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Abstract. Explicit mathematical reconstructions of quantum networks play a significant role in devel-
oping quantum information science. However, tremendous parameter requirements and physical constraint
implementations have become computationally non-ignorable encumbrances. In this work, we propose an
efficient method for quantum network tomography by learning isometries on the Stiefel manifold. Tasks of
reconstructing quantum networks are tackled by solving a series of unconstrained optimization problems
with significantly less parameters. The stepwise isometry estimation shows the capability for providing
information of the truncated quantum network while processing the tomography. Remarkably, this method
enables the compressive quantum network tomography by specifying the dimensions of isometries. As a
result, our proposed method exhibits high accuracy and efficiency.

Keywords: Tomography, Quantum Network, Quantum Comb, Stiefel Manifold

1 Introduction

Quantum networks are extremely important in quan-
tum information science [1, 2] with capabilities of per-
forming complex tasks that require multiple input-output
states at different time steps, as a non-Markovian quan-
tum process [3]. Furthermore, the quantum network is
competent to model non-Markovian quantum noise re-
sulting from indispensable system-environment correla-
tions, and promotes development of clean quantum com-
puters [2].

A prevalent way to model a quantum network is the
quantum comb [4]. As shown in Fig. 1, an N -time-step
quantum comb constructs a completely positive (CP)
map from N input states to N output states, labeled
by even and odd numbers, respectively, with causality
that later input systems cannot influence previous out-
put systems. Recent quantum comb tomography (QCT)

methods requires tremendous O(
∏2N−1
i=0 d2i ) parameters

(di is the dimension of i-th state) to represent an arbi-
trary quantum network with CP and causality (CPC)
constraints, which are computationally intractable.

In this work, inspired by the isometry realization of the
quantum comb [5], we propose an efficient isometry-based
QCT (iQCT) optimized by the adaptive moment esti-
mation (ADAM) on the Stiefel manifold. Our proposed
method parameterizes the target quantum comb by a list
of isometries with significantly fewer parameters, which
is O(

∏N−1
k=0 d

2
2kd2N−1), and inherent satisfaction of CPC

constraints. Then, the original QCT task is transformed
into solving N unconstrained optimization problems on
the Stiefel manifold. As a result, our proposed method

∗yuxutao@seu.edu.cn
†zczhang@seu.edu.cn
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1 2 3 4 3 2 1

Figure 1: A quantum comb with N time steps. Wires
labeled by 2k and 2k+ 1 represent the input and output
systems, respectively, at time step k, k = 0, 1, . . . , N −
1. Causality of the quantum comb indicates that the
information flows along with the time step, which implies
that the input system at time step l cannot influence the
output system m if l > m.

exhibits high accuracy and efficiency. Furthermore, the
stepwise optimization determines one isometry at each
time step. Hence, our method is capable of providing
information about the truncated quantum comb while
processing the tomography. Remarkably, this method en-
ables the compressive QCT by specifying the dimensions
of the isometries, especially in cases where the experi-
menter has prior information that the time correlations
are limited and can be characterized by low-dimensional
isometries, or for characterizing non-Markovian quantum
noise with mild system-environment correlations. A tech-
nical version can be found in arXiv:2404.06988.

2 Framework of Isometry based QCT

A quantum comb C(N) with N time steps as shown in
Fig. 1, that represents an N -time-step quantum network,
maps N input systems ρ(2k) ∈ Lin(H2k) to N output
systems ρ(2k+1) ∈ Lin(H2k+1), k = 0, 1, . . . , N −1, where
Hi is a di-dimensional Hilbert space and Lin(Hi) is the

space of linear operator on Hi. Let H(N)
in :=

⊗N−1
k=0 H2k

1
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Figure 2: Workflow for estimating V (k) in the target N -
time-step quantum network. The experimenter tests the
truncated quantum network with time steps t = 0, . . . , k,
k ≤ N − 1, from the target quantum network, as shown
at the top of the figure. Then, the cost function is defined

by measurement results s
(k)
α,β w.r.t. W (k). Finally, we use

the ADAM on the Stiefel manifold to determine V (k) =
arg minW (k)∈St(k) F(W (k)).

and H(N)
out :=

⊗N−1
k=0 H2k+1.

An arbitrary quantum comb C(N) can be implemented
by isometries V (k) : H2k ⊗HAk

7→ H2k+1 ⊗HAk+1
, k =

0, 1, . . . , N − 1, where HAk
=

⊗k−1
j=0 H2j , k > 0, and

HA0
= C are Hilbert ancillary spaces. Output states are

computed by

C(N)(ρ) = TrAN
[V (N−1) . . . V (0)ρV (0)† . . . V (N−1)†], (1)

where ρ ∈ Lin(Hin), C(N)(ρ) ∈ Lin(Hout).
This indicates that V (k) can be adequately repre-

sented using
∏k
t=0 d

2
2td2k+1 complex parameters. Hence,

O(
∏N−1
k=0 d

2
2kd2N−1) complex parameters are sufficient to

represent entire quantum comb C(N), which is signifi-
cantly more efficient than the Choi state based QCT
methods.

To perform tomography on the quantum comb, the
experimenter prepares known tomographically complete

state sets Γ(2k) := {ρ(2k)i }d
2
2k−1
i=0 and measurement sets

Ξ(2k+1) := {E(2k+1)
j }d

2
2k+1−1
j=0 for input systems ρ(2k)

and output system ρ(2k+1) that span Lin(H2k) and
Lin(H2k+1), respectively, for k = 0, 1, . . . , N − 1.

The causality indicates that the input systems at later
time steps cannot influence previous output systems,
which enables the stepwise optimization in the iQCT. At
step k, only the isometry V (k) is reconstructed with the
known V (t), t < k. The workflow for estimating V (k) is
summarized in Fig. 2. The experimenter conducts exper-

iments that combine the input states {ρ(t)αt }kt=0 and mea-

surements on output states {E(2t+1)
βt

}kt=0 and records the

results s
(k)
α,β, where α := [α0, . . . , αk], β := [β0, . . . , βk].

The criteria for selecting α and β are that {η(k−1)α,β } con-

sists of at least d22kd
2
Ak

linear independent matrices and
that βk spans {0, . . . , d22k+1 − 1}, where

η
(t)
α,β = Tr2t+1[ρ(2t+2)

αt+1
E

(2t+1)
βt

V (t)η
(t−1)
α,β V (t)†], t ≥ 0, (2)

and η
(−1)
α,β = ρ

(0)
α0 . From (1), the recovered probability is

pα,β(W (k)) = Tr[E
(2k+1)
βk

W (k)η
(k−1)
α,β W (k)†]. (3)

Then, the isometry V (k) is reconstructed by optimizing
the cost function F on the Stiefel manifold without con-
straints

min
W (k)∈St(k)

F(W (k)) =
∑
α,β

|p̃α,β − pα,β(W (k))|2, (4)

where p̃α,β = s
(k)
α,β/ns represents the measurement prob-

ability, ns is the total number of samples, St(k) := {X ∈
C(k) : X†X = I} represents the Stiefel manifold on

which V (k) lies, and C(k) := Cd2k+1dAk+1
×d2kdAk . This

optimization problem is solved by ADAM on the Stiefel
manifold.

Note that the stepwise optimization determines one
isometry at each time step. Hence, the iQCT has the
capability of providing isometries of C(k), k ≤ N , while
performing tomography to C(N). The causality indicates
that the isometries of C(k), k ≤ N , completely character-
ize the truncated quantum network from time step 0 to
k− 1. This property facilitates experimenters to analyze
the currently determined information of the truncated
quantum network when the iQCT is determining later
isometries. Furthermore, this method enables compres-
sive tomography of quantum networks by reducing the
dimensions of ancillary spaces. This compressive method
is both efficient and effective when the experimenter has
prior information about the required ancillary dimen-
sions.

3 Experimental Results

We first simulate iQCT to reconstruct a series of ran-
dom 2-time-step quantum networks defined by isome-
tries. We use the reconstruction fidelity F (Υ,Υ′) be-
tween the Choi states of reconstructed and ideal quan-
tum networks Υ and Υ′ to represent the accuracy of QCT
methods. The fidelity becomes 1 when two quantum net-
works construct same map between input and output
states, and 0 when they are totally different such that
their Choi states are orthogonal. We adopt the absolute
running time ∆T (s) running in the same computer to
fairly showcase the efficiency.

In Fig. 3, we show the fidelity and absolute running
time w.r.t. dimensions of input and output states. We
set the dimensions of input and output states at the same
time step are identical. Labels ‘n-m’ henceforth represent
that states at time step 0 and 1 consist of n and m qubits,
respectively. From the results, the iQCT efficiently recon-
structs quantum networks with fidelity F > 99%. The
increasing fidelities to dimensions of isometries as shown
in Fig. 3(a) result from that the termination condition
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Figure 3: Results of QCT for 2-time-step quantum net-
works. For each label, we conduct the QCT to 10 random
quantum networks. Bars represent average values, while
gray points are values of individual results of the random
quantum networks. (a) Fidelity gaps to 1. (b) Absolute
running times.

Figure 4: Results of QCT for 10 random ‘1-1’ quantum
networks. Dashed lines represent average values, while
bars are values of individual results of networks. (a) Fi-
delities. (b) Absolute running times.

act on the gradients of isometries instead of differences
of cost function values. The low variance of fidelities and
absolute running times in the same settings indicates the
stability of the iQCT in ideal circumstances.

We further compare the iQCT to the recent state-
of-the-art QCT method which construct the Choi state
based on the maximum likelihood estimation (MLE) with
physical constraints implemented by Dikstra projection
[6], labeled by MLE-Choi. In Fig. 4, we show the fi-
delity and absolute running time of the two schemes in
estimating 10 random ‘1-1’ quantum networks. Our pro-
posed iQCT achieves 82.3% and 98.5% improvements to
the average fidelity gap to 1 and absolute running time,
respectively, in this situation.

To showcase the capability of compressive tomography,
we apply the iQCT with specified ancillary dimensions to
‘2-2’ random quantum networks, where full ancillary di-
mensions are dA0

=4 and dA1
=16. In Fig.5, we exhibit

fidelities w.r.t. ancillary dimensions. The compressive
iQCT achieves high fidelities when ancilary dimensions
are sufficient. This implies that the compressive iQCT
is both efficient and accurate when we know the require-
ment of ancillary dimensions.

Furthermore, we apply the iQCT to a single-qubit 3-
time-step real quantum computer. We utilize the relative
cost L(Ccmp, Cfull) to measure distances between recon-
structed compressive quantum network Ccmp and full-
ancillary-dimension quantum network Cfull. L=0 when
Ccmp is equivalent to Cfull with unitary non-measurement
operations. From Fig. 6, the iQCT achieves signifi-
cant similarity between Ccmp and Cfull. This indicates

Figure 5: Average fidelities with specified ancillary di-
mensions. Blocks marked by ‘×’ means that we do not
conduct simulations in corresponding situations. Ran-
dom ‘2-2’ quantum networks are generated with (a) full
and (b) specified ancillary dimensions. The specified di-
mensions in generating and reconstructing quantum net-
works are equal.

Figure 6: Results on real quantum chips. Labels in
legends represent log2 dA0

-log2 dA1
-log2 dA2

. Instruments
are performed with gap (a) 10ns and (b) 20ns.

the potentiality of iQCT to efficiently reconstruct non-
Markovian quantum noise with less computational re-
sources but high fidelities.
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Witnessing Non-Gaussian Entanglement in cQED Devices
With Conditional Displacement Gates

Lin Htoo Zaw1∗
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Abstract. In weakly-dispersive cQED devices, conditional displacement (CD) gates are used to probe the
characteristic function of cavity states, while Wigner function measurements are difficult and quadrature
measurements are unavailable. As such, past demonstrations of entanglement in such architectures have
resorted to state tomography. I recently proposed a non-Gaussian entanglement witness that uses only
CD gates and qubit readouts [1]. The witness arises from a result from harmonic analysis and a surprising
connection between two negativities: that of the reduced Wigner function, and that of the partial transpose.
It requires as few as four points of the characteristic function, and simultaneously lower bounds the Wigner
negativity volume and a measure conjectured to be the partial transpose negativity.

Keywords: circuit and cavity quantum electrodynamics, characteristic function, Wigner negativity, en-
tanglement witness

Background and Motivation. In both circuit and
cavity quantum electrodynamics (cQED), operations on
high quality-factor cavities are mediated by qubits dis-
persively coupled to them. If the coupling between the
qubit and the cavity is weakly dispersive, it is possible
to perform conditional displacement (CD) gates, of the

form UCD := D(ξ⃗/2) |e⟩⟨g| + D(−ξ⃗/2) |g⟩⟨e| where D(α⃗)
is the displacement operator on the cavities, with high
fidelity and low gate times [2, 3, 4]. The pointwise char-
acteristic function of cavity states can be probed with
CD gates and qubit measurements, while displaced par-
ity gates have gate times orders of magnitude longer, and
quadrature measurements are unavailable.
As most continuous variable entanglement witnesses

are based on quadrature statistics, past demonstrations
of entanglement in such architectures have resorted to vi-
olating Bell inequalities with Wigner function measure-
ments or by computing the entanglement fidelity from
the tomographically-reconstructed state. The former is
difficult in weakly-coupled systems due to the necessity
of parity gates, while the latter is an expensive operation.

Contributions. The first contribution of this work
is a proof that a Wigner negativity witness based on
Bochner’s theorem provides a lower bound to the Wigner
negativity volume. To the best of my knowledge, exist-
ing Wigner negativity witnesses have only been shown
to lower bound the trace distance of Wigner negativity,
which, unlike the Wigner logarithmic volume, has not
been shown to be a non-Gaussian monotone.
The second contribution of this work is a method to

directly detect non-Gaussian entanglement between cav-
ities using only CD gates and qubit readouts. In most
cases, as few as four settings of the CD gates are needed
for non-Gaussian entanglement to be certified.

The Protocol. Let DA(ξ⃗) (DB(ξ⃗)) be the displace-
ment operator for partition A (B). The CD entanglement
witness can be implemented with the following steps:

∗htoo@zaw.li

(a)

|+⟩
σx, σy

⟨(σx − iσy)⟩
= ⟨DA(ξ⃗

A)DB(ξ⃗
B)⟩ρ

−ξ⃗A

ξ⃗B

(b)

|+⟩
σx, σy

⟨(σx + iσy)⊗ (σx + iσy)⟩
= ⟨DA(ξ⃗

A)DB(ξ⃗
B)⟩

ρ
ξ⃗A

ξ⃗B

|+⟩
σx, σy

Figure 1: Measurement of ⟨DA(ξ⃗
A
j − ξ⃗Ak )DB(ξ⃗

B
j − ξ⃗Bk )⟩

with (a) one or (b) two auxiliary qubits.

(1) Choose N phase-space pairs Ξ = {(ξ⃗Ak , ξ⃗Bk )}Nk=1

with ξ⃗Ak = ξ⃗Bk .
(2) Using CD gates and qubit measurements (see

Fig. 1), measure ⟨DA(ξ⃗
A
j − ξ⃗Ak )DB(ξ⃗

B
j − ξ⃗Bk )⟩ for all j <

k. Denote the experimental error bars as δj,k.
(3) Construct C2 with the matrix elements [C2]j,k =

⟨DA(ξ⃗
A
j − ξ⃗Ak )DB(ξ⃗

B
j − ξ⃗Bk )⟩/N for j < k from the previ-

ous step, while the other elements are given by [C2]j,j = 1
and [C2]j,k = [C2]

∗
k,j for j > k.

(4) Calculate λ−, the minimum eigenvalue of C2. De-
fine EC := max(0,−λ−) and δ := maxj

∑
k ̸=j δj,k/N . If

EC > δ, then the system is entangled.
Lower Bounds of Measures. The expectation value

of the witness EC ± δ is a lower bound to the Wigner
negativity volume NV and the positive-partial-transpose
trace distance EPPT, where

NV =
1

2

∫
dα⃗ [|Wρ(α⃗)| −Wρ(α⃗)],

EPPT = min
σ∈PPT

tr
∣∣σTB − ρTB

∣∣. (1)
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Here Wρ is the Wigner function of ρ, TB is the par-
tial transpose over partition B, and PPT is the set of
positive-partial-transpose states. EPPT is conjectured to
be equivalent to the partial transpose negativity tr |ρTB |−
1 [5]. The Wigner negativity volume is a non-Gaussian
monotone, while the partial transpose negativity is an
entanglement monotone.

States detected by the witness. While the de-
tected states are not yet fully characterised, the witness
can detect common families of non-Gaussian entangled
states—entangled Fock states, photon-subtracted two-
mode squeezed vacua, and entangled cats. Most of them
can be detected with just four measurement settings.

Timeliness. The CD gate on a single cavity was first
proposed and demonstrated four years go in cavity QED
[2] and three years ago in circuit QED [3], while a CD
gate on two cavities coupled to a single qubit, exactly
the type of measurement needed for the CD witness, was
demonstrated just last year [4]. As this architecture gains
in popularity—especially since the control scheme for CD
gates can be applied to other weakly-dispersive cQED
devices—this CD witness is a very timely contribution
for certifying non-Gaussian entanglement on such devices
with low overheads and a simple implementation.
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Group twirling and noise tailoring for multi-qubit-controlled phase gates
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Abstract. Group twirling is crucial in quantum information processing, particularly in randomized
benchmarking and randomized compiling. While Pauli twirling has been utilized to transform arbitrary
noise channels into Pauli channels for Clifford gates, the lack of practical twirling groups for multi-qubit
non-Clifford gates remains a challenge. To address this gap, we study the issue of finding twirling groups
for generic quantum gates. Interestingly, for multi-qubit-controlled phase gates, which are essential in
quantum algorithms and directly implementable in practice, we determine optimal twirling groups within
a large gate set. We propose associated benchmarking procedures for such gates and numerically identify
their practicality.

Keywords: group twirling, noise tailoring, quantum benchmarking, multi-qubit-controlled phase gates

1 Introduction
Group-twirling-based noise tailoring is an essential

step to deal with noise in quantum information process-
ing. Group twirling symmetrizes the noise channel [1, 2],
allowing accurate and efficient extraction of noise chan-
nel parameters. This principle underlies the randomized
benchmarking (RB) methodology [3–6], which stands out
as a major quantum benchmarking technique due to
its low sample complexity and resilience against state
preparation and measurement (SPAM) errors. Moreover,
group twirling is essential in randomized compiling [7],
which turns generic noise into a Pauli channel, reducing
the worst-case error of quantum gates and facilitating
Pauli channel learning protocols [8–11].

While group twirling facilitates many tasks, the ad-
ditional overhead to implement twirling gates should
be considered. It is favoured to use a more compact
and facilely implementable twirling gate set without
compromising task performance. Focusing on applying
group twirling in tailoring a quantum gate in random-
ized benchmarking or random compiling, currently, the
landscape is dominated mainly by efficient noise tailoring
protocols for Clifford gates, primarily achieved through
Pauli group twirling [7, 12, 13]. In contrast, practi-
cal twirling groups for multi-qubit non-Clifford gates are
lacking. This raises the pertinent question of finding suit-
able twirling groups for tailoring generic quantum gates
and investigating their optimality. This research is es-
sential not only for experimental advancements in non-
Clifford gate benchmarking and applications but also for
theoretical insights that underscore the need for tailoring
quantum gates.

In this work, we investigate noise tailoring strategies
for generic quantum gates. Central to noise tailoring is
the selection of appropriate twirling gates for the twirled
gate, namely the gate undergoing twirling. We study
this question within a frequently used circuit structure
– the twirled and twirling gates are intertwined. Within
this structure, we summarize the constraints between the
twirled and twirling gates, and we find that any quantum

∗xma@tsinghua.edu.cn

gate tailoring demands a twirling gate set comparable in
magnitude to the Pauli group, implying the optimality
of existing noise tailoring schemes designed for Clifford
gates. In addition to the well-studied Clifford gates, for
multi-qubit-controlled phase gates in the form of

CnZθ =

(
I2n−1 0
0 eiθ

)
, (1)

where n is a positive integer and θ is a real number, we
found optimal twirling groups within the realm of clas-
sically replaceable unitary operations [14]. These gates
are the key components in quantum algorithms [15–17]
and directly implementable in quantum processors [18–
21]. The optimal twirling groups found in this work are
subgroups of the CNOT dihedral group used to bench-
mark CnZθ in previous works [22]. Unlike the relatively
straightforward tailoring process for Clifford gates, the
optimal twirling gate set for CnZθ grows exponentially
with the qubit count.

We further conducted numerical simulations of bench-
marking CnZθ gates using various noisy twirling groups.
Our findings indicate that the optimal twirling group de-
livers superior performance compared to the CNOT di-
hedral group and the Pauli group in a small-scale quan-
tum system. We believe these results will contribute to
the broader use of native non-Clifford gates in quantum
computing and facilitate the practical implementation of
a wide range of quantum algorithms.

2 Twirling groups in RB
In this extended abstract, we mainly present the results

of RB and leave the part of randomized compiling to the
technical version of our work in the appendix.

We consider the task of RB that estimates the fidelity
of an individual target gate, U , robust to state prepara-
tion and measurement errors. The noisy quantum gate
is expressed as Ũ = UΛ where Λ is the noise channel,
U denotes the Pauli-Liouville representation of U , and ·̃
represents the noisy version of quantum gates or observ-
ables. The fidelity of U is namely the process fidelity of
Λ [23, 24]. Based on the result of character RB [25], if
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one can obtain the powers of the G-twirled noise chan-
nel, ΛmG , where m ∈ Z+ and ΛG = EG∈GGΛG†, and ΛG
is diagonal in the Pauli-Liouville representation up to a
unitary transformation independent of Λ, then one can
obtain the fidelity of Λ accurately with single-exponential
fitting. Here, G is a prefixed twirling group. If ΛG is not
diagonal, we need to overcome the notorious matrix ex-
ponential fitting problem for getting fidelity [26], which
would cause inaccurate estimation.

In this work, to obtain ΛmG , we utilize the circuit
in Fig. 1. One independently and randomly samples
m twirling gates Gi from group G, and implements
them interleaved with target gate U . The circuit ends
with the inverse gate Ginv = (

∏m
i=1 UGi)

†. We prove
that, as long as UGU† = G, this circuit allows us
to obtain U†m(UΛG)m along with the fidelity of U ′ =

(U†m(UΛG)m)
1
m . We further prove that, in this case,

the fidelity of U ′ is a lower bound of the fidelity of U .
Furthermore, the two are equal when U is a multi-qubit-
controlled phase gate.

⇒
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𝑚 gate layers
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Figure 1: Random twirling gates G1, G2, · · · , Gm in-
terleaved with U in RB. The inverse gate Ginv =
(
∏m
i=1 UGi)

−1. ·̃ represents the noisy version of a quan-
tum gate. Λ is the noise channel of U and ΛG is the
G-twirled noise channel. This circuit actually measures
the noise from both U and G but the noise effect of G can
be removed with the technique of interleaved RB [27].

Based on the discussion above, we summarize the re-
quirements of the twirling group G to tailor U in RB:

for any quantum channel Λ,
ΛG = EG∈GGΛG† is diagonal up to a
unitary transformation independent of Λ,

(2)

and,
UGU† = G. (3)

The first condition is required to symmetrize the noise
channel, and the second condition means that the action
of U does not destroy this symmetry. A good solution of
G should be small and easily implementable.

In this work, we study the diagonalizability of ΛG and
prove two associated lemmas, restricting the choice of
G and helping us to find the optimal twirling group for
multi-qubit-controlled phase gates.

Lemma 1 If a finite n-qubit unitary subgroup, G, satis-
fies Eq. (2), then the Pauli-Liouville representation of G
is multiplicity-free. As a corollary, the cardinality of the
twirling group |G| ≥ 4n.

Lemma 2 If a finite n-qubit CRU subgroup, G, satisfies
Eq. (2), then G can interchange any two computational
basis states. That is, for any two computational basis
states |i⟩ and |j⟩ where i, j ∈ {0, 1}n, there exists a gate
G ∈ G such that |j⟩ = G |i⟩.

Lemma 1 implies that any twirling gate set must be
comparable in magnitude to the Pauli group, showing
the superiority of Clifford gates in noise tailoring, thanks
to Clifford gates normalizing the Pauli group.

The set of classically replaceable unitary operations
comprises all gates that can be moved after computa-
tional basis measurements and become classical post-
processing. This gate set is large and will be universal af-
ter adding Hadamard gates. Lemma 2 puts a very strong
restriction on the twirling group in this set and indicates
that the twirling group should contain a group like X, the
group generated by Pauli X gates on all qubits. With
Lemma 2, we further prove the theorem below, reveal-
ing the optimal twirling groups for multi-qubit-controlled
phase gates.

Theorem 3 The optimal twirling group G in CRU for
the multi-qubit-controlled phase gate, U = CnZm, with
n ≥ 1,m ≥ 2, is given by

G = {Π(
t∏
i=1

(Π†
iUΠiU

†)li)|Π ∈ X, t ∈ N, ∀i, li ∈ ±1,Πi ∈ X}.

(4)

Note that any CRU subgroup is decomposable into
the semi-product of a permutation group and a diago-
nal group, GCRU = Π ⋉ W = {ΠW |Π ∈ Π,W ∈ W}.
The optimal group can be written as G = X ⋉ WX

where WX = {Π†UΠU†,Π ∈ X} only comprises diagonal
gates. The optimality here means that any GCRU satisfy-
ing Eqs (2) and (3) implies W ⊇ WX and |Π| ≥ |X|. The
optimal group is clearly the smallest option. In practice,
one normally determines the permutation part and the
diagonal part separately to sample a gate in CRU. The
gate is realized by sequentially implementing two parts.
In this sense, the optimal group is also the most easily
implementable option.

We list specific forms of twirling groups for CnZ and
CZm in Table 1. Our results are better than previous
ones [22] in terms of group size and computational com-
plexity. Nonetheless, even for the optimal solution, the
twirling group would be large and highly non-local with
the increased controlled qubit number. The sample com-
plexity and the computational complexity would be unac-
ceptable for large control qubit numbers. The results in-
dicate the fundamental difficulty of benchmarking multi-
qubit non-Clifford gates.
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Table 1: Scaling of the group size and computational
complexity of the twirling group for tailoring CnZ and
CZm in our work and [22]; CXD represents the CNOT
dihedral group. The complexity is expressed with the
qubit number N , controlled qubit number n, and phase
angle index m (θ = 2π

m in Eq. (1)).
CnZ

Group Size Complexity
This work ⟨Cn−1Z,Cn−2Z, · · · , CZ,Z,X⟩ O(Nn) O(Nn)
CXD [22] ⟨CX,Z2n+1 , X⟩ O(Nn+1) O(N3n+1)

CZm
Group Size Complexity

This work ⟨CZm, Zm, X⟩ O(N2 logm) O(N2 logm)
CXD ⟨CX,Z2m, X⟩ O(N logm) O(N3 logm+1)

3 Simulation
Here, we show part of the simulation results of bench-

marking CS and CCZ gates with the full results in the
technical version of our work. We first propose a bench-
marking procedure using the optimal twirling group and
a random Pauli SPAM setting. And we further enhance
this procedure by using a group, which add the phase
gate S = |0⟩⟨0| + i |1⟩⟨1| to the optimal twirling group,
and a SPAM setting that we name as ZX-SPAM.

In the random Pauli SPAM setting, for a randomly
sampled Pauli operator, P , one inputs the eigenstate
of P , implements the circuit in Fig. 1 and measures P
to estimate the noise channel parameter tr(PΛ(P ))/2N ,
where Λ is the noise channel and N is the qubit num-
ber. The process is repeated for a constant number of
Pauli observables and the fidelity is estimated by averag-
ing tr(PΛ(P ))/2N from different P . In the ZX-SPAM
setting, one prepares |0⟩⊗N and measures in Z⊗N to
extract tr(PZΛ(PZ))/2

N for all PZ ∈ {I, Z}⊗N . Simi-
larly, by preparing |+⟩⊗N and measuring in X⊗N , one
extracts tr(PXΛ(PX))/2N for all PX ∈ {I, X}⊗N . The
ZX-SPAM setting is sufficient to obtain all different di-
agonal terms of the twirled noise channel as long as the
twirling group includes the CZ dihedral group ⟨CZ,Z, S⟩.

Below, in Fig. 2, we compare our scheme, which uses
the CZ dihedral group GZ = ⟨CZ,X, S⟩ and the ZX-
SPAM, the CNOT dihedral group with the ZX-SPAM,
and the Pauli group with a random SPAM in benchmark-
ing CS and CCZ gates. Note that the Pauli group does
not satisfy Eqs. (2) and (3) to benchmark multi-qubit
controlled phase gates, and in this case, the inverse gate
in Fig. 1 is outside the Pauli group.

The twirling gates are simulated with gate-dependent
noise. We simulate both the fidelity of the composite
noise channel and the fidelity of the twirling group and
get the fidelity of the target gate by interleaved RB tech-
nique. We only show the target gate fidelity in Fig. 2.
The results show our scheme performs better than other
two methods in terms of both the precision and accuracy
for benchmarking CS and CCZ gates, providing a prac-
tical scheme for tailoring multi-qubit controlled phase
gates in small-scale systems.

4 Outlook
Identifying optimal twirling groups for gate tailoring is

intriguing in both theoretical and experimental contexts.
Our findings provide an initial glimpse into this area.
Future research can explore optimal twirling groups for
various quantum gates and investigate the feasibility of
tailoring gates solely with local twirling gates. Addition-
ally, by seeking benchmarking methodologies that do not
rely on a group structure, we may find smaller twirling
gate sets. Beyond the scope of noise tailoring, the prop-
erties of twirling groups explored in this work may prove
valuable in other quantum information processing tasks,
such as Pauli error rate learning and shadow tomography.
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Figure 2: Benchmarking results for the CS and CCZ
gates in Figures (a) and (b), respectively, with the Pauli
group, the CZ dihedral group (CZD), and the CNOT
dihedral group (CXD). The red dashed line is the the-
oretical fidelity value. Each box plot contains 20 fideli-
ties, and each fidelity is estimated with circuit depths
{2, 4, 6, 8, 10}, and the total number of different gate se-
quences for each depth is specified by the horizontal axis.
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Group Twirling and Noise Tailoring for Multi-Qubit-Controlled Phase Gates
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Group twirling is crucial in quantum information processing, particularly in randomized bench-
marking and randomized compiling. While protocols based on Pauli twirling have been effectively
crafted to transform arbitrary noise channels into Pauli channels for Clifford gates — thereby fa-
cilitating efficient benchmarking and mitigating worst-case errors — the lack of practical twirling
groups for multi-qubit non-Clifford gates remains a challenge. To address this gap, we study the
issue of finding twirling groups for generic quantum gates, focusing on a widely used circuit struc-
ture in randomized benchmarking or randomized compiling. Specifically, for multi-qubit-controlled
phase gates, which are essential in quantum algorithms and directly implementable in practice, we
determine optimal twirling groups within the realm of classically replaceable unitary operations.
Contrasting with the local Pauli twirling group for Clifford gates, the optimal groups for such gates
contain nonlocal operations, highlighting the overhead of tailoring noise in global non-Clifford con-
texts. We design new benchmarking procedures for multi-qubit controlled phase gates based on the
optimal twirling groups. Our simulation results show that our scheme can improve the precision
and accuracy of benchmarking in small-scale systems.

I. INTRODUCTION

There has been an increased interest in quantum infor-
mation processing due to its potential revolution in both
science and technology. While quantum computing holds
the promise of quantum advantages, its practical imple-
mentation faces significant challenges, primarily due to
the inherent noise of quantum systems. When dealing
with quantum noise, group-twirling-based noise tailoring
is an essential step. Group twirling symmetrizes the noise
channel [1, 2], allowing accurate and efficient extraction
of noise channel parameters. Then, it enables efficient
noise characterization and subsequent quantum control
optimization [3, 4]. This principle underlies the ran-
domized benchmarking (RB) methodology [5–8], which
stands out as a major quantum benchmarking tech-
nique due to its low sample complexity and resilience
against state preparation and measurement (SPAM) er-
rors. Moreover, group twirling is essential in randomized
compiling [9], which turns generic noise into a Pauli chan-
nel, reducing the worst-case error of quantum gates and
facilitating Pauli channel learning protocols [10–13].

While randomized benchmarking and randomized
compiling have seen considerable advancements, efficient
noise tailoring protocols for multi-qubit gates mainly
focus on the Clifford case, primarily achieved through
Pauli group twirling [9, 14, 15]. For multi-qubit non-
Clifford gates, researchers also made some progress and
proposed benchmarking protocols for two kinds of quan-
tum gate sets: CNOT dihedral group [16] and match-
gate group [17, 18]. Nonetheless, these groups are both
large and highly non-local, posing challenges to practical
implementation in expansive quantum systems. Exper-
imental undertakings have, so far, been limited to the

∗ xma@tsinghua.edu.cn

two-qubit domain for the CNOT dihedral group [19] and
none for the matchgate group. This raises the question of
whether more compact and easily implementable twirling
groups might suffice for twirling and benchmarking tasks.
Similar issues exist for randomized compiling. The lack
of methodologies for tailoring multi-qubit non-Clifford
gates hinders their applications, though many of which
are directly implementable or native in quantum proces-
sors [20, 21].
In this work, we investigate noise tailoring strategies

for generic quantum gates within RB and randomized
compiling. Central to noise tailoring is the selection of
appropriate twirling gates for the twirled gate, namely
the gate undergoing twirling. We study this question
within a frequently used circuit structure – the twirled
and twirling gates are intertwined. Within this struc-
ture, we summarize the constraints between the twirled
and twirling gates, and we find that any quantum gate
tailoring demands a twirling gate set comparable in mag-
nitude to the Pauli group, implying the optimality of ex-
isting noise tailoring schemes designed for Clifford gates.
In addition to the well-studied Clifford gates, our study

emphasizes multi-qubit-controlled phase gates, given by

CnZm = (
I2n+1−1 0

0 ei
2π
m
) , (1)

where n and m are both positive integers, representing
the number of control qubits and the phase, respectively.
The matrix I2n+1−1 denotes the identity of dimension
2n+1 − 1 and 0 denotes the zero matrix. Our study can
be further generalized by replacing the phase from 2π

m
to

any angle θ ∈ [0,2π]. These gates are the key components
in quantum information processing, featuring in seminal
algorithms such as Shor’s algorithm [22], Grover’s algo-
rithm [23], linear combinations of unitary operations [24],
and the preparation of hypergraph states for universal
quantum computing [25]. Moreover, the CnZm gate is
native to superconducting [26, 27], ion trap [28], and Ry-
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dberg [29] quantum systems. It is also a key ingredient
to construct fault-tolerant non-Clifford gates in quantum
error correction [30–32]. Thus, devising efficient noise tai-
loring schemes for such gates is crucial in both the theory
and experiment.

Within our framework, we introduce an optimal noise
tailoring scheme for the CnZm gate if the twirling
group falls within the class of classically replaceable uni-
tary operations (CRU) [33] or incoherent unitary opera-
tions [34, 35]. CRU comprises gates that can be moved
after computational basis measurements, typically the
Z-basis measurements, and replaced by classical post-
processing. Unlike the relatively straightforward tailor-
ing process for Clifford gates, the optimal twirling gate
set for CnZm grows exponentially with the number of
qubits.

We further conducted numerical simulations to assess
the benchmarking performance of the CS gate and CnZ
gates using various noisy twirling groups. Our findings
indicate that the optimal twirling group delivers superior
performance compared to the CNOT dihedral group and
the Pauli group in a small-scale quantum system. We
believe these results will contribute to the broader use
of native non-Clifford gates in quantum computing and
facilitate the practical implementation of a wide range of
quantum algorithms.

The structure of this paper is organized as follows. In
Section II, we rigorously describe the problem of finding
the twirling group for a target gate and show the main
results. In Section III, we extend the results to random-
ized compiling. In Section IV, we show simulation results
of RB protocols with noisy twirling groups. Finally, we
conclude in Section V.

II. TWIRLING GROUPS IN RANDOMIZED
BENCHMARKING

We start with clarifying the algebraic relations between
the twirled gate and the twirling gates in RB, following
the ideas of [14, 36–38]. More details about RB and
the technical derivations of the results in this work are
available in the Appendices A and B.

The task of RB is estimating the fidelity of an in-
dividual gate, U , robust to SPAM errors. Consider a
noisy quantum gate, Ũ = UΛ, where U is the Pauli-
Liouville representation of the noiseless gate U , and ⋅̃
represents the noisy version. The noise channel is de-
noted by Λ. The key to enabling RB is obtaining the
powers of the G-twirled noise channel, Λm

G , where m ∈ Z+
and ΛG = EG∈GGΛG

†. Here, G represents a twirling group
that renders ΛG diagonal in the Pauli-Liouville represen-
tation up to a unitary transformation independent of Λ.
The diagonalizability ensures reliable and SPAM-error-
free extraction of the diagonal elements and hence the
fidelity of Λ using single-exponential fitting via character
RB techniques [37]. In cases where ΛG is not diagonal, a
matrix exponential fitting challenge occurs, and accurate

fidelity estimation becomes problematic.
To obtain Λm

G , we consider the circuit in Figure 1. One
independently and randomly samples m twirling gates
Gi from group G and implements them interleaved with
target gate U . The circuit ends with the inverse gate
Ginv = (∏

m
i=1UGi)

†. This circuit structure is first devised
in interleaved RB [38], but here U is not necessarily in
G. The target gate U is the one whose noise channel is
twirled, so we call U the twirled gate. The gates from G
are named the twirling gates.

⇒
?

Λ!"
⋮⋮

⇒

𝑚 gate layers

𝐺$ 𝑈 𝐺$%&Λ
⋮⋮⋮⋮⋮
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#
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"!% "$ %%
!&$

𝑚 gate layers
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⋮⋮⋮⋮⋮
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⋮

𝐺$
*( ⇒ 𝑈Λ' ) 𝑈'(

⋮⋮ ⋮

FIG. 1. Random twirling gates G1,G2,⋯,Gm interleaved
with U in RB. The inverse gate Ginv = (∏m

i=1UGi)†; ⋅̃ rep-
resents the noisy version of a quantum gate; Λ denotes the
composite noise channel of U and the twirling group, which re-
duces to the noise channel of U in the case of noiseless twirling
group; ΛG is the G-twirled noise channel.

Note that in practice, the interleaved circuit measures
noise from both the target gate U and the twirling group
G. One can set the target gate as the identity to mea-
sure the average noise of the twirling group solely. While
this requires a gate-independent noise for the twirling
group, a higher-order fitting [7, 38] can alleviate this con-
straint. By comparing the fidelities measured with and
without the twirled gate, one can derive an interval es-
timation of the fidelity of the target gate. The accuracy
of this estimation improves as the fidelity of the twirling
group increases [38]. Later in the simulation part, we will
demonstrate the influence of the gate-dependent noise of
the twirling group on the fidelity estimation of the tar-
get gate. It turns out that, in this case, the interleaved
technique still works in a small-scale system and enables
reliable fidelity estimation. In the following, we omit the
noise of the twirling group for brevity and use the noise
channel of U , Λ, to represent the composite noise channel
of U and the twirling group.
Focusing on the interleaved circuit, we mathematically

describe it as follows,

S̃m = Ginv

m

∏
i=1
UΛGi

= U
†m

m

∏
i=1
UG
′†
i ΛG

′
i,

(2)

where G′i = (∏
i
j=2GjU)G1U

†i−1 for 1 ≤ i ≤m. To get Λm
G

from S̃m, we just need UGU † = G as shown below.
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If UGU † = G, then {G′i,1 ≤ i ≤ m} are independent
and random elements from G. After taking expectation,
Eq. (2) would become U†m(UΛG)

m. For multi-qubit-
controlled phase gates, we found that UGU † = G ensures
ΛGU = UΛG. Then, Eq. (2) would further reduce to Λm

G
as we want. For other quantum gates, one can at least

obtain the fidelity of (U†m(UΛG)
m)

1
m , which we proved

to be a lower bound of the fidelity of Λ in Lemma 11 in
the Appendix. The lower bound of the fidelity is known
to be fidelity witness [39] and is also useful in quantum
benchmarking. When UGU † = G, one can also choose
m such that Um = I to ensure the inverse gate belonging
to G and implement the inverse gate without additional
difficulty. Below, we summarize the requirements of the
twirling group to tailor U in RB.

Question 1. Given a gate, U , find a twirling group, G
such that,

for any quantum channel Λ,

ΛG = EG∈GGΛG
† is diagonal up to a

unitary transformation independent of Λ,

(3)

and,

UGU†
= G. (4)

Equation (3) implies that the twirling group G must
make the twirled noise channel ΛG sufficiently symmet-
ric, irrespective of the characteristics of the original noise
channel. Additionally, Eq. (4) ensures that the oper-
ation of U does not destroy this symmetry. Identify-
ing the smallest and most easily implementable groups
within Question 1 is not only pivotal for devising prac-
tical benchmarking schemes but also crucial for under-
standing the varying levels of difficulty in benchmarking
different quantum gates. To find the optimal group for
a gate, we examine the diagonalizability of ΛG, which
imposes constraints on G as follows.

Lemma 1. If a finite n-qubit unitary subgroup, G, satis-
fies Eq. (3), then the Pauli-Liouville representation of G
is multiplicity-free. As a corollary, the cardinality of the
twirling group ∣G∣ ≥ 4n.

In the proof of Lemma 1, we leverage the arbitrariness
of Λ to demonstrate that any trace-preserving map can
be twirled into a diagonal form. From this, we prove G
multiplicity-free, which means that any irreducible rep-
resentation of G appears at most once in the decompo-
sition of the Liouville representation of G. Then, with
Burnside’s theorem [40], which relates the group size to
irreducible representations, we obtain that ∣G∣ ≥ 4n. In-
terestingly, Lemma 1 is a converse proposition of a result
in character RB [37], which asserts that a multiplicity-
free group G can twirl any channel into a diagonal form.

The above lemma reveals that the twirling group for
noise tailoring cannot be smaller than the (projective)
Pauli group, whose cardinality achieves 4n. Pauli gates

are also local and easily implementable. Thus, we show
the superiority of Clifford gates in noise tailoring, for
which the Pauli group is a solution to Question 1. For a
non-Clifford gate, this solution fails, for which we present
a simple but may not be an optimal solution in Ap-
pendix B 3.
Lemma 1 shows requirements for generic unitary

twirling groups. Below, in Lemma 2, we consider twirling
groups belonging to CRU and show much stronger re-
quirements other than the cardinality constraint for
twirling groups. CRU comprises all gates in the prod-
uct of a permutation matrix, like Pauli X and Toffoli
gates, and a diagonal matrix on the computational basis,
like Pauli Z gate. This set is large and becomes univer-
sal after adding Hadamard gates. Using CRU subgroups
for twirling lets us replace the inverse gate with classical
post-processing when measurements are under the com-
putational basis [33], bringing additional advantages in
practical implementation. We provide more discussions
about CRU twirling groups in Appendix B 4.

Lemma 2 (Informal Version). If a finite n-qubit CRU
subgroup, G, satisfies Eq. (3), then G can interchange
any two computational basis states. That is, for any two
computational basis states ∣i⟩ and ∣j⟩ where i, j ∈ {0,1}n,
there exists a gate G ∈ G such that ∣j⟩ = G ∣i⟩.

To prove Lemma 2, we leverage the decomposable
property of CRU into a permutation matrix and a di-
agonal matrix, facilitating the analysis of twirling. We
also introduce Burnside’s lemma [41] to transform the is-
sue of calculating multiplicities into a problem of orbit
counting. More specifically, we translate the multiplicity
of the trivial representation into the orbit of G acting on
computational basis states. Then, Lemma 2 follows from
Lemma 1.
Note that diagonal gates, CNOT gates, and Toffoli

gates do not affect ∣0⟩. Lemma 2 implies that the CRU
subgroup G must include a gate set like X = ⟨X⟩⊗n.
Combining this with Eq. (4), we can deduce the nec-
essary quantum gates that G must contain for tailoring a
gate, U . Furthermore, when U is a multi-qubit-controlled
phase gate, we derive its optimal twirling group as de-
tailed in Theorem 1.

Theorem 1. The optimal twirling group G in CRU for
the multi-qubit-controlled phase gate, U = CnZm, with
n ≥ 1,m ≥ 2, is given by

G = {Π(
t

∏
i=1
(Π†

iUΠiU
†
)
li)∣Π ∈ X, t ∈ N,∀i, li ∈ ±1,Πi ∈ X}.

(5)

Group G is the smallest group containing X and nor-
malized by U , which we prove to satisfy Question 1.
Note that any CRU subgroup is decomposable into the
semi-product of a permutation group and a diagonal
group,

GCRU = Π ⋉W = {ΠW ∣Π ∈ Π,W ∈W}. (6)
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The optimal group can be written as G = X ⋉WX where
WX = {Π

†UΠU †,Π ∈ X} only comprises diagonal gates.
The optimality here means that any GCRU satisfying
Question 1 implies W ⊇ WX and ∣Π∣ ≥ ∣X∣. The opti-
mal group is clearly the smallest option. In practice, one
normally determines the permutation part and the diag-
onal part separately to sample a gate in CRU. The gate
is realized by sequentially implementing two parts. In
this sense, the optimal group X ⋉WX is also the most
‘local’ and easily implementable option since X and WX

are the most ‘local’ choices of the permutation part and
the diagonal part, respectively.

Specific forms of twirling groups for CnZ and CZm

are summarized in Table I. Group G reduces to
⟨Cn−1Z,Cn−2Z,⋯,CZ,Z,X⟩ and ⟨CZm, Zm,X⟩ for U =
CnZ and U = CZm with odd m, respectively. For
U = CZm with even m, G ≤ ⟨CZm/2, Zm,X⟩. Within
group generator ⟨⋅⟩, we use X to denote {X1,X2,⋯,Xn},
the Pauli X gates on all qubits, and similarly omit sub-
scripts associated with the acting qubits when referring
to Cn−1Z,Cn−2Z,⋯,CZ,Z and CZm, Zm.

CnZ
Group Size Complexity

This work ⟨Cn−1Z,Cn−2Z,⋯,CZ,Z,X⟩ O(Nn) O(Nn)
CXD [16] ⟨CX,Z2n+1 ,X⟩ O(Nn+1) O(N3n+1)

CZm

Group Size Complexity
This work ⟨CZm, Zm,X⟩ O(N2 logm) O(N2 logm)

CXD ⟨CX,Z2m,X⟩ O(N logm) O(N3 logm+1)

TABLE I. Scaling of the group size and computational com-
plexity of the twirling group for tailoring CnZ and CZm in
this work and Ref. [16]; CXD represents the CNOT dihedral
group. The term “Complexity” refers to the complexity of
computing the multiplication and the inverse of group ele-
ments. The size and the complexity are expressed with the
qubit number N , controlled qubit number n, and phase angle
index m. Unlike Ref. [16], which specifically addresses com-
putational complexity for m = 2k, our results apply to generic
positive integer m.

