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Abstract. The relative-belief inference method that is purely data-evidence-based is introduced to quan-
tum information. It can ascertain the effective dimension of any optical mode, reliably evaluate the quality
of a multiphoton source and track nontrivially encoded interacting degrees of freedom, amongst other pos-
sible applications.

Keywords: statistical inference, quantum optics

Figure 1: The relative-belief dimension certification
scheme.

1 Introduction

Despite residing in an infinite-dimensional Hilbert
space, a physical quantum state of light ϱ usually pos-
sesses distribution tails that permits its description with
a smaller truncated subspace. Ascertaining the effective
dimension deff needed to fully contain ϱ is thus crucial in
quantum-information processing. The paradigm of rel-
ative belief (RB) [1], developed by Evans for statistical
inference, is introduced to quantum information in this
work to unambiguously determine which dimensions are
plausible according to the experimental data as evidence.
To each possible Hilbert-space dimension d, one first as-
signs prior probabilities reflecting one’s prior conviction
concerning the dimension of the unknown state ϱ. Af-
ter experimental data are obtained, the plausible dimen-
sions are those for which the respective posterior proba-
bilities (defined by maximized likelihoods Ld) are larger
than the prior ones [RB(d) > 1]. The effective dimen-
sion deff = dRB is then the smallest dimension such that
RB(d) > 1. Figure 1 below schematically describes such a
relative-belief dimension certification (RBDC). The tech-
nical version is found in [2].

∗ys teo@snu.ac.kr
†saurabh.s@snu.ac.kr
‡h.jeong37@gmail.com
§mevansthree.evans@utoronto.ca

Figure 2: (a) Log-likelihood values for various d that
lead to the performances of uniform-prior-based RBDC
(red and blue bars refer to RB ratios smaller and
greater than one), (b) AIC and (c) BIC based on
a single-von Neumann-basis dataset from measuring
N = 1000 copies of the unknown ten-dimensional
ϱ =̂ diag(1, 1, 1, 1, 1, 1, 0, 0, 0, 0)/6. The respective effec-
tive dimensions selected by each of these three methods
may be readily read off as dRB = 5 and dAIC = 4 = dBIC

from the graphs. The red RB-ratio bar also indicates that
evidence is found against the smaller dAIC and dBIC val-
ues.

2 Key idea

The key idea is that RB measures the belief strengths
that ϱ is contained in a d-dimensional space before and
after the experiment. The posterior tells us how strongly
we should believe that deff = dRB. Being a Bayesian
framework, RB accepts additional assumptions that are
either incorporated into the prior distribution or likeli-
hood model to be collectively and systematically tested,
so no spurious or unverified assumptions are invoked.

We show that in general, RB never quotes a deff that
is smaller than those by a large class of information cri-

1



Figure 3: RBDC on 50 random 11-bases experimental
datasets (each of sample size 104). (b) A particular noisy
dataset gives dRB = 5 and RB values for various dimen-
sions d (shaded marks RB > 1). (c,d) The dRB’s and
fidelities for all 50 datasets are shown.

teria (including Akaike’s and Bayesian information cri-
teria) and is thus a very conservative methodology for
hypothesis evaluation (see Fig. 2). The RB framework
is also more operational than regular hypothesis testing
as it does not require the additional arbitrary assign-
ment of significance levels and avoids using the generally
erroneous p value that could result in wrong statistical
conclusions [3].

3 Results and applications

Dimension verification of quantum states in the
time-frequency domain:

One important application of RBDC would be to deter-
mine the correct truncation dimension for a given optical
state, which is essential when any numerical computation
from experimental data is to be carried out. Figure 3
shows an example where RBDC is used in optical-state
reconstruction in the spectral-temporal domain, where
a quantum pulse gate (QPG) [4] is used to shape signal
states coming from a laser source and measurement bases.
Using both uniform and Gaussian prior distributions of
d as examples, we see that RBDC can systematically ex-
tract information from the experimental data and ascer-
tain the effective dimension of a quantum state, which in
this case is the degree-one temporal Hermite–Gaussian
(HG1) state.

Quality assessment of multiphoton sources:

Since RB is a general statistical inference method that
is grounded on solid Bayesian statistical foundations, it
can be applied to other quantum-information process-
ing tasks in general. One important area is the quality

Figure 4: (a) Polarimetry setup for assessing the quality
of a two-spatial-mode photon source. (b,c) RB and fi-
delity values for various n per spatial mode for a dataset,
where each combination of waveplate settings is measured
with a simulation-data sample size of 104.

assessment of multiphoton sources. Given a supposed
“two-photon” source emitting photons into two spatial
modes, RBDC can be used to find out whether there
is strong evidence in favor of the source emitting just
n = 1 photon in each spatial mode or other higher num-
bers. Figure 4 shows an example of an SPDC-Type-II
two-mode squeezed vacuum state, at 2.1 dB squeezing
strength, masquerading as a “two-photon” source. From
the measurement data obtained, RBDC is able to unam-
biguously detect the presence of n = 2 photons per mode
with high belief strengths (RB > 1).

Tracking nontrivial interacting degrees of free-
dom :

We go beyond dimension certification and discuss more
general model certification with relative belief. In par-
ticular, we answer the question of whether a purely
evidence-based Bayesian reasoning can assist in ascer-
taining the number of external degrees of freedom in an
interacting environment with an accessible physical sys-
tem without directly measuring and obtaining explicit
information about the external environment. We found
that under the premise that information concerning the
interacting environment is carried over to the measured
physical system after tracing over the external degrees of
freedom and that these degrees of freedom are sufficiently
small to be precisely accounted for using mathematical
models, the relative-belief methodology can certify which
interaction models out of a finite set most plausibly de-
scribe the given system-environment interaction.

This is illustrated with the Tavis–Cummings (TC)
model, where a photon-field interacts with nabs two-level
absorber atoms, with a coupling strengths gj with the
jth atom under the rotating-wave approximation. Sev-
eral other models of this kind include the nabs = 1
Rabi model and the more general Dicke model when off-
resonant terms are included. These models helped estab-
lish the foundation of superradiance in quantum optics.
Figure 5 demonstrated that RB is versatile for tracking
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Figure 5: Optical absorption TC model certification with
RB, where (a) the Fock state |4⟩⟨4| couples to two ab-
sorber molecules with equal strengths (g1 = 1 = g2).
Multiple copies of the resulting optical state are then
sent to a standard homodyne setup, where the phase θ of
the local oscillator (LO) determines the quadrature angle.
Both the Hilbert space of ϱ and number of angles are set
to d = 9 and 10. A total of 106 copies are measured using
all these settings. The (b) RB ratios (all greater than 1
for nabs > 1) for both uniform and Gaussian priors are
shown, and (c) fidelity with the ideal Fock state drops
gradually to almost zero as RB approaches the correct
number of absorbers nabs, since the actual mixed state is
given by ϱ =̂ diag(0, 0, 0.8159, 0.1822, 0.0019, 0, 0, 0, 0) ∼=
|2⟩⟨2|, which is almost completely orthonormal to |4⟩⟨4|.

interacting degrees of freedom for such a model by com-
paring prior and posterior belief strengths.

Note that not always can such interaction information
be available to us through data inference. We emphasize
that this works only when nontrivial information con-
cerning the interacting degrees of freedom is encoded into
the measurement data and this is interaction-model de-
pendent. As an example, data from measuring an atom
that interacts with multiple photon-field modes, on the
other hand, will contain no information about the num-
ber of photon fields that are coupled to the atom. This
is because mathematically, the ladder operators of all in-
dependent photon modes may be combined into a single
ladder operator that possesses exactly the same commu-
tation relation and other properties. Hence, no informa-
tion about the photon coupling can be extracted from
the atomic reduced state.
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Abstract. The concept of observational entropy, which unifies various forms of entropy, including Boltz-
mann’s, Gibbs’s, von Neumann’s macroscopic entropy, and the diagonal entropy, has recently been proposed
as a pivotal element in a contemporary formulation of statistical mechanics. In this study, we employ alge-
braic techniques derived from Petz’s theory of statistical sufficiency and a Levy-type concentration bound
to demonstrate rigorous theorems. These theorems illustrate how the observational entropy of a system
undergoing a unitary evolution chosen at random tends to increase with overwhelming probability and to
reach its maximum very quickly. We demonstrate that for any observation that is sufficiently coarse with
respect to the size of the system, the random evolution renders the system’s state practically indistin-
guishable from the uniform distribution (i.e., maximally mixed) with a probability approaching one as the
system size increases. This is true regardless of the initial state of the system, whether pure or mixed. The
same conclusion is applicable not only to random evolutions sampled according to the unitarily invariant
Haar distribution, but also to approximate 2-designs, which are regarded as a more physically reasonable
means of modelling random evolutions.

Keywords: Observational entropy, von Neumann entropy, H-theorem

Introduction.—In his book on the mathematical foun-
dations of quantum theory [1], John von Neumann intro-
duces and offers an operational motivation for a quantity
that is now known as von Neumann entropy. However,
he notes that this quantity is not the most appropriate
to consider in the context of statistical mechanics.
In order to address this challenge, von Neumann put

forth the concept ofmacroscopic entropy, which considers
not only the intrinsic uncertainty inherent to the micro-
scopic state of the system but also the supplementary un-
certainty associated with the coarse-grained, macroscopic
observation with which the system is being monitored.
Since von Neumann’s proposal, macroscopic entropy

has been largely eclipsed by its more famous and epony-
mous sibling. Notwithstanding, recent years have wit-
nessed a resurgence of interest in von Neumann’s macro-
scopic entropy and its extension, known as observational
entropy. This is evidenced by a number of recent publica-
tions, including [2–6]. In connection with the mathemat-
ical and conceptual foundations of statistical mechanics,
as well as various applications, the following sources are
recommended for further reading: [7–20]. In a similar
manner, this study examines the evolution of observa-
tional entropy in unitarily evolving systems, with a par-
ticular emphasis on its generic behavior when the sys-
tem’s evolution is selected at random.
In this paper, we are motivated by Ref. [7], which shows

that the observational entropy of an isolated system ini-
tialized in a state fully known to the observer cannot
decrease. We first provide an explicit characterization of
all situations in which the observational entropy under-
goes a strict increase with time. Such a characterization
is based on Petz’s theory of statistical sufficiency [21–24].
We then proceed to consider the case of arbitrary initial
states. Based on a Lévy-type concentration bound [25,

∗teruaki.nagasawa@nagoya-u.jp
†kokato@i.nagoya-u.ac.jp
‡e.wakakuwa@gmail.com
§buscemi@nagoya-u.jp

26] that we prove for the observational entropy, we arrive
at a statement analogous to von Neumann’s H-theorem.
This states that for any observation that is “sufficiently
coarse-grained” with respect to the size of the system,
under the action of Haar-random evolution, the obser-
vational entropy approaches its maximum. The system’s
state becomes essentially indistinguishable from the max-
imally mixed (uniform) state, regardless of its initial
state. Finally, by applying a number of derandomiza-
tion techniques, as outlined in the references [27–30], we
demonstrate that the same conclusion holds when the
Haar distribution is replaced by an approximate 2-design.
This represents a more realistic model, both physically
and computationally, for random evolutions.

Observational entropy.—The observational entropy
(OE) of a microscopic state, represented by the density
matrix ρ, with respect to a positive operator-valued mea-
sure (POVM) P = {Px}x∈X is defined as follows [2–7]:

SP (ρ) = −
∑
x

px log
px
Vx

,

where px = Tr[Px ρ] and Vx = Tr[Px]. The fundamental
bound of OE is given by the inequality SP (ρ) ≥ S(ρ),
where S(ρ) is the von Neumann entropy [5].

A state that saturates the bound, namely a state ρ such
that SP (ρ) = S(ρ), is defined as a macroscopic state
for P . The reason for this name is that the condition
SP (ρ) = S(ρ) holds if and only if [5]

ρ =
∑
x

Tr[Px ρ]
Px

Vx
,

which implies that the state ρ can be perfectly recon-
structed [31–33] solely from the knowledge of the mea-
surement P and its outcome statistics px, i.e., infor-
mation that is entirely accessible to a macroscopic ob-
server [5].

OE increase in macroscopic states.—As previously
stated in the introduction, one of the primary reasons
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to consider OE is that it can increase even in isolated
systems, in contrast to von Neumann entropy, which, in
contrast, remains constant. In this study, we begin by
considering the behavior of OE when the initial state of
the system is macroscopic, as motivated by Ref. [7].
Let us thus consider an isolated system evolving in

time from t = t0 to t = t1 > t0. Let ρ0 be the initial
state of the system, U describe the time evolution from
t0 to t1, and ρ1 = Uρ0U

† be the state of the system at
t1. Let us also assume that, at time t0, the system’s state
is macroscopic for P . While the von Neumann entropy
S(ρt) of the system remains constant, for the OE we have:

SP (ρ1) ≥ S(ρ0) = SP (ρ0) = S(ρ1) .

The final inequality holds because ρ0 is macroscopic for
P , but may not be so for U†PU . Thus, from the above,
we immediately see that:

i) the OE of an isolated system starting in a macro-
scopic state never decreases (cfr. Lemma 5 in [7]);

ii) it remains constant if and only if ρ1 is also macro-
scopic for the same P as ρ0.

Given that, the question that we want to consider now is:
when does the OE strictly increase? In order to answer
this question, we first need to provide a characterization
of all macroscopic states associated with a given POVM
P = {Px}.

Theorem 1 Given a POVM P = {Px}, a state m is
macroscopic for P if and only if there exists a PVM Π =
{Πy}y, with Π ⪯ P , together with coefficients cy ≥ 0,
such that

m =
∑
y

cyΠy ,

where we write Q ⪯ P whenever there exists a con-
ditional probability distribution p(y|x) such that Qy =∑

x p(y|x)Px, for all y ∈ Y.

In particular, if m is macroscopic for P = {Px}, then

[m, Px] = 0 ,

for all Px ∈ P . This fact demonstrates that a re-
stricted set of unitary operators, those that satisfy the
conservation-like relation

[UmU†, Px] = 0 , ∀x ,

can preserve the observer’s information about the system.
Conversely, a generic evolution, such as one uniformly
sampled from the entire set of unitary operators, will
necessarily cause a strict increase in OE. In such cases,
although the microscopic evolution is perfectly reversible,
from the macroscopic observer’s perspective, information
is irreversibly lost.

OE increase in arbitrary states.—The next question
to be considered is that of the behaviour of observational
entropy when an arbitrary quantum state is taken as the

𝑑

𝑃!𝑃"

𝑃#

𝑑

𝑑 𝑑

Figure 1: As the dimension of the Hilbert space, d, in-
creases, there is a substantial amount of space between d
and the square root of d, which allows for the accommo-
dation of a multitude of POVM elements.

initial state. The second result is that, under a coarse
(macroscopic) measurement on a sufficiently large quan-
tum system and taking unitary to Haar random, obser-
vational entropy increases with a very high probability.

Theorem 2 For quantum states ρ and POVM P on d-
dimensional space,

PH

{
SP (UρU†) ≤ (1− δ) log d

}
≤ 4

κ(P )
e−Cδκ(P )2d log d , (1)

where κ(P ) = minx Tr[Px u] is an “effective coarseness”
parameter and C = 1

18π3 .

For the right-hand side of Eq. (1) to be small, it is neces-
sary that the quantity κ(P ) plays well with the quantities
C, δ, and d. This condition is analogous to the condi-
tion proposed by von Neumann on the minimum size of
the phase cells in his proof of the H-theorem. In our
notation, the role of the number of states in each phase
cell is played by the minimum trace of Px, denoted by
dκ(P ). The number of phase cells is the number of pos-
sible outcomes, which we denote by N(P ). Thus, we can
summarize von Neumann’s condition as

N(P ) ≪ dκ(P ) . (2)

Consequently, von Neumann’s condition is satisfied if the
following condition is true:

√
d ≪ min

x
Tr[Px] = dκ(P ) (3)

is closely related to the requirement that the right-hand
side of (1) approaches zero as d approaches infinity. This
relationship will be demonstrated subsequently.

Let us consider a sequence of systems and observations
in the limit of the system’s Hilbert space dimension, d,
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which tends to infinity. We must first define precisely
what it means for a sequence of observations to be asymp-
totically coarse.

Definition 3 Consider a sequence of systems with in-
creasing dimension d and, in each system, a POVM

P (d) = {P (d)
xd }xd

. For each d, define κ(d) ≡ κ(P (d)) =

minxd
Tr

[
P

(d)
xd u

]
. We say that the sequence of POVMs

{P (d)}d∈N is asymptotically coarse whenever there exists
τ > 0 such that

κ(d) = Ω(d−
1
2+τ ) .

i.e., whenever ∃M > 0 and ∃d0 such that

κ(d) ≥ M · d− 1
2+τ , ∀d > d0 .

The preceding definition can be justified from von Neu-
mann’s condition (2) as follows. For κ(d) ∼ dα, we obtain

N(d)

d κ(d)
≤ 1

d κ(d)2

∼ d−2α−1 ,

which goes to zero if and only if α > −1/2, in agreement
with Definition 3. Moreover, for coarse (macro) mea-
surements on a sufficiently large quantum system, the
following approximation holds:

PH{SP (UρU†) ≈ log d} ≈ 1 .

Physical random evolutions.— The aforementioned re-
sults are also observed in a more physically feasible
pseudo-random setting (approximate 2-design). Our
findings indicate that the concentration of observational
entropy occurs even under random unitaries generated by
random polynomial-depth quantum circuits, which is of-
ten regarded as a more physically realistic model of local
quantum chaotic dynamics.

Theorem 4 For a unitary operator U sampled at ran-
dom from an ε-approximate 2-design E,

PE
{
SP (UρU†) ≤ (1− δ) log d

}
≤ 1

κ(P )3d log d

4(1 + ε)

δ
, (4)

for any value δ > 0.

The upper bound provided in Eq. (4) is less stringent
than that presented in Eq. (1). This is due to the fact
that the negative exponential rate in d, which was present
in Eq. (1), has been replaced by (d log d)−1 in the current
equation. Furthermore, Eq. (4) still enables us to demon-
strate an asymptotic outcome, albeit with a modified in-
terpretation of asymptotic coarseness in accordance with
Definition 3 when compared to the previous result.
In the case of 2-designs with an approximate factor of

ε, it is necessary that the function κ(d) be of the form

Ω(d−
1
3+τ ) for some positive value of τ . This suggests

that von Neumann’s condition ( (2)) should be replaced

with d2/3 ≪ minx Tr[Px]. In other words, the asymptotic
coarseness for ε-approximate 2-designs is less refined than
the definition introduced in Definition 3, which was de-
veloped with the case of Haar-random unitaries in mind.
For any sufficiently large dimension d, even in the case
where U is sampled from an ε-approximate 2-design E , it
can be shown that

PE{SP (UρU†) ≈ log d} ≈ 1 .

Conclusions.— This research presents three methods
in which observational entropy is shown to increase and
reach its maximum in isolated systems undergoing a
generic unitary evolution. Firstly, if the initial state is
a macroscopic state, observational entropy will increase
with probability 1. Secondly, if we consider unitary time
evolution in Haar random for arbitrary initial states, we
can show that it increases with very high probability for
coarse (macroscopic) measurements on sufficiently large
quantum systems. Finally, it was found that observa-
tional entropy increases not only in settings that are
physically difficult to realise, such as Haar random, but
also in more physically realisable pseudo-random settings
(approximate 2-design).

A significant avenue for future research is to investi-
gate the relationship between the random evolution as-
sumption employed here and the eigenstate thermaliza-
tion hypothesis. This hypothesis, when applied under
additional physical assumptions, has been shown to yield
results analogous to those presented here [34]. Another
area of interest is to determine whether it is feasible to
establish concentration inequalities for OE in the context
of specific Hamiltonians.
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[19] D. Šafránek and D. Rosa, Phys. Rev. A 108, 022208
(2023).

[20] D. Šafránek, arXiv e-prints, arXiv:2306.08987,
arXiv:2306.08987 (2023).

[21] D. Petz, Communications in mathematical physics
105, 123 (1986).

[22] D. Petz, The Quarterly Journal of Mathematics 39,
97 (1988).

[23] D. Petz, Reviews in Mathematical Physics 15, 79
(2003).
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Abstract. We consider the estimation of an unknown parameter through a quantum probe at fixed
temperature. For a given encoding of the parameter, we derive the fundamental limits and optimal control
for metrology with thermal and ground state probes, including probes at the verge of criticality, showing
that: (i) assuming full control, quantum non-commutativity does not offer any fundamental advantage
in the estimation; (ii) an exponential quantum advantage arises at low temperatures in gapped systems;
(iii) the optimal sensitivity presents a Heisenberg-like N2-scaling in terms of the number of particles of
the probe, which can be reached with local measurements.
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1 Introduction and overview

In typical quantum metrology problems, a parameter
θ enters in the Hamiltonian of the probe system Hθ. In
consequence, its state ρθ eventually correlates to the pa-
rameter value, which can be then estimated by measuring
the probe. Through the Crámer-Rao bound [1]

∆θ2 ≥ 1

nFθ
(1)

the precision of any such procedure can be related to the
quantum Fisher Information (QFI) Fθ of the state ρθ and
the number of repetitions of the experiment n.

The most common setting considered in the literature
is dynamical metrology, in which the probe is prepared
in a well controlled initial state and is left to coherently
evolve under the influence of the Hamiltonian Hθ for a
time t. For a probe composed of N subsystems on which
the Hamiltonian acts locally, the QFI of the probe’s final
state is bounded by the paradigmatic Heisenberg limit [2]

Fθ ≲
N2t2

ℏ2
(dynamical). (2)

This bound follows from the geometry of quantum states,
and cannot be overcome with any additional (parameter-
independent) control mechanism. However, reaching the
Heisenberg limit demands for specific highly-entangled
initial states and a high level of precision on the inter-
action time and dynamics (in particular, it is in general
unattainable in presence of environmental noise).

∗paolo.abiuso@oeaw.ac.at
†pavel.sekatski@gmail.com
‡john.calsamiglia@uab.cat
§marti.perarnaullobet@unige.ch

This motivates the investigation of alternative, less de-
manding, sensing strategies where the parameter is esti-
mated from a steady state ρθ of an open quantum system.
A prominent common setting is then the one of equilib-
rium (including ground state) metrology, where the pa-
rameter is encoded in the Gibbs (resp. ground) state of
the Hamiltonian

ρθ =
e−βHθ

Tr [e−βHθ ]
, (3)

where β = 1/kBT , T is the temperature of the surround-
ing environment. The potential of Gibbs (ground) states
in quantum metrology has been long recognised in the
literature, particularly close to thermal (quantum) phase
transitions [3, 4]. The possibility of a measurement pre-
cision beyond the shot-noise limit (Fθ ≲ N) has been
reported for thermal/ground states of spin chains [5, 6,
7, 8, 9], light-matter interacting systems [10, 11, 12], and
first experimental realisations are currently being devel-
oped [13, 14].

Despite this remarkable progress, the fundamental lim-
its of equilibrium metrology remain unsettled. The es-
tablishment of such saturable upper-bounds is the main
goal and result of our work [15]. For that, we consider
Hθ consisting of two terms

Hθ = HP
θ + HC, (4)

where HP
θ describes the (fixed) physical mechanism im-

printing θ on the probe, whereas HC is under experi-
mental control. We then optimize the QFI for thermal
states (3) over all possible HC, thus finding a general up-
per bound on it. For a N -body probe on which HP

θ acts
locally, our results can be summarised as follows. At any
temperature, the QFI of the Gibbs state at best scales as

Fθ ≲ N2β2 (thermal equilibrium). (5)

Crucially, this bound can be attained without any en-
tanglement between the N subsystem, but only through
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classical correlations induced by HC. At zero tempera-
ture this bound diverges. However, for systems with a
minimal gap ∆ we find that the QFI scales, in the low
temperature limit, at most as

Fθ ≲
N2

∆2
(ground state with gap). (6)

This bound can also be saturated by a proper choice
of HC. In this case quantum coherence in (3) is crucial,
and an exponential quantum advantage in β∆ appears
with respect to the “classical” case [HC, ∂θH

P
θ ] = 0.

These results (5), (6) provide fundamental bounds on
equilibrium metrology, analogously to Heisenberg’s limit
in dynamical metrology Eq. (2). Remarkably, they ex-
hibit the same scaling of the QFI in the probe size.

2 Quantum Fisher information for ther-
mal states and its maximization

Here we summarize the derivations and main results
of our work [15]. The QFI can be generically expressed
as [1]

Fθ := Tr
[
ρ̇θJ−1

B,ρθ
[ρ̇θ]

]
, (7)

where Ȧ ≡ ∂θA identifies the variation of any operator
w.r.t. θ, and JB,ρ is the Bures multiplication superoper-
ator [16]

JB,ρ[A] :=
1

2
(ρA + Aρ) , (8)

which can be analytically inverted as J−1
B,ρ[A] =

2
∫∞
0

ds e−ρsAe−ρs on positive full rank states ρ. In order
to compute the QFI (7) one can express the variation ρ̇θ
(in our case, the Gibbs state ρθ (3)) via the operator ex-

ponential derivative as ρ̇θ = −JL,ρθ
[βḢθ]+ρθTr

[
βḢθρθ

]
,

where we introduced the logarithmic multiplication su-
peroperator [16]

JL,ρ[A] :=

∫ 1

0

ds ρsAρ1−s . (9)

Moreover, being Fθ a local function of θ, without loss
of generality we can assume by relabelling that locally
Hθ (10) is of the form

Hθ ≃ HC + θH ′ . (10)

By substituting the above expressions in Eq. (7) one ob-
tains [15] the general expression of the QFI for perturba-
tions of systems at thermal equilibrium, that is

Fθ = β2
(

Tr
[
JL,ρ0

[H ′]J−1
B,ρ0

◦ JL,ρ0
[H ′]

]
− Tr [ρ0H

′]
2
)

= β2
(

Tr [H ′Jρ0
[H ′]] − Tr [ρ0H

′]
2
)

. (11)

The expression (11) can be seen as a generalized vari-
ance of H ′, according to the multiplication superopera-
tor Jρ := JL,ρ ◦ J−1

B,ρ ◦ JL,ρ . Notice that JB,ρ, JL,ρ,Jρ can

all be analytically expressed in the operator basis |i⟩⟨j|
using the eigenvectors of ρ. These superoperators belong
to the family of generalized quantum Petz-Fisher multi-
plications [17] reviewed in [16], and correspond to non-
commutative versions of the multiplication times ρ. Us-
ing a formalism based on these superoperators and their
properties makes our derivations natural and showcases
their relevance.

Starting from the generic QFI for a system at equi-
librium (11), we are able to bound (11), and find that
under the assumption of full control on HC (10) (equiv-
alently, on ρ0 (3)), the maximum value of Fθ is obtained
for diagonal states in the basis of the perturbation, mean-
ing [HC, H ′] = 0 ([ρ0, H

′] = 0). To see this, first we
prove [15, 16] that

Tr [H ′Jρ0
[H ′]] − Tr [ρ0H

′]
2 ≤ Varρ0

[H ′], (12)

which is saturated for [ρ0, H
′] = 0. Secondly, we notice

that the variance Varρ0 [H ′] := Tr
[
ρ0H

′2] − Tr [ρ0H
′]
2

is upper bounded by (λM − λm)2/4, where λM(m) is the
maximum(minimum) eigenvalue of H ′. This bound is
tight for ρ0 = 1

2 (|λM⟩⟨λM| + |λm⟩⟨λm|), which commutes
with H ′ and is the Gibbs state of the Hamiltonian HC =
ϵ(|λM⟩⟨λM|+ |λm⟩⟨λm|) +H⊥ in the limit β(H⊥− ϵ) ≫ 1.
Connecting the two inequalities with (11) we obtain the
fundamental bound

Fθ ≤ β2 (λM − λm)2

4
. (13)

This is the ultimate upper bound to the QFI at finite tem-
perature, for a given encoding of θ that locally behaves
as H ′. Moreover, as (13) is saturated for commuting
[ρ0, H

′] = 0 we see that there is no fundamental quan-
tum advantage in (thermal) equilibrium metrology. No-
tice that this is valid assuming full control on HC and
finite equilibrium temperature.

A striking immediate consequence of the bound (13)
can be obtained when considering the case of systems
composed of N subsystems. When the parameter is en-
coded locally, one easily sees [15] that

F local
θ ≤ β2 (lM − lm)2N2

4
, (14)

lM,m being the max/min eigenvalues of the local Hamil-
tonian. Hence, at finite temperature, the QFI relative
to a local parameter scales at most as N2 in the system’s
size. The quadratic N2 scaling reminds of the well-known
Heisenberg limit (2) of quantum metrology [2, 18], how-
ever our bounds are saturated for classically correlated
states. In particular when H ′ is a local perturbation, the
optimal preparation ∝ e−βHC

does not feature entangle-
ment, and the measurement basis can be chosen to be
local.

2.1 Low temperature limit and quantum advan-
tage

Our main derivation and bound (13) show that at finite
temperature the optimal control Hamiltonian HC com-
mutes with H ′, and can ensure a maximum sensitivity
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that diverges in the limit of small temperature. How-
ever, in order to saturate (13) HC needs the max/min
eigenstates

∣∣λM/m

〉
of H ′ for (doubly degenerate) ground

states. Clearly, for a given H ′ this in general non-trivial.
We thus consider the QFI maximisation while constrain-
ing HC to have a unique ground state with a minimum
energy gap ∆ to the first excited state.

To tackle this case we explicitly inspect the QFI (11)
in the eigenbasis of HC, that is HC |i⟩ = Ei |i⟩, which
diagonalises the unperturbed thermal state and sepa-
rate the diagonal (classical) contribution to the QFI from
the terms due to noncommutativity in general [HC, H ′].
In [15] we show that in the large gap/low temperature
limit (large β∆) the classical contribution to the QFI is
suppressed exponentially while only part the off-diagonal
contribution is not suppressed. Concretely, in the large
gap/low temperature limit the dominant contribution be-
comes

F low-T
θ =

∑
i>0

4|H ′
0i|2

(Ei − E0)2
+ O(e−β∆) . (15)

Therefore an exponential quantum advantage arises in the
low temperature or large gap limit, compared to classi-
cal configurations. In order to maximize (15) w.r.t. all
possible ∆-gapped controls HC, we then consider the fol-
lowing inequality∑

i>0

|H ′
0i|2

(Ei − E0)2
≤

∑
i>0 |H ′

0i|2

(E1 − E0)2
=

Var|0⟩[H
′]

(E1 − E0)2
. (16)

Together with the gap assumption E1 ≥ ∆, this lead us
to the bound

F low-T
θ ≤ (λM − λm)2

∆2
+ O(e−β∆) , (17)

which is saturated in this case with a fully quantum strat-

egy i.e. preparing superpositions |0⟩ = |λM⟩±|λm⟩√
2

and

|1⟩ = |λM⟩∓|λm⟩√
2

. Eq. (17) sets the ultimate limit of esti-

mation in low-temperature gapped systems. As a direct
consequence of (17), similarly to Eq. (14), the QFI rel-
ative to a local parameter cannot scale faster than N2,
unless the gap ∆ decreases in the system size N .

3 Comments

In our work [15] we derived fundamental bounds on
equilibrium quantum metrology, where a parameter θ
is estimated with a system described by the Gibbs (or
ground) state ρθ ∝ exp(−βHθ) (3). Assuming full con-
trol on the parameter-independent part of the system’s
Hamiltonian, we derived the upper limit to the QFI given
in Eq. (13), which depends only on β and H ′ = ∂θHθ.
This upper-bound is shown to be attained by a “classical”
strategy, where the Hamiltonian satisfies [Hθ, H

′] = 0.
In the low temperature limit the bound (13) diverges.
This motivated us to strengthen it to Eq. (17), which
accounts for the presence of a spectral gap ∆ > 0 in
the Hamiltonian and remains finite in the limit β → ∞.
To saturate the low-temperature bound (17), quantum

coherence is crucial and in fact an exponential gap ap-
pears in the QFI of classical ([Hθ, H

′] = 0) and quantum
([Hθ, H

′] ̸= 0) strategies. When θ is encoded locally on
a N -body probe, the upper bounds Eqs. (13) and (17)
display a Heisenberg-like quadratic scaling QFI ∝ N2.

In [15] we additionally showcase our results on paradig-
matic classical and quantum spin chains, in particular
showing that a 1D classical spin chain probe in the
strongly interacting ferromagnetic regime can approach
the fundamental limit (13).

Our first main result (13) opens a clear avenue for the
design of optimal thermal probes for equilibrium metrol-
ogy beyond the specific case of thermometry [19, 20, 21].

Likewise, our second main result (17) is helpful to un-
derstand the limits of ground state metrology [4]. In
particular, it shows that a “super-Heisensberg” scaling
of the QFI ∝ N2+ε with ground states of many body
systems close to a critical point is only possible when the
gap closes as ∆ ∼ N−ε/2. As discussed in [7], the natu-
ral way to reconcile this divergence with the dynamical
Heisenberg limit (2) is to account for the preparation time
of the ground state, which diverges as the Hamiltonian
becomes gapless.

The comparison between dynamic and equilibrium ap-
proaches to metrology is indeed insightful. At a fun-
damental level, any strategy in equilibrium metrology
should satisfy the Heisenberg limit (2) when time is ac-
counted as a resource. Consistency between (2) and (5)
then leads to the appearance of a minimal thermaliza-
tion time proportional to τPl = ℏ/kBT . This ratio is
known as the Planckian time, and is conjectured to pro-
vide a model-independent fundamental thermalization
timescale [22]. Our approach may provide a new avenue
to investigate this property [23].

Finally, our results might provide insights to the study
of Hamiltonian learning, which has been showed to sat-
urate the Heisenberg limit in the dynamical setting with
control [24, 25], and is being intensively studied in the
thermal scenario [26, 27, 28].
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Recent work on quantum reference frames (QRFs) has demonstrated that superposition and
entanglement depend on the choice of QRF, such that either one can increase or decrease under a
change of QRF. Given their utility in quantum information processing, it is important to understand
how a mere change of perspective can produce or reduce these resources. Here we show that
QRF transformations are coherence-preserving incoherent operations and find trade-offs between
entanglement and subsystem coherence under these transformations. We prove an exact conservation
theorem for two pairs of measures and a weaker trade-off for any possible pairs of measures. Finally,
we discuss the implications of this interplay for quantum information protocols, clarifying some
misconceptions about non-locality and Hilbert space factorization.

The principle of covariance, which states that phys-
ical laws remain unchanged under a reference frame
transformation, forms the fundamental understanding
of our physical world. However, a variety of measurable
physical quantities, such as energy, or magnetic and
electric fields, are frame-dependent. Similar considera-
tions arise when investigating the behaviour of quantum
systems relative to a quantum reference frame (QRF).
For example, it may happen that a system that is well
localized in space in one QRF is in a superposition of
different locations in a different QRF [1]. The same
applies to quantum entanglement as well, making it a
frame-dependent notion in quantum theory. Since both
coherence and entanglement are recognized as useful
resources in quantum information science, a natural
important question arises: How can a mere change of
perspective from one frame of reference to another create
a useful resource?

In our work, we give a definite answer to this ques-
tion. We show that QRF transformations SA→C are
global coherence-preserving incoherent operations and
prove that under these transformations there exists a
trade-off between the measures of pure bipartite state
entanglement and its subsystem coherence, in the basis
associated with the symmetry group of the transforma-
tion. We show the strict conservation of the discussed
resources for two pairs of measures and prove a weaker
condition on their change for any coherence and entan-
glement measures. Furthermore, we discussed the impli-
cations of this interplay for quantum information proto-
cols, clarifying some misconceptions about non-locality

∗ pawel.cieslinski@phdstud.ug.edu.pl

FIG. 1. Visual representation of the effects of a QRF change
for a simple system of three spins. Let system A be in a uni-
form superposition of two basis states and let B and C be in
a spin ”up” state. Performing the QRF transformation for
such a state one arrives at a maximally entangled state of C
and B, while A points ”up”. This qualitatively illustrates the
main premise behind our findings - the interplay between co-
herence and entanglement. For more discussion see the main
text.

and Hilbert space factorisation to complement them.

Quantum reference frames can be introduced with a
simple example. Consider three spins A, B, and C and
let the initial state be

|ψ⟩(C)
AB = |↑⟩(C)

C

1√
2

(|↑⟩(C)
A + |↓⟩(C)

A ) |↑⟩(C)
B .

We interpret this as the state of A and B with respect to
C. Now, by applying the QRF transformation SC→A we

can infer the corresponding state |ψ⟩(A)
BC , i.e. the state of

C and B with repsect to A. Doing so we find that the
state relative to A is [2]:

|ψ⟩(A)
BC = |↑⟩(A)

A

1√
2

(|↑⟩(A)
B |↑⟩(A)

C + |↓⟩(A)
B |↓⟩(A)

C ).

In the above, one can see the basic motivation behind our
work. The resulting state is maximally entangled, even
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though the initial state was product and the only oper-
ation performed was a change in perspective, see Fig. 1
for a visual representation. In general, it is possible to
define a QRF change transformation SC→A for any sym-
metry group describing the physical setting and apply it
to an arbitrary state [2], but we will skip the details here.

Knowing that we outline the key results of our work
that hold for any d-dimensional pure bipartite states (in-
cluding the continuous variable systems) and any QRF
transformation. Let (Ee, Ce) be the entanglement en-
tropy and subsystem entropy of coherence respectively
and (El, Cl2) be the subsystem’s linear entropy and l2-
norm of coherence [3, 4]

• Theorem 1. The sum of entanglement and sub-
system coherence E + C is conserved under QRF
transformations, for (E , C) = (Ee, Ce) or (El, Cl2).

• Theorem 2. For any choice of entanglement mea-
sure E and coherence measure C, if there exist a
QRF where the state has EA/C = 0 or CA/C = 0,
under a QRF transformation it holds that ∆E∆C =
(EA − EC)(CA − CC) ≤ 0.

In summary, quantum coherence and entanglement
are fundamentally intertwined. In our work, we explore
this connection in the framework of quantum reference
frames, focusing on bipartite pure states. We proved that
QRF transformations are coherence-preserving quantum
operations and that for two pairs of measures, the sum
of subsystem coherence and entanglement is conserved
under QRF changes, implying that an increase of coher-
ence under QRF change must come at the expense of a
decrease in entanglement, and vice versa. Furthermore,
we show that this trade-off holds for any possible pair
of measures, when there exists a QRF in which either
the coherence or the entanglement vanishes. These in-
sights into the resources present in QRFs can be further
explored and used in the context of quantum informa-
tion. Lastly, we also discuss (not included here) why this
apparent gain of entanglement or its conversion to co-
herence in quantum states does not affect the outcomes
of quantum informational protocols. This is because ev-
ery such transformation changes the Hilbert space fac-
torization, and hence can delocalize observables, forcing
an agent who would want to use the QRF-induced en-
tanglement for any protocol to perform operations on all
subsystems, defying the protocol’s main purpose.
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Abstract. Quantum steering has been proven to be a unique quantum correlation sandwiched between
Bell nonlocality and quantum entanglement. Due to its fundamental importance, quantum steering has
been studied extensively. To demonstrate the steerability, one relies on a particular resource referred to
as steerable assemble on one side of a two-party system. However, it is generically unclear how to reach
such steerable resource from a bipartite quantum state. For this purpose, one must optimize over all
possible measurement settings, which constitute a hierarchy structure. On the other hand, in the eye of
the rapid development of quantum computing technology, quantum machine learning (QML) has been an
emerging field with a promising potential in demonstrating quantum advantage. Here we leverage the
power of kernel-based QML models to infer the hierarchy of steering measurement setting. We design a
computational protocol to generate the labeled training dataset, and encode the training data into five
different features. We then apply the well-trained models to analyze random quantum states and three
different types of specific quantum states. In summary, this work provides predictions of the hierarchy
of steering measurement settings and the boundary between steerability and unsteerability using classical
and quantum machine learning models.

Keywords: Quantum information, EPR steering, Measurement setting, Semidefinite programming,
Quantum support vector machine, Quantum computing, Quantum kernel

1 Introduction

Quantum correlations play a crucial role in quantum
information theory and are classified as nonlocal correla-
tions. These correlations arise due to the peculiar char-
acteristic of quantum mechanics, where particles can be-
come interconnected in ways that defy classical intuition.
This phenomenon was famously described in 1935 by
the EPR paradox that was proposed by Einstein, Podol-
sky, and Rosen [1]. Until now, quantum correlations
have been characterized by several phenomena, includ-
ing Bell non-locality [2], quantum steering [3], and quan-
tum entanglement [4]. Quantum steering, also known
as EPR steering, involves Alice performing uncharacter-
ized measurements on a quantum state in her possession
and transmitting the results to Bob. Through her mea-
surements, Alice steers the quantum states of Bob, even
though they are spatially separated. This phenomenon
cannot be explained by the local hidden state (LHS)
model [5].
In the quantum steering scenario, the construction of

a steerable assemblage presents a challenging problem
for Alice, who must decide on an appropriate measure-
ment setting before Bob receives his assemblage. How-
ever, we do not know the precise observables. To decide
the observables, it is necessary to optimize over all pos-
sible incompatible measurements and it encompass both
the number of observables and which observables need to
be measured to demonstrate steerability on Bob’s side.
To solve this problem, the first step involves generat-

ing a large number of datasets through the pre-filter and
SDP iteration [6]. These datasets will then be screened

∗n96111231@gs.ncku.edu.tw
†hongbinchen@gs.ncku.edu.tw

and labeled for both random quantum states and spe-
cial quantum states. An important part of the process
is attempting to leverage the capabilities of the support
vector machine (SVM) with potential advantage of the
quantum kernel to deduce the hierarchy of steering mea-
surement settings. Consequently, the results obtained
using classical and quantum kernels will be compared to
assess their differences and abilities in this context.

2 Quantum Steering

Quantum steering is a portion of quantum correlations.
There exists a bipartite situation where Alice and Bob
share an unknown quantum state ρAB . Subsequently, Al-
ice performs her measurements as a black box on her sys-
tem with classical input mA and outcome oA labeled by
x = 0, ...,mA−1 and a = 0, ..., oA−1, respectively. Then,
the outcomes are independent of any specific details in
a one-sided device-independent scenario, Bob possesses
complete control over his measurements, allowing him
to perform quantum state tomography and reconstruct
the set of states σa|x = trA[(Ma|x ⊗ 1)ρAB ] with one-
way classical communication, often known as assemblage
{σa|x}a,x, where

∑
aMa|x = 1 and Ma|x ≥ 0 ∀ a, x.

However, the assemblage containing both classical infor-
mation of the probability p(a|x) = tr(σa|x) and Bob’s
quantum state ρBa|x = σa|x/tr[ρ

AB ].
Verifying the steerability of a quantum state is a com-

plex task. To overcome this challenge, we need to opti-
mize over all possible measurements including the num-
ber of observables and selection of observables to be mea-
sured on a given state. This construction enables the
classification of quantum states based on the minimal
number n of required observables to exhibit the steer-
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ability, forming a hierarchy known as the hierarchy of
steering measurement settings, and we name the number
of observables that can exhibit steerability from Alice to
Bob as n-measurement steerable (nMS) . Then, we can
determine whether Bob’s assemblage can be decomposed
using an LHS model

σa|x =
∑
λ

p(λ)p(a|x, λ)ρ′λ, ∀a, x (1)

to ascertain its steerability, where ρ′λ is a set of existing
quantum states, p(λ) is a probability distribution, and
p(a|x, λ) is the post-processing of Alice under the hidden
variable λ. For a given assemblage σa|x, we can deter-
mine whether it admits the LHS model by using an SDP
[7]. If we can find feasible solutions from Eq. (1), the
assemblage is unsteerable; otherwise, it is steerable.

3 Quantum-enhanced Machine Learning

Quantum machine learning (QML) aims to leverage
quantum computers to create scalable machine learning
models that could outperform classical ones. With the
increasing accessibility of near-term quantum devices and
the ongoing quest for fault-tolerant quantum comput-
ers, researchers are increasingly excited by investigating
the potential outcomes of replacing supervised machine
learning models with quantum circuits [8, 9], such as the
quantum support vector machine (QSVM). In a straight-
forward manner, the quantum circuits encode the raw
data into quantum states, This allows us to view quan-
tum circuits as kernel functions, with their outputs then
fed into the learning model.

4 Support Vector Machine

The principles of Support Vector Machines (SVM) are
based on a type of learning algorithm developed in the
1990s. It is founded on results from the statistical learn-
ing theory introduced by Vapnik [11]. Support Vector
Classification (SVC) is a method in SVM that can be
used to solve qualitative problems. The classification task
typically becomes more challenging as the number of cat-
egories increases.
In simpler terms, SVC aims to find the most effective

separating boundary [11, 12], often referred to as a hy-
perplane which is equidistant from two distinct sets of
data points. We can defined its hyperplane can be writ-
ten as w⃗ · x⃗ + b = 0, where w⃗ is the weight vector, x⃗ is
the data points, and b is the bias. The corresponding
decision functions are written as f(x) = sign (w⃗ · x⃗+ b) .
To find this optimal separating hyperplane, we have to
maximize the distance between the two margins. The op-
timization becomes a quadratic programming (QP) prob-
lem, and the Lagrange multiplier method can be applied
to derive its dual problem. As a result, we can write

F(α) =
n∑

i=1

αi − 1
2

n∑
i=1

ααiyyix⃗x⃗i, where αi(αi ≥ 0) are

the Lagrange multipliers for each data point.
If a linear classifier is not suitable, SVC has the ca-

pability to map the input vector into a feature space

F of higher dimensions. SVC constructs an optimal
separating hyperplane in this feature space by applying
a non-linear mapping ϕ. Then the optimisation prob-

lem for non-linear classifier becomes W (α) =
n∑

i=1

αi −

1
2

n∑
i=1

ααiyyi ⟨ϕ (x⃗) · ϕ (x⃗i)⟩ . We called kernel function K

such that K (x⃗, x⃗i) = ⟨ϕ (x⃗) · ϕ (x⃗i)⟩ . Consequently, the
decision function can be represented in the following
form:

g (x) = sgn (f (x)) = sgn

(∑
i=1

αiyiK (x⃗, x⃗i) + b

)
. (2)

5 Quantum kernel

A significant distinction between classical and quan-
tum learning theory lies in the concept of the kernel.
To surpass classical methodologies, it becomes essential
to apply a mapping based on quantum circuits that are
difficult to simulate classically. Currently, attention is
focused on the quantum kernel, which encodes classical
data into the Hilbert space of quantum states. This pro-
cess is known as the quantum feature map [13].

Consider a quantum circuit U (x) and let X be a
nonempty set, where x ∈ X . The operation U (x) acts
on the |0⟩ state when the data is loaded and resulting
in the transformed state |ψ (x)⟩ = U (x) |0n⟩. However,
this transformed state is also commonly referred to as
quantum encoding. Let H be a Hilbert space, called the
featured space. Then, the feature map is defined as the
transformation.

ψ : X → H, and ψ (x) = |ψ (x)⟩⟨ψ (x) |, (3)

and the quantum kernel can be written as K (x, x′) =

|⟨ψ (x′) |ψ (x)⟩|2. For unitary quantum encoding, the pro-
cess is uncomplicated when we are able to construct the
adjoint of the data-encoding circuit, denoted as U† (x).
In this scenario, we can rewrite the quantum kernel ac-
cordingly as:

K (x, x′) = |⟨ψ (x′) |ψ (x)⟩|2 = |⟨0n|U† (x′)U (x)|0n⟩|2.
(4)

Our target is to determine the probability of
observing the |0⟩ state when measuring the state
|⟨0|U† (x′)U (x)|0⟩| in the computational basis. This
process is called quantum kernel estimation (QKE). To
derive an estimate, we initialize the quantum system
in the |0⟩ state, apply U† (x′)U (x) to the input |0⟩,
and then estimate the probability of the 0n output. We
construct the kernel matrix from these outputs and plug
it into Eq. (2).

6 Methods

For the preparation work, we first generate a number of
random density matrices, then we feed them into the pre-
filter and SDP iteration to determine the label l of each
state. After that, we obtain a total of 232,846 training
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data points. The training data {(f, l)} consists of fea-
tures and labels, where f ∈ Rn and l ∈ R correspond
to the ground truth (GT) associated with the feature
f . Due to computational constraints, we extracted only
a portion for model training purposes. Consequently, we
obtained training data comprising 71,000 data points, in-
cluding 1,000 Werner state instances where ξ = π/4. The
composition of each class is 15,293 (2MS), 18,130 (3MS),
15,022 (4MS), 10,055 (STE), and 12,500 (UNS).
Typically, learning models are trained more efficiently

when the length of the features gradually decreases. We
perform feature engineering, which involves creating new
features from raw data to capture more information or
reduce the dimensionality of the feature space. Here we
consider a type of feature named ”LUTA-6” which is re-
duced based on the physical insights into quantum steer-
ing. Further details are present in Appendix 8.1. Then
we use the ZZFeatureMap [13] to set up the quantum
circuits for performing the quantum encoding, and we ex-
ecute the quantum circuits on AerSimulator. In linear
kernel (Klinear (x⃗, x⃗i) = x⃗ · x⃗i) and Gaussian radial ba-

sis functions (RBF) (KRBF (x⃗, x⃗i) = exp(−γ∥x⃗− x⃗i∥2)),
we set the regularized constant C = 1. Additionally, the
gamma γ in RBF will depend on the training data X:
γ = 1/ (Nfeatures × variance(X)) .

7 Results

We first illustrate the learning model’s performance on
random quantum states using three different kernels, as
presented in Fig. (1).
To determine the generality and facilitate the visualiza-

tion of the predictions, we apply these models to predict
the hierarchies of two different types of quantum states
generalized from the standard Werner state:{

ρI (p, ξ) = p|ψξ⟩⟨ψξ|+ (1− p) Id
2 ⊗ Id

2

ρII (p, ξ) = p|ψξ⟩⟨ψξ|+ (1− p) ρA ⊗ Id
2

, (5)

where |ψ⟩ = cos ξ|00⟩ + sin ξ|11⟩, 0 ≤ ξ ≤ π/2, p ∈ [0, 1]
and ρA = trB |ψξ⟩⟨ψξ|. We use the subscripts in ρI
and ρII to denote the two different types of noise added
to the pure entangled state and name them Werner
State I and II [14, 15], respectively. Additionally, the
T state [16, 17] can be expressed in the Pauli basis as

ρT = (Id ⊗ Id +
3∑

i=1

tiσi ⊗ σi)/4.

The hierarchies in these specific quantum states pre-
dicted by the learning models are shown in Fig. (2). In
this figure, the solid curves represent the hierarchy de-
termined by the SDP iteration, while the starry curves
represent the prediction by the learning model. We esti-
mate the mean absolute displacement (MAD) (Appendix
8.2) of the border of nMS states predicted by the mod-
els to quantify the performance precisely. We present
the numerical results in Table (1). It is obvious that
the quantum kernel always exhibits less deviation than
the linear kernel. However, in the comparison between
the RBF and quantum kernel, both are evenly matched,
demonstrating good performance in these three states.

In conclusion, the capability of the quantum kernel sur-
passes that of the linear one. Furthermore, the quantum
kernel and RBF are neck and neck. The investigators
expect the QSVM to have a potential advantage in this
era of artificial intelligence. Nowadays, there are more
and more practical applications with QML [18, 19, 20].

Figure 1: The LUTA-6 model performance of ran-
dom quantum states. Although the RBF and quan-
tum kernel are neck and neck, the quantum kernel is
slightly more precise in the 3MS, 4MS, and STE classes.

Figure 2: The LUTA-6 model performance of spe-
cific quantum states. The predictions of the hierarchy
for Werner state I ρI(p, ξ) (first row), Werner state II
ρII(p, ξ) (second row), and T state (third row) by the
model. The prediction performs a better agreement with
the ground truth given by the quantum kernel.

Table 1: Quantitative evaluation of the models.
This table presents the numerical results to quantify the
performance of the models.
Werner I Linear RBF Quantum

2MS 18.53× 10−3 15.12× 10−3 5.6× 10−3

3MS 8.34× 10−3 4.3× 10−3 1.74× 10−3

4MS 19.61× 10−3 4.3× 10−3 2.39× 10−3

Werner II Linear RBF Quantum
2MS 16.39× 10−3 12.29× 10−3 11.31× 10−3

3MS 13.98× 10−3 2.82× 10−3 2.85× 10−3

4MS 21.7× 10−3 6.76× 10−3 4.67× 10−3

T state Linear RBF Quantum
2MS 26.78× 10−3 15.59× 10−3 8.85× 10−3

3MS 19.7× 10−3 3.2× 10−3 4.07× 10−3

4MS 27.28× 10−3 3.55× 10−3 7.96× 10−3

UNS 239.55× 10−3 181.1× 10−3 189.43× 10−3
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8 Appendix

8.1 Data Preprocessing

Performing feature engineering involves creating new
features from raw data to capture more information or
reduce the dimensionality of the feature space. Gener-
ally, reducing the feature length facilitates promoting ef-
ficiency during the training process by decreasing com-
putational complexity and potentially alleviating issues
related to overfitting.
From [21], we know that quantum steering can be rep-

resented by an ellipsoid. The mathematical description of
Alice’s ellipsoid requires a 3×3 symmetric matrix QA and
its center c⃗A ∈ R3. We can rotate the Bloch sphere such
that the three semiaxes of Alice’s ellipsoid align with the
computational bases by applying the local unitary trans-
formation on both sides. This operation corresponds to a
diagonal QA, implying a rotation of Alice’s ellipsoid since
ellipsoids are generally skewed. This leads to the feature
of length 6, denoted as LUTA-6.

8.2 Quantitative Evaluation

To quantify the gap between the two different curves
more precisely, we estimate the mean absolute displace-
ment (MAD) of the border of nMS states predicted by
the models to quantify the performance. The MAD is
defined as

MADξ(s) =

π/2(
√
2)∑

ξ(s)=0

|pPrediction
ξ(s) − pGT

ξ(s)|

n
, (6)

where n is the number of pixels on a border.
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[13] V. Havĺıček. Supervised learning with quantum-
enhanced feature spaces. Nature, 567(7747), 209-212,
2019

[14] J. Bowles. Sufficient criterion for guaranteeing that
a two-qubit state is unsteerable. Physical Review A,
93.2: 022121, 2016.

[15] A. C. S. Costa. Quantification of Einstein-Podolsky-
Rosen steering for two-qubit states. Physical Review
A, 93.2: 020103, 2016.

[16] R. Horodecki. Information-theoretic aspects of in-
separability of mixed states. Physical Review A, 54.3:
1838, 1996.

[17] C. Jevtic. Einstein–Podolsky–Rosen steering and
the steering ellipsoid. JOSA B, 32.4: A40-A49, 2015.

[18] J. Heredge. Quantum support vector machines for
continuum suppression in B meson decays. Comput-
ing and Software for Big Science, 5.1: 27, 2021.

[19] W. Guan. Quantum machine learning in high energy
physics. Machine Learning: Science and Technology,
3.3: 033221, 2021.

[20] S. L. Wu. Application of quantum machine learning
using the quantum kernel algorithm on high energy
physics analysis at the LHC. Physical Review Re-
search, 2.1: 011003, 2021.

[21] S. Jevtic. Quantum steering ellipsoids. Physical re-
view letters, 113.2: 020402, 2014.

17



Nonlocality in Networks Assisted by Neural Networks and Rigidity
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1 ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels
(Barcelona), Spain

Abstract. The study of Bell nonlocality in networks presents a versatile framework for studying the
strength of quantum correlations. However, even for small networks, such as a triangle network, there is
difficulty in finding an example of a distribution that is robust to experimental noise, and in expanding
nonlocality proofs beyond the currently known principle of token counting. We show how insight from
variatonal numerical models such as artificial neural networks can help to focus our analytic efforts and
allow us to prove nonlocality even under realistic noise (photon loss), and to expand nonlocality proofs
beyond token counting.
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1 Introduction

With the advance of quantum technologies, the ques-
tion of what correlations can be achieved on a network
of quantum nodes has become increasingly relevant. Be-
yond the practical motivation, the question has become
a fundamental one. For example, in standard Bell nonlo-
cality, one can certify the quantumness of sets of measure-
ments conducted on single systems, and indeed, many
physicsists would tell you that quantum properties of
measurements stem from their non-commutativity, or
their lack of being jointly measureable. In contrast, re-
cently it has been shown that in ring networks, one can
achieve network nonlocality even when each party con-
ducts the same measurement in each round, i.e. one does
not require inputs as in standard Bell nonlocality and the
quantum properties are not directly related to joint mea-
surability, opening the path to a novel aspect of quantum
measurements [1, 3].
Characterizing correlations on networks poses a diffi-

cult challenge, as one loses the convexity property that
simplifies the study of standard Bell nonlocality [4]. Us-
ing neural networks as a variational ansatz for classical
models on the network can greatly help to understand
the landscape of locality, and through it, nonlocality [5].
Moreover, combined with variational models for quantum
strategies help to identify regions of interest for analytic
research.
The purpose of this presentation would be to display

the intertwined path of human researchers and neural
network-based tools, and how these insights from nu-
merics can lead to a series of conjectures, and finally
to proven analytical findings in the field of Bell nonlo-
cality, one of the strongest frameworks for understanding
and verifying the strength of quantum resources. Finally,
it would also like to draw interest to a number of open
questions in the field.

1.1 Nonlocality in the triangle

The triangle network without inputs is one of the work-
horses of understanding quantum correlations on net-
works, and it is one of the simplest tripartite networks

∗tamas.krivachy@gmail.com

Figure 1: Topology of the triangle network, where a spe-
cific choice of measurement is depicted, a beam-splitter
and two photo-detectors for each party.

that features nonlocality. Each pair of parties shares a
bipartite quantum source, giving rise to distributions

p(a, b, c) = Tr(ρsα ⊗ ρsβ ⊗ ρsγ ·Ma ⊗M b ⊗M c), (1)

where ρsy is the state distributied by source y (y ∈
{α, β, γ}), and {Mx}x is the POVM used by party
X ∈ {A,B,C}. Notice that each party performs the
same measurement in each round of the setup, contrary
to standard Bell nonlocality, where they must change
measurement settings from round to round. Any correla-
tion in the triangle which can be explained with classical
sources, i.e. those that have a classical decomposition of
the form

p(a, b, c) =
∑
α,β,γ

pA(a|βγ)pB(b|γα)pC(c|αβ)× (2)

× psα(α)psβ (β)psγ (γ),

are termed local, whereas those that do not have such a
decomposition are nonlocal, where psy is the distribution
of the random variable distributed by source sy.

There are only a few examples of nonlocality in the
triangle network without inputs. When using qubit sys-
tems, the most natural cardinality of the outputs of the
parties is 4 (a, b, c ∈ {1, 2, 3, 4}), for which one can
achieve nonlocality by morphing the standard 2-party
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Bell scenario into a triangle [1, 2]. This distribution,
however, requires only one of the sources to be quantum,
as the other two take on the roles of the classical inputs.
The first example of genuine quantum triangle nonlo-

cality (RGB4 distribution) was based on the concept of
token counting and its rigidity [3]. Unfortunately such
a proof of nonlocality is extremely sensitive to realistic
noise, and thus the implementation of such a distribu-
tion in an experiment was questionable. Besides RGB4
there is another distribution which was conjectured to be
genuinely triangle-nonlocal, based on the Elegant Joint
Measurement [6]. This distribution is extremely symmet-
ric, with probabilities being equal under permutation of
parties and of outcome labels. There is no proof yet of
nonlocality for this distribution in the literature.

1.2 Rigidity

The basic idea of rigidity is that for certain distribu-
tions, one can show that there is essentially a unique
local model explaining them. For RGB4, it turns out
that by coarse-graining two of the outcomes one arrives
at a distribution which is rigid, hence any classical model
describing the distribution must have the so-called token
counting strategy [9, 10]. When fine-graining the distri-
bution back to the original RGB4, one can show that the
classical token counting model can not be adjusted to
match the correlations arising from the quantum strat-
egy, showing that RGB4 is nonlocal.
The idea of rigidity has also been used recently to prove

noise-robustness for generalizations of RGB4, by showing
that in the noisy distribution a part of the local model
(if it exists), must have a token counting structure [11].
Unfortunately under realistic noises the method typically
allows for less than 1% noise robustness of the proof of
nonlocality, which falls short of experimental capabilities.

1.3 Variational tools

Local models, as described by Eq. (3), form a non-
convex set, making their analytic and numeric character-
izing a challenging task, contrary to standard Bell nonlo-
cality. In Ref. [5] (LHV-Net) we used a set of generative
neural networks as a variational ansatz for local models:
essentially by replacing each party with a neural network
and asking them to play the game of trying to reconstruct
a target distribution. Given that they are classical, any
strategy constructed by them inherently leads to a local
distribution, allowing us to probe the boundaries of the
local set. An early success of LHV-Net was conjecturing
nonlocality of the RGB4 distribution beyond the range
where it was proven to be nonlocal. This conjecture has
since been proven [8].
Recently, we have expanded the technique to studying

variational quantum models, where we fix the dimension
of the bipartite quantum states. Then, in order to ap-
proximate a target distribution, the parameters of the
states and measurements are generated via a generative
neural network, or simply optimized directly through gra-
dient descent. This allows us to probe (a subset of) quan-
tum distributions.

2 Towards experimental nonlocality in
the triangle network

When aiming to create genuine nonlocal correlations in
the triangle network, one can essentially choose to work
with the RGB4 distribution (proven to be nonlocal) or
with the Elegant distribution (conjectured to be nonlo-
cal). LHV-Net was the only tool that managed to give
insight into the amount of noise that these distributions
could withstand while remaining nonlocal. These noise
thresholds were close to what might be realizable exper-
imentally, however, the issue of how to translate these
theoretical measurements to simple enough optical se-
tups was still an open question.

In order to find a more experimentally friendly setup,
we conjectured optical setups and used LHV-Net to
quickly test whether these may actually be nonlocal or
not. One setup was identified as potentially nonlocal,
and then proven as well [7]. In fact, by doing the proof
we realized that it essentially gives an implementation
of RGB4 using only single-photon sources and passive
optics. Unfortunately the noise robustness of this distri-
bution is quite on the boundary of what can be achieved
experimentally, and was thus not yet implemented.

2.1 Implementing the Elegant Joint Measure-
ment in the triangle network, and Bell in-
equalities

Meanwhile, colleagues from Hefei, China, have devel-
oped a way to experimentally implement the Elegant dis-
tribution [12]. The technique, however, only allows for
measuring the four eigenvectors of the Elegant Joint Mea-
surement in separate rounds, which introduces a loop-
hole, as global postprocessing of the outcomes and mea-
surement settings is required to reconstruct the Elegant
distribution. Moreover, the experiment had to be renor-
malized to the events when all photons arrived, introduc-
ing yet another global postprocessing step. The global
postprocessing imposes a theoretical challenge to the ex-
periment, as with (unconstrained) global postprocess-
ing any distribution can be constructed (e.g. all parties
outputting random bits, then keeping only (0,0,0) and
(1,1,1) events, leading to perfect GHZ-type correlations.

Nonetheless, the distribution realized in the experi-
ment simulates the Elegant distribution to great accu-
racy. In parallel to experimental efforts in the lab, LHV-
Net has been used to identify conjectures of Bell inequal-
ities that are valid for the triangle and certify the nonlo-
cality of the Elegant distribution [13]. These inequalities
capture the trade-off between distribution being strongly
correlated and being symmetric. The Elegant distribu-
tion achieves both, whereas classical distributions can not
simultaneously do so. The experimental results of the El-
egant distribution violate these conjectured inequalities
with great confidence.

2.2 Loophole-free experimental proposals

Armed with LHV-Net, which quickly gives numeric ev-
idence of the nonlocality of a distribution, we considered
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a generalization of the previous single-photon experimen-
tal proposal (see Sec. 2). The idea was to use high-
dimensional quantum states, as perhaps these could be
more robust to noise. We set each source distribute the
state ψα = ψβ = ψγ = (|20⟩+ |02⟩)/

√
2 (in the Fock ba-

sis) and the measurements consist of a beam-splitter and
photo-detectors, as shown in Fig. 1. The first numeri-
cal results of LHV-Net showed nonlocality, and in fact a
decent noise robustness under a toy noise model.
Following such convincing numerics, we looked deeper

at the analytics and managed to carry over many of the
principles of token counting and those developed in [11],
in order to prove its nonlocality. In fact these tools al-
lowed us to prove nonlocality even under the most domi-
nant source of noise: single photon loss. Under the noise
model that each channel can lose up to one photon with
probability η, we show that nonlocality is present up to
η∗ = 18%. Using rigidity it is clear that noise robust-
ness can be proven also for a full photon loss model. The
derivation of the exact values are currently under way, as
some changes must be made to previous rigidity-based
noise robustness proofs.
Moreover, in the studied distribution, if heralding is

used to create the source states, then one can circumvent
the global post-selection that was required in previous
experiments to make sure all photons arrived. We show
how it is enough for the information heralding the cre-
ation of the source states to be sent to the parties and to
be processed locally, avoiding the second loophole.

3 Nonlocality in the symmetric subspace

The importance of the symmetric subspace of distirub-
tion has by now become clear, presenting the only known
alternative to RGB4 (or its extensions) for genuine tri-
angle nonlocality, particularly with the given push of ex-
perimental implementation of the Elegant distribution
(Sec. 2.1). Recall that symmetric distributions are those
where the probabilities are symmetric under permutation
of parties and outputs, leading to only three unique val-
ues, p(1, 1, 1), p(1, 1, 2) and p(1, 2, 3). Equivalently one
may use the sum of each of these types of events, which
we call s111, s112 and s123, s.t. s111 + s112 + s123 = 1.
In a recent work, we explore the landscape of sym-

metric local distributions both analytically and with the
neural network [13]. The analytic constructions of lo-
cal models indicated that s111 ≤ 1/O, where O is the
cardinality of the output variables of one party, (O = 4
for the previous examples), The Elegant distribution has
s111 ≈ 0.39, well above this bound of 0.25.

Compared to the analytical constructions of local mod-
els, LHV-Net finds more correlated symmetric local dis-
tributions, up to s111 ≈ 0.29 for O = 4, outperform-
ing the analytic constructions, hinting that the true local
bound is above 1/O, but still much below the Elegant dis-
tribution’s value. Indeed, this value of 0.29 is reflected
in the Bell inequalities that the neural network finds in
the same work. LHV-Net scans of the symmetric sub-
space indicate that for cardinalities O = 3, 5, 6, the same
phenomena appears: a bound slightly higher than 1/O.

Figure 2: Nonlocality in the symmetric simplex of distri-
butions. Color scale represents Euclidean distance from
the local set, as gauged by LHV-Net (cut of at 0.1). For
any quantum or classical model s111 ≤ 1/

√
3 [14, 15],

depicted by a blue line. From rigidity of the s112 = 0
distribution (marked with a green X), we can prove non-
locality outside the dashed lines.

In the scans of the symmetric subspace there is a pe-
culiar point for O = 3, 4, namely when s112 = 0, there
seems to be only a single distribution that is classically
realizable (with exactly s111 = 1/O). Upon more detailed
theoretical analysis, we managed to prove that this is in-
deed the case for O = 3. In fact it turns out that not
only the distribution’s probability values are unique next
to the s112 = 0 condition, but also the specific strat-
egy that can be used to create it is unique. This pro-
vides a strong starting point for a rigidity-based proof
of nonlocality. For O = 3 we have managed to prove,
starting from this special point, that local distributions
must be contained within the dashed lines portrayed in
Fig. 2, proving nonlocality for almost all of the part of
the symmetric subspace where nonlocality was previously
unknown. Currently, we are working on extending this
to O = 4, where we have indications that this technique
could prove the nonlocality of the Elegant distribution.

Finally, we could contrast maps of the symmetric sub-
space with variational quantum methods to those of
LHV-Net, allowing us to identify where quantum non-
locality could exist.

4 Conclusion

In summary, at AQIS 2024 I wish to share our jour-
ney of how neural network-based tools helped pinpoint
where analytic effort would be most effective, and how
this led to a variety of results, such as proving nonlocal-
ity in the symmetric subspace and to an experimentally
noise-robust proposal which closes two previous loop-
holes. Moreover, the insights from the variational numer-
ics lead to a number of open conjectures, including the
triangle Bell inequality and further conjectures of genuine
quantum nonlocality.

Hopefully the results will not just spark interest in
foundational questions about the nature of quantum
measurement and quantum networks, but also inspire
others to more boldly use modern numerical tools in foun-
dational and applied research.
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Appendices

The references contain many of the works covered in
the proposed presentation [5, 7, 12, 13], however some
work is still in progress. In the appendices I share drafts
for these results. Technical draft 1 regards proving
nonlocality in the symmetric subspace. Technical draft
2 regards the proposal for a noise robust experiment for
genuine nonlocality in the triangle network.

.
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Technical draft 1: Nonlocality in the sym-
metric subspace

Authors: Tamás Kriváchy, Antoine Girardin, Pavel
Sekatski. Author list not yet finalized.

Main idea

The main idea of proving nonlocality in the symmetric
subspace from rigidity is the following. First, we estab-
lish that for any distribution that is symmetric and has
s112 = 0, there is a unique strategy and a unique dis-
tribution that satisfies this condition. Next, we use that
for any strategy for which s112 > 0, the part that has
s112 = 0 within that strategy must have the same struc-
ture, and thus the response functions of the parties must
be constrained to be able to reproduce that large part.
Then one can write constraints on what else the repsonse
functions could consist of, if one wishes to recover a sym-
metric distribution with a high s111 value.

Symmetric subspace of the triangle network and
the flag depiction

The triangle network under consideration in this work
consists of three parties, Alice, Bob and Charlie, each
pair connected via a commonly shared source, α, β, γ. If
all three sources are classical, and thus distribute classi-
cal shared randomness to their respective two connected
parties, then the distribution of outputs of the three par-
ties has the form

p(a, b, c) =
∑
α,β,γ

pA(a|βγ)pB(b|γα)pC(c|αβ)× (3)

× psα(α)psβ (β)psγ (γ),

Any distribution p(a, b, c) that has such a decomposition
is deemed local, as there exists a so-called “local hidden
variable” model to describe it. We are currently working
with an output cardinality of three, and for the sake of
visualizing the structure of events more clearly, we name
the outputs with colors, s.t. a, b, c ∈ {R,G,B} (for Red,
Green, Blue).

Local models can be depicted in the “cube picture”,
since there are three independent local hidden variables
(the three axes of the cube), and each response function
(e.g. pA(a|β, γ) depends on two of them (three faces of
the cube). Practically, one can draw a cube and draw
labels on three of the sides of the cube. If the sides are
normalized to 1, then the volume of (α, β, γ) triples which
project to labels (a, b, c) on the three sides correspond
to the probability of p(a, b, c). An example of the cube
picture can be seen in Fig. 3, where the three relevant
faces of the cube are flattened out. These three colored
faces are often referred to as flags.

In the triangle, if a distribution’s outcomes are sym-
metric under permutation of parties and under outcome
labels, then it is in the symmetric subspace. Such distri-
butions form a simplex and can be characterized by three
numbers,

s111 =
∑

a̸=b̸=c̸=a

p(a, b, c) (4)

Figure 3: When drawing 3 face of the cube depiction
of the local strategy, one can easily see which hidden
variable triples lead to which events. Here is the strategy
for 3 outcomes (Red, Green, Blue) for the distribution
where 112-type events are not allowed. (Alice’s “flag” in
bottom left, Bob’s in the top right, and Charlie’s in the
top left.)

such that s111 + s112 + s123 = 1. Due to the sym-
metry conditions, the probability of any event with a
given symmetry is given by one of these numbers, e.g.
p(1, 1, 1) = s111/3.

No-112 condition

If we further restrict distributions such that 112 events
are forbidden, which we will call condition C, then for 3
outcomes per party it turns out that there is only a single
distribution that satisfies symmetry and C, which has
s111 = 1/3, s123 = 2/3. Moreover, it has an essentially
unique strategy that realizes it, shown in Fig. 3, where
∀j, k : βj = γk = 1/3 and the condition for αi ≥ 0 is just
that

∑
i αi = 1. In essence, this is a rigid distribution. As

an example, consider Alice’s flag, where the colorings are
shown in Table 1. When considering the whole cube, the
111 events come from the LHV index triples in Table 2.

Table 1: Which (βj , γk) pairs contribute to colors on Al-
ice’s flag.

Color (j,k) values of that color
R (1,1), (2,2), (3,3)
G (1,2), (2,3), (3,1)
B (1,3), (2,1), (3,2)

Nonzero probability of 112 events

By definition, any distribution will have Pr(C) = 1 −
s112. Let Λ be the set of triples (α, β, γ) where condition
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Figure 4: (a) The region Λ (brown) depicted in the cube representation of a local model. The orange contours on
the faces show the projections of Λ along the three axes. (b) The projection to Alice’s face, SA, can take any shape
in Alice’s flag. (c) Within SA, condition C must hold, hence there must be a grid structure with Latin-square-like
coloring. (d) The extension of the Latin square coloring within SA to the whole flag of A. (e) Viewed differently, for
any shape of S, one can, by rearranging β and γ LHV’s, always arrive at the same flag structure as in Fig. 3, with
certain holes in each of the cells (where hole Hj,k can have size between 0 and βj · γk). In general these holes can take
any shape and their internal coloring is unknown (denoted by grey here). (f) What the holes would be like for the
example in panel (c).

Table 2: Which (αi, βj , γk) triples contribute to 111-type
events.

Event (i,j,k) values of that event
RRR (1,1,1), (2,2,2), (3,3,3)
GGG (3,1,2), (1,2,3), (2,3,1)
BBB (2,1,3), (3,2,1), (1,3,2)

C holds. Then it is true that

Pr((α, β, γ) ∈ Λ) = 1− s112. (5)

Note that Λ is a subset of the whole cube, but the
exact shape of Λ is unknown. However, we do know that
in each face of the cube the part that is generating Λ (i.e.
the projection of Λ to the face of the cube), must have
the Latin square structure that the condition C implies,
as shown in Fig. 4(c). The set Λ and its projections are
illustrated in Fig. 4(a).
Once we draw the projections of Λ, we may ask: how

else was the rest of the cube colored? We formalize this
through several conditions that must hold. In order to
do this let us extend the Latin square structures to the
edges of the flags, as shown in Fig. 4(c,f), leading to

0 ≤ αi, βj , γk ∀i, j, k ∈ {1, 2, 3}, (6)

3∑
k=1

αi =
3∑

j=1

βj =
3∑

k=1

γk = 1. (7)

(8)

Notice that the exact colors of the parts outside are un-
known, and are thus colored grey. In reality they can be
either R, G or B. Note that the holes must not have such
regular shapes, as illustrated in Fig. 4(e). In summary,
we can assign variables to the areas of these holes, e.g.
HA

j,k for the size of the hole in Alice’s cell (βj , γk). We
can alternatively divide the holes on Alice’s flag based
on colors, using the variables HA

X (X ∈ {R,G,B}). The
following constraints hold for these.

0 ≤ HA
j,k ≤ βjγk, ∀j, k ∈ {1, 2, 3} (9)

0 ≤ HA
X ≤ s112/3 ∀X ∈ {R,G,B} (10)∑

j,k

HA
j,k ≤ s112 ∀j, k ∈ {1, 2, 3}, (11)

∑
j,k

HA
j,k =

∑
X

HA
X , (12)

and analogously for the other parties. The second line
holds due to the fact that if any of the colors would oc-
cupy more than s112/3 of area of the holes, then symme-
try of the 112-type events could not be satisfied.

Finally, note that if the distribution is symmetric, then
one can write bounds for each of the probabilities. We
start by considering just one of the subcuboids (e.g. the
(αi, βj , γk) subcuboid). Let’s say according to the origi-
nal strategy this contributes to a 111-type event. Then
the minimum amount it can contribute to s111 is its size,
minus the sizes that the holes take out of it (now assum-
ing that the projections of the holes from each side don’t
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overlap, thus taking away as much as possible from the
cuboid). Hence the minimum amount of s111 from this
cuboid is

s
(i,j,k)
111 ≥ αiβjγk −HA

j,kαi −HB
k,iβj −HC

i,jγk.

Adding this up for all cuboids which contribute to a spe-
cific event (e.g. to (a, b, c) = (R,R,R)), one gets as a
constraint

s111/3 ≥
∑

(i,j,k)∈IRRR

αiβjγk −HA
j,kαi −HB

k,iβj −HC
i,jγk,

(13)

where IRRR is the set of index triples that result in an
(a, b, c) = (R,R,R) outcome (see Table 2). The 1/3 fac-
tor comes from only considering the R 111-type events.
Similar constraints hold for the other colors, and for the
123-type events,

s123/6 ≥
∑

(i,j,k)∈IRGB

αiβjγk −HA
j,kαi −HB

k,iβj −HC
i,jγk.

(14)

These are particularly important, since the fact that
s123 has a minimum size automatically implies an upper
bound on s111, since s111 + s112 + s123 = 1.

Finally, we have that these events are also upper
bounded by the sums of their cuboids

s111/6 ≥
∑

(i,j,k)∈IRRR

αiβjγk, (15)

s123/6 ≥
∑

(i,j,k)∈IRGB

αiβjγk, (16)

and similarly for all other 111- and 123-type events.
Any local model with such a value of s112 must abide to

the previously written numbered constraints. Thus, next
to the constraints we may maximize either s111 or s123
using numerical software (e.g. Mathematica easily con-
verges consistently on global optimization tasks of this
size), leading to the two bounds given in Fig. 5, which
we plotted on top of the LHV-Net scan of the simplex
of symmetric distributions. Notice how from the simple
principle of rigidity one can prove nonlocality for essen-
tially all of the space where LHV-Net does not find any
local model (i.e. where the LHV-Net distance to the local
set is larger than approximately 0.02).

Figure 5: Nonlocality proven in the symmetric simplex of
distributions. Color scale represents Euclidean distance
from the local set, as gauged by LHV-Net (cut of at 0.1).
For any quantum or classical model s111 ≤ 1/

√
3 [14, 15],

depicted by a blue line. From rigidity of the s112 = 0
distribution (marked with a green X), we can prove non-
locality outside the dashed lines. The upper dashed line
(red) is obtained by maximizing s111 next to the con-
straints, while the right dashed line (magenta) is obtained
by maximizing s123 next to the constraints.

.
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Technical draft 2: Proposal for Noise-
Robust Nonlocal Experiment in the Tri-
angle Network

Authors: Martin Kerschbaumer, Tamás Kriváchy.
Author list not yet finalized.

Network Nonlocality with NOON States

Let the sources at each party be a so-called NOON
state, with N photons being sent either to the left or to
the right party in equal superposition, i.e.

|ψ⟩ = 1√
2
(|N0⟩+ |0N⟩) ,

We consider measurements which are experimentally
friendly, relying only on passive optics and non-photon
number resolving detectors (”click” or ”no click” detec-
tors). Specifically, let the two input modes be mixed on
a beam splitter, followed by the detectors. The measure-
ments have four outcomes (a, b, c ∈ {0, L,R, 2}) and are
mathematically characterized by the POVMs

M0
X = U†(D□ ⊗D□)U,

MR
X = U†(D□ ⊗D■)U,

ML
X = U†(D■ ⊗D□)U,

M2
X = U†(D■ ⊗D■)U,

where X ∈ {A,B,C} represents the party label, U is the
beam-splitter’s unitary evolution, and D■ (D□) repre-
sents a click (no click) event,

D□ = |0⟩⟨0|,
D■ = I− |0⟩⟨0|,

and finally, and note that the outcome label 2 is used to
denote that both detectors click (and not that exactly
two photons arrived). See Fig. 1 for a depiction of the
full experimental setup for the triangle network.

Proof of Nonlocality

Theorem: For any distribution in the triangle,
p(a, b, c), if

• p(a = 0) = p(b = 0) = p(c = 0) = 1/4, and

• p(a = 0, b = 0) = p(b = 0, c = 0) = p(c = 0, a =
0) = 0

then the Linear Program (LP) below (Constraints 0, 1,
2) must be satisfied if there exists a local model for the
distribution.
Proof:
We will describe the main steps to construct the Linear

Program. To begin, let us assume that there exists a
local hidden variable model for the distribution. Then
one can work in the cube picture, where each axis runs
from 0 to 1 and represents a hidden variable (α, β or γ),
and the faces represent the response functions, assumed
to be deterministic without loss of generality.

Figure 6: Any LHV model for the distribution must have
this structure, where χ represents all other outcomes ex-
cept 0.

We will first focus only on the 0 outcomes, as these
are quite constraining. Let us draw the smallest possible
square (with sides parallel to the axes) that contains all
0 outcomes of Alice (see Fig. 6 for an illustration). Let
Y A
0 , ZA

0 be the two sides of this square. Note that the
square may contain other outcomes as well, but at least
all 0 outcomes must be contained. As such, it must be
true that Y A

0 Z
A
0 ≥ p(a = 0), as the marginal probability

p(a = 0) corresponds to the area on Alice’s face that
is labeled with 0. One can introduce the corresponding
variables for Bob and Charlie, and one arrives at the
conditions

Y A
0 Z

A
0 ≥ p(a = 0), (17)

ZB
0 X

B
0 ≥ p(b = 0), (18)

XC
0 Y

C
0 ≥ p(c = 0). (19)

Due to the condition that two parties cannot output
0 at the same time, these volumes behind these squares
cannot overlap at all, i.e. XB

0 + XC
0 ≤ 1, Y C

0 + Y A
0 ≤

1, ZA
0 + ZB

0 ≤ 1 (otherwise there would be (0, 0)-type
outcomes). Since p(a = 0) = p(b = 0) = p(c = 0) =
1/4, the only solution to these set of inequalities is that
XB

0 = XC
0 = Y C

0 = Y A
0 = ZA

0 = ZB
0 = 1/2. Due to the

saturation of the inequalities at this value, we in fact also
know that the square does not contain any other output
labels, except 0’s, as shown in Fig. 6.

Let O be the total number of outcomes per party,
and let us label all outcomes except 0 together as χ
(χ = {1, 2, ...,O − 1}). Since all 0 outcomes are con-
tained in the squares, the rest of the cube faces are all
χ outcomes, as can be seen in Figure 6. This immedi-
ately establishes the presence of two special subcubes,
S0 := XC

0 × Y A
0 × ZB

0 and S1 := XB
0 × Y C

0 × ZA
0 , where

*all* (χ, χ, χ)-type outcomes must be located. Follow-
ing the technique established in the seminal work [3] and
later further developed in [7], we can write constraints
for these cubes, which will be key to proof of nonlocality.
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Figure 7: Visual aid for deriving Constraint 2. Areas
where a = i are in blue, while the volume giving p(a =
i, b = 0, c = χ) is outlined in green, and p(a = i, b =
χ, c = 0) in red. One can see that by switching from XB

0

to XC
0 for both green columns and vice-versa for only

one of the red columns, the differences give the difference
q(i, 0)− q(i, 1).

In particular, we now break up the coarse-graining of
χ. If a local model exists, then all (χ, χ, χ) outputs must
be in S0∪S1, and split between S0 and S1. But this must
be done in such a way that it is consistent with the other
outcomes, i.e. with the (χ, 0, χ)-type outcomes, and with
the marginal probabilities of the χ outcomes. Formally,
let us define

q(i, j, k, s) := (20)

p(a = i, b = j, c = k,(α, β, γ) ∈ Ss|(α, β, γ) ∈ (S0 ∪ S1)),
(21)

where the indices i, j, k run over all non-zero indices of
the outputs (i, j, k ∈ χ), while s ∈ {0, 1}.
Constraint 0. (q is a normalized probability vector.)

q(i, j, k, s) ≥ 0 ∀i, j, k, s,∑
i,j,k,s

q(i, j, k, s) = 1.

Constraint 1. (Marginals over s, i.e., all (a = χ, b =
χ, c = χ) outcomes must fit in S0 and S1)∑

s

q(i, j, k, s) = 4p(i, j, k) ∀i, j, k,

Constraint 2. (Alice is unaware of hidden variable α,
so (i, χ, χ) and (i, 0, χ) are related)

q(i, s = 0)− q(i, s = 1) = 4

 M∑
k=1

p(i, 0, k)−
M∑
j=1

p(i, j, 0)

 ,

q(j, s = 0)− q(j, s = 1) = 4

(
M∑
i=1

p(i, j, 0)−
M∑
k=1

p(0, j, k)

)
,

q(k, s = 0)− q(k, s = 1) = 4

 M∑
j=1

p(0, j, k)−
M∑
i=1

p(i, 0, k)

 ,

for all i, j, k.
Constraints 0. follows from the definition of q.
Proof of Constraint 1.: Since each subcube has a

side length of 1/2, see Figure 6, then S0 and S1 both have
a probability of 1/8, so together they have a probability of
1/4. When summing over s, we obtain

∑
s q(i, j, k, s) =

4p(i, j, k) for all i, j, k. □
Proof of Constraint 2.: Constraint 2. is more con-

trived. To derive it, we will be examining the probability
that Alice outputs some non-zero i outcome (i ∈ χ), and
one of the others outputs a 0. This can be related to S0

and S1, because they share the same face of Alice for the
a = i output, as shown in Figure 7.

p(a = i, b = 0, c = χ) =

= p(a = i,XB
0 Y

C
0 Z

B
0 ) + p(a = i,XB

0 Y
A
0 Z

B
0 ),

p(a = i, b = χ, c = 0) =

= p(a = i,XC
0 Y

C
0 Z

B
0 ) + p(a = i,XC

0 Y
C
0 Z

A
0 ).

Using that Alice’s outcome doesn’t change if the hidden
variable α is changed, and XB

0 = XC
0 , one can swap

XB
0 and XC

0 . By doing this swap for the second terms
in both equations, we arrive at S0 and S1, respectively,
which by definition give the marginal probabilities of q,
namely q(i, s = 0) and q(i, s = 1). Finally, we do the
same trick for one of the two of the first terms, such that
it now matches the first term in the other equation. In
total, we arrive at

p(a = i, b = 0, c = χ) = p(a = i,XC
0 Y

C
0 Z

B
0 ) + q(i, s = 0),

p(a = i, b = χ, c = 0) = p(a = i,XC
0 Y

C
0 Z

B
0 ) + q(i, s = 1).

Subtracting the two equations gives the first line in Con-
straint 2. The second two lines follow from the same
derivation for the other two parties. □

Noise robustness under single-photon loss

Can the proof technique be used for realistic noise mod-
els? Fascinatingly, even without modification, the proof
gives interesting results for the single-photon loss case
(or in general max. N − 1 photons lost per source), if
N ≥ 2. This is because in this model we assume that the
probability of the 0 outcome doesn’t change.

Let us now consider N = 2, i.e. two photons per
source. For the noise model, let us consider photon loss
occurring between the sources and the parties, which is
the dominant source of noise in such an optical experi-
ment.

Mathematically, similarly to previous works [7, 11], we
characterize the noise channel in the operator-sum rep-
resentation with the operators

E0 = |0⟩ ⟨0|+√
η

d∑
n=1

|n⟩ ⟨n| ,

E1 =
√

1− η
d∑

n=1

|n− 1⟩ ⟨n| .
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Note that the normalization condition,
∑

iE
†
iEi = I,

holds. The new POVM elements are

Ma
X,η =

2∑
i,j=1

E†
i ×⊗E†

jM
a
XEi ×⊗Ej ,

for X ∈ {A,B,C}, resulting in the noisy distribution

pη(a, b, c) = Tr(ραρβργM
a
(A,η)M

b
(B,η)M

c
(C,η)).

Keep in mind that this is a theoretician-friendly ap-
proximation of noise, as one would require |n− 2⟩ ⟨n|
transitions to appear as well with more or less (1 − η)2

probability (up to normalization). However, when the
photon loss rate is small, such that two photon losses are
rare and negligible, this model is not far from the truth.
Using this linear program, the non-number-resolving

distribution can be shown to be nonlocal up to 13%±0.1%
loss, i.e., we have nonlocality for η ∈ [0.870, 1], when set-
ting the phase to ϕ = 3

18π+
6
18Mπ (M ∈ Z) (exact phase

values inferred from numerical results). When working
with the photon number-resolving distribution, we get
noise tolerance up to 18.3% ± 0.1% loss, for ϕ = π

2 , i.e.,
nonlocality for η ∈ [0.817, 1].
Fascinatingly, the distribution with such a phase allows

for proving nonlocality for an even larger range of t values
than for the N = 1, single-photon source distribution.

Full photon loss model

For the physically most accurate full photon loss
model, we characterize the noise channel in the operator-
sum representation with the operators

E0 = |0⟩ ⟨0|+√
η |1⟩ ⟨1|+ η |2⟩ ⟨2| , (22)

E1 =
√
1− η |0⟩ ⟨1| ,

E2 =
√
2η(1− η) |1⟩ ⟨2| ,

E3 = (1− η) |0⟩ ⟨2| ,

For such a noise model, the LP doesn’t work any-
more. However, using the same mentality, one can de-
rive bounds instead of equalities in the LP. Alternatively,
one can use the proofs of noise-robustness established in
Ref. [11] to prove nonlocality even under the full photon
loss model. There is no doubt that some noise robust-
ness can be proven, but work is currently under way to
establish exactly how much. The numerical indications of
LHV-Net, seen in Fig. 8, indicate that even under the full
photon loss model there is significant noise robustness of
nonlocality, potentially even in the range of ≈ 40%−80%,
which would be well within the range of experimental fea-
sibility.

Generation of states at the source

Typically, one could create an optical state of the form
|20⟩+ |02⟩ via a pump laser and an SPDC crystal, which
would generate two photons simultaneously, which can
be routed to a beam-splitter. If properly set up, then
due to the Hong–Ou–Mandel effect, the photons bunch
and exit the beam splitter in a superposition of both

Figure 8: Distance from the local set as gauged by LHV-
Net, for the distribution (using N = 2 NOON states as
sources), for varying levels of noise (1 − η) according to
the noise model in Eq. (22).

photons in the left mode and both in the right, effectively
generating the desired state. The difficulty of this setup
is that most of the time one obtains vacuum in the modes,
which means most of the rounds need to be discarded via
global post-selection.

To circumvent this problem one could use 2 heralded
single photon sources at each source in the triangle. Once
two photons are created simultaneously at a source they
can be used to generate the |20⟩ + |02⟩ state. Note that
naively, this also required global post-selection, which
would lead to a loophole. However, for this particular
distribution instead of using global post-selection, each of
the the sources α, β, γ can sent the heralding information
to only the respective 2 parties they are connected with,
and the distribution could become a token counting one,
and rigidity could still be used for the noise robustness
against photon loss. This would lead to a noise-robust
genuinely triangle-nonlocal distribution that does not re-
quire any global post-processing. We are currently in the
process of developing the details of this proposal of send-
ing heralding information in accordance with the causal
structure of the triangle.
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I. INTRODUCTION

The quantum state beyond stabilizer formalism owns nonstabilizerness called “magic” [1, 2], which enables universal
fault-tolerant quantum computing [3] via the magic-state-injection approach [1, 4]. Meanwhile, magic also character-
izes quantum complexity beyond entanglement [5]. However, magic is difficult to quantify for large-scale and highly
entangled states, because the evaluation cost scales exponentially with the number of qubits [6].

In this work, we systemically and analytically investigate the magic of a class of states with large entanglement—
quantum hypergraph states [7, 8], which are generalized from graph states [9, 10]. Quantum hypergraph states
play an essential role in quantum advantage protocols [11], measurement-based quantum computing [12, 13] and
topological order [14–16]. We relate the magic, measured by Stabilizer Rényi Entropy (SRE)[17], to a family of
induced hypergraphs from the original one, according to the indices of all Pauli strings. This pictorial expression
enables a series of analytical findings as follows. We first show a general upper bound of magic for any hypergraph
state with a bounded average degree, for instance, ones whose hypergraphs are defined on lattices like Union-Jack one
[16]. We further develop general theories that transform the statistical properties of magic into a series of counting
problems in the binary domain. Our theories lead to the concentration result that the magic of hypergraph states is
typically large and very near the maximal value, showing similar behavior to the unphysical Haar random state [17–
19]. In addition, we analyze the magic of quantum hypergraph states with permutation symmetry which is detailed in
[20]. Based on the symmetry simplification and pictorial derivation, we obtain exact analytical results of the stabilizer
Rényi-α entropy (SRαE) for different α’s, and in particular, find that SR2E and SR 1

2
E can be exponentially different

for these states. Our findings and the developed techniques can advance further investigations of multipartite quantum
magic with applications from quantum computing to quantum many-body physics, where hypergraph states can serve
as an archetypal class of complex states and tractable toy models of other kinds of complex quantum systems.

II. PRELIMINARIES

The definition of quantum hypergraph states [7, 8, 21], a generalization of graph states [22], is given as follows.

Definition 1. Given a hypergraph G = (V,E) with n vertices, the corresponding quantum hypergraph state of n qubits
reads

|G⟩ := U(G) |+⟩⊗n
=

∏
e∈E

CZe |+⟩⊗n
, (1)

where |+⟩ = 1√
2
(|0⟩ + |1⟩), the phase unitary U(G) is completely determined by the hypergraph G, and CZe =⊗

vi∈e Ii − 2
⊗

vi∈e |1⟩i ⟨1| the generalized Controlled-Z gate acting non-trivially on the support of edge e.

Quantum hypergraph states are generally not traditional stabilizer states since CZe are not Clifford gates as |e| > 2
[23]. Fortunately, one can still apply the generalized stabilizer formalism as follows.

Definition 2. For a hypergraph state |G⟩ defined in Eq. (1), it is uniquely determined by the following n independent
(generalized) stabilizer generators

Si = Xi

∏
e∈E,e∋vi

CZe\{vi}, i ∈ [n] (2)

such that Si |G⟩ = |G⟩.

Magic [1, 2] quantifies the derivation of a quantum state from the stabilizer states [24], which is an essential resource
for quantum computing complexity and its fault-tolerant realization [3, 25]. Stabilizer Rényi entropy (SRE) [6, 17]
is a recently introduced faithful measure of magic that is related to the probability distribution from the projection
onto the Pauli operators. The SRαE of the state |Ψ⟩ is defined as follows.
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Mα(|Ψ⟩) = 1

1− α
log

∑
P∈Pn

(
2−n Tr{P |Ψ⟩ ⟨Ψ|}2

)α

− n, (3)

where α and Pn is the Pauli group {Ii, Xi, Yi, Zi}⊗n ignoring the phase. The offset −n keeps the magic of stabilizer
states to be zero. Hereafter all the log functions are base two otherwise specified.

For ease of the following discussion, we define the closely related quantity α-order Pauli-Liouville(PL) moment as

mα(|Ψ⟩) = 2−n
∑

P∈Pn

(Tr{P |Ψ⟩ ⟨Ψ|})2α , (4)

and the corresponding SRαE directly reads Mα(|Ψ⟩) = (1− α)−1 logmα(|Ψ⟩).

III. MAGIC OF A HYPERGRAPH STATE

In this section, we show a general formula of the magic for any hypergraph state by relating the PL-moment and,
thus, SRE to a family of induced hypergraphs. This pictorial result enables us to find a general upper bound of magic
based on the structure of the corresponding hypergraph, which constrains the magic, especially for the hypergraph
states on the lattice.

First, let us define a family of induced hypergraphs G∗
x⃗,z⃗ = (V,E∗

x⃗,z⃗), which are induced from the original hypergraph

G. The vertex set V remains the same, and the updated edge set E∗
x⃗,z⃗ = E

(1)
z⃗ ∪ E

(2)
x⃗ is determined by two n-bit

vectors x⃗ and z⃗ shown as follows. Hereafter all the additions are module 2 on the binary domain otherwise specified.

E
(1)
z⃗ = {e1 = {vj}|zj = 1}, E

(2)
x⃗ =

e2 ⊆ V

∣∣∣∣∣|e2| ≥ 2,
∑
e⊃e2

∏
i:vi∈e\e2

xi = 1

 . (5)

Here E
(1)
z⃗ ∩ E

(2)
x⃗ = ∅, and E

(1)
z⃗ denotes the 1-edge set, while E

(2)
x⃗ is for the set with 2 or more cardinality edges.

See Fig. 1 for an illustration of an induced hypergraph. Following the definition in Eq. (1), we denote the phase
unitary encoded by this hypergraph G∗

x⃗,z⃗ as U(G∗
x⃗,z⃗). Then the general formula of SRαE and its bound can be given

as follows.

Theorem 1. The SRαE of a hypergraph state |G⟩ shows

Mα(|G⟩) = 1 + 2α

α− 1
n+

1

1− α
log

∑
x⃗,z⃗

Tr
{
U(G∗

x⃗,z⃗)
}2α

. (6)

where U(G∗
x⃗,z⃗) is the phase unitary determined by the hypergraph G∗

x⃗,z⃗ defined in Eq. (5).

Theorem 2. For any n-qubit hypergraph state |G⟩ whose corresponding graph G has average degree ∆̄(G), its SRαE
with α ≥ 2 is upper bounded by

Mα(|G⟩) ≤ 1

α− 1

[
1− log

(
1 +

1

2(2α−1)∆̄(G)

)]
n. (7)

IV. MAGIC OF RANDOM HYPERGRAPH STATES

In this section, we study the statistical properties magic of random hypergraph states. Here, we mainly study
random c-uniform hypergraphs, which only own c-edge. A random c-uniform hypergraph ensemble can be determined
by the probability p whether there is a c-edge or not among all choices of c vertices, denoted as random hypergraph
state ensembles Ep

c . The ensembles are defined formally as follows [26].
We first focus on the case p = 1/2 and use Ec to replace Ep

c for simplicity. Here our main focus is on the average
properties of magic, especially the PL-moment, and then we show quite tight lower bounds of the average SRE. The
following theorem transforms the average PL-moment into a counting problem of binary strings. We first show some
related definitions of the norm and operations of an n-bit string t⃗ = {ti}. The 1-norm

∥∥t⃗∥∥
1
=

∑
i t

i, with the addition

modulo 2. The Hadamard or Schur product
⊙

of some bit strings t⃗k is the element-wise product, i.e., t⃗′ =
⊙

k t⃗k
with t′

i
=

∏
k t

i
k.
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Theorem 3. For any integer α ≥ 2 ∈ Z, the average α-th PL-moment of n-qubit random hypergraph state ensembles

Ec shows ⟨mα⟩Ec
= N(c,α,n)

22αn where N(c, α, n) is the number of 2-tuple (T, x⃗), such that the following two constraints
are satisfied. ∥∥t⃗i∥∥1 = 0, ∀i, (8)

∑
q⊂ec

∏
vi∈q

xi

∥∥∥∥∥∥
⊙

vk∈ec\q

t⃗k

∥∥∥∥∥∥
1

 = 0, ∀|ec| = c, (9)

where T = (t⃗1, · · · , t⃗i, · · · , t⃗n) is a 2α × n binary matrix, x⃗ is an n-bit vector with elements xi, ec labels all possible
c-edges, and q ̸= ∅.

Proposition 1. For any c ≥ 3 ∈ Z and α ≥ 2 ∈ Z, with the qubit number n ≫ α and n ≫ c, the average PL-moment

1

2n
≤ ⟨mα⟩Ec ≤ 2(c+22α−1)

2n
. (10)

In particular, for c = 3 and α = 2, more specific calculation shows ⟨m2⟩E3 = 7
2n − 14

4n + 8
8n and by utilizing Chebyshev’s

inequality, there is the concentration of measure effect of magic for it.

Pr {M2(|Gn,3⟩) ≥ n− 3} ≥ 1− 60

2n
. (11)

For general p in Ep
c , we only consider α = 2 and c = 3. Even though it is still hard to derive a closed form of ⟨M2⟩Ep

3

so we numerically calculate it. To be specific, Fig. 2 shows the relation between the expected number of hyperedges
⟨ne⟩ := p ·

(
n
3

)
and the qubit-number n, given the average magic ⟨m2⟩Ep

3
= γn for some constant γ. One can see that

for a fixed proportion γ of n, ⟨ne⟩ is almost linear to n for different γ’s, i.e., ⟨ne⟩ ∼ µn, and thus p ∼ O(n−2) far less
than 1/2 like before.

For each vertex, the expected number of edges is ⟨ne⟩ ·
(n−1

2 )
(n3)

∼ 3µ, and thus the expected average degree ⟨∆̄(G)⟩ is
about a constant. This shows the consistency to Theorem 2, where the magic of a bounded-average-degree hypergraph
state is also bounded. For γ = 0.999, which is very near the maximal 1, the slope µ ≃ 3.0. It means that a very small
p can let the average magic become a very large value.

The statistical results here may also suggest a dynamical way to generate maximal magic states efficiently. For
each step, one operates a CCZ gate on any three-qubit chosen randomly from a 3-edge, and repeats this process for
about K = O(n) times. In particular, the numerical result implies that K = 3n may be enough to let SR2E reach
0.999n. Moreover, if one parallel applies CCZ gates, a constant-depth quantum circuit could be sufficient.

1 2 3

4 5 6

1 2 3

4 5 6

𝐺 𝐺!⃑,$⃑
∗𝒂 𝒃

FIG. 1. It shows the induced hypergraph G∗
x⃗,z⃗ accord-

ing to Eq. (5). Here two 6-bit strings are chosen as x⃗ =
{1, 0, 1, 0, 1, 0} and z⃗ = {1, 0, 0, 1, 0, 0}. For example, the 2-
edge {1, 2} is induced from the 3-edge {1, 2, 3} of G in (a)

with x3 = 1, according to the edge set E
(2)
x⃗ in Eq. (5); the

1-edge {4} is directly by z4 = 1 according to E
(1)
z⃗ in Eq. (5).
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FIG. 2. Relation between qubit number n (x-axis) and ex-
pected number of hyperedges ⟨ne⟩ = p ·

(
n
3

)
(y-axis), given the

(lower bound of) expected SR2E ⟨M2⟩Ep
3

= − log⟨m2⟩Ep
3

=

γ · n for different γ’s. Different colors represent different ex-
pected magic with different slopes µ’s.
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Abstract. Quantum key distribution has emerged as a promising solution for constructing secure com-
munication networks, with its information-theoretic security rooted in quantum mechanics. One of the
recent quantum key distribution protocols, the phase-matching protocol, can have a quadratic key-rate im-
provement. Its security was initially established using an abstract method known as symmetry-protected
privacy. In this study, we reevaluate this security under the more intuitive source-replacement model,
arriving at the same conclusions as the original proof. This model provides a fresh perspective on the
protocol’s security. As an application of this approach, we introduce a beam-splitting attack. Leveraging
the source-replacement model, we derive a lower bound on the phase error rate under this attack, further
underscoring the robustness of our security analysis method.

Quantum key distribution (QKD) [1, 2] is currently one
of the most successful applications in quantum informa-
tion science. It allows two remote communication parties,
Alice and Bob, to establish a secure key by leveraging
the principles of quantum mechanics. Among the various
QKD protocols developed, the phase-matching scheme [3]
stands out for its robustness and efficiency. The security
of the phase-matching scheme was originally established
using a method known as symmetry-protected privacy
[4, 5]. Unlike conventional complementary-based secu-
rity proofs, this method utilizes the symmetry of encod-
ing to establish security, leveraging the parity properties
of the corresponding state space to derive the phase error
rate. The advantage of this method is its independence
from the specifics of the source and measurements, fo-
cusing solely on encoding operations. This provides a
straightforward framework for analyzing the security of
QKD protocols, especially MDI QKD. However, its ab-
stract nature limits specific security insights for varied
protocols and confines analysis to encoding, hindering
comprehensive assessments against potential eavesdrop-
ping attacks.
In this work, we reexamine the security of the phase-

matching scheme via the source-replacement approach,
which is easier to comprehend. This approach was ini-
tially introduced in [6], and its name comes from [7]. We
introduce a virtual entanglement-based protocol where
the users employ CNOT gates, quantum Fourier trans-
forms, and photon number measurements to construct a
pseudo-Fock state. This allows simultaneous determina-
tion of total photon number and random phase difference.
Finally, we establish a correlation between photon num-
bers and phase errors based on the original definitions.
Our alternative perspective leads to a conclusion consis-
tent with the symmetry-protected privacy method: quan-
tum states with odd total photon numbers yield phase
errors, whereas those with even numbers do not.
Firstly, we introduce the phase-matching QKD scheme.

The core idea of this scheme is that Alice and Bob encode
their respective key information into the phase of individ-
ual optical pulses, with key bits 0 and 1 corresponding to
phase values of 0 and π, for instance. Subsequently, they
send their pulses to Charlie for single-photon interfer-

∗xma@tsinghua.edu.cn

ence. By analyzing the interference outcomes, they can
ascertain the degree of phase matching between their en-
coded phases. This process, conducted through a single
optical mode, establishes the connection between the key
information of both parties. The central insight of the
phase-matching scheme lies in the utilization of single-
photon interference, allowing Alice and Bob to extract
key bits from single detection.

We draw the encoding process using quantum circuit
notation and attempt to transform the circuit into an
entanglement-based protocol circuit by using the source-
replacement approach. The corresponding quantum cir-
cuit diagram for the protocol is depicted as Figure 1.
Note that the CNOT operation between systems A0 and
B0, the quantum Fourier transformation, the photon
number measurement, and the X-basis measurements on
systems A1 and B1 are operations introduced to obtain
the quantum phase error rate. These operations were not
part of the original protocol and are called virtual opera-
tions. In the following sections, we will demonstrate that
through these virtual operations, Alice and Bob can ob-
tain the photon number distribution of the pulses they
send and establish a connection between this distribution
and the quantum phase error rates. Here, we introduce
three random numbers on each side for classical control
of optical encoding. The random numbers µi

a, µ
i
b are used

to encode different intensities for decoy-state estimation
[8–10]. The random bits κi

a, κ
i
b ∈ {0, 1} are the raw key

bits, and the random numbers ϕi
a, ϕ

i
b are used for phase

randomization.
With this entanglement-based picture, we have the fol-

lowing observations.

Observation 1 The number of photons emitted in the
optical mode A(B) can be acquired by doing a high-
dimensional Z-basis measurement after the inverse quan-
tum Fourier transformation on ancillary qudit A0(B0),
which is used to do the discrete phase randomization.

Furthermore, in the entanglement-based picture, the
users can simultaneously obtain the total photon num-
ber and the random phase difference by introducing a
high-dimensional CNOT operation between systems A0

and B0, as shown in Figure 1, along with appropriate
measurements.
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Alice’s encoding

Bob’s encoding

A2
Z

A1
X/Z

A0
k

A

B

B0

j

B1

X/Z

B2
Z

intensity |+3⟩

key qubit |+⟩

discrete phase |+d⟩ F †

optic emission |α⟩ θj θa Int

noise SPIM

optic emission |β⟩ θj θb Int

discrete phase |+d⟩

key qubit |+⟩

intensity |+3⟩

Figure 1: Encoding circuit of source-replaced PM scheme. The ancillary systems A0, A1, A2, B0, B1, B2 encode the
random phases, key bits, and intensities. In this picture, the ancillary systems are measured after the encoding
operations, allowing Alice and Bob to employ additional operations beyond simple Z-basis measurements to estimate
parameters like photon number and phase differences. The quantum inverse Fourier transform F †, high-dimensional
CNOT operations, and X-basis measurements depicted in the figure are virtual operations not part of the original
protocol. Here, SPIM is the abbreviation for single-photon interference measurement

Observation 2 The total number of photons emitted in
two optical modes A and B and the random phase dif-
ference can be acquired simultaneously by doing a high-
dimensional CNOT operation between systems A0 and B0

followed by an inverse quantum Fourier transformation
on ancillary qudit A0 and Z-basis measurements on A0

and B0.

We now include the key-bit encoding in the scheme.
As shown in Fig. 1, Alice applies another qubit ancil-
lary system A1. She prepares |+⟩ on A1 and employs a
controlled-phase gate between A1 and A to encode the
key information. Bob applies similar operations as well.
The phase error is obtained by X ⊗X measurement on
the key qubits A1, B1. Then, we can determine whether
a phase error exists by the total photon number N . By
calculating the post-select quantum state, we have the
following results:

1. N is odd, the X-basis measurement results on
qubits A1 and B1 are different, |−+⟩A1B1

or
|+−⟩A1B1

;

2. N is even, the X-basis measurement results on
qubits A1 and B1 are the same |++⟩A1B1

or
|−−⟩A1B1

.

In conclusion, the phase error rate is 1 if the total
photon number in A and B is odd, and it is 0 if the total
photon number is even. Then, the upper bound of the
phase error rate is

ep ≤ 1 · qeven + 0 · qodd
= qeven

= 1−
∑
k

q2k+1,
(1)

where qk is the detection fraction when Alice and Bob
send out k-photon signals. This is consistent with the

conclusion obtained by the symmetry-protected method
[5]. Thus, by analyzing the fraction of odd and even
states via decoy state method[11], the upper bound of
phase error can be derived. Utilizing the entanglement-
based source-replacement picture, we establish the rela-
tionship between the total photon number and the phase
error rate in the phase-matching scheme. This provides
a more concrete and physically intuitive explanation for
the conclusions drawn in the symmetry-protected privacy
method.

We also introduce a beam-splitting attack with unam-
biguous state discrimination and analyze the key rate of
the phase-matching scheme under this attack. Here, we
employ the source-replacement security analysis frame-
work to analyze the attack, enabling a straightforward
lower bound of the phase error rate. This underscores
the efficacy of the source-replacement approach in ana-
lyzing attacks. We illustrate this attack in Figure 2, and
a detailed description can be found in [12]. Here, we
suppose the channel transmittance from Alice and Bob
to the measurement site are both η, and the intensities
of pulses are the same, µa = µb = µ. We only consider
the case of pure states for simplicity.

The core idea of this beam-splitting attack lies in that
the state |φ⟩ obtained by Eve through beam splitting is
very close to the states emitted by Alice and Bob. More-
over, as the channel transmission rate decreases, these
two states become even closer. With the help of quan-
tum memory, Eve can utilize the stored states to attempt
to obtain the key bits chosen by Alice and Bob, given that
she knows the random phases they selected. In this sce-
nario, Eve can maximize the utilization of all the informa-
tion she can obtain without interfering with the protocol
execution, thus maximizing her ability to steal the key.
Whether Eve can obtain the key information depends on
her ability to distinguish whether the state she holds is∣∣φ0

〉
or

∣∣φ1
〉
through unambiguous state discrimination

measurements. If she successfully distinguishes these two
states, Eve will perfectly learn the key bit value. The fi-
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Figure 2: Illustration of beam-splitting attack. Solid ar-
rows represent the transmission of quantum states, while
dashed arrows represent the exchange of classical infor-
mation. Eve splits the light pulse emitted by Alice and
Bob into two parts with a ratio of 1− η : η. The former
part is stored in a quantum memory, while the latter
part undergoes interference measurement, and the mea-
surement result is publicly announced. After the mea-
surement is completed and Alice and Bob announce the
phase information ϕi

a and ϕi
b, Eve retrieves the two cor-

responding states from the quantum memory, performs
unambiguous state discrimination measurement based on
the phase information, and applies post-processing to the
results.

delity between these two states gives the optimal success
probability for her to distinguish these two states [13],

pusd = 1− |⟨ϕ0|ϕ1⟩| = 1− e−4(1−η)µ. (2)

Given the probability for Eve to learn the key bit
value perfectly, we can further estimate a lower bound on
the phase error rate that Alice and Bob will encounter
in the protocol. We still use the source-replacement
entanglement-based picture in Figure 1, in which the
states of systems A1 and B1 are the key states held
by Alice and Bob, respectively. They will perform Z-
basis measurements on their own states to obtain their
raw keys. According to the definition of the phase error
rate [14], if they perform X-basis measurements on these
states, they will obtain the phase error rate.
When Eve successfully obtains Alice and Bob’s en-

coded keys through unambiguous state discrimination
measurements, in the entanglement-based scenario, we
can consider that Eve deterministically acquired knowl-
edge of the results of the Z-basis measurements per-
formed on systems A1 and B1. In this sense, the states
on these two systems have already collapsed to either |00⟩
or |11⟩ from Eve’s point of view.
Then Alice and Bob do subsequent operations to get

the raw key bits or the phase error rate. If Alice and
Bob perform Z-basis measurements, the raw key bits
they get will be the same as what Eve obtained. If Alice
and Bob perform X-basis measurements to estimate the
phase error rate, since systems A1 and B1 have already
collapsed to either |00⟩ or |11⟩, the results of the X-basis
measurements will be completely random, resulting in a
phase error rate of 1

2 . This scenario here is similar to the
intercept-resend attack on the BB84 protocol. Therefore,
the contribution of the case where Eve successfully dis-

tinguishes the encoded states to the phase error rate is
1
2pusd. As for the case where Eve fails to distinguish the
states, the phase error rate is lower bounded by 0 since
any additional operation will only increase the phase er-
ror rate. Hence, we can conclude that the final phase
error rate satisfies

ep ≥ 1

2
pusd =

1

2
− 1

2
e−4(1−η)µ ≡ eLp . (3)

The simulation results show that the upper bound from
symmetry-protected security proof and lower bounds of
the phase error rate given by the beam-splitting attack
are very close, illustrated in Fig. 3. The difference be-
comes smaller as the intensity increases and the chan-
nel transmission decreases. Intuitively, as the inten-
sity increases or the channel transmission rate decreases,
Eve can obtain quantum states with higher intensities
through beam splitting, which makes the states Eve holds
closer to the ones sent by Alice and Bob. And it will
finally lead to a higher success probability of unambigu-
ous state discrimination. If the communication distance
between Alice and Bob is zero, Eve cannot obtain any
quantum states through beam splitting. The results im-
ply that the attack and analysis method we proposed
provides a good lower bound under the beam-splitting
attack and that the entanglement-based security analysis
approach can provide straightforward conclusions with
simplicity when analyzing such attacks. This highlights
the advantages of the entanglement-based security anal-
ysis method when dealing with these attacks.

Figure 3: The difference between the phase error rate
upper bounded by the symmetry-protected security proof
and the beam-splitting attack under different intensities
and channel transmittance.

In conclusion, the source-replacement analysis offers a
fresh perspective that enriches the original security proof
of the phase-matching scheme. This analysis reaffirms
the protocol’s security and provides valuable insights into
its underlying mechanisms. In addition, we introduce a
beam-splitting attack that poses a potential threat to
the phase-matching scheme. We derive a lower bound
for the phase error rate within the source-replacement
framework. The simulation results show that the phase
error rate provided by the security proof is very close to
the one introduced by the beam-splitting attack. This
finding indicates that the upper bound on the phase er-
ror rate and, hence, the lower bound on the key rate pro-
vided by our security analysis is already tight, leaving
little room for further improvement. This analysis es-
tablishes a direct connection between the attack and the
quantum phase error rate, enhancing our understanding
of the security of the phase-matching scheme.

The related work is published in [12].
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Developing and evaluating a quantum annealing simulator using QuTiP
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Abstract. In today’s research about developing quantum computers, a real machine is often used for
evaluating the control circuit. However, since it involves a cost of experimentation and limits scalability for
evaluation, a simulating environment for quantum processors from the control circuit perspective would be
beneficial. We develop a simulating environment for the theoretical quantum annealing process by using
QuTiP which is a Python library for analyzing quantum dynamics, as a first step in developing a simulator
for the quantum annealing processor. Furthermore, we evaluate the scalability of this simulator and its
usability by evaluating the results of quantum annealing for some NP-hard problems.

Keywords: quantum annealing, quantum simulation, QuTiP, LHZ

1 Introduction

Quantum annealing is a quantum metaheuristic that
exploits the properties of quantum mechanics to solve
combinatorial optimization problems and is related to
quantum adiabatic computation[1]. A combinatorial op-
timization problem is the act of trying to find out the
combination of variables that optimizes an index from
among many options, and many socially important com-
binatorial optimization problems can be formulated as
the problem of finding the ground state of the Ising model
Hamiltonian. Quantum annealing machine is used to
quickly find the ground state of the Ising model’s Hamil-
tonian.
The Ising model’s Hamiltonian is described by follow-

ing equation.

HIsing = −
∑
i<j

Jijσ
z
i σ

z
j −

N∑
i=1

hiσ
z
i (1)

where σ can express ± 1 and is called spin variable. N
is number of spins and usually is big number. Jij is in-
teraction and hi is external field. The goal of quantum
annealing is to find the combination of spins that mini-
mizes the energy HIsing given by these coefficients.
In adiabatic quantum annealing, the system is adiabat-

ically transitioned from a trivial initial state to a ground
state of HIsing. A transverse field is used to construct
the trivial initial state. The following Hamiltonian for-
mulates this condition.

H(t) = A(t)HIsing −B(t)
N∑
i=1

σxi (2)

Here A = 1 and B = 0 in the initial state, and finally
A = 0 and B = 1. In other words, quantum fluctuations
are introduced into the quantum system in the initial
state, and each spin variable will be superposed. Then,
as the quantum fluctuations are reduced and at the same
time the interaction and external fields are strengthened,
the ground state of the Hamiltonian of the Ising model
is finally reached.

∗h23ms409@hirosaki-u.ac.jp
†miyabi@hirosaki-u.ac.jp

Although the Hamiltonian HIsing has a long-range in-
teraction between each spin variable, the quantum an-
nealing machines available from D-Wave do not imple-
ment the long-range interaction directly. These machines
implement it indirectly through chimera graphs [2][3].
This configuration results in an overhead in the num-
ber of qubits and also tends to introduce errors due to
imperfect realization of the embedding in the real device.

The Lechner-Hauke-Zoller(LHZ) scheme has been pro-
posed to solve the problem based on this long-range in-
teraction[4]. In the LHZ model, the product σzi σ

z
j of the

spin variables appearing in the above equation is replaced
by a newly introduced single spin variable σ̃zi . This con-
figuration requires Np = Nl(Nl−1)/2 physical qubits and
Nc = Np−Nl+1 constraint terms to construct the equiv-
alent Ising model Hamiltonian formulated by Nl logical
qubits. The Hamiltonian of the LHZ model is realized by
a local field terms for the physical spin variables and a
constraining four-body interaction terms, so there is no
need to implement long-range interactions as in the Ising
model. The Hamiltonian of the LHZ model is formulated
as follows.

HLHZ = −
Np∑
k=1

Jkσ̃
z
k −

Nc∑
l=1

Clσ̃
z
l,1σ̃

z
l,2σ̃

z
l,3σ̃

z
l,4 (3)

where Cl is the coupling coefficient related in the four-
body interaction.

Our research group has been working on implementing
a quantum annealing machine based on the LHZ model.
However, at present, an actual quantum annealing ma-
chine is being utilized to evaluate the usability of its con-
trol circuit. Therefore, it would be beneficial to create a
simulating environment to design and evaluate the con-
trol system.

We develop a simulator for the theoretical quantum
annealing process by using QuTiP which is a Python li-
brary for analyzing quantum dynamics, as a first step
in developing the simulating environment, and we eval-
uate the usability of the simulator. Section 2 explains
the algorithm of the simulator and section 3 describes
benchmarks which are used for evaluation of the simu-
lator. Section 4 provides the results of the benchmarks
and section 5 provides a discussion of the results. Finally
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section 6 provides overall conclusion.

2 Quantum annealing simulator

We develop a simulator using QuTiP[5], which is a
open source library for Python to analyze quantum dy-
namics. We can simulate quantum system by using
QuTiP easily. In particular, since the reliability of the
simulator is important in developing a simulator for
quantum annealing, we simulate the behavior by ana-
lyzing the Schrödinger equation in adiabatic quantum
computing using the “sesolve” function in QuTiP. The
time dependence of the Hamiltonian evaluated in this
simulator is defined as follows.

H(t) = (t/τ)Hproblem − (1− t/τ)
N∑
i=1

σxi (4)

where τ is a finite quantum annealing time. By inserting
HIsing or HLHZ into Hproblem, we simulate the adiabatic
quantum computing for each Hamiltonian. In the initial
state, the quantum state is |++ ...+⟩ which is the ground
state for the transverse field term.
Algorithm 1 is the adiabatic quantum computing algo-

rithm using QuTiP for the Ising Hamiltonian.
The ground state |ψ0⟩ corresponding to the optimal so-

lution of the combinatorial optimization problem for the
constructed Ising Hamiltonian H0 is pre-analyzed using
“groundstate” in QuTiP. The probability of success of
quantum annealing can be determined by calculating the
expected value of the operator |ψ0⟩ ⟨ψ0| in the final state.

3 Evaluation methods

Since this simulator directly analyzes the Schrödinger
equation, the main focus is on evaluation with a small
number of qubits. The following benchmarks are used.

• Vertex cover problem

To verify that we can correctly solve the combi-
natorial optimization problem, we take the vertex
cover problem for the small-scale graph shown in
Figure 1(a). The vertex cover problem has already
been formulated as an Ising model Hamiltonian [6].
The usability of this algorithm is evaluated by its
ability to solve this problem.

• Traveling salesman problem

To evaluate a relatively large Hamiltonian, we con-
sider solving a traveling salesman problem. Here
we use 16 qubits to set up a Hamiltonian based on
the 4-point problem shown in Figure 1(b).

• Random spin glass

To evaluate the scalability of the simulator, we eval-
uate the quantum annealing time required to obtain
the optimal solution at each qubit number. Search
for the ground state of the Hamiltonian, randomly
set in the range [-1,1] for the local field and inter-
action coefficients, and [0,1] for the coupling coeffi-
cients.

Algorithm 1 Simulate quantum annealing for Ising
Hamiltonian

Input: N, J, h,τ
Output: Final state

Initialisation :
1: sz[i] ← the Pauli-z operator for i-th qubit
2: sx[i] ← the Pauli-x operator for i-th qubit
3: |ψinitial⟩ ← |++ ...+⟩
4: H0 ← 0 // the Ising Hamiltonian
5: H1 ← 0 // the Hamiltonian for the transverse fields
6: for i = 0 to N − 2 do
7: for j = i+ 1 to N − 1 do
8: H0 ← H0 + −J [(i, j)] ∗ sz[i] ∗ sz[j]
9: end for

10: end for
11: for i = 0 to N − 1 do
12: H0 ← H0 + −h[i] * sz[i]
13: end for
14: for i = 0 to N − 1 do
15: H1 ← H1 + −sx[i]
16: end for
17: |ψ0⟩ ← groundstate(H0)

Evolve the system in time :
18: H(t) ← (t/τ)H0 + (1− t/τ)H1
19: Generate tlist in steps of τ in the range [0, τ ].
20: |ψfinal⟩ ← sesolve(H,|ψinitial⟩,tlist)

Post-processing :
21: prob ← | ⟨ψfinal|ψ0⟩ |2
22: print prob
23: return |ψfinal⟩

(a) vertex cover problem (b) traveling salesman problem

Figure 1: The NP-hard graph problem

4 Evaluation results

We use following environment for the evaluation.

• Apple Mac Studio

• CPU : Apple M1 Ultra

• Memory : 128GB

PyQUBO[7] is used to construct the Ising model
Hamiltonian related to the NP-hard problems. The avail-
ability of this simulator is evaluated by constructing an
Ising model Hamiltonian with it and simulating quantum
annealing.

Vertex cover problem This problem has two optimal
solutions (0,1,4) or (1,4,5). These are related to quantum
states |110010⟩,|010011⟩.

Figure 2(a) shows how the probability of observing the
above state vector changes when quantum annealing is
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(a) vertex cover problem (b) traveling salesman problem

Figure 2: The result of the quantum annealing for graph
problems

simulated for this Hamiltonian while increasing the quan-
tum annealing time τ . The probability of obtaining the
optimal solution increases with the length of τ . This con-
firms that quantum annealing can be simulated correctly.

Traveling salesman problem We confirmed that
|0001010000101000⟩,|1000001001000001⟩ are ground
states for the Hamiltonian related to the traveling sales-
man problem. Figure 2(b) shows how the probability of
observing the above ground states changes when quan-
tum annealing is simulated for this Hamiltonian while
increasing the quantum annealing time τ . Although the
required quantum annealing time is longer than that of
the vertex cover problem, it confirms that this simulator
can also solve the ground states for the relatively large
Hamiltonian. The path corresponding to this ground
state is shown in Figure 3.

Figure 3: The optimal solution for the traveling salesman
problem

Random spin glass In our evaluation environment,
the analysis of the optimal solution using “groundstate”
function in QuTiP is applicable up to 15 qubits. There-
fore, the relationship between the number of qubits and
the quantum annealing time is evaluated for a range of
up to 15 qubits for the Ising model Hamiltonian and 6
logical qubits for the LHZ model Hamiltonian. Figure 4
shows the average quantum annealing time required for
the probability of success to exceed 0.9 for each qubit
number.

5 Discussion

In the evaluation of random spin glass, there are a few
cases where the quantum annealing time requirement is
extremely long. According to the adiabatic theorem, if
the energy gap between the ground state and the first
excited state of a system’s Hamiltonian is small, it takes

Figure 4: Average quantum annealing time required for the
probability of success for each qubit number

a long time to find the optimal solution[8]. Therefore,
this result can be attributed to the extremely small en-
ergy gap in the random Hamiltonian. In order to con-
sider the relationship between quantum annealing times,
these data are not used in the calculation of the aver-
age quantum annealing time required. Therefore, the
results shown in Figure 4 can be used as an indicator
of the amount of quantum annealing time that would be
required for a typical problem.

6 Conclusion

We have applied small-scale NP-hard problems to this
simulator and confirmed that for each problem, the state
vector corresponding to the optimal solution appears as
the end state. We have also confirmed the relationship
between the number of qubits and the quantum annealing
time required to obtain the optimal solution. The results
will be useful for developing the simulating environment.
In this study, we have simulated small-scale quantum an-
nealing based on the analysis of the Schrödinger equation,
but the number of qubits that can be handled needs to be
increased for the construction of larger circuits. There-
fore, more efficient algorithms such as Simulated Anneal-
ing(SA) and Simulated Quantum Annealing(SQA) need
to be considered.

Our research group is developing a quantum anneal-
ing machine for the LHZ model using superconducting
quantum circuits [9] and using microwaves to control the
qubits. Therefore, we will build a simulating environment
that considers microwave information as input/output
signals.
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Abstract. A central question since the beginning of quantum information science is how two distant
parties can convert one entangled state into another. Answers to these questions enable us to optimize the
performance of tasks such as quantum key distribution and quantum teleportation, since certain entangled
states are more useful than others for these applications. It has been conjectured that entangled state
transformations could be executed reversibly in an asymptotic regime, mirroring the reversible nature of
Carnot cycles in classical thermodynamics. While a conclusive proof of this conjecture has been missing
so far, earlier studies excluded reversible entanglement manipulation in various settings. In this work, we
investigate the concept of an entanglement battery, an auxiliary quantum system that facilitates quantum
state transformations without a net loss of entanglement. We establish that reversible manipulation of
entangled states is achievable through local operations when augmented with an entanglement battery.
In this setting, two distant parties can convert any entangled state into another of equivalent entangle-
ment. The rate of asymptotic transformation is quantitatively expressed as a ratio of the entanglement
present within the quantum states involved. Different entanglement quantifiers give rise to unique princi-
ples governing state transformations, effectively constituting diverse manifestations of a “second law” of
entanglement manipulation. Our methods provide a solution to the long-standing open question regarding
the reversible manipulation of entangled states and are also applicable to entangled systems involving more
than two parties, and to other quantum resource theories, including quantum thermodynamics.

Keywords: entanglement, reversibility, thermodynamics, resource theory, battery
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1 Introduction

Over the past decades, striking parallels between the
principles governing manipulation of entangled systems
and the laws of thermodynamics [1, 2, 3, 4, 5] have been
revealed. A prime illustration of this similarity is often
cast with the narrative of two agents, Alice and Bob,
sharing n copies of an entangled state |ψ⟩ that they can
also manipulate. It is known that under certain condi-
tions, by utilizing simple operations such as local oper-
ations and classical communication [6], Alice and Bob
can transform their initially shared state into n copies of
another state |ϕ⟩. In the regime of large n, this transfor-
mation is contingent upon an important condition: a re-
duction in entanglement entropy [6]. This rule mirrors a
fundamental concept in classical thermodynamics, where
the entropy of a system uniquely determines its poten-
tial for interconversion through adiabatic processes [7].
This resemblance highlights the universality of entropy
as a key concept in both domains, for understanding and
describing state transformations.

The striking similarity between entanglement theory
and thermodynamics naturally leads to an intriguing in-
quiry: Does there exist a “second law of entanglement
manipulation” [1], akin to its thermodynamic counter-
part, that governs all state transformations of entangled

∗ray.ganardi@ntu.edu.sg

systems? This question is linked to the question of re-
versibility, in particular when it comes to manipulating
entangled states in an asympttic setting. This enables a
theoretically lossless conversion between any two entan-
gled states in the asymptotic limit. Furthermore, this
mirrors classical thermodynamics, where Carnot’s theo-
rem connects the reversibility of a heat engine cycle and
its efficiency.

Despite numerous dedicated efforts [1, 2, 3, 4, 5, 8, 9],
the quest for a second law of entanglement manipula-
tion is still ongoing. Ref. [5] establishes that there is
no second law of entanglement manipulation through a
certain class of deterministic protocols. However, this
no-go statement can still be bypassed via relaxations
such as probabilistic protocols [9]. One of the main chal-
lenges in this endeavor is the existence of bound entan-
glement [10]. Bound entangled quantum states require
entanglement for their formation, yet we cannot extract
any singlets from them [10]. This paradoxical feature
of entanglement poses significant theoretical and prac-
tical challenges, complicating the path towards a fully
reversible framework of entangled state manipulations.

We resolve this conundrum by focusing on state trans-
formations instead of protocols. Our framework relies
on the concept of entanglement batteries [11]. An en-
tanglement battery is an additional entangled quantum
system shared between Alice and Bob. In order to pre-
vent the embezzling of resources [12], the battery must
be returned at the end of the procedure with at least

41



the same amount of entanglement. This idea can be
viewed as a generalization of catalytic state transforma-
tions [13], a topic that has garnered significant interest
recently [14, 15]. An entangled catalyst, in this context,
is an ancillary quantum system in an entangled state pro-
vided to Alice and Bob. They are allowed to employ this
catalyst in their transformation process, with the require-
ment that it must be returned in its original state. Our
approach extends this setup by allowing changes in the
state of the ancillary system, provided that there is no
reduction in its entanglement.

2 Results

We demonstrate that considering transformations
aided with a battery leads to a second law of entan-
gled state manipulation. This law asserts that Alice and
Bob can transform a state ρ into another σ if and only
if E(ρ) ≥ E(σ), where E represents an entanglement
quantifier with certain natural properties. In the asymp-
totic limit, the conversion rates in this setting are char-
acterized by the ratio E(ρ)/E(σ), leading to the impli-
cation that asymptotic state manipulations can be ex-
ecuted in a reversible manner. Our results lead to a
family of second laws of entanglement manipulation, con-
tingent on the method of entanglement quantification in
both the system and the battery. Moreover, we recover
a variant of the second law previously conjectured in [2],
achieved without resorting to the generalized quantum
Stein’s lemma, for which a comprehensive proof is still
missing [8].

We first provide a characterization of single-copy
LOCC transformations when aided with an entanglement
battery.

Theorem 1 A state ρ can be converted into another
state σ via LOCC with an entanglement battery if and
only if

E(ρ) ≥ E(σ). (1)

Here, E is an additive and finite entanglement measure.

Next, we move to characterize the asymptotic rate of
many-copy transformations.

Theorem 2 The maximal conversion rate for convert-
ing ρ into σ via LOCC with an entanglement battery is
given by

R(ρ→ σ) =
E(ρ)

E(σ)
. (2)

Here, E is an entanglement measure which is finite, ad-
ditive and asymptotically continuous.

An immediate consequence of our work is the con-
struction of a framework of reversible entanglement ma-
nipulation. More specifically, we establish that R(ρ →
σ) × R(σ → ρ) = 1 for any ρ and σ, implying that in
the asymptotic limit, any two entangled states ρ and σ
can be interconverted reversibly. Furthermore, when the
ratio E(ρ)/E(σ) is rational, reversible interconversion is
feasible even with a finite number of copies. This means

there exist integersm and n such thatm/n = E(ρ)/E(σ),
allowing for bidirectional conversion ρ⊗n → σ⊗m and
σ⊗m → ρ⊗n. We further notice that the optimal conver-
sion rate can be achieved through a protocol involving
local operations alone, which interestingly obviates the
need for classical communication in this task. We sus-
pect that this arises from allowing the battery to contain
any finite amount of entanglement. However, we antici-
pate that achieving the conversion with minimal entan-
glement in the battery may require some level of classical
communication.

An example of an entanglement quantifier that satisfies
our criteria, namely being additive and asymptotically
continuous, is the squashed entanglement, defined as [16]

E(ρAB) = inf

{
1

2
I(A;B|E) : ρABE extension of ρAB

}
,

(3)
with the quantum conditional mutual information
I(A;B|E). We note that the squashed entanglement is
not the only entanglement quantifier having these prop-
erties, another example is given in the full version.

We further note that the additivity property of entan-
glement measures is more fundamental than asymptotic
continuity for obtaining reversible manipulations of en-
tangled states. Specifically, any additive entanglement
measure allows for the derivation of a second law for zero-
error transformations, i.e., transformations that convert
n copies of ρ into m copies of σ exactly. Logarithmic neg-
ativity is an example of a measure that is additive and
yet not asymptotically continuous [17, 18, 5]. We demon-
strate that this measure leads to a theory with bounded
entanglement distillation rates, even if an error margin
is allowed in the asymptotic transformations. Addition-
ally, we illustrate a phenomenon termed self-dilution: the
asymptotic conversion of n copies of an entangled state
into m > n copies of itself, with an error that can be
made arbitrarily small in the asymptotic limit.

Furthermore, the findings discussed thus far are read-
ily adaptable to multipartite scenarios. In situations in-
volving N parties, the objective becomes transforming
an N -partite state ρ into another N -partite state σ, uti-
lizing an ancillary system that may also exhibit entangle-
ment across all N parties. In such contexts, Theorems 1
and 2 remain applicable when the entanglement measure
employed is the multipartite squashed entanglement [19],
since the latter is additive and asymptotically continuous.
This implies that in this framework, reversible transitions
are feasible between any multipartite entangled states.

Fully quantum second law of thermodynamics.
The framework described in this work has immediate
implications beyond entanglement theory. The second
law of thermodynamics says that state transformations
in classical thermodynamics are governed by the free en-
ergy [7]. However, this statement relies on several as-
sumptions such as the negligibility of fluctuations and
energetic coherence, which might not necessarily hold in
the quantum regime.

A commonly used model to study the thermodynamics
of quantum systems is the framework of thermal opera-
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tions, which explicitly model interactions with a ther-
mal bath through an energy-preserving unitary [20]. For
energy-incoherent states, the transformations are fully
governed by a family of inequalities called the thermo-
majorization conditions [21]. The original form of the
second law is subsequently recovered, if we consider cat-
alytic transformations that allows correlations between
the system and catalyst [22]. More precisely, it was shown
that for any two energy-incoherent states ρ, σ, there ex-
ists a thermal operation that transforms ρS into σS′

if
and only if F (ρS , HS) ≥ F (σS′

, HS′
), where F is the

free energy, defined as

F (ρ,H) = kBT (S(ρ∥γ) − logZ). (4)

Here, T is the temperature Z is the partition function,
and γ = exp (−H/kBT )/Z is the thermal state associated
with the system (that is characterized by H). Numerical
evidences even suggest that low-dimensional catalysts al-
ready provide significance advantage [23], when it comes
to the problem of simplifying the required unitary control
over system and bath.

The obvious enhancement of catalysis in quantum ther-
modynamics even for energy-incoherent state transfor-
mations raises the following question: is it possible to
extend this result to coherent states?

We answer this question by showing that the free
energy determines general state transformations under
thermal operations when we allow access to a thermo-
dynamic battery. This framework includes catalysis as
a special case, but relaxes the requirement of restoring
the catalyst, and simply focuses on the reusability of the
battery – requiring that the thermodynamic resource of
the battery does not decrease.

Theorem 3 A state
(
ρS , HS

)
can be converted into an-

other state
(
σS′

, HS′
)
with thermal operations and a free

energy battery if and only if F (ρS , HS) ≥ F (σS′
, HS′

).

The choice of free energy F in Theorem 3 is not unique:
in the quantum regime, there exists a family of general-
ized free energies Fα [24] that determines the allowed
transformations with exact catalysis. All of these gen-
eralized free energies are additive, and therefore using
them in our framework will lead to transformations that
are governed by a single monotone. We can go further
and relate the resource change in the battery to that in
the system:

f(ρS , HS) − f(σS′
, HS′

) ≥ f(τ̃B
′
, HB′

) − f(τB , HB),
(5)

which hold for any additive monotone f . However, when
we allow correlations, then Eq. (5) is equivalent to the
local monotonicity property studied in Ref. [25]. There,
it was shown that standard free energy F is essentially
the only function that is locally monotonic and contin-
uous, up to additive and multiplicative constants. This
gives a formulation of the thermodynamic second law for
coherent quantum systems.
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A central question since the beginning of quantum information science is how two distant parties can convert
one entangled state into another. Answers to these questions enable us to optimize the performance of tasks such
as quantum key distribution and quantum teleportation, since certain entangled states are more useful than others
for these applications. It has been conjectured that entangled state transformations could be executed reversibly
in an asymptotic regime, mirroring the reversible nature of Carnot cycles in classical thermodynamics. While
a conclusive proof of this conjecture has been missing so far, earlier studies excluded reversible entanglement
manipulation in various settings. In this work, we investigate the concept of an entanglement battery, an auxiliary
quantum system that facilitates quantum state transformations without a net loss of entanglement. We establish
that reversible manipulation of entangled states is achievable through local operations when augmented with
an entanglement battery. In this setting, two distant parties can convert any entangled state into another of
equivalent entanglement. The rate of asymptotic transformation is quantitatively expressed as a ratio of the
entanglement present within the quantum states involved. Different entanglement quantifiers give rise to unique
principles governing state transformations, effectively constituting diverse manifestations of a “second law” of
entanglement manipulation. Our methods provide a solution to the long-standing open question regarding the
reversible manipulation of entangled states and are also applicable to entangled systems involving more than
two parties, and to other quantum resource theories, including quantum thermodynamics.

The industrial revolution was a transformative era spanning
the 18th and 19th centuries. It was significantly driven by
breakthrough discoveries in statistical physics and thermody-
namics. These disciplines provided crucial insights into en-
ergy conversion, particularly in heat engines that paved the
way for advancements in technology and industry. Today, we
stand on the cusp of a similar threshold, this time driven by
quantum technology. This field hinges on the intricate proper-
ties of quantum systems, with quantum entanglement [1] and
coherence [2] playing a pivotal role.

Over the past decades, striking parallels between the prin-
ciples governing manipulation of entangled systems and the
laws of thermodynamics [3–7] have been revealed. A prime
illustration of this similarity is often cast with the narrative of
two agents, Alice and Bob, sharing n copies of an entangled
state |ψ⟩ that they can also manipulate. It is known that un-
der certain conditions, by utilizing simple operations such as
local operations and classical communication [8], Alice and
Bob can transform their initially shared state into n copies of
another state |ϕ⟩. In the regime of large n, this transforma-
tion is contingent upon an important condition: a reduction
in entanglement entropy [8]. This rule mirrors a fundamental
concept in classical thermodynamics, where the entropy of a
system uniquely determines its potential for interconversion
through adiabatic processes [9]. This resemblance highlights
the universality of entropy as a key concept in both domains,
for understanding and describing state transformations.

The striking similarity between entanglement theory and
thermodynamics naturally leads to an intriguing inquiry: Does
there exist a “second law of entanglement manipulation” [3],
akin to its thermodynamic counterpart, that governs all state
transformations of entangled systems? This question is linked

to the feasibility of reversibility in quantum mechanics, in par-
ticular when it comes to manipulating entangled states in an
asymptotic setting. This enables a theoretically lossless con-
version between any two entangled states in the asymptotic
limit. Furthermore, this mirrors classical thermodynamics,
where Carnot’s theorem connects the reversibility of a heat
engine cycle and its efficiency.

Despite numerous dedicated efforts [3–7, 10, 11], the quest
for a second law of entanglement manipulation is still ongo-
ing. Ref. [7] establishes that there is no second law of en-
tanglement manipulation through a certain class of determin-
istic protocols. However, this no-go statement can still be
bypassed via relaxations such as probabilistic protocols [11].
One of the main challenges in this endeavor is the existence of
bound entanglement [12]. Bound entangled quantum states,
akin to black holes in the realm of astrophysics, require en-
tanglement for their formation, yet they defy the extraction of
usable entanglement in the form of singlets [12]. This para-
doxical feature of entanglement poses significant theoretical
and practical challenges, complicating the path towards a fully
reversible framework of entangled state manipulations.

In this article, we resolve this conundrum by focusing on
state transformations instead of protocols. We introduce the
concept of entanglement batteries [13] into our framework.
An entanglement battery is an additional entangled quantum
system shared between Alice and Bob. In order to prevent the
embezzling of resources [14], the battery must be returned at
the end of the procedure with at least the same amount of en-
tanglement. This idea can be viewed as a generalization of
catalytic state transformations [15], a topic that has garnered
significant interest recently [16, 17]. An entangled catalyst,
in this context, is an ancillary quantum system in an entan-
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gled state provided to Alice and Bob. They are allowed to
employ this catalyst in their transformation process, with the
requirement that it must be returned in its original state. Our
approach extends this setup by allowing changes in the state
of the ancillary system, provided that there is no reduction in
its entanglement.

We demonstrate in this work that such an approach leads to
a second law of entangled state manipulation. This law asserts
that Alice and Bob can transform a state ρ into another σ if
and only if E(ρ) ≥ E(σ), where E represents an entanglement
quantifier with certain natural properties. In the asymptotic
limit, the conversion rates in this setting are characterized by
the ratio E(ρ)/E(σ), leading to the implication that asymp-
totic state manipulations can be executed in a reversible man-
ner. Our results lead to a family of second laws of entangle-
ment manipulation, contingent on the method of entanglement
quantification in both the system and the battery. Moreover,
we recover a variant of the second law previously conjectured
in [4], achieved without resorting to the generalized quantum
Stein’s lemma, for which a comprehensive proof is still miss-
ing [10].

ASYMPTOTIC TRANSFORMATIONS OF ENTANGLED
STATES AND REVERSIBILITY

A fundamental challenge in quantum information science
revolves around the interconversion of quantum states by two
distant agents, Alice and Bob [1, 18]. Given a shared entan-
gled quantum state, the question arises: What quantum states
can Alice and Bob obtain, if they are restricted to local oper-
ations and classical communication (LOCC)? By LOCC, we
mean local transformations within their respective laborato-
ries and communication via classical messages. Addressing
this problem is crucial for delineating the utility of specific
quantum states within this framework, effectively identifying
the states that offer the greatest utility for quantum informa-
tion processing and communication tasks.

The problem posed above is closely connected to the im-
portant process of entanglement distillation, which involves
extracting singlets |ψ−⟩ = (|01⟩ − |10⟩)/√2 from a – possibly
noisy – quantum state [19]. Singlets are “gold standards” of
entanglement, which have a pivotal role in foundational tasks
such as quantum teleportation [20] and quantum key distri-
bution [21]. Typically, entanglement distillation is explored
within an asymptotic framework, wherein Alice and Bob have
access to n copies of a quantum state ρ, and their aim is to gen-
erate m singlets. A key metric of success in this endeavor is
the maximum achievable ratio m/n. An error margin is per-
mitted in the transformation, with the stipulation that the error
vanishes in the limit of large n.

Provided with a large number of copies of a pure entan-
gled state |ψ⟩, Alice and Bob have the capability to transform
these into singlets at a rate determined by the entanglement
entropy E(|ψ⟩) = S (ψA) [8], where S (ρ) = −Tr(ρ log2 ρ) is the
von Neumann entropy. Expanding upon this, Alice and Bob

are also able to convert |ψ⟩ into another entangled state |ϕ⟩
at a rate of S (ψA)/S (ϕA) [8]. Consequently, this framework
enables a reversible, asymptotic conversion between |ψ⟩ and
|ϕ⟩, allowing for a lossless interconversion in the limit of large
numbers of copies.

In general, a transformation between two entangled states
ρ and σ is deemed reversible if the asymptotic transformation
rates satisfy the relation R(ρ → σ) × R(σ → ρ) = 1. How-
ever, LOCC manipulations of entangled states generally do
not exhibit reversibility, meaning that there exist states with
the property R(ρ→ σ)×R(σ→ ρ) < 1. An extreme manifes-
tation of such irreversibility arises from the phenomenon of
bound entanglement [12]. This phenomenon is characterized
by entangled states ρ from which singlets cannot be extracted,
such that R(ρ → ψ−) = 0, while R(ψ− → ρ) > 0, indicating
that singlets are still necessary for the state’s formation [22].
This disparity signifies that the conversion between ρ and |ψ−⟩
cannot be performed in a reversible manner.

The findings presented in Ref. [4] indicate that reversibility
of entangled state transformations may be achievable by ex-
panding the set of LOCC to encompass protocols that permit
the injection of a small amount of entanglement into the sys-
tem, which vanishes in the asymptotic limit. Nonetheless, it is
important to note that the assertions in [4] rely on the general-
ized quantum Stein’s lemma [5]. Recent scrutiny, as discussed
in [10], has raised questions about the validity of this lemma,
casting uncertainty on the robustness of the conclusions drawn
from its application. On the other hand, reversibility within
this framework can be achieved probabilistically [11].

Recent studies have also established that reversibility can-
not be achieved in settings limited to non-entangling opera-
tions, which are protocols incapable of generating entangle-
ment from non-entangled states [7]. Furthermore, reversible
manipulations of entangled states cannot be obtained by using
entanglement catalysis due to the existence of bound entan-
glement in this setting [23, 24].

REVERSIBLE ENTANGLEMENT MANIPULATIONS WITH
ENTANGLEMENT BATTERY

We demonstrate that reversible manipulations across all en-
tangled states become feasible when an entanglement battery
is incorporated. Specifically, we consider a setting where Al-
ice and Bob can perform LOCC, and additionally are given
access to a supplementary shared entangled state, which is our
entanglement battery. This setting has been previously stud-
ied in Ref. [13], where it was shown that we can formulate
a fluctuation theorem in pure state entanglement transforma-
tions with an explicit battery model. It was shown that the
average change in the battery entanglement when transform-
ing a pure state ψAB to ϕAB is bounded above by the change
in entanglement S (ψA) − S (ϕA). In this article, we general-
ize this framework to allow for a general battery and we study
transformations between general mixed states. We show that
we obtain a reversible theory when we impose the following
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Figure 1. State transformations with an entanglement battery. A conversion from ρ to σ is possible if ρ ⊗ τ can be converted into σ ⊗ τ̃
via LOCC, and the amount of entanglement in the battery does not decrease (left part of the figure). Transformations which decrease the
entanglement in the battery are not allowed (right part of the figure).

restriction on the battery: Alice and Bob must not decrease
the level of entanglement within the battery throughout the
process. The setup is shown in Fig. 1.

More specifically, we examine transformations of the form

ρ ⊗ τ→ σ ⊗ τ̃, (1)

where τ represents the initial state of the battery, and τ̃ denotes
its final state. The requirement that the battery does not lose
any entanglement then amounts to

E(τ̃) ≥ E(τ), (2)

where the choice of the entanglement quantifier E plays a piv-
otal role in our analysis. We show that varying the choice
of entanglement quantifiers leads to the emergence of distinct
“second laws” of entanglement manipulation.

The basic property of any entanglement measure E is that
it should not increase under LOCC, i.e., E(Λ[ρ]) ≤ E(ρ) for
any LOCC protocol Λ [25]. A particularly interesting class of
entanglement measures for our analysis are quantifiers which
are additive, i.e., they satisfy E(ρ ⊗ τ) = E(ρ) + E(τ) for any
states ρ and τ. Additionally, we will consider entanglement
quantifiers that exhibit asymptotic continuity [26]. This prop-
erty implies that for two states close to each other in trace dis-
tance, the difference in the amount of entanglement can grow
at most logarithmically in the Hilbert space dimension. We
further require the entanglement measure to be finite for all
states.

The subsequent theorem offers a comprehensive character-
ization of state transformations within this setup.

Theorem 1. A state ρ can be converted into another state σ
via LOCC with an entanglement battery if and only if

E(ρ) ≥ E(σ). (3)

Here, E is an additive and finite entanglement measure.

We provide a concise outline of our proof, with compre-
hensive details available in the Methods section. First, we
leverage the properties of additive entanglement measures to
establish that under the framework of LOCC augmented with

an entanglement battery, the amount of entanglement does not
increase. Subsequently, we introduce a protocol that trans-
forms the state ρ into σ for any pair of states that comply
with the stipulations outlined in Eq. (3). This protocol is re-
markably straightforward: the battery is initialized in the tar-
get state σ, and then local transformations are employed to
interchange the states of the main system and the battery. A
similar technique has been used recently in [17] in the context
of correlated catalysis, see also [13].

Theorem 1 further implies that a state ρ⊗µ can be converted
into another state σ⊗ µ′ via LOCC with entanglement battery
if and only if E(ρ) − E(σ) ≥ E(µ′) − E(µ). Here, the system
in the state µ can be considered as an additional component of
a battery. While E(ρ) − E(σ) > 0, i.e. the main system loses
entanglement during the procedure, the battery is capable of
storing entanglement to compensate for this loss.

Let us now consider the multi-copy setting, where Alice
and Bob are provided with n copies of the initial quantum state
ρ. The aim is to produce m copies of the target state σ. We
are interested in the maximal rate of the transformation m/n,
allowing for an error which vanishes in the asymptotic limit.
The following theorem gives a complete characterization of
the transformation rates if Alice and Bob perform an LOCC
protocol with an entanglement battery.

Theorem 2. The maximal conversion rate for converting ρ
into σ via LOCC with an entanglement battery is given by

R(ρ→ σ) =
E(ρ)
E(σ)

. (4)

Here, E is an entanglement measure which is finite, additive
and asymptotically continuous.

An outline of the proof is provided here, with detailed elabo-
ration available in the Methods section. Employing the prop-
erties of additive and asymptotically continuous entanglement
measures, we first demonstrate that the transformation rate is
upper-bounded by E(ρ)/E(σ). The converse is shown by in-
troducing a protocol that accomplishes the transformation at
the aforementioned rate. Echoing the approach of Theorem 1,
the optimal protocol involves a battery in an entangled state,

47



4

specifically comprising copies of the target state σ. The trans-
formation ρ → σ at the rate of E(ρ)/E(σ) can be realized by
permuting the main system with the battery.

An immediate consequence of our work is the construc-
tion of a framework of reversible entanglement manipulation.
More specifically, we establish that R(ρ→ σ)×R(σ→ ρ) = 1
for any ρ and σ, implying that in the asymptotic limit, any
two entangled states ρ and σ can be interconverted reversibly.
Furthermore, when the ratio E(ρ)/E(σ) is rational, reversible
interconversion is feasible even with a finite number of copies.
This means there exist integers m and n such that m/n =
E(ρ)/E(σ), allowing for bidirectional conversion ρ⊗n → σ⊗m

and σ⊗m → ρ⊗n. We further notice that the optimal conversion
rate can be achieved through a protocol involving local opera-
tions alone, which interestingly obviates the need for classical
communication in this task. We suspect that this arises from
allowing the battery to contain any finite amount of entangle-
ment. However, we anticipate that achieving the conversion
with minimal entanglement in the battery may require some
level of classical communication.

An example of an entanglement quantifier that satisfies our
criteria, namely being additive and asymptotically continuous,
is the squashed entanglement, defined as [27]

E(ρAB) = inf
{

1
2

I(A; B|E) : ρABE extension of ρAB
}
, (5)

with the quantum conditional mutual information I(A; B|E).
We refer to the Methods section for more details about
the properties of squashed entanglement. We note that the
squashed entanglement is not the only entanglement quanti-
fier having these properties, another example is given in the
Methods section.

Our findings not only affirm the existence of a second
law for entangled state transformations, but also link it to
the squashed entanglement present in the involved quantum
states. Prior to our work, it was hypothesized [4] that should
reversible manipulation of entangled states be achievable in
any framework, the rates at which such reversible transforma-
tions occur would be linked to a different measure of entangle-
ment: the regularized relative entropy of entanglement. This
quantity is defined as [25]

E∞r (ρ) = lim
n→∞

1
n

Er(ρ⊗n) (6)

with the relative entropy of entanglement defined as Er(ρ) =
minσ∈S S (ρ||σ), and the quantum relative entropy S (ρ||σ) =
Tr(ρ log2 ρ) − Tr(ρ log2 σ). Here, the minimization is done
over the set of separable (i.e. non-entangled) states S.

As we will see in the following, our methodologies ex-
tend to establish a version of the second law of entanglement
manipulations predicated on the relative entropy of entangle-
ment. This can be achieved by replacing the squashed en-
tanglement by E∞r in our approach, i.e., the requirement that
the regularized relative entropy of entanglement in the battery
does not decrease during the procedure. It is currently un-
known whether E∞r is additive for all states, which prevents a

direct application of our results. If E∞r exhibits additivity, our
results directly imply that E∞r (ρ)/E∞r (σ) is the optimal trans-
formation rate in this setting. Nevertheless, in the Methods
section we show that this configuration results in a meaningful
entanglement theory with finite asymptotic distillation rates,
even if E∞r is not additive in general. Moreover, we show
that E∞r (ρ)/E∞r (σ) is an achievable rate for the transformation
ρ → σ in this setting. Intriguingly, this closely resembles
the second law of entanglement manipulation as delineated
in [4], yet it circumvents the reliance on the generalized quan-
tum Stein’s lemma.

We further note that the additivity property of entangle-
ment measures is more fundamental than asymptotic con-
tinuity for obtaining reversible manipulations of entangled
states. Specifically, any additive entanglement measure allows
for the derivation of a second law for zero-error transforma-
tions, i.e., transformations that convert n copies of ρ into m
copies of σ exactly. Logarithmic negativity is an example of
a measure that is additive and yet not asymptotically contin-
uous [7, 28, 29]. We demonstrate that this measure leads to
a theory with bounded entanglement distillation rates, even if
an error margin is allowed in the asymptotic transformations.
Additionally, we illustrate a phenomenon termed self-dilution:
the asymptotic conversion of n copies of an entangled state
into m > n copies of itself, with an error that can be made
arbitrarily small in the asymptotic limit. More details with
concrete examples are discussed in the Methods section.

Furthermore, the findings discussed thus far are readily
adaptable to multipartite scenarios. In situations involving N
parties, the objective becomes transforming an N-partite state
ρ into another N-partite state σ, utilizing an ancillary system
that may also exhibit entanglement across all N parties. In
such contexts, Theorems 1 and 2 remain applicable when the
entanglement measure employed is the multipartite squashed
entanglement [30], since the latter is additive and asymptot-
ically continuous. This implies that in this framework, re-
versible transitions are feasible between any multipartite en-
tangled states.

We will now discuss the difference of our methods from the
approach considered in Ref. [7]. Specifically, Ref. [7] posits
that reversible manipulations of entangled states are unattain-
able in frameworks reliant on non-entangling operations. In
such frameworks, Alice and Bob, possessing many copies of
a state ρ, are restricted to quantum operations that cannot gen-
erate entanglement from separable states. Under these con-
ditions, the authors of [7] demonstrate the impossibility of
reversible interconversion between certain entangled states ρ
and σ, i.e., R(ρ→ σ) × R(σ→ ρ) < 1. It is important to note
that the methods in Ref. [7] do not cover the transformations
considered in this work, because we allow the agents to fur-
ther optimize on the operation in a way that depends on the
system’s initial and final states. This is critical in enabling re-
versible interconversions within our framework, and moreover
is a standard feature of catalytic processes [15–17]. Addition-
ally, it is crucial to clarify that in our setup, Alice and Bob
are also precluded from creating entanglement from separable
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states if the entanglement measure E is additive and vanishes
solely on separable states. These conditions are satisfied, for
example, by the squashed entanglement [27, 31, 32].

In the preceding discussion, we operated under the assump-
tion that the main system and the battery return to an uncor-
related state at the procedure’s conclusion. However, this re-
quirement can be relaxed to allow for correlations between
them, with the constraint that the amount of entanglement in
the battery does not decrease. In this scenario, any entangle-
ment measure E yields a reversible theory provided it satisfies
four conditions: monotonicity under LOCC, continuity, addi-
tivity on product states, and general superadditivity, expressed
as E(ρAA′BB′ ) ≥ E(ρAB)+E(ρA′B′ ). This means that the amount
of entanglement present in a joint state is always at least as
high as the individual entanglement. Superadditivity has been
shown to be a critical feature of resource monotones in gen-
eral [17, 33, 34]. Notably, for pure bipartite states, transfor-
mations in this framework are entirely governed by the en-
tanglement entropy, regardless of the entanglement measure
chosen. This mirrors the uniqueness of entanglement entropy
as the measure governing the transformations under standard
LOCC [8, 35, 36]. For an in-depth discussion, we refer to the
Supplemental Material.

As elaborated upon in the Supplemental Material, not
all entanglement measures prove useful within this context.
Specifically, for certain measures such as geometric entangle-
ment, the constraint in Eq. (2) fails to impose limitations on
potential transformations, permitting arbitrary amplification
of entanglement within the main system. This phenomenon
bears resemblance to the concept of entanglement embezzle-
ment, as previously discussed in [14].

QUANTUM THERMODYNAMICS

The framework described in this work has immediate impli-
cations beyond entanglement theory. The second law of ther-
modynamics says that state transformations in classical ther-
modynamics are governed by the free energy [9]. However,
this statement relies on several assumptions such as the negli-
gibility of fluctuations and energetic coherence, which might
not necessarily hold in the quantum regime. In particular, one
commonly refers to quantum states without any coherence in
the energy eigenbasis as energy-incoherent states.

A commonly used model to study the thermodynamics
of quantum systems is the framework of thermal opera-
tions, which explicitly model interactions with a thermal
bath through an energy-preserving unitary [37]. For energy-
incoherent states, the transformations are fully governed by
a family of inequalities called the thermomajorization con-
ditions [38]. The original form of the second law is sub-
sequently recovered, if we consider catalytic transforma-
tions that allows correlations between the system and cata-
lyst [39]. More precisely, it was shown that for any two
energy-incoherent states ρ, σ, there exists a thermal opera-
tion that transforms ρS into σS ′ if and only if F(ρS ,HS ) ≥

F(σS ′ ,HS ′ ), where F is the free energy, defined as

F(ρ,H) = kBT
(
S (ρ∥γ) − log Z

)
. (7)

Here, T is the temperature Z is the partition function, and
γ = exp (−H/kBT )/Z is the thermal state associated with the
system (that is characterized by H). Numerical evidences even
suggest that low-dimensional catalysts already provide signif-
icance advantage [40], when it comes to the problem of sim-
plifying the required unitary control over system and bath.

The obvious enhancement of catalysis in quantum ther-
modynamics even for energy-incoherent state transformations
raises the following question: is it possible to extend this re-
sult to coherent states? In fact, it has recently been shown
that the presence of catalysts in thermodynamics fully bridge
between a hierarchy of thermal processes [41] on the level of
the generated set of quantum channels, i.e. including energy-
coherent state transformations. Nevertheless, it is still an open
question whether such catalytic power also closes the gap be-
tween thermal operations and Gibbs-preserving ones. The
most recent progress on this problem is Ref. [42], which sug-
gests that there are Gibbs-preserving operations that require
infinite coherence to be implemented; however, it is unclear
whether this coherence can be used catalytically. One of the
challenges to this open problem lies again in the challenge of
retaining external correlations (or similarly, coherence) in the
catalyst after the process, as exemplified in [43].

We answer this question by showing that the free energy
determines general state transformations under thermal oper-
ations when we allow access to a thermodynamic battery. This
framework includes catalysis as a special case, but relaxes the
requirement of restoring the catalyst, and simply focuses on
the reusability of the battery – requiring that the thermody-
namic resource of the battery does not decrease. This ap-
proach is much more flexible and avoids the problems in catal-
ysis such as fine-tuning and embezzling. More formally, we
study transformations of the form ρS ⊗ τB → σS ′ ⊗ τ̃B′ , along
with the requirement that the free energy does not decrease
F(τ̃B′ ,HB′ ) ≥ F(τB,HB). Intuitively, this allows the battery to
act as a source of coherence without giving away free energy.
By analogous arguments to Theorem 1, we can show that at
any finite temperature T < ∞, the allowed set of transforma-
tions is governed by free energy, i.e. ρS → σS ′ if and only if
F(ρS ,HS ) ≥ F(σS ′ ,HS ′ ).

Theorem 3. A state
(
ρS ,HS

)
can be converted into another

state
(
σS ′ ,HS ′

)
with thermal operations and a free energy bat-

tery if and only if F(ρS ,HS ) ≥ F(σS ′ ,HS ′ ).

We emphasize that Theorem 3 is fully general, i.e. it holds
for generic states, as opposed to most results in single-shot
thermodynamics that hold only for energy-incoherent states.
Furthermore, we can even allow the system and battery to get
correlated, similar to the entanglement case. Because free en-
ergy is a superadditive measure, it will still govern the allowed
transformations. The proof of Theorem 3 relies on the key in-
sight that thermal operations allow for the swapping of system
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and battery states. To reiterate, while swapping only the state
between two systems is only allowed if they have the same
Hamiltonian, swapping both the state and the Hamiltonian is
always allowed since it amounts to a relabelling of the sys-
tems.

Note that as we take the limit of the temperature T → ∞,
the free energy of any state diverges except for the Gibbs state.
The condition in Theorem 3 suggests that in this limit, the set
of states can be divided into two classes: the Gibbs state and
everything else. However, this is not the case; if we allow the
battery to have infinite free energy, then we can subtract any
finite amount of free energy from the battery and satisfy the
resource non-decreasing condition on the battery. This would
allow us to create any state, even starting from the Gibbs state.
Thus, in order to obtain meaningful conditions for state ma-
nipulations, the resource measure of the battery should be fi-
nite.

The choice of free energy F in Theorem 3 is not unique: in
the quantum regime, there exists a family of generalized free
energies Fα [44] that determines the allowed transformations
with exact catalysis. All of these generalized free energies are
additive, and therefore using them in our framework will lead
to transformations that are governed by a single monotone.
We can go further and relate the resource change in the battery
to that in the system:

f (ρS ,HS ) − f (σS ′ ,HS ′ ) ≥ f (τ̃B′ ,HB′ ) − f (τB,HB), (8)

which hold for any additive monotone f . However, when
we allow correlations, then Eq. (8) is equivalent to the lo-
cal monotonicity property studied in Ref. [45]. There, it was
shown that standard free energy F is essentially the only func-
tion that is locally monotonic and continuous, up to additive
and multiplicative constants. This gives a formulation of the
thermodynamic second law for coherent quantum systems.

It is worth noting that the state transformation conditions in
Theorem 3 are identical to that of Gibbs-preserving operations
with correlated catalysis [33]. Thus, our theorem provides an
operational interpretation of catalytic Gibbs-preserving opera-
tions as thermal operations augmented with a free energy bat-
tery. In our setting, the battery can act as a reservoir of coher-
ence that can be freely used. At the same time, we can prevent
pumping free energy into the system by constraining the free
energy of the battery. It would be interesting to investigate
whether we can augment thermal operations in a similar way
to reproduce the non-catalytic version of Gibbs-preserving op-
erations.

CONCLUSIONS

In this article, we have explored the concept of entangle-
ment batteries and their impact on the manipulation of entan-
gled systems. Our findings illuminate the path toward achiev-
ing reversible entanglement manipulations across all quantum
states, thereby addressing a long-standing challenge in quan-
tum information science.

Our results lead to a family of “second laws” for entangle-
ment manipulation, each characterized by the specific mea-
sure used to quantify entanglement of the system. Notably,
we demonstrate that, for certain entanglement quantifiers, the
asymptotic conversion rates for any two states ρ and σ take a
particularly simple form E(ρ)/E(σ).

This work also opens several avenues for future research,
presenting intriguing questions pivotal for a deeper under-
standing of entangled systems. A particularly compelling
area for further investigation involves identifying all entan-
glement quantifiers that yield conversion rates in the form of
E(ρ)/E(σ). Although it was previously speculated [4] that the
regularized relative entropy of entanglement might uniquely
possess this characteristic, our findings hint at the possibility
that other entanglement quantifiers may also be suitable for
this task.

Our techniques are not limited to the domain of entangle-
ment but are applicable to a broad spectrum of quantum re-
sources [46]. This can be achieved through generalizing the
concept of entanglement battery to a resource battery – a sup-
plementary system that participates in the transformation pro-
cess without a decrease of the resource in question. Although
the principle of reversibility has been confirmed in various
quantum resource theories by other methods, our framework
stands out as a comprehensive model. It can systematically
enable the demonstration of reversibility across quantum re-
source theories based on a minimal set of assumptions.

METHODS

LOCC with entanglement battery

Let us start with a formal definition of the procedure con-
sidered in our article. We say that ρAB can be converted into
σAB via LOCC with entanglement battery if there exists an
LOCC protocol Λ and states τA′B′ and τ̃A′B′ such that

Λ(ρAB ⊗ τA′B′ ) = σAB ⊗ τ̃A′B′ . (9)

For more details about LOCC protocols and their features we
refer to Ref. [47]. In the following, we denote AB as the main
system, and A′B′ comprises the entanglement battery. More-
over, we require that the final state of the battery τ̃ has at least
the same amount of entanglement as the initial state τ, i.e.,

E(τ̃A′B′ ) ≥ E(τA′B′ ). (10)

If E is continuous, then without loss of generality we can even
assume that the entanglement of the battery is conserved, as
we can always mix the final state of the battery with a separa-
ble state to decrease the final battery entanglement. A similar
scenario has been introduced in [13], without the entangle-
ment non-decreasing condition on the battery.

In the asymptotic setting, we say that ρ can be converted
into σ with an achievable rate r via LOCC with entanglement
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battery, if for any ε, δ > 0, there are integers m, n, an LOCC
protocol Λ, and a battery state τ such that

Λ
(
ρ⊗n ⊗ τC

)
= µS 1...S m ⊗ τ̃C , (11a)

∥∥∥µS 1...S m − σ⊗m
∥∥∥

1 < ε, (11b)

E(τ̃C) ≥ E(τC), (11c)
m
n
> r − δ. (11d)

Here, each system S i denotes a copy of the bipartite system
AB, and C denotes the battery system, which is also bipar-
tite. Furthermore, entanglement in the battery is measured by
a fixed measure E. The supremum over all achievable rates r
is denoted by R(ρ→ σ).

In the setting defined above, the battery is not correlated
with the main system at the end of the procedure. In the Sup-
plemental Material, we also discuss the more general setting
where correlations between the main system and the battery
are taken into account.

Proof of Theorems 1 and 2

In the following, we assume that E is an additive and
asymptotically continuous measure [26], i.e.,

EAA′ |BB′ (ρAB ⊗ σA′B′ ) = EA|B(ρAB) + EA′ |B′ (σA′B′ ), (12)
|E(ρ) − E(σ)| ≤ K ∥ρ − σ∥1 log2 d + f (∥ρ − σ∥1).

(13)

Here, K > 0 is a constant, d is the dimension of the Hilbert
space, and f (x) is some function which does not depend on d
and vanishes in the limit x→ 0.

To prove Theorem 1, let us first assume that ρAB can be con-
verted into σAB via LOCC with entanglement battery. Then,
there is an LOCC protocol Λ and states τA′B′ and τ̃A′B′ such
that Eqs. (9) and (10) are fulfilled. Using the additivity of E,
finiteness and its monotonicity under LOCC, we obtain

E(σAB) = E(σAB ⊗ τ̃A′B′ ) − E(τ̃A′B′ ) (14)

≤ E(ρAB ⊗ τA′B′ ) − E(τ̃A′B′ ) ≤ E(ρAB).

This shows that the amount of entanglement in the main sys-
tem AB cannot increase in this procedure.

To prove the converse, let ρ and σ be two states fulfilling

E(ρ) ≥ E(σ). (15)

A conversion ρ→ σ can be achieved in this setting by choos-
ing

τA′B′ = σA′B′ , (16)

and the LOCC protocol consists of local permutations of A
and A′ on Alice’s side, and correspondingly B and B′ on Bob’s
side. Performing this protocol, the overall initial state ρAB ⊗

σA′B′ is converted into σAB ⊗ ρA′B′ . Thus, the state of the
battery at the end of the process is given by

τ̃A′B′ = ρA′B′ . (17)

Due to Eq. (15) we have E(τ̃) ≥ E(τ) as required, and thus
this protocol achieves the transformation ρAB → σAB. This
completes the proof of Theorem 1.

We will now prove Theorem 2, showing that for any entan-
glement measure which is additive and asymptotically contin-
uous, the asymptotic transformation rates take the form

R(ρ→ σ) =
E(ρ)
E(σ)

. (18)

For this, we will first show that the rate is upper bounded by
E(ρ)/E(σ). From Eqs. (11), additivity of E, and the fact that
E is nonincreasing under LOCC, it follows that

E
(
µS 1...S m

)
+ E

(
τ̃C

)
= E

(
µS 1...S m ⊗ τ̃C

)
≤ E

(
ρ⊗n ⊗ τC

)

= nE(ρ) + E(τ), (19)

which together with Eq. (11c) implies

E
(
µS 1...S m

)
≤ nE(ρ). (20)

Using again Eqs. (11) with asymptotic continuity of E we ar-
rive at

E
(
σ⊗m

)
≤ E

(
µS 1...S m

)
+ Kεm log2 d + f (ε), (21)

where d is the dimension of S i. Combining these results we
obtain

mE(σ) = E
(
σ⊗m

)
≤ nE(ρ) + Kεm log2 d + f (ε), (22)

which can also be expressed as

m
n
≤ E(ρ) + f (ε)

n

E(σ) − εK log2 d
. (23)

Assuming that

0 < ε <
E(σ)

K log2 d
(24)

and using Eqs. (11), we see that any feasible rate r must fulfill

r <
E(ρ) + f (ε)

n

E(σ) − εK log2 d
+ δ. (25)

Recalling that we can choose arbitrary δ > 0 and ε in the
range (24), it follows that the asymptotic transformation rate
is upper bounded by E(ρ)/E(σ), as claimed.

We will now present a protocol achieving conversion at rate
E(ρ)/E(σ). Assume first that E(ρ)/E(σ) is a rational number,
i.e., there exist integers m and n such that

m
n
=

E(ρ)
E(σ)

. (26)
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In this case, we can choose the initial state of the battery to be
τ = σ⊗m, and the total initial state is ρ⊗n ⊗ σ⊗m [48]. Similar
to the proof of Theorem 1, Alice and Bob now apply local
permutations, permuting the main system and the battery. The
final state is given by σ⊗m ⊗ ρ⊗n, where the battery is now in
the state τ̃ = ρ⊗n. The final amount of entanglement of the
battery is given by E(τ̃) = nE(ρ), which is equal to the initial
amount of entanglement E(τ) = mE(σ) due to Eq. (26). This
proves that for rational E(ρ)/E(σ) a transformation with this
rate is achievable.

If E(ρ)/E(σ) is irrational, then for any ε > 0 there are inte-
gers m and n such that

E(ρ)
E(σ)

− ε < m
n
<

E(ρ)
E(σ)

. (27)

Alice and Bob now use the same procedure as in the ratio-
nal case. The amount of entanglement in the battery does
not decrease in this procedure, since nE(ρ) > mE(σ) due to
Eq. (27). Since ε > 0 in Eq. (27) can be chosen arbitrarily,
Alice and Bob can also achieve conversion at rate E(ρ)/E(σ)
in this case.

Proof of Theorem 3

We know that the free energy F is an additive monotone for
thermal operations. Furthermore, when 0 < T < ∞, then F
is always finite. Therefore, we can repeat the arguments of
Theorem 1 to obtain the only if direction.

For the if direction, we simply note that swapping the sys-
tem and battery along with their Hamiltonians is allowed in
thermal operations. Then, we can run the protocol in the proof
of Theorem 1 to show the if direction.

Zero error conversion

We will now consider a more restricted version of the con-
version problem, which we term zero error conversion. We
say that ρ can be converted into σ with zero error via LOCC
with entanglement battery if for any δ > 0, there exist integers
m, n, an LOCC protocol Λ, and states of the battery τ and τ̃
such that

Λ
(
ρ⊗n ⊗ τC

)
= σ⊗m ⊗ τ̃C , (28a)

E(τ̃C) ≥ E(τC), (28b)
m
n
+ δ > r. (28c)

In comparison to Eqs. (11), no error is allowed in the final
state, i.e., the state at the end of the procedure should be ex-
actly σ⊗m ⊗ τ̃C . The supremum over all feasible rates r in this
process will be called Rze(ρ→ σ).

For zero-error conversion, Theorem 2 is true for any addi-
tive entanglement measure, i.e., asymptotic continuity is not

required, and it holds that

Rze(ρ→ σ) =
E(ρ)
E(σ)

. (29)

To see this, we can write

mE(σ) + E(τ̃) = E
(
σ⊗m ⊗ τ̃

)
≤ E

(
ρ⊗n ⊗ τ

)
(30)

= nE(ρ) + E(τ),

which implies that

m
n
≤ E(ρ)

E(σ)
. (31)

This means that the maximal transformation rate is upper
bounded by E(ρ)/E(σ). The converse can be seen with the
same protocol as in the proof of Theorem 2, see the discus-
sion below Eq. (26).

Entanglement measures which are additive and asymptotically
continuous

As mentioned in the main text, an example for an entan-
glement measure which is additive and asymptotically contin-
uous is the squashed entanglement given in Eq. (5) with the
quantum conditional mutual information of a state ρABE de-
fined as

I(A; B|E) = S (ρAE) + S (ρBE) − S (ρABE) − S (ρE). (32)

Additivity of the squashed entanglement on all states has been
proven in [27], while asymptotic continuity is a direct conse-
quence of the results presented in [32]. Moreover, squashed
entanglement is zero on separable states, and is larger than
zero otherwise [31].

Another example is the conditional entanglement of mutual
information, defined as [49, 50]

E(ρAB) = inf
1
2

{
I
(
AA′ : BB′

) − I
(
A′ : B′

)}
, (33)

where the infimum is taken over all extensions ρAA′BB′ of the
state ρAB, and I(X : Y) denotes the quantum mutual informa-
tion of the state ρXY :

I(X : Y) = S (ρX) + S (ρY ) − S (ρXY ). (34)

Additivity and asymptotic continuity of this entanglement
measure has been proven in [49, 50]. Moreover, this measures
is zero on separable states and larger than zero otherwise, as
follows from the fact that it vanishes on separable states [49]
and is lower bounded by squashed entanglement [50].

Other entanglement measures

Many entanglement measures known in the literature are
not generally additive or do not satisfy asymptotic continuity.
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However, we demonstrate that the presented approach can be
applied to some commonly used measures, even if these prop-
erties are not fulfilled, or not known to hold. An important
example is the relative entropy of entanglement [25], defined
as

Er(ρ) = min
σ∈S

S (ρ||σ), (35)

where S is the set of separable states, and S (ρ||σ) =
Tr(ρ log2 ρ) − Tr(ρ log2 σ) is the quantum relative entropy.
Since the relative entropy of entanglement is not additive [51],
our Theorems do not directly apply in this case. Neverthe-
less, as we show in the Supplemental Material, quantifying
the amount of entanglement in the battery by the relative en-
tropy of entanglement leads to a theory with bounded distil-
lation rates, in particular the asymptotic rate for converting a
state ρ into |ψ−⟩ is upper bounded by Er(ρ). Moreover, we
show that E∞r (ρ)/E∞r (σ) is a feasible transformation rate for
any two entangled states ρ and σ, where E∞r is the regular-
ized relative entropy of entanglement defined in Eq. (6). The
same rate is also feasible if the amount of entanglement in the
battery is quantified via E∞r . In this setting, we also obtain a
theory with bounded distillation rates. We note that for some
states ρ and σ the asymptotic transformation rate might ex-
ceed E∞r (ρ)/E∞r (σ). We refer to the Supplemental Material
for a more detailed discussion.

Another frequently used entanglement measure in the liter-
ature is the logarithmic negativity [28, 29], defined as

En(ρ) = log2

∥∥∥ρTA
∥∥∥

1 , (36)

where TA denotes partial transposition. Although this measure
is additive, it does not satisfy asymptotic continuity [7]. As
discussed above in the Methods section, the additivity of En
implies a reversible framework for zero error transformations.
Additionally, in the Supplemental Material, we demonstrate
that the entanglement distillation rate is bounded even when
allowing for an error margin in the transformation. Specifi-
cally, the asymptotic rate for the conversion ρ→ |ψ−⟩ is given
by En(ρ). We further note that logarithmic negativity vanishes
if and only if the state has positive partial transpose (PPT),
which means that this framework allows for the creation of
PPT states from separable states.

We will now show that measuring entanglement with log-
arithmic negativity entails a curious phenomenon, where it is
possible to dilute a state ρ into more copies of itself. More pre-
cisely, we demonstrate an asymptotic conversion of n copies
of a quantum state ρ into a noisy state which is close to m/n
copies of the initial state ρ, where m > n. Note that the error
may vanishes only in the limit n → ∞. We call this phe-
nomenon self-dilution. We emphasize that this effect does not
lead to embezzling of entanglement, since the entanglement
distillation rates are finite for any given state.

First, recall that we can convert any state ρ into singlets
at rate En(ρ) in this setup. As discussed above in the Meth-
ods section, this conversion can be achieved with zero error.
Moreover, by using LOCC it is possible to convert singlets
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Figure 2. Self-dilution rate En(|ψ⟩)/Ec(|ψ⟩) for |ψ⟩ = cosα |00⟩ +
sinα |11⟩ as a function of α.

approximately into the state ρ at rate 1/Ec(ρ), where Ec is
the entanglement cost [52]. Thus, performing these opera-
tions in sequence will convert ρ⊗n into a state which is close
to nEn(ρ)/Ec(ρ) copies of ρ, and the error can be made arbi-
trarily small in the limit of large n. Self-dilution of ρ occurs
whenever En(ρ)/Ec(ρ) > 1.

In Fig. 2 we show the rate En(|ψ⟩)/Ec(|ψ⟩) as a function of
α for the states |ψ⟩ = cosα |00⟩ + sinα |11⟩. The rate is above
one as long as |ψ⟩ is not maximally entangled, and diverges in
the limit α→ 0.

This phenomenon is not unique to logarithmic negativity, or
even entanglement theory. By analogous arguments, we can
show that self-dilution occurs in thermodynamics for incoher-
ent states if we use Fmax(ρ) = inf

{
log λ | ρ ≤ λγ} to quantify

the resources in the battery. Similarly to logarithmic negativ-
ity, Fmax(ρ) is not asymptotically continuous and has the op-
erational interpretation as the exact cost of preparing ρ from
many copies of |1⟩⟨1| [38]. We refer to the Supplementary Ma-
terial for more details.

While counter intuitive, self-dilution does not mean that
there are no cost associated with creating more copies of ρ.
This is because it is not clear that we can repeat the protocol
to obtain even more copies of ρ, and in fact this is forbidden
since the distillation rate to the singlet state is bounded. Phys-
ically, the battery is providing the extra entanglement/work
that is needed to create more copies of ρ. Therefore, this sce-
nario is relevant when only certain types of resource in the
battery are scarce [53], even in the asymptotic limit.
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SUPPLEMENTAL MATERIAL

Connection to catalysis

The notion of a resource battery is closely related to cataly-
sis [16, 17], which is studied extensively in resource theories,
entanglement being a special case thereof. Resource theories
are characterized by free operations and states, that describe
the abilities that an agent has unlimited access to. In entan-
glement theory, the standard set of free operations often cor-
respond to LOCC while free states being separable states; in
thermodynamics, thermal operations form the basic set of free
operations, with Gibbs thermal states being free states.

Given any resource theory, we say that ρ can be transformed
to σ with (exact) catalysis if we can find a catalyst state τ, and
a free operation Λ such that

Λ
(
ρS ⊗ τC

)
= σS ⊗ τC . (37)

Comparing this to our conditions on e.g. an entanglement bat-
tery Eqs. (9) and (10), we see that catalysis is a stricter condi-
tion: in catalysis, the state of the catalyst must be preserved,
while Eq. (10) only requires the entanglement in the battery is
preserved.

We can show that we can recover the catalytic condition if
we impose additional restrictions on the battery. Taking en-
tanglement theory as an example, let {Ei} be a complete set of
monotones for LOCC, i.e. there is an LOCC protocol trans-
forming ρ to σ if and only if Ei(ρ) ≥ Ei(σ) for all i. Let
us now impose the following condition on the battery-assisted
transformations: the battery entanglement must not decrease
for all of these Ei’s, namely Ei(τ̃) ≥ Ei(τ) for all i. In this case,
the completeness of {Ei} implies that there exists an LOCC
protocol that transform τ̃ back to τ. Thus we can always post-
process the battery into its initial state, and we recover the
catalytic condition. This implies that by imposing only a sin-
gle entanglement measure, we are ignoring all of the other
types of entanglement that are present in the battery. Com-
plete sets of monotones for entangled state transformations
have been investigated in [18, 54–57], while in thermodynam-
ics, the complete set of monotones have also been found for
smaller sets of state transformations [38].

Relative entropy of entanglement

Let us discuss the consequences of constraining the amount
of entanglement in the battery by the relative entropy of en-
tanglement defined as [25]

Er(ρ) = min
σ∈S

S (ρ||σ) (38)

with the quantum relative entropy

S (ρ||σ) = Tr(ρ log2 ρ) − Tr(ρ log2 σ), (39)

and S denotes the set of separable states. In particular, we are
interested in asymptotic transformations with rates defined in
Eqs. (11). This means that condition (11c) is replaced by

Er(τ̃) ≥ Er(τ). (40)

While the non-additivity of relative entropy of entanglement
prevents a straightforward application of our Theorems, we
can show that this framework gives rise to a nontrivial re-
source theory, with bounded entanglement distillation rates.
For this, we recall some useful properties of the relative en-
tropy of entanglement. In particular, Er does not increase un-
der LOCC [25] and is subadditive, i.e., for any two states ρ
and τ it holds that

EAA′ |BB′
r (ρAB ⊗ τA′B′ ) ≤ EA|B

r (ρAB) + EA′ |B′
r (τA′B′ ). (41)

In addition, the inequality becomes an equality if (at least) one
of the states is pure [58].

Additionally, we will use the following continuity property
which was proven implicitly in [59]. For completeness, we
will provide a proof.

Proposition 4. For any two states ρAB and σAB with 1
2 ||ρAB −

σAB||1 ≤ ε and any τA′B′ , it holds
∣∣∣∣EAA′ |BB′

r

(
ρAB ⊗ τA′B′

)
− EAA′ |BB′

r

(
σAB ⊗ τA′B′

)∣∣∣∣

≤ ε log2 dAB + (1 + ε)h
(

ε

1 + ε

)
, (42)

where h(x) = −x log2 x−(1−x) log2(1−x) is the binary entropy
and dAB is the dimension of AB.

Proof. The proof is implicitly contained in the proofs of
Lemma 2 and Lemma 7 in Ref. [59]. Without loss of gen-
erality we can set ||ρAB − σAB||1 = 2ε. We now define the
state

∆ =
1
ε

(ρ − σ)+, (43)

where (ρ − σ)+ denotes the positive part of ρ − σ. Using the
same arguments as in the proof of Lemma 2 in Ref. [59], we
find

ρ ⊗ τ = σ ⊗ τ + (ρ − σ) ⊗ τ
≤ σ ⊗ τ + ε∆ ⊗ τ
= (1 + ε)ω ⊗ τ, (44)

where we have defined the state

ω =
1

1 + ε
σ +

ε

1 + ε
∆. (45)

Due to Eq. (44), we can define another state

∆′ =
1 + ε
ε

ω − 1
ε
ρ, (46)

which implies that ω can also be written as

ω =
1

1 + ε
ρ +

ε

1 + ε
∆′. (47)
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Using convexity of the relative entropy of entanglement [60],
we find

Er(ω ⊗ τ) ≤ 1
1 + ε

Er(σ ⊗ τ) +
ε

1 + ε
Er(∆ ⊗ τ). (48)

Now, let γ ∈ S be a separable state such that Er(ω ⊗ τ) =
S (ω ⊗ τ||γ). Recalling that the von Neumann entropy fulfills
S (

∑
i piρi) ≤ ∑

i piS (ρi) + H(p) with H(p) = −∑
i pi log2 pi,

we obtain

Er(ω ⊗ τ) = −S (ω ⊗ τ) − Tr(ω ⊗ τ log2 γ) (49)

≥ −h
(

ε

1 + ε

)
− 1

1 + ε
S (ρ ⊗ τ) − ε

1 + ε
S (∆′ ⊗ τ)

− 1
1 + ε

Tr(ρ ⊗ τ log2 γ) − ε

1 + ε
Tr(∆′ ⊗ τ log2 γ)

= −h
(

ε

1 + ε

)
+

1
1 + ε

S (ρ ⊗ τ||γ) +
ε

1 + ε
S

(
∆′ ⊗ τ||γ)

≥ −h
(

ε

1 + ε

)
+

1
1 + ε

Er(ρ ⊗ τ) +
ε

1 + ε
Er(∆′ ⊗ τ).

Using Eqs. (48) and (49), we arrive at the inequality

Er(ρ ⊗ τ) − Er(σ ⊗ τ) ≤ ε [
Er(∆ ⊗ τ) − Er(∆′ ⊗ τ)

]

+ (1 + ε)h
(

ε

1 + ε

)
. (50)

Therefore, to complete the proof of the proposition, it is
enough to show that

Er(∆ ⊗ τ) − Er(∆′ ⊗ τ) ≤ log2 dAB. (51)

For this, note that

Er(∆ ⊗ τ) ≤ Er(ΦdAB ⊗ τ) = log2 dAB + Er(τ), (52)

where |ΦdAB⟩ =
∑dAB−1

i=0 |ii⟩ /√dAB is a maximally entangled
state on AB. Using Er(∆′ ⊗ τ) ≥ Er(τ), we arrive at Eq. (51),
and the proof is complete. □

Now, consider an asymptotic conversion ρ → ϕ+ with
|ϕ+⟩ = (|00⟩ + |11⟩)/√2. Using Eqs. (11) together with the
properties of Er mentioned above, we obtain

m + Er (τ̃) = Er

(
|ϕ+⟩⟨ϕ+|⊗m ⊗ τ̃

)
(53)

≤ Er

(
µS 1...S m ⊗ τ̃

)
+
ε

2
m +

[
1 +

ε

2

]
h
( ε

2

1 + ε
2

)

≤ Er

(
ρ⊗n ⊗ τ

)
+
ε

2
m +

[
1 +

ε

2

]
h
( ε

2

1 + ε
2

)

≤ nEr (ρ) + Er (τ) +
ε

2
m +

[
1 +

ε

2

]
h
( ε

2

1 + ε
2

)
.

This expression is equivalent to

m
n
≤ 1

1 − ε
2

[
Er (ρ)− 1

n
[Er (τ̃)−Er (τ)] +

1
n

[
1+

ε

2

]
h
( ε

2

1 + ε
2

)]
.

(54)

Using Eq. (40) we further obtain

m
n
≤ 1

1 − ε
2

[
Er (ρ) +

1
n

[
1 +

ε

2

]
h
( ε

2

1 + ε
2

)]
. (55)

Recalling that we can choose arbitrary ε > 0, these results
imply that the asymptotic rate for converting ρ into ϕ+ in this
framework is bounded above by Er(ρ), i.e.,

R(ρ→ ϕ+) ≤ Er(ρ). (56)

For any two entangled states ρ and σ, we will now show
that E∞r (ρ)/E∞r (σ) is a feasible rate for the conversion ρ→ σ,
where E∞r is the regularized relative entropy of entanglement

E∞r (ρ) = lim
n→∞

1
n

Er(ρ⊗n). (57)

For proving this, consider first two states ρ and σ such that

E∞r (ρ) > E∞r (σ). (58)

Then, it must be that Er(ρ⊗n)/n > Er(σ⊗n)/n for all large
enough n, and thus also

Er(ρ⊗n) > Er(σ⊗n). (59)

It is now possible to convert ρ⊗n into σ⊗n using a similar pro-
tocol as in the proof of Theorem 2. For this, we choose the
initial state of the battery to be τ = σ⊗n, i.e., the total initial
state is ρ⊗n ⊗ σ⊗n. Permuting the main system and the battery
(which can be achieved via local operations only), we obtain
the final state σ⊗n ⊗ ρ⊗n, where the battery is now in the state
τ̃ = ρ⊗n. Due to Eq. (59), it holds that E(τ̃) > E(τ), i.e., the
amount of entanglement in the battery does not decrease.

The above arguments show that for any two states fulfilling
Eq. (58) the asymptotic rate for converting ρ into σ is at least
one. Consider now two general states ρ and σ, not necessarily
fulfilling Eq. (58). For any ε > 0 we can find two integers k
and l such that

1 <
E∞r (ρ⊗k)
E∞r (σ⊗l)

< 1 + ε. (60)

Following the same reasoning as above, it is possible to con-
vert the state ρ⊗k into σ⊗l with rate at least one, which means
that ρ can be converted into σ with rate at least l/k. Recall
that E∞r is additive on the same state, i.e., E∞r (ρ⊗k) = kE∞r (ρ)
and similar for σ. It follows that

l
k
>

E∞r (ρ)
(1 + ε)E∞r (σ)

, (61)

which means that E∞r (ρ)/E∞r (σ) is a feasible transformation
rate in this setting.

In Ref. [7], an example of a state with different dis-
tillable entanglement and entanglement cost with non-
entangling operations was presented. The state is ρ =
1
6
∑3

i, j=1 (|ii⟩⟨ii| − |ii⟩⟨ j j|), which is a maximally correlated
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state, with distillable entanglement Ed(ρ) = log 3/2 and en-
tanglement cost Ec(ρ) = 1. Let us compare what happens
if we have access to an entanglement battery, quantified by
relative entropy. Since the relative entropy of entanglement
is additive if one of the states is a maximally correlated
state [58], the arguments above show that transformations be-
tween maximally correlated states are reversible. This means
that we can reversibly convert the state ρ to a singlet at a rate
Er(ρ) = log 3/2 with the help of an entanglement battery. This
is in contrasts to the non-entangling operations case, where the
entanglement cost is strictly higher.

Let us now analyze the transformation rates if the amount
of entanglement in the battery is quantified via the regularized
relative entropy of entanglement, i.e., Eq. (11c) is replaced by

E∞r (τ̃) ≥ E∞r (τ). (62)

Since it is not known if the regularized relative entropy of en-
tanglement is fully additive, this prevents a straightforward
application of our Theorems. Nevertheless, we will see in the
following that we obtain a nontrivial theory of entanglement
manipulations, with bounded asymptotic entanglement distil-
lation rates. Similar to the non-regularized version, note that
E∞r is subadditive, i.e.,

E∞r (ρ ⊗ τ) ≤ E∞r (ρ) + E∞r (τ). (63)

Moreover, we can show that E∞r fulfills Proposition 4. More
precisely, for any two states ρ and σ in a Hilbert space of
dimension dAB with 1

2 ||ρ − σ||1 ≤ ε and any τ, we have
∣∣∣E∞r (ρ ⊗ τ) − E∞r (σ ⊗ τ)

∣∣∣ ≤ ε log2 dAB + (1 + ε)h
(

ε

1 + ε

)
.

(64)
For this, we can use similar arguments as in the proof of
Corollary 8 in [59]. As can be seen by inspection, the fol-
lowing equality holds:

Er

(
ρ⊗n ⊗ τ⊗n

)
− Er

(
σ⊗n ⊗ τ⊗n

)
(65)

=

n∑

t=1

Er

(
ρ⊗t ⊗ τ⊗t ⊗ σ⊗n−t ⊗ τ⊗n−t

)

− Er

(
ρ⊗t−1 ⊗ τ⊗t−1 ⊗ σ⊗n−t+1 ⊗ τ⊗n−t+1

)

=

n∑

t=1

Er (ρ ⊗ τ ⊗Ωt) − Er (σ ⊗ τ ⊗Ωt)

with Ωt = (ρ ⊗ τ)⊗t−1 ⊗ (σ ⊗ τ)⊗n−t. Using triangle inequality,
we obtain:

∣∣∣∣Er

(
ρ⊗n ⊗ τ⊗n

)
− Er

(
σ⊗n ⊗ τ⊗n

)∣∣∣∣ (66)

≤
n∑

t=1

|Er (ρ ⊗ τ ⊗Ωt) − Er (σ ⊗ τ ⊗Ωt)| .

Using Proposition 4, we further obtain

|Er (ρ ⊗ τ ⊗Ωt) − Er (σ ⊗ τ ⊗Ωt)|
≤ ε log2 dAB + (1 + ε)h

(
ε

1 + ε

)
(67)

for any t. Collecting the above results gives us
∣∣∣∣Er

(
ρ⊗n ⊗ τ⊗n

)
− Er

(
σ⊗n ⊗ τ⊗n

)∣∣∣∣ ≤ nε log2 dAB (68)

+ n(1 + ε)h
(

ε

1 + ε

)
.

From this expression we directly obtain
∣∣∣∣∣
1
n

Er

(
ρ⊗n ⊗ τ⊗n

)
− 1

n
Er

(
σ⊗n ⊗ τ⊗n

)∣∣∣∣∣ ≤ ε log2 dAB (69)

+ (1 + ε)h
(

ε

1 + ε

)
,

which implies the claimed inequality (64) by taking the limit
n→ ∞.

Now, we can obtain statements analogous to Eq. (53) for
the transition ρ→ ϕ+:

m + E∞r (τ̃) = E∞r
(
|ϕ+⟩⟨ϕ+|⊗m ⊗ τ̃

)
(70)

≤ E∞r
(
µS 1...S m ⊗ τ̃

)
+
ε

2
m +

[
1 +

ε

2

]
h
( ε

2

1 + ε
2

)

≤ E∞r
(
ρ⊗n ⊗ τ

)
+
ε

2
m +

[
1 +

ε

2

]
h
( ε

2

1 + ε
2

)

≤ nE∞r (ρ) + E∞r (τ) +
ε

2
m +

[
1 +

ε

2

]
h
( ε

2

1 + ε
2

)
.

Using the same arguments as below Eq. (53), we conclude that
the asymptotic entanglement distillation rate is upper bounded
by E∞r (ρ). Moreover, for any two entangled states ρ and σ a
transformation at rate E∞r (ρ)/E∞r (σ) can be achieved by using
the protocol described below Eq. (57).

We further notice that if the regularized relative entropy
of entanglement is additive, i.e., if the inequality (63) is an
equality for all states ρ and τ, then by asymptotic continuity
of E∞r [59, 61] we can apply Theorem 2. It follows that the op-
timal transformation rate for any pair of states in this setting
is given by R(ρ → σ) = E∞r (ρ)/E∞r (σ), which interestingly
coincides with the rate conjectured in [4].

Logarithmic negativity

We will now quantify entanglement using logarithmic neg-
ativity [28, 29]

En(ρ) = log2

∥∥∥ρTA
∥∥∥

1 , (71)

and investigate transformations with entanglement battery, re-
placing condition (10) by

En(τ̃) ≥ En(τ). (72)

Recalling that logarithmic negativity is additive and mono-
tonic under LOCC [29], we directly see that Theorem 1 also
holds in this setting. Moreover, due to the additivity of log-
arithmic negativity, we immediately see that the zero-error
rates are given by

Rze(ρ→ σ) =
En(ρ)
En(σ)

. (73)
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More details can also be found in the Methods section.
We will now consider asymptotic transformation with an er-

ror margin which vanishes in the asymptotic limit, as defined
in Eqs. (11). Logarithmic negativity is not asymptotically con-
tinuous [7], which prevents a direct application of Theorem 2.
However, we will show that it still leads to a nontrivial theory
of entanglement manipulation, with bounded singlet distilla-
tion rates. To see this, consider the asymptotic transformation
ρ → ϕ+. Due to additivity, note that the final state µS 1...S m

fulfills

En

(
µS 1...S m

)
≤ nEn(ρ). (74)

Assume now that µS 1...S m is close to m Bell states, i.e.,
∥∥∥µS 1...S m − |ϕ+⟩⟨ϕ+|⊗m∥∥∥

1 < ε. (75)

In the next step, we use the following continuity bound [62]
∥∥∥ρTA

∥∥∥
1 −

∥∥∥σTA
∥∥∥

1 ≤ dA ∥ρ − σ∥1 . (76)

This implies that

∥∥∥µTA
∥∥∥

1 ≥
∥∥∥∥|ϕ+⟩⟨ϕ+|TA

∥∥∥∥
m

1
− 2mε, (77)

where µTA denotes the partial transpose of the state µS 1...S m .
Collecting the above results and recalling that

|| |ϕ+⟩⟨ϕ+|TA ||1 = 2, we obtain

nEn(ρ) ≥ En

(
µS 1...S m

)
= log2

(∥∥∥µTA
∥∥∥

1

)
(78)

≥ log2

(∥∥∥∥|ϕ+⟩⟨ϕ+|TA
∥∥∥∥

m

1
− 2mε

)

= m + log2(1 − ε).

This inequality can also be expressed as

m
n
≤ En(ρ) − 1

n
log2(1 − ε). (79)

Since we can choose arbitrary ε > 0, this result means that
the asymptotic transformation rate for the conversion ρ→ ϕ+

is upper bounded by En(ρ). It is further clear that En(ρ) is a
feasible rate for the transformation ρ → ϕ+, as can be seen
using the same techniques as in the proof of Theorem 2. This
gives an operational meaning to logarithmic negativity as the
optimal rate of distilling singlets in the presence of a resource
battery.

Geometric entanglement

We will now show that not all entanglement quantifiers lead
to a meaningful theory for entanglement manipulation. This
can be demonstrated in particular for the geometric entangle-
ment, defined as [63, 64]

Eg(ρ) = 1 −max
σ∈S

F(ρ, σ) (80)

with fidelity F(ρ, σ) =
(
Tr

√√
ρσ
√
ρ
)2

and S is the set of
separable states. We now consider asymptotic transformation
rates as defined in Eq. (11), where the condition (11c) is re-
placed by

Eg(τ̃C) ≥ Eg(τC), (81)

i.e., the amount of entanglement in the battery is constrained
by the geometric entanglement.

As we will now show, in this setting it is possible to convert
n Bell states |ϕ+⟩ into rn copies of |ϕ+⟩ for any r with arbitrary
accuracy. For this, consider a pure state of the form

|ψ⟩ = 1√
2
|00⟩ + 1√

2(d − 1)

d−1∑

i=1

|ii⟩ , (82)

where d is the local dimension of Alice and Bob. The geomet-
ric entanglement of this state is given by Eg(|ψ⟩) = 1/2, which
is the same amount as in the Bell state |ϕ+⟩ = (|00⟩+ |11⟩)/√2.
At the same time, the entanglement entropy of |ψ⟩ is given by

S (ψA) = 1 +
1
2

log2(d − 1), (83)

which is unbounded for large d. This also means that the dis-
tillable entanglement of |ψ⟩ is unbounded [8].

Assume now that Alice and Bob share an initial state of the
form |ϕ+⟩⊗n ⊗ |ψ⟩⊗n, where the battery is in the state |ψ⟩⊗n. If
Alice and Bob permute the primary system and the battery,
they obtain the state |ψ⟩⊗n ⊗ |ϕ+⟩⊗n, where the final state of the
battery is |ϕ+⟩⊗n. Noting that

Eg(|ϕ+⟩⊗n) = Eg(|ψ⟩⊗n) = 1 − 1
2n (84)

we conclude that it is possible to convert n Bell states into n
copies of the state |ψ⟩, while preserving the geometric entan-
glement of the battery. Since we can perform another LOCC
protocol to distill singlets, it follows that in this setting |ϕ+⟩⊗n

can be converted into |ϕ+⟩⊗nS (ψA) with arbitrary accuracy for
large enough n. Moreover, S (ψA) can be made arbitrarily large
by appropriately choosing the local dimension d.

In summary, we have shown that choosing the geometric
entanglement for the setting considered in this article leads
to a trivial theory of entanglement. Note that this is distinct
from the phenomenon of self-dilution observed with logarith-
mic negativity, since in that case, the distillation rates are still
bounded. Here, the divergence of distillation rates is caused
by the lack of sensitivity in geometric entanglement to distin-
guish |ψ⟩ and |ϕ+⟩.

