stochastic bandits with continuous action sets.

• Question 2. Can we break the square root barrier of the regret for the PSMAQB problem?

In [19] it was shown that the MAQB problem can be reduced to a classical linear stochastic
bandit problem [17, Chapter 19] and that we can adapt algorithms such as LinUCB [1, 10, 24] or
linear Thompson sampling [2, 3] to achieve Regret(T ) = Õ(

√
T ), where we omit the dependency

on the Hilbert space dimension. Classically, it is well known that linear bandits with smooth
action sets such as the unit sphere have a lower bound of Regret(T ) = Ω(

√
T ) [24] [17, Chapter

24] and in particular if the unknown state is mixed the same bound applies to the quantum
setting [19]. However, from [19] a lower bound for the PSMAQB problem is missing and this
opens the possibility to achieve a better scaling than the

√
T given by the standard classical bandit

algorithms. Achieving a better scaling on the time horizon T for the PSMAQB would imply the
first non-trivial linear stochastic bandit with continuous action sets that breaks the square root
barrier. Breaking the square root barrier will require new algorithms and techniques that take
advantage of the extra structure of the PSMAQB problem.

2. RESULTS AND TECHNICAL CONTRIBUTION

In this work, we provide affirmative answers at the same time to Questions 1 and 2 through the
following Theorem.

Theorem 1 (informal). Given a PSMAQB with an unknown qubit environment Π = |ψ⟩⟨ψ|, we
can find an algorithm that achieves

E [Regret(T )] = O
(
log2(T )

)
. (2)

Also, at each time step t ∈ [T ], this strategy outputs an estimator Πt of Π with infidelity scaling

E [1− F (Π,Πt)] = Õ

(
1

t

)
. (3)

The above results also hold with high probability.

The proof of Theorem 1 is constructive which means that we design a qubit quantum state to-
mography algorithm and perform the theoretical analysis for it. The exact algorithm and Theorem
can be found in Sections 4 and 5. We note that our algorithm is almost fully adaptive since it uses
O(T/ log(T )) rounds of adaptiveness. Intuitively, our algorithm needs to be almost fully adaptive
because keeping the scaling 1 − F (Π,Πt) = O(1/t) and breaking the square root regret barrier
implies that we want to update our measurements Πt at each round to get as close as possible to
Π. We say that our algorithm is “online” because it is able to output at each time step t ∈ [T ]
an estimator with the almost optimal infidelity scaling (3). We provide numerical experiments in
Section 5. Now we sketch the main idea of how our algorithm updates the measurements.
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1. Estimation. At each time step t ∈ [T ] we use the past information of measurements
Πa1 , ...,Πat−1 and associated outcomes r1, ..., rt−1 ∈ {0, 1}⊗t−1 to build a high probability
confidence region Ct for the unknown environment |ψ⟩.

2. Exploration-exploitation. A batch of measurements is performed, given by the directions
of maximum uncertainty of Ct such that they give enough information to construct Ct+1

(exploration) and also minimise the regret (1) (exploitation).

For the estimation part, we work with the Bloch sphere representation of the unknown state
Π = |ψ⟩⟨ψ| = I+θ·σ

2 where θ ∈ S2 and for σ we can take the standard Pauli Basis i.e σ = (σx, σy, σz).
For each action Πat , our algorithm performs k independent measurements using the same action,
and it builds the following k online weighted least squares estimators of θ,

θ̃t,i = V −1
t

t∑
s=1

1

σ̂2s(as)
rs,ias for i ∈ [k], (4)

where rs,i ∈ {0, 1} is the outcome of the measurement (up to some renormalization) using the
projector Πas with Bloch vector as ∈ S2, Vt = I +

∑t
s=1

1
σ̂2
s(as)

asa
T
s is the design matrix and

σ̂2s(as) is a variance estimator of the real variance associated to the outcome rs. The key point
where we take advantage from the structure of the PSMAQB problem is that the variance of the
outcome ra associated to the action Πa can be bounded as V[ra] ≤ 1 − Tr(ΠΠa). The idea is
that through a careful choice of actions we can make the terms 1/σ̂2s(as) arbitrarily large and
“boost” the confidence on the directions as in the estimators (4) that are close to θ. However,
this comes at a price, and is that in order to get good concentration bounds for our estimator
we need to deal with unbounded random variables and finite variance. We address this issue
using the new ideas of median of means (MoM) for online least squares estimators introduced
in [7, 22, 25]. The construction takes inspiration from the old method of median of means [18,
Chapter 3] for real random variables with unbounded support and bounded variance but requires
non-trivial adaptation for online linear least squares estimators. Similarly to the real case we use
the k independent estimators (4) in order to construct the MoM estimator θ̃wMoM

t such that we can
build a confidence region with concentration bounds scaling as 1 − exp(−k). We give the exact
construction in Section 4.1.

For the exploration-exploitation part, we take the ideas that we develop in [20]. We give the
precise action choice in Section 4.2, and here we sketch the main points. We take inspiration from
the optimistic principle for bandit algorithms which in short tells us to choose the most rewarding
actions with the available information. In order to use this idea, we use the confidence region that
we build in the estimation part and we select measurements that align with the (unknown) direction
of Π. See Figure 1. Our algorithm also achieves the relation 1−F (Π,Πat) = O (1/λmin(Vt)), where
λmin(Vt) quantifies the direction of maximum uncertainty (exploration) of our estimator. The
maximum eigenvalue λmax(Vt) quantifies the amount of exploitation. We can relate these two
concepts through the Theorem we formally state and prove in [20, Theorem 3], which states that
for our particular action selection choice we have λmin(Vt) = Ω(

√
λmax(Vt)). Using this relation

and a careful analysis, we can show that λmax(Vt) = Ω(t2) which gives λmin(Vt) = Ω(t) and the
scaling 1 − F (Π,Πat) = O(1/t). We emphasize that the key point that allows to achieve the rate
λmin(Vt) = Ω(t) is the fact that the variance estimators σ̂2s can get as close as possible to zero since
the variance of the rewards of the PSMAQB problems goes to zero if we select measurements close
to Π. To check the optimality of the regret, we derive a minimax expected regret lower bound
based on the optimal quantum state tomography for pure state results in [14]. The proof does not
follow directly from [14], and we have to adapt it to the bandit setting.
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Π
+ a
t

Π−
at

Ct

Π̂t

Π = |ψ⟩⟨ψ|

FIG. 1. The algorithm at each time step outputs an estimator Π̂t and builds a high-probability confidence
region Ct (shaded region) around the unknown state Π = |ψ⟩⟨ψ| on the Bloch sphere representation. Then
uses the optimistic principle to select projectors Π±

at
that are close the unknown state Π projecting into the

Bloch sphere the extreme points of the largest principal axis of Ct. This particular choice allows optimal
learning of Π (exploration) and simultaneously minimizes the regret (exploitation).

Theorem 2 (informal). Given a PSMAQB with a qubit environment, the cumulative expected
regret for any strategy is bounded by

E [Regret(T )] = Ω(log T ), (5)

where the expectation is taken over the probability distribution of rewards and actions induced by
the learner strategy and also uniformly over the set of pure state environments.

This result is formally derived in Section 6. There it is also generalized to the d-dimensional
PSMAQB, in which case the bound is given by E [Regret(T )] = Ω(d log(T/d)). The proof relies
on the fact that individual actions of a strategy at time t ∈ [T ] can be viewed as quantum state
tomographies using t copies of the state. A relation between the fidelity of these tomographies
and the regret of the strategy allows us to convert the fidelity upper bound from [14] to a regret
lower bound. We use measure-theoretic tools to adapt the proof from [14] to a more general case
where the tomography can output an arbitrary distribution of states. We remark that this is a
noteworthy result since in [20] they argue how regret lower bound techniques for classical linear
bandits fail for noise models with vanishing variance.

3. THE MODEL

In this section first we formally state the PSMAQB problem and make a connection with a linear
stochastic bandit problem. Then we define a slightly more general model where the key feature is
that the variance of the rewards vanishes with the same behaviour as the PSMAQB problem.
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3.1. Notation

First, we introduce some basic notation and conventions. Let [t] = {1, 2, ..., t} for t ∈ N. For
real vectors x, y ∈ Rd we denote their inner product as ⟨x, y⟩ = x1y1+ ...+xdyd. Given a real vector
x ∈ Rd we denote the 2-norm as ∥x∥2 and for a real semi-positive definite matrix A ∈ Rd×d, A ≥ 0
the weighted norm with A as ∥x∥2A = ⟨x,Ax⟩. The set corresponding to the surface of the unit
sphere is Sd−1 = {x ∈ Rd : ∥x∥2 = 1}. For a real symmetric matrix A ∈ Rd×d we denote λmax(A),
λmin(A) its maximum and minimum eigenvalues respectively. We use the ordering λmin(A) ≤
λ2(A), ...., λd−1(A) ≤ λmax(A) for the i-th λi(A) eigenvalue in increasing order. For a random
variable X (discrete or continuous) we denote E[X] and V[X] its expectation value and variance
respectively. A random variable X is σ-subgaussian if ∀λ ∈ R,E [exp(λX)] ≤ exp

(
λ2σ2/2

)
.

Let Sd = {ρ ∈ Cd×d : Tr(ρ) = 1, ρ ≥ 0} be the set of quantum states in a d-dimensional Hilbert
space H = Cd and S∗d = {ρ ∈ Sd : ρ2 = ρ} the set of pure states or rank-1 projectors. We will use
the parametrization given in [8] of a d-dimensional quantum state ρθ ∈ Sd,

ρθ =
I
d
+

(√
d(d− 1)

2d2

)
θ · σ (6)

where θ ∈ Rd2−1, and σ = (σ1, ..., σd2−1) is a vector of orthogonal, traceless, Hermitian matrices
with the normalization condition Tr(σiσj) = 2δi,j . We will use the subscript θ in the quantum state
ρθ in order to denote the vector of the parametrization (6). In particular the normalization is taken

such that ∥θ∥22 ≤ 1 with equality if ρθ is pure. Note that the parametrization enforces ρ†θ = ρθ
and Tr(ρθ) = 1. Also there are some extra conditions on the vector θ regarding the positivity of
the density matrix ρθ but we will not use them. For two quantum states ρ, σ ∈ Sd the fidelity is

F (ρ, σ) =
(
Tr(
√√

σρ
√
σ)
)2

and the infidelity 1−F (ρ, σ). For a Hilbert space H, the set of linear

operators on it will be denoted by End(H). The joint state of a system consisting of n copies of
a pure state Πθ ∈ S∗d is given by the n-th tensor power Π⊗n

θ ∈ End(H⊗n). Using Dirac notation,
we can express Πθ = |ψθ⟩⟨ψθ| for some normalized |ψθ⟩ ∈ H. Then, the span of all n-copy states
of the form |ψθ⟩⊗n is called the symmetric subspace of H⊗n, denoted by H⊗n

+ . Its dimension is

Dn =
(
n+d−1

d

)
. The symmetrization operator Π+

n ∈ End(H⊗n) is the projector onto H⊗n
+ .

3.2. Multi-armed quantum bandit for pure states

The model that we are interested in is the general multi-armed quantum bandit model described
in [19][Section 2.3] with the action set being all rank-1 projectors and with pure state environments.
For completeness, we state the basic definitions for this particular case.

Definition 3. Let d ∈ N. A d-dimensional pure state multi-armed quantum bandit (PSMAQB) is
given by a measurable space (A,Σ), where A = S∗d is the action set and Σ is a σ-algebra of subsets
of A. The bandit is in an environment, a quantum state Πθ ∈ S∗d , that is unknown.

The interaction with the PSMAQB is done by a learner that interacts sequentially over t ∈ [T ]
rounds with the unknown environment Πθ ∈ S∗d . At each time step t ∈ [T ]:

1. The learner selects an action Πat ∈ A.

2. Performs a measurement on the unknown environment Πθ using the two-outcome POVM
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{Πat , Id×d −Πat} and receives a reward rt ∈ {0, 1} sampled according to the Born’s rule, i.e

PrΠθ
(rt|Πat) =


Tr(ΠθΠat) rt = 1,

1− Tr(ΠθΠat) if rt = 0,

0 else.

(7)

We note that the reward at time step t after selecting Πat ∈ A can be written as

rt = Tr(ΠθΠat) + ϵt, (8)

where ϵt is a Bernoulli random variable with values ϵt ∈ {1− Tr(ΠθΠat),−Tr(ΠθΠat)} such that

E [ϵt|Ft−1] = 0, V [ϵt|Ft−1] = Tr(ΠθΠat) (1− Tr(ΠθΠat)) , (9)

where Ft−1 := {r1,Πa1 , ..., rt−1,Πat−1 ,Πt} is a σ-filtration.
Formally the learner is described by a policy.

Definition 4. A policy π is a set of conditional probability measures {πt}t∈N on the action set A
of the form

πt(·|r1,Πa1 , ..., rt−1,Πat−1) : Σ→ [0, 1]. (10)

Then the policy interacting with the environment Πθ defines the probability measure over the
set of actions and rewards PΠθ,Π : (Σ× {0, 1})×T → [0, 1] as∫

· · ·
∫

PrΠθ
(rT |ΠaT )πT (dΠT |r1,Πa1 , ..., rT−1,ΠaT−1) · · ·PrΠθ

(r1|Πa1)π1 (dΠa1) , (11)

where the integrals are taken with respect to the corresponding subsets of actions.
The goal of the learner is to maximize the cumulative expected reward. This is quantified by

the notion of regret that serves to compare with the best possible choice of action.

Definition 5. Given a d-dimensional pure state multi-armed quantum bandit, a policy π and
T ∈ N, the cumulative regret is defined as

Regret(T, π,Πθ) :=
T∑
t=1

1− Tr(ΠθΠat). (12)

We note that since the quantity maxΠ∈ATr(ΠθΠ) is maximized by Π = Πθ, then 1 =
maxΠ∈ATr(ΠθΠ) is the maximal expected reward and the above definition quantifies how close is
the chosen action to the unknown Πθ. Moreover, expressing Πθ = |ψθ⟩⟨ψθ|, Πat = |ψat⟩⟨ψat | for
normalized complex vectors |ψθ⟩, |ψat⟩ ∈ Cd we have

Regret(T, π,Πθ) =

T∑
t=1

1− F (Πθ,Πat) =
T∑
t=1

1− |⟨ψθ|ψat⟩|2, (13)

and the term 1− |⟨ψθ|ψat⟩|2 is the infidelity between the pure quantum states |ψθ⟩ and |ψat⟩.
The goal of the learner is to minimize the expected cumulative regret that is simply defined as

EΠθ
[Regret(T, π,Πθ)] where the expectation EΠθ

is taken over the probability measure (11). When
the context is clear, we will use the notation Regret(T ). We refer to the PSMAQB problem as the
task of finding a policy that minimizes the expected regret EΠθ

[Regret(T, π,Πθ)]. Minimizing the
regret means achieving sublinear regret on T since Regret(T ) ≤ T holds for any policy.
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3.3. Classical model

In order to study the PSMAQB it is helpful to study it using the linear stochastic bandit
framework. The idea will be to express the actions and unknown quantum states as real vectors
using the parametrization (6).

In the linear stochastic bandit model, the action set is a subset of real vectors i.e A ⊆ Rd, and
the reward at time step t ∈ [T ] after selecting action at ∈ A is given by

rt = ⟨at, θ⟩+ ϵt (14)

where θ ∈ Rd is the unknown parameter and ϵt is some bounded σ−subgaussian noise that in
general can depend on θ and at. The regret for this model is given by

Regretcl(T, π, θ) :=

T∑
t=1

max
a∈A
⟨θ, a⟩ − ⟨θ, at⟩, (15)

where the policy π is defined analogously to Definition 4. We used the subscript cl to differentiate
between quantum and classical model.

In order to express the PSMAQB model as a linear stochastic bandit we can use the parametriza-
tion (6) and express the expected reward for action Πat ∈ S∗d as

Tr(ΠatΠθ) =
1

d
(1 + (d− 1) ⟨at, θ⟩) . (16)

Inverting the above expression we have

⟨at, θ⟩ =
dTr(ΠθΠat)− 1

d− 1
. (17)

Let’s quickly revisit the regret expression and use the above identities in order to connect the
quantum and classical versions of the regret. We denote Πa∗ = argmaxΠ∈ATr(ΠΠθ) the optimal
action and recall that 1 = Tr(Πa∗Πθ). Then we have

Regret(T, π,Πθ) =

T∑
t=1

Tr(Πa∗Πθ)− Tr(ΠatΠθ) =
d− 1

d

T∑
t=1

⟨θ, a∗ − at⟩. (18)

Note that by the normalization (6) we have that for ρθ and Πat the corresponding real vecotrs are
normalized ∥θ∥2 = ∥at∥ = 1. Thus, since a∗ = θ the regret can be written as

Regret(T, π,Πθ) =
d− 1

d

T∑
t=1

(1− ⟨θ, at⟩) =
d− 1

2d

T∑
t=1

∥θ − at∥22. (19)

Now we want to formulate a classical bandit such that the environment and actions are given
by the real vectors that parameterize the quantum states (6). In order to have an expected linear
reward that is linear with respect to θ and at it is sufficient to define a renormalized reward as

r̃t =
drt − 1

d− 1
∈
{
1,
−1
d− 1

}
, (20)

where we used the reward of the quantum model rt ∈ {0, 1} given by 7. Using E[rt|Ft−1] =
Tr(Πatρθ) and (16) it is easy to see that

E[r̃t|Ft−1] = ⟨θ, at⟩, (21)
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where naturally we use Ft−1 = {r̃1, a1, ..., r̃t−1, at−1, at}. Thus, we can write the reward in the
form (14)

r̃t = ⟨θ, at⟩+ ϵt, E[ϵt|Ft−1] = 0, V[ϵt|Ft−1] = (1− ⟨θ, at⟩) (1 + (d− 1)⟨θ, at⟩) , (22)

where the expectation and variance follow from a direct calculation. Then we can study a d-
dimensional PSMAQB as a linear stochastic bandit choosing the action set

Aquantum
d := {a ∈ Rd

2−1 : Πa ∈ S∗d} (23)

with unknown parameter θ ∈ Rd2−1 such that Πθ ∈ S∗d . The regret of this linear model is given by

Regretcl =
1
2

∑T
t=1 ∥θ − at∥22 and we have the following relation with the quantum model:

Regret(T, π,Πθ) =
d− 1

d
Regretcl(T, π, θ), (24)

where we take the same strategy π in both sides since we can identify the actions of both bandits
through the parametrization (6) and the relation between rewards given by (20). When the context
is clear we will simply use Regret(T ) for both quantum and classical model.

3.4. Linear bandit with linearly vanishing variance noise

In [20] some of the present authors introduced the framework of stochastic linear bandits with
linear vanishing noise where the setting is a linear bandit with action set A = Sd, unknown
parameter θ ∈ Sd and reward rt = ⟨θ, at⟩+ϵt such that ϵt is σt-subgaussian with E[ϵt|Ft−1] = 0 and
the property of vanishing noise σ2t ≤ 1 − ⟨θ, at⟩2. In order to study a PSMAQB we will relax the
condition on the subgaussian noise and we will replace it by the following condition on the noise

E [ϵt|Ft−1] = 0, V [ϵt|Ft−1] ≤ 1− ⟨θ, at⟩2. (25)

As in the classical model of the previous section using that maxa∈A⟨θ, a⟩ = 1 we have that the
regret is given by

Regret(T ) =

T∑
t=1

1− ⟨θ, at⟩ =
1

2

T∑
t=1

∥θ − at∥22. (26)

We note that finding an strategy that minimizes regret for the above model will also work for a
d = 2 PSMAQB with unknown Πθ ∈ S∗2 using the relations of last sections since

Aquantum
2 = {a ∈ R3 : ∥a∥2 = 1} = S2, (27)

and the variance of the PSMAQB (22) fullfills the relation (25).

4. ALGORITHM FOR BANDITS WITH LINEARLY VANISHING VARIANCE NOISE

In this Section we are going to present an algorithm for the linear bandit model explained
in Section 3.4 that is based on the algorithm LINUCB-VN studied in [20] for linear bandits with
linearly vanishing noise. Later we will show how to use this algorithm for the qubit PSMAQB
problem.
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4.1. Median of means for an online least squares estimator

First we discuss the medians of means method for the online linear least squares estimator intro-
duced in [25]. We are going to use this estimator later in order to design a strategy that minimizes
the regret for the model introduced in Section 3.4. The reason we need this estimator is that in the
analysis of our algorithm we need concentration bounds for linear least squares estimators where
the random variables have bounded variance and a possibly unbounded subgaussian parameter.
The condition of bounded variance is weaker than the usual assumption of bounded subgaussian
noise, however we can recover similar concentration bounds of the estimator if we implement a
median of means.

In order to build the median of means online least squares estimator for linear bandits we
need to sample k independent rewards for each action. Specifically given an action set A ⊂ Rd,
an unknown parameter θ ∈ Rd, at each time step t we select an action at ∈ A and sample k
independent rewards using at where the outcome rewards are distributed as

rt,i = ⟨θ, at⟩+ ϵt,i for i ∈ [k], (28)

for some noise such that E[ϵt,i|Ft−1] = 0. We refer to k as the number of subsamples per time step.
Then at time step t we define k least squares estimators as

θ̃t,i = V −1
t

t∑
s=1

rs,ias for i ∈ [k], (29)

where Vt is the design matrix defined as

Vt = λI+
t∑

s=1

asa
T
s , (30)

with λ > 0 being a parameter that ensures invertibility of Vt. We note that the design matrix is
independent of i. Then the median of means for least squares estimator (MOMLSE) is defined as

θ̃MoM
t := θ̃t,k∗ where k∗ = argmin

j∈[k]
yj , (31)

where

yj = median{∥θ̃t,j − θ̃t,i∥Vt : i ∈ [k]/j} for j ∈ [k]. (32)

Using the results in [25] we have that the above estimator has the following concentration
property around the true estimator.

Lemma 6 (Lemma 2 and 3 in [25]). Let θ̃MoM
t be the MOMLSE defined (31) in with k subsamples

with {rs,i}(s,i)∈[t]×[k] rewards and corresponding actions {as}s∈[t]. Assume that the noise of all

rewards has bounded variance, i.e E
[
ϵ2s,i|Ft−1

]
≤ 1 for all s ∈ [t] and i ∈ [k]. Then we have

Pr

(
∥θ − θ̃MoM

t ∥2Vt ≤ 9
(√

9d+ λ∥θ∥2
)2)

≥ 1− exp

(
−k
24

)
. (33)

We will use a slight modification of the above result with a weighted least squares estimator
like the one used in [20]. The weights will be related to a variance estimator of the noise for action
a ∈ A that at each time step t can be generally defined as

σ̂2t : Ht−1 ×A→ R>0, (34)
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where Ht−1 = {rs,i}(s,i)∈[t−1]×[k] ∪ {as}s∈[t−1] contains the past information of rewards and actions
played. For our purposes we will use only the information of the past actions and in order to
simplify notation we will use σ̂2t (a) to denote an estimator of the variance for the reward associated
action a ∈ A with the information collected up to time step t−1. Then the corresponding weighted
versions with k subsamples are defined as

θ̃t,i = V −1
t

t∑
s=1

1

σ̂2s(as)
rs,ias for i ∈ [k], (35)

with the weighted design matrix

Vt = λI+
t∑

s=1

1

σ̂2s(as)
asa

T
s . (36)

Then the weighted version of the median of means linear estimator is defined analogously to (31)
with the corresponding weighted versions (35)(36) and we will denote it as θ̃wMOM

t . In our algorithm
analysis we will use the following analogous concentration bound under the condition that the
estimators σ̂2t overestimate the true variance.

Corollary 7. Let θ̃wMOM
t be the weighted version of the MOMLSE with k subsamples, {rs,i}(s,i)∈[t]×[k]

rewards with corresponding actions {as}s∈[t] and variance estimator σ̂2t . Define the following event

Gt := {
(
Ht−1, at

)
: V[ϵs,i] ≤ σ̂2(as)∀s, i ∈ [t]× [k]}. (37)

Then we have

Pr
(
∥θ − θ̃wMOM

t ∥2Vt ≤ β | Gt
)
≥ 1− exp

(
−k
24

)
, (38)

where

β := 9
(√

9d+ λ∥θ∥2
)2
. (39)

Proof. The result follows from applying Lemma 6 to the sequences of re-normalized rewards
{ rs,i
σ̂s(as)

}(s,i)∈[t]×[k] and actions { as,i
σ̂s(as)

}s∈[t]. We only need to check that the sequence { ϵs,i
σ̂s(as)

}(s,i)∈[t]×[k]

has finite variance. Conditioning with the event Gt and the fact that by definition σ̂2s(as) only
depend on the past s − 1 action and rewards we have that the re-normalized noise has bounded
variance since

E

[(
ϵs,i

σ̂s(as)

)2
∣∣∣∣∣Ft−1

]
=

1

σ̂2s(as)
E[ϵ2s,i|Ft−1] =

V[ϵs,i]
σ̂2s(as)

≤ 1. (40)

4.2. Algorithm

The algorithm that we design for linear bandits with linearly variance vanishing noise is LinUCB-
VVN (LinUCB vanishing variance noise) stated in Algorithm 1. The algorithm runs in batches of
2(d− 1) actions selected as

a±t,i :=
ã±t,i

∥ã±t,i∥2
, ã±t,i = θwMoM

t ± 1√
λmin(Vt−1)

, θwMoM
t :=

θ̃wMoM
t

∥θ̃wMoM
t ∥2

, (41)
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for i ∈ [d−1] and where for each action a±t,i we sample k ≥ 1 independent rewards in order to build
the weighted MOMLSE defined as in Section 4.1. The design matrix Vt is updated as

Vt = Vt−1 + ω(Vt−1)

d−1∑
i=1

(
a+t,i(a

+
t,i)

T + a−t,i(a
−
t,i)

T
)

(42)

where the weights ω and variance estimator are chosen as

ω(Vt−1) :=

√
λmax(Vt−1)

12
√
d− 1β

, σ̂2t (a
±
t,i) :=

1

ω(Vt−1)
. (43)

We note that the definition for σ̂2t (a
±
t,i) fulfills the definition of variance estimator (34) stated in

the previous section since it only depends on the past history Ht−1.

Algorithm 1: LinUCB-VVN

Require: λ0 ∈ R>0, k ∈ N, ω : Pd
+ → R≥0

Set initial design matrix V0 ← λ0Id×d

Choose initial estimator θ0 ∈ Sd for θ at random
for t = 1, 2, · · · do

Optimistic action selection

for i = 1, 2, · · · d− 1 do
Select actions a+t,i and a

−
t,i according to Eq. (41)

Sample k independent rewards for each a±t,i

for j = 1, ..., k do
Receive associated rewards r+t,i,j and r−t,i,j

end

end

Update estimator of sub-gaussian noise for a+t,i

σ̂2
t ← 1

ω(Vt−1(λ0))
for t ≥ 2 or σ̂2

t ← 1 for t = 1.

Update design matrix

Vt ← Vt−1 +
1
σ̂2
t

∑d−1
i=1

(
a+t,i(a

+
t,i)

T + a−t,i(a
−
t,i)

T
)

Update LSE for each subsample

for j = 1, 2, ..., k: do

θ̃wt,j ← V −1
t

∑t
s=1

1
σ̂2
t

∑d−1
i=1 (a

+
s,ir

+
t,i,j + a−s,ir

−
t,i,j)

end

Compute θ̃wMOM
t using {θ̃wt,j}kj=1

end

4.3. Regret analysis

In this Section we present the analysis of the regret for Algorithm 1. The analysis is similar to
the LinUCB-VN presented in [20][Appendix C.1]. Thus, we focus on the changes respect to LinUCB-
VN and although we present a complete proof we refer to [20] for more detailed computations. The
main result we use from [20] is a theorem that quantifies the growth of the maximum and minimum
eigenvalues of the design matrix Vt (42).
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Theorem 8 (Theorem 3 in [20]). Let {ct}∞t=0 ⊂ Sd−1 be a sequence of normalized vectors and
ω : Pd+ → R≥0 a function such that

ω(X) ≤ C
√
∥X∥∞, (44)

for a constant C > 0 and any X ∈ Pd+. Let λ0 ≥ max
{
2,
√

2
3(d−1)2dC + 2

3(d−1)

}
, and define a

sequence of matrices {Vt}∞t=0 ⊂ Rd×d as

V0 := λ0Id×d, Vt+1 := Vt + ω(Vt)

d−1∑
i=1

Pt,i, (45)

where

Pt,i := a+t+1,i(a
+
t+1,i)

T + a−t+1,i(a
−
t+1,i)

T, a±t+1,i :=
ã±t+1,i

∥ã±t+1,i∥2
, ã±t+1,i := ct ±

1√
λt,1

vt,i, (46)

with λt,i = λi(Vt) the eigenvalues of Vt with corresponding normalized eigenvectors vt,1, ..., vt,d ∈
Sd−1. Then we have

λmin(Vt) ≥

√
2

3(d− 1)
λmax(Vt) for all t ≥ 0. (47)

For the proof of the above Theorem we refer to the original reference. Then using this Theorem
and the concentration bound for MOMLSE given in Corollary 7 we can provide the following regret
analysis for a stochastic linear bandit with vanishing variance noise.

Theorem 9. Let d ≥ 2, k ∈ N and T = 2(d − 1)kT̃ for some T̃ ∈ N, T̃ ≥ 2. Let ω(X)
defined as in (43) using λ0 satisfying the constraints in Theorem 8. Then if we apply LinUCB-
VVN 1(λ0, k, ω) to a d dimensional stochastic linear bandit with variance as in (25) with probability

at least (1− exp(−k/24))T̃ the regret satisfies

Regret(T ) ≤ 4k(d− 1) + 144d(d− 1)kβ2 log

(
T

2(d− 1)k

)
+ 24(d− 1)

3
2kβ log

(
T

2(d− 1)k

)
, (48)

and at each time step t ∈ [T ] with the same probability it can output an estimator θ̂t ∈ Sd−1 such
that

∥θ − θ̂t∥22 ≤
576d2β2k + 96d

√
d− 1βk

t
, (49)

with β defined as in (39).

From the above Theorem we have that if we set k = ⌈24 log
(
T̃
δ

)
⌉ for some δ ∈ (0, 1) then with

probability at least 1− δ LinUCB-VNN achieves

Regret(T ) = O
(
d4 log2(T )

)
, ∥θ − θ̂t∥22 = O

(
log(T )

t

)
. (50)

Proof. From the expression of the regret (26) we have that to give an upper bound it suffices
to gives an upper bound between the distance of the unknown parameter θ and the actions a±t,i
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selected by the algorithm (41). We denote the step t̃ ∈ [T̃ ] to run over the batches the algorithm
updates the MoM estimator θ̃wMOM

t . First we will do the computation assuming that the event

Et̃ := {Ht̃ : ∀s ∈ [t̃], θ ∈ Cs}, (51)

holds where Cs = {θ′ ∈ Rd : ∥θ′− θ̃wMOM
t̃

∥2Vs ≤ β}. Here the history Ht̃ is defined with the previous
outcomes and actions of our algorithm i.e

Ht̃ :=
(
r+s,i,j , a

+
s,i, r

−
s,i,j , a

−
s,i

)
(s,i,j)∈[t̃]×[d−1]×[k]

(52)

Later we will quantify the probability that this event always hold. Using the definition of the
actions (41), θ, θ̃wMOM

t̃
∈ Sd−1 and the arguments from [20][Appendix C.1, Eq. (165)] we have that

∥θ − a±
t̃,i
∥22 ≤

9β

λmin(Vt̃−1)
. (53)

Then using that the design matrix Vt̃ (42) is updated as in Theorem 8 and the choice of weights (43)
we fix

λ0 ≥ max

{
2, 2

√
2

3(d− 1)

d

12
√
d− 1β

+
2

3(d− 1)

}
(54)

and we have that λmin(Vt̃) ≥
√

2
3(d−1)λmax(Vt̃) applying Theorem 8. Inserting this into the above

we have

∥θ − a±
t̃,i
∥22 ≤

12
√
d− 1β√

λmax(Vt̃)
. (55)

Thus, it remains to provide a lower bound on λmax(Vt̃). We note that in [20][Appendix C.1] they
also had to provide an upper bound but this was because the constant β beta they use depends
on t. From the definition of Vt (42) we can bound the trace as

Tr(Vt̃) ≥
t̃∑

s=2

2(d− 1)ω(Vs−1) (56)

=

√
d− 1

6β

t̃−1∑
s=1

√
λmax(Vs). (57)

Then using the bound Tr(Vt̃) ≥ λmax(Vt̃)/d and some algebra we arrive at

λmax(Vt̃) ≥
1

1 + 6 d√
d−1

β

t̃∑
s=1

√
λmax(Vs). (58)

Now we have an inequality with the function λmax(Vs) at both sides. In order to solve it we use
the technique from [20][Appendix C.1, Equation (197-208)] which consist on extending λmax(Vt̃)
to the continuous with a linear interpolation and then transforming the sum to an integral which
leads to a differential inequality. Solving this leads to

λmax(Vt̃) ≥
t̃2

4(1 + 6 d√
d−1

β)2
. (59)
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Now we can insert the above into (55) and we have

∥θ − a±
t̃,i
∥22 ≤

24
√
d− 1β(1 + 6 d√

d−1
β)

t̃− 1
(60)

=
144dβ2 + 24

√
d− 1β

t̃− 1
. (61)

Thus, we can inserted the above bound into the regret expression (26) and we have

Regret(T ) =
1

2

T∑
t=1

∥θ − at∥22 (62)

=
1

2

T̃∑
t̃=1

d−1∑
i=1

k∑
j=1

(
∥θ − a+

t̃,i
∥22 + ∥θ − a−t̃,i∥

2
2

)
(63)

≤ 4k(d− 1) +
1

2

T̃∑
t̃=2

d−1∑
i=1

k∑
j=1

(
∥θ − a+

t̃,i
∥22 + ∥θ − a−t̃,i∥

2
2

)
(64)

≤ 4k(d− 1) + (144d(d− 1)kβ2 + 24(d− 1)
3
2kβ)

T̃∑
t̃=2

1

t− 1
(65)

≤ 4k(d− 1) + 144d(d− 1)kβ2 log T̃ + 24(d− 1)
3
2kβ log T̃ (66)

= 4k(d− 1) + 144d(d− 1)kβ2 log

(
T

2(d− 1)k

)
+ 24(d− 1)

3
2kβ log

(
T

2(d− 1)k

)
. (67)

It remains to quantify the probability that the event Et̃ holds. For that we will use the concentration
bounds of the median of means for least squares estimator stated in Corollary 7. From the variance
condition of our model (25) we have

V[ϵ±
t̃,i,j
|Ft̃−1] ≤ 1− ⟨θ, a±

t̃,i
⟩2 ≤ 2(1− ⟨θ, a±

t̃,i
)) = ∥θ − a±

t̃,i
∥22, (68)

where we used 1 + ⟨θ, a±
t̃,i
⟩ ≤ 2. Thus from our choice of weights (43) and (60) we have that

if θ ∈ Cs−1 ⇒ V[ϵ±
t̃,i,j
|Ft̃−1] ≤ σ̂

2
s(a

±
s,i). (69)

Then in order to apply Corollary 7 we note that from the choice σ̂2s(a
±
1,i) = 1 the event Gt̃ at t̃ = 1

is always satisfied i.e Pr(G1) = 1. Then applying Bayes theorem, union bound over the events
G1, E1, ..., Gt−1, Et and Corollary 7 we have

Pr(E
T̃
∩G

T̃
) ≥ (1− exp(−k/24))T̃ . (70)

This probability also quantifies the probability that (60) holds since the only assumption we used
is θ ∈ Ct̃−1. Then we can take simply one of the actions a±

t̃,i
as the estimator θ̂t and the result

follows using the relabeling t = 2(d − 1)kt̃ and the inequality 1/(t̃ − 1) ≤ 2/t̃ for t̃ ≥ 2. A more
detailed analogous computation of the above probability can be found in [20][Appendix C.1].

In the previous Theorem we did not set a specific value for the parameter k or the number
of subsamples per action. We note that the regret scales linearly with k but since the success
probability scales exponentially with k it will suffice to set k ∼ log(T ) such that in expectation we
get the log2(T ) behaviour. We formalize this in the following Corollary.
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Corollary 10. Under the same assumptions of Theorem 9 we can fix k = ⌈24 log(T̃ 2)⌉ and we
have

E [Regret(T )] ≤ 344(d− 1) log (T ) +
(
3546d(d− 1)β2 + 1152(d− 1)

3
2β
)
log2 (T ) (71)

and for t ∈ [T ],

E
[
∥θ − θ̂t∥22

]
≤ 27648d2β2 log(T ) + 4608d

√
d− 1β log(T )

t
+

4(d− 1) log(T )

T
. (72)

Using that β = O(d) gives

E [Regret(T )] = O(d4 log2(T )), E
[
∥θ − θ̂t∥22

]
= Õ

(
d4

t

)
. (73)

Proof. The result of Theorem 9 holds with probability at least (1 − exp(−k/24))T̃ . Setting k =
⌈24 log(T̃ 2)⌉ gives

(1− exp(−k/24))T̃ ≥
(
1− 1

T̃ 2

)T̃
≥ 1− 1

T̃
. (74)

Then given the event RT such that Algorithm 1 achieves the bounds given by Theorem 9 we have
that the probability of failure is bounded by

Pr(RCT ) ≤
1

T̃
, (75)

where we used 1 = Pr(RT ) + Pr(RCT ). Then the expectation of the bad events can be bounded as

E
[
Regret(T )I{RCT }

]
≤ 4(d− 1)kT̃Pr(RCT ) ≤ 4(d− 1)k (76)

E
[
∥θ − θ̂t∥22I{RCT }

]
≤ 4Pr(RCT ) ≤

4

T̃
(77)

where we used Regret(T ) ≤ 2T = 4(d − 1)kT̃ , ∥θ − θ̂t∥22 ≤ 4. Finally the result follows inserting

the value of k = 24 log(T̃ 2) into the bounds of Theorem 9 and using T̃ ≤ T .

5. ALGORITHM FOR QUBIT PSMAQB AND NUMERICAL EXPERIMENTS

In this Section we prove our main result that is a regret bound for LinUCB-VVN when applied
to the qubit PSMAQB problem.

Theorem 11. Let T̃ ∈ N and fix T = ⌈96T̃ log(T̃ 2)⌉. Then given a PSMAQB with action set
A = S∗2 and environment Πθ ∈ S∗2 (qubits) we can apply Algorithm 1 for d = 3 and it achieves

E [Regret(T )] ≤ C1 log (T ) + C2 log
2 (T ) . (78)

for some universal constants C1, C2 ≥ 0. Also at each time step t ∈ [T ] it outputs an estimator
Π̂t ∈ S∗2 of Πθ with infidelity scaling

E
[
1− F

(
Πθ, Π̂t

)]
≤ C3 log(T )

t
, (79)

for some universal constant C3 ≥ 0.
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FIG. 2. Expected regret vs the number or rounds T for the LinUCB-VNN algorithm. We run T = 4 · 104
rounds with k = 10 subsamples for the median of means construction. We use 100 independents experiments
and average over them. We obtain results for each round but only plot (red crosses) few for clarity of the
figure. We fit the regression Regret(T ) = m1 log

2 T + b1 with m1 = 3.2164± 0.0009 and b1 = 0.84± 0.016.
In the inset plot we plot the expected infidelity of the output estimator at each rounds t ∈ [T ] versus the
number of rounds t. We take Πt = ΠθwMoM

t
as the estimator given by the median of means linear least

squares estimator. We fit the regression 1 − F (Π,Πt) = b2

(
log t
t

)m2

and we obtain m2 = −0.996 ± 0.002

b2 = 0.112± 0.007. We note that the number of subsamples of the theoretical results is very conservative in
comparison with the value we take for the simulations.

Proof. In order to apply Algorithm 1 to a PSMAQB we set d = 3 (dimension for a classical linear
stochastic bandit) and the actions that we select will be given by Πa±t,i

where a±t,i are updated as

in (41). Note that they are valid action since a±t,i ∈ S2 imply Πa±t,i
∈ S∗2 . The rewards received

by the algorithm follow (22) with the normalization given in (20). This model fits into the linear
bandit with linearly vanishing variance noise model explained in Section 3.4 and thus we can apply
the guarantees established in Theorem 9 and Corollary 10.

The algorithm is set with k = ⌈24 log(T̃ 2)⌉ batches for the MoM construction. We set λ0 = 2,
and using ∥θ∥2 = 1 we have that the constant β given in (39) has the value

β = 9
(
3
√
3 + 2

)2
= 279 + 108

√
3. (80)

Then we can check that for d = 3 the condition (54) for the input parameter λ0 for Theorem 9 to
hold is satisfied since

λ0 = 2 ≥ max

{
2,

1

3
+

1

2
√
6(279 + 108

√
3)

}
= 2. (81)
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In the above we just substituted all numerical values. Then we are under the assumptions of
Theorem 9 and Corollary 10 and the result follows applying both results with the relation of
regrets between the classical and quantum model given in (24), the relation

∥θ − θ̂t∥22 = 4
(
1− F

(
Πθ,Πθ̂t

))
, (82)

and substituting all numerical values. We take the estimator θ̂t given in Theorem 9 for d = 3. We
use also the bound T̃ ≤ T and reabsorb all the constants into C1, C2, C3.

Remark 1. The constant dependence can be slightly improved taking the estimator for Πθ as
ΠθwMoM

t
with θwMoM

t defined in (41).
Remark 2. The result of Theorem 11 also holds with high probability. In particular for the

choice of batches k = 24 log(T̃ 2) with probability at least 1− 1

T̃
.

6. REGRET LOWER BOUND FOR PSMAQB

While the algorithm for PSMAQB presented above is inspired by classical bandit theory, the
lower bound on the regret that we derive is essentially based on quantum information theory. The
key insight here is that a policy for PSMAQB can be viewed as a sequence of state tomographies.
The expected fidelity of these tomographies is linked to the regret. Hence, existing upper bounds
on tomography fidelity also provide a lower bound for the expected regret of the policy.

6.1. Average fidelity bound for pure state tomography

In its most general form, a tomography procedure takes n copies of an unknown state Π ∈ S∗d
and performs a joint measurement on the state Π⊗n. This is captured in the following definition.
Let (S∗d ,Σ) be a σ-algebra. A tomography scheme is a positive operator-valued measure (POVM)
T : Σ → End(H⊗n) such that T (S∗d) = Π+

n , where Π+
n is the symmetrization operator on H⊗n.

For any ρ ∈ End(H⊗n), this POVM gives rise to a complex-valued measure

PT ,ρ(A) = Tr(T (A)ρ) (83)

for A ∈ Σ. PT ,ρ becomes a probability measure if ρ satisfies ρ ≥ 0, Π+
n ρ = ρΠ+

n = ρ, and Tr ρ = 1.
Given n copies of Π, the tomography scheme produces the distribution PT ,Π⊗n of the predicted
states. Note that Π⊗n satisfies the properties above, so PT ,Π⊗n is indeed a probability distribution.
The fidelity of this distribution is given by

F (T ,Π) =
∫

Tr(Πσ)dPT ,Π⊗n(σ). (84)

Finally, the average fidelity of the tomography scheme is defined as

F (T ) =
∫
F (T , |ψ⟩⟨ψ|)dψ, (85)

where the integration is taken with respect to the normalized uniform measure over all pure states.
In the following,

∫
dψ will always imply this measure. We will provide a lower bound on F (T ) in

terms of d and n, following the proof technique from [14]. In [14], the proof is only presented for
tomography schemes producing a finite number of predictions. For our definition, we will require
more general measure-theoretic tools. Before we introduce the upper bound on the fidelity, we will
prove some auxiliary lemmas about the nature of the measure PT ,ρ.
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Lemma 12. Let (Ω,Σ) be a σ-algebra, and let O : Σ → End(H̃) be a POVM with values acting
on a finite-dimensional Hilbert space H̃ with dim H̃ = d̃ s.t. O(Ω) ≤ 1, where 1 is the identity
operator. Further, let PO,σ : Σ→ C be a complex-valued measure, defined for any σ ∈ End(H̃) as

PO,σ(A) = Tr[O(A)σ]. (86)

Then, there exists a set of functions {fσ} indexed by σ ∈ End H̃ that are linear w.r.t. σ for all ω
and that satisfy

fσ : Ω→ C s.t. ∀A ∈ Σ PO,σ(A) =

∫
A
fσ(ω)dPO,1(ω). (87)

We purposefully formulated this lemma with slightly more general objects than the ones used
in the definition of tomography. That is, Ω does not need to be S∗d , and H̃ does not need to be the
n-th power H⊗n, although we will focus on this case.

Proof. Let {|i⟩}d̃i=1 be a basis of H̃ We will first show that PO,σ is dominated by PO,1 for all σ.
Indeed, let A ∈ Σ. Assume that PO,1(A) = 0. This gives us

Tr[O(A)1] = Tr[O(A)] = 0, (88)

and, because O(A) ≥ 0, we also have O(A) = 0. Therefore,

PO,σ(A) = Tr[O(A)σ] = 0. (89)

Hence, for any |i⟩ , |j⟩ from the basis we can introduce the Radon-Nikodym derivatives f|i⟩⟨j|, which

will satisfy (87). Then, for any σ ∈ End H̃ we can define

fσ(ω) =
d̃∑

i,j=1

⟨i|σ |j⟩ f|i⟩⟨j|(ω). (90)

These fσ are linear in σ by definition. A direct calculation shows that they also satisfy (87).

Note that for σ ≥ 0, the measure PO,σ is finite and nonnegative, but nonnegativity (and even

real-valuedness) do not hold for a general σ ∈ End(H̃). By our definition of fσ(ω), it can be written
as

fσ(ω) = Tr [K(ω)σ] , where K(ω) =
d̃∑

i,j=1

f|i⟩⟨j|(ω)|j⟩⟨i|. (91)

As the following lemma demonstrates, K(ω) ≥ 0 for PO,1-almost every ω:

Lemma 13. Let (Ω,Σ, µ) be a measurable space and V : Ω → End(H̃) be a measurable operator-
valued function with values acting on a finite-dimensional Hilbert space H̃ such that

∀A ∈ Σ

∫
A
V (ω)dµ(ω) ≥ 0. (92)

Then, V (ω) ≥ 0 µ-almost everywhere.
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Proof. Let |ψ⟩ ∈ H̃ and define

gψ(ω) = ⟨ψ|V (ω) |ψ⟩ . (93)

By the given condition, for any A ∈ Σ∫
A
gψ(ω)dµ(ω) = ⟨ψ|

∫
A
V (ω)dµ(ω) |ψ⟩ ≥ 0. (94)

It follows that gψ(ω) ≥ 0 µ-almost everywhere. Let

Zψ = {ω ∈ Ω s.t. gψ(ω) < 0} (95)

We have shown that µ(Zψ) = 0. Next, since H̃ is finite-dimensional, it is separable. Therefore,

there exists a countable set {|ψk⟩}k dense in H̃. Let

Z =
⋃
k

Zψk
. (96)

We have that µ(Z) = 0. Finally, let ω ∈ Ω \ Z and |ψ⟩ ∈ H̃. Because {|ψk⟩} is dense in H̃, there
exists a sequence {|ψki⟩} converging to |ψ⟩. Then,

0 ≤ ⟨ψki |V (ω) |ψki⟩
i→∞−−−→ ⟨ψ|V (ω) |ψ⟩ . (97)

Overall, we get that

∀ω ∈ Ω \ Z, |ψ⟩ ∈ H̃ ⟨ψ|V (ω) |ψ⟩ ≥ 0. (98)

Together with µ(Z) = 0, this gives the desired result.

Now we can apply this analysis to the POVM corresponding to our tomography scheme, and
get the desired upper bound on the fidelity.

Theorem 14. For any tomography scheme T utilizing n copies of the input state, the average
fidelity is bounded by

F (T ) ≤ n+ 1

n+ d
. (99)

Proof. We will introduce the density K(ω) from (91) for our tomography scheme T and the cor-
responding measure PT ,σ. Lemma 12 allows us to introduce for any σ ∈ End(H⊗n) the density
fσ : Ω→ C s.t.

∀A ∈ Σ PT ,σ(A) =

∫
A
fσ(ω)dPT ,1(ω). (100)

This density can be written as fσ(ω) = Tr (K(ω)σ) for some K(ω) ∈ End(H⊗n). K(ω) can be
considered as the operator-valued density of T w.r.t. PT ,1:

∀A ∈ Σ T (A) =
∫
A
K(ω)dPT ,1(ω). (101)

Since T (A) ≥ 0, it follows by Lemma 13 that K(ω) ≥ 0 for PT ,1-almost all ω. Furthermore, as
T (S∗d) = Π+

n , we have that for all A ∈ Σ, T (A) ≤ Π+
n . Therefore, T (A)Π+

n = Π+
n T (A) = T (A).
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This means that K̃(ω) = Π+
nK(ω)Π+

n would also satisfy (101). In the following, we will without
loss of generality assume that

K(ω) = Π+
nK(ω) = K(ω)Π+

n . (102)

With these tools at hand, we are ready to adapt the proof from [14] to the general case of
POVM tomography schemes. We begin by rewriting the expression (84) for average fidelity:

F (T ) =
∫
dψ

∫
dPT ,(|ψ⟩⟨ψ|)⊗n(σ) Tr(σ |ψ⟩⟨ψ|) (103)

=

∫
dψ

∫
dPT ,1(σ) Tr(|ψ⟩⟨ψ|σ) Tr

(
K(σ)(|ψ⟩⟨ψ|)⊗n

)
. (104)

Since fidelity is nonnegative and its average is bounded by 1, we can change the order of integration.
Following [14], we introduce notation

σn(k) = 1
⊗(k−1) ⊗ σ ⊗ 1⊗(n−k) ∈ H⊗n. (105)

The product of traces in (104) can be rewritten in the following manner:

F (T ) =
∫
dPT ,1(σ)

∫
dψTr

(
(K(σ)⊗ 1)(|ψ⟩⟨ψ|)⊗(n+1)σn+1(n+ 1)

)
. (106)

We can now take the inner integral in closed form. As shown in [14, Eq. (4)],∫
dψ(|ψ⟩⟨ψ|)⊗n =

Π+
n

Dn
, (107)

where Dn =
(
n+d−1

d

)
. Another useful result in this paper is [14, Eq. (8)]:

Trn+1

(
Π+
n+1σn+1(n+ 1)

)
=

1

n+ 1
Π+
n

(
1+

n∑
k=1

σn(k)

)
, (108)

where Trn+1 : End(H⊗(n+1))→ End(H⊗n) is the partial trace on the (n+1)-st copy of the system.
These expressions allow us to rewrite (106) as follows:

F (T ) = 1

Dn+1

∫
dPT ,1(σ) Tr

(
(K(σ)⊗ 1)Π+

n+1σn+1(n+ 1)
)

(109)

=
1

Dn+1

∫
dPT ,1(σ) Tr

(
K(σ) Trn+1

(
Π+
n+1σn+1(n+ 1)

))
(110)

=
1

(n+ 1)Dn+1

∫
dPT ,1(σ) Tr

(
K(σ)

(
1+

n∑
k=1

σn(k)

))
. (111)

Finally, σn(k) ≤ 1, so Tr(K(σ)σn(k)) ≤ Tr(K(σ)), and we can bound the above as

F (T ) ≤ 1

Dn+1

∫
dPT ,1(σ) Tr (K(σ)) =

TrΠ+
n

Dn+1
=

Dn

Dn+1
=
n+ 1

n+ d
. (112)
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6.2. Bandit policy as a sequence of tomographies

Theorem 15. Given a d-dimensional pure state general multi-armed quantum bandit we have that
for any policy π the average expected regret is bounded by∫

dψ E|ψ⟩⟨ψ|,π [Regret(T, π, |ψ⟩⟨ψ|)] ≥ (d− 1) log

(
T

d+ 1

)
, (113)

where the expectation is taken w.r.t. the measure (11) over actions taken by the bandit, and the
regret is defined in (12).

The above Theorem gives E [Regret(T )] = Ω(d log T
d ). In the case of qubit environments, we

have d = 2 and E [Regret(T )] = Ω(log T ).

Proof. Given a policy π, we can introduce a POVM Et : (Σ× {0, 1})×t → End(H⊗t) such that

P t|ψ⟩⟨ψ|,π(A1, r1, . . . , At, rt) = Tr
(
(|ψ⟩⟨ψ|)⊗tEt(A1, r1, . . . , At, rt)

)
, (114)

where P t|ψ⟩⟨ψ|,π is the probability measure defined by (11), but only for actions and rewards until

step t. The construction of this POVM is presented in the proof of Lemma 9 in [19]. We will also
define the coordinate mapping

Ψt(Π1, r1, . . . ,Πt, rt) = Πt, (115)

where Πi ∈ A are actions and ri ∈ {0, 1} are rewards of the PSMAQB. Now we can for each step
t define a tomography scheme Tt = Et ◦ Ψ−1

t as the pushforward POVM from Et to the space
(A,Σ). Informally, this tomography scheme takes t copies of the state, runs the policy π on them,
and outputs the t-th action of the policy as the predicted state. For A ∈ Σ, we can rewrite the
tomography’s distribution on predictions as

PT ,(|ψ⟩⟨ψ|)⊗t(A) = Tr
(
Tt(A)(|ψ⟩⟨ψ|)⊗t

)
= Tr

(
Et(Ψ

−1
t (A))(|ψ⟩⟨ψ|)⊗t

)
=
(
P t|ψ⟩⟨ψ|,π ◦Ψ

−1
)
(A).

(116)
Then, the fidelity of Tt on the input |ψ⟩⟨ψ| can be rewritten as

F (Tt, |ψ⟩⟨ψ|) =
∫
⟨ψ|ρ|ψ⟩dPTt,(|ψ⟩⟨ψ|)⊗t(ρ) (117)

=

∫
⟨ψ|Ψt(Π1, r1, . . . ,Πt, rt)|ψ⟩dP t|ψ⟩⟨ψ|,π(Π1, r1, . . . ,Πt, rt) (118)

= E|ψ⟩⟨ψ|,π [⟨ψ|Πt|ψ⟩] . (119)

Using the bound for average tomography fidelity on Tt from Theorem 14, we can now bound the
average regret of π:∫

E|ψ⟩⟨ψ| [Regret(T, π, |ψ⟩⟨ψ|)] dψ = T −
T∑
t=1

∫
E|ψ⟩⟨ψ| [⟨ψ|Πt|ψ⟩] dψ (120)

= T −
T∑
t=1

F (Tt) ≥
T∑
t=1

1− t+ 1

t+ d
(121)

=
T∑
t=1

d− 1

t+ d
≥ (d− 1) log

(
T

d+ 1

)
, (122)

where the last inequality follows from bounding the sum by below with the integral of the function
f(t) = 1/(t+ d).
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7. OUTLOOK

From a quantum state tomography perspective, our work introduces completely new techniques
for the adaptive setting such as the median of means online least squares estimator or the optimistic
principle. We expect these techniques to find applications in other quantum learning settings where
adaptiveness is needed. At a fundamental level our algorithm goes beyond traditional tomography
ideas like adaptive/non-adaptive basis measurements, randomized measurements or SIC POVM’s
and show that is enough to project near the state in order to optimally learn it. From a bandit
perspective, it is surprising that the simple setting of learning pure quantum states gives the first
non-trivial example of a linear bandit with continuous action sets that achieves polylogarithmic
regret. This model motivated our classical work [20] and jointly with the current work we establish
the first bridge between the fields of quantum state tomography and linear stochastic bandits.
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[1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. “Improved Algorithms for Linear Stochastic Bandits”.
In Advances in Neural Information Processing Systems, volume 24, (2011).

[2] M. Abeille and A. Lazaric. “Linear Thompson Sampling Revisited”. In Proceedings of the 20th Inter-
national Conference on Artificial Intelligence and Statistics, volume 54, pages 176–184, (2017).

[3] S. Agrawal and N. Goyal. “Thompson sampling for contextual bandits with linear payoffs”. In Inter-
national conference on machine learning, pages 127–135, (2013).
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I. Overview

Quantum state tomography is a fundamental task in
quantum information, aiming to construct a classical de-
scription of an unknown quantum state based on experi-
mental data. A crucial question regarding quantum state
tomography is the following: what is the minimum number
of samples — copies of the unknown state — required to con-
struct a classical description of an estimator which is ε-close
in trace distance to the true state with high probability?
While this question has been extensively addressed for qu-
dit systems, this is an open question for continuous variable
(CV) systems [2–4], characterised by an infinite-dimensional
Hilbert space. The literature regarding quantum state to-
mography of CV systems mainly relies on phase-space ap-
proximations [5–8] which — crucially — do not provide any
rigorous performance guarantees with respect to the trace
distance (which is the most meaningful notion of distance
between quantum states [9, 10]). This gap in the literature
is particularly surprising given the pivotal role of quantum
optical platforms — described by CV systems — in quantum
technologies such as quantum computation, communication,
and metrology. Our work fills this gap, by presenting an
exhaustive analysis of quantum state tomography of CV sys-
tems in terms of the trace distance. We analyse tomography
of three classes of states:

• Energy-constrained states. We consider energy-
constrained states since, without any constraints, a to-
mography algorithm would inevitably require an un-
bounded number of resources. By assuming that the
mean photon number per mode of the unknown state

∗ {francesco.mele, vittorio.giovannetti, salvatore.oliviero}@sns.it
† {a.mele, l.bittel, lorenzo.leone}@fu-berlin.de
‡ {jenseisert, ludovico.lami}@gmail.com

is upper bounded by Ns, and by denoting ε as the pre-
cision in trace distance and n as the number of modes,
we establish that the sample complexity of any to-

mography algorithm must scale at least as Ω̃
((

Ns

ε2

)n)
(see the preliminaries in the technical manuscript for a
quick review of the asymptotic notation), which is an
unfavourable scaling not only in n but also in ε. Con-
trary to what happens for finite-dimensional states,
the sample complexity of CV tomography does not
scale with O(ε−2), but with O(ε−2n). This establishes
that, even if CV systems have to satisfy stringent en-
ergy constraints, CV tomography is extremely ineffi-
cient, much more than tomography of qudit systems.
In addition, we devise a tomography algorithm for
possibly mixed states with sample complexity scaling

as O
((

Ns

ε2

)2n)
. Remarkably, restricting to the pure

state case, we prove that Θ̃
((

Ns

ε2

)n)
samples are nec-

essary and sufficient for pure state tomography.

• Gaussian states. We prove that tomography of
(energy-constrained) Gaussian states is efficient, as
there exists a tomography algorithm whose sample
and time complexity scales polynomially in the num-
ber of modes. Notably, our result demonstrates that
Gaussian states can be efficiently learned by estimat-
ing the first moment and the covariance matrix, a
result that has been previously assumed but never
rigorously proved in the literature. To conduct the
complexity analysis, we investigate the following fun-
damental question, which is of independent interest
for the field of Gaussian quantum information: if we
approximate the first moment and covariance matrix
of an unknown Gaussian state with precision ε, what
is the resulting trace distance error on the state? In
our work, we answer this question by finding an up-
per bound on the trace distance between two Gaus-
sian states in terms of the distance between their first
moments and their covariance matrices.
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• t-doped Gaussian states. t-doped Gaussian states are
n-mode pure states prepared by applying Gaussian
unitaries and at most t non-Gaussian κ-mode uni-
taries on the vacuum state. We prove that, if 2κt ≤ n,
one can turn any t-doped state into a tensor prod-
uct between a 2κt-mode non-Gaussian state and the
(n − 2κt)-mode vacuum state, via a suitable Gaus-
sian unitary. By leveraging such a decomposition, we
devise a tomography algorithm which has a sample
and time complexity that scales polynomially in n as
long as κt = O(1), thereby establishing that tomogra-
phy of (energy-constrained) t-doped states is efficient
in this regime. This establishes the robustness of to-
mography of Gaussian states, in the sense that, even if
few non-Gaussian unitaries are applied to a Gaussian
state, the resulting state remains efficiently learnable.
Our results on t-doped bosonic states are derived by
extending to the bosonic setting some results on t-
doped fermionic states of an ongoing parallel work [?
]. However, extending these results is far from triv-
ial, since in the bosonic setting one must deal with
the subtleties arising from the energy constraints and
from the infinite-dimensional Hilbert space.

With these results, our work significantly advances also the
field of Quantum Learning Theory [11].

II. Tomography of energy-constrained states

For a system of n qudits with local dimension d, the
minimum number of samples required to achieve quantum
state tomography with precision ε in trace distance scales

as Θ̃
(

d2n

ε2

)
[12–14], which is exponential in the number of

qudits. We generalize this result to energy-constrained CV
systems.

Theorem 1 ((Informal version)). Let us consider an un-
known n-mode state ρ satisfying the k-th moment constraint

(Tr
[
N̂k

nρ
]
)1/k ≤ nNs, where N̂n is the total photon number

operator. The number of samples required to achieve quan-
tum state tomography with precision ε in trace distance has to

scale at least as Ω̃
((

Ns

ε2/k

)n)
. Moreover, there exists a tomog-

raphy algorithm for possibly mixed states with sample com-

plexity that scales as O
((

Ns

ε2/k

)2n)
. Notably, if we assume

the unknown state to be pure, then Θ̃
((

Ns

ε2/k

)n)
samples are

necessary and sufficient for tomography.

Proof ideas. The proof of the lower bound on the sample
complexity involves ε-net techniques [15–18]. For the up-
per bound, we devise an explicit algorithm consisting of two
main steps: first, performing a two-outcome measurement to
project onto a suitable finite dimensional space with a fixed
maximum photon number, and, second, applying known to-
mography algorithms for qudits.

We note that the CV classical shadow algorithm proposed
in [19], primarily designed for estimating expectation values,

effectively offers an alternative tomography algorithm. How-

ever, its sample complexity scales as O

((
n2N2

s

ε2/k

)2n
)
, which,

being super-exponential in n, is much worse than the scaling

O
((

Ns

ε2/k

)2n)
of our algorithm. Regarding the CV classical

shadow algorithm proposed in [20], it provides guarantees in
terms of the operator norm rather than the trace distance,
making it unsuitable for quantum state tomography.

III. Tomography of Gaussian states

It is well established that: “In order to know a Gaussian
state it is sufficient to know its first moment and its covari-
ance matrix”. However, in practice, we never know the first
moment and the covariance matrix exactly, but we can only
have estimates of them, meaning that we can only approx-
imately know the Gaussian state. It is thus a fundamental
problem – yet never tackled before – of Gaussian quantum
information to determine what is the error incurred in trace
distance when estimating the first moment and covariance
matrix of an unknown Gaussian state up to a precision ε.
The forthcoming Theorem 2 addresses this problem. One
might be inclined to believe that there is a simple approach
to solving this problem, involving first bounding the trace
distance in terms of fidelity and then employing the known
formula for fidelity between Gaussian states [21]. While this
approach may seem promising at first glance, it ultimately
fails because the expressions involved in the fidelity formula
are too complicated to allow for the derivation of a simple
bound in terms of the distance between the first moments
and the covariance matrices.

Theorem 2. Let ρ1 and ρ2 be Gaussian states with mean
total photon number upper bounded by Ns, i.e. it holds that

Tr
[
ρ1 N̂n

]
≤ Ns and Tr

[
ρ2 N̂n

]
≤ Ns. The trace distance

between ρ1 and ρ2 can be upper bounded as

1

2
∥ρ1 − ρ2∥1 ≤

√
2(Ns + 1)

(
∥m1 −m2∥2 +

√
2
√

∥V1 − V2∥1
)
,

where m1 and m2 are the first moments and V1 and V2 are
the covariance matrices of ρ1 and ρ2, respectively. Here, ∥·∥1
and ∥ · ∥2 denote the trace norm and the 2-norm.

Proof tools. We use non-standard properties of the Gaus-
sian channel NK that acts on the covariance matrices as
V 7→ V +K and leaves the first moments unchanged, where
K is a fixed positive semi-definite matrix. Specifically, lever-
aging results from [22], we prove that the energy-constrained
diamond distance [23? ] between NK and the identity satis-
fies 1

2 ∥NK − Id∥⋄Ns
≤

√
2(Ns + 1)

√
TrK, which constitutes

a new technical tool.
Theorem 2, which we regard as a significant technical con-

tributions, establishes that an ε-estimate of the first moment
and of the covariance matrix of a Gaussian state leads an

√
ε-

estimate of the state in trace distance. Moreover, Theorem 2
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allows us to analyse the sample complexity of tomography of
Gaussian states.

Theorem 3 ((Informal version)). Let ρ be an unknown
n-mode Gaussian state with mean energy per mode up-

per bounded by E, i.e. Tr
[
ρÊn

]
≤ nE where Ên :=∑n

i=1

(
x̂2
i

2 +
p̂2
i

2

)
= N̂n + n

2 1 is the energy operator. For any

ε, δ ∈ (0, 1), a number O
(

n7E4

ε4 log
(

n2

δ

))
of copies of ρ suf-

fices to construct a classical description of a Gaussian state
estimator ρ̃ such that 1

2∥ρ̃− ρ∥1 ≤ ε with probability at least
1− δ.

Proof ideas. The key step of the proof involves applying The-
orem 2. Moreover, note that to obtain rigorous performance
guarantees on the estimate of the covariance matrix, we need
to establish an upper bound on the second moment of the
energy. We do this by proving that any Gaussian state ρ

satisfies Tr
[
ρÊ2

n

]
≤ 3(Tr

[
ρÊn

]
)2, which constitutes a new

technical tool.
We can improve the trace distance bound in Theorem 2

if we assume one of the states, say ρ1, to be a pure Gaussian
state (interestingly, such an improved bound holds even if
ρ2 is not Gaussian). By exploiting this improved bound, we

can show that O
(

n5E3

ε4 log
(

n2

δ

))
samples suffices to achieve

tomography of pure Gaussian states.

Tomography of t-doped Gaussian states.— An n-mode
unitary Ut is said to be a t-doped Gaussian unitary if
it is a composition of Gaussian unitaries and at most t
non-Gaussian κ-mode unitaries. In other words, Ut is of the
form Ut = GtWt · · ·G1W1G0, where each Gi is an n-mode
Gaussian unitary and Wi is a κ-mode non-Gaussian uni-
tary. Strictly speaking, we assume each Wi to be a unitary
generated by an Hamiltonian which is a (non-quadratic)
polynomial in the quadratures of at most κ modes. An
n-mode state |ψ⟩ is said to be a t-doped Gaussian state if
it can be prepared by applying a t-doped Gaussian unitary
to the vacuum: |ψ⟩ = Ut |0⟩⊗n

. Remarkably, the following
decomposition of t-doped unitaries and states hold.

Theorem 4 ((Non-Gaussianity compression in t-doped
Gaussian unitaries and states)). If n ≥ 2κt, any t-
doped Gaussian unitary Ut can be decomposed as Ut =
G(u2κt⊗1n−2κt)Gpassive, for some suitable Gaussian unitary
G, passive Gaussian unitary Gpassive, and 2κt-mode (non-
Gaussian) unitary u2κt. In particular, any t-doped Gaussian
state can be decomposed as

|ψ⟩ = G
(
|ϕ2κt⟩ ⊗ |0⟩⊗(n−2κt)

)
(1)

for some suitable Gaussian unitary G and 2κt-mode (non-
Gaussian) state |ϕ2κt⟩.

Theorem 4 establishes that it is possible to compress all the
non-Gaussianity of a t-doped Gaussian state via a suitable

Gaussian unitary. By leveraging the decomposition in (1),
we can design a tomography algorithm for t-doped Gaussian
states, whose performance are analysed in the Theorem 5 be-
low. The idea behind our algorithm involves first estimating
the Gaussian unitary G, then applying its inverse to the state
in order to compress the non-Gaussianity, and finally per-
forming the tomography algorithm mentioned in Theorem 1
over the first 2κt modes.

Theorem 5 ((Informal version)). Let |ψ⟩ be an unknown
n-mode t-doped Gaussian state with second moment of the

energy per mode upper bounded by E2, i.e.

√
Tr

[
ρÊ2

n

]
≤

nE2. For any ε, δ ∈ (0, 1), a number O

((
n2(E2)

2

ε2

)κt)
of

copies of |ψ⟩ suffices to construct a classical description of

an estimator
∣∣∣ψ̃〉 such that 1

2

∥∥∥∣∣∣ψ̃〉〈ψ̃∣∣∣− |ψ⟩⟨ψ|
∥∥∥
1
≤ ε with

probability at least 1− δ.

Proof tools. We exploit concentration inequalities typically
used in statistical learning theory. Moreover, we employ a
variety of established tools in Gaussian quantum information
while also introducing novel tools. For instance, we utilise the
known perturbation bound on symplectic eigenvalues of co-
variance matrices established by [24]. As an example of novel

tool, we introduce the inequality E
(
USρU

†
S

)
≤ ∥S∥2∞E(ρ),

where E(ρ) := Tr
[
ρÊn

]
is the mean energy of ρ, US is the

Gaussian unitary associated with a symplectic matrix S, and
∥ · ∥∞ is the operator norm.

Theorem 5 implies that tomography of t-doped Gaussian
states is efficient in the regime κt = O(1), as its sample,
time, and memory complexity scales polynomially in n.

Conclusions.— Our work serves as bridge between the
two fields of quantum learning theory and CV quantum in-
formation. We provide the first investigation of tomography
of continuous variable systems with rigorous performance
guarantees in terms of the trace distance. We first inves-
tigate moment-constrained states, by showing both lower
and upper bounds on the sample complexity of tomography.
Remarkably, we identify the optimal sample complexity for
tomography of moment-constrained pure states. Second,
we rigorously prove that tomography of Gaussian states is
efficient. To achieve this, in Theorem 2 we introduce an
upper bound on the trace distance between Gaussian states
in terms of the distance between their first moments and
their covariance matrices, which constitutes a technical tool
of independent interest for the community of continuous
variable quantum information. Finally, we analyse t-doped
Gaussian states, demonstrating a valuable decomposition
in Theorem 4, which guides the development of an apt
tomography algorithm.
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Introduction–Despite the rapid advances in quantum hardware in recent years, there is still an extended stretch
of time ahead before we can successfully implement quantum error correction (QEC) to achieve fully fault-tolerant
computation. In order to reach practical quantum advantages during this time, it is essential to develop noise
suppression techniques compatible with existing quantum technologies. One key method is quantum error mitigation
(QEM) [1], which can extract target information from noisy quantum circuits without physically recovering the
noiseless quantum state. Due to the low hardware requirement, QEM has become a prevailing tool in many quantum
computation experiments [2–4] and is expected to play a key role also in the early fault-tolerant era.

Over the years, various QEM protocols have been proposed, but each comes with its own sets of assumptions.
Probabilistic error cancellation [5, 6] relies on detailed knowledge about the noise models and the assumption that the
noise remains the same across different times and different qubits. Zero-noise extrapolation [5, 7] requires the ability
to tune hardware noise without significantly modifying the noise model and it can only offer rigorous performance
guarantee at small noise. Virtual state purification [8, 9] requires the ideal input and output state to be pure states and
also the noiseless component to be the dominant component of the noisy output state. Symmetry verification [10, 11]
require problem-specific knowledge about the symmetry or energy constraints on the output state.

In this article, we introduce a QEM technique called virtual channel purification that removes all of the assumptions
above, i.e. it is the first QEM protocol that imposes no requirements on specific knowledge about the gate error models,
the incoming and output state, and the problem we try to solve; does not require additional hardware capability beyond
gate-model computation; while still offers rigorous performance guarantee for the most practical noise regime. The
only assumption it makes is that the noise in the ideal unitary operation is incoherent, which is the case for most
practical scenarios [12, 13], especially with the help of Pauli twirling [14–17].

Protocol–Virtual channel purification (VCP) is obtained by combining ideas from virtual state purification (VSP),
Choi–Jamio lkowski isomorphism, and the circuit for flag fault-tolerance [18]. Just like how VSP uses M copies of a
noisy state to virtually prepare a purified output state whose infidelity falls exponentially with M , VCP is able to

use M copies of a noisy channel UE = EU with E = p0I +
∑4N−1

i=1 piEi to virtually implement a purified channel
UE(M) = E(M)U with

E(M) =
1∑4N−1

i=0 pMi

pM0 I +
4N−1∑
i=1

pMi Ei

 (1)

whose infidelity falls exponentially with M . As shown in Fig. 1(a) and (c), the circuit implementation costs of VSP
and VCP are similar, but VCP removes many assumptions of VSP as mentioned and provides much stronger error
suppression power, extending the applicability of such methods into deeper and noisier circuits.

Performance– Compared to its state counterpart, virtual state purification (VSP), VCP can suppress global noise
exponentially stronger in the number of qubits due to the larger dimensionality of channels compared to states, as
shown in Fig. 2(c). While VSP requires the ideal output state to be a pure state, VCP places no such restrictions
as it directly purifies the noisy channel and thus can be applied to any input state. Furthermore, while VSP can
only be applied to the entire quantum circuit as a whole, VCP can be applied in a layer-by-layer manner or even
target specific gates in the circuits, as demonstrated in Fig. 1(f)-(h). This provides flexibility and, more importantly,
removes the restriction in VSP that the noiseless component must be the dominant component for the noisy circuit
output. In this way, VCP is applicable to much deeper and noisier circuits than VSP.

When considering the practical implementation of VCP, the single-layer variant only requires one additional layer
of CSWAPs compared to VSP. Furthermore, the noise of this additional layer of CSWAP is naturally mitigated by
VCP itself. We have seen in Fig. 2(d) that the errors due to CSWAPs are essentially the same for both VCP and VSP.
Hence, single-layer VCP is almost always preferred over VSP due to its stronger noise suppression power at a similar
implementation error cost. We can further optimise the number of VCP layers to outperform the single-layer variant.
In numerical simulation across a range of circuit depths and gate error rates, optimal-layer VCP always outperform
VSP and can offer up to 4 times more error suppression, shown in Fig. 2(e)-(g). The advantage is expected to be
even stronger using more copies of noise channels and more qubits.

Applications in Quantum Networks– Using the same circuit as VCP, but performing post-selection on the
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FIG. 1. (a)-(c)The logic for constructing VCP circuit, taking M = 2 without loss of generality. (a) The circuit for VSP,
consists of two copies of the noisy input state, a single control qubit initialised as |+⟩, and a CSWAP gate. By measuring the
control qubit in Pauli-X basis, one can virtually prepare the purified state on the second register. (b) One possible circuit
implementation of VCP, obtained from performing the VSP circuit in (a) on two copies of Choi states of the noisy channel.

Each curved line at the input end stands for a 2N -qubit maximally entangled state
∣∣Φ+

〉
= 1√

2N

∑2N−1
i=0 |ii⟩, which is used

to prepare the Choi state of the noisy channel UE . Then, the VSP circuit acts on two noisy Choi states to virtually obtain a
purified Choi state. The curved line at the output end stands for Bell state measurement (BSM) post-selected on the all-zero
result, which is for implementing the purified channel using the purified Choi state. (c) A circuit implementation of VCP,
obtained from straightening the curved lines in green and red in (b). By measuring the control qubit in Pauli-X basis, one
can virtually implement the purified channel on the second register. This circuit is easily generalised to a larger value of M
by employing M − 1 copies of maximally mixed state and changing SWAP to the Mth order permutation. (d) Application
of channel purification in entanglement distribution. Blue circles represent two users and

∣∣Φ+
〉
is the entangled state that is

distributed. (e) The circuit for channel purification. Compared to the VCP circuit, we post-select on the measurement results
of the control qubit and keep only the |+⟩ outcome. The dashed blue box corresponds to the purification process in (d). (f)-(h)
Comparison between VSP and VCP with M = 2. (f) For a quantum circuit with depth D, VCP protocol can be applied
layer-by-layer. (g) VSP protocol can only be performed once at the end of the quantum circuit with one control qubit and two
identical copies. (h) VCP can target specific noisy gates in the quantum circuit.

controlled qubit measurement results instead of post-processing, as shown in Fig. 1(e), we can physically (instead of
virtually) obtain a purified channel, which can then be applied to many tasks in quantum networks. As shown in
Fig. 1(d), in entanglement distribution, compared to previous works based on entanglement purification, our channel
purification protocol does not require multipartite joint operations and multiple identical copies of the distributed
states for local quantum noises. Furthermore, with a single clean channel to transmit a single clean qubit, our protocol
can purify noisy channels with arbitrarily large dimensions and enable the activation of valuable quantum resources.
The fact that our protocol is applicable to arbitrary incoming states and arbitrary incoherent noise also opens up the
door for many other possible applications in communication.

Connection with QEC– Due to the key roles we expect QEC and QEM to both play in practical quantum
computation, there is always a strong desire to develop a framework that combines the two. So far the attempts are
mostly about concatenating QEM on top of QEC [19–21]. Through further generalisation of VCP and the use of the
Knill-Laflamme condition [22], we are able to obtain one of the first integrated protocols that combine QEM and QEC
beyond concatenation. In this protocol, by paying the same sampling cost as channel purification using two copies,
we are able to remove all noise in the noisy channel, reaching beyond the standard bias-variance trade-off limit in
pure QEM [1].

In the standard configuration of VCP, the additional copies of the noisy channels are acting on a maximally
mixed input state at the ancillary registers. Using the Knill-Laflamme condition, we show that we can also perform
purification using a quantum error correction (QEC) code state as the ancillary input state. Furthermore, if we are
able to perform stabiliser checks on the ancillary register at the end of the circuit and post-select, we can remove
all noise from the main register using just two copies of the noise channel. This comes with a higher sampling cost
following the usual bias-variance trade-off in QEM. Now instead of post-selecting on the stabiliser check results of the
ancillary register, if we perform correction on the main register based on these check results, we can actually remove
all noise from the main register while paying only the sampling cost of the second-order VCP. This provides one of
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FIG. 2. (a) The circuit for our numerical simulation with VCP applied. The main circuit is a four-qubit system initialised in
the all-0 state evolving through a random circuit consisting of alternating layers of random single-qubit gates (blue boxes) and
CNOT gates (two dots connected by a vertical line). The CNOT gates are affected by two single-qubit depolarising channels
each with an error rate p (red circles). The whole circuit is divided into L VCP layers to perform the circuit shown in 1(f). In
all numerical tests besides (b), every CSWAP gate is followed by three single-qubit depolarising channels each with an error
rate 5p. (b) The infidelities after VSP and VCP for different circuit depths without any CSWAP noise. The gate error rate is
p = 0.005 and the depth of each VCP layer is 20. (c) The infidelities after VSP and single-layer VCP at different values of p.
The circuit depth is set to be 80. (d) The error rates caused by the CSWAP noise in VSP and single-layer VCP using the same
circuit as (c), where we have removed the CNOT noise while keeping only the CSWAP noise. (e) The infidelity behaviour after
VCP with different numbers of VCP layers for a circuit with a depth 240 and a gate error rate p = 0.005. The green and red
lines represent cases without CNOT and CSWAP errors, respectively. (f) The infidelity ratios between VSP and single-layer
VCP, and between VSP and VCP with the optimal number of VCP layers, at different gate noise rates with a circuit depth of
80. (g) The infidelity ratios at different circuit depths with a fixed gate error rate of p = 0.005.

the first frameworks that seamlessly combines QEM and QEC beyond the concatenation of QEC and QEM [19–21].

Outlook– Due to the presence of the controlled permutation operator at the beginning of the circuit which is co-
herently connected to the controlled permutation operator at the end, VCP actually lies outside the QEM frameworks
presented for the discussion of the fundamental limits of QEM [23–25]. Hence, hopefully VCP can inspire a new
range of QEM protocols outside these frameworks, like the combination with symmetry verification. One can also
develop more general frameworks of QEM that incorporate VCP, which may have more desirable properties compared
to the previous QEM framework. One promising way to do this is by finding deeper connections to QEC. It will
also be interesting to search for other QEM methods that can be naturally merged with QEC beyond concatenation,
similar to what we have done. This can be the start of a more general error suppression framework that naturally
incorporates both QEM and QEC.
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Abstract. Nonlocal games play a crucial role in quantum information theory and have numerous appli-
cations in certification and cryptographic protocols. Kalai et al. (STOC 2023) introduced a procedure to
compile a nonlocal game into a single-prover interactive proof, using a quantum homomorphic encryption
scheme, and showed that their compilation method preserves the classical bound of the game. Natarajan
and Zhang (FOCS 2023) then showed that the quantum bound is preserved for the specific case of the
CHSH game. Extending the proof techniques of Natarajan and Zhang, we show that the compilation pro-
cedure of Kalai et al. preserves the quantum bound for two classes of games: XOR games and d-outcome
CHSH games. We also establish that, for any pair of qubit measurements, there exists a compiled XOR
game such that its near-optimal winning probability serves as a robust self-test for that particular pair
of measurements. Finally, we derive computational self-testing of three anticommuting qubit observables,
based on the compilation of the nonlocal game corresponding to the so-called elegant Bell inequality.

Keywords: Bell non-locality, quantum cryptography

1 Introduction

Nonlocal games play a crucial role in quantum infor-
mation theory and have numerous applications in cer-
tifications protocols. The first proofs of separation be-
tween classical and quantum resources are based on non-
local games, with the most emblematic example being
the Clauser-Horne-Shimony-Holt (CHSH) game [6, 10].
In such games, an honest classical referee has a 1-round
classical interaction with 2 or more non-communicating
players. They will then evaluate a function of the outputs
and the inputs, called predicate, to establish whether to
accept or not; the acceptance probability is the score of
the game. The difficulty to win does not arise from the
complexity of the predicate, but rather from the players’
partial information. For some games the maximal score
that quantum provers can achieve is strictly higher than
any classical strategy, hence they can be used as proofs
of quantumness. In addition to its far-reaching founda-
tional interest, Bell nonlocality [9] enjoys a rich array
of applications concerned with the certification of quan-
tum resources and cryptographic tasks, such as device-
independent quantum key distribution [1, 23, 4], certified
randomness [11, 19, 2] and self-testing [17, 22].
The framework of Bell nonlocality however requires at

least two non-communicating parties, and the strongest
guarantees of information-theoretic security can thus
only be achieved if these parties are space-like separated,
which turns out to be experimentally very challenging.
Moreover, from a pragmatical point of view, if one wants

∗For the full version of this work, see the pdf attached.
†matilde.baroni@lip6.fr
‡quoc.huy.vu@ens.fr
§boris.bourdoncle@gmail.com
¶eleni.diamanti@lip6.fr
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∗∗ivan.supic@lip6.fr

to certify resources on a quantum computer as it is an in-
tegral device, spatial separation and the absence of com-
munication cannot be imposed. These are strong motiva-
tions to try to relax the constraint of spatial separation,
while preserving classical verification of quantum compu-
tation.

Cryptography seems to offer a very promising tool:
(quantum) homomorphic encryption, which allows to
perform computations on encrypted (quantum) data
without decrypting them. This could be used to mimic
spatial separation by hiding to the single prover the com-
plete knowledge of the inputs, which would otherwise
make the game trivial. Kalai et al. formalised in [13] the
idea of using quantum homomorphic encryption [16, 7] to
emulate spatial separation between the nonlocal parties.
They propose a procedure to compile every k-players
nonlocal game into a single-prover interactive proof of
2k-rounds, by fixing a sequential structure of the input-
output requests and encrypting the first k − 1 rounds.
They then prove: (i) the completeness of the procedure,
that is, there is an explicit and efficient quantum strategy
that achieves the quantum bound of the original nonlocal
game; and (ii) its classical soundness, that is, no classical
prover can outperform the optimal classical bound up to
a negligible function in the security parameter, which is
the advantage of the classical adversary in the indistin-
guishability (IND-CPA) security game of the encryption
scheme.

However Kalai et al do not provide an upper bound
to the optimal score of a quantum prover. Indeed [13]
uses classical rewinding techniques to show the sound-
ness against classical adversaries, but this is no longer
possible against quantum provers. Follow-up works by
Natarajan and Zhang [18] and Brakerski et al. [8] prove
that the quantum bound is preserved in the specific case
of the compiled CHSH game. Their proofs heavily relies
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Figure 1: Pictorial representation of the Kalai et. al. compilation protocol for 2-player nonlocal games. On the left,
a general 2-player nonlocal game; the two parties are spatially separated, and only communicate to a classical verifier
which is sampling questions (x, y) and collecting their answers (a, b). On the right, the single prover game resulting
from the compilation procedure. In this representation, time flows downwards.

on specific properties of CHSH, providing little insight
on whether Kalai et al. compiler preserves the quantum
bound for any other nonlocal games.

2 Our Contributions

In this work, we continue this research direction and
provide a partial answer for the above open question. In
particular, we prove that the quantum bound is preserved
for two classes of compiled games: XOR games, where
the predicate depends on the logical XOR of the outputs,
and d-outcome CHSH games, that generalise the CHSH
game to a scenario involving many-output measurements.
We also extend our results to self-testing, which relies
on the fact that for specific non-local games there is a
unique strategy that can achieve the optimal quantum
score; then, reaching this bound is a device-independent
certification of quantum resources.
The techniques we use are based on the cryptographic

SOS decomposition delineated in [18]. The score of a
nonlocal game is usually formulated as the expectation
value of some function of the observables of the players.
This is closely related to the Bell operator B, and its
shifted version β1−B, where β is what we call the shift.
SOS decomposition - standing for sum of squares - is a
method widely used in Bell nonlocality to prove quantum
bounds. It consists on mathematically rearranging the
terms of the shifted Bell operator as a sum of polynomials
squared, whose expectation value is positive semi-definite
by definition.

⟨ψ|β1− B |ψ⟩ =
∑
i

⟨ψ|P 2
i |ψ⟩ ≥ 0 =⇒ ⟨ψ| B |ψ⟩ ≤ β

Hence the shifted Bell operator is also positive semi-
definite, meaning that the shift β is an upper bound for
the optimal quantum score. The bound becomes tight if
an explicit quantum strategy achieving β is found. If the
polynomials appearing in the decomposition are of degree
n, then we say we have a nth-order SOS decomposition.
Elaborating on the results of [18], we define a function

that maps polynomials of nonlocal observables to cor-
relations observed in the compiled nonlocal game. This
function, that we refer to as the pseudo-expectation value
map Ẽ, allows us to translate the SOS decomposition

proof from the nonlocal to the compiled game. For poly-
nomials of observables with a physical interpretation, we
intuitively translate the probabilities using some change
of variables compatible with the structure of the compiled
game; therefore it acts trivially on the identity, and when
applied to the Bell functional it gives the score of the
compiled game. We call it pseudo-expectation because
it is not a positive semi-definite function by definition.
In particular, the pseudo-expectation of the polynomi-
als squared from the SOS decomposition is not positive
by definition anymore. Nevertheless, we prove that - for
specific polynomials - these quantities are positive up to
a negligible function in the security parameter κ of the
QHE scheme.

Lemma 1 (Informal) Consider a Bell inequality B
with a SOS decomposition, whose polynomials can be
written as Pi = Ai − B̂i, where {Ai}i are Alice’s ob-
servables and {B̂i}i are linear sums of Bob’s observables.
Then there exists a negligible function ηQHE(·) such that

we have Ẽ
[
P 2
i

]
≥ −ηQHE(κ).

Technically, this is done by extending cryptographic ar-
guments based on the security of the encryption scheme.
Then, applying the pseudo-expectation map to the non-
local SOS decomposition, we prove that the quantum
bound of the compiled game is preserved up to a neg-
ligible function in the security parameter.

Ẽ[β1− B] =
∑
i

Ẽ[P 2
i ] ≥ −ηQHE(κ)

=⇒ Ẽ[B] ≤ β + ηQHE(κ)

The pseudo-expectation map is well defined for polyno-
mials of degree 2 in the number of observables, restricting
us to work with first-order SOS decompositions. We lack
of a meaningful interpretation for polynomials containing
two different Alice’s observables in the compiled scenario,
but we can fix the shape of the SOS polynomials Pi to
contain only one observable for Alice for several non-local
games of interest.

In particular, in the paper we revise some known re-
sults for XOR games, and derive a new result on the
decomposition of the shifted game operator. Notably, we
prove that it is always possible to have a decomposition
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with polynomials Pi containing only one Alice’s observ-
able. This helps us to prove that the quantum score of
all XOR games is preserved by Kalai et al. compilation.

Theorem 2 Given an XOR game with optimal quantum
bound βq, the optimal quantum bound of the compiled
XOR game is βq+ δQHE(κ), where δQHE(·) is a negligible
function.

We also extend the pseudo-expectation map to treat
higher dimensional inputs and outputs, hence generalised
observables. As an example we apply it to the SATWAP
inequality proposed in [20], a generalisation of CHSH for
which we know it exists a SOS decomposition in our de-
sired form [21]. We prove that the quantum score of the
compiled game is preserved in this case as well. Apart
from its mathematical relevance, this could lead to much
more efficient certifications.

Theorem 3 Consider the d-dimensional SATWAP Bell
inequality with quantum bound (βSATWAP

d )q, and its
compiled version. If d is polynomial w.r.t. the security
parameter κ, then the quantum bound of the compiled
SATWAP inequality is (βSATWAP

d )q+θ(κ), where θ(·) is
a negligible function.

The SOS decomposition imposes constraints on the
strategies achieving the optimal quantum score; some-
times these constraints are enough to uniquely identify
these strategies, leading to self-testing protocols. From
the cryptographic SOS decomposition we develop com-
putational self-testing techniques for interactive single
prover games, built on top of the nonlocal self-testing
proofs. In particular, we focus on two relevant XOR
games. In these cases Jordan’s lemma applies, and fix-
ing the anti-commutators of the observables is usually
enough to have robust self-testing statements [14]. By
achieving the optimal quantum score of some compiled
XOR games, using classical interaction with a single de-
vice we can robustly self test the following resources:

• any pair of binary measurements, from the compi-
lation of the family of Bell inequalities presented in
[15, 5, 24];

• triplets of mutually unbiased base (MUB) qubit
measurements, from the compilation of the elegant
Bell inequality [12, 3].

To conclude, our work aims to bridge topics at the in-
terface between quantum nonlocality, quantum cryptog-
raphy and quantum complexity theory, proving fruitful
combinations between these fields. Our findings reveal
that the compilation procedure introduced in [13] effec-
tively preserves the quantum bound of many interesting
games, leaving the question of extending this preserva-
tion to even more nonlocal games.
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[19] S. Pironio, A. Aćın, S. Massar, A. B. de la Giro-
day, D. N. Matsukevich, P. Maunz, S. Olmschenk,
D. Hayes, L. Luo, T. A. Manning, and C. Monroe.
Random numbers certified by Bell’s theorem. Na-
ture, 464(7291):1021–1024, 2010.

[20] A. Salavrakos, R. Augusiak, J. Tura, P. Wittek,
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Abstract

Nonlocal games play a crucial role in quantum information theory and have numerous applications in certifi-
cation and cryptographic protocols. Kalai et al. (STOC 2023) introduced a procedure to compile a nonlocal game
into a single-prover interactive proof, using a quantum homomorphic encryption scheme, and showed that their
compilation method preserves the classical bound of the game. Natarajan and Zhang (FOCS 2023) then showed
that the quantum bound is preserved for the specific case of the CHSH game. Extending the proof techniques of
Natarajan and Zhang, we show that the compilation procedure of Kalai et al. preserves the quantum bound for
two classes of games: XOR games and d-outcome CHSH games. We also establish that, for any pair of qubit
measurements, there exists an XOR game such that its optimal winning probability serves as a self-test for that
particular pair of measurements.

1 Introduction
In quantum information theory, nonlocal games are a class of games that exemplifies the separation between clas-
sical and quantum resources. In such games, a referee sends classical inputs to two or more distant parties, and the
parties reply with classical outputs. A predicate on the tuples of inputs and outputs defines the winning conditions
for the game. In some cases, if the distant parties have access to quantum resources, namely entangled states,
they can achieve a score higher than if they only have classical resources. Building on the work of Bell [Bel64],
Clauser, Horne, Shimony and Holt introduced the setting for the most famous example of such a game, the CHSH
game [CHSH69]. While players with classical resources can only reach a maximal value of 0.75, players sharing
entanglement can obtain a value of cos2(π/8).

In addition to its far-reaching foundational interest, Bell nonlocality [BCP+14] enjoys a rich array of applica-
tions concerned with the certification of quantum resources and cryptographic tasks, such as device-independent
quantum key distribution [ABG+07, VV14, AFDF+18], certified randomness [Col07, PAM+10, AM16] and self-
testing [MY04, ŠB20]. The framework of Bell nonlocality however requires several non-communicating parties,
and the strongest guarantees of information-theoretic security can thus only be achieved if these parties are spatially
separated. Bell nonlocality is also connected to the powerful notion of multiprover interactive proof systems in
quantum complexity theory, MIP∗, in which two or more non-communicating provers are allowed to share quantum
entanglement. In the classical setting, techniques and results from studying MIP (the classical version of MIP∗)
usually also find applications in the cryptographic setting, where all parties are computationally bounded, such
as the celebrated PCP theorems and succinct arguments. Crucially, a series of works [ABOR00, KRR14] showed
that, using a homomorphic encryption scheme, any MIP sound against non-signalling provers can be compiled into
a single-prover protocol in which the single prover is computationally bounded and restrained by cryptographic
tools.

In the quantum setting, recently, Kalai et al. [KLVY23] proposed a general method to compile nonlocal
games into single-prover systems based on quantum homomorphic encryption [Mah23, Bra18], and showed that
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the classical bound of the compiled game is preserved by their procedure. Follow-up works by Natarajan and
Zhang [NZ23] and Brakerski et al. [BGK+23] proved that the quantum bound is also preserved in the specific case
of the compiled CHSH game. Their works left open the question of whether Kalai et al. compiler also preserves
the quantum bound for any nonlocal games. In this work, we continue this research direction and provide a partial
answer for the above open question. In particular, we prove that the quantum bound is preserved for two classes
of compiled games: XOR games, where the predicate depends on the XOR of the outputs, and d-outcome CHSH
games, which generalize the CHSH game to the scenario involving many-output measurements.

Nonlocality serves as a tool for exploring certifiable quantum advantage, leading to the development of various
quantum certification methods through self-testing, distinguished by their information-theoretic security. Notably,
these certification protocols are formulated within the framework of the Bell scenario, designed for scenarios with
two or more spatially separated parties. While effective for foundational proofs of quantumness, applying such
setups to computing platforms faces challenges due to their incompatibility with Bell-type scenarios. In this con-
text, gaining a deeper understanding of the additional properties of compiled nonlocal games becomes significant,
as it holds the promise of translating diverse certification techniques into a single-device setting. However, this
translation would come at the cost of exchanging information-theoretic security for computational security.

1.1 Outline of the paper
The paper is structured in the following way. Section 2 is dedicated to preliminary notions. We introduce nonlocal
games and Bell inequalities, with a focus on a sub-class: XOR games. For these, in Section 2.3 we revise some
known results and derive a new result on the decomposition of the shifted game operator. Then, we introduce
quantum homomorphic encryption and Kalai’s compilation protocol [KLVY23]. We elaborate on the results of
[NZ23], in particular on their idea of defining a pseudo-expectation value that maps polynomials of measurement
observables to correlations observed in the compiled nonlocal game.

The second part focuses on those cases for which we can prove that such a pseudo-expectation map can be
used to upper bound the optimal quantum winning probabilities in compiled nonlocal games. In Section 3 we use
the decomposition introduced in the preliminaries to prove the soundness of the quantum bound for any compiled
XOR game. Section 4 generalizes our approach to encompass an inequality with a higher number of outputs.
Finally, in section 5 we develop computational self-testing techniques for interactive single prover games, built on
top of the nonlocal self-testing proofs. In particular, we show that a certain class of compiled XOR games can be
used to self-test any pair of qubit measurements.

1.2 Concurrent and independent work
While finishing this manuscript we became aware of a recent work by Cui et al. [CMM+24] who also show that the
compilation procedure of Kalai et al. [KLVY23] preserves the quantum bias of all XOR games. Even though both
papers use a similar techniques based on [NZ23], [CMM+24] and our work also achieve different results. Their
work shows a type of self-testing result for all compiled XOR games, while we explore the self-testing properties of
carefully designed compiled XOR games, such that any pair of qubit measurements and tomographically complete
sets of qubit measurements can be self-tested from the optimal winning probability. The work of Cui et al. explores
the compilation of parallelly repeated XOR games and the Magic Square game, while we work with the compiled
d-CHSH game which cannot be seen as a parallel repetition of XOR games.

2 Preliminaries

2.1 Nonlocal games and Bell inequalities
In a two-party nonlocal game, a referee randomly selects questions, also called inputs, according to a predetermined
distribution and sends them to the non-communicating parties, usually called Alice and Bob. Upon receiving the
answers, also called outputs, from Alice and Bob, the referee determines whether they won or lost based on the
game rule, which is public. Winning is nontrivial because the players can’t communicate during the game: they
must generate their output solely based on their respective inputs and potentially a shared resource. x ∈ X and
y ∈ Y denote the questions sent to Alice and Bob, respectively, a ∈ A and b ∈ B denote their respective answers.
|·| denotes the cardinality of a set. The referee samples the questions from a distribution q(x, y), and the game
rule is a predicate V : (a, b, x, y) 7→ {0, 1}. Alice and Bob define a strategy to answer the questions, based on the
resources that they have, and the conditional probabilities of obtaining outputs a and b when inputting x and y, is
denoted by p(a, b|x, y). The winning probability of the game is then given by:
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ω =
∑
x,y

q(x, y)V (a, b, x, y)p(a, b|x, y). (1)

If Alice and Bob use classical resources, in the most general case they can share a random variable t sampled
from a distribution p(t), and they can determine their respective output based on the value of t and the received
input. In the context of Bell nonlocality, such strategy corresponds to a local hidden variable model (LHV). In that
case, the maximal winning probability is called the classical score of the game. Alice and Bob can always reach the
maximal winning probability with deterministic response functions f(x, t), g(y, t) to choose their outputs [Fin82],
and the maximal classical score is then equal to:

ωc = max
f,g

∑
x,y,t

p(t)q(x, y)V (f(x, t), g(y, t), x, y). (2)

If Alice and Bob have access to quantum resources, they can share a quantum state |ψ⟩ and perform quantum
measurements on it. For each output, they can perform a different measurement, meaning that Alice has |X|
different measurements, one for each for each x, characterized by |A| operators {Ma|x}a, such that:

∀x ∈ |X| ,∀a ∈ |A| ,Ma|x ⪰ 0, (3)

∀x ∈ |X| ,
∑
a

Ma|x = 1. (4)

Bob’s measurements are defined similarly and denoted by {Nb|y}b. The probability that Alice and Bob get outputs
a and b, given inputs x and y is determined by the Born rule p(a, b|x, y) = ⟨ψ|Ma|x ⊗Nb|y|ψ⟩. In that case, the
winning probability is equal to:

ω =
∑
x,y

q(x, y)V (a, b|x, y)⟨ψ|Ma|x ⊗Nb|y|ψ⟩. (5)

and the maximal quantum score is given by:

ωq = max
{Ma|x}x,{Nb|y}y,|ψ⟩

ω. (6)

Note that, more generally, Alice and Bob could have access to a mixed state ρ, but since we don’t impose any
restriction on the dimension of the underlying Hilbert space, any score reachable with a mixed state can also be
reached with a pure state by increasing the dimension of the Hilbert space.

If the players output bits, i.e. |A| = |B| = {0, 1}, the game is said to be binary, and the quantum strategies can
be characterised in a simpler way: their measurements are defined by the Hermitian measurement observables

Ax =
∑
a

(−1)aMa|x, By =
∑
b

(−1)bNb|y. (7)

In the rest of the paper, we use the following notations:

|Ax⟩ = Ax|ψ⟩, |A⟩ =
∑
x

|Ax⟩ ⊗ |x⟩, (8)

|By⟩ = By|ψ⟩, |B⟩ =
∑
y

|By⟩ ⊗ |y⟩, (9)

which allows us to express the players’ correlations through a correlation matrix as:

C =
∑
x,y

cxy|x⟩⟨y| with cxy = ⟨Ax|By⟩. (10)

Nonlocal games are closely related to Bell inequalities [SMA08, AH12]. A Bell inequality can be defined via
a linear form on the space of the conditional distributions p(a, b|x, y) ∈ R|A||B||X||Y |:∑

a,b,x,y

γa,b,x,yp(a, b|x, y) ≤ βc, (11)
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which means that any nonlocal game can be seen as a Bell inequality by taking γa,b,x,y = q(x, y)V (a, b, x, y).
Importantly quantum Bell score can be written as β = ⟨ψ|B|ψ⟩ where B is the Bell operator

B =
∑
a,b,x,y

γa,b,x,yMa|x ⊗Nb|y (12)

When there is a gap between the maximal classical and quantum scores, the quantum strategies that achieve a score
higher than the classical value also violate a Bell inequality. For instance, the quantum state and measurements
yielding the maximal value for the CHSH game also yield the maximal quantum value, known as Tsirelson’s
bound, for the CHSH inequality. In the remainder of this paper, we sometimes switch between the nonlocal game
and the Bell inequality formulations. The local bound of a Bell inequality will be denoted with βc, while the
maximal value considering quantum strategy will be denoted as βq . For a Bell inequality with quantum bound βq
we will often use the shifted Bell operator

βq1− B, (13)

which is by construction positive semi-definite.

2.2 Self-testing
Self-testing is a powerful technique that allows one to certify quantum resources by just looking at the correlations.
To be more precise, the correlations p(a, b|x, y) are said to self-test the state and measurements |ψ′⟩, {M ′a|x}, {N

′
b|y}

if for all states and measurements ϱAB, {Ma|x}, {Nb|y} compatible with p(a, b|x, y) there exists

(i) local Hilbert spacesHA,HB such that ϱAB ∈ L[HA ⊗HB], Ma|x ∈ L[HA], Nb|y ∈ L[HB]

(ii) a local isometry Φ = ΦA ⊗ ΦB

such that for any purification |ψ⟩ABP of ϱAB
AB it holds

Φ⊗ IP

[
Ma|x ⊗ Nb|y ⊗ IP|ψ⟩ABP

]
=
(
M′a|x ⊗ N′b|y|ψ

′⟩A
′B′)
⊗ |ξ⟩ABP

for all a, x, b, y and for some state |ξ⟩ABP. In this paper, we are especially interested in self-testing of measurements.
A compact way of writing the self-testing statement for Bob’s measurements from the description given above is
that there exists an isometry ΦB that maps each Mb|y to M ′b|y ⊗ 1.

2.2.1 Self-testing binary observables based on anti-commutation

We will be very interested in the self-testing of binary observables, for which some standard techniques have been
developed.

A very relevant result is Jordan’s lemma [PAB+09]. It states that two hermitian matrices with eigenvalues ±1
can always be simultaneously block-diagonalised, with blocks of size at most 2 × 2. Effectively this means that
the correlations of n binary observables can always be simulated with n projective measurements in the Bloch
sphere. Fixing the dimension, and in particular d = 2, is a massive simplification to the construction of self-testing
protocols.

The characterisation of a set of projective measurements in the Bloch sphere has a simple geometrical intuition.
Let’s start considering two measurements, but it can be easily generalised to more. We need three coordinates to
fix the first measurement, and two angles to define the second one with respect to the first one. Without loss of
generalisation for the self-test, we can apply a local unitary to constrain the two observables to be on theXZ-plane
of Bloch sphere, and the first one to be exactly σX . Hence, one angle is sufficient to characterise two projective
measurements up to a global rotation; this unique degree of freedom is encoded in the commutator of the two
observables. This is the core idea presented in [Kan17], where the author presents a self-testing protocol of binary
observables based on commutation. Using this, they also find better bounds for the robustness of self-testing of
some games.

In the following sections we will be often interested in robust self-testing protocols for binary measurements.
We will prove that a score which is ϵ close to the quantum bound implies that the anti-commutator is ϵ close to the
ideal (noisyless) value

ω = ωq − ϵ =⇒ D
∣∣
|ψ⟩({B0, B1}, aideal1) ≤ η(ϵ)

for some meaningful distance, restricted to the support of the states used in the game |ψ⟩.
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2.3 XOR games
XOR games are a subclass of binary games, in which the winning conditions for each outputs depend only on the
parity of the two answer bits, i.e. V (a, b, x, y) = 1 if and only if f(x, y) = a⊕ b. Hence, the winning probability
takes the form

ω =
∑
a,b,x,y

q(x, y)p(a⊕ b = f(x, y)|x, y). (14)

The winning probability of an XOR game is connected to its bias

ξ =
∑
x,y

q(x, y)(−1)f(x,y)cx,y, (15)

through the relation ω = (1+ ξ)/2. The term "bias" comes from the fact that in XOR games, the score 1/2 can be
achieved by players that do not use any resources, but randomly output their bits, independently of the inputs. An
XOR game can be characterized by its so-called game matrix Φ:

Φ =
∑
x,y

q(x, y)(−1)f(x,y)|x⟩⟨y|. (16)

The bias can then be compactly written as ξ = Tr
[
CTΦ

]
. We can also define the operator associated to an XOR

game as
B =

∑
x,y

q(x, y)(−1)f(x,y)Ax ⊗By, (17)

and the bias can then be computed as the value of the Bell operator ξ = ⟨ψ|B|ψ⟩.

Lemma 1 ([Tsi87]). Alice’s optimal quantum strategy in an XOR game, encoded in the vector |Aq⟩, is fully
determined by Bob’s optimal strategy |Bq⟩ through a linear transformation:

|Aq⟩ = 1⊗ F |Bq⟩. (18)

Proof. This lemma was proven by Tsirelson in [Tsi87], but we reproduce here the proof of [ECW20]. The optimal
quantum bias of an XOR game can be obtained as the solution to a semidefinite program (SDP) [Weh06]. For that
purpose let us define the Gram matrix Q̃

Q̃ =

[
R C
CT S

]
, with R =

∑
x,x′

⟨Ax|Ax′⟩|x⟩⟨x′|, and S =
∑
y,y′

⟨By|By′⟩|y⟩⟨y′|. (19)

A Gram matrix is positive semidefinite and the diagonal of the Gram matrix of unit vectors contains only 1. Thus,
the SDP yielding the optimal quantum bias for an XOR game takes the form

ξq =max
Q̃

Tr
[
Q̃Φ̃
]
,

s.t. Q̃ii = 1, for i = 1, · · · , |X|+ |Y| , (20)

Q̃ ⪰ 0,

where Φ̃ = 1
2

(
0 Φ
ΦT 0

)
. From this primal form of the SDP, we can obtain the dual formulation by introducing

the Lagrangian L = Tr[Q̃Φ̃] − 1
2

∑
i λi(Tr

[
|i⟩⟨i|Q̃

]
− 1), where λi are nonnegative Lagrangian multipliers. Let

us define the diagonal matrix Λ = diag(λ1, · · · , λ|X|+|Y|). The minimal value of the Lagrangian upper bounds the
solution to the primal SDP if 1

2Λ− Φ̃ ⪰ 0, so the dual SDP takes the form

minTr

[
Λ

2

]
, s.t.

Λ

2
− Φ̃ ⪰ 0. (21)

As a consequence of the aforementioned construction, it can be deduced that any given pair of primal and dual
feasible solutions satisfy Tr[Q̃Φ̃] ≤ ξq ≤ Tr[Λ]/2. The optimal values of the primal and of the dual coincide if
strong duality holds. A sufficient condition for strong duality to hold, when the primal and dual are finite, is the
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existence of a strictly feasible solution to the dual problem, which is satisfied here. Hence, the optimal value can
be obtained if the complementary slackness condition is satisfied

Tr

[
Q̃

(
1

2
Λ− Φ̃

)]
= 0. (22)

Let us now introduce the notations Λ = ΛA ⊕ ΛB , where ΛA (ΛB) is a diagonal |X| × |X| (|Y| × |Y|) matrix,
and |Q⟩ = |A⟩ ⊕ |B⟩. We can write the quantum bias as ξ = ⟨Q|1 ⊗ Φ̃|Q⟩. The slackness condition (22) gives
Tr
[
1⊗

(
1
2Λ− Φ̃

)
|Q⟩⟨Q|

]
= 0, or equivalently 1 ⊗ ( 12Λ − Φ̃)|Q⟩ = 0, since 1

2Λ − Φ̃ is positive semidefinite.

The form of Λ and Φ̃ implies the following conditions for the optimal strategies of Alice and Bob:

1⊗ ΛA|Aq⟩ = 1⊗ Φ|Bq⟩, and 1⊗ ΛB |Bq⟩ = 1⊗ ΦT |Aq⟩. (23)

Taking F = Λ−1A Φ gives the desired result.

Another convenient way to write the relations obtained above is

|Ax⟩ = λ−1x

mB∑
y=1

Φxy|By⟩, for x = 1, · · · , |X| . (24)

The matrix Q̃ can be seen as a moment matrix corresponding to the first level of Navascues-Pironio-Acín hierarchy
(NPA) [NPA07]. The n-th level NPA moment matrix is obtained by defining all degree-n monomials Si of the
operators of the set {A1, · · · , A|X|, B1, · · · , B|Y|} and taking Q̃(n) = ⟨ψ|S†i Sj |ψ⟩|i⟩⟨j|. Upper bounds on the
maximal quantum score of an arbitrary nonlocal game can be obtained as solutions to an SDP analogous to (20),
but taking Q̃n instead of Q̃ and the appropriate game matrix Φ̃. The larger n is, the tighter the upper bound is.
In the case of XOR games, the moment matrix of the first level of the NPA hierarchy actually suffices to find
the exact optimal value, as it was proven in [NW10]. The dual formulation can be seen as an optimization over
sum-of-squares (SOS) polynomials, given the duality theory between positive semidefinite moment matrices and
SOS polynomials [Lau09]. In the case of the NPA hierarchy the difference between the solutions of the dual and
primal problems can be seen as the expectation value of an SOS polynomial

∑
i S
†
i Si, where Si belongs to the

monomials used to create the corresponding moment matrix [TPKBA24]. For XOR games, this implies that for
every Gram matrix Q̃ obtained by measuring the state |ψ⟩, the following holds:

ξq − Tr[Q̃Φ̃] = ⟨ψ|
∑
i

P †i Pi|ψ⟩, (25)

where the Pi-s are first degree polynomials over {A1, · · · , A|X|, B1, · · · , B|Y|}, i.e. Pi =
∑
x,y(α

i
xAx + βiyBy).

As Eq. (25) holds for all quantum realizations, it can be written as

ξq1− B =
∑
i

P †i Pi, (26)

where ξq1− B is usually called the shifted game operator. The following theorem stipulates that for XOR games,
the shifted game operator can be written as a sum of squares, with each term containing a single Alice operator,
plus a positive polynomial depending only of Bob’s operators.

Theorem 1. Let B be the game operator of an XOR game with optimal quantum bias ξq . Then the following holds:

ξq1− B =
∑
x

λx
2

(
Ax −

∑
y

FxyBy

)2

+ P ({By}y) , (27)

where F is the matrix of Lemma 1 and P ({By}y) is a positive polynomial over Bob’s measurement operators.

To prove this theorem, we first use the following lemma proven by Ostrev.

Lemma 2. [Ost16]

1. Let λ1, · · · , λ|X|+|Y| be an optimal solution to the dual semidefinite program (21). Then there exist vectors
{|ui⟩ =

∑|X|
j=1 uij |j⟩}ri=1 and {|vi⟩ =

∑|Y|
j=1 vij |j⟩}ri=1 such that

r∑
i=1

|ui⟩⟨ui| =
1

2
ΛA,

r∑
i=1

|vi⟩⟨vi| =
1

2
ΛB ,

r∑
i=1

|ui⟩⟨vi| =
1

2
Φ. (28)
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2. Let |A⟩ and |B⟩ be a quantum strategy for an XOR game. Let {|ui⟩ =
∑|X|
j=1 uij |j⟩}ri=1 and {|vi⟩ =∑|X|

j=1 vij |j⟩}ri=1 satisfy (28). Then the following identity holds:

r∑
i=1

∥∥∥∥∥∥
|X|∑
j=1

uij |Aj⟩ −
|Y|∑
j=1

vij |Bj⟩

∥∥∥∥∥∥
2

=
1

2
Tr[Λ]−

∑
ij

⟨Aj |Φij |Bj⟩. (29)

Proof. The interested reader can find the proof of the first part in [Ost16] (Lemma 4 therein), we reproduce here
the proof of the second part (Lemma 5 in [Ost16]). The l.h.s. of (29) reads

r∑
i=1

∥∥∥∥∥∥
|X|∑
j=1

uij |Aj⟩ −
|Y|∑
j=1

vij |Bj⟩

∥∥∥∥∥∥
2

=

= ⟨A|1⊗

(
r∑
i=1

|ui⟩⟨ui|

)
|A⟩+ ⟨B|1⊗

(
r∑
i=1

|vi⟩⟨vi|

)
|B⟩ − 2⟨A|1⊗

(
r∑
i=1

|ui⟩⟨vi|

)
|B⟩ =

=
1

2
⟨A|1⊗ ΛA|A⟩+

1

2
⟨B|1⊗ ΛB |B⟩ − ⟨A| (1⊗ Φ) |B⟩ =

=
1

2
Tr[ΛA] +

1

2
Tr[ΛB ]− ⟨A|1⊗ Φ|B⟩,

which is exactly the second statement of the lemma, given that Λ = ΛA + ΛB .

We now define a robust version of Ostrev’s lemma.

Lemma 3. 1. Let λ1, · · · , λ|X|+|Y| be an optimal solution to the dual semidefinite program (21). Then there
exist vectors {|ui⟩ =

∑|X|
j=1 uij |j⟩}ri=1 and {|vi⟩ =

∑|Y|
j=1 vij |j⟩}ri=1 such that

r∑
i=1

|ui⟩⟨ui| =
1

2
ΛA,

r∑
i=1

|vi⟩⟨vi| ⪯
1

2
ΛB ,

r∑
i=1

|ui⟩⟨vi| =
1

2
Φ (30)

2. Let |A⟩ and |B⟩ be a quantum strategy for an XOR game. Let {|ui⟩ =
∑|X|
j=1 uij |j⟩}ri=1 and {|vi⟩ =∑|X|

j=1 vij |j⟩}ri=1 satisfy (28). Then the following identity holds:

r∑
i=1

∥∥∥∥∥∥
|X|∑
j=1

uij |Aj⟩ −
|Y|∑
j=1

vij |Bj⟩

∥∥∥∥∥∥
2

≤ 1

2
Tr[Λ]−

∑
ij

⟨Aj |Φij |Bj⟩. (31)

Proof. For the proof of the first part, we give an explicit construction of the vectors |ui⟩ and |vi⟩. We choose

uij =
√

λi

2 δij , where δij is the Kronecker delta, and we take |vi⟩ = 1
λi

∑
j Φij |uj⟩. The first and third relations

in (30) are satisfied, as
∑
i |ui⟩⟨ui| =

1
2diag(λ1, · · · , λ|X|), and

∑
i |ui⟩⟨vi| =

1
2Φ. Concerning the second relation,

we get
∑
i |vi⟩⟨vi| =

1
2Φ

TΛ−1A Φ. To analyze it, we use the complementary slackness condition, which implies
that Λ − Φ̃ ⪰ 0. By Schur’s complement lemma , this matrix is positive if and only if ΛB − ΦTΛ−1A Φ ⪰ 0.
This completes the proof of the first part of the lemma. The second part follows analogously to the second part of
Lemma 2.

We can now prove Theorem 1.

Proof. Taking the |ui⟩-s and |vi⟩-s used to prove the first part of Lemma 3 in (31), we get

ξq − ⟨ψ|B|ψ⟩ −
mA∑
x=1

λx
2

∥∥∥∥∥Ax|ψ⟩ − λ−1x ∑
y

Φx,yBy|ψ⟩

∥∥∥∥∥
2

≥ 0. (32)

When opening the sum of squares, we get

ξq −
mA∑
x=1

1

λx
⟨ψ|
∑
y,y′

ByΦy,xΦx,y′By′ |ψ⟩ ≥ 0, (33)
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which holds for every valid quantum state |ψ⟩, implying

2P ({By}y) ≡ ξq1−
mA∑
x=1

1

λx

∑
y,y′

ByΦy,xΦx,y′By′ ≥ 0. (34)

The simple expansion of all the squares shows that

ξq1− B =
λx
2

(
Ax − λ−1x

∑
y

Φx,yBy

)2

+ P ({By}y) , (35)

which together with (34) proves the theorem.

2.4 Quantum homomorphic encryption
Homomorphic encryption is a cryptographic technique that enables to execute computations directly on encrypted
data, without prior decryption. The results of these computations remain in an encrypted form and, upon decryp-
tion, yield outputs identical to those obtained through operations on the unencrypted data. The term "homomor-
phic" draws from algebraic homomorphism, wherein encryption and decryption functions are likened to homomor-
phisms between plaintext and ciphertext spaces. A cryptosystem supporting arbitrary computation on ciphertexts
is termed fully homomorphic encryption (FHE), representing the most robust form of homomorphic encryption.
Originally conceptualized as a privacy homomorphism by Rivest, Adleman, and Dertouzous [RAD+78] shortly
after the invention of the RSA cryptosystem [RSA78], the first plausible construction for FHE using lattice-based
cryptography was presented by Gentry [Gen09]. Leveraging the hardness of the (Ring) Learning With Errors
(RLWE) problem, more efficient schemes for fully homomorphic encryption have been devised [BGV14, BV14].
The possibility of quantum homomorphic encryption (QHE), allowing for quantum computations on encrypted
data, was introduced by Mahadev [Mah18], with Brakerski [Bra18] subsequently enhancing it to achieve improved
noise tolerance.

Before reminding the formalism of QHE, we first recall the definition of quantum polynomial time algorithms.
Throughout the paper, κ denotes the security parameter.

Definition 1 (Quantum polynomial time algorithm). A quantum algorithm is quantum polynomial time (QPT) it
can be implemented by a family of quantum circuits with size polynomial in the security parameter κ.

We now reproduce the definition of QHE as it appears in [KLVY23].

Definition 2 (Quantum Homomorphic Encryption (QHE)). A quantum homomorphic encryption scheme QHE =
(Gen,Enc,Eval,Dec) for a class of quantum circuits C consists of the following four quantum algorithms which
run in quantum polynomial time in terms of the security parameter:

• Gen takes as input the security parameter 1κ and outputs a (classical) secret key sk of size poly(κ) bits;

• Enc takes as input a secret key sk and a classical input x, and outputs a ciphertext ct;

• Eval takes as input a tuple (C, |Ψ⟩, ctin), where C : H× (C2)⊗n → (C2)⊗m is a quantum circuit, |Ψ⟩ ∈ H
is a quantum state, and ctin is a ciphertext corresponding to an n-bit plaintext. Eval computes a quantum
circuit EvalC(|Ψ⟩ ⊗ |0⟩⊗poly(λ,n), ctin) which outputs a ciphertext ctout. If C has classical output, we
require that EvalC also has classical output.

• Dec takes as input a secret key sk and ciphertext ct, and outputs a state |ϕ⟩. Additionally, if ct is a classical
ciphertext, the decryption algorithm outputs a classical string y.

As in [KLVY23] the following property is required from QHE, in order for it to behave “nicely" with entan-
glement:

Definition 3 (Correctness with auxiliary input). For every security parameter κ ∈ N, any quantum circuit C :
HA×(C2)⊗n → {0, 1}∗ (with classical output), any quantum state |Ψ⟩AB ∈ HA⊗HB , any message x ∈ {0, 1}n,
any secret key sk ← Gen(1κ) and any ciphertext ct ← Enc(sk, x), the following states have negligible trace
distance:

Game 1 Start with (x, |Ψ⟩AB). Evaluate C on x and register A, obtaining classical string y. Output y and the
contents of register B.
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Game 2 Start with ct ← Enc(sk, x) and |Ψ⟩AB . Compute ct′ ← EvalC(· ⊗ |0⟩poly(λ,n), ct) on register A.
Compute y′ = Dec(sk, ct′). Output y′ and the contents of register B.

In simple terms, “correctness with auxiliary input" stipulates that when QHE evaluation is employed on a
register A within a joint (entangled) state in HA ⊗HB , the entanglement between the QHE-evaluated output and
B must be maintained.

Finally, the following definition characterizes another property expected from QHE, and it is in cryptography
well-known indistinguishability under chosen plaintext attack (IND-CPA).

Definition 4 (IND-CPA security against quantum distinguishers). For any two messages x0, x1 and any QPT
adversary A:∣∣∣∣Pr [AEnc(sk,·)(ct0) = 1

∣∣∣∣ sk← Gen(1λ)
ct0 ← Enc(sk, x0)

]
− Pr

[
AEnc(sk,·)(ct1) = 1

∣∣∣∣ sk← Gen(1λ)
ct1 ← Enc(sk, x1)

]∣∣∣∣ ≤ negl(κ) ,

for some negligible funcion negl(·).

2.5 Compiled nonlocal games
In [KLVY23], Kalai et al. introduced a compilation technique that can be used to construct single-prover proofs
of quantumness. Their procedure transforms any k-player nonlocal game into a single-prover interactive game,
employing post-quantum cryptography to emulate spatial separation among the parties. The proposed protocol
maintains classical soundness, ensuring that no classical polynomially-bounded prover can surpass the maximal
classical score of the original game. Additionally, leveraging quantum homomorphic encryption (QHE), the au-
thors devise an explicit and efficient quantum strategy that achieves the quantum bound of the original nonlocal
game. This enables the translation of proofs of quantumness into the single-prover interactive proof framework.

In this context, we refer to a single-prover interactive game that is generated through the KLVY compilation
of a nonlocal game as a compiled nonlocal game. We recall the definition of compiled nonlocal games introduced
in [KLVY23]. Using the interactive proof terminology, the entity called “referee” in the nonlocal game will be
referred to as the “verifier”.

Definition 5 (Compiled nonlocal game). In a compiled nonlocal game, a verifier, equipped with access to a
Quantum Homomorphic Encryption (QHE) scheme as defined in Def. 2, engages with a prover. According to a
probability distribution q(x, y), the verifier samples x and y. In the first round, the verifier transmits x = Enc(x)
to the prover, who responds with an encrypted output a = Enc(a). In the second round, the verifier sends the
input y to the prover in the clear, and the prover replies with the answer b. The verifier assesses the outcome using
the game predicate V (Dec(a), b|Dec(x), y) ∈ {0, 1} to determine whether the prover has passed or failed in the
game.

time Alice Verifier Bob

x

a

y

b
Verifier Single

Prover

x = Enc(x)

a = Enc(a)

y

b

Figure 1: Pictorial representation of the Kalai et. al. compilation protocol for 2-player nonlocal games. On the left,
a general 2-player nonlocal game; the two parties are spatially separated, and only communicate to a verifier which
is sampling questions (x, y) and collecting their answers (a, b). On the right, the single prover game resulting from
the compilation procedure. In this representation time flows downwards.

The following theorem (Theorem 1.1 in [KLVY23]) relates the classical and quantum score of a nonlocal game
to the scores of the corresponding compiled game.

Theorem 2 ([KLVY23]). Given any 2-player nonlocal game with quantum bound ξq and classical bound ξc
and any QHE scheme (with security parameter κ) that satisfies correctness with auxiliary inputs and IND-CPA
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security against quantum distinguishers then, there is a 4-round single prover interactive game with completeness
ξq realized by a quantum polynomial-time algorithm and soundness ξc+negl(κ) against any classical polynomial-
time algorithm.

The classical soundness statement in this theorem guarantees that the maximal winning probability that a clas-
sical polynomial-time prover can achieve in a compiled nonlocal game is nearly identical to the optimal classical
winning probability in the corresponding nonlocal game, with a negligible deviation dependent on the security
parameter. The main insight in [KLVY23] is that the success of the classical prover is primarily hindered by the
sequential nature of the game. This sequential structure forces the prover to commit to an answer a before re-
ceiving the input y. The combination of this sequential setup with secure QHE effectively replicates the locality
requirement of a nonlocal game that is ensured by the spatial separation of the players. The quantum soundness
statement ensures that a QPT prover can win the compiled nonlocal game with a probability that is at least as large
as the optimal quantum winning probability in the corresponding nonlocal game.

2.5.1 Modelling the quantum prover

Let us now model the behavior of the single quantum prover, in the same way as it was done in [NZ23]. In a
compiled game, denoted as per Def. 5, the prover, initially in state |ψ⟩, undergoes a process involving encrypted
questions and answers. Specifically, in the first round, the prover receives an encrypted question x, performs a
POVM measurement, and computes an encrypted answer a. Using Naimark dilation theorem, the prover’s POVM
measurement is simulated by a projective measurement, denoted here with Ma|x. The prover’s action could poten-
tially involve a unitary operation Ux,a following the measurement, crucial in the sequential setting. The projectors
and unitaries can be unified into a set of potentially non-Hermitian operators Ma|x, satisfying M†

a|xMa|x =Ma|x and

hence
∑

aM
†
a|xMa|x = 1. The prover’s state after the first round of the game corresponds to the post-measurement

state
|ψa|x⟩ = Ma|x|ψ⟩, (36)

and the probability to get output a for input x is

p(a|x) = ⟨ψ|M†
a|xMa|x|ψ⟩ =

∥∥|ψa|x⟩
∥∥2 . (37)

In the second round, the prover’s behavior is characterized by a set of projective operators {{Nb|y}b}y . If the
second-round answers are bits, the measurements can be characterized by specifying a Hermitian observable
By =

∑
b(−1)bNb|y . Similarly, if Alice’s outputs in the corresponding nonlocal game are bits, we can define

a “decrypted” observable

Ax = E
x:Dec(x)=x

∑
a

(−1)Dec(a)M†
a|xMa|x (38)

= E
x:Dec(x)=x

Ax, (39)

where Ax are binary observables, while Ax in general is not. If both a and b are bits, we can define the correlators
allowing to characterize the winning probability of a quantum prover in a computational single-prover game:

⟨Ax, By⟩ = E
x:Dec(x)=x

∑
a

(−1)Dec(a)⟨ψa|x|By|ψa|x⟩ (40)

The correlators have the same operational meaning as in nonlocal games: when the verifier samples a question pair
(x, y) in the compiled game and receives (decrypted) answers (a, b), ⟨Ax, By⟩ is precisely the expected value of
(−1)a+b.