Note that enabling noise tailoring requires sampling
from the twirling group and performing group element
multiplication. These tasks introduce considerations for
sample complexity, directly related to group size and
computational complexity, contingent on the algorithm
used for group multiplication. Table I provides complex-
ity results for CnZ and CZm and shows that our method
surpasses previous results in [16]. Nonetheless, even with
the optimal approach, the twirling group becomes large
and highly non-local as the controlled qubit number in-
creases. This leads to unfavorable sample and computa-
tional complexity for large quantum gates, highlighting
an inherent challenge in benchmarking multi-qubit non-
Clifford gates.

III. RANDOMIZED COMPILING FOR
MULTI-QUBIT NON-CLIFFORD GATES

In this part, we discuss the application of previous re-
sults in randomized compiling. The task of randomized
compiling is turning the noisy quantum gate Ũ = UΛ
to UΛG, where the twirled noise channel ΛG is a Pauli
channel. More specifically, suppose that we implement a
quantum circuit, C̃ = ⋯Ũ2Ũ1 = ⋯U2Λ2U1Λ1, as shown in
Figure 2(a). The aim is tailoring C̃ into ⋯U2Λ2GU1Λ1G

as shown in Figure 2(c). The quantum gates Ui, i ∈ Z+
are tailored gates. To tailor them, we add twirling gates

Gi and G
′
i = UiG

†
iU

†
i beside the tailored gates as shown

in Figure 2(b), where Gi is randomly sampled from a
twirling group, G. In reality, the gates Gi and G

′
i−1 are

merged and implemented together to reduce quantum re-
source consumption. Thus, the twirling gates in general
belong to V = ⋃U∈UGUGU †.

𝐺1 𝑈1Λ1
⋮⋮

𝐸𝐺1,𝐺2,⋯ 𝐺1
′

⋮⋮

𝑈1Λ1

⋮⋮⋮

𝐺𝑖
′ = 𝑈𝑖𝐺𝑖

†𝑈𝑖
†

𝑈1Λ1G
⋮⋮

𝑈2Λ2

⋮⋮ ⋮

⋮
⋮
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FIG. 2. Randomized compiling for U1, U2, ⋯, by inserting
twirling gates Gi and G′i = UiG

†
iU

†
i beside Ui with i ∈ Z+; ΛiG

is the G-twirled noise channel required to be a Pauli channel.
In reality, Gi and G′i−1 are merged and implemented together
as quantum gate GiG

′

i−1.

Similar to the discussion in RB, we investigate the
requirements of the twirling gates for tailoring a gate
set U = {U1, U2,⋯}. More specifically, we should op-
timize the choice of G to make the twirling gate set
V = ⋃U∈UGUGU † smaller and more easily implementable
in practice. We summarize the question below.

Question 2. Given a gate set, U = {U1, U2,⋯}, find a
twirling gate set, V, such that V = ⋃U∈UGUGU† and the
twirling group G satisfies

ΛG = EG∈GGΛG
† is a Pauli channel. (7)

When the tailored gate set U only comprises Clifford
gates and single-qubit T gates, the twirling gate set suf-
fices to be chosen as the dihedral group ⟨X,S⟩ [9]. Here,
we consider that U is composed of a multi-qubit con-
trolled phase gate U = CnZm. Question 2 reduces to
finding gate set GUGU † while ΛG is a Pauli channel.
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When considering G as a CRU subgroup, GUGU † can
be written in a form,

V = GW = {GW ∣G ∈ G,W ∈W}, (8)

where W = {G†UGU †,G ∈ G} is a set of diagonal gates.
Similar to the results in RB, for U = CnZm, W ⊇ WX =

{Π†UΠU †,Π ∈ X} based on Lemma 2, proved in the
proof of Theorem 1. Meanwhile, based on Lemma 1, G
cannot be smaller and more easily implementable than
the Pauli group Pn. On the other hand, by choos-
ing G as Pauli group Pn, we would obtain a solution
V = PnUPnU

† = PnWX to Question 2. This is the opti-
mal solution for tailoring a multi-qubit controlled phase
gate with G restricted in CRU if one separately imple-
ments the permutation matrix and the diagonal matrix
for a CRU gate.

Note that the twirling gate set PnWX is simpler than
the twirling group X ⋉WX for CnZm. Generally speak-
ing, the requirements for the twirling gates in randomized
compiling are much simpler than those in RB. A direct
observation to Question 2 is that as long as UPnU

† only
comprises local gates, U can be tailored with only local
twirling gates in randomized compiling. We leave the
problem of tailoring more kinds of quantum gates in the
setting of randomized compiling to the future.

IV. SIMULATION OF BENCHMARKING
MULTI-QUBIT-CONTROLLED PHASE GATES

Below, we present the numerical benchmarking results
for CS and CnZ gates with noisy twirling groups. To
simulate practical benchmarking experiments, we con-
sider the noise of the twirling group to be gate-dependent.
Here, all twirling gates and the target gate belong to
CRU, enabling us to sample and simulate a gate by sep-
arately determining its permutation part and diagonal
part as follows.

• The permutation part is generated by Pauli X
and CNOT gates. We consider unitary errors eiδX

and controlled-eiδX for the two gates, respectively,
where δ is small.

• The diagonal part is generated by multi-qubit con-
trolled phase gates and single-qubit Z rotation.
The unitary error of the former is considered to
be a diagonal gate where the diagonal elements de-
pend on the control qubit number. The unitary
error of the latter is a small Z rotation.

We also consider local dephasing and local amplitude-
damping noise, where the noise strength depends on the
time to implement the gate. The SPAM is also simulated
with flip errors. More details about the noise model are
shown in Appendix C 1.

Notice that one needs first to obtain the fidelity of
the composite noise channel, denoted as F1, via the in-
terleaved circuit and the fidelity of the twirling group,

denoted as F2, via the reference circuit. The fidelity of
the target gate is evaluated by

F =
d2F1 − 1

d2F2 − 1
(1 −

1

d2
) +

1

d2
. (9)

The derivation is given in Appendix A 5. In this section,
we only present the fidelity of the target gate, while the
other two kinds of fidelities are available in Appendix C 3.
We also simulate the case of the noiseless twirling group,
and the results are shown in Appendix C 5.
Depending on the SPAM settings, we simulate two dif-

ferent benchmarking procedures and show the results in
Sections IVA and IVB, respectively. We compare our
scheme with the Pauli group and the CNOT dihedral
group. Note that the Pauli group does not satisfy the re-
quirements in Question 1 to benchmark multi-qubit con-
trolled phase gates. In this case, the inverse gate in Fig-
ure 1 has to be outside the Pauli group to make the ideal
circuit equal to the identity. In general, this inverse gate
can take any element within the optimal group given by
Eq. (5), which may be nonlocal.

A. Benchmarking with random SPAM settings

Recall that the gate fidelity is estimated by evaluating
different diagonal terms of twirled noise channels in the
Pauli-Liouville representation. The number of different
diagonal terms of the twirled noise channel depends on
the twirling group. This number increases exponentially
with respect to the qubit number for the Pauli group and
the optimal group and is 2 for the CNOT dihedral group.
In the simulation, we sample and evaluate 20 different
diagonal terms instead of all of them for the former two
groups. For the CNOT dihedral group, we only evaluate
2 different diagonal terms.
To evaluate a diagonal term, tr(PΛ(P ))/2N , where Λ

is the noise channel, N is the qubit number, and P is a
non-identity Pauli observable, we simulate the circuit in
Figure 1 with the eigenstate of P as input and P as mea-
surement observable. By simulating randomly sampled
gate sequences and averaging the results over different

sequences, we estimate tr(P̃Λm
G (∣̃ψ⟩⟨ψ∣)) where ΛG is the

twirled noise channel and P ∣ψ⟩ = ∣ψ⟩. The circuit depth
m is taken from {2,4,6,8,10}, and the number of dif-
ferent gate sequences for each circuit depth varies. The
total number of gate sequences for different groups is the
same to make a fair comparison. By fitting tr(M̃Λm

G (ρ̃))

to Aλm one can get λ and estimate tr(PΛ(P ))/2N .
In Figure 3, we present the simulation results for the

CS and CCZ gates. The results demonstrate that the
fluctuation of the benchmarking results for the optimal
group is as small as the Pauli group and is much smaller
than the CNOT dihedral group for benchmarking two
gates. The large fluctuation of the CNOT dihedral group
mainly results from a more severe gate-dependent noise.
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FIG. 3. Benchmarking results for the CS and CCZ gates in
Figures (a) and (b), respectively, with the optimal twirling
group, the Pauli group, and the CNOT dihedral group. The
optimal twirling group is the CZ dihedral group ⟨CZ,Z,S⟩
for CS, and the CZ Pauli group ⟨CZ,Z,P ⟩ for CCZ. The
red dashed line is the theoretical value of the noise channel
fidelity. Each box plot contains 20 fidelities, and each fidelity
is estimated with circuit depths {2,4,6,8,10}, and the total
number of different gate sequences for each depth is specified
by the horizontal axis. Here, for the Pauli group and the op-
timal group, we randomly sample and estimate 20 different
diagonal terms of the twirled noise channel. We mark this
setting with ‘random SPAM’ on the label. For the CNOT
dihedral group, we estimate only two different diagonal terms
of the twirled noise channel. We mark this setting with ‘two
SPAM’ on the label. Each SPAM setting prepares an eigen-
state of a Pauli observable with eigenvalue 1 and measures
this Pauli observable. In ‘two SPAM’, the two Pauli observ-
ables are chosen as Z⊗N and X⊗N .

Concerning the bias, the performance of the optimal
group is between the other two groups for benchmarking
CS gate, while the performance of the three groups is
close when benchmarking CCZ gates. The bias of the
Pauli group results from a weaker twirling action than
the other two groups. Meanwhile, the sampling of diago-

nal terms also introduces bias to the results of the Pauli
group and the optimal group. The gate-dependent noise
also influences the accuracy of the results. The CNOT
dihedral group is influenced the most, followed by the
optimal group and the Pauli group.

B. Benchmarking with the ZX-SPAM setting

We notice that when the twirling group contains the
CZ dihedral group, ⟨CZ,Z,S⟩, another SPAM setting
can be employed to enhance the performance, which we
name ZX-SPAM. Instead of extracting the diagonal term

tr(PΛ(P ))/2N once at a time, by preparing ∣0⟩
⊗N

and
measuring in Z⊗N , one can extracting tr(PZΛ(PZ))/2

N

for all PZ ∈ {I, Z}⊗N . Similarly, by preparing ∣+⟩
⊗N

and
measuring in X⊗N , one can extract tr(PXΛ(PX))/2

N

for all PX ∈ {I,X}⊗N . These two SPAM settings are suf-
ficient to obtain all different diagonal terms as long as
the twirling group includes the CZ dihedral group. Com-
pared to extracting the diagonal term once at a time, the
procedure with ZX-SPAM estimates the fidelity more
precisely and accurately, thanks to more efficient extrac-
tion of diagonal terms and the absence of sampling er-
rors. More details about this simulation procedure are
available in Appendix C 2.
We simulate this enhanced benchmarking procedure

and present the results in Figure 4. For CnZ gates, we
use group GZ = ⟨Cn−1Z,⋯,CZ,X,S⟩ instead of the op-
timal one ⟨Cn−1Z,⋯,CZ,X,Z⟩ for twirling to make the
twirling group contain the CZ dihedral group. A little
overhead of adding phase gate S simplifies the noise chan-
nel more and helps to improve the benchmarking perfor-
mance. For the CS gate, the optimal group is the CZ
dihedral group. To make a fair comparison, in this sim-
ulation, we adopt the ZX-SPAM setting for the CNOT
dihedral group as well.
Figure 4 shows improved benchmarking results for GZ

and the CNOT dihedral group with the enhanced bench-
marking procedure. Among all benchmarking methods,
utilizing GZ with the ZX-SPAM enjoys the best precision
and accuracy for benchmarking CS and CCZ gates, pro-
viding a practical scheme for tailoring multi-qubit con-
trolled phase gates in small-scale systems.
When the system becomes larger, the CNOT dihe-

dral group no longer works and cannot give a faithful
fidelity estimation due to the severe gate-dependent noise
of the twirling group. In Figure 5, we present the results
of benchmarking CnZ gates below 6 qubits, comparing
the Pauli group, GZ , and the optimal group. Due to
a large gate-dependent noise, the results of the latter
two have a large fluctuation for 5 qubits. Nonetheless,
the result of GZ with the ZX-SPAM is still the least
deviated from the ideal value. This is also true for 6
qubits, which we demonstrate in Appendix C 4. The sim-
ulation emphasizes the importance of identifying small
and easily implementable twirling groups with sufficient
twirling ‘ability.’ All of the results are extendable to Tof-
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FIG. 4. Benchmarking results for the CS and CCZ gates in
Figures (a) and (b), respectively, with the Pauli group, the
CZ dihedral group GZ = ⟨CZ,X,S⟩, and the CNOT dihedral
group. The group GZ is denoted as CZD in the label. The
red dashed line is the theoretical fidelity value. Each box plot
contains 20 fidelities. The setting of circuit depths and sam-
pling is the same as in Figure 3. Nonetheless, for GZ and the
CNOT dihedral group, the SPAM setting and the postpro-
cessing differ from that in Figure 3, which is preparing ∣0⟩⊗N

and measuring in Z basis and preparing ∣+⟩⊗N and measuring
in X basis to get all different diagonal terms of the twirled
noise channel. We mark this setting with ‘ZX-SPAM’ on the
label.

foli gates, controlled-
√
Y gates, and various useful non-

diagonal gates via the technique of local gauge transfor-
mation [15].

V. OUTLOOK

In this work, we study noise tailoring from a distinct
perspective of identifying suitable twirling groups and
show nearly optimal results for multi-qubit-controlled
phase gates CnZm. Besides benchmarking gate fidelity,

3 4 5
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FIG. 5. Benchmarking results for CnZ gates with the Pauli
group, GZ = ⟨Cn−1Z,⋯,CZ,X,S⟩, and the optimal group
⟨Cn−1Z,⋯,CZ,X,Z⟩. The three methods are labeled with
‘Pauli, random SPAM’, ‘CZD, ZX-SPAM’, and ‘CZP, ran-
dom SPAM’, respectively. The benchmarking setting is the
same in Figures 3 and 4. The red five-pointed star with a
line denotes the ideal fidelity value. Each box plot contains
20 fidelities.

the tailoring scheme can help extract more information,
such as Pauli eigenvalues, and study the learnability of
Pauli noise [42]. The results also benefit fault-tolerant
protocols and quantum algorithms utilizing multi-qubit
controlled phase gates.
In the future, it is crucial to explore optimal twirling

groups for practical quantum gates and assess the feasi-
bility of using only local twirling gates for efficient noise
tailoring. The gate-dependent noise and the unfavor-
able size and computational complexity of the optimal
twirling groups for large-scale non-Clifford gate bench-
marking pose a significant challenge. Potential solu-
tions include exploring circuit structures beyond those
shown in Figure 1 and seeking benchmarking method-
ologies that do not rely on a group structure [36, 43–45].
Based on our simulation results, a twirling gate set be-
tween the Pauli group and the optimal group may be an
intermediate option to twirl multi-qubit controlled phase
gates, like the set of gates implemented within a short
depth in the optimal group.
Beyond noise tailoring, the insights gained on CRU

subgroups in this study can further enhance ran-
dom matrix protocols involving them, such as classical
shadow [46] and gate-set shadow [47, 48], and contribute
to the exploration of the classical simulation capabilities
of various groups.
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Here, we briefly introduce the content of the Appendices. In Appendix A, we introduce the notations used in this
work and preliminaries about quantum channels, group theory, randomized benchmarking, and classically replaceable
unitary operations. In Appendix B, we show the proof of the main results in this work, including restating the
requirements of the twirling groups in randomized benchmarking, proof of main lemmas and theorems in the main
text, and the structure analysis of the optimal twirling groups for multi-qubit controlled phase gates. In Appendix C,
we show the simulation details, including the noise model, the benchmarking protocol, and additional benchmarking
results.
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Appendix A: Preliminary

In this part, we introduce some related works and basic mathematical tools. Below, we first introduce basic
notations. The Hilbert space for n qubits is denoted as H and the set of linear operators on H is denoted as
L(H). Same in the main text, we denote a quantum gate, or a unitary transformation acting on H, in the standard
representation with a capital letter, like U and G. A set composed of quantum gates is denoted with sans serif fonts
like S. A quantum gate set satisfying group condition under the gate composition is always denoted as G. Note
that, in this work, we distinguish two concepts: the twirling gate set and the twirling group. The twirling group is a
twirling gate set with a group structure. We normally use V and G to represent the twirling gate set and the twirling
group, respectively. The Liouville representation of U is denoted as its calligraphic letter, U . In this paper, the
Liouville representation refers to the Pauli-Liouville representation, which will be reviewed in detail in the following
subsection. Quantum channels are defined as completely positive and trace-preserving (CPTP) linear maps on L(H).
The noise channel of U is normally denoted as Λ, and we use the same expression for the map representation and
the Liouville representation for Λ. We use a wavy line to represent the noisy version of U like Ũ and Ũ . Note that a
quantum gate is always a quantum channel, but a quantum channel is generally not a quantum gate. We summarize
the frequently-used notations in Table II. Note that we sometimes reuse part of notations, and the meanings of these
notations are relevant to the context.

TABLE II. Notation
Quantity Notation

n number of controlled qubit in CnZm or qubit number
m phase of controlled qubit in CnZm or circuit depth
N qubit number
H Hilbert space
L(H) the set of linear operators on H
U target gate
V twirling gate
G twirling gate in group G
U Pauli Liouville representation of U
Λ noise channel
ΛG G-twirled noise channel

Ũ noisy version of U
V twirling gate set
G twirling gate group

CnZm = (
I2n+1−1 0

0 ei
2π
m
) multi-qubit controlled phase gate

Xj Pauli X on qubit j
Yj Pauli Y on qubit j
Zj Pauli Z on qubit j
I identity operator
I identity channel

⟨G1,G2, ...⟩ Group generated by G1,G2, ...
Pn n-qubit Pauli group ⟨X,Z⟩⊗n
Dm

n n-qubit local dihedral group ⟨X,Zm⟩⊗n
χ character function of a group
Π projector or permutation matrix

1. Pauli-Liouville representation

Here, we introduce the Pauli-Liouville representation of quantum channels. Normally, a quantum channel, Λ, is
defined within its Kraus representation. For any O ∈ L(H), the action of channel Λ is defined with:

Λ(O) =
k

∑
l=1
KlOK

†
l , (A1)
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where k ∈ Z+ and {Kl,1 ≤ l ≤ k} is the set of Kraus operators satisfying the condition:

k

∑
l=1
K†

lKl = I, (A2)

where I represents the identity operator.
The Kraus representation is not a matrix representation and, hence, not convenient for our work. For further

elaboration, we introduce the Liouville representation, which is defined on a set of trace-orthonormal basis elements
in L(H). In this work, we choose the basis to be the normalized and projective Pauli group. In this case, the
representation is named Pauli-Liouville representation. The n-qubit Pauli group, denoted as Pn, is given by:

Pn =
n

⊗
j=1
⟨X,Z⟩ = ⟨X1, Z1,X2, Z2,⋯,Xn, Zn⟩ = {±1,±i} × {

n

⊗
j=1

Pj ∣Pj ∈ {I,X,Y,Z}}, (A3)

where I = (1 0
0 1
) is the identity operator with dimension 2. X, Y , and Z are the single-qubit Pauli matrices given by

X = (
0 1
1 0
) , Y = (

0 −i
i 0
) , Z = (

1 0
0 −1

) . (A4)

Xj is the single-qubit Pauli X matrix acting on j-th qubit given by (⊗
j−1
i=1 Ii) ⊗ X(⊗n

i=j+1 Ii). The notation ⟨⋅⟩
denotes the group generated by ⋅. The elements in ⟨⟩ are called group generators. For instance, ⟨Xj , Zj⟩ =

{Xm1

j Zn1

j Xm2

j Zn2

j ⋯∣∀i,mi, ni ∈ Z} = {±1,±i} × {Ij ,Xj , Yj , Zj}. In the main text and below, for brevity we some-

times use notation ⟨X,Z⟩⊗n or even ⟨X,Z⟩ to represent ⟨X1, Z1,X2, Z2,⋯,Xn, Zn⟩ where in this case, X and Z
denote Pauli X and Pauli Z gates on all qubits, respectively. We would always omit subscripts, representing which
qubits the gates act on, in ⟨⟩ when the group generators contain the same gates acting on all qubits.

In literature, people always use another definition for the Pauli group, which is, in fact, the projective Pauli group.
Projective Pauli group is the quotient of the Pauli group by its center {±1,±i}, ⟨X1, Z1,X2, Z2,⋯,Xn, Zn⟩/{±1,±i}.
Thus, we normally use ⊗n

j=1{I,X,Y,Z} to represent it. As in quantum systems, the overall phase is not important.
The quotient by the phase {±1,±i} does not influence the quantum state. Below we simply use the Pauli group to
denote the projective Pauli group and use the definition below.

Pn =
n

⊗
j=1
{I,X,Y,Z}. (A5)

The normalized Pauli group is obtained by normalizing the elements of the n-qubit Pauli group by a factor of 1/
√
2n

as shown below.

P′n = {σi =
1
√
2n
Pi∣Pi ∈ Pn}. (A6)

These normalized Pauli operators are complete and satisfy the orthonormality under the Hilbert-Schmidt inner prod-
uct,

tr(σ†
iσj) = δij , (A7)

where δij is the Kronecker delta symbol. Thus, we can represent the quantum state and the quantum channel with
normalized Pauli operators as a set of bases.

Any n-qubit operator O in L(H) can be decomposed with the 4n normalized Pauli operators,

O = ∑
σi∈P′n

tr(σ†
iO)σi. (A8)

Thus, we can use the expansion coefficients tr(σ†
iO) to represent O and in Pauli-Liouville representation, we express

Eq. (A8) as

∣O⟩⟩ = ∑
σi∈P′n

tr(σ†
iO)∣σi⟩⟩, (A9)

where ∣σi⟩⟩ in Pauli-Liouville representation is a length-4n vector with only one non-zero element 1.
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Furthermore, any quantum channel Λ can be represented as a matrix in the Liouville representation. The action
of the channel on an operator O is given by

∣Λ(O)⟩⟩ = Λ∣O⟩⟩, (A10)

and the elements of the Liouville representation of Λ are given by

Λij = ⟨⟨σi∣Λ∣σj⟩⟩ = tr(σiΛ(σj)). (A11)

Specifically, the diagonal terms of Pauli-Liouville representation are named Pauli fidelity [15], defined as below.

λi = ⟨⟨σi∣Λ∣σi⟩⟩ =
1

d
tr(PiΛ(Pi)), (A12)

where Pi is a Pauli operator, and d is the dimension of the Hilbert space.
In the Liouville representation, the concatenation of two channels can be represented as the product of their

corresponding matrices,

∣Λ2 ○Λ1(O)⟩⟩ = Λ2∣Λ1(O)⟩⟩ = Λ2Λ1∣O⟩⟩. (A13)

The Liouville representation also allows us to vectorize the measurement operators using the Liouville bra-notation.
The measurement probability of a state ρ using a positive operator-valued measure (POVM) Fi is given by

pi = ⟨⟨Fi∣ρ⟩⟩ = tr(F
†
i ρ), (A14)

where ⟨⟨Fi∣ is the Liouville bra-notation of Fi and is equal to the conjugate transpose of ∣Fi⟩⟩.
We also briefly introduce another representation called the χ-matrix representation for quantum channel Λ. Given

an n-qubit state, ρ, Λ(ρ) can be expanded as

Λ(ρ) = d∑
i,j

χijσiρσ
†
j , (A15)

where the process matrix χ is uniquely determined by the orthonormal Pauli operator basis σj and d = 2n represents

the dimension of the quantum system. Note that σ0 =
Id√
d
. If a channel is diagonal in this representation, it is called

a Pauli channel. It is easy to verify that a Pauli channel is also diagonal in the Pauli-Liouville representation. The
diagonal terms of Pauli-Liouville representation and that of χ-matrix representation are related by Walsh-Hadamard
transformation as shown in the following equation.

λj =∑
i

(−1)⟨i,j⟩χii, (A16)

where ⟨i, j⟩ = 0 if Pi commutes with Pj , and ⟨i, j⟩ = 1 otherwise. The inverse Walsh-Hadamard transformation is given
by,

χjj =
1

d2
∑
i

(−1)⟨i,j⟩λi. (A17)

2. Quantum channel fidelity

To facilitate the understanding of randomized benchmarking (RB), we introduce the concepts of process fidelity
and average fidelity. These two fidelities are equivalent to each other by linear transformation. The task of RB is
estimating the fidelity of a given quantum gate or a given gate set.

The process fidelity of a channel, Λ, can be defined with its χ-matrix representation as follows.

F (Λ) = χ00(Λ). (A18)

The process fidelity can be obtained from Eq. (A17) as:

F (Λ) = χ00(Λ) =
1

d2
∑
j

λj =
1

d2
tr(Λ), (A19)
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which is equal to the trace of Λ in Liouville representation divided by d2. Eq. (A19) provides an alternative definition
of process fidelity.

There exists a relation between the commonly-used average fidelity Fave and the process fidelity [49],

Fave =
dF + 1

d + 1
. (A20)

The average fidelity is defined as:

Fave = ∫ dψ tr(∣ψ⟩⟨ψ∣Λ(∣ψ⟩⟨ψ∣)), (A21)

where the integral is taken over the Haar measure, it means the average fidelity of the ideal final state and the
realistic final state over all pure states. Both the process fidelity and the average fidelity are well-defined metrics for
quantifying the closeness of a quantum channel to the identity. Below, we refer to the fidelity to the process fidelity
without further explanation. Also, note that in reality, a quantum gate, U , is noisy, and its noisy version can be
expressed as the composite channel of U and its noise channel Λ. Then, the fidelity of U refers to the fidelity of its
noise channel Λ.

3. Group twirling and representation theory

Representation theory is an effective tool for analyzing abstract groups and is especially useful in randomized
benchmarking and randomized compiling. Below, we briefly introduce basic concepts in representation theory and
refer to [50, 51] for systematic introduction. Let G be a finite group and G ∈ G be an element of the group. The
representation of G is defined as follows.

Definition 1 (Group representation). A map, ϕ, is called a representation of the group G on a linear space, V , if it
is a group homomorphism mapping from G to GL(V ), where

ϕ ∶ G→ GL(V ),

g ↦ ϕ(G), ∀G ∈ G.
(A22)

Here, GL(V ) denotes the general linear group of V . The representation ϕ satisfies the condition of preserving multi-
plication that for all G1,G2 ∈ G,

ϕ(G1)ϕ(G2) = ϕ(G1G2). (A23)

Intuitively, representation is just using a matrix group to represent G. Below, we introduce the concept of irreducible
representation. Given a representation, ϕ, on V , a linear subspace, W ⊆ V , is referred to as invariant if for all w ∈W
and for all G ∈ G,

ϕ(G)w ∈W. (A24)

The restriction of ϕ to the invariant subspace W is called the subrepresentation of G on W . Note that any represen-
tation has a subrepresentation mapping all elements in G to 1 where W = {0} and has itself as a subrepresentation
where W = V . These two subrepresentations are both trivial. With the concept of subrepresentation, we define the
irreducible representation as below.

Definition 2 (Irreducible representation). A representation ϕ of the group G on the linear space V is said to be
irreducible if it only possesses trivial subrepresentations.

Maschke’s theorem provides an interesting property stating that every representation ϕ of a finite group, G, can be
decomposed into the direct sum of irreducible representations. For all G ∈ G, the decomposition can be expressed as
follows.

ϕ(G) ≃ ⊕
ϕi∈RG

Ini×ni ⊗ ϕi(G), (A25)

Here, RG denotes the set of all irreducible representations, and ni represents the multiplicity of the equivalent irre-
ducible representations of ϕi in ϕ.

The trace of a representation is called a character, which is defined below.
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Definition 3 (Character function). Let ϕ be a representation over the group G. The character of ϕ is defined as the
function χϕ ∶ G→ C such that for every G ∈ G,

χϕ(G) = tr[ϕ(G)]. (A26)

Character function is a powerful tool in representation theory. We can define the inner product of two character
functions as below.

Definition 4 (Inner product of character function). Let χ1 and χ2 be two character functions of a finite group, G,
their inner product is defined as

⟨χ1∣χ2⟩ =
1

∣G∣
∑
G∈G

χ∗1(G)χ2(G). (A27)

There is a useful result for the inner product between two characters when χ1 and χ2 are both irreducible repre-
sentations. Then ⟨χ1∣χ2⟩ = 1 if χ1 and χ2 are equivalent and ⟨χ1∣χ2⟩ = 0 otherwise. Note that Eq. (A25) tells us
that

χϕ(G) = tr(ϕ(G)) = ∑
ϕi∈RG

niχi(G), (A28)

where χi(G) = tr(ϕi(G)). With the orthonormality of irreducible representations, we obtain ni = ⟨χi∣χϕ⟩. Then, we
have the following lemma.

Lemma 3 (Multiplicity of irreducible representations). For any irreducible representation ϕi with character χi, the
multiplicity of ϕi in ϕ is given by

ni = ⟨χj ∣χϕ⟩ . (A29)

We also introduce a concept named multiplicity-free representation for further elaboration.

Definition 5 (Multiplicity-free representation). Given a representation, ϕ, of group G, if for any irreducible repre-
sentation, ϕi, the multiplicity of ϕi in ϕ is 1, we call ϕ a multiplicity-free representation.

Using the character function, we can also obtain the generalized projection formula utilized in character randomized
benchmarking [37].

Lemma 4 (Generalized projection formula). Consider a finite group, G, and its representation ϕ. Let ϕi be an
irreducible representation contained in ϕ with character χi. The projector onto the support space of ϕi can be expressed
as:

Πi =
di
∣G∣
∑
G∈G

χi(G)ϕ(G), (A30)

where di = dimϕi denotes the dimension of ϕi.

The representation theory is also useful for us to analyze the group twirling on a channel, Λ, over a group, G.

Definition 6 (Group Twirling). For a representation ϕ of the group G on the linear space V , the twirling of a linear
map, Λ ∶ V → V over G is defined as:

ΛG =
1

∣G∣
∑
G∈G

ϕ(G)†Λϕ(G). (A31)

To analyze the result of group twirling, we introduce Schur’s lemma, which is essential in our further elaboration.

Lemma 5 (Schur’s lemma). Let ϕ1 ∶ G → GL(V1) and ϕ2 ∶ G → GL(V2) be two arbitrary irreducible representations
of group G and A ∶ V1 → V2 be a linear map from V1 to V2. Suppose for any G ∈ G,

Aϕ1(G) = ϕ2(G)A. (A32)

Then, A equals 0, mapping all vectors in V1 to zero vector in V2, if ϕ1 and ϕ2 are inequivalent irreducible represen-
tations; A is proportional to the identity operator if ϕ1 and ϕ2 are equivalent irreducible representations. Note that
when ϕ1 and ϕ2 are equivalent, V1 and V2 are equivalent linear space, so the identity operator is well-defined.
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Using Schur’s Lemma, we can establish the following proposition.

Proposition 1. Let ϕ1 ∶ G → GL(V1) and ϕ2 ∶ G → GL(V2) be two arbitrary irreducible representations of group G
and A ∶ V1 → V2 be an arbitrary linear map from V1 to V2. Define

AG = EG∈Gϕ
†
2(G)Aϕ1(G). (A33)

Then,

AG = 0, (A34)

if ϕ1 and ϕ2 are inequivalent, and

AG =
tr(A)

dimV1
I, (A35)

if ϕ1 and ϕ2 are equivalent, where I is the identity operator mapping from V1 to V2.

For further elaboration and proof, we provide the Burnside theorem in the representation theory.

Lemma 6. Consider a finite group, G, and its all inequivalent irreducible representations RG = {ϕi}, then the
cardinality of the twirling group, ∣G∣ can be given by

∣G∣ = ∑
ϕi∈RG

dimϕ2i . (A36)

4. Randomized benchmarking and diagonalizability of twirled noise channel

Below, we introduce randomized benchmarking (RB) and character randomized benchmarking [37]. Let us start
with a brief review of the standard RB, which aims to estimate the fidelity of a quantum gate group. We consider an
n-qubit gate group, G, where each gate G ∈ G is assumed to be with a noise channel Λ in implementation. In reality,
the noise channels for different gates can be different. Below, we simply consider the first-order approximation [7],
which is valid and useful in experiments, and regard the noise channels for different gates in G as the same. One can
express the noisy quantum gate G̃ = ΛG as the composite of the noiseless gate G and its noise channel Λ for any gate
G ∈ G. Then, the task of RB is estimating the fidelity of Λ robust to SPAM error.

To achieve that, one always performs random gate sequences composed of m random gates from G and an inverse
quantum gate where m is a prefixed integer called circuit depth,

S̃ = G̃inv
m

∏
i=1
G̃i

= ΛGinv
m

∏
i=1

ΛGi,

(A37)

where Ginv = (∏
m
i=1Gi)

†, Gi denotes the Liouville representation of Gi, and ⋅̃ means the quantum gate is noisy.

In the sense of expectation, the random gate sequence S̃ is equal to

E∀i,Gi∈GS̃ = ΛE∀i,Gi∈G
m

∏
i=1
(

i

∏
j=1
Gj)

†Λ(
i

∏
j=1
Gj)

= Λ(EG∈GG
†ΛG)m

= ΛΛm
G .

(A38)

The second line utilizes the fact that G is a group. Thus, ∏
i
j=1 Gj independently and identically satisfy the uniform

distribution on G for any 1 ≤ j ≤m.
If we use the same state preparation and measurement for all random sequences, then in the expectation, we can

get

f(m) = E∀i,Gi∈G⟨⟨M ∣S̃∣ρ⟩⟩

= ⟨⟨M ∣ΛΛm
G ∣ρ⟩⟩

= ⟨⟨M ′
∣Λm

G ∣ρ⟩⟩,

(A39)
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where ρ and M are prefixed initial state and measurement, respectively, and M ′ is the measurement absorbing the
noise of the inverse gate, satisfying ⟨⟨M ′∣ = ⟨⟨M ∣Λ.

The next step is obtaining the trace of ΛG robust to state preparation and measurement (SPAM) error. Note
that the fidelity F (Λ) = 1

d2 tr(Λ) =
1
d2 tr(ΛG). Normally, ΛG has few parameters as it has been twirled and becomes

symmetric. These parameters can be evaluated robustly to SPAM error via obtaining f(m) with different circuit
depths m and employing exponential fitting. Then, the trace of ΛG, or the fidelity, can be evaluated with the
parameters of ΛG.

Before the work of character RB [37], researchers mainly focus on a large group, G, like the Clifford group, to
make ΛG highly symmetric with few parameters. For Clifford RB [6, 7], ΛG is a depolarizing channel with a single

parameter p satisfying ΛG(ρ) = pρ+(1−p)
Id
d
. In Pauli-Liouville representation, ΛG = ∣σ0⟩⟩⟨⟨σ0∣+p∑i≥1 ∣σi⟩⟩⟨⟨σi∣. Then,

f(m) has a single exponential decay expression

f(m) = Apm +B, (A40)

where p is only relevant to Λ, and A and B are only relevant to SPAM. Thus, via single exponential fitting, one can
get p along with the trace of ΛG and the fidelity of Λ.

For CNOT dihedral RB [16], ΛG = Π0 + pZΠZ + pXΠX has two undetermined parameters, pZ and pX where Π0 =

∣σ0⟩⟩⟨⟨σ0∣, ΠZ = ∑σz∈{ I
√

2
, Z
√

2
}⊗n/σ0

∣σz⟩⟩⟨⟨σz ∣, and ΠX = ∑σx∈P′n/{ I
√

2
, Z
√

2
}⊗n ∣σx⟩⟩⟨⟨σx∣, then f(m) is a double exponential

decay function with parameters pZ and pX . One has to employ double exponential fitting to obtain tr(ΛG) and its
fidelity.

For a general group G, f(m) is complex and generally not an exponential decay function [36]. But if ΛG can be
written as

ΛG =∑
i

piΠi, (A41)

where {Πi} are mutually orthogonal projectors only dependent on G in the space of Liouville representation, we
can obtain all decay parameters pi with only single exponential fitting via the technique of character RB [37]. Note
that Eq. (A41) can also be interpreted as that ΛG is diagonal in the Pauli-Liouville representation up to a unitary
transformation T ,

ΛG = T (∑
i

piΠ
P
i )T

†, (A42)

where ΠP
i is a projector, equaling the summation of the Pauli operator bases. The projector ΠP

i and the unitary
transformation T are independent of the channel Λ and are only related to group G. We consider the case that T is
a Liouville representation of a unitary gate T .

Note that in this case,

f(m) = ⟨⟨M ′
∣Λm

G ∣ρ⟩⟩

=∑
i

⟨⟨M ′
∣Πi∣ρ⟩⟩p

m
i ,

(A43)

is a multiple exponential decay function. If we directly fit f(m) with a multiple exponential decay function, ∑iAip
m
i ,

the fitting process would consume massive computational resources, and the result is normally inaccurate. The key
step of character RB is utilizing Lemma 4. Instead of implementing the gate sequence in Eq. (A37), in character RB,
we select a projector Πj from {Πi} and implement

S̃′ = G̃inv(
m

∏
i=1
G̃i)G̃

′

= ΛGinv(
m

∏
i=1

ΛGi)G
′,

(A44)

where G′ is named character gate and is independently sampled from a predetermined gate set, named character
group, G′. We select a character function χ′ associated with an irreducible representation ϕ′ of G′ and obtain a
projector according to Lemma 4,

Π′ =
dimϕ′

∣G′∣
∑

G′∈G′
χ′(G′)G′, (A45)
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such that for any projector Πi ∈ {Πi},

Π′Πi = δijΠ
′. (A46)

Meanwhile, we consider ⟨⟨M ∣S̃′ dimϕ′χ′(G′)∣ρ⟩⟩ and in the expectation, this quantity equals

fj(m) = E∀i,Gi∈G,G′∈G′⟨⟨M ∣S̃
′ dimϕ′χ′(G′)∣ρ⟩⟩

= ⟨⟨M ∣ΛΛm
GΠ′∣ρ⟩⟩

= ⟨⟨M ′
∣Λm

GΠ′∣ρ⟩⟩

=∑
i

pmi ⟨⟨M
′
∣ΠiΠ

′
∣ρ⟩⟩

= ⟨⟨M ′
∣Π′∣ρ⟩⟩pmj .

(A47)

Thus, pj can be obtained via single exponential fitting and due to the arbitrariness of Πj , all parameters of ΛG can
be obtained via single exponential fitting, and hence the fidelity can be evaluated accurately.

Note that in character RB, the key point is realizing projector Π′. Below we show that we can always realize Π′

satisfying Eq. (A46). First, each projector can be decomposed as

Πj =

tr(Πj)
∑
k=1
∣µjk⟩⟩⟨⟨µjk ∣, (A48)

where {µjk ,1 ≤ k ≤ tr(Πj),∀Πj ∈ {Πi}} forms an orthonormal operator basis in Liouville representation. As normalized
Pauli operators P′n is also an orthonormal basis, there exists a unitary transformation linking the two bases. Then,
given Πj from {Πi}, we select ∣µj1⟩⟩⟨⟨µj1 ∣, which is equal to T ∣σ⟩⟩⟨⟨σ∣T † = ∣TσT †⟩⟩⟨⟨TσT †∣ where ∣σ⟩⟩⟨⟨σ∣ is a Pauli
operator basis and T is the unitary transformation linking two bases. For Pauli group Pn, we have the following
equation,

∣σ⟩⟩⟨⟨σ∣ = EP ∈Pnχσ(P )P, (A49)

where χσ = (−1)
⟨P,σ⟩ equals 1 when P and σ commute and −1 otherwise. Then, we only need to choose G′ = TPnT

†

and χ′ = χσ to realize

Π′ = T ∣σ⟩⟩⟨⟨σ∣T †
= EP ∈Pnχ

′
(P )T PT †. (A50)

Then, Π′ satisfies Eq. (A46).
In summary, as long as ΛG has an expression of Eq. (A41) or Eq. (A42), then with the technique of character RB,

one can obtain tr(ΛG) and the fidelity of Λ accurately with only single exponential fitting. In Appendix B, we would
prove that if the Liouville representation of G is not multiplicity-free, as defined in Definition 5, then ΛG cannot be
diagonal for arbitrary noise channel Λ. If the Liouville representation of G is multiplicity-free, then [37] has shown
that the character group G′ can be chosen as a subgroup of G. In this case, each projector Πi in Eq. (A41) relates to
an irreducible representation subspace of G. Denote this irreducible representation as ϕi with character χi, then Πi

can be realized with

Πi =
dimϕi
∣G∣

∑
G′∈G

χi(G
′
)G
′. (A51)

Thus, implementing character gate G′ is not harder than the twirling group.
Besides adding character gates, there is another method to effectively realize the projector Πi in Eq. (A41). If one

can realize a measurement M such that ∑i pi⟨⟨M
′∣Πi = pj⟨⟨M

′∣Πj , then Eq. (A43) will also reduce to pmj ⟨⟨M
′∣Πj ∣ρ⟩⟩.

An accurate initial state ρ, satisfying ∑i piΠi∣ρ⟩⟩ = pjΠj ∣ρ⟩⟩, can also achieve that. Thus, if we have some information
about SPAM, we can realize the projection without the need to implement character gates.

5. Interleaved randomized benchmarking

Above, we only introduce how to evaluate the fidelity of a quantum gate group G via randomized benchmarking.
In order to obtain the gate fidelity of an individual target gate, U , one needs to utilize the technique of interleaved
RB [38]. In [38], the target gate U is embedded into a group, G. Below, we call them the twirled gate and the twirling
group, respectively. To enable interleaved RB, one implements two kinds of circuits. The first is just a random gate
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sequence in regular RB, extracting the average gate fidelity of the twirling group G. The second type of circuit is
composed of random twirling gates from G interleaved with the target gate U , extracting the composition gate fidelity
of the twirling group and the target gate. Comparing the two results, one can get the individual gate fidelity of the
target gate. Specifically, suppose the noise channel for twirling group G is E and the noise channel for the target

gate is Λ. Then with the RB methods introduced before one can obtain F (E) = tr(E)
d2 . After that, one implements an

interleaved random gate sequence,

S̃i = G̃inv

m

∏
i=1
Ũ G̃i

= EGinv

m

∏
i=1
UΛEGi,

(A52)

where Ginv = (∏
m
i=1UGi)

†, Gi and U denote the Liouville representation of Gi and U , respectively, and ⋅̃ means the

quantum gate is noisy. Note that Ũ = UΛ while G̃ = EG. The noise channels for U and gates in G are put in different
positions, but due to the arbitrariness of Λ and E , the difference does not put any restriction on the noise. In [38],
the target gate U belongs to twirling group G, then under the expectation of sampling of Gi, Eq. (A52) is equal to,

E∀i,Gi∈GS̃i = EE∀i,Gi∈G
m

∏
i=1
((

i

∏
j=2
GjU)G1)

†ΛE((
i

∏
j=2
GjU)G1)

= E(EG∈GG
†ΛEG)m

= E(ΛE)mG .

(A53)

The second line utilizes the fact that G is a group. Thus, same as the discussion in the previous subsection, interleaved

quantum circuits allow us to estimate the fidelity of ΛE , that is, F (ΛE) = tr(ΛE)
d2 . In [38], the authors show how to

estimate F (Λ) from F (ΛE) and F (E). We review this technique as elaborated below.
Denote Ed to be the E twirled by the whole unitary group. It is known that Ed is a mixture of the identity channel

and the depolarizing channel,

Ed(ρ) =
d2F (E) − 1

d2 − 1
ρ + (1 −

d2F (E) − 1

d2 − 1
)
I
d
. (A54)

Now, let us investigate the quantity ∣F (ΛE) − F (ΛEd)∣, which is equal to

∣F (ΛE) − F (ΛEd)∣ = ∣F (ΛE) −
(d2F (Λ) − 1)(d2F (E) − 1) + d2 − 1

d2(d2 − 1)
)∣. (A55)

Assuming ∣F (ΛE) − F (ΛEd)∣ is upper bounded by E, we can deduce F (Λ) belongs to the following interval,

[
d2(F (ΛE) −E) − 1

d2F (E) − 1
(1 −

1

d2
) +

1

d2
,
d2(F (ΛE) +E) − 1

d2F (E) − 1
(1 −

1

d2
) +

1

d2
]. (A56)

This interval has a mean value d2F (ΛE)−1
d2F (E)−1 (1−

1
d2 )+

1
d2 and length 2(d2−1)E

d2F (E)−1 . With matrix analysis, the quantity E can

be upper bounded by [38],

E ≤min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4(d + 1)
√
1 − F (E) + 2

d + 1

d
(1 − F (E))

∣d2(F (ΛE) − F (E)) + 2F (E) − F (ΛE) − 1∣ + (d2F (E) − 1)(1 − F (E))

d2 − 1

∣d2(F (ΛE) − F (E)) + 2F (E) − F (ΛE) − 1∣ + (d2F (E) − 1)(F (E) − F (ΛE))

d2 − 1

. (A57)

In general, the higher F (E) is, the smaller E is, and the more accurate the estimation of F (Λ) is. In [38], the target
gate U belongs to G so the noisy levels, or the fidelities, of Λ and E are close, which is not beneficial for estimating
F (Λ). This is also one of the reasons that finding a small and practical twirling group G matters. In the main text,
we focus on the interleaved circuit to estimate F (ΛE), and F (Λ) can be estimated via Eqs. (A56) and (A57). Note
that though this estimation assumes the noise channel of the twirling group to be gate-independent, this assumption
is good enough in a high-fidelity region and could also be relieved by using a higher-order fitting formula by more
sophisticated analysis like Ref. [7].
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6. Dihedral group and classically replaceable unitary operations

For further elaboration, in this part, we introduce the local dihedral group and classically replaceable unitary
operations (CRU) [33] along with their properties. The local dihedral group on n qubits is similar to the n-qubit
Pauli group, which is defined as below.