Correlations between main system and battery

We will now consider a more general setting where the bat-
tery might become correlated with the main system. We say
that a state ρ can be transformed into another state σ in this
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setting if for any ε > 0 there exists an LOCC protocol Λ and
a state of the battery τ such that

Λ
(
ρAB ⊗ τA′B′

)
= µABA′B′ , (85a)

∥∥∥µAB − σAB
∥∥∥

1 < ε, (85b)

E(µA′B′ ) ≥ E(τA′B′ ). (85c)

To obtain nontrivial state transformations, we consider en-
tanglement measures E having the following properties:

1. Monotonicity under LOCC:

E(Λ[ρ]) ≤ E(ρ) (86)

for any LOCC protocol Λ.

2. Superadditivity:

EAA′ |BB′ (ρAA′BB′ ) ≥ E(ρAB) + E(ρA′B′ ). (87)

3. Additivity on product states:

EAA′ |BB′ (ρAB ⊗ σA′B′ ) = E(ρAB) + E(σA′B′ ). (88)

4. Continuity.

Note that asymptotic continuity is not required in the fol-
lowing. Examples of entanglement measures fulfilling these
properties are the squashed entanglement [27] and the con-
ditional entanglement of mutual information [49, 50] (see
main text and Methods section for the definition of these mea-
sures). To see that conditional entanglement of mutual infor-
mation fulfills superadditivity (property 2), consider an exten-
sion τAA′A′′BB′B′′ of the state ρAA′BB′ . It holds that

I(AA′A′′ : BB′B′′) − I(A′′ : B′′) (89)
= I(AA′A′′ : BB′B′′) − I(A′A′′ : B′B′′)
+ I(A′A′′ : B′B′′) − I(A′′ : B′′),

which directly implies that E(ρAA′BB′ ) ≥ E(ρAB) + E(ρA′B′ ).
Continuity together with Eqs. (85) implies that for any δ >

0, there is an LOCC protocol Λ and a state of the battery τ
such that

Λ
(
ρAB ⊗ τA′B′

)
= µABA′B′ , (90a)

∣∣∣∣E
(
σAB

)
− E

(
µAB

)∣∣∣∣ < δ, (90b)

E(µA′B′ ) ≥ E(τA′B′ ). (90c)

We will now show that state transformations in this setting
are fully characterized by the amount of entanglement E, i.e.,
a state ρAB can be converted into σAB if and only if

E(ρAB) ≥ E(σAB). (91)

To prove this, we will first show that the amount of entangle-
ment in the main system AB cannot increase in this procedure.

If ρAB can be converted into σAB, then

E
(
σAB

)
≤ E

(
µAB

)
+ δ ≤ EAA′ |BB′

(
µABA′B′

)
− E

(
µA′B′

)
+ δ

≤ EAA′ |BB′
(
ρAB ⊗ τA′B′

)
− E

(
µA′B′

)
+ δ

= E
(
ρAB

)
+ E

(
τA′B′

)
− E

(
µA′B′

)
+ δ

≤ E
(
ρAB

)
+ δ. (92)

Since δ > 0 can be chosen arbitrarily, we obtain Eq. (91) as
claimed. The converse can be shown using the same protocol
as in the proof of Theorem 2, i.e., initializing the battery in the
desired target state, and then permuting the state of the main
system and the battery.

We will now show that for bipartite pure states |ψ⟩AB and
|ϕ⟩AB, the transitions are fully characterized by the entangle-
ment entropy, i.e., the transformation |ψ⟩AB → |ϕ⟩AB is possi-
ble if and only if

S (ψA) ≥ S (ϕA). (93)

Interestingly, this result does not depend on the entanglement
measure used, as long as the measure fulfills the properties
1-4 mentioned above. Note that this generalizes the result of
Ref. [13] by allowing general mixed states as a battery.

For proving this statement, recall that Eq. (93) completely
characterizes transformations between pure states in a cat-
alytic setting [36], which is a more restrictive setting than al-
lowing for a correlated battery. In more detail, we say that ρ
can be converted into σ via LOCC with correlated catalyst if
for any ε > 0 there exists an LOCC protocol Λ and a state τ
such that [23, 24, 36]

Λ
(
ρAB ⊗ τA′B′

)
= µABA′B′ , (94a)

∥∥∥µAB − σAB
∥∥∥

1 < ε, (94b)

µA′B′ = τA′B′ . (94c)

As follows from the results in [36], a pure state |ψ⟩AB can be
converted into another pure state |ϕ⟩AB in this setting if and
only if Eq. (93) is fulfilled. Note that any entanglement mea-
sure E which fulfills conditions 1-4 mentioned above does not
increase in this setting [36]. In more detail, if ρAB can be con-
verted into σAB via LOCC with correlated catalysis, it holds
that E(σAB) ≤ E(ρAB).

Summarizing these arguments, any entanglement measure
E which fulfills the properties 1-4 mentioned above must have
the same monotonicity on pure states as the entanglement en-
tropy:

E
(
|ψ⟩AB

)
≥ E

(
|ϕ⟩AB

)
⇐⇒ S

(
ψA

)
≥ S

(
ϕA

)
. (95)

This shows that Eq. (93) is necessary and sufficient for a tran-
sition |ψ⟩AB → |ϕ⟩AB via LOCC with entanglement battery, as
defined in Eqs. (85).

We will now consider asymptotic state transformations in
this setting. We say that ρ can be converted into σ at rate r if
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for any ε, δ > 0 there exist integers m, n, an LOCC protocol
Λ, and a state of the battery τ such that

Λ
(
ρ⊗n ⊗ τC

)
= µS 1...S mC , (96a)

∥∥∥µS 1...S m − σ⊗m
∥∥∥

1 < ε, (96b)

E(µC) ≥ E(τC), (96c)
m
n
+ δ > r. (96d)

In the following, R(ρ → σ) denotes the supremum over all
feasible rates r in this setting.

We will now show that for any entanglement measure satis-
fying the properties 1-4 mentioned above, the asymptotic rate
is given by

R(ρ→ σ) =
E(ρ)
E(σ)

. (97)

We will first show that the transformation rate is upper
bounded as

R(ρ→ σ) ≤ E(ρ)
E(σ)

. (98)

For this, we consider the following relaxation of the asymp-
totic transformation task (a similar technique has been used
in [24]). Instead of establishing m copies ofσ from n copies of
ρwith a battery C, our goal is to establish a state µS 1...S mC , with
each of the subsystems S i having almost the same amount of
entanglement as σ. In more detail, we require that for any
ε, δ > 0 there are integers m and n, an LOCC protocol Λ and
a state of the battery τC such that for all i ≤ m,

Λ
(
ρ⊗n ⊗ τC

)
= µS 1...S mC , (99a)

∣∣∣E(µS i ) − E(σ)
∣∣∣ < ε, (99b)

E(µC) ≥ E(τC), (99c)
m
n
> r − δ. (99d)

Here, r is a feasible transformation rate in this process, and the
supremum over all feasible rates will be denoted by R′(ρ →
σ). Recalling that E is continuous (property 4), we have

R′(ρ→ σ) ≥ R(ρ→ σ). (100)

Using Eqs. (99) and the properties 1-4 of E we find

nE (ρ) + E (τ) = E
(
ρ⊗n ⊗ τC

)
≥ E

(
µS 1...S mC

)
(101)

≥
m∑

i=1

E
(
µS i

)
+ E

(
µC

)
,

which further implies

nE (ρ) ≥
m∑

i=1

E
(
µS i

)
. (102)

Using once again Eqs. (99) we arrive at

nE(ρ) > m [E(σ) − ε] , (103)

leading to

m
n
<

E(ρ)
E(σ) − ε . (104)

Applying Eqs. (99) one more time we obtain

r <
E(ρ)

E(σ) − ε + δ. (105)

Since ε > 0 and δ > 0 can be chosen arbitrarily, we obtain

R′(ρ→ σ) ≤ E(ρ)
E(σ)

. (106)

Together with Eq. (100) this completes the proof of Eq. (98).
To complete the proof of Eq. (97), we need to show the con-

verse, i.e., a protocol achieving conversion at rate E(ρ)/E(σ).
This can be done in the same way as in the proof of Theo-
rem 2. In summary, we have proven that the asymptotic rates
are given by Eq. (97) in this setting. This applies to any entan-
glement quantifier E which fulfills properties 1-4 mentioned
above.

Self-dilution in thermodynamics

As mentioned, self-dilution also occurs in thermodynamics
if we quantify the battery using Fmax

Fmax(ρ) = inf
{
log λ | ρ ≤ λγ}. (107)

As with entanglement, we look at the protocol where we per-
form a distillation with a battery and then dilute the result to
get the initial state back. Let us focus on transitions between
incoherent states on a single qubit. In this setting, we can per-
form a distillation/dilution into |1⟩⟨1| reversibly, with a rate de-
termined by free energy F [65]. Furthermore, since we only
look at transformations between incoherent states, no addi-
tional source of coherence is needed in the dilution process.

Now, let us look at the distillation rate R(ρ → |1⟩⟨1|) when
we use a free energy battery quantified by Fmax. Note that
Fmax is additive, so the final state µ satisfies nFmax(ρ) ≥
Fmax(µ). Furthermore, Fmax satisfies the asymptotic equipar-
tition property [66], so

lim
ϵ→0

lim
m→∞ inf∥µ−|1⟩⟨1|⊗m∥≤ϵ

1
m

Fmax(µ) = F(|1⟩⟨1|). (108)

Now, for any ϵ, δ > 0, we have m, n, µ from Eqs. (11) which
satisfies

m
n
≤ Fmax(ρ)

Fmax(µ)/m
. (109)

Using the asymptotic equipartition property and the definition
of r, we get

r ≤ lim
ϵ→0

lim
m→∞ sup
∥µ−|1⟩⟨1|⊗m∥≤ϵ

Fmax(ρ)
Fmax(µ)/m

(110)

=
Fmax(ρ)
F(|1⟩⟨1|) + δ.
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Since this holds for any δ > 0, we must have R(ρ →
|1⟩⟨1|) ≤ Fmax(ρ)/F(|1⟩⟨1|), and in particular the distillation
rate is bounded.

Now, consider the following process: we start with ρ⊗n

and we distill |1⟩⟨1|⊗nr with the help of a battery, where r =
Fmax(ρ)/Fmax(|1⟩⟨1|). Since we are doing this with a battery,
we know that this can be done without error. Then, we per-
form a dilution procedure |1⟩⟨1|⊗nr → ρ⊗nrr′ without battery,

with r′ = F(|1⟩⟨1|)/F(ρ) [65]. Then, we have

rr′ =
Fmax(ρ)

F(ρ)
F(|1⟩⟨1|)

Fmax(|1⟩⟨1|) , (111)

and we can perform the transformation ρ⊗n → ρ⊗nrr′ with a
battery. We finish by noting that in general we have Fmax(ρ) ≥
F(ρ), and for incoherent states on a single qubit ρ = (1 −
p) |0⟩⟨0| + p |1⟩⟨1|, we have equality only when p = 0, 1 or
when ρ = γ.
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Abstract. Quantum Bayesian estimation, a framework for interpreting the process of quantum state
estimation through Bayesian principles, has recently gained prominence in quantum metrology, particularly
within the finite sample regime. The lower bound for Bayes risk serves as a critical value for achieving
ultimate precision in this context. Building upon the recently proposed bound in quantum point estimation,
the Nagaoka-Hayashi bound, which refines the Holevo bound, we extend this bound within the framework
of Bayesian methodology. As a by-product, we demonstrate that the proposed bound unifies previously
established lower bounds based on logarithmic derivative-type equations.
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1 Introduction

Quantum estimation has gained significant impor-
tance in recent years, primarily due to advancements
in the study of near-term quantum technologies, quan-
tum communication over noisy quantum channel [1–3],
quantum sensors [4–6], quantifying phase information
[7, 8], quantum imaging [9–11], and quantum metrol-
ogy [12,13]. Quantum Bayesian estimation, which applies
the Bayesian approach to quantum estimation, is crucial
in the fields of quantum sensing and quantum metrology
from the perspective of practical applications of quantum
estimation [14–17].
The concept of the Quantum Bayesian estimation

bound was pioneered by Personick back in 1969 [18, 19].
He developed two different approaches to the quantum
Bayesian lower bounds: one is the van Trees type bound
and the other is based on the optimal Bayes estima-
tor [20]. The second-type bound is now referred to as
the Personick bound, and it is known that classically this
yields the achievable bound. Indeed, Personick proved
that his bound is attainable for estimating a single pa-
rameter encoded in quantum states. This work was much
later extended to multi-parameter scenarios by Rubio
and Dunningham [21], Demkowicz-Dobrzański et al. [22],
and Sidhu and Kok [23]. Importantly, the Personick
bound and its generalization is based on the symmetric
logarithmic derivative (SLD) type equation [24]. A less
known bound in the community is based on the right log-
arithmic derivative (RLD) type equation [25], which was
intensively analyzed by Holevo [26–28]. In passing, vari-
ous other significant contributions for bounding of Bayes
risks should also be mentioned [22,29–33].
In the area of quantum point estimation, the various

types of lower bounds were known [34, 35], and exten-
sively studied. Among them, the Holevo bound stands
[27,35] as a milestone in quantum estimation theory. This
is because it sets the so-called ultimate bound, which
can be attained asymptotically [36–41]. Recently, this
bound has been refined to what is now known as the
NH (NH) bound [42] after the contributions of Nagaoka

∗c2141016@edu.cc.uec.ac.jp
†junsuzuki@uec.ac.jp

and Hayashi [43, 44]. A significant difference between
the two bounds is that the NH bound is always tighter
than the Holevo bound for estimating multi-copied quan-
tum states jointly. Thereby, the NH bound is recognized
as the tightest existing bound for a finite-sample the-
ory [45,46].

Having these historical backgrounds, a natural ques-
tion arises: can the approach to the NH bound be gen-
eralized within the Bayesian framework? Furthermore,
is it possible to unify the bounds based on Personick,
Holevo, and others? Our findings confirm that this is
the case. The Bayesian version of the NH bound has
been proposed by one of the authors [47]. The key
point to the second question is that these bounds employ
quantum logarithmic derivative (QLD) type equations,
prompting an exploration of their unification [48]. In this
work, we derive the Bayesian NH bound, the Bayesian
Holevo-type bound, and the Bayesian λLD-type bound,
which is a one-parameter family of QLD-type bounds
(λ ∈ [−1, 1]). The first two bounds are formulated as
optimization problems, with the Bayesian NH bound rep-
resentable as a semi-definite programming (SDP) prob-
lem, making it computationally efficient. The Bayesian
Holevo-type bound serves as a lower bound to the for-
mer. Additionally, we introduce the Bayesian λLD-type
bound, the first bound in quantum Bayesian estimation
to be expressible in closed form. This family unifies the
Bayesian SLD-type and the RLD-type bounds as special
cases. The interplay among newly proposed bounds is
explained in Fig. 1.

2 Overview of results

In this work, our proposed three bounds are based on
the NH bound [42]. This bound is the known tightest as
we already showed in some examples and even in specific
states this bound takes the true value. Another impor-
tant advantage of the NH bound is that, compared to
other lower bounds, this one can be written in an SDP
problem. This makes this bound efficient to compute due
to the advanced improvement of current SDP solvers.

More detailed contributions of this work are sum-
marized as follows. (Technical details are available in
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Bayesian Nagaoka-Hayashi (NH) bound [47]

Bayesian Holevo-type bound [47,48]

Bayesian λLD-type bound (λ ∈ [−1, 1]) [48]

SLD-type bound (Personick [18], others [21–23]) ⇔ λ = 0,

RLD-type bound (Holevo [26–28]) ⇔ λ = 1

tighter

tighter

Special cases

Figure 1: The interplay among newly proposed bounds
and previously known bounds.

[47,48].)

• We derive the Bayesian version of the NH bound.
It keeps the good point that efficient to compute
by representing it as an SDP problem. Arbitrary
prior knowledge and weight matrix are compatible
with this bound. (Theorem 2)

• To seek the relationship between it and the previ-
ously known Bayesian quantum estimation bound,
we derive a lower bound to the Bayesian NH bound,
called the Bayesian Holevo-type bound. As in point
estimation, this bound is expressed as an optimiza-
tion over the set of Hermitian matrices. (Theorem
3)

• After handling some inequalities, we derive a
one-parameter family of the Bayesian λLD-type
bounds, which is based on the QLD-type equation.
Unlike the above two bounds, this is expressed in
the closed form without being subject to any opti-
mization. (Theorem 4)

• We show this bound is larger than the Personick
bound [19], its generalization [21–23], and the RLD-
type bound [26–28] by strict proof (Theorem 8 of
[48]).

3 Background

Let H be a finite-dimensional Hilbert space. A quan-
tum parametric model is a family of density matrices on
H, {Sθ | θ ∈ Θ}, which is parametrized by n-dimensional
real parameters θ = (θ1, θ2, . . . , θn). A measurement is
described by a set of positive semidefinite matrices Πx

where the index x corresponds to a measurement out-
come. The set of operators corresponding to a quan-
tum measurement is normally called a positive operator-
valued measure (POVM). The measurement outcomes

are labeled by an arbitrary set X . When the measure-
ment outcomes are labeled with a continuous set, the con-
dition on the POVM elements is ∀x,Πx ≥ 0,

∫
X dxΠx =

I with I the identity operator on H
The conditional probability distribution is described by

measurement as pθ(x) = tr{SθΠx} where tr{·} denotes
the trace on H. The expectation value for a continuous
random variable X is denoted by Eθ[X|Π] =

∫
xpθ(x)dx.

To infer the parameter value, we use an estimator that
returns values on the set Θ: θ̂ = (θ̂1, θ̂2, . . . , θ̂n) : X →
Θ.

To proceed further, we define the Bayes risk that is the
main quantity of interest.

Definition 1 The Bayes risk for a given prior probabil-
ity distribution π(θ) on Θ is defined by

RB[Π, θ̂] :=

∫
Θ

dθ π(θ)Tr
{
W (θ)Vθ[Π, θ̂]

}
, (1)

where Vθ is the mean squared error matrix,

Vθ,jk[Π, θ̂] := Eθ

[
(θ̂j(X)− θj)(θ̂k(X)− θk)|Π

]
. (2)

W (θ) is an n×n positive semidefinie matrix as a weight
matrix and Tr{·} denotes the trace for matrices on the
n-dimensional parameter space.

With this quantum Bayes risk, the objective is to find
the best quantum estimator that minimizes the risk, i.e.
the minimization problem over all possible quantum esti-
mators (Π, θ̂). In other words, minimizing the quantum
Bayes risk involves initially assigning a specific weight to
each element of the mean squared error matrix. Subse-
quently, the weighted elements are averaged with respect
to the prior distribution.

4 Results

4.1 Bayesian NH bound

We derive the NH bound in the Bayesian setting which
is called the Bayesian NH bound [47]. This bound is the
generalization in the Bayesian version by considering the
parameter of the state as a random variable with a prior
distribution.

We first introduce a new set of variables for quantum
measurement and estimator by

Ljk[Π, θ̂] =

∫
dxθ̂j(x)Πxθ̂k(x) (j, k = 1, 2, . . . , n),

Xj [Π, θ̂] =

∫
dxθ̂j(x)Πx (j = 1, 2, . . . , n).

Briefly, these two variables encapsulate all the informa-
tion of the quantum estimator, despite the lack of a one-
to-one correspondence. Instead of optimizing the quan-
tum estimator directly, our strategy involves optimizing
over the variables L and X. Because of that, we will omit
the argument [Π, θ̂] when it is clear.

The key idea is to regard the above quantities as the
operator-valued matrix and vector [42,44]. We introduce
the extended Hilbert space by H = Cn ⊗ H, and then
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L is identified as a matrix on H, whose block matrix
representation is given by [Ljk]. Similarly, X = [Xj ] is
presented by the column vector of matrices.
Next, define the following quantities when combining

the state with the weight matrix.

S(θ) := [Sij(θ)] with Sij(θ) := Wij(θ)Sθ,

D(θ) := [Di(θ)] with Di(θ) :=
n∑

j=1

Wij(θ)θjSθ.

Then directly by the lemma 1 and lemma 2 in [47] we
present our main result in the following theorem.

Theorem 2 (Bayesian NH bound [47]) For any

POVM Π and estimator θ̂, the following lower bound
holds for the Bayes risk.

RB[Π, θ̂] ≥ CBNH

CBNH := min
L,X

{
Tr

[
SL

]
−Tr

[
DXT1

]
−Tr

[
XD

T1
]}

+ w,

where · denotes the averaged operators with respect to the
prior distribution, and w(θ) :=

∑
j,k θjWjk(θ)θk. XT1

means the transpose over the parameter space and Tr[·]
is the trace over both the Hilbert space and the parame-
ter space. Here optimization is subject to the following
constraints: ∀j, k,Ljk = Lkj, Ljk is Hermitian, Xj is
Hermitian, and L ≥ XXT1 .

The primary advantage of this bound is that it retains
the benefits of the point estimation version, specifically
that the optimization problem can be formulated as
an SDP problem, thereby enhancing computational ef-
ficiency [47].

As we noticed that the Bayesian NH bound involves
two optimizations, it is reasonable to remove one of them
to get a lower bound which is stated as the following
bound.

4.2 Bayesian Holevo-type bound

This Bayesian Holevo-type bound optimization is sub-
ject to Xj , which is similar to the Holevo bound in point
estimation. This is the reason we call it Holevo-type.
The form is written in the following theorem.

Theorem 3 (Bayesian Holevo-type bound [48])

CBNH ≥ CBH := min
X

{Tr [ReZ(X)] + Tr|ImZ(X)|

−Tr
[
DXT1

]
−Tr

[
XD

T1
]
+ w},

(3)

where

Z(X) :=
1

2
tr
[
SXXT1 +XXT1S

]
, (4)

is an n × n complex positive semidefinite matrix, and
minimization is subject to Xj: Hermitian. Here Re (Im )
denote the element-wise real (imaginary) part of a matrix

and |A| =
√
A†A.

Since the form looks like the Holevo bound, we find it
is able to show this bound is greater than the Personick

bound with its generalization (SLD type) and the RLD-
type bound by Holevo when we set the parameter inde-
pendent weight matrix. This relationship automatically
shows that the Bayesian NH bound is greater than all
these bounds. Additionally, since the Personick bound
and the RLD-type bound both are related to QLD-type
equation, this gives us a hint to derive the λLD-type
bound which is the unification of these two bounds.

4.3 Bayesian λLD-type bound

In the following discussion, we consider the setting in
which the weight matrix is parameter-independent.

Theorem 4 (Bayesian λLD-type bound [48])

CBH ≥ C(λ)
BLD,

C(λ)
BLD := −Tr

[
WReK(λ)

]
+Tr|

√
W ImK(λ)

√
W |+ w,

for λ ∈ [−1, 1], where the n × n Hermitian matrix K(λ)

is defined by

K
(λ)
jk := tr[DB,kL

(λ)
j ],

DB,j =
1 + λ

2
SBL

(λ)
j +

1− λ

2
L
(λ)
j SB,

SB =

∫
dθ π(θ)Sθ,

DB,j =

∫
dθ π(θ)θjSθ.

This bound is derived with the λLD-type equation, which
makes it in a closed form. This bound is the unification
of the Personick bound [19] and its generalization (λ =
0) [21–23], and the Bayesian bound proposed by Holevo
(λ = 1) [26–28]. Thereby, we also show that our bound
is tighter than the Personick bound and the Bayesian
bound proposed by Holevo.

5 Conclusion

In summary, we introduce three new lower bounds
for the Bayes risk in quantum Bayesian estimation and
present the hierarchical structure of these bounds. Fur-
thermore, it naturally unifies previously established lower
bounds; the Personick bound and its generalization, and
the RLD-type bound as it contains them as special cases.
Our result is based on a new approach to derive lower
bounds in quantum Bayesian estimation. This provides
a new methodology to analyze the Bayes risk in a finite
sample theory and applications to various problems as
well as comparison to previous results are awaited.
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Abstract. We define error and disturbance in quantum measurements as irreversibility, and characterize
physical quantities beyond measurement contexts using our formulation. The full abstract is provided in the
submission form. The present report is based on the preprint [H. Emori and H. Tajima, arXiv:2309.14172].
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1 Introduction

Error and disturbance are fundamental concepts in
quantum measurements. The importance of these con-
cepts has been widely recognized since the pioneering
proposal of the uncertainty principle [1]. In quantum
measurements, the error and disturbance arise not as a
consequence of negligence but as an intrinsic facet of mea-
suring process, deeply rooted in the fundamental prin-
ciple of quantum mechanics per se; so, the question of
how to formulate the error and disturbance has come to
be considered. As is usual with problems of quantum
phenomena, there is no single answer to the question.
To date, the error and disturbance have been formulated
by various styles: Arthurs–Kelly–Goodman (AKG) [2–6],
Ozawa [7–10], Watanabe–Sagawa–Ueda (WSU) [11, 12],
Busch–Lahti–Werner (BLW) [13–15], and Lee–Tsutsui
(LT) [16–18]. Although these formulations enable a mul-
tifaceted examination of the question, they pose the
drawback of hindering the attainment of a unified un-
derstanding.
In this report, we provide a one answer to the ques-

tion by establishing a novel formulation based on an ir-
reversibility, which plays a key role in physical and in-
formation theories. We show that both of the error and
disturbance can be defined as special cases of the irre-
versibility of quantum processes, by applying a quantum
comb [19] to the measuring process of a target system
and converting its error and disturbance into the irre-
versibility of an ancillary system.
Our formulation provide fruitful byproducts: First, we

unify the above existing formulations of the error and
disturbance as special aspects of the irreversibility. We
also obtain a unified understanding of the distinction be-
tween the error and disturbance. The error is the irre-
versibility when solely the classical outputs of the mea-
surement are employed for the recovery process, and the
post-measurement states are disregarded. On the other
hand, the disturbance is the irreversibility when the clas-

∗emori.haruki.i8@elms.hokudai.ac.jp
†hiroyasu.tajima@uec.ac.jp

sical outputs of the measurement are disregarded, and
only the probabilistic mixture of post-measurement states
is employed for the recovery process. Second, we extend
the Wigner–Araki–Yanase (WAY) theorem [20, 21], a
universal restriction on a measurement implementation
under some conservation laws, to a quantitative version
for the error and disturbance of arbitrary definitions and
arbitrary processes. Third, we provide a new treatment
of out-of-time-order correlator (OTOC) [22], a measure
of information scrambling [23] in many-body systems, as
the irreversibility using the connection between distur-
bance and operator spreading. This treatment also give
an experimental evaluation method of the OTOC, and a
general bound for the OTOC when the scrambling dy-
namics obey a conservation law.

2 A proposed formulation

Irreversibility of quantum processes: To define the
error and disturbance, we begin by introducing the irre-
versibility measure used in Ref.[24]. Consider a quan-
tum process described by a completely positive trace-
preserving (CPTP) map L from a target system S to
another system S′ and an arbitrary test ensemble Ω =
{pk, ρk}, where {ρk} is a set of quantum states in S with
preparation probabilities {pk}. Then, we define the irre-
versibility of L with respect to Ω as follows:

δ(L,Ω) := min
R:S′→S

√∑
k

pkδ2k, (1)

δk := DF (ρk,R ◦ L(ρk)). (2)

Here, the minimization is performed over CPTP maps
R from S′ to S, DF (ρ, σ) :=

√
1− F (ρ, σ)2 is the

purified distance [25], and F (ρ, σ) := Tr[
√√

ρσ
√
ρ] is

the Uhlmann fidelity [26]. With treating a specific
CPTP map R′, the irreversibility of L regarding Ω is
δ(L,R′,Ω) =

√∑
k pkδ

2
k. It is important to note that

δ(L,Ω) ≤ δ(L,R′,Ω) always holds, by definition.

Unified definition of error and disturbance: Un-
der these settings, we design irreversibility evaluation
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Figure 1: The irreversibility evaluation protocols for the
error and disturbance.

protocols (IEPs), which translate the effect on the target
system by the measurement into the effect on an ancillary
system by the transformed quantum process, via insert-
ing additional operations to and reshaping the measuring
process as a comb. The IEPs allow us to evaluate the er-
ror and disturbance of the measurement by looking at
the irreversibility (more precisely, its derivative) of these
whole transformations. As a rule, the IEPs consist of two
components: (P1) a loss process L, including a weak in-
teraction between the target system S and the qubit sys-
tem Q to make the composite system have a correlation
and the subsequent measurement on S; and (P2) a re-
covery process R, involving an inverse map that exploits
information obtained by the measurement to restore Q
to its original state.
Based on the IEPs, we now state the main result: Sup-

pose a measurement M of an observable A for an initial
state ρ in S and its process is described by measurement
operators {Mm} mapping from S to S′, where {m} are
measurement outcomes; and denote B as a disturbed ob-
servable. With these notations, we define the error ϵ and
disturbance η of M as

ϵ2(ρ,A,M) := lim
θ→0

δ2(Lρ,A,θ,P ,Ω1/2,±)

θ2
, (3a)

η2(ρ,B,M) := lim
θ→0

δ2(Lρ,B,θ,I ,Ω1/2,±)

θ2
; (3b)

where Ω1/2,± is a specific test ensemble
{(1/2, 1/2), (|+⟩, |−⟩)}, |±⟩ are eigenvectors of the
Pauli-x operator σx in Q, Lρ,A,θ,P := PM ◦ Λρ,A,θ is a
composite process fromQ toQP with Λρ,A,θ := UA,θ◦Aρ,
and Lρ,B,θ,I := IM ◦ Λρ,B,θ is also from Q to QS′ with
Λρ,B,θ := UB,θ ◦Aρ. P is a memory system for outcomes
of M. The loss process Lρ,A,θ,P is implemented by
(E1) an appending process Aρ(...) := (...)⊗ρ which adds
the quantum state ρ on S; (E2) a unitary process UA,θ on
SQ to make a correlation before the measurement, where
UX,θ(...) := e−iθX⊗σz (...)eiθX⊗σz with an arbitrary ob-
servable X and the Pauli-z operator σz; and (E3) a mea-
suring process PM(...) :=

∑
m Tr[Mm(...)M†

m]|m⟩⟨m|P
from S to P . Similarly, the other loss process Lρ,B,θ,I is
implemented by (D1) an appending process Aρ; (D2) a
unitary process UB,θ; and (D3) a measuring process
IM(...) :=

∑
m Mm(...)M†

m from S to S′. The difference

between Lρ,A,θ,P and Lρ,A,θ,I arises from a way of
mathematical description of the measuring process,
i.e., what is chosen as the output, either outcomes or
post-measurement states of M. The IEPs for the error
and disturbance are illustrated in Fig. 1. According to
δ(L,R′,Ω), we also define the error and disturbance as

ϵ2(ρ,A,M,R′) := lim
θ→0

δ2(Lρ,A,θ,P ,R′,Ω1/2,±)

θ2
, (4a)

η2(ρ,B,M,R′) := lim
θ→0

δ2(Lρ,B,θ,I ,R′,Ω1/2,±)

θ2
(4b)

for a specific recovery process R′.

3 Applications

1. Derivation of existing formulations from ours:
From the perspectives of state-dependence (or not), phys-
ical significance, and experimental accessibility, the ex-
isting formulations have been pursued through physical,
mathematical, statistical, and information-theoretical
approaches. However, a formulation unifying all these
aspects has not been known. As solving this problem,
our definition covers previously well-formulated proposal
by AKG, Ozawa, WSU, BLW, and LT. Moreover, our def-
inition not only brings these under a common umbrella
but also has the capability to elucidate operational dis-
tinctions between error and disturbance, as well as the
physical essence captured by each approach, using the
corresponding IEP.

To derive the existing formulations, we introduce a cru-
cial recovery processRX represented byRX := J•◦U†

X,θ,
where J•(...) :=

∑
j=±⟨j|Tr•[(...)]|j⟩|j⟩⟨j|Q and • = P or

S′. Applying U†
X,θ to the composite system becomes pos-

sible to restore the relative phase of the state in Q shifted
during the loss process L. It should be noted that the
bounds ϵ(ρ,A,M) ≤ ϵ(ρ,A,M,RX) and η(ρ,B,M) ≤
η(ρ,B,M,RX′) hold for any X and X ′, by definition.
Example: Ozawa’s error and disturbance (other
errors and disturbances are in the preprint). Be-
low, we demonstrate the derivation of Ozawa’s one to
facilitate intuitive understanding. Consider a set of out-
comes {A(m)} obtained from the measurement of a meter
observable M in P . Then, Ozawa’s error and disturbance
are defined by ϵ2O(A) :=

∑
m ∥Mm(A − A(m))

√
ρ∥2 and

η2O(B) :=
∑

m ∥[Mm, B]
√
ρ∥2, respectively, where S = S′

[7, 8, 27]. If we apply the recovery processes of RM from
PQ to Q and RB from SQ to Q, we obtain the relations:
ϵ(ρ,A,M,RM ) = ϵO(A) and η(ρ,B,M,RB) = ηO(B).
Hence, ϵ(ρ,A,M) ≤ ϵO(A) and η(ρ,B,M) ≤ ηO(B) are
obviously true.

2. WAY theorem for errors and disturbances of
arbitrary definitions and processes: Our formula-
tion also contributes to solve an open problem in the
field of quantum measurements: Extensions of the WAY
theorem to the errors and disturbances of arbitrary def-
initions and processes. The WAY theorem [24, 28–34]
predicts that in the presence of an additive conservation
law, the implementation of a projective measurement for
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a physical quantity that does not commute with the con-
served quantity is impossible. Although the quantitative
WAY theorems for finite errors have been actively stud-
ied [24, 28, 29, 32], these theorems for quantum measure-
ments have been limited to Ozawa-type error [28, 29, 32]
and gate-fidelity error [24]. The quantitative WAY the-
orem for arbitrary error and disturbance has thus re-
mained an open problem. By virtue of our formula-
tion, we solve this problem, combining with the sym-
metry–irreversibility–quantum coherence (SIQ) trade-off
relation [24].
To show our result, we introduce the SLD-quantum

Fisher information for the state family {e−iXερeiXε}ε∈R
as Fρ(X) = 4 limε→0 D

2
F (e

−iXερeiXε, ρ)/ε2, which is a
standard measure of quantum coherence in the resource
theory of asymmetry [35–43]. This quantity indicates
the amount of quantum fluctuation of the observable X
in the state ρ [39, 41, 43–45].
Theorem 1 Suppose a measurement M of an observ-
able A on a quantum system S in a state ρ. We re-
alize the measuring process by PM for error- and IM
for disturbance-evaluation under the conservation law of
some conserved charge X• (• = S, S′, P ). Then, the fol-
lowing inequalities hold with any ρ:

ϵ(ρ,A,M) ≥ |⟨[YS , A]⟩ρ|√
Fcost

PM
+∆F

, (5a)

η(ρ,B,M) ≥ |⟨[Y ′
S , B]⟩ρ|√

Fcost
IM

+∆′
F

. (5b)

Here Fcost
N is the implementation resource

cost of a CPTP map N from α to α′ un-
der the conservation law of X and defined as
Fcost

N := min{Fρβ
(Xβ)|(ρβ , Xβ , Xβ′ , U) → N},

where (ρβ , Xβ , Xβ′ , U) runs implementations of N
via N (...) = Trβ′ [U{(...) ⊗ ρβ}U†] and satisfies the
conservation law U†(Xα′ + Xβ′)U = Xα + Xβ.
The quantities YS, Y ′

S, ∆F and ∆′
F are defined

as YS := XS − P†
M(XP ), Y ′

S := XS − I†
M(XS′),

∆F :=
√

Fρ(XS) + 2
√

VPM(ρ)(XP ), and ∆′
F :=√

Fρ(XS) + 2
√

VIM(ρ)(XS′), where Vσ(Z) is the
variance of Z in σ.
We remark that Theorem 1 does not assume the Yanase
condition introduced in Ref. [28] and our contribution is
not limited to the WAY theorem for measurements, but
for other arbitrary processes. For arbitrary processes,
there are no error-cost trade-off relations (there are coun-
terexamples), except for unitary processes [24, 46–49] and
its variants [24]. Even so, the existence of disturbance-
cost trade-off relations for arbitrary processes has not
been denied; and now we can obtain them as corollar-
ies of Theorem 1 by noting that any CPTP map can be
described as IM. For measuring processes, the error-
cost trade-off relation can be derived from the form
of error in Theorem 1. When we assume XP satisfies
[XP , |m⟩⟨m|P ] = 0 for any m (Yanase condition) where
{|m⟩P } are given in the definition of PM, we can make
the form of error in Theorem 1 simpler and tighter as

follows ϵ(ρ,A,M) ≥ |⟨[XS , A]⟩ρ|/
√
Fcost

PM
+ Fρ(XS).

3. OTOC as irreversibility and its experimental
evaluation method: In terms of propagating informa-
tion by interactions, we find that OTOC is linked to dis-
turbance. The OTOC CT (t) := −⟨[W (t), V (0)]2⟩ρ [23]
quantifies the degree of information scrambling [50–53]
and is characterized by operator spreading (commutator)
[54–58] in situations where a local observable W becomes
correlated with a distant one V , by a global interaction
in dynamical quantum systems. Besides the disturbance
quantitatively express how much the observable B is af-
fected by the measuring interaction of the measurement
for the observable A [59, 60]. In these regards, it can
be seen that they share the spirit of quantification for
observable correlations. Take account of this aspect, we
explicitly associate the OTOC with the disturbance and
uniformly describe them in our formulation by providing
a specific IEP.
Theorem 2 Suppose W is a self-adjoint and unitary
operator while V is a self-adjoint operator. Then, the
OTOC is represented by

CT (t) = η2(ρ, V,D,RV )

(
:= lim

θ→0

δ2(Lρ,V,θ,D,Ω1/2,±,RV )

θ2

)
,

where Lρ,V,θ,D := (DW ⊗1Q) ◦UV,θ ◦Aρ is a loss process

with DW (...) = W (t)(...)W †(t) and RV := JS ◦ U†
V,θ is a

recovery process.
As a natural consequence, we can come by a universal
lower bound as η(ρ,W,D) ≤ CT (t) and the WAY theo-
rem for the OTOC. It is noteworthy that Theorem 2 can
also be extended to the case where W is a self-adjoint
operator and this IEP works as an experimental evalu-
ation method for the OTOC. Although most of existing
methods [61–71] require a number of measurements at
each time point during the time evolution in whole sys-
tem with several prepared measuring devices, our method
only requires a single measuring device for measuring Q
at the end of the process. In this regard, our method has
the advantages of measuring at one point, simplifying the
setup and being easy to implement.

4 Conclusions

The fact—the error and disturbance of a quantum
measurement can be formulated as the irreversibility—
means that we can use the accumulated knowledge about
irreversibility in physics to evaluate the performance of
quantum processes. Furthermore, it can be used for vari-
ous physical processes and some sort of quantities in their
frameworks as the irreversibility beyond the error, distur-
bance, and OTOC. It pave the way for applying quantum
information processing tasks, and their further advance-
ments are promising. Also, we have room to generalize
the following degrees of freedom used in our formula-
tion: the irreversibility measure δ(L,Ω), the specific test
ensemble Ω1/2,±, the qubit system Q, and the unitary
process UX,θ. We intend to leave these aspects for the
future work.
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Hybrid squeezed cat code with universal gate set
for easy implementation by optics
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Abstract. Currently, bosonic codes, such as the cat code and GKP code, have been extensively inves-
tigated to realize fault-tolerant photonic quantum computers, due to their resilience to loss. We propose
a novel hybrid code that combines the squeezed cat code and polarization qubit. We demonstrate a
straightforward construction of the universal gate set with the proposed hybrid code. Moreover, the hybrid
squeezed cat code yields a higher success probability of Bell state measurement than the conventional
hybrid cat code.
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1 introduction

Bosonic codes have recently attracted attention toward
the realization of error-tolerant optical quantum comput-
ers, due to their tolerance to errors. Bosonic codes encode
single-mode of light or multimode into qubits, and sev-
eral codes have been proposed that use different quantum
states of light, such as the cat code [1], the Gottesman-
Kitaev-Preskill (GKP) code [2], the squeeze cat code
[3, 4, 5] are known. The bosonic code is expected to
be applied not only to quantum computation but also to
quantum information technology such as quantum com-
munication and quantum sensing.
Recently hybrid bosonic codes combining with differ-

ent bosonic codes or photon states have been developed
to improve performances of the codes. In particular, it
has been shown that a hybrid qubit [6, 7, 8] of photon
and cat state, which are known to have complementary
properties, can compensate for the shortcomings of both
to some extent. However, the performances of the hybrid
cat code are still not enough to construct a fault-tolerant
quantum computer. Moreover, it is complicate to imple-
ment a universal gate set with the hybrid cat code.
In this paper, we improve the performances of a novel

hybrid code based on the squeezed cat code and the po-
larization qubit[9, 10] to overcome the limitations on the
conventional hybrid cat code.

2 Squeezed cat code

The cat code is defined as the following superposition
of the coherent states |α⟩ and |−α⟩,

|C±
α ⟩ = 1

N±
α
(|α⟩ ± |−α⟩) , (1)

where N±
α are the normalization constant and is given

by

N±
α =

√
2(1± e−2α2) .

the cat code is tolerant of dephasing error. On the other
hand, the cat code is vulnerable to a single photon loss,
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†ao@optnet.ist.hokudai.ac.jp
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because it causes the phase inversion in eq.(1), which
converts |C+

α ⟩ to |C−
α ⟩ and vice versa. This error is un-

correctable, because a state is transformed to the one in
the code space.

The coherent squeezed state is obtained for the dis-
placement operation performed after the squeezing oper-
ation to the vacuum state,

|α, ξ⟩ = D̂(α)Ŝ(ξ) |0⟩ ,

where D̂(α) is the displacement operator and Ŝ(ξ) is the
squeeze operator, defined as

D̂(α) = eαâ
†−α∗â

Ŝ(ξ) = e
1
2 (ξ

∗â2−ξ(â†)2) .

The superposition of coherent squeezed states defines a
squeezed cat code as follows

|C±
α,ξ⟩ =

1

N±
α,ξ

(|α, ξ⟩ ± |−α, ξ⟩) , (2)

where N±
α,ξ are the normalization constants. When single

photon loss described with the annihilation operator â
occurs, the squeezed cat code is transformed as follows:

â |C±
α,ξ⟩ = c |C∓

α,ξ⟩+ d |C̃±
α,ξ⟩ ,

Here c and d are constants, where |C̃±
α,ξ⟩ are defined as

states in the space orthogonal to the code space. There-
fore, the state â |C±

α,ξ⟩ with single photon loss will span
the sign space and orthogonal error space. This implies
that the state |C̃±

α,ξ⟩ is not an eigenstate of â, and com-
plete bit flipping does not occur even with single photon
loss. This indicates that the squeezed cat code is par-
tially tolerant is the single photon loss. It has also been
pointed out that the Knill-Lalamme error correction con-
dition may be satisfied to of both dephasing error and
single photon loss[4].

3 Hybrid squeezed cat code

A hybrid cat (H-cat) code, which combines a cat code
and polarization state, is defined as follows

|0⟩ = |+⟩ |C+
α ⟩
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|1⟩ = |−⟩ |C−
α ⟩ ,

where |±⟩ is the superposition state of polarization states
|H⟩ and |V ⟩ as

|±⟩ = 1√
2
(|H⟩ ± |V ⟩) .

Unlike cat codes, H-cat codes can detect single photon
loss. When single photon loss occurs in the H-cat code,
the state is transformed to

â |+⟩ |C+
α ⟩ = |+⟩ |C−

α ⟩ ̸= |−⟩ |C−
α ⟩ ,

This is because the polarization state does not change
under the photon loss. Since the |+⟩ and |−⟩ of po-
larization are orthogonal to each other the error can be
detected. Note that, however, the error in the cat state
is detectable only if there is no loss in polarization state.
Since the squeezed cat code is tolerant to the single pho-
ton loss, we propose a hybrid squeezed cat code to im-
prove resilience against the loss.
The hybrid squeezed cat code (H-SC code) is defined

as follows
|0L⟩ = |+⟩ |C+

α,ξ⟩ (3)

|1L⟩ = |−⟩ |C−
α,ξ⟩ (4)

In the following, we consider the practicality of the
H-SC code. First we describe the gate operation of
the H-SC code. The X gate can be realized by rotat-
ing the polarization by π/2 and applying iD(i π

4ξ ) to the
squeezed cat code. The Z gate can be realized by ap-
plying the transformation |+⟩ + |−⟩ → |+⟩ + eiθ |−⟩ to
the polarized qubit. These can be implemented with
the optical system shown in the figure1. Hadamard
gate(H gate) and control-not(CNOT) gate can be im-
plemented by gate teleportation with the entangled
states |ψH⟩ ∝ |0L, 0L⟩ + |0L, 1L⟩ + |1L, 0L⟩ − |1L, 1L⟩
and |ψCNOT ⟩ ∝ |0L, 0L, 0L, 0L⟩ + |0L, 0L, 1L, 1L⟩ +
|1L, 1L, 0L, 0L⟩ − |1L, 1L, 1L, 1L⟩, respectively. The gate
operations can be done by entanglement generation with
these and bell measurement. The state |0L, 0L, 0L, 0L⟩
refers to |0L⟩ |0L⟩ |0L⟩ |0L⟩ and so on. The Z gate can be
implemented with the H-SC code much easier than with
a non-hybrid squeezed cat code, where the Z gate can be

implemented by the operation eiπâ
†â[5]. It requires im-

practically large optical nonlinearity to turn the phase π
by one photon.

4 Hybrid Bell measurement

Implementing the H gate and CNOT gate of the H-
SC code with optics requires a circuit shown in Figure2,
where Bell measurements for both the squeezed cat code
and the polarized state should be performed. A gate
operation is possible done by applying unitary transfor-
mations according to the results of the bell measure-
ment of the squeezed cat code and the polarization qubit.
We show that the Bell measurements on the squeezed
cat code are made with a half beam splitter (HBS) and
photon number detection. When the squeezed coherent

Figure 1: (a)The optical system that executes the X gate.
It can be implemented by the quater waveplate(QWP)
and Displacement operators. (b)The optical system that
executes the Z gate. It can be implemented by QWP and
half waveplate(HWP).

Figure 2: H gate implementation of hybrid squeezed cat
code. where BC is the bell measurement of the squeezed
cat codes and BD is the bell measurement of the polar-
ization state.

states |α, ξ⟩ and |β, ξ⟩ are inputs to the HBS, the output
state is as follows:

B̂HBSD̂1(α)D̂2(β)Ŝ1(ξ)Ŝ2(ξ) |0⟩1 |0⟩2

= | 1√
2
(α+ β), ξ⟩

1

| 1√
2
(−α+ β), ξ⟩

2

(5)

Using the above relation, we obtain the output states
when the Bell state s in the SC code are input to the
HBS.

|ϕ̃+⟩ → |even⟩ |0, ξ⟩
|ϕ̃−⟩ → |odd⟩ |0, ξ⟩
|ψ̃+⟩ → |0, ξ⟩ |even⟩
|ψ̃−⟩ → |0, ξ⟩ |odd⟩

If ξ = 0, the Bell measurement is possible by measur-
ing the number of photons in the output state. On the
other hand, if ξ ̸= 0, the squeezed vacuum state |0, ξ⟩
is an even-photon state, thus |ϕ̃+⟩ and |ψ̃+⟩ cannot be
distinguished. However, since the Bell measurement of
polarization state can distinguish |ψ̃+⟩ and |ψ̃−⟩, the H-
SC code is near deterministic in the Bell measurement. It
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is not completely deterministic, because the SC states are
not orthogonal. The finite overlap of the states proba-
bilistically results in the output states |0⟩ |even⟩ or |0⟩ |0⟩.
In this case, |ϕ̃+⟩ and |ϕ̃−⟩ cannot be distinguished and
the gate operation fails. The failure probability is as fol-
lows:

Pf =
1

2
√
cosh ξ

exp

−α2 + α2 sinh ξ
cosh ξ

2

 . (6)

The success probability 1−Pf , is shown in Figure3. Here,
the success probability of Bell measurement for the H-cat
code[7] is plotted in the blue dotted line for comparison,
indicating that the H-SC code has a higher success prob-
ability of Bell measurement than the H-cat code. As the

Figure 3: Success probability of Bell measurement of
squeezed coherent state and hybrid cat code. This suc-
cess probability is equivalent to the success probability
of the H gate.

amplitude α or the squeezing parameter ξ increases, the
success probability of the Bell measurement increases.

5 Conclusions

This paper proposes a hybrid squeezed cat (H-SC) code
and its universal gate set construction. Furthermore, we
proposed an implementation of the hybrid Bell measure-
ment for the H-SC code, and compared its success prob-
ability with that for H-cat code, where both code require
Bell measurement to implement H gate and CNOT gate.
We showed that the success probability of the H-SC code
is higher than that of the conventional H-cat code. This
means that the H-SC code can perform these gate oper-
ations with higher probability than the H-cat code. The
ability to Bell measurement with a high success proba-
bility at small amplitudes is a significant advantage be-
cause it is difficult to generate a large amplitude hybrid
squeezed cat code with experimentally feasible generation
method using linear optics and four photodetectors[11].
Future work will focus on determining the state gener-
ation efficiency and the logic error probability when en-
coded with quantum error correction codes.
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Abstract. Boson sampling is expected to be a promising approach toward quantum computational
advantage. However, experimental noises render boson sampling classically simulable, revealing a suscep-
tibility to classical simulation as noise rates increase with circuit depth. Here, we investigate the viability
of achieving quantum advantage through boson sampling with shallow-depth linear optical circuits. As
the average-case hardness of estimating output probabilities of boson sampling is a crucial ingredient in
demonstrating its classical intractability, we make progress on establishing the average-case hardness con-
fined to logarithmic-depth regimes. We also extend our result to Gaussian boson sampling and boson
sampling subject to a lossy environment.
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1 Introduction

Boson sampling is a computational task that is
complexity-theoretically proven to be hard to classically
simulate under plausible assumptions [1–3]. Accordingly,
boson sampling becomes a prominent candidate for ex-
perimentally demonstrating quantum computational ad-
vantage using near-term quantum devices. However,
the experimental implementation of boson sampling with
near-term devices is inevitably subject to various sources
of noise [4–7], which would possibly rule out the clas-
sical intractability of boson sampling. Numerous stud-
ies [8–19] have proposed efficient classical simulation al-
gorithms of boson sampling under physical noise models
such as photon loss and partial distinguishability noise;
Those results indicate that increasing noise rate even-
tually renders the noisy sampler classically simulable.
Moreover, current implementations are expected to suf-
fer from exponentially enlarged noise with circuit depth,
which implies that circuits with polynomially increasing
depth with system size would face substantial challenges
to achieving quantum advantage.

A viable alternative to preclude the classical simula-
bility due to the inevitable noise is to consider boson
sampling with shallow-depth linear optical circuits, where
the noise rate can be highly reduced. Specifically, among
the shallow-depth regime, our primary focus is on inves-
tigating the simulation hardness for logarithmic depth
circuits; the intuition behind investigating logarithmic
depth circuits lies in the potential to offer a “sweet-spot”
regime for the hardness of boson sampling. Namely, this
depth regime may avoid significant increases in noise
rates to prevent classical simulability, while still being
sufficiently large to generate quantum correlations and
uphold simulation hardness.

In this work, we investigate the classical simulation
hardness of boson sampling in shallow linear optical cir-
cuits. Specifically, as the average-case #P-hardness of es-

∗changhun0218@gmail.com
†h.jeong37@gmail.com

timating output probabilities of boson sampling is a cru-
cial ingredient to demonstrate the classical intractabil-
ity of boson sampling, we make progress on establishing
the average-case #P-hardness confined in shallow-depth
regimes. We also extend our result to the Gaussian boson
sampling scheme and noisy boson sampling subject to a
lossy environment. We expect that our hardness results
will provide a first step toward the full demonstration of
the classical intractability of shallow-depth boson sam-
pling.

2 Average-case hardness of shallow-
depth boson sampling

In this section, we informally sketch our main re-
sults about the average-case hardness of shallow-depth
boson sampling; for more details, one can check the
results in [20]. To show the overall hardness re-
sults in logarithmic-depth regime, we consider a specific
logarithmic-depth circuit architecture (BB∗)q, which is a
q = O(1) number of iteration of O(logN) depth circuit
unit B and B∗ illustrated in Fig. 1.

Figure 1: Schematics of the circuit architectures B and
B∗ and their unitary matrix form, for mode number M =
24 = 16.

Our main strategy to show the average-case hardness
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is (i) to show the worst-case #P-hardness and (ii) to es-
tablish worst-to-average-case reduction. Specifically, for
Fock state input with photon number N and mode num-
ber M ∝ Nγ with γ ≥ 1, we first show the worst-case
hardness of approximating a fixed output probability of
boson sampling with circuit architecture (BB∗)q for q ≥ 1
as below.

Theorem 1 (Worst-case hardness) Approximating
a fixed output probability of boson sampling to within
additive error 2−O(N) for any circuit over (BB∗)q≥1 is
#P-hard in the worst case.

Next, we prove the average-case hardness over both
the randomly chosen outcome and randomly chosen cir-
cuit, by establishing a worst-to-average-case reduction.
In other words, we prove that if we can well-approximate
the output probability on average over outcomes and cir-
cuits, we can also well-approximate the worst-case output
probability in Theorem 1.

Theorem 2 (Average-case hardness)
Approximating output probability of boson sampling
to within additive error 2−O(Nγ+1(logN)2) with high
probability over randomly chosen circuits in (BB∗)q≥2

for high probability over randomly chosen collision-free
outcomes is #P-hard under BPPNP reduction.

Also, since our average-case hardness result considers
both the random outcomes and random circuits, it is not
straightforward to show the classical simulation hardness
of shallow-depth boson sampling as in the original bo-
son sampling proposal [1]. Therefore, we show how our
average-case hardness result over both the randomly cho-
sen outcomes and circuits is related to the classical sim-
ulation hardness argument. Specifically, we show that
improving the allowed additive imprecision of Theorem 2
leads to the classical intractability of shallow-depth bo-
son sampling.

Theorem 3 If the allowed additive imprecision for the
problem in Theorem 2 to be #P-hard is improved to
2−(γ−1)N logN−O(N), then the shallow-depth boson sam-
pling in (BB∗)q≥2 is classically hard to simulate.

Similarly to the above results, we also obtain hardness
results for Gaussian boson sampling scheme. Specifically,
we show the average-case hardness of Gaussian boson
sampling, for M squeezed vacuum input and average-
photon number N with M ∝ Nγ and γ ≥ 1.

Theorem 4 Approximating output probability of
Gaussian boson sampling to within additive error
2−O(Nγ+1(logN)2) with high probability over randomly
chosen circuits in (BB∗)q≥2 for high probability over
randomly chosen collision-free outcomes is #P-hard
under BPPNP reduction.

Lastly, we extend our average-case hardness result in
Theorem 2 to noisy boson sampling case subject to pho-
ton loss channel. Specifically, we show that Theorem 2

still holds even for lossy boson sampling, with photon
loss channel acts on each mode after each gate is applied
in the circuit.

Corollary 5 Suppose we have the photon loss model N
acting on each mode after each gate, with each loss rate
ρi ≤ ρ for a constant ρ. Then, approximating output
probability of lossy boson sampling to within additive er-
ror 2−O(Nγ+1(logN)2) with high probability over randomly
chosen circuits in (BB∗)q≥2 for high probability over ran-
domly chosen collision-free outcomes is #P-hard under
BPPNP reduction.

Our overall result is illustrated in Fig. 2. By suc-
cessive reductions, we have shown average-case hard-
ness of shallow-depth boson sampling for the addi-
tive imprecision level 2−O(Nγ+1(logN)2). We have also
shown that if the imprecision level can be improved to
2−(γ−1)N logN−O(N) then shallow-depth boson sampling
is classically hard to simulate. Therefore, we can con-
clude that closing this imprecision gap is the only re-
maining problem for the fully theoretically guaranteed
classical intractability of shallow-depth boson sampling.

Figure 2: Outlines of our result

3 Discussions

To achieve the experimental demonstration of quan-
tum computational advantage with boson sampling, it
is crucial to reduce the noise effects, and shallow-
depth circuits are a viable choice for reducing the
noise effects. Accordingly, we showed the average-case
#P-hardness of approximating output probabilities of
shallow-depth boson sampling to within additive impreci-
sion 2−O(Nγ+1(logN)2) in a certain logarithmic-depth cir-
cuit architecture. We extended our average-case hardness
result to Gaussian boson sampling scheme, and noisy bo-
son sampling subject to photon loss channels. We showed
how our average-case hardness results over both the ran-
domly chosen outcomes and circuits is related to the clas-
sical simulation hardness argument, which implies that
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improving the allowed imprecision for our hardness re-
sult is the only remaining challenge for the classical in-
tractability of shallow-depth boson sampling.

To the best of our knowledge, the complexity-
theoretical analysis on the average-case hardness of
shallow-depth boson sampling has not yet been inves-
tigated. Hence, we expect that our hardness result in
shallow-depth regimes will provide a first step toward
a stronger hardness result and, ultimately, toward the
complete demonstration of the classical intractability of
shallow-depth boson sampling.
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[13] Raúl Garćıa-Patrón, Jelmer J Renema, and Valery
Shchesnovich. Simulating boson sampling in lossy
architectures. Quantum, 3:169, 2019.

[14] Haoyu Qi, Daniel J Brod, Nicolás Quesada, and
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On computational complexity and average-case hardness of shallow-depth

boson sampling
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Boson sampling, a computational task believed to be classically hard to simulate, is
expected to hold promise for demonstrating quantum computational advantage using near-
term quantum devices. However, noise in experimental implementations poses a significant
challenge, potentially rendering boson sampling classically simulable and compromising
its classical intractability. Numerous studies have proposed classical algorithms under
various noise models that can efficiently simulate boson sampling as noise rates increase
with circuit depth. To address this issue particularly related to circuit depth, we explore
the viability of achieving quantum computational advantage through boson sampling with
shallow-depth linear optical circuits. Specifically, as the average-case hardness of estimating
output probabilities of boson sampling is a crucial ingredient in demonstrating its classical
intractability, we make progress on establishing the average-case hardness confined to
logarithmic-depth regimes. We also obtain the average-case hardness for logarithmic-depth
Fock-state boson sampling subject to lossy environments and for the logarithmic-depth
Gaussian boson sampling. By providing complexity-theoretical backgrounds for the classical
simulation hardness of logarithmic-depth boson sampling, we expect that our findings will
mark a crucial step towards a more noise-tolerant demonstration of quantum advantage with
shallow-depth boson sampling.

I. INTRODUCTION

Boson sampling is a computational task that is complexity-theoretically proven to be hard to
classically simulate under plausible assumptions [1–3]. Accordingly, boson sampling has gathered
significant attention, as it would possibly play a key role in the experimental demonstration of
quantum computational advantage using near-term quantum devices. However, the implementation
of boson sampling in experimental settings with near-term quantum devices is inevitably subject to
various sources of noise [4–7]. The problem is that those noises would possibly rule out the classical
intractability of boson sampling, and thus potentially hinder the experimental demonstration of
quantum advantage with boson sampling. Indeed, both for finite-size near-term experiments and
asymptotic limits as system size scales, numerous studies [8–19] have proposed efficient classical
simulation algorithms of boson sampling under various noise models, such as photon loss, partial
distinguishability, gaussian noise, etc. Their results indicate that as the noise rate of boson sampler
increases, it eventually renders such a noisy sampler classically simulable. Moreover, as the noise is
typically accumulated with each circuit depth, the quantum signal for classical intractability
exhibits exponential decay with increasing circuit depth. Hence, circuits with polynomially
increasing depth with system size would suffer from significantly enlarged noise rates, posing
substantial challenges to achieving quantum advantage in such settings.

A viable alternative to preclude the classical simulability due to the inevitable noise is to consider
boson sampling with shallow-depth linear optical circuits, where the noise rate can be highly
reduced. Specifically, among the shallow-depth regime, our primary focus is on investigating the

∗ changhun0218@gmail.com
† h.jeong37@gmail.com
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simulation hardness for logarithmic depth circuits; the intuition behind investigating logarithmic
depth circuits lies in the potential to offer a “sweet-spot” regime for the hardness of boson
sampling. Namely, this depth regime may avoid significant increases in noise rates to prevent
classical simulability, while still being sufficiently large to generate quantum correlations and
uphold simulation hardness. Despite such intuitive understanding, the hardness argument of boson
sampling in this shallow-depth regime, particularly from a complexity-theoretical perspective, has
been less studied so far and thus remains widely open. Hence, our goal is to establish the complexity-
theoretical foundations of the classical hardness of shallow-depth boson sampling, to suppress the
classical simulability by noise in a rigorous manner and obtain a more noise-tolerant demonstration
of quantum advantage with boson sampling.

In this work, we investigate the classical simulation hardness of boson sampling in shallow linear
optical circuits. Specifically, as the average-case #P-hardness of estimating output probabilities of
boson sampling is a crucial ingredient to demonstrate the classical intractability of boson sampling,
we make progress on establishing the average-case #P-hardness confined in shallow-depth regimes.
Similarly, we obtain the average-case hardness result in the shallow-depth regime for the Gaussian
boson sampling scheme. Finally, since noise is our main motivation for investigating shallow-depth
boson sampling, we generalize our average-case hardness result to noisy boson sampling subject to
a photon loss channel.

To avoid confusion, we note that the allowed imprecision level of our average-case #P-hardness
result is not sufficient to fully demonstrate the classical intractability of boson sampling in shallow-
depth regimes. However, to the best of our knowledge, the complexity-theoretical analysis on the
average-case hardness of shallow-depth boson sampling has not yet been investigated. Hence, we
believe that our hardness result in shallow-depth regimes will provide a first step toward a stronger
hardness result and, ultimately, toward the full demonstration of the classical intractability of
shallow-depth boson sampling.

A. Outlines: average-case hardness of shallow-depth boson sampling

We set our goal as proving the hardness of classical simulation of boson sampling in the shallow-
depth regime, specifically for approximate simulation within total variation distance error. Two
key ingredients for the current hardness proof of the approximate simulation of boson sampling
are (i) average-case #P-hardness of output probability approximation up to sufficiently large
additive imprecision ǫ, and (ii) hiding property. Informally, average-case hardness means that
approximating the output probability of boson sampling with high probability over randomly
chosen circuits (i.e., on average over circuits) is #P-hard. Here, by choosing random circuit
instances that have the hiding property (i.e., symmetric over outcomes), one can reduce the
average-case instances for the hardness from circuit instances to outcome instances, which is a
crucial step to prove the hardness of approximate simulation within total variation distance error
(See Appendix A for more details).

Most of the current theoretical foundations of the average-case hardness of boson sampling rely
on global Haar random unitary circuits [1–3, 20–22], as they almost satisfy the two conditions
described above. Namely, the outcome instances can be effectively hidden by global Haar random
unitaries, and approximating the output probability within sufficiently large ǫ on average over
global Haar random circuit instances is #P-hard under some conjectures. However, the problem
is that implementing global Haar random unitary requires at least polynomial circuit depth (e.g.,
see [23, 24]), and thus not implementable in sub-polynomial circuit depths. Accordingly, the
hardness results built upon global Haar random unitaries cannot be directly applied to the shallow-
depth boson sampling we are interested in, necessitating a different approach from them.
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Another problem is that there already exist efficient classical algorithms that can approximately
simulate shallow-depth boson sampling in certain circumstances, which directly rule out the
classical simulation hardness in shallow-depth for such cases. Although exact simulation of boson
sampling is classically hard even for constant depth circuits [25], approximate simulation is easy
for 1d local log depth circuits [26, 27] and also for more general dimension local circuits under
some constraints [28, 29]. Specifically, according to their results, if we use circuits composed of
only geometrically local gates, at least polynomial circuit depth is required for a sufficiently large
correlation to obtain the approximate simulation hardness. Those results indicate that we cannot
expect the hardness results in the most general case of shallow-depth circuits composed of local
gates only.

To deal with those problems we take the following approach: first, we consider shallow linear
optical circuit architectures composed of geometrically non-local gates. In fact, implementation
of non-local gates is promising for near-term experimental settings; for example, experiments of
linear optical systems based on trapped ions [30, 31] and photonic architecture [6] implemented
long-range interactions. Also, since we cannot implement global Haar random unitary within
shallow-depth regime, we instead employ local random circuit ensemble for random circuit instances
in shallow circuit architecture, inspired by the hardness results of random circuit sampling [21, 32–
35]. Here, local random distribution in this context means that each gate composing the circuit
is independently chosen Haar random gate; we note that recent experimental setups of boson
sampling [4–7] also follow such circuit distribution, but with geometrically local architectures.

However, local random distribution poses a subsequent challenge toward the average-case
hardness of shallow-depth boson sampling, that is, the absence of the hiding property. Since the
output symmetry of boson sampling over local random circuit distribution is not evident, the
random outcome instances cannot be efficiently hidden by random circuit instances. This means
that even if we find the average-case hardness over randomly chosen circuits for a fixed outcome, it
still does not lead to the classical simulation hardness grounded in Stockmeyer’s reduction from the
average-case approximation over randomly chosen outcomes [1]. To address this issue, we prove
the average-case hardness over both the randomly chosen outcome and randomly chosen circuit, by
establishing a worst-to-average-case reduction for both outcome and circuit instances. Specifically,
our reduction process is composed of two steps: (i) from a given fixed outcome to a randomly
chosen collision-free outcome, and (ii) from a worst-case circuit to a randomly chosen circuit over
local random circuit distribution.

To sum up, we show the average-case hardness over outcomes and circuit instances for shallow
circuit architectures composed of non-local gates and employing the local random circuit ensemble.
We informally present here our average-case hardness result of boson sampling in the logarithmic
depth regime, for photon number N and mode number M ∝ Nγ with γ ≥ 1.

Theorem 1 (Informal). There exists a O(logN)-depth linear optical circuit architecture such that
approximating output probability of boson sampling within additive error 2−O(Nγ+1(logN)2) with
high probability over randomly chosen circuits in the circuit architecture for high probability over
randomly chosen collision-free outcomes is #P-hard under BPPNP reduction.

Also, since our average-case hardness result considers both the random outcomes and random
circuits due to the absence of the hiding property, it is not straightforward to show the classical
simulation hardness of shallow-depth boson sampling as in the original boson sampling proposal [1].
Accordingly, we show how our average-case hardness result over both the randomly chosen outcomes
and circuits leads to the classical simulation hardness argument. This implies that improving the
additive imprecision for our average-case hardness result is the only remaining problem for the
fully theoretically guaranteed classical intractability of shallow-depth boson sampling.
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FIG. 1. Outlines of our result

Theorem 2 (Informal). If the allowed additive imprecision for the problem in Theorem 1 to be #P-
hard is improved to ǫ = 2−(γ−1)N logN−O(N), the approximate boson sampling for the shallow-depth
circuit in Theorem 1, up to constant total variation distance, is classically hard to simulate.

Now we provide an outline of our results, which is depicted in Fig. 1. We first define in
Sec. II a shallow-depth circuit architecture (BB∗)q composed of non-local gates, which we will use
throughout our results. Next, in Sec. III we prove the worst-case #P-hardness of approximating
output probability ps(C) of a fixed outcome s of boson sampling, for any circuit C in the shallow
circuit architecture previously defined. In Sec. IV we prove the average-case #P-hardness of
approximating output probability ps(U) for randomly chosen outcome s and randomly chosen
circuit U in the shallow circuit architecture, by establishing worst-to-average-case reduction. We
prove in Sec. V how our average-case hardness results over both the random outcomes and random
circuits lead to the classical simulation hardness. We also extend our average-case hardness result
to the Gaussian boson sampling scheme in Sec. VI, and to the lossy boson sampling subject to
photon loss channels in Sec. VII. In Sec. VIII, we conclude with several remarks.

II. NOTATIONS

Let us define the total mode number as M , where we set M as a power of 2 for simplicity. We
set the output photon number N polynomially related to M as M = c0N

γ , for a constant c0 and
γ ≥ 1 satisfying M ≥ 2N . We use the notation s as an M -dimensional output configuration vector
for the collision-free outcome, such that each element si of s denotes photon number in ith mode.
Namely, s = (s1, . . . , sM ) where each si ∈ {0, 1} with

∑M
i=1 si = N , so that the number of possible

configurations of s is
(M
N

)

. We define ps(C) as an output probability of a linear optical circuit
(unitary) matrix C for the outcome s from a predefined input configuration t. For collision-free
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FIG. 2. Schematics of the butterfly circuit architectures in Definition 2 and their unitary matrix form, for
mode number M = 24 = 16.

input and output, ps(C) can be represented as [1]

ps(C) = |Per(Cs,t)|
2 (1)

where Cs,t is a N by N matrix obtained by taking si copies of the ith row and tj copies of the jth
column of the matrix C.

We note that an M -mode linear optical circuit can be represented by an M by M unitary
matrix in U(M) which unitarily transforms M mode operators. Specifically, we can represent a
single-mode gate (i.e., a phase shifter) as a U(1) matrix to the mode, and a two-mode gate (i.e.,
a beam splitter) as a U(2) matrix along the modes. Also, the parallel application of gates can
be represented as a unitary matrix with a block matrix form, and the serial application of gates
can be represented as matrix multiplication of the unitary matrices. Accordingly, throughout this
work, we will interchangeably use the terminology ‘(linear optical) circuit’ and ‘(unitary) matrix’.

We first define the linear optical circuit architecture, for a more rigorous analysis of the hardness
proof.

Definition 1 (Linear optical circuit architecture). The linear optical circuit architecture A is a
linear optical circuit with fixed type (i.e., single- or two-mode) and fixed location of gates, where the
coefficients of each gate are not specified. If the coefficients of each gate are specified with unitary
matrices (in U(1) or U(2)), then the circuit and the corresponding unitary matrix are specified.

For the shallow-depth circuit architecture, specifically in logarithmic depth, we define the
shallow linear optical circuit architecture of circuit depth D = logM , using the convention used
in [36, 37].

Definition 2. We define butterfly circuit architecture B as follows: for each layer L = 1, 2, . . . ,D =
logM of the circuit architecture, allocate two-mode gate between mode number 2L(j − 1) + k and
2L(j − 1) + k + 2L−1, for all j = 1, 2, . . . , 2D−L and k = 1, 2, . . . , 2L−1. Also, we define inverse
butterfly circuit architecture B∗ as a butterfly circuit architecture with the inverse sequence of gate
application along the depth.
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We illustrate in Fig. 2 the circuit architecture B and B∗, and the form of their corresponding
unitary matrix. Next, we define the Kaleidoscope circuit architecture proposed in [36], using the
butterfly circuit architecture defined above.

Definition 3. We define Kaleidoscope circuit architecture BB∗ as a serial application of B over B∗.
We also define q-Kaleidoscope circuit architecture (BB∗)q as a repeat of the Kaleidoscope circuit
architecture, with repetition number q ∈ N.

Here, the circuit depth of q-Kaleidoscope architecture is D = 2q logM , which is indeed a
logarithmic depth in N for q = O(1). Throughout this paper, we will focus on the q-Kaleidoscope
circuit architecture with q = O(1) to demonstrate the hardness results for shallow-depth circuits.
One motivation for employing this linear optical circuit architecture is that it enjoys a useful
property that is crucial for our analysis; Ref. [36] shows that for M a power of 2, any M mode
permutation circuit can be implemented within BB∗.

Lemma 1 (Dao et al [36]). Let P be an arbitrary M ×M permutation matrix with M a power of

2. Then P can be efficiently implemented in BB∗ using two-mode permutation gates, i.e.,

(

0 1
1 0

)

and

(

1 0
0 1

)

.

III. WORST-CASE HARDNESS OF OUTPUT PROBABILITY ESTIMATION

In this section, we find the worst-case #P-hardness of output probability estimation of shallow-
depth linear optical circuits in BB∗, for a fixed input and output s within a certain additive
imprecision. Our worst-case hardness result for the shallow circuit architecture can be represented
as follows.

Theorem 3 (Worst-case hardness). For M ≥ 2N , approximating the output probability ps(C) to
within additive error 2−O(N) for any C over linear optical circuit architecture BB∗ is #P-hard in
the worst case.

We briefly sketch the proof of our worst-case hardness result for the shallow circuit architecture
BB∗. The proof is based on the result by [25], which showed the simulation hardness of exact
boson sampling with constant depth linear optical circuits. Specifically, there exist constant-
depth linear optical circuits that can simulate an arbitrary given quantum circuit using post-
selection. Also, those constant depth circuits can be embedded in our circuit architecture BB∗.
Hence, additively approximating the output probability of any quantum circuit can be reduced to
additively approximating the output probability of any circuit in BB∗, with imprecision blowup
up to the inverse of post-selection probability. Using the fact that the additive approximation of
any quantum circuit is #P-hard for certain additive imprecision [34], we can obtain the worst-case
hardness of our shallow circuit architecture BB∗.

Proof of Theorem 3. See Appendix B.

IV. AVERAGE-CASE HARDNESS OF OUTPUT PROBABILITY ESTIMATION

In this section, we prove the average-case #P-hardness of approximating output probabilities of
shallow-depth boson sampling within a certain additive imprecision. We focus on q-Kaleidoscope
circuit architecture (BB∗)q with q = O(1), where the gate number m for such architecture is
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m = qM logM . From the result of Theorem 3, (BB∗)q has the worst-case hardness of output
probability approximation, for q ≥ 1.

Our main strategy for the average-case hardness is the establishment of the worst-to-average-
case reduction, using the result of Theorem 3. In other words, we prove that if we can well-
approximate the output probability on average , we can also well-approximate the worst-case output
probability in Theorem 3. Here, our average-case approximation regards both the randomly chosen
outcome and the randomly chosen circuit, since we cannot rely on the hiding property that enables
us to fix the outcome. For this reason, we define both the random circuit ensemble and the random
outcome ensemble as follows.

Definition 4 (Random circuit ensemble). Let A be the circuit architecture with m number of gates.
We define HA as the distribution over circuits with architecture A, whose gates are independently
distributed local Haar random matrices {Hi}

m
i=1.

Definition 5 (Random collision-free outcome ensemble). We define GM,N as the uniform distribution
over

(M
N

)

collision-free outcomes of boson sampling with M modes and N photons. Each outcome
s ∼ GM,N is an M -dimensional output configuration vector for the collision-free outcome, such

that s = (s1, . . . , sM ) where each si ∈ {0, 1} with
∑M

i=1 si = N .

Using the definitions above, we first state our result on the average-case hardness over the
outcome and circuit instances, for shallow-depth linear optical circuit architecture (BB∗)q≥2 with
q = O(1).

Theorem 4 (Average-case hardness). The following problem is #P-hard under a BPPNP reduction:
for any constant δ, η ≥ 0 with δ + η < 1

4 , on input a random circuit U ∼ HA with A = (BB∗)q≥2

and a random outcome s ∼ GM,N , compute the output probability ps(U) within additive imprecision

ǫ = 2−O(Nγ+1(logN)2), with probability at least 1− δ over the choice of U for at least 1− η over the
choice of s.

In the following, we sketch the proof of Theorem 4, by briefly describing the worst-to-average-
case reduction process; we leave in Appendix C a detailed proof of Theorem 4. Since our average-
case hardness regards both outcomes and circuits, we first describe how to effectively fix the
outcome, so that the remaining problem is to establish worst-to-average-case reduction for fixed
output probability over random circuit instances. To do so, our strategy is to randomly permute
both a given worst-case circuit and a given fixed outcome. That is, we sample random M -mode
permutation P and permute the worst-case circuit C0 and the fixed outcome s0 equally with P ,
where the permuted outcome s = Ps0 now follows the random outcome ensemble GM,N . Then the
fixed worst-case output probability ps0(C0) is equal to ps(PC0), and thus we can obtain the value
ps0(C0) by inferring ps(PC0) via worst-to-average-case reduction over random circuit instances.
Here, ps(PC0) now becomes a new worst-case output probability, such that the revised worst-case
circuit C is the randomly permuted circuit PC0, and the revised fixed outcome s is the randomly
chosen outcome from GM,N .

To establish the worst-to-average-case reduction from the revised worst-case circuit C to the
average-case circuit over HA for a fixed outcome s, our strategy is to perturb the circuit from
HA with the given worst-case circuit C parameterized by a constant θ ∈ [0, 1]. That is, θ = 0
corresponds to the average-case distribution HA and θ = 1 corresponds to the worst-case circuit C.
Specifically, we choose a perturbation method such that for small enough θ, the success probability
of average-case approximation over perturbed random circuits would not have largely deviated from
the ideal case (θ = 0), and as θ grows, the perturbed circuit converges to the worst-case circuit
C. Using such perturbation method and as long as θ values are small enough, one can obtain the
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average-case approximate output probability values with high probability over perturbed circuits,
parameterized by different values of θ. Also, we can expect that those average-case values contain
some information about the worst-case value ps(C), depending on the perturbation method and
the values of θ. Assuming that worst-case value ps(C) can be inferred using the average-case values
with small values of θ, one can finally infer the worst-case value ps(C), within a certain imprecision
determined by the average-case approximation imprecision and the method for the inference.

Therefore, it is crucial to choose a proper perturbation method to establish the worst-to-average-
case reduction successfully. Throughout this work, we use the Cayley path for the perturbation,
which was employed in Refs. [21, 33, 34] for the hardness proposals of the random circuit sampling.

Definition 6 (Cayley transform [33]). The Cayley transform of an n by n unitary matrix H
parameterized by θ ∈ [0, 1] is a unitary matrix defined as

H(θ) := ((2 − θ)H + θIn)(θH + (2 − θ)In)−1, (2)

where In is the n by n identity matrix. Also, for the diagonalization of the n by n unitary matrix
H = LDL†, with unitary matrix L and diagonal matrix D = diag(eiφ1 , . . . , eiφn), the equivalent
form of the Cayley transform is

H(θ) =
1

q(θ)
L diag({pj(θ)}nj=1)L

†, (3)

where

q(θ) =

n
∏

j=1

(1 + iθei
φj
2 sin

φj

2
), (4)

pj(θ) = eiφj (1 − iθe−i
φj
2 sin

φj

2
)
∏

k∈[n]\j

(1 + iθei
φk
2 sin

φk

2
). (5)

Using the Cayley transform defined above, we now define the perturbed random circuit
distribution.

Definition 7 (Perturbed random circuit ensemble). Let A be the circuit architecture with m
number of gates. For the given circuit C0 in A with gates {Gi}

m
i=1, the circuit U(θ) is defined with

each gate of C0 replaced by Gi → Hi(θ)Gi, where each Hi(θ) is a Cayley transform of independently
distributed local Haar random gate Hi (i ∈ [m]) parameterized by θ ∈ [0, 1]. We define HC0

A,θ as the
distribution for such U(θ). Here, the distribution of the U(0) is HA, and U(1) = C0.

Before proceeding, we should make sure that the success probability of average-case approximation
over circuits is still large enough after the perturbation, to establish the reduction process
successfully. This is evident in the case that the total variation distance over circuits induced
by the perturbation is small enough, as the success probability over circuits perturbs by, at most,
the total variation distance.

In fact, Ref. [33] proved that total variation distance between HA and HC0

A,θ is small for
comparably small perturbation θ.

Lemma 2 (Movassagh [33]). Let A be the circuit architecture with m number of gates. For θ ≪ 1
and for any circuit C0 in A, total variation distance between HC0

A,θ and HA is O(mθ).

Therefore, by using small θ = O(m−1), one can upper-bound the total variation distance by an
arbitrarily small constant, which implies that the success probability of average-case approximation
over circuits also perturbs by at most a small constant.
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For the worst-to-average-case reduction, we first sample a random circuit U(θ) ∼ HC0

A,θ with
A = (BB∗)q and worst-case circuit C0. Using U(θ) with the same random seed {Hi}

m
i=1 but with

different values of θ satisfying θ = O(m−1), we obtain the average-case approximation of the output
probability ps(U(θ)) for each θ, which may enable us to infer the worst-case output probability
value ps(U(1)) = ps(C).

To investigate the feasibility of the inference of the worst-case value, we examine the behavior of
the function ps(U(θ)) characterized by the parameter θ. Using Definition 6, we find that ps(U(θ))
can be represented as a low-degree rational function in θ.

Lemma 3. Let A be the q-Kaleidoscope circuit architecture (BB∗)q with m = qM logM number of
gates, and U(θ) ∼ HC0

A,θ for any C0 in A. Then for any outcome s, the output probability ps(U(θ))
can be represented as a degree (4mN, 4mN) rational funtion in θ.

Proof. For given circuit unitary matrix U(θ) ∼ HC0

A,θ with C0 composed of {Gi}
m
i=1 gates, one can

decompose U(θ) with m = qM logM product of unitary matrices, such that each matrix element
of U(θ) can be represented as

[U(θ)]j,k =
M
∑

l1=1

M
∑

l2=1

· · ·
M
∑

lm−1=1

U
(1)
j,l1

U
(2)
l1,l2

· · ·U
(m)
lm−1,k

, (6)

where each U (i) denotes an M -dimensional unitary matrix, with a single gate unitary matrix
Hi(θ)Gi applied to the modes participating in the gate and identity for the rest of the modes. For
example, if the ith gate Hi(θ)Gi is a two-mode gate between the first two modes, U (i) is a block
diagonal matrix of Hi(θ)Gi and identity matrix, namely, U (i) = Hi(θ)Gi

⊕

IM−2.

For circuit architecture A = (BB∗)q which is composed of only two-mode gates, matrix elements
of U (i) can be represented as degree (2, 2) rational functions in θ, where the common denominator
for the elements is given by qi(θ), defined in Eq. (4) but with index i appended for ith random
gate Hi(θ). Using reduction to the common denominator for all of the m gates, [U(θ)]j,k can be
represented as (2m, 2m) rational function in θ with the common denominator

∏m
i=1 qi(θ); note that

it does not change with the indices j, k.

From Eq. (1), the output probability ps(U(θ)) has the form of

ps(U(θ)) =

∣

∣

∣

∣

∣

∣

∑

σ∈SN

N
∏

j=1

[U(θ)s,t]σj ,j

∣

∣

∣

∣

∣

∣

2

, (7)

where t is an input configuration vector, and SN is N -mode permutation group. One can easily
check that the common denominator for

∏N
j=1 [U(θ)s,t]σj ,j

is [
∏m

i=1 qi(θ)]N , and it does not change

with permutation σ. Let us define Q(θ) = [
∏m

i=1 |qi(θ)|2]N , which is a degree 4mN polynomial in
θ. Then Q(θ) serves as the common denominator for the output probability. Hence, the output

probability can be represented as ps(U(θ)) = P (θ)
Q(θ) , with P (θ) also a degree 4mN polynomial in

θ.

We are now ready to turn to the proof of Theorem 4, i.e., the average-case hardness of
the shallow-depth boson sampling. We prove that for high probability over s ∼ GM,N , well-
approximating output probability ps(U) with high probability over U ∼ HA for the shallow-depth
architecture A = (BB∗)q is #P-hard under a BPPNP reduction.

Proof of Theorem 4. See Appendix C
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V. AVERAGE-CASE HARDNESS IMPLIES CLASSICAL SIMULATION HARDNESS

As we have previously discussed, since our average-case hardness result considers both the
random outcomes and random circuits, it is not straightforward to show the classical simulation
hardness of shallow-depth boson sampling as in the original boson sampling proposal [1]. Therefore,
in this section, we provide a self-contained analysis of how our average-case hardness result leads
to the classical simulation hardness arguments of shallow-depth boson sampling. Specifically, we
show that if the allowed additive error in Theorem 4 for the hardness is improved to a certain
imprecision level, an efficient classical algorithm that can approximately simulate the shallow-depth
boson sampling is unlikely to exist. This emphasizes that improving the imprecision level of the
average-case hardness in Theorem 4 is a crucial step for the classical intractability of shallow-depth
boson sampling.

Similarly to Refs. [1, 32], we define an approximate boson sampler as follows.

Definition 8 (Approximate boson sampler). Approximate boson sampler is a classical randomized
algorithm that takes input linear optical circuit C and outputs a sample from the output distribution
D′

C such that

||D′
C −DC || ≤ β (8)

where DC is the ideal output distribution of the circuit C and ||·|| represents total variation distance.

Given the total variation distance error, the above approximate sampler can have an arbitrarily
large additive error for a fixed output probability. Nevertheless, it still has a comparably small
additive error for most of the output probabilities due to Markov’s inequality. Accordingly, finding
the average-case solution of the output probability of the ideal sampler over randomly chosen
collision-free outcome s ∼ GM,N , up to a certain additive imprecision, is in complexity class BPPNP

by Stockmeyer’s theorem [38].

Lemma 4 (Average-case approximation [1]). If there exists an approximate boson sampler S with

total variation distance β, then for any linear optical circuit C, the following problem is in BPPNPS

:
find the average-case approximate solution p̃s(C) of ps(C), which satisfies

Pr
s∼GM,N

[

|p̃s(C) − ps(C)| ≥
κ
(M
N

)

]

≤ ξ, (9)

where s is over all collision-free outcomes, and κ, ξ > 0 are the fixed error parameters satisfying
β = κξ/12.

We leave the proof of Lemma 4 in Appendix D for a more self-contained analysis. The complexity
BPPNP is known to be inside the finite level of PH, i.e., BPPNP ⊆ PH. Also, by Toda’s theorem [39],
PH problems can be solved given the ability to solve any #P problem, i.e., BPPNP ⊆ PH ⊆
P#P. If finding the average-case solution of output probabilities of sampler S is #P-hard, then
P#P ⊆ BPPNPS

. Therefore, if an efficient classical algorithm exists that can simulate S, then
P#P ⊆ BPPNP which implies the collapse of PH. Consequently, under the assumption of the
non-collapse of the PH, there is no efficient classical algorithm capable of simulating S.

Based on the above arguments, we show that for the case that allowed additive imprecision of
Theorem 4 for the hardness can be improved, then it is classically hard to simulate shallow-depth
boson sampling within a constant total variation distance.
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Theorem 5. Suppose that the allowed additive imprecision for the problem in Theorem 4 to be
#P-hard can be improved to ǫ = 2−(γ−1)N logN−O(N). Then the efficient classical simulation of
approximate boson sampler S with respect to circuits from the shallow architecture A = (BB∗)q≥2

implies the collapse of PH.

Proof. We establish a reduction from the problem in Theorem 4 with allowed additive error
ǫ = 2−(γ−1)N logN−O(N) to the problem in Lemma 4. Let O be an oracle that solves the problem in
Lemma 4, i.e., on input a circuit C and a randomly chosen collision-free outcome s ∼ GM,N ,

O outputs an estimate of output probability ps(C) up to additive imprecision κ
(M
N

)−1
, with

probability at least 1− ξ over outcomes for any circuit. For convenience, we refer to the outcomes

which O estimates with error larger than κ
(M
N

)−1
as bad outcomes, such that the portion of bad

outcomes over possible collision-free outcomes is at most ξ for any circuit.

For the randomly chosen circuit input, bad outcomes can vary with the circuit instances, as the
sampler S has the freedom to choose its error distribution according to the input circuit. However,
no matter how the bad outcomes vary with circuit instances, O succeeds at least 1 − ξ

η fraction
over circuit instances for at least 1 − η fraction of the outcomes, for any η satisfying ξ < η < 1.
Otherwise, the failure probability over outcomes and circuits would exceed ξ, which contradicts
the proposition that the success probability of O is at least 1 − ξ over randomly chosen outcomes
and circuits. As the above argument holds for any random circuit families, we choose the random
circuit distribution as HA with the shallow architecture A = (BB∗)q≥2.

To sum up, on input a random circuit H ∼ HA and a random outcome s ∼ GM,N , the oracle O

estimates the output probability ps(H) up to imprecision κ
(M
N

)−1
, with probability at least 1 − ξ

η
over the choice of H for at least 1 − η over the choice of s. Here, the additive imprecision can be
bounded as

κ

(

M

N

)−1

= κ
N !(M −N)!

M !
(10)

= 2−(γ−1)N logN−O(N), (11)

for constant β and so as κ, where we used the relation M = c0N
γ with a constant c0 and γ ≥ 1.

By setting η and ξ small constant satisfying η + ξ
η < 1

4 , we can solve the problem in Theorem 4

up to additive imprecision ǫ = 2−(γ−1)N logN−O(N) using the oracle O. Hence, assuming that
the above problem is #P-hard under BPPNP reduction, we can obtain the complexity-theoretical
relation P#P ⊆ BPPNPS

, which implies the collapse of PH if S with respect to shallow-depth circuit
architecture (BB∗)q≥2 can be done in classical polynomial time. This completes the proof.

VI. CLASSICAL SIMULATION HARDNESS OF SHALLOW-DEPTH GAUSSIAN

BOSON SAMPLING

In this section, we show that our hardness results of the shallow-depth boson sampling can be
generalized to the Gaussian boson sampling scheme [2]. Our specific setup for the Gaussian boson
sampling is as follows. Let the total mode number M of the circuit be a power of 2, and now
the input state is an M product of single-mode squeezed vacuum (SMSV) state |SMSV〉⊗M with
equal squeezing parameter r and equal squeezing direction. Also, let us define the output mean
photon number as an integer N (i.e., N = M sinh2 r) where M and N are polynomially related as
M = c1N

γ for a constant c1 and γ ≥ 1. We define qs(C) as an output probability of the Gaussian
boson sampling, for an N photon outcome s from an M mode linear optical circuit matrix C on
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input M SMSV states. For collision-free outcome s, qs(C) can be expressed as [2]

qs(C) =
∣

∣

∣
〈s| Û(C) |SMSV〉⊗M

∣

∣

∣

2
=

tanhN r

coshM r
|Haf((CCT )s)|2, (12)

where |s〉 is an M -mode Fock state corresponding to the outcome s, Û(C) is a unitary operator
corresponding to the circuit C, and (CCT )s is an N by N matrix obtained by taking si copies of
the ith row and column of the matrix CCT .

Using the above settings, we first prove the worst-case hardness of Gaussian boson sampling for
a fixed outcome s, with the shallow-depth circuit architecture BB∗.

Theorem 6. Approximating the output probability qs0(C) of Gaussian boson sampling to within

additive error 2−
γ−1

2
N logN−O(N) for any C over linear optical circuit architecture BB∗ is #P-hard

in the worst case.

Proof. We establish a reduction from the worst-case hardness of boson sampling in Theorem 3 to
the problem in Theorem 6. Let ps0(C0) be the output probability of a fixed input and output s0 of
boson sampling in Theorem 3, for mode number M0, photon number N0, and the circuit C0 in M0

mode circuit architecture BB∗. In the following, we show that ps0(C0) can be efficiently reduced to
the output probability qs(C) of Gaussian boson sampling, for mode number M = 2M0 and mean
photon number N = 2N0, with output s and circuit C determined by s0 and C0 each.

Our strategy is to employ the scheme in Ref. [40], which used M0 product of equally squeezed
two-mode squeezed vacuum (TMSV) state as an input state to perform M0 mode boson sampling
task. Specifically, a single TMSV state with squeezing parameter r can be represented as

|TMSV〉 =
1

cosh r

∞
∑

n=0

tanhn r |n〉 |n〉 , (13)

and thus M0 product of the TMSV state is

|TMSV〉⊗M0 =
1

coshM0 r

(

∞
∑

n=0

tanhn r |n〉(1) |n〉(2)

)⊗M0

=
1

coshM0 r

∞
∑

n=0

tanhn r
∑

sn

|sn〉(1) |sn〉(2) ,

(14)

where the summation of sn is over all possible configurations of Fock state with a total M0 mode
and n photon.

For each mode in the given M0 mode circuit C0, one-half of the TMSV state (i.e., subscript (2)
in Eq. (14)) is input into it, and the other half of each state (i.e., subscript (1) in Eq. (14)) is sent
directly to a photon counter. By setting each |sin〉 and |sout〉 as a total M0 mode and total N0

photon Fock state, the output probability can be represented as

∣

∣

∣
〈sin|(1) 〈sout|(2) Û(2)(C0) |TMSV〉⊗M0

∣

∣

∣

2
=

tanh2N0 r

cosh2M0 r

∣

∣

∣
〈sin| Û(C0) |sout〉

∣

∣

∣

2
, (15)

which is the output probability of M0 mode and N0 photon boson sampling in circuit C0, with an
additional multiplicative factor.

Note that two M0 mode BB∗ architecture can be embedded in the middle of an M = 2M0

mode BB∗ architecture. Accordingly, we define a circuit C in M mode BB∗ by embedding the
given M0 mode circuit C0 in one side of BB∗, setting gates located right in front of the input
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FIG. 3. Schematics of an mode number M = 16 circuit C in BB∗ which contains a given M0 = 8 mode
circuit C0 in BB∗

ports as balanced beam splitters, and setting the remaining gates as identity gates; we leave in
Fig. 3 an illustration of M = 16 mode circuit C for more clarity. Here, the input M SMSV states
with squeezing parameter r combined with the balanced beam splitters at the front becomes M0

TMSV states with squeezing parameter r. Therefore, our overall setup exactly follows the scheme
in Ref. [40], such that the first M0 mode is the photon counter sector to determine the input
configuration of boson sampling, and the last M0 mode is to simulate the boson sampling for the
given circuit C0.

We also define an M -dimensional vector s as a serial concatenation of two s0 vectors, so that
s represents N photon outcome over M modes. Then the output probabilities ps0(C0) and qs(C)
are related as

qs(C) =
∣

∣

∣
〈s| Û(C) |SMSV〉⊗M

∣

∣

∣

2

=
∣

∣

∣
〈s0|(1) 〈s0|(2) Û(2)(C0) |TMSV〉⊗M0

∣

∣

∣

2

=
tanh2N0 r

cosh2M0 r
ps0(C0).

(16)

Hence, approximating the output probability ps0(C0) can be reduced to approximating the
output probability qs(C) of Gaussian boson sampling, with a blowup in the additive imprecision.
The size of the additive imprecision blowup is

cosh2M0 r

tanh2N0 r
=

(

M + N

M

)M0+N0
(

M

N

)N0

= 2
γ−1

2
N logN+O(N), (17)

using the relation N = M sinh r and M ∝ Nγ . Since the allowed additive error for the worst-case

hardness of ps0(C0) is 2−O(N), the allowed additive error for the reduction is 2−O(N)2−
γ−1

2
N logN−O(N)

= 2−
γ−1

2
N logN−O(N). This completes the proof.

Using the results of Theorem 6 and the previous proof of the average-case hardness of boson
sampling in Theorem 4, it is straightforward to find the average-case hardness of Gaussian boson
sampling, for randomly chosen N photon outcomes s ∼ GM,N and randomly chosen circuits U ∼ HA

in shallow-depth architecture A = (BB∗)q≥2.
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Theorem 7. The following problem is #P-hard under a BPPNP reduction: for any constant δ, η ≥
0 with δ+η < 1

4 , on input a random circuit U ∼ HA with A = (BB∗)q≥2 and a random outcome s ∼
GM,N , compute the output probability qs(U) of Gaussian boson sampling within additive imprecision

ǫ = 2−O(Nγ+1(logN)2), with probability at least 1− δ over the choice of U for at least 1− η over the
choice of s.

Proof. The procedure is the same as the proof of Theorem 4, namely, establishing a worst-to-
average-case reduction from the problem in Theorem 6 to the problem in Theorem 7. The only
different part for the Gaussian boson sampling case is the functional form of the output probability
qs(U(θ)) parameterized by θ. Hence, we show that qs(U(θ)) can also be represented as a degree
(4mN, 4mN) rational function in θ, the same degree as the boson sampling case in Lemma 3.

From Eq. (12), the output probability qs(U(θ)) has the form of

qs(U(θ)) = tanhN r sechM r

∣

∣

∣

∣

∣

∣

∑

µ∈PMP

N/2
∏

j=1

[

(U(θ)U(θ)T )s
]

µ(2j−1),µ(2j)

∣

∣

∣

∣

∣

∣

2

, (18)

where µ is along all possible perfect matching permutations over N modes. From the proof of
Lemma 3, using reduction to the common denominator for all of the m = qM logM gates, [U(θ)]j,k
can be represented as (2m, 2m) rational function in θ with the common denominator

∏m
i=1 qi(θ).

Using this fact, one can easily check that
∏N/2

j=1

[

(U(θ)U(θ)T )s
]

µ(2j−1),µ(2j)
can be represented as

(2mN, 2mN) rational function in θ, with the common denominator [
∏m

i=1 qi(θ)]N which does not

change with µ. Therefore, the output probability can be represented as qs(U(θ)) = P (θ)
Q(θ) , with each

Q(θ) = [
∏m

i=1 |qi(θ)|2]N and P (θ) a degree 4mN polynomial function in θ.
Given that qs(U(θ)) can be represented as a degree (4mN, 4mN) rational function with the

same denominator Q(θ) = [
∏m

i=1 |qi(θ)|2]N from the boson sampling case in Lemma 3, we can
repeat all the steps identically to the proof of Theorem 4 and obtain the same result.

VII. EXTENSION OF HARDNESS RESULTS FOR LOSSY ENVIRONMENTS

In this section, we generalize our hardness results for lossy environments, namely, shallow-
depth linear optical circuits suffering from photon loss channels after each gate implementation.
The reason we consider such a noise channel is that photon loss is indeed a major source of error in
optical systems [4–7]. Also, photon loss ruins the classical intractability of boson sampling, as there
exist many efficient classical algorithms that can simulate lossy boson sampling within a constant
total variation distance [12–14]. Therefore, we mainly deal with the photon loss error here; our
goal is to provide evidence for the hardness of the approximate simulation of boson sampling in
lossy shallow circuits within total variation distance error. For simplicity, we do not consider any
photon gain error here, such as thermal radiation noise subjected to the circuits.

To proceed, we start with a brief review of the results presented by Ref. [41], which shows
the hardness of simulating noisy quantum circuits. Specifically, one can simulate a noiseless
circuit using a larger noisy circuit up to the desired imprecision, by establishing error-detecting
code in the noisy circuit and post-selecting null syndrome measurements. Therefore, given the
probability to post-select the no-error syndromes, one can approximate the output probability of
the noiseless circuit from the output probability of the noisy circuit. Based on this argument,
Ref. [21] demonstrates the average-case hardness of approximating output probabilities of noisy
quantum circuits, under some plausible assumptions of the noise model. This result gives evidence
of the approximate simulation hardness of noisy quantum circuits, within total variation distance
error.
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The main strategy of the above hardness results is approximating ideal output probabilities by
post-selecting error-free results from noisy circuits. Here, we can directly apply their strategy to our
case, i.e., lossy shallow-depth linear optical circuits. The crucial observation is that considering
photon loss error on boson sampling, the error syndrome is the output photon number itself .
Specifically, if the output photon number is the same as the input photon number, this implies
that no loss occurred throughout the circuit. Therefore, by post-selecting the event that the
measured output photon number is the same as the input photon number, we can infer ideal
output probabilities.

For a more detailed analysis, we set the loss model as follows. Let the photon loss model N be
local and stochastic. Specifically, N is a set of loss channels {Ni}

l
i=1, such that after each unitary

gate is applied, loss channel Ni acts on each mode participated in the unitary gate. Hence, the
number of loss channels is l = O(m) for gate number m in a given circuit architecture. We can
decompose each noise channel Ni as follows:

Ni = (1 − ρi)I + ρiEi, (19)

where I is identity, Ei is an CPTP map representing photon loss, and ρi is a loss rate for each
channel satisfying ρi ≤ ρ for a constant ρ. The validity of such modeling for photon loss channel
is represented in [3, 12].

To simplify, we assume that we know a priori each error rate ρi for all i ∈ [l], and the noise
model N is fixed so that it does not change with random circuit instances. Then we can obtain
the hardness of approximating output probabilities of lossy shallow circuits, from our previous
hardness proposals. To do so, let ps(C,N ) be the output probability of N photon outcome s from
a M mode linear optical circuit C which undergoes loss model N we set. By post-selecting ‘no
loss event’, which can be accomplished by counting the output photon number, the ideal output
probability ps(C) can be inferred from ps(C,N ) by

ps(C) =
ps(C,N )

Pr[‘no loss event’]
. (20)

From Eq. (19), the probability of ‘no loss event’ is
∏l

i=1(1−ρi), which can be efficiently calculated.
This implies that approximating ps(C,N ) can be reduced from approximating ps(C), with at most
Pr[‘no loss event’]−1 =

∏l
i=1(1 − ρi)

−1 ≤ (1 − ρ)−l = 2O(ρm) blowup in the additive imprecision.

Given Eq. (20), we can repeat the same steps from the previous hardness arguments, for the
lossy shallow-depth boson sampling; the only difference is the imprecision blowup by 2O(ρm). For
our shallow-depth architecture (BB∗)q, the gate number m is qM logM , so the size of imprecision
blowup is 2O(Nγ logN) in our case. Such imprecision blowup does not affect the allowed additive
accuracy ǫ = 2−O(Nγ+1(logN)2) for our average-case hardness result. Based on the arguments so far,
the following corollary is straightforward.

Corollary 1. Suppose we have the photon loss model N with each loss rate ρi ≤ ρ for a constant ρ.
Then the following problem is #P-hard under a BPPNP reduction: for any constant δ, η ≥ 0 with
δ+η < 1

4 , on input a random circuit U ∼ HA with A = (BB∗)q≥2 and a random outcome s ∼ GM,N ,

compute the lossy output probability ps(U,N ) within additive imprecision ǫ = 2−O(Nγ+1(logN)2), with
probability at least 1 − δ over the choice of U for at least 1 − η over the choice of s.

We remark that for our noise model, the imprecision blowup grows exponentially with the gate
number m. Therefore, shallow-depth circuits can be more advantageous in this perspective, since
they are likely to have less gate number and thus have small imprecision blowup. For example,
the current hardness results are based on M by N submatrices of M -dimensional Haar random
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unitaries, and the implementation of such matrices requires gate number m = Ω(Nγ+1). This
arouses the imprecision blowup at least 2O(Nγ+1), which restricts the allowed additive error for the
average-case hardness at most 2−O(Nγ+1).

VIII. CONCLUDING REMARKS

Here we provide a few remarks about our overall results and related open questions.
1. Our result demonstrates the average-case hardness for additive imprecision 2−O(Nγ+1(logN)2).

Indeed, there still remains a gap to the desired additive imprecision for the simulation hardness
2−(γ−1)N logN−O(N) in Theorem 5. Hence, closing this gap would be an ultimate challenge to the
full achievement of classical intractability; more advanced proof techniques are required to reduce
this gap. Here, one can take the following approach: finite-size numerical experiments suggest that
the output distributions of local random circuits in the butterfly circuit architecture (Definition 2)
are close enough to those of global Haar random circuits [37]. Accordingly, if one can analytically
prove that the distance between those output distributions is close enough, we can directly obtain
a better imprecision level 2−O(N logN) by results in [3, 21, 22], which employed the global Haar
random circuits.

Another possible approach for reducing the imprecision gap is to perturb a random circuit matrix
in a different way from the Cayley transform (Definition 6), i.e., as depicted in [22]. Specifically,
instead of perturbing each random gate, one can perturb a submatrix X of our random circuit
matrix U with a worst-case matrix A as X(θ) = (1 − θ)X + θA for θ ∈ [0, 1]. Here, a degree
of polynomial |Per(X(θ))|2 is 2N , which is lower than ours derived by the Cayley transform.
Therefore, if one can prove that X(θ) is distributed similarly to X for small θ, we expect that we can
also obtain a better imprecision level by using the same interpolation method. However, the above
approach requires one to figure out a global circuit distribution generated by the convolution of
local circuit distributions. Although we believe that this problem can be resolved using techniques
from random matrix theories, we have not yet developed a complete analysis. Hence, we leave it
as an open question.

2. Another important challenge that should be addressed is to find the classical simulation
hardness of noisy boson sampling, for general types of physical noise beyond the photon loss noise
model we have dealt with so far. To do so, as described in [3, 21, 41], employing the threshold
theorem would be a viable choice for this goal. Specifically, the threshold theorem for general types
of noise in boson sampling setups has to be developed. This requires an efficient error detection
code for general types of error using linear optical elements, for any multi-mode Fock state or
Gaussian state input. However, to the best of our knowledge, such an error detection code does
not exist. Hence, constructing this error detection code would be a crucial step toward the hardness
of noisy boson sampling, which will contribute to a more noise-tolerant demonstration of quantum
advantage with boson sampling. We leave this problem as another open question.
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Appendix A: Previous foundations: Average-case hardness of boson sampling

In this appendix, we argue the existing proof technique employed for the simulation hardness
of boson sampling, specifically in the context of the approximate simulation within total variation
distance error [1]. The current state-of-the-art proof technique for the hardness of sampling
problems like boson sampling essentially builds upon Stockmeyer’s algorithm about approximate
counting [38]. Specifically, given a classical sampler that outputs a sample from a given output
distribution, Stockmeyer’s algorithm enables one to multiplicatively estimate a fixed output
probability of the sampler, within complexity class BPPNP.

Now suppose there exists an approximate classical sampler capable of simulating ideal boson
sampling up to total variation distance error, as in Definition 8. This approximate sampler can have
a large additive error for a fixed output probability, but have a comparably small additive error
for most of the output probabilities due to Markov’s inequality. Then, Stockmeyer’s algorithm,
combined with the approximate sampler, can well approximate the ideal output probability of
boson sampling within a certain additive error, with a high probability over randomly chosen
outcomes (See Lemma 4 for more details). For convenience, let us refer to this computational task
as an average-case approximation problem of boson sampling. If the complexity of the average-case
approximation problem is outside the Polynomial Hierarchy (PH), it implies the collapse of PH,
since the complexity of Stockmeyer’s algorithm is indeed inside the finite level of PH.

Here, average-case hardness comes into the proof of the classical simulation hardness argument,
which means that approximating the ideal output probability of boson sampling with high
probability over randomly chosen outcomes is #P-hard. More precisely, if the average-case
hardness holds up to the imprecision level of the average-case approximation problem, this comes
down to the classical simulation hardness of the approximate sampling unless PH collapses, by the
complexity-theoretical foundation PH ⊆ P#P [39].

Moreover, by choosing random circuit instances that have symmetry over the outcomes, one
can reduce the average-case instances for the hardness from outcome instances to circuit instances,
which is called the hiding property. For the boson sampling case, global Haar random unitary (i.e.,
unitary matrix drawn from Haar measure on U(M), for mode number M) satisfies this condition.
In detail, instead of randomly choosing the outcome, we can fix the outcome by applying a random
permutation to the global Haar random unitary distribution, which is still Haar distributed from
its symmetric property. This hiding property plays an important role in the current proofs of the
average-case hardness, as it enables one to establish worst-to-average-case reduction. Specifically,
as the output probability of boson sampling can be written as a low-degree polynomial of input
circuit (matrix) values, it allows one to infer the value of a worst-case instance from the output
probability of many average-case circuit instances. Hence, the average-case hardness argument for
boson sampling is typically used in this context, i.e., average-case hardness over random circuit
instances, for a fixed outcome [1, 3, 21].

Accordingly, the crucial step for the classical simulation hardness of approximate sampling is
to prove the average-case hardness for the desired imprecision level. While there have been many
impressive results about the average-case hardness of boson sampling [1, 3, 21, 22], the average-
case hardness for the desired imprecision level is not yet fully demonstrated. Still, there exists a
gap between the imprecision level of average-case hardness in the strongest existing results and
the imprecision level of average-case approximation problem. Hence, closing this imprecision gap
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remains the ultimate challenge for the fully theoretically guaranteed computational advantage of
approximate boson sampling.

Appendix B: Proof of Theorem 3

The proof of Theorem 3 can be greatly simplified by introducing the following two Lemmas.

Lemma 5 (Brod [25], revised). For an arbitrary given poly-sized n-qubit quantum circuit Q, there
exists a constant depth linear optical circuit C such that for M ≥ 2N and N = poly(n),

| 〈I|Û(C)|I〉 |2 = cQ| 〈0|
⊗nQ |0〉⊗n |2, (B1)

where cQ is a Q dependent constant which can be efficiently computed, Û(C) is a unitary operator
corresponding to the circuit C, and |I〉 is an M -mode Fock state composed of N single photon
states and vacuum states for the rest modes.

Proof. We revise the results by [25], for a more rigorous analysis of the allowed additive imprecision
level for the worst-case hardness of shallow-depth boson sampling. Ref. [25] proposed that certain
4-depth linear-optical circuits with post-selection can simulate universal quantum computing.
Specifically, to simulate any poly-sized quantum circuit Q on n qubits, there exists a measurement-
based quantum computation (MBQC) scheme using constant depth brickwork graph state of
maximally poly(n) qubits [42–44]. The corresponding scheme can also be implemented in a linear
optical system via KLM scheme [45] with post-selection, using N = poly(n) number of single
photon states over M ≥ 2N modes (requirements for the dual-rail encoding), which can simulate
the quantum circuit composed of O(N) number of gates.

Therefore, given the circuit in [25] and an appropriate dual-rail encoded state |I〉, the output
probability of any quantum circuit Q can be represented as Eq. (B1), where cQ denotes the product
of post-selection probabilities for gate implementations. To compute cQ, we need to figure out the
required number of gates to implement the circuit Q and their probabilities to be post-selected.
More precisely, from [25], post-selection occurs for two cases: (i) for the CZ gate to implement the
brickwork graph state, and (ii) for the gate set {CX, T, H} (i.e., universal set of gates) which can
be implemented by measurement of the graph state.

Hence, cQ can be expressed as

cQ =
∏

k∈{CZ, CX, T, H}

pΓk

k , (B2)

where pk denotes post-selection probability of k gate (e.g., pCZ is 2/27 in [46]), and Γk denotes the
number of k gate to implement the circuit Q. By counting the number of each gate to implement
the circuit Q, cQ can be computed efficiently.

Lemma 6 (Kondo et al [34]). It is #P-hard to compute | 〈0|⊗nQ |0〉⊗n |2 for an arbitrary given
quantum circuit Q within the additive error less than 2−2n.

Combining the above results, now we prove the worst-case hardness of output probability
approximation of boson sampling in the shallow-depth circuit architecture BB∗, for fixed input and
output corresponding to the |I〉 in Lemma 5. By Lemma 6, approximating output probabilities of
worst-case n-qubit BQP circuits within additive error 2−2n is #P-hard. Also, one can easily check
that the constant depth linear-optical circuit proposed by [25] can be efficiently embedded in the
architecture BB∗. Hence, by Lemma 5, approximating ps(C) of any C over BB∗, for both input
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and output s corresponding to the |I〉, can be reduced from approximating output probabilities
of any BQP circuits, with c−1

Q blowup in the additive imprecision. Since the post-selection occurs

O(N) times to implement n-qubit BQP circuit by Lemma 5, cQ has its amplitude cQ = 2−O(N),
and thus the allowed additive error for the reduction is 2−(2n+O(N)) = 2−O(N).

Appendix C: Proof of Theorem 4

In this proof, we establish the worst-to-average-case reduction, from the problem in Theorem 3
to the problem in Theorem 4. Let O be an oracle that solves the problem in Theorem 4, i.e., on
input s ∼ GM,N and U ∼ HA with A = (BB∗)q for fixed q ≥ 2, the oracle outputs ps(U) within
additive error ǫ for high constant probability over U and s. Let C0 be the worst-case circuit in
(BB∗)q0 with q0 ≥ 1, and s0 the fixed collision-free output given in Theorem 3. In the following, we

show that approximating ps0(C0) to within additive error 2−O(N) (i.e., Theorem 3) is in BPPNPO

,
which implies that the average-case approximation of ps(U) to within ǫ is #P-hard under BPPNP

reduction.

Our main idea for the reduction from the fixed outcome s0 to the randomly chosen outcome
s ∼ GM,N is to permute the worst-case circuit in correspondence with the random outcome s.
Specifically, we first sample permutation matrix P uniformly over all possible M mode permutation,
where the sampled P can be efficiently implemented in the circuit architecture BB∗ from Lemma 1.
Let sP be the permuted outcome Ps0 by the sampled permutation P , where one can easily check
that sP ∼ GM,N . Also, let CP be the permuted circuit PC0, where now the circuit CP is in
(BB∗)q0+1. In this case, from Eq. (1), the output probability of the permuted outcome from the
permuted circuit is identical to the worst-case output probability, i.e., psP (CP ) = ps0(C0). From
now on, we set psP (CP ) as a worst-case output probability, and our new goal is to estimate psP (CP )
given access to the oracle O.

For the reduction from the worst-case circuit CP to the average-case circuits, we sample
random circuit U(θ) in (BB∗)q with q = q0 + 1, by sampling independently distributed local Haar
random gate {Hi}

m
i=1 for gate number m = qM logM , perturbing them by the Cayley transform

parameterized by θ and multiplying the worst-case circuit gates from CP as in Definition 7. Then,
U(θ) follows the distribution HCP

A,θ, with A = (BB∗)q, and U(1) = CP .

Given randomly chosen outcome sP ∼ GM,N and circuit U(θ) ∼ HCP

A,θ, we input them in the
oracle O. For at least 1 − η over sP , the failure probability of O is at most

Pr
U(θ)∼H

CP

A,θ

[|O(sP , U(θ)) − psP (U(θ))| > ǫ] < δ + DTV(HCP

A,θ,HA), (C1)

where DTV denotes total variation distance. This is evident as we can interpret the total variation
distance as the supremum over events of the difference in probabilities of those events (Viz., circuits
corresponding to the failure) [32]. By Lemma 2, DTV(HCP

A,θ,HA) is O(mθ). By setting 0 ≤ θ ≤ ∆

with ∆ = O(m−1), we can upper bound DTV(HCP

A,θ,HA) by an arbitrarily small constant.

By Lemma 3, psP (U(θ)) is a (4mN, 4mN) degree rational function P (θ)
Q(θ) , where the denominator

is given as Q(θ) =
[
∏m

i=1 |qi(θ)|2
]N

. We note that Q(θ) can be computed in Θ(m) time, as it only
depends on the constant number of eigenvalues of local gate matrices (i.e., φj values in Eq. (4) for
each local gate matrix Hi). Also, given that θ ≤ ∆ = O(m−1), Q(θ) is very close to the unity, as
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Q(θ) ≥ 1 and

Q(θ) =

[

m
∏

i=1

|qi(θ)|2

]N

=





m
∏

i=1

2
∏

j=1

|(1 + iθei
φi,j
2 sin

φi,j

2
)|2





N

(C2)

≤





m
∏

i=1

2
∏

j=1

(1 + θ2)





N

≤ (1 + O(m−2))2mN

= 1 + O(Nm−1),

where φi,j denotes the phase of the jth eigenvalue of the ith gate.
Therefore, psP (U(θ)) is very close to the degree d = 4mN polynomial P (θ) in θ ∈ [0,∆], which

allows us to use polynomial interpolation technique for P (θ). Specifically, we obtain estimations
of P (θ) for different values of θ ∈ [0,∆] by querying the oracle O, use polynomial interpolation
for given P (θ) values to estimate P (1), and infer the value psP (U(1)) = psP (CP ) by multiplying
Q(1)−1. However, Q(1)−1 becomes arbitrarily large for the case that even a single φi,j in Eq. (C2)
is near ±π, which will arbitrarily enlarge the imprecision of the approximation of psP (U(1)). To
avoid this issue, we employ the strategy from Ref. [21], which only considers the case that all φi,j

values of randomly chosen gates {Hi}
m
i=1 are in [−π+ζ, π−ζ], and regards the other case as failure.

This happens with probability at least 1 − O(mζ) over the random circuit instances. By setting
ζ = O(m−1), we can make O(mζ) arbitrarily small constant, and as a result, we can upper bound
Q(1)−1 (see Eq. (C6) below) with high probability over random circuit instances.

Now the problem reduces to approximating degree d = 4mN polynomial P (θ) with the value
O(sP , U(θ))Q(θ) in θ ∈ [0,∆] within additive error smaller than ǫ(1 + O(Nm−1)) ≈ ǫ; such
approximations will later be used for the estimation of the value P (1) via polynomial interpolation
technique. The failure of O depends on the outcome sP ∼ GM,N whose failure probability is at

most η, and the circuit U(θ) ∼ HCP

A,θ whose failure probability is at most δ+O(m∆) from Eq. (C1).
Also, the probability that at least one φi,j of randomly chosen gates {Hi}

m
i=1 is outside of the regime

[−π+ ζ, π− ζ] is at most O(mζ). Putting everything together and applying a simple union bound,
the total failure probability of the approximation of P (θ) is at most

Pr[|O(sP , U(θ))Q(θ) − P (θ)| > ǫ] < η + δ + O(m∆) + O(mζ)

≤ δ′,
(C3)

where δ′ is an upper bound of η + δ + O(m∆) + O(mζ), and given η + δ < 1
4 , we can make δ′ < 1

4
by setting O(m∆) and O(mζ) arbitrary small constants.

Let {θi}
O(d2)
i=1 be the set of equally spaced points in the interval [0,∆]. For each θi, we obtain

the unitary matrix U(θi) using the same random gate {Hi}
m
i=1 and worst-case circuit CP . Let

yi = O(sP , U(θi))Q(θi). By Eq. (C3), each set of points (θi, yi) satisfies

Pr[|yi − P (θi)| > ǫ] ≤ δ′ <
1

4
. (C4)

By using the interpolation algorithm introduced in Theorem 8, we can obtain the additive
approximation of P (1) as p̃ with an access to NP oracle, such that

Pr
[

|p̃− P (1)| > ǫ′
]

<
1

3
, (C5)
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where ǫ′ = ǫe−d log∆ = ǫ2O(Nγ+1(logN)2) using d = 4mN and m = qM logM . Note that the failure
probability in Eq. (C5) can be arbitrarily reduced by taking a polynomial number of trials, and thus
we can obtain the estimated value P (1) within additive error ǫ′ with arbitrarily high probability.

From the estimated value P (1), we can infer the worst-case output probability value psP (U(1)) =
P (1)/Q(1). As the value of Q(1) depends on the values φi,j in Eq. (C2), the φi,j independent lower
bound of Q(1) is required to set an upper bound of the additive imprecision of psP (U(1)). Since
we only consider the case that all of φi,j values are in [−π + ζ, π − ζ] with ζ = O(m−1) for all
randomly chosen gates {Hi}

m
i=1, we have

Q(1) =





m
∏

i=1

2
∏

j=1

|(1 + iei
φi,j
2 sin

φi,j

2
)|2





N

=





m
∏

i=1

2
∏

j=1

(

1 − sin2 φi,j

2

)





N

≥





m
∏

i=1

2
∏

j=1

(

1 − sin2 π − ζ

2

)





N

=
(

O(m−2)
)2mN

= 22mN logO(m−2).

(C6)

Therefore, the total additive error for estimating psP (U(1)) is bounded by ǫ′2−2mN logO(m−2) =

ǫ2O(Nγ+1(logN)2). By setting ǫ = 2−O(Nγ+1(logN)2)2−O(N) = 2−O(Nγ+1(logN)2), we can estimate the
worst-case output probability value psP (U(1)) = psP (CP ) = ps0(C0) within additive error 2−O(N),
and the whole reduction process is in BPPNP. This completes the proof.

For the polynomial interpolation, we employ the Robust Berlekamp-Welch algorithm recently
proposed in Ref. [21].

Theorem 8 (Robust Berlekamp-Welch [21]). Let P (x) be a degree d polynomial in x. Suppose
there is a set of points D = {(xi, yi)} such that |D| = O(d2) and {xi} is equally spaced in the
interval [0,∆]. Suppose also that each points (xi, yi) satisfies

Pr[|yi − P (xi)| ≥ ǫ] ≤ δ, (C7)

with δ < 1
4 . Then there exists a PNP algorithm that takes input D and outputs p̃ such that

|p̃− P (1)| ≤ ǫe−d log∆, (C8)

with success probability at least 2
3 .

Appendix D: Proof of Lemma 4

Let p̄s(C) be the output probability distribution from the approximate sampler S with the given
linear optical circuit C. Also, let CM,N be the set of collision-free outcomes of boson sampling, for
mode number M and photon number N . Then p̄s(C) satisfies

E
s∼GM,N

[|p̄s(C) − ps(C)|] =
1
(M
N

)

∑

s∈CM,N

|p̄s(C) − ps(C)| ≤
2β
(M
N

) . (D1)
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Using Eq. (D1) and Markov’s inequality, p̄s(C) satisfies

Pr
s∼GM,N

[

|p̄s(C) − ps(C)| ≥
βk
(M
N

)

]

≤
2

k
(D2)

for all k > 2. Also, using Stockmeyer’s algorithm [38] whose complexity is in BPPNP, obtaining
the estimate p̃s(C) of p̄s(C) satisfying

Pr [|p̃s(C) − p̄s(C)| ≥ αp̄s(C)] ≤
1

2N
, (D3)

in polynomial time in N and α−1 is in BPPNPS

. Using Es∼GM,N
[p̄s(C)] =

(M
N

)−1∑

s∈CM,N
p̄s(C) ≤

(M
N

)−1
,

Pr

[

|p̃s(C) − p̄s(C)| ≥
αl
(

M
N

)

]

≤ Pr

[

p̄s(C) ≥
l
(

M
N

)

]

+ Pr [|p̃s(C) − p̄s(C)| ≥ αp̄s(C)] (D4)

≤
1

l
+

1

2N
, (D5)

for all l > 1. Putting all together, by applying a triangular inequality, finding an average-case
approximation p̃s(C) of ps(C) satisfying

Pr

[

|p̃s(C) − ps(C)| ≥
βk + αl
(M
N

)

]

≤
2

k
+

1

l
+

1

2N
(D6)

is in BPPNPS

. Let κ and ξ be fixed error parameters such that k/2 = l = 3/ξ and β = κξ/12 = α/2.
As βk + αl = κ and 2

k + 1
l + 1

2N
= 2

3ξ + 1
2N

≤ ξ, we finally obtain the Eq. (9).
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Abstract.
Characterization and quantification of the non-Markovian behaviors of dynamical processes have at-

tracted long-lasting research interest in the field of open quantum system dynamics. Many different mea-
sures of non-Markovianity have been proposed based on the temporal variation of certain quantities of
interest. Therefore, their experimental realizations would require vast raw data with sufficient time reso-
lution along time axis. Here we propose to harness the power of kernel-based quantum machine learning
models to estimate the non-Markovianity according to spare temporal data. To demonstrate our approach,
we generate the training data according to the spin-boson model. We also compare the quantum model with
two classical ones. We find that the quantum model is capable of reliably predicting the non-Markovianity
even if the raw data is temporally spare, and the quantum model performs better than some types of
classical learning models. Therefore, our approach would be promising in reducing the experimental efforts
for estimating the non-Markovianity.

Keywords: open quantum system, non-Markovianity, spin-boson model, quantum kernel, quantum ma-
chine learning

1 Introduction

Due to the inevitable interactions to the surrounding
environments, any quantum systems behave incoherently
[1]. During their time evolutions, the past memory would
have significant impacts on the time evolutions in the fu-
ture, leading to non-Markovian characteristics [2, 3, 4].
Over the past decades, there have been many efforts de-
voted to the characterization and quantification of the
non-Markovianity [2, 3]. In these quantitative measures
of non-Markovianity, one typically focuses on the tempo-
ral variation of certain quantities of interest, the degree
of non-Markovianity can be estimated accordingly. Ad-
ditionally, the experimental realizations have been imple-
mented [5, 6, 7].
Among these experimental realizations, It is necessary

to gather a huge amount of raw data with sufficient time
resolution to guarantee the accuracy of the estimation of
the non-Markovianity. This would require extensive ex-
perimental efforts in repeating the experimental protocol
for gathering the raw data. Therefore, we are spurred
to seek for an efficient approach to estimate the non-
Markovianity with merely spare data.
On the other hand, along with the rapid development

of quantum computing technology [8, 9, 10], the idea
of accelerating machine learning (ML) algorithms with
quantum computers has been proposed. Particularly, the
support vector machine (SVM) [11], one of the most well-
studied and widely applied ML, has been demonstrated
on quantum computers [12, 13]. The SVM model can
handle two types of problems, namely, classification (e.g.
Ref [14]) and regression problems [15] . When do a clas-
sification problem, The model will find a boundary to
separate the data. Relatively, when model deal with the

∗N96124365@gs.ncku.edu.tw
†hongbinchen@gs.ncku.edu.tw

regression problem, it will find a curve to fit the data.
Here we proposed to employ the kernel-based quan-

tum machine learning approach to estimate the non-
Markovianity from spare data. It is a creative method
that leveraging the principles of quantum computing to
enhance classical algorithms. We have verified that this
method is feasible, and the error of the quantum en-
hanced algorithm is much smaller than that of some clas-
sical algorithms. This lays an important foundation for
further research in the future.

2 Measure of non-Markovianity

Non-Markovianity refers to the property of a quantum
system’s evolution where the memory effects of the sys-
tem’s past interactions with its environment play a sig-
nificant role. It indicates deviations from the standard
Markovian dynamics, where the future state of the sys-
tem depends only on its current state and is independent
of its past history.

A variety of techniques have been developed to quan-
tify the non-Markovianity of quantum systems. In our
study, we utilise the trace distance, which is based on the
concept of information flow, and the BLP measure, which
is derived from the same concept. Both measures are
capable of quantifying the degree to which information
flows back from the environment to the system during its
evolution. This can be achieved by measuring the back-
flow of distinguishability, a quantity which indicates the
extent to which the distinguishability of initially indistin-
guishable states increases due to the system-environment
interaction.
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3 Learning non-Markovianity with ker-
nel based support vector machine

The incorporation of machine learning techniques into
efficient measurement processes can be greatly beneficial.
To achieve this, it’s essential to prepare a robust dataset
for model training. In our research, we leverage the spin
boson model [16, 5] within the limits of our experimen-
tal equipment to generate the requisite data. During the
data generation process, it became evident that there
was a notable imbalance in the dataset. Our analysis re-
vealed that the majority of the time evolution data exhib-
ited a Markovian pattern, whereas instances demonstrat-
ing a substantial non-Markovian behavior were notably
scarce. To address this imbalance, we adopt a strate-
gic approach. We divide the entire dataset into several
distinct pieces, each representing a segment of the data.
Subsequently, we employed a random selection process
within each piece. The objective of this method was
to rectify the imbalance within the dataset, thereby en-
suring a more representative and balanced training set
for our machine learning models. This step is crucial
in optimizing the performance and accuracy of our ma-
chine learning algorithms, as it facilitates a more com-
prehensive understanding of both Markovian and non-
Markovian dynamics within the dataset. Ultimately, by
mitigating imbalance, we enhance the effectiveness of our
measurement processes and pave the way for more in-
sightful analyses in our research endeavors.
Once a well-prepared and balanced dataset has been

assembled, the subsequent crucial step is to train a ma-
chine learning (ML) model. As previously noted, support
vector machines (SVMs) are particularly adept at han-
dling both classification and regression tasks. Given that
the non-Markovianity value falls within the real num-
ber spectrum, ranging from 0 to 1, it is more closely
aligned with a regression problem. Consequently, during
the training phase, not only are quantum feature maps
applied to the data, but their efficacy is also explored
in conjunction with other kernel functions that are com-
monly utilised in support vector machines, including the
Radial Basis Function (RBF) and the linear kernels. The
objective of this comparative analysis is to elucidate the
impact of quantum feature mapping in contrast to clas-
sical kernel methods.
The training of an SVM model involves the identi-

fication of the optimal hyperplane that best separates
the data points of different classes in the feature space.
The selection of a kernel function is of paramount impor-
tance, as it determines the mapping of data into higher-
dimensional spaces where the separation becomes lin-
ear. In contrast to quantum feature mapping, traditional
SVMs employ classical kernel functions such as the RBF
and linear kernels, which have been extensively studied
and applied in a multitude of domains.
Nevertheless, with the advent of quantum computing

[17] and the promise it holds for enhancing machine learn-
ing tasks, researchers have begun exploring the integra-
tion of quantum computing principles into SVMs. The
use of quantum feature maps represents a novel approach

to feature mapping, whereby nonlinear transformations
on the input data are performed by leveraging quantum
circuits. These mappings enable the SVM to operate
in a higher-dimensional Hilbert space, which may result
in improved performance in capturing complex relation-
ships within the data.

In the training procedure, experiments are conducted
using both quantum feature maps and classical kernel
functions to assess their respective performances. The
objective of this study is to compare the results obtained
from the different approaches in order to discern any ad-
vantages or disadvantages inherent in employing quan-
tum feature mapping in SVMs.

This comparative analysis contributes to the grow-
ing body of research investigating the potential of quan-
tum computing techniques in enhancing machine learn-
ing algorithms. By elucidating the relative strengths and
weaknesses of quantum feature mapping in comparison to
classical kernel methods, we aim to provide valuable in-
sights that can inform future developments in quantum-
enhanced machine learning techniques.

4 Quantum feature mapping

Quantum feature mapping [12] represents a departure
from the conventional methods of mapping data into fea-
ture spaces, particularly in the domain of quantum ma-
chine learning. It introduces a novel approach where
classical data is encoded into quantum states, thereby
enabling quantum-enhanced processing. Among the key
techniques employed in this encoding process is the ZZ
feature map, which plays a pivotal role in preparing the
quantum state.

4.1 The encoding of classical data into quantum
states

The initial step in quantum feature mapping entails
the encoding of classical data into quantum states. This
process is of pivotal importance, as it transforms classical
information into a quantum representation suitable for
processing on quantum computers. The ZZ feature map
serves as a mechanism to facilitate this transformation.

4.2 Utilising the ZZ feature map

The ZZ feature map is a specific quantum feature
map commonly employed for encoding classical data into
quantum states. It operates by inducing entanglement
between qubits through the ZZ interaction term in a
quantum circuit. By leveraging this entanglement, the
ZZ feature map effectively prepares the quantum state,
capturing essential characteristics of the classical data.

4.3 Computing inner products

Once the classical data is encoded into quantum states
using the ZZ feature map, the next step involves com-
puting the inner product between these quantum states.
This inner product essentially measures the similarity or
dissimilarity between the quantum states, serving as a
kernel function in classical machine learning algorithms.
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5 Classical kernel

In the context of Support Vector Machines (SVM), ker-
nels play a pivotal role in transforming the input data
into a higher-dimensional space, where it may be more
straightforward to identify a linear separation between
classes. Two of the most commonly employed kernels in
SVM are the radial basis function (RBF) kernel and the
linear kernel.

5.1 Radial basis function (RBF) kernel

The RBF kernel is a popular choice due to its capacity
to handle non-linear decision boundaries. The input data
is mapped into a higher-dimensional space through the
use of a Gaussian function. Mathematically, the RBF
kernel is defined as:

K(xi, xj) = exp(−∥xi − xj∥2

2σ2
)

The symbol ∥xi − xj∥ represents the Euclidean distance
between the feature vectors xi and xj . The parameter
σ determines the spread of the kernel. The RBF kernel
incorporates a centre parameter, γ, which is inversely
proportional to σ. A small value of γ leads to a smoother
decision boundary, while a large value results in a more
complex decision boundary, which may potentially lead
to overfitting. It is of paramount importance to optimise
the γ parameter in order to achieve optimal performance
with the RBF kernel. In conclusion, while the linear
kernel is effective for linearly separable data, the RBF
kernel is more flexible and can effectively handle non-
linear decision boundaries. Nevertheless, it is essential
to exercise caution and perform meticulous parameter
tuning in order to prevent overfitting.

5.2 Linear kernel

The linear kernel is the simplest kernel function, in that
it is the only kernel function that does not require any
additional parameters to be specified. The inner product
of the feature vectors in the original space represents this
kernel. Mathematically, it is defined as follows:

K(xi, xj) = xTi · xj

In this context, xi and xj represent two feature vectors.
The effectiveness of this kernel is contingent upon the
data being linearly separable, which implies that classes
can be separated by a straight line or hyperplane in the
original feature space. Its efficacy is enhanced when the
number of features is significantly larger than the number
of samples. However, in instances where classes are not
linearly separable, the linear kernel may not perform op-
timally. In such cases, the Radial Basis Function (RBF)
kernel can be leveraged to enhance the classification ac-
curacy.

6 Conclusions

After training the models using the three different
methods mentioned, the next critical step is to evaluate
their predictive performance. The results of this testing

phase are typically visualized to provide insight into how
well the models predict compared to the ground truth.
In this situation, the comparison could be illustrated us-
ing scatter plots where correctly predicted points lie on
a reference line. Observing the distribution of the blue
dots relative to the reference line provides important in-
sight into the performance of each model. For example,
in the case of the RBF kernel model, the blue dots tend to
cluster more closely around the reference line compared
to the ZZ feature model. Conversely, the linear kernel
model shows the poorest performance, as evidenced by
the scattered distribution of the blue dots. Additionally,
it’s worth noting that all three models perform subopti-
mally when predicting numerical values that are small.
This observation underscores the importance of under-
standing the limitations and biases inherent in the mod-
els’ predictions, especially in scenarios where the input
data falls within a certain range. A common indicator
used to quantitatively assess model performance is the
mean squared error rate (MSE). it is defined as follows:

1

n

n∑
i=1

(yi − ŷi)
2

The MSE measures the average squared difference be-
tween the predicted values and the actual ground truth
values. A lower MSE indicates better predictive accu-
racy, while a higher MSE indicates a greater discrepancy
between the predicted and actual values. By calculat-
ing and comparing the MSE for each model, users can
objectively evaluate their relative performance and make
informed decisions about model selection and refinement.
Because the MSE is a rate of error, the smaller is better.
In the table below, you can see that RBF has the low-
est MSE, followed by ZZ feature map and finally linear
kernel.

Method Quantum RBF Linear
MSE 2.28e-05 1.62e-05 0.000114

(a) Quantum kernel (b) RBF kernel

(c) Linear kernel

Figure 1: Target versus predicted values graph
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Appendix A Support Vector Regression

The objective of Support Vector Regression (SVR) is to identify a function that approximates the mapping from
input variables to continuous output variables. In contrast to traditional approaches that seek to separate classes
by identifying a hyperplane, SVR aims to fit as many data points as possible within a specified margin around the
predicted values.

A.1 SVR formulation

Given a training dataset comprising n samples (xi, yi), where xi represents the feature vector and yi represents the
target value, Support Vector Regression (SVR) aims to identify a function f(x) that approximates the mapping x→ y
with minimal error. The optimization problem can be formulated as follows:

min
1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i )

subject to


yi − w · xi − b ≤ ϵ+ ξi

w · xi + b− yi ≤ ϵ+ ξ∗i
ξi, ξ

∗
i ≥ 0

Here, w represents the weights, b represents the bias term, and ξi and ξ∗i represent slack variables that permit the
incorporation of residual errors beyond the margin threshold. C represents a regularization parameter that serves to
regulate the trade-off between the minimization of error and the maximization of the margin.

A.2 Kernel trick

We use the scikit-learn [18] module to built the SVM model. It is a Python library that provides straightforward
and effective tools for data mining and data analysis. It is constructed upon the foundations of NumPy, SciPy, and
matplotlib, and it provides a plethora of machine learning algorithms for the execution of tasks such as classification,
regression, clustering, dimensionality reduction, and more. Its user-friendly interface and extensive documentation
have made it a popular choice for both novice and experienced users of machine learning.

Appendix B Formulations of measurement of non-Markovianity

Total Hamiltonian of open quantum system :ĤT = ĤS + ĤE + ĤI

Unitary time-evolution operator in the interaction picture:Û I(t) = exp[iψ(t)] exp[ σ̂z

ℏ ĤI ]

Time evolution of total system:ρIT (t) = [Û I(t)](ρS(0)
⊗
ρE(0))[Û I(t)]†

Time evolution of reduced system:ρIS(t) = TrE [ρ
I
T (t)] = [

ρ11 ρ1−1ϕ(t)
ρ−11ϕ(t) ρ−1−1

]

Trace Distance:D(ρ1, ρ2) =
∥ρ1−ρ2∥1

2 = Tr
√

(ρ1 − ρ2)†(ρ1 − ρ2)/2

Non-Markovianity: N = max
ρ1,ρ2

∫
dD
dt >0

dD(ρ1(t),ρ2(t))
dt dt

According to our derivation, the trace distance of the system would equal to ϕ in reduced system through the time
evoluted. This happens to be the dephasing factor of the system, so we choose the Spin boson model to make the
dataset. The following is the formula of the model.

Appendix C Formulations of Spin boson model

C.1 Spin boson model with family of super-Ohmic spectral density(s>1)

ϕ(t) = e−Φ(s)(t)

Φ(t) = −2ηΓ(s− 1)[2− (1− iωct)
s−1 + (1 + iωct)

s−1

(1 + ω2
c t

2)s−1
]

+4ηΓ(s− 1)(
kBT

ℏωc
)s−1[2ζ(s− 1,

kBT

ℏωc
)− ζ(s− 1,

kBT

ℏωc
(1 + iωct))− ζ(s− 1,

kBT

ℏωc
(1− iωct))]

(1)

Gamma function: Γ(z) =
∞∫
0

tz−1e−tdt,Re(Z) > 0

Hurwitz zeta function: ζ(s, q) =
∑∞

n=0(q + n)−s
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C.2 Bias spin boson model with the family of super-Ohmic spectral density(s>1)

ϕ(t) = e−iϑ(s)(t)−Φ(s)(t)

ϑ(s)(t) = sign(t) sinφηΓ(s− 1)[2− (1− iωct)
s−1 + (1 + iωct)

s−1

(1 + ω2
c t

2)s−1
]

Φ(t) = −(1− cosφ)ηΓ(s− 1)[2− (1− iωct)
s−1 + (1 + iωct)

s−1

(1 + ω2
c t

2)s−1
]

+2(1− cosφ)ηΓ(s− 1)(
kBT

ℏωc
)s−1[2ζ(s− 1,

kBT

ℏωc
)− ζ(s− 1,

kBT

ℏωc
(1 + iωct))− ζ(s− 1,

kBT

ℏωc
(1− iωct))]

(2)

Basically, These two Models simulated how the environment effect the boson, with several environmental parameter
such as the temperature T , Ohmicity s and Bias angle φ.
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Exact and local compression of quantum bipartite states
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Abstract. We study exact local compression of a quantum bipartite state, a task that applies local
quantum operations to reduce Hilbert space dimensions while preserving correlations. We provide a formula
for the minimal achievable dimensions, obtained by minimizing the Schmidt rank of a constructed pure
state. Additionally, we obtain numerically tractable upper and lower bounds for the dimension. As an
application, we consider exact compression of quantum channels, analyzing a post-processing step that
reduces output dimensions while preserving the original channel’s output information. The detailds are
presented in [arXiv:arXiv:2309.07434].

Keywords: quantum data-compression, one-shot information theory, data-processing inequality, quan-
tum sufficiency

1 Introduction

Quantum data compression is one of the most funda-
mental quantum information processing. Its concept is
analogous to Shannon’s classical data compression and
aims to reduce the dimensions of the storage of quantum
states while minimizing information loss. Various ap-
proaches to quantum compression, primarily focusing on
achieving asymptotically or approximately accurate rep-
resentations of quantum states, have been proposed [1–5].
These protocols have yielded valuable insights into the
trade-offs between compression efficiency, fidelity, and
additional resources.
In this submission, we introduce and analyze a task

that we call local and exact compressions of bipartite
quantum states, that is, a task in which one apply a
quantum operation to one of the subsystems to reduce
the dimension of the Hilbert space while perfectly pre-
serving the bipartite correlation. This type of data com-
pression is an exact and noiseless one-shot quantum data
compression of general mixed state sources without side
information or entanglement assistance.
An asymptotic scenario of local compressions is investi-

gated in Ref. [5], and the optimal rate is given by the en-
tropy of the state restricted on the subalgebra defined via
the Koashi-Imoto decomposition [14]. Similarly, one can
check that the minimal dimension of exact local compres-
sion is also given by a subspace defined via the Koashi-
Imoto decomposition. However, the explicit calculation
of the Koashi-Imoto decomposition is highly complicated,
and thus, no closed formula for the optimal rate has been
obtained so far.
To obtain the main result, we employ the theory of

quantum sufficiency. State transformations without los-
ing any information has been gaining interest in informa-
tion theory and the condition is known as the sufficiency
of statistics [6, 7]. Classical statistics are sufficient con-
cerning a given statistical model if they are as informative
as the original model. It is well known that the minimal
random variable for describing a statistical model (a fam-
ily of probability distributions) is given as the minimal
sufficient statistics associated with it [8]. The concept of

∗kokato@i.nagoya-u.ac.jp

sufficiency has been extended to quantum systems [9,10],
where the concept of sufficient statistics is replaced by
that of sufficient subalgebras. The Koashi-Imoto decom-
position can be viewed as a particular application of the
sufficiency [11].

As a result, we show a closed formula to calculate the
minimal dimension of the output Hilbert spaces. The for-
mula is obtained by minimizing the Schmidt rank (i.e.,
the rank of the reduced matrix) over unitarily related
states. As a corollary, we provide additional tractable
lower and upper bounds for the minimal dimensions. Our
result is based on the recent development of quantum
sufficiency [11] and operator algebra quantum error cor-
rection [12,13].

2 Exact and local compression

We are interested in the quantum bipartite state ρAB

in the finite-dimensional Hilbert space HAB =HA ⊗HB .
We assume without loss of generality that ρA, ρB > 0
(by restricting each Hilbert space to the support of the
reduced state).

Definition 1. We say a CPTP-map EB→B̃ ∶ B(HB) →
B(HB̃) is an exact local compression of ρAB on B, if
there exists another CPTP-map RB̃→B satisfying

RB̃→B ○ EB→B̃(ρAB) = ρAB . (1)

This study aims to calculate the minimal dimensions
dB̃ of the exact local compressions. It is sufficient to
consider only the compressions on B (or A) because of
the symmetry of the problem.

2.1 Koashi-Imoto decomposition

In Ref. [14], Koashi and Imoto analyzed the structure
of quantum operations that remains a set of classically
labeled quantum states {ρxB}x∈χ unchanged. This idea
was generalized to a fully quantum setup in Ref. [15].
Consider a direct sum decomposition

HB ≅⊕
i

HBL
i
⊗HBR

i
(2)

ρAB =⊕
i

piρABL
i
⊗ ωBR

i
, (3)
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where {pi} is a probability distribution and ρABL
i

and
ωBR

i
are the states of HA ⊗HBL

i
and HBR

i
, respectively.

Definition 2. A decomposition in Eqs. (2)-(3) is said to
be the Koashi-Imoto decomposition if for any CPTP-map
ΛB satisfying

ΛB(ρAB) = ρAB ,

any Λ’s Stinespring dilation isometry VB→BE defined by

ΛB(⋅) = trE (VB→BE ⋅ (VB→BE)†)

is decomposed into

VB→BE =⊕
i

IBL
i
⊗ VBR

i →BR
i E (4)

satisfying

trE (VBR
i →BR

i E ωBR
i
(VBR

i →BR
i E)†) = ωBR

i
∀i.

The factorization theorem [16,17] further demonstrates
that the minimal dimension of the exact compression for
ρAB is then given by

dB̃ ∶=∑
i

dBL
i
. (5)

3 Summary of results

To state the main theorem, the following notations are
introduced: for a given ρAB , we define a unital CP map
as

Ω†
A→B(XA) ∶= trA (JAB(XTA

A ⊗ IB)) , (6)

where JAB is a Choi-Jamilkowski operator, defined as
follows:

JAB ∶= ρ
− 1

2

B ρABρ
− 1

2

B ≥ 0 . (7)

We denote the nonzero eigenvalues of JAB as ωi. Sub-
sequently, the Kraus operators {K†

i } of Ω
†
A→B(⋅) = ∑iK

†
i ⋅

Ki satisfy tr(K†
iKj) = ωiδij . We then define a deformed

CP-map Ω̃†
A→B as

Ω̃†
A→B(⋅) =

rank(ρAB)

∑
i=1

ω
− 1

2

i K†
i ⋅Ki . (8)

Ω̃†
A→B is no longer unital but CP. The Choi operator of

Ω̃†
A→B is given by

√
JAB ,

Let HB1 ≅HB and consider the two operators

ET =
dA

∑
a,b=1

Ω̃†
A→B(∣a⟩⟨b∣)⊗ Ω̃†

A→B1
(∣a⟩⟨b∣) (9)

RLB ∶= IB ⊗ log ρ
TB1

B1
− log ρB ⊗ IB1 , (10)

where {∣a⟩} is an orthonormal basis of HA. The spectral
decompositions of these operators are as follows.

ET =⊕
λ

λPλ (11)

RLB =⊕
η

ηQη , (12)

where Pλ and Qη are orthogonal projections to the eigen-
subspaces of ET and RLB , respectively. Denote the set

of eigenvalues of A by spec(A) and define PV as the pro-
jector onto the subspace

V ∶= ⊕
η∈spec(RL)

(supp(Qη) ∩ supp(P1)) .

Using the formula given in [18],

PV = 2 ⊕
η∈spec(RL)

Qη(Qη + P1)−1P1 ,

where −1 is the Moore-Penrose inverse, PV is the super-
operator of a unital CPTP-map on B which we denote
as EB . Consider systems HB̄ ≅ HB̄1

≅ HB and define
∣I⟫BB1 ∶= ∑i ∣ii⟩BB1 in the transposition in Eq. (9) and
(10). The normalized Choi state CBB1 of EB is defined
as follows:

CBB1 ∶=
1

dB
(idB ⊗EB1) (∣I⟫⟪I ∣BB1) . (13)

CBB1 and PV are related via the reshuffling map:

CBB1 =
1

dB

dB

∑
i,j=1
(IB ⊗ ∣i⟩⟨j∣B1)PV (∣i⟩⟨j∣B ⊗ IB1).

Consider the canonical purification of CBB1 , which is
the purification in an eigenbasis of CBB1 , denoted as
∣C⟩BB1B̄B̄1

. We then optimize all possible unitary to
minimize the entanglement entropy S(ρ) ∶= −trρ log ρ be-
tween BB̄ and B1B̄1:

ρBB̄ ∶= trB1B̄1
UB̄B̄1

∣C⟩⟨C ∣U †
B̄B̄1

(14)

ŨB̄B̄1
∶= argminU S(ρBB̄) , (15)

The optimization can be performed by using e.g., a gra-
dient algorithm [19].

3.1 Main theorem

The main theorem of this work is showing that the
minimal dimension of exact local compression is given by
the Schmidt rank of ŨB̄B̄1

∣C⟩BB1B̄B̄1
(see the technical

version for the proof).

Theorem 1. For any ρAB such that ρB > 0, an isomor-
phism HB ≅⊕iHBL

i
⊗HBR

i
exists such that

dB̃ =∑
i

dBL
i
= SchR (BB1B̄1 ∶ B̄)∣C̃⟩ , (16)

is the minimal dimension of any exact local compression,
where

∣C̃⟩BB1B̄B̄1
∶= ŨB̄B̄1

∣C⟩BB1B̄B̄1
. (17)

It also holds that

dBR ∶=∑
i

dBR
i
= SchR (BB1 ∶ B̄B̄1)∣C̃⟩ . (18)

From the definition of CBB1 in (13), the following
holds:

Corollary 1.

rank(CBB1) =∑
i

d2BL
i

(19)

and √
rank(CBB1) ≤ dB̃ ≤ rank(CBB1) . (20)

Unlike Eq. (16), calculating Eq. (1) does not require
any optimization.
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3.2 Exact compression of quantum channels

For a given CPTP-map EA→B , FB→B̃ is an exact com-
pression if a post-processing CPTP-map RB̃→B that sat-
isfies

EA→B =RB̃→B ○FB→B̃ ○ EA→B . (21)

Via the Choi-Jamilkowski isomorphism, this task is
equivalent to the exact local compression of the normal-
ized Choi state

ρAB = (idA ⊗ EĀ→B)(∣Ψ⟫⟪Ψ∣AĀ) , (22)

where ∣Ψ⟫ = 1√
dA
∑dA

i=1 ∣ii⟩AĀ.

4 Conclusion

We studied exact and local compression of arbitrary
quantum bipartite states. We have provided a closed
formula for the minimum achievable dimension in terms
of the Schmidt rank of a relevant purified Choi state con-
structed from the bipartite state. This is in contrast to
the asymptotic result [5] given in terms of the Koashi-
Imoto decomposition which is much harder to calculate.
The exactly same formula is applicable for reducing the
output dimension of quantum channels.
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Estimating the nonclassicality of the free induction decay of NV centers
with kernel-based quantum machine learning model
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Abstract. Characterization of nonclassical traits of dynamical processes has long been a study interest
in the field of open quantum system theory. Recently, an approach based on the canonical Hamiltonian
ensemble representation (CHER) had been proposed for the characterization and the quantification of the
nonclassicality of dynamical processes; meanwhile, it had been exemplified with the free induction decay
of NV centers. However, for an experimental realization of the CHER theory, it would require extensive
experimental efforts to gather the raw data for the implementation of the quantum process tomography
with sufficient time resolution. Here we propose to harness the power of a kernel-based quantum machine
learning model to estimate the nonclassicality from temporally spare data. We demonstrate our approach
with the free induction decay of NV centers. We also compare the quantum model with two classical ones.
We find that the quantum model is capable of predicting the nonclassicality with high accuracy even if
the raw data is temporally spare, and the quantum model performs better than some types of classical
learning models.

Keywords: nonclassicality, CHER, free induction decay, nuclear spin polarization, quantum machine
learning

1 Introduction

The ambiguous boundary between the quantum and
the classical worlds has attracted extensive interest [1, 2,
3, 4]. In the field of quantum information science, one
of the mostly employed ideas to demonstrate the genuine
quantumness focuses on the failure of a classical strat-
egy attempting to explain an experimental outcome. For
example, the renowned example of the experimental vio-
lation [5, 6] of Bell’s inequality [7] accentuates the break-
down of the EPR paradox [8] formulated on the tenets
of realism and locality. This specific kind of nonclassical
correlation resulting in the violation of Bell’s inequality
is termed Bell nonlocality [9].
In line with this idea, the concept of dynamical process

nonclassicality has been formulated in terms of the ap-
proach of the canonical Hamiltonian ensemble represen-
tation (CHER) [10, 11, 12]. Moreover, this concept had
been exemplified with the free induction decay (FID) of
NV centers in the presence of nuclear spin bath polariza-
tion [13], as well as simulated on quantum computers [14].
However, on the eye of these experimental proposals, an
experimental realization of the CHER theory to charac-
terize the dynamical process nonclassicality requires ex-
tensive efforts to gather the raw data for the implementa-
tion of the quantum process tomography with sufficient
time resolution. Therefore, we are spurred to seek for
an efficient approach to estimate the nonclassicality from
merely spare data.
Along with the rapid development of quantum com-

puting technology [15, 16, 17], the idea of implementing
kernel-based support vector machine on quantum com-
puters had been discussed and implemented [18, 19]. In
this work, we propose to adopt the kernel-base quantum

∗angelko0304@gmail.com
†hongbinchen@gs.ncku.edu.tw

model to estimate the nonclassicality from spare data. In
conclusion, our quantum model is capable of predicting
the nonclassicality of the FID in the presence of nuclear
spin polarization with sufficient accuracy. Moreover, we
have also demonstrated the advantage of our quantum
model over some classical counterparts in such compli-
cated regression problem.

2 Canonical Hamiltonian Ensemble Rep-
resentation

CHER is a method for describing the evolution of
quantum systems. This representation is crucial in
quantum computing because it provides a mathematical
framework to describe the dynamic behavior of quantum
states under the control of a Hamiltonian. In reality,
most quantum systems are open, meaning they interact
with their external environment [10, 11]. This interaction
leads to phenomena such as decoherence and relaxation.
Therefore, the dynamics of open quantum systems are of-
ten described using superoperators, rather than just uni-
tary operators. In the CHER framework, the dynamic
behavior of the system can be described by the following
equation:

Et{ρ(0)} =

∫
pλÛλ(t)ρ(0)Û

†
λ(t)dλ (1)

This equation describes the dynamic evolution of the en-
tire quantum system. This representation is typically
used in the theory of open quantum systems, where the
evolution of the system is influenced not only by its own
Hamiltonian but also by interactions with the environ-
ment. Further details are shown in Appendix 7 (Dy-
namics of CHER).

Drawing a conclusion, the motivation for applying
quantum machine learning to NV centers is driven by
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the immense potential it holds for enhancing compu-
tational efficiency and solving problems intractable for
classical computers. The distinctive quantum proper-
ties of NV centers open up unprecedented opportunities
to accelerate learning algorithms and enable more accu-
rate data analysis. The promise of quantum-enhanced
sensing, communication, and computation is particularly
compelling for scientists and researchers aiming to har-
ness the power of NV centers in diamond for practical,
real-world applications. Ultimately, the continuous de-
velopment and optimization of quantum machine learn-
ing models on emerging quantum platforms, such as IBM,
are crucial steps toward unlocking the vast potential of
quantum technologies and their transformative impact
on diverse sectors.

3 NV Centers

NV center is a defect structure embedded in the dia-
mond lattice, where a nitrogen atom replaces a carbon
atom and forms an adjacent vacancy. Its electronic struc-
ture can form different spin states, which have long co-
herence times (T ∗

2 ), allowing them to be used as qubits
in quantum computing. The long coherence time of NV
centers provides an advantage in this aspect. In quantum
computing, NV centers are used as fundamental logic
units to perform quantum state operations and calcu-
lations by implementing quantum logic gates [13]. The
dynamics of the spin states are primarily described by the
Hamiltonian, given here as the total Hamiltonian ĤT :

ĤT = DŜ2
z + γeBzŜz +

∑
k γcBzĴ

(k)
z + Ŝz

∑
k A

(k)
z Ĵ (k) (2)

Each term in the equation represents different physi-
cal phenomena: DŜ2

z denotes the spin-spin interaction;
γeBzŜz represents the interaction between the electron

spin and the external magnetic field;
∑

k γcBzĴ
(k)
z and

Ŝz

∑
k A

(k)
z Ĵ (k) indicate interactions with surrounding

nuclear spins and hyperfine interactions, respectively.
These interactions determine the coherence time and
quantum state control capability of NV centers, which
are crucial for quantum computing.

4 Quantum Machine Learning

Developing algorithms and statistical models that en-
able computer systems to perform tasks based on pat-
terns and reasoning without requiring precise instruc-
tions from humans is known as machine learning (ML).
ML can be divided into three major categories: super-
vised learning, unsupervised learning, and reinforcement
learning. Here, this research focus on support vector
machines (SVM) in supervised learning, which is based
on provided input-output pairs with the goal of under-
standing the mapping function from input to output.
Computer systems utilize ML algorithms to process vast
amounts of data and identify patterns within it, allowing
computers to make more accurate predictions based on
input data sets.
The focus of this article is on quantum machine learn-

ing (QML), which involves the development of quan-

tum algorithms, while there are numerous remarkable
QML algorithms awaiting discovery and development
by humans, this research will concentrate on one of its
branches: quantum support vector machines (QSVM).
QSVMs classify objects in n-dimensional space (where
’n’ denotes the number of features) by identifying a hy-
perplane that separates data points. While classical ma-
chine learning algorithms can perform these tasks, the
increasing volume of data will inevitably lead to signifi-
cant time and resource costs. Quantum support vector
machines (QSVM) become crucial when handling high-
dimensional data.

In essence, classical machine learning algorithms pose
considerable computational challenges for classical com-
puters when processing high-dimensional data. Quan-
tum algorithms offer a significant advantage in such sce-
narios by leveraging powerful principles like superposi-
tion and entanglement, leading to more efficient compu-
tations with exponential growth potential. Through re-
search conducted by quantum specialists, classical algo-
rithms can be translated into a language comprehensible
and operable by quantum computers, facilitating efficient
operations on quantum circuits.

However, it’s worth noting that the current state of
open-source quantum algorithm packages is not as ad-
vanced as their classical counterparts, and optimizing
time control remains a challenge. Nevertheless, by fully
utilizing local computer CPU and memory resources and
fine-tuning model parameters, satisfactory calculation re-
sults can be achieved, even outperforming certain classi-
cal machine learning models [19].

5 Experimental Proposal

Our primary goal in this experiment is to ensure that
our model learns all types of data and delivers precise
outputs. Initially, this research used entirely random spin
orientations, with these coordinates normalized and set
within an external magnetic field range of 0 to 200. First,
we generate a time-varying physical function, ϕ(t), using
a series of random values. Further details for the cal-
culation of ϕ(t) are shown in Appendix 7 (decoherence
equation: ϕ(t)). This function is defined over a time
range from 1 to 10 seconds, thus we obtain values from
ϕ(1) to ϕ(10) within this interval. For each time point,
we calculate both the real and imaginary parts of the ϕ(t)
function, resulting in a total of 20 features: the real and
imaginary parts for ϕ(1) through ϕ(10).

Next, we employ numerical integration techniques to
calculate the area of the absolute difference between each
pair of real and imaginary parts. This step is based on
the interactions between the real and imaginary compo-
nents and ultimately produces a numerical value. In the
machine learning model, these 20 values of real and imag-
inary parts serve as the ”features” of the model, while
the area computed through numerical integration acts as
the ”label.” These labels are fundamental for the model’s
learning and prediction processes and are used to assess
the characteristics of new data. Through this approach,
we effectively transform a physically meaningful dynamic
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system into a data format that can be processed by a ma-
chine learning model.

6 Results and Conclusions

Figure 1: Put the specially adjusted data into three mod-
els for training. (a) and (b) are showing the commonly
used models of classic machine learning, RBF Kernel
Classical SVR and Linear Kernel Classical SVR respec-
tively. (c) is Non-classical model from an open source
information framework for quantum computing on the
IBM platform, to perform some quantum machine learn-
ing tasks. (d) shows the distribution of labels for the
training data. The use of a broken axis highlights the
distribution of values in the range above 0.03.

As the amount of generated data increases, studies
have observed that label values cluster around zero,
which hinders the model from learning features far from
this region, resulting in inaccurate predictions for data
near zero and sometimes leading to significant errors.
Therefore, this study intentionally adjusted the param-
eters in a random range, and by observing the non-
classical properties of the quantum state, it was found
that adjusting the spin bath to stronger spin polariza-
tion and higher external magnetic field resulted in label
values far away from zero, ranging from 0.03 to between
0.12, as shown in Figure 1 (d).
This research tested specially adjusted data on three

different models. These models include two classi-
cal machine learning models: the Radial Basis Fnc-
tion (RBF) Kernel Classical Support Vector Regression
(SVR) [20, 21] and the Linear Kernel Classical SVR, and
a quantum machine learning model implemented using
Qiskit, an open-source quantum computing framework
on the IBM platform, as shown in Figure 1 from (a) to
(c). Notably, this research used the ZZFeatureMap
[22] from Qiskit, a quantum feature mapping method
that employs second-order Pauli-Z, details are shown in
Appendix 7 (Pauli-z). rotations to encode feature data
into quantum states.
The ZZFeatureMap is designed for nonlinear transfor-

mations of data via quantum circuits, thereby enhancing

the model’s capability to handle high-dimensional data
and complex patterns, making it particularly suitable for
exploration in the field of quantum machine learning. We
have a total of 20 qubits, and the concept of quantum
circuit structure is similar to what is shown are shown
in Appendix 7 (Quantum circuit), the example in the
Figure demonstrates the interaction of three qubits.

When comparing the training performances of these
classical and quantum models, it is essential to under-
stand the characteristics of classical machine learning
models first. The RBF kernel, with its nonlinear prop-
erties, excels in nonlinear classification tasks, while the
linear kernel, due to its simplicity, performs efficiently
in linear problem scenarios. Moreover, the parameters
of both kernels are relatively easy to adjust, providing
flexible options for model optimization.

The experimental results from Figure 1 show that
among the three models, the RBF kernel performed the
best, followed by the quantum kernel, with the linear
kernel coming in last. In this experimental setup, this
research pushed the data capacity to the limits allowed
by the system, with 100 precentage usage of the local
computer, processing a total of 1400 data points. Of
these, 1000 datas were used for training and 400 datas
for testing. The results indicated that although the per-
formance of the quantum kernel did not surpass that of
the RBF kernel, it did exceed that of the classical linear
kernel. Next, this research calculated the Mean Square
Error (MSE) for these three models, and the results sup-
ported our observations:

Model TYPE MSE
RBF Classical SVR 0.11× 10−4

Linear Classical SVR 7.16× 10−4

Quantum SVR 1.34× 10−4

Table1. MSE comparison of different models

This finding is particularly worth discussing. In to-
day’s society, where classical machine learning techniques
have reached a high level of maturity, surpassing tra-
ditional methods requires significant effort and innova-
tion. However, in this experiment, the performance of
the quantum kernel model surpassed that of the linear
kernel. This is a major development, demonstrating the
potential of non-classical machine learning technologies
for future advancements.

Compared to traditional machine learning methods,
quantum machine learning leverages quantum properties
such as superposition and entanglement, leading to signif-
icant improvements in computational efficiency and ac-
curacy. These non-classical characteristics not only show
theoretical advantages but have also been preliminarily
validated in experiments. The results of this experiment
clearly indicate that quantum machine learning is not
merely an idealistic concept for the future but a revolu-
tionary technology with practical application potential.
As quantum technology continues to advance, quantum
machine learning will become a core driver pushing the
fields of artificial intelligence and data science forward.
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7 Appendix

Decoherence Equation: ϕ(t)

The pure dephasing dynamics of electron spin are char-
acterized by the dephasing factor ϕ(t). This factor ex-
presses the dephasing process of electron spin over time
t, and its formula is given by:

ϕ(t) = ⟨0|ρNV(t)|1⟩ = ei(D+γeBz)t
∏

k Tr
[
Û

(k)
1 (t)Û

(k)
0 (t)ρ(k)

]
(3)

where
Û

(k)
0 (t) = exp[−i(Ω⃗0 · σ̂(k))t/2]

Û
(k)
1 (t) = exp[−i(Ω⃗

(k)
1 · σ̂(k))t/2]

These formulas represent the nuclear spin precession
caused by the interaction between electron spin and nu-
clear spin, leading to electron spin dephasing.

Dynamics of CHER

Performance of CHER as shown in Figure 2, the state
of the electron spin is influenced by its polarization di-
rection and the external magnetic field. These results
correspond to the CHER depicted in the figure. Over
time, electron spins exhibit distinct non-classical behav-
iors under different polarization directions. Furthermore,
we set the external magnetic field to 150G, which signifi-
cantly impacts the dynamic behavior of the electron spin.
This demonstrates that the external magnetic field plays
a crucial role in modifying the quantum dynamics of elec-
tron spins.

Pauli-z

Pauli matrices are fundamental tools in quantum me-
chanics for describing spin states and quantum bit oper-
ations. These matrices are three 2x2 Hermitian matrices,
represented as σx, σy, and σz (i.e., Pauli-X, Pauli-Y, and
Pauli-Z matrices). They are widely used in spin physics
and quantum computing. Below are the specific formulas
for Pauli-Z matrices and some related explanations. The
formulas for the Pauli matrices are as follows:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
Pauli-Z (σz) matrix specifically describes the component
of spin along the z-axis.

Quantum circuit

We have a total of 20 qubits, and their quantum cir-
cuit structure is similar to what is shown in the Figure
3. Each pair of qubits interacts through CNOT gates,
and this interaction continues until all pairs of the 20
qubits have been paired. The example in the diagram
demonstrates the interaction of three qubits, and the in-
teractions of the other qubits can be inferred similarly.

Figure 2: Dynamics and CHER of the electron spin for
a polarized nuclear spin bath. (a) and (b) are show-
ing the z-polarized dynamical behavior and the corre-
sponding CHER for the case of polarization toward the
z-axis at magnitudes = 1.0. (c) and (d) are showing
the x-polarized dynamical behavior and the correspond-
ing CHER for the case of polarization toward the x-axis
at magnitudes = 1.0. The dynamical behavior shows a
different response to the presence of x-polarization and
z-polarization in same external magnetic field. Addition-
ally, the most exotic property is the emergence of nega-
tive values as shown in (d), which is appear when the
x-polarized. This is the crucial indicator of the non-
classical trait of the electron spin dynamics caused by
the nuclear spin precession dynamics.

Figure 3: This diagram illustrates a quantum circuit in-
volving three qubits q1, q2, and q3, where each pair of
qubits interacts through CNOT gates. Specifically, the
circuit shown includes Hadamard gates H and quantum
gate G.
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Abstract. We present a novel practical approach to distribute multipartite entangled states (GHZ states)
in a quantum network. The distribution rate shows quadratically improved scaling with respect to the
present state-of-the-art experiments with no repeaters. Among advantages of our method are: directness
– no pre-shared bi-partite entanglement; and feasibility, as our protocol only requires standard quantum
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1 Context and motivation

Our research emerges in the context of quantum net-
works or quantum Internet [2, 3, 4]. Quantum network is
a multifunctional platform necessary for a diverse range
of applications in a network of users. These include, for
example, distributed sensing [5, 6, 7, 8, 9, 10], clock syn-
chronization [11], informational security [12, 13, 14, 15,
16, 17], as well as distributed computing [18, 19]. Many of
the applications rely on the Greenberger-Horne-Zeilinger
(GHZ) states:

|GHZ⟩N =
1√
2
(|000...0⟩+ |111...1⟩), (1)

where N is the number of subsystems; which makes this
quantum state a strategically important resource.
Quantum networks require sharing quantum entan-

gled states between its nodes which typically happens
by means of photons transmitted through optical wires.
However, photons transmitted in this way undergo un-
avoidable loss at the rate of 0.2 dB/km in current telecom
standard.
In the present research we investigate the star network

with a central node that can play the role of a router
and N users in the end nodes. We assume the same
length channels with power transmittance η linking the
central node with the users. The basic reference idea,
Fig. 1 (a), realized experimentally in [17], is to generate
entangled states in the central node and distribute them
via photons to the end nodes. We call this scenario ”di-
rect transmittance”. In this scenario N photons are used
and all N must survive the loss induced by the channels

∗wojciech.roga@keio.jp
†shimihika2357@keio.jp
‡david.elkouss@oist.jp
§takeoka@elec.keio.ac.jp

to generate a single copy of GHZ state. Therefore the
success rate in generating multipartite entangled states,
GHZ states, scales as ηN [23, 24].

The protection against losses would be offered by func-
tioning quantum repeaters which could use quantum
memory. This approach would ideally achieve loss rate
reduction and success rate scaling as η [25, 26, 27], Fig.
1 (b). This motivates extensive research and develop-
ment of the technology [28, 29, 30, 31, 32], which, how-
ever, is still in the early stage of development. Moreover,
such strategy relies on generating bi-partite entanglement
states from which, after rounds of state purification a
multipartite entangled states can be distilled, which in-
creases complexity of the approach.

In the present research we propose an approach that
competes with the direct transmittance, offering success
rate that scales as ηN/2, and with the quantum repeaters
approach offering simpler, nowadays technology solution
without mediation of bi-partite entanglement generation,
purification, and distillation.

2 Protocol

Let us first discuss generation of 4 part GHZ state,
then we generalize it to arbitrary N . Let us consider the
setup as in Fig. 2. Each user locally prepares a photonic
entangled state

|ψ⟩XiX′
i
= a|00⟩XiX′

i
+ b|11⟩XiX′

i
, (2)

where |a|2 + |b|2 = 1, sends subsystem X ′
i to the central

node, and retains Xi at the node. Here, appropriately
designed interferometer, Fig. 2, removes the information
where a photon came from [33], such that when an appro-
priate set of detectors [1] signalizes photodetections, the
state in subsystems Xi is projected, up to imperfections,
to state

|GHZ⟩4 =
1√
2
(|1010⟩X1X2X3X4

+ |0101⟩X1X2X3X4
), (3)
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Figure 1: Multipartite entangled state generation in a star network in different scenarios. (a) Direct transmission
protocol characterized by success rate scaling of ηN , were η is one channel transmittance. (b) Strategy with quantum
memory-based repeaters. It is characterized by good rate scaling, but is technically demanding and requires pre-shared
Bell states. (c) Proposed protocol in which interference and appropriate measurement in the central node generate
desired states in subsystems hold by users.

which is up to local unitary transformations equivalent to
|GHZ⟩4 from (1). As only two photons need to survive
the lossy channels the success rate scales as η2 achieving
quadratic improvement with respect to the direct trans-
mittance. In the next section we discuss the rate and
fidelity of such generated state in realistic experimental
conditions with nowadays quantum optics technology.
The idea presented above can be generalized, however

not trivially, to generation GHZ states in the star network
with arbitrary number of users. The extension utilizes
the four mode scheme from Fig. 2 as a building block.
The users 1 and 4, are however removed and replaced
by a link with single photon entangled state connecting
two neighboring building blocks, Fig. 3. In [1] we derive
formulas for the rate

R = 3
N
2 −1

(
1

2

)N−6

η
N
2 bN [a2 + b2(1− η)]

N
2 , (4)

and fidelity as functions of the channel loss rate η and
other parameters of the setup. In Fig. 4 we show the
rate for different number of users and compare it to the
direct transmittance generation rate.

Figure 2: Scheme of GHZ states generation in modes
X1...X4. HBS denotes the 50 : 50 (half) beam splitter.
Appropriate pairs of detectors [1] herald success of the
the protocol.

Figure 3: Scheme of generation of arbitrary size GHZ
states. The 4-mode circuits as in Fig. 1 are intercon-
nected by means of single photon entangled states.

3 Feasibility

We performed the analysis of the success rate and fi-
delity simulating quantum optics setup with standard el-
ements. As a source of the users’ input entangled states,
two mode squeezed vacuum generated in the spontaneous
parametric down conversion process is assumed. We as-
sume photodetectors of efficiency of 80% and dark count
rate 10−6 per second.

The rate and fidelity for different levels of squeezing
are shown in Fig. 5. As the reference we show the per-
formance of the direct transmission. We conclude that
despite the experimental imperfections the advantage of
our protocol still prevails.

4 Error correction application

The advantageous scaling we observe in our protocol
can impact many quantum network protocols including
conference key agreement and distributed sensing. More-
over, the fact that our protocol does not rely on pre-
shared bi-partite entanglement provides another advan-
tage that can lead to significant simplification of error
correction codes for distributed computing. In our paper
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Figure 4: Rate of generation GHZ states with fixed fi-
delity 0.9 vs distance for different numbers of users. The
solid lines indicate our protocol, the dashed lines – the
direct transmission.

Figure 5: Rate of generation (a) and fidelity (b) of GHZ
states vs distance for different squeezing levels. The solid
lines indicate the proposed protocol, the dashed line –
direct transmission.

[1] we report this simplification for the first time.
In Ref. [34], a distributed architecture was proposed

for topological quantum computing, with noisy network
channels, where many simple processor cells (consisting
of small number of qubits) are networked via noisy links
forming a 2D grid. This architecture was extended by
combining an efficient photonic linking protocol, called
”extreme photon loss (EPL)” protocol [35], to form a
robust architecture under very lossy and noisy network
links [36]. In this solution, instead of extra qubits for the
stabilizer measurements, 4-partite GHZ states are dis-
tributed to neighbouring four cells in the grid to perform
the stabilizer measurement among them.
In the original proposal, each pair of cells first share the

Bell states and purify them by the EPL protocol. Then
these states are further distilled to make the GHZ states.
In Ref. [35], a simple purification protocol was shown
where two copies of successfully generated states inter-

Figure 6: GHZ-state purification scheme.

acted through the controlled-NOT (CNOT) operations
inside each cell and then qubits of one of the copies were
locally measured in the Z basis. Provided that both mea-
surement outcomes were 1, the remaining state turned
out to be a purified Bell state. In Ref. [36], it was shown
that employing the EPL protocol into their distributed
surface code architecture, one can drastically increase the
threshold of the networking error for fault tolerance [37].

The distributed state in our protocol

ρ = α|GHZ⟩⟨GHZ|+
∑

βi|ϕi⟩⟨ϕi|, (5)

is not an ideal pure GHZ state. It contains undesired con-
tribution |ϕi⟩ that can be recognized [1]. Let us consider
that we have two copies of ρ and perform purification,
just like the Bell-state purification in the EPL protocol,
Fig. 6. Each cell locally applies the CNOT operation to
the part of ρ and measures the target qubit in the Z bases.
We can show that if |1111⟩ is detected we eliminate the
unwanted terms purifying the GHZ state.

Note that our protocol allows a direct generation of the
GHZ state among the four neibouring cells which is pos-
sibly advantageous for efficient stabilizer measurements.
This already simplifies the entire protocol. We also show
that a modification of the EPL protocol to purify the
GHZ states (see Fig. 6) is possible, and thus there is no
critical obstacle to apply our protocol into the distributed
surface code architecture.
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Abstract. We propose an innovative scheme for frequency-dependent squeezing in gravitational wave
detectors based on the principle of quantum teleportation [1]. This approach eliminates the need for
kilometer-scale filtering cavities, which pose significant infrastructural costs for future detectors. We apply
this scheme to the low-frequency detector of the Einstein Telescope and demonstrate that it maintains
sensitivity without the need for filter cavities or modifications to the core optics of the interferometer.
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1 Introduction

Since the Laser Interferometric Gravitational-Wave
Observatory (LIGO)[2] made history by detecting the
first-ever gravitational wave from a binary black hole
(BBH) merger[3] in 2015, the collaborative efforts of
LIGO, Virgo, and KAGRA [4, 5] have led to the iden-
tification of over 90 gravitational wave events [6, 7, 8,
9]. The future-generation gravitational-wave detectors
(GWDs), i.e. the Cosmic Explorer [10] and the Ein-
stein Telescope [11], striving for tenfold greater sensitiv-
ity, will empower the exploration of gravitational wave
signals from the events spanning the entire history of the
universe [12, 13].
Frequency-dependent squeezing is a well-established

technique for reducing quantum noise in GWDs [14, 15,
16, 17]. As will be demonstrated in the next section, re-
ducing both sensing noise (shot noise) and measurement
back-action noise (quantum radiation pressure noise) re-
quires filtering the input quantum state to the interfer-
ometer. This filtering can be accomplished using a dis-
persive optical cavity. Given the observation frequency
requirements (approximately 100 Hz) and the feasible op-
tical losses in mirror substrates and coatings, the length
of the filter cavity is on the order of a few hundred meters
for current detectors and will extend to kilometer scales
for future detectors.
To mitigate infrastructure-induced costs, several ap-

proaches have been proposed. The most advanced among
these is EPR (or conditional) squeezing [18]. This
method utilizes the principle of EPR steering to prepare
a single effective filter cavity.
Our proposal in this paper is an extension of EPR

squeezing. While EPR squeezing restricts the number of
participating modes to two, resulting in a single equiva-
lent filter cavity, our scheme employs Bell measurement
and forms tripartite entanglement, allowing the num-
ber to increase to three. This process uses continuous
variable teleportation based on the Braunstein–Kimble

∗yohei.nishino@grad.nao.ac.jp

scheme [19, 20].
Fig. 1 illustrates the implementation of phase rota-

tions. Victor is the initial state, and Alice and Bob
are the sources of teleportation, entangled with each
other. By applying physical operations to each of the
beams—Victor, Alice, and Bob—the teleported Victor’s
state is also manipulated. Given the initial state |ψ⟩, and
operations Uv,a,b on each beam, the teleported state be-
comes UbUaUv |ψ⟩. When Ub represents the response of
the GWD and Uv,a represent filtering, the output state
achieves the desired quantum noise suppression.

2 Frequency-dependent squeezing

A basic configuration of gravitational-wave detectors
entails a Michelson interferometer, depicted in the Fig. 2.
A bright-coherent light is injected into the beam splitter
(BS) from the minus-x side (bright port), capturing infor-
mation on the displacement of the end mirrors induced by
gravitational waves (GW) tidal forces. These forces act
differentially on the mirrors. The displacement informa-
tion is encoded in the phase of the light, with only differ-
ential phase fluctuations emerging at the minus-y (dark)
port due to destructive interference at the BS. Addition-
ally, alongside the Michelson interferometer, two cavities
are implemented1. Firstly, Fabry-P’erot cavities (FPCs)
are installed in each Michelson arm. Secondly, there is
the so-called signal extraction cavity (SEC), formed by
the input mirror of the FPCs and the signal extraction
mirror (SEC).

The FPCs circulate the laser light inside to effectively
increase the length of the arms, thereby enhancing the in-
teraction between the mirror motion caused by the grav-
itational wave (GW) and the laser light. On the other
hand, the SEC recycles the GW sidebands to the main
interferometer and adjusts the extraction rate of the sig-
nal beam. This recycling broadens the bandwidth of the

1We do not discuss a power recycling cavity in this paper, al-
though it is standard in current detectors.
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Figure 1: Schematics of continous-variable teleportation

Figure 2: QT Squeezing Configuration from [1]: In the
anti-symmetric port, the OPA is pumped at two frequen-
cies, 2ω0 + ∆a for a two-mode EPR entanglement be-
tween Alice and Bob, and 2(ω0+∆v) for a squeezed Vic-
tor state, generating symmetrical entanglement at the
sideband frequencies. These three beams are injected
through a Faraday isolator. The core part is a signal-
recycled Fabry-Pérot Michelson Interferometer, featuring
a beam splitter (BS), input test mass (ITM), end test
mass (ETM), and signal extraction mirror (SEM). This
interferometer is pumped at the frequency ω0, aligning
with Bob’s frequency. The output is then spectrally sep-
arated by an output mode cleaner (OMC). At the detec-
tion stage, Bob’s beam undergoes homodyne detection,
whereas Victor and Alice are processed through a Bell
measurement. The outputs are then optimally combined
using filter gains, (g1 g2), to achieve quantum-noise sup-
pression.

detector effectively, enabling the detection of signals at
higher frequencies.

Furthermore, by detuning the round-trip phase in the
SEC, one can create a dip via the optical spring effect,
potentially allowing us to surpass the standard quantum
limit of free masses [21]. The input-output relation of the
vacuun field entering from the dark port can be written
as follows:

B̂2 = Γeiβb(b̂1 cos θb − b̂2 sin θb). (1)

Here, Γ represents the so-called frequency-dependent
gain, as defined in [22]. It equals unity in the absence of
optomechanical coupling but deviates from unity when
such coupling is present. This coupling is also referred to
as ponderomotive squeezing. θb denotes the frequency-
dependent quadrature rotation, while βb represents an
irrelevant phase shift acquired during propagation in the
interferometer. The red curve in Fig.3 represents θb for
the ETLF. In this specific scenario, phase rotations occur
at two distinct frequencies, approximately 8 Hz and 20
Hz, highlighting the requirement for two filter cavities to
achieve broad-band noise suppression (for more details,
see the supplementary materials in [1]).

3 Broadband noise reduction through
teleportation

3.1 State preparation

Three beams participate in the teleportation process:
Alice, Bob, and Victor. The quadrature-phase ampli-
tudes for these three beams are represented as â̂âa =
{â1, â2}T, b̂̂b̂b = {b̂1, b̂2}T, v̂̂v̂v = {v̂1, v̂2}T, where Ω de-
notes the audio-sideband frequency around the central
frequency of each beam.

Alice and Bob form a two-mode squeezed state, result-
ing in the noise spectrum:

S(â1±b̂1)/
√
2 = e±2r, S(â2±b̂2)/

√
2 = e∓2r (2)

where r represents the squeezing factor.
When the quadrature â−θ = â1 cos θ − â2 sin θ is mea-

sured, the quadrature b̂θ = b̂1 cos θ+ b̂2 sin θ is condition-
ally squeezed, and vice versa. The spectral density of the
conditionally squeezed field is given by:

S
â−θ

b̂θ b̂θ
= 1/cosh(2r) , S

â−θ

b̂π/2+θ b̂π/2+θ
= cosh(2r) . (3)
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The amplitude (phase) quadrature of Victor is (anti-
)squeezed as:

Sv̂1v̂1
= e−2r, Sv̂2v̂2

= e2r. (4)

3.2 Teleportation and Noise Suppression

To teleport Victor’s state, Bell measurement between
Victor and Alice’s state is required, involving observables
defined as:

α̂̂α̂α =

(
α̂1

α̂2

)
=

1√
2

(
V̂1 − Â1

V̂2 + Â2

)
, (5)

where Â1 = eiβa(â1 cos θa − â2 sin θa), Â2 =
eiβa(â1 sin θa + â2 cos θa) and V̂1 = eiβv (v̂1 cos θv −
v̂2 sin θv), V̂2 = eiβv (v̂1 sin θv + v̂2 cos θv) represent the
quadratures of the Alice and Victor’s beams after pass-
ing through the interferometer. Note that θa,v and βa,v
are characterized in the same way as Eq. (1), and Γa,v

is unity since the interferometer is not pumped at Victor
and Alice’s frequency.
Next, we aim to determine the optimal filter to mini-

mize the noise spectrum density of the operator:

B̂tel
2 = B̂2 − g1α̂1 − g2α̂2, (6)

where g1,2 are the filter gains. The shape of these filters
can be calculated as follows:

g1 =
SB̂2α̂1

Sα̂2α̂2
− Sα̂2α̂1

SB̂2α̂2

Sα̂1α̂1
Sα̂2α̂2

− |Sα̂1α̂2
|2

, (7)

g2 =
SB̂2α̂2

Sα̂1α̂1 − Sα̂1α̂2SB̂2α̂1

Sα̂1α̂1
Sα̂2α̂2

− |Sα̂1α̂2
|2

, (8)

(see more details in the Supplementary Material of [1]).
Finally, the one-sided noise (power) spectrum density of
B̂tel

2 becomes:

Stel
B̂2B̂2

= |Γ|2 1 + e−2r cosh 2r

e−2r + cosh 2r

r≫1−−−→ |Γ|2 3

e2r
. (9)

3.3 Comparison with the Conventional Scheme

We applied the teleportation scheme to the ETLF as
an example (see the left panel of Fig. 4). Detailed param-
eters can be found in [1], therefore we show only the sen-
sitivity curves in this article. Comparing the QT squeez-
ing (QTS) with -17 dB of squeezing with the conventional

Figure 3: Phase rotation of the ETLF (red solid) and the
QT squeezing (blue dashed).

filter-cavity scheme with -10 dB (”baseline” scheme), one
can realize that QTS is inferior to the baseline at frequen-
cies between 10 - 20 Hz and below 6 Hz (above 20 Hz it
is covered by the high-frequency part of ET). This is be-
cause of the threefold noise contribution from the input
and readout losses and 4.8 dB penalty for employing tri-
partite entanglement. However, the sensitivity around
8 Hz is better than the baseline scheme. This is one
of the benefits of utilizing 10-km long, ultra-stable, and
low-loss arm cavities as filter cavities. Since around this
dip frequency, made by the optical spring, the optimal
quadrature angle is rapidly rotated via ponderomotive
squeezing, losses, and length fluctuation of the filter cav-
ity contribute to worsening the sensitivity more than at
other frequencies. This superiority at 8 Hz is the case
even if one increases the squeezing level of the baseline
scheme to the same level, -17 dB. One can conclude that
the QT squeezing increases the upper limit of squeezing.

The right panel of Fig. 4 shows the detection horizon
of non-spinning equal-mass compact binary coalescence.
The noise spectra integrate the quantum noise of ETLF
with the classical noise budget of ETLF and the entire
noise of ETHF. Due to the sensitivity improvement at 8
Hz, the maximum horizon stretches above z = 80.

4 Impact

Our scheme eliminates the need for two filter cavities in
ETLF, while retaining its sensitivity. This reduction in
infrastructure requirements, such as kilometer-scale vac-
uum chambers, tunnels, suspension systems, and caverns,
significantly lowers the associated costs. By iteratively
applying the teleportation process, one can extend the
number of effective filter cavities from 2 to an arbitrary
number. This approach can be applied to future detec-
tors, including those in space, which may be larger and
more complex, necessitating multiple filter cavities.

5 Conclusion

We have presented a method for enhancing the sensi-
tivity of gravitational-wave detectors across a broad fre-
quency range by leveraging the principles of quantum
teleportation. Key components include the entangled
source and Bell measurement, both of which are exper-
imentally feasible. We applied this scheme to the low-
frequency detector of the Einstein Telescope, revealing
both benefits and drawbacks. The benefit is an enhance-
ment around the frequency of the optical spring, approx-
imately 8 Hz in our specific case. Drawbacks include a
threefold noise contribution from input and output losses
and a 4.8 dB reduction in squeezing level. From a tech-
nical standpoint, our approach eliminates the need for
infrastructure associated with filter cavities, which are
projected to be kilometer-scale for future large detectors.
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Abstract. Our research introduces an innovative approach in quantum physics using Deep Generative
Models (DGMs) to create complex joint quasi-distribution functions with minimal experimental data. By
breaking down the construction of bivariate joint quasi-distribution functions into three simpler marginals,
DGMs significantly cuts down on the need for human resources, funding, and time. This method enables
faster and more accurate results.
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1 Introduction

The Wigner function is a useful tool in quantum me-
chanics for representing quantum states in phase space,
allowing us to visualize quantum phenomena and con-
nect the quantum world to classical mechanics. It re-
veals details about quantum interference and superposi-
tion, and its ability to show negative values highlights the
non-classical nature of quantum systems, deepening our
understanding of how quantum mechanics differs from
classical physics. The Wigner function is also crucial in
practical applications like quantum computing, quantum
optics, and quantum information theory, as it helps in
reconstructing and analyzing quantum states. We in-
troduce three specific states—squeezed states, coherent
states, and cat states—because their simple mathemati-
cal forms make them easier to work with.
Squeezed states reduce uncertainty in certain measure-

ments by decreasing the quantum noise in one variable
while increasing it in the conjugate variable, adhering to
Heisenberg’s uncertainty principle. This feature is partic-
ularly beneficial for precision measurements in areas like
gravitational wave detection, where reducing noise can
significantly enhance detection capabilities. Squeezed
states are also crucial for quantum cryptography, tele-
portation, and quantum computing due to their unique
quantum correlations, known as entanglement. Their
Wigner function has a distinctive elongated shape along
one axis, reflecting the reduced uncertainty in that direc-
tion. For detailed formulas and further discussion, please
refer to Appendix2.
Coherent states have minimal uncertainty in both po-

sition and momentum, making them the closest quan-
tum states to classical harmonic oscillators. These states
are eigenstates of the annihilation operator, which means
they maintain their form over time, only changing by a
phase factor. Coherent states are fundamental in quan-
tum optics and are the basis for understanding laser light,
which can be described as a coherent state of the elec-
tromagnetic field. Their Wigner function is a Gaussian
distribution centered in phase space, representing the

∗N96111176@gs.ncku.edu.tw

minimum uncertainty and classical-like behavior of these
states. The marginals of coherent states in three axes are
well-defined and easy to interpret.For detailed formulas
and further discussion, please refer to Appendix3

Cat states, or Schrödinger’s cat states, are superposi-
tions of two or more coherent states. They are named
after the famous thought experiment by Schrödinger,
which illustrates the paradox of superposition in quan-
tum mechanics. Cat states demonstrate the principle of
quantum superposition on a macroscopic scale and ex-
hibit unique quantum features like interference patterns
in their Wigner functions. These patterns alternate be-
tween positive and negative regions, showcasing the non-
classical properties of cat states. They are valuable in
quantum computing and communication because they
can represent qubits in superposition, potentially leading
to more powerful quantum algorithms and secure com-
munication protocols.For detailed formulas and further
discussion, please refer to Appendix4

We chose these states because their simple mathe-
matical expressions make them easier to analyze, al-
lowing for precise calculations and predictions essential
for both theoretical studies and practical applications.
Their well-defined Wigner functions enable detailed sim-
ulations and provide deeper insights into quantum phe-
nomena. Traditional methods for studying quantum pro-
cesses, such as quantum process tomography, are com-
plex and require extensive experiments, often involving
point-by-point scanning of the Wigner function in phase
space. To simplify this, we use DGMs to construct the
Wigner function from just a few marginal distributions,
efficiently generating the bivariate joint quasidistribu-
tion and significantly reducing the experimental effort
needed. This approach only requires three marginal dis-
tributions—probabilities in real or momentum space—to
create the Wigner function, thereby reduce experimental
resources.

2 Wigner functions

To train our Deep Generative Models (DGMs), we first
create a labeled dataset of Wigner functions, focusing on
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three key marginals: W (x), W (p), and W (u). These
marginals represent spatial, momentum, and a combined
axis, respectively, and can be calculated even with ther-
mal noise. Wigner function is a crucial tool in quan-
tum physics for visualizing quantum states, especially
due to its ability to exhibit negativity, which indicates
genuine quantum characteristics. However, constructing
the Wigner function can be challenging. In contrast,
marginals are standard probability distributions, mak-
ing them easier to construct from experimental data.
Our goal is to use these marginals to construct joint
quasi-distribution functions that permit negativity. By
leveraging artificial intelligence techniques, our trained
DGMs can efficiently create these functions from the
marginals. The motional state of a quantum system can
be described by the density matrix ρ or the Wigner func-
tion. More information in Appendix1. This real-valued
quasi-distribution function allows for negativity, indicat-
ing quantum essence. The Wigner function’s unique
property is that its marginals are standard probability
distributions, making them easier to measure experimen-
tally.

3 Quantum states and their marginals

We select specific quantum states, including coherent,
cat, and squeezed states, and generate three distinct pro-
jections (marginals) for each along three axes. This ap-
proach allows us to examine each state’s attributes and
explore their characteristics in detail. Initial parameters
for the spatial and momentum grid’s range and resolu-
tion are established to accurately depict the environment
where these quantum states manifest. Random vari-
ables such as position, momentum, squeezing parame-
ters, and phase angles are introduced to reflect real-world
conditions and enhance the DGMs’ ability to general-
ize.Consider a quantum harmonic oscillator in coherent,
cat, or squeezed states exposed to a thermal bath. The
marginals W (x) and W (p) have clear physical interpre-
tations as probability distributions in real and momen-
tum space. Additionally, the third marginal W (u) over
the oblique variable u = (x+p)/

√
2 is accessible in real

space after a π/4 rotation of the quantum states. This
comprehensive approach allows us to deeply analyze and
understand the properties of these quantum states.

4 Data generation and preparation

We prepare a labeled training dataset. The training
data can be generated efficiently, with each datum con-
sisting of three marginalsW (x),W (p), andW (u) derived
analytically even in the presence of thermal noise. Each
marginal is numerically sampled into 721 pixels as the
raw data, more information in Appendix5. The formulas
for quantum states and marginals from previous sections
are used as inputs for model training. Them we create a
function to ensure no information is lost while managing
and preparing data from various quantum states. This
function merges the data into a unified dataset format-
ted to match our machine learning models’ input require-

ments. The dataset is then split into training and testing
sets and shuffled to prevent biases, ensuring effective sup-
port for the model’s learning process.

Additionally, the synthetic datasets are informed by
physical principles, making them adaptable. By tweak-
ing relevant parameters, they can be optimized to suffi-
ciently reflect the target marginals of a specific quantum
dynamics model. This optimization aids in enhancing the
proficiency and precision of our DGMs. Armed with this
knowledge, we can fine-tune the parameters during the
synthetic data generation. This ensures that our syn-
thetic marginals align closely with the nuances of the
quantum model to be solved.

5 Training the ResNet-based deep gen-
erative models

We use a ResNet architecture with a mean squared er-
ror loss function and Adam optimizer. The model under-
goes training in multiple cycles (epochs) using batches of
data. A validation set is used to check the model’s ability
to generalize. Throughout training, the model is saved
along with graphs showing training progress to help mon-
itor and adjust the training parameters. Our DGMs are
structured into six stages, each constructed by repeatedly
stacking two core building blocks: the identity and de-
convolution blocks. Aiming to produce three images from
input marginals, the main stream of both blocks utilizes
three deconvolutional layers. These layers extract key
patterns from the input marginals and expand them to
produce the output images of a quasi-distribution. How-
ever, for the model to handle this intricate task, it re-
quires more depth and additional deconvolutional layers,
which intensifies the vanishing gradient problem and sig-
nificantly impedes our model’s training.

To solve this, we added shortcuts to each block, known
as the ResNet structure. These skip connections help
keep information from earlier layers, reducing the vanish-
ing gradient problem. This allows us to make the model
deeper and more powerful.

6 Model evaluation and analysis

After training, the model is evaluated using a test
dataset. We compare the model’s predictions with ac-
tual data through visual and numerical analyses to en-
sure the experiment’s reliability and accuracy. Detailed
evaluation methods and results will be discussed in next
section. By following this structured process, we ensure
that the DGMs is effectively trained to understand and
work with Wigner functions.

7 Results

Our model successfully predicted Wigner functions
with high accuracy. We verified the decoder model’s per-
formance by visually comparing its predictions against
actual test data. The discrepancies were quantified us-
ing the sum of squared differences (L2 norm) to measure
accuracy and the sum of absolute differences (L1 norm)
to evaluate marginal distributions. The model was fed
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Figure 1: Verifying the DGMs’s performance. The
decoder model’s performance is evaluated using two dis-
tinct test datasets. The first row shows the ground truth
joint distributions for both test cases, serving as a bench-
mark. The second row displays the model’s predicted
joint distributions, with the pixel-averaged L2 norm in
the upper right corner of each sub-image, indicating over-
all prediction accuracy. Rows three to five provide de-
tailed analysis by comparing the marginals along the x
axis, p axis, and u axis, with the pixel-averaged L1 norm
in the upper right corner of each sub-image, highlighting
the model’s accuracy in specific aspects. This demon-
strates the model’s precision and areas needing refine-
ment in predicting complex joint distributions.

inputs derived from three marginal distributions along
distinct axes, discretized into 721 points each, totaling
2163 points. These points were aligned sequentially to
form the feature set for the raw data. Target labels were
structured in a 256x256 grid, consistent with the anal-
ysis of pure dephasing phenomena. This setup ensured
a comprehensive understanding of the quantum state’s
characteristics.
During training, the decoder model learned to decipher

complex patterns between input data and output Wigner
functions, enabling accurate and fast predictions, thereby
addressing time complexity challenges. By focusing on
marginals, the measurement process was streamlined,
significantly reducing the time and resources needed for
reconstructing Wigner functions. The efficacy of our ap-
proach is demonstrated in Fig 1, showcasing the model’s
precision in predicting Wigner functions. This success
validates our method and highlights the potential of the
decoder model to transform Wigner function measure-
ment, opening new avenues for investigating quantum
systems requiring large-scale or high-resolution analysis.
This innovation promises enhanced efficiency and accu-
racy in exploring the complexities of quantum dynamics,
even under thermal noise.

8 Conclusion

Our DGMs represents a significant advancement in
quantum physics analysis by simplifying the construction
and understanding of Wigner functions. By focusing on
the creation of bivariate joint quasi-distribution functions

from three simpler marginals, our DGMs offers a more in-
tuitive and manageable approach to analyzing complex
quantum phenomena. This method enhances precision
and efficiency while broadening applicability across var-
ious quantum systems. The flexibility of our approach,
which allows for marginals to be derived from both ex-
perimental data and theoretical models, is a significant
advantage. It ensures that the DGMs accurately captures
the intricacies of quantum mechanics, providing a robust
tool for understanding phenomena such as superposition
and entanglement. Moreover, integrating advanced ma-
chine learning techniques addresses critical challenges in
measuring quantum states in phase space. Our model’s
ability to process and analyze high-dimensional quan-
tum systems efficiently, while minimizing noise and com-
putational limitations, opens up new opportunities for
quantum mechanics research. The success of our DGMs
in predicting Wigner functions validates its effectiveness
and potential to transform the measurement and analysis
of quantum systems, paving the way for more accessible,
accurate, and efficient exploration of the quantum realm.

9 Future Works

Our method addresses traditional limitations by em-
ploying neural networks, such as ResNet, to introduce
a novel computational framework in quantum physics.
However, there are still challenges to address, including
improving the quality of training data, managing compu-
tational complexity, and enhancing model interpretabil-
ity. Future research should aim to improve data collec-
tion methods, optimize neural networks, and incorporate
explainable AI. Collaboration between quantum physi-
cists and AI experts is essential to refine these models and
stay updated with advancements in quantum research.
Our research demonstrates significant potential for fur-
ther innovations in quantum computing, simulation, and
information processing. Key areas of focus include en-
hancing the training and scalability of DGMs and explor-
ing new quantum phenomena. As quantum technology
progresses, advanced computational models will unlock
new capabilities and drive innovation. Interdisciplinary
collaboration is crucial for achieving groundbreaking dis-
coveries in quantum science.
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A Appendix 1

The Wigner function defined as

W(x, p) =
1

πℏ

∫ ∞

−∞
⟨x+ y|ρ|x− y⟩ e−i2py/ℏdy, (1)

For pure state as

W(x, p) =
1

πℏ

∫ ∞

−∞
Ψ∗(x+ y)Ψ(x− y)e−i2py/ℏdy, (2)

Wn(x, p) =
(−1)n

π
e−(x2+p2)Ln(2(x

2 + p2)), (3)


|ψn(x)|2 = 1√

π2nn!
e−x2

H2
n(x)

|ψn(p)|2 = 1√
π2nn!

e−p2

H2
n(p)

|ψn(u)|2 = 1√
π2nn!

e−u2

H2
n(u)

(4)

B Appendix 2

The Wigner function of the squeezed state is

Wα,φ,r(x, p) =
2

π
exp

[
− 2 cosh 2r(x−ℜ[α])2

+ (p−ℑ[α])2 + 2 sinh 2r[cosφ(
1

2
x2 + p2)

− 1

2
xℜ[α]− pℑ[α] + ℜ[α]2 −ℑ[α]2

− sinφ
(
xp− 1

2
pℜ[α] + xℑ[α]

+ 2ℜ[α]ℑ[α]
)
]

]
(5)

To simplify this, I’ve transformed the original Wigner
function into a more manageable Gaussian form, repre-
sented as bivariate Gaussian distribution

W (x, p) =
1

2πσxσp
√
1− ρ2

× e

(
−1

2(1−ρ2)

[
( x−µx

σx
)
2−2ρ( x−µx

σx
)
(

p−µp
σp

)
+
(

p−µp
σp

)2
])
,

(6)
with the marginal in three axes:

W(x)= 1√
2πσx

e
− (x−µx)2

2σ2
x ,

W(p)= 1√
2πσp

e
− (p−µp)2

2σ2
p ,

W(u)= 1√
π
√

σ2
x+2ρσxσp+σ2

p

e
− (u−

√
2ℜ[αe−iπ/4])2

σ2
x+2ρσxσp+σ2

p ,

(7)

which is much simpler to compute
where u = x+iy√

2
, and in the process of my analysis, I

deduced several key coefficients, which are

µx =
√
2ℜ[α] (8)

µp =
√
2ℑ[α] (9)

ρ2 =
sinh2(2r) sin2 φ

cosh2(2r)− sinh2(2r) cos2 φ
(10)

ρ = − sinh(2r) sinφ√
cosh2(2r)− sinh2(2r) cos2 φ

(11)

1− ρ2 =
1

cosh2(2r)− sinh2(2r) cos2 φ
(12)

σ2
x =

cosh(2r) + sinh(2r) cosφ

2
[
cosh2(2r)− sinh2(2r) cos2 φ− sinh2(2r) sin2 φ

]
=

1

2
[cosh(2r) + sinh(2r) cosφ]

(13)

σ2
p =

cosh(2r)− sinh(2r) cosφ

2
[
cosh2(2r)− sinh2(2r) cos2 φ− sinh2(2r) sin2 φ

]
=

1

2
[cosh(2r)− sinh(2r) cosφ]

(14)

By reducing the original Wigner function to this form,
I’ve made it much easier to calculate and analyze, espe-
cially for practical applications where a simplified model
is sufficient to capture the essential features of the quan-
tum state.”

Finally, incorporating these parameters into our for-
mulas, I arrived at the desired results:

Wα,r,φ(x, p) =
1

π
exp

[(
− cosh2(2r) + sinh2(2r) cos2 φ

2

)

×
[( √

2(x−
√
2ℜ[α])√

cosh(2r) + sinh(2r) cosφ

)2

+
4 sinh(2r) sinφ(x−

√
2ℜ[α])(p−

√
2ℑ[α])

cosh2(2r)− sinh2(2r) cos2 φ

+

( √
2(p−

√
2ℑ[α])√

cosh(2r)− sinh(2r) cosφ

)2]]
(15)

and the marginals in three axes:

|Wα,r,φ(x) |2 = 1√
π
√

cosh(2r)+sinh(2r) cosφ

×e−
(x−2ℜ[α])2

cosh 2r+sinh(2r) cosφ ,

|Wα,r,φ(p) |2 = 1√
π
√

cosh(2r)−sinh(2r) cosφ

×e−
(p−2ℑ[α])2

cosh 2r−sinh(2r) cosφ ,

|Wα,r,φ(u) |2 = 1√
π
√

cosh(2r)−sinh(2r) sinφ

×e−
(u−2ℜ[αe−iπ/4])2

cosh(2r)−sinh(2r) .