The marginals of the second-round observables in principle depends on the encrypted x of the first round and
have form:

⟨By⟩x = E
x:Dec(x)=x

∑
a

⟨ψa|x|By|ψa|x⟩. (41)

2.6 Technical tools for estimating quantum bounds of compiled nonlocal games
2.6.1 Block encodings

We now examine certain outcomes related to the block encoding of quantum processes. Block encoding is a
method for the efficient implementation of a quantum operation. Our motivation for exploring this process stems
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from the contextual constraint imposed in the subsequent sections of this paper, where we address computational
limitations among participants. Consequently, we aim to identify operations that can be efficiently executed by
leveraging available quantum resources.

Definition 6 (Block encoding). Given a matrix A ∈ Cc×c, we say that U ∈ Cd×d is a Q-block encoding of A if

• U is a unitary matrix whose quantum circuit can be implementable with O(Q) gates,

• U has the following form U =

(
τA ·
· ·

)
, where we call τ the scale factor of the block encoding.

We say U is QPT-implementable if Q is polynomially bounded in the size of the input.

If U is a block encoding of A, then A can be implemented by performing the following operation

τ (⟨0| ⊗ 1)U(|0⟩ ⊗ 1)

where 1 is the identity matrix of the size of A.
Through the linear combination and multiplication of matrices possessing a block encoding, our anticipation is

the persistence of this property in the resulting matrix. Although the explicit construction in complete generality is
not immediately apparent, [GSLW19, Lemmas 52 and 53] provides a technical framework for the block encoding
of linear combinations and products of matrices with block encoding. Here, we present a streamlined version of
their results, tailored to our specific requirements.

First, we present a lemma about the block encoding of a linear combination of matrices that have block encod-
ing, whose proof can be found in [GSLW19, Lemma 52].

Lemma 4 (Linear combination of block encoded matrices). Let A =
∑m
j=1 yjAj , where y ∈ Cm is a complex

bounded vector ∥y∥1 ≤ β andAj are matrices for which we know aQj-block encodingUj . Then we can implement

a
(
m+

∑m
j=1Qj

)
-block encoding of A.

Corollary 1. Let A =
∑m
j=1 yjAj , where y ∈ Cm is a complex bounded vector ∥y∥1 ≤ β. If m = poly(κ) and

each Aj is an operator with QPT-implementable block encodings with scale factor O(1) for all j, A also has a
QPT-implementable block encoding with scale factor O(1).

The subsequent lemma guarantees the presence of a block encoding for the product of matrices, each possessing
its own block encoding, whose proof can be found in [GSLW19, Lemma 53].

Lemma 5 (Product of block encoded matrices). Let U and V be the QU and QV -block encodings of A and B
respectively. Then we can implement a (QU +QV )-block encoding of AB.

Corollary 2. Let U and V be the QU and QV -block encodings of A and B respectively. If U and V are QPT-
implementable, each with scale factor O(1), AB also has a QPT-implementable block encoding with scale factor
O(1).

For operators with a QPT-implementable block-encoding, the following technical lemma from [NZ23] applies.

Lemma 6 ([NZ23, Lemma 14]). Let B be an operator with a QPT-implementable block encoding with O(1)
scale factor and ∥B∥ ≤ O(1). Then there exists a QPT-measurable POVM {Mβ}β such that for any state ρ, the
following holds: ∣∣∣∣∣∣

∑
β

β · Tr [Mβρ]− Tr [Bρ]

∣∣∣∣∣∣ ≤ ε, (42)

for any ε = 1/poly(κ).

These results, together with the definition of the IND-CPA security, allow us to state the following:

Lemma 7 (adapted from [NZ23, Lemmas 15-17]). Let B be an operator with a QPT-implementable block en-
coding with O(1) scale factor and ∥B∥ ≤ O(1). Let QHE = (Gen,Enc,Eval,Dec) be a secure quantum homo-
morphic encryption scheme (see Definition 2), let D0, D1 be any two QPT sampleable distributions over plaintext
questions x, and let |ψ⟩ be any efficiently preparable state of the prover. Then, for any security parameter κ ∈ N,
there exists a negligible function δqhe(κ) such that∣∣∣∣∣ Ex←D0

E
x=Enc(x)

∑
a

⟨ψ|M†
a|xBMa|x|ψ⟩ − E

x←D1

E
x=Enc(x)

∑
a

⟨ψ|M†
a|xBMa|x|ψ⟩

∣∣∣∣∣ ≤ δqhe(κ). (43)
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The proof of this Lemma encompasses Lemmas 15, 16 and 17 in [NZ23]. Importantly, B does not have to be
a binary observable, it just has to be efficiently implementable by quantum circuits. This lemma establishes a link
between QPT-implementable block encodings and IND-CPA security. Looking ahead, using the fact that XOR
games and SATWAP Bell inequalities have a nice form of SOS decomposition into linear combination and product
of block encodings as presented in previous sections, this lemma will allow us to relate the quantum bound of the
compiled nonlocal games to those of the original nonlocal games, at the expense of a negligible security loss.

2.6.2 Crypto-correlation matrix and pseudo-expectation map

In this section, we revisit and further expound upon the concepts delineated in Section 4.4 of [NZ23]. In that
section, the authors introduced a compelling argument to establish the optimal quantum winning probability for
the compiled CHSH game through the introduction of a cryptographic SOS decomposition. Our objective is to
broaden their findings to encompass a more extensive array of games, namely XOR games and d-outcome CHSH
games.

Consider a game with an optimal quantum bias ξq . Its game operator (17) is

B =
∑
x,y

γABx,y AxBy, (44)

and the corresponding shifted game operator has an SOS decomposition

ξq1− B =
∑
j

biP
†
i Pi +

∑
i

di[Axi , Byi ] +
∑
i

ei(1−A2
xi
) +

∑
i

fi(1−B2
yi), (45)

where bj ∈ R+ are real positive coefficients for the terms of the SOS decomposition, di-s could be complex
numbers referring to the constraint that Alice’s and Bob’s operators commute, ei-s and fi-s multiply terms that
vanish if the measurements of Alice and Bob are projective. All terms on the r.h.s. of (45) except the first one are
general constraints that are usually implicitly assumed. Here, the aim is to develop an analogous procedure for
bounding the optimal quantum bias of compiled games, so one has to be careful as some of the constraints satisfied
in the case of nonlocal games might not be satisfied in the case of compiled games. For example, operations in two
rounds of the compiled game do not necessarily commute.

Analogously to matrix Q̃ from Section 2.3, expounding on the ideas from [NZ23], we define a (|X| + |Y|) ×
(|X|+ |Y|) matrix Q̃ as follows

Q̃ =

[
1|X| C
CT S

]
, (46)

where 1|X| is the |X| × |X| identity matrix, where

C =
∑
x,y

⟨Ax, By⟩|x⟩⟨y|, (47)

S =
∑
y,y′

E
x∈X

E
x:Dec(x)=x

∑
a

⟨ψa|x|ByBy′ |ψa|x⟩|y⟩⟨y′|, (48)

and where ⟨Ax, By⟩ correspond to Eq. (40). The matrix Q̃, unlike Q̃, is not necessarily positive semidefinite, as
there is no real consistency in assigning values to its entries. Similarly to Q̃, Q̃ has ones on the diagonal, in the
first block by construction and in the second because

Sy,y = E
x∈X

E
x:Dec(x)=x

∑
a

⟨ψa|x|1|ψa|x⟩

= E
x∈X

E
x:Dec(x)=x

∑
a

⟨ψ|M†
a|xMa|x|ψ⟩

= E
x∈X

E
x:Dec(x)=x

⟨ψ|ψ⟩

= 1.

Then, as in [NZ23], we define a linear operator Ẽ that maps every homogeneous degree-2 polynomial in the
variables Ax, By to linear combinations of elements of the matrix Q̃ in the following way:

Ẽ[AxBy] = Cx,y, Ẽ[ByAx] = CTy,x, (49)

Ẽ[AxAx′ ] = δx,x′ , Ẽ[ByBy′ ] = Sy,y′ . (50)
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For y = y′ or x = x′ in Eq. (50), we get a consistent mapping of identity

Ẽ[AxAx] = Ẽ[1] = 1, Ẽ[ByBy] = Ẽ[1] = Sy,y = 1. (51)

As in [NZ23], we call the map Ẽ a pseudo-expectation. Such defined pseudo-expectation maps the game operator
B introduced in Eq. (44)) to a bias in the compiled nonlocal game:

Ẽ[B] =
∑
x,y

γx,yẼ[AxBy] =
∑
x,y

γx,y⟨Ax, By⟩ = ξ̄. (52)

The optimal quantum bias can be upper bounded using the SOS decomposition of the shifted game operator(eq. (45)):

Ẽ [ξq1− B] = Ẽ

[∑
i

biP
†
i Pi +

∑
i

di[Axi
, Byi ] +

∑
i

ei(1−A2
xi
) +

∑
i

fi(1−B2
yi)

]
(53)

Given (49), the terms multiplied by di vanish because, under pseudo-expectation map, operators Ax and By com-
mute. The terms multiplied by ei and fi also vanish because of Eq. (51). Hence

Ẽ [ξq1− B] =
∑
i

biẼ
[
P †i Pi

]
(54)

Thus, if Ẽ
[
P †i Pi

]
is non-negative, the bias in a compiled game cannot be larger than the optimal quantum bias of

the corresponding nonlocal game.

3 Quantum bound of compiled XOR games
In Section 2.3, we established key insights into XOR games. Here, building upon the methodology outlined
in [NZ23] and revisited in 2.6.2, we present our first important result: compiled XOR games exhibit a quantum
bias that closely aligns with the quantum bias of the corresponding nonlocal game, fluctuating only slightly with
the security parameter. The power of the quantum prover to win a compiled XOR game with a probability larger
than the optimal quantum winning probability for the corresponding XOR game crucially depends on their ability
to transmit from the first round information about the received plaintext input. However, inputs are encrypted in
such a way that the encryption satisfies IND-CPA security, meaning that even the quantum prover cannot do better
than randomly guessing its question x knowing the encryption x of x. This inability of a QPT prover to break the
encryption is articulated in Lemma 7. In essence, this lemma conveys that regardless of the measurement employed
by a QPT prover in the second round of the game, they are unable to differentiate between states resulting from
distinct samples of plaintext questions taken in the first round.

Before stating our main result let us state two lemmas about the behavior of the XOR game operator un-
der the pseudo-expectation map defined in Sec. 2.6.2. The first lemma is a generalization of Claims 31 and 33
from [NZ23].

Lemma 8. Let Px = Ax −
∑
y FxyBy with{Ax}x and {By}y binary observables. Then there exists a negligible

function δQHE(·) such that we have Ẽ
[
P †j Pj

]
≥ −δQHE(κ), where Ẽ[·] is the pseudo-expectation map defined in

Sec. 2.6.2.
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Proof. Let us introduce the shortened notation B̂x =
∑
y FxyBy . We get

Ẽ
[
P †xPx

]
= Ẽ [AxAx]− 2Ẽ

[
AxB̂y

]
+ Ẽ

[
B̂yB̂y′

]
= 1− 2

∑
y

FxyCxy +
∑
y,y′

FyxFxy′Syy′

= 1− 2
∑
y

Fxy E
x=Enc(x)

∑
a

(−1)Dec(a)⟨ψ|M†
a|xByMa|x|ψ⟩+∑

y,y′

FyxFxy′ E
x∈X

E
x=Enc(x)

∑
a

⟨ψ|M†
a|xByBy′Ma|x|ψ⟩

= 1− 2 E
x=Enc(x)

∑
a

(−1)Dec(a)⟨ψ|M†
a|xB̂xMa|x|ψ⟩+ E

x∈X
E

x=Enc(x)

∑
a

⟨ψ|M†
a|xB̂

†
xB̂xMa|x|ψ⟩

≈δQHE(κ) 1− 2 E
x=Enc(x)

∑
a

(−1)Dec(a)⟨ψ|M†
a|xB̂xMa|x|ψ⟩+ E

x=Enc(x)

∑
a

⟨ψ|M†
a|xB̂

†
xB̂xMa|x|ψ⟩

≈δQHE(κ) E
x=Enc(x)

∑
a

⟨ψ|M†
a|x

(
1− 2(−1)Dec(a)B̂x + B̂2

x

)
Ma|x|ψ⟩

≈δQHE(κ) E
x=Enc(x)

∑
a

⟨ψ|M†
a|x

(
(−1)Dec(a)1− B̂x

)2
Ma|x|ψ⟩

In the first two lines, we used the linearity and the definition of the pseudo-expectation map. In the third line, we
used the definition of matrices C (eq. (49)) and S (eq. (50)). In the fourth line, we just used the definition of B̂x.
To get the fifth line we used the fact that B̂†xB̂x has a QPT-implementable block encoding (Corrolaries 1 and 2)
and thus we can apply Lemma 7 given above. To get the sixth line we used linearity and we grouped all terms
inside of one average over x = Enc(x); in particular we noticed that we could write the first term 1 as 1 inside this
average. Finally, in the seventh line we recognised that the expression within round brackets can be expressed as
the square of an operator. This is necessarely positive, implying that up to a negligible factor Ẽ

[
P †xPx

]
must also

be positive.

Lemma 9. Let P be a positive semi-definite homogeneous degree-2 polynomial over binary observables {By}y .
Then Ẽ [P ] ≥ 0, where Ẽ[·] is the pseudo-expectation map defined in Sec. 2.6.2.

Proof. The pseudo-expectation of P reads

Ẽ [P ] = E
x∈X

E
x:Dec(x)=x

∑
a

⟨ψ|M†
a|xPMa|x|ψ⟩ ≥ 0 (55)

Since all elements in the sum are positive because P is positive semi-definite the relation trivially holds.

We can now state the main theorem, providing the quantum optimal bias of compiled XOR games.

Theorem 3. Given an XOR game with optimal quantum bias ξq , the optimal quantum bias of the compiled XOR
game is ξq + δQHE(κ), where δQHE(·) is a negligible function.

Proof. Let us recall Theorem 1 which states that for every XOR game we have

ξq1− B =
∑
x

λx
2

(
Ax −

∑
y

FxyBy

)2

+ P ({By}y) ,

By applying the pseudo-expectation map we get

Ẽ [ξq1− B] = Ẽ

∑
x

λx
2

(
Ax −

∑
y

FxyBy

)2

+ P ({By}y)

 (56)

=
∑
x

λx
2
Ẽ

(Ax −∑
y

FxyBy

)2
+ Ẽ [P ({By}y)] (57)

To get the second line we used the linearity of the pseudo-expectation map. Based on Lemmas 8 implies that the
first term on the r.h.s is up to a negligible function nonnegative, while Lemma 9 implies that the second term on the
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r.h.s. must be nonnegative. The pseudo-expectation map on the l.h.s. gives ξq − ξ̄q , implying that in the worst case
the compiled game optimal bias can be only negligibly larger than the optimal quantum bias of the corresponding
XOR game:

ξ̄q ≤ ξq + δQHE(κ), (58)

which completes the proof.

4 Quantum bound of compiled nonlocal games with many outputs and
conditions for self-testing of qudit measurements from a single prover

We now introduce a family of nonlocal games in which the players respond with more than two outputs. In this
case, the quantum strategy involves d-outcome measurements, {Ma|x}d−1a=0 for Alice and {Nb|y}d−1b=0 for Bob. These
measurements can be represented through generalized observables

A(k)
x =

d−1∑
a=0

ωakMa|x, B(l)
y =

d−1∑
b=0

ωblNb|y, ∀k, l = 0, · · · , d− 1, (59)

where ω = exp
(
2πi
d

)
. Clearly , the eigenvalues of the generalized unitary observables A(k)

x and B(l)
y are roots

of unity. We will refer to the indices k and l as the orders of the generalised measurement; notice that the orders
k = 0 mod d are the identity. For d > 2, generalized observables are not Hermitian, but still satisfy the following
regular property:

(A(k))† = A(−k) (B(l))† = B(−l)

and hence
[
A(k)

]†
A(k) = 1 for every k. Considering only projective measurements, it is easy to check that

A(k) =
[
A(1)

]k
and B(l) =

[
B(1)

]
; we will use these two notations interchangeably.

In this section, we adopt the perspective of Bell inequalities. The CHSH inequality is the simplest Bell inequal-
ity whose maximal violation self-tests the maximally entangled pair of qubits. Several propositions have been for-
mulated to capture different features of the CHSH inequality, some focusing on self-testing maximally entangled
shared states [SAT+17], some on self-testing mutually unbiased bases measurements for both parties [KŠT+19].
We concentrate on the Salavrakos-Augusiak-Tura-Wittek-Acin-Pironio (SATWAP) Bell inequality introduced in
[SAT+17], for which a self-test of arbitrary local dimension with minimal number of measurements (2 per part)
has been proposed in [SSKA21].

The SATWAP inequality is defined for two spatially separated players, each receiving a bit as input, X = Y =
{1, 2}, and subsequently producing an output that can take one of d different values, A = B = {0, . . . , d − 1}.
Many Bell inequalities can be expressed by conveniently defining some regular combination of probabilities given
fixed inputs, called correlators. The definition of generalised correlator is:

⟨A(k)
x B(l)

y ⟩ =
d−1∑
a=0

d−1∑
b=0

ωak+blp(ab|xy) (60)

The SATWAP inequality is given in terms of these

βSATWAP
d =

d−1∑
k=1

(
ak⟨Ak1Bd−k1 ⟩+ a∗kω

k⟨Ak1Bd−k2 ⟩+ a∗k⟨Ak2Bd−k1 ⟩+ ak⟨Ak2Bd−k2 ⟩
)
, (61)

with the following definition of the phases ak = ω
2k−d

8√
2

= 1−i
2 ωk/4 such that a∗k = ad−k and a±d = ± 1+i

2 . To
simplify the notation it is convenient to group Bob’s observables in the following sums:

C
(k)
1 = akB

−k
1 + a∗kω

kB−k2 , C
(k)
2 = a∗kB

−k
1 + akB

−k
2 . (62)

Using these definitions, the corresponding Bell operator is thus

BSATWAP
d =

d−1∑
k=1

(
Ak1 ⊗ C

(k)
1 +Ak2 ⊗ C

(k)
2

)
. (63)
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Bell value is thus given as βSATWAP
d = ⟨ψ|BSATWAP

d |ψ⟩. The classical and the quantum bounds of this inequality are

(
βSATWAP
d

)
l
=

1

2

(
3 cot

(π
4
d
)
− cot

(
3π

4
d

))
− 2,

(
βSATWAP
d

)
q
= 2(d− 1).

The quantum bound can be found by explicitly building the SOS decomposition of the shifted Bell operator, as
shown in [SAT+17]. The terms of the SOS decomposition are labeled by x ∈ {1, 2} and k ∈ {0, . . . , d− 1}:

Px,k = (Akx)
† − C(k)

x .

A quick calculation allows us to check the correctness of the SOS decomposition :

βq1− BSATWAP
d =

1

2

d−1∑
k=1

(
P †1,kP1,k + P †2,kP2,k

)
(64)

= −BSATWAP
d + (d− 1)1+

1

2

d−1∑
k=1

(
C

(d−k)
1 C

(k)
1 + C

(d−k)
2 C

(k)
2

)
= −BSATWAP

d + 2(d− 1).

The maximal quantum violation of this inequality is a self-test of a maximally entangled pair of qudits, to-
gether with measurements that are unitarily equivalent to the measurements used to maximally violate well-known
Collins-Gisin-Linden-Massar-Popescu (CGLMP) Bell inequalities [CGL+02]. We summarise this technical result
in the following lemma, proven in [SSKA21].

Lemma 10 ([SSKA21]). The maximal violation of the SATWAP Bell inequality certifies the following:

• The dimension of Alice’s and Bob’s Hilbert spaces is a multiple of d, and we can write their Hilbert space as
the tensor products HA = Cd ⊗HA′ , HB = Cd ⊗HB′ , where HA′ and HB′ are auxiliary Hilbert spaces
of finite dimension;

• There exist local unitary transformations UA : HA → HA and UB : HB → HB such that

UBB1U
†
B = Zd ⊗ 1B′ , UBB2U

†
B = Td ⊗ 1B′ , (65)

UAA1U
†
A = (a∗1Zd + 2(a∗1)

3Td)⊗ 1A′ , UAA2U
†
A = (a1Zd − a∗1Td)⊗ 1B′ . (66)

where Zd = diag[1, ω, . . . , ωd−1] and Td =
∑d−1
i=0 ω

i+1/2|i⟩⟨i| − 2
d

∑d−1
j,i=0(−1)δi,0+δj,0ω(i+j+1)/2|i⟩⟨j|.

• Alice and Bob share a state |ψAB⟩ which is unitarily equivalent to the maximally entangled pair of qudits

UA ⊗ UB |ψAB⟩ = |ϕ+d ⟩ ⊗ |τA′B′⟩.

Note that Eqs. (65) fully characterize Bob’s measurements, given that they are projective and B(k)
y = Bky .

For the compiled SATWAP Bell inequality, a modification in the modeling of the quantum prover is necessary.
Our focus, thus far, has primarily been on compiled games with binary outputs. The prover is initiated in some
quantum state |ψ⟩ and its action in the first round is described in the same way, with eqs. (36) and (37) still holding.
However, a generalized k-th order decrypted observable now reads:

A(k)
x = E

x=Enc(x)

∑
a

ωkDec(a)M†
a|xMa|x (67)

= E
x=Enc(x)

A(k)
x (68)

and the generalized decrypted correlator takes the form

⟨A(k)
x , B(l)

y ⟩ = E
x:Dec(x)=x

∑
a

ωkDec(a)⟨ψa|x|B(l)
y |ψa|x⟩, (69)

with this value operationally giving the expectation value of ωak+bl, which will be directly used to asses the
performance of the prover in the SATWAP game.

We generalize the modified moment matrix Q̃ to include the expectation values of generalized observables.
Recall that generalized observables are labeled not only by the input x ∈ X (or y ∈ Y) but also by the degree k ∈
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{1, . . . , d− 1} (or l). Every entry of the modified covariance matrix Q̃ is labeled by two generalized observables,
hence is a square matrix of dimension (|X| + |Y|)(d − 1). Hence, we define a generalization of the matrix Q̃ as
follows

Q̃ =

[
1(d−1)|X| C
CT S

]
(70)

where 1(d−1)|X| is (d− 1)|X| × (d− 1)|X| identity matrix and

C =
∑
x,y,k,l

⟨A(d−k)
x , B(l)

y ⟩|(k − 1)d+ x⟩⟨(l − 1)d+ y| (71)

S = E
x∈X

E
x:Dec(x)=x

∑
a

⟨ψa|x|B(d−l)
y B

(l′)
y′ |ψa|x⟩|(l − 1)d+ y⟩⟨(l′ − 1)d+ y′| (72)

with ⟨A(k)
x , B

(l)
y ⟩ being introduced in eq. (69).

As in 2.6.2, we define a linear operator Ẽ that maps every homogeneous degree-2 polynomial in the variables
{A(k)

x , B
(l)
y }x,y,k,l to linear combinations of elements of matrix Q̃ in the following way

Ẽ[A(d−k)
x B(l)

y ] = C(k−1)d+x,(l−1)d+y, Ẽ[B(l)
y A(d−k)

x ] = CT(l−1)d+y,(k−1)d+x (73)

Ẽ[A(k)
x A

(k′)
x′ ] = δx,x′δk,k′ , Ẽ[B(l)

y B
(l′)
y′ ] = S(l−1)d+y,(l′−1)d+y′ (74)

For y = y′, l = l′ or x = x′, k = k′ in eq. (50) we get a consistent mapping of identity

Ẽ[A(d−k)
x A(k)

x ] = Ẽ[1] = 1, Ẽ[B(d−l)
y B(l)

y ] = Ẽ[1] = S(l−1)d+y,(l−1)d+y = 1. (75)

With this formalism, we can prove a result equivalent to Theorem (3) for the quantum bound of the compiled
SATWAP inequality. Let us first introduce the following lemma.

Lemma 11. Let Px,k = (Akx)
† − C

(k)
x , where Akx is a generalised observable, and C

(k)
x are linear sums of

generalised observables defined in eq. (62). Then there exists a negligible function δQHE(·) such that we have
Ẽ
[
(P kx )

†P kx
]
≥ −δQHE(κ), where Ẽ[·] is the pseudo-expectation map generalised above.

Proof. The proof follows closely the arguments presented in the proof of Lemma 8, with the difference that gen-
eralised observables are not hermitian, and phases are also complex.

Ẽ
[
P †x,kPx,k

]
= Ẽ

[
(A(k)

x )†A(k)
x

]
− Ẽ

[
(A(k)

x )†C(k)
x

]
− Ẽ

[
(C(k)

x )†Akx

]
+ Ẽ

[
(C(k)

x )†C(k)
x

]
= Ẽ

[
A(d−k)
x A(k)

x

]
− Ẽ

[
A(d−k)
x C(k)

x

]
− Ẽ

[
C(d−k)
x A(k)

x

]
+ Ẽ

[
C(d−k)
x C(k)

x

]
= 1− E

x=Enc(x)

∑
a

ω(d−k)Dec(a)⟨ψa|x|C(k)
x |ψa|x⟩ − E

x=Enc(x)

∑
a

ωkDec(a)⟨ψa|x|C(d−k)
x |ψa|x⟩

+ E
i∈X

E
x=Enc(i)

∑
a

⟨ψa|x|C(d−k)
x C(k)

x |ψa|x⟩

≈δQHE(κ) E
x=Enc(x)

∑
a

⟨ψa|x|
(
1− ω−kDec(a)C(k)

x − ωkDec(a)C(d−k)
x + C(d−k)

x C(k)
x

)
|ψa|x⟩

≈δQHE(κ) E
x=Enc(x)

∑
a

⟨ψa|x|
(
ωkDec(a)1− C(k)

x

)2
|ψa|x⟩ ≥ 0

In the second and in the third line we used the linearity of the pseudo-expectation map over sums of generalised
observables and the definitions stated above. In the fourth step we apply Lemma 7 to the last addend and we fix
the index i = x, at the price of a negligible function δQHF(κ). We can apply this lemma because C(d−k)

x C
(k)
x has a

QPT-implementable block encoding, since is composed by linear sums and multiplications of QPT-implementable
generalised observables (Corollaries 1 and 2). Finally, using linearity we can group all the terms inside of one
average over x = Enc(x); we rephrase this sum as an operator square, which is non-negative by definition.

Theorem 4. Let’s consider the d-dimensional SATWAP Bell inequality, with quantum bound (βSATWAP
d )q , and

its compiled version through Kalai protocol. If d is polynomial w.r.t. the security parameter κ, then the quantum
bound of the compiled SATWAP inequality is (βSATWAP

d )q + θ(κ), where θ(·) is a negligible function.
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Proof. Applying the map Ẽ to the shifted SATWAP operator given in eq. (64) gives :

Ẽ
[
βq1− BSATWAP

d

]
=

1

2

d−1∑
k=1

(
Ẽ
[
P †1,kP1,k

]
+ Ẽ

[
P †2,kP2,k

])
, (76)

In Lemma 11 we proved that all elements in the sum on the r.h.s. are non-negative up to a negligible function, i.e.

Ẽ
[
P †x,kPx,k

]
≈δ E

x=Enc(x)

∑
a

⟨ψ|M†
a|x

(
ωkDec(a)1− C(k)

x

)2
Ma|x|ψ⟩ (77)

This implies that there exists a negligible function of the security parameter θ(κ) such that the maximal quantum
score β̄q in the compiled SATWAP inequality becomes

β̄q ≤ 2(d− 1) + θ(κ). (78)

Let us now explore self-testing properties, and assume that a QPT prover achieved the score β̄q in the compiled
SATWAP inequality. Given eq. (76), reaching the optimal quantum score implies

0 =
1

2

d−1∑
k=1

(
Ẽ
[
P †1,kP1,k

]
+ Ẽ

[
P †2,kP2,k

])
. (79)

By using eqs. (77) and (79) we get

E
x=Enc(x)

∑
a

⟨ψ|M†
a|x

(
ωkDec(a)1− C(k)

x

)2
Ma|x|ψ⟩ ≈δ 0, (80)

where we write δ as shorthand for δQHE. This further gives us

E
x=Enc(x)

∑
a

∥∥∥C(k)
x Ma|x|ψ⟩ − ωkDec(a)Ma|x|ψ⟩

∥∥∥2 ≈δ 0, (81)

further implying that for every k, every x decrypting to x, and every a

C(k)
x Ma|x|ψ⟩ ≈δ ωkDec(a)Ma|x|ψ⟩. (82)

If we fix k′ the previous relation implies[
C(1)
x

]k′
Ma|x|ψ⟩ ≈δ

[
C(1)
x

]k′−1
C(1)
x Ma|x|ψ⟩

≈2·δ ω
Dec(a)

[
C(1)
x

]k′−1
Ma|x|ψ⟩

≈3·δ ω
2Dec(a)

[
C(1)
x

]k′−2
Ma|x|ψ⟩

· · ·

≈k′·δ ωk
′Dec(a)Ma|x|ψ⟩

≈(k′+1)·δ C
(k′)
x Ma|x|ψ⟩,

where in the second line we used eq. (82) for k = 1, which we used successively until the last line where we used
again eq. (82) for k = k′. By summing over a, and noting that k′ < d which is polynomially bounded in the
security parameter κ we get: [

C(1)
x

]k
|ψ⟩ ≈O(δ) C

(k)
x |ψ⟩. (83)

Now we develop the following expression for an arbitrary k

C(d−k)
x C(k)

x Ma|x|ψ⟩ ≈δ ωkDec(a)C(d−k)
x Ma|x|ψ⟩

≈2δ ω
kDec(a)ω(d−k)Dec(a)Ma|x|ψ⟩

= ωdDec(a)Ma|x|ψ⟩
= Ma|x|ψ⟩,
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where for the first line we used eq. (82), for the second line we used the same equation by changing k to d−k, and
the last line follows from ωd = 1. Again by summing over a we obtain

C(d−k)
x C(k)

x |ψ⟩ ≈O(δ) |ψ⟩, (84)

Thus, on the support of |ψ⟩ the observables C(k)
x satisfy condition[

C(1)
x

]k
≈O(δ) C

(k)
x , C(d−k)

x C(k)
x ≈O(δ) 1. (85)

In [SSKA21] it is proven that these two equations for O(δ) = 0 imply though Lemmas 1, 2, and 3 in the supple-
mentary material therein that there exists a unitary U such that

UBB
(1)
1 U†B = Zd ⊗ 1B′ , UBB

(1)
2 U†B = Td ⊗ 1B′ , (86)

with Zd and Td being given in Lemma 10. Since B(1)
1 and B(1)

2 are unitary we get B(k)
1 =

[
B

(1)
1

]k
and B(k)

2 =[
B

(1)
2

]k
. We conjecture that the derivation procedure is robust to noise, implying that in the case of reaching the

optimal quantum violation of the compiled SATWAP inequality relations (86) hold up to a negligible function of
the security parameter.

5 Computational self-test of any two binary measurements from a single
prover

Let us consider first a family of correlation Bell inequalities introduced in [LMS+23], and further discussed
in [BSB23]. The family of Bell inequalities is parameterized with three parameters µ, ν and χ, and the Bell
operator is

Bµνχ = cos(µ+ ν) cos(µ+ χ)(cos(χ)A0 − cos(ν)A1)⊗B0

+ cos(ν) cos(χ)(− cos(µ+ χ)A0 + cos(µ+ ν)A1)⊗B1

(87)

The corresponding family of Bell inequalities involves the CHSH inequality (for µ = χ = 0 and ν = π). A
Bell inequality belonging to this family has quantum violations when cos(µ + χ) cos(µ + ν) cos(ν) cos(χ) < 0.
Whenever this is the case, reaching the quantum bound

βq = ± sin(µ) sin(χ− ν) sin(µ+ ν + χ) (88)

self-tests the maximally entangled pair of qubits [WBC23]. This property makes it a good candidate for our
compilation procedure. The SOS decomposition of the shifted Bell operator is

βq1− Bµνχ = c0P
†
0P0 + c1P

†
1P1, (89)

where

c0 = −cos(χ) cos(µ+ χ)

2 sin(µ)
, c1 = −cos(ν) cos(µ+ ν)

2 sin(µ)

and

P0 = sin(µ)A0 + cos(µ+ ν)B0 − cos(ν)B1

P1 = sin(µ)A1 + cos(µ+ χ)B0 − cos(χ)B1

Given the form of the SOS decomposition (89), the optimal value of the compiled inequality β̄q is the same as the
quantum bound βq given in (88) up to a negligible function. Taking the pseudo-expectation value of (89) we get

βq − β̄ = c0Ẽ
[
P †0P0

]
+ c1Ẽ

[
P †1P1

]
(90)

As usual, we denote B̂0 = (− cos(µ+ν)B0+cos(ν)B1)/ sin(µ) and B̂1 = −(cos(µ+χ)B0+cos(χ)B1)/ sin(µ).
If β̄ = βq − ε, the equation above simply becomes

ε = c0Ẽ
[
P †0P0

]
+ c1Ẽ

[
P †1P1

]
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where the two terms on the lhs don’t have to be positive. Though, from the result of Lemma 8, we know that they
must be positive up to a negligible function depending on the quantum homomorphic encryption scheme:

Ẽ
[
P †xPx

]
≥ E

x=Enc(x)

∑
a

∥∥∥B̂x|ψa|x⟩ − (−1)Dec(a)|ψa|x⟩
∥∥∥2 − δQHE(κ).

Using this bound on the previous equation we get the following:

ε+ (c0 + c1)δQHE(κ) ≥c0 E
x=Enc(0)

∑
a

∥∥∥B̂0|ψa|x⟩ − (−1)Dec(a)|ψa|x⟩
∥∥∥2

+c1 E
x=Enc(1)

∑
a

∥∥∥B̂1|ψa|x⟩ − (−1)Dec(a)|ψa|x⟩
∥∥∥2

where now on the lhs we only have positive quantities. Hence, for all values of x we get this bound:

E
x=Enc(x)

∑
a

∥∥∥B̂x|ψa|x⟩ − (−1)Dec(a)|ψa|x⟩
∥∥∥2 ≤ ε

cx
+
c0 + c1
cx

δQHE(κ) ∀x ∈ {0, 1}. (91)

As a pedagogical introduction, let us see what happens when the maximal quantum score is achieved in the
noiseless case, i.e. ε = 0 and δQHE = 0. The equation above would imply that every addend is equal to zero:

B̂x|ψa|x⟩ = (−1)Dec(a)|ψa|x⟩, ∀x : Dec(x) = x,∀a.

When the quantum bound is saturated, the square of the hat operator B̂x acts like identity on |ψa|x⟩:

(B̂x)
2|ψa|x⟩ = (−1)Dec(a)B̂x|ψa|x⟩ = |ψa|x⟩ ∀x : Dec(x) = x,∀a (92)

By the definition of B̂0, and assuming B2
0 = B2

1 = 1, the following is always true for every state:

(B̂0)
2|ψa|x⟩ =

(
cos2(ν) + cos2(ν + µ)

sin2(µ)
1− cos(ν) cos(ν + µ)

sin2(µ)
{B0, B1}

)
|ψa|x⟩

= k1|ψa|x⟩ − k{}{B0, B1}|ψa|x⟩ (93)

where in the second line we simply fixed a notation for the coefficients of the operators. Equations (92) and (93)
together fix the value of the anti-commutator of Bob’s observables when the maximal quantum score is achieved:

{B0, B1}|ψa|x⟩ =
k1 − 1

k{}
|ψa|x⟩ = 2 cos(µ)|ψa|x⟩ ∀x : Dec(x) = x,∀a

where the second inequality is a simple trigonometric identity

k1 − 1

k{}
=

cos2(ν) + cos2(ν + µ)− sin2(µ)

sin2(µ)

sin2(µ)

cos(ν) cos(ν + µ)
= 2 cos(µ).

Since all observables are binary, this is a self-test. Indeed, Jordan’s lemma ensures that B0 and B1 can be simulta-
neously block-diagonalised such that all blocks are either of size 2×2 or 1×1. In the same way like in [ŠBCB22],
we embed every 1 × 1 into a Hilbert space of larger dimension. This operation does not affect the correlation
probabilities, and it simplifies our analysis, as we work with a Jordan decomposition in which all blocks are of the
size 2× 2. Without loss of generalisation, we can apply a local unitary to the observable B0 and bring it to Pauli’s
σx in every 2× 2 block:

UB0U
† = σx ⊗

∑
i

|i⟩⟨i|. (94)

We can also safely bring all the 2× 2 blocks of B1 to the XZ plane of the Bloch sphere; by fixing the value of the
anti-commutator, we get that B1 has cos(µ)σx + sin(µ)σz in every block. For every µ ̸= 0 we can find ν and χ
such that the condition cos(µ+ χ) cos(µ+ ν) cos(ν) cos(χ) < 0 is satisfied, implying that the quantum bound is
larger than the classical. This implies that we can perform a single-prover self-test of any two observables applied
by Bob, i.e. for every µ there is a compiled XOR game whose maximal violation self-tests Bob’s measurements
implying:

UB0U
† = σx ⊗ 1, UB1U

† = (cos(µ)σx + sin(µ)σz)⊗ 1 (95)
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The noiseless assumption is unrealistic, both from a cryptographic and experimental point of view. Assuming
a finite security parameter κ and small experimental deviations ϵ, we can still prove that the anti-commutator of
Bob’s observables is close to the noiseless value, obtaining a robust self-test for Bob’s binary observables. Let’s
start considering Eq. (91) with x = Enc(0), and open the sum over a:

E
x=Enc(0)

 ∑
a=Enc(0)

∥∥∥(B̂0 − 1)|ψa|x⟩
∥∥∥2 + ∑

a=Enc(1)

∥∥∥(B̂0 + 1)|ψa|x⟩
∥∥∥2
 ≤ ε

c0
+
c0 + c1
c0

δQHE(κ)

We call the vectors inside the norms as |∆±
a|x⟩ = (B̂0 ± 1)|ψa|x⟩, hence we can write:

E
x=Enc(0)

 ∑
a=Enc(0)

∥∥∥|∆−a|x⟩∥∥∥2 + ∑
a=Enc(1)

∥∥∥|∆+
a|x⟩
∥∥∥2
 ≤ ε

c0
+
c0 + c1
c0

δQHE(κ) (96)

Consider again B̂0, its square is:

(B̂0)
2 = 1+ (B̂0 − 1) + B̂0(B̂0 − 1) = 1− (B̂0 + 1) + B̂0(B̂0 + 1)

= k11− k{}{B0, B1}

where the first lines are trivial identities, and in the second line we rewrote Eq. (93). Rearranging the terms, and
applying the observables on |ψa|x⟩, we obtain the following formula for the anti-commutator of Bob’s observables:

[2 cos(µ)1− {B0, B1}] |ψa|x⟩ = ±
1

k{}
|∆∓

a|x⟩+
1

k{}
B̂0|∆∓a|x⟩

where to find 2 cos(µ) we used again the trigonometric identity above. We focus first on the equation with |∆−
a|x⟩.

We compute its norm squared, averaging over x = Enc(0) and summing over a = Enc(0)

E
x=Enc(0)

∑
a=Enc(0)

∥∥[2 cos(µ)1− {B0, B1}] |ψa|x⟩
∥∥2 =

1

k2{}
E

x=Enc(0)

∑
a=Enc(0)

∥∥∥|∆−a|x⟩+ B̂0|∆−a|x⟩
∥∥∥2

≤ 1

k2{}
E

x=Enc(0)

∑
a=Enc(0)

(∥∥∥|∆−a|x⟩∥∥∥2 + ∥∥∥B̂0|∆−a|x⟩
∥∥∥2)

≤ 1

k2{}
E

x=Enc(0)

∑
a=Enc(0)

(∥∥∥|∆−a|x⟩∥∥∥2 + ∥B̂0∥2
∥∥∥|∆−a|x⟩∥∥∥2)

=
1 + ∥B̂0∥2

k2{}
E

x=Enc(0)

∑
a=Enc(0)

∥∥∥|∆−a|x⟩∥∥∥2
where we used Cauchy-Schwarz and the triangle inequality. Similarly, we can find a similar bound summing over
a = Enc(1) and using the decomposition of the anti-commutator with the vectors |∆+

a|x⟩:

E
x=Enc(0)

∑
a=Enc(1)

∥∥[2 cos(µ)1− {B0, B1}] |ψa|x⟩
∥∥2 =

1

k2{}
E

x=Enc(0)

∑
a=Enc(1)

∥∥∥−|∆+
a|x⟩+ B̂0|∆+

a|x⟩
∥∥∥2

≤ 1 + ∥B̂0∥2

k2{}
E

x=Enc(0)

∑
a=Enc(1)

∥∥∥|∆+
a|x⟩
∥∥∥2

Now, putting together these two result we can bound the sum over a

E
x=Enc(0)

∑
a

∥∥[2 cos(µ)1− {B0, B1}] |ψa|x⟩
∥∥2 ≤ 1 + ∥B̂0∥2

k2{}
E

x=Enc(0)

 ∑
a=Enc(0)

∥∥∥|∆−a|x⟩∥∥∥2 + ∑
a=Enc(1)

∥∥∥|∆+
a|x⟩
∥∥∥2


≤ 1 + ∥B̂0∥2

k2{}

(
ε

c0
+
c0 + c1
c0

δQHE(κ)

)
≤ sin2(µ)

[
2 cos(µ) +

1

cos(ν) cos(ν + µ)

](
ε

c0
+
c0 + c1
c0

δQHE(κ)

)
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where in the second line we used the bound found in Eq. 96. The angles are fixed from the inequality, therefore
in the last line we have some negligible functions in ϵ and κ multiplied by some constant factors depending on the
angles. Therefore we proved that, on the support of the states used in the compiled game, the anti-commutator of
Bob’s observable is 2 cos(µ)1 up to a negligible function ηanticomm:

E
x=Enc(0)

∑
a

∥∥[2 cos(µ)1− {B0, B1}] |ψa|x⟩
∥∥2 ≤ ηanticomm(ϵ, κ, ν, µ) (97)

6 Computational self-test of three Pauli observables
The Elegant Bell inequality, first introduced in [Gis09], considers two parties and binary observables, with input
sets X ∈ [4] and Y ∈ [3]. The Bell operator has the form

Bel = (A1 +A2 −A3 −A4)⊗B1 + (A1 −A2 +A3 −A4)⊗B2 + (A1 −A2 −A3 +A4)⊗B3

The quantum bound βq = 4
√
3 self-tests a maximally entangled pair of qubits and maximally spread measure-

ments for Alice and Bob (hence the elegance) [APVW16]. Specifically, Bob’s three measurements form a set of
mutually unbiased bases resembling an octahedron in the Bloch sphere, while Alice’s four measurements form a
dual structure, i.e. a cube.

This can be seen as an XOR game, therefore Theorem 3 applies and the quantum bound of the compiled game
is preserved. In the following section we will proof that the self-testing properties of this game are also preserved
by Kalai compilation. This is particularly interesting because the self-tested arrangement is not confined to a single
plane on the Bloch sphere: is a triplet of MUB measurements in Bloch sphere.

The standard SOS decomposition for the shifted elegant Bell inequality in the nonlocal case is

βq1− Bel =
√
3

2

4∑
i=1

P 2
i (98)

with the following definition for the polynomials Pi

P1 = A1 −
B1 +B2 +B3√

3
, P2 = A2 −

B1 −B2 −B3√
3

,

P3 = A3 −
−B1 +B2 −B3√

3
, P4 = A4 −

−B1 −B2 +B3√
3

.

We use the standard notation Pi = Ai− B̂i. When the compiled game reaches the score β̄ = βq− ϵ, the following
is true

E
x=Enc(x)

∑
a

∥∥∥B̂x|ψa|x⟩ − (−1)Dec(a)|ψa|x⟩
∥∥∥2 ≤ 2√

3
ε+ 4δQHE(κ) ∀x (99)

As a pedagogical introduction we study first the noisiless case, with δQHE(κ) = 0 and ε = 0, implying that

B̂x|ψa|x⟩ − (−1)Dec(a)|ψa|x⟩ = 0, ∀x : Dec(x) = x,∀x

Once again, this proves that the square of the hat operator acts like identity on |ψa|x⟩:

(B̂x)
2|ψa|x⟩ = (−1)Dec(a)B̂x|ψa|x⟩ = |ψa|x⟩ (100)

The square of the hat operator can be completely characterized in terms of the anti-commutators of the observables,
assuming their projectivity B2

1 = B2
2 = B2

3 = 1. Let’s consider x = 1, then

(B̂1)
2 = 1+

1

3

(
{B1, B2}+ {B2, B3}+ {B1, B3}

)
Considering all possible x and Eq. 100, we obtain the following system of equations :(

+ {B1, B2}+ {B2, B3}+ {B1, B3}
)
|ψa|x⟩ = 0(

− {B1, B2}+ {B2, B3} − {B1, B3}
)
|ψa|x⟩ = 0(

− {B1, B2} − {B2, B3}+ {B1, B3}
)
|ψa|x⟩ = 0(

+ {B1, B2} − {B2, B3} − {B1, B3}
)
|ψa|x⟩ = 0
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whose only solution is

{B1, B2}|ψa|x⟩ = {B2, B3}|ψa|x⟩ = {B1, B3}|ψa|x⟩ = 0 (101)

This completely fix the three observales: they must be unitarely equivalent to the three Pauli’s. See appendix C of
[Kan17] for a formal proof of this statement.

To make the self-testing cryptographically and experimentally meaningful it needs to be robust to noise, i.e.
we need to consider a non-null ε and δQHE(κ). We want to prove that all the anti-commutators are still null up to
a negligible function depending on the noise ε and the security parameter κ:

E
x=Enc(0)

∑
a

∥∥{By1 , By2}|ψa|x⟩
∥∥2 ≤ η(ϵ, κ) ∀y1 ̸= y2

Using similar tricks to the section before [i can expand, but it’s trivial] we get the following system of equations:

E
x=Enc(0)

∑
a

∥∥(+ {B1, B2}+ {B2, B3}+ {B1, B3}
)
|ψa|x⟩

∥∥2 ≤ 9(1 +
√
3)f(ε) + δQHE(κ)

E
x=Enc(1)

∑
a

∥∥(− {B1, B2}+ {B2, B3} − {B1, B3}
)
|ψa|x⟩

∥∥2 ≤ 9(1 +
√
3)f(ε) + δQHE(κ)

E
x=Enc(2)

∑
a

∥∥(− {B1, B2} − {B2, B3}+ {B1, B3}
)
|ψa|x⟩

∥∥2 ≤ 9(1 +
√
3)f(ε) + δQHE(κ)

E
x=Enc(3)

∑
a

∥∥(+ {B1, B2} − {B2, B3} − {B1, B3}
)
|ψa|x⟩

∥∥2 ≤ 9(1 +
√
3)f(ε) + δQHE(κ)

Even if the averages are over different values of x, we can change them all to be the same value x̄, paying the
price of an additional δQHE(κ). We expand the definitions of the terms inside the norms. For every equation of the
system we will have something like∥∥({B1, B2}+ {B2, B3}+ {B1, B3}

)
|ψa|x⟩

∥∥2 =

=
∥∥{B1, B2}|ψa|x⟩

∥∥2 + ∥∥{B2, B3}|ψa|x⟩
∥∥2 + ∥∥{B3, B1}|ψa|x⟩

∥∥2 +
+ ⟨ψa|x|{{B1, B2}, {B2, B3}}|ψa|x⟩+ ⟨ψa|x|{{B1, B2}, {B1, B3}}|ψa|x⟩+ ⟨ψa|x|{{B1, B3}, {B2, B3}}|ψa|x⟩

with possibly different signs in the last line. We sum all of the inequalities; only the terms with the norm of the
anti-commutators are going to survive, hence

4 E
x=Enc(x̄)

∑
a

(∥∥{B1, B2}|ψa|x⟩
∥∥2 + ∥∥{B2, B3}|ψa|x⟩

∥∥2 + ∥∥{B3, B1}|ψa|x⟩
∥∥2) ≤ 4

(
9(1 +

√
3)f(ε) + 2δQHE(κ)

)
All the terms in the sum are positive, hence we obtain the desired bound for all the pairs of anti-correlators:

E
x=Enc(x̄)

∑
a

∥∥{By1 , By2}|ψa|x⟩
∥∥2 ≤ 9(1 +

√
3)f(ε) + 2δQHE(κ) ∀y1 ̸= y2 (102)

which is indeed the robust version of equation (101).

7 Open problems
Our findings reveal that the compilation procedure introduced in [KLVY23] effectively preserves the quantum
bound of XOR games. However, it remains uncertain whether this preservation extends to generic nonlocal games.
As demonstrated, the compilation of Bell inequalities is feasible, yet determining whether the quantum bound
preservation holds for Bell inequalities not expressible as nonlocal games poses a challenge. In both scenarios, the
complexity arises from the inability to find the quantum bound using a simple correlation matrix and the duality
of semi-definite programming. Resolving this likely requires using the NPA hierarchy and employing moment
matrices with numerous nonobservable elements. An additional open problem pertains to the quantum behavior of
compiled games involving more than two players. Modeling a single quantum prover in such instances necessitates
a rigorous characterization of sequential encrypted operations. Lastly, understanding the relationship between self-
testing in standard nonlocal games and their compiled counterparts proves to be an instructive avenue for future
exploration.
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Abstract. A major challenge in fault-tolerant quantum computation (FTQC) is reducing space over-
head, i.e., the large number of physical qubits per logical qubit, and time overhead, i.e., long physical gate
sequences per logical gate. We prove that a protocol using finite-rate quantum LDPC codes with concate-
nated Steane codes achieves constant space overhead and polylogarithmic time overhead, even accounting
for non-zero classical computation time. This protocol improves the time overhead upon constant-space-
overhead protocols using quantum LDPC codes with polynomial time overhead and quasi-polylogarithmic
time overhead using concatenated quantum Hamming codes. This result reveals the quantum LDPC
code approach can achieve time-efficient FTQC while maintaining constant overhead, as well as the code-
concatenation approach, and it underscores the need for a comprehensive investigation into the feasibility
of physical implementation of the two approaches.

Keywords: Fault-tolerant quantum computation, Quantum error correction, Quantum LDPC codes,
Quantum concatenated codes, Quantum expander codes, Steane code

1 Background

Quantum computation has promising potential for
faster computation compared to classical computation [1,
2]. However, implementing quantum computation using
physical qubits directly as qubits in an original circuit
representing the computation may corrupt the results of
the computation due to errors inherent in quantum de-
vices. To address this problem, fault-tolerant quantum
computation (FTQC) [3, 4] has been developed. FTQC
enables the simulation of an original quantum circuit us-
ing the logical qubits of a quantum error-correcting code,
rather than physical qubits. By employing techniques of
quantum error correction, FTQC ensures accurate quan-
tum computation even in the presence of errors that may
accumulate as the size of the original circuit increases [3,
4].
Currently, there are two major FTQC schemes: one is

a concatenated code scheme [5–7] and the other is a quan-
tum low-density parity-check (LDPC) code scheme [8–
19]. Both schemes have a threshold theorem [5, 6, 8,
20–26], which states that the failure probability of the
fault-tolerant simulation can be arbitrarily suppressed,
given that the physical error rate is below a certain
threshold. However, conventional FTQC schemes, such
as those using surface codes [10, 11] and concatenated
Steane codes [6], require a substantial increase in the
number of physical qubits per logical qubit, which scales
polylogarithmically with the size of the original quantum
circuit [6, 18]. This poses a challenge, as the number
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of physical qubits in quantum devices is limited, mak-
ing the space overhead the primary obstacle to realizing
FTQC. In addition to space overhead, time overhead,
which refers to the ratio of the physical time step in sim-
ulating an original circuit to the time step in an orig-
inal circuit, is also important to retain the speedups of
quantum computation. The conventional FTQC schemes
scale polylogarithmically in time overhead with the size
of the original circuit [6, 18]. Reducing both space and
time overhead in FTQC is of great interest from both
practical and theoretical perspectives.

One of the main interests in the field of FTQC is how
short a time overhead we can achieve while simultane-
ously maintaining a constant space overhead. In recent
years, there have been advances in this problem. Ref-
erence [12] clarified the properties that a non-vanishing-
rate quantum LDPC code must retain to achieve FTQC
with a constant space overhead in combination with con-
catenated codes. Subsequently, Refs. [13, 27] showed that
quantum expander codes [13, 28, 29] can be used as the
quantum LDPC code for this protocol. Although this
protocol keeps the space overhead constant, it sacrifices
the parallelism of the gate; that is, this protocol has a
limitation on the number of logical gates that can be
performed per time step. As a result, sequential gate im-
plementation was necessary for this protocol, leading to
a polynomial increase in time overhead. More recently,
Refs. [7, 30] resolved this bottleneck of constant-space-
overhead protocols by developing a new protocol based
on concatenated codes to achieve quasi-polylogarithmic
time overhead while also achieving constant space over-
head.

However, it still remains an open question whether it is
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possible to design an even faster constant-space-overhead
protocol that achieves polylogarithmic time overhead,
which is shorter than the quasi-polylogarithmic time
overhead and as fast as the conventional polylogarithmic-
space-overhead protocols. This question relates to a
trade-off relation between the space and time overheads
in FTQC, originally raised in [12]. On the one hand,
there exist fault-tolerant protocols where both the space
overhead and time overhead are polylogarithmic [6, 18].
One the other hand, when space overhead is reduced to a
constant, an ideal trade-off would be that the time over-
head remains polylogarithmic, with only a higher degree
polynomial, but existing constant-space-overhead proto-
cols exhibit the polynomial or quasi-polylogarithmic time
overheads [7, 12, 13, 27], resulting in apparently redun-
dant time overhead. This issue highlights the challenge
of understanding the trade-off relation of space and time
overhead in FTQC.

2 Results

In this work, we demonstrate that FTQC can achieve a
polylogarithmic time overhead while maintaining a con-
stant space overhead, eliminating the redundant tradeoff
between space overhead and time overhead. To achieve
this goal, we analyze a hybrid fault-tolerant protocol
that combines concatenated Steane code [6] and non-
vanishing-rate quantum LDPC codes with an efficient
decoding algorithm, in particular the quantum expander
codes [13, 28, 29]. In our hybrid protocol, non-vanishing-
rate quantum LDPC codes serve as registers to store and
protect logical qubits, while concatenated codes serve
to implement logical gate operations on logical qubits
through gate teleportation [3, 31, 32] by preparing aux-
iliary encoded states of the non-vanishing-rate quantum
LDPC codes.

Theorem 1 Let {Cn} be a sequence of original circuits
specified by an integer n. Each circuit Cn has width W (n)
and depth D(n), where the size of Cn is polynomially
bounded, i.e., |Cn| = O(W (n)D(n)) = O(poly(n)) as
n → ∞. Then, for all ε > 0, there exists a threshold
pth > 0 and if the error rate p < pth, there exists a
sequence of fault-tolerant circuits {CFT

n } and each circuit
CFT

n has a width WFT(n) and a depth DFT(n) that satisfy

WFT(n)

W (n)
= O(1),

DFT(n)

D(n)
= O

(
polylog

(n
ε

))
,

(1)

as n → ∞, and CFT
n outputs the probability distribution

that is close to that of Cn with total variation distance at
most ε.

The formal statement of Theorem 1 and its proof is given
in Sec. V E of the technical version and the definition of
circuits and the noise model is given in Sec. III.
The summaries of our contributions are as follows.

1. Construction of fault-tolerant protocol with higher
parallelization of logical gates.—– Our crucial

contribution for achieving polylogarithmic-time-
and constant-space-overhead fault-tolerant proto-
col is demonstrating our fault-tolerant protocol can
achieve the higher parallelism for executing logi-
cal gates than the existing constant-space-overhead
protocols with quantum LDPC codes [3, 13, 27].
The existing protocols execute the logical gates se-
quentially. Specifically, they execute logical gates
acting on O(W (n)/polylog(n)) logical qubits at a
single time step. However, taking into account ad-
vances in the analysis of error suppression by de-
coding algorithms [13, 27], we show that our proto-
col can increase parallelism to achieve a polyloga-
rithmic time overhead while maintaining a constant
space overhead.

2. Identification of fault-tolerance conditions for quan-
tum LDPC codes.—– We clarify the fault-tolerance
conditions for quantum LDPC codes on gadgets
that intend to perform logical operations acting on
logical qubits in a quantum LDPC code. For de-
tails, see the techical version in Sec. V C. Unlike
the fault-tolerance conditions for protocols based
on concatenated codes [6, 7], the conditions do not
require transversality, i.e., gadgets can be imple-
mented by a tensor product of gates acting indi-
vidually on each physical qubit, but require gad-
gets to have a constant depth and for the number
of physical qubits through which errors can propa-
gate via physical operations to be constant. These
conditions contribute to the explicit construction
of fault-tolerant protocols using quantum LDPC
codes and show the existence of a threshold.

3. Existence of threshold considering classical compu-
tation with non-negligible runtime.—– The exist-
ing analysis of the constant-space-overhead proto-
col with quantum LDPC codes assumes that clas-
sical computation, which is used in such as de-
coding algorithms and gate teleportation [13, 27,
33], can be performed instantaneously in zero time.
However, in practice, the classical computation re-
quired to perform FTQC has a non-zero runtime
that grows as the size of original circuits becomes
large, which cannot be ignored in achieving a scal-
able physical implementation of FTQC. To address
this issue, our analysis explicitly takes into account
the nonzero runtime of classical computation in ex-
ecuting the protocol. For this purpose, we employ
the constant-time decoding algorithms in Ref. [27].
Our contribution is to bound the runtime of all clas-
sical computations required to perform the fault-
tolerant protocol (for details, see Sec. V D of the
technical version). Remarkably, even when con-
sidering the runtime of classical computations, our
constant-space-overhead protocol can exhibit poly-
logarithmic time overhead.

4. A threshold analysis of fault-tolerant protocol for
simulating open circuits.—–We provide a thresh-
old analysis of fault-tolerant protocol using con-
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catenated Steane code to implement open quan-
tum circuits that do not end with measurements,
as in Refs. [25, 34], whereas conventional analy-
sis of FTQC with concatenated codes is applicable
only to the circuits ending with measurements [6,
7]. Our formal proof is given in Sec. IV B of the
technical version. In our protocol, this protocol is
not used in isolation. It is integrated into the proto-
col with quantum LDPC codes in such a way that
we use the concatenated Steane code to prepare
encoded states of quantum LDPC codes in a fault-
tolerant way. The threshold theorem for open cir-
cuits is used without an explicit proof in Refs. [12,
13, 27], but we prove the theorem based on our pro-
tocol and the local stochastic Pauli error model [3],
to complete the full proof of the threshold theo-
rem for the fault-tolerant protocol using quantum
LDPC codes.

3 Conclusion

Our results show our protocol using non-vanishing-
rate quantum LDPC codes with concatenated Steane
codes attains both constant space and polylogarithmic
time overheads. Our results represent a crucial step to-
ward FTQC achieving significant quantum speedups with
a feasibly bounded number of qubits and a negligibly
small slowdown. Furthermore, we have resolved the is-
sue of redundant spacetime trade-offs present in existing
constant-space-overhead FTQC protocols. This work in-
dicates promising potential for low-overhead FTQC using
a hybrid approach of non-vanishing-rate quantum LDPC
codes and concatenated codes.

References

[1] Ashley Montanaro. “Quantum algorithms: an
overview”. In: npj Quantum Information 2.1 (Jan.
2016). issn: 2056-6387. doi: 10 . 1038 / npjqi .

2015.23. url: http://dx.doi.org/10.1038/
npjqi.2015.23.

[2] Alexander M. Dalzell et al. Quantum algorithms: A
survey of applications and end-to-end complexities.
2023. arXiv: 2310.03011 [quant-ph].

[3] Daniel Gottesman. “An introduction to quantum
error correction and fault-tolerant quantum com-
putation”. In: Quantum information science and
its contributions to mathematics, Proceedings of
Symposia in Applied Mathematics. Vol. 68. 2010,
pp. 13–58.

[4] Michael A. Nielsen and Isaac L. Chuang. Quantum
Computation and Quantum Information. Cam-
bridge University Press, 2000.

[5] Dorit Aharonov and Michael Ben-Or. Fault-
Tolerant Quantum Computation With Constant
Error Rate. 1999. arXiv: quant - ph / 9906129

[quant-ph].

[6] Panos Aliferis, Daniel Gottesman, and John
Preskill. Quantum accuracy threshold for concate-
nated distance-3 codes. 2005. arXiv: quant - ph /

0504218 [quant-ph].

[7] Hayata Yamasaki and Masato Koashi. “Time-
Efficient Constant-Space-Overhead Fault-Tolerant
Quantum Computation”. In: Nature Physics 20.2
(Jan. 2024), 247–253. issn: 1745-2481. doi: 10 .

1038/s41567- 023- 02325- 8. url: http://dx.
doi.org/10.1038/s41567-023-02325-8.

[8] A. Yu Kitaev. “Quantum computations: algorithms
and error correction”. In: Russian Mathematical
Surveys 52.6 (Dec. 1997), pp. 1191–1249. doi: 10.
1070/RM1997v052n06ABEH002155.

[9] A.Yu. Kitaev. “Fault-tolerant quantum computa-
tion by anyons”. In: Annals of Physics 303.1 (Jan.
2003), 2–30. issn: 0003-4916. doi: 10.1016/s0003-
4916(02)00018-0. url: http://dx.doi.org/10.
1016/S0003-4916(02)00018-0.

[10] S. B. Bravyi and A. Yu. Kitaev. Quantum codes
on a lattice with boundary. 1998. arXiv: quant-
ph/9811052 [quant-ph].

[11] Daniel Litinski. “A Game of Surface Codes: Large-
Scale Quantum Computing with Lattice Surgery”.
In: Quantum 3 (Mar. 2019), p. 128. issn: 2521-
327X. doi: 10.22331/q-2019-03-05-128. url:
http://dx.doi.org/10.22331/q-2019-03-05-

128.

[12] Daniel Gottesman. “Fault-tolerant quantum com-
putation with constant overhead”. In: Quantum
Info. Comput. 14.15–16 (2014), 1338–1372. issn:
1533-7146.

[13] Omar Fawzi, Antoine Grospellier, and Anthony
Leverrier. “Constant Overhead Quantum Fault-
Tolerance with Quantum Expander Codes”. In:
2018 IEEE 59th Annual Symposium on Founda-
tions of Computer Science (FOCS). IEEE, Oct.
2018. doi: 10.1109/focs.2018.00076. url: http:
//dx.doi.org/10.1109/FOCS.2018.00076.
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Technical version:
Polylog-time- and constant-space-overhead fault-tolerant quantum computation with

quantum low-density parity-check codes

Technical version of “Polylog-time- and constant-
space-overhead fault-tolerant quantum computation with
quantum low-density parity-check codes” is organized
as follows. In Sec. I, we present preliminaries for this
work. In Sec. II, we describe the setting of FTQC.
In Sec. III, we provide a rigorous analysis of the fault-
tolerant protocol using concatenated Steane codes for
implementing open quantum circuits (which do not ter-
minate with measurements) to prepare encoded states of
non-vanishing-rate quantum LDPC codes. In Sec. IV, us-
ing this protocol, we present and analyze the hybrid pro-
tocol using non-vanishing-rate quantum LDPC codes and
concatenated Steane codes to achieve polylog-time and
constant-space-overhead FTQC; in particular, we prove
the threshold theorem for this protocol and bound its
time and space overhead in Sec. IVE. Finally, in Sec. V,
we conclude our work.

I. PRELIMINARIES

In this section, we present preliminaries used in our
paper. In Sec. IA, we start with introducing the Pauli
group and the Clifford group, along with their binary
representations. In Sec. I B, we introduce the quantum
error-correcting codes used in our fault-tolerant protocol.

A. Pauli group and Clifford group

We present the basics of the Pauli group and the Clif-
ford group. The Pauli group is defined as follows.

Definition 1 (Pauli group). Let X,Y , and Z be the
Pauli operators defined as

X :=

[
0 1
1 0

]
, Z :=

[
1 0
0 −1

]
, Y := iXZ =

[
0 −i
i 0

]
.

(1)
The Pauli group on n qubits, denoted by Pn, consists of
2n × 2n matrices in the form of

P =α

n−1⊗

i=0

Pi, (2)

where α ∈ {±1,±i} and Pi ∈ {I,X, Y, Z}. Here, I is
an identity matrix with size 2 × 2 and i =

√
−1. In

particular, when specifying the dimension of the identity
operator, the identity opeator with size 2n×2n is denoted
by In. Also, let ⟨iIn⟩ be the center of the Pauli group Pn,
generated by iIn. The projective Pauli group is defined
as the Pauli group where global phases are ignored, i.e.,

P̃n := Pn/⟨iIn⟩, (3)

where representatives of P̃n are selected by fixing α = 1.

The eigenvectors of the Pauli-Z operator serve as a
particular basis for a qubit, which is referred to as the
computational basis. This basis is denoted by {|0⟩ , |1⟩},
where |0⟩ and |1⟩ are the eigenstates of the Pauli-Z opera-
tor, corresponding to the eigenvalues +1 and −1, respec-
tively. As a special case of projective measurement, we
often use the measurement of the Pauli operator P ∈ Pn
whose projective operators {Πm}m associated with the
measurement outcomes m ∈ {0, 1} are defined as

Π0 := (In + P )/2, Π1 := (In − P )/2. (4)

For a given Pauli operator P ∈ Pn, the weight of P ,
denoted by |P |, is defined as the number of qubits on
which P acts non-trivially, i.e.,

|P | := #{i ∈ {1, . . . , n} : Pi ̸= I}, (5)

where Pi is given by (2).
The Clifford group is defined as the group whose ele-

ments map Pauli operators to Pauli operators under con-
jugation.

Definition 2 (Clifford group). Let U(d) be the unitary
group on the set Cd of complex vectors. The Clifford
group on n qubits is the normalizer of the n-qubit Pauli
group,

Cn := {C ∈ U(2n) | CPC† ∈ Pn,∀P ∈ Pn}. (6)

where (·)† represents the adjoint of (·). The elements of
the Clifford group are called Clifford operators. Further-
more, the projective Clifford group is defined as

C̃n := Cn/U(1), (7)

where our analysis does not need to specify the repre-
sentative of C̃n while the representative of C̃n/P̃n will be
specified later in (14).

The symplectic representation of Pauli operators al-
lows us to perform several calculations on Pauli operators
using a binary vector. The definition of the symplectic
representation of Pauli operators is as follows.

Definition 3. (Symplectic representation of Pauli oper-
ators)

Let P =
⊗n

i=1 Pi ∈ P̃n be a Pauli operator. The map-

ping ϕ : P̃n → F2n
2 provides the symplectic representation

of P . In this representation, P is mapped to a pair of
row vectors x, z ∈ Fn2 , denoted by ϕ(P ) := [x, z] ∈ F2n

2 ,
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2

according to the following rules:

if Pi = I, xi = 0 and zi = 0, (8)

if Pi = X, xi = 1 and zi = 0, (9)

if Pi = Y, xi = 1 and zi = 1, (10)

if Pi = Z, xi = 0 and zi = 1. (11)

Since P̃n ∼= F2n
2 , when we ignore the global phase of the

Pauli operator, the multiplication in two Pauli operators
P1, P2 ∈ P̃n can be calculated with their symplectic rep-
resentation as

ϕ(P1)⊕ ϕ(P2), (12)

where ⊕ represents the bitwise exclusive OR (XOR).

Moreover, the multiplication in P1, P2 ∈ P̃n can also be

expressed as

P1P2 = (−1)xz
′⊤+x′z⊤P2P1, (13)

where ϕ(P1) = [x, z] ∈ F2n
2 , ϕ(P2) = [x′, z′] ∈ F2n

2 , and
z⊤ represents the transpose of z. Thus, the commutator
between two Pauli operators corresponds to xz′⊤ + x′z⊤

in (13), which is defined as the symplectic inner product.

The conjugation of a Pauli operator in P̃n by a Clif-
ford operator in C̃n is carried out in a way that maintains
the symplectic inner product. From Refs. [1, 2], we have

C̃n/P̃n ∼= Sp(2n,F2), where the equivalence relation is de-
fined by conjugation, and Sp(2n,F2) represents the group
of 2n× 2n symplectic matrices over F2. In addition, the
corresponding Γ ∈ Sp(2n,F2) can be identified by map-
ping [ei, 0] 7→ [x, z] and [0, ej ] 7→ [x′, z′], where ei is the
standard basis vector of Fn2 that has an entry 1 in the
i-th column and 0 otherwise [2]. These facts provide the
symplectic matrix γ(C) ∈ F2n×2n

2 of a representative of

a Clifford operator C ∈ C̃n/P̃n [2] as

γ(C) :=



ϕ(CX

(1)
n C†)⊤ · · · ϕ(CX

(n)
n C†)⊤ ϕ(CZ

(1)
n C†)⊤ · · · ϕ(CZ

(n)
n C†)⊤



, (14)

where X
(i)
n (Z

(i)
n ) ∈ P̃ represents an n-qubit Pauli op-

erator that acts as X(Z) on the i-th qubit, and as I

otherwise. The conjugation of a Pauli operator P ∈ P̃n
by a Clifford operator C ∈ C̃n/P̃n can be calculated by
multiplying the matrix γ(C) ∈ F2n×2n

2 with the vector
ϕ(P ) ∈ F2n

2 from the right, i.e.,

ϕ(P )γ(C). (15)

The group C̃n/P̃n is generated by the H operator, S op-
erator, and CNOT operator defined as

H :=
1√
2

[
1 1
1 −1

]
, (16)

S :=

[
e−iπ4 0
0 ei

π
4

]
= RZ

(π
2

)
, (17)

CNOT :=



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 , (18)

where RZ(θ) := e−iπ2 θZ =

[
e−iπ2 θ 0
0 ei

π
2 θ

]
. A Clifford op-

erator C ∈ C̃n/P̃n can be decomposed into 11 rounds in
a sequence, where each round uses only one type of Clif-
ford operator in the order of H, CNOT, S, CNOT, S,
CNOT, H, S, CNOT, S, CNOT [3]. In this paper, the

decomposed form is chosen as a representative of C̃n/P̃n.

B. Concatenated Steane codes and
non-vanishing-rate quantum LDPC codes

In this section, we present basics of stabilizer codes
that we will use in this paper. In Sec. I B 1, we intro-
duce stabilizer codes and Calderbank-Shor-Steane (CSS)
codes. In Sec. I B 2, we explain the Steane code as an im-
portant class of CSS codes and its code concatenation.
In Sec. I B 3, we explain quantum LDPC codes.

1. Stabilizer codes and Calderbank-Shor-Steane (CSS) codes

A quantum error-correcting code Q with N physical
qubits is a subspace Q of a 2N -dimensional Hilbert space,
i.e., Q ⊆ (C2)⊗N , where C2 = span{|0⟩ , |1⟩} represents
a qubit. We consider a stabilizer code, which is specified
by its stabilizer S ⊂ PN , which is an Abelian subgroup
of PN satisfying −I /∈ S. The centralizer C(S) consists
of all Pauli operators that commute with all elements in
S. If S is generated by N − K independent elements,
then the corresponding space Q(S) is a 2K-dimensional
subspace that is invariant under the action of S. Logical
operators are elements of the set C(S) \ S. For each k ∈
[1, . . . ,K], one can choose the associated logical X and Z
operators in C(S) \ S that obey the Pauli commutation
relation. In this case, the subspace is isomorphic to a
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3

space of K qubits, which are called the logical qubits. We
refer to the subspace Q(S) as the code space and a state
of logical qubits as a codeword. The minimum number of
physical qubits that any non-trivial logical operator acts
upon is referred to as the distance. A stabilizer codeQ(S)
with the parameters of the number of physical qubits N ,
the number of logical qubitsK, and distanceD is denoted
by an [[N,K,D]] code. Furthermore, the rate R of the
code Q(S) is defined as R := K/N . We refer to physical
qubits that form Q as data qubits.

A Calderbank-Shor-Steane (CSS) code [4, 5] is a stabi-
lizer code that can be constructed from a pair of classical
linear codes. A classical linear code with a block length
n and dimension k is a linear subspace C of a vector
space Fn2 , where F2 = {0, 1} is a finite field with 2 el-
ements representing a bit. A linear code C is defined
as the kernel of an m × n parity-check matrix H, i.e.,
C = {x ∈ Fn2 : Hx⊤ = 0}, where m ≥ n − k holds
equality when H is full rank, and x is a row vector rep-
resenting a codeword. In addition, a linear subspace of a
vector space Fn2 spanned by the set of vectors that are or-
thogonal to all codewords in C is known as the dual code
C⊥ of C defined as C⊥ := {d ∈ Fn2 : d⊕c = 0,∀c ∈ C}.
Given a pair of classical linear codes CX = kerHX and
CZ = kerHZ with a block length N satisfying C⊥

Z ⊆ CX ,

we can define a parity-check matrix H ∈ FM×2N
2 of the

CSS code as

H =

[
HX 0
0 HZ

]
, (19)

where M = MX +MZ . The parity-check matrix H ∈
FM×2N
2 of the CSS code gives the stabilizer group S of

the code generated by {gi}i such that

H⊤
X = [ϕ(g0), . . . , ϕ(gMX−1)],

H⊤
Z = [ϕ(gMX

), . . . , ϕ(gM−1)].
(20)

From the construction in (19), the stabilizer generators
of the CSS code can be classified into Z-type generators
of

gZm ∈
{⊗

i

Pi : Pi ∈ {I, Z}
}

for m ∈ {1, . . . ,MZ},

(21)
and X-type generators of

gXm′ ∈
{⊗

i

Pi : Pi ∈ {I,X}
}

for m′ ∈ {MZ+1, . . . ,M}.

(22)
The condition that these generators commute with each
other is equivalent to HZH

⊤
X = 0, which is guaranteed

by the requirement of C⊥
Z ⊆ CX . The code space of the

CSS codes Q is

span




∑

y∈C⊥
Z

|x⊕ y⟩ : x ∈ CX



 , (23)

the dimension of a CSS code is K = kX +kZ −N , where
kX and kZ are the dimension of CX and CZ , respectively,
and the distance of the code isD = min{DX , DZ}, where
DX = minx∈CX\C⊥

Z
|x|, DZ = minx∈CZ\C⊥

X
|x|, and |x| is

the Hamming weight of x.

2. Concatenated Steane codes

A [[7, 1, 3]] Steane’s 7-qubit code [5], or simply the
Steane code, is a CSS code whose parity-check matrices
HX and HZ are both [7, 4, 3] Hamming code [6], i.e.,

HZ = HX =



1 1 1 1 0 0 0
0 1 1 0 1 1 0
0 0 1 1 0 1 1


 , (24)

which satisfy HZH
⊤
X = 0. The stabilizer generators of

the Steane code are defined as

gX1 =X ⊗X ⊗X ⊗X ⊗ I ⊗ I ⊗ I,

gX2 =I ⊗X ⊗X ⊗ I ⊗X ⊗X ⊗ I,

gX3 =I ⊗ I ⊗X ⊗X ⊗ I ⊗X ⊗X,

gZ1 =Z ⊗ Z ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I,

gZ2 =I ⊗ Z ⊗ Z ⊗ I ⊗ Z ⊗ Z ⊗ I,

gZ3 =I ⊗ I ⊗ Z ⊗ Z ⊗ I ⊗ Z ⊗ Z,

(25)

The logical Z and X operators of the Steane code act-
ing on the logical qubit are described by the following
operator acting on the 7 physical qubits, respectively,

I ⊗ I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ Z,

I ⊗ I ⊗ I ⊗ I ⊗X ⊗X ⊗X.
(26)

If a logical gate can be implemented by a tensor product
of gates acting individually on each physical qubit, the
logical gate is called transversal. Transversality is impor-
tant in FTQC since the logical gate can be performed in
a single time step without additional qubits and, more
importantly, they inherently prevent error propagation
occurring in the code. The feature of the Steane code is
that the logical Clifford gates H, S, and CNOT can be
executed transversally by H⊗7, (S†)⊗7, and CNOT⊗7,
respectively, as well as the logical Z and X.

A decoding algorithm for the Steane code is as fol-
lows: the CSS code corrects errors using two types of
stabilizer generators, X-type generators and Z-type gen-
erators, independently. The X-type generators are used
for correcting phase-flip (Z) errors and the Z-type gen-
erators are used for bit-flip (X) errors, respectively. In
the following, we will focus on error correction using X-
type generators. By definition, the X-type generator is
derived from the parity-check matrix HZ of the [7, 4, 3]
Hamming code in (24), and thus we can use the same
decoding algorithm for the [7, 4, 1] Hamming code. Sup-
pose that a single-qubit Z error occurs, and the syndrome
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bits in σ(E) = (s1, s2, s3) ∈ F3
2 are obtained, where the

i-th element corresponds to the measurement outcome
m ∈ {0, 1} of gi in (25). Due to the properties of the
Hamming code, the syndrome bits indicate the position
of the qubit where the error occurred, given by a binary
representation of

ĩ =
3∑

i=1

si2
i−1, (27)

which gives the Z operator on the ĩ-th qubit as the re-
covering operation.

The concatenated Steane codes [7, 8] are constructed
by recursively replacing each qubit composed of a code
with a logical qubit of the Steane code. First, at level L,
we have a qubit to be encoded. For each l ∈ {L, . . . , 1},
the code is obtained by replacing each physical qubit with
a logical qubits of the Steane code. This recursive struc-
ture leads to the level-L concatenated Steane code, de-
noted by Q(L), with parameters,

[[N = 7L,K = 1, D = 3L]]. (28)

3. Quantum LDPC codes

A family of CSS codes with parameters [[Ni,Ki, Di]]
indexed by an integer i is said to be an (r, c) quantum
low-density parity-check (LDPC) code if the parity-check
matrices of the CSS codes in the family have at most
r = O(1) non-zero elements in each row and at most
c = O(1) non-zero elements in each column as i → ∞
and Ni → ∞. That is, the X-type and Z-type stabi-
lizer generators of the quantum LDPC codes have only
r = O(1) weights, and only a constant number c = O(1)
of stabilizer generators act nontrivially on each physical
qubit of the quantum LDPC codes. If the rate Ri of
a family of quantum LDPC codes converges to a finite
positive value R as i→ ∞,

lim
i→∞

Ri = R > 0, (29)

a code in the family is referred to as a non-vanishing-rate
quantum LDPC code. Conversely, if the rate R converges
to zero, a code in the family is referred to as a vanishing-
rate quantum LDPC code.

Vanishing-rate quantum LDPC codes, such as sur-
face codes [9–14] and color codes [15–18], are capable
of executing most or all logical Clifford gates transver-
sally [13, 14, 17–19]. However, a drawback of these codes
is that the number of physical qubits required to pro-
tect a single logical qubit diverges asymptotically. In
contrast, non-vanishing-rate quantum LDPC codes are
advantageous since such codes can be used for constant-
space-overhead FTQC as the rate converges to a non-zero
value [20–22]. Although implementing logical Clifford

gates transversally with non-vanishing-rate LDPC codes
is challenging [23–26], these codes can implement logi-
cal gates by using gate teleportation if one can prepare
required auxiliary encoded states in a fault-tolerant way.

II. SETTING OF FAULT-TOLERANT
QUANTUM COMPUTATION

In this section, we present the setting of fault-tolerant
quantum computation used in our work. We consider
original quantum circuits composed of a finite set of
quantum operations. In our setting, an original circuit
is written in terms of the following quantum operations:
|0⟩-state preparation, Z-basis measurements, Pauli gates
(X, Y , and Z), Clifford gates (H, S, and CNOT), non-
Clifford gates (T := RZ(π/4) and T

†), and a wait oper-
ation I. The operations can be executed on all qubits
simultaneously, and no more than one operation acts on
a single qubit at any given time step. The total number
of these time steps is referred to as the depth of the orig-
inal circuit, and the maximum number of qubits, where
maximization is taken over all time steps of the original
circuit, is referred to as the width.
In this paper, we consider original circuits that start

with the |0⟩-state preparation and end with the Z-basis
measurements, with no measurements included in the
middle of the circuit [27]. Any stabilizer circuit has an
equivalent circuit comprising 11 rounds in a sequence in
the order of H, CNOT, S, CNOT, S, CNOT, H, S,
CNOT, S, CNOT [3], or 9 rounds of CNOT, S, CNOT,
S, H, S, CNOT, S, and CNOT [28]. The layer of
the m-qubit stabilizer circuit given by both decompo-
sitions has an O(m) depth and O(m2/ log(m)) two-qubit
gates [3, 28]. Thus, given any original circuit Corg

n spec-
ified by an integer n with width W (n) and depth D(n),
we can rewrite it into an original circuit that has the
following form.

Assumption 1. Let Corg
n be an original circuit in the

following form:

• A Clifford layer described by an W (n)-qubit stabi-
lizer circuit with O(W (n)) depth, repeated O(D(n))
times

• Each Clifford layer is sandwiched between layers of
single-depth circuits composed of T and T † gates
and 1, which we refer to as T -gate layers.

• The first Clifford layer is preceded by a single-
depth layer circuit composed of |0⟩-state prepara-
tions, rather than a T -gate layer. Similarly, the fi-
nal Clifford layer is followed by a single-depth layer
circuit composed of Z-basis measurements, instead
of a T -gate layer.

Note that because original circuits satisfying Assump-
tion 1 do not contain measurements in the middle of the
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computation, the width of the original circuit remains
unchanged.

The goal of FTQC is to simulate an original circuit
Corg
n , i.e., sample from a probability distribution that is

close to that of Corg
n with the total variation distance at

most ε > 0. To achieve this, we provide a fault-tolerant
protocol that explicitly constructs a physical circuit with
fault tolerance (referred to as a fault-tolerant circuit) de-
scribed by physically implementable operations.

We assume that the physical circuit satisfies the follow-
ing conditions. These conditions follow the convention of
the previous works [8, 20, 21, 25, 29].

Assumption 2 (physical circuit). A physical circuit sat-
isfies the following conditions:

1. Set of physical operations:

A physical circuit consists of physical operations in-
cluding |0⟩-state preparation, Z-basis measurement,
Pauli gates X, Y , and Z, Clifford gates H, S, S†,
and CNOT, non-Clifford gates T and T †, and wait
operation I. Each physical operation in a physical
circuit is referred to as a physical location.

2. No geometrical constraint on CNOT gates:

We assume that the CNOT gate can be applied to
an arbitrary pair of physical qubits at a single time
step, regardless of the location of the two physical
qubits as in neutral atom systems [30, 31], trapped-
ion systems [32–34], and photonic systems [35–37].

3. Parallel physical operations:

The physical operations can be performed simulta-
neously for all qubits in a single time step as long
as each qubit is involved in only one operation at
any given time. The depth of the physical circuit is
determined by these time steps.

4. Allocation of qubits and bits:

We allocate physical qubits via |0⟩-state prepara-
tion and deallocate them through Z-basis measure-
ment. Bits are allocated in a classical register to
store the measurement outcomes. Once a classical
computer receives the bits of the measurement out-
comes, those bits are deallocated from a classical
register. The number of physical qubits and bits at
any given time are those that have been allocated
previously and have not yet been deallocated.

5. Ideal classical computation with non-negligible run-
time:

For simplicity of our analysis, we assume that clas-
sical computation can be performed without faults.
Additionally, during the classical computation, we
assume that the wait operations on all allocated
physical qubits are performed in the physical cir-
cuit. The depth of the wait operation is determined
by the runtime of the classical computation. Specif-
ically, the depth is limited to a value less than or

equal to a constant multiple of the runtime of the
classical computation.

The issue in quantum computing is that when execut-
ing these physical circuits during quantum computation,
the circuits are subjected to noise that may impair the
results of computation. When analyzing the impact of
noise on FTQC with quantum LDPC codes, the conven-
tional approach is to consider the local stochastic Pauli
error model on a physical circuit [20–22], which is also
used in this paper. This error model has the stochas-
tic property, where a Pauli error is applied to a quantum
state with probability p, and the state remains unchanged
with probability 1− p. It also satisfies the locality prop-
erty, where the probability of an error occurring at any
given set of locations decreases exponentially with the
size of the set. However, it does not impose any other
constraints; errors can exhibit correlations in both time
and space and may be adversarially chosen to complicate
fault-tolerant simulations.

Definition 4 (Local stochastic Pauli error model on a
physical circuit). Let C be a physical circuit, and L be
a set of physical locations in C. Let a set of faulty lo-
cations be a random variable F ⊆ L, where a faulty
location is defined as a physical location that leads to an
error resulting from the imperfect physical operation at
this location. We say that C is subjected to the local
stochastic Pauli error model with parameter ploc ∈ [0, 1]
if the following conditions hold.

1. For all A ⊆ L, the probability that F contains A
satisfies

P[F ⊇ A] ≤ p
|A|
loc . (30)

2. The physical operations in F are associated with a
Pauli operator chosen adversarially that represents
an error as follows.

• If a location in F is a |0⟩-state preparation
operation, a Pauli operator is applied to the
qubit after the |0⟩-state preparation is per-
formed.

• If a location in F is a gate operation (including
Pauli gates, Clifford gates, non-Clifford gates,
and a wait), a Pauli operator is applied to each
qubit(s) after the corresponding gate opera-
tion is performed.

• If a location in F is a Z-basis measurement
operation, a bit flip or identity operation is
applied to the measurement outcome.

The physical locations in L\F behave in the same
way as the case without faults.

In this paper, we assume a physical circuit is subjected
to the local stochastic Pauli error model. We refer to a
physical circuit that suffers from local stochastic Pauli
errors as a faulty physical circuit.
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Assumption 3. A physical circuit C is subjected to the
local stochastic Pauli error with parameter ploc ∈ [0, 1].

For the faulty physical circuit to implement FTQC
with a quantum LDPC code, we also define the local
stochastic Pauli error model on a set of data qubits and
syndrome bits of a block of a quantum LDPC code, de-
noted by V and W , respectively. For simplicity, we re-
move the distinction between V and W . That is, we
consider the union X := V ∪W of the two sets, and we
call each element of X a wire in a circuit.

Definition 5 (Local stochastic Pauli error model on
wires). Let V be a set of data qubits and W be a set of
syndrome bits at a given time step of a physical circuit.
Let X := V ∪W be a set of wires and H := F ∪ G ⊆ X
be a set of erroneous wires, where F is the set of erro-
neous wires in V and G in W . An error model is said to
be the local stochastic Pauli error model on wires with
parameter pwire ∈ [0, 1] if the following conditions are
satisfied.

1. For any U = S ∪ T ⊆ X, the probability that H
contains U satisfies,

P[H ⊇ U ] ≤ p
|U |
wire. (31)

2. A Pauli operator is applied to F ⊆ V , and bit flip
or identity operations are applied to G ⊆W .

In the case where the errors on the syndrome bits are
not considered, an error model on data qubits is the local
stochastic Pauli error model with parameter pdata if for
all S ⊆ V , the following relations are satisfied.

1. For all S ⊆ V , the probability that F ⊆ V contains
S satisfies,

P[F ⊇ S] ≤ p
|S|
data. (32)

2. A Pauli operator is applied to F ⊆ V .

A fault-tolerant protocol provides a fault-tolerant cir-
cuit to simulate a given original circuit. The fault-
tolerant protocol replaces qubits in an original circuit
with logical qubits of a quantum error-correcting code.
This process requires using multiple physical qubits per
logical qubit for redundancy. At the same time, opera-
tions in an original circuit are replaced by logical oper-
ations acting on the logical qubits. Implementing these
logical operations in a physical circuit requires additional
time steps. This procedure incurs an overhead with re-
spect to space and time. LetWFT(n) represent the width
and DFT(n) represent the depth of a fault-tolerant cir-
cuit. Then, the space overhead is defined as the ratio
of the width of the fault-tolerant circuit WFT(n) to the
width n of the corresponding original circuit,

WFT(n)

W (n)
. (33)

On the other hand, the time overhead is defined as the
ratio of the depth DFT(n) of the fault-tolerant circuit,
including wait operations necessary for classical compu-
tation, to the depth D(n) of the original circuit,

DFT(n)

D(n)
. (34)

For a target error ε, the fault-tolerant protocol is said to
achieve a constant space overhead if the space overhead
of the fault-tolerant circuit is

WFT(n)

W (n)
= O(1), (35)

as n → ∞ and ε → 0, and is said to achieve a poly-
logarithmic time overhead if the time overhead of the
fault-tolerant circuit is

DFT(n)

D(n)
= O

(
polylog

(n
ε

))
(36)

as n→ ∞ and ε→ 0.

III. FAULT-TOLERANT PROTOCOL FOR
OPEN QUANTUM CIRCUITS

In this section, we explain a protocol based on concate-
nated Steane codes for simulating ideal quantum circuits
that output a quantum state, rather than measurement
outcomes. We refer to quantum circuits that output a
quantum state as open quantum circuits, to distinguish
them from closed quantum circuits that output measure-
ment outcomes. The protocol will be used to simulate
an original open circuit to produce an encoded state of
a quantum LDPC code, and the encoded state is used
for performing logical Clifford gates and logical T and
T † gates acting on logical qubits in a quantum LDPC
code via gate teleportation [38, 39]. As discussed later
in Sec. IVD, this protocol is not used in isolation. It is
integrated into the protocol with quantum LDPC codes
in such a way that we use the concatenated Steane code
to prepare encoded states of quantum LDPC codes in a
fault-tolerant way. The existing analysis [20–22] of the
fault-tolerant protocol for quantum LDPC codes does not
explicitly bound the error in preparing the encoded state,
and one of our contributions here is to provide a thorough
analysis including this part of the protocol to present a
complete threshold theorem of the overall protocol.

A. Compilation from original open circuit to
fault-tolerant circuit

For a given ideal open circuit, the protocol recursively
constructs a level-l circuit (l ∈ {L, . . . , 0}) consisting of
elementary operations acting on level-l qubits. Here, a
level-0 circuit is a physical circuit. We say that each
elementary operation contained in the level-l circuit is
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a location of the level-l circuit. For the level-l circuit,
we assume that at most one elementary operation can
act on a single level-l qubit in a single time step. The
depth of a level-l circuit is determined by the number of
time steps. The set of elementary operations includes |0⟩-
state preparation operation, |T ⟩-state preparation opera-
tion, H-, S-, S†-, CNOT-, Pauli-gate operations, Z-basis
measurement operation, and a wait operation. Here,
|T ⟩ := TH |0⟩. We also define the T -gate abbreviation
as a collection of the elementary operations to perform T
gates by gate teleportation. For each elementary opera-
tion, we define the corresponding gadget that is a circuit
to carry out the corresponding logical operation on a log-
ical qubit of the Steane code. We also define an error-
correction (EC) gadget, which is a circuit that performs
error correction on a set of 7 qubits forming the Steane
code, and a decoding interface, which is a circuit that
performs the decoding operation to transform the logical
state encoded in the Steane code consisting of the set of 7
qubits to the same state of an unencoded physical qubit.

The elementary operations and abbreviations are rep-
resented as in a diagram. In the diagram, the change
from a dashed input line to a solid output line represents
the allocation of a level-l qubit, while the change from a
solid line to a dashed line represents deallocation. If both
the input and output lines are dashed, it means that the
corresponding level-l qubit is used as a workspace for per-
forming elementary operations. The double output line
represents the bits that the elementary operation out-
puts. The elementary operations are as follows.

• |0⟩-state preparation operation

level-l qubit

level-l qubit

|0〉

. (37)

The |0⟩-state preparation operation allocates a sin-
gle level-l qubit that is prepared in the state |0⟩.

• |T ⟩-state preparation operation

level-l qubit

level-l qubit

level-l qubit

|T 〉

. (38)

The |T ⟩-state preparation operation allocates a sin-
gle level-l qubit that is prepared in the state |T ⟩.

• H-gate operation

level-l qubit H . (39)

The H-gate operation applies the H gate to a level-
l qubit.

• S-gate operation

level-l qubit S . (40)

The S-gate operation applies the S gate to a level-l
qubit.

• S†-gate operation

level-l qubit
S†

. (41)

The S†-gate operation applies the S† gate to a
level-l qubit.

• CNOT-gate operation

level-l qubit

level-l qubit X . (42)

The CNOT-gate operation applies the CNOT gate
between two level-l qubits.

• Pauli-gate operation

level-l qubit P . (43)

The Pauli-gate operation applies the Pauli gate P ∈
P1 to a level-l qubit [40].

• Z-basis measurement operation

level-l qubit

Z
m
easu

rem
en
t

1 bit

. (44)

The Z-basis measurement operation performs the
Z-basis measurement on a level-l qubit. It deallo-
cates the level-l qubit and outputs a 1-bit measure-
ment outcome.

• Wait operation

level-l qubit

. (45)

The wait operation applies an I operation to a
level-l qubit, which is regarded as a special case
of Pauli gates.

The T -gate abbreviation is denoted as follows:
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• T -gate abbreviation

level-l qubit

level-l qubit

level-l qubit

level-l qubit

T

. (46)

The T -gate abbreviation performs the T -gate oper-
ation on a level-l qubit through gate teleportation.

In addition to the elementary operations and their cor-
responding gadgets, the EC gadget and the decoding in-
terface are denoted as follows:

• EC gadget

7 level-(l− 1) qubits

7 level-(l− 1) qubits

7 level-(l− 1) qubits

7 ancillary level-(l− 1) qubits

7 ancillary level-(l− 1) qubits

error
co
rrection

. (47)

The EC gadget performs quantum error correction
on a logical qubit consisting of 7 level-(l−1) qubits,
temporarily utilizing the other four sets of 7 level-
(l − 1) qubits .

• Decoding interface

7 level-(l− 1) qubits

7 level-(l− 1) qubits

7 ancillary level-(l− 1) qubits

level-(l− 1) qubit

d
ececo

d
in
g
in
terface

, (48)

A decoding interface performs the decoding opera-
tion from a logical qubit of the Steane code to an
unencoded physical qubit.

The gadgets are carefully designed to satisfy the fault-
tolerance conditions, which are presented in Appendix A,
and their constructions are shown in Appendix B.
The procedure for compiling an original open circuit

C that generates a quantum state |ψ⟩ into a physical cir-
cuit, as shown in Fig. IIIA, is as follows. Given a target
error δ > 0 and an original circuit C, we first determine
the concatenation level L such that the failure probabil-
ity of the fault-tolerant simulation can be bounded by
δ. Next, we compile the original circuit into a level-L
circuit by replacing each operation in the original circuit
with the corresponding elementary operation that acts on
level-L qubits. As for the T and T † gates in the original
circuit, we replace a T gate with a T -gate abbreviation
and a T † gate with an S†-gate operation, followed by
a T -gate abbreviation, respectively. In addition to each
level-L qubit, we allocate 3 + 4 = 7 auxiliary level-L
qubits. Of these seven, the three auxiliary level-L qubits
are used for elementary operations and the T -gate ab-
breviation. The other four registers are never explicitly
used in the level-L circuit and not shown in Fig. IIIA,
but these level-L qubits are used to provide workspaces
for the EC gadget that will appear in the level-(L − 1)
circuit. For each level l ∈ {L,L − 1, . . . , 1}, we recur-
sively compile the level-l circuit into the corresponding
level-(l − 1) circuit. For each level-l qubit in the level-l
circuit, a set of seven level-(l − 1) qubits is allocated in
the level-(l − 1) circuit, along with 3 + 4 = 7 auxiliary
level-(l−1) qubits per set. As in the level-L case, three of
these seven auxiliary level-(l− 1) qubits are used for ab-
breviations and elementary operations in the level-(l−1)
circuit. The remaining four level-(l− 1) qubits are never
explicitly used in the level-(l − 1) circuit, but are used
as workspaces for EC gadgets. This transformation in-
volves replacing each elementary operation with the cor-
responding gadget and inserting an EC gadget between
the gadgets. For simplicity of our analysis, we insert EC
gadgets synchronously. This means that EC gadgets are
executed only after all the gadgets for the elementary op-
erations belonging to the same depth in the level-l circuit
have been completed. Until the EC gadgets are finished,
the gadgets corresponding to the elementary operations
that belong to the next depth in the level-l circuit are
not executed. To ensure synchronization, we incorporate
wait operations after the previously completed gadgets.
At this stage, the level-(l−1) circuit outputs an encoded
version of the quantum state |ψ⟩, where each physical
qubit of |ψ⟩ is replaced by the 7 level-(l−1) qubits form-
ing the logical qubit of the Steane code. To obtain the
unencoded state |ψ⟩, we add the decoding interface to
each logical qubit at the end of the level-(l − 1) circuit,
i.e., an open circuit is always compiled into a circuit with
decoding interface in the end, in place of measurements
at the end of closed circuits.

By applying this procedure recursively, we obtain the
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Original open circuit Level-𝐿 circuit

Level-(𝐿 − 1) circuit

…

|0i
|0i
|0i
|0i

H

H

H

H

T

T

T

T

X

X

X

level-L qubit

level-L qubit

level-L qubit

level-L qubit

ancillary level-L qubits

ancillary level-L qubits

ancillary level-L qubits

ancillary level-L qubits

|0i

|0i

|0i

|0i

H

H

H

H

T

T

T

T

X

X

X

7 level-(L � 1) qubits

7 level-(L � 1) qubits

7 level-(L � 1) qubits

7 level-(L � 1) qubits

ancillary level-(L � 1) qubits

ancillary level-(L � 1) qubits

ancillary level-(L � 1) qubits

ancillary level-(L � 1) qubits

|0i gadget

|0i gadget

|0i gadget
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X
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FIG. 1. Compilation procedure of our protocol for ideal open circuits. First, we compile an original open circuit into a level-
L circuit that consists only of elementary operations on level-L qubits. Here, the T gate, which is implemented using gate
teleportation, is an abbreviation of a sequence of elementary operations. For each level l ∈ {L, . . . , 1}, we recursively compile
the level-l circuit into the level-(l− 1) circuit by replacing each elementary operation with the corresponding gadget, inserting
an EC gadget in between, and adding decoding interfaces, denoted by Dec, to every set of 7 level-(l − 1) qubits at the end of
the level-(l − 1) circuit. In this way, we finally obtain a level-0 circuit, i.e., a physical circuit for an original open circuit.

level-0 circuit. However, in a level-0 circuit, Assump-
tion 2 allows T and T † gates to be implemented directly
as physical operations, rather than gate teleportation us-
ing abbreviations of physical circuits. Thus, we replace
T and T † abbreviations in a level-0 circuit with the phys-
ical T and T † gates, respectively, and elementary oper-
ations with the corresponding physical operations. As
a result, the 3 + 4 = 7 auxiliary level 0 qubits that are
allocated for each level-0 qubit can be removed. After
making these replacements, we finally obtain the level-0
circuit, i.e., physical circuit, denoted by C(L), which is to
be performed in quantum computation.

B. Threshold theorem for open circuits

In this section, we show the threshold theorem for sim-
ulating open circuits. Our approach is based on Ref. [41].
However, for open circuits we need a different treatment
because the decoding interfaces are located at the end
of the physical circuit. Thus, our proof is carried out
by appropriately modifying the proof of the threshold
theorem for closed circuits [41]. The threshold theorem
for open circuits described below is used without an ex-
plicit proof in Refs. [20–22], but we prove the theorem

based on our protocol and noise model, so as to com-
plete the full proof of the threshold theorem for the fault-
tolerant protocol using quantum LDPC codes. Although
the threshold theorem for open circuits has been estab-
lished in Ref. [42] as well, the noise model considered is
the independent and ideally distributed (IID) Pauli error
model, and thus the theorem in Ref. [42] is not applicable
to our more general setting.

Theorem 6 (Threshold theorem for simulating open
circuits with polylog-time and polylog-space overhead).
Suppose that a physical circuit that satisfies Assumption 2
and 3 is subjected to a local stochastic Pauli error model.
Let {CN} be a sequence of original open circuits that pro-
duce a quantum state |ψN ⟩ specified by an integer N .
Each circuit CN has width W (N) and depth D(N) and
|CN | be the number of locations in CN , where |CN | → ∞
as N → ∞. Let δ > 0 be a constant. Suppose that we
compile from the original open circuit CN into a sequence
of physical circuits C̃N as explained in Sec. III A.
Then, there exists a threshold pthloc > 0 and if 0 ≤ ploc ≤

pthloc/2, the following statement holds for N → ∞: there

is a sequence of physical circuits C̃N that produces
∣∣ψ(N)

〉

which is subjected to the local stochastic Pauli error with
parameter p̃ ≤ 2Mploc with probability at least 1 − δ,
where M is a constant representing the number of loca-
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tions in the decoding interface described in Sec. III B 1.
Furthermore, C̃N has width W̃ (N) and depth D̃(N) such
that

W̃ (N)

W (N)
= O

(
polylog

( |CN |
δ

))
,

D̃(N)

D(N)
= O

(
polylog

( |CN |
δ

))
.

(49)

To prove Theorem 6, the rest of this section is orga-
nized as follows. In Sec. III B 1, we present the construc-
tion of the decoding interface. In Sec. III B 2, we give
the proof of Theorem. 6 based on the decoding interface
explained in Sec. III B 1.

1. Construction of the decoding interface

The decoding interface is designed to map an encoded
state of a logical qubit into the corresponding unencoded
state of a physical qubit. Ideally, it behaves as the ideal
decoder (50). The construction of the decoding inter-
face is illustrated in Fig. III B 1. The interface is based
on Knill’s error correction [38, 39, 41, 42]. The interface
uses auxiliary qubits that are in the state of a Bell state,
with one side encoded in a logical state using an encoding

circuit U
|ψ⟩
encode as shown in Fig. 16 (b), in addition to the

input logical state on which we want to decode. Then,
a logical Bell measurement is performed on two sets of
logical states. Based on the outcome of the 7-bit mea-
surements in the transversal Z-basis, it is input to the
decoding algorithm to calculate the outcome of the logi-
cal operator Z̄. This classical computation is performed
using the same procedure as explained in the Z-basis
measurement gadget. The measurement outcome is then
used to determine the correction operation for quantum
teleportation. Once the Pauli correction operation is ap-
plied, the interface outputs a qubit in the desired state
to be teleported.

2. Level reduction

Next, to prove the threshold theorem, we consider the
reduction of the level of a physical circuit C(L). The re-

duction is carried out by replacing each Rec in C(L) with
an equivalent level-0 gate by moving the ideal decoder 7
from the end to the start in C(L). The definition of the
ideal decoder is as follows.

Definition 7 (Ideal decoder). An ideal decoder is a com-
bined non-fauly operation that consists of a syndrome
measurement, followed by a recovery operation deter-
mined by the decoding algorithm using the result of the
syndrome measurement, and ending with a decoding op-
eration that maps an encoded state to the corresponding
state of a physical qubit.

The ideal decoder is shown in the diagram as
• Ideal decoder

, (50)

where the bold line represents a logical qubit and the thin
line represents an unencoded physical qubit.
Specifically, the proof in Ref. [41] is accomplished by

recursively reducing the level of simulation by moving the
ideal decoder from Z-basis measurement gadgets located
at the end of a physical circuit to the front. By doing this,
we obtain a level-reduced physical circuit C(L−1) with a
lower error parameter. For the concatenated code proto-
col for closed circuits, the level reduction procedure was
established in Refs. [8, 41]. In contrast, the protocol for
open circuits instructs the physical circuit to end with a
decoding interface that is not fault-tolerant; a single fault
could result in an error on the unencoded state. However,
since the decoding interface is a stabilizer circuit [3], i.e.,
all operations in a stabilizer circuit are Clifford gates or
Z-basis measurements, every faulty physical circuit can
be transformed into the circuit that ideally executes the
physical circuit and applies the Pauli error to the qubit
at the final time step of the circuit. Under this trans-
formation, due to the union bound, the output qubit is
subjected to a local stochastic Pauli noise E with proba-
bility

p̃ ≤Mploc, (51)

where M is the number of locations in the decoding in-
terface. Therefore, the decoding interface, denoted by
Dec, can be transformed as follows.

7 level-0 qubits Dec level-0 qubit = 7 level-0 qubits E level-0 qubit

, (52)

where the output level-0 qubit is subjected to the local
stochastic Pauli noise E with parameter p̃ ≤Mploc, which
is a completely positive and trace-preserving (CPTP)
map.

Using the ideal decoder obtained from the decoding in-
terface as in (52), the rest of the level reduction procedure
can be carried out similarly as in Ref. [41]. For simplicity,
we refer to a level-0 circuit comprised of gadget followed
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FIG. 2. The level-(l − 1) circuit of the decoding interface.

by an EC gadget as a rectangle or Rec. Similarly, we call
a level-0 circuit comprised of Rec, along with the pre-
ceding EC gadget, an extended rectangle or ExRec. If a
gadget satisfies the fault-tolerance conditions as shown
in Sec. A, then no single fault in any location of ExRec
in C(L) can cause a fault in the corresponding location in
a level-1 circuit. Thus, if there is at most one fault in an
ExRec in C(L), then we can convert the Rec in C(L) to the
corresponding non-faulty level-0 operation. In contrast,
if there are more than two faults in an ExRec in C(L), the
ExRec in C(L) can be converted to an operation that acts
on the corresponding non-faulty 0-operation followed by
an error described by a Pauli operator. Using this re-
lation, an ideal decoder can be reversed to convert all
ExRecs in C(L) to the corresponding level-0 operations,
resulting in a physical circuit C(L−1). Note that when
the ideal decoder is moved from the end, the ideal de-
coder first encounters a truncated ExRec, i.e., a trailing
EC gadget of a gadget is absent, but by adding an ideal
trailing EC gadget to the gadget, we can apply the above
procedure.

Therefore, if C(L) is subjected to the local stochastic
Pauli error model, a level-reduced circuit C(L−1) is also
subjected to the local stochastic Pauli error model, where

the effective probability p
(1)
loc of faults occurring in C(L−1)

can be bounded by counting the number of locations in
the largest ExRec, which is the one that contains the
largest number of locations among all ExRecs as

p
(1)
loc ≤ A

(
p
(0)
loc

)2
, (53)

where A is a constant representing the number of pairs
of locations in the largest ExRec.

By applying this argument L times, we finally obtain

a physical circuit C(0) with parameter

p
(L)
loc ≤ pth

(
p
(0)
loc

pth

)2L

, (54)

where pth := 1/A > 0. Moreover, due to the union
bound, the output qubits are subjected to a local stochas-
tic Pauli error with parameter

p̃ ≤M

L−1∑

l=0

p
(l)
loc ≤M

∞∑

l=0

p
(l)
loc ≤

Mploc
1− ploc/pthloc

≤ 2Mploc,

(55)

where we used p
(0)
loc := ploc and 0 < ploc ≤ pthloc/2.

To achieve the target error δ, due to the union bound,

it is sufficient to have p
(L)
loc ≤ δ/|CN |. Therefore, us-

ing (54), we see that it suffices to have

L ≥ log2 logpthloc/ploc

(
pthloc|CN |

δ

)
. (56)

Therefore, to reduce the overhead of the protocol, we
choose

L = Θ

(
log

(
log

( |CN |
δ

)))
. (57)

This means that there exists a constant c > 0 such that

L ≤ c log2

(
logpthloc/ploc

(
|CN |
δ

))
for large N .

Let w′ be the maximum width and d′ be the maxi-
mum depth of all gadgets for the elementary operations
and the EC gadget. Since the compilation procedure has
a recursive structure, we can obtain a physical circuit
corresponding to operations in the original open circuit,
except for the part of the decoding interfaces, with

Worg(N) = O
(
W (N)× (w′)L

)

= O

(
W (N) logγ0

( |CN |
δ

))
(58)
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and

Dorg(N) = O
(
D(N)× (d′)L

)

= O

(
D(N) logγ1

( |CN |
δ

))
,

(59)

where

γ0 = c log2 w
′ and γ1 = c log2 d

′. (60)

In addition, a physical circuit corresponding to the de-
coding interface requires

Ddec(N) =

L∑

l=1

(d′′)l = O

(
logγ2

( |CN |
δ

))
, (61)

where d′′ is the depth of the decoding interface and γ2 =
c log2 d

′′. Thus, we have

W̃ (N)

W (N)
=
Worg(N)

W (N)
= O

(
polylog

( |CN |
δ

))
,

D̃(N)

D(N)
=
Dorg(N) +Ddec(N)

D(N)
= O

(
polylog

( |CN |
δ

))
.

(62)

From the above discussion, we conclude Theorem 6.

IV. DESCRIPTION OF POLYLOG-TIME
CONSTANT-SPACE OVERHEAD PROTOCOL

In this section, we describe our fault-tolerant protocol
that achieves polylog time and constant space overhead.
We begin by explaining the compilation procedure of an
original circuit into a fault-tolerant circuit in Sec. IVA. In
Sec. IVB, we describe the construction of abbreviations
for applying Clifford gates, and T - and T †-gates used in
our protocol. Next, we specify the fault-tolerance condi-
tions of gadgets for quantum LDPC codes in Sec. IVC,
and the constructions of gadgets that satisfy the fault-
tolerance conditions in Sec. IVD. Finally, we present the
threshold theorem for our protocol in Sec. IVE.

A. Compilation of ideal quantum circuit into
fault-tolerant quantum circuit

We present the compilation procedure for our fault-
tolerant protocol that compiles an original quantum cir-
cuit into a fault-tolerant circuit to achieve the target er-
ror ε > 0 using a non-vanishing-rate CSS LDPC code Q
in combination with the protocol with the concatenated
Steane codes to simulate open circuits in Sec. III. Here,
the (r, c) CSS LDPC code Q has parameters

[[N,K = Θ(N), D = Θ(Nγ)]], (63)

where N represents the number of phyiscal qubits, K
represents the number of logical qubits, D is the code

distance, and γ > 0 is a constant. We choose N depend-
ing on ε and n so as to achieve the polylog-time- and
constant-space-overhead fault-tolerant protocol.
The compilation procedure consists of two steps: com-

piling the original circuit into an intermediate circuit
and then compiling the intermediate circuit into a fault-
tolerant circuit. In the compilation to the intermediate
circuit, the qubits of the original circuit are grouped
into registers, with each register containing at most K
qubits, where K is the number of logical qubits of the
quantum LDPC code Q in (63). Elementary operations

for the quantum LDPC code will be specified as |0⟩⊗K-
state preparation, Clifford-state preparation operations,
magic-state preparation operations, Pauli-gate opera-
tions, a CNOT-gate operation, a Z⊗K-measurement op-
eration, a Bell-measurement operation, and wait oper-
ation. These elementary operations are defined as op-
erations acting collectively on qubits in registers. By
combining elementary operations, we will define abbrevi-
ations, including two-register Clifford-gate abbreviations
and UT -gate abbreviations. The intermediate circuits are
described using these abbreviations and some of the ele-
mentary operations. For each elementary operation, we
construct a physical circuit of the corresponding gadget
that is intended to perform the corresponding logical op-
eration acting on the logical qubits in a code block of Q.
Also, we construct an error-correcting (EC) gadget for
quantum LDPC codes intended to carry out error cor-
rection on a code block of Q using a decoding algorithm.
Here, the code Q must have an efficient decoding algo-
rithm for the protocol to have a threshold, even when
taking into account classical computation time. We will
formally define an efficient decoding algorithm that the
code Q should have in Sec. IVC. The gadgets are care-
fully designed to satisfy the fault-tolerance conditions de-
scribed in Sec. IVC. The replacement of each abbrevia-
tion and elementary operation in the intermediate circuit
with the corresponding gadget provides a fault-tolerant
circuit for the original circuit.

1. Compilation from original circuit to intermediate circuit

As a first step in the compilation, we compile an origi-
nal circuit into an intermediate circuit acting onK qubits
within registers. First, we provide a list of elementary
operations and abbreviations, along with corresponding
diagrams, used in our protocol. In the diagram, a dashed
input line changing to a solid output line indicates the
allocation of a register, while a solid line changing to a
dashed line indicates the deallocation. If both the input
and output lines are dashed, the corresponding register
is used as a workspace for performing elementary opera-
tions. A double output line represents the bits that the
elementary operation outputs.
The elementary operations we will use are as follows.

• |0⟩⊗K-state preparation operation
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register

|0⟩ ⊗
K

. (64)

The |0⟩⊗K-state preparation operation allocates a

single register that is prepared in the state |0⟩⊗K .

• Clifford-state preparation operations

register A1

register A2

register A3

register A4

(I
A

1
A

2⊗
U
A

3
A

4

C
)|Ω⟩

A
1
A

2
A

3
A

4

. (65)

A Clifford-state preparation operation allocates
four registers A1, A2, A3, A4 in the state

(IA1A2 ⊗ UA3A4

C ) |Ω⟩A1A2A3A4 , (66)

where

|Ω⟩A1A2A3A4 := |Φ⟩A1A3 ⊗ |Φ⟩A2A4 , (67)

|Φ⟩AiAi′ , which is a maximally entangled state be-
tween the registers Ai and Ai′ , is given by

|Φ⟩AiAi′ =
1√
2K

2K−1∑

m=0

|m⟩Ai ⊗ |m⟩Ai′ , (68)

IA1A2 is an identity operator acting on the qubits
in the two registers A1, and A2 and UA3A4

C is an
arbitrary Clifford operation acting on the qubits in
the two registers A3 and A4.

• Magic-state preparation operations

register

U
T
H
|0⟩ ⊗

K

. (69)

A magic-state preparation operation allocates a
single register in the state of

UTH |0⟩⊗K , (70)

where UTH is the tensor product of TH and I gates.

• CNOT-gate operation

register

register XK . (71)

The CNOT-gate operation applies the CNOT⊗K

gates acting on the K qubits in the registers. Here,
a controlled-XK gate represents CNOT⊗K gates on
K qubits.

• ZK-measurement operation

register

Z
K

m
easu

rem
en
t

K bits

. (72)

The ZK-measurement operation performs collec-
tive single-qubit measurements in Z basis of all K
qubits contained in a register, deallocates the reg-
ister, and outputs a K-bit string of the measure-
ment outcomes. Here, ZK represents this collective
single-qubit Z-basis measurements on K qubits.

• Bell-measurement operation

register

register

B
ell

m
easu

rem
en
ts

K bits

K bits

. (73)

The Bell-measurement operation performs the Bell
measurements onK pairs of qubits of aX⊗X oper-
ator and Z⊗Z operator, where each pair is shared
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by the two registers. It deallocates these registers
and outputs a 2K-bit string of the measurement
outcomes. We assume that the upper register con-
tains the K-bit string outcome of measurements of
X⊗X operators and the lower register contains the
outcome of measurements of Z ⊗ Z operators.

• Pauli-gate operations

register ⊗K
k=1 Pk . (74)

A Pauli-gate operation performs a tensor product
of arbitrary Pauli gates

K⊗

k=1

Pk ∈ P̃K , (75)

where Pk ∈ {I,X, Y, Z} is a single-qubit Pauli op-
erator acting on the k-th qubit in a register. As
described below, Pauli-gate operations for quantum
LDPC codes are performed by updating the Pauli
frame in our protocol.

• Wait operations

register

w
ait

, (76)

or simply

register

(77)

The wait operation performs the identity operator
on a register, which is regarded as a special case of
Pauli-gate operation.

In addition, the abbreviations are defined as follows.
The explicit construction of the abbreviations (78) and
(79) will be given in Sec. IVB.

• Two-register Clifford-gate abbreviations

register

register

register

register

register

register

UC

. (78)

A two-register Clifford-gate abbreviation applies an
arbitrary Clifford operation UC to two registers rep-
resented by solid lines. The four registers repre-
sented by dashed lines are used as workspaces.

• UT -gate abbreviations

register

register

register

register

register

register

UT

. (79)

A UT -gate abbreviation applies the UT operation
to a register (solid line). Here, UT is the tensor
product of any combination of T , T †, and I. The
five registers represented by dashed lines are used
as workspaces.

Some of the elementary operations may take as input
a bitstring that is determined during the execution of
the quantum computation, and the specification of the
elementary operation is determined on the fly by this in-
put. Such elementary operations are called on-demand
elementary operations. We also introduce on-demand
abbreviations in a similar way. In the following, we list
the on-demand elementary operations and abbreviations
used in our protocol.

• On-demand Pauli gate operations

The Pauli-gate operations that are used for a cor-
rection operation required for gate teleportation in
the two-register Clifford-gate abbreviation will be
presented in Sec. IVB1. The on-demand Pauli-
gate operations receive a bitstring as a 2K-bit vec-
tor of symplectic representation ϕ(P ), where P is
the K-qubit Pauli operator

P =
K⊗

k=1

Pk ∈ P̃K (80)

to be applied by updating the Pauli frame as dis-
cussed in more detail below.

• On-demand two-register Clifford-gate abbrevia-
tions

The two-register Clifford-gate abbreviations used
for correction operations for the gate teleportation
in the UT -gate abbreviations will be presented in
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Sec IVB2. The Clifford gate UC ∈ C̃2K/P̃2K we
use in the UT -gate abbreviations has the form of a
tensor product of 2K single-qubit Clifford gates,

UC =

2K⊗

k=1

Ck, (81)

where Ck ∈ C̃1/P̃1 is an arbitrary single-qubit Clif-
ford operator that acts on the k-th qubit of the first
register for k ∈ {1, . . . ,K} and on the (k −K)-th
qubit of the second register for k ∈ {K+1, . . . , 2K}.
Thus, the on-demand abbreviations receive a bit-
string as 2K symplectic matrices of size 2×2 of Ck
as in (14).

• On-demand Clifford-state preparation

The Clifford-state preparation operation is invoked
by the on-demand two-register Clifford-gate ab-
breviation. The on-demand Clifford-state prepa-
rations receive bits as a 2K × 2K binary matrix
representing UC .

It is essential for our protocol to perform on-demand
Pauli operations classically by tracking and updating the
Pauli frame of a quantum state [39, 43, 44]. The Pauli
frame of a state relative to a specific reference state at a
given time is defined as a Pauli operator

PF ∈ P̃K , (82)

such that applying PF to a state returns the reference
state. We refer to a Pauli frame used in circuits de-
scribed by elementary operations as a elementary Pauli
frame. Note that we will also define a physical Pauli
frame later in (86), which is used for physical circuits
and is different from the elementary one. During the ex-
ecution of quantum computation, for each register, we
store a Pauli frame as a bitstring

ϕ(PF) ∈ F2K
2 . (83)

We choose the reference state as the corrected state that
would be obtained if the correction operation in the two-
register Clifford-gate abbreviation to perform gate tele-
portation were applied to qubits, and the Pauli frame
is tracked for the uncorrected state with no correction
operation applied. The advantage of using Pauli frames
is that it eliminates the need to physically implement
on-demand Pauli operations. This means that there is
no need to convert them into Pauli gadgets as described
in the physical circuit, thereby eliminating the classical
computation required to determine the physical Pauli-
gate operation for performing a logical Pauli-gate oper-
ation and avoiding the errors that arise from physically
applying the Pauli gates.

In the compilation prior to starting the execution of
quantum computation, elementary operations (and ab-
breviations) that are not on-demand, i.e., do not require
classical input, are called scheduled operations (and ab-
breviations) and are distinguished from on-demand ones.

All scheduled elementary operations and abbreviations
are determined during compilation, independently of on-
demand operations, and are remain unchanged during
the execution of quantum computation. This reduces
the time overhead of waiting for classical computations
during the execution.
In constructing an intermediate circuit, we require it

shold be represented only by abbreviations (including the
two-register Clifford-gate abbreviations (78), the UT -gate

abbreviations (79)), the |0⟩⊗K-state preparation opera-
tion (64), the ZK-measurement operation (72), and the
wait operation (76). For simplicity, we refer to these el-
ementary operations and abbreviations as intermediate
operations. We compile the original circuit into the in-
termediate circuit using the following procedure. First,
n qubits in the original circuit are divided into

κ(n) := ⌈n/K⌉ (84)

registers, where each register contains at most K qubits,
and ⌈·⌉ represents the ceiling function. For each of these
registers, we also allow the intermediate circuit to use
five auxiliary registers that can be allocated and used as
workspace for the abbreviations. Next, we replace the op-
erations in the original circuit with the corresponding in-
termediate operations. The |0⟩-state preparations at the

beginning of the original circuit are replaced with |0⟩⊗K-
state preparations. We replace the Z-basis measurements
at the end of the original circuit with ZK-measurement
operations. We replace a T -gate layer in the original cir-
cuit with UT -gate abbreviations. We replace each Clif-
ford layer of Clifford gates in the original circuit with
two-register Clifford-gate abbreviations. Even if an ar-
bitrarily long sequence of Clifford gates acts on qubits
located in the same register of the intermediate circuit,
the Clifford gates can be collectively replaced with a sin-
gle use of a two-register Clifford-gate abbreviation. How-
ever, we assume the intermediate circuit can perform at
most one intermediate operation per register per time
step, where the total number of time steps defines the
depth of the intermediate circuits. Under this construc-
tion, if a one-depth part of the original circuit contains
multiple Clifford gates acting on qubits in different pairs
of registers, the corresponding part of the intermediate
circuit requires two-register Clifford-gate abbreviations
placed in series, as described in Sec. IVE. After replac-
ing operations in the original circuit with intermediate
operations, we limit the maximum number of non-trivial
intermediate operations (i.e., operations other than the
wait operation) that can be applied in parallel at a single
time step, denoted by

L(n), (85)

which will turn out to be able to be chosen as (199) later
in our analysis. At the same time step, we insert wait op-
erations for all registers where a non-trivial intermediate
operation is not applied. Progressing beyond the exist-
ing analyses [20–22] with L(n) = Θ(W (n)/poly(n)), we
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FIG. 3. Compilation procedure of our fault-tolerant protocol. First, we compile an original circuit into an intermediate circuit
that consists only of intermediate operations acting on registers. Here, the two-register Clifford-gate abbreviation UC and the
UT -gate abbreviation, which are implemented via gate teleportation, are described by a sequence of elementary operations.
Then, we limit the number of intermediate operations each time step to achieve constant-space overhead. Finally, we compile
the intermediate circuit with reduced parallelism into a fault-tolerant circuit by replacing each elementary operation with the
corresponding gadget, inserting an EC gadget in between.

will rigorously show that L(n) = Θ(W (n)/polylog(n)) to
prove that polylogarithmic time overhead is achievable.

2. Compilation from intermediate circuit to fault-tolerant
circuit

As the next step in the compilation, we compile an
intermediate circuit into a fault-tolerant circuit. In this
step, all elementary operations in the intermediate circuit
are replaced with corresponding gadgets, consisting only
of physical operations.

The construction of gadgets will be described in
Sec. IVD. Each gadget consists of a quantum part and a
classical part. The quantum part is described by physi-
cal operations that need to be applied to the data qubits,
whereas the classical part involves the necessary classical
computations for executing the gadget. During the ex-
ecution of the classical part, the wait operations act on
the data qubits in the same way as the quantum part.

For the EC gadget, a Pauli recovery operation takes
as an input bitstring that is determined by a decoding
algorithm during the execution of the quantum compu-
tation, and the specification of the EC gadget is deter-
mined on the fly by this input. In this paper, the Pauli

recovery operation can also be performed as a classical
part by tracking Pauli frames, as well as the on-demand
Pauli operation of a two-register Clifford gate abbrevia-
tion. Apart from the elementary Pauli frame in (82), we
also define a physical Pauli frame, which is a Pauli frame
for physical circuits. This physical Pauli frame

PF ∈ P̃N (86)

is stored for each code block, individually. We choose the
reference state as the recovered state that would be ob-
tained if a recovery operation were applied to the physical
qubits, and the Pauli frame is tracked for the unrecovered
state with no recovery operation applied. The advantage
of using the Pauli-frame technique is that it eliminates
the need to physically implement recovery operations and
simplifies the proof of the threshold theorem of the over-
all protocol, as explained in Sec. IVE.
Compilation from intermediate circuits to fault-

tolerant circuits involves the following procedures per-
formed sequentially for each intermediate operation
within the same time step. For a given time step, if
an intermediate operation is an abbreviation, the ab-
breviation is expanded into elementary operations (left
unchanged if an intermediate operation is already an ele-
mentary operation). Next, elementary operations within
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the same time step in the intermediate circuit are re-
placed with corresponding gadgets, and EC gadgets are
inserted between elementary operations. At this point,
the same intermediate operation has a different circuit
depth when replaced by a physical circuit. Therefore,
wait operations are inserted for synchronization, so that
EC gadgets should be inserted at a constant time inter-
val from the completion of the execution of the physical
circuit of the intermediate operation that finishes earlier
until the completion of the execution of the intermedi-
ate operation belonging to the same time step with the
greatest depth of the physical circuit. By performing this
procedure at all time steps of the intermediate circuit, a
fault-tolerant quantum circuit is finally obtained.

B. Construction of abbreviations

In the following, we explain the construction of ab-
breviations. In Sec. IVB1, we present the construc-
tion of two-register Clifford-gate abbreviations (78). In
Sec. IVB2, we present the construction of UT -gate ab-
breviations (79).

1. Two-register Clifford-gate abbreviations

The two-register Clifford-gate abbreviations are used
to apply multiple Clifford gates acting on the same pair of
registers. The construction of the abbreviations is shown
in Fig. 4.

The abbreviation is based on a gate teleportation pro-
tocol [39, 45, 46]. In the beginning, we have the two
registers A1 and A2 on which we want to perform the
Clifford operation UC , and the four auxiliary registers
A3, A4, A5, A6 in the state

|ΨUC
⟩A3A4A5A6 = (IA3A4 ⊗ UA5A6

C ) |Ω⟩A3A4A5A6 , (87)

which is prepared by the Clifford-state preparation oper-
ation (65). After preparing the auxiliary states, we per-
form the Bell-measurement operation (73) on two pairs
of registers A1, A3 and A2, A4. These Bell measurements
output the pair of 2K-bit outcomes as

(xA1A3 , zA1A3) ∈ F2K
2 and (xA2A4 , zA2A4) ∈ F2K

2 , (88)

where the K-bit string x′ represents the outcomes of the
measurements of X ⊗X, and the K-bit string z′ repre-
sents the outcomes of the measurements of Z ⊗Z. From
the 4K-bit outcomes, we calculate the correction opera-
tion Pcorr ∈ P̃2K for the gate teleportation in the form
of

Pcorr := UA5A6

C

(
K⊗

k=1

PA5

k ⊗
K⊗

l=1

PA6

l

)(
UA5A6

C

)†
, (89)

where P
Bj

k ∈ {I,X, Y, Z} with j ∈ {5, 6} is a Pauli
operator acting on the k-th qubit in the register Bj .