Dm
n = ⟨X,Zm⟩

⊗n
= ⟨X1, (Zm)1,X2, (Zm)2,⋯,Xn, (Zm)n⟩, (A58)

where X = (
0 1
1 0
) is the Pauli X gate and Zm = (

1 0

0 ei
2π
m
) is a phase gate with phase 2π

m
. Here, m is a positive integer.

In general, the phase on different qubits can be different and we can define ⟨X1, (Zm1)1,X2, (Zm2)2,⋯,Xn, (Zmn)n⟩,
but below we only consider a simple case that m1 =m2 = ⋯ =mn =m. Same with the discussion of the Pauli group,
we can define the projective local dihedral group via quotient by the center of ⟨X,Zm⟩

⊗n,

Dm
′n = ⟨X,Zm⟩

⊗n
/⟨ωm⟩, (A59)

where ωm = e
i 2π
m and ⟨ωm⟩ = {e

i 2kπ
m ,0 ≤ k ≤m−1}. As the overall phase is not important, below we do not distinguish

the local dihedral group and the projective local dihedral group and use the definition Dm
n = ⟨X,Zm⟩

⊗n/⟨ωm⟩.
Classically replaceable unitary operations, or incoherent unitary operations, are all unitary gates that can be moved

after computational basis measurements and be replaced with classical post-processing. Given the computational basis
∣i⟩ on the Hilbert space H, we can define the dephasing operation ∆. For any ρ ∈ D(H),

∆(ρ) =∑
i

∣i⟩⟨i∣ρ ∣i⟩⟨i∣ . (A60)

Then, the CRU gate set has an expression,

{U is unitary∣U∆ =∆U}. (A61)

Note that we use the same notation ∆ to represent its map representation and Liouville representation. It is shown
that a CRU can be given by [33, 52]

U =∑
j

eiθj ∣σ(j)⟩⟨j∣ , (A62)

where σ is a permutation over computational basis and θj is a phase in [0,2π). And any unitary gate having an
expression of (A62) is a CRU. We can decompose U as

U =∑
j

∣σ(j)⟩⟨j∣∑
j

eiθj ∣j⟩⟨j∣ . (A63)

Set Π = ∑j ∣σ(j)⟩⟨j∣ and W = ∑j e
iθj ∣j⟩⟨j∣ and we can see any CRU can be written as the multiplication of a

permutation matrix, Π, and a diagonal matrix, W , U = ΠW . Note that any matrix with the form ∑j ∣σ(j)⟩⟨j∣ for
arbitrary permutation σ is defined to be a permutation matrix. Also, the multiplication of a permutation matrix and
a diagonal matrix is always expressed as Eq. (A62) and is a CRU.

Lemma 7. Any classically replaceable unitary operation U can be decomposed as the multiplication of a permutation
matrix, Π, and a diagonal matrix, W , U = ΠW . Vice versa.

From the above lemma, we can obtain that the computational basis gate set is invariant under the action of a CRU.

Lemma 8. Diagonal matrices set or computational basis gate set is invariant under the action of any CRU.

Proof. For any CRU U = ∑j e
iθj ∣σ(j)⟩⟨j∣ and diagonal matrix W = ∑j e

ϕj ∣j⟩⟨j∣,

UWU−1 = ∑
jj′k

ei(ϕk+θj−θj′) ∣σ(j)⟩ ⟨j∣k⟩ ⟨k∣j′⟩ ⟨σ(j′)∣

=∑
j

eiϕj ∣σ(j)⟩⟨σ(j)∣

=∑
j

eiϕσ−1(j) ∣j⟩⟨j∣ ,

(A64)

which is a diagonal matrix. Proof is done.
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In fact, for any CRU subgroup G ≤ CRU, all diagonal matrices in G forms a subgroup, GZ of G. Then, GZ is
invariant under the action of any gate in G, or equivalently, GZ is a normal subgroup of G.

Lemma 9. Given an n-qubit CRU subgroup G, set the computational basis subgroup of G as GZ = {U ∈

G∣U is diagonal}. Then, GZ is a normal subgroup of G.

Proof. Obviously, GZ is a subgroup of G. We only need to prove that under the conjugate action of any quantum gate
G in G, GZ is invariant. For any gate G ∈ G, G ∈ CRU, then GGZG

† only contains diagonal matrices. As all diagonal
matrices in G are contained in GZ , GGZG

† ⊆ GZ . Also, ∣GGZG
†∣ = ∣GZ ∣, so GGZG

† = GZ . As G is an arbitrary gate
in G, we prove that GZ is the normal subgroup of G. Here, we complete the proof.

Below, we present a result about permutation matrices for further elaboration. The lemma tells us the structure of
the permutation matrices, which can always be decomposed as the multiplication of Toffoli gates, CNOT gates, and
Pauli X gates.

Lemma 10. All permutation matrices on n qubits can be generated by Pauli X gate on each qubit and all Toffoli
gates Cn−1X with n − 1 control qubits and 1 target qubit.

Proof. The expression of permutation matrices on n qubits can be unified as below.

Πσ = ∑
j∈{0,1}n

∣σ(j)⟩⟨j∣ , (A65)

where σ is an arbitrary permutation on {0,1}n. The permutations themself form a permutation group with cardinality
2n!. As transpositions can generate the permutation group, we only need to prove that any transposition (s1, s2) can
be generated by Pauli X gates and Cn−1X gates for s1 ≠ s2 ∈ {0,1}

n.
Denote Xk to be the Pauli X gate acting on k-th qubit and set Xs = ⊗

n
i=1X

si
i for s ∈ {0,1}n. We also denote

Cn−1Xk to be the Toffoli gate with k-th qubit as the target qubit and other qubits as the control qubits. Then,
for any s ∈ {0,1}n, XsCn−1Xk(X

s)† would swap the basis ∣1n ⊕ s⟩ and ∣1n ⊕ 1k ⊕ s⟩ while keeping other bases fixed.
Here, 1n = 11⋯1 is the all-1 bit string and 1k = 0k−110n−k is the bit string with 1 in k-th position and 0 in other
positions. Thus, by taking k over 1 to n and s over {0,1}n we would obtain any transposition (s, s ⊕ 1k). As
(s, s⊕ 1k1)(s, s⊕ 1k2)(s, s⊕ 1k1) = (s⊕ 1k1, s⊕ 1k2), we would also obtain any transposition (s, s⊕ 1k1 ⊕ 1k2...⊕ 1kl),
which suffices to produce any transposition (s1, s2) for s1 ≠ s2 ∈ {0,1}

n.
Note that the Toffoli gates with less than n − 1 control qubits are also permutation matrices. It means that with

single qubit Pauli X gates and Cn−1X gates, one can construct any controlled-X gates CkX with 1 ≤ k ≤ n − 2.

Appendix B: Optimal twirling groups for multi-qubit controlled phase gates in randomized benchmarking

In original interleaved RB [38], to benchmark an individual target quantum gate, U , one always embeds U in a
large group, G, with a number of global quantum gates so that G has a strong twirling effect. However, the large size
of the twirling group would make group sampling and computing inverse gates difficult, and plenty of global quantum
gates in G would make the twirling gates hard to realize. The former difficulty is a classical computational problem,
and the latter is a gate implementability problem. In this work, we focus on finding the smallest and the most easily
implementable twirling group for a target gate.

Fortunately, [14, 15, 37] shows that embedding the target gate U in the twirling group G is not necessary to
characterize U . A Clifford gate can be effectively characterized with local Clifford twirling or Pauli twirling instead
of global Clifford twirling. It gives hope that maybe we can choose a small twirling group for benchmarking a generic
target quantum gate. Normally, we would like to choose a twirling group as small as possible, but the twirling group
can not be arbitrarily small as well. Otherwise, the twirled noise channel is not symmetric enough, resulting in hard
post-processing and inaccurate fidelity estimation. In the main text, we have briefly introduced the requirements for
twirling groups in RB and proposed Question 1. Below, we will present the requirements for twirling groups in RB
more detailedly and completely and rederive Question 1. Moreover, in this part, we will provide the formal versions
of the theorems and lemmas in the main text along with their proof. It is worth mentioning that when we write ‘a
channel is diagonal’, it always means that ‘the channel is diagonal up to a unitary transformation’.

1. Requirements for twirling groups in randomized benchmarking

Below, we focus on how to estimate the fidelity of a target gate, U , with methods of RB. Same with the notations
in the main text and in Appendix A, we express the noisy quantum gate Ũ = UΛ as a composite of the noiseless gate
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U and its noise channel Λ, where U denotes the Pauli-Liouville representation of U , and ⋅̃ represents the noisy version
of a quantum gate. As mentioned in Appendix A4, the key to enable RB is obtaining the powers of the G-twirled
noise channel, Λm

G , where m ∈ Z+, and ensuring ΛG is diagonal up to a unitary transformation, or can be written as
Eq. (A42). Then, with the technique of character RB, one can obtain tr(ΛG) and the fidelity of Λ. Here, G is the
twirling group for tailoring Λ.

Different from the elaboration in the main text, below we distinguish two concepts of twirling gate set V and twirling
group G. In the main text, we directly select a twirling group, G, and implement a random gate sequence composed of
gates from G interleaved with target gate U to obtain Λm

G . But in fact, we have another way to obtain Λm
G as shown

below.
To obtain Λm

G , we implement m twirling gates Vi = GiUG
†
i−1U

†, sampled from the twirling gate set V = GUGU †,
interleaved with the target gate U as shown in Fig. 6. Here, Gi is uniformly and randomly sampled from the group
G, and we set G0 = I. The circuit ends with the inverse gate Vinv = (∏

m
i=1UVi)

† = U †m−1G†
mU

†. The circuit ideally
equals the identity, corresponding to ΛG = I. Note that the twirling group G and the twirling gate set V are in general
different and G ⊆ V. Although we only require Λ to be twirled by G, we need to realize gates in V to achieve that
since the circuit involves gate U . The twirling gates should first eliminate the effect of the twirled gate U and then
influence the noise channel Λ. Note that the inverse gate Vinv can always belong to V as long as we choose m such
that Um = I. The cost to implement the inverse gate is nearly the same as other twirling gates.

֜
?

ΛG
m

⋮⋮

֜

𝑚 gate layers

𝑉𝑖 𝑈 𝑉𝑖𝑛𝑣Λ
⋮⋮⋮⋮⋮

𝐸𝐺෩𝑉𝑖 ෩𝑈 ෨𝑉𝑖𝑛𝑣
⋮⋮⋮⋮

𝐸𝐺

𝑚 gate layers

𝑉𝑖=𝐺𝑖𝑈𝐺𝑖−1
†

𝑈†

𝑚 gate layers

𝑈 𝑈†𝑚Λ
⋮⋮⋮⋮⋮

𝐸𝐺 𝐺𝑖
⋮

𝐺𝑖
† ֜ 𝑈Λ𝐺

𝑚 𝑈†𝑚

⋮⋮ ⋮

FIG. 6. Random twirling gates V1, V2,⋯, Vm interleaved with U in RB. The inverse gate Vinv = (∏m
i=1UVi)†. ⋅̃ represents the

noisy version of a quantum gate. Λ is the composite noise channel of V and U , and ΛG is the G-twirled noise channel.

Same with the main text and the arguments in Appendix A5, we omit the noise from the twirling gates. Then, the
circuit is represented as

S̃m = Vinv

m

∏
i=1
UΛVi

= U
†m−1
G

†
mU

†
m

∏
i=1
UΛGiUG

†
i−1U

†

= U
†m

m

∏
i=1
UG

†
iΛGi.

(B1)

In terms of expectation over sampling of Gi, Eq. (B1) becomes U†m(UΛG)
m. Compared to Λm

G , this formulation only
requires the commutation relation,

ΛGU = UΛG, (B2)

which means that the symmetry of the group G is preserved under the action of U in the Liouville representation.
Thus, to tailor U in RB, our task is finding the twirling group G satisfying Eq.(B2) and ensuring the diagonalizability
of ΛG while minimizing the size of the twirling gate set V = GUGU †. The question is summarized below.

Question 3. Given a gate, U , find V such that V = GUGU† and the twirling group G satisfies

for any quantum channel Λ,ΛG = EG∈GGΛG
† is diagonal

up to a unitary transformation independent of Λ,
(B3)
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and,

ΛGU = UΛG. (B4)

Question 3 is a more refined problem for finding a twirling group in RB. However, in general, Eq.(B2) is challenging
to characterize, so we substitute it with a more easily handled condition, that is,

UGU †
= G. (B5)

In this case, V = G and Question 3 reduces to Question 1 in the main text, as shown below.

Question 1. Given a gate, U , find a twirling group, G such that,

for any quantum channel Λ,ΛG = EG∈GGΛG
† is diagonal

up to a unitary transformation independent of Λ,
(B6)

and,

UGU†
= G. (B7)

As mentioned in the main text, the solution to Question 1 allows us to obtain the fidelity of (U†m(UΛG)
m)

1
m ,

which is a lower bound of the fidelity of Λ. Below, we present the proof.

Lemma 11. Given a target gate, U , and a twirling group, G satisfying Question 1, then for any positive integer m,

the fidelity of (U†m(UΛG)
m)

1
m is a lower bound of the fidelity of Λ. Mathematically,

F ((U†m
(UΛG)

m
)

1
m ) ≤ F (Λ), (B8)

or equivalently,

tr((U†m
(UΛG)

m
)

1
m ) ≤ tr(Λ). (B9)

Proof. As tr(Λ) = tr(ΛG), we only need to prove tr((U†m(UΛG)
m)

1
m ) ≤ tr(ΛG).

Note that ΛG has the expression of Eq. (A41) and can be written as

ΛG =
k

∑
i=1
piΠi. (B10)

Also, the condition UGU † = G ensures that U†ΛGU = (U
†ΛGU)G as proven in Lemma 12, which means we can express

U†ΛGU as

U
†ΛGU =

k

∑
i=1
qiΠi. (B11)

As U is unitary and does not change the spectrum of ΛG, the value of qi must be equal to one of elements from
{pi,1 ≤ i ≤ k}. Thus, we can construct a map f1 ∶ {pi,1 ≤ i ≤ k} → {qi,1 ≤ i ≤ k}. Similarly, as U(U†ΛGU)U

† = ΛG,
we can construct a map f2 ∶ {qi,1 ≤ i ≤ k} → {pi,1 ≤ i ≤ k} so that the compositions of f1 and f2 are identity maps,
f1 ○ f2(qi) = qi and f2 ○ f1(pi) = pi. Then, f1 is just a permutation on {pi,1 ≤ i ≤ k} and {qi,1 ≤ i ≤ k} is equivalent to
{pi,1 ≤ i ≤ k} after permutation. Thus, the diagonal terms of U†ΛGUΛG are {pipσ(i)} where σ is a permutation on
{1,2,⋯, k}.
Similarly, the diagonal terms of U†m(UΛG)

m = (U†⋯(U†(U†ΛGU)ΛGU)ΛG⋯U)ΛG are {pipσ1(i)⋯pσm−1(i)} where
σ1,⋯, σm−1 are permutations on {1,2,⋯, k}. Thus, with rearrangement inequality,

tr((U†m
(UΛG)

m
)

1
m ) =

k

∑
i=1
(pipσ1(i)⋯pσm−1(i))

1
m

≤
k

∑
i=1
pi

= tr(ΛG).

(B12)

Here is the proof.
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Thus, solve Question 1, and then we can provide a lower bound of the fidelity of the target gate. Based on the
proof of Lemma 11, this lower bound is close to the real fidelity as long as the diagonal terms of the noise channel in
the Pauli-Liouville representation are close to each other. And the lower bound is saturated for a global depolarizing
noise. More importantly, if the target gate U is a multi-qubit controlled phase gate, the twirling group satisfying
UGU † = G would also satisfy ΛGU = UΛG, which we will show in Theorem 2. As a consequence, we can accurately
estimate the fidelities of multi-qubit controlled phase gates instead of only providing a lower bound.

Lemma 12. Given a unitary gate, U , and a unitary subgroup, G, if UGU† = G, then for any quantum channel Λ,
(UΛGU

†)G = UΛGU
†.

Proof. Provided with UGU † = G, we have

(UΛGU
†
)G = EG∈GGUΛGU

†
G

†

= EG∈GU(U
†
GU)ΛG(U

†
G

†
U)U

†

= EG∈GUGΛGG
†
U

†

= UΛGU
†.

(B13)

The equality in the third line comes from the condition UGU † = G.

2. Proof of Lemma 1

In the main text, we present the lemma that for a finite n-qubit unitary subgroup G, if for any quantum channel Λ, its
G−twirled channel, ΛG, is diagonal in the Pauli-Liouville representation up to a unitary transformation independent of
Λ, then the Pauli-Liouville representation of G is multiplicity-free. Also, the cardinality of the twirling group ∣G∣ ≥ 4n.
Below, we present the proof of this lemma. It is worth mentioning that, in the proof, we consider a more generic
scenario: if ΛG is diagonal up to an invertible matrix transformation rather than a unitary transformation, then the
Pauli-Liouville representation of G is multiplicity-free. The result is more generic, and the proof is stronger here.

For convenience, we rewrite the Lemma 1 below.

Lemma 1. For a finite n-qubit unitary subgroup, G, if for any quantum channel Λ, its G−twirled channel, ΛG, is
diagonal in the Pauli-Liouville representation up to an invertible matrix transformation independent of Λ, then the
Pauli-Liouville representation of G is multiplicity-free. As a corollary, the cardinality of the twirling group ∣G∣ ≥ 4n.

Proof. Let us begin with the irreducible representation decomposition of the Pauli Liouville representation of G. For
each element G ∈ G, G can be decomposed as the direct sum of irreducible representations up to an isomorphism V,

VGV
−1
=

k

⊕
i=1

Ini×ni ⊗ ϕi(G), (B14)

where V is an invertible matrix, ϕi denotes the irreducible representation of G, and ni denotes its multiplicity in G.
The term k records the number of inequivalent irreducible representations that G contains. It is worth mentioning
that the basis making G block-diagonal may not be Pauli operators {I,X,Y,Z}. That is why we put V and V−1 in
the left side of Eq. (B14). As any unitary channel has an invariant subspace {I}, the Pauli-Liouville representation
of a unitary channel must be block-diagonal as below.

G = (
1 0
0 TG

) . (B15)

Thus, the form of the basis transformation matrix, V, can also be constrained like Eq. (B15). That means V only
changes the non-identity basis while keeping the basis I invariant. In addition, without loss of generality, we set the
irreducible representation in the subspace spanned by {I} as the trivial representation, that is, mapping all group
elements to 1.

Given a channel, Λ, its twirling over group G is

ΛG = EG∈GGΛG
−1

= EG∈GV
−1
(

k

⊕
i=1

Ini×ni ⊗ ϕi(G))VΛV
−1
(

k

⊕
i=1

Ini×ni ⊗ ϕi(G))
−1
V

= V
−1
[EG∈G(

k

⊕
i=1

Ini×ni ⊗ ϕi(G))VΛV
−1
(

k

⊕
i=1

Ini×ni ⊗ ϕi(G))
−1
]V

(B16)
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Focusing on the calculation in the square brackets in Eq. (B16), we denote Λ′ = VΛV−1 and decompose it corre-
sponding to the block partition of the right-hand side in Eq. (B14). That is,

Λ′ =

⎛
⎜
⎜
⎜
⎝

Λ′11 Λ′12 ⋯ Λ′1k

Λ′21 Λ′22 ⋯ Λ′2nk

⋮ ⋮ ⋱ ⋮

Λ′k1 Λ′k2 ⋯ Λ′kk

⎞
⎟
⎟
⎟
⎠

, (B17)

where we set

Λ′ii =

⎛
⎜
⎜
⎜
⎝

Λ′i11 Λ′i12 ⋯ Λ′i1ni

Λ′i21 Λ′i22 ⋯ Λ′i2ni

⋮ ⋮ ⋱ ⋮

Λ′ini1 Λ′ini2 ⋯ Λ′inini

⎞
⎟
⎟
⎟
⎠

. (B18)

Then,

EG∈G(
k

⊕
i=1

Ini×ni ⊗ ϕi(G))Λ
′
(

k

⊕
i=1

Ini×ni ⊗ ϕi(G))
−1

=EG∈G
k

⊕
i=1
[

⎛
⎜
⎜
⎜
⎝

ϕi(G) 0 ⋯ 0
0 ϕi(G) ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ ϕi(G)

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

Λ′i11 Λ′i12 ⋯ Λ′i1ni

Λ′i21 Λ′i22 ⋯ Λ′i2ni

⋮ ⋮ ⋱ ⋮

Λ′ini1 Λ′ini2 ⋯ Λ′inini
.

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

ϕ−1i (G) 0 ⋯ 0
0 ϕ−1i (G) ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ ϕ−1i (G)

⎞
⎟
⎟
⎟
⎠

]

=EG∈G
k

⊕
i=1

⎛
⎜
⎜
⎜
⎝

ϕi(G)Λ
′i
11ϕ

−1
i (G) ϕi(G)Λ

′i
12ϕ

−1
i (G) ⋯ ϕi(G)Λ

′i
1ni
ϕ−1i (G)

ϕi(G)Λ
′i
21ϕ

−1
i (G) ϕi(G)Λ

′i
22ϕ

−1
i (G) ⋯ ϕi(G)Λ

′i
2ni
ϕ−1i (G)

⋮ ⋮ ⋱ ⋮

ϕi(G)Λ
′i
ni1ϕ

−1
i (G) ϕi(G)Λ

′i
ni2ϕ

−1
i (G) ⋯ ϕi(G)Λ

′i
nini

ϕ−1i (G).

⎞
⎟
⎟
⎟
⎠

=
k

⊕
i=1

⎛
⎜
⎜
⎜
⎝

EG∈Gϕi(G)Λ
′i
11ϕ

−1
i (G) EG∈Gϕi(G)Λ

′i
12ϕ

−1
i (G) ⋯ EG∈Gϕi(G)Λ

′i
1ni
ϕ−1i (G)

EG∈Gϕi(G)Λ
′i
21ϕ

−1
i (G) EG∈Gϕi(G)Λ

′i
22ϕ

−1
i (G) ⋯ EG∈Gϕi(G)Λ

′i
2ni
ϕ−1i (G)

⋮ ⋮ ⋱ ⋮

EG∈Gϕi(G)Λ
′i
ni1ϕ

−1
i (G) EG∈Gϕi(G)Λ

′i
ni2ϕ

−1
i (G) ⋯ EG∈Gϕi(G)Λ

′i
nini

ϕ−1i (G).

⎞
⎟
⎟
⎟
⎠

(B19)

By Schur’s lemma, for any irreducible representation ϕi and matrix A, the twirling of A over G would be proportional
to identity,

EG∈Gϕi(G)Aϕ
−1
i (G) = tr(A)

Idi

di
, (B20)

where di = dimϕi. We set

Λ′i =

⎛
⎜
⎜
⎜
⎝

tr(Λ′i11) tr(Λ′i12) ⋯ tr(Λ′i1ni
)

tr(Λ′i21) tr(Λ′i22) ⋯ tr(Λ′i2ni
)

⋮ ⋮ ⋱ ⋮

tr(Λ′ini1
) tr(Λ′ini2

) ⋯ tr(Λ′inini
).

⎞
⎟
⎟
⎟
⎠

(B21)

Thus we conclude that

EG∈G(
k

⊕
i=1

Ini×ni ⊗ ϕi(G))Λ
′
(

k

⊕
i=1

Ini×ni ⊗ ϕi(G))
−1
=

k

⊕
i=1

Λ′i ⊗
Idi

di
, (B22)

and

ΛG = V
−1
(

k

⊕
i=1

Λ′i ⊗
Idi

di
)V. (B23)

Note that ΛG is diagonal up to an invertible matrix transformation independent of Λ. There exists a fixed invertible
matrix transformation V ′ such that

V
′ΛGV

′†
=∑

i

piΠi, (B24)
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where Πi is a projector independent of Λ and V ′ is also independent of Λ.
Notice that Eq. (B24) is a linear function acting on Λ. If for any channel Λ, ΛG is diagonal, the linear combination

of any set of quantum channels would also be diagonal after G-twirling. Note that the linear span of quantum

channels is the set of all trace-preserving (TP) maps [53]. Thus, for any TP map with form Λ = (
1 0
t TΛ

), V ′ΛGV
′†

must be diagonal. It further requires that for any index i, Λ′i defined in Eq. (B21) is diagonal up to an invertible

matrix transformation. Recall that Λ′i is defined from Λ′, which equals VΛV−1. As V has the form (
1 0
0 TV

) and

Λ = (
1 0
t TΛ

) is an arbitrary TP map, Λ′ = VΛV−1 = (
1 0

TVt TVTΛT
−1
V
) is also an arbitrary TP map. Denote t′ = TVt

and TΛ′ = TVTΛT
−1
V , the elements of t′ and TΛ′ would be arbitrary. Back to considering Λ′i, when i = 1, ϕ1 is the

trivial irreducible representation, then Λ′1 = Λ
′i can be written as below,

Λ′1 =

⎛
⎜
⎜
⎜
⎝

1 0 ⋯ 0
t′1 TΛ′11

⋯ TΛ′1,n1−1

⋮ ⋮ ⋱ ⋮

t′n1−1 TΛ′n1−1,1
⋯ TΛ′n1−1,n1−1

,

⎞
⎟
⎟
⎟
⎠

(B25)

where the matrix elements are arbitrary except for the first line. If n1 > 1, there exists a matrix (
1 0
1 1
) ⊕ In1−2 that

cannot be diagonalized. Thus, n1 must take 1. Similarly, when i ≥ 2, Λ′i can take any matrix as Λ′ is an arbitrary

TP map. If ni > 1 in this case, we can also find a matrix (
1 0
1 1
) ⊕ Ini−2 that cannot be diagonalized. The above

arguments indicate that ∀i, ni = 1. The irreducible representation decomposition of Pauli-Liouville representation of
G must be multiplicity-free to make ΛG diagonal for any channel Λ. This completes the proof of the first conclusion
in the lemma.

A direct corollary of the non-multiplicity condition of G in Liouville representation is the cardinality of the twirling
group ∣G∣ ≥ 4n. This can be obtained by the Burnside theorem, as shown below.

∣G∣ = ∑
ϕi∈RG

dim2 ϕi

≥
k

∑
i=1

dim2 ϕi

≥
k

∑
i=1

dimϕi

= 4n,

(B26)

where RG records all inequivalent irreducible representations of G.

3. Systematic twirling group construction for generic quantum gates

Before we go through the proof of the main theorem, we discuss how to construct twirling groups for generic
quantum gates satisfying the conditions in Question 1.

Notice that if G contains a subgroup H that would make arbitrary channels diagonal, up to a unitary transformation,
via twirling, then G would also enjoy this property as ΛG = (ΛG)H , which is shown below.

Lemma 13. If G contains a subgroup H that would twirl any noise channel into a diagonal channel, up to a unitary
transformation, in the Pauli-Liouville representation, then G would also enjoy this property. Mathematically,

H ⊂ G,∀Λ,ΛH is diagonal⇒ ∀Λ,ΛG is diagonal. (B27)

Proof.

(ΛG)H = EGh∈HEG∈GGhGΛ(GhG)
†

= EG∈GGΛG
†

= ΛG.

(B28)

Proof is done.
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As Pauli group Pn can twirl any channel into a Pauli channel, a simple solution to Question 1 is just the smallest
group containing Pauli group and normalized by target U , which is constructed and spanned by continuously applying
U on Pn until no new element is generated. It is worth noting that, except for Pauli group Pn, local dihedral group
Dm

n = ⟨X,Zm⟩
⊗n can also twirl any channel into a Pauli channel. In fact, Pn is a special case of Dm

n when m = 2.
For specific target gate U like Zm, substituting Pn with Dm

n may lead to a smaller twirling group G though Dm
n is in

general larger than Pn. In reality, one can select an optimal m to obtain a better choice of G. The above discussions
can be summarized below.

Corollary 1. If n-qubit Pauli group Pn ⊆ G, then ΛG is a Pauli channel and is diagonal in the Pauli-Liouville
representation.

Corollary 2. If n-qubit local dihedral group Dm
n ⊆ G, then ΛG is a Pauli channel and is diagonal in the Pauli-Liouville

representation.

Example 1 (Simple twirling group construction). Given an n-qubit unitary, U , a simple solution to Question 1 is
the smallest group containing Dm

n and normalized by U where m ≥ 2 is a positive integer. Concretely, the twirling
group G can be constructed as follows.

G = ⟨⋃
l∈N
U lDm

n (U
†
)
l
⟩

= {(U l1D1(U
†
)
l1)

k1(U l2D2(U
†
)
l2)

k2⋯,∀i, li, ki ∈ Z,Di ∈ D
m
n }

= {U l1D1(U
†
)
l1U l2D2(U

†
)
l2⋯,∀i, li ∈ Z,Di ∈ D

m
n }.

(B29)

Here, Dm
n is the n-qubit local dihedral group ⟨X,Zm⟩

⊗n. In practice, we select an optimal m to make ∣G∣ as small as
possible.

4. Proof of Lemma 2

Below, we focus on the case that the twirling group is a CRU subgroup and prove Lemma 2 and Theorem 1 in the
main text. We first provide a more formal and more mathematical version of Lemma 2.

Lemma 2 (Formal Version). For a finite n-qubit CRU subgroup G, set the Z-basis subgroup of G as GZ = {U ∈
G∣U is Z basis}, which is a normal subgroup of G by Lemma 9. If for any quantum channel Λ, its twirling over group
G, ΛG, is diagonal up to a unitary transformation in the Pauli-Liouville representation, then the quotient group G/GZ

can interchange any two computational basis states. In another word, G/GZ contains set S = {Πi∣Πi = ΠX
i ΠC

i , i =

i1i2...in ∈ {0,1}
n,Πi =X

i1
1 X

i2
2 ...X

in
n ∈ X,Π

C
i ∈ C

[n−1]X}. Here, X = ⟨X⟩ is the group generated by Pauli X gates on all

qubits, C[n−1]X = ⟨CX,CCX,Cn−1X⟩ is the group generated by CNOT and multi-qubit Toffoli gates on all qubits.

Note that ⟨⋅⟩ denotes the group generated by ⋅. Same with before, we simply use ⟨X⟩ to represent group
⟨X1,X2,⋯,Xn⟩ and ⟨CX,CCX,C

n−1X⟩ to represent ⟨CX12,⋯CCX123,⋯,C
n−1X1,2,⋯n⟩ while subscripts label the

qubits acted upon. Below we provide the proof of Lemma 2.

Proof. From Lemma 8, we obtain that the space spanned by {I, Z}⊗n is an invariant subspace of G. By rearranging
Pauli operator bases and put {I, Z}⊗n forward, the Pauli-Liouville representation of G would be in a block-diagonal
form

G = GZ⊕G⊥, (B30)

where dimGZ = 2
n and dimG⊥ = 4

n − 2n. Correspondingly, we represent channel Λ in a block-diagonal form in the
rearranged basis,

Λ = (
ΛZ ΛZ⊥
Λ⊥Z Λ⊥

) . (B31)

Thus, the twirling of Λ over G is

ΛG = EG∈GGΛG
−1

= EG∈G (
GZΛZG

−1
Z GZΛZ⊥G

−1
⊥

G⊥Λ⊥ZG
−1
Z G⊥Λ⊥G

−1
⊥
)

(B32)
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Due to the direct sum structure, the irreducible representation decomposition of G is composed of decompositions
of GZ and G⊥. From Lemma 1, all of the irreducible representations contained in G must be inequivalent to make
ΛG diagonal. Therefore, GZ and G⊥ do not have any equivalent irreducible representation in common, which leads
to EG∈GGZΛZ⊥G

−1
⊥ = 0, EG∈GG⊥Λ⊥ZG

−1
Z = 0, and ΛG = (EG∈GGZΛZG

−1
Z ) ⊕ (EG∈GG⊥Λ⊥G

−1
⊥ ). To make ΛG diagonal, we

require that two blocks in it are both diagonal. Below, we focus on the first block.

Note that GZ is a normal subgroup of G. Consider its coset, or quotient group G/GZ = {ΠiGZ ,1 ≤ i ≤ ∣G/GZ ∣},
where ∀i, Πi is a representative element. Without loss of generality, we set Π1 as I2n . Then the other representative
elements must be outside GZ . Then we separate the twirling of ΛZ over G into two parts. One is the twirling over
GZ , and the other is the twirling over quotient group G/GZ . As Z-basis gates are all identity in the basis of {I, Z}⊗n
in Liouville representation, they do not influence the twirled channel in that subspace. For instance, the Liouville
representation of the CS gate is shown in Fig. 7. In the subspace spanned by {I, Z1, Z2, Z1Z2}, CS gate is equal to
identity. Certainly, if the CS gate is a twirling gate, it contributes nothing to the twirling in this subspace. The same
are the gates in GZ .

I Z1 Z2 Z1Z2 X1 Y1 X1Z2 Y1Z2 X2 Z1X2 Y2 Z1Y2 X1X2 Y1X2 X1Y2 Y1Y2

I
Z 1

Z 2
Z 1

Z 2
X 1

Y 1
X 1

Z 2
Y 1

Z 2
X 2

Z 1
X 2

Y 2
Z 1

Y 2
X 1

X 2
Y 1

X 2
X 1

Y 2
Y 1

Y 2

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 -1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 -1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 -1 0 0 0 0 0 0 0 0

0 0 0 0 -1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 -1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 -1 0 0 0 0

0 0 0 0 0 0 0 0 1 -1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 -1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1

0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

FIG. 7. Pauli Liouville representation of CS gate.

Thus, the only contribution for twirling in this subspace comes from the quotient group. With the similar arguments
in Lemma 1, we can directly obtain that ∣G/GZ ∣ ≥ dimΛZ = 2

n, the result in Corollary 3. Specifically,

EG∈GGZΛZG
−1
Z = E1≤i≤∣G/GZ ∣ΠiZ(EW ∈GZ

WZΛZW
−1
Z )Π

−1
iZ

= E1≤i≤∣G/GZ ∣ΠiZΛZΠ
−1
iZ ,

(B33)

where the subscript Z denotes the sub-representation of Pauli-Liouville representation in {I, Z}⊗n. It can be verified
that {ΠiZ ,1 ≤ i ≤ ∣G/GZ ∣} is a representation of quotient group G/GZ . Therefore, one can decompose ΠiZ with
irreducible representations of G/GZ ,

ΠiZ =
k

⊕
j=1

ϕj(Πi). (B34)

The twirled channel EG∈GGZΛZG
−1
Z would be block diagonal corresponding to the irreducible representation decom-
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position of ΠiZ . With the same arguments in Lemma 1, ΠiZ must be multiplicity-free. Then

∣G/GZ ∣ = ∑
j∈RG/Z

dim2 ϕj

≥
k

∑
j=1

dim2 ϕj

≥
k

∑
j=1

dimϕj

= 2n,

(B35)

where RG/Z records all inequivalent irreducible representations of G/GZ .

To obtain the result in Lemma 2, we further study the irreducible representation decomposition of quotient group
G/GZ in the space spanned by {I, Z}⊗n. As mentioned before, ΠiZ must be multiplicity-free, which means each
irreducible representation can appear at most once in ΠiZ . Focusing on the trivial irreducible representation, its
multiplicity in ΠiZ can be obtained via Lemma 3 and is given by

mt = EΠ∈G/GZ
1 ⋅ tr(ΠZ), (B36)

where 1 and tr(ΠZ) are characters of trivial irreducible representation and representation in space {I, Z}⊗n, respec-
tively. Through direct calculation, Eq. (B36) can be simplified to

mt = EΠ
1

2n
∑

W ∈{I,Z⊗n}
tr(WΠWΠ†)

=
1

2n
EΠ

1

∑
i1,i2,⋯,in=0

tr
⎛

⎝
(

n

∏
j=1

Z
ij
j )Π(

n

∏
j=1

Z
ij
j )Π

†⎞

⎠

=
1

2n
EΠ

1

∑
i1,i2,⋯,in=0

tr
⎛

⎝
(

n

∏
j=1

Z
ij
j )(

n

∏
j=1

ΠZ
ij
j Π†
)
⎞

⎠

=
1

2n
EΠ

1

∑
i1,i2,⋯,in=0

tr
⎛

⎝
(

n

∏
j=1

Z
ij
j )(

n

∏
j=1

ΠZ
ij
j Π†
)
⎞

⎠

=
1

2n
EΠ

1

∑
i1,i2,⋯,in=0

tr
⎛

⎝
(

n

∏
j=1

Z
ij
j ΠZ

ij
j Π†
)
⎞

⎠

=
1

2n
EΠ tr

⎛

⎝
(

n

∏
j=1

1

∑
ij=0

Z
ij
j ΠZ

ij
j Π†
)
⎞

⎠

=
1

2n
EΠ tr

⎛

⎝

n

∏
j=1
(I +ZjΠZjΠ

†
)
⎞

⎠
.

(B37)

As Π ∈ G/GZ is a permutation matrix, ΠZjΠ
†, ZjΠZjΠ

†, and I + ZjΠZjΠ
† are all diagonal matrices. Therefore,
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Eq. (B37) can be further simplified to

mt =
1

2n
EΠ ∑

i∈{0,1}n

n

∏
j=1
⟨i∣ I +ZjΠZjΠ

†
∣i⟩

=
1

2n
EΠ ∑

i∈{0,1}n

n

∏
j=1
(1 + ⟨i∣ZjΠZjΠ

†
∣i⟩)

=
1

2n
EΠ ∑

i∈{0,1}n

n

∏
j=1
(1 + (−1)ij ⟨i∣ΠZjΠ

†
∣i⟩)

=
1

2n
EΠ ∑

i∈{0,1}n

n

∏
j=1
(1 + (−1)ij+π(i)j)

=
1

2n
EΠ ∑

i∈{0,1}n
2nδπ(i)=i

= EΠNΠ

= OG/GZ→{0,1}n .

(B38)

In the fourth line, we utilize that a permutation matrix would transform a bit string into another bit string and denote
∣π(i)⟩ = Π† ∣i⟩. Here, π is a permutation acting on {0,1}n and can be viewed as a representation of Π. In the sixth
line, NΠ = ∑i∈{0,1}n δπ(i)=i denotes the number of fixed points for π acting on {0,1}n. Via Burnside’s lemma, EΠNΠ

equals to the number of orbits for group G/GZ acting on {0,1}n which we denote as OG/GZ→{0,1}n .
As trivial irreducible representation can appear at most once, mt cannot be larger than 1, or the number of orbits

cannot be larger than 1. It implies that gates of G/GZ can interchange any two computational states or any two bit
strings in {0,1}n. Then, we obtain the results in the informal version of Lemma 2.

Now, we obtain that G/GZ can transform 0n to any other bit string in {0,1}n. Recall that G/GZ is a subgroup of
⟨X,Cn−1X⟩, each element in G/GZ can be written as ΠX

i ΠC
i , where ΠX

i ∈ X = ⟨X⟩, Π
C
i ∈ ⟨CX,CCX,⋯,C

n−1X⟩. As
any element in ⟨CX,CCX,⋯,Cn−1X⟩ has no effect on bit string 0n, ΠX

i ΠC
i would simply transform ∣0n⟩ to ΠX

i ∣0
n⟩.

Thus, ΠX
i must take over all elements in X to transform 0n to all bit strings in {0,1}n. Here, we complete the proof

of Lemma 2.

In the main text, we have discussed the advantages of choosing the CRU subgroup as a twirling group in virtually
implementing the inverse gate. Below, we discuss that it might be sufficient only to consider CRU twirling gates
for tailoring diagonal gates. We notice that in most RB protocols, the twirling groups contain a CRU subgroup
that can twirl the noise channel diagonal, including Clifford group [6], generalized matchgate group [18], and CNOT
dihedral group [16]. We conjecture that if any finite group G can make arbitrary noise channels diagonal via twirling,
then under the equivalence of unitary transformation, it has a CRU subgroup GC also achieving that. A concrete
example is G as the Clifford group and GC as the Pauli group. Thus, for diagonal gate U in the computational basis,
considering G in CRU highly likely suffices to find the optimal solution. It is worth noting that the above discussion is
only conjecture, and we hope in the future, people can find the smallest group in the whole unitary group for tailoring
generic quantum gates.

From Lemma 2, we can directly obtain a lower bound for the cardinality of the quotient group, as shown in the
following corollary.

Corollary 3. For a finite n-qubit CRU subgroup G, set the computational basis subgroup of G as GZ = {U ∈
G∣U is computational basis}. By Lemma 8, GZ is a normal subgroup of G. If for any quantum channel Λ, its twirling
over group G, ΛG, is diagonal up to a unitary transformation in the Pauli-Liouville representation, then the cardinality
of the quotient group ∣G/GZ ∣ ≥ 2

n.

5. Proof of Theorem 1

Below, we provide the proof of Theorem 1. The key point is utilizing that G contains specific permutation gates
and G is normalized by target gate U . We first present a lemma, telling us what is the smallest group containing a
given permutation group and normalized by a given computational basis diagonal gate U .

Lemma 14. Given a permutation group, Π, and a diagonal gate, U , in the computational basis, the smallest group
containing Π and normalized by U is given by

G = Π ⋉W, (B39)
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where ⋉ denotes semi-product and W = ⟨{Π†UΠU†,Π ∈ Π}⟩.

Proof. We first clarify the meaning of semi-product. It means that

1. Any element in Π ⋉W has an expression of ΠW where Π ∈ Π and W ∈W.

2. W is a normal subgroup of Π ⋉W.

It is easy to verify the second condition that W is a normal subgroup with the first condition. We only need to verify
that for any Π and Π′, Π′†Π†UΠU †Π′ ∈W. This can be seen via the following equation.

Π′†Π†UΠU †Π′ = (ΠΠ′)†U(ΠΠ′)U †
(Π′†UΠ′U †

)
†. (B40)

As (ΠΠ′)†U(ΠΠ′)U † and Π′†UΠ′U † are both elements in W, we successfully show the soundness of the second
condition.

Now we turn to the proof of the lemma. Obviously, Π ⋉W contains Π. It is also normalized by U :
Given an element ΠW where Π ∈ Π and W ∈W,

UΠWU †
= UΠU †W

= Π(Π†UΠU †
)W.

(B41)

The first line comes from the fact that W and U are both diagonal gates. As Π†UΠU † and W both belong to W,
UΠWU † has an expression of ΠW ′ where W ′ ∈W. Combining the condition 1, we obtain that Π ⋉W is normalized
by U .

Meanwhile, for any group G containing Π and normalized by U , UΠU † ∈ G and Π†UΠU † ∈ G. Then we know Π and
W both belong to G. As a consequence, G must contain Π⋉W. Combining with the arguments before, we prove that
Π ⋉W is the smallest group containing Π and normalized by U .

With Lemma 14, we can easily prove Theorem 1 in the main text. For convenience, we rewrite the theorem below.

Theorem 1. The optimal twirling group G in CRU for the multi-qubit controlled phase gate, U = CnZm, with
n ≥ 1,m ≥ 2, is the smallest group containing X and normalized by U , given by

G = {Π(
t

∏
i=1
(Π†

iUΠiU
†
)
li)∣Π ∈ X, t ∈ N,∀i, li ∈ ±1,Πi ∈ X}. (B42)

Proof. From Lemma 2, we can deduce that G at least contains permutation group ⟨S⟩ where S = {ΠX
i ΠC

i ,∀Π
X
i ∈

X,∃ΠC
i ∈ C

[n−1]X}. Using Lemma 14, we obtain that any twirling group G as a solution to Question 1 must satisfy

⟨S⟩ ⋉ ⟨{Π†UΠU †,Π ∈ ⟨S⟩}⟩ ≤ G. (B43)

If U = Cn−1Zm = (
I2n−1 0

0 ei
2π
m
), we can show that ⟨{Π†UΠU †,Π ∈ ⟨X⟩}⟩ ≤ ⟨{Π†UΠU †,Π ∈ ⟨S⟩}⟩. For brevity, we

denote W = ⟨{Π′†UΠ′U †,Π′ ∈ ⟨S⟩}⟩ and WX = ⟨{Π
†UΠU †,Π ∈ ⟨X⟩}⟩. For any generator Π†UΠU † in WX where Π ∈ X,

Π†UΠ is a diagonal matrix while only one diagonal element is not 1 but equals ei
2π
m . As the permutation elements in

S can interchange any two computational bases, there must exist an element Π′ ∈ S such that

Π′†UΠ′ = Π†UΠ. (B44)

Then,

Π′†UΠ′U †
= Π†UΠU †. (B45)

Thus, any generator of WX belongs to W. Then, we obtain that WX ≤W for Cn−1Zm. This result also applies to the
diagonal matrix in which only one diagonal element differs from the others.