(16)
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Figure 2: Cat state

Figure 3: Cat state Marginals

C Appendix 3

Coherent states in the natural unit m = 1, ω = 1, ℏ =
1

Wα(x, p) =
1

π
e−(x−

√
2ℜ[α])2−(p−

√
2ℑ[α])2 , (17)

with the marginals in three axes:
|ψα(x)|2 = 1√

π
e−(x−

√
2ℜ[α])2 ,

|ψα(p)|2 = 1√
π
e−(p−

√
2ℑ[α])2 ,

|ψα(u)|2 = 1√
π
e−(u−

√
2ℜ[αe−iπ/4])2

(18)

Figure 4: Coherent state

Figure 5: Coherent state marginals

D Appendix 4

Cat state is

Wα,θ(x, p) =
1

π

1
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√
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2ℑ[α])2

+ e−(x−
√
2ℜ[α])2−(p−

√
2ℑ[α])2

]
+

1

π

1

1 + cos θe−2|α|2
e(−x2−p2)

× cos

(
2x

√
2ℑ[α]− 2p

√
2ℜ[α]− θ

)
(19)
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with the marginals in three axes:

|ψα,θ(x)|2 = 1√
π

1
2+2 cos θe−2|α|2

×
[
e−(x−

√
2ℜ[α])2−(p−

√
2ℑ[α])2

+e−(x−
√
2ℜ[α])2−(p−

√
2ℑ[α])2

+2 cos
(
2x

√
2ℑ[α]− θ

)
e−x2−2ℜ[α]2

]
,

|ψα,θ(p)|2 = 1√
π

1
2+2 cos θe−2|α|2

×
[
e−(x−

√
2ℜ[α])2−(p−

√
2ℑ[α])2

+e−(x−
√
2ℜ[α])2−(p−

√
2ℑ[α])2

+2 cos
(
2p

√
2ℜ[α] + θ

)
e−p2−2ℑ[α]2

]
,

|ψα,θ(u)|2 = 1√
π

1
2+2 cos θe−2|α|2

×
[
e−(x−

√
2ℜ[α])2−(p−

√
2ℑ[α])2

+e−(x−
√
2ℜ[α])2−(p−

√
2ℑ[α])2

+2 cos
(
2x

√
2ℑ[αe−iπ/4]− θ

)
e−x2−2ℜ[αe−iπ/4]2

]
,

(20)

Figure 6: Cat state

Figure 7: Cat state marginals

E Appendix 5

In our dataset, we have 16,000 coherent states, 18,000
cat states, and 20,000 squeezed states. The amplitude pa-
rameter α ranges from -1.5 to 1.5 for squeezed states and
from -2 to 2 for both coherent and cat states. The squeez-
ing parameter r ranges from 0.2 to 0.6 for squeezed states
and 0.5 to 1 for coherent and cat states. The squeezing

angle ϕ for squeezed states ranges from 0 to 2π. The
phase θ for cat states also ranges from 0 to 2π. The av-
erage photon number n̄ for coherent and cat states is set
between 0 to 2, with photon number variance v following
the formula (1− |r|2)n̄.
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Abstract. Validation of specific states has often been a prerequisite before executing quantum tasks. The
primitives of quantum state verification experiments, although offering rather efficient strategies, fall short
in counteracting adversarial scenarios. Additionally, the sequence of generated states is consumed com-
pletely during the procedure. In our experimental demonstration, we address these obstacles by employing
active switches and a novel procedure, defined as device-independent certification, by measuring segments
of copies to justify the validity of the remaining one in black-box scenarios. With high-performance bi-
partite and tripartite entangled states, device-independent conclusions of high fidelity lower-bound can be
made up to 99% confidence within a few hundred consumed copies.

Keywords: Quantum state certification, device independent, self-testing

Authentication of quantum resources is a crucial
premise in various quantum application. There exist
several approaches to characterize entanglement sources,
among those the entanglement witness and quantum
state tomography (QST) have been widely used. How-
ever, to make reliable evaluations, these two well-known
methods require many detection events to extract the
expectation value of observables. It is particularly de-
manding for users to characterize the quantum devices in
a sample-efficient way, especially for large-scale quantum
systems in the noisy intermedia-scale quantum (NISQ)
era. This leads to the discovery of entanglement verifica-
tion answering whether it contains genuine multipartite
entanglement [1], and state verification technique that re-
veals more in-depth information about the specific state
[2]. Furthermore, going beyond the device-dependent
treatment, consideration of the black-box scenarios en-
dows more reliability and broader applications for future
quantum infrastructures. Nevertheless, reliable and effi-
cient validation of specific quantum states remains a con-
siderable challenge. To tackle this problem, we adopt the
sample-efficient device-independent strategy that origi-
nates from the self-testing [3], and experimentally demon-
strate the device-independent verification and certifica-
tion of multiphoton GHZ state in few-copies regime.
The scheme of the protocol is illustrated in figure 1.

A quantum source produces a sequence of independent
state S = {σ1, σ2, ..., σN} which is ϵ-close to the target
state |Ψ⟩ up to an error ϵ. We randomly distribute the
generated copies between two agents. One of the agents
is called ‘Verifier’, who is supposed to perform a state
verification measurement. The other one is called ‘User’,
who receives the remaining unmeasured copies being cer-
tified by the verifier. In this context, we only measure a
fragment of produced copies and warrant the rest close
to the desired state.
The DI quantum state certification protocol as devel-

oped by Gočanin et al. [3] suggests performing the non-

∗huan.cao@univie.ac.at

Figure 1: Scheme of the protocol. A segment of samples
is sent to the verifier, where we play a nonlocal game and
the copies are measured in one of ℓ settings (M1, M2, ...,
Mℓ) randomly chosen by a quantum random number gen-
erator (QRNG). Each outcome is either a success (1) or
a failure (0). In the end, the final score Pexp is calculated
by the sum of all outcomes divided by the number of the
received copies.

local game stemmed from self-testing. In this black-box
scenario, each copy of n-qubit state distributed to ver-
ifier side is queried by a global question, which termed
nonlocal game is an uncharacterized measurement, de-
pending on the classical input i⃗ = (i1, i2, · · · , in). The
possible outputs o⃗ = (o1, o2, · · · , on) returned by the box
are classified into correct output, of which the achieved
score in the round is pj = 1, and failed output pj = 0
otherwise. A typical example of nonlocal game originates
from Mermin inequality for self-testing tripartite GHZ
state [4]∑
o1,o2,o3

(−1)o1+o2+o3 [p(o1, o2, o3|0, 0, 1) + p(o1, o2, o3|0, 1, 0)

(1)

+ p(o1, o2, o3|1, 0, 0) + p(o1, o2, o3|1, 1, 1)] ≤ 2

p(o1, o2, · · · , on|i1, i2, · · · , in) = Tr

[
n
⊗
j=1

Moj |ijσ

]
is the

correlation regarding the physical state σ at disposal
with associated local measurement Moj |ij through the
Born rule. We can therefore translate the self-testing
into the nonlocal game by classifying the possible out-
puts o⃗ = (o1, o2, · · · , on) returned by the box into two
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Figure 2: Growth of confidence level with the number of consuming copies for bell state and GHZ state.
(a) results of bell state. (b) averaged results of bell state (c) results of GHZ state. The zoom-in around 99% confidence
level is provided in the insets, with the zone above 99% marked by blue.

classes. One is the correct output, of which the achieved
score in the round is pj = 1, and failed output pj = 0
otherwise. In each round, we ask one of the global ques-
tions, that corresponds to one of the input sets (0,0,1),
(0,1,0), (1,0,0) or (1,1,1). We characterize the nonlocal
games with the probability of success, which is defined as

P =
N∑
j=0

pj

N . Providing the averaged extractability lower

bound 1 − η of a sequence of independent state copies
S, the maximal achievable averaged success probability
is bounded by p̄ = pQM − cη, where the pQM dictates
the success probability of the target state. The nonlocal
game is said to pass once the experimentally observed
success probability Pexp is higher than p̄. The verifier
can conclude that the averaged extractability (equivalent
to fidelity up to local isometry) of the user’s copies is at
least 1−η, with a confidence level 1− δ of the conclusion

δ ≡ max p [Pexp|p̄ ≤ pQM − cη] ≤ e−D(Pexp∥p̄)N (2)

where D(x ∥ y) = xlog(x/y)+(1−x)log [(1− x)/(1− y)]
denotes the Kullback-Leibler (KL) divergence.
We demonstrate the device-independent quantum

state certification with a table-top photonic system for
bipartite Bell and tripartite GHZ states. By setting a
certain infidelity aimed to certify in advance, Fig. 2 illus-
trates the exponential growth of confidence level with the
number of consumed samples for given infidelities. The
failed event pj = 0 would pull down the confidence level,
but the effects become more and more negligible with in-
creasing sampling number. To specify the efficiency of
the strategy, we can identify the minimal sample number
necessarily leading to the certification by more than 99%
confidence level. From the inset, we identify that we can
certify various fidelities within a few hundred consumed
copies for both bipartite and tripartite cases.
There is a crucial distinction of certification tasks be-

tween the bipartite and tripartite quantum systems. The
bipartite certification procedure is based on CHSH in-
equality, of which the algebraic maximal violation can
only be reached by Popescu-Rohrlich box correlation.
The optimal violation allowed by quantum mechanics
corresponds to a success probability of pBell

QM = (2 +√
2)/4 ≈ 0.85. In contrast, in the case of the tripartite

scenario, the quantum bound of the Mermin inequality

is equivalent to the algebraic bound, leading to the opti-
mal success probability pGHZ

QM = 1. As discussed above,
the discrepancy renders the different scaling of verifiable
infidelity as the increasing samples. To demonstrate the
scaling, we alternatively set the confidence level 1 − δ
to be 99% and evaluate how the verified averaged infi-
delity evolves with the samples. In this stage, we perform
the verification tasks for the verifier. Meanwhile, various
characterizations on the user side are also taken to con-
firm the validity of the verifier’s claim. Fig. 3 shows
the estimated η (blue dots), predicted by the verifier, de-
scends with the increasing sampling number. Since the
certification procedure is translated from self-testing, the
device-independent infidelity asymptotically approaches
the given value by the self-testing result (yellow dashed
lines). Additionally, we reveal the realistic fidelity of the
user side by performing quantum state tomography for
bipartite case, and witness for tripartite case, which are
all well above the certified lower bound. The scalings of
estimated fidelity are evaluated by running several repe-
titions in a specific range of samples and taking the aver-
ages, as shown in the insets of Fig. 3. A linear fitting is
applied to the averaged infidelity plotted in logarithmic
coordinates, which yields η ∝ N−0.5416 for bipartite case
and η ∝ N−0.7913 for tripartite case. As a comparison,
we also plot the scaling for the ideal target state (yellow
plots in the inset). In the tripartite case, the deviation
is mainly due to the imperfection in state preparation.
To account for this reason, we select the specific range
N ∈ [10, 100] from the verifier’s plot (the blue dots in in-
set of Fig. 3(b) ), where all the samples pass the nonlocal
game, and fit the result, which gives η ∝ N−0.9058 (red
dots in inset), close enough to the scaling by ideal GHZ
state η ∝ N−0.9349(yellow lines in inset). The scaling, in
principle, is η ∝ N−0.5 for the bell state and η ∝ N−1

for GHZ state [3]. But it is present conditioned at (1)
ideal state, and (2) asymptotic behavior of large samples,
which prevents the practical experiment from exhibiting
the same scaling.
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Figure 3: Quantum state certification results when setting δ = 0.01. The estimated infidelities η asymptotically
approach the predicted infidelity given by self-testing for (a) Bell state and (b) tripartite GHZ state. The jump is due
to failed events of nonlocal games. Averaged results are taken to get smooth evolutions to estimate the scaling better.
Avg: averaged results of scaling. Ideal: scaling given by ideal target state. selected: scaling calculated by the selected
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Abstract

We evaluate the maximal Bell violation for a generic qubit-qudit system, obtaining easily com-

putable expressions in arbitrary qudit dimension. This work generalizes the well-known Horodeckis’s

result for a qubit-qubit system. We also give simple lower and upper bounds on that violation and

study the possibility of improving the amount of Bell-violation by embedding the qudit Hilbert

space in one of larger dimension. The results are illustrated with a family of density matrices in the

context of a qubit-qutrit system.
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1 Introduction

Violation of Bell-like inequalities represents a crucial test of the character of the fundamental laws of

nature, as it is incompatible with local-realism and in particular with local hidden-variables theories.

The most popular variant of these inequalities is the CHSH version [1]. Given a two-qubit system,

where Alice (Bob) can measure two observables, A,A′ (B,B′) which can take values {+1,−1},
the distribution of measurements are compatible with local realism if and only if |⟨OBell⟩|≤ 2 with

OBell = AB + AB′ + A′B − A′B′. As it is well known, quantum mechanics can violate this CHSH

inequality for certain entangled states. More precisely, if the state is pure there is always a choice

of A,A′, B,B′ which violates CHSH [2]. If it is a mixture, that is not guaranteed [3].

Of course, given a quantum state, the amount of potential Bell violation depends on the choice

of the four A,A′, B,B′ observables. It was shown in ref. [3] that for a generic qubit-qubit state, ρ,

expressed as

ρ =
1

4

Ñ
12 ⊗ 12 +

∑
i

(B+
i σi ⊗ 12 +B−

i 12 ⊗ σi) +
∑
ij

Cijσi ⊗ σj

é
(1)

(with B±
i , Cij real coefficients), the maximum value of |⟨OBell⟩| is given by

max
A,A′,B,B′

|⟨OBell⟩| = max
A,A′,B,B′

∣∣⟨AB⟩+ ⟨AB′⟩+ ⟨A′B⟩ − ⟨A′B′⟩
∣∣ = 2

√
κ1 + κ2 , (2)

where κ1, κ2 are the largest eigenvalues of CTC. The authors provided also the explicit choice of

A,A′, B,B′ leading to this maximum value. In this way one can easily check whether a (qubit-qubit)

state generates probability distributions incompatible with local realism.

1
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Beyond the qubit-qubit case things get much more involved. As a matter of fact, there is not

even a general description of the region (polytope) of probability distribution of A,A′, B,B′ which

is compatible with local realism. The celebrated CGLMP inequalities [4] represent some facets of

such polytope, but in general they do not provide a complete description of it. On the other hand,

for qubit-qudit states it was shown by Pironio [5] that all the facets defining the “classical” polytope

are given by CHSH-type inequalities. Nevertheless, this does not solve the problem of determining

the maximum Bell violation for a given ρ, and thus whether the probabilities of physical observables

of the system can be described by a classical (local-realistic) theory. In particular, Eq.(2) cannot

be extrapolated to higher dimension. Then, in principle one should explore all possibilities for

the A,A′, B,B′ observables, a very expensive computational task, as it involves a large number

of parameters, which grows rapidly as the dimension of the qudit increases. On the other hand,

H2 ⊗Hd states are of high physical interest. E.g. in the context of high-energy physics, it would be

interesting to show that systems like top −W boson, produced at the LHC, can exhibit the same

Bell non-locality as systems of two spin-1/2 particles (like top pairs). In other context, qubit-qudit

systems also play an important role in quantum information processing [6–9].

In this paper we address the task of evaluating the maximal Bell violation for a generic qubit-

qudit system, obtaining easily computable expressions. This also allows us to examine other issues,

for example the possibility of enhancing the Bell violation by embedding the qudit Hilbert space in

one of larger dimension.

In section 2 we present our approach to the problem and the general result for maximal Bell-

violation in qubit-qudit systems. In section 3 we give simple lower and upper bounds on ⟨OBell⟩max,

which respectively represent sufficient and necessary conditions for violation of local realism. In

section 4 we examine the possibility of improving the amount of Bell-violation by embedding Bob’s

Hilbert space in one of larger dimension and thus choosing new (higher dimensional) observables. In

section 5 we illustrate our results by studying a family of density matrices in a qubit-qutrit system.

Finally, in section 6 we summarize our results and conclusions.

2 The general qubit-qudit case

Let us consider a qubit-qudit system, with Hilbert space H2 ⊗Hd. Any 2d × 2d density matrix in

this space can be unambiguously expressed as

ρ =
1

2
[12 ⊗ β0 + σ1 ⊗ β1 + σ2 ⊗ β2 + σ3 ⊗ β3] , (3)

where σi are the standard Pauli matrices and {β0, βi} are d× d Hermitian matrices. In particular,

the β0 matrix coincides with Bob’s reduced density matrix, ρB = TrA ρ = β0, and therefore verifies

Trβ0 = 1.1 Besides, the β−matrices must lead to a positive semidefinite ρ matrix; other than that

they are arbitrary. The previous expression is a kind of Schmidt decomposition of the H2 ⊗ Hd

density matrix.

Following the result obtained by Pironio [5], we know that all the facets defining the polytope of

Local Hidden Variables (LHV) are given by CHSH-type inequalities over the probability distributions

of the system. In other words, all the “tight” Bell-like inequalities (those whose violation is a sufficient

1The rest of the β matrices are easily obtained by βi = TrA (ρ (σi ⊗ 1d)).
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and necessary condition to violate local realism), involving two observables for both Alice and Bob,

can be written as CHSH-type inequalities, |⟨OBell⟩|≤ 2, with

OBell = A⊗ (B +B′) +A′ ⊗ (B −B′) . (4)

Here A and A′ (B and B′) are 2× 2 (d× d) linear Hermitian observables with eigenvalues {+1,−1}
({+1,−1} with some degeneracy). Its expectation value is given by

⟨OBell⟩ = Tr (ρOBell) =
1

2

3∑
i=1

{
Tr(σiA) Tr

(
βi(B +B′)

)
+ Tr

(
σiA

′) Tr (βi(B −B′)
)}
. (5)

As it is well known, for local realistic theories ⟨OBell⟩ ≤ 2, while in quantum theories it can reach

2
√
2. Our goal is to find its maximal value:

⟨OBell⟩max = max
A,A′,B,B′

⟨OBell⟩ . (6)

For the qubit-qubit case, the cross-terms σi⊗βi in (3) can be expressed as 1
2Cijσi⊗σj , where Cij is

a real matrix. Then, it was shown in [3] that the maximum value of ⟨OBell⟩ is given by 2
√
κ1 + κ2,

where κ1, κ2 are the largest eigenvalues of the CTC matrix. Such nice result cannot be extrapolated

to the qubit-qudit case for various reasons. First, for d > 2 the d × d β−matrices do not obey

the friendy algebra of the Pauli matrices, which makes the analysis far more involved. Second, the

freedom for the choice of the B,B′ observables is dramatically greater, as they live in the space of

d× d Hermitian matrices. Finally, for d > 2 there is an increasing number of CHSH inequalities to

be examined, corresponding to the distribution of +1s and −1s of the B and B′ eigenvalues.

For this analysis it is convenient to define r⃗A, r⃗A′ and r⃗B, r⃗B′ vectors as

r⃗A = (Tr(σ1A),Tr(σ2A),Tr(σ3A)) ,

r⃗B = (Tr(β1B),Tr(β2B),Tr(β3B)) (7)

and similar expressions for r⃗A′ and r⃗B′ . Note that these are real vectors from the Hermiticity of the

involved matrices. Then Eq.(5) reads

⟨OBell⟩ =
1

2
r⃗A(r⃗B + r⃗B′) +

1

2
r⃗A′(r⃗B − r⃗B′) . (8)

Incidentally, this expression is explicitly invariant under simultaneous rotations in the 3-spaces of the

σi, βi matrices, which is in turn a consequence of the invariance of ρ, Eq.(3), under that operation.

Now notice that 1
2 r⃗A,

1
2 r⃗A′ are unit vectors. This comes from A,A′ having eigenvalues {+1,−1} and

thus vanishing trace2, so they can be expressed as

A =
∑ 1

2
Tr(σiA)σi =

1

2
r⃗Aσ⃗ (9)

and similarly for A′. Now, since TrA2 = TrA′2 = Tr 12 = 2, we get ∥r⃗A∥2= ∥r⃗A′∥2= 4. Apart

from that, the r⃗A, r⃗A′ vectors are arbitrary since, for any choice of them, the corresponding A,A′

2We do not consider the case of A or A′ proportional to the identity, which leads to no Bell-violation [10].
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observables are given by (9). Therefore, for a given pair (B,B′), the optimal choice of (A,A′) is

r⃗A ∥ (r⃗B + r⃗B′) and r⃗A′ ∥ (r⃗B − r⃗B′), so that

⟨OBell⟩max = max
B,B′

{
∥r⃗B + r⃗B′∥+∥r⃗B − r⃗B′∥

}
. (10)

As expected, this expression is also invariant under 3-rotations. Unfortunately, the β−matrices

do not follow the Pauli algebra, so a similar argument cannot be done for the r⃗B, r⃗B′ vectors, in

particular they do not have a fixed normalization. As already mentioned, this is part of the extra

intricacy of the qubit-qudit case compared to the qubit-qubit one. In order to solve (10) it is useful

the following lemma:

• Lemma I

Let v⃗, w⃗ be two arbitrary vectors in a plane. Consider a simultaneous rotation of angle φ of

both vectors and call the new vectors v⃗(φ), w⃗(φ), so that v⃗ = v⃗(0), w⃗ = w⃗(0). Then the

following identity takes place:Å
∥v⃗ + w⃗∥+∥v⃗ − w⃗∥

ã2
= 4max

φ

{
v1(φ)

2 + w2(φ)
2

}
, (11)

where the subscripts 1, 2 denote the components of the vectors. This equation can be easily

checked by choosing an initial reference frame for which the longest vector, say v⃗, has v2 = 0.

Then the expression within curl brackets reads v21 cos
2 φ + (w1 sinφ + w2 cosφ)

2, which is

maximal at

φ =
1

2
arctan

2w1w2

v21 + w2
2 − w2

1

(12)

and the value at the maximum coincides with the l.h.s. of (11). Clearly, the lemma holds when

we allow for rotations in 3-space, v⃗, w⃗ → Rv⃗,Rw⃗, i.e.Ä
∥v⃗ + w⃗∥+∥v⃗ − w⃗∥

ä
2 = 4 max

R

{
(Rv⃗)21 + (Rw⃗)22

}
(13)

where R is an arbitrary rotation in 3D, characterized by the three Euler angles. This becomes

obvious by taking into account that the r.h.s. of this equation reaches its maximum when the

two vectors have vanishing third component, (Rv⃗)3 = (Rw⃗)3 = 0, so that the problem reduces

to the above rotation in the plane.

Applying the previous lemma, Eq.(13), to the Bell expectation value, Eq.(10) we get

⟨OBell⟩max = 2 max
B,B′,R

»
|(Rr⃗B)1|2 + |(Rr⃗B′)2|2 . (14)

From the definition of r⃗B, Eq.(7), (Rr⃗B)i = Tr
î
(Rβ⃗)i ·B

ó
, and an analogous expression for (Rr⃗B′)i.

Hence

⟨OBell⟩max = 2 max
B,B′,R

…∣∣∣Trî(Rβ⃗)1 ·Bó∣∣∣2 + ∣∣∣Trî(Rβ⃗)2 ·B′
ó∣∣∣2 . (15)

Now we take into account the following: for a generic Hermitian matrix, M , with eigenvalues λi,

and an arbitrary Hermitian, involutory matrix B (i.e. B2 = 1d), it happens that maxB Tr[M ·B] =

4
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∑
i|λi|. 3 This maximum is achieved when B is aligned with M , i.e. they are diagonalized by the

same unitary matrix, and the signs of the B eigenvalues (1 or −1) are chosen equal to the signs of

the corresponding λi. This is precisely our case, since B,B′ are Hermitian involutory matrices, but

other than that arbitrary. Here we allow B,B′ to be ±1d, which is the optimal choice when all λi
have the same sign (we comment below on the meaning of this case). Consequently, the maximum

value of ⟨OBell⟩ is given by

⟨OBell⟩max = 2 max
R

»
∥(Rβ⃗)1∥21+∥(Rβ⃗)2∥21

= max
R

( d∑
i=1

|λ(1)i (R)|

)2

+

(
d∑

i=1

|λ(2)i (R)|

)2
1/2 (16)

where λ
(1,2)
i (R) stand for the eigenvalues of the SO(3)-rotated β matrices, (Rβ⃗)1, (Rβ⃗)2. This is

the main result of our paper. Let us briefly comment on some aspects of it.

• Note that in principle one should consider all the possibilities for the distribution of 1s and −1s

of B and B′ eigenvalues. Each possibility corresponds to a different CHSH inequality, which

represents ∼ d2 CHSH inequalities. However the above result automatically selects the optimal

choice for the 1s and −1s of the B,B′ observables; in other words, the CHSH inequality which

gives the maximal violation of the given density matrix.

• When all the λ
(1)
i (R) and/or λ

(2)
i (R) at the maximum of Eq.(16) have the same sign, this

entails setting either B = ±1d and/or B′ = ±1d, which is known to give no violation for

CHSH-type inequalities [10].

• To see the computational advantage of the above expression, note the following. In this

procedure, given a ρ matrix, once it is expressed in the form (3), we have to perform a (usually

numerical) maximization of Eq.(16). This implies to scan the three Euler angles of the R
rotation, which is a very cheap computation. It should be compared with the 4 + 2d(d − 1)

parameters for each CHSH inequality in the initial expression (6). Even in the simplest qubit-

qutrit case this represents 16 parameters.

• The A,A′, B,B′ observables that realize the maximum Bell-violation are straightforward to

obtain. Once we have determined the matrices (Rβ⃗)1, (Rβ⃗)2 that maximize (16) we simply

set

B = U1D1U
†
1 , B′ = U2D2U

†
2 , (17)

where U1,2 are the diagonalizing unitary matrices, i.e. Ua(Rβ⃗)aU †
a = diag (λ

(a)
i ), and Da =

diag(sign [λ
(a)
i ]). The corresponding A,A′ observables are given by Eq.(9), with r⃗A, r⃗A′ the

unit vectors aligned along (r⃗B + r⃗B′), (r⃗B − r⃗B′) (see discussion after Eq.(9)), and

r⃗B =
Ä
Tr
î
(Rβ⃗)1B

ó
,Tr
î
(Rβ⃗)2B

ó
,Tr
î
(Rβ⃗)3B

óä
(18)

3This is called the trace-norm or 1-norm of a matrix, ∥M∥1= Tr
√
M†M =

∑
i|λi|, in analogy to the 1-norm of

vectors.
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and similarly for B′.

• Let us finally see that expression (16) is consistent with the qubit-qubit result (2) obtained in

ref. [3].

In such scenario, comparing expressions (1) and (3) for ρ, the β matrices read β0 = 1
2(12 +∑

iB
−
i σi) and βi =

1
2(B

+
i 12+

∑
j Cijσj). On the other hand, assuming that the state violates a

CHSH inequality, the corresponding observables A,A′, B,B′ must have eigenvalues {+1,−1}.
(The other inequivalent possibility, namely one or more observables proportional to the identity,

leads to no CHSH-violation [10].) In that case, the terms involving B±
i are irrelevant as they

cancel in Tr{ρOBell}, Eq. (5). Now, the (real) matrix C can be diagonalized by two orthogonal

transformations, RA,RB ∈ O(3):

C = RAΣRT
B, Σ = diag{µ1, µ2, µ3}, (19)

ordered as µ1 ≥ µ2 ≥ µ3 ≥ 0. This is equivalent to perform appropriate changes of basis in

the Alice and Bob Hilbert spaces. Hence, in this new basis

ρ =
1

2

(
12 ⊗ 12 +

∑
i

σi ⊗ βi + · · ·

)
, (20)

where the dots denote terms which are irrelevant for the previous reasons, and βi = 1
2µiσi

up to a sign4. Now, from Eq.(16) we have to maximize ∥(Rβ⃗)1∥21+∥(Rβ⃗)2∥21 where R is an

arbitrary SO(3) rotation. Using the fact that the eigenvalues of v⃗ · σ⃗ are ±∥v⃗∥ we get

∥(Rβ⃗)i∥21=
∑
j

µ2j |Rij |2 , (21)

so the maximum value of ∥(Rβ⃗)1∥21+∥(Rβ⃗)2∥21 occurs for R13 = R23 = 0. Then

max
R

{∥(Rβ⃗)1∥21+∥(Rβ⃗)2∥21} =
∑
i=1,2

∑
j

µ2j |Rij |2= µ21 + µ22 (22)

(independent of Rij). Plugging this result in (16) we recover Eq.(2).

3 Necessary and sufficient conditions for Bell violation

From the general expression for the maximal Bell violation, Eq.(16), we can easily extract simple

lower and upper bounds on ⟨OBell⟩max, which respectively represent sufficient and necessary condi-

tions for violation of local realism.

The lower bound comes from simply taking R = 13. In other words, once the density matrix has

been expressed as in Eq.(3), we can assure that

⟨OBell⟩max ≥ 2
»
∥β1∥21+∥β2∥21 = 2

( d∑
i=1

|λ(1)i |

)2

+

(
d∑

i=1

|λ(2)i |

)2
1/2

, (23)

4The presence of a negative sign depends on whether or not RA,RB ∈ SO(3). Nevertheless, this sign is irrelevant

for the rest of the reasoning.
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where in this case λ
(1,2)
i stand for the eigenvalues of the initial β1, β2 matrices (no rotation applied).

More precisely, β1, β2 correspond to the beta matrices with larger trace-norm.

In order to get an upper bound on ⟨OBell⟩max from Eq.(16), we use the inequality ∥ · ∥21 ≤ d ∥ · ∥22
involving the 1 and 2-norm over d× d matrices 5, so that

2∑
a=1

∥(Rβ⃗)a∥21 ≤
3∑

a=1

∥(Rβ⃗)a∥21 ≤ d
3∑

a=1

∥(Rβ⃗)a∥22 = d
3∑

a=1

∥βa∥22. (24)

The equality comes from the fact that the last expression is invariant under O(3) rotations, so we

can take the initial β-matrices to evaluate the upper bound. Hence,

⟨OBell⟩max ≤ 2
√
d

[
3∑

a=1

(
d∑

i=1

|λ(a)i |2
)]1/2

. (25)

In summary,

2

 2∑
a=1

(
d∑

i=1

|λ(a)i |

)2
1/2

≤ ⟨OBell⟩max ≤ 2
√
d

[
3∑

a=1

(
d∑

i=1

|λ(a)i |2
)]1/2

(26)

where, in all the equations of this section, (23)-(26), λ
(a)
i stand for the eigenvalues of the unrotated

βa matrices in Eq.(3).

4 Embeddings

Having a recipe for the optimal Bell-violation for 2 × d systems allows us to address the following

question: if we embed Bob’s Hilbert space in one of larger dimension, is it possible to improve the

amount of Bell-violation by a suitable choice of the new (higher dimensional) B̃, B̃′ observables?

One may even think of the possibility of starting with an (entangled) state which does not violate

Bell inequalities, but it does it in the extended Hilbert space. As we are about to see, the answer is

negative for both questions.

Let us start with a generic state in a H2 ⊗Hd1 Hilbert space, characterized by a density matrix

ρ =
1

2
[12 ⊗ β0 + σ1 ⊗ β1 + σ2 ⊗ β2 + σ3 ⊗ β3] , (27)

where {β0, βi} are d1 × d1 matrices. Now let us consider Bob’s Hilbert space as part of a higher

dimensional one, Hd1 ⊂ Hd2 with d2 > d1. Thus we embed the above state in the new Hilbert space

by considering the {β0, βi} matrices as the upper-left block of a block diagonal d2 × d2 matrix:

β0 → β̃0 =

Ç
β0 0d1×(d2−d1)

0(d2−d1)×d1 0(d2−d1)×(d2−d1)

å
, βi → β̃i =

Ç
βi 0d1×(d2−d1)

0(d2−d1)×d1 0(d2−d1)×(d2−d1)

å
, (28)

where the 0 matrices have all entries vanishing. In terms of the higher-dimension observables and

β−matrices, Eq.(15) reads:

⟨OBell⟩max = 2 max
B̃,B̃′,R

…∣∣∣Tr[(R⃗̃β)1 · B̃]∣∣∣2 + ∣∣∣Tr[(R⃗̃β)2 · B̃′
]∣∣∣2 . (29)

5The 2-norm of a squared matrix is defined by ∥M∥22= Tr
(
MM†) = ∑

i|λi|2, in analogy to the 2-norm of vectors.
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Note that the R⃗̃β matrices are block-diagonal, with the same texture of zeroes as matrices (28).

Hence, they have the same d1 eigenvalues as Rβ⃗ plus d2 − d1 zeroes. Therefore, for a given rotation

R, the optimal choice for B̃, B̃′ in Eq.(29) yields the same result as the optimal choice in the H2⊗Hd1

system, namely

Tr
[
(R⃗̃β)1 · B̃

]
=

d1∑
i=1

|λ(1)i (R)| , Tr
[
(R⃗̃β)2 · B̃′

]
=

d1∑
i=1

|λ(2)i (R)| , (30)

where λ
(1,2)
i (R) stand for the eigenvalues of the (Rβ⃗)1, (Rβ⃗)2 matrices. Hence we recover the same

result as for the initial system, Eq.(16). Note that in this case there are many choices of B̃, B̃′ which

yield the same result (30).

5 A qubit-qutrit case study

To illustrate the use of the general result on the maximal Bell-violation (16) let us consider an

example in the context of the qubit-qutrit system. As it is well known, for mixed states entanglement

does not necessarily leads to violation of quantum realism (i.e. Bell-violation). A popular example

of this fact in the qubit-qubit case are the Werner states, ρ = 1
4(12 ⊗ 12 − η

∑
i σi ⊗ σi), which

for 1/3 < η ≤ 1/
√
2 are entangled but do not violate any CHSH inequality. For a qubit-qutrit

system we can perform a similar analysis, using both our result (16) and the fact that in this case

the Peres-Horodecki [11, 12] criterion, i.e. the existence of some negative eigenvalue of the partially

transposed matrix ρT2 , provides a necessary and sufficient condition for entanglement. For the sake

of concreteness, let us consider the qubit-qutrit state

ρ = x|ψ1⟩⟨ψ1| + y|ψ2⟩⟨ψ2| + z|ψ3⟩⟨ψ3|, (31)

where 0 ≤ (x, y, z) ≤ 1 with x+ y + z = 1, and (in an obvious notation)

|ψ1⟩ =
1√
2
(|00⟩+ |11⟩) , |ψ2⟩ =

1√
2
(|01⟩+ |12⟩) , |ψ3⟩ =

1√
2
(|02⟩+ |10⟩) . (32)

Explicitly,

ρ =
1

2



x 0 0 0 x 0

0 y 0 0 0 y

0 0 1− x− y 1− x− y 0 0

0 0 1− x− y 1− x− y 0 0

x 0 0 0 x 0

0 y 0 0 0 y


. (33)

The physical region, where ρ is positive definite, corresponds to x+ y ≤ 1 (triangle in Fig.1). Using

the Peres-Horodecki criterion, it is easy to check that ρ is entangled for any value of x, y, except for

x = y = 1/3. Fig.1, left panel, shows the value of the logarithmic negativity E = log2
(
∥ρT2∥1

)
in the

x− y plane. The logarithmic negativity, which provides a sound measurement of entanglement [13],

is greater than 0 in the whole physical region except at that particular point.
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Figure 1: Values of the logarithmic negativity. E = log2
(
∥ρT2∥1

)
(left panel) and |⟨OBell⟩max| (right

panel) for the qubit-qutrit model described by the density matrix of Eq.(33). The model is entangled

(E > 0) in the whole physical region, except for x = y = 1/3, while it violates local realism for

|⟨OBell⟩max|> 2.

For the analysis of the Bell-violation, we first express ρ in the form (3), which amounts to the

following β−matrices:

β0 =
1

2

Ö
1− y 0 0

0 x+ y 0

0 0 1− x

è
, β1 =

1

2

Ö
0 x −x− y + 1

x 0 y

−x− y + 1 y 0

è
,

β2 =
1

2

Ö
0 ix i(x+ y − 1)

−ix 0 iy

−i(x+ y − 1) −iy 0

è
, β3 =

1

2

Ö
2x+ y − 1 0 0

0 y − x 0

0 0 −x− 2y + 1

è
.

(34)

Plugging these expressions in Eq.(16) and performing a simple numerical optimization we can obtain

the maximal Bell-violation in the x− y plane, which is shown in Fig.1, right panel. Similarly to the

Werner qubit-qubit states, there is a sizeable region in which the state is entangled but |⟨OBell⟩|≤ 2,

so local realism is not violated.

6 Summary and conclusions

We have considered the violation of Bell-like inequalities in the context of a qubit-qudit system with

arbitrary dimension. These inequalities represent a crucial test of local realism, i.e the possibility

that the outputs of physical measurements on the system could be reproduced by a (classical) theory

of hidden variables. The violation of such inequalities requires that the state is entangled, but (for

mixed states) the opposite is not necessarily true. In previous literature [5] it was shown that for these

systems, the “classical” polytope, i.e. the region of probability distribution of observables A,A′, B,B′
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which is compatible with local realism, is bounded by CHSH-type [1] inequalities. However, given

a state ρ, this does not solve the problem of determining the maximum Bell violation and thus

whether the system can be described by a classical (local-realistic) theory. The usual recipes for

a qubit-qubit system [3] cannot be applied beyond the lowest dimensionality. Hence, in principle

one should explore all possibilities for the A,A′, B,B′ observables involved in a CHSH inequality,

an expensive computational task, which entails to optimize ∼ 2d2 parameters and thus increases

quickly with the dimension of the qudit.

In this paper we have addressed the task of evaluating the maximal Bell violation for a generic

qubit-qudit system, obtaining easily computable expressions. Our central result, given in Eq.(16),

generically amounts to a simple optimization in three angles, independently of the qudit dimension,

and it automatically selects the strongest CHSH inequality among all the possible ones. Moreover,

this result also holds when considering a larger number of observables acting on the qudit space, since

for that scenario the “classical” polytope is still bounded by CHSH-type inequalities [5]. We also

give lower and upper bounds on the Bell-violation, which can be immediately computed. Besides,

we have shown that it is not possible to improve the amount of Bell-violation by embedding Bob’s

Hilbert space in one of larger dimension and thus choosing new (higher dimensional) observables.

Finally, as an example of the use of our results we have considered a 2-parameter family of density

matrices in the context of a qubit-qutrit system and determined the region of such parameter space

in which the state is entangled and the region where local realism is violated, showing that both are

correlated but the former is broader than the latter.

The results presented here can be used for any qubit-qudit system, independently of its physical

nature; e.g. in the analysis of non-local correlations in top-W [14,15] or photon-Z production [16,17]

at the LHC, or even (in the large-d limit) hybrid discrete-continuous systems such as a cavity atom-

light system [18].
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Photonic quantum-to-quantum Bernoulli factory

Francesco Hoch1 ∗

1 Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy

Abstract. Many applications in information technology depend on the creation and manipulation of
randomness, and quantum mechanics has proven useful in this area. One promising model for randomness
manipulation is the Bernoulli factory. Initially, this framework was explored in a classical context. However,
recent extensions into the quantum realm have demonstrated new interesting features.

We propose two Bernoulli factory schemes that use quantum states as both input and output, one
employing the dual-rail and the other the polarization encoding. Our schemes are modular, universal
and operate independently of the input bias We present the theoretical analysis and the experimental
implementations, showcasing the practicality of our method.

Keywords: Bernoulli factory, Randomness manipulation, Quantum computation, Quantum information,
Quoin

1 Introduction

Randomness plays a crucial role in various research
fields and everyday applications, particularly those re-
lated to sensitive data protection. Several deterministic
techniques can generate randomness, with their security
and efficiency depending on the specific algorithms used.
Quantum mechanics offers intrinsic randomness, theoret-
ically unbreakable but challenging to ensure experimen-
tally due to inevitable noise and imperfect device con-
trol. This unique property of quantum theory provides
significant advantages in information manipulation, com-
munication, and processing, as demonstrated by several
quantum communication protocols and quantum compu-
tational algorithms. A recent proposal called Quantrum-
to-quantum Bernoulli factory aims at using quantum re-
sources to manipulate randomness in Bernoulli processes.
In a classical contest, a Bernoulli factory is an algo-

rithm that processes instances of a Bernoulli variable
(flips of a biased coin), with the goal of generating an
output Bernoulli variable whose bias is a desired function
of the (unknown) input bias. More formally a Bernoulli
factory is a function Gf : {0, 1}∞ → {0, 1}, associated
with a function f : D ⊆ [0, 1] → [0, 1], such that its
application to a sample following a Bernoulli distribu-
tion B(p) with bias p is equivalent to sampling exactly
from a different Bernoulli distribution with bias parame-
ter f(p). In formula Gf (B(p)∞) = B(f(p)). An essential
requirement is that the function Gf must not depend on
p, which reflects the assumption of the user’s ignorance
about the value of the input bias. In Ref. [1] they pro-
vide a necessary and sufficient condition on the function
f : D ⊆ [0, 1] → [0, 1] such that the associated Bernoulli
factory exists. In particular, they show that not all func-
tions are exactly implementable as a Bernoulli factory.
As became clear later this type of the protocol is called
classical-to-classical Bernoulli factory (CCBF).
In recent years the problem has been extended to the

quantum domain by analyzing the possibility of replac-
ing the input and/or the output Bernoulli variables with
quantum counterparts. In Ref. [2, 3], the first quantum

∗francesco.hoch@uniroma1.it

version of this process, named Quantum-To-Classical
Bernoulli Factory (QCBF), was defined by considering
a quantum input and a classical output. This QCBF ex-
tension simulates a Bernoulli variable given a quantum
coin (or quoin) as an input parameter. A quoin with bias
p is a qubit in the pure state |Cp⟩ :=

√
1− p |0⟩+√

p |1⟩,
such that when measured in the computational basis, re-
turns a classical Bernoulli variable with the same bias.
In Ref. [2] the authors characterized the space of simula-
ble functions for a QCBF showing that it is strictly large
compared to the sef of the CCBF. Moreover, there is ex-
perimental evidence that a quantum advantage can be
achieved [4, 5] in terms of the average number of inputs
coins/quoins required.

A more complex quantum extension of the Bernoulli
factory was later proposed by Jiang et al. [6], where
both input and output are quantum states, aptly named
a Quantum-to-Quantum Bernoulli Factory (QQBF). In
detail, a QQBF takes as input a set of quoins, all with the
same bias parameter p, and returns a quoin with param-
eter f(p) : D ⊆ [0, 1] → [0, 1]. More in general we define
the following parameterization of single-qubit states that
proved to be helpful in the analysis of Bernoulli factories:

|z⟩ := z |0⟩+ |1⟩√
1 + |z|2

, (1)

where z is a complex variable. For a general input qubit
|z⟩ a QQBF associated to a complex function g(z) : C →
C is a process that generates at the output a qubit in
the state |g(z)⟩. In Ref. [6] it was demonstrated that a
necessary and sufficient condition for a QQBF to exist is
that the associated function belongs to the complex field
generated by the element z, i.e. that g(z) is a complex
rational function in the parameter z. Using the previous
result and the algebraic theory of the field, the necessary
and sufficient condition to demonstrate the feasibility of
implementing all the complex rational functions, i.e. all
the simulable QQBF, relies on showing the possibility of
implementing the quantum version of the field operations
which are inversion, addition and product, and the possi-
bility to combine them. The quantum input and output
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Figure 1: Building blocks for dual-rail encoding.
Interferometric schemes that implement the basic oper-
ations to build a generic QQBF with dual-rail encoded
qubits. The inputs of the interferometers are labelled by
numbers 1 and 2 while the outputs are labelled as O. (a)
The inversion operation is performed by swapping the
two modes of the input dual-rail qubit. (b) The product
operation is performed by sending one waveguide from
each dual rail qubit (|1⟩1 and |0⟩2) into a balanced BS,
and measuring the outgoing modes. Detection of a single
photon in the modes labelled ”+” or ”−” signals success
(up to a global phase). (c) The addition operation is im-
plemented by directing the modes, representing the same
state of the two qubits, to equally unbalanced BSs, and
measuring one output mode for each BS. When one pho-
ton is found in the detector labelled as S, and the other
photon is in output modes |0⟩o or |1⟩o, the output state
is the sum of the input ones (up to a global phase).

enable its use as a subroutine in quantum algorithms. For
example, QQBF-like operations have been used for dele-
gated quantum computing in Ref. [7] to obtain genuine
secure quantum state preparation.

2 Our work

In this work, we propose a modular approach to im-
plement a genuine QQBF and we report its experimen-
tal realization using integrated quantum photonics with
dual-rail encoding or bulk optics with polarization en-
coding.
To demonstrate the feasibility of a generic QQBF using

integrated photonics, we will explicitly construct an ap-
propriate scheme to implement the field operations with
photons. Previous attempts to experimentally implement
the field operations [8, 9] were limited, as they substan-
tially relied on prior knowledge of the input state. This
is in stark contrast to the fundamental requirement for
a correct implementation of the protocol, i.e. full igno-
rance of the input state. In our we present three inter-
ferometers, each of them implementing a particular field
operation that can be concatenated at will.

In Fig. 1 we present the schemes that employ the dual-
rail encoding for photonic qubits, where logical states |0⟩
and |1⟩ are encoded as the presence of a photon in one
of two possible optical paths. This choice is motivated
by the current state-of-the-art integrated photonic tech-
nologies, that allows the implementation of complex ar-
chitectures [10] based on beam splitters (BS) and phase
shifters.

We also implement similar interferometers for the po-
larization encoding.

3 experimental results

A first step towards characterizing the modular QQBF
described above involves the demonstration of the indi-
vidual building blocks. The operation of every single
block is characterized by preparing a set of random in-
put states (|z1⟩ , |z2⟩) sampled from a uniform distribu-
tion on the Bloch sphere. After the transformation, the
output is validated by measuring the success probabil-
ity of the post-selection used, and the fidelity reached
with respect to the target state. The overall figure of
merit defining the quality of the implementation is pro-
vided by the mean fidelity over the set of sampled states.
From a direct comparison of the obtained results with
the theoretical expectations, we find that the operations
implemented by the circuit are performed with fidelities
close to a unitary value (0.99 ± 0.01), thus demonstrat-
ing the realization of the building blocks of a QQBF. In
this case, corresponding to the verification of each stand-
alone operation, the effect of experimental noise due to
photon distinguishability is almost negligible. Indeed,
the inversion operation scheme does not rely on photon
interference, while both product and addition implemen-
tations are verified via two-photon experiments, which,
in our source, belong to the same generated pair, and
thus possess a high degree of indistinguishability.

As a second step, we demonstrate the modularity of
our scheme by showing the possibility of concatenating
the individual operations. This aspect is necessary to
fulfil all requirements for the correct implementation of a
complete Bernoulli factory. Also in this case we measure
the output fidelity for a particular set of states corre-
sponding to relevant choices of the input. To compare the
experimental data with the theoretical prediction, partial
photon distinguishability between the input photons has
to be taken into account. All the fidelities experimentally
measured are compatible with the theoretical one recon-
structed by the noisy model that takes into account the
partial distinguishability of the photons. These demon-
strate the successful implementation of the concatenation
and that the relevant noise in our apparatus is only the
photon distinguishability.

We performed the same experiment with a quantum
dot source and a bulk optics system to test the proto-
col implemented for polarization encoding. We apply
the same validation method as described previously with
mean fidelities of F = 0.95 ± 0.01. The obtained results
are compatible with the ones retrieved by the noisy model
that take into account the partial distinguishability since,
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on the contrary to the SPDC sources that have near uni-
tary indistinguishability, our dot source has a visibility
of V = 0.92± 0.02.
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Abstract. Connecting multiple processors via photonic interconnects could help to overcome issues of
scalability in single-processor quantum computers. Transmission via these interconnects can be performed
more efficiently using quantum multiplexing, where information is encoded in high-dimensional photonic
degrees of freedom. We study the effects of multiplexing on logical error rates in surface codes and hyper-
graph product codes. We show that, although multiplexing makes loss errors more damaging, assigning
qubits to photons in an intelligent manner can minimize these effects, and the ability to encode higher-
distance codes in a smaller number of photons can result in overall lower logical error rates.

Keywords: Quantum Communication, Quantum Error Correction, Surface Codes, HGP Codes, Quan-
tum Multiplexing, Quantum Interconnect

Topological stabilizer codes such as surface codes [3]
are regarded as one of the most promising candidates for
fault-tolerant quantum computation (FTQC) and quan-
tum communication [7]. This is due in part to the fact
that they have a high error threshold and local stabi-
lizer generators which are feasible in 2D systems. Hyper-
graph product (HGP) codes [21], a generalization of the
surface code, are another class of quantum codes consid-
ered practical candidates for FTQC. Constructed from
two classical codes, HGP codes are particularly inter-
esting because they have asymptotically finite rate and
minimum distance proportional to the square root of the
classical code lengths. This is in contrast to the surface
code, which has a fixed number of logical code words and
hence rate approaching zero.

Although the size of quantum processors has increased
in recent years, it has become clear that large-scale quan-
tum computation on a single processor is limited by var-
ious physical constraints [9, 19]. To solve this problem, a
method of connecting multiple quantum processors with
photonic quantum interconnects has been proposed [2].
In such a system, the processors would use matter qubits
while the qubits in the interconnects would be photonic,
resulting in different dominant error mechanisms in the
two cases. To address this, hybrid systems using multi-
ple codes have been proposed, but this introduces new
overheads such as code-switching [1]. Alternatively, it is
possible to address different types of noise within a single
code by using different decoders [18].

A single photon has multiple degrees of freedom such
as polarization [22], time bin [4, 10, 20], path (e.g.
dual rail) [8], orbital angular momentum[23], and fre-
quency [17, 16]. Quantum multiplexing [14] is a method
of encoding high-dimensional quantum information into a
single photon using these multiple degrees of freedom. It

∗parton@nii.ac.jp
†nicholas.connolly@oist.jp
‡kae.nemoto@oist.jp

has been shown that multiplexing can be used to reduce
the resource cost associated with quantum communica-
tion [12, 13] and quantum circuits [11]. In this work we
consider encoding 2m-dimensional quantum information
using m two-level degrees of freedom per photon (where
m is an integer and m = 1 corresponds to no multiplex-
ing, i.e. a single degree of freedom is used). This work
analyzes the performance of quantum communication on
an erasure channel using surface and HGP codes with
quantum multiplexing. Fig. 1 shows a sequence of steps
illustrating the quantum multiplexing technique applied
to the surface code.

While quantum multiplexing allows for efficient com-
munication it may also affect the logical error rate. The
loss of a photon causes the simultaneous loss of multiple
qubits encoded in that photon. Surface codes are highly
tolerant of uniformly random errors but such classical
correlations can degrade performance.

We propose three methods utilizing multiplexing for
quantum communication:

1. Sending m different codewords with the same num-
ber of photons as the m = 1 case.

2. Sending
√
m×
√
m larger codewords with the same

number of photons as the m = 1 case.
3. Sending the same number of codewords as the m =

1 case with fewer photons (1/m times the original).

The first method introduces a classical correlation of
errors betweenm independent codes, but this does not af-
fect the performance of those codes. The second method
introduces correlations in errors between the qubits in
the code, which may degrade the performance. However,
if m is sufficiently small relative to the code size, the
benefit gained by increasing the code size is more signif-
icant. Fig. 2 (a) shows a Monte Carlo simulation of the
logical error rate for the second method using a surface
code. The second and third methods have no restric-
tion on the number of codewords and can improve the
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Figure 1: Flow of surface code communication using multiplexed photons over the erasure channel. Each numbered
circle represents the physical qubit of data, and the color of the qubit indicates its assigned photon.

efficiency of quantum communication in general. How-
ever, since these methods introduce classical correlation
to the errors of multiple qubits in a single code word,
it is necessary to be aware of the resulting performance
degradation. Fig. 2 (b) shows how increasing m can also
increase this degradation.

Assignment Strategies
To address the correlations in the error and reduce

their effect on performance, we introduce and compare
a number of assignment strategies. We propose five as-
signment strategies for surface codes and five strategies
for HGP codes, which are adapted to the code structure
and the decoder. A full explanation of these assignment
strategies is included in the Appendix, but we briefly dis-
cuss the most promising techniques here.

For the surface code, the distance between qubits
within the same photon is a crucial factor when consider-
ing the impact of correlated errors, motivating us to com-
pare strategies that minimize and maximize this distance.
Furthermore, these strategies can be realized with sim-
ple calculations on the surface code lattice. Fig. 3 shows
an example of these two strategies in a small d = 2 sur-
face code, and Fig. 4 shows the simulated performance
of these and other strategies applied using a d = 10 sur-
face code. Observe that max-distance outperforms min-
distance, which is explained by the fact that Pauli errors
on nearby qubits quickly grow into clusters when there
are multiple erasures.

Errors with strong classical correlation are similar to
burst errors in classical communication in the sense that
the errors have spatial locality. Interleaving [15] is a tech-
nique used to eliminate locality by permuting the rows
and columns of the code’s generator matrix. The ran-
dom and random + threshold assignment strategies are
inspired by this technique. While the former method as-
signs uniform-randomly selected qubits to photons, the
latter modifies this method with the addition of a vari-
able threshold distance to avoid assigning nearby qubits
to the same photon. The random + threshold strategy
is designed both to leverage randomness and to increase
the distance between qubits in the same photon. The
numerical results of Fig. 4 show that this strategy comes
the closest to the no-multiplexing case and thus has the
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Figure 2: (a) Erasure channel performance of the second
method (sending a larger codeword with the same num-
ber of photons as the no-multiplexing case) using surface
codes of different sizes and about 100 photons each. (b)
Erasure channel performance of the third method (send-
ing codewords with the same size as the no-multiplexing
case using fewer photons) for the d = 10 surface code at
different values of m (the number of qubits per photon),
where qubits are assigned to photons at random.
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Figure 3: Examples of photon assignment strategies for
the qubits in a d = 2 toric code. Numbered circles indi-
cate qubits and colors indicate the assigned photon.

smallest effect on performance.
Our numerical simulations for surface codes used an ef-

ficient linear-time maximum-likelihood (ML) decoder [6],
but our simulations for HGP codes used an efficient
non-ML erasure decoder designed specifically for HGP
codes [5]. One drawback of this decoder is that it can
fail to return to the code space, and hence decoder fail-
ures may occur in addition to logical errors. Decoder
failures are the result of certain local configurations of
erased qubits referred to as stopping sets. Multiplexing
can have a significant effect on the probability of obtain-
ing a stopping set and hence a decoder failure.

We propose another five multiplexing assignment
strategies adapted to HGP codes. The first strategy is
based on random assignment, identical to the surface
code strategy of the same name. The second strategy
exploits the fact that HGP codes are a type of stabilizer
code; our decoder can often correct erased qubits cov-
ering a stabilizer. The stabilizer strategy assigns qubits
to photons so that photons cover stabilizers. The last
three assignment strategies (sudoku, row-col, and diag-
onal) are all designed to address decoder failures. Su-
doku and diagonal strategies attempt to avoid stopping
sets and hence reduce the likelihood of a decoder fail-
ure. By contrast, the row-col strategy seeks to maximize
the probability of stopping sets and decoder failures; this
strategy is of theoretical interest as a worst-case scenario.
An example showing how the performance collapses for
the row-col strategy is shown in Fig. 5 (a).

Fig. 5 (b) shows a comparison of the performance for
all five HGP strategies. In this example, we see that the
diagonal strategy outperforms all others, including the
baseline no-multiplexing case. An examination of the
numerical results shows that, in addition to reducing the
number of decoder failures, the diagonal strategy also re-
duced the number of logical errors in the simulations for
this code. Although this result is not always true for
other HGP codes, it shows that decoder-designed multi-
plexing has the possibility to improve performance while
reducing the required physical resources.
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Figure 4: Performance comparison of multiplexing strate-
gies for the [[200,2,10]] surface code.
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Appendix: Multiplexed Quantum Communication with Surface and Hypergraph
Product Code

I. INTRODUCTION

Quantum computation has an advantage in computa-
tional complexity over classical computation [1, 2]; how-
ever, the speed of the basic operations that make up
computation is not as fast as that of classical computers.
Therefore, it is necessary to realize a large-scale quan-
tum computing system to take advantage of the complex-
ity. Modern quantum devices cannot ignore the effects
of various noises in quantum systems, making obtaining
meaningful computational results in large-scale compu-
tation difficult. To address this issue, various quantum
error-correcting codes (QECCs) [3, 4] and fault-tolerant
quantum computation (FTQC) [5, 6] utilizing these codes
have been proposed, and small-scale experimental im-
plementations are already in progress [7–9]. Topological
stabilizer codes such as surface codes [10] are regarded
as one of the most promising candidates for FTQC, not
only because they have a high error threshold but also
because they are regarded as relatively easy to imple-
ment on a two-dimensional quantum processor because
stabilizers are locally defined.

While the number of qubits in quantum processors
has been increasing in recent years, it has become clear
that there are various difficulties in achieving large-scale
quantum computation only by scaling a single processor
for FTQC due to various physical constraints [11, 12].
To address this problem, a method of connecting mul-
tiple quantum processors with a quantum interconnect
or quantum internet has been proposed [13]. It pro-
vides a way to apply a remote gate between processors
or send/receive qubits from other processors. Also, one
can use quantum memory attached to quantum proces-
sors, which can store quantum information even if the
processor does not have a large enough number of qubits
to manipulate all the qubits in the information proces-
sor. Optical systems are regarded as one of the best
candidates for quantum interconnects [14] and also as
quantum memories [15] due to long coherence time [16].

In a quantum computation system with quantum inter-
connects, the quantum processor and the quantum inter-
connect may use different physical systems. In such cases,
two systems may have different types of error sources. To
cope with this, hybrid systems using multiple codes have
been proposed, but they introduce new overheads [17–
19]. On the other hand, several different types of noise
can also be addressed by a single code [20, 21]. In this
work, we consider the use of surface codes and HGP codes
in quantum communications, which are also suitable for
quantum computation.

However, quantum interconnects and quantum mem-
ory will introduce bottlenecks for quantum computation.
Operations for inter-processors tend to be slower than

the ones inside a single processor. Therefore, it is neces-
sary to ease the bottlenecks by reducing the amount of
resources required for interconnects, which is primarily
the number of photons.

Quantum multiplexing [22] has been proposed recently.
It can be used to reduce the resource costs, such as the
number of gates, qubits, and photons associated with
quantum communication [23, 24] using quantum Reed-
Solomon codes [25], which have good performance for loss
error channels. Furthermore, a more generalized method
of reducing the number of gates for implementing multi-
qubit gates using quantum multiplexing has also been
proposed [26]. A single photon has multiple degrees of
freedom (polarization, time-bins, etc.), and some degrees
of freedom (DOF) have multiple components. Quantum
multiplexing is a method of encoding high-dimensional
quantum information into a single photon using these
multiple components of the same DOF or different DOFs.

In this work, we apply quantum multiplexing to the
surface code and hypergraph product codes (HGP),
which can be understood as a generalization of the sur-
face code.

The rest of this paper is organized as follows: We
overview the flow of quantum communication with sur-
face codes in Sec. II. In Sec. III, we review the concept
of quantum multiplexing. We also review the erasure
channel, which is the dominant error source in optical
systems, and how to correct erasure errors in Sec. IV.
We then overview the surface code communication on
the erasure channel and how quantum multiplexing af-
fects its performance in Sec. V. Quantum Multiplexing
introduces correlated errors on multiple qubits encoded
in the same photons. This correlation increases the logi-
cal error rate for the channel. In Sec. VI, we show several
strategies for assigning qubits in the code into photons.
It mitigates the gap in performance caused by the effect
of the correlation of errors. We also briefly introduce
hypergraph product codes and their decoder in Sec. VII
and show assignment strategies for the codes in Sec. VIII.
The comparison of several interleaving methods and dis-
cussions is shown in Sec. IX.

II. MULTIPLEXED QUANTUM
COMMUNICATION ON LOSSY CHANNEL

In this section, we overview the flow of multiplexed
quantum communication which is shown in Fig. 1.

Surface codes, a type of topological stabilizer code,
have an excellent error threshold. Moreover, the stabi-
lizer generators of these codes have both constant weight
and locality. Therefore, they are regarded as relatively
feasible for qubits arranged on two-dimensional chips.
Furthermore, surface codes have excellent methods for
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FIG. 1. Flow of surface code communication using multiplexed photons. In the first step, a quantum state is encoded into
a surface code. Each circle with a number inside is the physical data qubit, and the grey circles without any number are
auxiliary qubits used for stabilizer measurement. Next, in a quantum multiplexing scenario, one assigns each physical qubit
of the codeword to single photons using different assignment strategies, as depicted in the second step. For instance, in this
figure, two components of the time-bin DOF of each photon are used so that each photon can encode two qubits. We call this
encoding multiplexing. There is a degree of freedom in which qubit is assigned to which photon, so it is required to make a
map function. We call this function the interleaving assignment strategy. Here, the colors of the qubits indicate which photon
the qubit is encoded to, which is the result of the assignment strategy. Then, the encoded photons go over a lossy channel.
Here, we assume that we know which photons have been lost during the transmission (erasure channel). If a photon has been
lost, all the qubits in the photon have been lost. Finally, we demultiplex and decode it to a code word of the surface code using
the peeling decoder [27] and a correction method for erasure error shown in Sec. IV.

implementing two-qubit Clifford gates, including defect
braiding [28] and lattice surgery [29] as well as single-
qubit Clifford gates. Because of these promising proper-
ties, surface codes are regarded as one of the most promis-
ing candidate codes for fault-tolerant quantum computa-
tion.

For the first step of the communication, we prepare an
encoded quantum state in surface codes. Then, as the
second step, the sender freely assigns each data qubit to
a photon, which can affect the logical error rate of the
communication. For the third step, the codeword then
goes through an optical channel, which has a loss error.
Note that when a photon is lost, all the qubits encoded in
that photon are lost. This can lead to strong correlations
in the errors of those qubits in the same photon. In the
fourth step, the codeword is received and mapped onto
the 2D lattice for the surface codes. The photon losses are
mapped into multiple qubit erasure errors by exploiting
stabilizer measurement, which is described in Sec. IV. As
the final step, the decoder estimates the errors based on
the syndrome of the stabilizer measurement and corrects
them.

III. QUANTUM MULTIPLEXING

This section outlines the methods and benefits of intro-
ducing quantum multiplexing. In photon-based quantum
information processing, photons’ various degrees of free-
dom (DOF) can be utilized to encode qubits. Polariza-
tions [30], time-bins [31–33], paths (e.g., dual rail) [34],
orbital angular momentum[35], and frequencies [36, 37]
are typical examples of DOF in a single photon which
various experiments and theoretical works have used. Ex-

ploring multi-level time-bins makes it especially easy to
encode high-dimensional quantum information in a single
photon. For instance, Fig. 2 shows a method for encoding
higher dimensional information (23-dimension) in a time-
bin photon. This circuit takes a photon whose polariza-
tion is encoded with quantum information as input. This
input photon has one qubit of information. After pass-
ing through this circuit, the photon has both polariza-
tion and time-bin degrees of freedom. The polarization
encodes a two-dimensional Hilbert space, and the time-
bin encodes a four-dimensional one. Therefore, we can
say that this photon exploits an 8-dimensional Hilbert
space and so encodes 3 qubits of information. Signifi-
cantly, encoding high-level time-bin states only requires
linear optical elements and classical optical switches.

Quantum multiplexing [22] is a method to encode
higher dimensional quantum information in a single pho-
ton using these multiple degrees of freedom. In this work,
we consider encoding 2m-dimensional quantum informa-
tion using m DOFs per photon where m is an integer,
and all the DOFs are two-level as shown in Fig. 3.

In this work, we consider a two-level encoding for
transmitting quantum information over lossy optical
channels, with logical information encoded into one or
more surface codes and m physical qubits of these sur-
face codes encoded into each transmitted photon (with
m = 1 corresponding to no multiplexing).

While quantum multiplexing allows for efficient com-
munication, it also changes the error model. In a commu-
nication channel over a photon-loss channel, the loss of
a photon causes the simultaneous loss of multiple qubits
encoded in that photon.
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FIG. 2. An example of an optical circuit encoding 23-
dimensional quantum information into a single photon. The
elements on the circuit are the polarized beam splitter (PBS),
the PBS on the diagonal basis (the one with a circle inside the
box), the delay line, and the optical switch (OS). This circuit
is feasible because it only requires optical linear elements.

FIG. 3. Quantum multiplexing enables encoding multiple qu-
dits by exploiting multiple components of DOFs in a single
photon. Here, we use m time-bin qubits in each single pho-
ton. We use colors to indicate the photon to which a qubit
belongs.

IV. ERASURE CHANNEL AND CORRECTION

Let us now describe the erasure channel and decoding,
which are the last three steps of Fig.1. Erasure error is
the dominant source of errors in optical systems [38, 39]
because photons can be lost due to imperfect photon gen-
eration, detection, as well as scattering and absorption
in optical components. Moreover, theoretical [40–43] and
experimental [44–48] works have been proposed on meth-
ods to map errors from different sources to erasure errors
in multiple physical systems recently.

The erasure channel is given by

ρ → (1 − ε)ρ + ε |e⟩ ⟨e| (1)

where |e⟩ indicates the erased state, which is not in the
original Hilbert space of the system, and ε is the prob-
ability of erasure. Since the erased state is not in the
original Hilbert space, detecting such errors without de-
stroying the quantum states is possible.

Several methods have been proposed to detect and cor-
rect erasure errors with QECCs [49]. It is possible to
correct erasure by deforming the original logical opera-
tor [50, 51], as well as by converting erasure errors into
random Pauli errors by replacing the lost qubits with
mixed states:

I
2

= 1
4

(ρ + XρX + Y ρY + ZρZ). (2)

After replacing the qubits, one can perform stabilizer
measurements as usual for surface codes. Then, the era-
sure is converted into random Pauli errors with the exact

probabilities (1/4) for {I, X, Y, Z}. This random Pauli
can also be regarded as independent X and Z errors with
a probability of 1/2. This allows for the decoding of an
erasure error. The (surface code) peeling decoder [27]
is a linear-complexity erasure decoder using this proce-
dure which has been proposed as a maximum-likelihood
decoder for erasure errors in the surface code.

Peeling decoder refers to a linear-complexity era-
sure decoding algorithm originally designed for classi-
cal codes [52]. This algorithm corrects an erasure error
by examining the subgraph of the Tanner graph corre-
sponding to erased bits, whereby degree-1 check nodes
in this subgraph give perfect information about adjacent
bit nodes. Because this algorithm only uses the Tanner
graph, it can be directly applied to CSS codes as well.
The surface code peeling decoder refers to a generaliza-
tion of this algorithm adapted to surface codes [27], which
uses additional information about stabilizers. The sur-
face code peeling decoder first identifies a spanning tree
in the erasure-induced subgraph of the Tanner graph, and
then performs peeling on this subgraph. This modified
algorithm is a linear-complexity, maximum-likelihood de-
coder for the surface code. We use the surface code peel-
ing decoder in our numerical simulations.

V. THE SURFACE CODE USED FOR
QUANTUM COMMUNICATION OVER

ERASURE CHANNEL

We propose three scenarios (A, B, and C) for ef-
ficient quantum communication and quantum memory
with surface codes exploiting quantum multiplexing and
discuss their performance. Table. I shows the code pa-
rameters and the number of codes, data qubits, and pho-
tons for these scenarios. We compare these scenarios to
the case without multiplexing, which sends codewords of
a [[2d2, 1, d]] surface code with 2d2 qubits and 2d2 pho-
tons.

A. Sending m different codewords

The first scenario transmits multiple codewords. One
can send m codewords using the same number of photons
as the case without multiplexing. The effect of multiplex-
ing on the logical error rate can be ignored by assign-
ing the i-th qubit in each code word to the i-th photon.
This introduces a correlation of errors between m distinct
codes, but no set of qubits in the same code gets a cor-
relation of errors. This does not affect the performance
of the individual codes.

B. Sending
√

m ×
√

m bigger codewords

The second scenario sends a single code with a larger
size, thus achieving a greater code distance. It intro-
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Code parameters [[2d2, 2, d]] [[2d2, 2, d]] [[2md2, 2,
√

md]] [[2d2, 2, d]]
Number of Codes 1 m 1 1
Number of Data Qubits 2d2 2md2 2md2 2d2

Number of Photons 2d2 2d2 2d2 ⌊2d2/m⌋

Logical Error Rate - Same as without
quantum multiplexing Affected by correlation Affected by correlation

TABLE I. Comparison of the surface code communication without multiplexing and three scenarios with multiplexing. Pa-
rameters that are improved by multiplexing are in red fonts. The case without multiplexing requires one qubit per photon.
(A) The first scenario is only applicable when sending multiple codewords. This enables one to send more codewords with the
same number of photons, drastically improving the channel’s throughput. (B) The second scenario sends the same number of
codewords with the bigger code, improving the error tolerance. (C) The third scenario sends the same codeword with fewer
photons, drastically improving the channel’s throughput. The number of photons required in scenario (C) is ⌊2d2/m⌋, where
⌊x⌋ is the floor function of x.

duces correlations in errors between the qubits in the
code, which may degrade the performance. However, if
m is sufficiently small relative to the code size, the bene-
fit gained by increasing the code size is more significant.
Fig. 4 shows a Monte Carlo simulation of the logical error
rate for this scenario. Each data point in the simulation
is obtained from 105 shots, and the error bar is given
by the Agresti–Coull interval [53]. The logical error rate
significantly decreases as the code size and m increase.
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FIG. 4. Performance of [[2d2, 2, d]] toric codes in scenario (B).
Logical Z error rate versus photon loss probability for the
surface code communication with about 100 photons. Each
curve shows the case for toric codes with different code sizes.
By increasing both the number of qubits per photon m and
the code distance d, the logical error rate can be reduced.

C. Sending original code words with fewer photons

The third scenario sends a single codeword with a
smaller number of photons. The code parameters are
the same as the case without multiplexing. It has no re-
striction on the number of codewords and can improve
the efficiency of surface code communication in general.
However, since this method introduces correlation to the
errors of multiple qubits in a single code word, it is nec-
essary to be aware of that correlation can increase the
error rate. Fig. 5 shows this scenario’s logical error rate
versus the photon loss probability for different choices of
m. It shows that as m increases, the logical error rate
decreases.

While the benefits of each scenario are obvious, the
impact on the logical error rate when multiple qubits are
encoded to the same photon is non-trivial. We evaluate
this in the next section.

VI. ASSIGNMENT STRATEGIES FOR
SURFACE CODES

In this section, we describe five strategies for assigning
qubits that take advantage of multiplexing and evaluate
their impact on performance. We assume surface code
communication scenario (C), where we send the origi-
nal code with ⌊2d2/m⌋ photons. In such a multiplexed
system, each multiplexed photon is assumed to have the
same number of qubits m.

Strategy i and ii: pair with minimum and max-
imum distance The distance between qubits within
the same photon is crucial when considering the im-
pact of correlated errors. To begin, we compare two
strategies for the m = 2 case that minimize and max-
imize this distance. One can minimize the distance by
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FIG. 5. Scenario (C) multiplexing performance for 10 × 10
toric code. Logical Z error rate versus photon loss probabil-
ity for the [[200, 2, 10]] surface code communication with mul-
tiplexing using different values of m (the number of qubits per
photon). The assignment of qubits to photons is uniformly
random. Increasing m allows code words to be transmitted
with fewer photons, but the logical error rate increases be-
cause multiple qubits in the same photon have strongly cor-
related errors.

grouping together two qubits that share a stabilizer us-
ing an L shape. Also, the distance can be maximized
by grouping together two qubits with the position (i, j)
and (i + d/2 − 1 mod d, j + d/2 − 1 mod d) where i, j < d.
These qubits are as far apart as possible in the stan-
dard d × d periodic lattice used to represent the toric
code. Fig. 6 shows an example of the arrangements on
the 2 × 2 lattice when these two strategies are employed.
These strategies are deterministic and can be realized
with simple calculations. Fig. 7 shows the simulated sur-
face code performance using these two methods in brown
and gray. The performance of the distance-maximizing
strategy outperforms the distance-minimizing strategy.

Logical errors in the toric codes correspond to errors
covering a longitude or meridian curve on the torus (a
vertical or horizontal closed loop in the periodic lattice).
When decoding erasure errors, logical errors are likely
to occur when the qubit-support of one of these vertical
or horizontal loops is entirely erased. When adjacent
qubits in the lattice are erased, as in the case with the
distance-minimizing photon assignment strategy, clusters
of errors are more likely to cover such loops in the torus.
Hence, it is not surprising that the distance-maximizing
strategy outperforms the distance-minimizing strategy in
our numerical simulations.

with close distances.
Errors with strong correlation are similar to burst er-

rors in classical communication in the sense that the er-
rors have spatial locality. This locality of errors can be
addressed by classical error-correcting codes using two
methods. The first method treats multiple bits as a sin-
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FIG. 6. Examples showing possible assignments of qubits to
photons. Each numbered circle denotes a qubit, and the color
indicates the photon to which the qubit is assigned. Strategy
i, shown in (a), minimizes the distance between qubits in the
same photon, while strategy ii in (b) maximizes this distance.
Note that this code is defined on the torus represented as a
lattice with periodic boundary conditions.

gle symbol (an element of a finite field), such as BCH
codes and Reed-Solomon codes [54]. Thanks to the high
ability to correct burst errors, Reed-Solomon codes are
used in many classical systems, including QR codes [55],
CDs, and satellite communications. Another method is
the interleaving [56] technique. Interleaving eliminates
locality by permuting the rows and columns of the code’s
generator matrix. There is also a method to apply inter-
leaving to QECCs[57]. Inspired by interleaving, we have
constructed two more strategies for quantum multiplex-
ing.

Strategy iii: random The third strategy is a method
in which qubits are uniform-randomly selected and as-
signed to photons. The same effect as interleaving can
be expected.

Strategy iv: random + threshold The fourth
strategy is a modified version of the third strategy. The
pseudo-code is shown below in Algorithm 1. The flow
of the algorithm is as follows: A “threshold” T is set as
2/d−1, which is the maximal distance between two qubits
in the [[2d2, 1, d]] toric codes. This value will be used
to check that the set of qubits in the same photon has
enough distance between each other. Then, it randomly
assigns qubits for each photon while respecting the dis-
tance threshold. It randomly selects the first qubit of the
photon, then it randomly selects a qubit again and takes
it as a candidate to assign it to this photon. When the
distance between the candidate qubit and the qubit(s)
already in the photon is greater than the threshold, the
qubit is accepted, and when it is less, it is rejected. This
procedure is repeated until the photon has been fulfilled.
If no qubit satisfies the threshold, the threshold value is
lowered by one. By repeating this process, we can assign
all the qubits to photons. This strategy is designed to
have randomness and to increase the distance between
qubits in the same photon.

This algorithm requires calculating the distance be-
tween two qubits, which is easy for the surface codes
because the taxicab metric defines the distance (Man-
hattan distance). Note that this and other assignment
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strategies can still be applied even if the number m of
qubits per photon is not a divisor of the total number
of qubits. In this case, we allow for a final “remainder”
photon containing fewer than m qubits.

Algorithm 1: Strategy iv. random + threshold
Input: P = {pi} (the set of photons) where initially

pi = {∅} (the set of qubits to be encoded in
the ith photon), Q = {qj} (the list of all
physical qubits in the code), and the number
m of qubits in a single photon.

Output: P = {pi} (set of set of qubits in ith photon).
1 Initialize the threshold with T := d

2 − 1;
2 for photon pi ∈ P do
3 Pick a qubit qj ∈ Q randomly.;
4 Move qj from Q to pi;
5 while |pi| < m do
6 while |pi| < m and Q ̸= ∅ do
7 Pick a candidate qubit qk ∈ Q randomly;
8 if qk has minimum distance greater than T

from all the qubits in pi then
9 Move qk from Q to pi;

10 else
11 Move qk from Q to a waiting list Q′;
12 Move all qubits in Q′ to Q;
13 Update T := T − 1;
14 Return P ;

We compared the logical error rates of the four strate-
gies discussed above. Fig. 7 shows the comparison of all
the assignment strategies suitable for m = 2 case, and
Fig. 9 shows the case for m = 4. Our numerical re-
sults showed that the strategy combining randomness +
threshold outperformed the other strategies. Maximizing
the distance between qubits while also introducing ran-
domness gives the largest boost in performance against
logical errors. Note that no assignment strategy does
better than the case with m = 1 where no multiplexing
is used.

Strategy v: stabilizer Error correction on the sur-
face code is always considered up to multiplication by
a stabilizer. This suggests that it may be useful to de-
fine photons using the qubit-support of a stabilizer check.
Since the stabilizer generators for the surface code cor-
respond to squares and crosses in the lattice, they have
weight 4. On a d×d lattice, if d is divisible by 4, it will al-
ways be possible to partition the lattice into squares and
crosses. In this perspective, the L-shapes used in the
minimum-distance strategy can be thought of as “half-
stabilizers” in the lattice. Since the usual strategy for
converting an erasure problem into an error correction
problem involves assigning erased qubits Pauli errors ran-
domly, this stabilizer assignment strategy uses a mix of Z
and X-type stabilizer generators from both squares and
crosses. In this case, qubits are equally partitioned into
the two types of stabilizers by tiling the lattice with al-
ternating diagonal lines of squares and crosses. Examples
of these photon assignment strategies on a 4 × 4 lattice
are shown in Fig 8.
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FIG. 7. Comparison of multiplexing photon-assignment
strategies for [[200, 2, 10]] toric code. Logical Z error rate ver-
sus photon loss probability for the different assignment strate-
gies. The black curve shows the case without multiplexing,
and the others show the case for m = 2 with different inter-
leaving assignment strategies. The gray/brown curve shows
the case for m = 2 with the assignment strategy for min-
imizing (strategy i) / maximizing (strategy ii) the distance
between a pair of qubits in the same photon. The orange
curve shows the case for uniformly random (strategy iii), and
the blue line shows strategy iv, based on the algorithm 1.

Z-stabilizer X-stabilizer Mixed

FIG. 8. Examples of the stabilizer-based photon assignment
strategy for a surface code on a 4 × 4 lattice. Edges repre-
senting qubits in the lattice are marked with colored nodes
indicating photon assignment. In this lattice picture, the
qubit support of Z-type stabilizer generators corresponds to
squares, and of X-type stabilizer generators corresponds to
crosses. Each photon in the stabilizer assignment strategy
represents the qubit-support of one of these stabilizers. The
three images above show examples of photon assignments us-
ing only disjoint Z-stabilizer generators (squares), only dis-
joint X-stabilizer generators (crosses), or a combination of
the two.

Restricting to one type of stabilizer creates a bias in
the correction of errors matching the stabilizer type, as
shown in Fig.9. Strategy v can be generalized to any
stabilizer codes, and this result implies that some biased
codes may be useful in multiplexed quantum communi-
cation systems.

We also analyzed the performance for different code
sizes of the surface code communication as shown in
Fig. 10. This indicates that the correlation affects a lot
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FIG. 9. Comparison of photon-assignment strategies for
[[288, 2, 12]] toric code. Z stabilizer-based assignment with
light blue curve outperformed X stabilizer-based assignment
with light orange curve for logical Z error. The mixed
stabilizer-based assignment strategy performs between X and
Z. Random (orange, strategy iii) and random + threshold
(blue, strategy iv) outperform other assignment strategies for
low error rate areas.

in small-size code, but one can suppress such a gap by
increasing the size of the code.
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FIG. 10. Comparison of the logical error rates for the case
with quantum multiplexing and without it. The Logical error
rates of the surface code communication with d = 8, 12, 16
and 20 versus the photon loss probability. As d increases, the
gap between the non-multiplexed (m = 1) and multiplexed
(m = 4) cases decreases.

VII. HGP CODES AND THE PRUNED
PEELING + VH DECODER

In addition to our study of the surface code, we also
consider the use of multiplexing with hypergraph prod-
uct (HGP) codes [58]. HGP codes are of particular in-
terest because they have asymptotically finite rates and
minimum distance proportional to the square root of the
classical code lengths. They are also considered practical
candidates for FTQC codes.

HGP codes are a special class of CSS code defined us-
ing any two classical codes. Given classical parity check
matrices H1 and H2 with sizes r1 × n1 and r2 × n2, re-
spectively, we may define the matrices HX and HZ of a
CSS code via the formulas

HX = (H1 ⊗ In2 |Ir1 ⊗ HT
2 ) (3)

HZ = (In1 ⊗ H2|HT
1 ⊗ Ir2). (4)

These matrices satisfy the condition HXHT
Z = 0

by construction and hence define a valid CSS code
HGP(H1, H2). When H1 and H2 are low-density par-
ity check (LDPC), HX and HZ will also be LDPC. The
sizes of HX and HZ are also determined by the sizes of
the input classical matrices according to the formulas

HX = [r1n2 × (n1n2 + r1r2)] (5)
HZ = [r2n1 × (n1n2 + r1r2)]. (6)

These both simplify to rn × (n2 + r2) in the special case
where r1 = r2 = r and n1 = n2 = n.

HGP codes have a geometrically rich Tanner graph
structure which can be visualized as the graph product
of the Tanner graphs for two classical codes as shown in
Fig. 11. The subgraph corresponding to each row and
column in this Tanner graph block structure can be un-
derstood as the classical Tanner graph for one of the clas-
sical codes used in the construction. Qubits in this Tan-
ner graph are represented by the nodes in the n1 ×n2 and
r1 × r2 blocks; X- and Z-type stabilizer generators are
represented by the nodes in the r1×n2 and n1×r2 blocks,
respectively. Hence, the number of qubits and stabilizer
checks are controlled by the size of the input classical
matrices. Choosing matrices of the same size ensures an
equal number of stabilizer checks in the HGP code, but
a biased code can also be constructed by using matrices
of different sizes. Furthermore, using H2 = HT

1 yields
a symmetric construction for HX and HZ and guaran-
tees that the two blocks of qubits in this product graph
picture are squares of equal size. In our numerical simu-
lations, we consider two types of HGP code construction:
an equal block case coming from the symmetric construc-
tion, and a non-equal block case using r1 = r2 = r and
n1 = n2 = n = 2r.

Surface codes may also be recovered as a special case
of hypergraph product code. Using parity check matrices
H1 and H2 for a classical repetition code, HGP(H1, H2)
is exactly the toric code. Hence, adapting the multi-
plexing strategies discussed in Sec. V to this more gen-
eral class of codes is a natural next question. However,
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FIG. 11. Example of the Tanner graph for a simple HGP code
HGP(H1, H2) constructed from two classical codes with par-
ity check matrices H1 and H2. This is the graph product of
two classical Tanner graphs, and the subgraph corresponding
to each row and column in the product is a copy of one of
these classical Tanner graphs. This product structure can be
partioned into four quadrants, each representing a different
structural component of the HGP code. The nodes in the
upper-left and lower-right blocks denote qubits. The nodes
in the upper-right block denote Z-stabilizer generators; these
correspond to the rows of HZ . Similarly, the nodes in the
lower-left block denote X-stabilizer generators; these corre-
spond to the rows of HX .

the linear-time maximum-likelihood peeling decoder [27]
used in our previous simulations is only defined for the
special case of the surface code. Instead, we consider a
closely related generalization of the peeling decoder de-
signed for HGP codes, which has quadratic complexity
and close to maximum-likelihood performance at low era-
sure rate [59].

The pruned peeling + VH decoder is a modified version
of the standard classical peeling decoder based on analy-
sis and correction of two common types of stopping sets,
which are patterns of erased qubits which cannot be cor-
rected by simple peeling. Stabilizer stopping sets occur
when the erasure contains the qubit-support of an X- or
Z-type stabilizer. Such a stopping set can be modified
by fixing a value at random for one qubit of the stabilizer
and removing this qubit from the erasure, possibly allow-
ing the standard peeling algorithm to become unstuck.
This technique is valid because there exists a solution on
the remaining erased qubits in the stabilizer-support such
that the combined contribution to the error is at most a
stabilizer. This procedure, known as pruned peeling, is

applicable to any CSS code, not just HGP codes.
Classical stopping sets are another common type of

peeling decoder stopping set unique to HGP codes. These
refer to patterns of erased qubits supported entirely on
a single row or column in the HGP Tanner graph block
structure of Fig. 11. In the simplest case, these can also
be understood as peeling decoder stopping sets for the
classical code obtained by restricting to this row or col-
umn in the Tanner graph, although this need not always
be true. Any HGP peeling decoder stopping set can be
decomposed into a union of vertical and horizontal clas-
sical stopping sets. The VH decoder algorithm functions
by ordering and efficiently solving each of these classi-
cal stopping sets in sequence, although this is not always
possible for certain erasure configurations.

The combined decoder (peeling + pruned peeling +
VH) is not a maximum likelihood decoder. Patterns of
erased qubits still exist where the decoder becomes stuck
in a stopping set, leading to a decoder failure. These are
distinct from logical errors, which can only be identified
in numerical simulations where the decoding algorithm
successfully terminates. The maximum-likelihood de-
coder always terminates, and thus, logical errors are the
only source of failures. Hence, in our numerical analysis,
we make a distinction between decoder failures and non-
decoder-failure logical errors, as illustrated in Fig. 12.
However, the pruned peeling + VH decoder is still prac-
tically useful for our numerical simulations since decoder
failures are infrequent at low erasure rates.

Note that peeling + pruned peeling is theoretically a
maximum likelihood decoder in the special case of the
surface code. This is equivalent to the spanning-tree-
based ML decoder for the surface code [27]. However,
our implementation of pruned peeling is not perfect since
it cannot identify the support of an arbitrary erased sta-
bilizer. For the combined decoder, the simplest classical
stopping sets correspond to a fully erased row or col-
umn in the HGP Tanner graph. These are exactly the
stopping sets of a repetition code, coinciding with logical
errors for the surface code. In general, there do not exist
erasure patterns giving a VH decoder failure which do
not also cover a logical error.

Figure 13 shows the performance of the combined de-
coder applied to the 10 × 10 surface code. Comparing
this to Figure 5, which uses the ML decoder for the same
surface code, we see a noticeable degradation in perfor-
mance. This gap is explained by the existence of decoder
failures in the combinded case which do not exist for the
ML decoder. Furthermore, the failure rate of the com-
bined decoder converges to 1 as the erasure rate goes to
1, in contrast with the convergence to 0.75 for the ML
decoder. This is because the erasure pattern is always
a VH decoder stopping set when all qubits are erased,
guaranteeing a decoder failure. Since there are no stop-
ping sets in the ML case, however, a 100% erasure rate
is equivalent to generating a uniformly random physical
Pauli error on the code. We see a convergence to 0.75
logical error rate because this error is identity 25% of the
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time.
Failure rate in the literature usually refers to the log-

ical error rate, which is the only source of errors for a
maximum-likelihood decoder. Logical errors for the era-
sure channel can only occur when the erasure covers a
logical code word. However, there may exist erasure pat-
terns covering a logical error which result in a decoder
failure, and hence are not properly identified as logical
errors. This distinction is stated visually by the Venn
diagram of Fig. 12. The failure rate computed in our
numerical simulations for the combined decoder is the
cummulative effect of these two possibilities. We label
the vertical axis as such in Fig. 13 and later simulations
to make a clear distinction between these two ways of
failing. Note that failures at low erasure rates are almost
exclusively due to logical errors, and so this distinction
can be regarded as negligible in the practical regime.

DF LE

FIG. 12. Venn diagram distinguishing between the types of
failures possible using the pruned peeling + VH decoder. A
decoding failure (DF) occurs when the decoder becomes stuck
in a stopping set it cannot correct. A logical error (LE) occurs
when the decoder successfully terminates with a predicted
error, but the actual and predicted errors combine to give a
logical code word.

VIII. ASSIGNMENT STRATEGY FOR HGP
CODES

Quantum multiplexing can also be utilized in quan-
tum communication using HGP codes. In this section,
we analyze the performance of HGP code communica-
tion in scenario (C). The scenarios previously proposed
in Sec. V are also valid for HGP codes, but unlike the spe-
cial case of the surface code, the distance between any two
qubits in a generic HGP code is not easily inferred from
a grid. Hence, we do not consider the previously intro-
duced strategies which use distance. We also introduce
several new strategies for HGP codes based on stopping
sets for the pruned peeling + VH decoder. These are
summarized in Table II.

Strategy i: random The simplest assignment strat-
egy is based on assigning qubits to photons at random.

Strategy ii: stabilizer The stabilizer strategy was
initially introduced in Sec. V for the surface code, but it
can be applied to CSS codes more generally. The erased
qubit-support of a stabilizer will be a peeling decoder
stopping set, but these are precisely the stopping sets
which the pruned peeling algorithm attempts to correct.
Hence, this strategy is motivated by the idea that losing
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FIG. 13. Comparison of the [[200, 2, 10]] toric code using the
uniformly random assignment strategy with different num-
bers of qubits in a single photon, m. In general, increasing
the multiplexing number m also increases the failure rate.
These simulations use the non-maximum-likelihood combined
decoder (peeling + pruned peeling + VH). The vertical axis
denotes the cumulative effect of logical errors and decoder
failures. Since the decoder is not ML, the curves intersect at
a threshold of approximately 0.43 ± 0.01, which is below the
value 0.5 for the surface code peeling decoder in Fig. 5 used in
Sec. VI.

a photon corresponding to a single stabilizer individually
induces a correctable erasure pattern.

In the special case of the surface code with a d × d
lattice, where d is divisible by 4, it is always possible
to partition the qubits into a combination of disjoint X-
and Z-type stabilizer generators as seen in Fig. 8, each
of which is supported on 4 qubits. For a more general
HGP code, we may attempt a similar assignment strategy
by identifying the qubit-support of the stabilizer genera-
tors from the rows of HX and HZ . However, we cannot
guarantee that a partition of qubits into disjoint stabiliz-
ers is possible without placing constraints on the number
of qubits and the row and column weights in the par-
ity check matrices. Instead, we adopt an imperfect but
simpler strategy for generic HGP codes, which does not
require any additional assumptions about the code ex-
cept that HX and HZ are LDPC. This strategy can be
used with stabilizers coming only from HX , only from
HZ , or a combination of both, provided that these ma-
trices have the same row weight. Note that restricting
to a single type of stabilizer creates a bias in the error
correction, as was commented in the surface code case.

In the HGP stabilizer assignment strategy, we search
for a partition of the qubits into disjoint stabilizers. To
do this, we begin by choosing a row at random from
HX or HZ ; the nonzero entries in this row represent the
qubit-support of a single stabilizer. We then eliminate
any overlapping stabilizers by deleting the rows from the
matrices that share columns with nonzero entries with
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Strategy ii. Stabilizer Strategy iii. Sudoku Strategy iv. Row-Column Strategy v. Diagonal

TABLE II. Examples of four different photon assignment strategies for the simple HGP code shown in Fig. 11. (ii.) Each
photon in the stabilizer strategy is the qubit-support of an X or Z-type stabilizer generator, identified as a row of HX or HZ .
The number of qubits per photon is a fraction or multiple of the weight of the corresponding row. (iii.) In the sudoku strategy,
each qubit of a given photon is contained in a different row or column of the HGP Tanner graph. (iv.) Using the row-column
strategy, each qubit of a given photon is contained in the same row or column of the HGP Tanner graph. (v.) Photons from
the diagonal strategy contain qubits from the same diagonal of the HGP Tanner graph, allowing diagonal lines to wrap around.
For strategies iii., iv., and v., the number of qubits per photon is a fraction or multiple of the shortest side length in the block
structure.

the previously selected row. Then we repeat this strat-
egy until either all qubits have been divided into dis-
joint stabilizers or we exhaust the remaining rows that
do not overlap with our previous selections. The result
is that as many qubits as possible have been divided into
non-overlapping sets corresponding to the qubit-support
of disjoint stabilizers, possibly with some remaining un-
grouped qubits.

Finally, the qubits are assigned to photons based on
the disjoint sets identified in the previous step. Ordering
the qubits by their stabilizer assignments, we then re-
distribute these into photons. The remaining ungrouped
qubits are assigned after exhausting the chosen stabiliz-
ers. When the multiplexing number matches the sta-
bilizer weight (that is, the row weight of HX or HZ),
each photon ideally matches a stabilizer, possibly with
some remainder photons at the end for the ungrouped
qubits. When the multiplexing number matches a frac-
tion or multiple of the stabilizer weight, then the pho-
tons represent a partial stabilizer or multiple stabilizers,
respectively. Allowing for the leftover qubits at the end
ensures that this strategy can be applied with various
multiplexing numbers, even when a perfect partition of
qubits into stabilizers is not found. Because stabilizers
are selected at random, this assignment strategy can be
understood as a combination of the random and stabilizer
strategies introduced before.

Strategy iii: sudoku The VH decoder is designed
to address classical stopping sets for the peeling decoder,
but there exist combinations of classical stopping sets
that cannot be solved using this technique and result in
a decoder failure. However, we may reduce the likelihood
of a decoder failure by reducing the number of classical
stopping sets in general. Classical stopping sets are sup-
ported on a single row or column of the HGP code Tanner
graph. Thus, we propose an assignment strategy based

on choosing qubits in the same photon from different rows
and columns. We name this the sudoku strategy due to
its resemblance to the popular game. The strategy is
outlined in Algorithm 2.

This strategy assumes that the number of qubits per
photon does not exceed the minimum length of a row or
column in the Tanner graph, although this condition may
be relaxed by instead allowing for a minimal number of
qubits from the same row or column to be added to the
same photon. Qubits are assigned to photons at random,
checking that each newly added qubit is not supported on
the same row or column as any qubit already assigned to
a given photon. In the case of a fixed number of photons
where no valid qubit assignments remain, we drop the
condition and default to random assignment.

Strategy iv: row-column Although not a practical
assignment strategy, the case where only qubits from the
same row or column of the HGP code Tanner graph are
assigned to the same photon is of theoretical interest.
This strategy attempts to maximize the number of clas-
sical stopping sets resulting from photon loss and thus
increase the likelihood of a VH decoder failure. Verify-
ing that this assignment strategy performs very poorly
in numerical simulations serves as a proof of concept for
the VH decoder and also justifies the preferred strategies
using qubits from different rows and columns.

Fig. 14 shows the performance of this strategy for a
[[512,8]] HGP code at several multiplexing numbers. Al-
though surprisingly the m = 2 case seems to outperform
the no-multiplexing case, the failure rate otherwise in-
creases as m increases. Failures of the VH decoder are
the result of certain configurations of classical stopping
sets, and hence increasing the latter also increases the
former. In particular, this explains the dramatic jump
between the m = 8 and m = 16 cases. Since the blocks
in this code’s Tanner graph are 16 × 16, each photon in
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Algorithm 2: Strategy iii. sudoku
Input: P = {pi} (the set of photons) where initially

pi = ∅ (the set of qubits to be encoded in the
ith photon), Q = {qj = (j, rj , cj , bj)} (a list of
4-tuples with information about the index,
row, column, and block of each physical qubit
in the HGP code), and the number m of
qubits per photon.

Output: P = {pi} (set of sets of qubits in ith photon).
1 for photon pi ∈ P do
2 Pick a qubit qj ∈ Q randomly;
3 Move qj from Q to pi;
4 while |pi| < m and Q ̸= ∅ do
5 Pick a candidate qubit qk ∈ Q randomly;
6 if qk is in a different row and column (or

block) from each previously selected qj ∈ pi

((rk ̸= rj and ck ̸= cj) or bk ̸= bj) then
7 Move qk from Q to pi;
8 else
9 Move qk from Q to a waiting list Q′;

10 Move all qubits in Q′ back to Q;
11 while |pi| < m do
12 Pick a qubit qk ∈ Q randomly;
13 Move qk from Q to pi;
14 Return P ;

the m = 16 case corresponds to an entire row or column.
Loss of any photon yields a classical stopping set, and
hence VH decoder failures are common. This also con-
firms the significance of designing assignment strategies
to avoid classical stopping sets in our simulations of HGP
codes. In general, we expect the performance of the row-
column strategy to drop significantly as m becomes equal
to or larger than the side length of the block in the HGP
Tanner graph.

Strategy v: diagonal The final assignment strategy
is a modified version of the sudoku strategy. Whereas the
previous strategy assigns qubits at random subject to the
sudoku condition, qubits in the HGP code Tanner graph
may also be grouped diagonally within each block. A
d×d grid can be divided into d non-overlapping diagonal
slices, where we allow slices to wrap around. Since no
two qubits in the same diagonal slice are contained in
the same row or column of the grid, this technique also
guarantees that we avoid classical stopping sets within
a single photon. Photon assignment is thus based on
grouping together the qubits in the same diagonal slice.
Each of the two qubit-squares in the HGP code Tanner
graph is considered separately, but if we require that the
ratio of the squares’ side lengths is a whole number, then
the qubits can be cleanly partitioned into photons of size
matching the side length of the smaller square. HGP
codes with rectangular Tanner graph block sizes call also
use the diagonal strategy, provided that the length of the
diagonal slice does not exceed the length of the shortest
side. If longer slices are permitted in the rectangular case,
then instead a minimal number of qubits in the same row
or column are allowed.
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FIG. 14. Multiplexing decoder performance for a [[512,8]]
equal-block (16 × 16) HGP code obtained from the symmet-
ric construction using r = n = 16 with assignment strategy
(iv) row-column. Increasing the number of qubits per pho-
ton using this strategy rapidly increases the failure rate. At
m = 16, each photon corresponds to an entire row or column
in the HGP Tanner graph, whereby losing even one photon
guarantees a classical stopping set.

Algorithm 3: Strategy v. diagonal
Input: P = {pi} (the set of photons) where initially

pi = ∅ (the set of qubits to be encoded in the
ith photon), Q = {qj} (a list of physical qubits
in the HGP code ordered along the diagonal),
and the number m of qubits per photon.

Output: P = {pi} (set of sets of qubits in ith photon).
1 for photon pi ∈ P do
2 for qubits with indices j ∈ {im, · · · , (i + 1)m} do
3 Move qj from Q to pi

4 return P ;

The implementation of this strategy as described in
Algorithm 3 is simple, provided one precomputes a diag-
onal ordering on the qubits in the HGP Tanner graph.
Referring to the block structure of Fig. 11, the qubits
in a given block are indexed along the non-overlapping
diagonal slices. These slices are allowed to wrap around
the sides of the square, which guarantees that no two
qubits in the same slice are contained in the same row
or column. The qubits in the second block are indexed
sequentially after the first block. In our numerical imple-
mentation, a separate function to compute this ordering
on the qubits in a HGP code is used along with the as-
signment function.

To compare the effectiveness of these strategies, we
have simulated their performance for several codes at
different multiplexing values as shown in Fig. 15 and
Fig. 16. To understand these results, the case with no-
multiplexing (m = 1) is used as the baseline. An as-
signment strategy is considered good if its failure rate is
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FIG. 15. Multiplexing decoder performance for a [[320,82]]
non-equal block (16×16 and 8×8) HGP code at fixed m = 8.
In this example, strategy (v) diagonal outperforms all other
strategies, including the no-multiplexing case.

not significantly worse than the m = 1 case. Interest-
ingly, our numerical simulations consistently show that
the performance of some strategies (random, sudoku, and
diagonal) is basically equivalent to or even exceeds the
m = 1 case, even at high multiplexing values. However,
the row-col and stabilizer strategies are never seen to be
effective in our results.

Fig. 15 shows an example of a code where the diag-
onal strategy consistently outperforms all other strate-
gies, even the no-multiplexing case and even at low era-
sure rates. This result is significant because even though
multiplexing reduces the number of required physical re-
sources, it is possible to improve the decoding perfor-
mance while doing so. In fact, an analysis of these results
reveals that the diagonal strategy yields fewer logical er-
rors than the no-multiplexing case at the same physical
erasure rate. This appears to be a feature of the logical
code words in the randomly generated code used in this
simulation, even though the strategy was not designed
with this in mind. This also explains the gap between
the sudoku and diagonal strategies, both of which have
similar amounts of decoder failures but differ with re-
spect to logical errors. What these results show is that
strategies designed to avoid decoder failures have compa-
rable performance to no-multiplexing, and in some cases
are capable of exceeding.

Although not identical, we see similarly good numeri-
cal results in the simulations of Fig. 16. The random,
sudoku, and diagonal strategies have nearly identical
performance to the no-multiplexing case regardless of
the chosen multiplexing number. (Simulations include
m ∈ {2, 4, 8, 16}, although only plots for m = 4 and
m = 16 are shown.) Furthermore, these results hold
consistently at a low erasure rate, which is the regime
of practical interest. This is significant because it im-

plies there is no loss in performance when multiplexing,
even though fewer physical resources are required, pro-
vided the assignment strategy is adapted to the decoder.
If a ML decoder were used (e.g. Gaussian elmination
rather than peeling + pruned peeling + VH), a gap is
expected between the multiplexing and no-multiplexing
cases. However, given that the combined decoder is a
faster, more efficient alternative to a true ML decoder
for HGP codes, these results are very promising.

IX. CONCLUSION AND DISCUSSION

We proposed efficient error-corrected quantum infor-
mation processing scenarios for quantum memory stor-
age and communication with quantum multiplexing over
an erasure channel. We have shown that Quantum mul-
tiplexing can improve throughput or resilience to errors,
easing the bottleneck in quantum systems. This work
can be adapted to surface code quantum communication
with quantum interconnects, quantum repeaters [60], and
multimode quantum memory.

For multiplexed quantum communication, we have
found that if multiple qubits in a single code word are
encoded into the same photon, a correlation of errors
in those qubits will be introduced. The simulation re-
sults show that it leads to an increase in the logical
error rate. We showed that this performance gap can
be significantly mitigated by introducing a code-aware
(or decoder-aware) strategy to assign qubits to photons,
which exploits code structure. In particular for the sur-
face codes, randomness and also distance maximization
are important factors for achieving this. For HGP codes
with the VH decoder, minimizing decoder failures was
found to be the most important factor. These techniques
can also be exploited to benefit other families of codes
and decoders. It is also possible to deal with the gap by
increasing the code size. We have also shown that it is
possible to introduce biased error by using a stabilizer-
based assignment strategy. In the special case of the
diagonal strategy for the HGP code of Fig. 15, we see
that the photon-correlated errors offer an improvement
over the no-multiplexing case. In this example, the im-
provement can be explained by the fact that the diagonal
strategy reduces logical errors in addition to decoder fail-
ures. Furthermore, this shows the existence of strategies
that improve over no-multiplexing, despite the fact that
fewer resources are used.

Although we propose several promising candidates, the
optimal interleaving strategy is still unknown for both
surface codes and HGP codes. Furthermore, in the actual
communication with quantum multiplexing, various er-
rors may occur when converting from qubits in the quan-
tum processor to photons, measuring stabilizers, and sub-
stituting erased qubits with mixed states. How to deal
with these errors is a practically important next question.

It may be practical to use the assignment information
for decoding in cases where we do not know the positions
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FIG. 16. Comparisons of multiplexing decoder performance for a [[512,8]] equal-block (16 × 16) HGP code obtained from the
symmetric construction with r = n = 16 using various assignment strategies for m = 4 and m = 16. In both cases, the random,
sudoku, and diagonal strategies are seen to be effectively equivalent to the no-multiplexing case, even at low erasure rates.

of errors (e.g., unitary error).
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Abstract. We propose an adiabatic time evolution (ATE) method for obtaining the ground state of
a quantum many-electron system on a quantum circuit based on first quantization. It consists of only
unitary operations representing real-time evolution, which can be implemented efficiently in the first-
quantized formalism. We also provide a way to prepare an antisymmetrized and non-degenerate initial
ground state that is suitable as an input to an ATE circuit. In addition, by considering a first-quantized
Hamiltonian for quantum mechanical electron system and classical nuclear system, we design a quantum
circuit for optimal structure search based on ATE.

Keywords: state preparation, first quantization, quantum chemistry

1 Introduction

Efficient calculation for the ground state of a given
Hamiltonian is of crucial importance in a wide range
of fields. This is because solving practically interesting
problems can often be paraphrased as finding the ground
state of a properly defined Hamiltonian. To this end,
several schemes have been proposed realizing non-unitary
operations to the system of interest on quantum circuits,
such as imaginary-time evolution (ITE) [1, 2, 3, 4, 5].
On the other hand, there are widely known methods for
ground-state calculation called adiabatic quantum com-
putation (AQC) or quantum annealing (QA) [6, 7, 8],
and these have attracted attention in the field of com-
binatorial optimization [9, 10] as well as quantum chem-
istry [11, 12, 13]. As examples of the application of AQC
to quantum chemistry, some schemes utilizing adiabatic
real-time evolution (RTE) for ground-state preparation
have been proposed [14, 15, 16, 17, 18], all of which are
based on second quantization. Kassal et al. [19] actually
demonstrated that quantum computers can simulate the
RTE within the first-quantized formalism in polynomial
time while the computational cost using classical com-
puters increases exponentially with system size. More-
over, the advantage of employing first quantization over
second quantization is discussed in Ref. [20, 2, 3]. Specif-
ically, the operation number per RTE step is evaluated
as O(n2epoly(logne)) for the first quantization while it is
O(n4e) for the second quantization due to the two-electron
integrals in the Hamiltonian [21]. In this study, we de-
scribe a method to obtain the ground state of a many-
electron system and the optimal ionic configuration us-
ing first-quantized adiabatic time evolutioin (ATE) on a
quantum circuit and give an example of the construc-
tion of an appropriate initial Hamiltonian and its ground
state.

∗ynishiya@quemix.com

2 Construction of the quantum circuit

Encoding of wave function We encode the ne-
electron wavefunction confined in a cubic cell of size L
using nqe qubits for each spatial direction per electron,
as usual in the first-quantized formalism [22, 23, 19, 2,
20, 24]. We refer to the 3nenqe qubits collectively as the
electronic register. We generate uniform grid points in
the cell to encode the wavefunction ψ as

|ψ⟩ = ∆V ne/2
∑

k0,...,kne−1

ψ
(
r(k0), . . . , r(kne−1)

)
× |k0⟩3nqe

⊗ · · · ⊗ |kne−1⟩3nqe
, (1)

where kl is the vector of the three integers specifying the
position eigenvalue (klxex+klyey+klzez)∆x for the l-th
electron. ∆x ≡ L/Nqe is the grid spacing of Nqe ≡ 2nqe

grid points in each spatial direction. ∆V ≡ ∆x3 is the
volume element for the normalization of |ψ⟩.

Electronic structure optimization We define the
time-dependent Hamiltonian for adiabatic time evolution
(ATE) as

Ĥ(t) = T̂ + V̂ (t), (2)

where T̂ is the kinetic part and V̂ (t) is the potential
part. The boundary conditions of the potential part are
V̂ (0) = Vini and V̂ (tf) = Vfin. By employing a first-order
Suzuki-Trotter expansion in conjunction with the adia-
batic theorem, the ground state |ψgs

tf
⟩ of the objective

Hamiltonian Ĥfin ≡ T̂ + V̂fin is approximately given as

|ψgs
tf
⟩ ≈

1∏
m=N

[
e−iT̂∆te−iV̂ (tm)∆t

]
|ψgs

0 ⟩, (3)

where |ψgs
0 ⟩ is the ground state of Ĥ(0). The nqe-qubit

real-time evolution (RTE) operator generated by the ki-
netic energy per electron and per direction, T̂ν (ν =
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x, y, z), can be implemented by using the centered quan-
tum Fourier transform (CQFT) [25, 26] as

CQFTUkin(∆t)CQFT† = e−iT̂ν∆t, (4)

where Ukin is diagonal matrix. U
(m)
pot is the real-time evo-

lution by the potential part at t = tm:

U
(m)
pot ≡ e−iV̂ (tm)∆t. (5)

If V̂ (t) consists of the sum of the two-body interactions
and the one-body external potential terms for all t, the
same method as in Ref. [3] can be employed in order

to implement U
(m)
pot , and the operation number of one

ATE step e−iĤ(tm)∆t is estimated as O(n2epoly(logne)) ,
thanks to the employment of position eigenstates in the
basis of each electron’s register.

Initial Hamiltonian and its ground state We de-
scribe an example of how to create an initial ground state
that is non-degenerate and antisymmetric with respect to
the exchange of any two electrons. This is important be-
cause antisymmetry of the electron wavefunction must be
intentionally introduced in the first-quantized formalism,
and if there is degeneracy in the initial ground state, the
output state could be a superposition of the ground and
excited states. This is achieved by considering as an ini-
tial state an ne-electron system independently dominated
by the one-electron Hamiltonian Ĥ1 of an anisotropic
harmonic oscillator as follows:

Ĥ1 =
∑

µ=x,y,z

[
p̂2µ
2me

+
1

2
meω

2
µr̂

2
µ

]
. (6)

The ground state is then obtained by the single Slater
determinant created by the bottom ne one-electron or-
bitals, which can be proved to be non-degenerate when,
for instance, (ωx, ωy, ωz) = (1,

√
2,
√
3).

Ionic structure optimization Here we consider ne
quantum mechanical electrons and nnucl classical nuclei
system as in the case of structural optimization of molec-
ular systems using probabilistic imaginary-time evolution
(PITE) [3]. Thus the objective Hamiltonian is

Ĥfin =

ne∑
l=1

p̂2
l

2me︸ ︷︷ ︸
≡T̂el

+

ne∑
l=1

vext(r̂l)︸ ︷︷ ︸
≡V̂ext

+
1

2

∑
l ̸=l′

v
(ee)
ll′ (|r̂l − r̂l′ |)︸ ︷︷ ︸
≡V̂ee

+

ne∑
l=1

nnucl∑
λ=1

v
(en)
lλ (|r̂l −Rλ|)︸ ︷︷ ︸
≡V̂en

+
1

2

∑
λ̸=λ′

v
(nn)
λλ′ (|Rλ −Rλ′ |)︸ ︷︷ ︸

≡V̂nn

, (7)

where vext, v
(ee), v(en), and v(nn) represent the external

potential for an electron, electron-electron interaction,

electron-nucleus interaction, and nucleus-nucleus inter-
action, respectively. Note that the kinetic term of nuclei
is ignored and the nuclear position Rλ appears as a clas-
sical parameter. To find the ground state of this Hamil-
tonian, we consider a quantum register using a total of
3nenqe + nqn qubits as

|Ψ⟩ =
∑
J

√
wJ |ψ[J ]⟩3nenqe ⊗ |J⟩nqn , (8)

where nqn is the number of qubits allocated to a regis-
ter |J⟩nqn

representing a possible nuclear configuration
specified by the vector J . Due to the quantum super-
position, up to 2nqn different structures can be entered
at once. |ψ[J ]⟩3nenqe is an 3nenqe-qubit register repre-
senting the many-electron wavefunction for each config-
uration J in three dimensional space. The overall quan-
tum register |Ψ⟩ can be written as a superposition of
|ψ[J ]⟩3nenqe

⊗ |J⟩nqn
, and when |Ψgs

f ⟩ is obtained as the

ground state of Ĥfin, the most stable nuclear configu-
ration can be determined by measuring the nqn qubits
assigned to the nuclear configuration part. To find the
ground state of Ĥfin in Eq. (7) by ATE, we consider the
time-dependent Hamiltonian

Ĥ(t) = T̂el ⊗ Înucl +A1(t)V̂ext ⊗ Înucl

+A2(t)V̂ee ⊗ Înucl +A3(t)V̂en

+A4(t)Îel ⊗ V̂nn

+(1−A5(t))V̂0 ⊗ Înucl

− (1−A6(t)) Îel ⊗ Jx

nqn∑
l=1

X̂l, (9)

where X̂l denotes the Pauli-X gate σ̂x acting on the l-th
qubit of the nuclear register and the boundary condi-
tions for functions Ai (i ∈ {1, 2, 3, · · · }) are Ai(0) = 0
and Ai(tf) = 1. Since there is no interaction between
the electronic part and the nuclear part at t = 0, the
ground state |Ψgs

0 ⟩ of the initial Hamiltonian Ĥ(0) can
be straightforwardly constructed as the tensor product
of the ground states of each part as

|Ψgs
0 ⟩ = |ψgs

0 ⟩3nenqe
⊗ |+⟩⊗nqn , (10)

where |ψgs
0 ⟩3nenqe

and |+⟩ ≡ (|0⟩+|1⟩)/
√
2 are the ground

states of T̂el + V̂0 and −σ̂x, respectively. The overview of
the quantum circuit in this case is shown in Fig. 1. Note
that the RTE by σ̂x is represented by x-rotation Rx.

3 Results

This method is applied to some simple models for elec-
tronic structure calculation and ionic-position optimiza-
tion. Fig. 2 shows the output of the electron density for
a one-electron system in 1D space when the harmonic po-
tential is introduced according to a linear schedule. Here,
the time width δt is constant, and the output approaches
the exact solution as the number of ATE steps N is in-
creased and the change of the Hamiltonian with time is
slowed down. Fig. 3 illustrates the results of the bond
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Figure 1: Quantum circuit to find the most stable nuclear configuration among up to 2nqn candidates. ne-electron
system in three-dimensional space are modelled and 3nqe qubits per electron are used to represent the wavefunc-
tion of the electron system. After the ground state of the initial Hamiltonian is created by Uinit, ATE oper-

ation discretized into N steps follows. Ckin, U (m)
ext , U

(m)
ee , U

(m)
en , U

(m)
nn , and U

(m)
0 represent the RTE generated by

T̂ , A1(tm)V̂ext, A2(tm)V̂ee, A3(tm)V̂en, A4(tm)V̂nn, and (1−A5(tm))V̂0, respectively.

length optimization for the H+
2 molecular model. Here,

J = 0, 1, 2, 3 correspond to bond lengths of 2,4,6,8 bohr,
respectively, indicating that the probability of obtaining
the most stable structure, J = 0, is highest for sufficiently
large N .

Figure 2: The simulation results of ATE for one electron
system under the parabolic potential.The squared wave-
function of a electron after ATE over N steps with the
linear scheduling function. The black dashed line repre-
sents the exact ground state obtained from the numerical
diagonalization of the final Hamiltonian. The blue circles
represent the ground state of initial Hamiltonian. The or-
ange, green, and red circles represent the output state of
ATE over 1000, 5000, and 10000 steps, respectively.

4 Conclusions

We have applied the first-quantized real-time evolution
circuit and varied it adiabatically to construct a quantum
circuit for the ground state calculation of the objective
Hamiltonian. We also show that a non-degenerate and
anti-symmetrized initial ground state in the case of gen-
eral electron numbers can be prepared using the Slater
determinant of a anisotropic harmonic oscillator. We fur-
ther demonstrate that the method can be extended to
search for the most stable structure among various ion
configurations entered as quantum superposition states,
and present a circuit for this purpose. We believe that
our method is useful as one of the ground state calcu-
lation algorithms on fault-tolerant quantum computers,

Figure 3: The simulation results of ATE for the search
for the optimal bond length of an H+

2 molecule. Plots of
the probability wJ of obtaining the J-th structure when
the nuclear register is observed with the linear scheduling
function.

since it makes maximum use of the previously proposed
efficient implementation of real-time evolution within the
first-quantized formalism.
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Abstract. Secure multi-party computation is a cryptographic primitive that enables two or more parties
to privately compute some joint function of their inputs. While classical protocols are known for this
task, they typically require private channels and/or multiple rounds of communication. In this work we
introduce a method for two-party computation and restricted multi-party computation using small-sized
photonic graph states and two rounds of public communication. The inputs of all honest parties are kept
secure in our protocol. We also propose an experimental method for generating the necessary graph states
used in the protocol and analyze its performance on current hardware.

Keywords: Multi-party computation, measurement-based computation, experimental implementations

1 Introduction

Secure multi-party computation (MPC) is a task in
which two or more parties compute some function on
their individually held variables without revealing the
values of the variables to each other [1, 2]. MPC is a
deeply-studied topic in both classical and quantum cryp-
tography, and a variety of MPC protocols have been pro-
posed achieving different levels of security and relying on
different operational assumptions [3].
We propose an unconditionaly secure method for re-

stricted MPC that includes all two-party computations
and requires only two rounds of public communication
regardless of the size of the computational input. Our
scheme follows a well-known approach of decomposing
MPC into “offline” and “online” phases [4, 5, 6]. In the
offline phase, some universal computational resource is
distributed to all the parties. Crucially, this resource
does not depend on the particular function being com-
puted other than its input size. Then in the online phase
this resource is used to compute some chosen function of
the parties’ inputs. For example, in the classical setting
one well-known computational resource is a special form
of shared randomness known as “Beaver triples,” which
can be used to efficiently compute logical AND gates in
the online phase [7]. The problem of MPC then reduces
to secure and efficient methods for distributing Beaver
triples in the offline phase. In a similar spirit, our pro-
tocol involves distributing certain quantum graph states
in the offline phase which then enable the computation
of a logical AND in the online phase. Beyond its rela-
tively low communication costs, a significant advantage
of our protocol is that the parties can, in principle, use
self-testing methods to verify that some untrusted source
is faithfully distributing the correct graph state [8, 9], an
ability that does not exist for classical shared random-
ness.

∗mjgold2@illinois.edu
†jl131@illinois.edu
‡echitamb@illinois.edu
§goldschm@illinois.edu

2 Contributions

This work provides a full theory-to-practice proposal
for implementing secure two-party computation. The
protocol uses eight-qubit graph states and works for func-
tions of arbitrary size. We describe a realistic method
for building these states using quantum emitters that
also applies to the construction of more general graph
states. The proposed use-case of secure computation and
its practical implementation motivates a direction for de-
veloping quantum information deliverables in the near
term.

3 Protocol Description

Boolean functions f : {0, 1}×n → {0, 1} are building
blocks for arbitrary discrete functions. Suppose that N
parties P1,P2, · · · ,PN wish to compute some Boolean
function f(x1, · · · ,xN ), where xi is a string of bits rep-
resenting the input for party i. In addition to correct-
ness, the evaluation of f should be done securely such
that the parties learn no more information about the in-
dividual x1, · · · ,xN beyond their own input and what is
revealed in the function value f(x1, · · · ,xN ). To achieve
this task, we propose a method of delegated computa-
tion in which a non-collaborating Referee is introduced
to assist in the computation of f(x1, · · · ,xN ). To main-
tain privacy, the Referee also should not learn any more
information about the xi beyond what is implied by the
computed value f(x1, · · · ,xN ), nor does the Referee re-
veal anymore information to the other parties than this
value.

The protocol uses the fact that every Boolean function
f can be expressed in an algebraic normal form (ANF),
which presents f as a sum (mod 2) of different vari-

able conjunctions. That is, we can write f =
∑R

i=1 ci,
where each ci is the logical AND of a certain group
of input variables. By combining variables belonging
to the same party, every ci becomes the conjunction of
at most N variables, each one belonging to a different
party. In this work we restrict attention to functions
f that admit an ANF whose conjunctions involve no
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Figure 1: In Stage I, each computation of a padded AND,
bi = xiyi + pi, is accomplished using a graph state |GI⟩
of this form. The qubits are distributed to parties Ai

(Alice), Bi (Bob), and R (the Referee) as shown. The
numeric script k above each qubit reflects an example
photon emission order.

more than two variables. This covers the entire class
of two-party functions, but it also includes certain multi-
party functions, such as the three-party majority func-
tion φ3(x, y, z) = xy + xz + yz mod 2, which outputs
the majority value among inputs x, y, z ∈ {0, 1}. In
general, the functions we consider have the form f =∑R1

i=1 xiyi +
∑N

i=1 zi, which is separated into linear and
quadratic parts. By again combining variables, we can
assume that zi is held by party Pi and computed from
her input xi. Furthermore, if each xi is no more than M
bits, then R1 ≤

(
N
2

)
M2.

The protocol involves performing Pauli observables,
X,Y, Z, on two types of graph states, |GI⟩ and |GII⟩,
depicted in Figs. 1 and 2 respectively. The distribution
of these states is conducted during the offline phase of
the protocol. In practice, the states can be generated
by some untrusted quantum source, and their correct-
ness can be certified using established self-testing meth-
ods [8, 9]. The online phase of the protocol then involves
specific sequences of Pauli measurements and public com-
munication, and these sequences take place in two differ-
ent stages.
Stage I uses |GI⟩ to compute the bit values

bi = xiyi + pi, i = 1, · · · ,R1, (1)

where each pi is an independent one-time pad bit that is
private from all the parties, including the Referee.

Stage I. Input: Parties Ai (Alice) and Bi (Bob) input
bits xi and yi, respectively.

1. The Referee and Bob measure X and Z on qubits 1
and 2, respectively, obtaining a common measurement
outcome s = m1 = m2.

2. Bob measures Z on qubit 3, obtaining m3. He an-
nounces δi = yi +m3. Alice applies Zδi to qubit 4.

3. Alice measures W xiZ(W †)xi on qubits 4 and 5, where
W ≡ (iX)1/2, computing αi = xi +m4 +m5 from her
outcomes. Note that WZW † = Y .

R

P1

P5

P3

P2

P4P6

PN

⋯

Figure 2: The graph state |GII⟩ used to compute values p
in Stage II. The numeric subscript labels both the party
Pk and an example photon emission ordering. In total,
np = N + 1 photons are required for the N parties and
the Referee.

4. The Referee measures V sX(V †)s on qubit 6, where
V ≡ (−iZ)1/2, obtaining bi = m6. Note, V XV † = Y .

5. Alice measures Z on qubit 7, obtaining m7. She an-
nounces γi = xi +m7. Bob applies Zγi to qubit 8.

6. Bob measures W sZ(W †)s on qubit 8 obtaining βi =
m8.

It is not difficult to see that the Referee’s measurement
outcome in step 4. satisfies bi = xiyi + pi, where pi =
αi + βi (see the full manuscript for details). The above
sequence is repeated on a fresh copy of |GI⟩ for each
i = 1, · · · ,R1, with the values of αi and βi possibly being
obtained by different parties in each iteration. Note that
if the Referee added all the bi at the end of Stage I, the
computed value would be

R1∑
i=1

bi = f +
N∑
i=1

zi +

R1∑
i=1

(αi + βi) = f +
N∑
i=1

µi, (2)

where µi denotes the sum of the variables in the set
{αi, βi}R1

i=1 ∪ {zi}Ni=1 belonging to party i. Stage II then

amounts to removing the term
∑N

i=1 µi from the RHS of
Eq. (2).

Stage II is performed using an (N+1)-party GHZ state
|GII⟩ (see Fig. 2) shared between the Referee and the N
parties. The following steps are then taken.

Stage II. Input: Parties Pi input their respective bits
{µi}Ni=1 obtained from the set {αi, βi}R1

i=1 ∪{zi}Ni=1, as in

Eq. (2). The Referee inputs {bi}R1
i=1 from Stage I.

1. Party Pk measures Z on qubit k for qubits 1, · · · , N .
She then announces νk = µk +mk.

2. The Referee measures X to learn
∑N

k=1 mk and then

adds this to
∑N

k=1 νk to obtain
∑N

k=1 µk. The latter

is then added to the sum
∑R1

i=1 bi to obtain f , which
is then announced to all the parties.

It should be noted that by parallelization, both Stages
I and II can be performed using just two rounds of si-
multaneous communication. Indeed, each party needs
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to broadcast at most two public messages, the first be-
ing no more than logR1 bits, and the second being one
bit. When run in parallel, all the Stage I messages can
be broadcast concurrently, and likewise for the Stage II
messages.
Intuitively, this protocol is secure due to the one-time

pad bits that are generated with each measurement on
the graph states. While there are a variety of different
approaches to defining security in multipartite compu-
tation, in this work we demand as a security condition
that playing honestly does not reveal any more informa-
tion about one’s input than what can be inferred from
the final function output. We demonstrate in the full
version of this paper that our protocol satisfies this level
of information-theoretic security. We also show how clas-
sical error correction can be incorporated in the protocol
to suppress the effects of experimental error. Realistic
estimates of performance are given in Figure 4.

4 Experimental Proposal

Photonic graph states can be generated using coherent
emitters such as trapped neutral atoms or ions in vac-
uum [10, 11, 12, 13], physical systems which are attrac-
tive from an experimental perspective since they exhibit
long coherence times (100 − 103 seconds) [14, 15] and
host high-fidelity deterministic entangling gates (> 99%)
[16, 17, 18]. However, efficient collection from individual
quantum emitters is a challenge that remains largely out
of reach today, making the previous schemes impracti-
cal for generating large graph states on even near-term
hardware [19].
In this work, we show how protocol described in Sec-

tion 3 can be implemented using a single emitting spin
and a fixed number of auxiliary spins, without any re-
quirement on the collection efficiency of the emitted pho-
tons or any need for quantum memories. The rate and
size of feasible graph states generated by the proposed
method has polynomial dependence on the collection ef-
ficiency, compared to the exponential suppression of the
feasible graph size for the successive detection of pho-
tons required in previous schemes. This enhanced per-
formance is achieved by recognizing the possibility of
adding each photon to the graph only after successful
spin-photon entanglement generation has been heralded.
While a general method for building photonic graph

states is comprehensively presented in the full paper, here
we provide a high-level description of how |GI⟩ and |GII⟩
can be generated and used in the above protocol. The
process involves a Herald-on-Detection scheme depicted
in Fig. 3. To produce |GI⟩ (resp. |GII⟩) one needs to use
a single spin emitter and two (resp. one) auxiliary spins.
Entangling gates are performed on the spin systems in
such a way that the emitted photons are transformed
into the desired graph states [11]. In our scheme, we
measure each photon immediately as its emitted as pre-
scribed by the steps in Stage I and Stage II of the above
protocol. These measurements not only herald the event
of a successful emission, but as shown in the paper, up
to classical post-processing they also generate the same

Attempt single photon detection

G G’

Failure

Success

Pass phase information

G

Figure 3: Herald-on-detection (HoD) scheme. An auxil-
iary spin (black square) is entangled to a graph G. A spin
emitter (red square) is pumped, and if an emitted pho-
ton is detected, entangling gates between the two spins
adds the now-measured photon to a new graph G′. The
photonic graph state constructed in this case is virtual
(represented by dashed boundaries) and exists as a set of
conditional phases stored on auxiliary spins, which can
be corrected by classical post-processing.

outcomes as if the measurements had taken place after
the full graph were generated. The ability to convert
stabilizer measurements into classical post-processing is
well-known in the theory of measurement-based quantum
computing [20]. However, to our knowledge this is the
first time this principle has been being used as a herald-
ing mechanism in an emitter-based protocol. Based on
experimentally realistic parameters, Figure 4 shows an
overall estimate for the rate of secure function evaluation
using the protocol of Section 3 and its implementation
described here in Section 4, given some error tolerance
ϵf in the computation.
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Figure 4: Error corrected two-party computation rate
versus the number of input bits to f using our HoD
scheme, shown for two acceptable error probabilities on
the computation (ϵf ). The rate is expressed in units
of the repetition rate of excitation of the chosen quan-
tum emitter, Rrep, which is typically in the range of
106 − 109 s−1 for highly coherent emitters. Details of
this calculation are explained in the full paper.
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Quantum emitter-based schemes for the generation of photonic graph states offer a promising,
resource efficient methodology for realizing distributed quantum computation and communication
protocols on near-term hardware. We present a heralded scheme for making photonic graph states
that is compatible with the typically poor photon collection from state-of-the-art coherent quantum
emitters. We demonstrate that the construction time for large graph states can be polynomial in
the photon collection efficiency, as compared to the exponential scaling of current emitter-based
schemes, which assume deterministic photon collection. The additional overhead to achieve this
advantage consists of an extra spin system plus one additional spin-spin entangling gate per photon
added to the graph. While the proposed scheme enables the generation of graph states for arbitrary
applications, we show how it can be further simplified for the specific task of measurement-based
computation, leading to significantly higher rates and removing the need for photonic memory in
certain computations. As an example use-case of our scheme, we construct a protocol for secure
two-party computation that can be implemented efficiently on current hardware. Estimates of the
fidelity to produce graph states used in the computation are given, based on current trapped ion
experimental benchmarks.

I. INTRODUCTION

The vast promise of quantum information technolo-
gies for faster and more secure computational and in-
formation systems relies on entanglement as a primary
resource. Traditional gate-based quantum computing re-
quires the ability to perform sequences of joint operations
across multiple qubits.An alternative paradigm, known
as measurement-based quantum computation (MBQC),
realizes universal computation through sequences of sin-
gle qubit measurements made on an initially prepared en-
tangled resource state [1]. This is an appealing approach
for photonic quantum systems as single photon rotations
and measurements are straightforward using commercial
optical elements, and fast efficient routing solutions are
readily available [2]. Furthermore, the sequential nature
of photon emission allows entangled states to be built
from photons emitted at different times by the same emit-
ter [3]. By using entangled emitters, it then becomes pos-
sible to simulate entangling gates between photons and
overcome the difficulty of realizing direct photon-photon
interactions [4]. Indeed, it is known that computationally
useful graph states of photons can be generated using ei-
ther a small number of coherent quantum emitters [5], a
combination of a single emitter and fusion gates [6], or a
single quantum emitter in a feedback scheme [7].

All of these aforementioned schemes assume a photon
is successfully added to the graph every time an emit-
ter is excited, and we thus term this class of schemes
as being “deterministic”. However, efficient collection
from individual quantum emitters is a challenge that re-
mains largely out of reach today, making deterministic

∗ These two authors contributed equally

schemes impractical for generating large graph states on
even near-term hardware [8].

We introduce a procedure for building arbitrary pho-
tonic graph states using a single emitting spin and a fixed
number of auxiliary spins, without any requirement on
the collection efficiency of the emitted photons. The rate
and size of feasible graph states generated by the pro-
posed method has polynomial dependence on the collec-
tion efficiency, compared to the exponential suppression
of the feasible graph size for the successive detection of
photons required in current deterministic schemes. This
enhanced performance is achieved by recognizing the pos-
sibility of adding each photon to the graph only after
successful spin-photon entanglement generation has been
heralded.

In Section II of this work, we describe a non-destructive
method for this heralding that is implementable on cur-
rent hardware by swapping the entanglement to another
photon, termed the herald-on-swap (HoS) method. More
generally, any non-destructive detection of the photon
would be suitable to implement this “emit-then-add”
method of building graphs for arbitrary use. We explain
in Section III how we can herald on destructive detec-
tion of the photon in certain cases, including MBQC.
This enables much higher production rates and fidelities
than any feasible non-destructive heralding method. In
this case, the emitted photon is measured prior to adding
it to the graph, thereby abrogating the need for entan-
glement swapping or photon storage, and dramatically
speeding up graph construction. In this case, the graph
state is built only virtually as every photon in the graph
is necessarily measured. We refer to this as a herald-on-
detection (HoD) method, and Section III provides more
detail on when the HoD method can be applied.

In both the HoS and HoD schemes we propose, the
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photons are emitted over a longer time compared to
other emitter-based methods for building photonic graph
states; this is because most attempts to add a photon to
the graph will result in an unsuccessful herald. Con-
sequently, it is the number of excitation attempts that
can be made during the coherence time of the emitter
that sets the practical limit on the graph size, rather
than the collection efficiency. Trapped neutral atoms and
ions in vacuum are well suited to this scheme as they ex-
hibit long coherence times (100−103 seconds) [9, 10] and
host high-fidelity deterministic entangling gates (> 99%)
[11–13] with moderate collection efficiencies (≳ 10% with
high-NA optics and ≳ 40% with parabolic reflectors) [14–
17]. We note here that some solid-state systems, such
as rare-earth emitters, can also exhibit excellent coher-
ence, spin-spin entangling gates, and reasonable photon
collection via integration into photonic devices [18]. In
Section IV we provide estimates of the rate and fidelity
for the production of heralded graph states via both of
our schemes assuming state-of-the-art trapped ion and
photon pair source architectures, which include realistic
sources of loss, noise, and decoherence.

Lastly, in Section V we propose a protocol for per-
forming secure two-party classical computation, in which
two parties privately compute a function of their input
variables with the help of an untrusted referee. Com-
pared to universal quantum computation, our protocol
only requires Pauli measurements, and so the entire pro-
cedure can be performed using only our HoD method.
We demonstrate how secure two-party computation can
be achieved using just a single quantum emitter and
two auxiliary spin qubits, regardless of the size of the
party’s input. We provide fidelity estimates to produce
the graph states on current hardware, which suggests this
is a highly feasible use-case for quantum networks in the
near term. A security analysis and the resulting bit error
rates with and without classical error correction are also
provided.

II. SPIN-PHOTON ENTANGLEMENT
SCHEMES

We first describe the HoS scheme, shown in Figure
1, for making graph states for arbitrary applications.
Given the technical challenges associated with photon
non-demolition measurement [19], this swapping step is
required to herald without destructive measurement of
the photonic qubit on near-term hardware. Compared
to the deterministic scheme described in [5], we include
a local entanglement swapping step between an emitter-
photon entangled pair and a pair of entangled photons,
and only add the final photon to the graph upon success
of that swap. A single emitter is initialized into an unen-
tangled state and excited to produce a single photon that
is entangled with its long-lived internal spin state and col-
lected with some overall efficiency ηe. This can be imple-
mented with a wide variety of quantum emitters includ-

ing laser-cooled atoms or ions, quantum dots, and defects
or dopants in wide-bandgap semiconductors [3, 8, 20–22].
Photons can be encoded in various degrees of freedom
including polarization, time-bin, and frequency [23–27].
Simultaneously, a pair of entangled photons is probabilis-
tically produced, which can be implemented via standard
nonlinear optical processes, such as spontaneous para-
metric down conversion (SPDC) [28, 29]. One member
of the photon pair, the signal photon, is wavelength and
bandwidth matched to the emitter photon, and the en-
tangled pair is encoded in the same degree of freedom
as the emitter photon. The emitter photon and sig-
nal photon are sent to a joint measurement apparatus
which, upon a successful measurement outcome, projects
the emitter spin and the unmeasured photon, the idler
photon, into an entangled Bell state [30]. Since only cer-
tain measurement outcomes correspond to entanglement
between the emitter spin and idler photon, and imper-
fect collection and detection means that fewer than two
photons are detected on most attempts, the procedure is
repeated until a successful herald is flagged. Following
each failed attempt, the emitter is measured and reini-
tialized for the subsequent attempt at a successful herald.

We assume the emitter is among a set of spin qubits
that can be controllably entangled in a pair-wise way
via local and deterministic two-qubit spin-spin entangling
gates, such as an array of trapped atomic ions or neutral
atoms. Upon a successful herald, the emitter spin is de-
terministically entangled with an auxiliary spin, which
may already be part of a larger graph state. The emitter
spin is then rotated to a conjugate basis and projectively
measured, removing it from the graph without disturb-
ing any of the other qubits. Following a correction to
the photon based on the outcome of this measurement,
the state of the system is as if the auxiliary spin had di-
rectly emitted the photon itself. This “emit then add”
method then allows for the construction of arbitrary pho-
tonic graph states using the methods described in [5].
Namely, the graph states are built using sequences of
two-qubit gates on the spins and local Clifford gates on
the photons. The local gates on each photon can all be
combined and applied as a single rotation prior to using
the graph state in subsequent applications.

The key improvement in our scheme is that the idler
photon can be collected with near unit efficiency upon a
successful herald [31]. Attaining the improvement of this
scheme requires one additional two-qubit spin-spin entan-
gling gate per photon added to the graph plus one addi-
tional spin (the emitter), compared to the requirements
for generating graphs via known deterministic schemes
[32]. In addition, the graph is emitted over a much longer
time and thus requires longer spin coherence times. We
note an additional benefit of the scheme in that the idler
photon can be at virtually any wavelength due to the
flexibility of standard entangled photon pair sources [33–
36], which overcomes common challenged due to the in-
convenient emission colors of many atomic qubits. We
show here that current state-of-the-art trapped ion sys-
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FIG. 1. Herald-on-swap (HoS) scheme. The components are two initial entangled pairs: an emitter spin (red square) entangled
with a photon (orange circle) and a signal-idler entangled photon pair (orange and green circle, respectively). We also assume
an existing graph G that contains one or more auxiliary spins (black square). Entanglement swapping is attempted between the
two initial entangled pairs. Upon success, a two-qubit spin-spin gate deterministically entangles the emitter spin and auxiliary
spin. A local complementation operation is then performed on the emitter spin, which is subsequently measured out of the
graph. This leaves the idler photon a part of the graph and the emitter spin reinitialized for the next attempted emission.

tems can be designed to produce graph states of tens to
hundreds of photons using the proposed method, where
extending to thousands would be made possible with rea-
sonable improvements [10, 12, 14].

III. A HERALDING SCHEME FOR MBQC

The HoS scheme described in the previous section, or
any non-destructive heralding of successful collection of
the emitter photon, can be used to build arbitrary pho-
tonic graph states. However for many applications, in-
cluding MBQC, the nodes are measured sequentially with
the choice of measurement basis on one node depend-
ing on outcomes of previous ones. It is not necessary in
this case to build the full graph state before beginning
these measurements [37]. Instead, an emitted photon can
be destructively measured as soon as the correct basis
for measurement is determined. This measurement thus
serves doubly as a prescribed step in the MBQC protocol
and as a way for detecting the emitted photon. Upon fail-
ure to detect the photon, we re-initialize the emitter and
attempt generation again, having left the larger graph
undisturbed, as in the HoS scheme. Upon successful de-
tection, we perform all required gates on the emitter and
auxiliary spins, measure the emitter out of the graph,
and re-initialize the emitter to attempt generation of the
next photon in the graph.

This simpler HoD scheme is shown in Figure 2, and it
has the advantage that it requires no storage time for the
emitted photon prior to measurement. There are limita-
tions for when this scheme can be employed. Namely, a
photon can be measured using HoD provided the two con-

ditions are satisfied: (1) the correct measurement basis
for that photon, as set by the MBQC protocol, is deter-
mined prior to its emission, and (2) this measurement
is either Pauli Z or of the form cosϕX + sinϕY . Con-
dition (1) can be met in general, as the emission order
can be chosen to match the measurement of order of the
computation, albeit at the cost of using extra auxiliary
spins and two-qubit gates in some cases [32]. The second
condition can also be met in principle, since the specified
gates sets are sufficient for universal MBQC [1, 38].

To understand condition (2) in more detail, note that if
the full graph state were built using HoS and two-qubit
gates on the auxiliary spins, then each emitted photon
would have a local Clifford error of the form UZm, where
U is a fixed Clifford and m ∈ {0, 1} is determined by the
decoupling measurement on the emitter spin. If M is
the measurement to be subsequently performed on the
photon in the MBQC protocol, then when correcting for
the Clifford error, the effective measurement would be
M ′ = UZmMZmU†. When M = Z, then M ′ = UZU†;
or when M = cosϕX + sinϕY , then M ′ = (−1)mUZU†.
In the first case, the dependence on m is completely re-
moved, and the photon can be equivalently measured
with UZU† immediately after it is emitted in the HoD
scheme. In the second case, it can also be immediately
measured with UZU†, but now one must perform a bit
flip on the classical measurement outcome if m = 1; this
is because an overall −1 factor on a spin observable sim-
ply flips the spin-up/spin-down outcomes. In summary,
the correct computation can be attained through HoD
and classical post-processing for observables of the spec-
ified form.

While satisfying conditions (1) and (2) above is suffi-
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Attempt single photon detection

G G’

Failure

Success

Pass phase information

G

FIG. 2. Herald-on-detection (HoD) scheme. For certain
MBQC protocols, it is sufficient to perform the determinis-
tic entangling gate between the emitter and auxiliary spin
only upon successful detection of the emitted photon. The
photonic graph state constructed in this case is virtual (rep-
resented by dashed boundaries) and exists as a set of condi-
tional phases stored on auxiliary spins.

cient for universal MBQC using HoD, this is often not
the most efficient method in terms of the overall number
of photons used to drive the computation. For example,
building out the graph to a certain depth and measuring
in a different sequence than the emission order can lead
to more compact gate implementations [38]. Also, us-
ing MBQC measurements outside of the x-y plane allows
for more general forms of information flow [39]. Never-
theless, as we show in the next section, the HoD scheme
can enable dramatically faster construction and higher fi-
delity with no photon storage required. For the HoS (or
any non-destructive heralding) scheme, photon storage
is required for at least the time to perform the spin-spin
entangling gates and the decoupling measurement on the
emitter.

IV. SCALING AND FIDELITY FOR
HERALDED SCHEMES

A major benefit of both schemes comes in scaling up
the size of graph states using near term hardware. The
average time to successfully generate an np-photon graph
by directly collecting photons from an emitter in np sub-

sequent excitation events for computation is O(η
−np
e ),

where ηe is the emitter collection efficiency, because any
failed detection event truncates the graph. In typical
deterministic quantum emitter-based schemes, any inef-
ficiency in collection therefore leads to exponentially bad
scaling with graph size. Given current hardware, this
severely limits the size and rate of generation for pho-
tonic graph states, particularly those that require multi-
ple spin qubits. We note that there are loss tolerance and
percolation thresholds that improve this scaling, but they
require much better collection efficiency than is feasible
in near-term systems [40–42]. For the heralded schemes,
any failed detection of the emitter photon simply results
in the reinitialization of the emitter and another attempt
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FIG. 3. Time to make photonic graph states of size np in
units of the repetition period. The deterministic (red), HoS
(blue), and HoD (yellow) schemes are compared. The three
curves of each color represent emitter photon detection effi-
ciencies ηe ∈ {0.1, 0.25, 0.4}. Polynomial scaling in the her-
alded schemes allows for the construction of larger graphs.
Results are omitted where decoherence and false heralds bring
the fidelity under 50% for reasonable experimental parame-
ters. In the HoS scheme, fidelity can be sacrificed to improve
the rate for the construction of small graph states if desired.
Details of the fidelity estimates are introduced in Section I,
with a full description given in Appendix D.

at the joint or single photon detection, while the graph
under construction remains unaffected. Therefore, an np-
photon graph state will be created over a time that is
O(npη

−1
e ). As a comparison, the time to make an np-

photon graph state (in units of the repetition period) is
shown in Figure 3 for ηe ∈ {0.1, 0.25, 0.4} for the deter-
ministic (red), HoS (blue), and HoD (yellow) schemes.
We assume that the emitter coherence does not limit the
graph size for the deterministic scheme (np/τRrep ≪ 1
where τ is the spin coherence time and Rrep is the repe-
tition rate of excitation). In practice, however, the short
coherence times of the most efficient photon emitters fur-
ther limit the size of graphs that can be produced in the
deterministic scheme [8, 27]. For the heralded schemes,
all auxiliary spins must remain coherent for the entire
time they are a part of the graph, which is much longer
than the np repetition cycles over which the graph is gen-
erated in the deterministic scheme. Thus, moving from
the deterministic scheme to one proposed here effectively
means moving from a scheme limited by the photon col-
lection efficiency to a scheme limited by spin coherence.
If a hybrid of the HoS and HoD schemes is employed, the
generation time falls somewhere between the curves for
those schemes, with the fraction of photons generated via
each method determining exactly where.

For the two proposed schemes, there are additional fac-
tors that affect the fidelity not present in the determinis-
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tic scheme including decoherence of the emitter and aux-
iliary spin(s) during the construction time and multiple
photon pair production that limits the fidelity of entan-
glement swapping for the the HoS scheme. Here we inves-
tigate the scaling of these sources of infidelity and com-
pare them to the limits set by imperfect two-qubit spin-
spin entangling gates, as well the initial entanglement
fidelities of the emitter-photon and photon pair sources.
We require one such gate per photon added to the graph
over and above any gates required to make the desired fi-
nal graph [32], which exponentially suppresses the ability
to make large photonic graph states if the gates are not
perfect. Additionally, any infidelity of the photon-pair
source in the HoS scheme adds to the overall infidelity.
Here, we demonstrate that if sufficient error correction
or entanglement purification is possible [43], the addi-
tional sources of infidelity inherent to our scheme do not
themselves prohibit exceeding large graph states. For a
full discussion of our experimental model and relevant
sources of infidelity, see Appendix D.

In modeling decoherence under the usual dephasing
map, any emitters or auxiliary spins will remain invari-
ant with a probability D(t, τ) = 1

2 (1+ e−t/τ ), for the du-
ration t until they are projectively measured. In either
scheme, the emitter is reinitialized with each attempt to
add a new photon to the larger graph, and hence the time
its required to remain coherent is reset. Furthermore,
the classical conditioning offered by this “emit then add”
method means the emitter is only required to remain co-
herent for the attempts where the relevant joint or single
photon measurements are a success. Any auxiliary spins,
on the other hand, are required to remain coherent for
the duration of time they remain a part of the larger
graph state in construction. The average time for suc-
cessful addition of a new photon to the larger graph goes
as trep/Ps, where trep = R−1

rep is the repetition period of
the excitation, and Ps is the probability of a successful
joint or single photon measurement for the HoS or HoD
schemes, respectively. Note that in the HoD scheme we
assume Ps = ηe. Hence, the total contribution to the fi-
nal state fidelity from the emitter and any auxiliary spins
is

F
(e)
D (np)=

(
1

2

(
1 + e−trep/τ

))np

, (1a)

⟨F (s)
D (np, Ps)⟩=

1

2

(
1 + e−nptrep/Psτ

)
, (1b)

where we include a superscript to denote emitter (e) and
auxiliary spin (s) qubits, and we have used the same
coherence time τ for the emitter and auxiliary spins in
the system.

For the HoS scheme we assume a standard SPDC
source to generate the required entangle photons pairs
[44]. The multi-pair emission of such a source intro-
duces an additional infidelity in the entanglement swap-
ping procedure. We denote Pt as the the overall prob-
ability that a true Bell state is heralded and measured
after constructing the graph. In general, Pt < Ps due

to false heralding. A primary source of false heralding is
when the emitter photon is not collected but the SPDC
source produces two or more photon pairs that lead to
a detection pattern falsely signalling a successful swap.
False heralding due to two signal photons is a well known
and ubiquitous problem in entanglement swapping with
photon pair sources based on nonlinear optics [33]. We
can write an expression for the fidelity of the entangle-
ment swapping procedure, Pt/Ps, using the known sta-
tistical distribution of entangled photon pairs produced
via SPDC. Here, we assume photon number-resolved de-
tection and perfect collection and detection of the sig-
nal photon once produced. This is because loss on that
channel can generally be minimal and primarily affects
the rate rather than the swapping fidelity (see Appendix
D for the full calculation, including further experimental
factors not discussed here). Furthermore, the intention
here is to show that even quite low efficiency collection
of the emitter photon can allow the generation of graph
states. The probability of producing two entangled pho-
ton pairs is proportional to the square of the probability
of producing a single entangled pair, and is controllable
via the pump power of the SPDC (parameterized here by
the quantity ξ [33]), thus introducing a tradeoff between
rate and fidelity. The fidelity, Fswap = Pt/Ps, is given by

Pt(ηe, ξ) = ηe(1− ξ)2ξ, (2a)

Ps(ηe, ξ) =
[
ηeξ + (1− ηe)ξ

2
]
(1− ξ)2, (2b)

Fswap(ηe, ξ) =
ηe

ηe + (1− ηe)ξ
. (2c)

In the absence of decoherence of the spins, we could sim-
ply work at ξ ≪ 1 (very low pair generation rate) to re-
duce the false heralding and increase the overall fidelity.
However, this slows the rate of the graph production and
introduces infidelity due to decoherence of the auxiliary
spin(s). Given a set of experimental parameters, the rate
of pair production can be optimized by tuning ξ to max-
imize the overall fidelity of the desired graph state, bal-
ancing the infidelity due to false heralds against the de-
coherence.
We present a simple example comparing these addi-

tional sources of infidelity to the limits set by spin-spin
entangling gates and initial entanglement fidelities, for
case of the constructing a graph state on a single aux-
iliary spin. Figure 4 depicts these estimates over a few
regimes. The combined effect of false heralds and deco-
herence (blue) set the fidelity as

F (np, ηe, ξ)= Fswap(ηe, ξ)
npF

(e)
D (np)

×⟨F (s)
D (np, Ps(ηe, ξ))⟩, (3)

which we optimize over ξ, for fixed np and ηe. We as-
sume the same coherence time for the emitter and aux-
iliary spin. When only limited by decoherence (yellow),
we can employ the same Equation 3, except now fixing
Fswap(ηe, ξ) = 1 and removing the need to optimize the
fidelity. These estimates are applicable when construc-
tion large star graph states—the local-unitary equivalent
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FIG. 4. Graph state fidelity versus photon number (np) for several different regimes of operations, and variable emitter-photon
collection efficiencies (ηe) and dephasing timescales (trep/τ). Gate and pair generation fidelities (grey) exponentially preclude
the construction of large graph states in any scheme utilizing our “emit then add” method. With sufficient error correction or
purification around these gate fidelities, regimes limited by false heralds and decoherence (blue) and decoherence alone (yellow),
allow for the construction of significantly larger graph states.

to a Greenberger-Horne-Zeilinger (GHZ) state—and 1D
cluster states.

V. REALIZING SECURE TWO-PARTY
COMPUTATION

As one application of our HoD scheme, we describe
a method for securely computing an arbitrary Boolean
function f : {0, 1}×n → {0, 1} of either two parties or
a restricted class of multi-party functions. As a spe-
cial type of MBQC, our protocol performs the calcula-
tion through a sequence of measurements on distributed
graph states. Only Pauli measurements are needed and
the protocol can be implemented using the HoD method,
for which the generation of the requisite resource state
happens in parallel with the computation and no pho-
tonic memory is required.

Secure multi-party computation (MPC) is a task in
which two or more parties compute some function on
their individually held variables without revealing the
values of the variables to each other [45, 46]. For example,
in Yao’s famous millionaire problem, two parties want
to determine whose bank account has the most money
without actually revealing how much money is in each
account. MPC is a deeply-studied topic in both classi-
cal and quantum cryptography, and a variety of MPC
protocols have been proposed achieving different levels
of security and relying on different operational assump-
tions [47]. We propose an unconditionaly secure method
for restricted MPC that includes all two-party computa-
tions and requires only two rounds of public communi-
cation regardless of the size of the computational input.
Our scheme follows a well-known approach of decompos-
ing MPC into “offline” and “online” phases [48–50]. In
the offline phase, some universal computational resource
is distributed to all the parties. Crucially, this resource

does not depend on the particular function being com-
puted other than its input size. Then in the online phase
this resource is used to compute some chosen function of
the parties’ inputs. For example, in the classical setting
one well-known computational resource is a special form
of shared randomness known as “Beaver triples,” which
can be used to efficiently compute logical AND gates in
the online phase [51]. The problem of MPC then reduces
to secure and efficient methods for distributing Beaver
triples in the offline phase. In a similar spirit, our pro-
tocol involves distributing certain quantum graph states
in the offline phase which then enable the computation
of a logical AND in the online phase. Beyond its rela-
tively low communication costs, a significant advantage
of our protocol is that the parties can, in principle, use
self-testing methods to verify that some untrusted source
is faithfully distributing the correct graph state [52, 53],
an ability that does not exist for classical shared random-
ness.

Suppose that N parties P1,P2, · · · ,PN wish to com-
pute some Boolean function f(x1, · · · ,xN ), where xi is
a string of bits representing the input for party i. In ad-
dition to correctness, the evaluation of f should be done
securely such that the parties learn no more information
about the individual x1, · · · ,xN beyond their own input
and what is revealed in the function value f(x1, · · · ,xN ).
To achieve this task, we propose a method of delegated
computation in which a non-collaborating Referee is in-
troduced to assist in the computation of f(x1, · · · ,xN ).
To maintain privacy, the Referee also should not learn
any more information about the xi beyond what is im-
plied by the computed value f(x1, · · · ,xN ), nor does the
Referee reveal anymore information to the other parties
than this value.

The protocol uses the fact that every Boolean function
f can be expressed in an algebraic normal form (ANF),
which presents f as a sum (mod 2) of different vari-
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FIG. 5. In Stage I, each computation of a padded AND,
bi = xiyi + pi, is accomplished using a graph state |GI⟩ of
this form. The qubits are distributed to parties Ai (Alice),
Bi (Bob), and R (the Referee) as shown. The numeric script
k above each qubit reflects an example photon emission order.

able conjunctions. That is, we can write f =
∑R

i=1 ci,
where each ci is the logical AND of a certain group
of input variables. By combining variables belonging
to the same party, every ci becomes the conjunction of
at most N variables, each one belonging to a different
party. In this work we restrict attention to functions
f that admit an ANF whose conjunctions involve no
more than two variables. This covers the entire class
of two-party functions, but also includes certain multi-
party functions, such as the three-party majority func-
tion φ3(x, y, z) = xy + xz + yz mod 2, which outputs
the majority value among inputs x, y, z ∈ {0, 1}. In
general, the functions we consider have the form f =∑R1

i=1 xiyi +
∑N

i=1 zi, which is separated into linear and
quadratic parts. By again combining variables, we can
assume that zi is held by party Pi and computed from
her input xi. Furthermore, if each xi is no more than M
bits, then R1 ≤

(
N
2

)
M2.

The protocol involves performing Pauli observables,
X,Y, Z, on two types of graph states, |GI⟩ and |GII⟩,
depicted in Figs. 5 and 6 respectively. The distribution
of these states is conducted during the offline phase of
the protocol. In practice, the states can be generated by
some untrusted quantum source, and their correctness
can be certified using self-testing methods (see Appendix
B 4). Specific steps for building both |GI⟩ and |GII⟩ us-
ing a quantum emitter is presented in Appendix C 2. We
note that the nontrivial emission order on |GI⟩ set by
our MPC requires two auxiliary spins to produce [32].
The online phase of the protocol then involves specific
sequences of Pauli measurements and public communi-
cation, and these sequences take place in two different
stages.

Stage I uses |GI⟩ to compute the bit values

bi = xiyi + pi, i = 1, · · · ,R1, (4)

where each pi is an independent one-time pad bit that is

R

P1

P5

P3

P2

P4P6

PN

⋯

FIG. 6. The graph state |GII⟩ used to compute values p in
Stage II. The numeric subscript labels both the party Pk and
an example photon emission ordering. In total, np = N + 1
photons are required for the N parties and the Referee.

private from all the parties, including the Referee.

Stage I. Input: Parties Ai (Alice) and Bi (Bob) input
bits xi and yi, respectively.

1. The Referee and Bob measure X and Z on qubits 1
and 2, respectively, obtaining a common measure-
ment outcome s = m1 = m2.

2. Bob measures Z on qubit 3, obtaining m3. He an-
nounces δi = yi + m3. Alice then applies Zδi to
qubit 4.

3. Alice measures W xiZ(W †)xi on qubits 4 and 5,
where W ≡ (iX)1/2, computing αi = xi+m4+m5

from her outcomes. Note that WZW † = Y .

4. The Referee measures V sX(V †)s on qubit 6, where
V ≡ (−iZ)1/2, obtaining bi = m6. Note that
V XV † = Y .

5. Alice measures Z on qubit 7, obtaining m7. She
announces γi = xi +m7. Bob then applies Zγi to
qubit 8.

6. Bob measure W sZ(W †)s on qubit 8 obtaining βi =
m8.

As shown in Appendix B 1, the Referee’s measurement
outcome in step 4. satisfies bi = xiyi + pi, where pi =
αi + βi. The above sequence is repeated on a fresh copy
of |GI⟩ for each i = 1, · · · ,R1, with the values of αi and
βi possibly being obtained by different parties in each
iteration. Note that if the Referee added all the bi at the
end of Stage I, the computed value would be

R1∑
i=1

bi = f +
N∑
i=1

zi +

R1∑
i=1

(αi + βi) = f +
N∑
i=1

µi, (5)
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where µi denotes the sum of the variables in the set
{αi, βi}R1

i=1 ∪ {zi}Ni=1 belonging to party i. Stage II then

amounts to removing the term
∑N

i=1 µi from the RHS of
Equation (5).

Stage II is performed using an (N+1)-party GHZ state
|GII⟩ (see Figure 6) shared between the Referee and the
N parties. The following steps are then taken.

Stage II. Input: Parties Pi input their respective bits
{µi}Ni=1 obtained from the set {αi, βi}R1

i=1 ∪{zi}Ni=1, as in

Equation (5). The Referee inputs {bi}R1
i=1 obtained from

Stage I.

1. Party Pk measures Z on qubit k for qubits
1, · · · , N . She then announces νk = µk +mk.

2. The Referee measures X to learn
∑N

k=1 mk and

then adds this to
∑N

k=1 νk to obtain
∑N

k=1 µk. The

latter is then added to the sum
∑R1

i=1 bi to obtain
f , which is then announced to all the parties.

It should be noted that by parallelization, both Stages
I and II can be performed using just two rounds of si-
multaneous communication. Indeed, each party needs
to broadcast at most two public messages, the first be-
ing no more than logR1 bits, and the second being one
bit. When run in parallel, all the Stage I messages can
be broadcast concurrently, and likewise for the Stage II
messages.

Intuitively, this protocol is secure due to the one-time
pad bits that are generated with each measurement on
the graph states. While there are a variety of different
approaches to defining security in multipartite compu-
tation, in this work we demand as a security condition
that playing honestly does not reveal any more informa-
tion about one’s input than what can be inferred from
the final function output. We prove in Appendix B 3
that our protocol satisfies this condition.

Performance. To handle experimental errors in the
above protocol, we can employ a simple repetition code
to suppress the effects of any infidelity in our ability to
make |GI⟩ and |GII⟩ on the output of the computation f .
By determining the total bit error probability when com-
puting each bi in Stage I and p in Stage II, an arbitrarily
small total bit error probability ϵf on the computation
output f can be chosen to set the number of repetitions
required for each Stage I and II, respectively. We use this
information to estimate the lower bound rate of compu-
tation at which N parties can compute f on their M -bit
inputs. Details are proved in Appendix B 2.

Functionally, our protocol allows for the secure imple-
mentation of any two-party Boolean function, f . Using
the fidelity estimates established in Sec I and detailed
in App D, we can conservatively estimate the maximum
possible bit error probability in either Stage from the
compliment of the probability that no bit error occurs,
that is, the probability to successfully generate |GI⟩ and
|GII⟩ in our proposed HoD scheme. In Figure 7, we plot
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FIG. 7. Error corrected two-party computation rate versus
the number of input bits to f using the HoD scheme, shown
for two acceptable error probabilities on the computation (ϵf ).
The rate is expressed in units of the repetition rate of excita-
tion of the chosen quantum emitter, Rrep, which is typically in
the range of 106−109 s−1 for highly coherent emitters. The in-
dividual bit error probabilities for Stage I and Stage II, respec-
tively, are 0.008 and 0.003, assuming ηe = 0.4, Fent = 0.999,
and trep/τ = 10−9 (see. Appendix D for details). We see
that these parameters allow virtually unlimited reduction in
the total error probability with minimal change in the overall
rate.

the lower bound rate of computation at which our pro-
tocol can operate with error correction, in units Rrep,
against the size of each parties input, M , for total ac-
ceptable error probabilities ϵf = {10−3, 10−13}.

VI. DISCUSSION AND CONCLUSION

The schemes introduced here naturally lend themselves
to various extensions and modifications to increase func-
tionality. First, combining with a high degree of multi-
plexing, such as between many arrays of atoms or ions,
would increase the generation rate with a linear factor
in the degree of multiplexing. Incorporating this with
heralding means that photons can be routed upon suc-
cessful generation of spin-photon entanglement. Another
extension is the opportunity for substantial spectral en-
gineering of the idler photon in the HoS scheme. As men-
tioned above, the idler photon can be produced at virtu-
ally any arbitrary wavelength regardless of the emission
wavelength of the emitter spin (including using a super-
conducting qubit as the spin and generating a signal-idler
pair with a microwave signal and an optical idler [54]).
We also point out that the bandwidth of the idler pho-
ton can be different than the, typically narrow and fixed,
bandwidth of the emitter. Filtering, time lensing [55],
and/or source engineering [22, 56] can enable substantial
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broadening or narrowing of the idler photon compared to
the emitter photon.

In this work we have demonstrated the feasibility of
generating photonic graph states with inefficient quan-
tum emitters, and give a central example of its applica-
tions to secure multi-party computation. Significantly,
our schemes offer polynomial scaling in the time to con-
struct graph states of hundreds of photons with a high
fidelity on current generation trapped ion experiments
[12, 13], even when the collection efficiency of emitter
photons is poor. The “emit-then-add” approach requires
additional resource costs for making graph states, but we
show that it is feasible with current and near-term exper-
imental hardware. Our scheme is a toolbox for making
large entangled photonic states for MBQC and other ap-
plications that are limited by spin decoherence rather

than photon collection efficiency. We specifically show
an application to realization distributed multi-party com-
putation with reasonable improvements to current hard-
ware.
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Appendix A: Preliminaries on graph states

For an arbitrary graph G = (V,E) with vertices V = {a1, · · · , an} and edge set E ⊂ V × V , consider the n-qubit
operator obtained by performing a controlled−Z gate, CZa,b, between every (a, b) ∈ E. We denote this global operator
by

UG =
∏

(a,b)∈E

CZa,b. (A1)

The graph state associated with the graph G is the n-qubit state

|G⟩ = UG |+⟩⊗V
. (A2)

Note that |+⟩⊗n
is stabilized by n commuting operators {Xa}a∈V . Hence the stabilizer of |G⟩ can be understood by

examining the how the Xa transform under UG. Since CZa,b(Xa)CZa,b = XaZb, it follows that the stabilizer of |G⟩
is generated by the operators {Ka}a∈V , where

Ka= UGXaUG

= Xa

∏
b∈Na

Zb

= Xa

∏
b∈V

Z
Γa,b

b ∀a ∈ V, (A3)

and Γ is the adjacency matrix of G.
For any n-qubit graph state |G⟩, we can generate an orthonormal basis for CN

2 , called the associated graph basis.
The basis vectors have the form

Zr |G⟩ where Zr := Zr1
1 ⊗ Zr2

2 ⊗ · · · ⊗ ZrN
N , (A4)

and we will call r = (r1, r2, · · · , rn) ∈ Zn
2 a conditional phase vector and each bit rk phase information for qubit k.

To see that these states are orthogonal, let r and r′ be two distinct conditional phase vectors, and suppose their bit
values differ in position a. Then Ka will anti-commute with ZrZr′ , and so

⟨G|ZrZr′ |G⟩= ⟨G|ZrZr′Ka |G⟩ = −⟨G|KaZ
rZr′ |G⟩ = −⟨G|ZrZr′ |G⟩ . (A5)

We will be particularly interested in how the graph basis states transform under the local Pauli measurements of
Y and Z. For a binary vector r ∈ Zn

2 and subset of nodes S ⊂ V , let r − S denote the vector of length n − |S|
obtained from r by removing the coordinates in S. Suppose that for an initial graph basis state Zr |G⟩, either Y or
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Z is measured on qubit a and outcome ma ∈ {0, 1} is received. The initial state transforms as follows:

Za : Zr |G⟩ 7→

( ∏
b∈Na

Zma

b

)
Zr−a |G− a⟩ , (A6a)

Ya : Zr |G⟩ 7→

( ∏
b∈Na

(−iZb)
1/2

Zra+ma

b

)
Zr−a |τa(G)− a⟩ , (A6b)

where τa(G) is the local complementation of G at vertex a, i.e. τa(G) is the graph (V,E∆E(Na, Na)), and τa(G)− a
is the graph obtained by removing a from τa(G) [57]. Explicitly,

|τa(G)⟩ = (−iXa)
1/2

( ∏
b∈Na

(iZb)
1/2

)
|G⟩ , (A7)

describes a set of single-qubit rotations comprising a local complementation. Note that the Ya post-measurement
state can always be transformed back to the associated graph basis by performing (iZb)

1/2 on each b ∈ Na. For the
special case of measurement at a leaf in the graph, a vertex with only a single neighbor such that τa(G) = G, the Ya

post-measurement state after rotation back to the graph basis is effectively a Za post-measurement state up to the
conditional phase flip Zra

b .

1. Phase transmission along a chain

Consider the effect of locally measuring along some linear chain in graph G. Let a1, a2, a3, · · · , an, an+1 denote the
constituent qubits, with a1 being the first node in the chain and an+1 being the final node, which is connected to
the remainder of the graph and left unmeasured in this sub-routine. The specific measurement sequence consists of
measuring Y on a1 and (−iZ)1/2Y (iZ)1/2 = −X on ak for all k = 2, · · · , n−1. If the total state prior to measurement
is a graph basis state Zr |G⟩ and (ma1

, · · · ,man−1
) is the binary sequence of outcomes from these measurements, then

by Equation (A6b) the overall state evolution is

Ya1
, (−Xa2

), · · · , (−Xan−1
) : Zr |G⟩7→ [−iZan

]1/2ZΩ
an
Zr−{a1,··· ,an−1} |G− {a1, · · · , an−1}⟩ , (A8)

where Ω =
∑n−1

i=1 (rai + mai) mod 2. Crucially, each mak
is a random bit uncorrelated from r and any other

measurement data. Hence, we can think of each mak
as a one-time pad that is added to the conditional phase

information rak
when passing from node ak to ak−1.

2. Phase transmission at a fork

Consider the effect of measuring two qubits, a and b, that are connected to a single common node c. Suppose the
total state prior to measurement is a graph basis state Zr |G⟩. If ma and mb denote the binary outcomes when either
Y or Z is measured on both qubits, the respective state transformations are given by

Ya, Yb : Zr |G⟩7→ Zra+rb+1
c Zma+mb

c Zr−{a,b} |G− {a, b}⟩ , (A9a)

Za, Zb : Zr |G⟩7→ Zma+mb
c Zr−{a,b} |G− {a, b}⟩ , (A9b)

up to an overall phase. Hence, the key difference between the two measurements is that Ya, Yb transfers the conditional
phase flip Zra+rb+1

c onto the state |G− {a, b}⟩ while Za, Zb does not.

Appendix B: Secure multi-party computation

We verify correctness and prove security of our multi-party computation protocol detailed in Section II, using
the preliminaries of Appendix A. The measurement sequences described in Stages 1 and 2 together accomplish the
computation of any Boolean function up to quadratic order in the parties’ inputs. We verify these sequences by
tracing through the transformation of the graph states |GI⟩ and |GII⟩ used in each part of the protocol, and the
information that is transmitted along the graph in the form of phase flips conditioned on both the parties’ inputs and
their measurements. We establish the security of this process by demonstrating that the classically communicated
information in the protocol reveals no new information to any of the other parties about their input, other than what
they would learn from the final output of the computation.
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1. Correctness

To verify correctness for the computation of f , we track the evolution of phase information as defined in Appendix
A through both phases of the protocol. A graph state |G⟩ consisting of n qubits, labelled 1, · · · , n, is initialized.
We denote m = (m1, · · · ,mn) as the binary vector of measurement outcomes for each of the qubits. In general,
measurements change the shape of the graph disconnecting the measured qubit and applying conditional phase flips
on its neighbors. As the labeling we assigned represents a possible photon emission ordering for generating the graph
state in a quantum emitter based experimental scheme, it is convenient to keep this labeling for each qubit despite
transformations in the graph induced by the measurement sequence.

a. Stage I

Stage I details the measurement sequence performed on |GI⟩, requisite for computing each bi = xiyi+pi in the first
phase. Let xi and yi be the input for the parties Ai and Bi, respectively. We will refer to Ai and Bi as Alice and
Bob, although in general these labels change for different i ∈ {1, 2, · · · ,R1}. The measurement outcome mk denotes
the measurement m of the kth qubit in the eight-qubit graph state, depicted in Figure 5. For simplicity, we suppress
any additional subscript denoting the iteration of Stage I and reset these labels with each new copy of |GI⟩.

In step (1.), the Referee’s X measurement on qubit 1 decouples Bob’s qubit 2 from the rest of the graph. This leads
to correlated outcomes s = m1 = m2 as the parties are each measuring an independent component of the generator
X1Z2 that stabilizes the state. From Eqs. A6a and A8, we see this adds the conditional phase flip Zs

4 to Alice’s qubit.
In step (2.), Bob’s measurement of qubit 3 introduces a conditional phase flip Zm3

4 on Alice’s qubit. Her subsequent
rotation of the qubit, using Bob’s announced δi = yi +m3, transforms the state such that the total conditional phase
on her qubit is described by Zyi+s

4 . Alice then in step (3.) performs a measurement at a fork on qubits 4 and 5,
conditioned on her own input xi, and obtains αi = xi + m4 + m5. From Eqs. A9a and A9b, we see that the total

conditional phase applied to the Referee’s qubit 6 from this step is Z
xi(yi+s+1)+m4+m5

6 = Z
xi(yi+s)+αi

6 . In steps (4.)
and (6.), the pad s informs the Referee and Bob the correct basis to measure their respective qubits, in order to
obtain a correlated outcome. In more detail, the parties each measure their independent component of the generator
X6Z8 or Y6Y8, conditioned on whether s = 0 or s = 1, respectively. Note that if s = 0 the Referee’s measurement in
step (4.) decouples the remaining two qubits, shared between Alice and Bob, and leaves Bob’s qubit invariant under
the action of step (5.) That is, the combined action of Alice and Bob in step (5.) produces a conditional phase Zsxi

8

on Bob’s qubit. Hence, step (6.) produces a correlated outcome between the parties’ measurements and prior phase
information such that

(xi(yi + s) + αi) + bi + (sxi) + βi = 0. (B1)

where we denote bi = m6 belonging to the Referee and βi = m8 belonging to Bob, and the Referee obtains

bi = xiyi + pi (where pi = αi + βi), (B2)

as desired.

b. Stage II

Correctness is proved for Stage II in the same way as before, where now each party is labeled by a Pk, for
k = 1, · · · , N . We again let m = (m1, · · · ,mN ,mR) represent the binary vector of measurement outcomes from each
party on the N + 1 qubit graph state, depicted in Figure 6. We note that the ordering of the labels need not be
tied to a particular photon emission ordering, as all the measurements performed commute with each other and all
classically communicated information need only be shared after each party’s measurement.

We first recognize that each party is measuring an independent component of the generator, XRZ1 · · ·ZN , of this
graph state. This implies for the Referee’s outcome mR that

mR +

N∑
k=1

mk = 0. (B3)

This is equivalent to the notion that the measurement of each party Pk in step (1.) introduces a conditional phase
flip Zmk on the Referee’s qubit, such that total action on the Referee’s qubit is

∏
k Z

mk . The Referee can determine
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the value of p by adding their outcome mk to sum of the parties announces νk = µk +mk, such that

p= mR +
N∑

k=1

νk =

R1∑
i=1

(αi + βi) +

R2∑
k=0

zi, (B4)

and subsequently the output of the computation

f = p+

R1∑
i=1

bi =

R1∑
i=1

xiyi +

R2∑
i=1

zi. (B5)

2. Including Error Correction

In practice, each bit conjunction computed in Stage I of the protocol as well as the final summation computed in
Stage II will have some error. In this section we describe a basic error correction method that can be employed to
suppress the overall computational error as much as desired.

Let ϵ∗ denote the largest probability of a bit error in each iteration of Stage I, and let Ξi be the indicator variable
for the occurrence of an error in iteration i. Thus, while the noiseless protocol generates bit value bi = xiyi + pi in
iteration i, the actual implementation generates bit value

bi = xiyi + pi + Ξi. (B6)

To deal with this, the Referee can employ a simple repetition code. That is, each iteration i is repeated KI times,
from which the Referee obtains values b(i,1), b(i,2), · · · , b(i,KI), where b(i,j) = xiyi + p(i,j) + Ξ(i,j). Recalling that
p(i,j) = α(i,j) + β(i,j) is the sum of Alice and Bob’s private bits, for each j = 2, · · · ,KI , Alice and Bob announce
to the Referee messages α(i,1) + α(i,j) and β(i,1) + β(i,j), respectively. The Referee adds these to each corresponding
b(i,j) so that his KI bit values have the form b(i,j) = xiyi + pi + Ξ(i,j), where pi = α(i,1) + β(i,1). Note that each
α(i,j) and β(i,j) is an independent private random bit for Alice and Bob, so the announcements of α(i,1) + α(i,j) and
β(i,1) + β(i,j) do not reveal any information about α(i,1) and β(i,1). The Referee then performs majority voting on the
bit values b(i,j), accepting the value appearing the most among the KI sub-iterations. By Hoeffding’s inequality, this

value will be bi = xiyi + pi with a bit error rate δ ≤ exp
[
−2KI(

1
2 − ϵ∗ − 1

2KI
)2
]
. Then, the combined bit error rate

in computing
∑R1

i=1 bi is equal to the probability that an odd number of bit errors occur among the bi. A counting
argument shows this probability to be

ϵI=
1

2
[1− (1− 2p)R1 ] ≤ δR1 ≤ R1 · exp

[
−2KI(

1
2 − ϵ∗ − 1

2KI
)2
]
. (B7)

Note that to suppress the bit error rate, the number of repetitions KI needed for each iteration i is exponentially
smaller than the total number of iterations R1.

Moving to Stage II, there will be a separate bit error rate ϵ+ in the Referee’s computation of p using the state
|GII⟩. Again, a repetition code can be used by repeating this step KII times and achieving an overall bit error

rate on p of ϵII ≤ exp
[
−2KII(

1
2 − ϵ+ − 1

2KII
)2
]
. Therefore, the total error rate in computing f is ϵI + ϵII − 2ϵIϵII ,

which is exponentially small in the repetitions KI and KII . In particular, to obtain a bit error probability ϵf on the
computation of f for fixed ϵ∗ and ϵ+, it suffices to take

KI=

⌈
1

( 12 − ϵ∗)2
ln

√
R1

ϵf

⌉
≤

⌈
1

( 12 − ϵ∗)2
ln

(
MN√
2ϵf

)⌉
, (B8a)

KII=

⌈
1

( 12 − ϵ+)2
ln

√
1

ϵf

⌉
. (B8b)

In total, the N -party computation of f on each party’s M -bit input can be implemented with error correction in our
protocol at a lower bound unit rate of

R

R0
≥ MN

4M2N2

⌈
ln(MN/

√
2ϵf)(

1
2−ϵ∗

)2

⌉
+ (N + 1)

⌈
ln(1/√ϵf)(
1
2−ϵ+

)2

⌉ , (B9)

where R0 is the scheme-dependant average rate to add a new photon to a graph state. For the HoD scheme we
propose, R0 = ηeRrep.
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3. Security

Having established correctness of the proposed protocol, we now prove that it is secure under the requirements
defined in Section III. Recall, we demand as a security condition that playing honestly does not reveal any more
information about one’s input than what can be inferred from the final function output. We will show this is true
under the assumption that the Referee does not collaborate with any of the parties by supplying them with side
information.

In the first phase, each state |GI⟩AiBiR is a tripartite state, held by Alice, Bob, and the Referee. Suppose that
Alice is playing honestly and a dishonest Bob is trying to learn about input based on his local quantum information
and whatever Alice discloses in an honest execution of the protocol. The only information he obtains in Stage I is the
public message γi = xi + m7 announced from Alice. Hence, suppose that Alice’s input is described by the random
variable Xi with values xi having a prior distribution p(xi), which is known to all parties. Bob’s initial state of

knowledge of variable Xi given his share of |GI⟩AiBiR is described by the density matrix

σXiBi=
1∑

xi=0

p(xi) |xi⟩⟨xi|Xi ⊗ trAiR

(
|GI⟩⟨GI |AiBiR

)
. (B10)

After Alice’s measurement and Bob’s learning of the value γi, his updated state of knowledge conditioned on this new
information is

σXiBi
γi

=
1∑

xi=0

1∑
m7=0

p(xi,m7|γi) |xi⟩⟨xi|Xi ⊗ trAiR

(
|m7⟩⟨m7|7 |GI⟩⟨GI |AiBiR

)
/p(m7). (B11)

A calculation shows that

trAiR

(
|m7⟩⟨m7|7 |GI⟩⟨GI |AiBiR

)
=

I2
2

⊗ I3
2

⊗ tr7

(
|m7⟩⟨m7|7

|+0⟩⟨+0|78 + |−1⟩⟨−1|78
2

)
=

1

2

(
I2
2

⊗ I3
2

⊗ I8
2

)
=

1

2
trAiR

(
|GI⟩⟨GI |AiBiR

)
. (B12)

In other words, the post-measurement state of Bob’s subsystem is independent of Alice’s measurement outcome. Since
m7 is a uniform random bit independent of xi, we have p(m7) =

1
2 and p(xi|γi) = p(xi). Thus,

σXiBi
γi

=
1∑

xi=0

1∑
mi=0

p(xi,m7|γi) |xi⟩⟨xi|Xi ⊗ trAiR

(
|GI⟩⟨GI |AiBiR

)

=

1∑
xi=0

p(xi) |xi⟩⟨xi|Xi ⊗ trAiR

(
|GI⟩⟨GI |AiBiR

)
= σXiBi . (B13)

This shows that Bob’s knowledge of Alice’s input does not change throughout the course of Stage I. The same is also
clearly true for Stage II since the trR |GII⟩⟨GII | = 1

2 (|+ · · ·+⟩⟨+ · · ·+|+ |− · · · −⟩⟨− · · · −|), and so the measurement
outcomes mk of the honest parties Pk measuring Z are independent of each other and of the values µk. Therefore,
the only new information Bob learns about Alice’s input comes through the announcement of f(x1, · · · ,xN ) by the
Referee at the end of the protocol. A similar conclusion is reached in the scenario of an honest Bob and a dishonest
Alice.

Now we consider the Referee. Since there is no collusion with parties P1, · · · ,Pk, from the Referee’s perspective,
either all parties are playing fairly or some are acting maliciously; in the latter case, it is unknown who these parties
are or what attacks they are employing. Therefore, a corrupt Referee wanting to learn the inputs of one or more
honest parties should proceed by assuming that all parties are playing honestly. Like before, in each iteration of

|GI⟩AiBiR, the Referee’s initial state and description of the variables Xi and Yi is given by

σXiYiR =

1∑
xi,yi=0

p(xi)p(yi) |xi⟩⟨xi|Xi ⊗ |yi⟩⟨yi|Yi ⊗ trAiBi

(
|GI⟩⟨GI |AiBiR

)
. (B14)
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Note that tracing out qubits 2, 4, 5, and 8 completely dephase all the remaining qubits in |GI⟩:

tr2,4,5,8

(
|GI⟩⟨GI |AiBiR

)
=

I1
2

⊗ I3
2

⊗ I6
2

⊗ I7
2
. (B15)

Hence,

trAiBi

(
|m3⟩⟨m3|3 ⊗ |m7⟩⟨m7|7 |GI⟩⟨GI |AiBiR

)
= trAiBi

(
|GI⟩⟨GI |AiBiR

)
=

I1
2

⊗ I6
2
, (B16)

from which it follows that Alice and Bob’s announcements of γi = xi +m7 and δi = yi +m3 reveal no information to
the referee about xi and yi; i.e. σ

XiYiR = σXiYiR
γi,δi

. Likewise, it is easy to see that in Stage II, the Referee’s reduced

state is completely mixed until all N messages are received, at which point it encodes the bit value
∑N

k=1 mk.

Now since f =
∑N

k=1(mk + νk) +
∑R1

i=1 bi, we have that

p

(
x1, · · · ,xN

∣∣∣∣∑
k

mk, {νk}k, {bi}i

)
= p (x1, · · · ,xN |{νk}k, {bi}i, f) = p (x1, · · · ,xN |f) , (B17)

where the last equality follows from the fact that the νk and bi are independent of the {xi}Ni=1 due to the padded bits
from the measurements. Hence, the Referee’s knowledge of the inputs {xi}Ni=1 given the data (

∑
k mk, {νk}k, {bi}i)

is equivalent to his knowledge of the {xi}Ni=1 given f(x1, · · · ,xN ).

4. Self-testing of graph states

We can further secure the computation against an untrustworthy Source, via a self-testing procedure, which allows
the parties and the Referee to validate the state distributed by the Source. If the parties indeed have the correct state,
measuring the independent components of a uniformly randomly chosen stabilizer of the state will lead to a correlated
outcome, hence implementing a partial test of the state’s validity. By repeating the protocol and partitioning rounds
between these stabilizer tests, discarded rounds of computation, and a single accepted target round of computation, the
parties can upper bound the probability of receiving the incorrect state during the target round [52]. In implementing
our multi-party protocol within our HoD scheme for generating the requisite states, we require the set of instructions,
detailing which rounds to test, compute, and ultimately accept, be a private source of shared randomness between the
parties and the Referee, which could be generated initially from a set of GHZ states distributed to the participants in
the computation [58]. Without knowledge of which rounds are stabilizer tests and which are computations, the Source
is prevented from modifying the state they distribute in order to fool the participants during rounds of self-testing.
Conversely, the HoS scheme allows for the requisite graph states to be produced prior to the measurement-based
computation protocol. Hence, the instruction set directing the participants when to self-test can be decided after
the state has already been generated. In these schemes, we therefore do not require a distinct Source and Referee,
at the cost of necessitating memory—in requiring the full set of photonic states be generated in advance, as well as
additional rounds of self-testing [53].

Appendix C: Constructing graph states with “emit then add”

Building graph states in either of the HoS and HoD schemes necessities additional experimental overhead from
typical deterministic quantum emitter-based schemes in both the number of qubits required and entangling operations
between them. We demonstrate through an inductive argument that these additional resource costs scale at worst
linearly. Subsequently, we present a resource-efficient set of subroutines used to produce the requisite states for our
multi-party computation protocol, described in Section II. As the whole of our protocol is Clifford, we can employ
the HoD scheme to produce and measure these graph states efficiently in practice, without the need of a quantum
memory whatsoever. We briefly discuss how phase corrections, resulting from these construction subroutines, are
handled classical in this scheme. The subroutines we introduce are thereafter employed in Appendix D to estimate
the fidelity to make the states used in our protocol. In what follows, a superscript (p), (s), or (e) denotes the kind
of physical qubit associated with the relevant subspace on which an operator acts on a photon, auxiliary spin, or
emitter, respectively.
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FIG. 8. A subcircuit equivalent to a CXs,p gate, up to a conditional phase correction, for transferring entanglement (conditional
phase information) in our proposed HoS (HoD) scheme. This example “emit then add” procedure replaces every pumping gate
in typical deterministic schemes for generating arbitrary photonic graph states. Entanglement (conditional phase information)
between a photon (p) and a coherently pumped emitter (e) (represented by a red CXe,p gate) is exchanged to an auxiliary spin
(s) via a two-qubit entangling CZe,s gate and local complementation. The emitter is measured out thereafter and reinitialized
for the next iteration of the procedure. Rotations about X and Z are by π/2 and −π/2, respectively, as noted in Equation
A7. The measurement of the emitter is with respect to the Z basis. All previously added photons at iterations k < m are
unaffected.

1. Additional overhead

Let |G⟩ define an existing graph state in which there is at least a single edge between an auxiliary spin and the set
of photons previously added to the the graph. We label each of these photons by an emission order 1, · · · ,m − 1.
Let Vm define the additional vector space describing the emitter and the next photon, m, to be added to the graph,
both of which start in |0⟩. The set of generators which stabilizes the collective vector space VG + Vm, consisting of
the graph and subsequent emitter-photon pair, has the form below

SVG+Vm =
〈
· · · , · · ·Z(p)

k · · ·X(s), Z(e), Z(p)
m

〉
, (C1)

where ⟨· · · ⟩ denotes a set of generators and the notation · · ·Z(p)
k · · · is used to keep track of an arbitrary edge between

the auxiliary spin and a photon previously added to the graph at some emission step k < m. The subcircuit depicted
Figure 8 demonstrates an example of how to transfer entanglement (or conditional phase information) from the
emitter-photon sub-system to |G⟩, with a single two-qubit spin-spin entangling gate and local complementation. In
implementing the example, we transform the stabilizer of the combined vector space in Equation C1 as

S′
VG+Vm

=
〈
· · · , (−1)cm · · ·Z(p)

k · · ·X(p)
m X(s), (−1)cmZ(p)

m Z(s), (−1)cmZ(e)
〉

(C2)

where cm ∈ {0, 1} is a classical bit value conditioned on the measurement of the emitter.
The result of these operations produces the same stabilizer we would have arrived at had we instead pumped the

auxiliary spin itself. With these additional operations, any graph state accessible in the deterministic scheme can be
constructed in the HoS or HoD schemes. As we restrict those auxiliary spins already entangled with any previously
added photons from being pumped, it follows that one additional spin, the emitter, and one two-qubit spin-spin
entangling gate per photon in G are the minimum additional overhead in our proposed schemes for making arbitrary
graph states. Furthermore we can define a new vector space V ′

G, containing the existing graph state and a newly
entangled photon, with a dimension that increases by one with each new photon. The new space V ′

G is stabilized by
a unique set of generators that can be rotated back to a graph state basis of the same general form as Equation C1,
now defined by a new graph state |G′⟩.

2. Construction subroutines

We also offer a pair subroutines the simplifies the construction and overhead for the graph states |GI⟩ and |GII⟩,
described in Section III. Representations of the graph transformations associated with the two subroutines, along
with example circuits, are depicted in Figs. 9 and 10. These transformations can be performed successively with no
additional operations, transforming the previous graph G built on the auxiliary spin to a new graph G′ with any new
photons sharing an edge to the auxiliary spin. Despite their intended application in our MPC protocol, we make no
assumptions about the measurement of the photons in these subroutines, such that they can be applied generally
across experimental implementations.
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(a)

(b)

G

G’

G G

G’
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(c)

FIG. 9. Passing-subroutine for adding new photons to an existing graph, G. (a) A graph transformation of passing a new
photon (green) from the emitter (red) to an auxiliary spin (black), which is connected to one or more previously added
photons (white, denoted with double edge for the multiplicity). This subroutine consists of two variations: (left) leaving all
previously added photons invariant, (right) transplanting those edges to the newly added photon. (b) An example of how local
complementations on a target qubit (magenta circle) can be used to add or remove edges. (c) A quantum subcircuit which
implements the graph transformation. The right variation of the graph transformation above is achieved with the additional
two local complementations (blue dashed line, depicting the deviation). Rotations and measurements follow the same notation
as in Figure 8.

One “passing”-subroutine, shown in Figure 9 consists of two variations: “join” and “extend”. The join-subroutine
adds a new photon to an existing graph and leaves all previously existing edges invariant. The extend-subroutine
transfers all edges from the auxiliary spin to the new photon. The two are achieved without or with the additional
two local complementations depicted at the end of the example circuit, respectively. Both variations only act on
previously added photons in the neighborhood of the auxiliary spin, Ns. Repeatedly applying the join-subroutine
or extend-subroutine on a single auxiliary spin produces a star graph or linear cluster state, respectively for each
variation.

We note briefly that in practice with each implementation of the passing-subroutine, the newly added photon to
graph carries a conditional phase that is a byproduct of the decoupling measurement made on the emitter, as shown
in Equation C2. This byproduct phase determines the precise basis state of the graph, and may require correction
for general measurement-based quantum computation. In the HoD scheme photons are measured before they are
decoupled from the emitter, and hence any requisite phase corrections need be commuted after each measurement.
The Clifford nature of the computations employed in our MPC simplifies all of these corrections to bits flips that
can be handled classically. Furthermore, correction of this phase is not always necessary as certain measurements
made by the parties destroy this phase information, while other measurements allow the parties to absorb this phase
information into their own pad. Conversely, conditional measurements, such as the ones made by Alice in step (4.) of
Stage I of our protocol, couple these byproduct phases to the phase information input into the computation. Therefore
classical communication is required here between Alice and the Source. A simple solution is for the Source to make
public the outcomes of each of these decoupling measurement, at no cost to security of the computation.

The other “patching”-subroutine, shown in Figure 10, serves to attach two subgraphs G1 and G2 by a common edges
between photons. This process requires additional two-qubit spin-spin entangling gates from the passing-subroutine.
For further simplicity we only consider the case when G1 and G2 each have a single edge to all previously added
photons in their respective subgraphs. Operations in this subroutine are restricted locally to only the emitter, spin,
and the two photons we ultimately require to share an edge, labeled in the figure by arbitrary emission steps j, k in
1, · · · , np. This subroutine mirrors the one employed in the production of large 2D cluster states in [5], and can be
applied in the either scheme we propose for the same purpose.

Application of these subroutines to the construction of the graph states discussed in Section III is straightforward.
The state |GI⟩, consisting of np = 8 photons, labeled by an emission ordering depicted in Figure 5, can be built
following the sequence of steps in Build I. This procedure requires 11 two-qubit spin-spin entangling gates in total:
8 from passing operations, and 3 from a single patching step (as we are patching between the final two photons in
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(a)

(b)

G1 G2 G1 G2

G’

(c)

…

… …

…

… … … … …

FIG. 10. Patching-subroutine for attaching two subgraphs G1 and G2 by a common edge between photons. (a) The graph
transformation depicting the patching. (b) The corresponding circuit diagram. Additional two-qubit spin-spin entangling gates
are required for this subroutine, over the passing-subroutine. Rotations follow the same notation as in Figure 8. (c) A 2D
cluster state built on an array of auxiliary spins. Edges can be generated between photons in the layer neighboring the array
of spins with this patching.

each subgraph and can therefore neglect the fourth spin-spin entangling gate in the subroutine). It is known that the
sequential nature of photon emission events imparts on an ordering on the graph state, limiting the kinds of photonic
graphs accessible by construction on a single quantum emitter [59]. The private nature of the padded AND being
computed in Stage I sets a nontrivial emission ordering, which, following the results of [32], requires two auxiliary
spins to construct. The state |GII⟩, consisting of np = N+1 photons for an N party computation, can be constructed
entirely out of the passing-subroutine on a single auxiliary spin. This graph state can be built following Build II.
Trivially, this construction requires N + 1 two-qubit spin-spin entangling gates.

Build I. |GI⟩ . Input: A photon emission order labeling photons (p1), · · · , (p8), corresponding to the np = 8 photons
in |GI⟩, an emitting spin, and two auxiliary spins, labeled (s1) and (s2).

1. Pass photon (p1) to auxiliary spin (s1) with join.

2. Pass photons (p2) and (p3) to (s1), utilizing extend for (p2) and join for (p3).

3. Repeat step the previous step for photons (p4) and (p5).

4. Pass photon (p6) to (s1) with extend.

5. Pass photons (p7) and (p8) to auxiliary spin (s2), utilizing join for (p7) and extend for (p8).

6. Patch subgraphs on (s2) and (s1).

Build II. |GII⟩. Input: A photon emission order labeling photons (p1), · · · , (pN ), (pR), corresponding to the np =
N + 1 photons in |GII⟩, an emitting spin, and a single auxiliary spin, labeled (s).

1. Pass photons (p1), · · · , (pN ) to the auxiliary spin (s) with join, where photon (pk) is routed to party k.

2. Pass the final photon (pR), belonging to the Referee, to (s) with extend.

Appendix D: Experimentally realizable fidelity calculations

We now consider an experimental realization of our schemes for constructing the graph states utilized in our multi-
party computation. While the nature of the herald and the computation itself are device-independent, we assume here
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FIG. 11. Entanglement swapping in the HoS scheme. (a) Schematic of a generalized Hong-Ou-Mandel interferometer applied
as a joint measurement apparatus. A photon entangled with an emitter is sent through port a of the beamsplitter, and a
photon from a spontaneous parametric down-conversion (SPDC) photon-pair source is sent through port b. Detection of two
single-photon orthonormal states |u⟩, |v⟩ in either output ports c or d results in entanglement between the emitter and the
idler photon from the pair source. Various loss factors denoted by η are modelled. Additional elements for qubit rotations
are not shown. (b) Probability tree showing the outcomes of a Bell state measurement attempt. The “success” probability Ps

for the Bell state measurement denotes the probability of measuring a set of specific click patterns that indicate entanglement
swapping. Pt denotes the probability of projecting the emitter and idler onto a Bell state from the measurement.

trapped ions as our quantum emitters, due to their high fidelity benchmarks for two-qubit spin-spin entangling gates
[12, 13] and reasonable collection efficiency with high numerical aperture optics [14]. We outline our fidelity model for
two schemes; the HoS scheme involving the heralding of a Bell state between an emitter and a photon for general cases
involving non-destructive heralding of photons, and the HoD scheme where emitter photons are measured directly in
the basis required for the measurement-based computation protocol.

1. Experimental apparatus

For the HoS scheme, heralding a Bell state between an emitter and photon is implemented via entanglement swap-
ping between a photon from an emitter and a photon from a nonlinear pair-source. We use spontaneous parametric
down-conversion (SPDC) as our pair-source for the heralding. SPDC is an optical process based on a crystal with χ(2)

nonlinearity whereby a photon from a pump is converted to a signal and idler photon pair of lower energy. It is often
used to produce entangled photon pairs in various degrees of freedom, or as a heralded single photon source [28]. The
joint measurement apparatus required for the entanglement swapping in the heralding scheme we describe here can
be accomplished via a generalized Hong-Ou-Mandel interferometer [60] depicted in Figure 11(a), where the emitter
photon and signal photon from the pair-source are sent to a 50:50 beamsplitter. Elements from these experiments are
modeled in our estimates of the fidelity to successfully produce graph states.

We briefly consider the set of states employed in heralding a Bell state in a device-independent form. The internal
state of an emitter (e) is entangled with a photon (pe) in an arbitrary basis, and an entangled photon pair is produced
from the SPDC source labeled as the signal (ps) and idler (pi) photons. We can express both the idealized entangled
states |ΨE⟩ and |ΨP ⟩ respectively, as

|ΨE⟩=
1√
2
(|0⟩(e) |1; 0⟩(pe) − |1⟩(e) |0; 1⟩(pe)), (D1)

|ΨP ⟩=
1√
2
(|1; 0⟩(ps) |0; 1⟩(pi) − |0; 1⟩(ps) |1; 0⟩(pi)), (D2)

where |0⟩(e) and |1⟩(e) is the computational basis for the emitter, and the notation |m;n⟩ is used to denote the
photonic Fock state representation for a particular basis {|u⟩ , |v⟩}, such as orthogonal polarizations, with m in |u⟩
and n in |v⟩. The relationship between the input modes a and b and output modes c and d of the 50:50 beamsplitter

can be described by the unitary transformation on the creation operators â† = 1√
2
(ĉ† + d̂†) and b̂† = 1√

2
(ĉ† − d̂†).

With the emitter photon entering port a, and the signal photon entering port b, the overall state after applying the
transformation can be expressed in the form
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|ΨE⟩ |ΨP ⟩ =
(ĉ†u)

2 − (d̂†u)
2

4
|vac⟩c,d |0⟩

(e) |0; 1⟩(pi) +
d̂†ud̂

†
v − ĉ†uĉ

†
v

2
√
2

|vac⟩c,d |Ψ
+⟩(e,pi)

+
ĉ†ud̂

†
v − ĉ†vd̂

†
u

2
√
2

|vac⟩c,d |Ψ
−⟩(e,pi) +

(ĉ†v)
2 − (d̂†v)

2

4
|vac⟩c,d |1⟩

(e) |1; 0⟩(pi) ,

(D3)

where

|Ψ±⟩(e,pi) =
1√
2
(|0⟩(e) |1; 0⟩(pi) ± |1⟩(e) |0; 1⟩(pi)). (D4)

We are interested in projecting onto either |Ψ+⟩(e,pi) or |Ψ−⟩(e,pi) which can be realized by detecting specific click
patterns on photon counting detectors at the output ports capable of resolving the orthonormal components. From
Equation (D3), we can see that detecting orthonormal one-photon states in either ports c or d results in a projection

onto |Ψ+⟩(e,pi) while detection in opposite ports results in |Ψ−⟩(e,pi). The overall probability of projection onto either

of the Bell states is 1
2 for each heralded measurement attempt. Upon the detection of |Ψ−⟩(e,pi), we can perform a

qubit rotation to produce the state |Ψ+⟩(e,pi) for phase consistency. We can then perform a series of one- and two-qubit
gates to add a photon to a graph. Upon failure to detect the correct detection pattern, we reinitialize the emitter and
photon-pair and attempt the measurement again. We assume number-resolving detectors at the output ports of the
beamsplitter capable of detecting photons in the basis {|u⟩ , |v⟩}. For example, two polarizing beamsplitters and four
detectors would be used after the output ports for photons entangled in a polarization basis.

The initial state of the emitter can be described by the state defined in Equation (D1). The output state of SPDC
is a multi-mode squeezed state where the photon-pair production probability is dependent on the pump amplitude.
Assuming a classical pump, we take the Hamiltonian for the SPDC process to approximately be of the form [33, 61]

Ĥ = eiϕκK̂† + e−iϕκK̂, (D5)

where K̂† = â†u;sâ
†
v;i − â†v;sâ

†
u;i represents the creation of entangled signal and idler pairs denoted s and i in the basis

{|u⟩ , |v⟩}. The time evolution operator Û(t) = exp
(
iĤt/ℏ

)
yields the resulting state

|ΨSPDC⟩ = N

∞∑
n=0

tanhn r

n∑
m=0

(−1)m |n−m;m⟩(ps) |m;n−m⟩(pi) , (D6)

where r = κt/ℏ is the interaction parameter that is dependent on the pump field amplitude, t is the interaction
time of the pump through the crystal, and N is the normalization constant with N = 1 − tanh2 r. By tuning the
interaction parameter r, we can change the probability of producing a single pair (n = 1 in Equation (D6) leading
to Equation (D2)) to optimize the fidelity of the HoS scheme. Note that increasing the pump power also increases
the relative contribution of the higher order terms (n > 1), which increases the probability of detecting multiple
photon-pairs.

The above is applicable for polarization-entangled photon pairs directly produced in type-II SPDC described in
refs. [33, 61]; the output state and choice of degree-of-freedom for entanglement will of course be dependent on the
specific properties of the photon-pair source and pump. However, we note that we are assuming the pump can be
treated as a classical, single-mode source, and we use a simplified Hamiltonian and output state for the photon pairs
entangled in {|u⟩ , |v⟩}. Moreover, factors such as the multi-modal nature of the pump, phase differences or instabilities
between the orthonormal components in the optical path, or distinguishability between the photons from the emitter
and the SPDC source can degrade the fidelity of the scheme.

2. Sources of infidelity

Several experimentally relevant sources of infidelity are considered in our model. Photonic loss and detector dark
counts can induce false heralding events, leading to a failure to resolve a true Bell state and subsequent addition of
a photon to the graph. Decoherence across the emitter and any auxiliary spins utilized in building the graph will
produce errors on any computation done on the graph state. The fidelity of each two-qubit spin-spin entangling
gate performed in the construction is considered as well. We can also consider the fidelity of the initial entanglement
between the emitter and its photon, as well as the entanglement of the photon-pair, used in the entanglement swapping
procedure.
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a. Photonic loss

The standard approach to modelling photonic losses is to introduce a fictitious beamsplitter with transmittance η
and reflectance 1− η on the lossy channel. This is equivalent to applying the transformation on the creation operator

â† =
√
ηâ†T +

√
1− ηâ†R [62] where T and R denote the transmitted and reflected paths respectively. The Fock state |n⟩

serving as the input transforms as |n⟩ →
∑n

k=0

√(
n
k

)
ηn−k(1− η)k |n− k⟩T |k⟩R and the reflected path is traced out.