From the 4K-bit measurement outcome of the Bell
measurements, the corresponding correction operation
in (89) can be calculated via multiplication of the sym-

plectic matrix γ(UA5A6

C ) ∈ F4K×4K
2 from the right

of the row vector of the symplectic representation of

ϕ
((⊗K

k=1 P
A5

k ⊗⊗K
l=1 P

A6

l

))
∈ F4K

2 as

ϕ(Pcorr) = ϕ

((
K⊗

k=1

PA5

k ⊗
K⊗

l=1

PA6

l

))
γ(UA5A6

C ). (90)

The resulting 4K-dimensional row vector of (90) is used
as an input bitstring to specify the on-demand Pauli-
gate operation for the correction operation. Using O(K2)
parallel processes, this classical computation can be per-
formed within a runtime of

O(log(K)). (91)

The wait operations (76) are performed during this clas-
sical computation. Then, the Pauli-gate operation (89)
for the correcting operation is applied to the registers
A5, A6 completing this abbreviation.
However, by using the Pauli frame technique, we can

avoid the need to perform an on-demand Pauli opera-
tion directly on physical qubits. Specifically, when on-
demand Pauli operations are physically applied, there is
no need to compute physical Pauli operations such that
on-demand Pauli operations are performed as logical op-
erations, which takes runtime O(logN) as explained in
Appendix C. Instead, we can simply store the on-demand
Pauli operation as an elementary Pauli frame in a classi-
cal register. Let

PA1

F ∈ P̃K and PA2

F ∈ P̃K (92)

be an elementary Pauli frame of the registers A1 and A2,
respectively, at the time just before the abbreviation and

(x′A1A3 , z′A1A3) ∈ F2K
2 and (x′A2A4 , z′A2A4) ∈ F2K

2

(93)
be the measurement outcomes of the Bell measurement
operation obtained from the uncorrected state, where the
K-bit string x′ represents the measurement outcomes of
X ⊗X operators, and the K-bit string z′ represents the
measurement outcomes of the Z⊗Z operators. The clas-
sical computer receives an input bitstring as the symplec-
tic representation

ϕ(PA1

F ) ∈ F2K
2 and ϕ(PA2

F ) ∈ F2K
2 , (94)

and the pair of 2K-bit strings (x′A1A3 , z′A1A3) and
(x′A2A4 , z′A2A4) in (93). Then, the classical computer
outputs a bitstring of the symplectic representation of
the elementary Pauli frame

ϕ(PA5

F ) ∈ F2K
2 and ϕ(PA6

F ) ∈ F2K
2 , (95)

where PA5

F , PA6

F are Pauli frames of the registers A5 and
A6, respectively, at the final step of the abbreviation and

748



18

register A1

register A2

register A3

register A4

register A5

register A6

UC
=

register A1

register A2

register A3

register A4

register A5

register A6

(I⊗
U
C

)|Ω〉

B
ell

m
ea

su
rem

en
ts

B
ell

m
easu

rem
en

ts

On-demand
Pauli-gate operation Pcorr

O(log(N)) time steps
to wait for instruction of
the correction operation.

FIG. 4. The construction of the two-register Clifford-gate abbreviations (78) to perform a Clifford gate UC applied to the two
registers A1, A2.

provide the input for the subsequent abbreviation. To
this end, we first modify the measurement outcomes (93)
to (88) based on the input Pauli frame (92). For registers
A1 and A3, this modification can be performed by taking
a sum for i ∈ [1, . . . ,K] as

xA1A3
i = x′A1A3

i ⊕
(
ϕ
(
PA1

F

))
i+K

⊕
(
ϕ
(
PA2

F

))
i+K

,

(96)
and

zA1A3
i = z′A1A3

i ⊕
(
ϕ
(
PA1

F

))
i
⊕
(
ϕ
(
PA2

F

))
i
. (97)

Similarly, the same procedure can be applied to the
registers A2 and A4. Using O(K) parallel processes,
the modification can be performed with runtime O(1).
Next, based on the modified measurement outcomes
(xA1A3 , zA1A3), (xA2A4 , zA2A4), the classical computa-
tion for determining the Pauli correction operation (89)
is performed as already explained above. This classical
computation can be performed within runtime O(logK).
The Pauli correction operation gives the elementary Pauli
frames in (95) to be passed as the next input of the ab-
breviation,

ϕ(PA5

F ) =
(
(ϕ(Pcorr))[1:K] , (ϕ(Pcorr))[2K+1:3K]

)
, (98)

and

ϕ(PA6

F ) =
(
(ϕ(Pcorr))[K:2K+1] , (ϕ(Pcorr))[3K+1:4K]

)
,

(99)
where (ϕ(Pcorr))[j:k] represents a binary row vector con-

sisting of the elements from the j-th to the k-th position
of the original binary row vector ϕ(Pcorr). Using O(K)
parallel processes, these computations can be performed
within runtime O(1). Therefore, the classical computa-
tion for calculating (95) from (94) can be performed with
runtime O(1).

As a result, the depth of the whole abbreviation is
bounded by

O(logK), (100)

where the dominant part is the classical computation for
calculating (90).

2. UT -gate abbreviation

The UT -gate abbreviation is used to apply the UT gate,
which is the tensor product of T , T † and I acting on the
qubits in a register. The construction of the UT -gate
abbreviation is shown in Fig. 5.
The UT -gate abbreviation is also based on the gate

teleportation protocol [39, 45, 46]. At the beginning of
the gate teleportation protocol, we have the register A1

containing the qubits on which we want to perform the
gate UTH , and the auxiliary register A2 in the state

|ΨUTH
⟩ = UTH |0⟩⊗K , (101)

which is prepared by the magic-state preparation opera-
tion (69). After preparing the auxiliary register A2, we
perform the CNOT-gate operation (71), followed by the
ZK-measurement operation (72). This ZK-measurement
operation outputs a K-bit string as

z ∈ FK2 . (102)

From theK-bit measurement outcomes, a Clifford gate
SX for the correction operation is applied to the qubits
on which UT has non-trivial support. At this point, T
has been applied to the qubits where T † is to be per-
formed. Thus, an additional Clifford gate S† needs to be
applied to the qubit to perform T †. To implement these
Clifford gates, we use a two-register abbreviation to per-
form Ucorr ∈ C̃2K/P̃2K as in (78) that acts non-trivially
only on the register A2. Specifically, Ucorr is expressed as
a tensor product involving pairs of single-qubit Clifford
gate SX ⊗ I and I ⊗ I. Using the K-bit string of mea-
surement outcome, we calculate the correction operation
as

Ucorr =
2K⊗

k=1

Ck, (103)
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where Ck ∈ C̃1/P̃1 is either SX or I. This correction
operation is performed with the on-demand Clifford-gate
abbreviation (81), whose input consists of 2K symplectic
matrices in (14) of size 2× 2 which are either

γ(SX) or γ(I). (104)

Subsequently, this input is loaded into an on-demand
two-register Clifford-gate abbreviation to execute the
correction operation. Using O(K) parallel processes, the
runtime of classical computation to generate the input to
the on-demand abbreviation can be bounded by O(1).

Unlike the two-register Clifford-gate abbreviation,
even if we utilize the Pauli frame technique, the correc-
tion operation of Clifford gate must be performed. If a
Clifford correction operation were stored classically and
a subsequent measurement operation contained in a next
abbreviation was executed, it would be impossible to de-
terministically obtain the modified measurement results
that would have been achieved with the application of the
correction operation. When we utilize the Pauli frame
technique, we have an elementary Pauli frame

PA1

F ∈ P̃K (105)

at the time just before the abbreviation and measurement
outcomes

z′ ∈ FK2 (106)

of the ZK-measurement operation obtained from the un-
corrected state. The classical computer takes an input
bitstirng of the symplectic representation

ϕ(PA1

F ) ∈ F2K
2 (107)

and the K-bit string z′ (106). Then, the classical com-
puter outputs a bitstring of the symplectic representation
of the elementary Pauli frame

ϕ(P ′A1

F ) ∈ F2K
2 (108)

at the final step of the abbreviation and provide the input
of the subsequent abbreviation. To this end, we modify
the measurement outcomes (106) to (102) based on the
input Pauli frame. The modification of the measurement
outcomes z′ (106) is performed by taking a sum for i ∈
[1, . . . ,K] as

zi = z′i ⊕ (ϕ(P ′A1

F ))i. (109)

Using O(K) parallel processes, this modification can be
performed within runtime O(1). Then, based on the
modified measurement outcomes zi, the classical compu-
tation for determining the Clifford correction operation
is performed as already explained above. The elementary
Pauli frame (108) to be passed to the next input of the
abbreviation is calculated for each i ∈ [1, . . . ,K]

ϕ((P ′A1

F )i) = γ(Ci)ϕ((P
′A1

F )i). (110)

Using O(K) parallel processes, this classical computation
can be performed with runtime O(1). Therefore, the clas-
sical computations for calculating (108) from (107) can
be performed with runtime O(1) using O(K) parallel pro-
cesses.
As a result, the depth of the UT -gate abbreviation is

bounded by

O(logK), (111)

where the dominant part is the depth of the on-demand
two-register Clifford-gate abbreviation.

C. Conditions of fault-tolerant gadgets on
quantum LDPC codes

In this section, we define the fault-tolerance condition
for gadgets for quantum LDPC codes. Before we provide
the definition, we introduce a property of the decoding
algorithm that is required for constructing our protocol.
The decoding algorithm used for quantum LDPC codes

needs to consider cases where the syndrome bits may
be errorneous, due to noise in the circuits used to mea-
sure the syndrome bits. Here, we consider a CSS LDPC
code obtained from a pair of classical linear codes, CX =
kerHX and CZ = kerHZ , where HX ∈ FMZ×N

2 and

HZ ∈ FMZ×N
2 are parity-check matrices. Let e = ϕ(E) ∈

F2N
2 be a symplectic representation of a Pauli error E ∈

PN on data physical qubits, and ∆ = (∆X ,∆Z) ∈ FM2
be errors on syndrome bits. The ideal syndrome bits

σ = (σX , σZ) ∈ FM2 (112)

for the error e ∈ F2N
2 is given by

σX = HZeX and σZ = HXeZ . (113)

However, the ideal syndrome bits σ ∈ FM2 can be cor-
rupted by syndrome errors ∆ ∈ FM2 , resulting in noisy
syndrome bits

σ̃ = (σ̃X , σ̃Z) ∈ FM2 (114)

which is given by

σ̃X = σX ⊕∆X and σ̃Z = σZ ⊕∆Z . (115)

Using the noisy syndrome σ̃, the decoding algorithm cal-
culates the recovery operation R ∈ PN with the symplec-
tic representation r = ϕ(R).

In the analysis of the decoding algorithm, the local
stochastic Pauli error model for the pair (e,∆) is used,
which is defined as follows:

Definition 8 (Local stochastic Pauli error model on data
qubits and syndrome bits). Let V be the set of phys-
ical qubits and WX(Z) be the set of X(Z)-type stabi-

lizer generators. Let e = (eX , eZ) ∈ F2N
2 be a Pauli

error, ∆ = (∆X ,∆Z) ∈ FM2 be syndrome bit errors. Let
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FIG. 5. The construction of the UT -gate abbreviation (79) to perform a UT gate on the register A1.

supp(eX(Z)) ⊆ V be the support of a X(Z)-type Pauli
error and supp(∆X(Z)) ⊆ WZ(X) be the support of er-
rors on syndrome bits. We say that errors (e,∆) follow
the local stochastic Pauli error model with parameters
(pdata, psynd) if for all S ⊆ V , T ⊆ WZ , and T ′ ⊆ WX ,
the following relations are satisfied.

P [S ⊆ supp(eX) and T ⊆ supp(∆X)] ≤ p
|S|
datap

|T |
synd,

P [S ⊆ supp(eZ) and T ⊆ supp(∆Z)] ≤ p
|S|
datap

|T |
synd

(116)

In particular, when the errors on the syndrome bits are
not considered, we say that errors follow a local stochastic
Pauli error model with parameter pdata if for all S ⊆ V ,
the errors satisfy

P [S ⊆ supp(eX)] ≤ p
|S|
data and P [S ⊆ supp(eZ)] ≤ p

|S|
data.
(117)

Quantum expander codes [20, 47] and quantum Tanner
codes [48], which are important classes of CSS LDPC
codes, each have their own decoding algorithms [20, 22,
49] such that when ∆ ̸= 0, they can deduce a recovery
operation to suppress the residual error ere ∈ F2N

2 on
data physical qubits,

ere := e⊕ r. (118)

An intriguing property of these decoding algorithms is
the single-shot property [20, 22]. A decoding algorithm
with the single-shot property works by using noisy syn-
drome bits σ̃, where these noisy syndrome bits are ob-
tained from a single round of syndrome measurements
for each stabilizer generator [20, 22, 49–53]. Using these
syndrome bits obtained from the single syndrome extrac-
tion, existing single-shot decoding algorithms for finite-
quantum LDPC codes [20, 22, 49] run in an iterative
way, i.e., they repeat T internal loops, to output a final
estimate of a recovery operation r := r(T ). Each of the
T loops can be executed with a runtime of O(1), using
O(N) parallel processes. For each iteration t ∈ [1, . . . , T ],

the algorithm computes a temporally deduced recovery
operation r(t) ∈ F2N

2 . The decoding algorithm requires
that for all t, the support of the residual error, derived
by using r(t) ∈ F2N

2 , should be less than or equal to the
code distance D. Formally, the definition of the single-
shot decoding algorithm for non-vanishing-rate quantum
LDPC codes is as follows:

Definition 9 (Single-shot decoding algorithm). Let
{Qi}i be a family of CSS LDPC codes where Qi is an
[[Ni,Ki, Di]] code with Ni → ∞ for i → ∞. Let e =
(eX , eZ) ∈ F2N

2 be a Pauli error, ∆ = (∆X ,∆Z) ∈ FM2
be syndrome bits error, and σ̃ = (σ̃X , σ̃Z) ∈ FM2 be noisy
syndrome bits. For P = {X,Z}, a decoding algorithm

returns the recovery operation r
(t)
P ∈ F2N

2 at each itera-
tion t ∈ {1, . . . , T}, and the final output of the recovery

operation is denoted by rP := r
(T )
P . A decoding algo-

rithm for {Qi}i is said to be single-shot if, for i → ∞
and for

uP := eP ⊕ r
(1)
P ⊕ · · · ⊕ r

(T )
P , (119)

there exist positive constants a and b such that

|uP | ≤ a|eP |R + b|∆P | ≤ D, (120)

and then given the noisy syndrome bits σ̃P ∈ FMP
2 the

algorithm can find a recovering operation rP ∈ FN2 after
T steps that satisfy

|eP + rP |R ≤ α|eP |R + β|∆P |, (121)

with

α = 2−Ω(T ), β = O(1). (122)

Moreover, each iteration of the decoding algorithm can
be performed within runtime O(1) by using O(N) par-
allel processes. Here | · |R denotes the stabilizer-reduced
weight defined to be the minimum weight of a stabilizer-
equivalent error to eP ∈ FN2 , i.e.,

|eP |R := min
g′∈C⊥

|eP + g′|. (123)
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In the analysis of this work, we consider the local
stochastic Pauli error model on the data qubits and the
syndrome bits. Under this model, the weight of errors
typically scales linearly in the number of physical qubits
N contained in a code Q. It appears that a code with
code distance D = Ω(N) would be required to correct er-
rors of linear weight. However, when one uses quantum
LDPC codes under the stochastic error model, there are
cases where errors can be corrected with a high probabil-
ity when the error parameter is below a threshold error
parameter [20–22, 54] as N → ∞. This is feasible be-
cause, at sufficiently low error rates, typical linear weight
errors occurring in quantum LDPC codes tend to form
small, separate clusters of errors that are independently
correctable by using a single-shot decoding algorithm.
In the following, we define two decoding algorithms that
quantum LDPC codes should have: the single-shot de-
coding algorithm with thresholds for reducing residual
errors and the decoding algorithm with threshold for re-
covering logical information, where these algorithms are
designed to correct local stochastic Pauli errors on wires
with high probability if an error parameter is below a cer-
tain threshold value. The quantum expander code has
both of these decoding algorithms while it is currently
unknown whether the quantum Tanner code may also
have these decoding algorithms satisfying the required
properties for error suppression.

Both decoding algorithms, which reduce errors and
correct errors, are performed iteratively. The runtime
of the classical computation depends on the number of
iterations within each algorithm. It is important to note
that the runtime of each loop does not grow as N → ∞
when parallel processes are used. These decoding algo-
rithms work in different situations and play different roles
in our fault-tolerant protocol. Specifically, the single-shot
decoding algorithm for reducing errors is capable of find-
ing a recovery operation to keep the residual error small
even if the syndrome bits are noisy, and thus we will uti-
lize the algorithm in the EC gadget to keep the residual
error small in the code block. On the other hand, the
decoding algorithm for correcting errors is capable of re-
covering the logical state only when the syndrome bit
errors are absent, and thus, we will use the algorithm in
the ZK-measurement gadget and the Bell-measurement
gadget to obtain the measurement outcomes of the logi-
cal qubits in Q. To summarize, we define the single-shot
decoding algorithm for reducing errors and the decoding
algorithm for correcting errors as follows.

Definition 10 (Single-shot decoding algorithm with
thresholds for reducing errors). Let {Qi}i be a family
of CSS LDPC codes where Qi is an [[Ni,Ki, Di]] code
with Ni → ∞ and Di → D as i → ∞ and {Qi}i.
Let e = (eX , eZ) ∈ F2N

2 be the data qubit errors and
∆ = (∆X ,∆Z) ∈ FM2 be the syndrome bit errors that
are local stochastic with parameters (pdata, psynd). A
single-shot decoding algorithm with thresholds for {Qi}i
has thresholds pthdec > 0, and if pdata ≤ p1 < pthdec,
psynd ≤ p2 < pthdec, for P ∈ {X,Z}, a single-shot de-

coding algorithm returns a recovery operation rP ∈ F2N
2

from the noisy syndrome bits σ̃ (114) that are obtained
from a single round of syndrome measurements for each
stabilizer generator after T internal loops, with probabil-
ity at least

1− e−Ω(D), (124)

such that there exists a bit sequence e′P satisfying

e′P ⊕ eP ⊕ rP ∈ C⊥
P , (125)

where e
′
P follows the local stochastic Pauli error model

with parameter predata satisfying

predata ≤ p
c(T )
1 , (126)

where c(T ), which is referred to as an error suppression
parameter, is a monotonically increasing function with
respect to T . Each round of iteration can be executed
with a runtime of O(1), using O(N) parallel processes.

If the decoding algorithm fails to return recovery opera-
tions rP for both P ∈ {X,Z} satisfying (125), then we
say that the decoding algorithm fails.

Definition 11 (Decoding algorithm with threshold for
correcting errors). Let {Qi}i be a family of CSS LDPC
codes where Qi is an [[Ni,Ki, Di]] code with Ni → ∞
and Di → D as i → ∞. Let e = (eX , eZ) ∈ F2N

2

be the data qubit error and ∆ = (∆X ,∆Z) ∈ FM2 be
the syndrome bit errors that are local stochastic with
parameters (pdata, psynd). Suppose the syndrome bit er-
rors are absent, i.e., psynd = 0. A decoding algorithm

has a threshold p′thdec > 0 and if pdata < p′thdec, for each
P ∈ {X,Z}, the decoding algorithm returns a recovery
operation rP ∈ F2N

2 from the syndrome bits σ ∈ FM2 as
in (112) after T = O(logN) internal loops, such that the
residual error ere := e⊕ r satisfies

eP ⊕ rP ∈ C⊥
P , (127)

with probability at least

1− e−Ω(D). (128)

Each loop can be executed with a runtime of O(1), using
O(N) parallel processes.

To the best of our knowledge, the family of quan-
tum expander codes with D = Θ(

√
N) is the only non-

vanishing-rate quantum LDPC code that satisfies the re-
quirements in Defs. 10 and 11. Specifically, the small-set-
flip decoding algorithm for the quantum expander codes
can work as both the single-shot decoding algorithm for
reducing errors with thresholds in Def. 10 and the de-
coding algorithm for correcting errors in Def. 11 [20, 22].
More recently, Ref. [49] showed that the family of quan-
tum Tanner codes with D = Θ(N) also has a single-
shot decoding algorithm, but there is no proof that the
bounds on the error parameter of a residual error under
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the local stochastic error model as in (126). Although
it is conceivable that quantum Tanner codes could also
achieve polylogarithmic time and constantspace overhead
FTQC based on our protocol, we leave the rigious proof
as an open work. To summarize, we make the follow-
ing assumption about the families of non-vanishing-rate
quantum LDPC codes that can be used in our protocol.

Assumption 4. A family of non-vanishing-rate CSS
LDPC codes {Qi}i where Qi is an [[Ni,Ki, Di]] code
with Ni → ∞ and Di → D = Θ(Nγ) with 0 < γ ≤ 1
for i → ∞ has a decoding algorithm that can serve as
both the single-shot decoding algorithm for reducing er-
rors with thresholds in Def. 10 and the decoding algorithm
for correcting errors with threshold in Def. 11.

In order for the fault-tolerant protocol using quantum
LDPC codes to exhibit fault tolerance, gadgets must be
designed so that errors caused by faults occurring in a
gadget do not propagate too much even when the code
block size N of Q increases, i.e., i → ∞. To achieve
this, we define the following fault-tolerance conditions
that each type of gadget must satisfy.

The definition of fault tolerance of the state-
preparation gadgets, including the gadget of the |0⟩⊗K-
state preparation operation (64), the gadgets of the
Clifford-state preparation operations (65), and the gad-
gets of the magic-state preparation operations (69), is as
follows.

Definition 12 (Fault-tolerance conditions of the state
preparation gadgets for quantum LDPC codes). Let C
be a physical circuit of a state-preparation gadget. A
state-preparation gadget C is fault-tolerant if, for i→ ∞,
the gadget successfully prepare a desired state with any
target probability of at least 1 − δ, and data qubits at
the final step of C are subjected to the local stochastic
error model on data qubits with parameter

Mploc, (129)

where M = O(1) is a constant. We say that δ is the
failure probability of a state-preparation gadget.

The definition of fault tolerance of the gate gadgets,
including a gadget of the CNOT-gate operation (71), the
measurement gadgets, including the gadget of the ZK-
measurement operation (72) and the gadget of the Bell-
measurement operation (73), and the EC gadgets are de-
fined as follows:

Definition 13 (Fault-tolerance conditions of gate, mea-
surement, EC gadgets for quantum LDPC codes). Let
C be a physical circuit of a gadget. Let L be the set of
locations in C, and Xin, Xout be the set of wires at the
first and final time step of C, respectively. A wire x ∈ X
at a given time step is connected to another wire x′ ∈ X ′

at a different time step if a Pauli operator acting at x can
propagate to and affect x′ through physical operations.
Then, let us define a bipartite graph

G = (L,R,E) (130)

of C, where the i-th vertex li ∈ L corresponds to the i-th
wire xini ∈ Xin, the j-th vertex ri ∈ R corresponds to
the j-th wire xoutj ∈ Xout, and an edge e ∈ E has the

endpoints li ∈ L and rj ∈ R if and only if xini ∈ Xin

and xoutj ∈ Xout are connected. We say that a gadget
is fault-tolerant if for i → ∞, C satisfies the following
conditions.

1. The maximum degree of a vertex in G of C is con-
stant.

2. The depth of the quantum part of C is constant.

By constructing gadgets that satisfy the fault-tolerance
conditions in Defs. 12 and 13, we will show in Sec. IVE
that if the physical error rate is below a certain threshold,
the failure probability of fault-tolerant simulations can be
arbitrarily suppressed.

D. Construction of fault-tolerant gadgets

In this section, we present the construction of the gad-
gets that satisfy the fault-tolerance conditions in Defs. 12
and 13.

1. ZK-measurement gadget

The construction of the ZK-measurement gadget is
shown in Fig. 6 (a). The gadget is implemented by
transversal Z-basis measurements of the physical oper-
ation, followed by the classical computation for perform-
ing the decoding algorithm in Def. 11. The transversal
measurements give N -bit measurement outcomes

z ∈ FN2 , (131)

where zi corresponds to the measurement outcome of the
Z-basis measurement on the i-th physical qubit and is
subjected to errors.
From z ∈ FN2 , we need to estimate the K-bit logical

measurement outcomes

z̄ ∈ FK2 , (132)

where z̄i corresponds to the measurement outcome of the
logical Z̄i operator on the i-th logical qubits. This can
be done in the following steps:

1. From z ∈ FN2 , we calculate the syndrome bits

σX ∈ FMZ
2 (133)

of the Z-type generators by using the relation,

(σX)i :=
⊕

j∈supp(gZi )

zj , (134)

where gZi is the i-th Z-type stabilizer generator,
and supp(gZi ) represents the set of indices of the
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FIG. 6. (a) The physical circuit of the gadget of the ZK-measurement operation (72) and (b) the physical circuit of the gadget
of the Bell-measurement operation (73)

physical qubits on which gZi acts nontrivially. Here,
the syndrome bits σX (133) are calculated classi-
cally, and thus there are no syndrome bit errors.
Using MZ = O(N) parallel processes, we can com-
pute the syndrome bits σX (133) within runtime
O(logN) since we use the CSS LDPC code Q, and
thus |gZi | = O(1) as N → ∞.

2. We perform the decoding algorithm in Def. 11 that
takes as input the syndrome bits σX ∈ FMZ

2 and
outputs the recovery operation rX ∈ FN2 . Then,
the corrected bitstring z̃ ∈ FN2 are obtained as for
all i ∈ [1, . . . , N ]

z̃i := zi ⊕ (rX)i. (135)

Since there are no syndrome bit errors, the decod-
ing algorithm can correct the data error. A de-
coding algorithm for correcting errors with thresh-
old in Def. 11 can be performed within runtime
O(log(N)), and calculating (135) for all i can also
be performed within runtime O(1) using O(N) par-
allel processes.

3. We calculate the measurement outcomes z̄ ∈ FK2 of

the logical operators as for all i ∈ [1, . . . ,K]

z̄i :=
⊕

j∈supp(Z̄i)

z̃j , (136)

where Z̄i is the logical-Z operator acting on the
i-th logical qubit, and supp(Z̄i) represents the set
of indices of the physical qubits on which Z̄i acts
nontrivially. Using DK = O(N2) parallel pro-
cesses, we can compute (136) for all i within run-
time O(logN) since |Z̄i| = Θ(D) = Θ(Nγ) with
0 < γ ≤ 1 as N → ∞.

Therefore, using O(N2) parallel processes, the classical
part of the gadget can be performed within runtime

O(log(N)). (137)

For the Pauli-frame technique, we require additional clas-
sical computation. Let

PF ∈ FN2 (138)

be a Pauli frame at the final step of the previous gadget
and

z′ ∈ FN2 (139)
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be the outcomes of the transversal Z-basis measurements
obtained from the unrecovered state. The classical com-
puter takes as input as the symplectic representation
ϕ(PF) and the measurement outcomes z′ ∈ FN2 of an un-
recovered state and outputs the measurement outcomes
z ∈ FN2 of an recovered state as in (131). This calculation
is performed for all i ∈ [1, . . . , N ]

zi = z′i ⊕ (ϕ(PF))i . (140)

Using O(N) parallel processes, this additional computa-
tion can be performed within runtime O(1).

The width of the quantum part in the gadget is
bounded by

O(N), (141)

and the depth of the quantum part is bounded by

O(1). (142)

From the transversality and constant depth of the quan-
tum part in the gadget, the gadget satisfies the fault-
tolerance condition in Def. 13. The runtime of the clas-
sical part of the gadget can be bounded by runtime

O(logN). (143)

2. Bell-measurement gadget

The construction of the Bell-measurement gadget is
shown in Fig. 6 (b). The gadget is implemented by the
transversal CNOT gates between the controlled block B1

and the target block B2, the transversal H gates on B1,
followed by the transversal Z-basis measurements on B1

and B2. The transversal measurements on B1 and B2

yield a pair of N -bit strings of measurement outcomes,
respectively, as

(x, z) ∈ F2N
2 (144)

where x ∈ FN2 represents the outcomes from B1 and z ∈
FN2 represents those from B2. Here, xi and zi correspond
to the measurement outcome of the Xi⊗Xi and Zi⊗Zi
operators, respectively, on N pairs of physical qubits.
From (x, z) ∈ F2N

2 , we deduce a pair of K-bit string of
logical measurement outcomes as

(x̄, z̄) ∈ F2K
2 , (145)

where x̄i and z̄i correspond to the measurement outcomes
of X̄i⊗X̄i and Z̄i⊗ Z̄i, respectively, on K pairs of logical
qubits. To obtain K-bit outcomes of z̄ ∈ FK2 from the
noisy measurement outcomes z ∈ FN2 , we follow the pro-
cedure as described for the case of the ZK-measurement
gadget. The K-bit outcomes of x̄ ∈ FK2 can also be es-
timated by replacing the Z-basis with the X-basis and
performing the presented procedure since we consider the
CSS code.

Based on the Pauli-frame technique, we require addi-
tional classical computation. Let

PB1

F ⊗ PB2

F ∈ F2N
2 (146)

be a Pauli frame at the final step of the previous gadget
and

(x′, z′) ∈ F2N
2 (147)

be the outcomes of transversal Z-basis measurements ob-
tained from the unrecovered state, where x′ ∈ FN2 and
z′ ∈ FN2 correspond to the outcomes from B1 and B2, re-
spectively. The classical computation takes as input the
symplectic representation ϕ(PB1

F ⊗ PB2

F ) and the mea-
surement outcomes z′ ∈ FN2 and outputs the measure-
ment outcomes z ∈ FN2 of a recovered state as in (144).
This calculation is performed for all i ∈ [1, . . . , N ]

zi = z′i ⊕
(
ϕ(PB1

F )
)
i
⊕ (ϕ(PB2

F ))i, (148)

and

xi = x′i ⊕
(
ϕ(PB1

F )
)
i+N

⊕
(
ϕ(PB2

F )
)
i+N

. (149)

Using O(N) parallel processes, this additional computa-
tion can be performed within runtime O(1).
The width of the quantum part in the gadget is

bounded by

O(N), (150)

and the depth of the quantum part is bounded by

O(1). (151)

The same analysis as in the Z-measurements gadget
bounds the runtime of the classical part of the Bell-
measurement gadget as

O(logN). (152)

From the transversality and constant depth of the quan-
tum part in the gadget, the gadget satisfies the fault-
tolerance conditions in Def. (13).

3. CNOT-gate operation gadget

The CNOT-gate gadget is designed to perform the log-
ical CNOT gate between logical qubits in different code
blocks B1, B2. The construction of the gadget is shown in
Fig. 7. The gadget is implemented by transversal CNOT-
gate operations of the physical operations.
For the Pauli-frame technique, we require additional

classical computation for updating the physical Pauli
frame. Let PB1

F ∈ P̃N and PB2

F ∈ P̃N be a physical
Pauli frame at the final step of the previous gadget. The
classical computation takes the two 2N -bit strings as in-
put, which represent the symplectic representation of the
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FIG. 7. The physical circuit of the gadget of the CNOT-gate operation (71).

Pauli frames, ϕ(PB1

F ) ∈ F2N
2 and ϕ(PB2

F ) ∈ F2N
2 . The

computation outputs two 2N -bit strings representing the

symplectic representation of the Pauli frames P ′B1

F ∈ P̃N
and P ′B2

F ∈ P̃N at the final time step of this gadget. The
updated Pauli frames can be calculated for i ∈ [1, . . . , N ]
as
(
ϕ
(
P ′B1

F

))
i
=
(
ϕ(PB1

F )
)
i
⊕
(
ϕ(PB2

F )
)
i+N

, (153)

and
(
ϕ
(
P ′B2

F

))
i
=
(
ϕ(PB1

F )
)
i
⊕
(
ϕ(PB2

F )
)
i
. (154)

Using O(N) parallel processes, this calculation can be
performed within runtime O(1).

Therefore, the depth of the gadget is

O(1), (155)

and the width is

O(N). (156)

Due to the transversality and constant depth of the quan-
tum part in the gadget, the gadget satisfies the fault-
tolerance conditions in Def. 13.

4. |0⟩⊗K-state preparation gadget

The |0⟩⊗K-state preparation gadget is designed to pre-

pare the code block initialized in the logical state
∣∣0
〉⊗K

encoded in the quantum LDPC code.
A physical circuit Ũencode of this gadget is generated by

the protocol for open circuits, as explained in Sec. III. In
the gadget, the protocol simulates an original open circuit
Uencode as shown in Fig. 8 (a) that encodes an arbitrary

K-qubits state |ψ⟩ into a logical state
∣∣ψ
〉
encoded in Q

with parameters (63) as

Uencode(|ψ⟩ ⊗ |0⟩⊗(N−K)
) =

∣∣ψ
〉
. (157)

For stabilizer codes, there exists such encoding circuit
Uencode described by a stabilizer circuit [55]. Further-
more, any n-qubit stabilizer circuit has an equivalent
stabilizer circuit that has O(n2/ log n) one- or two-qubit
gates and O(n) depth [3, 28]. This gives the encoding
circuit Uencode with width

O(N), (158)

depth

O(N), (159)

and locations

O(N2/ logN). (160)

From Theorem 6, there exists a physical circuit Ũencode

to output
∣∣0
〉⊗K

with probability at least 1−δ, where the
data qubits of

∣∣0
〉⊗K

are subjected to the local stochastic
Pauli error model with parameter at most 2Mploc with
M = O(1), whereM is the number of locations in the de-
coding interface in Sec. III B 1. Thus, the gadgets satisfy
the fault-tolerance condition in Def. 12.
As a result, if we take δ = O(ε/poly(n)), due to (158),

(159), and |Uencode| = O(N2/ logN) in (160), both the

width and the depth of the physical circuit Ũencode are
bounded by

O

(
Npolylog

( |Uencode|
δ

))
= O

(
Npolylog

(n
ε

))
,

(161)
where ε is the target error probability of the protocol
based on the quantum LDPC code.
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5. Clifford-state preparation gadget

The Clifford-state preparation gadgets are designed to
prepare the four code blocks B1, B2, B3, and B4 initial-

ized in the logical state
∣∣ΨUC

〉B1B2B3B4
of Q, where

|ΨUC
⟩A1A2A3A4 = (IA1A2 ⊗ UA3A4

C )(|Φ⟩A1A3 ⊗ |Φ⟩A2A4).
(162)

Here, |Φ⟩AiAi′ is a maximally entangled state between
the registers Ai and Ai′ as

|Φ⟩AiAi′ =
1√
2K

2K−1∑

m=0

|m⟩Ai ⊗ |m⟩Ai′ . (163)

A physical circuit Ṽ of this gadget is also generated by
the protocol for open circuits, as explained in Sec. III.
The protocol simulates the ideal open circuit V as shown
in Fig. 8 (b) that consists of a circuit to generate the
state |ΨUC

⟩, followed by the parallel use of encoding cir-
cuits Uencode as in (157) for preparing

∣∣ΨUC

〉
. Since the

original circuit V consists of the Clifford gates, V has an
equivalent stabilizer circuit [3, 28] with width

O(N), (164)

depth

O(N), (165)

and locations

O(N2/ logN). (166)

From Theorem 6, there exists a physical circuit Ṽ out-

putting
∣∣ΨUC

〉B1B2B3B4
with probability at least 1 − δ,

where the data qubits are subjected to the local stochas-
tic Pauli error model with the parameter at most 2Mploc
with M = O(1). Therefore, the gadgets satisfy the fault-
tolerance condition in Def. 12.

As a result, if we take δ = O(ε/poly(n)), due to (164),
(165), and |V | = O(N2/ logN) in (166), both the width

and the depth of the physical circuit Ṽ are bounded by

O

(
Npolylog

( |V |
δ

))
= O

(
Npolylog

(n
ε

))
, (167)

where ε is the target error probability of the protocol
based on the quantum LDPC code.

6. Magic-state preparation gadget

The magic-state preparation gadgets are designed to
prepare the code block initialized in the logical state∣∣ΨUTH

〉
of Q, where

|ΨUTH
⟩ = UTH |0⟩⊗K . (168)

Here, UTH is the tensor product of TH gate or the I gate,
where TH is applied to the logical qubits to which T gate
or T † gate will be applied using the UT -gate abbreviation
explained in Sec. IVB2.
A physical circuit W̃ of this gadget is also generated

by the protocol for open circuits, as explained in Sec. III.
The protocol simulates the ideal open circuitW as shown
in Fig. 8 (c) that consists of a circuit to generate the
state |ΨUTH

⟩, followed by the encoding circuit Uencode

for creating the encoded state
∣∣ΨUTH

〉
.

Since the original circuit W consists of constant-depth
gates TH, followed by Clifford gates Uencode, W has
width

O(N), (169)

depth

O(N), (170)

and locations

O(N2/ logN). (171)

From Theorem 6, there exists a physical circuit W̃ out-
putting

∣∣ΨUTH

〉
with probability at least 1 − δ, where

the data qubits are subjected to the local stochastic
Pauli error model with parameter at most 2Mploc with
M = O(1). Thus, the gadgets satisfy the fault-tolerance
condition in Def. 12.
As a result, if we take δ = O(ε/poly(n)), due to (169),

(170), and |W | = O(N2/ logN) in (171), both the width

and the depth of the physical circuit W̃ are bounded by

O

(
Npolylog

( |W |
δ

))
= O

(
Npolylog

(n
ε

))
, (172)

where ε is the target error probability of the protocol
based on the quantum LDPC code.

7. Error-correction gadget

An EC gadget is designed to keep residual errors in the
code block small using the decoding algorithm in Def. 10.
For each code block, N −K = O(N) auxiliary physical
qubits are used to perform the syndrome measurement.
Each auxiliary physical qubit is assigned to a correspond-
ing stabilizer generator. We perform the circuit as shown
in Fig. 9 to measure a specific stabilizer generator and
obtain the syndrome bits,

σ̃ = (σ̃X , σ̃Z) ∈ FN−K
2 , (173)

as in (114).
The measurements of all generators make up the syn-

drome measurement circuit of the EC gadget as shown
in Fig. 10. Note that Ref. [21] uses Shor’s error correc-
tion [56], which utilizes a cat state consisting of multiple
qubits for each stabilizer generator, where the number
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FIG. 8. (a) An original open circuit Uencode to create an encoded state of |0⟩⊗K , (b) an original open circuit V to create
an encoded state of |ΨUC ⟩ and (c) an original open circuit W to create an encoded state of |ΨUT ⟩. A physical circuit of the
state-preparation gadgets are obtained from the protocol for simulating open circuits, as explained in Sec. III

of qubits in the cat state corresponds to the weights of
the stabilizer generator. However, the EC gadgets only
need to satisfy our fault-tolerance conditions in Def. 13;
therefore, a single auxiliary physical qubit per stabilizer
generator is sufficient. Using the noisy syndrome bits
σ̃, a single-shot decoding algorithm with thresholds in
Def. 10 with T internal loops deduces the recovery oper-
ation, and then the recovery operation is applied to the
data qubits in the EC gadget to keep the residual error
on the data qubits small. Here, we choose T to satisfy

c(T ) > 2∆synd, (174)

where c(T ) is a monotonically increasing function, mean-
ing that T = O(1), and ∆synd = O(1) is the maximum
degree in (130) of the syndrome measurement circuit.
The condition of (174) is required to show the existence
of a threshold in our protocol, as will be explained in

Lemma 16.
If we use the Pauli frame, the EC gadget consists of

the syndrome measurement circuit to extract syndrome
bits of unrecovered data qubits,

σ̃′ = (σ̃′
X , σ̃

′
Z) ∈ FN−K

2 , (175)

followed by the classical computation for modifying the
syndrome bits to obtain the syndrome bits σ̃ of recovered
data qubits as in (173) based on an input physical Pauli
frame (more specifically, the syndrome bits that would be
obtained if an ideal recovery operation would be applied
to the data qubits at the next time step of a syndrome
measurement circuit) and performing the decoding al-
gorithm. During the modification of the syndrome bits
and the execution of the decoding algorithm, the wait
operation is performed on the data qubits. If we have a
physical Pauli frame at the final time step of a previous
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FIG. 9. The circuit for measuring the X-type stabilizer generator (a) and the Z-type stabilizer generator (b). The CNOT gate’s
support corresponds to the stabilizer generator’s support. The syndrome measurement circuit is the circuit for measuring all
stabilizer generators, each of which consists of the circuit shown in this figure.

gadget

PF ∈ P̃N , (176)

we calculate the recovered syndrome bits as in (173) in
the following way. First, a classical computer receives bit-
strings σ̃′ ∈ FN−K

2 and ϕ(PF) ∈ F2N
2 as input. Consider-

ing how the physical Pauli frame PF propagates through
the syndrome circuit, the modification of the syndrome
bits corresponding to the Z-type stabilizer generators is
executed as, for i ∈ [0, . . . ,MZ − 1],

(σ̃X)i = (σ̃′
X)i ⊕


 ⊕

j∈supp(gZi )

(ϕ(PF))j


 , (177)

and for the syndrome bits corresponding to the X-type
stabilizer generators, that is, for i ∈ [0, . . . ,MX − 1],

(σ̃Z)i = (σ̃′
Z)i ⊕


 ⊕

j∈supp(gXi )

(ϕ(PF))j+N


 . (178)

This classical computation can be performed in runtime
O(1), using O(N) parallel processes. Using recovered
syndrome bits σ̃, a single-shot decoding algorithm with
thresholds in Def. 10 with T = O(1) internal loops de-
duces the recovery operation, and then the recovery op-
eration R ∈ P̃N updates the physical Pauli frame as for
i ∈ [1, . . . , N ]

(ϕ(P ′
F))i = (ϕ(R))i ⊕ (ϕ(PF))i . (179)

The update of the physical Pauli frame can be performed
in runtime O(1) with O(N) parallel processes.

Recall that each code block is encoded with a non-
vanishing-rate (r, c) quantum LDPC code. The measure-
ments can be performed in parallel for generators that act
on disjoint data qubits; thus, the depth of the quantum
part of the syndrome measurement is bounded by

O(rc) = O(1). (180)

In addition, the width of the quantum part of the syn-
drome measurement circuit is bounded by

O(N +M) = O(N + (N −K)) = O(N), (181)

where M = N − K is the number of auxiliary physical
qubits for measuring stabilizer generators. The runtime
of the classical part is bounded by

O(1). (182)

Since the width of the gadget is O(N), even if the gadgets
are executed for all code blocks simultaneously, it does
not pose an obstacle in constructing the constant-space
overhead fault-tolerant protocol. Even if the classical
part of the gadget is included, the EC gadget is fault-
tolerant in the sense of Def. 13 because the depth of the
gadget is constant. From the property of quantum LDPC
codes and the constant depth of the quantum part in
the gadget, the EC gadgets satisfy the fault-tolerance
conditions, as shown in Def. 13.

E. Threshold theorem

In the following, we prove the threshold theorem of our
protocol.

Theorem 14. (Fault-tolerant quantum computation
with polylogarithmic time and constant space overhead).
Let {Corg

n } be a sequence of original closed circuits as de-
scribed in Assumption 1 specified by an integer n, and
Corg
n has width W (n) and depth D(n), where

|Corg
n | = O(W (n)D(n)) = O(poly(n)), (183)

as n → ∞. Suppose that we compile an original circuit
Corg
n into a physical circuit CFT

n that is subjected to a
local stochastic Pauli error with parameter ploc > 0 as
described in Sec. IVA. The gadgets are constructed as
described in Sec. IVD, i.e., state-preparation, gate, and
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FIG. 10. A physical circuit of the EC gadget. The classical part of the gadget consists of modifying the syndrome bits based
on an input Pauli frame and performing the decoding algorithm.

measurement, EC gadgets satisfy the fault-tolerance con-
ditions in Defs. 12 and 13, where each code block is based
on a non-vanishing-rate quantum CSS LDPC code

Q (184)

with parameters

[[N,K = Θ(N), D = Θ(Nγ)]] (185)

satisfying Assumption 4, i.e., a single-shot decoding al-
gorithm for reducing errors in Def. 10 has a threshold
pthdec > 0 and a decoding algorithm for correcting errors

in Def. 11 has threshold p′thdec > 0.
Let pthloc > 0 be a threshold of the concatenated-

code protocol to simulate open circuits as explained in
Sec. III B. Then, for all ε > 0, there exists a threshold
qthloc > 0 and if 0 ≤ ploc<min{qthloc, pthloc/2}, the follow-
ing statement holds: there exists a sequence of physical
circuits {CFT

n }, where CFT
n has width WFT(n) and depth

DFT(n) such that

WFT(n)

W (n)
= O(1),

DFT(n)

D(n)
= O

(
polylog

(n
ε

))
,

(186)

as n → ∞, and CFT
n outputs the probability distribution

that is close to that of Corg
n with total variation distance

at most ε.

In the following, we will show that there exists a
threshold based on the fault-tolerant construction of the
gadgets presented in Sec. IVD. Next, we will show that
our protocol achieves a constant space overhead and a
polylogarithmic time overhead.

First, we fix the parameters of the protocol. We choose
the number of physical qubits N of Q in (184) as

N = Θ

(
logα

( |Corg
n |
ε

))
, (187)

where α > 1/γ is a constant, the number of registers κ
as

κ(n) :=
W (n)

K
= Θ


 W (n)

logα
(

|Corg
n |
ε

)


 . (188)

Let δ > 0 be the failure probability of a state-preparation
gadget, and we choose the probability as

δ = O

(
ε

|Corg
n |2

)
. (189)

We consider a sequence of original open circuits {Cprep
N }

to prepare |0⟩⊗K , Clifford, and magic states encoded inQ
in (184), as explained in Secs. IVD4, IVD5, and IVD6,
respectively. Here, N corresponds to the number of phys-
ical qubits in (187), and Cprep

N has width

Wprep(N) = O(N) (190)

as in (158), (164), and (169), depth

Dprep(N) = O(N) (191)

as in (159), (165), (170), and locations

|Cprep
N | = O(N2/ logN) (192)

as in (160), (166), (171). From Theorem 6, we have a

corresponding sequence of physical circuits {C̃prep
N } with
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FIG. 11. A set of input wires, Xin, at time step t = tin and output wires, Xout, at time step t = tout, along with a set of
locations L of a physical circuit for measuring X-type stabilizer generators, as shown in Fig. 9. (a) Each cross represents a
wire in Xin or Xout, where a red cross indicates an erroneous wire, and each operation (with a wait operation represented by a
circle) represents a location in L, where a red operation indicates a faulty location. (b) A possible equivalent non-faulty circuit
can be obtained by propagating Pauli errors that occurred in the erroneous wires at t = tin and Pauli errors that occurred due
to the faulty locations in (a), where these errors result in erroneous wires that correspond to the red crosses at t = tout.

width W̃prep(N) and depth D̃prep(N). The prepared
states are subjected to the local stochastic Pauli error
with parameter

p̃ ≤M ′ploc, (193)

where M ′ is defined as

M ′ := 2M, (194)

and M is a constant representing the number of loca-
tions in the decoding interface as explained in Sec. III B 1.
Moreover, the width of the physical circuits satisfies

W̃prep(N)

Wprep(N)
= O

(
logγ1

( |Cprep
N |
δ

))
(195)

= O

(
logγ1

( |Corg
n |
ε

))
, (196)

where we use (187), (192), and (189), and γ1 > 0 is a
constant. Similarly, the depth of the physical circuits
satisfies

D̃prep(N)

Dprep(N)
= O

(
logγ2

( |Cprep
N |
δ

))
(197)

= O

(
logγ2

( |Corg
n |
ε

))
, (198)

where γ2 > 0 is a constant. Then, we choose the number
of non-trivial intermediate operations L(n) in (85) that
we apply in a one-depth part of an intermediate circuit
as

L(n) = Θ


 W (n)

logα+γ1
(

|Corg
n |
ε

)


. (199)

We begin with obtaining a bound on the error param-
eter on output wires of a faulty physical circuit C. Let

Xin (200)

be a set of input wires at the first step of C,

Xout (201)

be a set of output wires at the final step of C, and

L (202)

be a set of locations in C as shown in Fig. 11. As stated
in Lemma 15, the output wires Xout in (201) undergo
the local stochastic Pauli error model if the locations L
in (202) and the input wires Xin in (200) also undergo
the local stochastic Pauli error model. The lemma pro-
vides an upper bound on the error parameter p′wire of the
output wires, given the error parameters pwire and ploc of
Xin and C, respectively. This bound is obtained by con-
sidering possible configurations of erroneous input wires
in Xin and faulty locations in L that can produce erro-
neous wires in Xout. For simplicity, we denote the union
of Xin and L by

L̃ := Xin ∪ L. (203)

In addition, for a given set U ⊆ Xout,

A(U) ⊆ L̃ (204)

denotes the set of locations or wires of input wires that
are connected to at least one wire in U . Similarly, for a
given set R̃ ⊆ L̃,

B(R̃) ⊆ Xout (205)

denotes a set of wires that connect to at least one location
or one input wire in R̃.
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Lemma 15. Suppose we have a physical stabilizer circuit
C that undergoes the local stochastic Pauli error model
with parameter ploc, and input wires Xin in (200) and
output wires Xout in (201) of C that undergo to the lo-
cal stochastic Pauli error model with parameter pwire and
p′wire, respectively. Let G be a bipartite graph of C as in
(130), where ∆ be the maximum degree of a vertex of G
and d be the depth of C.

Then, output wires Xout undergo the local stochastic
Pauli error model with parameter p′wire satisfying

p′wire ≤
2d∆q1/∆

1− q
, (206)

where q := max{pwire, ploc}.

Proof. For any U ⊆ Xout and R̃ ⊆ L̃, we have

|A(U)| ≤ d∆|U |, |B(R̃)| ≤ ∆|R̃|. (207)

Given a set of the union of erroneous input data qubits
and faulty locations, denoted by F̃ ⊆ L̃, the set of er-
roneous wires H ⊆ X satisfies H = B(F̃ ). Then, we
have

P[H ⊇ U ] ≤P
[
∃R̃ ⊆ A(U) : F̃ ⊇ R̃, B(R̃) = U

]

≤
∑

r≥|U |/∆


 ∑

R̃⊆A(U) : |R̃|=r
P[F̃ ⊇ R̃]




≤
∑

r≥|U |/∆

(|A(U)|
r

)
qr.

Using the upper bound for the binomial coefficient

(|A(U)|
r

)
≤ 2|A(U)|, (208)

and |A(U)| ≤ d∆|U |, we have

P[H ⊇ U ] ≤2d∆|U | ∑

r≥|U |/∆
qr

≤
(
2d∆q1/∆

1− q

)|U |
.

Moreover, since a physical circuit C is a stabilizer circuit,
there exists a Pauli operator that represents errors on
the set of fautly wires H. Therefore, the set of wires
is subjected to the local stochastic Pauli error model on
wires with parameter

pwire ≤
2d∆q1/∆

1− q
. (209)

Next, we show that there exists a positive threshold
value with respect to ploc, and if ploc is below the thresh-
old, we can probabilistically transform a gadget with
trailing EC gadget(s) into the corresponding elementary
operation. When ploc is sufficiently low, due to the fault-
tolerance conditions in Defs. 12 and 13 and Lemma 15,
propagation of errors between EC gadgets is suppressed,
allowing EC gadgets to keep the error rate low in the
code blocks. The transformations are described by the
following diagrams. Let

register code block

(210)

be an ideal encoder from K qubits in a register to K
logical qubits of a code block Q,

code block E code block

(211)

be a local stochastic Pauli noise E , which is a CPTP map,
acting on data qubits, and

code block

w
ait

code block

(212)

be a wait operation during performing classical compu-
tation in an EC gadget. Here, the box surrounded by a
bold line represents a gadget. Then, each gadget can be
transformed as follows.

1. state-preparation gadgets

• |0⟩⊗K-state preparation gadget
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|0〉 ⊗
K

code blockwait

error
correctio

n

wait =

|0〉 ⊗
K

registerwait code blockwait E wait

w
a
it

, (213)

• Clifford-state preparation gadgets

(I⊗
U
C
)|Ω⟩

code block

code block

code block

code block

wait

error
correctio

n
error

co
rrectio

n
error

correction
error

correction

wait =

(I⊗
U
C
)|Ω⟩

register

register

register

register

wait

code block

code block

code block

code block

wait

E

E

E

E

wait

w
ait

w
a
it

w
ait

w
ait

wait

, (214)

• magic-state preparation gadgets
U
T
H
|0⟩ ⊗

K

code blockwait

error
correction

wait =

U
T
H
|0⟩ ⊗

K

registerwait code blockwait E wait

w
ait wait

, (215)

2. gate gadget

• CNOT-gate gadget

register

register

wait

code block

code block

wait

E

E

wait

w
ait

w
ait

wait

XK

wait

error
correction

error
correction

=

register

register

wait

XK

wait

code block

code block

wait

E

E

wait

w
ait

w
ait

, (216)

3. measurement gadgets
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• ZK-measurement gadget

registerwait code blockwait E wait

w
ait wait

Z
K

m
ea
su
rem

en
t

= registerwait

Z
K

m
ea
su
rem

en
t

, (217)

• Bell-measurement gadget

register

register

code block

code block

E

E
w
a
it

w
ait

B
ell

m
ea
su
rem

en
ts

=

register

register

B
ell

m
easu

rem
en
ts

. (218)

From Lemma 16, we can probabilistically transform a
sequence of gadgets into a corresponding sequence of ele-
mentary operations from the state-preparation gadgets to
the measurement gadgets as in (213), (214), (215), (216),
(217), and (218) by pushing the ideal encoder (210) for-
ward.

Lemma 16. Suppose that we have a physical circuit C
that undergoes the local stochastic Pauli error model with
parameter ploc, and we have a single-shot decoding al-
gorithm for reducing errors in Def. 10 with threshold
pthdec > 0 and a decoding algorithm for correcting er-

rors in Def. 11 with threshold p′thdec > 0. We have a
sequence of gadgets, starting with the state-preparation
gadgets and ending with the measurement gadgets, with
the EC gadget inserted between each gadget. Suppose
the state-preparation, gate, measurement, and EC gad-
gets satisfy the fault-tolerance conditions in Defs. 12 and
13.

Then, there exists a threshold qthloc > 0, and if ploc <
min{qthloc, pthloc/2}, each gadget with trailing EC gadget(s)
can be transformed into the corresponding elementary op-
eration as in (213), (214), (215), (216), (217), and (218)
with probability at least

1− Ω(ε/|Corg
n |2). (219)

Moreover, the parameter of the local stochastic Pauli
noise E in (213), (214), (215), (216), (217), and (218) is
bounded by

pdata ≤M ′ploc. (220)

where M ′ := 2M in (194).

Proof. Let Csynd be the syndrome measurement circuit
in the EC gadget with a maximum degree ∆synd = O(1)
and depth dsynd = O(1), and Cwait be a circuit of wait
operations for classical computation in the EC gadget
with a maximum degree ∆wait = 1 and depth dwait =
T = O(1) as in Def. 13.
First, we consider the transformation of state-

preparation gadgets, i.e., the |0⟩⊗K-state prepara-
tion (213), the Clifford-state preparation gadgets (214)
and the magic-state preparation gadgets (215). From
Theorem 6, the data qubits at the final step of the
state-preparation gadgets are subjected to the local Pauli
stochastic error model with parameter pdata ≤ M ′ploc.
By applying Lemma 15 to Csynd, the wires at the final
step of Csynd are subjected to the local stochastic Pauli
error model with parameter

pwire ≤
2d

synd∆synd

(M ′ploc)1/∆
synd

1−M ′ploc
. (221)

Since the function f(x) = x/(1 − x) for x ∈ [0, 1) is
monotonically increasing, by lowering ploc, we have ploc
such that

2c
synd
1 (M ′ploc)1/∆

synd

1−M ′ploc
< pthdec. (222)

With ploc satisfying (222), due to (126), a residual error
is applied after a recovery operation to data qubits that
are subjected to the local stochastic Pauli error model
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with parameter

pdata ≤
(
2d

synd∆synd

(M ′ploc)1/∆
synd

1−M ′ploc

)c(T )

, (223)

where c(T ) is an error suppression parameter of a decod-
ing algorithm (126), and T = O(1) is the number of it-
erations of the decoding algorithm, determined by (174).
Under this choice, there is a positive value of ploc that
satisfies

pdata ≤
(
2d

synd∆synd

(M ′ploc)1/∆
synd

1−M ′ploc

)c(T )

≤M ′ploc,

(224)
and after the ideal encoding circuit is moved to the final
step of the trailing syndrome measurement circuit using
the Pauli frame, the parameter of the residual Pauli noise

E can be bounded by

M ′ploc. (225)

Due to the union bound taking into account the failure
probability of the single-shot decoding algorithm for re-
ducing errors in Def. 10 and the failure probability of a
state-preparation gadget in Def. 12, this transformation
fails with probability at most

exp(−Ω(D)) + δ = exp(−Ω(Nγ)) + δ

= O

(
ε

|Corg
n |2

)
,

(226)

where we use (187) and (189).
Next, we consider the transformation of the gate gad-

get, i.e., the CNOT-gate gadget (216). Here, we consider
a circuit CCNOT of the CNOT-gate gadget with a max-
imum degree ∆CNOT = 2 and depth dCNOT = O(1).
Then, by applying Lemma 15 to a sequence of Cwait,
CCNOT and Csynd, the parameters of the wire in the fi-
nal step of the syndrome measurement circuit are sup-
pressed, taking into account the wait operation during
the classical part of the previous EC gadget as

pwire ≤
2(d

synd∆synd+dCNOT∆synd+∆CNOT∆syndT )(M ′ploc)1/(∆
CNOT∆synd)

1−M ′ploc
=: pCNOT

wire . (227)

If we have ploc such that

pwire ≤ pCNOT
wire ≤ pthdec, (228)

then, since we choose T such that c(T ) > 2∆synd as
in (174), there is a positive value of ploc satisfying

pdata ≤
(
pCNOT
wire

)c(T ) ≤M ′ploc, (229)

after the ideal encoding circuit is moved to the final
step of the syndrome measurement circuit, we can again
bound pdata at the final step of the syndrome measure-
ment circuit as

pdata ≤M ′ploc. (230)

Under the condition that the previous decoding algo-
rithm succeeds, the single-shot decoding algorithm for
reducing errors in Def. 10 fails with probability at most

exp(−Ω(D)) = O

(
ε

|Corg
n |2

)
, (231)

where we use (185).
Finally, we consider the transformation of the mea-

surement gadgets, i.e., the ZK-measurement gadget (217)
and the Bell-measurement gadget (218). Here, we con-
sider a circuit CZK of the ZK-measurement gadget with

a maximum degree ∆ZK = 1 and depth dZK = O(1) and
a circuit CBell of the Bell-measurement gadget with a
maximum degree ∆Bell = 2 and depth dBell = O(1). By
applying Lemma 15 to CZK , the parameter of the local
stochastic Pauli error at the final time of the quantum
part is bounded by

pdata ≤ 2(d
ZK∆ZK+dwait∆ZK )(M ′ploc)1/∆

ZK

1−M ′ploc
=: pZK

wire.

(232)
If we have ploc such that

pdata ≤ pZK

wire ≤ p′
th
dec, (233)

then the decoding algorithm in Def. 11 fails to return the
measurement results of the logical operators with proba-
bility at most

exp(−Ω(D)) = O

(
ε

|Corg
n |2

)
, (234)

where we use (185). For the Bell-measurement gadget
CBell, by applying Lemma 15, the parameter of the local
stochastic Pauli error at the final time is bounded by

pdata ≤ 2(d
Bell∆Bell+dwait∆Bell)(M ′ploc)1/∆

Bell

1−M ′ploc
=: pBell

loc .

(235)
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If we have ploc such that

pdata ≤ pBell
loc ≤ p′

th
dec, (236)

then the decoding algorithm in Def. 11 fails to return the
measurement results of the logical operators with proba-
bility at most

exp(−Ω(D)) = O

(
ε

|Corg
n |2

)
, (237)

where we use (185). Therefore, (222), (224), (227), (228),
(233), and (235) determine the threshold qthloc > 0 of the
overall protocol.

If an error parameter is below the threshold, we can
transform a sequence of gadgets into a sequence of el-
ementary operations using Lemma 16. Note that even
without the Pauli frame technique, since each gadget is
a stabilizer circuit, a faulty physical circuit can be trans-
formed into a physical circuit without faulty locations
where Pauli errors are applied on wires just before the Z-
basis measurements in syndrome measurement circuits.
Then, the above argument holds without modification.

Finally, we show that our fault-tolerant protocol can
achieve an arbitrary target error ε > 0 with a polyloga-
rithmic time and constant space overhead.

We begin by bounding the depth of the physical cir-
cuit CFT

n compiled from Corg
n . We replace the operations

in the original circuit with the intermediate operations
for each one-depth part of the original circuit. For the
Clifford layer, a single use of the two-register Clifford-
gate abbreviation allows the simultaneous application of
an arbitrarily long sequence of Clifford gates to a single
pair of different registers. However, since a single regis-
ter contains multiple qubits, even if the ideal quantum
circuit could perform a different two-qubit Clifford gate
in a single depth, the two-register Clifford-gate abbrevia-
tion cannot perform a different pair of two-qubit Clifford
gates in a single depth.

To bound the depth of the intermediate circuit required
for performing all combinations of the two-qubit Clifford
gates in a one-depth part of the Clifford layer of Corg

n , we
obtain the combinations of two-qubit Clifford abbrevia-
tions that can be executed simultaneously from a solution
of the following edge coloring problem. We consider an
undirected graph G = (V,E), where each vertex in V
corresponds to one of the registers, and each edge in E
connects vertices representing registers on which a two-
qubit Clifford gate acts in a single-depth part of the Clif-
ford layer (if the gate acts on the same register, the edge
forms a self-loop). To simplify the analysis, we addition-
ally define a graph G′ by removing all self-loops from
G. In the graph G′, when each pair of adjacent edges is
assigned a different color such that no two neighboring
edges have the same color, the two-qubit Clifford gates
assigned to each color are implemented as one-depth ex-
ecutable two-qubit Clifford-gate abbreviations in the in-
termediate circuit. Since each register has K qubits, a

qubit in a register can be connected to at most K qubits
in other registers by a two-qubit Clifford gate. In this
case, since G′ is a simple graph and the degree of G′ is
at most K, G′ is (K + 1)-edge colorable [57, 58]. Thus,
G is (K+2)-edge colorable because adding another color
allows all self-loops to be colored with this color. Note
that the algorithm for constructing the (K+1)-edge col-
oring of G′ can be performed in polynomial time with
respect to the number of vertices and edges [59], and
therefore the computation of the (K+2)-edge coloring of
G can also be performed efficiently. Thus, any possible
combination of Clifford gates can be performed in each
one-depth part of the original circuit by using two-qubit
Clifford abbreviations of up to (K + 2)-depth in the in-
termediate circuit. For a T -gate layer, we can perform
the T , T †, and I gate in a single-depth part by using
a single use of the UT -gate abbreviation (the same for
a single-depth layer of Z-basis-measurement operations,
and |0⟩-state-prepration operations).
In the following, by counting the number of EC gad-

gets in the fault-tolerant circuit, we show that the error
probability of our protocol can be suppressed to ε. Sub-
sequently, we demonstrate that our protocol achieves a
constant space overhead and a polylogarithmic time over-
head. We restrict the number of non-trivial intermediate
operations L(n) that we apply in a one-depth part of the
intermediate circuit to (199). The intermediate circuit
compiled from a one-depth part of the original circuit
has depth

(K + 2)× κ(n)

L(n)
= Θ

(
logα+γ1

( |Corg
n |
ε

))
, (238)

where we use (185), (187), (188), and (199). If we replace
all the elementary operations contained in the interme-
diate operation with the corresponding gadget, then the
depth of a physical circuit compiled from a one-depth
part of the intermediate circuit is bounded by

O(D̃prep(N)) = O

(
Dprep(N) logγ2

( |Corg
n |
ε

))

= O

(
logα+γ2

( |Corg
n |
ε

))
,

(239)

where the dominant parts are the state-preparation gad-
gets as explained in Secs. IVD4, IVD5, and IVD6, and
we use (187), (190), and (198). Thus, the physical cir-
cuit compiled from the original circuit has depth DFT(n)
bounded by

DFT(n)

= O

(
D(n) logα+γ1

( |Corg
n |
ε

)
logα+γ2

( |Corg
n |
ε

))

= O

(
D(n) log2α+γ1+γ2

( |Corg
n |
ε

))

(240)

where we use (238) and (239). Since we allocate five
auxiliary registers for each register, the number of EC
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gadgets in the physical circuit is bounded by

6κ(n)×O

(
D(n) log2α+γ1+γ2

( |Corg
n |
ε

))

= O

(
W (n)D(n) logα+γ1+γ2

( |Corg
n |
ε

))
.

(241)

Therefore, the total error probability of the fault-tolerant
protocol can be bounded by

O

(
W (n)D(n) logα+γ1+γ2

( |Corg
n |
ε

))
×O

(
ε

|Corg
n |2

)

= O(ε),

(242)

where we use (183) and (219) in Lemma 16.
Next, the width of a physical circuit compiled from a

single non-trivial intermediate operation is bounded by

O(W̃prep(N)) = O

(
Wprep(N) logγ1

( |Corg
n |
ε

))

= O

(
logα+γ1

( |Corg
n |
ε

))
,

(243)

where the dominant parts are the state-preparation gad-
gets, as explained in Secs. IVD4, IVD5, and IVD6, and
we use (187), (188), and (199). Thus, the width of the
physical circuit can be bounded by

WFT(n)

= O
(
W̃prep(N)× L(n) + (N + (N −K))× (κ(n)− L(n))

)

= O(W (n)),
(244)

where N −K is the number of auxiliary physical qubits
for measuring stabilizer generators in a EC gadget as
explained in Sec. IVD7, and we use (183), (185), (187),
(188), and (199), and (243). Therefore, the fault-tolerant
protocol can achieve the constant-space overhead as

WFT(n)

W (n)
= O(1). (245)

On the other hand, the depth DFT(n) of C
FT
n is bounded

by (240). Therefore, the fault-tolerant protocol can
achieve the polylog-time overhead as

DFT(n)

D(n)
= O

(
polylog

(n
ε

))
, (246)

where we use (183). From the above discussion, we con-
clude Theorem 14.

V. CONCLUSION

In this work, we present a hybrid fault-tolerant proto-
col that combines concatenated codes for gate operations
with a non-vanishing-rate quantum LDPC code (in par-
ticular, the quantum expander codes [20, 60, 61]) for state
preservation. Our protocol achieves polylogarithmic time
overhead while maintaining constant space overhead.
Thus, our protocol improves the time overhead of exist-
ing constant-space-overhead protocols, i.e., the protocols
based on non-vanishing-rate quantum LDPC codes [20–
22], as well as the protocol based on concatenated quan-
tum Hamming codes [25]. This improvement is achieved
by increasing the parallelism for executing logical gates
from O(W (n)/poly(n)) to O(W (n)/polylog(n)), improv-
ing on Ref. [21], due to advances in the analysis of error
suppression by decoding algorithms [20, 22]. Moreover,
we show that our protocol has a threshold even when
accounting for the runtime of classical computation re-
quired to perform the fault-tolerant circuit, whereas ex-
isting analyses of protocols for quantum LDPC codes
assume that such classical computation can be instan-
taneous [20–22]. Our protocol eliminates redundant
spacetime trade-offs present in existing constant-space-
overhead FTQC protocols [20–22, 25].
These results highlight that the quantum LDPC code

approach can achieve time-efficient FTQC while main-
taining a constant space overhead, as well as the
code-concatenation approaches [25, 26]. Our work
contributes to the fundamental understanding of low-
overhead FTQC, and more importantly, it underscores
the need for a comprehensive investigation to determine
which of the two approaches holds more promise for fu-
ture physical implementations of FTQC.
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Appendix A: Conditions of fault-tolerant gadgets on
concatenated Steane codes

In this section, we provide the fault-tolerance condi-
tions for concatenated Steane codes [29, 41]. For the
argument, we introduce the notion of r-filter. The r-
filter is a mathematical object used for analysis and does
not correspond to any physical operation during quan-
tum computation. The r-filter is used to ensure that the
weight of an error occurring on a codeword at a given
time is not too large. It is defined as follows:

Definition 17 (r-filter). An r-filter is a projector onto
the subspace spanned by all states of the form E

∣∣ψ̄
〉
,

where E ∈ PN with a weight of at most r and
∣∣ψ̄
〉
∈ Q

is a codeword. If the ideal syndrome bits of an encoded
state were hypothetically obtained and the syndrome bits
indicate a Pauli error with a weight of at most r, then the
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r-filter leaves the encoded state unchanged. Conversely,
if the indicated error exceeds the weight r, the r-filter
rejects the encoded state, terminating the computation.

Reference [41] provides the definition for [[N, 1, 2t+1]]
codes where 0 ≤ r ≤ t. However, for the Steane code with
t = 1, we can easily interpret the r-filter for r = 0, 1. The
0-filter is defined as a projector onto the code space, i.e.,

ΠQ :=
∏

i

I + gi
2

, (A1)

where {gi}i is a set of stabilizer generators as given
in (25). The 0-filter is illustrated in the diagram as,

• 0-filter

ΠQ(S)
. (A2)

The 1-filter for the Steane code becomes the identity op-
erator I acting on the whole Hilbert space because all the
X(Z)-type errors that appear in the Steane code can be
decomposed into logical X(Z) errors plus weight-1 X(Z)
errors. The 1-filter is not shown in the diagram because
it is trivial.
Then, the fault-tolerance conditions for preparation,

gate, and measurement gadgets are presented below with
diagrams using ideal decoder in Def. 7 and the 0-filter in
Def. 17. In the diagrams, an operation surrounded by
thin lines and acting on thin wires represents a non-fauly
operation. The variable s shown in the upper right of a
gadget represents the number of faults in the gadget.

The |0⟩-state preparation gadget is fault-tolerant if it satisfies

prep A: when s = 0

s

|0〉 =

s

|0〉 ΠQ(S) , (A3)

prep B: when s = 0, 1

|0〉
s

= |0〉
. (A4)

Also, the |T ⟩-state preparation gadget is fault-tolerant if it satisfies

prep A: when s = 0

s

|T 〉 =

s

|T 〉 ΠQ(S) , (A5)

prep B: when s = 0, 1

|T 〉
s

= |T 〉
. (A6)

The Pauli-, H-, and S-gate gadgets are fault-tolerant if they satisfy the following conditions, with each gate denoted
by U :

gate A: when s = 0

ΠQ(S)

s

U = ΠQ(S)

s

U ΠQ(S) , (A7)

gate B: when s = 0

s

U = U , (A8)

and when s = 0, 1

ΠQ(S)

s

U = ΠQ(S) U . (A9)
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The CNOT-gate gadget is fault-tolerant if it satisfies, with the CNOT-gate denoted by U ,

gate A: when s = 0

ΠQ(S)

ΠQ(S)

s

U =
ΠQ(S)

ΠQ(S)

s

U
ΠQ(S)

ΠQ(S) , (A10)

gate B: when s = 0

ΠQ(S)

s

U =
ΠQ(S)

U
, (A11)

ΠQ(S)

s

U =
ΠQ(S)

U
, (A12)

and when s = 0, 1

ΠQ(S)

ΠQ(S)

s

U =
ΠQ(S)

ΠQ(S)
U

. (A13)

The Z-basis measurement gadget is fault-tolerant if it satisfies

meas A: when s = 0

s

Z = Z
, (A14)

meas B: when s = 0, 1

ΠQ(S)

s

Z = ΠQ(S) Z
. (A15)
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The EC gadget is fault-tolerant if it satisfies

ec A: when s = 0

s

erro
r

correction

=

s

erro
r

correction

ΠQ(S)

, (A16)

ec B: when s = 0

s

erro
r
correction

=

, (A17)

and when s = 0, 1

ΠQ(S)

s

error
correction

= ΠQ(S)

. (A18)

Appendix B: Construction of abbreviations and
gadgets

In this section, we present the explicit construction
of an abbreviation and gadgets that satisfy the fault-
tolerance condition presented from (A3) to (A18).

1. T -gate abbreviation

The construction of the T -gate abbreviation is shown
in Fig. 12. The abbreviation is based on gate telepor-
tation. Implementation is assisted by a single auxiliary
qubit in the state |T ⟩ from the |T ⟩-state preparation gad-
get. We subsequently perform the CNOT-gate gadget
followed by the Z-basis measurement. To implement the
T gate, a Clifford gate SX for the correction operation
is applied to the qubit if the measurement outcome is
m = 1.

2. Z-basis measurement gadget

The Z-basis measurement gadget is constructed as
shown in Fig. 13. The gadget is implemented by transver-
sal Z-basis measurements, followed by the execution of
the decoding algorithm by classical computation.

We present the explicit procedure for performing the
Z-basis measurement. Specifically, we give the procedure
for calculating the measurement outcome z̄ ∈ {0, 1} of
the Pauli operator Z on a level-l qubit from the noisy
measurement outcomes zi ∈ F2 of Zi on the i-th level-
(l − 1) qubits for i ∈ {1, . . . , 7}. The procedure is as
follows:

1. We measure the 7 level-(l − 1) qubits on the Z-
basis. The outcomes are z ∈ F7

2, where each bit
zi ∈ F2 is the noisy measurement outcome on the
i-th level-(l − 1) qubit.

2. We calculate the syndrome bits σX ∈ F3
2 of the

Z-type generators from the 7-bit outcomes of the
Z-basis measurement of the level-(l − 1) qubits by
using the relation,

(σX)i =
⊕

j∈supp(gZi )

zj , (B1)

where supp(gZi ) denotes the set of qubit indices
where gZi has non-trivial support.

3. We execute the decoding algorithm (27) which
takes the syndrome bits σX ∈ F3

2 as input and out-
puts the recovery operation of an X-type Pauli op-
erator, denoted by F̂ ∈ PN . Then, the corrected
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level-l qubit

level-l qubit

level-l qubit

level-l qubit

T = level-l qubit

level-l qubit

level-l qubit

level-l qubit

|T ⟩

X Z

SX

FIG. 12. The level-l circuit of the T -gate abbreviation for performing the T gate through gate teleportation.

bits z̃ ∈ F7
2 are obtained for i ∈ {1, . . . , 7} as

z̃i := zi ⊕ (ϕ(F̂ ))i, (B2)

where (ϕ(F̂ ))j represents the j-th element of the

row vector ϕ(F̂ ).

4. We calculate the noiseless measurement outcome
z̄ ∈ F2 of Z on the level-l qubit as

z̄ :=
⊕

i∈supp(Z̄)

z̃i, (B3)

where Z̄ is the logical-Z operator of the Steane code
as given in (26), and supp(Z̄) denotes the set of
indices of the physical qubits on which the logical-
Z operator acts nontrivially.

The fault tolerance of the Z-basis measurement gadget
defined as in (A14) and (A15) is ensured by transversal-
ity.

3. Gate gadgets

The constructions of the Pauli-, H-, S-, S† and
CNOT-gate gadgets are shown in Fig. 14. The
Pauli-, H-, S-, S†- and CNOT-gate gadgets are im-
plemented by the transversal Pauli, H, S†, S and
CNOT gates acting on the level-(l − 1) qubits, respec-
tively. The fault tolerance of the gate gadgets defined
as (A7), (A8), (A9), (A10), (A11), (A12) and (A13) is
ensured by transversality.

4. |0⟩-state preparation gadget

The construction of the |0⟩-state preparation gadget is
shown in Fig. 15 (a). We first prepare 7 qubits in the state

|0⟩⊗7
using the |0⟩-state preparation operations. Then,

we use an encoding circuit U
|0⟩
encode to transform the state

|0⟩⊗7
into the logical state of |0⟩. The encoding circuit

U
|0⟩
encode is shown in Fig. 15 (b), presented in Ref. [63].
The issue here is that the encoding circuit is non-fault-

tolerant, meaning a single fault occurring during the en-
coding circuit may lead to an error with a weight greater

than one by the end of the encoding circuit. Thus, verifi-
cation is essential to detect such errors, ensuring that the
|0⟩-state preparation gadget satisfies the fault-tolerance
conditions specified in (A3) and (A4). In the verifica-
tion process, the gadget executes the same encoding cir-

cuit U
|0⟩
encode to prepare another set of 7 qubits in the

logical state of |0⟩. Subsequently, the gadget performs
the transversal CNOT gate targeting the newly prepared
qubits. This is followed by the transversal Z-basis mea-
surements on these qubits. From these Z-basis measure-
ments, we obtain the syndrome bits for all Z-type stabi-
lizer generators in (25) and the measurement outcome of
the logical Z operator on the level-l qubit in (26) through
classical computation described in the Z-basis measure-
ment gadget. These are crucial for detecting badly prop-
agated X-type errors. The verification passes if and only
if all the syndrome bits are trivial and the measurement
outcome m of the logical Z operator is m = 0. If veri-
fication fails, the gadget discards the resulting state and

repeats the encoding circuit U
|0⟩
encode without verification

in the second run. Note that the detection of the Z-type
errors is unnecessary for verifying |0⟩ since multiple Z-
type errors at the end of the encoding circuit may lead
to a logical Z error but do not transform the state, i.e.,
Z |0⟩ = |0⟩.

We check that the above gadget construction satisfies
the fault-tolerance condition defined in (A3) and (A4).
In the case where s = 0, i.e., no fault occurs during the
gadget, the gadget successfully outputs 7 qubits in the
logical state of |0⟩, and thus the conditions (A3) and (A4)
are satisfied. Next, we discuss the case where s = 1, i.e.,
only a single fault occurs in the gadget. If the verification
succeeds, the gadget successfully outputs 7 qubits in the
logical state of |0⟩ in the first run. If the verification
fails in the first run, i.e., an error is detected, then the
gadget discards the resulting state. Then, the gadget
restarts and executes the encoding circuit to prepare 7
qubits in the logical state of |0⟩ in the second run without
verification. In this scenario, since a single fault occurred
in the first run, no fault occurred during the part for
preparing 7 qubits in the logical state of |0⟩ in the second
run, given that we consider the condition where s = 1.
Therefore, the fault-tolerance conditions (A3) and (A4)
of the gadget are satisfied.
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FIG. 13. The level-(l − 1) circuit of the Z-basis measurement gadget. The gadget is implemented by transversal Z-basis
measurements, followed by the decoding algorithm.

5. |T ⟩-state preparation gadget

The |T ⟩-state preparation gadget is constructed as
shown in Fig. 16 (a). The gadget starts with the prepara-
tion of the logical state of |T ⟩ := TH |0⟩ from the 7 qubits

in the state |T ⟩⊗|0⟩⊗6
. We utilize the non-fault-tolerant

encoding circuit U
|ψ⟩
encode to transform an arbitrary state

|ψ⟩ into an logical state of |ψ⟩, as shown in Fig. 16 (b),
presented in Ref. [63]. A single fault that occurs during

or before the encoding circuit U
|ψ⟩
encode leads to an error

with a weight greater than one, as well as for the |0⟩-
state preparation gadget. Thus, verification is essential
to detect such errors for the |T ⟩-state preparation gadget
to satisfy the fault-tolerance conditions given by (A5)
and (A6). For verification, we perform a measurement
of the operator TXT †, followed by error detection. The
measurement of the operator TXT † is needed for verifi-
cation, since the |T ⟩ state we want to prepare is stabilized
by the operator TXT †, i.e.,

TXT †|T ⟩ = |T ⟩ (B4)

Since TXT † = SX is a Clifford operator, we can mea-
sure the logical operator TXT † by performing transver-
sal measurements of T †XT = S†X. This measurement
can be performed with controlled T †XT gates controlled
by the auxiliary A as shown in Fig. 16. The auxiliary
qubit is measured to obtain the measurement outcome
of the operator T †XT . If the measurement outcome of
the operator TXT † is m = 1, indicating that the state
is projected onto the state orthogonal to |T ⟩, then we
consider the verification to be failed, and the gadget dis-
cards the state. To measure the logical operator TXT †

in a fault-tolerant way, we additionally use a qubit as the
flag qubit [64, 65], where the flag qubit corresponds to the
auxiliary qubit B in Fig. 16. A single fault on the auxil-
iary qubit A may result in an error with a weight greater

than one on the code block, which consists of the 7 qubits.
However, in such a case, if the measurement outcome of
the auxiliary qubit B, serving as the flag qubit, is m = 1
in the Z basis, the verification is deemed to have failed,
and the gadget discards the state. To verify that the
state is in the code subspace, we perform error detec-
tion at the end of |T ⟩-state preparation gadget based on
the gate teleportation as shown in Fig. 16. If at least
one non-trivial syndrome bit is detected during the ex-
ecution of the gate teleport protocol, then we consider
the verification to be failed, and the gadget discards the
state. Therefore, the verification is successful only if the
measurement outcome m of TXT † is m = 0, the mea-
surement outcome m of the flag qubit is m = 0, and
all the syndrome bits obtained during the gate telepor-
tation protocol are trivial. If the verification fails, the
gadget discards the resulting state at the point of failure.
Afterwards, the gadget repeats the encoding circuit to
prepare the logical state |T ⟩ without verification in the
second run.
We show that the |T ⟩-state preparation gadget satisfies

the fault-tolerance condition defined by (A5) and (A6).
If s = 0, indicating no fault in the gadget, the gadget
successfully outputs the logical state |T ⟩, satisfying con-
ditions (A5) and (A6) are satisfied. Next, we consider the
case where s = 1, indicating a single fault in the gadget,
and show that condition (A6) is satisfied. We divide the
|T ⟩-state preparation gadget, which may cause a single
fault, into three parts: (1) preparing the logical state of
|T ⟩, (2) measuring the logical operator TXT †, and (3)
error detection. Here, we show that the fault-tolerance
condition is satisfied if a single fault occurs in any of the
three parts.

1. A fault occurs during the preparation of the logical
state |T ⟩.
In this scenario, since we assume that only a single
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FIG. 14. A level-(l − 1) circuit of the Pauli-gate gadget (a),
the H-gate gadget (b), the S-gate gadget (c), the S†-gate
gadget (d), and the CNOT-gate gadget (e).

fault occurs during the gadget, the measurement
of the operator TXT † and the error detection are
performed ideally. If the verification succeeds, the
gadget successfully outputs the logical state |T ⟩. If
the verification fails, the gadget discards the state
obtained in the first run and then re-executes the
encoding circuit in the second run. In this sec-
ond run, the gadget outputs the logical state |T ⟩
without further verification because a single fault
occurred in the first run. After completing the en-

coding circuit in the second run, the gadget success-
fully outputs the logical state |T ⟩. With this gadget
construction, the condition (A6) is satisfied.

2. A fault occurs during the measurement of the log-
ical operator TXT †.

In this case, since there is no fault in the first part
(i) of the gadget, the encoding circuit outputs the
logical state |T ⟩. The problem arises when a single
fault occurs in the auxiliary qubit A, as the fault-
induced error may propagate to the code block of 7
qubits, resulting in an error with a weight greater
than one. However, even if such a fault occurs, the
error resulting from the fault is also propagated to
the auxiliary qubit B, causing a measurement out-
come of m = 1, which can be detected through
verification. For example, if a fault occurs on the
auxiliary qubit A, resulting in a Pauli-X or -Y er-
ror, this error affects the code block, leading to an
error with multiple weights. Subsequently, this er-
ror propagates to the auxiliary qubit B through the
CNOT gates, resulting in a measurement outcome
of m = 1 on qubit B. Therefore, a Pauli error that
produces an error with multiple weights on the code
block can be effectively detected through the verifi-
cation process. If the verification process fails, the
gadget discards the state obtained from the first
run and performs the encoding circuit again in the
second run without verification. This construction
of the gadget ensures that the condition (A6) is
satisfied.

3. A fault occurs during error detection.

Since there are no faults in (i) and (ii) of the gadget,
the state before executing the error detection is a
logical state of |T ⟩. If a single fault occurs that
can be detected by the error detection procedure,
the gadget discards the state. In the second run,
it executes the encoding circuit again, satisfying
the condition (A6). Even if a single fault occurs
that is cannot be detected through error detection,
from (A18), the condition (A6) is also satisfied.

Therefore, the fault tolerance of the |T ⟩-state preparation
gadget defined as (A5) and (A6) is satisfied.

6. Error-correction gadget

The error-correction gadget is constructed as in
Fig. 17. This gadget is based on Knill’s error correc-
tion [38, 39, 41]. The gadget uses two sets of 7 aux-
iliary qubits initialized to the logical state of |0⟩ using
the |0⟩-state preparation gadget, in addition to the input
7 qubits on which we want to perform error correction.
By using these two sets of 7 auxiliary qubits, we perform
quantum teleportation of the input level-l qubit. The two
7-bit outcomes from the Z-basis measurements are fed
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FIG. 15. (a) The level-(l − 1) circuit of the |0⟩-state preparation gadget. (b) The encoding circuit U
|0⟩
encode for preparing the

logical state |0̄⟩ of the Steane code from |0⟩⊗7 presented in Ref. [63].

to the decoding algorithm to calculate the measurement
outcomes of the logical Z, which is the same procedure
explained in the Z-basis measurement gadget. The mea-
surement outcome is used to decide the correction oper-
ation for the quantum teleportation. The fault tolerance
of the EC gadget defined by conditions (A16), (A17),
and (A18) follows from transversality.

Appendix C: Pauli-gate gadgets for quantum LDPC
codes

The Pauli-gate gadget for quantum LDPC codes is in-
tended to perform a logical operation P̄ acting on logical
qubits in a code block of a Pauli-gate operation

P =
K⊗

k=1

Pk ∈ P̃K (C1)

as in (75), where Pk ∈ {I,X, Y, Z} is a Pauli operator
acting on the k-th qubit. The construction of the gadget
is shown in Fig. 18.

A logical Pauli operator P̄k of Pk in (C1) is described
as a tensor product of a N -qubit Pauli operator acting on

physical qubits; thus, P̄ can be described by a N -qubit
Pauli operator as

P̄ =
K⊗

k=1

P̄k =
K⊗

k=1

N⊗

n=1

Pn,k ∈ P̃N , (C2)

where P̄k =
⊗N

n=1 Pn,k, and Pn,k ∈ {I,X, Y, Z} is a Pauli
operator acting on the n-th physical qubit.
When we perform a on-demand Pauli-gate gad-

get (80) for executing a two-register Clifford-gate ab-
breviation (78), we require an on-demand calculation of
(C2). A classical computer receives a bitstring of a 2K-
bit string of the symplectic representation of a K-qubit
Pauli operator P ∈ P̃K in (C1) and outputs a 2N -bit

string of the symplectic representation of P̄ ∈ P̃N in
(C2). The runtime for calculating (C2) can be bounded
in the following. Based on the input 2K-bit string, we ob-
tainK 2N -bit strings, where the k-th 2N -bit string is the
symplectic representation of P̄k. Here, calculating (C2)
corresponds to taking a sum of the K bitstrings as in
(12). Thus, if for n ∈ {1, . . . , N}, each n-th bit can be
calculated simultaneously with O(N) parallel processes,
and the sums of the n-th positions of the K bitstrings
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FIG. 16. (a) The level-(l − 1) circuit of the |T ⟩-state preparation gadget. (b) The encoding circuit U
|ψ⟩
encode for preparing the

logical state
∣∣ψ̄〉 of the Steane code from |ψ⟩⊗7 presented in Ref. [63].
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FIG. 18. A physical circuit of the gadget of the on-demand Pauli gate operation (80), where Pi ∈ {I,X, Y, Z} for i ∈ {1, . . . , N}
is a Pauli operator.

are computed with O(K) parallel processes, i.e., using
O(NK) = O(N2) parallel processes in total, we can per-
form this calculation in runtime

O(log(N)). (C3)

Therefore, the depth of the gadget is bounded by

O(logN), (C4)

where the dominat part is time steps to wait for calcu-
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lating (C3), and the width of the gadget is bounded by

O(N). (C5)
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Abstract. Quantum machine learning using qubit system attracts extreme research interest during the
last decade, as it is does not require fault-tolerant quantum computer at the noisy intermediate-scale quan-
tum era. In general, the theoretical and experimental works so far focus on universal quantum computation
theory and solid state systems, for example superconducting qubits and trapped ions. Meanwhile, photon
featuring long coherent time and convenient operation, has not been well studied in the term quantum
machine learning. Here, we propose the quantum kernel estimation based on boson nature which is fun-
damental for other quantum machine learning protocols. In our experiment, we demonstrate the quantum
kernel estimation using quantum interference which is extinct in photonic systems. Furthermore, we bench-
mark our methods with other classical kernel methods showing quantum kernel can outperform classical
kernel methods at some datasets.

Keywords: quantum machine learning, quantum optics, integrated photonic circuits

1 Introduction

Quantum machine learning is potential advantageous
in noisy quantum computers, for example variational
quantum estimation for quantum Quantum approximate
optimization algorithm for factorization, and quantum
kernel estimation for classification. Besides, quantum
kernel methods can map data points in the original space,
which are hard to recognize, to a high-dimensional feature
space. This nonlinear mapping can extract data features
effectively and help the machine learning tasks. Once
the suitable mapping is performed, it is possible to iden-
tify the hyperplane through a support vector machine [1]
(SVM), according to the inner product of the mapped
data. Such a hybrid classical-quantum model would ben-
efit from the quantum feature maps that utilize the evolu-
tion of quantum systems, which can be hard to simulate
on classical computers, and hence outsource the hardest
part of the computation to the quantum hardware.
In this paper, we give an experimental demonstration

of quantum kernel estimation, where data points are
mapped in the feature space through the unitary evo-
lution of two-boson Fock states (see Fig. 1). Such en-
coding can arbitrarily tune the dimension of the feature
space and provide enough of a non-linearity to achieve
a high classification accuracy with data which are only
non-linearly classifiable. Furthermore, we show that for
given tasks, this algorithm leads to an enhancement in
the performance of quantum kernels with respect to their

∗zhenghao.yin@univie.ac.at

classical counterparts.

2 Photonic quantum kernel estimation

A kernel method relies on a function that maps N in-
put data points xi, from a space X ⊆ Rd into a feature
space H. Here, d is the dimension of each data point.
This is done through a feature map Φ : X → H. Then, a
SVM can be used to produce a prediction function fK :
X → R as fK(x) =

∑
i αiK(x, xi), where these αi coeffi-

cients are obtained by solving a linear optimization prob-
lem. The inputs of the optimization are the labels y and
the matrix obtained by computing the pairwise distances
between data points is Ki,j = K(xi, xj) = ⟨Φ(xj)|Φ(xi)⟩,
the so-called Gram matrix.

In this work, we implement a quantum version of the
kernel method by sampling from the output probability
distribution arising from the unitary evolution of a Fock
input state. The pairwise distances are estimated be-
tween data points, which belong to a class y taking values
+1 or −1. This process is depicted in Fig. 1a. Therefore,
our feature map plugs the data that needs to be classi-
fied into the free parameters defining a unitary evolution
applied to a fixed Fock state of dimension m and whose
sum of occupational numbers is n: x 7→ |Φ(x)⟩ = Ux|ψ⟩.
Here, |ψ⟩ is the encoding state which is free to choose.
Then, as shown in Fig. 1c, the pairwise inner prod-
ucts of the feature points are experimentally evaluated,
as |⟨ψ|U(xi)

†U(xj)|ψ⟩|2. Such unitaries can be effec-
tively implemented by a programmable photonic circuit
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Figure 1: Photonic quantum kernel estimation. a. The photonic quantum kernel maps each data point xi to
be classified from a d-dimensional space into a quantum state |Φ⟩i, living in a Hilbert feature space. In detail, the
classical data xi is encoded into a unitary evolution U(xi) applied on a fixed input state |ψ⟩. After mapping all the
data points in the dataset, we perform the classification finding the hyperplane best separating the classes, i.e. through
a classical support vector machine (SVM). b. Pairs of indistinguishable photons and distinguishable photons show a
different behavior when injected in a Mach-Zehnder interferometer (MZI). c. Estimation of the inner product of two
data points xi and xj by encoding them in two unitaries U(xi) and U(xj).

consisting of an array of Mach-Zehnder interferometers
(MZIs)[2]. At this point, the SVM finds the hyperplane
separating the training data points through the afore-
mentioned optimization process [3, 4] and, at the end,
the binary classification of unknown points x is given by
the following relation:

y = sign

(
N∑
i=1

αiyiK(x, xi)

)
(1)

where αi are, as before, the coefficients optimized in the
training process and yi is the class of the i-th point in the
training. This model is defined implicitly, as the labels
are assigned by weighted inner products of the encoded
data points [5, 6, 7, 8, 9, 10, 11, 12, 13].
If the Fock state contains indistinguishable bosons,

they will exhibit quantum interference, as shown in
Fig. 1b. In this case, the output probability distribu-
tion is given by the permanents of sub-matrices of the
matrix representing the unitary evolution of the input
[14]. More specifically, considering an input configuration
s, the probability of detecting the output configuration
t is given by |per(Us,t)|2/Πm

i si!Π
m
i ti!. Here, per(·) de-

notes the permanent matrix operation, si and ti are the
occupational numbers at the i-th mode and Us,t is the
sub-matrix obtained by selecting the rows/columns cor-
responding to the occupied modes of the input/output
Fock states. On the other hand, if the bosons are
distinguishable, they will not exhibit quantum inter-
ference. In this case the probability will amount to
per(|Us,t|2)/Πm

i si!Π
m
i ti!.

3 Experiment and Results

In our experiment, we adopt a programmable in-
tegrated photonic processor containing laser-written
waveguides and 27 thermal phase phases shifters as
shown in Fig .2a. By arranging the Mach-Zehnder inter-
ferometer, it is able to perform any arbitrary 6x6 unitary
matrices. The two photons are generated by a ppKTP
nonlinear crystal and yield 97% on-chip indistinguishabil-
ity. After evolution on the chip, all the output photons
are detected by 6 superconducting nanowire single pho-
ton detectors and sequentially recorded in 15 different
coincidence counting.

We test the performance of two photonic kernels in sev-
eral different configurations. Firstly, we consider two dif-
ferent inputs, |1, 1, 0, 0, 0, 0⟩ and |0, 0, 1, 1, 0, 0⟩. Second,
we are able to tune the indistinguishability to implement
the quantum kernel and the coherent kernel.

For both input states, we test datasets of four different
sizes: 40, 60, 80 and 100. We use the setup depicted in
Fig.2a to evaluate all of the pairwise products between
the unitaries U(xi)

†U(xj). Hence, |⟨ψ|U(xi)
†U(xj)|ψ⟩|2

is given by the probability of detecting the photons on
the same modes from which they were injected.

For each dataset, we use 2/3 of the data points for the
training of the SVM, and the remaining 1/3 as a test
set. The accuracy is defined as the number of correctly
classified points over the total size of the test set. Let us
note that values lower than 0.5 indicate that the model
was not able to learn the features of the training set and
generalize to unknown data.
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Figure 2: Implementation of photonic quantum kernel estimation. a. Experimental setup consisting of two
parts, the off-chip single photon source and the programmable integrated photonic processor. b. We tested our method
on datasets of different sizes (40, 60, 80, 100) and for two different input states (|1, 1, 0, 0, 0, 0⟩ and |0, 0, 1, 1, 0, 0⟩)
respectively.

In Fig. 2b, we show the test accuracies obtained by
injecting two input states for four different dataset sizes,
where the quantum kernel performs significantly bet-
ter than the coherent kernel at both experiments. The
dashed lines indicate the results of numerical simulations,
while the solid lines indicate experimental results.

4 Discussion

In this work, we show the first experimental demon-
stration of quantum kernel estimation, based on the uni-
tary evolution of Fock states through an integrated pho-
tonic processor. In our implementation, data is mapped
into a feature space by encoding it into the evolution of
a fixed two-photon input state over six modes. The sam-
pled output distribution is then fed into an SVM, which
performs the classification. To achieve this, we adopt
an integrated photonic processor realized by femtosecond
laser writing in a borosilicate glass substrate [15].
Our method can find a wide range of promising near-

term applications in quantum machine learning tasks
such as information retrieval, natural language process-
ing and medical image classification [16, 17, 18, 19], where
kernel methods have been proposed a foundational key-
stone [20]. Our experimental results demonstrate that
our quantum-enhanced kernels can outperform classical
ones on datasets resulting from quantum observations, it
also opens the door to hybrid methods where photonic
processors are used to enhance the performance of deep
neural networks.
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In recent years, machine learning has had a remarkable impact on standard computation, with
applications ranging from scientific to everyday-life scopes. Meanwhile, as the complexity of the
addressed task grows, energy consumption and computational power requirements become a bottle-
neck. In this context, it has been shown that quantum (or quantum-inspired) computation might
lower the amount of required resources. However, whether such enhancements can be achieved with
state-of-the-art quantum technologies and for practically relevant tasks is still an open question.
Here, we demonstrate a kernel method on a photonic integrated processor to perform a binary clas-
sification task, by exploiting quantum interference. We benchmark our protocol against standard
algorithms and show that it outperforms them for the given tasks. A significant improvement with
respect to standard algorithms is shown, even in a regime that does not display quantum interference
and exploits only the coherence of single photons. This implies that we do not need entangling gates
and can readily raise the dimension of our system through additional circuit modes and/or injected
photons. Our result opens the way to more efficient computing algorithms and for the formulation
of tasks where quantum effects enhance the effectiveness of standard methods.

INTRODUCTION14

The past decades have witnessed a swift development15

of technologies based on quantum mechanical phenom-16

ena, which have opened up new perspectives in a wide17

spectrum of applications. These range from the realiza-18

tion of a global-scale quantum communication network,19

the Quantum Internet [1, 2], to the simulation of quan-20

tum systems [3], to quantum computing [4]. In particu-21

lar, the interest towards the last field has been fueled by22

some milestone discoveries, such as Shor’s factorization23

and Grover’s search algorithm [5, 6], which have promised24

that quantum processors can outperform their classi-25

cal counterparts. However, a clear advantage of quan-26

tum computation has been experimentally demonstrated27

only recently and on different computational tasks, boson28

sampling [7–12] and random circuit sampling [13], which29

do not have clear practical applications.30

Given these premises, it is crucial to investigate the31

tasks in which quantum computing can bring added value32

and enhance the operation of classical computers. More-33

over, the question is whether this can be achieved for34

problems that are now within the reach of state-of-art35

∗ zhenghao.yin@univie.ac.at
† iris.agresti@univie.ac.at
‡ philip.walther@univie.ac.at

technology, where only noisy intermediate-scale quan-36

tum computers are available [14, 15]. In this context,37

a flurry of interest has been devoted to the open ques-38

tion of whether the new paradigm of quantum comput-39

ing can have an impact on machine learning [16–18],40

which has revolutionized classical computation, granting41

new possibilities and changing our everyday lives, from42

email filtering to artificial intelligence. The two main43

directions that have been investigated are, on one side,44

whether quantum computation could improve the effi-45

ciency of the learning process, allowing us to find better46

optima with the need of a lower number of inquiries [19–47

22] and, on the other, how quantum behaviours can en-48

hance the expressivity of the input encoding, exploiting49

correlations between variables that are hard to reproduce50

through classical computation [23, 24]. In particular, re-51

garding the latter aspect, a straightforward application52

of quantum computing on kernel models has become ev-53

ident. Kernel methods are widely used tools in machine54

learning [25, 26], that base their functioning on the fact55

that patterns for data points, which are hard to recog-56

nize in their original space, can become easy to identify57

once nonlinearly mapped to a (high-dimensional) feature58

space. Once the suitable mapping is performed, it is pos-59

sible to identify the hyperplane which best separates the60

classes of feature data points, through a support vector61

machine [27] (SVM), according to the inner product of62

the mapped data. Let us note that the only part of the63
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FIG. 1. Photonic quantum kernel estimation. a. The photonic quantum kernel maps each data point xi to be classified
from a d-dimensional space into a quantum state |Φ⟩i, living in a Hilbert feature space. In detail, the classical data xi is encoded
into a unitary evolution U(xi) applied on a fixed input state |ψ⟩. This implies |Φ⟩i = U(xi)|ψ⟩. After mapping all the data
points in the dataset, from the inner pairwise products, we perform the classification finding the hyperplane best separating
the classes, i.e. through a classical support vector machine (SVM), according to Eq. (1). b. Pairs of indistinguishable photons
and distinguishable photons show a different behaviour when injected in a Mach-Zehnder interferometer (MZI). Here, input
states 11 and 11′ indicate, respectively, two indistinguishable and distinguishable photons being injected in the circuit and
being detected at the output modes. c. Estimation of the inner product of two data points xi and xj by encoding them in
two unitaries U(xi) and U(xj). The inner product ⟨ϕj |ϕi⟩ amounts to ⟨ψ|U†(xi)U(xj)|ψ⟩. This is equivalent to projecting the
evolved state U†(xj)U(xi)|ψ⟩ onto |ψ⟩. Each box represents a programmable MZI with two free parameters (namely a beam
splitter with tunable reflectivity and phase), as shown in b.

model that is trained is the SVM, whose training and64

resulting classification can be performed efficiently, once65

the inner products are available. Hence, an interesting66

question is whether using a quantum apparatus to per-67

form the data mapping and evaluate the inner products68

among the resulting feature points can lead to an en-69

hanced performance. Such a hybrid classical-quantum70

model would benefit, on one hand, from the quantum71

feature maps that result from the evolution of quantum72

systems (which can be hard to simulate on classical com-73

puters) and, on the other, it would outsource the hard-74

est part of the computation to the quantum hardware.75

This question was theoretically answered in the affirma-76

tive by [28], where a machine learning task inspired by77

cryptography was constructed that is provably hard for78

classical computers to learn and can be solved efficiently79

with a quantum kernel. However, the implementation of80

this task remains far out of reach for current experimen-81

tal capabilities. Moreover, a risk that one encounters in82

quantum kernel estimation is that, once the feature space83

is too large, all data points are mapped into orthogonal84

states, resulting in an ineffective classification. Hence, a85

moderately-sized quantum feature space can prove more86

suitable, to preserve the similarity among data belonging87

to the same class.88

In this paper, we give an experimental demonstra-89

tion of quantum kernel estimation, where data points are90

mapped in the feature space through the unitary evolu-91

tion of two-boson Fock states (see Fig. 1). Such encoding92

allows us to arbitrarily tune the dimension of the feature93

space and, even for relatively small dimensions, it pro-94

vides enough of a non-linearity to achieve a high classi-95

fication accuracy with data which are only non-linearly96

classifiable.97

Furthermore, we show that for given tasks, this algo-98

rithm leads to an enhancement in the performance of99

quantum kernels with respect to their classical counter-100

parts. These tasks were selected by maximizing the so-101

called geometric difference, which measures the separa-102

tion in performance between a pair of kernels [29]. To ex-103

perimentally demonstrate this method, we exploit a pho-104

tonic platform and, in particular, an integrated photonic105

processor [30] where we inject two-boson Fock states to106

map the data to be classified (see Fig. 1a). This photonic107

platform is particularly suitable for this task, as it allows108

us to encode and manipulate our input data with high109

fidelity.110

To benchmark our enhanced performance, we compare111
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FIG. 2. Classification tasks for photonic kernel methods. The datasets are randomly generated and consist in d-
dimensional vectors, with entries between 0 and 1. Then, we randomly assign labels to each point as belonging to class +1 or
-1 and we test the ability of our photonic kernels, displaying and not displaying quantum interference (respectively indicated
as quantum kernel and coherent kernel), to correctly classify the data. This is quantified by the accuracy of our models, which
we indicate as aQ and aC .

our classification accuracies to the case in which the pho-112

tonic inputs display no quantum interference, that is us-113

ing distinguishable photons [31]. We also compare to114

conventional kernels, including Gaussian and polynomial115

kernels [25], optimizing their performance by using a grid116

search over their hyperparameters. We show that for117

given tasks, both the photonic kernels, with and without118

quantum interference, outperform standard methods.119

PHOTONIC QUANTUM KERNEL ESTIMATION120

A kernel method relies on a function that maps N in-121

put data points xi, on which we wish to perform binary122

classification, from a space X ⊆ Rd into a feature space123

H. Here, d is the dimension of each data point. This is124

done through a feature map Φ : X → H. Then, a SVM125

can be used to produce a prediction function fK : X → R126

as fK(x) =
∑

i αiK(x, xi), where these αi coefficients127

are obtained by solving a linear optimization problem.128

The inputs of the optimization are the labels y and the129

matrix obtained by computing the pairwise distances be-130

tween data points is Ki,j = K(xi, xj) = 〈Φ(xj)|Φ(xi)〉,131

the so-called Gram matrix (for further information about132

kernel methods, see Supplementary Note 1).133

In this work, we implement a quantum version of the134

kernel method, in which the aforementioned pairwise dis-135

tances between data points, which belong to a class y tak-136

ing values +1 or −1, are estimated by sampling from the137

output probability distribution arising from the unitary138

evolution of a Fock input state. This process is depicted139

in Fig. 1a. Therefore, our feature map plugs the data140

that needs to be classified into the free parameters defin-141

ing a unitary evolution applied to a fixed Fock state of142

dimension m and whose sum of occupational numbers143

is n: x 7→ |Φ(x)〉 = Ux|ψ〉. Here, |ψ〉 is the encod-144

ing state which is free to choose. Then, as shown in145

Fig. 1c, the pairwise inner products of the feature points146

are experimentally evaluated, as |〈ψ|U(xi)
†U(xj)|ψ〉|2.147

Such unitaries can be effectively implemented by a pro-148

grammable photonic circuit consisting of an array of149

Mach-Zehnder interferometers (MZIs)[32]. Hence, the di-150

mension of the feature Hilbert space H will be
(
n+m−1

n

)
.151

At this point, the SVM finds the hyperplane separating152

the training data points through the aforementioned op-153

timization process [33, 34] and, at the end, the binary154

classification of unknown points x is given by the follow-155

ing relation:156

y = sign

(
N∑
i=1

αiyiK(x, xi)

)
(1)

where αi are, as before, the coefficients optimized in the157

training process and yi is the class of the i-th point in the158

training. This model is defined implicitly, as the labels159

are assigned by weighted inner products of the encoded160

data points [35–43].161

If the Fock state contains indistinguishable bosons,162

they will exhibit quantum interference, as shown in163

Fig. 1b. In this case, the output probability distribu-164

tion, which in general is hard to compute on classical165

processors, is given by the permanents of sub-matrices166

of the matrix representing the unitary evolution of the167

input [44]. More specifically, considering an input con-168

figuration s, the probability of detecting the output con-169

figuration t is given by |per(Us,t)|2/Πm
i si!Π

m
i ti!. Here,170

per(·) denotes the permanent matrix operation, si and ti171

are the occupational numbers at the i-th mode and Us,t172

is the sub-matrix obtained by selecting the rows/columns173

corresponding to the occupied modes of the input/output174

Fock states. On the other hand, if the bosons are distin-175

guishable, they will not exhibit quantum interference and176

their output distribution is always efficiently computable177

[7, 10, 11, 45]. In this case the probability will amount178

to per(|Us,t|2)/Πm
i si!Π

m
i ti!.179

In the following, we will refer to a kernel implemented180

with indistinguishable bosons as a quantum kernel, KQ,181

and with distinguishable ones as a coherent kernel, KC .182
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FIG. 3. Implementation of photonic quantum kernel estimation. a. Experimental setup consisting of two parts,
the off-chip single photon source and the programmable integrated photonic processor. The frequency degenerate photons are
generated by a type-II spontaneous parametric down-conversion source. Afterwards, the two photons are made indistinguishable
in their polarization and arrival time. Then, we inject these photons in two modes of an integrated photonic processor with
6 input/output modes [30]. Detection is performed by superconducting nanowire single-photon detectors (SNSPDs). The
degree of indistinguishability can then be tuned through a delay line, changing their relative temporal delay. b. Probability
distribution of photon detection events. We show two instances of the experimental photon detection probability, compared
to the theoretical calculation. The quantum and coherent kernel measurements are obtained respectively by injecting two
indistinguishable and distinguishable photons into the third and fourth modes of the circuits, i.e. |0, 0, 1, 1, 0, 0⟩. The x axis
shows all the circuit channels which output two photons simultaneously. Thus, all 15 possible photon detection configurations
are accessible.

CLASSIFICATION TASK183

To select a classification task that would benefit from184

the described model, we use a quantifier called the ge-185

ometric difference [29], which compares two kernels Ka186

and Kb, which we will denote as ga,b. Given a set of data187

points {xi|xi ∈ X} without any labels, the geometric dif-188

ference provides the binary labels {yi} that maximise the189

expected difference in prediction error between two ker-190

nels – in our case, we consider KQ and KC , as depicted191

in Fig. 2. Therefore, we obtain this optimal labelling by192

solving the following minimisation problem:193

y⋆ = arg min
y∈Rd

(
sKQ

(y)

sKC
(y)

)
(2)

where sK(y) = yTKy is the model complexity of the194

pair K and y, i.e. the number of features that the model195

needs to make accurate predictions (see the Supplemen-196

tary Note 2). To saturate the following inequality [29]:197

∃y · sKC
(y) ≤ g2CQ sKQ

(y) (3)

we take yTK−1
C y = g2CQy

TK−1
Q y, and obtain the relation198

gCQ =

√∥∥∥√KQ (KC)
−1√

KQ

∥∥∥
∞

(4)

where ‖·‖∞ denotes the spectral norm and gCQ is the199

so-called geometric difference.200

We can now use Eq. (4) to generate the classification201

task that, given a pair of kernels KQ,KC and a set of202

data points {xi}, produces the labels {yi} that maximise203

the difference in prediction error bound. This can be204

done through the following procedure: (i) evaluate the205

Gram matrices KQ and KC over a set of non-labelled206

data points {xi}; (ii) compute the positive definite ma-207

trix M =
√
KQ (KC)

−1√
KQ; (iii) compute the eigen-208

values and eigenvectors of M by spectral decomposition;209

(iv) find the maximum eigenvalue g and its corresponding210
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eigenvector v; (v) assign the labels y =
√
KQv. From a211

practical point of view, we start with the two aforemen-212

tioned kernels, KC and KQ, and then, by maximizing213

the geometric difference, we find the tasks for which the214

latter brings an enhanced accuracy of the classification.215

For more details regarding the algorithm to define the216

classification task, see the Supplementary Note 4. Let us217

note that the implemented tasks constitute instances of218

problems that can be naturally implemented with high219

accuracy on our quantum platform. As such they consti-220

tute a first stepping stone towards the identification of221

practical tasks for which quantum machine learning can222

enhance the performance of classical models.223

EXPERIMENT224

Our experimental setup consists of two parts, a single-225

photon source generating the input states and a pro-226

grammable integrated photonic processor depicted in227

Fig. 3a. First, to generate the input state, we use a228

type II spontaneous parametric down-conversion source,229

which generates frequency degenerate single-photon pairs230

at 1546 nm in a periodically poled K-titanyl phosphate231

crystal. The two photons are then made indistinguish-232

able in their polarization and arrival time, respectively,233

via wave retarders and a delay line, which we also use to234

tune the degree of indistinguishability of the generated235

photons.236

For the implementation of photonic kernels, which map237

our input data to a feature space, we require an appa-238

ratus able to perform arbitrary unitary transformations239

on a given input state. As mentioned before, our feature240

map sends each data point xi onto the state resulting241

from the evolution U(xi) of a fixed input Fock state |ψ〉.242

Then, for the application of the SVM, which finds the243

best hyperplane separating the data, we need to evalu-244

ate the inner products between all of the points xi, xj in245

the feature space, which amounts to 〈ψ|U(xi)
†U(xj)|ψ〉.246

This implies that, if we take |ψ〉 as a Fock state of n247

photons over m modes, the inner product 〈Φ(xi)|Φ(xj)〉248

is given by projecting the evolved state U(xi)
†U(xj) |ψ〉249

onto |ψ〉.250

To this aim, we employ an integrated photonic pro-251

cessor [30] fabricated on a borosilicate glass substrate,252

in which optical waveguides are inscribed through fem-253

tosecond laser writing [46–48]. The circuit features six in-254

put/output modes and it is based on a rectangular mesh255

of 15 programmable MZIs [32], as depicted in Fig. 3a.256

Each interferometer is equipped with two thermal phase257

shifters [49] in order to provide tunable reflectivity and258

phase. By properly choosing the values of the phase259

shifters, such arrangement allows us to perform any uni-260

tary transformation on the input photon states. Given261

this property, our device is also referred to as a universal262

photonic processor. Design, fabrication and calibration263

of the integrated photonic circuit are described in [30].264

Specifically, the data were encoded in the values of the265

phase shifts, as follows: xi = (x1i , x
2
i , ..., x

30
i ) → θi =266

(2πx1i , 2πx
2
i , ..., 2πx

30
i ), where θi are the phase shifts in-267

troduced by the phase shifters of a universal interfer-268

ometer. This implies that, in principle, we would need269

a sequence of two of such circuits (as in the scheme of270

Fig. 1c), to first implement U†(xi) and then U(xj) on our271

inputs. However, in our implementation, we adopt only272

one universal circuit and directly implement the unitary273

corresponding to the product U(xi)
†U(xj). This reduces274

the experimental complexity and the propagation losses275

within the circuit itself.276

At the output, detection is performed by super-277

conducting nanowire single-photon detectors (SNSPDs).278

Due to the fact that these detectors are not photon-279

number resolving, we post-select the output events to280

those featuring two detectors clicking the collision-free281

events (see Supplemental Information Note 3). To test282

the role of quantum interference in the accuracy of the283

classification, we tune the indistinguishability of the two284

photons by changing their relative temporal delay. An285

instance of the probability distribution of the same uni-286

tary is shown in Fig. 3b, indicating the high experiment287

fidelity. The optimal classification task is chosen for each288

data set according to the algorithm explained in the pre-289

vious section.290

RESULTS291

We test the performance of two photonic kernels in292

several different configurations. Firstly, we consider293

two different inputs, |ψL〉 = |1, 1, 0, 0, 0, 0〉 and |ψC〉 =294

|0, 0, 1, 1, 0, 0〉. This amounts to either injecting the pho-295

tons into the first two modes or the central two modes.296

Second, we are able to tune the indistinguishability to297

implement the quantum kernel and the coherent kernel298

(see Supplementary Note 5). The maximal achieved in-299

distinguishability between the photons is 0.9720±0.0044,300

by measuring the on-chip Hong-Ou-Mandel interference301

[50].302

For both input states, we test datasets of four dif-303

ferent sizes: 40, 60, 80 and 100. We then use the304

setup depicted in Fig.3a to implement all of the pair-305

wise products between the unitaries U(xi)
†U(xj). Hence,306

|〈ψ|U(xi)
†U(xj)|ψ〉|2 is given by the probability of de-307

tecting the photons on the same modes from which they308

were injected.309

For each size N , we perform N(N − 1)/2 unitaries to310

compute all of the inner products. The distance between311

the unitaries experimentally realized and the target ones312

can be estimated as
∑

i

√
P theo
i · P exp

i , where P exp
i is313

the experimental detection frequency for the i-th out-314

put configuration, while P theo
i is the one estimated based315

on the theory[51]. The mean fidelity of all datasets is316
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a

c

b

FIG. 4. Experimental classification accuracies. a-b. We tested our method on datasets of different sizes (from 40 to 200)
and for two different input states (|1, 1, 0, 0, 0, 0⟩ and |0, 0, 1, 1, 0, 0⟩) respectively. For each dataset, 2/3 of the datapoints were
used for training the support vector machine (SVM) and 1/3 for test. c. The average classification accuracies on 5 different sets
for the quantum kernel (blue curves) and the coherent (orange curve) kernel, along with the following computational kernels:
Gaussian (grey curve), polynomial (yellow) and linear (purple). The dashed line indicates the results of numerical simulations,
while the solid ones the experimental results. The error bar shows the standard deviation of the classification accuracies on 5
datasets for all the kernels.

0.9816±0.0148 and 0.9934±0.0048, for the quantum ker-317

nel and coherent kernel respectively (for additional de-318

tails regarding intermediate degrees of indistinguishabil-319

ity, see Supplementary Note 5). For each dataset, we use320

2/3 of the data points for the training of the SVM, and321

the remaining 1/3 as a test set. The accuracy is defined322

as the number of correctly classified points over the total323

size of the test set. Let us note that values lower than 0.5324

indicate that the model was not able to learn the features325

of the training set and generalize to unknown data.326

In Fig. 4a and b, we show the test accuracies obtained327

by injecting two input states for four different dataset328

sizes, where the quantum kernel performs significantly329

better than the coherent kernel at both experiments. In330

Fig. 4c, we report the average test accuracy obtained for331

five different datasets with the same size, varying the332

dataset sizes from 40 to 100 as well. Moreover, the re-333

sults obtained with the quantum kernel (blue curves) and334

the coherent kernel (orange curve) are compared with the335

following numerical kernels: Gaussian (grey curve), poly-336

nomial (yellow) and linear (purple). For the latter three337

kernel methods, we consider the maximal accuracy ob-338

tained by optimizing their hyperparameters (for further339

details, please see the Supplemental Information Note340

4). Although the task is built only comparing the per-341

formance of the kernels based on indistinguishable and342

distinguishable photons, the obtained accuracy is higher343

also than commonly used classical kernels [25, 26]. The344

dashed lines indicate the results of numerical simulations,345

while the solid lines indicate experimental results.346

DISCUSSION347

In this work, we show the first experimental demon-348

stration of quantum kernel estimation, based on the uni-349

tary evolution of Fock states through an integrated pho-350

tonic processor. In our implementation, data is mapped351

into a feature space by encoding it into the evolution of352

a fixed two-photon input state over six modes. The sam-353

pled output distribution is then fed into an SVM, which354

performs the classification. To achieve this, we adopt355

an integrated photonic processor realized by femtosec-356

ond laser writing in a borosilicate glass substrate [30].357

It is noteworthy that, although our apparatus only fea-358

tures linear optical elements, i.e. phase shifters and beam359

splitters, the chosen encoding produces a sufficient non-360

linearity to achieve high accuracy in the classification of361
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non-linearly separable datasets. This constitutes a dif-362

ference of our method from implementations on super-363

conducting qubits platforms, where entangling gates are364

typically needed for quantum kernel estimation [29, 52].365

Furthermore, in our case, it is not necessary to increase366

the dimension of the feature Hilbert space to achieve a367

good accuracy. This is a crucial feature which allows us368

to avoid the typical difficulty of quantum kernels whereby369

all data points are encoded in orthogonal states, leading370

to null inner products and, therefore, to an ineffective371

classification [53]. Another novelty of our approach lies372

on the fact that we are not using the photonic platform373

to reproduce classical kernels, as in [54], because our ker-374

nel function is given by the natural evolution of bosons375

through a quantum circuit.376

The task we implement is artificially designed by ar-377

bitrarily assigning binary labels to randomly generated378

data points, which we encode in the phase shifts intro-379

duced by an optical circuit. To assign the labels, we380

exploit as our metric the so-called geometric difference.381

This allows us to select the task for which the presence382

of quantum interference yields a better classification ac-383

curacy with respect to the case where the photons con-384

stituting the input state are fully distinguishable (and385

hence no interference is displayed). Despite the fact that386

the geometric difference compares the performance of a387

pair of kernels ( in our case kernels implemented with388

indistinguishable versus distinguishable bosons), the se-389

lected tasks are performed significantly better by both390

the bosonic kernels than commonly used kernels, such391

as the Gaussian, polyonomial and linear ones. Our re-392

sults indicate that, for these tasks, a kernel estimation393

performed on photonic hardware enhances the overall394

performance, even for medium-size problems, which are395

reachable by the state-of-art of quantum technologies.396

Moreover, the possibility of using distinguishable bosons397

to have a (smaller) performance enhancement represents398

an intriguing possibility, as it circumvents the difficulty399

of single photons states generation. This strategy can400

prove especially convenient to reduce the impact of pho-401

ton losses on the experimental time required to collect402

significant statistics.403

Despite being overshadowed by deep neural networks,404

kernels are still widely used in a large number of tasks,405

due to their simplicity, and ability to learn from small406

datasets [55, 56]. Indeed, they have also had a recent re-407

vival in classical machine learning, where they have been408

used as a theoretical framework that subsumes state-of-409

the-art neural network architectures such as transform-410

ers [57? ]. Another recent trend, consists in merging411

neural networks and kernels, by introducing kernel-like412

layers inside the structure of neural networks. Notable413

examples are attention modules in natural language pro-414

cessing, and Hopfield layers [58].415

Our method can find a wide range of promising near-416

term applications in quantum machine learning tasks417

such as information retrieval, natural language process-418

ing and medical image classification [59–62], where ker-419

nel methods have been proposed a foundational key-420

stone [63]. Our experimental results demonstrate that421

our quantum-enhanced kernels can outperform classical422

ones on datasets resulting from quantum observations, it423

also opens the door to hybrid methods where photonic424

processors are used to enhance the performance of deep425

neural networks.426

Moreover, these results open the way for further in-427

vestigations related to the non-linearities that can be428

achieved through photonic platforms [64, 65], which are429

crucial elements for machine learning purposes and, in430

particular, for neuromorphic computation models, such431

as reservoir computing [66, 67]. This may be of partic-432

ular importance when considering difficulties related to433

energy consumption, as it has been proved that partially434

optical networks can be adopted to reduce the overall en-435

ergy requirements with respect to electronic ones [68]. In436

addition, we envisage further studies related to the com-437

bination of this kind of non-linearity with those brought438

by the implementation of feedback loops, as in the case of439

quantum memristor [69] and the exploitation of quantum440

interference in the implementation of feature maps.441
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METHODS725

The two photon input states are generated by a type-II726

spontaneous parametric down-conversion source, which727

generates frequency degenerate single-photon pairs at728

1546 nm via a periodically poled K-titanyl phosphate729

(ppKTP) crystal. Afterwards, the two photons are made730

indistinguishable in their polarization, which is rotated731

through paddles, and arrival time, through a delay line,732

which we use also to tune the degree of indistinguisha-733

bility of the generated photons. Then, we inject these734

photons in two modes of an integrated photonic proces-735

sor with 6 input/output modes [30]. This circuit features736

27 thermal phase shifters and its architecture follows the737

rectangular scheme presented in [32], to implement ar-738

bitrary unitary evolution on any input Fock state. The739

current source is supplied to each phase shifter indepen-740

dently to avoid electrical crosstalk. In the end, detection741

is performed by superconducting nanowire single-photon742

detectors (SNSPDs) housed in a 1K cryostat. We post-743

select the detected events to the cases in which two detec-744

tors click simultaneously in a temporal window of 1 ns.745

A time tagger with a 15.63 ps resolution is used to pro-746

cess the real-time coincidence counting for all 15 post-747

selection patterns.748
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Abstract. In quantum mechanics, measuring a general observable involves statistical uncertainty, which
can be reduced by averaging samples. Minimizing the number of samples is crucial in future quantum
computing, especially when we desire to explore numerous observables in large systems. This work presents
an adaptive extension of the quantum gradient estimation algorithm to estimate the expectation values
of M observables within root mean squared error ε using O(ε−1

√
M logM) queries to a state preparation

oracle. That is, the method achieves Heisenberg-limited scaling O(ε−1) and the sublinear scaling with M ,
offering a resource-efficient implementation with space overhead ofO(M) and avoiding numerical instability
in quantum signal processing techniques for large-scale tasks.

Keywords: Quantum computation, Quantum metrology, Observable estimation

1 Overview and summary

Achieving quantum enhancement in the estimation of
unknown parameters is a fundamental goal in quantum
technology. In particular, the gap between the standard
quantum limit (SQL) and the Heisenberg limit (HL) in
such estimation tasks has been getting a significant focus
since the late 20th century. The SQL represents the scal-
ing of measurement counts asO(1/ε2) for target accuracy
ε, while the HL scales as O(1/ε) due to quantum uncer-
tainty relations that are usually quantified by a natural
metric called the mean squared error (MSE). The HL can
theoretically be reached using entanglement or coherence
in quantum probes without noise [14, 15], while its exper-
imental verification has not been realized for a long time
until the quantum phase estimation procedure by Higgins
et al. with use of a novel adaptive measurement [19].
The quest for quantum-enhanced measurement ex-

tends to multiple observables, a topic crucial for var-
ious applications of quantum computing like quantum
simulation [26, 1, 8, 13, 3, 39], quantum machine learn-
ing [4, 25, 20], and quantum finance [33, 6]. Although
modified amplitude estimation algorithms [34, 37, 36] can
individually achieve HL scaling for multiple observables,
we here seek a protocol that achieves both the HL scaling
and the sublinear scaling with respect to M in estimat-
ing all of M observables. Some approaches based on the
gradient estimation [22] have reported nearly Heisenberg-
limited scaling with logarithmic corrections [35, 21], but
no method has yet achieved ultimate precision scaling as
defined by the HL. Specifically, existing works often rely
on confidence intervals to quantify the estimation error,

∗wkai1013keio840@keio.jp
†yamamoto@appi.keio.ac.jp
‡nyoshioka@ap.t.u-tokyo.ac.jp

which do not bound the worst-case scenario as effectively
as MSE. As well known in the field of quantum metrol-
ogy [15, 18], the MSE successfully bounds other measures
of uncertainty [2], while the converse does not hold in
general. Considering that any quantum algorithm to es-
timate observables queries the state preparation oracle
whose complexity usually scales with the target system
size, it is crucial to design an estimation algorithm that
achieves the Heisenberg-limited scaling in terms of MSE.

Driven by such a situation, we make a significant con-
tribution to multiple observables estimation of number
M with root MSE of ε. Concretely, we explicitly con-
struct an adaptive estimation scheme as summarized as
Algorithm 1 that satisfies the following features (each
correspond to Theorem 1, 2, and 3, respectively):

• Heisenberg-limited scaling with sublinear scaling on
M . The proposed method achieves the pure HL
scaling with root MSE ε as O(ε−1

√
M logM) in

query to the state preparation. Also, this scaling
indicates a nearly quadratic improvement regarding
M , compared to the (modified) quantum amplitude
estimation [5, 24, 32, 34, 37, 36].

• Constant space overhead. The quantum circuits
in the proposed scheme require additional O(M)
qubits, which is independent of ε.