Note that the smallest group containing X and normalized by U is X⋉WX . As X is no larger and no global than ⟨S⟩
and WX is a subset of W, X⋉WX is obviously smaller and more easily implementable than ⟨S⟩⋉⟨{Π†UΠU †,Π ∈ ⟨S⟩}⟩,
which implies that the twirling group cannot be better than X⋉WX . Below, we would show that for U = CnZm with
n ≥ 1,m ≥ 2, X ⋉WX suffices to tailor CnZm. Combining the two sides, we would obtain that the optimal twirling
group for CnZm is X ⋉WX , just shown in Theorem 1.
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In the following, we show X ⋉WX satisfies Question 1 for multi-qubit controlled phase gate U = CnZm. From the
definition of X⋉WX , we know that X⋉WX is normalized by U . Thus, we only need to verify that X⋉WX can make
arbitrary channels diagonal via twirling. With corollaries 1 and 2, it is sufficient to show that Pauli Z gate or Zm

gate on each qubit belongs to WX . Below, we show that this is right for U = CnZm with n ≥ 1,m ≥ 2.
Recall that WX = ⟨{Π

†UΠU †,Π ∈ ⟨X⟩}⟩, in the following we analyze the generators of WX , or Π†UΠU †, in detail.
For certain Π ∈ ⟨X⟩, let us define its pattern to be a 0-1 bit string, sΠj , such that sΠj = 1 if the j-th qubit of Π is I and

sΠj = 0 if the j-th qubit of Π is X. Then, the matrix representation of Π†UΠU † for U = CnZm is

Π†CnZmΠCnZ†
m =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1
⋱

ei
2π
m

⋱

e−i
2π
m

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (B46)

where the (sΠ, sΠ) entry is ei
2π
m , the (2n+1 −1,2n+1 −1) entry is e−i

2π
m , and other diagonal entries are 1. As generators

are all diagonal, all elements in WX are diagonal in the computational basis. Moreover, the diagonal elements would

be power of ei
2π
m . Define an injective map ϕ ∶WX → Z2n+1

m where Zm = {0,1,⋯,m − 1},

ϕ(w) = −i
m

2π

⎛
⎜
⎜
⎜
⎜
⎝

ln[w]0,0

⋮

ln[w]2n+1−1,2n+1−1

⎞
⎟
⎟
⎟
⎟
⎠

. (B47)

Note that the entries of ϕ(w) will always belong to {0,1,⋯,m − 1}. With map ϕ, we express the gate in WX with
a vector. For example, ϕ(Π†CnZmΠCnZ†

m) = esΠ − e2n+1−1, where we define ei to be the basis vector whose i-th
entry is 1 and other entries are 0. In this way, the group multiplication is turned into integer vector addition, and
the group generation is equivalent to the linear combination of vectors. As Π can take any element in X, vectors
v0 = e0 − e2n+1−1,⋯, v2n+1−2 = e2n+1−2 − e2n+1−1, are all basis vectors. Note that the overall phase of a quantum gate is

not important, so any vectors differing by multiples of v2n+1−1 = (1 ⋯ 1)
T
are equivalent. In the next, we show how

to construct vectors associated with Z or Zm gates with vectors v0,⋯, v2n+1−1.
As different qubits are symmetric under arbitrary permutation, we only need to construct Z gate or Zm gate

on the first qubit. If m is odd, we show Zm ∈ WX . Gate Zm on first qubit corresponds to vector ϕ((Zm)1) =

(0 ⋯ 0 1 ⋯ 1)
T
. Define

u = −(v0 + v1 +⋯ + v2n+1−2) + (2
n+1
− 1)v2n+1−1 = (0 ⋯ 2n+1)

T
. (B48)

When m is odd, gcd(2n+1,m) = 1, vector u is equivalent to (0 ⋯ 1)
T
= e2n+1−1. Then, we can also obtain ei = vi + u

for 0 ≤ i ≤ 2n+1 − 2. With ei for 0 ≤ i ≤ 2
n+1 − 1, ϕ((Zm)1) can certainly be constructed by

ϕ((Zm)1) = e2n+1−2n + e2n+1−2n+1 +⋯ + e2n+1−1. (B49)

Thus, if m is odd, we can ensure that phase gates Zm on all qubits belong to WX . In this case, G = X⋉WX definitely
satisfies the requirements in Question 1.

When m is even, we show Z ∈ WX . We first express m = q2k where q ≥ 1 is odd and k is a positive integer. Gate

Z on first qubit corresponds to vector ϕ(Z1) = (0 ⋯ 0 q2k−1 ⋯ q2k−1)
T
. As gcd(2n+1,m) = 2min(n+1,k), u can be

expressed as (0 ⋯ 2min(n+1,k))
T
. Then, ϕ(Z1) can be constructed by

ϕ(Z1) = q2
k−1
(e2n+1−2n + e2n+1−2n+1 +⋯ + e2n+1−1)

= q2k−1(v2n+1−2n + v2n+1−2n+1 +⋯ + v2n+1−2) + q2
k−1
(2n − 1)e2n+1−1 + q2

k−1e2n+1−1

= q2k−1(v2n+1−2n + v2n+1−2n+1 +⋯ + v2n+1−2) + q2
n+k−1e2n+1−1

= q2k−1(v2n+1−2n + v2n+1−2n+1 +⋯ + v2n+1−2) + q2
n+k−1−min(n+1,k)u.

(B50)

As n ≥ 1, n + k − 1 −min(n + 1, k) = max(n − 1, k − 2) is always a non-negative integer. Thus, q2n+k−1−min(n+1,k) is
an integer. As a consequence, ϕ(Z1) can be constructed with linear combination of v0,⋯, v2n+1−2, and u, which is
equivalent to Z1 ∈WX . Thus, if m is even, we can ensure that Pauli Z gates on all qubits belong to WX . In this case,
G = X ⋉WX also satisfies the requirements in Question 1. Proof is done.
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6. Twirling groups for multi-qubit controlled phase gates

Below, we prove the following theorem, showing the twirling groups constructed for multi-qubit controlled phase
gates in the previous subsection not only satisfies UGU † = G, but also satisfies UΛGU

† = ΛG.

Theorem 2. For U = CnZm with n ≥ 1,m ≥ 2 and nm ≠ 2, the twirling group G = X ⋉WX satisfies UΛGU
† = ΛG.

For such quantum gates, our protocol can provide their fidelity estimation accurately instead of providing lower
bounds. To prove Theorem 2, we present the following lemma.

Lemma 15. As long as ⟨X,CZ,S⟩ ≤ G and U is diagonal in the computational basis, the equation UΛGU
† = ΛG

holds.

Proof. In Pauli-Liouville representation, U is block-diagonal. Below, we investigate the diagonal blocks of U . By
definition,

Uij = tr(σiU(σj))

=d tr(σiUσjU
†σ†

jσj)

=d tr(σjσiUσjU
†σ†

j).

(B51)

As U is diagonal in the computational basis or Z-basis and σj is proportional to a Pauli operator, the right part

UσjU
†σ†

j is also diagonal in the computational basis. Thus, when the left part σjσi is not diagonal, the trace of the

above expression is 0. In general, we can express that σi =
1√
d
XaiZbi and σj =

1√
d
XajZbj where Xai ,Xaj ∈ {I,X}⊗n

and Zbi , Zbj ∈ {I, Z}⊗n. The notation ai is a bit string from {0,1}n meaning Xai =∏
n
k=1X

(ai)k
k . The same are for aj ,

bi, and bj . If Xai ≠ Xaj , then σjσi is not diagonal and hence Uij = 0. Thus, for any operator Xa ∈ {I,X}⊗n, there
is a corresponding block with dimension 2n × 2n in the Liouville representation of the diagonal matrix U . The linear
space associated with the block is spanned by bases {Xa ⋅ I

⊗n,Xa ⋅ (I
⊗n−1 ⊗ Z),⋯,Xa ⋅ Z

⊗n} and we denote the set
of this bases as XaZ. It is worth noting that the block spanned by Z is equal to identity with dimension 2n, which
means this block can be further decomposed into the direct sum of 2n small blocks with dimensions 1.

Recall that ΛG is also diagonal in Liouville representation, and all of its blocks are proportional to identities. If
ΛG has the same blocks as U , they will commute with each other and hence UΛGU

−1 = ΛG holds. Now we show
that ⟨X,CZ,S⟩ ≤ G is enough for ΛG to have the same blocks as U . Since ⟨X,Z⟩ ≤ ⟨X,CZ,S⟩ ≤ G, ΛG must be
diagonal in Pauli-Liouville representation, ΛG = ∑i λi∣σi⟩⟩⟨⟨σi∣. Note that if there exists an element G ∈ G such that
σi = GσjG

†, then σi and σj are symmetric under the group action of G, which results in λi = λj , or equivalently, σi
and σj are in the same diagonal block [16]. Note that any G ∈ ⟨CZ,S⟩ ≤ G can be decomposed as G = WV where
W ∈ ⟨CZ⟩, V ∈ ⟨S⟩, then for any Xa ∈ {I,X}⊗n/I⊗n,

GXaG
†
=WVXaV

†W †

=Xa(X
†
aWXa)(X

†
aV Xa)V

†W †

=Xa(X
†
aWXaW

†
)(X†

aV XaV
†
).

(B52)

Below we express Xa = ⊗
n
i=1X

ai

i where ai ∈ {0,1} and we simply denote a = (a1, a2,⋯, an)
T ∈ {0,1}n. As Xa is

not equal to identity I⊗n, there is at least an element in {a1, a2,⋯, an} to be nonzero. Suppose ai = 1. For any

Zb ∈ {I, Z}⊗n where b = (b1, b2,⋯, bn)
T ∈ {0,1}n, we can choose W =∏1≤j≤n,j≠iCZ

bj
ij , V = S

∑1≤j≤n ajbj
i such that

Xa(X
†
aWXaW

†
)(X†

aV XaV
†
) =Xa( ∏

1≤j≤n,j≠i
Z

bj
j Z

ajbj
i )(Z

∑1≤j≤n ajbj
i )

=Xa( ∏
1≤j≤n,j≠i

Z
bj
j )(Z

aibi+2∑1≤j≤n,j≠i ajbj
i )

=Xa ∏
1≤j≤n

Z
bj
j

=XaZb.

(B53)

Here we utilize the following two identities,

XiCZi,jXiCZ
†
i,j = Zj , (B54)

XiSiXiS
†
i = Zi. (B55)

42



34

Then, for any Xa ∈ {I,X}⊗n/I⊗n and Zb ∈ {I, Z}⊗n, we can find a unitary G =WV , such that

GXaG
†
=XaZb. (B56)

It means that the linear space spanned by XaZ is a diagonal block for ΛG, which is the same as U . In the space
spanned by Z, ΛG and U are both fully diagonal with 2n one-dimensional blocks. Thus, we prove that ⟨X,CZ,S⟩ ≤ G
suffices to make ΛG commute with the diagonal matrix U and complete the proof of Lemma 15.

Now we present the proof of Theorem 2.

Proof. The situation of m = 2 and that of m ≥ 3 are different. Below, we first discuss the case that m ≥ 3. The main

technique is following the discussion in the proof of Theorem 1 and mapping WX to Z2n+1

m via injective map ϕ in
Eq. (B47).

Suppose m ≥ 3. In the case that m is odd for U = CnZm, from the proof of Theorem 1, we obtain that ϕ(WX) is

spanned by {ei,0 ≤ i ≤ 2
n+1 − 1}. It means that ϕ(WX) is equal to Z2n+1

m . Note that ϕ(CnZm) = e2n+1−1, so in this
case the target gate U itself belongs to WX and hence U belongs to the twirling group G = X⋉WX . When U ∈ G, then

UΛGU
†
= EG∈GUGΛG

†
U

†

= EG∈GGΛG
†

= ΛG.

(B57)

The commutation between U and ΛG is satisfied automatically.
Below, we discuss the case that m is even and m ≥ 3 for U = CnZm. Based on Lemma 15, we study whether CZ

and S gates belong to WX or not. By symmetry, we only need to study that for the phase gate on the first qubit S1

and the controlled-phase gate on the first two qubits CZ12. Note that the phase gate S can be expressed as S = Z
m/4
m

and CZ can be expressed as CZ = CZ
m/2
m . We express m = q2k where q ≥ 1 is odd and k ≥ 1 is a positive integer.

Note that the bases of ϕ(WX) are {vi = ei − e2n+1−1,0 ≤ i ≤ 2
n+1 − 2} along with u = 2min(n+1,k)e2n+1−1. Then, ϕ(S1)

can be constructed by

ϕ(S1) = q2
k−2
(e2n+1−2n + e2n+1−2n+1 +⋯ + e2n+1−1)

= q2k−2(v2n+1−2n + v2n+1−2n+1 +⋯ + v2n+1−2) + q2
k−2
(2n − 1)e2n+1−1 + q2

k−2e2n+1−1

= q2k−2(v2n+1−2n + v2n+1−2n+1 +⋯ + v2n+1−2) + q2
n+k−2e2n+1−1

= q2k−2(v2n+1−2n + v2n+1−2n+1 +⋯ + v2n+1−2) + q2
n+k−2−min(n+1,k)u

= q2k−2(v2n+1−2n + v2n+1−2n+1 +⋯ + v2n+1−2) + q2
max(k−3,n−2)u.

(B58)

Meanwhile, ϕ(CZ12) can be constructed by

ϕ(CZ12) = q2
k−1
(e2n+1−2n−1 + e2n+1−2n−1+1 +⋯ + e2n+1−1)

= q2k−1(v2n+1−2n−1 + v2n+1−2n−1+1 +⋯ + v2n+1−2) + q2
k−1
(2n−1 − 1)e2n+1−1 + q2

k−1e2n+1−1

= q2k−1(v2n+1−2n−1 + v2n+1−2n−1+1 +⋯ + v2n+1−2) + q2
n+k−2e2n+1−1

= q2k−1(v2n+1−2n−1 + v2n+1−2n−1+1 +⋯ + v2n+1−2) + q2
n+k−2−min(n+1,k)u

= q2k−1(v2n+1−2n−1 + v2n+1−2n−1+1 +⋯ + v2n+1−2) + q2
max(k−3,n−2)u.

(B59)

The constructions Eq. (B58) and Eq. (B59) are valid only when the coefficients of the bases are integers. Obviously,
k ≥ 3, and k = 2 and n ≥ 2 can make the coefficients to be integers. In this case, S1 and CZ12 belong to WX and
furthermore, ⟨CZ,X,S⟩ ≤ G. Based on Lemma 15, UΛGU

† = ΛG is satisfied. The exceptions are the case that k = 1
and that n = 1 and k = 2. Below, we discuss the two kinds of exceptions in detail.

When k = 1, the target gate U = CnZm and m = 2q. In this case, u = 2e2n+1−1, and CZm/2 and Zm gates belong to
G, which can be derived through the following equations.

ϕ((Zm)1) = e2n+1−2n + e2n+1−2n+1 +⋯ + e2n+1−1
= v2n+1−2n + v2n+1−2n+1 +⋯ + v2n+1−2 + (2

n
− 1)e2n+1−1 + e2n+1−1

= v2n+1−2n + v2n+1−2n+1 +⋯ + v2n+1−2 + 2
ne2n+1−1

= v2n+1−2n + v2n+1−2n+1 +⋯ + v2n+1−2 + 2
n−1u.

(B60)
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ϕ((CZm/2)12) = 2(e2n+1−2n−1 + e2n+1−2n−1+1 +⋯ + e2n+1−1)

= 2(v2n+1−2n−1 + v2n+1−2n−1+1 +⋯ + v2n+1−2) + 2(2
n−1
− 1)e2n+1−1 + 2e2n+1−1

= 2(v2n+1−2n−1 + v2n+1−2n−1+1 +⋯ + v2n+1−2) + 2
ne2n+1−1

= 2(v2n+1−2n−1 + v2n+1−2n−1+1 +⋯ + v2n+1−2) + 2
n−1u.

(B61)

Thus, when k = 1, ⟨CZm/2, Zm⟩ ≤ WX and X ⋉ ⟨CZm/2, Zm⟩ ≤ G. Notice that m ≥ 3 and m/2 is odd, so m/2 ≥
3 holds. It can be verified that the irreducible representation decomposition of the Liouville representation for
group ⟨CZm, Zm,X⟩, where m ≥ 3 and m is odd, and group ⟨CZ,S,X⟩ are the same. As X ⋉ ⟨CZm/2, Zm/2⟩ ≤
X⋉ ⟨CZm/2, Zm⟩ ≤ G and m/2 ≥ 3, after being twirled by G, the twirled noise channel ΛG would have the same blocks

as U , and UΛGU
† = ΛG is satisfied.

When n = 1 and k = 2, the target gate U = CZm and m = 4q. The bases for ϕ(WX) are v0 = (1,0,0,−1)
T ,

v1 = (0,1,0,−1)
T , v2 = (0,0,1,−1)

T , and u = (0,0,0,4). Note that ϕ(CZ ⋅S1) = (0,0, q,3q)
T = v2 +u and ϕ(CZ ⋅S2) =

(0, q,0,3q)T = v1 + u. Thus, in this case, ⟨CZ ⋅ S1,CZ ⋅ S2⟩ ∈ WX ≤ G. In the proof of Theorem 1, we have already
shown that Pauli group P2 ∈ G. Thus, the twirled noise channel would be diagonal in Liouville representation,
ΛG = ∑i λi∣σi⟩⟩⟨⟨σi∣. Also, we have the following identities,

CZ ⋅ S1X1(CZ ⋅ S1)
†
=X1Z1Z2; (B62)

CZ ⋅ S2X1(CZ ⋅ S2)
†
=X1Z2; (B63)

(CZ ⋅ S2 ⋅CZ ⋅ S1)X1(CZ ⋅ S2 ⋅CZ ⋅ S1)
†
=X1Z1. (B64)

Under the twirling of ⟨CZ ⋅ S1,CZ ⋅ S2⟩, X1, X1Z1, X1Z2, and X1Z1Z2 would be symmetric. Their corresponding
Pauli fidelities λi would be the same after the twirling. As the twirling group contains ⟨CZ ⋅ S1,CZ ⋅ S2⟩, the twirled
noise channel ΛG would be diagonal and proportional to identity in the space spanned by X1Z. The cases for spaces
spanned by X2Z or X1X2Z are the same. In summary, ΛG has diagonal blocks in spaces spanned by X1Z, X2Z and
X1X2Z, respectively. Thus, in this case, UΛGU

† = ΛG is also satisfied.
At last, we analyze the case thatm = 2 and n ≥ 2. The case thatm = 2 and n = 1 is just CZ and obviously in this case

UΛGU
† ≠ ΛG. When the target gate is CnZ with n ≥ 2, the twirling group is G =X⋉WX = ⟨C

n−1Z,⋯, Z,X⟩. Different
from a generic diagonal gate, the diagonal blocks spanned by XaZ of CnZ gate in Pauli-Liouville representation can
be further divided into two small blocks. We will show that any channel twirled by group ⟨CZ,Z,X⟩ would have the
same diagonal blocks as CnZ in Liouville representation. As ⟨Cn−1Z,⋯, Z,X⟩ contains ⟨CZ,Z,X⟩, Λ⟨Cn−1Z,⋯,Z,X⟩
would commute with CnZ.

Similar to Eq. (B51), by setting σi =
1√
d
XaiZbi and σj =

1√
d
XajZbj where Xai ,Xaj ∈ {I,X}⊗n and Zbi , Zbj ∈

{I, Z}⊗n, we get the matrix element of the Liouville representation of U = CnZ,

Uji = d tr(σiσjC
nZσiC

nZσ†
i )

=
1

d
tr(XaiZbiXajZbjW )

∝
1

d
tr(XaiXajZbiZbjW );

W = CnZXaiC
nZXai .

(B65)

Notice that to make Uji nonzero, we at least require Xai = Xaj . Define support of Xai to be the set, supp(Xai) =

{i∣Xai on qubit i is X}, which is essentially the location of 1 in ai. Notice that two of the diagonal elements of W
are −1 while others are all 1. Suppose these two elements are Wi1,i1 and Wi2,i2 . Without loss of generality, i2 can be
set as 2n+1 − 1 as the element of the last row and last column is −1. To make Uji nonzero, we furthermore require
that (ZbiZbj)i1,i1 = (ZbiZbj)i2,i2 , or ⟨i1∣ZbiZbj ∣i1⟩ = ⟨i2∣ZbiZbj ∣i2⟩. Note that ∣i2⟩ = Xai ∣i1⟩. Thus, to make Uji
nonzero, we require that Xai and ZbiZbj commute, which is equivalent to that ZbiZbj has even number of Z gates
on qubits of supp(Xai). Hence, the block spanned by XaiZ can be further split into two blocks when m = 2. One
block is spanned by XaiZe = {XaiZbk

, mod (∣ai ∩ bk ∣,2) = 0} and the other block is spanned by XaiZo = {XaiZbk
,

mod (∣ai ∩ bk ∣,2) = 1}. Here, ai ∩bk is the bitwise and operation between ai and bk, ∣ai ∩ bk ∣ is the weight of ai ∩bk,
and mod (∣ai ∩ bk ∣,2) = 0 means that there are even number of Z gates of Zbk

acting on qubits of supp(Xai). Notice
that mod (∣ai ∩ bk ∣,2) = 0 is equivalent to that ∑1≤j≤n(ai)j(bk)j is even and mod (∣ai ∩ bk ∣,2) = 1 is equivalent to
that ∑1≤j≤n(ai)j(bk)j is odd. These relations are useful in the following proof.

Now we obtain that the Liouville representation of U is spanned by blocks with bases XaZe and XaZo. To show
UΛGU

† = ΛG, we also need to check whether ΛG has the same diagonal blocks with U and whether ΛG is proportional
to identity when restricting in these blocks. The proof is similar to that in Lemma 15. Recall that ΛG = ∑i λi∣σi⟩⟩⟨⟨σi∣

44



36

in Liouville representation. Also, if there exists an element G ∈ G such that σi = GσjG
†, then λi = λj , and σi and σj

would be in the same blocks. Then, we only need to check whether any element in XaZe can be generated from Xa

by conjugate action of elements in G.
Given Xa ∈ {I,X}⊗n/I⊗n, choose i from supp(Xa). For any Zb ∈ {I, Z}⊗n where XaZb ∈ XaZe, we can choose

W =∏j≠iCZ
bj
ij , such that

WXaW
†
=Xa(X

†
aWXaW

†
)

=Xa( ∏
1≤j≤n,j≠i

Z
bj
j )Z

∑1≤j≤n,j≠i ajbj
i

=Xa( ∏
1≤j≤n,j≠i

Z
bj
j )Z

(∑1≤j≤n ajbj)−aibi
i

=Xa( ∏
1≤j≤n,j≠i

Z
bj
j )Z

−aibi
i

=Xa( ∏
1≤j≤n,j≠i

Z
bj
j )Z

bi
i

=XaZb.

(B66)

Here, in the fourth line, we utilize XaZb ∈ XaZe, which means ∑1≤j≤n ajbj is even. In the fifth line, we use the
condition that ai = 1. Thus, we show that ΛG is proportional to identity when restricting in the block spanned
by XaZe. From a similar argument, it can be verified that this is also true for block spanned by XaZo. Then, we
successfully show that U and ΛG have the same diagonal blocks, and UΛGU

−1 = ΛG when m = 2.
As a conclusion, the twirling group X ⋉WX satisfies UΛGU

† = ΛG for U = CnZm with n = 1,m ≥ 3 or n ≥ 2,m ≥ 2.
Proof is done.

7. Structure of WX

In this part, we present the concrete form of WX . Following the discussion of WX in previous subsections, we map

WX into Z2n+1

m via Eq. (B47).
We first discuss the cardinality of WX . The image ϕ(WX) is the linear span of bases {v0 = e0 − e2n+1−1,⋯, v2n+1−2 =

e2n+1−2 − e2n+1−1}. If considering the factor of global phase, the image would be the linear span of bases {v0 =

e0 − e2n+1−1,⋯, v2n+1−2 = e2n+1−2 − e2n+1−1, u = 2
min(n+1,k)e2n+1−1} and we denote this enlarged image to be ϕ′(WX). In

ϕ′(WX), any two vectors differing by v2n+1−1 = (1 ⋯ 1)
T
correspond to the same gate. If n + 1 ≥ k, u is (0 ⋯ 2k)

T
.

Now we consider the cardinality of ϕ′(WX). One can take arbitrary values from Zm to fix the coefficients of the first
2n+1−1 bases. After that, the coefficient of the last basis u only has m

2k
inequivalent choices from Zm as (a+ m

2k
)u = au.

Hence, the cardinality of ϕ′(WX) is

∣ϕ′(WX)∣ =m
2n+1−1

⋅
m

2k
=m2n+1

/2k. (B67)

For any ϕ(w) belongs to ϕ′(WX), we can also find ϕ(w) + (1 ⋯ 1)
T
,⋯, ϕ(w) + (m − 1) ⋅ (1 ⋯ 1)

T
in ϕ′(WX). All

these m terms correspond to the same gate. Thus, the cardinality of ϕ(WX) is just ∣ϕ
′(WX)∣ divided by m, excluding

the redundacy of the global phase,

∣WX ∣ = ∣ϕ(WX)∣ =
1

m
∣ϕ′(WX)∣ =m

2n+1−1
/2k. (B68)

Now we investigate the structure of WX = ⟨Π
†CnZmΠCnZ†

m⟩. We first analyze the simple case of m = q and m = 2q
where q is an odd number. Then, we use induction to analyze the general case that m = q2k.

1) Case 1: m = q.

In this case, k = 0, gcd(m,2n+1) = 1, the vector u = e2n+1−1, and ϕ′(WX) = Z2n+1

m . Clearly, for any
0 ≤ l ≤ n, ϕ(ClZm) ∈ ϕ′(WX), so we can obtain that ⟨CnZm,C

n−1Zm,⋯,CZm, Zm⟩ ≤ WX . Since

⟨CnZm,C
n−1Zm,⋯,CZm, Zm⟩ = ⟨C

nZm⟩×⟨C
n−1Zm⟩×⋯×⟨Zm⟩, ∣⟨C

nZm,C
n−1Zm,⋯,CZm, Zm⟩∣ =m

(n+1
n+1
)×m(

n+1
n
)×

⋯ ×m(
n+1
1
) = m2n+1−1 = ∣WX ∣. The cardinalities of WX and its subgroup ⟨CnZm,C

n−1Zm,⋯,CZm, Zm⟩ are the
same, hence, we can conclude that

WX = ⟨C
nZm,C

n−1Zm,⋯,CZm, Zm⟩ = ⟨C
nZm⟩ × ⟨C

n−1Zm⟩ ×⋯ × ⟨Zm⟩. (B69)
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2) Case 2: m = 2q.
In this case, k = 1, gcd(m,2n+1) = 2, and u = 2e2n+1−1. We can use the following formula to construct all ClZm

with 0 ≤ l ≤ n − 1,

ClZm = ϕ
−1
(v(2l+1−1)∗2n−l + v(2l+1−1)∗2n−l+1 +⋯ + v2n+1−2 + 2

n−l−1
⋅ u). (B70)

But this construction is not valid for CnZm as it requires 1
2
u. We can only construct CnZ2

m = C
nZm/2. This

implies that ⟨CnZm/2,C
n−1Zm,C

n−2Zm,⋯⟩ ≤WX . Since ⟨CnZm/2,C
n−1Zm,⋯⟩ = ⟨C

nZm/2⟩×⟨C
n−1Zm⟩×⋯×⟨Zm⟩,

∣⟨CnZm/2,C
n−1Zm,⋯,CZm, Zm⟩∣ = (m/2)

(n+1
n+1
) ×m(

n+1
n
) ×⋯ ×m(

n+1
1
) =m2n+1−1/2 = ∣WX ∣. Thus, in this case,

WX = ⟨C
nZm/2,C

n−1Zm,⋯,CZm, Zm⟩ = ⟨C
nZm/2⟩ × ⟨C

n−1Zm⟩ ×⋯ × ⟨Zm⟩. (B71)

3) Case 3.1: m = q2k with k ≤ n.
We first give the result and prove it by induction.

Theorem 3. If m = q2k and k ≤ n, the structure of WX can be expressed in the following recursion,

WX = ⟨C
n−kZm,C

n−k−1Zm,⋯, Zm⟩ × ⟨Ak⟩;

A0 = {I},A1 = {C
nZm/2},

∀2 ≤ k ≤ n,Ak = {C
n−k+1Zm/2, gC

n−k+1Zm∣g ∈ Ak−1}.

(B72)

Proof. The proof idea is showing ∣WX ∣ = ∣⟨C
n−kZm,C

n−k−1Zm,⋯, Zm⟩×⟨Ak⟩∣ and ⟨C
n−kZm,C

n−k−1Zm,⋯, Zm⟩×⟨Ak⟩ ≤

WX .

Let us start with studying the relation between ⟨Ak−1⟩ and ⟨Ak⟩. For any g ∈ ⟨Ak−1⟩, it can be decomposed as

g = gλ1

1 gλ2

2 ⋯ where g1, g2,⋯ all belong to Ak−1 and λ1, λ2,⋯ are integers. Since g1C
n−k+1Zm, g2C

n−k+1Zm,⋯ ∈ Ak,

we can conclude that g′ = (g1C
n−k+1Zm)

λ1(g2C
n−k+1Zm)

λ2⋯ = gCn−k+1Z∑i λi
m ∈ ⟨Ak⟩. Suppose ∑i λi is an even

number, since Cn−k+1Zm/2 = C
n−k+1Z2

m ∈ Ak, the set {g, gCn−k+1Z2
m, gC

n−k+1Z4
m,⋯} ⊆ ⟨Ak⟩. Now we want to argue

that any gate has the form of gCn−k+1Z2p+1
m cannot be in ⟨Ak⟩. This claim can be proved by contradiction. If

gCn−k+1Z2p+1
m ∈ ⟨Ak⟩, combining with gCn−k+1Z2p

m ∈ ⟨Ak⟩, it is clear that C
n−k+1Zm = (gC

n−k+1Z2p
m )

†gCn−k+1Z2p+1
m ∈

⟨Ak⟩. It leads to a contradiction as Cn−k+1Zm cannot be constructed with {vi,0 ≤ i ≤ 2
n+1 − 2} and u = 2ke2n+1−1.

Similarly, if ∑i λi is an odd number, we can see that all elements have the form gCn−k+1Z2p+1
m will belong to ⟨Ak⟩

while elements within form of gCn−k+1Z2p
m will not. In either case, one element g in ⟨Ak−1⟩ will contribute to

∣⟨Cn−k+1Zm/2⟩∣ =
1
2
∣⟨Cn−k+1Zm⟩∣ elements in ⟨Ak⟩, which implies that ∣⟨Ak⟩∣ =

1
2
∣⟨Ak−1⟩∣ × ∣⟨C

n−k+1Zm⟩∣. By iteration,

the cardinality of ⟨Cn−kZm,C
n−k−1Zm,⋯⟩ × ⟨Ak⟩ is

∣⟨Cn−kZm,C
n−k−1Zm,⋯⟩ × ⟨Ak⟩∣ =

1

2
∣⟨Cn−k+1Zm,C

n−kZm,⋯⟩ × ⟨Ak−1⟩∣

=
1

2k
∣⟨CnZm,C

n−1Zm,⋯⟩∣

=m2n+1−1
/2k.

(B73)

This is exactly equal to ∣WX ∣. To complete the proof, we only need to argue that ⟨Cn−kZm,C
n−k−1Zm,⋯⟩×⟨Ak⟩ ≤WX .

Note that ϕ′(WX) is spanned by bases vi,1 ≤ i ≤ 2
n+1 − 2 and u. We only need to investigate whether the generators

of ⟨Cn−kZm,C
n−k−1Zm,⋯⟩ × ⟨Ak⟩ belong to the preimage set of ϕ.

For Cn−k−lZm with 0 ≤ l ≤ n − k, it can be expressed in the form of

Cn−k−lZm = ϕ
−1
(2l (0 ⋯ 2k)

T
+

2n+1−2
∑

i=(2n+1−k−l−1)⋅2k+l
vi)

= ϕ−1(2lu +
2n+1−2
∑

i=(2n+1−k−l−1)⋅2k+l
vi).

(B74)

Thus, Cn−k−lZm belongs to WX . Next we prove ⟨Ak⟩ ≤ WX , or equivalently, Ak ⊆ WX , by induction. Denote

Wk
X = ⟨Π

†CnZq2kΠC
nZ†

q2k
⟩. Suppose Ak−1 ⊆W

k−1
X . Then, any element g ∈ Ak−1 has the following expression,

g = ϕ−1((0 ⋯ 2k−1)
T
+

2n+1−2
∑
i=0

civi). (B75)
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Note that Cn−k+1Zm can also be expressed in the above form as

Cn−k+1Zm = ϕ
−1
((0 ⋯ 2k−1)

T
+

2n+1−2
∑

i=(2n−k+2−1)⋅2k−1
vi). (B76)

This implies that Cn−k+1Z2
m and Cn−k+1Zmg can be expressed as below.

Cn−k+1Z2
m =ϕ

−1
((0 ⋯ 2k)

T
+

2n+1−2
∑

i=(2n−k+2−1)⋅2k−1
2vi); (B77)

gCn−k+1Zm =ϕ
−1
((0 ⋯ 2k)

T
+

(2n−k+2−1)⋅2k−1−1
∑
i=0

civi +
2n+1−2
∑

i=(2n−k+2−1)⋅2k−1
(ci + 1)vi). (B78)

Therefore, any element g′ ∈ Ak has the expression,

g′ = ϕ−1((0 ⋯ 2k)
T
+

2n+1−2
∑
i=0

civi). (B79)

It means that all elements of Ak can be constructed with u and vi, and belong to Wk
X . Now we have shown that Ak−1 ⊆

Wk−1
X implies Ak ⊆W

k
X . For the induction argument to hold, we only need to check the initial condition, i.e., A1 ⊆W

1
X .

This reduces to Case 2. Thus, we prove that Ak ⊆WX and ⟨Ak⟩ ≤WX . Hence, ⟨Cn−kZm,C
n−k−1Zm,⋯, Zm⟩ × ⟨Ak⟩ ≤

WX . Combining with Eq. (B73), we obtain that WX = ⟨C
n−kZm,C

n−k−1Zm,⋯⟩ × ⟨Ak⟩ and proof is done.

4) Case 3.2: m = q2k with k > n.
In this case, gcd(2n+1,m) = 2n+1 and WX = ⟨An+1⟩ as described in the previous case.

Below we present examples of the twirling groups for target gate U to be CnZ and CZm, which have been mentioned
in the main text. In the next subsection, we will analyze their sample complexity and computational complexity.

Example 2. The optimal twirling group G in CRU for multi-qubit controlled Z gate CnZ is

⟨Cn−1Z,Cn−2Z,⋯,CZ,Z,X⟩ = X ⋉ ⟨Cn−1Z,Cn−2Z,⋯,CZ,Z⟩. (B80)

Example 3. The optimal twirling group G in CRU for controlled phase gate CZm is

⟨CZm, Zm,X⟩ = X ⋉ ⟨CZm, Zm⟩, (B81)

if m is odd, and

⟨CZm/2, Zm,X⟩ = X ⋉ ⟨CZm/2, Zm⟩, (B82)

if m is even and m/2 is odd, and

⟨CZm/4, Zm/2,X,CZm/2Z
1
m,CZm/2Z

2
m⟩ = X ⋉ ⟨CZm/4, Zm/2,CZm/2Z

1
m,CZm/2Z

2
m⟩, (B83)

if m/2 is even. It is worth mentioning that ⟨CZm/4, Zm/2,CZm/2Z
1
m,CZm/2Z

2
m⟩ is a subgroup of ⟨CZm/2, Zm⟩.

8. Complexity analysis

To enable randomized benchmarking or any other quantum information tasks with twirling groups, one needs to
sample from the group and compute the multiplication of group elements. It is necessary to analyze the sample
complexity and the computational complexity of the twirling group. The sample complexity is directly related to the
cardinality of the corresponding twirling group. The computational complexity is related to both the group structure
and the algorithm for computing the multiplication. We will provide a group multiplication algorithm and present its
complexity as the upper bound of the group computational complexity. In the discussion below, we distinguish the
number of qubits N and the number of controlled qubits n. In general, n ≤ N − 1.

To benchmark CnZ gate, the twirling group is GCnZ = ⟨C
n−1Z,Cn−2Z⋯,CZ,Z,X⟩ shown in Example 2. Note that

this group has a semi-direct product structure,

⟨Cn−1Z,Cn−2Z,⋯,CZ,Z,X⟩ = ⟨X⟩ ⋊ (⟨Cn−1Z⟩ × ⟨Cn−2Z⟩ ×⋯⟨Z⟩). (B84)
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This means that any element in GCnZ can be written in the form of ΠWn−1Wn−2⋯W1W0 where Π ∈ ⟨X⟩ and Wl ∈

⟨ClZ⟩. To sample from this twirling group GCnZ , we just need to sample independently from ⟨Cn−1Z⟩, ⟨Cn−2Z⟩, ⋯,
⟨Z⟩, and ⟨X⟩. Since the orders of all generators are 2, we can use a binary string whose length equals the number of
generators of the group to represent an arbitrary group element. Then, we can sample the group element by sampling
the binary string. For instance, the generators of ⟨CZ⟩ are {CZ1,2,CZ1,3,⋯,CZ1,N ,⋯,CZ2,3,⋯,CZN−1,N}. So a

binary string with length (N
2
) is enough for sampling from ⟨CZ⟩. The total length needed to sample GCnZ is given by

log ∣GCnZ ∣ = log ∣⟨X⟩ ⋊ (⟨C
n−1Z⟩ ×⋯ × ⟨CZ⟩ × ⟨Z⟩)∣ = n +

n

∑
i=1
(
N

i
) = O(Nn

), (B85)

which is indeed the sample complexity. For computing the inverse gates, we will utilize the following identity. Given
a CnZ gate acting on qubits i1,⋯, in+1 and a subset of {i1,⋯, in+1}, I, then

CnZi1,i2,⋯,in+1Πi∈IXi = Πi∈IXiΠS⊆IC
n−∣S∣Z{i1,⋯,in+1}/S . (B86)

So, the multiplication of two elements in the group is calculated by

Π(1)W
(1)
n−1⋯W

(1)
0 Π(2)W

(2)
n−1⋯W

(2)
0

=(−1)Π
(2)⋅W (1)

0 Π(1)W
(1)
n−1⋯W

(1)
1 Π(2)W

(1)
0 W

(2)
n−1⋯W

(2)
0

=(−1)Π
(2)⋅W (1)

0 Π(1)W
(1)
n−1⋯W

(1)
2 Π(2)W ′

0W
(1)
1 W

(1)
0 W

(2)
n−1⋯W

(2)
0

=(−1)Π
(2)⋅W (1)

0 Π(1)Π(2)W ′
n−2W

(1)
n−1⋯W

′
0W

(1)
1 W

(1)
0 W

(2)
n−1W

(2)
n−2⋯W

(2)
1 W

(2)
0 .

(B87)

TheW ′
0,⋯,W

′
n−2 in the third and fourth lines are indeed the additional controlled-Z gates and multi-qubit controlled-Z

gates in Eq. (B86).

Now, we give a brief analysis of the total complexity. The key point is utilizing Eq. (B86) to shift Π(2) gate to

the left. We first fix an integer l and focus on ClZ. Now we try to study the swapping between ClZ and Π(2). By
Eq. (B86), the total complexity for shifting Π(2) across a ClZ gate is O(2l+1) since the cardinality of subset I is at

most l + 1 and the number of subsets of I is at most 2l+1. As the number of ClZ gates on N qubits is at most ( N
l+1),

the total complexity for shifting Π(2) to the leftmost is

group multiplication complexity =
n−1
∑
l=0
(
N

l + 1
) ⋅ 2l+1. (B88)

The right part is bounded by Nn. Hence, the total group multiplication complexity is O(Nn). Notice that this bound
is quite untight. For example, if we let n = N , the right part of Eq. (B88) is indeed 3n − 1.

The inverse of an element ΠWn−1⋯W0 is Wn−1⋯W0Π, which equals the multiplication of element Wn−1⋯W11⟨X⟩
and 1⟨Cn−1Z⟩⋯1⟨Z⟩Π, where 1G represents the identity in group G and is indeed the all-zero string in the binary string
representation of group elements. The computational complexity for computing inverse gate is then equal to the
complexity for group element multiplication, i.e. O(Nn).

To benchmark CZm gate, the twirling group by our protocol would always be a subgroup of GCZm = ⟨CZm, Zm,X⟩.
For simplicity, we only analyze the complexity of ⟨CZm, Zm,X⟩. This complexity would be the upper bound of the
complexity of the twirling group shown in Example 3. ⟨CZm, Zm,X⟩ has a similar direct product structure like
⟨Cn−1Z,Cn−2Z,⋯,CZ,Z,X⟩,

GCZm = ⟨X⟩ ⋊ (⟨CZm⟩ × ⟨Zm⟩). (B89)

Thus, each element in GCZm can be expressed as W2W1Π where W2 ∈ ⟨CZm⟩,W1 ∈ ⟨Zm⟩ and Π ∈ ⟨X⟩. In this case,
the orders of generators CZm and Zm are both m. We need to use ⌈logm⌉ bits to record their multiplicities and to
uniquely identify one group element. Then, to represent an element in ⟨CZm⟩, we should use a bit string with length
⌈logm⌉N(N − 1)/2. The total number of bits to express a group element is

log∣⟨X⟩ ⋊ (⟨CZm⟩ × ⟨Zm⟩)∣ = (
N(N − 1)

2
+N) ⌈logm⌉ +N = O(N2 logm), (B90)

which is indeed the sample complexity. The equation Eq. (B86) can be extended for CZm in the following way

CZk
mXi =XiCZ

−k
m (Zm)

k
j , (B91)
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where the CZm here is on qubit i, j. By a similar argument like CnZ, we can see that the group multiplication
complexity, and thus inverse computation complexity, is O(N2 logm).

The group size and computational complexity for the CNOT dihedral group have been elaborated in [16]. So, we
omit the details here. Note that for CZm, their results only apply to m = 2k, and ours admit m taking arbitrary
positive integers. The scaling of the complexity results has been summarized and listed in the main text. In Fig. 8, we
also show an accurate result of the size comparison between our group and the CNOT dihedral group by considering
N = n + 1. The size of our group increases slower with respect to the qubit number than that of the CNOT dihedral
group.
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FIG. 8. Size comparison between the twirling groups for CnZ in our method and in [16], associated with blue and orange
patterns, respectively. ∣G∣ represents the group size. If taking a double logarithmic scale, both two kinds of groups increased
nearly linearly with respect to the qubit number, but the CNOT dihedral group increased faster. The smaller figure demonstrates
the results in the logarithm scale.

Below, we discuss the hierarchy of twirling groups, which may be additionally interesting. In the main text, we
have mentioned that by choosing the twirled gate to be CnZm with increasing n and m, the size of the twirling
group and the computational complexity of the group multiplication would keep increasing. The two complexities
are closely related to the classical simulability of the twirling group, and the hierarchy of the groups actually forms
a computational complexity hierarchy. The results may be useful in other fields like quantum complexity theory and
quantum simulation.

Here, we discuss the hierarchy of groups themselves rather than the hierarchy of their sample and computational
complexities. Specifically, we focus on the group of ⟨CnZ,Cn−2Z,⋯,CZ,X,Z2k⟩. Starting from Pauli group ⟨X,Z⟩,
there are two ways to build up the hierarchy. One way is adding the number of sides of dihedral groups, i.e., increasing
the number k in ⟨X,Z2k⟩. The other way is adding multi-qubit controlled Z gates CnZ or even adding multi-qubit
controlled X gates CnX. Interestingly, CnZ can be contained in the CNOT-dihedral group ⟨CX,X,Z2k⟩ by choosing
k = n + 1 [16]. The hierarchy is summarized below.

⟨Cn−1Z,Cn−2Z,⋯,CZ,X,Z2k⟩ ≤ ⟨C
n−1Z,Cn−2Z,⋯,CZ,X,Z2k+1⟩⋯ ≤ ⟨C

n−1Z,Cn−2Z,⋯,CZ,X,Z(θ)⟩⋯; (B92)

⟨Cn−1X,X,Z2k⟩ ≤ ⟨C
n−1X,X,Z2k+1⟩⋯ ≤ ⟨C

n−1X,X,Z(θ)⟩⋯ ≤ CRUn; (B93)

⟨X,Z2k⟩ ≤ ⟨CZ,X,Z2k⟩ ≤ ⟨CCZ,CZ,X,Z2k⟩⋯; (B94)

⟨X,Z2k⟩ ≤ ⟨CX,X,Z2k⟩ ≤ ⟨CCX,X,Z2k⟩⋯ ≤ CRU; (B95)

⟨Ck−1Z,Ck−2Z,⋯,CZ,X,Z2k⟩ ≤ ⟨CX,X,Z2k⟩. (B96)

Here, CRUn represents the CRU on n qubits and CRU represents ∪nCRUn. As shown in the above equations, the
upper limit of the hierarchy is CRU. The key point is that ⟨Cn−1X,X⟩ contains all permutations over the computational
bases {0,1}n based on Lemma 10. Thus, ⟨Cn−1X,X,Z(θ)⟩ contains all quantum gates like ΠW where Π is an arbitrary
permutation gate, and W is an arbitrary diagonal gate. This is exactly the necessary and sufficient condition for
CRU. Also, from the group hierarchy, it is clearer that the twirling group of our protocol is smaller than that
in [16] for multi-qubit controlled-Z gates CnZ. It is straightforward by investigating ⟨Cn−1Z,Cn−2Z,⋯,CZ,X,Z⟩ ≤
⟨Cn−1Z,Cn−2Z,⋯,CZ,X,Z2k⟩ ≤ ⟨CX,X,Z2k⟩.
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Appendix C: Simulation

In this part, we present additional details of the simulation, including the setting of the noise model, the bench-
marking protocol using the ZX-SPAM setting, and additional benchmarking results. We denote the total number of
qubits as N , which is 2 for the CS gate and n + 1 for the CnZ gate.

1. Noise model

In summary, to simulate a noisy quantum gate, we consider local dephasing noise, local amplitude damping noise,
and unitary noise. The strength of the former two noises depends on the time to implement the gate. To calculate
this time, we first decompose this gate into a series of CNOT gates, Pauli X gates, multi-qubit controlled phase gates,
and single-qubit phase gates. We sum the time to implement each part to obtain the total time of implementing a
gate, denoted as Tgate. Then, the former two types of noise are simulated as follows.

1) Local dephasing channel Λd. The dephasing channel on qubit i, where 1 ≤ i ≤ N , is defined as

Λi
d(ρ) =K

i
0ρK

i†
0 +K

i
1ρK

i†
1 . (C1)

Here,

Ki
0 ≡ (

√
pi 0
0
√
pi
) ,Ki

1 ≡ (

√
1 − pi 0
0 −

√
1 − pi

) , (C2)

where pi denotes the dephasing strength. The local dephasing channel is defined as

Λd =
N

⊗
i=1

Λi
d. (C3)

In the simulation, we set all pi,1 ≤ i ≤ N to be the same, which equals

pi = e
−Tgate

T2 , (C4)

where Tgate denotes the time to implement a gate and depends on the concrete gate and T2 = 15000ns.

2) Local amplitude damping channel Λa. The amplitude damping channel on qubit i, where 1 ≤ i ≤ N , is defined as

Λi
a(ρ) =K

i
0ρK

i†
0 +K

i
1ρK

i†
1 . (C5)

Here,

Ki
0 ≡ (

1 0
0
√
qi
) ,Ki

1 ≡ (
0
√
1 − qi

0 0
) . (C6)

The parameter qi denotes the noise strength of the amplitude damping channel. The local amplitude damping
channel on N qubits is defined as

Λa =
N

⊗
i=1

Λi
a. (C7)

In the simulation, we set all qi,1 ≤ i ≤ N to be the same, which equals

qi = e
−Tgate

T1 , (C8)

where Tgate depends on the concrete gate and T1 = 25000ns.

To simulate the unitary noise for each gate, we also utilize the decomposition of the gate and consider unitary errors for
each decomposed part. Then, the noisy gate is simulated by sequentially acting local dephasing noise, local amplitude
damping noise, and gate with unitary errors.