We assume, for simplicity, that η is independent of the photonic degrees of freedom for each loss channel modelled.
Applying this to an emitter with an initial state given by Equation (D1) and performing the partial trace over the
reflected path, the resulting density matrix ρ̂E for the emitter-photon pair incorporating losses is

ρ̂E =
1

2
(1− ηe) |0⟩⟨0|(e) ⊗ |vac⟩⟨vac|(pe) +

1

2
(1− ηe) |1⟩⟨1|(e) ⊗ |vac⟩⟨vac|(pe)

+
1

2
ηe |0⟩⟨0|(e) ⊗ |1; 0⟩⟨1; 0|(pe) +

1

2
ηe |1⟩⟨1|(e) ⊗ |0; 1⟩⟨0; 1|(pe)

−1

2
ηe |0⟩⟨1|(e) ⊗ |1; 0⟩⟨0; 1|(pe) − 1

2
ηe |1⟩⟨0|(e) ⊗ |0; 1⟩⟨1; 0|(pe) . (D7)

Similarly, the density matrix for the SPDC source ρ̂SPDC becomes

ρ̂SPDC =

∞∑
n,n∗=0

n∑
m=0

n∗∑
m∗=0

min{n−m,n∗−m∗}∑
ks,k

′
i=0

min{m,m∗}∑
k′
s,ki=0

cn,m,ks,k
′
s,ki,k

′
i
c∗
n∗,m∗,ks,k

′
s,ki,k

′
i

|n−m− ks;m− k
′

s⟩ ⟨n∗ −m∗ − ks;m
∗ − k

′

s|
(ps)

⊗ |m− ki;n−m− k
′

i⟩ ⟨m∗ − ki;n
∗ −m∗ − k

′

i|
(pi)

,

(D8)

where

cn,m,ks,k
′
s,ki,k

′
i
= (1− ξ)(

√
ξ)n(−1)m

√(
n−m

ks

)(
m

k′
s

)(
m

ki

)(
n−m

k
′
i

)
η
n−ks−k′

s
s (1− ηs)ks+k′

sη
n−ki−k

′
i

i (1− ηi)ki+k
′
i ,

(D9)

and we have used ξ = tanh2 r. Here, we have made the additional substitutions ηe = η
′

eηdet(λe) and ηs = η
′

sηdet(λs),
where ηe and ηs are the combined collection and photodetection efficiencies for the emitter and signal photons respec-
tively in the interferometry setup. η′ accounts for the collection efficiency of the optical path as shown in Figure 11(a),
and ηdet(λ) is the photodetection efficiency which may be wavelength dependent (in the joint measurement, we require

λe = λs). ηi = η
′

i is the collection efficiency of the idler for the SPDC setup, neglecting user-specific losses such as
transmission losses through an optical fiber network and imperfect detection from the user. Since we are interested
in retrieving the photon from the emitter and a single pair from the SPDC source for entanglement swapping, under
the loss model the resulting probabilities for |ΨE⟩ and |ΨP ⟩ as defined in Equation (D1) and Equation (D2) are

⟨ΨE | ρ̂E |ΨE⟩= ηe, (D10)

⟨ΨP | ρ̂SPDC |ΨP ⟩=
ηsηiξ(η̄sη̄iξ + 2)(1− ξ)2

(1− η̄sη̄iξ)4
, (D11)

where η̄e = 1− ηe, η̄s = 1− ηs, and η̄i = 1− ηi.

b. Photodetector metrics

In this work, we provide practical estimates of the fidelity achievable using photon number-resolving detectors for
entanglement swapping. We assume each detector in the setup has some efficiency ηdet and also model dark counts
which arise due to inherent electronic noise in a detector. Each dark count event is assumed to be independent and
generated at a constant rate Rd cps, and typically dark count rates can be low (< 10−2 cps) for single-photon detectors
such as Transition Edge Sensors [63]. Furthermore, we assume the exposure time of the detectors, texp is much longer
than the time scale over which dark counts emerge. The probability for nd dark counts on a detector during each
measurement cycle can then be approximated by a Poisson distribution [64]

Pd(nd) = e−Rdtexp
(Rdtexp)

nd

nd!
. (D12)
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The joint measurement in the heralding involves the use of detectors in output ports c and d in Figure 11. Therefore,
we need to consider the effect of four detection outcomes for the herald – two detectors each with two orthonormal
results, and the probability of dark counts for each. We assume identical dark count distributions for the detectors
used in the herald.

c. Entanglement swapping and heralded success probability

A successful herald occurs at a probability which we define as Ps. For the HoD scheme, Ps = ηe as we perform
additional single and two-qubit operations on a graph only when the photon from the emitter is successfully measured.
In the HoS scheme, Ps is the probability of detecting the set of detector click patterns requisite for the entanglement
swap.

An extra source of infidelity for the heralded Bell state measurement occurs from the joint measurement itself.
We define Pt as the overall probability of projecting the idler photon and emitter onto a Bell state for each joint
measurement attempt. The probabilities are indicated in Figure 11(b). This will be a function of the detection
efficiencies of the photons as well as the probability of zero dark count events detected. From Equation D10, Equation
D11, and Equation D12, Pt is given by

Pt(ηe, ηs, ηi, ξ)=
1

2
⟨ΨE | ρ̂E |ΨE⟩ ⟨ΨP | ρ̂SPDC |ΨP ⟩P 4

d (0)

=
1

2

ηeηsηiξ(η̄sη̄iξ + 2)

(1− η̄sη̄iξ)4
(1− ξ)2P 4

d (0). (D13)

The heralded success probability Ps for the joint measurement is conditioned on a detection pattern representing
the orthonormality of the photon states after the beamsplitter. This is a source of infidelity as the joint detection

of states such as |0; 0⟩(pe) |1; 1⟩(ps), representing two signal photons that are orthonormal to each other from the
photon pair source and no photons from the emitter, possible due to detection or collection losses, would not result
in entanglement swapping. We can identify the set of states that would result in a “success”:

S = {|1; 0⟩(pe) |0; 1⟩(ps) , |0; 1⟩(pe) |1; 0⟩(ps) , |0; 0⟩(pe) |1; 1⟩(ps)} (D14)

For each state in the set S, dark counts can lead to a false detection of the state. For example, the state

|1; 0⟩(pe) |0; 1⟩(ps) with zero dark counts is indistinguishable from the state |1; 0⟩(pe) |0; 0⟩(ps) with one dark count

falsely attributed to the measurement of a signal photon in the state |0; 1⟩(ps). The former has an additional as-
sociated dark count probability of P 4

d (0) and the latter Pd(1)P
3
d (0). Thus, we can compute Ps by considering the

probability of measuring all states in S, and all dark count combinations and photon states that reconstruct each
element of S. By taking the partial trace of the emitter and idler photon from Equation D7 and Equation D8, and
considering the probabilities mentioned in the overall set of joint measurement outcomes, we arrive at the probability
Ps for the joint measurement,

Ps(ηe, ηs, ξ) =
3η̄e

(1− η̄sξ)2
(1− ξ)2P 2

d (1)P
2
d (0)

+

[
ηe

(1− η̄sξ)2
+

4η̄eηsξ

(1− η̄sξ)3

]
(1− ξ)2Pd(1)P

3
d (0)

+

[
ηeηsξ

(1− η̄sξ)3
+

η̄eη
2
sξ

2

(1− η̄sξ)4

]
(1− ξ)2P 4

d (0). (D15)

In this paper, we consider the case where heralding is repeated until a “success” is flagged for each idler photon added
to the graph. Thus, the fidelity of the entanglement swapping procedure is Fswap = Pt/Ps.

d. Decoherence

The emitter used to generate photons, as well as any auxiliary spin(s) entangled with an existing graph, will dephase
across the duration until they are measured and projected back to a known state. For an emitter or auxiliary spin
represented by a density matrix ρ̂, we model the dephasing process via the map

ρ̂ → D(ρ̂; t, τ) =
1

2
(1 + e−t/τ )ρ̂+

1

2
(1− e−t/τ )Zρ̂Z, (D16)
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where τ is the coherence time of the emitter or auxiliary spin and t is a timescale for the dephasing process. Clearly
this process leaves the state invariant with probability 1

2 (1+e−t/τ ), or conjugates it by Z with probability 1
2 (1−e−t/τ ).

It is straightforward to verify that this map describes a Markovian process such that

D(ρ̂; t1 + t2, τ) = D(ρ̂; t2, τ) ◦ D(ρ̂; t1, τ). (D17)

We assume that each attempted herald happens on a short, regular timescale trep = R−1
rep, which is simply the inverse

repetition rate of the experiment. Furthermore, we assume each qubit gate operation time is near-instantaneous
compared to trep, so that the dephasing takes place during the attempted herald only. As the emitter is measured out
and reinitialized with each cycle of the experiment, it is evident that it will only dephase for at most trep. This implies
that for each iteration of HPSE the contribution to the graph state fidelity from the decoherence of the emitter is
1
2 (1 + e−trep/τe), such that

F
(e)
D (np) =

(
1

2

(
1 + e−trep/τe

))np

, (D18)

is the total contribution towards building an np photon graph state, and τe is the coherence time for the emitter.
We now model the contribution to the final state fidelity from any auxiliary spins in the system, which dephase for

the entirety of their presence in the graph. Consider a mixed state density operator ρ̂n =
∑

λ pλ |Φλ⟩⟨Φλ|, described
by a convex combination of n-qubit pure stabilizer states |Φλ⟩, where pλ are the corresponding classical probabilities.
This could represent the mixture of states one expects for an existing graph state built on a set of auxiliary spins,
when under the action of its environment—including the prior action of the dephasing map itself. The system is
initially stabilized by a set of generators S|Φλ⟩ = ⟨g1,λ, g2,λ, · · · , gn,λ⟩. Under the dephasing map the state evolves as

D(s)(ρ̂n; t, τs) =
1

2
(1 + e−t/τs)

∑
λ

pλ |Φλ⟩⟨Φλ|+
1

2
(1− e−t/τs)

∑
λ

pλZ
(s) |Φλ⟩⟨Φλ|Z(s), (D19)

which is once again a convex combination of stabilizer states with generators

S|Φλ⟩= ⟨g1,λ, g2,λ, · · · , gn,λ⟩,
SZ(s)|Φλ⟩= ⟨Z(s)g1,λZ

(s), Z(s)g2,λZ
(s), · · · , Z(s)gn,λZ

(s)⟩. (D20)

τs is the coherence time of the auxiliary spins in the system, which we treat as identical. Since we are interested in
graph states, ρ̂G=(V,E) = |G⟩⟨G|, whose stabilizers are generated by the operators {Ka}a∈V defined in Equation A3,

the dephasing map only acts on the generators proportional to X(s), for any auxiliary spin (s) in the system. Hence,
a graph state consisting of np photons and ns auxiliary spins would evolve under the dephasing map as the mixture

D(s)(ρ̂G; t, τs) =
∑

b∈Zns
2

p(b) |Gb⟩⟨Gb| , (D21)

where b = (b1, b2, · · · , bns
) ∈ Zns

2 and

p(b) =
1

2ns

ns∏
i=1

(1 + (−1)bie−t/τs). (D22)

This mixture is stabilized by the set of generators,

S|Gb⟩ = ⟨K(p)
1 , · · · ,K(p)

np
, (−1)b1K

(s)
1 , · · · , (−1)bnsK(s)

ns
⟩. (D23)

The size of the system’s stabilizer grows by one with each new photon m added to the graph. For the passing-
subroutines we employ in Appendix C 2, we apply this rule, however in choosing either variation of the subroutine
we choose whether to rotate the auxiliary spin out of the basis of the dephasing map, and consequentially project the
system on to a new mixed state as described above. That is for the mth photon, we generate a new subgroup of the
stabilizer as either

S|G⟩,join−m= ⟨(−1)bk · · ·Z(p)
k · · ·Z(p)

m X(s), X(p)
m Z(s)⟩, (D24a)

S|G⟩,extend−m= ⟨(−1)bk · · ·Z(p)
k · · ·X(p)

m Z(s), Z(p)
m X(s)⟩. (D24b)
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Here, the bit conditioning phase bk is applied to the generator K(s) during the creation of the kth photon, with k < m.
If we allow the system to continue dephasing, these subgroups evolve, distinctly, as

S|Gb⟩,join−m= ⟨(−1)bk+bm · · ·Z(p)
k · · ·Z(p)

m X(s), X(p)
m Z(s)⟩, (D25a)

S|Gb⟩,extend−m= ⟨(−1)bk · · ·Z(p)
k · · ·X(p)

m Z(s), (−1)bmZ(p)
m X(s)⟩. (D25b)

We see that in case of executing the extend-subroutine on mth photon, the number of states in the mixture doubles,
whereas in the case of the join-subroutine, the symmetry between states where either bk = bm or bk ̸= bm leads to
an effective mixture the same size as it was prior to the mth photon’s addition. Furthermore, we can express the
probability for each state in the mixture in terms of bk and bm as

P (bk, bm) =
1

4

(
1 + (−1)bke−tk/τs

)(
1 + (−1)bme−tm/τs

)
. (D26)

where we have defined tk and tm as arbitrary times from the probabilistic nature of the herald. For the join-subroutine,
the graph state remains unchanged when bk, bm = 0 or bk, bm = 1, whereas, for the extend-subroutine, the graph state
remains unchanged only when bk, bm = 0. Hence, the fidelity under the dephasing model scales as 1

2 (1+ e−(tk+tm)/τs)

for the join-subroutine and 1
4 (1+e−tk/τs)(1+e−tm/τs) for the extend-subroutine for iterations k andm. This is a subtle

distinction that arises from the Markovian nature of the dephasing map when implementing the join-subroutine. It
implies the final state fidelity when constructing graph states on a set of auxiliary spins will in general depend on the
sequence describing how each photon is passed in to the system. In contrast, we assume trep ≪ τs in our estimates,

such that this distinction is not necessary, as 1
4 (1+ e−tk/τs)(1+ e−tm/τs) ≈ 1

2 (1+ e−(tk+tm)/τs). We provide estimates

where trep/τs is of order 10−7− 10−9 [10, 31]. It is nonetheless important to discuss, when considering auxiliary spins
with shorter coherence times or constructing exceedingly large graph states, where the time to build the graph is of
order the coherence time.

Lastly, we account for the probabilistic nature of the herald. Building graph states in either scheme we propose
can be viewed as a Bernoulli trial with success probability Ps occurring at regular intervals trep. The cumulative
probability that m trials yields r successes is given by the distribution

h(m, r, Ps) =

(
m− 1

r − 1

)
P r
s (1− Ps)

m−r, (D27)

where m = r, r+1, r+2, · · · . For any auxiliary spins in the graph, any failure to herald adds an additional trep to the
dephasing time. Therefore, we model the mean contribution to the state fidelity for an auxiliary spin with r photons
passed to it under either passing-subroutine as

⟨F (s)
D (r, Ps)⟩=

∞∑
m=r

h(m, r, Ps)

(
1

2

(
1 + e−mtrep/τs

))
=

1

2

(
1 +

(
Ps

Ps + etrep/τs − 1

)r)
≈ 1

2

(
1 + e−rtrep/Psτs

)
, (D28)

where ⟨· · · ⟩ here denotes a classical expectation value, and trep/Ps is the average time for a successful herald. Note
in the HoD scheme, Ps = ηe, whereas in the HoS scheme it is of the form in Equation D15. For an np photon graph
state, we take r up to the number of photons that a given auxiliary spin remains a part of the graph. Here, we
consider the same coherence times for the emitter and auxiliary spins, τe = τs = τ . Given state-of-art of trapped ion
experiments [10], we take the dephasing timescale to be trep/τ = 10−9 in our best estimates.

e. Gates

Single-qubit gates applied to photons, the emitter and any auxiliary spins are assumed to be perfect in our model.
For all two-qubit spin-spin entangling gates, we assume a fidelity FCZ = 0.999 in our best estimates, in line with
benchmarks from state-of-the-art trapped ion experiments [12, 13]. We assume the time to implement any single-qubit
or two-qubit gate, tgate ≪ trep, and can therefore be treated as instantaneous.
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f. Initial entanglement fidelity

In practice, there will be a non-unit fidelity on initializing the emitter into the state described in Equation D1 as well
as Equation D2 for the pair-source. The additional contribution to the overall fidelity using our schemes compared
to schemes where an emitter is directly used to generate graphs is the entanglement fidelity of the nonlinear photon-
pair source. For example, for SPDC, the main contribution to the degradation of polarization-based entanglement
fidelity comes from the spatial-temporal profile of the pump [65] and its interaction with the specific nonlinear
medium, in which different spatial and sepctral or temporal components impart different relative phases to the
entangled pair described by Equation D2. The fidelity can be optimized by using compensating crystals or filtering
techniques, however the latter also lowers the collection efficiency. Nevertheless, some of the best estimated fidelities
for polarization-entangled SPDC sources range from ∼97% to ∼99.7% for various free-space and fiber-based setups
[66–68]. In terms of overall fidelity estimations, we can introduce additional scaling terms similar to gate fidelity. We
denote the initial entanglement fidelities for the emitter-photon pair and photon-photon pair as Fe and Fp respectively.
We focus primarily on the fidelity from the SPDC source to highlight the additional infidelity from our scheme.

3. Pair generation rate optimization

Given the infidelity from false heralds, defined in Equations D13 and D15, there exists a trade-off between the rate
and fidelity at which large graph states can be generated in the HoS scheme, as set by the dimensionless parameter
ξ, controlling the pair generation rate of the SPDC source. Decreasing ξ improves the probability of heralding a true
Bell state, at the cost of longer average times between successful heralds. Conversely, the effects of decoherence on
any auxiliary spins in the system, through Equation D28, reduces the fidelity of the graph state as the overall time
of construction increases. Hence, there is an optimum rate at which HoS can run, controlled by ξ and parameterized
by the relevant total collection and detection efficiencies {ηe, ηs, ηi}, dark count rate, Rd, dephasing timescale, trep/τ ,
number of auxiliary spins, ns, and total number of photons, np, required by the graph. Given a fixed set of parameters,
this is a straightforward scalar maximization problem that can be accomplished numerically. If necessary, one can
optimize within some ϵ of the optimum in order to achieve a speed-up in the rate.

4. Example applications

We briefly demonstrate how the sources of infidelity, presented in Appendix D2, are combined to produce the
fidelity estimates discussed in Section II and Section III. We note from the above that this fidelity is a mean estimate,
optimized over ξ. For the estimates discussed in Section II and Section III, we assume a negligible dark count rate,
and let ηs = ηi = 1. In practice the signal photon collection efficiency can be near unity [31], and only makes a
minor impact on the rate and fidelity that does not affect the overall scaling of either function with the other relevant
parameters. We carry out the optimization in numerically, and determine ξ which achieves the optimum fidelity.

a. GHZ states and cluster states

In Section IV, we present the mean final state fidelity to generate arbitrary graph states, requiring a single auxiliary
spin in either of our schemes, such as the np-photon star graph, which is local-unitary equivalent to a GHZ state, or
a 1D cluster state. For these graph states we optimize a function of the form

Fcluster,1D(ξ;np, ηe) = (FentFswap(ξ; ηe))
np F

(e)
D (np)⟨F (s)

D (np, Ps(ηe, ξ))⟩. (D29)

Here, we have defined Fent = FCZFp to combine the spin-spin entangling gate and photon-pair entanglement fidelities
respectively. In Figure 4, we compare the effects of false heralds and decoherence against the limits imposed by
imperfect spin-spin gate and initial SPDC photon-pair entanglement fidelities, and hence set Fent = 1 when computing
estimates in the false herald and decoherence limited regimes. In the decoherence limited regime we additionally set
Fswap = 1 and subsequently do not require optimization. Computing the fidelity to make large 1D and 2D cluster
states in our schemes with perfect spin-spin entangling gates and initial photon-pair entanglement assumes that
additional error-correction or purification is employed.
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b. Multi-party computation

For the multi-party computation protocol introduced in Section III, fidelity estimates for the generation of |GI⟩
and |GII⟩ are required to estimate the total bit error probability in Stage I and II, respectively. We assume graph
states constructed in the HoD scheme discussed in Section II, where the computation of f happens in parallel with the
construction of each state, and no pair source or photonic memory is required. In this scheme we take Ps = ηe = 0.4,
from trapped ion experiments utilizing parabolic reflectors [17]. Additionally, we assume a dephasing timescale
trep/τ = 10−9, following the best estimates for trapped ions [10]. The production of arbitrarily large graph states
using our scheme is predominately limited by the spin-spin entangling gate fidelity and photon-pair entanglement
fidelity, FCZ and Fp respectively. However, for a fixed number of parties N , the size of the required graph states for
our protocol is also fixed. For each of iteration of Stage I, the source is required to generate a copy of the eight-qubit
graph state, |GI⟩, depicted in Figure 5. From Equations D18 and D28, the mean fidelity to produce each copy of the
state is

FGI
= F 8

entF
3
CZF

(e)
D (8)⟨F (s1)

D (8, ηe)⟩⟨F (s2)
D (2, ηe)⟩, (D30)

where we have defined again Fent = FCZFp. We note additional spin-spin entangling gates are required to make this
graph state from Equation D29. In Stage II, the source distributes a single copy of the N+1-qubit graph state, |GII⟩,
depicted in Figure 6, where N is number of parties involved in the computation. The mean fidelity to produce this
state is

FGII
(N) = FN+1

ent F
(e)
D (N + 1)⟨F (s)

D (N + 1, ηe)⟩, (D31)

which is equivalent to fidelity in Equation D29, upon setting np = N + 1.
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Abstract. The essential requirement for fault-tolerant quantum computation (FTQC) is the total proto-
col design to achieve a fair balance of all the critical factors relevant to its practical realization, such as the
space overhead, the threshold, and the modularity. A major obstacle in realizing FTQC with conventional
protocols, such as those based on the surface code and the concatenated Steane code, has been the space
overhead, i.e., the required number of physical qubits per logical qubit. Protocols based on high-rate quan-
tum low-density parity-check (LDPC) codes gather considerable attention as a way to reduce the space
overhead, but problematically, the existing fault-tolerant protocols for such quantum LDPC codes sacrifice
the other factors. Here we construct a new fault-tolerant protocol to meet these requirements simulta-
neously based on more recent progress on the techniques for concatenated codes rather than quantum
LDPC codes, achieving a constant space overhead, a high threshold, and flexibility in modular architecture
designs. In particular, under a physical error rate of 0.1%, our protocol reduces the space overhead to
achieve the logical CNOT error rates 10−10 and 10−24 by more than 90% and 97%, respectively, compared
to the protocol for the surface code. Furthermore, our protocol achieves the threshold of 2.4% under a
conventional circuit-level error model, substantially outperforming that of the surface code. The use of
concatenated codes also naturally introduces abstraction layers essential for the modularity of FTQC ar-
chitectures. These results indicate that the code-concatenation approach opens a way to significantly save
qubits in realizing FTQC while fulfilling the other essential requirements for the practical protocol design.
The full paper of this work is on arXiv [1].

Keywords: Fault-tolerant quantum computation, Concatenated codes, High threshold and small space
overhead, Stabilizer simulation

The realization of fault-tolerant quantum computation
(FTQC) requires the total protocol design to meet all the
essential factors relevant to its practical implementation,
such as the space overhead, the threshold, and the modu-
larity. The recent development of constant-overhead pro-
tocols [2–6, 6–8] substantially reduces the space overhead,
i.e., the required number of physical qubits per logical
qubit, compared to the conventional protocols such as
those based on the surface code [9, 10] and the concate-
nated Steane code [11]. In particular, the most recent
development [5] based on the concatenation of quantum
Hamming codes [11, 12] is promising for the implemen-
tation of FTQC since Ref. [5] explicitly clarifies the full
details of the protocol for implementing logical gates and
efficient decoders, making it possible to realize universal
quantum computation in a fault-tolerant way. Toward
the practical implementation, however, it is indispensable
to optimize the original protocol in Ref. [5] to improve
its threshold, which is, by construction, at least as bad
as the concatenated Steane code. Furthermore, even a
proper quantitative evaluation of the original protocol in
Ref. [5] was still missing due to the lack of the numerical
study of the protocols based on the quantum Hamming
codes.

In this work, we construct an optimized fault-tolerant
protocol by substantially improving the protocol in
Ref. [5], achieving an extremely low space overhead
(Fig. 1) and a high threshold (2.4% for conventional
circuit-level noise, see below) to simultaneously outper-
form the surface code. The optimization is performed
based on our quantitative evaluation of the performance

of the fault-tolerant protocols for various choices of quan-
tum error-correcting codes, which we numerically carried
out in a unified way under a circuit-level depolarizing er-
ror model following the convention of Ref. [13]. The orig-
inal protocol in Ref. [5] is based on the concatenation of
a series of quantum Hamming codes with increasing code
sizes. Quantum Hamming code is a family of quantum
codes Qr parameterized by r ∈ {3, 4, · · · }, consisting of
Nr = 2r − 1 physical qubits and Kr = Nr − 2r logical
qubits with code distance 3 [11, 12] (i.e., an [[Nr,Kr, 3]]
code). By concatenating the quantum Hamming code
Qrl for a sequence (rl = l + 2)l=1,2,... of parameters at
the concatenation level l ∈ {1, · · · , L}, we obtain a quan-
tum code consisting of N =

∏L
l=1 Nrl physical qubits

and K =
∏L

l=1 Krl logical qubits. Its space overhead,
defined by the ratio of N and K [3], converges to a fi-
nite constant factor η∞ ≈ 36 as L → ∞ [5]. However,
our numerical simulation shows that the threshold of this
original protocol is ∼ 10−5. Advancing over this original
protocol, we newly construct and numerically analyze the
optimized fault-tolerant protocol achieving the essential
requirements for FTQC in the practical regime, such as
low space overhead and high threshold, as summarized
below.

1 Substantially smaller space overhead
and higher threshold than the surface
code in a practical regime

We optimize the original protocol in Ref. [5] by re-
placing the physical qubits of the original protocol with
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Figure 1: Comparison of space overhead of the
proposed protocol with that for the surface code.
The left figure plots the space overheads and logical er-
ror rates of the proposed protocol (▲) and the surface
code (•). The right figure enlarges the plot for the pro-
posed protocol. The logical error rate is calculated under
a circuit-level depolarizing error model at a physical er-
ror rate 0.1%. The dash-dotted lines represent the logical
error rate 10−10 and the corresponding space overhead,
i.e., 1.7 × 102 physical qubits per logical qubit for our
protocol. The dashed lines represent the logical error
rate 10−24 and the corresponding space overhead, i.e.,
2.4× 102 physical qubits per logical qubit for our proto-
col. Our protocol reduces the space overhead to achieve
the logical error rates 10−10 and 10−24 by more than 90%
and 97%, respectively, compared to the protocol for the
surface code.

logical qubits of a finite-size quantum code Q0 (called an
underlying quantum code). With this replacement, we
aim to improve the threshold determined at the physi-
cal level while maintaining the constant space overhead
at the large concatenation levels. Here, the logical error
rate of the underlying quantum code should be lower than
the threshold of the original protocol so that the original
protocol can further suppress the logical error rate. If the
fixed-size underlying quantum code Q0 has N0 physical
qubits and K0 logical qubits, the overall space overhead
still converges to a constant value given by η′∞ = N0

K0
η∞.

For our protocol, we propose the following code construc-
tion. As an underlying quantum code, we use the C4/C6

code [14] as first L′ levels of the concatenated code, where
the 4-qubit code denoted by C4(= [[4, 2, 2]]) is concate-
nated with the 6-qubit code denoted by C6(= [[6, 2, 2]])
for L′−1 times. On top of the underlying quantum code,
i.e., at the concatenation levels L′ + 1, L′ + 2, · · · , L, we
concatenate quantum Hamming codes Qrl for an opti-
mized choice of the sequence (rl)l=1,2,... of parameters,
where Qrl is used at the concatenation level L′ + l. The
C4/C6 code is adopted as the underlying quantum code
since it achieves the state-of-the-art high threshold (see
Table II of the Technical Manuscript). To avoid the in-
crease of overhead, we use a non-post-selected protocol
of the C4/C6 code in Ref. [14] rather than a post-selected
one.

Under a physical error rate of 0.1%, we compare the
space overhead of our proposed protocol to achieve the
logical CNOT error rates 10−10 and 10−24 with a conven-

tional protocol for the surface code. Note that the con-
catenated Steane code cannot suppress the logical error
rate under the physical error rate 0.1% since the thresh-
old is smaller than 0.1% in our circuit-level error model
(see Table II of the Technical Manuscript). Factoring of
a 2048-bit integer using Shor’s algorithm [15] requires the
logical error rate 10−10 [16], which is relevant to the cur-
rently used cryptosystem RSA-2048 [17, 18]. The logical
error rate ∼ 10−24 is a rough estimate of the logical error
rate of classical computation.

As shown in Fig. 1, our protocol saves the space over-
heads by more than 90% and 97% to achieve the logical
error rates 10−10 and 10−24, respectively, compared to
the surface code. Note that our protocol achieves con-
stant space overhead while the protocol for the surface
code (as well as that for the concatenated Steane code)
has growing space overhead; thus, in principle, the advan-
tage of our protocol can be arbitrarily large as the target
logical error rate becomes small. However, our contribu-
tion here is to clarify that our protocol indeed offers a
space-overhead advantage by orders of magnitude in the
practical regimes.

We remark that our protocol is constructed without as-
suming geometrical constraints on quantum gates. Non-
local interactions are indispensable to avoid the grow-
ing space overhead of FTQC on large scales, which has
been a major obstacle to implementing FTQC; in partic-
ular, a polylogarithmically growing space overhead is in-
evitable as long as one sticks to an architecture with two-
dimensional two-qubit gate connectivity [19]. By con-
trast, all-to-all connectivity of physical gates is indeed be-
coming possible in various experimental platforms, such
as neutral atoms [20], trapped ions [21, 22], and op-
tics [23–25]; in such cases, the proposed protocol sub-
stantially reduces the space overhead compared to the
surface code, as shown in Fig. 1. Consequently, our pro-
tocol lends increased importance to such physical plat-
forms with all-to-all connectivity; at the same time, the
technological progress on the experimental side may also
lead to extra factors to be considered for practical FTQC
protocols, and our results and techniques constitute a ba-
sis for further optimization of the fault-tolerant protocols
in these platforms.

2 Flexible optimization of the quantum
code

The quantum code used for our protocol is designed by
optimizing the underlying quantum code, and under the
physical error rate 0.1%, our optimized choice of the un-
derlying quantum code turns out to be the level-4 C4/C6

code (see Table II of the Technical Manuscript). For
this optimization, we compare four candidate quantum
codes: the C4/C6 code [14], the surface code [9, 10], the
concatenated Steane code [26], and the C4/Steane code.
The C4/Steane code is newly constructed in this work by
concatenating the [[4, 2, 2]] code (i.e., the C4 code) with
the Steane code. For each of the physical error rates
p = 0.01%, 0.1%, 1%, we compare the thresholds and the
space overheads of these four candidate quantum codes
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to achieve the logical error rate 10−24 by concatenating
the code with a series of quantum Hamming codes.

As shown in Table II of the Technical Manuscript, the
threshold of the protocol for the C4/C6 code has the high-
est threshold of 2.4% among the four candidate quantum
codes, and thus, our optimized protocol uses the C4/C6

code as the underlying quantum code. For the physical
error rates p = 0.1%, 1%, we show that the C4/C6 code
indeed has the smallest space overhead among the four
candidates. We also note that the optimal protocol may
differ depending on the physical error rate; in particular,
at p = 0.01%, the C4/Steane code leads to a smaller space
overhead than the C4/C6 code. Our contribution here is
to perform the numerical simulation of all the codes un-
der the same circuit-level error model in a unified way to
make a direct, systematic comparison.

3 Modularity in comparison with the
quantum low-density parity-check
(LDPC) code

We have so far presented the results of the quantitative
analysis of our protocol based on the code-concatenation
approach. We here compare this approach with another
existing approach toward low-overhead FTQC based on
the high-rate quantum LDPC codes originally proposed
in Refs. [2–4].

The crucial difference between our approach based on
concatenated codes and the approach based on quantum
LDPC codes is modularity. In the approach of quan-
tum LDPC code, one needs to realize a single large-size
code block. To suppress the logical error rate more and
more, each code block may become arbitrarily large, yet
an essential assumption for the fault tolerance of the
quantum LDPC codes is to keep the physical error rates
constant [3, 4]. In experiments, problematically, it is in
principle challenging to arbitrarily increase the number
of qubits in a single quantum device without increasing
physical error rates [27, 28]. By contrast, in the code-
concatenation approach, we can realize a fixed-size code
at each level of the code concatenation by putting finite
efforts into improving a quantum device; that is, each
fixed-size code serves as a fixed-size abstraction layer in
the implementation. In this way, our code-concatenation
approach offers modularity, an essential requirement for
the FTQC architectures. (See also Technical Manuscript
for more details.)

Apart from the modularity, another advantage is that
our protocol based on concatenated codes can implement
logical gates faster than the existing protocols for quan-
tum LDPC codes. In the protocol for quantum LDPC
codes in Refs. [3, 4], almost all gates, including most of
the Clifford gates, are implemented by gate teleportation
using auxiliary code blocks; to maintain constant space
overhead, gates must be applied sequentially, which in-
curs a long time overhead. Other Clifford gate schemes
are proposed based on code deformation [6] and lattice
surgery [7], but they also introduce additional overheads
in time and space. Apart from these schemes for logical
gate implementations, a stabilizer measurement scheme

for a constant-space-overhead quantum LDPC code in
thin planar connectivity is presented in Ref. [8]. This
protocol implements a quantum memory (i.e., the logi-
cal identity gate), but to implement universal quantum
computation in a fault-tolerant way, we need to add the
components to implement state preparation and logical
gates, which incur the overhead issues in the same way as
the above. More recent protocols in Refs. [29, 30] aim to
improve the implementability of quantum LDPC codes,
but in the same way, these protocols can only be used
as the quantum memory; problematically, it is currently
unknown how to realize logical gates with these proto-
cols, and it is also unknown how to achieve constant-
space-overhead FTQC based on these protocols without
sacrificing their implementability. In contrast with these
protocols, our protocol can implement universal quan-
tum computation within constant space overhead and
quasi-polylogarithmic time overhead, by using the con-
catenated code rather than quantum LDPC codes, as
shown in Ref. [5].

Note that, due to this difference, it is not straightfor-
ward to obtain numerical results on the existing protocols
for the high-rate quantum LDPC codes in the same set-
ting as our protocol; however, if one develops more effi-
cient protocols achieving universal quantum computation
using the high-rate quantum LDPC codes, our compar-
ison between our protocol with that of the surface code
serves as a useful baseline. We also point out that in the
current status, even if one wants to implement constant-
space-overhead FTQC using quantum LDPC codes, one
eventually needs to use concatenated codes in combina-
tion. In particular, as shown in Refs. [3, 4], the existing
constant-space-overhead fault-tolerant protocols for such
quantum LDPC codes rely on concatenated codes for
preparation of logical |0⟩ states, e.g., by using the encod-
ing procedure implemented by the concatenated Steane
code [31]. Thus, even though a part of the protocol us-
ing the high-rate quantum LDPC codes may be efficient,
the part relying on the concatenated codes may become
a bottleneck in practice, which should be taken into ac-
count in future work for a fair comparison of the overall
protocols.

4 Conclusion
This work constructs a fault-tolerant protocol based

on the code concatenation achieving all the desired fea-
tures for its practical realization: a small space overhead,
a high threshold, and modularity. Our numerical simu-
lation shows that our protocol substantially outperforms
that of the surface code, which implies a promising util-
ity of the concatenated code for the implementation of
FTQC. At the same time, our results and techniques for
systematic analysis of various quantum codes constitute
a basis for further optimization of the fault-tolerant pro-
tocols in the practical physical platforms, especially with
all-to-all connectivity.
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The essential requirement for fault-tolerant quantum computation (FTQC) is the total protocol
design to achieve a fair balance of all the critical factors relevant to its practical realization, such as
the space overhead, the threshold, and the modularity. A major obstacle in realizing FTQC with
conventional protocols, such as those based on the surface code and the concatenated Steane code,
has been the space overhead, i.e., the required number of physical qubits per logical qubit. Protocols
based on high-rate quantum low-density parity-check (LDPC) codes gather considerable attention
as a way to reduce the space overhead, but problematically, the existing fault-tolerant protocols
for such quantum LDPC codes sacrifice the other factors. Here we construct a new fault-tolerant
protocol to meet these requirements simultaneously based on more recent progress on the techniques
for concatenated codes rather than quantum LDPC codes, achieving a constant space overhead, a
high threshold, and flexibility in modular architecture designs. In particular, under a physical error
rate of 0.1%, our protocol reduces the space overhead to achieve the logical CNOT error rates 10−10

and 10−24 by more than 90% and 97%, respectively, compared to the protocol for the surface code.
Furthermore, our protocol achieves the threshold of 2.4% under a conventional circuit-level error
model, substantially outperforming that of the surface code. The use of concatenated codes also
naturally introduces abstraction layers essential for the modularity of FTQC architectures. These
results indicate that the code-concatenation approach opens a way to significantly save qubits in
realizing FTQC while fulfilling the other essential requirements for the practical protocol design.

The realization fault-tolerant quantum computation
(FTQC) requires the total protocol design to meet all the
essential factors relevant to its practical implementation,
such as the space overhead, the threshold, and the mod-
ularity. The recent development of constant-overhead
protocols [1–7] substantially reduces the space overhead,
i.e., the required number of physical qubits per logical
qubit, compared to the conventional protocols such as
those based on the surface code [8, 9] and the concate-
nated Steane code [10]. In particular, the most recent
development [4] based on the concatenation of quantum
Hamming codes [10, 11] is promising for the implemen-
tation of FTQC since Ref. [4] explicitly clarifies the full
details of the protocol for implementing logical gates and
efficient decoders, making it possible to realize universal
quantum computation in a fault-tolerant way. Toward
the practical implementation, however, it is indispensable
to optimize the original protocol in Ref. [4] to improve
its threshold, which is, by construction, at least as bad
as the concatenated Steane code. Furthermore, even a
proper quantitative evaluation of the original protocol in
Ref. [4] was still missing due to the lack of the numerical
study of the protocols based on the quantum Hamming
codes.

In this work, we construct an optimized fault-tolerant
protocol by substantially improving the protocol in

∗ satoshiyoshida.phys@gmail.com
† shiro.tamiya01@gmail.com
‡ hayata.yamasaki@gmail.com

FIG. 1. Comparison of space overhead of the proposed
protocol with that for the surface code. The left fig-
ure plots the space overheads and logical error rates of the
proposed protocol (▲) and the surface code (•). The right
figure enlarges the plot for the proposed protocol. The logi-
cal error rate is calculated under a circuit-level depolarizing
error model at a physical error rate 0.1%. The dash-dotted
lines represent the logical error rate 10−10 and the correspond-
ing space overhead, i.e., 1.7 × 102 physical qubits per logical
qubit for our protocol. The dashed lines represent the logical
error rate 10−24 and the corresponding space overhead, i.e.,
2.4 × 102 physical qubits per logical qubit for our protocol.
Our protocol reduces the space overhead to achieve the logi-
cal error rates 10−10 and 10−24 by more than 90% and 97%,
respectively, compared to the protocol for the surface code.

Ref. [4], achieving an extremely low space overhead and
a high threshold to simultaneously outperform the sur-
face code. The optimization is performed based on our
quantitative evaluation of the performance of the fault-
tolerant protocols for various choices of quantum error-

ar
X

iv
:2

40
2.

09
60

6v
1 

 [
qu

an
t-

ph
] 

 1
4 

Fe
b 

20
24

208



2

TABLE I. Construction of the proposed protocol. Our
quantum code uses the level-4 C4/C6 code as an underlying
quantum code, and on top of this, we concatenate a series
of quantum Hamming codes. The second column of this ta-
ble shows a quantum code to be concatenated at each level.
The rightmost column of this table shows the space overhead,
which is the ratio of the number of physical qubits denoted
by N and the number of logical qubits denoted by K.

Quantum code N K N/K
level-1 C4(= [[4, 2, 2]]) 4 2 2
level-2 C6(= [[6, 2, 2]]) 12 2 6
level-3 C6(= [[6, 2, 2]]) 36 2 18
level-4 C6(= [[6, 2, 2]]) 108 2 54
level-5 Q4(= [[15, 7, 3]]) 1.6× 103 14 1.2× 102

level-6 Q5(= [[31, 21, 3]]) 5.0× 104 2.9× 102 1.7× 102

level-7 Q6(= [[63, 51, 3]]) 3.2× 106 1.5× 104 2.1× 102

level-8 Q7(= [[127, 113, 3]]) 4.0× 108 1.7× 106 2.4× 102

correcting codes (see Tables I and II), which we carried
out in a unified way under a circuit-level depolarizing
error model following the convention of Ref. [12]. Our
numerical study makes it possible to optimize the com-
bination of the quantum codes to be concatenated. Our
numerical results show that the threshold of the origi-
nal protocol for quantum Hamming codes in Ref. [4] is
∼ 10−5. To improve the threshold, our protocol uses the
C4/C6 code [13] at the physical level; on top of the C4/C6

code, our protocol concatenates the quantum Hamming
codes at the larger concatenation levels to achieve the
constant space overhead. Under a physical error rate of
0.1%, compared to the conventional protocol for the sur-
face code, our protocol reduces the space overhead to
achieve the logical error rate 10−10 and 10−24 by more
than 90% and 97%, respectively, (see Fig. 1). The thresh-
old of our protocol is 2.4%, which substantially outper-
forms that of the surface code (see Table II). These results
establish a basis for the practical fault-tolerant proto-
cols, especially suited for the architectures with all-to-all
two-qubit gate connectivity, such as neutral atoms [14],
trapped ions [15, 16], and optics [17–19].

RESULTS

Setting. We construct a space-overhead-efficient fault-
tolerant protocol by optimizing the protocol presented
in Ref. [4]. The original protocol in Ref. [4] is based
on the concatenation of a series of quantum Hamming
codes with increasing code sizes. Quantum Hamming
code is a family of quantum codes Qr parameterized
by r ∈ {3, 4, · · · }, consisting of Nr = 2r − 1 physical
qubits and Kr = Nr − 2r logical qubits with code dis-
tance 3 [10, 11], which is written as an [[Nr,Kr, 3]] code.
By concatenating the quantum Hamming code Qrl for
a sequence (rl = l + 2)l=1,2,... of parameters at the con-
catenation level l ∈ {1, · · · , L}, we obtain a quantum

code consisting of N =
∏L

l=1 Nrl physical qubits and

K =
∏L

l=1 Krl logical qubits. Its space overhead, defined
by the ratio of N and K [2], converges to a finite constant
factor η∞ as

N

K
=

L∏

l=1

Nrl

Krl

→ η∞ < ∞ as L → ∞, (1)

where η∞ is given by η∞ ≈ 36 [4]. However, the threshold
of the protocol based on this quantum code is given by
∼ 10−5, as shown in Supplementary Information. As
discussed in Ref. [4], instead of rl = l + 2, we can also
take an arbitrary sequence (rl)l=1,2,... satisfying η∞ =∏∞

l=1

Nrl

Krl
< ∞ to achieve the constant space overhead,

and our choice of rl will be clarified below.
We optimize this original protocol by replacing the

physical qubits of the original protocol with logical qubits
of a finite-size quantum code Q0 (called an underlying
quantum code). With this replacement, we aim to im-
prove the threshold determined at the physical level while
maintaining the constant space overhead at the large con-
catenation levels. Here, the logical error rate of the log-
ical qubits of the underlying quantum code should be
lower than the threshold of the original protocol so that
the original protocol can further suppress the logical error
rate. If the underlying quantum code Q0 has N0 physical
qubits and K0 logical qubits, the overall space overhead
is given by

N

K
=

N0

K0

L∏

l=1

Nrl

Krl

→ η′∞ < ∞ as L → ∞, (2)

which remains a constant value given by η′∞ = N0

K0
η∞ as

long as we use a fixed code as the underlying quantum
code.
For our protocol, we propose the following code con-

struction:

• As an underlying quantum code, we use the C4/C6

code [13] as first L′ levels of the concatenated code,
where the 4-qubit code denoted by C4(= [[4, 2, 2]])
is concatenated with the 6-qubit code denoted by
C6(= [[6, 2, 2]]) for L′ − 1 times.

• On top of the underlying quantum code, i.e., at
the concatenation levels L′ + 1, L′ + 2, · · · , L, we
concatenate quantum Hamming codes Qrl for an
optimized choice of the sequence (rl)l=1,2,... of pa-
rameters, where Qrl is used at the concatenation
level L′ + l.

The C4/C6 code is adopted as the underlying quantum
code since it achieves the state-of-the-art high threshold.
To avoid the increase of overhead, we use a non-post-
selected protocol of the C4/C6 code in Ref. [13] rather
than a post-selected one.
To estimate the space overhead and the threshold, we

evaluate the logical CNOT error rate of the fault-tolerant
protocols based on the C4/C6 code and the quantum

209



3

TABLE II. Comparison of the error threshold and the
required space overhead to achieve the logical error
rate P0 < Ptarget of underlying quantum codes. The
table shows the error threshold and the required space over-
head to achieve the logical error rate P0 < Ptarget under
the physical error rates p = 0.01%, 0.1%, 1% for the C4/C6

code, the surface code, the concatenated Steane code, and the
C4/Steane code. Bold values represent the minimum space
overheads among the four quantum codes under the same
physical error rates. Note that for p = 1%, the C4/C6 code
is the only one among the four codes that can suppress the
logical error rate; similarly, for p = 0.1%, the concatenated
Steane code cannot suppress the logical error rate.

Threshold
Space overhead

p = 0.01% p = 0.1% p = 1%
C4/C6 code 2.4% 18 54 1458
Surface code 0.31% 121 841 -
Steane code 0.030% 343 - -

C4/Steane code 0.15% 14 4802 -

Hamming codes. The logical CNOT error rate is eval-
uated at each concatenation level using the Monte Carlo
sampling method in Refs. [20, 21], which is based on the
reference entanglement method [13, 22]. By convention,
we describe the noise on physical qubits by a circuit-
level depolarizing error model (see Methods for the de-
tails of the simulation method and the error model). In
the simulation, we assume no geometrical constraints on
manipulating quantum gates, which is applicable to neu-
tral atoms [14], trapped ions [15, 16], and optics [17–19].
Our numerical results show that by using the C4/C6 code
as the underlying quantum code, our protocol achieves a
high threshold 2.4% (see Table II), where we use the non-
post-selected protocol of the C4/C6 code rather than the
post-selected one in Ref. [13]. We optimize the combi-
nation of the quantum codes, i.e., the choice of param-
eters L′, L, and rl, based on our simulation results so
as to reduce the space overhead. In particular, the opti-
mized parameters that we found are L′ = 4, L = 8, and
r1 = 4, r2 = 5, r3 = 6, r4 = 7 (see Table I). Note that
the Steane code Q3 in the original protocol of Ref. [4]
is skipped to improve the space overhead of our proto-
col. To avoid the combinatorial explosion arising from
the combinations of these parameters, we performed a
level-by-level numerical simulation at each concatenation
level (see Methods for the details). With this technique,
our simulation makes it possible to flexibly optimize the
combination of the quantum codes to be concatenated
for designing our protocol.

Large-scale resource estimation. Under a physical
error rate of 0.1%, we compare the space overhead of
our proposed protocol to achieve the logical CNOT error
rates 10−10 and 10−24 with a conventional protocol for
the surface code. Note that another conventional proto-
col using the concatenated Steane code cannot suppress
the logical error rate under the physical error rate 0.1%
since the threshold is larger than 0.1% (see Table II).

FIG. 2. Comparison on space overheads of the C4/C6

code, the surface code, the concatenated Steane code,
and the C4/Steane code. The horizontal axis shows the
inverse of the logical CNOT error rate, and the vertical axis
the space overhead. The simulation is performed under the
circuit-level depolarizing error model with the physical error
rates given by p = 0.01%, 0.1%, 1%. The vertical dashed line
represents Ptarget, which is the required logical error rate such
that, by concatenating quantum Hamming codes, the overall
quantum code achieves a logical error rate below 10−24.

Factoring of a 2048-bit integer using Shor’s algorithm
[23] requires the logical error rate 10−10 [24], which is
relevant to the currently used cryptosystem RSA-2048
[25, 26]. The logical error rate ∼ 10−24 is a rough es-
timate of the logical error rate of classical computation
(see Methods for the details of these estimations).

As shown in Fig. 1, the surface code requires the space
overhead ∼ 1.7 × 103 and ∼ 10.2 × 103 to achieve the
logical error rates ∼ 10−10 and ∼ 10−24, respectively.
On the other hand, our protocol only requires the space
overheads ∼ 1.7 × 102 and ∼ 2.4 × 102 to achieve the
same logical error rates, saving the space overheads by
more than 90% and 97%, respectively, compared to the
surface code. Note that our protocol achieves constant
space overhead while the protocol for the surface code
(as well as that for the concatenated Steane code) has
growing space overhead; thus, in principle, the advan-
tage of our protocol can be arbitrarily large as the target
logical error rate becomes small. However, our contribu-
tion here is to clarify that our protocol indeed offers a
space-overhead advantage by orders of magnitude in the
practical regimes.

Comparison on underlying quantum codes. The
quantum code for our protocol shown in Table I is ob-
tained by optimizing the underlying quantum code, and
under the physical error rate 0.1%, our optimized choice
of the underlying quantum code turns out to be the level-
4 C4/C6 code. Here, we show this optimization proce-
dure in more detail. For this optimization, we compare
four candidate quantum codes: the C4/C6 code [13], the
surface code [8, 9], the concatenated Steane code [27],
and the C4/Steane code. The C4/Steane code is newly
constructed in this work by concatenating the [[4, 2, 2]]
code (i.e., the C4 code) with the Steane code (see Sup-
plementary Information for details). For simplicity, we
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fix the series of quantum Hamming codes as Q4, Q5,
Q6, and Q7, and compare the required space overhead
to achieve the logical error rate 10−24. If the underly-
ing quantum code has a logical error rate smaller than
Ptarget = 2.2 × 10−7, then our numerics shows that by
concatenating the quantum Hamming codes, the overall
quantum code achieves a logical error rate below 10−24.

In Fig. 2 and Table II, we compare the thresholds
and the space overheads of these four candidate quan-
tum codes to achieve the logical error rate P0 < Ptarget

at the physical error rates p = 0.01%, p = 0.1%, and
p = 1%. For a fair comparison, we performed the numer-
ical simulation of implementing logical CNOT gates for
all these four codes under the aforementioned circuit-level
depolarizing error model. For the decoding of the sur-
face code, we use the minimum-weight perfect matching
decoder [28, 29], and for the other concatenated codes,
we use a hard-decision decoder to cover practical situa-
tions where the efficiency of implementing the decoder
matters (see Supplementary Information for more de-
tails). Conventionally, the threshold for the surface code
is evaluated by implementing a quantum memory (i.e.,
the logical identity gate) [12], but for a fair comparison,
we here evaluate that by the logical CNOT gate, which
is implemented by lattice surgery [30, 31] and is simu-
lated using the method in Ref. [32] (see Supplementary
Information for details). Similarly, Ref. [27] evaluates
the threshold for the concatenated Steane code by im-
plementing the logical identity gate, but we evaluate that
by the transversal implementation of the logical CNOT
gate. Note that the thresholds evaluated by the logical
CNOT gate may be worse than those by the logical iden-
tity gate [33], but our setting of the numerical simulation
is motivated by the fact that the realization of quantum
memory by just implementing the logical identity gate is
insufficient for universal quantum computation. We also
remark that various numerical simulations have been per-
formed in the literature under different error models from
ours, e.g., for the surface code in Refs. [34, 35], for the
concatenated Steane code in Refs. [21, 34], and for the
C4/C6 code in Refs. [13, 36], but our contribution here
is to perform the numerical simulation of all the codes
under the same circuit-level error model in a unified way
to make a direct, systematic comparison.

As shown in Fig. 2 and Table II, for p = 0.1%, the
level-4 C4/C6 code has the minimum space overhead 54
to achieve P0 < Ptarget. For p = 0.01%, the level-2
C4/Steane code has a smaller space overhead to achieve
P0 < Ptarget than the level-3 C4/C6 code. Then, we ob-
tain an overall protocol having the space overhead ∼ 61
to achieve the logical error rate 10−24. For p = 1%, the
C4/C6 code is the only one among the four candidate
codes that can suppress the logical error rate since the
thresholds for the other codes, such as the surface code,
are worse than 1% in our setting. In this case, the level-7
C4/C6 code achieves P0 < Ptarget. Then, we obtain an
overall protocol having the space overhead ∼ 6.4×103 to
achieve the logical error rate 10−24.

Modularity in comparison with the quantum low-
density parity-check (LDPC) code. We have so far
offered a quantitative analysis of our protocol based on
the code-concatenation approach. We here compare this
approach with another existing approach toward low-
overhead FTQC based on the high-rate quantum LDPC
codes originally proposed in Refs. [1–3].

The crucial difference between our approach based on
concatenated codes and the approach based on quantum
LDPC codes is modularity. In the approach of quan-
tum LDPC code, one needs to realize a single large-size
code block. To suppress the logical error rate more and
more, each code block may become arbitrarily large, yet
an essential assumption for the fault tolerance of the
quantum LDPC codes is to keep the physical error rates
constant [2, 3]. In experiments, problematically, it is in
principle challenging to arbitrarily increase the number
of qubits in a single quantum device without increasing
physical error rates [37, 38]. By contrast, in the code-
concatenation approach, we can realize a fixed-size code
at each level of the code concatenation by putting finite
efforts into improving a quantum device; that is, each
fixed-size code serves as a fixed-size abstraction layer in
the implementation. As shown in Ref [4], as we increase
the concatenation levels, the logical error rates are sup-
pressed doubly exponentially, whereas the required num-
ber of gates for implementing each gadget grows much
more slowly. Once the error rates are suppressed by a
concatenated code at some concatenation level, the low
error rate of each logical gate provides a margin for us-
ing more logical gates (i.e., tolerating more architectural
overhead) to implement FTQC at the higher concatena-
tion levels, which provides flexibility for scalable archi-
tecture design. For example, once we develop finite-size
devices implementing the fixed-size code, we can further
scale up FTQC by combining these error-suppressed de-
vices by using quantum channels to connect these devices
and implement another fixed-size code to be concate-
nated at the next concatenation level. These quantum
channels can be lossier than the physical gates in each
device since the quantum states that will go through the
channels are already encoded. In this way, our code-
concatenation approach offers modularity, an essential
requirement for the FTQC architectures.

Apart from the modularity, another advantage is that
our protocol based on concatenated codes can implement
logical gates faster than the existing protocols for quan-
tum LDPC codes. In the protocol for quantum LDPC
codes in Refs. [2, 3], almost all gates, including most
of the Clifford gates, are implemented by gate telepor-
tation using auxiliary code blocks; to maintain constant
space overhead, gates must be applied sequentially, which
incurs the polynomial time overhead. Other Clifford
gate schemes are proposed based on code deformation
[5] and lattice surgery [6], but they also introduce ad-
ditional overheads. In particular, the code deformation
scheme may introduce an additional time overhead that
may be worse than the gate teleportation method [5].
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The lattice surgery scheme requires a large patch of the
surface code, which makes the space overhead of the
overall protocol non-constant if we want to attain low
time overhead [6]. Apart from these schemes for logical
gate implementations, a stabilizer measurement scheme
for a constant-space-overhead quantum LDPC code in
thin planar connectivity is presented in Ref. [7]. This
protocol implements a quantum memory (i.e., the logi-
cal identity gate), but to implement universal quantum
computation in a fault-tolerant way, we need to add the
components to implement state preparation and logical
gates, which incur the overhead issues in the same way as
the above. More recent protocols in Refs. [39, 40] aim to
improve the implementability of quantum LDPC codes,
but in the same way, these protocols can only be used
as the quantum memory; problematically, it is currently
unknown how to realize logical gates with these proto-
cols, and it is also unknown how to achieve constant-
space-overhead FTQC based on these protocols without
sacrificing their implementability. In contrast with these
protocols, our protocol can implement universal quan-
tum computation within constant space overhead and
quasi-polylogarithmic time overhead, by using the con-
catenated code rather than quantum LDPC codes, as
shown in Ref. [4]. Due to this difference, it is not straight-
forward to obtain numerical results on the existing proto-
cols for the high-rate quantum LDPC codes in the same
setting as our protocol; however, if one develops more effi-
cient protocols achieving universal quantum computation
using the high-rate quantum LDPC codes, the current
numerical results on comparing our protocol with those
of the surface code and the concatenated Steane code also
serve as a useful baseline for further comparison, which
we leave for future work.

We also point out that in the current status, even if
one wants to implement constant-space-overhead FTQC
using quantum LDPC codes, one eventually needs to
use concatenated codes in combination. In particu-
lar, as shown in Refs. [2, 3], the existing constant-
space-overhead fault-tolerant protocols for such quantum
LDPC codes rely on concatenated codes for preparation
of logical |0⟩ states, e.g., by using the encoding proce-
dure implemented by the concatenated Steane code [41].
Thus, even though a part of the protocol using the high-
rate quantum LDPC codes may be efficient, the part rely-
ing on the concatenated codes may become a bottleneck
in practice, which should be taken into account in future
work for a fair comparison of the overall protocols.

DISCUSSION

In this work, we have constructed a low-overhead, high-
threshold, modular protocol for FTQC based on the
recent progress on the code-concatenation approach in
Ref. [4]. To design our protocol, we have performed thor-
ough numerical simulations of the performance of fault-
tolerant protocols for various quantum codes, under the

same circuit-level error model in a unified way, as shown
in Figs. 1 and 2 and Tables I and II. Based on these
numerical results, we have proposed an optimized pro-
tocol, which we have designed by seeking an optimized
combination of the underlying quantum code at the phys-
ical level and the series of quantum Hamming codes at
higher concatenation levels. The proposed protocol (Ta-
ble I) uses a fixed-size C4/C6 code at the physical level
to attain a high threshold and, on top of this underlying
quantum code, concatenate the quantum Hamming codes
to achieve the constant space overhead. This proposed
protocol achieves a substantial saving of the space over-
head compared to that of the surface code (Fig. 1), has
a higher threshold 2.4% than those of the surface code
and the concatenated Steane code (Table II), and offers
modularity owing to the code-concatenation approach.
At the same time, as shown in Fig. 2, our results show

that the optimal choice of the underlying quantum code
to minimize the space overhead may change depending
on the physical error rate; in particular, we find that the
C4/Steane code that we have developed in this work can
outperform the C4/C6 code at the physical error rate
0.01% while the C4/C6 code is better at the physical er-
ror rates 0.1% and 1%. Since our protocol is based on
concatenated codes, the proposed protocol has flexibil-
ity in the choice of the underlying quantum code and
the sequence of quantum Hamming codes to be concate-
nated, which will also be useful for further optimization
of fault-tolerant protocols depending on the advances of
experimental technologies in the future.
Lastly, we remark that we have constructed our fault-

tolerant protocol without assuming geometrical con-
straints on quantum gates. Non-local interactions are
indispensable to avoid the growing space overhead of
FTQC on large scales, which has been a major obstacle to
implementing FTQC; in particular, a polylogarithmically
growing space overhead is inevitable as long as one sticks
to an architecture with two-dimensional two-qubit gate
connectivity [42]. By contrast, all-to-all connectivity of
physical gates is indeed becoming possible in various ex-
perimental platforms, such as neutral atoms [14], trapped
ions [15, 16], and optics [17–19]; in such cases, the pro-
posed protocol substantially reduces the space overhead
compared to the surface code, as shown in Fig. 1. Con-
sequently, our protocol lends increased importance to
such physical platforms with all-to-all connectivity; at
the same time, the technological progress on the experi-
mental side may also lead to extra factors to be consid-
ered for practical FTQC protocols, and our results and
techniques constitute a basis for further optimization of
the fault-tolerant protocols in these platforms.

METHODS

In Methods, after summarizing the notations, we first
describe the error model used in the numerical simula-
tion and the Monte Carlo simulation method to evaluate
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the logical CNOT error rate. Then, we provide the de-
tails of our estimation of the required logical error rate
of quantum computation, based on the evaluation of the
CNOT gate counts of the quantum circuit implementing
Shor’s algorithm for 2048-bit RSA integer factoring and
the required error rates for the classical computation. Fi-
nally, we present our method for estimating the logical
CNOT error rate of the large-scale concatenated codes
using the small-scale level-by-level simulation results at
each concatenation level.
Notation. The computational basis (also called the Z
basis) of a qubit C2 is denoted by {|0⟩ , |1⟩}, and the
complementary basis (also called the X basis) {|+⟩ , |−⟩}
is defined by |±⟩ := 1√

2
(|0⟩ ± |1⟩). By the convention of

Ref. [43], we use the following notation on 1-qubit and
2-qubit unitaries:

I =

(
1 0
0 1

)
, (3)

X =

(
0 1
1 0

)
, (4)

Y =

(
0 −i
i 0

)
, (5)

Z =

(
1 0
0 −1

)
, (6)

H =
1√
2

(
1 1
1 −1

)
, (7)

S =

(
1 0
0 i

)
, (8)

CNOT =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 , (9)

where the 1-qubit and 2-qubit unitaries are shown in
the matrix representations in the computational bases
{|0⟩ , |1⟩} ⊂ C2 and {|0⟩ ⊗ |0⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |0⟩ , |1⟩ ⊗
|1⟩} ⊂ C2⊗C2, respectively. See also Ref. [44] for termi-
nology on FTQC.
Error model. In this work, the stabilizer circuits for
describing the fault-tolerant protocols are composed of
state preparations of |0⟩ and |+⟩, measurements in the
Z and X bases, single-qubit gates I,X, Y, Z,H, S, and a
two-qubit CNOT gate. Each of these preparation, mea-
surement, and gate operations in a circuit is called a loca-
tion in the circuit. By the convention of Ref. [12], we use
a circuit-level depolarizing error model. In this model, in-
dependent and ideally distributed (IID) Pauli errors ran-
domly occur at each location, i.e., after state preparations
and gates, and before measurements. By convention, we
ignore the error and the runtime of polynomial-time clas-
sical computation used for decoding in the fault-tolerant
protocols.

The probabilities of the errors are given using a single
parameter p (called the physical error rate) as follows.
State preparations of |0⟩ and |+⟩ are followed by X and

Z gates, respectively, with probability p. Measurements
in Z and X bases follow X and Z gates, respectively,
with probability p. One-qubit gates I,X, Y, Z,H, S are
followed by one of the 3 possible non-identity Pauli op-
erators {X,Y, Z}, each with probability p/3. A two-
qubit gate CNOT is followed by one of the 15 pos-
sible non-identity Pauli products acting on 2 qubits
{σ1 ⊗ σ2}(σ1,σ2)∈{I,X,Y,Z}2 \ {I ⊗ I}, each with proba-
bility p/15.

Simulation to evaluate logical CNOT error rates.
In our numerical simulation, we evaluate the logi-
cal CNOT error rate using the Monte Carlo sampling
method presented in Refs. [20, 21], which is based on the
reference entanglement method [13, 22]. For a quantum
code consisting ofN physical qubits andK logical qubits,
the circuit that we use for the Monte Carlo sampling
method is illustrated in Fig. 3, where we assume that
random Pauli errors occur at each location of the circuit
according to the error model described above. In partic-
ular, starting from two error-free logical Bell states, we
repeatedly apply a gate gadget of the logical CNOT⊗K

gate followed by an error correction gadget, which is re-
peated ten times. For all the quantum codes (which are
Calderbank-Shor-Steane (CSS) codes in this work) ex-
cept for the surface code, we implement the logical CNOT
gates transversally and use Knill’s error correction gadget
[13] for error correction. For the surface code, by conven-
tion, we use the lattice surgery [30, 31] to implement the
logical CNOT gates, which includes the error correction.
Note that the transversal implementation of the logical
CNOT gate is also possible for the surface code, but we
performed our numerical simulation based on the lattice
surgery since the lattice surgery is more widely used in
the literature on resource estimation for FTQC, such as
Refs. [45, 46]. Then, we apply the error-free logical Bell
measurement on the output quantum state. Any mea-
surement outcomes that do not result in all zeros for the
first logical qubits in four code blocks are counted as
logical errors. We evaluate the logical CNOT error rate
by dividing the empirical logical error probability in the
simulation by ten. Since the quantum circuit in Fig. 3,
including Pauli errors, is composed of Clifford gates, the
sampling of measurement outcomes is efficiently simu-
lated by a stabilizer circuit simulator; in particular, our
simulation is conducted with Stim [47].

Logical error rate required for 2048-bit RSA in-
teger factoring. The security of the RSA cryptosystem
is ensured by the classical hardness of integer factoring,
and factoring 2048-bit integers given as the product of
two similar-size prime numbers, which is called RSA in-
tegers in Ref. [24] leads to breaking RSA-2048. Previous
works have investigated efficient algorithms for RSA in-
teger factoring based on Shor’s algorithm [23]. In par-
ticular, Ref. [24] proposes an n-bit RSA integer factor-
ing algorithm using 0.3n3 + 0.0005n3 lg n Toffoli gates.
Since a Toffoli gate can be decomposed into 6 CNOT
gates and single-qubit gates [43], this algorithm can be
implemented by 1.8n3 + 0.003n3 lg n CNOT gates. For
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|+⟩⊗K

|0⟩⊗K

|+⟩⊗K

|0⟩⊗K

X⊗K

X⊗K

X⊗K

error correction

error correction

X⊗K

X⊗K

XK

ZK

XK

ZK

Error-free Repeat ten times Error-free

FIG. 3. A quantum circuit for the reference entangle-
ment method [13, 20–22] to estimate a logical CNOT
error rate. In this simulation, starting from two error-
free logical Bell states, we apply a gate gadget of the log-
ical CNOT⊗K gate followed by the error correction gadget
ten times, using a noisy circuit. For the surface code, we use
the lattice surgery [30, 31] to implement logical CNOT gates,
which includes the error correction. For the other codes, we
implement logical CNOT gates transversally and use Knill’s
error correction gadget [13] for error correction. Finally, we
apply the error-free logical Bell measurement on the output
quantum state to estimate the logical error rate. The symbol
with XK (ZK) denotes the measurements in X (Z) basis for
all the K logical qubits in a code block.

n = 2048, it requires ∼ 1010 CNOT gates. Thus, we re-
quire a logical error rate ∼ 10−10 to run this algorithm.
Required error rate for classical computation. The
required error rate for classical computation is estimated
by taking an inverse of the number of elementary gates
in a large-scale classical computation that is currently
available. In particular, we consider a situation where
the supercomputer Fugaku [48] is run for a month. The
peak performance at double precision of Fugaku in the
normal mode is given 488 petaflops ∼ 5 × 1017 s−1 [48].
If we run it for 1 month ∼ 2.6 × 106 s, then the num-
ber of elementary gates is roughly estimated as ∼ 1024.
Thus, an upper bound of the logical error rate of classical
computation is roughly estimated as ∼ 10−24.
Estimation of logical error rates of large-scale
quantum codes from small-scale level-by-level
simulations. In this work, we use an underlying quan-
tum code Q0 concatenated with a series of quantum
Hamming codes Qr1 ,Qr2 , . . . ,QrL . The logical error rate
of the overall quantum code under the physical error rate
p is evaluated from the level-by-level numerical simula-
tion as

P (p) = PrL ◦ · · · ◦ Pr2 ◦ Pr1 ◦ P0(p), (10)

where P0(p) is the logical error rate ofQ0 under the phys-
ical error rate p, and Prl(p) is that of the quantum Ham-
ming code Qrl . This estimation gives the upper bound
of the logical error rate in the cases where the logical
CNOT gates (rather than initial-state preparation of |0⟩
and |+⟩, single-qubit Pauli and Clifford gates, and mea-
surements in Z and X bases) have the largest error rate
in the set of elementary operations for the stabilizer cir-
cuits, which usually holds true since the gadget for the
CNOT gate is the largest. The logical error rates P0(p)
and Prl(p) for each l ∈ {1, . . . , L} are estimated by the
numerical simulation using the circuit described in Fig. 3.
See Supplementary Information for more details.

With our numerical simulation, we obtain the parame-
ters of the following fitting curves of the logical error rates
(see Supplementary Information for more details). For
the quantum Hamming code Qr with parameter r, due
to distance 3, Pr(p) is approximated for r ∈ {3, 4, 5, 6, 7}
by the following fitting curve

Pr(p) = arp
2. (11)

The logical error rate of the level-l C4/C6 code, denoted

by P
(l)
C4/C6

(p), is approximated by a fitting curve

P
(l)
C4/C6

(p) = AC4/C6
(BC4/C6

p)Fl , (12)

where Fl is the Fibonacci number defined by F1 = 1,
F2 = 2, and Fl = Fl−1+Fl−2 for l > 2 [13]. The threshold

p
(th)
C4/C6

for the C4/C6 code is estimated by

p
(th)
C4/C6

= (BC4/C6
)−1. (13)

The logical error rate of the surface code with code dis-

tance d, denoted by P
(d)
surface(p), is approximated by a

fitting curve

P
(d)
surface(p) = Asurface(Bsurfacep)

d+1
2 . (14)

Based on the critical exponent method in Ref. [49], the

threshold p
(th)
surface of the surface code is estimated as a

fitting parameter of another fitting curve given by

P
(d)′
surface(p) = Csurface +Dsurfacex+ Esurfacex

2, (15)

x = (p− p
(th)
surface)d

1/µ. (16)

The logical error rate of the level-l concatenated Steane

code, denoted by P
(l)
Steane(p), is approximated for l ∈

{1, 2} by a fitting curve

P
(l)
Steane(p) = a

(l)
Steanep

2l . (17)

For l ≥ 3, due to the limitation of computational re-
sources, we did not directly perform the numerical simu-

lation to determine a
(l)
Steane in (17), but using the results

for l ∈ {1, 2} in (17), we recursively evaluate the logical

error rates P
(l)
Steane(p) of level-l concatenated Steane code

as

P
(l)
Steane(p) =

{
P

(1)
Steane ◦ P

(l−1)
Steane(p) (l is odd)

P
(2)
Steane ◦ P

(l−2)
Steane(p) (l is even)

. (18)

The threshold p
(th)
Steane of the concatenated Steane code

is estimated by that satisfying P
(2)
Steane(p

(th)
Steane) = p

(th)
Steane,

i.e.,

p
(th)
Steane = [a

(2)
Steane]

−1/3. (19)
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The logical error rates of the level-l C4/Steane codes for

l ∈ {1, 2}, denoted by P
(l)
C4/Steane

(p), are approximated

by fitting curves

P
(1)
C4/Steane

(p) = a
(1)
C4/Steane

p, (20)

P
(2)
C4/Steane

(p) = a
(2)
C4/Steane

p3, (21)

where a
(1)
C4/Steane

is given by a
(1)
C4/Steane

= AC4/C6
BC4/C6

from the logical error rate of the level-1 C4/C6 since the
level-1 C4/Steane code coincides with the level-1 C4/C6

code. For l ≥ 3, similar to the concatenated Steane code,

logical error rates P
(l)
C4/Steane

(p) of the level-l C4/Steane

code are evaluated by

P
(l)
C4/Steane

(p) = P
(l−2)
Steane ◦ P

(2)
C4/Steane

(p). (22)

Since the C4/Steane code at concatenation levels 2 and
higher becomes the same as the concatenated Steane

code, the threshold p
(th)
C4/Steane

of the C4/Steane code is

determined by the physical error rate that can be sup-

pressed below p
(th)
Steane at level 2, estimated as that satis-

fying P
(2)
C4/Steane

(p
(th)
C4/Steane

) = p
(th)
Steane, i.e.,

p
(th)
Steane = [a

(2)
Steane]

−1/9[a
(2)
C4/Steane

]−1/3. (23)

Using the fitting parameters of these fitting curves ob-
tained from the level-by-level numerical simulations, we
evaluate the overall logical error rate according to (10).
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SUPPLEMENTARY INFORMATION

Supplementary Information of “Concatenate codes, save qubits” is organized as follows. In Sec. A, we present the
details of the fault-tolerant protocols for the concatenated quantum Hamming code, the C4/C6 code, the surface code,
the concatenated Steane code, and the C4/Steane code. In Sec. B, we show the numerical results of the logical CNOT
error rates for these quantum codes.

Appendix A: Implementation of fault-tolerant protocols

In this section, we summarize the details of the implementation of fault-tolerant protocols for the quantum codes
relevant to our analysis. For a concatenated code, the set of logical qubits of the concatenated code at the concate-
nation level l is called a level-l register, where a level-0 register refers to a physical qubit [4]. For the concatenated
quantum Hamming codes, the C4/C6 code, the concatenated Steane code, and the C4/Steane code (which are the
Calberback-Shor-Steane (CSS) codes), the Pauli gate gadgets, the CNOT gate gadget, and the measurement gad-
get are implemented transversally as shown in Fig. S1. To run the circuits for the simulation, the error correction
gadget and the initial-state preparation gadget are also required, and we will describe these gadgets in this section.
In Sec. A 1, we describe the protocol for the concatenated quantum Hamming code. In Sec. A 2, we describe the
protocols for the underlying quantum codes, i.e., the C4/C6 code, the surface code, the concatenated Steane code,
and the C4/Steane code. In addition, the measurement gadgets include the classical processing of decoding using the
measurement outcomes, and in Sec. A 3, we describe the decoders.

1. Concatenated quantum Hamming code

We summarize the details of the protocol for the concatenated quantum Hamming code. A level-l register refers to

K(l) =
∏l

l′=1 Krl′ logical qubits of the concatenated quantum Hamming code at the concatenation level l ∈ {1, 2, . . .},
as shown in Ref. [4]. To form a level-l register, we use Nrl level-(l − 1) registers; in particular, from each of the Nrl

level-(l− 1) registers, we pick up the kth qubit (k ∈ {1, . . . ,K(l−1)}) and encode Krl out of K
(l) qubits of the level-l

register into these picked Nrl qubits as the Krl logical qubits of the quantum Hamming code Qrl . The logical Pauli

operators acting on the ith logical qubit of the level-l register for l ≥ 2, denoted by P
(1)
i for P ∈ {I,X, Y, Z}, are

written in terms of the level-(l − 1) logical Pauli operators acting on the jth logical qubit of the nth level-(l − 1)

register, denoted by P
(l−1)
n,j for P ∈ {I,X, Y, Z}, as

X
(l)
i =

Nrl⊗

n=1

X
(l−1)b(k)

n
n,j ,

Z
(l)
i =

Nrl⊗

n=1

Z
(l−1)b(k)

n
n,j ,

(A1)

where i = K(l−1)(k − 1) + j for k ∈ {1, · · · ,Krl} and j ∈ {1, · · · ,K(l−1)}, and b
(k)
n represent the logical operators of

the quantum Hamming code Qrl . The explicit forms of the logical operators, i.e., b
(k)
n in (A1), can be determined by

the method shown in Refs. [51, 52]. Our simulation calculates the logical CNOT error rate on the first logical qubit;

thus, we here show b
(k)
n only for k = 1, which is given by

b(k=1)
n =

{
1 (n ∈ {1, 2, 3})
0 (n ∈ {4, 5, · · · , Nrl})

. (A2)

The level-l initial-state preparation gadget for the logical |0⟩ (|+⟩) of the concatenated quantum Hamming code is
recursively defined using the level-(l − 1) gadgets as shown in Fig. S2. The Z (X) stabilizer generators and the
logical Z (X) operator are measured for verification from the measurement outcomes. If the verification fails, the
output quantum state is discarded, and the initial-state preparation is rerun without additional verification. In our
simulation, the leading-order effect of the verification failure is included in the estimation of the logical CNOT error
rate as

PL = P
(0)
CNOT + Pverification

∑

i

P
(i)
CNOT, (A3)
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FIG. S1. Level-l Pauli gate, CNOT gate, and measurement gadgets for the CSS codes using level-(l − 1) operations, which
are used for the concatenated quantum Hamming codes, the C4/C6 code, the concatenated Steane code, and the C4/Steane

code in our analysis. (a) The level-l Pauli gate gadget implements the logical Pauli operator
⊗K(l)

i=1 Pi for Pi ∈ {I,X, Y, Z}. It
is implemented by the level-(l − 1) Pauli gadget as

⊗Nl
n=1

⊗K(l−1)

j=1 Pn,j , where Pn,j is chosen from the logical Pauli operators

{I,X, Y, Z} of the level-(l − 1) code, which will be explained for each code in (A1), (A17), (A18), (A21) and (A23). (b)

The level-l CNOT gate gadget implements the logical CNOT⊗K(l)

gate. It is implemented by the Nl transversal level-(l − 1)
CNOT gate gadgets as shown on the right-hand side. (c) The X (Z) measurement gadget implements the measurement of

the logical X (Z) operator on the ith logical qubit for i ∈ {1, · · · ,K(l)}. It is implemented by the transversal level-(l − 1) X
(Z) measurement gadgets, followed by the classical computation decoding the measurement outcomes of level-(l − 1) logical
operators. See Sec. A 3 for the details of the decoder.

where P
(0)
CNOT is the logical CNOT error rate evaluated in the post-selected simulation runs that all the verification

succeed, Pverification is the failure probability of the verification, and P
(i)
CNOT is the logical CNOT error rate evaluated

in the post-selected simulation runs that all the verifications but the ith one succeed. We use the error correction
gadget shown in Ref. [4]. See also Ref. [4] for details of the full fault-tolerant protocol for implementing universal
quantum computation using the quantum Hamming code while we have described here a part of the protocol relevant
to our analysis.

Initial-state preparation unitaries Uencode for the quantum Hamming code Qr = [[Nr,Kr, 3]] for r ∈ {3, 4, 5, 6, 7}
are constructed using Steane’s Latin rectangle encoding method [53]. In the initial state preparation of the logical
|0⟩ state, the 2i−1th qubits for i ∈ {1, · · · , r} are initialized to be |+⟩ states, and the jth qubits for j ∈ {1, · · · ,Kr} \
{20, · · · , 2r−1} are initialized to be |0⟩ states. Steane’s Latin rectangle L for the quantum Hamming codes [[Nr,Kr, 3]]
is given by a r × Nr matrix whose elements Li,j for i ∈ {1, · · · , r} and j ∈ {1, · · · , Nr} specify the ordering of the
CNOT gates to be applied. If Li,j = l for l ∈ {1, · · · }, a CNOT gate is applied between the 2i−1th qubit (control)
and the jth qubit (target) on the depth l. If Li,j = 0, no CNOT gate is applied. The initial state preparation of
the logical |+⟩ state is done by replacing |0⟩ (|+⟩) with |+⟩ (|0⟩), swapping the control qubit and target qubit of the
CNOT gates, and replacing the Z measurements with the X measurements in the initial state preparation of the
logical |0⟩ state In particular, we use the Latin rectangles Lr for the Qr codes for r ∈ {3, 4, 5, 6, 7} given by

L3 =



0 0 2 0 1 0 0
0 0 1 0 0 3 2
0 0 0 0 2 1 0


 , (A4)
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L4 =



0 0 3 0 7 0 1 0 4 0 5 0 2 0 6
0 0 5 0 0 1 3 0 0 4 6 0 0 7 2
0 0 0 0 2 7 6 0 0 0 0 1 4 3 5
0 0 0 0 0 0 0 0 2 3 7 6 1 5 4


 , (A5)

L5 =




0 0 7 0 2 0 9 0 14 0 3 0 11 0 13 0 12 0 1 0 8 0 6 0 15 0 4 0 10 0 5
0 0 8 0 0 9 15 0 0 13 11 0 0 5 14 0 0 2 12 0 0 1 10 0 0 6 7 0 0 4 3
0 0 0 0 14 12 4 0 0 0 0 8 3 1 10 0 0 0 0 2 13 6 9 0 0 0 0 11 5 7 15
0 0 0 0 0 0 0 0 1 10 7 5 4 6 15 0 0 0 0 0 0 0 0 3 12 14 8 9 13 2 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 1 13 7 11 4 12 8 5 3 9 6 2 14 10


 , (A6)

L6 =
(
L6,1 L6,2 L6,3

)
, (A7)

L7 =
(
L7,1 L7,2 L7,3 L7,4 L7,5

)
, (A8)

where L6 and L7 are given by horizontally concatenating the matrices defined as

L6,1 =




0 0 13 0 24 0 5 0 6 0 3 0 7 0 10 0 27 0 28 0 20
0 0 15 0 0 28 13 0 0 19 25 0 0 26 16 0 0 12 30 0 0
0 0 0 0 15 9 26 0 0 0 0 24 3 17 25 0 0 0 0 6 8
0 0 0 0 0 0 0 0 16 14 12 27 19 5 20 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 8 18 23 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (A9)

L6,2 =




0 17 0 16 0 9 0 26 0 22 0 18 0 23 0 1 0 2 0 4 0
8 3 0 0 9 14 0 0 23 2 0 0 24 20 0 0 29 7 0 0 6
27 4 0 0 0 0 30 19 10 29 0 0 0 0 2 5 14 31 0 0 0
0 0 11 18 21 10 1 28 15 30 0 0 0 0 0 0 0 0 8 6 3
19 27 2 21 13 5 15 31 14 17 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 23 6 3 22 4 20 10 19 9 13




, (A10)

L6,3 =




29 0 19 0 31 0 11 0 8 0 25 0 12 0 14 0 30 0 21 0 15
22 0 0 17 21 0 0 4 31 0 0 5 11 0 0 27 10 0 0 18 1
0 20 7 23 11 0 0 0 0 13 21 28 22 0 0 0 0 18 16 1 12
2 29 13 7 9 0 0 0 0 0 0 0 0 26 22 23 24 31 17 4 25
0 0 0 0 0 24 1 30 6 16 28 29 20 22 10 9 3 25 7 12 26
18 17 14 25 7 15 24 27 16 12 29 8 1 2 5 30 21 28 26 11 31




, (A11)

L7,1 =




0 0 19 0 1 0 21 0 54 0 10 0 55 0 45 0 61 0 47 0 33 0 51 0 2 0
0 0 17 0 0 50 59 0 0 41 38 0 0 28 51 0 0 39 23 0 0 54 4 0 0 42
0 0 0 0 59 18 33 0 0 0 0 61 40 41 37 0 0 0 0 24 63 29 31 0 0 0
0 0 0 0 0 0 0 0 35 23 24 15 26 14 33 0 0 0 0 0 0 0 0 12 4 57
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 32 21 47 13 33 41 27 60 39
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (A12)

L7,2 =




59 0 31 0 17 0 24 0 63 0 13 0 29 0 53 0 30 0 16 0 27 0 22 0 34 0
26 0 0 21 19 0 0 36 62 0 0 46 34 0 0 16 29 0 0 45 57 0 0 27 61 0
0 21 46 17 6 0 0 0 0 47 28 50 3 0 0 0 0 4 1 11 43 0 0 0 0 56
5 47 40 16 18 0 0 0 0 0 0 0 0 20 10 17 28 54 2 32 49 0 0 0 0 0
45 44 50 51 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 9 55 62 40
0 0 0 0 0 0 23 62 9 26 53 60 14 46 19 51 58 56 47 35 3 11 34 13 32 54
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (A13)

L7,3 =




37 0 35 0 26 0 42 0 23 0 3 0 41 0 40 0 32 0 11 0 20 0 44 0 50 0
0 52 6 0 0 58 12 0 0 7 55 0 0 18 56 0 0 49 47 0 0 31 14 0 0 8
8 19 36 0 0 0 0 13 32 27 51 0 0 0 0 34 30 53 14 0 0 0 0 57 42 10
0 0 0 22 21 63 13 58 60 42 43 0 0 0 0 0 0 0 0 8 29 53 7 56 3 1
4 11 7 48 37 31 58 34 17 22 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 41 59 31 27 5 15 2 4 50 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 56 47 4 1 59 16 6 46 49 2 30 23 21 17




, (A14)
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FIG. S2. Level-l initial-state preparation gadgets for the logical |0⟩ (|+⟩) state of the concatenated quantum Hamming code are
implemented by using the level-(l − 1) gadgets. The Z (X) stabilizer generators and the logical Z (X) operator are measured
for verification from the measurement outcomes. If the verification fails, the output quantum state is discarded, and the initial-
state preparation is rerun without additional verification.

L7,4 =




7 0 57 0 25 0 39 0 43 0 6 0 56 0 46 0 15 0 36 0 9 0 60 0 52 0
9 0 0 2 15 0 0 40 22 0 0 43 25 0 0 24 5 0 0 11 48 0 0 20 13 0
58 0 0 0 0 39 60 15 26 0 0 0 0 52 38 7 54 0 0 0 0 12 62 9 45 0
34 0 0 0 0 0 0 0 0 61 55 31 51 59 6 52 41 0 0 0 0 0 0 0 0 48
0 52 25 42 6 36 8 2 28 20 24 1 35 5 16 49 30 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 6 7 29 17 55 52 21 1
51 28 55 38 24 54 53 14 20 48 36 42 18 27 50 61 29 22 19 9 10 5 15 13 7 31




, (A15)

L7,5 =




62 0 4 0 58 0 49 0 18 0 12 0 38 0 14 0 5 0 28 0 48 0 8
0 37 63 0 0 30 10 0 0 32 53 0 0 1 3 0 0 44 33 0 0 60 35
0 0 0 55 44 5 23 0 0 0 0 49 16 20 22 0 0 0 0 48 35 2 25
9 45 27 19 37 36 11 0 0 0 0 0 0 0 0 30 38 25 62 50 46 39 44
0 0 0 0 0 0 0 54 57 43 29 3 63 12 46 19 14 23 10 53 59 61 18
20 28 30 39 24 18 42 25 40 57 37 33 22 61 38 36 49 10 63 12 43 45 48
63 52 26 12 45 35 37 41 8 39 33 32 62 25 60 34 44 3 57 11 40 58 43




. (A16)

The Latin rectangle for the [[7, 1, 3]] code is taken from Ref. [54], and the others are heuristically chosen to minimize
the circuit depth as much as possible.

2. Underlying quantum codes

In this section, we describe the protocols for the underlying quantum codes, i.e., the C4/C6 code, the surface code,
the concatenated Steane code, and the C4/Steane code. In Sec. A 2 a, we describe the C4/C6 code. In Sec. A 2 b, we
describe the surface code. In Sec. A 2 c, we describe the concatenated Steane code. In Sec. A 2 d, we describe the
C4/Steane code.

a. C4/C6 code

We summarize the details of the protocol for the C4/C6 code. We call the two logical qubits of the C4 code (i.e.,
the [[4, 2, 2]] code) a level-1 register. Similarly, the level-l register for l ∈ {2, 3, · · · } refers to the two logical qubits
of the C4/C6 code at the concatenation level l. To form the level-l register, the C4/C6 code uses three level-(l − 1)
registers (i.e., six qubits) of the level-(l− 1) code to encode the level-l register as the logical qubits of the C6 code, as

shown in Ref. [13]. The logical Pauli operators acting on the ith logical qubit of the level-1 register, denoted by P
(1)
i
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for P ∈ {I,X, Y, Z}, are given by the physical Pauli operators as [13]

X
(l)
1 ⊗ I

(l)
2 = X ⊗X ⊗ I ⊗ I,

Z
(l)
1 ⊗ I

(l)
2 = Z ⊗ I ⊗ Z ⊗ I,

I
(l)
1 ⊗X

(l)
2 = I ⊗X ⊗ I ⊗X,

I
(l)
1 ⊗ Z

(l)
2 = Z ⊗ I ⊗ Z ⊗ I.

(A17)

The logical Pauli operators acting on the ith logical qubit of the level-l register for l ≥ 2, denoted by P
(1)
i for

P ∈ {I,X, Y, Z}, are given by the level-(l − 1) logical Pauli operators acting on the jth logical qubit of the nth

level-(l − 1) register, denoted by P
(l−1)
n,j for P ∈ {I,X, Y, Z}, as [13]

X
(l)
1 ⊗ I

(l)
2 = I

(l−1)
1,1 ⊗X

(l−1)
1,2 ⊗X

(l−1)
2,1 ⊗ I

(l−1)
2,2 ⊗ I

(l−1)
3,1 ⊗ I

(l−1)
3,2 ,

Z
(l)
1 ⊗ I

(l)
2 = Z

(l−1)
1,1 ⊗ I

(l−1)
1,2 ⊗ I

(l−1)
2,1 ⊗ Z

(l−1)
2,2 ⊗ Z

(l−1)
3,1 ⊗ Z

(l−1)
3,2 ,

I
(l)
1 ⊗X

(l)
2 = X

(l−1)
1,1 ⊗X

(l−1)
1,2 ⊗X

(l−1)
2,1 ⊗ I

(l−1)
2,2 ⊗ I

(l−1)
3,1 ⊗X

(l−1)
3,2 ,

I
(l)
1 ⊗ Z

(l)
2 = Z

(l−1)
1,1 ⊗ Z

(l−1)
1,2 ⊗ Z

(l−1)
2,1 ⊗ I

(l−1)
2,2 ⊗ I

(l−1)
3,1 ⊗ Z

(l−1)
3,2 .

(A18)

Level-l initial-state preparation gadgets of the C4/C6 code are recursively defined using level-(l − 1) gadgets as
shown in Figs. S3 and S4. The initial-state preparation gadget uses ∗u and ∗u2 gate gadgets [13], which are shown in
Fig. S5, implementing the logical 2-qubit unitary operations given by

∗u = CNOT · SWAP,

∗u2 = SWAP · CNOT,
(A19)

where SWAP is defined by

SWAP =



1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 . (A20)

The parity of the measurement outcomes is checked for verification. If it fails, the output quantum state is discarded,
and the initial-state preparation gadget is rerun. Using the Bell-state preparation gadget shown in Fig. S6 [36],
we implement Knill’s error correction gadget as shown in Fig. S7. In the error correction and detection gadgets,
measurement outcomes of X and Z measurements are decoded to apply logical Pauli gates for correcting byproducts.
In the error correction gadget, if an uncorrectable error is detected in the decoding process, random numbers are
assigned to the logical measurement outcomes. In the error detection gadget, if an uncorrectable error is detected
in the decoding process, the output quantum state is discarded, which incurs an erasure error. In the Bell-state
preparation gadget, an error detection gadget is applied after preparing the logical Bell state. If an uncorrectable
error is detected in the error detection, the output quantum state is discarded and the Bell-preparation gadget is rerun
by replacing the error detection gadget with an error correction gadget. Since the effect of the verification failure
on the logical CNOT error rate is in a sub-leading order, we omit to include this effect in the numerical simulation.
See also Ref. [13] for details of the full fault-tolerant protocol for implementing universal quantum computation using
the C4/C6 code while we have described here a part of the protocol relevant to our analysis. Note that the protocol
described here is the non-post-selected protocol while Ref. [13] also proposes a post-selected protocol, which we do
not use to avoid the increase of overhead.

b. Surface code

We summarize the details of the protocol for the surface code and its numerical simulation. The surface code is
a planar version [8, 55] of the toric code [56, 57], and we here consider a rotated version [58] of the planar surface
code that requires fewer auxiliary qubits for the syndrome measurement. The distance-d rotated surface code is a
[[d2, 1, d]] code, defined on a square lattice consisting of d × d data physical qubits. In the rotated surface codes, as
shown in Fig. S8, data qubits are located at the vertices of the square plaquettes, while auxiliary qubits are placed at
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FIG. S3. Level-1 initial-state preparation gadgets for the C4/C6 code and the C4/Steane code implements preparations of the
logical |0⟩⊗2 and |+⟩⊗2 states. Pauli gates are applied depending on the measurement outcomes ij of the (j + 4)th qubits for
j ∈ {1, · · · , 4}. The parity of the measurement outcomes is checked for verification. If i1 + i2 + i3 + i4 ̸= 0 (mod 2) holds, the
output quantum state is discarded and the initial-state preparation is rerun.
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FIG. S4. Level-l initial-state preparation gadgets (l ≥ 2) for the C4/C6 code implements preparations of the logical |0⟩⊗2 and
|+⟩⊗2 states, implemented by using level-(l − 1) gadgets. Pauli gates are applied depending on the measurement outcomes
(i2j−1, i2j) of the (j+6)th code block for j ∈ {1, · · · , 3}. The parity of the measurement outcomes is checked for verification. If
i1+ i3+ i5 ̸= 0 (mod 2) or i2+ i4+ i6 ̸= 0 (mod 2) hold, the output quantum state is discarded and the initial-state preparation
is rerun.
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FIG. S5. (a) Level-1 ∗u and ∗u2 gate gadgets for the C4/C6 code implement the logical ∗u and ∗u2 operations given in (A19).
(b) Level-l (l ≥ 2) ∗u and ∗u2 gate gadgets for the C4/C6 code are implemented by using the level-(l − 1) gadgets.

the centers of the squares; the X-type and Z-type stabilizer generators are arranged in an alternating checkerboard
pattern.

We employ the lattice surgery [30, 31] to implement a logical CNOT gate on logical qubits encoded in the surface
codes. The lattice surgery is a widely used technique for measuring logical Pauli operators acting on logical qubits
encoded in the specially separated code blocks of the surface code only using the nearest-neighbor interaction of
physical qubits aligned in a two-dimensional plane. The lattice surgery also provides a way to perform a logical CNOT
gate between logical qubits of the surface code blocks, which is given by a quantum circuit shown in Fig. S8 (a). The
circuit is described by logical I, X, Z gates, and the measurements of logical X ⊗ X, Z ⊗ Z, and Z operators,
denoted by MXX ,MZZ , and MZ , respectively, and implemented by the lattice surgery. The layout of physical qubits
for performing a logical CNOT gate through the lattice surgery is shown in Fig. S8 (b). The space between code
blocks of surface codes in our layout is called the routing space, which should be at least as large as the size of each
code block to allow for the lattice surgery between distant code blocks [59, 60]. Also note that the lattice surgery,
in combination with magic state injection and magic state distillation, leads to a protocol for implementing universal
quantum computation while we here present a lattice-surgery part relevant to our analysis; see Ref. [30] for further
details of the protocol.

Given a physical error rate p of the circuit-level depolarizing error model and the distance d, we evaluate the logical
error rates of logical I, X, Z, MXX , MZZ , and MZ operations, in the circuit to perform the CNOT gate in Fig. S8 (a).
In particular, we estimate the logical error rate of I, MXX , and MZZ is estimated through the memory experiment
and stability experiment based on the method in Ref. [61]. On the one hand, the memory experiment evaluates
the probability of logical X or Z errors occurring on the logical qubit encoded in the surface code after t rounds
of syndrome measurement; on the other hand, the stability experiment evaluates the logical error probability of the
product of the measurement outcomes of multiple stabilizer generators after t rounds of syndrome measurement. We
use the minimum-weight perfect matching algorithm for decoding implemented by PyMatching package [28, 29].

For the |+⟩-state preparation operation in Fig. S8 (a), we initialize the logical qubit of surface codes in the logical
state |+⟩ by initializing all data physical qubits of the surface code in the physical state |+⟩, measuring all stabilizer
generators, and running the decoder to correct errors. However, since these operations can be performed simultane-
ously with the subsequent MZZ operation using lattice surgery, we assume that we can subsume the logical error rate
of the |+⟩ state preparation operation into the logical error rate of the subsequent lattice surgery and thus can ignore
it here.
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FIG. S6. (a) A level-1 Bell-state preparation gadget for the C4/C6 code implements preparation of the logical Bell state∣∣ϕ+
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. (b) A level-l (l ≥ 2) Bell-state preparation gadget for the C4/C6 code is implemented by using the

level-(l − 1) gadgets.
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FIG. S8. (a) A quantum circuit for performing a CNOT gate. A measurement operation of a Pauli operator P , denoted by MP ,
is represented by a box, with each measurement outcome displayed above it. (b) The layout of physical qubits for performing
a logical CNOT gate between logical qubits encoded in a rotated surface code with the distance 5. Each circle represents a
physical qubit. When defining surface codes on these physical qubits, the white circles serve as data physical qubits, and the
black circles as auxiliary physical qubits for syndrome measurement. Each black (and white) region represents an X(Z)-type
stabilizer generator of the surface code, acting on the data qubits within its region as Pauli X(Z) operators, respectively.
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For the MZZ operation in Fig. S8 (a) (and the MXX operation as well), the measurement outcome of the logical
Z ⊗Z operator is determined by the product of measurement outcomes of Z-type stabilizer generators in the routing
space. We estimate the probability pstab of incorrectly reading the product of the logical measurement outcome by
the stability experiment of the code block with size d×d with d rounds of syndrome measurements. The measurement
outcome of the MZZ operation is flipped with the logical error rate pstabMZZ

. Along with measuring Z ⊗ Z, the error
correction is performed on the merged code block with size d × 3d, where d is the code distance. We estimate the
probability that the logical X error and Z error occur, denoted by pX and pZ , respectively, through the memory
experiment of the merged code block with size d × 3d with d rounds of syndrome measurements. A logical X error
during the error correction in implementing the logical MZZ operation leads to a logical X ⊗X error acting on the
control and auxiliary logical qubits at the logical error rate pXMZZ

. In addition, a logical Z error during error correction

in the MZZ operation leads to a Z error acting on the controlled logical qubit at the logical error rate is pZMZZ
. We

numerically simulate these logical X ⊗X and Z errors in addition to the errors in reading the logical measurement
outcomes.

For the identity operation I in Fig. S8 (a), we estimate the probability of the logical X error and Z error, denoted by
pXI and pZI , respectively, through the memory experiment of the code block with size d×d with d rounds of syndrome
measurements. Note that the logical identity operation is performed with d rounds of syndrome measurements here
because the number of the time steps for performing the MZZ and MXX operations is also d rounds. With the logical
error rate pXI (pZI ), the logical identity operation I suffers from the logical Pauli X(Z) errors.

To estimate the logical error rate of the MZ operation, we use the memory experiment by starting with a (noiseless)
logical qubit in the logical state |0⟩ and performing Z-basis measurements on data physical qubits. Subsequently, we
calculate the Z-type stabilizer generators by multiplying the measurement outcomes of the data qubits, correcting
errors, and deducing the logical measurement outcomes of the logical Z operator. The logical measurement outcome
of the logical Z operator is flipped with the logical error rate pMZ

in the MZ operation.
As for the Pauli operations for correction operations, we can execute the logical Pauli operations classically by

changing the Pauli frame [12]. We assume that they can be performed without noise, depending on the measurement
outcomes of MZZ , MXX , and MZ operations.

In this way, for distance d = 5, 7, 9, 11 and various physical error rates p, we evaluate the logical CNOT error rate
of the surface code.

c. Concatenated Steane code

We summarize the details of the protocol for the concatenated Steane code. The protocol for the concatenated
Steane code can considered to be a special case of that for the concatenated quantum Hamming code in Ref. [4], which
has been presented in Sec. A 1, but for completeness, we here present the details relevant to our analysis. A level-l
register for l ∈ {1, 2, · · · } refers to the logical qubit of the concatenated Steane code (i.e., the [[7l, 1, 3l]] code). To
form a level-l register, we use seven level-(l− 1) registers (seven qubits) of the level-(l− 1) code to encode the level-l
register as the logical qubit of the Steane code. The logical Pauli operators, denoted by P (l) for P ∈ {I,X, Y, Z}, are
given by the level-(l− 1) logical Pauli operators acting on the nth code block, denoted by Pn for P ∈ {I,X, Y, Z}, as

X(l) = X
(l−1)
1 ⊗X

(l−1)
2 ⊗X

(l−1)
3 ⊗ I

(l−1)
4 ⊗ I

(l−1)
5 ⊗ I

(l−1)
6 ⊗ I

(l−1)
7 ,

Z(l) = Z
(l−1)
1 ⊗ Z

(l−1)
2 ⊗ Z

(l−1)
3 ⊗ I

(l−1)
4 ⊗ I

(l−1)
5 ⊗ I

(l−1)
6 ⊗ I

(l−1)
7 .

(A21)

For each concatenation level l, the level-l initial-state preparation gadget for the logical |0⟩ (|+⟩) state of the concate-
nated Steane code is recursively defined using the level-(l− 1) gadgets as shown in Fig. S9, as introduced in Ref. [21].
The measurement outcome of the auxiliary qubit in Fig. S9 is used for the verification; if it is non-zero, then the
outcome state is discarded, and the initial-state preparation is rerun. Since the effect of the verification failure on the
logical CNOT error rate is in a sub-leading order, we omit to include this effect in the numerical simulation.

The initial-state preparation gadget in Fig. S9 is designed to minimize the number of auxiliary qubits for the
verification, compared to the conventional method shown in Fig. S10. To optimize the protocol, we numerically
compare the performance of the two initial-state preparation gadgets by comparing the logical CNOT error rates

P
(1)
Steane(p) for various physical error rates p in our error model with fitting by

P
(1)
Steane(p) = a

(1)
Steanep

2, (A22)

as described in Methods. We present this numerical result in Fig. S11; since the method shown in Fig. S9 performs
better than the conventional method as shown in Fig. S10 in our setting, we use the former method in our simulation.
At the same time, we found through our numerical simulation that the conclusion as to which of the gadgets in

225



11

level−l register

|0⟩ =

level−(l−1) register

level−(l−1) register

level−(l−1) register

level−(l−1) register

level−(l−1) register

level−(l−1) register

level−(l−1) register

auxiliary level−(l−1) register

|+⟩
|+⟩
|0⟩
|+⟩
|0⟩
|0⟩
|0⟩
|0⟩

X

X

X

X

X

X

X

X

X X X Z

level−l register

|+⟩ =

level−(l−1) register

level−(l−1) register

level−(l−1) register

level−(l−1) register

level−(l−1) register

level−(l−1) register

level−(l−1) register

auxiliary level−(l−1) register

|0⟩
|0⟩
|+⟩
|0⟩
|+⟩
|+⟩
|+⟩
|+⟩

X

X

X

X

X

X

X

X

X

X

X

X

FIG. S9. A level-l initial-state preparation gadget for the concatenated Steane code proposed in Ref. [21]. It implements
preparations of the logical |0⟩ (|+⟩) state. The auxiliary qubit is measured for verification. If the measurement outcome is not
zero, the output quantum state is discarded and the initial-state preparation is rerun.

Figs. S9 and S10 achieves better logical error rates may change highly sensitively to the details of the error model and
the simulation methods; thus, it may be generally inconclusive which of the preparation gadgets to use in a practical
experimental platform while the gadget in Fig. S9 was slightly better in the particular setting of numerical simulation
in Fig. S11.

Also, the level-l error correction gadget of the concatenated Steane code is recursively defined using the level-(l−1)
gadgets as shown in Fig. S12. This gadget is called Knill’s error correction gadget [13]. Note that the protocol for
the concatenated Steane code simulated here is different from a more optimized protocol for the concatenated Steane
code simulated in Ref. [27], where the syndrome extraction for quantum error correction is repeated many times to
improve the threshold. Apart from the point that we simulate the logical CNOT error rate while Ref. [27] the logical
identity gate, the optimization of the repetition of the syndrome extraction should also be considered to be a reason
that the estimated threshold for the concatenated Steane code in Ref. [27] is better than that estimated in this work;
however, the contribution of this work is to provide the simulation results for the simple protocol as a baseline for
further comparison with more optimized protocols.

d. C4/Steane code

We summarize the details of the protocol for the C4/Steane code. The protocol for the C4/Steane code can be
derived as a combination of the protocol for the C4 code (i.e., a part of the protocol for the C4/C6 code) and the
protocol for the concatenated Steane code, but for completeness, we here present the details relevant to our analysis.
A level-1 register is the two logical qubits of the C4 code (i.e., the [[4, 2, 2]] code). The level-l register for l ∈ {2, 3, · · · }
refers to the two logical qubits of the C4/Steane code. To form a level-l register, we use 7 level-(l − 1) registers (14
qubits); in particular, similar to the concatenated quantum Hamming code in Sec. A 1, the first (second) qubit from
each of the 7 level-(l−1) registers is picked up, and the first (second) qubit of the level-l register is encoded into these
picked 7 qubits as the logical qubit of the [[7, 1, 3]] Steane code. The logical Pauli operators of the level-1 register are
the same as (A17). The logical Pauli operators acting on the ith logical qubit of the level-l register for l ≥ 2, denoted

by P
(l)
i for P ∈ {I,X, Y, Z}, are given by the level-(l − 1) logical Pauli operators acting on the jth logical qubit of
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FIG. S10. A conventional method for a level-l initial-state preparation gadget for the concatenated Steane code using the
level-(l − 1) gadgets. It implements preparation of the logical |0⟩ (|+⟩) state. The Z (X) stabilizer generators and the logical
Z (X) operator are measured for verification from the measurement outcomes ij of the (j + 7)th qubits for j ∈ {1, · · · , 7}. If
i1 + i3 + i5 + i7 ̸= 0 (mod 2), i2 + i3 + i6 + i7 ̸= 0 (mod 2), or i1 + i2 + i3 ̸= 0 (mod 2) hold, the output quantum state is
discarded and the initial-state preparation is rerun.

FIG. S11. Comparison of the logical CNOT error rate using the conventional initial-state preparation gadget (shown in Fig. S10)
and that minimizing the number of auxiliary qubits for the verification proposed by Ref. [21] (shown in Fig. S9). Error bars
in the plot represent the unbiased estimator of the standard deviation of log10 pL for the logical CNOT error rates pL. The
lines in the plot are obtained from the fitting by (A22). In our setting, the gadget in Fig. S9 was slightly better than that in
Fig. S10. At the same time, we found through this numerical simulation that the conclusion as to which of the gadgets achieves
better logical error rates may change highly sensitively to the details of the error model and the simulation methods since the
difference between these two gadgets is too subtle; thus, it may be generally inconclusive which of the preparation gadgets to
use in a practical experimental platform.
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FIG. S12. A level-l error correction gadget for the concatenated Steane code is implemented by using the level-(l− 1) gadgets.

the nth level-(l − 1) register, denoted by P
(l−1)
n,j for P ∈ {I,X, Y, Z}, as

X
(l)
i = X

(l−1)
i,1 ⊗X

(l−1)
i,2 ⊗X

(l−1)
i,3 ⊗ I

(l−1)
i,4 ⊗ I

(l−1)
i,5 ⊗ I

(l−1)
i,6 ⊗ I

(l−1)
i,7 ,

Z
(l)
i = Z

(l−1)
i,1 ⊗ Z

(l−1)
i,2 ⊗ Z

(l−1)
i,3 ⊗ I

(l−1)
i,4 ⊗ I

(l−1)
i,5 ⊗ I

(l−1)
i,6 ⊗ I

(l−1)
i,7 .

(A23)

The level-1 gadget of the C4/Steane code is the same as the level-1 gadgets of the C4/C6 code, i.e., those for the
[[4, 2, 2]] code, shown in Figs. S3, S5, S6, and S7. The level-l gadget of the C4/Steane code is recursively defined using
the level-(l − 1) gadgets similarly to the concatenated Steane code shown in Figs. S10, S12, except that level-2 error
correction gadget of the C4/Steane code uses the level-2 Bell-state preparation gadget shown in Fig. S13. Since the
effect of the verification failure on the logical CNOT error rate is in a sub-leading order, we omit to include this effect
in the numerical simulation.

3. Decoder

We describe the decoding algorithms used in our numerical simulation for the concatenated Steane code, the C4/C6

code, the C4/Steane code, and the concatenated quantum Hamming code. Note that for the surface code, we used
the minimum-weight perfect matching algorithm for decoding implemented by PyMatching package [28].

The decoding algorithms used in our simulation for the concatenated Steane code, the C4/C6 code, the C4/Steane
code, and the concatenated quantum Hamming code are based on hard-decision decoders. Note that for the con-
catenated Steane code, the C4/C6 code, and the C4/Steane code, a soft-decision decoder is also implementable
within polynomial time [36, 62], which is expected to achieve higher threshold than the hard-decision decoders at
the expense of computational time; in our numerical simulation, we use the hard-decision decoders to cover practical
situations where the efficiency of implementing the decoder matters. It is unknown whether this construction of
efficient soft-decision decoders for concatenated codes generalizes to the concatenated quantum Hamming code since
the concatenated quantum Hamming code has a growing number of logical qubits.

For the concatenated Steane code, we use a hard-decision decoder shown in Ref. [4]. The measurement outcome of
the level-l measurement gadget is given by a sequence of level-(l−1) logical measurement outcomes (m1, · · · ,m7). We
check the parities a1 = m1+m3+m5+m7 mod 2, a2 = m2+m3+m6+m7 mod 2, and a3 = m4+m5+m6+m7 mod 2,
and if they are not all zeros, we identify the error location to be i = a1 + 2a2 + 4a3. Then, we decode the level-l
logical measurement outcome as

m̄ =

{
m1 +m2 +m3 + 1 mod 2 (i = 1, 2, 3)

m1 +m2 +m3 mod 2 (otherwise)
. (A24)

For the C4/C6 code, we use a hard-decision decoder shown in Ref. [36]. The measurement outcome of the level-

1 measurement gadget is given by a sequence of measurement outcomes (m
(b)
1 ,m

(b)
2 ,m

(b)
3 ,m

(b)
4 ), where b ∈ {X,Z}
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FIG. S13. A level-2 Bell-state preparation gadget for the C4/Steane code implements preparation of the logical Bell state∣∣ϕ+
〉
= |00⟩+|11⟩√

2
.

represents the basis of the measurement. The parity of the measurement outcomes is checked to detect an error, and

if m
(b)
1 +m

(b)
2 +m

(b)
3 +m

(b)
4 = 0 mod 2 holds, the measurement outcome is decoded as

(m̄
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(X)
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(X)
4 ) mod 2. (A26)

Otherwise, we decode it as (E,E), where E represents that an error is detected. The measurement outcome
of the level-l measurement gadget for l ≥ 2 is given by a sequence of level-(l − 1) measurement outcomes

((m
(b)
1 ,m

(b)
2 ), (m

(b)
3 ,m

(b)
4 ), (m

(b)
5 ,m

(b)
6 )). If errors are detected in two or three out of three code blocks, we decode

it as (E,E). If errors are detected in one code block, we decode it as
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If no errors are detected, we check the parity of the measurement outcome to detect an error. If m
(b)
1 +m

(b)
3 +m

(b)
5 =

0 mod 2 and m
(b)
2 +m

(b)
4 +m

(b)
6 = 0 mod 2 hold, we decode it as

(m̄
(Z)
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(Z)
2 ) = (m
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(X)
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(X)
5 ) mod 2. (A30)

Otherwise, we decode it as (E,E).
For the C4/Steane code, we use the same decoder as the C4/C6 code for the level-1 protocol and as the concatenated

Steane code for the level-l (l ≥ 3) protocols. For the level-2 measurement gadget, the measurement outcome is
given as a sequence of level-1 measurement outcomes (m1,m2,m3,m4,m5,m6,m7). If errors are detected in two
code blocks, denoted by i and j, we search (m′

1,m
′
2,m

′
3,m

′
4,m

′
5,m

′
6,m

′
7) such that m′

k = mk for k ̸= i, j and
m′

1 +m′
3 +m′

5 +m′
7 = m′

2 +m′
3 +m′

6 +m′
7 = m′

4 +m′
5 +m′

6 +m′
7 = 0 mod 2. If such a sequence is found, we decode

it as

m̄ = m′
1 +m′

2 +m′
3 mod 2. (A31)

Otherwise, we use the same decoder as the concatenated Steane code.
For the concatenated quantum Hamming code, we use the decoder shown in Ref. [4], which is a straightforward

generalization of (A24). See Ref. [4] for details.

Appendix B: Threshold analysis of the concatenated quantum Hamming code, the C4/C6 code, the surface
code, the concatenated Steane code, and the C4/Steane code

In this section, we summarize the details of our numerical results on the threshold analysis.
We show the logical CNOT error rates of the quantum Hamming codes in Fig. S14 (a), from which we obtain

the threshold of the original protocol in Ref. [4] based on the concatenated quantum Hamming code. This code is
obtained by concatenating the quantum Hamming code Ql+2 on the concatenation level l ∈ {1, 2, · · · }. We also show
the threshold for a modification of this concatenated quantum Hamming code that is used in our protocol, which
starts from Q4 by skipping Q3 (i.e., skipping the [[7, 1, 3]] code). As described in Methods, the logical error rate Prl(p)
for the quantum Hamming code Qr is approximated for rl ∈ {3, 4, 5, 6, 7} by the fitting curve

Prl(p) = arlp
2, (B1)

where the logical error rate of each data point is estimated using (A3). From our numerical results, we determine the
fitting parameters by

a3 = (1.603± 0.013)× 104, (B2)

a4 = (6.68± 0.05)× 104, (B3)

a5 = (5.09± 0.04)× 105, (B4)

a6 = (5.65± 0.04)× 106, (B5)

a7 = (5.59± 0.05)× 107. (B6)

From these results, as described in Methods, we estimate the logical CNOT error rates for the concatenated quantum
Hamming code in the original protocol starting from Q3 and that of our protocol starting from Q4 according to

PrL ◦ · · · ◦ Pr2 ◦ Pr1(p), (B7)

where r1, r2, . . . , rL are the sequence of parameters of the quantum Hamming codes, and p is the physical error rate
for Qr1 . The estimates of these logical error rates are shown in Figs. S14 (b) and (c). The threshold values of these
two concatenated quantum Hamming codes are estimated as ∼ 10−5 and ∼ 3 × 10−6, respectively. To achieve the
logical error rate 10−24 using the one for our protocol starting from Q4, the physical error rate for Q4 should be
less than Ptarget = 2.2 × 10−7, which is the logical error rate to be achieved by the underlying quantum code in the
proposed protocol.
We also show the logical CNOT error rates of the C4/C6 code, the surface code, the Steane code, and the C4/Steane

code in Fig. S15 (a) and (b). Due to the limitation of the computational resources, for the numerical simulation of
the level-2 concatenated Steane code and the level-2 C4/Steane code, we simplified the quantum circuit shown in
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FIG. S14. (a) The logical CNOT error rates of the quantum Hamming codes Qr for r = 3 ([[7, 1, 3]]), r = 4 ([[15, 7, 3]]), r = 5
([[31, 21, 3]]), r = 6 ([[63, 51, 3]]) and r = 7 ([[127, 113, 3]]) for various physical error rates. Each point of the logical CNOT

error rate in the plot is estimated using (A3) and (B1), where P
(0)
CNOT in (A3) is given by an average over 106 simulation runs,

and Pverification and P
(i)
CNOT in (A3) are given by averages over 104 simulation runs. The number of simulation runs counts all

events including those in which the verification fails, which are discarded in the analysis. Error bars in the plot represent the
unbiased estimator of the standard deviation of log10 pL for the logical CNOT error rates pL. The fitting yields the parameters
in (B2)–(B6). The dashed line represents a line where the logical CNOT error rate equals the physical error rate. (b) The
estimation of the logical CNOT error rate of the concatenated quantum Hamming code starting from Q3, obtained from the
fitting results in (a) using (B7). (c) The estimation of the logical CNOT error rate of the modified concatenated quantum
Hamming code starting from Q4 (skipping Q3), obtained in the same way as (b).

FIG. S15. The logical CNOT error rates of the C4/C6 code, the surface code, the concatenated Steane code, and the C4/Steane
code. Each point of the logical CNOT error rate in the plot is an average over 106 simulation runs (the C4 code, the level-2
C4/C6 code, the level-1 Steane code, and the surface code) or 107 simulation runs (the level-2 concatenated Steane code and
the level-2 C4/Steane code). Similar to the quantum Hamming code in Fig. S14, the number of simulation runs for the C4/C6

code, the concatenated Steane code, and the C4/Steane code counts all events including those in which the verification fails,
which are discarded in the analysis. Error bars in the plot represent the unbiased estimator of the standard deviation of log10 pL
for the logical CNOT error rates pL. In (a), we present the fitting of the logical CNOT error rates of the C4/C6 code, the
concatenated Steane code, and the C4/Steane code, and in (b), the surface code, which yields the parameters in (B13)–(B19).
In (c), we present the fitting of the logical CNOT error rate of the surface code by (B20) when the physical error rate p is close

to the threshold yields the parameters in (B21), where the vertical dashed line represents the threshold p
(th)
surface in (B21).

Fig. 3 of Methods in such a way that ten repetitions of the gate gadget of the logical CNOT⊗K gate followed by the
error correction in Fig. 3 of Methods are replaced with one gate gadget of the logical CNOT⊗K gate followed by the
error correction and the error-free logical CNOT⊗K gate. As described in Methods, the fitting curves of the logical

error rates P
(l)
C4/C6

, P
(d)
surface, P

(l)
Steane, and P

(l)
C4/Steane

for the level-l C4/C6 code, the distance-d surface code, the level-l

concatenated Steane code, and the level-l C4/Steane code, respectively, are given by

P
(l)
C4/C6

(p) = AC4/C6
(BC4/C6

p)Fl , (B8)

P
(d)
surface(p) = Asurface(Bsurfacep)

d+1
2 , (B9)
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P
(l)
Steane(p) = a

(l)
Steanep

2l , (B10)

P
(1)
C4/Steane

(p) = a
(1)
C4/Steane

p, (B11)

P
(2)
C4/Steane

(p) = a
(2)
C4/Steane

p3, (B12)

where the notations are the same as the ones described in Methods. From our numerical results, we determine the
fitting parameters for our results as

AC4/C6
= 0.73± 0.03, (B13)

BC4/C6
= 41.7± 1.8, (B14)

Asurface = 0.4998± 0.0018, (B15)

Bsurface = 337.3± 0.3, (B16)

a
(1)
Steane = 7513± 18, (B17)

a
(2)
Steane = (3.78± 0.04)× 1010, (B18)

a
(2)
C4/Steane

= (9.8± 0.6)× 104. (B19)

From this fitting, we observed that the level-3 C4/Steane code for p = 0.1% has almost the same logical error rate as
the level-2 C4/Steane code; based on this observation, Fig. 2 of the main text excludes the data point corresponding
to the level-3 C4/Steane code for p = 0.1%, presenting those at levels 1, 2, 4, and 5.

To obtain the threshold p
(th)
surface of the surface code in Fig. S15 (c), we fit the logical error rate of the surface code

when the physical error rate p is close to the threshold by another fitting curve based on the critical exponent method
of Ref. [49]. The fitting curve is given by

P ′(d)
surface(p) = Csurface +Dsurfacex+ Esurfacex

2,

x = (p− p
(th)
surface)d

1/µ,
(B20)

where the estimated fitting parameters are

p
(th)
surface = (3.1480± 0.0010)× 10−3,

µ = 1.471± 0.003,

Csurface = 0.3568± 0.0003,

Dsurface = 72.7± 0.2,

Esurface = 2941± 16.

(B21)

Note that it consistently holds that p
(th)
surface ≈ B−1

surface ≈ 0.3%.
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Exponential quantum advantage for non-Hermitian eigenproblems
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Abstract. We present a family of quantum algorithms tailored for solving the eigenvalue problem for
general matrices, encompassing scenarios with complex eigenvalues or even defective matrices. Our results
find applications in diverse domains, including the first quantum algorithm estimating the relaxation
time of Markov chains, solving Liouvillian gaps in open quantum systems, and verifying PT-symmetry
broken/unbroken phases. These applications underscore the significance of our quantum eigensolvers for
problems across various disciplines. By proofing the BQP-completeness, we also show that our quantum
algorithm has in general an exponential speedup over classical methods.

Keywords: Quantum algorithms, Eigenvalues, non-Hermitian, open quantum systems, Markov chain

Eigensystem, a fundamental concept in linear algebra,
represents key features of a matrix transformation. For-
mally, complex value λj and normalized vector |vj⟩ are
called the eigenvalue and the corresponding eigenvector
of a matrix A if

A|vj⟩ = λj |vj⟩. (1)

Eigensystem plays a central role in basically all fields of
modern science and engineering. Nevertheless, for classi-
cal algorithms tackling Eq. (1), the cost generally grows
formidably high for large matrices.
A potential solution is to make use of quantum com-

puters. Many quantum algorithms have been proposed
for such a purpose based on different techniques [3, 19,
28]. Yet, since quantum computing naturally favours
Hermiticity, existing quantum algorithms have been
mostly restricted to the special and simplified case of Her-
mitian matrices A = A†, where λj are real and |vj⟩ forms
an orthonormal basis. For a general matrix, we could
encounter complex and even defective eigenvalues and
unorthogonal eigenvectors. The advantage of quantum
computing in solving the general non-Hermitian eigen-
value problems remains an outstanding open question.
Here, we propose a family of efficient quantum eigen-

solver algorithms for general matrices. The algorithm is
promised to have polylogarithmic runtime to the matrix
dimension. For a diagonalizable matrix, the complexity
of obtaining an arbitrary eigenvalue is Õ(K3ε−1γ−1), and
the complexity for obtaining the eigenvalue closest to a
reference point or line is Õ(K3ε−2γ−1), where K, ε and γ
are the Jordan condition number, accuracy, and overlap
between initial state and target state. The latter can be
considered as the generalizations of ground energy and
energy gap problems, whose decision version is shown
to be BQP (bounded-error quantum polynomial time)-
complete. In other words, the existence of exponential
quantum advantage of our algorithm is expected, unless
universal quantum computer can be efficiently simulated
classically.

∗xiaoyuan@pku.edu.cn

Our quantum eigensolver for general matrices would
have profound applications in various modern tasks. A
typical example is for open quantum systems, in which
many novel phenomenon emerges, such as PT -symmetry
breaking [5, 6, 10, 16, 26], skin effects [36] and non-
hermiticity driven topological phase transition [20, 27,
31]. While current studies on related topics have been
restricted to few-body or analytically solvable cases, our
algorithm can potentially provide exponential quantum
speedup for general many-body open quantum systems.
We provide examples on two of the most pivotal prob-
lems in non-Hermitian physics: Liouvillian gap estima-
tion and the witness of spontaneous symmetry breaking.
Besides, in the field of stochastic processes, our algorithm
could also be applied to estimate the relaxation time of
a Markov chain, a problem whose quantum advantages
were unknown before.

Eigenvalue Problems. For a general matrix A, one
can perform the Jordan decomposition as

A = PΛP−1, (2)

where Λ is a matrix in the Jordan canonical form (JCF),
whose diagonal elements correspond to the eigenvalues,
and P is an invertible matrix. A is called diagonal-
izable if Λ is diagonal. Most generally, we have Λ =
Λ1 ⊕ Λ2 ⊕ · · · ⊕ ΛM , where,Λj are Jordan blocks. In the
case M < N , we call A a defective matrix. It is worth
noting that eigenvalues are fundamentally different from
singular values unless the matrix is normal with spectral
decomposition. Therefore, the eigenvalue problem does
not trivially fit into the framework of quantum singular
value transformation [14, 23].

We define m′
max ≡ maxj dim(Λj) as the largest dimen-

sion of the Jordan blocks, and κP as the condition num-
ber of the matrix P or the Jordan condition number of
A [22]. Regarding the nonuniqueness of Eq. (2), we de-
fine κP as the minimum value for all possible P . Without
loss of generality, we assume that these two quantities are
upper bounded by mmax ⩾ m′

max and K ⩾ κP for some
known mmax and K. It turns out that the difficulty of
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P

Figure 1: (a) Energy gap for Hermitian matrices with reference point P , (b) the point gap for non-Hermitian matrices
with reference point P , and (c) the line gap for non-Hermitian matrices with reference line L.

the problem depends on both mmax and K.
The first problem we consider is to output an esti-

mation of one eigenvalue without additional constraints,
which is informally described as follows.

Problem 1 Given a square matrix A with ∥A∥ ⩽ 1, out-
put an eigenvalue up to accuracy ε ∈ (0, 1).

Here, ∥ · ∥ refers to the spectral norm of a matrix. We
also consider two generalization of ground energy (or en-
ergy gap) problems for Hermitian matrix to the non-
Hermitian domains. These two problems are informally
described as follows.

Problem 2 Given a square matrix A satisfying ∥A∥ ⩽
1, a reference point P . Up to an accuracy ε ∈ (0, 1),
output an eigenvalue closest to P .

Problem 3 Given a square matrix A satisfying ∥A∥ ⩽
1, a reference line L in the complex plain such that L. Up
to an accuracy ε ∈ (0, 1), output an eigenvalue closest to
L.

In the case where P or L have no overlaps with eigenval-
ues, Problem 2 or 3 corresponds to finding an eigenvalue
that is closest to the reference point P , or line L (up to
an accuracy ε). Therefore, they can be considered as
two different ways of the generalization of the ground
energy problem for Hermitian matrices. On the other
hand, when P or L overlaps with at least one of the
eigenvalues, Problems 2 and 3 become Point gap, or
Line gap problems [7, 8, 15]. In some cases, both point
gaps and line gaps are non-vanishing. But there exists
matrices with non-vanishing point gap, but zero line
gap. Physics systems with Hamiltonian corresponding
these two cases may emerge from different symmetries
and topologies [7, 8, 15].

Results. We first discuss the assumptions of the algo-
rithms. Given a general square matrix A ∈ CN×N with
N = 2n, we consider its block encoding that provides
unitary access to the matrix. For a unitary OA, we say
it is a block encoding of A if it encodes the desirable ma-
trix A such that A = (⟨0a| ⊗ I)OA (|0a⟩ ⊗ I), with I the
N -dimensional identity. Note that we have neglected a

scaling factor compared to the conventional definition as
it can be absorbed in matrix A. Block-encoding is a stan-
dard way of encoding the classical description of a matrix
to quantum operations [9, 14, 21, 23, 35]. In practice, OA

may be constructed by sparse-access input model or lin-
ear combination of unitaries (LCU) [21], depending on
the form of A being presented.

For Hermitian matrices, the eigenvalue problem is typ-
ically solved by assuming the existence of an initial state
that can be prepared to have a reasonable lower-bounded
overlap with the targeted eigenstate [3, 19]. Otherwise,
the problems are in general QMA-compete [17]. Here, a
similar assumption is also made. We introduce an oracle
PA, which given an input µ satisfying |µ| ⩽ 1, outputs a
quantum state |ψini

µ ⟩ satisfying |⟨ψini
µ |u0(µ)⟩| ⩾ γ. Here,

|u0(µ)⟩ is the right singular vector of the matrix A− µI
corresponding to its smallest singular value. PA may
be constructed quantumly, with methods like variational
quantum algorithms [12, 32, 33] or adiabatic state prepa-
ration [3]. Alternatively, one may find an approximated
model of A whose eigenvalue can be calculated efficiently
on a classical computer. We also note that the state
preparation assumption can be weaken to be just requir-
ing the nontrivial overlap to the eigenvectors of the target
eigenvalues.

Here and after, we assume that OA, PA can be queried
efficiently. For simplicity, we also count the query to O†

A,

controlled-OA or controlled-O†
A as a single query to OA,

and similar for PA. This is reasonable because unitaries
OA and PA are typically constructed with elementary
single- and two-qubit gates. Taking inverse and con-
trolled operations only introduce constant gate overhead.

For Problem 1, we have the following result.

Theorem 1 With success probability at least 1 − δ (for
any δ ∈ (0, 1)), Problem 1 can be solved with

Õ
(
K3ε−3mmax+2γ−1

)
(3)

uses of the query to OA, PA, and extra single- and two-
qubit gates.

Here Õ(·) omits the polylogarithmic dependence on 1/δ,
1/ε, K, and N . We also clarify that for n-qubit systems,
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the extra single- and two-qubit gate number contains a
dependency O(n), which is neglected by Õ.
When mmax = 1, i.e. A is diagonalizable, the complex-

ity reduces to Õ
(
K3ε−1γ−1

)
, achieving a nearly-optimal

dependency on ε, i.e., the Heisenberg limit. Furthermore,
the dependency on K can be reduced to Õ(K2ε−1γ−1)
if eigenvalues are promised to be real. We achieve the
following result for Problems 2 and 3.

Theorem 2 Given g ⩾ ε, with success probability at
least 1 − δ (for any δ ∈ (0, 1)), Problem 2 and 3 can
be solved with

Õ(K3ε−3mmax+1γ−1) (4)

queries to OA, PA, and extra single- and two-qubit gates.

For diagonalizable matrices, the accuracy dependency
is Õ(ε−2). It is open whether the above theorem is
optimal or not. Besides, if more restrictions exist on the
eigenvalue distribution, the query complexity may be
further reduced. For example, if we are promised that
the eigenvalues are real, the complexity can be reduced
to Õ(K2ε−1γ−1), achieving the nearly Heisenberg
scaling again. We note that the Heisenberg scaling
is also achieved in [30] with an independent method.
Yet, methods in Ref [30] work only for matrices with
real eigenvalues, while our algorithms are applicable for
general complex eigenvalue spectrums.

Below, we briefly introduce the main idea of our al-
gorithms achieving Theorem 1 and 2. Our algorithm is
based on the following key observation.

σ0(A− µI) = 0 if and only if µ is an eigenvalue.

where σ0(·) is the minimum singular value of a matrix.
Specifically, eigenvalue problems can be transferred to
the problem of searching for µ, such that A − µI has
zero singular values. In practice, however, we can only
estimate the singular value up to a certain accuracy. We
define a cost function C(µ) ≡ σ0(A− µI). The distance
from µ to an eigenvalue can be bounded by C(µ) in the
following lemma.

Lemma 3 When A is diagonalizable, we have C(µ) ⩽
minλj

|µ − λj | ⩽ KC(µ). When A is defective, we have

C(µ) ⩽ minλj
|µ− λj | ⩽ 3(KC(µ))1/mmax .

It indicates that for diagonalizable matrix, it suffices
to find µ satisfying C(µ) ⩽ εK−1 to achieve accuracy
minλj

|µ− λj | ⩽ ε, and similar for defective matrices.
The remaining task is to search for a µ with suffi-

ciently small C(µ). Our searching method is based on a
subroutine called the singular value threshold subroutine
(SVTS) which output True (False) when C(µ) is smaller
(larger) than a given value. We then develop different
divide-and-conquer methods for eigenvalue searching for
different problems, and achieve scaling claimed in Theo-
rem 1, 2.
Now we discuss the applications of our results in three

different subjects.

Liouvillian gap for open quantum systems. in open
quantum system, Liouvillian gap (LG) is an important
quantity charactering the decaying behaviour and phase
transitions of open quantum systems [4, 24, 25, 29, 34,
37]. It is defined as the gap between the largest and
second largest real part of the eigenvalues of a vectorized
Liouvillian super operators. LG corresponds to a line
gap problem with L = {ib, b ∈ R} and hence efficiently
solvable based on Theorem 2, provided nontrivial initial
state.

Witness of simultaneous PT -symmetry breaking.
In non-Hermitian physics, whether a PT -symmetric ma-
trix is simultaneously broken (unbroken) is determined
by whether it has (does not have) complex eigenvalues.
Our algorithm with mild modification, can be used to
determine if there are complex eigenvalue or not, and
hence serves as a quantum witness of the simultaneous
PT -symmetry breaking. This can be a powerful tool for
studying the many-body non-Hermitian physics and po-
tentially provide exponential quantum speedup.
Relaxation time of Markov chains. The spectral
gap of a stochastic matrix A, gmar ≡ 1−maxλj ̸=1 |λj |, de-
termines the relaxation time trel ≡ 1/gmar. It determines
the time converging to the stationary distribution [18].
We can estimate the absolute spectral gap and hence the
relaxation time. For example, if we assume that ∥A∥ ⩽ 1,
and mmax = 1 (i.e. diagonalizable), gmar can then be es-
timated to accuracy ε with O(K3ε−2γ−1) queries to OA,
PA and extra single- and two-qubit gates.
Quantum advantages. The exponential quantum ad-
vantage of Problem. 2, 3 can be obtained straightfor-
wardly, because they covers all instances of the eigenvalue
problems for Hermitian matrix. Combining Theorem. 2
(i.e. BQP) with Theorem 1.2 in [13] for BQP-hardness of
Hermitian ground state problems, the decision version of
Problem. 2, 3 are BQP-complete when ε = Ω(1/poly(n))
and nontrivial initial state exists.

We also study the BQP-completeness of LG and PT-
symmetry breaking withness problems. These problems
are more complicated, because they are special cases of
eigenvalue problems. Our strategy contains two steps of
mapping. Take the LG problem as an example, the first
step is to map a polynomial-size quantum circuit to a
guided ground state problems of O(1)-local Hamiltonian
H. This can be achieved using the construction in [13],
which adds the effect of guiding state to the Kitaev’s
construction of proofing QMA-completeness [17]. The
second step is to map whether ground energy property
of H to the property of a specific LG problem. Such a LG
problem can be solved efficiently using our quantum algo-
rithms, and hence BQP-complete. Because BQP̸= BPP
unless universal quantum computer can be efficiently sim-
ulated classically, our result can be summarized as fol-
lows.

Theorem 4 There exist instances of Liouvillian gap
and PT-symmetry breaking withness problems, such that
quantum algorithm can provide exponential quantum
speedup, unless universal quantum computer can be ef-
ficiently simulated classically.
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The eigenvalue problem, a cornerstone in linear algebra, has profound significance in modern science for
its wide applications in mathematics, physics, and information science. Quantum algorithms addressing this
problem have hitherto been constrained to special normal matrices that admit spectral decomposition, leaving the
extension to general matrices an open challenge. In this work, we present a family of quantum algorithms tailored
for solving the eigenvalue problem for general matrices, encompassing scenarios with complex eigenvalues
or even defective matrices. Our algorithms work for finding eigenvalues without additional constraints, or
identifying eigenvalues that are closest to a specified point or line, extending the results for ground energy
and energy gap problems for Hermitian matrices. Our results find applications in diverse domains, including
estimating the relaxation time of Markov chains, solving Liouvillian gaps in open quantum systems, and
verifying PT-symmetry broken/unbroken phases. Moreover, by proving the BQP-completeness of the generalized
Liouvillian gap problems, we show that our quantum algorithm has in general an exponential speedup over
classical methods. These results underscore the significance of our quantum eigensolvers for problems across
various disciplines.

Eigensystem, a fundamental concept in linear algebra, rep-
resents key features of a matrix transformation. Formally,
complex value 𝜆 𝑗 and normalized vector |𝑣 𝑗⟩ are called the
eigenvalue and the corresponding eigenvector of a matrix 𝐴 if

𝐴|𝑣 𝑗⟩ = 𝜆 𝑗 |𝑣 𝑗⟩. (1)

Eigensystem plays a central role in basically all fields of mod-
ern science and engineering. Nevertheless, for classical algo-
rithms tackling Eq. (1), i.e. classical eigensolvers, the cost gen-
erally grows formidably high for large matrices, which would
be inefficient for tackling large data or complex systems.

A potential solution is to make use of quantum computers
to construct more efficient quantum eigensolvers. Many quan-
tum algorithms have been proposed for such a purpose based
on different techniques [1–3]. Yet, since quantum comput-
ing naturally favours Hermiticity, existing quantum algorithms
have been mostly restricted to the special and simplified case
of Hermitian matrices 𝐴 = 𝐴†, where 𝜆 𝑗 are real and |𝑣 𝑗⟩
forms an orthonormal basis. For a general matrix, we could
encounter complex and even defective eigenvalues and un-
orthogonal eigenvectors. Although there are variational quan-
tum algorithms attempting to solve relative problems, their
efficiency are not guaranteed. The advantage of quantum
computing in solving the general non-Hermitian eigenvalue
problems remains an outstanding question.

Here, we propose a family of efficient quantum eigensolver
algorithms for general matrices. The algorithm is promised to
have polylogarithmic runtime with respect to the matrix dimen-
sion, under the block-encoding and nontrivial initial state as-
sumptions. These two assumptions are also standard treatment
for Hermitian eigensystem problems [2, 3]. For diagonalizable
matrix, the complexity of obtaining an arbitrary eigenvalue is
�̃� (𝐾3𝜀−1𝛾−1), and the complexity for the obtaining the eigen-
value closest to a reference point or line is �̃� (𝐾3𝜀−2𝛾−1),
where 𝐾, 𝜀 and 𝛾 are the Jordan condition number, accuracy

and overlap between initial state and target state. The latter
can be considered as the generalizations of ground energy and
energy gap problems, and we show that their decision version
are BQP-complete. In other words, existence of exponential
quantum advantage is highly likely. Our algorithm also works
for defective matrix with higher complexity, but but is still
efficient. The algorithm is based on three techniques: the re-
lationship between eigenvalues of matrix 𝐴 and the minimum
singular value of 𝐴 − 𝜇𝐼, quantum singular value threshold
subroutine extended from quantum singular-value estimation,
and problem-specific searching algorithms.

Our quantum eigensolver for general matrices would have
profound applications in various modern tasks. A typical ex-
ample is for open quantum systems, in which many novel
phenomenon emerges, such as PT -symmetry breaking [4–8],
skin effects [9] and non-hermiticity driven topological phase
transition [10–12]. While current studies on related topics
has been restricted to few-body or analytically solvable cases,
our algorithm can potentially provide exponential quantum
speedup for general many-body open quantum systems. We
provide examples on two of the most pivotal problems in non-
Hermitian physics: Liouvillian gap estimation and the witness
of spontaneous symmetry breaking. Besides, in the field of
stochastic process, our algorithm could also be applied to es-
timate the relaxation time of Markov chain, a problem whose
quantum advantages are unknown.

Eigenvalue Problems. In the main text, we focus on the eigen-
value problems. The eigenvector is closely related to the eigen-
value, and will be discussed in details in Sec. VI of [13].

One can perform Jordan decomposition of a general square
matrix 𝐴 as

𝐴 = 𝑃Λ𝑃−1, (2)

where Λ is a matrix in the Jordan canonical form (JCF), whose
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FIG. 1: Sketch of (a) the energy gap for Hermitian matrices with reference point 𝑃 = 0, (b) the point gap for non-Hermitian matrices with
reference point 𝑃 = 0, and (c) the line gap for non-Hermitian matrices with reference line 𝐿 = {𝑖𝑏, 𝑏 ∈ R}.

diagonal elements correspond to the eigenvalues, and 𝑃 is an
invertible matrix. 𝐴 is called diagonalizable if Λ is diagonal.
Most generally, Λ is a block-diagonal matrix as close to a
diagonal matrix as possible Λ = Λ1 ⊕ Λ2 ⊕ · · · ⊕ Λ𝑀 with
𝑀 ⩽ 𝑁 . Each Jordan block Λ 𝑗 is in the form of

Λ 𝑗 =

©«
𝜆 𝑗 1

𝜆 𝑗

. . .

. . . 1
𝜆 𝑗

ª®®®®®¬
. (3)

In case 𝑀 < 𝑁 , we call 𝐴 a defective matrix. It is worth noting
that eigenvalues are fundamentally different from singular val-
ues unless the matrix is normal with spectral decomposition.
Therefore, the eigenvalue problem does not trivially fit into the
framework of quantum singular value transformation [14, 15].

We define 𝑚′max ≡ max 𝑗 dim(Λ 𝑗 ) as the largest dimension
of Jordan blocks, and 𝜅𝑃 as the condition number of matrix
𝑃. 𝜅𝑃 can also be named as the Jordan condition number of
𝐴 [16]. Regarding the nonuniqueness of Eq. (2), we define 𝜅𝑃
as the minimum value for all possible 𝑃. It turns out that the
difficulty of the problem depends on both 𝑚′max and 𝜅𝑃 . We
are promised that two quantities above are upper bounded by
𝑚max ⩾ 𝑚

′
max and 𝐾 ⩾ 𝜅𝑃 for some known 𝑚max and 𝐾 .

We first summarize the detailed definitions of the eigen-
value problems. The first problem we consider is to output an
estimation of an eigenvalue defined as follows.

Problem 1. Given a square matrix 𝐴 with ∥𝐴∥ ⩽ 1 and
accuracy 𝜀 ∈ (0, 1). The goal is to output the eigenvalue
estimation 𝜆′, such that min𝜆 𝑗

|𝜆′ − 𝜆 𝑗 | ⩽ 𝜀, where 𝜆 𝑗 are
eigenvalue solutions to Eq. (1).

Here, ∥ · ∥ refers to the spectral norm of a matrix. Problem 1
has no restrictions on the eigenvalue. We may require that
the eigenvalue to be estimated have certain properties. Take
the Hermitian matrix as an example, there are two important
questions related to eigenvalues. The first one is the lowest
eigenvalue problem. For a quantum many-body system de-
scribed by a Hermitian Hamiltonian, this corresponds to the

ground-state energy of the system [1–3]. The second one
is the eigenvalue gap problem, which plays a critical role in
many-body physics phenomena, such as conductivity and su-
perconductivity. Extending from Hermitian to non-Hermitian
matrices with complex eigenvalues, the generalization of both
questions are not unique [17, 18], which correspond to the
eigenvalue searching problems under different restrictions. In
particular, we consider the following two problems.

Problem 2. Given a square matrix 𝐴 satisfying ∥𝐴∥ ⩽ 1, a
reference point 𝑃 ∈ D(0, 1) and accuracy 𝜀 ∈ (0, 1). Let
𝑔 ≡ min𝜆 𝑗≠𝑃

��𝜆 𝑗 − 𝑃
��, S ≡ {

𝜆 𝑗

��|𝜆 𝑗 − 𝑃 | ∈ [𝑔, 𝑔 + 𝜀]
}
. The

goal is to output gap estimation 𝑔′ and eigenvalue estimation
𝜆′, such that |𝑔′ − 𝑔 | ⩽ 𝜀 and |𝜆′ − 𝜆 𝑗 | ⩽ 𝜀 for some 𝜆 𝑗 ∈ S.

Problem 3. Given a square matrix 𝐴 satisfying ∥𝐴∥ ⩽ 1, a
reference line 𝐿 in the complex plain such that 𝐿

⋃D(0, 1) ≠
∅, and accuracy 𝜀 ∈ (0, 1). Let 𝑔 = min𝜆 𝑗∉𝐿,𝑝∈𝐿 |𝜆 𝑗 − 𝑝 |,
S ≡

{
𝜆 𝑗

�� min𝑝∈𝐿 |𝜆 𝑗 − 𝑝 | ∈ [𝑔, 𝑔 + 𝜀]
}
. The goal is to output

the gap estimation 𝑔′ and eigenvalue estimation 𝜆′, such that
|𝑔′ − 𝑔 | ⩽ 𝜀 and |𝜆′ − 𝜆 𝑗 | ⩽ 𝜀 for some 𝜆 𝑗 ∈ S.

Here, we have defined the disk as D(𝜇, 𝑟) ≡
{
𝑥
��|𝑥 − 𝜇 | ⩽ 𝑟}.

In case 𝑃 or 𝐿 have no overlap with eigenvalues, Problem 2
or 3 corresponds to finding an eigenvalue that is closest to the
reference point 𝑃, or line 𝐿 (up to an accuracy 𝜀). Therefore,
they can be considered as two different ways of the general-
ization of the ground energy problem for Hermitian matrices.
On the other hand, when 𝑃 or 𝐿 overlaps with at least one of
the eigenvalues, Problems 2 and 3 become Point gap, or Line
gap problems [17–19]. As illustrated in Fig. 1, they can be
considered as two different ways of the generalizations from
the energy gap problem for Hermitian case. In some cases,
both point gaps and line gaps are non-vanishing. But there
exists matrices with non-vanishing point gap, but zero line
gap. Physics systems with Hamiltonian corresponding these
two cases may emerge from different symmetries and topolo-
gies [17–19].

Furthermore, we note that an accurate approximation to the
eigenvector quantum state can be obtained based on an accurate
estimation of eigenvalue as will be discussed in Sec. VI of [13].
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Results. Here, we introduce our results for the three eigenvalue
problems. We only summarize the results in the main text and
refer to [13] for details.

We first discuss the assumptions of the algorithms. Given a
general square matrix 𝐴 ∈ C𝑁×𝑁 with 𝑁 = 2𝑛, we consider its
block encoding that provides unitary access to the matrix. For
a unitary 𝒪𝐴, we say it is a block encoding of 𝐴 if it encodes
the desirable matrix 𝐴 such that 𝐴 = (⟨0𝑎 | ⊗ 𝐼)𝒪𝐴 ( |0𝑎⟩ ⊗ 𝐼),
with 𝐼 the 𝑁-dimensional identity. Note that we have neglected
a scaling factor compared to the conventional definition as it
can be absorbed in matrix 𝐴. Block-encoding is a standard way
of encoding the classical description of a matrix to quantum
operations [14, 15, 20–22]. In practice,𝒪𝐴 may be constructed
by sparse-access input model or linear combination of unitaries
(LCU) [20], depending on the form of 𝐴 being presented.

For Hermitian matrices, the eigenvalue problem is typically
solved by assuming the existence of an initial state that can
be prepared to have a reasonable lower-bounded overlap with
the targeted eigenstate [2, 3]. Otherwise, the problems are in
general QMA-compete [23]. Here, a similar assumption is
also made. We introduce an oracle 𝒫𝐴, which given an input
𝜇 satisfying |𝜇 | ⩽ 1, outputs a quantum state |𝜓ini

𝜇 ⟩ satisfy-
ing |⟨𝜓ini

𝜇 |𝑢0 (𝜇)⟩| ⩾ 𝛾. Here, |𝑢0 (𝜇)⟩ is the right singular
vector of the matrix 𝐴 − 𝜇𝐼 corresponding to its smallest sin-
gular value. 𝒫𝐴 may be constructed quantumly, with methods
like variational quantum algorithms [24–26] or adiabatic state
preparation [2]. Alternatively, one may find an approximated
model of 𝐴 whose eigenvalue can be calculated efficiently on
a classical computer. We also note that the state preparation
assumption can be weaken to be just requiring the nontrivial
overlap to the eigenvectors of the target eigenvalues, at the cost
of a worse scaling with 𝛾 (see [13]).

Here and after, we assume that 𝒪𝐴, 𝒫𝐴 can be queried
efficiently. For simplicity, we also count the query to 𝒪

†
𝐴

,
controlled-𝒪𝐴 or controlled-𝒪†

𝐴
as a single query to 𝒪𝐴, and

similar for 𝒫𝐴. This is reasonable because unitaries 𝒪𝐴 and
𝒫𝐴 are typically constructed with elementary single- and
two-qubit gates. Taking inverse and controlled operations
only introduce constant gate overhead.

For Problem 1, we have the following result.

Theorem 1. With success probability at least 1−𝛿, Problem 1
can be solved with

Õ
(
𝐾3𝜀−3𝑚max+2𝛾−1

)
(4)

uses of the query to 𝒪𝐴, 𝒫𝐴, and extra single- and two-qubit
gates.

Here Õ(·) omits the polylogarithmic dependence on 1/𝛿, 1/𝜀,
𝐾 , and 𝑁 . We also clarify that for qubit systems, the extra
single- and two-qubit gate number contains a dependency of
qubit number 𝑂 (𝑛), which is neglected by �̃�.

When𝑚max = 1, i.e. 𝐴 is diagonalizable, Eq. (S-47) reduces
to Õ

(
𝐾3𝜀−1𝛾−1) , achieving a nearly-optimal dependency on

𝜀, which is also called the Heisenberg scaling. Besides, the de-
pendency on 𝐾 can be reduced to �̃� (𝐾2𝜀−1𝛾−1) if eigenvalues
are promised to be real (see Sec. V A of [13]).

We achieve the following result for Problems 2 and 3.

Theorem 2. Promised that 𝑔 ⩾ 𝜀. With success probability
at least 1 − 𝛿, Problem 2 and 3 can be solved with

�̃� (𝐾3𝜀−3𝑚max+1𝛾−1) (5)

queries to 𝒪𝐴, 𝒫𝐴, and extra single- and two-qubit gates.

For diagonalizable matrix, the accuracy dependency is
�̃� (𝜀−2). It is open whether the above theorem is optimal
or not. The complication is that different from Problem 1,
we should exclude the possibility for eigenvalues with a gap
smaller than 𝑔. Besides, if more restrictions exist on the
eigenvalue distribution, the query complexity may be further
reduced. For example, if we are promised that the eigenvalues
are real, the complexity can be reduced to �̃� (𝐾2𝜀−1𝛾−1),
achieving the nearly Heisenberg scaling (see Sec. V B of [13]).
We note that the Heisenberg scaling is also achieved in [27]
with an independent method. Yet, methods in Ref [27] works
only for matrices with real eigenvalues, while our algorithms
are applicable for general complex eigenvalue spectrums.

Below, we briefly introduce the main idea of our algorithms
achieving Theorem 1 and 2 and refer to Sec. II, III of [13]
for details. To begin with, we consider an equivalent form of
Eq. (1) as

(𝐴 − 𝜆 𝑗 𝐼) |𝑣 𝑗⟩ = 0. (6)

Our algorithm is based on the following key observation.

𝜎0 (𝐴 − 𝜇𝐼) = 0 if and only if 𝜇 is the solution to Eq. (6),

where𝜎0 (·) is the minimum singular value of a matrix. Specif-
ically, eigenvalue problems can be transferred to the problem
of searching for 𝜇, such that 𝐴 − 𝜇𝐼 has zero singular values.
In practice, however, we can only estimate the singular value
up to a certain accuracy. We define a cost function

𝐶 (𝜇) ≡ 𝜎0 (𝐴 − 𝜇𝐼). (7)

The distance from 𝜇 to an eigenvalue can be bounded by 𝐶 (𝜇)
in the following lemma (see Sec. I A of [13]).

Lemma 1. When 𝐴 is diagonalizable, we have 𝐶 (𝜇) ⩽
min𝜆 𝑗

|𝜇 − 𝜆 𝑗 | ⩽ 𝐾𝐶 (𝜇). When 𝐴 is defective, we have
𝐶 (𝜇) ⩽ min𝜆 𝑗

|𝜇 − 𝜆 𝑗 | ⩽ 3(𝐾𝐶 (𝜇))1/𝑚max .

Lemma. 1 indicates that for diagonalizable matrix, it suf-
fices to find 𝜇 satisfying 𝐶 (𝜇) ⩽ 𝜀𝐾−1 to achieve accuracy
min𝜆 𝑗

|𝜇 − 𝜆 𝑗 | ⩽ 𝜀, and similar for defective matrices.
To solve Problem 1, the remaining task is to search for a 𝜇

with sufficiently small 𝐶 (𝜇). Our searching method is based
on a subroutine called the singular value threshold subroutine
(SVTS), denoted as 𝑂𝐶 (𝜇, 𝜀, 𝛿). The inputs of SVTS are
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center 𝜇 ∈ D(0, 1), threshold 𝜀, and success probability 𝛿 ∈
(0, 1) respectively. Informally speaking, the output of SVTS
satisfies the following

Pr
[
𝑂𝐶 (𝜇, 𝜀, 𝛿) = True

��𝐶 (𝜇) ⩽ 𝜀/2] ⩾ 1 − 𝛿 (8)
Pr

[
𝑂𝐶 (𝜇, 𝜀, 𝛿) = False

��𝐶 (𝜇) ⩾ 𝜀] ⩾ 1 − 𝛿, (9)

provided initial state with nontrivial overlap to the target eigen-
vectors. In Sec. I of [13], we show that SVTS can be con-
structed using quantum singular value transformation [14]
with �̃�

(
𝜀−1𝛾−1) complexity [28]. We then develop a divide-

and-conquer method for eigenvalue searching, which uses
only 𝑂 (polylog(𝜀−1)) queries to SVTS, and achieve scaling
claimed in Theorem 1.

Problem 2 and 3 are more challenging because we should
output eigenvalues as close to the reference point (line) as
possible. Take Problem 2 as an example, our strategy is as
follows. Suppose we are promised that 𝑔 ∈ [𝑅min, 𝑅max], and
we define Δ = 𝑅max − 𝑅min. We query a set of SVTSs with
centers around

the complication is that to claim 𝑔′ is a good estimation of 𝑔
with accuracy 𝜀, we should ensure that there is no eigenvalue
in the region D(𝑃, 𝑔′ − 𝜀)/D(𝑃, 𝜀). Our iterative strategy is
as follows. Suppose at the 𝑗 th step, we are confidence that
𝑔 ∈ [𝑅min

𝑗
, 𝑅max

𝑗
]. Let Δ 𝑗 = 𝑅max

𝑗
− 𝑅min

𝑗
, we reduce Δ 𝑗 by

querying a set of SVTSs. The process is terminated until
Δ 𝑗 ⩽ 𝜀. After that, we search for an eigenvalue near the circle
with radius 𝑔′.

Now we discuss the applications of our results in different
problems.

Liouvillian gap for open quantum systems. The Liouvillian
gap (LG) is an important quantity characterizing the decaying
behaviour and phase transitions of open quantum systems [29–
34]. The dynamics of an open quantum system can be de-
scribed by the Lindblad master equation ¤𝜌 = L(𝜌), where
L is a linear superoperator. One can perform vectorization
on the master equation, which becomes ¤̃𝜌 = L̃ · �̃�, where �̃� =∑

𝑚,𝑛 𝜌𝑚𝑛 |𝑚⟩ ⊗ |𝑛⟩ and L̃ is typically a non-Hermitian matrix.
Let 𝜆 𝑗 (L̃) be the eigenvalues of L̃ ordered according to the
magnitude of the real part, i.e. Re𝜆0 (L̃) ⩾ Re𝜆1 (L̃) ⩾ · · · .
LG is formally defined as

𝑔L ≡ |Re𝜆1 (L̃) |. (10)

𝑔L has a close relation to the relaxation behaviour of the open
quantum system. In most cases, the relaxation time 𝜏 of an
open quantum system satisfies 𝜏 ≲ 1/𝑔L [32].

For many-body systems, analytic solutions to LG only ex-
ist for some special cases, while numerical calculation with
classical computers suffers from the exponential increase of
the Hilbert space. On the other hand, LG can potentially
be solved with a quantum computer efficiently based on our
quantum eigensolver. Compared to Problem 3, LG is a line gap
problem with 𝐿 = {𝑖𝑏, 𝑏 ∈ R}. So according to Theorem 2,
if L̃ is diagonalizable and ∥L̃∥ ⩽ 1, LG can be efficiently

estimated to accuracy 𝜀 with �̃� (𝐾3𝜀−2𝛾−1) complexity [28].
In most open quantum system models, L̃ can be decomposed

into the linear combination of Pauli strings. So the block
encoding of L̃, up to a rescaling factor, can be efficiently
constructed. Moreover, due to the BQP-completeness of the
decision version of Problem 3 (i.e. Problem xx in []), our result
also indicates that quantum algorithm can potentially provide
exponential speedup in the LG problem.

Spontaneous-symmetry-breaking witness. In quantum sys-
tems described by non-Hermitian Hamiltonian, the eigenvalue
does not necessarily to be complex. A typical example is the
parity-time (𝑃𝑇) symmetry systems [4–8]. A matrix is called
𝑃𝑇 symmetry if it is invariant under simultaneous application
of parity-reversal operator P and time-reversal operator T .
The eigenvalues of the 𝑃𝑇-symmetry operator can either be
real only or appear as complex conjugate pairs. The former
possesses 𝑃𝑇-symmetry and is therefore categorized as 𝑃𝑇-
unbroken phase when the matrix is diagonalizable [8, 35]. In
the second case, 𝑃𝑇-symmetry is spontaneously broken and
therefore categorized as the 𝑃𝑇-broken phase. The transition
between these two phases is of broad interest with applications
in quantum sensing [36, 37].

To verify whether the quantum system is in the 𝑃𝑇-broken
or 𝑃𝑇-unbroken phase, it suffices to determine if it contains
complex eigenvalues. In practice, we may allow a certain error
𝜀. When all eigenvalues are at most 𝜀 distance away from the
real axis, the matrix is categorized as 𝑃𝑇-unbroken. With a
mild modification of the algorithms for solving Problem 3, one
can solve this problem with a similar complexity claimed in
Theorem 2. For example, when 𝐴 is promised to be diagonal-
izable and ∥𝐴∥ ⩽ 1. With success probability 1 − 𝛿, one can
verify whether 𝐴 has eigenvalues satisfying

��Im[𝜆 𝑗 ]
�� ⩾ 𝜀, or

all eigenvalues are in the real axis, with �̃� (𝐾3𝜀−2𝛾−1) com-
plexities, and hence characterizing the 𝑃𝑇-broken (-unbroken)
phase.
Relaxation time of Markov chain. Markov chain has broad
applications in both natural and social science [38–42]. Finite
Markov chain can be described by non-Hermitian stochastic
matrix 𝐴, whose largest eigenvalue is 1. Besides, the absolute
spectral gap of 𝐴 is 𝑔ag ≡ 1 −max𝜆 𝑗≠1 |𝜆 𝑗 |, which determines
the relaxation time 𝑡ag ≡ 1/𝑔ag. In particular, for irreducible,
time-reversible Markov chain, 𝑡ag can be used to upper bound
the mixing time, i.e. the time converging to the stationary
distribution [42]. We note that 𝑡ag is a global property, and
different from the hitting time of a particular site [43].

With a similar strategy to solving Problem 2 and 3, we can
estimate the absolute spectral gap and hence the relaxation
time. For example, if ∥𝐴∥ is upper bounded by a constant and
𝑚max = 1 (i.e. diagonalizable), 𝑔ag can then be estimated to
accuracy 𝜀 with 𝑂 (𝐾3𝜀−2𝛾−1) complexity [28].

Quantum advantages. The exponential quantum advantage of
Problem. 2, 3 can be obtained straightforwardly, because they
covers all instances of the eigenvalue problems for Hermitian
matrix. Combining Theorem. 2 (i.e. BQP) with Theorem 1.2
in [44] for BQP-hardness of Hermitian ground state problems,
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the decision version of Problem. 2, 3 are BQP-complete when
𝜀 = Ω(1/poly(𝑛)) and nontrivial initial state exists.

We also study the BQP-completeness of LG problem. This
problem is more complicated, because they are special cases
of eigenvalue problems. Our strategy contains two steps of
mapping. The first step is to map a polynomial-size quan-
tum circuit to a guided ground state problems of 𝑂 (1)-local
Hamiltonian 𝐻. This can be achieved using the construction
in [44], which adds the effect of guiding state to the Kitaev’s
construction of proofing QMA-completeness [23]. The sec-
ond step is to map whether ground energy property of 𝐻 to
the property of a specific LG problem. Such a LG problem
can be solved efficiently using our quantum algorithms, and
hence BQP-complete. Because BQP≠ BPP unless universal
quantum computer can be efficiently simulated classically, our
result can be summarized as follows.

Theorem 3. There exist instances of Liouvillian gap problem,
such that quantum algorithm can provide exponential quantum
speedup, unless universal quantum computer can be efficiently
simulated classically.

Our strategy can also be used to analysis the quantum ad-
vantage of Spontaneous 𝑃𝑇-symmetry-breaking witness, and
other related problems.

Discussions. We have developed quantum algorithms for solv-
ing eigenvalue problems. The idea can also be generalized to
the study of the properties related to eigenvectors. Future
works include finding more applications in physics, data sci-
ence, and other related fields.
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Note-added. Another related work has appeared during the
preparation of this work [16]. In Theorem 3 and Theorem
12 of Ref [16], eigenvalue estimation is discussed based on
stronger assumptions that initial state with 𝑂 (𝜀) distance to
the corresponding eigenvector can be prepared.
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I. Singular value threshold subroutine

Our protocol of searching eigenvalue depends on the the SVTS oracle which output “True” when 𝐶 (𝜇) is small (and hence 𝜇
is close to an eigenvalue due to Lemma. 1). More specifically, the SVTS is defined as follows.

Definition 1. Let 𝜇 ∈ D(0, 1), 𝜀, 𝛿 ∈ (0, 1) be the center, threshold and success probability of the SVTS respectively. Let 𝐶 (𝜇)
be the minimum singular value of 𝐴− 𝜇𝐼 (cf. Eq. (7)). We define𝑂𝐶 (𝜇, 𝜀, 𝛿) as the output of SVTS, which satisfies the following

Pr
[
𝑂𝐶 (𝜇, 𝜀, 𝛿) = True

��𝐶 (𝜇) ⩽ 𝜀/2] ⩾ 1 − 𝛿, (S-1a)
Pr

[
𝑂𝐶 (𝜇, 𝜀, 𝛿) = False

��𝐶 (𝜇) ⩾ 𝜀] ⩾ 1 − 𝛿. (S-1b)

In this section, we show that the SVTS can be constructed efficiently. Our result is as follows.

Lemma 2 (SVTS). SVTS satisfying Eq. (S-1) can be constructed with �̃�
(
𝜀−1𝛾−1) uses of the query to 𝒪𝐴, 𝒫𝐴, and extra single-

and two-qubit gates.

Recall that 𝒪𝐴 is the block encoding of 𝐴, i.e. an (𝑛 + 𝑎) qubit satisfying (⟨0𝑎 | ⊗ 𝐼)𝒪𝐴( |0𝑎⟩ ⊗ 𝐼) = 𝐴. It is typically required
that 𝑎 = 𝑂 (poly(𝑛)). 𝒫𝐴 is state preparation unitary satisfying 𝒫𝐴 |0⟩⊗𝑛 = |𝜓⟩, such that |⟨𝑢0 (𝜇) |𝜓⟩| ⩾ 𝛾. Here, |𝑢0 (𝜇)⟩ is the
right singular vector of 𝐴− 𝜇𝐼 corresponding to the minimum singular value. This is in analogy to the ground state for Hermitian
matrix.

The aim of Lemma. 2 is to approximately determine where the targeted eigenvalue lies, a task similar to the fuzzy bisection
scheme proposed in Ref. [45]. Yet, the main difference between our motivation and Dong et al. [45] is that to deal with complex
eigenvalues, we take advantage of the relationship between eigendecomposition and singular value decomposition as given by
Lemma. 1. That is given the construction of 𝐴 − 𝜇𝐼, if the shifted value 𝜇 is close enough to the targeted eigenvalue 𝜆 𝑗 , 𝐶 (𝜇) is
then close to zero. Therefore, we can decide whether there is an eigenvalue 𝜆 𝑗 that is close to the attempted shift 𝜇 by determining
the existence of singular value signals close to zero by QSVT techniques [14].

The remaining of this section is organized as follows. In Sec. I A, we proof Lemma. 1. In Sec. I B, for an arbitrary matrix
𝑀 satisfying ∥𝑀 ∥ ⩽ 1, we show how to determine whether its minimum singular value is smaller than 𝜀/2 or larger than 𝜀,
provided the block encoding of 𝑀 . In Sec. I C, we show that the block encoding a rescaled matrix, �̃� =

𝐴−𝜇𝐼
1+|𝜇 | , can be constructed

with 𝑂 (1) querying to 𝒪𝐴. In combination, we complete the proof of Lemma. 2.

A. Proof of Lemma. 1

𝐶 (𝜇) ⩽ min𝜆 𝑗
|𝜇 − 𝜆 𝑗 | follows straightforwardly from Weyl’s Theorem [46]. Below, we focus on the upper bound of

min |𝜇 − 𝜆 𝑗 |. We begin with the diagonalizable matrix. We should proof that min𝜆 𝑗
|𝜇 − 𝜆 𝑗 | ⩽ 𝜅𝑃𝐶 (𝜇). Let ∥ · ∥ = 𝜎max(·) be

the operator norm. According to definition, the cost function satisfies

𝐶 (𝜇) = 0 𝜇 = 𝜆 𝑗 , (S-2)

𝐶 (𝜇) =
(𝑀 − 𝜇𝐼)−1−1

𝜇 ≠ 𝜆 𝑗 . (S-3)

When 𝜇 = 𝜆 𝑗 , Lemma. 1 holds obviously. We now consider the case when 𝜇 ≠ 𝜆 𝑗 . Because 𝑃𝑃−1 = 𝑃−1𝑃 = 𝐼, we have

𝑀 − 𝜇𝐼 = 𝑃(Λ − 𝜇𝐼)𝑃−1, (S-4)

and

(𝑀 − 𝜇𝐼)−1 = 𝑃(Λ − 𝜇𝐼)−1𝑃−1. (S-5)

Therefore,

∥(𝑀 − 𝜇𝐼)−1∥ = ∥𝑃(Λ − 𝜇𝐼)−1𝑃−1∥
⩽ ∥𝑃∥∥(Λ − 𝜇𝐼)−1∥∥𝑃−1∥
⩽ ∥𝑃∥∥𝑃−1∥∥(Λ − 𝜇𝐼)−1∥ (S-6)
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By definition, we have 𝜅𝑃 ≡ 𝜎max (𝑃)/𝜎min (𝑃), where 𝜎min(𝑃) is the minimum singular value of 𝑃. Because 1/𝜎min(𝑃) =
𝜎max (𝑃−1), we have

𝜅𝑃 = 𝜎max (𝑃)𝜎max (𝑃−1) = ∥𝑃∥∥𝑃−1∥. (S-7)

Moreover, we have

∥(Λ − 𝜇𝐼)−1∥ = 1
min |𝜇 − 𝜆 𝑗 |

. (S-8)

Combining Eq. (S-6), (S-7) and (S-8), we have

𝐶 (𝜇)−1 =
𝜅𝑃

min |𝜇 − 𝜆 𝑗 |
, (S-9)

which is equivalent to Eq. (??).

We then consider the defective matrix case. We first consider the Jordan normal form of the matrix 𝑀 − 𝜇𝐼. It can be expressed
as 𝑀 − 𝜇𝐼 = 𝑃Λ̃𝑃−1, where Λ̃ ≡ Λ − 𝜇𝐼 ≡ Λ̃1 ⊕ Λ̃2 ⊕ · · · ⊕ Λ̃𝑀 is a block-diagonal matrix, where each Jordan block is

Λ̃ 𝑗 =

©«
𝜆 𝑗 − 𝜇 1

𝜆 𝑗 − 𝜇
. . .

. . . 1
𝜆 𝑗 − 𝜇

ª®®®®®¬
. (S-10)

According to Eq. (S-3), we have

𝐶 (𝜇) =
(𝑀 − 𝜇𝐼)−1−1

=

𝑃diag
(
Λ̃−1

1 , Λ̃−1
2 , · · · , Λ̃−1

𝑁

)
𝑃−1

−1

⩾𝜅−1
𝑃

diag
(
Λ̃−1

1 , Λ̃−1
2 , · · · , Λ̃−1

𝑁

)−1

⩾𝜅−1
𝑃

Λ̃−1
𝑗

−1

=
𝜎min (Λ̃ 𝑗 )

𝜅𝑃
. (S-11)

Note that Eq. (S-11) is applied for arbitrary 𝑗 . According to Ref.[47] (see also Ref. [48]), let 𝛿 𝑗 = |𝜆 𝑗 − 𝜇 |, we have

𝜎min (Λ̃ 𝑗 ) ⩾
𝛿
𝑚 𝑗

𝑗

(1 + 𝛿 𝑗 )𝑚 𝑗−1 . (S-12)

Because the operator norm of 𝐴 is bounded by ∥𝐴∥ ⩽ 1, we also have |𝜆 𝑗 | ⩽ 1 for all eigenvalues. Our searching region is also
restricted by |𝜇 | ⩽ 1, so we have 𝛿 𝑗 ⩽ 2. We can simplify Eq. (S-12) as

𝜎min (Λ̃ 𝑗 ) ⩾
(
𝛿 𝑗

1 + 𝛿 𝑗

)𝑚 𝑗

(1 + 𝛿 𝑗 ) ⩾ (𝛿 𝑗/3)𝑚 𝑗 . (S-13)

Combining Eq. (S-11) with Eq. (S-13), we have

𝜅𝑃𝐶 (𝜇) ⩾ (𝛿 𝑗/3)𝑚 𝑗 , (S-14)

which gives

𝛿 𝑗 ⩽ 3(𝜅𝑃𝐶 (𝜇))1/𝑚 𝑗 . (S-15)
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Because min 𝑗 |𝜇 − 𝜆 𝑗 | ⩽ 𝛿 𝑗 , we have

min
𝑗
|𝜇 − 𝜆 𝑗 | ⩽ 3(𝜅𝑃𝐶 (𝜇))1/𝑚 𝑗 . (S-16)

When 𝐶 (𝜇) ⩽ 1/𝜅𝑃 , we have 𝜅𝑃𝐶 (𝜇) ⩽ 1, and the right hand side of Eq. (S-16) increases monotonically with 𝑚 𝑗 . So
min 𝑗 |𝜇 − 𝜆 𝑗 | ⩽ 3(𝜅𝑃𝐶 (𝜇))1/𝑚max . When 𝐶 (𝜇) > 1/𝜅𝑃 , we have 𝜅𝑃𝐶 (𝜇) > 1, so the right hand side of Eq. (S-16) is larger than
3. Because we always have min 𝑗 |𝜇 − 𝜆 𝑗 | ⩽ 2, so we also have min 𝑗 |𝜇 − 𝜆 𝑗 | ⩽ 3(𝜅𝑃𝐶 (𝜇))1/𝑚max , and the proof is of Lemma. 1
completed.

B. Singular value filtering

Given a general matrix 𝑀 ∈ C𝑁×𝑁 satisfying ∥𝑀 ∥ ⩽ 1, we can perform singular value decomposition as follows

𝑀 =

𝑁−1∑︁
𝑗=0

𝜎𝑗 |𝑤 𝑗⟩⟨𝑢 𝑗 | (S-17)

for some singular value 0 ⩽ 𝜎0 ⩽ 𝜎1 · · · , orthonormal left singular vectors {|𝑤 𝑗⟩} and right singular vectors {|𝑢 𝑗⟩}. Let 𝑃(·) be
a real polynomial function, we define the singular value transformation of a matrix as

𝑃 (svt) (𝑀) =
{
𝑃(𝜎𝑗 ) |𝑤 𝑗⟩⟨𝑢 𝑗 | if the degree of 𝑃(·) is odd
𝑃(𝜎𝑗 ) |𝑢 𝑗⟩⟨𝑢 𝑗 | if the degree of 𝑃(·) is even (S-18)

According to [14], QSVT can be effectively constructed with 𝒪𝑀 and few extra elementary quantum gates, if 𝑃(·) satisfies
some reasonable criteria. More specifically, we have the following.

Lemma 3 (QSVT for real polynomials with definite parity, adapted from Theorem 4 in [14]). Let 𝑃 ∈ R be a polynomial function
satisfying (1) The degree of 𝑃 is at most 𝑑; (2) 𝑃 is either of even or odd parity; (3) For ∀𝑥 ∈ [−1, 1], |𝑃(𝑥) | ⩽ 1.

Then there exists a block encoding of 𝑃(𝑀) using 𝑑 queries of 𝒪𝑀 and its inverse, one extra ancillary qubit, and 𝑂 (𝑎 + 1)𝑑
extra single- and two-qubit gates.

The next step is thus to approximate a shifted Heaviside function 𝐻 (𝑥 − 𝜃) with a polynomial function 𝑃 (svt)
𝐻
(·) using QSVT

methods. The shifted Heaviside function is given by

𝐻 (𝑥 − 𝜃) =
{

1, 𝑥 ≤ 𝜃
0, 𝑥 > 𝜃

(S-19)

Regarding the approximated block encoding, we say that a unitary 𝑈𝑀 is the (𝛼, 𝑎, 𝜂)-block encoding of �̃� if ∥𝛼(⟨0𝑎 | ⊗
𝐼)𝑈𝑀 ( |0𝑎⟩ ⊗ 𝐼) − 𝑀 ∥ ⩽ 𝜂. From [49], we have the following lemma.

Lemma 4. Let Δ, 𝜂 ∈ (0, 0.5). Given a matrix �̃� with its (1, 𝑎, 0) block-encoding 𝒪�̃�, we can construct a (1, 𝑎 + 1, 𝜂)-block-
encoding of 𝑃svt

𝐻
( �̃�) satisfying |𝑃𝐻 (𝑥) − 1| ≤ 𝜂 for ∀𝑥 ∈ [−1,Δ/2], and |𝑃𝐻 (𝑥) | ≤ 𝜂 for ∀𝑥 ∈ [Δ, 1] using 𝑂

(
1
Δ

log
(

1
𝜂

))
applications of 𝒪�̃� and 𝑂

(
𝑎
Δ

log
(

1
𝜂

))
extra single- and two-qubit gates.

Here, we have approximated the Heaviside function with a shift 𝜃 = 3Δ/4. It is worth noting that the function between interval
𝑥 ∈ [Δ/2,Δ] often takes values that smoothly interpolate the function value of the two endpoints of the interval. See Sec. V of
Ref. [45] for an example. For simplicity, we will denote the (1, 𝑎 + 1, 𝜂)-block encoding unitary of 𝑃svt

𝐻
(𝑀) as𝑈𝐻 .

For the sake of generality, we consider a slightly weaker state preparation assumption than the one used in Lemma. 2. We define
𝒫
(Δ)
𝑀

as a state preparation unitary satisfying the following: Let 𝒫𝑀 |0𝑛⟩ = |𝜓⟩ with
∑

𝑗 𝑐 𝑗 |𝑢 𝑗⟩, if 𝑀 has at least one singular
value satisfying 𝜎𝑗 ⩽ 𝜀/2, then ∥ΠΔ/2 |𝜓⟩∥ ⩾ 𝛾, where ΠΔ/2 =

∑
𝑗∈{ 𝑗′ |𝜎 𝑗′⩽𝜀/2} |𝑢 𝑗⟩⟨𝑢 𝑗 |. In other words, |𝜓⟩ has nontrivial

overlap to the subspace spanned by singular vectors, whose small singular values are small, if any. This weaker assumption is
useful for solving Problem. 7 which is useful for the discussion of BQP-completeness.

Applying𝑈𝐻 to the join state of ancillary qubits at state |+⟩|0𝑎+1⟩ and data qubit at state |𝜓⟩, we obtain
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𝑈𝐻 |+⟩|0𝑎+1⟩|𝜓⟩ = |+⟩|0𝑎+1⟩
∑︁
𝑗

𝑐 𝑗𝑃𝐻 (𝜎𝑗 ) |𝑢 𝑗⟩ + |garb⟩ (S-20)

for some |𝑐0 | ⩾ 𝛾, and

(⟨+|⟨0𝑎+1 | ⊗ 𝐼) |garb⟩ = 0. (S-21)

If we project the ancillary qubits to |+⟩|0𝑎+1⟩, the success probability of the projection is given by

𝑝suss ≡
(⟨+|⟨0𝑎+1 | ⊗ 𝐼)𝑈𝐻 |+⟩|0𝑎+1⟩|𝜓⟩

 (S-22)

=
∑︁
𝑗

|𝑐 𝑗 |2 |𝑃𝐻 (𝜎𝑗 ) |2. (S-23)

If the smallest singular value of 𝐴 satisfies 𝜎0 ⩽ Δ/2, we have

𝑝suss ⩾ |𝑐0 |2 |𝑃𝐻 (𝜎0) |2 ⩾ |𝑐0 |2 (1 − 𝜂)2 ⩾ 𝛾/4. (S-24)

If 𝜎0 (𝐴) ⩾ Δ, we have

𝑝suss ⩽ 𝜂
2. (S-25)

We note that 𝜂 decays rapidly with order 𝑑 for the polynomial function. For example, we may require that the probability in the
second case is at most half of the probability in the first case, i.e.

𝜂2 ⩽ (𝛾/4)/2 = 𝛾/8. (S-26)

This can be achieved with 𝑑 = 𝑂

(
log(1/𝛾)

Δ

)
. To distinguish whether Eq. (S-24) or Eq. (S-25) are satisfied, we can use the Monte

Carlo method by performing the projection process many times. To achieve a constant correct probability, this method requires
sampling size𝑂 (𝛾−2), and each run of the quantum circuit requires a single query to𝑈𝐻 (Lemma 9 of Ref [45], see also Ref [3]).
Alternatively, we can improve the dependency on 𝛾 to 𝑂 (𝛾−1) with the amplitude amplification method.

Lemma 5 (Lemma.12 in Ref [45]). Given a unitary𝑊 applied at 𝑛𝑤 + 1 qubits, and let

𝜔 = ∥(⟨0| ⊗ 𝐼2𝑛𝑤 )𝑊 |0⟩|0𝑛𝑤 ⟩∥, (S-27)

where 𝐼2𝑛𝑤 is 2𝑛𝑤 -dimensional identity. It is further promised that either 𝜔 ⩽ 𝛾1 or 𝜔 ⩾ 𝛾2 for some 0 ⩽ 𝛾1 < 𝛾2. These two
cases can be distinguished with success probability at least 1-𝛿 with 𝑂

(
(𝛾2 − 𝛾1)−1 log(𝛿−1)

)
queries to 𝑊 and one additional

ancilla qubit.

We define 𝒫
′(Δ)
𝑀

=

(
𝐼2 ⊗ Hard ⊗ 𝐼2𝑎+1 ⊗𝒫

(Δ)
𝑀

)
, where Hard is Hardamard gate. Following the definition in Eq. (S-20), it can

be verified that

(𝐼2 ⊗ 𝑈𝐻 )𝒫′(Δ)𝑀
|0⟩|0𝑛+𝑎+2⟩ (S-28)

=|0⟩|+⟩|𝜓⟩ (S-29)

=|0⟩
(
|+⟩|0𝑎+1⟩

∑︁
𝑗

𝑐 𝑗𝑃𝐻 (𝜎𝑗 ) |𝑢 𝑗⟩ + |garb⟩
)
. (S-30)

We define |𝜓′⟩ = |+⟩|0𝑎+1⟩∑ 𝑗 𝑐 𝑗𝑃𝐻 (𝜎𝑗 ) |𝑢 𝑗⟩, and a controlled rotation 𝑅 |𝜓′ ⟩ ≡ 𝐼2 ⊗ |𝜓′⟩⟨𝜓′ | + 𝑋 ⊗ (𝐼 − |𝜓′⟩⟨𝜓′ |). According
to Eq. (S-21), we have
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𝑝suss = ∥(⟨0| ⊗ 𝐼2𝑎+2)𝑅 |𝜓′ ⟩ |0⟩|0𝑎+2⟩∥. (S-31)

Here, 𝑝suss is the success probability of projection defined in Eq. (S-22). According to Eq. (S-24) and Eq. (S-25), we can set two
thresholds of projection success probabilities to be 𝛾1 = 𝜂2 ⩽ 𝛾/8 and 𝛾2 = 𝛾/4 respectively. According to Lemma. 5, we can
distinguish whether 𝑝suss ⩽ 𝛾1 or 𝑝suss ⩾ 𝛾2 with 𝑂

(
(𝛾2 − 𝛾1)−1 log(𝛿−1)

)
= �̃�

(
𝛾−1) queries to 𝑅 |𝜓′ ⟩ .

𝑅 |𝜓′ ⟩ requires single query to𝑈𝐻 , 𝒫′(Δ)
𝑀

and 𝑂 (𝑛) extra single- and two-qubit quantum gates. Summing up the complexities,
we have

Lemma 6. Let Δ, 𝜂 ∈ (0, 0.5), for 𝑀 ∈ C𝑁×𝑁 satisfying ∥𝑀 ∥ ⩽ 1, and promised that its minimum singular value as defined
in Eq. (S-17) satisfies either 𝜎0 ⩽ Δ/2 or 𝜎0 ⩾ Δ. We can distinguish these two cases with probability at least 1 − 𝛿 using
�̃� (Δ−1𝛾−1) queries to 𝒪𝑀 , 𝒫 (Δ)

𝑀
and their inverses, and extra single- and two-qubit gates.

Note that �̃� (·) has neglected the dependency on 𝑛. Lemma. 2 is related to Lemma. 6 with 𝑀 =
𝐴−𝜇𝐼
1+|𝜇 | and Δ = 𝜀/(1 + |𝜇 |).

In this case, it can be verified that 𝒫𝐴 satisfies the criterial for 𝒫Δ
𝑀

. Therefore, the remaining task of proofing Lemma. 2 is
therefore to show that 𝒪𝑀 can be block encoded with 𝑂 (1) query to 𝒪𝐴.

C. Block encoding of shifted and rescaled matrix

For brevity, we simply denote 𝒪𝐴,𝜇 as the block encoding of matrix (𝐴 − 𝜇𝐼)/(1 + |𝜇 |). We have the following result about its
construction.

Lemma 7. Given a square matrix 𝐴 satisfying ∥𝐴∥ ⩽ 1 and 𝜇 satisfying |𝜇 | ⩽ 1, 𝒪𝐴,𝜇 can be constructed with one query of
single-qubit controlled 𝒪𝐴, single ancillary qubit, and a constant number of extra single- and two-qubit gates.

Proof. Let 𝜃 = arccos
(√︃

1
1+|𝜇 |

)
and

𝑅(𝜃) =
(
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)
, Ph(𝜙) =

(
1 0
0 𝑒𝑖𝜙

)
. (S-32)

The block encoding unitary is constructed as

𝒪𝐴,𝜇 = (𝑅(−𝜃) ⊗ 𝐼)
(
|0⟩⟨0| ⊗ 𝒪𝐴 − |1⟩⟨1| ⊗ 𝑒𝑖arg(𝜇) 𝐼

)
(𝑅(𝜃) ⊗ 𝐼) , (S-33)

which is equivalent to the following quantum circuit

𝑅(𝜃) Ph(𝜋 + arg(𝜇)) 𝑅(−𝜃)

𝑂𝐴

It can be verified that.

⟨0𝑎+1 |𝒪𝐴,𝜇 |0𝑎+1⟩ = (cos 𝜃⟨0| + sin 𝜃⟨1|) ⊗ 𝐼
(
|0⟩⟨0| ⊗ 𝒪𝐴 − |1⟩⟨1| ⊗ 𝑒𝑖arg(𝜇) 𝐼

)
(cos 𝜃 |0⟩ + sin 𝜃 |1⟩) 𝐼

= cos2 𝜃𝒪𝐴 − sin2 𝜃𝑒𝑖arg(𝜇) 𝐼

=
𝒪𝐴 − 𝜇𝐼
1 + |𝜇 | . (S-34)

□

Combining Lemma. 6 and 7, we achieve Lemma. 2 readily.
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II. Solutions to Problem 1

In this section, we discuss the solution to Problem 1 for general matrices. The solution when eigenvalues are promised to be
real is discussed in Sec. V. Our solution is summarized as a pseudo-code in Algorithm. 1. The protocol is based on the following
lemma that can be straightforwardly verified from Lemma. 1 and the definition of 𝑂𝐶 in Definition. 1.

Lemma 8. For diagonalizable matrix, if min 𝑗 |𝜇 − 𝜆 𝑗 | ⩽ 𝑟/(2𝐾), with probability at least 1 − 𝛿, the output of 𝑂𝐶 (𝜇, 𝑟/𝐾, 𝛿) is
True. If min 𝑗 |𝜇 − 𝜆 𝑗 | ⩾ 𝑟 , with probability at least 1 − 𝛿, the output of 𝑂𝐶 (𝜇, 𝑟/𝐾, 𝛿) is False.

For defective matrix, we define

𝜈(𝑟) = (𝑟/3)𝑚max (2𝐾)−1. (S-35)

if min 𝑗 |𝜇−𝜆 𝑗 | ⩽ 𝜈(𝑟), with probability at least 1−𝛿, the output of𝑂𝐶 (𝜇, 2𝜈(𝑟), 𝛿) is True. If min 𝑗 |𝜇−𝜆 𝑗 | ⩾ 𝑟 , with probability
at least 1 − 𝛿, the output of 𝑂𝐶 (𝜇, 2𝜈(𝑟), 𝛿) is False.

Proof. We first consider the diagonalizable case. When min 𝑗 |𝜇 − 𝜆 𝑗 | ⩽ 𝑟/(2𝐾), by to Lemma. 1, we have 𝐶 (𝜇) ⩽ 𝑟/(2𝐾), and
according to Definition. 1, Lemma. 8 holds true in this case. When min 𝑗 |𝜇 − 𝜆 𝑗 | ⩾ 𝑟, by to Lemma. 1, we have 𝐶 (𝜇) ⩾ 𝑟/𝐾
and according to Definition. 1, the output of 𝑂𝐶 (𝜇, 𝑟/𝐾, 𝛿) is “False” with probability 1− 𝛿. By taking the contraposition of the
statement, Lemma. 8 holds true in this case.

For defective matrix case, the argument is similar except that 𝑟/(2𝐾) is replaced by 𝜈(𝑟). □

Lemma. 8 is also illustrated in Fig. S1a. Each SVTS (i.e. 𝑂𝐶 (𝜇, 𝑟/𝐾, 𝛿) for diagonalizable matrix or 𝑂𝐶 (𝜇, 2𝜈(𝜇), 𝛿) for
defective matrix) contains an inner region and outer region marked with yellow and green color respectively. If there is at least
one eigenvalue in the inner (yellow) region, the output of SVTS is likely to be “True” (with probability at least 1 − 𝛿) . If the
output of SVTS is True, it is likely that there are at least one eigenvalues in the outer (green) region (with probability at least
1 − 𝛿). The radius of inner region is 𝑟/2𝐾 or 𝜈(𝑟) for diagonalizable and defective matrices, the radius of outer region is 𝑟.

Because ∥𝐴∥ ⩽ 1, all eigenvalues are in D(0, 1). Our strategy of solving Problem. 1 is to iteratively shrink the region in
which there is at least one eigenvalue in it (with high probability). Our method contains 𝐽 = ⌈log2 (1/𝜀)⌉ steps, and the process
of each step is illustrated in Fig. S1b (see also Algorithm. 2). Suppose that before the 𝑗 th step, we are confidence that there is at
least one eigenvalue in the region D(𝜆gss, 𝐷). At this step, we shrink the radius of such confidence region from 𝐷 to 𝐷/2. This
is achieved by introducing a set of SVTSs, whose inner region coversD(𝜆gss, 𝐷). This ensures that at least one of the SVTS has
output “True”. Another restriction is that the outer region of each SVTS has a radius 𝐷/2. In this way, once we obtain an output
“True”, we are confidence that at least one eigenvalue is in the region D(𝜆′gss, 𝐷/2), where 𝜆′gss is the center of such SVTS with
output “True”.

Note that in Algorithm. 2, we have introduced a set of points Nnet (𝜆gss, 𝐷, 𝑚max). It represents the centers of all SVTSs
satisfying the criteria above. Equivalently, we have

D(𝜆gss, 𝐷) ⊂
⋃

𝜇∈Nnet (𝜆gss ,𝐷,1)
D(𝜇, 𝐷/4𝐾), (S-36)

when 𝑚max = 1, or

D(𝜆gss, 𝐷) ⊂
⋃

𝜇∈Nnet (𝜆gss ,𝐷,𝑚max )
D(𝜇, 𝜈(𝐷/2)). (S-37)

when 𝑚max > 1.
We first estimate the complexity of diagonalizable matrices. According to Lemma. 8, the query to each SVTS has complexity

�̃� (𝐾𝐷−1𝛾−1). Moreover, the area of D(𝜆gss, 𝐷) and the inner regions of SVTSs are 𝜋𝐷2 and 𝜋𝐷2/(4𝐾)2 respectively. So it
suffices to use𝑂 (𝐾2) number of SVTSs to coverD(𝜆gss, 𝐷). Therefore, the complexity at each step is �̃� (𝐾𝐷−1𝛾−1) ×𝑂 (𝐾2) =
�̃� (𝐾3𝐷−1𝛾−1). In Algorithm. 1, the total algorithm contains 𝐽 = ⌈log2 (1/𝜀)⌉ steps, and we have 𝐷 ⩾ 𝜀. So the total complexity
is �̃� (𝐾3𝜀−1𝛾−1).

For defective matrix, the threshold of each SVTS is 2𝜈(𝐷/2) = 𝑂 (𝐷𝑚max/𝐾). The complexity of each query to SVTS
is therefore �̃� (𝐾𝐷−𝑚max𝛾−1). The inner region of each SVTS has area 𝑂 (𝐷2𝑚max/𝐾2), so totally 𝑂 (𝐾2𝐷−2𝑚max+2) number
of SVTSs is required to cover D(𝜆gss, 𝐷). Therefore, the complexity for each step is �̃� (𝐾3𝐷−3𝑚max+2𝛾−1), while the total
complexity of Algorithm. 1 is �̃� (𝐾3𝜀−3𝑚max+2𝛾−1).
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Supplementary Figure S1: (a) Sketch of SVTS. (b) Sketch of Algorithm. 2 for shrinking the range of eigenvalue searching (Problem 1). The
initial and updated guess region is enclosed by grey circles. (c) Sketch of Algorithm. 4 for shrinking the range of point gap. The initial guess
region is a ring enclosed by two grey circles (Problem 2). The updated guess region is a ring enclosed by a grey circle and red (one of the
SVTS has output “True”) or blue (all of the SVTS has output “False”) circles.

ReReRe

ImImIm

“False”

“True”

: Guess regions 

(d)(c)

“False”

“True”

: Guess regions

(a)

Re

Im Im

Re

Im

Re

(b)

Supplementary Figure S2: (a) and (b): Sketch of the process solving Problem. 2. (c) and (d): Sketch of the process solving Problem. 3.

Algorithm 1 Quantum eigenvalue searching for Problem 1.
𝐷 ← 1, 𝛿′ ← 𝛿/⌈log2 (𝐷/𝜀)⌉
while 𝐷 > 𝜀:
𝜆gss ←ℛ

(
𝜆gss, 𝐷, 𝛿

′)
𝐷 ← 𝐷/2:

end while
return 𝜆gss
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Algorithm 2 ℛ(𝜆gss, 𝐷, 𝛿)
𝛿′ ← 𝛿/|Nnet (𝜆gss, 𝐷, 𝑚max) |
for all 𝜇 ∈ Nnet (𝜆gss, 𝐷, 𝑚max):

if 𝑚max = 1:
𝐵← 𝑂𝐶 (𝜇, 𝐷/4𝐾, 𝛿′)

else if: 𝑚max > 1:
𝐵← 𝑂𝐶 (𝜇, 2𝜈(𝐷/2), 𝛿′)

end if
if 𝐵 = True:

break for
end if

end for
return 𝜇

III. Solution to Problem. 2

In this section, we introduce our protocols for solving Problem 2. We specify the reference point as the original point, i.e.
𝑃 = 0. The goal is then to find an eigenvalue that is closest to, but not equal to 0. In case 𝑃 ≠ 0, we can always define a
new matrix �̃� = (𝐴 − 𝑃𝐼)/(1 + |𝑃 |), and the problem then reduces to the point gap problem for �̃� with the original point as
the reference point. Our algorithm contains two stages. In the first stage, the goal is to output an estimation of the point gap
𝑔 ≡ min𝜆 𝑗

|𝑃 − 𝜆 𝑗 | to accuracy 𝜀. In the second stage, we search an eigenvalue close to the circle with radius 𝑔.

A. Stage 1: estimating the point gap

The main idea of stage 1 is as follows. Initially, we have 𝑔 ∈ [𝜀, 1]. We introduce an eigenvalue range shrinking subroutine
(ERSS) in Sec. ??, based on which the range of 𝑔 shrinks iteratively.

According to definition in Problem 2, we initially have 𝑔 ∈ [𝑅min
0 , 𝑅max

0 ] with 𝑅min
0 = 𝜀 and 𝑅max

0 = 1. Our strategy is to shrink
the range of 𝑔 iteratively. The full process is summarized in Algorithm. 3. Suppose at the 𝑗 th step, we are confidence that

𝑔 ∈ [𝑅min
𝑗−1, 𝑅

max
𝑗−1] . (S-38)

In this step, 𝑅min
𝑗−1 or 𝑅max

𝑗−1 is updated by querying the eigenvalue range shrinking subroutine (ERSS)

𝒮(𝑅min, 𝑅max, 𝑟, 𝛿) → (�̃�min, �̃�max) (S-39)

defined in Algorithm. 4. The ERSS contains four input parameters. 𝑅min and 𝑅max are the recent confidence region in which
the gap 𝑔 is in. The third parameter 𝑟 > 0 controls the step size of updating. It is required that 𝑟 ⩽ 𝑅min and 𝑟 ⩽ 𝑅max − 𝑅min.
The first requirement ensures that the output of ERSS will not be affected by eigenvalue at the original point, if any. The second
requirement ensures that the current gap Δ 𝑗 ≡ 𝑅max

𝑗
− 𝑅min

𝑗
is non-increasing. The last parameter 𝛿 is the failure probability. The

ERSS has the following property.

Lemma 9. Let 𝐴 be a square matrix satisfying ∥𝐴∥ ⩽ 1. Let
(
�̃�𝑎, �̃�𝑏

)
be the output of𝒮(𝑅𝑎, 𝑅𝑏, 𝑟, 𝛿) for some 0 < 𝑅𝑎 < 𝑅𝑏 ⩽ 1,

and 0 < 𝑟 ⩽ min(𝑅𝑎, (𝑅𝑏 − 𝑅𝑎)/2), and 𝛿 ∈ (0, 1). Then, suppose the point gap satisfies 𝑔 ∈ [𝑅𝑎, 𝑅𝑏], with probability at least
1 − 𝛿, we have 𝑔 ∈ [�̃�min, �̃�max]. Here, �̃�𝑎 and �̃�𝑏 are defined in Algorithm. 4.

Moreover, the complexity of ERSS is given by the following.

Lemma 10. 𝒮(𝑅𝑎, 𝑅𝑏, 𝑟, 𝛿) defined in Algorithm. 4 can be realized with �̃�
(
𝐾2𝑅𝑎𝑟

−2𝑚max𝛾−1) queries to 𝒪𝐴, 𝒫𝐴 and there
inverses, and single- and two-qubit gates.

Base on Lemma 9, we are able to update the region of 𝑔 by 𝒮

(
𝑅min

𝑗−1, 𝑅
max
𝑗−1, 𝑟, 𝛿

′
)
→ (𝑅min

𝑗
, 𝑅max

𝑗
), where 𝛿′ is set as a

sufficiently small value. From Algorithm. 4, it can also be verified that

|Δ 𝑗−1 − Δ 𝑗 | = Ω(𝑟𝑚max/𝐾). (S-40)
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Stage 1 is separated into two substages. In substage 1, we set 𝑟 = 𝑅min
𝑗−1 at each step, and this substage terminates when

𝑅min
𝑗
⩾ 𝑅max

𝑗
/2. The complexity of each step is �̃�

(
𝐾2 (𝑅min

𝑗
)−2𝑚max+1𝛾−1

)
. From Eq. (S-40), it can be verified that this substage

terminates with at most 𝑂 (𝐾𝜀−𝑚max+1) steps. Because 𝑅min
𝑗
⩾ 𝜀, The total complexity for this substage is

�̃�

(
𝐾2𝜀−2𝑚max+1𝛾−1

)
×𝑂 (𝐾𝜀−𝑚max+1) = �̃�

(
𝐾3𝜀−3𝑚max+2𝛾−1

)
. (S-41)

In substage 2, we set 𝑟 =
(
𝑅max

𝑗−1 − 𝑅
min
𝑗−1

)
/2, and this substage terminates when Δ 𝑗 ⩽ 𝜀. In this substage, the complexity of each

step is �̃�
(
𝐾2𝜀−2𝑚max𝛾−1) . This substage contains �̃� (𝐾𝜀−𝑚max+1) steps as can be verified from Eq. (S-40). So the total complexity

of substage 2 is

�̃�

(
𝐾2𝜀−2𝑚max𝛾−1

)
×𝑂 (𝐾𝜀−𝑚max+1) = �̃�

(
𝐾3𝜀−3𝑚max+1𝛾−1

)
. (S-42)

Combining Eq. (S-41) and Eq. (S-42), the total complexity of stage 1 is �̃�
(
𝐾3𝜀−3𝑚max+1𝛾−1) .

Algorithm 3 Stage 1 for solving Problem 2
𝑅min

0 ← 𝜀; 𝑅max
0 ← 1; 𝑗 ← 1

while 𝑅min
𝑗−1 < 𝑅

max
𝑗−1/2: # Substage 1

(𝑅min
𝑗
, 𝑅max

𝑗
) ← 𝒮(𝑅min

𝑗−1, 𝑅
max
𝑗−1, 𝑅

min
𝑗−1, 𝛿

′)
𝑗 ← 𝑗 + 1

end while
while 𝑅max

𝑗−1 − 𝑅
min
𝑗−1 > 𝜀: # Substage 2

(𝑅min
𝑗
, 𝑅max

𝑗
) ← 𝒮

(
𝑅min

𝑗−1, 𝑅
max
𝑗−1,

(
𝑅max

𝑗−1 − 𝑅
min
𝑗−1

)
/2, 𝛿′

)
𝑗 ← 𝑗 + 1

end while
return

(
𝑅min

𝑗−1, 𝑅
max
𝑗−1

)

1. Eigenvalue range shrinking subroutine

Here, we give detailed construction of the ERSS. For compactness, we define

�̃�(𝑟) =
{
𝑟/𝐾 𝑚max = 1
(𝑟/3)𝑚max (2𝐾)−1 𝑚max > 1 (S-43)

Algorithm 4 𝒮(𝑅a, 𝑅b, 𝑟, 𝛿) (Eigenvalue range shrinking subrutine)
𝛿′ ← 𝛿/|Nring (𝑅a, �̃�(𝑟)) |
for all 𝑡 ∈ Nring (𝑅a, �̃�(𝑟)):
𝐵← 𝑂𝐶 (𝑡, �̃�(𝑟), 𝛿′)
if 𝐵 = True:

break for
end if

end for
if 𝐵 = True:
�̃�a ← 𝑅a
�̃�b ← 𝑅a + 𝑟

else if 𝐵 = False:
�̃�a ← 𝑅a + �̃�(𝑟)/4
�̃�b ← 𝑅b

end if
return

(
�̃�a, �̃�b

)

255



17

Here, we have also defined

Nring (𝑅, 𝑠) =
{
𝑅𝑒𝑖2𝜋𝑚/𝑀 (𝑅,𝑠)

��𝑚 ∈ {1, 2 · · · , 𝑀 (𝑅, 𝑠)}} , (S-44)

where

𝑀 (𝑅, 𝑠) = 2𝜋
arctan(𝑠/(2𝑅)) . (S-45)

Nring (𝑅, 𝑠) defines a set of points at the circle with radius 𝑅. The main idea of ERSS is illustrated in Fig. S1c. The yello (inner)
region of all SVTSs covers the edge of the circle with radius 𝑅min. If either of the SVTS has output true, we have 𝐵 = True. In
this case, with confidence at least 1 − 𝛿, there exists at least one eigenvalue in the region covered by the green disks. So 𝑅max is
updated. Otherwise, we have 𝐵 = False. In this case, with confidence at least 1 − 𝛿, all of the eigenvalues are outside the region
covered by the yellow disks, so 𝑅min is updated. The validity of Lemma. 9 can be verified straightforwardly based on Lemma. 8.

We then estimate the runtime of 𝒮. Because �̃�(𝑟) = 𝑂 (𝑟𝑚max/𝐾), we have |Nring (𝑅a, �̃�(𝑟)) | = �̃� (𝑅𝑎𝐾𝑟
−𝑚max ), and each

query to the SVTS has runtime �̃� (𝐾𝑟−𝑚max𝛾−1). So the total runtime of 𝒮(𝑅𝑎, 𝑅𝑏, 𝑟, 𝛿) is �̃� (𝐾𝑟−𝑚max ) × �̃� (𝐾𝑟−𝑚max𝛾−1) =
�̃� (𝑅𝑎𝐾

2𝑟−2𝑚max𝛾−1)

B. Stage 2: obtaining the eigenvalue

After stage 1, we are confidence that 𝑔 ∈ [𝑅min
𝐽
, 𝑅max

𝐽
] for some 𝑅max

𝐽
− 𝑅min

𝐽
⩽ 𝜀. In other words, we are confident that

there exists at least one eigenvalue in the region D̃ = D(0, 𝑅max
𝐽
)/D(0, 𝑅min

𝐽
), while there is no eigenvalue in the region

D(0, 𝑅min
𝐽
)/D(0, 𝜀).

The remaining task is then to find an eigenvalue estimation in D̃. This is achievable with a similar strategy for Problem 1. We
can introduce a set of SVTSs, whose outer region has radius 𝜀, and the inner region covers �̃�. Accordingly, the complexity of
implementing each SVTS is �̃� (𝜈(𝜀)) = �̃� (𝐾𝜀−𝑚max ). The area of D̃ is upper bounded by 2𝜋𝜀, while the area of inner region of
each SVTS is 𝜈(𝜀) = �̃� (𝜀𝑚max/𝐾). So it suffices to use totally �̃� (𝐾𝜀−𝑚max+1) number of SVTSs to cover D̃. Therefore, the total
complexity of this stage is �̃� (𝐾𝜀−𝑚max𝛾−1) × �̃� (𝐾𝜀−𝑚max+1) = �̃� (𝐾2𝜀−2𝑚max+1).

Combining the complexity for stage 1 and stage 2, the total complexity for solving Problem 2 is �̃�
(
𝐾3𝜀−3𝑚max+1𝛾−1) .

IV. Solution to Problem. 3

We now discuss the solution to Problem 3. Similar to the point gap problem, we can assume that the reference line is the
imaginary axis 𝐿 =

{
𝑖𝑎

��𝑎 ∈ R}. The problem with other reference lines is equivalent to this one up to a simple transformation.
For 𝐿 =

{
𝑒𝑖 𝜃𝑎 + 𝑏

��𝑎, 𝑏 ∈ R}, we can define a rescaled matrix up to a phase �̃� =
𝑒−𝑖𝜃 (𝐴−𝑏𝐼 )√

1+𝑏2 , and the problem reduces to the one
with imaginary axis as reference line.