• Robustness in high-precision regime. When the
high precision ε ≪ 1 is required, the quantum
circuits in our method have at most O(log(1/ε))
parameterized gates for QSVT [13], which can be
tuned by O(polylog(1/ε)) classical computation,
while the previous method [35] requires to tune
O(1/ε) gates with O(poly(1/ε)) classical computa-
tion. This significant reduction in classical compu-
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Table 1: The development of quantum phase estimation (QPE) and quantum gradient estimation (QGE).

Phase estimation Gradient estimation

Non-adaptive

• Large space overhead • SQL O(1/ε2)
Textbook style [31] Jordan, Gilyén et al. [22, 12]

Adaptive (or Iterative)

• Constant space overhead • HL O(1/ε)
Higgins et al. [19, 18] Our work

Further applications of the HL scheme [23, 11, 10, 17] Future work

tation allows us to avoid the numerical instability
problem [16, 7, 9, 38, 30] that spoils the quantum
enhancement.

In our algorithm, we sample from an O(M + log2 d)-
qubit circuit with an alternating sequence of a global in-
teraction to encode the expectation values of target ob-
servables and a controlled rotation over the target log2 d-
qubit system (and some ancillary system). The global
interaction and the total circuit length are adaptively
adjusted to read out the expectation values in high reso-
lution, keeping the space overhead small. Then, we classi-
cally process the samples similarly to the adaptive phase
estimation algorithms [18, 23, 11] and use the processing
results to construct the next quantum circuit. The sub-
linear scaling onM comes from the spectral amplification
process [27, 13] embedded in the global interaction. Im-
portantly, the proposed algorithm is the first adaptive
extension of quantum gradient estimation [22, 12], which
allows us to evaluate the M -dimensional gradient of a
real scalar function f(x) on RM with sublinear scaling
onM ; see Table 1 for the comparison with phase estima-
tion algorithms.
We remark that the classical computation in the third

point is required for the circuit construction, especially
for quantum signal processing (QSP) [29, 28]. QSP pro-
vides a systematic way to operate a 1-qubit system under
a wide range of polynomial functions of degree n, using
O(n) parameterized quantum gates. In the framework
of QSP (or its extension QSVT [13]), we need to tune
the parameterized gates classically for a desired polyno-
mial. Although finding this parameter for a degree-n
polynomial can be achieved in O(poly(n)) classical com-
putation time, it exhibits numerical instability for large
n, posing a central challenge in the practical application
of QSVT [30]. In the previous method for multiple ob-
servables estimation [35], the number of parameterized
gates is given by n = Õ(

√
M/ε), leading to a quite large

runtime in classical computation e.g., ∼M/ε2 [sec] when
we use the method in Ref. [9] (assuming it works in such
a large n). In contrast, our method requires tuning only
O(

√
M log(M/ε)) gates under a certain condition by par-

tially using a special polynomial whose parameters are
analytically derived.

Algorithm 1 Adaptive observables estimation

Input: log2 d-qubit state preparation unitary Uψ; ob-

servables {Oj}Mj=1 with the spectral norm ∥Oj∥ ≤ 1

such that M > O(log d) holds; confidence parameter

c ∈ (0, 3/8(1 + π)2]; target root MSE ε ∈ (0, 1).

1: Set a fixed precision parameter p := 3 and temporal

estimates ũ
(0)
j := 0 for all j.

2: for q = 0, 1, ..., qmax := ⌈log2(1/ε)⌉ do

3: Measure O(logM/δ(q)) approximate copies of the

probing state |Υ(q)⟩ in Eq. (1) after p-qubit inverse

quantum Fourier transformations.

Here, δ(q) := c/8qmax−q is a failure probability.

4: Set the coordinate-wise median of the measure-

ment outputs as g
(q)
j .

5: Update ũ
(q+1)
j := ũ

(q)
j + π2−qg

(q)
j

6: Truncate ũ
(q+1)
j in [−1, 1]

7: end for

8: return final estimates ũj := ũ
(qmax+1)
j

2 Main idea of algorithm

Let us state the concrete problem setup and provide
the main idea of the proposed algorithm (see Algorithm 1
for the pseudocode). We consider estimating quantum
expectation values of given d-dimensional M Hermitian
operators {Oj}Mj=1 (∥Oj∥ ≤ 1) regarding a quantum state
|ψ⟩, which is prepared by a state preparation oracle Uψ.
Here, the observables are assumed to be accessed by some
block-encoding unitaries. The key idea of the proposed
scheme is to adaptively prepare the following probing
state, from which the approximated expectation values
can be extracted via gradient estimation algorithm [22]:

|Υ(q)⟩ := 1√
2pM

∑
x∈GM

p

e2πi2
p ∑M

j=1 xj2
qπ−1⟨Oj−ũ(q)

j 1⟩ |x⟩

(1)
where q = 0, 1, · · · , ⌈log2(1/ε)⌉ denotes a iteration step,
p denotes a fixed precision parameter, ⟨Oj⟩ := ⟨ψ|Oj |ψ⟩
and GMp is a set of 2pM grid points in RM . In the tech-
nical manuscript, we will show that p = 3 is sufficient for
our algorithm to successfully work. Because there is a
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one-to-one correspondance between GMp and 2pM -qubit
computational base, we label the computational basis by

x = (x1, ..., xM ) ∈ GMp . The quantity ũ
(q)
j ∈ [−1, 1] are

temporal estimated values for ⟨Oj⟩ at the qth iteration.
As rigorously shown in Ref. [12], the gradient estima-

tion algorithm [22] can simultaneously extract the val-

ues 2qπ−1 ⟨Oj − ũ
(q)
j 1⟩ from the quantum state (1) with

an additive error specified by p and a certain success
probability. Thus, using the successful results from the

gradient estimation, we can update ũ
(q)
j to ũ

(q+1)
j such

that ũ
(q+1)
j is more close to the target value ⟨Oj⟩. More

precisely, this update yields a q + 1 binary-bit accurate

estimate ũ
(q+1)
j for ⟨Oj⟩ because of the enhanced resolu-

tion 2q ⟨Oj − ũ
(q)
j 1⟩ in the probing state |Υ(q)⟩. Conse-

quently, we can obtain ε-close estimates at the end of the
iteration step, if the gradient estimation at every step is
successfully performed.

3 Performance guarantee of algorithm

HL multiple observables estimation. We prove the
rigorous performance guarantee for estimation efficiency
of the proposed protocol as follows.

Theorem 1 (Theorem 2 in the technical manuscript).
Let ε ∈ (0, 1) be a target precision. For given M observ-
ables {Oj}Mj=1 and a state preparation Uψ, there exists
a quantum algorithm that samples estimators {ûj}j for
{⟨ψ|Oj |ψ⟩}Mj=1 satisfying

max
j=1,2,...,M

E
[
(ûj − ⟨ψ|Oj |ψ⟩)2

]
≤ ε2

using O(ε−1
√
M logM) queries to the state preparation

Uψ and U†
ψ in total.

The scaling 1/ε of queries to Uψ with respect to root MSE
ε achieves the same scaling to the Heisenberg limit in the
gradient estimation; see the technical manuscript. The
squared root dependence regarding M originates from
the uniform amplification of block-encoded (sum of) ob-
servables [27], which is consistent with the idea used in
the previous method [35]. As for the logM term, its ori-
gin is the repetition of the measurement to (1) in each
iteration step, in order to boost the success probability
by taking median of estimates.

Constant space overhead. In addition to the HL
scaling in query complexity, our scheme has a significant
improvement in space complexity compared to the pre-
vious non-iterative counterparts [35, 21]. While the pre-
vious methods determine all of the O(log(1/ε)) binary
bits of ⟨Oj⟩ by a quantum circuit with O(M log(1/ε))
readout qubits, our scheme determines only 1 binary bit
of ⟨Oj⟩ at each iteration step. Therefore, by the help
of the adaptive procedure, our scheme requires quantum
circuits with O(M)-qubits overhead, to prepare |Υ(q)⟩
with the fixed precision parameter p = 3. This can be
summarized as follows:

Theorem 2 (Theorem 7 in the technical manuscript).
Suppose that we have access to block-encoded d-
dimensional observables {Oj}Mj=1, a log2 d-qubit state

preparation Uψ, and its inverse U†
ψ, such that M >

O(log d). Then, we can approximately prepare the prob-

ing state |Υ(q)⟩ for any integer q ≥ 0 and ũ
(q)
j ∈ [−1, 1],

using an
O(M + log2 d)-qubit

circuit. Furthermore, each quantum circuit with q re-
quires O(poly(2q

√
M log d)+poly(

√
M(q+logM))) clas-

sical computation for finding circuit parameters, and
it consists of O(2q

√
M log d) uses of Uψ and U†

ψ,
O(2qM(q + logM)) uses of unitary gates for block-
encoded observables.

Robustness in high-precision regime. The quan-
tum circuit employed in Theorem 2 requires classical
tuning of Õ(

√
M/ε) circuit parameters (more precisely,

Õ(2q
√
M) parameters in step q) for QSP. The classical

computation for finding Õ(
√
M/ε) parameters is also re-

quired in the existing work by Ref. [35]. However, it is
challenging to find such a large number of circuit parame-
ters in a stable way as pointed out in previous works [30].

To avoid the numerical instability, we here provide an
alternative way to prepare the probing state (1) using
the Grover-like repetition, which is a special case of QSP
such that the corresponding quantum circuit parameters
are analytically derived.

Theorem 3 (Theorem 8 in the technical manuscript).
Suppose the same conditions on {Oj}Mj=1 and Uψ as in
Theorem 2. If the iteration step q ≥ 0 satisfies the fol-
lowing condition (δ′ := 2−14)

q ≥ log4

 23 · 333

625 ln(2d/δ′)

⌈√
2(M + 1) ln(2d/δ′)

⌉
√

ln(2d/δ′)

 , (2)

and for given ũ
(q)
j ∈ [−1, 1], | ⟨Oj − ũ

(q)
j 1⟩ | ≤ 2−q holds

for all j, then we can approximately prepare the probing
state |Υ(q)⟩, with the success probability at least 0.462
with ancilla qubits measurement result indicating success,
using an O(M + log2 d)-qubit circuit. Furthermore, each
quantum circuit with q requires

O(poly(
√
M(q + logM)))

classical computation, and it has the same gate complex-
ity as that of Theorem 2.

Although this method cannot deterministically prepare
the probing state, the success probability can be in-
creased with a constant number of circuit repetitions,
thus maintaining the same total query complexity when
using Grover-like repetition instead of Theorem 2. We re-

mark that the condition | ⟨Oj − ũ
(q)
j 1⟩ | ≤ 2−q is trivially

satisfied in Algorithm 1; see the technical manuscript. In
particular, if the number of target observables satisfies
M = O((log2 d)

2), then the right hand side in Eq. (2)
becomes constant, and therefore, the alternative scheme
is valid in a wide range of ε.

796



References

[1] Alán Aspuru-Guzik, Anthony D Dutoi, Peter J
Love, and Martin Head-Gordon. Simulated quan-
tum computation of molecular energies. Science,
309(5741):1704–1707, 2005.

[2] D. W. Berry, H. M. Wiseman, and J. K. Breslin.
Optimal input states and feedback for interferomet-
ric phase estimation. Phys. Rev. A, 63:053804, Apr
2001.

[3] Michael E Beverland, Prakash Murali, Matthias
Troyer, Krysta M Svore, Torsten Hoeffler, Vadym
Kliuchnikov, Guang Hao Low, Mathias Soeken,
Aarthi Sundaram, and Alexander Vaschillo. Assess-
ing requirements to scale to practical quantum ad-
vantage. arXiv preprint arXiv:2211.07629, 2022.

[4] Jacob Biamonte, Peter Wittek, Nicola Pancotti,
Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.
Quantum machine learning. Nature, 549(7671):195–
202, 2017.

[5] Gilles Brassard, Peter Hoyer, Michele Mosca, and
Alain Tapp. Quantum amplitude amplification and
estimation. Contemporary Mathematics, 305:53–74,
2002.

[6] Shouvanik Chakrabarti, Rajiv Krishnakumar,
Guglielmo Mazzola, Nikitas Stamatopoulos, Stefan
Woerner, and William J Zeng. A threshold for
quantum advantage in derivative pricing. Quantum,
5:463, 2021.

[7] Rui Chao, Dawei Ding, Andras Gilyen, Cupjin
Huang, and Mario Szegedy. Finding angles for quan-
tum signal processing with machine precision. arXiv
preprint arXiv:2003.02831, 2020.

[8] Andrew M Childs, Dmitri Maslov, Yunseong Nam,
Neil J Ross, and Yuan Su. Toward the first quan-
tum simulation with quantum speedup. Proceedings
of the National Academy of Sciences, 115(38):9456–
9461, 2018.

[9] Yulong Dong, Xiang Meng, K Birgitta Whaley,
and Lin Lin. Efficient phase-factor evaluation in
quantum signal processing. Physical Review A,
103(4):042419, 2021.

[10] Alicja Dutkiewicz, Thomas E O’Brien, and Thomas
Schuster. The advantage of quantum control in
many-body hamiltonian learning. arXiv preprint
arXiv:2304.07172, 2023.

[11] Alicja Dutkiewicz, Barbara M Terhal, and
Thomas E O’Brien. Heisenberg-limited quan-
tum phase estimation of multiple eigenvalues with
few control qubits. Quantum, 6:830, 2022.

[12] András Gilyén, Srinivasan Arunachalam, and
Nathan Wiebe. Optimizing quantum optimization

algorithms via faster quantum gradient computa-
tion. In Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages
1425–1444. SIAM, 2019.

[13] András Gilyén, Yuan Su, Guang Hao Low, and
Nathan Wiebe. Quantum singular value transfor-
mation and beyond: exponential improvements for
quantum matrix arithmetics. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory
of Computing, pages 193–204, 2019.

[14] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Mac-
cone. Quantum-enhanced measurements: beat-
ing the standard quantum limit. Science,
306(5700):1330–1336, 2004.

[15] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Mac-
cone. Advances in quantum metrology. Nature pho-
tonics, 5(4):222–229, 2011.

[16] Jeongwan Haah. Product Decomposition of Periodic
Functions in Quantum Signal Processing. Quantum,
3:190, October 2019.

[17] Jeongwan Haah, Robin Kothari, Ryan O’Donnell,
and Ewin Tang. Query-optimal estimation of uni-
tary channels in diamond distance. In 2023 IEEE
64th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 363–390, 2023.

[18] BL Higgins, DW Berry, SD Bartlett, MW Mitchell,
HM Wiseman, and GJ Pryde. Demonstrating
heisenberg-limited unambiguous phase estimation
without adaptive measurements. New Journal of
Physics, 11(7):073023, 2009.

[19] Brendon L Higgins, Dominic W Berry, Stephen D
Bartlett, Howard M Wiseman, and Geoff J Pryde.
Entanglement-free heisenberg-limited phase estima-
tion. Nature, 450(7168):393–396, 2007.

[20] Hsin-Yuan Huang, Richard Kueng, Giacomo Tor-
lai, Victor V Albert, and John Preskill. Provably
efficient machine learning for quantum many-body
problems. Science, 377(6613):eabk3333, 2022.

[21] William J. Huggins, Kianna Wan, Jarrod McClean,
Thomas E. O’Brien, Nathan Wiebe, and Ryan Bab-
bush. Nearly optimal quantum algorithm for es-
timating multiple expectation values. Phys. Rev.
Lett., 129:240501, Dec 2022.

[22] Stephen P. Jordan. Fast quantum algorithm for
numerical gradient estimation. Phys. Rev. Lett.,
95:050501, Jul 2005.

[23] Shelby Kimmel, Guang Hao Low, and Theodore J
Yoder. Robust calibration of a universal single-qubit
gate set via robust phase estimation. Physical Re-
view A, 92(6):062315, 2015.

797



[24] Emanuel Knill, Gerardo Ortiz, and Rolando D
Somma. Optimal quantum measurements of expec-
tation values of observables. Physical Review A,
75(1):012328, 2007.

[25] Yunchao Liu, Srinivasan Arunachalam, and Kris-
tan Temme. A rigorous and robust quantum speed-
up in supervised machine learning. Nature Physics,
17(9):1013–1017, 2021.

[26] Seth Lloyd. Universal quantum simulators. Science,
273(5278):1073–1078, 1996.

[27] Guang Hao Low and Isaac L Chuang. Hamiltonian
simulation by uniform spectral amplification. arXiv
preprint arXiv:1707.05391, 2017.

[28] Guang Hao Low and Isaac L. Chuang. Hamiltonian
Simulation by Qubitization. Quantum, 3:163, July
2019.

[29] Guang Hao Low, Theodore J. Yoder, and Isaac L.
Chuang. Methodology of resonant equiangular com-
posite quantum gates. Phys. Rev. X, 6:041067, Dec
2016.

[30] Kaoru Mizuta and Keisuke Fujii. Recursive quantum
eigenvalue and singular-value transformation: Ana-
lytic construction of matrix sign function by newton
iteration. Phys. Rev. Res., 6:L012007, Jan 2024.

[31] Michael A Nielsen and Isaac L Chuang. Quantum
computation and quantum information. Cambridge
university press, 2010.

[32] Patrick Rall. Quantum algorithms for estimating
physical quantities using block encodings. Physical
Review A, 102(2):022408, 2020.

[33] Nikitas Stamatopoulos, Daniel J. Egger, Yue Sun,
Christa Zoufal, Raban Iten, Ning Shen, and Stefan
Woerner. Option Pricing using Quantum Comput-
ers. Quantum, 4:291, July 2020.

[34] Yohichi Suzuki, Shumpei Uno, Rudy Raymond,
Tomoki Tanaka, Tamiya Onodera, and Naoki Ya-
mamoto. Amplitude estimation without phase esti-
mation. Quantum Information Processing, 19(2):75,
January 2020.

[35] Joran van Apeldoorn, Arjan Cornelissen, András
Gilyén, and Giacomo Nannicini. Quantum tomogra-
phy using state-preparation unitaries. In Proceedings
of the 2023 Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 1265–1318. SIAM,
2023.

[36] Kaito Wada, Kazuma Fukuchi, and Naoki Ya-
mamoto. Quantum-enhanced mean value estima-
tion via adaptive measurement. arXiv preprint
arXiv:2210.15624, 2022.

[37] Guoming Wang, Dax Enshan Koh, Peter D. John-
son, and Yudong Cao. Minimizing estimation run-
time on noisy quantum computers. PRX Quantum,
2:010346, Mar 2021.

[38] Lexing Ying. Stable factorization for phase factors
of quantum signal processing. Quantum, 6:842, Oc-
tober 2022.

[39] Nobuyuki Yoshioka, Tsuyoshi Okubo, Yasunari
Suzuki, Yuki Koizumi, and Wataru Mizukami.
Hunting for quantum-classical crossover in
condensed matter problems. arXiv preprint
arXiv:2210.14109, 2022.

798



Heisenberg-limited adaptive gradient estimation for multiple observables

Kaito Wada,1, ∗ Naoki Yamamoto,1, 2, † and Nobuyuki Yoshioka3, 4, 5, ‡

1Department of Applied Physics and Physico-Informatics, Keio University,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan

2Quantum Computing Center, Keio University, Hiyoshi 3-14-1, Kohoku, Yokohama 223-8522, Japan
3Department of Applied Physics, University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
4Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Wako-shi, Saitama 351-0198, Japan

5JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan

In quantum mechanics, measuring a general observable has an inherent statistical uncertainty
such as variance or mean squared error. While the uncertainty can be reduced by averaging several
samples, the number of samples should be minimized when each sample is very costly; this is pre-
cisely the case in future quantum computing. Meanwhile, one of the goals of quantum computing
is to explore numerous observables in large quantum systems that are beyond the capabilities of
classical computers. In this work, we provide an adaptive quantum algorithm for estimating the
expectation values of M general observables within root mean squared error ε simultaneously, us-
ing O(ε−1√

M logM) queries to state preparation oracle; the total queries achieves the scaling of
Heisenberg limit 1/ε, a fundamental bound on the estimation precision, and the sublinear scaling
of the number of observables M . The proposed method is an adaptive version of the quantum
gradient estimation algorithm and has a resource-efficient implementation due to its adaptiveness.
Specifically, the space overhead in the proposed method is O(M) which does not depend on the
estimation precision ε. In addition, our method can avoid the numerical instability problem of
constructing quantum circuits in a large-scale task (e.g., ε ≪ 1 in our case), which appears in the
actual application of many quantum algorithms relying on quantum signal processing techniques.

I. INTRODUCTION

A. Background

Attaining a quantum enhancement in unknown param-
eter estimation lies as one of the most fundamental tasks
in quantum technology. It has been noticed in the quan-
tum metrological community from the late 20th century
that there exists a gap between the standard quantum
limit (SQL), the statistical scaling of the measurement
count O(1/ε2) for target accuracy of ε that is based
on the central limit theorem, and the Heisenberg limit
(HL), the scaling O(1/ε) due to quantum uncertainty re-
lations that are quantified by a natural metric called the
mean squared error (MSE). The HL can theoretically be
achieved using entanglement or coherence (i.e., sequen-
tial applications of a sensing channel) in quantum probes
under the absence of noise [1, 2], while its experimental
verification has not been realized for a long time until
the quantum phase estimation procedure by Higgins et
al. that uses a novel adaptive measurement [3]. Aside
from Ref. [3], intensive quest for experimental realiza-
tion of the scaling beyond the SQL has provoked numer-
ous interesting ideas such as the use of quantum error
correction [4–7], exploiting the non-Markovianity of the
environment [8, 9].

∗ wkai1013keio840@keio.jp
† yamamoto@appi.keio.ac.jp
‡ nyoshioka@ap.t.u-tokyo.ac.jp

The preceding pursuit for the fundamental limita-
tion by quantum mechanics naturally pertains to the
quantum-enhanced measurement of multiple observables.
This long-standing question has been posed mainly in the
community of quantum computing, since an overwhelm-
ing numbers of quantum algorithms estimate the expec-
tation values of local and/or global observables; not to
mention scientific application of quantum computers for
quantum simulation of many-body systems in natural sci-
ence [10–15], such a task is also ubiquitous in industrial
use such as quantum machine learning [16–18] and quan-
tum finance [19, 20]. Note that, while one may employ
the modified amplitude estimation algorithm [21–23] in-
dividually for M observables to simply obtain the HL
scaling of O(M/ε) in terms of root MSE ε, here we seek
for simultaneous improvement on the target accuracy ε
and observable count M . Simply put, our goal is to con-
struct a protocol that achieves both the HL scaling and
the sublinear scaling with respect to M in estimating all
of M observables.

Indeed, some previous works based on the gradi-
ent estimation algorithm [24, 25] have reported nearly
Heisenberg-limited scaling, although with multiplicative
logarithmic correction log(1/ε) [26, 27]; there is no work
that achieves the ultimate precision scaling following the
HL in light of its definition. Furthermore, existing works
argue the estimation accuracy in terms of confidence in-
tervals, which crucially fails to bound the worst-case be-
havior of a single run, unlike the MSE. As is well known in
the field of quantum metrology [2, 28–30], the MSE suc-
cessfully bounds other measures of uncertainty, while the
converse does not hold in general. Considering that any
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FIG. 1. Graphical summary of the proposed method. Our algorithm estimates the expectation values of quantum observables
{⟨Oj⟩}Mj=1 regarding a quantum state |ψ⟩ prepared by a unitary Uψ, with an adaptive procedure. In each iteration step q, we
first encode the values of estimation errors {⟨Oj − ũ

(q)
j 1⟩} for a unitary gate, where ũ(q)

j ∈ [−1, 1] denotes a temporal estimated
value from the previous step, for the target value ⟨Oj⟩. Then, we coherently amplify the estimation errors by the factor of 2q

via Grover-like repetition (or Hamiltonian simulation) on the encoding unitary and read out zoomed-in values {2q ⟨Oj − ũ
(q)
j 1⟩}

simultaneously by gradient estimation protocol with a fixed measurement precision. From the measurement results, we update
the temporal estimates ũ(q)

j to ũ(q+1)
j . By repeating this procedure for q = 0, 1, ..., ⌈log2(1/ε)⌉, this algorithm estimates the M

observables simultaneously within at most root MSE ε. The algorithm uses O(ε−1√
M logM) queries to the state preparation

unitary Uψ that indicates the scaling of Heisenberg limit, that is, the inverse of root MSE ε, together with the nearly squared
root dependence on the number of observables M , which comes from the spectral amplification process in the encoding of
{⟨Oj − ũ

(q)
j 1⟩}.

quantum algorithm to estimate observables queries the
state preparation oracle of target quantum state whose
complexity usually scales with the system size, it is cru-
cial to design an estimation algorithm that achieves the
HL scaling in terms of the MSE.

A key insight for enhancement can be borrowed from
the history of phase estimation algorithm [31]. It has
been well-recognized that the textbook style of the phase
estimation algorithm [32] encounters two major bottle-
necks that prevents the algorithm from practical bene-
fit; the large ancilla consumption of O(log(1/ε)) and the
poor query complexity scaling with the target root MSE
ε, i.e., only obeying the SQL O(1/ε2) [3, 33, 34]. While
the former can be addressed by the iterative phase es-
timation [31], it was not until the work by Higgins et
al. that proposed to overcome both issues by utilizing
adaptive measurement scheme to achieve the HL with a
constant number of ancilla [3]. Although a followup work
has shown that HL scaling can be achieved even without
relying on the adaptive scheme, there is in practice an
increase in the estimation variance by a constant fac-
tor [29]. On the other hand, if the large ancilla consump-
tion is acceptable, it is known that the quantum phase

estimation algorithm with an entangled ancillary state,
instead of a uniform superposition state, can achieve the
HL [33–36]. From the above observations, we argue that
adaptive strategy is crucial for resource-efficient imple-
mentation of quantum estimation that saturates the ul-
timate scaling limited by purely fundamental principles
of quantum physics.

B. Summary of results

Driven by such a situation, we make a significant con-
tribution to multiple observables estimation of number
M with root MSE of ε. Concretely, we explicitly con-
struct an adaptive estimation scheme as summarized as
Algorithm 1, which satisfies the following features (each
correspond to Theorem 2, 7, and 8, respectively):

• Heisenberg-limited scaling with sublinear scaling on
M . The proposed observable estimation achieves
the pure HL scaling with root MSE ε as

O(ε−1
√
M logM)
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in query to the state preparation. Also, this scaling
indicates a nearly quadratic improvement regarding
M , compared to the parallel use of the (modified)
quantum amplitude estimation [21–23, 37–39].

• Constant space overhead. The quantum circuits
in the proposed scheme require at most additional
O(M) qubits, which is independent of the target
root MSE ε.

• Robustness in high-precision regime. When the
high precision ε ≪ 1 is required, the quantum
circuits in our method have at most O(log(1/ε))
parameterized gates for QSVT [13], which can be
tuned by O(polylog(1/ε)) classical computation,
while the previous method [26] requires to tune
O(1/ε) gates with O(poly(1/ε)) classical computa-
tion. This significant reduction in classical compu-
tation allows us to avoid the numerical instability
problem [40–44] that spoils the quantum enhance-
ment.

The first feature is a mathematical guarantee of estima-
tion performance, and the other features highlight ease
of practical implementation of our method.

In our algorithm, we sample from an O(M + log2 d)-
qubit circuit with an alternating sequence of a global
interaction to encode the expectation values of target
observables and a controlled rotation over the target
log2 d-qubit system (and some ancillary system). The
global interaction for observables and the total circuit
length are adaptively adjusted to read out the expecta-
tion values in high resolution, keeping the space overhead
small. Then, we classically process the samples simi-
larly to the adaptive (iterative) phase estimation algo-
rithms [29, 30, 45, 46] and use the processing results to
construct the quantum circuit at the next step. The sub-
linear scaling in the number M of observables comes from
the spectral amplification process [13, 47] embedded in
the global interaction. This reason for the speedup on
M is the same as the previous method [26]. Importantly,
the proposed algorithm is the first adaptive extension of
quantum gradient estimation [24, 25], which allows us
to evaluate the M -dimensional gradient of a real scalar
function f(x) on RM with sublinear scaling on M .

We remark that the classical computation in the third
point is required for the circuit construction, especially
for quantum signal processing (QSP) [48, 49]. QSP pro-
vides a systematic way to operate a 1-qubit system under
a wide range of polynomial functions of degree n, using
O(n) parameterized quantum gates, and it is also a key
component of a more general technique for quantum ma-
trix polynomials, called quantum singular value trans-
formation (QSVT) [13]. In the framework of QSP (also
QSVT), we need to tune the parameterized gates clas-
sically for a desired polynomial. Although finding this
parameter for a degree-n polynomial can be achieved in
O(poly(n)) classical computation time, it exhibits nu-
merical instability for large n; this instability leads to

undesired algorithmic errors in the resulting quantum
circuit, posing a central challenge in the practical ap-
plication of QSVT [40]. To resolve this, various opti-
mization techniques have been investigated [40–44], and
currently, they require 102–104 seconds to tune n ∼ 104

parameters. In the previous method for multiple observ-
ables estimation [26], the number of circuit parameters
is given by n = Õ(

√
M/ε), leading to a quite large run-

time in classical computation e.g., ∼ M/ε2 [sec] when we
use the method in Ref. [42] (assuming it works in such a
large n). In contrast, our method requires to tune only
O(

√
M log(M/ε)) parameters under a certain condition,

by partially using a special polynomial whose parame-
ters can be analytically determined. This exponential
improvement in classical computation time, regarding es-
timation accuracy 1/ε, significantly lowers the barrier of
the practical implementation of our method.

II. PROBLEM SETUP

We consider estimating quantum expectation values
of given d-dimensional M Hermitian operators {Oj}Mj=1
with the spectral norm ∥Oj∥ ≤ 1, regarding a quantum
state |ψ⟩. Here, d is a power of 2. The target state |ψ⟩
is assumed to be prepared by a state preparation oracle
Uψ : |0⟩ 7→ |ψ⟩ and an initial state |0⟩ := |0⟩⊗ log2 d, and
we assume oracular access to Uψ and U†

ψ. The observ-
ables are assumed to be accessed by some block-encoded
unitaries over the d-dimensional system and some an-
cilla system; that is, for each observable Oj , we as-
sume access to a unitary gate Bj whose top-left block
matrix is Oj . (Precise definition of this encoding is
provided in Sec. IV.) In this setup, our goal is to ef-
ficiently obtain samples from estimators for the target
values ⟨Oj⟩ := ⟨ψ|Oj |ψ⟩ within the root mean squared
error (MSE) ε. In particular, we aim to simultaneously
achieve the HL scaling regarding ε and the sublinear scal-
ing regarding M , for estimating all ⟨Oj⟩.

The performance of quantum algorithms for this task is
usually quantified by the total number of queries to the
state preparation Uψ and U†

ψ. This is because Uψ has
complexity that usually scales with the system size, and
as a result, the state preparation Uψ is the most dominant
factor in the total execution time for various settings.
Under the natural assumption that U†

ψ has the same cost
as Uψ, it is crucial to design an estimation algorithm
that minimizes the statistical uncertainty using a limited
number of queries to Uψ and U†

ψ.

III. ADAPTIVE GRADIENT ESTIMATION FOR
MULTIPLE QUANTUM OBSERVABLES

Our adaptive estimation algorithm is given in Algo-
rithm 1. This algorithm can be seen as an extension of
the adaptive (iterative) phase estimation [3, 29, 31, 45,
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Algorithm 1 Adaptive observables estimation
Input: log2 d-qubit state preparation unitary Uψ; observ-

ables {Oj}Mj=1 with the spectral norm ∥Oj∥ ≤ 1 such
that M > O(log d) holds; confidence parameter c ∈
(0, 3/8(1 + π)2]; target root mean squared error (MSE)
ε ∈ (0, 1).

Output: A sample (ũ1, ..., ũM ) from an estimator û =
(û1, ..., ûM ) whose j-th element estimates ⟨ψ|Oj |ψ⟩ within
the MSE ε2 as

max
j=1,2,...,M

E
[
(ûj − ⟨ψ|Oj |ψ⟩)2]

≤ ε2

1: Set a fixed precision parameter p := 3 and temporal esti-
mates ũ(0)

j := 0 for all j.
2: for q = 0, 1, ..., qmax :=⌈log2(1/ε)⌉ do
3: Measure O(logM/δ(q)) approximate copies of the prob-

ing state

|Υ(q)⟩ := 1√
2pM

∑
x∈GM

p

e
2πi2p

∑M

j=1
xj 2qπ−1⟨Oj −ũ(q)

j
1⟩ |x⟩

after p-qubit inverse quantum Fourier transformations.
Here, δ(q) := c/8qmax−q is a failure probability.

4: Set the coordinate-wise median of the measurement
outputs as g(q)

j .
5: Update ũ(q+1)

j := ũ
(q)
j + π2−qg

(q)
j

6: Truncate ũ(q+1)
j in [−1, 1]

7: end for
8: return final estimates ũj := ũ

(qmax+1)
j

46] to the quantum gradient estimation [24, 25], which
efficiently estimates the gradient ∇f of a smooth real
scalar function f(x) that is assumed to be encoded in
an oracle; see Appendix A for the review of the gradient
estimation. In the following, we focus on the estimation
performance and the total query complexity regarding
the use of Uψ and U†

ψ in Algorithm 1. Also, we provide
its high-level overview in Fig. 1. Appendix B gives com-
plete proof of theorems together with showing concrete
implementation method for the algorithm.

The key idea of the proposed adaptive algorithm is to
prepare the following probing state |Υ(q)⟩ at each iter-
ation step q, from which the approximated expectation
values can be extracted via the gradient estimation algo-
rithm [24, 25]:

|Υ(q)⟩ :=
1√
2pM

∑
x∈GM

p

e
2πi2p

∑M

j=1
xj2qπ−1⟨Oj−ũ(q)

j
1⟩ |x⟩ , (1)

where 1 denotes the identity operator. Also, p denotes a
fixed precision parameter and GMp is defined as a set of

grid points:

Gp :=
{
µ

2p − 1
2 + 1

2p+1 : µ ∈ {0, 1, · · · , 2p − 1}
}
.

Note that we label the pM -qubit computational basis
|µ1⟩ |µ2⟩ ... |µM ⟩ (µj ∈ {0, 1, ..., 2p − 1}) by each grid
point x = (x1, x2, ..., xM ) in GMp via one-to-one corre-
spondence between Gp and the computational basis set.
The quantities ũ(q)

j ∈ [−1, 1] in the probing state Eq. (1)
are temporal estimated values for ⟨Oj⟩ at the iteration
step q. Later we will show that p = 3 is sufficient for our
algorithm to successfully work.

The probing state |Υ(q)⟩ can be prepared by first in-
tializing the pM -qubit probe system, the log2 d-qubit tar-
get system, and some ancilla systems to encode the ob-
servables. Then, applying a q-dependent interaction uni-
tary on the whole system and then performing a post-
selection on the target-ancilla systems, we approximately
obtain the probing state. The query complexity regard-
ing Uψ and U†

ψ of this state preparation process is given
as follows.
Corollary 1 (Probing state preparation). Suppose that
we have access to block-encoded d×d observables {Oj}Mj=1
via some unitaries, a log2 d-qubit state preparation Uψ,
and its inverse U†

ψ, such that M > O(log d) holds. Then,
we can prepare the probing state |Υ(q)⟩, up to 1/12
Euclidean distance error, for (any) integer q ≥ 0 and
ũ

(q)
j ∈ [−1, 1], using O(2q

√
M log d) queries to Uψ and

U†
ψ in total.

This corollary directly follows from Theorem 7 and 8
shown in the next section, both of which give methods
to prepare the probing state |Υ(q)⟩: one is based on the
Hamiltonian simulation protocol (Theorem 7), and the
other is based on the Grover-like repetition (Theorem 8).

Suppose we have the probing state |Υ(q)⟩ at the qth
iteration, with a temporal estimate ũ(q)

j for ⟨Oj⟩. Then,
on the phase of |x⟩ in |Υ(q)⟩, the estimation error
⟨Oj − ũ

(q)
j 1⟩ is amplified by the factor of 2q; this means

that when ũ
(q)
j matches ⟨Oj⟩ in the first q binary (frac-

tion) digits as ∣∣∣⟨Oj⟩ − ũ
(q)
j

∣∣∣ ≤ 1
2q , (2)

the 2q-fold amplification zooms in on the significant dig-
its of ⟨Oj⟩ − ũ

(q)
j to shift the values toward upper dig-

its. As proved in Ref. [25], the gradient estimation for
|Υ(q)⟩ can simultaneously extract these zoomed-in values
2q ⟨Oj − ũ

(q)
j 1⟩ (with 1/π) or equivalently the gradient of

the linear function on the phase:

f(x) := 1
π

∑
j

xj2q ⟨Oj − ũ
(q)
j 1⟩ ,

with an additive error specified by the precision param-
eter p and a certain success probability (see Lemma 9).
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Note that, in our case, the gradient estimation algorithm
is simply to perform the computational basis measure-
ment (with rewriting |µ⟩ as |x⟩) on the probing state
after applying a slightly modified version of p-qubit in-
verse quantum Fourier transformation, which is defined
in Eq. (A6).

In step 4 of Algorithm 1, we use the measurement out-
puts k(1),k(2), ...,k(O(logM/δ(q))) obtained in Step 3 to
construct the coordinate-wise median g

(q)
j ; that is, g(q)

j
is defined as the middle value separating the greater and
lesser halves of {k(1)

j , k
(2)
j , ...}. Then, under the condition

of Eq. (2), we can prove that the median g
(q)
j satisfies∣∣∣∣∣g(q)

j −
2q ⟨Oj − ũ

(q)
j 1⟩

π

∣∣∣∣∣ ≤ 1
2π , (3)

for all j = 1, 2, ...,M with success probability bigger than
1−δ(q); later we will carefully choose the probability δ(q)

in order that a final estimator has the minimal statistical
uncertainty. Using the successfully obtained g(q)

j satisfy-
ing Eq. (3), we update the temporal estimate as

ũ
(q+1)
j := ũ

(q)
j + π2−qg

(q)
j .

Then, it is straightforward to prove∣∣∣⟨Oj⟩ − ũ
(q+1)
j

∣∣∣ ≤ 1
2q+1 ,

for all j. Thus, using the outcomes from the gradient
estimation algorithm at each step, we can iteratively
determine one binary fraction digit of the target value
⟨Oj⟩ by updating ũ(q)

j to ũ(q+1)
j . Repeating this iteration

step qmax := ⌈log2(1/ε)⌉ times, we obtain estimates for
{⟨Oj⟩}j within the root MSE ε.

Now, we describe the above result in a precise way. A
more detailed proof is given in Appendix B 2.

Theorem 2 (Heisenberg-limited multiple observables es-
timation). Let ε ∈ (0, 1) be a target precision. For given
M observables {Oj}Mj=1 and a state preparation Uψ, there
exists a quantum algorithm that outputs a sample from
estimators {ûj}Mj=1 for {⟨Oj⟩} satisfying

max
j=1,2,...,M

MSE [ûj ] ≤ ε2, (4)

using O(ε−1
√
M logM) queries to the state preparation

Uψ and U†
ψ in total. Here, the mean squared error of an

estimator ûj is defined as

MSE [ûj ] := E
[
(ûj − ⟨Oj⟩)2

]
.

Sketch of the proof. The outline of the proof is similar
as that of the previous methods for Heisenberg-limited
phase estimation or its application [29, 45, 46, 50], but it
is required to carefully check the condition for gradient
estimation at each iteration step. Specifically, this con-
dition is given by Eq. (2) for all j. If this condition holds

Step q

Success

Success

Success

Failure

Failure

Failure

: Gradient estimation at step q

δ(0)

δ(1)

δ(q)

Step 0

Step 1

Step q

|Υ(0)⟩

|Υ(1)⟩

|Υ(q)⟩

∼

∼

∼

FIG. 2. Probability tree diagram in Algorithm 1.

and the precision parameter p is taken as p = 3, then a
single shot measurement result k := (k1, ..., kM ) ∈ GMp
in Step 3 of Algorithm 1 follows

Pr
[∣∣∣∣∣kj −

2q(⟨Oj⟩ − ũ
(q)
j )

π

∣∣∣∣∣ > 1
2π

]
<

1
3 , (5)

for every j = 1, 2, · · · ,M . The derivation of this inequal-
ity is based on our numerical finding; see Appendix B 2.
We remark that the failure probability represented by
the left hand side of Eq. (5) can be exponentially sup-
pressed to δ(q)/M by using the coordinate-wise median
g

(q)
j of the measurement results over O(logM/δ(q)) copies

of the (approximate) probing state, instead of the single
shot result kj . This repetition is the origin of the logM
term in the total query complexity.

In the first iteration step q = 0, the condition Eq. (2) is
trivially satisfied, and the gradient estimation can yield
1/2π-close estimates of the target quantities for all j.
This probability is at least 1 − δ(0) due to the union
bound. As for the iteration step q ≥ 1, if all of the pre-
vious steps succeed in the gradient estimation, we can
show that Eq. (2) holds for all j at the iteration step q.
On the other hand, if the gradient estimation fails at the
iteration step q (while all processes have been success-
fully executed up to the (q − 1)th step), the condition
Eq. (2) is not satisfied; as a result, outputs of the gra-
dient estimation may not improve the temporal estimate
in the subsequent processes. However, in this case, it can
be shown that the additive error |ũj − ⟨Oj⟩ | of the final
estimate ũj := ũ

(qmax+1)
j is at most (1+π)/2q because the

outputs of gradient estimation are always in [−1/2, 1/2]
from the definition of GMp . From the above analysis, we
can bound the additive error of the final estimate for all
branches in Fig. 2.

The failure probability δ(q) should be very small at the
beginning of iteration steps q because the error of top
fraction bits have a significant impact on the MSE of the
final estimator. From the analysis in Ref. [50], the choice
of δ(q) := c/8qmax−q (c ∈ (0, 3/8(1+π)2)) is sufficient, and
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then the MSE of the final estimator ûj (its realization is
ũj) is calculated as at most ε2 for all j = 1, 2, ...,M , from
the tree diagram Fig. 2 and the above error evaluation in
each branch.

To derive the query complexity for the state prepa-
ration Uψ, we use the result in Corollary 1. In the
iteration step q, preparing O(logM/δ(q)) copies of the
probing state Eq. (1) uses O(2q

√
M log d log(M/δ(q)))

queries to the state preparation unitary Uψ and its in-
verse. Thus, the summation of the queries over q =
0, 1, ..., qmax (qmax := ⌈log2(1/ε)⌉) is directly calculated
as O(ε−1√

M log d logM), which completes the proof of
Theorem 2.

In Theorem 2, the scaling 1/ε of queries to Uψ with re-
spect to the root MSE ε achieves the same scaling to the
Heisenberg limit (HL) in the gradient estimation, which
is derived in Appendix A. We remark that, to the best
of our knowledge, this is the first derivation of the HL in
gradient estimation in terms of MSE, while the previous
work [25] shows a similar lower bound (additionally, in-
cluding

√
M dependency) on queries to an oracle for a

target function f(x) on x ∈ GMp , in another metric of sta-
tistical uncertainty (i.e., a confidence interval). Also, in
the stringent measure of statistical uncertainty, the root
MSE ε [28], all the existing works [26, 27] in multiple
observables estimation only proves the nearly HL scaling
that includes logarithmic terms on ε such as log(M/ε).

In addition to the Heisenberg-limited scaling regarding
ε, our protocol has the nearly squared root dependence
regarding the total number of observables M . This is a
nearly quadratic improvement regarding M compared to
the standard method (i.e., quantum amplitude estima-
tion) of estimating the expectation values of observables.
Furthermore, when we focus on another metric of sta-
tistical uncertainty — a confidence interval comprised of
estimators with an additive error ±ϵadd for some con-
fidence level, which is considered in Refs. [26, 27], the
query complexity of our method is essentially optimal in
terms of M and ϵadd as well as these previous methods.
Here, the query lower bound in multiple observables es-
timation in terms of a confidence interval is proved in
Ref. [27] as follows.

Lemma 3 (Corollary 3 in Ref. [27]). Let M be a positive
integer power of 2 and let ϵadd ∈ (0, 1/3

√
M). Let A be

any algorithm that takes as an input an arbitrary set of
M observables {Oj}Mj=1. Suppose that, for every quantum
state |ψ⟩, accessed via a state preparation oracle Uψ, A
outputs estimates of each ⟨ψ|Oj |ψ⟩ to within additive
error ϵadd with high probability at least 2/3. Then, there
exists a set of observables {Oj}Mj=1 such that A applied
to {Oj}Mj=1 must use Ω(ϵ−1

add
√
M) queries to Uψ.

The proposed algorithm can be easily extended to an
estimation protocol that outputs an ϵadd-close estimate
of {⟨Oj⟩}j with high probability (≥ 2/3) at the cost
of a slight increase of the total query complexity (i.e.,
O(ϵ−1

add
√
M log2 M)) [51]. Consequently, we establish

from the Lemma 3 that this extended protocol achieves
the worst-case query optimality (up to the log2 M cor-
rection) in the high-precision regime ϵadd ∈ (0, 1/3

√
M).

Finally, we remark that the preparation and measure-
ment for multiple copies of the probing state in step 3
of Algorithm 1 can be performed in parallel if we are
allowed to use multiple quantum computers, which may
practically important to reduce the total execution time.

IV. STATE PREPARATION FOR ADAPTIVE
GRADIENT ESTIMATION

In this section, we provide two quantum algorithms
to prepare the probing state Eq. (1), using the state
preparation Uψ, U†

ψ, and the unitary gates {Bj}Mj=1 that
encode the target observables {Oj}Mj=1 with the help of
some ancilla system. The two methods are summarized
in Theorems 7 and 8; Theorem 7 provides a method based
on Hamiltonian simulation protocol, and Theorem 8 pro-
vides a method based on Grover-like repetition. Both
Theorems 7 and 8 prove that the total space complexity
to prepare the probing state |Υ(q)⟩ is O(M + log2 d). In
addition, Theorem 8 shows an exponential improvement
in the classical computation time for constructing explicit
quantum circuits under a certain condition, compared to
Theorem 7.

In the following, we first review an efficient quantum
computation method of block-encoded matrices. Then,
we describe the two methods for the probing state prepa-
ration.

A. Preliminary

Here, we review some important results in efficiently
calculating block-encoded matrices on a quantum com-
puter. The basic tool to represent matrices by unitary
operators of dilated quantum systems is block encoding:

Definition 1 (Block encoding). For positive values α, ε
and a non-negative integer a, we say that an (n + a)-
qubit unitary U is an (α, a, ε)-block-encoding of an n-
qubit operator A, if

∥A− α(⟨0|⊗a ⊗ 1)U(|0⟩⊗a ⊗ 1)∥ ≤ ε.

For simplicity, we shorten the perfect (i.e., α = 1 and
ε = 0) block encoding of A as a-block-encoding of A.

For instance, any unitary operator (e.g., a Pauli opera-
tor X ⊗ Z ⊗ · · · ) is trivially a 0-block-encoding of itself.
There are various ways to construct block encodings; see
Ref. [13]. Specifically, we here focus on the method called
the linear combination of unitaries (LCU) [52, 53]. Let
A :=

∑m
i=1 ciUi be a linear combination of unitary op-

erators {Ui}mi=1 with real coefficients ci ∈ R. Without
loss of generality, we assume ci > 0 because −1 can be
absorbed into Ui. In order to implement A, we use the
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|0⟩⊗⌈log2 m⌉ / V
W

V †

/

FIG. 3. Linear combination of unitaries (LCU) method. The circuit is a ⌈log2 m⌉-block-encoding of ∥c∥−1
1

∑m

i=1 ciUi (ci > 0).
PREPARE V : |0⟩⊗⌈log2 m⌉ 7→

∑m

i=1

√
ci

∥c∥1
|i⟩ and SELECT W =

∑m

i=1 |i⟩⟨i| ⊗ Ui.

|0⟩ H e−iZϕn e−iZϕn−1 · · · e−iZϕ1 H

|0⟩⊗a

U U†
· · ·

U
· · ·

FIG. 4. Quantum circuit for quantum singular value (eigenvalue) transformation for real polynomials P of odd degree n.
U denotes an a-block-encoding of a Hermitian operator A. The NOT gate is controlled by |0⟩⊗a of the a qubits, which is
represented by the white circle ◦. For a given real polynomial P of degree n, the n circuit parameters {ϕi}ni=1 are calculated
in O(poly(n)) classical computation time.

following two unitary operations. The first one, called
PREPARE, encodes the positive coefficients {ci}mi=1 as

V : |0⟩ 7→
m∑
i=1

√
ci

∥c∥1
|i⟩,

where ∥ • ∥1 denotes L1-norm, and |0⟩ and |i⟩ denote an
initial state and the computational basis in a ⌈log2 m⌉-
qubit ancilla system, respectively. The other, called SE-
LECT, encodes the unitary operartors Ui conditioned by
the ⌈log2 m⌉-qubit ancilla system:

W =
m∑
i=1

|i⟩⟨i| ⊗ Ui.

Using the two operations V and W , it can be shown
that the unitary operator (V † ⊗ 1)W (V ⊗ 1) is a
(∥c∥1, ⌈log2 m⌉, 0)-block-encoding of A, as in Fig. 3. Note
that if the coefficients in LCU are controlled by other
qubit registers, it may be useful to modify the PRE-
PARE operator instead of including the phase of ci to
the SELECT operator, in order to save the number of
controlled operations.

Once we have a block encoding of a target operator,
we can systematically transform the block encoding to
perform various tasks. Here, we show examples of such
transformations that will be used in the following sub-
section.

Lemma 4 (Uniform singular value amplification [13,
47]). Let γ > 1 and let δ, ε ∈ (0, 1/2). Suppose we have
an a-block-encoding U of A, (∥A∥ ≤ (1 − δ)/γ). Then,
we can implement a (1, a+1, ε)-block-encoding of γA with
m = O(γδ−1 log(γ/ε)) queries to U or U†, 2m uses of
NOT gates controlled by a-qubit, O(m) single-qubit gates,

and O(poly(m)) classical computation to find quantum
circuit parameters.

Lemma 5 (Quantum eigenvalue transformation by
Chebyshev polynomials [13]). Let m be a positive inte-
ger, and let U be an a-block-encoding of a Hamiltonian
H. Then, for the m-th Chebyshev polynomial of the first
kind Tm(x), we can implement a (1, a, 0)-block-encoding
of Tm(H), with m uses of U or U† and m uses of reflec-
tion on |0⟩⊗a.

Lemma 6 (Optimal block-Hamiltonian simulation [49]).
Let t ∈ R\{0}, ε′′ ∈ (0, 1), and let U be a (1, a, 0)-block-
encoding of a Hamiltonian H. Then, we can implement
a (1, a+ 2, ε′′)-block-encoding of eitH , with 4Q queries to
controlled U or its inverse, 2Q uses of NOT gates con-
trolled by (a+ 1)-qubit, O(Q) uses of single-qubit or two-
qubit gates, and O(poly(Q)) classical computation to find
quantum circuit parameters, where Q = O(t+log(1/ε′′)).

Lemma 4 and Lemma 5 can be implemented with a
quantum circuit in Fig. 4. Also, we can implement the
optimal Hamiltonian simulation Lemma 6 with a similar
circuit as Fig. 4; the explicit circuit constructions are
provided in Refs. [13, 49, 54].

Importantly, the quantum circuit in Fig. 4 reflects
the underlying structure that are common in the above
lemmas; this quantum circuit implements a general
method, called the quantum singular value transforma-
tion (QSVT), to transform singular values (eigenvalues)
of a block-encoded matrix based on a large class of poly-
nomials [13]. The QSVT uses the idea of quantum signal
processing (QSP) [48, 49] that characterizes achievable
1-qubit unitary transformations comprised of an alter-
nating 1-qubit gate sequence of the signal rotation with
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(a) Block encoding of the expectation values {⟨Oj − ũ(q)
j 1⟩}

Block encoding


{Oj − ũ(q)
j 1}, Uψ, U†

ψ ↦ H or HG
=

Probe

Target

Ancilla

|Υ(q)⟩Probe

Target

Ancilla

⋯⋯
⋯

-queries' (2q M)

(b) Quantum circuit for probing state preparation (c) Circuit parameters for QSP

Number of parameters in　  and  

(in the final step )qmax = ⌈log2(1/ε)⌉

1/ε

Theorem 7

Theorem 8

FIG. 5. Preparation of the probing state |Υ(q)⟩ at the qth iteration. The blue unitary gate in (a) and (b) denotes a block-
encoding of the Hamiltonian H or HG in Eq. (6) or (17), respectively, and the green unitary gate in (b) is a controlled rotation
(or reflection) gate. The blue and green unitary gates contain parameterized gates for QSP, and the total number of circuit
parameters scales as in (c) with respect to the target root MSE ε. As the graph in (c) indicates, the method in Theorem 8 has
a much smaller number of circuit parameters for QSP compared to that of Theorem 7.

a unknown angle and the processing rotation with a con-
trollable angle. To bridge the gap between QSP and
QSVT, Qubitization [49] is a crucial technique that splits
(a part of) ancilla-target systems into some qubits labeled
by the eigenvalue (singular values [13]) and constructs
parallel signal rotations over the qubits (e.g., U and U†

in Fig. 4). Here, the rotation angle depends on the corre-
sponding singular value. Then, using additional process-
ing rotations with controllable parameters {ϕi} (likewise
the controlled rotation between U and U† in Fig. 4), we
can transform the singular values in parallel by a polyno-
mial that depends on the controllable parameters {ϕi};
the achievable polynomials in QSVT are characterized
by QSP. See the review [55] for details of the theoretical
perspective of QSVT.

In practice, a typical flow of QSVT consists of two
steps: (i) finding the circuit parameter {ϕi}ni=1 (called
the phase sequence) for a given degree-n real polynomial
P on classical computers, (ii) running the O(n)-depth
quantum circuit in Fig. 4 on a quantum computer, using
the classically tuned parameters. Note that in the process
(ii), we may need a post-selection on ancilla qubits. For a
given degree-n polynomial P that has definite parity and
P (x) ∈ [−1, 1] for x ∈ [−1, 1], the n circuit parameters
{ϕi}ni=1 in Fig. 4 can be found by O(poly(n, log(1/δ)))
classical computation for some error δ. Then, using
the parameters this circuit results in an (a + 1)-block-
encoding of P (A). In Lemma 4, we can take an odd real
polynomial P (x) with degree m = O(γδ−1 log(γ/ε)) such
that P (x) ≈ γx holds [13, 47]. In particular, the phase
sequence {ϕi} for the Chebyshev polynomial of the first
kind Tn is analytically calculated and has a unique struc-
ture (Lemma 9 in Ref. [13]); as a result, we can eliminate
the additional ancilla qubit and replace the 2n controlled
NOT gates with n reflections on |0⟩⊗a in the circuit of
Fig. 4.

B. Probing state preparation

Before proceeding to the proof of Theorems 7 and 8, we
first provide an overview of our method to prepare |Υ(q)⟩
in Fig. 5. As seen in the figure, the proposed two meth-
ods to prepare |Υ(q)⟩ have a similar structure: Fig. 5(a)
shows the block encoding of a Hamiltonian that encodes
the expectation values of observables ⟨Oj − ũ

(q)
j 1⟩ and

Fig. 5(b) shows alternating applications of the block en-
coding and a processing operation with a tuned param-
eter, which is based on Lemma 5 or Lemma 6. In the
proof of Theorems 7 and 8, we depict the circuit for (a)
and (b), respectively; then we evaluate the approxima-
tion error between the final state of the circuit and the
probing state |Υ(q)⟩.

More detailed proofs and explicit quantum circuit di-
agrams for these Theorems are provided in Appendix B.

1. Hamiltonian simulation

Theorem 7 (Informal. Lemma 13). Suppose that we
have access to block-encoded d × d observables {Oj}Mj=1,
a log2 d-qubit state preparation Uψ, and its inverse U†

ψ,
such that M > O(log d). Then, we can prepare the prob-
ing state |Υ(q)⟩ for any integer q ≥ 0 and ũ

(q)
j ∈ [−1, 1]

up to 1/12 Euclidean distance error, using an

O(M + log2 d)-qubit

circuit regardless of q. Furthermore, each quantum cir-
cuit with q requires

O(poly(2q
√
M log d) + poly(

√
M(q + logM)))
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classical computation for finding circuit parameters, and
it consists of

O(2q
√
M log d) uses of Uψ and U†

ψ,

O(2qM(q + logM)) uses of unitary gates for block-
encoded observables, and O(2qM(q+logM) log dM) uses
of single-qubit and two-qubit gates.

Sketch of the proof. In this Theorem, we take the Hamil-
tonian H to encode the observables {Oj} as

H :=
∑

x∈GM
p

f̃(x) |x⟩ ⟨x| , (6)

where the target observables are approximately encoded
in the eigenvalues f̃(x) as

f̃(x) ≈ 1
σ

M∑
j=1

xj ⟨Õ(q)
j ⟩ , σ = O(

√
M log d), (7)

Here, σ denotes the rescaling factor of the Hamiltonian
H such that H can be encoded in a unitary operator.
Also, we defined Õ

(q)
j := (Oj − ũ

(q)
j 1)/2 for the identity

1. The approximation error in Eq. (7) is specified below.
Setting aside the details for now, we suppose that we

have a (perfect) block encoding of the Hamiltonian H
that acts on the pM -qubit probe system, log2 d-qubit
target system, and ancilla systems (specified below), as
illustrated in Fig. 5. Then, the optimal Hamiltonian sim-
ulation protocol Lemma 6 yields a quantum circuit W for
an ϵ′-precise block encoding of time evolution operator

eiHt =
∑

x∈GM
p

eif̃(x)t |x⟩ ⟨x| (8)

with time t > 0, using O(t + log(1/ϵ′)) queries to the
block encoding of H. Note that in the case t = 2σt′
for some positive integer t′, the resulting time evolution
operator approximates t′ times applications of the phase
oracle for an affine linear function f(x) =

∑
j xj ⟨Oj⟩ in

the theory of gradient estimation. Then, applying W for

t := 2p+q+2σ

to the uniform superposition state |+⟩⊗pM in the probe
system and the initial state |0⟩ in the ancilla-target sys-
tems, we can approximately prepare the target state:

W |+⟩⊗pM |0⟩

≈ 1√
2pM

∑
x∈GM

p

e
2πi2p

∑M

j=1
xj2qπ−1⟨Oj−ũ(q)

j
⟩ |x⟩ |0⟩ .

(9)

From the triangle inequality, this approximation error
is given by the sum of ϵ′ (more precisely, ϵ′ +

√
2ϵ′ in

Euclidean distance) from the transformation H 7→ eiHt

and the error from the observable encoding in Eq. (7),
that is,

ϵ′ +
√

2ϵ′ +

∥∥∥∥∥∥ 1√
2pM

∑
x∈GM

p

eif̃(x)t |x⟩ − |Υ(q)⟩

∥∥∥∥∥∥ . (10)

To quantify the error of the third term in Eq. (10)
(or the error of Eq. (7)), we here construct the block
encoding of the Hamiltonian H from the state prepara-
tion Uψ (U†

ψ) and unitary gates {Bj} that are a-block-
encodings of observables {Oj} for some a ∈ N. First,
we can construct a quantum circuit U (x) for a block en-
coding M−1 ∑M

j=1 xjÕ
(q)
j (with the rescaling factor M ,

instead of σ) for a given x ∈ GMp , via the LCU method
with the controlled version of each Bj . The LCU re-
quires additional O(logM) qubits to encode the coeffi-
cients {xj/M}. Using controlled versions of U (x), we
can obtain a quantum circuit for

U ′
SEL :=

∑
x∈GM

p

|x⟩ ⟨x| ⊗ U (x). (11)

Here, we remark that the resulting quantum circuit for
Eq. (11) has at most O(pM log(1/δ))-depth for some im-
plementation error δ that comes from the encoding of the
coefficients {xj/M}; see Remark 11.

Then, the circuit(
1 ⊗ U†

ψ

)
· U ′

SEL · (1 ⊗ Uψ) (12)

is a block encoding of the following Hamiltonian:

H′ :=
∑

x

∑
j

xj ·
⟨Õ(q)

j ⟩
M

 |x⟩ ⟨x| .

This Hamiltonian H′ has the normalization factor M
that is quadratically larger than σ in H. In estimating
the expectation value ⟨Õ(q)

j ⟩ via gradient estimation, we
need to amplify H′ by the factor M to prepare Eq. (1).
This means that we need the time evolution operator
eiH

′t of t = 2p+q+2M , which results in no speedup for
the total queries to Uψ regarding the number M of ob-
servables. To obtain the quadratic speedup regarding M ,
the method in Ref. [26] uses the singular value amplifi-
cation Lemma 4. Importantly, this amplification can be
performed with no use of Uψ. From the random ma-
trix series inequality, we can show that for a large part
of GMp (more precisely, for a subset F ⊂ GMp such that
|F | ≥ (1 − δ′)|GMp | for any δ′ > 0), the condition of the
amplification is satisfied for γ = M/σ = O(

√
M), as well

as the analysis in Ref. [26]. Therefore, we can amplify
the block encoding U (x) by γ for such x ∈ F ; as a result,
we have a quantum circuit for

Uobs :=
∑

x∈GM
p

|x⟩ ⟨x| ⊗ U
(x)
obs , (13)
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where U (x)
obs is an ϵ′′-precise block encoding of the Hamil-

tonian σ−1 ∑
j xjÕ

(q)
j if x ∈ F . By multiplying Uψ and

U†
ψ into Uobs as well as Eq. (12), we finally arrive at

the block encoding of the Hamiltonian H. We note that
the amplification is valid when σ = O(

√
M log2 d) is

smaller than M , and this is satisfied by the condition
M > O(log d).

Since the block encoding H consists of (i) the LCU
method, (ii) adding the pM -qubit control to U (x), (iii)
the singular value amplification, and (iv) multiplying the
conjugation of Uψ, the main contribution to the space
complexity comes from the steps (i) and (ii). The other
processes (iii), (iv), and the Hamiltonian simulation pro-
tocol H 7→ eiHt introduce constant or no ancilla qubits.
The LCU method (i) introduces O(logM)-qubit regis-
ters, and thus the number of qubits of U ′

SEL scales as
pM + logM + log d. Recalling that the precision param-
eter p is fixed to a constant (i.e, p = 3) in the probing
state |Υ(q)⟩, we conclude that the total space complexity
is O(M + log2 d), which is independent of the root MSE
ε.

As for the gate complexity, we here focus on the num-
ber of queries to Uψ (or U†

ψ) and U ′
SEL. A comprehen-

sive analysis on the total gate complexity is provided in
Lemma 13. Here, we need to carefully choose the pa-
rameters ε′, ε′′, and δ′ so that the entire approximation
error Eq. (10) is smaller than 1/12; in particular, this is
achieved by taking ε′ and δ′ as some constants, and ε′′ =
O(1/(2qσ)). Since the block encoding of H consists of
two uses of Uψ and U†

ψ and m := O(Mσ−1 log(M/(σε′′)))
uses of control-U ′

SEL, then the total queries can be evalu-
ated by multiplying O(t) for the Hamiltonian simulation
protocol, which proves the gate complexity in Theorem 7.
In addition, the number of circuit parameters for the sin-
gular value amplification (iii) and the Hamiltonian simu-
lation protocol are given by m and t, respectively. Thus,
we need to tune the parameters in classical O(poly(m))
and O(poly(t)) time, as discussed in Sec. IV A.

Our scheme has a significant improvement in space
complexity compared to the previous non-iterative coun-
terparts [26, 27]. While the non-iterative methods deter-
mine all of the O(log 1/ε) binary fraction bits of ⟨Oj⟩ by
a single quantum circuit with additional O(M log(1/ε))
(or O(M log(M/ε))) qubits to read out the observables,
our scheme determines only 1 binary fraction bit of ⟨Oj⟩
at each iteration step. Specifically, the previous non-
iterative method [26] uses the Hamiltonian simulation
with t = 2p in Eq. (8), where the number of read-out
qubits is p = O(log(

√
M log d/ε)) (i.e., q = 0). In con-

trast, by the adaptive nature of our scheme, space over-
head of quantum circuits for the probing states |Υ(q)⟩ is
O(M) (O(M+log2 d) in total), and this is independent of
the estimation precision ε. Here, a similar improvement
of space overhead can be found in the previous works on
the adaptive (iterative) versions of quantum phase esti-
mation [3, 29, 31, 45, 46]. Also, we remark that the sig-

nificant reduction of space overhead directly leads to the
reduction of the number of controlled operations, which
is also crucial in practical implementation.

2. Grover-like repetition

The quantum circuit employed in Theorem 7 requires
classical tuning of Õ(

√
M/ε) circuit parameters (more

precisely, Õ(2q
√
M) parameters in step q) for QSP. The

classical computation for finding Õ(
√
M/ε) parameters is

also required in the existing work by van Apeldoorn et al.
[26]. However, it is challenging to find such a large num-
ber of circuit parameters in a stable way as pointed out
in previous works [40–44], while the n-parameter finding
can be performed by O(poly(n, log(1/δ))) classical com-
putation for some error δ in theory [13].

To avoid the numerical instability, we here provide an
alternative way to prepare the probing state (1) using
the Grover-like repetition, which is a special case of QSP
such that the corresponding quantum circuit parameters
are analytically derived.

Theorem 8 (Informal. Lemma 14). Suppose we have ac-
cess to block-encoded d×d observables {Oj}Mj=1, a log2 d-
qubit state preparation Uψ, and its inverse U†

ψ, such that
M > O(log d). If the iteration step q ≥ 0 satisfies the
following condition (δ′ := 2−14)

q ≥ log4

 23 · 333

625 ln(2d/δ′)

⌈√
2(M + 1) ln(2d/δ′)

⌉
√

ln(2d/δ′)

 , (14)

and for given ũ
(q)
j ∈ [−1, 1],∣∣∣⟨ψ|

(
Oj − ũ

(q)
j 1

)
|ψ⟩

∣∣∣ ≤ 2−q for all j = 1, 2, ...,M,

(15)
holds, then we can successfully prepare the probing state
|Υ(q)⟩ up to 1/12 Euclidean distance error, with probabil-
ity at least 0.462 with ancilla qubits measurement result
indicating success, using an

O(M + log2 d)-qubit

circuit regardless of q. Furthermore, each quantum cir-
cuit with q requires

O(poly(
√
M(q + logM)))

classical computation, and it has the same gate complex-
ity as that of Theorem 7.

Here, we remark that the condition Eq. (15) is triv-
ially satisfied at the iteration step q in Algorithm 1 when
all the previous gradient estimations are successfully per-
formed, as discussed in Sec. III.
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Sketch of the proof. This method uses eigenvalue trans-
formation of (a slightly modified version of) the Hamil-
tonian H in Eq. (6) based on the Chebyshev polynomial
of the first kind Tt(x), that is, Lemma 5. Here, the degree
t is given by t = 2p+q+2σ. We note that since the result-
ing operator Tt[H] is non-unitary, post-selection of ancilla
qubits in the block encoding is required to implement
Tt[H], meaning that the state preparation by this method
is stochastic. As mentioned in Sec. IV A, the eigen-
value transformation based on the Chebyshev polynomi-
als Tt(x) can be considered as a special case in QSVT;
that is, it has an analytical solution of circuit parame-
ters (or phase sequence). Therefore, in this alternative
method, the circuit parameter finding is required only for
the construction of the Hamiltonian H; the total runtime
for the classical computation is at most O(polylog(1/ε))
(more precisely, O(poly(

√
M(q + logM))) at step q ≤

⌈log2(1/ε)⌉).

Now, we consider the action of the resulting operator
Tt[H]. Applying Tt[H] to the uniform superposition state
|+⟩⊗pM , we obtain an unnormalized state proportional to

∑
s=±1

∑
x∈GM

p

eist arccos [f̃(x)] |x⟩ . (16)

Therefore, we need to correct the phase of |x⟩ from
e±it arccos [f̃(x)] to eitf̃(x) in order to match the probing
state |Υ(q)⟩.

As for the sign s = ±1 of the phase, we can correct it
by slightly modifying the Hamiltonian H with the help
of an additional 1-qubit ancilla system. Let HG be a
Hamiltonian defined as

HG :=
∑

(x,y)∈GM
p ×G1

f̃ ′(x, y) |x, y⟩ ⟨x, y| , (17)

where |y⟩ denotes a computational basis on the additional
ancilla system and

f̃ ′(x, y) ≈ 1
σ′

y ⟨OM+1⟩ +
M∑
j=1

xj ⟨Õ(q)
j ⟩

 . (18)

Here, OM+1 denotes a 1-qubit observable proportional to
the identity that acts on the additional ancilla system,
and σ′ = O(

√
M log d) is the rescaling factor for block

encoding. The block encoding of HG can be constructed
in a similar way to that of the Hamiltonian H; the cor-
responding circuit has the same complexity as that of
H. Then, applying Tt[HG] to the uniform superposition
state |+⟩⊗pM+1, we can show that the following holds:
(for simplicity, we write OM+1 as Õ(q)

M+1)

1
Nt

√
2pM

∑
x,y

Tt
(
f̃ ′(x, y)

)
|x, y⟩ ≈ 1

2
√

2pM
∑
s=±1

∑
(x,xM+1)∈GM

p ×G1

e
ist

(
π/2−(σ′)−1 ∑M+1

j=1
xj⟨Õ(q)

j
⟩
)

|x⟩ |xM+1⟩

= 1√
2

∑
s=±1

 1√
2pM

∑
x∈GM

p

e
2πi2p

∑M

j=1
(sxj)π−12q+1⟨Õ(q)

j
⟩ |x⟩ ⊗ 1√

2
∑
k∈G1

e2πi2k(s/4) |k⟩

 , (19)

where Nt is the normalization factor. In the second
equality, we chose the constant factor of OM+1 as

OM+1 := π(1/4 + 4l)
2p+q I,

where l is an arbitrary integer satisfying ∥2q+1OM+1∥ ≤
1 and I denotes the 1-qubit identity. In the next para-
graph, we explain the approximation of the first line in
Eq. (19) in detail. The sign s = ±1 in Eq. (19) can be
corrected as follows. By applying the inverse quantum
Fourier transformation to the 1-qubit additional anci-
ila system in the state Eq. (19), followed by controlled
X⊗pM gate (which flips the sign as X⊗pM |x⟩ = |−x⟩),
we obtain the probing state Eq. (1) in the pM -qubit reg-
isters.

The approximation in the first line of Eq. (19) comes
from the non-linearity of the phase function arccosx in
Eq. (16). Here, we recall that f̃ ′(x, y) is approximately

given by the linear combination of ⟨Oj − ũ
(q)
j 1⟩. Using

this fact, we can show that |f̃ ′(x, y)| scales as O(2−q)
for a large part of GMp × G1 from the assumption of
| ⟨Õ(q)

j ⟩ | ≤ 1/2q+1 and the Hoeffding’s inequality. More-
over, the error between the function arccos(x) and a lin-
ear function π/2 − x can be upper bounded by O(|x|3).
As a result, the non-linearity of arccosx in Eq. (16) can
be ignored for a large part of GMp ×G1:∣∣∣arccos [f̃ ′(x, y)] −

(π
2 − f̃ ′(x, y)

)∣∣∣ = O(2−3q),

and it decreases much faster than the amplification t =
O(2qσ), as the iteration step q proceeds. Then, we prove
the approximation error in Eq. (19) is at most 1/12 in
Euclieadn distance error under the assumption of this
theorem. At the same time, we can evaluate the normal-
ization factor as |Nt − 1| ≤ 2

√
6δ′, thereby proving the

post-selection probability N 2
t /2 > 0.462.
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Finally, we mention the space and gate complexity of
this Theorem. As well as in the proof of Theorem 7,
we can count the number of qubits in the block encod-
ing of HG, and it scales as pM + logM + log d in total.
Thus, the method has the space complexity O(M+log2 d)
that is also independent of the target precision ε. As for
the gate complexity, the main contribution comes from
the eigenvalue transformation HG 7→ Tt[HG], which uses
t = O(2qσ′) queries of the block encoding of HG. This
indicates that the gate complexity of the method is the
same as that of the method in Theorem 7.

In the alternative method, we require finding Õ(q
√
M)

circuit parameters, which comes from the singular value
amplification to construct the Hamiltonian Eq. (17) than
the Grover-like repetition. Thus, the alternative method
shows an exponential improvement of runtime in classi-
cal computation with respect to the iteration q (or ε),
compared to the method in Theorem 7 and the previous
method [26], if certain conditions on the iteration step q
are satisfied. Recalling that the iteration step is upper
bounded by qmax := ⌈log2(1/ε)⌉ for the target root MSE
ε, the alternative method can be used if there exists the
iteration steps q satisfying q ≤ qmax and the inequality
Eq. (14). In Sec. IV B 3, we numerically investigate the
range of iteration steps q for the use of Theorem 8, espe-
cially for the case of M = O((log2 d)k) for some k.

Finally, we mention the success probability of Theo-
rem 8. While we cannot prepare the probing state |Υ(q)⟩
deterministically in the alternative method, the success
probability can be easily boosted by a constant number
of repetitions of the circuit runs. Therefore, the total
query complexity remains unchanged when we use Theo-
rem 8 instead of Theorem 7 to prepare the probing state
of Eq. (1).

3. Applicability condition for the probing state preparation
by Grover-like repetition

Here, we investigate the threshold of iteration step q in
Theorem 8. We rewrite the threshold Eq. (14) as q∗ :=
log2(1/ε∗) by defining ε∗ as

1/ε∗ :=
√
Cln−3/2(2d/δ′)

⌈√
2(M + 1) ln(2d/δ′)

⌉
, (20)

where C := 23 · 333/625. Since the iteration step q runs
from 0 to qmax := ⌈log2(1/ε)⌉, we need that the threshold
1/ε∗ is smaller than the inverse of the target root MSE
1/ε in order to use the state preparation by the Grover-
like repetition.

To clarify this point, we here plot the threshold 1/ε∗ for
several cases M = N1, N2, N3, N4, and 2N under target
system with the number of qubits N ≡ log2 d. In Fig. 6,
we confirm that the threshold log2(1/ε∗) converges to
some constant (∼ 5) in the case of M = N2, which is
consistent with Eq. (20) because (1/ε∗)2 = O(

√
M/N)

holds. Thus, particularly in this case M = O(N2), the

FIG. 6. The condition for the Grover-based state prepara-
tion (Theorem 8). The solid lines represent the threshold
q∗ := log2(1/ε∗) of iteration steps in Eq. (20) (or Eq. (14)).
When the iteration step q exceeds the solid lines, we can use
the Grover-like repetition to prepare the probing state Eq. (1),
instead of using Hamiltonian simulation. The horizontal dot-
ted lines represent qmax := ⌈log2(1/ε)⌉ for ε = 10−2 (bottom),
10−4 (middle), and 10−6 (top), respectively.

method in Theorem 8 is available in a wide range of tar-
get precision ε regardless of N . On the other hand, if
the number of observables scales as 2N , the threshold
log2(1/ε∗) increases linearly regarding N (note that the
horizontal axis in Fig. 6 is logarithmic). This means that
in the case of M = O(2N ), the Grover-based method is
applicable only for small-size systems, otherwise the tar-
get precision ε is exponentially small with respect to N
(the base of the exponential is 2−1/4 ≈ 0.841).

Now, we focus on the case that we require more pre-
cise estimates as the number of observables M increases.
From the definition of ε∗, if the desired precision ε satisfy
ε2 ≪ N/(C

√
M), then there exists iteration steps q for

the Grover-based method. Specifically, considering the
desired precision is given by ε = cmse/

√
M ∈ (0, 1/

√
M)

for some cmse ∈ (0, 1), we can evaluate the difference be-
tween the upper bound qmax of iteration steps and the
threshold q∗ as follows:

qmax − q∗ ≥ Ω
(

log
(
N

√
M

))
. (21)

Thus, the range of iteration step q such that the Grover-
based method is available enlarges in this case, as N or
M increases.

V. CONCLUSION

In this work, we proved that multiple quantum ob-
servables can be simultaneously estimated with quantum
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resources at the scaling of Heisenberg limit 1/ε for a root
MSE ε. At the same time, the total resource shows a
nearly quadratic improvement with respect to the num-
ber of observables M , compared to the standard method
for this task i.e., the (modified) quantum amplitude es-
timation [21–23, 37–39]. The resources are quantified by
the total number of queries to a state preparation unitary
Uψ whose complexity usually scales as the size of quan-
tum system. We prove these results by explicitly con-
structing an adaptive quantum algorithm. The key idea
of the proposed method is to prepare a quantum state
with phases that encode the expectation values of ob-
servables, followed by the measurement for quantum gra-
dient estimation [24, 25]. Then, our method determines
a single binary digit of the target observables from the
measurement outcomes and update the quantum state
so that the next measurement has sufficient resolution to
determine the next fraction bit. Importantly, our method
can be considered as an extension of the iterative or adap-
tive phase estimation algorithms [3, 29, 31, 45, 46] to the
gradient estimation algorithm.

In addition to the Heisenebrg-limited scaling in MSE,
the proposed method significantly reduces the require-
ment of actual implementation, compared to the state-
of-the-art algorithms for multiple observables estima-
tion [26, 27]. First, the adaptive nature of the proposed
method allows us to reduce an additional space overhead
to O(M) qubits from O(M log(1/ε)) qubits in the previ-
ous methods. This results in a significant improvement
on the space overhead when precise estimates of observ-
ables are required. Also, the proposed method can be
executed in a parallel way during each iteration step,
leading to reduction of the total execution time if we
can use several quantum computers.

Next, in constructing quantum circuits of the proposed
method, we provide two methods along with their quan-
tum circuit diagrams; one is based on the optimal Hamil-
tonian simulation protocol and the other is based on

Grover-like repetition. While the former can be used
in any iteration steps q, in the final step, it requires
classical finding of O(1/ε) circuit parameters, as well
as the previous method, for quantum signal processing
(QSP) [48, 49]. As shown in the previous works [42], such
a circuit parameter finding requires ∼ 1/ε2 [sec] in classi-
cal computation time; the resulting numerical instability
is one of the central problems in practical application
of QSP or its extension, quantum singular value trans-
formation (QSVT) [13]. The alternative method based
on Grover-like repetition can avoid this problem by par-
tially using the QSP for Chebyshev polynomials whose
circuit parameters are analytically derived. As a result,
the Grover-based method requires only O(polylog(1/ε))
classical computation in total, under a specific condition
on q. This shows an exponential improvement in clas-
sical computation with respect to the target root MSE
ε, thereby reducing the barrier of actual implementa-
tion significantly. As for the condition of the alternative
method, we numerically investigate it in various setups
such as M = O(Nk) for some k and size of target system
N .
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Appendix A: Quantum gradient estimation

1. Review of Jordan’s algorithm

For a given blackbox of a real scalar function f(x) on
x ∈ RM , the quantum algorithm introduced by Stephen
P. Jordan [24] can efficiently estimate the M -dimensional
gradient of ∇f(0), with use of less queries to the black-
box compared to classical case. Here, the target point
x = 0 can be taken as x ̸= 0 by trivially redefining f(x).
The quantum algorithm consists of three steps: (i) pre-
pare a superposition state of grid points x around the
target point x = 0, (ii) apply the blackbox of the target
function f to the state and evaluate a phase eif(x) at
each grid point, and (iii) measure the resulting state by
the computational basis labeled by the grid points after
the inverse quantum Fourier transformations.

To begin with, we define a set of grid pointsGMp around
x = 0 to evaluate f , as follows:

GMp :=
{
µ

2p − 1
2 + 1

2p+1 : µ ∈ {0, 1, · · · , 2p − 1}
}M

,

(A1)
where p denotes a positive integer which specifies the
estimation precision later. Note that because there is a
bijection map

φ : µ 7→ φ(µ) := µ

2p − 1
2 + 1

2p+1 ∈ Gp, (A2)

we always label the p-qubit computational basis |µ⟩ by
the corresponding element x ≡ ϕ(µ) ∈ Gp. Then, ap-
plying the Hadamard gates to initialized pM -qubit reg-
isters, we have the superposition state of the grid points
x := (x1, ..., xM ) ∈ GMp :

1√
2pM

∑
x∈GM

p

|x⟩

= 1√
2pM

∑
(x1,...,xM )∈GM

p

|x1⟩ |x2⟩ · · · |xM ⟩ . (A3)

Here, each |xj⟩ contains p-qubit registers. Next, we as-
sume access to the phase oracle Of for f(x) defined
as [25]

Of : |x⟩ → eif(x) |x⟩ for all x ∈ GMp . (A4)

Note that Ref. [25] provides a generic analysis of Jordan’s
algorithm based on the phase (and probability) oracle,
while the original paper [24] assumes another powerful
oracle (i.e., η-accurate Binary oracle for f that outputs
f(x) binarily with accuracy η from an input x).

Now, to clarify the basic idea of Jordan’s algorithm,
we consider a special case where the target function f is
an affine linear function, i.e., for a target gradient vector
g ∈ [−1/3, 1/3]M and some constant f0 ∈ R, f(x) =
g · x + f0. For such linear functions, the application
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of the (modified) phase oracle O2π2p

f to the input state
Eq. (A3) yields

1√
2pM

∑
x∈GM

p

e2πi2pf(x) |x⟩

= e2πi2pf0 ·
M⊗
j=1

 1√
2p

∑
xj∈Gp

e2πi2pxjgj |xj⟩

 . (A5)

Then, we apply a slightly modified version of the inverse
quantum Fourier transformation QFT†

Gp
over the p-qubit

system: for all x ∈ Gp,

QFTGp
: |x⟩ 7→ 1√

2p
∑
k∈Gp

e2πi2pxk |k⟩ . (A6)

Note that QFTGp
is the same as the usual p-qubit QFT

up to conjugation with a tensor product of p single-qubit
gates [25]. The statistics of the computational basis mea-
surement to Eq. (A5) with QFT†

Gp
are similar to that of

the output of standard quantum phase estimation algo-
rithm [32]. More precisely, let (k1, k2, ..., kM ) ∈ GMp be a
result of the computational basis measurement, then the
following holds [25]:

Pr
[
|kj − gj | >

3
2p

]
≤ 1

4 for every i = 1, 2, · · · ,M.

(A7)
In the above description, we assumed that the target

function is affine linear. However, if a target function is
very close to some affine linear function and thereby the
equality of Eq. (A5) approximately holds, we can prove
similar results to Eq. (A7), as follows.
Lemma 9 ([25, 26]). Let g ∈ RM such that ∥g∥∞ ≤ 1/3.
Suppose we can prepare the quantum state |Ψ⟩ that is
1/12-close in the Euclidean distance to the following state(

QFT†
Gp

)⊗M 1√
2pM

∑
x∈GM

p

e2πi2pg·x |x⟩ . (A8)

Then, measuring the quantum state |Ψ⟩ in the com-
putational basis, we obtain a coordinate-wise estimate
(k1, ..., kM ) ∈ GMp satisfying

Pr
[
|kj − gj | >

3
2p

]
≤ 1

3 for every j = 1, 2, · · · ,M.

Proof. By the closeness assumption, the trace distance
between |Ψ⟩ and Eq. (A8) is upper bounded by 1/12.
Since the trace distance provides the upper bound of the
total variation distance of two probability measures de-
fined by the two quantum states and an arbitrary com-
mon POVM (Theorem 9.1 [32]), the probability (A7)
is modified at most 1/12 by measuring |Ψ⟩ instead of
Eq. (A8).

For more regular functions, Ref. [25] provides an im-
proved version of Jordan’s algorithm, using the higher-
order finite-difference formulas to enhance the linearity
of the target functions in a certain domain.

2. Heisenberg limit

The phase oracle Of for a smooth real function f(x)
on x ∈ RM with gradient g := ∇f(0) corresponds to
the time evolution operator (with unit time) generated
by the following Hamiltonian

H(g) + V, H(g) :=
∑

x∈GM
p

(g · x) |x⟩ ⟨x| , (A9)

where V is a g-independent Hermitian operator that
commutes with H(g). Thus, the estimation of g from
Of with appropriate choice of an input state and a fi-
nal measurement can be considered as one of the (multi-
parameter) unitary estimation problems. Such unitary
estimation problems are widely studied in the field of
quantum metrology, and one of the major topics in this
field is to devise quantum estimation protocols that can
achieve the higher precision than any classical proto-
col [2, 56]. In particular, the Heisenberg limit provides a
fundamental bound on the estimation precision (in terms
of root mean squared error) under given resources, and
it is typically given as 1/t where t denotes the total num-
ber of resources to be used [2, 57]. Here, we derive the
Heisenberg limit in quantum gradient estimation.

To derive the fundamental bound, we here consider a
general adaptive estimation protocol [56], which is illus-
trated in Fig. 7. In the general protocol, we first prepare
an arbitrary input state ρin between the system on which
Of acts and an ancilla system with an arbitrary number
of qubits. Then, we apply the following sequence of quan-
tum operations to the input state:

Ut(Of ⊗ 1) · · ·U2(Of ⊗ 1)U1(Of ⊗ 1), (A10)

where 1 denotes the identity and Ui (i = 1, 2, ..., t) are
g-independent arbitrary unitary operators acting on the
whole system. This sequence contains t uses of the phase
oracle in total. Finally, the output state is measured
by an arbitrary POVM {Mg}, and we write the corre-
sponding single-shot estimator for gj as ĝj . Because the
interaction Ui to the ancilla systems can extract the in-
formation during the estimation process, this protocol
also includes adaptive techniques. Obviously, the orig-
inal method for gradient estimation is captured in this
general protocol, by setting ρin to the uniform superpo-
sition state without ancilla qubits, Ui = 1 for all i, and
Mg to the computational basis measurement with the
inverse quantum Fourier transformation. Note that the
g-independent part of Of can be included in each Uj ,
and therefore in the following, we consider Of = eiH(g)

without loss of generality.
We here remark that eiH(g) can be written as a tensor

product of time evolutions

M⊗
j=1

 ∑
xj∈Gp

eigjxj |xj⟩ ⟨xj |

 (A11)

814



17
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FIG. 7. A general adaptive protocol for estimating g in Of .

by the generators Hj :=
∑
xj
xj |xj⟩ ⟨xj | with the

bounded spectral norm ∥Hj∥ ≤ 1/2. Therefore, the es-
timation of g = (g1, ..., gM ) is essentially equal to the
estimation of evolving time gj in each eigjHj . Now, we
are ready to prove the Heisenberg limit in quantum gra-
dient estimation.

Theorem 10 (Heisenberg limit in quantum gradient es-
timation). Suppose we have access to the phase oracle
Of for a smooth real function f on RM with gradient
g := ∇f(0) and gj belongs to some finite interval Θ ⊂ R
for all j. Then, the single-shot estimators ĝj, obtained
from the general adaptive estimation protocol in Fig. 7
with t uses of the phase oracle Of , satisfy the following
inequality:

min
j=1,2,··· ,M

M̂SE [ĝj ] ≥ π2

t2
as t → ∞, (A12)

where M̂SE[ĝj ] denotes the supremum of the mean
squared error (MSE) for ĝj over the known interval Θ,
i.e., the maximum value of MSE over all possible target
values gj ∈ Θ.

Proof. We prove this theorem by contradiction. Suppose
there is a protocol such that for an index j ∈ {1, ...,M},
M̂SE [ĝj ] < π2/(t2∆G2

p) holds as t goes to ∞, where
∆Gp denotes the difference between extreme eigenvalues
of Hj =

∑
xj∈Gp

xj |xj⟩ ⟨xj | i.e., maxGp − minGp ≤ 1.
Now, we recall that the phase oracleOf can be considered
as the product of eigjHj without loss of generality. Then,
focusing on the estimation of gj in the single-parameter
unitary eigjHj , it can be shown that there is no protocol
using the total t uses of eigjHj such that M̂SE[ĝj ] can
be less than π2/t2∆G2

p as t increases [57, 58], which con-
tradicts the above assumption. Therefore, we conclude
that

M̂SE[ĝj ] ≥ π2

t2∆G2
p

≥ π2

t2
as t → ∞

holds for all j, which completes the proof of Theorem 10.

As for the achievability of the lower bound, the same
methodology as the phase estimation with the minimum
phase uncertainty [33–36] can be applied to design an
optimal protocol, because the gradient estimation can be

considered as separable applications of the phase estima-
tion protocol. Hereafter, we describe an optimal proto-
col of gradient estimation that is applicable to an affine
linear function f(x) = x · g without any adaptive oper-
ations. Let us consider M tensor products of an ansatz
state

∑
x∈Gp

ax |x⟩, where ax is a real amplitude, as an
initial input state instead of the equal superposition state
Eq. (A3). Then, applying the phase oracle Of 2p+1 times
to the input state and performing the computational ba-
sis measurement after QFT†

Gp
s, we obtain the measure-

ment result kj with the probability

Pr [kj ] =

∣∣∣∣∣∣
2p−1∑
xj=0

axj√
2p
e2πi2pxj(g′

j−kj)

∣∣∣∣∣∣
2

, (A13)

where g′
j := gj/π. For simplicity, we drop the subscript

j in the following. Taking the measurement outcome k
as an estimator of g′, we can approximately evaluate the
MSE of k as follows:

E
[
(k − g′)2]

≃ 1
2π2 (1 − E [cos (2π(k − g′))]) , (A14)

where we can check the right hand side is close to the
MSE when (k − g′) is small by the Taylor expansion.
As shown in Ref. [59], the expectation of cosine can be
analytically calculated:

E [cos (2π(k − g′))]

=
2p−1∑
k=1

ak−1ak + a0a2p−1 cos
[
2π2p

(
g′ + 1

2 − 1
2p+1

)]
.

(A15)

Here, ak is equivalent to aφ(k) for the bijection map de-
fined in Eq. (A2). Therefore, if we take a0 = 0, then the
right hand side of Eq. (A14) can be written as a quadratic
form (1/2π2)

∑2p−1
k,l=1 Aklakal for the symmetric matrix A:

A =


1 −1/2

−1/2 1 −1/2

−1/2 1 . . .
. . . . . .

 . (A16)

The minimum eigenvalue and the corresponding eigen-
vector of A is known as

2 sin2 π

2p+1 (A17)
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and

ak =
√

2
2p sin kπ2p , (A18)

respectively. Consequently, combining Eqs. (A14) and
(A17), we can confirm that this protocol achieves the
lower bound of Theorem 10 when t = 2p+1 is sufficiently
large, as

E
[
(πk − g)2]

≃
( π

2p+1

)2
. (A19)

Finally, we remark that the original implementation
of the gradient estimation cannot achieve the quadratic
speedup regarding total queries t, i.e., ε2 = O(1/t2) for
a MSE ε2, even in the target function is an affine lin-
ear. This can be checked from Eq. (A14); the uniform
superposition state ax = 1/

√
2p for all x gives

min
g′

E [cos (2π(k − g′))] = 1 − 2
2p , (A20)

and thus, maxg E
[
(πk − g)2]

= O(1/t), which is the
same scaling as the shot noise or the standard quantum
limit (SQL). Note that this result is consistent with that
the quantum phase estimation algorithm fails to achieve
the Heisenberg limit when the input ancilla qubits are
initialized as the uniform superposition state, unlike the
optimal entangled state as in Eq. (A18) [3, 29, 60]. We
remark that the proposed adaptive method in this work
performs gradient estimation at the same scaling as the
Heisenberg limit O(1/ε) even when the target function is
approximately affine linear.

Appendix B: Circuit implementation and theoretical
guarantees of the proposed method

In Sec. B 1, we design two methods to prepare the
quantum state |Υ(q)⟩ in Eq. (1): one is based on the
Hamiltonian simulation protocol, and the other is based
on Grover-like repetition. Finally, the performance of the
proposed algorithm is analyzed in Sec. B 2. In the follow-
ing, we often refer to the detailed version Algorithm 1*,
instead of Algorithm 1 in Sec. III.

1. Probing state preparation

Here, we provide two quantum algorithms to prepare
the probing state |Υ(q)⟩ in Eq. (1), using block encod-
ings of observables {Oj} and the state preparation oracle
Uψ. First, we describe a method to construct the block
encoding of a linear combination of observables.

a. Amplified block encoding for observables

Let Bj (j = 1, ...,M) be an a-block-encoding of a d×d
observable Oj , and let p := (p1, ..., pM ) be a sequence of

Algorithm 1* Adaptive observables estimation
(A detailed version.)

Input: log2 d-qubit state preparation unitary Uψ; observ-
ables {Oj}Mj=1 with the spectral norm ∥Oj∥ ≤ 1 such that

M > 2 ln d+ 24 = O(log d) (B1)

holds; confidence parameter c ∈ (0, 3/8(1 + π)2]; target
precision parameter ε ∈ (0, 1).

Output: A sample (ũ1, ..., ũM ) from an estimator û =
(û1, ..., ûM ) whose j-th element estimates ⟨Oj⟩ :=
⟨ψ|Oj |ψ⟩ within MSE ε2 as

max
j=1,2,...,M

E
[
(ûj − ⟨Oj⟩)2]

≤ ε2

1: Set p := 3 and ũ
(0)
j := 0, (j = 1, 2, · · · ,M)

2: for q = 0, 1, ..., qmax := ⌈log2(1/ε)⌉ do
3: Set

Õ
(q)
j :=

Oj − ũ
(q)
j 1

2 and δ(q) := c

8qmax−q

4: Prepare O(log(M/δ(q))) copies of a quantum state that
is 1/12-close (in Euclidean distance) to(

QFT†
Gp

)⊗M
|Υ(q)⟩ , where

|Υ(q)⟩ := 1√
2pM

∑
x∈GM

p

e
2πi2p

∑M

j=1
xj 2q+1π−1⟨Õ(q)

j
⟩ |x⟩ ,

using Lemma 13 or Lemma 14 and perform the com-
putational basis measurement on each of them. Note
that each measurement outputs a result in the form of
(x1, ..., xM ) ∈ GMp .

5: Set coordinate-wise medians of the measurement re-
sults as g(q)

j

6: Set ũ(q+1)
j := ũ

(q)
j + π2−qg

(q)
j

7: if there are some j such that ũ(q+1)
j ≥ 1 (or ≤ −1)

then
8: Set ũ(q+1)

j = 1 (or −1) for such j

9: end if
10: end for
11: return ũj := ũ

(qmax+1)
j

positive integers. Here, we define a set Gp of grid points
as

Gp := Gp1 × · · · ×GpM
,

where each Gp is defined as in Eq. (A1). For any ele-
ment x = (x1, ..., xM ) ∈ Gp, we can construct an (a +
⌈log2 M⌉+1)-block-encoding of H̃(x) := M−1 ∑M

j=1 xjOj
by using the LCU method. The corresponding SELECT
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operation denoted by USEL is given by

USEL :=
M∑
j=1

|j⟩ ⟨j| ⊗Bj .

As for the PREPARE operation, we consider implemen-
tation with and without reflecting the signs of coefficients
as P (x)

R and P
(x)
L , defined as

P
(x)
R : |0⟩⊗⌈log2 M⌉ 7→

M∑
j=1

sgn(xj)

√
|xj |
∥x∥1

|j⟩ . (B2)

P
(x)
L : |0⟩⊗⌈log2 M⌉ 7→

M∑
j=1

√
|xj |
∥x∥1

|j⟩ (B3)

Then, we can confirm that the unitary (P (x)
L ⊗

1)†USEL(P (x)
R ⊗1) is a block encoding of ∝ H̃(x) because

for any |ψ⟩,

(P (x)
L ⊗ 1)†USEL(P (x)

R ⊗ 1) |0⟩⊗⌈log2 M⌉ |ψ⟩

=
M∑
j=1

sgn(xj)

√
|xj |
∥x∥1

(P (x)
L )† |j⟩ ⊗Bj |ψ⟩

= |0⟩⊗⌈log2 M⌉ ⊗
M∑
j=1

xj
∥x∥1

Bj |ψ⟩ + |ψ̃⊥⟩ , (B4)

where ⟨0|⊗⌈log2 M⌉ |ψ̃⊥⟩ = 0. While the block encoding
has the normalization factor ∥x∥1 which depends on x, it
can be modified to M by introducing an additional single
ancilla qubit and a single rotation gate Ry(θ) = eiθY . As
a result, the following unitary is (a+⌈log2 M⌉+1)-block-
encoding of H̃(x):

(I ⊗ P
(x)
L ⊗ 1)† (I ⊗ USEL) (Ry(θx) ⊗ P

(x)
R ⊗ 1), (B5)

where I denotes the 1-qubit identity, and Ry(θx) : |0⟩ 7→
∥x∥1
M |0⟩ +

√
1 −

(
∥x∥1
M

)2
|1⟩.

In this block encoding of H̃(x), only PREPARE opera-
tion depends on the grid point x ∈ Gp. Thus, by adding
a control to P (x)

L , P (x)
R , and Ry, and then sequentially ap-

plying them to each x, we can implement the following
unitary

U ′
SEL :=

∑
x∈Gp

|x⟩ ⟨x| ⊗ U (x), (B6)

where U (x) denotes the block encoding of H̃(x). Because
the detailed circuit description of U ′

SEL is not required in
the following, we deal with the unitary U ′

SEL as an oracle
for observables {Oj}Mj=1, instead of USEL, for a simple
expression of gate complexity.

Remark 11. The above straightforward construction of
U ′

SEL results in a very large circuit with O(2∥p∥1)-depth.
Fortunately, we can construct a more efficient circuit by
further modifying the PREPARE operation, using a sim-
ilar way to Ref. [61]. As shown in the Sec. 3 of Ref. [25],
we can implement

∑
x∈Gp

|x⟩ ⟨x|⊗e−ixZ with O(p)-depth
circuit using p+1 (controlled) single-qubit rotation gates.
By sequentially applying the |j⟩-controlled version of this
gate (see Fig. 8) over xj-register, the additional sin-
gle ancilla qubit, and the ⌈log2 M⌉ qubits, we obtain
a x-controlled block encoding of eiH(x) , where H(x) :=∑M
j=1 xj |j⟩ ⟨j|. The corresponding circuit diagram is

shown in Fig. 9. Then, we can obtain an ϵ-precise block
encoding of (2/π)H(x), via the eigenvalue transformation
for the logarihm of unitaries: eiH(x) 7→ H(x) (Corollary
71 in [13]). This implementation consists of O(log(1/ϵ))
uses of block-encoding of eiH(x) or its inverse. Now, intro-
ducing the SELECT USEL and Hadamard gates, we have
an ϵ-precise block-encoding of (2M/(π2⌈log2 M⌉))H̃(x)

controlled by x, using at most O(∥p∥1 log(1/ε))-depth
circuit over O(∥p∥1 + a + ⌈log2 M⌉ + log2 d) qubits in
total:

⟨0|H⊗⌈log2 M⌉ ⊗ 1 · USEL · 2
π

H(x)H⊗⌈log2 M⌉ |0⟩ ⊗ 1

= 2M
π2⌈log2 M⌉

1
M

M∑
j=1

xjBj . (B7)

Note that this block encoding has a single use of USEL =∑
j |j⟩ ⟨j| ⊗Bj regardless of ϵ.

Using U ′
SEL, Uψ, and its conjugation U†

ψ, we obtain a
block encoding of the following Hamiltonian:

∑
x

⟨ψ|H̃(x)|ψ⟩ |x⟩ ⟨x| =
∑

x

∑
j

xj · ⟨Oj⟩
M

 |x⟩ ⟨x| .

This allows us to simulate the phase oracle for the
affine linear function

∑
j xj⟨Oj⟩/M by using the block-

Hamiltonian simulation (Lemma 6). However, in esti-
mating the expectation value ⟨Oj⟩, we need to amplify
the function by the factor M due to the normalization
factor 1/M in H̃(x), which may result in no speedup for
the total queries to Uψ regarding the number M of ob-
servables. To obtain the quadratic speedup regarding M ,
Ref. [26] (Lemma 36) uses a linear amplification of H̃(x)

by Lemma 4, and this amplification can be performed
with no use of Uψ. Here, we provide a slightly modified
version of the Lemma 36 in Ref. [26] as follows.

Lemma 12. Let δ′ > 0, ε′ ∈ (0, 1/2), and let p =
(p1, p2, ..., pM ) be any sequence of positive integers. Sup-
pose that for d × d observables {Oj}Mj=1 with ∥Oj∥ ≤ 1
(d is a power of 2), we have access to the oracle U ′

SEL =∑
x∈Gp

|x⟩ ⟨x| ⊗ U (x), where U (x) is an (a+ ⌈log2 M⌉)-
block encoding of observable H̃(x) := M−1 ∑M

j=1 xjOj for
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p ν ∈ {0, 1, ..., 2p − 1}
/ •

|0⟩w • |0⟩w

e−iZφ(ν)

⌈log2 M⌉
/

(a) Simplified diagram

|ν(1)⟩ • · · ·
|ν(2)⟩ • · · ·

...
|ν(p)⟩ · · · •
|0⟩w • • • · · · • |0⟩w

Rz( 1
2p − 1) Rz( 21

2p ) Rz( 22

2p ) · · · Rz( 2p

2p )

· · ·
· · ·
· · ·

(b) Detailed diagram in the case of ⌈log2 M⌉ = 3

FIG. 8. Quantum circuit for |0⟩⊗⌈log2 M⌉-controlled unitary
∑

ν
|ν⟩ ⟨ν| ⊗ e−iZφ(ν). The qubit |0⟩w is an additional work qubit.

Here, we recall φ(µ) := µ
2p − 1

2 + 1
2p+1 ∈ Gp in Eq. (A2). Rz(x) := e−ixZ/2.

p1 µ1
/ • · · ·

p2
/

µ2
• · · ·

...pM
/ · · ·

µM
•

|0⟩w • • · · · • |0⟩w

|0⟩ X e−iZφ(µ1) e−iZφ(µ2) · · · e−iZφ(µM ) X

⌈log2 M⌉
/ +1 · · · +1 +1

FIG. 9. Quantum circuit for a 2-block-encoding of
∑

x
|x⟩ ⟨x| ⊗ eiH

(x)
, where H(x) :=

∑M

j=1 xj |j⟩ ⟨j|. The gate +1 denotes a
bit increment operation such as |1⟩ → |2⟩ → · · · → |M⟩ → |1⟩.

some a ∈ N. If the following inequality holds

σ :=
⌈√

2M ln(2d/δ′)
⌉
< M, (B8)

then there exists a subset F of Gp with the cardinality
|F | ≥ (1−δ′)|Gp|, and we can implement a unitary (with
∥p∥1 + ⌈log2 M⌉ + log2 d+ a+ 1 qubits in total)

Uobs :=
∑

x∈Gp

|x⟩ ⟨x| ⊗ U
(x)
obs (B9)

such that U (x)
obs is a (1, a+⌈log2 M⌉+1, ε′)-block-encoding

of the Hamiltonian

H(x) := 1
σ

M∑
j=1

xjOj if x ∈ F ⊂ Gp. (B10)

For m := O(Mσ−1 log(Mσ−1/ε′)), this implementation
of Uobs uses m queries to U ′

SEL or its inverse, 2m NOT
gates controlled by (a+⌈log2 M⌉)-qubit, and O(m) single-
qubit gates, with O(poly(m)) classical precomputation for
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finding quantum circuit parameters. The circuit diagram
for Uobs is shown in Fig. 10.

Proof of Lemma 12. Let γ := M/σ > 1. To perform the
amplification in Lemma 4, it is required that the spectral
norm ∥H̃(x)∥ is upper bounded by (1 − δ)/γ for some
δ ∈ (0, 1/2). To this end, we define a subset F ⊂ Gp
such that

F :=
{

x ∈ Gp : ∥H̃(x)∥ < 1
2γ

}
.

If x ∈ F , we can perform the linear amplification by
γ and obtain (1, a + ⌈log2 M⌉ + 1, ε′)-block-encoding of
γH̃(x) from Lemma 4. Next, we show the cardinality of
F is equal or more than (1−δ′)

∏M
j=1 2pj . Let us consider

independent random variables Xj (j = 1, ...,M) that are
uniformly distributed on each Gpj

. Because the random
variables are also symmetrically distributed on each Gpj

,
the following matrix series inequality holds (Theorem 35
in [26]):

PrX1,...,XM

∥∥∥∥∥∥
M∑
j=1

(2Xj)Oj

∥∥∥∥∥∥ ≥ t


≤ 2d · exp

− t2

2
∥∥∥∑M

j=1 O
2
j

∥∥∥
 . (B11)

Thus, inserting M/γ into t, we obtain

PrX1,...,XM

[∥∥∥H̃(X)
∥∥∥ ≥ 1/2γ

]
≤ δ′. (B12)

Since the probability of an event Xj = xj (j = 1, ...,M)
is equal to 1/

∏M
j=1 2pj for all xj , we obtain |F | ≥ (1 −

δ′)
∏M
j=1 2pj . The gate complexity follows from that of

Lemma 4.

Here, we make some remarks for Lemma 12. The con-
dition Eq. (B8) for the amplification, M > O(log(d/δ′)),
is crucial in our algorithm, and for a constant δ′, this
condition is satisfied when the number of observables is
bigger than the number of qubits such as Eq. (B1).

When we use the circuit construction of U ′
SEL in

Remark 11, U (x) in the assumption of Lemma 12
should be replaced as the ϵ-precise block encoding of
(2M/(π2⌈log2 M⌉))H̃(x). In this case, the error ε′ in the
block encoding U

(x)
obs of H(x) becomes ε′ + O(m

√
ϵ), by

the error propagation associated with the uniform am-
plification Lemma 4 (see; Lemma 22 in Ref. [13]). Thus,
replacing ε′ and ϵ with ε′/2 and O((ε′/m)2), respectively,
we obtain the ε′-precise block encoding U (x)

obs .

b. Approximated state preparation

Now, we are ready to show two quantum algorithms
to prepare the probing state |Υ(q)⟩. Note that in the fol-
lowing lemmas, we explicitly construct a quantum circuit
in its proof.
Lemma 13 (State preparation by Hamiltonian simula-
tion). Let Oj (j = 1, 2, ...,M) be d × d observables Oj
(d is a power of 2) with ∥Oj∥ ≤ 1, and let p be a pos-
itive integer. Also, let Uψ be a log2 d-qubit state prepa-
ration oracle, and ⟨Oj⟩ := ⟨ψ|Oj |ψ⟩. Suppose we have
access to U ′

SEL :=
∑

x∈GM
p

|x⟩ ⟨x| ⊗ U (x), where U (x) is
an (a+ ⌈log2 M⌉)-block-encoding of M−1 ∑M

j=1 xjOj for
some a ∈ N. We assume σ :=

⌈√
2M ln(2d/δ′)

⌉
< M

holds for δ′ = 2−10. Then, for any non-negative integer
q, we can prepare the pM -qubit quantum state

1√
2pM

∑
x∈GM

p

e
2πi2p

∑M

j=1
xj2q+1π−1⟨Oj⟩ |x⟩

up to 1/12 Euclidean distance error, with 4Q uses of
Uψ or U†

ψ, 4mQ uses of controlled U ′
SEL or its in-

verse, O(mQ) uses of NOT gates controlled by at most
O(a + ⌈log2 M⌉ + log2 d) qubits, O(mQ + pM) uses of
single-qubit or two-qubit gates, additional (⌈log2 M⌉ +
log2 d+ a+ 3) ancilla qubits, and O(poly(Q) + poly(m))
classical precomputation for finding quantum circuit pa-
rameters, where

Q = O
(
2p+q+2σ

)
and m = O

(
M

σ
(p+ q + logM)

)
.

Note that if we have a block encoding Bj of Oj , then
a block encoding of (Oj − ũ

(q)
j 1)/2 for any ũ(q)

j ∈ [−1, 1]
is easily constructed by the LCU method; see Fig. 11.
Therefore, Lemma 13 provides a method to approxi-
mately prepare the probing state |Υ(q)⟩.

Proof of Lemma 13. Let ε′′ = 2−14 ∈ (0, 1) and ε′ =√
δ′/(2p+q+2σ) ∈ (0, 1/2). From the assumption and

Lemma 12, we have a unitary

Uobs :=
∑

x∈GM
p

|x⟩ ⟨x| ⊗ U
(x)
obs , (B13)

where U
(x)
obs is a (1, a′′ = a + ⌈log2 M⌉ + 1, ε′)-block-

encoding of the Hamiltonian H(x) := σ−1 ∑M
j=1 xjOj if

x ∈ F with |F | ≥ (1 − δ′)|GMp |. Thus, using Uψ, U
†
ψ,

and Uobs, we can implement a (1, a′′ + log2 d, 0)-block-
encoding of the following Hamiltonian∑

x∈GM
p

f̃(x) |x⟩ ⟨x| , (B14)

where

f̃(x) := ⟨0|⊗a
′′+log2 d U†

ψ · U (x)
obs · Uψ |0⟩⊗a′′+log2 d .
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|0⟩ H e−iZϕm e−iZϕm−1 · · · e−iZϕ1 H

|0⟩⊗a′

U ′
SEL U ′†

SEL

· · ·

U ′
SEL

log2 d
/ · · ·

|x⟩
∥p∥1

/ · · ·

FIG. 10. Quantum circuit for Uobs in Eq. (B9). Here, a′ := ⌈log2 M⌉ + a. The circuit parameters {ϕj}mj=1 are adjusted for
real QSP based on the degree-m odd polynomial P (x) ≈ γx, γ = M/σ. Note that U ′

SEL contains a single use of USEL :=∑M

j=1 |j⟩ ⟨j| ⊗Bj .

|0⟩ e−iY ϕ/2

|0⟩ e−iY θ/2 • eiY θ/2

|0⟩⊗a /
Bj −sgn(ũ(q)

j )1

log2 d
/

FIG. 11. Quantum circuit for an (a + 2)-block-encoding of Õ(q)
j := (Oj − ũ

(q)
j 1)/2, where ũ(q)

j ∈ [−1, 1]. Bj is an a-block-

encoding of Oj . The angles are defined as θ := 2 tan−1
√

|ũ(q)
j | and ϕ := 2 tan−1

√
4 − (1 + |ũ(q)

j |)2/(1 + |ũ(q)
j |).

The corresponding quantum circuit is shown in Fig. 12.
Thus, the block-Hamiltonian simulation (Lemma 6)
yields the quantum circuit W for a (1, a′′ +log2 d+2, ε′′)-
block-encoding of time evolution operator∑

x∈GM
p

eif̃(x)t |x⟩ ⟨x| and t := 2p+2+qσ. (B15)

Note that a block encoding W ′ of ε′′-precise time evo-
lution operator eiHt for some Hamiltonian H yields

O(
√
ε′′)-precise time evolved states, that is, for any state

|ψ⟩,

∥∥W ′ |0⟩ |ψ⟩ − |0⟩ eiHt |ψ⟩
∥∥ ≤ ε′′ +

√
2ε′′,

where |0⟩ is the signal state for W ′. Therefore, for |0⟩ =
|0⟩⊗a′′+log2 d+2 and the +1 eigenstate |+⟩ of Pauli X , we
obtain

∥∥∥∥∥∥W |0⟩ |+⟩⊗pM − 1√
2pM

∑
x∈GM

p

e
2πi2p

∑M

j=1
xjπ

−12q+1⟨Oj⟩ |0⟩ |x⟩

∥∥∥∥∥∥
≤ ε′′ +

√
2ε′′ + 1√

2pM

∥∥∥∥∥∥
∑

x∈GM
p

eif̃(x)t |x⟩ −
∑

x∈GM
p

e
2πi2p

∑M

j=1
xjπ

−12q+1⟨Oj⟩ |x⟩

∥∥∥∥∥∥
≤ ε′′ +

√
2ε′′ +

√
5δ′ <

1
12 . (B16)
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pM
/

x
•

a′′

/

U
(x)
obslog2 d

/ Uψ U†
ψ

FIG. 12. Quantum circuit for a (a′′ + log2 d)-block-encoding of
∑

x∈GM
p
f̃(x) |x⟩ ⟨x| in Eq. (B14).

Here, in the second inequality we used the following evaluation.∥∥∥∥∥∥
∑

x∈GM
p

eif̃(x)t |x⟩ −
∑

x∈GM
p

e
2πi2p

∑M

j=1
xjπ

−12q+1⟨Oj⟩ |x⟩

∥∥∥∥∥∥
2

≤
∑

x∈GM
p

∣∣∣∣eif̃(x)t − e
2πi2p

∑M

j=1
xjπ

−12q+1⟨Oj⟩
∣∣∣∣2

≤ 4 × 2pMδ′ +
∑
x∈F

∣∣∣∣eif̃(x)t − e
2πi2p

∑M

j=1
xjπ

−12q+1⟨Oj⟩
∣∣∣∣2

(∵ |F | ≥ (1 − δ′)|GMp |)

≤ 4 × 2pMδ′ +
∑
x∈F

∣∣∣∣∣∣f̃(x)t− 2π2p
M∑
j=1

xjπ
−12q+1⟨Oj⟩

∣∣∣∣∣∣
2

(∵ |eia − eib| ≤ |a− b|)

≤ 4 × 2pMδ′ +
∑
x∈F

(tε′)2 ≤ 2pM × 5δ′ (∵ ε′ :=
√
δ′/t). (B17)

The gate complexity follows from that of Lemma 12 and Lemma 6.

Lemma 14 (State preparation by Grover-like repeti-
tion). Let Oj (j = 1, 2, ...,M) be d × d observables Oj
(d is a power of 2) with ∥Oj∥ ≤ 1, and let p be a positive
integer. We assume the following two conditions holds
for δ′ := 2−14 ∈ (0, 1):

(i) σ :=
⌈√

2(M + 1) ln(2d/δ′)
⌉
< M + 1.

(ii) For a given (log2 d)-qubit quantum state |ψ⟩ pre-
pared by Uψ, |⟨Oj⟩| ≤ 2−q−1 holds for all j =
1, 2, ...,M , where q denotes a non-negative integer
satisfying

q ≥ log4

 2p · 333

625 ln(2d/δ′)

⌈√
2(M + 1) ln(2d/δ′)

⌉
√

ln(2d/δ′)


(B18)

Suppose we have access to U ′
SEL :=

∑
x∈GM

p ×G1
|x⟩ ⟨x| ⊗

U (x), where U (x) is an (a + ⌈log2 (M + 1)⌉)-block-

encoding of

1
M + 1

M+1∑
j=1

xjOj


for some a ∈ N. Here, OM+1 denotes a 2 × 2 observable
defined as

OM+1 := π(1/4 + 4l)
2p+q I,

where l is an arbitrary integer satisfying ∥2q+1OM+1∥ ≤
1 and I denotes the 1-qubit identity. Then, we can suc-
cessfully prepare the following pM -qubit quantum state
with a measurement result of ancilla qubits indicating the
success:

1√
2pM

∑
x∈GM

p

e
2πi2p

∑M

j=1
xj2q+1π−1⟨Oj⟩ |x⟩

up to 1/12 Euclidean distance error with the success prob-
ability ≥ 0.462. This implementation consists of 2t uses
of Uψ or U†

ψ, mt uses of U ′
SEL or its inverse, (2m + 1)t

uses of NOT gates controlled by at most (a+ ⌈log2(M +
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1)⌉ + log2 d) qubits, O(mt + pM) uses of single-qubit or
two-qubit gates, additional (⌈log2(M+1)⌉+log2 d+a+2)
ancilla qubits, and O(poly(m)) classical precomputation

for finding quantum circuit parameters, where

t = 2p+q+2σ and m = O
(
M

σ
(p+ q + logM)

)
.

Proof of Lemma 14. Let ε′ =
√
δ′/(2p+q+2σ) ∈ (0, 1/2). From the assumption and Lemma 12, we have a unitary

Uobs :=
∑

(x,y)∈GM
p ×G1

|x, y⟩ ⟨x, y| ⊗ U
(x,y)
obs , (B19)

where U (x,y)
obs is a (1, a′′ = a+ ⌈log2 (M + 1)⌉ + 1, ε′)-block-encoding of the Hamiltonian

H(x,y) := 1
σ

yOM+1 +
M∑
j=1

xjOj


if (x, y) ∈ F with |F | ≥ (1 − δ′)2|GMp |. Thus, using Uψ, U†

ψ, and Uobs, we can implement a (1, a′′ + log2 d, 0)-block-
encoding of the following Hamiltonian∑

(x,y)∈GM
p ×G1

f̃(x, y) |x, y⟩ ⟨x, y| , where f̃(x, y) := ⟨0|⊗a
′′+log2 d U†

ψ · U (x,y)
obs · Uψ |0⟩⊗a′′+log2 d . (B20)

Since U (x,y)
obs is the ε′-precise block encoding of H(x,y), f̃(x, y) is close to an affine linear function as∣∣∣∣∣∣f̃(x, y) − 1

σ

y⟨OM+1⟩ +
M∑
j=1

xj⟨Oj⟩

∣∣∣∣∣∣ ≤ ε′ for all (x, y) ∈ F. (B21)

Thus, Grover-like repetition on Eq. (B20), that is, Lemma 5 yields the quantum circuit W for an (a′′ + log2 d)-block-
encoding of the following operator ∑

(x,y)∈GM
p ×G1

Tt
(
f̃(x, y)

)
|x, y⟩ ⟨x, y| and t := 2p+q+2σ.

Applying W to the state |+⟩⊗pM+1 |0⟩ with |0⟩ = |0⟩⊗a′′+log2 d, we obtain

W |+⟩⊗pM+1 |0⟩ = Nt√
2

[
1

Nt

1√
2pM

∑
x,y

Tt
(
f̃(x, y)

)
|x, y⟩

]
|0⟩ +

√
1 −

(
Nt√

2

)2
|Φ⊥⟩ , (B22)

where |Φ⊥⟩ denotes a normalized quantum state satifying (1 ⊗ |0⟩ ⟨0|) |Φ⊥⟩ = 0 and Nt is defined as:

Nt :=
∥∥∥∥∥ 1√

2pM
∑
x,y

Tt
(
f̃(x, y)

)
|x, y⟩

∥∥∥∥∥ . (B23)

Measuring the (a′′ + log2 d)-qubit ancilla registers in (B22), we obtain the outcome |0⟩ and the following state with
the probability N 2

t /2:
1

Nt

1√
2pM

∑
x,y

Tt
(
f̃(x, y)

)
|x, y⟩ . (B24)

In the following, we show this quantum state is close to the following state

1√
2pM

∑
(x,xM+1)∈GM

p ×G1

cos

t
π

2 − 1
σ

M+1∑
j=1

xj⟨Oj⟩

 |x⟩ |xM+1⟩

= 1√
2

∑
s=±1

∑
x∈GM

p

1√
2pM

e
2πi2p

∑M

j=1
(sxj)π−12q+1⟨Oj⟩ |x⟩ ⊗ QFTG1

|s/4⟩ . (B25)
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|+⟩⊗pM /

BE BE†

· · · X⊗pM

|+⟩ · · · QFT†
G1

|+⟩

|0⟩ / Ref|0⟩ Ref|0⟩ · · · all 0

Repeat t/2 times
ll

FIG. 13. Quantum circuit for the approximate probing state preparation |Υ(q)⟩ by Grover-like repetition. |0⟩ := |0⟩⊗a′′+log2 d

and BE denotes the block encoding of Eq. (B20). Ref|0⟩ is the reflection on |0⟩, i.e., Ref|0⟩ := 2 |0⟩ ⟨0| − 1. The measurement
outcome |0⟩ is obtained with the probability N 2

t /2 ≥ 0.462.

Note that the equality in Eq. (B25) can be shown as follows.

∑
(x,xM+1)∈GM

p ×G1

cos

t
π

2 − 1
σ

M+1∑
j=1

xj⟨Oj⟩

 |x⟩ |xM+1⟩

= 1
2

∑
x,y

∑
s=±1

e
−is t

σ

(
y⟨OM+1⟩+

∑M

j=1
xj⟨Oj⟩

)
|x⟩ |y⟩ (∵ eistπ/2 = e2πis2p+qσ = 1)

= 1√
2

∑
s=±1

∑
x∈GM

p

e
−ist 1

σ

∑M

j=1
xj⟨Oj⟩ |x⟩ ⊗ 1√

2
∑
y∈G1

e−ist 1
σ y⟨OM+1⟩ |y⟩

= 1√
2

∑
s=±1

∑
x∈GM

p

e
−ist 1

σ

∑M

j=1
xj⟨Oj⟩ |x⟩ ⊗ QFTG1 |−s/4⟩ (∵ ⟨OM+1⟩ = π(1/4 + 4l)

2p+q )

= 1√
2

∑
s=±1

∑
x∈GM

p

e
−is2π2p

∑M

j=1
xjπ

−1(2q+1)⟨Oj⟩ |x⟩ ⊗ QFTG1
|−s/4⟩ . (B26)

Thus, by applying QFT†
G1

and controlled X⊗pM gate to the state (B22), we can prepare the target state:

1√
2pM

∑
x∈GM

p

e
2πi2p

∑M

j=1
xj2q+1π−1⟨Oj⟩ |x⟩ ⊗ |+⟩ (B27)

up to some Euclidean distance error with the probability N 2
t /2, because X⊗pM |x⟩ = |−x⟩ holds. Note that QFT†

G1

and controlled X⊗pM does not change the probability to obtain the success flag |0⟩. Here, we show the corresponding
quantum circuit to prepare Eq. (B27) in Fig. 13.

For subsequent proof, we here show that for any δ′ ∈ (0, 1) and any real weight wj (j = 1, 2, ...,M + 1), a subset F ′

of GMp ×G1 defined as

F ′ :=

(x, y) ∈ GMp ×G1 :

∣∣∣∣∣∣
M+1∑
j=1

wjxj

∣∣∣∣∣∣ <
√√√√ ln(2/δ′)

2

M+1∑
j=1

|wj |2

 (B28)

has the cardinality |F ′| ≥ (1 − δ′)2pM+1. This fact can be proved from the Hoeffding’s inequality as follows. Let us
consider independent random variables Xj (j = 1, 2, ...,M) and Y . Here, Xj are identically and uniformly distributed
in Gp and Y is uniformly distributed in G1. Note that the random variables are upper bounded by 1/2 from the
definition of Gp. Therefore, from the Hoeffding’s inequality, we obtain

PrX1,...,XM ,Y

∣∣∣∣∣∣
M+1∑
j=1

wjXj

∣∣∣∣∣∣ ≥ c

 ≤ 2exp
[

− 2c2∑
j |wj |2

]
. (B29)
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Thus, taking c as c =
√

ln(2/δ′)
2

∑M+1
j=1 |wj |2, we obtain

PrX1,...,XM ,Y

∣∣∣∣∣∣
M+1∑
j=1

wjXj

∣∣∣∣∣∣ ≥

√√√√ ln(2/δ′)
2

M+1∑
j=1

|wj |2

 ≤ δ′. (B30)

Since the independent random variables X1, ..., XM , Y has uniform distributions, F ′ has the cardinality ≥ 2pM+1(1 −
δ′).

Now, we are ready to show the closeness between Eq. (B24) and Eq. (B25). Defining F ′ for δ′ = 2−14 and wj = ⟨Oj⟩
as

F ′ :=

(x, y) ∈ GMp ×G1 :

∣∣∣∣∣∣
M+1∑
j=1

xj⟨Oj⟩

∣∣∣∣∣∣ <
√√√√ ln(2/δ′)

2

M+1∑
j=1

|⟨Oj⟩|2

 (B31)

and recalling that |F ′|, |F | ≥ (1 − δ′)2pM+1, we proceed as follows.∥∥∥∥∥∥
∑

(x,y)∈GM
p ×G1

Tt(f̃ (x, y)) |x⟩ |y⟩ −
∑

(x,y)∈GM
p ×G1

cos

t
π

2 − 1
σ

M+1∑
j=1

xj⟨Oj⟩

 |x⟩ |y⟩

∥∥∥∥∥∥
2

=
∑

(x,xM+1)∈GM
p ×G1

∣∣∣∣∣∣Tt(f̃(x, xM+1)) − cos

t
π

2 − 1
σ

M+1∑
j=1

xj⟨Oj⟩

∣∣∣∣∣∣
2

≤ 4 × 2 × 2pM+1δ′ +
∑

(x,xM+1)∈F∩F ′

∣∣∣∣∣∣t cos−1 [
f̃(x, xM+1)

]
− t

π

2 − 1
σ

M+1∑
j=1

xj⟨Oj⟩

∣∣∣∣∣∣
2

, (B32)

where we used | cos(a) − cos(b)| ≤ |a− b| and GMp ×G1 = (F ∩ F ′) ∪ (F c ∪ (F ′)c) in the third line. Now, we focus on
the case (x, xM+1) ∈ F ∩ F ′.

|f̃(x, xM+1)| ≤ ε′ +

∣∣∣∣∣∣ 1
σ

M+1∑
j=1

xj⟨Oj⟩

∣∣∣∣∣∣ (∵ Eq. (B21))

≤ ε′ +

√∑
j |⟨Oj⟩|2

4(M + 1)

√
ln(2/δ′)
ln(2d/δ′) (∵ Eq. (B31))

≤
√
δ′

2p+q+2σ
+ 1

2q+2

√
ln(2/δ′)
ln(2d/δ′) <

33/10
2q+2

√
ln(2d/δ′)

< 1/4. (B33)

In the case of |x| ≤ 1/4,
∣∣cos−1(x) − π/2 + x

∣∣ ≤ 1
5 |x|3 holds, and therefore we obtain

t

∣∣∣∣∣∣cos−1 [
f̃(x, xM+1)

]
−

π

2 − 1
σ

M+1∑
j=1

xj⟨Oj⟩

∣∣∣∣∣∣
= t

∣∣∣∣∣∣cos−1 [
f̃(x, xM+1)

]
− π

2 + f̃(x, xM+1) +

 1
σ

M+1∑
j=1

xj⟨Oj⟩ − f̃(x, xM+1)

∣∣∣∣∣∣
≤ tε′ + t

∣∣∣cos−1 [
f̃(x, xM+1)

]
− π

2 + f̃(x, xM+1)
∣∣∣

≤ tε′ + t

5

∣∣∣∣∣ 33/10
2q+2

√
ln(2d/δ′)

∣∣∣∣∣
3

. (B34)
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From the assumption, the non-negative integer q satisfies t
5

∣∣∣∣ 33/10
2q+2

√
ln(2d/δ′)

∣∣∣∣3
≤

√
δ′, then we conclude that

∥∥∥∥∥∥
∑

(x,y)∈GM
p ×G1

Tt(f̃ (x, y)) |x⟩ |y⟩ −
∑

(x,y)∈GM
p ×G1

cos

t
π

2 − 1
σ

M+1∑
j=1

xj⟨Oj⟩

 |x⟩ |y⟩

∥∥∥∥∥∥
≤

√
4 × 2 × 2pM+1δ′ +

∑
(x,xM+1)∈F∩F ′

(2
√
δ′)2

≤ 2
√

6δ′ ×
√

2pM . (B35)

This leads to

1 − 2
√

6δ′ ≤ Nt =
∥∥∥∥∥ 1√

2pM
∑
x,y

Tt
(
f̃(x, y)

)
|x, y⟩

∥∥∥∥∥ ≤ 1 + 2
√

6δ′ (B36)

and ∥∥∥∥∥∥ 1
Nt

∑
(x,y)∈GM

p ×G1

Tt(f̃ (x, y)) |x⟩ |y⟩ −
∑

(x,y)∈GM
p ×G1

cos

t
π

2 − 1
σ

M+1∑
j=1

xj⟨Oj⟩

 |x⟩ |y⟩

∥∥∥∥∥∥
≤

√
2pM × 4

√
6δ′

1 − 2
√

6δ′
<

√
2pM × 1

12 . (B37)

Therefore, we can prepare the target state up to 1/12 Euclidean distance error with the probability N 2
t /2 > 0.462.