We introduce the calculation of Tgate and the unitary noise for each gate below. Recall that all of the twirling gates
and the twirled gate belong to CRU. A CRU gate can be separated into a permutation part and a diagonal part.
The time Tgate is evaluated by the sum of times of two parts. The unitary errors are also considered separately. We
discuss the noise models for the two parts respectively.
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1. The permutation part is ⟨CX,X⟩ for the CNOT dihedral group and ⟨X⟩ for the other simulated groups. Note that
one can always implement a number of CNOT gates, and then implement one layer of Pauli X gates to realize an
element in ⟨CX,X⟩; ⟨X⟩ is realized by one layer of Pauli X gates.

For the part constructed by CNOT gates, denoted as ‘CNOT part’, we decompose the circuit based on the algorithm
in Ref. [54] and get a synthesis of the circuit with CNOT gates and SWAP gates. We calculate the circuit depth of
the ‘CNOT part,’ denoted as ‘dCNOT ,’ by counting the minimum layer to realize all CNOT gates. If two CNOT
gates can be realized parallelly, then they are in the same layer. The SWAP gates do not contribute to the counting
of circuit depth since one can always virtually implement SWAP gates by manually changing the label of qubits.
Then, the time to implement the ‘CNOT part’ is

tCNOT = dCNOT × 2 × 30ns. (C9)

If there are no gates in the ‘CNOT part,’ tCNOT is set as 0. For each decomposed CNOT gate, we consider its
unitary noise as

Controlled− exp(iδX), (C10)

where δ = 0.005π and X is the Pauli X gate.

Similarly, the circuit depth of the Pauli X layer is 1 as long as one qubit is acted nontrivially by a Pauli X gate
and 0 otherwise, which is denoted as dX . The time to implement the Pauli X layer is

tX = dx × 30ns. (C11)

The unitary error for each decomposed Pauli X gate is

exp(iδX), (C12)

where δ = 0.005π. The total time of the permutation part is tperm = tCNOT + tX .

2. The diagonal part of a CRU gate, W , can be generated by multi-qubit controlled phase gates and single-qubit Z
rotation:

W =
N

∏
r=1
∏
i∈Ir

Ur
i , (C13)

where Ur
i = C

r−1Zl is a multi-qubit controlled phase gate with r − 1 controlled qubit number, and l denotes the
phase. When r = 1, Ur

i is a single-qubit Z rotation. The notation Ir is an index set. When Ir′ is empty, there
is no multi-qubit controlled phase gate with r′ − 1 controlled qubit number in the decomposition of W . Since Ur

i

commutes with each other, we consider all these gates can be implemented at the same time in the simulation.
Thus, the time to implement W is set as

tdiag =max({r∣Ir ≠ ∅}) × 30ns. (C14)

This is the time to implement the multi-qubit controlled phase gate with the largest controlled qubit number. The
unitary error is a multiple-Z coupling, considered for each multi-qubit controlled phase gate in the decomposition.

For Cr−1Zl = e
i 2π

l ∣1⟩⟨1∣
⊗r

gate, the unitary error is

UZ = e
iδr∑z∈{0,1}r 2∣z∣−r ∣z⟩⟨z∣, (C15)

where δ = 0.005π, and ∣z∣ is the number of 1 in z. The state with more 1 is influenced more.

Besides the noise of the gate, we also set errors for state preparation and measurement (SPAM). In our simulation

experiments, the initial states are U ∣0⟩
⊗N

where U is a local Clifford gate. In the simulation, we suppose the local

Clifford gate does not bring errors, and the error of the initial state comes from the noise when preparing ∣0⟩
⊗n

.
We assume that on each qubit, the state ∣0⟩ would turn into ∣1⟩ with probability 0.02, resulting from the thermal
excitation. We take the measurement to be noiseless as there is always a measurement error correction in experiments.
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2. Benchmarking procedure with the ZX-SPAM

Below, we present the benchmarking procedure with the ZX-SPAM when the twirling group contains the CNOT
dihedral group CZD = ⟨CZ,X,S⟩. Before the introduction of the concrete benchmarking procedure, we explain why
the ZX-SPAM suffices to extract all different diagonal terms when the twirling group contains the CNOT dihedral
group.

We take CS gate for an example and present the Liouville representation of its twirled noise channel under several
different twirling groups, including Pauli group P = ⟨X,Z⟩, CZ Pauli group CZP = ⟨CZ,X,Z⟩, CZ dihedral group
CZD = ⟨CZ,X,S⟩, and CNOT dihedral group CXD = ⟨CX,X,T ⟩. The results are shown in Figs. 9, 10, 11, and 12.
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FIG. 9. Pauli Liouville representation of ΛP where Λ is the noise channel of CS gate and P denotes the Pauli group. The values
in vacant squares are all 0, and we omit them. The two axes record the bases of the Pauli-Liouville representation.

The matrix elements of the original noise channel Λ of CS gate in the Pauli-Liouville representation are all non-zero
and contain complex numbers. After twirled by the Pauli group, there are only diagonal terms left to be nonzero,
as shown in Fig. 9. If we use a larger twirling group, the CZ Pauli group, for any Xa ∈ {X1,X2,X1X2}, the matrix
elements corresponding to Xa and XaZ1Z2 would be averaged, and the elements of XaZ1 and XaZ2 would be also
averaged. The matrix elements of ΛCZP are shown in Fig. 10. Its diagonal blocks are associated with the bases
set in {{I},{Z1},{Z2},{Z1Z2},{XaZ1,XaZ2},{Xa,XaZ1Z2}∣Xa ∈ {X1,X2,X1X2}}. Thus, the number of different
diagonal terms is 7, excluding the one associated with {I}. Nonetheless, via the ZX-SPAM, one can at most obtain
2(2N − 1) = 6 different diagonal terms,

tr(PΛ(P ))/2N , P ∈ ({I, Z}⊗N⋃{I,X}⊗N)/I⊗N . (C16)

Thus, the twirling of the CZ Pauli group does not suffice.
If we further use a bit larger twirling group, CZ dihedral group, the matrix elements corresponding to XaZ would

be all averaged as shown in Fig. 11. The number of different diagonal terms is just 2(2N − 1) = 6. In this case,
using the ZX-SPAM, we can extract the diagonal terms of Λm

CZD and hence obtain the diagonal terms of ΛCZD via
fitting. If using the CNOT dihedral group for twirling, the twirled noise channel ΛCXD would be more symmetric
than ΛCZD. The elements corresponding to Z1, Z2, and Z1Z2 will be averaged and the elements corresponding to
{XaZ∣Xa ∈ {X1,X2,X1X2}} will also be averaged. Thus, ΛCXD only has two parameters as shown in Fig. 12. Using
the ZX-SPAM can also extract all different diagonal terms of ΛCXD.

In Box 1, we introduce the detailed benchmarking procedure with the ZX-SPAM. The twirling group contains the
CZ dihedral group.
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I Z1 Z2 Z1Z2 X1 Y1 X1Z2 Y1Z2 X2 Z1X2 Y2 Z1Y2 X1X2 Y1X2 X1Y2 Y1Y2

I
Z 1

Z 2
Z 1

Z 2
X 1

Y 1
X 1

Z 2
Y 1

Z 2
X 2

Z 1
X 2

Y 2
Z 1

Y 2
X 1

X 2
Y 1

X 2
X 1

Y 2
Y 1

Y 2

1.0000

0.9832

0.9870

0.9804

0.9827

0.9827

0.9827

0.9827

0.9827

0.9827

0.9827

0.9827

0.9832

0.9831

0.9831

0.9832

FIG. 10. Pauli Liouville representation of ΛCZP where Λ is the noise channel of CS gate and CZP denotes the twirling group
⟨CZ,Z,X⟩. The values in vacant squares are all 0, and we omit them. Note that the elements corresponding to X1X2 and Y1Y2

are the same, and the elements corresponding to X1Y2 and X1Y2 are the same. But the two values are different. Generally, the
elements corresponding to X1 and Y1 are different, and the elements corresponding to X2 and Y2 are also different. However,
in this case, the noise channel is very special, and the difference can hardly be seen by accident.
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FIG. 11. Pauli Liouville representation of ΛCZD where Λ is the noise channel of CS gate and CZD denotes the twirling group
⟨CZ,Z,S⟩. The values in vacant squares are all 0, and we omit them. The matrix elements corresponding to XaZ are all
averaged respectively for Xa ∈ {X1,X2,X1X2}.
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FIG. 12. Pauli Liouville representation of ΛCXD where Λ is the noise channel of CS gate and CXD denotes the twirling group
⟨CX,X,T ⟩. The values in vacant squares are all 0, and we omit them. The second to the fourth diagonal elements are averaged,
and the last 12 diagonal elements are also averaged.

Box 1: Procedures for benchmarking with the ZX-SPAM

1. First initialize the state, ∣ψ0⟩ = ∣0⟩
⊗N

or ∣ψ1⟩ = ∣+⟩
⊗N

where N is the number of qubits.

2. Choose a positive integer, M , and choose two sets of positive integers {m1,m2, ...,mM} and
{K1,K2, ...,KM}. Here, {m1,m2, ...,mM} is the set of circuit depths and for 1 ≤ i ≤ m, Ki is the
number of sampled sequences when circuit depth equals mi.

3. For each integer 1 ≤ i ≤ M , uniformly and randomly sample 2mi gates from twirling group G, where
G ⊇ ⟨CZ,S,X⟩, for Ki times, which we denote {Gj,1,Gj,2,⋯,Gj,2mi}, 1 ≤ j ≤Ki.

4. For each integer 1 ≤ i ≤M and 1 ≤ j ≤Ki, implement gate sequence

S̃(j,mi) = Ũinv

mi

∏
t=1
U †Gj,2tUGj,2t−1, (C17)

where ⋅̃ represents the noisy version of the quantum gate and Uinv = (∏
mi

t=1U
†Gj,2tUGj,2t−1)

†; U is the
target gate.

5. For initial state ∣ψ0⟩ = ∣0⟩
⊗N

, measuring all observables from {I, Z}⊗N of the final state via Z-basis

measurement. For initial state ∣ψ1⟩ = ∣+⟩
⊗N

, measuring all observables from {I,X}⊗N of the final state
via X-basis measurement. That is, for each Qk ∈ {I, Z}⊗N , estimate

fZ(j,mi, k) = tr(Q̃kS̃(j,mi)(ρ̃0)). (C18)

For each Pk ∈ {I,X}⊗N , estimate

fX(j,mi, k) = tr(P̃kS̃(j,mi)(ρ̃1)). (C19)

Here, ρ̃0 and ρ̃1 are noisy versions of ∣0⟩
⊗N

and ∣+⟩
⊗N

, respectively.
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6. Average the results of different gate sequences and obtain

fZ(mi, k) =
1

Ki

Ki

∑
j=1

fZ(j,mi, k) (C20)

fX(mi, k) =
1

Ki

Ki

∑
j=1

fX(j,mi, k). (C21)

7. For each Qk, fit fZ(mi, k) to function

f(mi) = Aλ
mi

Z,k (C22)

and obtain λZ,k. For each Pk, fit fX(mi, k) to function

f(mi) = Aλ
mi

X,k (C23)

and obtain λX,k.

8. Estimate the fidelity of the target gate via

F =
∑k λZ,k + 2

N(∑k λX,k − 1)

4N
. (C24)

9. If one wants to separate further the noise of the twirling gates and the target gate, execute the following
step. Replace the target gate with identity and repeat the above processes to estimate the fidelity of the
twirling groups, FG. Then, estimate the fidelity of U with F and FG by

FU =
d2F − 1

d2FG − 1
(1 −

1

d2
) +

1

d2
. (C25)

Note that in the above benchmarking procedure, we use the circuit structure in Ref. [15] instead of Ref. [14]. That
means we implement random twirling gates interleaved with U and U † instead of being just interleaved with U . For
CnZ gate, U = Uinv and this modification does not influence anything. For more general case that U is CnZm gate
like CS gate, under a mild assumption that U and U † has the same noise Λ, the above procedure can estimate the

fidelity of
√
U†ΛGUΛG, which is equal to the fidelity of Λ. In this modified procedure, the circuit depth only needs to

be chosen as the multiples of 2. While within the circuit structure in Fig. 6, just like [14], the circuit depth needs to be
chosen as the multiples of the order of the target gate to ensure the inverse gate belonging to the twirling group. For
instance, the order of CnZm is m and can be large for CnZm with large m. In this case, the modified benchmarking
procedure in Box 1 can offer an advantage of shorter circuit depth in circuit implementation. One can also use the
circuit structure in Fig. 6 to benchmark the noise channel.

3. Fidelities of dressed and twirling gates

In this part, we show the full results of the dressed fidelity, or the fidelity of the composite noise channel of the
target gate and the twirling group, the fidelity of the twirling groups, and the fidelity of the target gates. Depending
on the twirling group and the SPAM setting, we have five benchmarking methods:

1) Pauli, random SPAM.

2) CZ dihedral group (for the CS gate) or ⟨Cn−1Z,⋯,CZ,X,Z⟩ (for the CnZ gate), random SPAM.

3) CNOT dihedral group, two SPAM.

4) ⟨Cn−1Z,⋯,CZ,X,S⟩, ZX-SPAM.

5) CNOT dihedral group, ZX-SPAM.

For simplicity, the CZ dihedral group or ⟨Cn−1Z,⋯,CZ,X,S⟩ is denoted as CZD. The group ⟨Cn−1Z,⋯,CZ,X,Z⟩ is
denoted as CZP. The CNOT dihedral group is denoted as CXD.
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Recall that the benchmarking results in the main text cover the CS, CCZ, CCCZ, and CCCCZ gates. We list
the benchmarking results of the four gates with five methods in Figs. 13, 14, 15, and 16, respectively. We can see
that the results of the Pauli group have the minimum fluctuation, thanks to the low error rate of the twirling group.
The results of CZP or CZD are effective in a small-scale system below 5 qubits. The CNOT dihedral group fails in
benchmarking when the qubit number is no less than 4. Thus, in the main text, we do not present associated results.
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(d) CS, CZD, ZX-SPAM
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(e) CS, CXD, ZX-SPAM

FIG. 13. The results of the dressed fidelity, the twirling group fidelity, and the target gate fidelity for the CS gate with five
benchmarking methods. The red dashed line is the theoretical value of the target gate fidelity. The horizontal axis denotes the
number of sampled sequences for each depth and the vertical axis denotes the fidelity.

4. Simulation results of C5Z

In this part, we present the benchmarking results of C5Z, with the Pauli group, ⟨C4Z,⋯,CZ,X,S⟩, and
⟨C4Z,⋯,CZ,X,Z⟩. The latter two are labeled with CZD and CZP, respectively. The results are shown in Fig. 17. It
can be seen that due to a large gate-dependent noise, the results of the latter two methods fluctuate a lot. Nonetheless,
from Fig. 17(d), we can still observe that though the variance of the results associated with the Pauli group is lower,
the bias associated with CZD is smaller. If one can utilize a sufficient number of random sequences, the fluctuation of
results corresponding to CZD can decrease. In contrast, the bias of the results associated with the Pauli group does
not change with the number of sampled sequences increase.

5. Simulation results with noiseless twirling groups

To further understand how the choice of the twirling group influences the final benchmarking results, we also
simulate the benchmarking procedure with the noiseless twirling group. The noise model of the target gate does not
change and is still given in Appendix C 1. In Figs. 18 and 19, we present the results of benchmarking the CS and
CCZ gates with five benchmarking methods, which are introduced in Appendix C 3. It can be seen that the methods
‘CXD, two SPAM,’ ‘CZD, ZX-SPAM,’ and ‘CXD, ZX-SPAM’ can both estimate fidelity unbiasedly. The results of
the methods ‘Pauli, random SPAM’ and ‘CZD (CZP), random SPAM’ deviate from the ideal value, and the results
of ‘Pauli, random SPAM’ deviate more. The deviation of ‘Pauli, random SPAM’ and ‘CZD (CZP), random SPAM’
can be explained by the effect of random SPAM settings. The randomly sampled SPAM introduces a bias to the
fidelity estimation. Meanwhile, the weak twirling ‘ability’ of the Pauli group, or the less symmetric of the twirled
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(a) CCZ, Pauli, random SPAM
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(b) CCZ, CZP, random SPAM
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(c) CCZ, CXD, two SPAM
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(d) CCZ, CZD, ZX-SPAM
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(e) CCZ, CXD, ZX-SPAM

FIG. 14. The results of the dressed fidelity, the twirling group fidelity, and the target gate fidelity for the CCZ gate with five
benchmarking methods. The red dashed line is the theoretical value of the target gate fidelity. The horizontal axis denotes the
number of sampled sequences for each depth and the vertical axis denotes the fidelity.
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(a) CCCZ, Pauli, random SPAM
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(b) CCCZ, CZP, random SPAM
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(c) CCCZ, CXD, two SPAM
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(d) CCCZ, CZD, ZX-SPAM
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FIG. 15. The results of the dressed fidelity, the twirling group fidelity, and the target gate fidelity for the CCCZ gate with five
benchmarking methods. The red dashed line is the theoretical value of the target gate fidelity. The horizontal axis denotes the
number of sampled sequences for each depth and the vertical axis denotes the fidelity.
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(a) CCCCZ, Pauli, random SPAM
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(c) CCCCZ, CXD, two SPAM
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(d) CCCCZ, CZD, ZX-SPAM
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FIG. 16. The results of the dressed fidelity, the twirling group fidelity, and the target gate fidelity for the CCCCZ gate with
five benchmarking methods. The red dashed line is the theoretical value of the target gate fidelity. The horizontal axis denotes
the number of sampled sequences for each depth and the vertical axis denotes the fidelity.

noise channel associated with the Pauli group, introduces another bias effect to the fidelity estimation. Thus, the
results of the Pauli group deviate the most in the case of the noiseless twirling group. In practice, the Pauli group is
the least noisy. Hence, when considering a noisy twirling group, especially in a larger system, benchmarking with the
Pauli group can provide relatively more effective fidelity estimation than other groups.
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(a) CCCCCZ, Pauli, random SPAM
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(b) CCCCCZ, CZD, ZX-SPAM
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(c) CCCCCZ, CZP, random SPAM
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(d) CCCCCZ, Pauli vs CZD

FIG. 17. Figures (a), (b), and (c) show the results of the dressed fidelity, the twirling group fidelity, and the target gate
fidelity for the CCCCCZ gate with three benchmarking methods. The three methods are the Pauli group with a random
SPAM, ⟨C4Z,⋯,CZ,X,S⟩ with the ZX-SPAM, and ⟨C4Z,⋯,CZ,X,Z⟩ with a random SPAM. The red dashed line is the
theoretical value of the target gate fidelity. The horizontal axis denotes the number of sampled sequences for each depth
and the vertical axis denotes the fidelity. Figure (d) compares the target gate fidelities associated with the Pauli group and
⟨C4Z,⋯,CZ,X,S⟩. It can be seen that the variance of the results corresponding to the Pauli group is lower and the bias
associated with ⟨C4Z,⋯,CZ,X,S⟩ is smaller.
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(b) CCZ

FIG. 18. Benchmarking results for the CS and CCZ gates in Figures (a) and (b), respectively, with the optimal twirling group,
the Pauli group, and the CNOT dihedral group in the case of noiseless twirling group. The optimal twirling group is the CZ
dihedral group ⟨CZ,Z,S⟩ for CS, and the CZ Pauli group ⟨CZ,Z,P ⟩ for CCZ. The red dashed line is the theoretical value of
the noise channel fidelity. Each box plot contains 20 fidelities, and each fidelity is estimated with circuit depths {2,4,6,8,10},
and the total number of different gate sequences for each depth is specified by the horizontal axis. Here, for the Pauli group
and the optimal group, we randomly sample and estimate 20 different diagonal terms of the twirled noise channel. We mark
this setting with ‘random SPAM’ on the label. For the CNOT dihedral group, we estimate only two different diagonal terms of
the twirled noise channel. We mark this setting with ‘two SPAM’ on the label. Each SPAM setting prepares an eigenstate of
a Pauli observable with eigenvalue 1 and measures this Pauli observable. In ‘two SPAM’, the two Pauli observables are chosen
as Z⊗N and X⊗N .

20 40 100 200 400 1000
num_sequence

0.9886

0.9888

0.9890

0.9892

0.9894

0.9896

fid
el

ity

Ideal
Pauli, random SPAM
CZD, ZX-SPAM
CXD, ZX-SPAM

(a) CS

20 40 60 80 100
num_sequence

0.97500

0.97525

0.97550

0.97575

0.97600

0.97625

0.97650

0.97675

fid
el

ity

Ideal
Pauli, random SPAM
CZD, ZX-SPAM
CXD, ZX-SPAM

(b) CCZ

FIG. 19. Benchmarking results for the CS and CCZ gates in Figures (a) and (b), respectively, with the Pauli group, the CZ
dihedral group, and the CNOT dihedral group in the case of the noiseless twirling group. The red dashed line is the theoretical
fidelity value. Each box plot contains 20 fidelities. The setting of circuit depths and sampling is the same as in Figure 18.
Nonetheless, for the CZ dihedral group and the CNOT dihedral group, we adopt the SPAM setting and the benchmarking
procedure of Box 1. We mark this setting with ‘ZX-SPAM’ on the label.
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Abstract. Exceptional points (EPs) are spectral singularities of non-Hermitian operators. In this work,
we propose a theoretical framework based on two numerically exact descriptions of non-Markovian dynam-
ics: the pseudomode mapping and the hierarchical equations of motion. We unveil pure non-Markovian
EPs that are unobservable in the Markovian limit. Moreover, we show that structured environments can
elevate EP order, thereby enhancing the system’s sensitivity. These findings lay a theoretical foundation
and open new avenues for non-Markovian reservoir engineering and non-Hermitian physics.
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1 Motivation

Spectral singularities for non-Hermitian systems,
known as exceptional points (EPs), have attracted in-
tense research attention over the past decades. Recently,
investigations of EPs have extended into the full quan-
tum regime where the temporal evolution of an open
quantum system is governed by a Lindblad master equa-
tion or, equivalently, by a Liouvillian superoperator. In
this context, the EPs associated with Liouvillian super-
operators are termed as quantum EPs or Liouvillian EPs
(LEPs) [1]. It has been demonstrated that pure quantum
EPs exist, which are phenomena without (semi-)classical
counterparts.
To date, the exploration for LEPs has largely been con-

fined to the memoryless Markovian limit, which is only
valid in cases of sufficiently weak system-environment in-
teraction or environments without any structure. Ac-
cordingly, whether the concepts of EPs can be directly
applied to the non-Markovian regime remains an open
question.
In this work, we aim to address this theoretical gap.

The main result lies in the development of a systematic
framework for quantum EPs associated with generic non-
Markovian open systems. The idea is based on apply-
ing the pseudomode equation of motion (PMEOM) [2]
and the hierarchical equations of motion (HEOM) [3],
which can be used to describe a large class of system-
environment models. In this case, the dynamics is gov-
erned by what we call extended Liouvillian superopera-
tors, enabling us to perform conventional spectral anal-
ysis, identifying the corresponding EPs, and revealing
their impacts on the non-Markovian open systems.

∗jhendonglin@gmail.com
†yuehnan@mail.ncku.edu.tw

2 Results

2.1 General framework

The general framework is described in Fig. 1. Specifi-
cally, we consider an open quantum system (S) coupled
to a bosonic environment (E). In this case, the exact dy-
namics of the open system’s reduced density matrix can
be written as

ρS(t) = T̂ exp
{
F̂
[
Q,C(t)

]}
ρS(0). (1)

Here, T̂ denotes the time-ordering operator and F̂ rep-
resents the Feynman-Vernon influence functional. An es-
sential feature of F̂ is its exclusive dependence on the
system-environment coupling operator Q and the envi-
ronmental correlation function C(t).

For a broad range of cases, the correlation function
can be efficiently expressed as a finite weighted summa-
tion of exponential terms, i.e., C(t) =

∑
i α

2
i exp(−iΩit−

γi|t|/2). With this expression, one can construct the
PMEOM [2]:

d

dt
ρS+PM(t) = LS+PM[ρS+PM(t)]

= −i[HS+PM, ρS+PM(t)] +
∑
i

γiLai
[ρS+PM(t)],

with HS+PM = HS +
∑
i

Ωia
†
iai + αiQ(a†i + ai),

(2)

where, HS denotes the system Hamiltonian, {ai} repre-
sent the pseudomodes, and we introduce the dissipator
Lai

[•] = ai • a†i − {a†iai, •}/2. The exact dynamics of S
can be obtained by tracing out the pseudomodes (PM),
i.e., ρS(t) = trPM[ρS+PM(t)], after solving the PMEOM.

To describe EPs, one considers a family of
parametrized extended Liouvillian superoperators
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Figure 1: Schematic illustration depicting EPs for (a) a generic non-Markovian open-system model, where the struc-
tured environment is captured by the spectral density function J(ω). For a given spectral density function and the
corresponding environmental correlation function, the exact non-Markovian dynamics can either be described by (b)
PMEOM or (c) HEOM with the corresponding extended Liouvillian superoperators: LS+PM and LS+ADO. (d) The
non-Markovian EPs can then be identified by observing the complex spectrum of these extended Liouvillian superop-
erators.

LS+PM(ξ), bearing in mind that ξ includes the param-
eters related to both the system and the structured
environments. Suppose that ξEPn represents an
nth-order EP in the parameter space, where n differ-
ent eigenvalues and the corresponding eigenmatrices
{λi, ρ̂S+PM,i}i∈A coalesce into {λEP, ρ̂S+PM,λEP

}. Here,
A denotes a set of indices. Due to the coalescence
of the eigenmatrices, the corresponding n-dimensional
eigensubspace for LS+PM(ξEP) cannot be diagonalized.
Nevertheless, a Jordan block for the subspace can be
constructed by introducing generalized eigenmatrices

{ρ̂(j)S+PM,λEP
}j=0,··· ,n−1, such that the system dynamics

can be expressed by

ρS(t) =
∑
i/∈A

cie
λitρ̂S,i + eλEPt

n−1∑
j=0

j∑
m=0

tmc̃m
m!

ρ̂
(j)
S,λEP

, (3)

where the reduced generalized eigenmatrices are intro-

duced as ρ̂
(j)
S,λEP

= trPM(ρ̂
(j)
S+PM,λEP

). Equation (3) sug-
gests that the polynomial time dependence, a common
dynamical signature of EPs, could be observed in the
reduced dynamics of the open system.
A similar procedure can be utilized under the frame-

work of HEOM. In this context, a set of auxiliary den-
sity operators (ADOs) is introduced to capture the non-
Markovian and non-perturbative effects. Similarly, we
can define the extended quantum state ρS+ADO that con-
tains both the system reduced state and the ADOs. The
dynamics of the extended state is governed by the ex-
tended Liouvillian superoperator LS+ADO. The system
reduced state can be obtained through a linear operation,
specifically ρS(t) = P[ρS+ADO(t)], where P is a superop-
erator for discarding all ADOs. Therefore, the EPs for
non-Markovian open quantum systems can also be equiv-
alently characterized under the framework of the HEOM

by introducing the corresponding (generalized) reduced
eigenmatrices, which are expressed as ρ̃S,i = P(ρ̃S+ADO,i)

and ρ̃
(j)
S,λEP

= P(ρ̃
(j)
S+ADO,λEP

).

2.2 Example: Spin-boson model

Here, we consider a qubit representing the open
system, where the system Hamiltonian and system-
environment coupling operator are HS = ω0|e⟩⟨e| and
Q̃ = σ−, respectively. We consider a Lorentzian spectral
density that is expressed by

JL(ω) =
1

2

ΓΛ2

(ω − ω0)2 + Λ2
, (4)

where Γ and Λ denote the coupling strength and the spec-
tral width, respectively. In the interaction picture, the
environmental correlation function can be expressed by a
single exponential term, i.e., C(t) = (ΓΛ/2) exp(−Λ|t|).
Therefore, the PMEOM can be constructed by introduc-
ing a single pseudomode with the damping rate γ =
2Λ and the qubit-pseudomode coupling strength α =√

ΓΛ/2.
We find that Γ = Λ/2 corresponds to a second-order

EP (EP2) and a third-order EP (EP3). Notably, these
EPs are purely non-Markovian, because they are unob-
servable in the Markovian limit. Specifically, in such a
limit, the spectral width (and thus the damping rate of
the pseudomode) becomes infinite, Λ → ∞. Therefore,
the pseudomode can be adiabatically eliminated and the
dynamics is governed by a qubit-only Markovian master
equation, i.e., ρ̇S(t) = Γ[2σ−ρS(t)σ+ − {σ+σ−, ρS(t)}]/2.
Intuitively, there is only one qubit decay channel with-
out internal tunneling between the qubit energy levels,
thereby EP does not emerge in this scenario.
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2.3 Example: Two coupled bosonic modes

Here, we examine two coupled resonant modes em-
badded in a Lorentzian environment. In the Markovian
limit (Λ → ∞), the resulting system-only effective non-
Hermitian Hamiltonian within the rotating frame is given
by:

Heff,S =

(
0 χ
χ iΓ

)
, (5)

where χ denotes the coupling strength between the
modes. The corresponding eigenvalues are (iΓ ±√
4χ2 − Γ2)/2, indicating the presence of an EP2 if

|χ| = Γ/2 with the degenerate eigenvalue iΓ/2. With a
finite width Λ, the effective Hamiltonian takes the form:

Heff,S+PM =


0 χ 0

χ 0
√

ΓΛ
2

0
√

ΓΛ
2 iΛ

 . (6)

By matching the coefficients of the characteristic poly-
nomial, an EP3 is identified with the following criteria:
{|χ| = Λ/3

√
3, Γ = 16Λ/27}, and the degenerate eigen-

value is iΛ/3. In other words, the EP can be transformed
from second to third order with the introduction of the
structured environmental characteristics.
This upgrade can lead to a further enhancement

in the system sensitivity. For instance, we intro-
duce a perturbation ϵ > 0 to the coupling strength
χ → χ(1 + ϵ). For the scenario in the exact Markovian
limit, the eigenvalues in the vicinity of the EP2 are{
iΓ/2− Γ

√
ϵ/
√
2 +O

(
ϵ3/2

)
, iΓ/2 + Γ

√
ϵ/
√
2 +O

(
ϵ3/2

)}
.

In contrast to this case, for the scenario with a finite
spectral width, the eigenvalues in the vicinity of the
EP3 take the form {iΛ/3 + x1Λϵ

1/3 + O(ϵ2/3), iΛ/3 +
x2Λϵ

1/3 +O(ϵ2/3), iΛ/3 + x3Λϵ
1/3 +O(ϵ2/3)}, where x1,

x2, and x3 are constants. We observe a change from
a square-root bifurcation for the Markovian EP2 to a
cubic-root bifurcation for the non-Markovian EP3 in
response to the external perturbation, signifying the
enhancement of the system sensitivity to the external
perturbation.

3 Discussions

We have presented a general theory on characteriz-
ing non-Markovian EP based on pseudomode mapping
and hierarchical equations of motion. We uncover the
presence of purely non-Markovian EP. Additionally, the
incorporation of non-Markovian effects can increase the
order of the EP by effectively increasing the dimension
of both the extended Liouvillian superoperator. This
presents an innovative strategy for hunting higher-order
EPs.
Although this work focuses exclusively on a bosonic en-

vironment, the proposed framework can be directly gen-
eralized to the scenarios with arbitrary combinations of
bosonic and fermionic baths [3, 4]. Moreover, beyond
the PMEOM and HEOM, our method of describing non-
Markovian EPs via extended Liouvillian superoperators
can also be applied to other pertinent methodologies,

such as the dissipaton-embedded master equation [5] and
reaction-coordinate mapping [6].

Future work involves further generalizing the theory
of non-Markovian EPs. For instance, it is worthwhile
to explore the potential applications emerging from the
intricate interplay between the (non-)Markovian excep-
tional and diabolic points [7, 8] or the exotic topology and
geometry of the parameter space [9, 10]. Such investiga-
tions could uncover new aspects of non-Markovian EPs,
enhancing our understanding of open quantum systems
embedded in environments with memory effects.
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Abstract.
Quantum sampling, a fundamental subroutine in numerous quantum algorithms, involves encoding

a given probability distribution in the amplitudes of a pure state. In light of the hefty cost of large-
scale quantum storage, we initiate the study of quantum sampling in a distributed setting. Specifically,
we assume that the data is distributed among multiple machines, and each machine solely maintains a
basic oracle that counts the multiplicity of individual elements. Given a quantum sampling task, which
is to sample from the joint database, a coordinator can make oracle queries to all machines. We focus
on the oblivious communication model, where communication between the coordinator and the machines
is predetermined. We present both sequential and parallel algorithms: the sequential algorithm queries
the machines sequentially, while the parallel algorithm allows the coordinator to query all the machines
simultaneously. Furthermore, we prove that both algorithms are optimal in their respective settings.

Keywords: Quantum sampling, distributed quantum computing, quantum query complexity, adversary
method

1 Introduction

Quantum sampling is a fundamental computational
task in quantum computing that encodes a given dis-
tribution in the amplitudes of a quantum state. More
specifically, the algorithm has access to a distribu-
tion (p1, . . . , pN ) and is supposed to output the state∑N

i=1

√
pi |i⟩, where {|1⟩ , . . . , |N⟩} is a set of computa-

tional bases. Quantum sampling was inspired by the
famous Grover’s algorithm [10] and is nowadays a key
subroutine in many quantum algorithms. For example,
the well-known Harrow-Hassidim-Lloyd algorithm [13],
which solves a system of linear equations Ax = b with
an exponential speedup over the fastest classical algo-
rithm, requires encoding the vector b to the amplitude of
a pure state |b⟩ =

∑
i bi |i⟩ up to normalization. Many

quantum algorithms for learning functions and distribu-
tions also require quantum sampling on a given distri-
bution [9, 5, 6]. It is also known that the quantum ad-
vantages of certain quantum learning algorithms require
quantum sampling and the advantages would vanish if
quantum sampling was replaced by classical sampling [9].
Moreover, quantum sampling has also found many algo-
rithmic applications, such as quantum walk [17, 21, 22],
quantum mean estimation [8, 11, 12], and quantum
coupon collector [4]. Thus, a number of works have been
devoted to designing algorithms and analyzing the com-
plexities of quantum sampling [3, 19, 15].
It is still challenging to have quantum storage for big

data. Due to the limit of large-scale quantum comput-
ers, this paper initiates the study of distributed quan-
tum sampling. A distributed database consists of several
machines and a coordinator. The distributed database
has a publicly known maximum capacity ν for each kind
of element, which is an upper bound on multiplicities
of the elements. With the oracle design declared later,

∗longyunchen@smail.nju.edu.cn
†liu@nju.edu.cn
‡phyao1985@gmail.com

the parameter ν is needed to bound the dimension of
the register. A large dataset is distributed across these
machines, and each machine implements a simple oracle
that maintains how many times an element appears in
its share of the dataset. The goal of the coordinator is
to produce the quantum state

∑N
i=1

√
pi |i⟩, where pi is

the probability that you get i when sampling uniformly
from the distributed database. To do so, the coordinator
can only communicate with the machines through ora-
cle queries. If we only allow classical communications,
then the coordinator has to send queries to each ma-
chine, asking the multiplicity of every possible element.
After the coordinator has learned pi for every i, then it
has to prepare the quantum state by itself. For a dataset
with a data universe of N elements containing all distinct
elements distributed across n machines, the query com-
plexity could be as large as nN . We study the quantum
query complexity where we allow quantum communica-
tions between the coordinator and the machines, and we
are able to show significant speed-up.

Main results

In this paper, we exhibit two distributed quantum sam-
pling algorithms using sequential and parallel queries, re-
spectively. Informally speaking, in the sequential model,
the coordinator makes queries to each machine sequen-
tially. In the parallel model, the coordinator queries all
machines simultaneously. We further show that both
algorithms achieve optimal query complexity among all
oblivious algorithms.

Theorem 1 (Main result, informal) Given a dis-
tributed database consisting of n machines with max-
imum capacity ν, there exists an algorithm for quan-
tum sampling with O(n

√
νN/M) sequential queries in

the oblivious model. If parallel queries are allowed, then
O(
√
νN/M) queries are sufficient. Here N is the size of

the data universe, and M is the total number of elements
stored across the distributed database counting multiplic-
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ities. Moreover, both algorithms are optimal in the obliv-
ious communication model.

These two optimal algorithms are designed by directly
expanding the centralized quantum sampling algorithm.
Their optimality is established by extending the method
proposed by Zalka for Grover’s algorithm in the central-
ized setting [23]. Our proof suggests that the essential
barrier for distributed quantum sampling is the same as
that for the centralized setting.

Related work

The problem of quantum sampling was raised after
Grover’s algorithm [10]. The quantum query complexity
of quantum sampling has been studied in various con-
texts. Shi [20] introduced the problem of index erasure:
given an injective function f : [n] → [m] via a black-
box oracle, the task is to prepare the quantum state,
which is the uniform superposition on the image of f ,
i.e.,

∑n
x=1 |f(x)⟩ /

√
n. Index erasure can be viewed as a

uniform quantum sampling over a subset of the universe.
This problem is closely related to graph isomorphism,
and the tight query complexity of the problem was later
established by Ambainis, Magnin, Roetteler, and Roland
in the coherent setting [3] and by Lindzey and Rosmanis
in the non-coherent setting [16]. Ozols, Roetteler, and
Roland [19] further introduced quantum rejection sam-
pling, which converts a quantum state to another quan-
tum state with a given amplitude. The quantum query
complexity of quantum state conversion has been estab-
lished in [15].
In addition to quantum query complexity, quantum

sampling has also been studied in other models of com-
putation. Aharonov and Ta-Shama studied the problem
of preparing

∑
i∈Ω

√
pi |i⟩ given the description of a clas-

sical circuit with output distribution p. A weaker quan-
tum sampling model, where an extra register is allowed,
that is,

∑
i

√
pi |i⟩ |ci⟩, has also been considered in [12, 6].

2 Preliminaries

For integerN > 0, let [N ] represent the set {1, · · · , N}.
Given a multiset S, Supp(S) represents the support of S.
For any element x, the multiplicity of x is the number
of occurrences in S. The cardinality of a multiset S,
denoted by |S|, is the sum of the multiplicities of all its
elements.
Here we give a brief introduction to quantum comput-

ing and the notations used in this paper. Readers may
refer to [18] for a thorough treatment. Consider a Hilbert
space H endowed with an inner product ⟨·, ·⟩. A quan-
tum state is a positive semidefinite matrix with a trace
equal to 1. Let |ψ⟩ be a vector in H. The norm of |ψ⟩,
denoted by ∥|ψ⟩∥ is defined to be ∥ψ∥ :=

√
⟨ψ|ψ⟩. For

any two vectors |ϕ⟩ and |ψ⟩ in H, the distance between
them is ∥|ϕ⟩ − |ψ⟩∥ . A quantum register A is associated
with a Hilbert space HA. The composition of two reg-
isters A and B, denoted by AB, is associated with the
Hilbert space HA ⊗ HB . The identity operator on HA,

(and associated register A) is denoted IA. The subscript
A may be omitted when it is clear from the context.

3 Distributed databases

In this section, we formally introduce the model of
distributed databases considered in this paper. A dis-
tributed database consists of several databases, each of
which stores part of the data and is maintained by a
machine. Moreover, each machine also implements some
simple operations. There is a coordinator who makes
queries to each machine and outputs the answer at the
end of the algorithm. The coordinator is assumed to be
a quantum computer. In this paper, we assume that the
coordinator sends an element from the dataset to a ma-
chine, and the machine answers the multiplicity of the
element, i.e., the number of occurrences of the element
in the machine. A mathematical formulation is given
below. We are interested in minimizing the number of
quantum queries made by the coordinator.

In this paper, we only consider the oblivious commu-
nication model, where the order of the communication
between the coordinator and the machines is predeter-
mined (only depends on the public knowledge known to
the coordinator). The oblivious communication model
has been studied in [14].

We conjecture that non-oblivious communication does
not help us to save the number of queries. It is worth not-
ing that the final output of the algorithm is supposed to
be a pure state. Thus, in the quantum circuits model, all
intermediate measurements can be removed by the prin-
ciple of deferred measurement and the gentle measure-
ment argument [18, 1]. However, it is not clear whether
they can be extended to a distributed setting. We leave
it for future work.

Quantum sampling on distributed databases

Suppose that the data universe is represented by the
set [N ] := {1, · · · , N}, and the dataset is distributed
among n machines. The coordinator maintains a quan-
tum state with three registers

|ρ⟩ =
∑
i∈[N ]

αi |i⟩ |si⟩ |wi⟩ .

The first register is N -dimensional for element storage,
the second register is (ν + 1)-dimensional to store the
outcome of the oracle, and the last one is the ancillary
register, whose dimension remains to be determined by
the algorithm design. In our algorithm, wi should belong
to {0, 1}.

In this paper, we consider two models of queries: se-
quential queries and parallel queries. In the sequential
model, the coordinator sends queries to the machines se-
quentially. In a sequential model, suppose the coordi-
nator makes a query to the j-th machine. It sends the
first two registers to the j-th machine. The j-th machine
implements the following operation Oj :

Oj |i⟩ |s⟩ = |i⟩ |(s+ cij) mod (ν + 1)⟩ , (1)
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Table 1: Table of Notations

Symbol Meaning

n the count of the machines
N the number of the varieties of elements
Tj the dataset (multiset) on the j-th machine
cij the multiplicity of element i in Tj

ci :=
∑

j∈[n] cij the total count of occurrences of i across all machines

M :=
∑

i∈[N ] ci the total count of the elements over all machines

Mj := |Tj | the count of the elements on the j-th machine
Supp(Tj) the support set of distinct elements in Tj

mj := |Supp(Tj)| the count of distinct elements on the j-th machine
ν maximum capacity of the database
|ψ⟩ the quantum sampling state defined in Eq.(4)

|π⟩ := 1√
N

∑
i∈[N ] |i⟩ the uniform superposition state

Oj the oracle of the j-th machine

where cij is the multiplicity of an element i in the j-
th machine and ν is the maximum capacity of the dis-
tributed database, which is known to the coordinator.
Thus, ν ≥ maxi∈[N ](

∑n
j=1 cij) is an upper bound for the

multiplicities of the elements.
It is worth noting that the oracle operation can be

easily extended to a dynamic database. It is low-cost to
update oracle operation Oj if the datasets are changed.
For instance, if the multiplicity of element i in the j-th
machine increases or decreases by 1, i.e., cij increases or
decreases by 1, we can simply update Oj by left multi-
plying operator U or U†, respectively, where U |i⟩ |s⟩ =
|i⟩ |(s+ 1) mod (ν + 1)⟩.
In the parallel model, the coordinator may send mul-

tiple queries to distinct machines simultaneously. To be
more specific, in the parallel model, the state with the
coordinator contains four registers

|ρ⟩ =
∑

ī∈[N ]n

αī |̄i⟩ |sī⟩ |bī⟩ |wī⟩ ,

where ī = (i1, . . . , in) ∈ [N ]n, bī ∈ {0, 1}n. Thus, each
of the first three registers contains n qudits. When the
coordinator makes a query, it sends three qudits, one
from each of the first three registers, to each machine.
For j ∈ [n], the j-th machine is implementing

Ôj |ij⟩ |sj⟩ |bj⟩ = |ij⟩ |sj + cij ,j · bj mod (ν + 1)⟩ |bj⟩
(2)

where ν is an upper bound on the multiplicities of ij .
It is not hard to see that the operation in Equation (2)
can be realized by the query operation in the sequential
model defined in Equation (1). Thus a parallel query

O |̄i⟩ |s1 · · · sn⟩ |b1 · · · bn⟩ =
n⊗

j=1

Ôj |ij , sj , bj⟩ (3)

can be implemented by n sequential queries.
To describe the problem of quantum sampling, we need

to further introduce some notations. For j ∈ [n], the
dataset on the j-th machine is denoted by a multiset Tj .

Then, the multiset Tj is completely determined by the
values of cij defined in Equation (1).

Now we are ready to formally define the problem
of quantum sampling on distributed databases. Given
datasets {Tj}j∈[n], a quantum sampling algorithm is sup-
posed to produce the state

|ψ⟩ = 1√
M

∑
i∈[N ]

√
ci |i⟩ , (4)

where ci =
∑

j∈[n] cij is the total occurrences of the ele-

ment i across all machines andM =
∑

i∈[N ] ci is the total

count of all elements on the machines. Since ci/M is the
frequency of the element i appearing over all machines,
measuring the state |ψ⟩ under the computational basis
{|i⟩}i∈[N ] is equivalent to sampling over the datasets.

All parameters and notations are summarized in Ta-
ble 1.

4 Algorithms

By the amplitude amplification [7], we can obtain
quantum sampling algorithms for sequential and paral-
lel queries. Their details are specified in Appendix A.

Theorem 2 (Sampling with sequential queries)
Given parameters ε ∈ (0, 1), and N,M,n, ν as in
Table 1 satisfying ν ≥ M

Nε , there exists an algorithm for

quantum sampling which makes O
(
n
√
νN/M

)
queries

and outputs a state |ϕ⟩ satisfying that |⟨ϕ |ψ⟩ | ≥ 1 − ε,
where |ψ⟩ is the quantum sampling state defined in
Equation (4).

Theorem 3 (Sampling with parallel queries)
Given parameters ε ∈ (0, 1), and N,M,n, ν as in Table 1
satisfying ν ≥ M

Nε , there exists an algorithm for quantum

sampling which makes O
(√

νN/M
)

parallel queries

and outputs a state |ϕ⟩ satisfying that |⟨ϕ |ψ⟩ | ≥ 1− ε.

Both of them are optimal within their models sepa-
rately with respect to the quantum query complexity,
which is concluded by showing the lower bound on the
queries in Appendix B.
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A Algorithm design

A.1 Sequential queries

We start by giving a quantum sampling algorithm for
the sequential model. A key operator in our algorithm is
the distributing operator D such that

D |i, 0⟩ =
√
ci
ν
|i, 0⟩+

√
ν − ci
ν

|i, 1⟩ , (5)

We claim that there exists a unitary operator satisfying
the above equation, and is thus a valid quantum opera-
tion.

Lemma 4 The operator D can be extended to a unitary
operator on the whole Hilbert space.