The protocol is similar to the one for point gap problem in the previous section. In stage 1, we obtain an estimation of 𝑔 with
Algorithm. 5. Comparing to Algorithm. 3, we have just replaced the ERSS of 𝒮 by 𝒮line, which is defined in Algorithm. 6.
Recall that for 𝒮, we cover the circle

{
𝑥
��|𝑥 | = 𝑅𝑎

}
with the inner region of SVTSs. There centers are defined byNring. For 𝒮line,

we cover two segments
{
±𝑎 + 𝑖𝑏

�� − 1 ⩽ 𝑏 ⩽ 1
}

instead, with Nring is replaced by Nline as defined in (S-46).

Nline (𝑅, 𝑠) = {±𝑅 − 𝑖,±𝑅 − 𝑖(1 − 𝑠′),±𝑅 − 𝑖(1 − 2𝑠′), · · · ,±𝑅 + 𝑖} , (S-46)

with 𝑠′ = (⌈2/𝑠⌉)−1. See also Fig. S2(c), (d) for illustration. Following the same argument in Sec. III A, the complexity of stage
1 is �̃�

(
𝐾3𝜀−3𝑚max+1𝛾−1) .

After stage 1, we are confidence that there exists at least one eigenvalues in the region
{
±𝑎 + 𝑖𝑏

��𝑅min
𝑗
⩽ 𝑎 ⩽ 𝑅max

𝑗
,−1 ⩽ 𝑏 ⩽ 1

}
for some 𝑅max

𝑗
− 𝑅min

𝑗
⩽ 𝜀. The area of this region is therefore at most 2𝜀, which is at the same order to the area of guess region

for point gap problem stage 2. Therefore, for line gap problem stage 2, we can obtain an estimation of expected eigenvalue with
the same strategy in Sec. III B. The complexity is still �̃� (𝐾2𝜀−2𝑚max+1).

Combining stages 1 and 2, the total complexity of solving Problem. 3 is also �̃�
(
𝐾3𝜀−3𝑚max+1𝛾−1) .
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V. Real eigenvalue cases

If we are promised that all eigenvalues are real and non-defective (i.e. 𝑚max = 1), the search region of eigenvalue the becomes
the segment [−1, 1] in real axis. In this section, we discuss how solutions to Problem. 1-3 can be simplified in this case.

A. Real eigenvalue case for Problem. 1

Similar to the general case in Sec. II, we use a divided-and-conquer strategy and the full algorithm is provided in Algorithm. 7.
Before each iteration, the guess region is [𝜆gss − 𝐷, 𝜆gss + 𝐷] (initially, we have 𝜆gss = 0 and 𝐷 = 1). After querying
ℛreal (𝜆gss, 𝐷, 𝛿) defined in Algorithm, 8, 𝜆gss is updated and 𝐷 → 𝐷/2. Compared to the ℛ for general case, the main
difference is that ℛreal only need to cover segment [𝜆gss − 𝐷, 𝜆gss + 𝐷] in real axis with the inner region of SVTS, instead of the
entire disk D(𝜆gss, 𝐷). See also Fig. S3 (a) for illustration.

In Algorithm. 7, ℛreal requires 𝑂 (𝐾) queries to SVTS, and each query has complexity �̃� (𝐾𝐷−1𝛾−1). So the total complexity
of ℛreal is �̃� (𝐾2𝐷−1𝛾−1). Because 𝐷 ⩾ 𝜀, and Algorithm. 7 has totally 𝑂 (log(𝜀−1)) queries to ℛreal, the total complexity of
the algorithm is �̃� (𝐾2𝜀−1𝛾−1). So we have the following result.

Theorem 4. Promised that 𝜆 𝑗 ∈ R for all eigenvalues 𝜆 𝑗 and 𝑚max = 1, with success probability at least 1 − 𝛿, Problem 1 can
be solved with

Õ
(
𝐾2𝜀−1𝛾−1

)
(S-47)

uses of the query to 𝒪𝐴, 𝒫𝐴 and their inverses, and extra single- and two-qubit gates.

: Guess regions of eigenvalue : Guess regions of smallest eigenvalue(a) (b)

“False”“True”

Re

Re

Re

Re Re

Supplementary Figure S3: Eigenvalue searching protocols with promised that eigenvalues are real. (a) Sketch of Algorithm. 8 for shrinking
the range of eigenvalue searching for Problem 1. The initial and updated guess region is marked by grey lines. (b) Sketch of Algorithm. 10 for
shrinking the range of eigenvalue for Problem 2, 3. The initial guess regions are two grey lines. The updated guess regions are two segments
with one side marked by red (one of the SVTS has output “True”) or blue (all of the SVTS has output “False”) colors.

B. Real eigenvalue case for Problem. 2, 3

When eigenvalues are promised to be real and non-defective, both Problem. 2 and Problem. 3 reduce to the following.

Problem 4. Given a diagonalizable matrix ∥𝐴∥ ⩽ 1, promised that 𝜆 𝑗 ∈ R and |𝜆 𝑗 | < 𝜀 for all eigenvalues 𝜆 𝑗 . Let
𝑔 ≡ min𝜆 𝑗≠𝑃

��𝜆 𝑗 − 𝑃
�� and S ≡

{
𝜆 𝑗

��|𝜆 𝑗 | ∈ [𝑔, 𝑔 + 𝜀]
}

for some accuracy 𝜀 ∈ (0, 1). The goal is to output an eigenvalue
estimation 𝜆′, such that |𝜆′ − 𝜆 𝑗 | ⩽ 𝜀 for some 𝜆 𝑗 ∈ S.

Note that similar to Section. III, we set the reference point as 0. Our solution to Problem. 4 is summarized in Algorithm. 9,
where the variable 𝛿′ = 𝛿/𝐽max is determined by 𝐽max, the maximal number of queries to SVTS as will be upper bounded later.
The main ideal is similar to the general case. At each iteration, we are initially promised that 𝑔 ∈ [𝑅min

𝑗
, 𝑅max

𝑗
] and we shrink

this range by querying a subroutine 𝒮real defined in Algorithm. 10. Different from 𝒮, the subroutine 𝒮real use only two queries
to the SVTS because we only need to cover the corresponding segment in real axis. See Fig. S3(b) for illustration.

Algorithm. 9 contains two substages, in below, we analyze their complexities separately.
For substage 1, we begin with analysing the maximal number of iterations required, denoted as 𝐽. We consider the worst case

when we always have 𝐵 = False. In this case, we have 𝑅min
𝑗+1 = 𝑅min

𝑗
(1 + 1/(2𝐾)), and therefore 𝑅min

𝑗
= 𝜀(1 + 1/(2𝐾)) 𝑗 . Substage
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1 terminates whenever 𝑅min
𝑗
⩽ 1/2, so we have 𝜀(1 + 1/(2𝐾))𝐽 = Θ(1). Accordingly, we have

𝐽 = 𝑂

(
log((2𝜀)−1)

log(1 + 1/(2𝐾))

)
= 𝑂 (𝐾 log(𝜀−1)). (S-48)

Each query to the SVTS has complexity �̃� ((𝐾/𝑅min
𝑗
)𝛾−1polylog(𝛿′−1)) = �̃� (𝐾𝜀−1𝛾−1polylog(𝛿′−1)), so the total complexity

of substage 1 is

𝐽 × �̃� (𝐾𝜀−1𝛾−1polylog(𝛿′−1)) =�̃� (𝐾2𝜀−1𝛾−1polylog(𝛿′−1)).

For substage 2, we first define Δ 𝑗 = 𝑅
max
𝑗
− 𝑅min

𝑗
. Again, we first analyse the the maximal number of iterations in this substage,

denoted as 𝐽′. In the worst case, we always have 𝐵 = False, which gives Δ 𝑗+1 = Δ 𝑗 (1 − 1/(4𝐾)). Suppose substage 2 begins
with 𝑗 = 𝑗 ′ and we denote Δ = Δ 𝑗′ . Then, we have Δ 𝑗 = Δ(1 − 1/(4𝐾)) 𝑗− 𝑗′ . Substage 2 terminates whenever Δ 𝑗 ⩽ 𝜀, so we
have Δ(1 − 1/(4𝐾))𝐽 ′ = Θ(𝜀). Accordingly, we have

𝐽′ = 𝑂

(
log(𝜀/Δ)

log(1 − 1/(4𝐾))

)
= 𝑂 (−𝐾 log(𝜀/Δ)) = 𝑂 (𝐾 log(𝜀−1)). (S-49)

In substage 2, each query to the SVTS has complexity �̃� ((𝐾/Δ 𝑗 )𝛾−1polylog(𝛿′−1)) = �̃� (𝐾𝜀−1𝛾−1polylog(𝛿′−1)). So the total
complexity is

𝐽 × �̃� (𝐾𝜀−1𝛾−1) = �̃� (𝐾2𝜀−1𝛾−1polylog(𝛿′−1)). (S-50)

Combining the complexity for substage 1 and 2, the total complexity of Algorithm. 10 (i.e. 𝒮diag (±1) in Algorithm. 9) is

�̃� (𝐾2𝜀−1𝛾−1polylog(𝛿′−1)). (S-51)

For each 𝒮diag (±1), the total number of queries to SVTS can be upper bounded by 𝐽max = 𝐽 + 𝐽′ = �̃� (𝐾). Therefore, to achieve
sucess probability 1 − 𝛿, it suffices to set 𝛿′ = �̃� (𝛿/𝐾). Inserting into Eq. (S-51), the total complexity of Algorithm. 10 is

�̃� (𝐾2𝜀−1𝛾−1polylog(𝛿/𝐾−1)) = �̃� (𝐾2𝜀−1𝛾−1). (S-52)

Therefore, we have the following theorem.

Theorem 5. With success probability at least 1 − 𝛿, Problem 4 can be solved with

�̃� (𝐾2𝜀−1𝛾−1) (S-53)

queries to 𝒪𝐴, 𝒫𝐴 and their inverses, and extra single- and two-qubit gates.

VI. Eigenvector state preparation

A. main idea

In this section, we consider the problem of preparing eigenvector states. To facilitate the discussion, we first define the singular
value decomposition of matrix (𝐴 − 𝜇𝐼) as

𝐴 − 𝜇𝐼 ≡
𝑁−1∑︁
𝑘=0

𝑠𝑘 (𝜇) |𝑤𝑘 (𝜇)⟩⟨𝑢𝑘 (𝜇) |, (S-54)

where 𝑠𝑘 (𝜇) ⩽ 𝑠𝑘+1 (𝜇), and ⟨𝑤𝑘 (𝜇) |𝑤𝑘′ (𝜇)⟩ = ⟨𝑢𝑘 (𝜇) |𝑢𝑘′ (𝜇)⟩ = 𝛿𝑘,𝑘′ . We suppose 𝜆 and |𝑣⟩ is a pair of solution to the
eigenfunction Eq. (1). Then, it can be verified that 𝑠0 (𝜆) = 0 and |𝑢0 (𝜆)⟩ = |𝑣⟩. We can obtain an eigenvector with infidelity
𝜀vec in two stages:

• Stage.1: Obtain an estimation �̂� that is sufficiently close to 𝜆, such that 1 − |⟨𝑢0 (𝜆) |𝑢0 (�̂�)⟩|2 ⩽ 𝜀vec/2.

• Stage.2: Obtain a quantum state |𝑣′⟩ that is sufficiently close |𝑢0 (�̂�)⟩, such that 1 − |⟨𝑢0 (�̂�) |𝑣′⟩|2 ⩽ 𝜀vec/2.
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It can then be verified that the output quantum state satisfies 1 − |⟨𝑣 |𝑣′⟩|2 ⩽ 𝜀vec.
Accordingly, we will address two problems in this section. The first problem is the required accuracy of �̂�. The complexity of

stage 1 can then be obtained readily based on Theorem. 1 or 2, depending on the restrictions on the corresponding eigenvalues,
if any. The second problem is the complexity of stage 2. The total complexity of eigenvector state preparation is then the
combination of complexities of two stages.

B. Stage 1

We define Δsig (𝜆) as a lower bound of the gap between the first and second smallest singular value of 𝐴 − 𝜇𝐼, which satisfies
𝑠1 (𝜆) − 𝑠0 (𝜆) ⩾ Δsig (𝜆). For general matrices, we have the following result.

Theorem 6. Let 𝜆 be one of the eigenvalues of square matrix 𝐴 satisfying ∥𝐴∥ ⩽ 1. To achieve vector accuracy 1 −
|⟨𝑢0 (𝜆) |𝑢0 (�̂�)⟩|2 ⩽ 𝜀vec/2 for arbitrary 𝜀vec ∈ (0, 1), it suffices to have

|�̂� − 𝜆 | ⩽ Δsig (𝜆)
√︁
𝜀vec/2. (S-55)

Proof. Suppose |�̂� − 𝜆 | ⩽ 𝜀val, we have

∥(𝐴 − �̂�𝐼) |𝑢0 (𝜆)⟩∥ = ∥((𝜆 − �̂�)𝐼 + (𝐴 − 𝜆𝐼)) |𝑢0 (𝜆)⟩∥
⩽ ∥(𝜆 − �̂�)𝐼 |𝑢0 (𝜆)⟩∥ + ∥(𝐴 − 𝜆𝐼) |𝑢0 (𝜆)⟩∥
⩽ 𝜀val + 0
= 𝜀val. (S-56)

We then decompose |𝑢0 (�̂�)⟩ with the right singular vectors of (𝐴−𝜆𝐼) as |𝑢0 (�̂�)⟩ =
∑𝑁−1

𝑗=0 𝑐 𝑗 |𝑢 𝑗 (𝜆)⟩. Because (𝐴−𝜆𝐼) |𝑢 𝑗 (𝜆)⟩ =
𝑠 𝑗 (𝜆) |𝑤 𝑗 (𝜆)⟩, Eq. (S-56) becomes 𝑁−1∑︁

𝑗=0
𝑐 𝑗 𝑠 𝑗 (𝜆) |𝑤 𝑗 (𝜆)⟩

 ⩽ 𝜀val. (S-57)

Because |𝑤 𝑗 (𝜆)⟩ are orthonormal, we have

𝑁−1∑︁
𝑗=0
|𝑐 𝑗 |2𝑠 𝑗 (𝜆)2 ⩽ 𝜀2

val. (S-58)

Because 𝑠0 (𝜆) = 0 and 𝑠 𝑗>0 (𝜆) ⩾ Δsig (𝜆), we have

Δsig (�̂�)2
𝑁−1∑︁
𝑗=1
|𝑐 𝑗 |2 ⩽ 𝜀2

val, (S-59)

which gives

𝑁−1∑︁
𝑗=1
|𝑐 𝑗 |2 ⩽ 𝜀2

valΔsig (�̂�)−2. (S-60)

The infidelity of |𝑢0 (�̂�)⟩ therefore satisfies

1 − |⟨𝑢0 (𝜆) |𝑢0 (�̂�)⟩|2 =

𝑁−1∑︁
𝑗=1
|𝑐 𝑗 |2

⩽ 𝜀2
valΔsig (�̂�)−2. (S-61)

Therefore, to achieve infidelity 1 − |⟨𝑢0 (𝜆) |𝑢0 (�̂�)⟩|2 ⩽ 𝜀vec/2, it suffices to have 𝜀val = Δsig (𝜆)
√︁
𝜀vec/2. □
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For diagonalizable matrix, we may replace the gap of singular value by the gap of eigenvalues. Similarly, we assume that
there exists an upper bound of the eigenvalue gap Δeig (𝜆), such that min𝜆 𝑗≠𝜆 |𝜆 − 𝜆 𝑗 | ⩾ Δeig (𝜆). When the target accuracy 𝜀vec is
sufficiently small, we have the following result.

Theorem 7. Let 𝜆 be one of the eigenvalues of the square and diagonalizable matrix 𝐴 which satisfies ∥𝐴∥ ⩽ 1. To achieve
vector accuracy 1 − |⟨𝑢0 (𝜆) |𝑢0 (�̂�)⟩|2 ⩽ 𝜀vec/2 for 𝜀vec ∈ (0, 𝐾−1Δeig (𝜆)), it suffices to have

|�̂� − 𝜆 | ⩽ (𝐾−1Δeig (𝜆) − 𝜀vec)
√︁
𝜀vec/2. (S-62)

Proof. Given an arbitrary pair of matrices 𝑀1, 𝑀2, we have the following relation

𝜎𝑗 (𝑀1𝑀2) ⩾ 𝜎0 (𝑀1)𝜎𝑗 (𝑀2), (S-63)

where 𝜎𝑗 (·) is the 𝑗 th singular value of a matrix with nondecreasing order. According to the eigenvalue decomposition
𝐴 − 𝜆𝐼 = 𝑃(Λ − 𝜆𝐼)𝑃−1, we have

𝜎1 (𝐴 − 𝜆𝐼) ⩾ 𝜎0 (𝑃)𝜎1 ((Λ − 𝜆𝐼)𝑃−1)
⩾ 𝜎0 (𝑃)𝜎1 (Λ − 𝜆𝐼)𝜎0 (𝑃−1)
⩾ 𝐾−1𝜎1 (Λ − 𝜆𝐼)
= 𝐾−1Δeig (𝜆). (S-64)

Because 𝜎0 (Λ − 𝜆𝐼) = 0, we have Δsig (𝜆) ⩾ 𝐾−1Δeig (𝜆). Combining with Theorem. 6, we can achieve the result claimed in
Theorem. 7.

□

With Theorem. 6 or Theorem. 7, the complexity of stage 1 can be determined based on Theorem. 1 or Theorem. 2 (depending
on whether we have restrictions on the corresponding eigenvalue) by replacing the accuracy of eigenvalue 𝜀 by Eq. (S-55) or
Eq. (S-62).

C. Stage 2

We then discuss the complexity of stage.2. Preparing |𝑢0 (�̂�)⟩ can be considered as the generalization of ground state preparation
for Hermitian matrices. Using the QSVT technique together with amplitude amplification [3], we can achieve the following [14].

Theorem 8. A quantum state |𝑣′⟩ satisfying 1 − |⟨𝑢0 (�̂�) |𝑣′⟩|2 ⩽ 𝜀vec/2, for some 𝜀vec ∈ (0, 1), can be prepared using
�̃� (Δsig (�̂�)−1𝛾−1) queries to 𝒪𝐴, 𝒫𝐴, and extra single- and two-qubit gates.

Again, we may replace the singular value gap by eigenvalue gap when 𝐴 is diagonalizable.

Theorem 9. When 𝐴 is diagonalizable, a quantum state |𝑣′⟩ satisfying 1− |⟨𝑢0 (�̂�) |𝑣′⟩|2 ⩽ 𝜀vec/2, for some 𝜀vec ∈
(
0, 1

2𝐾
−1Δeig

)
,

can be prepared using �̃� (𝐾Δeig (𝜆)−1𝛾−1) queries to 𝒪𝐴, 𝒫𝐴, and extra single- and two-qubit gates.

Proof. According to the perturbation theorem of Weyl, we have |Δsig (𝜆)−Δsig (�̂�) | ⩽ |𝜎1 (𝜆)−𝜎1 (�̂�) |+|𝜎0 (𝜆)−𝜎0 (�̂�) | ⩽ 2|𝜆−�̂� | ⩽
𝜀vec. So Δsig (�̂�) ⩾ Δsig (𝜆) − 𝜀vec. Because Δsig (𝜆) ⩾ 𝐾−1Δeig (𝜆), when 𝜀vec ⩽

1
2𝐾
−1Δeig (𝜆), we have Δsig (�̂�) ⩽ 1

2𝐾
−1Δeig (𝜆).

Combining with Theorem. 8, we achieve Theorem. 9. □

Note that in Theorem. 9, the prefactor 1
2 for the upper bound of 𝜀vec can be replaced by any constant within (0, 1).

The total complexity of eigenvector state preparation can be obtained by combining Theorem. 1 or 2 for stage 1 with Theorem. 8
or Theorem. 9 for stage 2.

VII. Applications

A. Dissipation of open quantum system: Liouvillian gap

The dynamics of a close quantum system is described by Schrodinger’s equation with an Hermitian Hamiltonian. When the
system to be studied has interactions with its environment, however, the evolution goes beyond Hermiticity. This type of open
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quantum system can be modeled by the Lindblad master equation. Under Markov approximation, the evolution of a quantum
state described by density matrix 𝜌 can be generally expressed as

¤𝜌 = L(𝜌) ≡ −𝑖[𝐻, 𝜌] +
∑︁
𝜇

(
−1

2
𝐿†𝜇𝐿𝜇𝜌 −

1
2
𝜌𝐿†𝜇𝐿𝜇 + 𝐿𝜇𝜌𝐿

†
𝜇

)
(S-65)

for some Hermitian Hamiltonian 𝐻 and dissipators 𝐿𝜇 which are not necessarily to be non-Hermitian.

1. Vectorization and Block-encoding of Liouvillian

¤𝜌 = −𝑖[𝐻, 𝜌] +
∑︁
𝜇

(
𝐿𝜇𝜌𝐿

†
𝜇 −

1
2

{
𝐿†𝜇𝐿𝜇, 𝜌

})
≡ L(𝜌) (S-66)

for some Hermitian Hamiltonian 𝐻 and non-Hermitian dissipators 𝐿𝜇 that can be decomposed in the form of

𝐻 =
∑︁
𝑗

𝛼 𝑗𝑉0, 𝑗 , (S-67)

𝐿𝜇 =
∑︁
𝑗

√
𝛼𝜇, 𝑗𝑉𝜇, 𝑗 , (S-68)

where 𝛼 𝑗 , 𝛽 𝑗 ,𝜇 > 0. The “square’ in Eq. (S-68) is to ensure that the Hermitian and non-Hermitian terms in Eq. (S-66) have the
same units. 𝑉 𝑗 , 𝑉𝑘,𝜇 are unitaries that can be implemented efficiently on quantum devices. Here, as an example, we only focus
on qubit system. By abuse of notations, we let 𝐼, 𝑋,𝑌 , 𝑍 be the single-qubit identity and Pauli operators in this section. We
assume that 𝑉𝜇, 𝑗 ∈ P⊗𝑛 is 𝑛-qubit Pauli string up to a phase, with P = {±𝐼,±𝑋,±𝑌,±𝑍,±𝑖𝐼,±𝑖𝑋,±𝑖𝑌 ,±𝑖𝑍}. With abuse of
notations, Several examples of the dissipation terms are provided in Table. S-I. Accordingly, we define a normalization factor
𝐶 =

∑
𝜇=0

∑
𝑗 𝛼𝜇, 𝑗 and assume that 𝐶 = poly(𝑛).

By performing vectorization, Eq. (S-66) is equivalent to ¤̃𝜌 = L̃ · �̃�, where

�̃� =
∑︁
𝑚,𝑛

𝜌𝑚𝑛 |𝑚⟩ ⊗ |𝑛⟩ (S-69)

and

L̃ =
∑︁
𝜇=0
L̃𝜇, (S-70)

L̃0 = −𝑖𝐻 ⊗ 𝐼⊗𝑛 + 𝑖𝐼⊗𝑛 ⊗ 𝐻𝑇 , (S-71)

L̃𝜇⩾1 =

(
𝐿𝜇 ⊗ 𝐿∗𝜇 −

1
2
𝐿†𝜇𝐿𝜇 ⊗ 𝐼⊗𝑛 −

1
2
𝐼⊗𝑛 ⊗ 𝐿𝑇𝜇𝐿∗𝜇

)
. (S-72)

Accordingly, we have

L̃0 =
∑︁
𝑗

𝛼0 (𝑉 𝑗 ⊗ 𝐼⊗𝑛) + 𝑖𝛼 𝑗 (𝐼⊗𝑛 ⊗ 𝑉𝑇
𝑗 ), (S-73)

L̃𝜇⩾1 =
∑︁
𝑗 ,𝑘

√
𝛼𝜇, 𝑗𝛼𝜇,𝑘

(
𝑉𝜇, 𝑗 ⊗ 𝑉𝜇,𝑘

)
− 1

2
√
𝛼𝜇, 𝑗𝛼𝜇,𝑘

(
𝑉
†
𝜇, 𝑗
𝑉𝜇,𝑘 ⊗ 𝐼⊗𝑛

)
− 1

2
√
𝛼𝜇, 𝑗𝛼𝜇,𝑘

(
𝐼⊗𝑛 ⊗ 𝑉𝑇

𝜇, 𝑗𝑉
∗
𝜇,𝑘

)
. (S-74)

Due to the following relations,

𝐼∗ = 𝐼, 𝑋∗ = 𝑋,𝑌 ∗ = −𝑌, 𝑍∗ = 𝑍, (S-75)
𝐼𝑇 = 𝐼, 𝑋𝑇 = 𝑋,𝑌𝑇 = −𝑌, 𝑍𝑇 = 𝑍, (S-76)
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L̃ is also a linear combination of Pauli strings with normalization factor

�̃� = 2 ©«
∑︁
𝑗

𝛼 𝑗 +
∑︁
𝜇

∑︁
𝑗 ,𝑘

√
𝛼𝜇, 𝑗𝛼𝜇,𝑘

ª®¬ (S-77)

⩽ 2

(∑︁
𝑗

𝛼 𝑗 +
∑︁
𝜇

∑︁
𝑗

𝛼𝜇, 𝑗

)
(S-78)

= 2𝐶. (S-79)

In other words, we can express the vectorized Liouvillian in the form of

L̃/�̃� =

𝐽∑︁
𝑗=0

𝛽 𝑗𝑢( 𝑗) (S-80)

for some
∑

𝑗 𝛽 𝑗 = 1, 𝐽 = poly(𝑛), 𝑢 𝑗 ∈ P⊗𝑛 and �̃� = 2𝐶.
We then show how to perform block-encoding of Eq. (S-80) based on the linear combination of unitaries [20]. Let 𝐺 |0⟩ =∑
𝑗

√︁
𝛽 𝑗 | 𝑗⟩ and Select(𝑢) = ∑

𝑗 | 𝑗⟩⟨ 𝑗 | ⊗ 𝑢( 𝑗), it can be verified that(
⟨0| ⊗ 𝐼⊗𝑛

) (
𝐺† ⊗ 𝐼⊗𝑛

)
Select(𝑢)

(
𝐺 ⊗ 𝐼⊗𝑛

) (
|0⟩ ⊗ 𝐼⊗𝑛

)
= �̃�/�̃�. (S-81)

So the following circuit is the block-encoding of L̃/�̃�, which can be constructed with 𝑂 (𝑛) qubits and 𝑂 (𝐽polylog(𝑛)) circuit
depth.

𝐺†

Select(𝑢)
𝐺

Supplementary Table S-I:

Dissipation type Lindbladian term L̃𝜇

Dephasing 𝜂(𝑍𝜌𝑍 − 𝜌) 𝜂(𝑍 ⊗ 𝑍 − 𝐼 ⊗ 𝐼)
Depolarization 𝜂

3 (𝑋𝜌𝑋 + 𝑌𝜌𝑌 + 𝑍𝜌𝑍 − 3𝜌) 𝜂

3 (𝑋 ⊗ 𝑋 + 𝑌 ⊗ 𝑌 + 𝑍 ⊗ 𝑍 − 3𝐼 ⊗ 𝐼)
Damping 𝜂(𝜎−𝜌𝜎+ − 𝜎+𝜎−𝜌 − 𝜌𝜎+𝜎−) 𝜂

4 (𝑋 ⊗ (𝑋 + 𝑖𝑌 ) + 𝑌 ⊗ (𝑖𝑋 − 𝑌 ) − 𝑍 ⊗ 𝐼 − 𝐼 ⊗ (𝑍 + 2𝐼))

2. Liouvillian gap (LG)

As mentioned in the main text, LG is defined as the smallest distance between the distance between imaginary axis and the
eigenvalues excluding those in the imaginary axis. So the LG of L̃/�̃� is equivalent to the line gap problem (Problem. 3) with 𝐿
the imaginary axis. To achieve accuracy 𝜀 of L̃, we should achieve accuracy 𝜀/�̃� of L̃/�̃�. So we have the following result.

Theorem 10. Given a Lindblad master equation described by Eq. (S-66)- (S-68), and promised that the corresponding LG is
larger than 𝜀, the LG can be estimated to accuracy 𝜀 with �̃� (𝐾3 (𝜀/𝐶)−3𝑚max+2𝛾−1) queries to �̃�L̃ and extra circuit depth, and
𝑂 (𝑛) ancillary qubits. Here, 𝐾 is the Jordan condition number of L̃, and 𝑚max is the largest dimension of the Jordan block for
L̃.

In Sec. VIII, we will further introduce a decision version of the LG problems, and show that it is BQP-complete.
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Re
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Supplementary Figure S4: Solution to Problem. 5. (a) Sketch of each iterations in searching complex eigenvalues. If one of the SVTSs has
output true, we terminate the algorithm and conclude the witness of complex eigenvalues. If all SVTSs has output “False”, we shrink the search
region. (b) If no complex eigenvalues are witnessed, the search region is updated iteratively until it vanishes.

B. non-Hermitian Hamiltonian: symmetry breaking witness

1. Shrodinger equation with non-Hermitian Hamiltonian

Effective non-Hermitian Hamiltonian has been widely used in studying open quantum physics, which may emerge from
different backgrounds. In below, we introduce one of the most typical derivations from the short-time limit of Lindblad master
equation, although its applicability is much broader.

The dissipation terms of the Lindblad master equation, i.e. Eq. (S-66), can be separated into two parts. The first part
Lcon (𝜌) =

∑
𝜇 − 1

2𝐿
†
𝜇𝐿𝜇𝜌− 1

2 𝜌𝐿
†
𝜇𝐿𝜇 is called continuous dissipation terms, and the second part Ljump (𝜌) =

∑
𝜇 𝐿𝜇𝜌𝐿

†
𝜇 is called

quantum jump terms. When the evolution time 𝜏 is relatively small, for example 𝜏 < ∥𝐿𝜇𝐿
†
𝜇 ∥, the jump term can be neglected

and the evolution reduces to

¤𝜌 = −𝑖[𝐻, 𝜌] +
∑︁
𝜇

(
−1

2
𝐿†𝜇𝐿𝜇𝜌 −

1
2
𝜌𝐿†𝜇𝐿𝜇

)
. (S-82)

We define

𝐻eff = 𝐻 − 1
2
𝑖𝐿†𝜇𝐿𝜇 . (S-83)

It can be verified that Eq. (S-82) is equivalent to

¤𝜌 = −𝑖[𝜌𝐻eff − 𝜌𝐻†eff] . (S-84)

Instead of density matrix, we may characterize the quantum state with an unnormalized wavefunction |𝜓⟩. It can be verified that
when 𝜌 = |𝜓⟩⟨𝜓 |, Eq. (S-82) is equivalent to the following non-Hermitian Shrodinger equation

¤|𝜓⟩ = −𝑖𝐻eff |𝜓⟩. (S-85)

So the system can be characterized by the effective Hamiltonian 𝐻eff, which is in general non-Hermitian.

2. Spectrum reality and spontaneous symmetry breaking

Following the conventions in [4–6], we let T be the antilinear complex-conjugation operator which act as the time-reversal
operator, i.e. T |𝜓⟩ = |𝜓⟩∗. Note that Because T 2 = 𝐼, we have T −1 = T . Here, we consider a slightly more general cases than
the parity-time symmetry. More specifically, we let 𝑆 be an arbitrary invertible matrix, and say that a matrix 𝐻 has 𝑆T -symmetry
if
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Supplementary Figure S5: Solution to Problem. 6. (a) Sketch of each iterations in estimating the absolute gap of eigenvalues. (b) The guess
region of 𝜆′max, the second largest absolute value of eigenvalues, is updated iteratively.

𝐻 = 𝑆T𝐻 (𝑆T)−1. (S-86)

Suppose 𝐻 |𝑣⟩ = 𝜆 |𝑣⟩, we have

𝐻𝑆T |𝑣⟩ = 𝑆T𝐻T −1𝑆−1 (𝑆T |𝑣⟩) = 𝑆T𝐻 |𝑣⟩ = 𝑆(𝜆∗ |𝑣⟩∗) = 𝜆∗𝑆 |𝑣⟩∗ = 𝜆∗𝑆T |𝑣⟩. (S-87)

So 𝑆T |𝑣⟩ is also an eigenvector of 𝐻 with eigenvalue 𝜆∗. If 𝜆 is real, 𝑆T |𝑣⟩ and |𝑣⟩ are linearly dependent, and hence |𝑣⟩ is
invariant under the transformation of 𝑆T , i.e. preserves the 𝑆T -symmetry. One the other hand, whenever 𝜆 is a complex value,
𝑆T |𝑣⟩ and |𝑣⟩ have different eigenvalues and hence linearly independent. So for |𝑣⟩, the 𝑆T -symmetry is spontaneously broken.

Therefore, the complex eigenvalue serves as a witness for 𝑆T -symmetry breaking. In the next section, we discuss the search
for complex eigenvalue with quantum computing.

3. Quantum computing witness of spontaneous symmetry breaking

As mentioned above, the complex eigenvalue for an 𝑆T -symmetry matrix serves as a witness of the spontaneous 𝑆T -symmetry
breaking. We therefore consider the following problem.

Problem 5. Given a square and diagonalizable matrix 𝐴 with ∥𝐴∥ ⩽ 1. Output “True” if there exist eigenvalue 𝜆 𝑗 satisfying
Im(𝜆 𝑗 ) > 𝜀; Output “False” if all eigenvalues are real. For other scenarios, output either “True” or “False”.

For simplicity, we have assumed that 𝐴 is diagonalizable here, although the generalization to defective case is straightforward.
Our solution to Problem. 5 is given in Algorithm. 5. As sketched in Fig. S4, at each iteration, we are confidence that there are
no eigenvalues with imaginary part Im(𝜆 𝑗 ) ∈ [𝜀, 𝑏]. We update 𝑏 iteratively by querying a set of SVTSs. The algorithm is
terminates whenever an SVTS has output true. In this case, we witness a complex eigenvalue. On the other hand, if 𝑏 increases
consistently until 𝑏 ⩾ 1 (notice that we always have |𝜆 𝑗 | ⩽ 1), we judge that no complex eigenvalues are witnessed, and terminate
the algorithm.

The success probability can achieve a constant level for sufficiently small 𝛿′, and the runtime of Algorithm. 5 is similar to
Algorithm. 3 and Algorithm. 5 for point gap and line gap estimations. So we have the following theorem.

Theorem 11. With success probability at least 1 − 𝛿, Problem. 5 can be solved with

�̃� (𝐾3𝜀−2𝛾−1) (S-88)

queries to 𝒬𝐴, 𝒫𝐴, and extra single- and two-qubit gates.

C. Markov process: absolute gap and relaxation time

We formalize the absolute gap problem can be formalized as follows.
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Problem 6. Let 𝐴 be a stochastic matrix describing a Markov process. We further assume that 𝐴 is diagonalizable, and ∥𝐴∥ ⩽ 𝐶
for some constant 𝐶. Let 𝑔ab = 𝜆max −max𝜆 𝑗≠𝜆max |𝜆 𝑗 | be the absolute gap with promise that 𝑔ab ⩾ Δ for some Δ > 𝜀. Output an
estimation 𝑔′ab of the absolute gap with accuracy |𝑔′ab − 𝑔ab | ⩽ 𝜀.

Here, we have restricted our discussion to diagonalizable case, although the generalization to defective case is possible with a
similar process to Sec. III, IV.

For stochastic matrix, we always have ∥𝐴∥ ⩾ 1, so we should consider the block-encoding of a rescaled 𝐴 instead. More
specifically, we consider �̃� = 𝐴/𝐶 for some constant 𝐶 ⩾ ∥𝐴∥, and let 𝒪�̃� be the block-encoding of �̃�. The maximal eigenvalue
of �̃� is 1/𝐶. In below we study the estimation of the absolute gap of �̃� instead, which is related to the absolute gap of 𝐴 by a
factor of 1/𝐶.

With a slight abuse of notation, we let 𝜆′max be the second largest absolute value of the eigenvalues of �̃�. We initially have
𝜆′max ∈ [0, (1 − Δ)/𝐶]. In our algorithm (provided in Algorithm. 12), 𝜆′max is updated iteratively. We suppose that the guess
region of 𝜆′max before each iteration is 𝜆′max ∈ [𝑅min, 𝑅max]. As illustrated in Fig. S5, we query a set of SVTSs with centers
𝜇 ∈ Nring (𝑅max, (1 − 𝑅max)/𝐾). The inner regions of these SVTSs covers the circle with radius 𝑅max. If all SVTS has output
“False”, 𝑅max is updated; if either of the SVTS has output “True”, we update the 𝑅min. This process is encapsulated as an
eigenvalue range shrinking subroutine, 𝒮ag, defined in Algorithm. 13. The update process contains separated into two stages. In
stage 1, the radius of the outer region of each SVTS is 1 − 𝑅max. In stage 2, the radius is (𝑅max − 𝑅min)/2 instead.

The complexity of the Algorithm. 12 is similar to Algorithm. 3 for solving Problem. 2, with 𝜀 replaced by 𝜀/𝐶, i.e.
�̃� (𝐾3 (𝜀/𝐶)−2𝛾−1). So we have the following result.

Theorem 12. Let𝒪�̃� be the block encoding of matrix �̃� ≡ 𝐴/𝐶 for some𝐶 ⩾ ∥𝐴∥. Problem. 6 can be solved with �̃� (𝐶2𝐾3𝜀−2𝛾−1)
queries to 𝒪�̃� and 𝒫𝐴.

Moreover, we can estimate the relaxation time based on Theorem. 12. The relaxation time of the Markov process is defined
as 𝜏rel ≡ 1/𝑔ab, and its absolute accuracy is 𝜀rel = Δ𝜏rel/𝜏rel. We can define 𝜏bnd = 1/Δ as the promised upper bound of 𝜏rel,
which gives 𝜀rel ∼ 𝜏2

bnd𝜀. Accordingly, we can be estimate the relaxation time with complexity �̃� (𝜏2
bnd𝐶

2𝐾3𝜀−2
rel 𝛾

−1). While this
represents the first efficient query complexity result for the relaxation time, we believe there is still much room for improvement.

VIII. Quantum advantage analysis

In this section, we discuss the quantum advantage of our algorithms. We take the Liouvillian gap problem as an example,
while the method can be applied to other related problems, such as the witness of 𝑃𝑇-symmetry breaking.

To facilitate our discussion, we first formally define a decision version of the Liouvillian gap problem as follows.

Problem 7 (decision version of the Liouvillian gap problem).
Input:

(1) Constants 𝛾, 𝑎, 𝑏 ∈ (0, 1] such that Δ = 𝑏 − 𝑎 > 0.

(2) An 𝑛-qubit Liouvillian operator L, and block encoding unitary of its rescaled vectorized form 𝒪L̃ .

(3) State preparation unitary 𝒫
eig
L satisfying 𝒫

eig
L |0⟩ = |𝜓

ini⟩.

Let 𝑔 be the Liouvillian gap of L̃, we are promised that:

(i) 𝒪L̃ can be constructed with polynomial-size quantum circuit;

(ii) L̃ is diagonalizable, and the Jordan condition number of L̃ is upper bounded by 𝐾 = 𝑂 (poly(𝑛));

(iii) 𝒫
eig
L can be constructed with polynomial-size quantum circuit. Let 𝜆 be an eigenvalue of L̃ satisfying |Re(𝜆) +𝑔 | ⩽ Δ𝛾/𝐾 .

Let Π𝜆 be the projection onto the subspace spanned by eigenvectors of L̃, whose corresponding eigenvalues 𝜆 𝑗 satisfies
|𝜆 − 𝜆 𝑗 | ⩽ Δ. We have

ΠL̃ |𝜓ini⟩
 = 𝛾;

(iv) Either 𝑔 ⩽ 𝑎 or 𝑔 ⩾ 𝑏 are satisfied;

Output “True” when 𝑔 ⩽ 𝑎 and output “False” when 𝑔 ⩾ 𝑏.
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We will show that Problem. 7 is BQP-complete and hence provides exponential quantum speedup, unless universal quantum
circuit can be efficiently simulated on a classical computer.

We note that (i) indicates that ∥L̃∥ ⩽ 1. In practice, this can be satisfied by performing rescaling. We also note that the state
preparation assumption here is weaker than the one used in the main text. It can be satisfied by an initial state with nontrivial
overlap to the eigenvectors, whose corresponding eigenvalues are close to the line defined by the Liouvillian gap. This revision
is important for the Hamiltonian-to-Liouvillian mapping in order to proof the BQP-hardness (Sec. VIII B). Moreover, with this
weaker assumption, we can still solve the Liouvillian gap problem efficiently (Sec. VIII A).

A. BQP of Problem. 7

In this section, we assume that L̃ is diagonalizable and ∥L̃∥ ⩽ 1 as suggested by Problem. 7. We denote the eigenvector
associated to 𝜆 [i.e. the one satisfying |Re(𝜆) + 𝑔 | ⩽ Δ𝛾/𝐾 defined in promise (iii)] as |𝑣⟩. We also denote {(𝜆 𝑗 , |𝑣 𝑗⟩)} as the
set containing all pairs of eigenvalues and eigenvectors.

In the first step, we construct a quantum circuit filtering small singular values of a matrix

L̃′ = L̃ − 𝜇𝐼
1 + |𝜇 | (S-89)

for some |𝜇 | ⩽ 1. To facilitate the discussion, we consider the singular value decomposition in the form of Eq. (S-54). Because
𝜇 is fixed in most cases of our discussion, we use the abbreviation L̃′ = ∑

𝑗 𝑠 𝑗 |𝑤 𝑗⟩⟨𝑢 𝑗 | for simplicity. We then introduce a
projection operator

Π
(sig)
𝜀/2 ≡

∑︁
𝑗∈{ 𝑗′ |𝑠 𝑗′⩽𝜀/2}

|𝑢 𝑗⟩⟨𝑢 𝑗 |, (S-90)

which projects the state into the subspace spanned by right singular vectors corresponding to 𝑠 𝑗 ⩽ 𝜀/2, and we have the following
result.

Lemma 11. For arbitrary quantum state |𝜓⟩, suppose |⟨𝑣 |𝜓⟩| ⩾ 𝛾 and |𝜇 − 𝜆 | ⩽ 𝜀𝛾/4, we have ∥Π (sig)
𝜀/2 |𝜓⟩∥ ⩾ 𝛾/2.

Proof. We decompose |𝑣⟩ and |𝜓⟩ using the right singular vector of L̃′ (see Eq. (S-89)) as follows

|𝑣⟩ =
∑︁
𝑗

𝛼 𝑗 (𝑣) |𝑢 𝑗⟩, |𝜓⟩ =
∑︁
𝑗

𝛼 𝑗 (𝜓) |𝑢 𝑗⟩, (S-91)

which satisfies
��∑

𝑗 𝛼 𝑗 (𝑣)𝛼 𝑗 (𝜓)
�� ⩾ 𝛾. According to the triangular inequality, we also have

∑︁
𝑗

��𝛼 𝑗 (𝑣)𝛼 𝑗 (𝜓)
�� ⩾ �����∑︁

𝑗

𝛼 𝑗 (𝑣)𝛼 𝑗 (𝜓)
����� ⩾ 𝛾. (S-92)

Because |𝜇 − 𝜆 | ⩽ 𝜀𝛾/4, we have ∥L̃′ |𝑣⟩∥ ⩽
𝑀−𝜇𝐼

1+|𝜇 | |𝑣⟩
 ⩽ 𝜀𝛾/4, which is equivalent to

√︃∑
𝑗 𝑠

2
𝑗
𝛼 𝑗 (𝑣)2 ⩽ 𝜀𝛾/4. Therefore,√︄ ∑︁

𝑗∈{ 𝑗′ |𝑠 𝑗′>𝜀/2}
𝛼 𝑗 (𝑣)2 ⩽ (𝜀/2)−1

√︄ ∑︁
𝑗∈{ 𝑗′ |𝑠 𝑗′>𝜀/2}

𝑠2
𝑗
𝛼 𝑗 (𝑣)2 ⩽ 𝛾/2. (S-93)

Using Cauchy-Schwarz inequality and notice that
√︃∑

𝑗∈{ 𝑗′ |𝑠 𝑗′>𝜀/2} 𝛼 𝑗 (𝜓)2 ⩽ 1, we have∑︁
𝑗∈{ 𝑗′ |𝑠 𝑗′>𝜀/2}

|𝛼 𝑗 (𝑣)𝛼 𝑗 (𝜓) | ⩽ 𝛾/2. (S-94)
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Combining with Eq. (S-92), we have ∑︁
𝑗∈{ 𝑗′ |𝑠 𝑗′⩽𝜀/2}

��𝛼 𝑗 (𝑣)𝛼 𝑗 (𝜓)
�� ⩾ 𝛾 − ∑︁

𝑗∈{ 𝑗′ |𝑠 𝑗′>𝜀/2}

��𝛼 𝑗 (𝑣)𝛼 𝑗 (𝜓)
��

⩾ 𝛾/2. (S-95)

Using Cauchy-Schwarz inequality again, we have

∑︁
𝑗∈{ 𝑗′ |𝑠 𝑗′⩽𝜀/2}

��𝛼 𝑗 (𝑣)𝛼 𝑗 (𝜓)
�� ⩽ √√√√©«

∑︁
𝑗∈{ 𝑗′ |𝑠 𝑗′⩽𝜀/2}

��𝛼 𝑗 (𝑣)
��2ª®¬ ©«

∑︁
𝑗∈{ 𝑗′ |𝑠 𝑗′⩽𝜀/2}

��𝛼 𝑗 (𝜓)
��2ª®¬

⩽

√√√√©«
∑︁

𝑗∈{ 𝑗′ |𝑠 𝑗′⩽𝜀/2}

��𝛼 𝑗 (𝜓)
��2ª®¬

=

Π (sig)
𝜀/2 |𝜓⟩

 . (S-96)

Combining Eq. (S-95) with Eq. (S-96), we have Π (sig)
𝜀/2 |𝜓⟩

 ⩾ 𝛾/2. (S-97)

□

We can generalize the argument of Lemma. 11 to the case when the projection to a subspace spanned by |𝑣 − 𝑗⟩, whose
eigenvalues are close to 𝜆. More specifically, it is straightforward to obtain the following result from Lemma. 11.

Lemma 12. Let Πeig
𝜆,𝜀𝛾/4 be the projection onto the subspace spanned by |𝑣 𝑗⟩, whose corresponding eigenvalues satisfy |𝜆 𝑗 −𝜆 | ⩽

𝜀𝛾/4. Then, we have ∥Π (sig)
𝜀/2 |𝜓⟩∥ ⩾ 𝛾/2.

Using the same technique in Sec. I for constructing SVTS, and combine with Lemma. 12, we can also construct a singular
value threshold subroutine, which verifies whether we are close to an eigenvalue of matrix L (i.e. 𝜆) or not.

Lemma 13. We consider a subroutine 𝑂′
𝐶
(𝜇, 𝜀, 𝛿) with output either “True” or “False”, which satisfying the following

(1) If |𝜇 − 𝜆 | ⩽ 𝜀𝛾/4𝐾 , output “True” with probability at least 1 − 𝛿;
(2) If the output of 𝑂′

𝐶
(𝜇, 𝜀, 𝛿) is “True”, min𝜆 𝑗

|𝜇 − 𝜆 𝑗 | ⩽ 𝜀 with probability at least 1 − 𝛿.
Then, 𝑂′

𝐶
(𝜇, 𝜀, 𝛿) can be constructed with �̃� (𝐾𝜀−1𝛾−2) queries to 𝒪L and 𝒫

𝑒𝑖𝑔

L , and extra single- and two-qubit gates.

Details of the proof will be provided in the future version of the manuscript.
𝑂′

𝐶
determines two disks with center 𝜇. The small disk has radius 𝜀𝛾/4𝐾 . If 𝜆 is in this disk, the output of 𝑂′

𝐶
(𝜇, 𝜀, 𝛿) is

“True”. We can introduce multiple oracles, such that the small disks covers the region D(0, 1). In this way, there exist at least
one oracle, such that the output is “True” (with high probability). In practice, we require at most 𝑂 (poly(𝐾, 𝜀−1, 𝛾−1)) number
of oracles. The algorithm for solving Problem. 7 works as follows. We record the center of oracles that has largest real part,
denoted as 𝜇′. If Re(𝜇′) ⩽ (𝑎 + 𝑏)/2, we output “True”; if Re(𝜇′) > (𝑎 + 𝑏)/2 we output “False”. To ensure that the correctness
of the output, it suffices to set 𝜀 = 𝑂 (Δ), where Δ = 𝑏 − 𝑎. Therefore, the total number of oracles, and hence the total runtime is
upper bounded by 𝑂 (poly(𝐾,Δ−1, 𝛾−1)). In other words, we have the following result.

Theorem 13. For arbitrary 𝐾,Δ−1, 𝛾−1 = 𝑂 (poly(𝑛)), with success probability 2/3, Problem. 7 can be solved with polynomial-
size quantum circuit.

Note that the success probability may be replace by arbitrary constant in (0.5, 1).

B. BQP-hardness of problem. 7

Our strategy of proofing BQP-hardness is as follows. First, we consider a type of ground state problems of local guided
Hermitian matrix problems that are known to be BQP-hard. Second, we construct a mapping from these ground state problems
to specific instances of Problem. 7. This establishes the BQP-hardness of Problem. 7.

We begin with the BQP-hardness result of local Hermitian matrices.
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Problem 8 (GLH(𝑘, 𝑎, 𝑏, 𝛾)). Given a 𝑘-local Hermitian matrix

𝐻 =

𝑃∑︁
𝑝=1

𝛼𝑝𝑢𝑝 (S-98)

acting on 𝑛 qubits. Promised that:

(1) 𝑃 = 𝑂 (poly(𝑛)), ∑𝑝 |𝛼𝑝 | = 𝑂 (poly(𝑛)), and ∥𝐻∥ ⩽ 1.

(2) Either 𝜆𝐻 ⩽ 𝑎𝐻 or 𝜆𝐻 ⩾ 𝑏𝐻 holds.

(3) We can prepare a classical description of 𝑂 (1)-sparse quantum state |𝜓𝐻⟩. Let Π𝐻 be the projection operator onto the
vector space spanned by the ground states of 𝐻, we have ∥Π𝐻 |𝜓𝐻⟩∥ ⩾ 𝛾𝐻

(4) We can efficiently prepare another quantum state |𝜓⊥
𝐻
⟩such that ∥Π𝐻,𝑏𝐻

|𝜓⊥
𝐻
⟩∥ = Ω(1), where Π𝐻,𝑏𝐻

is the projection of
operator onto the vector space spanned by eigenvectors, whose corresponding eigenvalue is larger than 𝑏𝐻 ;

The goal is to output “False” when 𝜆𝐻 ⩽ 𝑎𝐻 , and output “True” when 𝜆𝐻 ⩾ 𝑏𝐻 .

Problem. 8 is almost the same as the guided local Hamiltonian problem defined in [44]. The only difference is that we have
introduced promise (2), which is useful for our mapping from𝐻 to the Liouvillian gap problem. We note that with the Hamiltonian
construction in [44] for proving its BQP-hardness, promise (2) can be easily achieved with some trivial initial states, such as all
qubits at state |0⟩ except that register 𝐴 is at a product state orthogonal to the |𝑥⟩, i.e. the input state of the corresponding circuit
to be mapped. So BQP-hardness is still applied, and we have the following result.

Lemma 14 (Adapted from Theorem 1.2 of [44]). There exists parameters 𝛾𝐻 , 𝑎𝐻 , 𝑏𝐻 ∈ [0, 1] with 𝑏𝐻 − 𝑎𝐻 = Ω(1/poly(𝑛)),
such that GLH(6, 𝑎𝐻 , 𝑏𝐻 , 𝛾𝐻 ) is BQP-hard.

We then consider the mapping of Problem. 8 to Problem. 7. To begin with, we consider a polynomial approximation of the sign
function.

Lemma 15 (Adapted from [50]). For arbitrary 𝑎, 𝑏 ∈ [−1, 1] satisfying Δ ≡ 𝑏 − 𝑎 = Ω(1/poly(𝑛)) and 𝜀 ∈ (0, 1], there exists
a 𝑑-degree polynomial 𝑓sgn,𝑎,𝑏,𝜀 (𝑥) =

∑𝑑
𝑗=0 𝛼 𝑗𝑥

𝑗 for some 𝑑 = �̃� (Δ), which satisfies

min
𝑥∈[−1,𝑎]∪[𝑏,1]

| 𝑓sign,𝑎,𝑏,𝜀 (𝑥) − sign(𝑥 − (𝑎 + 𝑏)/2) | ⩽ 𝜀, (S-99)

and
∑

𝑗 |𝛼 𝑗 | = 𝑂 (poly(𝑛)).

The main idea of our construction is as follows. Based on Lemma. 15, we define a polynomial of matrix as
𝐴 = 𝑓sgn,𝑎𝐻 ,𝑏𝐻 , 𝜀 (𝐻) =

∑𝑑
𝑗=0 𝛼 𝑗𝐻

𝑗 . It can be verified that when the minimum eigenvalue of 𝐻 satisfies 𝜆min (𝐻) ⩽ 𝑎𝐻 ,
we have 𝜆min (𝐴) ⩽ −1 + 𝜀, and when 𝜆min(𝐻) ⩾ 𝑏𝐻 , we have 𝜆min(𝐴) ⩾ 1 − 𝜀. Based on 𝐴, the Liouvillian operator is
constructed as ¤𝜌 = L(𝜌) = 𝐴𝜌𝐴† − 1

2 𝐴
†𝐴𝜌 − 1

2 𝜌𝐴
†𝐴. It can be verified that in the former case, L has a large Liouvillian gap,

and in the later case, the Liouvillian gap is small. Based on this property, we achieve the following result.

Lemma 16. Given an arbitrary 6-local Hermitian matrix 𝐻 in the form of Eq. (S-98). Promised that (1)-(4) in Problem. 8 are
satisfied, and 𝛾𝐻 , 𝑎𝐻 , 𝑏𝐻 ∈ [0, 1] with 𝑏𝐻 − 𝑎𝐻 = Ω(1/poly(𝑛)). Then, there exists 𝜀 = Ω(1/poly(𝑛)) and 𝐶 = 𝑂 (poly(𝑛))
satisfying the following. Let

𝐴 = 𝑓sgn,𝑎𝐻 ,𝑏𝐻 , 𝜀 (𝐻) =
1
𝐶

𝑑∑︁
𝑗=0
𝛼 𝑗𝐻

𝑗 , (S-100)

and

L(𝜌) = 𝐴𝜌𝐴† − 1
2
𝐴†𝐴𝜌 − 1

2
𝜌𝐴†𝐴. (S-101)

The vectorized Liouvillian operator L̃ of L(𝜌) satisfies all promise (i)-(iv) in Problem. 7 with 𝑎 = 𝜀/2𝐶2, 𝑏 = (1− 2𝜀)/2𝐶2 and
some 𝛾 = Ω(1). Moreover, the Liouvillian gap of L̃ satisfies 𝑔 ⩾ 𝑏 when 𝜆min(𝐻) ⩽ 𝑎𝐻 , and 𝑔 ⩽ 𝑎 when 𝜆min (𝐻) ⩾ 𝑏𝐻 .
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Proof. The vectorized Liouvillian operator is

L̃ = 𝐴 ⊗ 𝐴∗ − 1
2

(
𝐴†𝐴 ⊗ 𝐼⊗𝑛 + 𝐼⊗𝑛 ⊗ (𝐴†𝐴)∗

)
(S-102)

= 𝐴 ⊗ 𝐴∗ − 1
2

(
𝐴2 ⊗ 𝐼⊗𝑛 + 𝐼⊗𝑛 ⊗ (𝐴2)∗

)
. (S-103)

According to Lemma. 15, the block-encoding of L̃ can be efficiently constructed for some appropriate 𝐶 = poly(𝑛). The block
encoding of 𝐴∗ is similar, and the block encoding of L̃ can be constructed using linear combination of unitaries of 𝐴 ⊗ 𝐴∗,
𝐴2 ⊗ 𝐼⊗𝑛 and 𝐼⊗𝑛 ⊗ (𝐴2)∗. So promise (i) is satisfied. Moreover, because L̃ is an Hermitian matrix, promise (ii) is also satisfied.

We then consider promise (iii), (iv) and the correctness of the Liouvillian gap. We construct the nontrivial initial state
preparation as

𝒫
eig
L |0⟩ = |𝜓𝐻⟩|𝜓⊥𝐻

∗⟩, (S-104)

where |𝜓𝐻⟩ and |𝜓⊥
𝐻
⟩ are some quantum states satisfying criteria (3), (4) in Problem. 8 respectively. By definition, 𝒫eig

L can be
construct by polynomial-size quantum circuits.

We suppose 𝐻 =
∑

𝑗 𝜆 𝑗 |𝑣 𝑗⟩⟨𝑣 𝑗 |. Then, we have 𝐴 =
∑

𝑗 �̃� 𝑗 |𝑣 𝑗⟩⟨𝑣 𝑗 |, where �̃� 𝑗 = 𝑓sgn,𝑎𝐻 ,𝑏𝐻 , 𝜀 (𝜆 𝑗 ). Eq. (S-102) can be
expressed as

L̃ =
∑︁
𝑗 ,𝑘

(
�̃� 𝑗 �̃�𝑘 −

1
2
�̃�2
𝑗 −

1
2
�̃�2
𝑘

)
|𝑣∗𝑗⟩⟨𝑣∗𝑗 | ⊗ |𝑣𝑘⟩⟨𝑣𝑘 | (S-105)

= −1
2

∑︁
𝑗 ,𝑘

(�̃� 𝑗 − �̃�𝑘)2 |𝑣 𝑗⟩⟨𝑣 𝑗 | ⊗ |𝑣∗𝑘⟩⟨𝑣
∗
𝑘 |. (S-106)

Accordingly, the Liouvillian gap of L̃ is

𝑔 =
1

2𝐶2 min�̃� 𝑗≠�̃�𝑘
|�̃� 𝑗 − �̃�𝑘 |2. (S-107)

In below, we discuss the cases 𝜆min(𝐻) ⩽ 𝑎𝐻 and 𝜆min(𝐻) ⩾ 𝑏𝐻 separately.
When 𝜆min (𝐻) ⩾ 𝑏𝐻 , it can be verified that �̃� 𝑗 ⩾ (1− 𝜀)/𝐶2 for all eigenvalues of 𝐴, and hence 𝑔 ⩽ 𝜀/2𝐶2. It can be verified

that (iii) and (iv) can be satisfied for polynomially small 𝜀.
The case 𝜆min(𝐻) ⩽ 𝑎𝐻 is more involved. In this case, there exists �̃� 𝑗 such that �̃� 𝑗 ⩽ 𝜀/𝐶2, so 𝑔 ⩾ (1 − 2𝜀)/2𝐶2, and

promised (iv) is satisfied. Let

ΠL̃ =
∑︁

𝜆 𝑗<𝑎𝐻 ,𝜆𝑘<𝑏𝐻

|𝑣 𝑗⟩⟨𝑣 𝑗 | ⊗ |𝑣∗𝑘⟩⟨𝑣
∗
𝑘 | + |𝑣𝑘⟩⟨𝑣𝑘 | ⊗ |𝑣

∗
𝑗⟩⟨𝑣∗𝑗 |. (S-108)

It can be verified that ΠL̃ is just the projection onto the subspace spanned by eigenvectors of L̃, whose eigenvalues are smaller
than 𝑎𝐻 . Moreover, because 𝛾𝐻 is assumed to be a constant, it can be verified from Eq. (S-108) and criteria (3), (4) in Problem. 8
that ΠL̃ |𝜓𝐻⟩|𝜓⊥𝐻

∗⟩
 = Ω(𝛾𝐻/𝐶2) = Ω(1/poly(𝑛)). (S-109)

Therefore, promise (iii) is also satisfied, which complete the proof. □

Combining Lemma. 14 with Lemma. 16, we have the following result.

Theorem 14. There exists 𝐾, 𝛾−1,Δ−1 = 𝑂 (poly(𝑛)), such that Problem. 7 is BQP-hard.

Combining Theorem. 13 with Theorem. 14, we arrive at the following result.

Theorem 15. There exists 𝐾, 𝛾−1,Δ−1 = 𝑂 (poly(𝑛)), such that Problem. 7 is BQP-hard.
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IX. More pseudo codes

A. pseudo code for stage 1 of Problem. 3

Algorithm 5 Stage 1 for solving Problem 3
𝑅min

0 ← 𝜀; 𝑅max
0 ← 1; 𝑗 ← 1

while 𝑅min
𝑗−1 < 𝑅

max
𝑗−1/2: # Substage 1

(𝑅min
𝑗
, 𝑅max

𝑗
) ← 𝒮line (𝑅min

𝑗−1, 𝑅
max
𝑗−1, 𝑅

min
𝑗−1, 𝛿

′)
𝑗 ← 𝑗 + 1

end while
while 𝑅max

𝑗−1 − 𝑅
min
𝑗−1 > 𝜀: # Substage 2

(𝑅min
𝑗
, 𝑅max

𝑗
) ← 𝒮line

(
𝑅min

𝑗−1, 𝑅
max
𝑗−1,

(
𝑅max

𝑗−1 − 𝑅
min
𝑗−1

)
/2, 𝛿′

)
𝑗 ← 𝑗 + 1

end while
return

(
𝑅min

𝑗−1, 𝑅
max
𝑗−1

)

Algorithm 6 𝒮line (𝑅a, 𝑅b, 𝑟, 𝛿) (Eigenvalue range shrinking subroutine for line gap problem)
𝛿′ ← 𝛿/|Nline (𝑅a, �̃�(𝑟)) |
for all 𝑡 ∈ Nline (𝑅a, �̃�(𝑟)):
𝐵← 𝑂𝐶 (𝑡, �̃�(𝑟), 𝛿′)
if 𝐵 = True:

break for
end if

end for
if 𝐵 = True:
�̃�a ← 𝑅a
�̃�b ← 𝑅a + 𝑟

else if 𝐵 = False:
�̃�a ← 𝑅a + �̃�(𝑟)/4
�̃�b ← 𝑅b

end if
return

(
�̃�a, �̃�b

)

B. pseudo code for solving Problem. 1 in real and diagonalizable case

Algorithm 7 Eigenvalue searching for Problem 1 in real and diagonalizable case.
𝐷 ← 1, 𝛿′ ← 𝛿/⌈log2 (𝐷/𝜀)⌉
while 𝐷 > 𝜀:
𝜆gss ←ℛreal

(
𝜆gss, 𝐷, 𝛿

′)
𝐷 ← 𝐷/2:

end while
return 𝜆gss
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Algorithm 8 ℛreal (𝜆gss, 𝐷, 𝛿)
𝛿′ ← 𝛿/(2 × ⌈2𝐾⌉ + 1)
for all 𝜇 ∈

{
𝑛𝐷/2𝐾

��𝑛 = 0,±1,±2, · · · ,±⌈2𝐾⌉
}
:

𝐵← 𝑂𝐶 (𝜇, 𝐷/4𝐾, 𝛿′)
if 𝐵 = True:

break for
end if

end for
return 𝜇

C. pseudo code for solving Problem. 4 (eigenvalue gap problem in real and diagonalizable case)

Algorithm 9 Solutions to Problem. 4
𝑅min

0 ← 𝜀; 𝑅max
0 ← 1; 𝑗 ← 1

while 𝑅max
𝑗−1 − 𝑅

min
𝑗−1 > 𝑅

min
𝑗−1: # substage 1(

𝑅min
𝑗
, 𝑅max

𝑗
, 𝑆

)
← 𝒮real

(
𝑅min

𝑗−1, 𝑅
max
𝑗−1, 𝑅

min
𝑗−1

)
end while
while 𝑅max

𝑗−1 − 𝑅
min
𝑗−1 > 𝜀 and 𝑆 ≠ 0: # substage 2(

𝑅min
𝑗
, 𝑅max

𝑗
, 𝑆

)
← 𝒮real

(
𝑅min

𝑗−1, 𝑅
max
𝑗−1, (𝑅

max
𝑗−1 − 𝑅

min
𝑗−1)/(2𝐾)

)
end while
return 𝑆 × (𝑅max

𝑗
+ 𝑅min

𝑗
)/2

Algorithm 10 𝒮real (𝑅𝑎, 𝑅𝑏, 𝑟)
𝐵+ ← 𝑂𝐶 (𝑅𝑎, 𝑟/𝐾, 𝛿′)
𝐵− ← 𝑂𝐶 (−𝑅𝑎, 𝑟/𝐾, 𝛿′)
𝐵 = 𝐵+ ∨ 𝐵−
if 𝐵 = False:
𝑆 = 0

else if 𝐵+ = True:
𝑆 = 1

else if 𝐵− = True:
𝑆 = −1

end if
if 𝐵 = True:
�̃�𝑎 ← 𝑅𝑎

�̃�𝑏 ← 𝑅𝑏 + 𝑟
else:
�̃�𝑎 ← 𝑅𝑎 (1 + 1/(2𝐾))
�̃�𝑏 ← 𝑅𝑏

end if
return (𝑅𝑎, 𝑅𝑏, 𝑆)
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D. pseudo code for solving Problem. 5 (complex eigenvalue witness)

Algorithm 11 Algorithm solving Problem 5
𝑏 ← 𝜀

while 𝑏 < 1:
Δ𝑎 ← ⌊𝑏/(4𝐾)⌋

for 𝑎 ∈ {−1,−1 + Δ𝑎,−1 + 2Δ𝑎, · · · , 1}:
query 𝐵+ = 𝑂𝐶 (𝑎 + 𝑖𝑏, 2𝑏/Δ𝑎, 𝛿′)
query 𝐵− = 𝑂𝐶 (𝑎 − 𝑖𝑏, 2𝑏/Δ𝑎, 𝛿′)
if 𝐵− = True or 𝐵+ = True:

Output True and Terminate
end if

end for
𝑏 ← 𝑏(1 + 1/(4𝐾))

end while
Output False

E. pseudo code for solving Problem. 6 (eigenvalue absolute gap estimation)

Algorithm 12 Solution to Problem 6
𝑅min

0 ← 0; 𝑅max
0 ← (1 − Δ)/𝐶; 𝑗 ← 1

while (1 − 𝑅max
𝑗−1)/2 < 1 − 𝑅min

𝑗−1: # Stage 1
(𝑅max

𝑗
, 𝑅min

𝑗
) ← 𝒮(𝑅max

𝑗−1, 𝑅
min
𝑗−1, 1 − 𝑅

max
𝑗−1, 𝛿

′)
𝑗 ← 𝑗 + 1

end while
while 𝑅max

𝑗−1 − 𝑅
min
𝑗−1 > 𝜀/𝐶: # Stage 2

(𝑅max
𝑗
, 𝑅min

𝑗
) ← 𝒮

(
𝑅max

𝑗−1, 𝑅
min
𝑗−1,

(
𝑅max

𝑗−1 − 𝑅
min
𝑗−1

)
/2, 𝛿′

)
𝑗 ← 𝑗 + 1

end while
return 1 −

((
𝑅min

𝑗−1 + 𝑅
max
𝑗−1

)
/2

)

Algorithm 13 𝒮ag (𝑅a, 𝑅b, 𝑟, 𝛿)
𝛿′ ← 𝛿/|Nring (𝑅a, 𝑟/𝐾) |
for all 𝑡 ∈ Nring (𝑅a, 𝑟/𝐾):
𝐵← 𝑂𝐶 (𝑡, 𝑟/𝐾, 𝛿′) # 𝑂𝐶 works for the rescaled matrix �̃� = 𝐴/𝐶
if 𝐵 = True:

break for
end if

end for
if 𝐵 = True:
�̃�a ← 𝑅a
�̃�b ← 𝑅a − 𝑟

else if 𝐵 = False:
�̃�a ← 𝑅a − 𝑟/(4𝐾)
�̃�b ← 𝑅b

end if
return

(
�̃�a, �̃�b

)
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Abstract. For the efficient use of energy in quantum communication, it is better to use discrete
signals that approach the classical capacity achieved by a continuous input of coherent states.
The analytical treatment of the classical communication channel requires discretization. The
class of BPSK coherent-state signals has been proven to be optimal in the case of binary dis-
cretization; however, for multiary discretization, the optimal signals is unknown. In this study,
we consider the case of ternary discretization. We calculate the channel capacity for various sig-
nals. Our numerical calculation suggests that the optimal signal constellation is 3PSK signals.

Keywords: Quantum communication, Quantum channel capacity, Ternary discretization

1 Introduction

In quantum communication [1, 2], it is important
to increase the channel capacity as much as possi-
ble within limited resources. The classical capacity
of a (lossy) quantum channel is attained by con-
tinuous inputs of coherent states [3]. In particular,
the capacity is asymptotically achieved by binary
coherent-state signals when the average number of
photons is very small, and it has been analytically
proven that the optimal signal constellation in this
case is the BPSK signals [4]. Ishida et al. applied up
to 16-ary signals and showed that the energy con-
straint to attain the capacity widened [5]. Recently,
by applying the results of [6], we showed that the
calculation can be simplified [7], and by computing
the capacity with discrete-valued input for a large
number of signals, we found that the results of [5]
can be extended [8, 9]. Furthermore, we demon-
strated how the capacity with discrete-valued input
changes depending on a specific digital modulation
scheme or signal constellations in which the number
of signals is the same [10].
However, the optimal signal constellation for co-

herent states when only the number of signals M
is limited under the energy constraint has only been
determined forM = 2 [4]. In this study, we consider
the case of M = 3 and numerically determine the
optimal signal constellation for coherent states.

∗im233003@cis.aichi-pu.ac.jp
†wang@kanagawa-u.ac.jp
‡takahira@meijo-u.ac.jp
§usuda@ist.aichi-pu.ac.jp

2 Preliminaries

For a Hilbert space H of a quantum system, a set
ofM -ary quantum-state signals is defined as follows

S = {|ψi⟩ ∈ H | i = 1, 2, . . . ,M, ⟨ψi|ψi⟩ = 1}. (1)

Let ξi be the a priori probability of |ψi⟩ and ξ =
{ξi | i = 1, 2, . . . ,M}. Then (S, ξ) is often referred
to as the quantum information source and

ρ̂ =
M∑
i=1

ξi|ψi⟩⟨ψi| (2)

is the so-called density operator of (S, ξ). We intro-
duce the weighted Gram matrix with a priori prob-
abilities G, that is, an M -by-M matrix whose (i, j)
component is ⟨ψ̃i|ψ̃j⟩, where |ψ̃i⟩ =

√
ξi|ψi⟩.

Because
G ∼= ρ̂, (3)

the eigenvalues of ρ̂ can be obtained by calculating
those of G.
The von Neumann entropy is defined as

H(S, ξ) = −Tr(ρ̂ log2 ρ̂), (4)

and the classical capacity of a quantum channel is
defined as H(S, ξ) maximized with respect to a pri-
ori probabilities:

C = max
ξ
H(S, ξ). (5)

From (3), H(S, ξ) can be calculated as

H(S, ξ) = −Tr (G log2G) = −
∑
j

λj log2 λj , (6)

where λj are the eigenvalues of G.
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3 Discretization problem for quantum
continuous channels

3.1 Energy constraint

The input to the quantum communication chan-
nel is a coherent state of various amplitudes |α⟩,
which imposes an energy constraint:∫

|α|2P (d2α) ≤ m, (7)

wherem is the average number of photons and P (α)
is the probability distribution of the coherent-state
set. The quantum continuous channel capacity for
m is then given by

Cfull = g(m) = (m+1) log2(m+1)−m log2m. (8)

3.2 Ternary discretization

In the ternary discretization problem, we con-
sider the case in which only three coherent states
are available. These coherent states are |α⟩, |β⟩, |γ⟩
with a priori probabilities p1, p2, p3(= 1 − p1 − p2)
respectively. We address the problem of locating the
capacity of ternary channel

C3 = sup
{|α⟩,|β⟩,|γ⟩}

sup
{p1,p2,p3}

H({|α⟩, |β⟩, |γ⟩},{p1,p2,p3})

(9)
with the energy constrained to

p1|α|2 + p2|β|2 + p3|γ|2 ≤ m. (10)

4 Main results

4.1 One-dimensional constraint

Because the optimal solution for binary discretiza-
tion is BPSK signals [4], we first add another sig-
nal |β⟩ to the BPSK signals {|α⟩, |−α⟩} to exam-
ine whether entropy H increases. Without loss of
generality, we assume that α is a non-negative real
number. We also assume that β ∈ R (β ≥ 0).
This assumes that all three signals exist on the real
axis of the phase plane, which is equivalent to con-
sidering the case of a one-dimensional constraint.
Let β = aα (a ≥ 0). Given that we are adding
another signal to BPSK signals {|α⟩, |−α⟩}, which
have equal probabilities, and that the average num-
ber of photons of |α⟩ and |−α⟩ are the same, let q be
the a priori probability of |β⟩, and let the a priori
probabilities of |α⟩ and |−α⟩ be equal to probability
1−q
2 .
We examine the q = P (β)-dependence of the en-

tropy for various values of a. As a result, the best
case is found when a = 0, that is, when |β⟩ is the

vacuum state |0⟩; that is, the 3ASK signal constel-
lation is optimal when the additional signal is con-
strained to be on the real axis. Additionally, we
examine the properties of the optimal value of prob-
ability q when β is set to 0; the optimal value ap-
proaches q = 2

3 for m → 0 and q = 1
3 for m → ∞.

The latter is trivial because the upper limit of the
entropy of ternary signals is log2 3.
We also demonstrate the numerical feature of C3

when constrained to one dimension.

Figure 1: C3 with one-dimensional constraint.

Figure 1 shows the von Neumann entropy using the
optimal probabilities for each m. The figure shows
that, although probability q must be optimized to
achieve C3, the maximum entropy values for q = 2

3
and q = 1

3 are fairly close to the channel capacity.

4.2 Adding a signal on the imaginary axis

The set of amplitudes of the ternary signals that
we consider is {−α, iβ, α}. Based on the same con-
siderations as those in the previous section, there
is no loss of generality if β ≥ 0. We also assume
that β = bα (b ≥ 0). Regarding the probabilities,
the a priori probability of |iβ⟩ is q, and the a priori
probabilities of |α⟩ and |−α⟩ are equal to 1−q

2 each,
by the same considerations as those in the previous
section.
We examine the q = P (β)-dependence of entropy

for various values of b. The results demonstrate that
b = 0 is not the maximum for any m, and that
adding an imaginary component increases the en-
tropy. This is true even when m varies; however,
the optimal value of b differs depending on m.
Figure 2 plots the optimal relative amplitude b

versus the energy constraint m. Large amplitude
values are optimal when m is small, and as m in-
creases, the amplitude becomes small and then con-
verges to a constant value. For all m, b > 1.5, which
indicates that the three signal points are located at
the vertices of an isosceles triangle with a rather
short base.
Additionally, the optimal amplitude value is large

when the energy constraint m is small. By contrast,
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Figure 2: Optimal relative amplitude value b with
respect to energy constraint m.

because the energy constraint is satisfied, the proba-
bility is small. Asm increases, the probability of |iβ⟩
asymptotically approaches 1

3 , which corresponds to
a uniform probability distribution.
Because the entropy is determined only by the

relative positions of the signal points, translating
the entire signal does not change the entropy. The
average number of photons in the above signal is

NS(0) = (1− q)α2 + qβ2, (11)

but the signal amplitudes are {−α− ic, i(β− c), α−
ic}, where the entire signal is translated by c (≥ 0)
in the negative direction of the imaginary axis. The
average number of photons is

NS(c) = (1− q)(α2 + c2) + q(β − c)2

= NS(0) + c2 − 2qβc

= NS(0) + (c− qβ)2 − q2β2, (12)

which is smaller than NS(0). In particular, NS(c)
has the minimum value at c = qβ because

N
(min)
S = NS(0)− q2β2 < NS(0). (13)

Figure 3: The von Neumann entropy with respect
to energy constraint m.

Figure 3 shows the von Neumann entropy for en-
ergy constraint m. Note that there are four lines.
The blue line shows the entropy of the ternary sig-
nals obtained by adding the signal on the imaginary

axis to the BPSK signals, as shown in the previ-
ous subsection. The green line shows the entropy
improved by shifting the blue line by qβ in the neg-
ative direction of the imaginary axis, as previously
shown. The purple line shows the optimized a pri-
ori probability of the additional signal for the green
line, which is almost the same as the green line, but
slightly improved. For comparison, the red dotted
line shows the capacity of the 3PSK signals, which
is slightly higher than the purple line. Furthermore,
the a priori probability distribution of the signals is
closer to uniform after optimization.

4.3 Optimal signal constellation

For the a priori probability of the signal state
i(β − qβ) in signal {−α − iqβ, i(β − qβ), α − iqβ}
in the previous subsection, the energy is minimal
in the same signal class with the same relative po-
sition of signals when we set q, but changing the
a priori probability again provides room for opti-
mization. When the relative positions of the sig-
nals are slightly changed, the signal constellation,
which is an isosceles triangle with a slightly short
base, approaches an equilateral triangle and the a
priori probability distribution approaches uniform;
that is, if we gradually improve the signal by remov-
ing signal constraints in this manner, we naturally
obtain 3PSK signals. Furthermore, we generated
a large number of random signals, examined their
entropy values, and found that none exceeded the
3PSK channel capacity.
From the above, we can conclude that the opti-

mal signal constellation for ternary discretization is
3PSK signals based on numerical considerations.

5 Conclusion

In this study, we addressed the problem of the
ternary discretization of continuous communication
channels and numerically demonstrated that the
class of 3ASK signals is optimal when the signal
is limited to coherent states on the real axis of the
phase plane. Furthermore, the degrees of freedom
of the signal constellation are gradually increased
in two dimensions. As a result, we finally showed
numerically that the optimal signal constellation is
3PSK signals, that is, we achieved C3.
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Abstract. Understanding algorithmic error accumulation in quantum simulation is an important topic,
both for fundamental interest and practical improvement in quantum computing tasks. In this paper,
we investigate error interference, a phenomenon where errors in different segments can destructively in-
terfere, leading to non-linear error accumulation. We establish a general framework for algorithmic error
interference and provide sufficient and necessary conditions for its occurrence. Additionally, we present an
approximate version of error interference that yields tighter error bounds than previous approaches. Our
findings extend the understanding of error interference phenomena beyond the two-term Hamiltonian case,
including higher-order Trotter formulas and more complex Hamiltonians with speed-ups in implementing
Hamiltonian simulation and digital adiabatic algorithms. These results have practical implications for
Hamiltonian simulation implementation and may inspire more algorithm designs to exploit error interfer-
ence for reducing total error in quantum simulations and related tasks.

Keywords: Trotter error, Hamiltonian simulation, error interference

1 Introduction
Simulating quantum dynamics is a central application

of quantum computation [1, 2]. Efficient quantum algo-
rithms have been proposed for simulating the Schrodinger
equation of a general quantum system [3–6], a notoriously
difficult task for classical computers. Quantum simula-
tion has wide applications in quantum chemistry [7–9]
and quantum field theories [10], and also serves as an in-
dispensable subroutine for other fundamental quantum
algorithms, such as quantum phase estimation [11] and
the HHL algorithm [12] for solving linear systems.

Since the first digital quantum dynamics simulation al-
gorithm based on the product formula for k-local Hamil-
tonians proposed by Lloyd [3], novel techniques such as
truncated Taylor series (LCU) [13,14] and Quantum Sig-
nal Processing (QSP) [15–17] have been developed, and
the algorithms have been improved to optimal or nearly
optimal complexity with respect to several key parame-
ters [15–21]. Nevertheless, variants of the product for-
mula are still promising candidates for near-term quan-
tum devices to achieve practical quantum advantages [22]
due to their simplicity, mild hardware requirements, and
decent performance in practice.

For a given Hamiltonian H =
∑L

l=1Hl, implement-
ing product formula (PF), also known as Trotter-Suzuki
formula, requires dividing the long-time evolution e−iHt

into several segments r and approximating the short-time
evolution e−iHt/r using the pth-order product formula
Up(t) [23], e.g., U1(t) := e−iH1te−iH2t · · · e−iHLt, with
an error term ϵ = ∥U1(t/r) − e−iHt/r∥. The total er-
ror called Trotter error can be upper-bounded by rϵ via
the triangle inequality. Increasing r results in a smaller
Trotter error. Before implementation, it is necessary to
estimate the total error and choose an appropriate r to

∗xiaoyuan@pku.edu.cn
†zhaoqi@cs.hku.hk

suppress the total error under a predetermined threshold.
Thus, understanding the performance of Trotter errors
is an important topic. A tighter analysis can help save
gate costs in both Hamiltonian simulation [24, 25] and
other product formula related tasks, such as imaginary
time evolution [26], quantum Monte Carlo [27,28], quan-
tum adiabatic algorithms [29], and quantum phase esti-
mation [30]. Although a few attempts have been made
in this direction [31–37], there still exists a gap between
empirical results and theoretical analysis, even for the
simple case like simulating power-law decaying interac-
tions Hamiltonians with the first-order product formula.

Recently, it has been found that for the first-order
product formula (PF1) with H = A+B, errors in differ-
ent segments can have destructive error interference, and
the total error may not increase linearly with the number
of segments r [36]. This error interference phenomenon
can be explained from a second-order product formula
perspective [38] and can also result in speed-up in vari-
ous applications, e.g., quantum adiabatic algorithms [29],
and quantum phase estimation [30]. However, we still
lack systematic proof and understanding of this error
interference phenomenon. Currently, error interference
only exists in the two-term case H = A + B with PF1,
which can not explain the error interference phenomenon
in the three-term cases H = A + B + C with PF1 [33].
Many questions remain, such as when we will have er-
ror interference, whether we can go beyond the two-term
case and observe error interference in higher-order prod-
uct formulas, whether there are approximate interference
cases, and how to utilize this interference in algorithm
design.

In this work, we establish a general framework for al-
gorithmic error interference in product formula quantum
simulation methods and provide sufficient and necessary
conditions for error interference. Next, we give a gen-
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eral theoretical lower bound for algorithmic error accu-
mulation, which in various cases excludes the possibil-
ity of error interference, e.g., when considering quantum
signal processing algorithms. As applications, we pro-
vide more examples with (approximate) error interfer-
ence phenomena beyond the H = A+ B case, including
H = A + B + C cases in the Heisenberg model, Fermi-
Hubbard model, and power-law interaction models. For
example, for power-law interaction Hamiltonians, we can
use our result to have improved error bounds. The ap-
proximate error interference also exists in higher-order
product formula approximation of perturbative evolution
and can lead to speed-ups in some regions of implement-
ing digital adiabatic algorithms. Our results are funda-
mentally interesting, furthering our understanding of the
product formula theory, and practically useful, directly
applicable to the implementation of Hamiltonian simu-
lation using realist quantum hardware. Leveraging our
error interference bounds, our results may also inspire
better algorithm designs to reduce the total error [37].

2 Interference theory
2.1 Asymptotic error interference of product

formulas
For a given Hamiltonian H =

∑L
l=1Hl of L terms,

the first-order product formula (PF1), also known as
the Trotter-Suzuki formula [23,39], can approximate the
quantum dynamics e−iδtH by the product of the dynam-
ics of each term, that is

U1(δt) := e−iH1δte−iH2δt · · · e−iHLδt =
−→∏

l

e−iHlδt. (1)

As the Hamiltonian terms Hl are not commutative
to each other in general, the introduced approxima-
tion error (we will call it Trotter error throughout
the paper) is upper bounded

∥∥U1(δt)− e−iHδt
∥∥ =

O(αcommδt
2) where ∥·∥ is the spectral norm and

αcomm =
∑L

l1,l2=1 ∥[Hl2 , Hl1 ]∥. For a long time evolu-
tion e−itH , we can divide the whole evolution into sev-
eral segments r and repeatedly apply the product for-
mula for δt = t/r, i.e., U r

1 (t/r). To suppress the algo-
rithmic error, the second-order product formula can be
defined as U2(δt) :=

∏→
l e−iHlδt/2

∏←
l e−iHlδt/2, where∏←

l denotes a product in reverse order. More generally,
a p-th order Suzuki product formula (PFp) Up(δt) can
be defined recursively. In most error analyses, a triangle
inequality is applied and the total error is bounded

∥∥U r
p (t/r)− e−itH∥∥ ≤ r

∥∥∥Up(t/r)− e−iHt/r
∥∥∥ (2)

In some cases, the error in each segment may have
the interference and the triangle inequality error bound
is pessimistic, e.g., a two-term Hamiltonian H = A +
B [40, 41], and Hamiltonians with a power-law rapidly
decaying interactions [33].

2.2 Asymptotic error interference of product
formulas

In this section, we study the accumulation of error in
the product formula and give general criteria on when the
error would exhibit a feature of interference, and prove
the error interference property of the error rigorously.

Definition 1 (Interference, informal). For a pth-order
product formula U (t/r) approximating e−iHt/r, if the to-
tal error grows sublinearly to the sum of error of each
timestep, i.e.,

∥∥U r
p (t/r)− e−iHt

∥∥ = o
(
r
∥∥∥Up(t/r)− e−iH(t/r)

∥∥∥
)
, (3)

where ∥·∥ denotes the spectral norm and when t and r/t
are both large enough, then we say that the Trotter error
interferes.

The requirement in the definition that t and r/t needs
to tend to infinity simultaneously might seem weird at
the first glance, but it is the correct way to define in-
terference in an asymptotic way: say, take the result
in [40] as an example, they show that the trotter error of
two-term PF1 for lattice Hamiltonians can be bounded
by O

(
n t

r + n t3

r2

)
, while the bound by accumulation is

O
(
n t2

r

)
. The interference bound would be better than

the accumulation bound asymptotically only if both t and
r/t = 1/δt tends to infinity.

To explore the error accumulation, we apply a new
error analysis which directly estimates the error for
a long time evolution. We can express the approxi-
mated evolution by an effective Hamiltonian Heff with
exp(−iδtHeff) = exp(−iδt(H +Herror)) where Herror
is the exponentiated error term. Suppose the Her-
mitian H has spectral decomposition H = PΛP ∗

where P ∈ SU(d) and Λ is diagonal. Diagonal el-
ements of Λ are exactly the eigenvalues of H, and
their corresponding eigenstates are exactly the columns
of P . Thus, the ideal evolution can rewritten as
exp(−iδtH) = P exp(−iδt(Λ))P ∗. The approximated
evolution exp(−iδtHeff) can also be spectral decomposed
as exp(−iδtHeff) = (P+δP ) exp(−iδt(Λ + δΛ))(P+δP )†

where δP and δΛ are the deviations in eigenvectors
and eigenvalues, respectively. For a long time evolu-
tion, the approximated evolution is repeated r times,
exp(−irδtHeff) = (P+δP ) exp(−irδt(Λ + δΛ))(P+δP )†.
The error in eigenvectors remains δP , regardless of r,
while the error in eigenvalues will accumulate rδtδΛ. As
a result, the total error is roughly δP + rδtδΛ. Consider-
ing that δP is independent of total time t and the number
of segments, the accumulation of error mainly stems from
the second term, rδtδΛ. If rδtδΛ is much smaller than
δP , the total error will show a sublinear accumulation
phenomenon.

Hereafter, we mainly focus on product formula meth-
ods. For PFp, the exponentiated error term Herror is
O(δtp). We can rewrite this error as Herror = Rδtp+Rre,
where R is the leading-order terms in Trotter error and
Rre is the high-order remainder with ∥Rre∥ = O(δtp+1).
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In general, δP and δΛ are both O(∥R∥δtp) and the
Trotter error in one segment is ∥U (δt) − e−iδtH∥ =
O(δt(δΛ + δP )) = O(∥R∥δtp+1). For a long time evo-
lution with a total error δP + tδΛ, the second term tδΛ
will dominate, leading to a O(∥R∥tp+2/rp+1) total error.
Interestingly, when a specific condition is satisfied, δΛ
will be surprising small the growth of total error will not
accumulate linearly with the number of Trotter steps and
appear the phenomenon of error interference. We express
this result in the following theorem.

Definition 2 (Orthogonality condition). Consider a
given Hamiltonian evolution e−iδtH and its approxima-
tion e−iδtHeff . If the leading-order term R of Herror =
H −Heff satisfies that

⟨ψi|R|ψi⟩ = 0 (4)

for all eigenstates |ψi⟩ of H. We say this approximation
e−iδtHeff satisfies an orthogonality condition

Theorem 3 (Neccesary and sufficient condition for error
interference). The orthogonality condition is a necessary
and sufficient condition for error interference. Suppose
that Herror ≈ Rtp/rp, the total error can be bounded by
∥∥e−iHefft − e−iHt

∥∥ = O
(
∥R∥

(
tp

rp
+ ∥R∥ t

2p+1

r2p

))
. (5)

If e−iδtHeff do not satisfy the orthogonality condition, then
the error term would be

∥∥e−iHefft − e−iHt
∥∥ = Ω

(
tp+1

rp
max

i
⟨ψi|R|ψi⟩

)
. (6)

The orthogonality requirement ⟨ψi|R|ψi⟩ = 0 is equiv-
alent to that there exsits a matrix M such that [H,M ] =
R. The condition also has a necessary criteria

Tr
(
RHk

)
= 0,∀k ≥ 1. (7)

As a corollary of Theorem 3, we get immediately a suf-
ficient condition that when the error would accumulate
linearly.

Corollary 4 (Error lower bound). For a formula
U (t) approximating e−iHt and its leading error is R

in the sense that U (t) = e−iHt+Rtp+1/rp+1+o(tp+1/rp+1),
and if Tr(RHn) ̸= 0 for some n ∈ N, then∥∥U r(t/r)− e−iHt

∥∥ = Ω( t
p+1

rp ) as t and r/t tends to in-
finity.

Theorem 3 is a general bound for error of any product
formula, but it is most useful only for the product formu-
las. For other types of simulation algorithms like LCU
or QSP, the error would just accumulate linearly. This is
because the unitary generated by, say LCU algorithm, is
a polynomial in the desired dynamics H. Thus the error
of the algorithm would have the same eigenbasis with H,
so the error does not interfere. Error of QSP simulation
is fourier coefficients of the Hamiltonian, which does not
interfere either.

Corollary 4 can be used to estimate the long-term er-
ror. If we find that the error does not interfere, then we
can estimate the total error by just summing up the (em-
pirical) error in each timestep, which could save a lot of
computational resources.

2.3 Approximated interference of Trotter errors
In Theorem 3, we give the criteria of when the error

would self-cancel exactly. But sometimes the error might
not self-cancel exactly but instead only a major part of
the error would “interfere”. We will develop the theory
of approximation of approximated interference of Trotter
errors in this section. First we will derive the approxi-
mation formula of the error.

Lemma 5. Assume that we hope to simulate H, with er-
ror term R = R1+R2, where R1, R2 are some Hermitian
matrices, then we have

∥∥∥e−i(H+tp/rpR)t − e−iHt
∥∥∥

≤ ∥R2∥
tp+1

rp
+

∥∥∥e−i(H+tp/rpR1)t − e−iHt
∥∥∥

Lemma 5 can be used to prove the error self-canceling
of higher-order PFs when one of them is overwhelm-
ingly large compared to other terms. Take 2-term PF2
U2(t) = e−iH1t/2e−iH2te−iH1t/2 for example. The lead-
ing term of the error is iRt3, where R = [H1, [H1, H2]]−
[H2, [H1, H2]]. When ∥H1∥ is much larger than ∥H2∥, we
can rewrite R as R = [H1+H2, [H1, H2]]−[2H2, [H1, H2]],
where the first term satisfies the orthogonal condition,
while the second term is much smaller than the first term.
Theoretical and numerical evidences are provided in the
technical version.

2.4 Exact error interference bound for the first-
order product formula

In Theorem 3, we work with large O factors, ignoring
the hidden constant in the convergence rate. We also
hope to calculate the explicit constant factors when we
want to give an explicit bound on the error. So here we
will prove a theorem with explicit constant factors. The
following theorem is a more explicit form of Theorem 3
in the case of PF1. In the case of PF1, we can show
rigorously that the errors would interfere and grow sub-
linearly. Here we provide the statement for tight bound
in the general case. The statement of tight bound for
PF1 will be shown in the technical version.

Theorem 6 (Tight upper bound for general error in-
terference). Let H and R be Hermitians, let h be any
real parameter. Let {|ψi⟩} and {|ψ′i⟩} be the eigenvec-
tors of H and H + hR respectively and let {λi}, {λ′i}
be the corresponding eigenvalues. Then R can be de-
composed as R =

∑
bjk |ψj⟩ ⟨ψ′k|. For any ϵ > 0,

let ∆ϵ
H(R) =

∑
0≤λj−λ′

k<ϵ bjk |ψj⟩ ⟨ψ′k|, for ϵ < 0, de-
fine ∆ϵ

H(R) =
∑

ϵ<λj−λ′
k≤0 bjk |ψj⟩ ⟨ψ′k|, and Rϵ

H(R) =∑
|λj−λ′

k|≥ϵ
1

λj−λ′
k
bjk |ψj⟩ ⟨ψ′k|. Then we have

∥exp(−i(H + hR)t)− exp(−iHt)∥ (8)

≤ 4h max
|ϵ′|≤ϵ

∥∥∥∆ϵ′

H(R)
∥∥∥ t+ 2h ∥Rϵ

H(R)∥ (9)
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Understanding algorithmic error accumulation in quantum simulation is an important topic, both
for fundamental interest and practical improvement in quantum computing tasks. In this paper,
we investigate error interference, a phenomenon where errors in different segments can destructively
interfere, leading to non-linear error accumulation. We establish a general framework for algorithmic
error interference and provide sufficient and necessary conditions for its occurrence. Additionally, we
present an approximate version of error interference that yields tighter error bounds than previous
approaches. Our findings extend the understanding of error interference phenomena beyond the two-
term Hamiltonian case, including higher-order Trotter formulas and more complex Hamiltonians
with speed-ups in implementing Hamiltonian simulation and digital adiabatic algorithms. These
results have practical implications for Hamiltonian simulation implementation and may inspire more
algorithm designs to exploit error interference for reducing total error in quantum simulations and
related tasks.

I. INTRODUCTION

Simulating quantum dynamics is a central application of quantum computation [1, 2]. Efficient quantum algorithms
have been proposed for simulating the Schrodinger equation of a general quantum system [3–6], a notoriously difficult
task for classical computers. Quantum simulation has wide applications in quantum chemistry [7–9] and quantum
field theories [10], and also serves as an indispensable subroutine for other fundamental quantum algorithms, such as
quantum phase estimation [11] and the HHL algorithm [12] for solving linear systems.

Since the first digital quantum dynamics simulation algorithm based on the product formula for k-local Hamiltonians
proposed by Lloyd [3], novel techniques such as truncated Taylor series (LCU) [13, 14] and Quantum Signal Processing
(QSP) [15–17] have been developed, and the algorithms have been improved to optimal or nearly optimal complexity
with respect to several key parameters [15–21]. Nevertheless, variants of the product formula are still promising
candidates for near-term quantum devices to achieve practical quantum advantages [22] due to their simplicity, mild
hardware requirements, and decent performance in practice.

For a given Hamiltonian H =
∑L

l=1Hl, implementing product formula (PF), also known as Trotter-Suzuki formula,
requires dividing the long-time evolution e−iHt into several segments r and approximating the short-time evolution
e−iHt/r using the pth-order product formula Up(t) [23], e.g., U1(t) := e−iH1te−iH2t · · · e−iHLt, with an error term
ϵ = ∥U1(t/r)− e−iHt/r∥. The total error called Trotter error can be upper-bounded by rϵ via the triangle inequality.
Increasing r results in a smaller Trotter error. Before implementation, it is necessary to estimate the total error
and choose an appropriate r to suppress the total error under a predetermined threshold. Thus, understanding the
performance of Trotter errors is an important topic. A tighter analysis can help save gate costs in both Hamiltonian
simulation [24, 25] and other product formula related tasks, such as imaginary time evolution [26], quantum Monte
Carlo [27, 28], quantum adiabatic algorithms [29], and quantum phase estimation [30]. Although a few attempts have
been made in this direction [31–37], there still exists a gap between empirical results and theoretical analysis, even for
the simple case like simulating power-law decaying interactions Hamiltonians with the first-order product formula.

Recently, it has been found that for the first-order product formula (PF1) with H = A + B, errors in different
segments can have destructive error interference, and the total error may not increase linearly with the number of
segments r [36]. This error interference phenomenon can be explained from a second-order product formula perspective
[38] and can also result in speed-up in various applications, e.g., quantum adiabatic algorithms [29], and quantum phase
estimation [30]. However, we still lack systematic proof and understanding of this error interference phenomenon.
Currently, error interference only exists in the two-term case H = A+ B with PF1, which can not explain the error
interference phenomenon in the three-term cases H = A + B + C with PF1 [33]. Many questions remain, such as
when we will have error interference, whether we can go beyond the two-term case and observe error interference in
higher-order product formulas, whether there are approximate interference cases, and how to utilize this interference
in algorithm design.
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In this work, we establish a general framework for algorithmic error interference in product formula quantum
simulation methods and provide sufficient and necessary conditions for error interference. Next, we give a general
theoretical lower bound for algorithmic error accumulation, which in various cases excludes the possibility of error
interference, e.g., when considering quantum signal processing algorithms. As applications, we provide more examples
with (approximate) error interference phenomena beyond the H = A+B case, including H = A+B+C cases in the
Heisenberg model, Fermi-Hubbard model, and power-law interaction models. For example, for power-law interaction
Hamiltonians, we can use our result to have improved error bounds. The approximate error interference also exists in
higher-order product formula approximation of perturbative evolution and can lead to speed-ups in some regions of
implementing digital adiabatic algorithms. Our results are fundamentally interesting, furthering our understanding
of the product formula theory, and practically useful, directly applicable to the implementation of Hamiltonian
simulation using realist quantum hardware. Leveraging our error interference bounds, our results may also inspire
better algorithm designs to reduce the total error [37].

II. INTERFERENCE THEORY

A. Asymptotic error interference of product formulas

For a given Hamiltonian H =
∑L

l=1Hl of L terms, the first-order product formula (PF1), also known as the Trotter-
Suzuki formula [23, 39], can approximate the quantum dynamics e−iδtH by the product of the dynamics of each term,
that is

U1(δt) := e−iH1δte−iH2δt · · · e−iHLδt =
−→∏

l

e−iHlδt. (1)

As the Hamiltonian terms Hl are not commutative to each other in general, the introduced approximation error
(we will call it Trotter error throughout the paper) is upper bounded

∥∥U1(δt)− e−iHδt
∥∥ = O(αcommδt

2) where ∥·∥
is the spectral norm and αcomm =

∑L
l1,l2=1 ∥[Hl2 , Hl1 ]∥. For a long time evolution e−itH , we can divide the whole

evolution into several segments r and repeatedly apply the product formula for δt = t/r, i.e., U r
1 (t/r). To suppress the

algorithmic error, the second-order product formula can be defined as U2(δt) :=
∏→

l e−iHlδt/2
∏←

l e−iHlδt/2, where∏←
l denotes a product in reverse order. More generally, a p-th order Suzuki product formula (PFp) Up(δt) can be

defined recursively. In most error analyses, a triangle inequality is applied and the total error is bounded

∥∥U r
p (t/r)− e−itH∥∥ ≤ r

∥∥∥Up(t/r)− e−iHt/r
∥∥∥ (2)

In some cases, the error in each segment may have the interference and the triangle inequality error bound is
pessimistic, e.g., a two-term Hamiltonian H = A + B [40, 41], and Hamiltonians with a power-law rapidly decaying
interactions [33].

B. Asymptotic error interference of product formulas

In this section, we study the accumulation of error in the product formula and give general criteria on when the
error would exhibit a feature of interference, and prove the error interference property of the error rigorously.

Definition 1 (Interference, informal). For a pth-order product formula U (t/r) approximating e−iHt/r, if the total
error grows sublinearly to the sum of error of each timestep, i.e.,

∥∥U r
p (t/r)− e−iHt

∥∥ = o
(
r
∥∥∥Up(t/r)− e−iH(t/r)

∥∥∥
)
, (3)

where ∥·∥ denotes the spectral norm and when t and r/t are both large enough, then we say that the Trotter error
interferes.

The requirement in the definition that t and r/t needs to tend to infinity simultaneously might seem weird at the
first glance, but it is the correct way to define interference in an asymptotic way: say, take the result in [40] as an
example, they show that the trotter error of two-term PF1 for lattice Hamiltonians can be bounded by O

(
n t

r + n t3

r2

)
,
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while the bound by accumulation is O
(
n t2

r

)
. The interference bound would be better than the accumulation bound

asymptotically only if both t and r/t = 1/δt tends to infinity.
To explore the error accumulation, we apply a new error analysis which directly estimates the error for a long

time evolution. We can express the approximated evolution by an effective Hamiltonian Heff with exp(−iδtHeff) =
exp(−iδt(H +Herror)) where Herror is the exponentiated error term. Suppose the Hermitian H has spectral de-
composition H = PΛP ∗ where P ∈ SU(d) and Λ is diagonal. Diagonal elements of Λ are exactly the eigenvalues
of H, and their corresponding eigenstates are exactly the columns of P . Thus, the ideal evolution can rewrit-
ten as exp(−iδtH) = P exp(−iδt(Λ))P ∗. The approximated evolution exp(−iδtHeff) can also be spectral decom-
posed as exp(−iδtHeff) = (P + δP ) exp(−iδt(Λ + δΛ))(P + δP )† where δP and δΛ are the deviations in eigen-
vectors and eigenvalues, respectively. For a long time evolution, the approximated evolution is repeated r times,
exp(−irδtHeff) = (P + δP ) exp(−irδt(Λ + δΛ))(P + δP )†. The error in eigenvectors remains δP , regardless of r, while
the error in eigenvalues will accumulate rδtδΛ. As a result, the total error is roughly δP +rδtδΛ. Considering that δP
is independent of total time t and the number of segments, the accumulation of error mainly stems from the second
term, rδtδΛ. If rδtδΛ is much smaller than δP , the total error will show a sublinear accumulation phenomenon.

Hereafter, we mainly focus on product formula methods. For PFp, the exponentiated error term Herror is O(δtp).
We can rewrite this error as Herror = Rδtp +Rre, where R is the leading-order terms in Trotter error and Rre is the
high-order remainder with ∥Rre∥ = O(δtp+1). In general, δP and δΛ are both O(∥R∥δtp) and the Trotter error in one
segment is ∥U (δt)−e−iδtH∥ = O(δt(δΛ+δP )) = O(∥R∥δtp+1). For a long time evolution with a total error δP + tδΛ,
the second term tδΛ will dominate, leading to a O(∥R∥tp+2/rp+1) total error. Interestingly, when a specific condition
is satisfied, δΛ will be surprising small the growth of total error will not accumulate linearly with the number of
Trotter steps and appear the phenomenon of error interference. We express this result in the following theorem.

Definition 2 (Orthogonality condition). Consider a given Hamiltonian evolution e−iδtH and its approximation
e−iδtHeff . If the leading-order term R of Herror = H −Heff satisfies that

⟨ψi|R|ψi⟩ = 0 (4)

for all eigenstates |ψi⟩ of H. We say this approximation e−iδtHeff satisfies an orthogonality condition

Theorem 1 (Neccesary and sufficient condition for error interference). The orthogonality condition is a necessary
and sufficient condition for error interference. Suppose that Herror ≈ Rtp/rp, the total error can be bounded by

∥∥e−iHefft − e−iHt
∥∥ = O

(
∥R∥

(
tp

rp
+ ∥R∥ t

2p+1

r2p

))
. (5)

If e−iδtHeff do not satisfy the orthogonality condition, then the error term would be

∥∥e−iHefft − e−iHt
∥∥ = Ω

(
tp+1

rp
max

i
⟨ψi|R|ψi⟩

)
. (6)

The orthogonality requirement ⟨ψi|R|ψi⟩ = 0 is equivalent to that there exsits a matrix M such that [H,M ] = R.
The condition also has a necessary criteria

Tr
(
RHk

)
= 0,∀k ≥ 1. (7)

We can recover the results in [36] and [38] from Theorem 1. For a two-term Hamiltonian H = H1+H2, the first-order
trotter error behaves like U1(δt) = exp

(
−iδtH + δt2R+ o(δt2)

)
, where R = [H1, H2] = [H1 +H2, H2], thus the error

term satisfies the orthogonal requirement. So, we can conclude that the error of first-order product formula would
interfere and grow sublinearly.

There are more examples of dynamics exhibiting error interference. We will postpone the examples after Theorem 7.
As a corollary of Theorem 1, we get immediately a sufficient condition that when the error would accumulate linearly.

Corollary 1 (Error lower bound). For a formula U (t) approximating e−iHt and its leading error is R in the sense
that U (t) = e−iHt+Rtp+1/rp+1+o(tp+1/rp+1), and if Tr(RHn) ̸= 0 for some n ∈ N, then

∥∥U r(t/r)− e−iHt
∥∥ = Ω( t

p+1

rp )
as t and r/t tends to infinity.

As a direct corollary, we find that for many physical dynamics, the error of second order trotter formula does
not interfere. Consider the toy model: one-dimensional lattice nearest neighbor Ising model H =

∑n−1
j=1 XjXj+1 +
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∑n
j=1 Zj := A + B, the error of PF2 with time δt takes the form Heff − H = δt3

12 R = δt3

12 [A − B, [A,B]]. It can be
confirmed easily that Tr(HR) ̸= 0, thus the error does not interfere. Theorem 1 is a general bound for error of any
product formula, but it is most useful only for the product formulas. For other types of simulation algorithms like
LCU or QSP, the error would just accumulate linearly. This is because the unitary generated by, say LCU algorithm,
is a polynomial in the desired dynamics H. Thus the error of the algorithm would have the same eigenbasis with H,
so the error does not interfere. Error of QSP simulation is fourier coefficients of the Hamiltonian, which does not
interfere either.

Corollary 1 can be used to estimate the long-term error. If we find that the error does not interfere, then we
can estimate the total error by just summing up the (empirical) error in each timestep, which could save a lot of
computational resources.

C. Approximated interference of Trotter errors

In Theorem 1, we give the criteria of when the error would self-cancel exactly. But sometimes the error might
not self-cancel exactly but instead only a major part of the error would “interfere”. We will develop the theory of
approximation of approximated interference of Trotter errors in this section. First we will derive the approximation
formula of the error.

Lemma 2. Assume that we hope to simulate H, with error term R = R1 + R2, where R1, R2 are some Hermitian
matrices, then we have

∥∥∥e−i(H+tp/rpR)t − e−iHt
∥∥∥ ≤ ∥R2∥

tp+1

rp
+
∥∥∥e−i(H+tp/rpR1)t − e−iHt

∥∥∥ (8)

Thus we can conclude from Lemma 2 that if H has error term R, H and R does not satisfy the condition in
Theorem 1, but “a large fraction” of H and “a large fraction” of R satisfies the requirement in Theorem 1, then the
error would also accumulate slower than the bound obtained by triangle inequality. This is formalized in the following
lemma.

Theorem 3. Assume that we hope to simulate H, with error term R = R1 + R2, assume that H is orthogonal
respective to R1, i.e., for any eigenstate |ψi⟩ of H, ⟨ψi|R1|ψi⟩ = 0, then we have

∥∥∥e−i(H+tp/rpR)t − e−iHt
∥∥∥ = O

(
∥R2∥ht+ ∥R1∥

(
tp

rp
+ ∥R1∥

t2p+1

rp+1

))
(9)

In Theorem 3, we can see that when R2 is small enough, namely both the target dynamics and the error is close
to interference dynamics, then a large part of the error would not accumulate linearly.

Thus we can conclude that for any dynamics H = H1 +H2, and if error of product formula simulating H1 would
interfere, and ∥H2∥ is relatively small, then product formula simulating H would also have a relatively small error.
We will formalize this in the following theorem.

Theorem 4. Assume that H = H1 + H2, and each consists of terms H1 =
∑

lH1,l, H2 =
∑

j H2,j. Let R12 =
[H1, H2], R1 =

∑
l1<l2

[H1,l1 , H1,l2 ], R2 =
∑

l1<l2
[H2.l1 , H2,l2 ], and H is orthogonal to R1, assume that r is some

positive integer, then we have

∏

l

e−it/rH1,l

∏

j

e−it/rH2,j




r

=e−itH +O(
t2

r
(∥R2∥+ ∥R1∥ ∥H2∥ t)+

t

r
∥R1∥ ∥H1∥+

t3

r2
(∥R12∥ ∥H∥+ ∥R12∥ ∥R1∥+ ∥R1∥ ∥H∥))

(10)

We can apply Theorem 3 to lattice Hamiltonians with power law interactions. More specifically, consider a Heisen-
berg dynamics with power-law interactions Hpowα

=
∑

1≤j<k≤n
1

|j−k|α (XjXk + YjYk + ZjZk) +
∑n

j=1 hjZj can be
divided as Hpowα

= Hnn+Hli, where Hnn refers to the terms acted on single site or nearest neighbors, and Hli refers to
the long interactions. Then Hli would be small when α is large. Our theory could bound the error as O( nt2

(α−1)r +
nt
r ),

while triangle inequality could bound the error as O(nt
2

r ).
For higher order PF, we can show the error would interfere when one of Hi is much larger than all others. We show

only rigorously for two-terms PF2, but similar techniques can be applied to higher order PF with more terms.
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Theorem 5 (Approximate error interference of PF2 of two terms when one term is the major term). For H = H1+H2,
then the error of PF2 formula U2(τ) = e−iH1τ/2e−iH2τe−iH1τ/2 can be bounded as

∥∥U2(t/r)
r − e−iHt

∥∥ ≤ 1

6
∥[H1, H2]∥

t3

r3
+

1

6
∥[H2, [H1, H2]]∥

t3

r2
+O

(
∥T∥ t

4

r3

)
(11)

where T = [H1, [H2, [H1, H2]]]

Remark. This theorem shows that the error of 2 term PF2 would interfere when H1 is much larger than H2. Say
in the case that both H1 and H2 are lattice Hamiltonian, and H2 has a small norm, say ∥H2∥ ≤ a. Then the bound
obtained by triangle inequality is O(an t3

r2 ). Theorem 5 could give a bound O(a2n t3

r2 + an t3

r3 ). The result can be
generalized to higher order PF with more terms in a straightforward manner. As long as there is a leading term Hi

much larger than all other Hj , then the error would interfere.

D. Exact error interference bound for the first-order product formula

In Theorem 1, we work with large O factors, ignoring the hidden constant in the convergence rate. We also hope
to calculate the explicit constant factors when we want to give an explicit bound on the error. So here we will prove
a theorem with explicit constant factors. The following theorem is a more explicit form of Theorem 1 in the case of
PF1. In the case of PF1, we can show rigorously that the errors would interfere and grow sublinearly.

Theorem 6 (Tight upper bound for general error interference). Let H and R be Hermitians, let h be any real param-
eter. Let {|ψi⟩} and {|ψ′i⟩} be the eigenvectors of H and H + hR respectively and let {λi}, {λ′i} be the corresponding
eigenvalues. Then R can be decomposed as R =

∑
bjk |ψj⟩ ⟨ψ′k|. For any ϵ > 0, let ∆ϵ

H(R) =
∑

0≤λj−λ′
k<ϵ bjk |ψj⟩ ⟨ψ′k|,

for ϵ < 0, define ∆ϵ
H(R) =

∑
ϵ<λj−λ′

k≤0 bjk |ψj⟩ ⟨ψ′k|, and Rϵ
H(R) =

∑
|λj−λ′

k|≥ϵ
1

λj−λ′
k
bjk |ψj⟩ ⟨ψ′k|. Then we have

∥exp(−i(H + hR)t)− exp(−iHt)∥ ≤ 4h max
|ϵ′|≤ϵ

∥∥∥∆ϵ′

H(R)
∥∥∥ t+ 2h ∥Rϵ

H(R)∥ (12)

Theorem 7 (Tight upper bound for PF1). Assume Hi to be Hermitian. Let U1(δt) =
∏→

l e−iδtHl be the first-order
product formula. Assume U1(δt) is acted r times and T = rδt. Define R :=

∑
j<k[Hj , Hk]. Define |ψi⟩ and |ψ′i⟩ to

be the eigenvectors of H and H + δt
2iR, and the corresponding eigenvectors are λi and λ′i. Define R :=

∑
j<k[Hj , Hk]

and it can be decomposed as R =
∑
bjk |ψj⟩ ⟨ψ′k|. For any ϵ, define ∆ϵ

H(R) and Rϵ
H(R) similarly to the definition in

Theorem 6. Then we have that

∥U1(δt)
r − exp(−iHT )∥ ≤ ∥L1(H)∥ T

3

r2
+ ∥∆ϵ

H(R)∥ T
2

r
+ ∥RH∥ T

r
+ ∥L2(H)∥ T

4

r3
(13)

where

L1(H) =
1

2

∑

i

∥∥∥∥∥
∑

i<l<k

[Hi, [Hl, Hk]]

∥∥∥∥∥+
1

6

∑

i

∥∥∥∥∥
∑

l>i

[Hi, [Hi, Hl]]

∥∥∥∥∥

L2(H) =
1

12

∑

i

∥∥∥∥∥
∑

i<l<k

[Hi, [Hi, [Hl, Hk]]]

∥∥∥∥∥

Remark. In Eq. (12) and Eq. (13), the leading term of the error is controlled by the norm of ∆ϵ
H(R) and RH(R).

∆ϵ
H(R) can be viewed as the (almost) diagonal terms of R in the eigenbasis of H, while Rϵ

H(R) represents the off-
diagonal terms of R in the eigenbasis of H. When ∆0

H(R) = 0, which is exactly the condition of Theorem 1, the error
would behave as PF2 as long as r tends to infinity. But if Rϵ

H(R) is too large, then the error would grow as PF1
until r is large enough. In the real world, we observe that R(H) is generally of reasonable scale so we can say that
the existence of interference is equivalent to ∆0

H(R) = 0
Remark. As a concrete example, PF2 would have a large ∆H(R), meaning the error does not “interfere” and would

accumulate linearly according to the triangle inequality.

III. APPLICATIONS

In this section, we present applications of our results, including numerical evidence to support our theory and better
error analysis of certain algorithm.
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A. Heisenberg model

The Heisenberg model is a typical quantum lattice many-body and its dynamics shows the feature of interference
when the system size is small. In Fig. 1, we compare the empirical error and theoretical error bounds of the nearest-
neighbor Heisenberg model

Hnn = HX +HY +HZ (14)

= Jx

n−1∑

j=1

XjXj+1 + Jy

n−1∑

j=1

YjYj+1 +
n−1∑

j=1

(JzZjZj+1 + hZj) (15)

implemented by PF1 with tri-group (XYZ)

U1(δt) = e−iδtHXe−iδtHY e−iδtHZ . (16)

The interference bound is obtained by the estimation as in Eq. (13). We can find that our bound matches the empirical
error better than the triangle bound.
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Triangle bound (PF1, Parity)
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Triangle bound (PF2, XZ)
Interference bound (PF1, XZ)

FIG. 1: (Left) Empirical Trotter error and theoretical error bounds of 8 qubits one-dimensional nearest-neighbor
Heisenberg model (Jx = Jy = Jz = 2, h = 0.5). The green starred line is the empirical error of PF1 with tri-group

(XYZ), while the purple dash line is its triangle bound, and the pink solid line is the interference bound for bi-group
L = 2. We can see that the interference bound gives a much better estimation of the error scaling. On the other

hand, the red dotted line represents the empirical error of PF1 with bi-group (Parity), while the orange dashed line
is the error bound given by the triangle bound. We can find that triangle bound is almost tight, so the triangle

bound gives the tight estimation of the error. We also plot the empirical error and the triangle bound of PF2 with
bi-group for reference. (Right) We observe the interference of Trotter error for both PF1 and PF2 with XZ grouping

when the Heisenberg model has the parameters (Jx = 2, Jy = Jz = 0, h = 0.001).

In contrast, we notice that fully connected Heisenberg model Hall = H ′X + H ′Y + H ′Z where H ′X =
∑

j<kXjXk,
H ′Y =

∑
j<k YjYk, and H ′Z =

∑
j<k ZjZk +

∑
j Zj . With the similar tri-group (XYZ) to Eq. (15), the Trotter error

of U1(δt) = e−iδtH′
Xe−iδtH′

Y e−iδtH′
Z does not interfere.

For the fully-connected Heisenberg model with power-law (decaying) interactions

Hpowα
=

n−1∑

j=1

n∑

k=j+1

1

|j − k|α (XjXk + YjYk + ZjZk) +
n∑

j=1

hZj ,

where α > 0 is the decaying coefficient, the error would decrease along with the the increase of α. In Section III A,
we depict the Trotter error of PF1 with 6-qubit Hpowα

. The triangle bound and our bound are of the same origin as
Fig. 1. We can find that our bound matches the error better when α is large, supportng the result in Lemma 2.
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We can analyze asymptotically the error bound of α when error of PF1 of Hnn interferes. In such case, we can
write Hpowα

= Hnn +Hli, where Hli refers to the long interaction. Then the error of Hnn interferes, thus the error is
O(n t3

r2 + n t
r ). According to Lemma 2, the error scale of PF1 of H can be bounded by O(n t3

r2 + n t
r + αn2 t2

r ), which
tends to interfere when α is large. Our theoretical bound is an indicator of when approximate interference would
happen as self healing of error does appear when α is large as we show numerically.

Our analysis also gives a better bound on the number of timesteps needed for reaching certain precision, therefore
a better bound on the number of total gates required for the simulation. In Section IIIA, we show the numerical
estimation of required timesteps r, both (numerically) empirically and theoretically. The empirical error of the
simulation grows as O(n2.75). The bound by triangle inequalities could bound the number of required r as O(n3.39).
Our bound could bound the required time step to O(n2.86), which is a better estimation of r.

3 4 5 6 7 8 9
n

104

105

106

r

O(n3.39)

O(n2.86)O(n2.75)

Empirical error
Interference bound
Triangle bound

0 1 2 3 4 5

10 3

10 2

Triangle bound
Interference bound
Empirical error

FIG. 2: (left) Numerical evaluation of number of timesteps r needed to achieve the fixed error threshold (here the
threshold is the spectral norm of error not exceeding 0.01) and the estimations of r given by different bounds. The
dynamics is 1-D lattice power-law Heisenberg model and the decaying coefficient α = 4. The numerical evidence

needs O(n2.75) timesteps. The estimation from triangle inequality could bound the required timesteps as O(n3.39)
while our results could bound r as O(n2.86). Here n refers to the system size, and r refers to the number of trotter

steps required. (right) Numerical evaluation of error for the first-order product formula (PF1) of 1D power-law
Heisenberg model on 8 qubits. The purple line is the empirical error, the red line is the interference bound, and the

green line is the bound obtained by triangle inequality. We can find that the interference bound gives a nice
estimation of the error. Here α refers to the decaying coefficient of the dynamics, and ε is the trotter error.

Generally, the second-order formula (PF2) does not interfere. Thus, the bound by the triangle inequality is tight
for most cases of PF2. For example, even for simple models like bi-group of 1D nearest-neighbor Heisenberg model,
consider the partition according to the parity (even-odd) of the site index of each Hamiltonian term H = Heven+Hodd
with

Heven =

⌊L/2⌋∑

j=1

(X2j−1X2j + Y2j−1Y2j + Z2j−1Z2j + hZ2j−1)

Hodd =

⌈L/2⌉−1∑

j=1

(X2jX2j+1 + Y2jY2j+1 + Z2jZ2j+1 + hZ2j)

where all the summands in Heven (and Hodd) commute with each other. In Fig. 1, the numerical simulation shows
that the error of PF2 follows exactly the bound of the triangle inequality (cf. [6, Eq. (152)]).

Notice that for PF1 with tri-group of 1D Heisenberg Hamiltonian where the terms are partitioned according to the
type of Pauli operators. We can find that the dynamics satisfies ∆H(R) = 0 when n is small (Theorem 7). Namely,
the evolution of the error “interferes”.
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B. Fermi-Hubbard model

The Fermi-Hubbard model on one-dimensional lattice of L sites is described by the Hamiltonian HFH = Heven +
Hodd +Hint with three groups

Heven = v

⌊L/2⌋∑

j=1

∑

σ∈{↑,↓}
a†2j−1,σa2j,σ + a†2j,σa2j−1,σ,

Hodd = v

⌈L/2⌉−1∑

j=1

∑

σ∈{↑,↓}
a†2j,σa2j+1,σ + a†2j+1,σa2j,σ,

Hint = u
L∑

j

nj,↑nj,↓

where j refer to neighboring lattice sites in the first sum, v ∈ R is the kinetic hopping coefficient, and u > 0 the on-site
interaction strength. a†j,σ, aj,σ and nj,σ = a†j,σaj,σ are the fermionic creation, annihilation and number operators,
respectively, acting on site j and spin σ ∈ {↑, ↓}. It can be observed in Fig. 3 that the interference is weaker when
the norm of the interaction term Hint is stronger compared to the hopping terms.
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Empirical Tri-group PF1
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Triangle Bound PF1
Tirangle Bound PF2
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r
10 7
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10 1

101

Empirical Tri-group PF1
Empirical Tri-group PF2
Triangle Bound PF1
Tirangle Bound PF2

FIG. 3: Empirical Trotter error and bounds of PF1 and PF2 for tri-group 1D Fermi-Hubbard model with 4 sites (8
qubits). The interaction strength u is 0.1v for the left figure and 10v for the right one.

C. Adiabatic evolution and perturbation theory

Our bound would also give a better analysis of a product formula than the triangle bound if one of the terms in
the product formula is significantly larger than all the other terms.

We’ll take two-term PF2 as an illustrative example. For a two-term Hamiltonian H = H1 + H2, according to
Corollary 1, interference of the error has a necessary criteria trRH = 0. For two-term PF2, we have R = [H1 −
H2, [H1, H2]]. We can verify that for multi-partite physical systems such as Heisenberg model or Fermi-Hubbard
model, so the errors does not interfere exactly.

However, when one of the Hi is relatively small, the error would approximately interfere. For example, assume
H = H1 + αH2, where α is a small constant. Then the leading error term R of PF2 can be expressed as R =
[H1 − αH2, [H1, αH2]] = [H1 + αH2, [H1, αH2]]− 2[αH2, [H1, αH2]]. Notice that the first term is of the form [H,M ],
so this part of the error would interfere. So the linearly accumulated error is of the scaling O(α2t) while the triangle
inequality would bound the error growth as O(αt).

The assumption that one of the Hi is relatively small makes sense in the start and end of adiabatic evolution, also
applies to the simulation of perturbation dynamics. Recall that for adiabatic evolution implements a Hamiltonian
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with two terms, H[u(τ)] = (1− u(τ))H1 + u(τ)H2, and u is a continuous function satisfying the requirement u(0) =
0, u(t) = 1. In [29], they show that error of PF1 of adiabatic evolution has the self-healing property. Our results
could show that the error interferes when τ is close to 0 or t even for higher order PF. Also one of Hi to be small is
naturally the setting that the simulation of a perturbation dynamics. A perturbation dynamics typically contains of
two dynamics H = H0 +H1, where H0 is large and time-independent and H1 is small. Thus our theory could also
show the existence of error interference in the perturbation model.

Q.Z. acknowledges funding from HKU Seed Fund for Basic Research for New Staff via Project 2201100596, Guang-
dong Natural Science Fund—General Programme via Project 2023A1515012185, National Natural Science Foundation
of China (NSFC) Young Scientists Fund via Project 12305030, 27300823, Hong Kong Research Grant Council (RGC)
via No. 27300823, and NSFC/RGC Joint Research Scheme via Project N_HKU718/23.
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Improved recursive QAOA for solving MAX-CUT on bipartite graphs
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Abstract. Recursive QAOA (RQAOA) is the variant of QAOA to overcome obstacles of low-level QAOA.
RQAOA iteratively applies QAOA while progressively reducing the problem size through a recursive pro-
cess. There are several instances in which RQAOA can get a better solution than QAOA or even get the
optimal solution. In this work, we first analytically prove the limitation of the level-1 QAOA for solving
MAX-CUT problem on bipartite graphs. Moreover, we observe that RQAOA outperforms QAOA, but it
cannot guarantee the optimal solution when the number of nodes increases by numerical simulation. To
improve the performance of RQAOA, we propose a modified RQAOA which reduces the region of opti-
mization in QAOA subroutine, and we prove that our modified RQAOA can perfectly solve MAX-CUT on
bipartite graphs.

Keywords: Quantum algorithm, QAOA, Recursive QAOA, MAX-CUT, bipartite graph

1 Introduction

Although Quantum Approximate Optimization Algo-
rithm (QAOA) aiming to solve combinatorial optimiza-
tion problems is considered a promising candidate for
quantum advantage in the NISQ era, it has been known
the performance limitations of low-level QAOA for cer-
tain instances [3, 4, 5, 7, 8]. There have been various
modified QAOA to enhance its performance [11].
Recursive QAOA (RQAOA) is one of the variants of

QAOA to overcome the obstacle of QAOA [4]. There are
only a few results on RQAOA [4, 6, 9, 12, 10]. More-
over, while it was analytically proved in one of them that
the level-1 RQAOA performs better than any constant
level QAOA for solving MAX-CUT problem on cycle
graphs [4] and complete graphs [12], the others have given
only numerical evidences to claim similar arguments for
finding the largest energy of Ising Hamiltonian [6] and
for graph coloring problem [9].
From most of the results on RQAOA, it seems like

RQAOA performs well for finding the optimal solution
for combinatorial optimization problems. Recently, there
has been known the instance in which RQAOA performs
worse [10]. In this work, we give another example, bi-
partite graphs, that both RQAOA and QAOA cannot
solve properly even though the solution for this instance
is so intuitively easy to get. Furthermore, we propose a
better strategy for solving MAX-CUT problem on bipar-
tite graphs using RQAOA and prove that our modified
RQAOA can solve it perfectly.

∗eobae@kias.re.kr
†level@khu.ac.kr

2 Preliminaries

2.1 MAX-CUT problem

Let G = (V,E) be a (undirected) graph with the
set of vertices V = {1, 2, . . . , n} and the set of edges
E = {ij : i, j ∈ V }. The MAX-CUT problem is a well-
known combinatorial optimization problem that aims to
split V into two disjoint subsets such that the number of
edges spanning the two subsets is maximized. The MAX-
CUT problem can be formulated by maximizing the cost
function

C(x) =
1

2

∑
ij∈E

(1− xixj)

for x = (x1, x2, . . . , xn) ∈ {−1, 1}n.

2.2 QAOA

QAOA can be viewed as a discrete version of Adia-
batic Quantum Computing. The design of QAOA in-
volves constructing a parameterized quantum circuit that
alternates between applying the problem Hamiltonian
(which encodes the optimization problem) and the driv-
ing Hamiltonian (which ensures broad exploration of the
solution space). Here, we only focus on MAX-CUT prob-
lem which can be converted to the following problem
Hamiltonian.

HC =
1

2

∑
ij∈E

(I − ZiZj) ,

where Zi is the Pauli operator Z acting on the i-th qubit.
The level-p QAOA, denoted by QAOAp, can be described
as the following algorithm.

Algorithm 1 (QAOAp [1]) The QAOAp is as follows.

1. Prepare the initial state |+⟩⊗n
.
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2. Generate a variational wave function

|ψp(β, γ)⟩ =
p∏

j=1

e−iβjHBe−iγjHC |+⟩⊗n
,

where β = (β1, . . . , βp), γ = (γ1, . . . , γp), HC is a
problem Hamiltonian, HB =

∑n
i=1Xi is a driving

Hamiltonian, and Xi is the Pauli operator X acting
on the i-th qubit.

3. Compute the expectation value

Fp(β, γ) = ⟨ψp(β, γ)|HC |ψp(β, γ⟩)

by performing the measurement in the computa-
tional basis.

4. Find the optimal parameters

(β∗, γ∗) = argmaxβ,γFp(β, γ)

using a classical optimization algorithm.

The approximation ratio α of QAOAp is defined as

αp =
Fp(β

∗, γ∗)

Cmax
,

where Cmax = maxx∈{−1,1}n C(x).

2.3 Recursive QAOA

RQAOA was introduced to address the limitations of
the original QAOA by incorporating a recursive problem
reduction strategy [4].

Algorithm 2 (RQAOAp [4]) The RQAOAp is as fol-
lows.

1. Apply the original QAOAp to find the optimal pa-
rameters (β∗, γ∗) to maximize Fp(β, γ).

2. Compute the edge expectation values

Mij = ⟨ψp(β
∗, γ∗)|ZiZj |ψp(β

∗, γ∗)⟩

for every edges ij ∈ E.

3. Pick the edge kl = argmaxij∈EMij

4. By imposing the constraint Zk = sgn(Mkl)Zl, re-
place it with Hn to obtain

H ′
n = sgn(Mkl)

[∑
ik∈E

JikZiZl

]
+

∑
i,j ̸=k

JijZiZj

5. Call the QAOA recursively to maximize the ex-
pected value of a new Ising Hamiltonian Hn−1 de-
pending on n− 1 variables:

Hn−1 =
∑
il∈E′

0

J ′
ijZiZl +

∑
ij∈E′

1

J ′
ijZiZj ,

where

E′
0 = {il : ik ∈ E}, E′

1 = {ij : i, j ̸= k},

and

J ′
ij =

{
sgn(Mkl)Jik if il ∈ E′

0,

Jij if ij ∈ E′
1.

6. The recursion stops when the number of variables
reaches some threshold value nc ≪ n, and find
x∗ = argmaxx∈{−1,1}nc ⟨x|Hnc

|x⟩ by a classical al-
gorithm.

7. Reconstruct the original (approximate) solution x̃ ∈
{−1, 1}n from x∗ using the constraints.

3 Limitation of QAOA1 and RQAOA1

Let G be a bipartite graph and let α be the approxi-
mation ratio of the level-1 QAOA for solving MAX-CUT
problem on G. Since bipartite graphs are triangle-free,
we use the simpler analytic form of F1(β, γ) in Ref. [2] to
get

⟨HC⟩ = ⟨ψ1(β, γ)|HC |ψ1(β, γ⟩)

=
∑
ij∈E

[
1

2
+

1

4
sin(4β) sin γ

(
cosσi−1 γ + cosσj−1 γ

)]
,

where σi is the degree of the vertex i. For this case, we
know that the optimal cut is the number of all edges.
Furthermore, we can rewrite the expectation value of the
MAX-CUT Hamiltonian of the level-1 QAOA in terms
of the vertex degrees instead of the edges, and thus the
approximation ratio is

α1 = max
β,γ

⟨HC⟩ /Cmax

= max
γ

[
1

2
+

1

2

dmax∑
d=1

d|Dd|
2|E|

sin γ cosd−1 γ

]
,

where |Dd| is the number of vertices with degree d.
We get the bound of α1 especially related to the aver-

age vertex degree which is the one of important properties
of graphs as follows [13].

Theorem 3 (Bipartite graph) Let (G,V ) be a bipar-
tite graph with two disjoint vertex sets V1 and V2. Then

α1 ≤ 1

2
+

dmax∑
d=1

d|Dd|
2|E|

[
1

2
√
d

(√
d− 1√
d

)d−1
]

≤ 1

2
+

1

2
√
e

(
1√
dave

+

√
e− 1

dave

)
,

where dave denotes the average vertex degree of the graph

which can be defined as
∑

v∈V dv

|V | , or equivalently, 2|E|
|V | .

When we focus on complete bipartite graphs, we can
show that the first bound in Theorem 3 is tight.

Corollary 4 (Complete bipartite graph) Let Kn,n

be a complete bipartite graph with n nodes. Then

α1 ≤ 1

2
+

1

2
√
n

(
1− 1

n

)n−1
2

Remark 5 As we expect, we numerically observe that
RQAOA1 can have better solutions than QAOA1 for
MAX-CUT problem on complete bipartite graphs. How-
ever, we also figured out that there are some instances
which are complete bipartite graphs Kn,n in which
RQAOA1 can fail to find the exact solution especially
when n increases.
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4 Our strategy for RQAOA

Complete bipartite graphs are well-structured and easy
to find the exact solution intuitively. Surprisingly, both
QAOA and RQAOA have limitations in solving the MAX
CUT problem even for instances like complete bipartite
graphs.
To overcome these limitations, we introduce an im-

proved RQAOA with a novel parameter targeting strat-
egy and prove that this algorithm can always find the op-
timal MAX-CUT solution on complete bipartite graphs,
and even for bipartite graphs. Normally, if we reduce the
region to find the optimal parameters (β, γ) to maximize
the expectation value Fp(β, γ) in QAOA, the maximum
value we can obtain from QAOA will be also decreas-
ing. Interestingly, we figured out that in the QAOA sub-
routine, reducing the optimization domain improves the
performance of RQAOA in solving Max-Cut problem on
bipartite graphs, even if QAOA does not find the true
optimal parameters.

Algorithm 6 (Modified RQAOA1) We only modify
the first step of RQAOA and the rest part is the same
with the original RQAOA.

1. Apply the original QAOA to find the optimal pa-
rameters (β∗, γ∗) in the restricted domain where
|γ| ≤ π

2w∗
ij

with w∗
ij = maxij∈E wij to maximize

F1(β, γ).

Let Kw
n,m be a graph with two partitioned subsets V1

and V2 of vertices with |V1| = n and |V2| = m, and the
weight we of each edge e have the following properties:

• Weight of the edge consisting of vertices belonging
to the same vertex set is always negative, that is,
for the edge e = ij, if i, j ∈ V1 or i, j ∈ V2, then
we ≤ 0.

• Weight of the edge consisting of vertices belonging
to the different vertex sets is always positive, that
is, for the edge e = ij, if (i, j) ∈ V1 × V2 , then
we ≥ 0.

Now, we can prove our algorithm can always find the
optimal MAX-CUT solution on bipartite graphs [13].

Theorem 7 Our modified RQAOA for solving MAX-
CUT problem on bipartite graphs can achieve the approx-
imation ratio 1.

To prove the main theorem, we first show that if γ∗ ≤
π

2w∗
ij

with w∗
ij = maxij∈E wij in the QAOA1 subroutine

for solving MAX-CUT problem on bipartite graphs, all
reduced graphs from our modified RQAOA1 iterations
can be well-partitioned graphs like Kw

n′,m′ with the above
properties. Second, we prove that RQAOA1 can find the
optimal solution for solving MAX-CUT problem onKw

n,m

(which also includes all bipartite graphs) for any n and
m if all reduced graphs from each iteration remain to be
well-partitioned with the above properties.

5 Discussion

Although there have been not many results on
RQAOA, almost all results show us that RQAOA out-
performs the original QAOA or even best known classi-
cal algorithm for certain instances. It seems like RQAOA
has more potential than QAOA for demonstrating quan-
tum advantage in the NISQ era. However, we found that
the counter-example that RQAOA can be worse than the
best-known classical algorithm for some instances with a
large enough number of nodes.

There would be several reasons that can explain why
RQAOA performs worse such as the limitation of QAOA
to optimize the parameters and the recursion step to fix
variables on the eliminated edges. To analyze the perfor-
mance of RQAOA for more general instances from this
point of view remains to be opened for now.

We figured out that the bad optimization of QAOA
would not be the only reason to explain the limitation of
RQAOA by showing that RQAOA performs better even
if we reduce the optimization domain for QAOA to solve
MAX-CUT problem on bipartite graphs. Furthermore,
we proposed the improved RQAOA to handle this prob-
lem for bipartite graphs. For future works, we will see if
this argument could fit into more general instances such
as d-regular graphs.
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Quantum-inspired algorithms for approximating matrix functions
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Abstract. Computing matrix functions, such as the permanent and the hafnian, is one of the fundamental
problems in the computational complexity community. In this work, we adopt quasiprobability distribution,
a basic quantum optics tool, to tackle this problem. As a result, we have developed various classical
algorithms that outperform the best-known ones. Remarkably, in some cases, we obtain multiplicative-
error estimating algorithms for these matrix functions, where we exploit a symmetry of linear-optical
circuits in the phase space to make the quasiprobability distributions log-concave functions.

Keywords: Gaussian boson sampling, permanent, hafnian, quasiprobability distributions

1 Introduction

Computing the permanent and hafnian of a given ma-
trix is an intractable problem in general (#P-hard), even
allowing a multiplicative-error. For a matrix having non-
negative entries, however, a fully polynomial randomized
approximation scheme (FPRAS) of the permanent ex-
ists [1]. Then our question is to seek FPRAS for other
classes of matrices. One of the key techniques is finding
various representations of the matrix functions. For ex-
ample, if we find an exotic integral representation of a
matrix function, we can have a chance to approximate it
more effectively.
Meanwhile, the outcome probabilities of a linear-

optical circuit are connected to matrix functions, which
lie at the heart of the hardness of boson sampling [2].
From the phase-space formalism of quantum physics,
we can express the outcome probabilities as integrals
using quasiprobability distributions. This means we
have a quantum-inspired representation for the matrix
function. Here, we fully exploit the advantages of
this quasiprobability representation, far more generaliz-
ing an existing result of an additive-error approximat-
ing scheme for the permanent of a positive-semidefinite
matrix [3]. Our technical contributions are two-fold.
Firstly, we use Monte Carlo sampling to handle the neg-
ativity of quasiprobability [4]. Secondly, we manipu-
late the shape of quasiprobability distributions by ex-
ploiting the symmetry of linear-optical circuits in the
phase space, resulting in better precision. Remarkably,
we obtain multiplicative-error approximating schemes for
some cases by making quasiprobability distributions log-
concave functions. Consequently, we have FPRASs for
the hafnian and Torontonian of some structured matri-
ces. This also can reproduce an FPRAS for a positive
definite matrix [5].

2 Results

Proofs of theorems and technical details are in Ref. [6].

Theorem 1 (Estimating hafnian) For an M ×M com-
plex symmetric matrix R, one can approximate |Haf(R)|2

∗sshaep@gmail.com
†changhun0218@kaist.ac.kr

with a success probability 1− δ using the number of sam-
ples O(log δ−1/ϵ2) within the additive-error

ϵ

(
λmax√

1− 2W (1/e)

)M

≃ ϵ(1.502λmax)
M , (1)

where W (x) is Lambert W function and λmax is the
largest singular value of R.

Theorem 2 (FPRAS for hafnian) Suppose we have a

block matrix A =

(
R B
BT R∗

)
with an M × M com-

plex symmetric matrix R and an M ×M HPSD matrix
B, which have decompositions by a unitary matrix U as
UDUT and UD′U†, respectively, with

D =
M⊕
i=1

(1 + 2n) sinh 2ri
1 + 2n(1 + n) + (1 + 2n) cosh 2ri

, (2)

D′ =
M⊕
i=1

2n(1 + n)

1 + 2n(1 + n) + (1 + 2n) cosh 2ri
, (3)

where n = ni for all i and n, ri ≥ 0. Then Haf(A) can
be approximated by FPRAS when the parameters satisfy
a condition as

n ≥ 1

4

(
6 sinh(2rmax) +

√
18 cosh(4rmax)− 14− 2

)
,

(4)
where rmax = maxi ri.
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Figure 1: Schematic diagram of quantum-inspired classical algorithms for approximating matrix functions. For a
given matrix function, (a) find an embedding of the matrix function onto an outcome probability of a quantum
circuit (ρ, U,Π) and choose a quasiprobability representation of the probability. (b) We depict an example of a linear
optical circuit, for the approximation scheme with additive-error. Using s-PQDs for the linear optical circuit, one
can significantly reduce the negativity bound by appropriately choosing γ < 0. (c) Approximation scheme with
multiplicative-error. When the classicality of the input state is large, one can make the s-PQDs of the measurement
operator a log-concave function by choosing a suitable γ′ > 0.

Figure 2: Regime of efficient classical algorithms for ap-
proximating outcome probabilities and the simulation of
a GBS circuit with threshold detectors via the classical-
ity smax. When the output distribution is poly-sparse,
an approximate simulation is possible by estimating the
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simulation with classical input state smax ≥ 1 (blue ar-
row) [8].
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Quantum error-correcting code (QECC) is the central ingredient in fault-tolerant quantum in-
formation processing. An emerging paradigm of dynamical QECC shows that one can robustly
encode logical quantum information both temporally and spatially in a more resource-efficient man-
ner than traditional QECCs. Nevertheless, an overarching theory of how dynamical QECCs achieve
fault-tolerance is lacking. In this work, we bridge this gap by proposing a unified spatio-temporal
QECC framework called the “strategic code” built around an “interrogator” device which sequen-
tially measures and evolves the spatial QECC in an adaptive manner based on the “quantum combs”
formalism, a generalization of the channel-state duality. The strategic code covers all existing dy-
namical and static QECC, as well as all physically plausible QECCs to be discovered in the future,
including those that involve adaptivity in its operational dynamics. Within this framework, we
show an algebraic and an information-theoretic necessary and sufficient error-correction conditions
for a strategic code, which consider spatially and temporally correlated errors. These conditions
include the analogous known static QECC conditions as a special case. Lastly, we also propose an
optimization-theoretic approach to obtain an approximate strategic code adapting to a correlated
error.

The susceptibility of quantum systems to noise has
been a major obstacle in achieving the advantages of-
fered by quantum information processing tasks over their
classical counterparts. A quantum error-correcting code
(QECC) overcomes this problem by redundantly encod-
ing quantum information in a noise-robust manner. How-
ever conventional QECCs involve operations on many-
body quantum system to encode and decode logical in-
formation, which are notoriously resource-intensive. The
novel paradigm of dynamical QECC offers a promising
solution by utilizing the temporal dimension to encode
and decode logical information, thus easing this demand-
ing requirement. Many dynamical QECC has been pro-
posed, with the most popular being the Floquet codes [1–
13] which measurement sequence is performed periodi-
cally, although other non-periodic codes have also been
explored [14–22].

Despite the remarkable progress in dynamical QECC
research, an overarching theory of error-correction for
QECCs considering both spatial and temporal encod-
ing that is analogous to its static counterpart [23–29],
has been largely unexplored. In order to analyze the
error-correction capability of a QECC with respect to re-
sources that it uses, both spatially and temporally, such
theory is imperative. In this work we bridge this gap by
proposing a QECC framework called the “strategic code”
which unifies all existing dynamical and static QECCs,
as well as all physically plausible QECCs to be discov-

∗ andrew.tanggara@gmail.com
† mgu@quantumcomplexity.org
‡ kishor.bharti1@gmail.com

ered. The novelty of the strategic code lies in the “in-
terrogator” device which captures any set of operations
performed both spatially and temporally between the en-
coding and decoding stage, completing the conceptual
gap operationally between static and dynamical QECC
paradigms. The strategic code framework also generalize
existing QECC paradigms by accommodating temporal
operational adaptivity of the code and the effect of the
most general class of noise with both spatial and tempo-
ral (non-Markovian) correlations [30–38].

Within the strategic code framework for QECCs with
an interrogator that maintains a classical memory and
for general error models (which may exhibit correla-
tions), we show necessary and sufficient error-correction
conditions, as well as formulate a multi-convex opti-
mization problem to obtain an approximate code. Our
conditions are presented in two equivalent forms: alge-
braically (Theorem 1) and an information-theoretically
(Theorem 2). Due the generality of our framework, alge-
braic and information-theoretic necessary and sufficient
conditions for static QECC [23–26] are included as spe-
cial cases. Since strategic code subsumes notable QECC
frameworks, such as the sequential Pauli measurements
framework [20], ZX calculus framework [21], and anyon
condensation framework [22], these conditions serve as a
guide in a code construction within these frameworks.

I. GENERAL QECC SCENARIO

Error-correcting code scenario can always be described
as interactions between a code and some noise changing
the state of a physical system where logical information

ar
X

iv
:2

40
5.

17
56

7v
1 

 [
qu

an
t-

ph
] 

 2
7 

M
ay

 2
02

4

298



2

Strategic code

Interrogator I Decoder D

C(1) C(2)
. . .

C(l) D
∣ψ⟩

E(0) E(1) E(2)
. . .

E(l−1) E(l)
∣ψ⟩

. . .

FIG. 1. General QECC Scenario. At round 0, error E(0) is inflicted to code state ∣ψ⟩ that belongs to the initial code space
SQ0 , evolving it to error-inflicted subspace SQ′

0
. Then an interrogator device I is applied to the code, performing quantum

operations on the code l times in sequence. At each round r ∈ {1, . . . , l}, evolution on the code is performed by a quantum
operation C(r), giving a new code space SQr followed by error map E(r) further evolving the code space SQr to error-inflicted
subspace SQ′r

. The interrogator maintains a classical memory (illustrated by double-wires) which keeps information about
previous events (e.g. measurement outcome) and determines the choice of quantum operation performed at each round. At
the start of round r, if the interrogator’s memory state is mr−1 then it performs quantum operation C(r)mr−1 . After performing
the operation, it the updates the state of the classical memory register mr−1 ↦mr where mr is the updated memory state that
determines the subsequent operations. After the final round l, decoding D is performed based on the final memory state ml,
where channel Dml is applied to the code system to restore the initial code state ∣ψ⟩.
is encoded in. Conventionally, the essential two ingredi-
ents of a code are: (1) an operation encoding the logical
information into a physical system and (2) an operation
that recovers logical information from any error caused
by noise that occurs in between. In a quantum error-
correcting code (QECC) scenario, further interplay be-
tween the code and noise can take place between encod-
ing and decoding, allowing more interesting implications
on the error-correction process due to inherent quantum-
mechanical effects.

In general, a QECC scenario consists of three stages:
The first stage being the encoding stage, the final stage
being the decoding stage, and between them, any set of
operations performed by the code, interacting with the
noise (see Fig. 1). We simplify this by starting with an
initial codespace SQ0 instead of an encoding map (as
an encoding map uniquely defines the initial codespace).
Then a set of operations I, called the interrogator, is per-
formed by the code in between encoding and decoding.
The interrogator performs l ≥ 0 rounds of check oper-
ations where the check operation C(r) at round r may
be chosen (from a set of allowed operations) adaptively
based on events happened in the previous rounds stored
in a classical memory register. When the classical mem-
ory register is in a memory state mr−1, then a check
operation C(r)mr−1 is performed. Between encoding and de-
coding, we also have errors E being inflicted on the code
right after the encoding stage and after each round of
operation. Errors can generally have spatial correlations
within each round and temporal (non-Markovian) cor-
relations across rounds. Lastly in the decoding stage,
the decoding procedure D consists of multiple decoders
that the coder can choose from based on the information

stored in the classical memory ml after the last round of
operation. A successful QECC procedure recovers logical
information encoded in the initial codespace as codestate
∣ψ⟩.

Although here we focus on an interrogator where only
classical memory storage is allowed, one can easily gen-
eralize this to an interrogator where quantum memory
is involved. Such interrogator could model a scenario
where a small-size quantum system can be used reliably
to store some information about the code across time
alongside classical memory to be used in the decoding
stage. Particularly, this generalization reduces to the
entanglement-assisted QECC (EAQECC) [39–41] when
we set the number of rounds l = 0, see Appendix B 1 for
details.

More formally, the entirety of an l-round QECC sce-
nario is defined by the following objects:

1. A sequence of codespaces SQ0 ,SQ′0
, . . . ,SQl

,SQ′
l

which are a subspace of d dimensional complex vec-
tor space Cd and spaces of bounded linear operators
from Cd to Cd, HQ0 ,HQ′0

, . . . ,HQl
,HQ′

l
,HD. The

codespaces and operator spaces depends on opera-
tions performed in the two stages defined below,
while the initial codespace SQ0 is defined indepen-
dent of them.

2. An interrogator I consists of a sequence of check
instruments C(1), C(2) ∶= {C(2)m1}m1 , . . . , C(l) ∶=
{C(l)ml−1}ml−1

where C(r)mr−1 ∶= {C
(r)
mr ∣mr−1

}mr and

C(1) ∶= {C(1)m1}m1 are a check instrument for round
r > 1 and round r = 1, respectively. Each C(r)

mr ∣mr−1
∶

HQ′r−1
→ HQr is a completely-positive (CP) map
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such that ∑mr
C(r)
mr ∣mr−1

is trace preserving (TP).

Check instrument C(r)mr−1 may perform a determin-
istic operation on the code (e.g. a unitary) in which
C(r)mr−1 consist of only one element, or a probabilistic
operation where each of its element maps an initial
codestate to a post-measurement codestate.

3. Decoder D = {Dml
}ml

where decoding channel
Dml

∶HQ′
l
→HD is a CPTP map that given classi-

cal information ml in the classical memory register
recovers the initial code state ∣ψ⟩Q0 (what this pre-
cisely means will be defined shortly in Definition 2).

4. Error E consists of a sequence of error maps
E(0),E(1), . . . ,E(l) where E(r) ∶ HQr ⊗ HEr−1 →
HQ′r ⊗HEr is a CP trace non-increasing map de-
fined by E(r)(ρ) = ∑er EerρE

†
er where bounded lin-

ear operator Eer ∶ SQr ⊗ SEr−1 → SQ′r ⊗ SEr

being a Kraus operator for E(r) for r ≥ 1 and
E(0) ∶ SQ0 → SQ′0

⊗SE0 . Spaces labeled by Er−1
and Er are the systems storing any temporal cor-
relations in the noise environment from round r−1
to round r and from round r to round r+1, respec-
tively. In the case of uncorrelated error sequence
we simply have E(r) ∶HQr →HQ′r , with Kraus op-
erators of the form Eer ∶SQr →SQ′r .

We remark that in the description above it is assumed
that the dimension d of the quantum system where the
code lives is always the same at all rounds. However, this
assumption is only for convenience and is not assumed in
our proofs thus can be relaxed to round-dependent di-
mensions. Namely, code spaces SQr ,SQ′r being a sub-
space of Cdr and HQr ,HQ′r being spaces of bounded lin-
ear operators from Cdr to Cdr .

Completely positive map C(r)
mr ∣mr−1

corresponds to map-
ping multiple measurement outcomes arising from mea-
surement setting defined by memory state mr−1. This
can be formally described as POVM {Mor ∣mr−1

}or defined
by the Kraus operators C(r)

or ∣mr−1
of CPTP map C(r)mr−1 =

∑mr
C(r)
mr ∣mr−1

defined by the instrument {C(r)
mr ∣mr−1

}mr .

Namely, Mor ∣mr−1
= C(r)†

or ∣mr−1
C
(r)
or ∣mr−1

and C(r)
mr ∣mr−1

(ρ) =
∑or C

(r)
or ∣mr−1

ρC
(r)†
or ∣mr−1

. The memory state mr is defined
by some memory update function fr that maps the mea-
surement outcomes or and memory statemr−1 to memory
state mr, namely C(r)mr−1 = ∑mr ∑or ∶fr(or,mr−1)=mr

C(r)
or ∣mr−1

where C(r)
or ∣mr−1

(ρ) = C(r)
or ∣mr−1

ρC
(r)†
or ∣mr−1

. Thus, Cmr ∣mr−1
=

∑or ∶fr(or,mr−1)=mr
C(r)
or ∣mr−1

. Note that here we consider
time dependent memory update functions f1, . . . , fl, for
full generality, but of course one can instead consider a
time-independent function f used in every round. Both
measurement outcome or and measurement setting mr−1
should give spatial and temporal information about er-
ror occurrence. The memory state mr−1 at the start of
round r ∈ {2, . . . , l} determines the choice of instrument

C(r)mr−1 applied in that round, whereas memory state ml

at final round l is used to choose which decoder {Dml
}ml

is used to recover the initial codestate. Each final mem-
ory state ml corresponds to a unique set Oml

(defined by
memory update functions f1, . . . , fl) containing all check
measurement outcome sequence o = o1, o2, . . . , ol where
there exists a sequence of memory states m1, . . . ,ml−1
such that ml = fl(ol,ml−1) and ml−1 = fl−1(ol−1,ml−2),
..., m1 = f1(o1). Hence we can define a function f∗

as f∗l (o) = fl(ol, fl−1(ol−1, . . . f(o1) . . . )) which maps an
outcome sequence o to a final memory state. So we can
express in symbols, Oml

= {o ∶ f∗l (o) =ml}.
Note that codespace SQr at round r is determined by

the choice of check instrument C(r)mr−1 and the outcome
or from the measurement defined by it. Namely, C(r)

or ∣mr−1

maps the state of the codespace SQ′r−1
(the codespace af-

ter error map E(r−1) at the previous round) to codespace
SQr . Also, both codespaces SQr and SQ′r−1

may depend
on the check instruments and error maps in the previous
rounds.1

Interrogator I, error E, and decoder D in a QECC
scenario can be represented by the quantum combs for-
malism [31, 42–47]2. It has the advantage of compactly
representing temporally-correlated sequence of dynamics
on a quantum system as a positive semidefinite operator
by generalizing the Choi-Jamiołkowski isomorphism [48–
50] which holds the complete information about the tem-
poral dynamics. Quantum combs has found many appli-
cations such as quantum causal inference [51, 52], metrol-
ogy [53, 54], interactive quantum games [46], open quan-
tum systems [55], quantum cryptography [56], and quan-
tum communication [57]. However, to our knowledge no
application of quantum combs has been made in the con-
text of QECC before. In the following we describe the
quantum combs representation for the QECC scenario.
More technical details of the quantum combs representa-
tion can be found in Appendix B.

A. Strategic code and quantum combs
representation

In an l-round QECC scenario, the entirety of how log-
ical information is preserved can be described by the ini-
tial codespace SQ0 and the sequence of check instruments
C(1),C(2), . . . ,C(l). These two objects made up the strate-
gic code, defined formally in the following.
Definition 1. An l-round strategic code is defined by
a tuple (SQ0 , I) where SQ0 is the initial codespace

1 For Floquet codes this corresponds to the instantaneous stabi-
lizer groups, which is a stabilizer group at a particular round r
defined by the check measurement outcome at that round and as
well as the outcomes and errors occurring up to that round.

2 Also known as process tensor in [45] or quantum strategy in [46],
and more generally, process matrix in [47] where exotic causal
ordering can be exhibited.
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which is a subspace of Cd, and I = {Iml
}ml

is a
collection of positive semidefinite operators in HQ′0

⊗
(⊗l

r=1 HQ′r−1
⊗HQr) called the interrogator. Interroga-

tor I describes all possible sequences of check instruments
{C(1),C(2)m1 , . . . ,C

(l)
ml−1}m1,...,ml−1

along their with temporal
dependence defined by functions f1, . . . , fl. An element
Iml

of an interrogator is called an interrogator operator,
which is a quantum comb describing the sequences of CP
maps C(1)m1 ,C

(2)
m2∣m1

, . . . ,C(l)
ml∣ml−1

that ends in final memory
state ml. An interrogator operator Iml

takes the form of

Iml
= ∑

o∈Oml

∣Cml,o⟫⟪Cml,o∣ (1)

where Oml
is the set of check measurement outcome se-

quences o = o1, . . . , ol resulting in final memory state
ml. Here ∣Cml,o⟫ = ∣C

(l)
ol∣ml−1

⟫ ⊗ ⋅ ⋅ ⋅ ⊗ ∣C(1)o1 ⟫ (with mr =
fr(or,mr−1)) is an eigenvector of interrogator operator
Iml

, and ∣C(r)
or ∣mr−1

⟫ is the vectorized representation of

the Kraus operator C(r)
or ∣mr−1

.

Note that HQ′0
⊗ (⊗l

r=1 HQ′r−1
⊗HQr) is the tensor

product of bounded linear operator space of the inputs
and outputs of the sequence of CP maps of the check
instruments. An interrogator describes all possible “tra-
jectories” of how the code evolves according to the se-
quence of check measurement outcomes and operations
performed based on previously obtained outcomes. As an
example, if the initial codestate is ρQ0 (round r = 0) and
in round r = 1 a measurement is performed, an outcome
0 will result in post-measurement codestate ρQ1

0 while an
outcome m1 ≠ 0 codestate ρQ1

m1
which is generally is not

equal to ρQ1

0 . Outcome m1 also determines which op-
eration is performed in the next round (r = 2). So if a
measurement at r = 2 depending on outcome m1 gives
an outcome m2, then we obtain codestate ρQ2

m2∣m1
, where

the label m2∣m1 describes the “trajectory”. If decoding
is performed on ρQ2

m2∣m1
, then the decoder will use m2 to

recover the initial state. For a diagram illustrating the
trajectories of the code induced by the operations per-
formed by the interrogator, see Fig. 2.

Now we turn to how decoding and errors are described
in an l-round QECC scenario. Decoding channel Dml

is described by each of its Choi-Jamiolkowski represen-
tation Dml

, which is a positive semidefinite operator in
HQ′

l
⊗HD. Similarly, we can also represent the sequence

of error CP maps E(0), . . . ,E(l) as positive semidefinite
operator

E =∑
e

∣Ee⟫⟪Ee∣ (2)

where e = e0, e1, . . . , el indicates an error sequence. Here
∣Ee⟫ is the vectorized representation of the sequence of
Kraus operators Ee0 , . . . ,Eel of the error maps.

The entire interaction between an interrogator oper-
ator ending in final memory state ml and the error

. . .

. . .

. . .

. . .

. . .

. . .

. .
 .

. .
 .

DecodersInterrogator

Encoder

FIG. 2. Trajectories of the code evolution in an interrogator.

maps can be described as E ∗ Iml
where "∗" is an as-

sociative dyadic operation between two linear operators
A ∈HA⊗HC and B ∈HC ⊗HB known as the link prod-
uct [42], which can be thought of as a generalization of
the Hilbert-Schmidt inner product. The link product is
defined as A ∗B ∶= TrC((A⊺C ⊗ IB)(IA ⊗B)) where TrC
is partial trace over operator space HC , ⋅⊺C is the par-
tial transpose over HC , and IA, IB are identity operators
of HA and HB , respectively. Note that if the operator
space HC has trivial dimension then A∗B = A⊗B, and if
HA,HB have a trivial dimension then A∗B = Tr(A⊺B).

Some of our results are expressed in term of the ex-
plicit error sequence e described by ∣Ee⟫⟪Ee∣ instead of
E. Hence at times we will describe the sequence of error
maps as the collection of the rank-1 operators describing
the error sequences, E ∶= {∣Ee⟫⟪Ee∣}e. In both the link
product form and the rank-1 vector form, we can express
the complete interaction between the an interrogator op-
erator and an error sequence e as

E ∗ Iml
=∑

e

∣Ee⟫⟪Ee∣ ∗ Iml

=∑
e
∑

o∈Oml

∣Ke,ml,o⟫⟪Ke,ml,o∣ ,
(3)

where ∣Ke,ml,o⟫ is the vectorized form of Kraus opera-
tor Ke,ml,o defined by the Kraus operators of the check
instruments and error maps Eel ,C

(l)
ol∣ml−1

, . . . ,C
(1)
o1 ,Ee0

(where the check instrument C(r)
or ∣mr−1

in round r implic-
itly performs an identity map on the environment HEr−1 ,
for explicit definition see Appendix B).

B. Interrogator in existing codes

A sequence of quantum operations that temporally
evolve the spatial encoding of logical information while
also extracting error syndromes is the central ingredient
in dynamical QECCs such as spacetime codes [14–16],
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Floquet codes [1–13], and dynamical code [20]. The no-
tion of interrogator captures This sequence of operations
in these codes can be formulated as an interrogator.

In an n-qubit spacetime code, generally a round of op-
eration performed by the interrogator consists of Clifford
gates and Pauli measurements on disjoint subsets of the
n-qubits. Since the operations are not adapting to events
in preceding rounds (measurements, etc.), here the inter-
rogator simply stores all measurement outcomes o to be
used at the decoding round. For more detailed discus-
sions on interrogator formulation of spacetime code see
Appendix C.

On the other hand in a Floquet code and a dynamical
code, generally a round of operation by the interroga-
tor consists of commuting Pauli measurements. Similar
to the spacetime code, the sequence of operations per-
formed on the code is predetermined and the interroga-
tor simply stores all measurement outcomes o to be used
at the decoding round. In Floquet code, however, Pauli
measurements are performed in cycles. For example in
the Hastings-Haah honeycomb code [1, 2], one performs
a 3-cycle of Pauli X, followed by Pauli Y , then Pauli
Z, which in principle can be performed cyclically indefi-
nitely. However in the finite time window where measure-
ment syndromes can be revealed from the measurements,
error-correction analysis using an interrogator consisting
of measurements in this time window can be useful. For
more detailed discussion on the Hastings-Haah honey-
comb code in the interrogator form, see Appendix D.

II. GENERAL ERROR-CORRECTION
CONDITIONS

We now formalize the notion of correctability of an
error E by a strategic code (SQ0 , I = {Iml

}ml
).

Definition 2. Strategic code (SQ0 , I) corrects error E
if there exists decoding channels {Dml

}ml
such that for

all ∣ψ⟩ ∈SQ0 ,

Dml
(E ∗ Iml

∗ ∣ψ⟩⟨ψ∣) = λml
∣ψ⟩⟨ψ∣ (4)

for some constant λml
∈ R.

We note that how recovery of the initial codestate ∣ψ⟩
is being defined to be up to a constant independent of ∣ψ⟩
is an artifact from the fact that the error E and the inter-
rogator operator Iml

are not necessarily trace preserving.
Namely when there is only one reachable final memory
state ml with probability one given error E and initial
codestate ∣ψ⟩ then the constant is independent of ml.
Additionally when all error maps E(0), . . . ,E(l) are trace
preserving then we have λml

= 1. Now given a precise def-
inition of a successful recovery for error-correction, in the
following we give two equivalent necessary and sufficient
conditions in an algebraic form and in an information-
theoretic form.

A. Algebraic error-correction condition

Now we state the algebraic necessary and sufficient
error-correction condition for a strategic code. For no-
tational simplicity, below we suppress the identity op-
erators for operator multiplications to match the dimen-
sions, e.g. for operators M ∈HA⊗HC and N ∈HC⊗HB

we write MN when we mean (M ⊗ IB)(IA ⊗N).

Theorem 1. A strategic code (SQ0 , I) corrects E if and
only if

⟪Ee′ ∣(∣Cml
⟫⟪Cml,o∣⊗ ∣j⟩⟨i∣)∣Ee⟫ = λe′,e,ml,oδj,i (5)

for a constant λe′,e,ml,o ∈ C, and for all ml, all check
measurement outcome sequence o ∈ Oml

, all pairs of error
sequences e, e′, and all i, j.

Here ∣Cml
⟫ = ∑o∈Oml

∣Cml,o⟫ and ∣Cml,o⟫ is an eigen-
vector of interrogator operator Iml

as defined in eqn. (1).
Vectors ∣i⟩, ∣j⟩ are orthonormal basis vectors of initial
codespace SQ0 .

Proof. First assume that strategic code (SQ0
, I) corrects

E, hence there is a set of decoding channels {Dml
}ml

such that (4) is satisfied. First note that we can express
eqn. (4) in Kraus representation and use ΠQ0 ∣ψ⟩ = ∣ψ⟩
where ΠQ0 is a projector to initial codespace SQ0 to
obtain

Dml
(E ∗ Iml

∗ ∣ψ⟩⟨ψ∣)
=∑

e,o

Dml
(Ke,ml,oΠQ0 ∣ψ⟩⟨ψ∣ΠQ0K

†
e,ml,o

)

= ∑
e,o,k

Dk∣ml
Ke,ml,oΠQ0 ∣ψ⟩⟨ψ∣ΠQ0K

†
e,ml,o

D†
k∣ml

= λml
ΠQ0 ∣ψ⟩⟨ψ∣ΠQ0 ,

(6)

where {Dk∣ml
}k are the Kraus operators of decoding

channel Dml
. By the non-uninqueness of Kraus represen-

tation (see e.g. [58]), both Dk∣ml
Ke,ml,o and

√
λml

ΠQ0

can be thought of as Kraus representations of the com-
position of maps Dml

○ (E ∗ Iml
∗ (⋅)), where the latter

Kraus representation consists of only one operator. Thus
there must exist some complex number γ(ml)

k,e,o such that

Dk∣ml
Ke,ml,oΠQ0

= γ(ml)
k,e,oΠQ0

for all e, o, k. Thus we have

⟪Ee′ ∣(∣Cml
⟫⟪Cml,o∣⊗ ∣j⟩⟨i∣)∣Ee⟫

= ∑
o′,k

(⟪Ke′,ml,o′ ∣j⟩)D
†
k∣ml

Dk∣ml
(⟨i∣Ke,ml,o⟫)

= ∑
o′,k

⟨j∣ΠQ0K
†
e′,ml,o′

D†
k∣ml

Dk∣ml
Ke,ml,oΠQ0 ∣i⟩

= ∑
o′,k

γ
(ml)∗
k,e′,o′γ

(ml)
k,e,o⟨j∣i⟩

= (∑
k

(∑
o′
γ
(ml)∗
k,e′,o′)γ

(ml)
k,e,o)δj,i

= λe′,e,ml,oδj,i ,

(7)
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where the second equality is obtained by∑kD
†
k∣ml

Dk∣ml
=

IQ′
l

and by ∣Ke,ml,o⟫ = ⟪Cml,o∣Ee⟫, the third equal-
ity by ⟨i∣Ke,ml,o⟫ = Ke,ml,o∣i⟩, and the fourth equal-
ity by the non-unique Kraus representation relation
Dk∣ml

Ke,ml,oΠQ0 = γ
(ml)
k,e,oΠQ0 . Thus we show the neces-

sity of condition in Theorem 1.
Now assume that eqn. (5) holds and consider λe′,e,ml

=
∑o λe′,e,ml,o. Note that Λml

= [λe′,e,ml
]e′,e is a Hermitian

matrix since by eqn. (5)

λ∗e′,e,ml
=∑

o

λ∗e′,e,ml,o

= ∑
o′,o

(⟪Ee′ ∣(∣Cml,o′⟫⟪Cml,o∣⊗ ∣i⟩⟨i∣)∣Ee⟫)∗

= ∑
o′,o

⟪Ee∣(∣Cml,o⟫⟪Cml,o′ ∣⊗ ∣i⟩⟨i∣)∣Ee′⟫

=∑
o′
λ∗e′,e,ml,o′

= λe,e′,ml
.

(8)

Since matrix Λml
is Hermitian, it can be diagonalized to

a diagonal matrix [de′,e,ml
]e′,e where de′,e,ml

= 0 if e′ ≠ e
as

de′,e,ml
=∑

ẽ,ē

u∗e′,ẽuē,eλẽ,ē,ml (9)

where U = [ue′,e]e′,e is a unitary matrix.
Now consider ∣Fe⟫ = ∑ē uē,e∣Eē⟫ so that

∑
e

⟨g∣Fe⟫⟪Fe∣g′⟩ = ∑
e,ẽ,ē

u∗e,ẽuē,e⟨g∣Eē⟫⟪Eẽ∣g′⟩

=∑
ẽ,ē

δẽ,ē⟨g∣Eē⟫⟪Eẽ∣g′⟩

=∑
e

⟨g∣Ee⟫⟪Ee∣g′⟩

(10)

for any ∣g⟩, ∣g′⟩ ∈ (⊗l−1
r=0 SQr ⊗SQ′r)⊗SQl

. Therefore

E ∗ Iml
∗ ∣i⟩⟨j∣ =∑

e

∣Ee⟫⟪Ee∣ ∗ Iml
∗ ∣i⟩⟨j∣

=∑
e

∣Fe⟫⟪Fe∣ ∗ Iml
∗ ∣i⟩⟨j∣ ,

(11)

and also

⟪Fe′ ∣(∣Cml
⟫⟪Cml,o∣⊗ ∣j⟩⟨i∣)∣Fe⟫

=∑
ẽ,ē

u∗e′,ẽuē,e⟪Eẽ∣(∣Cml
⟫⟪Cml,o∣⊗ ∣j⟩⟨i∣)∣Eē⟫

=∑
ẽ,ē

u∗e′,ẽuē,eλẽ,ē,ml,oδj,i =∶ λ̃e′,e,ml,oδj,i ,

(12)

for some constant λ̃e′,e,ml,o ∈ C.
For each error sequence e′, consider an operator de-

fined by De′∣ml
= 1√

de′,e′
⟪Fe′ ∣(∣Cml

⟫∣ΠQ0⟫). Thus by us-

ing eqn. (5) and eqn. (12) the action of De′∣ml
on the

codestate at the start of the decoding round is

De′∣ml
(⟪Cml,o∣⟨ψ∣)∣Fe⟫

=∑
i,j

∣j⟩ψi⟪Fe′ ∣(∣Cml
⟫⟪Cml,o∣⊗ ∣j⟩⟨i∣)∣Fe⟫

=∑
i,j,

∣j⟩ψiλ̃e′,e,ml,oδj,i = λ̃e′,e,ml,o∣ψ⟩ .
(13)

Therefore the overall action of a linear map Dml
(ρ) =

∑eDe∣ml
ρD†

e∣ml
on the density operator of the code at

the start of the decoding round is

∑
e

Dml
(∣Fe⟫⟪Fe∣ ∗ Iml

∗ ∣ψ⟩⟨ψ∣)

= ∑
e,e′,o

De′∣ml
(⟪Cml,o∣⟨ψ∣)∣Fe⟫⟪Fe∣(∣Cml,o⟫∣ψ⟩)D

†
e′∣ml

= ∑
e,e′,o

λ̃e′,e,ml,oλ̃
∗
e′,e,ml,o

∣ψ⟩⟨ψ∣ = λml
∣ψ⟩⟨ψ∣

(14)
which recovers the initial state ∣ψ⟩ as in (4).

Since Dml
is a completely positive map, we now show

that we can add another operator to make it trace-
preserving. Consider polar decomposition

(⟪Cml
∣⟪ΠQ0

∣)∣Fe⟫

= Ue,ml

√
⟪Fe∣(∣Cml

⟫⟪Cml
∣⊗ ∣ΠQ0⟫⟪ΠQ0 ∣)∣Fe⟫

= Ue,ml
ΠQ0

√
de,e,ml

(15)

where the last equality is due to eqn. (9). Then
can define projector Πe,ml

= Ue,ml
ΠQ0U

†
e,ml

=
1√

de,e,ml

(⟪Cml
∣⟪ΠQ0 ∣)∣Fe⟫U †

e,ml
, satisfying orthogonality

Π†
e′,ml

Πe,ml

=
Ue′,ml

⟪Fe′ ∣(∣Cml
⟫⟪Cml

∣⊗ ∣ΠQ0⟫⟪ΠQ0 ∣)∣Fe⟫U †
e,ml√

de′,e′,ml
de,e,ml

=
de′,e,ml

Ue′,ml
ΠQ0U

†
e,ml√

de′,e′,ml
de,e,ml

,

(16)
since de′,e,ml

= 0 for all e ≠ e′. Therefore for each e we
have

D†
e∣ml

De∣ml
= (⟪Cml

∣⟪ΠQ0 ∣)∣Fe⟫⟪Fe∣(∣Cml
⟫∣ΠQ0⟫)

de,e,ml

= Ue,ml
ΠQ0U

†
e,ml
= Πe,ml

.

(17)

Then by adding projector Π⊥ onto a space orthogonal to
{Πe,ml

}e to the set of operators {De∣ml
}e defining Dml

we have Π⊥ + ∑eD
†
e∣ml

De∣ml
= I, hence Dml

is trace-
preserving.

As noted in the proof and by using the Kraus operators
in eqn. (3), we can equivalently express eqn. (5) as

⟪Ee′ ∣(∣Cml
⟫⟪Cml,o∣⊗ ∣j⟩⟨i∣)∣Ee⟫

= Tr(∣Ke′,ml
⟫⟪Ke,ml,o∣ ∗ ∣j⟩⟨i∣)

= ⟨j∣K†
e′,ml

Ke,ml,o∣i⟩ = δj,iλe′,e,ml,o ,

(18)
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where Ke′,ml
= ∑oKe′,ml,o. This expression tells us for

a final memory state ml of a strategic code correcting
E, the sequence of check measurement outcomes in Oml

forms orthogonal an subspace Vi,ml
for each eigenbasis

{∣i⟩Q0}i spanning initial codestate SQ0 , regardless of se-
quence of error. Namely subspace Vi,ml

is spanned by
{⟪Cml,o∣⟨i∣Ee⟫}e,o. Moreover, the independence of con-
stant λe′,e,ml,o from the initial codestate also indicates
that the code state at the start of the decoding round
is uncorrelated with the noise environment, although it
generally depends on the final memory state ml. Due
to this independence between the noise environment and
the code state, it is sufficient for the decoder to have the
information about ml to recover the initial state, i.e. to
construct a projective measurement {Πe,ml

}e used in the
proof to project the noisy codestate onto subspace Vi,ml

and perform recovery unitary operator Ue,ml
according

to outcome e to obtain the initial codestate.
For the special case when all check measurement out-

comes are stored in the classical memory, i.e. there is a
bijection between each memory state mr and sequence of
check measurement outcomes o1, . . . , or for all r, the con-
dition in Theorem 1 can be stated in a more symmetric
manner as Iml

= ∣Cml,o⟫⟪Cml,o∣. Since each final memory
state ml and each sequence of check measurement out-
comes o = o1, . . . , ol have a one-to-one correspondence,
we can simply write ∣Cml

⟫ ∶= ∣Cml,o⟫.

Corollary 1. A strategic code (SQ0 , I) storing all check
measurement outcomes in its memory corrects error E if
and only if

⟪Ee′ ∣(∣Cml
⟫⟪Cml

∣⊗ ∣j⟩⟨i∣)∣Ee⟫ = λe′,e,ml
δj,i (19)

where λe′,e,ml
∈ C is some constant for all final memory

state ml and all pairs of error sequences e, e′.

B. Static quantum error-correction condition as a
special case

From Theorem 1, we can recover the Knill-Laflamme
necessary and sufficient error-correction condition for
static QECC [23] (see also Appendix A), which is

⟨j∣E†
e′Ee∣i⟩ = λe′,eδj,i (20)

where ∣i⟩, ∣j⟩ is an arbitrary pair of orthonormal vec-
tors spanning codespace SQ and Ee,Ee′ are a pair of
Kraus operators of error map E(ρQ) = ∑eEeρQE

†
e . The

static QECC scenario is obtained by setting the num-
ber of rounds to l = 0 in a general QECC scenario, i.e.
there is no sequence check instruments. The operator
∣Cml
⟫⟪Cml,o∣ in eqn. (5)simply becomes identity and vec-

torized error operators are of the form ∣Ee⟫ = ∑j Ee∣j⟩∣j⟩
and constant is simply λe′,e as there is no dependence on

the check measurement outcomes. Thus eqn. (5) becomes

λe′,eδj,i = ⟪Ee′ ∣j⟫⟪i∣Ee⟫ = ⟨j∣E†
e′Ee∣i⟩ (21)

giving us the Knill-Laflamme static QECC condition.
Lastly we note that without changing the strategic

code framework, how strategic code error-correction is
defined in Definition 2 can be generalized as follows. In-
stead of requiring the decoder output to be a state pro-
portional to the initial codestate, we can instead intro-
duce additional redundancy by encoding logical informa-
tion in a subsystem of SQ0 and requiring the decoder
only to recover logical information stored in that subsys-
tem. Namely, given initial codestate ρ ⊗ σ we want to
recover ρ⊗ σml

given final memory state ml. This is the
generalization of the subsystem code [27, 29, 59, 60] to
the strategic code framework. Corresponding to this def-
inition, however, one needs a different necessary and suf-
ficient condition than Theorem 1 and Theorem 2, which
is left for future work. For more details on the subsystem
code generalization to strategic code see Appendix B 2.

C. Information-theoretic error-correction condition

For a static QECC (special case of a strategic code
with l = 0), it was shown in [25] that a necessary and
sufficient condition for a completely-positive, trace non-
decreasing error map E ∶HQ →HQ′ to be correctable by
QECC with codespace SQ is

S(ρQ) = S(ρQ
′

) − S(ρE
′

) = S(ρQ
′

) − S(ρR
′Q′) . (22)

Here a reference system R is introduced, and ρQ =
TrR(∣ϕ⟩⟨ϕ∣RQ) where ∣ϕ⟩⟨ϕ∣RQ is the maximally entan-
gled state between initial system Q and reference sys-
tem R. So, we have the density operators after the error
ρQ

′ = E(ρQ)/Tr(E(ρQ)) and ρR
′Q′ = IR ⊗ E(∣ϕ⟩⟨ϕ∣RQ)

where ρE
′

the marginal state of the noise environment of
E when expressed as

E(⋅) = TrE′((IQ′ ⊗Π)V ⋅ V †(IQ′ ⊗Π)) (23)

for some isometry V ∶ SQ → SQ′ ⊗ SE′ and orthogo-
nal projector Π ∈ HE′ . Generalization of information-
theoretic condition (22) to subsystem codes is shown
in [27]. The term S(ρQ′) − S(ρR′Q′) is the so-called “co-
herent information”, which quantifies the amount of in-
formation about ρQ contained in ρQ

′

[24, 25, 27].
In a general QECC scenario, we instead have a se-

quence of completely positive map E(0), . . . ,E(l). In what
follows, we omit normalization for the states and den-
sity operators for notational simplicity. Now consider the
density operator in HR′

l
⊗HQ′

l
⊗HMl

⊗HEl
with one-half

of a maximally entangled state ∑i ∣i⟩R0 ∣i⟩Q0 as an input
initial state in SQ0 and given final memory state ml
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ρ
R′lQ

′

lMlEl

ml,e,e′,o,o′
=∑

i,j

∣i⟩⟨j∣R0 ⊗ (Ke,ml,o∣i⟩⟨j∣Q0K
†
e′,ml,o′

)⊗ ∣o⟩⟨o′∣Ml
⊗ ∣e⟩⟨e′∣El (24)

∣ϕ⟩R0Q0

R′l

{E ∗ Iml
}
ml

Q′l

Ml

El

FIG. 3. QECC scenario where the initial code state is one-
half of maximally entangled state ∣ϕ⟩ = ∑i ∣i⟩R0 ∣i⟩Q0 between
a reference R0 system and the initial code space Q0. After l
rounds of errors and check measurements ending in final mem-
ory state ml, we obtain the global density oeprator ρR

′

lQ
′

lMlEl
ml

of the reference system, code system, check measurement out-
come sequence, and noise environment.

where o, o′ ∈ Oml
is a pair of sequences of check measure-

ment outcomes resulting in final memory state ml and
Ke,ml,o is an operator defined by ∣Ke,ml,o⟫ = ⟪Cml,o∣Ee⟫
(see eqn. (3). This scenario is illustrated in Fig. 3.

Now consider density operator

ρ
R′lQ

′

lMlEl
ml ∶= ∑

e,e′,o,o′
ρ
R′lQ

′

lMlEl

ml,e,e′,o,o′
. (25)

We also define the marginal density operators as ρR
′

l
ml ∶=

TrQ′
l
MlEl
(ρR

′

lQ
′

lMlEl
ml ) and ρMlEl

ml
∶= TrR′

l
Q′

l
(ρR

′

lQ
′

lMlEl
ml ).

We also denote the density operator over all possible final
memory state ml as

ρR
′

lQ
′

lMlEl =∑
ml

PMl
(ml)ρ̃R

′

lQ
′

lMlEl
ml (26)

for PMl
(ml) = Tr(ρR

′

lQ
′

lMlEl
ml ) and density operator

ρ̃
R′lQ

′

lMlEl
ml = ρR

′

lQ
′

lMlEl
ml /PMl

(ml). Here, PMl
(ml) can be

interpreted as the probability of the final memory state
being ml. Hence ρ̃R

′

lQ
′

lMlEl
ml is the density operator at the

start of the decoding round, given that the memory stor-
ing information about the check measurement outcomes
is ml.

Now we show a necessary and sufficient information-
theoretic conditions for strategic code to correct error
E = {∣Ee⟫⟪Ee∣}e.
Theorem 2. The following are equivalent:

1. A strategic code (SQ0 , I) corrects error E.

2. S(ρR
′

lMlEl
ml ) = S(ρR

′

l
ml)+S(ρMlEl

ml
) for all final mem-

ory state ml such that PMl
(ml) > 0.

3. I
ρ
R′

l
MlEl

ml

(R′l ∶ MlEl) = 0 for all final memory state

ml such that PMl
(ml) > 0.

Proof. First we use Theorem 1 to show that eqn. (5) im-
plies S(ρR

′

lMlEl
ml ) = S(ρR

′

l
ml)+S(ρMlEl

ml
). The merginal den-

sity operator in HR′
l
⊗HMl

⊗HEl
can be expressed as

ρ
R′lMlEl
ml ∶= ∑

e,e′,o,o′
TrQ′

l
(ρR

′

lQ
′

lMlEl

ml,e,e′,o,o′
)

= ∑
e,e′,o,o′,i,j

∣i⟩⟨j∣R′
l
⟨j∣K†

e′,ml,o′
Ke,ml,o∣i⟩

⊗ ∣o⟩⟨o′∣Ml
⊗ ∣e⟩⟨e′∣El

.

(27)

Now consider a unitary [uē,e]ē,e as defined in the suf-
ficiency of eqn. (5) which performs the transformation
∣Fe⟫ = ∑ē uē,e∣Eē⟫. Applying this to eqn. (27) transforms
the Kraus operator Ke,ml,o ↦ Fe,ml,o and the noise en-
vironment basis ∣e⟩ ↦ ∣v(ml)

e ⟩ = ∑ē uē,e∣ē⟩. Also consider
the decoding channel Dml

with Kraus operators {De∣ml
}e

constructed in proof of the sufficiency of eqn. (5) to cor-
rect E. As ∑eD

†
e∣ml

De∣ml
= I, we obtain

ρ
R′lMlEl
ml

= ∑
e,e′,o,o′,i,j,ẽ

∣i⟩⟨j∣R′
l
⟨j∣F †

e′,ml,o′
D†

ẽ∣ml
Dẽ∣ml

Fe,ml,o∣i⟩

⊗ ∣o⟩⟨o′∣Ml
⊗ ∣v(ml)

e ⟩⟨v(ml)
e′ ∣El

= ΠQ0 ⊗ ( ∑
e,e′,o,o′,ẽ

λ̃∗ẽ,e′,ml,o′
λ̃ẽ,e,ml,o∣o⟩⟨o′∣Ml

⊗ ∣v(ml)
e ⟩⟨v(ml)

e′ ∣El
)

(28)

since Dẽ∣ml
Fe,ml,o∣i⟩ = λ̃ẽ,e,ml,o∣i⟩ for some constant

λ̃ẽ,e,ml,o ∈ C. Thus ρR
′

lMlEl
ml = ρR

′

l
ml⊗ρMlEl

ml
, which is equiv-

alent to S(ρR
′

lMlEl
ml ) = S(ρR

′

l
ml) + S(ρMlEl

ml
).

Now we show that S(ρR
′

lMlEl
ml ) = S(ρR

′

l
ml) + S(ρMlEl

ml
)

implies eqn. (4) by constructing a decoding chan-
nel recovering the initial code state. Now we con-
sider a Schmidt decomposition on bipartition between
codespace Q′l and joint system R′lMlEl of ∣φml

⟩ =
∑i,e,o ∣i⟩R0(Kml,o,e∣i⟩Q0)∣o⟩Ml

∣e⟩El
for each o, which gives

∣φml
⟩ =∑

i,α

√
q
(ml)
α ∣i⟩R′

l
∣u(ml)

α ⟩MlEl
∣v(ml)

i,α ⟩Q′l (29)

where {∣u(ml)
α ⟩MlEl

}α is an eigenvector of ρMlEl
ml

with cor-
responding eigenvalue q(ml)

α and {∣v(ml)
i,α ⟩}i,α is a set of

orthonormal vectors in code space SQ′
l
.

Now consider decoding channel Dml
with Kraus oper-

ators {Dα∣ml
}α ∪ {Π⊥} defined by

Dα∣ml
= Vml,α∑

i

∣v(ml)
i,α ⟩⟨v

(ml)
i,α ∣Q′l , (30)
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for unitary Vml,α ∶SQ′
l
→SQ0 such that Vml,α∣v

(ml)
i,α ⟩Q′l =

∣i⟩Q0 for all i. Operator Π⊥ is a projector onto subspace
V ⊥ orthogonal to Span{∣v(ml)

i,α ⟩}α to obtain normalization
Π⊥ +∑αD

†
α∣ml

Dα∣ml
= I. Hence

Dα∣ml
∣φml
⟩ =∑

i

√
q
(ml)
α ∣i⟩R′

l
∣u(ml)

α ⟩MlEl
∣i⟩Q0

= ∣ϕ⟩R′
l
Q′

l

√
q
(ml)
α ∣u(ml)

α ⟩MlEl

(31)

showing that the initial maximally entangled state is re-
covered. Thus the overall action of decoding channel Dml

to the density operator ∣Ee⟫⟪Ee∣∗Iml
∗∣ψ⟩⟨ψ∣Q0 of system

Q′l at the start of the decoding round is

Dml
(E ∗ Iml

∗ ∣ψ⟩⟨ψ∣Q0)
= ∑

i,j,e

ψiψ
∗
jDml

(∣Ee⟫⟪Ee∣ ∗ Iml
∗ ∣i⟩⟨j∣Q0)

= ∑
i,j,e′,e,o′,o

ψiψ
∗
jDml

(Ke,ml,o∣i⟩⟨j∣K
†
e′,ml,o′

)⟨e′∣e⟩⟨o′∣o⟩

= ∑
i,j,α′,α

ψiψ
∗
j

√
q
(ml)
α q

(ml)
α′ Dml

(∣v(ml)
i,α ⟩⟨v

(ml)
j,α′ ∣)

× ⟨u(ml)
α′ ∣u

(ml)
α ⟩

= ∑
i,j,α

ψiψ
∗
j q
(ml)
α Dml

(∣v(ml)
i,α ⟩⟨v

(ml)
j,α ∣)

= ∑
i,j,α

ψiψ
∗
j q
(ml)
α ∣i⟩⟨j∣Q0

= λml
∣ψ⟩⟨ψ∣Q0

(32)
where λml

= ∑α q
(ml)
α . To obtain the third

equality, we use the change of basis on the
joint memory - noise environment system MlEl

to ∣u(ml)
α ⟩MlEl

= ∑o,e η
(ml)
(o,e),α∣o⟩Ml

∣e⟩El
for some

complex numbers {η(ml)
(o,e),α}o,e,α which also gives

Ke,ml,o∣i⟩ ↦
√
q
(ml)
α ∣u(ml)

α,i ⟩ = ∑o,e η
(ml)
(o,e),αKe,ml,o∣i⟩.

Whereas the fourth equality is obtained by using
eqn. (31). Thus decoding channel Dml

recovers all initial
codestate ∣ψ⟩Q0 for any error sequence e.

Lastly, we show that I
ρ
R′

l
MlEl

ml

(R′l ∶ MlEl) = 0 if and

only if S(ρR
′

lMlEl
ml ) = S(ρR

′

l
ml) + S(ρMlEl

ml
). This simply

follows from the definition of von Neumann mutual in-
formation

I
ρ
R′

l
MlEl

ml

(R′l ∶MlEl) = S(ρR
′

l
ml) + S(ρMlEl

ml
) − S(ρR

′

lMlEl
ml ) ,

(33)
which is equal to 0 if and only if S(ρR

′

lMlEl
ml ) = S(ρR

′

l
ml) +

S(ρMlEl
ml
).

Statement 2 of Theorem 2 reduces to the information-
theoretic necessary and sufficient condition for static
QECC in [24, 25] stating that the reduced density op-
erator of the reference system and the environment after

the error operation ρR
′E′ is separable. Stated equiva-

lently in terms of the von Neumann entropy, S(ρR′E′) =
S(ρR′)+S(ρE′). On the other hand, statement 3 of The-
orem 2 reduces to the necessary and sufficient condition
in [26] for static error correction, stating that it must
hold that the mutual information between the noise en-
vironment E′ and the reference system R′ after error
operation is IρR′E′ (E′ ∶ R′) = 0. Namely, there is no
correlation between E′ and R′. In the general QECC
case, the condition S(ρR

′

lMlEl
ml ) = S(ρR

′

l
ml) + S(ρMlEl

ml
) and

I
ρ
R′

l
MlEl

ml

(R′l ∶ MlEl) = 0 indicates that the reference sys-

tem R′l and the joint check measurement outcome - noise
environment system MlEl at the start of the decoding
round are uncorrelated for each final memory state ml.
However in general, the check measurement outcome sys-
tem Ml and the noise environment El exhibit some cor-
relation.

III. ERROR-ADAPTED APPROXIMATE
STRATEGIC CODE

So far we have been focusing on strategic codes which
recovers logical information exactly by showing necessary
and sufficient conditions of how to achieve this (Theo-
rem 1 and Theorem 2). However in practice, resource
limitations and some knowledge about characteristic of
the relevant noise often allow us to relax the requirements
on how well logical information should be recovered in ex-
change for a less resource-intensive code. These practical
considerations gives rise to approximate (static) QECCs,
which have been known to achieve a performance com-
parable to generic exact QECC in dealing with a partic-
ular error model in a more resource-efficient manner (see
e.g. [61–66]).

To address this practical considerations we turn to ap-
proximate strategic code, namely one where we demand
that logical information is recovered only up to a certain
fidelity by a decoding channel after the l rounds of op-
eration by the interrogator. To obtain this approximate
code, we propose an optimization problem that given an
ensemble of d′-dimensional quantum states, an l-rounds
of error E, and positive integer d > d′ and returns: (1)
an encoding channel C(0) mapping bounded linear op-
erators on Cd′ to bounded linear operators on subspace
SQ0 of Cd, (2) an l-round interrogator I, and (3) set
of decoders D corresponding to each final memory state
of interrogator I. Note that as opposed to the previ-
ously considered QECC scenario where we start with the
codespace SQ0 , here we start with a channel C(0) that
maps d′-dimensional density operators on Cd′ to density
operators with support on SQ0 ⊆ Cd. Also, the decoding
channel Dml

for final memory state ml maps density op-
erators with support on SQ′

l
⊆ Cd (the codespace after

the final error map) to density operators on Cd′ . Let us
denote the space of operators on Cd′ at the input of the
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encoding channel by HL and those at the output of the
decoding channel by HL′ .

We can describe the encoding, interrogator, and de-
coding as one single quantum comb

Q = ∑
m0∶l

Dml
⊗C

(l)
ml∣ml−1

⊗ ⋅ ⋅ ⋅ ⊗C(1)m1
⊗C(0) . (34)

Operator Q is positive semidefinite as a consequence of
each Dml

,C
(l)
ml∣ml−1

, . . . ,C
(1)
m1 ,C

(0) (Choi operators of CP

mapsDml
,C(l)

ml∣ml−1
, . . . ,C(1)m1 ,C(0)) being positive semidef-

inite operator in HL′ ⊗HQ′
l
, HQl

⊗HQ′
l−1
, . . . , HQ1 ⊗

HQ′0
, HQ0 ⊗HL, respectively. The sequence of errors

described similarly as E = ∑e ∣Ee⟫⟪Ee∣, which is also pos-
itive semidefinite.

Let Q = {L,Q0,Q
′
0, . . . ,Ql,Q

′
l, L

′} be the set of labels
of the code spaces in the dynamical code and for Q̃ ⊆ Q
denote (⋅)⊺Q̃ as partial transpose over spaces with labels
in Q̃ and TrQ̃ as partial trace over spaces with labels in
Q̃ and IQ̃ = ⊗Q′∈Q̃ IQ′ . Consider a channel T ∶ HL →
HL′ composed of the sequence of the check instruments
{C(l)

ml∣ml−1
, . . . ,C(1)m1 ,C(0)}m for sequence of memory state

m = m1, . . . ,ml, error maps E(l), . . . ,E(0) and the final
decoding channels {Dml

}ml
. We use the entanglement

fidelity of channel T on state ρ as our performance met-
ric, which is defined as

F (ρ,T ) = Tr(E ∗Q ∣ρ⟫⟪ρ∣)
= Tr((E⊺ ⊗ IL′,L)Q (∣ρ⟫⟪ρ∣⊗ IQ/L,L′)) ,

(35)

where ∣ρ⟫ = ∑j ρ∣j⟩∣j⟩ is the vectorized form of density
operator ρ.

For r ∈ {1, . . . , l}, it holds that TrQr(∑mr
C
(r)
mr ∣mr−1

) =
IQ′r−1 since ∑mr

C(r)
mr ∣mr−1

is a CPTP map. Similarly it
also holds that TrQ0(C(0)) = IL and TrL′(Dml

) = IQ′
l
for

each ml. Thus for a given error operator E and initial
state ρ, we can maximize entanglement fidelity (35) over
Q as

max
Q

Tr((E⊺ ⊗ IL′,L)Q (∣ρ⟫⟪ρ∣⊗ IQ/L,L′))

such that

Q = ∑
m0∶l

Dml
⊗C

(l)
ml∣ml−1

⊗ ⋅ ⋅ ⋅ ⊗C(0)m0

Dml
≥ 0 , TrL′(Dml

) = IQ′
l

C(0) ≥ 0 , TrQ0
(C(0)) = IL

C
(r)
mr ∣mr−1

≥ 0 , TrQr
(∑
mr

C
(r)
mr ∣mr−1

) = IQ′r−1 , ∀r ≥ 1 .

(36)
We can also impose this normalization condition to op-

erator Q as follows. Let Qml
= ∑m0∶l−1

Dml
⊗C

(l)
ml∣ml−1

⊗
⋅ ⋅ ⋅ ⊗ C

(1)
m1 ⊗ C(0) (hence Q = ∑ml

Qml
) and for r ∈

{0, . . . , l} let Q
(r)
mr = ∑m0∶r−1

C
(r)
mr ∣mr−1

⊗ ⋅ ⋅ ⋅ ⊗C
(1)
m1 ⊗C(0)

(hence Q
(1)
m1 = C

(1)
m1 ⊗ C(0) and Q(0) = C(0)). Thus we

can rewrite the conditions in (36) in this notation as

max
Q

Tr((E⊺ ⊗ IL′,L)Q (∣ρ⟫⟪ρ∣⊗ IQ/L,L′))

such that

Q ≥ 0 , TrL′(Q) =∑
ml

IQ′
l
⊗Q(l)ml

TrQr(∑
mr

Q(r)mr
) = ∑

mr−1

IQ′r−1 ⊗Q
(r−1)
mr−1∣mr−2

, ∀r ≥ 1

Q(0) ≥ 0 , TrQ0(Q(0)) = IL
Q
(r)
mr ∣mr−1

≥ 0 , ∀r ≥ 1 .

(37)

The optimization problem in (37) is an instance of
conic programming [67, 68], where the cone characterized
by Q is a separable cone. The aforementioned conic pro-
gramming can be solved using see-saw algorithm, where
every iteration of the see-saw is a semidefinite program
(SDP) [67]. In the special case of static QECC, our conic
program in (37) reduces to the bi-convex optimization
structure from Ref. [64] and can be solved using two
SDPs running one after another, until convergence within
a fixed tolerance is attained.

IV. DISCUSSIONS

In this work, we propose a unified framework for quan-
tum error-correcting codes (QECC) called the strategic
code. It encompasses all existing QECCs and all physi-
cally plausible QECCs to be discovered, including codes
involving operational adaptivity and also considering ef-
fects of spatially and temporally (non-Markovian) cor-
related error models. The strategic code introduces a
device called an interrogator which represents all oper-
ations performed by the coder in between encoding and
decoding stages. The interrogator is general, in that it
may contain any set of operations performed both spa-
tially or temporally (in sequence) with classical or quan-
tum memory. Within this framework we show an al-
gebraic (Theorem 1 and an information-theoretic (The-
orem 2) necessary and sufficient error-correction con-
ditions. These conditions apply to all known variants
of dynamical QECC (and all physically-allowed general-
izations) and include the error-correction conditions for
static QECC [23, 25, 26] as a special case. The generality
of the results partly owes to the quantum combs formal-
ism, which gives a natural spatio-temporal representation
for a QECC, as it has been for many sequential tasks in
quantum information and computation. In this formal-
ism, we also propose an optimization problem that gives
an approximate QECC that recovers logical information
up to desired level of fidelity for a given error model,
which again may exhibit non-Markovian correlations.

As mentioned in the main text, although we focus on
the scenario where the interrogator only maintains clas-
sical memory, the strategic code also accommodates an
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interrogator with quantum memory (as discussed in de-
tail in Appendix B 1). This leads to many questions in-
cluding: How does the size (dimension) quantum quan-
tum memory affects error-correction? What are the
necessary and sufficient conditions for error correction
given a fixed size quantum memory? Moreover, as this
generalization includes the entanglement-assisted QECC
(EAQECC) [39–41] as a special case, one could inves-
tigate into relationships between error-correction condi-
tions for EAQECC (e.g. [69]) to analogous conditions
for strategic code. Also, another generalization men-
tioned in the main text to allow encoding of logical
information in a susbsystem of the codespace, analo-
gous to subsystem codes (as discussed in detail in Ap-
pendix B 2). As subsystem codes has a different error-
correction conditions [27, 29, 60] compared to traditional
static codes [23, 25, 26], it is an interesting future work to
show necessary and sufficient error-correction condition
of subsystem strategic code. Another interesting future
work is to use the concept of quantum combs virtual-
ization [70, 71] to the strategic code. This is essentially
a method of approximating some operator Φ which in-
volves randomly choosing from a set of “allowed” l-rounds
strategic codes {I(k)}k followed by a post-processing.
The sampling procedure and post-processing are con-
structed based on a linear expansion of some operator Φ
in terms of {I(k)}k. Here operator Φ have the same di-
mension as I(k), but it may correspond to a non-physical
process, such as those involving indefinite causal order
or causally inseparable [47, 52, 72–78]. One could also
explore how a strategic code equipped with such exotic
causal structure performs. For more detailed discussion
on strategic code virtualization and strategic code with
more exotic causal structures, see Appendix B 3.

Further work could be done on an explicit construction
of dynamical QECCs such as a Floquet code, that cor-
rects a sequence of error maps by using the strategic code
framework and conditions in Theorem 1 and Theorem 2.
It would also be an interesting to explore further whether
adaptive strategic code can provide any advantage over
codes with fixed sequence of operations. Such advantage
could take the form of larger code distance or capability
of storing more logical information. A notion of approx-
imate strategic code can also be explored further and
optimized using our optimization method. Particularly,
one could perhaps show an approximate error-correction
condition for strategic code with respect to logical infor-
mation recovery up to a certain fidelity, analogous to ap-
proximate static QECC conditions in [79]. It is also inter-
esting to understand further the relationship between our
conditions and the operator algebraic condition in [15, 20]
which is formulated in terms of non-Abelian gauge group
defined by the sequence of Clifford gates and Pauli mea-
surements, as well as relationship between the strategic
code and other QECC frameworks [19–22].
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Appendix A: Necessary and sufficient algebraic conditions for static QECC

Knill-Laflamme’s necessary and sufficient condition for exact QECC [23] states that for a given basis {∣i⟩Q}i of
code space SQ and any distinct pair of code space basis ∣i⟩Q , ∣j⟩Q ∈SQ, it holds that

⟨i∣QE†
aEb∣i⟩Q = ⟨j∣QE†

aEb∣j⟩Q = λa,b
and

⟨i∣QE†
aEb∣j⟩Q = 0 ,

(A1)
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for some constant λa,b ∈ C. Equivalently for a projector ΠQ = ∑i ∣i⟩⟨i∣Q onto codespace SQ, it holds that

ΠQE
†
aEbΠQ = λa,bΠQ . (A2)

For subsystem QECC with code space SQ = SC ⊗SG, where SC is the code subsystem and SG is the gauge
subsystem, Nielsen-Poulin’s necessary and sufficient condition for exact QECC [27] is

ΠQE
†
aEbΠQ = IC ⊗ ga,b (A3)

where ga,b is an operator on SG and ΠQ projection onto code space SQ defined as Π = V V † where V ∶ SL → SQ is
an isometry that encodes logical states into code states.