Finally, the gate complexity follows from that of Lemma 12 and Lemma 5.

Note that we can coherently amplify the success prob-
ability in Lemma 14 by quantum amplitude amplifica-
tion [37], while this requires a quantum circuit with 3-fold
depth compared to the quantum circuit (before measure-
ment) in Fig. 13.

2. Maximum mean squared error (MSE) and query
complexity

Here, we evaluate the relation between the root mean
squared error ε and the total queries to the state prepa-
ration in Algorithm 1*.

Proof of Theorem 2. The core idea of this proof is similar
to the previous methods [45, 46, 50], but we need care-
fully to deal with the condition of gradient estimation. In
the following, we prove this theorem based on the state
preparation by Lemma 13; see remarks after this proof
for the case of Lemma 14.

We start by clarifying the statistical property of g(q)
j

in the step 5 of Algorithm 1*. The truncation in Step
7 guarantees ũ(q)

j ∈ [−1, 1] for all q; we can construct
a block-encoding U ′

SEL for {Õ(q)
j }, which is assumed to

be accessible in Lemma 13, from the block encodings of
{Oj}; see Fig. 11. Therefore, using the Lemma 13, we
can prepare the quantum state in Step 4.

Now, we consider the case that the following condi-
tion for gradient estimation holds at the beginning of an
iteration q: for all j,∣∣∣⟨Õ(q)

j ⟩
∣∣∣ =

∣∣∣∣∣ ⟨Oj⟩ − ũ
(q)
j

2

∣∣∣∣∣ ≤ 2−q−1. (B38)

Then, a single shot measurement result k :=
(k1, ..., kM ) ∈ GMp in Step 4 follows

Pr
[∣∣∣∣∣kj −

2q(⟨Oj⟩ − ũ
(q)
j )

π

∣∣∣∣∣ > 3
2p

]
≤ 1

3 ,

for every j = 1, 2, ...,M , from the analysis of gradient
estimation in Lemma 9. If we take p = 5, then the ad-
ditive error 3/2p is smaller than 1/2π, and therefore, the
temporal estimate ũ(q)

j + π
2q kj becomes a 1-bit more pre-

cise estimate of ⟨Oj⟩ at least 2/3 probability. However,
the choice of p = 5 is sufficient but not tight. Here, we
employ the following tighter bound that we numerically
found [62]: if we take p = 3,

Pr
[∣∣∣∣∣kj −

2q(⟨Oj⟩ − ũ
(q)
j )

π

∣∣∣∣∣ > 1
2π

]
< 0.18 + 1

12 , (B39)

holds for every j, where the term 1/12 arises from the
Euclidean distance error as well as Lemma 9. Since the
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g
(q)
j is defined as the coordinate-wise median of inde-

pendent samples k(1), ...,k(#), the Hoeffding’s inequal-
ity for the independent and bounded random variables
{χ[|k(i)

j − 2q(⟨Oj⟩ − ũ
(q)
j )/π| > 1/(2π)]}i yields

Pr
[∣∣∣∣∣g(q)

j −
2q(⟨Oj⟩ − ũ

(q)
j )

π

∣∣∣∣∣ > 1
2π

]
≤ e− #

9 , (B40)

for every j. Here, χ[•] denotes the indicator function.
Therefore, taking # := 9 ln(M/δ(q)) and using the union
bound, we can bound the probability of the event

A(q) : max
j

∣∣∣g(q)
j − 2q(⟨Oj⟩ − ũ

(q)
j )/π

∣∣∣ ≤ 1
2π

as Pr[A(q)] ≥ 1 − δ(q). In the event A(q), | ⟨Õ(q+1)
j ⟩ | ≤

2−q−2 holds even if we truncate ũ(q+1)
j in Step 7. On the

other hand, if the condition Eq. (B38) is false, the gradi-
ent estimation does not work, and we only say that the
measurement result g(q)

j is bounded as g(q)
j ∈ [−1/2, 1/2]

because of the definition of GMp .
In the case of q = 0, the condition Eq. (B38) holds,

and thus, the event A(0) occurs with the probability
1 − δ(0). By repeating this, in branches such that all
of {A(q)}q

′−1
q=0 occur, the temporal estimate ũ(q′)

j satisfy
|ũ(q′)
j − ⟨Oj⟩ | ≤ 1/2q′ for all j. Moreover, considering

branches such that all of {A(q)}q
′−1
q=0 occur but the com-

plement of A(q′) occurs at the iteration q′, we bound the
additive error of the final estimate ũj in such branches
as follows:

|ũj − ⟨Oj⟩ | ≤ |ũj − ũ
(q′)
j | + |ũ(q′)

j − ⟨Oj⟩ |

≤ π

∣∣∣∣∣∣
∑
q≥q′

g
(q)
j

2q

∣∣∣∣∣∣ + 1
2q′

≤ 1 + π

2q′ . (B41)

In the third line, we use the fact |g(q)
j | ≤ 1/2. Thus, we

can calculate the mean squared error of ûj as

E
[
(ûj − ⟨Oj⟩)2

]
≤ 1

22(qmax+1) + (1 + π)2
qmax∑
q=0

δ(q)

4q

≤ 1
22(qmax+1) + (1 + π)2c2−2qmax+1

≤ ε2, (B42)

where we defined qmax := ⌈log2(1/ε)⌉. In the final line,
we used the fact c ∈ (0, 3/(8(1 + π)2)]. The inequality
holds for all j, which completes the proof of Eq. (4).

Next, we count the total queries to the state prepa-
ration Uψ. At each iteration q, we prepare # :=
9 ln(M/δ(q)) copies of a quantum state that approximates
the probing state |Υ(q)⟩. If we prepare a single copy
of this state using the method in Lemma 13, then the
O(2p+q+2σ) queries to Uψ and its inverse are required,
and therefore the total queries are calculated as

qmax∑
q=0

2p+q+2σ × 9 ln(M/δ(q))

= 9 · 2p+2σ ×
qmax∑
q=0

2q ln(M/δ(q))

= 9 · 2p+2σ

[
2qmax+1 ln 8M

c
− (qmax + 2) ln 8 − ln M

c

]
= O(ε−1

√
M logM).

Here, we discuss the case that we employ Lemma 14
to the state preparation in Step 4 of Algorithm 1*. This
alternative method can prepare the probing state |Υ(q)⟩
under the following conditions: (i) | ⟨Õ(q)

j ⟩ | ≤ 2−q−1 and
(ii) the iteration step q satisfies Eq. (B18). In the case
that only the condition (i) (or equivalently, Eq. (B38))
is violated, the quantum circuit in Fig. 13 for Lemma 14
yields a pM -qubit quantum state that may be far from
the target probing state. However, this does not affect
the proof of Theorem 2 because it is only required that
the measurement results at the end of Fig. 13 are in the
range of [−1/2, 1/2]. On the other hand, the condition
(ii) restricts the usage of the alternative method, as dis-
cussed in Sec. IV B 3.
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Abstract. The barren plateau phenomenon, characterized by loss gradients that vanish exponentially
with system size, poses a challenge to scaling of variational quantum algorithms (VQAs). In our work,
we explore the potential of warm starts, whereby initializing close to a solution, we hope to enjoy larger
gradients. Focusing on an iterative variational method for quantum simulation, we analytically show that
a small region around the initialization at each iteration exhibits substantial gradients with convexity
guarantees. However, our study highlights scenarios where a good minimum shifts outside the region with
guarantees. Our analysis leaves open the question whether such minima jumps necessitate optimization
across barren plateau landscapes or whether there exist gradient flows, i.e., fertile valleys away from the
plateau with substantial gradients, that allow for training.

Keywords: Variational Quantum Algorithms, Warm Start, Trainability guarantees, Barren Plateaus,
Quantum Simulation

1 Summary

Barren plateaus, i.e., loss landscapes that concentrate
exponentially in system size towards their mean value
with high probability, [1–19] are widely thought to pose
a significant barrier to the scaling up of variational quan-
tum algorithms. However, barren plateaus are funda-
mentally a statement about the landscape on average. In-
deed, regions of the landscape with significant gradients
must exist around the minima. This has motivated the
study of warm starts whereby the algorithm is cleverly
initialized closer to one. Numerical studies indicate that
these methods may be promising [20–23]. In parallel,
analytic studies have proven that initializations around
identity can exhibit non-exponentially vanishing gradi-
ents [24–28]. Nonetheless, a good solution may be far
from this identity region.
Here we consider a family of variational quantum algo-

rithms that inherently use warm starts and take this as a
case study to better understand their potential and limi-
tations. In particular, we study an approach for learning
shorter depth circuits for simulating quantum systems
by iteratively compressing real or imaginary time Trotter
evolution circuits [29–35]. At each iteration, the previ-
ous solution is used to initialize the parameters to learn
a new compressed circuit to implement a slightly longer
evolution as shown in Fig. 1a).
This case study is an ideal playground for studying

warm starts because its inbuilt structure allows one to
analytically compute bounds on its trainability. (I) We
start by proving that as long as the training in one time-
step is successful then the algorithm will exhibit substan-
tial gradients in a small region around the next initial-
ization. (II) We then establish guarantees on the ap-
proximate convexity of the gradients in this region and
further argue that for polynomially large time-steps the

∗The first two authors contributed equally to this work.

new optimum (called an adiabatic minimum) will typ-
ically remain in this convex region. These results are
summarised in Fig. 1b.

However, these positive findings are partially tempered
by the observation there is no guarantee that a good
minimum remains in this region. (III) Namely, there
exist cases where a good minimum jumps from the re-
gion with trainability guarantees. Our analysis leaves
open the question of whether such minima jumps neces-
sitate optimization across barren plateau landscapes or
whether there exist gradient flows that allow for training.
(IV) As numerically observed in our contrived example
on a 10-qubit system, such fertile valleys, i.e. small re-
gions away from the plateau with substantial gradients,
that allow for successful training are theoretically possi-
ble. However, to what extent they arise in practise is an
open question. We end by discussing the wider applica-
tions of our work to other iterative and/or perturbative
variational quantum algorithms.

2 Framework

Iterative Variational Trotter Compression. One
standard approach to simulate the time evolution of some
initial state |ψ0⟩ under a Hamiltonian H is by a Trotter
evolution where the total time t is broken down into a
sequence of N short δt Trotter steps with t = Nδt, such
that e−iHt |ψ0⟩ ≈ ∏N

k=1 e
−iHδt |ψ0⟩ where the approxi-

mation error is in O(Nδt). However, these approaches
are fundamentally limited by the linear growth of circuit
depths with time simulated. Here we focus on the pro-
posal to use a variational quantum algorithm to compress
the depth of the Trotter circuit at each iteration of the
algorithm [29–35] as shown in Fig. 1. More concretely,
at any iteration of the algorithm, one variationally mini-
mizes the following loss:

L (θ) = 1− |⟨ψ0|U(θ)†e−iHδtU(θ∗)|ψ0⟩|2 (1)

827



✓⇤
<latexit sha1_base64="x1EgweNLL18JsqOYsjTOOTIbR64=">AAAB/nicbVDLSgMxFM34rPU1Kq7cDBZBXJSZKuiy6MZlBfuAzlgymUwbmkmG5I5QhoK/4saFIm79Dnf+jZm2C209EHI4515ycsKUMw2u+20tLa+srq2XNsqbW9s7u/befkvLTBHaJJJL1QmxppwJ2gQGnHZSRXESctoOhzeF336kSjMp7mGU0iDBfcFiRjAYqWcf+qHkkR4l5sp9GFDA44eznl1xq+4EziLxZqSCZmj07C8/kiRLqADCsdZdz00hyLECRjgdl/1M0xSTIe7TrqECJ1QH+ST+2DkxSuTEUpkjwJmovzdynOgioZlMMAz0vFeI/3ndDOKrIGcizYAKMn0ozrgD0im6cCKmKAE+MgQTxUxWhwywwgRMY2VTgjf/5UXSqlW982rt7qJSv57VUUJH6BidIg9dojq6RQ3URATl6Bm9ojfryXqx3q2P6eiSNds5QH9gff4AzyKWBg==</latexit>

Var✓[L(✓)] 2 O(c�n)
<latexit sha1_base64="SSfWrEIWycSnTYdHktSUdu0HpjQ="></latexit>

| (t0)i = U(✓⇤)| 0i
<latexit sha1_base64="Swybcn3zbS1H0galeVD+IZs/UBI=">AAACI3icbVBNSwMxEM3W7/pV9eglWMTWQ9lVQREE0YvHClYL3Vqy6bQNZrNLMiuUtf/Fi3/FiwelePHgfzGte9DqQMjjvTfMzAtiKQy67oeTm5qemZ2bX8gvLi2vrBbW1q9NlGgONR7JSNcDZkAKBTUUKKEea2BhIOEmuDsf6Tf3oI2I1BX2Y2iGrKtER3CGlmoVjh/82IgS7pR9zVRXAj2htZIfRLJt+qH9Uh97gGxwu1umY2/LzZytQtGtuOOif4GXgSLJqtoqDP12xJMQFHLJjGl4bozNlGkUXMIg7ycGYsbvWBcaFioWgmmm4xsHdNsybdqJtH0K6Zj92ZGy0Iw2ts6QYc9MaiPyP62RYOeomQoVJwiKfw/qJJJiREeB0bbQwFH2LWBcC7sr5T2mGUcba96G4E2e/Bdc71W8/cre5UHx9CyLY55ski1SIh45JKfkglRJjXDySJ7JK3lznpwXZ+i8f1tzTtazQX6V8/kFam6kKA==</latexit>

I . Prepare a state

II . Apply a small evolutionIV . Update parameters

III . Train with warm start

Region I
Region II

Region II

(Theorem 1)
convex

(Theorem 2)

Region I

a) b)

| (t0 + �t)i = e�iH�t| (t0)i
<latexit sha1_base64="6f0dLAM/bjoMl7Lrekg6G5HtPgg=">AAACKHicbVDLSgMxFM34tr6qLt0Ei1gRy0wVdCMW3bhUsFbo1JJJb9vQTGZI7ghl7Oe48VfciCjSrV9iWlvwdSBwOOdcbu4JYikMum7fmZicmp6ZnZvPLCwuLa9kV9euTZRoDmUeyUjfBMyAFArKKFDCTayBhYGEStA5G/iVO9BGROoKuzHUQtZSoik4QyvVsyf3fmxEHrd3/QZIZBR3fM1USwI9pnCb7lFBz+nY69FxfJyqZ3NuwR2C/iXeiOTICBf17IvfiHgSgkIumTFVz42xljKNgkvoZfzEQMx4h7WgaqliIZhaOjy0R7es0qDNSNunkA7V7xMpC43phoFNhgzb5rc3EP/zqgk2j2qpUHGCoPjXomYiKUZ00BptCA0cZdcSxrWwf6W8zTTjaLvN2BK83yf/JdfFgrdfKF4e5EqnozrmyAbZJHnikUNSIufkgpQJJw/kibySN+fReXbenf5XdMIZzayTH3A+PgHcOKSk</latexit>

✓⇤
new = argmin✓L(✓)

<latexit sha1_base64="ibGZM3AOnm4ObzHmKlCIhvc8YbU="></latexit>

✓⇤
new ! ✓⇤

<latexit sha1_base64="FM5TxOyLAgw1R17v09mOwcJcgGc=">AAACKnicbVBNSwMxEM36bf1a9eglWATxUHZV0GPVi8cKthW6tWTTaRvMJksyq5Slv8eLf8VLD4p49YeY1h60dSDk8d4bZubFqRQWg+DDm5tfWFxaXlktrK1vbG752zs1qzPDocq11OYuZhakUFBFgRLuUgMsiSXU44erkV5/BGOFVrfYT6GZsK4SHcEZOqrlX0Sxlm3bT9yXR9gDZIP7o1YemYQqeBrQyIhuD5kx+on+7/WLQSkYF50F4QQUyaQqLX8YtTXPElDIJbO2EQYpNnNmUHAJg0KUWUgZf2BdaDioWAK2mY9PHdADx7RpRxv3FNIx+7sjZ4kdbeicCcOendZG5H9aI8POeTMXKs0QFP8Z1MkkRU1HudG2MMBR9h1g3Ai3K+U9ZhhHl27BhRBOnzwLasel8KR0fHNaLF9O4lghe2SfHJKQnJEyuSYVUiWcPJNX8kbevRdv6H14nz/WOW/Ss0v+lPf1DYU7qSQ=</latexit>

L(✓)
<latexit sha1_base64="FHzU4leMcEiBaxeVfLiZgTbNfXk=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0Wom5JUQZdFNy5cVLAPaEKZTCbt0MmDmRuhhG7d+CtuXCji1j9w5984abPQ1gvDHM65l3vu8RLBFVjWt1FaWV1b3yhvVra2d3b3zP2DjopTSVmbxiKWPY8oJnjE2sBBsF4iGQk9wbre+DrXuw9MKh5H9zBJmBuSYcQDTgloamBiJyQwokRkt9Oa48XCV5NQf5kDIwZkejowq1bdmhVeBnYBqqio1sD8cvyYpiGLgAqiVN+2EnAzIoFTwaYVJ1UsIXRMhqyvYURCptxsdskUn2jGx0Es9YsAz9jfExkJVW5Qd+a+1aKWk/9p/RSCSzfjUZICi+h8UZAKDDHOY8E+l4yCmGhAqOTaK6YjIgkFHV5Fh2AvnrwMOo26fVZv3J1Xm1dFHGV0hI5RDdnoAjXRDWqhNqLoET2jV/RmPBkvxrvxMW8tGcXMIfpTxucPTU2atw==</latexit>

r 2 O(1)
<latexit sha1_base64="W2t2qf6nudchcnLTMQwrOxzkb1I=">AAAB/XicbVDLSsNAFL3xWesrPnZuBotQNyWpgi6LbtxZwT6gKWUynbRDJ5MwMxFqKP6KGxeKuPU/3Pk3TtostPXAwOGce7lnjh9zprTjfFtLyyura+uFjeLm1vbOrr2331RRIgltkIhHsu1jRTkTtKGZ5rQdS4pDn9OWP7rO/NYDlYpF4l6PY9oN8UCwgBGsjdSzDyXymEBeiPWQYJ7eTsruac8uORVnCrRI3JyUIEe9Z395/YgkIRWacKxUx3Vi3U2x1IxwOil6iaIxJiM8oB1DBQ6p6qbT9BN0YpQ+CiJpntBoqv7eSHGo1Dj0zWSWUs17mfif10l0cNlNmYgTTQWZHQoSjnSEsipQn0lKNB8bgolkJisiQywx0aawoinBnf/yImlWK+5ZpXp3Xqpd5XUU4AiOoQwuXEANbqAODSDwCM/wCm/Wk/VivVsfs9ElK985gD+wPn8AHjSUWw==</latexit>

Var✓[L(✓)] 2 ⌦(1/poly(n))
<latexit sha1_base64="QF6B3rZaVieyVnbXBCiJkTLj00Y="></latexit>

r 2 ⇥(1/
p

M)
<latexit sha1_base64="8aShd6kIjfHf+KxU02GiFmZuSL0=">AAACAXicbVDLSgNBEJyNrxhfq14EL4NBiJe4GwU9Br14ESLkBdklzE4myZDZ2XWmVwhLvPgrXjwo4tW/8ObfOHkcNLGgoajqprsriAXX4DjfVmZpeWV1Lbue29jc2t6xd/fqOkoUZTUaiUg1A6KZ4JLVgINgzVgxEgaCNYLB9dhvPDCleSSrMIyZH5Ke5F1OCRipbR8o7HGJvWqfASm4p56+V5Dejk7adt4pOhPgReLOSB7NUGnbX14noknIJFBBtG65Tgx+ShRwKtgo5yWaxYQOSI+1DJUkZNpPJx+M8LFROrgbKVMS8ET9PZGSUOthGJjOkEBfz3tj8T+vlUD30k+5jBNgkk4XdROBIcLjOHCHK0ZBDA0hVHFzK6Z9oggFE1rOhODOv7xI6qWie1Ys3Z3ny1ezOLLoEB2hAnLRBSqjG1RBNUTRI3pGr+jNerJerHfrY9qasWYz++gPrM8f+L2V8g==</latexit>

✏
<latexit sha1_base64="S940j+PXnpyPoS6EHFdj/RxnHVw=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2k3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzU6WGiuYhlv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7vlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jwZcIXMiIkllClubyVsRBVlxkZUsiF4yy+vklat6l1Ua/eXlfpNHkcRTuAUzsGDK6jDHTSgCQwEPMMrvDmPzovz7nwsWgtOPnMMf+B8/gBOH5Ak</latexit>

✓
<latexit sha1_base64="m3YYfE8Sz9rBk9X6jcDuYLZm2mI=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBFclaQKuiy6cVnBPqAJZTKZtkMnkzBzI4RQf8WNC0Xc+iHu/BsnbRbaemCYwzn3MmdOkAiuwXG+rbX1jc2t7cpOdXdv/+DQPjru6jhVlHVoLGLVD4hmgkvWAQ6C9RPFSBQI1gumt4Xfe2RK81g+QJYwPyJjyUecEjDS0K55QSxCnUXmyj2YMCCzoV13Gs4ceJW4JamjEu2h/eWFMU0jJoEKovXAdRLwc6KAU8FmVS/VLCF0SsZsYKgkEdN+Pg8/w2dGCfEoVuZIwHP190ZOIl3kM5MRgYle9grxP2+Qwujaz7lMUmCSLh4apQJDjIsmcMgVoyAyQwhV3GTFdEIUoWD6qpoS3OUvr5Jus+FeNJr3l/XWTVlHBZ2gU3SOXHSFWugOtVEHUZShZ/SK3qwn68V6tz4Wo2tWuVNDf2B9/gCmS5Vq</latexit>✓⇤

new
<latexit sha1_base64="D9hTfBixoV+6rT0hJL/qX1Ca/tU=">AAACCHicbVC7SgNBFJ31GeMramnhYBDEIuxGQcugjWUE84BsDLOTm2TI7Owyc1cJS0obf8XGQhFbP8HOv3HyKDTxwDCHc+7l3nuCWAqDrvvtLCwuLa+sZtay6xubW9u5nd2qiRLNocIjGel6wAxIoaCCAiXUYw0sDCTUgv7VyK/dgzYiUrc4iKEZsq4SHcEZWqmVO/CDSLbNILRf6mMPkA3vTlqpr0Oq4GHYyuXdgjsGnSfelOTJFOVW7stvRzwJQSGXzJiG58bYTJlGwSUMs35iIGa8z7rQsFSxEEwzHR8ypEdWadNOpO1TSMfq746UhWa0q60MGfbMrDcS//MaCXYumqlQcYKg+GRQJ5EUIzpKhbaFBo5yYAnjWthdKe8xzTja7LI2BG/25HlSLRa800Lx5ixfupzGkSH75JAcE4+ckxK5JmVSIZw8kmfySt6cJ+fFeXc+JqULzrRnj/yB8/kDtE+aZg==</latexit>

Figure 1: a) Each iteration of the variational compression scheme consists of four steps. Starting from the top: (i)
apply the circuit with the last set of parameters θ∗ to the initial state, (ii) apply e−iHδt for a small time-step δt, (iii)
train the circuit initialising your parameters around the previous ones, (iv) update the parameters. b) We sketch a
typical representation of a loss function L(θ) with a barren plateau across the full landscape (Region I). In Theorem 1

we prove that in a hypercube of width 2r with r ∈ Θ
(
1/
√
M

)
(sketched as Region II) the variance of the loss is only

polynomially vanishing in system size n. In Theorem 2 we prove that in a smaller hypercube (highlighted as the blue
region) the landscape is approximately convex.

where U(θ) is a parameterized quantum circuit and θ∗

denotes the optimized parameters found at the previ-
ous iteration step [29, 31, 33]. At iteration k the loss
L (θ) is optimized using a hybrid quantum classical op-
timization loop to find the next set of optimal param-
eters θ∗

new. We consider a general ansatz of the form

U (θ) =
∏M

i=1 Vie
−iθiσi where {θi} is a set of M uncorre-

lated trainable parameters, {Vi}Mi=1 is a set of fixed uni-
tary matrices and {σi}Mi=1 is a set of generators on n

qubits such that σi = σ†
i and σ2

i = 1. In the manuscript
we also consider the case of imaginary time evolution.

Gradient magnitudes and barren plateaus. For
a wide class of problems (including the loss in Eq. (1)
with random initialization) [1–19], one can show that the
loss variance vanishes exponentially with problem sizes,
i.e. Varθ[L(θ)] ∈ O(c−n) with c > 1. On such barren
plateau landscapes exponentially precise loss evaluations
are required to navigate the towards the global minimum
and hence the resources (shots) required for training also
scales exponentially. This has prompted the search for
strategies where loss variances vanish at worst polynomi-
ally with system size, Varθ[L(θ)] ∈ Ω (1/poly(n)), such
that resource requirements may scale polynomially.

3 Main results

Lower-bound on the loss variance. We analytically
and rigorously provide guarantees for all iterations of the
algorithm that the region around the starting point has
substantial gradients for a sufficiently small time-step as
sketched in Fig. 1b). Our guarantees are based on the ob-
servation that assuming the previous step was sufficiently
well optimised, and the time-step δt is small enough, then
one can initialize close enough to the new global mini-
mum (or, more modestly, a good new minimum). We use
this observation to derive Theorem 1 in our manuscript
which analytically provides a loss variance lower bound.
More concretely, consider a hypercube region V(θ∗, r) :=
{θ} such that θi ∈ [θ∗i − r, θ∗i + r] ∀ i. Theorem 1 indi-
cates that for a small δt ∈ O (1/λmax) with λmax being

the largest eigenvalue of H and r ∈ Θ
(
1/

√
M

)
, the vari-

ance over V(θ∗, r), where each parameter is uniformly
sampled, scales at least polynomial in the system’s size.

In Fig. 2(a - c), we numerically study the scaling of
the variance and further empirically observe that for
large r the loss variance vanishes exponentially, hence
recovering a common barren plateau result. However,
the width of the region of attraction, as indicated by
non-exponentially vanishing loss variances, scales as r ∈
Θ
(
1/

√
M

)
(inline with our analytic bounds).

Convexity region and adiabatic minimum. Non-
vanishing gradients in the region around the initialisation
are a necessary condition to have any hope of successfully
training a variational quantum algorithm but they are
not sufficient. Of particular importance is the potential
to become trapped in spurious local minima. One way to
provide guarantees against this concern is to prove that
this region is (approximately) convex. Theorem 2 in our
manuscript analytically indicates that for each iteration
it is possible to choose a polynomially small time-step δt
such that the loss region around initialization (within the
substantial gradient region) is approximately convex.

We then introduce the notion of the adiabatic minima
(see Definition 2) as the minima that would be reached
by increasing δt infinitely slowly and minimizing L(θ) by
gradient descent with a very small learning rate. Cru-
cially, in Theorem 3, we argue that as long as the time-
step is δt is not too large (i.e. decreases polynomially
with the number of parameters M) we can ensure that
an adiabatic minima is within the convex region with
non-vanishing gradients, and thus it should be possible
to train to the adiabatic minimum.

Minimum jump and fertile valleys.We explore the
limitations of our analytic bounds. Firstly, we highlight
that our analysis can not provide convergence guarantees
to a good minimum because minima jumps are possible.
Namely, from one time-step to the other, the adiabatic
minimum can become a relatively poor local minimum
and a superior minimum can emerge elsewhere in the
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Figure 2: (a - c) Variance of landscape and width of narrow gorge. Here we study the landscape of L(θ), for
the first time-step of the variational Trotter compression algorithm, for different system sizes n as a function of the
width of the hypercube r. We consider a hardware efficient ansatz with n layers and random initial parameters within
the hypercube. a) We plot L(θ) and its variance Varθ∼D(0,r)[L(θ)] as function of r/π. Since the shape of the landscape
depends on the direction of the parameter update, to plot L(θ) we have taken the average over 500 different directions.
For Varθ∼D(0,r)[L(θ)], we keep track of its maximum value (marked with a vertical line) for each system size. b) The
value rmax for which the variance peaks as function of the number of parameters in the ansatz. c) Maximum value
of the variance for different system sizes. While the results shown here are for the first iteration of the variational
compression scheme very similar results are observed at later iterations (in line with Theorem 1). d) Minimum
jump. Here we show a 1D-cut of the landscape L(θ) as we increase the time-step δt. The cut includes the initial
parameters-with update δt = 0 and ||θ||∞ = 0. We choose a 10 qubit Ising Hamiltonian H =

∑
XiXi+1 − 0.95

∑
Yi

on a 1D-lattice. We use a 2-layered Hamiltonian Variational Ansatz. (e - f) Fertile valley. Here we show a 2D plot
of the loss landscape at δt = 0.04 for a 10 qubit Ising Hamiltonian H =

∑
XiXi+1 − 0.95

∑
Yi on a 1D-lattice and

use a 2-layered Hamiltonian Variational Ansatz. e) We plot the loss and directional loss gradient along the trajectory
from the old to new minimum. f) θ0 is the initial starting point and θ∗ is the true global minimum. The axes are
chosen using principle component analysis to project the multi-dimensional space into a 2D-plane using ORQVIZ [36]
and the white line is the projection of the optimization trajectory onto this 2D-plane.

landscape. This has been illustrated in Fig 2d).
We are then faced with the question of whether such

minima jumps necessitate optimisation across barren
plateau landscapes or whether there exist gradient flows
between these minima. We provide numerical evidence in
Fig. 2(e - f) for a 10-qubit contrived example of a gradient
flow from an initialization to a seemingly jumped minima
which suggests such gradient flows can exist. Investigat-
ing whether such fertile valleys can exist for larger more
complex problems is an important direction for future
research on the scalability of VQAs.

4 Wider impact of our results

Our results illustrate the potential of warm starts to
train VQA landscapes with barren plateaus. While we
have framed our results here in the context of an itera-
tive variational scheme for quantum simulation, most of
our results here would carry over to other iterative vari-
ational approaches. In the manuscript we show how our
results carry over to ground state preparation via imag-
inary time evolution. More generally, one could imag-
ine starting with a circuit for preparing the ground state
of an easier Hamiltonian and then iteratively perturbing
the Hamiltonian and applying the variational quantum
eigensolver between each perturbation. If the perturba-
tions do not pass through a phase transition then such
an iterative scheme is plausible and could potentially be
characterised in a similar manner to as we have done

here. Thus the impact of our results are by no means
confined to variational quantum simulation methods but
rather offer hope for the field more widely.
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The barren plateau phenomenon, characterized by loss gradients that vanish exponentially with
system size, poses a challenge to scaling variational quantum algorithms. Here we explore the
potential of warm starts, whereby one initializes closer to a solution in the hope of enjoying larger
loss variances. Focusing on an iterative variational method for learning shorter-depth circuits for
quantum real and imaginary time evolution we conduct a case study to elucidate the potential and
limitations of warm starts. We start by proving that the iterative variational algorithm will exhibit
substantial (at worst vanishing polynomially in system size) gradients in a small region around
the initializations at each time-step. Convexity guarantees for these regions are then established,
suggesting trainability for polynomial size time-steps. However, our study highlights scenarios where
a good minimum shifts outside the region with trainability guarantees. Our analysis leaves open
the question whether such minima jumps necessitate optimization across barren plateau landscapes
or whether there exist gradient flows, i.e., fertile valleys away from the plateau with substantial
gradients, that allow for training.

I. INTRODUCTION

Variational quantum algorithms are a flexible family
of quantum algorithms, whereby a problem-specific cost
function is efficiently evaluated on a quantum computer,
and a classical optimizer aims to minimize this cost by
training a parametrized quantum circuit [1–3]. While
a popular paradigm the potential of scaling these al-
gorithms to interesting system sizes attracts much de-
bate [4, 5], in part due to the barren plateau phe-
nomenon [6–24]. Barren plateaus are loss landscapes that
concentrate exponentially in system size towards their
mean value and thus, with high probability, exhibit expo-
nentially small gradients [10, 25]. As quantum losses are
computed via measurement shots, on a barren plateau
landscape the resources required for training typically
scale exponentially, quickly becoming prohibitive.

However, barren plateaus are fundamentally a state-
ment about the landscape on average. They do not
preclude the existence of regions of the landscape with
significant gradients and indeed, the region immediately
around a good minimum, must have such gradients. This
has motivated the study of warm starts whereby the algo-
rithm is cleverly initialized closer to a minimum. Numer-
ical studies indicate that these methods may be promis-
ing [26–29]. In parallel, analytic studies have proven that
small angle initializations, whereby the parameterized
quantum circuit is initialized in a small region typically
around identity, can exhibit non-exponentially vanishing
gradients [30–34]. However, a good solution may be far
from this region.

Here we will consider a family of variational quan-
tum algorithms that inherently use warm starts and take

∗ The first two authors contributed equally to this work.

this as a case study to better understand their poten-
tial and limitations. In particular, we study an approach
for learning shorter depth circuits for simulating quan-
tum systems by iteratively compressing real or imaginary
time Trotter evolution circuits [35–41]. While not nec-
essarily always framed explicitly from this perspective,
these approaches effectively use warm starts in virtue of
their iterative constructions. At each iteration, the pre-
vious solution is used to initialize the parameters to learn
a new compressed circuit to implement a slightly longer
evolution.

This case study is an ideal playground for studying
warm starts because its inbuilt structure allows one to
analytically compute bounds on its trainability. We start
by proving that as long as the training in one time-
step is successful then the algorithm will exhibit substan-
tial (at worst polynomially vanishing with problem size
n) gradients in a small (a hypercube of radius 2r with
r ∈ Ω( 1

poly(n) )) region around the next initialization. We

then establish guarantees on the approximate convexity
of the gradients in this region and further argue that for
polynomially large time-steps the new optimum will typ-
ically remain in this convex region. These results are
summarised in Fig. 1

However, these positive findings are partially tempered
by the observation there is no guarantee that a good min-
imum remains in this region. Namely, there exist cases
where a good minimum jumps from the region with train-
ability guarantees. Our analysis leaves open the question
of whether such minima jumps necessitate optimization
across barren plateau landscapes or whether there exist
valleys away from the barren plateau that allow for train-
ing. Such fertile valleys, i.e. small regions away from the
plateau with substantial gradients, that allow for success-
ful training are theoretically possible but to what extent
they arise in practise is an open question.
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FIG. 1. a) Each iteration of the variational compression scheme consists of four steps. Starting from the top: (i) apply the
circuit with the last set of parameters θ∗ to the initial state, (ii) apply e−iHδt for a small time-step δt, (iii) train the circuit
initialising your parameters around the previous ones, (iv) update the parameters. b) We sketch a typical representation of a
loss function L(θ) with a barren plateau across the full landscape (Region I). In Theorem 1 we prove that in a hypercube of

width 2r with r ∈ Θ
(

1√
M

)
(sketched as Region II) the variance of the loss is only polynomially vanishing in system size n. In

Theorem 2 we prove that in a smaller hypercube (highlighted as the blue region) the landscape is approximately convex.

II. PRELIMINARIES

A. Iterative Variational Trotter Compression

We consider simulating the evolution of some initial
state |ψ0⟩ under a Hamiltonian H up to time t. That
is, our aim is to implement a quantum circuit that ap-
proximates e−iHt |ψ0⟩. One standard approach [42] to
do so is to use the well known Trotter approximation to
break the total evolution t into a sequence of N short δt
evolutions, with t = Nδt, such that

e−iHt |ψ0⟩ ≈
N∏
k=1

e−iHδt |ψ0⟩ , (1)

where the approximation error is in O(Nδt). Similarly,
one can simulate imaginary time evolution (for ground
or thermal state preparation) by setting τ = it:

e−Hτ |ψ0⟩ ≈
N∏
k=1

e−Hδτ |ψ0⟩ , (2)

with the error in O(Nδτ). However, these approaches
are fundamentally limited by the linear growth of circuit
depths with time simulated. This has prompted ongo-
ing efforts to find alternative approaches that avoid this
linear growth [35–38, 43–56].

Here we focus on the proposal to use a variational
quantum algorithm to compress the depth of the Trot-
ter circuit at each iteration of the algorithm [35–41] as
shown in Fig. 1. More concretely, at any iteration of the
algorithm, one variationally minimizes the following loss:

L (θ) = 1− |⟨ψ0|U(θ)†e−iHδtU(θ∗)|ψ0⟩|2 (3)

where U(θ) is a parameterized quantum circuit and θ∗

denotes the optimized parameters found at the previous
iteration step [35, 37, 39]. At iteration k the loss L (θ) is

optimized using a hybrid quantum classical optimization
loop to find the next set of optimal parameters θ∗

new. We
note that while we focus on a fidelity loss here other cost
functions are possible, e.g. in Ref. [36] they considered
the real part of the state overlap and in Ref. [37] a local fi-
delity measure, and a similar analysis could be performed
in those cases. It is also possible to use this approach to
learn circuits to prepare approximate ground states and
thermal states by replacing it with τ in Eq. (3) and with
an appropriate choice in initial state |ψ0⟩ [36].

The success of this protocol depends on a variety of fac-
tors including the choice of ansatz for the parameterised
circuit. Here we focus on a general ansatz of the form

U (θ) =

M∏
i=1

ViUi(θi) (4)

where {Vi}Mi=1 are a set of fixed unitary matrices,{
Ui(θi) = e−iθiσi

}M
i=1

are parameter-dependent rota-
tions, M is the number of parameters in the circuit,
and {σi}Mi=1 is a set of generators on n qubits such that

σi = σ†
i and σ2

i = 1. In this work, we assume that all
parameters θj are uncorrelated.

B. Gradient magnitudes and barren plateaus

In recent years there has been concerted effort to un-
derstand when quantum losses are trainable or untrain-
able. Several factors can lead to untrainable losses in-
cluding the presence of sub-optimal local minima [4, 57,
58], expressivity limitations [59] and abrupt transitions
in layerwise learning [60]. However, much of this research
has focused on loss gradients.

To train a variational quantum algorithm successfully,
the loss landscape must exhibit sufficiently large loss gra-
dients (or more generally, loss differences). Chebyshev’s
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inequality bounds the probability that the cost value de-
viates from its average as

Prθ(|L(θ)− Eθ[L(θ)]| ⩾ δ) ⩽
Varθ[L(θ)]

δ2
, (5)

for some δ > 0 and the variance of the loss defined as

Varθ[L(θ)] = Eθ

[
L2(θ)

]
− (Eθ [L(θ)])2 , (6)

where the expectation value is taken over the parameters.
Hence if the variance is small then the probability of ob-
serving non-negligible loss differences for any randomly
chosen parameter setting is negligible.

For a wide class of problems [6–24], one can show that
the loss variance vanishes exponentially with problem
sizes, i.e. Varθ[L(θ)] ∈ O(c−n) with c > 1. On such
barren plateau landscapes exponentially precise loss eval-
uations are required to navigate the towards the global
minimum and hence the resources (shots) required for
training also scales exponentially. This has prompted
the search for architectures where loss variances vanish
at worst polynomially with system size, Varθ[L(θ)] ∈
Ω
(

1
poly(n)

)
, such that resource requirements may scale

polynomially.

III. MAIN RESULTS

In this paper we analyse the trainability of the varia-
tional Trotter compression scheme and use this to illus-
trate the complex interplay between the barren plateau
phenomena, local minima and expressivity limitations.
We start by presenting an overview of the factors we will
consider, and the context provided by prior work, before
proceeding to present our main analytic and numerical
findings.

A. Overview of analysis

The variance of the loss, Eq. (6), necessarily depends
on the parameter region it is computed over. The major-
ity of analyses of quantum loss landscapes have assumed
the angles are initialized according to some distribution
in the region [0, 2π] and hence considered the variance
over the entire loss landscape [6–15, 17–23]. However,
in practise one is interested in the loss landscape in the
region explored during the optimisation process (i.e., in
the region around the initialization, the region around the
sufficiently ‘good’ minima and ideally the landscape that
connects these regions). An analytic study of these differ-
ent regions in the general case seems daunting. However,
the structure provided by the variational Trotter com-
pression scheme allows us to take steps in this direction.

Prior work has established that small angle initializa-
tions, whereby the parameterized quantum circuit is ini-
tialized in a small region around identity, provide a means

of provably avoiding barren plateaus [30–34]. More con-
cretely, let us define

V(ϕ, r) := {θ} such that θi ∈ [ϕi − r, ϕi + r] ∀ i, (7)

as the hypercube of parameter space centered around the
point ϕ, and defineD(ϕ, r) as a uniform distribution over
the hypercube V(ϕ, r). It was shown in Ref. [32], that if
the parameters are uniformly sampled in a small hyper-

cube with r ∈ O
(

1√
L

)
around ϕ = 0 for some hardware

efficient architecture with L being the number of lay-

ers, then the variance Varθ∼D(0,r)[L(θ)] ∈ Ω
(

1
poly(L)

)
decays only polynomially with the depth of the circuit.
Similar conclusions were reached for the Hamiltonian
Variational Ansatz in Refs. [31, 33] and for Gaussian ini-
tializations in Ref. [30, 34]. Typically in these cases the
small angle initialization corresponds to initializing close
to identity.
These guarantees can broadly be used to argue that the

first iteration of variational Trotter compression scheme
will exhibit non-vanishing variances for certain circuits.
Moreover, assuming δt is small such that e−iHδt is close
to identity, and assuming that the ansatz is sufficient
expressive to be able to capture a good approximation
of e−iHδt, it is reasonable to expect that the good ap-
proximate solution circuit is contained within the region

V
(
0, 1√

M

)
that enjoys polynomial loss variances. How-

ever, at later time-steps, when U(θ) is far from identity,
the guarantees provided for these small angle initializa-
tions are of debatable relevance.
Here we address the task of providing guarantees for

all iterations of the algorithm for a very general family
of parameterized quantum circuits. Our guarantees are
based on the observation that assuming the previous step
was sufficiently well optimised, and the time-step δt is
small enough, then one can initialize close enough to the
new global minimum (or, more modestly, a good new
minimum) such that the landscape exhibits substantial
gradients as sketched in Fig. 1b). In Section III B we use
this observation to derive such analytical variance lower
bounds. We note that Ref. [40] provides an approximate
lower bound on the variance in the loss for an iterative
compression scheme; however, to do so it makes a number
of approximations and in effect assumes the convexity
of the problem from the outset. We go beyond this by
providing exact bounds without prior assumptions.
Non-vanishing gradients in the region around the ini-

tialisation are a necessary condition to have any hope
of successfully training a variational quantum algorithm
but they are far from sufficient. Of particular importance
is the potential to become trapped in spurious local min-
ima. One way to provide guarantees against this concern
is to prove that this region is convex. We tackle this issue
in Section III C by proving convexity guarantees in the
region around the initialization provided by the previous
iteration.
We then introduce the notion of the adiabatic minima

as the minima that would be reached by increasing δt
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infinitely slowly and minimizing L(θ) by gradient descent
with a very small learning rate in Section IIID. We argue
that as long as the time-step is δt is not too large (i.e.
decreases polynomially with the number of parameters
M) we can ensure that an adiabatic minima is within the
convex region with non-vanishing gradients, and thus it
should be possible to train to the adiabatic minimum.

Finally, in Section III E we explore the limitations of
our analytic bounds. Firstly, we highlight that our anal-
ysis can not provide convergence guarantees to a good
minimum because minima jumps are possible. Namely,
from one time-step to the other, the adiabatic minimum
can become a relatively poor local minimum and a su-
perior minimum can emerge elsewhere in the landscape.
We are then faced with the question of whether such min-
ima jumps necessitate optimisation across barren plateau
landscapes or whether there exist gradient flows between
these minima. We provide numerical evidence for a 10-
qubit contrived example of a gradient flow from an ini-
tialization to a seemingly jumped minima which suggests
such gradient flows can exist.

B. Lower-bound on the variance

The variance of the loss function at any iteration
around the parameters θ∗ obtained for the previous it-
eration will depend on the length of the time-step δt as
well as the volume of the region of the parameter space
explored. Here we study the variance of the loss in a
uniformly sampled hypercube of sides 2r around θ∗ as
defined in Eq. (7). As proven in Appendix B, we obtain
the following bound.

Theorem 1 (Lower-bound on the loss variance, Infor-
mal). Consider the general ansatz in Eq. (4) and assume
that in the first iteration the system is prepared in a prod-
uct initial state ρ0 =

⊗n
j=1 ρj with ρj and let us choose

σ1 such that Tr[ρ0σ1ρ0σ1] = 0. Given that the Trotter
time-step is bounded as

δt ∈ O
(

1

λmax

)
(8)

where λmax is the largest eigenvalue of H and we consider
uniformly sampling parameters in a hypercube of width 2r
around the solution from the previous iteration θ∗, i.e.
V(θ∗, r), such that

r ∈ Θ

(
1√
M

)
. (9)

Then the variance at any iteration of the algorithm is
lower bounded as

Varθ∼D(θ∗,r) [L(θ)] ∈ Ω

(
1

M

)
. (10)

Thus, for M ∈ O(poly(n)) we have

Varθ∼D(θ∗,r) [L(θ)] ∈ Ω

(
1

poly(n)

)
. (11)

In Appendix E we present a version of Theorem 1 for
the imaginary time evolution.

Theorem 1 establishes that within a small, but non-
exponentially vanishing (r ∝ 1/

√
M), region around the

previous optimal solution, the loss landscape will ex-
hibit non-exponentially vanishing gradients so long as
δt ∈ O(1/λmax). The constraint on the Trotter time-step
is to ensure that a state corresponding to a previous so-
lution has a large overlap with a new target state. If the
Trotter step is too large, then the initialization no longer
contains enough information about the target state and it
is equivalent to initializing on the barren plateau region.
The δt ∈ O(1/λmax) scaling comes from a loose bound
on the overlap between the old optimised state and the
new target state and thus a larger δt is likely viable in
practise.
On another related topic, our bound is presented here

for simulating the evolution of an initially product state.
This assumption is made for ease of presentation. How-
ever, as highlighted in the appendices, this assumption
is not strictly necessary. Rather one just needs to ensure
that a gate in the first layer has a non-trivial effect on
the loss.
It is important to stress that Theorem 1 provides a

sufficient, not a necessary, condition for observing poly-
nomially vanishing gradients. For a necessary condition
one would need to derive an upper bound as a function of
r and δt. In general, this seems challenging and is likely
to be highly ansatz dependent [61]. Instead we address
this question numerically.
In Fig. 2 we study the landscape of L(θ) for an initial

time-step as a function of the width of the hypercube,
2r. For concreteness, we consider a hardware efficient
ansatz with n layers and uniformly sampled parameters
within the hypercube. The variance over the full land-
scape (r = π) vanishes exponentially in n. However, as
r is decreased the variance increases with r and ceases
to decay exponentially in n. When r is very small the
variance again begins to decrease. This is because for
sufficiently small r we are computing the variance over
a small region of the loss landscape at the base of the
narrow gorge. This account is confirmed by the average
behaviour of L(θ) also shown in Fig. 2a). In particular,
when the variance peaks, we have an infidelity of approx-
imately 0.7 for each system size, which indicates that the
peak of the variance is a good measure of the width of
our gorge.
In Fig. 2 b) and c) we plot the r value for which the

variance peaks and the maximum value of the variance
as function of the number of parameters in the ansatzM .
Both quantities decay polynomially in M . In particular,
we find that rmax scales as

1√
M

implying that the width of

the gorge decreases with a 1√
M

scaling. This is consistent

with our theoretical lower bound, Theorem 1, which also
suggests that to ensure at worst poly vanishing gradients
its necessary to consider a region of width 1√

M
around

the minimum.
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FIG. 2. Variance of landscape and width of narrow gorge. Here we study the landscape of L(θ), for the first time-step
of the variational Trotter compression algorithm, for different system sizes n as a function of the width of the hypercube r. We
consider a hardware efficient ansatz with n layers and random initial parameters within the hypercube. a) We plot L(θ) and
its variance Varθ∼D(0,r)[L(θ)] as function of r/π. Since the shape of the landscape depends on the direction of the parameter
update, to plot L(θ) we have taken the average over 500 different directions. For Varθ∼D(0,r)[L(θ)], we keep track of its
maximum value (marked with a vertical line) for each system size. b) The value rmax for which the variance peaks as function
of the number of parameters in the ansatz. c) Maximum value of the variance for different system sizes. While the results
shown here are for the first iteration of the variational compression scheme very similar results are observed at later iterations
(in line with Theorem 1).

C. Convexity region around the starting point

Substantial gradients are a necessary condition but not
sufficient condition for trainability. If the substantial gra-
dients are attributable to poor local minima then find-
ing a good solution is likely to be highly challenging.
However, if as well as having substantial gradients, we
can prove that the landscape is convex, or approximately
convex, then training to a minimum looks promising. In
this section, we present a theorem which shows that the
region around the starting parameters is approximately
convex. As expected, our condition depends both on the
width of the hypercube region considered and the time-
step δt taken.

A function is convex over a parameter range if its sec-
ond order partial derivatives are all non-negative in that
parameter range. In practise, a more convenient means of
diagnosing convexity is to study the Hessian, ∇2

θ[L(θ)],
of a function. If the Hessian is positive semi definite,
i.e. ∇2

θ[L(θ)] ⩾ 0, in a given parameter region then the
function is convex in that region. We will introduce a no-
tion of approximate convexity by relaxing this constraint
and saying that a landscape is ϵ convex if the following
condition holds:

Definition 1 (ϵ-convexity). A loss is ϵ-convex in the
region θ ∈ V(θ∗, rc) if[

∇2
θL(θ)

]
min

⩾ −|ϵ| (12)

for all θ ∈ V(θ∗, rc). Here ∇2
θL(θ) denotes the Hessian

of L(θ) and we denote [A]min as the smallest eigenvalue
of the matrix A.

If a loss is ϵ-convex the loss is convex up to ϵ small devi-
ations, as sketched in Fig. 1b), and argued more formally
in Appendix A3. This notion is particularly important
in a quantum context where the loss is only ever mea-
sured with a finite number of shots making it hard to tell
apart ϵ negative curvatures from ϵ positive ones. Thus
in practise the relevant ϵ will be determined by the shot
noise floor.
Equipped with this definition we now show that a poly-

nomially sized region around the starting point of the
previous iteration is approximately convex.

Theorem 2 (Approximate convexity of the landscape,
Informal). For a time-step of size

δt ∈ O
(
µmin + 2|ϵ|
Mλmax

)
, (13)

the loss landscape is ϵ-convex in a hypercube of width 2rc
around a previous optimum θ∗ i.e., V(θ∗, rc) such that

rc ∈ Ω

(
µmin + 2|ϵ|

16M2
− λmaxδt

M

)
, (14)

where µmin is the minimal eigenvalue of the Fisher infor-
mation matrix associated with the loss at θ∗.

836



6

In Appendix E we show that an analogous convex-
ity guarantee can be proven for imaginary time evolution.

Theorem 2 tells us that it is always possible to pick
a polynomially scaling δt, rc such that the landscape of
L(θ) with respect to the parameters is approximately
convex. The constraints on δt and rc for convexity are
pretty stringent in practice. However, convexity is also
a lot to demand of a loss landscape. Nonetheless, it is
nice to see that approximate convexity can be ensured at
‘only’ a polynomially scaling cost.

D. Adiabatic minimum

So far we have identified two constraints on our param-
eters that push in the direction of trainability guarantees.
Specifically, we have established a region in our landscape
with substantial gradients and approximate convexity.
The final condition required for convergence guarantees
is to ensure our target circuit, i.e., a good minimum, lies
within this region.

To address this point, let us start by introducing the
notion of the adiabatic minima. Intuitively, these are the
minima that would be reached by increasing δt infinitely
slowly and minimizing L(θ) by gradient descent with a
very small learning rate. By analogy, one can imagine
dropping a marble in the initial minima and then slowly
modifying the landscape by infinitesimally increasing δt.
The position of the marble would correspond to our adi-
abatic minima and, in practice, it is where we expect our
algorithm to converge for sufficiently small δt. In Fig. 3
a) we plot a cut through the cost landscape around the
old minimum θ∗ as a function of δt. We can see that
the minimum smoothly moves rightwards and increases
with increasing δt. More formally, we define the adiabatic
minima as follows.

Definition 2 (Adiabatic Minimum). For any time δt in
the range [0, T ], a function1 corresponding to the evolu-
tion of the adiabatic minima for some initial minimum
θ∗, is a continuous function θA(δt) ∈ C∞(R,Rm) such
that θA(0) = θ∗ and ∇θL(θA(δt), δt) = 0. The adiabatic
minimum at time δt is θA(δt).

One can ensure that the iterative variational compres-
sion scheme will converge to some minimum if the time-
step is small enough that an adiabatic minimum is inside
of the convex region with non-vanishing gradients. One
can question how good this minimum will be but we will
set aside this question for the moment. Thus our next
step will be to assess how small the time-step needs to
be picked in order to guarantee this. In the following

1 We note that it is in fact possible for a single initial minima to
have multiple corresponding adiabatic minima functions if there
are multiple directions with zero gradients.

theorem we formalize this concept by bounding the δt
required to ensure an adiabatic minimum is in the sub-
stantial gradient region and in the convex region.

Theorem 3 (Adiabatic minimum is within provably
‘nice’ training region, Informal). If the time-step δt is
chosen such that

δt ∈ O
(

βA
Mλmax

)
, (15)

then the adiabatic minimum θA(δt) is guaranteed to be
within the non-exponentially-vanishing gradient region
(as per Theorem 1), and additionally, if δt is chosen such
that

δt ∈ O
(
βA(µmin + 2|ϵ|)
M5/2λmax

)
, (16)

then the adiabatic minimum θA(δt) is guaranteed to be
within the ϵ-convex region (as per Theorem 2) where

βA :=
θ̇TA(δt)

(
∇2

θL(θ)
∣∣
θ=θA(δt)

)
θ̇A(δt)

∥θ̇A(δt)∥22
(17)

corresponds to the second derivative of the loss in the
direction in which the adiabatic minimum moves.

Theorem 3 tells us that it suffices to consider a time-
step that scales as δt ∈ Ω

(
1
M

)
to ensure that the adia-

batic minimum falls in the region with substantial gra-

dients, or more stringently to take δt ∈ Ω
(

1
poly(M)

)
to

ensure that the adiabatic minimum falls within the |ϵ|-
convex region. As in general M ∼ poly(n) it follows that
if δt is decreased polynomially with problem size, and
the learning rate is chosen appropriately, it should be
possible to train to the new adiabatic minimum.
We stress that this interpretation of Theorem 3 is only

possible assuming that βA is not exponentially vanishing.
This is a reasonable assumption as βA → 0 corresponds
to the curvature of the loss at the minimum being flat
in the direction in which the adiabatic minimum moves.
While this is conceivably possible it is unlikely in practise
(as is supported by our numerics in Fig. 3 and Fig. 4).
Moreover, the βA dependence of Theorem 3 is a genuine
feature that affects trainability, rather than a relic of our
proof techniques. Namely, if the landscape is very flat in
the direction of the new minimum then indeed the adi-
abatic minimum can move significant distances at short
times. More poetically, one might visualise this case as
a barren gorge. That is, a sub-region of the landscape
within the substantial gradient region that nonetheless
has vanishing gradients. Such features are possible but
perhaps unlikely unless the ansatz is highly degenerate.
Another caveat is that Theorem 3 only holds in the

case that there exists a well-defined adiabatic minimum
function θA(δt) in the time interval of interest. This is
not always guaranteed to be the case because a minimum
can vanish by evolving into a slope as δt increases. If this
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FIG. 3. Routine evolution of the adiabatic minimum. Here we study the landscape of L(θ) as we increase the time-step
δt. We study a 10 qubit Hamiltonian with nearest-neighbour interactions on a 1D lattice with H =

∑
XiZi+1 − 0.95

∑
Yi

where Xi, Yi and Zi are X-Pauli, Y-Pauli and Z-Pauli operators on the qubit i. a) We plot our landscape for different δt. The
cuts in our high dimensional L(θ) space contain both the initial parameters θ = 0 and the adiabatic minimum θA(δt) at δt.
b) We plot the size of our parameter update ∥θ∥∞, i.e. the distance along the cuts between the old minimum and the new
minimum, as a function of the time-step for different system sizes.

occurs then the continuity condition in our definition of
the adiabatic minima function fails. Nonetheless, this is
not a situation that necessarily causes trainability prob-
lems (if the minimum turns into a slope then training
is possible down that slope), rather it is a situation that
makes finding analytic trainability guarantees more chal-
lenging. For a more detailed discussion of this caveat and
a proof of Theorem 3 see Appendix D.

Relatedly, it is worth mentioning that while Theorem 3
allows for polynomially shrinking step sizes in practise
these step sizes are rather small. In particular, for the
small problem sizes studied already in the literature prac-
titioners have typically used larger step sizes than those
that we have managed to derive guarantees for here. In
parallel, we can see from our numerical implementations
in Fig. 3 that training would seem viable for larger δt
than allowed by our bounds. It is arguably an open
question to what extent this can be attributed to loose-
ness of our bounds or the small problem sizes that can
be simulated classically. One thing to note in this re-
gard is that optimisation is often much more successful
in practise than can be analytically guaranteed or even
explained. As such, in practise, larger δt may well be
viable. This is specially relevant if one considers using
adaptive approaches where δt is modified at each step un-
til a given precision threshold is reached. While heuristic,
this method in the worst case enjoys the mathematical
guarantees proven here, while in the best case allows for
larger time-steps (and so reduces the average number of
time-steps required in total).

E. Minima jumps and fertile valleys

A final limitation of our analysis is that the adiabatic
minimum (or indeed any minimum within the region with
gradient guarantees) need not be a good minimum. The
adiabatic minimum is the minimum that evolves away

FIG. 4. Minimum jump. Here we show a 1D-cut of
the landscape L(θ) as we increase the time-step δt. The
cut includes the initial parameters-with update δt = 0 and
||θ||∞ = 0. We choose a 10 qubit Ising Hamiltonian H =∑

XiXi+1 − 0.95
∑

Yi on a 1D-lattice. We use a 2-layered
Hamiltonian Variational Ansatz.

from the old minimum after the application of a time-step
δt. However, it is possible that a different better mini-
mum emerges in a different region of the landscape [60].
That is, it is possible for the best minimum (or, more
modestly, simply a significantly better minimum) to jump
from the initialization region to another region of the pa-
rameter landscape. As we only have lower bounds on the
variance of the loss and convexity guarantees in the re-
gion around the initialization if the minimum jumps then
we have no trainability guarantees to these superior min-
ima. Moreover, if the full landscape has a barren plateau,
which will be the case for most deep ansätze [20, 21], it
may be very hard to train to this new minimum.

In Fig. 4 we suggest that such apparent minimum
jumps can indeed occur. In particular we show a 1D cut
of the landscape L(θ) for different time-steps δt. The 1D
cut includes both the ‘old minimum’ at time δt = 0 and
a new minimum that emerges for larger δt. Even after a
short time-step δt = 0.04 the best minimum has jumped
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FIG. 5. Fertile valley. a) Here we show a 2D plot of the
loss landscape at δt = 0.04 for a 10 qubit Ising Hamilto-
nian H =

∑
XiXi+1 − 0.95

∑
Yi on a 1D-lattice and use a

2-layered Hamiltonian Variational Ansatz. θ0 is the initial
starting point and θ∗ is the true global minimum. The axes
are chosen using principle component analysis to project the
multi-dimensional space into a 2D-plane using ORQVIZ [62]
and the white line is the projection of the optimization trajec-
tory onto this 2D-plane. b) We plot the loss and directional
loss gradient along the trajectory from the old to new mini-
mum.

by a distance ||θ||∞ ≈ 0.8. At this short time, the new
minimum is only very slightly superior to the adiabatic
minimum. However, at longer times the new minimum
becomes substantially better.

When a minimum jumps our theoretic guarantees de-
veloped in this manuscript lose most of their value. How-
ever, this does not mean that it is not possible to train
(even in the case where the overall landscape exhibits a
barren plateau). For training the ‘only thing’ we need is
a gradient flow, i.e., a path with substantial gradients,
from the initialization to the new minimum. Such fertile
valleys with nice gradients can theoretically exist on a
barren plateau landscape but to what extent they occur
in practise is currently unknown.

In Fig. 5 we provide numerical evidence for a toy ex-
ample of such a case. Specifically, we show a 2D cross-
section of the landscape containing both an initialisation

minimum and an apparently jumped minimum (marked
by black crosses). We managed to successfully train
from this initial minimum to the new minimum using
the BFGS algorithm. This algorithm is a non-stochastic
algorithm and so this indicates that there is indeed a
trajectory between the two minima. As shown here in
b) the gradients along this trajectory are of the order
10−3, in contrast to of the order of 10−6 on average over
the landscape for a 10 qubit problem as shown in Fig. 2.
Thus, while a significant shot budget (∼ 106 shots) is
likely needed for training it would seem that it is possi-
ble to train between these two minima without crossing
into the most barren parts of the landscape.
The discussion in this section is necessarily heuristic.

In our numerical investigations we found some minima
jumps that we could train between (indicating a fertile
valley) and other minima jumps where we could not. In
the latter case there may or may not be fertile valleys.
In both cases this is evidence for toy problems and at a
small problem sizes (10 qubits). To what extent these
phenomena occur at larger problem sizes, for more inter-
esting problems and for relevant time-step sizes, remains
entirely open.

IV. DISCUSSION

Thanks to significant progress in recent years, the bar-
ren plateau phenomenon, defined as an average statement
for an entire loss landscape, is by now technically well un-
derstood [20, 21]. However, prior analyses are consistent
with different accounts of the behaviour of the loss land-
scape in the subregions most important for optimization.
In this work we have taken steps to address these open
questions by investigating a popular iterative variational
circuit compression scheme [35–41]. The iterative nature
of this algorithm ensures that variational problem is re-
peatedly warm started at each iteration of the variational
scheme.
Theorem 1 establishes that for short enough time-steps

the loss variance is guaranteed to decrease at worst poly-
nomially in the number of parameters M in a hypercube
with a width that scales as 1/

√
M around the new ini-

tialization. Theorem 2 strengthens this result by arguing
that in a region ∼ 1/M2 around the initialization the
landscape will be approximately convex. Finally, we sew
together these results with a bound on the distance the
adiabatic minimum (Definition 2) can move after apply-
ing a Trotter step of length δt. Thus in Theorem 3 we
establish that as long as the time-step is decreased poly-
nomially with the number of trainable parameters in the
ansatz the adiabatic minimum remains in the approxi-
mately convex region with substantial gradients. Hence
we show that by decreasing the time-step appropriately
one should be able to train to a new minimum.
Our analysis leaves room for further research oppor-

tunities. For one, the analytic bounds provided here are
lower bounds. We do not here provide upper bounds.
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Thus our analysis leaves open the question of whether
the region exhibiting polynomial gradients strictly de-
creases as 1/

√
M or whether potentially a larger region

exhibits substantial gradients. Our numerical implemen-
tations (Fig. 2) suggest that for the problems we have

looked at this 1/
√
M is reasonable. However, analytic

upper bounds to verify this would be more satisfying.
Moreover, whether these bounds are to be viewed posi-

tively or negatively remains open. While in ‘complexity-
theory-land’ polynomial guarantees are typically satis-
factory, in practise polynomially vanishing gradients,
in polynomially shrinking regions, with polynomially
shrinking step sizes may not be that appealing. In partic-
ular, the δt values that enjoy guarantees via Theorem 3
are typically smaller than those used currently by prac-
titioners for the small problem sizes accessible currently.
To what extent these bounds can be tightened versus to
what extent they indicate a fundamental limitation re-
mains to be seen. Indeed, there is always the possibility
that heuristically the optimization turns out to be more
effective than analytic guarantees would suggest (as is
typically the case for optimizing classical machine learn-
ing models).

Here we have pushed our analysis beyond a conven-
tional average case analyses for the full loss landscape.
However, our analysis is still fundamentally an average
case analysis within a hypercube around an initialization.
The limitations of this are highlighted by our inability to
analytically describe the minimum jumps and fertile val-
leys that we numerically observe in Fig. 4 and Fig. 5. To
analytically study such phenomena new theoretical tools
will need to be developed to analyse quantum landscapes.

We remark that recent work has highlighted a strong

link between provable absence of barren plateaus and
the classical simulability and surrogatability of the hy-
brid optimisation loop of a variational quantum algo-
rithm [5]. The lower bounds obtained here are consistent
with these claims. In particular, for classically simulable
initial states one could perform early iterations fully clas-
sically and then later iterations by collecting data from
quantum computer and then training a classical surro-
gate of the landscape. We leave a discussion of the rela-
tive merits of this approach to future work.
Finally, we have framed our results here in the

context of an iterative variational scheme for quantum
simulation; however, most of our results here would
carry over to other iterative variational approaches. For
example, one could imagine starting with a circuit for
preparing the ground state of an easier Hamiltonian
and then iteratively perturbing the Hamiltonian and
applying the variational quantum eigensolver between
each perturbation. If the perturbations do not pass
through a phase transition then such an iterative scheme
is plausible and could potentially be characterised in a
similar manner to as we have done here.
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[71] F. Verstraete, J. J. Garćıa-Ripoll, and J. I. Cirac, Ma-
trix product density operators: Simulation of finite-
temperature and dissipative systems, Phys. Rev. Lett.
93, 207204 (2004).

[72] F. A. Wolf, A. Go, I. P. McCulloch, A. J. Millis, and
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Appendix A: Preliminaries

In this section, we briefly review some analytical tools and concepts that will be used through out the other sections.

1. Relation between Hessian of the loss function and quantum Fisher information

Given the optimal parameters obtained from the previous iteration θ∗ and a time-step δt of the Hamiltonian H,
the loss function at the current iteration is of the form

L(θ) = 1−
∣∣⟨ψ0|U†(θ)e−iHδtU(θ∗)|ψ0⟩

∣∣2 (A1)

= 1− F
(
U(θ)|ψ0⟩, e−iHδtU(θ∗)|ψ0⟩

)
(A2)

where F (|ψ⟩, |ϕ⟩) is a fidelity between two pure states |ψ⟩ and |ϕ⟩. We remark that although δt is often taken as fixed
and not optimised during the training process, the loss function also implicitly depends on δt.

The warm-start strategy is to initialise the training of the current iteration around θ∗. To analyse the trainability
of this strategy, we often consider the expansion of the loss around θ∗ and δt = 0. In this context, it is convenient
to write x = (θ − θ∗, δt) and F (x) := F

(
U(θ)|ψ0⟩, e−iHδtU(θ∗)|ψ0⟩

)
. Upon expanding the loss around x = 0, the

connection between the Hessian of the loss function and the quantum fisher information is

∇2
xL(x)

∣∣
x=0

= −∇2F (x)
∣∣
x=0

=
1

2
F(0) , (A3)

where F(0) is the quantum fisher information evaluated at x = 0 and measures how the quantum state U(θ∗)|ψ0⟩ is
sensitive to local perturbations around θ∗ and δt = 0 [63–65].

2. Taylor remainder theorem

We present the Taylor remainder theorem which expresses a multivariate differentiable function as a series expansion.
We refer the reader to Ref. [66] for further details.

Theorem 4 (Taylor reminder theorem). Consider a multivariate differentiable function f(x) such that f : RN → R
and some positive integer K. The function f(x) can be expanded around some fixed point a as

f(x) =

K∑
k=0

N∑
i1,i2,...,ik

1

k!

(
∂kf(x)

∂xi1∂xi2 ...∂xik

) ∣∣∣∣
x=a

(xi1 − ai1)(xi2 − ai2)...(xik − aik) +RK,a(x) , (A4)

where the remainder is of the form

RK,a(x) =
N∑

i1,i2,...,iK+1

1

(K + 1)!

(
∂K+1f(x)

∂xi1∂xi2 ...∂xiK+1

) ∣∣∣∣
x=ν

(xi1 − ai1)(xi2 − ai2)...(xiK+1
− aiK+1

) , (A5)

with ν = cx+ (1− c)a for some c ∈ [0, 1].

As an example, we apply the Taylor remainder theorem to prove the following statement.

Lemma 5. The fidelity between two pure states ρ and e−iHtρeiHt (with the Hamiltonian H) can be upper bounded as

F
(
ρ, e−itHρeitH

)
⩾ 1− 2λ2maxt

2 (A6)

where λmax is the largest eigenvalue of H.

Proof. First, we denote F (t) := F
(
ρ, e−itHρeitH

)
. By using Theorem 4 (expanding around t = 0 up to the second

order), the fidelity is of the form

F (t) = 1 +
t2

2

(
d2F (t)

dt2

) ∣∣∣∣
t=τ

, (A7)
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where the zero order term is 1, the first order term is zero by a direct computation and the second order term is
evaluated at some τ ∈ [0, t]. We can then bound the second derivative as the following(

d2F (t)

dt2

) ∣∣∣∣
t=τ

= Tr
(
ρe−iHτ i [i [ρ,H] , H] eiHτ

)
(A8)

⩽ ∥ρ∥1∥e−iHτ i [i [ρ,H] , H] eiHτ∥∞ (A9)

⩽ 4λ2max , (A10)

where the first inequality is due to Hölder’s inequality. In the second inequality, we rely on the following identities:
(i) ∥ρ∥1 = 1 for a pure state, (ii) the unitary invariance of the Schatten p-norm i.e., ∥UA∥p = ∥A∥p for any unitary
U , (iii) ∥i[A,B]∥p ⩽ 2∥A∥p∥B∥p and lastly (iv) ∥AB∥p ⩽ ∥A∥p∥B∥p. Thus, the fidelity can be lower bounded as

F (t) ⩾ 1− 2λ2maxt
2 . (A11)

This completes the proof.

3. Approximate convexity

In this section, we provide a formal explanation of our definition of an ϵ-convex function. We start by defining what
convexity is (see for example Ref. [67]) and we relate it to our notion of ϵ-convexity.

Definition 3 (Convexity). A differentiable function of several variables f : RN → R is convex in a region R, if and
only if for all x,y ∈ R the function fulfils

f(x) ⩾ f(y) +∇f(y) · (x− y) . (A12)

or equivalently, ∇2f(x) is positive semi-definite. Here ∇2f(x) denotes the Hessian of f(x). Notice that we use
∇f(y) = ∇ỹf(ỹ)|ỹ=y ,∇2f(y) = ∇2

ỹf(ỹ)|ỹ=y

Informally this means that all the tangent planes to f are below f in the region R. This is shown for one variable
in Fig. 6 a).

Definition 1 (ϵ-approximate convexity.). A differentiable function of several variables f : RN → R is ϵ-convex in a
region R if [

∇2f(x)
]
min

⩾ −|ϵ| (A13)

for all x ∈ R. Here ∇2f(x) denotes the Hessian of f(x) and we denote [A]min as the smallest eigenvalue of the
matrix A.

If a function is ϵ-convex in a finite region R, then we can show an equivalent intuition to the one for convexity.
Indeed, if a function f is ϵ-convex in a finite region R, then we can say that an “ϵ-displacement” in every tangent line
is enough to make it below f in R as shown in Fig. 6 b).

Proposition 1. If a differentiable function of several variables f : Rn → R is ϵ-convex in finite a region R, then for
all x,y ∈ R the function fulfils

f(x) ⩾ f(y) +∇f(y) · (x− y)− |ϵ|α , (A14)

where α = 1
2 maxa,b∈R ||a− b||22.

Proof. First we recall the Taylor reminder theorem in A2. Then we can expand the function f around the point y as

f(x) =f(y) +

n∑
i

∂f(q)

∂qi

∣∣∣∣
q=y

(xi − yi) +
1

2

n∑
i,j

∂2f(q)

∂qi∂qj

∣∣∣∣
q=z

(xj − yj)(xi − yi) (A15)

=f(y) +∇f(y) · (x− y) +
1

2
(x− y)T∇2f(z)(x− y) , (A16)

for some z = cx + (1 − c)y with some c ∈ [0, 1]. In the last equality we wrote the expression in its vector form for
simplicity.
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x

ϵα
fϵ(x)

convex function ϵ − convex function

x

f(x)

a) b)

FIG. 6. Convexity and ϵ-convexity. Here we show two schematics for one variable functions. a) Represents a convex
function and the tangent (dashed line). The tangent is always below f . b) Represents a ϵ-convex function and the tangent
(dashed line). The light-green dashed line represents the tangent to the function. The red line represents the tangent displaced
αϵ with respect to the green one. A “displacement of αϵ” on the tangent makes it such that is always below the function.

Now if we apply the notion of ϵ-convexity we can lower-bound the right-hand side of the previous equality to find

f(x) ⩾ f(y) +∇f(y) · (x− y)− 1

2
|ϵ|(x− y)T (x− y) , (A17)

which can be further bounded by using that (x− y)T (x− y) ⩽ α. Recall that α = 1
2 maxa,b∈R ||a− b||22. With this

we find

f(x) ⩾ f(y) +∇f(y) · (x− y)− |ϵ|α , (A18)

Notice that in general α can increase with the dimension of the input x (for the loss function in Eq (3) this is
equivalent to the number of parameters M) as well as with the size of the region that we demand ϵ-convexity over.
That is, for a region of size r, α approximately scales as Mr2. In the regime that is relevant to our work (particularly,
Theorem 2), the region in which we require ϵ-convexity is of order r ∈ Ω

(
1/M2

)
(for appropriately chosen δt). Hence,

α decays with the number of parameters as 1/M2.

4. Upper bound on the eigenvalues

We present a simplified version of Gershgorin’s circle theorem [68] which can be used to upper bound the eigenvalues
of a real squared matrix.

Proposition 2. Consider a real M ×M matrix A and denote λmax as the largest eigenvalue of A. Given that the
sum of elements in any row is upper bounded by some value T0, that is

∑
j |Aij | ⩽ T0 for any i ∈ {1, ...,M}, the

largest eigenvalue of A can be bounded as

λmax ⩽ T0 . (A19)

Proof. Let v be an eigenvector corresponding the largest eigenvalue of A. There exists the largest component in the
eigenvector denoted as vi. Then, we consider this eigenvector component in the eigenvalue equation∑

j

Aijvj = λmaxvi . (A20)

The bound of the largest eigenvalue follows as

λmax ⩽
∑
j

|Ai,j | · |vj |
|vi|

(A21)

⩽
∑
j

|Ai,j | (A22)

⩽ T0 , (A23)
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where the first inequality is due to triangle inequality, the second inequality is from
|vj |
|vi| ⩽ 1 and in the last inequality

we use the assumption that
∑
j |Ai,j | ⩽ T0.

Appendix B: Lower bound of the variance of the loss function

In this section, we provide the exact formula for the lower bound of the loss function for the variational Trotter
compression algorithm.

1. Exact formula for the lower bound

Proposition 3. Consider the loss function L(θ) as defined in Eq. (3) and with an ansatz of the general form defined
in Eq. (4) with M parameters. The variance of L(θ) over the hypercube parameter region V(θ∗, r) around an optimal
solution of the previous iteration θ∗ can be bounded as

Varθ∼D(θ∗,r)[L(θ)] ⩾ (c+ − k2+) min
ξ̃∈[−1,1]

(
kM−1
+ ∆θ∗ + (1− kM−1

+ )ξ̃
)2
, (B1)

where we have

c+ := Eα∼D(0,r)[cos
4 α] , (B2)

k+ := Eα∼D(0,r)[cos
2 α] , (B3)

∆θ∗ := Tr
[
(ρ0 − σ1ρ0σ1)U

† (θ∗) ρ(θ∗,δt)U (θ∗)
]
. (B4)

Here σ1 is the Pauli string associated with the first gate in the circuit U(θ) as defined in Eq. (4), ρ0 = |ψ0⟩⟨ψ0|
is an initial state before the time evolution and ρ(θ∗,δt) = e−iHδtU(θ∗)ρ0U

†(θ∗)eiHδt with H being the underlying
Hamiltonian of the quantum dynamics.

Proof. First, we recall that the loss function at each iteration (as defined in Eq. (3)) is of the form

L(θ) = 1−
∣∣⟨ψ0|U†(θ)|ψ(θ∗, δt)⟩

∣∣2 (B5)

= 1− ⟨ψ0|U†(θ)ρ(θ∗,δt)U(θ)|ψ0⟩ (B6)

for some initial state |ψ0⟩ and

ρ(θ∗,δt) := |ψ(θ∗, δt)⟩⟨ψ(θ∗, δt)| = e−iHδtU(θ∗)|ψ0⟩⟨ψ0|U†(θ∗)eiHδt , (B7)

where θ∗ is an optimal solution of the previous iteration. The parameterised quantum circuit U(θ) withM parameters
takes the following general form

U (θ) =

M∏
i=1

ViUi(θi) , (B8)

where {Vi}Mi=1 are some fixed unitaries and {Ui(θi) = e−iθiσi}Mi=1 are a set of parameterised rotation gates with σi
being a Pauli string associated with the ith gate. Crucially, the rotation gates can be re-expressed as perturbations
α around the previous optimal solution i.e., θi = θ∗i + αi for all i

U (θ) =

M∏
i=1

ViUi(θ
∗
i )Ui(αi) (B9)

=

M∏
i=1

Ṽi(θ
∗
i )Ui(αi) , (B10)

where the first equality holds due to e−iθiσi = e−iθ
∗
i σie−iαiσi and in the second equality we denote Ṽi := Ṽi(θ

∗
i ) =

Vie
−iθ∗i σi .
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We consider the region of parameters around the previous optimum which can also be expressed in terms of α

V(θ∗, r) = {θ = θ∗ +α | αi ∈ [−r, r]} , (B11)

where r is a characteristic length of the region. Now, we are interested in the variance of the loss function over
V(θ∗, r) such that each parameter is uniformly sampled

Varθ∼D(θ∗,r) [L(θ)] = Varα∼D(0,r) [L(θ = θ∗ +α)] (B12)

= Varα∼D(0,r) [1− L(θ)] (B13)

= Eα∼D(0,r)

[
(1− L(θ))2

]
−
(
Eα∼D(0,r)[1− L(θ)]

)2
, (B14)

where the second equality is due to Varα[b1X(α) + b2] = (b1)
2VarαX(α) for some constants b1 and b2.

Importantly, since all parameters are assumed to be uncorrelated, this allows us to compute the variance over each
individual parameter one-by-one from the outermost parameter αM towards the first parameter α1. That is, each
term in Eq. (B14) can be expressed as

Eα∼D(0,r)

[
(1− L(θ))2

]
= Eα1,α2,...,αM

[
(1− L(θ))2

]
(B15)

= Eα1,α2,...,αM−1
EαM

[
(1− L(θ))2

]
(B16)

:= EαM
EαM

[
(1− L(θ))2

]
, (B17)

with αM := α1, α2, ..., αM−1 and, similarly,

Eα∼D(0,r) [(1− L(θ))] = Eα1,α2,...,αM−1
EαM

[(1− L(θ))] (B18)

:= EαM
EαM

[(1− L(θ))] . (B19)

Before delving into computing these terms, we first stress the αM dependence of the loss by writing

1− L(θ) =
∣∣⟨ψ0|U†(θ)|ψ(θ∗, δt)⟩

∣∣2 (B20)

= ⟨ψM−1|U†
M (αM )ρMUM (αM )|ψM−1⟩ , (B21)

where we have defined

|ψM−1⟩ :=
M−1∏
i=1

Ṽi(θ
∗
i )Ui(αi)|ψ0⟩ , (B22)

ρM := Ṽ †
M (θ∗M )ρ(θ∗,δt)ṼM (θ∗M ) . (B23)

Remark that |ψM−1⟩ depends on the other parameters {αi}M−1
i=1 while ρM is independent of α. Next we use the

identity

Ui(αi) = cos(αi)1− i sin(αi)σi , (B24)

to rewrite the loss as

1− L(θ) = cos2(αM )⟨ψM−1|ρM |ψM−1⟩+ sin2(αM )⟨ψM−1|σMρMσM |ψM−1⟩
− cos(αM ) sin(αM )⟨ψM−1|i[ρM , σM ]|ψM−1⟩ (B25)

= cos2(αM )⟨ρM ⟩ψM−1
+ sin2(αM )⟨σMρMσM ⟩ψM−1

− cos(αM ) sin(αM )⟨i[ρM , σM ]⟩ψM−1
, (B26)

where in the final line we use the shorthand

⟨O⟩ψ := ⟨ψ|O|ψ⟩ , (B27)

for some observable O and some state |ψ⟩.
We are now ready to proceed with the averaging over αM in Eq. (B17) which results in

EαM

[
(1− L(θ))2

]
= c+⟨ρM ⟩2ψM−1

+ c−⟨σMρMσM ⟩2ψM−1
+ c0⟨i[ρM , σM ]⟩2ψM−1

(B28)

+ 2c0⟨ρM ⟩ψM−1
⟨σMρMσM ⟩ψM−1

⩾ c+⟨ρM ⟩2ψM−1
+ c−⟨σMρMσM ⟩2ψM−1

+ 2c0⟨ρM ⟩ψM−1
⟨σMρMσM ⟩ψM−1

, (B29)
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where we have

c+ =
1

2r

∫ r

−r
dαM cos4(αM ) , (B30)

c− =
1

2r

∫ r

−r
dαM sin4(αM ) , (B31)

c0 =
1

2r

∫ r

−r
dαM cos2(αM ) sin2(αM ) , (B32)

0 =
1

2r

∫ r

−r
dαM cos3(αM ) sin(αM ) =

1

2r

∫ r

−r
dαM cos(αM ) sin3(αM ) . (B33)

Similarly, by considering Eq. (B19), we have

EαM
[1− L(θ)] =k+⟨ρM ⟩ψM−1

+ k−⟨σMρMσM ⟩ψM−1
, (B34)

with

k+ =
1

2r

∫ r

−r
dαM cos2(αM ) , (B35)

k− =
1

2r

∫ r

−r
dαM sin2(αM ) , (B36)

0 =
1

2r

∫ r

−r
dαM cos(αM ) sin(αM ) . (B37)

From the above expressions, we can see that Varα[cos
2(α)] = c+ − k2+, Varα[sin

2(α)] = c− − k2− and

Covα[cos
2(α), sin2(α)] = c0 − k+k−. In addition, it can be verified by a direct computation that

c+ − k2+ = c− − k2− = −(c0 − k+k−) =
−1 + 4r2 + cos(4r) + r sin(4r)

32r2
. (B38)

Together, the variance in Eq. (B14) can be bounded as

Varθ [L(θ)] = Eα1,...,αM−1
EαM

[
(1− L(θ))2

]
−
(
Eα1,...,αM−1

EαM
[1− L(θ)]

)2
(B39)

⩾ EαM

[
c+⟨ρM ⟩2ψM−1

+ c−⟨σMρMσM ⟩2ψM−1
+ 2c0⟨ρM ⟩ψM−1

⟨σMρMσM ⟩ψM−1

]
−
(
EαM

[
k+⟨ρM ⟩ψM−1

+ k−⟨σMρMσM ⟩ψM−1

])2
(B40)

= c+EαM

[
⟨ρM ⟩2ψM−1

]
− k2+

(
EαM

[
⟨ρM ⟩ψM−1

])2
+ c−EαM

[
⟨σMρMσM ⟩2ψM−1

]
− k2−

(
EαM

[
⟨σMρMσM ⟩ψM−1

])2
+ 2c0EαM

[
⟨ρM ⟩ψM−1

⟨σMρMσM ⟩ψM−1

]
− 2k+k−EαM

[
⟨ρM ⟩ψM−1

]
EαM

[
⟨σMρMσM ⟩ψM−1

]
(B41)

= (c+ − k2+)EαM

[
⟨ρM ⟩2ψM−1

]
+ k2+VarαM

[
⟨ρM ⟩ψM−1

]
+ (c− − k2−)EαM

[
⟨σMρMσM ⟩2ψM−1

]
+ k2−VarαM

[
⟨σMρMσM ⟩ψM−1

]
+ 2(c0 − k+k−)EαM

[
⟨ρM ⟩ψM−1

⟨σMρMσM ⟩ψM−1

]
+ 2k+k−CovαM

[
⟨ρM ⟩ψM−1

, ⟨σMρMσM ⟩ψM−1

]
(B42)

= (c+ − k2+)EαM

[
⟨ρM ⟩2ψM−1

+ ⟨σMρMσM ⟩2ψM−1
− 2⟨ρM ⟩ψM−1

⟨σMρMσM ⟩ψM−1

]
+ k2+VarαM

[
⟨ρM ⟩ψM−1

]
+ k2−VarαM

[
⟨σMρMσM ⟩ψM−1

]
+ 2k+k−CovαM

[
⟨ρM ⟩ψM−1

, ⟨σMρMσM ⟩ψM−1

]
(B43)

= (c+ − k2+)EαM

[
⟨ρM ⟩ψM−1

− ⟨σMρMσM ⟩ψM−1

]2
+VarαM

[
k+⟨ρM ⟩ψM−1

+ k−⟨σMρMσM ⟩ψM−1

]
(B44)

⩾ VarαM

[
k+⟨ρM ⟩ψM−1

+ k−⟨σMρMσM ⟩ψM−1

]
(B45)

where the first inequality is due to Eq. (B29), we then reach Eq. (B42) by using the fact that Varα[X(α)] =
Eα[X

2(α)] − (Eα[X(α)])2 and Covα[X(α), Y (α)] = Eα[X(α)Y [α]] − Eα[X(α)]Eα[Y (α)], Eq. (B43) is from the
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relation presented in Eq. (B38). Next, in Eq. (B44) we use the identity Varα[X(α) + Y (α)] = Varα[X(α)] +
Varα[Y (α)] + 2Covα[X(α), Y (α)] and to reach the next inequality we throw away the first positive term in the sum.

Notably, the variance of the term in Eq. (B45) is no longer taken over αM (i.e., the contribution to the variance

from αM is already taken into account). In addition, by denoting |ψM−2⟩ =
∏M−2
i=1 Ṽi(θ

∗
i )Ui(αi)|ψ0⟩ as well as

ρ̃M−1 = k+Ṽ
†
M−1(θ

∗
M−1)ρM ṼM−1(θM−1) + k−Ṽ

†
M−1(θ

∗
M−1)σMρMσM ṼM−1(θ

∗
M−1) , (B46)

the lower bound in Eq. (B45) can be expressed as

Varθ [L(θ)] ⩾ VarαM

[
k+⟨ρM ⟩ψM−1

+ k−⟨σMρMσM ⟩ψM−1

]
(B47)

= Varα1,α2,...,αM−1

[
⟨ψM−2|U†

M−1(αM−1)ρ̃M−1UM−1(αM−1)|ψM−2⟩
]

(B48)

Crucially, the derivation steps from Eq. (B28) to Eq. (B48), which are used to get rid of αM dependence, can be
repeated to recursively integrate over other parameters. To be more precise, let us first define

|ψM−l−1⟩ =
M−l−1∏
i=1

Ṽi(θ
∗
i )Ui(αi)|ψ0⟩ , (B49)

as well as a general recursive form of Eq. (B46)

ρ̃M−l = k+Ṽ
†
M−l(θ

∗
M−l)ρ̃M−l+1ṼM−l(θ

∗
M−l) + k−Ṽ

†
M−l(θ

∗
M−l)σM−l+1ρ̃M−l+1σM−l+1ṼM−l(θ

∗
M−l) , (B50)

where l ∈ {1, 2, ...,M − 1} and we have ρ̃M = ρM which gives back Eq. (B46) for l = 1. We note that ρ̃M−l can be

seen as a mixed state between Ṽ †
M−l(θ

∗
M−l)ρ̃M−l+1ṼM−l(θ∗M−l) and Ṽ †

M−l(θ
∗
M−l)σM−l+1ρ̃M−l+1σM−l+1ṼM−l(θ∗M−l)

for all l. This is since k+ + k− = 1 and ρM is a valid quantum state.
The variance then can be recursively lower bounded, leading to

Varθ [L(θ)] ⩾ Varα1,α2,...,αM−1

[
⟨ψM−2|U†

M−1(αM−1)ρ̃M−1UM−1(αM−1)|ψM−2⟩
]

(B51)

⩾ Varα1,α2,...,αM−l

[
⟨ψM−l−1|U†

M−l(αM−l)ρ̃M−lUM−l(αM−l)|ψM−l−1⟩
]

(B52)

⩾ Varα1

[
⟨ψ1|U†

1 (θ1)ρ̃1U1(θ1)|ψ1⟩
]
, (B53)

where in the second inequality we have recursively integrated out parameters αM−l+1, ..., αM and in the last equality
we have integrated out all the parameters except α1.
All that remains is to explicitly bound the variance with respect to α1

Varθ [L(θ)] ⩾ Varα1

[
⟨ψ1|U†

1 (θ1)ρ̃1U1(θ1)|ψ1⟩
]

(B54)

⩾
(
c+⟨ρ̃1⟩2ψ0

+ c−⟨σ1ρ̃1σ1⟩2ψ0
+ 2c0⟨ρ̃1⟩ψ0⟨σ1ρ̃1σ1⟩ψ0

)
− (k+⟨ρ̃1⟩ψ0 + k−⟨σ1ρ̃1σ1⟩ψ0)

2
(B55)

= (c+ − k2+) (⟨ρ̃1⟩ψ0
− ⟨σ1ρ̃1σ1⟩ψ0

)
2

(B56)

= (c+ − k2+) (Tr [(|ψ0⟩⟨ψ0| − σ1|ψ0⟩⟨ψ0|σ1) ρ̃1])2 (B57)

where Eq. (B55) to Eq. (B57) follows in the same manner as Eq. (B40) to Eq. (B45). From recursively expanding ρ̃1
(according to Eq. (B50)), we can write:

ρ̃1 = kM−1
+

(
M∏
i=1

Ṽi(θ
∗
i )

)†

ρ(θ∗,δt)

(
M∏
i=1

Ṽi(θ
∗
i )

)
+ (1− kM−1

+ )ξ (B58)

= kM−1
+ U†(θ∗)ρ(θ∗,δt)U(θ∗) + (1− kM−1

+ )ξ (B59)

(B60)

where ξ is some complicated mixed state and, for clarification, we note that kM−1
+ = (k+)

M−1
with k+ defined in

Eq B35 2. Thus we can write

Varθ [L(θ)] ⩾ (c+ − k2+)
(
Tr
[
(|ψ0⟩⟨ψ0| − σ1|ψ0⟩⟨ψ0|σ1)

(
kM−1
+ U†(θ∗)ρ(θ∗,δt)U(θ∗) + (1− kM−1

+ )ξ
)])2

(B61)

⩾ (c+ − k2+) min
ξ̃∈[−1,1]

(
kM−1
+ Tr

[
(|ψ0⟩⟨ψ0| − σ1|ψ0⟩⟨ψ0|σ1)U†(θ∗)ρ(θ∗,δt)U(θ∗)

]
+ (1− kM−1

+ )ξ̃
)2

(B62)

2 This clarification on kM+ is included at the request of one of the authors.
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where in the final line we minimize over the free parameter ξ̃ = Tr [(|ψ0⟩⟨ψ0| − σ1|ψ0⟩⟨ψ0|σ1) ξ] ∈ [−1, 1] by noting
that Tr [(|ψ0⟩⟨ψ0| − σ1|ψ0⟩⟨ψ0|σ1) ξ] is bounded between −1 and 1. This completes the proof of the proposition.

2. Proof of Theorem 1

In this subsection, we analytically show that the lower bound of the variance scales polynomially with the number
of parameters M when the perturbation is within 1/

√
M region.

Theorem 1 (Lower-bound on the loss variance, Formal). Assume a product initial state ρ0 =
⊗n

j=1 ρj with ρj and

let us choose σ1 such that Tr[ρ0σ1ρ0σ1] = 0. Given that the Trotter time-step δt respects

1

2λmax
⩾ δt , (B63)

where λmax is the largest eigenvalue of H, and the perturbation r obeys

3r20
(
1− 4λ2maxδt

2
)

2(M − 1) (1− 2λ2maxδt
2)

⩾ r2 , (B64)

with some r0 such that 0 < r0 < 1, then the variance of the loss function within the region V(θ∗, r) is lower bounded
as

Varθ∼D(θ∗,r) [L(θ)] ⩾
4r4

45

(
1− 4r2

7

)[
(1− r0)(1− 4λ2maxδt

2)
]2

. (B65)

In addition, by choosing r such that r ∈ Θ
(

1√
M

)
, we have

Varθ∼D(θ∗,r) [L(θ)] ∈ Ω

(
1

M2

)
. (B66)

Proof. From Proposition 3, we first recall the variance bound in Eq. (B1) is of the form

Varθ∼D(θ∗,r)[L(θ)] ⩾ (c+ − k2+) min
ξ̃∈[−1,1]

(
kM−1
+ ∆θ∗ + (1− kM−1

+ )ξ̃
)2
, (B67)

where we have

c+ := Eα∼D(0,r)[cos
4 α] , (B68)

k+ := Eα∼D(0,r)[cos
2 α] , (B69)

∆θ∗ := Tr
[
(ρ0 − σ1ρ0σ1)U

† (θ∗) ρ(θ∗,δt)U (θ∗)
]
. (B70)

Here σ1 is the Pauli string associated with the first gate in the circuit U(θ) as defined in Eq. (4), ρ0 = |ψ0⟩⟨ψ0|
is an initial state before the time evolution and ρ(θ∗,δt) = e−iHδtU(θ∗)ρ0U

†(θ∗)eiHδt with H being the underlying
Hamiltonian of the quantum dynamics.

We now notice that if the perturbation r is chosen such that the following condition is satisfied

kM−1
+ ∆θ∗ ⩾ 1− kM−1

+ , (B71)

then ξ̃ = −1 minimises the lower bound which leads to

Varθ∼D(θ∗,r) [L(θ)] ⩾ (c+ − k2+)
(
kM−1
+ ∆θ∗ − (1− kM−1

+ )
)2

(B72)

= (c+ − k2+)
(
kM−1
+ Tr

[
(ρ0 − σ1ρ0σ1)U

†(θ∗)ρ(θ∗,δt)U(θ∗)
]
− (1− kM−1

+ )
)2

(B73)

= (c+ − k2+)
(
kM−1
+

(
F
(
ρ(θ∗,0), ρ(θ∗,δt)

)
− Tr

[
U(θ∗)σ1ρ0σ1U

†(θ∗)ρ(θ∗,δt)

]
+ 1
)
− 1
)2

, (B74)

where F (ρ, ρ′) = Tr[ρρ′] is the fidelity between two pure states ρ and ρ′, and

ρ(θ∗,δt) = |ψ(θ∗, δt)⟩⟨ψ(θ∗, δt)| = e−iHδtU(θ∗)ρ0U
†(θ∗)eiHδt . (B75)
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We note that the condition in Eq. (B71) can be equivalently expressed as

kM−1
+ ⩾

1

1 + ∆θ∗
=

1

1 + Tr
[
(ρ0 − σ1ρ0σ1)U†(θ∗)ρ(θ∗,δt)U(θ∗)

] , (B76)

where we explicitly expand ∆θ∗ .

Crucially, for the majority of the rest of the proof, we aim to show that the condition in Eq. (B76) is satisfied if
the perturbation is chosen such that

3r20
(
1− 4λ2maxδt

2
)

2(M − 1) (1− 2λ2maxδt
2)

⩾ r2 , (B77)

where r0 is some constant within the range 0 < r0 < 1. In order to prove this, we first note the following bound of
kM−1
+ which follows as

kM−1
+ =

(
1

2r

∫ r

−r
dα cos2(α)

)M−1

(B78)

=

(
1

2
+

sin (2r)

4r

)M−1

(B79)

⩾

(
1− r2

3

)M−1

(B80)

⩾ 1− (M − 1)r2

3
(B81)

> 1− (M − 1)r2

3r20
, (B82)

where the first inequality is by directly expanding the base and keeping only the second order term, the second
inequality is due to Bernoulli’s inequality and finally the last inequality holds because 0 < r0 < 1. We will come back
to this inequality soon.

Now, the term Tr
[
(ρ0 − σ1ρ0σ1)U

†(θ∗)ρ(θ∗,δt)U(θ∗)
]
can be bounded as follows. Since ρ0 =

⊗n
j=1 ρj is a product

state, we can choose σ1 to be a single rotation around the axis such that Tr[ρ0σ1ρ0σ1] = 0 3, which leads to

Tr
[
ρ(θ∗,0)U(θ∗)σ1ρ0σ1U

†(θ∗)
]
= Tr [ρ0σ1ρ0σ1] = 0 . (B83)

Then, we construct an orthonormal basis {|ϕi⟩⟨ϕi|}2
n

i=1 such that

|ϕ1⟩⟨ϕ1| = ρ(θ∗,0) , (B84)

|ϕ2⟩⟨ϕ2| = U(θ∗)σ1ρ0σ1U
†(θ∗) , (B85)

and the rest are some other orthornormal states necessary to complete the basis. With this basis, we have the following
bound

Tr
[
(ρ0 − σ1ρ0σ1)U

†(θ∗)ρ(θ∗,δt)U(θ∗)
]
= F

(
ρ(θ∗,0), ρ(θ∗,δt)

)
− Tr

[
|ϕ2⟩⟨ϕ2|ρ(θ∗,δt)

]
(B86)

⩾ F
(
ρ(θ∗,0), ρ(θ∗,δt)

)
−

2n∑
i=2

Tr [|ϕi⟩⟨ϕi|ρ(θ∗, δt)] (B87)

= 2F
(
ρ(θ∗,0), ρ(θ∗,δt)

)
− 1 (B88)

⩾ 1− 4λ2maxδt
2 , (B89)

where the first equality is by writing the first term in the fidelity form and writing the second term in |ϕ2⟩⟨ϕ2| in
Eq. (B85), in the first inequality we include terms corresponding to other basis (which holds since Tr[ρ|ϕi⟩⟨ϕi|] ⩾ 0

3 For example, consider the all-zero basis state as an initial state ρ0 = |00...0⟩⟨00...0|. We can pick the first generator as σ1 = X1.
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for any ρ and |ϕi⟩⟨ϕi|). Next, the second equality is from the completeness of the basis
∑2n

i=1 |ϕi⟩⟨ϕi| = 1, the last
inequality is due to Lemma 5 with λmax being the largest eigenvalue of H.

We note that in order for the lower bound in Eq. (B89) to be informative it is required that 1 ⩾ 4λ2maxδt
2. Up on

rearranging, this leads to the constraint on the time-step as

1

2λmax
⩾ δt , (B90)

which is the condition specified in Eq. (B63). By assuming that the time-step satisfying the aforementioned constrain,
we now proceed from Eq. (B89) by adding 1 to both sides and rearranging the terms which leads to

1

2− 4λ2maxδt
2
⩾

1

1 + Tr
[
(ρ0 − σ1ρ0σ1)U†(θ∗)ρ(θ∗,δt)U(θ∗)

] . (B91)

We remark that the right-hand side of Eq. (B91) appears in the condition in Eq. (B76).

We are now ready to put everything together. Importantly, the condition in Eq. (B76) is satisfied if we enforce

the left-hand side of Eq. (B82) to be larger than the right-hand side of Eq. (B91). That is, we have kM−1
+ ⩾

1

1+Tr[(ρ0−σ1ρ0σ1)U†(θ∗)ρ(θ∗,δt)U(θ∗) ]
to be true if the following holds

1− (M − 1)r2

3r20
⩾

1

2− 4λ2maxδt
2
. (B92)

By rearranging the inequality in Eq. (B92), we have the perturbation regime of r to be Eq. (B77) as previously stated.

The last step is to bound the variance when r satisfies Eq. (B77). the variance of the loss in Eq. (B74) can be
bounded as

Varθ∼D(θ∗,r) [L(θ)] ⩾ (c+ − k2+)
[
kM−1
+

(
F
(
ρ(θ∗,0), ρ(θ∗,δt)

)
− Tr

[
U(θ∗)σ1ρ0σ1U

†(θ∗)ρ(θ∗,δt)

]
+ 1
)
− 1
]2

(B93)

⩾ (c+ − k2+)
[
kM−1
+

(
2− 4λ2maxδt

2
)
− 1
]2

(B94)

⩾ (c+ − k2+)

[(
1− (M − 1)r2

3

)(
2− 4λ2maxδt

2
)
− 1

]2
(B95)

⩾ (c+ − k2+)
[
(1− r20)(1− 4λ2maxδt

2)
]2

(B96)

⩾
4r4

45

(
1− 4r2

7

)[
(1− r20)(1− 4λ2maxδt

2)
]2

, (B97)

where the second inequality is due to Eq. (B89), the third inequality is by bounding kM−1
+ with Eq. (B81) and in the

next inequality we explicitly use the perturbation regime of r in Eq. (B77). To reach the last inequality, we directly

bound c+ − k2+ = 1
2r

∫ r
−r dα cos4(α)−

(
1
2r

∫ r
−r dα cos2(α)

)2
⩾ 4r4

45 − 16r6

315 by expanding it in the series and keeping the

terms which result in the lower bound.

We now comment on the assumption that an initial state ρ0 is a product state and discuss a possible extension to
an arbitrary initial state. In essence, the product state assumption is used in the proof above to ensure that the term
∆θ∗ in Eq. (B4) is non-vanishing (see Eq. (B83) to Eq. (B89)). However, we argue here that our results should hold
more generally for arbitrary initial states as long as the first gate interacts non-trivially with the loss. In particular,
this happens for a small enough Trotter time-step δt as long as the first gate does not rotate ρ0 into a subspace that
is fully parallel to itself.

To illustrate this, we can expand e−iHδt and keep only the leading order in δt with an arbitrary non-product
initial state. Since ρ0 is no longer limited to be a product state, the orthornormal basis construction where
U(θ∗)σ1ρ0σ1U†(θ∗) is chosen to be orthonormal to ρ(θ∗,0) (see Eq. (B83)) is no longer guaranteed. However, we

can modify the steps slightly and decompose U(θ∗)σ1ρ0σ1U†(θ∗) into a parellel and a perpendicular component i.e.,

U(θ∗)σ1ρ0σ1U
†(θ∗) = (a |ϕ1⟩+ b |ϕ2⟩) (⟨ϕ1| a∗ + ⟨ϕ2| b∗) , (B98)
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where |ϕ1⟩⟨ϕ1| = ρ(θ∗,0), |ϕ2⟩⟨ϕ2| is orthonormal to ρ(θ∗,0), a and b are coefficients in the parallel and orthogonal
directions such that |a|, |b| ⩽ 1. Then we can use Taylor’s series to expand

Tr
[
U(θ∗)σ1ρ0σ1U

†(θ∗)ρ(θ∗,δt)

]
=Tr

[
(a |ϕ1⟩+ b |ϕ2⟩) (⟨ϕ1| a∗ + ⟨ϕ2| b∗) ρ(θ∗,δt)

]
(B99)

=Tr
[
(a |ϕ1⟩+ b |ϕ2⟩) (⟨ϕ1| a∗ + ⟨ϕ2| b∗) e−iHδt |ϕ1⟩⟨ϕ1| eiHδt

]
(B100)

=|a|2 + δt (iab∗ ⟨ϕ1|H |ϕ2⟩ − ia∗b ⟨ϕ2|H |ϕ1⟩) +O
(
δt2
)
, (B101)

where, for the purpose of demonstration, we are only interested in the leading order in δt. Therefore with this we
have that the term ∆θ∗ is

∆θ∗ = (1− |a|2) + δt (iab∗ ⟨ϕ1|H |ϕ2⟩ − ia∗b ⟨ϕ2|H |ϕ1⟩) +O
(
δt2
)
. (B102)

Hence, for |a| ∈ Ω(1/poly(n)) (which is expected to hold when the first gate does not commute with ρ0) and small
Trotter time-step δt≪ 1, one can follow the same proof steps which then results in the polynomial scaling of the loss
variance in the hypercube with r scaling polynomially.

Appendix C: Proof convexity

Theorem 2 (Approximate convexity of the landscape, Formal). For a time-step of size

δt ⩽
µmin + 2|ϵ|
16Mλmax

, (C1)

the loss landscape is ϵ-convex in a hypercube of width 2rc around a previous optimum θ∗ i.e., V(θ∗, rc) such that

rc ⩾
1

M

(
µmin + 2|ϵ|

16M
− λmaxδt

)
, (C2)

where µmin is the minimal eigenvalue of the Fisher information matrix associated with the loss.

Proof. We first recall that the region of the loss function is ϵ-convex (i.e., Definition 1) if all eigenvalues of the Hessian
matrix of the loss function i.e., L(θ) = 1 − F

[
U(θ)ρ0U

†(θ), ρ(θ∗, δt)
]
within the region are larger than −|ϵ|, which

can be re-expressed in terms of the fidelity as[
∇2

θF
(
U(θ)ρ0U

†(θ), ρ(θ∗, δt)
)]

max
⩽ |ϵ| , (C3)

for all θ ∈ V(θ∗, r) with [A]max being the largest eigenvalue of the matrix A.
By using Taylor’s expansion around θ∗ (see Theorem 4), the fidelity can be written in the form of

F (x) = 1−
∑
i,j

xixj
4

Fij(0) +
∑
i,j,k

xixjxk
6

(
∂3F (x)

∂xi∂xj∂xk

) ∣∣∣∣
x=ν

, (C4)

where we introduce the shorthand notation of the fidelity around this region as F (x) with x = (θ − θ∗, δt), Fij(0)
are elements of the quantum fisher information at x = 0, and the last term is the result of the Taylor’s remainder
theorem with ν = cx for some c ∈ [0, 1].

For convenience, we denote Aijk(x) =
∂3F (x)

∂xi∂xj∂xk
. This third derivative can be expressed as a nested commutator

of the form (for k > j > i)

Aijk(x) :=
∂3F (x)

∂xi∂xj∂xk
= Tr

[
U (M+1,k)i

[
U (k,j)i

[
U (j,i)i

[
U (i,0)ρ0U

(i,0)†, σi
]
U (j,i)†, σj

]
U (k,j)†, σk

]
U (M+1,k)†ρ(θ∗,0)

]
,

(C5)

where U(x) = U (M+1,k)U (k,j)U (j,i)U (i,0) with U (a,b) =
∏b
l=a+1 e

−ixlσl Ṽl such that σM+1 := H and ṼM+1 = 1. For

clarification we emphasise that the notation σM+1 := H does not imply that H2 = 1, H is still a general Hamiltonian,
but rather this is just a way of simplifying the notation. That is, U(x) is decomposed into 4 sections e.g., U (i,0) contains
the part of U(θ) from the first gate to the ith gate.
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Now, we consider an element of ∇2
θF (x) which can be obtained by explicitly differentiating F (x) in Eq. (C4) with

respect to the variational parameters (i.e., xl and xm cannot be δt)

∂2F (x)

∂xl∂xm
= −1

2
Flm(0) +

1

6
Ãlm(ν) , (C6)

with

Ãlm(ν) =
M+1∑
i=1

xi (Almi(ν) +Alim(ν) +Ailm(ν) +Amli(ν) +Amil(ν) +Aiml(ν)) , (C7)

where we remark that here the sum includes the time component δt.
Now, the largest eigenvalue of ∇2

θF (x) can be bounded as[
∇2

θF (x)
]
max

⩽ −1

2
[F(0)]min +

1

6
[Ã(ν)]max , (C8)

where we denote [A]min as the smallest eigenvalue of the matrix A.

In order to bound [Ã(ν)]max, we first consider the bound on Ailm(ν)

Ailm(ν) ⩽ |Ailm(ν)| (C9)

⩽
∥∥∥U (M+1,m)i

[
U (m,l)i

[
U (l,i)i

[
U (i,0)ρ0U

(i,0)†, σi
]
U (l,i)†, σl

]
U (m,l)†, σm

]
U (M+1,m)†

∥∥∥
∞

∥∥ρ(θ∗,0)

∥∥
1

(C10)

⩽ 23∥σi∥∞∥σl∥∞∥σm∥∞ (C11)

= 8∥σi∥∞ . (C12)

Here the second inequality is due to Hölder’s inequality. In the third inequality we use a few identities including (i)
the one-norm of a pure state is 1, (ii) ∥UA∥p = ∥A∥p for any unitary U , (iii) ∥i[A,B]∥p = 2∥A∥p∥B∥p and lastly (iv)
∥AB∥p ⩽ ∥A∥p∥B∥p. To reach the final equality, we recall that since xl and xm cannot be a time component δt, σl
and σm are generators of the circuit which have ∥σl∥∞ = ∥σm∥∞ = 1.

We now bound the sum of the absolute of elements in a row of Ã(ν) as

M∑
m=1

∣∣∣Ãlm(ν)
∣∣∣ ⩽ M∑

m=1

M+1∑
i=1

|xi| (|Almi(ν)|+ |Alim(ν)|+ |Ailm(ν)|+ |Amli(ν)|+ |Amil(ν)|+ |Aiml(ν)|) (C13)

⩽ 48

M∑
m=1

M+1∑
i=1

|xi|∥σi∥∞ (C14)

⩽ 48M (λmaxδt+Mr) (C15)

By invoking Proposition 2, the largest eigenvalue of the matrix can then be bounded as

[Ã(ν)]max ⩽ 48M (λmaxδt+Mr) . (C16)

Finally, we can guarantee the region of ϵ-convexity (i.e., Eq. (C3)) by enforcing the following condition

−1

2
[F(0)]min + 8M (λmaxδt+Mr) ⩽ |ϵ| . (C17)

Upon rearranging the terms, we have

r ⩽
1

M

(
µmin + 2|ϵ|

16M
− λmaxδt

)
. (C18)

Indeed, this implies that any hypercube V(θ∗, r) such that r satisfies Eq. (C18) is guaranteed to be approximately

convex. Hence, we know that the total ϵ-convex region has to be at least of size 1
M

(
µmin+2|ϵ|

16M − λmaxδt
)
. More

explicitly, by denoting rc to be the length of the total ϵ-approximate convex region V(θ∗, rc), we have

rc ⩾
1

M

(
µmin + 2|ϵ|

16M
− λmaxδt

)
. (C19)

We note that the bound is only informative if the Trotter time-step respects

δt ⩽
µmin + 2|ϵ|
16Mλmax

. (C20)

This completes the proof of the theorem.
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FIG. 7. Adiabatic minima. Here we show the adiabatic minima (highlighted in the black dots) as a function of the Trotter
time-step δt. From dark blue to orange, we highlight how the loss function evolves with increasing δt. Indeed, when the time-
step increases the adiabatic minima stops being the global minima. Then it turns into a saddle point and finally disappears to
become a slope. As mentioned in the main text, when the adiabatic minima disappears it turns into a slope.

Appendix D: Adiabatic Moving Minima

In this section, we provide further analysis on the adiabatic moving minimum, including the proof of Theorem 3
and some some technical subtleties. We first recall the definition of the adiabatic minimum and also introduce a
definition of the adiabatic shift.

Definition 2 (Adiabatic Minima). For any time δt in the range [0, T ], the function corresponding to the evolution
of the adiabatic minima for some initial minimum θ∗, is a continuous function θA(δt) ∈ C∞(R,Rm) such that
θA(0) = θ∗ and

∇θL(θA(δt), δt) = 0 . (D1)

The adiabatic minimum at time δt is θA(δt)

Definition 4 (Adiabatic shift of the previous minima). The shift of the adiabatic minimum with respect to the previous
optimal point is defined as

αA(δt) = θA(δt)− θ∗ , (D2)

and also respects

∇αL(α, δt)
∣∣
α=αA(δt)

= 0 , (D3)

for any time δt.

Intuitively, the adiabatic function corresponds to the minima one would converge to by increasing δt infinitely slowly
and minimizing L(θ, δt) by gradient descent with a very small learning rate. By analogy, one can imagine dropping
a marble in the initial minima and then slowly modifying the landscape by increasing δt. The position of the marble
would correspond to our adiabatic minima and in practice it is where we expect our algorithm to converge.

Up to this point, there are two caveats that we would like to highlight. First, this adiabatic minimum is not
necessarily the global minimum (as discussed in Section III E - there could potentially be a jump in the global
minimum). The other subtlety is that the existence of the adiabatic minimum is not always guaranteed for increasing
δt. This is highlighted in Figure 7. While for a small Trotter time-step one intuitively expects to have the adiabatic
minimum, it is not certain whether we have this for large Trotter time-steps. That is, the adiabatic function can cease
to be continuous beyond T (and in practice we do not in general know what T is). Crucially, the discontinuity in
the adiabatic minimum path implies that zero gradients now turn into some slopes. Hence, the lack of a continuous
adiabatic minimum does not necessarily imply untrainability.

With these caveats in mind, we proceed under the assumption that the adiabatic minimum exists within the Trotter
time-step of our interest. We first present Proposition 4 which shows that the shift in the adiabatic minimum can be
bounded with the Trotter time-step.

Proposition 4. Given a Trotter time-step of the current iteration δt and assuming that the adiabatic minimum exists
within this time frame, the shift of the adiabatic minimum αA(δt) as defined in Definition 4 can be bounded as

∥αA(δt)∥2 ⩽
2
√
Mλmaxδt

βA
, (D4)
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where M is the number of parameters, λmax is the largest eigenvalue of the dynamic Hamiltonian H and βA =

α̇T
A(δt)

(
∇2

αL(α,δt)
∣∣
α=αA(δt)

)
α̇A(δt)

∥α̇A(δt)∥2
2

.

Proof. We note that to improve readability of the proof it is more convenient here to use t to refer as a Trotter
time-step (instead of δt as in other sections). We recall from Definition 4 that the adiabatic shift can be expressed as

∇αL(α, t)
∣∣
α=αA(t)

= 0 , (D5)

which holds for any t. For convenience, we denote ∇αA
L := ∇αL(α, t)

∣∣
α=αA(t)

. By a direct differentiation with

respect to t, this leads to

d

dt
(∇αA

L) = ∂t∇αA
L+

(
∇2

αA
L
)
α̇A = 0 , (D6)

where we denote ∂t = ∂/∂t and α̇A = dαA(t)/dt. We remark that
(
∇2

αA
L
)
α̇A is a matrix vector multiplication with

∇2
αA

L a Hessian matrix evaluated at αA(t). By multiplying with
α̇T

A

∥α̇A∥2
from the left, we have

α̇TA
∥α̇A∥2

∂t∇αA
L+

α̇TA
(
∇2

αA
L
)
α̇A

∥α̇A∥22
∥α̇A∥2 = 0 . (D7)

For convenience, we denote βA := α̇TA
(
∇2

αA
L
)
α̇A/∥α̇A∥22. By rearranging the terms, we can bound the norm of

α̇A(t) as

∥α̇A(t)∥2 =

∥∥∥∥− α̇TA∂t∇αA
L

∥α̇A∥2βA

∥∥∥∥
2

(D8)

⩽
∥∂t∇αA

L∥2
βA

(D9)

⩽

√
M
∣∣∣∂t∂α(i)

A

L
∣∣∣
max

βA
(D10)

⩽
2
√
Mλmax

βA
, (D11)

where the first inequality is due to Cauchy-Schwarz inequality, in the second inequality we expand the 2-norm out

explicitly and take the largest value in the sum i.e., ∥a∥2 =
√∑M

i=1 a
2
i ⩽

√
M |ai|max with α

(i)
A being the ith component

of αA. To reach the last inequality, we recall that the loss function is of the form L(α, t) = 1− Tr
(
e−iHtρθ∗eiHtρθ

)
where H is the dynamic Hamiltonian, ρθ∗ is the state corresponding to the solution of the previous iteration and ρθ
is the parametrized state that depends on α and respects a parameter shift’s rule. We can then bound the quantity
of interest as

∂t∂α(i)
A

L =
∂

∂t

(
∂

∂α(i)
L(α, t)

) ∣∣∣∣
α=αA(t)

(D12)

=
1

2

(
∂

∂t
L
(
αA +

π

2
α̂i

)
− ∂

∂t
L
(
αA − π

2
α̂i

))
(D13)

=
1

2

(
Tr
(
i[H, e−iHtρθ∗eiHt]ραA,+

)
− Tr

(
i[H, e−iHtρθ∗eiHt]ραA,−

))
(D14)

⩽
∥∥[H, e−iHtρθ∗eiHt]

∥∥
∞ (D15)

⩽ 2λmax , (D16)

where the second equality is due to a parameter shift’s rule, in the third equality we perform the direct differentiation
with t and denote αA,+ = αA+ π

2 α̂i as well as αA,− = αA− π
2 α̂i. The first inequality is due to the triangle inequality

followed by the Hölder’s inequality with the fact that ∥ρ∥1 = 1 for any pure quantum state ρ. In the last inequality,
we use ∥i[A,B]∥p = 2∥A∥p∥B∥p and the unitary invariance of the p-norm ∥UA∥p = ∥A∥p as well as ∥ρ∥∞ = 1 for any
pure quantum state ρ.
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Lastly, we can bound the shift of the adiabatic minimum as

∥αA(t)∥2 =

∥∥∥∥∫ t

0

α̇A(τ)dτ

∥∥∥∥
2

(D17)

⩽
∫ t

0

∥α̇A(τ)∥2dτ (D18)

⩽
2
√
Mλmaxt

βA
, (D19)

which completes the proof.

Note that for the bound in Eq. D4 to be informative about the asymptotic scaling we require βA to be at least
polynomially small.

In order for the training to have convergence guarantees to the adiabatic minimum, we need to ensure that our
time-step is small enough so that our adiabatic minima is inside of the trainable and convex regions. This is formalized
in Theorem 3 which is presented in the main text and proved here.

Theorem 3 (Adiabatic minimum is within provably ‘nice’ region, Formal). If the time-step δt is chosen such that

δt ⩽
η0βA

2Mλmax
, (D20)

with some small constant η0, then the adiabatic minimum θA(δt) is guaranteed to be within the non-vanishing gradient
region (as per Theorem 1), and additionally, if δt is chosen such that

δt ⩽
βA(µmin + 2|ϵ|)

32λmaxM5/2
(
1 + βA

2M3/2

) . (D21)

then the adiabatic minimum θA(δt) is guaranteed to be within the ϵ-convex region (as per Theorem 2) where

βA :=
θ̇TA(δt)

(
∇2

θL(θ)
∣∣
θ=θA(δt)

)
θ̇A(δt)

∥θ̇A(δt)∥22
(D22)

corresponds to the second derivative of the loss in the direction in which the adiabatic minimum moves.

Proof. From Proposition 4 and the norm inequality, the adiabatic minimum follows

∥αA(δt)∥∞ ⩽ ∥αA(δt)∥2 ⩽
2
√
Mλmaxδt

βA
. (D23)

What we want now is to incorporate the conditions of the regions of interest. That is, by fine-tuning δt, we want a
guarantee that the new minimum is within (i) the non-vanishing gradient region and (ii) the convex region.

For (i) the non-vanishing gradient region, we recall from the formal version of Theorem 1 that given the Trotter

time-step bounded as δt ⩽ 1/2λmax, the hypercube of width 2r has the substantial non-vanishing gradients when r
follows

r =
η0√
M

, (D24)

with some constant η0. Then, it is sufficient to have the guarantee that the adiabatic minimum is inside this region
by imposing

∥αA(δt)∥∞ ⩽
2
√
Mλmaxδt

βA
⩽

η0√
M

, (D25)

which leads to

δt ⩽
η0βA

2Mλmax
. (D26)
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For (ii) the convex region, from Theorem 2, recall that given δt ⩽ µmin+2|ϵ|
16Mλmax

, we have an ϵ-convex hypercube region
of width 2rc such that

rc ⩾
1

M

(
µmin + 2|ϵ|

16M
− λmaxδt

)
. (D27)

Therefore, it is sufficient to guarantee that the adiabatic minimum is inside this convex region by imposing

∥αA(δt)∥∞ ⩽
2
√
Mλmaxδt

βA
⩽

1

M

(
µmin + 2|ϵ|

16M
− λmaxδt

)
⩽ rc . (D28)

Upon rearranging the terms, the time-step is bounded as

δt ⩽
βA(µmin + 2|ϵ|)

32λmaxM5/2
(
1 + βA

2M3/2

) . (D29)

We remark that this bound in Eq. (D29) is much tighter than the bound in Theorem 2 (specified above). That is, to
have such a guarantee, δt is relatively shorter.

Appendix E: Imaginary Time Evolution

1. Framework

The variational imaginary time evolution can be used to prepare ground states and thermal states [69–72]. In this
section, we focus on a variational Trotter compression version of imaginary time evolution [36]. Most steps of the
algorithm are identical to the real-time version described in the main text except we substitute δt→ iδτ . This leads
to U = eiδtH → U = e−δτH . One key technicality is to add a constraint such that the state after the evolution is
forced to be normalised. That is, we have

|ψδτ ⟩ =
1√
Z
e−δτH |ψ⟩ (E1)

where Z = ⟨ψ| e−2τH |ψ⟩. We remark that |ψδτ ⟩ is now a valid pure quantum state and thus there is a unitary that
prepares it. To have any chance of preparing the ground state via imaginary time evolution the initial state |ψ⟩ must
have a non-vanishing overlap with the ground state. If the initial state is instead a maximally entangled state, and
imaginary time evolution is applied to only half the Bell state, then this approach can be used to prepare a thermal
double field state (and thereby a thermal state). However, in what follows we will focus on ground state preparation.

In the variational Trotter compression approach for imaginary time evolution, one aims to iteratively learn |ψδτ ⟩
with a parametrized quantum circuit U(θ) (with parameters initialized around the optimal parameter values obtained
from the previous iteration). More explicitly, the loss function at each iteration is of the form

LITE(θ) = Tr

[
U(θ)ρU†(θ)

1

Z
e−δτU(θ∗)ρU†(θ∗)e−δτ

]
, (E2)

where θ∗ are the optimal parameters from the previous iteration. For details on how to compute this loss in practise
see Ref. [36]. We further suppose that the parametrised quantum circuit is of the same form used in the real-time
case i.e.,

U (θ) =
M∏
i=1

ViUi(θi) (E3)

where {Vi}Mi=1 are a set of fixed unitary matrices,
{
Ui(θi) = e−iθiσi

}M
i=1

, are the parameter-dependant rotations, and

{σi}Mi=1 is a set of gate generators such that σ2
i = 1 e.g., Pauli strings on n qubits. Crucially, it is natural to consider

the parameter initialization around θ∗ i.e.,

θ ∼ D(θ∗, r) , (E4)

with r being some small perturbation.
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2. Summary of analytical results for imaginary time evolution

Here we summarize analytical results similar to those obtained for the real time evolution scenario. These include
the existence of the non-vanishing gradient region with the warm-start initialization, the guarantee of the approximate
convex region as well as the analysis on the adiabatic minimum. We note that the derivations of these results follow
the same steps as in the case of the real-time evolution and are provided in Appendix E 3 for the completeness.

First, we show that the region around the optimal solution of the previous iteration exhibits substantial gradients.
More precisely, the following theorem demonstrates the polynomial large variance of the loss function within in a
small hypercube around the starting point. This theorem is similar to Theorem 1 (as discussed in Section III B of the
main text).

Theorem 4 (Lower-bound on the loss variance for imaginary time evolution, Informal). Assume a product initial
state ρ0 =

⊗n
j=1 ρj with ρj and let us choose σ1 such that Tr[ρ0σ1ρ0σ1] = 0. Given that the imaginary Trotter

time-step scales as δτ ⩽ 1√
24λmax

where λmax is the largest eigenvalue of H and we consider a hypercube of width 2r

such that

r = Θ

(
1√
M

)
, (E5)

the variance at any iteration of the variational compression algorithm is lower bounded as

Varθ∼D(θ∗,r) [LITE(θ)] ∈ Ω

(
1

M

)
. (E6)

Thus, for M ∈ O(poly(n)), then we have

Varθ∼D(θ∗,r) [LITE(θ)] ∈ Ω

(
1

poly(n)

)
. (E7)

Next, we can ensure that for a sufficiently small time-step the loss landscape around the optimal solution of the
previous iteration is |ϵ|-convex. We refer the readers to Appendix A3 for the definition of the |ϵ|-convexity. This
result is an imaginary time evolution version of Theorem 2 discussed in Section III C.

Theorem 5 (Approximate convexity of the landscape for imaginary time evolution, Informal.). For a time-step of
size

δτ ∈ O
(
µmin + 2|ϵ|
Mλmax

)
(E8)

the loss landscape is ϵ-convex in a hypercube of width 2rc around a previous optimum θ∗ i.e., V(θ∗, rc) such that

rc ∈ Ω

(
µmin + 2|ϵ|

16M2
− 3λmaxδτ

)
(E9)

where µmin is the minimal eigenvalue of the Fisher information matrix associated with the loss at θ∗.

A similar result on the adiabatic minimum in Theorem 3 can also be analytically obtained. Assuming the adiabatic
minimum exists within our time interval of interest, we present below the scaling of imaginary time-step such that
the adiabatic minimum is in the region with substantial gradients and in the convex region. We refer the readers to
Section IIID and Appendix D for the refresher of the adiabatic minimum.