Proof. Eq. (5) defines the operator D on the domain of
a subspace spanned by {|i, 0⟩}i∈[N ]. It can be checked

that ⟨i, 0|D†D|j, 0⟩ = δij with the Kronecker notation
δij . Thus, D preserves the inner product on the subspace,
which can be extended to a unitary operator on the whole
space. □

Notice that the operator D depends on the input {Tj}
due to its definition in Equation (5). The next lemma
shows that the operator D can be realized by 2n calls of
Oj ’s.

Lemma 5 The operator D can be implemented with 2n
queries given by the oracles Oj defined in Eq. (1) and
unitary operators independent of the input.

Proof. The implementation of the operator D is given by
the following three steps:

|i, 0, 0⟩ O1···On⊗I−−−−−−−→ |i, ci, 0⟩

U−−−−−−−→
√
ci
ν
|i, ci, 0⟩+

√
ν − ci
ν

|i, ci, 1⟩

O†
1···O

†
n⊗I

−−−−−−−→
√
ci
ν
|i, 0, 0⟩+

√
ν − ci
ν

|i, 0, 1⟩ .

The first and third steps can be realized by queries to n
machines. The unitary operator U is defined to satisfy

U |i, c, 0⟩ =
√
c

ν
|i, c, 0⟩+

√
ν − c

ν
|i, c, 1⟩ , (6)

which is independent of the input. It is not hard to see
⟨i, c, 0|U†U|i′, c′, 0⟩ = δ(i,c),(i′,c′). Thus U is a unitary op-
erator. □

Proof of Theorem 2. The initial state of our algorithm
is the uniform superposition state

|π⟩ = 1√
N

∑
i∈[N ]

|i⟩ .

Recall the operator D in Equation (5). By direct calcu-
lation, we have

D |π, 0⟩ = 1√
N

∑
i∈[N ]

(√
ci
ν
|i, 0⟩+

√
ν − ci
ν

|i, 1⟩

)

=

√
M

νN
|ψ, 0⟩+

√
1− M

νN
|ψ⊥, 1⟩ , (7)

where |ψ⟩ is the target state defined in eq. (4), and |ψ⊥, 1⟩
is a pure state orthogonal to |ψ, 0⟩. Applying amplitude
amplification [7] with O(

√
νN/M) calls of D, the final

state |ϕ⟩ satisfies that |⟨ϕ |ψ⟩ | ≥
√
(νN −M)/νN ≥ 1−ε

by the choice of parameters.
□

A.2 Parallel queries

Modifying the algorithm for the sequential model, we
then give a sampling algorithm for the parallel model. We
still adopt the sampling algorithm in Theorem 2 given by
amplitude amplification. The only change is the imple-
mentation of the operator

D : |i, 0⟩ 7−→
√
ci
ν
|i, 0⟩+

√
ν − ci
ν

|i, 1⟩

to reduce the query complexity.

Lemma 6 The operator D can be implemented with four
queries given by the parallel query oracle O defined in
Eq. (3) and unitary operators independent of the input.

Proof. By the proof of Theorem 5, the operator D can be
implemented in three steps. The second step is a unitary
operator U independent of the input. Here, we are going
to realize the first and the third steps with the oracle O.
The first step is |i, 0⟩ 7→ |i, ci⟩. With a ancillary registers
initialized as |0n, 0n, 0n⟩, this step can be completed by

|i, 0, 0n, 0n, 0n⟩ −−−−−→ |i, 0, in, 0n, 1n⟩
I⊗I⊗O−−−−−→ |i, 0, in, ci1ci2 · · · cin, 1n⟩
−−−−−→ |i, ci, in, ci1ci2 · · · cin, 1n⟩
I⊗I⊗O†

−−−−−→ |i, ci, in, 0n, 1n⟩
−−−−−→ |i, ci, 0n, 0n, 0n⟩ .

This procedure only applies O twice. The third step is
just the inverse of the first step, which can be completed
similarly. □

Proof of Theorem 3. Similarly to the proof of Theo-
rem 2, the algorithm begins with the uniform superpo-
sition state |π⟩ and applies amplitude amplification [7]
with O(

√
νN/M) calls of D, obtaining a final state |ψ⟩

satisfying |⟨ϕ|ψ⟩| ≥ 1− ϵ. □

B Optimality

In this section, we prove that our algorithms are opti-
mal. We consider a slightly more general setting where
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each machine may have an independent maximum capac-
ity κj . Thus for each j ∈ [n], it holds maxi∈[N ] cij ≤ κj ≤
ν. For the case where κj is unknown, we can just use ν
for κj .
And the j-th machine maintains quantum oracles Oj

and Ôj with the functionality

Oj |i⟩ |s⟩ = |i⟩ |(s+ cij) mod (ν + 1)⟩ ,

Ôj |i, s, b⟩ =

{
(Oj |i, s⟩)⊗ |b⟩ , b = 1,

|i, s, b⟩ , b = 0.

Theorem 7 (Lower bound for the sequential model)
For any sampling algorithm in an oblivious communi-
cation model with sequential queries, if it satisfies that
F (ρ, ψ) > 9/16, where ρ is the output state and ψ is the
quantum sampling state, then its query complexity is at

least Ω

(∑
j∈[n]

√
κjN
M

)
.

Theorem 8 (Lower bound for the parallel model)
For any sampling algorithm in an oblivious communi-
cation model with parallel queries, if it satisfies that
F (ρ, ψ) > 9/16, where ρ is the output state and ψ is the
quantum sampling state, then its query complexity is at

least Ω

(
maxj∈[n]

√
κjN
M

)
.

B.1 Oblivious queries with measurement

We start by observing that, given an oblivious algo-
rithm with measurements for quantum sampling, one can
construct an algorithm without any measurements that
has the same query complexity. Therefore, we can focus
on algorithms without measurements in the rest of the
paper.

Lemma 9 Let A be an oblivious algorithm with mea-
surements for quantum sampling. Then there exists an
algorithm B without measurements, which has the same
query complexity and fidelity.

It can be proved by the deferred measurement principle
with minor modification. The proof is deferred in Ap-
pendix C.

B.2 Hard inputs

We prove the optimality via the quantum adversary
argument [2]. To this end, we describe the hard inputs
in this subsection.
Let tk be the number of times the oracle Ôk and Ô†

k

is applied; then the query complexity is
∑

k∈[n] tk. We
prove a lower bound for each tk. Notice that for an
oblivious model, the order of queries is independent of
the inputs. Thus, this lower bound applies to all inputs,
which implies that the summation of the individual lower
bounds is a lower bound for the total query complexity.
Let σ be a permutation on [N ] and S ⊆ [N ] be a subset.

We say σ is order-preserving for S if for any r, t ∈ S, it
holds that σ(r) < σ(t) if and only if r < t.

We fix any integer k for the rest of this section.
Given a sequence of multisets T = (T1, T2, · · · , Tn)

and an order-preserving σ for Supp(Tk), we permute
Tk by σ−1 to obtain a new sequence of multisets T ′ =
(T1, T2, · · · , T ′

k, · · · , Tn). Specifically, define

c′ij =

{
cij , j ̸= k,

cσ−1(i)j , j = k,

where cij are the multiplicities for Tj . Notice that c′ij
uniquely define a sequence of {T ′

j}. We write σ̃k(T ) :=
{T ′

j}, and call σ̃k as the σ-induced permutation.

Definition 10 (Hard input condition) Given k ∈
[n], constants α, β ∈ (0, 1], and a sequence of multisets
T = (T1, T2, · · · , Tn) distributed on n machines, then T
satisfies the hard input condition if

Mk ≥ αM, Mk/mk ≥ βκk, max
i∈[N ],j ̸=k

cij+max
i∈[N ]

cik ≤ ν,

(8)
where Mk = |Tk|, mk = |Supp(Tk)| and cij is the multi-
plicity of i in Tj.

Definition 11 (Hard inputs) Given k ∈ [n], con-
stants α, β ∈ (0, 1], and a sequence of multisets
T = (T1, T2, · · · , Tn) satisfying the hard input condition
in Theorem 10, the collection of hard inputs for the k-th
machine is defined as

T := {σ̃k(T ) : σ is order-preserving for Supp(Tk)},

where σ̃k is the σ-induced permutation defined above.

The last condition in Theorem 10 guarantees σ̃k(T ) ∈
T is still a hard input with multiplicities not greater than
ν.

The following lemma gives the size of the collection of
hard inputs.

Lemma 12 For any k ∈ [N ], constants α, β ∈ (0, 1],
and a sequence of multisets T = (T1, T2, · · · , Tn) satis-
fying the hard input condition, let T be the collection
of hard inputs as given in Theorem 11. It holds that
|T | =

(
N
mk

)
with mk := |Supp(Tk)|.

Proof. Let S = Supp(Tk). A claim should be concluded
to calculate the size of T .

For σ1, σ2 that are order-preserving for S, we claim
that σ̃k

1 (T ) = σ̃k
2 (T ) if and only if σ1(i) = σ2(i) for ev-

ery i ∈ S. The sufficiency is obvious. For the necessity,
we prove by contradiction. Suppose σ̃k

1 (T ) = σ̃k
2 (T ) and

σ1(i0) ̸= σ2(i0) for some i0 ∈ S. Consider the multi-
plicity c′σ1(i0)k

for T ′ := σ̃k
1 (T ) = σ̃k

2 (T ), it follows that

ci0k = cσ−1
2 (σ1(i0))k

> 0. Denote σ−1
2 (σ1(i0)) by i1. Since

σ1(i0) ̸= σ2(i0), it holds that i0 ̸= i1. If i0 < i1, then the
order-preserving property of σ1, σ2 implies

|{i > σ1(i0)|c′ik > 0}| = |{i > i0|cik > 0}|
> |{i > i1|cik > 0}|
= |{i > σ2(i1) = σ1(i0)|c′ik > 0}|,

The inequality holds because i1 belongs to the former set
but not the latter set. The first expression and the last
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expression are the same, which leads to a contradiction.
It is similar for the case of i0 > i1.
With this claim, the size |T | equals the count of order-

preserving permutations that act differently on S. Find-
ing such a permutation is equivalent to choosing |S| el-
ements in [N ] as the image set σ(S). Hence, we have
|T | =

(
N
|S|
)
=
(
N
mk

)
, as |S| = |Supp(Tk)| =: mk. □

B.3 Lower bound on sequential queries

We are now ready to derive a lower bound on the query
complexity. As argued above, we can bound each tk in-
dependently. To do so, for every k ∈ [n], we consider a
collection of hard inputs T generated by an input T with
respect to k, as given in Theorem 11.
Given an input T , let |ψT

t ⟩ be the state after t calls to
the oracle. It can be expressed as

|ψT
t ⟩ = UtOtUt−1Ot−1 · · ·U1O1U0 |0⟩ , (9)

where O1, · · · , Ot are either Ôk⊗I or Ô†
k⊗I with identity

operator I on the registers that Ôk does not act on, and
U0, · · · , Ut are unitary operators that are independent of
Tk, the datasets on the k-th machine. We consider an
input T̃ obtained from T by removing the dataset on the
k-th machine. That is, we replace Tk with an empty set,
and the datasets on other machines are the same as those
in T . Notice that, each of the {Oi} is an identity operator
if the dataset on the k-th machine is empty. Thus, for
the dataset T̃ , the state after t calls of the oracle is

|ψt⟩ = UtUt−1 · · ·U1U0 |0⟩ . (10)

We introduce a potential function as follows:

Dt =
1

|T |
∑
T∈T

∥∥|ψT
t ⟩ − |ψt⟩

∥∥2 . (11)

We note that for our collection T , while the state |ψT
t ⟩

depends on the specific choice of T ∈ T , the state |ψt⟩ re-
mains the same regardless of T . To see this, note that for
any pair T, T ′ ∈ T , T and T ′ only differs in Tk. Further,
due to obliviousness of queries, the oracles not involving
Ôk or Ô†

k remain the same for T̃ (and hence for T and
T ′), regardless of Tk. Therefore, any input T and T ′ that
only differs in Tk share the same state |ψt⟩.
To elaborate our proof ideas for the lower bound, we

first note that |ψT
tk
⟩ is the final state of the algorithm, and

it must hold that the state of the first register in |ψT
tk
⟩

approximates the goal state |ψ⟩. Informally speaking,
since the goal state |ψ⟩ also depends on Tk, which is
different for different T ∈ T , any sampling algorithm
must bring a large enough difference between |ψT

tk
⟩ and

|ψtk⟩ to get |ψ⟩ for every T ∈ T . Through this intuition,
uniformly picking a T ∈ T , we consider the expectation

of the variation Dt = ET

[∥∥|ψT
t ⟩ − |ψt⟩

∥∥2].
The lower bound on tk can be obtained by the following

two lemmas.

Lemma 13 Let T be the collection of hard inputs for the
k-th machine as in Theorem 11. Let α, β be the constants

defined in Theorem 11. Suppose the fidelity between the
output state ρ and the quantum sampling state ψ defined
in Eq. (4) satisfies F (ρ, ψ) ≥ (1− ϵ)2 > 9/16 with ϵ ≥ 0.
If M < β2κkN/16 and α > 4ϵ, then the expectation of
the variation is bounded by Dt ≥ CMk

M for some constant
C dependent to α and ϵ.

Lemma 14 Let T be the collection of hard inputs for the
k-th machine as in Theorem 11. For t ≤ tk, it holds that
Dtk ≤ 4mk

N t2.

With these two lemmas, we are ready to show a lower
bound for the query complexity. Proof of theorem 7.
We start by showing that for each j ∈ [n], tj =

Ω
(√

κjN/M
)
. Fixing a k ∈ [n], for a constant β ∈ (0, 1],

we split the proof into two cases of M ≥ β2/16κkN and
M < β2κkN/16 .

ForM ≥ β2κkN/16, since the model is oblivious, noth-
ing about Tk, except κk, is known for the coordinator be-
fore the end of the algorithm. If κk = 0, clearly we have
tk ≥ 0 . If κk > 0, then Tk is non-empty, and we have to
invoke the oracle corresponding to the k-th machine to
get information about Tk. Thus, the oracle Ôk should be
applied at least once in principle when κk > 0. In this
way, it holds that tk ≥ 1 ≥ (β/4) ·

√
κkN/M .

For M < β2κkN/16, we consider an input T ′ for k
with constants α, β as in Theorem 11. Let α ∈ (4ϵ, 1].
Since M < β2κkN/16, we can put all of the elements to
the k-th machine to construct an input T satisfying the
hard input conditions in eq. (8). Thus, a hard input T
with the same {κj} must exist. By Lemma 13, it follows
that Dtk ≥ CMk/M for T generated by T . Combining
Lemma 14 with t = tk, we have 4mkt

2
k/N ≥ CMk/M .

Recall thatMk/mk ≥ βκk for hard input by Theorem 11,
it holds that

tk ≥
√
C

4

βκkN

M
. (12)

Combining these two cases, we have tk ≥ C ′
√
κkN/M

for some positive constant C ′. Since k is arbitrary, this
lower bound holds for tj for every j ∈ [n]. By oblivious-
ness of the queries, the value of tj is invariant across every
input with the same parameters N,M, κj , n, so we can
directly add them together to conclude that the query
complexity is

∑
j∈[n]

tj ≥ C ′
∑
j∈[n]

√
κjN

M
= Ω

∑
j∈[n]

√
κjN

M

 .

□

B.3.1 Proof of Lemma 13

To simplify the expression of the fidelity in the condi-
tion, we introduce another pure state |ψ̃T ⟩.

Lemma 15 Let X and Y be the output register and the
working register of the coordinator, respectively. Let ρ =
TrY [|ψT

tk
⟩ ⟨ψT

tk
|] be the output state. If dimX ≤ dimY,
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then F (ρ, ψ) = | ⟨ψT
tk
|ψ̃T ⟩ |2 for

|ψ̃T ⟩ = 1√
M

∑
i∈[N ]

√
ci |i⟩ |ξTi ⟩ ∈ X ⊗ Y (13)

with some |ξTi ⟩ ∈ Y.

Proof. Since |ψT
tk
⟩ is a purification of ρ, by Uhlmann’s

theorem, the fidelity F (ρ, ψ) = max|v⟩∈X⊗Y | ⟨ψT
tk

| v⟩ |2

with |v⟩ satisfying TrY [|v⟩ ⟨v|] = |ψ⟩ ⟨ψ|. Let |ψ̃T ⟩ be
the state |v⟩ that makes the inner product attain the
maximum. Suppose |ψ̃T ⟩ =

∑
i∈[N ] κi |i⟩ |ξTi ⟩. Since

TrY [|ψ̃T ⟩ ⟨ψ̃T |] = |ψ⟩ ⟨ψ|, it must hold that |κi| =√
ci/M . Moving the phase of κi to the phase of |ξTi ⟩,

we can suppose that κi =
√
ci/M , which leads to the

lemma. □

Without loss of generality, we suppose that dimY is
sufficiently large. Then by Lemma 15, the condition
F (ρ, ψ) ≥ (1 − ϵ)2 of Lemma 13 implies | ⟨ψT

tk
| ψ̃T ⟩ | ≥

1− ϵ.
To obtain the lower bound for Dtk given in Lemma 13,

we divide Dtk into two parts:

Etk =
1

|T |
∑
T∈T

∥∥∥|ψT
tk
⟩ − |ψ̃T ⟩

∥∥∥2 ,
Ftk =

1

|T |
∑
T∈T

∥∥∥|ψtk⟩ − |ψ̃T ⟩
∥∥∥2 ,

by a triangle inequality as follows:

Dtk =
1

|T |
∑
T∈T

∥∥∥|ψT
tk
⟩ − |ψ̃T ⟩+ |ψ̃T ⟩ − |ψtk⟩

∥∥∥2
≥ Etk + Ftk − 2

|T |
∑
T∈T

∥∥∥|ψT
tk
⟩ − |ψ̃T ⟩

∥∥∥∥∥∥|ψ̃T ⟩ − |ψtk⟩
∥∥∥

≥ Etk + Ftk − 2
√
Etk

√
Ftk

=
(√

Ftk −
√
Etk

)2
. (14)

Hence, we should look for a lower bound for
√
Ftk −√

Etk . In the following part, we upper bound Etk in
Lemma 16 and lower bound Ftk in Lemma 18.

Lemma 16 Suppose M ≤ β2κkN/16 and T is a collec-
tion of hard inputs for k ∈ [n] as in Theorem 11. If the
final state |ψT

tk
⟩ satisfies that | ⟨ψT

tk
| ψ̃T ⟩ | ≥ 1− ϵ for ev-

ery T ∈ T , with |ψ̃T ⟩ given by eq. (13), then it holds that
Etk ≤ 2ϵ.

Proof. Since the change of the global phase does not affect
the quantum state, without loss of generality, we can

assume ⟨ψT
tk

| ψ̃T ⟩ =
∣∣∣⟨ψT

tk
| ψ̃T ⟩

∣∣∣ ≥ 1− ϵ. Therefore,

∥∥∥|ψT
tk
⟩ − |ψ̃T ⟩

∥∥∥2 = 2− 2 ⟨ψT
tk

| ψ̃T ⟩ ≤ 2ϵ.

It follows that Etk ≤ 2ϵ. □

To bound Ftk , we need the following proposition:

Proposition 17 Let T be a collection of hard inputs for
k ∈ [n] with constants α, β, then

∑
T∈T

∣∣∣⟨ψtk | ψ̃T ⟩
∣∣∣ ≤

√∑
j ̸=kMj

M
|T |+

√
κk
MN

mk|T |,

with |ψtk⟩ defined by Equation (10) and |ψ̃T ⟩ given by
Equation (13).

Proof. Let Z be the space of the output register and work-
ing register. Consider an embedding map Z ↪→ Z ⊗ Cn

defined as |φ⟩ 7→ |φ⟩ |0⟩, where Cn is the n-dimensional
complex Hilbert space. Define a linear transform A on
Z ⊗ Cn satisfying

A |ψ̃T , 0⟩ = A

 1√
M

∑
i∈[N ]

√
ci |i, ξTi , 0⟩


=

1√
M

∑
i∈[N ]

∑
j∈[n]

√
cij |i, ξTi , j⟩ , (15)

and

A

 1√
Mk

∑
i∈[N ]

√
cik |i, ξTi ⟩ ⊗

(√
cik
ci

|0⟩+
√
1− cik

ci
|1⟩
)

=
1√
Mk

∑
i∈[N ]

√
cik |i, ξTi , k⟩ . (16)

Since cik ≤ ci, A is well-defined. By direct calculation,
it can be verified that the definition of A preserves the
inner product, so A can be supposed as a unitary [18].
By Equation (15), we have∑

T∈T

∣∣∣⟨ψtk |ψ̃T ⟩
∣∣∣

=
∑
T∈T

∣∣∣⟨ψtk , 0|ψ̃T , 0⟩
∣∣∣

=
∑
T∈T

∣∣∣∣∣∣⟨ψtk , 0|A† 1√
M

∑
i∈[N ]

∑
j∈[n]

√
cij |i, ξTi , j⟩

∣∣∣∣∣∣
≤ 1√

M

∑
T∈T

∣∣∣∣∣∣
∑
i∈[N ]

∑
j ̸=k

√
cij ⟨ψtk , 0|A† |i, ξTi , j⟩

∣∣∣∣∣∣
+

1√
M

∑
T∈T

∣∣∣∣∣∣
∑
i∈[N ]

√
cik ⟨ψtk , 0|A† |i, ξTi , k⟩

∣∣∣∣∣∣ . (17)

We then estimate the upper bound for these two terms
in Equation (17) separately.

For the first term, note that Mj =
∑

i∈[N ] cij , by
Cauchy-Schwartz inequality,

1√
M

∑
T∈T

∣∣∣∣∣∣
∑
i∈[N ]

∑
j ̸=k

√
cij ⟨ψtk , 0|A† |i, ξTi , j⟩

∣∣∣∣∣∣
≤ 1√

M

∑
T∈T

√∑
j ̸=k

Mj

√∑
i∈[N ]

∑
j ̸=k

∣∣⟨ψtk , 0|A† |i, ξTi , j⟩
∣∣2
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Since A† is unitary, {A† |i, ξTi , j⟩}i∈[N ],j∈[n] is an or-
thonormal system. Thus, the last square root is not
greater than the norm of a unit vector |ψtk , 0⟩. So√∑

j ̸=kMj/M · |T | is an upper bound for the first term.

For the second term in Equation (17), by Equation (16)
and the definition of the embedding map, we have

1√
M

∑
T∈T

∣∣∣∣∣∣
∑
i∈[N ]

√
cik ⟨ψtk , 0|A† |i, ξTi , k⟩

∣∣∣∣∣∣
=

1√
M

∑
T∈T

∣∣∣∣∣∣
∑
i∈[N ]

√
cik
ci

√
cik ⟨ψtk |i, ξTi ⟩

∣∣∣∣∣∣
≤ 1√

M

∑
T∈T

∑
i∈[N ]

√
cik
∣∣⟨ψtk |i, ξTi ⟩

∣∣ .
Recall that κk ≥ cik and cik = 0 for i /∈
Tk, so the last expression is not greater than√

κk

M

∑
T∈T

∑
i∈Tk

∣∣⟨ψtk |i, ξTi ⟩
∣∣. Changing the summa-

tion order, we come to√
κk
M

∑
T∈T

∑
i∈Tk

∣∣⟨ψtk |i, ξTi ⟩
∣∣

=

√
κk
M

∑
i∈[N ]

∑
T∈T ,i∈Tk

∣∣⟨ψtk |i, ξTi ⟩
∣∣

≤
√
κk
M

∑
i∈[N ]

∑
T∈T ,i∈Tk

|⟨ψtk |i, ιi⟩| ,

where ”
∑

T∈T ,i∈Tk

” means summation for all T ∈ T

satisfying i ∈ Tk, and |ιi⟩ independent to T satisfies
| ⟨ψtk |i, ιi⟩ | = max∥|ξ⟩∥=1 | ⟨ψtk |i, ξ⟩ |. As |ψtk⟩ is also in-
dependent of the choice of the input T ∈ T , the second
summation just brings a multiplier, which is the count
of T ∈ T satisfying i ∈ Tk. Since the definition of T
is to choose mk elements in [N ] and assign them non-
zero multiplicities, the count of the choices is

(
N−1
mk−1

)
as

i ∈ Tk means that i has to been chosen. Then by Cauchy-
Schwartz inequality and Lemma 12,√

κk
M

∑
i∈[N ]

∑
T∈T ,i∈Tk

|⟨ψtk |i, ιi⟩|

=

√
κk
M

(
N − 1

mk − 1

) ∑
i∈[N ]

|⟨ψtk |i, ιi⟩| (18)

≤
√
κk
M

mk

N

(
N

mk

)√
N

√∑
i∈[N ]

|⟨ψtk |i, ιi⟩|
2

≤
√

κk
MN

mk|T |.

Combining the above upper bounds for the two terms,
we can obtain the proposition immediately. □

Lemma 18 Let T be a collection generated by a hard
input for k ∈ [n] with constant β. If M ≤ β2κkN/16,
then it holds that Ftk ≥Mk/2M .

Proof. Noting that
∥∥∥|ψtk⟩ − |ψ̃T ⟩

∥∥∥2 ≥ 2 − 2
∣∣∣⟨ψtk |ψ̃T ⟩

∣∣∣,
we have

Ftk ≥ 2− 2

|T |
∑
T∈T

∣∣∣⟨ψtk |ψ̃T ⟩
∣∣∣ .

A bound for the summation is given by Proposition 17.
Through its conclusion, with M =

∑
j∈[n]Mj , we obtain

a lower bound for Ftk :

Ftk ≥ 2− 2

√∑
j ̸=kMj

M
− 2

√
κk
MN

mk

=
2

1 +

√∑
j ̸=k Mj

M

Mk

M
− 2

√
κk
MN

mk

≥ Mk

M
− 2

√
κk
MN

mk.

Recalling Mk

mk
≥ βκk in the hard input conditions, and

the condition of M ≤ β2

16κkN , we can bound the second
term with√

κk
MN

·mk =

√
M

κkN
· κkmk

M
≤
√
β2

16
· Mk

βM
=Mk/4M.

Thus, Ft ≥Mk/2M . □

To sum up, under the conditions of Lemma 13, by
Lemma 16 and Lemma 18, it follows that Etk ≤ 2ϵ, Ftk ≥
Mk

2M . Combining them, we immediately obtain a lower

bound for
√
Ftk −

√
Etk :

√
Ft −

√
Et ≥

√
Mk

2M
−
√
2ϵ.

The definition of hard input implies Mk ≥ αM . Since
we have chosen α > 4ϵ as the condition of Lemma 13,
it holds that ϵ ≤ C0Mk/M for some constant C0 < 1/4.
With the inequality (14), the lower bound for Dt can be
obtained by

Dt ≥
(√

Ft −
√
Et

)2
≥

(√
Mk

2M
−
√

2C0
Mk

M

)2

= C
Mk

M

with constant C = (1/
√
2 −

√
2C0)

2. Lemma 13 follows
from this.
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B.3.2 Proof of Lemma 14

Since unitaries preserve norm, by the Cauchy-Schwartz
inequality,

Dt+1 =
1

|T |
∑
T∈T

∥∥Ut+1

(
Ot+1 |ψT

t ⟩ − |ψt⟩
)∥∥2

=
1

|T |
∑
T∈T

∥∥Ot+1 |ψT
t ⟩ − |ψt⟩

∥∥2
=

1

|T |
∑
T∈T

∥∥Ot+1(|ψT
t ⟩ − |ψt⟩) + (Ot+1 − I) |ψt⟩

∥∥2
≤ 1

|T |
∑
T∈T

∥∥|ψT
t ⟩ − |ψt⟩

∥∥2
+

2

|T |
∑
T∈T

∥∥|ψT
t ⟩ − |ψt⟩

∥∥ ∥(Ot+1 − I) |ψt⟩∥

+
1

|T |
∑
T∈T

∥(Ot+1 − I) |ψt⟩∥2

≤ Dt + 2
√
Dt

[
1

|T |
∑
T∈T

∥(Ot+1 − I) |ψt⟩∥2
]1/2

+
1

|T |
∑
T∈T

∥(Ot+1 − I) |ψt⟩∥2 . (19)

It remains to prove an upper bound for
1

|T |
∑

T∈T ∥(Ot+1 − I) |ψt⟩∥2.

Proposition 19 For every collection T generated by a
hard input for k, it holds that

1

|T |
∑
T∈T

∥(Ot+1 − I) |ψt⟩∥2 ≤ 4
mk

N
.

Proof. Since Ot+1 is either Ôk ⊗ I or Ô†
k ⊗ I, by the

definition of Ôk, we have

(Ot+1 − I) |ψt⟩

=
∑
i∈Tk

ν∑
s=0

∑
l

|i, s, 1, l⟩ (⟨i, s⊕±cik, 1, l| − ⟨i, s, 1, l|) |ψt⟩

with x⊕ y := (x+ y) mod (ν + 1).
Notice that for two complex numbers a, b, it holds that

|a− b|2 ≤ 2(|a|2 + |b|2). Hence,∑
T∈T

∥(Ot+1 − I) |ψt⟩∥2

=
∑
T∈T

∑
i∈Tk

ν∑
s=0

∑
l

|(⟨i, s⊕±cik, 1, l| − ⟨i, s, 1, l|) |ψt⟩|2

≤ 2
∑
T∈T

∑
i∈Tk

ν∑
s=0

∑
l

| ⟨i, s⊕±cik, 1, l|ψt⟩ |2

+ 2
∑
T∈T

∑
i∈Tk

ν∑
s=0

∑
l

| ⟨i, s, 1, l|ψt⟩ |2

= 4
∑
T∈T

∑
i∈Tk

ν∑
s=0

∑
l

| ⟨i, s, 1, l|ψt⟩ |2.

Similarly to the deduction of Equation (18), through
changing the summation order, since |ψt⟩ is invariant
across every T ∈ T , and the count of T ∈ T satisfying
i ∈ Tk is

(
N−1
mk−1

)
, it can be concluded that

4
∑
T∈T

∑
i∈Tk

ν∑
s=0

∑
l

| ⟨i, s, 1, l|ψt⟩ |2

= 4
ν∑

s=0

∑
l

∑
i∈[N ]

∑
T∈T ,i∈Tk

| ⟨i, s, 1, l|ψt⟩ |2

= 4

(
N − 1

mk − 1

) ν∑
s=0

∑
l

∑
i∈[N ]

| ⟨i, s, 1, l|ψt⟩ |2

≤ 4

(
N − 1

mk − 1

)
= 4

mk

N

(
N

mk

)
.

The proposition can be obtained immediately from this
with Theorem 12. □

By Proposition 19 and the inequality (19), we have the
relationship

Dt+1 ≤ Dt + 4

√
mk

N
Dt + 4

mk

N
=

(√
Dt + 2

√
mk

N

)2

.

This implies the upper bounds for
√
Dt form an arith-

metic progression. Since D0 = 0, we can obtain that

Dt ≤
(
2
√

mk

N t
)2

= 4mk

N t2.

B.4 Lower Bound on parallel queries

This subsection proves a lower bound on the query
complexity for the parallel model. Similarly to the
method for the sequential model, for each k ∈ [n], we con-
sider the number of oracle calls required for hard inputs
for k, respectively. Suppose the lower bound obtained by
considering the hard inputs for k is t̂k, then maxj∈[n] t̂j
is a lower bound for the query complexity. Since the al-
gorithm has no measurement, for any input T , the state
after t oracles can be written as

|ψT
t ⟩ = UtOtUt−1Ot−1 · · ·U1O1U0 |0⟩ ,

where O1, · · · , Ot are either O ⊗ I or O† ⊗ I with iden-
tity operator I on the registers that O doesn’t act on,
and U0, · · · , Ut are unitary operators that are indepen-
dent of the input. We also consider the input T̃ obtained
from T by removing the dataset on the k-th machine,
and the state with input T̃ . Suppose the parallel oracle
corresponding to T̃ is Õ, then the state after t calls of
this oracle is

|ψt⟩ = UtÕtUt−1Õt−1 · · ·U1Õ1U0 |0⟩

where Õ1, · · · , Õt are either Õ ⊗ I or Õ† ⊗ I
With the above assumptions, we can conclude two lem-

mas for the parallel model similar to Lemma 13 and
Lemma 14 for the sequential model.

Lemma 20 Let T be the hard input for the k-th machine
as in Theorem 11. Let α, β be the constants defined in
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Theorem 11. Suppose the fidelity between the output state
ρ and ψ satisfies F (ρ, ψ) ≥ (1 − ϵ)2 > 9/16 with ϵ ≥ 0.

If M < β2

16κkN and α > 4ϵ, then

ET

[∥∥∥|ψT
t̂k
⟩ − |ψt̂k

⟩
∥∥∥2] ≥ C

Mk

M

for some constant C dependent to α and ϵ.

Proof. Noticing the proof of Lemma 13 is independent of
the form of the oracle, it suffices to show it also holds for
the parallel queries. The lemma is then obtained imme-
diately. □

Lemma 21 For every collection T generated by a
hard input for k and t ≤ t̂k, it holds that

ET

[∥∥|ψT
t ⟩ − |ψt⟩

∥∥2] ≤ 4mk

N t2 within the parallel model.

Proof. The proof of Lemma 14 depends on the form of the
oracle. But, specifically, the only part of it that depends
on the oracle is the proof of Proposition 19. Hence, we
only need to prove the conclusion of this proposition∑

T∈T

∥∥∥(Ot+1 − Õt+1

)
|ψt⟩

∥∥∥2 ≤ 4
mk

N

(
N

mk

)
within the parallel model.
By the definition of O and Õ, it follows that

(Ot+1 − Õt+1) |ψt⟩

=
∑

ī:ik∈Tk

∑
s̄∈{0,1,··· ,ν}n

∑
b∈{0,1}n

∑
l

|̄i, s̄, b, l⟩ ·

(
⟨̄i, s̄, b, l|Ot+1 − ⟨̄i, s̄, b, l| Õt+1

)
|ψt⟩ .

It suffices to show∑
T∈T

∥∥∥(Ot+1 − Õt+1

)
|ψt⟩

∥∥∥2
≤ 4

∑
T∈T

∑
ī:ik∈Tk

∑
s̄∈{0,1,··· ,ν}n

∑
b∈{0,1}n

∑
l

| ⟨̄i, s̄, b, l|ψt⟩ |2.

Similarly to the proof of Proposition 19, changing the or-
der of the summation, we can obtain the same expression
as Proposition 19. This gives the lemma. □

Proof of Theorem 8. Similarly to the proof of The-
orem 7, by the above two lemmas, we can conclude

that t̂k ≥ C ′
√

κkN
M for some constant C ′. Hence,

the query complexity is not less than maxj∈[n] t̂j =

Ω

(
maxj∈[n]

√
κjN
M

)
. □

C Proof of Lemma 9

By the assumption of the oblivious algorithm, the or-
der of the oracles that A makes is predetermined and
independent of the input, which, therefore, is also inde-
pendent of the outcomes of the measurements. Thus, the

measurement can be deferred to the end of the algorithm.
Without loss of generality, it can be assumed that there
is only one projective measurement [18].

Suppose this projective measurement is described by
the projection operators {Πi}Ni=1. The algorithm now
implements V and then follows a projective measurement.
Suppose the state before this measurement is |sσ⟩. Then
the output state is

ρ = TrY

[
N∑
i=1

Πi |sσ⟩ ⟨sσ|Πi

]
,

where Y is the non-output registers. The fidelity for A is

F (ρ, ψ) =

N∑
i=1

∑
η

|(⟨ψ| ⊗ ⟨η|)Πi |sσ⟩ |2,

where {|η⟩} is a basis of Y.
To give a new algorithm B, we use an ancillary bit and

choose a unitary transform U such that

U : |s, 0⟩ 7−→
N∑
i=1

√
pi |si, i⟩

with an arbitrary state |s⟩, the coefficients pi = ⟨s|Πi|s⟩
and the normalized projections |si⟩ = Πi |s⟩ /

√
pi. It

can be checked that this definition preserves the inner
product, due to ΠiΠj = δij . Hence, U is well-defined.
Let the new algorithm be B = U(V ⊗ I) with initial state
|ζ⟩ |0⟩, where |ζ⟩ is the initial state of the algorithm A.
Since the queries are not changed, the query complexity
of B is the same as A’s.

Finally, we show the fidelity for B is still the same. The
final state of B is

∑N
i=1(Πi |sσ⟩)⊗|i⟩. Thus, if the output

state is ρ′, then the fidelity

F (ρ′, ψ) =
∑
η

N∑
l=0

| ⟨ψ, η, l|
N∑
i=1

(Πi |sσ⟩)⊗ |i⟩ |2

=
∑
η

N∑
l=1

| ⟨ψ, η|Πl |sσ⟩ |2

= F (ρ, ψ).
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Abstract. We introduce a fault-tolerant hybrid quantum computation by taking the advantages of both
discrete variable (DV) and continuous variable (CV) systems. Particularly, we define a CV-DV hybrid qubit
with bosonic cat-code and single photon and devise hybrid fusion schemes as building blocks for scalable
architectures, which are implementable in current photonic platforms. The deterministic nature of the
hybrid fusion enables a resource-efficient construction of cluster states, and further single photon loss can
be corrected by implementing the hybrid fusion. We design fault-tolerant architectures by concatenating
hybrid qubits and an outer DV quantum error correction code such as topological codes, exploring their
potential merits in developing scalable quantum computation. We numerically simulate the fault-tolerance
of our hybrid scheme, showing that it is at least an order of magnitude more resource-efficient over all
previous proposals in photonic platforms. Moreover, it is demonstrated that our scheme allows to achieve
at least 4-times higher loss thresholds compared to existing hybrid and CV approaches. We stress that
our scheme is not limited to all-photonic platforms but can be implementable in other hybrid platforms
including superconducting and trapped-ion systems, which allows us to find various efficient routes towards
fault-tolerant quantum computing.

Keywords: Photonic hybrid quantum computation, Quantum error correction, Bosonic code

1 Hybrid quantum computation

Towards fully fault-tolerant quantum computing, vari-
ous physical platforms such as photons, superconductors,
trapped ions, nitrogen-vacancies in diamonds have been
explored and considered as the building block for scalable
quantum systems. Irrespective of the physical platforms,
information is encoded into qubits defined with the basis
either in DV or CV degrees of freedom, each of which
has its own pros and cons. In recent years, hybrid ap-
proaches integrating different physical degrees of freedom
to overcome the limitations of each platform have opened
a new paradigm in quantum technologies. Hybridization
may be quite a natural direction for scalability, since each
platform has its own advantage depending on the circum-
stances and it is frequently required to convert quantum
information between different platforms. Particularly,
various CV-DV hybrid protocols have been recently pro-
posed and experimentally demonstrated to combine their
advantages in quantum computing and quantum commu-
nications.
Meanwhile, qubits encounter errors due to the interac-

tion with environments and imperfect operations, which
accumulate and become more severe as increasing the size
of the system. Quantum error correction (QEC) provides
systematic ways to protect qubits from dominant errors
and allows to achieve fault-tolerance in building scalable
quantum architectures. In QEC, information is typically
encoded in a Hilbert space larger than a qubit space so

∗swleego@gmail.com

that any error can be detected if it brings the encoded
state out of the logical code space. By restoring the state
back to the code space, errors can be corrected with-
out compromising the encoding of logical information.
While multiple physical qubits of finite-dimensional sys-
tems are typically used to construct single logical qubit in
DV codes, a bosonic system characterized by an infinite-
dimensional Hilbert space can provide a large number of
degrees of freedom to encode a logical qubit in such a
CV approach. Several bosonic error correction codes, in
which a qubit is defined in a single oscillator, have been
proposed such as GKP, binomial and cat code.

In this work, we introduce a hybrid quantum comput-
ing scheme by taking the advantages of both CV and DV
systems toward fault-tolerant quantum computation [1].
In particular, we define a hybrid qubit by employing sin-
gle photon and cat-code encoded state, which we call the
hybrid cat-code (H-cat) qubit. The basis of H-cat qubit
can then be defined as{

|0L⟩ = |+⟩|C+
α ⟩, |1L⟩ = |−⟩|C+

iα⟩
}
, (1)

where the first mode |±⟩ represents the polarization of
single photon state and the second mode represents even
cat states |C+

α ⟩ = N+
C (|α⟩+|−α⟩) with the normalization

factor N+
C . Thanks to the cat-code encoded in the CV

part, the effect of loss is readily correctable even without
multi-qubit encoding [2, 3], while its logical basis is in-
herently orthogonal due to the DV part in contrast with
other CV qubits. We also consider another type of hybrid
qubits [4] for comparison, composed of single photon and
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Figure 1: (a) Illustration of hybrid qubit. In our H-cat
qubit, DV(red) and CV(blue) qubits are encoded, respec-
tively, in the polarization degree of freedom and in the
even cat states, while CV qubit is encoded in the coher-
ent states(light blue) in the H-coh qubit. (b) Genera-
tion scheme of a H-cat pair. Red circles represent DV
qubits and its polarization bases are represented as ar-
rows. Blue circles represent cat-code qubits using four
components of coherent states and light blue circles rep-
resent coherent-state qubits using two components of co-
herent states. (c) The plot represents the error rates PX

and PZ for the fusion of hybrid qubits under loss rate
η = 2× 10−3. The orange curve is for H-coh scheme and
the blue(purple) curve is for H-cat scheme employing HA
(SDR) scheme. Numbers indicated at each point repre-
sent the corresponding amplitude α. Points marked as
stars represent the optimal encoding amplitude α which
achieves the highest loss threshold.

coherent state in the basis {|+⟩|α⟩, |−⟩| − α⟩}, which we
call here the hybrid coherent-state (H-coh) qubit. The
hybrid qubits, i.e., H-cat and H-coh, are illustrated in
Fig. 1(a).
The hybrid qubits can be generated in current photonic

platforms. CV-DV hybrid entangled states have been
experimentally demonstrated in optical systems [5, 6]
and successfully applied to quantum computing and com-
munications in numerous experiments. In those experi-
ments, the generated hybrid entangled states can be di-
rectly used as the H-coh qubit by simple modifications.
We can also generate the H-cat qubit by using H-coh
qubits by extending two-component cat states into four-
component using |α⟩, |iα⟩, | − α⟩, and | − iα⟩ in CV
part, using the scheme in Fig. 1(b). We stress that such
CV-DV hybrid entanglement can be generated efficiently
also in other platforms including superconducting and
trapped-ion systems, which enables that our approach
can be more generally implemented in any CV-DV hy-
brid platforms for quantum computing.

2 Hybrid fusion

We now introduce a hybrid fusion, i.e., a CV-DV hybrid
entangling operation, which is performed by a joint work
of Bell-state measurements on CV and DV qubits. A fu-
sion measurement is typically applied on entangled states
to generate larger size entangled states such as cluster
states as prerequisites for measurement-based quantum
computation (MBQC), or also enables universal gate op-
erations via teleportation in circuit-based quantum com-

putation. The hybrid fusion can be implemented by ap-
plying CV and DV Bell-state measurements separately,
denoted here as BC and BD, respectively. Its logical out-
come can then be discriminated by combining the results
of BC and BD.

BC can be implemented by linear optics and photon-
number-resolving (PNR) detectors. Two schemes were
recently proposed independently in Ref. [7] and Ref. [8],
which we respectively refer to HA and SDR scheme. Due
to the nonorthogonality of CV basis, BC yields the X
error rate pX . In our hybrid scheme, we can remove the
ambiguity by BD, and thus the X error rate for hybrid
fusion is reduced by half, that is, PX = pX/2. In the
photon polarization encoding, BD can be chosen as a so
called type II fusion that distinguishes two Bell states out
of four with linear optics. Remarkably, a hybrid fusion is
thus able to distinguish hybrid Bell states with certainty
even if only one of BC and BD succeeds.

Moreover, in the presence of photon loss, BC can de-
tect a single photon loss in CV part through detecting
the parity change of the cat state to odd, i.e., when a
total odd number of photons is detected. If two or more
photons are lost, Z errors remain undetected in the fu-
sion measurement outcome, yielding the error rate PZ .
In Fig. 1(c), we present the X and Z error rates un-
der loss for the hybrid fusions. Specifically, PX and PZ

are plotted for the fusions of H-cat qubits with HA and
SDR, and H-coh qubit used in Ref. [4, 9] by varying the
amplitude α under a fixed loss rate η = 2 × 10−3. It
shows that the effect of loss can be substantially sup-
pressed in the hybrid fusion of H-cat compared to H-coh
thanks to the bosonic cat-code error correction in the
CV part. As common tendencies, PX error can be expo-
nentially suppressed as α grows because the basis of CV
part are more distinguishable, while PZ only increases
linearly with |α|2 because its state becomes more fragile
against photon loss. The result clearly shows that PZ is
suppressed by employing the cat-code error correction.
By taking larger encoding amplitude α, we can always
achieve much smaller PX and PZ in the fusions of H-cat
qubits than H-coh qubits.