Appendix B: Quantum combs representation of strategic code

Since E(r) is a CP map and ∑mr
C(r)
mr ∣mr−1

is a CPTP map their Choi operators E(r) and C
(r)
mr ∣mr−1

are positive

definite. Hence E(r) and C
(r)
mr ∣mr−1

admits decomposition

E(r) =∑
er

∣Eer⟫⟪Eer ∣

C
(r)
mr ∣mr−1

= ∑
or ∶f(or,mr−1)=mr

∣Cor ∣mr−1
⟫⟪Cor ∣mr−1

∣
(B1)

where ∣Eer⟫ = ∑i,j⟨i∣Eer ∣j⟩∣i⟩∣j⟩ and ∣Cor ∣mr−1
⟫ = ∑i,j⟨i∣Cor ∣mr−1

∣j⟩∣i⟩∣j⟩ are the (unnormalized) eigenvectors of E(r) and

∑mr
C
(r)
mr ∣mr−1

, which are the vectorized canonical Kraus operators of CP maps E(r) and ∑mr
C(r)
mr ∣mr−1

, respectively.
Hence we can express Ee (for e = e0, . . . , el) and Iml

as

Ee = ∣Ee⟫⟪Ee∣
Iml
= ∑

o∈Oml

∣Cml,o⟫⟪Cml,o∣ . (B2)

Here, o = o1, . . . , ol is a sequence of check measurement outcomes and Oml
is the set of all check measurement

outcome sequence o resulting in final memory state ml, i.e. o ∈ Oml
if and only if there exists m1, . . . ,ml−1 such that

o = o1, . . . , ol satisfies f1(o1) = m1, f2(o2,m1) = m2, . . . , fl(ol,ml−1) = ml. The vectors ∣Ee⟫ and ∣Cml,o⟫ are defined
by

∣Cml,o⟫ = ∣C
(l)
ol∣ml−1

⟫⊗ ⋅ ⋅ ⋅ ⊗ ∣C(1)o1 ⟫

∣Ee⟫ = ∑
i0∶l−1,j0∶l−1

(⟨il−1∣El−1
Eel−1 ∣jl−1, il−2⟩Ql−1El−2

⊗ ⋅ ⋅ ⋅ ⊗ ⟨i1∣E1Ee1 ∣j1, i0⟩Q1E0 ⊗ ⟨i0∣E0Ee0 ∣j0⟩Q0)

⊗Eel ∣jl, il−1⟩QlEl−1
⊗ ∣j0∶l⟩Q0...Ql

(B3)

where ∣j0∶l⟩Q0...Ql
=⊗l−1

r=0 ∣jr⟩Qr and for some orthonormal bases {∣ir⟩}ir and {∣jr⟩}jr of the noise environment SEr and
codespace SQr , respectively. Note that ∣Cml,o⟫ ∈SQ′0

⊗SQ1⊗⋅ ⋅ ⋅⊗SQl−1
⊗SQl

and ∣Ee⟫ ∈SQ0⊗SQ′0
⊗⋅ ⋅ ⋅⊗SQl

⊗SQ′
l
.

Using these formulas, we can now express complete interaction between the sequence of check instruments Iml
and

error maps Ee as

Ee ∗ Iml
= ∑

o∈Oml

∣Ke,ml,o⟫⟪Ke,ml,o∣ (B4)

where

∣Ke,ml,o⟫ = Eel(C
(l)
ol∣ml−1

⊗ IEl−1
)Eel−1 . . .Ee1(C(1)o1 ⊗ IE0)Ee0 ∣j0⟩Q0 ⊗ ∣j0⟩Q0

= ∑
i0∶l,j1∶l,k1∶l

(⟨jl∣Ql
C
(l)
ol∣ml−1

∣kl⟩Q′
l−1
⟨kl, il−1∣Q′

l−1
El−1

Eel−1 ∣jl−1, il−2⟩Ql−1El−2
. . . ⟨k2, i1∣Q′1E1

Ee1 ∣j1, i0⟩Q1E0⟨j1∣Q1C
(1)
o1 ∣k1⟩Q′0

⟨k1, i0∣Q′0,E0
Ee0 ∣j0⟩Q0)Eel ∣jl, il−1⟩QlEl−1

⊗ ∣j0⟩Q0 ,

(B5)
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Strategic code with quantum memory

Interrogator I Decoder D

∣ψ⟩B0Q0

C(1) C(2)
. . .

C(l) D. . .

E(0) E(1) E(2)
. . .

E(l−1) E(l)
∣ψ⟩

. . .

FIG. 4. Strategic code with quantum memory.

which is an vector in SQ′
l
⊗SQ0 .

We give a more explicit derivation of the operator representing the entire interaction between the errors and the
check instruments and the decoding procedure. Consider operators Dml

∈HD ⊗HQ′
l

and Ee ∈⊗l
r=0 HQ′r ⊗HQr and

C
(r)
mr ∣mr−1

∈ HQr ⊗HQ′r−1
. Let Q = {Q0,Q

′
0, . . . ,Ql,Q

′
l,D} be the set of labels of the code spaces in the dynamical

code and for Q̃ ⊆ Q denote (⋅)⊺Q̃ as partial transpose over spaces with labels in Q̃ and TrQ̃ as partial trace over spaces
with labels in Q̃ and IQ̃ =⊗Q′∈Q̃ IQ′ . The entire dynamical encoding, error sequence, and decoding can be expressed
as

∑
m0∶l

Dml
∗Eel ∗C

(l)
ml∣ml−1

∗ ⋅ ⋅ ⋅ ∗Ee1 ∗C(1)m1
∗Ee0

= ∑
m0∶l

TrQ/DQ0
((Dml

⊗ IQ/Q′
l
)

l

∏
r=1
(E⊺Q′r,Qr

er ⊗ IQ/Q′r,Qr
) (C(r)

mr ∣mr−1
⊗ IQ/Qr,Q′r−1

) (E
⊺Q′

0
,Q0

e0 ⊗ IQ/Q′0,Q0
))

= ∑
m0∶l

TrQ/DQ0
((Dml

⊗ IQ/Q′
l
) (E⊺e ⊗ ID) (

l

∏
r=1

C
(r)
mr ∣mr−1

⊗ IQ/Qr,Q′r−1
))

= TrQ/DQ0
((E⊺e ⊗ ID) ( ∑

m0∶l

Dml

l

⊗
r=1

C
(r)
mr ∣mr−1

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q=∑ml

Dml
∗Iml

)

= TrQ/DQ0
((E⊺e ⊗ ID)Q)

= Ee ∗Q

(B6)

Note that Ee ∗Q ∈HD ⊗HQ0 .

1. Strategic code with quantum memory

The strategic code in Definition 2 can be generalized further to the case where retention of some quantum information
can be performed between rounds. In this case, the strategic code is equipped with a quantum memory represented by
a sequence of quantum systems SB0 ,SB1 , . . . ,SBl

where system SBr is the quantum system being passed from check
instrument in round r to the check instrument in round r + 1 for r ≥ 1. This is illustrated in Fig. 4. At round r = 0,
without loss of generality we can think of the logical information being initially encoded in an entangled codestate
∣ψ⟩B0Q0 between the codespace SQ0 and the quantum memory system SB0 of the strategic code. The SB0 part of
the entangled codestate serves as an input to check instrument C (1) in round 1. In this case the check instrument
in round r has the form C(r) ∶ HBr−1 ⊗HQ′r−1

→ HBr ⊗HQr since it receives the quantum system SBr−1 from the
preceding check instrument C(r−1), whereas C(0) receives the SB0 part of the initial entangled codestate ∣ψ⟩B0Q0 .

In the quantum combs representation of the interrogator I, the eigenvectors of the interrogator operator Iml
no

longer has the tensor product structure as in the case when only classical memory is allowed in eqn. (B3). Namely in
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general we have ∣Cml,o⟫ ≠ ∣C
(l)
ol∣ml−1

⟫⊗ ⋅ ⋅ ⋅ ⊗ ∣C(1)o1 ⟫. Here ∣Cml,o⟫ instead takes the more general form of

∣Cml,o⟫ = ∑
k0∶l−1,j0∶l−1

Col,ml−1
∣kl−1, jl−1⟩Bl−1Q′l−1

⊗ ⋅ ⋅ ⋅ ⊗ ⟨k2∣B2Co2∣m1
∣k1, j1⟩B1Q′1

⊗ ⟨k1∣B1Co1 ∣k0, j0⟩B0Q′0

⊗ ∣k0⟩B0 ⊗ ∣j0∶l−1⟩Q′0...Q′l
(B7)

where ∣j0∶l−1⟩Q′0...Q′l =⊗
l−1
r=0 ∣jr⟩Q′r and for some orthonormal bases {∣kr⟩}kr and {∣jr⟩}jr of the quantum memory system

SBr and codespace SQ′r , respectively. Also as before mr = fr(or,mr−1) for all r > 1 and m1 = f1(o1).
Note that when we set the number of rounds of the strategic code to l = 0, we recover the entanglement-assisted

QECC (EAQECC) [39–41]. In this case we simply have the initial entangled codestate ∣ψ⟩B0Q0 followed by error map
E(0) then a decoder channel D, which makes up an EAQECC.

It is an interesting future work to establish a necessary and sufficient error-correction conditions for a strategic code
with quantum memory analogous to Theorem 1 and Theorem 2. In doing this one needs to restrict the dimension of
the quantum memory of the interrogator, as otherwise one can always store the entire code in the quantum memory,
bypassing the error maps. Also, one might also consider where the decoder also outputs a “residue” entangled state
alongside the recovered initial codestate as in [69].

2. Subsystem strategic code

Another generalization of the strategic code in Definition 2 is to introduce additional system in the codespace in
each round, i.e. SQr = SAr ⊗ SCr where logical information is stored in subsystem SAr . This is analogous to
subsystem QECC [27, 29, 59, 60] where the codespace is of the form SQ = SA ⊗SC . In this generalization, which
we call a subsystem strategic code, we still retain the form of the interrogator operator Iml

= ∑o∈Oml
∣Cml,o⟫⟪Cml,o∣.

Namely, ∣Cml,o⟫ has the same expression as eqn. (B3), or as eqn. (B7) in the case where quantum memory is available
Hence we can modify Definition 2 so that we say a subsystem strategic code (SQ0 , I) corrects E if

Dml
(E ∗ Iml

∗ (ρ⊗ σ)) = ρ⊗ σml
(B8)

for all density operators ρ in HA0 and σ,σml
operators in HC0). Lastly, necessary and sufficient conditions in

Theorem 1 generalized to the subsystem strategic codes should also reduce to the necessary and sufficient condition
for subsystem codes [27] when we set the number of rounds l = 0,

ΠQE
†
e′EeΠQ = ΠA ⊗ ge′,e (B9)

where ge′,e is an operator in HC . This generalized condition for subsystem strategic code, however, is left for future
work.

3. Virtual strategic code and strategic codes with exotic causal structure

A recently proposed virtual quantum resource theory [70, 71] offers a framework of approximating a process Φ by
performing sampling process from a set of allowed process F where Φ ∉F , followed by a post-processing, to achieve
a certain task. As it is shown in [70] on how this framework can be applied to quantum combs, here we show how one
can “virtualize” a strategic code, including those with more exotic causal structure such as an indefinite causal order
or causal inseparability [47, 52, 72–78, 80].

First we can consider a set of l-rounds allowed strategic codes {I(k)}k (e.g. those that only maintains classical
memory), where we include an encoding channel G(k) ∶ L (Cd′) →H

(k)
Q0

mapping linear operators on d′ dimensional

complex vector space to linear operators on an initial codespace S
(k)
Q0

in the strategic code I(k). So a d′ dimensional
state ∣ψ⟩ encoded with strategic code I(k) with error E gives a state

E ∗ I(k)ml
∗ ∣ψ⟩⟨ψ∣ (B10)

at the start of the decoding round for a final memory state ml.
The sampling and post-processing processes are based on linear expansion of operator Φ = ∑k βkI

(k) where βk ∈ R
where Φ represents some black-box process that allows input of initial state ∣ψ⟩⟨ψ∣ and interaction with error E as
I(k) do. Operator Φ have the same dimension as I(k), but it may not correspond to a quantum comb. Namely it
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may correspond to a process involving indefinite causal order or causally inseparable, e.g. where the effect of errors
between round r and r′ ≠ r may not have a definite causal relation (as opposed to the strategic code where interaction
between the investigator’s operation and the error map at round r = 1 influences the interaction at round r = 3, but
not the other way around). Here, operator Φ is represented by a process matrix [47, 52, 80], which is more general
object than a quantum comb.

To perform sampling, one constructs a probability distribution over k with probabilities γk = ∣βk ∣
τ

for τ = ∑k ∣βk ∣ so
that

Φ =∑
k

(sign(βk)τ)γkI(k) . (B11)

Using this relation, one can sample from distribution {γk}k and upon obtaining outcome k, use strategy code I(k)

to encode some fixed state ∣ψ⟩ and after applying noise E obtain the output state E ∗ I(k)ml ∗ ∣ψ⟩⟨ψ∣ then apply “post-
processing” by a multiplication by (sign(βk)τ). As shown in [70, 71], by performing this sampling and post-processing
multiple times we can obtain an approximation of

Tr((E ∗Φ ∗ ∣ψ⟩⟨ψ∣)A) (B12)

for some bounded linear operator A. Lastly, we note that decoder may be included in I(k) as well to have the entire
QECC process where the output E∗ I(k)ml ∗ ∣ψ⟩⟨ψ∣ is the output of a decoder. It would be interesting to investigate into
the performance of strategic code virtualization and how strategic codes with exotic causal structures can or cannot
improve code performance. However, this is left for future work.

Appendix C: Spacetime Code in the Quantum Combs Formalism

Now we describe the spacetime code [14–16] in our dynamical QECC quantum combs framework. The spacetime
code is first proposed by Bacon,et.al. for a circuit consisting of a subset of Clifford gates in [14], then a generalization to
circuits consisting of any Clifford gates is done by Gottesman in [15]. In these two spacetime codes, Pauli measurements
for syndrome extraction is performed after the last layer of Clifford gates is applied. This is later generalized by
Delfosse,et.al. in [16] where Pauli measurements can be performed anywhere in the circuit. Here we consider the most
general spacetime code defined in [16] in demonstrating how spacetime code fits in our framework.

A spacetime code is defined by a circuit that takes n qubits as input, followed by l layers of Clifford operations, where
each layer consists of Clifford gates and Pauli measurements on disjoint qubits. In Gottesman’s and Bacon,et.al.’s
spacetime code [15] where measurements are restricted to the end of the circuit, the circuit takes q qubit input
along with preparation of a ancilla qubits at the beginning of the circuit and q′ output qubits with {∣0⟩, ∣1⟩} basis
measurements on b qubits at the end of the circuit. In this circuit q, a, q′, b must satisfy n = q + a = q′ + b, where n is
the width of the circuit and thus each layer consists only of Clifford gates.

We note that our dynamical QECC framework can also describe a sequence of such circuits C(1),C(2), . . . ,C(l) where
error syndromes from one circuit determines the structure of the subsequent circuit, hence induces adaptivity. This
temporal dependence across circuits has been mentioned in [15] although was not explored further. The quantum
combs formalism for dynamical QECC applied to spacetime code presented here allows such exploration with the
natural temporal-dependence representation.

1. Dynamical QECC quantum combs representation of spacetime code

Now we describe the quantum combs dynamical QECC of a spacetime code with respect to a circuit with l layers
(see Fig. 5). In our dynamical QECC framework, this spacetime code has l rounds. At round r = 0, error Ee0 is
inflicted at the n qubit input. At round r ≥ 1, Clifford operation Cr is applied to the n qubits, followed by error
Eer . The Clifford operation consisting of Clifford gates and Pauli measurements performed on disjoint set of qubits is
described by Cr = {Cr,or}or∈Or where Cr,or is a bounded linear operator from C2n to C2n and or ∈ Or is a measurement
outcome from the Pauli measurements with Or being the set of all possible measurement outcomes. If there are k
Pauli measurements in Cr then the outcome is in the form of a k-tuple or = (or1 , . . . , ork). If no Pauli measurement
is performed at round r, then we set a constant outcome for this round, i.e. Or = {or} is a singleton set and Cr,or

is a Clifford unitary. Clifford operation Cr at each round then defines a quantum instrument Cr = {Cr,or}or where
Cr,or(ρ) = Cr,orρC

†
r,or is a CP map such that ∑or Cr,or is a CPTP map. When measurement outcome o = o1, . . . , ol is
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Clifford circuit Co

(1,0) (1,1) (1,2) (1, l)
(2,0) (2,1) (2,2) (2, l)

(n,0) (n,1) (n,2) (n, l)

input Ee0 C1 Ee1 C2 Ee2

. . .

Cl Eel output
. . .

⋮ ⋮ ⋮ . . . ⋮
. . .

o1 o2 . . . ol

FIG. 5. Spacetime code Clifford circuit. Circuit Co takes n qubits as input at the start of the circuit and outputs n qubits
along with measurement outcomes o = o1, . . . , ol peformed throughout the circuit. Between the input and the output, the circuit
contains l layers of Clifford operations C1, . . . ,Cl, each layer Cr consist of Clifford gates and Pauli measurements with acting on
disjoint subsets of the n qubits. Outcomes from Pauli measurements at layer r is denoted by or. Error operations are modelled
to occur after the input (Ee0) and after each layer (Ee1 , . . . ,Eel). Error Ee0 represents the noise on input qubits and error Eer

for r ≥ 1 represent noise from the Clifford gates and Pauli measurements in layer Cr. A spacetime code for circuit C is defined
by n(l + 1)-qubit stabilizer group, which in turn is defined by the circuit components. Each qubit (illustrated as black dots)
is labeled by (i, r): for r ≥ 1 it correspond to the i-th qubit output of Cr and for r = 0 it correspond to the i-th qubit of the
input. Error Eer in round r is applied to qubits {(i, r)}i.
obtained, the quantum combs representation of the circuit is

Co = ∣Co⟫⟪Co∣ =
l

⊗
r=1
∣Cr,or⟫⟪Cr,or ∣ (C1)

where ∣Cr,or⟫ is the vectorized form of operator Cr,or .
Errors occurring throughout the circuit is described by a sequence of bounded linear operators Ee0 , . . . ,Eel map-

ping vectors in C2n to C2n . An error operator Eer takes the form of a tensor product of Paulis on qubits labeled by
{(i, r)}i∈[n]. Explicitly this can be expressed as Eer = E1,er ⊗ ⋅ ⋅ ⋅ ⊗ En,er where Ei,er ∈ {I,X,Y,Z} is a qubit Pauli
operator where identity Ei,er = I indicates no error is inflicted on qubit i at round r. In the quantum combs represen-
tation, we can express the error sequence e = e0, . . . , el as a positive semidefinite operator ∣Ee⟫⟪Ee∣ =⊗l

r=0 ∣Eer⟫⟪Eer ∣
where ∣Eer⟫ = ⊗n

i=1 ∣Ei,er⟫ and ∣Ei,er⟫ = ∑j′,j⟨j′∣Ei,er ∣j⟩∣j′⟩r,i∣j⟩r,i. Hence the combs representation of the an error
sequence can be expressed conveniently as a tensor product of Choi operator of error operators for each coordinate
(i, r) in the spacetime grid

∣Ee⟫⟪Ee∣ =
l

⊗
r=0

n

⊗
i=1
∣Ei,er⟫⟪Ei.er ∣ , (C2)

which closely resembles how errors are represented in spacetime code as a tensor product of the error operators
Fe =⊗l

r=0⊗n
i=1Ei,er . Using both the quantum combs representation of the circuit (eqn.(C1)) and the error sequence,

the interaction between then can be expressed using the link product as

∣Ee⟫⟪Ee∣ ∗Co (C3)

which is a positive semidefinite operator from C22n to C22n corresponding to a CP map from the n-qubit input to the
n-qubit output.

Spacetime code is then defined by n(l + 1) qubit stabilizer group Sst where the qubits are placed in a grid and
labeled by a tuple (i, r) where i ∈ {1, . . . , n} corresponds to a qubit register and r ∈ {0, . . . , l} corresponds to a layer
in the circuit. So, qubits labeled by {(i,0)}i are input qubits which error Ee0 are inflicted upon. Whereas for r ≥ 1,
qubits {(i, r)}i are the qubits placed at the output of Clifford operation Cr which error Eer occurs. If there are s
Pauli measurements across the circuit with observables S1, . . . , Ss, then we can write the collection of the outcomes
as a bit string o = o1, . . . , os which is then being put through a function f(o) =m which maps measurement outcomes
to error syndromes. Error syndrome m is then used to choose which of the decoding channel {Dm}m should be used
at the circuit output.
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Honeycomb code Co

input Ee0 CX Ee1 CY Ee2 CZ Ee3

. . .

Cl Eel output

. . .

⋮ ⋮ ⋮
. . .

o1 o2 o3 . . . ol

FIG. 6. Hastings-Haah honeycomb code interrogator.

In Delfosse,et.al.’s spacetime code [16] decoding is done in three steps. The first step is by using check bitstrings
{u1, . . . , uq} ⊆ {0,1}s to define the function f mapping the measurement outcome bitstring o to syndrome bitstring
m = m1 . . .mq ∈ {0,1}q. This is done by taking the inner product between uj and o as the j-th bit of f(o) = m,
i.e. mj = ⟨uj , o⟩ = uj,1o1 + ⋅ ⋅ ⋅ + uj,sos, which is to be understood as the j-th syndrome of measurement outcome o.
The second step is to identify the circuit error Fe = ⊗l

r=0⊗n
i=1Ei,er (or ∣Ee⟫⟪Ee∣ in the quantum combs form) using

syndrome m. In [16], this is done by using a “most likely effect” (MLE) decoder on the nl-qubit spacetime stabilizer
code. This stabilizer code is defined by circuit {Co}o and check bitstrings {u1, . . . , uq} (or equivalently, function f).
Given syndrome m, the MLE decoder outputs an nl-qubit Pauli g(m) which is its guess of the true circuit error Fe.
Now the third step is to propagate g(m), denoted by

ÐÐÐ→
g(m), and take its n-qubit Pauli corresponding to the last layer

l of the circuit, denoted by [
ÐÐÐ→
g(m)]l. Propagation of (a subset of) an n(l + 1)-qubit Pauli P placed on the grid of

the circuit is introduced as the spackle operation in [14]. Then we compute commutation relation between
ÐÐÐ→
g(m) and

observables S1, . . . , Ss corresponding to each measurement, to obtain bitstring γ = γ1, . . . , γs where γj = [Sj ,
ÐÐÐ→
g(m)].

Then we can unflip measurement outcome string o by o + γ. Using [
ÐÐÐ→
g(m)]l and γ we can correct the output state

from the circuit.

2. Spacetime code generalization in the strategic code framework

In the strategic code framework a generalization of the spacetime code can be constructed using adaptivity on the
Clifford operations. Following the notation of the strategic code, we can denote the set of allowed Clifford operations
in round r as {C(r)mr−1}mr−1 , where C(r)mr−1 is a CP map defined by its action C(r)mr−1(ρ) = ∑or C

(r)
or ∣mr−1

ρC
(r)†
or ∣mr−1

. As before,

C
(r)
or ∣mr−1

consists of Clifford gates and Pauli measurements on disjoint set of qubits. For simplicity, we assume that mr

has a one-to-one correspondence with the sequence of measurement outcomes o1, . . . , or hence we can still describe the
circuit as C = {Co}o as a sequence of outcomes o = o1, . . . , ol is maintained in the classical memory of the code until the
decoding round. For example, when a Pauli measurement S1 in round 1 gives an outcome o1 = +1, we apply Clifford
operation C(2)+1 (⋅) = ∑o2 C

(2)
o2∣+1 ⋅ C

(2)†
o2∣+1 in round 2, otherwise we apply Clifford operation C(2)−1 (⋅) = ∑o2 C

(2)
o2∣−1 ⋅ C

(2)†
o2∣−1

where Clifford gates and Pauli measurements in C(2)
o2∣+1 and C(2)

o2∣−1 may differ.
In this case we have a family of spacetime codes, one for each trajectory defined by a sequence of measurement out-

comes o. Using the same method in obtaining the stabilizer group of the spacetime code (i.e. from the backpropagated
measurement observables), we obtain a stabilizer group for each outcome sequence o. A simple case where this may
happen can be seen using the example mentioned at the end of the previous paragraph. Suppose C(2)+1∣+1 = U2 ⊗ ∣0⟩⟨0∣
and C(2)+1∣−1 = U2 ⊗ ∣+⟩⟨+∣, then their corresponding measurement observables are Z and X.

Appendix D: Hastings-Haah honeycomb Floquet code as a strategic code

Here we look into how the strategic code framework can be used in determining correctable error in the Hastings-
Haah honeycomb Floquet code. For simplicity, we consider a single hexagon in the honeycomb code with corresponding
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stabilizer ZZZZZZ. Measurement observables in round 1 and 2 are

XXIIII, IIXXII, IIIIXX

IY Y III, IIIY Y I, Y IIIIY ,
(D1)

respectively, and the outcomes are o1, o2 ∈ {+1,−1}3, where {+1,−1} are the corresponding eigenvalues of the two
eigenstates for each observable. Hence the check instruments C(1)X and C(2)Y at these two rounds have Kraus operators

C
(1)
+1,+1,+1∣X = (∣++⟩⟨++∣ + ∣−−⟩⟨−−∣)1,2 ⊗ (∣++⟩⟨++∣ + ∣−−⟩⟨−−∣)3,4 ⊗ (∣++⟩⟨++∣ + ∣−−⟩⟨−−∣)5,6

⋮
C
(1)
−1,−1,−1∣X = (∣+−⟩⟨+−∣ + ∣−+⟩⟨−+∣)1,2 ⊗ (∣+−⟩⟨+−∣ + ∣−+⟩⟨−+∣)3,4 ⊗ (∣+−⟩⟨+−∣ + ∣−+⟩⟨−+∣)5,6

C
(2)
+1,+1,+1∣Y = (∣+i,+i⟩⟨+i,+i∣ + ∣−i,−i⟩⟨−i,−i∣)2,3 ⊗ (∣+i,+i⟩⟨+i,+i∣ + ∣−i,−i⟩⟨−i,−i∣)4,5 ⊗ (∣+i,+i⟩⟨+i,+i∣ + ∣−i,−i⟩⟨−i,−i∣)6,1

⋮
C
(2)
−1,−1,−1∣Y = (∣+i,−i⟩⟨+i,−i∣ + ∣−i,+i⟩⟨−i,+i∣)2,3 ⊗ (∣+i,−i⟩⟨+i,−i∣ + ∣−i,+i⟩⟨−i,+i∣)4,5 ⊗ (∣+i,−i⟩⟨+i,−i∣ + ∣−i,+i⟩⟨−i,+i∣)6,1

(D2)
where subscripts indicates which qubits the projector is acting on and ∣±±⟩ = ∣±⟩⊗ ∣±⟩ and ∣± i,±i⟩ = ∣± i⟩⊗ ∣± i⟩ and
∣±⟩, ∣ ± i⟩ are ±1 eigenstates of Pauli X and Y , respectively.

Consider two errors Ee0 = ZIIIII and Ee′0
= IZIIII at round 0 (recall that round r error occurs after round r

operation and before round r + 1 operation), and no further errors occur in round 1 and 2 i.e. Ee1 = Ee2 = IIIIII.
Both of these errors are correctable by the honeycomb code as both errors Ee0 = ZIIIII and Ee′0

= IZIIII flips
the outcome of both round 1 and round 2 measurements, allowing the decoder to detect the error. In the strategic
code framework, we have a pair of error sequences e = e0, e1, e2 and e′ = e′0, e1, e2 with corresponding vectorized error
operators

∣Ee⟫ = ∣ZIIIII⟫⊗ ∣IIIIII⟫⊗ ∣IIIIII⟫
∣E′e⟫ = ∣IZIIII⟫⊗ ∣IIIIII⟫⊗ ∣IIIIII⟫ .

(D3)

Consider orthogonal states ∣j⟩, ∣k⟩ in the initial codespace SQ0 . Then since all check outcomes are stored in the
memory of the honeycomb code interrogator, by Corollary 1 it holds that

⟪Ee′ ∣(∣Co⟫⟪Co∣⊗ ∣k⟩⟨j∣)∣Ee⟫ = δk,jλe,e′,o (D4)

for some constant λe,e′,o. Since the Z pauli flips the ∣±⟩ to ∣∓⟩ and ∣± i⟩ to ∣∓ i⟩, we obtain outcomes o1 = (−1,+1,+1)
and o2 = (+1,+1,−1) for Ee and o1 = (−1,+1,+1) and o2 = (−1,+1,+1) for Ee′ (since without error both initial
codestate ∣j⟩ and ∣k⟩ gives all + outcomes for both o1 and o2)

We can verify that this condition holds for error sequences e, e′ as

⟪Ee′ ∣(∣Co⟫⟪Co∣⊗ ∣k⟩⟨j∣)∣Ee⟫ = ⟨k∣Ee′0
C(1)†o1 C(2)†o2 C(2)o2 C

(1)
o1 Ee0 ∣j⟩ = 0 (D5)

for all o = o1, o2. One can see this by noting that C(2)†o2 C
(2)
o2 C

(1)
o1 Ee0 ∣j⟩ = 0 for all o1 ≠ (−1,+1,+1) and o2 ≠ (+1,+1,−1)

while ⟨k∣Ee′0
C
(1)†
o1 C

(2)†
o2 = 0 for all o1 ≠ (−1,+1,+1) and o2 ≠ (−1,+1,+1). Namely, the sequence of check measurement

outcomes maps Ee0 ∣j⟩ and Ee′0
∣k⟩ to different subspaces (even with j = k), which allows one to construct a decoder

detecting and distinguishing these errors.
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Abstract. Recently the connection between symmetry and physics has been actively
studied in the framework called the resource theory of asymmetry (RTA). In RTA, the
resource measures characterizing the asymptotic conversion rate between i.i.d. states
are not known except for U(1) and Z2 symmetry. In this work, we address the optimal
conversion rate for both finite group symmetry and continuous group symmetry. For
finite symmetries, we (1) derive the formula for the exact conversion rate, and (2)
show that the approximate conversion rate diverges. For continuous symmetry, we
give the upper limit of the approximate conversion rate in terms of the ratio of the
Fisher information matrices, and conjecture that this limit is achievable.

Keywords: resource theory of asymmetry, i.i.d. conversion rate, quantum Fisher
information

1 Introduction

Symmetry is one of the most powerful guid-
ing principle in modern physics [1, 2], impos-
ing a significant constraint on possible physical
theories or possible quantum phases of matter.
It can also constrains the set of possible oper-
ations one can perform, the situation of which
is studied from the viewpoint of quantum in-
formation theory.
Resource theories provide a powerful frame-

work to analyse such situations. It defines
quantum “resources” in a variety of situations
under some constraints on possible operations,
and examines, in a general framework, what
can be done when a resource is used, com-
pared to when it is not. There are several
types of resource theory depending on which
property of system is considered resource [3],
such as entanglement theory [4, 5, 6] and quan-
tum thermodynamics [7, 8, 9], which treat en-
tanglement and athermality as resources, re-
spectively. In particular, the resource theory
of asymmetry (RTA) deals with the “degree
of symmetry breaking” (e.g., the noncommu-
tativity between the conserved charge corre-
sponding to the symmetry and the state) of
a state as a resource, allowing the restrictions
imposed by the symmetry to be treated in a
unified framework [10, 11, 12, 13, 14, 15, 16,
17, 18, 19]. Because of its properties, RTA
has found application in a great number of

∗Both authors contributed equally to this work.
†tomohiro.shitara@ntt.com
‡hiroyasu.tajima@uec.ac.jp

symmetry-related subjects such as speed lim-
its [20], implementation of quantum computa-
tion gates [21, 23, 32, 33], clocks [22], coher-
ence broadcasting [24, 25], measurement the-
ory [26, 27, 28, 29, 30, 31, 32], quantum error
correction [32, 33, 34, 35, 36], coherence cost
of thermodynamic process [32], and black hole
physics [32, 33].

Despite its importance and potential, RTA
still has many open problems in its founda-
tions. One of the most important problem is to
identify a resource measure or a set of resource
measures that characterizes the convertibility
between the independent and identically dis-
tributed (i.i.d.) states. The convertibility be-
tween i.i.d. states is the most important prob-
lem in resource theory. For example, the entan-
glement entropy [4] in the case of entanglement
and the Helmholtz free energy [7] in the case of
quantum thermodynamics (for isothermal pro-
cesses) determine the optimal conversion rates
between the i.i.d. states. In RTA, on the other
hand, this problem has been solved only for
U(1) symmetry [10, 15, 16] and Z2 symme-
try [10], the simplest of the continuous and
discrete symmetries, respectively. This fact
means that the most fundamental quantities
in RTA have not been known yet, preventing
the further analysis of symmetries.

In this work, we solve this problem for sym-
metry described by a finite group, and par-
tially for continious groups. For finite sym-
metries, we determine the optimal conversion
rate between two i.i.d. states under covariant
operations, or the free operation in RTA, in
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two cases: when the transformation is error-
free and when it allows negligibly small errors.
Surprisingly, the results in these two cases are
totally different from each other. We show that
the optimal conversion rate in the error-free
case is characterized by a set of resource mea-
sures, while in the case of allowing negligibly
small errors, any state can be produced from
any resource state with arbitrarily high rate.
For continuous symmetries, we rigorously de-
rive the upper limit of the approximate con-
version rate in terms of the ratio of the quan-
tum Fisher information matrices (QFIMs). We
also argue that the obtained limit is expected
to be achievable from two viewpoints, namely,
argument based on the central limit theorem,
and two examples (U(1) and SU(2) in part)
where the QFIM-based upper limit is achiev-
able. Together with the fact that the QFIM is
a resource monotone in any compact and con-
nected Lie group [19], we argue that the QFIM
is the most fundamental quantity in RTA, play-
ing a similar role of entanglement entropy in
entangelment theory.
Technical details of our work are given in

Ref. [37].

2 Settings

We adopt the standard formulation of
RTA [10, 11, 28], where we consider systems
with a symmetry described by a group G. The
action of symmetry transformation with re-
spect to an element g ∈ G is represented by
a unitary operator U(g). Since the succes-
sive operation of two symmetry transforma-
tions is also a symmetry transformation, we
have U(g)U(g′) = eiω(g,g

′)U(gg′), or equiva-
lently

Ug ◦ Ug′(...) = Ugg′(...), (1)

where Ug(...) = Ug...U
†
g is the conjugate op-

eration of Ug. Namely, U(g) is a projective
unitary representation of G. We hereafter use
the abbreviation UG = {Ug}g∈G.
Similarly to other resource theories, RTA has

free states and free operations. Free states in
RTA are called symmetric states, defined as
states satisfying

Ug(ρ) = ρ, ∀g ∈ G. (2)

Free operations in RTA are called covariant op-
erations. When a CPTP-map Λ from a quan-
tum system S to S′ and projective unitary rep-
resentations UG and U ′

G on S and S′ satisfy the
following equation, Λ is called a covariant op-
eration with respect to UG and U ′

G:

U ′
g ◦ Λ(...) = Λ ◦ Ug(...), ∀g ∈ G. (3)

Under the settings described above, we de-
fine two types of i.i.d. state conversion rate.
The first one is the approximate asymptotic
state conversion rate:

Rap(ψ → ϕ) := sup{r|∃{ϵN}, s.t. lim
N→∞

ϵN = 0,

|ψ⟩⊗N UG−cov→ ϵN |ϕ⟩
⊗rN}, (4)

where |ψ⟩⊗N UG−cov→ ϵN |ϕ⟩⊗rN means that
there exists a covariant operation Λ such that
∥Λ(ψ⊗N )−ϕ⊗rN∥1 ≤ ϵN . Most resource theo-
ries, including U(1)-symmetry RTA, deal only
with the optimal rate of approximate asymp-
totic conversion. However, as we will see later,
the optimal rate of the approximate asymp-
totic transformations diverges in RTA for fi-
nite groups. Therefore, following the previous
studies on Z2-symmetry RTA [10], we intro-
duce the second notion of the conversion rate
in exact asymptotic transformation:

Rex(ψ → ϕ) := sup{r|∃N0, ∀N > N0,

|ψ⟩⊗N UG−.cov→ 0 |ϕ⟩⊗rN}. (5)

3 Key quantities

In this section, we introduce two quantities
that characterize the i.i.d. state convertibility
in RTA. The first quantity is the logarithm of
the characteristic function defined as

L(ψ, g) := − log |χψ(g)|, (6)

where χψ(g) := ⟨ψ|U(g)|ψ⟩ is the character-
istic function. Since |χψ(g)| monotonically in-
creases under covariant operations [28], L(ψ, g)
is a resource monotone measure, which is not
necessarily faithful. We will see the set of
L(ψ, g) characterizes the exact i.i.d. state con-
version rate for finite symmetries.

The second quantity is the QFIM, or more
precisely, the symmetric logarithmic derivative
Fisher information matrix. For a state ρ with
the spectral decomposition ρ =

∑
k pkψk and a

set of Hermitian operators X⃗ := (X1, .., Xm),
the (i, j)-component of the QFIM F̂ρ(X⃗) is
given by

(Fρ(X⃗))i,j =
∑
k,l

2(pl − pl)2

pk + pl
⟨ψk|Xi |ψl⟩ ⟨ψl|Xj |ψk⟩ .

(7)

We note that when G is a connected Lie
group, there exists a set of Hermitian operators
X⃗UG

whose F̂ρ(X⃗UG
) is a resource measure in

RTA [19].

4 RTA for finite groups

First, we show that when the symmetry G is
finite, there is no optimal rate for the approx-
imate i.i.d. transformation. Indeed, Rap(ψ →
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ϕ) either diverges or equals zero as stated by
the following theorem.

Theorem 1 Let G be a finite group. We also
take |ψ⟩ and |ϕ⟩ as arbitrary pure states satis-
fying Gψ,0 ⊂ Gϕ,0. Then,

Rap(ψ → ϕ) =

{
∞ SymG(ψ) ⊂ SymG(ϕ),

0 otherwise.

(8)

In other words, for arbitrary real positive num-
ber r > 0, there exists a sequence of real pos-
itive numbers {ϵN} satisfying limN→∞ ϵN = 0
and

|ψ⟩⊗N UG−cov→ ϵN |ϕ⟩
⊗rN

. (9)

Theorem 1 shows that when ψ has resource
L(ψ, g) for all g ∈ G except for g = e, we can
transform ψ to arbitrary state ϕ with approx-
imate i.i.d. transformation.
Therefore, we consider the exact conversion

rate instead of the approximate one. To state
our result, we define the subset of G where
L(ϕ, g) diverges whenever g ∈ Gϕ,∞, as

Gϕ,∞ := {g ∈ G|χϕ(g) = 0}. (10)

Then, we show the following theorem.

Theorem 2 Let G be a finite group. We as-
sume that L(ϕ, g) = 1 holds only when g = e.
Then, the following equality holds:

Rex(ψ → ϕ)

=

 min
g∈G\({e}∪Gϕ,∞)

L(ψ, g)

L(ϕ, g)
(Gϕ,∞ ⊂ Gψ,∞),

0 (Gϕ,∞ ̸⊂ Gψ,∞).

(11)

When G is commutative, we can remove the
assumption that L(ϕ, g) = 0 holds only when
g = e. In that case, we can substitute the
following subset of G for {e} in (11):

Gϕ,0 := {g ∈ G||ξϕ(g)| = 1}. (12)

The theorem 2 shows that the optimal rate
of the exact i.i.d. transformation is determined
by the ratios of the resource measures L(ψ, g)
and L(ϕ, g). When G is Z2, the theorem 2
reduces to Gour and Sppekens’ result [?] for the
optimal rate of the exact i.i.d. transformation
for RTA for Z2 symmetry.

5 RTA for Lie groups

We next deal with continuous symmetry. We
focus on the case where G is a compact con-
nected Lie group. In that case, we can show
that the above divergence of the optimal rate
of the approximate i.i.d. transformation never
happen. In fact, the optimal rate Rap(ψ → ϕ)
is bounded by the ratio of the QFIMs:

Theorem 3 Let G be a compact and con-
nected Lie group. Let |ψ⟩ and |ϕ⟩ be arbitrary
pure states. Now we define the ratio rF as fol-
lows:

rF (ψ, ϕ) := sup{r|F̂ψ(X⃗UG
) ≥ rF̂ϕ(X⃗UG

)}
(13)

Then, the following inequality holds:

Rap(ψ → ϕ) ≤ rF (ψ, ϕ). (14)

Theorem 3 shows that the behavior of the
optimal rate is very different between the RTA
governed by the symmetry described by a fi-
nite group and that governed by the symmetry
described by a Lie group. Unlike the case of
finite groups, in the case of Lie groups, the op-
timal rates never diverge and remain at finite
values.

Theorem 3 also strongly implies that when
G is a compact and connected Lie group,
the optimal rate Rap(ψ → ϕ) is determined
by rF (ψ, ϕ). Actually there are some evi-
dences based on a central-limit-theorem-like
argument [37] that the following conjecture is
valid:

Conjecture 1 The converse of Theorem 3 is
also valid. In other words, the following rela-
tion holds:

Rap(ψ → ϕ) ≥ rF (ψ, ϕ). (15)

If this conjecture is correct, then Rap(ψ →
ϕ) = rF (ψ, ϕ) holds. Namely, in that case,
the optimal rate is characterized by the “ra-
tio” of the QFIMs. This conjecture holds true
for U(1) symmetry, and is consistent with the
partial result on SU(2) symmetry [10].
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Abstract. We present a method for computing energy spectra in lattice field theory using digital quantum
simulation. The method, inspired by coherent imaging spectroscopy, perturbs the vacuum with a time-
oscillating quench and analyzes the resulting loss in vacuum-to-vacuum probability to identify excited levels.
We apply this technique to (1+1)-dimensional quantum electrodynamics with topological angle, known as
the Schwinger model. Using a classical simulator, we prepare the vacuum on a lattice with the adiabatic
method and apply various quenches through Suzuki-Trotter approximation. The computational complexity
estimation suggests the method be potentially efficient with early fault-tolerant quantum computers.

Keywords: digital quantum simulation, lattice gauge theory, spectroscopy, quantum state transition,
quench, Schwinger model, sign problem

1 Introduction

Recent technological advances in quantum computers
have drawn the attention of the high-energy physics com-
munity [1]. The digital quantum simulation of field the-
ory is, in particular, of interest because it naturally em-
beds the Hamiltonian formulation of quantum field the-
ory in its architecture [2, 3]. A great advantage of the
Hamiltonian formulation over the conventional Monte
Carlo approach is the absence of the infamous sign prob-
lem [4, 5, 6]. Instead, we typically have to deal with a
huge vector space corresponding to the Hilbert space but
one may overcome that by utilizing quantum comput-
ers in the future. Therefore it is worth demonstrating
the utility of quantum simulation in the context of high-
energy physics.
In this poster, we discuss the energy spectroscopy of

field theory as an application of quantum simulation to
the problems in lattice gauge theories [7]. Inspired by the
experimental technique, called coherent imaging spec-
troscopy [8], we provide a quantum algorithm that cap-
tures the energy eigenvalues of the lattice Hamiltonian.
For the demonstration of our method, we consider the

Scwhinger model, (1 + 1)-dimensional quantum electro-
dynamics with non-trivial topological angle [9, 10]. The
Lagrangian density of the Schwinger model reads

L0 =
1

2g2
F 2
01 +

θ

2π
F01 + ψiγµ (∂µ + iAµ)ψ −mψψ ,

(1)

where m, g, and θ stand for the mass of the electron, the
coupling constant and the topological angle, respectively.
The two-component Dirac spinor of electron is denoted
by ψ and the gauge field and the field strength are by
Aµ and F01, respectively. Since the model carries the
non-trivial topological term, sign problem makes it hard
to measure the observable with Monte Carlo sampling.

∗dongwook.ghim@riken.jp
†masazumi.honda@riken.jp

Thus, it is nice to perform its quantum simulation to un-
veil its physics Monte Carlo techniques are not accessible
to.

2 Simulation Method for the Spec-
troscopy

We outline the simulation method for the spectroscopy
of the lattice regularized theory. We prepare the ground
state of a system and quench the state by an operator pe-
riodically oscillating in time with a particular frequency ω
and measure the survival probability of the ground state.
If ω is close to the energy difference between one of ex-
cited states and the ground state, Loschmidt probability
for the vacuum state becomes small since the transition
to the excited state is facilitated. Repeating this for var-
ious values of ω, one can estimate the energy spectrum.
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Figure 1: The cartoon of the simulation procedure. The
red line schematically represents the coefficients in the
Hamiltonian. In the first stage (orange), we ramp the
coefficients so that they interpolates the simple initial
Hamiltonian to the target Hamiltonian. The next stage
(green) simulates the sinusoidal oscillation of the param-
eters, either triggered by operator insertion or parameter
quench. At the end, we measure the Loschmidt proba-
bility for the vacuum state.

In detail, we have freedom of choice in quantum al-
gorithms at two moments: the ground state prepara-
tion and implementation of time evolution. In this work,
we simply adopt the adiabatic state preparation for the
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ground state and the 2nd order Suzuki-Trotter approxi-
mation for the time evolution [11, 12, 13] while one could
use different algorithms like variation-based ones depend-
ing on purposes.

3 Lattice Formulation of the Schwinger
Model and its Simulation on Qubits

3.1 Lattice Hamiltonian and the Quenches

To put the theory on quantum computer, we first put
the Schwinger model on a lattice and map it to a spin
system. Here, rather than directly working with (1), we
consider another equivalent Lagrangian obtained by the
chiral rotation ψ → eiθγ5/2ψ to absorb the θ-term as in
[14, 15] via transform of path integral measure [16]:

L =
1

2g2
F 2
01 + ψiγµ (∂µ + iAµ)ψ −mψeiθγ

5

ψ . (2)

Then we put the theory on a lattice with open boundary
condition. The parameters are defined in terms of lattice
spacing a and coupling constant g as follows.

J =
g2a

2
, w =

1

2a
, mlat = m− g2

16w
, (3)

where we measure all the dimensionful quantities in the
unit of g and the last relation comes according to [17, 18].
Solving the Gauss law and applying the Jordan-Wigner
transformation [19] to the staggered fermion [20, 21] at

each site n: χn =
(∏

ℓ<n −iZℓ

)
Xn−iYn

2 with the Pauli

spins (Xn, Yn, Zn) at each site, we obtain the following
spin Hamiltonian [15]

H = HZZ +HXX +HY Y +HZ ,

where

HZZ =
J

2

N−2∑
n=1

∑
0≤k<ℓ≤n

ZkZℓ =
J

2

N−2∑
n=1

∑
k<n

(N − n− 1)ZkZn ,

HXX =
1

2

N−2∑
n=0

{
w − (−1)n

mlat

2
sin θ

}
XnXn+1 ,

HY Y =
1

2

N−2∑
n=0

{
w − (−1)n

mlat

2
sin θ

}
YnYn+1 ,

HZ =
mlat cos θ

2

N−1∑
n=0

(−1)nZn +
J

2

N−2∑
n=0

mod(n+ 1, 2)

n∑
ℓ=0

Zℓ .

(4)

Next, we introduce the gauge-invariant operator
quench. Specifically, we consider the pseudo-chiral con-
densate V =

∫
ψγ5ψ. With the spatial modulation fn

taken into account, the quench on the lattice is trans-
lated into Pauli spin operators on qubits,

∆H(t) =
Bp

2

N−2∑
n=0

(−1)n+1fn sin(ωt) (XnXn+1 + YnYn+1) . (5)

The coefficient Bp with the mass dimension 1 con-
trols the strength of the external quench. Besides the
operator-type quench, we consider the time-sinusoidal
fluctuation in the topological angle, whose profile on the
lattice reads,

θ̃(t, n) = θ +
Bp

g
fn sin(ωt) . (6)

The spatial modulation factor can decorate the quench
as introduced by site-dependent function fn in (5). A
canonical choice for its basis is{

f (k)n

}
k=0,1,2···

≡
{
cos

(
kπn

N − 1

)}
, (7)

which is the discrete version of {f(k) | f(k)(x) =
cos

(
πkx
L

)
for k = 0, 1, 2, · · · } . We call the integer k

above as a mode number.
During the quench, the 2nd-order Suzuki-Trotter ap-

proximation approximates the time evolution on a circuit
at each Trotter step ∆tST ,

e−i∆tSTH ≃ e−i
∆tST

2
HXX e−i

∆tST
2

HY Y e−i∆tST (HZZ+HZ)

× e−i
∆tST

2
HY Y e−i

∆tST
2

HXX +O(1/M3) ,

(8)

where an integer M stands for the total number of time
steps during the quench. Along the quench, we tune the
coefficient of Hamiltonian (4) following either (5) or (6).
Finally, we carry out the measurement of the Loschmidt
probability for the vacuum state, or vacuum-to-vacuum
probability, ∣∣∣⟨vac|e−i

∫
dt(H+∆H(t))|vac⟩

∣∣∣2 , (9)

after the quench. Technically, the last measurement pro-
cedure requires the adiabatic preparation of vacuum on
the bra vector ⟨vac| at the end of the simulation circuit.

3.2 Parameter Set-Up

We set the length of the spatial interval L, by confirm-
ing the agreement of analytic continuum spectra and the
lattice result obtained by the exact diagonalization at the
massless case with θ = 0. We used python-based package
QuSpin [22, 23] in the exact diagonalization computation
up to N = 17 qubits. A good agreement is achieved at
the interval length choice gL = 10.

On the temporal scale side, we identify four kinematic
frequency scales:

• Trotterization frequency ωST = 2π/∆tST ,

• quench frequency ω ∼ ∆Egap,

• simulation time T =M∆tST and its frequency Ω,

• resolution in the frequency domain ∆ω.

In addition, the perturbation theory in terms of Bp sug-
gests a useful dimensionless quantity γ := |⟨f |∆V | vac⟩|
where ∆V is defined by the relation ∆H(t) =
Bp∆V sin(ωt) and the bra ⟨f | stand for the target ex-
cited energy eigenstate. Further analysis can be carried
out based on the perturbation theory [24], which says
that the transition probability between two states whose
energy gap is ∆Egap is given by

Pvac→f (t) = (γBp)
2 sin2 [(∆Egap − ω) t]

(∆Egap − ω)2
+O

(
B3

p

)
. (10)

However this analysis should assume two conditions on
the dynamics of transition: (a) a state transition occurs
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in a short enough simulation time in which the pertur-
bation theory is valid, (b) a window of quench frequency
∆ω is fine enough so that the argument inside the sin
function in the numerator of (10) is small enough, i.e.
∆ω T < 1 , near the energy gap ω ∼ ∆Egap.
Now, let us set the probability threshold Pth such that

0 ≲ Pth < 1 as follows. When the Loschmidt probability
for the vacuum after the quench is smaller than 1− Pth,
we identify the loss of vacuum so read the frequency of
quench as the energy gap. Then, the lower bound of esti-
mated simulation time Tth reads in terms of characteristic
scale and preset parameters; T > Tth =

√
Pth

γBp
.

The resolution of probe frequency ∆ω should be
smaller than the differences in the excitation energies,
which are mostly attributed to the higher momentum
modes in field theories. In the regime of small electron
mass and small topological angle m ≃ 0 , θ ≃ 0, we have
∆ω/ω < (π/L)/MS where MS stands for the mass of
dual scalar Schwinger meson at θ = 0. The right-hand
side of the inequality is O(1) in our simulation.
The reliable simulation under Suzuki-Trotter approxi-

mation requires the accumulative error ϵST to be small.
Since the order of magnitude of accumulative error scales

as ϵST ∼ O
(
M (ω∆tST )

3
)

∼ O
(
ω3ω−2

STΩ
−1

)
. Thus,

and we find ωST ≫ Ω− 1
2ω

3
2 . Synthesizing the scaling

laws obtained above, we obtain the hierarchy between
frequency scales; ∆ω < Ω < ω < ωST . The specific num-
ber consistent with this estimate will be presented in the
poster.
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Figure 2: The density plot for the vacuum-to-vacuum
Loschmidt probability for various topological angles θ ∈
[0 , 2π] and fixed m = 0.100 under the pseudo-chiral con-
densate quench (5). Solid lines denote the exact diago-
nalization result with QuSpin. The strength coefficient
of quench is chosen at Bp = 0.011 .

4 Result of Simulation

Figure 2 and Figure 3 present the simulation results
with a classical emulator Aer of IBM Qiskit for the two
types of quench. Though the open boundary condition
violates the translation symmetry the mode number in-
troduced in (7) turns out to be able to label and distin-
guish the low-energy eigenstates.
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Figure 3: The density plot for the vacuum-to-vacuum
Loschmidt probability for various topological angles θ ∈
[0 , 2π] and fixed m = 0.100 under the topological angle
quench (6). Solid lines denote the exact diagonalization
result with QuSpin. The strength coefficient of quench is
chosen at Bp = 0.500 .

Unlike the pseudo-chiral condensate case, Figure 3 ex-
hibits the excitations at higher energy near θ = π

2 and
3π
2 . We suspect that they correspond to 2-particle states
under θ → 0 limit and the transition amplitude between
the 2-particle state and the vacuum under the theta fluc-
tuation is non-trivial whereas its counterpart amplitude
with the pseudo-chiral condensate operator almost van-
ishes.

5 Conclusion and Outlook

In this work, we showed that the quench-induced state
transition of a quantum system can be used to capture
the excited state spectra of abelian lattice gauge theory
in (1+1)-dimensions. We introduced two types of gauge-
invariant quench and observed the low-energy excited
spectra can be read off from the loss in the Loschmidt
probability for the vacuum under the quench at specific
frequency.

The analysis in Section 3.2 further allows the estima-
tion of how many controlled-Z (CZ) or CNOT is neces-
sary to carry reliable simulation given probability thresh-
old Pth. The number of the controlled gates at each
Trotterized step depends quadratically on the number of
qubits, as shown in (4). Hence, the total number of con-
trolled gates for M Trotterized steps is bounded below

by NCZ ∼ O
(
MN2

)
> O

((
ω
√
Pth/γBp

) 3
2 N2

)
.

There are various interesting future directions. Besides
the implementation on a real quantum device, interesting
is to compare the computational complexity of our algo-
rithm with those of other algorithms based on tensor net-
work, which is a yet powerful approach to the Schwinger
model [17, 25, 26, 27, 28].
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Uncorrectable error injection based fault-tolerant and secure quantum
state transmission
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Abstract. The quantum teleportation is a widely used quantum scheme to transmit arbitrary quantum
states. However, it requires entanglement swapping and purification for entanglements distribution over
long distances, which introduces significant overhead. In this vein, we propose a scheme to directly transmit
quantum states encoded with error correction codes. Our scheme is a secure quantum state transmission
with fault-tolerance, by encoding with quantum error correction codes and injecting uncorrectable errors.

Keywords: Quantum state transmission, Quantum error correction codes, Uncorrectable error

1 Background

The quantum internet refers to a network that con-
nects distant quantum devices [1, 2, 3]. It is expected
to offer functionalities beyond the capabilities of the cur-
rent internet. To realize it, it is essential to transmit
arbitrary quantum states. Quantum teleportation is a
protocol used for this purpose [4]. However, it requires
an pre-shared entangled pair and entanglement swapping
is needed for long range entanglement distribution. For
the long distances distribution, the success probability
decreases exponentially with the number of nodes be-
cause of the success probability of the bell state measure-
ment (BSM) is 50% in linear optical setup. Therefore,
when performing logical BSM using quantum error cor-
rection codes (QECCs), the success probability increases
to 1−1/2ns based on the code length ns, but this results
in an ns-fold overhead [6]. Besides, to enhance the fidelity
of the shared entanglement, entanglement purification
must be performed and the overhead increases further.
Using the method in Ref. [7], high fidelity can be achieved
with only two ancilla qubits. However, for the case of long
distance distribution it requires multiple stages of entan-
glement swapping and purification as shown in Fig. 1.
The overhead can increase exponentially over the num-
ber of relay nodes. Therefore, it might be more efficient
to encode the quantum states using QECCs and trans-
mit it in a manner similar to classical communication.
Therefore, in this presentation, we aim to introduce a
scheme by encoding quantum states with QECCs and
injecting uncorrectable errors to enable secure and fault-
tolerant long-distance transmission of quantum states.
The uncorrectable error in our scheme ensures that an
eavesdropper cannot interpret the received information,
thereby providing security equivalent to the inherent se-
curity of the quantum teleportation.

2 The proposed scheme

In this section, we will describe a scheme for transmit-
ting quantum states in a fault-tolerant and secure manner

∗d2estiny@kisti.re.kr

Figure 1: Long distance entanglement distribution
The blue spheres represent the entangled pairs and the
gray spheres represent the ancilla qubits. By repeatedly
performing entanglement purification and entanglement
swapping, it is possible to share entangled pairs over long
distances.

by injecting uncorrectable errors into encoded states.

Setup We consider a system model where a noisy and
insecure quantum channel and an authenticated classical
channel protected by a quantum key distribution proto-
col, etc., are connected between the sender and the re-
ceiver. To transmit arbitrary quantum states, the sender
first measures the quantum bit error rate of the quan-
tum channel. Based on it, the sender determines the
error correction capability t of the QECCs.

Encoding and Encryption The sender selects a
[[n, k, d]] QECC that satisfies t determined during the
Setup phase, and provides sufficient security. To facil-
itate the security assessment discussed in the Sec 3, we
will consider only non-degenerate quantum codes. The
sender then encodes the k-qubit quantum state |ψ⟩ =
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Figure 2: Schematic picture of the proposed scheme: (a) The sender prepares the arbitrary quantum states. (b)
The Sender encodes them and injects Eun. (c) The Sender broadcasts s and sends |ψT ⟩. Then, the receiver performs
error correction based on s (d) The receiver sends the ACK to the sender upon receiving the quantum state. (e) The
sender informs the receiver of Eun. The receiver applies it to the received state and performs syndrome extraction to
verify if a zero vector is obtained. If the syndrome is not a zero vector, sender and receiver abort the process.

∑2k

i ci|bi⟩ into a logical state using the encoding operator
UE of this QECC. Additionally, to perform encryption,
a Pauli error operator Eun with an appropriate weight,
which the chosen QECC cannot correct, is injected into
the encoded logical state |ψ⟩L. The resulting state |ψ⟩T
is as follows,

|ψ⟩T = Eun|ψ⟩L = EunUE

k∑
i

ci|bi⟩

The sender calculates the syndrome s of Eun.

Transmission and Reception The sender transmits
|ψ⟩T through the quantum channel and sends s through
the classical channel to the receiver. Upon receiving |ψ⟩T
and s, the receiver extracts the syndrome of |ψ⟩T and
performs error correction based on s. Subsequently, the
receiver sends an ACK to the sender indicating the re-
ception of the state. Upon receiving the ACK, the sender
transmits the information of Eun to the receiver through
an authenticated secure classical channel. The receiver
applies the received Eun to |ψ⟩T and performs syndrome
extraction again to ensure that an all-zero vector is ob-
tained. If an all-zero vector syndrome is not obtained, it
is assumed that there was an eavesdropper’s attack, and
the process is aborted.

Distance extension The advantage of the proposed
approach lies in its ability to extend the distance despite
encryption, as error correction is still feasible. Similar to
what the receiver does in the Transmission and Re-
ception, relay nodes perform error correction based on s
and then pass it to the next node, enabling fault-tolerant
transmission. Furthermore, since Eun is injected, relay
nodes cannot obtain any information about the quantum
states.

3 Results

In this section, we will discuss the general security and
overhead of the proposed scheme.

Figure 3: Distance extension of the proposed
scheme Relay nodes can perform error correction based
on s, ensuring that relay nodes cannot obtain any infor-
mation about the quantum states.

3.1 Overhead analysis

To calculate the overhead of the quantum teleporta-
tion, the total number of the nodes is required. For
simplicity, we assume that the total number of nodes is
2N + 1. The minimum number of qubits required for
entanglement purification [7] OEP is as follows,

OEP =
N∑
i=0

NA2
N−i × 2, (1)

where NA is the number of the ancilla qubits for the en-
tanglement purification. In the case of the entanglement
swapping the number of BSMs is as follows,

OES =
N∑
i=1

2N−i. (2)

To increase the success probability of BSMs, PES =
1 − (1/2)ns , we can use the logical BSM mentioned in
the Sec 1. Then the probability that all OES BSMs suc-
ceed is (1 − (1/2)ns)OES . Therefore, the approximate
number of repetitions required for the process to succeed
at least once is ⌈( 2ns

2ns−1 )
OES⌉. Finally, the total number

of qubits OT required for a single successful long-distance
entanglement distribution is as follows,

OT = (OEP + 2OES(nbsm − 1))× ⌈( 2ns

2ns − 1
)OES⌉. (3)
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For example, if NA is 2 with physical error rate p =
0.01 and the total number of nodes is 5, the total num-
ber of qubits required for entanglement purification is 28.
Then, if assuming the logical BSM with ns = 2, the suc-
cess probability is (3/4)3. Consequently, the number of
repetitions needed for at least one successful attempt is
approximately 3. Thus, a total of 93 qubits are required
for the 5-node distance entanglement distribution.
The overhead of the proposed scheme is determined by

the logical error probability of quantum stabilizer codes,
pL. The pL on a depolarizing channel with the physical
error rate p is given as [9],

pL = 1−
t∑

i=0

(
n

i

)
pi(1− p)n−i. (4)

To approximate the pL of the proposed scheme, we use
the following quantum singleton bound [10],

n− k ≥ 2(d− 1) (5)

Since it is not feasible to use codes that perfectly satisfy
this quantum singleton bound, we modified this bound
as follows,

n− k

4
≥ t. (6)

Assuming R = 1
2 and substituting the relationship be-

tween n, k, and t into Eq. (6) yields the following result:

pL = 1−
n
8∑

i=0

(
n

i

)
pi(1− p)n−i. (7)

In the case of 93 qubits derived from the previous quan-
tum teleportation overhead example, considering only
a physical error rate of 0.01, the pL value is at least
1.9689×10−10. This value is lower than the performance
of quantum teleportation, which is 4.1215×10−6, assum-
ing that all rounds prior to the final purification round
of long-distance entanglement distribution and the tele-
portation process are noiseless.

3.2 Analysis of number of uncorrectable errors

The security of the proposed scheme is determined by
the number of uncorrectable errors Nu assigned to each
syndrome can be estimated as follows,

Nu ∼
4n −

∑t
i=0 3

i
(
n
i

)
(2n−k + 22k)

2n − k
× 1

2n−k
. (8)

The term 4n of Eq. (8) represents the number of all Pauli
error patterns of length n, while

∑t
i=0 3

i
(
n
i

)
denotes the

number of all errors that the QECCs can correct. Later
on, for simplicity, we’ll refer to this as Nc. The subse-
quent terms multiplied by Nc, represents the count of er-
rors with different weights sharing the same syndrome as
correctable errors within Nc. Among these terms, 2n−k

is the total number of the stabilizers. When it is multi-
plied by Nc, it accounts for errors that share the same
syndrome and behavior as correctable errors within Nc.
On the other hand, 22k represents the total number of

Figure 4: Security analysis graph This graph illus-
trates the order of Nu as Eq. (10).

logical Pauli operators. When it is multiplied by Nc,
it accounts for the uncorrectable errors that share the
same syndrome but have different behaviors because of
the logical operators. The uncorrectable errors, when
multiplied by stabilizers, have the same behavior and the
syndrome. Therefore, they should be considered as a sin-
gle error. To account for this, we adjust by dividing by
the total number of stabilizers, 2n−k, which serves as the
denominator. The final 1

2n−k term is used to calculate the

average number. Here, 2n−k represents the total number
of syndromes which are bit strings of length n− k.

We can substitute Nc with a function of n and k by
using the Hamming bound for QECCs [8]. The quantum
Hamming bound is as follows,

en−k ≥
t∑

i=0

3i
(
n

i

)
. (9)

Then, substituting the code rate k/n = R into the
Eq. (8), the below bound is derived as,

Nu ≥ 22Rn(1− (
e

4
)(1−R)n)− (

e

2
)(1−R)n. (10)

According to Eq. (10), the graph of Nu over the range
1 ≤ n ≤ 100 is shown in Fig. 4. As seen in Fig. 4, Nu

has very small value when R is below approximately 0.18.
Therefore, to ensure adequate security, it is necessary to
use QECCs with a sufficiently large R. For the case with
a total of 5 nodes and 102 required qubits, the number
of Nu when R = 0.5 is approximately 5.0706× 1030.

4 Conclusion

In this presentation, we have demonstrated an efficient
quantum state transmission scheme with low overhead
and higher fidelity compared to quantum teleportation.
However, the scheme is not yet fully refined, and future
work will focus on analyzing the security of the proposed
scheme under specific attack models, rather than solely
based on Nu. Additionally, we aim to develop an algo-
rithm to appropriately selecting either of the proposed
scheme and quantum teleportation by comprehensively
considering factors such as the overhead, the target fi-
delity, the initial fidelity, and the physical error rate.
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Corrupted sensing quantum state tomography
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Abstract. In this work we propose the concept of corrupted sensing quantum state tomography (QST)
which enables the simultaneous reconstruction of quantum states and structured noise with the aid of
simple Pauli measurements only. Without additional prior information, we investigate the reliability and
robustness of the framework. The power of our protocol is demonstrated by assuming Gaussian and Poisson
sparse noise for low-rank state tomography. In particular, our approach is able to achieve a high quality
of the recovery with incomplete sets of measurements and is also suitable for performance improvement of
large quantum systems.

Keywords: quantum tomography, corrupted sensing, Pauli measurement, sparse noise

1 Corrupted sensing QST protocol

Considering an n-qubit quantum system with dimen-
sion d = 2n, the unknown state of the system is denoted
by ρ, which satisfies tr(ρ) = 1 and ρ ≥ 0. An n-qubit
Pauli operator takes on the general form

P =
n⊗

i=1

σi , (1)

where σi ∈ {I, σx, σy, σz}. Here, σx, σy, σz are the three
Pauli matrices, and I represents the identity matrix. In
total there are d2 = 4n such Pauli operators.
In general, the simultaneous reconstruction of quan-

tum state and corrupted noise consists of the following
two steps: First select Pauli operators at random to mea-
sure the quantum state and obtain the noisy data; then
choose a suitable convex optimization algorithm for data
post-processing to get the estimations of the state and
noise.
To be specific, the scheme of corrupted sensing quan-

tum state tomography proceeds as follows. Choose
m Pauli operators {P1, P2, · · · , Pm} independently and
uniformly, and measure the expectation values tr(Pkρ).
These operators are chosen randomly without replace-
ment. To get an estimate of the expectation value
tr(Pkρ), we use N copies of the state ρ.
Define the linear map M : Hd → Rm for all Pks as

[M(ρ)]k = tr(Pkρ) . (2)

Then, the output of the entire measurement process can
be written as a vector

y = M(ρ) + v + z . (3)

Here the structured noise (or structured corruption) is
modeled as a stochastic vector v, which is a general con-
sideration as noise can manifest in any process. And z is
any other kind of unstructured noise including statistical
noise. In particular, if there’s no corruption, i.e., v = 0,
the model in Eq. (3) reduces to the standard compressed
sensing problem [1, 2].

∗mengru.ma@bit.edu.cn
†jiangwei.shang@bit.edu.cn

unknown
ρ,v

Pauli measurement

noisy data
{y1, y2, · · · , ym}

recovery algorithm

ρ̂ v̂

noise

different prior
information

Figure 1: Schematic procedure of the corrupted sensing
quantum state tomography. For the unknown state ρ
and noise v, Pauli measurements are employed to get
the noisy data y = {y1, y2, · · · , ym}. With different prior
information, one can choose various recovery algorithms
to get the reconstructed state ρ̂ and noise v̂; see Eqs. (4).

Generally speaking, the problem in Eq. (3) is ill-posed,
and tractable recovery is only possible when both the
state ρ and the noise v are suitably structured. See Fig. 1
for a schematic framework of the corrupted sensing quan-
tum state tomography. By randomly selecting m Pauli
operators to measure the quantum state, an estimation
of both the state and noise from the acquired noisy data
is then performed. Here we consider the general setting
where no prior information about the quantum state ρ
or the structured noise v is taken into account.

2 Corrupted sensing QST estimator

We consider the general case where the structure of
the state and noise can be characterized by a suitable
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Figure 2: Fidelity F (ρ, ρ̂) and MSE TMSE as functions of the number of sampled Pauli operators m (ranging from
64 to 1024 with steps of 64) over 120 runs with n = 5 qubits. The blue solid curve (purple dashed curve) represents
the fidelity between the reconstructed state and true state in the case of Gaussian (Poisson) noise. Meanwhile, the
red solid curve (pink dashed curve) represents the MSE between the reconstructed Gaussian (Poisson) noise and true
Gaussian (Poisson) noise. The number of copies of the input random pure states used for each experiment in (a), (b),
(c), and (d) are N = 50, 100, 150, and 200, respectively. Standard deviation of the Gaussian noise and parameter of
the Poisson noise are both set to σ = λ = 4. Additionally, the regularization parameters are chosen as τ1 = 0.011m,
τ2 = 0.16, and the sparsity level is defined as s = ⌊0.04m⌋.

norm function. Typical examples of such structures in-
clude low-rank matrices and sparse vectors. Hereafter,
let f(·) and g(·) denote the suitable norms which fully
characterize the structures of the state and noise respec-
tively.

The reconstruction of the unknown state ρ and struc-
tured noise v without prior assumptions can be formu-
lated as the following convex optimization problem

min
ρ̃,ṽ

1

2
∥y −M(ρ̃)− ṽ∥22 + τ1 · f(ρ̃) + τ2 · g(ṽ) , (4)

where τ1, τ2 > 0 are regularization parameters, and ρ̃ and
ṽ represent the variables to be solved. The intuition of
the problem is to find ρ̃, ṽ which fit the data y while min-
imizing the least-squares linear regression with suitable
norm regularizations.

Here we consider minimizing the trace norm
∥X∥tr = tr(

√
X†X), which is an alternative to minimiz-

ing the rank of X for the quantum state and the l1-norm
for the sparse noise. Therefore, the estimators ρ̂, v̂ are

obtained by

(ρ̂, v̂) = arg min
ρ̃≥0,ṽ

1

2
∥y −M(ρ̃)− ṽ∥22 + τ1 · ∥ρ̃∥tr

+ τ2 · ∥ṽ∥1, τ1, τ2 > 0 .

(5)

Whenever the trace of the resulting estimate of the
quantum state is not equal to 1, we renormalize it as
ρ̂/tr(ρ̂) 7→ ρ̂. To quantify the goodness of the reconstruc-
tion, we employ the (squared) fidelity

F (ρ, ρ̂) =

(
tr

√√
ρ̂ρ

√
ρ̂

)2

, (6)

and the mean squared error (MSE)

TMSE =
1

m

m∑
i=1

(vi − v̂i)
2 (7)

for the estimators ρ̂ and v̂ respectively. Note that some-
times we simplify the fidelity F (ρ, ρ̂) by F .
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3 Main results

Using Pauli measurements, we numerically simulate
the reconstruction of n = 5 qubit random states and W
states under the corruption of s-sparse statistical noise.
In light of the convex characteristic of our problem in
Eq. (5), we rely on the cvx package [3] for efficient nu-
merical solutions.
Figure 2 displays the fidelity F (ρ, ρ̂) and the MSE

TMSE as functions of the number of sampled Pauli op-
erators m (ranging from 64 to 1024 with steps of 64)
over 120 runs. For each Pauli operator Pk, we take N
(= 50, 100, 150, 200 respectively for the four subfigures)
copies of the input random states in order to get the esti-
mated value of tr(Pkρ). Several features are immediately
available.
Under sparse Gaussian noise, the fidelity F (ρ, ρ̂) (blue

solid curve) improves along with the increasing num-
ber of sampled Pauli operators m. For instance, in
Fig. 2 (b), the fidelity can quickly reach to ∼ 0.987
with m = 1024 and N = 100. Normally, to obtain the
fidelity of F (ρ, ρ̂) ≈ 0.95, only m ≈ 37.5%d2 measure-
ments are needed. In addition, a large number of sam-
ples prove advantageous in enhancing the precision and
stability of the reconstruction. In Fig. 2 (a)-(d) with
N = 50, 100, 150, and 200, achieving F (ρ, ρ̂) ≈ 0.95 ne-
cessitates m ≈ 640, 384, 320, and 256, respectively.

On the other hand, the MSEs TMSE between the re-
constructed noise and true noise (red solid curve) are all
in the order of 10−3 for Fig. 2 (a)-(d) as long as the fi-
delity of the corresponding reconstructed state reaches
the threshold of 0.95. Expectedly, the MSE declines and
stabilizes as m and N grow.

Notably, sparse Poisson noise exhibits effects on recon-
struction similar to sparse Gaussian noise under specific
parameter settings, despite their different probability dis-
tributions and statistical characteristics. This reflects the
universality of our reconstruction technique to statistical
noise, providing further insights for selecting appropriate
noise models.

4 Impact and Significance

The rapid advancement of quantum information sci-
ence hinges on precisely characterizing quantum states
and taming underlying noise. Quantum state tomogra-
phy, playing a pivotal role in quantum system characteri-
zation, has seen a surge in diverse techniques over recent
years. However, noise, inevitable in any quantum sys-
tem, often renders the procedure intricate and challeng-
ing. Therefore, the reliable characterization of quantum
states as well as any potential noise in various quantum
systems is crucial for advancing quantum technologies.

Our work highlights several key points:

• We offer a new method for tomography such that
the quantum state and structured noise can be re-
constructed simultaneously.

• Using incomplete Pauli measurements, our tech-
nique can greatly reduce resource consumption in
noisy quantum systems and achieve high fidelity.

• Our protocol not only provides a way to diagnose
and characterize noise, but also applies to scenarios
where measurement data is corrupted by noise.

See Ref. [4] for the arXiv version of this paper.
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Abstract. In discriminating quantum states, nonlocality arises when the optimal state discrimination
cannot be realized by local operations and classical communication. Recently, it has been found that the
postmeasurement information about the prepared subensemble can lock or unlock nonlocality in quantum
state discrimination. Here, we show that locking or unlocking nonlocality of quantum state discrimination
depends on the choice of postmeasurement information. Furthermore, we provide a method in terms of
entanglement witness to construct bipartite quantum state ensembles where locking or unlocking quantum
nonlocality arises depending on the choice of subensembles provided by postmeasurement information.
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Quantum nonlocality is an interesting phenomenon in
bipartite quantum systems [1–3]. In quantum state dis-
crimination, quantum nonlocality occurs when the opti-
mal state discrimination cannot be realized only by local
operations and classical communication(LOCC) [4–8].

In discriminating quantum states, quantum nonlo-
cality can be locked by the postmeasurement informa-
tion(PI) about the prepared subensemble; there exists
a set of bipartite quantum states that cannot be opti-
mally discriminated only by LOCC measurements, but
can be optimally discriminated using LOCC measure-
ments when PI about prepared subensemble is available.
Similarly, nonlocality in quantum state discrimination
can be unlocked if optimal state discrimination by global
and LOCC measurements can be gapped in the presence
of PI [9–12].

Here, we consider bipartite quantum state discrimina-
tion, and show that nonlocality of quantum state dis-
crimination can be locked(or unlocked) depending on
the choice of subensembles provided by PI. We provide
a method to construct quantum state ensembles where
locking(or unlocking) nonlocality of state discrimination
depends on the choice of subensembles provided by PI.

For a bipartite Hilbert space H = CdA ⊗CdB , let H be
the set of all Hermitian operators acting onH. We denote
by H+ the set of all positive-semidefinite operators in H,
that is,

H+ = {E ∈ H | 〈v|E |v〉 > 0 ∀ |v〉 ∈ H}. (1)

A bipartite quantum state is described by a density op-
erator ρ, that is, a positive-semidefinite operator ρ ∈ H+

with unit trace Tr ρ = 1. A measurement is represented
by a positive operator-valued measure {Mi}i, that is, a
set of positive-semidefinite operators Mi ∈ H+ satisfy-
ing the completeness relation

∑
iMi = 1, where 1 is the

identity operator in H. For the state ρ, the probability of
obtaining the measurement outcome with respect to Mj

is Tr(ρMj).

∗freddie1@khu.ac.kr

Definition 1 E ∈ H+ is called separable if it can be
described as

E =
∑
l

Al ⊗Bl, (2)

where Al and Bl are positive-semidefinite operators act-
ing on CdA and CdB of H, respectively.

We denote the set of all separable operators in H+ as

SEP = {E ∈ H+ |E : separable}, (3)

and its dual set as SEP∗, that is,

SEP∗ = {E ∈ H | Tr(EF ) > 0 ∀F ∈ SEP}. (4)

An element in SEP∗ is also called block positive.
A measurement {Mi}i is called a separable measure-

ment if Mi ∈ SEP for all i, and a measurement is called
a LOCC measurement if it can be realized by LOCC.
Note that every LOCC measurement is a separable mea-
surement [13].

Definition 2 W ∈ H is called an entanglement wit-
ness(EW) if Tr(σW ) > 0 for any state σ in SEP but
Tr(ρW ) for some state ρ in H+ \ SEP, or equivalently

W ∈ SEP∗ \H+. (5)

Throughout this paper, we only consider the situation
of discriminating bipartite quantum states from the en-
semble of the form,

E = {ηi, ρi}i∈Λ, Λ = {1, 2, 3, 4}, (6)

where the state ρi is prepared with the probability ηi.
For a given two-element subset S of Λ, let us consider

the two subensembles,

E0 =
{ ηi∑

j∈Λ ηj
, ρi

}
i∈S

,

E1 =
{ ηi∑

j∈ΛC ηj
, ρi

}
i∈Sc

, Sc = Λ \ S. (7)
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For the case that the state ρi belongs to E0 in Eq. (7), we
note that the preparation of ρi with probability ηi from
the ensemble E is equivalent to the preparation of the
subensemble E0 with probability

∑
j∈S ηj followed by the

preparation of ρi from E0 with probability ηi/
∑
j∈S ηj .

We denote by PIS the classical information b ∈ {0, 1}
about the prepared subensemble Eb defined in Eq. (7)
after performing a measurement, that is

PIS =

{
0, i ∈ S,
1, i ∈ Sc,

(8)

where i is the index of the prepared state ρi.
Let us consider the quantum state discrimination of E

in Eq. (6) using a measurementM = {Mi}i∈Λ. Here, the
detection of Mi means that the prepared state is guessed
to be ρi. The minimum-error discrimination(ME) of E
is to achieve the optimal success probability,

pG(E) = max
M

∑
i∈Λ

ηi Tr(ρiMi), (9)

where the maximum is taken over all possible measure-
ments [14].

When the available measurements are limited to LOCC
measurements, we denote the maximum success probabil-
ity by

pL(E) = max
LOCCM

∑
i∈Λ

ηi Tr(ρiMi). (10)

Similarly, we denote the maximum success probability
over all possible separable measurements as

pSEP(E) = max
SeparableM

∑
i∈Λ

ηi Tr(ρiMi). (11)

From the definitions, we have

pL(E) 6 pSEP(E) 6 pG(E). (12)

In discriminating the states from the ensemble E , quan-
tum nonlocality occurs if the optimal success probability
in Eq. (9) cannot be achieved only by LOCC measure-
ments, that is,

pL(E) < pG(E). (13)

From Inequality (12), we can easily see that Inequal-
ity (13) holds if

pSEP(E) < pG(E). (14)

For an ensemble E in Eq. (6) and a two-element sub-
set S of Λ, let us consider the situation of discriminating
the quantum states from E when PIS is given. In this
situation, a measurement can be represented by a posi-
tive operator-valued measure M̃ = {M̃~ω}~ω∈ΩS

where the
outcome space is the Cartesian product,

ΩS = S × Sc. (15)

Here, the detection of M̃(ω0,ω1) means that we guess the
prepared state as ρω0

or ρω1
according to PIS = 0 or 1,

respectively [9, 10].

ME of E with PIS is to maximize the average probabil-
ity of correct guessing where the optimal success proba-
bility is defined as

pPI
G (E , S) = max

M̃

(∑
i∈S

ηiTr
[
ρi
∑
j∈Sc

M̃(i,j)

]
+
∑
i∈Sc

ηiTr
[
ρi
∑
j∈S

M̃(j,i)

])
, (16)

where the maximum is taken over all possible measure-
ments. Note that when ρi is prepared and PIS = b is
given, the prepared state is correctly guessed if we ob-
tain a measurement outcome ~ω ∈ ΩS with ωb = i.

When the available measurements are limited to LOCC
measurements, we denote the maximum success probabil-
ity by

pPI
L (E , S) = max

LOCCM̃

(∑
i∈S

ηiTr
[
ρi
∑
j∈Sc

M̃(i,j)

]
+
∑
i∈Sc

ηiTr
[
ρi
∑
j∈S

M̃(j,i)

])
. (17)

Similarly, we denote

pPI
SEP(E , S) = max

SeparableM̃

(∑
i∈S

ηiTr
[
ρi
∑
j∈Sc

M̃(i,j)

]
+
∑
i∈Sc

ηiTr
[
ρi
∑
j∈S

M̃(j,i)

])
, (18)

where the maximum is taken over all possible separable
measurements. From the definitions, we have

pPI
L (E , S) 6 pPI

SEP(E , S) 6 pPI
G (E , S). (19)

We note that for a given measurement {M̃~ω}~ω∈Ω, the
success probability, that is, the right-hand side of Eq. (16)
without maximization, can be rewritten as∑

i∈S
ηiTr

[
ρi
∑
j∈Sc

M̃(i,j)

]
+
∑
i∈Sc

ηiTr
[
ρi
∑
j∈S

M̃(j,i)

]
= 2

∑
~ω∈Ω

η̃~ωTr(ρ̃~ωM̃~ω), (20)

where

η̃~ω =
1

2

∑
b∈{0,1}

ηwb
, ρ̃~ω =

∑
b∈{0,1} ηwb

ρωb∑
b′∈{0,1} ηwb′

. (21)

Since {η̃~ω}~ω∈ΩS
and {ρ̃~ω}~ω∈ΩS

are a probability distri-
bution and a set of states, respectively, Eq. (20) implies

pPI
G (E , S) = 2pG(Ẽ),

pPI
L (E , S) = 2pL(Ẽ),

pPI
SEP(E , S) = 2pSEP(Ẽ), (22)

where Ẽ is the ensemble consisting of the average states
ρ̃~ω prepared with the probabilities η̃~ω in Eq. (21),

Ẽ = {η̃~ω, ρ̃~ω}~ω∈ΩS
. (23)
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In ME of E with PIS , quantum nonlocality occurs if
the optimal success probability in Eq. (16) cannot be
achieved only by LOCC measurements, that is,

pPI
L (E , S) < pPI

G (E , S). (24)

From Inequality (19), we can easily verify that Inequal-
ity (24) holds if

pPI
SEP(E , S) < pPI

G (E , S). (25)

The following theorem provides a sufficient condition for
nonlocality in terms of ME with PI.

Theorem 3 For a bipartite quantum state ensemble E =
{ηi, ρi}i∈Λ, a two-element subset S of Λ and ~µ ∈ ΩS,

pPI
SEP(E , S) = 2η̃~µ < pPI

G (E , S) (26)

if and only if η̃~µρ̃~µ− η̃~ωρ̃~ω is block positive for all ~ω ∈ ΩS
and there exists an EW in {η̃~µρ̃~µ − η̃~ωρ̃~ω}~ω∈ΩS

.

Definition 4 For an ensemble E in Eq. (6) and a two-
element subset S of Λ, we say that PIS locks nonlocality
if nonlocality occurs in discriminating the states of E and
the availability of PIS vanishes the occurrence of nonlo-
cality, that is,

pL(E) < pG(E), pPI
L (E , S) = pPI

G (E , S). (27)

Also, we say that PIS unlocks nonlocality if nonlocality
does not occur in discriminating the states of E and the
availability of PIS releases the occurrence of nonlocality,
that is,

pL(E) = pG(E), pPI
L (E , S) < pPI

G (E , S). (28)

The following theorem establishes a sufficient condition
for nonlocality arising in discriminating quantum states
to be locked depending on the choice of subensembles
provided by PI.

Theorem 5 For a bipartite quantum state ensemble E =
{ηi, ρi}i∈Λ, if

η1ρ1 − η2ρ2 ∈ H+,

η1ρ1 − η3ρ3 ∈ SEP∗ \H+,

η2ρ2 − η4ρ4 ∈ SEP∗,
η3ρ3 − η4ρ4 ∈ H+, (29)

then PI{1,2} locks nonlocality but PI{1,3} does not lock
nonlocality.

Now, we provide a method in terms of EW to construct
quantum state ensembles where PI{1,2} locks nonlocality
but PI{1,3} does not lock nonlocality. For an EW W , let
us consider the ensemble E = {ηi, ρi}i∈Λ consisting of

η1 = Tr(2W++W−)
4 Tr(W++W−) , ρ1 = 2W++W−

Tr(2W++W−) ,

η2 = TrW+

4 Tr(W++W−) , ρ2 = W+

TrW+
,

η3 = Tr(W++2W−)
4 Tr(W++W−) , ρ3 = W++2W−

Tr(W++2W−) ,

η4 = TrW−
4 Tr(W++W−) , ρ4 = W−

TrW−
(30)

where W± is the positive-semidefinite operator satisfying

Tr(W+W−) = 0, W = W+ −W−. (31)

A straightforward calculation leads us to

η1ρ1 − η2ρ2 = η3ρ3 − η4ρ4 = W++W−
4 Tr(W++W−) ,

η2ρ2 − η4ρ4 = η1ρ1 − η3ρ3 = W
4 Tr(W++W−) , (32)

which imply Condition (29) in Theorem 5. Thus, PI{1,2}
locks nonlocality but PI{1,3} does not lock nonlocality.

The following theorem establishes a sufficient condition
for nonlocality arising in discriminating quantum states
to be unlocked depending on the choice of subensembles
provided by PI.

Theorem 6 For a bipartite quantum state ensemble E =
{ηi, ρi}i∈Λ, if

η1ρ1 − η2ρ2 ∈ H+,

η1ρ1 − η3ρ3 ∈ H+,

η2ρ2 − η4ρ4 ∈ H+,

η3ρ3 − η4ρ4 ∈ SEP∗ \H+, (33)

then PI{1,2} unlocks nonlocality but PI{1,3} does not un-
lock nonlocality.

Now, we provide a method in terms of EW to construct
quantum state ensembles where PI{1,2} unlocks nonlocal-
ity but PI{1,3} does not unlock nonlocality. For an EW
W , let us consider the ensemble E = {ηi, ρi}i∈Λ consist-
ing of

η1 = Tr(2W++W−)
Tr(4W++3W−) , ρ1 = 2W++W−

Tr(2W++W−) ,

η2 = Tr(W++W−)
Tr(4W++3W−) , ρ2 = W++W−

Tr(W++W−) ,

η3 = TrW+

Tr(4W++3W−) , ρ3 = W+

TrW+
,

η4 = TrW−
Tr(4W++3W−) , ρ4 = W−

TrW−
, (34)

where W± is the positive-semidefinite operator satisfying
Eq. (31).

From a straightforward calculation, we can verify that

η1ρ1 − η2ρ2 = W+

Tr(4W++3W−) ,

η1ρ1 − η3ρ3 = W++W−
Tr(4W++3W−) ,

η2ρ2 − η4ρ4 = W−
Tr(4W++3W−) ,

η3ρ3 − η4ρ4 = W
Tr(4W++3W−) , (35)

which imply Condition (33) in Theorem 6. Thus, PI{1,2}
unlocks nonlocality but PI{1,3} does not unlock nonlocal-
ity.
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Abstract. We explore the unique entanglement properties of semiconductor quantum dot systems using
the extended Hubbard model, focusing on how variations in potential energy and electron interactions affect
these systems. By examining a four-site quantum dot spin chain with different electron counts (N = 4 and
N = 6), we discover that adjusting the potential energy in specific dots significantly redistributes electron
configurations and alters entanglement properties. Phase diagrams illustrate these findings, revealing
how interaction strengths and potential energy adjustments lead to complex entanglement dynamics and
phase transitions. Our research provides valuable insights into how quantum dots can be manipulated for
advanced quantum information processing, simulation and computation, highlighting their potential for
developing robust quantum technologies.

Keywords: Quantum entanglement, Quantum dot systems, Extended Hubbard Model

1 Introduction

Quantum entanglement is crucial in quantum com-
munication and information processing [1, 2], and in
condensed matter physics, it is a fundamental criterion
for quantum phase transitions and many-body localiza-
tion [3, 4, 5, 6]. Stable and controllable, semiconductor
quantum dots are ideal for simulating many-body sys-
tems, particularly Fermi-Hubbard physics [7, 8, 9, 10, 11].
The Fermi-Hubbard model describes quantum dot sys-
tems at low temperatures and strong Coulomb interac-
tions, with applications in quantum information process-
ing [12, 13, 14].
We investigate the entanglement patterns of ground

states in multi-electron quantum dot systems using the
extended Hubbard model (EHM), focusing on one-site
and two-site reduced density matrices. Our study reveals
that without potential energy differences, the system’s
entanglement properties align with the EHM in either
half-filled or non-half-filled states [15, 16, 17]. Introduc-
ing potential energy differences in selected dots leads to
distinct phases and phase boundaries in the entangle-
ment spectrum, influenced by coupling strengths and en-
ergy differences. These findings highlight the significant
impact of local potential modifications on electron config-
urations and entanglement properties, providing insights
into the design of advanced quantum technologies.

2 Extended Hubbard Model

We consider a Multiple-Quantum-Dot system (MQD)
(Fig. 1), described by an EHM with short-range Coulomb
interactions and tunneling restricted to nearest-neighbor
sites within the same energy level and the nearest-

∗guanjiehe2-c@my.cityu.edu.hk
†x.wang@cityu.edu.hk

neighbor energy level. The Hamiltonian is:

H =−
∑

i,ν,ν,σ

(tνc
†
i,ν,σci+1,ν,σ + tν,νc

†
i,ν,σci+1,ν,σ +H.c.)

+
∑

i,ν,ν,σ

(Vνni,ν,σni+1,ν,σ′ + Vν,νni,ν,σni+1,ν,σ′

+ V ′
ν,νni,ν,σni,ν,σ′) +

∑
i,ν

Uνni,ν↓ni,ν↑

+
∑
i,σ

εi,σniσ,

(1)

where i indicates the quantum dot site, ν and ν denote
different orbital levels (g: ground, e: excited), σ and σ′

refer to spins (↑, ↓). εi,σ is the potential energy, tν and
tν,ν are the tunneling energies, Uν is the on-site Coulomb
interaction, Vν , Vν,ν , and V ′

ν,ν are the nearest Coulomb
interactions. The Hilbert space dimension for an L-site
MQD chain with K orbitals per site is 4LK . The configu-
ration basis states are |v1, v2, ..., vL⟩ =

∏L
i=1 |vi⟩i, where

|vi⟩i =
∏K

ν=1 |v⟩i,ν represents the i-th site basis. We
study N and N +2 electrons in L = N sites systems, re-
stricting to the ground and first excited orbitals (ν = g, e)
per quantum dot.

3 Reduced density matrices and Entan-
glement

We first obtain the ground state (GS) |ψGS⟩ by diago-
nalizing the Hamiltonian. The GS is a linear superposi-
tion of electron configuration basis states |ψm⟩: |ψGS⟩ =∑

m cm|ψm⟩, where cm are the coefficients. The density
matrix ρGS is: ρGS =

∑
m Pm|ψm⟩⟨ψm|. The reduced

density matrix ρA for subsystem A is: ρA = TrBρGS.
The von Neumann entropy E(ρA) measures the entan-
glement: E(ρA) = −Tr(ρA log2 ρA).
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Figure 1: (a) Four-site quantum dot spin chain with six
electrons. (b) Hubbard model with detuning energy εi
for each site i.

3.1 Local Entanglement of multi-electron quan-
tum dot

We focus on GaAs QD. In GaAs QD, electrons prefer
to doubly occupy ground states before filling the first
excited states. The state space of a single site is spanned
by nine bases: {|0, 0⟩, | ↑g, 0⟩, | ↓g, 0⟩, | ↑g↓g, 0⟩, | ↑g, ↓e
⟩, | ↓g, ↑e⟩, | ↑g↓g, ↑e⟩, | ↑g↓g, ↓e⟩, | ↑g↓g, ↑e↓e⟩}. The one-
site reduced density matrix for site i is: ρi = Tri(ρGS).
Expressing in terms of basis, ρi is a 9 × 9 matrix. For
the four-site system, local bipartite entanglement can be
analyzed as E(ρ1), E(ρ2), E(ρ3), and E(ρ4).

3.2 Pairwise Entanglement of multi-electron
quantum dot

For sites i and j, the two-site reduced density matrix
is: ρij = Trij(ρGS). With 92 = 81 possible configura-
tions, ρij is an 81 × 81 matrix. Dropping two energeti-
cally unfavorable bases, ρij is a 49× 49 matrix. Pairwise
bipartite entanglement can be analyzed as E(ρ12) and
E(ρ34), E(ρ13) and E(ρ24), E(ρ14) and E(ρ23).

4 Results

In our GaAs quantum dots system, we set parame-
ters such that tunneling and Coulomb interactions vary
with orbital levels: te < tg,e < tg, Ug < V ′

g,e < Ue, and
Vg < Vg,e < Ve. We analyze two cases: Ug > 2Vg (charge
density wave) and Ug < 2Vg (spin density wave). Param-
eters: Vg = αUg, Vg,e = αV ′

g,e, Ve = αUe, V
′
g,e = 1.5Ug,

Ue = 2Ug, te = 0.3tg, tg,e = 0.6tg, with α = 0.2 or 0.7.
All results shown in Fig. 2

4.1 Entanglement Analysis for ε1 = 0

The local entanglement analysis for a four-site quan-
tum dot system (L = 4) with ε1 = ε2 = ε3 = ε4 = 0
examines both N = 4 and N = 6 electron configurations
under coupling strengths α = 0.2 and α = 0.7. ForN = 4
and α = 0.2, end sites exhibit lower local entanglement
than middle sites due to single occupancy preference,

with configurations such as | ↑g, ↓g, ↑g, ↓g⟩ dominating
as U increases. For α = 0.7, double occupancy becomes
favorable, leading to configurations like | ↑g↓g, 0, ↑g, ↓g⟩.
In the N = 6 case, the system shows different behaviors:
at α = 0.2, configurations with two extra electrons signif-
icantly influence entanglement values, and as U increases,
end sites favor double occupancy, resulting in rapid en-
tanglement decrease. For α = 0.7, double occupancy is
more pronounced, causing distinct entanglement behav-
ior changes. Pairwise entanglement in the same system,
with all sites having equal potential energy, shows sym-
metrical relations ρ12 = ρ34 and ρ13 = ρ24, and ρ14 = ρ23
due to finite size effects. At N = 4 and α = 0.2, pair-
wise entanglement aligns with theoretical predictions for
non-interacting systems, while for α = 0.7, strong cou-
pling regimes reveal balanced entanglement levels across
different site pairs due to preferred electron configura-
tions. For N = 6, uneven electron distribution leads to
increased entanglement, with rapid declines in configu-
rations favoring double occupancy as U increases, espe-
cially for α = 0.7.

4.2 Entanglement Analysis for ε1 ̸= 0

The entanglement analysis for a quantum dot system
with N = 4 electrons and non-zero potential energy
ε1 reveals significant variations in entanglement behav-
ior influenced by coupling strength ratio α, interaction
strength U , and potential energy ε1. For α = 0.2 and
α = 0.7, the local and pairwise entanglement measures,
E(ρi) and E(ρij), respectively, are studied across differ-
ent regimes. In weak coupling regimes, potential energy
variations lead to distinct transitions in electron occu-
pancy configurations, significantly altering entanglement
values. For example, positive ε1 values generally cause
a decline in local entanglement due to electron disper-
sion, while negative ε1 values localize electrons, reducing
entanglement. As U increases, systems tend toward spe-
cific electron configurations, such as |•, •, •, •⟩ for strong
coupling, where entanglement measures stabilize, • rep-
resents one electron. For N = 6, similar trends are
observed with additional complexity due to the imbal-
ance in electron configurations, requiring consideration of
multiple occupancy states, especially in strong coupling
regimes where specific configurations like |••, •, •, ••⟩
dominate, leading to distinctive entanglement profiles
based on ε1 and α, •• represent two electrons. More
details are in the main text.

5 Conclusions

This study systematically explores the entanglement
properties of semiconductor quantum dots within a
multi-site lattice using the Extended Hubbard Model
(EHM). Our findings reveal that local and pairwise en-
tanglement measures are highly sensitive to the interplay
between Coulomb interactions and tunneling effects, in-
fluenced by electronic configurations and external poten-
tial energy variations. We observed distinct phase transi-
tions in entanglement characteristics, heavily influenced
by coupling strength ratios and potential energy changes.
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Figure 2: Local entanglement measures E(ρ1) from (e) to (h), pairwise entanglement measures E(ρ12) from(a) to (d).
(a) and (e)N = 4, α = 0.2. (b) and (f)N = 4, α = 0.7. (c) and (g)N = 6, α = 0.2. (d) and (h)N = 6, α = 0.7.

Modifying the potential energy of a specific dot signifi-
cantly alters ground state configurations and entangle-
ment measures, especially in both weak and strong cou-
pling regimes, suggesting that potential energy adjust-
ments can effectively control entanglement in quantum
dot systems.
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Estimation of photon number distribution of photon-pair sources
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Abstract. In quantum information experiments based on photon-pair sources, the upper limit of the ex-
perimental qualities is determined by the light source, especially the photon number distribution. Therefore,
it is important to accurately evaluate the photon number distribution of the light source and the derived
characteristics such as pair generation rate, heralding efficiency, and second-order correlation function.
In this presentation, we will discuss how to accurately measure the photon number distribution of light
sources with very low average photon number, such as photon pair sources, and the uncertainties of the
derived characteristics through repeated simulations and bootstrapped experimental data.

Keywords: Estimation of photon number distribution, Charateristics of photon-pair source.

Photon pairs generated via spontaneous parametric
down-conversion (SPDC) or spontaneous four wave mix-
ing (SFWM) are primarily used as (heralded) single-
photon sources and entangled photon-pair sources, which
are the main resources of optical experiments on quan-
tum information processing. Most photon-pair sources
(PPSs) have spectral correlations and use bandpass fil-
ters (BPFs) to remove them. However, with BPFs, the
main characteristics of the PPS such as (single or coin-
cident) count rate, heralding efficiency, and the value of
the second-order correlation function are changed. Typ-
ically, the use of BPFs increases photon indistinguisha-
bilities but reduces count rates and heralding efficiencies.
In this way, the main characteristics of PPSs change due
to the effects of filtering or loss of optical elements fre-
quently used in experiments, but these are fundamentally
secondary phenomena caused by changes in the photon
number distribution (PND).

In this presentation, we first theoretically describe the
PND of a PPS under ideal circumstances and then the
changes in the PND under conditions of spectral/spatial
filtering and losses. In particular, in the process of cal-
culating the probability of two-pair events, we derive an
analytic expression for the number of effective modes of
the joint spectral density, which is the first to our knowl-
edge.

We also describe the characteristics of PPSs, such
as pair generation probability, heralding efficiency, and
second-order correlation functions, based on the PND.
Since the characteristics of PPSs are related to the
PND, they are also affected by photon counting errors
(noise) in measurement setups. Therefore, we assume the
most commonly used measurement settings and describe
changes in photon counting results due to noise. Then we
analyze the effect of noise on previous methods of esti-
mating the second-order correlation functions using pho-
ton counting rates. The results show that, in general, as
noise increases, the estimated values of the second-order
correlation functions approach 1. It is also discussed that
even in the absence of noise, previous methods based on
counting rates may generally overestimate the second-
order correlation functions for heralded single photons.

∗samini@kriss.re.kr

Since the characteristics of a PPS are determined by
the PND and influenced by noise, accurately estimating
the PND by considering (or removing) the influence of
noise is equivalent to accurately estimating the charac-
teristics of the PPS. So, we present an improved method
for estimating the PND of PPSs that eliminates noise
effects and achieves higher accuracy than previous meth-
ods. The improved accuracy of our methodology is indi-
rectly confirmed through simulation results for a single-
partite PPS, and a qualitative explanation is provided.
Additionally, to further clarify the accuracy of the esti-
mated PND, we use a more appropriate metric instead
of the previously used fidelity. In the case of a PPS, the
probability of no photon is close to 1, so the fidelity be-
tween the true and estimated PND is close to 1 no matter
how large the differences in other probabilities are. To-
gether with the simulation results of the PND of a PPS,
the uncertainties (for 100 repetitions) and errors (from
noise) of the estimated values of the second-order cor-
relation functions are also discussed in comparison with
previous methods (based on counting rates).

Finally, we report and analyze experimental results ob-
tained by applying different combinations of BPFs to a
PPS coupled with single-mode fibers (SMFs) based on
SPDC. Unlike in simulations, since the true values of the
characteristics are not known in experiments, only the
uncertainties are evaluated by applying the bootstrap-
ping method to the experimental data, for the reason that
this method removes the need for repeated experiments
to evaluate uncertainty. For example, in challenging sit-
uations where the counting rates are very low, such as
PPSs based on ultra-thin materials, a single experiment
takes a long time and repeat experiments are difficult,
making it natural to obtain uncertainties through resam-
pling (bootstrapping) of the experimental data. Detailed
theoretical calculation procedures and experimental con-
ditions are covered in [1].
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Abstract. Variational Quantum Algorithms (VQAs) have become critical for utilizing Noisy Intermedi-
ate Scale Quantum (NISQ) devices. Nevertheless, these algorithms are still known to suffer from stochastic
noise and gate errors. This work proposes hardware-inspired modifications to improve VQA performance
on NISQ devices. We introduce a version of the Quantum Approximate Optimization Algorithm (QAOA)
for ion-based quantum computers, leveraging native multi-qubit interactions to reduce the number of gates
in the circuit. Additionally, a hardware-inspired Zero Noise Extrapolation (ZNE) technique is proposed to
estimate noiseless expectation values from noisy circuits. These strategies promise a performance improve-
ment for quantum algorithms on NISQ hardware.

Keywords: Variational Quantum Algorithms, QAOA, Optimization, NISQ devices, Zero Noise Extrap-
olation

Variational Quantum Algorithms (VQA) have become
a de-facto model of quantum computation for today’s
Noisy Intermediate Scale Quantum (NISQ) devices. In
this approach a short depth parameterized quantum cir-
cuit is tuned using a classical co-processor, in an attempt
to minimize a given cost function, encoded as a problem
Hamiltonian. While these variational algorithm can al-
leviate certain limitations of NISQ devises, they are still
prone to stochastic noise and gate errors.
In the present work we propose hardware inspired

strategies and modifications to the existing variational
algorithms, thus ensuring efficient implementation on
NISQ devices. First, we propose [1] a modification of
the so called Quantum Approximate Optimization Al-
gorithm (QAOA)[2]—a type of VQA designed to solve
combinatorial problems—tailored to ion based quantum
computers. In our implementation we employ native mul-
tiqubit interaction in order to minimize certain problem
Hamiltonians, not native to the hardware considered.
We simplify algorithm execution by avoiding the gate
based approach, and demonstrate performance improve-
ment in terms of lower resources (circuit depth) required
to minimize the instances. Second, motivated by inho-
mogeneities in the errors of entangling gates between dif-
ferent pairs of qubits in NISQ devices, we propose a hard-
ware inspired Zero Noise Extrapolation (ZNE) technique
[3]. By considering different abstract-to-physical qubit
mappings, this approach allows to approximate noiseless
expectation values, using energies measured from noisy
circuits. We demonstrate that the ZNE recovered energy
can be orders of magnitude closer to the noiseless ex-
pectation value, than energies measured from any of the
noisy circuits.

Traditional QAOA ansatz. Traditional QAOA makes

∗daniilrabinovich.quant@gmail.com
†soumik@nus.edu.sg

use of an ansatz state

|Ψp(β,γ)⟩ =
( p∏

k=1

e−iβkHxe−iγkHP

)
|+⟩⊗n

, (1)

where Hx =
∑n

k=1 Xk. The ground state of HP is then
prepared by tuning 2p parameters β, γ variationally fol-
lowing the minimization minβ,γ ⟨Ψp(β, γ|HP |Ψp(β, γ⟩.
An evident problem of traditional gate based implemen-
tation of (1) is that propagator e−iγkHP , which typically
has no efficient implementation, has to be decomposed
into a sequence of single and two qubit gates. This,
together with potentially large depth of the circuit p,
required to minimize HP , can translate into large gate
counts, which can fall out of the capabilities of NISQ
devices.

Ion native QAOA ansatz. To circumvent the realiza-
tion of propagator e−iγkHP in (1), we replace it with a
propagator of the tunable Hamiltonian

HI =
1

2

∑
j ̸=k

JjkXjXk, Jjk ≈ JmaxAjAk

|j − k|α
, (2)

which can natively be realized in an ion based quantum
computer. Here j and k indicate positions of ions in
a chain and Aj are proportional to Rabi frequencies of
oscillations induced for jth ion. Thus, we develop an
ansatz

|Ψp(β, γ⟩ =

=

p∏
k=1

exp(−iβkHx)H+

(
exp(−iγkHI)

)
H†

+ |+⟩⊗n
, (3)

where H+ = (|+⟩ ⟨0|+ |−⟩ ⟨1|)⊗n, and use it to minimize
a problem HP . We benchmark this algorithm by mini-
mizing instances of n = 6 qubit Sherrington-Kirkpatrick
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(SK) Hamiltonian

HP =
1

2

∑
j ̸=k

KjkZjZk, Kjk ∈ {1,−1} (4)

with respect to the ansatz (3). We exhaustivelly solve all
SK instances and study the fraction of instances that got
solved at each respective depth for various configurations
of Aj . The results are demonstrated in figure 1. Here the
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Figure 1: Fraction of n = 6 qubit SK instances that could
be minimized by the proposed QAOA ansatz.

orange curve shows the results for the symmetric configu-
ration Aj = 1 in (2) for all ions. The fraction of instances
solved saturates due to symmetry protection, induced by
symmetric configuration. The blue curve shows a typical
result for a specific fixed non-symmetric configuration.
It is seen that the fraction of instances solved slowly in-
creases and reaches 100% at depth p = 20. Moreover,
if we do not keep the same values of Aj for all the in-
stances, but take a best possible configuration (out of 50
random ones) for each instance, already by depth p = 6
all the instances can get solved (green curve). This result
even exceeds the performance of standard QAOA, which
requires depth up to p = 10 to solve all the instances (red
curve).

Zero noise extrapolation. In alternative scenarios,
where the gate based approach is unavoidable, certain
error mitigating techniques become necessary. Here we
propose a hardware inspired ZNE technique, which allows
to reconstruct noiseless VQE energy from noisy expecta-
tion values.
To simulate a noisy circuit, we assume that every two-

qubit gate is followed by a noisy channel of strength qij ,
which transforms quantum state as ρ → (1 − qij)ρ +
qijE(ρ). Here noise strength qij depends on the pair of
physical qubits (i, j), to which the gate is applied. In that
case the energy of the state, prepared by noisy circuit can
be written as

E = Enoiseless +
∑
gates

qijEij +O(q2) = Enoiseless

+ ⟨E⟩
∑
gates

qij +
∑
gates

qij(Eij − ⟨E⟩) +O(q2), (5)

where energies Eij are expectations of the problem
Hamiltonian in the state, where only one gate gets per-
turbed. Importantly, in practical realities the errors qij
depend on the pair of physical qubits the gate is applied
to. Therefore, the sum over gates

∑
gates

qij depends on the

abstract to physical qubit mapping. Thus, by changing
this mapping, one can control this error sum of the cir-
cuit, allowing to perform ZNE. To test this proposal in
our work we perform VQE for different types of Hamilto-
nians, introduce noise to the gates, calculate energy for
different qubit permutations and perform linear extrap-
olation of data. The results are summarized in figure
2.

(a)

(b)

Figure 2: Zero noise extrapolation performed over all per-
mutations for n = 6 qubit transverse field Ising Hamil-
tonian (a) and water molecule Hamiltonian (b). Blue
dots represent energy E as per (5) for different qubit
permutations and the red line is a linear fit taken over
energies corresponding to all possible permutations. The
blue horizontal lines show the noiseless VQE energy.

It can be seen that the proposed ZNE protocol in-
deed allows to recover noiseless VQE energy with a good
precision, surpassing energies even of the least noisy cir-
cuits. The similar results were obtained for various noise
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channels E , error distributions {qij} and problem sizes,
demonstrating potential of the proposed technique.
Conclusion. Variational quantum algorithms, while

being promising for NISQ devises, still suffer from hard-
ware imperfections. Nevertheless, in certain algorithms
the effect of noise can be reduced by employing the sys-
tem’s native Hamiltonian and bypassing the gate model
completely. Moreover, even when gate errors are un-
avoidable, their inhomogeneity can be used to foster the
algorithm performance by performing Zero Noise Extrap-
olation over different abstract to physical qubit map-
pings. Both proposed strategies can assist quantum algo-
rithms, promising performance improvement even in the
era of NISQ devices.
Acknowledgements. This work was supported by
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Abstract. The certified deletion process involves transmitting a ciphertext and confirming its deletion via
a digital certificate. In this context, the term “deletion” refers to the fact that no information-processing
procedure can decipher the cyphertext if the certificate is valid. We proposed a method for Certified
Deletion that requires only O(λ) bit of verification key, while all the prior works require at least O(λn) bit
of verification key. We are the first to attempt to reduce the key’s length to reduce storage costs and key
leakage risks.

Keywords: Quantum Cryptography, Certified Deletion, One-way Function

1 Introduction

1.1 Background

Cryptography with Certified Deletion is proposed first
by Broadbent and Islam [5]. It is divided into two phases
by the deletion. In the first phase, a ciphertext is sent,
and it is computationally secure, which means a polyno-
mial time algorithm is unable to read the plaintext, but
an unbounded time algorithm is able. After a successful
deletion, let us move on to the second phase. The cipher-
text is information-theoretically deleted, which means
even an unbounded time algorithm cannot recover the
plaintext.
Nowadays, files are usually encrypted and stored in

cloud storage. One may want to delete them from the
server, and Certified Deletion provides a certificate to en-
sure deletion is complete. Recall that the protocol must
remain computationally secure during the execution, so
the decryption key cannot be distributed in advance, nat-
urally giving rise to the following question.

Where else can certified deletion be useful?

In [10], a commitment with certified deletion is pro-
posed and succeeded in building zero-knowledge proof
(ZKP) with certified deletion. ZKP is a protocol that
consists of a verifier and a prover. Zero-knowledge (ZK)
means that the prover convinces the verifier of a state-
ment without providing any information other than the
truth of that statement [8]. However, ZKP is only
considered ZK against polynomial-time verifiers for NP-
complete problems and QMA-complete problems [6, 14].
By leveraging certified deletion, witnesses are deleted af-
ter the execution of the protocol, and the protocol be-
comes ZK even against unbounded adversaries. In addi-
tion to their work on commitment and ZKP, the authors
of [10] proposed public-key and attribute-based encryp-
tion (ABE) with certified deletion [9], as well as func-
tional encryption (FE) with certified deletion in [18].
Furthermore, [16] introduced fully homomorphic encryp-
tion (FHE) with certified deletion. FHE, FE, and ABE
enable a receiver owning the ciphertext to process infor-
mation without decryption.

∗xu.duo.x3@s.mail.nagoya-u.ac.jp

Table 1: Comparison between the prior works and our
result. n stands for the length of the plaintext.

Methods Verification
Key

Key Length

BK23 [2] Private Key O(λn)
BKMPW23 [3] Public Key O(λn)
This paper Private Key O(λ)

There are also researches implementing a generic com-
piler to add the certified deletion property to a range
of protocols. They are called “Certified Everlasting
Lemma” in [12] and we will also adopt the name in this
manuscript. In [2], public-key encryption, ABE, witness
encryption, timed-release encryption, and statistically-
binding commitment with certified deletion are proposed.
Their method uses a private key as the verification key
to verify if a certificate of deletion is valid. In [3, 12], a
method utilizing a public key as the verification key is
proposed. The three methods [2, 3, 12] introduced here
use weaker assumptions than those of prior works such
as [9,10,16]. [2] requires no additional computational as-
sumptions, and [3] requires only cryptographic primitives
with one-wayness which is considered minimal. For ex-
ample, one-way functions, one-way state generators [15],
e.g.

It may be hard to imagine under what circumstances a
polynomial-time adversary will become unbounded. Here
are a few possible scenarios. Firstly, the encryption
scheme may be broken due to a breakthrough in algo-
rithms. The hardness of factoring, which was thought
unbreakable but got broken by Shor’s algorithm [17], is
a good example. A second scenario is the leakage of a
secret key used in the protocol. Certified deletion makes
it sufficient to design a currently secure protocol without
worrying about being broken in the future.

1.2 Our Results

We proposed a method whose verification key does not
grow with the plaintext’s length to realize Certified Dele-
tion for a range of protocols. In contrast, all the prior
works require a verification key growing in proportion to
the length of plaintexts [2,3]. Our method has asymptot-
ically shorter verification keys than theirs. In table 1, our
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method is compared with the prior researches. Also, we
believe that we introduced a new direction for researches
about Certified Deletion: shortening the verification key.
The method is detailed in section 3.

2 Preliminaries

2.1 Cryptography

QPT QPT is short for Quantum Polynomial Time. For
the sake of simplicity, readers can consider it as Polyno-
mial Time. In the rest of this article, QPT adversary and
QPT algorithm will be used interchangeably.

security parameter λ stands for security parameters
if without additional explanation and indicates how se-
cure the protocol is. Usually, the chance of a QPT ad-
versary breaking the protocol will decrease exponentially
in λ.

poly(λ) Stands for all polynomial functions such as
λ1/2, λ, λ2, etc. It is used with the same nuance as that
for big O notation. For example, 1/2 + poly(λ) and a
single poly(λ).

negl(λ) Usually write negl(λ) to represent some func-
tions that become negligible in λ. It is the same as the
big O notation, and we will write f(λ) = negl(λ), which
means

∀p(λ) = poly(λ),∃x′,∀λ′ ≥ x′, |f(λ′)| ≤ 1/p(λ′)

Also, 1/2+negl(λ) and a single negl(λ) will be used with
the same nuance as that for big O notation.

trace distance TD(ρ, σ) is the trace distance between
distributions ρ and σ. Consider a game as follows. Draw
a sample from ρ or σ, and guess whether it is from ρ or
σ. The optimal probability to make a correct guess is
exactly 1

2 + 1
2TD(ρ, σ) [11]. Note that quantum states

can be considered as distributions, thus trace distance
can be defined between two quantum states.

OWF and PRF One-way functions are polynomial-
time computable functions that, on the output given, are
hard to compute the input. Formally, f is a one-way
function (OWF) if and only if the following holds for any
QPT algorithm Aλ:

Pr
x
[y = f(x′)|x′ ← Aλ(y), y := f(x)] = negl(λ)

Also, it is well known that pseudo-random function
(PRF) is equivalent to OWF [7, 20]. PRF is a collec-
tion of functions {gk} defined by the following equation,
in which Af and Agk are any QPT algorithms calling f
and gk as oracles.

|Pr
f
[Af (1λ) = 1]− Pr

k
[Agk(1λ) = 1]| = negl(λ)

The left side of the above equation is the trace distance
between outputs of Af (1λ) and Agk(1λ). Thus, no QPT
algorithm can distinguish a PRF and a random function
with a non-negligible probability larger than 1/2.

3 Main Result

First we describe our theorem in the table.

Theorem 1 Let {Zλ(·, ·)}λ∈N be a sequence of (quan-
tum) processes referenced by λ. The first argument is
a poly(λ)-bit string to which the semantic security holds
(Equation 1). The second argument of Zλ(·, ·) is an ar-
bitrary quantum register.

∀m ∈ {0, 1}poly(λ), |Pr
Aλ

[Aλ(Zλ(m,A)) = 1]−

Pr
Aλ

[Aλ(Zλ(0poly(λ),A)) = 1]| = negl(λ)

(1)
Let us define the distribution Z̃λ(m) for any adversary
Bλ. Fix a collection of PRFs {gk}k∈{0,1}λ and consider
an experiment as follows.

1. Sample a k ∈ {0, 1}λ uniformly. Compute xi,0 :=
gk(2i) and xi,1 := gk(2i+ 1) for ith bit of m. Pre-
pare 1√

2
(|xi,0⟩+(−1)mi |xi,1⟩) in registers Bi respec-

tively.

2. Use Zλ(k, (B1,B2 . . .Bn)) as input of algorithm Bλ

and run the algorithm.

3. Parse the output as n strings x′
1, x

′
2, . . . , x

′
n and a

residue register B′. For every i = 1, 2, . . . , n, check
whether x′

i ∈ {xi,0, xi,1}. If it is satisfied, output
register B′. Else, output ⊥.

The statement is that

∀m,TD(Z̃λ(m), Z̃λ(0n)) = negl(λ) (2)

The experiment defined above models the entire flow
of our certified deletion. Here we will describe it in an
informal way. In step 1, the key to PRF k is sampled as
the verification key. The ciphertext to mi is

1√
2
(|xi,0⟩+

(−1)mi |xi,1⟩).

How to certify the deletion When an honest re-
ceiver is asked to delete the ciphertext, he measures the
states 1√

2
(|xi,0⟩+ |xi,1⟩) in the computational basis. Let

the measurement outcome x′
i be the certificates. The

sender checks whether x′
i ∈ {xi,0, xi,1}. He can calculate

xi,0 and xi,1 with k easily.

How to decrypt The receiver decrypts k first. With
k decrypted, the receiver can calculate xi,0 and xi,1 by
itself and recover all mi [1, 3].

Equation (2) is an analog of the security for multi-
bit plaintexts in [2] and resembles the semantic security.
With semantic security, an adversary cannot even check
if the plaintext is a specific value. Informally, not one bit
of information about the plaintext is leaked.

An example of how to instantiate a concrete protocol
with Theorem 1 is given below.

The process Zλ(·, ·) is an abstraction of a base proto-
col, which can be encryption, bit commitment, etc. The
specific construction that attaches the base protocol with
Certified Deletion is described in [2, 3]. An example of
how to use Theorem 1 is given as follows.
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Example 1 (Informal.) A commitment is a protocol
consisting of two parties, Alice and Bob. Furthermore,
it can be divided into two phases.

- commit phase Alice decides a string m which is to
be committed to. Then, communicate with Bob, during
which the transcript will be denoted as COMM(m).

- reveal phase Alice publishes a string m′ which she
declares is the real value committed in the commit phase.
Then, communicate with Bob and prove that m′ equals
m. It is called to open COMM(m).
If no cheating QPT (resp. unbounded time) Bob can

decrypt COMM(m) in the commit phase, then the proto-
col is computational (resp. statistical) hiding. Similarly,
if no cheating QPT (resp. unbounded time) Alice can
open a m′ that is different from m in the commit phase,
then the protocol is computational (resp. statistical) bind-
ing.
Assume a computational hiding commitment as the

base protocol. Then, a commitment with Certified Dele-
tion, which can delete COMM(m) before the reveal
phase, can be constructed as follows.

- commit phase Alice chooses a k randomly and pre-
pares 1√

2
(|xi,0⟩ + (−1)mi |xi,1⟩) in register Ai as de-

scribed before. Then commit to k with the base proto-
col and send A1,A2, . . . ,Ai, . . . ,An altogether as the new
COMM ′(m) in the new protocol.

- reveal phase Alice just opens COMM(k) as in the
base protocol to reveal the key k to Bob. With k, Bob can
check the real value of m.

- deletion before reveal Bob measures every Ai in
the computational basis and the outcomes will be the cer-
tificates.

Second, we state the result from [2].

Theorem 2 (Privately Verifiable Deletion from [2])
Let Zλ(·, ·, ·) be a sequence of (quantum) processes.
Zλ(·, ·, ·) is semantically secure in the first argument.
The definition can be referenced in equation (1) with
only a difference in the number of parameters. The first,
the second, and the third arguments receive a string, one
bit, and a quantum register, respectively.

Let us define the distribution Z̃λ(b) for any adversary
Bλ.

1. Sampling x, θ ∈ {0, 1}λ from uniform distributions.

2. Use Zλ(x, b⊕ (x · θ), |x⟩θ) as input of algorithm Bλ

and run the algorithm. |x⟩θ :=
⊗

i H
θi |xi⟩ is the

conjugate coding/BB84 state [4, 19].

3. Parse the output as a string x′ and a residue reg-
ister B′. For all i ∈ {1, . . . , λ} that the ith bit of θ
equals 0, check if the ith bits of x′ and x are equal.
If satisfied, output register B′. Else output ⊥.

The statement is that

TD(Z̃λ(0), Z̃λ(1)) = negl(λ) (3)

Finally, let us state the result from [3].

Theorem 3 (Publicly Verifiable Deletion from [3])
Let Zλ(·, ·, ·, ·) be a sequence of (quantum) processes.
Zλ(·, ·, ·, ·) is semantically secure in the first argument.
The definition can be referenced in equation (1) with only
a difference in the number of parameters. Arguments
received from left to right: string, string, string, and
quantum register.

Let us define the distribution Z̃λ(b) for any adversary
Bλ. Fix a one-way function f .

1. Sample x0, x1 ∈ {0, 1}λ from uniform distributions.
Calculate y0 := f(x0) and y1 := f(x1).

2. Use Zλ(x0 ⊕ x1, y0, y1, |x⟩θ) as input of algorithm
Bλ and run the algorithm.

3. Parse the output as a string x′ and a residue regis-
ter B′. If f(x′) ∈ {y0, y1} then output register B′.
Else output ⊥.

The statement is that

TD(Z̃λ(0), Z̃λ(1)) = negl(λ) (4)

In Table 2, certificates are compared to help readers
understand why our method achieves a shorter verifica-
tion key.

Table 2: the certificates for this work and prior works
Work Certificates Comments
This work k for n bits message
BK23 [2] θ for every single bit
BKMPW23 [3] (y0, y1) for every single bit

Finally, we will discuss about two drawbacks compared
to the prior works. First, our method assumes that OWF
exists, while OWSG is enough in [3] and no additional
assumption is needed in [2]. OWSG is a primitive in-
troduced in [15], and there is an oracle relative to which
OWSG exists but OWF does not [13]. Second, the veri-
fication key k used is a private key, which means anyone
having k can generate certificates without really deleting
the ciphertext. It gives rise to the necessity of keeping
the verification key safe. This is a drawback from [3, 12]
which use a public key.
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Abstract. Superconducting nanowire single-photon detectors (SNSPDs) offer excellent performance for
quantum information science due to their high detection efficiency, low dark counts and low timing jitter.
Integrated quantum photonics has unparalleled scalability and stability, thus integration of SNSPDs with
quantum photonic components is particularly appealing. While reconfigurable photonic circuits is crucial
for active manipulation of quantum states of light, its integration with SNSPDs still remains challenging
due to the sensitive cryogenic environment. Here, we explore thermally reconfigurable unbalanced Mach-
Zehnder interferometers (UMZIs) by utilizing multi-mode silicon waveguides, which greatly reduces the
propagation loss, thus enabling the increase of UMZIs’ arm length to 30 mm and decrease of half-wave
modulation power consumption to 10 mW. By integrating SNSPDs at the outputs of the UMZIs, we
demonstrate a cryogenic reconfigurable receiver chip for energy-time entanglement distribution, which
provides a promising platform towards full integration of large-scale quantum photonic systems on chip.

Keywords: Superconducting nanowire single-photon detector, Energy-time entanglement, Integrated
quantum photonics, Cryogenic reconfigurability
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Abstract. In quantum theory, a quantum state on a composite system of two parties realizes a non-
negative probability with any measurement element with a tensor product form. However, there also exist
non-quantum states which satisfy the above condition. Such states are called beyond-quantum states, and
cannot be detected by standard Bell tests. To distinguish a beyond-quantum state from quantum states,
we propose a measurement-device-independent (MDI) test for beyond-quantum state detection, which is
composed of quantum input states on respective parties and quantum measurements across the input
system and the target system on respective parties. The performance of our protocol is independent of
the forms of the tested states and the measurement operators, which provides an advantage in practical
scenarios. We also discuss the importance of tomographic completeness of the input sets to the detection.

Keywords: Beyond-Quantum State Detection, Measurement-Device-Independent Protocol, General
Probabilistic Theory,

1 Introduction

The standard framework of quantum theory works very
well in explaining the experiment observations, but there
are still ambiguities in understanding the meaning of
this framework. Also, it is unknown whether quantum
theory is the most general physical theory. To study
these problems, a more general framework called Gen-
eral Probabilistic Theory (GPT) is often considered [1].
GPT is a theory equipped with general states and mea-
surements, which together produce probability distribu-
tion for experimental outcomes. It includes quantum and
non-quantum theories.

Either one wants to prove or disprove a non-quantum
theory, a crucial task is to design a protocol to distin-
guish it from the quantum theory. Most of the recent
protocols proposed for this task are related to composite
systems [2, 3]. These protocols distinguish non-quantum
correlations (correlations mean the input-output statis-
tics) from quantum correlations without the knowledge
of the theory or the experimental devices. Such property
is called device-independent (DI).

A natural question would be whether Bell test, the
most well-known DI protocol, can distinguish all non-
quantum theories. The negative answer was shown by
the existence of a family of GPT states which is more
general than quantum states, but produces only quantum
correlations in DI Bell tests [4]. Such states are locally
quantum and generate valid probability distribution un-
der local (separable) measurements, therefore are called
positive over all pure tensors (POPT) states. The set
of POPT states includes the set of quantum states, and
also some non-quantum states which have negative eigen-
values. In the following, we refer to such non-quantum

∗yubc@sustech.edu.cn
†hmasahito@cuhk.edu.cn

POPT states as beyond-quantum states.
Briefly speaking, the reason that DI Bell test cannot

identify/detect beyond-quantum state is the inability to
place restrictions on the measurement operators. In or-
der to detect beyond-quantum states with local measure-
ments, we need a more restrictive protocol. A straightfor-
ward idea is to consider device-dependent (DD) protocol,
where the form of the measurement operators are known
[4]. However, such requirement is very strong practi-
cally, e.g., sometimes the measurement devices cannot
be trusted. In those cases, the soundness of the result
cannot be guaranteed. Therefore we consider a type of
an intermediate protocol between DI and DD ones, called
a measurement-device-independent (MDI) protocol.

The key property of an MDI protocol is that it trans-
fers the trust on measurement devices onto the trust on
state preparations, such that the soundness of the pro-
tocol is independent of the knowledge of measurement
operators. For example, recent studies [5] introduced an
MDI Bell test as a type of a generalized Bell test for en-
tanglement detection, in which the classical inputs of the
standard Bell test are replaced by quantum input states,
and measurements are made across the input system and
the local system of the tested state. In Fig. 1, we present
more details of the protocol of such MDI Bell test.

In a recent work, it was shown that an MDI Bell
test can be used to detect beyond-quantum states [6].
More specifically, the authors proved that for any given
beyond-quantum state, it is possible to construct an MDI
witness to detect it, which is a linear function of the corre-
lations {p(a, b|τx,A′ , τy,B′)}a,b,x,y. However the construc-
tion of the witness is dependent on the form of the tested
state and the measurement operators. In a practical MDI
Bell test, the form of the tested state or measurement op-
erators is usually not assumed to be known. In that case,
the proper witness for detection cannot be determined,
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Protocol 1 MDI detection protocol with SDP

1: We choose a set of quantum input states
{τx,A′ , τy,B′}x,y according to the local dimension to
be tomographically complete.

2: We randomly choose a pair of input state τx,A′ , τy,B′

from the input set each round and make measure-
ments as shown in Fig. 1. After many rounds we
obtain correlations {p(a, b|τx,A′ , τy,B′)}a,b,x,y.

3: We input the correlations {p(a, b|τx,A′ , τy,B′)}a,b,x,y
into SDP (1). Beyond-quantumness is detected
whenever cab > 0.

which may greatly influence the detectability (the abil-
ity of detecting a given beyond-quantum state) of the
protocol.

2 Our Work and Contributions

In our work, we proposed an MDI beyond-quantum
state detection protocol which is different from the one in
[6]. Our method provides the first beyond-quantumness
detection protocol whose soundness and detectability are
optimized and independent of the knowledge of the tested
state and the measurement operators. It achieves better
detectabiliy for beyond-quantum state with less require-
ments than all existing protocols. Also, we discussed the
importance of choosing a tomographically complete input
set to the performance of our MDI protocol.

More specifically, our protocol does not reconstruct a
witness for beyond-quantumness, but processes the ex-
perimental correlations p(a, b|τx,A′ , τy,B′) using a Semi-
definite Program (SDP) as below:

cab := min
(X+

ab,X
−
ab)∈(MA′B′

+ )2
{TrX−

ab|(2) holds.} (1)

Here, MA′B′
is the set of dA′dB′ × dA′dB′ matrices,

MA′B′

+ is the set of positive semi-definite matrices, and
the condition (2) is given as

Tr[Xab(τx,A′ ⊗ τy,B′)] = p(a, b|τx,A′ , τy,B′),∀x, y (2)

with Xab := X+
ab −X−

ab. When there exists a pair (a, b)
such that ca,b > 0, we consider that the tested state is
beyond-quantum. We present the entire procedure of our
protocol as Protocol 1. More details and explanations
about our protocol can be found in the complete version
on arXiv [7].

To assess the performance of our protocol, we proposed
three criteria: completeness, universal completeness and
soundness, which are defined as follows.

Definition 1. Completeness: Let S be a set of beyond-
quantum states. A protocol is called complete for the set
S when any beyond-quantum state in S can be detected by
the protocol under the assumption that the experimental
devices are properly chosen.

Definition 2. Universal completeness: A protocol is
called universally complete when it is complete for the
set of all beyond-quantum states (with certain fixed local
dimensions).

Definition 3. Soundness: Any quantum state will never
be detected as a beyond-quantum state by the protocol.

We see that completeness and universal completeness
assess the detectability of a protocol according to the
quantity of beyond-quantum states it can detect when
the settings (parameters) of the protocol is fixed. Sound-
ness assess the reliability of the detection result.

We showed the power of our protocol by the following
two theorems.

Theorem 1. When MA′A and MBB′ are quantum mea-
surements on system A′A and BB′, and {τx,A′}x and
{τy,B′}y are chosen to be sets of states in HdA′ and HdB′ ,
where dA′ , dB′ are the dimensions of the auxiliary sys-
tems A′ and B′, the tested state is beyond-quantum when-
ever we obtain cab > 0 for some outcomes a, b with SDP
(1).

Therefore, whenever the form of the quantum input
states {τx,A′}x and {τy,B′}y are known, our detection
protocol satisfies soundness.

Theorem 2. Given the assumption that the dimensions
of A and B are dA and dB respectively, any beyond-
quantum state ρAB can be detected by our MDI protocol
when {τx,A′}x and {τy,B′}y are tomographically complete
sets of states on HdA and HdB , and measurement oper-
ators Ma

A′A and M b
BB′ are entangled pure, with Schmidt

rank dA and dB respectively.

Theorem 2 shows that our protocol satisfies universal
completeness with the knowledge of the form of quantum
input states {τx,A′}x and {τy,B′}y and the dimension of
local systems.

3 Comparison with existing protocols

Here we compare our protocol with two existing
beyond-quantum state detection protocols [4, 6].

For the device-dependent protocol proposed in Ref. [4],
the knowledge of the forms of the measurement oper-
ators is required to satisfy soundness, and the form of
the tested state is additionally required to satisfy com-
pleteness. For the MDI protocol proposed in Ref. [6],
the knowledge of the form of quantum input states is
required to satisfy soundness, and the knowledge of the
forms of the tested state and the measurement opera-
tors is additionally required to satisfy completeness. For
our protocol, while the knowledge of the form of quan-
tum inputs is also required to satisfy soundness, only the
knowledge of the local dimensions of the tested state is
additionally required to satisfy completeness. We sum-
marize the above differences in Table 1.

It is worth noting that our protocol also satisfies uni-
versal completeness, since it detects any beyond-quantum
state with a fixed protocol. The protocols in Ref. [4] and
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Figure 1: The Protocol of MDI Bell test. An MDI Bell
test is composed of the target state ρAB , quantum input
states {τx,A′}x, {τy,B′}y, and quantum measurements
MA′A = {Ma

A′A}a and MBB′ = {M b
BB′}b across the in-

put system and the target system in respective parties.
As the result of this experiment, the MDI protocol gener-
ates the correlation set {p(a, b|τx,A′ , τy,B′)}. The details
of these notations will be given in Section ??.

Ref. [6] do not satisfy universal completeness, although
they can detect any given beyond-quantum state. This is
because the form of the witness (therefore the protocol)
needs to be changed according to the form of the tested
state. With a fixed MDI witness (protocol), only a part
of beyond-quantum states can be detected.

Moreover, in Ref. [6], it is only shown that when the
measurements MA′A and MB′B both contain maximally
entangled states as one of the measurement operators,
completeness can be satisfied. However we prove later
that in our protocol, (universal) completeness can be sat-
isfied as long as MA′A and MB′B both contain entangled
pure measurement operators. This result improves the
practicality of the protocol.

In summary, our protocol is the first beyond-
quantumness detection protocol which satisfies soundness
and (universal) completeness without knowing the form
of the tested state and measurement operators. It attains
a better performance with weaker assumptions than ex-
isting protocols.
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[1] M. Plávala. General probabilistic theories: An intro-
duction. Physics Reports, 1033: 1-64, 2023.

[2] G. Brassard, H. Buhrman, N. Linden, A. A. Méthot,
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Abstract. Conical intersections play a vital role in photochemical processes. The standard quantum
chemistry approach to study conical intersections between ground and excited states are the state-average
multi-configurational methods, which at least require solving an active space problem whose computational
cost on classical computers scales exponentially in the worst case. Quantum computing offers an alternative
tool to solve this problem. In this poster, we report a hybrid quantum-classical state-average complete
active space self-consistent field method based on the variational quantum eigensolver (VQE-SA-CASSCF)
for the first time on a programmable superconducting quantum processor, and applied it to study conical
intersections of triatomic hydrogen H3. We show that a combination of different strategies can lead to a
qualitatively correct reproduction of conical intersections using VQE-SA-CASSCF. These results allow us
to identify the challenges to be overcome in the future and pave the way for using quantum computers to
study conical intersections of more complex systems.

Keywords: VQE, CASSCF, conical intersection.

1 Introduction

Conical interactions plays a key role in photochemistry.
With the breakdown of the Born–Oppenheimer approxi-
mation, the adiabatic potential energy surfaces (PES) are
no longer independent and will become degenerate, allow-
ing ultrafast radiationless transition from one adiabatic
excited state to the ground state or another excited state
by internal conversion or intersystem crossing[1, 2, 3, 4].
A fundamental task in quantum chemistry is to com-
pute PES accurately, in particular, in the region of con-
ical intersections[5, 6]. Since multiple closely lying elec-
tronic states are involved, multi-configurational meth-
ods are required to correctly describe conical intersec-
tions. The standard quantum chemistry approach are
state-averaged complete active space self-consistent field
(SA-CASSCF)[7] and its various extensions to include
dynamical correlations. While there have been suc-
cessful numerical methods for solving the active space
problem[8, 9, 10], in the worst scenario the computational
cost on classical computers still scales exponentially with
respect to the number of active orbitals.
Quantum computing is generally believed to have the

potential to benefit computational physics and quantum
chemistry[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], as well
as promote the development of material science and other
related fields. Very recently, several efforts have been
made to develop quantum algorithms to simultaneously
solve the active space problem and optimize molecular
orbitals (OO) in either state-specific[22, 23, 24, 25, 26]
or state-average formalism[27, 28, 29, 26], which are of-
ten referred to as (state-average) orbital-optimized VQE
(OO-VQE). Besides, algorithms for energy gradients
and nonadiabatic couplings were also developed[29, 30],
which are essential for performing nonadiabatic molecu-
lar dynamics near conical intersections. Despite these

∗caixx@baqis.ac.cn

efforts, it is still very challenging to implement SA-
CASSCF based on VQE (VQE-SA-CASSCF) on NISQ
quantum device. Because unlike VQE for a single elec-
tronic state, SA-CASSCF typically requires to solve the
Schrödinger equation for multiple states many times se-
quentially in order to update the molecular orbitals until
convergence. This puts a stringent requirement for the
gate fidelity and coherence time of quantum hardware.
To the best of knowledge, albeit with its importance for
studying nonadiabatic photochemical processes, success-
ful applications of VQE-SA-CASSCF to conical intersec-
tions have not been reported on real quantum devices
yet.

2 Theory

For molecules and materials, the electronic Schrödinger
equation to be solved reads Ĥ|Ψ⟩ = E|Ψ⟩, where the
Hamiltonian Ĥ in second-quantization is written as[31]

Ĥ =
∑
pq

hpqâ
†
pâq +

1

4

∑
pqrs

vpq,rsâ
†
pâ

†
qâsâr, (1)

with hpq and vpq,rs being molecular integrals computable

on classical computers and â
(†)
q being Fermionic annihi-

lation (creation) operators. To solve this equation using
quantum computers, the problem needs to be mapped
to a qubit problem. There exist different fermion-to-
qubit transformations such as the Jordan-Wigner[32],
parity, and Bravyi-Kitaev[33] encodings, after which Ĥ
becomes a qubit Hamiltonian written as a linear com-
bination of Pauli terms, i.e., Ĥ =

∑
k hkPk with Pk ∈

{I,X, Y, Z}⊗N . The many-body wavefunction can be
expressed as |Ψ⟩ =

∑
q Ψ(q)|q⟩ with |q⟩ ≡ |q1 · · · qN ⟩

(qi ∈ {0, 1}) being the basis vector. Solving this prob-
lem exactly is prohibitive for most systems. In fact, it
is often the case that only a subset of MOs are rele-
vant for the interested chemical processes, such that it
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Figure 1: (a) Complete active space (CAS) model. The molecular orbitals are partitioned into three classes: closed-shell
orbitals with double occupancy, active orbitals with partial occupancy, and virtual orbitals with zero occupancy. The
CASSCF method is defined as a variational method, which solves the active space problem exactly while optimizing the
orbitals thorough orbital rotations (gray arrows). (b) Flowchart of VQE-SA-CASSCF. The whole procedure involves
two closed-loop iterative processes. One is for solving the active space problem using the hybrid quantum-classical
VQE (red arrows), and the other is for optimizing molecular orbitals (blue arrows) on classical computers given the
reduced density matrices (RDMs) produced by the former part. The single update of both VQE parameters and the
molecular orbitals will be referred to as one macro iteration.

is sensible to only solve Eq. (1) for those important
orbitals[34, 24]. This is the basic idea of CASSCF[7],
in which the MOs are partitioned into three subsets (see
Fig. 1a): closed-shell orbitals with double occupancy,
active orbitals with partial occupancy, and virtual or-
bitals with zero occupancy. The analog of Eq. (1) is
only solved for active orbitals with the active electrons
distributed in all possible ways, while other parts are
treated at a mean-field level. This ansatz is described
by the CASCI (complete active space configuration in-
teraction) wavefunction |ΨCASCI⟩ = |Ψact⟩|Ψcore⟩, where
|Ψcore⟩ describes the doubly occupied parts and |Ψact⟩
describes the correlated many-body wavefunction within
the active space. The CASSCF (complete active space
self-consistent field) ansatz further improves CASCI by
allowing orbital rotations among different subspaces[31]

|ΨCASSCF⟩ = e−
∑

pq κpq â
†
pâq |Ψact⟩|Ψcore⟩, (2)

where κpq is an anti-Hermitian matrix for orbital rota-
tions (see Fig. 1a). Thus, apart from the wavefunction
parameters in |Ψact⟩, κpq also needs to be determined by
the variational principle. For simplicity, we will denote
these two sets of parameters by xc and xo, respectively.
The flowchart used for optimizing xc and xo in this

work is summarized in Fig. 1b. The whole procedure
involves two closed-loop iterative processes: one for opti-
mizing xc using the hybrid quantum-classical VQE and
the other for optimizing xc on classical computers. De-
tails of this two-step VQE-SA-CASSCF procedure are
described as follows:
(1) Perform a Hartree-Fock calculation to obtain an

initial set of MOs.
(2) Construct the active space Hamiltonian using the

obtained MOs and apply a fermion-to-qubit transforma-
tion to obtain a qubit Hamiltonian.

(3) Setup a Parameterized quantum circuit (PQC) for
each interested state |ΨI(x

I
c)⟩ within the active space.

Depending on the complexity of molecules, either the
PQC derived from UCCSD or qubit-ADAPT will be used
in this work[35, 36, 37].

(4) Solve the active space problem by VQE or its
excited-state extensions[38] to optimize xI

c using both
quantum and classical computers. This gives the en-
ergy EI for each state |ΨI⟩ as well as the one- and
two-particle reduced density matrices (1,2-RDMs) de-
fined by γI

pq ≡ ⟨ΨI(x
I
c)|â†pâq|ΨI(x

I
c)⟩ and ΓI

pqrs ≡
⟨ΨI(x

I
c)|â†pâ†qâsâr|ΨI(x

I
c)⟩, respectively.

(4) With 1,2-RDMs, define an energy function for xo

as

Eav(xo) ≡
∑
pq

hpq(xo)γ̄pq +
1

4

∑
pqrs

vpq,rs(xo)Γ̄pqrs, (3)

where γ̄pq =
∑

I wIγ
I
pq and Γ̄pqrs =

∑
I wIΓ

I
pqrs with

wI being the weight for the I-th state in SA-CASSCF.
Usually, wI = 1/M is chosen with M being the number
of interested electronic states. Then, optimize Eq. (3)
on classical computers to obtain a set of optimized MOs.

(5) Check energy convergence. If not converged, repeat
steps (2)-(5) until convergence is reached.

3 Results and discussions

The triatomic hydrogen H3 is a typical system with a
symmetry-required conical intersection[39] between the
ground and the first excited states occurred at all equi-
lateral triangular geometries. In our study, the first two
hydrogen atoms are positioned along the x-axis with the
distance between them set to be 0.818 Å, and the posi-
tion of the third hydrogen is varied from 0.4 Å to 0.71

354



0.4 0.5 0.6 0.7

Distance (Å)
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Figure 2: (a) Structure of the H3 model, where two of
the hydrogen atoms on the x-axis are fixed (x = 0.409
Å) and the remaining hydrogen on the z-axis is allowed
to move in the z direction. Molecular orbital diagrams
and the three-electron-in-three-orbital active space de-
noted by CAS(3e,3o). (b) Potential energy curves of the
ground and the lowest excited state obtained by VQE-
SA-CASSCF with CAS(3e,3o) using the cc-pVDZ basis
set and two error mitigation methods. The conical in-
tersection is located at the equilateral triangle structure
(z ≈ 0.708 Å). The shaded region represents the error
bars estimated by repeating the calculations twice.

Å along the z-axis (see Fig. 2a). A conical intersec-
tion between the lowest two electronic states presents at
the equilateral triangle structure (z ≈ 0.708 Å) with the
D3h symmetry, while for other values of z, the struc-
ture has the C2v symmetry. To correctly describe the
conical intersection, a minimal active space with three
electrons distributed in three active orbitals, denoted by
CAS(3e,3o), is required. Figure 2 shows the three rele-
vant MOs with a1, b1, and a1 symmetries, respectively.
The ground state and the first excited state has the B1

and A1 symmetries, respectively.
We used the qubit-ADAPT[37] performed on noiseless

simulators to derive simpler PQCs, while maintaining the
accuracy with respect to the exact energy below 1 milli-
Hartree. The qubits on our superconducting chip have
been properly chosen to avoid nonadjacent two-qubit
gates, which would otherwise require the introduction of
swap gates. We used a grouping technique[40], which uti-
lizes the qubit-wise commutativity between Pauli terms
in the Hamiltonian or 2-RDMs, to reduce the number of
measurements.
Apart from these algorithmic improvements, a few

other adjustments were implemented to make the VQE-
SA-CASSCF experiments robust. On the hardware im-

plementation side, the fast-reset method[41] is utilized to
reduce the trigger repeat period to 20 microseconds. Be-
sides, the fidelity of the gate is regularly checked every 10
minutes to mitigate potential fluctuations in the system
state. We have also replaced the COBYLA algorithm
for optimizing wavefunction parameters by the Bayesian
optimization with skopt[42] for having a better perfor-
mance in the presence of noises. These adjustments are
crucial for the VQE-SA-CASSCF experiments. Note that
due the increased impact of noise, VQE-SA-CASSCF can
only converge with a loose criteria (∆Eav < 3 × 10−3

Hartree) in this case.
Figure 2b displays the PECs of the ground and the

first excited states for H3 obtained using two different
EM strategies. The first EM strategy (labeled by EM1) is
the symmetry projection[43]. Specifically, the nonphys-
ical states which do not belong to the B1 symmetry for
the ground state or the A1 symmetry for the first excited
state are projected out. The second more sophisticated
EM strategy (labeled by EM2) further modifies upon the
first EM strategy for expectation values of the Pauli-Z
operators[44], by recycling the information of nonphysi-
cal states to suppress the errors from depolarization[44].
As shown in Fig. 2b, the PECs obtained by EM1 are too
high and have larger fluctuations. In addition, the coni-
cal intersection at the equilateral triangular geometry is
not well reproduced. These suggest that simply remov-
ing the nonphysical components is not sufficient for the
present four-qubit case, and the errors within the physical
subspace also need to be mitigated. In comparison, the
PECs obtained by EM2 agree much better with the the-
oretical PECs, reproducing the the conical intersection
with significantly smaller variations. Thus, for longer
circuits, EM2 is more advantageous than EM1. This ex-
ample demonstrates the feasibility of applying near-term
quantum computers to study conical intersections using
the VQE-SA-CASSCF method together with hardware
and algorithmic improvements.

The paper related to this poster have been ac-
cepted by the journal of physical chemistry letter.
Here, we only list the part of authors in the pa-
per and the complete list of authors and contents
can be found at https://arxiv.org/abs/2402.12708 and
https://arxiv.org/abs/2402.10480.
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Abstract. We have proposed and experimentally verified a tunable interqubit coupling scheme for large-
scale integration of superconducting qubits. The key feature of the scheme is the insertion of connecting
pads between the qubit and tunable coupling element. In such a way, the distance between two qubits can
be increased considerably to a few millimeters, leaving enough space for arranging control lines, readout
resonators, and other necessary structures. By using this design, we have successfully prepared a 78Bit
quantum device using flip-chip technique. In this device, we verified the low crosstalk performance of this
architecture and achieved higher CZ gate fidelity.

Keywords: Superconducting Qubits, Flip-Chip Technique, Tunable Coupling

1 Introduction

In the development of future large-scale quantum pro-
cessors, the tunable coupling of superconducting qubits is
crucial for the implementation of high-fidelity two-qubit
gates and diverse quantum simulation schemes. Tunable
coupling schemes based on capacitive[1] and inductive[2]
coupling have been demonstrated and implemented in
large-scale multiqubit processors. In these schemes, a
coupling-off point can be realized and high qubit deco-
herence time can be maintained. A widely used scheme
based on capacitive coupling with a high ON:OFF ratio
has been proposed[1] . However, in this design, the tun-
able coupler is a grounded transmon, and a large enough
direct capacitive coupling between qubits is required in
the implementation of the tunable coupler. This could
limit the circuit design because qubits cannot be placed
too far apart, making it difficult to provide adequate
space for arranging readout resonators, control lines, air-
bridges, Purcell filters, and other necessary structures.
To address these issues, we propose a tunable coupling

scheme that can increase the distance between qubits.
We call it tunable coupler with capacitively connect-
ing pad (TCCP)[3] . TCCP architectures consist of
a grounded coupler and capacitively connecting pads.
These architectures can achieve a high ON:OFF ratio and
do not require direct capacitive coupling between qubits.
With TCCP, qubits and tunable couplers can be designed
with relatively small sizes, which can more effectively re-
duce parasitic capacitance caused by another layer along
the stacking direction in the flip-chip process. In addi-
tion, TCCP architectures can provide a connection form
with tunable coupling between chips. Moreover, by using
this design, we have successfully prepared a 78Bit quan-
tum device using flip-chip technique. In this device, we
verified the low crosstalk performance of this architecture
and achieved higher CZ gate fidelity.

∗zcxiang@iphy.ac.cn

2 TCCP Architectures

Fig.1(a) shows one of such TCCP architectures
with the arrangement of grounded qubit—connecting
pad—grounded coupler—connecting pad—grounded
qubit. Fig.1(b) presents its lumped-element circuit
model, where the direct capacitance between the qubits
is neglected. This implies that the qubits are spaced
far enough apart that mutual capacitance C12 can be
disregarded.

FIG. 1: (a) The schematic diagram of TCCP architecture
with two connecting pads. It displays the capacitances
and couplings between the nearest-neighbor pads, while
the capacitance between two qubits is negligible. (b) The
lumped-element circuit model of (a).

We can model this BCC architecture readily using the
Hamiltonian given by:

Ĥ =
∑

j=1,C,2

[
ωj +

ECj

2

(
1− 5ξj

18

)
− ECj

2

(
1− ξj

6

)
â†j âj

]
×â†j âj +

∑
k=1,2 gjC(â

†
k − âk)(â

†
C − âC)

+g12(â
†
1 − â1)(â

†
2 − â2)

(1)
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where ωj/2π, ECj , and EJj are the frequencies, charging
energies, and Josephson energies of qubits (j = 1, 2) and
tunable coupler (j = C), respectively, ξj =

√
2ECj/EJj

are the sixth-order correction, and âj (â†j) are the anni-
hilation (creation) operators.
The effective qubit-qubit Hamiltonian can be obtained

by approximating the qubits and the tunable coupler by
their lowest two energy levels and applying a second-
order SWT (Schrieffer-Wolff transformation) [4]. The
resulting effective Hamiltonian can be expressed as:

Ĥeff =
2∑

k=1

(
−1

2
ωeff
k σ̂z

k

)
+ geff(σ̂

+
1 σ̂

−
2 +H.C.) (2a)

ωeff
k = ωk − g2kC

(
1

∆k
+

1

Σk

)
, k ∈ {1, 2} (2b)

where geff is the effective coupling strength between
qubits,and ∆k = ωC − ωk, Σk = ωC + ωk. If ∆k =
ωC − ωk > 0, i.e., when the frequency of the tunable
coupler is above both frequencies of qubits, the virtual
exchange interaction term g1Cg2C/∆k > 0, and geff can
be tuned from negative to positive monotonically by in-
creasing the frequency of the tunable coupler. Therefore,
a critical value ωoff

C can always be reached to turn off the
effective qubit-qubit coupling, i.e., geff(ω

off
C ) = 0. It is

important to note that we assume that the qubits are
far enough apart spatially so that the direct qubit-qubit
capacitance C12 is negligible. As a result, geff does not
depend on C12 and is related to the direct capacitances
between qubits and bypass pads C1B, C2B and the direct
capacitance between bypass pads CB12 .
To validate the feasibility of the BCC architectures, we

designed and fabricated a device with the TCCP architec-
tures. As shown in Fig.2 We found that geff of the TCCP
architectures could be modulated between +3 MHz and
−25 MHz, which is a sufficiently wide tunable range to
enable most experimental schemes.

Advantage: We have summarized the advantages of
the TCCP architecture as follows:

� The effective coupling between qubits can be
switched on and off.

� Increase the distance between qubits to realize more
wiring space in the flip-chip process.

� Qubit and coupler are grounded transmons with
small sizes to reduce parasitic capacitance.

� The long distance connecting pads can reduce
crosstalk between qubits.

3 Flip-Chip Device

The TCCP architecture is particularly suitable for the
design of large-scale qubit processors due to its afore-
mentioned advantages. The schematic diagram Fig. 3(a)
demonstrates the feasibility of the scaling up of qubits
based on flip-chip techique [5] using TCCP architectures.

FIG. 2: (a) The spectral diagram of the SWAP opera-
tion performed on TCCP device for different frequencies
of the tunable coupler, during a period of delay. The ab-
scissa represents the dimensionless parameter of the DC
bias applied to the tunable coupler, which correlates in-
versely with the frequency of the tunable coupler. The
colors indicate the probability that one qubit is in the
excited state. (b) geff as a function of the frequency of
the tunable coupler was obtained by Fourier transform-
ing the data in (a). The dashed line represents the fitting
result.

Sufficient space is available between two qubits to accom-
modate readout resonators, readout lines, control lines,
(tubular) airbridges, indium bumps, and other compo-
nents.

Due to the introduction of connecting pads, most con-
trol lines driving other qubits can be placed far from the
qubit as shown in Fig. 3(b), thus greatly reducing the
crosstalk between them. Simultaneously, for the control
lines close to the qubit, rows of indium can be used in-
stead of indium bumps to block the crosstalk more ef-
fectively. Furthermore, the relatively small size of qubits
and tunable couplers can reduce parasitic capacitances
caused by another layer along the stacking direction ef-
fectively. By adjusting each pad, we can achieve a wide
enough tunable range and turn-off point for geff in the
flip-chip design, which is comparable to those in the plane
design.

We have prepared the 78bit device based on the
schematic diagram mentioned above, which consists of
two dies bonded together using the flip-chip technique
(see Fig.4). The qubit of the device is arranged in the
form of a grid array, comprising 6 rows and 13 columns.
Each column shares one readout line, and a TCCP-style
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TCCP Architecture Readout Resonator

Airbridge

Top Chip
(TCCP Layer)

Indium Bump

(a)

100μm

Bottom Chip
(Wiring Layer)

Readout Line

XY/Z Control Line

Tubular Airbridge
(b)

FIG. 3: (a) A schematic diagram of the flip-chip pro-
cess using TCCP architecture. TCCP architecture on
the top chip provides sufficient space for the bottom chip
to accommodate readout resonators, readout lines, con-
trol lines, (tubular) airbridges, indium bumps, and other
components. (b) Schematic cross-section of the marked
location in (a). Because of the connecting pads, the qubit
is far away from the control lines.

coupler is placed between each pair of nearest-neighbor
qubits, resulting in a total of 137 couplers. Fig.4(b) illus-
trates the average Energy relaxation time ( T 1) of qubits,
with a mean value of 26.4µs. We have also measured the
Z crosstalk and XY crosstalk for 78Bit device, The Z
crosstalk generally ranges from 0.1% to0.01%, and the
XY crosstalk ranges from 1% to 0.1%. These measure-
ments verify the excellent performance of the TCCP-style
coupler in superconducting qubit applications.

FIG. 4: (a)The photo of 78Bit flip-chip device. (b) Typ-
ical distribution of single-qubit T1 parameters over the
device,.

4 Conclusion

We have introduced connecting pads between qubits
and a tunable coupler to design a new tunable coupler

architecture called TCCP. By eliminating direct capac-
itive coupling between qubits, TCCP architectures can
separate two qubits by several millimeters, providing suf-
ficient wiring space for the flip-chip process and reducing
crosstalk from other control lines to the qubits. Using
this design, we successfully fabricated a 78-bit quantum
device with the flip-chip technique and verified the excel-
lent performance of the TCCP architecture. In conclu-
sion, TCCP architectures offer a promising approach to
the realization of large-scale superconducting quantum
processors.
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Revealing crosstalk errors of information scrambling in quantum devices
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Abstract. Quantum information scrambling refers to the process of spreading local information into
global information across all degrees of freedom. Within this framework, the faithful teleportation fidelity
under the Hayden-Preskill decoding protocol serves as a metric for distinguishing genuine information
scrambling from decoherence effects. However, the teleportation fidelity, in general, cannot rule out the
possibility of crosstalk errors. To tackle this challenge, we propose a spatio-temporal quantum steering task
for the decoding protocol, showing that the steerability not only can measure the information scrambling
but also signify the presence of crosstalk errors. Moreover, we validate this approach through simulations
conducted on IonQ quantum devices.

Keywords: Quantum information scrambling, Crosstalk, Quantum steering, Quantum correlations

1 Motivation

Recently, quantum information scrambling has been
studied in various fields such as quantum circuits [1],
qutrit processor [2], quantum neural networks [3], and
many-body scarred systems [4]. Quantum information
scrambling characterizes the dispersal of local informa-
tion into global systems. For instance, suppose a global
system ρA ⊗ ρB is initially composed of two local sys-
tems ρA and ρB . One can correlate local systems ρA
and ρB by performing a global unitary U called “scram-
bler”. With the scrambler U , the information of local
systems flows out as the sense of local entropy accumula-
tion. However, the entropy of the global system remains
unchanged. This phenomenon can be concluded that the
local information is redistributed from the local system
to the entire system, and be phrased as “quantum infor-
mation scrambling”.
To quantify the degree of quantum information scram-

bling, one can use the out-of-time-order correlation
(OTOC) [5, 6] defined as

⟨V †U(t)W †U†(t)V U(t)WU†(t)⟩, (1)

where V and W are some unitary operators, and U(t) =
exp(−iHt) is also a unitary operator that evolves the
system under the Hamiltonian H. We can also express
Eq. (1) under the Heisenberg picture, namely

⟨V †(0)W †(t)V (0)W (t)⟩. (2)

The OTOC serves as a correlation measure between the
initial time t = 0 and the later time t. As the unitary
U(t) evolves, the operator W changes from local opera-
tor to global operator, destroying the correlation in time,
and leads to the decrease of the value of OTOC. Thus,
one can quantify the quantum information scrambling
by the decay of OTOC. However, Ref. [7] shows that the
value of OTOC can still be low under a strong decoher-
ence map. Since the decoherence map flows the infor-
mation out from the entire system, the value of OTOC

∗yuehnan@mail.ncku.edu.tw

can decrease with the absence of quantum information
scrambling. This shows that OTOC fails to distinguish
the quantum information scrambling and the decoher-
ence map.

To disentangle quantum scrambling and decoherence
map, Ref. [7] proposed a protocol based on the Hayden-
Preskill decoding protocol [8]. This protocol replaces the
black hole in the Hayden-Preskill decoding protocol with
the scrambler U . The value of teleportation fidelity (de-
coding fidelity) then depends on the degree of the quan-
tum information scrambling. Once the decoherence map
occurs, the value of teleportation fidelity will decrease
and never increase since successful teleportation requires
undamaged information. Thus, one can verify genuine
quantum information scrambling by the value of telepor-
tation fidelity.

However, the current stage of the quantum computer
is still in the noisy intermediate-scale quantum (NISQ)
era. The protocol may not only be influenced by the
decoherence map but also complicated errors such as
non-Markovian effect [9], or crosstalk errors [10–12].
Throughout this work, we consider the effect of crosstalk
errors on the protocol. We observe that the protocol fails
to quantify genuine quantum information scrambling un-
der inevitable crosstalk errors.

To quantify genuine quantum information scrambling,
we utilize a metric called spatio-temporal steering robust-
ness (STSR). STSR quantifies the quantum correlation
between two systems that are spatio-temporally sepa-
rated. It can be used to quantify nonclassicality [13–15]
and witness information scrambling [16]. We reinterpret
the protocol proposed in Ref. [17] by the spatio-temporal
steering (STS) scenario and quantify the genuine quan-
tum information scrambling with STSR. We characterize
the crosstalk errors by the violation of the no-signaling in
time (NSIT) condition under the STS scenario [15]. We
perform the proof-of-principle experiment on the IonQ
cloud quantum computer. We validate the existence of
crosstalk errors and show that STSR (together with the
NSIT condition) is a better metric for quantum informa-
tion scrambling.
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Figure 1: Teleportation circuit based on the Hayden-
Preskill decoding protocol [8]. The two scramblers [U(θ)
and U∗(θ)] encode Alice’s state (information) into the
global system. After performing the Bell state measure-
ment, Bob can decode Alice’s state by post-selecting the
outcome corresponding to the |EPR⟩ = (|00⟩+ |11⟩)/

√
2

state.

2 Information Scrambling

One of the measure for OTOC and quantum informa-
tion scrambling is to calculate the tripartite mutual in-
formation I3 to investigate the distribution of informa-
tion [18–20]. Here, I3 is defined as

−I3 = I(A : CD)− I(A : C)− I(A : D), (3)

where I(A : B) = S(A)+S(B)−S(AB) is mutual infor-
mation, and S is the von Neumann entropy. The higher
value of −I3 implies a higher degree of quantum infor-
mation scrambling. We define the “maximal scrambler”
as the scrambler that maximizes the value of −I3. In
practice, measuring −I3 for a given scrambling unitary
U requires the full access of both input and output quan-
tum states of U [16].
The protocol, as shown in Fig. 1, proposed in Ref. [7]

provides an efficient method to quantify the quantum
information scrambling by only calculating the aver-
age teleportation fidelity. To accomplish a successful
teleportation, the scrambling unitary U and the post-
selection of the outcome corresponding to the |EPR⟩ =
1√
2
(|00⟩ + |11⟩) state are necessary. In the ideal case,

when the scrambling unitary is tuned to the maximal
scrambler, the teleportation is perfectly successful, and
thus, the average teleportation fidelity equals to unity.

3 Definition of Crosstalk error

During each stage of information processing, crosstalk
errors inevitably cause errors, and thus, lead to the
imperfection of the results [11, 12]. As introduced in
Ref. [12], it is hard to define the source of crosstalk er-
rors generally. Here, we focus on the crosstalk errors

generated by a global input-dependent quantum chan-
nel. Consider a quantum system for which the number
of subsystems is n, and crosstalk errors can be expressed
as

ρ̃t = Λρi [ρ1 ⊗ · · · ⊗ ρi ⊗ · · · ⊗ ρn], (4)

where the global channel Λρi depends on the input state
of i-th subsystem ρi, and ρ̃t represents the total output
state. This kind of crosstalk error may leak information
to one another through this channel. Under the existence
of crosstalk errors, teleportation fidelity may be increased
and failed to witness the genuine quantum scrambling.

Here, we provide a concrete example where the tele-
portation fidelity fails to witness quantum information
scrambling. Consider the global channel in Eq. (4) is an
input-dependent SWAP operation. It swaps the states
between Alice and Bob only when Alice’s input state is
under certain states. In this case, the teleportation fi-
delity will always be unity, but it is irrelevant to the
degree of quantum information scrambling. Therefore,
crosstalk errors may induce unexpected information ex-
change in the protocol and make the teleportation fidelity
unreliable.

4 Information Scrambling in STS Sce-
nario

In order to quantify the quantum information scram-
bling and also reveal crosstalk errors, we utilize the
spatio-temporal steering (STS) scenario, which describes
the non-classicality between two spatio-temporally sepa-
rated quantum systems. It has been reported in Ref. [15]
that one can also benchmark quantum teleportation with
STS. Therefore, we can also utilize spatio-temporal steer-
ing robustness (STSR) as our quantification of quan-
tum information scrambling. Moreover, we can detect
crosstalk errors by calculating the violation of the no-
signaling in time (NSIT) condition under the STS sce-
nario.

In general, the steering scenario must obey the NSIT
condition [21, 22], which assumes that Alice and Bob are
not allowed to communicate via sub-channel. In other
words, Alice’s measurement input (labeled as x) does not
affect the statistics on Bob’s state at any time t, namely∑

a

ρa|x(t) =
∑
a′

ρa′|x′(t) ∀ x, x′, t, (5)

where a (a′) is the corresponding outcome of Alice’s in-
put x (x′). Once the above condition is violated, Alice
and Bob are able to communicate via classical channels.
In this case, one cannot distinguish whether the corre-
lation between Alice and Bob is genuine quantum. The
degree of the violation can be quantified by the following
quantity [15]:

D({ρa|x(t)}) = max
x̸=x′

1

2

∥∥∥∑
a

ρa|x(t)−
∑
a′

ρa′|x′(t)
∥∥∥
1
(6)

where {ρa|x(t)} is the steering assemblage in STS sce-
nario. Here, we point out that the crosstalk errors de-
fined in Eq. (4) is a necessary condition for the violation
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Table 1: The experiment results are obtained from
the ideal simulator and IonQ cloud quantum computer.
Here, we initialize Alice’s qubit in the six eigenstates
of Pauli matrices and conduct the experiments on two
quantum devices provided by IonQ. We show the result
by comparing the value between STSR, D, and average
teleportation fidelity Favg.

Device STSR D Favg

Ideal Simulator 0.2681 0.0113 1.0000
IonQ Aria1 0.1555 0.0491 0.9057
IonQ Harmony 0.0948 0.0948 0.7418

of NSIT condition, namely∑
a

Λa[ρa|x(t)] ̸=
∑
a′

Λa′ [ρa′|x′(t)]. (7)

Therefore, with the quantity D introduced in Eq. (6), we
can detect crosstalk errors and compare it with the value
of STSR to verify whether the process of information
scrambling is genuine quantum.

5 Experiment in Quantum Device

We implement the teleportation to quantify the de-
gree of quantum information scrambling on two quan-
tum devices of the IonQ cloud quantum cloud computer.
The circuit design is depicted in Fig. 1. In the begin-
ning, we prepare Alice’s state |ψ⟩ and three pairs of
|EPR⟩ = (|00⟩ + |11⟩)/

√
2 states. The scramblers U(θ)

and U∗(θ) are then performed simultaneously to scram-
ble the local information to the global system. Next, we
perform quantum state tomography on Bob’s state. The
measurement results are obtained through 10,000 shots
in each procedure of the state tomography. At the end,
we perform Bell state measurement and post-select the
outcomes corresponding to the EPR state.
To calculate STSR, we repeat the experiment by ini-

tializing |ψ⟩ into the following six states: |0⟩, |1⟩, |±⟩ =
(|0⟩ ± |1⟩)/

√
2, and |±i⟩ = (|0⟩ ± i|1⟩)/

√
2. Here, |0⟩ and

|1⟩ are the eigenstates of Pauli-Z matrix. In our experi-
ment, the scramblers U(θ) and U∗(θ) are tuned to be the
maximal scrambler, as shown in Fig. 2.
Both theoretical prediction and experimental results

are shown in Table 1. The experimental results obtained
from IonQ Harmony shows that the value of STSR and
D are equal, which means that the correlations between
Alice and Bob can be fully described by classical corre-
lations [15]. Although the value of fidelity exceeds 2/3
(classical bound), it could be induced by crosstalk errors,
and thus, it is not certified as genuine quantum infor-
mation scrambling. By contrast, one can observe that
the value of STSR is much larger than the value of D
from the experimental results obtained from IonQ Aria
1. Therefore, the experiment conducted in this device
is more convincing to be genuine quantum information
scrambling.

6 Summary

Quantum information scrambling is the key component
to quantum supremacy. Developing a general method
to quantify the ability to generate quantum informa-
tion scrambling thus becomes a crucial task. Although
the teleportation protocol can successfully distinguish
the decoherence map from genuine quantum information
scrambling, crosstalk errors may influence the protocol
and cause unexpected results. Since crosstalk errors are
inevitable in the NISQ era, we reinterpret the teleporta-
tion protocol within the STS scenario.

We show that one can quantify genuine quantum infor-
mation scrambling by the value of STSR together with
the NSIT condition under the STS scenario. We are able
to detect the existing crosstalk errors in the teleporta-
tion protocol with the quantity D. Moreover, we con-
duct experiments on the IonQ cloud quantum computer
and validate our theory. We conclude that the value of
STSR together with NSIT condition is a better metric
for quantifying genuine quantum information scrambling
in the NISQ era.
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Abstract. Circuit cutting is a technique to execute large quantum circuits with small computers. Quan-
tum computers are expected to achieve substantial speed-up over classical ones. However, state vector
simulation with a classical computer is still effective in running quantum circuits in the Noisy Intermediate-
Scale Quantum Computer (NISQ) era. To confirm the achievement of quantum supremacy, we need to
understand classical computing’s performance limitations. Therefore, we investigate the cutting method’s
applicability with a classical computer. Specifically, we estimate the maximum number of cuts to reduce
the circuit execution time with a classical computer. In addition, we compare circuit execution time with
a classical computer and that with a quantum computer in the application of circuit cutting. Our work
enables the appropriate use of quantum and classical computers when utilizing circuit cutting technique.

Keywords: Quantum Circuit Cutting, Classical-Quantum Crossover, Order Estimation, NISQ

1 Introduction

Quantum computing is a promising computational ap-
proach to offer exponential speedups over classical com-
puting for certain computational problems [1]. However,
today’s quantum computers are Noisy Intermediate-Scale
Quantum Computer (NISQ) devices [2]. Running a large
quantum circuit with a NISQ device is challenging due to
limitations on the quantity and quality of qubits. There-
fore, classical computing such as state vector simulations
and tensor network simulations [3] are still powerful to
perform quantum circuit evaluations because they are
noiseless simulations. Although tensor network simu-
lations are effective for simulating sparse large circuits,
we focus on state vector simulations, which can simulate
dense small circuits, in order to compare classical com-
puters with small quantum computers (NISQ). There is
a limit to execute quantum circuits by state vector sim-
ulation because storing the entire state vector in mem-
ory requires O(2n) memory, where n is the number of
qubits. Quantum supremacy [4] stems from the limita-
tion. Therefore, to confirm the achievement of quantum
advantage, we need to grasp the performance limitation
of classical computing.
Circuit cutting is a promising technique to expand the

reach of small computers [5]. Peng et al. introduced
wire cutting, which cuts qubit-wires along the direction of
time [6]. Mitarai and Fujii proposed gate cutting, which
decomposes two-qubit gates directly [7]. This cutting
enables us to run a large circuit with a NISQ device. In
compensation for saving qubits, the overhead in terms
of additional number of circuit evaluations increases to
O(5c), where c is the number of cuts[8]. Moreover, there
are a lot of works to reduce overheads such as wire cutting
with classical communication [9], parallel wire cutting
[10] and multi-control gate cutting [11].

∗mitsuhiro.matsumoto@pwc.com

In this work, we discuss the efficiency of gate cutting
with state vector simulations by answering the following
two questions. One is how often we can cut two-qubit
gates to reduce the circuit execution time with a clas-
sical computer. The other is how a quantum computer
performs a large circuit faster than a classical computer.
Note that we only estimate execution time to run par-
titioned circuits and ignore other overheads such as pre-
processing time to cut an original circuit, compilation
time of partitioned circuits and post-processing time to
combine the results of executing partitioned circuits.

2 Limitations of Quantum Circuit Cut-
ting With Classical Computers

The maximum size of a quantum circuit that can be
performed by naive state vector simulation is 49 qubits
because of the memory requirement [12]. We use the cir-
cuit cutting technique to reduce the necessary memory
size, considering the overhead in the number of parti-
tioned circuits to be executed. Understanding the trade-
off between memory reduction and circuit cutting over-
head is important in order to fully utilize the technique.

In this section, we investigate the maximum number
of cuts that can reduce the circuit execution time when
state vector simulations are performed on a classical com-
puter. Circuit execution time T with a classical computer
increases exponentially with the number of qubits q:

T ∼ O(2q). (1)

Here, we ignore other factors, such as depth, because the
number of qubits has a significant impact on the execu-
tion time.

When we perform state vector simulation of decom-
posed circuits on a classical computer, CZ gate can be
partitioned as follows [13]:

CZ =
i

1 + i

(
S ⊗ S + iS† ⊗ S†) , (2)
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where S is the phase gate. This indicates that the number
of partitioned circuits increases exponentially (∼ 2c) with
the number of gate-cuts c.

Divide-in-Half We investigate how often we can cut
two-qubit gates to reduce the circuit execution time with
a classical computer. Let us consider dividing a circuit
with q qubits into in half (two circuits with q/2 qubits) by
c-cuts (see Fig.1). The execution time 2q of the original
circuit changes as follows:

2q → 2q/2 × 2c × 2. (3)

We can save the execution time as long as the right hand
side is smaller than the left hand side, that is,

c <
q

2
− 1. (4)

This result is shown in Fig.3. For example, when we cut
a circuit with 100 qubits in half, the execution time can
be reduced by circuit cutting up to 48 times.

Figure 1: Schematic of dividing a circuit in half with
c-cuts.

Divide-into-Thirds What changes if a circuit is di-
vided into thirds? Let us consider dividing a circuit with
q qubits into three segments A, B, and C (see Fig.2). We
cut c1 gates between A and B, c2 gates between B and
C, and c3 gates between C and A, respectively. The exe-
cution time 2q of the original circuit changes as follows:

2q → 2q/3 ×
(
2c1+c2 + 2c2+c3 + 2c3+c1

)
. (5)

Let us consider the simple case c1 = c2 = c3 = c/3 for
order estimation, that is,

2q → 2q/3 × 22c/3 × 3. (6)

Therefore, the condition where circuit cutting reduces the
execution time of a quantum circuit is

c < q − 3 log2 3

2
. (7)

For example, when we divide a circuit with 100 qubits
into thirds, the execution time is reduced with the circuit
cutting up to 96 times. The number of cuts in the Divide-
into-Thirds case is twice as much as that in the Divide-
in-Half case (See Fig.3).

Figure 2: Schematic of dividing a circuit into thirds with
(c1 + c2 + c3)-cuts.

Figure 3: Thresholds of the number of cuts. Circuit cut-
ting reduces the execution time of a quantum circuit un-
der the line. The red solid line is the threshold for the
Divide-in-Half case, and the blue dashed line is that for
the Divide-into-Thirds case.

3 Classical-Quantum Crossover on Cir-
cuit Cutting

In this section, we compare circuit execution time with
a classical computer and with a quantum computer. For
simplicity, we consider the Divide-into-Thirds case with
the same number of cuts (c1 = c2 = c3 = c/3). For
the comparison, we need three parameters: overheads of
cutting, speeds of processing one quantum circuit, and
numbers of shots on classical and quantum computers,
which are shown in Table 1. The execution time with a
quantum computer is shorter than that with a classical
computer when

cc × 1

vc
>

cq × s

vq
. (8)

To calculate this inequality, we evaluate cq. Unlike with
a classical computer, an increase in the number of qubits
does not increase the execution time with a quantum
computer. Therefore, the overhead of cutting is deter-
mined by the number of cuts. Recalling the overhead
O(5c) with a quantum computer, we obtain

cq = 52c/3 × 3. (9)

As Table 1 shows, we assume the one circuit execution
speed as vq(= vc/2

10) and the number of shots of a quan-
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Table 1: Parameters for estimating execution times for classical and quantum computers. We assume the one circuit
execution speed and the number of shots of a quantum computer as the values in the table for order estimation.

Computing system Cutting overhead Execution speed Number of shots
Classical 2c vc 1
Quantum 5c vq(= vc × 210) s(= 213)

tum as s(= 213). Eq.(8) leads to

c <
q − 9

2 (log2 5− 1)
. (10)

This result is shown in Fig.4. For example, when a quan-
tum circuit with 100 qubits is performed, a quantum
computer has an advantage in the circuit execution time
compared to a classical computer with up to 34 cuts.

Figure 4: Classical-Quantum Crossover with quantum
circuit cutting. In the shaded region, the execution time
of a quantum circuit on a quantum computer is shorter
than that on a classical computer.

4 Conclusion and Discussion

In this work, we estimated the applicability and limi-
tations of quantum circuit cutting with classical comput-
ers. When we run a quantum circuit with 100 qubits on
a classical computer, circuit cutting reduces the circuit
execution time by up to 48 cuts in the Divide-in-Half case
and up to 96 cuts in the Divide-in-Thirds case. We found
that the number of cuts in the Divide-into-Thirds case is
twice as much as that in the Divide-in-Half case. More-
over, we compared circuit execution time with a classical
computer and that with a quantum computer. When we
divide a quantum circuit with 100 qubits into thirds, a
quantum computer can execute the circuit faster than a
classical computer up to 34 cuts.
In future work, we plan to estimate the realistic

amount of time it takes to treat many cuts and qubits
for practical applications. We also plan to estimate other
overheads such as pre-/post- processing and compilation.
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Abstract. Rapid advances in quantum computing lead to an increasing requirement for digital quan-
tum simulators that enable both quantum algorithm design and the verification of results obtained from
quantum hardware. We introduce a new quantum simulator framework for computationally simulating the
evolution of quantum states. The proposed framework ensures quantum circuit execution in a lightweight,
scalable, and fast manner compared to traditional simulators. This feature enables an optimized environ-
ment for various quantum circuit simulations and, in particular, offers a great advantage in the efficient
execution of specific large-scale quantum circuits. In this study, we present a comparison of the proposed
idea with conventional simulators through both analytical and experimental approach.

Keywords: quantum computing, quantum simulator, quantum circuit, reduced Hilbert space

1 Introduction

Quantum simulators are software tools designed to
simulate the behavior of complex quantum systems us-
ing classical computers. These tools provide quantum
researchers with the opportunity to design various quan-
tum algorithms and verify the measurement results from
quantum hardware. Moreover, their importance is in-
creasing because physical quantum hardware is still in
its infancy, and most researchers have limited access to
it. So far, numerous software-based quantum simulators
have been introduced to the academic world[1] and are
widely used by most quantum computing researchers in
the development of quantum algorithms. Nevertheless,
due to various factors such as simulation performance,
software stability, various operation methods, and the
available execution scale of quantum circuits, it is not
easy for users to select a quantum simulator suitable for
their practical use.
In this study, we propose a new quantum simulator

framework called QPlayer[2, 3]. QPlayer supports the
statevector simulation approach and introduces a novel
scheme to run simulations by dynamically selecting com-
putational memory space between the full Hilbert space
and the reduced Hilbert space depending on quantum
circuits[2]. QPlayer software framework consists of two
layers: (1) quantum simulation frontend, (2) quantum
circuit execution engine. The former is responsible for
the interpretation of a given quantum circuit, decision
of execution policies, circuit optimization, and their con-
trol flows. The latter handles the gate operations of the
optimized quantum circuit. To ensure faster quantum
simulations, we designed the execution engine to operate
on both CPU and GPU.
Furthermore, we compare the proposed idea with con-

ventional quantum simulators[4, 5, 6] by applying both
analytical and experimental methods. According to our
analysis, QPlayer not only provides faster simulation per-
formance than conventional simulators but can also sim-
ulate more qubits for specific circuits.

∗ksjin@etri.re.kr
†onjinho@etri.re.kr
‡gicha@etri.re.kr

2 Methods

2.1 Software Architecture

Figure 1: QPlayer software architecture.

QPlayer is a software framework consisting of a front
end for preprocessing input quantum circuits and a sim-
ulation engine core for gate operations.

2.1.1 Simulation Frontend

simulator framework I/F receives quantum circuits
written in native C++, OpenQASM 2.0, and Python.
Additionally, users can specify the number of circuit exe-
cutions, a noise model, optimization level, and a proces-
sor type to perform gate operations.

control flow manager is in charge of the workflow
for preprocessing the quantum circuit. This includes or-
chestrating the entire job cycle, such as transforming the
circuit to optimal execution conditions, combining it with
a noise policy, delivering it to the engine core, and post-
processing the measurement results.

circuit translator interprets the syntax of a given
quantum code and transforms it into a low-level interface
that the engine core can recognize.
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Table 1: Analytical comparison of the quantum simulators.

Category†
QPlayer Qiskit Aer Cirq qsim QuEST

ETRI(2021∼) IBM(2017∼) Google(2018∼) Oxford univ.(2019)

Simulation

quantum space Reduced & Full Full Full Full

qubits‡ 128 34 34 34

optimization 2024/4Q gate fusion gate fusion X

performance fast or fastest fast fast slow or moderate

interface python,OpenQASM,C++ python,OpenQASM python,OpenQASM C

Operating
Environment

memory(bytes)⋆ ≤ 2(n+4) 2(n+4) 2(n+4) 2(n+4)

GPU O O O X
†categorizes statevector-based simulators ‡assumes a single server with 512MB memory
⋆QPlayer shows variable memory usage depending on the quantum algorithm

execution policy manager determines the type of
the computational space needed to perform gate opera-
tions in the engine core by analyzing the gate patterns
of the quantum algorithm. If the number of quantum
states is predicted to be significantly less than 2n, it se-
lects the reduced Hilbert space, otherwise it specifies the
full Hilbert space.
circuit optimizer transforms the quantum circuit to

minimize the execution cost of the engine core through
the synthesis of multiple gates or the decomposition of
commutable gates.
circuit execution manager delivers the optimized

quantum circuit to the simulation engine core via a low-
level interface.

2.1.2 Execution Engine Core

execution I/F provides low-level interfaces for the ex-
ecution of quantum gates transformed by the frontend.
These interfaces consist of basic gate operations, multi-
gate operations, synthesized gate operations, and mea-
surements.
full Hilbert space executes gate operations in com-

puting memory space equal to 2(n+4) bytes for a given
number of qubits, n. This approach has the advantage
of ensuring optimal execution for synthesized gate opera-
tions, but it is difficult to avoid an exponential increase in
both memory and computation as the number of qubits
increases.
reduced Hilbert space supports executing quantum

operations in a reduced quantum memory space while
selectively tracking only quantum states with amplitudes
greater than 0. The smaller the proportion of superposed
states, the faster execution performance is guaranteed.
[2] has reported that fast simulation is guaranteed when
quantum states with amplitudes greater than zero are
within 70% of the total quantum space of 2n.

2.2 Analytical Comparison

This chapter presents a comparative analysis of the
features of quantum simulator software. To this end,
we have classified four statevector quantum simulators
widely used by quantum computing researchers. Table 1
outlines the features of these simulators. We have used

(1) simulation processing and (2) the operating environ-
ment as the criteria for comparison.

3 Simulation Result

All experiments were performed on a Dell PowerEdge
T640 single server with two Intel Xeon Gold 6132 CPUs,
512GB of DRAM memory, and an NVIDIA H100 GPU.
We categorized three test categories to simulate: quan-
tum search and QEC on CPU, and quantum benchmarks
on GPU.

3.1 Quantum Search

In the case of the Grover algorithm, it can be seen
that QPlayer supports the execution of algorithms up to
49 qubits, while QuEST, Cirq, and Qiskit cannot simu-
late more than 34 qubits. This is because QPlayer runs
simulations of Grover algorithm at minimal cost in the re-
duced Hilbert space. Even in the same 33-qubit compari-
son, QPlayer completed the task in 3.49 seconds, while it
took about 3,200 seconds for other simulators as shown
in Figure 2(a).

3.2 QEC

Surface code is an algorithm specialized for quantum
error correction that encodes multiple physical qubits to
provide a logical qubit. A unique feature of the logical
qubit generated by the surface code is that the number of
quantum states with amplitudes greater than zero is only
25, not 2n(in case of distance 3). Therefore, for such algo-
rithms, simulating the reduced Hilbert space can ensure
optimal results. In Figure 2(b), QuEST, Cirq, and Qiskit
can only generate two logical qubits (33 physical qubits),
while QPlayer can support up to six logical qubits (95
physical qubits).

3.3 Algorithm benchmark on GPU

Figure 2(c) shows the results of simulating a quan-
tum algorithm benchmark using QASMBench on a GPU
accelerator. According to our analysis, QPlayer demon-
strated excellent results compared to other simulators.
The main reason Cirq is on average about twice as fast
as Qiskit is that it uses float precision for complex num-
bers instead of double precision. Meanwhile, QPlayer
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Figure 2: Experimental comparison of quantum circuit simulation. (a) Grover: quantum search algorithm. (b) Surface
Code: quantum error correction(code distance=3). (c) QASMBench: various quantum benchmark algorithms.

shows faster simulation performance than other simula-
tors in most algorithms. For example, in the bv algo-
rithm, QPlayer took 11 milliseconds, while Qiskit and
Cirq took 375 milliseconds and 181 milliseconds, respec-
tively. As the number of qubits increased in algorithms
such as ising, wstate, and Adder, the performance gap
decreased, but it was found that QPlayer guaranteed per-
formance two to three times faster.

4 Conclusions

This study introduces the architecture and opera-
tional flows of a quantum simulation software framework
called QPlayer. It consists of a frontend for preprocess-
ing quantum circuits and a simulation engine core for
gate operations. Notably, QPlayer dynamically applies a
Hilbert space suitable for quantum simulations, depend-
ing on the pattern of quantum circuit. In addition, we
presented comparative studies of various quantum sim-
ulators through both analytical and experimental ap-
proaches. Experimental results have shown that QPlayer
guarantees relatively faster simulation compared to other
simulators. In particular, we confirmed that QPlayer has
a comparative advantage over conventional simulators in
some specific quantum algorithms.
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Abstract. Understanding the eigendecomposition (Mercer decomposition) of a kernel operator is crucial
for evaluating the effectiveness of kernel algorithms, including quantum kernel algorithms. We introduce
a tensor network approach to obtain the Mercer decomposition of quantum kernels. Additionally, we
present an entangled tensor kernel—a generalized product kernel—and classify quantum kernels as a specific
subclass of it. With this perspective, we observe that useful quantum kernels utilize a small dimensional
function space, which is spanned by highly entangled functions. Finally, using introduced techniques we
analyze single-layer quantum kernels.
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1 Introduction

A kernel method is a non-parametrized machine learn-
ing algorithm that obtains optimal functions using con-
vex optimization with a kernel matrix K constructed
from kernel functions. Each element Kij = K(xi,xj)
is calculated by the Kernel function K : X × X → R,
where x ∈ X denotes the data vector. The perfor-
mance of the kernel method is closely related to its eigen-
decomposition [1, 2], or Mercer’s decomposition, of K,
which is defined as K(x, y) =

∑∞
j=1 γjej(x)ej(y), where

⟨ei, ej⟩L2 = δij , and γis are eigenvalues. Informally, ker-
nels perform well only when the target function aligns
with the eigensubspace associated with high-eigenvalues
of K. In other words, each kernel has its own specific
strengths, and understanding Mercer’s decomposition is
crucial for addressing it.
A quantum kernel method that utilizes a data-

dependent quantum circuit as a kernel matrix evaluator,
is one of the most popular quantum machine learning al-
gorithms. A distinctive character of the quantum kernel
method is that the kernel function is given by quantum-
circuit generated values such as

KQ(x,x
′) :=

∣∣∣⟨0|⊗n U†(x; E)U(x′; E) |0⟩⊗n
∣∣∣2. (1)

We introduce a tensor network perspective to ob-
tain Mercer’s decomposition for general quantum kernels,
building on recent work [4]. This perspective inspires a
generalized tensor product kernel, which is an entangled
version of the conventional tensor product of kernels. Us-
ing this entangled kernel, we classify quantum kernels as
a subclass within these kernels, arguing that a quantum
kernel is a special way to generate a large dimensional
kernel from smaller dimensional kernels, characterized by
its highly entangled feature maps. Finally, we argue that
the usefulness of quantum kernels lies in the highly en-
tangled eigenfunctions.

∗wookshin@snu.ac.kr
†ryan.sweke@ibm.com
‡h.jeong37@gmail.com

2 Mercer’s decomposition of quantum
kernels

Given U(x; E) in Eq. (1), we decompose all encod-
ing gates into single-qubit Pauli-Z rotation gates. Then
we can represent it with alternating layers of diago-
nal, tensor-product encoding part and non-parametrized
part,

U(x; E) =
L∏

j=1

Sj(x)Wj , Sj(x) :=

(
n⊗

k=1

e−iϕjk(x)Zk/2

)
.

(2)
We denoted pre-processing functions that depend on the
E as ϕ, non-parametrized unitaries as W, and Zk de-
notes the Pauli-Z operator on kth qubit. Then using the
technique in Ref. [4], we obtain

KQ(x,x
′) = ⟨T(x)|CT |T(x′)⟩ , (3)

with

|T(x)⟩ :=
L⊗

j=1

n⊗
k=1

∣∣∣T(jk)(x)
〉
=

L⊗
j

n⊗
k

 1
cosϕjk(x)
sinϕjk(x)

 ,

(4)
andCT is the tensor having 2nL 3-dimensional legs. This
core tensor CT is 3nL × 3nL symmetric, positive semi-
definite (PSD) matrix, and obtained only from non-data
dependent parts, Wjs of the circuit. Derivation and def-
initions can be found in the Appendix Section 2.

To obtain a Mercer decomposition, we first orthonor-
malize the functions in the components of |T(x)⟩ by using
the Gram-Schmidt procedure and truncate the zero ele-
ments resulting from linearly dependent functions. This

generates a D dimensional
∣∣∣ ˜T(x)

〉
, where all components

are orthonormalized. All these procedures induce the
transformation of CT into D × D C̃T matrix that is
symmetric and PSD as well. Finally, we diagonalize C̃T,
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getting a Mercer form

KQ(x,x
′) =

〈
˜T(x)
∣∣∣ C̃T

∣∣∣ ˜T(x)
〉

=
〈

˜T(x)
∣∣∣U†DU

∣∣∣ ˜T(x′)
〉

=
D∑

j=1

Djj

(∑
l=1

U∗
jlT̃l(x)

)(∑
l′=1

Ujl′T̃l′(x
′)

)
.

(5)

Again we refer to the Appendix Section 2 for a definition
of C̃T.

3 Entangled tensor kernels

Given two kernels K(1) : X1 × X1 → R and K(2) :
X2 × X2 → R, one can construct a new kernel K in the
domain of X1 ×X2 with tensor product by defining

K((x1,x2), (x
′
1,x

′
2)) = K(1)(x1,x

′
1)K

(2)(x2,x
′
2). (6)

The Mercer decomposition of this product kernel be-
comes

d1∑
i

d2∑
j

γ
(1)
i γ

(2)
j e

(1)
i (x1)e

(2)
j (x2)e

(1)
i (x′

1)e
(2)
j (x′

2), (7)

where γ
(1/2)
i , e

(1/2)
i (x1/2) are eigenvalues and eigenfunc-

tions for respective kernel, and d1,2 is the dimension
of corresponding Hilbert space. However, if we have
access to feature maps

∣∣F (1/2)(x1/2)
〉

which satisfies

K(1/2)(x,x′) =
〈
F (1/2)(x)

∣∣F (1/2)(x′)
〉
, we can entangle

basis functions of two kernels using d1d2×d1d2 PSD ma-
trix C, generating an (unnormalized) entangled tensor
kernel which is defined as follows:

KC((x1,x2), (x
′
1,x

′
2))

=
〈
F (1)(x1)

∣∣∣ 〈F (2)(x2)
∣∣∣C ∣∣∣F (1)(x′

1)
〉 ∣∣∣F (2)(x′

2)
〉

=
〈
e(1)(x1)

∣∣∣ 〈e(2)(x2)
∣∣∣ (√Γ1 ⊗

√
Γ2)C×

(
√

Γ1 ⊗
√
Γ2)

∣∣∣e(1)(x′
1)
〉 ∣∣∣e(2)(x′

2)
〉
.

(8)

This entangled kernel’s eigenfunctions are given by

ϕk(x) = Uk,ije
(1)
i (x1)e

(2)
j (x2), (9)

whereU diagonalizes (
√
Γ1⊗

√
Γ2)C(

√
Γ1⊗

√
Γ2). These

eigenfunctions are entangled functions of eigenfunctions
of the usual tensor product kernels, and this is where the
entangled tensor kernel name follows. Note that a usual
product kernel as in Eq. (6) corresponds to the special
case where C = I.
This entangled kernel can be generalized to be com-

posed of arbitrary N kernels, by utilizing ΠN
j=1dj×ΠN

j=1dj
PSD matrix, we can generate entangled kernels from
given N kernels that can utilize nontrivial, high dimen-
sional eigenfunctions.

3.1 Computational complexity of entangled ten-
sor kernels

For simplicity, let all feature spaces’ dimensions be d.
To calculate KC(x,x

′), one needs O(d2N) multiplica-
tions, which is exponential to the number of composing
kernels. However, by recognizing that the feature map is
a tensor product of N d-dimensional vectors, we can rep-
resentC with an N -site matrix product operator (MPO).
The computational complexity of calculating KC with C
having a maximum bond dimension of χ is O(d2χ2N),
implying that a low-bond dimensional MPO enables an
efficient entangled tensor kernel with exponentially large
feature space.

3.2 Quantum kernels as entangled tensor kernels

Product kernel Entangled  kernel Quantum  kernel

If

Figure 1: Relationships among composite kernels that
can be constructed from tensor product feature maps.

Now one can notice that a quantum kernel KQ is an
entangled tensor kernel constructed with feature maps∣∣T(jk)(x)

〉
, and a quantum-circuit generated PSDCT. In

other words, one can view quantum kernels as a subclass
of entangled tensor kernels, but now the core tensor is
constructed with quantum circuits.

From the above complexity argument, we see that if
CT allows efficient tensor network representations such
as low-bond dimensional MPO, then that quantum ker-
nel is classically efficiently generatable. Therefore, clas-
sically hard quantum kernels should possess high entan-
glement in CT. Unfortunately, when a quantum kernel
is given, identifying whether the CT of it has an efficient
tensor network description is a nontrivial task in gen-
eral. However, it has been numerically confirmed that
typical efficient quantum circuits—using only a polyno-
mial number of quantum gates—can generate high bond
dimensional CT [4]. Thus, we expect that quantum ker-
nels are efficient methods for generating highly entangled
core tensors that are not tractable by classical means.
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4 Generalizability and way to possible
quantum advantage

We want to approximate the target function using as
few samples as possible. Especially for the quantum ker-
nels, we wish to use only O(poly(N)) samples where N is
the number of qubits used. This is possible only when the
largest eigenvalues scale as O(1/poly(N)) [3]. Moreover,
only eigenvectors associated with O(1/poly(N)) scaling
eigenvalues can be learned with O(poly(N)) samples [1].
This implies that generalizable quantum kernels have

effective dimensions that scale only polynomially, D =
O(poly(N)), even though they have exponentially large
function spaces. That quantum kernel could be replace-
able by truncated kernels

K̃Q(x,x
′) :=

D∑
j=1

γjϕj(x)ϕj(x
′), (10)

where ϕjs are the top D eigenfunctions of KQ. Now note
that if those eigenfunctions are classically efficiently cal-
culable, KQ can be efficiently replaced by K̃Q. There-
fore, we characterize useful (generalizable) yet classically
hard quantum kernels as those that utilize polynomially
large function spaces, which are spanned by classically
intractable eigenfunctions such as highly entangled eigen-
functions.

5 Single-layer, single-encoding case

We look for the L = 1, n-qubit circuit case,

U(x) =

(
n⊗

k=1

e−ixkZk/2

)
W

= S(x)W,

(11)

where x ∈ [−π, π)n.
In this scenario,

KQ(x,x
′) =


 1
eixk

e−ixk

⊤


⊗N

C̃

 1

e−ix′
k

eix
′
k

⊗N

=
∑

α∈{00,01,10}N

C̃α,αe
−iωα·(x−x′),

(12)

where frequency vectors ωα ∈ {−1, 0, 1}N are defined as

(ωα)k =


0 if α2k−1α2k = 00

1 if α2k−1α2k = 01

−1 if α2k−1α2k = 10

(13)

C̃α,α =
∑
α∈Iα

ψ2
α1α3,...,α2N−1

ψ2
α2α4,...,α2N

, (14)

and Iα is the set of all 2N length bitstrings containing
00 and 11 sequences where α2k−1α2k = 00. For n =
2 instances, I0000 = {0000, 0011, 1100, 1111}, I0011 =
{0011, 1111}, and so on. Here ψ2

i is the squared com-

ponents of |ψ⟩ = W |0⟩N .

This analysis indicates that if the Born probability of
|ψ⟩ can be represented by an efficient MPS, then single-
layer quantum kernels can be dequantized. We could also
identify the concentration tendency to low-degree eigen-
functions. Additionally, because the eigenfunctions are
in a product form, generalizable models that rely on a
polynomial number of eigenfunctions to span their effec-
tive function space can also be dequantized using efficient
entangled tensor kernels.

6 Summary and Conclusion

We introduced a method for obtaining Mercer decom-
positions of quantum kernels by representing them using
tensor networks. Although this approach is inefficient,
it allows us to separate the data-dependent and non-
dependent parts, avoiding the need to integrate the data-
dependent quantum state over the data space, as done in
previous work [3]. Inspired by the tensor network form of
quantum kernels, we introduced entangled tensor kernels
generated by multiple kernels, a generalized version of
the product of kernels. We assert that a quantum kernel
is a method to create a new high-dimensional kernel from
several kernels and efficiently generate highly entangled
eigenfunctions. For quantum kernels to be advantageous
over classical kernels, they should have small effective
dimensions while their eigenfunctions should be highly
entangled, making them resistant to efficient classical ap-
proximations. Finally, using the introduced techniques,
we analyze the single-layer quantum kernel, which is more
general than previously studied tensor-product quantum
kernels [2, 3], enriching the understanding of quantum
kernels.
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This serves as an appendix of the extended abstract for the AQIS2024 sub-
mission. The contents are not yet complete but supplement what is needed.

1 Introduction
A kernel method is a non-parametrized machine learning algorithm that obtains optimal
functions using convex optimization with a kernel matrix K constructed from kernel func-
tions. Each element Kij = K(xi,xj) is calculated by the Kernel function K : X × X → R,
where x ∈ X denotes the data vector. The performance of the kernel method is closely
related to its eigendecomposition [1, 2], or Mercer’s decomposition, of K, which is defined
as K(x, y) =

∑∞
j=1 γjej(x)ej(y), where ⟨ei, ej⟩L2 = δij , and γis are eigenvalues. Informally,

kernels perform well only when the target function aligns with the eigensubspace associated
with high-eigenvalues of K. In other words, each kernel has its own specific strengths, and
understanding Mercer’s decomposition is crucial for addressing it.

A quantum kernel method that utilizes a data-dependent quantum circuit as a kernel
matrix evaluator, is one of the most popular quantum machine learning algorithms. A
distinctive character of the quantum kernel method is that the kernel function is given by
quantum-circuit generated values such as

KQ(x,x′) :=
∣∣∣⟨0|⊗n U†(x; E)U(x′; E) |0⟩⊗n

∣∣∣2. (1)

We introduce a tensor network perspective to obtain Mercer’s decomposition for general
quantum kernels, building on recent work [3]. This perspective inspires a generalized tensor
product kernel, which is an entangled version of the conventional tensor product of kernels.
Using this entangled tensor kernel, we classify quantum kernels as a subclass within these
kernels, arguing that a quantum kernel is a special way to generate a large dimensional
kernel from smaller dimensional kernels, characterized by its highly entangled feature maps.
Finally, we analyze the single-layer quantum kernels to elaborate more on the introduced
techniques.

2 Mercer decomposition of quantum kernels
A kernel is a symmetric, positive function K : X × X → R, where x ∈ X denotes the data
vector. By Mercer’s theorem we can eigendecompose this to get a Mercer decomposition
of K, which is defined as

K(x, y) =
∞∑

j=1
γjej(x)ej(y), (2)

1
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where ⟨ei, ej⟩L2 = δij , and γis are eigenvalues. The performance of kernel method is highly
related to its eigenvalue distributions and eigen functions [1, 2]. Therfore, it is important
to obtain Mercer decomposition of quantum kernels to unpack their abilities.

We consider quantum kernels using n qubits,

KQ(x,x′) :=
∣∣∣⟨0|⊗n U†(x; E)U(x′; E) |0⟩⊗n

∣∣∣2. (3)

The encoding strategy which is denoted as E is a description of the circuit structure,
positions of x dependent gates (encoding gates), and preprocessing functions on the data x.
We decompose all encoding gates into x-dependent single-qubit gates and non-parametrized
two-qubit gates, followed by the diagonalization of all single-qubit gates. Now we can
rewrite the U(x; E) as alternating layers of diagonal, tensor-product encoding part and
non-parametrized part,

U(x; E) =
L∏

j=1
Sj(x)Wj , Sj(x) :=

(
n⊗

k=1
e−iϕjk(x)Zk/2

)
(4)

We denoted pre-processing functions that depend on the E as ϕ, non-parametrized unitaries
as W, and Zk denotes the Pauli-Z operator on kth qubit.

2.1 Quantum kernels in tensor network form
We use parallelization technique, where one can use diagrammatical calculation as in Fig. 1.
We define

O′ =


⊗(L−1)/2

j=1 (W †
2j ⊗ I) |Φ⟩ ⟨Φ| (W2j ⊗ I) ⊗ I, if L is odd⊗L/2

j=1(W †
2j ⊗ I) |Φ⟩ ⟨Φ| (W2j ⊗ I) ⊗ I, if L is even

(5)

ρ =

W1 |0⟩ ⟨0|W †
1 ⊗

⊗(L−1)/2
j=1 (I ⊗W2j+1) |Φ⟩ ⟨Φ| (I ⊗W †

2j+1), if L is odd
W1 |0⟩ ⟨0|W †

1 ⊗
⊗(L/2−1)

j=1 (I ⊗W2j) |Φ⟩ ⟨Φ| (I ⊗W †
2j+1) ⊗ |Φ⟩⟨Φ| , if L is even

(6)
as in Fig. ??. Now we have

KQ = Tr
{
ρS†(x)O′S(x′)

}
× (c.c) (7)

We use the following equality

Tr
{
diag(D)†Adiag(D)B

}
= ⟨D|

(
A ⊙ B⊤

)
|D⟩ , (8)

where ⊙ represents the Hadamard product, D is a diagonal matrix and diag(D) denotes
the diagonal matrix whose elements are entries of |D⟩. With slight abuse of notation, we
write a vector having elements of diagonal element of some diagonal matrix D as |diag(D)⟩.
Using this, the quantum kernel becomes

KQ = ⟨diag(S(x))|
(
O′ ⊙ ρ⊤

) ∣∣diag(S(x′))
〉

× (c.c)

= ⟨diag(S∗(x))| ⟨diag(S(x))|
(
O′ ⊙ ρ⊤

)⊤
⊗
(
O′ ⊙ ρ⊤

) ∣∣diag(S∗(x′))
〉 ∣∣diag(S(x′))

〉

=


L⊗

j=1


n⊗

k=1


1

e−iϕjk(x)

eiϕjk(x)

1





⊤

(A⊤ ⊗v A)
L⊗

j=1


n⊗

k=1


1

eiϕjk(x′)

e−iϕjk(x′)

1




:= ⟨E(x)| C
∣∣E(x′)

〉
,

(9)

2
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2

2

2

=

=

= =

= =

=

Figure 1: Diagramatical representation of getting tensor network form of quantum kernels. This shows
the case when L = 2. Note the ordering of the ‘vertical’ tensor product A⊤ ⊗v A.
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Where C has 2 × 2nL legs, and satisfies

Ci1i2...i2nL;j1j2...j2nL = A⊤
i1i3...i2nL−1;j1j3...j2nL−1 × Ai2i4...i2nL;j2j4...j2nL . (10)

Diagramatically, one can think of A⊤ ⊗v A as juxtaposing two tensors “vertically", thereby
placing the same-qubit site indices be the nearest neighbors. The operator O′ is a tensor
product of identity and choi matrices of unitaries that are applied in the circuit, so it is
a positive semidefinite (PSD). The operator ρ⊤ is also a PSD as it is a tensor product of
(un-normalized) density matrices. Therefore, by the Schur product theorem, A and C are
also PSD.