Theorem 6 (Adiabatic minimum is within provably ‘nice’ region for imaginary time evolution, Informal). If the
imaginary time-step δτ is chosen such that

δτ ∈ O
(

βA
Mλmax

)
, (E10)

then the adiabatic minimum θA(δτ) is guaranteed to be within the non-vanishing gradient region (as per Theorem 4),
and additionally, if δτ is chosen such that

δτ ∈ O
(
βA(µmin + 2|ϵ|)
M5/2λmax

)
(E11)
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then the adiabatic minimum θA(δτ) is guaranteed to be within the ϵ-convex region (as per Theorem 5) where

βA :=
θ̇TA(δτ)

(
∇2

θLITE(θ)
∣∣
θ=θA(δτ)

)
θ̇A(δτ)

∥θ̇A(δτ)∥22
(E12)

corresponds to the second derivative of the loss in the direction in which the adiabatic minimum moves.

Finally, it is crucial to note that the discussion about the minimum jumps and the potential existence of the fertile
valley in Section III E is also applicable to imaginary time evolution.

3. Proof of analytical results

In this section, we analytically derive the analytical results presented in the previous sub-section. Again, these
derivations are identical to the ones presented in Appendix B, Appendix C and Appendix D. We present them again
here for completeness and the readers are also encouraged to look at those relevant appendices.

a. Bound on the variance of the landscape: Proof of Theorem 4

First, we introduce the equivalent version of Lemma 5 for imaginary time evolution.

Lemma 7. The fidelity between two pure states ρ and ρτ = 1
Z e

−Hτρe−Hτ with Z = Tr
(
e−Hτρe−Hτ

)
can be upper

bounded as

F [ρ, ρτ ] ⩾ 1− 12λ2maxτ
2 (E13)

where λmax is the largest eigenvalue of H.

Proof. First, the derivative of the loss function with respect to time can be written as

dρτ
dt

= −{ρτ , H}+ 2Tr(Hρτ )ρτ , (E14)

where {·, ·} is an anti-commutator.
Now we can use a Taylor’s expansion around τ = 0, and then the fidelity is of the form

F [ρ, ρτ ] = 1 +
τ2

2

(
d2F [ρ, ρτ ]

dτ2

) ∣∣∣∣
τ=τ ′

(E15)

where the zero order term is 1, the first order term is zero by a direct computation and the second order term is
evaluated at τ ′ ∈ [0, τ ] by Taylor’s remainder (see Theorem 4). Thus we can bound the second derivative as follows.

(
d2F [ρ, ρτ ]

dτ2

) ∣∣∣∣
τ=τ ′

= 2Re
[
Tr
(
ρρτH

2
)]

+ 2Tr(ρHρτH)− 8Tr(Hρτ )Re[Tr(ρρτH)]− 4Tr
(
H2ρτ

)
Tr(ρρτ ) (E16)

+ 8Tr(ρτH)
2
Tr(ρτρ)

⩽ 24λ2max (E17)

where in the inequality is due to (i) Hölder’s inequality, (ii) ∥ρ∥1 = 1 for any pure quantum state ρ, (iii) ∥AB∥p ⩽
∥A∥p∥B∥p. More precisely, we used the following bounds to reach Eq. (E17)

Tr
(
ρρτH

2
)
⩽ ||ρ||1||ρτH2||∞ ⩽ λ2max (E18)

Tr(ρHρτH) ⩽ ||ρ||1||ρτH2||∞ ⩽ λ2max (E19)

Tr(ρρτH) ⩽ ||ρ||1||ρτH||∞ ⩽ λmax (E20)

Tr(Hρτ ) ⩽ λmax (E21)

Tr
(
H2ρτ

)
⩽ λ2max (E22)

Tr(ρτρ) ⩽ 1 (E23)
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Lastly, we can just substitute Eq. (E17) back to Eq. (E15) and obtain

F [ρ, ρτ ] ⩾ 1− 12τ2λ2max , (E24)

which completes the proof.

We now present the formal version of Theorem 4 and provide a detailed proof.

Theorem 4 (Lower-bound on the loss variance for imaginary time evolution, Formal). Assume a product initial state
ρ0 =

⊗n
j=1 ρj with ρj and let us choose σ1 such that Tr[ρ0σ1ρ0σ1] = 0. Given that the Trotter time-step δτ respects

1√
24λmax

⩾ δτ , (E25)

where λmax is the largest eigenvalue of H as well as the perturbation r follows

r2 ⩽
3r20(1− 24λ2maxδτ

2)

2(M − 1)(1− 12λ2maxδτ
2)

, (E26)

with some r0 such that 0 < r0 < 1, then the variance of the loss function within the region V(θ∗, r) is lower bounded
as

Varθ∼D(θ∗,r) [LITE(θ)] ⩾
4r2

45

[
(1− r0)(1− 24λ2maxδτ

2)
]2

. (E27)

In addition, by choosing r such that r ∈ Θ
(

1√
M

)
, then we have

Varθ∼D(θ∗,r) [LITE(θ)] ∈ Ω

(
1

M

)
. (E28)

Proof. First, we note that Proposition 1 in Appendix B also applies for the imaginary time evolution. This is since
all the proof steps in Proposition 1 hold when replacing iδt → δτ and L(θ) → LITE(θ). Hence, this proof starts by
recalling Proposition 1

Varθ∼D(θ∗,r)[LITE(θ)] ⩾ (c+ − k2+) min
ξ̃∈[−1,1]

(
kM−1
+ ∆θ∗ + (1− kM−1

+ )ξ̃
)2
, (E29)

where the quantities in the bound above are

c+ := Eα∼D(0,r)[cos
4 α] , (E30)

k+ := Eα∼D(0,r)[cos
2 α] , (E31)

∆θ∗ := Tr
[
(ρ0 − σ1ρ0σ1)U

† (θ∗) ρ(θ∗,δτ)U (θ∗)
]
, (E32)

ρ(θ∗,δτ) =
1

Z
e−HδτU (θ∗) ρ0U

† (θ∗) e−Hδτ , (E33)

Z = Tr
[
e−HδτU (θ∗) ρ0U

† (θ∗) e−Hδτ
]
. (E34)

with σ1 being the first (non commuting) gate of the ansatz and ρ0 is the initial state.

Importantly, we notice that if the perturbation r is chosen such that the following condition is satisfied

kM−1
+ ∆θ∗ ⩾ (1− kM−1

+ ) (E35)

then ξ̂ = −1 minimises the variance lower bound in Eq. (E29) which leads to

Varθ∼D(θ∗,r)[L(θ)] ⩾ (c+ − k2+)
(
kM−1
+ (∆θ∗ + 1)− 1

)2
, (E36)

Now, we focus now on ∆θ∗ which can be expressed as

∆θ∗ :=Tr
[
(ρ0 − σ1ρ0σ1)U

† (θ∗) ρ(θ∗,δτ)U (θ∗)
]

(E37)

=F (ρ(θ∗,0), ρ(θ∗,δτ))− Tr
[
σ1ρ0σ1U

† (θ∗) ρ(θ∗,δτ)U (θ∗)
]

(E38)
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where we have the fidelity F (ρ(θ∗,0), ρ(θ∗,δτ)) = Tr
(
ρ(θ∗,0)ρ(θ∗,δτ)

)
. Since ρ0 =

⊗n
j=1 ρj is a product state, we can

choose σ1 to be a single rotation around the axis such that Tr[ρ0σ1ρ0σ1] = 0 which also implies

Tr
[
ρ(θ∗,0)U(θ∗)σ1ρ0σ1U

†(θ∗)
]
= Tr [ρ0σ1ρ0σ1] = 0 . (E39)

Then, we define an orthonormal {ϕi := |ϕi⟩⟨ϕi|}2
n

i=1 basis as

ϕ1 = ρ(θ∗,0) , (E40)

ϕ2 = U (θ∗)σ1ρ0σ1U
† (θ∗) , (E41)

and other {ϕi} are necessary orthornormal states to complete the basis. We can upper bound the second term on the
right hand side of Eq. (E37) as

Tr
[
σ1ρ0σ1U

† (θ∗) ρ(θ∗,δτ)U (θ∗)
]
=Tr

(
ϕ2ρ(θ∗,δτ)

)
(E42)

⩽
2n∑
i=2

Tr
(
ϕiρ(θ∗,δτ)

)
(E43)

=Tr
[
(1− ϕ1)ρ(θ∗,δτ)

]
(E44)

=F (ρ(θ∗,0), ρ(θ∗,δτ))− 1 (E45)

where in the inequality we add terms corresponding to other basis which holds because the trace of positive matrices
is positive and in Eq. (E44) we use the fact that

∑
i ϕi = 1.

With this we can lower-bound ∆θ∗ as follows

∆θ∗ ⩾ 2F (ρ(θ∗,0), ρ(θ∗,δτ))− 1 (E46)

⩾ 1− 24λ2maxδτ
2 (E47)

where we have used Lemma 7 in the last inequality. We remark that the bound in Eq. (E47) can be equivalently
expressed as

1

2− 24λ2maxδτ
2
⩾

1

1 + ∆θ∗
. (E48)

Importantly, for this bound to be informative (i.e., non-negative), we require the constrain on δτ as

1√
24λmax

⩾ δτ . (E49)

In this next step, we show how the condition in Eq. (E35) can be fulfilled. We note that the condition can be
equivalently expressed as

kM−1
+ ⩾

1

1 + ∆θ∗
(E50)

We consider the bound of kM−1
+ which follows as

kM−1
+ =

(
1

2r

∫ r

−r
dα cos2(α)

)M−1

(E51)

=

(
1

2
+

sin (2r)

4r

)M−1

(E52)

⩾

(
1− r2

3

)M−1

(E53)

⩾ 1− (M − 1)r2

3
(E54)

> 1− (M − 1)r2

3r20
, (E55)
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where the first inequality is by directly expanding the base and keeping only the second order term, the second
inequality is due to Bernoulli’s inequality and finally the last inequality holds because 0 < r0 < 1.

With this we can see that the condition in Eq. (E50) holds if the right hand side of Eq. (E55) is larger then the left
hand side of Eq. (E48) i.e.,

1− (M − 1)r2

3r20
>

1

2− 24λ2maxδτ
2

⇒ kM−1
+ ⩾

1

1 + ∆θ∗
. (E56)

By rearranging Eq. (E56), we find the bound on the perturbation r as

r2 ⩽
3r20(1− 24λ2maxδτ

2)

2(M − 1)(1− 12λ2maxδτ
2)

(E57)

.
By enforcing the condition of the perturbation in Eq. (E57), the variance can be lower-bounded further from

Eq. (E36) as

Varθ∼D(θ∗,r)[L(θ)] ⩾ (c+ − k2+)
[
kM−1
+ (∆θ∗ + 1)− 1

]2
(E58)

⩾(c+ − k2+)

[(
1− (M − 1)r2

3

)
(2− 24λ2maxδτ

2)− 1

]2
(E59)

⩾ (c+ − k2+)
[
(1− r20)(1− 24λ2maxδτ

2)
]2

(E60)

⩾
4r4

45

[
(1− r20)(1− 24λ2maxδτ

2)
]2

, (E61)

where the second inequality is due to Eq. (E47) and Eq. (E54), the third inequality is by the condition on r in Eq. (E57).

To reach the last inequality, we directly bound c+ − k2+ = 1
2r

∫ r
−r dα cos4(α) −

(
1
2r

∫ r
−r dα cos2(α)

)2
⩾ 4r4

45 − 16r6

315 by

expanding it in the series and keeping the terms which result in the lower bound. This completes the proof.

b. Convexity guarantee: Proof of Theorem 5

We devote this subsection to prove Theorem 5 which shows the convexity of the loss landscape for imaginary time
evolution.

Theorem 5 (Approximate convexity of the landscape for imaginary time evolution, Formal). Given that the dynamic
imaginary time follows

δτ ⩽
µmin + 2|ϵ|
48Mλmax

, (E62)

the loss landscape is ϵ-convex in a hypercube of width 2rc around a previous optimum θ∗ i.e., V(θ∗, rc) such that

rc ⩾
1

M

(
µmin + 2|ϵ|

16M
− 3λmaxδτ

)
(E63)

where µmin is the minimal eigenvalue of the Fisher information matrix associated with the loss.

Proof. We first recall that the region of the loss function is ϵ-convex (i.e., Definition 1) if all eigenvalues of the Hessian
matrix within the region are larger than −|ϵ|, which can be re-expressed in terms of the fidelity as[

∇2
θF
(
U(θ)ρ0U

†(θ), ρ(θ∗,δτ)

)]
max

⩽ |ϵ| , (E64)

for all θ ∈ V(θ∗, r).
By using Taylor’s expansion around θ∗ and Taylor reminder theorem (explained in Appendix A 2), we can write

the fidelity like

F (x) = 1−
∑
i,j

xixj
4

Fij(0) +
∑
i,j,k

xixjxk
6

(
∂3F (x)

∂xi∂xj∂xk

) ∣∣∣∣
x=ν

, (E65)
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where we introduce the shorthand notation of the fidelity around this region as F (x) with x = (θ−θ∗, δτ), Fij(0) are
elements of the Quantum Fisher Information matrix at x = 0, and the last term is the result of the Taylor’s remainder
theorem with ν = cx such that c ∈ [0, 1]. We remark that by this notation of x the imaginary time component is the
last component of x i.e., xM+1 = δτ .

A third order derivative in the last term when taken only with respect to the parameters θ (i.e., no δτ component)
can be expressed as (which is the same fashion as in Eq. (E14) for the real time dynamic case)

∂3F (x)

∂θi∂θj∂θk
=

1

Z
Tr
{
e−δτHU (M,k)i

[
U (k,j)i

[
U (j,i)i

[
U (i,0)ρ0U

(i,0)†, σi
]
U (j,i)†, σj

]
U (k,j)†, σk

]
U (M,k)†e−δτHρ(θ∗,0)

}
,

(E66)

where U(θ) = U (M,k)U (k,j)U (j,i)U (i,0) with U (a,b) =
∏b
l=a+1 e

−ixlσl Ṽl (for b < M + 1).
When the third derivative is taken with respect to the imaginary time in of the components, by direct calculation

we have

∂3F (x)

∂θi∂θj∂τ
= Tr

[
−ρ(θ∗,0) {Bi,j , H}+ 2Tr[HBi,j ]ρ(θ∗,δτ)ρ(θ∗,0) + 2Tr

[
ρ(θ∗,δτ)H

]
Bi,jρ(θ∗,0)

]
(E67)

where we defined Bi,j = ∂2ρ(θ∗,δτ)

∂θi∂θj
which can be written as a nested commutator as

Bi,j =
1

Z
Tr
{
e−τHU (M,k)i

[
U (k,i)i

[
U (i,0)ρ0U

(i,0)†, σi
]
U (j,i)†, σj

]
U (M,j)†e−τHρ(θ∗,0)

}
. (E68)

We note that the other third derivative terms with respect to the imaginary time in more than one components can
be also be expressed in a similar way. However, since they are not important in our analysis, we do not write them
explicitly. Indeed, if we now compute the Hessian matrix of F (x) with respect to the variational parameters θ, all
the terms with higher derivatives in time will be 0.

We now focus on one element of this hessian matrix ∇2
θF (x) (recall that x = (θ − θ∗, τ)). For convenience, we

denote Ai,j,k(x) =
∂3F (x)

∂xi∂xj∂xk
. By direct compuation, we see that

∂2F (x)

∂θi∂θj
= −1

2
Fj,k(0) +

1

6
Ãj,k(ν) (E69)

with

Ãj,k(ν) =
M+1∑
i=1

xi (Aj,k,i(ν) +Aj,i,k(ν) +Ai,j,k(ν) +Ak,j,i(ν) +Ak,i,j(ν) +Ai,k,j(ν)) , (E70)

where we remark that the sum up to M + 1 is because δτ is included in this sum.
Thus, the largest eigenvalue of ∇2

θF (x) can be bounded as follows[
∇2

θF (x)
]
max

⩽ −1

2
[F(0)]min +

1

6
[Ã(ν)]max , (E71)

where we define [A]max as the largest eigenvalue of the matrix A and similarly [A]min is used for the smallest eigenvalue.

Our strategy is to bound [Ã(ν)]max with Proposition 2. To do this, we first consider a bound on Ai,j,k(x). We
consider two cases when (i) the index k represents the parameter component or (ii) the index k represents the time
component. For the first case, we can do the same steps as in the real time dynamics presented in Eq. (C9) to
Eq. (C12), which is repeated here for completeness.

Ai,j,k(ν) ⩽ |Ai,j,k(ν)| (E72)

⩽
∥∥∥e−δτHU (M,k)i

[
U (k,j)i

[
U (j,i)i

[
U (i,0)ρ0U

(i,0)†, σi
]
U (j,i)†, σj

]
U (k,l)†, σk

]
U (M,k)†e−δτH

∥∥∥
∞

∥∥ρ(θ∗,0)

∥∥
1

(E73)

⩽ 23∥σi∥∞∥σj∥∞∥σk∥∞ (E74)

= 8 (E75)

Here the second inequality is due to Hölder’s inequality. In the third inequality we use a few identities including
(i) the one-norm of a pure state is 1, (ii) ∥UA∥p = ∥A∥p for any unitary U , (iii) ∥i[A,B]∥p = 2∥A∥p∥B∥p, (iv)
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∥AB∥p ⩽ ∥A∥p∥B∥p and lastly (v) ∥e−δτH∥∞ < 1. To reach the final equality, we recall that since xl and xm cannot
be a time component δt, σl and σm are generators of the circuit which have ∥σi∥∞ = ∥σj∥∞ = ∥σk∥∞ = 1.

For the second case with the index k representing th time component, we have the following

Ai,j,M+1(x) =Tr
[
−ρ(θ∗,0) {Bi,j , H}+ 2Tr[HBi,j ]ρ(θ∗,δτ)ρ(θ∗,0) + 2Tr

[
ρ(θ∗,δτ)H

]
Bi,jρ(θ∗,0)

]
(E76)

⩽
∣∣Tr [−ρ(θ∗,0) {Bi,j , H}+ 2Tr[HBi,j ]ρ(θ∗,δτ)ρ(θ∗,0) + 2Tr

[
ρ(θ∗,δτ)H

]
Bi,jρ(θ∗,0)

]∣∣ (E77)

⩽
∣∣Tr [−ρ(θ∗,0) {Bi,j , H}

]∣∣+ ∣∣Tr [2Tr[HBi,j ]ρ(θ∗,δτ)ρ(θ∗,0)

]∣∣+ ∣∣Tr [2Tr[ρ(θ∗,δτ)H
]
Bi,jρ(θ∗,0)

]∣∣ (E78)

Now we can bound each individual term in Eq. (E78) with∣∣Tr [−ρ(θ∗,0) {Bi,j , H}
]∣∣ ⩽ 2

∣∣Tr [ρ(θ∗,0)Bi,jH
]∣∣ (E79)∣∣Tr [2Tr[HBi,j ]ρ(θ∗,δτ)ρ(θ∗,0)

]∣∣ ⩽ 2 |Tr[HBi,j ]| (E80)∣∣Tr [2Tr[ρ(θ∗,δτ)H
]
Bi,jρ(θ∗,0)

]∣∣ = 2||H||∞
∣∣Tr [Bi,jρ(θ∗,0)

]∣∣ (E81)

where we are using |Tr
[
ρ(θ∗,δτ)ρ(θ∗,0)

]
| ⩽ 1 in Eq. (E80) and Hölder’s inequality in Eq. (E81). Now, all of the

remaining terms can be bounded using Eq. (C9). Thus we obtain

Ai,j,M+1 ⩽ 24||H||∞ . (E82)

Now, we can bound the sum of the absolute of elements in a row of Ã(ν) as

M∑
j=1

∣∣∣Ãij(ν)
∣∣∣ ⩽ M∑

j=1

M+1∑
k=1

|xk| (|Ai,j,k(ν)|+ |Ai,k,j(ν)|+ |Ak,i,j(ν)|+ |Aj,i,k(ν)|+ |Aj,k,i(ν)|+ |Ak,j,i(ν)|) (E83)

⩽ 48M(3λmaxδτ +Mr) . (E84)

Finally we invoke Proposition 2. Thus, the largest eigenvalue of the matrix Ã, [Ãj,k]max can be bounded by

[Ãj,k]max ⩽ 48M(3λmaxδτ +Mrc) . (E85)

With this result we can guarantee the legion of ϵ-convexity (i.e. Eq. (E64)) by enforcing the following condition

−1

2
[F(0)]min + 8M (3λmaxδτ +Mr) ⩽ |ϵ| . (E86)

Upon rearranging the terms, we find

r ⩽
1

M

(
µmin + 2|ϵ|

16M
− 3λmaxδτ

)
. (E87)

Indeed, this implies that any hypercube V(θ∗, r) such that r satisfies Eq. (E87) is guaranteed to be approximately

convex. Hence, we know that the total ϵ-convex region has to be at least of size 1
M

(
µmin+2|ϵ|

16M − 3λmaxδτ
)
. More

explicitly, by denoting rc to be the length of the total ϵ-approximate convex region V(θ∗, rc), we have

rc ⩾
1

M

(
µmin + 2|ϵ|

16M
− λmaxδτ

)
. (E88)

Finally, we note that the bound is only informative if the Trotter time-step respects

δτ ⩽
µmin + 2|ϵ|
48Mλmax

. (E89)

This completes the proof of the theorem.
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c. Adiabatic moving minima: Proof of Theorem 6

In this subsection, we analytically prove Theorem 6. We first show an equivalent result to Proposition 4 for
imaginary time evolution. We refer the readers to Appendix D for definitions of adiabatic minimum (Definition 2)
and adiabatic shift (Definition 4).

Proposition 5. Given a Trotter time-step of the current iteration δτ and assuming that the adiabatic minimum exists
within this time frame, the shift of the adiabatic minimum αA(δτ) as defined in Definition 4 can be bounded as

∥αA(δτ)∥2 ⩽
4
√
Mλmaxδτ

βA
, (E90)

where M is the number of parameters, λmax is the largest eigenvalue of the dynamic Hamiltonian H and βA =

α̇T
A(δτ)

(
∇2

αL(α,δτ)
∣∣
α=αA(δτ)

)
α̇A(δτ)

∥α̇A(δτ)∥2
2

Proof. The proof here is very similar to the equivalent version for Real Time Evolution. Through out this proof, it is
more convenient to use τ as an imaginary Trotter time-step (instead of δτ). We start by recalling that by Definition
4, the adiabatic shift follows

∇αL(α, τ)
∣∣
α=αA(τ)

= 0 , (E91)

which holds for any τ . Similarly to the previous case, we use this notation ∇αA
L := ∇αL(α, τ)

∣∣
α=αA(τ)

.

We can derivative with respect to τ to find

d

dτ
(∇αA

L) = ∂τ∇αA
L+

(
∇2

αA
L
)
α̇A = 0 , (E92)

where we denote ∂τ = ∂/∂τ and α̇A(τ) = dαA(τ)/dτ .

Recall that ∇2
αA

L is a matrix vector multiplication with the ∇2
αA

L is the Hessian Matrix evaluated at the adiabatic

minima αA(τ). We multiply from the left with α̇TA(τ)/∥α̇A(τ)∥2 to find

α̇TA
∥α̇A∥2

∂τ∇αA
L+

α̇TA
(
∇2

αA
L
)
α̇A

∥α̇A∥22
∥α̇A∥2 = 0 . (E93)

For convenience, we denote βA := α̇TA
(
∇2

αA
L
)
α̇A/∥α̇A∥22. We then rearrange the terms to find a bound on the

norm of α̇A(τ):

∥α̇A(τ)∥2 =

∥∥∥∥− α̇TA∂τ∇αA
L

∥α̇A∥2βA

∥∥∥∥
2

(E94)

⩽
∥∂τ∇αA

L∥2
βA

(E95)

⩽

√
M
∣∣∣∂τ∂α(i)

A

L
∣∣∣
max

βA
(E96)

⩽
4
√
Mλmax

βA
, (E97)

where in the first inequality we use Cauchy-Schwartz. In the second we expand the 2-norm explicitly and take the

largest value of the sum (i.e. ∥a∥2 =
√∑M

i=1 a
2
i ⩽

√
M |ai|max with α

(i)
A being the ith component of αA).

To reach the last inequality we use the explicit form of the loss function L(α, τ) = 1 − Tr
(
e−Hτρθ∗eHτρθ

)
where

H is the dynamical Hamiltonian, ρθ∗ is the state corresponding to the solution of the previous iteration and ρθ is
the parameterised state that depends on α and respect a parameter shift rule. With this, we can bound the term
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36∣∣∣∂τ∂α(i)
A

L
∣∣∣
max

as follows

∣∣∣∂τ∂α(i)
A

L
∣∣∣
max

=

∣∣∣∣∣ ∂∂τ
(

∂

∂α(i)
L(α, τ)

) ∣∣∣∣
α=αA(τ)

∣∣∣∣∣
max

(E98)

=

∣∣∣∣12
(
∂

∂τ
L
(
αA +

π

2
α̂i

)
− ∂

∂τ
L
(
αA − π

2
α̂i

))∣∣∣∣
max

(E99)

⩽ max
i

∣∣∣∣ ∂∂τ L(αA ± π

2
α̂i

)∣∣∣∣ (E100)

=
∥∥e−Hτ (−{ρθ∗ , H}+ 2Tr[ρθ∗H]ρθ∗) e−τH

∥∥
∞ (E101)

⩽ 4λmax , (E102)

where we use the parameter shift rule in the second equality. In the first inequality we we maximise on all the possible
terms of this parameter shift rule, and in the third equality we apply the derivative of imaginary time shown in E14,
apply Hölder’s inequality and use that ∥ρ∥1 = 1 for any pure quantum state ρ. In the last inequality we simply use
the triangle inequality to bound the ∥A+B∥p ⩽ ∥A∥p + ∥B∥p.

Lastly, we can bound shift in the adiabatic minima as follows

∥αA(τ)∥2 =

∥∥∥∥∫ τ

0

α̇A(τ
′)dτ ′

∥∥∥∥
2

(E103)

⩽
∫ τ

0

∥α̇A(τ ′)∥2dτ ′ (E104)

⩽
4
√
Mλmaxτ

βA
, (E105)

which completes the proof.

We are now ready to prove Theorem 6 which is detailed in the following.

Theorem 6 (Adiabatic minimum is within provably ‘nice’ region for imaginary time evolution, Formal). If the
imaginary time-step δτ is chosen such that

δτ ⩽
η0βA

4Mλmax
, (E106)

for some small constant ð0. then the adiabatic minimum θA(δτ) is guaranteed to be within the non-vanishing gradient
region (as per Theorem 4), and additionally, if δτ is chosen such that

δτ leq
βA(µmin + 2|ϵ|)

64M5/2λmax

(
1 + 3βA

4M3/2

) , (E107)

then the adiabatic minimum θA(δτ) is guaranteed to be within the |ϵ|-convex region (as per Theorem 5) where

βA :=
θ̇TA(δτ)

(
∇2

θLITE(θ)
∣∣
θ=θA(δτ)

)
θ̇A(δτ)

∥θ̇A(δτ)∥22
(E108)

corresponds to the second derivative of the loss in the direction in which the adiabatic minimum moves.

Proof. From Proposition 5 and the norm inequality, the adiabatic minimum follows

∥αA(δτ)∥∞ ⩽ ∥αA(δτ)∥2 ⩽
4
√
Mλmaxδτ

βA
. (E109)

Now we want to incorporate the conditions of the region that we are interested. Indeed, by tuning δτ , we want
a guarantee that the adiabatic minimum is within (i) the region with substantial gradients and/or (ii) the convex
region.
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For (i) the region with substantial gradients, we recall from Theorem 4 that for the imaginary time scaling as

δτ ⩽ 1/12λmax, the hypercube of width 2r has polynomial large variance within the region where r scales as

r =
η0√
M

, (E110)

for some constant η0. Hence, the sufficient condition to have the adiabatic minimum to be within this substantial
gradient region is that

∥αA(δτ)∥∞ ⩽
4
√
Mλmaxδτ

βA
⩽

η0√
M

, (E111)

which, upon rearranging leads to

δτ ⩽
η0βA

4Mλmax
. (E112)

For (ii) the convex region, from Theorem 5, if we have the dynamic time bounded as δτ ⩽ µmin+2|ϵ|
48Mλmax

, we have
ϵ-convexity in the hypercube of with 2rc for

rc ⩾
1

M

(
µmin + 2|ϵ|

16M
− 3λmaxδτ

)
(E113)

Therefore it is sufficient to have the guarantee that the adiabatic minima is inside this convex region by imposing

∥αA(t)∥∞ ⩽
4
√
Mλmaxδτ

βA
⩽

1

M

(
µmin + 2|ϵ|

16M
− 3λmaxδτ

)
⩽ rc (E114)

which after rearranging terms the imaginary time-step is bounded by

δτ ⩽
βA(µmin + 2|ϵ|)

64M5/2λmax

(
1 + 3βA

4M3/2

) . (E115)

This completes the proof.
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Abstract. Application of Wigner function to classically simulate the quantum circuit out of Clifford
circuit regime has a limitation in qubit system due to negativity occurence by Clifford gates. We present a
novel classical simulation method for qubit Clifford circuits based on the framed Wigner function. Here, a
wide class of non-stabilizer states can be positively represented. Also, we prevent the negativity occurence
after the Clifford operation by switching the frame defining the structure of Wigner function. From this
formalism, we set a systematic algorithm to find the efficiently simulatable marginal measurements, hence
extending the classically simulatable region of circuits in qubit system.

Keywords: Classical simulation of quantum circuit, Clifford circuit and stabilizer states, Gottesmann-
Knill theorem, Discrete Wigner function, Vertex cover problem.

1 Introduction

Quantum algorithms, which are algorithms based on
quantum mechanical principles, have been shown to out-
perform the classical algorithms for many computational
tasks [1, 2]. However, not all quantum algorithms show
such computational speed up over its classical counter-
parts. One typical example is Clifford circuits [3]: cir-
cuits consist of an input state in the computational basis
and Clifford gates, resulting in a stabilizer state as an
ouput. By the Gottesmann-Knill theorem [3], we can
classically simulate an n-qubit Clifford circuit in O(n3)-
time. The theorem necessitates [4] the usage of non-
stabilizer states to achieve effective speed up over clas-
sical computer. However, classifying simulatable circuits
even out of Clifford circuit regime has been important
task to demonstrate the classical hardness of near-term
quantum computing [5, 6, 7, 8].
In odd-prime dimensional system, one of the represen-

tative methods to extend the classical simulability of non-
Clifford circuits is to utilize the Wigner function [9, 10].
Here, we use the Wigner function of discretized struc-
ture of phase space operator, alternative to original ver-
sion of inifinite dimensional system. It enables some non-
stabilizer mixed states to be positively represented and
positivity of Wigner function of given state is not harmed
under Clifford operations and Pauli measurements. Then
we can make a classical simulation scheme based on such
a stochastic representation of dynamics in the circuit.
Therefore, the Wigner formalism extends the region of
simulatable circuits over the realm of Gottesmann-Knill
theorem.
These interesting facts lead us to apply such for-

malism to qubit (even dimensional) system. Further-
more, there exist non-stabilizer pure states with positive
Wigner function [12]. However, similar classical simu-
lation scheme is no longer valid due to its another ex-
otic features. That is, Clifford operations can induce

∗rbeh7336@snu.ac.kr
†hjkwon@kias.re.kr
‡jeongh@snu.ac.kr

negativity in the Wigner function which prohibits the
classical simulation of most qubit Clifford circuits. Al-
though there have been many efforts to circumvent such
problems [13, 14, 15, 16], these approaches have their
own limitations. For example, the positive representa-
tion of non-stabilizer is unknown [13, 14, 15] or phase
point of given state cannot be sampled or updated ef-
ficiently under Clifford operations and Pauli measure-
ments [16, 15, 17]. Therefore, finding suitable structure
of qubit Wigner formalism which includes from the sim-
ulability of Clifford circuits to non-Clifford cases is still
under open questions.

In this paper [18], we propose a new efficient classical
simulation algorithm for unitary Clifford circuits with
non-stabilizer inputs based on the qubit Wigner func-
tion. To do so, we introduce a generalized notion of
the Wigner function, parametrized by a family of frame
functions. Our strategy is that under the following Clif-
ford operation, we properly switch the frame defining the
Wigner function to make an enacted state with positive
Wigner function still preserve the positivity. From this,
given that we efficiently sample the phase point from the
Wigner function of an initial state, we have a determin-
istic update rule of phase point under Clifford operation.
Negativity which was circumvented during the intermedi-
ate Clifford operation will be transferred to the measure-
ment parts. Even if so, efficiently measurable qubits can
be found by the solving vertex cover problem to the graph
representation of the final frame. For log-depth random
Clifford circuits with nonstabilizer inputs, we find that
the number of simulatable qubits scales linearly with n
for a 1D architecture, while observing a phase transition
in its scaling for a completely connected architecture.

2 Main results

We consider n-qubit system. First, we define the
framed Wigner function,

WF
ρ (u) ≡ 1

2n
Tr

[
ρAF (u)

]
. (1)
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Figure 1: Hypergraph representation of frame chang-
ing. For example, the initial frame Fin(a) = a1z +
a1xa2z + a1xa2xa2z + a1xa1za2x transforms to F (a) =
a1z + a1xa1z + a1xa2x + a1xa2z + a1xa2xa2z + a1xa1za2x
after the phase gate on the first qubit. Vertices connected
by hyperedges comprise variables forming a single term
in frame. A← B denotes that A is replaced by B.

Here u ∈ Z2n
2 , and the phase space operator AF (u) is

defined as

AF (u) ≡ 1

2n

∑
a∈Z2n

2

(−1)[u,a]+F (a)Ta, (2)

where a = (ax,az) and Ta ≡
⊗n

j=1 i
ajxajzX

ajx

j Z
ajz

j Also,
[u,a] = ux · az + uz · ax is a 2n-dimensional symplec-
tic inner product. The structure of the Wigner function
is parametrized as a frame function F (a) : Z2n

2 → Z2

satisfying F (0) = 0. From the completeness relation
Tr

[
AF (u)AF (v)

]
= 2nδu,v, a quantum state can be ex-

pressed as

ρ =
∑

u∈Z2n
2

WF
ρ (u)AF (u). (3)

If WF
ρ (u) ≥ 0 for ∀u ∈ Z2n

2 , we say ρ is positively repre-
sented under the frame F .

Given that ρ is positively represented under the frame
Fin, let us enact the Clifford unitary U ∈ Cln. If we
fix the frame after the operation, the Wigner function
WFin

UρU†(u) may have negativity. However, there exists
a frame changing rule depending on U such that if we
change the frame Fin to F , then we can preserve the
positivity of evolved state. Then the update of Wigner
function has a similar form with odd-prime dimensional
case, i.e. there exists k ∈ Z2n

2 and 2n by 2n binary
symplectic matrix S corresponding to U such that

WF
UρU†(S(u+ k)) = WFin

ρ (u), (4)

except that the frame is changed. Both S and k can be
found efficiently. Furthermore, we can change the frame
under the each of the Clifford bases {H, S, CNOT} (see
Fig. 1). From the fact that all Clifford operation can be
decomposed with this basis, we can find up to 3rd-degree
resulting frame, which positively represent UρU†, in
poly(n)-time and O(n3)-memory. For example, it is well

Figure 2: Identifying efficiently simulatable qubits by
solving the vertex cover problem using a greedy algo-
rithm. Lines and shaded regions represent the quadratic
and cubic terms in the final frame function F (0,az) =
a1za4za7z+a2za3za5z+a1za4z+a4za5z+a5za7z+a1za2z+
a2za6z+a3za6z+a6za7z. A qubit with the largest number
of connected hyperedges is traced out at each step until
all the edges vanishes. The outcomes of the remaining
qubits are efficiently simulatable.

known that 2-qubit computational basis |00⟩ ⟨00| is posi-
tively represented under the zero frame Fin = 0 and that
if we enact Hadamard gate and CNOT gate to make a
Bell state |Φ⟩ ⟨Φ| with |Φ⟩ = 1/

√
2 |00⟩+1/

√
2 |11⟩, then

it has negativity with respect to zero frame. However,
the Bell state can be positively represented under the
non-local frame F (a) = a1xa1z + a1za2za1x + a2za1xa2x
(mod 2). From now on, we assume the final frame F has
zero linear term since we can show that non-zero linear
term can always be absorbed into k.

Another point is that there exists set of non-stabilizer
states which can be positively represented under the
specified frame functions. For example, n-copies of F-
state, |A⟩ ≡ cos(θ/2) |0⟩ + ei(π/4) sin(θ/2) |1⟩ with θ =
cos−1(1/

√
3) is positively represented under the zero

frame. Also, non-stabilizer state which can be formed
by arbitrary Clifford operation to such F-copies can be
positively represented under the another frame, which
can be found by the frame chaning rule.

Moreover, from the final frame after the Clifford oper-
ation, we can select the marginal qubits whose Z-basis
Pauli measurements can be exactly and efficiently sim-
ulated. We summarize aforementioned arguments as a
following theorem.

Theorem 1. Suppose an n-qubit quantum circuit com-
posed of a product state input ρ =

⊗n
i=1 ρi and a Clif-

ford unitary U . If each ρi is positively represented in
either zero or dual frame (F = aixaiz), the final state
UρU† is positively represented within O(n3)-memory and
O(poly(n))-time costs. From this, one can sample the
measurement outcomes of some marginal qubits in the
computational basis within O(n2)-time cost, where these
marginal qubits are determined by the frame F .

The simulatable marginal qubits can be found from the
graph representation of the final frame with ax = 0, i.e.
F (0,az). Since the final frame has at most 3rd-degree, we
can represent F (0,az) as 3rd-ordered hypergraph where
vertices and lines indicate each variable and quadratic
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Figure 3: (a), (c): Comparison between sampling results
using the framed Wigner function and Qiskit Aer simu-
lator for a randomly chosen 10-qubit log-depth Clifford
circuit with (a) 1D-neighboring and (c) completely con-
nected architecture. For both cases, nonstabilizer input
state |A⟩ ⟨A|⊗10

is taken, and 6 marginal qubits are se-
lected after solving the vertex cover problem. The y-axis
shows the number of counts of binary string that simu-
lators sampled by taking a total of 20000 samples. (b),
(d): The averaged number of simulatable qubits (nsim)
by increasing the gate count L = α(n lnn) of 1000 ran-
dom Clifford circuits with (b) 1D-neighboring and (d)
completely connected architectures. (e) Scaling behavior
of nsim by increasing α and data collapse after finite-size
scaling.

term of frame function respectively, also 3rd-hyperedges
describe cubic terms. If we trace the i-th (i ∈ [n]) qubit,
then we eliminate all edges containing aiz vertex. Re-
peating several times, when the resulting graph exhausts
all hyperedges (including lines), then remaining qubits
can be measured efficiently. Vertex cover problem is the
problem to find the minimal vertices to trace out so that
after above elimination routine, no edges are left. Such
problem is directly related to finding the largest simulat-
able qubits, but is known to be NP-Hard [19]. However,
we can approximately solve it by using the greedy algo-
rithm [20] where for each repetition, we select the vertex
which has the largest number of connecting edges. See
the Fig. 2 for the schematic illustration of finding the
simulatable marginals via the greedy algorithm.

3 Numerical simulations

We apply the proposed simulation algorithm to two
different types of random n-qubit log-depth Clifford cir-
cuits, with 1D-neighboring and arbitrary long-range in-

teractions (completely connected) between two qubits,
where gate count is L = αn ln(n). In both cases, we take
the input state ρ = |A⟩ ⟨A|⊗n

, and adopt the greedy al-
gorithm to find efficiently simulatable marginal qubits.
Figure 3(a,c) shows that our simulation method success-
fully samples the measurement outcomes.

Figure 3(b) shows that for 1D architecture, the aver-
age number of classically simulatable qubits (nsim) in-
creases linearly by n. This result can be compared to
the tensor network simulation, where all the n-qubit
outcomes of these circuits can be efficiently simulated
with eO(α lnn) ∼ nO(α) time cost [21, 22]. In contrast,
our algorithm simulates a linear portion of qubits with
O(αpoly(n)) time cost, including both finding the final
frame F and solving its vertex cover problem. Therefore,
our approach offers faster simulation when the α becomes
large. We also observed remarkable improvement com-
pared to the matrix product state simulator of the IBM
Qiskit [23]. For the completely connected architecture,
see Fig. 3 (d) and (e), we observed a sharp transition of
nsim depending on the gate count. From the finite sized
scaling analysis, we checked such a transition occurred at
the critical point αc ≃ 0.81. Even in this case, our simula-
tor shows effective extension of simulatable region, given
that efficient and exact classical simulability of even the
constant-depth 2-D circuit is still not known [21].
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The Wigner function formalism has played a pivotal role in examining the non-classical aspects of
quantum states and their classical simulatability. Nevertheless, its application in qubit systems faces
limitations due to negativity induced by Clifford gates. In this work, we propose a novel classical
simulation method for qubit Clifford circuits based on the framed Wigner function, an extended form
of the Wigner function with an additional phase degree of freedom. In our framework, Clifford gates
do not induce negativity by switching to a suitable frame; thereby, a wide class of nonstabilizer states
can be represented positively. By leveraging this technique, we show that some marginal outcomes
of Clifford circuits with nonstabilizer state inputs can be efficiently sampled at polynomial time and
memory costs. We develop a graph-theoretical approach to identify classically simulatable marginal
outcomes and apply it to log-depth random Clifford circuits. We also present the outcome probability
estimation scheme using the framed Wigner function and discuss its precision. Our approach opens
new avenues for utilizing quasi-probabilities to explore classically simulatable quantum circuits.

Applying quantum mechanical principles to computer
science has led to the discovery of quantum algorithms
[1, 2]. However, not every quantum algorithm manifests
exponential speedup over classical algorithms as some
quantum circuits can be efficiently simulated classically
[3–5]. The best-known class of such quantum circuits is
defined by the Gottesman-Knill theorem [3, 6]; circuits
consist of an input state in the computational basis and
Clifford gates, resulting in a stabilizer state as an output.
While the theorem identifies necessary elements for
universal quantum computation [7, 8], understanding the
hardness of a more restrictive family of experimentally
feasible quantum circuits, such as instantaneous quantum
polynomial circuits [9], quantum random circuits [10],
and unitary Clifford circuits with nonstabilizer inputs [5,
11, 12], also plays an important role in the near-term
demonstration of quantum computational advantage.

Meanwhile, in a physics-oriented direction, the
classical simulatability of quantum circuits has been
studied based on the Wigner function [13], which
describes quantum phase space. In quantum optics,
Gaussian states are the only pure states with a
positive Wigner function [14], and Gaussian operations
preserve the positivity of the Wigner function. A
remarkable similarity can be found in discrete variable
quantum phase space with odd-prime dimensions
[15], where stabilizer states and Clifford operations
correspond to Gaussian states and Gaussian operations,
respectively. This common feature enables the unified
construction [16] of a classical simulation method for
both discrete [17] and continuous [18, 19] variable
quantum circuits with positive Wigner functions.
Moreover, these approaches open up the possibility to
simulate nonstabilizer mixed states with positive Wigner
functions [17].

For a qubit system, however, classical simulation based
on the Wigner function formalism is no longer applicable

due to its exotic features [20–22]. A crucial problem
arises as Clifford operations can induce negativity in the
Wigner function [20, 23], which prohibits the classical
simulation of most qubit Clifford circuits. Despite
considerable efforts to address this problem [20, 22, 24,
25], these approaches have their own limitations. For
example, the positive representation of the nonstabilizer
state may not be fully identified [20, 24] or phase space
points may not be efficiently sampled and tracked [22,
24, 25]. Thus, constructing a qubit Wigner function
formalism that behaves well under Clifford operations
and developing classical simulation algorithms based on
it remain open problems.

In this Letter, we propose an efficient classical
simulation algorithm for unitary Clifford circuits with
nonstabilizer inputs based on the qubit Wigner function
formalism. To this end, we adopt a generalized notion of
the Wigner function parameterized by a family of frame
functions [21–23], while actively utilizing its non-local
form. Our key observation is that phase space points
transform covariantly under qubit Clifford gates without
inducing negativity when the frame is appropriately
switched. This leads to the qubit Wigner function
formalism consistent with the Gottesman-Knill theorem
for simulating stabilizer states and significantly extends
the classically simulatable regime of Clifford circuits with
nonstabilizer inputs, allowing for efficient sampling of
their marginal outcomes. We show that the efficiently
simulatable marginal outcomes can be identified by
solving the vertex cover problem [26] in graph theory.
For log-depth random Clifford circuits, we find that the
number of simulatable qubits scales linearly with n for a
1D architecture, while observing a phase transition in its
scaling for a completely connected architecture. We also
discuss the precision of probability estimation [23, 27]
using our approach.

Simulating quantum circuits in phase space.—Suppose
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a quantum circuit, consisting of initial state ρ,
unitary evolution U , and measurement operators {Πx}
with outcomes x. One way to classically simulate
the outcomes x following the probabilities p(x) =
Tr[UρU†Πx] is by representing quantum states in phase
space [16, 17, 27]. This can be done by mapping a
quantum state to a distribution in phase space V as
ρ =

∑
u∈V Wρ(u)A(u), where A(u) are phase space

operators composing an operator basis. The outcome
probability is then represented as

p(x) =
∑

u∈V
WUρU†(u)P (x|u), (1)

where P (x|u) ≡ Tr[A(u)Πx]. The phase space
distribution Wρ(u) is well-normalized but can have
negative values, in general, often referred to as quasi-
probability [13]. Nevertheless, some quantum circuits
may have both positive WUρU†(u) and P (x|u). In
this case, the outcomes x can be classically simulated
by sampling the phase space point u from WUρU†(u),
followed by sampling x from the conditional probability
distribution P (x|u) [16].

The canonical form of phase space for an n-
qubit system is given by a 2n × 2n lattice, u =
(ux,uz) = (u1x, u2x, · · · , unx, u1z, u2z, · · · , unz) ∈ Vn =
Zn2 × Zn2 , where the phase space operator A(u) ≡
1
2n

∑
a∈Vn

(−1)[u,a]Ta is constructed from the Weyl

operator Ta ≡
⊗n

i=1 i
aixaizXaixZaiz . Here, [u,a] ≡

ux · az + uz · ax is a symplectic inner product and
X and Z are Pauli operators corresponding to shift
and boost operations in phase space, respectively.
This leads to the discrete Wigner function defined
as Wρ(u) ≡ 1

2n Tr(ρA(u)) [21, 23, 27], which shares
common properties with the continuous-variable Wigner
function [13, 21]: (i) it is real-valued and well-normalized,∑

u∈Vn
Wρ(u) = 1; (ii) it is covariant under translation,

WTaρT
†
a
(u) = Wρ(u + a); and (iii) its marginals indicate

correct outcome probabilities.

On the other hand, the qubit Wigner function
has exotic properties compared with the odd prime
dimensional or continuous variable Wigner function [16,
17] that Clifford operations can induce negativity [21].
For example, a two-qubit state |00〉 in the computational
basis state has a positive Wigner function, but after
applying the Hadamard and CNOT gates, the resulting

Bell state |Φ〉 = |00〉+|11〉√
2

has a negative Wigner function.

This strongly limits the range of classically simulatable
quantum circuits using qubit Wigner functions [28].

Efficient classical simulation via framed Wigner
functions— To circumvent this problem, we introduce
an additional degree of freedom to the qubit Wigner
function [21–23]. We define a framed Wigner function

WF
ρ (u) ≡ 1

2n
Tr
[
ρAF (u)

]
, (2)

Clifford
Unitary

𝑈

𝜌!
𝜌"
𝜌#

𝜌$
……

……
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measured
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<latexit sha1_base64="n0ZcvA3eXuEx3lG8IHzYg+bkbfA="></latexit>

WFin
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nY

i=1

WFi
⇢i

(ui) � 0
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WF
U⇢U†(u) = WFin

⇢ (S�1(u)) � 0
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PF (x|u) � 0

FIG. 1: Condition for efficient classical simulation of a Clifford
circuit with a nonstabilizer input using the framed Wigner
function.

using a frame function F that characterizes an additional
phase factor of phase space operators,

AF (u) ≡ 1

2n

∑

a∈Vn

(−1)[u,a]+F (a)Ta. (3)

The frame function maps a phase space point to a binary
value, i.e., F (a) ∈ {0, 1} for a ∈ Vn, and satisfies the
condition F (0) = 0 to ensure thatWF

ρ is well-normalized.
For example, a single qubit has two choices of frames,
F (ax, az) = 0 (zero frame) or F (ax, az) = axax (dual
frame), up to translation symmetry under T(ax,az) [21].
The framed Wigner function also respects some other
properties of the conventional Wigner function, a special
case with F (a) = 0, such as covariance under translation
and having a proper notion of marginals [15, 21, 29].

In terms of the framed Wigner function, the
probability in Eq. (1) can be rewritten as

p(x) =
∑

u∈Vn

WF
UρU†(u)PF (x|u), (4)

where PF (x|u) ≡ Tr[AF (u)Πx]. Consequently, the
circuit is classically simulatable when both WF

UρU†(u)

and PF (x|u) are positively represented. Our main result
states that the additional degree of freedom given by the
frame function (or simply frame) leads to a wider class of
efficiently simulatable quantum circuits (see also Fig. 1):

Theorem 1. Suppose an n-qubit quantum circuit
composed of a product state input ρ =

⊗n
i=1 ρi and a

Clifford unitary U . If each ρi is positively represented
in either zero or dual frame, the final state UρU†

is positively represented in a frame F , which can be
evaluated from the initial frame with O(n3)-memory and
O(poly(n))-time costs. From this, one can sample the
measurement outcomes of some marginal qubits in the
computational basis within O(n2)-time cost, where these
marginal qubits are determined by the frame F .

We highlight that pure nonstabilizer input states,
such as |A〉 = cos(θ/2) |0〉 + ei(π/4) sin(θ/2) |1〉 with
θ = cos−1(1/

√
3) [30], as well as their multiple copies
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|A〉⊗m can be positively represented by the framed
Wigner function [21]. This can be compared to Ref. [22]
utilizing a different phase space structure, wherein
multi-copy nonstabilizer states are not always positively
represented. While any quantum circuit can have a
positive representation [24], it does not necessarily imply
efficient classical simulation. In contrast, we explicitly
construct a classical simulation algorithm that is efficient
in both time and memory costs.

Compared to the classical simulation algorithm in
Ref. [11], our algorithm covers some high Pauli-rank
input states, such as |A〉. Moreover, our method
provides an exact simulation, whereas Ref. [11] focuses on
approximate simulation whose time cost depends on the
accuracy. Hence, our results significantly extend a family
of classically simulatable quantum circuits, despite their
general hardness [5, 12].

The key idea of our algorithm is to defer the negativity
induced by Clifford gates, enabling the phase point
update until the measurement, summarized as follows:

Observation 1 (Clifford covariance under frame
switching). For any Clifford gate U and input frame
Fin, one can always find a frame F , a symplectic
transform S, and v ∈ Vn such that WF

UρU†(S(u) +

v) = WFin
ρ (u). Consequently, when an input state ρ is

positively represented, i.e., WFin
ρ (u) ≥ 0, the output state

can also be positively represented, i.e., WF
UρU†(u) ≥ 0.

While this stems from the fact that a Clifford gate
transforms any Pauli operator to another Pauli operator
up to the phase factor [6], a detailed form of F and S
can be found in the Supplementary Material [31]. For
example, the Bell state |Φ〉, which exhibits negativity
in the conventional Wigner function, can be positively
represented under the frame F (a) = a1xa1z+a1za2za1x+
a2za1xa2x (mod 2). This observation can be applied to
all stabilizer states and a wide class of nonstabilizer
states generated from Clifford circuits. Compared to
the case of a fixed framed function with adaptive Pauli
measurements, where single-qubit operations are the only
operations that preserve the positivity of the Wigner
function [21], our result shows that positivity is preserved
for any unitary, i.e., non-adaptive, Clifford operations by
switching the frame.

We sketch the classical simulation algorithm described
in Theorem 1, starting from the phase space point
sampling. The framed Wigner function of a product
input state ρ =

⊗n
i=1 ρi is written as WFin

ρ (u) =∏n
i=1W

Fi
ρi (uix, uiz) with Fin(a) =

∑n
i=1 Fi(aix, aiz),

where Fi can be either zero or dual frame. Hence,
when WFi

ρi is positive for every i = 1, · · · , n, the
phase space point of the final state following the
distribution WF

UρU†(u) = WFin
ρ (S−1(u)) can be sampled

by i) sampling (uix, uiz) from each WFi
ρi (uix, uiz),

and then ii) applying the symplectic transform S to

(u1x, · · · , unx, u1z, · · · , unz) followed by adding v from
Observation 1, which overall takes O(n2)-time.

On the other hand, the positive Wigner function
does not suffice for efficient classical simulation of the
quantum circuit. One issue is that a frame function
F (a) may contain the high-degree monomials in a,
such as

∏n
i=1 aixaiz. This gives rise to an exploding

number of possible frame choices (2(2
2n−2n−1)) [32],

requiring exponential memory cost. For Clifford circuits
with product state inputs, however, we show that the
frame functions with polynomials of degree 3, i.e.,
cubic, are sufficient to run the proposed protocol. In
other words, the frame can be written in the form,
F (a) =

∑
µ,ν cµνaµaν +

∑
µ,ν,ω cµνωaµaνaω (mod 2),

where µ, ν, ω ∈ {1x, . . . , nx, 1z, . . . , nz} and cµν , cµνω ∈
{0, 1}. This is because any frame function for each
ith input qubit is either 0 or aixaiz, and every frame
transformation under a Clifford gate adds up to cubic
terms [31]. We also note that linear terms can always
be absorbed in the translation under Ta [21]. Thus, the

possible number of frames is reduced into 2O(n3), which
can be efficiently manipulated with a O(n3) bit memory.

For a given phase space point u, the outcomes x can
be classically sampled under the condition PF (x|u) ≥
0. A sufficient condition for efficient sampling of
the n-qubit computational basis measurement Πx =
|x〉 〈x| with x = (x1, · · · , xn) ∈ Zn2 can be found as
F (0x,az) = 0, which leads to PF (x|u) = 〈x|AF (u) |x〉 =
(1/2n)

∑
az∈Zn

2
(−1)(ux+x)·az+F (0x,az) = δx,ux by noting

that 〈x|Ta |x〉 = δax,0x(−1)x·az . This directly leads to
the outcome sampling of x = ux from the given phase
space point u. Remarkably, any Clifford circuit with
a stabilizer input always has positive representation in
a frame F obeying this condition so that all the n-
qubit outcomes can be efficiently simulated for stabilizer
states, reproducing the result of the Gottesman-Knill
theorem [31].

For nonstabilizer inputs, however, it is uncommon to
obtain a frame F with the condition F (0x,az) = 0.
Nevertheless, an efficient classical simulation of some
marginal outcomes is still possible. We note that after
tracing out the jth qubit, the phase space operator
of the remaining qubits is given by Trj [A

F (u)] =

AF
′
(u′) with u′ = (u′x,u

′
z) ∈ Vn−1 with u′λ =

(u1λ, · · · , u(j−1)λ, u(j+1)λ, · · · , unλ) for λ = x, z and
F ′(a′) = F (a)|ajx=ajz=0 with a′ ∈ Vn−1 similarly defined
as u′. Hence, all the monomials containing ajx or ajz
are removed in the reduced frame F ′. We repeat this
step for (n − k) times until the reduced frame of the
remaining k-qubits satisfies F ′(0′x,a

′
z) = 0. Therefore,

the measurement outcomes x′ = (x′1, · · · , x′k) ∈ Zk2 on
the remaining k-marginal qubits Πx′ = |x′〉M 〈x′| ⊗
1T can be efficiently sampled from u as PF (x′|u) =
Tr[AF (u)Πx′ ] = 〈x′|AF ′

(u′)|x′〉 = δx′,u′
x
, where M and

T represent the Hilbert space of the measured and traced-
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FIG. 2: Identifying efficiently simulatable qubits by solving
the vertex cover problem using a greedy algorithm. Lines
and shaded regions represent the hyperedges of E2, and E3,
respectively. A qubit with the largest number of connected
hyperedges is traced out at each step until all the hyperedges
vanishes. The outcomes of the remaining qubits are efficiently
simulatable.

out qubits, respectively.

Furthermore, finding efficiently simulatable marginal
qubits can be translated into a graph problem by
taking V = {a1z, · · · , anz} as vertices and by expressing
F (0x,az) =

∑
(i,j)∈E2 aizajz +

∑
(i,j,k)∈E3 aizajzakz

(mod 2) as hyperedges E2 and E3 connecting two and
three vertices, respectively. We note that tracing out
the jth qubit (taking ajz = 0) corresponds to removing
the vertex ajz along with all hyperedges connected
to it. Hence, removing vertices that fully cover the
hyperedges leads to the remaining k-qubits satisfying
F ′(0′x,a

′
z) = 0. While finding the minimum number

of such vertices, so-called the vertex cover problem, is
an NP-hard problem [33], there exists a sub-optimal
algorithm, for example, a greedy algorithm [26] running
in poly-time (see Fig. 2).

Examples.—We apply the proposed simulation
algorithm to two different types of random n-qubit
log-depth Clifford circuits with 1D-neighboring and
arbitrary long-range (completely connected) interactions
between two qubits, where gate count is L = αn ln(n)
(see Refs. [31, 34] for more details). In both cases,
we take the input state ρ = |A〉 〈A|⊗n and adopt the
greedy algorithm to find efficiently simulatable marginal
qubits. As the circuit depth increases, the hypergraph of
the final frame becomes more complicated, requiring a
larger number of vertices (qubits) to be removed (traced
out) [31]. Figure 3(a,c) shows that our simulation
method successfully samples the measurement outcomes.

Figure 3(b) shows that for 1D architecture, the
average number of classically simulatable qubits (nsim)
increases linearly by n. This result can be compared
to the tensor network simulation, where all the n-qubit
outcomes of these circuits can be efficiently simulated
with eO(α lnn) ∼ nO(α) time cost [35, 36]. In contrast,
our algorithm simulates a linear portion of qubits with
O(αpoly(n)) time cost, including both evaluating the
final frame F and solving its vertex cover problem [31].

FIG. 3: (a), (c): Comparison between sampling results using
the framed Wigner function and Qiskit Aer simulator for a
randomly chosen 10-qubit log-depth Clifford circuit with (a)
1D-neighboring and (c) completely connected architecture.
For both cases, nonstabilizer input state |A〉 〈A|⊗10 is taken,
and 6 marginal qubits are selected after solving the vertex
cover problem. The y-axis shows the number of counts of
binary string that simulators sampled by taking a total of
20000 samples. (b), (d): The averaged number of simulatable
qubits (nsim) by increasing the gate count L = α(n lnn) of
1000 random Clifford circuits with (b) 1D-neighboring and (d)
completely connected architectures. (e) Scaling behavior of
nsim by increasing α and data collapse after finite-size scaling.

Therefore, for the selected marginal outcomes, our
approach offers a faster simulation than the tensor
network method when the circuit depth α becomes large.
From the numerical simulation, we observe remarkable
improvement compared to the matrix product state
simulator of the IBM Qiskit [31].

For the completely connected architecture, we observe
a sharp transition of nsim depending on the gate count.
For α ≤ αc, nsim scales linearly by increasing the
number of qubits. In contrast, if the gate count exceeds
a certain value α ≥ αc, we observe the sub-linear
scaling of the nsim (see Fig. 3(d)). From the finite-
size scaling analysis by taking a general scaling form
nsim(α, n) − nsim(αc, n) = f((α − αc)n

1/ν) [37], we
numerically estimate the critical value αc ≈ 0.81 and
ν ≈ 1.28 (see Fig. 3(e)). We conjecture that this critical
phenomenon is closely related to the anti-concentration
properties of the completely connected random circuit
[34] as their critical points closely align, α = 5/6.

Born probability estimation.— The framed Wigner
function can also be utilized for estimating the Born
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probability in Eq. (4) under less restrictive conditions
than outcome sampling. When the final phase space
point u can be efficiently sampled from WF

UρU†(u) ≥
0, one can take an estimator p̂Fu (x) = PF (x|u) for
each u. This leads to an unbiased estimation of
the probability p(x) = Eu[p̂Fu (x)], where Eu[·] denotes
averaging over phase space points u from the distribution
WF
UρU†(u) [27]. The estimator p̂Fu (x) is not necessarily

positive and can be efficiently calculated for every u
when F (0x,az) is quadratic [38–40]. One can also apply
a procedure similar to the sampling scheme by tracing
out (n − k) qubits until F ′(0′x,u

′
z) becomes quadratic,

resulting in an efficient estimation of the k-marginal
outcome probability. The proposed protocol can be
generalized for an arbitrary product state by mixing
two different frames without affecting the degree of the
reduced frame of the final state [31].

We analyze the precision of the proposed
estimator using the mean squared error (MSE),
VarWig(x′) ≡ Eu[|p̂Fu (x′) − p(x′)|2] [41, 42]. The
average MSE over all possible outcomes becomes

VarWig ≡ 1/2k
∑

x′∈Zk
2

VarWig(x′) = (1 − Z
(k)
col )/2

k,

where Z
(k)
col ≡

∑
x′∈Zk

2
p(x′)2 ≥ 1/2k is the collision

probability of the k-marginal outcomes [10, 34]. This
improves the previous result using the estimator in
terms of the Pauli operator [43] with the average MSE

of VarPauli = (1− 1/2k)Z
(k)
col ≥ VarWig [31].

Remarks.— We have constructed a classical simulation
algorithm for a Clifford circuit with nonstabilizer inputs
based on the framed Wigner function. Our key
observation is that the phase space point can be
covariantly transformed under any Clifford gate by
switching the frame of the Wigner function, which
significantly extends the regime of positively represented
states. Our protocol offers a classically efficient sampling
of marginal outcomes with efficient time and memory
cost, where these outcomes can be identified by solving
the vertex cover problem. As examples, we have explored
log-depth Clifford circuits and observed that the number
of simulatable qubits behaves differently between locally
and completely connected circuits.

While our approach of introducing a family of frame
functions establishes a clear connection between Clifford
operations and positive Wigner functions, even for a
qubit system, it also leaves potential extensions and
further exploration. A crucial question would be
whether the proposed methods can be further extended
to classically simulate non-Clifford circuits or adaptive
Clifford circuits in the presence of noise.
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I. PROOF OF THEOREM 1

In this section, we prove Theorem 1 in the main text. Let us first restate Theorem 1 and clarify each step of the
proof.

Theorem 1. Suppose an n-qubit quantum circuit composed of a product state input ρ =
⊗n

i=1 ρi and a Clifford unitary
U . If each ρi is positively represented in either zero or dual frame, the final state UρU† is positively represented within
O(n3)-memory and O(poly(n))-time costs. From this, one can sample the measurement outcomes of some marginal
qubits in the computational basis within O(n2)-time cost, where these marginal qubits are determined by the frame F .

To complete the proof, we separately show the following four main parts of Theorem 1.

1. The Wigner representation of a product state input via zero or dual frame.

2. Changing the positively representing frame by the Clifford operation and how the Wigner function transforms
as a result. This proves Observation 1.

3. Time and memory complexities of task 2.

4. The capability of classical simulation with a reduced frame after marginalization.
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Additionally, we will prove that all stabilizer states can be positively represented under a specific frame so that
single-qubit Pauli measurements on all qubits can be efficiently carried out via our method, hence reproducing the
result of the Gottesmann-Knill theorem [1]. Finally, we will discuss the accessibility of information on sampled
outcomes when the final frame has relaxed conditions of its degree.

A. Wigner representation of a product state

We discuss how a product state can be positively represented under a quadratic frame function. When we consider
only a single qubit system, the frame function can have up to a second degree. Therefore, there are two frame F = 0
(zero frame) and F = a1xa1z (dual frame). Now, suppose that for i ∈ [n], each single qubit state ρi is positively
represented under Fi = biaixaiz with bi = 0 (zero frame) or bi = 1 (dual frame). Also, we define the Pauli operator
acting on the i-th qubit, Tai

≡ iaixaizXaixZaiz . Then, we can rewrite ρi as

ρi =
1

2

∑
ui,ai∈Z2

2

Wρi(ui)(−1)[ui,ai]+biaixaizTai . (1)

Consequently, we obtain the Wigner representation of a product state input as follows:

ρ =
n⊗
i

ρi =
1

2n

∑
u,a∈Vn

(
n∏

i=1

Wρi
(ui)

)
(−1)[u,a]+

∑n
i=1 biaixaizTa, (2)

where u = (u1,u2, . . . ,un), a = (a1,a2, . . . ,an), and Ta =
⊗n

i=1 Tai . Note that ρ is positively represented under the
frame

∑n
i=1 biaixaiz. Hence, the Wigner function of a product state can be represented as a product of single-qubit

Wigner functions.

B. Frame changing rules (Observation 1)

We explain the frame-changing rules under the Clifford operations and the corresponding transformation of the
Wigner function. Suppose an n-qubit quantum state ρ is positively represented under the frame Fin. As we discussed
in the main text, after applying a Clifford unitary U , UρU† may have negativity [2] when the frame is fixed. However,
we note that the transformation of Ta under any Clifford unitary U has the following form [1]:

UTaU
† = (−1)P (a)TS(a), (3)

where symplectic matrices S and phase functions P (a) for each Clifford gate are given in Table I. This leads to

UρU† =
1

2n

∑
u,a∈Vn

WFin
ρ (u) (−1)[u,a]+Fin(a) UTaU

† (4)

=
1

2n

∑
u,a

WFin
ρ (u) (−1)[u,a]+Fin(a)+P (a)

TS(a) (5)

=
1

2n

∑
u,a

WFin
ρ (u) (−1)[S(u),a]+Fin(S

−1(a))+P (S−1(a))
Ta (6)

=
1

2n

∑
u,a

WFin
ρ (S−1(u)) (−1)[u,a]+Fin(S

−1(a))+P (S−1(a))
Ta (7)

=
1

2n

∑
u,a

WFin
ρ (S−1(u)) (−1)[u,a]+F (a)

Ta (8)

=
1

2n

∑
u

WFin
ρ (S−1(u))AF (u). (9)

By noting that UρU† = 1
2n

∑
u WF

UρU†(u)A
F (u) in the new frame F (a) = Fin(S

−1a) + P (S−1a), we obtain

WFin

UρU†(u) = WF
ρ (S−1(u)). This proves Observation 1.
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Clifford gate S P (a)

CNOTi→j-gate
aiz←−aiz+ajz
ajx←−aix+ajx

ajzaix(aiz + ajx + 1)

Hi-gate
aix←−aiz
aiz←−aix aizaix

Si-gate aiz ←− aix + aiz aizaix

TABLE I. A table that shows the symplectic transformation (S) of elementary Clifford gates and corresponding phase function
(P (a)). A← B means A is transformed to B.

We further note that all linear terms within the frame F (a) can be replaced by a translation in the Wigner function.
By noting that linear terms can be expressed as [v,a] for some v ∈ Vn, we obtain

WF
ρ (u) =

1

2n

∑
a∈Vn

(−1)[u,a]+F (a)Tr[ρTa] (10)

=
1

2n

∑
a∈Vn

(−1)[u+v,a]+(F (a)+[v,a])Tr[ρTa] (11)

=
1

2n

∑
a∈Vn

(−1)[u+v,a]+F ′(a)Tr[ρTa] (12)

= WF ′

ρ (u+ v), (13)

where F ′(a) = F (a) + [v,a]. In other words, if a frame F has a linear term, then its Wigner function of σ follows by
translating the arguments of the original Wigner function.

C. Time and memory complexities of frame changing

We discuss the time and memory complexities of the proposed simulation algorithm. We first discuss the memory
cost for storing the frame functions. Suppose we have a product state input ρ which is positively represented under
the frame Fin =

∑n
i=1 biaixaiz with bi ∈ {0, 1}. We recall that the final frame after the Clifford operation has the

following transformation rule, F (a) = Fin(S
−1a) + P (S−1a). Since all Clifford operations can be generated by gates

in the set {CNOT,H, S} shown in Table. I with phase functions of degree up to 3 and linear transformation S−1

does not raise the degree of frame function, the resulting frame must have up to the third degree. In light of those
facts, we can formalize the final frame as the following cubic binary valued polynomial,

F (a) =
∑
µ

cµaµ +
∑
µ,ν

cµνaµaν +
∑
µ,ν,ω

cµνωaµaνaω (mod 2), (14)

where µ, ν, ω ∈ {1x, . . . , nx, 1z, . . . , nz}. To store that information of the frame, we need O(n3)-memory to contain
all coefficients of possible monomials.

We then discuss the time and memory costs for updating the frames for each Clifford gate acting on at most two
qubits. With O(1)-time and memory complexity, we can find the symplectic matrix S and phase function P for
this gate. Given a frame F to be changed, we collect all monomials having variables in {aix, aiz, ajx, ajz}. As we
collect each monomial, we linearly transform it via S−1 and obtain the set of newly generated monomials. Then we
add this set of monomials to F , and we add constant-sized monomials of P (S−1(a)). Since we need at most O(n3)
memory to record arbitrary cubic frame functions and the above steps do not raise the degree of the output frame,
newly generated monomials can be recorded in another O(n3)-memory. Moreover, we can obtain the set of generated
monomials in at most O(n3)-time by putting or deleting the generated monomial in the new memory, as we transform
the selected monomial in F with constant time. The union with the generated set can be done in time complexity
with the same scaling of memory. Therefore, the total time complexity is at most O(poly(n)) given that we have
poly(n)-number of 2-qubit Clifford gates.

After getting through all the Clifford gates, by the last argument of Section IB, we can always choose vF ∈ Vn for the
final frame without linear terms by applying an additional translation to the Wigner function to beWFin

ρ (S−1(u+vF )),

i.e., WF
UρU†(S(u) + vF ) = WFin

ρ (u). Also, this translation does not affect the scale of total time complexity. From

now on, for convenience, we will always assume that the final frame has no linear terms.
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D. Weak simulation

Now, we discuss sufficient conditions of weak simulation via the framed Wigner function. Suppose the frame F
satisfies F (0x,az) = 0. We then note that PF (x|u) with x ∈ Zn

2 can be expressed as

PF (x|u) = ⟨x|AF (u)|x⟩ (15)

=
1

2n

∑
a∈Vn

(−1)[u,a]+F (a) ⟨x|Ta|x⟩ (16)

=
1

2n

∑
a∈Vn

(−1)[u,a]+F (a)δax,0(−1)az·x (17)

=
1

2n

∑
az∈Zn

2

(−1)az·(x+ux) (18)

= δx,ux
. (19)

Next, we express the Born probability p(x) = Tr(UρU† |x⟩ ⟨x|) in terms of the framed Wigner function. When the
output state UρU† is positively represented as WF

UρU†(u) = WFin
ρ (S−1(u+ vF )), we observe that

Tr(UρU† |x⟩ ⟨x|) =
∑

u,a∈Vn

WFin
ρ (S−1(u+ vF )) ⟨x|AF (u)|x⟩ (20)

=
∑
u,a

WFin
ρ (S−1(u+ vF ))δx,ux (21)

=
∑

uz∈Zn
2 ,a∈Vn

WFin
ρ (S−1((x+ (vF )x,uz + (vF )z)). (22)

By the above result, we can make a weak simulation scheme, which samples outcomes x following the probability
distribution p(x), as follows:

1. Sample the phase point u ∈ Vn from WFin
ρ (u) with the initial frame Fin.

2. Update u← S(u)

3. Update u← u+ vF

4. Output ux.

Even if the resulting frame does not satisfy the condition F (0x,az) = 0, we could find marginal measurements in
which the reduced frame satisfies that condition. We explain this in more detail here. Without losing the generality,
assume that we measure only the first to k(≤ n)-th qubits and then trace out the others. The marginal measurement
probability to obtain x′ ∈ Zk

2 then becomes

p(x′) =
∑

x′′∈Zn−k
2

TrUρU† |x′ ⊕ x′′⟩ ⟨x′ ⊕ x′′| (23)

=
∑

x′′∈Zn−k
2

∑
u,a∈Vn

WFin
ρ (S−1(u+ v)) ⟨x′ ⊕ x′′|AF (u)|x′ ⊕ x′′⟩ (24)

=
1

2k

∑
u

WFin
ρ (S−1(u+ v))

∑
a′
z∈Zk

2

(−1)ux·(a′
z⊕0′′)+a′

z·x
′+F (0,a′

z⊕0′′). (25)

Hence, if the F ′(0x,a
′
z) = F (0x,a

′
z ⊕ 0′′) = 0, the last equation becomes 1

2k

∑
u WFin

ρ (S−1(u + vF ))δx′,u′
x
. Then,

we can efficiently measure the outcome x′ by similar steps to the main algorithm. We just need to replace ux

with (u1x, . . . , ukx, 0, . . . , 0). In the same way, if the resulting frame after marginalizing arbitrary k-qubits satisfies
F ′(0′

x,a
′
z) = 0, we can efficiently measure the marginal outcome. We note that after marginalizing n− 1 qubits, the

reduced frame must become zero.
Now, let us recollect the results obtained through this section to encapsulate the proof. We assume that a input

state is a product state ρ =
⊗n

i=1 ρi and each ρi is positively represented under a single qubit frame Fi = 0 or
Fi = aixaiz. Then ρ can be positively represented under Fin =

∑n
i=1 biaixaiz (∀bi ∈ {0, 1}). As we discussed in
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the previous section, the time complexity of frame changing is up to poly(n) as well as obtaining S [1] with at most
O(n3) memory cost. Marginalizing the resulting frame until it becomes linear takes at most O(n4)-time. This is
because checking if a given frame has non-linear terms takes O(n3)-time, and the reduced frame must be zero after
the marginalization of n− 1 qubits. Also, updating u to u′ is a simple matrix multiplication which takes O(n2) time.
This completes the proof of Theorem 1. In Section II, we provide a systematic program to solve this problem by
solving the graph theoretical problem.

E. Efficient simulation of Pauli measurements to stabilizer states

If the depth of the circuit becomes high, the resulting frame may contain many quadratic and cubic terms. Hence,
only a small number of qubits might be efficiently simulatable. However, we show that if the input is a stabilizer
state, any non-adaptive Clifford circuit can be transformed to the CH-form [3], which satisfies the efficient sampling
condition. This can be shown by the following Lemma:

Lemma 1. [Bruhat Decomposition [4, 5]] (i) An arbitrary n-qubit Clifford circuit can be rewritten by layers hF′ −
SW − H − hF, where H is a layer of Hadamard gates, SW is a layer of SWAP gates (hence of CNOT gates) and
hF,hF′ are CNOT-CZ-S-Pauli layered circuits. This decomposition can be done with poly(n)-time.

(ii) Starting from the zero frame Fin = 0, the changed frame F after Pauli−H−hF section satisfies F (0x,az) = 0.

Proof. The proof of (i) can be found in Refs. [4, 5]. We show (ii) by noting that the phase functions (see Table. I) of
H,S,CNOT gates do not have quadratic or cubic monomials with only aiz terms, and the symplectic transforms of
S and CNOT gates do not change aix to ajz. Furthermore, we can easily note that the phase function of the Pauli
operator is linear, and the symplectic operation is identity. Hence, the final frame F (0,az) must be linear, and those
linear terms can be converted into translation following the last arguments of Section IC.

We can represent stabilizer states as zero state input rotated by a Clifford operation. Also, by Lemma 1, this
operation can be transformed to hF′ − S−H− hF form. However, the first CNOT-CZ-S part of hF ′ section does not
affect to zero state. Hence, we have a zero state followed by Pauli − H − hF sections. Note the zero states can be
positively represented under zero frame, and the resulting frame satisfies F (0x,az) = 0. Therefore, all the n-qubit
measurement outcomes x can be efficiently simulated via the framed Wigner function.

F. Simulation for a resulting frame of second degree

When the resulting frame F ′(0x,az) is quadratic, we cannot directly measure the outcome. However, we can still
obtain some information about those outcomes.

Proposition 1. Let ρ be positively represented under a single frame Fin, and the final frame is F . We take IF such

that F (ax = 0,az)
∣∣
aiz=0 for i/∈IF

is a quadratic Boolean function. Then we can simulate to obtain at least ⌊ |IF |+1
2 ⌋

number of Boolean function values with the arguments of |IF |-marginal measurement outcome.

Proof. We first assume that F (ax = 0, az)
∣∣
aiz=0 for i/∈IF

only has quadratic terms. We choose one element from

i1 ∈ [n]\I and rewrite F (ax = 0, az)
∣∣
aiz=0 for i/∈IF

as ai1z(L{i1}(az)) + Q{i1}(az), where L{j1,j2,...} denotes a linear

Boolean function that does not have variables {aj1z, aj2z, . . .} and Q{j1,j2,...} denotes a quadratic Boolean function
not having variables {aj1z, aj2z, . . .}. Now, we choose one another variable i2 ̸= i1 in L{i1} and find an invertible

linear transform S1 that transforms ai1zL{i1} to ai1zai2z (i1 ̸= i2) and Q{i1} to another quadratic polynomial Q
(1)
{i1}

still not having variable ai1z. This is possible by taking S1 which transforms ai2 to L{i1}(az) and leaves the other
variables unchanged. Then, S1 is linear and invertible.

After that, ai1z(L{i1}(az)) + Q{i1}(az) is transformed to ai1zai2z + Q
(1)
{i1}(az). Next, we decompose Q

(1)
{i1} so that

ai1zai2z+Q
(1)
{i1}(az) is transformed to ai1zai2z+ai2zL{i1,i2}+Q

(1)
{i1,i2}(az). If Q

(1)
{i1} does not have ai2z hence L{i1,i2} = 0,

we set S2 as n × n identity and choose i3 ∈ [n]\ {i1, i2} and decompose Q
(1)
{i1} starting with i3 as we do with i1.

Otherwise, if L{i1,i2} is non-zero, then we again take a linear transform S2 that converts the above equation to

ai1zai2z + ai2zai3z +Q
(2)
{i1,i2}(az). After repeating this, we obtain the final resulting polynomial ai1zai2z + c2ai2zai3z +

. . .+ cpaipzaip+1z (p ∈ N and, c2, . . . cp ∈ {0, 1}).
From these arguments, the marginal outcome probabilities p(x′) on the subset of qubits IF under U(with symplectic

transform S) is
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p(x′) =
∑
x′′

Tr(|x′ ⊕ x′′⟩ ⟨x′ ⊕ x′′|UρU†) (26)

=
∑
u

 ∑
az∈Zn

2 ,
aiz=0 for i∈[n]\IF

1

2|IF |W
Fin
ρ (S−1(u+ vF )) (−1)((ux+(x′⊕0))·az+F ′(ax=0,az))

 (27)

=
∑
u

 ∑
az∈Zn

2 ,
aiz=0 for i∈[n]\IF

1

2|IF |W
Fin
ρ (S−1(u+ vF )) (−1)((ux+(x′⊕0))·(S1S2...Sp)(az)+ai1zai2z+c2ai2zai3z+...+cpaipzaip+1z)


(28)

=
∑
u

 ∑
az∈Zn

2 ,
aiz=0 for i∈[n]\IF

1

2|IF |W
Fin
ρ (S−1(u+ vF ))(−1)(S1S2...Sp)

T (ux+(x′⊕0))·az+ai1zai2z+c2ai2zai3z+...+cpaipzaip+1z

.

(29)

Therefore, we conclude that (note that S1S2 . . . Sp acts as an identity on the subset of qubits [n]\IF )∑
x′′

p

((
(S1S2 . . . Sp)

T
)−1

(x′ ⊕ x′′)

)
(30)

=
∑
u

 ∑
az∈Zn

2 ,
aiz=0 for i∈[n]\IF

1

2|IF |W
Fin
ρ (S−1(u+ vF ))(−1)((S1S2...Sp)

T (ux)+(x′⊕0))·az+ai1zai2z+c2ai2zai3z+...+cpaipzaip+1z

.

(31)

Now, we further trace out qubits in {i2, i4, . . . , ip} if p is even and {i2, i4, . . . , ip+1} if p is odd until the remaining
frame becomes linear, then use the simulation algorithm of Section ID. However, after the step 3, we must take

ux to (S1S2 . . . Sp)
T
(ux). Consequently, given that p is even (routine is similar for odd p), the outcome string is((

(S1S2 . . . Sp)
T
(ux)

)
i

)
i∈IF \{i2,i4,...,ip}

. The worst case happens when all ck (k ∈ [n]) is 1 and p = |IF − 1| so

that the number of measurable qubits is ⌊ |IF |+1
2 ⌋. Time to obtain (S1S2 . . . Sp)

T
is at most poly(n)-time, and then

measuring outcome takesO(n2)-time. Since we rotate ux once more by (S1S2 . . . Sp)
T
, the measured outcome is partial

elements of (S1S2 . . . Sp)
T
(
(S1S2 . . . Sp)

T
)−1

(x′) that are the linear Boolean function values of direct measurement

outcome
(
(S1S2 . . . Sp)

T
)−1

(x′) (see Eq. (30)).

II. FINDING EFFICIENTLY SIMULATABLE QUBITS BY SOLVING THE VERTEX COVER
PROBLEM

In the main text, we discuss that the k-marginal qubits are efficiently simulatable when tracing out the (n−k) qubits
until the reduced frame meets the condition F ′(0x,a

′
z) = 0. In this section, we discuss how this can be translated

into a graph theoretical problem, known as the vertex cover problem in more detail.

A. Basic notation of graph theory

Here, we introduce a formal definition of hypergraph and the vertex cover problem.

Definition 1 (Hypergraph). (i) Let V be a non-empty set. We say a tuple G(V,E) is a hypergraph if and only if E
is a set of subsets e ∈ V of V . We call each element in E an edge. From now on, we always assume ∀e ∈ E, |e| > 1.
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Let G(V,E) be a hypergraph.
(ii) We say G is of kth-degree (k ∈ N) if all edges in G contain at most k vertices.
(iii) If all elements of E have (k ∈ N)-number of elements in V , then we call G(V,E) as a k-uniform hypergraph

or simply a k-graph. Also, a 2-graph is just called a graph.

Next, we define several properties of a hypergraph.

Definition 2. Let G(V,E) be a hypergraph.
i) V ′ ⊂ V is a vertex cover if all edges in E contain some elements in V ′. A ⊂ V is the minimal vertex cover if

every vertex cover V ′ ⊂ V satisfies |V ′| ≥ |A|.
ii) S′ ⊂ V is an independent set if any two elements in S′ are not contained in same edge in E. B ⊂ V is the

maximal independent set if every independent set S′ ⊂ V satisfies |S′| ≤ |B|.
iii) Let A be a minimal vertex cover of G and B be a maximal independent set in G. Then we denote ν(G) ≡ |A|

and △(G) ≡ |B|. We note that minimal(maximal resp.) vertex cover(independent set) could not be unique, but ν(G)
and △(G) are unique.

iv) For v ∈ V , order of v, d(v) is the number of edges containing v.
v) Maximal order of the graph, d(G) is maxv∈V {d(v)}.

The vertex cover problem is to find the minimal vertex cover of a given hypergraph. Now, we obtain the following
result.

Corollary 1. For any hypergraph G(V,E), ν(G) +△(G) ≤ |V |.

Proof. Consider a maximal independent set S ⊂ V (|S| = △(G)) and suppose |V \S| = |V | − △(G) < ν(G). Then
V \S must not be the vertex cover. Hence, there exists e ∈ E such that e does not have any elements in V \S. Since
e is non-zero, without loss of generality, say e = {ve1, ve2, . . . , vek} ⊂ S (k ≥ 2). Since S is independent, |e| = 1, which
contradicts that k ≥ 2. In conclusion, |V \S| = |V | − △(G) ≥ ν(G)⇒ ν(G) +△(G) ≤ |V |.

If the graph representation is 2-graph (resulting frame is quadratic), then it is known that △G = |V | − ν(G).
The vertex cover problem is an NP-hard problem [6], but several efficient and approximative algorithms are valid

[7]. These algorithms may obtain vertex covers such that the size is larger than the minimal cover but is within
a reasonable scale factor. The typical example we use throughout this paper is a greedy algorithm. The detailed
procedure of the algorithm is as follows. Suppose we have a hypergraph G(V,E).

1. For each vertex v ∈ V of G, count d(v) (order of v), the number of edges containing v.

2. Take v′ = argmaxv∈V {d(v)}.

3. Remove v′ from G and also remove all edges containing v′.

4. Repeat the above sequences with at most |V | times until no edges are left.

Step 1 takes at most O(|V ||E|)-time, and Step 2 takes O(|V |)-time. Step 3 takes at most O(|E|)-time, which is the
time complexity of set subtraction. Since we repeat these steps at most |V |-time, the total time complexity of the
greedy algorithm is at most O(|V |2|E|).

B. Graph representation of the frame function and marginalization

Now, we show how to connect finding simulatable marginal qubits and the vertex cover problem of the hypergraph.
We recall the brief explanation of the graph representation of the frame function in the main text. We shall call this
a frame graph.

Definition 3. Suppose we have a frame function F of at most 3rd-degree such that F (0x,az) =
∑

(i,j)∈E2
aizajz +∑

(i,j,k)∈E3
aizajzakz (mod 2) for proper index set E2 ⊂ [n]⊗2, E3 ⊂ [n]⊗3. Frame graph GF of F is a hypergraph

G(V,E) where V is a set of vertex {a1z, a2z, . . . , anz} and E = E2
⋃
E3.

From the Section ID, we know that whenever we marginalize the i-th qubit, we substitute aiz = 0 to the representing
frame F ′(0x,az). In other words, all monomials containing aiz vanish. In a graphical notation, this means that starting
from the frame graph of F ′(0,az), we eliminate both the i-th vertex and all connecting hyperedges. Therefore, tracing
the qubits to make the resulting frame function zero is equivalent to finding vertex cover: eliminating vertices and
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connecting edges until all edges vanish. We can do this using the greedy algorithm and note that |V | is at most n
and |S| is within O(n3). From the arguments in Section IIA, the total time complexity is at most O(n4).

Solving the vertex cover problem of the final frame enables us to search simulatable qubits from a given highly
entangled circuit that is hard to pick by hand. Also, we can use various modern approximation techniques to find
more qubits over the greedy algorithm [6].

We can find the largest number of simulatable qubits if we find the minimal vertex cover. Also, we note that the
independent set of the frame graph is also a set of simulatable qubits. However, Corollary 1 says that finding minimum
vertex cover and tracing out the qubits corresponding to the vertices produces a larger set of simulatable qubits than
finding the maximal independence set.

III. SIMULATIONS ON LOG-DEPTH CLIFFORD CIRCUITS

A. Circuit architecture

We first briefly explain the definitions of several n-qubit Clifford circuit architectures [8]. One is the 1D architecture,
which consists of alternating layers with 2-qubit random Clifford gates between neighboring qubits (see Fig. 1(a)).
We also regard the Clifford gates connecting the first and the last qubits as a neighboring gate. The other is the
complete graph architecture, where we put a random single qubit gate to each qubit, and then random Clifford gates
are applied between randomly chosen two qubits, regardless of their locations. Gate count is the total number of
2-qubit random Clifford gates. In both architectures, random Clifford gates are uniformly chosen [8], and we enact
each gate until the gate count reaches the designated value. The depth of the circuit is defined as the minimum value
of the number of layers in which a set of 2-qubit gates can be applied in parallel (also, see Ref. [8] for more detail).
Furthermore, the authors in Ref. [8] showed that in both cases, there exists sufficient and necessary scaling of gate
count O(n log(n)) such that outcome probability distribution of random circuit sampling (including random unitary
gates) satisfies the anti-concentration condition [9].

B. On the inseparability of efficiently measurable qubits found from the greedy algorithm for 1D circuits

For the log-depth 1D architecture, even if we do not use the framed Wigner formalism, we can always find
many qubits on which measurements are simulatable via brute-forced matrix calculation. We briefly explain
how to do this and numerically show that simulatable qubits found by our method do not fall to this case.
Suppose we have a d-depth 1D circuit. Now, we pick i ∈ [n] and choose one group of locations of qubits,{
i− ⌊β2 log2(n)⌋, i− (⌊β2 log2(n)⌋ − 1), . . . , i, . . . , i+ (⌈β2 log2(n)⌉ − 1), i+ ⌈β2 log2(n)⌉

}
. Then if we only measure this

subset of qubits, we can efficiently simulate it with rotating Pauli operators via Clifford operations [10] with at most
O(nβ+1 log2(n))-time. Because one method is to calculate the Born probability exactly. To do so, we expand the
target binary state by 2β log2(n) = nβ number of coherent Z operators and then obtain all traces between the input
product state and Pauli operators, which is backward-evolved by Clifford circuit starting from those Z operators. We
note that each expectation is obtained in O((log2(n))2)-time [1, 10]. Furthermore, if we choose another i′ ∈ [n] such

that
{
j − ⌊β2 log(n)⌋, j − (⌊β2 log(n)⌋ − 1), . . . , j, . . . , j + (⌈β2 log(n)⌉ − 1), j + ⌈β2 log(n)⌉

}
is 2d-far away from has a

distance of 2d between the previous group (see Fig. 1 for 3-depth case), then we can also efficiently simulate these
measurements by same time complexity because gates involved in two simulations are totally separated. By repeating
the same procedure, we find the n

2d+β log2(n)
-number of groups of simulatable qubits. Hence, given d = α log2(n), the

total number of simulatable qubits is βn
2α+β with total simulation time O(nβ+1(log2(n))

2).

However, this trivial method only finds distant groups with neighboring qubits. This means that the simulatable
qubits should be picked from each group, which always has a distance larger than 2d each other. In contrast, our
methods also find simulatable qubits that are not far from each other, which can be numerically checked. More
precisely, given a non-adaptive Clifford circuit with the Clifford unitary U , let AU ≡

{
i1, i2, . . . , i|AU |

}
⊂ [n] be a set

of locations of simulatable qubits. Now, let Zi be an n-qubit Paul operator, which affects the Z-operation to the i-th
qubit and identity to the other qubits. We calculate the set of Pauli operators PAU

≡
{
U†ZiU |i ∈ AU

}
which can

be obtained efficiently [10]. We then define the 2-graph G(AU , EAU
) where the set of vertex is AU , and EAU

is a set
of edges which connects i, j ∈ AU if and only if two Pauli strings U†ZiU and U†ZjU have non-trivial (not identity,
not need to be same) Pauli operation on the same qubit locations. Now, we denote C(G(AU , EAU

)) ⊂ AU as a set of
connected components of G, i.e., vertices consisting of connected subgraphs such that each subgraph is not connected
with the others. We note that measurement on the set of qubits with location C ′ ∈ C(G(AU , EAU

)) is independent
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FIG. 1. (a) Schematic illustration of a 3-depth 1D circuit. Measurement on the i-th qubit does not influence the measurement
outcome of the j (6-far away from i). If we only simulate these two measurements, we can separate this circuit into two portions
sided by the red line. (b,c) The population of the size of maximally connected components for 500 numbers of 100-qubit 1D
shallow Clifford samples. The green line represents the average size of maximally connected components, and the red line
indicates the average value of total simulatable qubits of each sample. (b): Results of depth = 2 ln(100) 1D circuits (green
line:22, red line:25). (c): Results of depth = 2.4 ln(100) 1D circuits (green line:19, red line:20).

of the measurement outcome on the set of other locations in C(G(AU , EAU
)). Hence, the time complexity of weak

simulation is upper bounded by O
(
exp

(
maxC∈C(G(AU ,EAU

))(|C|)
))

, which can be achieved by the similar method

with the first paragraph. Now we see Fig. 1 (b) and (c). We randomly sample 500 numbers of 100-qubit 1D Clifford
circuit U with zero frame input and find maxC∈C(G(AU ,EAU

))(|C|) efficiently via Python NetworkX packages, and we

observed that most of the samples have many connected Pauli operators U†ZiU (i ∈ AU ) and hence such a trivial
decomposition (in the first paragraph) is not applied to them.

C. Simulation time comparison with Qiskit

In this section, we show two graphs of the simulation speed of shallow non-adaptive Clifford circuits (see Fig. 2).
We compare the simulation time between our simulator and the Qiskit Aer simulators. For the Wigner function
method, simulation time includes the frame changing and finding simulatable qubits, as well as sampling and rotating
the phase point. In both simulators, Wigner and Qiskit, we measure the marginal outcome only once. The time
complexity O(αpoly(n)) in the main text is obtained by changing the frame for each Clifford gate, and hence total
time complexity is O(n3) multiplied by the gate count αn lnn. For 1D case, by Sec. IIA, time complexity for solving
vertex cover problem is O

(
α3n3(ln(n))3

)
(∵ |E| = O(α3n(ln(n))3)), lower than frame changing time complexity for

large n.

In Fig. 2 (a,b), we observe that our simulator executes the marginal sampling with the polynomial scaling of the
time costs by increasing the number of qubits, which can be compared to the Aer simulators whose time complexity,
except for Aer matrix product state (Aer mps), increases exponentially by increasing the number of qubits. From
Fig. 2 (b,c,d), the Aer mps performs better than framed Wigner when the circuit is low-entangled or has few qubits.
Because the Aer mps employs the tensor network method and is efficient for circuits with large n but with low-
entanglement [11]. However, we note that for n ≥ 30, the simulation time of Aer mps increases exponentially by
increasing the scale factor of gate count, α, hence by increasing the depth. Hence, our method outperforms Aer mps
for this region.

When the number of simulatable qubits is not sufficiently large, there could be other methods, for example, by
directly calculating the Born probability to simulate Clifford circuits [1]. However, we expect that the low time
scaling of the Wigner function simulator, while keeping a sufficient portion of simulatable qubits, leads to more
efficient simulation for larger n compared to the previous methods. In Section III E, we demonstrate that the time
complexity can be further improved by utilizing the property of the circuits’ shallow depth, at the cost of additional
polynomial-sized memory.
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FIG. 2. Comparison of simulation time for the log-depth random Clifford circuits between framed Wigner function method
and Qiskit Aer simulators. (a,b) Average time (over 200 random samples) for simulating the log-depth Clifford circuits. Here,
Aer density matrix and Aer stabilizer simulators are not functioning. We fixed the gate count scaling factor α, while increasing
the number of qubits. (c,d) Average time (over 100 random samples) for simulating the 1D Clifford circuits by using the framed
Wigner function method and Qiskit Aer simulators. We took the n-copies of |A⟩ state as an input for both (a) and (b)

D. Finite-sized scaling for log-depth completely connected circuits

Here, we explain the finite-sized scaling (FSS) analysis of Fig. 3 (e) in the main text. For the completely connected
random Clifford circuits, the average number of measurable qubits (nsim) has two different scaling on n for α > αc

and α < αc with some critical point αc. In order to explore the critical point, we model the scaling function of nsim

in terms of α and n as,

nsim(α, n)− nsim(αc, n) = f((α− αc), n), (32)

for some function f with two different scalings at α < αc and α > αc. It naturally follows that f(0, n) = 0 for all n
at the critical point. In order to estimate the critical values, we apply the FSS method to the data set with various α
and n values. We take the ansatz f((α− αc)n

1
ν ) for some ν ∈ R which is commonly found in the FSS literature [12].

By numerically optimizing the parameter of αc and ν from the data set, we obtain a good collapse of data as in Fig.
3 (e) in the main text with the optimal parameter αc = 0.81 and ν = 1.28. After we find the (αc, ν), we observe

nsim(α, n) − nsim(αc, n) ∼ C(α − αc)n
1
ν (C ∈ R+) when α < αc. On the other hand, for α > αc, nsim(α, n) shows

almost flat behavior when increasing n (see Fig. 3(d) in the main text).
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E. Faster frame changing and finding the vertex cover in shallow depth circuits

We already know that frame changing and finding the vertex cover of the final frame can be done in poly(n)-time. In
this subsection, we show that the time complexity can be further reduced for shallow circuits with depth O(α ln(n)).
We also realize that frame changing of uniformly sampled Clifford circuit has time complexity within O(n4).

To do so, we further define the equivalent expression of the hypergraph.

Definition 4 (Pivoted graph). (i) Given a graph G(V,E), Pivoted graph of G is a set PivG ≡{
(Piv1, |Piv1|), (Piv2, |Piv2|), . . . , (Piv|V |, |Piv|V ||)

}
where for i ∈ [|V |], the pivoted set Pivi is an indexed set{

e
(i)
j

}
j∈[|Pivi|]

, which is a subset of E whose edges contain the i-th vertex.

(ii) A pivoted frame graph of a frame F is PivGF
.

Indexing is necessary to search for a specific edge in constant time. Since each pivoted set has a maximal size
upper-bounded by O(n2), it needs O(n3) to represent the frame as its pivoted frame graph.

Next, we review one simple lemma.

Lemma 2. The time complexity to multiply arbitrary n × n matrix X and A ⊕ I where A is 2 × 2 matrix and I is
(n− 2)× (n− 2) identity is O(n).

Proof. We can rewrite those two matrices as block matrix forms,

X =

(
C1 C2

C3 C4

)
, A⊕ I =

(
A O

O I

)
. (33)

Therefore,

X(A⊕ I) =

(
C1A C2

C3A C4

)
. (34)

Hence, we only need to calculate C1A and C3A, which takes only O(n) time complexity, given that A has a constant
size and C1(3) has O(n) size.

Now, we elaborate on this faster frame-changing algorithm below.

Proposition 2. Suppose we start from the frame Fin =
∑n

i=1 biaixaiz, where ∀i, bi ∈ {0, 1}.
(i) If the given circuit has 1D architecture and depth d, then obtaining a resulting frame function (and its pivoted

frame graph) takes at most min
{
O(dn3),O(d4n+ dn2)

}
. For a complete graph architecture with depth d, it takes at

most min
{
O(dn3),O(8d · dn+ dn2)

}
. To do so, we need O(dn2 + n3)-memory.

(ii) There exists a method to uniformly randomly choose a Clifford circuit such that obtaining a resulting pivoted
frame graph takes at most O(n4).

Proof. (i) Suppose we transform the frame F0 under a 2-qubit Clifford gate which acts on the i-th and j-th qubits. If
we know the pivoted frame graph of F0, then we just search newly generated monomials from Pivi, Pivj , and phase
functions. Updating its pivoted frame graph takes O(n2)-time because the size of the pivoted set is upper bounded by
O(n2) and updating by generated monomials which come from a single monomial takes constant-time. Then frame
changing after a single depth operation takes O(n3)-time because each depth has ⌊n2 ⌋ number of neighboring two-qubit

gates and changing the pivoted frame graph for each gate takes O(n2)-time. Hence, the total changing time is at most
O(dn3), which holds for both 1D and complete graph architecture. Next, let us assume that for each stage 1 ≤ i ≤ d,

we act the Clifford operation Ui ≡
⊗ki

j=1 Uij where ki ∈ N, ki ≤ ⌊n2 ⌋ and Uij is 2-qubit Clifford operation. We can

obtain the symplectic matrix Si and phase function Pi in O(n)-time because, for each j, the symplectic transform of
2-qubit operation does not affect other qubit pairs. Now, from the arguments in Eq. (9) and Eq. (3), we easily note
that resulted symplectic transform S and phase function P is,

S = SdSd−1 . . . S1, (35)

P (a) = P1(a) + P2(S1(a)) + P3(S2(S1(a))) + · · ·+ Pd(Sd−1(Sd−2 · · · (S2(S1(a))) · · · )). (36)
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Hence, the resulting frame function K becomes,

K(a) = Fin(S
−1(a)) + P (S−1(a)) (37)

= P1(S
−1
1 (S−1

2 · · · (S
−1
d−1(S

−1
d (a))) · · · )) + P2(S

−1
2 (S−1

3 · · · (S
−1
d−1(S

−1
d (a))) · · · )) (38)

+ · · ·+ Pd−1(S
−1
d−1((S

−1
d (a)))) + Pd(S

−1
d (a)) + F (S−1

1 (S−1
2 · · · (S

−1
d−1(S

−1
d (a))) · · · )). (39)

Each Si can be expressed as a tensor product
⊗ki

j=1 Sij of 4×4 matrices, which leads to S−1
i =

⊗ki

j=1 S
−1
ij . The time

complexity to multiply arbitrary 2n×2n matrix and A⊕I3⊕· · ·⊕In, where A is a 4×4 matrix and I3, . . . , In are 2×2
identities, is O(n) by the Lem. 2. Therefore, starting from S−1

d and calculating up to S−1
1 (S−1

2 · · · (S
−1
d−1(S

−1
d (a))) · · · )

takes O(dn2)-time. By multiplying each S−1
i ’s, we record all d− 1 output matrices. Storing each output matrix takes

O(n2)-time and therefore we need O(dn2)-memory and additional O(dn2)-time.
Now, we prepare another O(n3)-memory (say M) to represent the pivoted frame graph of zero frame. We will

update the graph in a way that the resulting pivoted frame graph is the desired final pivoted frame graph.
For the 1D case, for m ∈ [n], we easily note that S−1(a)mx(or mz) does not have variable aqx(or qz) where |m −

q| (mod n) > d. If S−1(a)mx(or mz) has such variables, two-qubit operation blocks must have propagated from the
q-th qubit to the m-th qubit, but this is not the case for the 1D case. Since each Pi is at most of 3rd-degree and
has at most O(n) monomials, expanding Pi(S

−1
i (S−1

i+1 · · · (S
−1
2 (S−1

1 (a))) · · · )) takes at most O((2d)3n)-time. This
time complexity is possible because during the expansion, for each obtained single term, we must update the pivoted
graph by adding ( subtracting resp.) the corresponding edge and adding (subtracting) the order of each pivoted set
of target vertices. This step takes constant time. We repeat these steps for d times so that the total time cost is at
most O(d4n). Also, in the same manner, adding Fin(S

−1
1 (S−1

2 · · · (S
−1
d−1(S

−1
d (a))) · · · )) takes O((2d)3n)-time.

For a complete graph case, the problem becomes more complicated. Each Clifford gate may entangle two
qubits far from each other, and then each qubit can be further affected by different long-ranged Clifford gates.
As a results, S−1(a)mx(or mz) have the number of variable aqx(or qz) upper bounded by 2d+1, so expanding

Pi(S
−1
i (S−1

i+1 · · · (S
−1
2 (S−1

1 (a))) · · · )) takes at most O(23d+3n)-time. Then we update M in the same way with 1D-case.

(ii) From Ref. [5], we can efficiently sample random Clifford operation in O(n2)-time. This form always has the
layers F ′ − S −H − F , where H is a layer of Hadamard gates, S is a layer of SWAP gates (hence of CNOT gates),
and F, F ′ are CNOT-CZ-S-Pauli layered circuits. CNOT circuit can be decomposed as Clifford bases with depth at
most O( n

log(n) ) with at most O(n3)-time [1, 13]. Also, the depth of the CZ-layer can be upper bounded by O(n), with
O(n3)-time [14]. Therefore, randomly chosen Clifford circuits can be decomposed to have a depth at most O(n) (in
long-range form). Hence, the total time complexity of frame changing is at most O(n4).

Proposition 2 states that for the complete graph with α log(n)-depth or 1D with nα-depth where α < 2
3 , we can

find another changing algorithm with a reduced order of n. Since the above frame changing is only given by rotations
of phase and the argument of the Pauli operator, the application of those algorithms is wider than the scope of the
main text.

Next, we discuss solving the vertex cover problem on the pivoted graph PivGF
of the frame graph GF . We recall

the algorithm of the Section IIA. From the pivoted graph, we already know the information on the order of each
vertex. Hence step 1 and step 2 takes O(|V |)-time. Now, suppose we eliminate one edge having the vertex v′. Note
that this edge has at most another 2 vertices, so when we delete this edge, we also subtract this edge from each
pivoted set of those two vertices and adjust the order. We note that this can be done in O(1)-time; hence, getting an
updated pivoted graph takes at most O(d(G))-time. Since we repeat these steps for at most |V |-time, the total time
complexity is at most O(|V |d(G) + |V |2).

We summarize these arguments as the following corollary.

Corollary 2. Suppose we have hypergraph G(V,E) and its pivoted graph PivG. Then the time complexity of the

greedy algorithm is O(|V |2 + |V |d(G)).

Given an d-depth Clifford circuit, the total time complexity of sampling the initial phase point and obtaining the
resulting point after matrix multiplication takes O(dn)-time because the transform of the single qubit part of the
phase point under the corresponding two-qubit Clifford block takes constant time. Consider a α log(n)-depth 1D
circuit. We note that the total time for the sampling algorithm is at most O(αn log(n)) because we sample the phase
point from the initial framed Wigner function in O(n)-time. Before that, we need to change the frame and solve the
vertex cover problem. However, we do not need to do those things over once. Furthermore, by Proposition 2, frame
changes (and obtaining its pivoted frame graph) in at most min

{
O(dn3),O(α4n(log(n))4) + αn2 log(n))

}
-time, and

the greedy algorithm can be done in O(α2n(log(n))2 + n2)-time which is easily derived by Corollary 2 and locality of
edges of resulting frame graph. Therefore, even the first trial has a shorter time than a method in the first paragraph
of Section III B given that nβ ≫ n.
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For each Clifford operation at a specific depth, O(n) number of new hyperedges are attached. Also, existing edges
undergo symplectic transform hence yielding other hyperedges. For the complete graph case, with the worst case, the
rate of the number of hyperedges is at most proportional to the number of existing hyperedges. Therefore, the number
of hyperedges increases exponentially and the vertex cover size to trace out also increases by the depth. However, if
the depth sufficiently increases such that all qubits are interleaved by some edges, then some existing edges rather
vanish by the newly generated edges. We expect that this phenomenon will loosen the decreasing rate of vertex cover
size and explain the transition of nsim (see Fig. 3 (d) of the main text) by the depth. Whereas, for the 1D case,
symplectic transform and hyperedge generation occur locally. Hence the decrease of nsim is much weaker than the
complete-graph case, and Ω( n

log(n) ) number of vertex cover is guaranteed.

IV. MORE GENERAL FRAME FORMALISM AND BORN PROBABILITY ESTIMATION

A. Wigner representation using multiple frames

In this section, we further generalize the framed Wigner function formalism by taking multiple frame functions to
represent a quantum state. In particular, we show that an arbitrary product state can be positively represented by
using multiple quadratic frame functions.

We recall that a single qubit state can be expressed by either zero frame (F = 0) or dual frame (F = a1xa1z). By
combining the phase space operators corresponding to these two frames, one can express any single qubit states by
the convex sum of these operators. Hence, if ρ is a product state, it is positively represented under a set of frames
F ≡ {b · (a1xa1z, a2xa2z, . . . , anxanz)|b ∈ Zn

2}. More precisely, for ρ =
⊗n

i=1 ρi, we express each ρi as

ρi =
∑

ui∈Z2
2

(
w0

ρi
(ui)A

0(ui) + waixaiz
ρi

(ui)A
aixaiz (ui)

)
, (40)

using eight phase space operators {A0(ui), A
aixaiz (ui)}, where ui ≡ (uix, uiz) ∈ Z2

2. Here, w0 and waixaiz are non-
negative functions and are different from the Wigner functions WF

ρ (u) in the main text. We note that summation

over phase point of w0
ρi
(ui), or w

aixaiz
ρi

(ui) solely does not give unity, but
∑

ui

(
w0

ρi
(ui) + waixaiz

ρi
(ui)

)
= 1. We also

note that these two functions cannot be obtained by inversion in Eq. (2) of the main text because we now have eight
phase point operators, which are overcomplete, and hence, their coefficients are not unique. However, we can still
efficiently find these two functions because the convex polytope by 8-phase point operators as extreme points contain
the Bloch sphere (see Ref. [2]). Hence, solving the constant-sized system of linear equations leads to the following
expression of ρ,

ρ =
n⊗

i=1

ρi =
∑
b∈Zn

2

∑
u∈Vn

(
n∏

i=1

wbiaixaiz
ρi

(ui)

)(
n⊗

i=1

Abiaixaiz (ui)

)
, (41)

where u =
⊕n

i=1(ui). From the definition,
⊗n

i=1 A
biaixaiz (ui) is an n-qubit phase point operators with a frame

function F = b · (a1xa1z, a2xa2z, . . . , anxanz). Hence, we can rewrite Eq. (41) as

ρ =
∑
F∈F

∑
u∈Vn

(
n∏

i=1

wbiaixaiz
ρi

(ui)

)
(AF (u)). (42)

Therefore, the desired Wigner function is

WF
ρ (u) =

n∏
i=1

wbiaixaiz
i (ui). (43)

Although there could not be a unique expression, the same phase point sampling protocol can be applied to the
generalized Wigner functions with multiple frames whenever they are non-negative. This is because the non-negative
function WF

ρ is a probability distribution with random variables of not only u but also F , so that we can sample

both u and F from WF
ρ (u). For this case, we say ρ is positively represented under a frame set F . Since the Wigner

function has a product form and for each i ∈ [n], we sample ui and bi from W biaixaiz
i (ui). The resulting sampling

outcome then becomes u =
⊕n

i (ui) and F = b · (a1xa1z, a2xa2z, . . . , anxanz).
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B. Generalization of weak simulation results

With the above generalization of using multiple frames representation, we can also obtain a more general statement
on the weak simulation. We will discuss this in detail in the next theorem.

Theorem 2. Suppose that we have a product state ρ =
⊗n

i=1 ρi as an input and a non-adaptive
Clifford operation U and Z-measurements. Then ρ is positively represented under a frame set F ≡
{b · (a1xa1z, a2xa2z, . . . , anxanz)|b ∈ Zn

2}. We denote a resulting frame function via the Clifford circuit starting from
Fin ∈ F as F . Also, let the I ⊂ [n] satisfies that for all Fin ∈ F , F (ax = 0,az)

∣∣
aiz=0 for i/∈IF

is zero. We then can

classically simulate |I|-number of measurements.

Proof. We start from Eq. (9). Probability to measure x ∈ Zn
2 is

Tr(|x⟩ ⟨x|UρU†) =
∑

u,Fin∈F,az∈Zn
2

1

2n
WFin

ρ (S−1(u)) (−1)(u+x)·az+Fin(S
−1(0x,az))+P (S−1(0x,az)) (44)

=
∑

u,Fin∈F,az∈Zn
2

1

2n
WFin

ρ (S−1(u)) (−1)((u+x)·az+F (0x,az)) . (45)

Now, consider measuring a subset I of qubits. The probability of measuring a marginal string x′ (with arbitrary qubit
locations) is as follows. There exists a set of vF ∈ Vn (Fin ∈ F) such that

p(x′) =
∑
x′′

Tr(|x′ ⊕ x′′⟩ ⟨x′ ⊕ x′′|UρU†) (46)

=
∑

u,Fin∈F

 ∑
az∈Zn

2

aiz=0 for i∈([n]\I)

1

2|I|
WFin

ρ (S−1(u+ vF )) (−1)((ux+(x′⊕0))·az)

 (47)

=
∑

u,F∈F
WFin

ρ (S−1((u+ vF )))
∏
i∈I

δxiuix . (48)

Therefore, we obtain the following simulation scheme given that the conditions in Theorem 2 for the final frame hold.

1. Sample a phase space point u ∈ Vn and Fin ∈ F from WFin
ρ (u).

2. Change the input frame under the given Clifford operation and obtain both final frame F and vF

3. Update u ← u′ ≡ S(u).

4. Update u← u+ vF

5. Desired outcome is a marginal string u′
x.

We can see that by Theorem 2 (i), the larger the frame set for quantum state input we represent, the fewer the
number of measurable qubits. For example, n-copies of equatorial state, |Eϕ⟩ ≡ 1√

2

(
|0⟩+ eiϕ |1⟩

)
, can have non-

negative representation by 2n-numbers of frame [2]. Whereas, the n-copies of |A⟩ = cos(θ/2) |0⟩+ ei(π/4) sin(θ/2) |1⟩
with θ = cos−1(1/

√
3) [15] need only zero frame [2] for non-negative representation. Hence, when we take equatorial

states as an input, we have, in general, fewer simulatable qubits than that for |A⟩. In other words, we can expect that
equatorial states have more computational power in non-adaptive Clifford circuits. We can see a similar conjecture in
universal computing [16]. Here, we can always make a (non-Clifford) T -gate by acting Clifford gates and measurements
to |Eπ

4
⟩ and we post-process depending on measurement outcome. However, given a quantum state |A⟩ to make a

similar non-Clifford gate, we need two copies of |A⟩ and might fail to implement depending on coherent measurement
outcome, with fairly high probability. Interestingly, for approximate simulation, there exists an algorithm that
marginally simulates a large fraction of circuits with |Eπ

4
⟩⊗n

as an input efficiently but not for |A⟩ state input [17],
which has Pauli rank 4.
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C. Born probability estimation

We consider the Born probability estimation of a quantum circuit with outcome x ∈ Zn
2 within additive error ϵ.

Suppose a given quantum state ρ is positively represented under the frame Fin. From Eq. (13), we have

Tr(UρU† |x⟩ ⟨x|) = 1

2n

∑
u∈Vn,F∈F

∑
az∈Zn

2

WFin
ρ (S−1(u+ vF ))(−1)(ux+x)·az+F (0x,az), (49)

for some vF ∈ Vn. The first method is to uniformly choose az and take an estimator,

p̂(x) =
∑

u∈Vn,F∈F
WFin

ρ (u)(−1)(S(u)x+(vF )x+x)·az+F (0x,az) =
∑

az∈Zn
2

(−1)az·x
(
Tr
(
UρU†T(0,az)

))
. (50)

This estimator can be simulated classically if WFin
ρ (u) has a product form. However, we also have another expression,

Tr(UρU† |x⟩ ⟨x|) = 1

2n

∑
az∈Zn

2

(−1)az·x
(
Tr
(
UρU†T(0,az)

))
=

1

2n

∑
az∈Zn

2

(−1)az·x
(
Tr
(
ρU†T(0,az)U

))
. (51)

Hence, we may just uniformly randomly choose az and find T ′
(0x,az)

≡ U†T(0,az)U by using the stabilizer tableau

[10], and then take an estimator p̂s(x) = (−1)az·xTr(T ′
(0x,az)

ρ). Therefore, the estimators p̂(x) and p̂s(x) have same

value for given sampled variable az. Hence, both estimators have the same mean squared error, which is,

VarPauli(x) =
1

2n

∑
az∈Zn

2

(
Tr
(
ρU†T(0,az)U

))2 − p(x)2 (52)

=
1

4n

∑
x∈Zn

2

∑
az,bz∈Zn

2

(−1)(az+bz)·x
(
Tr
(
ρU†T(0,az)U

)) (
Tr
(
ρU†T(0,bz)U

))
− p(x)2. (53)

=

∑
x∈Zn

2

p(x)2

− p(x)2 = ZU,ρ − p(x)2, (54)

where ZU,ρ ≡
∑

x∈Zn
2
p(x)2 is the so-called collision probability [8].

The above schemes do not use the probabilistic property of the Wigner function. We introduce another estimation
method by sampling phase points from the Wigner function. We enclose it in the following result.

Theorem 3. Assume ρ =
⊗n

i=1 ρi is a product state, which is positively represented under a frame set F ≡
{b · (a1xa1z, a2xa2z, . . . , anxanz)|b ∈ Zn

2}. Also, let F0 be the resulting frame via a given circuit starting from a
zero frame. Now, we assume that IF0

⊂ [n] satisfies that F0(ax = 0,az)
∣∣
aiz=0 for i/∈IF0

is a quadratic polynomial, or

has O(log(n))-sized vertex cover of subgraph of GF0 having only third-degree terms. Then there exists an efficient
algorithm for estimation of marginal measurement probability p(x′), where x′ is a target string on qubits located on

IF ′
0
. Also, averaged variance over uniform outcomes is (1−Z

(k)
U,ρ)/2

k. Hence if we uniformly randomly choose a binary

string x′, Var(x′) ≤ a(k)
2k
− p(x′)2 with probability at least

(
1− 1

a(k)

)
, where a(k) is a non-negative function of k.

Proof. We first consider the Born probability estimation of full string x ∈ Zn
2 . In the same manner as Eq.(13), we

obtain that

Tr(UρU† |x⟩ ⟨x|) = 1

2n

∑
u∈Vn,Fin∈F

∑
az∈Zn

2

WFin
ρ (S−1(u+ vF ))(−1)(ux+x)·az+F (0x,az). (55)

Now, we set the Born probability estimation algorithm of P (x) ≡ Tr(UρU† |x⟩ ⟨x|). Here’s the scheme.

1. Sample a phase space point u ∈ Vn and Fin ∈ F from WFin
ρ (u).

2. Change the input frame under the given Clifford operation and obtain both final frame F and vFin

3. Update u← S(u) and then update u← u+ vF
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4. Desired estimation value for each trial is p̂(x) ≡ 1
2n

∑
az
(−1)(ux+x)·az+F (0x,az), where F is a final frame starting

from Fin.

5. Repeat step 2 ∼ step 4 to obtain many p̂(x)’s. The final estimation will be the sample mean of those p̂(x)’s.

Unfortunately, this is not an efficient algorithm. Because at the third stage, F (0x,az) is in general of third-
order. The exact calculation is #P-Hard problem [18]. However, in the cases where the size of the vertex cover of a
hypergraph with terms of third-degree in F (0x,az) is O(log(n)), we can do this efficiently [19]. Therefore, if we do
not estimate the probability of all measurements, we can trace some qubits until the resulting frame is such a form.
This is a more relaxed condition than one of weak simulation in Section ID. If the final frames (after tracing) become
quadratic, then p̂(x) becomes an exponential sum of quadratic binary polynomials, which is efficiently calculated in
O(k3)-time [3].

For every initial second-ordered frame we sampled from, all resulting frames (after we take ax = 0) have the
same third-ordered terms. Because third-ordered terms are obtained only from phase functions of Clifford gates and
symplectic transforms, which do not raise the order of the polynomial, therefore the vertex cover problem may be
solved only once for the resulting frame starting from Fin = 0.

Now, we only see the marginal outcome string x′. The mean squared error Var(x′) is given as,

Var(x′) =
1

4k

∑
u∈Vn,Fin∈F

∑
a′
z,b

′
z

WFin
ρ (S−1(u+ vF ))(−1)(u

′
x+x′)·(a′

z+b′
z)+F (0x,a

′
z⊕0)+F (0x,b

′
z⊕0) − p(x′)2, (56)

where
∑

a′
z,b

′
z
is the sum over strings at which the same marginalization is applied as x′. Let us denote the first term

of the right side as E(p̂(x′)2). When we take the uniform average to this over binary strings x′,

E(p̂(x′)2)
x′

=
1

2k

∑
u,Fin

WFin
ρ (S−1(u+ vF )) =

1

2k
. (57)

(Note that Var(x′)
x′

= 1/2k − Z
(k)
U,ρ/2

k, where Z
(k)
U,ρ ≡

∑
x′∈Zk

2
p(x′)2.) Hence, by Markov’s inequality, when we

uniformly randomly sample x′, the probability of E(p̂(x′)2) being larger than a(k)
2k

is,

Pr

(
E(p̂(x′)2) ≥ a(k)

2k

)
≤ 2kE(p̂(x′)2)

x′

a(k)
=

1

a(k)
. (58)

We note that Var(x′) = E(p̂(x′)2) − p(x′)2. Hence if we uniformly randomly choose x′, the probability of Var(x′) ≤
a(k)
2k
− p(x′)2 is at least

(
1− 1

a(k)

)
.

Suppose that we use product state input. We need to find the final (and marginal) frame from each initial frame,
which can be sampled in O(n)-time. Moreover, all O(k2) number of coefficients of second-ordered terms in a final
(and marginal) frame can be rewritten by a boolean linear function with the argument b ∈ Zn

2 which represents the
input frame sample Fin =

∑
b∈Zn

2
biaixaiz. These functions can be found before the sampling. Therefore, the total

time for each trial is O(nk2).
Whereas, we can easily derive that from Eq. (51), VarPauli(x

′) = Z
(k)
U,ρ − p(x′)2 and calculation of p̂s(x

′) takes

O(n)-time given that T ′
(0x,a′

z)
≡ U†T(0,a′

z)
U is known.

The mean squared error is connected to the required number of samples to achieve additive estimation error ϵ

with probability larger than 1 − δ, given by O
(

Var(x)
ϵ2 log

(
1
δ

))
[20, 21]. Suppose that the input state is a product

state. Using Theorem 3, we note that for any choice of a non-negative function a(k) ≥ 1 at least 2k(1− 1
a(k) )-number

of binary strings x′ can be estimated with O
(

a(k)/2k−p(x′)2

ϵ2 log
(
1
δ

))
samples using the Wigner function approach.

In contrast, Ref. [22] requires O
(

Z
(k)
U,ρ−p(x′)2

ϵ2 log
(
1
δ

))
samples for any string x′. The total time to simulate is the

product of the sample number and the time taken to run the estimator once. From the above arguments, if the input
state is a product (by ignoring the time for the first trial) we have a time improvement for 2k(1 − 1

a(k) )-number of

strings when the collision probability Z
(k)
U,ρ ≥ O(

a(k)k2

2k
). The one of such cases is when k ∼ βn (β ∈ (0, 1), n is large)
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and the k-marginal probability distribution is far from anti-concentration, Z
(k)
U,ρ ∼

1
2αk (α ∈ (0, 1)) in which we take

improvements for 2k(1− 1
poly(k) ) number of strings.
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Bosonic quantum systems play a major role for
the design of quantum computing platforms. Most
prominently, this includes photonic quantum com-
puting as a popular proposal for real world im-
plementations of quantum computers [1–4]. The
biggest advantages of this model rely on the imple-
mentation of particle sources, detectors, and linear
optical circuits on the same integrated chips [5–8],
and access to mixed schemes for quantum error cor-
rection [9]. Bosonic systems also offer interesting
non-universal models of computation to test quan-
tum supremacy, such as boson sampling [10] and
Gaussian boson sampling [11, 12].

The characterization of quantum devices, and, in
particular, of the involved unitary gates, is a fun-
damental task in quantum information processing
[13, 14]. While this is a well-studied field for dis-
crete variable systems, a similar standing for con-
tinuous variable (CV) systems has not yet been
achieved, as the first rigorous guarantees for learn-
ing CV quantum states have been proved only very
recently [15, 16]. Tomographic protocols provide, in
principle, a complete description of experimentally
implemented gates [17, 18]. However, the number
of measurements required is beyond concrete appli-
cations [19–23]. In particular, full quantum process
tomography is not feasible in practice since it re-
quires either an unpractical number of different in-
put states [20, 21] or entangling the input state with
an ancilla [24, 25]. Moreover, standard versions of
the protocol suffer from state preparation and mea-
surement (SPAM) errors.

For bosonic systems, additional challenges arise
due to particularities of the infinite-dimensional

∗mirko.arienzo@tuhh.de

Hilbert space [19, 26]. For instance, characterization
protocols that rely on scrambling techniques via uni-
tary designs are notably challenging to implement,
since Gaussian unitaries only form a unitary 1-design
[27, 28], and, more dramatically, unitary 2-designs
for CV systems cannot exist, unless rigged Hilbert
spaces are taken into account [29]. Such issues con-
straint the characterization of quantum gates to very
specific settings, where implemented unitary opera-
tors (which may include non-Gaussian single-mode
unitaries) are only benchmarked w.r.t. the input en-
sembles [30].

For discrete variable systems, randomized bench-
marking (RB) [31–40] is the most widespread family
of protocols for the estimation of average gate fideli-
ties. Its popularity is due to its robustness against
SPAM errors and its rather low demands on the
measurement effort [41]. Recent efforts led to gen-
eral guarantees for RB protocols with finite or com-
pact groups [42, 44–47]. This generality is important
when considering RB for CV systems, since unitary
2-designs, as in the standard formulation of RB, are
not available [27–29]. For general groups, the RB
signal consists of a linear combination of exponential
decays, labelled by the relevant irreducible subrepre-
sentations (irreps) [40, 42–44]. In the CV setting, we
however expect many irreps and isolating the decay
rates is likely infeasible in practice [44, 47]. These
issues can be resolved using the recently proposed fil-
tered RB protocol [42, 44, 47], which isolates contri-
butions associated to individual irreps by performing
a suitable post-processing of the data.

In this work, we introduce the first RB protocol
for bosonic systems: bosonic passive RB (or passive
RB for simplicity). Our protocol benchmarks pas-
sive (Gaussian) transformations – identified with the
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unitary group over m modes U(m) [48]. We perform
the necessary representation-theoretic computations
and evaluate relevant moments of U(m) to exploit
the general guarantees of filtered RB [47]. From
this perspective, Gaussian input states and measure-
ments seems unfavorable due to infinitely many rel-
evant irreps and thus decay rates. Instead, we con-
sider experiments that start with the preparation of
a Fock state ρ = |n⟩⟨n|, and end with either a parti-
cle number resolving (PNR) measurement or a bal-
anced heterodyne measurement at the end of each
mode.

Our passive RB protocol. Repeat the follow-
ing steps L times, for different sequence lengths
m ∈ M: Prepare ρ = |n⟩⟨n|, and apply pas-
sive transformations g1, . . . , gm drawn i.i.d. from the
Haar probability measure on U(m). Lastly, mea-
sure the output state, and store the outcome x ∈ Ω
together with the sampled unitaries. In the post-
processing, we compute the estimator F̂λ(m) =
1
L

∑L
i=1 fλ(x

(i), g
(i)
1 · · · g(i)m ) where fλ is the filter

function defined as

fλ(x, g) :=
1

sλ
⟨x |ω(g) ◦ Pλ(ρ)|x⟩ , (1)

where

sλ =
1

dimλ

∫

Ω
dx ⟨x |Pλ(|x⟩⟨x|)|x⟩ . (2)

Here, ω is the representation of U(m) on density op-
erators and Pλ is the projector onto an irrep λ of
interest. Fit the data (m, F̂λ(m))m∈M to an expo-
nential model Aλφ

m
λ and report the decay rates φλ,

which are a measure of the quality of the implemen-
tation [44, 47].

Importantly, the choice of ρ ensures that we can
restrict the representation of U(m) to the invariant
subspace of n particles. Hence, we consider the rep-
resentation ωM

n := τmn (·)τm†
n , where τmn is the to-

tally symmetric irrep of U(m) supported on the n-
particle subspace. We show that ωM

n decomposes as
ωM
n =

⊕n
k=0 λk, where all λk are distinct, λ0 ≡ 1

is the trivial irrep and λ1 ≡ Ad is the adjoint irrep.
The proof is based on an iterative procedure, using
Young diagrams of τmn and its dual, to compute the
decomposition of ωm

n for arbitrary n’s and m’s via
Littlewood-Richardson’s rules [49].