3 Fault-tolerance analysis

Let us now design quantum computing architectures
based on the hybrid qubits. We construct a Raussendorf-
Harrington-Goyal (RHG) lattice embedding the surface
code, by merging 3-qubit micro cluster states using hy-
brid fusions, as shown in Fig. 2(a). In the RHG lattice,
errors that occur in the hybrid fusion propagate to ad-
jacent qubits, so that a corresponding error rate is as-
signed to each individual qubit on the lattice. Based
on assigned error rates, we can find the error pattern
matching the syndrome measurement using the weighted
minimum-weight perfect matching, and then count re-
maining error chains connecting two primal boundaries
and determine whether a logical error occurs. We per-
form a Monte Carlo simulation to find the logical error
rate pL for different code distances d, and then investigate
whether the errors are accumulated, i.e., pL increases or
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Figure 2: (a) A schematic to build a RHG lattice by hybrid qubits. 3-qubit micro H-cluster states are merged using
hybrid fusions. (b) Loss thresholds obtained by simulation in RHG lattice with different schemes. Points marked
as stars represent the highest loss threshold. The inset represents the comparison of optimal thresholds including
previous approaches with Steane code. (c) Comparison of the resource overheads of existing photonic quantum
computing proposals to achieve the logical error rate pL = 10−6.

not as increasing d. The fault-tolerance noise thresholds
can then be determined as the maximum physical error
rates by which the logical errors are not accumulated with
d.
We present the loss thresholds of photonic MBQC

based on H-cat and H-coh qubits in Fig. 2(b) by changing
the encoding amplitude α in CV part. It shows that hy-
brid MBQC with H-cat qubits achieves the highest loss
thresholds over other approaches including MBQC with
H-coh qubits as well as all hybrid and CV approach in
circuit-based model. The loss threshold of quantum com-
puting with H-cat 0.89% is about 4-times larger than the
maximum 0.22% estimated with H-coh [9].
To investigate the resource overhead, we estimate the

number of unit resources referred to as NpL
to achieves

the target logical error rate pL. In Fig. 2(c), we present
the resource cost estimation of the proposed hybrid quan-
tum computing schemes with H-cat and H-coh qubits,
also comparing with existing MBQC photonic schemes.
For hybrid schemes, we choose H-coh pair as a unit re-
source for fair comparison with the resource estimation
in previous works [4, 9]. As a result, we can estimate
that the resource overhead for the hybrid MBQC with
H-cat qubits is N10−6 = 2.7×104, which is 13 times more
efficient compared to the overhead for the MBQC with
H-coh qubits N10−6 = 3.6× 105. Remarkably, employing
H-cat qubits can reduce an order of magnitude resource
cost compared to the approach with H-coh qubits. It
also shows that our hybrid approach is at least an order
of magnitude more resource-efficient compared to all the
other photonic proposals with respect to the cost of the
resources, while the direct comparison is not straightfor-
ward due to the different types of resource states. The
improved resource efficiency is achieved in our scheme
thanks to the deterministic nature of the proposed hy-
brid fusion and the loss-tolerance of the resource states

by inherently encoded bosonic cat-code.
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Entanglement witnesses and nonlocal maximum confidences
in multipartite quantum state discrimination
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Abstract. We consider multipartite quantum state discrimination and provide a specific relation between
the properties of entanglement witness and quantum nonlocality inherent in the confidence of measure-
ments. We first provide the definition of the confidence of measurements as well as its useful properties
for various types of multipartite measurements. We show that globally maximum confidence that can-
not be achieved by local operations and classical communication strongly depends on the existence of
entanglement witness. We also provide conditions for an upper bound on maximum of locally-achievable
confidences. Finally, we establish a method in terms of entanglement witness to construct quantum state
ensemble with nonlocal maximum confidences.
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Quantum nonlocality is an important feature of mul-
tipartite quantum systems without any classical coun-
terpart [1–3]. In discriminating multipartite quantum
states, nonlocal phenomenon occurs when a globally pos-
sible discrimination strategy cannot be realized only by
local operations and classical communication(LOCC) [4].
The first nonlocality of quantum state discrimination
was shown through orthogonal quantum states with lo-
cal indistinguishability [5–7]. In general, orthogonal
quantum states can be perfectly discriminated by us-
ing an appropriate measurement, whereas it is not true
for nonorthogonal quantum states [8–11]. Nonlocality of
quantum state discrimination can also occurs in discrim-
inating nonorthogonal quantum states; there exist some
nonorthogonal quantum states where the globally opti-
mal discrimination cannot be realized using only LOCC
measurements [12–15].

The phenomenon of nonlocality also arises in the cor-
relation distributed in a multipartite quantum system.
Quantum entanglement is a nonlocal correlation that
cannot be created only by LOCC [1]. The nonlocal na-
ture of entanglement can be used as a resource for quan-
tum operations such as quantum teleportation and en-
tangling measurements [16–18]. Thus, it is an important
and even necessary task to detect the presence of entan-
glement inherent in multipartite quantum states. Entan-
glement witness(EW) is an entanglement-detecting ob-
servable providing a negative expectation value for some
entangled states, whereas its expectation value is non-
negative for all separable states [19–22]. Recently, it was
shown that quantum nonlocality arising in multipartite
quantum state discrimination is closely related to the ex-
istence of EW [23, 24]. These results establish possible
relationship between different types of nonlocality from
various quantum phenomena.

Here, we consider multipartite quantum state discrimi-
nation and provide a specific relation between the proper-
ties of EW and quantum nonlocality inherent in the confi-
dence of measurements. We first provide the definition of

∗freddie1@khu.ac.kr

the confidence of measurements as well as its useful prop-
erties for various types of multipartite measurements.
We show that globally maximum confidence that cannot
be achieved by LOCC meausurements strongly depends
on the existence of EW. We also provide conditions for
an upper bound on maximum of locally-achievable con-
fidences. Finally, we establish a method in terms of EW
to construct quantum state ensemble with nonlocal max-
imum confidences.

For a multipartite Hilbert spaces H =
⊗m

k=1 Cdk with
positive integers m ⩾ 2 and d1, . . . , dm, let us denote by
H the set of all Hermitian operators acting on H. We
also denote the set of all positive-semidefinite operators
in H by

H+ = {E ∈ H | ⟨v|E |v⟩ ⩾ 0 ∀ |v⟩ ∈ H}. (1)

A multipartite quantum state is described by ρ ∈ H+

with Trρ = 1 and a measurement is expressed by {Mi}i ⊆
H+ satisfying

∑
i Mi = 1 where 1 is the identity operator

in H. When ρ is measured in {Mi}i, Mi is detected with
the probability Tr(ρMi).

Definition 1 E ∈ H+ is called separable if it can be
described by a conic combination of product states, that
is,

E =
∑
l

pl

m⊗
k=1

σ
(k)
l (2)

where {pl}l is a set of nonnegative real numbers and
{σ(k)

l }l is a set of states acting on Cdk for each k =
1, . . . ,m.

We denote the set of all separable operators in H+ by

SEP = {E ∈ H+ |E : separable}. (3)

A measurement {Mi}i is called a separable measure-
ment if Mi ∈ SEP for all i. We also say that a measure-
ment is a LOCC measurement if it can be realized by
LOCC. Note that every LOCC measurement is a separa-
ble measurement [4].
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Definition 2 E ∈ H is called block positive if

Tr(EF ) ⩾ 0 (4)

for all F ∈ SEP.

We denote by SEP∗ the set of all block-positive operators
in H, that is,

SEP∗ = {E ∈ H |E : block positive}. (5)

We note that

SEP ⊆ H+ ⊆ SEP∗ ⊆ H. (6)

Definition 3 W ∈ H is called an EW if Tr(WE) ⩾ 0
for all E ∈ SEP but Tr(WF ) < 0 for some F ∈ H+\SEP,
or equivalently,

W ∈ SEP∗ \H+. (7)

An EW W is called optimal if there is no other EW
detecting more entangled states than W does; in other
words, there does not exist W ′ ∈ SEP∗ \ H+ satisfying
Tr(W ′E) < 0 for all E ∈ H+\SEP with Tr(WE) < 0 and
Tr(W ′F ) < 0 for some F ∈ H+ \ SEP with Tr(WF ) ⩾ 0
[21]. An EW W is called weakly optimal if there exists a
separable state σ satisfying

Tr(σW ) = 0. (8)

We note that weakly optimality is a necessary but not
sufficient condition for an EW to be optimal [22,25].

Let us consider the situation of discriminating the
quantum states from the ensemble,

E = {ηi, ρi}ni=1, (9)

where the state ρi is prepared with the nonzero probabil-
ity ηi for each i = 1, . . . , n. The average quantum state
of E is denoted by ρ0, that is,

ρ0 =
n∑

i=1

ηiρi. (10)

We further consider the discrimination of the quantum
state ensemble E in Eq. (9) using a measurement M =
{Mi}ni=0. For each i = 1, . . . , n, we guess the prepared
state to be ρi if the measurement result is Mi. On the
other hand, the measurement result is inconclusive when
we obtain M0.

Definition 4 For a quantum state ensemble E =
{ηi, ρi}ni=1 and a measurement M = {Mi}ni=0, the confi-
dence of ρj is the conditional probability Pr(ρj |Mj) that
the prepared state is ρj when the measurement result is
Mj, that is,

Pr(ρj |Mj) =
ηjTr(ρjMj)

Tr(ρ0Mj)
. (11)

For each j = 1, . . . , n, the confidence of ρj is well defined
only when

Tr(ρ0Mj) ̸= 0. (12)

For each j = 1, . . . , n, the maximum confidence of ρj
is

Cj(E) = max
Mwith

Tr(ρ0Mj) ̸=0

Pr(ρj |Mj), (13)

where the maximum is taken over all possible measure-
ments M = {Mi}ni=0 with Eq. (12). Each Cj(E) in
Eq. (13) is already known as the largest eigenvalue of√
ρ0

−1ηjρj
√
ρ0

−1 where
√
E is the positive square root

of E ∈ H+, and F−1 is the inverse of the Hermitian op-
erator F on its support [26, 27]. From this fact, we can
easily verify that

Cj(E) = min{q ∈ R | q1−√
ρ0

−1
ηjρj

√
ρ0

−1 ∈ H+}
= min{q ∈ R | qρ0 − ηjρj ∈ H+}, j = 1, . . . , n.

(14)

The maximum-confidence discrimination of E =
{ηi, ρi}ni=1 is to discriminate the states from the ensem-
ble E using a measurement M = {Mi}ni=0 achieving the
maximum confidences in Eq. (13).

When the available measurements are restricted to sep-
arable measurements, we denote the maximum achiev-
able confidences by

Sj(E) = max
SeparableM

withTr(ρ0Mj) ̸=0

Pr(ρj |Mj), j = 1, . . . , n. (15)

Similarly, we denote the maximum achievable confidences
by LOCC measurements as

Lj(E) = max
LOCCM

withTr(ρ0Mj)̸=0

Pr(ρj |Mj), j = 1, . . . , n. (16)

For each j = 1, . . . , n, it follows from the definitions of
Cj(E), Sj(E) and Lj(E) that

0 < Lj(E) ⩽ Sj(E) ⩽ Cj(E) ⩽ 1. (17)

The following theorem shows that every maximum
achievable confidence by separable measurements is also
achievable by LOCC measurements.

Theorem 5 For a multipartite quantum state ensemble
E = {ηi, ρi}ni=1 and each j = 1, . . . , n, we have

Lj(E) = Sj(E) = max
M∈SEP

Tr(ρ0M)=1

ηjTr(ρjM), (18)

where the maximum is taken over all possible separable
operator M in SEP and ρ0 is the average state of E in
Eq. (10).

Now, let us consider the minimum quantities

Qj(E) = min
q∈Rj(E)

q, j = 1, . . . , n, (19)

where

Rj(E) = {q ∈ R | qρ0 − ηjρj ∈ SEP∗}. (20)

Each Qj(E) in Eq. (19) is an upper bound of Sj(E) in
Eq. (16).

For an ensemble E = {ηi, ρi}ni=1 and each j = 1, . . . , n,
the following theorem shows that Sj(E) is equal to Qj(E).
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Theorem 6 For a multipartite quantum state ensemble
E = {ηi, ρi}ni=1 and each j = 1, . . . , n, we have

Sj(E) = Qj(E). (21)

For a multipartite quantum state ensemble E =
{ηi, ρi}ni=1 and each j = 1, . . . , n, the following the-
orem provides a necessary and sufficient condition for
q ∈ Rj(E) to give Qj(E).

Theorem 7 For a multipartite quantum state ensemble
E = {ηi, ρi}ni=1 and q ∈ Rj(E) with j ∈ {1, . . . , n},

q = Qj(E) (22)

if and only if there exists a separable state σ satisfying

Tr[σ(qρ0 − ηjρj)] = 0, Tr(σρ0) > 0. (23)

For a multipartite quantum state ensemble E in Eq. (9)
and each j = 1, . . . , n, we say that the maximum confi-
dence of ρj is nonlocal if it cannot be achieved by LOCC
measurements, that is,

Lj(E) < Cj(E), (24)

where Cj(E) and Lj(E) are defined in Eqs. (13) and (16),
respectively. From Theorems 5 and 6, we note that In-
equality (24) is equivalent to

Qj(E) < Cj(E). (25)

The following theorem provides a necessary and sufficient
condition for Inequality (25) in terms of EW.

Theorem 8 For a multipartite quantum state ensemble
E = {ηi, ρi}ni=1, q ∈ R and each j = 1, . . . , n,

Qj(E) ⩽ q < Cj(E) (26)

if and only if qρ0 − ηjρj is an EW.

For a two-qubit state ensemble E = {ηi, ρi}ni=1 and
each j = 1, . . . , n, the following corollary show that a
real number q becomes Qj(E) if qρ0 − ηjρj is a weakly-
optimal EW.

Corollary 9 For a two-qubit state ensemble E =
{ηi, ρi}ni=1, q ∈ R and each j ∈ {1, . . . , n},

Qj(E) = q < Cj(E) (27)

if and only if qρ0 − ηjρj is a weakly-optimal EW. More-
over, Cj(E) is achievable locally when ρ0 is not full rank.

For a given set of EWs {Wi}ni=1 with ϵ > 0 where ϵ is
the smallest eigenvalue of

W :=

n∑
i=1

Wi, (28)

Theorem 8 can used to construct quantum state ensem-
bles where every maximum confidence is nonlocal. Let
us consider the ensemble E = {ηi, ρi}ni=1 with

ηi =
Tr(λiW − ϵWi)

Tr(λW − ϵW)
, ρi =

λiW − ϵWi

Tr(λiW − ϵWi)
(29)

where λi is the largest eigenvalue of Wi for each i =
1, . . . , n and λ is the sum of λ1, . . . , λn.

For q ∈ R and each j = 1, . . . , n, a straightforward
calculation leads us to

qρ0 − ηjρj =
[q(λ− ϵ)− λj ]W + ϵWj

Tr(λW + ϵW)
. (30)

From Eq. (30) and Theorem 8 together with Eq. (14), we
have

Qj(E) ⩽
λj

λ− ϵ
< Cj(E) =

λj + ϵδ

λ− ϵ
(31)

where δ is the absolute value of the smallest negative
eigenvalue of

√
W−1

Wj

√
W−1

. Thus, the maximum con-
fidence of ρj is nonlocal. Moreover, since ρ0 is propor-
tional to W in Eq. (28) and W is full rank, it follows from
Theorem 7 that

Qj(E) =
λj

λ− ϵ
(32)

when Wj is weakly optimal.
As our results provide a specific relation between EW

and maximum achievable confidences by LOCC mea-
surements, it is natural to investigate the relationip be-
tween EW and nonlocality arising in optimal maximum-
confidence discrimination. It is also an interesting future
work to investigate the relation between EW and optimal
state discrimination in other state discrimination strate-
gies.
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Collaborative quantum sensing
in an all-to-all connected sensor network

Wen-Han Png1 ∗ Haonan Liu1 Travis Nicholson1
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Abstract. Collaborating sensors achieve better precision than independent sensors. In this context, we
proposed a novel quantum sensing protocol based on collaborating quantum sensors. We lay out generic
model of all-to-all interacting collective spins sharing a common sensor bus. Then, we couple the collective
spin to sensor bus such that the linear perturbation on the quantum bus can be readout through (i)
collective spin operator (ii) interacting spin operator. We investigate the quantum Fisher info (QFI) for
case (i) and (ii) in the entangled and separable sensor network. We find that spin-spin interaction enhances
the optimum quantum Cramer Rao bound (QCRB) by 1/N , while only requires entangling only half of
the qubits. We present a numerical simulation with 1D trapped ion chain estimating two charges position
and recover the consistent N scaling of QFI.

Keywords: Quantum Fisher Information, Super-Heisenberg, Trapped Ions, All-to-all Connectivity

1 Introduction

Sensing technology has been critical to the develop-
ment of modern society, for it plays a strong role in
healthcare, environmental monitoring, transportation,
industrial automation, and security systems. Given the
wide range and importance of sensing applications, in-
novations in sensing technology have the potential for
transformative progress. For example, one possible im-
provement on global positioning could come in the form
of collaborative sensing[11, 12], which improves position
resolution via the sharing of location data between users.

Another direction that has great potential is quantum
sensors. Quantum magnetometers, gravimeters, and in-
ertial sensors have already found widespread technologi-
cal applications. One exciting prospect of quantum sen-
sors is distributed quantum sensing, whereby several sen-
sors measuring the same parameter can be entangled, re-
sulting in measurement resolution below the Standard
Quantum Limit. In this case, the sensor precision can
achieve Heisenberg scaling of 1/N , where N is the num-
ber of sensors (as opposed to the 1/

√
N scaling of the

Standard Quantum Limit). This effect has been pro-
posed [8, 10, 9] and demonstrated [18] in atomic clocks.

This measurement enhancement has largely been stud-
ied for single-parameter sensing, whereby several sensors
are measuring the same quantity. An interesting and less-
studied case is that of multiparametric sensing, which in-
volves many sensors measuring a distribution of values,
such as thermometers attached to different places on a
object with a thermal gradient. This has applications in
vector field sensing [2, 6], magnetometry [13], and elec-
trometry [21, 4, 5]. However, in the multiparametric case,
it has been shown that entanglement alone does not allow
for multiparametric sensing precision that scales better
than 1/N [19].

In this Letter, we show that interacting systems can
achieve super Heisenberg scaling, which surpasses the
best available precision using entangled states alone. We

∗e0943469@u.nus.edu
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Figure 1: (a), (b), (c), (d) are the quantum circuit rep-
resentation of the sensing protocol: Distributed Quan-
tum Sensor in a Separable Network (DQSS), Collabora-
tive Quantum Sensor in a Separable Network (CQSS),
Distributed Quantum Sensor in an Entangled Network
(DQSE) and Collaborative Quantum Sensor in an En-
tangled Network (CQSE) respectively. |0⟩c denote the
control qubit. UE denotes the entangling operation.

also provide a general theory of quantum sensing with
interacting states. Like collaborative GPS, we find that
the interactions and entanglement form an information
bus between sensor atoms, resulting in what we term col-
laborative quantum sensing. Furthermore, we provide a
physical example of such a system in the form of a linear
chain of trapped ions. Although these systems are often
used as clocks or quantum information platforms, here
we consider their use as quantum sensors of charge dis-
tributions. We find the enhanced precision scaling of our
system with the ion number results in exceptional mea-
surement resolution, which can be leveraged for a wide
range of applications, from cellular biophysics to materi-
als research to dark matter detection.

The resolution of both classical and quantum sensors
can be described by the Fisher information. In sensors
based on phase measurements of quantum states, the best
achievable phase resolution ∆θ for estimation of a single
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Figure 2: (a) The complete sensing protocol. The blue (red) box represents evolution with the Hamiltonian HP

(Hamiltonian HL). After the sensing operation, we trace out the sensor bus and only measure the collective spin. In
event of multi-parameter estimation, postprocessing is required to recover all estimated parameter. (b) The illustration
trapped ion sensors estimating the positions of charged targets through a sensor bus (c) The Hilbert space of trapped
ions comprises of the spin and motional degree of freedom. We coupled spins and collective motion through Raman
beams. For DQS (CQS) protocol, we require ωL ≈ ω (ωL ≈ 2ω) as indicated in the solid (dashed) line

parameter θ is given by the Cramer-Rao bound,

∆θ =
1√
Fθ

, (1)

where Fθ is quantum Fisher information. For N atoms,
Fθ = N when these particles are uncorrelated, whereas
Fθ can be as large as N2 for certain N -particle entan-
gled states (e.g. squeezed states). In the case of a pth-
order nonlinear interaction between particles (plus entan-
glement), the Fisher information can be Fθ = N2p.

2 Summary

We proposed the Collaborative Quantum Sensing
(CQS) and Distributed Quantum Sensing (DQS) proto-
cols, with the former encodes the perturbing signal to
the collective spin operator, and the latter encodes it
through the interacting-spin operator (see Fig 1). To
ensure a fair comparison between the QFI of DQS and
CQS, we used the same laser power and sensing duration
for every instance of the number of qubits. The optimal
sensing protocol is found to be CQSE, where its QCRB
scales to superheisenberg limit for both collective phase
estimation and multiple post-processed parameters. We
demonstrated the physical implementation CQS and
DQS sensing protocol, using 1D trapped ion chain to
estimate the positions of two charges (see Fig. 2 for
an overview). The numerical simulation successfully
recovers the analytical QFI scalings of CQS and DQS,
demonstrating a consistent N scaling for the collective
phase estimation and multiparameter estimation on
x1, x2. We note that the ion-phonon coupling strength
is relatively weak (e.g. MHz), as the working regime is
limited by α/ω ≈ 1. Beyond this regime, trapped ion
suffers from breakdown of Lamb-Dicke approximation,

and leads to deviation of experimental outcome from
the theoretical model. Thus, trapped ions sensor are
constrained to probe perturbation with energy only at
range of neV. Despite this constraint, neV perturbations
remain relevant for applications in electric displacement
sensing and dark matter detection [5, 1]. We note that
the position of charges with small separation ≪ µm is
not resolvable due to this neV constraint. However, our
sensor still probe a micro-scale structure at exceptional
precision. Improving the precision of spin-spin coupling
parameter also helps benchmarking the Ising coupling
[16] . This is crucial for quantum simulation for exotic
spin model such as Haldane phase, exotic frustrated
magnetic states or even quantum spin liquids [14, 3]. We
note that CQS and DQS protocols are based on readily
available technology in trapped ion quantum computer.
Entangling hundreds of ions [22, 7] and demonstrating
32 qubits GHZ state [17] has been reported. Trapped
ion also feature a very mature σzσz gate realization from
2 qubits [20] up to global entangling 5 qubits gate[15].
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Network-Based Algorithms for Large-Scale Execution
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Abstract. Quantum computing holds promise for resolving complex chemical computation challenges
unmanageable with classical computing methods. Despite their potential, current quantum systems are
plagued by computational errors due to inherent noise. In this research, we introduce sophisticated al-
gorithms utilizing tensor networks for the efficient preparation of quantum states and minimal quantum
gate utilization during energy calculations. We have developed a novel algorithm that integrates tensor
network-based system partitioning with high-fidelity quantum Monte Carlo simulations. This methodology
has been validated across various chemical models, ranging from simple hydrogen plane systems to complex
molecules involved in photochemistry, underscoring the precision of our approach. Further, we explore the
advancements in tensor network algorithms for enhanced scalability. Our results mark a significant step
towards achieving large-scale quantum chemical computations.

Keywords: Quantum chemistry, Tensor network, Quantum Monte Carlo

1 Introduction

Quantum computers have the potential to solve
complex chemical computation challenges that cannot
be addressed by classical computers. Current quan-
tum computers, called noisy intermediate-scale quan-
tum (NISQ) [1] devices, are limited in the number of
qubits and quantum gates they can perform due to
non-negligible physical noise. Our research focuses on
the efficient preparation of quantum states using ten-
sor networks. We proposed an algorithm combining a
tensor network framework called the hybrid tensor net-
work (HTN) [2] with a quantum version of quantum
Monte Carlo (QMC) [3], where we named the algorithm
HTN+QMC [4]. We have also explored advances in ten-
sor network algorithms for large-scale computations.

2 Results

Figure 1 shows the results of energy calculations for
the photochromic model molecule, MonoArylBiImidazole
(MABI). Compared to the classical QMC calculation
(blue), the combination of quantum calculation (light
green and red) improves the energy accuracy. Further-
more, when comparing the results of quantum calcula-
tions, comparable accuracy was obtained in real device
(red) and classical simulator (light green) runs. Our re-
sults demonstrate the importance of tensor network al-
gorithms for realizing large-scale quantum chemical cal-
culations.
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Figure 1: Results of the energy on the real device ex-
ecution for MABI. The blue line represents the QMC
result, whereas the light green and red lines show the
HTN+QMC results of the statevector and real device
procedures, respectively. The exact ground state energy
is depicted by the black dashed line. The white, gray,
and blue elements in the MABI structure represent the
hydrogen, carbon, and nitrogen atoms, respectively. The
inset in each figure presents an enlarged view along the
y-axis.
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Abstract. Bell’s theorem shows that correlations made by entangled quantum systems cannot be repli-
cated by Local Hidden Variables (LHV). Nevertheless, to quantify the power of a quantum correlation, it
is useful to think of the additional resources that are needed to simulate it. In this work, we investigated
the case of classical communication. For two qubits, the maximally entangled and some of the partially
entangled states have been known to be simulatable with just one bit of communication. We used a neural
network to try to close the problem for all two-qubit states completely and we presented evidence that the
correlations of all partially entangled two-qubit states can be simulated with one bit of communication. On
the other hand, as we go up in the dimension of the correlations, one bit of communication must necessarily
fail to simulate the correlations. We give the smallest known example of quantum correlations that cannot
be simulated with one bit of communication: it uses measurements on two qu5its, and thus is in the range
of feasible experimental implementation.

Keywords: Bell nonlocality, entanglement, communication complexity, machine learning

1 Introduction

It is well established from Bell’s theorem that Local
Hidden Variables (LHVs) are inadequate to describe the
behaviours of entangled quantum states [1]. Since then,
some have asked how much supplementary resources, es-
pecially classical communication, do we need to simulate
entangled states [2, 3, 4]. The problem was originally
posed as a means to gain a more intuitive understand-
ing of the power of entanglement. However, since Toner
and Bacon’s protocol to simulate a maximally entangled
two-qubit state, progress in the field has been slower [4].
The latest progress came from Renner et al., who showed
a protocol to simulate weakly entangled two-qubit states
with just a single bit of communication [5]. On the other
hand, there has been some works focusing on finding
quantum behaviour that is unsimulatable with just 1-bit
of communication [6, 7, 8]. The first such example came
from [9], who used parallel games to find such an exam-
ple. In our works [10, 11], we set out to make further
progress on both fronts: to find a protocol for simulating
all two-qubit states with 1-bit of communication and to
find an example of an unsimulatable quantum correlation
that lies in smaller scenario.

2 Simulating two-qubit states with
LHV+1-bit

2.1 Neural network approach

For the first question, we used a neural network to
generate numerical protocols that try to simulate their
behaviours [10]. Our approach was inspired by the work
of Krivachy et al. [12] where a neural network which was
built with locality constraints in its architecture was used
as an oracle to test whether a distribution is local. We

∗peter.sidajaya@u.nus.edu

modify the design of the network in order to use it to
generate local strategies that can be done with 1-bit of
supplementary communication.

The locality of the network is done by having sepa-
rate networks represent the different parties and routing
the different inputs according to what each party should
receive. Communication is added to the model by first
looking at 1-bit communication as a power for one party
to choose between two options for both of them. In this
way, we can actually model 1-bit of communication by
having two local models (which are neural networks in
themselves) and a third one that takes in Alice’s inputs
and outputs a number between 0 and 1 which denotes
the probability of Alice choosing the first strategy, and
thus sending the bit 0 to Bob. The final output is then,
a convex combination of the two local models averaged
over the LHVs. The architecture is illustrated in Fig. 1.

2.2 A semianalytical protocol

We first tested our model on the maximally entan-
gled state and reobtained Toner and Bacon’s model, with
slight modifications. We then proceeded to train our neu-
ral network to simulate the behaviours of partially en-
tangled states. We then wrote down the functions that
approximate the behaviours of the neural network, which
we will call our semianalytical protocols.

We benchmarked our neural network and the semian-
alytical protocol by comparing it with the original quan-
tum behaviours and measuring its divergences. From the
divergences, we could also consider the minimum num-
ber of sample size n needed such that we can be 95%
confident that we would be able to distinguish the two
behaviours in a hypothesis testing scenario. Through this
method, we determined that the semianalytical protocol
needs around 300 rounds of measurement to be differ-
entiated, while the protocol of the neural network itself
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Figure 1: The architecture of the Artificial Neural Network (ANN). The model consists of two local distributions and
a communication network and in each distributions the two parties are constrained by locality by routing the input
accordingly. The communication network outputs a value between 0 and 1, and represents the probability of Alice
sending a certain bit to Bob. The output for a particular round is then simply the convex combination of the two
local distributions.

needs around upwards of 10000 rounds.
While the question of exactly simulating partially

entangled states with 1-bit of communication remains
unanswered, our works suggest that producing approx-
imations of the quantum behaviours quite closely is pos-
sible. Our semianalytical protocols requires, on average,
hundreds, and our neural networks requires tens of thou-
sands of measurements, before it could be distinguished
from the actual quantum behaviours. Taking into ac-
count that some of the two-qubit states can already been
simulated by an exact protocol, these evidences suggest
that all two-qubit states can be simulated with just a
single bit of communication.

3 Unsimulatable correlations.

On the other front, we would also want to know what
is the simplest quantum correlation that is unsimulatable
by 1-bit of communication [11]. As previously mentioned,
the simplest (and first) known example was given in [9].
For a fixed directional communication, the smallest given
example was in the (7, 3, 16, 16) scenario. This is still
quite a surprisingly large scenario for just 1-bit.
The most straightforward method of finding such ex-

ample is by constructing the 1-bit communication poly-
tope and to try to find a violation of one of its facets. This
method, however, only works for very small scenarios as
the number of facets grow much faster for the 1-bit poly-
tope compared to the usual local polytope. The largest
known polytope is in (3, 3, 2, 2), and no such violation
was observed. Thus, we had to use a different approach
if we would like to find a violation.
Consider these two observations: One, the maximum

score of a linear inequality by a polytope is always
achieved by one of its extremum points. Two, every ex-
tremum points always partition the game into two sub-
games where the behaviours in such subgames are lo-
cal, where the partition is defined by the communication
strategy of that point. Since the behaviours of these two
subgames do not interact with each other, the maximum

1-bit score is always achieved by one of the extremum
points whose behaviours in the local subgames are also
maximum. Thus, instead of running through every ex-
tremum points, we could instead run through every par-
tition and find the maximum scores of the subgames.

This small adjustment allowed us to calculate the 1-bit
bound for scenarios in a higher dimension than previously
possible and we found a Bell game which has a higher
quantum score than the 1-bit bound in the (5, 2, 5, 5) sce-
nario. The inequality is given by

Id(P) =
d−1∑

a,x,y=0

1∑
b=0

[a− b = xy mod d]P (a, b|x, y), (1)

where [·] is the Iverson bracket, which equals 1 if the
statement inside is true and 0 otherwise. This inequality
is a truncated XOR-5 game and has a local bound SL =
6, 1-bit bound SL+1 = 7, and 7.1777 ≤ SQ ≤ 7.1788.
Since SQ > SL+1 , the quantum correlation that achieves
the quantum violations cannot be simulated by 1-bit of
communication.

This example is smaller than the previously known ex-
ample and is thus in range of feasible implementation.
This method might also be used to calculate the 1-bit
bidirectional communication score. However, we have
yet to find a Bell game which has a higher quantum
score than the 1-bit bidirectional communication that is
smaller than the previously known example found in [9].

4 Conclusions

Classical communication was conceived as a way to
quantify the power of a quantum correlation. However,
it turns out that finding out the relationship between
different quantum correlations and just a single bit of
communication is a difficult task. In our works, we have
furthered the work on exactly that problem, and to gain
more intuition on the power of an entangled state, though
still not completely. First, we have provided evidence for
the simulability of all two-qubit states. On the other
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hand, we also gave an example of a Bell game where
quantum correlations beat 1-bit of communication, in a
smaller scenario than previously known. Meanwhile, the
problem of finding an exact analytical protocol for all
two-qubit states and the problem of whether a smaller
example of a violation of 1-bit bidirectional communica-
tion remains open.
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Abstract. We propose a fault-tolerant quantum computation scheme in a measurement-based
manner with finite-sized entangled resource states and encoded-fusion scheme with linear optics.
The encoded-fusion is an entangled measurement devised to enhance the fusion success probabil-
ity in the presence of losses and errors based on a quantum error-correcting code. We apply an
encoded-fusion scheme to construct a fault-tolerant network configuration in three-dimensional
RHG lattice based on the surface code. Numerical simulations show that our scheme allows us to
achieve up to ten times higher loss thresholds than non-encoded fusion approaches with limited
numbers of photons used in fusion.

Keywords: Photonic quantum computation, Encoded-fusion, Fusion-based quantum compu-
tation

1 Introduction

Toward scalable and practical quantum compu-
tation, photonic systems have been considered as
leading platforms thanks to high-quality sources and
detectors, efficient modularity and connectivity, and
long decoherence time at room temperature. In
particular, extremely fast measurements on photons
make them well-suited for measurement-based quan-
tum computing (MBQC). In MBQC, universal gate
operations can be realized by applying single-qubit
measurements on entangled resource states. The re-
source state, typically a cluster state, is prepared
offline so that the computation is performed easily
via single-qubit measurements only. However, due
to the non-deterministic fusion – a projective entan-
gling measurement applied on entangled photons to
create larger size resource states – and loss in pho-
tonic platforms, the preparation of a cluster state re-
quired to construct a fault-tolerant architecture con-
sumes an extensive number of entangled photons.
In order to circumvent such formidable prerequi-

sites for MBQC, fusion-based quantum computing
(FBQC) was recently proposed [1]. FBQC is per-
formed via fusion measurements applied between
small constant-sized entangled resource states, so
there is no need for extensive entanglement prepared

∗swleego@gmail.com

and maintained stable during the process. The ar-
chitecture of FBQC basically consists of resource
states and fusions, which are connected to each other
to create a specific network configuration called a fu-
sion network. By constructing a fusion network, a
quantum error-correcting code is implemented. The
fusion thus plays a crucial role in FBQC and its effi-
ciency directly affects the computation performance.
However, the fusion success probability is limited by
50% with linear optics, and its boost with ancillary
entangled photons turned out to be in a trade-off
with the loss-tolerance of FBQC [2]. Therefore, non-
deterministic fusions in the presence of photon loss
can degrade the performance of FBQC, which be-
comes more crucial when increasing the system size,
and, as a result, it may be still challenging to build
a fault-tolerant quantum computing architecture in
photonic platforms.
In this work, we propose a fault-tolerant quantum

computing scheme performed in a measurement-
based manner with finite-sized entangled states and
encoded-fusions, called Encoded-fusion based quan-
tum computing (EFBQC). Here, an encoded-fusion
is devised to enhance the fusion success probability
even under photon losses by a quantum error cor-
recting code (QECC). We show that an encoded-
fusion based on arbitrary (n,m)-generalized Shor
code can be implemented with linear optics and
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Figure 1: Schematics of encoded-fusion based quan-
tum computing. In a fusion network, the photons
participating in fusions are encoded in a QEC code.
The encoded-fusion protocol can be performed by
applying linear-optic Bell state measurements ac-
tively in a concatenate manner between encoded-
qubits.

active feed-forwards. We then apply the encoded-
fusion to construct a fusion network in a three-
dimensional RHG lattice to implement the standard
surface code. Numerical simulations show that our
scheme allows us to achieve much higher loss thresh-
old for individual photons than non-encoded fusion
approach [3].

2 Results

Let us introduce the encoded-fusion based quan-
tum computing (EFBQC). In EFBQC, the process
to create a fusion network and logical gate op-
erations are conceptually equivalent to FBQC in
Ref. [1] except that the fusion is replaced with the
encoded-fusion scheme, and the qubits that make
up the resource states are encoded in the QEC code.
The brief schematic of EFBQC is shown in Figure 1.
Here, we consider the (n,m)-generalized Shor

code for resource state qubits. And the encoded-
fusion protocol between the qubits consists of se-
quences of physical Bell state measurements, which
are performed adaptively. We examine the 3-
dimensional RHG lattice for EFBQC, and it can be
composed of 4-star resource states or 6-ring resource
states, as shown in Figure 2.
To demonstrate the performance of EFBQC, we

compare the photon loss threshold of EFBQC in 3-

Encoded 4-star  
Fusion network

Encoded 6-ring  
Fusion network

Figure 2: The fusion networks for 3-dimensional
RHG lattice fabricated with the 4-star and 6-ring
resource states. The insets illustrate the form of
the encoded-4-star and -6-ring resource states when
(n,m) = (2, 2) as the simplest example.

dimensional RHG lattice with the results of FBQC.
The results are shown in Figure 3 for various en-
coding numbers (n,m). The results for 6-ring (ma-
genta) and 4-star (cyan) shows the FBQC results
with non-encoded resource states and fusion boost-
ing scheme proposed in Ref. [2]. And the results
for (2, 2)-6-ring (green) and -4-star (purple) shows
the FBQC results with (2, 2)-Shor encoded resource
states without encoded fusion (with fusion boost-
ing). It is clearly shown that EFBQC results in
much higher loss thresholds, and notably, these loss
thresholds can be improved as the number of pho-
tons used increases. This is not the case with FBQC
using fusion boosting in Ref. [2], where there is a
trade-off between fusion success probability and loss
threshold. This trade-off is demonstrated by the de-
creasing tendency of the loss threshold as the num-
ber of photons used to boost the fusion success prob-
ability increases.
Note that both 4-star and 6-ring encoded-fusion

networks can reach arbitrarily up to 14% by in-
creasing the encoding number (n,m). Such a max-
imum threshold may be the characteristic of cur-
rent choices of concatenated error correcting codes
i.e., generalized Shor code and surface code, and
thus possibly can be enhanced further with other
codes [4, 5, 6].

3 Remarks

We have proposed a fault-tolerant quantum com-
putation scheme, performed in a measurement-
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Figure 3: Photon loss thresholds for the total num-
ber of photons used per fusion. The thresholds of
EFBQC are maximized by optimizing the encoded-
fusion protocol for a given the encoding number
(n,m). The threshold for EFBQC generally gets
higher as increasing the number of photons used per
fusion, while the threshold for FBQC boosted with
ancillary Bell pairs decreases. EFBQCs for encoded-
4-star and -6-ring resource states respectively yield
11.44% and 13.97% loss thresholds per photon when
(n,m) = (7, 4), and both arbitrarily reach up to 14%
as increasing the encoding number (n,m).

based manner with finite-sized entangled resource
states and fusion protected by quantum error correc-
tion. In contrast to previous FBQC schemes [4, 5, 6],
our scheme uses a concatenation of two indepen-
dent QEC protocols, one for the fusion itself and the
other for the network configuration. The encoded-
fusion is logically an entangling measurement, but
is more aimed at correcting photon loss, fusion fail-
ure, and resource errors within the fusion process
by implementing a QEC code. We have applied
the encoded-fusion to construct a fusion network
in RHG lattice. By numerical simulation, we have
demonstrated that our scheme improves the loss
thresholds up to 10 times higher than non-encoded
fusion approach [1], and allows us to attain ∼ 14%
loss thresholds per individual photon, which is to
our knowledge, a record-high threshold among re-
cent achievements in photonic quantum comput-
ing [1, 4, 5, 6]. We have also shown that EFBQC
outperforms FBQC with respect to the attainable
threshold by consuming the same number of pho-
tons. Finally, we note that our approach is not
limited to any specific configuration or code, but
generally applicable for any structures implement-
ing arbitrary codes and resource states, expecting

further enhancements of the thresholds. Develop-
ing encoded-fusion protocols with other QECs [5, 6]
would be also valuable as next step of research.
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Observing the quantum fault-tolerant threshold with entangled photons
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Abstract. Fault-tolerant schemes, in which logical qubits are encoded by several physical qubits, enable
to the output of a higher probability of correct logical qubits under the presence of errors. Here, based
on an all-optical setup, we experimentally demonstrate the existence of the threshold for the fault-tolerant
protocol in which four physical qubits encoded two logical qubits are realized as the spatial modes of
two entangled photons. The developed high-accuracy optical system may provide a reliable platform to
investigate error propagation in more complex circuits with fault-tolerant gates.

Keywords: fault-tolerance, threshold, entangled photons, spatial mode

we experimentally demonstrate the threshold of error
rate for quantum circuits formed with fault-tolerant (FT)
gates implemented in an all-optical setup. Based on the
encoding method, we encode two logical qubits using four
qubits which are mapped to the optical path information
of two entangled photons. Besides the preparation stage,
we experimentally implement a single-qubit Hadamard
gate and a two-qubit CNOT gate in the logical space to
form a complete quantum circuit in which error gates
are imported based on the bit-flip error. When compar-
ing the output probabilities of the encoded circuit and
those of non-encoded circuit, we could determine the FT
threshold of the error rate. Our results clearly demon-
strate that when the error rate remains below the thresh-
old, the probability to obtain correct output results in the
FT circuit is higher than that of the corresponding non-
encoded circuit. On the other side, if the error rate is
above the threshold, no benefit is obtained from the FT
implementation.

According to the FT protocol in [1], two logical qubits
are encoded with four physical qubits as follows:

|00〉l = (|0000〉+ |1111〉)/
√

2,

|01〉l = (|0011〉+ |1100〉)/
√

2,

|10〉l = (|0101〉+ |1010〉)/
√

2,

|11〉l = (|0110〉+ |1001〉)/
√

2, (1)

where {|00〉l , |01〉l , |10〉l , |11〉l} represent the logical
bases, and {|0000〉 , |0011〉 , |0101〉 , |0110〉 , |1001〉 ,
|1010〉, |1100〉 , |1111〉} represent the bases of four phys-
ical qubits (the encoded space only involves even num-
ber of |1〉 in physical qubits). The four physical qubits
are mapping to coincident modes of two entangled pho-
tons. As shown in Fig. 1a, with optical spatial modes
on each side marked as |00〉 , |01〉 , |10〉, and |11〉, the
basis of four physical qubits is denoted as the coinci-
dence count between two spatial modes from the side
A and B, respectively. As an illustration, the coinci-
dent mode |mnij〉 ≡ |mn〉A ⊗ |ij〉B (m,n ∈ {0, 1}A
and i, j ∈ {0, 1}B), i.e., the intensity and phase of ba-
sis |mnij〉 are related to the coincidence count between

∗ksun678@ustc.edu.cn
†jsxu@ustc.edu.cn
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modes |mn〉A and |ij〉B . This method of mapping the
qubits to optical spatial modes could simulate the oper-
ation on individual qubit with the evolution of spatial
modes [2].

By coherently adjusting spatial modes, single- and two-
qubit gates can be conveniently realized. Logical state
|00〉l = (|0000〉 + |1111〉)/

√
2 can be FT prepared with

post-selection following the circuit starting from initial
physical state |0000〉. In this protocol, a set of quantum
gates, such as σx, Hadamard and CNOT gates, operated
on logical qubits can be implemented in a FT manner.
As a result, a circuit, only formed by these FT gates, is
implemented FT and there exists a threshold of the error
rate. Our main task is to experimentally demonstrate
the existence of the threshold in the FT circuit.

In experiment, as shown in Fig. 1b, a continuous-wave
diode laser with the wavelength 404 nm and a bandwidth
0.048 nm is used to pump a 20 mm-long periodically
poled KTP (PPKTP) crystal with the help of a polarized
Sagnac interferometer to generate polarization-entangled
photons |Φ〉 = (|HAHB〉 + |VAVB〉)/

√
2. Based on this

entangled source, Fig. 1c shows |00〉l could be achieved
with several BDs and HWPs which are adjusted along
the preparation circuit. More details could be found in
Ref. [3].

With the high performance of Hadamard and CNOT
gates on physical qubits in experiment, experimental re-
sults show that operations in this platform are extremely
accurate, allowing to observe the threshold effect in FT
protocol. For the circuit implementing logical operation
H2, the threshold is p = 0.978 in theory. This thresh-
old is consistent with Fig. 2a, in which the experimental
probability of correct output, Fp, is larger than the pre-
diction fp of non-encoded circuit detected in the same
experimental platform (see more details in SM [3]) for
p > 0.978. On the other hand, when p < 0.978, we ob-
tain Fp < fp. Experimental results of logical operation
CNOT21 ·H2 are shown in Fig. 2b, in which the predict-
ed threshold is p = 0.968. The experimentally obtained
Fp is higher (lower) than corresponding fp for p above
(below) the threshold.

Using a concise FT protocol, we experimentally
demonstrate the threshold of a complete FT circuit with
a Hadamard gate and a CNOT gate on logical qubits, be-
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Figure 1: Experimental setup for verification of fault-tolerant threshold in quantum circuits. a Experimental images
of optical spatial modes on sides of A and B generated by exploiting a group of several beam displacers (BDs) and
half-wave plates (HWPs). b The unit to prepare entangled photon pairs. c Spatial mode evolutions of fault-tolerant
circuits including the stages of preparation, logical operations (H2 and CNOT21), and measurement. Output spatial
modes on each side of every stage are detected with removable detectors (RDs), which are built with single-photon
detectors (SPD) placed on two-dimensional movable platforms, for coincidence counts to estimate the imported error
rate. Final spatial modes on each side are combined together, where optical path differences among the modes on each
side are offset by compensation crystals (CC), and then measured with a quarter-wave plate (QWP), a HWP, and a
polarization beam splitter (PBS). The coincidence device deals with the detected signals from two sides and outputs
the coincidence count.

Figure 2: Experimental probabilities of correct output for
different operations. Panels a and b show experimental
probabilities of correct output, Fp, according to success
probability p = 1−ε for H2 and CNOT21 ·H2, respective-
ly. Blue and red curves represent theoretical predictions
of the non-encoded circuit (fp) and fault-tolerant circuit
(Fp), respectively. Blue squares (errorbars are too small
to show) and red hollow points with error bars indicate
the corresponding experimental results. All error bars
are estimated as standard deviations of photon counts
assuming a Poisson distribution.

sides preparing and measuring processes, with the bit-flip
error in each operator. Generally, to verify a FT protocol,
the successful output probability of any circuit, formed
with FT gates, should be higher than that of the corre-
sponding uncoded circuit when the error rate is below a
threshold. Note that rich encoding paths in the experi-
mental setup enable different circuits for physical qubits
to realize the same operations in logical space. However,
only some configurations are FT. Besides the circuit real-
ized in this work, to implement another different circuit,

we just need to rotate BDs and HWPs. And for some
complicated cases, we need simply to add more sets of
BDs and HWPs.

To completely demonstrate a universal FT quantum
computation remains a long-standing challenging. High-
accuracy operations that can be achieved using optical
systems establish an appropriate platform to simulate
the error propagation in FT circuits, especially to investi-
gate the behavior of coherent errors. Also, based on this
experimental platform, nonlocal errors affecting the en-
tangled property could be further investigated under this
encoding framework. Moreover, despite of limitation of
the scale of optical system, this work facilitates the po-
tential investigation of FT protocols with breakthroughs
of large-scale experimental implementations of quantum
technology in other physical platforms.
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Abstract. We propose symmetric Clifford twirling, which uses symmetric Clifford operators commuting
with certain Pauli subgroups to twirl noise affecting quantum gates. We characterize the conversion of each
Pauli noise through this method, showing that certain Pauli noise can be scrambled to noise exponentially
close to global white noise. We further demonstrate that highly structured circuits, such as Trotterized
Hamiltonian simulations, can have their effective noise scrambled to global white noise. This method allows
us to mitigate errors in non-Clifford operations in early FTQC regimes with minimal sampling overhead
and provides new insights into fields where randomness and symmetry are crucial.