We observe that the core matrix C is complex-valued, and complex vector |E(x)⟩
possesses obvious redundant components incurred by repeated elements 1s. This can be
dealt with introducing an isometry

P := 1√
2


1 0 0
0 1 i
0 1 −i
1 0 0

 = 1√
2

(|I⟩⟩ ⟨0| + |X⟩⟩ ⟨1| + |Y ⟩⟩ ⟨2|) , (11)

where |M⟩⟩ is the column-major vectorization of the matrix M. From now on, for nota-
tional simplicity, we will set N := nl and combine ‘layer,qubit’ index jk in to one index.
This gives us the relation

∣∣∣E(k)(x)
〉

=


1

eiϕk(x)

e−iϕk(x)

1

 = 2P
∣∣∣T(k)(x)

〉
=

√
2


1 0 0
0 1 i
0 1 −i
1 0 0




1√
2

1√
2 cosϕk(x)

1√
2 sinϕk(x)

 . (12)

We have set
〈
T(k)(x)

∣∣∣T(k)(x)
〉

= 1, for normalization. Using an N tensor product of P,
we obtain

KQ = ⟨E(x)| C
∣∣E(x′)

〉
= ⟨T(x)|

(
2N
⊗

k

P†
)

C
(

2N
⊗

k

P
) ∣∣T(x′)

〉
:= ⟨T(x)| CT |T(x)⟩ ,

(13)

where tensors lose their superscripts, one should understand them as a N tensor product,
such as |T(x)⟩ =

⊗N
k=1

∣∣∣T(k)(x)
〉
s, and CT := 4N

(⊗
k P†

)
C (
⊗

k P). Alternatively, we
can also identify

(CT)ij = 4N × 1
2N

Tr
{
PiAPjA

}
i, j ∈ {0, 1, 2}N , (14)

where Pi is the Pauli string. One can say that CT is a (truncated) re-scaled Pauli transfer
matrix (PTM) of the linear map A : M 7→ AMA, and notice that it is also symmetric
and now has real-valued elements. This process has a nice graphical description depicted
in Fig. ??.

Also, for PSD C, CT is PSD as well. This is because for all |v⟩ ∈ C3N , and PSD C,

1
4N

⟨v| CT |v⟩ = ⟨ṽ| Π3Π3PU
†CPUΠ3Π3 |ṽ⟩

= ⟨ṽ| Π3C′Π3 |ṽ⟩ ≥ 0,
(15)

4
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where Π3 :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


⊗N

is a projection and PU =


1 0 0 1
0 1 i 0
0 1 −i 0
1 0 0 −1


⊗N

, which is

a unitary extension of P and |ṽ⟩ is an arbitrary extension of |v⟩ to C4n , which embed
arbitrary elements to the extended dimension. Conjugation with unitary preserves PSD
property, and Π3 |ṽ⟩ ∈ C4n , the last inequality follows.

2.2 Getting Mercer decomposition of quantum kernels
A Mercer decomposition of the kernel can provide a good understanding of its power.
If CT in Eq. (13) were diagonal, and all elements in T(x) were orthonormal, then it is
done. However, this is not the case for general structures and general encoding strategies.
Nevertheless, we can always transform this canonical form to Mercer decomposition form
by orthonormalizing the components in T(x) and truncating and diagonalizing the core
matrix.

First, we orthonormalize the set of components in |T(x)⟩, which are vectors in L2
µ(X )

space, {Tj(x)}j by applying the Gram-Schmidt procedure on it. Through Gram-Schmidt,
we get the set of orthogonal functions

uk(x) = Tj(x) −
k−1∑
j=1

⟨uj ,Tk(x)⟩
⟨uj , uj⟩

uj(x),

u1(x) = T1(x)

(16)

with u1(x) = Ti(x) and inner product is given as a ⟨ui|uj⟩ :=
∫

x∈X u∗
i (x)uj(x)dµ(x). Let

us denote normalized vectors uk(x)/∥uk∥ := ek(x), where ∥uk∥ =
√

⟨uk, uk⟩. Then one
can see that

ek(x) =
k∑

j=1
LkjTj(x), (17)

where L is a lower triangular matrix and components satisfy the following recursive equa-
tion:

Lk,k−j = − 1
∥uk−j∥

j−1∑
l=0

Lk,k−l ⟨ek−j ,Tk−l(x)⟩ ,

Lk,k = 1
∥uk∥

(18)

Using these constants as elements we can create lower triangular matrix L, which satisfies

L |T(x)⟩ =
∣∣∣T̄(x)

〉
, (19)

where 〈
T̄i(x), T̄j(x)

〉
= δij if T̄i(x), T̄j(x) ̸= 0. (20)

The L2
µ(X ) space spanned by the elements of T(x) may have a dimension K < 3N , in other

words they might not form a linearly independent set. In such cases, certain components
Ti(x)s can be expressed as a linear combination of other components Tj<i(x)s such as
Ti(x) =

∑
j<i αjTj(x). For these indices, we set the ith row of L as

Lij =
(
−α1 −α2 . . . −αi−1 1 0 . . . 0

)
. (21)

5
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In this way, we construct the matrix L which also satisfies the following property,

T̄i(x) = 0 if Ti(x) =
∑
j<i

αjTj(x) for some αj ∈ R. (22)

Note that L always has non-zero elements along its diagonal, so is always invertible.
Now general quantum kernel becomes

⟨T(x)| CT
∣∣T(x′)

〉
= ⟨T(x)| L⊤(L⊤)−1CTL−1L

∣∣T(x′)
〉

=
〈
T̄(x)

∣∣∣ (L−1)⊤CTL−1
∣∣∣T̄(x′)

〉
.

(23)

Next, we truncate the vector
∣∣∣T̄(x)

〉
, by removing the 0 elements, thereby reducing it to a

(D ≤ 3N )-dimensional vector. Let us represent truncated vector as
∣∣∣T̃(x)

〉
. Similarly, we

adjust the matrix (L−1)⊤CTL−1 to a D × D matrix. This is achieved by discarding the
rows and columns associated with the indices {i} for which T̄i(x) = 0. Let us represent
this truncated core matrix as C̃T. Finally, we diagonalize this truncated core matrix,〈

T̃(x)
∣∣∣ C̃T

∣∣∣T̃(x′)
〉

=
〈
T̃(x)

∣∣∣U†DC̃T
U
∣∣∣T̃(x′)

〉
. (24)

Because all the components in {T̃i(x)}D
i=1 are orthonormal, so do components in U

∣∣∣T̃(x)
〉
,

and this gives us the Mercer’s decomposition of the given quantum kernel, with eigenvalues
being diagonal entries of DC̃T

and eigenvectors {
∑D

j=1 UijT̃j(x)}i. We call this orthonor-
malized and truncated form of a quantum kernel as Mercer form. This procedure is not
efficient at all, since all matrices above have the size of 3N .

3 Entangled tensor kernels
Given two kernels K1 : X1 × X1 → R and K2 : X2 × X2 → R, one can construct a new
kernel K in the domain of X1 × X2 with tensor product by defining

K((x1,x2), (x′
1,x′

2)) := K1(x1,x′
1)K2(x2,x′

2). (25)

This is one way of constructing a larger dimensional kernel out of smaller dimensional
kernels. The Mercer decomposition of this new product kernel becomes

d1∑
i

d2∑
j

γ
(1)
i γ

(2)
j e

(1)
i (x1)e(2)

j (x2)e(1)
i (x′

1)e(2)
j (x′

2), (26)

where γ(1,2)
i , e

(1,2)
i (x1,2) are eigenvalues and eigenfunctions for respective kernel, and d1,2

is the dimension of corresponding Hilbert space. One can notice that the eigenfunctions
and eigenvalues of the product kernel are the products of those of the individual kernels.

However, if we have access to feature maps
∣∣∣F (1,2)(x1,2)

〉
which satisfies K1,2(x,x′) =〈

F (1,2)(x)
∣∣∣F (1,2)(x′)

〉
, we can entangle feature maps or eigenfunctions of two kernels using

d1d2 × d1d2 PSD and symmetric (Hermitian if feature maps were complex) matrix C,
generating an entangled tensor kernel which

KC((x1,x2), (x′
1,x′

2)) =

〈
F (1)(x1)

∣∣∣ 〈F (2)(x2)
∣∣∣C ∣∣∣F (1)(x′

1)
〉 ∣∣∣F (2)(x′

2)
〉

√
⟨C⟩x1,x2

√
⟨C⟩x′

1,x′
2

. (27)

6
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Here
⟨C⟩x1,x2 :=

〈
F (1)(x1)

∣∣∣ 〈F (2)(x2)
∣∣∣C ∣∣∣F (1)(x1)

〉 ∣∣∣F (2)(x2)
〉

(28)

is a normalization factor to ensure diagonal values be normalized. Now we see that the
new feature map is

B
∣∣∣F (1)(x1)

〉 ∣∣∣F (2)(x2)
〉

∥∥B ∣∣F (1)(x1)
〉 ∣∣F (2)(x2)

〉∥∥
2

=
B(

√
Γ1 ⊗

√
Γ2)

∣∣∣e(1)(x1)
〉 ∣∣∣e(2)(x2)

〉
∥∥B ∣∣F (1)(x1)

〉 ∣∣F (2)(x2)
〉∥∥

2
, (29)

where C = B⊤B, and Γ1,2 denotes the diagonal matrix composed of eigenvalues of each
kernel. One can notice that the orthonormal basis functions of each kernel are non-trivially
mixed by B, Γ, and normalization factors, thereby creating entangled eigenfunctions where
the name ‘entangled tensor kernels’ follows. Note that the usual product of kernels corre-
sponds to the case where core tensor C = I.

This entangled tensor kernel can be generalized to multiple N kernels, and utilizing
arbitrary PSD symmetric (Hermitian) matrix C that matches the dimensions of feature
spaces,

KC(x,x′) = ⟨F(x)| C |F(x′)⟩√
⟨C⟩x

√
⟨C⟩x′

. (30)

Now one can orthonormalize the functions in the new feature map vector, getting a Mercer’s
decomposition of it. One can also consider an unnormalized version of entangled tensor
kernels,

KC(x,x′) = ⟨F(x)| C
∣∣F(x′)

〉
. (31)

In this case, we can have a more direct Mercer decomposition, if all feature spaces are
factorized, i.e.,

∫
⟨e(x)|e(x)⟩ dx =

∏N
k=1

∫
⟨e(xk)|e(xk)⟩ dxk, making all functions in |e(x)⟩

are orthonormal.

KC(x,x′) = ⟨e(x)|
(

N⊗
k=1

√
Γk

)
C
(

N⊗
k=1

√
Γk

) ∣∣e(x′)
〉

= ⟨e(x)| U†DU
∣∣e(x′)

〉
.

(32)

Here |e(x)⟩ :=
⊗N

k=1

∣∣∣e(k)(x)
〉
. Therefore, eigenfunctions of different feature spaces be-

come entangled by diagonalizing unitary of
(⊗N

k=1
√

Γk

)
C
(⊗N

k=1
√

Γk

)
, and serve as

eigenfunctions of the newly generated kernel.

3.1 Computational complexity
For simplicity, let all feature spaces’ dimensions be d. To calculate KC(x,x′), one needs
O(d2N) multiplications, which is exponential to the number of composing kernels. How-
ever, by recognizing that the feature map is a tensor product of N d-dimensional vectors,
we can represent C with an N -site matrix product operator (MPO). The computational
complexity of calculatingKC with C having a maximum bond dimension of χ is O(d2χ2N),
implying that a low-bond dimensional MPO enables an efficient entangled tensor kernel.

3.2 Examples of entangled tensor kernels.
3.2.1 polynomial kernel

A polynomial kernel is given as

KN (x,x′) = (c+ x⊤x′)N , (33)
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for some constant c. One can immediately see that the feature map is given by

F(x) =
(
[
√
c, x1, x2, . . . , xd]⊤

)⊗N
, (34)

and C = I.

3.2.2 Periodic shift-invariant kernel

Shift-invariant kernels, characterized as

K(x,x′) = K(x − x′), (35)

for some function K, have cosine and sine functions as their eigenfunctions. For concrete-
ness, we set the input domain to [−π, π], and periodically extend the function K. Then K
allows the Mercer decomposition,

K(x− x′) =
∞∑

j=1
γj{cos(jx) cos

(
jx′)+ sin(jx) sin

(
jx′)}, (36)

with cj ≥ 0 []. We can write this in a complex version as

K(x− x′) =
∞∑

j=1
γj{e−ij(x−x′) + eij(x−x′)}. (37)

Now we truncate the frequencies to the N so that j ∈ [N ]. This N dimensional periodic
shift-invariant kernel can be represented with entangled tensor kernel using O(log(N))
feature maps. For example, choose feature maps

∣∣∣F(k)(x)
〉

=

e−i3k−1x

1
ei3k−1x

 , k ∈ [log3N ], (38)

then one can confirm that

Fh(x) = exp

log3 N∑
k

3k−1(hk − 1)

, (39)

where h ∈ {0, 1, 2}log3 N . Therefore by setting

Ch̄,h̄ = Ch,h = γ∣∣∣∑log3 N

k
3k−1(hk−1)

∣∣∣, (40)

where h̄ is the tritstring where 2 and 0 are interchanged, one can obtain

K(x− x′) = ⟨F(x)| C
∣∣F(x′)

〉
. (41)

Note that if the diagonal matrix C had O(log(N)) bond dimension, one could calculate
this N -dimensional kernel using only logarithmic number of arithmetics.
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3.2.3 Efficiently MPS sampleable Random Fourier feature

The random Fourier feature (RFF) method allows using much smaller dimensional func-
tion space than that of the original kernel while ensuring a similar performance. Ran-
dom Fourier features should be sampled from the Fourier transform of the original (shift-
invariant) kernel function, and recently using RFF to dequantize variational quantum
machine learning models has been suggested [4]. However, for efficient dequantizing classi-
cal models require efficiently sampleable Fourier frequencies, and probability distribution
representable with poly-dimensional bond dimension MPS is suggested one of them. Here
we show that efficient MPS sampleable RFF method can be seen as an efficient entangled
tensor kernel. We are given the general N feature maps induced by the quantum circuit,∣∣∣F(k)(x)

〉
=
(
e−iω

(k)
M xk e−iω

(k)
M−1xk . . . e−iω

(k)
1 xk 0 e+iω

(k)
1 xk . . . e+iω

(k)
M−1xk e+iω

(k)
M xk

)⊤
,

(42)
and efficient MPS p that encodes the probability p(ω) of frequency vectors ωs satisfying

p(ω(1)
h1
, ω

(2)
h2
, . . . , ω

(N)
hN

) = p(M−h1)(M−h2)...(M−hN ) = p(2M+1−h1)(2M+1−h2)...(2M+1−hN ),
(43)

where hj ∈ [0,M ]. Now we add redundant indices to p, creating an efficient MPO of which
diagonal entries are elements of p. Setting this to the core tensor and take Eq. (42) feature
maps as composing feature maps, we construct efficient entangled tensor kernels that RFF
method tried to approximate originally.

4 Quantum kernels as entangled tensor kernels.
In Section 2.1, we observed that any quantum kernel can be represented in a tensor network
form, as shown in Equation 13. Using this observation, we see that KQ is an entangled
tensor kernel constructed with feature maps:

∣∣∣T(k)(x)
〉

= 1√
2

 1
cosϕk(x)
sinϕk(x)

 , (44)

which produce kernels:

K(k)(x,x′) =
〈
T(k)(x)

∣∣∣T(k)(x′)
〉

= 1
2
[
1 + cos (ϕk(x) − ϕk(x′))

]
, (45)

and a quantum-circuit generated symmetric PSD CT. While this form is an unnormalized
entangled tensor kernel, it is automatically normalized because KQ(x,x) = | ⟨0|⊗n U†(x; E)U(x; E) |0⟩⊗n |2 =
1.

This leads to the unnormalized entangled tensor kernel family that includes all quantum
kernels using the same number of encoding gates:

⟨T(x)| CC |T(x)⟩ , (46)

where CC is a PSD symmetric 3N ×3N matrix. Since CT is a subset of all PSD symmetric
matrices of the same size, we conclude that a quantum kernel is a subclass of entangled
tensor kernels. In other words, the quantum kernel method is a special way to construct a
normalized entangled tensor kernel when feature maps like Eq. (44) are used. By leveraging
the pre-processing functions ϕk(x), we use them as rotation angles for single-qubit Pauli-
Z rotations. Alongside these data-dependent gates, we select non-parametrized quantum
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Figure 2: Quantum kernels are a subclass of entangled tensor kernels.
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gates to construct a quantum circuit. Obtaining the expectation value of some observable
gives us an entangled tensor kernel with CT as defined in Eq. (13).

Classical entangled tensor kernels with polynomially scaling bond dimensions are effi-
ciently calculable. Therefore, if the bond dimension of CT is O(poly(N)), those quantum
kernels can be efficiently replaced by classical kernels. However, it has been numerically
confirmed that typical efficient quantum circuits—using only a polynomial number of quan-
tum gates—can generate high bond dimensional CT [3]. Thus, we expect that quantum
kernels are efficient methods for generating highly entangled core tensors that are not
tractable by classical means.

4.1 Generalization
We want to approximate the target function using as few samples as possible. Espe-
cially for the quantum kernels, we wish to use only O(poly(N)) samples where N is
the number of qubits used. This is possible only when the largest eigenvalues scale as
O(1/poly(N)) [2]. Moreover, only eigenvectors associated with O(1/poly(N)) scaling eigen-
values can be learned with O(poly(N)) samples [1] when N → ∞. For quantum kernels,∫

KQ(x,x)p(x)dx =
∫ 〈

T̃(x)
∣∣∣ C̃T

∣∣∣T̃(x)
〉
p(x)dx

= Tr
{

C̃T

∫ ∣∣∣T̃(x)
〉〈

T̃(x)
∣∣∣ p(x)dx

}
= Tr

{
C̃TI

}
=

D∑
i=1

(DC̃T
)ii = 1,

(47)

implying that generalizable quantum kernels should have dimensions that scale only poly-
nomially, D = O(poly(N)), or at least their eigenvalues should be largely concentrated
on a polynomially scaling number of eigenfunctions, even though they have exponentially
large function spaces. However, these generalizable quantum kernels can be approximated
by

K̃Q(x,x′) :=
D∑

j=1
γjϕj(x)ϕj(x′), (48)

where the ϕjs are the top D eigenfunctions of KQ. If these eigenfunctions were classically
efficiently calculable, KQ can be efficiently replaced by K̃Q. Therefore, we characterize
useful (generalizable) yet classically hard quantum kernels as follows:

1. They utilize only a polynomially large effective function space.

2. Highly entangled eigenfunctions span the effective function space.

5 One-layer case
We look for the L = 1 case,

U(x) =
(

N⊗
k=1

e−iϕk(x)Zk/2
)

W

= S(x)W.

(49)
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For L = 1 case, we see that O′ = I, and ρ = W |0⟩⟨0|⊗n W† := |ψ⟩⟨ψ|. Therefore,

KQ(x,x′) = ⟨diag(S(x))| (I ⊙ |ψ⟩⟨ψ|)
∣∣diag(S(x′))

〉
× (c.c). (50)

When we apply the Hadamard product with the identity matrix I, it selects the diagonal
elements, leading to (I ⊙ |ψ⟩⟨ψ|) = diag(ψ2), which is a diagonal matrix whose elements
are the squared magnitudes of the components of |ψ⟩. Therefore, from Eq. (13),

KQ(x,x′) = ⟨E(x)| C
∣∣E(x′)

〉
(51)

=


n⊗

k=1


1

e−iϕk(x)

eiϕk(x)

1




⊤

(diag(ψ2) ⊗v diag(ψ2))


n⊗

k=1


1

eiϕk(x′)

e−iϕk(x′)

1


 (52)

= ⟨T(x)|
(⊗

k

P†
)

4n(diag(ψ2) ⊗v diag(ψ2))
(⊗

k

P
) ∣∣T(x′)

〉
, (53)

We will get a Mercer decomposition of it, and for further analysis, we restrict to the
n-dimensional input case which employs ϕk(x) = xk ∈ [−π, π]. In other words, we are
essentially utilizing a single encoding gate for each feature. In this scenario, core tensor C is
diagonal and real. Moreover, all elements in

⊗N
k=1[1 e−ixk eixk ]⊤ become orthonormalized

with respect to the inner product ⟨f |g⟩ =
∏N

k=1

(
1

2π

∫ π
−π f

∗(xk)g(xk)dxk

)
. With these

properties, it is more convenient to work with E(x) rather than T(x). For orthogonalization
of Ei(x)s, we choose

L =


1 0 0 0
0 1 0 0
0 0 1 0

−1 0 0 1


⊗N

, L−1 =


1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1


⊗N

. (54)

which satisfies

L |E(x)⟩ =


1

e−ixk

eixk

0


⊗N

. (55)

Now

KQ(x,x′) =




1
eixk

e−ixk

0


⊤


⊗N

(L−1)⊤CL−1


1

e−ix′
k

eix′
k

0


⊗N

:=
〈
Ē(x)

∣∣∣ (L−1)⊤CL−1
∣∣∣Ē(x′)

〉
. (56)

Here elements of C are

Ci1i2,...,i2N ;i1i2,...,i2N = ψ2
i1i3,...,i2N−1ψ

2
i2i4,...,i2N

, i2k−1i2k ∈ {00, 01, 10, 11}. (57)

Now we will consider the 2N -length bit indices of C as a concatenation of 2-bit sequences.
Conjugating C with L−1 does the following things.
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• When the index of an element contains sequence of i2k−1i2k = 11, then add that
elements to the Ci′;i′ , where i′ = i1i2, . . . , i2k−1, i2k︸ ︷︷ ︸

=00

, . . . , i2N−1i2N for all k ∈ [N ].

In other words, collects all elements containing 11 sequence in their indices, and
sums them into the element containing 00 sequence at the same position of their
11-sequence positions.

• For indices not containing sequences of 00, nothing happens.

• From Eq. (57), we see that elements of Ci;i are invariant under exchanging sequences
01 and 10 in their indices.

• Creates non-diagonal elements, and the associated indices contain 11 sequences.

The next thing we need to do is a truncation where Ēi(x) = 0. The zero elements
occur whenever there is a 11 sequence in the index, so we remove rows and columns where
indices have 11 sequences, and this removes all the non-diagonal elements of (L−1)⊤CL−1,
giving us

KQ(x,x′) =


 1
eixk

e−ixk


⊤


⊗N

C̃

 1
e−ix′

k

eix′
k


⊗N

=
∑

α∈{00,01,10}N

C̃α,αe
−iωα·(x−x′),

(58)

where frequency vectors ωα ∈ {−1, 0, 1}N are defined as

(ωα)k =


0 if α2k−1α2k = 00
1 if α2k−1α2k = 01
−1 if α2k−1α2k = 10

(59)

C̃α,α =
∑

α∈Iα

ψ2
α1α3,...,α2N−1ψ

2
α2α4,...,α2N

, (60)

and Iα is the set of all 2N length bitstrings containing 00 and 11 sequences where α2k−1α2k =
00. For example, I0000 = {0000, 0011, 1100, 1111}, I0001 = {0001, 1101}, I0101 = {0101}
and so on. There are several notes on diagonal matrix C̃. First of all, it has a ‘Hermitic-
ity’ property. Let ᾱ be the index with 01 and 10 sequences interchanged. Then we have
C̃α,α = C̃ᾱ,ᾱ, and ωα = ωᾱ. Therefore, KQ is indeed real and can be written in the form
of

KQ(x,x′) = C̃0,0 +
∑

α∈Ω+

2C̃α,α cos
(
ωα · (x − x′)

)
, (61)

where Ω+ is the set of indices containing only non-redundant ones. Secondly, we notice
that eigenvalues concentrate more on indices having many 00 sequences. To be precisely,
|Iα| = 2|α|00 , where |α|00 denotes the number of 00 sequences in α. Meanwhile N − |α|00
corresponds to the number of non-zero elements in the frequency vector ωα, so eigenvalues
tend to concentrate on the low-degree eigenfunctions. Let us assume all elements of ψ2⊗vψ

2

are order of (1/3)N , then the largest eigenvalue, associated with the constant function 1,
scales (2/3)N . The next largest eigenvalues scale as 1/2(2/3)N , and associated with the N
degree-one frequencies {(1, 0, . . . , 0), . . . , (0, 0, . . . , 1)} and so on.
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Conjugating with L is a local operation, so it does not increase the bond dimension
of the original matrix. Therefore, when the Born probability of the pre-encoded state
|ψ⟩ = W |0⟩ can be represented with polynomially scaling bond-dimensional MPS, this
quantum kernel corresponds to efficiently calculable entangled tensor kernels.

However, following the discussions from Sec. 4.1, generalizable models should utilize
only polynomially large eigenfunctions. For one layer case we have discussed, this implies
if the kernel were generalizable, only polynomially many C̃α,αs are relevant, so we can
remove all other O(1/exp(N)) scaling values without causing much error. This results in
poly-sparse C̃, making it poly-dimensional MPO. That is, generalizable one-layer quantum
kernels are vulnerable to dequantization.

6 Summary and Discussions
We introduced a method for obtaining Mercer decompositions of quantum kernels by rep-
resenting them using tensor networks. Although this approach is inefficient, it allows us to
separate the data-dependent and non-dependent parts, avoiding the need to integrate the
data-dependent quantum state over the data space, as done in previous work [2]. Inspired
by the tensor network form of quantum kernels, we introduced entangled tensor kernels
generated by multiple kernels, a generalized version of the product of kernels. We assert
that a quantum kernel is a method to create a new high-dimensional kernel from several
kernels and efficiently generate highly entangled eigenfunctions. For quantum kernels to
be advantageous over classical kernels, they should have small effective dimensions while
their eigenfunctions should be highly entangled, making them resistant to efficient classical
approximations. Finally, using the introduced technique we have analyzed the Mercer de-
composition, generalizability, and possible dequantizability of one-layer quantum kernels,
which is more general than previously studied tensor-product quantum kernels [2? ].

DISCUSSIONS TO BE ADDED

A Product quantum kernels
If W were the product of single-qubit unitaries W(k)s, then everything simplifies, we get
diagonal core tensor,

C̃T =
n⊗

k=1

 1 − 2(ψ(k)
1 ψ

(k)
2 )2 0 0

0 (ψ(k)
1 ψ

(k)
2 )2 0

0 0 (ψ(k)
1 ψ

(k)
2 )2

 (62)

, where W(k) |0⟩ = [ψ(k)
1 ψ

(k)
2 ]⊤. Therefore the eigenfunctions are given as components of

∣∣∣T̃(x)
〉

=
n⊗

k=1

 1√
2 cos xk√
2 sin xk

 . (63)
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Abstract. Entanglement quantification is highly non-trivial and has become subject of intense investiga-
tion starting from the case of two particles of relatively small dimension, but reaches a daunting complexity
when either or both the number of particles or the particles’ dimensions increase. We first take inspiration
from covariance matrix based techniques to derive a bipartite criterion for the entanglement dimensionality.
It can be further bounded by the moments of randomized correlations, which are widely used in various
experiments. We then derive a nonlinear criterion that can reveal both the level of multipartiteness and
the dimensionality of the entanglement in the quantum states. We test our condition on paradigmatic
classes of high-dimensional multipartite entangled states and find that, in comparison with other available
criteria, our method provides a significant advantage.

Keywords: multipartite high-dimensional entanglement, entanglement dimensionality vector, entangle-
ment quantification

1 Bipartite condition: bounding entan-
glement dimensionality from the co-
variance matrix [1]

High-dimensional entanglement has been identified as
an important resource in quantum information process-
ing, but also as a main obstacle for simulating classically
a quantum system. In particular, the resource needed
to reproduce the correlations in the quantum state can
be quantified by the so-called entanglement dimension-
ality. Because of this, experiments aim at controlling
larger and larger quantum systems and prepare them in
high-dimensional entangled states. The question arising
is then how to detect such entanglement dimensionality
from experimental data, for example through specific en-
tanglement witnesses. Most common methods involve
very complex measurements, such as fidelities with re-
spect to highly entangled states, which are often challeng-
ing and in some cases, like in ensembles of many atoms,
completely inaccessible.
To overcome some of these difficulties, we focus here

on quantifying entanglement dimensionality through co-
variances of global observables, which are typically mea-
sured in many-body experiments, such as those involv-
ing atomic ensembles in highly entangled spin-squeezed
states. Concretely, we generalize well-known entangle-
ment criteria based on covariance matrices of local ob-
servables and establish analytical bounds for different en-
tanglement dimensionalities, which, when violated, cer-
tify what is the minimal entanglement dimensionality
present in the system.

∗liushuheng@pku.edu.cn

Figure 1: (Above) Entanglement between subsets of lev-
els, signifying the entanglement dimensionality. (Below)
Our nonlinear criterion for detecting different entangle-
ment dimensionalities, as an improvement over linear wit-
nesses. r = 1: separable states, r ≥ 2: entangled states.

To show the practical relevance of our results, we de-
rive criteria that require similar information as the ex-
isting methods in literature, yet can detect a wider set
of states. We also consider paradigmatic criteria based
on spin operators, similar to spin-squeezing inequalities,
which would be very helpful for experimental detection
of high-dimensional entanglement in cold atom systems.

Our work also opens interesting research directions and
poses further intriguing theoretical questions, such as im-
proving current methods to detect the entanglement di-
mensionality in multipartite states.
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2 Bipartite condition: characterizing en-
tanglement dimensionality from ran-
domized measurements [2]

Bounding entanglement dimensionality is crucial for
advancing quantum technologies. However, current
methods require quite demanding measurement capabil-
ities. Here we develop a method to rigorously detect the
entanglement dimensionality with measurements in ran-
dom directions. Such a method only needs local random
unitary transformations and local measurements; there-
fore, it avoids the need of carefully tuning the measure-
ment directions and bypasses even the requirement of a
common reference frame.

Figure 2: Scheme of randomized measurements.

Concretely, using the probability distribution of the
correlations obtained from randomized measurements,
we establish analytical boundaries for different entangle-
ment dimensionalities. Any violation of these boundaries
for a particular dimensionality suggests the existence of
a higher dimensionality. We then show how our method
works in practice, also considering a finite statistical sam-
ple of correlations, and we also show that it can detect
more states than other entanglement-dimensionality cri-
teria available in literature, thus providing a method that
is both very powerful and potentially simpler in practical
scenarios.
Our work provides an exciting research direction for

implementing our method in many-body systems. Gen-
eralizing our results would allow for the detection of the
full entanglement structure in multipartite states.

3 Multipartite condition: characterizing
entanglement dimensionality vector [3]

For the case of more than two particles, multipar-
tite entanglement is very complex to even characterize
qualitatively, as considering all possible (infinitely many)
pure-state decompositions of a density matrix is in gen-
eral a very challenging task, leading to the NP-hardness
of entanglement certification.
Hence, in order to properly characterize the genuinely

multipartite nature of the entanglement in the state it
is important not only to consider the full set of biparti-
tions, but also to take the worst-case scenario amongst
all possible mixtures of states entangled differently across
the different bipartitions. This translates into consider-
ing the vector of entropies of the reductions for all possi-
ble bipartitions. Our work focuses on the 0-entropy case,

Figure 3: The structure of all possible Schmidt number
vectors in a 4× 3× 2 state space.

which extends the concept of the Schmidt number to mul-
tipartite states. This discrete measure is also a special
case that allows for a better classification of the state as
a resource, in contrast to continuous measures.

We present a new approach to find witnesses for the
entanglement-dimensionality vector in multipartite sys-
tems, which is based on extending corollaries of the bi-
partite Covariance Matrix Criterion to the multipartite
case. We have applied this idea explicitly to a known
corollary of the CMC, which leads to a criterion that is
strictly stronger than fidelity witnesses with respect to 1-
uniform states such as the GHZ states, which represent
in practice the most widely used witnesses.

Moreover, we have shown that this criterion also im-
proves over known methods on a wide class of states,
which include important paradigmatic examples useful
for applications. Further developments of our approach
can be obtained by finding new corollaries to the CMC,
or in general nonlinear witnesses of the Schmidt number
in the bipartite case, which thus represents a promising
direction for further research in this topic.
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Bayesian retrodiction of quantum supermaps
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Abstract. The Petz map has been established as a quantum version of the Bayes rule. We study a higher-order
generalization of it by formulating the problem of quantum supermap retrodiction, namely update rules for the
belief of a quantum channel given indirect observations on it. A list of axioms desired for supermap retrodiction
are proposed in analogy with quantum Bayes rule. We give analytical solutions to families of supermaps and prior
beliefs, and point out the difficulty of a general recipe to construct retrodiction supermaps.

Keywords: Quantum Bayes’ rule, quantum supermaps, Petz recovery map

1 Introduction
The Bayes’ rule lies in the centre of logical reasoning

[1]. It tells how one updates one’s belief of a random
variable from indirect observations. In quantum generaliza-
tions of the Bayes’ rule, the random variables correspond
to quantum states, and the generalization is not straightfor-
ward due to operator non-commutativity. Various defini-
tions of belief updates of quantum states has been proposed
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Among those proposals, the
Petz recovery map [13, 14] is the only update rule that satis-
fies a set of desired properties analogous to the classical Bayes
rule [12].

The Petz map highlights a unification of conceptual retrod-
iction and a physical reverse process [15, 16]: Conceptually,
it defines a retrodiction, which is an updated belief of the ini-
tial state of a process given observations on the final state; and
operationally, it implements a reverse process that brings the
final state back to the retrodicted initial state.

The Petz map seems to have given a satisfactory, if not the
final, answer to the quantum Bayes’ rule. However, we find
that its generalization from quantum states to quantum chan-
nels turned out to be non-trivial. Consider a quantum process
that contains a few steps. For some steps, we have their exact
characterization, while others are unknown, and we only have
an initial belief about their behaviour. The steps may be “hid-
den” in between other steps and are not directly accessible.
We aim to answer the following question: given observations
of the process as a whole, how can we update our information
about the unknown steps that may not be directly accessible?

We focus on the case where one of the steps is unknown
and formulate this question in the framework of quantum su-
permaps [17]. A quantum supermap can be imagined as a
quantum circuit board with an empty slot into which a quan-
tum process can be embedded, as shown on the left of Fig. 1.
Such a circuit board, with all the exactly characterized steps
soldered on board and leaving the unknown step as a slot,
would be a supermap from the unknown step to the full quan-
tum process.

Therefore, we call the problem of updating the belief of the
unknown step “supermap retrodiction”, in analogy to quan-
tum channel retrodiction that updates the belief of its input
quantum state.

An analogy can be made between the supermap retrodiction
∗baige@nus.edu.sg

and updating conditional probabilities in a Bayesian network,
as shown in Fig. 1.

S

N
W X Y Z

W X Y Z

Figure 1: Quantum supermap retrodiction problem and its
analogous Bayesian network. On the left, S is a supermap
acting on a quantum channel N . The supermap retrodic-
tion aims to update one’s belief on N , namely the correla-
tion between systems X and Y . On the right, it shows the
Bayesian network connecting observed variables W,Z and la-
tent variables X,Y with conditional probability distributions
P (X|W ), P (Y |X), P (Z|YW ). The supermap retrodiction
is analogous to updating P (Y |X) given observations on W
and Z.

In this work, we propose axioms of retrodiction of su-
permaps, similar to those of the Petz map [12]. For a class
of supermaps involving only classical-to-quantum channels,
we give one solution satisfying all the axioms. For general
supermaps, we reduce the problem into basic cases. However,
even for the basic cases, finding a general solution satisfying
all axioms turns out to be non-trivial. Nonetheless, we have
found solutions for a few families of examples with analytical
formulae to construct the retrodiction supermaps.

2 Problem formulation
We denote quantum systems with capital letters, and system

X has Hilbert space HX and dimension dX . Let S(H) be the
set of density operators on Hilbert space H. We denote the
set of CPTP maps, namely quantum channels, from S(HX)
to S(HY ) as CPTP(HX ,HY ).

The Petz map [13, 14] gives a general recipe for the retro-
diction of a quantum process E ∈ CPTP(HX ,HY ) and is
defined as [15, 18, 12]:

RE,γ(σ) :=
√
γE†

(
E(γ)−1/2σE(γ)−1/2

)√
γ , (1)

where γ ∈ S(HX) is a reference state, and the resulting map
RE,γ is in CPTP(HY ,HX).
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Quantum supermaps refer to transformations from one
quantum process to another. In this paper, we consider su-
permaps deterministically realizable with quantum circuits,
also known as superchannels, which are completely posi-
tive linear maps transforming CPTP maps to CPTP maps
[17, 19, 20]. These objects are the higher-order counterparts
of deterministic quantum processes, namely quantum chan-
nels.

Any superchannel S : CPTP(HX ,HY ) →
CPTP(HW ,HZ) acting on a CPTP map N can always
be realized with the structure shown in Fig. 2 [17]. In the
figure, A and B are ancillary systems, IB is the identity
channel on system HB , VL ∈ CPTP(HW ,HX ⊗HB) is an
isometric channel and VR ∈ CPTP(HY ⊗ HB ,HZ ⊗ HA)
is a unitary channel (the dimensions satisfy dY dB = dZdA).

S

N
W X Y Z

= N
VL VR

W X Y Z

×
B A

Figure 2: The decomposition of a superchannel.

Ref. [12] lists a set of axioms for retrodiction, which
are all satisfied by the Petz map. We take the same set
of axioms, replace the channels with superchannels, and list
them as follows. For the retrodiction of superchannel S :
CPTP(HX ,HY ) → CPTP(HZ ,HW ), the prior belief is a
channel Γ ∈ CPTP(HX ,HY ), and the retrodiction supermap
aims to update the belief from the output of S. We denote as
RS,Γ : CPTP(HZ ,HW ) → CPTP(HX ,HY ) the retrodic-
tion supermap of S with prior Γ.

1. The retrodiction supermap is a superchannel, and thus
can be realized with the structure in Fig. 2.

2. If the input of the retrodiction supermap is the prop-
agated reference prior, it should recover the reference
prior. Namely,

RS,Γ(S(Γ)) = Γ. (2)

In other words, if the observation matches the prior be-
lief exactly, no update will be made on the belief.

3. If the superchannel S is perfectly recoverable, namely
there exists another superchannel T such that T ◦ S is
the identity supermap, then the retrodiction supermap
RS,Γ also satisfies that RS,Γ ◦ S is the identity su-
permap.

4. Involutive: If RS,Γ is a retrodiction supermap for S
with prior Γ, then S is a retrodiction supermap for RS,Γ

with prior S(Γ). Namely,

RRS,Γ,S(Γ) = S. (3)

5. Compositional: The retrodiction supermap for the com-
position of two superchannels S2 ◦ S1 is the compo-
sition of their respective retrodiction supermaps in the

reverse order, with priors properly propagated forward.
Namely,

RS2◦S1,Γ = RS1,Γ ◦ RS2,S1(Γ). (4)

6. Tensorial: The retrodiction supermap for the tensor
product of two superchannels S1⊗S2 is the tensor prod-
uct of their respective retrodiction supermaps:

RS1⊗S2,Γ1⊗Γ2 = RS1,Γ1 ⊗RS2,Γ2 . (5)

3 Partial Solution
Due to the Choi-Jamiołkowski isomorphism [21, 22], trans-

formations on channels can be viewed as transformations
on their Choi operators. Indeed, a superchannel S :
CPTP(HX ,HY ) → CPTP(HW ,HZ) defines a completely
positive mapping between Choi operators [17]. We denote this
map as CS ∈ CP(HX⊗HY ,HW ⊗HZ), CS : CN 7→ CS(N ),
where CP denotes the set of completely positive maps.

One may think about defining the retrodiction supermap
RS,Γ via the retrodiction of CS , such that CRS,Γ is the Petz
map of CS with prior CΓ. Unfortunately, the Petz map does
not always give a valid superchannel satisfying Axiom 1.

Nevertheless, the Petz map is helpful in some special cases.
We consider a special case as in Fig. 3, where system W is
classical, and S does the following when applied on N :

1. Copy the value w of W and stores it into a classical
memory W ′,

2. After applying N , apply some channel Sw ∈
CPTP(HY ,HZ) on system Y based on the stored
value w.

Γ Sw RSw,γw
W Y Z Y

W ′′

W ′ RS,Γ

S

Figure 3: A diagram of RS,Γ(S(Γ)). Double lines denote
classical systems, and black dots denote copying the classical
value. S copies the value of W , stores it into W ′ and applies
Sw on system Y based on the stored value w. RS,Γ copies the
value of W to W ′′, and applies Rγw on the output side based
on w.

To construct a retrodiction supermap for S, the idea is to
construct the Petz map of Sw for every w, and select the
corresponding Petz map based on w. Specifically, define
γw := Γ(|w⟩⟨w|), and let RSw,γw be the usual Petz map of
Sw with prior γw. The retrodiction superchannel RS,Γ is then
realized with the following steps:

1. Copy the value w of system W , and store it in a classical
register W ′′.

2. Based on the stored value w, apply RSw,γw on system
Z.
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A diagram showing Γ,S and RS,Γ is in Fig. 3. Following the
properties of the Petz map, we can show that this construction
satisfies all axioms we desire, if we restrict W to be classical.

4 Examples for the general case
We have found families of cases where explicit solutions of

retrodiction supermaps are available. It is desired that the so-
lutions satisfy all axioms, but before a general recipe from Γ
and S to RS,Γ is present, it is difficult to verify Axioms 4 to
6 since they involve multiple retrodiction supermaps. There-
fore, in the examples, we do not impose Axioms 4 to 6, and
focus on solutions satisfying Axioms 1 and 2.

There is a trivial solution of retrodiction supermap satisfy-
ing Axioms 1 and 2, which is a superchannel mapping every
channel to Γ. This is not what we desire since it does not up-
date the prior belief at all. To find non-trivial solutions, we
use an additional constraint inspired by the property of the
Petz map.

We observe that the rank of the Petz map RE,γ is never
larger than that of the original map E . We make a similar con-
straint here, by imposing the retrodiction superchannel RS,Γ

to have rank no larger than that of S. When Γ and S(Γ) are
full-rank, we show that this is the minimal rank of a super-
channel that Axiom 2 may be satisfied. Intuitively, this mini-
mal rank constraint requires the RE,γ to keep the most infor-
mation from the observation S(N ).

Here, we present one of the examples. The reference
channel is chosen as Γ(ρ) = (Dp ◦ CNOT)(ρ ⊗ |0⟩⟨0|) ∈
CPTP(HW ,HZ ⊗HA), where Dp is a depolarizing channel
defined as

Dp(ρ) := (1− p)ρ+ p1ZA/dZA, 0 ≤ p ≤ 1 (6)

where 1ZA/dZA is the maximally mixed state in S(HZ ⊗
HA). The supermap is simply throwing away system A of the
output.

We have found the solution of a retrodiction supermap for
any p, and here we present the limiting case p → 0 for sim-
plicity. In this case, RS,Γ can be implemented with the struc-
ture in Fig. 4 with dM1

= 4 and dM2
= 2, and the isometry

UL and unitary UR are defined as

UL

UR

Wr W Z Zr

M1

Ar

M2×

Figure 4: Structure of retrodiction supermaps.

UL =
|00⟩+ |11⟩√

2
⟨0|+ |02⟩+ |10⟩√

2
⟨1| , (7)

UR = |000⟩⟨00|+ |101⟩⟨01|+ |110⟩⟨02|+ |011⟩⟨03|
− |111⟩⟨10| − |001⟩⟨11|+ |010⟩⟨12|+ |100⟩⟨13| ,

(8)

where the ordering of systems is W,M1,Wr for UL and
Zr, Ar,M2, Z,M1 for UR.

The obtained retrodiction supermap does not follow the pat-
tern mentioned in Fig. 3. The first tooth is not “copying” sys-
tem W but alters its value and entangle it with the memory
system M1.

5 Discussion
Our work gives a framework and a partial solution to the

Bayesian retrodiction of quantum superchannels. For general
cases, we have found analytical solutions to a few examples
satisfying a set of properties analogous to Petz maps. The
solutions are mysteriously exotic compared with the classical
Bayes’ rule and the Petz map.

The retrodiction of quantum superchannels, which is also
the update rule for beliefs of quantum channels, is a basic
component of quantum Bayesian networks [23, 5, 24, 25, 26].
A classical Bayesian network [1] is a connection of random
variables with conditional probabilities. It is a machine learn-
ing model where the connections can be updated according
to observations, and later used for making predictions. The
quantum Bayesian network is a connection of quantum sys-
tems with quantum channels, where the channels can be up-
dated according to observations and used for predictions. The
Bayesian method may not be the optimal solution for certain
tasks (for example, the Bayes’ rule is not optimal for state re-
trieval [8]), but will hopefully be more consistent and scalable
than numerical optimizations.

Compared with other proposals to update beliefs in quan-
tum Bayesian networks [5, 25], our proposal of supermap
retrodiction is both conceptually consistent with Bayes’ rule
and operationally realizable with a deterministic quantum cir-
cuit. This has the following benefits.

First, the retrodiction supermap can be used to recover er-
rors of quantum operations. Here, the error model is a su-
permap capable of characterizing errors on the input, the out-
put and unwanted side channel between them. This model is
particularly suitable for accessing a remote process, such as
cloud computing [27, 28, 29] and quantum illumination [30],
where errors may occur at the transmission in both directions.

Second, the retrodiction can be applied to subsystems of
a quantum process, and the quantum nature of our proposal
makes it possible to preserve the entanglement between the
subsystem of interest and its complement. In contrast, collect-
ing the observations as classical data and making conceptual
belief updates necessarily destroys entanglement.

Although we have found solutions of retrodiction su-
permaps for subclasses of superchannels and priors, a univer-
sal recipe is yet to be found. It remains unknown whether
the aforementioned axioms can be all satisfied by a universal
recipe. It is possible that some of them have to be compro-
mised, for example, lifting Axiom 1 to allow for probabilistic
supermaps [17] or virtual supermaps (weighted difference be-
tween to superchannels) [31]. They are still physical in the
sense that they can be simulated with deterministic circuits
and classical post-processing at the cost of more experimental
repetitions.
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Angle Finding of Quantum Signal Processing for Matrix Inversion
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Abstract. Linear solvers have a wide range of applications and quantum algorithms provide them expo-
nential speed-up, making them promising for quantum computers. Quantum singular value transformation
(QSVT) algorithm is a strong candidate of a quantum linear solver. However, calculating rotation angles in
QSVT is often unstable and a bottleneck. Various techniques have been proposed to address this, but the
best combination of techniques was unclear. Our study found that using the Remez, Prony, and carving
methods for angle finding in QSVT provided the best accuracy, achieving a computational accuracy of the
error on the order of 10−13 in double-precision arithmetics.

Keywords: quantum computing, quantum algorithms, QSP, QSVT, matrix inversion

1 Introduction

Linear systems are core components in many fields of
science, engineering, and optimization. Linear solvers
have important industrial applications such as numerical
solutions for differential equations, finite element meth-
ods, and machine learning. Since the first proposal of
quantum algorithms for linear solvers by Harrow, Has-
sidim and Lloyd [1], several improvements have been pro-
posed [2, 3, 4, 5]. Among them, quantum signal pro-
cessing (QSP) and quantum singular value transforma-
tion (QSVT), which are algorithms that unify various
quantum algorithms [5, 6], are able to perform matrix
inversion with less computational complexity than the
first proposal by avoiding quantum phase estimation. In
QSVT, once the coefficient matrix A of linear equations
is encoded in the block elements of the unitary matrix of
a quantum circuit as a block encoding-operator, it is pos-
sible to construct a quantum circuit embedded with an
approximate pseudo-inverse matrix of A in the block ele-
ments of the unitary matrix by using the block-encoding
operators and Z-rotation gates. At that time, it is nec-
essary to calculate the approximate polynomial of the
inverse function x−1 and determine the angle sequence
of the Z-rotation gates in the QSP circuit that represents
the polynomial. However, the classical task of accurately
calculating the angle sequence is often unstable and diffi-
cult in double-precision arithmetics on classical comput-
ers.
In previous studies on the matrix inversion with QSP,

there are three options for approximating x−1 with a
polynomial: direct method [3], Fourier-transform method
[7], and iterative method with Remez algorithm [8]. In
particular, the Remez algorithm is the best choice from
an error perspective, as it provides the best approximate
polynomial within the subspace of Chebyshev polynomi-
als of a given degree.
On the other hand, there are various options for calcu-

lating the angle sequence of the QSP. Firstly, there are
two approaches to angle finding: a factorization-based

∗makino.kenzo@dw.mitsubishielectric.co.jp

approach and an optimization-based approach [8]. The
factorization-based approach consists of two substeps
called completion and decomposition. There are two op-
tions for completion: root-finding method [9, 5, 10, 11]
and Prony method [7, 12]. Also, there are two more
options for decomposition: carving [5] and halving [10].
Various techniques have been proposed to avoid the nu-
merical instabilities, but the best combination of the
techniques was unclear.

In this work, we evaluate combinations of the various
methods for the matrix inversion with QSVT, and re-
port that by applying the Remez method to the polyno-
mial approximation, Prony method and carving method
to the angle finding, we were able to obtain the angle se-
quence with a QSP error on the order of 10−13 in double-
precision arithmetics on a classical computer. This has
advanced us one step further towards the application of
quantum linear solvers.

2 Preliminary

Polynomial Approximation We assume that A is
appropriately scaled by a factor such that ∥A∥ ≤ 1, and
let κ be the condition number of A. Let p(x) be an
d-degree odd polynomial with real coefficients. An in-
verse function f(x) = (βx)−1 is approximated by p(x)
on [κ−1, 1], and its Chebyshev expansion is represented
as follows,

f(x) ≈ p(x) :=
∑
n:odd
1≤n≤d

pnTn(x), (1)

where Tn(x) = cos(n cos−1 x) is the first-kind Chebyshev
polynomials and the scale β is set such that |p(x)| ≤ 1
for ∀x ∈ [−1, 1].

QSP There are two basic conventions for QSP, namely
Wx and Wz conventions. In the Wx-convention QSP [5],
the signal operator WX , the signal processing operator
SZ , and the QSP operator sequence UX(x,Φ) for Φ :=
(ϕ0, . . . , ϕd) ∈ Rd+1 are defined as follows,
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Definition 1 Wx-convention QSP

WX(x) := eitX =

(
cos t i sin t
i sin t cos t

)
(2)

SZ(ϕ) := eiϕZ =

(
eiϕ 0
0 e−iϕ

)
(3)

UX(x,Φ) := SZ(ϕ0)

d∏
n=1

WX(θ)SZ(ϕn) (4)

where t := cos−1 x for x ∈ [−1, 1] and X, Z are
Pauli-X, Pauli-Z matrices. In the Wz-convetion QSP
[11, 6], UZ(x,Φ) is defined similarly to UX but with X
and Z swapped, where WZ(t) := eitZ and SX(ϕ) :=
eiϕX . Since X and Z are similar with respect to
the Hadamard transform, they have the relationship
UX(x,Φ) = HUZ(x,Φ)H.
In QSVT, given the angle sequence Φ such that p(x) =

Re[⟨0|UX(x,Φ) |0⟩], it is possible to construct a QSVT
circuit encoding the pseudo-inverse of A, by using the
block encoding operators of A† and Z-rotation gates [5].

3 Setup

In this study, we performed angle findings by combin-
ing the various methods mentioned above, and evaluated
the QSP errors and the calculation runtime with respect
to the polynomial degree d. The d corresponds to the
number of queries of the block-encoding operators.
As shown in Figure 1, the angle finding consists of the

polynomial approximation (referred to as truncation),
calculation of the polynomial G (referred to as comple-
tion), which will be menthoned later, and the calculation
to decompose UX into WX , SZ (referred to as decom-
position). For comparison, we also performed the angle
findings with the optimization method [8].

Wx-QSP Truncation

Factorization Method

Optimization Method

Completion DecompositionQSP Basis

Root finding

Prony's method

L-BFGS

Carving

Halving

Figure 1: Flow chart of angle finding for QSVT.

Firstly, in the truncation step, we utilized the Remez
algorithm to find the polynomial p(x) with odd parity
and a given degree d over the domain [κ−1, 1]. Then, by
transforming t = cos−1 x, ω = eit, we converted p(x) into
a Laurent polynomial p̃(ω) with odd parity and degree d
as follows,

p(x) =
∑
n:odd

−d≤n≤d

1

2
p|n|ω

n =: p̃(ω). (5)

Note that p̃(ω) is reciprocal, i.e. p̃(ω) = p̃(ω−1). The
scale β was set according to κ and n so that x ∈
[−1, 1], |p(x)| ≤ 0.3.

Secondly, in the completion step, we calculated on the
Wz-QSP instead of the Wx-QSP for simplicity. In the
Wz-QSP, the QSP operator sequence UZ is written by
UFG as

UFG =

(
F (ω) iG(ω)

iG(ω−1) F (ω−1)

)
, (6)

where F,G ∈ R[ω, ω−1], deg(F ) ≤ d, deg(G) ≤ d,
Parity(F ) = Parity(G) = d mod 2, |F (ω)|2+ |G(ω)|2 = 1
[10, 6]. For numerical stability, we added anti-reciprocal
signal of γ2 (ω

d−ω−d) as F (ω) = p̃(ω)+ γ
2 (ω

d−ω−d), re-
ferred to as capitalization [11, 7]. Then, we calculated
G(ω) with two options: the root-finding method and
Prony method. The capitalization amplitude was set to
γ = 0.4.

In the decomposition step, we had two more options,
the carving [5] and halving [10], to decompose UFG and
calculated the angle sequence Φ respectively.

Furthermore, for comparison, we performed angle find-
ings by the numerical optimization method [8]. Using the
L-BFGS method, we searched for the angle sequence Φ
that minimizes the following loss function,

L(Φ) =
1

d̃

d̃∑
j=1

|Re ⟨0|UX(xj ,Φ) |0⟩ − p(xj)|2, (7)

where d̃ = ⌈n+1
2 ⌉, xj = cos

( (2j−1)π

4d̃

)
.

For verification, we evaluated the errors of the QSP
results p̂(x) := Re[⟨0|UX(x,Φ)|0⟩]. The error was defined
as follows,

ϵ :=
∥p̂(x)− f(x)∥∞
∥f(x)∥∞

. (8)

Also, for reference, we evaluated the residual errors of
the truncation results p(x) in the same way.

All of the above calculations were performed using
Python 3.10.12 and the numpy library 1.26.3, with a lap-
top with a 3.4 GHz 16-Core Intel Core i7-13700K CPU.

4 Results

We evaluated the degree dependence of the QSP errors
ϵ and CPU runtime for each method by changing κ to 10,
20, 30, 40, and 50. As a representative example, we show
the results of κ = 10 in Figure 2(a, b). We set the degree
d to 11, 21, 31, · · · in 10 steps and calculated the approx-
imate polynomial up to d = 311. The combination of
Prony method and carving (Wx.P.C) performed the best,
with the smallest error of ϵ = 5.0 × 10−13 for d = 311,
and shortest computation time for degrees above 50. It
overlapped with the truncation error, which is the best
approximation of the inverse function. The combination
of Prony method and halving (Wx.P.H) as well as the
optimization method (Wx.O) had errors comparable to
(Wx.P.C), with the the smallest error of ϵ = 1.3× 10−12

and 3.0×10−12, respectively. But they resulted in longer
computation times in our implementation. The root-
finding method and either the halving or carving method
(Wx.RF.C, Wx.RF.H) resulted in the smallest error of
ϵ = 1.2× 10−10 and 1.3× 10−10, respectively.
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Figure 2: Angle finding of QSP for matrix inversion of
κ = 10. (a) QSP errors ϵ, (b) Runtimes of factorization
method and optimization method.

5 Summary

As a result of comparing the angle findings for matrix
inversion of QSVT by various methods on a double pre-
cision arithmetics, it was found that the combination of
Prony method and carving was the best in terms of both
angle accuracy and computation time. In our poster pre-
sentation, we will also report on the results of changing
the condition number κ.
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Entanglement, a key feature of quantum mechanics,
lies at the heart of quantum information processing. De-
termining the degree of entanglement in a mixed quan-
tum state (a probabilistic blend of pure states) is a sig-
nificant challenge. We introduce a novel approach, Few-
Shot Randomized Measurement (FSRM) enhanced with
Bell measurements, that directly estimates entanglement
in mixed states using random unitary evolution and Bell
measurements. This method is efficient, robust, and scal-
able, making it practical for real-world applications.
Traditional methods for entanglement quantification

often rely on prior knowledge about the quantum state
or use complex, indirect measures. Other common mea-
sures like negativity are highly nonlinear making direct
evaluation difficult.
We focus on direct estimation because it enables us to

analyze its unbiasedness, efficiency, and other statistical
properties. This paper aims to build an unbiased esti-
mator for mixed-state entanglement that suits even very
few shots.
Recent advancements in randomized measurements

(RM) and classical shadow (CS) have provided promising
pathways to directly estimate various quantum proper-
ties. However, traditional RM schemes using only local
unitary evolution have limitations in estimating entan-
glement, especially in mixed states. We overcome these
limitations by introducing Bell measurements, which al-
low for direct access to entanglement information.
Our approach, FSRM, leverages the power of random

unitaries and Bell measurements. FSRM requires only
a few measurements per setting, significantly reducing
experimental overhead. Moreover, compared with CS
methods, it is robust to errors in the implementation of
random unitaries, making it suitable for noisy quantum
systems. The combination of Bell measurements with
FSRM allows us to directly estimate entanglement, by-
passing the need for indirect measures.
We experimentally demonstrate the effectiveness of

our BM-enhanced FSRM scheme using entangled pho-
ton pairs. We generate both pure and mixed states, ac-
curately estimating the negativity of each. Our results
show significant improvement in robustness compared to
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Table 1: Comparisons Among the schemes
robust to

channel error
few shot

least
design number

type of
predictor

post-
processing

CS # ! 2 universal intensive

RM ! # k special a little

FSRM ! ! k special almost no

thj

th'j

)j(u

)j'(u

Figure 1: (a)Demonstation of the FSRM. With con-
straints of resources, we choose a more versatile mea-
surement setting with less repeat per setting. We take
N = 1000 and k = 3 for an example. (b) Demonstration
of the BM-enhanced FSRM We randomly implement Bell
measurement onto randomly chosen qubit-pairs.

traditional shadow estimation, highlighting the advan-
tages of our approach.

Our work provides a practical and efficient method for
directly characterizing mixed-state entanglement. This
research significantly advances the field of randomized
measurements by demonstrating the effectiveness of BM-
enhanced FSRM for direct mixed-state entanglement
quantification. Our approach offers a powerful tool for
characterizing quantum systems, contributing to the de-
velopment of robust and scalable quantum technologies.
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Abstract. The notion of general quantum contextuality encompasses preparation as well as measure-
ment contextuality. Our methodology proposes a generalized noncontextual polytope that maintains
constant dimension despite variations in measurements and outcomes, ensuring a consistent approach
to noncontextual polytope construction. Our constructed polytope’s facet inequalities, serve as necessary
conditions for generalized noncontextuality, can be obtained computationally efficiently. We illustrate the
efficacy of our methodology through several distinct contextuality scenarios involving up to six prepara-
tions and three measurements, obtaining the maximum quantum violations of our derived noncontextu-
ality inequalities. Our investigation uncovers many novel non-trivial noncontextuality inequalities and
reveals intriguing aspects and applications of quantum contextual correlations.

Keywords: Quantum Contextuality, Non-Contextual Polytopes, Semi- definite hierarchy.
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Introduction.—One of the most striking features of
quantum theory is that its predictions resist general-
ized noncontextual or “Leibnizian” realist explanations
[1, 2, 3, 4, 5, 6, 7, 8]. The notion of noncontextual-
ity embodies the Leibnizian methodological principle
that attributes identical realist descriptions to opera-
tionally equivalent or indistinguishable experimental
procedures. The phenomenon of generalized contextu-
ality of quantum theory constitutes a fundamental non-
classical feature of the quantum formalism that under-
lies other characteristic nonclassical predictions of quan-
tum theory [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23]. Even though contextuality has roots in the realist
camp, it is as relevant to the operationalists since it fu-
els quantum-over-classical advantage in a broad range
of information processing tasks, such as quantum com-
putation, state discrimination, randomness certification,
oblivious communication and communication complex-
ity [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

Preparation noncontextuality attributes identical
epistemic states to preparation procedures, which are
indistinguishable, i.e., all measurements yield identical
statistics on such preparation procedures. Inequalities
that hold in all theories satisfying preparation noncon-
textuality can be violated in quantum theory, revealing
the contextuality of preparation or simply preparation
contextuality. Similarly, measurement noncontextuality
attributes identical response schemes to measurement
procedures that are operationally indistinguishable, i.e.,
give rise to identical empirical statistics on all possible
preparations. However, measurement noncontextuality

∗berasanu007@gmail.com

alone is compatible with quantum theory [1].
Generalized noncontextuality is the logical conjunc-

tion of preparation and measurement noncontextual-
ity in contextuality scenarios associated with prepare
and measure experiments. Analogous to Bell inequal-
ity, generalized noncontextuality implies empirical in-
equalities, referred to as (generalized) noncontextuality
inequalities (NCI). Quantum theory prescribes prepa-
rations and measurements, which, while satisfying the
operational indistinguishable conditions, violate NCI.
A contextuality scenario is specified by the number
of preparations, measurements, and measurement out-
comes, as well as the operational indistinguishability
conditions between preparation and measurement pro-
cedures corresponding to their distinct convex mixtures,
respectively. Given a contextuality scenario, finding a
set of empirical criteria fulfilled by any noncontextual
theory is a demanding task of both foundational and op-
erational importance.

The set of empirical statistics possessing noncontex-
tual explanations forms a convex polytope, and conse-
quently, the inequalities representing the facets of that
polytope combine to provide the necessary and suffi-
cient criteria for noncontextuality [4]. However, the non-
contextual polytope is a product of two polytopes, one
for preparations and the other for measurements. To
obtain the facet inequality of the noncontextual poly-
tope, one needs to compute the extremal points of a
DP−dimensional polytope associated with the prepa-
rations to find the extremal epistemic states, which are
probability distributions over the ontic state space and
the extremal points of a DT−dimensional polytope as-
sociated with product polytope. It turns out, typically,
DP increases polynomially with the number of measure-
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ments, and DT increases polynomially with the square
of the number of measurements, owing to the polyno-
mial increase in the number of distinct ontic states one
needs to consider.

The motivation of the present work is to address this
fundamental aspect in the study of contextuality, as
to: when is a given scenario sufficient to exhibit quantum
contextuality? As mentioned above, the computational
technique to retrieve all the facet inequalities applicable
to arbitrary contextuality scenarios is computationally
challenging. Therefore, it is highly desirable to seek ef-
ficient methods to find a set of empirical conditions de-
picting the generalized non-contextuality framework. In
the present study, our aim is to formulate statistical in-
equalities that are necessarily satisfied by noncontextual
theories.

Specifically, here we introduce a novel and efficient
method to retrieve noncontextuality inequalities in any
contextuality scenario, where only a single ontic state
is needed to characterize the polytope for preparations.
As a result, in contrast to the conventional method [4], in
our approach, one needs to compute only the extremal
points of a polytope whose dimension remains constant,
irrespective of the number of measurements and their
outcomes. The formalism proposed here enables us to
obtain a polytope containing the noncontextual poly-
tope considerably faster. The facet inequalities of this
polytope constitute noncontextuality inequalities neces-
sarily satisfied by all noncontextual theories. Violation
of the obtained inequalities thus provides us with suffi-
cient conditions for guaranteeing generalized quantum
contextual correlations.

As an upshot of our formalism, through the present
analysis we are able to investigate efficiently various
contextuality scenarios and uncover new applications
of quantum contextuality in those scenarios, such as
certification of non-projective measurements, certifi-
cation of dimensionality, and quantum advantage in
oblivious communication.

Generalized notion of contextuality.— A prepare-and-
measure experiment uses distinct preparation and mea-
surement procedures to predict outcomes. Two prepara-
tion procedures, Px and Px′ , are operationally equivalent
or indistinguishable (denoted as Px ∼ Px′ ) if they yield
identical outcome statistics {p(z|x, y)} for all measure-
ments, where p(z|x, y) indicates the probability of ob-
taining outcome z when the measurement specified by
y is performed on the preparation specified by x. Simi-
larly, two measurement procedures Mz|y and Mz′ |y′ are
operationally equivalent or indistinguishable (denoted
as Mz|y ∼ Mz′ |y′ ) if they produce identical outcome
statistics for all possible preparations.
In a prepare and measure experiment, nx distinct prepa-
rations and ny different measurements are conducted,
each with nz possible outcomes. A set of hypothetical
preparations is realized by taking convex mixtures of
these preparations, resulting in indistinguishable mixed
preparations. These mixed preparations are labeled by

the variable s ∈ {0, . . . , ns} and realized by the convex
coefficients {αx|s}. The indistinguishability conditions
imply that ∑x αx|sPx ∼ ∑x αx|s′Px for all s, s′. Similarly, if
t ∈ {0, . . . , nt}, is the labeling and {βz,y|t} are the convex
coefficients of indistinguishable measurement proce-
dures, then indistinguishability conditions on measure-
ments are expressed as ∑z,y βz,y|t Mz|y ∼ ∑z,y βz,y|t′ Mz|y
for all z, y, t. Here convex coefficients {αx|s} and {βz,y|t}
both satisfy the positivity and normalization conditions.
These indistinguishability conditions on preparations
and measurements are considered independent, requir-
ing the vectors u⃗s :=

(
α0|s, α1|s, · · · , αnx−1|s

)
and v⃗t :=(

β0|t, β1|t, · · · , βny−1|t

)
respectively, of these convex co-

efficients to form an independent set of vectors. The
number of preparations, measurements, and measure-
ment outcomes, along with the set of independent in-
distinguishability conditions, defines a contextuality sce-
nario.

In quantum theory, preparations are described
by density operators ρx, and measurements are de-
scribed by positive semi-definite operators Mz|y. The
probability of obtaining an outcome when perform-
ing a measurement on preparation Px is given by
p(z|x, y) = Tr(ρxMz|y). Quantum preparations and
measurements satisfy the indistinguishability condi-
tions if and only if ∑x αx|s ρx = ∑x αx|s′ ρx , ∀s, s′ and
∑z,y βz,y|tMz|y = ∑z,y βz,y|t′Mz|y , ∀t, t′.
An ontological model offers an explanation for the pre-
diction of an operational theory by considering the state
of the system as an objective reality, denoted by λ ∈ Λ,
where Λ is an arbitrary measurable space referred to
as the ontic state space. A preparation procedure Px
prepares the system in an ontic state λ with probability
µ(λ|x), while the probability of obtaining the outcome
when a measurement is performed on the ontic state λ
is given by the response function ξ(z|λ, y). The indistin-
guishability conditions in any noncontextual ontological
model imply ∑x αx|s µ(λ|x) = ∑x αx|s′ µ(λ|x) , ∀s, s′

and ∑z,y βz,y|tξ(z|λ, y) = ∑z,y βz,y|t′ξ(z|λ, y) , ∀t, t′,
regarding every λ.

Comparison with the method for finding the facets of exact
noncontextual polyotpe:- Method to find the exact noncon-
textual polytope was provided by Schmid et al. [4]. The
polytope presented in this work is notably larger than
this exact noncontextual polytope. Consequently, the vi-
olation of the inequalities we derive here serves as a suf-
ficient criterion (though not necessary) for operational
certification of generalized contextuality. However, our
approach presents a two-folded and substantial advan-
tage over the method for identifying the exact noncon-
textual polytope in terms of efficiency.

We recall that nx, ny, and nz refer to the number
of preparations, measurements, and outcomes, respec-
tively, in a contextuality scenario. Say, the number of
extremal points obtained for the variables {ξ(z|y)} sat-
isfying indistinguishability conditions is r. According
to the method in [4], the total number of ontic states λ
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sufficient to characterize the preparations is nx · r. How-
ever, owing to the normalization conditions and the in-
dependent indistinguishability conditions, nx and r · ns
number of variables are eliminated, respectively. As a
result, the dimension of the polytope characterizing the
preparations becomes (nx − ns)r − nx [38].

In contrast, our method involves a fixed number of in-
dependent variables for characterizing the preparations,
which is nx − ns irrespective of the settings of the mea-
surement side. Therefore, the difference between the di-
mensions of the two polytopes, whose extremal points
are computed in the two different methods, is given by

∆P = (nx − ns)r − 2nx + ns.

Furthermore, the method in [4] involves r · ny · nz
number of variables {ξ(z|y, λ)} that describe the mea-
surements. And, owing to the normalization condi-
tions and the independent indistinguishability condi-
tions, we can eliminate r · ny and r · nt number of
variables, respectively. As a result, the dimension of
the polytope characterizing the measurements becomes
r(nynz − ny − nt). One needs to compute the extremal
points of the product of the two polytopes involving the
variables {µ(λ|x)} and {ξ(z|y, λ)} by multiplying the
extremal points of these two polytopes. The product
polytope has a dimension of (nx − ns)r − nx + r(nynz −
ny − nt), which follows from the fact that the dimen-
sion of a product polytope is the sum of the dimensions
of the individual polytopes [38]. On the other hand,
the product polytope, for which we compute the facet
inequalities in our method, possesses a dimension of
nx − ns + nynz − ny − nt. Hence, the difference in di-
mensions between these two product polytopes, whose
extremal points are computed through these two meth-
ods is given by

∆T = (r − 1)(nx + nynz − ns − ny − nt)− nx.

Discussion.– Deriving a set of empirical criteria appli-
cable to any operational theory that satisfies the gener-
alized notion of contextuality is an arduous task of both
foundational and operational significance. The conven-
tional method [4] of extracting facet inequalities from
the pertinent noncontextual polytope is computation-
ally demanding due to the polynomial growth in the
dimension of the polytope describing the preparations
with the number of measurements. In this work, we in-
troduce an innovative approach for constructing a poly-
tope that encompasses the actual noncontextual poly-
tope while ensuring that the complexity of the method
remains minimal. The facet inequalities resulting from
the intersection of our extended polytope with the nor-
malization polytope constitute necessary conditions for
noncontextuality.

We demonstrate the efficacy of our proposed method
by applying it here to three scenarios comprising of four
to seven preparations and two to three measurements.
Consequently, we retrieve a large number of novel NCI,
violations of which serve as sufficient conditions for

demonstrating quantum contextuality in these scenar-
ios. To obtain the maximum violations of these NCI, we
employ two semi-definite programming techniques in-
troduced in [7]. The see-saw technique retrieves lower
bounds on the maximum quantum violations with the
quantum states and measurements of specific Hilbert
space dimensions. On the other hand, the second tech-
nique, inspired by the Navascués–Pironio–Acı́n hierar-
chy for nonlocal correlations [39], provides a dimension
independent upper bound on the maximum quantum
violation of the NCI. We further study the robustness to
experimental noise of the quantum violations. Our in-
vestigation uncovers novel non-trivial noncontextuality
inequalities and reveals intriguing aspects of quantum
contextual correlations, including applications in infor-
mation processing tasks such as oblivious communica-
tion, dimension witness, certification of non-projective
measurements and randomness generation.

The present study has focused on sets of indistin-
guishability conditions regarding preparations and
measurements, respectively, to render them indistin-
guishable from each other. It is possible to consider
scenarios with more than one set of indistinguishability
conditions for a given scenario, each corresponding
to convex decompositions of mixed preparations or
measurements [7]. Extending our method to cover
such scenarios could be explored more thoroughly in
future research. The inherently contextual nature of
quantum theory offers several distinct advantages in
cryptographic and computational tasks. Our present
analysis should motivate future endeavours to leverage
newfound instances of quantum contextuality for
information theoretic applications.
Example:- Quantum advantage in oblivious
communication.— We consider a scenario, which consists
of four preparations and three binary outcome measure-
ments, defined with preparation indistinguishability
conditions, as

1
3
(P0 + P1 + P2) ∼

1
2
(P0 + P3) . (1)

with x ∈ {0, 1, 2, 3}, y ∈ {0, 1, 2}, z ∈ {0, 1}. Us-
ing our approach, a large number of NCI are obtained
[40], among which, a non-trivial inequality (with px,y :=
p(0|x, y)) is

I2 = −p0,0 + 2p1,0 + p0,1 − 2p2,1 ⩽ 2, (2)

whose lower quantum bound is determined to be 2.645.
We provide the strategy for obtaining the highest quan-
tum bound 2.732.

The oblivious information transfer task is crucial in in-
formation theory, with numerous applications in cryp-
tography [41, 42, 43, 44]. Quantum violations of NCIs
with preparation indistinguishability lead to quantum
advantage in oblivious communication [29]. The op-
timal classical encoding strategy for the sender in the
oblivious communication task with respect to I2 is
bounded by 2, and from our derived NCI, it follows that
quantum advantage ensues whenever I2 > 2.
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between bell nonlocal and contextuality scenarios.
Phys. Rev. Lett., 131:220202, Nov 2023.

[24] Robert W. Spekkens, D. H. Buzacott, A. J. Keehn,
Ben Toner, and G. J. Pryde. Preparation contextu-
ality powers parity-oblivious multiplexing. Phys.
Rev. Lett., 102:010401, Jan 2009.
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Efficient Parameter-Shift Rule Implementation
for Computing Gradient on Quantum Simulators
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Abstract. Quantum computing is an active research interest in the new computational area with various
applications. In the quantum machine learning field, the parameterized quantum circuit is a core learnable
model; this model is updated iteratively by the general Parameter-Shift Rule (PSR) technique. In many
qubits and parameter scenarios, using PSR consumes significant computational resources, particularly in
the quantum simulator. Therefore, this research proposes a method to perform the PSR more efficiently for
matrix multiplication and state-based quantum simulators. The results show that our method is faster than
baseline matrix multiplication-based 12 times and baseline state-based 39 times on average experiment.

Keywords: quantum simulator, quantum machine learning, quantum gradient

1 Introduction

Quantum machine learning (QML) is the intersection
of quantum computing and artificial intelligence, which
presents an exciting new frontier with transformative po-
tential across various research fields, from combinato-
rial optimization and machine learning to simulation [1].
By combining principles from quantum mechanics and
machine learning algorithms, QML promises novel ap-
proaches to propose new efficient learning models where
the Parameterized Quantum Circuit (PQC) is the core
part [2]. As a learning model, a PQC minimizes the cost
value by updating its parameters, which are phase val-
ues in rotation gates. Accordingly, a lot of optimizers for
the PQC have been proposed, from zero-order optimiz-
ers such as COBYLA [3] and finite difference [4] to quan-
tum optimizers such as quantum nature gradient [5]. Re-
cently, the general Parameter-Shift Rule (PSR) has been
proposed in Ref. [6] and combined with first optimizer
optimizers to provide an exact first-order gradient form
for the PQC. After proving the efficiency versus other
methods [7], this PSR has been integrated into quantum
simulators including Matrix Multiplication (MM)-based
simulators such as Pennylane [8] and Cirq [9], as well
as state-based (stabilizer frame and wave function) like
Qiskit [10] simulators.
Unfortunately, computing gradients by PSR requires

lots of quantum evaluation, which consumes huge com-
putational resources in large scenarios and limits the ap-
plication range of PSR in the above simulators. To solve
this problem, two possible solutions are proposed, in-
cluding zero-order optimizer and self-optimizing PSR.
The first solution uses the above zero-order optimizer
for saving execution time with lower accuracy than the
first-order optimizer, whereas the second solution uses
self-optimizing PSR by reducing the number of quantum
evaluations (#QE) [11, 12]. However, the efficiency of
self-optimizing PSR still does not meet the requirements
of quantum simulators. In this paper, we focus on en-
hancing the second solution to compute the unique el-
ements of all QEs. Particularly, duplicate elements in

∗vu.tuan hai.vr7@naist.ac.jp

QEs can be eliminated to avoid unnecessary computa-
tions. As a result, the PSR’s efficiency is significantly
enhanced, leading to increases in the performance of the
quantum simulator. To the best of our knowledge, this is
the first proposed method for both MM-based and state-
based simulators.

2 Background

2.1 Parameterized Quantum Circuit (PQC)

Consider a n-qubits variational circuit U(θ)
parametrized by θ ≡ [θ0 θ1 θ2 . . . θm−1]

⊺, which
is also known as a PQC, can be written as a product of
sub-circuit, where each sub-circuit contain only one pa-
rameter, as U(θ) = Um−1(θm−1) . . . U1(θ1)U0(θ0). The
target of using PQC is to find optimal θ∗ to achieve the
minimal cost value C(θ) = ⟨ψ|U†(θ)B̂U(θ)|ψ⟩, where
B̂ is the measurement operator and |ψ⟩ is the reference
quantum state. This task is solved by computing a
gradient term as Eq. (1) and using classical optimizers
such as SGD and Adam to update until θ ≈ θ∗:

∇θC(θ) = ⟨ψ|∇θ(U
†(θ)B̂U(θ))|ψ⟩ (1)

2.2 Parameter-Shift Rule (PSR)

For rotation gates Ri, two-term PSR formula has been
proposed in Ref. [13] as Eq. (2):

∂C(θ)

∂θj
= r[C(θ+ϵ

j )− C(θ−ϵ
j )], (2)

where ej is them-dimensional jth unit vector, ϵ = π/2,
r = 1/2. For greater convenient, we denote U(θ) ≡ U ,
θ±ϵ
j ≡ θj ± ϵ and θ±ϵ

j ≡ θ ± ϵej . In general, we have 2R
- term PSR for any kind of parameterized gate, which
is known as general PSR with R ≥ 2 as the number of
distinct eigenvalues of gate’s generator [6]:

∂C(θ)

∂θj
=

R∑
k=1

dk
[
C
(
θ+ϵk
j

)
− C

(
θ−ϵk
j

)]
(3)

The fixed #QE is (2×R)×m for m parameters, then,
number of matrix multiplications (#MM) for simulating
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Figure 1: (Left) An example 3-qubits PQC (U(θ)) is propose to split into sub-circuits {Uj(θj)}j∈[0,m−1]. Each sub-
circuit has only one parameter. (Right) The output is used for computing gradient, then back to update PQC’s
parameters by the classical optimizer.

Eq. (3) sequentially is (2 × R × m) × (m − 1) . As a
result, these calculations will be enormous if the number
of parameters is high. Note that #MM is quite different
if U is split in another way.

3 Proposed method

As mentioned in Sec. 2.2, there is a large #QE for
baseline PSR that needs to be optimized. Because re-
ducing #QE has been conducted in other research [11,
12], our proposed method will aim to compute these QE
faster by considering U object, note that B̂ and |ψ⟩ are
constant so it can be ignored. First, U is separated as
{Uj}, then unique elements and duplicate elements are
determined. In Sec. 3.1, we apply this idea to the MM-
based simulator; the state-based simulator requires eval-
uating |ψm−1⟩ = U |0⟩ that is quite different and will
be discussed in Sec. 5. After that, unique elements are
sorted and saved in a Look Up Table (LUT) presented in
Sec. 3.2.

3.1 Application for MM-based simulator

We use the notation Ui:j as Eq. (4) for following con-
tent:

Ui:j =

 UjUj−1 . . . Ui if i < j
Ui if i = j
I2n if i > j

. (4)

For each group {U(θ±ϵk
j )}k∈[1,R], there are duplicate

MMs from (1) computing Uhead
j := U0:j−1 and U tail

j :=

Uj+1:m−1 in terms: U(θ±ϵk
j ) = U tail

j Uj(θ
±ϵk
j )Uhead

j and

(2) between {Uhead
j ,Uhead

j+1 } and {U tail
j ,U tail

j−1}. The dupli-
cate MMs can be eliminated by reusing Uhead

j and U tail
j

for computing Uhead
j+1 = UjUhead

j and U tail
j−1 = U tail

j Uj−1 as
Eq. (5), respectively:

U(θ±ϵk
j+1) = U

tail
j Uj+1(θ

±ϵk
j+1)U

head
j+1 ,

U(θ±ϵk
j−1) = U

tail
j−1Uj−1(θ

±ϵk
j−1)U

head
j−1 .

(5)

For analyzing the efficiency of the application for MM-
based simulator, the #MM for {Uhead

j ,U tail
j } is discussed

here. For example if j = 2, we need to compute
{U0:2,U1:2, U2}, where U1:2 = U2U1 and U0:2 = U1:2U0,
totally cost only two MMs. In general:

#MM(Proposed) =

m−1∑
j=0

j + 4R = m× (m− 1)/2 + 4R

#MM(Baseline) = (4R)× (m× (m− 1)/2),
(6)

where #MM(Proposed) and #MM(Baseline) is the #MM
in the proposed method and baseline method, respec-
tively. 4R(2 × 2R) in term #MM(Proposed) is for
2R evaluations, where each evaluation consumes two
MMs. One between {Uhead

j , Uj(θ
±ϵk
j )} and one between

{U tail
j , Uj(θ

±ϵk
j )Uhead

j }. Obviously, the #MM(Proposed) is

less than #MM(Baseline)(∀m,R ∈ N+, R ≥ 2) at least
8 (4 × 2) times for derivative at Ri gates, 16 (4 × 4)
times for derivative at Control-Ri gates and more for
more complex gates.

3.2 Memory for the Look Up Table (LUT)

As discussed in the above section, {Uhead
j ,U tail, Uj} are

unique elements. By using a LUT, we offer a trade-off
between execution-time and memory for saving those ele-
ments as m× (m+1)/2 2n×2n-matrices. Thus, for MM-
based simulator, we only save maximum (1 +m+m) ele-
ments for one Uhead, m different U tail

j and m different Uj ,

respectively. Note that Uhead
j and U tail

j can be eliminated

since computing term U(θ+ϵ0
j+1). In state-based simulator,

it needs (m+m) elements for m different Uj and m dif-
ferent |ψj⟩. Especially, the LUT is not dependent on R
and n, which means the proposed PSR can scale for high-
order gradients and the large number of qubit circuits.

4 Experiment

The simulations are implemented in Python and run
on the Intel i7-13700K 24-core CPU. Our method is veri-
fied on compact random quantum circuit datasets, where
each circuit has a maximum number of gates with a given
depth (d). Next, each circuit is divided into m sub-
circuits by converting the quantum circuit from Qiskit
object to QASM 2.0 format. Then, sub-circuits data
is put into three different processing functions includ-
ing MM-based (Proposed), MM-based (Baseline), and
state-based (Baseline). The execution time is measured
from the moment the program receives the sub-circuits to



Figure 2: Execution time (y-axis) from 2 to 7-qubit quantum circuit in log scale, with (x-axis) is depth value from 2
to 49.

Figure 3: Speedup (y-axis) compare between proposed
method and baselines, from 2 to 7-qubit quantum circuit,
with (x-axis) is depth value from 2 to 49.

when the processing functions return the gradient value.
Each case {n, d} is evaluated by computing the gradient
for 100 different circuits in the dataset and then returning
the average.
The main results are shown in Fig. 2. Base-

line PSR and Proposed PSR in MM-based methods
are implemented from scratch when we use Qiskit’s
method named from_instruction(.) from module
qiskit.quantum_info.Statevector to extract |ψl⟩ for
simulating state-based simulator (stabilizer frames). Sta-
bilizer frames only keep a quantum state, which ensures
a very short execution time compared with MM-based.
The result in Fig. 3 shows that our proposed method

is faster than both baselines and more efficient in higher
depth. In a higher #qubit, the speedup increases with
the MM baseline and decreases with the state-based base-
line, as Fig. 3. In the smallest case (2 qubits with a depth
of 2), our method is faster than baseline PSR MM-based
1.3 times and baseline PSR state-based 7.6 times. In the
largest case (7 qubits with a depth of 49), our method
is faster than baseline PSR MM-based 45.7 times and
baseline PSR state-based 7.2 times.

5 Discussion: Application for state-
based simulator

For different quantum simulators such as wave func-
tion [14] and stabilizer frame [15], the proposed PSR can
be applied with reverse computation path compared with
baseline PSR MM-based . With |ψj⟩ = Uhead

j |0⟩, we have
already known |ψj+1⟩ = Uj+1|ψj⟩ which can be rewrit-
ten as n̂j+1 steps

(
Gj+1,n̂j+1−1 . . . (Gj+1,1 (Gj+1,0|ψj⟩))

)
.

Similar with MM-based, we create a 1-dimensional LUT
to store {|ψj⟩, Uj}j∈[0,m−1]. The number of total steps

for stabilizer formalism is (2 × R × m) ×
(∑m−1

j=0 n̂j

)
.

In proposed method, we consume m matrix-vector mul-
tiplication for preparing {|ψj⟩}j∈[0,m−1] and (2 × R) ×
(
∑m−1

j=0

∑m−1
l=j n̂l) steps for stabilizer formalism, which

reduced about half number of steps.

6 Conclusion

Reducing the cost of computing gradient in simulation
is a crucial problem for QML applications. By elimi-
nating the duplicate element in the PSR technique, the
execution time can be significantly reduced, it can be de-
creased more if applying our proposal in parallel. This
method can work with different kinds of existing quan-
tum simulators such as Qiskit, Pennylane, and Qulacs.
Further experiments in different datasets and simulators
will be conducted and compared in future works.

Appendix

Appendix 1: Algorithms

The algorithm for the baseline PSR MM-based sim-
ulator and proposed PSR MM-based simulator can be
referred to Algorithm. 1 and Algorithm. 2, respectively.

Appendix 2: High-order gradient

In this appendix, we discuss about higher-order gradi-
ent. Because Eq. (2) is the analytic derivative, we can
apply it again to get the higher-order, such as second-
order derivative with respect to any parameters {θj , θj′}:
∂θjθj′C(θ) = ∂θj′ (∂θjC(θ)). For general K-order deriva-
tive with K > 0:
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Algorithm 1 Two-term PSR (R = 2) for MM-based
simulator

Input: U(θ), B̂
Output: ∇θC
1: state+ ← [1 0 ... 0]⊺; state− ← [1 0 ... 0]⊺

2: ∇θC ← [0 0 . . . 0]⊺

3: Us ← splitter(U) {Divide U into
{U0, U1, . . . , Um−1}}

4: for i in [0, . . . ,m− 1] do
5: for j in [0, . . . ,m− 1] do
6: θj ← θ[j]
7: if j = i then
8: state+ ← Us[j](θ+ϵ

j )× state+

9: state− ← Us[j](θ−ϵ
j )× state−

10: else
11: state+ ← Us[j](θj)× state+

12: state− ← Us[j](θj)× state−

13: end if
14: end for
15: C+ ←

(
(state+)†

)⊺ × B̂ × state+

16: C− ←
(
(state−)†

)⊺ × B̂ × state−

17: ∇θC[i]← r × (C+ − C−)
18: end for
19: return ∇θC

Algorithm 2 Proposed two-term PSR (R = 2) for MM-
based simulator

Input: U(θ), B̂
Output: ∇C
1: 0← [1 0 ... 0]⊺;∇C ← [0 0 . . . 0]⊺

2: Us ← splitter(U); {Divide U into
{U0, U1, . . . , Um−1}}

3: Ustail ← [I2n ];U tail ← I2n
4: for j in [m− 1, . . . , 2, 1] do
5: U tail ← U tail × Us[j]
6: Ustail.append(U tail)
7: end for
8: Uhead ← I2n ;Us± ← [ ];
9: for j in [0, 1, . . . ,m− 1] do

10: U(θ+ϵ
j )← Ustail[m− 1− j]× Us[j](θ+ϵ

j )× Uhead

11: U(θ−ϵ
j )← Ustail[m− 1− j]× Us[j](θ−ϵ

j )× Uhead

12: Uhead ← Us[j]× Uhead

13: Us±.append([U(θ+ϵ
j ), U(θ−ϵ

j )])
14: end for
15: for j in [0, 1, . . . ,m− 1] do
16: [U(θ+ϵ

j ), U(θ−ϵ
j )]← Us±[j]

17: C+ ←
(
(U(θ+ϵ

j )× 0)†
)⊺ × B̂ × (

U(θ+ϵ
j )× 0

)
18: C− ←

(
(U(θ−ϵ

j )× 0)†
)⊺ × B̂ × (

U(θ−ϵ
j )× 0

)
19: ∇C[j]← r × (C+ − C−)
20: end for
21: return ∇C

∂θ1θ2...θKC(θ) =
Σs∈S±1,±2,...,KP (s)C(θ + s)

2K(
∏K

j=1 sin(ϵj))
,

where:

S±1,±2,...,K = [±ϵ0e0 ± ϵ1e1 . . . ± ϵkek]⊺

and P (s) = sgn

 k∏
j=0

ϵjej

 .

Following the above equations, a single K-order deriva-
tive requires evaluating 2K elements in the sum. As the
analysis in Ref. [16], the derivative tensor of order K
is symmetric, so the actual #QE equals the number of

distinct elements, which is less than 2K,

(
m+K − 1
K

)
≈

O(mK) if m ≫ K. As a result, the #MM for our pro-
posed PSR will be m × (m − 1)/2 + (2 × K × R) while
the LUT is the same as the first-order derivative.
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The final target of universal quantum computation, ca-
pable of tackling problems beyond the reach of classical
computers, hinges on a crucial element: ”magic.” Magic
refers to special quantum states namely T states and H
states. Clifford with the help of magic states/gates be-
come universal and hard to simulate in classical com-
puters. Traditionally, these magic states are carefully
prepared beforehand and injected into the quantum sys-
tem. However, we delve into a groundbreaking approach:
generating magic through measurement.
Measurement-based Quantum Computation (MQC)

presents a unique framework for universal quantum com-
putation. It begins with intricately entangled states,
known as graph states. Instead of directly manipulating
these states with standard quantum operations, MQC
achieves computation by performing adaptive single-
qubit measurements within the entangled network and
final correction with the measurement results. From the
view of magic resources, graph state brings zero magic
resources and correction part won’t change the magic re-
sources as well, thus, all the magic resources were injected
though the middle measurement part. We quantification-
ally reveal a surprising and powerful outcome: these mea-
surements can effectively inject ”magic” into the system,
significantly boosting its computational power.
To understand how measurements generate magic, we

introduce two novel concepts: invested magic resources
and potential magic resources. Invested magic quanti-
fies the amount of magic ”invested” through the mea-
surement process, akin to measuring the fuel used to
power a journey. This provides a tool for analyzing the
magic required for specific computations, serving as a
sufficient condition and upper bound for realizing
specific quantum operations. The greater the invested
magic, the more complex the quantum tasks that can be
achieved.
Potential magic, on the other hand, captures the max-

imum magic achievable within a given graph state, re-
gardless of the measurement sequence. This concept
highlights that not all entangled states are equally ca-
pable of generating magic. We demonstrate that simple
graph structures, like linear chains or GHZ states, have
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Figure 1: Relationship among invested magic resources,
potential magic resources, and the reserved magic re-
sources.

the potential magic of a mere 1T (1T is the maximum
magic resource for 1 qubit) regardless of the number of
qubits, restricting their utility for universal computation.
That provides an information-theoretical explanation of
the university of linear and GHZ states.

We also implement an experiment of MQC of 1D and
2D graphs with a high-quality 4-photon experiment. We
scrutinize the invested and reserved magic resources step
by step. Experimental results confirm the efficiency of
MQC in generating magic compared to the conventional
Magic State Injection (MSI) method. MQC can achieve
higher magic content with fewer physical qubits, leading
to significant space efficiency for building practical quan-
tum computers. This advantage makes MQC a promising
approach for developing smaller, more efficient quantum
computers.

We also delve into the magic resource cost of QFT,
a powerful algorithm with applications in cryptography
and other fields. Using the concept of invested magic,
We demonstrate that the magic requirements for QFT
scale linearly with the number of qubits, O(n). In the
previous paper, at least O(n log n) of magic resources are
needed. This finding opens the door to resource-efficient
implementations of QFT, particularly through the use
of truncated versions focusing on low-frequency compo-

410



nents, potentially reducing computational complexity.
This research signifies a significant leap forward in our

understanding and utilization of magic resources in quan-
tum computation. The ability to generate magic through
measurement opens up a new path for magic distillation
with measurement distillation, leading to more powerful
and versatile quantum algorithms. Furthermore, the con-
cepts of invested and potential magic provide a powerful
framework for analyzing and quantifying magic in gen-
eral, potentially leading to more sophisticated resource
theories and analysis techniques.
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Abstract. Quantum computing holds great potential for simulating chemical systems. In this study,
we propose an efficient protocol for simulations of chemical systems, enabling accurate chemical reaction
modeling on quantum hardware. In this protocol, we combine a correlation energy-based selection to
define the active space, the driven similarity renormalization group (DSRG) method to account for the
electron correlation effect, and a noise-resilient wavefunction ansatz to mitigate errors. This combination
provides a quantum resource-efficient way to accurately simulate chemical systems. Additionally, modeling
a Diels-Alder (DA) reaction using this protocol is performed on a cloud-based superconducting quantum
computer. These results represent an important step forward in realizing quantum utility in the NISQ era.

Keywords: Driven similarity renormalization group(DSRG), hardware adaptable ansatz(HAA), vari-
tional quantum eigensolver(VQE), quantum cloud, quantum error mitigation

1 Introduction
In the rapidly evolving field of quantum computing, re-

cent advancements have highlighted significant quantum
advantages offered by various quantum platforms[1, 2],
positioning quantum chemistry as a prime area for the
application of this technology[3]. It is crucial to develop
hybrid quantum-classical algorithms that require only a
dozen qubits and shallow quantum circuits for quantum
simulations of practical chemical systems. The choice of
the active space is a longstanding problem in the context
of both classical and quantum computational chemistry.
Especially, in case of the theoretical predication of chem-
ical reaction barriers, selecting the active space should
be consistent for both the initial state and the transition
state in order to obtain reliable relative energies. The
effective Hamiltonian scheme[4, 5] that utilizes quantum
computers only to diagonalize the effective Hamiltonian
is preferred. One typical example is the driven similarity
renormalization group (DSRG) method[6], which intro-
duces a driving term to decouple interactions in a Hamil-
tonian and thus build a similarity-transformed Hamil-
tonian within a small active space for accurately treat-
ing electron correlation. As a promising application, the
quantum DSRG method has been employed to study the
bicyclobutane isomerization reaction using only a single
qubit[7]. It is interesting to assess the quantum DSRG
for simulating practical chemical reactions.

In this work, a novel strategy for automatically select-
ing active orbitals is first proposed based on orbital corre-
lation energy. The quantum DSRG method is employed
to generate the effective Hamiltonian, which is diago-
nalized using the varitional quantum eigensolver (VQE)
with a hardware-adaptable ansatz[8]. We apply this pro-
tocol to simulate the Diels-Alder (DA) reaction[9, 10] on
cloud-based superconducting quantum computer, achiev-
ing high accuracy in predicting the reaction barrier.
Meanwhile, we demonstrate that the hardware-adaptable
ansatz is more noise-resilient than the hardware-efficient

ansatz.

2 Methods
The effective Hamiltonian theory has been posited as

an innovative method to lessen the qubit requirement[11,
12] by "downfolding" the system Hamiltonian into an
effective Hamiltonian in a small active space. As such,
a complex many-body problem is significantly simplified
into a manageable one that still capture the essence of the
quantum system’s behavior. In this work, we employ the
DSRG method[13, 14] to build the effective Hamiltonian
as

Ĥ(s) = Û†(s)HÛ(s) = e−Â(s)HeÂ(s) (1)

where Ĥ(s) is a similarity-transformed Hamiltonian and
Û(s) is a unitary transformation with a continuous pa-
rameter s defined in the range [0, ∞). Â(s) is an anti-
Hermitian operator, written as

Â(s) = T̂ (s)− T̂ †(s). (2)

T̂ (s) is the cluster operator, which is represented as a
sum of single, double, . . ., excited operators T̂k(s).

In the DSRG, the similarity-transformed Hamiltonian
is driven by the source operator R̂(s), according to the
following equation:[

Ĥ(s)
]
od

=
[
e−Â(s)HeÂ(s)

]
od

= R̂(s) (3)

The equation is augmented with an appropriate bound-
ary condition for the operator. For s = 0, the non-
diagonal component of the Hamiltonian is identical to the
bare Hamiltonian

[
Ĥ(0)

]
od

= Hod, which corresponds

to Â(0) = 0. For s → ∞, the DSRG flows decouple
excitation configurations from the reference, driving the
off-diagonal part of Ĥ(s) to zero, namely

[
Ĥ(∞)

]
od

= 0.
Although the DSRG method can significantly reduce

the number of qubits required for simulating chemical
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Figure 1: The workflow of the hybrid quantum-classical algorithm, which is composed of three main components:
an automatic orbital selection procedure for determining the active space, the DSRG procedure for constructing an
effective Hamiltonian, and the VQE procedure for estimating the total energies of chemical compounds.

systems, short coherence time and noise make us difficult
to obtain reliable results on current NISQ hardware[3].
Therefore, it is essential to design an appropriate wave
function ansatz or quantum circuit to reduce circuit
depth in order to avoid error accumulation[15]. Circuit-
friend wave function Ansätze, such as hardware effi-
cient ansatz (HEA)[16] and the qubit coupled-cluster
method[17], are able to ensure shallow circuits while ad-
vanced error mitigation techniques are still necessary.
Recently, Zeng et al. suggested a hardware adaptable
ansatz (HAA) [8], inspired by quantum neural networks.
The corresponding quantum channel of HAA is defined
as

ρout = tranc(U(ρin
⊗

ρanc)U†), (4)

U =

L∏
l=1

N∏
i=1

U l
i (θ

l
i) (5)

where ρin and ρanc are the input density matrices of the
system and ancilla qubits, respectively. ρout is the out-
put density matrix of the system. ρin/ρanc = |00..0 ><
0..00|. The operation tranc means the partial trace over
the ancilla qubits. N is the number of ancilla qubits and
L is the number of entangled layers.

3 Results
The quantum experiment is performed on Baqis’s

cloud-based hardware Quafu Baiwang [18, 19]. Baiwang
consists of 136 superconductiong qubits, as shown in Fig.
1. The avaerge single qubit gate fidelity is 99.7% and the
CZ gate fidelity is 94.6%. In this experiment, we select
five qubits, the topology and information of the qubits
and gates are shown in Fig. 2.

The Hamiltonian of electrons in the active space is en-
coded into 9 terms using Bravyi-Kitaev transformation.

Qubit Number 116 115 114 126 125

Single qubit  gate 

fidelity (%)
99.979 99.990 99.991 99.976 99.984

CNOT gate 

fidelity (%)

98.8 98.6

99.3 97.2

T1 (μs) 43.9 33.3 48.0 52.2 44.2

T2 Ramsey(μs) 14.40 18.44 11.79 24.64 25.57

114 115 116

126125

Figure 2: The information of qubits used in experiment.

Then, the total energy can be reformulated as

EIS/TS =

9∑
i=1

ci⟨Oi⟩, (6)

where the coefficients ci are obtained from the combina-
tion of one- and two-electron integrals.

The circuit utilized for minimizing the ground state
energy of initial and transition states are designed by
HAA, which includes 19 adjustable rotation gates along Z
axis and X axis with 17 parameters and 4 CNOT gates,as
shown in Figure 3(a). After iteration, we apply zero-noise
extrapolation (ZNE) [20, 21, 22] approach to suppress
experimental errors. In our ZNE approach, each single
CNOT gate in the circuit is replaced by N copies of itself,
while the single qubit gates are in consistent with the
gates in corresponding trial steps. The final energy is
obtained by linear extrapolating the averaged energy of
10 steps to the noiseless limit N = 0.

To minimize the energy, we apply the simulta-
neous perturbation stochastic approximation (SPSA)
optimizer[23] on the classical computer to search the sin-
gle gate parameters in quantum circuits. At the kth
iteration step, the energy gradient gk(θk) is calculated
by adding the perturbation ±ϵ of the input parameter
θk[24, 25], then the parameter is updated by the formula
θk+1 = θk+1 + akgk(θk), where ak is the learning rate.
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Figure 3: (a) The quantum circuit of hardware adaptable ansatz. The single qubit rotation angles θi, i ∈ [0, 16] are
parameters to be optimized in the experiment. (b) The minimization procedure of the energy for the initial state (IS)
energy (blue) and transition state (TS) energy (red). The inset shows the raw energy and energy after error mitigation
using the zero-noise extrapolation (ZNE) technique for the final 10 steps. (c) The linear fitting of the averaged IS
energy errors and TS energy errors of the final 10 steps, with each CNOT gate replaced with 1,3,5, and 7 CNOT gates,
respectively. The correlation coefficients for the linear fittings are 0.9738 (IS) and 0.9916 (TS). (d) Average single
qubit gate errors and CNOT gate errors of two qubit groups in experiments. (e) Comparison of the energy errors for
HAA experiments using two groups of qubits on the quantum device.

The cost function in the optimizer is the total energy in
experiment. In our experiment, we set the learning rate
and perturbation to be 0.1 rad and 0.05 rad, respectively.
For each measurement, the energy is obtained from 5120
shots on quantum devices. The calculated energy for
each iteration step is shown in Fig. 3(b).

Zero-noise extrapolation (ZNE) method is widely used
in quantum computation experiments[20, 21], which was
first introduced by Li et al.[26] and Temme et al.[27] at
2017. This method amplifies circuit noise uniformly by
gradually inserting gates into the circuit, and the desired
(zero-noise) result is achieved through such as exponen-
tial function fitting. In the experiment, we take the en-
ergy from the final 10 steps of optimization process. In
our ZNE approach, each single CNOT gate in the circuit
is replaced by N copies of itself, while the single qubit
gates are in consistent with the gates in corresponding
trial steps. For each CNOT gate number and each step,
we obtain the energy with 5 repetitions of 5120 shots in
experiment, the result is shown in Fig. 3c. The final en-
ergy is obtained by linear extrapolating the averaged en-
ergy of 10 steps to the noiseless limit N = 0, as shown in
3b. After ZNE, the error of the energy can be suppressed
below 2× 10−3, closing to the threshold of chemistry ac-
curacy.

We also carry out the experiment using another group
of qubits with lower gate quality on the same chip. The
error rates of average single qubit gates and CNOT gates
in two experiments are shown in Figure 3d. The differ-

ence of energy errors between two experiments shown in
Figure 3e demonstrates that the HAA circuit is accurate
even when the average CNOT gate error rate exceeds 1%,
further attesting to HAA’s noise resistance against noisy
quantum circuits.

4 Conclusion
We propose a unique hybrid quantum algorithm. By

selecting active orbitals based on the MBECAS scheme,
we ensure that only the most important orbitals are in-
volved in quantum simulations, thereby reducing quan-
tum resource requirement. Next, using the DSRG
method to build an effective Hamiltonian, enabling us
to accurately capture both static and dynamic correla-
tion effect in chemical reactions. Additionally, we intro-
duce a hardware-adaptive wavefunction ansatz, further
enhancing the algorithm’s compatibility and efficiency on
actual quantum hardware. By validating this algorithm
on real quantum computing hardware, we demonstrated
its feasibility, showcasing its efficiency and accuracy in
handling specific chemical reactions. These results indi-
cate that this new algorithm has the potential to become
an important tool in chemistry and materials science as
quantum computing technology matures.
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Abstract. To address experimental constraints and specific application requirements in quantum tele-
portation, various schemes have been proposed. We introduce a novel approach that interconnects these
schemes to overcome their limitations and leverage their unique advantages. In this study, we bridge stan-
dard teleportation and port-based teleportation through a new asymptotic teleportation scheme requiring
classical selection followed by quantum correction. Specifically, we categorize and analytically investigate
protocols within this scheme for qubit systems. We extend our analysis to higher-dimensional systems
and discuss the potential application of a protocol from one of these groups as a universal programmable
processor.

Keywords: Quantum teleportation, port-based teleportation, quantum communication, square-root mea-
surement

1 Introduction

Quantum teleportation, initially proposed by Bennett
et al. [1] and also known as standard teleportation (ST),
represents one of the most intriguing predictions of quan-
tum mechanics, allowing for the transmission of an un-
known quantum state across spatially separated loca-
tions without the physical transfer of particles. This
paradigm-shifting protocol exploits the non-local prop-
erties of quantum entanglement, a phenomenon that Al-
bert Einstein famously critiqued as “spooky action at
a distance.” Such innovations underscore the protocol’s
critical role in enabling secure and efficient quantum net-
works [2, 3, 4], paving the way for the realization of a
future quantum internet [5, 6].

However, the implementation of quantum communi-
cation encounters various challenges in the real world,
leading to the proposal of different modified teleporta-
tion protocols to overcome these impediments. For ex-
ample, catalytic quantum teleportation was theoretically
proposed to overcome inevitable practical noise in re-
source states, utilizing entanglement states that are not
consumed or degraded during the process [7]. Lipka-
Bartosik et al. [8] proved that this protocol could achieve
teleportation fidelity equal to that of noiseless teleporta-
tion. Recent experimental approaches to overcome noise
include the use of multipartite hybrid entanglement to
protect against dephasing noise in a linear optical frame-
work [9]. Additionally, quantum error correction codes
[10, 11] and weak measurements [12] are implemented
in the quantum teleportation protocol. Moreover, based
on linear optics, the maximum probability of successfully
distinguishing Bell states is limited to 50%, significantly
reducing the efficiency of teleportation [13]. Through the
use of ancillary photons, the teleportation scheme pro-
posed by Knill, Laflamme, and Milburn (KLM) enables
asymptotically perfect state transmission[14], while other

∗hekim007@korea.ac.kr
†kgjeong6@snu.ac.kr

experiment have recently demonstrated Bell-state mea-
surements exceeding this limit [15].

An asymptotic teleportation scheme that allows the
receiver to make selections without performing quantum
corrections has been proposed, known as port-based tele-
portation (PBT) [16]. This approach provides a universal
programmable processor in a simple and natural man-
ner. With its application potential in cryptography [17],
holography [18], and quantum computing [19, 20], PBT
contributes significantly to quantum communication. It
also sheds light on the non-local measurements of multi-
partite states and advances understanding of communica-
tion complexity [21] and quantum channels [22]. Current
research efforts are focused on modifying and optimizing
PBT [23, 24, 25, 26], expressing it as efficient quantum
circuits [27], and analysing its performance against noise
[28].

Accordingly, various quantum teleportation schemes
have been proposed and developed with the aim of sur-
mounting experimental constraints or targeting specific
applications. Such individuality and diversity prompt us
to ask the ensuing question: ‘Is it feasible to transition
between different teleportation schemes through incre-
mental adjustments of their parameters?’ Exploring this
possibility could unveil underlying connections between
seemingly disparate teleportation mechanisms, offering
a unified perspective on quantum communication. Our
investigation seeks to not only validate the theoretical
feasibility of such transitions but also to understand po-
tential enhancements to teleportation efficiency and flex-
ibility. In this work, we take the first steps by starting
with an analysis of the effects of altering joint positive
operator-valued measure (POVM) elements.

2 Model and Results

Drawing upon the insights from the PBT protocol, we
introduce an asymptotic teleportation scheme rooted in
our scenario. To understand this scheme, we revisit the
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Classical communication

Alice Bob

EPR-source 

Initial

state

Teleported

state

Figure 1: The scheme for port-based quantum correction teleportation (PBQCT). Alice wishes to teleport a quantum
state, encoded in her yellow qudit, to Bob. They share N copies of maximally entangled pair of particles, shown as
green qudits, originating from an EPR source. Alice then conducts a joint POVM, inspired from PBT protocol, on her
yellow qudit and her bundles of green qudits. The measurement leads to two types of outcomes that convey classical
and quantum correction information. She gets two type of outcomes, indicating classical and quantum correction
information. Upon receiving these outcomes via classical communication, Bob selects the corresponding qudit and
applies a quantum operation to reconstruct Alice’s initial state. In the asymptotic limit of large N , the initial state is
perfectly teleported.

PBT protocol, which is characterized by its requirement
for only classical corrections for port-selection without
the need for any quantum operations. This distinctive
feature of PBT stems from its signal state configuration.
In the asymptotic limit as N approaches infinity, the joint
POVM elements converge directly to the signal states.
Furthermore, we only needs to consider each single qubit
of Alice and Bob’s resource states upon observing the
outcome. Thus, the state, storing the unknown state, and
the Bob’s qubit collapse to a Bell state, identical to the
POVM element. This implies that once a port is selected,
state transmission is ensured solely through a projection
onto a prepared Bell state, rendering Bob’s operation es-
sentially an identity operation. Building upon this foun-
dation, we extend the signal set used in PBT to include
teleportation protocols that necessitate not only port-
selection but also additional quantum corrections. We
refer to this generalized measurement approach as port-
based quantum correction teleportation, abbreviated as
PBQCT.

Originating from PBT, our scheme inherits the char-
acteristic of achieving perfect fidelity in the asymptotic
limit, which we have proven in this work. Furthermore,
given that PBQCT protocols utilize the expanded signal
set of PBT, they can be systematically organized and in-
terconnected based on the number of POVM elements.
Specifically, for qubit systems, figure 2 demonstrates a
diagram of asymptotic teleportation scheme transitions
with changes in the number of ports and POVM ele-
ments. The area highlighted in blue represents the do-
main where PBQCT protocols are applicable. The range
begins with the minimum number of POVM elements,
where the count matches the number of ports and in-
cludes PBT, plotted by red dots. It extends to the max-

imum, with the count reaching the square of the dimen-
sion. This transition evolves into parallel ST function-
ing as independent protocols across ports, as represented
by gray dots. Therefore, the PBQCT scheme ensures
the preservation of asymptotic perfect fidelity, permit-
ting a fluid transition between both protocols by gradu-
ally modifying the signal set.

In figure 2, the two yellow dots signify the linear op-
tics teleportation protocol that employs a single EPR
pair. Due to constraints in present Bell-state measure-
ment techniques within linear optics, only two of the
four Bell states are identifiable. Owing to these con-
straints, the teleportation protocol can be interpreted in
two different ways: as deterministic protocols with two
and three POVM elements. Considering the two indistin-
guishable Bell states as a single independent element of
a POVM, the protocol operates through a three-element
POVM. Conversely, if the space projected by these two
states is regarded as null space, it results in a protocol
utilizing a two-element POVM. Each protocol can be ex-
tended into PBQCT-2 and PBQCT-3 by doubling and
tripling the number of ports, respectively. These proto-
cols are indicated by blue open and closed dots in figure
2.

In our initial exploration of PBQCT, we investigate
signal sets that remain invariant under the action of any
permutation on the Alice’s qubits, following the approach
in PBT. This implies that every qubit is treated uni-
formly, without any particular distinction. Furthermore,
we impose the condition that all signal states become
one of the generalized Bell states when the identity part
is traced out. This constraint is motivated by the fact
that SRM is recognized as a highly effective measure-
ment, approaching optimality, particularly for signal sets

417



Number of ports

N
u

m
b

e
r 

o
f 

P
O

V
M

 e
le

m
e
n

ts

1 52 3 4

4

8

12

16

20

Parallel ST

PBT

Linear optics Tel.

PBQCT-2
PBQCT-3

Figure 2: Asymptotic teleportation scheme diagram for
qubit systems with respect to the number of ports and
POVM elements. The blue shaded region depicts the
PBQCT scheme. Protocols with the minimum number
of POVM elements, including port-based teleportation
(PBT) protocol, are denoted by red dots. The upper
boundary of the domain, corresponding to the parallel
standard teleportation (ST) protocol, is indicated with
gray dots. For a single port, teleportation via linear
optics is interpreted as two distinct PBQCT protocols,
shown as yellow dots, depending on the approach to
POVM. Incrementing the number of ports extends the
protocols into PBQCT-2 and PBQCT-3 protocols, indi-
cated by open and closed blue dots, respectively.

with orthogonal states. Moreover, this constraint enables
the scheme to achieve asymptotic perfect teleportation fi-
delity. We summarize our investigations and findings for
both two-dimensional and higher-dimensional systems in
this work as follows:

• We proved that every PBQCT protocol provides
perfect entanglement fidelity in the asymptotic
limit for any type and dimension.

• We catagorized PBQCT into four groups, named
as PBT, PBQCT-2, PBQCT-3 and parallel-ST, ac-
cording to entanglement fidelity for qubit systems.
Protocols within the same group have same size of
POVM, and can be transformed with local unitary
transformation at POVM and quantum correction
operators.

• We analytically evaluated the POVM elements and
entanglement fidelity of every PBQCT protocol in
qubit systems.

• We generalized PBQCT-2 to higher dimensions,
and analytically evaluated the POVM elements and
entanglement fidelity.

• We numerically investigated PBQCT for qudit sys-
tems and found that the fidelities are enhanced as

the size of the signal set increases.

3 Conclusions

The PBQCT protocols with SRM induced by two sig-
nal states for each port, denoted as PBQCT-2, show po-
tential applicability for finding experimentally feasible
teleportation schemes such that quantum correction is
unnecessary. The first proposed PBT protocol has many
difficulties in implementing it because the SRM elements
are diagonalized to the Shur basis. On the other hand,
PBQCT-2 appears to have greater implementation po-
tential in that it is block diagonalized for computational
total number and has a simple block form. Additionally,
given that the null space where teleportation fails is the
same as the KLM protocol, it is expected that it will
be possible to express it with linear optics. Due to the
necessity of Pauli correction in PBQCT-2, it cannot be
classified as a protocol possessing identical functionality
to PBT. The required quantum correction can be over-
come by applying a simple two-bit concatenated code.
If we apply a more generalized error code to PBQCT,
we expect to be able to find protocols that can be uti-
lized as a universal programmable processor that is also
protected from various errors.

For high-dimensional applications, the generalized
PBQCT-2 protocol retains all characteristics of PBQCT
across higher dimensions. This opens new avenues for
creating universal programmable processors utilizing qu-
dit systems, offering significant advancements in quan-
tum computing. Besides being a valuable and effective
guide in finding nonnecessary quantum correction tele-
portation, PBQCT promises to be a good map for clas-
sifying existing asymptotic quantum teleportation. Just
as ST and PBT have been linked through modification of
POVM measurements, we expect that other teleportation
protocols, like KLM protocol and catalytic teleportation,
may also be classified as one of the PBQCT protocols if
additional variations such as different forms of resource
state, LOCC, and noise are allowed.
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Abstract. One of the most important aspects of continuous-variable quantum key distribution (CV-QKD) is the
reconciliation step, which significantly impacts the performance of the CV-QKD system. We simulate the impact
of discrete modulation on the reconciliation efficiency and consider the use of d-dimensional reconciliation with
d > 8 to mitigate this impact, improving reconciliation efficiencies by up to 3.4%. We validate our results by
experimentally demonstrating CV-QKD over a turbulent FSO link and demonstrate SKR gains by up to 165%.

Keywords: Continuous-variable Quantum Key Distribution, Reconciliation, Error Correction, Free-space Optics

1 Introduction
Quantum key distribution (QKD), first proposed in [1], has

attracted considerable attention in recent years as concerns
for information security grow. Using Shor’s algorithm
[2], it would be possible to break current public-key
cryptography protocols, assuming that sufficiently capable
quantum computers can be developed. With continuous
advances in quantum computing [3], these concerns are
expected to become a reality in the future. A potential
solution to these issues is QKD, as it allows for the sharing
of secret keys without a potential eavesdropper (Eve) with
infinite computational power being able to recover the keys.

QKD can be broadly categorised into two different variants:
discrete-variable (DV) [1] and continuous-variable (CV)
[4]. DV-QKD involves the transmission of single photons
for the distillation of secret keys and thus requires single
photon detectors. Conversely, in CV-QKD quantum random
numbers are modulated on the in-phase and quadrature
components of coherent light and standard fibre optical
telecommunication components which allows for a more
cost-effective implementation, as opposed to DV-QKD [5].
The downside, however, is that post-processing is more
challenging for CV-QKD. An important part of the post-
processing is the reconciliation, where Alice and Bob try to
share bits using error correction.

During reconciliation, the two involved parties, Alice and
Bob, use their transmitted and measured quantum states,
respectively, to exchange bits for secret key distillation.
Alice generates the quantum states using either Gaussian
modulation [6], in which she randomly generates a symbol
based on a Gaussian distribution or discrete modulation
[7], where she uses a finite-size constellation and randomly
picks one of the constellation points. Although Gaussian
modulation allows for longer distance QKD, practical
implementation is difficult, as it is impossible to obtain a
perfect Gaussian distribution using electro-optical modulators
and digital-to-analog converters with finite resolution [8].

∗k.gumus@tue.nl

A system using discrete modulation formats mitigates
this issue by approximating Gaussian modulation using
probabilistically shaped quadrature amplitude modulation
(PS-QAM) [9]. Analysis of different discrete modulation
formats for CV-QKD has been performed in, e.g., [10], [11].

A commonly used protocol for reconciliation is multi-
dimensional reconciliation, first introduced in [12]. Multi-
dimensional reconciliation involves the use of multiplications
and divisions of (d = {1, 2, 4, 8}-) dimensional numbers
constructed using the Cayley-Dickson construction [13] in an
attempt to construct a virtual channel. The constructed virtual
channel is similar to a binary-input additive white Gaussian
noise (BI-AWGN) channel. As shown in [14], The higher the
dimensionality d of the reconciliation, the more closely the
virtual channel resembles a BI-AWGN channel, hence, higher
reconciliation efficiencies can be achieved as the capacity of
the virtual channel increases.

In [12], [15] multi-dimensional reconciliation with d > 8,
which we will refer to as high-dimensional reconciliation
from this point forward, has been proposed and analysed.
Instead of using multiplications and divisions, a mapping
matrix is used. This high-dimensional reconciliation shows
significant gains compared to when d ≤ 8. This method
involves the continuous generation of orthogonal random
matrices, which will be used for constructing the mapping
matrix. A new mapping matrix needs to be constructed for
each set of d symbols for security reasons [12].

In this work, we investigate how the use of discrete
modulation formats impacts the performance of error
correction over a wide range of code rates. We consider
the use of high-dimensional reconciliation to improve
the reconciliation efficiency, showing improvements in
reconciliation efficiencies β, especially for short- and mid-
range CV-QKD systems, by up to 3.4%. Furthermore, we
experimentally demonstrate high-dimensional reconciliation
with CV-QKD transmission over a turbulent FSO channel
and show that we can increase secret key rates (SKRs) by
up to 165% compared to conventional multi-dimensional
reconciliation.
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Figure 1. Simulated FER vs. β for different rate (Left: R = 1
5

, Middle: R = 1
10

, Right: R = 1
50

) TPB-LDPC codes for different d.

2 High-dimensional Reconciliation
To analyse the effect of the multi-dimensional

reconciliation on the performance of the error correction, we
have simulated the frame error rate (FER) curves for three
type-based protograph (TBP) LDPC codes with rates R = 1

5 ,
R = 1

10 , R = 1
50 [16] corresponding to short- (∼ 20 km),

mid- (∼ 40 km), and long-range (∼ 100 km) CV-QKD links
for a large range of values of d. The quasi-cyclic parity check
matrices for these codes were generated using progressive
edge-growth [17], with cyclant sizes of 200, 200, and 500,
and blocklengths of 105, 105, and 106 respectively. Gaussian
modulation was used to generate the quantum states. The
maximum amount of decoding iterations was set to 500.

The results of these simulations are shown in Fig. 1. The
performance of the reconciliation depends on both d and
R. For R = 1

5 , there is a significant gap in performance
between d = 8 and d = 128, namely 2.7% β for an
FER of 10%. When the rate of the code decreases, this
gap diminishes, with a 1.6% difference for R = 1

10 , and
0.5% for R = 1

50 . We conjecture that this is because in
the lower signal-to-noise ratio regime the decrease in channel
capacity of the virtual channel compared to the quantum
channel, caused by using a finite d in multi-dimensional

reconciliation, is smaller. It is still worth considering using
high-dimensional reconciliation for long-distance CV-QKD
links, as the increase in complexity is negligible compared to
the complexity of the decoding while offering an increase in
β. However, it is mostly useful for short to mid-distance links,
as this increase in β can lead to significant increases in SKR,
as will be shown later.

We also simulated how different modulation formats impact
the multi-dimensional reconciliation. The modulation formats
are PS-QAM constellations, designed according to [10]. As
shown in Fig. 2, the modulation format has a slight impact
on the error correction performance. QPSK modulation
performs the best because all symbols have equal power, and
therefore, the virtual channel created during reconciliation
corresponds to a BI-AWGN channel regardless of what d
is. When increasing the cardinality of the constellation, the
performance of the error correction code worsens when d = 8.
This is especially clear for R = 1

5 , but for R = 1
10 and R = 1

50
the modulation formats are closer in performance. When we
choose a high d, the error correction curves almost completely
overlap for all of the codes for the different modulation
formats.
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Figure 2. Simulated FER vs. β for different rate (Left: R = 1
5

, Middle: R = 1
10
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50

) TPB-LDPC codes for different d and modulation formats.
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Figure 3. The CV-QKD setup for transmission over an FSO channel with an optical turbulence generator.

3 Experimental Results
Fig. 3 shows the experimental setup employed for CV-

QKD transmission validation over a free-space optical (FSO)
channel. On Alice’s side, we deploy a <100 kHz linewidth
external cavity laser (ECL) tuned to 1550 nm, a digital-
to-analogue (DAC) converter, and an optical IQ-modulator
(IQM) to transmit a PS-256QAM constellation with a symbol
rate of 250 MBaud. A variable optical attenuator (VOA)
and a power meter are used to attenuate the signal to an
average power of 7.44 shot noise units (SNU) (−69.2 dBm).
We combine a second tone produced by a second ECL
for turbulence characterisation placed at 1528 nm with the
attenuated 1550 nm quantum signal and coupled to free
space using a collimator. The light then traverses an optical
turbulence generator (OTG) [18], [19], which can mimic
FSO channels with various turbulence strengths. We split
off 1% of the light to a high-speed power meter for FSO
channel characterisation. For our setup, we have measured a
turbulence strength generated by the OTG with scintillation
indices σI = 0.001 and pointing jitter βjitter = 123.8
respectively, which can be classified as weak fluctuations [20].

The remaining 99% of light is directed to Bob’s side,
where for the 90◦ optical hybrid, a local ECL is used as
a local local oscillator (LLO), after which the outputs are
digitised. Calibration and recovery of the quantum signal
is done using digital signal processing [21]. During the
parameter estimation, the mutual information IAB , the excess
noise ξBob, and the Holevo information χBE are estimated,
taking into account finite-size effects [22]. Parameters for the

system are a quantum efficiency of 40%, privacy amplification
block size of 6.8 · 106, a clearance of 10 dB, an average ξBob

of 0.0045 SNU, and an average transmittance T of 0.41.
We use 128-dimensional reconciliation. Furthermore, we

use the R = 0.2 expanded TBP-LDPC code punctured to
R ≈ 0.3, around the average IAB of the system, for error
correction. We choose a block length N = 1.024 · 105 with
a maximum of 500 decoding iterations. For the calculation
of the secret key rate we use the following equation: SKR =
(1− FER)(βIAB − χBE).

Figure 4 shows both the FER (left) and the SKR (right)
of the experimental results. As expected, the FER of the
128-dimensional reconciliation is close in performance to the
BI-AWGN, and at an FER of 10% there is an increase in β
of approximately 3.4% compared to the 8-dimensional case.
This is slightly more gain compared to the results in Fig. 2
because of the higher code rate. As a result, the SKR increases
by 165%, where the optimal SKR is achieved at β = 94%.

4 Conclusion
In this work, we have investigated the use of high-

dimensional reconciliation for CV-QKD. We have
analysed how the different modulation formats impact
the reconciliation, and using experimental results, we show
SKR gains by up to 165%. Future works could focus
on a more extensive study on reconciliation in different
experimental settings.
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Figure 4. Experimental results. The FER (Left) and SKR (Right) of the R = 1
5

expanded TBP-LDPC code when punctured to R = 0.3 for different d compared
to the BI-AWGN channel for CV-QKD transmission over the FSO channel.
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Leveraging Different Boolean Function Decompositions to Reduce T-Count in
LUT-based Quantum Circuit Synthesis
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Abstract. Lookup Table (LUT) based synthesis methods have recently been proposed as a way to synthesize
quantum Boolean circuits in a qubit-constrained environment. Other recent research has demonstrated the possibility
of using relative phase quantum circuits when compute/uncompute logic is used in tandem, reducing T-count in
quantum Boolean circuits in the fault-tolerant quantum computing paradigm. Because LUT-based synthesis methods
use compute/uncompute pairs on ancilla qubits, this suggests that implementing the arbitrary Boolean logic that make
up the individual Boolean logic network nodes in a relative phase manner could reduce the T-count. To generate such
arbitrary Boolean functions, we utilize Shannon’s decomposition, Davio expansions, as well as alternating balanced
and unbalanced relative phase circuits. Experimental results demonstrate that our method can reduce the T-count to
an average of 24% of the existing method.

Keywords: relative-phase Toffoli gates (RTOF), circuit optimization, LUT, quantum circuit synthesis

|x1⟩ • • • • T • |x1⟩
|x2⟩ • = • • T T† |x2⟩
|x3⟩ H T† T T† T H |x1⟩ |x1 · x2 ⊕ x3⟩

Figure 1: A Toffoli gate in Clifford+T basis
|x1⟩ • • • |x1⟩
|x2⟩ • = • • |x2⟩
|x3⟩ ⊕ H T† T T† T H ei∆θ |x1 · x2 ⊕ x3⟩

Figure 2: An relative phase Toffoli (RTOF) gate in Clifford+T
basis

1 Introduction and Preliminary Knowledge
Quantum Boolean circuits [6] implement Boolean opera-

tions as quantum circuits and are common components of
many quantum algorithms. To realize such quantum Boolean
circuits, a Toffoli gate, which implements the Boolean AND, is
an essential logic primitive in a universal gate set. These Tof-
foli gates have to be, in turn, composed of physically realizable
gates, such as NOT, CNOT, and T gates (e.g., the Clifford +
T [2] basis gate set). However, in the fault-tolerant paradigm,
T-gates incur much higher cost than the NOT and CNOT gates.
It is therefore useful to consider ways to reduce this T-count,
which is the number of both the T-gates and their inverse the
T†in the circuit.

One of the methods that has been proposed to reduce the T-
count is to implement Boolean functions only up to a relative
phase [2], which is an input dependent phase on the output. We
display a Relative Phase Toffoli gate (RTOF) in Fig. 2, which
has a T-count of 4, compared to a T-count of 7 with the normal
Toffoli gate. However, because quantum Boolean circuits are
often used as subroutines inside larger quantum algorithms,
the introduced relative phase is, in general, problematic. It can
only be used inside applications where the relative phase on
the output is erased before the output is used elsewhere.

A Boolean function is implemented with several smaller
∗dizzy@ngc.is.ritsumei.ac.jp
†accel@ngc.is.ritsumei.ac.jp
‡matsuoa@jp.ibm.com
§ger@cs.ritsumei.ac.jp

quantum Boolean circuits, there is often a need to make these
smaller quantum Boolean circuits act on ancilla qubits. How-
ever, when a circuit acts on (compute) an ancilla qubit, there
is a need to reverse its effects on the ancilla. This means there
is a need to apply the same quantum Boolean circuit twice to
the same qubit to reverse the effects. When we reverse these
states we say we uncompute them. One of the results from [4]
is that these pairs of compute/uncompute logic can be imple-
mented only up to a relative phase in order to save on T-count,
without changing the overall function. This is because when
we generate the compute logic only up to a relative phase, we
can also generate the uncompute logic to implement the same
Boolean function, but with the opposite relative phase.

Recent attempts to synthesize quantum circuits using LUT
(Lookup Table) based methods [5] generalize the decompo-
sition of larger quantum Boolean circuits. Just like before,
there is a need to use ancilla in the decomposition. This cre-
ates structures with compute/uncompute logic, just like in [4].
This means that we can see further reduction in T-count if
the compute and uncompute halves were created with rela-
tive phases that cancel each other out. However, because
LUT-based methods have arbitrary Boolean functions for the
compute logic, there is a need to generate arbitrary Boolean
functions up to a relative phase. Knowing this, we now detail
the proposed contributions of our work:
Our Contribution. We propose a method that reduces
the number of T-gates in a LUT-based synthesized quantum
Boolean circuit by generating relative phase quantum circuits.
Among our contributions:

• A method to generate arbitrary Boolean functions up
to a relative phase using Shannon’s Decomposition and
Davio Expansions, as well as balanced and unbalanced
constructions of relative phase gates

• A method to generate a quantum Boolean circuit from
a Boolean logic network representation leveraging the
above method to reduce T-count

424



|x1⟩

3

|x1⟩
|x2⟩ 1 1†

|x2⟩
|x3⟩ |x3⟩
|x4⟩ 2 2†

|x4⟩
|x5⟩

5

|x5⟩
|0⟩

4 4†
|0⟩

|0⟩ |0⟩
|0⟩ |y1⟩
|0⟩ |0⟩
|0⟩ |y2⟩

Figure 3: A quantum circuit implementing a Boolean logic
network using LHRS
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Figure 4: Balanced Shannon’s Decomposition

2 LUT-based Quantum Circuit Synthesis
Previous research [5] has detailed a method to use Boolean

Logic Networks to generate quantum circuits in a manner sim-
ilar to classical LUT-based logic synthesis. In this paradigm,
each of the nodes is interpreted as a lookup table, where the
inputs are interpreted as indices, and the outputs are entries,
according to its truth table. As a quantum circuit, they are
implemented as an F -controlled NOT (FCNOT) gate, which
is a gate that inverts its target qubit if the Boolean function F
it is supposed to implement is true.

The result of the method is shown in Fig. 3. To get from
a Boolean logic network to Fig. 3, first, we take as input a
Boolean logic network synthesized from a Boolean expression
using existing Boolean logic network decomposition methods.
Then this Boolean logic network is parsed by the algorithm to
create a quantum circuit of FCNOT gates. Any intermediate
node is decomposed as two FCNOTs: one to compute, and
the other to uncompute, acting on the same dirty ancilla. Any
node that acts only on output qubits (output node) is given only
one FCNOT.

Because the FCNOT gates act on ancilla, there is a need to
uncompute them, so the flow next produces uncompute logic.
This produces the compute/uncompute pair that a relative-
phase based construction of the function can take advantage
of. If we have a function that implements, for example, gate 1
and 1† as relative phase functions with opposite phase, we can
realize a T-count reduction. We detail how we can create such
a method in the following section.

3 Realizing Arbitrary Boolean Functions Up To
A Relative Phase

3.1 Relative Phase Shannon’s Decomposition and Davio
Expansions

Recall Shannon’s decompositionF (xn, · · · , xk, · · · , x1) =
xk · F (xn, · · ·xk = 1, · · · , x1) + xk · F (xn, · · ·xk =
0, · · · , x1). We can implement it using Fig. 4, recursively
using the same deconstruction to implement the FCNOT gates

x0

F Fxk=0 Fxk=0 ⊕ Fxk=1 Fxk=0 ⊕ Fxk=1

x1

...
...

...
...

xk • •
... = ...

...
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|0⟩ ⊕ ⊕ H T T† ⊕ T T† ⊕ H

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

xk · (Fxk=0 ⊕ Fxk=1)

Figure 5: Balanced positive Davio Expansion
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Figure 6: Unbalanced positive Davio Expansion

inside it.
However, observe from Fig. 4, that there is significant cost

associated with doing the Boolean AND. Each multiplication
costs at least 4 T-gates, along with the associated cost of the
decomposed function. Therefore, it is useful to consider a
method that takes advantage of Exclusive Sum of Products
(ESOP) expressions to reduce the number of multiplications
in the decomposition multiplication cost. Recall the positive
Davio Expansion F = F0 ⊕ xk · F2 and the corresponding
negative Davio expansionF = F1⊕xk ·F2 whereF is Boolean
function of variables {xn, · · · , xk, · · · , x0}, F0 = F (xk =
0),F1 = F (xk = 1), and F2 = F0 ⊕ F1. These expansions
have the advantage that, at every level, only one multiplication
takes place, which already reduces the maximum possible T-
gate use at any node from 8 to 4. We demonstrate how a
positive Davio Expansion can be implemented in Fig. 5.

3.2 Using Balanced and Unbalanced Relative Phase
Functions

To realize a further savings in T-count, we again observe
the the part of Fig. 5 that calculates xk · (Fxk=0 ⊕ Fxk=1),
indicated by the dashed box. In this construction, note that the
gates g6 and g10 calculate identical Boolean functions. Gate
g10 serves to uncompute the effects of g6 on the state, leaving
only the phase. We call this type of construction balanced. In
a balanced construction, the cost of the decomposition doubles
the cost of implementing the decompositions below it in the
hierarchy. This means that even in the best case, T-count is
proportional to 2(n−1).

We can remove g10 and get the construction in Fig. 6. Here,
we calculate the same Boolean function but without the cost
of the decomposition in the recursive levels below xk. We call
this type of construction unbalanced. These types of construc-
tions can only be used in a restricted manner when doing the
Boolean AND however [1]. We summarize the limitations of
the use of the unbalanced construction in our application with
the following statement: unbalanced constructions can be used
to implement FCNOTs used in the Boolean AND of two func-
tions only when done in a balanced construction. Therefore
we devise a method to use balanced and unbalanced construc-
tions at alternating levels of the hierarchy. In doing so, we
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Table 1: Experimental Results

Circuit No Relative Phase Shannon-Only Proposed method
LUT6 (T-count) LUT5 LUT4 LUT3 LUT6 LUT5 LUT4 LUT3 LUT6 LUT5 LUT4 LUT3

priority_size_2022 98664 0.56 0.32 0.26 0.27 0.51 0.19 0.16 0.14 0.08 0.06 0.05
int2float_size_2022 22592 1.14 0.49 0.38 0.94 0.94 0.4 0.35 0.27 0.17 0.1 0.06

i2c_size_2022 89288 0.69 0.4 0.27 0.94 0.68 0.31 0.23 0.61 0.27 0.18 0.13
dec_size_2018 57344 0.5 0.41 0.2 1 0.41 0.31 0.16 1 0.39 0.3 0.15
ctrl_size_2022 7560 1.17 0.84 0.68 0.99 1.12 0.51 0.41 0.99 0.88 0.35 0.24

cavlc_size_2022 116896 0.8 0.49 0.41 0.63 0.6 0.3 0.29 0.13 0.1 0.07 0.06
bar_size_2015 176400 0.94 0.03 0.03 7.15 1.4 0.21 0.21 0.15 0.21 0.07 0.07

arbiter_size_2022 175640 0.68 0.42 0.28 0.35 0.63 0.27 0.17 0.21 0.13 0.11 0.05
adder_size_2022 4992 9.75 6.38 1.94 1 7.16 4.06 2.54 1 1.91 1.95 1.66
Per LUT Average 1.80 1.08 0.49 0.5 0.46 0.35 0.27 1.47 1.49 0.73 0.50

Average 1.13 0.72 0.24

can reduce the dependency from 2(n−1) to 2
n−1
2 . While still

exponential, this has quite a significant reduction in the regime
we are working with.

Additionally, observe that in a Davio Expansion, one of
the terms does not use the Boolean AND. We are therefore
free to implement this term that does not use the AND using
an unbalanced construction. This dispenses with the need to
double the cost of the decomposition’s recursion level below
it, providing us with further reduction in T-count.

4 Proposed Method
We now integrate Sec 3.1 and Sec 3.2 into a synthesis algo-

rithm to implement a Boolean function up to a relative phase.
We use this relative phase algorithm as a subroutine in the
following process.

We query a node traversal algorithm to get the next node.
We then check if this node is an output node or an intermediate
node. If it is an intermediate node, we generate the compute
logic as an FCNOT with a relative phase, and then invert that
circuit to generate the uncompute logic, which generates a
relative phase FCNOT with the opposite relative phase. We
set the two gates to act on ancilla. If the node is an output
node, we generate the FCNOT without relative phase and add
it to the circuit. We continue until there are no more nodes to
process from the node traversal algorithm and terminate.

5 Experimental Results
We find that using our method, we generate quantum

Boolean circuits with an average of 24% of the T-count of the
case without relative phase. We also compare our proposed
method to a simplified method using only Shannon’s Decom-
position and balanced compositions. We find that this sim-
plified method (Shannon-Only) has corner cases which have
higher T-count than the non-relative phase case. This is be-
cause Shannon’s Decomposition and balanced constructions
create FCNOT gates that have a large T-count. Introducing
Davio Expansions and unbalanced constructions allows the
proposed method to take care of these cases. In fact, the full
proposed method has an absolute advantage over this simpli-
fied method.

6 Conclusion
This paper proposed the use of Shannon’s Decomposition,

Davio expansions and alternating balanced/unbalanced rela-

tive phase constructions to optimize relative phase construc-
tions in their usage in LUT-based quantum circuit synthesis.
The experimental results showed a clear advantage over the
naive case, and Davio Expansions and balanced/unblanced
constructions prove effective at dealing with corner cases that
hinder the Shannon-Only case. There remains one interesting
exception where the proposed method underperforms the naive
method, however, and it relates to a special form of Boolean
logic network which consists of independent output gates.

The results of this paper show a clear advantage to using
our proposed method, as well as possible further avenues of
inquiry for related research. As the experimental results show,
there remain many variables to control to optimize in this
method, and researching those further could prove fruitful.
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Abstract. A deterministic quantum computation with one qubit (DQC1) is a subuniversal model of
quantum computation that operates with a single qubit initialized in non-zero polarization, along with
uniformly random bits. This model is of both theoretical and practical interest because it can offer
computational advantages for certain problems. We introduce parameterized DQC1 as a quantum machine
learning model. We demonstrate that the gradient of model can be computed directly using DQC1 protocol.
We then analyze the expressivity of model, and show that DQC1-based ML is as powerful as quantum
neural networks based on universal computation.
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1 Introduction

Quantum machine learning (QML) leverages the in-
formation processing capabilities of quantum systems to
redefine the boundaries of machine learning (ML) and
data analysis. As the development of universal and
fault-tolerant quantum computers remains a long-term
prospect, exploring the ML capabilities of less powerful
but more realistic quantum devices is of significant im-
portance.
Expressivity characterizes the complexity of the family

of functions generated by the parametric function and is
a crucial property of an ML model. In QML, the laws of
physics dictate the breadth of function classes that can
be represented by the quantum processor. Previous re-
search has investigated the family of functions learnable
under the circuit model of universal quantum computa-
tion [1, 2]. However, it remains unclear how this sce-
nario changes when quantum computation is constrained
to subuniversal models.
In this work, we analyze the expressivity of the deter-

ministic quantum computation with one qubit (DQC1)
model. DQC1 is a subuniversal model of quantum com-
putation where only one quantum bit with non-zero pu-
rity can be prepared and measured, while the compu-
tation can utilize uniformly random bits. Nevertheless,
it can outperform classical computers in solving certain
computational problems. Therefore, understanding the
ML capabilities of DQC1 in terms of expressivity is cru-
cial for advancing both the theory and practicality of
QML.

2 DQC1

DQC1 is a model of quantum computation equipped
with a single signal qubit initialized with a non-zero po-
larization denoted by α, along with n uniformly random
bits, the capability to apply arbitrary unitary transfor-
mations, and the ability to measure the expectation of
the Pauli obervables on the signal qubit [3]. It is sub-
universal in the sense that only one quantum bit, which

∗k.yujin2228@yonsei.ac.kr
†dkd.park@yonsei.ac.kr

⋮ U

H
I + ασz

2 ⟨σx⟩, ⟨σy⟩

In

2n {
Figure 1: A quantum circuit representation of a DQC1
protocol for estimating the trace of n-qubit unitary op-
erator U . The signal qubit (the first qubit from the top)
is prepared with non-zero purity (α > 0).

is not necessarily pure, can be prepared and measured.
The uniformly random bits are typically realized by a
quantum system prepared in a maximally mixed state.
Although less powerful compared to universal quantum
computers, it is conjectured that DQC1 can solve certain
computational problems exponentially faster than classi-
cal computers [3, 4, 5]. An outstanding example of this
is the problem of estimating the normalized trace of an
n-qubit unitary operator, U , for which the quantum ad-
vantage can be achieved if U can be implemented using
O(poly(n)) elementary quantum gates.

To estimate the trace using DQC1, the following pro-
tocol is employed. The process first applies a Hadamard
gate to the signal qubit initialized in (I + ασz)/2, where
I denotes the 2 × 2 identity matrix and σi is the Pauli
operator with i ∈ {x, y, z}. Then the controlled uni-
tary gate |0⟩⟨0| ⊗ In + |1⟩⟨1| ⊗ U is applied to the signal
qubit and n uniformly random bits, where In denotes
the 2n × 2n identity matrix and the signal qubit acts as
the control qubit. This operation prepares the following
state: ρ = 1

2n+1

(
In+1 + α

(
|0⟩⟨1| ⊗ U† + |1⟩⟨0| ⊗ U

))
.

The protocol concludes by measuring the expectation
values of Pauli X and Y observables (σx and σy) on the
signal qubit, resulting in

⟨σx⟩ =
α

2n
Re (tr (U)) , ⟨σy⟩ =

α

2n
Im (tr (U)) . (1)

The quantum circuit of the DQC1 protocol is depicted in
Fig. 1. Repeating the protocol O(log(1/δ)/(αϵ)2) times
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Figure 2: Training results of DQC1-based ML model f(x,θ) (green and blue lines). Target functions are g1(x) =∑2
−2 ck e

ikx, g2(x) =
∑3

−3 ck e
ikx and g3(x) =

∑4
−4 ck e

ikx (black line and open circles) with c0 = 0.1 , ck = 0.05 +
0.05 i (k ̸= 0), consisting of 5, 7 and 9 modes respectively. The training unitary Wl(θ) chosen in this example is
depicted on the top-left. The open circles represent 70 data samples used for training, with a batch size of 25. All
simulations are iterated 200 times with Adam optimizer at learning rate 0.15 using Pennylane.

facilitates the estimation of the expectation values within
ϵ with a probability of error δ [6].

3 DQC1 for ML

Let us denote the set of functions that be expressed
by a DQC1 protocol as F and an element of the set as
f(x,θ). In general, a DQC1-based ML model with n
uniformly random bits can be defined as

f(x,θ) ∈ F =

{
1

2n
tr (U(x,θ)) : U ∈ U(2n),θ ∈ Θ

}
,

(2)
where U(N) is the unitary group of degree N and Θ ⊆
R4n denotes the parameter space. Specifically, we con-
sider the unitary operator in the form of

U(x,θ) =
L∏

l=1

Wl(θl)Vl(xl). (3)

The trainable unitary Wl(θl) can be written as

Wl(θl) =
k′∏

k=1

exp(−i(θl)kHlk)Tlk, (4)

where Hlk is an 2n × 2n Hermitian operator that com-
mutes with itself and Tlk is an unparametrized unitary.
This form of U(x,θ) is a reasonable choice since an n-
qubit Pauli operator, σk ∈ Pn = {I, σx, σy, σz}⊗n, com-
mutes with itself and {exp(−i(θl)kσk) : σk ∈ Pn} forms
a universal gate set.

Using the fact that Hlk commutes with itself, the par-
tial derivative of the model function with respect to a

parameter can be computed as

∂f(x,θ)

∂(θl)k
=

−i

2n
tr

Hlk

 k′∏
j=k

e−i(θl)jHljTlj

Vl(xl)

×

 L∏
j=l+1

Wj(θj)Vj(xj)

l−1∏
j=1

Wj(θj)Vj(xj)


×

k−1∏
j=1

e−i(θl)jHljTlj

 .

(5)

Therefore, if Hlk is a unitary (e.g. Hlk ∈ Pn), the
gradient of f(x,θ) with respect to θ can be obtained via
DQC1, and the gradient-based optimization techniques
can be employed for training the model.

4 Expressivity of DQC1

The trace of an n-qubit unitary operator tr(U(x,θ))
can be expressed as Fourier-type sums∑

ω ∈Ω

cω(θ) e
i ω(x) (ω = ω(x)) , (6)

where ω(x) is an element of the frequency spectrum Ω
determined by the data-encoding part of U(x,θ), and
cω(θ) is the corresponding coefficient controlled by the
trainable unitary part.

Given U(x,θ) in form of Eq. (3), the data encoding
unitary Vl(xl) can be constructed by single-qubit ro-

tation gates Vl(xl) =
∏n

q=1 exp(−i(xl)qσ
(q)
k /2), where

σ
(q)
k is a Pauli operator acting on the qth qubit. This

form is appropriate since all fixed gates involved in data-
encoding can be absorbed to W terms before and after
Vl. The data-encoding circuit can be further simplified to
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Vl(xl) =
∏n

q=1 exp(−i(xl)qσ
(q)
z /2) by absorbing the gates

for diagonalizing the Pauli operator to the W terms.
Then, we can rewrite Eq. (6) as

tr(U(x,θ)) = tr

(
L∏

l=1

Wl(θl)Vl(xl)

)
, (7)

with the index ki ∈ [2n] = {1, 2, 3, · · · , 2n} (i =
1, 2, · · · , L) for

ei ω(x) = ei ((Σ1)k1k1
+(Σ2)k2k2

+···+(ΣL)kLkL) , (8)

cω(θ) = (W1(θ1))kLk1
(W2(θ2))k1k2

· · · (WL(θL))kL−1kL
.

(9)

The diagonalized matrix Σi is defined as Σi ≡
−
∑n

q=1(xi)q σ
(q)
z /2 which contains up to 2n unique

eigenvalues of each Σi.
Therefore, the cardinality of frequency spectrum Ω is

|Ω| ≤ 2nL. (10)

This is the number of orthogonal basis functions of a
Fourier series, indicating the degrees of complexity of the
quantum model. Equation (10) implies that scaling up
the number of qubits (parallel) yields the same level of
complexity as increasing the circuit depth (serial).
In comparison, the quantum neural network [7] based

on universal computation with n qubits yields the follow-
ing set of functions:

fu(x,θ) ∈
{
⟨0n|U†(x,θ)MU(x,θ)|0n⟩ : M† = M

}
,

where |0n⟩ = |0⟩⊗n and U(x,θ) takes the same form
as in Eq. 3. The cardinality of the frequency spectrum
produced by this model is |Ω| ≤ 22nL [1]. This shows that
DQC1 can generate as many orthogonal Fourier basis
functions as the universal model simply by increasing the
number of qubits or the circuit depth by a factor of two.

5 Machine Learning Examples

Figure 2 demonstrates that DQC1-based ML model
f(x,θ) defined in Eq. (2) can express a target function
g(x) by optimizing variables θ with a classical optimizer.
For simplicity, we assumed a univariate x for U(x,θ)

in Eq. (3) and encoded x using only single-qubit σx ro-
tation gates for Vl(x), with VL+1 = I2n . Consequently,
the diagonal matrix Σi (i = 1, · · · , L) has (n+ 1) unique
eigenvalues corresponding to −n

2 ,−
n−2
2 , · · · , n

2 . Subse-
quently, an L-layer circuit makes (nL + 1) unique fre-
quencies, −nL

2 ,−nL−2
2 , · · · , nL

2 , satisfying

|Ω| = nL+ 1. (11)

The simulation results confirm that DQC1-based ML
models achieve sufficient expressive power to learn the
target function, provided the circuit employs the number
of qubits and data-encoding layers specified by Eq. (10).

6 Conclusions

In this work, we introduced the DQC1-based ML
model and analyzed its expressive power. Our theo-
retical analysis and numerical simulations demonstrate
that this subuniversal model of quantum computation is
equally capable as the universal model in generating the
Fourier basis. Since the DQC1 protocol is well-suited for
ensemble quantum information processors such as those
with spin ensembles and magnetic resonance, our find-
ings broadens the range of feasible quantum computing
hardware platforms for QML.
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Abstract. We present the QFC experiment of a heralded single photon at 780 nm generated via a
spontaneous parametric down-conversion (SPDC) process to a 1540 nm photon with PPLN waveguide
resonator. In addition to the experimental result of QFC, we show the details of the noise characteristics
and the effect of the cavity enhancement of the QFC.
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1 Introduction

In recent years, there has been remarkable progress
in the development of quantum computers [1]. In con-
nection with this background, research on quantum in-
ternet and quantum interconnects [2, 3], which connect
quantum computers, are actively explored. The wave-
lengths of photons interacting with these quantum com-
puters and other quantum systems depend on physical
systems such as atoms, ions, semiconductors, and so on.
Therefore, for quantum internet/interconnect based on
optical fiber communication, it is crucial to develop the
technologies of quantum frequency conversion (QFC) [4]
that converts the wavelengths of emitted photons from
the various quantum systems to the telecommunication
band without disturbing quantum information. One of
the challenges of QFC is to reduce background noises
due to the Raman scattering originating from the high-
power pump light required for QFC [5]. In previous
QFC experiments, a narrowband frequency filter sys-
tem was conducted by combining etalons and bandpass
filters to achieve a high signal-to-noise ratio (SNR) af-
ter QFC [6, 7]. In this study, we conducted QFC ex-
periments based on a periodically poled lithium niobate
waveguide resonator (PPLN-WR), which confines only
the converted light but does not confine the signal and
pump light[8]. In this experiment, the wavelength of a
heralded single photon generated via a spontaneous para-
metric down-conversion (SPDC) process converted from
780 nm to 1540 nm. We investigated the frequency and
pump light power dependence of the Raman noise in this
process.

2 Theory

We describe the theory of QFC with a cavity for the
converted mode, according to Ref. [8]. In this model, the
frequency-converted mode inside the cavity is coupled to
two external modes like the two-sided cavity. One of the

∗smurakami@qi.mp.es.osaka-u.ac.jp

external modes is the signal mode of QFC, and the other
is the converted mode outside the cavity. They are cou-
pled to the cavity mode with coupling constants |ξ| pro-
portional to the pump power

√
P and

√
γr related to the

reflectance of the end mirror of the cavity. The complex
amplitudes of unconverted and conversion efficiencies are
written as:

tss =
1
2 (1− C̃)− i∆̃c

1
2 (1 + C̃)− i∆̃c

, (1)

rrs =
√

γ̃r
e−iϕ

√
C̃

1
2 (1 + C̃)− i∆̃c

, (2)

where ϕ is the phase of pump light, γ̃r = γr/γall, and
C̃ = |ξ|2/γall. Here, γall = γr + γint is the total loss
determined by γr and internal loss of the cavity γint.

In QFC experiments, the strong pump light is used
for not only QFC but also other unwanted nonlinear op-
tical processes. For the wavelength configuration of our
QFC experiments, it is widely known that the pump light
generates anti-Stokes (AS) photons as noise photons con-
taminating the converted mode. We treat the generation
process of the AS photons as the singly-resonant SPDC
process [9] with a pair of AS photons inside a cavity and
non-resonant phonons. Based on the treatment, we dis-
cuss the SNR of the cavity-enhanced QFC. The amount
of photons generated by singly resonant SPDC is the
same as that without a cavity for the detection band-
width comparable to the FSR of the cavity [9]. On the
other hand, the conversion efficiency of QFC is enhanced
by a factor of Fcold/π [10], where Fcold is the finesse of the
cavity without QFC. As a result, if a BPF with a band-
width comparable to FSR is used for QFC, the SNR will
be improved by a factor of Fcold/π compared with the
QFC without a cavity.

When frequency up-conversion process of the gener-
ated AS photons is induced by the pump light used for
QFC, the up-conversion efficiency is the same as the ef-
ficiency of QFC. From the fact and Eq. (2), the amount

430



1581 nm
Pump light source

PPLN-WR SPF DM

PD

SNSPDBPF

VHG

DM

converted photon

PPLN-WG 

BPF517 nm
pump light SNSPDBPF

780 nm
heralded single photon

1540-nm
photon

PM fiber

Figure 1: The experimental setup. VHG: volume holographic gratings, BPF: bandpass filter, PM fiber: polarization
maintaining fiber, PD: photodetector, SPF: short pass filter, DM: dichroic mirror, SNSPD: superconducting nanostrip
single photon detector

of the AS photons is described as,

Nnoise = αnoiseP

(
1− γ̃rC̃

1 + C̃

)
, (3)

where αnoise is the constant of proportionality of the num-
ber of anti-Stokes photons to the pump power P .

3 Experiments

3.1 Experimental setups

Fig. 1 shows our experimental setup. We first charac-
terized the performance of the cavity-enhanced frequency
conversion process using laser light. For this, we used a
tunable laser for the pump light at the center wavelength
of 1600 nm. The pump light and 780 nm laser light were
coupled to the PPLN-WR. The PPLN-WR satisfies the
type-0 quasiphase-mathing condition and the length was
14 mm which corresponds to the FSR of 5 GHz. After the
frequency conversion process, the pump light and uncon-
verted signal light were separated from converted light
at 1522 nm by a short pass filter (SPF) and the dichroic
mirror (DM) respectively. The pump, the signal, and the
converted light were measured by photodetectors (PDs).
For the QFC of a single photon at 780 nm, we used

1579 nm laser light as pump light. The spectrum of
the pump light was cleaned up by the volume holo-
graphic grating (VHG). We prepared a 780-nm single
photon using a non-degenerate SPDC process which gen-
erates a 780-nm signal photon and a 1542-nm idler pho-
ton. This idler photon passed through a bandpass filter
with the bandwidth of 0.03 nm and then was detected
by a superconducting nanostrip single photon detector
(SNSPD) [11] developed by NICT and Hamamatsu Pho-
tonics. This detection was used for heralding a 780-nm
single photon. The heralded photon entered the PPLN-
WR after passing through the bandpass filter with the

bandwidth of 0.4 nm and was converted to a 1540 nm
photon. After coupling to a single-mode fiber, the con-
verted photon passed through the bandpass filter with
the bandwidth of 0.03 nm and was detected by another
SNSPD. Using the coincidence events, we observed cross-

correlation function g
(2)
c,i between the converted mode and

idler mode.

3.2 Experimental result

Fig. 2 (a) shows the relationship between the internal
conversion efficiency in the PPLN-WR and the pump
power P . From this data, it was estimated that the
maximum conversion efficiency was achieved at P = 137
mW. In the previous QFC experiment [12] using a 20-
mm PPLN waveguide without cavity structure, 700-mW
pump power was required for the maximum conversion
efficiency. We thus confirmed the cavity enhancement of
the conversion process. Fig. 2 (b) shows the relationship
between the bandwidth of QFC and P . As predicted by
Eqs (1) and (2), the bandwidth of the QFC increases in
proportion to P .

Fig. 3 (a) and (b) show the observed coincidence be-
tween the idler mode and the signal mode. From this

measurement, the cross-correlation function g
(2)
c,i between

the converted mode and the idler mode was 2.25, sur-
passing the classical limit 2, while the cross-correlation

function g
(2)
s,i between the signal mode and the idler mode

was 7.15. In this experiment, we used the heralded pho-
tons with the bandwidth of 0.03 nm corresponding to
∼ 76 % of the FSR. This gives a good agreement with
the estimation that the 10 % input signal photons were
converted. Nonetheless, we achieved the successful QFC
due to the SNR improvement by the cavity effect. If we
could prepare a sufficiently narrow photon, such as from

neutral atoms, g
(2)
c,i would be improved to ∼ 5.4 [13].
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Figure 2: The pump power dependency of (a) the internal conversion efficiency in the PPLN-WR and (b) the bandwidth
of QFC.
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observed coincidence counts in 40 min between the converted mode and the idler mode with P ∼ 106 mW.

4 Conclusion

We conducted the QFC of a 780-nm heralded pho-
ton using the PPLN waveguide resonator. The observed
cross-correlation function between the converted mode
and the idler mode was 2.25 which surpasses the classi-
cal limit 2, even though we used heralded photons whose
bandwidth was much wider than that of the cavity. If we

used a sufficiently narrow photon, g
(2)
s,i would be improved

up to ∼ 5.4.
Our result suggests the potential for frequency conver-

sion while maintaining the quantum statistics of a signal
photon even without narrowband filters. This will help
the realization of the photonic quantum network.
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Zero-Noise Extrapolation with Indirect-Control System
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Abstract. In the indirect-control method, the whole quantum system is completely controlled by a
combination of free time-evolution of the many-body Hamiltonian and quantum operations on a small
control unit. Employing this method reduces the number of externally accessed qubits and minimizes the
noise entering the quantum device. Recently, Anan et al. proposed a way to implement the variational
quantum eigensolver by indirect-control. Based on this research, in this paper, we explore error mitigation
by zero-noise extrapolation (ZNE) using indirect-control.

Keywords: Quantum error mitigation, quantum control, zero-noise extrapolation (ZNE)

1 Introduction

Recently, significant advancements in noisy
intermediate-scale quantum (NISQ) devices have
been witnessed [1]. The current state of the art quantum
device has enabled us to achieve quantum supremacy
by outperforming classical supercomputer [2]. However
the NISQ devices are susceptible to noise, which reduces
their reliability. It is impossible to entirely eliminate
noise from a quantum system. As the size of the
system grows, the noise also increases. Quantum error
correction code (QEC) is a solution to any error arises
due to the noise [3], which can lead to fault-tolerant
quantum computers. However, error correction demands
a significantly higher number of physical qubits, which is
not feasible in the NISQ era. Quantum error mitigation
(QEM) serves as an immediate improvement to quantum
information processing with existing hardware limit.
Instead of correcting the error, QEM aims to minimize
the noise induced bias in the expectation value of an
observable by post-processing the data directly derived
from noisy hardware [4]. There are different strategies of
error mitigation such as zero-noise extrapolation (ZNE),
probabilistic error cancellation, and Clifford regression
to name a few.
Another way to deal with noise is to reduce the number

of pathways through which noise can enter the quantum
device from the outside. In current NISQ devices, the
entire quantum system is controlled by direct access to
individual qubits. On the other hand, this external ac-
cess also causes an additional noise in the NISQ device.
Therefore, if the number of externally accessed qubits
can be reduced, the noise could be reduced as well. It is
known that in a typical quantum many-body system such
as the XY-model, universal quantum computation on the
whole system is possible by accessing only a few qubits
(control unit). This method of controlling the whole
quantum system by a combination of free time-evolution
of the many-body Hamiltonian and quantum operations
on a small control unit is called indirect-control [5].
When indirect-control is used, we need to repeatedly

∗a.das.23@shizuoka.ac.jp
†masakiowari@inf.shizuoka.ac.jp

apply various quantum operations on the control unit at
specific timings to compute the desired unitary to the
whole system. However, it is difficult to find these oper-
ations and timings which are necessary to implement a
desired unitary operation. Recently, however, Anan et al.
showed that this difficulty does not arise in implement-
ing a variational quantum eigensolver (VQE), where the
circuit is optimised using a classical computer. VQE can
be implemented on spin chains such as the XY-model
using indirect-control [6]. If this indirect-control VQE
and error mitigation are used simultaneously, achieving
even less noisy calculations may be possible. However,
no known method of performing error mitigation us-
ing indirect-control has existed. In this paper, we show
that in the case of VQE using indirect-control on a one-
dimensional XY-spin chain, error mitigation can be im-
plemented by the ZNE method if, in addition to unitary
operations on the control unit, Y-gate operations are al-
lowed on the odd-numbered qubits including the inacces-
sible part.

2 Preliminaries

In this section, we briefly review the two key concepts
of our paper: VQE in an indirect-control and error miti-
gation by ZNE.

2.1 Indirect-control VQE

A variational quantum eigensolver (VQE) is a classical-
quantum optimization algorithm tailored for NISQ de-
vices that estimates the ground state energy, or minimum
eigenvalue, of a target Hamiltonian [7]. For a given tar-
get Hamiltonian HT , the minimum eigenvalue E0 can be
derived as a solution of the following variational prob-
lem E0 = min|Ψ⟩ ⟨Ψ|HT |Ψ⟩. VQE approximates EV QE

to E0 which is described by the following optimization
problem:

EV QE = min
ξ

E(ξ), (1)

E(ξ) = ⟨0|U†(ξ)HTU(ξ) |0⟩ , (2)

where, |0⟩ is a typical initial state, U(ξ) is a generic pa-
rameterized unitary, and ξ is a vector-parameter. Using

434



a series of qubit gates one defines a parametric ansatz cir-
cuit that preparesU(ξ). HT can be written in a weighted
sum of Pauli operations, which can be directly measured
on a quantum computer. Thus, E(ξ) can be calculated
by the ansatz circuit with parameter ξ on a quantum
computer, and EV QE can be derived by minimizing E(ξ)
with respect to ξ via classical post-processing.
In an indirect-control system, the whole system con-

sists of two subsystems: a control unit where we perform
unitary operators and an inaccessible part where we can-
not perform any active operations. The whole system
undergoes free time-evolution with the system Hamilto-
nian HS . To implement an ansatz circuit in such sys-
tem, we instantaneously operate a parameterized uni-
tary operator Vn(θ⃗n) on the control unit at time tn for
n = 1, 2, 3, · · · , L with tn < tn+1. Then, an ansatz circuit
which is given by the time evolution of the whole system
can be described as

U(ξ) := ΠL
n=1U(tn, tn+1)Vn(θ⃗n) (3)

Here, the parameter of the circuit ξ consists of the
time parameters {tn}Ln=1 and the angular parameters

{θ⃗n}Ln=1. In Eq.(3), U(tn, tn+1) := exp(−iHS(tn+1−tn))
is a time-evolution operator acting on the whole system
from time tn to time tn+1.

In [6], the first two qubits of 1-D XY-spin chain are
chosen as a control unit, and two-qubits unitary Vn con-
sist of X and Y rotation gates RX , RY and control-Z
gates CZ as

Vn(θ⃗n)

=RY (θ4n−2)RX(θ4n−3)⊗RY (θ4n)RX(θ4n−1) · CZ (4)

Further, the system Hamiltonian HS is chosen as the 1-D
XY-model Hamiltonian HXY :

HXY

=
N−1∑
k=1

ck[(1 + γ)XkXk+1 + (1− γ)ZkZk+1] +
N∑

k=1

bkZk,

(5)

where N is the number of qubits, ck are the coupling
constants, bk are the strength of the local magnetic fields,
and γ is an anisotropy parameter. Figure 1 depicts the
n-th layer of the indirect-control VQE ansatz. In [6],
Anan et al. showed that the performance of VQE using
the above indirect-control parametric circuit is not so
different from that of using standard parametric circuits.

2.2 Zero-noise extrapolation with a vector noise
scaling factor

Zero-noise extrapolation (ZNE) mitigates errors by ex-
trapolating data to the zero-noise limit via classical post-
processing [8]. Let us consider a realistic situation where
our system has noise while implementing an ansatz cir-
cuit. In this case, the output of VQE, which will be
written as E′

V QE(λ), depends on the noise level λ of
the ansatz circuit, and in general, is not equal to EV QE

defined by Eq.(1). By definition, EV QE is equal to

Control unit

RX(θ4n−3) RY (θ4n−2)

U(tn, tn+1)

RX(θ4n−1) RY (θ4n)

Inaccessible part

Figure 1: An n-th layer of an ansatz circuit for VQE on a
5-qubit indirect-control XY-model given by Eqs.(3) and (4).

E′
V QE(λ) with λ = 0. Although it is difficult to decrease

the noise level λ to 0 in a real quantum device, we can
increase the noise level of the ansatz circuits λ by vari-
ous methods. Thus, by calculating E′

V QE(λ) for various
different λ and extrapolating the function E′

V QE(λ) to
λ = 0, we can achieve a good estimated value of EV QE .

The paper [9] treated the parameterized circuits with a

vector noise scaling factor λ⃗, where an estimate of EV QE

can be derived by extrapolating the expectation value
of the target Hamiltonian E′

V QE(λ⃗) to λ⃗ = 0⃗. This ex-
trapolation can be applied by adopting the multivariate
framework of Richardson extrapolation.

3 ZNE in indirect-Control Systems

The purpose of our paper is to apply ZNE to the
indirect-control VQE. For this purpose, we need to in-
crease the noise level of the indirect-control ansatz like
the one given in Figure 1. Here, we cannot implement any
active operation on the accessible part, and the known
methods to increase the noise level, like identity insertion
and pulse stretching [8], may never work in this situation.
Hence, in this paper, we slightly relax the constraint of
indirect-control and try to find a minimum requirement
to implement a ZNE on the indirect-control ansatz on a
1-D XY-model given by Figure 1.

To boost the noise in the ansatz circuit, we used the
identity scaling technique [8] where, for an arbitrary noisy
gate G, we insert the G†G noisy identity in the cir-
cuit. We refer to such a circuit with identities as a re-
dundant circuit. However, since our ansatz circuit (Fig-
ure 1) has time-evolution gates U(tn, tn+1), the identity
U†U demands negative time evolution U†(tn, tn+1) =
U(tn+1, tn), which is not physical.

Nonetheless, it is possible to show that U†(tn, tn+1)
can be implemented by simply adding an ability to per-
form Y gates on odd-numbered qubits including the inac-
cessible part under the condition that the system Hamil-
tonian is HXY given by Eq.(5) with bk = 0. This is due
to the symmetry of 1-D XY-model Hamiltonian HXY

without local magnetic fields given by ΠM
j=0Y2j+1 ·HXY ·

ΠM
j=0Y2j+1 = −HXY when N = 2M + 1; the similar

equation also holds when N = 2M . This equation leads

ΠM
j=0Y2j+1 · U(tn, tn+1) ·ΠM

j=0Y2j+1 = U†(tn, tn+1) (6)

Hence, for an arbitrary n-qubit XY time-evolution gate
U(tn, tn+1), the U

†(tn, tn+1) gate can be achieved by set-
ting bk = 0 and applying Y gates on the odd-numbered
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Figure 2: The n-th layer of a 5-qubit indirect-control re-
dundant circuit is depicted, where IR1

x
is an abbreviation of

R†
XRX on the 1st-qubit, etc. The highlighted section corre-

sponds to U†(tn, tn+2) . Depending on the number of iden-
tities, we define the noise levels nR, nT , and nY , where each
value is equal to or proportional to the numbers of rota-
tional gates, time-evolution gates, and Y gates respectively.
In this specific figure, if we define nR as the total number
of rotation gates, nT as the number of U and U† gates,
and nY as half the number of Y gates, then the layer has
(nR, nT , nY ) = (12, 3, 3).

qubit before and after the time-evolution, as depicted
in the highlighted part of Figure 2 for a 5-qubit time-
evolution gate. Utilizing the identity scaling technique,
we construct various redundant circuits corresponding to
different noise levels.
To increase noise, we add noisy identities G†G, with G

representing rotational, time-evolution, or Y gates, form-
ing a redundant circuit. Note that no C†

zCz has been

used. We denote noise levels as λ⃗ = (nR, nT , nY ) for
single-qubit rotation, time-evolution, and Y gates, re-
spectively. The values of (nR, nT , nY ) can be chosen to
the amount of noise caused by the corresponding gates in
some unit and are, therefore, proportional to the number
of corresponding noisy gates in each layer. The multi-
variate Richardson extrapolation uses three independent
variables (nR, nT , nY ) and one dependent variable, the
energy expectation value.
We studied 7-qubit system at various fixed noise prob-

abilities at a depth of 30 layers by inserting depolariz-
ing channels after each gate for all qubits. We chose
the parameters of our system Hamiltonian, that is 1-D
XY-model, as γ = 0, bk = 0, ck = 1/2. The target
Hamiltonian HT is chosen as the transverse field Ising
model Hamiltonian given by Eq.(5) with γ = 1, bk = 1,
ck = 1/2. We used a probabilistic optimization algorithm

to calculate E′
V QE(λ⃗0) for λ⃗0 corresponding to the noise

level of non-redundant circuits given by Figure 1. We ran
the optimization 10 times independently and derived the
mean and the standard deviation for E′

V QE(λ⃗0), and 10
distinct sets of optimized parameters. These parameter-
sets were then employed in redundant circuits to calculate
E′

V QE(λ⃗) for λ⃗ > λ⃗0. Finally, 10 independent estimations

of ZNE values E′
V QE (⃗0) are derived using the multivari-

ate Richardson extrapolation with various polynomial de-
grees. In Figure 3, each graph displays mean ZNE values
E′

V QE (⃗0) at different polynomial degrees alongside the

mean E′
V QE(λ⃗0) calculated by noisy circuits for noise

probabilities of 0.001 and 0.0001, as well as the mean
EV QE calculated by noise-free circuits. For both cases,

Figure 3: Mean ZNE values for a 7-qubit, 30-layered system
using multi-variate Richardson extrapolation. No constraints
on time parameters were applied. Mean and standard devi-
ation at a given noise probability were calculated using 10
independent samples of VQEs.

we can observe that the mean E′
V QE(λ⃗0) is outside of the

region of the standard deviation of the mean noiseless
EV QE , and also the mean ZNE values are much smaller

than the mean E′
V QE(λ⃗0) and close to the mean noiseless

EV QE , which guarantees the successful implementation
of the error mitigation.
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Abstract. For fault-tolerant quantum compilation, reducing the T-gate count is crucial. Using LUT-
based synthesis, a MCT (Multiple Control Toffoli) gate is applied based on the input information of the
LUT node. This gate targets an initialized ancilla bit. In quantum circuits, states other than the qubits
used for calculating the output must be returned to their initial state. Considering the decomposition of
the MCT gate, there are redundant gates, and there is a room to reduce the number of T gate. By defining
decomposition constraints and exploring appropriate combinations, we achieved up to 8.7% reduction in
T-gate count through experiments.
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1 Introduction

Quantum computers [1] are computers that perform
calculations using the superposition states of qubits, and
they are attracting attention for having algorithms that
can solve certain problems faster than existing comput-
ers.
Quantum circuits that realize quantum algorithms con-
sist of two parts, circuits specific to quantum algorithms
and circuits that compute Boolean functions. A hierar-
chical logic synthesis using Look Up Tables (LUTs) has
been proposed as an efficient method to synthesize quan-
tum circuits that compute Boolean functions [2].
The synthesis using LUTs first applies Multiple Con-

trol Toffoli (MCT) gates [3] to ancilla bits initialized to 0,
based on the input information held by the nodes of the
LUT. If the value of the LUT node is not an output bit,
an MCT gate that performs uncomputation is placed.
Next, the MCT gates are decomposed and mapped to
Clifford + T gates [4] to generate directly executable
Boolean quantum circuits. Since the T gates are more
costly compared to other gates, reducing the number of
T gates used is important.
In this paper, we propose a method to reduce the num-

ber of T gates by combining two types of MCT gate de-
composition techniques. The first decomposition tech-
nique takes into account paired MCT gates. In quantum
circuits, due to the nature of applying the same MCT
gate twice for computation and uncomputation, there ex-
ist pairs of computation and uncomputation gates with
the same inputs. Therefore, redundant gates are reduced.
The second decomposition technique reduces the num-

ber of ancilla bits initialized to 0 required for decompo-
sition by splitting an MCT gate into three MCT gates.
The technique that considers paired MCT gates requires
auxiliary bits initialized to 0, and when decomposed, the
value of the auxiliary bits becomes uninitialized. As a
result, it becomes impossible to store the computed val-
ues. By devising ways to decompose MCT gates, we aim
to reduce the number of qubits that cannot store values,
thus increasing the number of instances where the first
technique can be applied. Then, under the constraint
of not increasing the number of qubits, we generate an

Figure 1: MCT decomposition

initial solution by combining the two decomposition tech-
niques. Using Simulated Annealing, we heuristically ex-
plore ways to increase the number of instances where the
two ideas can be applied. As the result, the number of T
gates reduced up to 8.7% compared to existing methods.

2 Background

The Multiple Control Toffoli (MCT) gate is a quantum
gate that has k control bits (k ≤ 3) and one target bit.
The MCT gate outputs the exclusive OR of the logical
product of all control bits and the value of the target bit
to the target bit. Since the MCT gate is not directly exe-
cutable, it needs to be decomposed into executable gates
such as Clifford + T gate. In this chapter, we explain the
method that uses the fewest T gates and auxiliary bits for
decomposition [3]. The decomposition of the MCT gate
is performed using auxiliary bits, and the methods differ
depending on whether the auxiliary bits are initialized or
not. After this point, auxiliary bits initialized to 0 are
referred to as clean ancilla, while those not initialized as
such are called dirty ancilla. Leftside of Figure1 shows
the decomposition using clean ancilla. The MCT gate is
decomposed into Toffoli gates and MCT gates with three
control bits. Since intermediate values are stored in the
clean ancilla during the decomposition, gates for uncom-
putation are placed on all but the output bits. Rigtside
of Figure1 shows the decomposition using dirty ancilla.
When using dirty ancilla, values cannot be directly stored
in them. Therefore, as shown in rightside of Figure 1, it is
necessary to apply the MCT gate twice to the same auxil-
iary bit. The gates acting on the output bits are replaced
by Toffoli gates, while the others are replaced by MCT
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Table 1: T-count and ancilla required for decomposing
an MCT gate
control bits T-count ancilla ancilla status

k = 3 15 1 |0⟩
k = 3 16 1 |x⟩
k >= 4 8k − 9 ⌈k−2

2 ⌉ |00..00⟩
k >= 4 8k − 8 ⌈k−2

2 ⌉ |xx..xx⟩

gates with three control bits. Next, each gate is replaced
by a Relative Phase Toffoli (RTOF) gate, which approx-
imates a phase-applied Toffoli gate. The RTOF can be
implemented without auxiliary bits in the case of three
control bits and can be implemented with fewer T gates
than the Toffoli gate. Table 1 summarizes the number of
T gates and auxiliary bits used for the decomposition of
the MCT gate.

3 The Proposed Method

In this chapter, a method to reduce the number of T
gates by combining two types of MCT gate decompo-
sition methods is proposed. The reduction is achieved
by considering the decomposition of paired MCT gates
and using a method that decomposes into three MCT
gates, thereby reducing the number of clean ancilla re-
quired for decomposition. Simulated Annealing is then
used heuristically to explore the cases where the decom-
position method can be applied more frequently.

3.1 Method for Decomposing an MCT Gate

3.1.1 To decompose the method considering
paired MCT gates

In some cases, MCT gates have pairs with the same
control and target bits. In quantum circuit design, it is
necessary to uncompute for values unrelated to the out-
put, applying the same MCT gate twice to auxiliary bits.
Considering the decomposition of the MCT gate, it can
be seen that there are four gates with the same control
bits. In reftside of Figure 2, the gates enclosed in red are
computational gates used to create the uncomputational
gates. These four gates with the same control bits con-
sist of computational gates and uncomputational gates.
Performing the computation and uncomputation twice is
redundant. Therefore, by not performing uncomputation
of the intermediate state of the MCT gate, the number
of redundant gates is reduced, and the necessary number
of T gates is decreased. In leftside of Figure 2, the gates
enclosed in red, yellow, and blue are gates that perform
uncomputation and recomputation of the intermediate
state and can be reduced. Rightside of Figure 2 shows the
circuit diagram where the MCT gate is reduced and the
intermediate state is not uncomputated. To decompose
paired MCT gates, clean ancilla are required. Therefore,
there is a constraint condition related to the number of
clean ancilla. Let be the number of clean ancilla that can
be used by the t-th MCT gate, n is the number of MCT
gates between the forward and reverse computation gates
and y be the number of clean ancilla required for the de-

Figure 2: Example of considering paired MCT gates

Figure 3: Example of method to reduce clean ancilla
required for decomposition by decomposing into three
MCT gates

composition of the MCT gate. The constraint condition
can be written as follows in equation(1)

y ≤ MIN(xt , xt+1 ....xt+n) (1)

3.1.2 A method to reduce the number of clean
ancilla required for decomposition by de-
composing into three MCT gates

In this section, we explain a method to reduce the num-
ber of clean ancilla used in the decomposition of MCT
gates. First, we decompose MCT gates using clean an-
cilla. When the number of control bits of the MCT gate
is k, we split the MCT gate into one with x control bits
and one with k − x + 1 control bits where x is the min-
imum integer that satisfies x ≤ ⌈k−2−x

2 ⌉. The decom-
position of MCT gates is done in three steps. First, we
decompose the MCT gate with x control bits using clean
ancilla. Next, we consider the MCT gate with k − x+ 1
control bits as having already decomposed x control bits
and dirty ancilla, and decompose it accordingly. Finally,
we perform the inverse computation of the MCT gate
with x control bits. By decomposing the MCT gate into
three parts, the number of clean ancilla can be reduced
to ⌈x−2

2 ⌉ where x is the minimum integer that satisfies

x ≤ ⌈k−2−x
2 ⌉. x represents the condition that the num-

ber of auxiliary bits required for the decomposition of the
MCT gate, indicated by the blue box, exceeds the num-
ber of control bits of the MCT gate, indicated by the red
box in Figure 3. The number of T gates contained in an
MCT gate is 8k − 8. The number of T gates in the de-
composed MCT gate using auxiliary bits is 8(x− 1), and
the number of T gates when control bits are considered
as auxiliary bits in the decomposition is 8(k−x+1− 1).
Therefore, the total number of T gates in the MCT gate
is 8(x− 1) + 8(k− x+ 1− 1), which is equal to 8(k− 1).
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Table 2: T-count and ancilla required for decomposing
an MCT gate propsed way

control bits T-count clean ancilla
existing k >= 4 8k − 9 1

proposed k >= 4 8k − 8 ⌈x−2
2 ⌉{x|⌈k−2−x

2 ⌉ ≤ x}

Although the number of T gates increases by one com-
pared to decomposition using clean ancilla, the number
of auxiliary bits used is significantly reduced.
Applying the decomposition method described in this

section can reduce the number of clean ancilla. There-
fore, when combined with the decomposition method pro-
posed in Section 3.1.1 to address the paired MCT gates
suggested, the conditions for applying the decomposition
method proposed in Section 3.1.1 (equation 1) are met,
resulting in an increase in the number of MCT gates that
can be reduced on the Boolean quantum circuit. On the
other hand, combining the decomposition methods pro-
posed in Sections 3.1.1 and 3.1.2 results in control bits
changing their values, rendering them unusable for com-
putation. Therefore, when combining the decomposition
methods proposed in Sections 3.1.1 and 3.1.2, they can
only be applied to gates where control bits are not used
during the computation from MCT gate computation to
uncomputation.

3.2 Application of decomposition method using
combinatorial optimization

Due to the limited availability of qubits in quantum
circuits, not all MCT gates can satisfy the condition of
Equation 1. Therefore, to maximize the reduction in the
number of T gates, it is necessary to consider combina-
tions of MCT gates that apply the proposed decompo-
sition. Figure 3.2 illustrates an example circuit demon-
strating the combinations of MCT gates where the re-
duction effect is most significant. The MCT gates sur-
rounded by blue, yellow, and red rectangles represent
gates that do not perform uncomputation of intermedi-
ate states. The blue, yellow, and red arrows indicate
the intervals where the corresponding MCT gates, corre-
sponding to the colors, occupy auxiliary bits. The num-
ber of T gates can be reduced from 216 to 184, making
this quantum circuit have fewer T gates. By greedily ap-
plying MCT gates starting from those with early uncom-
putations, it is possible to find combinations with even
fewer T gates. When greedily searching, obtaining the
optimal solution is not guaranteed. Moreover, when de-
composing considering paired MCT gates, it is difficult to
explore the optimal combinations to apply on large-scale
Boolean quantum circuits. Therefore, using the results
of greedy search as initial solutions, heuristic exploration
is performed with the Simulated Annealing algorithm to
further reduce the number of T gates by changing answer
randomly.

Figure 4: Example of greedy combinations

Table 3: experimental result
benchmarks esop based proposed ∆T (%)

arbiter 477453 445453 6.7

i2c 41490 38242 7.8

mem ctrl 2154898 19731380 8.4

priority 52821 50517 4.3

router 6546 5970 8.7

ctrl 2647 2615 1.2

intfloat 9433 9018 3.7

voter 420630 420630 0.0

square 359824 359776 0.0

adder 18504 18488 0.0

4 Experimental Result

The proposed method was implemented using C++.
Using the open-source tool [5] that can create LUTs,
benchmarks composed of And-inverter graphs were con-
verted into LUT networks with an LUT size of 6. Boolean
quantum circuits were created based on the LUT net-
works. The Boolean functions represented by the LUT
nodes were converted into ESOP (Exclusive-Sums-Of-
Products) using the EFPL logic library [6], and MCT
gates corresponding to the ESOP were placed. Then,
based on the number of clean ancilla, the proposed
method was used to search and determine the number
of T gates that could be reduced. Since the number of
quantum bits available in quantum computers is limited,
in this experiment, we did not provide any surplus clean
ancilla that do not store the values of LUT nodes.
As a result of the experiment, the number of T-gates was
reduced by up to 8.7% and by an average of 4%.

5 Conclusion

This papaer proposes Method for reducing T gate
count by combining two types of MCT gate decomposi-
tion techniques. Using a greedy search and the Simulated
Annealing algorithm, we efficiently searched for combi-
nations where the decomposition method could be effec-
tively applied, demonstrating that there exist Boolean
quantum circuits where the number of T gates can be
reduced.
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Error mitigated digital quantum simulation with auxiliary parameter
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Abstract. Digital quantum simulation potentially offers an advantage in modeling quantum many-body
systems beyond the capabilities of classical computation. However, Trotter errors significantly degrade the
performance, which are unavoidable due to the decomposition of the unitary evolution of the Hamiltonian
into finite number of Trotter steps. In this work, we introduce a cost-efficient quantum error mitigation
scheme to reduce Trotter errors in digital quantum simulation by using an auxiliary parameter. The
auxiliary parameters can be easily adjustable in experimental settings to effectively address Trotter errors
up to a target precision without increasing the required gates. We demonstrate that our scheme achieves
comparable precision in simulation results while significantly reducing the number of gates used compared
to previously proposed Trotter-error mitigation strategies.

Keywords: Trotter-error mitigation, Quantum simulation

1 Introduction

A quantum simulator is a natural-born tool for an ex-
ploration to complex and many-body physics in which
conventional computation techniques such as an exact
diagonalization suffers from exponentially large Hilbert
space. Concerning large Hilbert space, a numbers of con-
structed quantum simulators even with small number of
qubits already start to benchmark standard known re-
sults: energy levels of molecules, phase diagram of lat-
tice gauge theories[1, 2]. Even though many quantum
simulations have been already working, we still need an
efficient algorithm to be implemented to existing quan-
tum simulation platforms because of restricted resources
and practical errors.
Regarding to quantum simulations, there are two types

of quantum simulations: analog and digital quantum sim-
ulations. Those two types of quantum simulations have
pros and cons respectively. In spite of its advantage in
controllability, digital quantum simulation is inevitably
contaminated by so-called Trotter errors. The Trotter
errors, in principle, can be arbitrary reduced if the num-
ber of Trotter steps is sufficiently large. However, in the
presence of physical errors caused by such as decoher-
ence or gating errors, the performance of digital quantum
simulation is also significantly reduced. Therefore, in the
realistic simulation, an efficient strategy to control both
the Trotter errors and physical errors is essential.
In efforts to control of algorithmic errors originated

from quantum simulation, especially Trotter errors, there
were two types approaches: developing well-designed se-
ries of quantum gates to reduce Trotter error and post-
processing of errored simulated data. In ideal situation,
Trotter errors can be handled up to arbitrary precision
by Suzuki formula with the cost of exponentially large
numbers of quantum gates. Even though Suzuki for-
mula is mathematically correct but it is costly to be im-
plemented. Therefore, as an alternative to Suzuki for-
mula based approach, it seems to be plausible to de-
velop a post-processing algorithm that extracts out ideal

quantum simulation data from the classical data ob-
tained from quantum simulator to mitigate Trotter er-
rors. Treating classical data is relatively easier to deal
with than quantum data which is contaminated by ex-
ternal noises and Trotter errors.

In this work, we propose a cost-efficient quantum er-
ror mitigation scheme that efficiently mitigates Trotter
errors with auxiliary parameters. The auxiliary parame-
ters can be easily adjustable in experimental settings to
effectively address Trotter errors up to a target precision
without increasing the required gates. We demonstrate
that our scheme achieves comparable precision in sim-
ulation results while significantly reducing the number
of gates used compared to previously proposed quantum
error mitigation strategies [3]. We note that fewer num-
bers of quantum gates used in our scheme also lowers
the effects of physical errors from quantum operation to
achieve better error bounds in real implementations.

2 Extrapolation based approach

We start with a brief introduction of the previous work,
which estimates ideal data by using extrapolation [3].
Suppose we want to investigate time-evolution of an ob-
servable O described by an time-independent Hamilto-
nian H =

∑
µHµ. Exact time-evolution operator should

be U(t) = e−iHt and an ideally simulated observableO(t)
is

⟨O⟩U = ⟨ψ|U†(t)OU(t)|ψ⟩, (1)

with respect to an initial state |ψ⟩.
In practical quantum circuit, U(t) is approximately re-

alized by V (t) composed of a sequence of quantum gates
such as V (t) =

∏
µ e

−itHµ . In general, elements of {Hµ}
do not commute, which generates the Trotter error,

V (t) = U(t) +
∑

s=p

Est
s. (2)

This sequence of quantum gates is called a p-th order
Trotter formula, and simulated observable ⟨O(t)⟩V =
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⟨ψ|V †(t)OV (t)|ψ⟩ deviates from the ideal result by

⟨O(t)⟩V = ⟨O(t)⟩U +
∑

s=p

ϵst
s. (3)

Note that for fixed time t, one can easily show that

lim
n→∞

V n

(
t

n

)
= U(t), (4)

and an associated simulated data also approaches to ideal
result.
From the observations, we can reinterpret a quantum

error mitigation scheme for quantum simulation proposed
by the previous work [3] as follows.

1. For a positive integer m, conduct quantum sim-
ulation with m-units of given Trotter formula,
Vm =

(
V
(

t
m

))m
and obtain time-evolved observ-

able ⟨O(t)⟩Vm .

2. Do the similar experiments with various m and col-
lect pairs of data {(m, ⟨O⟩Vm

)}.

3. With the obtained data, extrapolate by using a
polynomial form to the infinite m that estimates
⟨O(t)⟩U .

The procedure described above can be summarized as in
Figure 1. Technical details can be found in [3].
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Figure 1: A scheme proposed in [3]. With various cir-
cuit depths and fixed time t, quantum simulations of an
observable give blue dots. From a set of collected data,
one can extrapolate to estimate behaviors of ⟨O(t)⟩Vm

at
infinite m which should be the ideally simulated value,
⟨O(t)⟩U .

We note that the proposed scheme costs O
(
q2
)
units

of p-th order Trotter formula to achieve O (tp+q) preci-
sion. It may be harmful in real situations because phys-
ical errors will be piled up as increasing the depth of
quantum circuits, which eventually degrades the overall
performance of quantum simulation.

3 Our proposal: error-profiling from
auxiliary parameter

We now propose a quantum error mitigation scheme
with auxiliary parameter for digital quantum simulation,

which requires less number of quantum gates compared to
previous methods. For that, we consider two-units of p-th
order Trotter formula circuit, V (t) and their composition
such as

Vr(t) = V (rt)V ((1− r) t) ,

= U(t) +
∑

s=p

Ēs(r)t
s.

Here, we introduced an auxiliary parameter r that probes
the landscape of error.

For the given composition Vr(t), one can compute er-
rors of given observable simulated by Vr(t). For example,

⟨O(t)⟩Vr = ⟨ψ|V †
r (t)OVr(t)|ψ⟩,

= ⟨O(t)⟩U + ⟨E†
pO + h.c.⟩(rp + (1− r)p)tp +O

(
tp+1

)
,

where ⟨ • ⟩ .
= ⟨ψ| • |ψ⟩. In theory, it could be difficult

to calculate directly the matrix element ⟨E†
pO+ h.c.⟩ for

arbitrary large quantum system. However, for fixed t, one
can estimate a coefficient of the function rp + (1 − r)p,
which is the matrix element, by observing the profile of
⟨O(t)⟩Vr as a function of r up to O

(
tp+1

)
.

After reading off ⟨E†
pO+h.c.⟩, the ideal time evolution

of O is mitigated as

⟨O(t)⟩U ≃ ⟨O(t)⟩Vr − ⟨E†
pO + h.c.⟩(rp + (1− r)p)tp,

(5)

which is correct up to O
(
tp+1

)
.

We sketch our proposal to compare it with previous
methods as follows:

1. Prepare two-units of a Trotter formula that elapses
rt and (1− r) t respectively, and obtain functional
forms of the observable regarding to the given com-
position up to coefficient.

2. For fixed time t, conduct quantum simulation of
the observable with various r and collect a set of
data, {(r, ⟨O⟩Vr

)}.

3. By comparing {(r, ⟨O⟩Vr
)} to the functional form

of step 1., fix down undetermined coefficients.

4. From obtained erroneous terms in step 3., extract
out ⟨O(t)⟩U from ⟨O(t)⟩Vr

.

The procedure is illustrated in Figure 2.
Finally, we want to remark on our proposals with few

things. First, conducting experiments with various r is
relatively easy to implement than to increase the number
of unit Trotter formula layer, since time-evolution oper-
ator, say V (t) is essentially realized in terms of quantum
gates as phase rotations gates. For example, e−itZiZi+1

can be realized as

|ψi⟩

|ψi+1⟩ Rz(2t)
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Figure 2: By observing profile of ⟨O(t)⟩Vr
as an func-

tion of auxiliary parameter r, one can estimate erro-
neous terms from fitting form, ⟨O(t)⟩Vr ≃ ⟨O(t)⟩U +
A0,0 (r

p + (1− r)p) tα. As a result, one can read off A0,0

by fitting, which finally allow us deduce the ideal value,
⟨O(t)⟩U .

Therefore, our proposal is essentially replacing the cost
of quantum gates to the number of measurements which
is plausible with quantum computing platforms currently
working on. Secondly, in a similar spirit with previous
comment, the scheme we proposed requires only two-
units of Trotter formula, which makes robust to the cor-
ruption of quantum simulation by physical noise. There-
fore, we expect our proposal may improve the quality of
quantum simulation with the same cost of resources.

References

[1] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Ben-
jamin, & X. Yuan, Quantum computational chem-
istry, Rev. Mod. Phys. 92, 015003 (2020).

[2] L. Lumia, P. Torta, G. B. Mbeng, G. E. Santoro, E.
Ercolessi, M. Burrello, & M. M. Wauters, Two- Di-
mensional Z2 Lattice Gauge Theory on a Near-Term
Quantum Simulator: Variational Quantum Opti-
mization, Confinement, and Topological Order, PRX
Quantum. 3, 020320 (2022)

[3] A. Carrera Vazquez, D. J. Egger, D. Ochsner, and
S. Woerner, Well-conditioned multi-product formulas
for hardware-friendly Hamiltonian simulation

Quantum 7, 1067 (2023).

443



Reducing Quantum Cost by Decomposing Two MCT Gates as a Pair
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Abstract. There exists a method for reducing basic quantum gates when decomposing Multiple-Control
Toffoli (MCT) gates in quantum circuits. This method involves decomposing a single MCT gate into
four MCT gates with fewer control bits and four Controlled-V (CV) gates, repeating this process until
only basic quantum gates remain, and removing redundant gates using a labeling method. However, this
method applies to a single MCT gate and does not consider decomposing multiple MCT gates. We propose
a decomposition method that reduces quantum gates by reordering MCT gates and canceling out MCT
and CV gates that appear after decomposing adjacent MCT gates.

Keywords: MCT gate, CV gate

1 Introduction

Quantum circuits are represented by combining quan-
tum gates that perform quantum computations. In quan-
tum circuit design, Multiple-Control Toffoli (MCT) gates
can be used to implement any logical function. However,
MCT gates are significantly more costly to implement
compared to other quantum gates. Therefore, decompo-
sition methods for MCT gates are being studied to design
more efficient quantum circuits.
A method proposed by Kole et al. involves decompos-

ing a single MCT gate into four MCT gates with fewer
control bits and four Controlled-V (CV) gates, repeatedly
performing this operation. This decomposition method
recursively decomposes the resulting MCT gates, even-
tually generating a quantum circuit composed solely of
gates with a quantum cost of 1.Furthermore, since the
generated circuit contains redundant gates, a labeling
method is used to remove these redundant gates. How-
ever, since this decomposition method is applied to a sin-
gle MCT gate, it does not account for the decomposition
of multiple MCT gates within a quantum circuit.Thus,
we propose a decomposition method for MCT gates that
further reduces quantum gates by reordering MCT gates
and canceling out MCT and CV gates that appear when
decomposing adjacent MCT gates.

2 Proposed Method

2.1 Classification of MCT Gate Pair Types

When decomposing two MCT gates as a pair, the de-
composition method applied to the MCT gates varies de-
pending on the relations between their control bits and
target bits. The relations categorizes MCT gate pairs
into four types. The relations between the control bits
and target bits of the two MCT gates Mp(Cp; tp) and
Mq(Cq; tq) when decomposed as a pair are as follows.
Here, A ⊃ B indicates that B is a proper subset of A.

A. Cp = Cq, tp = tq

B. Cp ⊃ Cq or Cp ⊂ Cq, tp ̸= tq

∗tofu@ngc.is.ritsumei.ac.jp
†ger@cs.is.ritsumei.ac.jp

C. Cp ∩ Cq ̸= ∅, Cp ̸= Cq, tp = tq

D. Cp ∩ Cq ̸= ∅, Cp ̸⊃ Cq, Cp ̸⊂ Cq, tp ̸= tq

Relations A indicates that all control bits and target
bits of the two MCT gatesMp(Cp; tp) andMq(Cq; tq) are
identical. An example of relations A is shown in Fig. 1.
Relations B indicates that all control bits of one MCT
gate match some of the control bits of the other MCT
gate, while the target bits are different. However, this
excludes cases where all control bits of the two MCT
gates are identical. An example of relations B is shown
in Fig. 2. Relations C indicates that some control bits
of the two MCT gates Mp(Cp; tp) and Mq(Cq; tq) match,
and their target bits are also identical. This excludes
cases where all control bits of the two MCT gates are
identical. An example of relations C is shown in Fig. 3.
Relations D indicates that some control bits of the two
MCT gates Mp(Cp; tp) and Mq(Cq; tq) match, while the
target bits are different. This excludes cases where all
control bits of one MCT gate match some of the control
bits of the other MCT gate. An example of relations D
is shown in Fig. 4.

2.2 How to Select Two MCT Gates to Decom-
pose as a Pair

When selecting two MCT gates to decompose as a pair,
we select a pair that match the types of MCT gate pairs
described previously. In this process, it is necessary to
establish a priority order for pairing MCT gates. The
priority should be set such that pairs of MCT gates that
can achieve greater reductions in quantum cost are given
higher priority. The priorities and conditions for selecting
two MCT gates to decompose as a pair with Mp(Cp; tp)
are as follows. Here,Mq(Cq; tq) andMr(Cr; tr) represent
candidate MCT gates for pairing with Mp(Cp; tp).

1. A pair in relations A

2. A pair in relations B where
|Cp|
2 ≤ |Cq| ≤ 2|Cp|

• Among |Cq| and |Cr|, a pair with the smaller
difference from |Cp|

• If |Cq| and |Cr| have the same difference from
|Cp|, a pair with the larger number of control
bits
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Figure 1: An example of a pair in relations A

Figure 2: An example of a pair in relations B

3. A pairs in relations C or D where
|Cp|
2 ≤ |Cp ∩ Cq|

and
|Cq|
2 ≤ |Cp ∩ Cq|

• Among |Cq| and |Cr|, a pair with the smaller
difference from |Cp|

• If |Cq| and |Cr| are the same, a pair in relations
C

Priority 1 represents a pair of two MCT gates
Mp(Cp; tp) and Mq(Cq; tq) in relations A in the types
of MCT gate pairs. In the case of relations A, the two
MCT gates can cancel each other out, making this the
highest priority for pairing.
Priority 2 represents a pair of two MCT gates

Mp(Cp; tp) andMq(Cq; tq) in relations B, where the num-
ber of control bits of one gate is at least half and at most
twice the number of control bits of the other gate. In
the case of relations B, the MCT gate with fewer control
bits can be removed, giving this a high priority, second
only to Priority 1. Additionally, if the pair Mp(Cp; tp)
and Mq(Cq; tq) and the pair Mp(Cp; tp) and Mr(Cr; tr)
are both priority 2, the pair where the difference in the
number of control bits from Mp(Cp; tp) is smaller is pri-
oritized. If the difference is the same, the MCT gate with
the larger number of control bits is prioritized.
Priority 3 represents a pair of two MCT gates

Mp(Cp; tp) and Mq(Cq; tq) in either relations C or D,
where the number of matching control bits between the
two MCT gates is at least half of the control bits of each
gate. In the case of either relations C or D, some gates
can be removed after decomposing into four MCT gates
and four CV gates, giving this a high priority, next af-
ter Priority 2. Additionally, if the pair Mp(Cp; tp) and
Mq(Cq; tq) and the pair Mp(Cp; tp) and Mr(Cr; tr) are
both priority 3, the pair where the difference in the num-
ber of control bits from Mp(Cp; tp) is smaller is prior-
itized. If the number of control bits is the same for
Mq(Cq; tq) and Mr(Cr; tr), the pair in relations C is pri-
oritized.

MCT gates that cannot be paired under any of the pri-
orities 1 to 3 are decomposed using the previous method
for decomposing a single MCT gate.

Figure 3: An example of a pair in relations C

Figure 4: An example of a pair in relations D

2.3 Decompose Two MCT Gates as a Pair

The order in which MCT gates in a quantum circuit
are decomposed as a pair is as follows.

Step 1．Creating pairs among commutative gates

Step 2．Decomposing according to the types of pairs as
shown in Figures 1 to 4

Step 3．Replacing with elementary quantum gates

Step 4．Removing redundant gates

In Step 1, pairs of MCT gates are created based on the
priority order described above. First, the MCT gate at
the left end of a given quantum circuit Q is defined as
Mp(Cp; tp). Next, the MCT gate with the highest prior-
ity when pairing Mp(Cp; tp) with each of the MCT gates
other than Mp(Cp; tp) is defined as Mr(Cr; tr). Then,
Mp(Cp; tp) andMr(Cr; tr) are saved as a pair and deleted
from the quantum circuit Q. If no MCT gate that re-
duces cost when paired withMp(Cp; tp) is found, we pre-
serveMp(Cp; tp) as a single MCT gate and remove it from
quantum circuit Q. we repeat this process until no gates
remain in quantum circuit Q.

In Step 2, we apply the decomposition methods corre-
sponding to the types of MCT gate pairs described above
to the pairs of MCT gates preserved in Step 1. This op-
eration is applied to all preserved MCT gate pairs.