Main results. The general results of the fil-
tered RB framework [47] directly guarantee that
the expected signal Fλ(m) = E[F̂λ(m)] is well-
approximated by an exponential decay, Fλ(m) ≈

Aλφ
m
λ . In particular, the approximation error de-

cays exponentially in m (and faster than φm
λ ). From

the discrete variable setting, we expect that already
very short sequences are sufficient to suppress this
error and expose the decay. A crucial step in the
post-processing is the evaluation of the filter func-
tion (1). Its computation is generally a hard prob-
lem, as it can be reduced to the computation of per-
manents or Hafnians, which lie at the heart of the
complexity of (Gaussian) boson sampling.

Theorem 1. Consider an input state ρ = |n⟩⟨n|
and either PNR or balanced heterodyne measure-
ments. Then, we can evaluate the filter function (1)
as a linear combination of permanents or Hafnians,
respectively.

We prove this result by applying a generalized
Clebsch-Gordan decomposition to ωm

n ≃ τmn ⊗ τ̄mn ,
resulting in an explicit block-diagonalization of ωm

n

[50, 51]. The projection onto an irrep λ then selects
the relevant terms in the Clebsch-Gordan decompo-
sition. Similarly, sλ in Eq. (1) can be evaluated in
terms of Clebsch-Gordan coefficients.

For the sample complexity of passive RB we
can use Chebyshev’s inequality to ensure |F̂λ(m) −
Fλ(m)| < ϵ with probability 1 − δ given L ≥
ϵ−2δ−1E[f2

λ ] samples. Using results in Ref. [47] we
can reduce the computation of E[f2

λ ] to the noiseless
second moment.

Theorem 2 (Variance bound). Assume that the in-
put state of passive RB is a Fock state |n⟩ and we use
either PNR or balanced heterodyne measurements,
and the SPAM noise is non-malicious. Then

E[f2
λ ] ≤ E[f2

λ ]ideal =
C
s2λ

, (3)

where C is a suitable linear combination of Clebsch-
Gordan coefficients.

The proof of this result relies on expressing the
second moment E[f2

λ ]ideal as a suitable integral of
the representations λ⊗2 and ωm

n over U(m) [40, 47].
Schur’s lemma then implies that the non-trivial con-
tributions to this integral are given by the irreducible
representations (irreps) of λ⊗2 which are also con-
tained in ωm

n . We determine these irreps which al-
lows us to finally write E[f2

λ ]ideal in terms of suitable
Clebsch-Gordan coefficients.

Finally, in the case m = 2 and PNR mea-
surements, the latter admits a bound of the form
E[f2

λk
] = O(d2λn

2). The latter upper bound can also
be generalized to m > 2, by taking into account
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the additional multiplicities appearing in this case.
However, we expect that these bounds are very loose
and the variance is much smaller in practice.
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Abstract. Randomized benchmarking (RB) is the most commonly employed protocol for the char-
acterization of unitary gates in (discrete variable) quantum circuits due to its reasonable experimental
requirements and robustness against state preparation and measurement (SPAM) errors. In this work,
we introduce the first RB protocol for passive Gaussian transformations based on the recently developed
filtered RB framework by Heinrich et al. [1]. We suggest a setting consisting of a Fock input state and
either particle number resolving or heterodyne detectors. We provide a detailed procedure to post-process
the experimental data and derive an analytical formula for the sampling complexity.

Keywords: bosonic randomized benchmarking, passive Gaussian transformations, LOP.

1 Introduction
Bosonic quantum systems play a major role for the

design of quantum computing platforms. Most promi-
nently, this includes photonic quantum computing as a
popular proposal for real world implementations of quan-
tum computers [2–7]. The biggest advantages of this
model rely on the implementation of particle sources, de-
tectors, and linear optical circuits on the same integrated
chips [8–11], and access to mixed schemes for quantum
error correction [12]. Bosonic systems also offer interest-
ing non-universal models of computation to test quantum
supremacy, such as boson sampling [13] and Gaussian bo-
son sampling [14–18].

The characterization of quantum devices, and, in par-
ticular, of the involved unitary gates, is a fundamental
task in quantum information processing [19, 20]. While
this is a well-studied field for discrete variable systems,
a similar standing for continuous variable (CV) systems
has not yet been achieved, as the first rigorous guarantees
for learning CV quantum states have been proved only
very recently [21, 22]. Tomographic protocols provide, in
principle, a complete description of experimentally imple-
mented gates [23, 24]. However, the number of measure-
ments required is beyond concrete applications [25–29].
In particular, full quantum process tomography is not
feasible in practice since it requires either an unpractical
number of different input states [26, 27] or entangling the
input state with an ancilla [30, 31]. Moreover, standard
versions of the protocol suffer from state preparation and
measurement (SPAM) errors.

For bosonic systems, most challenges can be attributed
to the particularities of the infinite-dimensional Hilbert
space [25, 32]. For instance, characterization protocols
that rely on scrambling techniques via unitary designs are
notably challenging to implement, since Gaussian uni-
taries only form a unitary 1-design [33, 34], and, more

∗mirko.arienzo@tuhh.de

dramatically, unitary 2-designs for CV systems cannot
exist, unless rigged Hilbert spaces are taken into ac-
count [35]. Such issues constraint the characterization
of quantum gates to very specific settings, where im-
plemented unitary operators (which may include non-
Gaussian single-mode unitaries) are only benchmarked
w.r.t. the input ensembles [36].

For discrete variable systems, randomized benchmark-
ing (RB) [37–46] is the most widespread family of pro-
tocols for the estimation of average gate fidelities. Its
popularity is due to its robustness against SPAM errors
and its rather low demands on the measurement effort
[47]. The standard RB protocol is as follows: To a fixed
initial state, apply a sequence of Haar-random (Clifford)
unitaries, followed by a final inversion gate cancelling the
action of the entire sequence. Then, the success probabil-
ity of restoring the initial state decays exponentially with
the length of the sequence, and the decay rate is a proxy
for the average gate fidelity of the gate set. However,
many variations of this theme exist.

Recent efforts led to general guarantees for RB proto-
cols with finite or compact groups [1, 48–51]. This gener-
ality is important when considering RB of CV systems,
since unitary 2-designs, as in the standard formulation
of RB, are not available. However, these protocols still
suffer from two crucial problems: First, the computation
and experimental implementation of the inversion gate
is generally challenging. Second, it is known that the
RB signal consists of a linear combination of exponential
decays, in correspondence with the relevant irreducible
subrepresentations (irreps) of the used group [49, 52].
Isolating the decay rates is already difficult in practice
if more than a few irreps are involved [1, 49], and may
become impossible in the CV setting. To resolve these
issues, filtered RB has been recently proposed [1, 48, 49].
This protocol omits the inversion gate and instead per-
forms a suitable post-processing of the data. During the
post-processing, contributions associated to individual ir-
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reps can be isolated in a SPAM-robust way, allowing to
handle compact groups with many irreps.

In this work, we introduce the first RB protocol for
bosonic systems: bosonic passive RB (or passive RB for
simplicity). Our protocol benchmarks passive (Gaussian)
transformations and allows to deduce statements about
their average quality. We consider experiments where the
input state is a Fock basis state and analyze two common
measurement scenarios: Either the total number of par-
ticles is measured in each mode with a particle number
resolving (PNR) detector, or each mode is measured with
a (balanced) heterodyne detector. In these cases, passive
RB resembles either boson sampling or Gaussian boson
sampling experiments [13–15]. Arguably, the simplest
experimental setting would instead involve Gaussian in-
put states and measurements. In this case, however, we
encounter infinitely many relevant irreps and thus decay
rates, and it is unclear whether a meaningful analysis is
possible.

By performing the necessary representation-theoretic
computations, we can then rely on the general frame-
work of filtered RB [1]. In particular, we derive explicit
formulas for the so-called filter function used in the clas-
sical post-processing of the experimental data. Moreover,
we give exact expressions and bounds on the variance of
our estimators, thereby characterizing the sampling com-
plexity of our protocol.

The classical post-processing essentially involves the
simulation of (Gaussian) boson sampling experiments.
This is akin to the discrete setting which requires the sim-
ulation of random circuits [1, 53]. Both settings thus in-
volve computationally hard problems which, generically,
cannot be avoided. However, specific choices of the initial
Fock state may help to reduce the computational effort
of the classical post-processing [54].

The remainder of this work is structured as follows: In
Section 2 we highlight our main results. In particular, in
Section 2.2 we spell out passive RB in full details, and dis-
cuss the different experimental settings. In Section 2.3 we
show our performance guarantees including results on the
sampling complexity for both PNR and heterodyne mea-
surement schemes. In Section 3 the technical tools are
introduced and Section 4 is devoted to the technical part
of this manuscript. Section 4.1 is dedicated to the main
technical result, i.e. we show the decomposition into ir-
reps of the representation of passive transformations act-
ing on states with a fixed number of particles. This result
is used to isolate the signals, and is the main tool from
which the general form of the post-processing procedure
follows, in Section 4.2. Finally, in Section 4.3, we provide
analytical expressions for the optimal sample complexity
of filtered RB with bunched input states. Similar results
in a setting with heterodyne measurements are discussed
in Appendix H.

2 Main results
In the following, we introduce a scalable protocol for

benchmarking Gaussian unitaries that preserve the total
number of bosons of a quantum system, referred to as

passive transformations from here on. We discuss dif-
ferent experimental settings which are commonly imple-
mented within the framework of CV systems. In partic-
ular, we argue that Gaussian probe states and measure-
ments impose additional challenges on RB-like experi-
ments due the presence of an infinite number of irreps.
As a consequence, it is unclear whether a meaningful RB
experiment can be formulated on their basis. In con-
trast, using Fock basis states (or measurements) directly
lead to a well-behaved protocol for the characterization
of passive unitaries.

2.1 Notation
We consider a bosonic system of m ∈ N modes de-

scribed by a set of pairs of bosonic field operators
{a†k, ak}mk=1, where ak and a†k are the k-th annihilation
and creation operators, respectively, which satisfy the
canonical commutation relations (CCRs)

[ak, a
†
l ] = δk,l , [ak, al] = [a†k, a

†
l ] = 0 , k, l = 1, . . . ,m .

Here, δk,l is the usual Kronecker delta. Such a system
is described by the Fock-Hilbert space Fm :=

⊕∞
n=0 Hm

n ,
where Hm

n is the subspace of n bosons distributed over
m modes spanned by the Fock states

|n⟩ ≡ |n1, . . . , nm⟩ :=
m∏

k=1

1√
nk!

a†nk

k |0⟩ , (1)

where |n| := ∑m
i=1 ni = n and |0⟩ ≡ |0, . . . , 0⟩ denotes

the vacuum state of m decoupled one-dimensional har-
monic oscillators [55]. We shall also consider coherent
states, defined as |α⟩ = e−|α|2/2∑∞

n=0
αn
√
n!
|n⟩ for a single

mode, with a straightforward extension to the multimode
setting. The set of passive transformations is the group
of unitary operators on Fm that leave the total number
of particles invariant. These are exactly the unitaries
which induce a transformation of the bosonic operators
as ak 7→∑m

l=1 Ulkal for a unitary matrix U = (Ulk)
m
l,k=1.

Hence, the group of passive transformations can be iden-
tified with the unitary group U(m) [56]. Practically, these
can also be thought as multimode interferometers, which
can be decomposed in quadratically many two-modes in-
terferometers and phase shift transformations only [6, 58–
61].

2.2 The passive randomized benchmarking pro-
tocol

The passive RB protocol is based on the filtered RB
protocol [1, 48, 49], which consists of a data collection
phase and a post-processing phase. We briefly state the
protocol and justify it afterwards.

Description of the protocol. The passive RB proto-
col is based on the filtered RB protocol [1, 48, 49], which
consists of a data collection phase and a post-processing
phase. We briefly state the protocol in the bosonic case.

(I) Data collection. We propose to use a fixed num-
ber state ρ = |n⟩⟨n| as input and perform particle
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number resolving (PNR) measurements described
by the positive operator-valued measure (POVM)
{|x⟩⟨x|}x∈Nm . For different sequence lengths l ∈
L, repeat the following steps N times,

(i) Prepare the state ρ.

(ii) Apply passive transformations g1, . . . , gl
drawn i.i.d. from the Haar probability
measure on U(m).

(iii) Measure the output state and store the out-
come together with the sampled unitaries.

(II) Post-processing. Assuming the data
{(x(i), g

(i)
1 , . . . , g

(i)
l )}Ni=1 has been gathered,

compute the following mean estimator of a later-
to-be-defined filter function fλ, parametrized by
suitable irreducible representations (irreps) λ of
U(m):

F̂λ(l) =
1

N

N∑

i=1

fλ(x
(i), g

(i)
1 , . . . , g

(i)
l ) . (2)

We refer to the data series (l, F̂λ(l))l∈L as the (fil-
tered) RB signal. Finally, perform an exponential
fit according to the model F̂λ(l) = Aλφ

l
λ to extract

the decay rates {φλ}λ.

The reasons for our choice of initial state and measure-
ments are laid out in the discussion below, and possible
variations are discussed at the end of this subsection (in
particular Gaussian states and measurements).

We would like to emphasize that Haar-random sam-
pling from U(m) can be substituted by any distribution
which converges sufficiently fast to the Haar measure [1].
For the main part of this paper, we resort to the Haar
measure to simplify the presentation.

Decay rates and fidelities. The decay rates can be
combined into an average performance measure for pas-
sive transformations on the n-particle subspace using the
formula [49]

F = (dimHm
n )−2

∑

λ

dλφλ , (3)

where the sum runs over all relevant irreps λ with di-
mensions dλ, see Section 2.3. Although commonly done,
we remind the reader that caution is advised if F is in-
terpreted as the average entanglement fidelity of passive
transformations. This is due to the inherent gauge free-
dom of RB, see Refs. [44, 49] for a detailed discussion.
In particular, whether such an interpretation is justified
or not cannot be deduced from RB results alone. We
take the point of view of Ref. [49] in that RB decays
rates and F in Eq. (3) should be regarded as quanti-
ties in the own right which serve as a benchmark for the
average quality of the used unitaries. Besides the men-
tioned interpretational issues, RB decay rates for discrete
variable systems are usually identified with average gate
fidelities by a suitable affine transformation of Eq. (3).

The concept of average gate fidelity is however not mean-
ingful in the CV context due to divergent integrals in the
definition. Nevertheless, the entanglement fidelity can
still be defined for quantum channels restricted to finite-
dimensional subspaces.

2.2.1 Discussion of the protocol
In the following, we justify the made choices based on

the blueprint for filtered RB [1]. First, we identify the
relevant unitary representation ωm

n of the group U(m),
which describes the ideal action of the unitaries as quan-
tum channels. ωm

n is called the reference representation
in the RB literature and its irreps will play a central role.
While the reference representation in the discrete setting
is typically set as ω(g) = Ug( · )U†

g , where g 7→ Ug is
the defining representation [1], there is a richer plethora
of representations for CV systems. Moreover, this choice
may also be related to the choice of initial state and mea-
surement. In particular, the most straightforward –and
experimentally simplest– RB protocol would involve an
entirely Gaussian experiment with Gaussian state and
measurement (the CV analogue of the usual stabilizer
setting in discrete variables). In this case, the reference
representation is however ill-behaved for the following
reason: Any passive transformation can be described on
Fm by a unitary representation τm : U(m) → U(Fm),
where U(Fm) is the group of unitary operators on Fm.
Since U(m) is compact, τm is completely reducible, and
decomposes into infinitely many finite-dimensional irreps
acting on the boson number subspaces [62]. Similarly,
the reference representation ω ≡ τm( · )τm† decomposes
into infinitely many irreps, which are not all supported
on the number subspaces. This means we find infinitely
many decay rates (each associated to one irrep) and it is
unclear how to truncate those with a regularization ar-
gument, as the irreps lack a clear physical interpretation.
On top of that, the decomposition of ω is not multiplicity-
free1, which complicates the post-processing and affects
its numerical stability [49].

Before moving forward, we comment on the choice of
the ensemble: Broadly speaking, active Gaussian trans-
formations play a fundamental role in CV systems, for
instance in the implementation of Gaussian boson sam-
pling experiments [14, 15, 63]. However, benchmarking
non-passive transformations pose many challenging is-
sues, that head to the group of Gaussian transformations
–that corresponds to the symplectic group Sp(2m,R) on
m modes– being non-compact. This would imply that the
general framework of filtered RB cannot be applied as it
is, since it is specifically designed to deal with compact
groups [1], and a generalization to the case of locally com-
pact groups would be necessary. In particular, this would
rise many technical challenges. Among them, and most
prominently, one can find the non-existence of a probabil-
ity Haar measure (since, by standard results in harmonic
analysis, the Haar measure of a non-compact group can-
not be finite) not clear to deal with. Similarly, the action

1Note that ω restricted to B(Hm
n ) is equal to ωM

n and by Eq. (4),
each λk appears in all ωM

n for n ≥ k.

903



of active transformations is determined by the full meta-
plectic representation of Sp(2m,R), which decomposes
into infinite dimensional irreps only [64]. A priori, it is
not clear how the conjugate action of such representa-
tion decomposes into irreps. On the other hand, naive
extensions of standard RB to the group of active trans-
formations will probably lead to experimental data which
are too hard to analyze, as the contribution coming from
different irreps would be ‘entangled’ and isolating it will
likely be rather hard.

Hence, we consider an experiment where the initial
state is supported on a finite-dimensional subspace of
Fm such that there are finitely many relevant irreps of
U(m). More precisely, we assume that an arbitrary Fock
basis state can be prepared to avoid the problem of mul-
tiplicities (as e.g. for core states). Assuming the input
state is |n⟩, with n =

∑M
j=1 nj , any passive transforma-

tion acts on |n⟩ according to the totally symmetric irrep
τmn : U(m) → U(Hm

n ). As we show in Section 4.1, the
reference representation ωM

n := τmn ( · )τm†
n is multiplicity-

free, and we find

ωM
n =

n⊕

k=0

λk , λ0 ≡ 1 , λ1 ≡ Ad , (4)

where 1 denotes the trivial irrep and Ad the adjoint rep-
resentation of U(m).

For our protocol, we consider two possible measure-
ment settings. The first one consists of particle number
resolving (PNR) detectors, implementing the POVM de-
scribed by projectors onto Fock states, i.e. {|k⟩⟨k|}k∈Nm

[65, 66]. In this case, the experiment resembles -up to
the choice of the input state and the POVM element-
the Boson Sampling (BS) experiment originally proposed
by Aaronson and Arkhipov [13]. In the second setting –
discussed in Appendix H– we consider a balanced het-
erodyne measurement at the end of each mode, formally
described by the coherent states POVM {|α⟩⟨α|}α∈Cm .
This setup is similar to a Gaussian Boson Sampling
(GBS) experiment [14, 15, 67].

Finally, we introduce the filter function which iso-
lates the exponential decays for each irrep λ = λk in
the post-processing of the collected data. Let Pλ be
the projector on the carrier space of λ and let dλ be
its dimension. Then, given the measurement channel
M(A) :=

∫
Ω
dx ⟨x |A|x⟩|x⟩⟨x|, we define the filter func-

tion as [1]

fλ(x, g) := s−1
λ ⟨x |ωm

n (g)† ◦ Pλ(ρ)|x⟩ , (5)

with
sλ :=

1

dλ
Tr[PλM] ∈ R≥0 . (6)

Notably, sλ can be zero if the measurement POVM aug-
mented by passive transformations is not information-
ally complete. In this case, we formally set fλ = 0 as
there will be no contribution from this irrep and no post-
processing is necessary.

A remaining open question is how to choose the input
state ρ = |n⟩⟨n|. This choice influences the overall mag-
nitude of the RB signal since the latter scales with the

overlap of the initial state with the irrep of interest [1].
For RB on discrete variable systems, the input state is
typically chosen to be the all-zeros state |0n⟩, and, in fact,
the choice of input state plays a minor role in this case.
The underlying reason is that we typically have a single
non-trivial irrep with respect to which all states are essen-
tially equivalent. For CV systems, this is a more subtle
question, as many more non-trivial irreps exist, and it
seems that there is no clear preferred choice in this case.
As the protocols is – beyond the scaling with overlap –
independent of the choice of initial state, the input state
should be chosen by practical considerations. Generating
higher Fock states can be a challenging task [68–70], and
it seems that Fock states with n ≤ m photons evenly
distributed across all modes may be preferable from a
practical point of view.

2.3 Performance guarantees
The filtered RB framework [1] implies a number of

guarantees for the passive RB protocol under the imple-
mentation map model. In the latter, the noise is modeled
by replacing the representation ωM

n with an implementa-
tion map ϕM

n on U(m), which takes values in the set of
quantum channels on HM

n . This model allows for highly
gate-dependent noise, which, however, needs to be sta-
tionary and Markovian.

2.3.1 Signal form
Let us define the expected signal as Fλ(m) :=

E[F̂λ(m)]. In the absence of noise, the expected signal
is simply constant and of the form [1]:

Fλ(m) =

{
Tr [ρPλ(ρ)] if sλ ̸= 0 ,

0 else .
(7)

In the presence of noise, Fλ(m) is no longer constant,
but well-approximated by an exponential decay:

Proposition 1 ([1, Thm. 8], informal). Suppose that the
noise is sufficiently weak (in a precise sense). Then, we
have

Fλ(m) ≈ Aλφ
m
λ , (8)

up to an additive error α ≥ 0 which is suppressed expo-
nentially in m, and Aλ ∈ R, φλ ≤ 1.

In fact, the filtered RB framework [1] gives some more
precise conditions on the error suppression in the ex-
pected signal. In particular, it is sufficient to choose the
sequence length as

m ≥ log
dλ
sλ

+ 2 log
1

α
+ 4 , (9)

where dλ is the dimension of the irrep and sλ is as
in Eq. (5). Later in Sec. 4, we give an explicit for-
mula for sλ in terms of Clebsch-Gordan coefficients of
SU(m), however, it is generally difficult to give bounds
which are better than s−1

λ = O(dλ). We later show that
dλk

≤
(
k+m−1

k

)2
(c.f. Proposition 5), which would yield

sequences of length O(k log k+m−1
k ). However, we expect
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that none of these bounds is particularly tight (in fact,
Eq. (9) is not tight in the first place [1]). Based on the
performance of discrete RB, we expect that already very
short sequences (of constant length) are in fact sufficient.

2.3.2 Evaluation of the filter function
At the heart of the post-processing phase lies the eval-

uation of the filter function (5). Clearly, for Gaussian
input state and measurements, the latter can be simu-
lated in polynomial time. However, such a setting may
not be favorable in the context of RB as argued in the
last section. Instead, we consider the setting described in
Section 2.2, involving Fock input states and either PNR
or balanced heterodyne measurements. Then, we show
the following:

Theorem 2 (filter function – informal). Consider an
input state of the form ρ = |n⟩⟨n| and either PNR or
balanced heterodyne measurements. Then, the filter func-
tion (5) is a suitable linear combination of permanents or
Hafnians, respectively.

Note that the computational complexity of evaluating
permanents (or Hafnians) is central to the complexity-
theoretic arguments for boson sampling (and Gaussian
boson sampling). In fact, even approximating any of the
two is known to be computationally hard [13–15, 71].
Nevertheless, these quantities can be computed efficiently
in some scenarios [54, 67, 72–77].

We prove Theorem 2 in Section 4.2. Here, we briefly
sketch the central steps: Note that the reference represen-
tation can be written as ωm

n ≃ τmn ⊗ τ̄mn , where τ̄mn is the
dual (or contragredient) representation of τmn . The irrep
decomposition of τmn ⊗ τ̄mn has a natural interpretation
as the generalization of the Clebsch-Gordan decomposi-
tion for the sum of two angular momenta in quantum
mechanics [78]. Informally, there exists a unitary matrix
CG –the Clebsch-Gordan matrix– that block-diagonalizes
ωm
n [79], such that

|n,n⟩ =
∑

λ

∑

M∈λ

CM
n,n̄|M⟩ , (10)

where n̄ denotes the dual of n in a sense to be specified
later, λ is an irrep of ωm

n , M ’s form a basis in which
ωm
n is block diagonal, and CM

n,n̄ is a (generalized) SU(m)
Clebsch-Gordan coefficient. We refer to Section 3 for a
discussion on dual vectors and the Clebsch-Gordan series
for SU(m) and to Section 4.1 for the irrep decomposition
of ωm

n .
Then, the projection onto a specific irrep λ acts by

eliminating all terms in Eq. (10) which do not correspond
to the filtering irrep λ . In a similar fashion, the coeffi-
cient sλ in Eq. (5) can be evaluated – for a fixed measure-
ment setting – in terms of Clebsch-Gordan coefficients.

In general, the result of Theorem 2 does not guaran-
tee that the filter function can be computed efficiently.
This is due to the fact that any basis vector in the cou-
pled basis generally decomposes into a linear combination
of essentially all Fock states in Hm

n , using the inverse

Clebsch-Gordan matrix. While some terms may be sim-
ulated efficiently, there is no hope that, in general, all in-
ner products can be evaluated efficiently, as, for instance,
bosons may be scattered across all modes, making simu-
lation algorithms scale exponentially with the number of
bosons [54].

In the case of PNR measurements, we give an alterna-
tive expression for fλ in Section 4.2 as a linear combina-
tion of matrix elements of the irrep λ. In the bosonic re-
alization of the Lie algebra su(m), these also correspond
to permanents [81], however, of a different dimension.

2.3.3 Sampling complexity
Finally, we discuss the sample complexity of pas-

sive RB, i.e. the number of samples needed to guaran-
tee that the estimator F̂λ(m) is ϵ-close to its expected
value Fλ(m) with high probability. Recall from Eq. (2)
that F̂λ(m) is a mean estimator for the filter function
fλ. Since the latter is only poorly bounded, we in-
tend to compute the variance Var[F̂λ(m)] = Var[fλ]/L
(here the variance is still taken over length-m sequences).
Then, we can use Chebyshev’s inequality to ensure
|F̂λ(m) − Fλ(m)| < ϵ with probability 1 − δ given L ≥
ϵ−2δ−1 Var[fλ] samples.

In general, analyzing the variance Var[fλ] can be quite
cumbersome, as the underlying probability distribution
is given by Born probabilities involving the noisy input
state, the noisy transformations, and the noisy measure-
ments. In the filtered RB framework [1] it is shown
that –as long as the SPAM-noise is non-malicious– this
problem can be reduced to analyzing the second moment
E[f2

λ]ideal in the ideal, noiseless case. In other words,
the presence of noise cannot decrease the efficiency of
filtered RB. Here, non-malicious means that the over-
all effect of SPAM noise is to reduce the magnitude of
the signal, measured by the SPAM constants.2 Using
Var[fλ] ≤ E[f2

λ], the following result then establishes a
bound on the sampling complexity of passive RB:

Theorem 3 (Second moment of fλ – informal). As-
sume that the input state is a Fock state |n⟩, we use
either PNR or balanced heterodyne measurements, and
the SPAM noise is non-malicious. Then, we have

E[f2
λ] ≤ E[f2

λ]ideal =
C
s2λ

, (11)

where C is a suitable linear combination of Clebsch-
Gordan coefficients.

The proof of Theorem 3 is postponed to Section 4.3
for PNR measurements and to Appendix H for Gaussian
measurement. It relies on expressing the second moment
E[f2

λ]ideal as a suitable integral of the representations λ⊗2

and ωm
n over the compact group G [1, 46]. Schur’s lemma

then implies that the non-trivial contributions to this in-
tegral are given by the irreps of λ⊗2 which are also con-
tained in ωm

n . We determine these irreps which allows
2This is necessary as specially engineered noise can drastically

change the behavior of the RB signal, for instance by relabeling
the measurement outcomes. Similar assumptions can be found
throughout the RB literature [47, 82].
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us to finally write E[f2
λ]ideal in terms of suitable Clebsch-

Gordan coefficients.
As we generally have s−1

λ ≤ dλ, we have a naive upper
bound E[f2

λk
] = O(s−2

λk
). We however expect that these

bounds are very loose and the variance is much smaller
in practice.

3 Technical preliminaries
In this section, we review the main technical tools used

in the proofs of our main results, shown in Section 4.
First, we review irreps of SU(m) and the Clebsch-Gordan
decomposition in terms of Gelfand–Tsetlin patterns, then
we briefly review additional technical details concerning
filtered randomized benchmarking.

3.1 Representations of SU(m)

Let n ≥ 0 be a non-negative integer and let λ =
(λ1, . . . , λm) be a partition of n, i.e. λ1 ≥ λ2 ≥ · · · ≥
λm ≥ 0 with

∑m
i=0 λi = n. Any such partition can be

identified with a Young diagram, namely a collection of
boxes arranged in left-justified rows with a weakly de-
creasing number of boxes in each row, where the i-th row
contains λi boxes, e.g.

(12)

corresponds to λ = (5, 3, 2). A semi-standard Young
tableaux is a filling of a Young diagram with entries taken
from any totally ordered set (here, N) such that the en-
tries are weakly increasing across each row and strictly
increasing down each column. For instance,

1 1 2 2 3

2 2 3

3 4

, 1 1 1 1 1

2 2 3

3 4

(13)

are semi-standard Young of shape λ = (5, 3, 2).
By the theorem of the highest weight [84, Thms. 9.4

and 9.5], Young diagrams uniquely determine irreps of
SU(m) up to constant shifts, namely, (λ1, . . . , λm) and
(λ1+c, . . . , λm+c) identify the same irrep for any integer

c. Therefore, as the rank of SU(m) is m−1, by convention
we assume λm = 0 without loss of generality. In the
following we will not distinguish between Young diagrams
and the corresponding irreps, unless otherwise specified.

For a given irrep λ, the dual (or contragredient) rep-
resentation λ∗ defined as λ(g) := λ(g−1)T for each
g ∈ SU(m) is also irreducible, see [84, Prop 4.22].
In a fixed orthonormal basis, we also have λ∗ ∼= λ̄,
where λ̄(g) := λ(g) for each g ∈ SU(m) denotes the
complex conjugate representation of λ. For any irrep
λ = (λ1, . . . , λm), this implies λ∗ is identified by the dual
Young diagram λ̄ := (λ1−λm, λ1,−λm−1, . . . , λ2−λ1, 0).
More practically, λ̄ is constructed by completing λ to a
(m−1)×λ1 rectangle-shaped Young diagram: The newly
added boxes form λ̄. For instance,

=⇒ ,

(14)
are dual Young diagrams in SU(5).

For a fixed irrep λ of SU(m), semistandard Young
tableaux of shape λ label an orthonormal basis of λ,
sometimes referred as the Weyl basis. For instance, the
Young tableaux

1 1
2

,
1 1
3

,
1 2
2

,
1 2
3

,

1 3
2

,
1 3
3

,
2 2
3

,
2 3
3

.

identify an orthonormal basis for the SU(3) adjoint irrep
λ = (2, 1).

3.1.1 Gelfand-Tsetlin patterns
A more convenient way of labeling basis vec-

tors for any irrep λ = (λ1, . . . , λm) of SU(m) is by
Gelfand–Tsetlin (GT) patterns. A GT pattern M
of shape λ and length m is represented by a trian-
gular table with m rows, the i-th row containing
i integers (counting from the bottom to the top)

M =




M1,m M2,m ... Mm−1,m Mm,m

M1,m−1 M2,m−1 ... Mm−2,m−1 Mm−1,m−1

. . .
...

...
M1,2 M2,2

M1,1


 , (15)

where Mi,m = λi for every i ∈ [m] (and, in particular,
Mm,m = 0 by convention) and the entries satisfy the
interlacing or inbetweenness condition:

Mi,j+1 ≥ Mi,j ≥ Mi+1,j+1 (16)

for every i ∈ [m− 1] and j ∈ [m− 1]. We denote the set
of GT patterns of shape λ by GT(λ).

An orthonormal basis for λ –referred as the Gelfand–
Tsetlin basis– is given by state vectors {|M⟩}, where
M is a valid GT patterns M with top row M1 ≡
(M1,1, . . . ,M1,m) = λ. Hence, the dimension of λ is equal
to the number of such states, for which the following for-
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mula holds:

dimλ =
∏

1≤i≤j≤m

(
1 +

Mi,m −Mj,m

j − i

)
. (17)

In terms of the GT basis, the highest weight vector of λ is
identified by the pattern maximizing the inbetweenness
conditions, namely

M0 =




M1,m M2,m ... Mm−1,m Mm,m

M1,m M2,m ... Mm−2,m Mm−1,m−1

. . .
...

...
M1,m M2,m

M1,m


 (18)

(likewise, the lowest weight vector of λ is obtained by
minimizing the inbetweenness conditions).

GT patterns are in one-to-one correspondence with
semi-standard Young tableaux. In fact, for a given Young
tableau T of shape λ, the shape of the corresponding GT
pattern M is the same shape as T and the Mj,k-th entry
of M is given by the number of entries in the j-th row of
T which are less or equal than k. Conversely, given a GT
pattern M of shape λ, the shape of the corresponding
Young tableau T is determined by the first row of M and
mj,k −mj,k−1 is the number of k’s in the j’th row of T .
Throughout this work, we assume that all illegal coeffi-
cients are set to 0. For instance, the Young tableaux in
Eq. (13) corresponds to the following GT patterns:

(
5 3 2 0
5 3 2
4 2
2

)
,

(
5 3 2 0
5 3 1
5 2
5

)
, (19)

For a given GT pattern M , the weight of |M⟩ is a
(m − 1)-ple defined as wM := (w

(M)
1 , . . . , w

(M)
m−1), where

each w
(M)
i can be determined by M :

w
(M)
j =

j∑

i=1

Mi,j −
1

2

[
j−1∑

i=1

Mi,j−1 +

j+1∑

i=1

Mi,j+1

]
, (20)

which generalizes the notion of the magnetic quantum
number m for SU(2) in the quantum theory of angular
momentum to arbitrary many modes.

Notably, unlike the SU(2) case, weights do not uniquely
identify the weight vectors, as the associated weight
spaces may not be 1-dimensional [98–100]: Consider the
tableau weight wT = (wT

1 , . . . , w
T
m), where T is the semi-

standard Young tableau associated with M and

wT
i :=

j∑

i=1

Mi,j −
j−1∑

i=1

Mi,j−1 (21)

is the total number of i entries in T . The weights wM

and wT are clearly related since

w
(M)
i =

1

2

(
wT

i − wT
i+1

)
(22)

Then, for instance,

1 2 2
3 3

,
1 2 3
2 3

.

have clearly the same (tableau) weight for the SU(3) irrep
λ = (3, 2).

For a weight w, the dimension of the weight space is
the inner multiplicity of such weight, and corresponds to
the number of GT states (or, equivalently, to the number
of semi-standard Young tableaux) with weight w. These
amount to Kostka’s numbers, and can be computed e.g.
with recursive algorithms [95].

Dual GT patterns. For a given GT pattern M of
shape λ, we define the dual GT pattern M̄ of shape λ̄ as
the pattern with entries satisfying the relation

M̄i,l := M1,m −Ml−i+1,l , (23)

namely M̄ is the GT pattern obtained by a constant shift
of size M1,m of the GT pattern obtained by flipping all
the elements of each row of M , with opposite sign. By
construction, M̄ is a basis state for the dual irrep λ∗ ∼= λ̄
of λ. The conjugate operation is also such that each state
|M⟩ of λ is associated with a unique conjugate state |M̄⟩
of λ̄. Specifically, the conjugation operation is such that
[100]

|M⟩ = (−1)φ(M)|M̄⟩ , (24)

for a suitable phase function that can be determined as
follows: For a GT pattern M , define the function

sM (k) =
k∑

j=1

j∑

i=1

Mi,j , (25)

which corresponds to the sum of the labels of M in the
first k rows (counting from bottom to top). Then [100],

φ(M) = sM (m− 1)− sM0(m− 1) , (26)

where M0 is defined in Eq. (18).

3.1.2 Symmetric irreps in SU(m)

In this section, we summarize a few basic facts con-
cerning symmetric irreps of SU(m), as they are of central
importance throughout this work.

By construction, the space of n particles over m modes
is maximally symmetric under permutations over the
modes. This implies that the action of g ∈ SU(m) on
such space is described by the irrep

τmn ≡ (n, 0, . . . , 0︸ ︷︷ ︸
m−1

) =
. . .

n
, (27)
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where the number of boxes has the interpretation of the
number of particles in the system. Formally, the Young
diagram on the r.h.s. labels the maximally symmetric
irrep in SU(m). Notably, the weights of the maximally
symmetric irreps uniquely identify GT basis elements,
as it can be easily checked via the associated tableaux
weights.

In Hm
n , a common orthonormal basis is the Fock basis,

given by Fock states {|n⟩ | n ∈ Nm,
∑m

i=1 ni = n}. We
remark that the GT basis, as well as the Weyl basis,
labels the same set of orthonormal vectors as the Fock
basis. In fact, for symmetric irreps, n is exactly the
tableau weight of the corresponding Young tableau, i.e.
ni is the number of boxes filled with i for each i ∈ [m],
e.g.

|3, 2, 1⟩ =
∣∣ 1 1 1 2 2 3

〉
, (28)

from which it follows the correspondence with the GT ba-
sis. In particular, for any Fock state |n⟩ = |n1, . . . , nm⟩,
the corresponding GT pattern will be denoted by N , and
it is given as follows:

N =




n 0 ... 0 0∑m−1
i=1 ni 0 ... 0 0

. . .
...

...
n1+n2 0

n1


 . (29)

Accordingly, the complex conjugate representation
(and therefore the dual representation) acts on the dual
space Ĥm

n
∼= Hm

n and it is identified by the Young dia-
gram

τ̄mn =

. . .

...
. . . ...
. . .

n

m− 1
. (30)

which acts on the dual space Ĥm
n

∼= Hm
n . In this case, we

remark that a Fock basis is lacking for τ̄mn , as such irrep
is not symmetric (and therefore it is not physical w.r.t.
bosonic systems). However, the GT basis exists for each
irrep and, in this case, the basis elements are labeled by
GT patterns N̄ of the form

N̄ =




n n ... n 0
n n ... n nm

. . .
...

...
n

∑m
i=3 ni∑m

i=2 ni


 , (31)

Cf. Eqs. (23) and (29).

3.1.3 Clebsch-Gordan coefficients
A crucial step for filtered RB is the decomposition of

the reference representation into irreps. In this section,
we recap the role of the Clebsch-Gordan series for SU(m)
in the decomposition of any tensor product representa-
tion, which will be employed in the remaining of this
work. This topic has been investigated extensively over
the years due to its relevance in particle physics, so we
refer to standard references such as [78, 103, 104] for fur-
ther details.

For two given irreps π1, π2 of SU(m), we consider
the (completely reducible) tensor product representation
π1 ⊗ π2 : SU(m) → U(Hπ1

⊗Hπ2
). By the compact ver-

sion of Maschke’s theorem [93, Thm. 5.2], we have

π1 ⊗ π2 =
⊕

λ

λ⊕mλ , (32)

where mλ is the multiplicity of λ in π1 ⊗ π2. For
SU(m), such decomposition can be computed in terms of
Young diagrams with Littlewood-Richardson’s rules that
we summarize in Appendix A.

In the context of second quantization, the decompo-
sition of τmn ⊗ τ̄mn can be interpreted as the general-
ization of the Clebsch-Gordan decomposition for spin
states in Quantum Mechanics to the case of Fock states3
[79, 80, 85, 86]. Such decomposition implies that there
exists a unitary matrix CG –here referred as the Clebsch-
Gordan matrix– that realizes the basis transformation
from the tensor product space to the direct sum space:

CG(τmn ⊗ τ̄mn ) CG† =




λ0

λ1

. . .
λn


 . (33)

CG is uniquely defined up to global phases, and by con-
vention it is chosen to be real. Clebsch-Gordan coef-
ficients are the matrix coefficients of the CG realizing
such change of basis. In particular, Clebsch-Gordan
coefficients describe the basis transformation from the
tensor product basis to the direct sum space, spanned
by the union of the coupled bases: For GT patterns
M1 ∈ GT(π1),M2 ∈ GT(π2), we have

|M1,M2⟩ =
∑

M∈GT(λ)

CM,r
M1,M2

|M, r⟩ , (34)

where r ∈ [mλ] denotes the r-th copy of λ in π1 ⊗ π2.
Conversely,

|M, r⟩ =
∑

M1∈GT(π1)

∑

M2∈GT(π2)

CM,r
M1,M2

|M1,M2⟩ . (35)

By unitarity of CG, orthogonality relations hold true:
∑

M∈GT(λ)

CM,r
M1,M2

CM,r
M3,M4

= δM1,M3
δM2,M4

, (36)

∑

M1∈GT(π1)

∑

M2∈GT(π2)

CM,r
M1,M2

CM ′,r′

M1,M2
= δM,M ′δr,r′ .

(37)

As in the case of SU(2), selection rules for Clebsch-
Gordan coefficients of SU(m) are available: For GT pat-
terns M1 ∈ GT(()π1),M2 ∈ GT(()π2),M ∈ GT(()λ),
CM,r

M1,M2
= 0 if

wM ̸= wM1
+ wM2

, (38)

where w(·) is the weight defined in Eq. (20).

3This is true for any tensor product representation τ1⊗τ2, where
τ1, τ2 are irreps of SU(m) [79].
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3.2 Background on filter functions
In Section 2.2, we introduced the filter function

(Eq. (5)) to isolate and analyze the exponential decays
associated with each irreducible component of the refer-
ence representation ωm

n . In this section, for the sake of
completeness, we briefly motivate it in the bosonic case,
before delving into the main technical results of this work.
For a comprehensive discussion, we refer to [1].

Formally, one defines the filter function (dropping the
explicit dependence from the input state ρ) as

fλ(x, g) = ⟨x |Pλ ◦ S+ ◦ ωm
n (g)†(ρ)|x⟩ , (39)

where S+ is the Moore-Penrose pseudo-inverse of the
frame operator S defined as

S :=

∫

Ω

dx

∫

G

dµH(g) Tr[ωm
n (g)†(|x⟩⟨x|)(·)]

× ωm
n (g)(|x⟩⟨x|)

=

∫

G

dµH(g)ωM
n (g)†MωM

n (g) ,

(40)

where M =
∫
Ω
dx Tr[|x⟩⟨x|(·)] |x⟩⟨x| is the (possibly in-

finite dimensional) measurement channel associated with
the POVM {|x⟩⟨x|}x∈Ω.

This choice of filter function is such that, in the ideal
case of a noise-free, perfect implementation of the gates,
the filtered RB signal is of the form Fλ(m) = Tr[ρPλ ◦
S+ ◦ S(ρ)], where S+S is the projector onto the span
of the POVM. In particular, in the special case of an
informationally complete POVM, Fλ(m) = Tr[ρPλ(ρ)],
i.e. the filtered signal is the overlap of ρ with the filtering
irrep.

Then, Eq. (5) follows from the following observation:
As the reference representation ωm

n := τmn (·)τm†
n pre-

serves the number of particles, S act non-trivially on the
n-th Fock sector only, i.e.

S =




0
. . .

0
S(n)

0
. . .




, (41)

where S(n) is obtained via the restriction of M to the sub-
space of n particles. Moreover, since ωm

n := τmn (·)τm†
n de-

composes as
⊕n

k=0 λk, the following decomposition holds
[1]:

S(n) =
⊕

λ

S
(n)
λ , S

(n)
λ = sλ1λ , (42)

where the direct sum is over all irreps of ωM
n and, in

general [1],

sλ = d−1
λ Tr[PλM] = d−1

λ

∫

Ω

dxTr[|x⟩⟨x|Pλ(|x⟩⟨x|)] .
(43)

Here, dλ ≡ dimHλ, with λ ∈ {λk}nk=0, and Pλ is the
corresponding projector onto its carrier space. In the

second step, we used the fact that the Bochner integral
commutes with the trace since the latter is a continu-
ous linear operator in the trace norm and the trace of
[|x⟩⟨x|Pλ(|x⟩⟨x|)] is finite.

3.3 Further notations
As the Clebsch-Gordan decomposition is naturally re-

lated with the direct sum decomposition of an Hilbert
space of the form H1 ⊗ H2, it will be convenient to in-
troduce a vectorized notation for operators and super-
operators on Hm

n .
We consider the basis of linear operators L(Hm

n ) given
by Φ = {|n⟩⟨m|}n,m∈Nm with

∑m
i=1 ni =

∑m
i=1 mi = n.

Any linear operator A ∈ L(Hm
n ) can be vectorized to an

element |A⟩ ∈ Hm
n ⊗Hm

n w.r.t. Φ as

|A⟩ =
∑

n,m

Tr[|m⟩⟨n|A]|n,m⟩ , |n,m⟩ ≡ |n⟩ ⊗ |m⟩ .

(44)
Under vectorization, we have τmn (·)τm†

n 7→ τmn ⊗ τ̄mn ,
where τ̄mn denotes the complex conjugate representation
of τmn . Moreover, as long as it is clear from the context,
we will not distinguish between super-operators and their
corresponding quantities acting on H1 ⊗H2.

Hence, the filter function defined in Eq. (5) becomes

fλ(x, g) =
1

sλ
⟨n,n |Pλ(τ

m
n ⊗ τ̄mn )(g)† |x,x⟩ , (45)

with sλ = (dimλ)
−1∑

x∈Nm⟨x,x |Pλ |x,x⟩.

4 Passive RB with Fock states and mea-
surements

Here, we provide proofs for the theorems introduced
in Section 2: In Section 4.2 we prove Theorem 2 and in
Section 4.3 we prove Theorem 3 based on notation and
technical tools introduced in Section 3.

4.1 Clebsch-Gordan decomposition for the ref-
erence representation

In this section, we study the irrep decomposition of
ωM
n . As τmn is irreducible, its dual is isomorphic to

its complex conjugate representation (w.r.t. the Fock
space). In particular, we have

ωM
n := τmn ( · )τm†

n
∼= τmn ⊗ τ̄mn . (46)

In particular, we will restrict our focus on the irreps of
SU(m) (or, equivalently, its corresponding Lie algebra
su(m)) as τmn can be extended to irreps of U(m) us-
ing nontrivial characters of the unit circle group (roughly
speaking, resulting in a multiplication by a global phase),
which becomes irrelevant for our aims, since it vanishes as
we are interested in its conjugate action on L(Hm

n ). The
decomposition of ωm

n into irreps can be computed using
Littlewood-Richardson’s rules, a general tool to classify
the decomposition of tensor product representations. We
refer to Appendix A for a brief overview on how they can
be employed in the context of SU(m).
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Lemma 4. Let τmn : SU(m) → U(Hm
n ) be the irreducible

representation of SU(m) on the space of n bosons dis-
tributed over m modes as in Eq. (27). Define the Young
diagram

λk ≡
. . . . . .

...
. . .

...
. . .

k k

m− 1
, (47)

where λ0 and λ1 denote the trivial irrep and the adjoint
irrep of SU(m), respectively. Then, for any n,m ∈ N \
{0},

ωM
n =

n⊕

k=0

λk , (48)

where each λk, k = 0, . . . , n, appears exactly one time.

We prove this result in Appendix B. As an example,
we have the following explicit decomposition of the con-
jugation for n = m = 3:

ω3
3 = ⊗ a a a

=

(
a ⊕

)
⊗ a a

=

(
a a ⊕ a ⊕

)
⊗ a

=
a a a ⊕ a a ⊕ a ⊕ 1

= λ3 ⊕ λ2 ⊕ λ1 ⊕ 1 = λ3 ⊕ ω3
2 .

(49)

The dimension of λk admits a nice closed-form expression
in terms of the dimension of the number subspace:

Proposition 5. For any k ∈ N, the following holds:

dimλk =

(
1− k2

(k +m− 1)2

)
(dimHm

k )
2
. (50)

We prove this fact in Appendix C.
Hence, we have an easy and algorithmic way to find the

decomposition of the action τmn ⊗τ̄mn into multiplicity-free
irreps. We remark that this occurrence is a special case of
the completely symmetric representation and its dual: In
general, for a fixed representation, the conjugate action
will not decompose into multiplicity-free irreps. More-
over, notice that the Young diagrams λk, k = 1, . . . , n
are associated with representations of real type, because
each term in the decomposition is self-dual and multiplic-
ity free.

4.2 Filter function for passive RB with PNR
measurements

As an irrep decomposition of ωm
n can be easily com-

puted for any n and m (Cf. Lemma 4), we can evaluate
explicit expressions for the filter function. This will pro-
vide the proof of Theorem 2.

By construction, ωm
n = τmn (·)τm†

n
∼= τmn ⊗ τ̄mn acts on

elements |n,n⟩ (from here on referred as the uncoupled
basis). However, as pointed out in the Section 3.1.1, the
second entry shall be suitably interpreted as a basis el-
ement of τ̄mn , which requires the specification of the rel-
ative phases of the states referred by the matrix coeffi-
cients. In particular, we have

|n⟩ = |N⟩ = (−1)φ(N)|N̄⟩ (51)

(Cf. Eqs. (23) and (29)). Hence,

ρ ∼= |n,n⟩ = |N,N⟩ = (−1)φ(N)|N, N̄⟩

= (−1)φ(N)
n∑

k=0

∑

M∈GT(λk)

CM
N,N̄ |M⟩ , (52)

with {|N⟩}N∈GT(λk) being an orthonormal basis (referred
as the coupled basis from here on) for the carrier space
of λk. Notice that in Eq. (52) we do not need to specify
the multiplicity index of states and Clebsch-Gordan coef-
ficients since λk is multiplicity free for each k = 0, . . . , n.

Then, for a fixed irrep λ ∈ {λk}nk=0, we have Pλ =
XλX

T
λ [1], where Xλ : Hm

n → Hλ is an isometry whose
matrix representation is given by the Clebsch-Gordan co-
efficients associated with the irrep λ. This implies

Pλ =
∑

M∈GT(λ)

|M ⟩⟨M | , (53)

and the following relation holds true:

Pλ|N, N̄⟩ =
∑

M∈GT(λ)

⟨M |N, N̄⟩|M⟩

=
∑

M∈GT(λ)

CM
N,N̄ |M⟩ ,

(54)

where, in the second equivalence, we used the identifica-
tion CλM

N,N̄
≡ ⟨λM |N, N̄⟩ and that – by the selection rules

of Clebsch-Gordan coefficients – the sum is restricted to
all the basis vectors such that the associated weight cor-
responds to the sum of the weights of the states |N⟩ and
|N̄⟩, Cf. Eq. (38). Specifically, by Eq. (23), we have

w
(N)
j + w

(N̄)
j =

j∑

i=1

Ni,j −
1

2

(
j−1∑

i=1

Ni,j−1 +

j+1∑

i=1

Ni,j+1

)

+

j∑

i=1

N̄i,j −
1

2

(
j−1∑

i=1

N̄i,j−1 +

j+1∑

i=1

N̄i,j+1

)

=

j∑

i=1

N1,m − 1

2

(
j−1∑

i=1

N1,m +

j+1∑

i=1

N1,m

)

= 0 ,
(55)

which implies wN + wN̄ = 0. From the point of view
of Young tableaux, this implies that in the tableau TM

–where M ∈ GT(λ) satisfies the latter selection rules– all
the entries appear the same number of times. Moreover,
the inner multiplicity γλk

(0) of 0 in λk for any k ∈ N can
be easily computed and, in particular,

γλk
(0) =

(
k +m− 2

k

)
. (56)
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We prove this result in Appendix D. This provides the
number of non-zero terms in Eq. (54).

With these notations, we can prove the following tech-
nical result that will be used extensively in the rest of
this work:

Lemma 6. Let N,X be GT patterns, and let N̄ , X̄ be
their dual, respectively. Let τmn be the n-particles maxi-
mally symmetric irrep of SU(m) and consider λk ∈ ωm

n =
τmn (·)τm†

n . Let Pλk
be the projector onto λk. Then, the

following holds:

⟨N, N̄ |Pλ(τ
m
n ⊗ τ̄mn )(g)† |X, X̄⟩ =

∑

M∈GT(λk)

CM
N,N̄

×
∑

M ′∈GT(λk)

CM ′

X,X̄⟨M |λk(g)
† |M ′⟩ .

(57)

Proof. By construction, Pλk
selects the λk-th compo-

nent of |N, N̄⟩, which can be conveniently isolated by
the Clebsch-Gordan decomposition of ωm

n
∼= τmn ⊗ τ̄mn .

This implies

⟨N, N̄ |Pλ(τ
m
n ⊗ τ̄mn )(g)† |X, X̄⟩ =

∑

M∈GT(λk)

CM
N,N̄

× ⟨M |τmn ⊗ τ̄mn (g)† |X, X̄⟩ .
(58)

To compute the inner product, recall that τmn ⊗ τ̄mn =⊕n
l=0 λl (Cf. Eq. (48)). In particular, observe that M is

a basis element in λk, which implies the only non trivial
contributions from τmn ⊗ τ̄mn are associated with its λk-
th component. Likewise, the only relevant contributions
to the inner product coming from |X, X̄⟩ are associated
with its restriction to λk that can be expressed as

|X, X̄⟩
∣∣
λk

=
∑

M ′∈GT(λk)

CM ′

X,X̄ |M ′⟩ . (59)

Hence,

⟨M |τmn ⊗ τ̄mn (g)† |X, X̄⟩ =
∑

M ′∈GT(λk)

CM ′

X,X̄

× ⟨M |λk(g)
† |M ′⟩ ,

(60)

from which the assertion follows.

A first consequence, is the following explicit expression
for the filter function defined in Eq. (5):

Theorem 7 (Restatement of Theorem 2 - PNR version).
Let ρ = |n⟩⟨n| ∼= |n,n⟩ = |N,N⟩ be a m modes state and
let {|x⟩⟨x|}x∈Nm be the Fock state POVM. Then, for a
given irrep λk ∈ ω̂M

n , and assuming sλk
̸= 0,

fλk
(x, g) =

1

sλk

(−1)φ(N)+φ(X)
∑

M∈GT(λk)

CM
N,N̄

×
∑

M ′∈GT(λk)

CM ′

X,X̄⟨M |λk(g)
† |M ′⟩ ,

(61)

where the sums are restricted to all basis states such that
Eq. (55) is satisfied.

Proof. By Eq. (52), and denoting by N and X the GT
patterns associated with n and x, respectively, the filter
function defined in Eq. (5) becomes

fλk
(X, g) =

1

sλk

⟨N,N |Pλk
(τmn ⊗ τ̄mn )(g)† |X,X⟩

=
1

sλk

(−1)φ(N)+φ(X)

× ⟨N, N̄ |Pλ(τ
m
n ⊗ τ̄mn )(g)† |X, X̄⟩

=
1

sλk

(−1)φ(N)+φ(X)
∑

M∈GT(λk)

CM
N,N̄

×
∑

M ′∈GT(λk)

CM ′

X,X̄⟨M |λ(g)† |M ′⟩ .

(62)

In the last line, we used Lemma 6.

Notably, explicit expressions for the matrix elements of
irreps of SU(m) are available, see for instance [89, Chap-
ter 3] for SU(2) and [90, Chapter 9] for SU(m). Moreover,
numerical implementations using the bosonic realization
of the Lie algebra su(m) are also available [81].

Alternatively, the fλ also assumes the following form:

fλk
(X, g) =

1

sλk

(−1)φ(N)
∑

M∈GT(λk)

CM
N,N̄

× ⟨M |(τ ⊗ τ̄)(g)† |X,X⟩

=
1

sλk

(−1)φ(N)
∑

M∈GT(λk)

CM
N,N̄

∑

N1,N2∈GT(τm
n )

× CM
N1,N̄2

⟨N1, N̄2 |τmn ⊗ τ̄mn (g)† |X,X⟩

=
1

sλk

(−1)φ(N)
∑

M∈GT(λk)

CM
N,N̄

∑

N1,N2∈GT(τm
n )

× (−1)φ(N2)CM
N1,N̄2

⟨N1, N2 |τmn ⊗ τ̄mn (g)† |X,X⟩ ,

(63)

which is manifestly related to the computation of per-
manents [87], as each inner product resembles the boson
sampling problem when expressed in the Fock basis:

⟨N1, N2 |τmn ⊗ τ̄mn (g)† |X,X⟩ =
= ⟨n1,n2 |τmn ⊗ τ̄mn (g)† |x,x⟩
= ⟨n2 |τmn (g)|x⟩⟨x |τmn (g)† |n1⟩

=
1

x!
√
n1!n2!

Per(τmn (g)n2,x) Per(τ
m
n (g)†x,n1

) ,

(64)

where Per(Un,m) denotes the permanent of the matrix
obtained by τmn (g) by taking mj copies of the j-th column
of U and then by taking ni copies of the i-th row of the
resulting matrix, and we used the multi-index notation
n! := n1! . . . nm!.

To compute the filter function, we shall provide expres-
sions for the coefficients sλ. In particular, we have the
following result for Eq. (43):

Lemma 8. Let λk be an irrep in ωm
n . For a PNR mea-

surement setting, the eigenvalues of the frame operator
of the passive RB protocol are given by

sλk
=

1

dλk

∑

X∈GT(τm
n )

∑

M∈GT(λk)

|CM
X,X̄ |2. (65)
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where |X⟩ ≡ |x⟩ ∈ Hm
n .

Proof. First, recall that a single mode (ideal) PNR de-
tector measures the number of particles in such mode
[66]. In the case of m modes, the (ideal) POVM is there-
fore given by {|x⟩⟨x| ≡ Ex}x∈Nm and the (vectorized)
measurement channel can be written as

M :=
∑

x∈Nm

|x,x⟩⟨x,x| =
∞∑

n=0

∑

X∈GT(τm
n )

|X,X ⟩⟨X,X| .

(66)
Denoting by Pλk

the projector onto λk ∈ ω̂M
n , we have

the following:

sλk
=

1

dλk

∑

x∈Nm

⟨x,x |Pλk
|xx⟩

=
1

dλk

∑

X∈GT(τm
n )

⟨X,X |Pλk
|X,X⟩

=
1

dλk

∑

X∈GT(τm
n )

(−1)2φ(X)⟨X, X̄ |Pλk
|X, X̄⟩

=
1

dλk

∑

X∈GT(τm
n )

∑

M∈GT(λk)

CM
X,X̄⟨X, X̄ |M⟩

=
1

dλk

∑

X∈GT(τm
n )

∑

M∈GT(λk)

|CM
X,X̄ |2 ,

(67)

where in the second step we used the fact that Pλk
acts

non-trivially on the n particle subspace, and in the fourth
step we used the fact that the phases φ(X) introduced
in the labeling of GT dual patterns are integers by con-
struction, Cf. Eq. (26).

Concretely, the time complexity of computing sλk

heavily relies on the efficient evaluation of the Clebsch-
Gordan coefficients, since the sums are restricted to very
few terms due to selection rules. In particular, one
can evaluate all Clebsch-Gordan coefficients beforehand.
Then, since the Clebsch-Gordan matrix is very sparse,
the sum in Eq. (65) can be restricted to non-trivial terms
only. Hence, as Clebsch-Gordan coefficients can be cal-
culated in polynomial time [79, 92] for ≈ 20 modes be-
fore memory overhead limits the application of such al-
gorithms [92], sλk

can also be evaluated efficiently for a
moderate number of modes.

4.3 Moments of the filter function for PNR mea-
surement settings

In this section, we provide explicit expressions for
first two moments of probability of the filter function
(5) w.r.t the ideal probability distribution p(x|g) =
⟨x |ωm

n (g)(ρ)|x⟩, x ∈ Nm. In particular, the ideal second
moment will provide an upper bound to the sampling
complexity of the protocol, Cf. Section 2.3.

The following technical result will be useful:

Lemma 9. Let N,X be GT patterns, and let N̄ , X̄ be
their dual, respectively. Let τmn be the n-particles maxi-
mally symmetric irrep of SU(m) and consider λk ∈ ωm

n =

τmn (·)τm†
n . Then, the following holds:

⟨X, X̄ |(τmn ⊗ τ̄mn )(g)|N, N̄⟩ =
n∑

j=0

∑

M,M ′∈GT(λj)

CM
X,X̄

× CM ′

N,N̄ ⟨M |λj(g)|M ′⟩ .
(68)

Proof. The expression follows immediately from the
Clebsch-Gordan decomposition. More specifically, we
have

|N, N̄⟩ =
n∑

i=0

∑

M∈GT(λi)

CM
N,N̄ |M⟩ , (69)

|M, M̄⟩ =
n∑

j=0

∑

M ′∈GT(λj)

CM ′

X,X̄ |M ′⟩ , (70)

τmn ⊗ τ̄mn =

n⊕

k=0

λk , (71)

Cf. Eq. (52) and Eq. (48). Hence, since M and M ′ are
basis elements of λi and λj , respectively,

⟨M |λk(g)|M ′⟩ ̸= 0 (72)

only if i = j = k, from which the assertion follows.

We will also need the following standard result in the
representation theory of compact groups, often referred
as Schur’s orthogonality relations, see [93, Thm. 5.8]: For
a given irrep λ of SU(m) (or, in general, of any compact
group G), if M1,M2,M

′
1,M

′
2 ∈ GT(λ), then the following

relation holds true:
∫

dg ⟨M1 |λ(g)|M ′
1⟩⟨M2 |λ(g)† |M ′

2⟩

=
1

dimλ
δM1,M2δM ′

1,M
′
2
,

(73)

where dg denotes the Haar measure on G.
Before we prove the main results of this section, it is

worth to quickly consider the first moment E[fλ], as the
proof scheme is the same, but in the case of the second
moment is hidden behind few additional technical details
concerning the representations involved.

Lemma 10. For a PNR measurement setting, ρ =
|n⟩⟨n| as input state, and an irrep λk of ω(n) =
τmn ( · )τm†

n , the following holds:

E[fλ] =
∑

M∈GT(λk)

|CM
N,N̄ |2 , (74)

where N is the GT pattern associated with n, and N̄ is
its dual.

We prove this result in Appendix E.
In general, finding explicit expressions for the second

moment E[f2
λ] is more involved and the following techni-

cal result is necessary:
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Lemma 11. Let λk be a Young diagram as in Eq. (47)
labeling an irrep of SU(m), m ≥ 3. Then,

λk ⊗ λk =
k⊕

l=0

λ
(l+1)
l ⊕

2k⊕

l=k+1

λ
(2k−l+1)
l ⊕ L , (75)

where λ0 ≡ 1, λ1 ≡ Ad, λ(i)
j denotes the i-th copy of λj

in λ⊗2
l , and L is a suitable direct sum of irreps which are

not of the form λl for any l ∈ N.

Specifically, all irreps λl in λ⊗2
k are computed by iden-

tifying all legal ways of combining two copies of λk to
a fixed shape using Littlewood-Richardson’s rules. This
result is presented in Appendix F.

Hence, we derive an explicit expression for E[f2
λ] using

Eq. (73):

Theorem 12. For a PNR measurement setting, ρ =
|n⟩⟨n| as input state, and an irrep λk of ω(n) =
τmn ( · )τm†

n , the following holds:

E[f2
λk
] =

1

s2λk

(−1)φ(N)
∑

X∈GT(τm
n )

(−1)φ(X)gk(X,N) ,

(76)
where gk(X,N) is a function of Clebsch-Gordan coeffi-
cients of the representations τmn ⊗ τ̄mn and λ⊗2

k given by

gk(X,N) =

min{n,2k}∑

l=0

1

dimλl

ml∑

r=1

∑

M,M ′,L,
L′∈GT(λk)

∑

R,R′∈GT(λl)

× CM
N,N̄CM ′

N,N̄CL
X,X̄CL′

X,X̄CR
N,N̄CR′

X,X̄CR,r
M,M ′C

R′,r
L,L′

(77)
where ml is the multiplicity of λl in λ⊗2

k as in Lemma 11.

We prove this result in in Appendix G.

4.4 A worked out example
In the case of 2 modes systems, Clebsch-Gordan co-

efficients reduce to the usual ones, and the analysis of
the filter function and its moments drastically simplifies.
In this section, we show explicit expressions for such a
case, which will highlight some technicalities implicit in
the general case of SU(m).

In the SU(2) case, it is convenient to switch from the
bosonic realization of the SU(2) algebra to its spin real-
ization, where Clebsch-Gordan coefficients are naturally
introduced. This task is accomplished by the Jordan-
Schwinger map [62]: For given annihilation operators
a1, a2 acting on a 2 mode system and satisfying the
CCRs, the Jordan-Schwinger map is such that

J1 :=
1

2

(
a†2a1 + a†1a2

)
, (78)

J2 :=
1

2

(
a†2a1 − a†1a2

)
, (79)

J3 :=
1

2

(
a†1a1 − a†2a2

)
, (80)

where [Ji, Jj ] = iϵijkJk, ϵ is the Levi-Civita’s pseudo-
tensor, and

J2 = J2
1 + J2

2 + J2
3 =

n

2

(n
2
+ 1
)
, (81)

n = n1 + n2 , ni = a†iai . (82)

This implies the normalized states |n1, n2⟩ correspond to
the eigenstates |jm⟩ of J2 and J3, with the identification
[85, 86]

n1 = j +m, n2 = j −m, (83)

hence, in this section, we will consider an input state
ρ = |jm⟩⟨jm| and the Fock state POVM becomes
{|j′m′⟩⟨j′m′|}, where j′ ∈ 1

2N and m′ = −j′, . . . , j′. A
spin state |jm⟩ and its dual are identified by the GT
patterns

(
2j 0

j −m

)
,

(
2j 0

j +m

)
, (84)

respectively, which implies the following relation:

|jm⟩ = (−1)j+m|j −m⟩ . (85)

Moreover, given any irrep λJ of SU(2), the following re-
lations hold:

PJ =
J∑

M=−J

|JM ⟩⟨JM | , sJ =
1

2J + 1
. (86)

In particular, the expression for sJ follows from Eq. (65),
the fact that the inner multiplicities of SU(2) basis vec-
tors are 1 (or, equivalently, each weight is uniquely as-
sociated with a unique weight vector), and the SU(2)
orthogonality relation

∑
m|CJ0

jm,j−m|2 = 1.
In this case, with the identification |x1, x2⟩ 7→ |j l⟩,

Eq. (61) becomes

fJ(l, g) =
1

2J + 1
(−1)2j+m+lCJ0

jm,j−mCJ0
jl,j−l

× ⟨J0 |λJ(g)
† |J0⟩ ,

(87)

or, equivalently, it can be expressed as (Cf. Eq. (63))

fJ(l, g) =
(−1)2j+m

2J + 1
CJ0

jm,j−m

j∑

m′=−j

(−1)m
′
CJ0

jm′,j−m′

× ⟨jm′, j −m′ |(τ2n ⊗ τ̄2n)(g)
† |x1, x2⟩

=
(−1)2j+m

2J + 1
CJ0

jm,j−m

j∑

m′=−j

(−1)m
′
CJ0

jm′,j−m′

× |⟨x1, x2 |τ2n(g)|n′
1, n

′
2⟩|2

=
(−1)2j+m

2J + 1

1

x1!x2!
CJ0

jm,j−m

j∑

m′=−j

(−1)m
′

n′
1!n

′
2!

× CJ0
jm′,j−m′ |Per(τ2n(g)(n′

1,n
′
2),(x1,x2))|2 ,

(88)
where we set |jm′⟩ = |n′

1, n
′
2⟩ by the inverse Jordan-

Schwinger map.
The second moment expression also simplifies signif-

icantly. First, notice that, for a given representation
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λJ ⊗ λJ , each λK , with K ∈ {0, . . . , 2J}, is multiplicity
free as all such irreps are clearly maximally symmetric.
This implies the decomposition of λ⊗2

J is formally the
same as the one of τ2n ⊗ τ̄2n, i.e.

. . .

k

= 1⊕ ⊕ ⊕ · · · ⊕ . . .

2k
(89)

and the second moment expression of Theorem 12 sim-
plifies to

E[f2
J ] =

1

s2J
(−1)2j |CJ0

jm,j−m|2
j∑

l=−j

(−1)m+l|CL
jl,j−l|2

×
2min(J,j)∑

L=0

1

2L+ 1
CJ0

jl,j−lC
L0
jm,j−m|CL0

J0,J0|2 .

(90)

5 Conclusions
Bosonic passive RB is the first RB protocol for the

certification of bosonic passive transformations, built on
top of general guarantees for filtered RB [1]. Compared
to discrete versions of RB, where the defining representa-
tion typically determines the reference representation, in
passive RB, a broader family of representations, which
can be related to the choice of initial state and mea-
surement, is available. This situation complicates the
analysis since it made a careful choice of the reference
representation necessary.

We analyzed the most common experimental settings
for CV systems and argued Gaussian probe states and
measurements add additional challenges: First, filtering
onto infinitely many irreps appearing in the decompo-
sition of the reference representation would be neces-
sary. They generally present mixed symmetries lacking a
clear physical interpretation making it hard to truncate
the decomposition with regularization arguments. Also,
from a more practical perspective, such irreps are not
multiplicity-free, affecting the numerical stability of the
post-processing [49]. Moreover, in contrast with RB for
discrete variable systems, in CV systems, the choice of
the input state influences the RB signal since each num-
ber subspace is the carrier space of a non-trivial irrep. We
believe Gaussian input states pose additional challenges
to RB experiments due to exponentially small overlaps
with the number subspaces.

We then identified a well-behaved setting for passive
RB with Fock basis states as initial states, ensuring the
reference representation decomposes into finitely many
multiplicity-free irreps. This allowed a certain degree of
freedom in the measurement settings, and we considered
the common cases of PNR, or balanced heterodyne de-
tectors. For this setting, we derived explicit formulas
needed for the post-processing of the experimental data.
Moreover, we analyzed the sampling complexity of the
protocol by deriving and bounding the variance of our
estimators. Unfortunately, these bounds are quite loose
and we expect a much smaller variance in practice.

On the technical side, our analytical results required
the Clebsch-Gordan decomposition of ωm

n , which, for gen-
eral irreps of SU(m), is very known to pose significant
challenges compared to the standard scenario of SU(2)
[79, 86, 98–100], as irreps with mixed symmetries may
appear. However, we found the maximally symmetric
irreps are ‘regular enough’ to carry over a full analysis
of the estimators and the sample complexity, as we de-
rived analytical expressions for the frame operators for
the POVMs associated with PNR and balanced hetero-
dyne measurements.

A very natural question that arises is whether the pas-
sive RB protocol can be extended to active transforma-
tions. In this case, many technical difficulties prevent this
generalization of filtered RB, as the latter is specifically
designed for compact groups, while Sp(2m,R) (which
correspond to the full group of Gaussian transformations)
is non-compact (which in turns pose the interesting ques-
tion of whether a non-compact filtered RB protocol can
be formulated). Hence, it is still unclear how to design
a meaningful RB protocol for active transformations, as
isolating the contributions from different irreps is more
challenging.

Finally, we note an analysis of the behavior of passive
RB in the presence of photon distinguishability is still an
open problem, which we believe can be tackled by suit-
able extensions of the filtered RB framework. However,
we leave such problem for future work.
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A Littlewood-Richardson’s rules
In this section, summarize Littlewood-Richardson’s rules for the decomposition into irreps of the tensor product of

two irreps of SU(m). For more details, see for instance [78, Sec. C.3]. In particular, let us consider the unitary irreps
πλ1

, πλ2
of SU(m) associated with Young diagrams λ1, λ2. Then, the representation

πλ1 ⊗ πλ2 : SU(m) ∋ g 7→ πλ1(g)⊗ πλ2(g) ∈ U(Hλ1 ⊗Hλ2) (91)

is in general reducible (in particular, it is completely reducible, since SU(m) is compact).
For instance, in standard RB [1], one is interested in the irrep U ⊗ Ū , where U : SU(m) → U(m) is the defining

representation and Ū its dual. Diagrammatically, they correspond to

λU = , λŪ = ... N − 1 , (92)

It is well known that
U ⊗ Ū = 1⊕Ad, (93)

where 1 denotes the trivial irrep and Ad : SU(D) ∋ g 7→ Adg ∈ Aut(su(D)) is the adjoint representation. Roughly
speaking, the decomposition is achieved by combining the two Young diagrams in all possible ways, and summing up
the results. In this case, there are only two possibilities that realize legal Young diagrams: λU can be attached on the
right of the top row of λŪ , or on the bottom of the column, i.e.

...N − 1 ⊗ = ... N ⊕ ... N − 2
. (94)

The first diagram on the r.h.s. is equivalent to the diagram with no boxes associated with the trivial irrep, while the
second Young diagram identifies the adjoint representation acting on traceless matrices.

In general, Littlewood-Richardson’s rules can be used to decompose the tensor product of two arbitrary irreps
[78, 101, 102]. To spell out such rules, let us consider two Young diagrams λ1, λ2 associated with irreps of SU(m).
The tensor product representation λ1 ⊗ λ2 can be evaluated algorithmically as follows [102, Sec. 13.5.3] (or also [78,
Sec. C.3]):

1. Assign distinct labels to boxes in each row of the Young diagram λ2. For instance, the boxes in the first row will
be labeled by ‘a’, the boxes in the second row by ‘b’ and so on.

2. Attach boxes labeled by a to λ1 in all possible ways such that no two a’s appear in the same column, and the
result is still a proper Young diagram.

3. Repeat the steps above for all rows of λ2.

4. Elimination rule: For each box, assign numbers na = number of a’s above and right to it, nb = number of b’s
above and right to it, and so on. If, at any point, the relations na ≥ nb ≥ nc ≥ nd ≥ . . . are not satisfied, discard
this diagram.

5. Merging rule. If two diagrams are the same, then they are counted as the same if the labels are the same.
Otherwise, they refer to distinct irreps.

6. Cancel columns with m boxes (since they correspond to constant shifts of the highest weight vector).

7. Remove all the labels after the cancellation and the merging steps.

Example 13. Let us consider the following diagrams:

λ1 = , λ2 = . (95)

919



Assigning labels to λ2 as in rule 1, and using the second and third rules, we get

⊗ a a
b

=


 a ⊕

a
⊕

a


⊗ a

b

=


 a a ⊕ a

a
⊕

a

a


⊗ b

⊕


 a

a
⊕ a

a
⊕

a

a
⊕ a

a


⊗ b

=
a a b ⊕ a a

b
⊕

a a

b

⊕ a b
a

⊕ a
a b

⊕
a

a
b

⊕
a b

a
⊕

a
b

a
⊕

a

a
b

⊕
b

a
a

⊕ a
a b

⊕ a
a
b

.

(96)

In the second step we got few equivalent diagrams with labels in the same positions, hence they have been merged
according to the merging rule. Moreover, we ignored the diagrams with two a’s in the same column, in agreement
with the symmetric constraint.

By the elimination rule, all the diagrams with a b box attached on the top right shall be eliminated, yielding the
following decomposition:

⊗ a a
b

=
a a

b
⊕

a a

b
⊕ a

a b
⊕

a
a

b

⊕
a

b
a

⊕
a

a
b

⊕ a
a b

⊕ a
a
b

.

(97)

Finally, suppose for instance that these diagrams are associated with SU(3) irreps. Then, all columns with three boxes
can be omitted, while any diagram with more than 3 boxes in a column is not allowed. This yields the following
decomposition:

⊗ a a
b

=
a a

b
⊕ a

a b
⊕ a a ⊕ a

a

⊕ a
b

⊕ 1 .

(98)

In the latter, notice that the diagram appears with multiplicity 2 in the decomposition, as different labels are

assigned to the two copies.
In the high energy literature [102], this decomposition is also written in terms of the dimension of the irrep associated

with each Young diagram as
8⊗ 8̄ = 27⊕ 10⊕ 10′ ⊕ 8⊕ 8⊕ 1 . (99)

Here, 10, 10′ indicates that the two irreps are inequivalent, while repeated dimensions denote the same irrep appear
with a non-trivial multiplicity.
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B Proof of Lemma 4
Lemma 14 (restatement of Lemma 4). Let τmn : SU(m) → U(Hm

n ) be the irreducible representation of SU(m) on the
space of n bosons distributed over m modes as in Eq. (27). Define the Young diagram

λk ≡
. . . . . .

...
. . .

...
. . .

k k

m− 1
, (100)

where λ0 and λ1 denote the trivial irrep and the adjoint irrep of SU(m), respectively. Then, for any n,m ∈ N \ {0},

ωM
n =

n⊕

k=0

λk , (101)

where each λk, k = 0, . . . , n, appears exactly one time.

Proof. We will prove the following equivalent fact by induction:

ωM
n = λn ⊕ ωm

n−1 , ∀n ∈ N \ {0} . (102)

First, notice that

ωm
1 =

a

...m− 1 ⊕ 1 ≡ λ1 ⊕ ωm
0 , (103)

as ωm
0 = 1 trivially.

The conjugate representation is associated with the tensor product of Young diagrams

. . .

...
. . .

...
. . .

n

m− 1
⊗ . . .

n

(104)

(swapping tensor factors does not influence the result). By Littlewood-Richardson’s rules, we first have

. . .

...
. . .

...
. . .

n

m− 1
⊗

a . . . a

n
=

. . . a

...
. . .

...
. . .

n

m− 1
⊗

a . . . a

n− 1

⊕
. . .

...
. . .

...
. . .

n− 1

m− 1
⊗

a . . . a

n− 1
.

(105)

Notice that the second term in the r.h.s. is by definition ωm
n−1. Hence, we shall only prove that

. . . a

...
. . .

...
. . .

n

m− 1
⊗

a . . . a

n− 1
= ⊕n

k=0λk . (106)

For this purpose, let us consider the factor

λ̃(s)
r :=

. . . a . . . a

...
. . .

...
. . .

r s

m− 1
. (107)

921



Clearly, λ̃(r)
r = λr and λ̃

(0)
0 = 1. Notice that

λ̃(s)
r ⊗ τml =




. . . a . . . a

...
. . .

...
. . .

r s+ 1

m− 1
⊕

. . . a . . . a

...
. . .

...
. . .

r − 1 s



⊗
a . . . a

l − 1

=
(
λ̃(s+1)
r ⊕ λ̃

(s)
r−1

)
⊗ τml−1 .

(108)

With this notation, expanding the l.h.s. of Eq. (106) we get

λ̃(1)
n ⊗ τmn−1 =




. . . a a

...
. . .

...
. . .

n

m− 1
⊕

. . . a

...
. . .

...
. . .

n− 1



⊗
a . . . a

n− 2

=
(
λ̃(2)
n ⊕ λ̃

(1)
n−1

)
⊗ τmn−2

=
(
λ̃(3)
n ⊕ λ̃

(2)
n−1 ⊕ λ̃

(2)
n−1 ⊕ λ̃

(1)
n−2

)
⊗ τmn−3

=
(
λ̃(3)
n ⊕ λ̃

(2)
n−1 ⊕ λ̃

(1)
n−2

)
⊗ τmn−3

...

=
(
λ̃(i)
n ⊕ λ̃

(i−1)
n−1 ⊕ · · · ⊕ λ̃

(1)
n−i+1

)
⊗ τmn−i

...

=

n⊕

i=0

λ̃
(n−i)
n−i

=

n⊕

k=0

λk .

(109)

In the latter, we used the merging rule for Young diagrams, see Appendix A.
Therefore, we have

ωM
n =

n∑

k=0

λk ⊕ ωm
n−1 =

n∑

k=0

λk ⊕
n−1∑

l=0

λl

= λn ⊕ ωm
n−1 ,

(110)

where we used the merging rule again.

C Proof of Proposition 5
For convenience, we state again the proposition:

Proposition 15 (restatement of Proposition 5). For any k ∈ N, the following holds:

dimλk =

(
1− k2

(k +m− 1)2

)
(dimHm

k )
2
. (111)

Proof. For any irrep λ = (m1,m2, . . . ,mm), the following fact holds: [79]

dimλ =
∏

1≤j<j′≤m

(
1 +

mj −mj′

j′ − j

)
. (112)

Let us denote the irrep defined in Eq. (47) as λk = (2k, k, . . . , k, 0). Hence, notice the following facts:

• For j = 1 and j′ = 2, . . . ,m− 1 we obtain the contribution
∏m−1

j′=2

(
1 + k

j′−1

)
.
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• For j = 1 and j′ = m we obtain the contribution 1 + 2k
m−1 .

• For 2 ≤ j < j′ ≤ m− 1 all the products are equal to 1.

• For 2 ≤ j ≤ m− 1 and j′ = m we obtain the contribution
∏m−1

j=2

(
1 + k

m−j

)
.

Using the latter facts, we have

dimλk =
2k +m− 1

m− 1

m−1∏

j=2

k +m− j

m− j

m−1∏

l=2

k + l − 1

l − 1
=

2k +m− 1

m− 1

(
1

(M − 2)!

)2 m−1∏

j=2

(k +m− j)
m−1∏

l=2

(k + l − 1)

(113)

=
2k +m− 1

m− 1

(
1

(M − 2)!

)2(
1

k
(k)m−1

)2

=
1

k2
2k +m− 1

m− 1

(
(k)m−1

(m− 2)!

)2

(114)

=
1

k2
2k +m− 1

m− 1
(m− 1)2

(
(k)m−1

(m− 1)!

)2

=
(2k +m− 1)(m− 1)

k2

(
(k +m− 1)!

k!(m− 1)!

k

k +m− 1

)2

(115)

=
(2k +m− 1)(m− 1)

k2
k2(m− 1)

(k +m− 1)2

(
k +m− 1

m− 1

)2

=
(2k +m− 1)(m− 1)

(k +m− 1)2

(
k +m− 1

m− 1

)2

(116)

=

(
1− k2

(k +m− 1)2

)
(dimHm

k )
2
, (117)

In Eq. (113) we factorized the denominators and observed that the factors range between 1 and m− 2. In Eq. (114)
we introduced the Pochhammer raising factorial symbol, defined as (a)k := a(a + 1) . . . (a + k − 1) for a, k ∈ N. In
Eq. (115) we recognized that, by definition,

(k)m−1

(m− 2)!
=

(
k +m− 2

m− 1

)
=

(k +m− 2)!

(k − 1)!(m− 1)!
· k
k
. (118)

Finally, rearranging the terms and by symmetry of the binomial coefficient, the assertion followed.

D Proof of Eq. 56
In this section, for convenience, we will say that a box in a Young tableau is a k-box if it is labeled by k ∈ [m].
Let SSYT(λk) be the set of semi-standard Young tableaux of shape λk and consider the set

SSYT(0)(λk) := {T | T ∈ SSYT(λk) s.t. wT
i = wT

i+1 ∀i ∈ [m− 1]} . (119)

It follows that γλk
(0) = |SSYT(0)(λk)| is the inner multiplicity of 0 in λk.

Clearly, γ(w) = 1 for each weight w in SU(2), and Eq. (56) holds trivially.
In a similar fashion, counting Young tableaux Tλk

for SU(3) is straightforward: any Young tableau T ∈ SSYT(0)(λk)
contains the labels {1, 2, 3} exactly k times, with the 1’s forced to be placed in the first k boxes of the first row, otherwise
T would not be a legal tableau. Then, if we consider a starting Young tableau of the form

1 . . . 1 2 . . . 2

3 . . . 3

k k

(120)

all remaining T ∈ SSYT(0)(λl) can be obtained by permuting the last 2-box in the first row with the first 3-box in the
second row. The total number of allowed swaps is k, which implies γλk

(0) = k + 1.
Consider now m > 3 and suppose Eq. (56) holds for k − 1,m− 1. As in the previous case, the 1-boxes are fixed to

be placed at the beginning of the first row. Suppose the m-boxes are all placed in the m− 1-th row, i.e. we consider

1 . . . 1 2 . . . 2

...
. . .

...

m . . . m

k k

. (121)
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As long as the last row is fixed to contain m-boxes only, the total number of such Young tableaux is
(
k+m−3

k

)
. Then,

we only have to count the remaining allowed configurations of k-boxes. For this purpose, observe that the remaining
allowed positions for m-boxes are only in the first row, and there are k such configurations. Hence, it is enough to
count all possible configurations for each placement of m-boxes in the first row, which is given by

(
k − l +m− 2

k − l

)
, (122)

where l is the number of free boxes in the first row of the tableau. Therefore, the total number of such configurations
is

k∑

l=1

(
(k − l) +m− 2

k − l

)
=

k−1∑

j=0

(
j +m− 2

j

)
=

k−1∑

j=0

(
j +m− 2

m− 2

)

=

(
k +m− 3

k − 1

)
,

(123)

where we used Fermat’s identity
n∑

j=0

(
j + a

j

)
=

(
a+ n+ 1

n

)
. (124)

Therefore, by Pascal’s identity, we have

γλk
(0) =

(
k +m− 3

k

)
+

(
k +m− 3

k − 1

)
=

(
k +m− 2

k

)
, (125)

from which the assertion follows.

E Proof of Lemma 10
Lemma 16 (Restatement of Lemma 10). For a PNR measurement setting, ρ = |n⟩⟨n| as input state, and an irrep
λk of ω(n) = τmn ( · )τm†

n , the following holds:

E[fλ] =
∑

M∈GT(λk)

|CM
N,N̄ |2 , (126)

where N is the GT pattern associated with n, and N̄ is its dual.

Proof. Since ρ is an n-particle state and ωm
n is a passive transformation, the outcome of a PNR measurement must

also be an n-particle Fock state. Hence, we have

E[fλk
] :=

1

sλk

∑

x∈Hm
n

∫
dg ⟨n,n |Pλk

(τmn ⊗ τ̄mn )(g)† |x,x⟩⟨x,x |(τmn ⊗ τ̄mn )(g)|n,n⟩ (127)

=
1

sλk

∑

X∈GT(τm
n )

∫
dg ⟨N, N̄ |Pλ(τ

m
n ⊗ τ̄mn )(g)† |X, X̄⟩⟨X, X̄ |(τmn ⊗ τ̄mn )(g)|N, N̄⟩ (128)

=
1

sλk

∑

M∈GT(λk)

CM
N,N̄

∑

X∈GT(τm
n )

∫
dg ⟨M |λk(g)

† |X, X̄⟩⟨X, X̄ |
n⊕

j=0

λj(g)|N, N̄⟩ . (129)

The second line follows since the relative phases between |M⟩ and |M̄⟩ highlighted in Eq. (24) are integers, and
they appear an even number of times. In the third step, projected |N, N̄⟩ onto its λk-th component, Cf. Eq. (54).
Accordingly, the only non-trivial contribution to the integral is determined by the λk-th component of τmn ⊗ τ̄mn .
Similarly, by orthogonality relations, the integral is non-zero only if λj = λk. Hence, it is enough to consider the
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restricted Clebsch-Gordan decomposition to the λk-th irrep, and the following holds:

E[fλk
] =

1

sλk

∑

M∈GT(λk)

CM
N,N̄

∑

X∈GT(τm
n )

∫
dg ⟨M |λk(g)

† |X, X̄⟩⟨X, X̄ |λk(g)|N, N̄⟩ (130)

=
1

sλk

∑

M∈GT(λk)

CM
N,N̄

∑

X∈GT(τm
n )

∑

M1,M2,M3∈GT(λk)

CM1

X,X̄
CM2

X,X̄
CM3

N,N̄
(131)

×
∫

dg ⟨M |λk(g)
† |M1⟩⟨M2 |λk(g)|M3⟩

︸ ︷︷ ︸
= 1

dimλk
δM,M3

δM1,M2

(132)

=
1

dimλk

1

sλk

∑

M∈GT(λk)

|CM
N,N̄ |2

∑

X∈GT(τm
n )

∑

M1∈GT(λk)

|CM1

X,X̄
|2 (133)

=
∑

M∈GT(λk)

|CM
N,N̄ |2. (134)

In the second step, we expanded |X, N̄⟩, |N, N̄⟩ in the coupled basis, and restricted the decompositions to the λk-th
components. In the third step, we used Schur’s orthogonality relations to compute the integral, and in the final step
we used the definition of the frame operator, and in particular the result in Lemma 8.

F Proof of Lemma 11
Lemma 17 (Restatement of Lemma 11). Let λk be a Young diagram as in Eq. (47). Then, we have

λk ⊗ λk =
k⊕

l=0

λl+1
l ⊕

2k⊕

l=k+1

λ2k−l+1
l ⊕ L , (135)

where λ0 ≡ 1, λ1 ≡ Ad as usual, and L is a suitable direct sum of Young diagrams which are not of the form λl for
any l ∈ N.

Proof. Consider for any k ∈ N the tensor product

λk ⊗ λk =

. . . . . .

. . .

... . . .
...

. . .

⊗

a1 . . . a1 a1 . . . a1

a2 . . . a2

... . . .
...

am−1 . . . am−1

. (136)

By Littlewood-Richardson’s rules, the number of Young diagrams λl that can be constructed from λ⊗2
k is determined

by all possible allowed configurations we can attach the a1 boxes to the first λk, since the way the remaining ai boxes,
i = 2, . . . ,m − 1, are attached must follow accordingly. First, notice that only the a1 boxes can be attached to the
first row of the first copy of λk due to the elimination rule. Hence, we have two different ‘generating’ Young diagrams
conditioned by whether l ≤ k or k+1 ≤ l ≤ 2k. Suppose l ≤ k at first. The a1 boxes are attached to the first copy of
λk as follows: The first l boxes are attached to the first row, the next k boxes are attached to the second row and the
remaining k − l boxes are attached to the m-th row. Then, all the ai boxes, for any i = 2, 3, . . . ,m − 2 are attached
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to the i+ 1-th row. Finally, the am−1 boxes are attached to the m-th row. The resulting Young diagram is given by

. . . . . . . . . . . . a1 . . . a1

. . . . . . a1 . . . a1 . . . a1

. . . . . . a2 . . . a2 . . . a2

...
...

...
...

...
...

...

. . . . . . am−2 . . . am−2 . . . am−2

a1 . . . a1 am−1 . . . am−1 am−1 . . . am−1

k k l

kk − l

m m− 2 (137)

Suppose now l ≥ k + 1. The a1 boxes are attached to the first copy of λk as follows: The first l boxes are attached
to the first row, while the remaining ones are attached to the second row of λk. Then, for the ai boxes, for any
i = 2, 3, . . . ,m − 2, the first 2k − l are attached to the i-th row of λk, while the remaining ones are attached to the
i+ 1-th row of λk. The first am−1 boxes are attached to the m− 1-th row of Tk and the remaining ones will form the
m-th row of the diagram. The resulting Young diagram is

. . . . . . . . . . . . a1 . . . a1

. . . . . . a1 . . . a1 a2 . . . a2

. . . . . . a2 . . . a2 a3 . . . a3

...
...

...
...

...
...

...

. . . . . . am−2 . . . am−2 am−1 . . . am−1

am−1 . . . am−1

k k l

2k − l

2k − l l − k

m m− 2 (138)

For notation purpose, let us refer to the latter two Young diagrams as the generating Young diagrams.
At this point, we can generate all the remaining copies of λl in the following way:

1. For any i = 1, . . . ,m− 2, replace the last ai box in the i+ 1-th row with an ai+1 box.

2. Replace the first am−1 box in the m-th row of the diagram with a1.

It follows that the multiplicity of λl in the decomposition of λ⊗2
k is determined by the number of a1 boxes in the second

row of the generating Young diagram.

G Proof of Theorem 12
Theorem 18 (Restatement of Theorem 12). For a PNR measurement setting, ρ = |n⟩⟨n| as input state, and an
irrep λk of ω(n) = τmn ( · )τm†

n , the following holds:

E[f2
λk
] =

1

s2λk

(−1)φ(N)
∑

X∈GT(τm
n )

(−1)φ(X)gk(X,N) , (139)

where gk(X,N) is a function of Clebsch-Gordan coefficients of the representations τmn ⊗ τ̄mn and λ⊗2
k given by

gk(X,N) =

min{n,2k}∑

l=0

1

dimλl

ml∑

r=1

∑

M,M ′,L,
L′∈GT(λk)

∑

R,R′∈GT(λl)

CM
N,N̄CM ′

N,N̄CL
X,X̄CL′

X,X̄CR
N,N̄CR′

X,X̄CR,r
M,M ′C

R′,r
L,L′ (140)

where ml is the multiplicity of λl in λ⊗2
k as in Lemma 11.
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Proof. For any irrep λk ∈ ω̂m
n , and by relabeling the second entries as basis elements of the dual irrep τ̄mn , the second

moment can be expressed as

E[f2
λk
] :=

1

s2λk

∑

x∈Hm
n

∫
dg ⟨n,n |Pλk

(τmn ⊗ τ̄mn )(g)† |x,x⟩2⟨x,x |τmn ⊗ τmn (g)|n,n⟩

=
1

s2λk

∑

X∈GT(τm
n )

∫
dg ⟨N,N |Pλk

(τmn ⊗ τ̄mn )(g)† |X,X⟩2⟨X,X |τmn ⊗ τmn (g)|N,N⟩

=
1

s2λk

∑

X∈GT(τm
n )

(−1)φ(N)+φ(X)

∫
dg ⟨N, N̄ |Pλk

(τmn ⊗ τ̄mn )(g)† |X, X̄⟩2

× ⟨X, X̄ |τmn ⊗ τmn (g)|N, N̄⟩

=
1

s2λk

(−1)φ(N)
∑

X∈GT(τm
n )

(−1)φ(X)gk(X,N) ,

(141)

where
gk(X,N) ≡

∫
dg ⟨N, N̄ |Pλk

(τmn ⊗ τ̄mn )(g)† |X, X̄⟩2⟨X, X̄ |τmn ⊗ τmn (g)|N, N̄⟩ . (142)

By Lemmas 6 and 9, we obtain

gk,l(X,N) =
∑

M,M ′∈GT(λk)

CM
N,N̄CM ′

N,N̄

∑

L,L′∈GT(λk)

CL
X,X̄CL′

X,X̄

n∑

j=0

∑

J,J ′∈GT(λj)

CJ
X,X̄CJ′

N,N̄

×
∫

dg ⟨M,M ′ |λk(g)
†⊗2 |L,L′⟩⟨J |λj(g)|J ′⟩

︸ ︷︷ ︸
≡I

(143)

We compute the integral with Schur’s orthogonality relations. Specifically, this requires the irrep decomposition of
λ⊗2
k : By Lemma 11, we have

⟨M,M ′ |λk(g)
†⊗2 |L,L′⟩ = ⟨M,M ′ |

2k⊕

l=0

λ⊕ml

k (g)† |L,L′⟩ , (144)

where ml ∈ {0, 1, . . . , k} is the multiplicity of λl in λ⊗2
k worked out in Lemma 11. Then, consider the following

Clebsch-Gordan decompositions:

|M,M ′⟩ =
2k∑

i=0

∑

R∈GT(λi)

CR,ri
M,M ′ |R, ri⟩ , |L,L′⟩ =

2k∑

h=0

∑

R′∈GT(λh)

CR′,rh
L,L′ |R′, rh⟩ , (145)

where ri, rh denote the ri-th and rh-th copies of λi and λh in λ⊗2
k , respectively. By orthogonality of irreps, it follows

⟨M,M ′ |λk(g)
†⊗2 |L,L′⟩ =

2k∑

l=0

ml∑

r=1

∑

R,R′∈GT(λl)

CR,r
M,M ′C

R′,r
L,L′⟨R, r |λ(r)

l (g)† |R′, r⟩ . (146)

By Schur’s orthogonality relations, this implies that the only non trivial contributions in I are associated with irreps
λl which appears in the intersection of the sets of irreps of τmn ⊗ τ̄mn and λk ⊗ λk, i.e. j = l provided that λl appears
in both decomposition. More specifically,

I =
2k∑

l=0

ml∑

r=1

∑

R,R′∈GT(λl)

CR,r
M,M ′C

R′,r
L,L′

∫
dg ⟨R, r |λ(r)

l (g)† |R′, r⟩⟨J |λj(g)|J ′⟩

=
2k∑

l=0

δl,j

ml∑

r=1

∑

R,R′∈GT(λl)

CR,r
M,M ′C

R′,r
L,L′

∫
dg ⟨R, r |λ(r)

l (g)† |R′, r⟩⟨J |λl(g)|J ′⟩

=

2k∑

l=0

1

dimλl
δl,j

ml∑

r=1

∑

R,R′∈GT(λl)

CR,r
M,M ′C

R′,r
L,L′δR,J′δR′,J .

(147)

927



Therefore, we have

gk(X,N) =
∑

M,M ′∈GT(λk)

CM
N,N̄CM ′

N,N̄

∑

L,L′∈GT(λk)

CL
L,L̄C

L′

X,X̄

n∑

j=0

∑

J,J ′∈GT(λj)

CJ
X,X̄CJ′

N,N̄

×
2k∑

l=0

1

dimλl
δl,j

ml∑

r=1

∑

R,R′∈GT(λl)

CR,r
M,M ′C

R′,r
L,L′δR,J′δR′,J

=

minn,2k∑

l=0

1

dimλl

ml∑

r=1

∑

M,M ′∈GT(λk)

CM
N,N̄CM ′

N,N̄

∑

L,L′∈GT(λk)

CL
L,L̄C

L′

X,X̄

×
∑

R,R′∈GT(λl)

CR
N,N̄CR′

X,X̄CR,r
M,M ′C

R′,r
L,L′ ,

(148)

from which the assertion follows.

H Passive RB with heterodyne measurement
In this section, we will use the usual multi-index notation [83, Sec. 9.1]: For elements n1,n2 ∈ Hm

n , n1+n2 denotes
the component-wise sum. The multi-index factorial of n ∈ Hm

n is defined as n! := n1! . . . nm!. Also, for a given
α ∈ Cm, we consider the power αn := αn1

1 . . . αnm
m , and we set |α|p := αp

1 + · · · + αp
m for p ≥ 1. We also use the

shorthand notation ∫
d2α ≡

∫
d2α1· · ·

∫
d2αm , (149)

where d2αi is the complex measure on C. With this notation, the multi-mode coherent state |α⟩ can be expanded as

|α⟩ = e−|α|2/2 ∑

n∈Fm

αn

√
n!

|n⟩ . (150)

Consider now the following quantity for any K ∈ 2N:

I({ni}Ki=1) =
1√

n1!n2! . . .nK !

∫
d2α e−K/2|α|2ᾱn1+...nK/2αnK/2+1+...nK . (151)

The latter can be evaluated writing down the integral in polar coordinates and integrating by parts. Specifically, for
the single-mode integral, and for any c > 0, we have

∫
d2α e−c|α|2αa+bᾱc+d =

∫ ∞

0

dr e−cr2ra+b+c+d+1

∫ 2π

0

dθ eiθ(a+b−c−d)

= π

(
a+ b+ c+ d

2

)
! c−

a+b+c+d
2 δa+b,c+d .

(152)

Notice that the expression in parenthesis is a proper factorial due to the δ. This implies

I({ni}Ki=1) =
πm

(K/2)n

(
n1 + · · ·+ nK/2

)
!√

n1! . . .nK !
δn1+···+nK/2,nK/2+1+···+nK

. (153)

where δn1+···+nK/2,nK/2+1+···+nK
= 1 if

∑K/2
i=1 ni =

∑K
i=K/2+1 ni, and 0 otherwise, and we used the fact that |ni| = n

for each i = 1, . . .K.
The coherent state POVM {|α⟩⟨α|}α∈Cm is informationally complete [91], which implies sλk

̸= 0 for any λk ∈ ω̂M
n

[1]. More specifically, we have:

Lemma 19. Let λk ∈ ω̂M
n . For a balanced heterodyne measurement setting, the eigenvalues of the frame operator of

the filtered RB protocol are given by

sλk
=

1

dλk

πm

2n

∑

n1,n2,m1,m2

Iφ(n1,n2,m1,m2)
∑

M∈GT(λk)

CM
Nn1 ,M̄m1

CM
Nn2 ,M̄m2

, (154)

where Nni
,Mmi

are the GT patterns associated with n1,mi, respectively, and Iφ is given by

Iφ(n1,n2,m1,m2) = (−1)φ(Mm1 )+φ(Mm2 )I(n1,n2,m1,m2) . (155)

and

I =
πm

2n

√
n1!n2!

m1!m2!

(
n1 + n2

n2

)
δn1+n2,m1+m2 . (156)
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Proof. For the balanced heterodyne measurement setting the corresponding (ideal) POVM is {|α⟩⟨α| ≡ Eα}α∈Cm ,
where |α⟩ =⊗m

i=1|αi⟩ is an m modes coherent state. The associated measurement channel is given by

M(·) :=
∫

Cm

d2αTr[|α⟩⟨α|(·)] |α⟩⟨α| . (157)

To evaluate Eq. (42), we use the multi-mode expansion defined in Eq. (150). Moreover, since Pλk
is defined onto a

subspace of Hm
n , such expansions of the copies of α are truncated. Hence, by Eq. (151), we have

sλk
=

1

dλk

∫
d2αTr[|α⟩⟨α|Pλk

(|α⟩⟨α|)]

=
1

dλk

∑

n1,n2,m1,m2∈Hm
n

I(n1,n2,m1,m2) Tr[|n1⟩⟨m1|Pλk
(|n2⟩⟨m2|)]

=
1

dλk

∑

n1,n2,m1,m2∈Hm
n

I(n1,n2,m1,m2)⟨n1,m1 |Pλk
|n2,m2⟩

=
1

dλk

∑

n1,n2,m1,m2∈Hm
n

I(n1,n2,m1,m2)⟨Nn1
,Mm1

|Pλk
|Nn2

,Mm2
⟩

=
1

dλk

∑

n1,n2,m1,m2∈Hm
n

Iφ(n1,n2,m1,m2)⟨Nn1 , M̄m1 |Pλk
|Nn2 , M̄m2⟩

=
1

dλk

∑

n1,n2,m1,m2∈Hm
n

Iφ(n1,n2,m1,m2)
∑

M∈GT(λk)

CM
Nn1

,M̄m1
CM

Nn2
,M̄m2

,

(158)

where in the last step we used the definition of Pλk
to compute the inner product, i.e.

⟨Nn1
, M̄m1

|Pλk
|Nn2

, M̄m2
⟩ =

∑

M∈GT(λk)

⟨Nn1
, M̄m1

|M⟩⟨M |Nn2
,Mm2

⟩

=
∑

M∈GT(λk)

CM
Nn1 ,M̄m1

CM
Nn2 ,M̄m2

.
(159)

By Eq. (153), we have

I(n1,n2,m1,m2) =
πm

2n
(n1 + n2)! δn1+n2,m1+m2

. (160)

Finally, since

(n1 + n2)! = n1!n2!

(
n1 + n2

n2

)
, (161)

with (
n1 + n2

n2

)
≡
(
n1,1 + n2,1

n2,1

)
. . .

(
n1,m + n2,m

n2,m

)
, (162)

Eq. (156) follows.

A result similar to Eq. (63) is available for heterodyne detectors. We remark that, in principle, it could be possible
to workout an expression analogous to Eq. (61). However, we find it less intuitive in the interpretation, as it would
correspond to a weighted sum of matrix coefficients of λk. Instead, we can express the filter function as a linear
combination of Hafnians, in agreement with Gaussian boson sampling experiments:

Theorem 20 (Restatement of Theorem 2 - heterodyne version). Let ρ = |n⟩⟨n| be a m modes state and let
{|α⟩⟨α|}α∈Cm be the coherent state POVM. Then, for a given irrep λk ∈ ω̂m

n , the filter function is given by

fλk
(α, g) =

(−1)φ(N)

dλk

∑

M∈GT(λk)

CM
N,N̄

∑

N1,N2∈GT(τm
n )

(−1)φ(N2)CM
N1,N̄2

⟨N1, N2 |τmn ⊗ τ̄mn (g)† |α,α⟩ . (163)

Proof. The proof is analogous to the PNR case. We go through each step again for clarity. By a slight generalization
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of Lemma 6 to include coherent state measurements, we have

fλk
(α, g) =

1

dλk

⟨n,n |Pλk
τmn ⊗ τ̄mn (g)† |α,α⟩ (164)

=
1

dλk

(−1)φ(N)⟨N, N̄ |Pλk
τmn ⊗ τ̄mn (g)† |α,α⟩ (165)

=
1

dλk

(−1)φ(N)
∑

M∈GT(λk)

CM
N,N̄ ⟨M |τmn ⊗ τ̄mn (g)† |α,α⟩ (166)

=
1

dλk

(−1)φ(N)
∑

M∈GT(λk)

CM
N,N̄

∑

N1,N2∈GT(τm
n )

CM
N1,N̄2

⟨N1, N̄2 |τmn ⊗ τ̄mn (g)† |α,α⟩ (167)

=
1

dλk

(−1)φ(N)
∑

M∈GT(λk)

CM
N,N̄

∑

N1,N2∈GT(τm
n )

(−1)φ(N2)CM
N1,N̄2

(168)

× ⟨N1, N2 |τmn ⊗ τ̄mn (g)† |α,α⟩ , (169)

where n1,n2 are Fock states associated with GT states N1, N2, respectively. By writing

⟨N1, N2 |τmn ⊗ τ̄mn (g)† |α,α⟩ = ⟨n2 |τmn (g)|α⟩⟨α |τmn (g)† |n1⟩ (170)

we see that fλk
is given by a suitable combination of Hafnians [14].

H.1 Moments for the heterodyne measurement setting
In this section, we provide explicit expressions for first two moments of probability of the filter function (5) in the

case of heterodyne measurements, for which the ideal probability distribution is p(α|g) = ⟨α |ωm
n (g)(ρ)|α⟩, α ∈ Cm.

In particular, the ideal second moment will provide an upper bound to the sampling complexity of the protocol, Cf.
Section 2.3. As in Section 4.3, the proofs rely on the application of Schur’s orthogonality relations, see Eq. (73).

Lemma 21. For a heterodyne measurement setting, ρ = |n⟩⟨n| as input state, and an irrep λk of ω(n) = τmn ( · )τm†
n ,

the following holds:

E[fλk
] =

1

dλk
sλk

∑

n1,n2,m1,m2

Iφ(n1,n2,m1,m2)
∑

M∈GT(λk)

|CM
N,N̄ |2

∑

S∈GT(λk)

CS
Nn1

,M̄m1
CS

Nn2
,M̄m2

, (171)

where Iφ is as in Lemma 19.

Proof. As in the proof of Lemma 19, considering the multi-mode expansion of α, only the n-particle component
provides non-trivial contribution to the first moment, since ωm

n acts non trivially on Hm
n only. Recalling Eq. (151), it

follows

E[fλk
] =

1

sλk

∫
d2α

∫
dg Tr[|n⟩⟨n|Pλk

◦ ωm
n (|α⟩⟨α|)] Tr[|α⟩⟨α|ωm

n (g)(|n⟩⟨n|)] (172)

=
1

sλk

∑

n1,n2,m1,m2

I(n1,n2,m1,m2)

∫
dg Tr[|n⟩⟨n|Pλk

◦ ωm
n (g)†(|n1⟩⟨m1|)] (173)

× Tr[|n2⟩⟨m2|ωm
n (g)(|n⟩⟨n|)] . (174)

In particular,

H ≡
∫

dg Tr[|n⟩⟨n|Pλk
◦ ωm

n (g)†(|n1⟩⟨m1|)] Tr[|n2⟩⟨m2|ωm
n (g)(|n⟩⟨n|)] (175)

=

∫
dg ⟨n,n |Pλk

τmn ⊗ τ̄mn (g)† |n1,m1⟩⟨n2,m2 |τmn ⊗ τ̄mn (g)|n,n⟩ (176)

= (−1)φ(N)
∑

M∈GT(λk)

CM
N,N̄

∫
dg ⟨M |λk(g)

† |Nn1
,Mm1

⟩⟨Nn2
,Mm2

|
n⊕

j=0

λj(g)|N,N⟩ (177)

= (−1)φ(Mm1
)+φ(Mm2

)
∑

M∈GT(λk)

CM
N,N̄

∫
dg ⟨M |λk(g)

† |Nn1 , M̄m1⟩ (178)

× ⟨Nn2
, M̄m2

|
n⊕

j=0

λj(g)|N, N̄⟩ . (179)
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The latter can be computed by slight modifications of Lemmas 6 and 9. In particular, by orthogonality relations, the
integral is non-zero only if j = k and for basis vectors of λk. In other words, it is enough to restrict the Clebsch-Gordan
decompositions to the λk-th component:

|Nn1
,Mm1

⟩|λk
=

∑

S1∈GT(λk)

CS1

Nn1
,M̄m1

|S1⟩ ,

|Nn2
,Mm2

⟩|λk
=

∑

S2∈GT(λk)

CS2

Nn2
,M̄m2

|S2⟩ ,

|N, N̄⟩
∣∣
λk

=
∑

S3∈GT(λk)

CS3

N,N̄
|S3⟩ .

Therefore, by Eq. (73), we have

H =
1

dλk

(−1)φ(Mm1
)+φ(Mm2

)
∑

M∈GT(λk)

|CM
N,N̄ |2

∑

S∈GT(λk)

CS
Nn1

,M̄m1
CS

Nn2
,M̄m2

(180)

from which the assertion follows recalling the definition of Iφ.

Lastly, we have the following explicit expression for the second moment:

Theorem 22. Consider a passive RB experiment with balanced heterodyne measurement setting, initial Fock state
ρ = |n⟩⟨n|, and λ is an irrep of ωM

n = τmn ( · )τm†
n . Then, the following holds:

E[f2
λk
] =

1

s2λk

(−1)φ(N)
∑

n1,n2,n3,
m1,m2,m3

(−1)
∑3

i=1 φ(Mi)I((ni), (mi))g
(φ)
k (N ,M , N) , (181)

where N = (N1, N2, N3),M = (M1,M2,M3) with Ni ≡ N(ni),Mi ≡ M(mi) are GT patterns associated with ni,mi,
respectively, I((ni), (mi)) ≡ I(n1,n2,n3,m1,m2,m3) is as in Eq. (153) and

gk(N ,M , N) =

min{n,2k}∑

l=0

1

dλk

ml∑

r=1

∑

M,M ′,L,L′∈GT(λk)

∑

R,R′∈GT(λl)

CM
N,N̄CM ′

N,N̄CR,r
M,M ′C

R
N,N̄CR′

N3,M̄3

× CL
N1,M̄1

CL′

N2,M̄2
CR′,r

L,L′ .

(182)

Proof. By Eqs. (150) and (151), we have, for any λk,

E[f2
λk
] =

1

s2λk

∫
d2α

∫
dg Tr[|n⟩⟨n|Pλk

◦ ωm
n (g)†(|α⟩⟨α|)]2 Tr[|α⟩⟨α|ωm

n (g)(|n⟩⟨n|)] (183)

=
1

s2λk

∑

n1,n2,n3,
m1,m2,m3

I((ni), (mi))

∫
dg Tr[|n⟩⟨m|Pλk

◦ ωm
n (g)†(|n1⟩⟨m1|)] (184)

× Tr[|n⟩⟨n|Pλk
◦ ωm

n (g)†(|n2⟩⟨m2|)] Tr[|n3⟩⟨m3|ωm
n (g)(|n⟩⟨n|)] (185)

≡ 1

s2λk

∑

n1,n2,n3,
m1,m2,m3

I((ni), (mi))g
(φ)
k (N ,M , N) . (186)

Introducing GT patterns, we have

g
(φ)
k (N ,M , N) ≡

∫
dg Tr[|n⟩⟨m|Pλk

◦ ωm
n (g)†(|n1⟩⟨m1|)] Tr[|n⟩⟨n|Pλk

◦ ωm
n (g)†(|n2⟩⟨m2|)] (187)

× Tr[|n3⟩⟨m3|ωm
n (g)(|n⟩⟨n|)] (188)

=

∫
dg ⟨n,n |Pλk

τmn ⊗ τ̄mn (g)† |n1,m1⟩⟨n,n |Pλk
τmn ⊗ τ̄mn (g)† |n2,m2⟩ (189)

× ⟨n3,m3 |τmn ⊗ τ̄mn (g)|n,n⟩ (190)

= (−1)φ(N)+φ(M1)+φ(M2)+φ(M3)
∑

M,M ′∈GT(λk)

CM
N,N̄CM ′

N,N̄ (191)

×
∫

dg ⟨M,M ′ |λk(g)
⊗2† |N1, M̄1, N2, M̄2⟩⟨N3, M̄3 |

n⊕

j=0

λj(g)|N, N̄⟩ (192)

≡ (−1)φ(N)+
∑3

i=1 φ(Mi)gk(N ,M , N) . (193)
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We compute the integral as in the proof of Theorem 12: Consider the decomposition of λ⊗2
l as in Lemma 11. Then,

by orthogonality of the matrix coefficients, the non-trivial contributions to the integral come from irreps that appear
–with their multiplicities– in both ωm

n and λ⊗2
k . In this way, the latter integral reduces to

min{n,2k}∑

l=0

ml∑

r=1

∫
dg ⟨M,M ′ |λ(r)

l (g)† |N1, M̄1, N2, M̄2⟩⟨N3, M̄3 |λl(g)|N, N̄⟩ . (194)

Given the Clebsch-Gordan decompositions

|M,M ′⟩ =
∑

R∈GT(λl)

CR,r
M,M ′ |R, r⟩ , (195)

|N3, M̄3⟩ =
∑

J∈GT(λl)

CJ
N3,M̄3

|J⟩ , (196)

|N, N̄⟩ =
∑

J′∈GT(λl)

CJ′

N,N̄ |J ′⟩ , (197)

|N1, M̄1, N2, M̄2⟩ =
∑

L,L′∈GT(λk)

CL
N1,M̄1

CL′

N2,M̄2
|L,L′⟩ , (198)

|L,L′⟩ =
∑

R′∈GT(λl)

CR′r
L,L′ |R′, r⟩ , (199)

from which it follows ∫
dg ⟨R, r |λ(r)

l (g)† |R′, r⟩⟨J |λl(g)|J ′⟩ = 1

dλl

δR,J ′δR′,J . (200)

Hence,

gk(N ,M , N) =

min{n,2k}∑

l=0

1

dλk

ml∑

r=1

∑

M,M ′,L,L′∈GT(λk)

∑

R,R′∈GT(λl)

CM
N,N̄CM ′

N,N̄CR,r
M,M ′C

R
N,N̄CR′

N3,M̄3

× CL
N1,M̄1

CL′

N2,M̄2
CR′,r

L,L′ ,

(201)

and the assertion follows with a suitable sorting of all the terms.
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I. INTRODUCTION

Principles of quantum mechanics dictate that quan-
tum operations must act on and output density matrices,
which are positive matrices with a unit trace [1]. Thus,
a valid quantum operation must be completely positive
and trace-preserving (CPTP). As depicted in Fig. 1(a),
the set of CPTP maps represents only a small subset of
all linear maps [2]. In practical terms, the CPTP con-
straint limits the performance of many quantum tasks.

In entanglement detection and quantification, posi-
tive but not completely positive maps [3] serve as cru-
cial tools. By deciding the positivity of output matrices
generated by acting positive maps on subsystems, cor-
responding entanglement criteria exhibit strong detec-
tion capabilities. Moreover, the entanglement negativ-
ity, which quantifies the violation of the positive partial
transposition criterion, represents an easily computable
and operationally meaningful entanglement measure [4].
However, due to their lack of complete positivity, ver-
ifying positive map criteria often requires highly joint
operations or exponential repetition times [5–7].

In quantum error mitigation [8, 9], the core idea is
applying the inverse map of the noise channel to noisy
states. However, since the inverse maps of noise chan-
nels are always non-completely-positive (non-CP), tech-
niques such as probabilistic error cancellation [10–12] are
adopted to statistically realize these inverse maps, recov-
ering only noiseless expectation values rather than noise-
less states, limiting the range of applications.

Existing approaches for realizing non-CP maps are re-
stricted in the level of quantum states and aim to prepare
outputs of non-CP maps in some indirect ways. Methods
based on structural approximation [13, 14] and Petz re-
covery map [15, 16] employ CPTP maps to approximate
non-CP maps. However, the approximate channel may
largely deviate from the target non-CP map. The multi-
copy extension method [17] utilizes a joint CPTP map
acting on multiple copies of input states to produce a
single output of the non-CP map, making it feasible only
when the output remains a density matrix. Probabilistic
error cancellation [10–12] decomposes the non-CP map
into a linear combination of some CPTP maps, realizing
the non-CP map only in a statistical manner.

An effective and practical approach to implementing
non-CP maps remains elusive. In this work, we ad-
dress this crucial problem by proposing a systematic ap-
proach to efficiently simulate the actions of all Hermitian-
preserving maps.

II. THE ALGORITHM

Although the output of a Hermitian-preserving map,
N (ρ), might not necessarily be a density matrix but
rather a general Hermitian matrix, Hermitian matrices
still have physical meanings, such as Hamiltonians de-
termining evolutions of physical systems. Therefore, by
exponentiating a Hermitian-preserving map N (·), we de-
fine a new map, e−iN (·)t, which maps an input state to a
unitary evolution. This new map contains all the infor-
mation of the Hermitian-preserving map N .

To realize the map e−iN (·)t, we design a quantum al-
gorithm called Hermitian-preserving map exponentiation
(HME), as depicted in Fig. 1(c). The HME algorithm
begins with preparing two quantum systems, the target
state ρ will be prepared on the first system, while the sec-
ond system serves as a quantum memory to keep the state
on which the evolution of e−iN (ρ)t is applied. Based on
the desired accuracy, the non-CP map N , and the total
evolution time t, one determines an appropriate Hamil-
tonian H and a short time period ∆t. Subsequently, one
repeats the following steps for a total of K = t/∆t times:

1. Prepare the target state ρ on the first system.

2. Evolve the two systems jointly using e−iH∆t.

Theorem 1 (Validation of HME). For a short time pe-
riod ∆t, we have

Tr1
(
e−iH∆t(ρ⊗ σ)eiH∆t

)
= e−iN (ρ)∆tσeiN (ρ)∆t+O(∆t2).

(1)
Here, Tr1 denotes the partial trace over the first sys-
tem, N represents the target Hermitian-preserving map,
H = ΛT1

N with ΛN = (I ⊗ N ) |Φ+⟩⟨Φ+| being the Choi
matrix for N , |Φ+⟩ =

∑
i |ii⟩ denotes the unnormalized

maximally entangled state, and T1 represents the partial
transposition operation on the first system.

The density matrix exponentiation algorithm [18, 19],
which has been proved to exhibit exponential speedup
compared to single-copy strategies in certain tasks [20],
can be regarded as a special case of HME by setting N
to be the identity map. Given that Hermitian-preserving
maps are significantly more general than CPTP maps
and encompass a wide range of crucial non-CP maps,
HME has the potential to be a key tool in various quan-
tum information processing tasks.
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FIG. 1. (a) Diagrammatic representation of different types of maps, including CP (completely positive), P (positive), HP
(Hermitian-preserving), and TP (trace-preserving) maps. Physical maps lie in the intersection of CP and TP. The smiling faces
represent the maps used in the four applications listed in (b). (c) Circuit diagram for HME, comprising three components:
sequential input of identical states ρ, the evolved state σ preserved using quantum memory, and joint Hamiltonian evolution. (d)
The circuit of the HME-based entanglement detection protocol, which is constructed by combining the HME and quantum phase
estimation algorithms. The controlled unitary evolutions are approximately realized by HME, where HN is the Hamiltonian
for implementing N = PA ⊗IB . (e) The circuit for estimating entanglement negativity. (f) The circuit of our error mitigation
protocol.

III. PERFORMANCE ANALYSIS

HME realizes the evolution of e−iN (ρ)t by sequentially
inputting the target state ρ. Thus, an essential indicator
for analyzing the performance of HME is the number of
copies needed for realizing the desired evolution with an
error up to ϵ. According to Theorem 1, the difference
between the ideal and real channels for a single step of
the experiment is a second-order term. Thus the error
could be suppressed by choosing a shorter time slice ∆t,
or equivalently, by using more copies of ρ.

Theorem 2 (Upper bound of sample complexity). Let
N be an arbitrary Hermitian-preserving map, the HME
algorithm shown in Fig. 1(c) requires at most

O
(
ϵ−1∥H∥2∞t

2
)

(2)

copies of sequentially inputting state ρ to ensure that
∥Qt − Ut∥⋄ ≤ ϵ holds for arbitrary ρ. Here, H = ΛT1

N ,
Qt = Q◦K

∆t represents the real channel with Q∆t(σ) :=
Tr1

[
e−iH∆t(ρ⊗ σ)eiH∆t

]
and K = t/∆t, Ut is the ideal

evolution channel corresponding to e−iN (ρ)t, and ∥·∥⋄ de-
notes the diamond norm.

We also analyze the lower bound of sample complexity
for exponentiating Hermitian-preserving maps, consider-
ing the ability to perform arbitrary physical operations.

Theorem 3 (Lower bound of sample complexity). Let
N ∈ T (H,K) be a Hermitian-preserving map and set
0 < ϵ ≤ 1/6, and t ≥ 15πϵ

4R∗
. Even using highly joint op-

erations, the minimum number of ρ needed to realize the
evolution of e−iN (ρ)t with ϵ accuracy in diamond distance
satisfies

fN (ϵ, t) ≥ Ω
(
ϵ−1R2

∗t
2
)
, (3)

where R∗ := max
A∈F

R [N (A)]. R[·] = λmax(·) − λmin(·)
denotes the spectral gap defined as the difference between
the largest and the lowest eigenvalues of the processed

matrix. The feasible region F is defined as F =
{
A ∈

L(H) : A† = A,Tr(A) = 0, ∥A∥1 = 1, [N (A+),N (A−)] =

0
}
, where A+ and A− are the positive and negative parts

of A.

Combining Theorem 2 and Theorem 3, we can con-
clude that HME represents the optimal protocol for ex-
ponentiating certain Hermitian-preserving maps, includ-
ing the identity map I and the inverse map of local am-
plitude damping noise (E⊗n

γ )−1.
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IV. ENTANGLEMENT DETECTION AND
QUANTIFICATION

One direct application of HME lies in entangle-
ment detection and quantification, as positive maps are
Hermitian-preserving. In entanglement detection, we in-
corporate HME into the quantum phase estimation algo-
rithm [1, 21], as shown in Fig. 1(d), to propose a new en-
tanglement detection protocol. We demonstrate through
an example that the HME-based protocol can offer ex-
ponential advantages compared to all single-copy ap-
proaches.

Theorem 4 (Informal). The HME-based protocol re-
quires at most O(1) copies of ρ to accomplish an en-
tanglement detection task with a success probability of at
least 2/3. In contrast, all single-copy approaches require
Ω(d1/4) copies of ρ to achieve the same task with a suc-
cess probability of at least 2/3.

Moreover, by combining the HME and Hadamard test
algorithm [22], as illustrated in Fig. 1(e), we develop the
first protocol to unbiasedly estimate entanglement nega-
tivity N(ρ). Compared to the tomography-based proto-
col which has sample complexity θ(ϵ−2d4), HME-based

protocol has sample complexity at most Õ(ϵ−3d3). Addi-
tionally, the HME-based protocol exhibits an exponential
advantage in terms of classical memory requirements.

Theorem 5. One needs an expected number of

Õ
(
log

(
δ−1

)
ϵ−3d2dA

∥∥ρTA
∥∥
1

)
copies of ρ to ensure∣∣∣N̂(ρ)−N(ρ)

∣∣∣ ≤ ϵ with a probability of at least 1 − δ.

Here, the Õ notation suppresses logarithmic expressions
for d and ϵ. Besides, the sampling times scales as M =
O
(
log

(
δ−1

)
ϵ−2d

∥∥ρTA
∥∥
1

)
, and the copies of ρ needed in a

single run of circuit in Fig. 1(e) when setting t = (2l−1)

scales as K(l) = Õ(ϵ−1ddAl).

V. MANAGING QUANTUM NOISES

Building upon HME, we propose a new protocol to
handle quantum noises named quantum noiseless state
recovery. This protocol enables the recovery of a noiseless
state from multiple copies of noisy states, given that the
description of the noise channel is known.

We consider a similar setting as quantum error miti-
gation, where the ideal noiseless state ψ is generated by
an ideal noiseless circuit, ψ = U(|0⟩⟨0|), while the exis-
tence of noise will change it to E(ψ) = E ◦ U(|0⟩⟨0|). By

sequentially inputting multiple copies of E(ψ) into the
circuit depicted in Fig. 1(c) and choosing an appropriate
Hamiltonian, we can approximately realize the evolution

of e−iE
−1◦E(ψ)t = e−iψt with arbitrary accuracy. Using

the circuit depicted in Fig. 1(f), we can extract the noise-
less state ψ from the evolution e−iψπ.

Theorem 6. Let E be an invertible noise map. De-
note HE−1 := ΛT1

E−1 as the Hamiltonian corresponding
to the inverse noise channel, and let F := ⟨ψ|σ |ψ⟩ be
the fidelity between |ψ⟩⟨ψ| and σ. Then we need at most

O
(
log

(
δ−1

)
ϵ−1F−2∥HE−1∥2∞

)
copies of E(|ψ⟩⟨ψ|) to ap-

proximately produce |ψ⟩⟨ψ| with trace distance smaller
than ϵ and a success probability at least 1− δ.

In contrast to existing methods such as quantum error
mitigation and quantum error correction, our protocol
can recover the desired noiseless state from multiple noisy
states, establishing a new approach for combating quan-
tum noises. Compared to quantum error mitigation, our
protocol has the ability to recover noiseless states,
at the expense of a deeper circuit. Additionally, com-
pared to quantum error correction, our protocol requires
fewer ancilla qubits and does not necessitate access to
the noiseless state at the beginning.

VI. DISCUSSION

HME has potential in other scenarios, as listed in
Fig. 1(b). Utilizing the Hermitian-preserving map
NO(ρ) = Tr(Oρ) |1⟩⟨1|, HME enables the encoding of ex-
pectation values into relative phases of reference states.
One can then measure the reference state to extract the
value of tr(Oρ). This HME-based phase encoding opera-
tion may also exhibit some advantages for other applica-
tions such as gradient estimation [23, 24]. Consider maps
of the form N (ρ) = PρP †, where P can be an arbitrary
rectangular matrix. In the task of linear combination of
unitaries [25], the matrix P is chosen as the sum of sev-
eral unitaries, allowing for producing an arbitrary pure
state or realizing a desired Hamiltonian evolution. Ad-
ditionally, in quantum imaginary time evolution [26–28],
P is set as e−βH , where β represents the inverse temper-
ature and H is a Hamiltonian. By increasing β, one can
prepare a pure state that approximates the ground state
of H to arbitrary precision.