In Steps 3 and 4, we apply the previous decomposi-
tion method to the MCT gates. First, in Step 3, we
decompose the MCT gate pairs from Step 2 and the sin-
gle MCT gates preserved in Step 1 into quantum circuits
composed solely of elementary quantum gates. Then, in
Step 4, we use the labeling method to remove redundant
gates from these quantum circuits composed solely of el-
ementary quantum gates. This process is applied to all
MCT gates. Finally, we combine all resulting quantum
circuits into a single quantum circuit R, thus completing
the process of decomposing MCT gates into pairs in the
quantum circuit Q.
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3 Experimental Results

We evaluated the proposed method by comparing the
quantum cost of quantum circuits after applying both
Kole’s method and the proposed method to the same
quantum circuits. In this experiment, we used the
RevLib benchmark circuits. The experimental results of
applying Kole’s method and the proposed method to the
benchmark circuits are shown in Table 1. The meaning
of each item in this table is as follows:

• Benchmark

– Circuit Name: The name of the RevLib bench-
mark circuit

– Number of Gates: The number of MCT gates
contained in the benchmark circuit before ap-
plying the methods

• Quantum Cost

– Previous Method: The number of elementary
quantum gates in the benchmark circuit after
applying Kole’s method

– Proposed Method: The number of elementary
quantum gates in the benchmark circuit after
applying the proposed method

• Reduction Rate(%):(1− Proposed Method
Kole′s Method )× 100

The experimental results indicate that we reduced
more quantum gates in all benchmark circuits compared
to the previous method. Therefore, decomposing two
MCT gates as a pair when decomposing quantum cir-
cuits is effective in achieving quantum circuits with lower
quantum cost.
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Rydberg-EIT based electrometry in a vapor cell
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Abstract. We introduce Rydberg atom-based electromagnetically induced transparency (EIT) in a hot
Rb vapor cell. Two external cavity diode lasers (ECDLs) resonating at lower transition and upper transition
can be used as a probe and a coupling lasers, respectively. After adjusting the frequencies of the two
ECDLs, highly excited Rydberg atomic states in the vapor cell can be constructed. We are developing an
electrometer capable of RF-to-THz measurements using Rydberg atoms, and we will discuss its potential
as a quantum electrometer.

Keywords: Rydberg atom, electromagnetically induced transparency, quantum electrometer

1 Introduction

In recent years, atomic electric field sensor based on
the EIT effect is actively studied for potential applica-
tions in radio-frequency (RF) communications and THz
imaging [1, 2, 3, 4, 5, 6, 7, 8, 9]. The concept of EIT
sensor is quite different from that of a traditional electric
field sensor, especially for the medium as a receiver. The
EIT-based quantum sensor using highly excited Rydberg
states is utilized as a quantum receiver, which can detect
the incident RF field. This method can be achieved by
forming a well-known ladder-type EIT scheme [1, 2].
Many outstanding achievements and progress have

been reported in the field of communications [3, 4, 5, 6,
7, 8]. In particular, Rydberg atom-based quantum elec-
tric field sensor reveals a variety of applications such as
electric field measurement standards [3], portable electric
field sensor [4], phase measurements [5], angle-of-arrival
(AOA) measurements [6], music recording [7], and even
recently video streaming [8]. Electric field imaging is a
research field that has begun to receive attention more
recently [9].
Here we present theoretical calculations based on

quantum defect theory, and experimental schematics of
Rydberg-EIT. Additionally, we will discuss the quantum
sensing applications using highly sensitivie electric field
detection.

2 Schematics and Results

Figure 1 shows the (a) energy level diagram
of Rydberg-EIT and (b) experimental schematic of
Rydberg-EIT based on Rb vapor cell. The probe and
coupling ECDLs propagate in the opposite direction to
create ladder-type EIT. The atomic vapor cell prepared
for the experiment was natural gas cells containing 72%
and 28% of 85Rb and 87Rb, respectively. While perform-
ing the experiment, dichroic mirrors are used to couple
and split the probe and the coupling ECDLs.
We performed theoretical calculation based on quan-

tum defect theory, as shown in Fig. 2. A detailed ex-
planation of the calculation can be found in the refer-
ence paper [10]. From the calculation, we confirmed that

∗inhobae@kriss.re.kr

Figure 1: (a) Schematic diagram of the atomic system
in the 5S1/2-5P3/2-nD5/2 transition of 85Rb atom. (b)
Simplified experimental setup for Rydberg-EIT in a Rb
vapor cell. DM: dichroic mirror; HB: heating band; HR:
High reflectance; HR: High transmittance.

the RF-to-THz frequencies with Rydberg state of 85Rb
are available from GHz to frequencies above 1 THz. As
shown in the Fig. 2, although not all frequencies are con-
tinuous, a wide band can be covered depending on the
quantum number.

Figure 3 shows the Rydberg-EIT signal resulted from
the balaced detection, which allows removal of Doppler
background noise. Upper spectrum is saturated absorp-
tion signal and lower spectrum is Doppler-free Rydberg-
EIT spectrum based on balanced detection, respectively.
Considering Doppler background noise, it can be ex-
pected that frequency calibration will be difficult without
balanced measurement.

3 Discussions

In this paper, Rydberg-EIT based electrometer was
introduced for future applicaions on the quantum elec-
tric field sensing. We reported the balanced signal of
Rydberg-EIT with simple cancellation of Doppler back-
ground. From the calculation results based on quan-
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Figure 2: Theoretical calculations for estimating fre-
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Figure 3: Rydberg-EIT signal resulted from the balanced
detection.

tum defect theory, it was also suggested that measure-
ments from RF to THz range can be achievable by using
Rydberg-EIT system. We believe that atom-based elec-
trometer will be a good candidate for solving antenna
size problems depending on the frequency band. Addi-
tionally, because Rydberg-based sensor is known to have
excellent sensitivity, it is expected that our system can
be used in quantum sensor fields that require extreme
sensitivity and broadband coverage.
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Abstract. Quantum singular value transformation (QSVT) is an ingenious quantum algorithm

for (including but not limited to) matrix arithmetics. However, its practical power has not been

assessed thoroughly to date due to its complexity. Here, we explicitly construct the full quantum

circuit for the QSVT-based matrix inversion for simple examples and estimate the actual cost.

Keywords: fault-tolerant quantum computation (FTQC), block encoding, quantum singular
value transformation (QSVT), matrix inversion

Quantum computers are expected to afford the

performance of computational tasks which might be

too expensive for classical computers. One of the

leading candidates for such task is computations in-

volving large matrices, especially sparse matrix in-

version, whose wide range of application attest to

their importance.

On one hand, there is a well-known algorithm

of Harrow-Hassidim-Lloyd (HHL) [1] for this task

which in theory runs exponentially faster (in terms

of the matrix size) than any known classical algo-

rithms. However, its actual implementation is diffi-

cult, if not impossible, since it requires

• exponentiation of the target matrix, which fur-

ther relies on the use of black-box oracles en-

coding the information of the matrix, and

• a certain controlled-rotation gate inverting the

eigenvalues of the target matrix,

whose gate-level implementations are rather subtle.

On the other hand, a novel algorithm based on block

encoding of the target matrix and quantum singular

value transformation (QSVT) [2] has been proposed,

but while it succeeds in circumventing the most of

the subtleties encountered in the HHL algorithm,

it still makes heavy use of oracles as black boxes,

and the actual cost of the algorithm as a whole is

somewhat obscured.

∗lee.y@qunasys.com

In this study, we take sparse Toeplitz matrices

as the target matrix to be inverted, and explic-

itly construct the oracle quantum circuits for their

block encoding based on [3]. By feeding the block-

encoding unitary into the corresponding QSVT cir-

cuit, we estimate the quantum-computational costs

of the matrix inversion including the number of nec-

essary non-Clifford gates and the actual runtime,

and thereby evaluate the feasibility and the expo-

nential advantage over classical counterpart beyond

the level of (asymptotic) query complexity.
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Figure 1: An example of a (sparse) Toeplitz matrix

and its block-encoding unitary quantum circuit.
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Figure 2: The numbers of logical qubits (left) and Toffoli gates (right) required to block-encode a generic

Toeplitz matrix of size N and band-width D, on which the overall estimation of the cost is based.

References

[1] A. Harrow, A. Hassidim, S. Lloyd. Quantum

algorithm for solving linear systems of equa-

tions. Physical Review Letter 103, 150502,

2009. arXiv:0811.3171 [quant-ph].

[2] A. Gilyén, Y. Su, G. H. Low, N. Wiebe. Quan-

tum singular value transformation and beyond:

exponential improvements for quantum matrix

arithmetics. Proceedings of the 51st ACM

STOC (2019) pp. 193-204, arXiv:1806.01838

[quant-ph].

[3] C. Sünderhauf, E. Campbell, J. Camps. Block-

encoding structured matrices for data input in

quantum computing. Quantum 8, 1226 (2024),

arXiv:2302.10949 [quant-ph].

[4] K. Makino, H. Murakami, Y. Lee, K. Kanno,

K. Minefuji, T. Fukuta. Angle Finding of

Quantum Signal Processing for Matrix Inver-

sion. To appear.

450



NNA Circuit Synthesis Method by SMT Solver Considering Bit
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Abstract. When implementing quantum circuits on actual quantum computers, there exists a constraint
known as the Nearest Neighbor Architecture (NNA) constraint. which states that CNOT gate can act only
between neighboring quantum bits. Typically, quantum circuits are constructed ignoring NNA constraint
and then converted into circuits that satisfy NNA constraint before execution on a quantum computer.
However, the number of CNOT gates increases in most cases when a circuit is converted to satisfy NNA
constraint, and the increase in the number of CNOT gates leads to an increase in the error rates, it is
essential to convert circuits to satisfy NNA constraint while minimizing the increase of the number of
CNOT gate. A quantum circuit that satisfies NNA constraint is called an NNA circuit. This paper
describes about the constraint equations that the converted NNA circuit must satisfy are expressed as
constraint represented as constraint equations given to an SMT solver. Following this, the more optimal
NNA circuit is synthesized from the solution obtained from MT solver. This paper also introduces a
method for converting larger-scale quantum circuits into NNA circuits.

Keywords: Nearest Neighbor Architecture (NNA) constraint, CNOT gate, SMT solver, necessary set

1 Introduction

There exists a method proposed by Jingwen[1] et al.
for converting quantum circuits to satisfy NNA con-
straint. In their approach, the quantum circuit is first
divided at positions of T gates or H gates, extracting
sub-circuits composed solely of multiple CNOT gates, as
shown in Figure 1. Subsequently, for each sub-circuit,
they generate a quantum circuit satisfying NNA con-
straint while maintaining equivalent outputs using an
SMT solver. However, a significant issue arises with ex-
ponential increases in computation time when converting
large-scale circuits using SMT solver.
Therefore, the proposed method aims to reduce both
CNOT gates and computation time. To achieve this goal,
two modifications are introduced. Firstly, since T gate
desn’t directly affect the observation result of quantum
bit, during circuit dividing, the circuit is divided at posi-
tions of H gates, extracting sub-circuits composed of mul-
tiple CNOT gates and T gates, as shown in Figure Sug-
gestSep. Secondly, select logic functions computable with
combination of six or fewer quantum bits from neces-
sary set and find a circuit outputs their logic function
using while satisfying NNA constraint using SMT solver.
This secondly modification step is repeated until the con-
verted circuit can compute all logic functions of neces-
sary.

2 Method

2.1 Variables on quantum circuit

During the conversion of quantum circuits, it is nec-
essary to formulate the four constraint equations that
the converted circuit must satisfy as an integer program-
ming problem and input these constraint equations into

∗eleven@ngc.is.ritsumei.ac.jp
†ger@cs.ritsumei.ac.jp
‡seino0702@gmail.com
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Figure 1: Circuit division by Jingwen’s method
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�

�

Figure 2: Circuit division by suggested method

an SMT solver. To achieve this, the following variables
are introduced.

• Necessary setd

• NNAi

• Fi,j

• fi,j

Necessary setd represents the set of logical functions
output by the d-th quantum sub-circuit. In circuit
conversion, it is essential that the outputs of the cir-
cuit before and after conversion are equal. Therefore,
the outputs of the circuit before conversion are repre-
sented as a set called necessary set. For example, in Fig-
ure 3, necessary set is represented as necessary set =
{x1 ⊕ x3}, {x2 ⊕ x3}, {x3 ⊕ x5}, {x5}, {x4 ⊕ x5}.

NNAi refer to the set of quantum bits are adjacents to
qi on quantum architecture. For example, in Figure 4, q3
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Figure 3: Sub-circuit
constructed only CNOT
gates

Figure 4: Quantum archi-
tecture

Figure 5: Relationships of logic functions between the
sub-circuits

is adjacent to q1, q4, q6 and q7, so NNA3 is represented
as NNA3 = {1, 4, 6, 7}.
The Fi,j represents the output of each sub-circuit af-

ter dividing the entire circuit. An example is shown in
Figure 5.
The fi,j refer to the transition of the state of each

quantum bit within the sub-circuit. An example is shown
in Figure 6.

2.2 Four constraint equations for the SMT
solver

1 A single CNOT gate can be represented using two
types of variables, Ti,j and Ci,j . Ti,j indicates
whether the j-th quantum bit is treated as the tar-
get bit in the i-th CNOT gate. Similarly, Ci,j indi-
cates whether the j-th quantum bit is treated as the
control bit in the i-th CNOT gate. As an example,
the variables Ti,j and Ci,j in Figure 3 are shown as

Figure 6: Transition about the state of quantum bits
within the sub-circuits

Eq. 1 and Eq. 2 respectively.

Ci,j =


0 0 0 0 0 0
1 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 1 0
0 0 0 1 0 0

 (1)

Ti,j =


1 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0

 (2)

Furthermore, using these variables, it is necessary
to express with constraint equations that there is
exactly one control bit and one target bit for each
CNOT gate like Eq. 3 and Eq. 4.

(Ci,1 ∧ ¬Ci,2 ∧ · · · ∧ ¬Ci,n)
∨ (¬Ci,1 ∧ Ci,2 ∧ · · · ∧ ¬Ci,n)
∨ · · · ∨ (¬Ci,1 ∧ ¬Ci,2 ∧ · · · ∧ Ci,n)

(3)

(Ti,1 ∧ ¬Ti,2 ∧ · · · ∧ ¬Ti,n)
∨ (¬Ti,1 ∧ Ti,2 ∧ · · · ∧ ¬Ti,n)
∨ · · · ∨ (¬Ti,1 ∧ ¬Ti,2 ∧ · · · ∧ Ti,n)

(4)

2 In addition to the representation of CNOT gate de-
scribed Eq. 3 and Eq. 4, it is necessary to have the
constraint equation such that the quantum bit serv-
ing as the control bit and the quantum bit serving
as the target bit are adjacent to each other. There-
fore, create constraint equations about relationship
between CNOT gate and quantum bit using NNA
as shown in Eq. 5 and Eq. 6.

fCNOT (i, j, k) = (Ci,k∧Ti,j)∧ (j ̸= k)∧k ∈ NNAj
(5)

q∧
i=0

n∧
j=0

n∧
k=0

fi,j =


F(d−1),j if (i = 0)

f(i−1),k ⊕ f(i−1),j else if fCNOT

f(i−1),j otherwise

(6)

3 It is allowed that the positions of quantum bits for
each logic functions output from the circuit before
conversion are differ from the positions of each logic
functions are outputted from circuit after conver-
sion. Therefore, a constraint equation is required
to ensure that the logic functions in necessary set
are reproduced somewhere within the converted cir-
cuit. ∧
o∈necessary setd

(o = fq,1)∨(o = fq,2)∨· · ·∨(o = fq,n)

(7)
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Figure 8: A converted circuit from the one as shown in
Fig. 7

4 To avoid the situation where the logic functions
cannot be reproduce in the subsequent sub-circuit
that uses the outputs of current circuit, a constraint
equation is needed such that all logic functions out-
put from converted circuit are included from the
output of sub-circuit before

n∧
i=0

Fd,i ∈ necessary setd (8)

3 Idea for reducing the number of quan-
tum bits

There is a key issue with SMT solver is that convert-
ing circuits with 7 bits or more becomes infeasible within
a realistic computation time. Therefore, we propose a
method that focuses the logic functions computable with
six or fewer quantum bits within sub-circuit and performs
partial converting using SMT solver iteratively. This ap-
proach allows for the step-by-step conversion of the cir-
cuit while reduce the number of quantum bits used to
SMT solver.
As an example, we apply and explain the proposed

method to the quantum circuit shown in Figure 7. At
the quantum circuit, necessary set is {x1 ⊕ x2 ⊕ x3 ⊕
x4⊕x6}, {x1⊕x3⊕x4⊕x6}, {x1⊕x3⊕x5}, {x6}, {x1⊕
x3 ⊕ x5 ⊕ x7}, {x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x8}. The logic
functions computable with six or fewer quantum bits in
necessary set is {x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x6}, {x1 ⊕ x3 ⊕
x4 ⊕ x6}, {x6} The circuit converted by SMT solver to
reproduce the set of these logical functions is shown in
Figure 8.
As a result of recalculating the remaining necessary set

based on the output of this circuit, the updated neces-
sary set are {x3⊕x4⊕x5}, {x3⊕x4⊕x5⊕x7}{x2⊕x8},

which can also be solved using SMT solver as partial
quantum circuits with 7 bits or fewer.

The proposed method achieves an average reduction of
58.11
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Abstract. We propose a decoder for the correction of erasure errors with hypergraph product (HGP)
codes, a popular family of quantum low-density parity-check (LDPC) codes. Our simulations show that
this decoder provides a close approximation of the maximum likelihood decoder that can be implemented in
O(N2) bit operations where N is the length of the quantum code. We also consider a practical application of
this decoder to quantum multiplexing using HGP codes. In multiplexed quantum communication, multiple
qubits of information are encoded in a single photon. By adapting the qubit-photon assignment strategy to
our new decoder, we show how physical resources can be reduced without sacrificing decoder performance.

Keywords: Quantum Error Correction, Erasure Channel, Decoder, Hypergraph Product Codes, LDPC
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Introduction
Due to the high noise rate of quantum hardware, ex-

tensive quantum error correction is necessary to scale
quantum devices into the regime of practical applica-
tions. The surface code [4, 6] is one of the most popular
quantum error correcting codes for quantum computing
architectures but it comes with an enormous qubit over-
head because each qubit must be encoded into hundreds
or thousands of physical qubits. Quantum Low-Density
Parity-Check (LDPC) codes [7, 13] such as the hyper-
graph product (HGP) code [21] promise a significant re-
duction of this qubit overhead [8, 5]. Simulations with
circuit noise show a 15× reduction of the qubit count in
the large-scale regime [22].

Decoders are used to detect and correct errors in in-
formation transmission, but decoders must be fast for
applications to utilize fault-tolerant quantum computa-
tion (FTQC). In this work, we propose an efficient de-
coding algorithm for the correction of erasure errors or
detectable qubit loss in the special case of HGP codes.
Decoding of erasures is practically relevant because this
is the dominant source of noise in photonic systems, for
which photon loss can be interpreted as an erasure, or
neutral atoms [9, 1, 24]. Furthermore, in the classical
case, many of the ideas that led to the design of capacity-
achieving classical LDPC codes over binary symmetric
channels were first discovered by studying the correction
of erasures [11, 18].

To show a practical application of our new decoder,
we consider a scenario involving quantum multiplex-
ing [16, 15], which refers to the encoding of multiple

∗nicholas.connolly@oist.jp

qubits of information onto a single photon. A single
photon has multiple degrees of freedom such as polariza-
tion [23], time bin [2, 14, 20], path (dual rail) [10], and
frequency-bin [19, 17], each of which can be used to store
quantum information. Although multiplexing can reduce
the number of required physical resources, losing a single
photon corresponds to the erasure of all encoded qubits.
The choice of how qubits are assigned to photons has a
large effect on the performance of quantum communica-
tion using multiplexing. In the case of HGP codes, our
simulation results show that performance degradation
due to multiplexing can be mitigated by using decoder-
aware photon assignment strategies.

Erasure Channel and Peeling Decoder
Our erasure decoder for HGP codes is a generalization

of a classical algorithm known as the peeling decoder [12].
To explain this algorithm, we briefly review the setting of
the classical erasure channel. Recall that for a classical
linear code of length n, information is transmitted via
codewords with n bits. Erasure errors correspond to the
loss of a known subset of bits in the transmitted code-
word. An erasure correction problem can be converted
into an error correction one by assigning the erased bits
the values 0 and 1 at random, and then making a syn-
drome measurement. Unlike standard error correction,
we make the additional assumption that non-erased bits
do not have errors.

The peeling decoder [12] is a linear-time algorithm for
correcting erasure errors in classical codes. To explain
this algorithm, it is helpful to think of a code in terms
of its Tanner graph T (H): the bipartite graph obtained
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H =

1 1 1 0
1 1 1 1
0 1 1 1


= check node
= bit node

= dangling check
= dangling bit
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Figure 1: Two examples of an erasure-induced subgraph
for a simple Tanner graph T (H). Non-erased nodes are
grayed-out and excluded from the subgraph.

using the parity check matrix H as an adjacency matrix.
An erasure induces a subgraph of T (H) corresponding to
the subset of erased bit-nodes and any adjacent check-
nodes (see Fig. 1). Check-nodes which have degree 1 in
this subgraph are said to be dangling checks. The peeling
algorithm identifies dangling checks in this subgraph and
uses these to correct the adjacent dangling bits, hence
"peeling" the erasure subgraph. The algorithm termi-
nates either when all erasure errors have been corrected
by peeling, or it becomes stuck in a stopping set : a sub-
graph with no remaining dangling checks.

Erasure correction for a quantum code is modeled sim-
ilarly to the classical case, with an erasure error on a
codeword corresponding to the loss of a known subset
of qubits. As in the classical case, erasure correction
can be converted into error correction, with the modi-
fied rule that erased qubits are assigned Pauli errors in
{I,X, Y, Z} at random in the quantum case. For a CSS
code, errors can be corrected by applying the peeling al-
gorithm two times, once using the classical Tanner graph
for HZ and once again for HX .

Hypergraph Product Codes
We briefly review the construction for hypergraph

graph product codes due to [21]. HGP codes are a special
class of CSS code defined using any two classical linear
codes. Given classical partiy check matrices H1 and H2,
we may define the matrices HX and HZ of a CSS code
via the formulas

HX = (H1 ⊗ I|I ⊗HT
2 ) (1)

HZ = (I ⊗H2|HT
1 ⊗ I). (2)

These matrices satisfy the condition HXHT
Z = 0

by construction and hence define a valid CSS code
HGP(H1, H2). When H1 and H2 define LDPC codes,
HX and HZ will also define LDPC codes.

HGP codes have a geometrically rich Tanner graph
structure which can be visualized as the cartesian prod-
uct of the Tanner graphs for the two input classical codes
as shown in Fig. 2. The subgraph corresponding to each
row and column in this Tanner graph block structure can
be understood as the classical Tanner graph for one of the
classical codes. As shown in the figure, the HGP Tanner
graph can be divided into quadrants, each representing a
different component of the code.

n1

n2

r1

r2

H2 =

[
1 1 0 0
0 0 1 1

]

H
1
= [

1
1

1
1

1
1

1
1 ]

= qubit
= Z-stab.
= X-stab.

HX =



1000100010001000 1000
0100010001000100 1000
0010001000100010 0100
0001000100010001 0100
1000100010001000 0010
0100010001000100 0010
0010001000100010 0001
0001000100010001 0001


HZ =



1100000000000000 1010
0011000000000000 0101
0000110000000000 1010
0000001100000000 0101
0000000011000000 1010
0000000000110000 0101
0000000000001100 1010
0000000000000011 0101



Figure 2: Example of the Tanner graph for a simple HGP
code HGP(H1, H2) constructed from two classical codes
with parity check matrices H1 and H2. This is the carte-
sian product of the two classical Tanner graphs.

Pruned Peeling + VH Decoder
Although the classical peeling decoder is not

maximum-likelihood (ML), it is very efficient and works
well for codes with sparse Tanner graphs such as LDPC
codes. However, it performs very poorly when applied to
quantum CSS codes, including LDPC codes. This is ex-
plained by the existence of stopping sets unique to quan-
tum codes that have no classical analogue. Our proposed
decoder [3] is a generalization of the classical peeling algo-
rithm to HGP codes based on identifying and correcting
the most common types of stopping sets.

A stabilizer stopping set occurs when the erasure pat-
tern covers the qubit support of an X- or Z-type stabi-
lizer. The pruned peeling decoder is a modified version
of the classical decoder which attempts to fix these by
removing a qubit from the erasure, thus "breaking" the
stabilizer support and possibly allowing the peeling al-
gorithm to become unstuck. This exploits a feature of
stabilizer codes and can be applied to any CSS code.

Classical stopping sets are unique to HGP codes; these
are patterns of erased qubits supported entirely on a sin-
gle row or column in the HGP Tanner graph block struc-
ture of Fig. 2. Any stopping set for a HGP code can
be decomposed into a union of components of this form.
The VH decoder algorithm attempts to order and effi-
ciently solve each of these classical stopping sets in se-
quence using Gaussian elimination. Although Gaussian
elimination is too slow in general (cubic complexity), by
restricting its application to classical stopping sets, the
overall complexity of the VH decoder is quadratic in the
code length. However, the decoder can still fail for cer-
tain configurations of classical stopping sets.

The decoder we propose for HGP codes in [3] combines
all three techniques (peeling + pruned peeling + VH de-
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Figure 3: Numerical simulations showing the perfor-
mance of the combined decoder for several HGP codes.

coder). Although not ML, the combined decoder shows
close to ML performance at low erasure rate (see Fig. 3),
making it useful in the regime of practical interest.

Application to Quantum Multiplexing
We conclude with an application showing how the

pruned peeling + VH decoder can be used for multiplexed
quantum communication [15]. We assume a photonic sys-
tem, wherein each photon encodes m qubits of informa-
tion; m = 1 corresponds to no-multiplexing. Hence, the
loss of a single photon corresponds to the simultaneous
erasure of m qubits. The choice of how physical qubits
are assigned to photons thus introduces a correlation in
the types of erasure errors. This correlation can have a
significant effect on the decoding performance, motivat-
ing our search for good assignment strategies adapted to
the decoder.

Strategy ii. Stabilizer Strategy iii. Sudoku

Strategy iv. Row-Column Strategy v. Diagonal

Table 1: Examples of four different photon assignment
strategies for the simple HGP code shown in Fig. 2.
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Figure 4: Multiplexing decoder performance for a
[[320,82]] HGP code at fixed m = 8. In this example,
strategy (v) diagonal outperforms all other strategies.

We introduce a number of strategies for assigning to
photons groups of m qubits in a HGP code.

i. Random: qubits assigned to photons at random.

ii. Stabilizer: photons correspond to the qubit-
support of X and Z-type stabilizer generators.

iii. Sudoku: qubits of a given photon come from dif-
ferent rows or columns in the Tanner graph.

iv. Row-Column: qubits of a given photon come
from the same row or column in the Tanner graph.

v. Diagonal: qubits of a given photon come from the
same diagonal slice in the Tanner graph.

The first strategy is independent of the choice of code or
decoder, but the remaining four are designed with the
pruned peeling + VH decoder in mind and are summa-
rized in visually in Table 1. Strategy ii. seeks to create
stabilizer stopping sets, which are fixed by pruned peel-
ing. Strategies iii. and v. seek to minimize classical stop-
ping sets and hence decoder failures. Strategy iv. does
the opposite, maximizing classical stopping sets, which
can be thought of as a worst case scenario.

Fig. 4 shows our numerical simulations using each of
these five strategies with a fixed HGP code. A strategy
is considered good if its performance is close to the no-
multiplexing case. Our results show that a decoder-aware
strategy can even outperform the no-multiplexing case.

The speed-up gained by our proposed decoder can off-
set new errors that might arise with a slower ML decoder.
In addition to achieving close to optimal performance
with reduced complexity, our simulations show how the
performance of the pruned peeling + VH decoder can
be further improved through the use of quantum mul-
tiplexing. Furthermore, given the practical information
throughput advantage that HGP codes have over surface
codes, our new efficient decoder is a significant result.
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We propose a decoder for the correction of erasures with hypergraph product codes, which form
one of the most popular families of quantum LDPC codes. Our numerical simulations show that this
decoder provides a close approximation of the maximum likelihood decoder that can be implemented
in O(N2) bit operations where N is the length of the quantum code. A probabilistic version of this
decoder can be implemented in O(N1.5) bit operations.

Introduction – Due to the high noise rate of quantum
hardware, extensive quantum error correction is neces-
sary to scale quantum devices to the regime of practical
applications. The surface code [1, 2] is one of the most
popular quantum error correction code for quantum com-
puting architectures but it comes with an enormous qubit
overhead because each qubit must be encoded into hun-
dreds or thousands of physical qubits.

Quantum Low-Density Parity-Check (LDPC) codes [3,
4] such as hypergraph product (HGP) codes [5] promise a
significant reduction of this qubit overhead [6, 7]. Numer-
ical simulations with circuit noise show a 15× reduction
of the qubit count in the large-scale regime [8]. For ap-
plications to quantum fault toleance, HGP codes must
come with a fast decoder, whose role is to identify which
error occurred. In this work, we propose a fast decoder
for the correction of erasures or qubit loss. Our numeri-
cal simulations show that our decoder achieves a logical
error rate close to the maximum likelihood decoder.

Our motivation for focusing on the decoding of erasures
is twofold. First it is practically relevant and it is the
dominant source of noise in some quantum platforms such
as photonic systems [9, 10] for which a photon loss can be
interpreted as an erasure, or neutral atoms [11]. Second,
many of the ideas that led to the design of capacity-
achieving classical LDPC codes over binary symmetric
channels were first discovered by studying the correction
of erasures [12, 13].
Classical erasure decoders – A linear code with length

n is defined to be the kernel C = kerH of an r×n binary
matrix H called the parity-check matrix. Our goal is to
protect a codeword x ∈ C against erasures. We assume
that each bit is erased independently with probability p
and erased bits are flipped independently with probabil-
ity 1/2. The set of erased positions is known and is given
by an erasure vector ε ∈ Zn2 such that bit bi is erased iff
εi = 1. The initial codeword x is mapped onto a vec-
tor y = x + e ∈ Zn2 where e is the indicator vector of
the flipped bits of x. In particular the support of e sat-
isfies supp(e) ⊆ supp(ε). To detect e, we compute the
syndrome s = Hy = He ∈ Zr2. A non-trivial syndrome
indicates the presence of bit-flips.

The goal of the decoder is to provide an estimation ê of
e given s and ε and it succeeds if ê = e. This can be done
by solving the linear system Hê = s with the condition
supp(ê) ⊆ supp(ε) thanks to Gaussian elimination. This
Gaussian decoder runs in O(n3) bit operations which may
be too slow in practice for large n.

Algorithm 1: Classical peeling decoder
input : An erasure vector ε ∈ ZN2 and a syndrome

s ∈ Zr2.
output: Either failure or ê ∈ Zn2 such that Hê = s

and supp(ê) ⊆ supp(ε).

1 Set ê = 0.
2 while there exists a dangling check do
3 Select a dangling check ci.
4 Let bj be the dangling bit incident to ci.
5 if si = 1 then
6 Flip bit j of ê.
7 Flip sk for all checks ck incident with bj .

8 Set εj = 0.

9 if ε 6= 0 return Failure, else return ê.

The classical peeling decoder [14], described in Algo-
rithm 1, provides a fast alternative to the Gaussian de-
coder. It does not perform as well in general, but it can
be implemented in linear time and displays good perfor-
mance for LDPC codes. To describe this decoder, it is
convenient to introduce the Tanner graph, denoted T (H),
of the linear code C = kerH. It is the bipartite graph
with one vertex c1, . . . , cr for each row of H and one ver-
tex b1, . . . , bn for each column of H such that ci and bj
are connected iff Hi,j = 1. We refer to ci as a check
node and bj as a bit node. The codewords of C are the
bit strings such that the sum of the neighboring bits of
a check node is 0 mod 2. Given an erasure vector ε, a
check node is said to be a dangling check if it is incident
to a single erased bit. We refer to this erased bit as a
dangling bit. The basic idea of the peeling decoder is to
use dangling checks to recover the values of dangling bits
and to repeat until the erasure is fully corrected.

The notion of stopping set was introduced in [15] to
bound the failure probability of the decoder for classical
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LDPC codes. A stopping set for the Tanner graph T (H)
is defined to be a subset of bits that contains no dangling
bit. If the erasure covers a non-empty stopping set, then
Algorithm 1 returns Failure.

The peeling decoder was adapted to surface code [16]
and color codes [17]. In the rest of this paper, we design
a fast erasure decoder inspired by the peeling decoder
that applies to a broad class of quantum LDPC codes.
Our design process relies on the analysis of stopping sets.
At each design iteration, we propose a new version of
the decoder, identify its most common stopping sets and
modify the decoder to make it capable of correcting these
dominant stopping sets.
Classical peeling decoder for quantum CSS codes – A

CSS code [18, 19] with length N is defined by commuting
N -qubit Pauli operators SX,1, . . . , SX,RX

∈ {I,X}⊗N
and SZ,1, . . . , SZ,RZ

∈ {I, Z}⊗N called the stabilizer gen-
erators. We refer to the group they generate as the sta-
bilizer group and its elements are called stabilizers.

We can correct X and Z errors independently with the
same strategy. Therefore we focus on the correction of
X errors, based on the measurement of the Z-type stabi-
lizer generators. This produces a syndrome σ(E) ∈ ZRZ

2 ,
whose ith component is 1 iff the error E anti-commutes
with SZ,i. An error with trivial syndrome is called a
logical error and a non-trivial logical error if it is not a
stabilizer, up to a phase.

We assume that qubits are erased independently with
probability p and that an erased qubit suffers from a
uniform error I or X [20]. This results in an X-type error
E such that supp(E) ⊆ supp(ε). The decoder returns
an estimate Ê of E given the erasure vector ε and the
syndrome s of E. It succeeds iff ÊE is a stabilizer (up to
a phase). The logical error rate of the scheme, denoted
Plog(p), is the probability that ÊE is a non-trivial logical
error.

By mapping Pauli operators onto binary strings, one
can cast the CSS erasure decoding problem as the decod-
ing problem of a classical code with parity check matrix
HZ whose rows correspond to the Z-type stabilizer gen-
erators. As a result, one can directly apply the classical
Gaussian decoder and the classical peeling decoder to
CSS codes. From Lemma 1 of [16], the Gaussian decoder
is an optimal decoder, i.e. a Maximum Likelihood (ML)
decoder, but its complexity scaling like O(N3) makes it
too slow for large codes. The peeling decoder is faster.
However, the following lemma proves that, unlike its clas-
sical counterpart, it does not perform well for quantum
LDPC codes.

Lemma 1 (Stabilizer stopping sets). The support of an
X-type stabilizer is a stopping set for the Tanner graph
T (HZ).

Proof. This is because an X-type stabilizer commutes
with Z-type generators, and therefore its binary rep-
resentation is a codeword for the classical linear code

kerHZ .

As a consequence, the classical peeling decoder has no
threshold for any family of quantum LDPC codes defined
by bounded weight stabilizers. Indeed, if each member of
the family has at least one X-type stabilizer with weight
w, then the logical error rate satisfies Plog(p) ≥ pw, which
is a constant bounded away from zero when N →∞.This
is in sharp contrast with the classical case for which the
probability to encounter a stopping set provably vanishes
for carefully designed families of LDPC codes [21].
Pruned peeling decoder – Since the peeling decoder gets

stuck into stopping sets induced by the X-type genera-
tors, the idea is to look for such a generator S supported
entirely within the erasure and to remove an arbitrary
qubit of the support of S from the erasure. We can re-
move this qubit from the erasure because either the error
E or its equivalent error ES (also supported inside ε)
acts trivially on this qubit.

Algorithm 2: Pruned peeling decoder
input : An erasure vector ε ∈ ZN2 , a syndrome

s ∈ ZRZ
2 , and an integer M .

output: Either Failure or an X-type error
Ê ∈ {I,X}N such that σ(Ê) = s and
supp(Ê) ⊆ supp(ε).

1 Set Ê = I.
2 while there exists a dangling generator do
3 Select a dangling generator SZ,i.
4 Let j be the dangling qubit incident to SZ,i.
5 if si = 1 then
6 Replace Ê by ÊXj and s by s+ σ(Xj).

7 Set εj = 0.
8 if There is no dangling generator and there exists

a product S of up to M stabilizer generators
SX,1, . . . , SX,RX such that supp(S) ⊆ supp(ε) then

9 Select a qubit j ∈ supp(S) and set εj = 0.

10 if ε 6= 0 return Failure, else return Ê.

This leads to the pruned peeling decoder described in
Algorithm 2. To make it easier to follow, we use the terms
dangling generator and dangling qubit in place of dangling
check and dangling bit. A dangling generator is a Z
generator in the context of correcting X errors. In order
to keep the complexity of the peeling decoder linear, we
look for an X-type stabilizer which is a product of up to
up M stabilizer generators where M is a small constant.
For low erasure rate, we expect the erased stabilizers to
have small weight and therefore a small value ofM should
be sufficient.

Fig. 1 shows the performance of HGP codes equipped
with the pruned peeling decoder with M = 0, 1, 2. The
pruning strategy only slightly improves over the classical
peeling decoder and increasing M beyond M = 1 does
not significantly affect the performance. To understand
why the ML decoder severely outperforms the pruned
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Figure 1. Performance of the pruned peeling and VH decoders
using four HGP codes and compared with the ML decoder
(106 simulations per data point). Plots show the failure rates
of the decoders for recovering an X-type Pauli error supported
on the erasure vector, up to multiplication by a stabilizer.

peeling decoder, we analyze its most common stopping
sets with HGP codes.
Stopping sets of the pruned peeling decoder – Let us

recall the hypergraph product construction from [5]. The
HGP code associated with the Tanner graph T (H) =
(A ∪ B,EH) of a classical code is a CSS code, denoted
HGP(H), defined from the cartesian product of T (H)
with itself (see Fig. 2). Qubits are labelled by the pairs
(a, a′) ∈ A × A and (b, b′) ∈ B × B. For each (a, b′) ∈
A × B, we define a stabilizer generator acting as X on
the qubits (b, b′) such that {a, b} ∈ EH and the qubits
(a, a′) such that {a′, b′} ∈ EH . For each (b, a′) ∈ B × A,
we define a stabilizer generator acting as Z on the qubits
(a, a′) such that {a, b} ∈ EH and the qubits (b, b′) such
that {a′, b′} ∈ EH . If the input graph T (H) is sparse,
then HGP(H) is LDPC.

The input Tanner graph is generated using the stan-
dard progressive edge growth algorithm which is com-
monly used to produce good classical or quantum LDPC
codes [22]. We use the implementation [23, 24] of the
progressive edge growth algorithm.

By studying the failure configurations of the pruned
peeling decoder, we observe that the gap between the
pruned peeling decoder and the ML decoder is due to
the following stopping sets of HGP codes.

Lemma 2 (Horizontal and vertical stopping sets). If SB
is a stopping set for a Tanner graph T (H), then for all b ∈
B the set {b}×SB is a stopping set for the Tanner graph
T (HZ) of the HGP code HGP(H). If SA is a stopping
set for a Tanner graph T (HT ), then for all a′ ∈ A the set
SA × {a′} is a stopping set for the Tanner graph T (HZ)

Figure 2. The HGP code derived from a linear code with 7
bits and 3 checks. The support of the Z stabilizer generator
with index (b, a′) ∈ B ×A is given by the neighbors of (b, a′)
in the Cartesian product of the graph T (H) with itself. In the
product notation, we follow the x × y convention, where the
first coordinate denotes the horizontal code and the second
coordinate denotes the vertical code.

of the HGP code HGP(H).

Proof. Consider a stopping set SB for T (H). Any Z-type
stabilizer generator acting on {b} × SB must be indexed
by (b, a′) for some a′. Moreover, the restriction of these
stabilizers to {b}×SB are checks for the linear code kerH.
Therefore is {b} × SB is a stopping set for T (HZ). The
second case is similar.

We refer to the stopping sets {b}×SB as vertical stop-
ping sets and SA×{a′} are horizontal stopping sets. Nu-
merically, we observe that these stopping sets are respon-
sible for vast majority of the failures of the pruned peel-
ing decoder. This is because the quantum Tanner graph
T (HZ) contains on the order of

√
N copies of the type

{b} × SB for each stopping sets SB of T (H) and
√
N

copies of each stopping set of T (HT ). Our idea is to use
the Gaussian decoders of the classical codes kerH and
kerHT to correct these stopping sets.
VH decoder – The Vertical-Horizontal (VH) decoder is

based on the decomposition of the erasure into vertical
subsets of the form {b} × εb with b ∈ B and εb ⊆ B,
and horizontal subsets of the form εa′ ×{a′} with a′ ∈ A
and εa′ ⊆ A, that will be decoded using the Gaussian
decoder.

Let Tv (resp. Th) be the subgraph of T (HZ) induced by
the vertices of B×(A∪B) (resp. (A∪B)×A). The graph
Tv is made with the vertical edges of T (HZ) and Th is
made with its horizontal edges. Given an erasure vector
ε, denote by V (ε) the set of vertices of T (HZ) that are
either erased qubits or check nodes incident to an erased
qubit. A vertical cluster (resp. horizontal cluster) is a
subset of V (ε) that is a connected component for the
graph Tv (resp. Th).
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The VH graph of ε is defined to be the graph whose
vertices are the clusters and two clusters are connected
iff their intersection is non-empty.

The following proposition provides some insights on
the structure of the VH graph.

Proposition 1. The VH graph is a bipartite graph
where each edge connects a vertical cluster with an hori-
zontal cluster. There is a one-to-one correspondence be-
tween the check nodes of T (HZ) that belong to one ver-
tical cluster and one horizontal cluster and the edges of
the VH graph.

Proof. Because the graph Tv contains only vertical edges,
any vertical cluster must be a subset of {b1} × (A ∪ B)
for some b1 ∈ B. Similarly, any horizontal cluster is a
subset of (A ∪ B) × {a′1} for some a′1 ∈ A. As a result,
two clusters with the same orientation (horizontal or ver-
tical) cannot intersect and the only possible intersection
between a cluster included in {b1} × (A ∪B) and a clus-
ter included in (A∪B)×{a′1} is the check node (b1, a

′
1).

The bijection between check nodes and edges of the VH
graph follows.

A check node of T (HZ) that belongs to a single cluster
is called an internal check, otherwise it is called a con-
necting check. From Proposition 1, a connecting check
must belong to one horizontal and one vertical cluster.

Given a cluster κ, let E(κ) be the set of errors sup-
ported on the qubits of κ whose syndrome is trivial over
the internal checks of κ. Let S(κ) be the set of syndromes
of errors E ∈ E(κ) restricted to the connecting checks of
κ. A cluster is said to be isolated if is has no connect-
ing check. Then, it can be corrected independently of
the other clusters. A dangling cluster is defined to be a
cluster with a single connecting check.

A cluster κ can have two types of connecting check. If
S(κ) contains a weight-one vector supported on an con-
necting check c, we say that c is a free check. Otherwise,
it is a frozen check. If a check is free, the value of the
syndrome on this check can be adjusted at the end of
the procedure to match s using an error included in the
cluster κ.

To compute a correction Ê for a syndrome s ∈ ZRZ
2 ,

we proceed as follows. Denote by sκ the restriction of s
to a cluster κ. We initialize Ê = I and we consider three
cases.

Case 1: Isolated cluster. If κ is a isolated cluster,
we use Gaussian elimination to find an error Êκ sup-
ported on the qubits of κ whose syndrome matches s on
the internal checks of κ. Then, we add Êκ to Ê, we add
σ(Êκ) to s and we remove κ from the erasure ε. This
cluster can be corrected independently of the other clus-
ter because it is not connected to any other cluster.

Case 2: Frozen dangling cluster. If κ is a dangling
cluster and its only connecting check is frozen, we pro-
ceed exactly as in the case of an isolated cluster. This is

possible because any correction has the same contribu-
tion to the syndrome on the connecting check.

Case 3: Free dangling cluster. The correction of
a dangling cluster κ that contains a free check is delayed
until the end of the procedure. We remove κ from the
erasure and we remove its free check from the Tanner
graph T (HZ). Then, we look for a correction Ê′ in the
remaining erasure. We add Ê′ to Ê and σ(Ê′) to s. Once
the remaining erasure is corrected and the syndrome is
updated, we find a correction Êκ inside κ that satisfies
the remaining syndrome sκ in κ. We proceed in that
order because the value of the syndrome on a free check
can be adjusted at the end of the procedure to match s
using an error included in the cluster κ (by definition of
free checks).

Altogether, we obtain the VH decoder (Algorithm 3).
Our implementation is available here [25]. It works by
correcting all isolated and dangling clusters until the era-
sure is fully corrected. Otherwise, it returns Failure.

Algorithm 3: VH decoder
input : An erasure vector ε ∈ ZN2 , a syndrome

s ∈ ZRZ
2 .

output: Either Failure or an X-type error
Ê ∈ {I,X}N such that σ(Ê) = s and
supp(Ê) ⊆ supp(ε).

1 Set Ê = I.
2 Construct an empty stack L = [].
3 while there exists an isolated or a dangling cluster κ

do
4 if κ is isolated or frozen then
5 Compute an error Êκ supported on κ whose

syndrome matches s on the internal checks of κ
in T (HZ).

6 Replace Ê by ÊÊκ and s by s+ σ(Êκ).
7 For all qubits j in κ, set εj = 0.

8 else
9 Then κ is free.

10 Remove the free connecting check c of κ from
the Tanner graph T (HZ).

11 Add the pair (κ, c) to the stack L.
12 For all qubits j in κ, set εj = 0.

13 while the stack L is non-empty do
14 Pop a cluster (κ, c) from the stack L.
15 Add the check node c to the Tanner graph T (HZ).
16 Compute an error Êκ supported on κ whose

syndrome matches s on all the checks of κ in
T (HZ), including the free check c.

17 Replace Ê by ÊÊκ and s by s+ σ(Êκ).

18 if ε 6= 0 return Failure, else return Ê.

For a r × n matrix H, the complexity of the VH de-
coder is dominated by the cost of the Gaussian decoder
which grows as O(n3) per cluster and O(n4) including all
the clusters (assuming r = O(n)). Therefore the VH de-
coder can be implemented in O(N2) bit operations where
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N = Θ(n2) is the length of the quantum HGP code. Us-
ing a probabilistic implementation of the Gaussian de-
coder [26–29], we can implement the Gaussian decoder
in O(n2) operations, reducing the complexity of the VH
decoder to O(N1.5).

Algorithm 3 fails if the VH-graph of the erasure con-
tains a cycle. However, one can modify the algorithm to
eliminate some cycles by removing free checks of all clus-
ters and not only dangling clusters. This may improve
further the performance of the VH-decoder.

In comparison with our numerical results from Fig. 1,
we see that the combination of pruned peeling and VH
decoders performs almost as well as the ML decoder at
low erasure erasure rates. This is to say that cycles of
clusters, which are stopping sets for the VH decoder, are
relatively infrequent in the low erasure rate regime. This
behavior matches our intuition since errors for LDPC
codes tend to be composed of disjoint small weight clus-
ters [30].
Conclusion – We proposed a practical high-

performance decoder for the correction of erasure
with HGP codes. Our numerical simulations show that
the combination of the pruned peeling decoder with the
VH decoder achieves a close-to-optimal performance
in complexity O(N2). This decoder can be used as
a subroutine of the Union-Find decoder for LDPC
codes [31] to speed up this algorithm.

In future work, it would be interesting to adapt our
decoder to other quantum LDPC codes [32–35]. We are
also wondering if one can reduce the complexity further
to obtain a linear time ML decoder for the correction of
erasure.

Finally, it would be interesting to investigate the re-
source overhead of quantum computing architectures ca-
pable of detecting erasures based on neutral atoms [11],
trapped ions [36] or superconducting qubits [37].
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Connecting multiple processors via
quantum interconnect technologies could
help to overcome issues of scalability
in single-processor quantum computers.
Transmission via these interconnects
can be performed more efficiently using
quantum multiplexing, where information
is encoded in high-dimensional photonic
degrees of freedom. We explore the effects
of multiplexing on logical error rates in
surface codes and hypergraph product
codes. We show that, although multi-
plexing makes loss errors more damaging,
assigning qubits to photons in an intelli-
gent manner can minimize these effects,
and the ability to encode higher-distance
codes in a smaller number of photons can
result in overall lower logical error rates.
This multiplexing technique can also
be adapted to quantum communication
and multimode quantum memory with
high-dimensional qudit systems.

1 Introduction

Quantum computers are expected to solve prob-
lems that are intractable using classical compu-
tation [1, 2], but these powerful quantum algo-
rithms require high qubit counts and deep cir-
cuits to solve problems of interesting size [3, 4].
While the qubit counts of quantum processors
have been increasing rapidly in recent years, vari-
ous physical constraints impose limits on the pos-

Shin Nishio: parton@nii.ac.jp
Nicholas Connolly: nicholas.connolly@oist.jp
Thomas Rowan Scruby: thomas.scruby@oist.jp
Kae Nemoto: kae.nemoto@oist.jp

sible size of a single quantum processor [5, 6].
Quantum interconnects provide a resolution to
this problem by allowing for the networking and
cooperative operation of multiple quantum pro-
cessors [7], as well as the use of separate quan-
tum memories [8], quantum repeaters [9–12] &
networks [13–15] in analogy with classical com-
puting architectures. Optical systems are consid-
ered leading candidates for practical implemen-
tations of quantum interconnects [16] and also
as quantum memories [17] due to long coherence
times [18].

Due to the high noise levels inherent in quan-
tum systems, large-scale quantum algorithms
cannot be executed reliably without the use of
quantum error correcting codes (QECCs) [19,20],
which enable fault-tolerant quantum computa-
tion (FTQC) [21,22]. Similarly, optical intercon-
nects [7,16] can suffer from high photon loss rates
and so QECCs should be used to protect informa-
tion transmitted through these channels. In prin-
ciple, it may be preferable to use different codes
for these different settings [23], but in practice,
the transfer of information between these differ-
ent codes may be challenging enough that it is
easier to use only a single code. For instance,
fault-tolerant logic with surface codes [24] has
been very well studied [25, 26], while quantum
Reed-Solomon codes [27] provide efficient and
loss-tolerant protection for transmission through
optical channels, but it is not clear how to inter-
face or switch between these two families codes.
Therefore, for performing distributed computa-
tion with interconnects, using surface codes (or
their generalizations) for both computation and
transmission [28] is a natural alternative to us-
ing multiple codes. This is much less efficient
in the sense of error-correction capability for the
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communication part, but these overheads can be
reduced using quantum multiplexing [29].

Quantum multiplexing is a technique for en-
coding high-dimensional quantum information
onto a single photon by exploiting multiple dif-
ferent photonic degrees of freedom (DoF) or a
single multi-component degree of freedom. Such
encodings can be performed using only linear op-
tical elements and can significantly reduce the
resources associated with quantum communica-
tion [30–32]. In this work, we examine the poten-
tial of quantum multiplexing for enabling efficient
transmission of surface and hypergraph product
(HGP) codes through optical channels. Densely
encoding many qubits of these codes into small
numbers of photons has the potential to make
loss errors much more damaging, but we present
various techniques (e.g. optimized strategies for
qubit-to-photon assignment) that can mostly or
completely eliminate these downsides.

The rest of this paper is organized as follows.
In Sec. 2 we review the relevant background for
quantum multiplexing and communication over
lossy optical channels. Then in Sec. 3 we pro-
pose three approaches to error-corrected quantum
communication using multiplexing that provide
different ways of reducing the impact of loss er-
rors. This is followed up in Sec. 4 and Sec. 5
with an examination of some of these approaches
in more detail for surface codes and HGP codes
respectively. Finally, we discuss our findings and
conclude this work in Sec. 6.

2 Background

In this section, we briefly overview quantum mul-
tiplexing and erasure correction and show how
these elements appear in practical quantum com-
munication protocols.

2.1 Quantum Multiplexing

This subsection outlines the concept of quantum
multiplexing and illustrates its possible imple-
mentation with an example.

In photon-based quantum information process-
ing, various degrees of freedom (DOF) can be uti-
lized to encode qubits. Polarizations [33], time-
bins [34–36], paths (dual rail) [37], orbital an-
gular momentum [38], and frequency-bin [39, 40]
are typical examples of DOF in a single photon

which are commonly used in experiment. Multi-
level time-bins make it especially easy to en-
code high-dimensional quantum information in
a single photon. For instance, Fig. 1 shows a
method for encoding higher dimensional informa-
tion (22-dimension) using polarization and time-
bin DOF. This circuit takes a photon whose po-
larization is encoded with quantum information
as input. This input photon has one qubit of
information. After passing through this circuit,
the photon has both polarization and time-bin
degrees of freedom. The polarization encodes a
two-dimensional Hilbert space, and the time-bin
encodes a four-dimensional one. Therefore, the
Hilbert space of the final encoded state has di-
mension 4 encoding, thus, 2 qubits of informa-
tion. This encoding can easily generalized to
higher dimensional multiplexed photons as shown
in Appendix A. Significantly, encoding high-level
time-bin states only requires linear optical ele-
ments and classical optical switches.

Quantum multiplexing [29] is a method to en-
code higher dimensional quantum information in
a single photon using these multiple degrees of
freedom. In this work, we consider encoding 2m-
dimensional quantum information using m com-
ponents of a DOF per photon where m is an in-
teger (m = 1 corresponds to no multiplexing).

It is worth noticing that while quantum multi-
plexing allows for efficient communication, it also
changes the error model. In fact, in a lossy com-
munication channel, the loss of a photon causes
the simultaneous loss of multiple qubits encoded
in that photon. This can be very detrimental to
the performance of this system. However, in the
next section, we will devise several strategies for
qubit assignment to mitigate the effects of the
loss of qubits.

2.2 Erasure Channel and Correction

Let us now describe the erasure channel and de-
coding, which will play an important role in the
quantum communication protocol.

In photonic systems, the erasure error is a lo-
calized loss error of a photon due to imperfec-
tions in the photon source, the physical channel
used for its transmission, and detectors. This
is the dominant source of errors in optical sys-
tems [41, 42]. Moreover, theoretical [43–46] and
experimental [47–51] works have been proposed
on methods to map errors from different sources
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Figure 1: An example of an optical circuit encoding 22-dimensional quantum information into a single photon.

to erasure errors in multiple physical systems re-
cently. Therefore, correction of erasure errors is
of engineering importance because it can be ap-
plied in a variety of systems where erasure errors
are not the main source of error.

The erasure channel is given by

ρ → (1 − ε)ρ + ε |e⟩ ⟨e| (1)

where |e⟩ indicates the erased state, and ε is the
probability of erasure. Due to the fact that the
erased state is not in the original Hilbert space, it
is possible to detect such errors without further
damaging the encoded quantum information.

Several methods have been proposed to detect
and correct erasure errors with QECCs [52]. It is
possible to correct erasure by deforming the orig-
inal logical operator [53, 54], as well as by con-
verting erasure errors into random Pauli errors
by replacing the lost qubits with mixed states:

I
2 = 1

4(ρ + XρX + Y ρY + ZρZ). (2)

After replacing the qubits, one can perform sta-
bilizer measurements as normally occurs in sur-
face codes. Then, the erasure is converted into
random Pauli errors with the exact probabilities
(1/4) for {I, X, Y, Z}. This random Pauli can
also be regarded as independent X and Z errors
with a probability of 1/2. This allows for the de-
coding of an erasure error. The (surface code)
peeling decoder [55], which is a linear-complexity
erasure decoder using this procedure, has been
proposed as a maximum-likelihood decoder for
erasure errors in the surface code. We briefly
overview the peeling decoder and its surface code
generalization in Appendix C.

2.3 Applying quantum multiplexing to error-
corrected erasure channel

We describe the steps to perform error-corrected
quantum communication over a multiplexed era-
sure channel as an example with surface codes
illustrated in Fig. 2. As the first step, the sender
prepares an encoded quantum state. Then, in the
second step, the sender assigns and converts each
physical data qubit to a photon. In the conven-
tional case, different qubits are assigned to differ-
ent photons, whereas when quantum multiplexing
is in use, different qubits can be assigned to the
same photon. In the instance of Fig. 2, qubits 0
and 6 are attached to photon 0, qubits 1 and 7
are attached to photon 1, etc. We will discuss the
optimal assignment strategy later. For the third
step, the codeword then goes through an opti-
cal channel, which has a loss error. During the
transmission, some photons can be lost, causing
the loss of all the qubits attached to them as well.
For instance, when photon 1 is lost, qubits 1 and
7 will also be lost, as shown in Fig. 2. In the
fourth step, the receiver reconstructs (imperfect)
codewords with remaining qubits. As the final
step, the receiver converts the qubit loss to ran-
dom unitary as explained in Sec. 2.2. Then, the
decoding algorithm estimates the errors, and the
receiver performs correction. In the second part
of the paper, these steps were simulated to obtain
the performance of communication.

3 Multiplexed quantum communica-
tion with error-correcting codes

We propose three different scenarios in which
multiplexing is used to enhance the efficiency of
quantum communication. In each case, m qubits

3
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Figure 2: Flow of quantum communication with surface code using multiplexed photons. In the first step, a quantum
state is encoded into a surface code. Each circle with a number inside is the physical data qubit, and the grey
circles without any number are auxiliary qubits used for stabilizer measurement. For the second step, in a quantum
multiplexing scenario, one assigns each physical qubit of the codeword to single photons using an assignment strategy.
For instance, in this figure, two components of the time-bin DOF in each photon are used so that each photon can
encode two qubits. There is a degree of freedom in which qubit is assigned to which photon, so it is required to make
a map function. We call this function the interleaving assignment strategy. Here, the colors of the qubits indicate
which photon the qubit is encoded to, which is the result of the assignment strategy. Then, the encoded photons go
over a lossy channel. Here, we assume that we know which photons have been lost during the transmission (erasure
channel). If a photon has been lost, all the qubits in the photon have been lost. Finally, we demultiplex and decode
it to a code word of the surface code using the peeling decoder [55] and a correction method for erasure error shown
in Sec. 2.2.

are encoded into each photon, and we compare
them to the case of transmitting a codeword of a
given code C without multiplexing (m = 1). ).
The three scenarios are

(A). m codewords of C are transmitted using the
same number of photons as the m = 1 case.

(B). An m-times larger code from the same family
as C is transmitted using the same number
of photons as the m = 1 case.

(C). A codeword of C is transmitted using m-
times fewer photons than the m = 1 case.

Examples for the case of the surface code are
shown in Table. 1, where the parameters of this
code are given as [[2d2, 2, d]], with d being the code
distance. Let us now explore each scenario in
turn.

(A) Sending m different codewords

In the first scenario, the multiplexed photons are
used to encode m codewords from m independent
copies of the same code. The logical through-
put of the channel increases m fold over the no-
multiplexing case. One can assign qubits to pho-
tons so that each photon contains one qubit from
a codeword of the distinct codes. The qubits from
different codewords are correlated, but there is no
correlation among the qubits in a fixed code. This

correlation does not affect the logical error rate
of the individual codes.

(B) Sending mtimes bigger codewords

In the second scenario, a larger number of qubits
are used to encode a single codeword from a code
in the same family with an m-fold longer length.
If this scenario is applied to the surface code, it
achieves

√
m times larger distance than the no-

multiplexing case (m = 1).
Fig. 3 shows a Monte Carlo simulation of the

logical Z error rate for this scenario for the sur-
face code. To determine whether a logical Z error
occurred, we checked whether the errors left af-
ter the decoding process were anti-commutative
with a logical X operator of any logical qubit in
the codeword. Each data point in the simula-
tion is obtained from 105 shots, and the error bar
is given by the Agresti–Coull interval [56]. This
scenario introduces correlations in errors between
the qubits in the code, which may degrade the
performance. However, if m is sufficiently small
relative to the code size, the benefit gained by in-
creasing the code size is more significant. All the
programs we used to simulate multiplexed quan-
tum communication with surface codes are avail-
able here [57]. The logical error rate significantly
decreases as the code size and m increase.

Note that the logical Z error rate converges to
0.75. This is because there are two logical qubits

4

467



Scenarios
without multiplexing

1
0

4

7

3

6

5
2

1
0

4

7

3

6

5
2

1
0

4

7

3

6

5
2

...

m{

(A)
1

0

4

7

3

6

5
2

1
0

4

7

3

6

5
2

1
0

4

7

3

6

5
2

1
0

4

7

3

6

5
2( (

(B) (C)

Code parameters [[2d2, 2, d]] [[2d2, 2, d]] [[2md2, 2,
√

md]] [[2d2, 2, d]]
Number of Codes 1 m 1 1
Number of Data Qubits 2d2 2md2 2md2 2d2

Number of Photons 2d2 2d2 2d2 ⌊2d2/m⌋

Logical Error Rate - Same as without
quantum multiplexing Affected by correlation Affected by correlation

Table 1: Comparison of the surface code communication without multiplexing and three scenarios with multiplexing.
Parameters that are improved by multiplexing are in red fonts. The case without multiplexing requires one qubit
per photon. (A) The first scenario is only applicable when sending multiple codewords. This enables one to send
more codewords with the same number of photons, drastically improving the channel’s throughput. (B) The second
scenario sends the same number of codewords with the bigger code, improving the error tolerance. (C) The third
scenario sends the same codeword with fewer photons, drastically improving the channel’s throughput. The number
of photons required in scenario (C) is ⌊2d2/m⌋, where ⌊x⌋ is the floor function of x.

in the codes, and the logical Z error for each qubit
converges to 0.5; hence, the probability that both
qubits are logical Z error-free is 0.25. In practice,
this does not mean the encoded information is
recovered, though.
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Figure 3: Performance of [[2d2, 2, d]] toric codes in sce-
nario (B) with about 100 photons. Each curve shows the
case with different code sizes and the number of qubits
encoded in each photon. The logical error rate can be
reduced by increasing the number of qubits per photon
m and the code distance d.

(C) Sending original codewords with fewer
photons
In the third scenario, a smaller number of pho-
tons are used to encode a single codeword. The
code parameters are the same as the case with-
out multiplexing. It has no restriction on the
number of codewords and can improve the effi-
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Figure 4: Scenario (C) multiplexing performance for
[[200, 2, 10]] toric code with multiplexing using different
values of m (the number of qubits per photon). The
assignment of qubits to photons is uniformly random.
Increasing m allows code words to be transmitted with
fewer photons, but the logical error rate increases be-
cause multiple qubits in the same photon have strongly
correlated errors.

ciency of surface code communication in general.
This method introduces a correlation to the er-
rors. Fig. 4 shows this scenario’s logical Z error
rate versus the photon loss probability for differ-
ent values of m. It shows that as m increases, the
logical error rate decreases.

While the number of photons is less compared
to the no-multiplexing case, the effects of the cor-
related errors can be very detrimental to the per-
formance of such a system. A more suitable as-
signment of the qubits to the multiplexed pho-
tos can ideally reduce those detrimental effects.
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In the next subsection, we explore five different
strategies of qubits assignment.

4 Quantum Communication with Mul-
tiplexed Surface Codes

4.1 Assignment Strategies for Surface Codes

In this section, we describe five strategies for as-
signing qubits that take advantage of multiplex-
ing and evaluate their impact on performance.
These strategies assume that each photon con-
tains a fixed number of qubits m and can be ap-
plied in both scenarios (B) and (C). We assume
surface code communication scenario (C), where
we send the original code with ⌊2d2/m⌋ photons.
Strategy i and ii: pair with minimum and max-
imum distance Strategies i and ii are applicable
to the case with m = 2. Strategy i assigns the
nearest neighbor pair of qubits, which form an L-
shape in the 2D lattice of the toric code, to the
same photon as an example shown in Fig. 5(a).
This minimizes the Manhattan distance in the
lattice between the qubits in the same photon.

Strategy ii assigns the qubit at coordinates
(i, j) on the lattice and the qubit at coordinates
(i + d/2 − 1 mod d, j + d/2 − 1 mod d) to the same
photon. An example is shown in Fig. 5. This is
the arrangement that maximizes the Manhattan
distance, in contrast to strategy i.
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Figure 5: Examples showing possible assignments of
qubits to photons. Each numbered circle denotes a
qubit, and the color indicates the photon to which the
qubit is assigned. Strategy i, shown in (a), minimizes
the distance between qubits in the same photon, while
strategy ii in (b) maximizes this distance. Note that this
code is defined on the torus represented as a lattice with
periodic boundary conditions.

Strategy iii: random Strategy iii is a method in
which qubits are uniform-randomly selected and
assigned to photons.

Strategy iv: random + threshold Strategy iv
was designed to increase the separation between

qubits assigned to the same photon while exploit-
ing randomness. The strategy works by randomly
selecting qubits and accepting them as the set for
a photon only if the distance is greater than a cer-
tain threshold. If no suitable set of qubits can be
found the threshold value is reduced.

Strategy v: stabilizer Strategy v assigns the
qubit support of stabilizer generators to the same
photon. Realizations of this assignment strategy
on a 4 × 4 surface code are shown in Fig. 6.

Z-stabilizer X-stabilizer Mixed

Figure 6: Examples of the stabilizer-based photon as-
signment strategy for a surface code on a 4 × 4 lat-
tice. Edges representing qubits in the lattice are marked
with colored nodes indicating photon assignment. In
this lattice picture, the qubit support of Z-type stabi-
lizer generators corresponds to squares, and of X-type
stabilizer generators corresponds to crosses. Each pho-
ton in the stabilizer assignment strategy represents the
qubit-support of one of these stabilizers.

We describe the details and the motivation of
each strategy in Appendix. B

4.2 Performance of the assignment strategies

Here, we show the performances of these strate-
gies observed in numerical simulations.

Fig. 7 (A) shows the performance of strate-
gies i to iv, which are applicable to the case
of m = 2. The performance of the distance-
maximizing strategy (grey) outperforms the
distance-minimizing strategy (brown). Logical
errors in the toric codes correspond to errors cov-
ering a longitude or meridian curve on the torus
(a vertical or horizontal closed loop in the pe-
riodic lattice). When decoding erasure errors,
logical errors can only occur when the qubit-
support of one of these vertical or horizontal
loops is entirely erased. When adjacent qubits
in the lattice are erased, as in the case with the
distance-minimizing photon assignment strategy,
clusters of errors are more likely to cover such
loops in the torus. Hence, it is not surpris-
ing that the distance-maximizing strategy out-
performs the distance-minimizing strategy in our
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Figure 7: Comparison of multiplexing photon-assignment strategies for toric codes. Logical Z error rate versus photon
loss probability. The black curve shows the case without multiplexing. (A) The code parameters are [[200, 2, 10]] and
m = 2. The gray/brown curve shows the case for the assignment strategy for minimizing (strategy i) / maximizing
(strategy ii) the distance between a pair of qubits in the same photon. The orange curve shows the case for uniformly
random (strategy iii), and the blue line shows strategy iv, based on the algorithm 1. (B) The code parameters
are [[288, 2, 12]] and m = 4. Z stabilizer-based assignment with light blue curve outperformed X stabilizer-based
assignment with light orange curve for logical Z error. The mixed stabilizer-based assignment strategy performs
between X and Z. Strategy iv (blue) outperforms other assignment strategies for low error rate areas.

numerical simulations. It also showed that the
strategies with randomness (iii and iv) outper-
form deterministic ones (i and ii). In particular,
strategy iv outperformed the other strategies, al-
though there was an increase in logical Z-error
probability compared to no multiplexing.

Next, we compare the logical Z error rates of
strategies iii, iv, and v with m = 4 in Fig. 7 (B).
Assignment strategies based on one type of stabi-
lizer create a bias in observed logical error rates.
Strategy v can be generalized to any stabilizer
code, and the assignment strategy based only on
the support of X or Z stabilizers will increase the
error rate of one of X or Z and decrease the other.
This result implies that the stabilizer-based as-
signment may be useful in quantum error correc-
tion codes with different X and Z distances.

Both Fig. 7 (A) and (B) showed that the strat-
egy iv randomness + threshold outperformed the
other strategies. Maximizing the distance be-
tween qubits while also introducing randomness
gives the largest boost in performance against
logical errors. Note that no assignment strategy
does better than the case with m = 1 where no
multiplexing is used.

We also analyzed the difference in the perfor-
mance between cases with multiplexing (m = 4)

and without it (m = 1), as shown in Fig. 8. When
physical error rates are low, this difference de-
creases with increasing code distance, suggesting
that the downsides of multiplexing are less signif-
icant in larger codes.
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Figure 8: Difference of logical Z error rates for m = 4
(p4

L) and m = 1 (p1
L) for various photon loss probabilities

(p). For low p (0.3 ~ 0.42), the gap decreases to 0 as d
increases.
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5 Quantum Communication with Mul-
tiplexed Hypergraph Product Codes
5.1 Hypergraph Product Code Structure
In addition to our exploration of the surface code,
we also consider the use of multiplexing with hy-
pergraph product (HGP) codes [58], of which sur-
face codes are a special case. HGP codes are a
special class of CSS code defined using any two
classical linear codes. They are of particular in-
terest because they can have an asymptotically fi-
nite rate as the code length increases (in contrast
with the surface code, which has a rate approach-
ing 0) and distance proportional to the minimum
distance of the classical codes; in the best case,
this is proportional to the square root of the quan-
tum code length. They are also considered prac-
tical candidates for FTQC codes.

Given classical parity check matrices H1 and
H2 with sizes r1 × n1 and r2 × n2, respectively,
we may define the matrices HX and HZ of a CSS
code via the formulas

HX = (H1 ⊗ In2 |Ir1 ⊗ HT
2 ) (3)

HZ = (In1 ⊗ H2|HT
1 ⊗ Ir2). (4)

These matrices satisfy the condition HXHT
Z = 0

by construction and hence define a valid CSS code
HGP(H1, H2). When H1 and H2 are low-density
parity checks (LDPC), HX and HZ will also be
LDPC. The sizes of HX and HZ are determined
by the sizes of the input classical matrices accord-
ing to the formulas

HX = [r1n2 × (n1n2 + r1r2)] (5)
HZ = [r2n1 × (n1n2 + r1r2)]. (6)

These both simplify to rn×(n2+r2) in the special
case where r1 = r2 = r and n1 = n2 = n.

HGP codes have a geometrically rich Tanner
graph structure which can be visualized as the
cartesian product of the Tanner graphs for the
two input classical codes as shown in Fig. 9. The
subgraph corresponding to each row and column
in this Tanner graph block structure can be un-
derstood as the classical Tanner graph for one of
the classical codes used in the construction. As
shown in the figure, qubits are represented by cir-
cular nodes, and stabilizer checks of both types
are represented by square nodes. Additional de-
tails regarding this construction are discussed in
Appendix D.1.

n1

n2

r1

r2

H2 =
[
1 1 0 0
0 0 1 1

]

H
1

= [1
1

1
1

1
1

1
1 ]

= qubit
= Z-stabilizer
= X-stabilizer

HX =


1000100010001000 1000
0100010001000100 1000
0010001000100010 0100
0001000100010001 0100
1000100010001000 0010
0100010001000100 0010
0010001000100010 0001
0001000100010001 0001

 HZ =


1100000000000000 1010
0011000000000000 0101
0000110000000000 1010
0000001100000000 0101
0000000011000000 1010
0000000000110000 0101
0000000000001100 1010
0000000000000011 0101



Figure 9: Example of the Tanner graph for a simple
HGP code HGP(H1, H2) constructed from two classical
codes with parity check matrices H1 and H2. This is the
cartesian product of two classical Tanner graphs, and
the subgraph corresponding to each row and column in
the product is a copy of one of these classical Tanner
graphs. This product structure can be partioned into
four quadrants, each representing a different structural
component of the HGP code. The nodes in the upper-
left and lower-right blocks denote qubits. The nodes
in the upper-right block denote Z-stabilizer generators;
these correspond to the rows of HZ . Similarly, the nodes
in the lower-left block denote X-stabilizer generators;
these correspond to the rows of HX .

Surface codes may also be recovered as a spe-
cial case of hypergraph product code. Using par-
ity check matrices H1 and H2 for a classical rep-
etition code, HGP(H1, H2) is exactly the toric
code. Hence, adapting the multiplexing strate-
gies discussed in Sec. 4 to this more general class
of codes is a natural next question. However, the
linear-time maximum-likelihood generalization of
the peeling decoder [55] used in our previous sim-
ulations is only defined for the special case of the
surface code. This decoder leverages the lattice
structure of the surface code to ensure that the
erasure subgraph can be completely peeled (Ap-
pendix C.3), but this technique does not apply
to generic HGP codes. Instead, we introduce an-
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other generalization of the peeling algorithm to
extend our numerical analysis to HGP codes as
well.

5.2 Pruned-Peeling + VH Decoder

The pruned peeling + VH decoder [59] is a gener-
alization of the peeling algorithm (outlined in Ap-
pendix C) specifically designed for HGP codes. It
has quadratic complexity and close to maximum-
likelihood performance at low erasure rate, mak-
ing it practically useful for our simulations. This
decoder is a modified version of the standard clas-
sical peeling decoder based on analysis and cor-
rection of two common types of stopping sets,
which are patterns of erased qubits that cannot
be corrected by simple peeling.

A stabilizer stopping set occurs when the era-
sure pattern covers the qubit support of an X-
or Z-type stabilizer. The pruned peeling decoder
attempts to fix these by removing a qubit from
the erasure, thus "breaking" the stabilizer sup-
port and possibly allowing the peeling algorithm
to become unstuck. Classical stopping sets are
patterns of erased qubits supported entirely on a
single row or column in the HGP Tanner graph
block structure of Fig. 9; any stopping set for a
HGP code can be decomposed into a union of
components of this form. The VH decoder al-
gorithm attempts to order and efficiently solve
each of these classical stopping sets in sequence.
The combination of these decoding strategies is
referred to as the combined decoder (peeling +
pruned peeling + VH). A more detailed explana-
tion is included in Appendix C.4.

The combined decoder is not a maximum likeli-
hood decoder. In addition to logical errors, there
still exist patterns of erased qubits where the de-
coder becomes stuck in a stopping set, leading to
a decoder failure. We introduce the term error
recovery failure to refer to both decoder failures
and logical errors (discussed in Appendix D.2).
Our numerical simulations for HGP codes are al-
ways with respect to the error recovery failure
rate.

Fig. 10 shows the numerical performance of the
combined decoder applied to the 10 × 10 surface
code for comparison with the replotted data from
Fig. 4, which shows the performance of the ML
decoder applied to this same code. The perfor-
mance degradation is explained by the presence
of decoder failures that do not exist in the ML
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Figure 10: Performance of non-ML combined decoder
(peeling + pruned peeling + VH) as shown in solid
curves and the surface code peeling decoder as shown in
dashed curves applied to the [[200, 2, 10]] toric code using
the uniformly random assignment strategy with different
numbers of qubits in a single photon, m.

case. Even though it is not ML, the pruned peel-
ing + VH decoder is still practically useful for
our numerical simulations since decoder failures
are infrequent at low erasure rates.

5.3 Assignment Strategies for HGP Codes

As with the surface code, quantum multiplex-
ing can also be utilized with HGP codes. In
this section, we analyze the performance of HGP
code communication in scenario (C). The scenar-
ios previously proposed in Sec. 4 are also valid for
HGP codes, but unlike the special case of the sur-
face code, the distance between any two qubits in
a generic HGP code is not easily inferred from a
grid. Hence, we do not consider the previously in-
troduced strategies which use distance. We also
introduce several new strategies for HGP codes
based on stopping sets for the pruned peeling +
VH decoder. These strategies are summarized in
Table 2, and technical details are included in Ap-
pendix D.3.

Strategy i: random The simplest assignment
strategy is based on assigning qubits to photons
at random.

Strategy ii: stabilizer The stabilizer assign-
ment strategy assigns qubits to photons so that
photons correspond to the qubit-support of a sta-
bilizer. This strategy is motivated by the fact
that the pruned peeling decoder is designed to
correct erased stabilizers.
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Strategy ii. Stabilizer Strategy iii. Sudoku Strategy iv. Row-Column Strategy v. Diagonal

Table 2: Examples of four different photon assignment strategies for the simple HGP code shown in Fig. 9. (ii.)
Each photon in the stabilizer strategy is the qubit-support of an X or Z-type stabilizer generator, identified as a row
of HX or HZ . The number of qubits per photon is a fraction or multiple of the weight of the corresponding row.
(iii.) In the sudoku strategy, each qubit of a given photon is contained in a different row or column of the HGP
Tanner graph. (iv.) Using the row-column strategy, each qubit of a given photon is contained in the same row or
column of the HGP Tanner graph. (v.) Photons from the diagonal strategy contain qubits from the same diagonal
slice of the HGP Tanner graph, allowing diagonal lines to wrap around. For strategies iii., iv., and v., the number of
qubits per photon is a fraction or multiple of the shortest side length in the block structure.

Strategy iii: sudoku The sudoku strategy
assigns qubits to photons at random subject to
the condition that qubits within a given photon
come from different rows and columns in the HGP
Tanner graph structure. It is motivated by the
goal of reducing classical stopping sets, a com-
mon source of peeling decoder failures for HGP
codes. We name this the sudoku strategy due to
its resemblance to the popular game.

Strategy iv: row-column In contrast to su-
doku, the row-column strategy chooses qubits in a
given photon from the same row or column of the
HGP Tanner graph structure. It seeks to max-
imize the number of classical stopping sets and
hence decoder failures. The row-column strategy
can be interpreted as a worst-case scenario.

Strategy v: diagonal The diagonal assign-
ment strategy is based on dividing the qubit
blocks in the HGP Tanner graph into diagonal
slices. Qubits from the same diagonal slice are
assigned to the same photon. This is a modified
version of the sudoku strategy which does not use
randomness but still seeks to minimize classical
stopping sets and hence decoder failures.

To compare the effectiveness of these strategies,
we have simulated their performance for several
codes at different multiplexing values as shown
in Fig. 11 and Fig. 12. To understand these re-
sults, the case with no-multiplexing (m = 1) is
used as the baseline. An assignment strategy is
considered good if its failure rate is not signifi-
cantly worse than the m = 1 case. Interestingly,
our numerical simulations consistently show that
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Figure 11: Multiplexing decoder performance for a
[[320,82]] non-equal block (16 × 16 and 8 × 8) HGP
code at fixed m = 8. In this example, strategy (v)
diagonal outperforms all other strategies, including the
no-multiplexing case.

the performances of some strategies (random, su-
doku, and diagonal) are almost equivalent to or
even exceed the m = 1 case, even at high mul-
tiplexing values. However, the row-col and sta-
bilizer strategies are never seen to be effective in
our results.

Fig. 11 shows an example of a code where
the diagonal strategy consistently outperforms all
other strategies, even the no-multiplexing case,
and even at low erasure rates. This result is
significant because even though multiplexing re-
duces the number of required physical resources,
it is possible to improve the decoding perfor-
mance while doing so. In fact, an analysis of these
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Figure 12: Comparisons of multiplexing decoder performance for a [[512,8]] equal-block (16×16) HGP code obtained
from the symmetric construction with r = n = 16 using various assignment strategies for m = 4 and m = 16. In
both cases, the random, sudoku, and diagonal strategies are seen to be effectively equivalent to the no-multiplexing
case, even at low erasure rates.

results reveals that the diagonal strategy yields
fewer logical errors than the no-multiplexing case
at the same physical erasure rate. This appears
to be a feature of the structure of the logical oper-
ators in the randomly generated code used in this
simulation, even though the strategy was not de-
signed with this in mind. This also explains the
gap between the sudoku and diagonal strategies,
both of which have similar amounts of decoder
failures but differ with respect to logical errors.
These results show that strategies designed to
avoid decoder failures can have comparable (or
even favorable) performance relative to the no-
multiplexing case.

Although not identical, we observe similar per-
formance for a larger HGP code, as shown in
Fig. 12. The random, sudoku, and diagonal
strategies have nearly identical performance to
the no-multiplexing case regardless of the cho-
sen multiplexing number. (Simulations include
m ∈ {2, 4, 8, 16}, although only plots for m = 4
and m = 16 are shown.) Furthermore, these
results hold consistently at a low erasure rate,
which is the regime of practical interest. This
is significant because it implies there is no loss
in performance when multiplexing, even though
fewer physical resources are required, provided
the assignment strategy is adapted to the de-
coder. If an ML decoder were used (e.g., Gaus-
sian elimination rather than peeling + pruned
peeling + VH), a gap is expected between the

multiplexing and no-multiplexing cases. How-
ever, given that the combined decoder is a faster,
more efficient alternative to a true ML decoder
for HGP codes, these results are very promising.

All the programs we used to simulate multi-
plexed quantum communication with HGP codes
are available here [60].

6 Discussion and Conclusion
We proposed three error-corrected quantum in-
formation processing scenarios for quantum mem-
ory storage and communication with quantum
multiplexing over an erasure channel. We have
shown that quantum multiplexing can improve
throughput or resilience to errors, easing the bot-
tleneck in quantum systems. This work can be
adapted to error-corrected quantum communica-
tion [28] with quantum interconnects, quantum
repeaters, and multimode quantum memory [61].

For multiplexed quantum communication, if
multiple qubits in a single code word are encoded
into the same photon, a correlation of errors in
those qubits will be introduced. The simulation
results show that it leads to an increase in the
logical error rate. We showed that this perfor-
mance gap can be significantly mitigated by intro-
ducing a code-aware (or decoder-aware) strategy
to assign qubits to photons, which exploits code
structure. In particular, for the surface codes,
randomness and also distance maximization are

11

474



important factors for achieving this. For HGP
codes with the VH decoder, minimizing decoder
failures was found to be the most important fac-
tor.

These techniques can also be exploited to ben-
efit other families of codes and decoders. Fur-
thermore, it is possible to deal with the gap by
increasing the code size. We have also shown
that it is possible to introduce biased error by
using a stabilizer-based assignment strategy. In
the special case of the diagonal strategy for the
HGP code of Fig. 11, we see that the photon-
correlated errors offer an improvement over the
no-multiplexing case. In this example, the im-
provement can be explained by the fact that the
diagonal strategy reduces logical errors in addi-
tion to decoder failures. Furthermore, this shows
the existence of strategies that improve over no-
multiplexing despite the fact that fewer resources
are used.

Even though a linear-time ML decoder has not
yet been discovered for generic HGP codes as it
has been for surface codes, the use of HGP codes
with quantum multiplexing should not be over-
looked. Unlike surface codes, which have fixed di-
mension 2, HGP codes can be chosen so that code
dimension k increases linearly with code length
n. This can be significant for applications us-
ing increasingly long codes since the code rate
need not approach 0 in the HGP case. Further-
more, while an ML decoder is ideal, non-ML de-
coders are often good enough for error correction
in the regime of practical interest. The speed-up
gained by using a more efficient decoder can offset
new errors that might arise when using a slower
decoder. Our numerical results for HGP codes
show that decoder-aware strategies enable us to
gain all of the benefits of quantum multiplexing
without sacrificing any additional performance.
This, combined with the throughput advantage
HGP codes have over the surface code, is a very
promising practical result.

Although we propose several promising can-
didates, the optimal assignment strategy for
both surface codes and HGP codes is still un-
known. Furthermore, in actual communication
with quantum multiplexing, various errors may
occur when converting qubits in the quantum
processor to photons, measuring stabilizers, and
substituting erased qubits with mixed states.
How to deal with these errors is a practically im-

portant next question.
Multiplexing could also be used for qubit → qu-

dit encodings in non-photonic systems where loss
errors are not the dominant source of noise. In
these cases error locations may not be known and
so knowledge of the assignment strategy could be
used to inform decoding.
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A Encoding 2k dimensional quantum
information in a photon
Here we show the circuit for encoding 2k dimen-
sional quantum information into time-bin in one
photon in Fig. 13 where level i block is defined
in Fig. 14. In the first half of the circuit, level
i block is used to introduce a new component of
the time-bin by applying a delay. Then, in the
middle of the circuit, each state corresponds to a
different mode. In the second half of the circuit,
multiplexed photons are output to one mode by
applying the optical switches, forming a complete
binary tree. This encoding circuit can prepare a
photon with 2k dimensional time-bin and 2 di-
mensional polarization in linear time for k.

B Assignment strategies for surface
codes
In this appendix, we describe the details and dis-
cussions on each assignment strategy.

strategy i and ii: pair with minimum and max-
imum distance The Manhattan distance between
qubits within the same photon is crucial when
considering the impact of correlated errors. These
strategies are deterministic and can be realized
with simple calculations.

strategy iii: random Errors with strong cor-
relation are similar to burst errors in classical
communication in the sense that the errors have
spatial locality. This locality of errors can be
addressed by classical error-correcting codes us-
ing two methods. The first method treats mul-
tiple bits as a single symbol (an element of a fi-
nite field), such as BCH codes and Reed-Solomon
codes [62]. Thanks to the high ability to cor-
rect burst errors, Reed-Solomon codes are used in
many classical systems, including QR codes [63],
CDs, and satellite communications. Another
method is the interleaving [64] technique. In-
terleaving eliminates locality by permuting the

rows and columns of the code’s generator ma-
trix. There is also a method to apply interleav-
ing to QECCs [65]. Inspired by interleaving, we
have constructed two strategies for quantum mul-
tiplexing with randomness.

strategy iv: random + threshold The fourth
strategy is a modified version of the third strat-
egy. The pseudo-code is shown below in Algo-
rithm 1. The flow of the algorithm is as follows:
A “threshold” T is set as 2/d−1, which is the max-
imal distance between two qubits in the [[2d2, 2, d]]
toric codes. This value will be used to check that
the set of qubits in the same photon has enough
distance between each other. Then, it randomly
assigns qubits for each photon while respecting
the distance threshold. It randomly selects the
first qubit of the photon, then it randomly se-
lects a qubit again and takes it as a candidate
to assign it to this photon. When the distance
between the candidate qubit and the qubit(s) al-
ready in the photon is greater than the thresh-
old, the qubit is accepted, and when it is less, it
is rejected. This procedure is repeated until the
photon has been fulfilled. If no qubit satisfies the
threshold, the threshold value is lowered by one.
This is to ensure that the algorithm will always
finish running. By repeating this process, we can
assign all the qubits to photons. This strategy is
designed to have randomness and to increase the
distance between qubits in the same photon.

This algorithm requires calculating the dis-
tance between two qubits, which is easy for the
surface codes because the taxicab metric defines
the distance (Manhattan distance). Note that
this and other assignment strategies can still be
applied even if the number m of qubits per photon
is not a divisor of the total number of qubits. In
this case, we allow for a final “remainder” photon
containing fewer than m qubits.

Strategy v: Stabilzier Error correction on the
surface code is always considered up to multi-
plication by a stabilizer. This suggests that it
may be useful to define photons using the qubit-
support of a stabilizer check. Since the stabi-
lizer generators for the surface code correspond
to squares and crosses in the lattice, they have
weight 4. On a d × d lattice, if d is divisible by 4,
it will always be possible to partition the lattice
into squares and crosses. In this perspective, the
L-shapes used in the minimum-distance strategy
can be thought of as “half-stabilizers” in the lat-
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DOF introduced to the state.

tice. Since the usual strategy for converting an
erasure problem into an error correction problem
involves assigning erased qubits Pauli errors ran-
domly, this stabilizer assignment strategy uses a
mix of Z and X-type stabilizer generators from
both squares and crosses. In this case, qubits are
equally partitioned into the two types of stabiliz-
ers by tiling the lattice with alternating diagonal
lines of squares and crosses.

C Peeling Decoder

The peeling decoder refers to a linear-complexity
erasure decoding algorithm originally designed
for classical codes [66]. This algorithm cor-
rects an erasure error by examining the subgraph
of the Tanner graph corresponding to erased
bits, whereby degree-1 check nodes in this sub-
graph give perfect information about adjacent bit
nodes. Although not a maximum-likelihood de-
coder, the peeling decoder works well for codes
with sparse Tanner graphs, such as LDPC codes.
Because this algorithm only uses the Tanner
graph, it can be directly applied to CSS codes
as well. In this section, we briefly summarize the

peeling decoder algorithm and several of its vari-
ations, beginning with a review of the classical
erasure setting.

C.1 Peeling Algorithm for Classical Codes

For a classical code, an erasure error on a code-
word can be modeled as the loss of a known subset
of bits. By assigning these erased bits the values 0
or 1 at random and then making a syndrome mea-
surement, the erasure correction problem can be
converted into an error correction problem. Un-
like standard error correction, we make the ad-
ditional assumption that non-erased bits do not
have errors. Hence, it is sufficient to consider
error correction using the subcode corresponding
only to erased bits. In terms of the Tanner graph,
this is equivalent to considering the subgraph in-
duced by the erasure (consisting of the subset of
erased bit-nodes and any adjacent check-nodes).
The peeling algorithm is defined in terms of this
erasure-induced subgraph.

A check is said to be dangling if it has de-
gree 1 in the subgraph (i.e. a dangling check
is adjacent to exactly one erased bit). Recall
that each check-node corresponds to a position
in the syndrome vector for the randomly selected
erasure-supported error. The value of the syn-
drome bit corresponding to a dangling check gives
perfect information about the error on the ad-
jacent erased bit. Based on this, the error on
this bit can be corrected and then removed from
the original set of erased bits, thus shrinking the
erasure-induced subgraph and possibly introduc-
ing new dangling checks. The peeling decoder
functions by performing a sequence of partial cor-
rections, one erased bit at a time, hence "peel-
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Algorithm 1: Strategy iv. random +
threshold
Input: P = {pi} (the set of photons)

where initially pi = {∅} (the set of
qubits to be encoded in the ith

photon), Q = {qj} (the list of all
physical qubits in the code), and
the number m of qubits in a single
photon.

Output: P = {pi} (set of set of qubits in
ith photon).

1 Initialize the threshold with T := d
2 − 1;

2 for photon pi ∈ P do
3 Pick a qubit qj ∈ Q randomly.;
4 Move qj from Q to pi;
5 while |pi| < m do
6 while |pi| < m and Q ̸= ∅ do
7 Pick a candidate qubit qk ∈ Q

randomly;
8 if qk has minimum distance

greater than T from all the
qubits in pi then

9 Move qk from Q to pi;
10 else
11 Move qk from Q to a waiting

list Q′;
12 Move all qubits in Q′ to Q;
13 Update T := T − 1;
14 Return P ;

ing" the subgraph until no dangling checks re-
main. This process is shown visually in Fig. 15
and briefly summarized in Algorithm 2.

The decoding is successful if all erased bits have
been corrected. A decoding failure occurs when
all dangling checks have been peeled, but the re-
maining erasure is nonempty (i.e. all remaining
checks in the subgraph have degree 2 or higher).
Such a configuration is referred to as a stopping
set. If an erasure pattern contains a stopping set,
then the peeling algorithm will fail to find a cor-
rection. In particular, because the algorithm may
not even return to the codespace, this shows that
peeling is not a maximum-likelihood decoder.

C.2 Peeling Algorithm for CSS Codes

Erasure correction for a quantum code is modeled
similarly to the classical case, with an erasure er-
ror on a codeword corresponding to the loss of a

t

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


Figure 15: Example of the peeling algorithm applied to
an erasure-induced subgraph of the Tanner graph of the
classical code C = Ker(H), where circle-nodes denote
bits and square-nodes denote checks. Gray edges and
nodes are not included in the erasure. Red squares indi-
cate a dangling check (degree 1 check-node in the sub-
graph). At each time step, a dangling check and adja-
cent erased bit are removed from the erasure, until the
erasure is empty.

known subset of qubits. As in the classical case,
erasure correction can be converted into error cor-
rection, with the modified rule that erased qubits
are assigned Pauli errors in {I, X, Z, Y } at ran-
dom in the quantum case. For a CSS code, errors
can be corrected by applying the peeling algo-
rithm two times, once using the classical Tanner
graph for HZ and once again for HX . Since X-
and Z-type Pauli errors are corrected indepen-
dently, the same initial erasure pattern is used
both times.

C.3 Peeling Algorithm for Surface Codes

The surface code peeling decoder refers to a gen-
eralization of this algorithm adapted to surface
codes [55], which uses additional information
about stabilizers in the code. Before applying
the standard peeling algorithm, the modified al-
gorithm first computes a certain acyclic subgraph
of the usual erasure-induced subgraph. By lever-
aging stabilizer equivalences, it is sufficient to
apply the peeling algorithm only to this acyclic
subgraph to correct the entire erasure error; the
random values assigned to erased qubits not in-
cluded in this subgraph are assumed to be cor-
rect. The advantage here is that an acyclic graph
does not contain stopping sets; the peeling algo-
rithm will always successfully terminate with a
predicted erasure correction when applied to the
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Algorithm 2: Peeling Algorithm
Input: A code Ker(H) with Tanner

graph G, a set of erased bits E,
and a syndrome vector s.

Output: A predicted error ê ⊆ E such
that Hê = s, or Failure.

1 Initialize ê = ∅;
2 while E ̸= ∅ do
3 Compute erasure subgraph GE ⊆ G;
4 if ∃ dangling check si ∈ GE then
5 if si is unsatisfied then
6 Error on adjacent bit bj ∈ E;
7 Flip bit bj , update syndrome s;
8 Update ê := ê ∪ {bj};
9 else

10 No error on adjacent bit bj ;
11 Update E := E \ {bj};
12 else
13 Return Failure;
14 Return ê;

acyclic subgraph in question. Hence, unlike the
standard peeling decoder, the surface code peel-
ing decoder is maximum-likelihood.

It remains to comment on how we compute
this acyclic subgraph of the erasure-induced sub-
graph of the Tanner graph for the surface code.
To explain this, we consider the usual depiction
of a distance d surface code on a d × d lattice,
whereby qubits are identified with edges in the
lattice and X- and Z-type stabilizer checks are
identified with vertices and plaquettes, respec-
tively. That is say, the HX -computed syndrome
for Z-type Pauli errors on qubits is visualized by
the subset of vertices corresponding to unsatis-
fied X-checks. A similar visualization for X-type
Pauli errors is possible using the dual graph of
this lattice picture. In the context of an erasure
error, a subset of erased qubits is visualized by a
corresponding set of erased edges in the surface
code lattice. This erasure can also be thought
of as the subgraph of the lattice consisting of
erased qubit-edges and any vertices adjacent to
these edges (not to be confused with the related
erasure-induced subgraph of the Tanner graph).

After assigning erased qubits Pauli errors at
random, as usual, we consider the correction of Z-
and X-type errors independently. In the Z-error
case, the syndrome corresponding to the unsat-
isfied X-checks is a subset of the vertices in the

erasure-induced subgraph of the lattice. The al-
gorithm proceeds by computing a spanning tree
of the erasure-induced subgraph of the lattice (or
a spanning forest in the case of a disjoint sub-
graph). This spanning tree in the lattice also
corresponds to a subgraph in the Tanner graph
of HX ; each leaf in the spanning tree corresponds
to a dangling check in the subgraph. In this way,
we obtain the acyclic subgraph of the erasure-
induced subgraph of the Tanner graph mentioned
earlier. Any two spanning trees are equivalent up
to multiplication by stabilizers, as are the pre-
dicted errors obtained via the peeling algorithm.
The X-errors are corrected in exactly the same
way, except using the dual lattice.

This modified peeling algorithm is a linear-
complexity, maximum-likelihood decoder for the
surface code. We use this algorithm in our nu-
merical simulations for the surface code. Our im-
plementation of the surface code peeling decoder
is available in [57]. This process is briefly sum-
marized in Fig. 16 and 17.

Spanning Tree

Z
Z

Z

Unknown 

actual errors

(1) (2) (3) (4)

Figure 16: Illustration of the error correction process for
an example of erasure errors with the surface code lat-
tice. (1) Erased qubits are shown in bold grey lines. (2)
Erasure errors are converted to random Pauli errors by
replacing erased qubits with mixed states. The syndrome
(indicated by the red vertices) is then computed by ap-
plying stabilizer measurement as explained in Sec. 2.2.
(3) Information seen by the decoding algorithm: era-
sure pattern and syndrome. (4) A spanning tree for the
erasure pattern in the lattice is computed; this is identi-
fied with a corresponding acyclic subgraph of the Tanner
graph. The surface code peeling decoder then corrects
the qubits one by one using this subgraph.

C.4 Peeling Algorithm for HGP Codes

The pruned peeling + VH decoder [59] is yet
another generalization of the peeling decoder
adapted to the special case of HGP codes. As
mentioned in Appendix C.2, because these are a
type of CSS code, the standard peeling algorithm
can be directly applied to HGP codes. However,
this algorithm performs very poorly in practice,
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Correction

Remaining Errors 

and

 Syndrome

t

Figure 17: Peeling process to decode the erasure error
pattern given in Fig. 16. Grey edges indicate the span-
ning tree in the surface code lattice and red vertices
indicate the syndrome. The peeling algorithm is ap-
plied to the corresponding subgraph of the Tanner graph.
Blue edges indicate corrections applied to qubits. Each
time step denotes one iteration of the peeling algorithm,
whereby the erasure is reduced by one qubit.

even for LDPC codes. This poor performance
can be explained by the presence of stopping sets
unique to HGP codes which have no analogue in
the classical case. These stopping sets can be
grouped into two types: stabilizer and classical,
both of which cause the decoder to fail. The
pruned peeling + VH decoder is designed to ad-
dress these stopping sets.

Stabilizer stopping sets occur when the erasure
contains the qubit-support of an X- or Z-type
stabilizer. Recall that, for a CSS code, X- and Z-
stabilizers overlap on an even number of qubits.
Hence, restricting to the Tanner graph of HZ ,
the check-nodes in the subgraph corresponding
to the qubit-support of an X-stabilizer all have
even degrees. In particular, there exist no dan-
gling checks (which have degree 1) and hence this
is a peeling decoder-stopping set. A similar re-
lationship holds for Z-stabilizers in the Tanner
graph of HX .

Such a stopping set can be modified by fix-
ing a value at random for one qubit of the sta-
bilizer and removing this qubit from the erasure.
This reduces the degree of a single check-node
in the erasure subgraph by 1, possibly introduc-
ing a dangling check and allowing the standard
peeling algorithm to become unstuck. Removing
a qubit from the erasure is equivalent to declar-
ing the random mixed state on this qubit to be
correct. This technique is valid for CSS codes
because there exists a solution on the remaining
erased qubits in the stabilizer-support such that
the combined contribution to the error is at most
a stabilizer. This procedure, known as pruned
peeling, is applicable to any CSS code, not just
HGP codes.

Classical stopping sets are another common
type of peeling decoder stopping set which are
only defined for HGP codes. These refer to pat-
terns of erased qubits supported entirely on a sin-
gle row or column in the HGP Tanner graph block
structure of Fig. 9. In the simplest case, a peeling
decoder stopping set for one of the classical codes
used in the HGP construction lifts to a classical
stopping set for the HGP code. Furthermore, any
HGP peeling decoder stopping set can be decom-
posed into a union of vertical and horizontal sets
on the columns and rows of the Tanner graph;
although we refer to these components as classi-
cal stopping sets, a single component in isolation
need not be a stopping set for the corresponding
classical code.

The VH decoder algorithm functions by order-
ing and efficiently solving each of these classical
stopping sets in sequence, when possible, using
the Gaussian decoder. The basic premise relies
on the fact that, for a HGP code of length N ,
the component classical codes have length on the
order of

√
N . Hence, even though Gaussian elim-

ination (which has cubic complexity in the code
length) is usually too slow for practical use, the
complexity is reduced when restricted to a single
classical stopping set. However, classical stop-
ping sets often overlap (i.e. share a check-node in
the Tanner graph), in which case the two stopping
sets cannot be resolved independently without in-
troducing some additional restrictions. By check-
ing these conditions, the VH decoder attempts to
find solutions for classical stopping sets which are
compatible in these overlapping cases. If such a
solution is found for each classical stopping set,
these combine to give a solution for the HGP
code. However, there exist erasure configurations
where the VH decoder becomes stuck as well. In
general, these will occur when there exist cycles
of classical stopping sets in the erasure-induced
subgraph.

The pruned peeling + VH decoder refers to the
combination of these three strategies (standard
peeling, correction of stabilizer stopping sets, and
correction of classical stopping sets). For simplic-
ity, we also use the term combined decoder to re-
fer to peeling + pruned peeling + VH. A stopping
set for the combined decoder meets three condi-
tions: there exist no remaining dangling checks;
the remaining erasure does not cover the qubit-
support of a stabilizer; remaining classical stop-
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ping sets form a cycle. Although these happen
infrequently at a low erasure rate, an erasure pat-
tern of this form will result in a decoder failure.
These are distinct from logical errors, which can
only be identified in numerical simulations where
the decoding algorithm successfully terminates.
The maximum-likelihood decoder always termi-
nates, and thus, logical errors are the only source
of failures. Although we make a distinction be-
tween these two possibilities, we will use the term
error recovery failure to refer to either a decoder
failure or a non-decoder failure logical error. A
more detailed discussion of these differences is in-
cluded in Appendix D.2.

The computational complexity of the combined
decoder is dominated by the step applying cubic-
complexity Gaussian elimination to classical stop-
ping sets (peeling and pruned peeling both have
linear complexity). The number of classical stop-
ping sets is on the order of the number of rows
and columns in the Tanner graph (

√
N for an

HGP code of length N). Furthermore, since clas-
sical stopping sets have a size of approximately√

N , the effect of Gaussian elimination on a sin-
gle classical stopping set contributes O(N1.5) to
the complexity. This becomes O(N2) across all
classical stopping sets, establishing this algorithm
as a quadratic complexity decoder for HGP codes.

D Additional Details for HGP Codes
D.1 Symmetric Constructions
Recall equations 3 and 4 used to define the par-
ity check matrices for HGP codes. The the sizes
of the matrices HX and HZ obtained in this way
are determined by the sizes of the input classi-
cal matrices H1 and H2. Hence, the number of
qubits and stabilizer checks are controlled by the
size of the input classical matrices; equations 5
and 6 give the exact dimensions for HX and
HZ obtained from matrices H1 = [r1 × n1] and
H2 = [r2 × n2]. Referring to the Tanner graph of
Fig. 9, the n1 × n2 and r1 × r2 blocks denote the
qubit nodes and the r1 × n2 and n1 × r2 blocks
denote the X- and Z-type stabilizer generators,
respectively.

Choosing classical matrices of the same size
ensures an equal number of stabilizer checks in
the HGP code, but a biased code can also be
constructed by using matrices of different sizes.
Furthermore, using H2 = HT

1 yields a symmetric

construction for HX and HZ and guarantees that
the two blocks of qubits in this product graph pic-
ture are squares of equal size. In our numerical
simulations, we consider two types of HGP code
construction: an equal block case coming from the
symmetric construction with H2 = HT

1 , whereby
r2 = n1 and n2 = r1; and a non-equal block case
using different matrices H1 and H2 of the same
size, so r1 = r2 = r and n1 = n2 = n = 2r (we
make a choice to use matrices with half as many
rows as columns).

D.2 Types of Error Recovery Failures for the
Pruned Peeling + VH Decoder

In Sec. 5.2, we observed that the combined de-
coder (peeling + pruned peeling + VH) is not
maximum-likelihood since decoder failures are
possible in addtion to logical errors. Failure rate
in the literature usually refers to the logical er-
ror rate, which is the only source of errors for a
maximum-likelihood decoder. Logical errors for
the erasure channel can only occur when the era-
sure covers a logical code word. However, there
may exist erasure patterns covering a logical er-
ror which result in a decoder failure, and hence
are not properly identified as logical errors. This
distinction is stated visually by the Venn diagram
of Fig. 18. The failure rate computed in our nu-
merical simulations for the combined decoder is
the cummulative effect of these two possibilities,
what we refer to as error recovery failure rate on
the vertical axis in the plots of our numerical sim-
ulations for HGP codes. Note that failures at low
erasure rates are almost exclusively due to logical
errors, and so this distinction can be regarded as
negligible in the practical regime.

Note that peeling + pruned peeling is theoret-
ically a maximum likelihood decoder in the spe-
cial case of the surface code. This is equivalent to
the spanning-tree-based ML decoder for the sur-
face code [55]. However, our implementation of
pruned peeling is not perfect since it cannot iden-
tify the support of an arbitrary erased stabilizer.
For the combined decoder, the simplest classical
stopping sets correspond to a fully erased row or
column in the HGP Tanner graph. These are ex-
actly the stopping sets of a repetition code, coin-
ciding with logical errors for the surface code. In
general, there do not exist erasure patterns giving
a VH decoder failure for the surface code which
do not also cover a logical error.
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Figure 10 shows the performance of the com-
bined decoder applied to the 10×10 surface code.
Comparing this to Fig. 4, which uses the ML de-
coder for the same surface code, we see a no-
ticeable degradation in performance. This gap
is explained by the existence of decoder failures
in the combined case which do not exist for the
ML decoder. Furthermore, the failure rate of the
combined decoder converges to 1 as the erasure
rate goes to 1, in contrast with the convergence
to 0.75 for the ML decoder. This is because the
erasure pattern is always a VH decoder stopping
set when all qubits are erased, guaranteeing a de-
coder failure. Since there are no stopping sets
in the ML case, however, a 100% erasure rate
is equivalent to generating a uniformly random
physical Pauli error on the code. We see a con-
vergence to 0.75 logical error rate because this
error is identity 25% of the time.

DF LE

ERF

Figure 18: Venn diagram distinguishing between the
types of failures possible using the pruned peeling + VH
decoder. A decoding failure (DF) occurs when the de-
coder becomes stuck in a stopping set it cannot correct.
A logical error (LE) occurs when the decoder success-
fully terminates with a predicted error, but the actual
and predicted errors combine to give a logical code word.
An error recovery failure (ERF) refers to the union of
these two possibilities.

D.3 Technical Details for Assignment Strate-
gies used with Multiplexed HGP Codes
Strategy ii. stabilizer The stabilizer strategy
was initially introduced in Sec. 4 for the sur-
face code, but it can be applied to CSS codes
more generally. The erased qubit-support of a
stabilizer will be a peeling decoder stopping set,
but these are precisely the stopping sets that
the pruned peeling algorithm attempts to cor-
rect. Hence, this strategy is motivated by the
idea that losing a photon corresponding to a sin-
gle stabilizer individually induces a correctable
erasure pattern.

In the stabilizer strategy for HGP codes, we
partition the qubits into sets corresponding to

the qubit-support for disjoint stabilizers. Qubits
are assigned to stabilizers based on these sets.
The number of qubits per stabilizer is fixed for an
LDPC code and matches the row weight of HX

or HZ . Depending on the multiplexing number,
the photons can also represent partial stabilizers
or multiple stabilizers.

In the special case of the surface code with a
d × d lattice, where d is divisible by 4, it is al-
ways possible to partition the qubits into a com-
bination of disjoint X- and Z-type stabilizer gen-
erators as seen in Fig. 6, each of which is sup-
ported on 4 qubits. For a more general HGP
code, we may attempt a similar assignment strat-
egy by identifying the qubit-support of the stabi-
lizer generators from the rows of HX and HZ .
However, we cannot guarantee that a partition
of qubits into disjoint stabilizers is possible with-
out placing constraints on the number of qubits
and the row and column weights in the parity
check matrices. Instead, we adopt an imper-
fect but simpler strategy for generic HGP codes,
which does not require any additional assump-
tions about the code except that HX and HZ are
LDPC. This strategy can be used with stabilizers
coming only from HX , only from HZ , or a combi-
nation of both, provided that these matrices have
the same row weight. Note that restricting to a
single type of stabilizer creates a bias in the error
correction, as was commented in the surface code
case.

The first step of this strategy is to search for
a partition of the qubits into disjoint stabilizers.
To do this, we begin by choosing a row at random
from HX or HZ ; the nonzero entries in this row
represent the qubit-support of a single stabilizer.
We then eliminate any overlapping stabilizers by
deleting the rows from the matrices that share
columns with nonzero entries with the previously
selected row. Then we repeat this strategy until
either all qubits have been divided into disjoint
stabilizers or we exhaust the remaining rows that
do not overlap with our previous selections. The
result is that as many qubits as possible have been
divided into non-overlapping sets corresponding
to the qubit-support of disjoint stabilizers, possi-
bly with some remaining ungrouped qubits.

Finally, the qubits are assigned to photons
based on the disjoint sets identified in the pre-
vious step. Ordering the qubits by their stabi-
lizer assignments, we then redistribute these into
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photons. The remaining ungrouped qubits are
assigned after exhausting the chosen stabilizers.
When the multiplexing number matches the sta-
bilizer weight (that is, the row weight of HX or
HZ), each photon ideally matches a stabilizer,
possibly with some remainder photons at the end
for the ungrouped qubits. When the multiplex-
ing number matches a fraction or multiple of the
stabilizer weight, then the photons represent a
partial stabilizer or multiple stabilizers, respec-
tively. Allowing for the leftover qubits at the end
ensures that this strategy can be applied with var-
ious multiplexing numbers, even when a perfect
partition of qubits into stabilizers is not found.
Because stabilizers are selected at random, this
assignment strategy can be understood as a com-
bination of the random and stabilizer strategies
introduced before.

Strategy iii. sudoku The VH decoder is de-
signed to address classical stopping sets for the
peeling decoder, but there exist combinations of
classical stopping sets that cannot be solved us-
ing this technique and result in a decoder failure.
However, we may reduce the likelihood of a de-
coder failure by reducing the number of classical
stopping sets in general. Classical stopping sets
are supported on a single row or column of the
HGP code Tanner graph. Thus, we propose an
assignment strategy based on choosing qubits in
the same photon from different rows and columns.
The method for doing this is outlined in Algo-
rithm 3.

This strategy assumes that the number of
qubits per photon does not exceed the minimum
length of a row or column in the Tanner graph, al-
though this condition may be relaxed by instead
allowing for a minimal number of qubits from the
same row or column to be added to the same pho-
ton. Qubits are assigned to photons at random,
checking that each newly added qubit is not sup-
ported on the same row or column as any qubit
already assigned to a given photon. In the case of
a fixed number of photons where no valid qubit
assignments remain, we drop the condition and
default to random assignment.

Strategy iv: row-col Although not a prac-
tical assignment strategy, the case where only
qubits from the same row or column of the HGP
code Tanner graph are assigned to the same pho-
ton is of theoretical interest. This strategy at-
tempts to maximize the number of classical stop-

Algorithm 3: Strategy iii. sudoku
Input: P = {pi} (the set of photons,

where pi is the set of qubits in
photon i), Q = {qj = (rj , cj , bj)}
(a list of 3-tuples with the row,
column, and block of each physical
qubit in the HGP code), and the
number m of qubits per photon.

Output: P = {pi} (photon assignments).
1 for photon pi ∈ P do
2 Pick a qubit qj ∈ Q randomly;
3 Move qj from Q to pi;
4 while |pi| < m and Q ̸= ∅ do
5 Pick a candidate qubit qk ∈ Q;
6 if qk is in a different row and

column (or block) from each
previously selected qj ∈ pi

((rk ̸= rj and ck ̸= cj) or bk ̸= bj)
then

7 Move qk from Q to pi;
8 else
9 Move qk from Q to a temporary

waiting list Q′;
10 Move all qubits in Q′ back to Q;
11 while |pi| < m do
12 Pick a qubit qk ∈ Q randomly;
13 Move qk from Q to pi;
14 Return P ;

ping sets resulting from photon loss and thus in-
crease the likelihood of a VH decoder failure. Ver-
ifying that this assignment strategy performs very
poorly in numerical simulations serves as a proof
of concept for the VH decoder and also justifies
the preferred strategies using qubits from differ-
ent rows and columns.

Fig. 19 shows the performance of this strategy
for a [[512,8]] HGP code at several multiplexing
numbers. Although surprisingly the m = 2 case
seems to outperform the no-multiplexing case,
the failure rate otherwise increases as m increases.
Failures of the VH decoder are the result of cer-
tain configurations of classical stopping sets, and
hence increasing the latter also increases the for-
mer. In particular, this explains the dramatic
jump between the m = 8 and m = 16 cases. Since
the blocks in this code’s Tanner graph are 16×16,
each photon in the m = 16 case corresponds to an
entire row or column. Loss of any photon yields a
classical stopping set, and hence VH decoder fail-
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Figure 19: The performance for multiplexed commu-
nication with a [[512,8]] equal-block (16 × 16) HGP
code obtained from the symmetric construction using
r = n = 16 with assignment strategy (iv) row-column.
Increasing the number of qubits per photon using this
strategy rapidly increases the failure rate. At m = 16,
each photon corresponds to an entire row or column in
the HGP Tanner graph, whereby losing even one photon
guarantees a classical stopping set.

ures are common. This also confirms the signifi-
cance of designing assignment strategies to avoid
classical stopping sets in our simulations of HGP
codes. In general, we expect the performance of
the row-column strategy to drop significantly as
m becomes equal to or larger than the side length
of the block in the HGP Tanner graph.

Strategy v. diagonal Whereas the sudoku
strategy assigns qubits at random subject to the
condition of being in a different row or column,
qubits in the HGP code Tanner graph may also
be grouped diagonally within each block. In this
way, it is possible to satisfy the sudoku condition
without relying on randomness. A d × d grid can
be divided into d non-overlapping diagonal slices,
where we allow slices to wrap around. Since no
two qubits in the same diagonal slice are con-
tained in the same row or column of the grid, this
technique also guarantees that we avoid classical
stopping sets within a single photon. Photon as-
signment is thus based on grouping together the
qubits in the same diagonal slice. Each of the two
qubit-squares in the HGP code Tanner graph is
considered separately, but if we require that the
ratio of the squares’ side lengths is a whole num-
ber, then the qubits can be cleanly partitioned
into photons of size matching the side length of
the smaller square. HGP codes with rectangular

Tanner graph block sizes can also use the diagonal
strategy, provided that the length of the diagonal
slice does not exceed the length of the shortest
side. If longer slices are permitted in the rect-
angular case, then instead a minimal number of
qubits in the same row or column are allowed.

The implementation of this strategy as de-
scribed in Algorithm 4 is simple, provided one
precomputes a diagonal ordering on the qubits in
the HGP Tanner graph. Referring to the block
structure of Fig. 9, the qubits in a given block
are indexed along the non-overlapping diagonal
slices. These slices are allowed to wrap around
the sides of the square, which guarantees that
no two qubits in the same slice are contained in
the same row or column. The qubits in the sec-
ond block are indexed sequentially after the first
block. In our numerical implementation, a sep-
arate function to compute this ordering on the
qubits in an HGP code is used along with the
assignment function.

Algorithm 4: Strategy v. diagonal
Input: P = {pi} (the set of photons

where pi is the set of qubits in
photon i), Q = {qj} (a list of
physical qubits ordered along the
diagonal), and the number m of
qubits per photon.

Output: P = {pi} (photon assignments).
1 for photon pi ∈ P do
2 for qubits with indices

j ∈ {im, · · · , (i + 1)m} do
3 Move qj from Q to pi

4 return P ;

24
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Abstract. We organize the requirements for Quantum Internet applications and quantitatively analyze
the operational costs of blind variational quantum computing. Initially, we examine the protocol for
concealing parameters and outputs in the Variational Quantum Eigensolver (VQE). We develop a toy model
to identify the main bottlenecks and subsequently quantify the operational costs of the blind variational
quantum computing algorithm. By comparing these quantified costs, we evaluate different models of
blind quantum computation. These analyses allow us to quantitatively assess the operational costs and
bottlenecks of blind variational quantum computing algorithms.
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1 Introduction

Quantum computers, based on quantum mechanics,
are expected to exceed classical computational capabil-
ities. Concurrently, the Quantum Internet, a new-era
network that distributes quantum entanglement, is at-
tracting significant attention. The Quantum Internet
enables unprecedented applications such as distributed
quantum computing and blind quantum computing. Re-
search spans experiments to architecture, with significant
testbeds in China, the Netherlands [3, 6], and Japan sur-
passing laboratory environments.
However, the technical difficulties of quantum hard-

ware, along with the burdens of infrastructure develop-
ment and maintenance, impose stringent constraints on
the Quantum Internet, raising concerns about the high
operational costs associated with Quantum Internet ap-
plications. Estimating these costs is necessary to pro-
mote the development of feasible applications in the fu-
ture. Therefore, this study designs the blind quantum
computing application, one of the Quantum Internet ap-
plications, and quantifies its time costs.
In this study, we first designed applications incorpo-

rating feasibility modifications with the parameter-blind
variational quantum computing algorithm[7], which will
likely be implemented early in developing Noisy Inter-
mediate Scale Quantum Internet algorithms. Second,
we implemented the Variational Quantum Eigensolver
(VQE) [5] as a toy model to calculate the ground state en-
ergy of a hydrogen molecule in its minimal basis set and
analyzed performance metrics from the implemented toy
model for Quantum Internet applications. Third, we es-
tablished quantitative cost metrics for Quantum Internet
applications and compared several blind quantum com-
puting algorithms based on the identified metrics.
From these approaches, it has become clear that meth-

ods to reduce costs by limiting functionality are crucial
in the development of Quantum Internet applications.

∗masaki0818nagai@keio.jp
†hikawaguchi@keio.jp
‡satoh@ics.keio.ac.jp

2 Blind VQC for Quantum Internet

Quantum Internet applications are those in which
clients who lack sufficient quantum computing resources
connect via the Quantum Internet to servers that pos-
sess extensive quantum computing resources, thereby
performing the exchange and processing of informa-
tion. Quantum Internet applications can execute clas-
sical tasks, such as classical communication and com-
putation, and quantum tasks, such as communication
using quantum entanglement and quantum computing.
Blind quantum computation denotes a protocol for se-
cure quantum cloud computing and is one of the most
promising applications of the quantum internet. We an-
ticipate that parameter-blind VQC, due to its low imple-
mentation costs, will be operational in the initial stages of
Quantum Internet deployment, and we have implemented
it as a toy model for Quantum Internet applications.

2.1 Implementation

!

!

Ancilla-driven circuit

Figure 1: (Upper part) Our customized parameter-blind
VQE circuit. Notably, the feed-forward operations affect
only the client’s bits. (Lower part) Gate configuration of
the ancilla-driven circuit. The initial Rz gate remotely
acts on the first qubit through ancilla-driven computa-
tion. The initial |ψ⟩ gate represents initialization.



To adapt the original parameter-blind VQE for use
with the Quantum Internet, we modified the protocol
to utilize quantum teleportation for the qubits measured
by the client. We performed an additional four ancilla-
driven quantum computations to correct the quantum
state altered by the byproducts of quantum teleporta-
tion. We show the protocol diagram in Fig. 2.

1.The client creates a quantum circuit 
and requests the server for computation.

2. The server generates quantum 
entanglement and advances computation.

5. Calculate new parameters and repeat 
until the optimization criteria are met.

3. The client measures entangled 
qubits at various angles.
4.Repeat 2 and 3 until circuit completion.

Figure 2: Steps 1 and 5 involve classical tasks, while steps
2, 3, and 4 pertain to quantum tasks.

2.2 Identifying Cost Indicators

In this protocol, the bottlenecks include the typical
ones associated with VQE (such as the calculation of
new parameters and the extensive repetitions) and the
correction of byproducts from the client’s measurement
angles, the client’s measurement time, and the server’s
scheduling. The protocol analysis revealed that three key
indicators influence the application: 1. The server’s ca-
pabilities, including gate time and the number of qubits.
2. The bandwidth of the Quantum Internet for distribut-
ing high-fidelity entanglement. 3. The delays caused by
the necessary classical communication.

3 Cost Metrics Analysis

This section analyzes the cost metrics for the major
bottlenecks identified in the previous section.

3.1 Quantum Internet Bandwidth

The formula can quantitatively analyze the Q-
bandwidth cost of Quantum Internet:

Q-Bandwidth Cost =
# Entangled Pairs

Bandwidth
. (1)

Here,Total Required Entangled Pairs represents the ag-
gregate number of entangled pairs needed for specific
Quantum Internet applications, and Bandwidth is the
number of entangled pairs per unit time.

3.2 Quantum Server Performance

Q-Server Cost =
Circuit Size

Computational Speed
. (2)

In applications, the total execution time requested by
the server varies significantly depending on the choice of

physical systems and hardware configurations. There-
fore, it is impossible to quantify this uniformly, and one
should select a cost function suitable for each situation.
Here, the Circuit Size depends on the selected cost func-
tions, such as T count or circuit depth. Similarly, Com-
putational Speed refers to the circuit execution speed,
which varies according to the server’s performance and
the chosen cost functions.

3.3 Classical Communication

The formula can quantitatively analyze the Classical
Communication cost for Application:

C-Comm. Cost = # C-Comm.× Delay

C-Comm.
(3)

This formula helps determine the impact of classical com-
munication delays on the overall performance of Quan-
tum Internet systems.

3.4 Comprehensive Metrics Overview

Although these three cost metrics generally do not de-
pend on each other, their ability to be processed inde-
pendently and in parallel can vary depending on the ap-
plication’s content and circumstances. To maximize ap-
plication performance, minimizing and optimizing these
metrics’ bottlenecks is crucial.

4 Algorithmic Performance Comparison

4.1 Evaluation of Blind Quantum Computation
Protocols

Based on the defined cost functions, we estimate the
costs for various blind quantum computations. We as-
sume the Q-Server’s capability is that of an ion trap com-
puter, specifically the Ionq Aria [2]. We also assume that
the Quantum Internet can supply quantum entanglement
with sufficiently high fidelity and set the simulation pa-
rameters in Table 1.

Table 1: Quantum Internet and Q-Server performance.

Parameter Value
Bandwidth 200 Hz
Channel length 1000 km
Light speed in fiber ≈ 200, 000 km/s
1-Qubit Gate duration 135 µs
2-Qubit Gate duration 600 µs
Measurement duration 200 µs
Initialisation duration 1 µs

This paper defines the Q-Server cost for the gate model
as the product of the not depth and the two-qubit gate
time. Numerous methods exist for converting from the
gate model to MBQC. In this paper, we approximate it
by the product of the number of qubits and the depth.
Since universal rotation requires three qubits, we define
the Q-Server cost in the MBQC model as the product
of the number of qubits, depth, three, and measurement
time. We present the results as shown in Table 2.
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Table 2: Comparison of Quantum and Classical costs in blind quantum computing protocols.

Blind-Protocols Q-Bandwidth Cost Q-Server Cost C-Communication Cost
Parameter-blind [7] 25 6.6 25
BFK protocol [1] 175 7 350
MF protocol [4] 175 0 175

In the BFK[1] protocol, the amount of classical com-
munication doubles relative to the amount of quantum
entanglement as the server transmits the next measure-
ment angle to the client based on previous measure-
ment results. The MF protocol[4] employs a straight-
forward approach using quantum teleportation. The
Parameter-blind protocol blinds only parameters and
outputs, whereas the other two protocols conceal every-
thing, including inputs, outputs, and the contents of the
algorithms. In the BFK protocol, clients must randomly
generate qubits with specific rotations, while the MF and
Parameter-blind protocols necessitate measurement de-
vices. The Parameter-blind protocol significantly reduces
costs by limiting blinding to only the parameters of the
ansatz.Thus, reducing the cost of protocols and enhanc-
ing the potential for practical quantum computing by
focusing on specific functionalities is crucial.

4.2 Distribution of Bottlenecks

This section clarifies the distribution of bottlenecks
in variational blind quantum computation. Initially, we
briefly define the problem size. Assuming Ansatz is the
k-UpCCGSD, the depth scales are O(kN) relative to the
number of qubits N, and the number of parameters scales
are O(kN2/4). Based on this model, we analyze the
distribution of bottlenecks. Assume the bandwidth is
3500 Hz over 50 km, and four entanglements are con-
sumed through purification to compensate for the fidelity
degradation caused by a single entanglement swapping.
Thus, three bottlenecks emerge due to various variable
settings. Protocols that utilize classical communication
equivalent to quantum entanglement struggle with long-
distance communication. Each protocol exhibits different
sensitivities to these costs, necessitating tailored strate-
gies depending on the specific protocol and application
scenario.

5 Conclusion

We designed a parameter-blind variational quantum
eigensolver (VQE) application and quantified costs for
Quantum Internet applications. Using a VQE circuit for
a hydrogen molecule, we found that the main bottlenecks
are Quantum Internet bandwidth, server computation,
and classical communication delay. We established cost
metrics for each bottleneck and evaluated several blind
quantum computation protocols. The results showed
that the parameter-blind protocol is low-cost, with classi-
cal communication being the primary bottleneck for long-
distance computations. Developing protocols that reduce
costs by limiting functionalities is crucial for Quantum

Internet applications. This work provides a foundation
for advancing practical Quantum Internet technologies
and indicates future development directions.

C-comm.

C-comm.

C-comm.

Q-bandwith

Q-bandwith

Q-bandwith

Q-server

Q-server

Figure 3: The distribution of bottlenecks for each proto-
col. The horizontal axis indicates the distance between
the client and server, and the vertical axis represents the
problem size, as defined by the number of qubits in the
Ansatz.
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Abstract. We propose a non-Gaussianity measure of a multimode quantum state based on the negen-
tropy of quadrature distributions. Our measure satisfies desirable properties as a non-Gaussianity measure,
i.e., faithfulness, invariance under Gaussian unitary operations, and monotonicity under Gaussian chan-
nels. Furthermore, we find a quantitative relation between our measure and the previously proposed
non-Gaussianity measures defined via quantum relative entropy and the quantum Hilbert-Schmidt dis-
tance. This allows us to estimate the non-Gaussianity measures readily by homodyne detection, which
would otherwise require a full quantum-state tomography.

Keywords: non-Gaussianity, negentropy, homodyne detection

1 Introduction

In continuous variable (CV) quantum information,
non-Gaussian resources are essential as several CV quan-
tum information tasks are not achievable by Gaussian
resources only. Addressing the role of non-Gaussianity
in CV quantum information rigorously, it is desirable to
quantify the non-Gaussianity of quantum resources. In
this regard, there have been several proposals to char-
acterize the non-Gaussianity of quantum states, e.g.,
employing quantum Hilbert-Schmidt distance [1], quan-
tum relative entropy [2], and Wigner-Yanase skew in-
formation [3]. While the previously proposed mea-
sures have provided a valuable basis for analyzing non-
Gaussian resources, it is difficult to determine the values
of those measures without the complete information on
the state under examination. With this in mind, for non-
Gaussianity measure via quantum relative entropy, an
observable lower bound was provided using the statistics
from a photon-number-resolving detector [4]. However, it
works when there is a priori information, i.e., the covari-
ance matrix of a quantum state. Thus, it is natural to ask
whether we can estimate the non-Gaussianity of a quan-
tum state by a readily accessible measurement setup, e.g.,
homodyne detection. In addition, it is worth investigat-
ing whether we can define a desirable non-Gaussianity
measure for general multi-mode quantum states utilizing
the non-Gaussianity manifested by a quadrature distri-
bution. Here we propose a non-Gaussianity measure of a
quantum state in terms of the maximum negentropy of
quadrature distributions [5]. Our measure fulfills several
desirable properties. It is non-negative, faithful, invari-
ant under Gaussian unitary operations, non-increasing
under Gaussian channels. Furthermore, we show that
our measure provides lower bounds for non-Gaussianty
measures based on quantum relative entropy and quan-
tum Hilbert-Schmidt distance. These quantitative con-
nections make our approach valuable to address a general
quantum non-Gaussian state by a highly efficient homo-

∗jiyong.park@hanbat.ac.kr

dyne detection.

2 Non-Gaussianity measure by classical
relative entropy

In classical information theory, a representative mea-
sure for the non-Gaussianity of a probability distribu-
tion is negentropy [6]. It quantifies the relative entropy
between a given probability distribution X and its ref-
erence Gaussian distribution XG having the same mean
and variance as X,

J(X) ≡ DKL(X||XG), (1)

where DKL(X||Y ) =
∫
dµX(µ)[lnX(µ) − lnY (µ)] is the

Kullback-Leibler divergence [7], also known as classical
relative entropy, between two probability distributions X
and Y . It is known that Eq. (1) can be rewritten simply
as

J(X) = H(XG)−H(X), (2)

where H(X) = −
∫
dµX(µ) lnX(µ) is the differential en-

tropy of a probability distribution X [8].

2.1 Our measure

We here define a non-Gaussianity measure of an N -
mode quantum state ρ by means of negentropy as

NKL(ρ) = max
Θ,Φ

Jρ(QΘ,Φ), (3)

where QΘ,Φ denotes a probability distribution for an N -

mode quadrature operator Q̂Θ,Φ given by

Q̂Θ,Φ =
N∑
j=1

cj q̂j,ϕj
. (4)

Here q̂j,ϕj = 1√
2
(âje

iϕj + â†je
−iϕj ) is a quadrature ampli-

tude for the jth mode, Φ = (ϕ1, ϕ2, ..., ϕN )T the set of
quadrature phases ϕj , and Θ = (θ1, θ2, ..., θN−1)

T the set
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Figure 1: Linear optical network for measuring the prob-
ability distribution QΘ,Φ. Rj and BSk represent the
phase rotation on the jth mode and the beam-splitting
operation between the kth and (k + 1)th modes, respec-
tively. Applying these Gaussian unitary operations and
performing homodyne detection (HD) on the first mode,
we obtain the probability distribution QΘ,Φ for the input
state.

of angular coordinates that determines the superposition
coefficient cj in Eq. (4) as

cj =


cos θ1 for j = 1,

cos θj
∏j−1

k=1 sin θk for 1 < j < N ,∏N−1
k=1 sin θk for j = N .

(5)

Before introducing the properties of our measure, we
briefly explain how the probability distribution QΘ,Φ can
be experimentally accessible. Using a Heisenberg picture,
we see that the N -mode quadrature Q̂Θ,Φ in Eq. (4) can
be addressed via a linear optical network composed of
beam splitters and phase shifters as

Q̂Θ,Φ = L̂†q̂1,0L̂, (6)

where the Gaussian unitary operation L̂ for the linear
optical network is given by

L̂ = B̂1,2(θ1) · · · B̂N−1,N (θN−1)R̂1(ϕ1) · · · R̂N (ϕN ), (7)

with R̂j(ϕ) = exp(iϕâ†j âj) and B̂j,k(θ) = exp(θâ†j âk −
θâ†kâj) representing the phase rotation on the jth mode
and the beam-splitting operation between the jth and
kth modes with the transmittance T = cos2 θ, respec-
tively (see Fig. 1). Using R̂†

j(ϕ)q̂j,0R̂j(ϕ) = q̂j,ϕ and

B̂†
jk(θ)qj,0B̂jk(θ) = cos θq̂j,0 + sin θq̂k,0 [9, 10], Eq. (6)

gives the result in Eq. (4). The relation in Eq. (6) im-
plies that we obtain the probability distribution QΘ,Φ by
a single-mode homodyne detection using a linear optical
network. Note that one can fully reconstruct theN -mode
quantum state ρ by examining the whole set of QΘ,Φ [11].

2.2 Properties

Our measure has the following properties:

1. The measure is non-negative. NKL(ρ) ≥ 0.
2. The measure is faithful. That is, NKL(ρ) is zero if

and only if the state ρ is Gaussian.
3. The measure is invariant under Gaussian unitary

operations, i.e., NKL(ÛGρÛ
†
G) = NKL(ρ), where ÛG is a

Gaussian unitary operation.
4. The measure is nonincreasing under partial trace.

NKL(ρAB) ≥ NKL(ρA).
5. The measure is invariant under the addition of

Gaussian ancilla, i.e., NKL(ρ⊗σ) = NKL(ρ) with a Gaus-
sian state σ.
6. The measure is nonincreasing under a Gaussian

channel TG, i.e., NKL(TG[ρ]) ≤ NKL(ρ).

3 Estimating non-Gaussianity measure
defined by quantum relative entropy

In [2], a non-Gaussianity measure of a quantum state
was proposed by employing quantum relative entropy as

NQR(ρ) ≡ S(ρ||ρG), (8)

where S(ρ||ρG) = tr[ρ(ln ρ − ln ρG)] is the quantum rel-
ative entropy between ρ and its reference Gaussian state
ρG with the same first- and second-order quadrature mo-
ments as the state ρ. Note that we have used the sub-
script QR to imply that the measure is based on quan-
tum relative entropy. Similar to the negentropy, i.e.,
J(X) ≡ DKL(X||XG) = H(XG) − H(X), the measure
based on the quantum relative entropy can also be given
by the difference between the von Neumann entropies of
ρ and ρG,

NQR(ρ) = S1(ρG)− S1(ρ), (9)

where S1(τ) = −tr[τ ln τ ] is the von Neumann entropy of
a quantum state τ .

Our measure NKL(ρ) provides a lower bound for
NQR(ρ) as

NQR(ρ) ≥ NKL(ρ). (10)

3.1 Application in entanglement detection

It is worth noting that the inequality (10) can be used
to derive a new uncertainty relation whose bound is de-
termined by the non-Gaussianity and the entropy of the
state (cf. [12]). For a Gaussian state, we have the iden-
tity S1(ρG) = h(

√
det Γ), where h(x) = (x + 1

2 ) ln(x +
1
2 ) − (x − 1

2 ) ln(x − 1
2 ). That is, the von Neumann en-

tropy of a Gaussian state is completely determined by
the covariance matrix. The inequality (10), which can
be written as S1(ρG) ≥ S1(ρ) + NKL(ρ), then leads to
h(
√

det Γ(ρ)) ≥ NKL(ρ) + S1(ρ). Therefore, we obtain√
det Γ(ρ) ≥ h−1(NKL(ρ) + S1(ρ)), (11)

where h−1(y) is the inverse of the monotonically increas-
ing function h(x). This uncertainty relation can be con-
sidered as a generalization of the Robertson-Schrödinger
(RS) uncertainty relation

√
det Γ ≥ 1

2 , because the rela-
tion (11) gives a stronger bound, particularly for non-
Gaussian or mixed states, i.e., when NKL(ρ) > 0 or
S1(ρ) > 0, respectively.
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Non-Gaussianity- and entropy-bounded uncertainty
relations such as Eq. (11) are potentially applicable
to improve Simon-Duan entanglement criterion [13, 14],
which is a necessary and sufficient criterion for Gaussian
states only. For example, if the inequality Eq. (11) is vi-
olated under partial transposition, it is a direct signature
of quantum entanglement. The inequality, Eq. (11), thus
leads to improved entanglement criteria, particularly for
non-Gaussian entangled states, like those in [12].

4 Estimation of non-Gaussianity mea-
sure by Hilbert-Schmidt distance

In [1], a non-Gaussianity measure of a quantum state
was proposed by using Hilbert-Schmidt distance as

NHS(ρ) =
DHS(ρ, ρG)

2trρ2
, (12)

where DHS(ρ, ρG) = tr(ρ − ρG)
2 is the Hilbert-Schmidt

distance between ρ and ρG.
Our measure NKL(ρ) provides a lower bound for

NHS(ρ) as

NHS(ρ) ≥
1

2
{1−FN (ρ)}2, (13)

with

FN (ρ) = min

[
1, exp

{
− NKL(ρ)

2
+

N

2
ln

e

2

}]
. (14)

5 Discussion

We have proposed the maximum negentropy of quadra-
ture distributions as a non-Gaussianity measure of a
general N -mode quantum state. Our measure fulfills
desirable properties, i.e., it is faithful, invariant under
a Gaussian unitary operation, and nonincreasing un-
der a trace-preserving Gaussian channel. Furthermore,
we have shown that our measure provides lower bounds
for other non-Gaussianity measures based on quantum
relative entropy and Hilbert-Schmidt distance, respec-
tively. As our measure is experimentally accessible by a
highly efficient homodyne detection, the connection be-
tween our measure and others makes it possible to ad-
dress the issue of non-Gaussianity in an experimentally
friendly form. Therefore we hope our approach could be
broadly adopted in assessing the role of non-Gaussianity
in continuous-variable quantum information protocols.
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Abstract. In the realm of fault-tolerant quantum computing, stabilizer operations play a
pivotal role, characterized by their remarkable efficiency in classical simulation. In this work,
we investigate the limitations of classically-simulable measurements in distinguishing quantum
states. We demonstrate that any pure magic state and its orthogonal complement of odd prime
dimensions cannot be unambiguously distinguished by stabilizer operations, regardless of how
many copies of the states are supplied. We reveal intrinsic similarities and distinctions between
the quantum resource theories of magic states and entanglement in quantum state discrimina-
tion. The results emphasize the inherent limitations of classically-simulable measurements and
contribute to a deeper understanding of the quantum-classical boundary.

Keywords: Quantum state discrimination, quantum resource theory, classically-simulable
measurement, magic state.

Background. The computational power of quan-
tum computers for solving computationally chal-
lenging problems [1–5] can only be unlocked with
a scalable quantum computing solution. Fault-
tolerant quantum computation (FTQC) provides
a scheme to overcome obstacles of physical imple-
mentation such as decoherence and inaccuracies [6–
8]. A cornerstone of the FTQC resides in stabi-
lizer circuits which can be efficiently classically sim-
ulated [9], and therefore do not confer any quan-
tum computational advantage. However, the so-
called magic state can promote the stabilizer circuits
to universal quantum computation via state injec-
tion [10–12]. In this context, the magic states and
non-stabilizer operations characterize the computa-
tional power of universal quantum computation.

While extensive research has explored the stabi-
lizerness of quantum states and gates within cir-
cuits [13, 14], a crucial yet underexplored facet is
the stabilizerness of quantum measurements [15] –
a critical process for reliably decoding classical in-
formation encoded in quantum states. In general, it
is not applicable for one to access the physical prop-
erties of a locally interacting quantum many-body
system by classical simulation. However, when in-
formation is encoded in a stabilizer state, the de-
coding process via stabilizer measurements remains
efficiently classically simulable [16]. This prompts a
fundamental question: can stabilizer measurements
perfectly decode all tasks, or are there inherent lim-
itations? Investigating the distinction in decoding
capabilities between stabilizer measurements, which

are classically efficiently simulable, and other mea-
surements becomes paramount for understanding
the intricate relationship between classical informa-
tion encoded in quantum states and the measure-
ment process.

In fact, the ability to retrieve classical infor-
mation from quantum systems varies significantly
with different measurements. One celebrated ex-
ample is the quantum nonlocality without entan-
glement [17]. This primitive gap between distinct
classes of measurements makes quantum state dis-
crimination (QSD) a crucial aspect of fundamental
physics [18, 19]. It also has fruitful applications in
quantum cryptography [20–22], quantum dimension
witness [23, 24] and quantum data hiding [25–27].
Inspired by the intrinsic behavior of different mea-
surements in entanglement theory [28–35], a natu-
ral question arises: is there a sharp gap between the
classically-simulable measurements and those that
could potentially promote universal quantum com-
putation? If such a gap exists, it will imply consid-
erable advantages that the resource of magic states
can provide to the measurement in quantum infor-
mation processing.
Overview of results: In this work, we give an
affirmative answer to this question. Our results im-
ply considerable advantages that the quantum re-
source of magic states can provide to measurements
in quantum information processing. In particular,
we establish the following results:

1. Limitations of Classically Simulable

495



Measurements: We demonstrate that any
pure magic state and its orthogonal comple-
ment cannot be unambiguously distinguished
via PWF POVMs (positive operator-valued
measures with positive discrete Wigner func-
tions), which are classically-simulable and
strictly include stabilizer measurements, no
matter how many copies of the states are sup-
plied.

2. Minimum error discrimination by PWF
POVMs: We study the minimum error QSD
via PWF POVMs. There is an exponential
decay in the asymptotic minimal error proba-
bility for distinguishing the Strange state and
its orthogonal complement via PWF POVMs.

3. Comparison between QRT of magic
states and entanglement in QSD: We es-
tablish a comparison between the quantum re-
source theory of magic states and the entangle-
ment theory within the task of quantum state
discrimination, including their similarities and
distinctions.

Limitations of Classically Simulable Mea-
surements: Our first contribution is to reveal the
asymptotic limits of PWF POVMs for discriminat-
ing a pair of quantum states. In odd prime di-
mensions, quantum circuits with initial states and
all subsequent quantum operations having PWFs,
which strictly include stabilizer (STAB) operations,
admit efficient classical simulations [16, 36]. On the
contrary, negativity in Wigner functions is usually
regarded as an indication of ‘nonclassicality’ [37, 38]
and identified as a computational resource. Let
E = {Ej}n−1

j=0 be a n-valued POVM acting on Hd

with
∑n−1

j=0 Ej = Id. E is said to be a PWF POVM
if each Ej has positive discrete Wigner functions.
Thus, PWF POVMs are recognized as classically-
simulable measurements [39]. They strictly in-
clude all STAB POVMs as STAB POVMs ⊊
PWF POVMs ⊊ All POVMs [12].

It is well-known that the asymptotic regime of
QSD can unravel the underlying mechanism of en-
tanglement [31, 34, 40], and a particularly simple
yet insightful scenario for QSD is to discriminate
a pure state and its orthogonal complement. No-
tably, in the regime of many copies, greater flexi-
bility and options exist for the potential POVMs.
However, our main result is to show a wide range
of quantum states that cannot be unambiguously
distinguished via PWF POVMs, including STAB
POVMs, no matter how many copies are supplied.

Theorem 1 Let ρ0 ∈ D(Hd) be a pure magic state
and ρ1 = (Id− ρ0)/(d− 1) be its orthogonal comple-
ment, where Id is the identity. Then for any integer
n ∈ Z+, ρ⊗n

0 and ρ⊗n
1 cannot be unambiguously dis-

tinguished by PWF POVMs.

From the angle of quantum resource theories
(QRTs) [41], this theorem unravels the difficulty of
distinguishing a pure resourceful state and its or-
thogonal complement via free operations in the QRT
of magic states. Technically, we develop the notion
of PWF unextendible subspace for the proof of The-
orem 1 and prove the theorem based on Lemma 2.
We call a subspace S ⊆ Hd PWF unextendible if
there is no PWF state ρ whose support is a subspace
of S⊥, and PWF extendible otherwise. A subspace
S ⊆ Hd is called strongly PWF unextendible if for
any positive integer n, S⊗n is PWF unextendible.
The unextendibility of subspaces indicates the dis-
tinguishability of quantum states and the following
lemma implies the asymptotic distinguishability of
quantum states by PWF POVMs.

Lemma 2 For a PWF unextendible subspace S ⊆
Hd, if there is a PWF state ρ ∈ D(S) such that
supp(ρ) = S, then S is strongly PWF unextendible.

Minimum error discrimination by PWF
POVMs: Our second contribution is to study the
minimum error QSD which unveils the capabilities
inherent in PWF POVMs. For states ρ0 and ρ1 with
prior probability p and 1−p, respectively, we denote
P PWF
e (ρ0, ρ1, p) as the optimal error probability of

distinguishing them by PWF POVMs. Mathemati-
cally, this optimal error probability can be expressed
via semidefinite programming (SDP) [42]. For ρ0 to
be the Strange state and ρ1 to be its orthogonal com-
plement, we demonstrate the following asymptotic
error behavior.

Proposition 3 Let ρ0 be the Strange state |S⟩⟨S|
and ρ1 = (I−|S⟩⟨S|)/2 be its orthogonal complement.
For n ∈ Z+, we have

P PWF
e (ρ⊗n

0 , ρ⊗n
1 ,

1

2
) =

1

2n+1
. (1)

The optimal PWF POVM is {E, I−E}, where E =
(|K⟩⟨K|+ |S⟩⟨S|)⊗n and |K⟩ = (|1⟩+ |2⟩)/

√
2.

It can be seen that the optimal error probabil-
ity will exponentially decay with respect to the
number of copies supplied. Nevertheless, it is im-
portant to note that the error persists for all fi-
nite values of n, aligning with the indistinguisha-
bility established in Theorem 1. The celebrated
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quantum Chernoff theorem [43–45] establishes that
ξC(ρ0, ρ1) := limn→∞− 1

n logPe(ρ
⊗n
0 , ρ⊗n

1 , p) =
−min0≤s≤1 log Tr[ρ

1−s
0 ρs1], where Pe(ρ

⊗n
0 , ρ⊗n

1 , p) is
the average error of distinguishing ρ0 and ρ1 via
global measurements, ξC(ρ0, ρ1) is the so-called
Chernoff exponent. The Chernoff exponent con-
cerning a specific class of measurements, e.g.,
{LOCC,PPT, SEP}, is defined in [40]. The authors
proved that the Chernoff bounds in these cases are
indeed faithful by showing an exponential decay of
PX
e (ρ0, ρ1, p) where X ∈ {LOCC,PPT, SEP}. Sim-

ilarly, Proposition 3 may give an insight that the
Chernoff bound concerning PWF measurements is
also faithful.

It further has applications in quantum data hid-
ing [25, 46, 47] considering a scenario in which in-
formation is encoded in a way that Pauli measure-
ments have less capability of decoding it than arbi-
trary measurements. Then only the party with the
ability to generate magic can reliably retrieve the
message. Here, we define ∥ · ∥PWF and R(PWF) as
the distinguishability norm and the data-hiding ra-
tio [47] associated with PWF POVMs, respectively.
Proposition 3 directly gives a lower bound on the
data-hiding ratio against PWF POVMs as follows.

R(PWF) = max
∥pρ− (1− p)σ∥All
∥pρ− (1− p)σ∥PWF

≥ 1

1− 2−n
.

Comparison between QRT of magic states
and entanglement in QSD: Our third contribu-
tion is to establish a comparison between the QRT
of magic states and the entanglement theory within
QSD, including their similarities and distinctions as
summarized in Table 1.

For similarities, we note the asymptotic limit of
PWF POVMs is an analog to the phenomenon in
entanglement theory that any pure entangled state
and its orthogonal complement cannot be unam-
biguously distinguished via PPT POVMs with an
arbitrary number of copies provided [40, 48, 49].
However, they can always be perfectly distinguished
if global measurements are allowed. For distinctions,
recall that the unextendible product basis (UPB) in
entanglement theory indicates the indistinguishabil-
ity of orthogonal product states using LOCC oper-
ations [35]. We show that in the QRT of magic
states, there is no similar phenomenon as the UPB
in entanglement theory. That is there is no incom-
plete orthogonal stabilizer basis whose complemen-
tary subspace contains no stabilizer state.

Theorem 4 For a subspace S ∈ Hd, if S has a
set of basis {|ψi⟩}ni=1 where every |ψi⟩ is a stabilizer

QRT of
magic states

QRT of
entanglement

Asymptotic limits of
free POVMs 4 4

Existence of UPB
phenomenon 7 4

Perfect discrimination
with the aid of one copy of

maximal resource
7 4

Table 1: Comparison between the QRT of magic
states and entanglement.

state, then S is PWF extendible.

A direct consequence of this theorem is that any
set of orthogonal pure stabilizer states {|ψ⟩i}ni=1 can
be unambiguously distinguished via PWF POVMs
as we can choose Ei = |ψi⟩⟨ψi| for i = 1, 2, · · · , n
and En+1 = I −

∑n
i=1 |ψi⟩⟨ψi|. Therefore, we

demonstrate the absence of an analogous UPB phe-
nomenon in the QRT of magic states.

Besides, the distinction emerges when consider-
ing the minimum resource required to achieve opti-
mal discrimination via free operations. It was shown
that one copy of the Bell state is always sufficient for
perfectly distinguishing any pure state ρ0 and its or-
thogonal complement ρ1 via PPT POVMs [48], i.e.,
distinguishing ρ0⊗Φ+

2 and ρ1⊗Φ+
2 . However, things

are different in the QRT of magic states where we
show that the Strange state and its orthogonal com-
plement cannot be perfectly distinguished by PWF
POVMs with the assistance of one or two copies of
any qutrit magic state.

Proposition 5 Let ρ0 be the Strange state |S⟩⟨S|
and ρ1 = (I − |S⟩⟨S|)/2 be its orthogonal comple-
ment. ρ0 ⊗ τ⊗k and ρ1 ⊗ τ⊗k cannot be perfectly
distinguished for any qutrit magic state τ and k = 1
or 2.

Concluding remarks: We have explored the lim-
itations of PWF POVMs which can be efficiently
classically simulated and strictly include all sta-
bilizer measurements. Our results show that the
QRT of magic states and entanglement exhibit sig-
nificant similarities and distinctions in quantum
state discrimination. These results have implica-
tions in various fields, including connections be-
tween the QRT of magic states and quantum data
hiding [27, 46, 47, 50], limits of stabilizer mea-
surements or classically-simulable ones in quantum
channel discrimination [51–53] and other opera-
tional tasks [54–56].
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In the realm of fault-tolerant quantum computing, stabilizer operations play a pivotal role, characterized by
their remarkable efficiency in classical simulation. This efficiency sets them apart from non-stabilizer operations
within the quantum computational theory. In this paper, we investigate the limitations of classically-simulable
measurements in distinguishing quantum states. We demonstrate that any pure magic state and its orthogonal
complement of odd prime dimensions cannot be unambiguously distinguished by stabilizer operations, regard-
less of how many copies of the states are supplied. We also reveal intrinsic similarities and distinctions between
the quantum resource theories of magic states and entanglement in quantum state discrimination. The results
emphasize the inherent limitations of classically-simulable measurements and contribute to a deeper understand-
ing of the quantum-classical boundary.

Introduction.— The computational power of quantum com-
puters, including a substantial speed-up over their classical
counterparts in solving certain number-theoretic problems [1–
3] and simulating quantum systems [4, 5], can only be un-
locked with a scalable quantum computing solution. Fault-
tolerant quantum computation (FTQC) provides a scheme to
overcome obstacles of physical implementation such as deco-
herence and inaccuracies [6–8].

A cornerstone of the FTQC resides in stabilizer circuits,
comprised exclusively of the Clifford gates. It is well-known
that the stabilizer circuits can be efficiently classically simu-
lated [9], and therefore do not confer any quantum computa-
tional advantage. However, magic states are quantum states
that cannot be prepared using the stabilizer formalism [10],
and can promote the stabilizer circuits to universal quantum
computation via state injection [11–13]. In this context, the
magic states and non-stabilizer operations characterize the
computational power of universal quantum computation.

While extensive research has explored the stabilizerness of
quantum states and gates within circuits [14, 15], a crucial
yet underexplored facet is the stabilizerness of quantum mea-
surements [16] – a critical process for reliably decoding clas-
sical information encoded in quantum states. In general, it
is not applicable for one to access the physical properties of
a locally interacting quantum many-body system by classical
simulation. However, when information is encoded in a stabi-
lizer state, the decoding process via stabilizer measurements
remains efficiently classically simulable [17]. This prompts a
fundamental question: can stabilizer measurements perfectly
decode all tasks, or are there inherent limitations? Investi-
gating the distinction in decoding capabilities between stabi-
lizer measurements, which are classically efficiently simula-
ble, and other measurements becomes paramount for under-
standing the intricate relationship between classical informa-
tion encoded in quantum states and the measurement process.

The ability to retrieve classical information from quan-
tum systems varies significantly with different measurements.
One celebrated example is the quantum nonlocality without

entanglement [18]. In essence, global measurements can
always perfectly distinguish mutually orthogonal quantum
states, while there is a set of product states that cannot be
distinguished via local quantum operations and classical com-
munications (LOCC). This distinction between global and lo-
cal measurements has garnered substantial attention, prov-
ing to be intricately linked with quantum entanglement the-
ory and the concept of nonlocality [19–26]. This primitive
gap between distinct classes of measurements makes quan-
tum state discrimination (QSD) a crucial aspect of fundamen-
tal physics [27, 28], where it can be used to test the principles
and nature of quantum mechanics. Moreover, QSD has led to
fruitful applications in quantum cryptography [29–31], quan-
tum dimension witness [32, 33] and quantum data hiding [34–
36].

Inspired by the intrinsic behavior of different measurements
in entanglement theory, we raise a natural and important ques-
tion for understanding the limit and power of the classically-
simulable measurements. In particular, is there a sharp gap be-
tween the classically-simulable measurements and those that
could potentially promote universal quantum computation? If
such a gap exists, it will imply considerable advantages that
the resource of magic states can provide to the measurement
in quantum information processing.

In this Letter, we give an affirmative answer to this question.
We show that any pure magic state and its orthogonal com-
plement cannot be unambiguously distinguished via Positive
Operator-Valued Measures (POVMs) having positive discrete
Wigner functions, which are classically-simulable and strictly
include stabilizer measurements [17, 37], no matter how many
copies of the states are supplied. We also demonstrate an ex-
ponential decay on the asymptotic minimal error probability
for distinguishing the Strange state and its orthogonal comple-
ment via POVMs having positive discrete Wigner functions,
where the Strange state is a representative qutrit magic state
defined as |S⟩ := (|1⟩ − |2⟩)/

√
2 [10].

In addition, we show that every set of orthogonal pure sta-
bilizer states can be unambiguously distinguished via POVMs
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having positive discrete Wigner functions, indicating there
is no similar phenomenon as the unextendible product basis
(UPB) in entanglement theory. Moreover, we demonstrate
that even with the assistance of one or two copies of any qutrit
magic state, the Strange state and its orthogonal complement
remain indistinguishable via POVMs having positive discrete
Wigner functions. It is different from entanglement theory
where a single copy of the Bell state is always sufficient to
perfectly distinguish a pure entangled state and its orthogonal
complement using PPT POVMs [38].

Preliminaries.— To characterize the stabilizerness of quan-
tum states and operations, we first recall the definition of the
discrete Wigner function [39–41]. Throughout the paper, we
study the Hilbert spaceHd with an odd dimension d, and if the
dimension is not prime, it should be understood as a tensor
product of Hilbert spaces each having an odd prime dimen-
sion. Let L(Hd) be the space of linear operators mappingHd
to itself and D(Hd) be the set of density operators acting on
Hd. It is worth noting that qudit-based quantum computing is
gaining increasing significance, as numerous problems in the
field are awaiting further exploration [42].

Given a standard computational basis {|j⟩}j=0,··· ,d−1, the
unitary boost and shift operators X,Z ∈ L(Hd) are defined
by X|j⟩ = |j ⊕ 1⟩, Z|j⟩ = wj |j⟩, where w = e2πi/d and
⊕ is the addition in Zd. The discrete phase space of a single
d-level system is Zd × Zd. At each point u = (a1, a2) ∈
Zd × Zd, the discrete Wigner function of a state ρ is defined
as Wρ(u) := 1

d Tr [Auρ] where Au is the phase-space point
operator given byA0 := 1

d

∑
u Tu, Au := TuA0T

†
u and Tu =

τ−a1a2Za1Xa2 , τ = e(d+1)πi/d. We say a state ρ has positive
discrete Wigner functions (PWFs) if Wρ(u) ≥ 0, ∀u ∈ Zd ×
Zd and briefly call it PWF state. Let E = {Ej}n−1

j=0 be an n-
valued POVM acting onHd with

∑n−1
j=0 Ej = 1. The discrete

Wigner function of each effect Ej is given by W (Ej |u) =
Tr[EjAu]. E is said to be a PWF POVM if eachEj has PWFs.
More details can be found in appendix.

In odd prime dimensions, quantum circuits with ini-
tial states and all subsequent quantum operations having
PWFs, which strictly include stabilizer (STAB) operations,
admit efficient classical simulations [17, 37], extending the
Gottesman-Knill theorem. On the contrary, negativity in
Wigner functions is usually regarded as an indication of ‘non-
classicality’ [43, 44] and identified as a computational re-
source. Thus, PWF POVMs are recognized as classically-
simulable measurements [45]. The exclusive applicability of
these results to odd prime dimensions may stem from the
unique property that only quantum systems of such dimen-
sions exhibit covariance of the Wigner function w.r.t. Clif-
ford operations [46]. It’s worth noting that there exist mixed
magic states with PWFs, rendering them useless for magic
state distillation [13]. These states are termed bound univer-
sal states [47], analogous to states with a positive partial trans-
pose (PPT) in entanglement distillation [48]. Therefore, PWF
POVMs strictly include all STAB POVMs as

STAB POVMs ⊊ PWF POVMs ⊊ All POVMs.

Asymptotic limits of PWF POVMs for a pure state and its
orthogonal complement.— Our primary aim is to elucidate the
constraints inherent in measurements that can be efficiently
classically simulated. QSD describes a general process of ex-
tracting classical information from quantum systems via mea-
surements. To distinguish two states, one usually performs a
two-outcome POVM on the received state and then determines
which state it is according to the measurement outcome.

It is well-known that the asymptotic regime of QSD can
unravel the underlying mechanism of entanglement [22, 25,
49]. The limit of local measurements exhibits a fundamental
distinction between pure and mixed states [22]. Moreover, the
asymptotic error probability in QSD is interlinked with the
quantum relative entropy, Petz’s Rényi divergence [50], and
the sandwiched Rényi divergence [51, 52]. Notably, in the
regime of many copies, greater flexibility and options exist for
the potential POVMs. However, we shall show a wide range
of quantum states that cannot be unambiguously distinguished
via PWF POVMs, including STAB POVMs, no matter how
many copies are supplied.

Theorem 1 Let ρ0 ∈ D(Hd) be a pure magic state and ρ1 =
(1−ρ0)/(d−1) be its orthogonal complement, where 1 is the
identity matrix. Then for any integer n ∈ Z+, ρ⊗n0 and ρ⊗n1

cannot be unambiguously distinguished by PWF POVMs.

Theorem 1 reveals a significant disparity in the ability of
PWF POVMs and other measurements in QSD. It indicates
that the classical information you are allowed to extract from
the encoded states is limited when the measurements allowed
are restricted to those classically-simulable ones. The lim-
itation of the classically-simulable measurements cannot be
overcome even by increasing the number of copies of the
states.

From the angle of quantum resource theories (QRTs) [53],
this theorem unravels the challenge of distinguishing a pure
resourceful state and its orthogonal complement via free op-
erations in the QRT of magic states. This parallels a phe-
nomenon in entanglement theory where any pure entangled
state and its orthogonal complement cannot be unambigu-
ously distinguished via PPT POVMs with an arbitrary num-
ber of copies provided [38, 49, 54]. However, perfect distin-
guishability is achievable through global measurements. No-
tably, Takagi and Regula introduced a quantifier of resource-
fulness for measurements [55], demonstrating that resource-
ful measurements can outperform free measurements in cer-
tain QSD tasks [56]. Here, our result further specifies the
constraints of free measurements within the QRT of magic
states, revealing that free operations cannot distinguish a pure
resourceful state and its orthogonal complement, even in the
many-copy regime.

The proof of Theorem 1 relies on Lemma 2 which iden-
tifies the feature of PWF unextendible subspaces, and a fact
that the orthogonal complement of any pure magic state is
PWF since −1/d ≤ Wρ(u) ≤ 1/d, ∀ρ ∈ D(Hd), ∀u [46].
We call a subspace S ⊆ Hd PWF unextendible if there is no
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PWF state ρ whose support is a subspace of S⊥, and PWF
extendible otherwise. A subspace S ⊆ Hd is called strongly
PWF unextendible if for any positive integer n, S⊗n is PWF
unextendible. As a simple example, if we let S⊥ be a one-
dimensional subspace spanned by the strange state |S⟩, then S
is (strongly) PWF unextendible. In fact, the unextendibility of
subspaces indicates the distinguishability of quantum states. It
is well-known that a UPB for a multipartite quantum system
indicates indistinguishability under LOCC operations [26].

Lemma 2 For a PWF unextendible subspace S ⊆ Hd, if
there is a PWF state ρ ∈ D(S) such that supp(ρ) = S , then
S is strongly PWF unextendible.

We note that Lemma 2 implies that for a set of orthogonal
quantum states {ρ1, ..., ρn}, if there is a ρi whose support is
strongly PWF unextendible, then {ρ1, ..., ρn} cannot be un-
ambiguously distinguished by PWF POVMs no matter how
many copies are used. This leads to and generalizes the result
of Theorem 1. We sketch the proof of Lemma 2 as follows.

First, we demonstrate that S⊗2 is PWF unextendible
through a proof by contradiction. Suppose ρs ∈ D(S) is a
PWF state such that supp(ρs) = S . If there is a PWF state
σ supporting on (S⊗2)⊥, then we have Tr[σ(ρs ⊗ ρs)] = 0
which leads to Tr[ρs Tr2[σ(1⊗ ρs)]] = 0. It is easy to check
that σ′ = Tr2[σ(1 ⊗ ρs)] is a positive semi-definite opera-
tor with PWFs if it is non-zero. If it is zero, we can check that
Tr1 σ is a positive semi-definite operator with PWFs. In either
case, we will get a PWF state supported on S⊥, a contradic-
tion to the PWF unextendibility of S . Hence, we conclude that
S⊗2 is PWF unextendible. Using a similar technique, we can
conclusively demonstrate that S⊗n is PWF unextendible for
any positive integer n. The details can be found in appendix.

Asymptotic limits of PWF POVMs for mixed states.— Fol-
lowed by Lemma 2, we note that Theorem 1 displays a special
case of a strongly PWF unextendible subspace. The orthogo-
nal complement of a pure magic state turns out to be a PWF
state which lies in a d−1 dimensional PWF unextendible sub-
space. This prompts an intriguing inquiry into the minimal
dimension of such subspace. Notably, we will show there is
a much smaller strongly PWF unextendible subspace, indicat-
ing the presence of mixed magic states that cannot be unam-
biguously distinguished from their orthogonal complements
via PWF POVMs in the many-copy scenario.

Proposition 3 There exists a strongly PWF unextendible sub-
space S ⊆ Hd of dimension (d+ 1)/2.

This proposition implies there is a (d−1)/2-dimensional sub-
space in which all states are magic states. The detailed proof
is in appendix and we give a simple example as follows.

Example 1 Consider a qudit system with d = 5. We have the

following basis that spansH5.

|v0⟩ = |0⟩,
|v1⟩ = (|1⟩+ |2⟩+ |3⟩+ |4⟩)/2,
|v2⟩ = (−|1⟩+ |2⟩+ |3⟩ − |4⟩)/2,
|v3⟩ = (|1⟩ − |2⟩+ |3⟩ − |4⟩)/2,
|v4⟩ = (|1⟩+ |2⟩ − |3⟩ − |4⟩)/2.

(1)

Let ρ0 = (|v0⟩⟨v0| + |v1⟩⟨v1| + |v2⟩⟨v2|)/3, ρ1 = (|v3⟩⟨v3| +
|v4⟩⟨v4|)/2, and S0 = supp(ρ0),S1 = supp(ρ1). Followed
by the idea in the proof of Proposition 3, one can check that
there is no PWF state in S1, and ρ0 is a PWF state. Thus, S0
is a strongly PWF unextendible subspace. ρ0 and ρ1 cannot
be unambiguously distinguished by PWF POVMs, no matter
how many copies of them are supplied.

More generally, we establish an easy-to-compute crite-
rion for identifying the circumstances under which two quan-
tum states cannot be unambiguously distinguished by PWF
POVMs in the many-copy scenario.

Theorem 4 Given ρ0, ρ1 ∈ D(Hd), if any of them has strictly
positive discrete Wigner functions, i.e., Wρi(u) > 0, ∀u, then
for any integer n ∈ Z+, ρ⊗n0 and ρ⊗n1 cannot be unambigu-
ously distinguished by PWF POVMs.

Theorem 4 is of broad applicability for both pure and mixed
states. The indistinguishability can be checked through a sim-
ple computation of the discrete Wigner functions, streamlin-
ing the conventional method by analyzing exponentially large
Hilbert space.

Minimum error discrimination by PWF POVMs.— After
characterizing the limits of PWF POVMs, we further study
the minimum error QSD to unveil the capabilities inherent
in PWF POVMs. For states ρ0 and ρ1 with prior probabil-
ity p and 1 − p, respectively, we denote P PWF

e (ρ0, ρ1, p) as
the optimal error probability of distinguishing them by PWF
POVMs. Mathematically, this optimal error probability can
be expressed via semidefinite programming (SDP) [57] as fol-
lows.

P PWF
e = min

E0,E1

(1− p)Tr(E0ρ1) + pTr(E1ρ0), (2a)

s.t. E0 ≥ 0, E1 ≥ 0, E0 + E1 = 1, (2b)
W (E0|u) ≥ 0,W (E1|u) ≥ 0, ∀u, (2c)

where Eq. (2c) ensures {E0, E1} is a PWF POVM. We pro-
vide the dual SDP in appendix. For ρ0 to be the Strange state
and ρ1 to be its orthogonal complement, we demonstrate the
following asymptotic error behavior.

Proposition 5 Let ρ0 be the Strange state |S⟩⟨S| and ρ1 =
(1 − |S⟩⟨S|)/2 be its orthogonal complement. For n ∈ Z+,
we have

P PWF
e (ρ⊗n0 , ρ⊗n1 ,

1

2
) =

1

2n+1
. (3)

The optimal PWF POVM is {E,1−E}, whereE = (|K⟩⟨K|+
|S⟩⟨S|)⊗n and |K⟩ = (|1⟩+ |2⟩)/

√
2.
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We remark what we obtain here is the optimal error prob-
ability using PWF POVMs to distinguish n copies of the
Strange state and its orthogonal complement. We first find
the protocol above for the desired error probability and then
utilize the dual SDP of (2) to establish the optimality of this
protocol. The detailed proof is provided in appendix. It can
be seen that the optimal error probability will exponentially
decay with respect to the number of copies supplied. Nev-
ertheless, it is important to note that the error persists for all
finite values of n, aligning with the indistinguishability estab-
lished in Theorem 1.

We further discuss the relationship between Proposition 5
and the Chernoff exponent in hypothesis testing. The cel-
ebrated quantum Chernoff theorem [50, 58, 59] establishes
that ξC(ρ0, ρ1) := limn→∞− 1

n logPe(ρ
⊗n
0 , ρ⊗n1 , p) =

−min0≤s≤1 log Tr[ρ
1−s
0 ρs1], where Pe(ρ

⊗n
0 , ρ⊗n1 , p) is the

average error of distinguishing ρ0 and ρ1 via global mea-
surements, ξC(ρ0, ρ1) is the so-called Chernoff exponent.
The Chernoff exponent concerning a specific class of mea-
surements, e.g., {LOCC,PPT, SEP}, is defined in [49].
The authors proved that the Chernoff bounds in these cases
are indeed faithful by showing an exponential decay of
PXe (ρ0, ρ1, p) where X ∈ {LOCC,PPT, SEP}. Similarly,
Proposition 5 may give an insight that the Chernoff bound
concerning PWF measurements is also faithful.

Proposition 5 also implies applications in quantum data hid-
ing [34, 60, 61]. Despite the original data-hiding setting where
pairs of states of a bipartite system are perfectly distinguish-
able via general entangled measurements yet almost indistin-
guishable under LOCC, it is conceivable to extend data-hiding
techniques to broader contexts dictated by specific physical
circumstances [55]. As discussed in [55], one may consider
the scenario that information is encoded in a way that Pauli
measurements have less capability of decoding it than arbi-
trary measurements. Then only the party with the ability to
generate magic can reliably retrieve the message. Here, we
define ∥ · ∥PWF and R(PWF) as the distinguishability norm
and the data-hiding ratio [61] associated with PWF POVMs,
respectively. Proposition 5 directly gives a lower bound on the
data-hiding ratio against PWF POVMs as follows.

R(PWF) = max
∥pρ− (1− p)σ∥All

∥pρ− (1− p)σ∥PWF
≥ 1

1− 2−n
. (4)

We also observe that a potential correlation between R(PWF)
and the generalized robustness of measurement [55] merits
further investigation, with preliminary evidence provided in
appendix.

Distinctions between QRT of magic states and entangle-
ment in QSD tasks.— The asymptotic limits of PWF POVMs
share similarities with LOCC operations, both of which
are considered free within their respective resource theories.
Whereas, there are fundamental distinctions between the QRT
of magic states and entanglement, considering the QSD tasks.
In Table I, we display a comparison between the QRT of
magic states and entanglement in QSD, including their sim-
ilarities and the following distinctions.

QRT of
magic states

QRT of
entanglement

Asymptotic limits of free POVMs 4 4

Existence of UPB phenomenon 7 4

Perfect discrimination with the
aid of one copy of maximal resource 7 4

TABLE I. Comparison between the QRT of magic states and
entanglement. The second row represents if any resourceful pure
state and its orthogonal complement are indistinguishable by free
measurements in the many-copy scenario. The third row repre-
sents whether there is a UPB phenomenon. The last row represents
whether the assistance of one copy of the maximally resourceful state
is sufficient for perfect discrimination.

Recall that in entanglement theory, the UPB is an incom-
plete orthogonal product basis whose complementary sub-
space contains no product state [26]. It shows examples of or-
thogonal product states that cannot be perfectly distinguished
by LOCC operations. Correspondingly, we may imagine
whether there is a similar ‘UPB’ phenomenon in the QRT of
magic states. That is if there is an incomplete orthogonal sta-
bilizer basis whose complementary subspace contains no sta-
bilizer state. We show that this is not the case as follows.

Theorem 6 For a subspace S ∈ Hd, if S has a set of ba-
sis {|ψi⟩}n−1

i=0 where every |ψi⟩ is a stabilizer state, then S is
PWF extendible.

A direct consequence of this theorem is that any set of or-
thogonal pure stabilizer states {|ψ⟩i}n−1

i=0 can be unambigu-
ously distinguished via PWF POVMs as we can choose Ei =
|ψi⟩⟨ψi| for i = 0, 2, · · · , n−1 andEn = 1−

∑n−1
i=0 |ψi⟩⟨ψi|.

Therefore, we confirm the absence of an analogous UPB phe-
nomenon in the QRT of magic states.

Besides, it was shown that one copy of the Bell state is al-
ways sufficient for perfectly distinguishing any pure state ρ0
and its orthogonal complement ρ1 via PPT POVMs [38], i.e.,
distinguishing ρ0⊗Φ+

2 and ρ1⊗Φ+
2 . However, things are dif-

ferent in the QRT of magic states where we find the Strange
state and its orthogonal complement cannot be perfectly dis-
tinguished by PWF POVMs with the assistance of one or two
copies of any qutrit magic state.

Proposition 7 Let ρ0 be the Strange state |S⟩⟨S| and ρ1 =
(1 − |S⟩⟨S|)/2 be its orthogonal complement. ρ0 ⊗ τ⊗k and
ρ1 ⊗ τ⊗k cannot be perfectly distinguished by PWF POVMs
for any qutrit magic state τ and k = 1 or 2.

The main idea is to analyze the minimal mana [62] τ⊗k must
have to perfectly distinguish ρ0 ⊗ τ⊗k and ρ1 ⊗ τ⊗k by PWF
POVMs. A similar result can be obtained for the Norell state
|N⟩ := (−|0⟩ + 2|1⟩ − |2⟩)/

√
6 [10]. Hence, we have wit-

nessed the distinctions of the QRT of magic states and entan-
glement in regard to the resource cost for perfect discrimina-
tion.
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Concluding remarks.— We have explored the limitations of
PWF POVMs which can be efficiently classically simulated
and strictly include all stabilizer measurements. Our results
show that the QRT of magic states and entanglement exhibit
significant similarities and distinctions in quantum state dis-
crimination.

These results have implications in various fields, including
connections between the QRT of magic states and quantum
data hiding [36, 55, 60, 61]. It remains interesting to fur-
ther study the limits of stabilizer measurements or classically-
simulable ones in quantum channel discrimination [63–65]
and other operational tasks [66–68]. Note that as it is still
open whether all operations with negative discrete Wigner
functions are useful for magic state distillation [10], a com-
prehensive characterization of the quantum-classical bound-
ary of measurements is still needed. Additionally, it is inter-
esting to study the limitations of stabilizer measurements in a
multi-qubit system [69–72], and recent advances in general-
ized phase-space simulation methods for qubits [73, 74] offer
potential avenues to explore this, which we will leave to future
work.
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munications in Mathematical Physics 323, 1121 (2013).

[22] S. Bandyopadhyay, Physical Review Letters 106, 1 (2011).
[23] J. Calsamiglia, J. I. De Vicente, R. Muñoz-Tapia, and E. Bagan,

Physical Review Letters 105, 1 (2010).
[24] S. Halder, M. Banik, S. Agrawal, and S. Bandyopadhyay, Phys-

ical Review Letters 122, 40403 (2019).
[25] J. Walgate, A. J. Short, L. Hardy, and V. Vedral, Physical Re-

view Letters 85, 4972 (2000).
[26] C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A.

Smolin, and B. M. Terhal, Physical Review Letters 82, 5385
(1999).

[27] J. Bae and L.-C. Kwek, Journal of Physics A: Mathematical and
Theoretical 48, 083001 (2015).

[28] W. H. G. Correa, L. Lami, and C. Palazuelos, IEEE Transac-
tions on Information Theory 68, 7306 (2022).

[29] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Reviews of
Modern Physics 74, 145 (2002).

[30] R. Cleve, D. Gottesman, and H.-K. Lo, Physical Review Letters
83, 648 (1999).

[31] A. Leverrier and P. Grangier, Physical Review Letters 102
(2009).

[32] N. Brunner, M. Navascué s, and T. Vértesi, Physical Review
Letters 110 (2013).

[33] M. Hendrych, R. Gallego, M. Mičuda, N. Brunner, A. Acín,
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Supplemental Material for:
Limitations of Classically-Simulable Measurements for Quantum State Discrimination

In this Supplemental Material, we provide detailed proofs of the theorems and propositions in the manuscript “Limitations
of Classically-Simulable Measurements for Quantum State Discrimination”. In Appendix , we cover the basics of the discrete
Wigner function. In Appendix , we first present the detailed proofs for Lemma 2 and Proposition 3, which characterize the
asymptotic limits of PWF POVMs for distinguishing a pure magic state and its orthogonal complement and a mixed magic
state and its orthogonal complement, respectively. Then, we provide the proof of Theorem 4 which serves as an easy-to-
compute criterion for when PWF POVMs cannot unambiguously distinguish two quantum states in the many-copy scenario.
Appendix introduces the primal and dual SDP for calculating the optimal error probability of distinguishing two quantum states
via PWF POVMs. We further provide detailed proof of Proposition 5. Then in Appendix , we furnish detailed proofs for
Theorem 6 and Proposition 7, both of which characterize the distinctions between the QRT of magic states and entanglement in
QSD tasks.

THE DISCRETE WIGNER FUNCTION

We denote Hd as a Hilbert space of dimension d, and {|j⟩}j=0,··· ,d−1 as the standard computational basis. Let L(Hd) be the
space of operators mapping Hd to itself. For odd prime dimension d, the unitary boost and shift operators X,Z ∈ L(Hd) are
defined as [75]:

X|j⟩ = |j ⊕ 1⟩, Z|j⟩ = wj |j⟩, (S1)

where w = e2πi/d and ⊕ denotes addition modulo d. The discrete phase space of a single d-level system is Zd × Zd, which
can be associated with a d × d cubic lattice. For a given point in the discrete phase space u = (a1, a2) ∈ Zd × Zd, the
Heisenberg-Weyl operators are given by

Tu = τ−a1a2Za1Xa2 , (S2)

where τ = e(d+1)πi/d. These operators form a group, the Heisenberg-Weyl group, and are the main ingredient for representing
quantum systems in finite phase space. The case of non-prime dimension can be understood to be a tensor product of Tu with
odd prime dimension. For each point u ∈ Zd × Zd in the discrete phase space, there is a phase-space point operator Au defined
as

A0 :=
1

d

∑
w

Tw, Au := TuA0T
†
u. (S3)

The discrete Wigner function of a state ρ at the point u is then defined as

Wρ(u) :=
1

d
Tr [Auρ] . (S4)

More generally, we can replace ρ with H for the discrete Wigner function of a Hermitian operator H . For the case of H being
an effect E of some Positive Operator-Valued Measure (POVM), its discrete Wigner function is given by

W (E|u) := Tr[EAu]. (S5)

There are several useful properties of the set {Au}u as follows:

1. Au is Hermitian;

2.
∑

uAu/d = 1;

3. Tr[AuAu′ ] = dδ(u,u′);

4. Tr[Au] = 1;

5. H =
∑

uWH(u)Au;

6. {Au}u = {Au
T }u.
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We say a Hermitian operator H has positive discrete Wigner functions (PWFs) if WH(u) ≥ 0, ∀u ∈ Zd × Zd. According to
the discrete Hudsons theorem [76], a pure state ρ is a stabilizer state, if and only if it has PWFs. Similarly, an n-valued POVM
E = {Ej}n−1

j=0 is said to be a PWF POVM if each Ej has PWFs. The discrete Wigner function of each measurement outcome
of a POVM {Ej}n−1

j=0 has a conditional quasi-probability interpretation over the phase space∑
j

W (Ej |u) = 1, (S6)

where Ej ≥ 0 and
∑
j Ej = 1. In the case of Ej having PWFs, W (Ej |u) can be interpreted as the probability of obtaining

outcome j given that the system is at the phase space point u. This property is crucial for efficiently simulating quantum
computation classically. The total probability of obtaining outcome j from a measurement on state ρ is then given by

P (j|ρ) =
∑
u

Wρ(u)W (Ej |u), (S7)

where P (j|ρ) can be effectively estimated [17, 77] when both ρ and Ej have PWFs, implying that both Wρ(u) and W (Ej |u)
possess classical probability interpretations. Therefore, negative quasi-probability is a vital resource for quantum speedup in
stabilizer computation and has deep connections with contextuality in stabilizer measurements [37, 45]. In this sense, PWF
POVMs are regarded as classically-simulable measurements [45], which strictly include all stabilizer measurements.

Lemma S1 For any phase-space point operator Au ∈ L(Hd), u ∈ Zd × Zd, Au is a unitary operator with eigenvalues of +1
or −1, where eigenvalue +1 has a degeneracy of d+1

2 and eigenvalue −1 has a degeneracy of d−1
2 .

Proof Suppose A0 has a spectral decomposition

A0 =
∑
i

ai|ai⟩⟨ai|. (S8)

Since Au = TuA0T
†
u, we have Au =

∑
i aiTu|ai⟩⟨ai|T †

u which means all possible Au have same eigenvalues {ai} with
corresponding eigenvectors {Tu|ai⟩}. Note that A0 =

∑
k∈Zd

|k⟩⟨−k| [78], we conclude that the matrix representation of A0 is

A0 =

[
1 0

0 σx
⊗⌊ d

2 ⌋

]
, where σx =

[
0 1
1 0

]
. Now we consider the eigenvalues of A0. Notice that

det(|aId −A0|) = det

(∣∣∣∣aId − [
1 0

0 σx
⊗⌊ d

2 ⌋

]∣∣∣∣) = (1− a) det
∣∣∣aId−1 − σx⊗⌊ d

2 ⌋
∣∣∣ = (1− a)(1− a2)⌊ d

2 ⌋ = 0, (S9)

where a denotes the eigenvalue of A0. Thus, eigenvalues of Au are +1 or −1, and eigenvalue +1 has a degeneracy of d+1
2

and eigenvalue −1 has a degeneracy of d−1
2 due to Tr(Au) = 1. We can further conclude that Au is unitary according to the

possible eigenvalues of Au. ■

ASYMPTOTIC LIMITS OF PWF POVMS

Lemma 2 For a PWF unextendible subspace S ⊆ Hd, if there is a PWF state ρ ∈ D(S) such that supp(ρ) = S , then S is
strongly PWF unextendible.

Proof First, we will demonstrate that S⊗2 is PWF unextendible through a proof by contradiction. Suppose ρs ∈ S is a PWF
state such that supp(ρs) = supp(S). If there is a PWF state σ supporting on (S⊗2)⊥, then we have Tr[σ(ρs ⊗ ρs)] = 0 which
leads to

Tr
[
ρs Tr2[σ(1⊗ ρs)]

]
= 0. (S10)

Now we construct an operator σ′ ∈ L(Hd) by

σ′ = Tr2[σ(1⊗ ρs)]. (S11)

It is easy to check that σ′ is hermitian, σ′ ≥ 0 and Tr(σ′ρs) = 0.
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If σ′ = 0, we know that Trσ′ = 0 which indicates that Tr[σ(1⊗ ρs)] = Tr[ρs Tr1 σ] = 0. We note that Tr1 σ ̸= 0 otherwise
σ = 0. Also, Tr1 σ is PWF because partial trace preserves the positivity of the discrete Wigner functions which can be observed
by expressing the state as σ =

∑
uWσ(u)Au. Thus, we will get a PWF state supporting on S⊥ after normalizing Tr1 σ, a

contradiction to the PWF unextendibility of S .
If σ′ ̸= 0, we can calculate the Wigner functions of σ′ and demonstrate their non-negativity as follows.

Wσ′(u1) =
1

d
Tr(σ′Au1

) =
1

d2

∑
u2

Tr[σ(Au1
⊗Au2

)] Tr(ρsAu2
). (S12)

Since σ and ρs are PWF, i.e., Tr[σ(Au1
⊗ Au2

)] ≥ 0,Tr(ρsAu2
) ≥ 0, ∀u1,u2, we have Wσ′(u1) ≥ 0. Thus σ′ is PWF.

Consequently, we have obtained a PWF state supporting on S⊥ after normalizing σ′, a contradiction to the PWF unextendibility
of S .

Hence, we conclude that S⊗2 is PWF unextendible. Using a similar technique, we can prove that S⊗3 is PWF unextendible
by making a contradiction to the PWF unextendibility of S⊗2. In turn, we can conclusively demonstrate that S⊗k is PWF
unextendible for any positive integer k, which completes the proof. ■

Proposition 3 There exists a strongly PWF unextendible subspace S ⊆ Hd of dimension (d+ 1)/2.

Proof First, we construct a (d− 1)/2 dimensional subspace Sm ⊆ Hd that supports only magic states. Then we will show that
S⊥m ⊆ Hd is a strongly PWF unextendible subspace of dimension (d + 1)/2. We consider the eigenspace of the phase-space

point operator A0. Denote the set of all eigenvectors of A0 corresponding to eigenvalue of −1 as S− := {|a−i ⟩}
d−1
2

i=1 . We will
show these states in S− span a subspace Sm ∈ Hd that contains no PWF states.

Obviously, any |a−i ⟩ ∈ S− is a magic state due to Tr(|a−i ⟩⟨a
−
i |A0) = −1. Suppose |ψ⟩ is an arbitrary pure state in S−. It

can be written as |ψ⟩ =
∑
i αi|a

−
i ⟩. The Wigner function of |ψ⟩ at the phase-space point 0 is

Wψ(0) =
1

d
⟨ψ|A0|ψ⟩ =

1

d

∑
i,j

α∗
iαj⟨a−i |A0|a−j ⟩ = −

1

d

∑
i,j

α∗
iαj⟨a−i |a

−
j ⟩ = −

1

d

∑
i

αiα
∗
i = −

1

d
, (S13)

which tells |ψ⟩ is a magic state. For any mixed state ρ =
∑
i pi|ψi⟩⟨ψi| on Sm, we have

Wρ(0) =
∑
i

piWψi
(0) = −1

d

∑
i

pi = −
1

d
. (S14)

Thus, we construct a (d − 1)/2 dimensional subspace Sm that contains no PWF states. Obviously, S⊥m is a PWF unextendible
subspace of dimension (d+1)/2. S⊥m is spanned by the set of all eigenvectors ofA0 corresponding to eigenvalue of +1, denoted

as S+ := {|a+i ⟩}
d+1
2

i=1 . We show that ρn = 2
d+1

∑
j |a

+
j ⟩⟨a

+
j | is a PWF state on S⊥m as follows:

Wρn(u) =
1

d
Tr(Auρn) (S15a)

=
2

(d+ 1)d
Tr(Au

∑
j

|a+j ⟩⟨a
+
j |) (S15b)

=
2

(d+ 1)d
Tr[Au(I +A0)/2] (S15c)

=
1 + δu,0
(d+ 1)

> 0. (S15d)

From Eq. (S15b) to Eq. (S15c), we use the properties that A0 =
∑
j |a

+
j ⟩⟨a

+
j | −

∑
i |a

−
i ⟩⟨a

−
i | with spectral decomposition, and

Id =
∑
j |a

+
j ⟩⟨a

+
j | +

∑
i |a

−
i ⟩⟨a

−
i |. Note that supp(ρn) = S⊥m, combined with Lemma 2, we can conclude that S⊥m ⊆ Hd is a

strongly PWF unextendible subspace of dimension (d+ 1)/2. ■

Theorem 4 Given ρ0, ρ1 ∈ D(Hd), if any of them has strictly positive discrete Wigner functions, i.e., Wρi(u) > 0, ∀u, then for
any integer n ∈ Z+, ρ⊗n0 and ρ⊗n1 cannot be unambiguously distinguished by PWF POVMs.

Proof Suppose the state ρ0 and ρ1 can be unambiguously distinguished by a PWF POVM {E0, E1}. By definition, we have

Tr(E0ρ1) = 0 and Tr(E1ρ0) = 0. (S16)
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Then we are going to establish the theorem using a proof by contradiction. Without loss of generality, we suppose ρ1 has strictly
positive Wigner functions. Notice that

Tr(E0ρ1) =
∑
u

W (E0|u)Wρ1(u) = 0. (S17)

By the strictly positivity of the Wigner functions of ρ1, i.e., Wρ1(u) > 0, ∀u, we have that Eq. (S17) holds if and only if
W (E0|u) = 0, ∀u. Combining the fact that

∑
uW (E0|u) = dTr(E0), we have Tr(E0) = 0. It follows that all eigenvalues of

E0 are equal to zero since E0 ≥ 0. Then we have E0 = 0 which gives Tr(E1ρ0) = Tr(1ρ0) = 1, a contradiction.
Hence, there is no effect E0 having PWFs such that Tr(E0ρ0) > 0 and Tr(E0ρ1) = 0 if ρ1 has strictly positive Wigner

functions. Similarly, we can show there is no effect E1 having PWFs such that Tr(E1ρ0) = 0 and Tr(E1ρ1) > 0 if ρ0 has
strictly positive Wigner functions. Using the fact that

Wρ⊗2(ui ⊕ uj) =Wρ(ui)Wρ(uj), ∀ui,uj ∈ Zd × Zd, (S18)

we complete the proof. ■

MINIMUM ERROR DISCRIMINATION BY PWF POVMS

Note that given a two-valued PWF POVM {E,1− E}, the discrete Wigner function of an effect E is W (E|u) = Tr(EAu).
The SDP of discriminating an equiprobable pair of states {ρ0, ρ1} via PWF POVMs can be written as

P PWF
e (ρ0, ρ1,

1

2
) = min

E

1

2
+

1

2
Tr[E(ρ1 − ρ0)],

s.t. 0 ≤ E ≤ 1,

0 ≤ Tr[EAu] ≤ 1, ∀ u,

(S19)

where E ≤ 1 implies 1−E is positive semidefinite. For different linear inequality constraints, we introduce corresponding dual
variables V , U , au, bu ≥ 0. Then the Lagrange function of the primal problem can be written as

L(E, V, U, au, bu) =
1

2
+

1

2
Tr[E(ρ1 − ρ0)] + Tr[V (E − 1)]− Tr(UE)

−
∑
u

au Tr(EAu) +
∑
u

bu[Tr(EAu)− 1]

=
1

2
+ Tr

[
E
(
V − U +

1

2
(ρ1 − ρ0)−

∑
u

auAu +
∑
u

buAu

)]
− Tr(V )−

∑
u

bu

(S20)

The corresponding Lagrange dual function is

g(V, U, au, bu) = inf
E
L(E, V, U, au, bu). (S21)

We can see that V −U + 1
2 (ρ1−ρ0)−

∑
u auAu+

∑
u buAu ≥ 0, otherwise g(V, U, au, bu) is unbounded. Thus the dual SDP

is

max
V,U,au,bu

1

2
− Tr(V )−

∑
u

bu,

s.t. U ≥ 0, V ≥ 0,

V − U +
1

2
(ρ1 − ρ0) ≥

∑
u

(au − bu)Au,

au ≥ 0, bu ≥ 0, ∀ u.

(S22)

Proposition 5 Let ρ0 be the Strange state |S⟩⟨S| and ρ1 = (1− |S⟩⟨S|)/2 be its orthogonal complement. For n ∈ Z+, we have

P PWF
e (ρ⊗n0 , ρ⊗n1 ,

1

2
) =

1

2n+1
. (S23)

The optimal PWF POVM is {E,1− E}, where E = (|K⟩⟨K|+ |S⟩⟨S|)⊗n and |K⟩ = (|1⟩+ |2⟩)/
√
2.
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Proof First, we are going to prove P PWF
e (ρ⊗n0 , ρ⊗n1 , 12 ) ≤

1
2n+1 using SDP (S19). We will show that E = (|K⟩⟨K|+ |S⟩⟨S|)⊗n is

a feasible solution with a discrimination error 1
2n+1 . In specific, it is easy to check 0 ≤ E ≤ 1. Furthermore, we can check that

|0⟩, |K⟩ and |S⟩ are eigenvectors of A0 with eigenvalue +1,+1 and −1, respectively. It follows

Tr[Au(|K⟩⟨K|+ |S⟩⟨S|)] = Tr[Au(1− |0⟩⟨0|)] = 1− Tr(Au|0⟩⟨0|) ≥ 0, (S24)

where the inequality is due to the fact that Au has eigenvalues no larger than 1. Also, we have Tr[Au(|K⟩⟨K| + |S⟩⟨S|)] =
1− Tr(Au|0⟩⟨0|) ≤ 1 as |0⟩⟨0| is a stabilizer state with Tr(Au|0⟩⟨0|) ≥ 0. Thus, for the n-copy case, we have

0 ≤
n∏
i=1

(
⟨K|Aui

|K⟩+ ⟨S|Aui
|S⟩

)
≤ 1, (S25)

which makes E satisfies 0 ≤ Tr[EAu] ≤ 1. Hence, E is a feasible solution to the primal SDP (S19). Note that

Tr[(|K⟩⟨K|+ |S⟩⟨S|)ρ0] = ⟨K|S⟩⟨S|K⟩+ ⟨S|S⟩⟨S|S⟩ = 1, (S26a)

Tr[(|K⟩⟨K|+ |S⟩⟨S|)ρ1] =
1

2
⟨K|(1− |S⟩⟨S|)|K⟩+ 1

2
⟨S|(1− |S⟩⟨S|)|S⟩ = 1

2
. (S26b)

The corresponding discrimination error is

P ∗
pr =

1

2
+

1

2
Tr

[
(|K⟩⟨K|+ |S⟩⟨S|)⊗n(ρ⊗n1 − ρ⊗n0 )

]
(S27a)

=
1

2
+

1

2
Tr

[
(|K⟩⟨K|ρ1 + |S⟩⟨S|ρ1)⊗n − (|K⟩⟨K|ρ0 + |S⟩⟨S|ρ0)⊗n

]
(S27b)

=
1

2
+

1

2

[
1

2n
− 1

]
=

1

2n+1
. (S27c)

Second, we use the dual SDP (S22) to show P PWF
e (ρ⊗n0 , ρ⊗n1 , 12 ) ≥

1
2n+1 . We will construct a valid au combined with

{V = (2n − 1)ρ0/2
n+1, U = 0, bu = 0} as a feasible solution to the dual problem. We note that ρ0 = (1 − A0)/2 and

ρ1 = (1 + A0)/4 and introduce the following notation. Let k = (k1, k2, ..., kn) ∈ {0, 1}n be a n-bit binary string and |k| be
the Hamming weight of it. We then denote Ak = Ak1 ⊗ Ak2 ⊗ ... ⊗ Akn where Aki = A0 if ki = 1 and Aki = 1 if ki = 0.
Then we have

V − U +
1

2
(ρ⊗n1 − ρ⊗n0 ) =

2n − 1

2n+1

(
1−A0

2

)⊗n

+
1

2

[(
1+A0

4

)⊗n

−
(
1−A0

2

)⊗n
]

(S28a)

=
1

22n+1
(1+A0)

⊗n − 1

22n+1
(1−A0)

⊗n (S28b)

=
1

22n+1

∑
k∈{0,1}n

(
1− (−1)|k|

)
Ak (S28c)

=
1

22n+1

∑
k∈{0,1}n

(1− (−1)|k|

3n−|k|

∑
uk

Auk

)
, (S28d)

where Auk
= Au1

⊗ Au2
⊗ · · · ⊗ Aun

with uj = 0 if kj = 1 for j = 1, 2..., n. To derive Eq. (S28d) from Eq. (S28c), we
express each Aki = 1 with ki = 0 in Ak as 1 = 1

3

∑
uAu, where each Ak contains (n − |k|) occurrences of 1. Thus, we can

find a set of âu such that

V − U +
1

2
(ρ⊗n1 − ρ⊗n0 ) =

∑
u

âuAu, (S29)

by the following argument. For each Au′ in the n-copy system, we may find it as the sum of some terms in Eq. (S28d)
with all coefficient positive since 1−(−1)|k|

3n−|k| ≥ 0. We can then let âu be the sum of those coefficients, which makes {V =
(2n − 1)ρ0/2

n+1, âu, U = 0, bu = 0} a feasible solution of the dual SDP. Thus we have

P ∗
du =

1

2
− Tr(V ) =

1

2n+1
. (S30)

Combining it with the primal part and utilizing Slater’s condition for strong duality [57], we have that P PWF
e (ρ⊗n0 , ρ⊗n1 , 12 ) =

1
2n+1 . ■
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Notice that for a given measurement M := {Mj}j , we define the PWF robustness of measurement as

REPWF(M) = min
{
r ∈ R+

∣∣∣Mj + rNj ∈ EPWF ∀j, {Nj}j ∈M
}
, (S31)

where we denote byM the set of all possible POVMs, and denote by EPWF the set of all PWF effects. An effect E belongs to
EPWF if it has PWFs. The data-hiding ratio [61] associated with PWF POVMs is defined in our manuscript as

R(PWF) = max
∥pρ− (1− p)σ∥All

∥pρ− (1− p)σ∥PWF
, (S32)

where the maximization ranges over all pairs of states ρ, σ and a priori probabilities p (here we also define ∥ · ∥PWF as the
distinguishability norm associated with PWF POVMs). In an intuitive sense, we could imagine that a higher data-hiding ratio
in Eq. (S32) will be obtained if the optimal POVMs for ∥ · ∥All exhibit ‘less PWF’. This would suggest a more pronounced
disparity allowing the agent to access the optimal discrimination strategy without a ‘magic factory’ in the given physical setting.
Therefore, given an equiprobable pair of states {ρ, σ}, we define R∗

EPWF
(Mρ,σ) as the minimum PWF robustness of measurement

that an optimal POVM must have to discriminate {ρ, σ}. It can be computed via the following SDP

R∗
EPWF

(Mρ,σ) = min r (S33a)
s.t. E0, E1, N0, N1 ≥ 0, (S33b)

E0 + E1 = 1, N0 +N1 = r · 1, (S33c)

Tr [(ρ− σ)E0] =
1

2
∥ρ− σ∥1, (S33d)

W (E0 +N0|u) ≥ 0,W (E1 +N1|u) ≥ 0, ∀u, (S33e)

where the constraint in Eq. (S33d) ensures that optimal discrimination is achieved, and the constraints in Eq. (S33e) ensure that
Ej + rNj ∈ PWF. We generate 500 equiprobable pair of states {ρj , σj}500j=1 where ρj is a random pure qutrit state according to
the Haar measure and σj is its orthogonal complement. Then we compute the ratio R∗(PWF, {ρ, σ}) = ∥ 12ρj −

1
2σj∥All/∥ 12ρ−

1
2σ∥PWF and R∗

EPWF
(Mρj ,σj

). The numerical calculations are implemented in MATLAB [79] with the interpreters CVX [80] and
QETLAB [81]. The results are depicted as follows.

0 0.1 0.2 0.3 0.4 0.5

1

1.2

1.4

1.6

1.8

2

We observe that there is a possible correlation between the PWF robustness of measurement and the data-hiding ratio associ-
ated with a state pair: as the optimal POVM for a state pair exhibits a higher PWF robustness, the corresponding data-hiding ratio
also increases. However, their specific relationship remains unclear so far. This experiment also indicates that the data-hiding
ratio associated with the Strange state and its orthogonal complement is already relatively high, which equals 2 when n = 1 as
stated in Eq. (4) in our manuscript. A deeper relationship between the data-hiding ratio and the PWF robustness of measurement
in the case of PWF POVMs merits further investigation.
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DISTINCTIONS BETWEEN THE QRT OF MAGIC STATES AND ENTANGLEMENT

Theorem 6 For a subspace S ∈ Hd, if S has a set of basis {|ψi⟩}ni=1 where every |ψi⟩ is a stabilizer state, then S is PWF
extendible.

Proof Since {|ψi⟩}ni=1 is a basis for S , we have |ψi⟩ and |ψj⟩ are orthogonal which yields

⟨ψi|ψj⟩ =
∑
u

Wψi(u)Wψj (u) = 0. (S34)

for any i ̸= j. Note that every pure stabilizer state has Wigner functions 0 or 1/d [76]. Then we know that for a fixed point u′,
there is at most one state |ψj′⟩ that has Wψj′ (u

′) = 1/d. For any other states |ψi⟩, i ̸= j′, we have Wψi
(u′) = 0 otherwise

⟨ψj′ |ψi⟩ ≥ 1/d2 > 0, a contradiction to Eq. (S34). Thus, we have
∑n
i=1Wψi

(u) = 0 or
∑n
i=1Wψi

(u) = 1/d. Then we denote
PS =

∑n
i=1 |ψi⟩⟨ψi| as the projection of S and consider its orthogonal complement P⊥

S = 1−PS . Considering P⊥
S as an effect

of the POVM {P⊥
S , PS}, we have

W (P⊥
S |u) = 1− d

n∑
i=1

Wψi(u) = 1 or 0, (S35)

which shows that P⊥
S has PWFs. After normalization, we can obtain a PWF state supported on S⊥, which indicates that S is

PWF extendible. ■

Proposition 7 Let ρ0 be the Strange state |S⟩⟨S| and ρ1 = (1−|S⟩⟨S|)/2 be its orthogonal complement. ρ0⊗ τ⊗k and ρ1⊗ τ⊗k
cannot be perfectly distinguished for any qutrit magic state τ and k = 1 or 2.

Proof First, suppose there is a PWF POVM {E,1− E} that can perfectly distinguish ρ0 ⊗ τ⊗k and ρ1 ⊗ τ⊗k. Then we have

Tr[(ρ0 ⊗ τ⊗k)E] = 1,Tr[(ρ1 ⊗ τ⊗k)E] = 0. (S36)

We can write Tr[(ρ0 ⊗ τ⊗k)E] = Tr[ρ0 Tr2[(1 ⊗ τ⊗k)E]] = 1. Notice the fact that when ρ0 is a pure state, Tr(ρ0X) =
1,Tr(ρ1X) = 0 if and only if X = ρ0. Then for any u1, we have

Tr(ρ0Au1) =
1

dk

∑
u2,··· ,uk+1

Tr(EAu1,··· ,uk+1
)Tr(τAu2) · · ·Tr(τAuk+1

). (S37)

Suppose the value of maxneg(ρ0) is obtained at phase point u1 = (a, b) for ρ0, where maxneg(ρ) := −minuWρ(u) denotes
the maximal negativity of ρ. We consider the right hand of Eq. (S37) by choosing u1 = (a, b):

−d ·maxneg(ρ0) =
1

dk

∑
u2,··· ,uk+1

Tr(EA(a,b),··· ,uk+1
)Tr(τAu2) · · ·Tr(τAuk+1

) (S38)

≥max(Tr(EA(a,b),··· ,uk+1
))

1

dk

<0∑
u2,··· ,uk+1

Tr(τAu2) · · ·Tr(τAuk+1
) (S39)

+min(Tr(EA(a,b),··· ,uk+1
))

1

dk

≥0∑
u2,··· ,uk+1

Tr(τAu2) · · ·Tr(τAuk+1
) (S40)

≥ 1

dk

<0∑
u2,··· ,uk+1

Tr(τAu2) · · ·Tr(τAuk+1
) (S41)

=− sn(τ⊗k), (S42)

where the inequality in Eq. (S41) is due to the fact that 0 ≤ W (E|u) ≤ 1 for the PWF POVM {E,1 − E} and sn(ρ) :=∑
u:Wρ(u)<0 |Wρ(u)| denotes the sum negativity of a magic state ρ. Thus, we have

d ·maxneg(ρ0) ≤ sn(τ⊗k). (S43)
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Note that the Strange state ρ0 = |S⟩⟨S| satisfies d · maxneg(ρ0) = 1, which implies sn(τ⊗k) ≥ 1. Since it has been shown that
the maximal sum negativity of a qutrit state is 1/3 [10], we conclude that

sn(τ⊗k) = [(2sn(τ) + 1)k − 1]/2 ≤ [(5/3)k − 1]/2 < 1, (S44)

for any qutrit magic state τ and k = 1 or 2, where we use the composition law of sn(·) derived by Ref. [10]. Eq. (S44) is in
contradiction with the inequality sn(τ⊗k) ≥ 1. Thus, we complete the proof. ■

Similarly, we can conclude that for the case of Norell state ρ0 = |N⟩⟨N|, where |N⟩ = (−|0⟩ + 2|1⟩ − |2⟩)/
√
6 [10], ρ0 ⊗ τ

and ρ1 ⊗ τ cannot be perfectly distinguished by PWF POVMs for any qutrit state τ .
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