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information: 10th Anniversary Edition
(Cambridge University Press, 2010).

[2] J. Watrous, The Theory of Quantum Information (Cam-
bridge University Press, Cambridge, 2018).
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[26] S. Lu, M. C. Bañuls, and J. I. Cirac, Algorithms for
quantum simulation at finite energies, PRX Quantum 2,
020321 (2021).

[27] D.-B. Zhang, G.-Q. Zhang, Z.-Y. Xue, S.-L. Zhu, and
Z. D. Wang, Continuous-variable assisted thermal quan-
tum simulation, Phys. Rev. Lett. 127, 020502 (2021).

[28] M. Motta, C. Sun, A. T. K. Tan, M. J. O’Rourke, E. Ye,
A. J. Minnich, F. G. S. L. Brandão, and G. K.-L. Chan,
Determining eigenstates and thermal states on a quan-
tum computer using quantum imaginary time evolution,
Nature Physics 16, 205 (2020).

936



Integrated spin-wave quantum memory
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Abstract. Optical quantum memory is an essential component for overcoming channel losses in large-
scale quantum networks. Now, quantum memories are marching toward miniaturization and integration for
large-scale practical applications. I will introduce the state-of-the-art technologies for fabricating integrated
quantum memories in rare-earth ions doped crystals [1]. Several achievements from our group will be
highlighted, including telecom integrated quantum memories for applications in quantum repeaters [2,3,4],
and the integrated spin-wave quantum memories for applications in transportable quantum memories [5,6].

Keywords: quantum memories, quantum repeaters, spin-wave storage

An optical quantum memory is a device that can s-
tore photonic quantum information and release it after
a controlled time. It is an essential component for over-
coming channel losses in large-scale quantum networks.
Optical quantum memories have been demonstrated with
various physical systems including atomic gases, single
atoms in optical cavities, and rare-earth-ion doped solid-
s. Now, quantum memories are marching toward minia-
turization and integration for large-scale practical appli-
cations. Solid state systems stand as a natural choice
due to the physical stability and ease of micro or nano
fabrication using well-established techniques. In the past
decade, considerable efforts have been devoted to devel-
oping photonic integrated quantum memories, that is,
quantum memories based on micro/nano-photonic struc-
tures manufactured in solids. Remarkable performances
have been achieved with integrated quantum memories,
with the advantages of lower laser/electric power require-
ments, small volumes, large storage densities, and easy
implementations. In our recent review [1], the basic con-
cepts of optical quantum memories, the state-of-the-art
technologies for fabricating integrated quantum memo-
ries in rare-earth ions doped crystals, and recent advances
are introduced, and the roadmap for developing practi-
cally useful devices for applications in quantum networks
is discussed.
In particular, I will introduce our recent achievements

in two aspects. First, for applications in quantum re-
peaters [2], we have developed integrated quantum mem-
ories at the telecom wavelength using Erbium based ma-
terial. On-demand storage of photonic qubits [3] and
tunable single photon emitter [4] are both demonstrat-
ed at the telecom C band. Second, for applications in
transportable quantum memories [5], we have developed
integrated spin-wave quantum memories using Europium
based material [6]. Qubits encoded with single-photon-
level inputs are stored as the spin-wave excitation with a
fidelity of 94.9 (1.2)%, which is far beyond the maximal
fidelity that can be obtained with any classical device.
The latest achievements in long-lived spin-wave quantum
storage will also be discussed.

∗zq zhou@ustc.edu.cn
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Experimental Quantum State Tomography of Multimode Gaussian
States
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Abstract. We report a quantum state tomography method which can reliably reconstruct multimode
Gaussian states. Our method is free from the issue of yielding a non-physical quantum state and exhibits
higher reconstruction fidelity than the conventional method. Moreover, we experimentally reconstruct the
covariance matrix of the multimode Gaussian states by the method and decompose the covariance matrix
to extract full information of the thermal noise and the mulitimode squeezing inside the state.

Keywords: Quantum state tomography, Gaussian state, Maximum-likelihood estimation

A multimode Gaussian state is an essential quantum
resource for quantum information processing in contin-
uous variable systems, offering large-scale entanglement
in a deterministic manner [1]. Many experimental stud-
ies have realized a multimode Gaussian state for quan-
tum computation, quantum communication, and quan-
tum sensing. Moreover, the generation of multimode
Gaussian states paves a way to study multimode quan-
tum systems, such as multipartite entanglement. There-
fore, to certify generation and investigate quantum fea-
tures of the multimode Gaussian state, we need to fully
characterize the states by quantum state tomography [2].
Quantum state tomography in continuous-variable

mostly reconstructs the density operator of the target
state by quadrature measurement [3]. However, obtain-
ing density operators of multimode Gaussian states is
challenging since the dimension of a density operator
grows exponentially with increasing mode number. For-
tunately, we can also obtain complete information on the
multimode Gaussian state by obtaining the covariance
matrix of the state [1]. The dimension of the covari-
ance matrix is proportional to the square of the system
size, so reconstructing a covariance matrix is the efficient
method for quantum state tomography of the multimode
Gaussian state.
The conventional method for reconstructing the covari-

ance matrix is achieved by directly estimating the covari-
ance of quadrature operators from homodyne measure-
ment. Through this direct method, the full covariance
matrix of the two-mode squeezed state [4] and some part
of the covariance matrix (without x̂p̂ correlation) of the 8-
mode and 16-mode Gaussian state [5] are obtained exper-
imentally. However, reconstructing full covariance matri-
ces of multimode Gaussian states has remained elusive in
experiments. In addition, the direct method can simply
acquire the covariance matrix, but statistical errors from
a finite number of data reduce fidelity. Even worse, the
errors would make the resultant covariance matrix not
satisfy the uncertainty principle, which means that the
result is unphysical. As for the unphysical consequences,
we are unable to analyze the multimode Gaussian state
through the covariance matrix.

∗croh@kaist.ac.kr

In this work, we develop an efficient quantum state
tomography method for multimode Gaussian states by
reconstructing full and physical covariance matrices of
the states. We parameterize the covariance matrices to
satisfy the uncertainty principle and update the param-
eters by maximum likelihood estimation (MLE) through
quadrature data. The data are gathered from single
mode homodyne detection after mode mixer. To substan-
tiate the effectiveness of our method, we conduct bench-
marks of the MLEmethod against the conventional direct
reconstruction of covariance matrices. The outcomes of
the MLE method always satisfy the uncertainty princi-
ple in a limited number of data, while the direct method
often fails to satisfy the physical condition. Moreover,
our method reconstructs covariance matrices more pre-
cisely than the direct method for various target states.
These shows that the MLE method can effectively con-
duct quantum state tomography for multimode Gaussian
states.

Our MLE method (Fig. 1) starts with parameterizing a
covariance matrix. A covariance matrix V of an M -mode
Gaussian state can be decomposed as [7]

V = Sdiag(λ,λ)ST , (1)

where S is a 2M × 2M symplectic matrix, and λ =
(λ1, ..., λM ). The uncertainty principle for the covariance
matrix

V + iΩ ≥ 0, Ω =

[
0 I
−I 0

]
(2)

is translated to constraints for symplectic eigenvalues
λm ≥ 1, which can be parameterized as λm = κ2

m + 1

Likelihood function 

ℒ = ln P(χ |V(T, κ))

1

2

M

Mode 

selector

Homodyne  

detection
Update parameters 

 

 

to maximize 

T(t) → T(t+1)
κ(t) → κ(t+1)

ℒ

V(T(tmax), κ(tmax))

t < tmax

t = tmax

: datasetχ

Figure 1: Illustration of the maximum-likelihood estima-
tion method for quantum state tomography of multimode
Gaussian state.
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Figure 2: (a) and (b) are performances of MLE and direct
reconstruction method depending on the mode number of
target states, GHZ state (a), and completely connected
cluster state (b), respectively. (c) Performance for var-
ious six-mode Gaussian states. The red graphs and the
blue graph indicate cluster states and a six-mode GHZ
state, respectively. Green points show failure probabil-
ity of the direct reconstruction method from 1,000 rep-
etitions. We set sampling per measured mode number
Ns = 10, 000. (d) Bipartite entanglement test of 10-
mode completely connected cluster state. Reconstructed
matrices are used to test entanglement between two sub-
sets (black and white).

for κm ∈ R. We parameterize the symplectic matrix S
as

S = (I +ΩT /2)(I −ΩT /2)−1, (3)

where T is a 2M × 2M real symmetric matrix. In this
way, we can parameterize any multimode covariance ma-
trix under physical constraints. Next, the MLE method
updates the parameters T and κ = (κ1, ..., κM ). Let
us set χ as the dataset of whole measurement results,
which contains quadrature data from homodyne mea-
surements in single mode and superposed mode. The
dataset χ is used for calculating log-likelihood function
L = lnP (χ|V (T ,κ)), which means the logarithm of the
conditional probability that χ measured in the Gaussian
state with covariance matrix V (T ,κ). The parameters
are updated to maximize the likelihood function by the
likelihood function by the gradient ascent method.
We further highlight the advantages of our MLE

method over the conventional direct reconstruction
method for obtaining covariance matrices of multimode
Gaussian state. To compare the performances of both
methods, we set target multimode Gaussian states and
generate measurement data by simulation. We compare
the results of reconstructing covariance matrices by the
MLE method and the conventional direct. Figure 2(a-b)
shows the fidelities of the reconstructed result of MLE
and direct method for GHZ states (a) and completely-
connected cluster states (b). As the number of modes in-
creases, the fidelity of the direct method decreases. How-
ever, the MLE method shows high fidelities close to one.
In addition, we compare both methods for various six-
mode Gaussian states in Fig. 2 (c). The MLE method
outperforms the direct method in terms of fidelity.

Moreover, we implement entanglement test of the 10-
mode completely connected cluster state by using recon-
structed covariance matrices from MLE method and di-
rect method. Ten modes were divided into two subsets,
and the separability between each subset was investigated
using Peres-Horodecki separability criterion for continu-
ous variable systems [6]. In Fig. 2 (d), black and white
vertexes of the graphs denote biparitite subsets, and the
results of test is plotted as red (MLE method) and blue
(direct method) dots. MLE method reconstructs covari-
ance matrix of the 10-mode cluster state more precisely,
so that make the results of the inseparability test more
close to the theoretical values (black line).

Reconstructed covariance matrices can be used for ana-
lyzing multimode Gaussian states. Gaussian state can be
decomposed by sequence of multimode thermal noise and
squeezing operation on the vacuum state, as Fig. 3 (a).
If we know the thermal noise and squeezing modes and
their respective degrees, we can perfectly understand the
Gaussian state that we obtain. In this way, we have an-
alyzed the ten-mode Gaussian state with the covariance
matrix obtained through the experiment. We experimen-
tally generate a 10-mode completely connected cluster
state and reconstruct its covariance matrix by the MLE
method (Fig. 3 (b)). The reconstructed covariance ma-
trix is already expressed by Williamson decomposition as
Eq.( 1), and we can decompose the symplectic matrix S
as

S = O1DsO2 (4)

based on Bloch-Messiah decomposition [8]. O1

and O2 are orthogonal symplectic matrices, Ds =
diag(e−r, ..., e−r, er, ..., er) is the symplectic matrix for
the squeezing operation, and r is the squeezing param-
eter. If we set Os = O1 and Ot = OsO2, then the
covariance matrix is expressed as

V = OsDsO
T
s OtΛOT

t O
T
s DOs. (5)

Os and Ot correspond to the multimode linear operations
for squeezing modes (Ôs) and thermal noise modes (Ôt)
in Fig. 3 (a), respectively. These decomposition elements
(5) let us know the thermal noise and squeezing modes
and their respective degrees.

Figure 3 (c) shows the thermal noise (up, purple)
and squeezing (down, light blue) inside the 10-mode
cluster state. Thermal photon number is obtained by
nth
m = (λm − 1)/2, and squeezing level is 10log10e

−2r.
Plus, modes containing each thermal noise (squeezing)
can be obtained from Ot. Ot is the orthogonal symplec-
tic matrix, so it can be expressed as

Ot =

[
Xt −Yt

Yt Xt

]
. (6)

Rows ofXt−iYt are the thermal noise (squeezing) modes,
and the intensity and phase information of each mode
is shown at Fig. 3 (d). Similarly, Fig. 3 (e) shows the
squeezing modes obtained from Os.

In this work, we develop an efficient quantum state
tomography method for multimode Gaussian states by
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Figure 3: (a) Decomposition of a multimode Gaussian state. Subscripts t and s indicates thermal noise mode and pure
squeezing mode, respectively. (b) Experimentally reconstructed covariance matrix of 10-mode completely connected
cluster state. Identity matrix is subtracted to remove vacuum noise. (c) Mean photon number of thermal noise (up)
and squeezing level (down) of each mode. (d) Thermal noise modes and (e) Pure squeezing mode. Each graph shows
the mode in which thermal noise and squeezing operation corresponding to (b) is contained.

reconstructing full and physical covariance matrices of
the states. We parameterize the covariance matrices to
satisfy the uncertainty principle and update the param-
eters by maximum likelihood estimation (MLE) through
quadrature data. The data are gathered from single
mode homodyne detection after mode mixer. To substan-
tiate the effectiveness of our method, we conduct bench-
marks of the MLEmethod against the conventional direct
reconstruction of covariance matrices. The outcomes of
the MLE method always satisfy the uncertainty princi-
ple in a limited number of data, while the direct method
often fails to satisfy the physical condition. Moreover,
our method reconstructs covariance matrices more pre-
cisely than the direct method for various target states.
These shows that the MLE method can effectively con-
duct quantum state tomography for multimode Gaussian
states.
We have implemented the multimode quantum state

tomography of multimode Gaussian state experimently
by the MLE method. We reconstruct the covariance ma-
trix of the 10-mode cluster state and analyze the state
by the covariance matrix. We decompose the covariance
matrix and extract full information of thermal noise and
multimode squeezing inside the state.
Our MLE method will be valuable quantum state to-

mography method for multimode Gaussian state. Since
the MLE method is able to reconstruct covariance matri-
ces of Gaussian state precisely, we can implement anal-
ysis for multimode Gaussian states based on covariance
matrices, e.g., quantum entanglement test, steering test,
calculating quantum fisher information, etc. We expect

that the MLE method will facilitate future studies to un-
cover multimode CV quantum systems.
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Abstract. We introduce a feasible scheme [arXiv:2305.189006v4] to produce high-rate long-distance
entanglement using hybrid-entangled (HE) states between continuous variables (CV) and discrete variables
(DV). The key idea is to yield a DV-entangled pair between distant locations by adjusting the CV part to
be robust against transmission losses. We also benchmark the shared entanglement in an entanglement-
based (EB) quantum key distribution (QKD) protocol. Our results show that HE-states enables EB-QKD
with standard telecommunication fibers for 300 km promising an alternative tool for practical long-distance
entanglement-sharing that provides a testbed for further applications in quantum information processing.

Keywords: Hybrid states, entanglement sharing, quantum communication.

1 Introduction

Generation of high-rate entanglement between dis-
tant locations is crucial for fundamental tests of quan-
tum theory as well as various information processing
tasks such as loophole-free Bell tests [1, 2], quantum
teleportation [3], device-independent (DI) quantum-key-
distribution (QKD) protocol [4, 5, 6]. It also allows to
achieve higher detection efficiencies, a crucial require-
ment in both loophole-free Bell tests and DI-QKD, by
means of heralded qubit amplifiers [7] or photonic pre-
certification schemes [8, 9], whose practicality is currently
limited by the rates achieved after transmission.
An operational benchmark of the shared entangle-

ment can be set by its performance in a practical task
such as, however not limited to, an entanglement-based
(EB) QKD protocol. These protocols are traditionally
analyzed using two different kinds of physical systems,
namely discrete variable (DV) and continuous variable
(CV) systems only, which offer their own set of advan-
tages and limitations [10, 11, 12]. Alongside remarkable
sucesses with these systems [13, 14, 15], despite an exten-
sive theoretical and experimental analysis, the quest for
an optimal physical system to potentially use for sharing
high-rate long-distance entanglement still remains open.
Nonetheless, there exists a different class of physical

states, with cross-system entanglement between CV and
DV systems, which are formally known as hybrid entan-
gled (HE) states [16, 17]. However, despite their gener-
ation in a wide range of experimental setups [18, 19, 20]
and importance in quantum information science and
technology [21, 30, 23, 24, 25, 26], such states remain
largely unexplored.
Here, by harnessing these strongly correlated HE states

[27, 28, 29], we propose an altenate scheme for shar-
ing high-rate entanglement. We show that two parties

∗soumyakanti.bose09@gmail.com
†jsinghiiser@gmail.com
‡adan@us.es
§h.jeong37@gmail.com

who are hundreds of kms apart, can efficiently generate a
DV entangled-pair by exploiting entanglement-swapping
[30] over the respective CV parts by a third party in
the midway. We further access the operationally signif-
icance of our HE-state based scheme for long-distance
entanglement-sharing in a practical information process-
ing task such EB-QKD with the shared DV entangle-
ment.

Our results indicate that the HE-states enables to
achieve secure key rate at a distance of 300 km with
practical homodyne detectors (55% efficiency) and on-
off detectors (80% efficiency) [31], at telecommunication
wavelength (check [31] for further detail). While the long
transmission distance stems from the robustness of the
coherent state against transmission losses, our scheme of-
fers two major advantages such as (i) elimination of ma-
jor limiting factors of DV EB-QKD, which include high
precision Bell-state-measurement as well as the photon-
number-splitting attack by by considering entanglement
swapping over the CV system and (ii) elimination of the
requirement of near-unit efficiency for the homodyne de-
tectors in CV EB-QKD.

2 Entanglement-sharing with hybrid
states

2.1 Hybrid states:

Let |n⟩ and |α⟩ represent to the photon-number-states
(PNS) and a coherent state of a quantized light respec-
tively. For the remainder of this paper we denote the
PNS as the DV system and the coherent state as the CV
system. As a consequence, an HE state is defined [16, 17]
as an entangled pair between the DV and CV systems as

|ψ⟩a1a2
=

1√
2

(
|0⟩a1

|α⟩a2
+ |1⟩a1

|−α⟩a2

)
, (1)

where a1 and a2 are the two modes pertaining to the
DV and CV parts, respectively. Kindly check the [31] for
further discussion on the generation of such states.
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Figure 1: Schematic for generating DV entangled states
between Alice and Bob using HE states. Alice and Bob
send their CV parts to Charlie, who then mixes the in-
coming signals at a balanced beam splitter (BS), say BS1.
He then mixes one of output signals of (BS1) with the ad-
ditional coherent signal sent by Bob at a second BS, say
BS2, followed by a joint measurement implemented by
on-off detectors. The remaining output signal of BS1 is
then subjected to homodyne detection. Upon declara-
tion of the results by Charlie, Alice and Bob obtain a
DV entangled pair.

2.2 Protocol for entanglement sharing:

Let us consider that two distant parties, say Alice
and Bob, each of them having access to bipartite HE-
states |ψ⟩a1a2

and |ψ⟩b1b2 given by Eq. (1). Our scheme
for entanglement-sharing, as schematically represented in
Fig. 1 (a), (see [31] for detail) proceeds as described below
Step 1: Alice and Bob transmit their CV parts (cor-

responding to modes a2 and b2 respectively) to a third
untrusted party, say Charlie, through a lossy quantum
channel with transmittance T (0 ≤ T ≤ 1). Addition-
ally, Bob also sends another coherent state,

∣∣√2α
〉
, to

Charlie separately through a similar quantum channel.
We quantify the impact of the loss in the transmis-

sion channel on the HE-states by considering the out-
put entanglement, measured by logarithmic negativity,
in Fig. 2, where 0 ≤ R ≤ 1 stand for the normalised loss-
parameter. We observe that there exists an optimal value
of α for a fixed value of photon loss which, in the case of
a significantly lossy channel, approaches α = 0.5. This
behaviour of HE states can be qualitatively understood
in terms of the interplay between entanglement and the
fragility of the initial HE-state [31].
Step 2: Next, Charlie mixes the two incoming modes

via a beam splitter (BS), labelled as BS1. He, then fur-
ther mixes one of the output modes of BS1 with the ad-
ditional coherent state, sent by Bob, though a second BS
(BS2). Subsequently, he now performs a joint projective
measurements on the output of BS2 implemented by on-
off detectors and declares the outcome (check [31] for de-
tail). The protocol continues only in the case when both
the detectors click, otherwise the parties start afresh.
Step 3: After a successful projective measurement,

Charlie now performs a homodyne measurement on the
residual output of BS1 announces the results publicly.
Step 4: After receiving of the results of a successful

projective measurement and the homodyne measurement
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by Charlie, Alice and Bob end up with the final normal-
ized single-photon-Bell-state in modes a1 and b1 as

ρa1b1 =
1

2

[
|01⟩ ⟨01|+ |10⟩ ⟨10|

+ h (g |01⟩ ⟨10|+ g∗ |10⟩ ⟨01|)

]
(2)

with probability P0 =

(
1−e−ηoTα2

)2

2 , where h =

e−4(1−Tηh)α
2

, g = e4i
√
Tηhαp and p is the result of the

homodyne measurement. ηh and η0 are the efficiencies of
the homodyne detector and the on-off detectors respec-
tively.

3 Simulation results on shared entangle-
ment

The final shared entanglement depends on a num-
ber of parameters such as the channel transmittance

T = 10−l
L/2
10 , where l = 0.2 dB/km (standard channel

loss at telecommunication wavelength [11]) and L is the
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total transmission distance between Alice and Bob. The
detection efficiencies are also set (standard in telecom-
munication setup) as ηh = 0.55 and η0 = 0.8 [31].
In Figs. 3 and 4 we plot the shared entanglement with

the total transmission length (L) and the coherent ampli-
tude (α) respectively. We observe that while the shared
entanglement decreases exponentially with L, at a given
distance (equvalently loss) there exists an optimal value
of α, say αopt. For sufficiently long transmission dis-
tance (L ≥ 150 Km), αopt for sharing entanglement be-
comes close to 0.5 (not shown in the Fig. 4). It may
be noted that, at a given distance, the αopt for shared
DV-entanglement may be different than the αopt for the
original HE state (Fig. 2).

4 Benchmarking the shared entangle-
ment in EB-QKD

Let us now consider that the efficiency of the single-
photon-detectors of Alice and Bob, required for key gen-
eration, is given by ηd (0 ≤ ηd ≤ 1). With these inef-
ficient detectors, the secure key rate [31] for the shared
state (2) is given as

r ≥ P0 [I(A : B)− χ(A : E)]

= P0

{
1− ηd +

1

2

[
(1 + h) log2(1 + h) + (1− h) log2(1− h)

]

−1

2

[
(2− ηd) log2(2− ηd)− (1− ηd) log2(1− ηd)

]}
,

(3)

where I(A : B) and χ(A : E) are the mutual informa-
tion between Alice and Bob and the Holevo information
between Alice and and adversary Eve respectively. For a
detail discussion on the assumptions and other require-
ments kindly look at [31].
Here also, we notice that the optimal value of α that

maximizes the secured key rate coincides with the αopt

for shared entanglement, i.e., α = 0.5 (see [31] for detail).
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As a consequence, in Fig. 5 we plot the secure key rate
as a function of the total transmission distance L for dif-
ferent values of ηd with α = 0.5. As it is evident, under
low detection errors (ηd = 0.97 and 0.95), a secure key
rate can be achieved for transmission distances around
300 km indicating that the resultant entangled state is
useful. However, the maximum achievable distance dras-
tically falls off as ηd is decreased up to ηd = 0.90 (corre-
sponds to 10% detection error).

5 Conclusion

To summarize, we have proposed a scheme to har-
ness the cross-system correlation in HE-states for shar-
ing long-distance high-rate entanglement that efficiently
removes the practical limitations of conventional ap-
proaches based on DV only or CV only systems. We
have further showcased the efficacy of the shared DV-
entanglement in a practical task such as EB-QKD where
with a realistic detectors and transmission channel one
can obtain a secure key rate of ∼ 10−10 bits/pulse at
a distance of 300 km with 5% detection error at the
telecommunication wavelength (1550 nm).

A major limitation of our protocol stems from the non-
deterministic generation of the HE states with fidelity
≈ 0.75 for α = 0.5 [18]. This could be easily overcome
with the use of polarization qubits [32, 33, 34] with a pos-
sible deterministic generation of HE-states using quan-
tum walks [35]. It may also be noted that in the current
scheme, it is sufficient to consider loss-only channel as
the general lossy and noisy channel closely approximates
the former under practical conditions [31].

Nonetheless, current proposal for long-distance
entanglement-sharing provides a multipurpose test bed,
beyond the paradigm of EB-QKD protocols. This repre-
sents HE-states as a promising alternative for practical
entanglement distribution that serves as a central core
in various information processing applications such as
DI-QKD protocols [36], quantum networks [37], network
steering [39].
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We introduce a feasible scheme to produce high-rate long-distance entanglement which uses hybrid
entanglement (HE) between continuous variables (CV) and discrete variables (DV). We show that
HE can effectively remove the experimental limitations of existing CV and DV systems to produce
long range entanglement. We benchmark the resulting DV entangled states using an entanglement-
based quantum key distribution (EB-QKD) protocol. We show that, using HE states, EB-QKD is
possible with standard telecommunication fibers for 300 km. The key idea is using the CV part,
which can be adjusted to be robust against photon losses, for increasing the transmission distance,
while using the DV part for achieving high secure key rates. Our results point out that HE states
provide a clear advantage for practical long-distance and high-rate entanglement generation that
may lead to further applications in quantum information processing.

I. INTRODUCTION

Generation of high-rate entanglement between distant
locations is crucial for fundamental tests of quantum the-
ory and many applications. For example, it is needed for
extending the current distances and rates of loophole-
free Bell tests [1, 2], quantum steering [3], and quantum
teleportation [4], which so far are only feasible for rela-
tively short ranges. It is also needed for increasing the
transmission distance and the key rate of entanglement-
based quantum key distribution (EB-QKD) protocols,
most notably device-independent QKD [5–7], which cur-
rently suffers from both these issues. Moreover, higher-
rates in distant locations will also allow us to achieve
higher detection efficiencies (which are needed both for
loophole-free Bell tests and device-independent QKD) by
means of heralded qubit amplifiers [8] or photonic precer-
tification schemes [9–11], whose practicality is currently
limited by the rates achieved after transmission.
A benchmark of high-rate entanglement over long dis-

tances, from an operational perspective, can be set by its
performance in an information processing task such as an
EB-QKD protocol. These protocols can be broadly clas-
sified into two distinct classes: (i) those using discrete
variable (DV) entangled states and (ii) those that use
continuous variable (CV) entangled states, where each
class has its own set of advantages and limitations [12–
14]. As an example, DV EB-QKD protocols offer com-
posable security proofs with good key rate, but they re-
quire precise Bell-state or single-photon measurements
at extremely low temperatures, which are hard to per-
form even in laboratory conditions. On the other hand,

∗ soumyakanti.bose09@gmail.com
† jaskaran@us.es
‡ adan@us.es
§ h.jeong37@gmail.com

CV EB-QKD protocols generally require Gaussian states
which are comparatively easier to prepare, but their per-
formance is limited by the requirement of almost ideal
homodyne detectors at telecommunication wavelength
[13, 15, 16]. As a consequence, despite an extensive the-
oretical and experimental analysis on both types of sys-
tems, the quest for an optimal physical system which can
be potentially used to share high-rate entanglement re-
mains open.
Nonetheless, there exists a different class of physi-

cal systems where the entanglement is between CV and
DV systems and are formally known as hybrid entan-
gled (HE) states [17–22]. These strongly correlated [23–
25] cross-system entangled states play a crucial role in
various quantum information processing tasks, including
quantum computation, communication, and tests of Bell
non-locality [25–33], and have been efficiently generated
in a wide range of experimental setups [34–38]. Conse-
quently, it becomes interesting to observe whether such
hybrid states can be used to share entanglement among
distant locations without the limitations faced by CV and
DV systems.
Here, we propose a scheme based on HE states as an

initial resource which produces high-rate DV entangle-
ment between extremely far apart locations. We provide
a characterization of such states and show that it is pos-
sible to share entanglement between locations which are
hundreds of kms apart. We further assess the quality of
shared entanglement in the context of EB-QKD.We show
that, by bringing forth the best of both CV and DV sys-
tems, with HE states, it is possible to achieve secure key
rate at a distance of 300 km by using practical homodyne
detectors with efficiency ηh = 0.55 [39–43] (which is a
reasonable value at telecommunication wavelengths [40])
and on-off detectors with efficiency η0 = 0.8 [44]. Note
that we use the key rates and transmission distances only
to quantify the quality of the entanglement; our cen-
tral goal is to show the advantage of using HE states
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FIG. 1. (a) Scheme for generating DV entangled states between Alice and Bob using HE states. The DV part (cyan) and
the CV part (red) of the HE state stand for the single-photon state and coherent state, respectively. Alice and Bob send the
CV part of their individual HE states to Charlie, who then mixes the incoming signals at a balanced beam splitter (BS1),
and uses one of the output modes for homodyne measurement with efficiency ηh. The other outgoing signal of BS1 is used
for a post-selection measurement by on-off detectors with efficiency η0, after mixing it at another balanced BS (BS2) with the
additional coherent signal sent by Bob. Upon declaration of the results by Charlie, Alice and Bob obtain a DV entangled pair
which is used for secure key generation. (b) Scheme for generating HE states. Two ancilla single photons (gray, dashed line)
are mixed with vacuum and coherent states at the two BSs. The outgoing ancilla photons are then mixed with each other at a
second BS. When the detector placed at the output of the second BS clicks, then the HE state between single-photon and the
coherent state is obtained.

to achieve entanglement over longer distances, which is
a crucial tool enabling a wide range of fundamental tests
in physics and quantum information processing applica-
tions.

Our scheme hinges on generating a single-photon DV
entangled state between two distant parties by exploiting
CV entanglement swapping [33] by a third party located
midway. It offers three major advantages as compared to
earlier CV and DV EB-QKD protocols. These are: (i)
Elimination of major limiting factors of DV EB-QKD,
which include high precision Bell state or single-photon
measurements as well as the photon-number-splitting at-
tack by an eavesdropper by considering entanglement
swapping over the CV system. (ii) Elimination of the
requirement of near-unit efficiency for the homodyne de-
tectors used for key generation in CV EB-QKD. (iii) Long
transmission distance at telecommunication wavelength
stemming from the robustness of the multiphoton coher-
ent state against transmission losses and using practical
devices.

This article is organized as follows. In Sec. II, we pro-
vide some brief introduction to HE states. We then pro-
pose a protocol to share DV entanglement among distant
locations by using HE states as an initial resource. We
also characterize the resulting entanglement using loga-
rithmic negativity and show that it can be non-zero even
when the parties are separated hundreds of kilometers
apart. In Sec. III, we benchmark the usefulness of the re-
sultant entangled states by demonstrating our scheme as
an EB-QKD protocol using practical devices. In Sec. IV,
we conclude our results by arguing that our protocol pro-
vides a practical solution to the problem long distance

entanglement generation which is a central requirement
in several information processing tasks.

II. ENTANGLEMENT SHARING WITH
HYBRID STATES

In this section we first provide a brief description of
HE states. Subsequently, we detail our protocol to share
long distance entanglement using these states.

A. Hybrid entangled states

Let |0〉 and |1〉 correspond to photon number states
in the Fock basis and |α〉 correspond to a coherent state
of a quantized light with coherent amplitude α. For the
remainder of this paper we will represent the number of
photons as a DV system, while the coherent state repre-
sents a CV system. We define a HE state as an entangled
pair, where the entanglement is between the DV and CV
degrees of freedom. Mathematically, such HE states can
be written as

|ψ〉a1a2
=

1√
2

(
|0〉a1

|α〉a2
+ |1〉a1

|−α〉a2

)
, (1)

where a1 and a2 are the two modes pertaining to the DV
and CV parts, respectively.
We stress that HE states with small coherent ampli-

tudes (α . 1) are experimentally available. They have
been generated experimentally in various settings such as
conditional photon subtraction on a coherent state [34]
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as well as photon subtraction on two squeezed states [35]
(see Appendix A for further details). While these tech-
niques produce HE states with non-unit probability, it
should be noted that typical methods to generate stan-
dard entangled photon pairs, e.g., the parametric down
conversion, also does so non-deterministically. In Fig.
1(b), we outline the linear optics based schematic for gen-
erating HE-states as originally described in [34].

B. Protocol for entanglement sharing

We consider two distant parties, Alice and Bob, each
of them having access to bipartite HE states |ψ〉a1a2

and
|ψ〉b1b2 given by Eq. (1). We consider these as initial
resource states which will be used to share a DV entan-
gled state between the parties. We provide a step-by-step
description of the protocol, schematically represented in
Fig. 1(a), while a detailed mathematical calculation can
be found in Appendix B.

Step 1: Alice and Bob generate HE states |ψ〉a1a2

and |ψ〉b1b2 in their respective laboratories. Both parties
transmit the CV part of their systems, corresponding to
modes a2 and b2, respectively, to a third untrusted party,
Charlie, who lies midway between them, through a lossy
quantum channel with transmittance T (0 ≤ T ≤ 1). Ad-

ditionally, Bob also transmits the state
∣∣√2α

〉
to Char-

lie separately through a similar quantum channel. After
passing through channels with transmission losses, Char-
lie receives the mode a2 from Alice, the mode b2 from

Bob, and the additional state
∣∣∣
√
2Tα

〉
from Bob, which

we label by mode c. While a general quantum channel be-
tween the parties will comprise of both transmission loss
and thermal noise, here, for simplicity, we only consider
lossy quantum channels with no noise. In Appendix F 4
we demonstrate that the scenario involving a practical
level of thermal noise closely matches our current find-
ings.

The effect of a quantum state passing through a noisy
channel can be seen as the system undergoing photon
loss. In Fig. 2, we plot the logarithmic negativity of the
HE state when its CV part undergoes photon loss as a
function of the coherent amplitude α (see appendix C for
detail). We find that there exists an optimal value of α
for a fixed value of photon loss. We denote the photon
loss fraction by R such that R = 0 and R = 1 correspond
to no photon loss and complete photon loss, respectively.
For a significantly lossy channel, we find that the optimal
value of α approaches α = 0.5. This value becomes im-
portant when we benchmark the resultant DV entangled
state by a EB-QKD protocol.

This behaviour of HE states can be qualitatively un-
derstood in terms of the interplay between entanglement
and the fragility of the initial HE state. Starting from
the initial separable state at α = 0, the HE state be-
comes more entangled as α increases. An increase in α
also corresponds to an increase in the average number of
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FIG. 2. Logarithmic negativity of the HE state undergoing
photon-loss over the CV part as a function of the coherent am-
plitude α. R (0 ≤ R ≤ 1) stands for the normalized strength
of loss.

photons, which can be understood as an increase in the
mean energy of the system. However, with an increase
in the mean energy, the state becomes more vulnerable
to decoherence. This behaviour is similar to what is also
shown in Ref. [45] for superposition of coherent states,
and the advantage of using small amplitudes under pho-
ton losses was demonstrated in the context of teleporta-
tion [46]. As a consequence, with increase in α beyond
an optimal value, the HE state becomes extremely frag-
ile under noise leading to a drop in entanglement when
the multiphoton part passes through a noisy quantum
channel.

Step 2: Next, Charlie mixes the two incoming modes
a2 and b2 via a beam splitter (BS), labelled as BS1 in

Fig. 1 with two output modes which we can label as a
′
2

and b
′
2. In our protocol we are specifically interested

in the vacuum state contributions from the mode a
′
2.

To extract this contribution, Charlie mixes this mode
though a second BS (BS2) with mode c with output

modes labelled as a
′′
2 and c

′
. Charlie now performs

a projective measurement, M = {Π0,1 − Π0}, where
Π0 = (1− |0〉 〈0|)a′′

2
⊗ (1− |0〉 〈0|)c′ . This measurement

is accomplished by using on-off detectors (that only de-

tect the presence of photons) on each of the modes a
′′
2

and c
′
. Charlie then publicly announces the outcome

of the projective measurement which is considered to be
successful only if the result Π0 is obtained, i.e., both de-
tectors click. In that case, the protocol continues. Oth-
erwise, the measurement is deemed unsuccessful and the
parties must repeat the aforementioned steps again. In
order to model realistic detectors, we consider imperfect
on-off detectors with efficiency η0.

Step 3: After a successful projective measurement (as
dictated in Step 2), Charlie performs a homodyne mea-

surement on mode b
′
2 and, again, announces the results
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publicly. We consider that homodyne measurements have
efficiency ηh.
Step 4: After a public announcement of the results of

a successful projective measurement and the homodyne
measurement by Charlie, Alice and Bob end up with the
final normalized single-photon-Bell-state in modes a1 and
b1 as

ρa1b1 =
1

2

[ |01〉 〈01|+ |10〉 〈10|
+ h (g |01〉 〈10|+ g∗ |10〉 〈01|)

]
, (2)

with probability

P0 =

(
1− e−ηoTα2

)2

2
, (3)

where h = e−4(1−Tηh)α
2

, g = e4i
√
Tηhαp, g∗ is the conju-

gate of g, and p is the result of the homodyne measure-
ment.

C. Shared DV-entanglement between the parties

The entanglement of the final DV entangled state
shared between the parties depends on a number of pa-
rameters. However, the quantities of most interest are
the transmission length and the coherent amplitude.
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FIG. 3. Logarithmic negativity of the state ρa1b1 as a function
of the transmission distance (L) for different values of coher-
ent amplitude α. We assume detection efficiencies ηh = 0.55
for the homodyne detectors, η0 = 0.8 for the on-off detectors,
and p = π

2
.

In Fig. 4 we plot the logarithmic negativity of the state
ρa1b1 as a function of the transmission distance for dif-
ferent values of the coherent amplitude α. We assume
that the transmittance of both the channels is given by

TA and TB, respectively, such that, TA = 10−l
LAC
10 and

TB = 10−l
LBC
10 , where l = 0.2 dB/km is the standard

channel loss for telecommunication wavelength [47, 48]

and LAC and LBC are the transmission distances be-
tween Alice-Charlie and Bob-Charlie respectively. To
simplify the scenario, we also assume that Charlie is mid-
way between Alice and Bob such that LAC = LBC = L/2
such that the total transmission distance is L. We find
that the entanglement of the final state decreases expo-
nentially with the total transmission distance. As an
example, at L = 100 km the logarithmic negativity is
1.3× 10−4 for coherent amplitude α = 0.6.
Next, in Fig. 3 we plot the logarithmic negativity

as a function of the coherent amplitude α for different
transmission distances. As it is evident from the Fig.
that the shared-entanglement varies non-monotonically
on the coherent amplitude (α). We observe that as the
transmission distance increases, the optimal value of α
becomes less than unity. For higher transmission dis-
tance (L ≥ 150 Km) this optimal value becomes close to
α = 0.5 (not shown in the Fig.). It is found that there
also exists an optimal value of α that offers maximum
entanglement at a given distance which may be different
than the optimal value of α which maximizes the entan-
glement of the original HE state (as shown in Fig. 2).
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FIG. 4. Logarithmic negativity of the state ρa1b1 as a function
of the transmission distance L for different values of coherent
amplitude α. We assume detection efficiencies ηh = 0.55 for
the homodyne detectors, η0 = 0.8 for the on-off detectors,
and p = π

2
.

III. QUANTUM KEY DISTRIBUTION USING
HE STATES

In this section we benchmark the quality of the shared
entangled state in terms of an EB QKD protocol which
we set up around the scheme presented in Sec. II B. We
also consider an eavesdropper, Eve, who may collaborate
with Charlie to determine the secure key that is being
shared between Alice and Bob. Additionally, in our pro-
tocol we make the following assumptions:
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1. We assume that Alice and Bob have access to se-
cure laboratories in which they can perform well
characterized measurements. Moreover, the mea-
surement devices of Alice and Bob are assumed to
be immune to any side-channel attack since no un-
wanted system may enter or exit the secure labo-
ratories. In the protocol, the DV modes a1 and b1
with Alice and Bob, respectively, are assumed to
be in these secure laboratories and do not directly
take part in the transmission. On the other hand,
the CV modes a2 and b2 are not assumed to be in
secure laboratories and as such are vulnerable to
eavesdropping attacks.

2. We also assume that the quantum channels between
Alice-Charlie and Bob-Charlie are characterized by
transmission losses only, with no thermal noise. We
justify this assumption by demonstrating, in Ap-
pendix. F 4, the scenario with no thermal noise ap-
proximates the scenario with some practical value
of the same with more than 98% fidelity. This as-
sumption is only required to manage the calculation
complexity of evaluating the final DV state between
Alice and Bob.

3. We also consider a third party, Charlie, who is as-
sumed to be untrusted and can collaborate with an
eavesdropper, Eve. In the worst case scenario, we
assume that he is identified as Eve herself. The
QKD protocol, as described in the main text, dic-
tates that Charlie performs certain measurements
and publicly declare the outcomes so that Alice and
Bob can share an entangled state. In principle, as
an eavesdropper, we assume that Charlie may not
perform the operations as dictated by the proto-
col. However, it is required for him to supply some
outcomes to the specified measurements to activate
the correlations between Alice and Bob. However,
if these outcomes are tampered with or even fabri-
cated, the correlations between Alice and Bob will
decrease. It is then possible for Alice and Bob to
detect the presence of Eve by various methods in-
cluding state tomography since the parties know
the final state they should potentially share. More
details on this assumption and the concept of se-
cure laboratories can be found in Ref. [49].

A. Steps in evaluating key rate

It should be noted that the steps of the QKD protocol
directly follow after step 4 in Sec. II B as
Step 5: For the case in which Alice and Bob share

ρa1b1 , they perform two-outcome measurements MA and
MB on their respective subsystems to generate a raw key.
The choice of measurements is made prior to starting the
protocol and the information about this choice is usually
publicly available. In our protocol, they perform Pauli
measurements corresponding to σZ on their respective

subsystems to generate a raw key. The length of the
raw key that the parties can generate is quantified by
the mutual information I(A : B) between them for the
observable σZ .
Step 6: Alice and Bob then estimate the amount of

information that an adversary, Eve, can have on their
raw key. This information is quantified by the Holevo
bound χ(A : E) between Alice and Eve. In our protocol
we consider the Holevo bound to quantify the knowledge
about the coherent amplitude α, results of the on-off and
homodyne measurement which are publicly declared and
are actively used in generating the final state between
Alice and Bob. These results can be used by Eve and as
such must be taken care of in the security analysis.

B. Simulation results on the secured key rate

Our protocol comprises of two quantum channels: one
between Alice and Charlie and another between Bob and
Charlie. As before, we consider that the transmittance
of both the channels is given by TA and TB, respectively,

such that, TA = 10−l
LAC
10 and TB = 10−l

LBC
10 , where

l = 0.2 dB/km is the standard channel loss for telecom
wavelength [47, 48] and LAC = LBC = L/2 are the trans-
mission distances between Alice-Charlie and Bob-Charlie
respectively such that the total transmission distance is
L.
Moreover, we consider that the detectors of Alice and

Bob have efficiency ηd such that the error rate is given
as Q = 1− ηd. With these inefficient detectors, the final
secure key rate (See Appendix E for a detailed analysis)
for the state given in Eq. (2) is given as

r ≥ P0 [I(A : B)− χ(A : E)]

= P0

{
1− ηd +

1

2

[
(1 + h) log2(1 + h) + (1− h) log2(1− h)

]

−1

2

[
(2− ηd) log2(2 − ηd)− (1 − ηd) log2(1− ηd)

]}
,

(4)

where it can be seen that the secure key rate only de-
pends on the parameters h (from Eq. (2)), the detec-
tor efficiency of Alice and Bob and the probability with
which the final state is prepared.
Generally, for an experimental realization of the QKD

protocol, the labs of Alice and Bob are fixed at some dis-
tance L. As seen in the main text, α cannot be chosen
arbitrarily, as there exists an optimal value which can
either maximize the key rate or the total transmission
distance. In Fig. 5, we plot the maximum transmission
distance as a function of the coherent amplitude for var-
ious values of secure key rate with ideal detector ηd = 0.
We observe that there exists an optimal value α ≈ 0.5
which maximizes the total transmission distance for any
value of the secure key rate.
In Fig. 6 we plot the secure key rate as a function

of the total transmission distance L for different values

950



6

r =  2 × 10
−6

r =  8 × 10
−6

r =  1 × 10
−5

r =  2 × 10
−5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

α

 0

 50

 100

 150

 200

L
 (

k
m

)

r =  2 × 10
−6

r =  8 × 10
−6

r =  1 × 10
−5

r =  2 × 10
−5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

α

 0

 50

 100

 150

 200

L
 (

k
m

)

FIG. 5. The total transmission distance as a function of the
coherent amplitude for different values of the secure key rate.
We fix the channel loss at l = 0.2 dB/km which corresponds
to losses in standard optical fibres. We also fix ηd = 0 for
this analysis. The optimal value of α which maximizes the
transmission distance is found to be the same in each case.
The unit for the secure key rate r is bits/pulse.

of ηd. We choose the parameters ηh = 0.55, η0 = 0.8,
and p = π

2 to be as realistic as possible and simulate the
results for a standard telecom fiber with l = 0.2dB/km.
Furthermore, the value of the coherent amplitude α is
chosen to maximize the secure key rate over long trans-
mission distances instead of entanglement. For our anal-
ysis we choose α = 0.5 to optimize the total distance.
It is also approximately the same value that optimizes
the logarithmic negativity of an HE state when its CV
part undergoes high photon loss. It is seen that under
lower errors on Alice’s and Bob’s side (ηd = 0.97 and
0.95), a secure key rate can be achieved for transmission
distances around 300 km indicating that the resultant
entangled state is useful. However, the maximum achiev-
able distance drastically falls off as ηd is increased up to
ηd = 0.90.

IV. DISCUSSION AND CONCLUSION

We have shown that HE states between CV and DV
systems provide a robust practical solution to the prob-
lem of achieving long-distance high-rate entanglement.
Both requirements are fundamental for a number of ap-
plications. In this paper we have bench marked the use-
fulness of the prepared entangled state using an EB-QKD
protocol, as it is both a fundamental application and a
multipurpose test bed. In an EB-QKD setup, our results
indicate that HE states bring forth the best of both CV
and DV systems, resulting in a secure key rate of ∼ 10−9

bits/pulse at a distance of 250 km with 5% detection
in-efficiency. This, in itself, represents a significant con-
tribution. All this, without using an ultra low-loss fibre
(with channel loss l = 0.16 dB/km at 1550 nm [50]),
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FIG. 6. Secure key rate as a function of total transmission
distance L for different values of ηd in the optimal case, i.e.,
α = 0.5. We assume detection efficiencies ηh = 0.55 for the
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.

which allowed an earlier result to achieve transmission
distances higher than 400 km. With such a fibre, our
approach would allow us to achieve ∼ 10−10 bits/pulse
at a distance of 300 km for ηd = 0.95.

In our analysis, it should be noted that, for the sake of
simplicity, we do not consider any thermal noise in the
channels. However, one can qualitatively show that in-
corporating a practical value for such thermal noise will
not significantly affect our results (see Appendix F for de-
tail). We leave the detailed quantitative analysis in the
presence of thermal noise for future works and acknowl-
edge that it involves lengthy analytical calculations that
may have insignificant impact on our findings.

The feasibility of our protocol relies in the fact that
HE states with small coherent amplitudes (α < 1) can
be generated in the lab by several non-deterministic tech-
niques [34, 35] and the generation rate is comparable to
the rate of entangled photon pairs in parametric down
conversion setups. As an example, it is possible to pre-
pare HE states where CV and DV parts correspond to
photon number state and coherent state, respectively,
with fidelity ≈ 0.75 for α = 0.5 [34]. While the rate
of generation in the source is comparable to that of para-
metric down conversion sources, losses during transmis-
sion are reduced, so the effective rate at destination in-
creases. The fidelity of the preparation could be a lim-
iting factor. However, this can be mitigated by using
other forms of HE states, most notably with the CV
and DV modes corresponding to cat states and polariza-
tion, respectively, which offer exceptionally good fidelity
of preparation as well as rate of generation [51–55]. We
also note that a recent result indicates that it is also pos-
sible to deterministically generate HE states with high
fidelity [56]

However, it should be noted that there will be effects
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from phase modulations and phase mismatch in a prac-
tical implementation of our scheme. Commercially avail-
able lasers, used in generation of HE states, generally do
not have well defined phase stabilization while the optical
fibres, used for transmission, may introduce non-linear ef-
fects on the signals. This causes additional concerns for
phase-locking and phase-tracking to ensure successful in-
terference at Charlie’s end. Although such issues have
been managed in the context of twin-field (TF) QKD
[57], it remains unclear to us whether a similar architec-
ture can be useful in our setup as well and we leave it as
an open avenue for future discussions.
Our results highlight the significance of HE states

as a resource in high-rate remote entanglement genera-
tion, which plays a crucial role in enhancing many quan-
tum information processing tasks such as quantum in-
ternet [58, 59], quantum digital signature [60, 61], and
network steering [62]. We believe that our scheme has
the potential to drive a new generation of experimental
developments in quantum information technology.
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Appendix A: Generation of the hybrid entangled
state

In this section we outline a process, using a setup in
line with Ref. [34], that can be used to experimentally
generate a hybrid entangled (HE) state of the form

|ψ〉ab =
1√
2
(|0〉a |α〉b + |1〉a |−α〉b) (A1)

between modes a and b, where |0〉 and |1〉 correspond to
photon number states, and |α〉 is the coherent state with
coherent amplitude α.

|n〉 and |α〉 correspond to, respectively, the energy
eigenstate and coherent state of a quantized electromag-
netic field, where n is the number of photons in the
state. It is possible to realize the energy eigenstates as a
single-photon qubit by only considering the photon num-
ber states corresponding to |0〉 and |1〉. This is our dis-
crete variable (DV) system and the multiphoton coherent
state is our continuous variable (CV) system. The key
idea of HE state generation hinges on conditional pho-
ton addition and erasing the path information of photon

addition. There are several ways of achieving photon
addition. This includes a model which uses single pho-
ton sources and beam splitters (BS) and another model
which uses a parametric-down-converter (PDC) with a
weak pump. Since the BS setup and the PDC are equiv-
alent [66], here we use the BS model for photon addition.
The following is a step-by-step description of the gener-
ation of the HE state in Fig. 1(b) of the main text.
Step 1: A vacuum state |0〉 in mode a is mixed with

a single-photon state |1〉 in mode c using a BS (BS1)
with transmittance T . Similarly, a coherent state |α〉
in mode c is mixed with another single-photon state in
mode d using another BS (BS2) with transmittance T .
The output states from each of these two BSs are

|ψ〉BS1

ac =
√
1− T |1〉a |0〉c +

√
T |0〉a |1〉c

|ψ〉BS2

bd =
√
1− T b̂† |α〉b |0〉d +

√
T |α〉b |1〉d , (A2)

where b̂† is the creation operator acting on mode b and

|ψ〉BS1

ac is the output state from BS1, while |ψ〉BS2

bd is the
output state from BS2. The BS transmittance T can
be fine-tuned according to experimental requirements to
yield maximum probability for photon addition. There-
fore, the 4-mode state at the output of BS1 and BS2 is

|ψ〉BS1,2

ab,cd =
√
T (1− T )

(
|1〉a |α〉b ⊗ |0〉c |1〉d + |0〉a b̂† |α〉b ⊗ |1〉c |0〉d

)
+ (1− T ) |1〉a b̂† |α〉b ⊗ |0〉c |0〉d + T |0〉a |α〉b ⊗ |1〉c |1〉d .

(A3)

Step 2: The outgoing single-photon modes (shown by
gray dashed-lines in Fig. 1(b) of the main text) from both

BS1 and BS2 are mixed with each other using a another
BS (BS3) with transmittance τ . This leads to a 4-mode
state at the output of BS3 which can be written as

|ψ〉BS3

ab,cd =
√
T (1− T )

[
|1〉a |α〉b ⊗

(
−
√
1− τ |0〉c |1〉d +

√
τ |1〉c |0〉d

)
+ |0〉a b̂† |α〉b ⊗

(√
1− τ |1〉c |0〉d +

√
τ |0〉c |1〉d

)]

+ (1− T ) |1〉a b̂† |α〉b ⊗ |0〉c |0〉d + T |0〉a |α〉b ⊗
(√

1− τ |2〉c |0〉d +
√
τ |0〉c |2〉d

)
. (A4)

Step 3: We now detect the output modes of BS3 via
single-photon detectors D1 and D2. Since the total pho-
ton number at the output of BS3 is 1, it indicates that
both D1 and D2 cannot click simultaneously. We post-
select the state when only the detector D1 clicks and
discard the runs whenever the detector D2 clicks. After
post-selection, the state between modes a and b is

|ψ〉D1

ab = 〈1|c 〈0|d |ψ〉
BS3

ab,cd

=
√
T (1− T )

(√
τ |1〉a |α〉b +

√
1− τ |0〉a b̂† |α〉b

)
.

(A5)

We can now use the fact that n-photon-added coherent
state is a good approximation to another coherent state

with amplified amplitude, i.e., b̂†n√
N
|α〉 ≈ |gα〉 [34], where

N is the corresponding normalization constant and g ≥
1 is the amplification factor. This leads to the result

b̂† |α〉b ≈ 1√
1−α2

|gα〉b, where g is properly chosen. Then,

by setting τ = 1+α2

2+α2 and using the approximation we get,

|ψ〉D1

ab ≈
√
T (1− T )

2 + α2

(
|1〉a |α〉b + |0〉a |gα〉b

)
. (A6)

Step 4: Next, we displace the mode b by perform-
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ing a displacement operator on this mode given by

Db

(
−α+gα

2

)
= exp

[
−α+gα

2 (b̂† − b̂)
]
, where b̂ is the an-

nihilation operator. This leads to the final normalized
HE state

|ψ〉ab =
1√
2

(
|0〉a |αf 〉b + |1〉a |−αf 〉b

)
, (A7)

where αf = (g−1)α
2 .

Appendix B: Shared entangled state between Alice
and Bob

In this section, we calculate the the state obtained af-
ter performing the entanglement swapping operation by
Charlie. We also calculate the states obtained after every
step of the protocol starting from the initial resource of
HE states. The steps of the protocol are detailed in the
main manuscript.

1. Initial states and channel transmission

We denote the two hybrid entangled states with Alice
and Bob as

|ψ〉a1a2
=

1√
2

(
|0〉a1

|α〉a2
+ |1〉a1

|−α〉a2

)

|ψ〉b1b2 =
1√
2

(
|0〉b1 |α〉b2 + |1〉b1 |−α〉b2

)
, (B1)

respectively. The initial 4-mode resource state can be
written as

|ψ〉a1a2
b1b2

= |ψ〉a1a2
|ψ〉b1b2

=
1

2

(
|00〉a1b1

|α〉a2
|α〉b2 + |11〉a1b1

|−α〉a2
|−α〉b2

+ |01〉a1b1
|α〉a2

|−α〉b2 + |10〉a1b1
|−α〉a2

|α〉b2
)
, (B2)

where |ij〉a1b1
= |i〉a1

|j〉b1 ∀i, j ∈ {0, 1}.
Alice and Bob both send their multiphoton part

(modes a2 and b2) to a third distant party Charlie
for mixing and subsequent measurements through a
noisy/lossy channel with transmittance T . Such channels
could be modelled in terms of an effective beam splitter
(BS) with transmittance T , where the input state is fed
at one of the inputs of the BS while the other input is
initialised as a vacuum state. The action of a BS with
transmittance T on the input modes is given by a unitary
Uab
T implementing the following transformation:

(
â

b̂

)
→
(
â′

b̂′

)
=

( √
T

√
1− T

−
√
1− T

√
T

)(
â

b̂

)
. (B3)

T = 1
2 corresponds to a balanced (50 : 50) BS. As a conse-

quence, the action of the channel on a coherent state (|α〉)
in mode a is described as Uab

T |α〉a⊗|0〉b → |α〉a′ ⊗|0〉b′ =∣∣∣
√
Tα
〉
a
⊗
∣∣√1− Tα

〉
b
, where Uab

T is the corresponding

BS unitary operation. Subsequently, the resultant state
is obtained by tracing over the ancillary mode b.
Similarly, the noisy transmission of modes a2 and b2

could be described by using two BSs with transmittance
T , each one in the paths of modes a2 and b2 with ancillary
modes given by fa and fb, respectively. The resultant
noisy/lossy state is obtained by tracing over the ancillary
modes (fa and fb). Therefore, the total input state to
Charlie before mixing is

|ψ〉
a1,b1;a

′
2,b

′
2

f
′
a,f

′
b

= U
(a2,fa)
T ⊗ U

(b2,fb)
T |ψ〉a1a2

b1b2
⊗ |0〉fa |0〉fb

=
1

2

(
|00〉a1b1

∣∣∣
√
1− Tα

〉
fa

∣∣∣
√
1− Tα

〉
fb

∣∣∣
√
Tα
〉
a2

∣∣∣
√
Tα
〉
b2

+ |11〉a1b1

∣∣∣−
√
1− Tα

〉
fa

∣∣∣−
√
1− Tα

〉
fb

∣∣∣−
√
Tα
〉
a2

∣∣∣−
√
Tα
〉
b2

+ |01〉a1b1

∣∣∣
√
1− Tα

〉
fa

∣∣∣−
√
1− Tα

〉
fb

∣∣∣
√
Tα
〉
a2

∣∣∣−
√
Tα
〉
b2

+ |10〉a1b1

∣∣∣−
√
1− Tα

〉
fa

∣∣∣
√
1− Tα

〉
fb

∣∣∣−
√
Tα
〉
a2

∣∣∣
√
Tα
〉
b2

)
,

(B4)

where U
(a2,fa)
T and U

(b2,fb)
T are the BS unitary operations

corresponding to the respective channels with transmit-
tance T . Charlie now mixes the incoming multiphoton
modes (a2 and b2) through a balanced BS (BS1) leading
to the four mode entangled state
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|ψ〉BS1

a1,b1;a
′′
2 ,b

′′
2

f
′
a,f

′
b

= U
(a2,b2)
BS1

|ψ〉
a1,b1;a

′
2,b

′
2

f
′
a,f

′
b

=
1

2

(
|00〉a1b1

∣∣∣
√
1− Tα

〉
fa

∣∣∣
√
1− Tα

〉
fb
|0〉b2

∣∣∣
√
2Tα

〉
a2

+ |11〉a1b1

∣∣∣−
√
1− Tα

〉
fa

∣∣∣−
√
1− Tα

〉
fb
|0〉b′2

∣∣∣−
√
2Tα

〉
a2

+ |01〉a1b1

∣∣∣
√
1− Tα

〉
fa

∣∣∣−
√
1− Tα

〉
fb

∣∣∣
√
2Tα

〉
b2
|0〉a2

+ |10〉a1b1

∣∣∣−
√
1− Tα

〉
fa

∣∣∣
√
1− Tα

〉
fb

∣∣∣−
√
2Tα

〉
b2
|0〉a2

)
.

(B5)

It can be seen from Eq. (B5) that, in the total 4-mode
entangled state after mixing by Charlie, the vacuum state
contribution in mode a2 appears with probability 1/2.
Our primary aim is to postselect the state (B5) in |0〉a2

.

2. State after the on-off measurement

The additional coherent state sent by Bob to Charlie(∣∣√2α
〉)

becomes
∣∣∣
√
2Tα

〉
as a result of transmission

through lossy channel. As is described in [34], for this
purpose Charlie first mixes the outgoing a2 mode with

this additional state
(∣∣∣
√
2Tα

〉)
in mode c through the

second balanced beam splitter (BS2). Consequently, the
state after the mixing at BS2 is given by

|ψ〉BS2

a1,b1;b
′′
2

f
′
a,f

′
b

a
′′′
2 ,c

′

= U
(a2,c)
BS1

|ψ〉BS1

a1,b1;a
′′
2 ,b

′′
2

f
′
a,f

′
b

⊗
∣∣∣
√
2Tα

〉
c

=
1

2

(
|00〉a1b1

∣∣∣
√
1− Tα

〉
fa

∣∣∣
√
1− Tα

〉
fb
|0〉b2

∣∣∣2
√
Tα
〉
a2

|0〉c

+ |11〉a1b1

∣∣∣−
√
1− Tα

〉
fa

∣∣∣−
√
1− Tα

〉
fb
|0〉b2 |0〉a2

∣∣∣−2
√
Tα
〉
c

+ |01〉a1b1

∣∣∣
√
1− Tα

〉
fa

∣∣∣−
√
1− Tα

〉
fb

∣∣∣
√
2Tα

〉
b2

∣∣∣
√
Tα
〉
a2

∣∣∣−
√
Tα
〉
c

+ |10〉a1b1

∣∣∣−
√
1− Tα

〉
fa

∣∣∣
√
1− Tα

〉
fb

∣∣∣−
√
2Tα

〉
b2

∣∣∣
√
Tα
〉
a2

∣∣∣−
√
Tα
〉
c

)
. (B6)

As it can be seen from Eq. (B6), if both the detectors
at the output of BS2 click then the contribution can arise
only from the respective part in (B6), i.e., from the part
containing |0〉a2

. Experimentally, this could be achieved
unambiguously by performing the operation Π0 = (I −
|0〉 〈0|)⊗ (I − |0〉 〈0|) on (B6) using two on-off detectors
at both the output ports of BS2.

However, here we consider non-ideal detectors with ef-
ficiency ηo (0 ≤ ηo ≤ 1). Similar to the case of trans-
mission channels, this could be analysed by considering
two additional BS with transmittance ηo and two ancil-
lary modes ga and gc for modes a2 and c, respectively.
Therefore, before the on-off detectors, the total state is
given by
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|ψ〉tot
a1,b1;b

′′
2

f
′
a,f

′
b ,g

′
a,g

′
c

a
′′′′
2 ,c

′′

= U (a2,ga)
ηo

⊗ U (c,gc)
ηo

|ψ〉BS2

a1,b1;b
′′
2

f
′
a,f

′
b

a
′′′
2 ,c

′

⊗ |0〉ga |0〉gc

=
1

2

[
|00〉a1b1

|0〉b′′2
∣∣∣
√
1− Tα

〉
fa

∣∣∣
√
1− Tα

〉
fb

∣∣∣2
√
T (1− ηo)α

〉
ga

|0〉gc
∣∣∣2
√
Tηoα

〉
a2

|0〉c

+ |11〉a1b1
|0〉b2

∣∣∣−
√
1− Tα

〉
fa

∣∣∣−
√
1− Tα

〉
fb
|0〉ga

∣∣∣−2
√
T (1− ηo)α

〉
gc
|0〉a2

∣∣∣−2
√
Tηoα

〉
c

+

(
|01〉a1b1

∣∣∣
√
2Tα

〉
b2

∣∣∣
√
1− Tα

〉
fa

∣∣∣−
√
1− Tα

〉
fb

+ |10〉a1b1

∣∣∣−
√
2Tα

〉
b2

∣∣∣−
√
1− Tα

〉
fa

∣∣∣
√
1− Tα

〉
fb

)

∣∣∣
√
T (1− ηo)α

〉
ga

∣∣∣−
√
T (1− ηo)α

〉
gc

∣∣∣
√
Tη0α

〉
a2

∣∣∣−
√
Tηoα

〉
c

]

=
1

2

[
|00〉a1b1

|0〉b2
∣∣∣
√
T ′α

〉
fa

∣∣∣
√
T ′α

〉
fb

∣∣∣2
√
Tη′oα

〉
ga

|0〉gc
∣∣∣2
√
Tηoα

〉
a2

|0〉c

+ |11〉a1b1
|0〉b2

∣∣∣−
√
T ′α

〉
fa

∣∣∣−
√
T ′α

〉
fb
|0〉ga

∣∣∣−2
√
Tη′oα

〉
gc
|0〉a2

∣∣∣−2
√
Tηoα

〉
c

+

(
|01〉a1b1

∣∣∣
√
2Tα

〉
b2

∣∣∣
√
T ′α

〉
fa

∣∣∣−
√
T ′α

〉
fb

+ |10〉a1b1

∣∣∣−
√
2Tα

〉
b2

∣∣∣−
√
T ′α

〉
fa

∣∣∣
√
T ′α

〉
fb

)

∣∣∣
√
Tη′oα

〉
ga

∣∣∣−
√
Tη′oα

〉
gc

∣∣∣
√
Tη0α

〉
a2

∣∣∣−
√
Tηoα

〉
c

]
, (B7)

where T ′ = 1− T and η′o = 1− ηo.
Charlie is now supposed to make the measurement of

Πa2,c
0 = (1− |0〉 〈0|)a2 ⊗ (1− |0〉 〈0|)c on the state in Eq.

(B7). After the measurement of these operators (Π0) the

total state collapses to ρ0a1,b1;b2
= trfa,fb

ga,gc
a2,c

(
|ψ0〉 〈ψ0|

)
/N0,

where |ψ0〉 = Πa2,c
0 |ψ〉tot

a1,b1;b
′′
2

f
′
a,f

′
b ,g

′
a,g

′
c

a
′′′′
2 ,c

′′

and the normalization

constants are N0 = tra1,b1,a2,b2,c
fa,fb,ga,gc

(
|ψ0〉 〈ψ0|

)
. It must be

noted that the state ρ0a1,b1;b2
is obtained with probability

P0 = tra1,b1
b2

(
ρ0a1,b1;b2

)
.

Let us look at the result first

Πa2,c
0 |α〉a2

|β〉c =
(
1a2 ⊗ 1c − |0〉a2

〈0| ⊗ 1c − 1a2 ⊗ |0〉c 〈0|+ |0〉a2
〈0| ⊗ |0〉c 〈0|

)
|α〉a2

|β〉c
= |α〉a2

|β〉c − e−α2/2 |0〉a2
|β〉c − e−β2/2 |α〉a2

|0〉c + e−(α2+β2)/2 |0〉a2
|0〉c . (B8)

leading to

Πa2,c
0 |α〉a2

|0〉c = Πa2,c
0 |0〉a2

|α〉c = 0

Πa2,c
0 |α〉a2

|−α〉c = |α〉a2
|−α〉c − e−α2/2 |0〉a2

|−α〉c − e−α2/2 |α〉a2
|0〉c + e−α2 |0〉a2

|0〉c . (B9)
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Deploying the results of Eq. (B9) in Eq. (B7), we obtain

|ψ0〉 = Πa2,c
0 |ψ〉tot

a1,b1;b
′′
2

f
′
a,f

′
b ,g

′
a,g

′
c

a
′′′′
2 ,c

′′

=
1

2

[
|00〉a1b1

|0〉b2
∣∣∣
√
T ′α

〉
fa

∣∣∣
√
T ′α

〉
fb

⊗
∣∣∣2
√
Tη′oα

〉
ga

|0〉gc × 0

+ |11〉a1b1
|0〉b2

∣∣∣−
√
T ′α

〉
fa

∣∣∣−
√
T ′α

〉
fb

⊗ |0〉ga
∣∣∣−2

√
Tη′oα

〉
gc

× 0

+

(
|01〉a1b1

∣∣∣
√
2Tα

〉
b2

∣∣∣
√
T ′α

〉
fa

∣∣∣−
√
T ′α

〉
fb

+ |10〉a1b1

∣∣∣−
√
2Tα

〉
b2

∣∣∣−
√
T ′α

〉
fa

∣∣∣
√
T ′α

〉
fb

)
⊗
∣∣∣
√
Tη′oα

〉
ga

∣∣∣−
√
Tη′oα

〉
gc
⊗

(∣∣∣
√
ηoTα

〉
a2

∣∣∣−
√
ηoTα

〉
c
− e−ηoTα2/2 |0〉a2

∣∣∣−
√
ηoTα

〉
c
− e−ηoTα2/2

∣∣∣
√
ηoTα

〉
a2

|0〉c + e−ηoTα2 |0〉a2
|0〉c
)]

=
1

2

(
|01〉a1b1

∣∣∣
√
2Tα

〉
b2

∣∣∣
√
T ′α

〉
fa

∣∣∣−
√
T ′α

〉
fb

+ |10〉a1b1

∣∣∣−
√
2Tα

〉
b2

∣∣∣−
√
T ′α

〉
fa

∣∣∣
√
T ′α

〉
fb

)
⊗

∣∣∣
√
Tη′oα

〉
ga

∣∣∣−
√
Tη′oα

〉
gc

⊗ |Ψ〉a2c
, (B10)

where

|Ψ〉a2c
=
∣∣∣
√
ηoTα

〉
a2

∣∣∣−
√
ηoTα

〉
c
− e−ηoTα2/2 |0〉a2

∣∣∣−
√
ηoTα

〉
c
− e−ηoTα2/2

∣∣∣
√
ηoTα

〉
a2

|0〉c + e−ηoTα2 |0〉a2
|0〉c .
(B11)

It can be further shown that

tr
(
|Ψ〉a2c

〈Ψ|
)
= tr

[(〈√
ηoTα

∣∣∣
√
ηoTα

〉〈
−
√
ηoTα

∣∣∣−
√
ηoTα

〉
+ e−ηoTα2 〈0|0〉

〈
−
√
ηoTα

∣∣∣−
√
ηoTα

〉

+ e−ηoTα2
〈√

ηoTα
∣∣∣
√
ηoTα

〉
〈0|0〉+ e−2ηoTα2 〈0|0〉 〈0|0〉

)
+ 2

(
−e−ηoTα2/2

〈
0
∣∣∣
√
ηoTα

〉〈
−
√
ηoTα

∣∣∣−
√
ηoTα

〉

−e−ηoTα2/2
〈√

ηoTα
∣∣∣
√
ηoTα

〉〈
0
∣∣∣−
√
ηoTα

〉
+ e−ηoTα2

〈
0
∣∣∣
√
ηoTα

〉〈
0
∣∣∣−
√
ηoTα

〉)

+ 2
(
e−ηoTα2

〈√
ηoTα

∣∣∣0
〉〈

0
∣∣∣−
√
ηoTα

〉
− e−3ηoTα2/2 〈0|0〉

〈
0
∣∣∣−
√
ηoTα

〉)
− 2 e−3ηoTα2/2

〈
0
∣∣∣
√
ηoTα

〉
〈0|0〉

]

=
(
1 + e−ηoTα2

+ e−ηoTα2

+ e−2ηoTα2
)
+ 2

(
−e−ηoTα2 − e−ηoTα2

+ e−2ηoTα2
)
+ 2

(
e−2ηoTα2 − e−2ηoTα2

)
− 2e−2ηoTα2

= 1− 2e−ηoTα2

+ e−2ηoTα2

=
(
1− e−ηoTα2

)2
. (B12)

959



15

Hence

trfa,fb
ga,gc
a2,c

(
|ψ0〉 〈ψ0|

)

=

(
1− e−ηoTα2

)2

4
trfa,fb

[(
|01〉a1b1

〈01| ⊗
∣∣∣
√
2Tα

〉
b2

〈√
2Tα

∣∣∣⊗
∣∣∣
√
T ′α

〉
fa

〈√
T ′α

∣∣∣⊗
∣∣∣−

√
T ′α

〉
fb

〈
−
√
T ′α

∣∣∣

+ |10〉a1b1
〈10| ⊗

∣∣∣−
√
2Tα

〉
b2

〈
−
√
2Tα

∣∣∣⊗
∣∣∣−

√
T ′α

〉
fa

〈
−
√
T ′α

∣∣∣⊗
∣∣∣
√
T ′α

〉
fb

〈√
T ′α

∣∣∣

+ |01〉a1b1
〈10| ⊗

∣∣∣
√
2Tα

〉
b2

〈
−
√
2Tα

∣∣∣⊗
∣∣∣
√
T ′α

〉
fa

〈
−
√
T ′α

∣∣∣⊗
∣∣∣−

√
T ′α

〉
fb

〈√
T ′α

∣∣∣

+ |10〉a1b1
〈01| ⊗

∣∣∣−
√
2Tα

〉
b2

〈√
2Tα

∣∣∣⊗
∣∣∣−

√
T ′α

〉
fa

〈√
T ′α

∣∣∣⊗
∣∣∣
√
T ′α

〉
fb

〈
−
√
T ′α

∣∣∣
)]

× trga,gc

[∣∣∣
√
Tη′oα

〉
ga

〈√
Tη′oα

∣∣∣⊗
∣∣∣−
√
Tη′oα

〉
gc

〈
−
√
Tη′oα

∣∣∣
]

=

(
1− e−ηoTα2

)2

4

[
|01〉a1b1

〈01| ⊗
∣∣∣
√
2Tα

〉
b2

〈√
2Tα

∣∣∣+ |10〉a1b1
〈10| ⊗

∣∣∣−
√
2Tα

〉
b2

〈
−
√
2Tα

∣∣∣

+

(
|01〉a1b1

〈10| ⊗
∣∣∣
√
2Tα

〉
b2

〈
−
√
2Tα

∣∣∣+ |10〉a1b1
〈01| ⊗

∣∣∣−
√
2Tα

〉
b2

〈√
2Tα

∣∣∣
)
e−4(1−T )α2

]
,

(B13)

where tr
(
|α〉 〈−α|

)
= e−2α2

. Corresponding probability

and normalization constant are

P0 = N0 = tra1,b1
b2


trfa,fb

ga,gc
a2,c

(
|ψ0〉 〈ψ0|

)



=

(
1− e−ηoTα2

)2

2
. (B14)

This leads to the normalized state

ρ0a1,b1,b2 =
1

N0
trfa,fb

ga,gc
a2,c

(
|ψ0〉 〈ψ0|

)

=
1

2

[
|01〉a1b1

〈01| ⊗
∣∣∣
√
2Tα

〉
b2

〈√
2Tα

∣∣∣+ |10〉a1b1
〈10| ⊗

∣∣∣−
√
2Tα

〉
b2

〈
−
√
2Tα

∣∣∣

+

(
|01〉a1b1

〈10| ⊗
∣∣∣
√
2Tα

〉
b2

〈
−
√
2Tα

∣∣∣+ |10〉a1b1
〈01| ⊗

∣∣∣−
√
2Tα

〉
b2

〈√
2Tα

∣∣∣
)
e−4(1−T )α2

]
. (B15)

3. Final state obtained after the homodyne
measurement

Charlie now performs the homodyne measurement
along the quadrature Xθ on mode b2. Here also we
consider that that the homodyne instruments are not
perfect. Rather the efficiency of the homodyne detector is
given by ηh. Similar to the earlier cases here also the im-
perfect homodyne detector could be modeled as a passive

beam splitter with transmittance ηh. Now the action of
the imperfect homodyne measurement along quadrature
Xθ will lead to the resultant unnormalized state ρhom,0

un =

〈Xθ|b2 trhb

[(
Uhb,b2
ηh

)
ρ0a1,b1;b2

⊗ |0〉hb
〈0|
(
Uhb,b2
ηh

)†] |Xθ〉b2
with normalization Nhom

0 = tra1,b1

(
ρhom,0
un

)
, where

Xθ in a mode a is defined as Xθ = (aeiθ + a†e−iθ)/2
and with the eigenvalue equation as Xθ defined as
Xθ |Xθ〉 = xθ |Xθ〉.
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Thus, after the homodyne measurement by Charlie,
the residual normalized state between Alice and Bob will
be

ρa1,b1 =
ρhom,0
un

Nhom
0

. (B16)

In this work we consider the measurement of quadra-
ture operator for the choice of θ = π

2 , i.e., we consider
the momentum-like quadrature operator P . Now the
measurement of P for a coherent state |α〉 is 〈P |α〉 =

1
π1/4 e

−p2/2e−α2−i
√
2αp. Now,

trhb

[(
Uhb,b2
ηh

)
ρ0a1,b1;b2 ⊗ |0〉hb

〈0|
(
Uhb,b2
ηh

)†]

=
1

2
trhb

{(
Uhb,b2
ηh

) [
|01〉a1b1

〈01| ⊗
∣∣∣
√
2Tα

〉
b2

〈√
2Tα

∣∣∣+ |10〉a1b1
〈10| ⊗

∣∣∣−
√
2Tα

〉
b2

〈
−
√
2Tα

∣∣∣

+

(
|01〉a1b1

〈10| ⊗
∣∣∣
√
2Tα

〉
b2

〈
−
√
2Tα

∣∣∣+ |10〉a1b1
〈01| ⊗

∣∣∣−
√
2Tα

〉
b2

〈√
2Tα

∣∣∣
)
e−4(1−T )α2

]
⊗ |0〉hb

〈0|
(
Uhb,b2
ηh

)†}

=
1

2
trhb

[
|01〉a1b1

〈01| ⊗
∣∣∣
√
2Tηhα

〉
b2

〈√
2Tηhα

∣∣∣⊗
∣∣∣∣
√
2Tη′hα

〉

hb

〈√
2Tη′hα

∣∣∣∣

+ |10〉a1b1
〈10| ⊗

∣∣∣−
√
2Tηhα

〉
b2

〈
−
√
2Tηhα

∣∣∣⊗
∣∣∣∣−
√
2Tη′hα

〉

hb

〈
−
√
2Tη′hα

∣∣∣∣

+

(
|01〉a1b1

〈10| ⊗
∣∣∣
√
2Tηhα

〉
b2

〈
−
√
2Tηhα

∣∣∣⊗
∣∣∣∣
√

2Tη′hα

〉

hb

〈
−
√
2Tη′hα

∣∣∣∣

+ |10〉a1b1
〈01| ⊗

∣∣∣−
√
2Tηhα

〉
b2

〈√
2Tηhα

∣∣∣⊗
∣∣∣∣−
√
2Tη′hα

〉

hb

〈√
2Tη′hα

∣∣∣∣

)
e−4(1−T )α2

]

=
1

2

[
|01〉a1b1

〈01| ⊗
∣∣∣
√
2Tηhα

〉
b2

〈√
2Tηhα

∣∣∣+ |10〉a1b1
〈10| ⊗

∣∣∣−
√
2Tηhα

〉
b2

〈
−
√
2Tηhα

∣∣∣

+

(
|01〉a1b1

〈10| ⊗
∣∣∣
√
2Tηhα

〉
b2

〈
−
√
2Tηhα

∣∣∣+ |10〉a1b1
〈01| ⊗

∣∣∣−
√
2Tηhα

〉
b2

〈√
2Tηhα

∣∣∣
)
e−4T (1−η′

h)α
2

e−4(1−T )α2

]

=
1

2

[
|01〉a1b1

〈01| ⊗
∣∣∣
√
2Tηhα

〉
b2

〈√
2Tηhα

∣∣∣+ |10〉a1b1
〈10| ⊗

∣∣∣−
√
2Tηhα

〉
b2

〈
−
√
2Tηhα

∣∣∣

+

(
|01〉a1b1

〈10| ⊗
∣∣∣
√
2Tηhα

〉
b2

〈
−
√
2Tηhα

∣∣∣+ |10〉a1b1
〈01| ⊗

∣∣∣−
√
2Tηhα

〉
b2

〈√
2Tηhα

∣∣∣
)
e−4(1−Tηh)α

2

]
, (B17)

which leads to

ρhom,0
un = 〈P |b2 trhb

[(
Uhb,b2
ηh

)
ρ0a1,b1;b2 ⊗ |0〉hb

〈0|
(
Uhb,b2
ηh

)†] |P 〉b2

=
1

2
〈P |b2

[
|01〉a1b1

〈01| ⊗
∣∣∣
√
2Tηhα

〉
b2

〈√
2Tηhα

∣∣∣+ |10〉a1b1
〈10| ⊗

∣∣∣−
√
2Tηhα

〉
b2

〈
−
√
2Tηhα

∣∣∣

+

(
|01〉a1b1

〈10| ⊗
∣∣∣
√
2Tηhα

〉
b2

〈
−
√
2Tηhα

∣∣∣+ |10〉a1b1
〈01| ⊗

∣∣∣−
√
2Tηhα

〉
b2

〈√
2Tηhα

∣∣∣
)
e−4(1−Tηh)α

2

]
|P 〉b2

=
e−p2

2
√
π

[
|01〉a1b1

〈01| e−4Tηhα
2

+ |10〉a1b1
〈10| e−4Tηhα

2

+
(
|01〉a1b1

〈10| e−4Tηhα
2−4i

√
Tηhαp + |10〉a1b1

〈01| e−4Tηhα
2+4i

√
Tηhαp

)
e−4(1−Tηh)α

2
]

=
e−p2

e−4Tηhα
2

2
√
π

[
|01〉a1b1

〈01|+ |10〉a1b1
〈10|+

(
|01〉a1b1

〈10| e−4i
√
Tηhαp + |10〉a1b1

〈01| e4i
√
Tηhαp

)
e−4(1−Tηh)α

2
]
,

(B18)

with Nhom
0 = tra1,b1

(
ρhom,0
un

)
= e−p2e−4Tηhα2

√
π

.
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Therefore,

ρa1,b1 =
ρhom,0
un

Nhom
0

=
1

2

[
|01〉a1b1

〈01|+ |10〉a1b1
〈10|+

(
|01〉a1b1

〈10| e−4i
√
Tηhαp + |10〉a1b1

〈01| e4i
√
Tηhαp

)
e−4(1−Tηh)α

2
]

=
1

2

[
|01〉a1b1

〈01|+ |10〉a1b1
〈10|+ h

(
g |01〉a1b1

〈10|+ g∗ |10〉a1b1
〈01|

)]
, (B19)

where h = e−4(1−Tηh)α
2

and g = e−4i
√
Tηhαp. The probability of obtaining this final state is given by (B14) P0 =(

1−e−ηoTα2
)2

2 .

Appendix C: Logarithmic negativity of hybrid
entangled states undergoing photon loss

In our protocol we use the CV part of the HE state
for transmission via a lossy quantum channel. It can be
shown that under photon losses in the CV part, an HE
state can still retain correlations for a particular value of
α.
We analyse the amount of correlations that a HE state

retains after its CV system is transmitted via a lossy
quantum channel. Upon transmission the CV part un-
dergoes photon loss which is directly dependent on the
value of α chosen. We show that the correlations in a
HE state after its CV part has undergone transmission
loss is a non-monotonic function of its coherent ampli-
tude. Specifically, we evaluate the logarithmic negativ-
ity [67, 68] of the initial HE state as a function of trans-
mission loss. We find that for α ≈ 0.5, the HE state is

highly robust against noise.

Let us consider the HE state

|ψ〉ab =
1√
2

(
|0〉a |α〉b + |1〉a |−α〉b

)
. (C1)

Suppose that the mode b undergoes photon loss. The
process of photon loss can be equivalently modeled as
passage through a beam splitter with reflectivity R (0 ≤
R ≤ 1) while the other input to the beam splitter is
taken to be vacuum. In such a case, the beam splitter

matrix is

(√
1−R

√
R

−
√
R

√
1−R

)
, where R = 0 and R =

1 stand for zero photon loss and complete photon loss,
respectively. To that end, let us consider that the mode
b passes through such a beam splitter while the other
input is at |0〉 in mode c. As a consequence, the total
state after passage through the beam splitter becomes

|ψ〉ab ⊗ |0〉c
bs−→ 1√

2

(
|0〉a

∣∣∣
√
1−Rα

〉
b

∣∣∣
√
Rα
〉
c
+ |1〉a

∣∣∣−
√
1−Rα

〉
b

∣∣∣−
√
Rα
〉
c

)
. (C2)

Subsequently, the two-mode state in modes a and b after photon loss is obtained by tracing over the ancillary mode
c as

ρlossab = trc

[
1

2

(∣∣∣0,
√
1−Rα

〉
ab

〈
0,
√
1−Rα

∣∣∣⊗
∣∣∣
√
Rα
〉
c

〈√
Rα
∣∣∣+
∣∣∣1,−

√
1−Rα

〉
ab

〈
1,−

√
1−Rα

∣∣∣⊗
∣∣∣−

√
Rα
〉
c

〈
−
√
Rα
∣∣∣

+
∣∣∣0,

√
1−Rα

〉
ab

〈
1,−

√
1−Rα

∣∣∣⊗
∣∣∣
√
Rα
〉
c

〈
−
√
Rα
∣∣∣+
∣∣∣1,−

√
1−Rα

〉
ab

〈
0,
√
1−Rα

∣∣∣⊗
∣∣∣−

√
Rα
〉
c

〈√
Rα
∣∣∣
)]

=
1

2

(∣∣∣0,
√
1−Rα

〉
ab

〈
0,
√
1−Rα

∣∣∣+
∣∣∣1,−

√
1−Rα

〉
ab

〈
1,−

√
1−Rα

∣∣∣+ e−2Rα2
∣∣∣0,

√
1−Rα

〉
ab

〈
1,−

√
1−Rα

∣∣∣

+e−2Rα2
∣∣∣1,−

√
1−Rα

〉
ab

〈
0,
√
1−Rα

∣∣∣
)

=
1

2

[
|0〉a 〈0| ⊗

∣∣∣
√
1−Rα

〉
b

〈√
1−Rα

∣∣∣+ |1〉a 〈1| ⊗
∣∣∣−

√
1−Rα

〉
b

〈
−
√
1−Rα

∣∣∣

+e−2Rα2
(
|0〉a 〈1| ⊗

∣∣∣
√
1−Rα

〉
b

〈
−
√
1−Rα

∣∣∣+ |1〉a 〈0| ⊗
∣∣∣−

√
1−Rα

〉
b

〈√
1−Rα

∣∣∣
)]
. (C3)

In order to evaluate the entanglement content in this
state, we use logarithmic negativity as a measure of en-
tanglement. For a bipartite state ρlossab it is defined as

EN

(
ρlossab

)
= log2

∣∣∣
∣∣∣
(
ρlossab

)P.T.
∣∣∣
∣∣∣
1
, where ||.||1 is the trace

norm and P.T. stands for partial transpose over any one
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of the modes a or b. We evaluate the logarithmic negativ-
ity for the state after photon loss in Eq. (C3) numerically
and is shown in the main text.

Appendix D: Logarithmic negativity of the shared
entangled states

In order to evaluate the entanglement content in this
state, we use logarithmic negativity as a measure of en-
tanglement. For a bipartite state ρa1b1 it is defined as
EN (ρa1b1) = log2

∣∣∣∣ρP.T.
a1b1

∣∣∣∣
1
, where ||.||1 is the trace norm

and P.T. stands for partial transpose over any one of the
modes a1 or b1. Here, we evaluate the logarithmic neg-
ativity for the shared entangled state between Alice and
Bob (B19) under partial transposition over mode b1. The
resultant state after the partial transpose is written as

ρP.T.
a1,b1 =

1

2

[
|01〉a1b1

〈01|+ |10〉a1b1
〈10|

+h
(
g |00〉a1b1

〈11|+ g∗ |11〉a1b1
〈00|

)]
, (D1)

where h = e−4(1−Tηh)α
2

and g = e−4i
√
Tηhαp. This leads

to the eigenvalues of ρP.T.
a1,b1

as λ1 = λ2 = 1
2 , λ3 = h

2 and

λ4 = −h
2 . As a consequence, the logarithmic negativity

of ρa1b1 is given as

EN (ρa1b1) = log2

(
4∑

k=1

|λk|
)

= log2 (1 + h) . (D2)

However, it should be noted that the final state, ρa1b1 ,
is only produced with a probability P0. Consequently,
the entanglement between the parties is effectively given
as En (ρa1b1) = P0 log2 (1 + h). The reason for multiply-
ing with the probability P0 is because it determines the
rate of generation of the resultant entangled state. As an
example consider α = 0, the HE state (A1) is effectively
a separable state and therefore cannot yield any correla-
tions after swapping. This behavior is captured by the
fact that the final entangled state is produced with prob-
ability 0. However, if we only look at the state ρa1b1 , we
find that it is maximally entangled with logarithmic neg-
ativity equal to 1. Therefore, it is necessary to include
the rate of production in the analysis of entanglement of
the final state.

Appendix E: Analysis of secure key rate

In this section we first provide a description of the
optimal strategy of an eavesdropper Eve, namely an en-
tangling cloner attack. Next, provide a detailed analysis
of the secure key rate under this strategy by Eve.

1. Evaluating the secured key rate

In order to evaluate the secure key rate, we assume
the existence of an eavesdropper Eve with system E. We

assume that Eve can potentially collaborate with the un-
trusted party Charlie while also having access to the two
quantum channels which are used to transmit the CV
systems. We also consider that Eve can perfrom an en-
tangling cloner attack on each of two the quantum chan-
nels [48, 69, 70]. However, the most general attack strat-
egy with Eve is a two-mode correlated attack (one mode
for each quantum channel). Since, Alice and Bob use
a CV system for transmission purposes, the aforemen-
tioned attacks have been shown to be the optimal choices
in such a case. Moreover, since the quantum channels
are assumed to be non-interacting and spatially well sep-
arated, the two-mode correlated attack reduces to two
independent single-mode entangling cloner attacks.

Specifically, a single mode entangling cloner attack as-
sumes that Eve can split the incoming CV states in both
the channels independently using a BS with transmit-
tance T which equal to the loss of the Alice-Charlie and
Bob-Charlie channels (assuming that the loss in both the
channels is same). The two input modes for this BS corre-
spond to the quantum state being transmitted and a vac-
uum state (or a thermal state if we consider thermal noise
in the channels). Eve, then stores the reflected states in
a quantum memory while the transmitted states are sent
to Charlie via identity channels having no loss. Subse-
quently, Eve can then perform a joint measurement on
the two retained states (corresponding to Alice-Charlie
and Bob-Charlie channels) which are stored in a quan-
tum memory and try to guess the key of Alice or Bob
based on the outcomes observed. However, Alice and
Bob can estimate the transmission losses of their respec-
tive channels given by T . As a consequence, the max-
imum information that can obtained by Eve becomes a
function of the channel loss parameter T and the publicly
declared results by Charlie which in turn is bounded by
the Holevo bound χ(A : E) [48, 70].

Since, Alice and Bob share the state ρa1b1 with proba-
bility for a detailed derivation) P0, the secure key rate r
between Alice and Bob is then given as

r ≥ P0 [I(A : B)− χ(A : E)] s.t. P0 =

(
1− e−ηoTα2

)2

2
.

(E1)

Evaluating the mutual information between Alice and
Bob is relatively simple and is accomplished by using
their observed joint statistics. If Alice and Bob perform
a measurement corresponding to observables A and B,
the mutual information between the two parties sharing a
state ρab is given as I(A : B) = H(A)+H(B)−H(A,B),
where H(A) (and H(B)) is the Shannon entropy corre-
sponding to the observable A (and B) measured on the
state ρa = trb (ρab) and, H(A,B) is the Shannon entropy
of the observables jointly measured on the state ρab.
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2. Calculation of I(A : B) and χ(A : E)

In order to evaluate the mutual information we first
look at the final state that is shared between Alice and
Bob which is given as

ρa1b1 =
1

2

[
|01〉a1b1

〈01|+ |10〉a1b1
〈10|

+h
(
g |01〉a1b1

〈10|+ g∗ |10〉a1b1
〈01|

)]
, (E2)

where h = e−4(1−Tηh)α
2

and g = e−4i
√
Tηhαp with the

reduced states of Alice and Bob as

ρa1 = ρb1 =
1

2
(|0〉 〈0|+ |1〉 〈1|) . (E3)

In the QKD protocol we consider that both Alice and
Bob choose the observable M = σZ to generate a key.
The corresponding projective measurement can then be
written as {Π0,Π1}, where Π0 = |0〉 〈0| and Π1 = 1 −
Π0 = |1〉 〈1|. We also consider that the photon number
detectors are imperfect having efficiency ηd. A general
m-photon detector with efficiency ηd is described by the
measurement operators

Πm(ηd) = ηmd
∑

k

(1− ηd)
k |k +m〉 〈k +m| . (E4)

In view of the fact that in our scheme we have only two
outcomes (corresponding to Π0 and 1−Π0), an imperfect
measurement of σZ then corresponds to measurement op-

erators

Π0(ηd) = |0〉 〈0|+ (1− ηd) |1〉 〈1| , (E5a)

Π1(ηd) = 1−Π0 = ηd |1〉 〈1| . (E5b)

We first consider the imperfect measurement of σZ on
Alice’s reduced state ρa1 . The outcome Π0(ηd) occurs
with probability p0 = 1

2 [1 + (1− ηd)] =
2−ηd

2 while the
outcome Π1(ηd) occurs with probability p1 = 1−p0 = ηd

2 .
As a consequence, the Shannon entropy of imperfectly
measuring σZ on Alice’s reduced state is given as

H(σ3) = −p0 log2 p0 − p1 log2 p1

= −
(
2− ηd

2

)
log2

(
2− ηd

2

)
− ηd

2
log2

ηd
2
.

= 1− 2− ηd
2

log2(2 − ηd)−
ηd
2

log2 ηd (E6)

Similarly, it can be seen that the same expression also
holds true for the imperfect measurement of σZ on Bob’s
reduced state. The measurement operators correspond-
ing to the case when Alice and Bob jointly (and imper-
fectly) measure σZ on their respective reduced states are

Π00(ηd) = |00〉 〈00|+ (1− ηd)
2 |11〉 〈11|+ (1 − ηd) |01〉 〈01|

+ (1− ηd) |10〉 〈10| , (E7a)

Π01(ηd) = ηd |01〉 〈01|+ ηd(1 − ηd) |11〉 〈11| , (E7b)

Π10(ηd) = ηd |10〉 〈10|+ ηd(1 − ηd) |11〉 〈11| , (E7c)

Π11(ηd) = η2d |11〉 〈11| , (E7d)
which occur with probabilities p00 = 1 − ηd, p01 = ηd

2 ,
p10 = ηd

2 , and p11 = 0, respectively. As a consequence,
the Shannon entropy for the joint measurement becomes

H(σZ , σZ) = −p00 log2 p00 − p01 log2 p01 − p10 log2 p10 − p11 log2 p11

= −(1− ηd) log2(1− ηd)− ηd log2
ηd
2

= ηd − (1− ηd) log2(1 − ηd)− ηd log2 ηd. (E8)

The mutual information between Alice and Bob cab
then be written as

I(A : B) = H(σZ) +H(σZ)−H(σZ , σZ)

= (2− ηd)−
[
(2− ηd) log2(2− ηd)− (1− ηd) log2(1− ηd)

]
.

(E9)

Evidently, in absence of any imperfection (ηd = 1) one
obtains perfect correlation, i.e, limηd→1 I(A : B) = 1.
Next, we evaluate the Holevo bound χ(A : E).
In order to evaluate the Holevo bound, we assume that

Eve has access to a purification of the state ρa1b1 , which
we denote by ρa1b1E , such that ρe = tra1b1(ρa1b1e) is
the reduced state of Eve. Moreover, we also assume
that Alice’s measurement outcomes are represented by

rank-1 operators. Since ρa1b1e is pure by definition, we
have S(ρa1b1) = S(ρe), where S(X) is the Von Neumann
entropy of a system X . Moreover, if Alice’s measure-
ment outcomes are represented by rank-1 operators, then
the reduced state of Bob and Eve conditioned on Al-
ice’s outcome x, given by ρb1e|x, is also pure. There-
fore, by definition of Von Neumann entropy, we have
S(ρe|x) = S(ρb1|x), where ρb1|x is the reduced state of
Bob conditioned on Alice’s outcome x. In this case, the
Holevo bound can then be written as [49]

χ(A : E) = S(ρa1b1)−
∑

x

pxS
(
ρb1|x

)
. (E10)

For the state ρa1b1 as given in Eq. (E2), its eigenval-
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ues are given as λ± = 1±h
2 leading to the von-Neumann

entropy as

S(ρa1b1) = −λ+ log2 λ+ − λ− log2 λ−

= −
(
1 + h

2

)
log2

(
1 + h

2

)
−
(
1− h

2

)
log2

(
1− h

2

)

= 1− 1

2
[(1 + h) log2(1 + h) + (1 − h) log2(1− h)] .

(E11)

On the other hand, the reduced states of Bob corre-
sponding to the two outcomes of the imperfect measure-
ment of σZ by Alice are given as

ρb1|0 =
tra1 [ρa1b1Π0(ηd)]

tr [ρa1b1Π0(ηd)]

=
1

2− ηd
(|1〉 〈1|+ (1 − ηd) |0〉 〈0|) , (E12a)

ρb1|1 =
tra1 [ρa1b1Π1(ηd)]

tr [ρa1b1Π1(ηd)]
= |1〉 〈1| , (E12b)

that lead to

1∑

x=0

pxS
(
ρb1|x

)
=

2− ηd
2

[
−
(

1

2− ηd

)
log2

(
1

2− ηd

)

−
(
1− ηd
2− ηd

)
log2

(
1− ηd
2− ηd

)]

=
1

2

[
(2− ηd) log2(2 − ηd)− (1 − ηd) log2(1− ηd)

]
.

(E13)

As a consequence, the Holevo bound can be written as

χ(A : E) = S(ρa1b1)−
∑

x

pxS
(
ρb1|x

)

= 1− 1

2
[(1 + h) log2(1 + h) + (1− h) log2(1− h)]

− 1

2
[(2− ηd) log2(2− ηd)− (1− ηd) log2(1 − ηd)] .

(E14)

By plugging the mutual information given in Eq. (E9)
and the Holevo bound, given in Eq. (E14), in the secure

key rate, given by Eq. (E1), we obtain

r ≥ p0 [I(A : B)− χ(A : E)]

= p0

{
1− ηd +

1

2
[(1 + h) log2(1 + h) + (1− h) log2(1 − h)]

−1

2
[(2− ηd) log2(2 − ηd)− (1 − ηd) log2(1− ηd)]

}
.

(E15)

Appendix F: Fidelity between the HE states passed
through loss-only and lossy+noise channels

In this section, we analyze the impact of thermal noise
present in the quantum channel between Alice (Bob) and
Charlie. We show that the final state after a loss-only
channel is almost equivalent to the final state after pass-
ing through a channel characterized by loss and thermal
noise. Using this result, we aim to reduce the complexity
of the calculation by only focusing on loss-only quantum
channels connecting all the parties.

1. General state after channel transmission

Let us consider that an incoming signal passes through
a lossy channel having transmittance T with additional
thermal noise. Mathematically, the channel transmission
can be written as Uch : ρs,in → ρs,out, where ρs,in (ρs,in)
is input (output) state of the channel. Such transmission
can be modeled as follows. First, the incoming state (in
mode a) is mixed with an ancilla initialized in a thermal
state (in mode b) via a beam splitter (BS) with transmit-
tance T and two output modes. Subsequently, output of
the quantum channel is obtained by tracing out the out-
going ancilla mode of the BS.
The action of a BS with transmittance T is described

in terms of a unitary operation Uab
T on the input modes

a and b that leads to the transformation matrix between
the input and the output modes, labelled by a′ and b′, as

(
â

b̂

)
→
(
â′

b̂′

)
=

( √
T

√
1− T

−
√
1− T

√
T

)(
â

b̂

)
, (F1)

where â corresponds to the annihilation operator
for the mode a and T = 0.5 represents a bal-
anced (50 : 50) BS. As a consequence, the ac-
tion of the channel on a coherent state (|α〉) in
mode a is described as Uab

T |α〉a ⊗ |β〉b → |α〉a′ ⊗
|β〉b′ =

∣∣∣
√
Tα+

√
1− Tβ

〉
a
⊗
∣∣∣
√
Tβ −

√
1− Tα

〉
b

=
∣∣∣
√
Tα+

√
1− Tβ,

√
Tβ −

√
1− Tα

〉
ab
.

Let us consider that, in the coherent state basis,
the incoming signal is in the quantum state given by

ρs,in =
∫

d2α
π

d2β
π C(α, β) |α〉a 〈β| while the ancilla ther-

mal state described as ρanc,th = (1 − x)
∑

k x
k |k〉b 〈k| =

(1 − x)
∫

d2η
π

d2ζ
π e−

|η|2+|ζ|2
2 +xη∗ζ |η〉b 〈ζ|, where x = n̄

1+n̄
such that n̄ is the average number of thermal photon. In
view of the action of a BS on the coherent states, one can
easily show that
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ρout = Uab
T ρs,in ⊗ ρanc,th

(
Uab
T

)†

= (1− x)

∫
d2α

π

d2β

π

d2η

π

d2ζ

π
C(α, β)e−

|η|2+|ζ|2
2 +xη∗ζ

[
Uab
T |α, η〉ab 〈β, ζ|

(
Uab
T

)†]

= (1− x)

∫
d2α

π

d2β

π

d2η

π

d2ζ

π
C(α, β)e−

|η|2+|ζ|2
2 +xη∗ζ

∣∣∣
√
Tα+

√
1− Tη,

√
Tη −

√
1− Tα

〉

⊗
〈√

Tβ +
√
1− Tζ,

√
Tζ −

√
1− Tβ

∣∣∣ . (F2)

Consequently, the channel output signal state becomes

Uch : ρs,in → ρs,out = Tranc (ρout)

= (1− x)

∫
d2α

π

d2β

π

d2η

π

d2ζ

π
C(α, β)e−

|η|2+|ζ|2
2 +xη∗ζ

∣∣∣
√
Tα+

√
1− Tη

〉
a

〈√
Tβ +

√
1− Tζ

∣∣∣

×
〈√

Tζ −
√
1− Tβ

∣∣∣
√
Tη −

√
1− Tα

〉

= (1− x)

∫
d2α

π

d2β

π

d2η

π

d2ζ

π
C(α, β)e−

1−T
2 (|α|2+|β|2)+(1−T )αβ∗

e−
1+T

2 (|η|2+|ζ|2)+xη∗ζ+Tηζ∗

× e
√

T (1−T )
[

α∗η+αη∗
2 + β∗ζ+βζ∗

2 −(β∗η+αζ∗)
] ∣∣∣
√
Tα+

√
1− Tη

〉
a

〈√
Tβ +

√
1− Tζ

∣∣∣

= (1− x)

∫
d2α

π

d2β

π

d2η

π

d2ζ

π
C(α, β)e−

1−T
2 (|α|2+|β|2)+(1−T )αβ∗

e−
1+T

2 (|η|2+|ζ|2)+xη∗ζ+Tηζ∗

× e
√

T (1−T )
[

α∗η+αη∗
2 + β∗ζ+βζ∗

2 −(β∗η+αζ∗)
] ∫

d2λ

π

d2ω

π
|λ〉 〈ω|

〈
λ
∣∣∣
√
Tα+

√
1− Tη

〉〈√
Tβ +

√
1− Tζ

∣∣∣ω
〉

= (1− x)

∫
d2α

π

d2β

π

d2η

π

d2ζ

π
C(α, β)e−

1−T
2 (|α|2+|β|2)+(1−T )αβ∗

e−
1+T

2 (|η|2+|ζ|2)+xη∗ζ+Tηζ∗

× e
√

T (1−T )
[

α∗η+αη∗
2 + β∗ζ+βζ∗

2 −(β∗η+αζ∗)
] ∫

d2λ

π

d2ω

π
|λ〉 〈ω| e−

|λ|2+|
√

Tα+
√

1−Tη|2
2 +λ∗(

√
Tα+

√
1−Tη)

× e−
|ω|2+|

√
Tβ+

√
1−Tζ|2

2 +(
√
Tβ∗+

√
1−Tζ∗)ω

= (1− x)

∫
d2λ

π

d2ω

π
e−

|λ|2+|ω|2
2 |λ〉 〈ω|

∫
d2α

π

d2β

π
C(α, β)e−

|α|2+|β|2
2 +(1−T )αβ∗+

√
T (λ∗α+ωβ∗)

×
∫
d2η

π

d2ζ

π
e−(|η|

2+|ζ|2)+xη∗ζ+Tηζ∗
e−

√
T (1−T )(β∗η+αζ∗)+

√
1−T (λ∗η+ωζ∗)

=
1− x

1− Tx

∫
d2λ

π

d2ω

π
e−

|λ|2+|ω|2
2 + x(1−T )

1−Tx λ∗ω |λ〉 〈ω|
∫
d2α

π

d2β

π
C(α, β)e−

|α|2+|β|2
2 + 1−T

1−Txαβ∗+
√

T(1−x)
1−Tx (λ∗α+ωβ∗). (F3)

In the case of a loss-only channel, i.e., in absence of additional thermal noise (x = 0), Eq. (F3) reduces to

lim
x→0

Uch : ρs,in →
∫
d2α

π

d2β

π
C(α, β)e−

1−T
2 (|α|2+|β|2)+(1−T )αβ∗

∫
d2λ

π

d2ω

π
e−

|λ|2+|ω|2+T(|α|2+|β|2)
2 +

√
T (λ∗α+ωβ∗) |λ〉 〈ω|

=

∫
d2α

π

d2β

π
C(α, β)e−

1−T
2 (|α|2+|β|2)+(1−T )αβ∗

∫
d2λ

π

d2ω

π
|λ〉
〈
λ
∣∣∣
√
Tα
〉〈√

Tβ
∣∣∣
〉
ω 〈ω|

=

∫
d2α

π

d2β

π
C(α, β)e−

1−T
2 (|α|2+|β|2)+(1−T )αβ∗

∣∣∣
√
Tα
〉〈√

Tβ
∣∣∣ . (F4)

2. Hybrid state after channel transmission

In our protocol, each party transmits a coherent state
through a quantum channel which may have transmis-

sion loss as well as thermal noise. In the following, we
evaluate all possible terms that may arise when the par-
ties transmit the continuous variable part through the
aforementioned channel. In such a case, Eq. (F3) leads
to
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Uch : |γ〉 〈γ| → 1− x

1− Tx

∫
d2λ

π

d2ω

π
e−

|λ|2+|ω|2
2 + x(1−T )

1−Tx λ∗ω |λ〉 〈ω|
∫
d2α

π

d2β

π
δ2 (β − γ) δ2 (α− γ)

× e−
|α|2+|β|2

2 + 1−T
1−Txαβ∗+

√
T (1−x)
1−Tx (λ∗α+ωβ∗)

=
1− x

1− Tx

∫
d2λ

π

d2ω

π
e−

|λ|2+|ω|2
2 +x(1−T )

1−Tx λ∗ω |λ〉 〈ω| × e−
T (1−x)
1−Tx |γ|2+

√
T (1−x)
1−Tx (λ∗γ+ωγ∗)

= e−
T (1−x)
1−Tx |γ|2 1− x

1− Tx

∫
d2λ

π

d2ω

π
e−

|λ|2+|ω|2
2 + x(1−T )

1−Tx λ∗ω+
√

T (1−x)
1−Tx (λ∗γ+ωγ∗) |λ〉 〈ω| , (F5)

Uch : |γ〉 〈−γ| → 1− x

1− Tx

∫
d2λ

π

d2ω

π
e−

|λ|2+|ω|2
2 + x(1−T )

1−Tx λ∗ω |λ〉 〈ω|
∫
d2α

π

d2β

π
δ2 (β + γ) δ2 (α− γ)

× e−
|α|2+|β|2

2 + 1−T
1−Txαβ∗+

√
T (1−x)
1−Tx (λ∗α+ωβ∗)

=
1− x

1− Tx

∫
d2λ

π

d2ω

π
e−

|λ|2+|ω|2
2 + x(1−T )

1−Tx λ∗ω |λ〉 〈ω| × e−
T (1−x)
1−Tx |γ|2+

√
T(1−x)
1−Tx (λ∗γ−ωγ∗)

= e−
T (1−x)
1−Tx |γ|2 1− x

1− Tx

∫
d2λ

π

d2ω

π
e−

|λ|2+|ω|2
2 +x(1−T )

1−Tx λ∗ω+
√

T(1−x)
1−Tx (λ∗γ−ωγ∗) |λ〉 〈ω| , (F6)

Uch : |−γ〉 〈γ| → 1− x

1− Tx

∫
d2λ

π

d2ω

π
e−

|λ|2+|ω|2
2 + x(1−T )

1−Tx λ∗ω |λ〉 〈ω|
∫
d2α

π

d2β

π
δ2 (β − γ) δ2 (α+ γ)

× e−
|α|2+|β|2

2 + 1−T
1−Txαβ∗+

√
T (1−x)
1−Tx (λ∗α+ωβ∗)

=
1− x

1− Tx

∫
d2λ

π

d2ω

π
e−

|λ|2+|ω|2
2 + x(1−T )

1−Tx λ∗ω |λ〉 〈ω| × e−
T (1−x)
1−Tx |γ|2+

√
T(1−x)
1−Tx (−λ∗γ+ωγ∗)

= e−
T (1−x)
1−Tx |γ|2 1− x

1− Tx

∫
d2λ

π

d2ω

π
e−

|λ|2+|ω|2
2 +x(1−T )

1−Tx λ∗ω−
√

T(1−x)
1−Tx (λ∗γ−ωγ∗) |λ〉 〈ω| , (F7)

Uch : |−γ〉 〈−γ| → 1− x

1− Tx

∫
d2λ

π

d2ω

π
e−

|λ|2+|ω|2
2 +x(1−T )

1−Tx λ∗ω |λ〉 〈ω|
∫
d2α

π

d2β

π
δ2 (β + γ) δ2 (α+ γ)

× e−
|α|2+|β|2

2 + 1−T
1−Txαβ∗+

√
T(1−x)
1−Tx (λ∗α+ωβ∗)

=
1− x

1− Tx

∫
d2λ

π

d2ω

π
e−

|λ|2+|ω|2
2 + x(1−T )

1−Tx λ∗ω |λ〉 〈ω| × e−
T (1−x)
1−Tx |γ|2−

√
T (1−x)
1−Tx (λ∗γ+ωγ∗)

= e−
T (1−x)
1−Tx |γ|2 1− x

1− Tx

∫
d2λ

π

d2ω

π
e−

|λ|2+|ω|2
2 + x(1−T )

1−Tx λ∗ω−
√

T (1−x)
1−Tx (λ∗γ+ωγ∗) |λ〉 〈ω| . (F8)

A hybrid-entangled (HE) state (A7) defined as

|ψ〉he =
1√
2
(|0, α〉+ |1,−α〉) , (F9)

for which the multiphoton coherent state part is trans-

mitted through a general (both lossy and noisy) channel.
Using the results obtained above it can be seen that, after
the transmission, the final state is
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ρch,he(T, x) = Uch : ρhe = Uch :
1

2
(|0〉 〈0| ⊗ |α〉 〈α|+ |0〉 〈1| ⊗ |α〉 〈−α|+ |1〉 〈0|−α〉 〈α|+ |1〉 〈1| ⊗ |−α〉 〈−α|)

=
e−

T (1−x)
1−Tx |α|2

2

1− x

1− Tx

∫
d2λ

π

d2ω

π
e−

|λ|2+|ω|2
2 +

x(1−T )
1−Tx λ∗ω |λ〉 〈ω|

⊗
[
e

√
T (1−x)
1−Tx (λ∗α+ωα∗) |0〉 〈0|+ e

√
T (1−x)
1−Tx (λ∗α−ωα∗) |0〉 〈1|+ e−

√
T (1−x)
1−Tx (λ∗α−ωα∗) |1〉 〈0|+ e−

√
T(1−x)
1−Tx (λ∗α+ωα∗) |1〉 〈1|

]
.

(F10)
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FIG. 7. Dependence of fidelity between the states obtained
from initial HE state after transmission through loss-only and
both loss+noise channels.

3. HE-state at Charlie’s end after transmission
through loss-only channel and a general channel

Let us consider that Alice and Bob prepare their indi-
vidual HE states |ψ〉a1a2

and |ψ〉b1b2 as

|ψ〉a1a2
=

1√
2

(
|0, α〉a1a2

+ |1,−α〉a1a2

)
(F11a)

|ψ〉b1b2 =
1√
2

(
|0, α〉b1b2 + |1,−α〉b1b2

)
, (F11b)

where |0, α〉a1a2
= |0〉a1

|α〉a2
. Using Eq. (F10) one can

show that total 4-mode state at the input of Charlie after
passing through a general channel is given by
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ρin,tot(T, x) = ρcha1a2
⊗ ρchb1b2

=
e−

2T (1−x)
1−Tx |α|2

4

(
1− x

1− Tx

)2 ∫
d2λ

π

d2ω

π

d2χ

π

d2ξ

π
e−

|λ|2+|ω|2+|χ|2+|ξ|2
2 +

x(1−T )
1−Tx (λ∗ω+χ∗ξ) |λ〉a2

〈ω| ⊗ |χ〉b2 〈ξ|

⊗
[
e

√
T (1−x)
1−Tx (λ∗α+ωα∗) |0〉a1

〈0|+ e
√

T (1−x)
1−Tx (λ∗α−ωα∗) |0〉a1

〈1|+ e−
√

T (1−x)
1−Tx (λ∗α−ωα∗) |1〉a1

〈0|+ e−
√

T(1−x)
1−Tx (λ∗α+ωα∗) |1〉a1

〈1|
]

⊗
[
e

√
T (1−x)
1−Tx (χ∗α+ξα∗) |0〉b1 〈0|+ e

√
T (1−x)
1−Tx (χ∗α−ξα∗) |0〉b1 〈1|+ e−

√
T(1−x)
1−Tx (χ∗α−ξα∗) |1〉b1 〈0|+ e−

√
T (1−x)
1−Tx (χ∗α+ξα∗) |1〉b1 〈1|

]

=
e−

2T (1−x)
1−Tx |α|2

4

(
1− x

1− Tx

)2 ∫
d2λ

π

d2ω

π

d2χ

π

d2ξ

π
e−

|λ|2+|ω|2+|χ|2+|ξ|2
2 + x(1−T )

1−Tx (λ∗ω+χ∗ξ) |λ, χ〉a2b2
〈ω, ξ|

⊗
[(
e

√
T (1−x)
1−Tx [(λ∗+χ∗)α+(ω+ξ)α∗] |0, 0〉a1b1

〈0, 0|+ e
√

T(1−x)
1−Tx [(λ∗+χ∗)α+(ω−ξ)α∗] |0, 0〉a1b1

〈0, 1|

+e
√

T (1−x)
1−Tx [(λ∗−χ∗)α+(ω+ξ)α∗] |0, 1〉a1b1

〈0, 0|+ e
√

T (1−x)
1−Tx [(λ∗−χ∗)α+(ω−ξ)α∗] |0, 1〉a1b1

〈0, 1|
)

+

(
e

√
T (1−x)
1−Tx [(λ∗+χ∗)α−(ω−ξ)α∗] |0, 0〉a1b1

〈1, 0|+ e
√

T(1−x)
1−Tx [(λ∗+χ∗)α−(ω+ξ)α∗] |0, 0〉a1b1

〈1, 1|

+e
√

T (1−x)
1−Tx [(λ∗−χ∗)α−(ω−ξ)α∗] |0, 1〉a1b1

〈1, 0|+ e
√

T (1−x)
1−Tx [(λ∗−χ∗)α−(ω+ξ)α∗] |0, 1〉a1b1

〈1, 1|
)

+

(
e−

√
T (1−x)
1−Tx [(λ∗−χ∗)α−(ω+ξ)α∗] |1, 0〉a1b1

〈0, 0|+ e−
√

T (1−x)
1−Tx [(λ∗−χ∗)α−(ω−ξ)α∗] |1, 0〉a1b1

〈0, 1|

+e−
√

T (1−x)
1−Tx [(λ∗+χ∗)α−(ω+ξ)α∗] |1, 1〉a1b1

〈0, 0|+ e−
√

T (1−x)
1−Tx [(λ∗+χ∗)α−(ω−ξ)α∗] |1, 1〉a1b1

〈0, 1|
)

+

(
e−

√
T (1−x)
1−Tx [(λ∗−χ∗)α+(ω−ξ)α∗] |1, 0〉a1b1

〈1, 0|+ e−
√

T (1−x)
1−Tx [(λ∗−χ∗)α+(ω+ξ)α∗] |1, 0〉a1b1

〈1, 1|

+e−
√

T(1−x)
1−Tx [(λ∗+χ∗)α+(ω−ξ)α∗] |1, 1〉a1b1

〈1, 0|+ e−
√

T (1−x)
1−Tx [(λ∗+χ∗)α+(ω+ξ)α∗] |1, 1〉a1b1

〈1, 1|
)]

. (F12)

It should be noted, in absence of the additional thermal noise (x → 0) the transmission channel simply becomes
simply a loss-only channel and the state at the input of Charlie (after transmission) can be written as

ρin,tot(T ) = lim
x→0

ρin,tot(T, x)

=
e−2T |α|2

4

∫
d2λ

π

d2ω

π

d2χ

π

d2ξ

π
e−

|λ|2+|ω|2+|χ|2+|ξ|2
2 |λ, χ〉a2b2

〈ω, ξ|

⊗
[(
e
√
T [(λ∗+χ∗)α+(ω+ξ)α∗] |0, 0〉a1b1

〈0, 0|+ e
√
T [(λ∗+χ∗)α+(ω−ξ)α∗] |0, 0〉a1b1

〈0, 1|+ e
√
T [(λ∗−χ∗)α+(ω+ξ)α∗] |0, 1〉a1b1

〈0, 0|

+e
√
T [(λ∗−χ∗)α+(ω−ξ)α∗] |0, 1〉a1b1

〈0, 1|
)
+
(
e
√
T [(λ∗+χ∗)α−(ω−ξ)α∗] |0, 0〉a1b1

〈1, 0|+ e
√
T [(λ∗+χ∗)α−(ω+ξ)α∗] |0, 0〉a1b1

〈1, 1|

+e
√
T [(λ∗−χ∗)α−(ω−ξ)α∗] |0, 1〉a1b1

〈1, 0|+ e
√
T [(λ∗−χ∗)α−(ω+ξ)α∗] |0, 1〉a1b1

〈1, 1|
)

+
(
e−

√
T [(λ∗−χ∗)α−(ω+ξ)α∗] |1, 0〉a1b1

〈0, 0|+ e−
√
T [(λ∗−χ∗)α−(ω−ξ)α∗] |1, 0〉a1b1

〈0, 1|+ e−
√
T [(λ∗+χ∗)α−(ω+ξ)α∗] |1, 1〉a1b1

〈0, 0|

+e−
√
T [(λ∗+χ∗)α−(ω−ξ)α∗] |1, 1〉a1b1

〈0, 1|
)
+
(
e−

√
T [(λ∗−χ∗)α+(ω−ξ)α∗] |1, 0〉a1b1

〈1, 0|+ e−
√
T [(λ∗−χ∗)α+(ω+ξ)α∗] |1, 0〉a1b1

〈1, 1|

+e−
√
T [(λ∗+χ∗)α+(ω−ξ)α∗] |1, 1〉a1b1

〈1, 0|+ e−
√
T [(λ∗+χ∗)α+(ω+ξ)α∗] |1, 1〉a1b1

〈1, 1|
)]
. (F13)

4. Fidelity between HE-states at Charlie’s end
after transmission through loss-only channel and a

general channel

In this subsection we evaluate how different the state
given in Eq. (F12) is from the one given in Eq. (F13)

for a given loss and thermal noise. In order to estimate
it we evaluate the fidelity between the states given by
Eq. (F12) and Eq. (F13) as
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F = tr [ρin,tot(T)ρin,tot(T, x)]

=
e−2T 2−x(1+T )

1−Tx |α|2

16

(
1− x

1− Tx

)2 ∫
d2Λi

π8
e−(|λ1|2+|ω1|2+|χ1|2+|ξ1|2+|λ2|2+|ω2|2+|χ2|2+|ξ2|2)+(ω∗

2λ1+ξ∗2χ1+ω∗
1λ2+ξ∗1χ2)

×
[(
e

√
T (1−x)
1−Tx [(λ∗

1+χ∗
1)α+(ω1+ξ)α∗

1 ]+
√
T [(λ∗

2+χ∗
2)α+(ω2+ξ2)α

∗] + e
√

T (1−x)
1−Tx [(λ∗

1+χ∗
1)α+(ω1−ξ)α∗

1 ]+
√
T [(λ∗

2−χ∗
2)α+(ω2+ξ2)α

∗]

+ e
√

T (1−x)
1−Tx [(λ∗

1−χ∗
1)α+(ω1+ξ)α∗

1 ]+
√
T [(λ∗

2+χ∗
2)α+(ω2−ξ2)α

∗] + e
√

T(1−x)
1−Tx [(λ∗

1−χ∗
1)α+(ω1−ξ)α∗

1 ]+
√
T [(λ∗

2−χ∗
2)α+(ω2−ξ2)α

∗]
)

+

(
e

√
T (1−x)
1−Tx [(λ∗

1+χ∗
1)α−(ω1−ξ1)α

∗]−
√
T [(λ∗

2−χ∗
2)α−(ω2+ξ2)α

∗] + e
√

T (1−x)
1−Tx [(λ∗

1+χ∗
1)α−(ω1+ξ1)α

∗]−
√
T [(λ∗

2+χ∗
2)α−(ω2+ξ2)α

∗]

+e
√

T (1−x)
1−Tx [(λ∗

1−χ∗
1)α−(ω1−ξ1)α

∗]−
√
T [(λ∗

2−χ∗
2)α−(ω2−ξ2)α

∗] + e
√

T(1−x)
1−Tx [(λ∗

1−χ∗
1)α−(ω1+ξ1)α

∗]−
√
T [(λ∗

2+χ∗
2)α−(ω2−ξ2)α

∗]
)

+

(
e−

√
T (1−x)
1−Tx [(λ∗

1−χ∗
1)α−(ω1+ξ1)α

∗]+
√
T [(λ∗

2+χ∗
2)α−(ω2−ξ2)α

∗] + e−
√

T (1−x)
1−Tx [(λ∗

1−χ∗
1)α−(ω1−ξ1)α

∗]+
√
T [(λ∗

2−χ∗
2)α−(ω2−ξ2)α

∗]

+e−
√

T (1−x)
1−Tx [(λ∗

1+χ∗
1)α−(ω1+ξ1)α

∗]+
√
T [(λ∗

2+χ∗
2)α−(ω2+ξ2)α

∗] + e−
√

T (1−x)
1−Tx [(λ∗

1+χ∗
1)α−(ω1−ξ1)α

∗]+
√
T [(λ∗

2−χ∗
2)α−(ω2+ξ2)α

∗]
)

+

(
e−

√
T (1−x)
1−Tx [(λ∗

1−χ∗
1)α+(ω1−ξ1)α

∗]−
√
T [(λ∗

2−χ∗
2)α+(ω2−ξ2)α

∗] + e−
√

T (1−x)
1−Tx [(λ∗

1−χ∗
1)α+(ω1+ξ1)α

∗]−
√
T [(λ∗

2+χ∗
2)α+(ω2−ξ2)α

∗]

+e−
√

T (1−x)
1−Tx [(λ∗

1+χ∗
1)α+(ω1−ξ1)α

∗]−
√
T [(λ∗

2−χ∗
2)α+(ω2+ξ2)α

∗] + e−
√

T(1−x)
1−Tx [(λ∗

1+χ∗
1)α+(ω1+ξ1)α

∗]−
√
T [(λ∗

2+χ∗
2)α+(ω2+ξ2)α

∗]
)]

,

(F14)

where d2Λi = d2λid
2ωid

2χid
2ξi (i = 1, 2).

Let us now consider a generic integral as

I1 =
e−2T 2−x(1+T )

1−Tx |α|2

16

(
1− x

1− Tx

)2 ∫
d2Λi

π8
e−(|λ1|2+|ω1|2+|χ1|2+|ξ1|2+|λ2|2+|ω2|2+|χ2|2+|ξ2|2)+(ω∗

2λ1+ξ∗2χ1+ω∗
1λ2+ξ∗1χ2)

× e[(A1λ
∗
1+B1χ

∗
1)α+(C1ω1+D1ξ1)α

∗
1 ]+[(A2λ

∗
2+B2χ

∗
2)α+(C2ω2+D2ξ2)α

∗]

=
e−2T 2−x(1+T )

1−Tx |α|2

16

(
1− x

1− Tx

)2 ∫
d2λ1
π

d2ω1

π

d2χ1

π

d2ξ1
π

e−(|λ1|2+|ω1|2+|χ1|2+|ξ1|2)+(A1λ
∗
1+B1χ

∗
1)α+(C1ω1+D1ξ1)α

∗
1

×
∫
d2λ2
π

d2ω2

π

d2χ2

π

d2ξ2
π

e−(|λ2|2+|ω2|2+|χ2|2+|ξ2|2)+(ω∗
2λ1+ξ∗2χ1+ω∗

1λ2+ξ∗1χ2)+(A2λ
∗
2+B2χ

∗
2)α+(C2ω2+D2ξ2)α

∗

=
e−2T 2−x(1+T )

1−Tx |α|2

16

(
1− x

1− Tx

)2 ∫
d2λ1
π

d2ω1

π

d2χ1

π

d2ξ1
π

e−(|λ1|2+|ω1|2+|χ1|2+|ξ1|2)+(A1λ
∗
1+B1χ

∗
1)α+(C1ω1+D1ξ1)α

∗
1

× e(A2ω
∗
1+B2ξ

∗
1)α+(C2λ1+D2χ1)α

∗

=
e−2T 2−x(1+T )

1−Tx |α|2

16

(
1− x

1− Tx

)2

e[(A1C2+A2C1)+(B1D2+B2D1)]|α|2 . (F15)

Using the result of the generic integral (F15), from
(F14) we get

F =
e−2T 2−x(1+T )

1−Tx |α|2

16

(
1− x

1− Tx

)2

× 16e4T
(1−x)
1−Tx

= e−
2Tx(1−T )

1−Tx |α|2
(

1− x

1− Tx

)2

. (F16)

This analysis is important because a fully general cal-

culation, in which we consider the quantum channels to
be characterized by transmission loss and thermal noise
is far more involved and lengthy to perform than if we
only consider the quantum channels to be characterized
by transmission loss only. This can be seen from the
form of the 4-mode states at Charlie’s input before the
entanglement-swapping operation. In view of the result
represented in Fig. 7, we believe that a consideration of
such a general channel may not yield any significantly
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different result from a loss-only channel at the cost of
a very difficult, lengthy and complicated calculation. It
may be noted that in the case of a loss-only channel the
ancilla thermal state is replaced by a vacuum state. This
simplifies the calculation greatly as now we can proceed
with a pure state approach in which the total state is a
pure state. In this case, it is possible to take a partial

trace over the ancilla after Charlie’s operations. This
simplifies the overall calculation. However, such a sim-
plification is not possible when we consider an ancilla in
the thermal state for which the overall state is mixed.
This increases the number of terms to be calculated by
four times in comparison with the pure state approach.
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