Keywords: early FTQC, quantum error mitigation, quantum error correction, twirling

1 Introduction

Fault-tolerant quantum computing (FTQC) using
quantum error correction has been a focal point of re-
search in recent decades as a robust countermeasure
for errors affecting quantum computers [1–8]. In many
quantum error-correcting codes, in particular CSS codes,
non-Clifford operations cannot be implemented fault-
tolerantly and hence require sophisticated techniques
such as magic state distillation and gate teleporta-
tion. This results in significant overhead in realizing
FTQC. [9–15]. Therefore, in the early stages of FTQC,
known as the early FTQC regime, non-Clifford opera-
tions are anticipated to be susceptible to a non-negligible
amount of logical errors.
Recent research has revealed that such logical errors

can be efficiently addressed by converting the errors to
global white noise [16–18]. This is because it allows for
cost-optimal quantum error mitigation (QEM) [19–21]
with minimal sampling overhead [16] or the implemen-
tation of certain quantum algorithms robust to global
white noise [17, 18]. While such a conversion can relax
the noise requirements in noisy non-Clifford operations
and significantly decrease the hardware overhead to per-
form magic state distillation, there is limited knowledge
on how to achieve this conversion. One solution is to
utilize the symmetry in the target operation; we only
consider Clifford operations that commute with the non-
Clifford gate. While such an idea has been proposed for
the case of Pauli twirling in Ref. [22], the method does
not contribute to scrambling the noise among the global
system, since only local operations are considered. In
order to fully exemplify the early FTQC scheme, it is
an urgent task to establish a unified understanding and
methodology regarding the full symmetric Clifford oper-
ations.
In this work, we address this issue by proposing sym-

metric Clifford twirling, a twirling method that uses sym-

∗tsubouchi@noneq.t.u-tokyo.ac.jp
†nyoshioka@ap.t.u-tokyo.ac.jp

metric Clifford operators [23] commuting with certain
Pauli subgroups. By appropriately choosing the Pauli
subgroup, we obtain symmetric Clifford operators that
also commute with non-Clifford operations, allowing us
to twirl their noise. We fully characterize how Pauli
noise channels are converted through symmetric Clifford
twirling, and demonstrate that some Pauli noise can be
scrambled to noise exponentially close to global white
noise. Furthermore, we show that the effective noise
channel of some highly structured circuits is scrambled
to global white noise (termed the white-noise approxi-
mation [24]), and that we can accelerate the scrambling
using only a single CNOT gate. We apply our techniques
to the Trotterized Hamiltonian simulation of spin mod-
els and validate the efficacy of both symmetric Clifford
twirling and the white-noise approximation in the early
FTQC era.

2 Problem setup

In the early FTQC regime, it is expected that we can-
not supply a large number of logical qubits for magic
state factories because of the limited number of physical
qubits available. Hence we shall choose magic state distil-
lation protocol with mild suppression and low space over-
head [25, 26], which results in a non-negligible amount
of distillation error. This naturally leads us to assume
that, in the early FTQC regime, the main source of log-
ical error is the non-Clifford operations, while Clifford
operations can be implemented with a negligible amount
of errors (see Sec. S1 of Technical Manuscript (TM) [27]
for details).

For the sake of clarity, let us especially consider the
case where we want to implement Pauli-Z rotation gate
U = Rz(θ) ⊗ I⊗n−1 on the first qubit of n-qubit logical
circuit, and Pauli noise

N = (1− perr)I + pxEX⊗I⊗n−1

+ pyEY⊗I⊗n−1 + pzEZ⊗I⊗n−1

(1)

affects the non-Clifford unitary U , where EP (·) = P · P †
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Figure 1: Conceptual diagram of symmetric Clifford
twirling. By randomly sampling Clifford unitary D(·) =
D · D† that commutes with non-Clifford layer U(·) =
U ·U†, we can scramble the noise layer N without affect-
ing U .

and perr = px + py + pz is the total error rate. Our goal
for this work is to scramble the noise layer N into global
white noise defined as

Nwn,perr
:= (1− perr)I + perrEi[EPi

], (2)

where Ei represents the uniform average over n-qubit
Pauli noises EPi(·) = Pi · P †

i . This is because it allows
us to mitigate errors simply by rescaling the noisy expec-
tation value with minimal sampling overhead of e2ptot ,
which is not only a quadratic improvement from the pre-
vious method called probabilistic error cancellation [28–
30], but also saturates the lower bound on the sampling
overhead [16] (see Sec. S2 of TM [27] for details). Here,
ptot denotes the total logical error probability of the cir-
cuit. Furthermore, we can implement certain quantum
algorithms robust to global white noise [17, 18] through
this conversion.

3 Symmetric Clifford twirling

One naive way to obtain global white noise is to per-
form Clifford twirling: by randomly choosing a gate D
from the n-qubit Clifford group Gn and applying the gate
D and its conjugation D† before and after the noise layer
N , we can scramble the noise layer N into the global
white noise Nwn,perr

as

T (N ) := ED∈Gn
[D† ◦ N ◦ D] = Nwn,perr

, (3)

where D(·) := D · D† and T denotes the superchan-
nel representing Clifford twirling [31]. This operation
is, however, not considered as a practical option in the
community, since the noise is inseparable from the target
non-Clifford unitary. In order to insertD before the noise
layer N , one must insert U†DU before the non-Clifford
layer U , which may introduce additional errors if U†DU
is a non-Clifford unitary. One feasible alternative is to
consider Clifford unitaries D that commute with U , since
U†DU = D becomes a Clifford unitary in this case. This
allows us to perform the twirling with negligible errors
(see Fig. 1).
In order to realize such a twirling, let us characterize

Clifford unitaries that commute with U . We denote the
set of n-qubit Pauli operator as Pn := {I,X,Y,Z}⊗n

and
define a Pauli subgroup

QU := ⟨{P ∈ Pn | tr[PU ] ̸= 0}⟩ , (4)

Table 1: Reduction rate in the distance between the Pauli
noise N represented as Eq. (1) and global white noise
Nwn,perr

when implementing symmetric Clifford twirling.
The distance metric we use is the 2-norm v of the error
probabilities pi we define in TM, which can be used to
bound the bias between the ideal and mitigated expecta-
tion value (see Sec. S3 of TM [27] for details).

Noise model Pauli Z depolarizing Pauli X or Y

Reduction rate 1 1/
√
3 2−n

where ⟨·⟩ represents the group generated by the elements
within the brackets. Additionally, let us define the QU -
symmetric Clifford group as:

Gn,QU
:= {C ∈ Gn | ∀P ∈ QU , [C,P ] = 0}, (5)

where its complete and unique construction method us-
ing simple quantum gates is given in Ref. [23]. From the
definition, D ∈ Gn,QU

commutes with the non-Clifford
operator U , enabling us to twirl the noise layer N using
symmetric Clifford unitary D ∈ Gn,QU

. We term this
twirling as symmetric Clifford twirling, and the super-
channel describing this twirling is defined as:

TQU
(N ) := ED∈Gn,QU

[D† ◦ N ◦ D]. (6)

Especially when we consider the Pauli rotation gate
U = Rz(θ) ⊗ I⊗n−1, QU simplifies to QU = {I,Z} ⊗
{I}⊗n−1

. In this case, we can express the effect of sym-
metric Clifford twirling to the Pauli noise as presented in
the following Theorem.

Theorem 1 Let EP⊗I⊗n−1(·) = (P ⊗ I⊗n−1) · (P ⊗
I⊗n−1)† be a single-qubit Pauli channel with P =

X,Y,Z and QU = {I,Z} ⊗ {I}⊗n−1
. Then, by apply-

ing symmetric Clifford twirling to the Pauli channel as
TQU

(EP⊗I⊗n−1) = ED∈Gn,QU
[D† ◦ EP⊗I⊗n−1 ◦ D], we can

scramble the Pauli-X and Y channels as

TQU
(EP⊗I⊗n−1) = E

Q1∈{X,Y}
Q2∈Pn−1

[EQ1⊗Q2
] (7)

for P = X,Y, while the Pauli-Z channel cannot be scram-
bled through the symmetric Clifford twirling:

TQU
(EZ⊗I⊗n−1) = EZ⊗I⊗n−1 . (8)

We generalize Theorem 1 to an arbitrarily non-Clifford
gate U and Pauli noise N in TM [27]. Theorem 1 in-
dicates that Pauli-Z noise remains unscrambled, while
Pauli-X and Y noises are well dispersed among other
qubits (albeit not exactly transformed to global white
noise) through symmetric Clifford twirling, and become
exponentially close to global white noise (Table 1). This
encourages us to devise a method for implementing the T
gate or the Rz(θ) gate such that the predominant error is
Pauli-X or Y error [32]. Alternatively, we may focus on
mitigating Pauli-Z noize using probabilistic error cancel-
lation and subsequently use symmetric Clifford twirling
to address the remaining Pauli-X and Y noises.
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Figure 2: Performance of symmetric Clifford twirling
for Trotterized Hamiltonian simulation of 2D Heisen-
berg model. Here we represent the average bias
over random Pauli operators P ∈ Pn defined as
|R2−n|tr[Neff(P )P ]| − 1|, where Neff is the effective noise
channel of the noisy logical circuit. We fix the total error
probability as ptot := perrL = 1 and set the Trotter step
size as 50. The circle and the x dots represent the result
for depolarizing noise and Pauli X and Y noise, while
the red, blue, and green lines represent the results with-
out symmetric Clifford twirling, with symmetric Clifford
twirling, and with 2-sparse symmetric Clifford twirling.

It is worth noting that n-qubit Clifford unitary D ∈
Gn,QU

can be implemented with negligible errors using
multi-qubit Pauli measurement (see Sec. S1 of TM [27]
for details). Furthermore, even if the implementation
of n-qubit Clifford unitary results in a non-negligible
amount of logical errors, we can still effectively scramble
the noise to some extent, by limiting the sampled sym-
metric Clifford unitaries to 2-qubit Clifford unitaries that
always act nontrivially on the first qubit. We call such a
twirling 2-sparse symmetric Clifford twirling, which en-
ables us to scramble Pauli-X and Y noise to a Pauli noise
with uniform distribution only among weight-2 Pauli
channels, and obtain a noise that is polynomially close
to the global white noise. We note that this process can
be performed using only a single CNOT gate and some
single-qubit Clifford gates, allowing us to scramble noise
with minimal additional errors. We may also generalize
such a sparse twirling to involve k-local Clifford gates to
complete the symmetric Clifford twirling up to the kth
order (see Sec. S4 of TM [27] for details).

4 Numerical analysis

To evaluate the efficacy of symmetric Clifford twirling
in mitigating errors, we apply our techniques to the dy-
namics simulation circuit of first-order Suzuki-Trotter
decomposition for the 2D Heisenberg model with the
open boundary condition. We assume that N repre-
sents either Pauli noise consisting of Pauli-X and Y er-
rors with px = py = perr/2, or depolarizing noise with
px = py = pz = perr/3. We set the total error rate to

ptot = 1, which results in the constant sampling over-
head of e2 ∼ 7. We further replace the Rz(θ) gate with
Rz(π/2) =S gate to perform a large-scale Clifford simu-
lation where the quantum advantage is expected.

We depict our results in Fig. 2. We observe that bias
between ideal and error-mitigated expectation value de-
creases roughly as 1/

√
n as we increase the qubit count,

even without performing symmetric Clifford twirling.
This can be considered as the effect of white-noise ap-
proximation [24], where the effective noise of the quan-
tum circuit is scrambled to the global white noise. We
can view the symmetric Clifford twirling as a method to
accelerate the noise scrambling in white-noise approxi-
mation. Indeed, we can see that the average bias signif-
icantly decreases when there is no Pauli-Z error. This
consists with the result in Theorem 1, which states that
Pauli-X and Y noise can be twirled into a noise that is
exponentially close to the global white noise, while scram-
bling of Pauli-Z noise is prohibited. This result motivates
us to devise a method for synthesizing the Rz(θ) gate
with the dominant algorithmic error being Pauli-X or Y
noise. Such a gate compilation is achieved in a proba-
bilistic way under some scenarios [32], while when one
can achieve such compilation is still an open question.

We note that we can accelerate white-noise approxima-
tion even for depolarizing noise where Pauli-Z noise ex-
ists. Furthermore, we can still accelerate the noise scram-
bling by only sparsely twirling the noise using a 2-qubit
symmetric Clifford operator, and improve the scaling of
the bias from 1/

√
n to 1/n when there is no Pauli-Z noise.

We emphasize that the difference in the performance of
the full twirling and the sparse twirling is negligible when
the Pauli-Z noise remains untwirled, as we can see from
the results of depolarizing noise.

It is worth noting that the validity of the white-noise
approximation for such highly structured circuits is a
phenomenon unique to the early FTQC regime. In fact,
it is known that the approximation fails for shallow, log-
depth quantum circuits in the noisy intermediate-scale
quantum (NISQ) regime [33]. Furthermore, symmetric
Clifford twirling is also unique to the early FTQC regime,
where we can perform Clifford operations with negligible
errors. Our new methodology thus paves the way for ad-
dressing logical errors in a significantly novel manner and
contributes to the realization of quantum advantage.
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Abstract. This work introduces the Schmidt Quantum Compressor, an innovative approach to quantum
data compression that leverages the principles of Schmidt decomposition to encode quantum information
efficiently. Unlike traditional variational quantum autoencoders, which rely on stochastic optimization and
are prone to issues like barren plateaus, our deterministic method significantly reduces the complexity and
computational overhead of quantum data compression. The compressor is rigorously evaluated through
numerical experiments, demonstrating its potential to achieve high fidelity in quantum state reconstruction
compared to variational methods. The applications of this technology span quantum simulation, commu-
nication, and distributed quantum computing, highlighting its versatility and the broad implications for
future quantum technologies.

Keywords: quantum computing, Schmidt decomposition, quantum compression, quantum autoencoder

1 Introduction

Quantum compression is a technique in quantum com-
puting aimed at reducing the dimensionality of quan-
tum information while preserving its essential charac-
teristics [1, 2]. This process involves encoding quantum
states into a lower-dimensional space, allowing for more
efficient storage and manipulation of quantum data. In
this way, quantum compression can significantly optimize
the use of quantum resources, making it a valuable tool
in advancing quantum technologies.
Applications of quantum compression [3, 4] span a va-

riety of fields, including quantum simulation [5], quan-
tum communication [6], and distributed quantum com-
puting [7, 8]. By minimizing the quantum resources
required, quantum compression enhances the feasibility
and efficiency of quantum simulations, enables more ef-
fective quantum communication protocols by reducing
the quantum data transmitted over networks, and fa-
cilitates distributed computation within quantum net-
works. Importantly, this technology is not limited to
purely quantum data; it can also efficiently transmit clas-
sical data through quantum networks by encoding it as a
quantum state [9, 10, 11, 12, 13], thereby expanding the
range of information that can be compressed and shared.
These applications highlight the potential of quantum
compression to improve the way both quantum and clas-
sical information is processed and transmitted.
Quantum autoencoders [14, 15, 16, 17, 18] are a pop-

ular approach to achieving quantum compression by em-
ploying a two-part mechanism: a compressor and a de-
compressor. The compressor maps the high-dimensional
input quantum states into a lower-dimensional latent
space, effectively compressing the information. This is
followed by a decompressor that attempts to reconstruct

∗ifa@yonsei.ac.kr
†dkd.park@yonsei.ac.kr

the original quantum state from the compressed version.
The success of a quantum autoencoder can be measured
by the fidelity between the original and reconstructed
states, which indicates how accurately the compression
and subsequent decompression preserve the quantum in-
formation. Quantum autoencoders can be trained to
maximize compression efficiency by optimizing the uni-
tary transformations that define the encoding and decod-
ing processes, demonstrating their critical contribution to
the field of quantum data compression.

Built on the framework of variational quantum cir-
cuits, quantum autoencoders face various challenges that
can impact their efficiency in compressing quantum data.
These variational circuits depend on fine-tuning their
parameters through optimization techniques to enhance
performance. However, this fine-tuning process is often
hindered by noise, which introduces errors complicating
the process of determining gradient directions, increasing
the likelihood of encountering what are known as barren
plateaus [19].

Additionally, identifying the best circuit configuration
becomes increasingly challenging [20]. The circuit con-
figuration consists of two parts: an embedding, which
maps classical data into a Hilbert space, and an ansatz,
a parametrized circuit designed to approximate the solu-
tion to a problem. The embedding is unnecessary when
working with quantum data.

Choosing the right embedding and ansatz for the
circuit configuration demands a balance between the
circuit’s ability to represent complex states (express-
ibility [21]) and the ease with which it can be opti-
mized (trainability [22]). The embedding must effi-
ciently [23, 24] translate classical data into a quantum
context, ensuring information is encoded without loss.
On the ansatz side, the architecture of the variational cir-
cuit should be sufficiently sophisticated to represent the
dataset’s complexity without becoming unmanageable.
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Figure 1: Schmidt Compression Protocol (SCP): quan-
tum circuit overview. The operators Uψ and Vψ are de-
rived from the typical state |ψ⟩. They transform the
basis of subsystems A and B to align with the compu-
tational basis. A sequence of CNOT gates then disen-
tangles the two subsystems. When ρi is identical to |ψ⟩,
the separation is perfect, and subsystem A carries the
singular values of ρi. Consequently, the decompressor C†

can faithfully reproduce ρi without loss. For ρi differing
from |ψ⟩, the separation is approximate, with the quality
of approximation ρf being dependent on the proximity
between ρi and |ψ⟩.

An ansatz that is too simplistic risks failing to model
the data adequately, while one that is too elaborate may
induce barren plateaus [19, 25] in the optimization land-
scape. Moreover, introducing more gates into the circuit
tends to increase error propagation in NISQ-era devices,
potentially corrupting the quantum state. Given these
considerations, the careful selection of both embedding
and ansatz is critical, as it profoundly impacts the effec-
tiveness of variational quantum computing methods.

Furthermore, the variational nature of these circuits
requires a significant amount of classical computational
resources for optimization, which can be time-consuming.
This is particularly challenging when dealing with com-
plex quantum systems or attempting to scale up the
quantum autoencoder for larger quantum datasets. The
trade-off between the adaptability of variational circuits
to different quantum compression tasks and the computa-
tional overhead introduced by the optimization process,
combined with the presence of noise, requires robust er-
ror mitigation and optimization strategies in the devel-
opment of quantum autoencoders.

Adopting a deterministic approach presents a strategic
alternative to address the challenges faced by quantum
autoencoders utilizing variational quantum circuits.

2 Schmidt compression protocol

The goal of the new protocol is to design a quantum
data compression scheme based on a classical dataset or
a dataset with samples from a quantum data source. The
idea is to use the dataset to extract information about
the source (quantum or classical), and then utilize that
information to develop a quantum compression protocol.

The essence of the method is to find a typical state
|ψ⟩ that minimizes the distance between the entire sam-
ple set {|xi⟩} and |ψ⟩, thereby maximizing the fidelity of

. . .

. . .

|0⟩

A Σ U

|ψ⟩ =∑λi |ui⟩ |vi⟩

B V ∗

Figure 2: Schmidt Quantum State Preparation: quan-
tum circuit overview. The operator Σ encodes the singu-
lar values of the reshaped state vector as the amplitude
probabilities of subsystem A (first half of the quantum
register). A sequence of CNOT gates then entangles sub-
systems A and B. The operators U and V are derived
from the input state vector. They transform the compu-
tational basis of subsystems A and B to align with the
Schmidt basis.

the entire dataset towards 1. The compression strategy
is then built around representing states in the vicinity
of |ψ⟩ using fewer dimensions. We discovered that, for
datasets with real and non-negative features, the opti-
mal choice for the typical state is the average of the nor-

malized sample vectors |ψ⟩ =
∑M

i=1|xi⟩
M , where M is the

number of samples.

2.1 Protocol principle

Given a bipartite state |ψ⟩ in Ha ⊗ Hb, its Schmidt
decomposition can be written as:

|ψ⟩ =
k∑

i=1

λi |ui⟩a |vi⟩b . (1)

If the typical state |ψ⟩ is reshaped into a matrix form
Mψ, and then an SVD is performed on this matrix, the
result is:

Mψ = UψΣψV
†
ψ . (2)

where the columns of Uψ (left singular vectors) corre-
spond to the Schmidt basis vectors |ui⟩a for subsystem
A, the columns of Vψ (right singular vectors) correspond
to the Schmidt basis vectors |vi⟩b for subsystem B, and
the diagonal elements of Σψ are the singular values, which
are equivalent to the Schmidt coefficients λi. It’s crucial
to note that the partitioning of the system into blocks
do not need to be continuous or uniform in size, as illus-
trated in Figure 1

The compression unitary C, depicted in Figure 1, is
formulated from Equation (2) and is a derivative of the
Schmidt state preparation circuit [10, 13]. Observing
that the first operator in the Schmidt circuit (see Fig-
ure 2) is a state preparation mechanism that encodes the
singular values into the amplitudes of subsystem A, it is
feasible to reverse this circuit and eliminate the associ-
ated operator Σ to generate the state |λ⟩ (see Figure 3).
With C as the compression unitary, C† functions as the
decompression unitary.

When C acts upon the typical state |ψ⟩, it precisely
produces |λ⟩ in subsystem A and |0⟩ in subsystem B,
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. . .

. . .

|ψ⟩

A (Uψ)
−1 |λ⟩

B (V ∗
ψ )

−1 |0⟩

Figure 3: The figure showcases a compressor circuit
adapted from the Schmidt Quantum State Preparation.
In this adaptation, the original circuit is inverted, and
the unitary component Σ is omitted. Upon application
to a typical state |ψ⟩, the circuit yields a new state |λ⟩,
which encodes the singular values formerly attributed to
Σψ within subsystem A. After this transformation, sub-
systems A and B become fully disentangled, resulting in
subsystem B being characterized by the state |0⟩.

as shown in Equation (4). In this configuration, C† is
capable of flawlessly reconstructing |ψ⟩ as illustrated in
Figure 4a.

(Uψ ⊗ V ∗
ψ )

−1 |ψ⟩ =
∑

i

λi |i⟩a |i⟩b (3)

(
m∏

i=1

CNOTi

)∑

i

λi |i⟩a |i⟩b =
∑

i

λi |i⟩a |0⟩b (4)

Now, consider a state |xi⟩ that is close to |ψ⟩. We are
interested in how |xi⟩ projects onto the known Schmidt
basis vectors of |ψ⟩. The projection will look like:

αi = ⟨ui|a ⟨vi|b |xi⟩ (5)

The projections translate in terms of closeness in the fol-
lowing way:

• Exact match. If |xi⟩ = |ψ⟩, the coefficients αi will
match exactly with the Schmidt coefficients λi.

• Close but not exact. If |xi⟩ is near |ψ⟩ (in terms
of high state fidelity between them), the coefficients
αi will be close to λi, but with some deviations.
The magnitude and pattern of these deviations can
offer insights into how |xi⟩ deviates from |ψ⟩.

• Orthogonal or unrelated. If |xi⟩ is orthogonal or
largely unrelated to |ψ⟩ in terms of certain Schmidt
modes, the corresponding αi values will be small or
even zero.

The entire set {αi} can be seen as a signature or fin-
gerprint of how |xi⟩ projects onto the Schmidt bases of
|ψ⟩.

3 Experiment and discussion

In this section, we contrast the performance of the
Schmidt compressor algorithm with that of the Quan-
tum Autoencoder, using fidelity as the benchmark. Fi-
delity measures how closely the recovered state from the
complete circuit matches the initial quantum state.

A

B
ρi = |ψ⟩ C C† ρf = ρi

|0⟩

(a)

A

B
ρi ≈ |ψ⟩ C C† ρf ≈ ρi

|0⟩

(b)

Figure 4: Operational dynamics of the complete circuit
on various states. (a) Scenario where the input state
precisely matches the typical state, resulting in a lossless
recovery of the input state. (b) Scenario where the input
state is in close proximity to the typical state, resulting in
a high-fidelity approximation of the input state, although
not an exact recovery.

Table 1: Comparative analysis of the Variational Quan-
tum Autoencoder and Schmidt Compression techniques
applied to the Optical Recognition of Handwritten Digits
dataset [26, 27] under ideal simulation conditions. The
columns labeled Avg display the average fidelity mea-
sured across 20 pairs of original and reconstructed states,
offering insights into the effectiveness of each method in
preserving quantum state information during compres-
sion.

Label
Quantum autoencoder Schmidt compressor

Avg Std Avg Std
0 0.815 0.080 0.841 0.073
1 0.700 0.168 0.679 0.176
2 0.715 0.115 0.736 0.117
3 0.699 0.117 0.725 0.118
4 0.694 0.093 0.709 0.116
5 0.705 0.091 0.706 0.097
6 0.744 0.082 0.786 0.092
7 0.703 0.098 0.699 0.117
8 0.694 0.088 0.713 0.093
9 0.633 0.147 0.671 0.147

This study employs the Optical Recognition of Hand-
written Digits dataset [26, 27]. The dataset was seg-
mented into ten unique subsets, each representing one
digit class in the range from 0 to 9. Every subset com-
prised 180 samples. For each digit class, 20 test samples
were evaluated to calculate the mean fidelity and stan-
dard deviation. The simulation findings are summarized
in Table 1, which compares the performance of the Quan-
tum Autoencoder with that of the Schmidt compressor
in terms of fidelity metrics. The results show that the
Schmidt compressor outperforms quantum autoencoder
in 8 out of 10 data compression tasks.

The standout benefit of the Schmidt compressor is its
independence from optimization, a process that can often
be resource-intensive and time-consuming. Moreover, it
circumvents issues commonly associated with optimiza-
tion, such as barren plateaus, and eliminates the complex
decision-making involved in selecting the optimal embed-
ding and ansatz for variational circuits.
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[25] Zoë Holmes, Kunal Sharma, M. Cerezo, and
Patrick J. Coles. Connecting Ansatz Expressibility
to Gradient Magnitudes and Barren Plateaus. PRX
Quantum, 3(1):010313, 2022.

[26] Dheeru Dua and Casey Graff. UCI machine learning
repository, 2017.

[27] Ethem Alpaydin and Cenk Kaynak. Cascading clas-
sifiers. Kybernetika, 34(4):369–374, 1998.

102



Generalisation of Quantum Reservoir Computing with Polynomial
Readout

Naomi Mona Chmielewski1 2 ∗ Nina Amini2 Joseph Mikael1

1 EDF Lab, Palaiseau, France
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Abstract. We propose to analyse the ability of quantum reservoir classes with polynomial readout func-
tions to generalise on unseen data. We find an upper bound on the Rademacher complexity as well as a risk
bound that scales linearly in the maximal Lipschitz constant of the readout class. For a polynomial read-
out, which is often used to prove universality in quantum reservoirs, this constant scales very unfavourably
in the number of qubits. Finally, we open up new avenues to find universal quantum reservoir classes with
better risk bounds.
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1 Introduction

Reservoir Computing (RC) is a machine learning
paradigm that has applications in time series forecasting
and other memory-based problems [1]. It represents an
alternative to conventional Recurrent Neural Networks
[2] that is more efficient in the computation time and
data resources, as training only requires a linear regres-
sion step whereas the weights in the reservoir are left
unchanged. While initially modelled as a type of neural
network [3], physical implementations of RC have be-
come popular [4]. The idea is to inject time series data
collected from a source system into a physical system, to
let the system react and evolve according to its natural
dynamics, and to keep injecting the data at regular in-
tervals in order to reproduce the behaviour of the source
system, and to use this behaviour to make predictions.
As an example, one might collect time series data of

the energy produced by a wind turbine and inject the
data into the wave patterns of a water basin, similarly to
[5].
Several proposals to use quantum systems as a physi-

cal RC have recently attracted attention, as the compact
nature of RC lends itself well to NISQ implementations
[6, 7, 8]. Furthermore, the fact that no parameter up-
dating is needed in RC circumvents the barren plateau
problem commonly encountered in Variational / Param-
eterised Quantum Circuits.
The two key ingredients of RC are given by the func-

tional that describes the time evolution of the dynamical
system driven by the input, and the readout function
of the reservoir state that is used to make predictions.
An important property that we require of a reservoir is
known as the fading memory property (FMP), a property
that states that two input sequences that were different
in the distant past, but are similar in the present, should
yield similar outputs from the reservoir.
Theoretical analyses of both classical RC and quantum

RC have established several classes of reservoir function-
als and readout functions that produce universal classes
[9, 10, 11, 12, 13, 14]. A universal class is here under-

∗naomi-mona.chmielewski@centralesupelec.fr

stood to be a class of maps that can approximate any
map with the FMP arbitrarily well.

Apart from universality, another important property
of a machine learning model is its ability to generalise
on unseen data. The generalisation error of a hypothesis
class is often bounded through the Rademacher complex-
ity, a measure that quantifies how well a hypothesis class
can reproduce random noise. A high Rademacher com-
plexity suggests that the hypothesis class might be prone
to overfitting. A bound on the generalisation error is
also called a risk bound. In classical RC, risk bounds
have been studied for several universal reservoir classes
[15].

To our knowledge, the Rademacher complexity of
quantum RC has not yet been studied.

2 Contributions

We propose to bound the Rademacher complexity of
a general class of quantum reservoirs. We then estab-
lish risk bounds of subclasses of the universal quantum
reservoir classes introduced in [11] and [12]. Both classes
employ a multivariate polynomial readout which is used
to prove universality.

We find that a significant contributor to the way that
the risk bound scales is given by a bound on the Lipschitz-
constants of the readout functions. In particular, this
leads to a very unfavourable scaling of the risk bound in
the number of qubits when using a class of multivariate
polynomial readouts. In other words, if one wants to
use either of the quantum reservoir subclasses above, our
bound suggests that the ability of these classes to perform
well on unseen data quickly explodes as the number of
qubits increases.

The full proofs and additional results will appear in
the forthcoming work [16].

3 Main Results

3.1 An Upper Bound on the Rademacher Com-
plexity

We consider a classHQRC
n of quantum reservoirs with n

qubits with a class of Lipschitz-continuous readout func-
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tions such that for all members of the class, the Lip-
schitz constant is bounded by some real number L̄h.
Then, under some additional hypotheses, for k samples
of Rademacher random variables, the Rademacher com-
plexity of the class of quantum reservoirs is bounded by

Rk(HQRC
n ) ≤ L̄h√

k
. (1)

Now consider a class of multivariate polynomial read-
out functions in the measurements of the n qubits along
the Z-axis with weights {wi} such that the maximal value
of the weights is bounded by |||W |||∞ := maxi |wi|. Fur-
thermore, suppose that the maximal degree of the poly-
nomial is given by Rmax. Then we find that a bound
L̄poly
h on the Lipschitz-constants of the readout functions

is given by

L̄poly
h = |||W |||∞Rmax · n

√
2n
((

n+Rmax

Rmax

)
− 1

)
.

(2)

Plugging this expression into (1), we immediately see
that this implies that the bound on the Rademacher com-
plexity scales as n

√
2n
(
n+Rmax

Rmax

)
in the number of qubits.

3.2 Scaling of Risk Bounds

The risk bound that we apply here, which is an adapta-
tion from the bound in [15], scales linearly in L̄h. Under
certain conditions, we show that the risk bound can be
written as

O

(
L̄hmax

{
C1

m
, C2

logm

m
, C3

√
logm

m
, C4

√
log 4/δ

2m

})

where C1, C2, C3, C4 are constants that depend on the
parameters of the reservoir. This bound implies that
if L̄h is sufficiently small, the reservoir class generalises
well. On the other hand, if L̄h scales badly, so does the
risk bound. While this can be counteracted somewhat
by the right choice of parameters (C1, C2, C3, C4), they
cannot be made arbitrarily small.
Plugging in the expression of L̄poly

h from (2), it is clear
that this bound scales badly in the number of qubits when
using a polynomial readout. One might want to control
this constant by adjusting the weights, for example by

choosing 1
|||W |||∞ ≥ n

√
2n
((

n+Rmax

Rmax

)
− 1
)
. This however

is not advisable, as for increasing number of qubits and
accounting for numerical error, the weights would quickly
all be set to zero. Another possibility is to choose a linear
readout, which would reduce the constant from L̄poly

h to

L̄lin
h = |||W |||∞n

√
2n.

4 Discussion

The results from Section 3 suggest that using polyno-
mial readouts to guarantee universality might negatively

impact the reservoir class’s ability to generalise. This mo-
tivates the search for universal quantum reservoir classes
that do not make use of polynomial readouts to prove
universality. In [17] the authors show that an input-
dependent CPTP map is isomorphic to the State Affine
System (SAS) introduced in [10], which has been shown
to be universal under certain conditions, when equipped
with a linear readout function. Further research could
identify conditions on the CPTP map so that the univer-
sality of [10] would be applicable to the quantum reser-
voir.
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Abstract. In this work[arXiv:2405.07592], we give a new paradigm of quantum error mitigation based
on the vectorization of density matrices. Different from the ideas of existing quantum error mitigation
methods that try to distill noiseless information from noisy quantum states, our proposal directly changes
the way of encoding information and maps the density matrices of noisy quantum states to noiseless pure
states, which is realized by a novel and NISQ-friendly measurement protocol and a classical postprocessing
procedure. Our protocol requires no knowledge of the noise model, no ability to tune the noise strength,
and no ancilla qubits for complicated controlled unitaries. Under our encoding, NISQ devices are always
preparing pure quantum states which are highly desired resources for variational quantum algorithms to
have good performance in many tasks. We show how this protocol can be well-fitted into variational
quantum algorithms. We give several concrete ansatz constructions that are suitable for our proposal
and do theoretical analysis on the sampling complexity, the expressibility, and the trainability. We also
give a discussion on how this protocol is influenced by large noise and how it can be well combined with
other quantum error mitigation protocols. The effectiveness of our proposal is demonstrated by various
numerical experiments.
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1 Basic idea
Currently, we are in the Noisy Intermediate Scale

Quantum (NISQ) era [1], where high-quality qubit con-
struction and large-scale fault-tolerant quantum comput-
ing remain elusive. Consequently, NISQ devices cannot
execute complex quantum algorithms requiring deep cir-
cuits and numerous qubits [2]. To leverage the demon-
strated quantum advantages of these devices [3, 4], re-
searchers focus on developing NISQ-friendly algorithms
like Variational Quantum Algorithms (VQAs) [5]. VQAs,
such as Variational Quantum Eigensolver [6] and Quan-
tum Approximate Optimization Algorithm [7], integrate
classical and quantum computing by iteratively optimiz-
ing parametrized quantum circuits to minimize a cost
function. Despite their resilience to noise and shallow cir-
cuit depth, VQAs suffer performance degradation due to
device noise [8, 9]. This noise-induced error manifests as
limitations in state preparation, circuit depth, and bar-
ren plateau problems [10]. To mitigate these issues, clas-
sical strategies like neural networks, Clifford circuits, and
tensor networks are proposed [11, 12, 13]. Alternatively,
Quantum Error Mitigation (QEM) methods aim to distill
noiseless information from noisy states using approaches
such as probabilistic error cancellation [14, 15].

In our work, we introduce a novel QEM paradigm for
VQAs based on density matrix vectorization (DMV). The
basic idea of our protocol is inspired by the mapping:

ρ→ |ρ⟩ (1)
∗ustcszx@mail.ustc.edu.cn
†czh007@mail.ustc.edu.cn
‡ccs112202@mail.ustc.edu.cn

where ρ =
∑
ij ρij |i⟩⟨j| and |ρ⟩ is defined as

1
Cρ

∑
ij ρij |i⟩|j⟩ with the normalization factor Cρ =

||ρ||F =
√∑

ij |ρij |2 =
√

Tr(ρ2). While DMV has been
vastly used as a useful mathematical trick for simplifying
many concepts in quantum information science, in this
work, we see DMV in a different way. The main concept
transition here is that the mapping Eq. 1 means we are
treating an n-qubit density matrix ρ as a 2n-qubit pure
state |ρ⟩, which shares the same idea as in Ref. [16] to
demonstrate a new exponential quantum speedup. By
this encoding, any quantum state either pure or mixed
will always be mapped to a pure state. Note that the
reverse mapping |ρ⟩ → ρ has also been adopted in sev-
eral works [17, 18] for simulating open quantum systems
using unitary circuits.

Currently, due to the Hermiticity and the positive
semi-definiteness of ρ, we can not encode all 2n-qubit
pure states. To solve this problem, we can introduce a
generalized mapping f :

{ρ1, ρ2, ..., ρK , c1, c2, ..., cK} (2)

→ |ψ⟩ = 1

Cψ

∑
ij

(c1ρ1,ij + c2ρ2,ij + ...+ cKρk,ij)|i⟩|j⟩

where we use K density matrices with K complex coef-
ficients to form a pure state |ψ⟩ with the normalization
factor Cψ =

√∑
ij |c1ρ1,ij + c2ρ2,ij + ...+ ckρk,ij |2, And

it is sufficient to set K = 4 with 2 real and 2 imaginary
coefficients to express any pure state |ψ⟩. This can be
understood from the matrix form |ψ⟩ → ψ which can be
decomposed first into Hermitian part and i∗Hermitian
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(anti-Hermitian) part, each Hermitian part is indefinite
and can be further expressed as a linear combination of
two positive semi-definite density matrices.

To give this mapping a real sense, we need
to be able to extract information of |ψ⟩ from
{ρ1, ρ2, ..., ρK , c1, c2, ..., cK}. Interestingly, we find that,
given a Hamiltonian HA, the expectation value with re-
spect to |ψ⟩ can be re-expressed as:

⟨ψ|HA|ψ⟩ =
∑K
i,j=1 c

∗
i cjTr(HBρi ⊗ ρj)∑K

k,l=1 c
∗
kclTr(ρkρl)

with

⟨il|HB |jk⟩ = ⟨ij|HA|kl⟩ (3)

We call HB the substitute Hamiltonian of HA, And it
means that by measuring the values of all Tr(HBρi⊗ ρj)
and Tr(ρiρj), one can obtain the value of ⟨ψ|HA|ψ⟩ by
classical post combination.

2 Summary of our main results
Unlike the philosophy of extracting noiseless informa-

tion from noisy quantum states by fighting against noise
concentration in existing QEM protocols, our protocol re-
alizes error mitigation by changing the way of encoding
information. We encode pure states into linear combina-
tions of vectorized density matrices which directly leads
to unconditionally decoherence-free pure state prepara-
tions from noisy quantum circuits. By our protocol,
the performance gap induced by decoherence can be di-
rectly eliminated and the gap led by low expressibility
can be well mitigated without introducing additional bar-
ren plateau resources. Our protocol requires nothing(the
knowledge of the noise model, the tunability for the noise
strength and the controlled unitary for indirect measure-
ments) but only needs 2-qubit collective unitaries before
measurements to extract needed information. In the fol-
lowing, we will show four key results of our QEM proto-
col.

Result 1(Framework) (See fig1)the idea of classical
linear combinations of quantum states has been adopted
in several proposals [19, 20, 21] for variational quantum
algorithms to enhance the expressibility of NISQ devices
without aggravating the barren plateau problems. The
key component in these protocols is the measurement
strategy for values like ⟨ψi|O|ψj⟩ which typically require
indirect hardware-challenging modified Hadamard tests
[19] or complicated direct measurement strategies [22].
In contrast, an interesting and nice property of our mea-
surement procedure is that values like Tr(HBρi ⊗ ρj)
that contain the unnormalized information of ⟨ρi|HA|ρj⟩
can be estimated by hardware-friendly direct measure-
ments as shown before. Thus, our proposal inherits the
advantages of classical linear combinations as in those
proposals and at the same time, is easier to realize on
NISQ hardware.

Basis 

rotation

Prepare all density matrices respectively

For each { i, j }, do repeated measurements   

...

and

Do post-combination for 

the expectation value

U
p

d
a
te

 p
a

ra
m

e
te

rs
 b

y
 a

 c
la

s
s
ic

a
l o

p
tim

iz
e

r

Mapping

Estimate:

Basis 

rotation

Prepare all density matrices respectively

For each { i, j }, do repeated measurements   

...

and

Do post-combination for 

the expectation value

U
p

d
a
te

 p
a

ra
m

e
te

rs
 b

y
 a

 c
la

s
s
ic

a
l o

p
tim

iz
e

r

Mapping

Estimate:

Figure 1: Running VQAs with QEM by DMV.

Result 2(Sampling complexity) The sampling com-
plexity of estimating Eq. 3 hinges on the number K of
classical combinations and the purity of {ρ1, ρ2, ..., ρK},
determined by factors such as the number of CNOT gates
L and the circuit fault rate ζ, with 2−L serving as a lower
bound for purity in the noiseless case and e−2ζ in the
presence of faults modeled by a Poisson distribution.The
true lower bound is thus a competition between 2−L and
e−ζ , which results in the following sampling complexity:

N ≥ max
[
e4ζ , 22L

] 3K2

ϵ2

(
m||HA||2F

22n
+ ||HA||22

)
(4)

and it is also upper bounded by:

N ≤ 22n
3K2

ϵ2

(
m||HA||2F

22n
+ ||HA||22

)
(5)

the basic idea of our QEM protocol is fundamentally dif-
ferent from others. However, in terms of the sampling
complexity, the scaling with respect to the circuit fault
rate ζ of our protocol is e4ζ which interestingly coincides
with the general exponential scaling behaviors of the
sampling overhead in other QME protocols [23]. Indeed,
our protocol solves the decoherence by directly changing
the way of encoding quantum states, however, to retrieve
information under this encoding, an e4ζ scaling has to be
respected because of the purity restriction. Compared
with other protocols, our sampling complexity shares the
same scaling of ζ as using the probabilistic error cancel-
lation method [14, 15] to totally eliminate errors and as
using the two-copy version of the virtual state distillation
method [24]. When the task is to obtain information on
pure states, our method is superior to the virtual state
distillation since it needs a M -copy version with M large
to capture the pure state behaviors well which, however,
will result in a e2Mζ scaling on the sampling complexity.

Result 3(Expressibility) To quantitatively evaluate
the expressibility of ansatz we introduced above under
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(a)

(d)

(c)

(b)

Figure 2: Solving for electronic ground states of the H4 molecule under a spin symmetric ansatz

DMV encoding, we adopt the tools of the covering num-
ber from the statistical learning theory [25] which have
been used for measuring the expressibility of ansatz in
standard VQAs [26].The upper bound for the covering
number of standard VQAs is given by:

N (H, ϵ, | · |) ≤
(
7Ngt∥HA∥

ϵ

)d2kNgt

(6)

For VQAs based on DMV as formulated before, the upper
bound for the covering number is:

N (H̃, ϵ, | · |) ≤ 2LC
(
7NGT ∥HB∥

ϵ

)d2kNGT

(7)

where H̃ is the hypothesis space for VQAs by DMV,
L is the number of CNOT gates connecting the upper
and lower halves, C is a constant greater than 1 defined
in the appendix, NGT is the sum of trainable and also
meaningful gates in each linear combination circuit, i.e.,
NGT =

∑K
i,j=1Ngt(ij).

Taking the same observable operator, since we have
∥HB∥ = ∥HA∥. For analytical convenience, we assume
that the number of trainable gates in each combination
circuit is the same as in a single standard VQA circuit,
i.e., NGT = KNgt. Since this term appears in the ex-
ponential part, the upper bound for the covering num-
ber increases exponentially with the number of combi-
nations. Additionally, the constant term 2LC is greater
than 1, further amplifying the upper bound for the cov-

ering number. It can be seen that VQAs based on DMV
have higher expressibility compared to standard VQAs.

Result 5 (numerical experiments) Additionally, we
give two types of constructions of quantum circuit ansatz
for preparing density matrices used for VQAs. The first is
an ansatz for general purposes which can universally pre-
pare density matrices with minimal resources .The sec-
ond is how chemical-inspired ansatz specially designed for
electronic structure problems of paramagnetic molecules
can be well fitted into our framework. We also give nu-
merical examples based on these ansatzes to demonstrate
the performance of VQAs using our QEM protocol under
various noises.For example, the numerical experiments of
chemical-inspired ansatz is in fig2
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Detecting Bell correlations in multipartite non-Gaussian spin states
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Abstract. We expand the toolbox for studying Bell correlations in multipartite systems by introducing
permutationally invariant Bell inequalities (PIBIs) involving few-body correlators. First, we present around
twenty families of PIBIs with up to three- or four-body correlators, that are valid for arbitrary number
of particles. Compared to known inequalities, these show higher noise robustenss, or the capability to
detect Bell correlations in highly non-Gaussian spin states. We then focus on finding PIBIs that are of
practical experimental implementation, in the sense that the associated operators require collective spin
measurements along only a few directions. To this end, we formulate this search problem as a semidefinite
program that embeds the constraints required to look for PIBIs of the desired form.

Keywords: non-Gaussian spin states, Bell correlations, higher-order moments

Some correlations arising from quantum physics can-
not be explained within the paradigm of local realism,
and are thus called nonlocal. These are detected via the
violation of a so-called Bell inequality, tested in practice
through a Bell experiment. Besides their fundamental
interest, nonlocal correlations are the resource enabling
device-independent (DI) quantum information process-
ing tasks, such as quantum key distribution, randomness
amplification or self-testing. Although much research has
focused on few-partite scenarios, mostly bipartite, nonlo-
cal correlations also appear naturally in the multipartite
regime and, in particular, in physically relevant many-
body systems. With mild additional assumptions, mul-
tipartite nonlocality can be revealed in experimentally-
practical ways, and take the name of Bell correlations.
Detection of Bell correlations is of great interest, as

they are related to quantum critical points, metrology,
open quantum systems, and bosonic systems at finite
temperature, and provide an avenue to quantify DI en-
tanglement and Bell correlation depth. However, the
available inequalities are scarce, because a complete char-
acterization is an intractable task. An approach that
finds a good compromise between expressivity and com-
plexity is to focus on Bell inequalities with particular
symmetries and low-order correlators. In turn, this re-
duces the experimental requirements to reveal Bell cor-
relations from them. A paradigmatic example is the use
of two-body, permutationally invariant Bell inequalities
(PIBIs) to detect a class of Gaussian states known as
spin-squeezed states.
Despite all this progress, so far only PIBIs with up to

two-body correlators are known [1]. Of particular rele-
vance is the inequality

I2 ≡ −2S0 +
1

2
S00 − S01 +

1

2
S11 + 2N ≥ 0, (1)

where Sj1···jk are permutationally invariant (PI) observ-
ables, and k = 1, · · · ,K is the order of PI correlator

∗jjguo@pku.edu.cn
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Figure 1: Maximum relative quantum violation QN
V /β

N
C

for the 3rd-order Bell inequality I3 and 2nd-order Bell
inequality I2, as a function of the number of parties N .
The two horizontal dashed lines indicate the asymptotic
violation for N → ∞, which for I2 is −1/4, and for I3 is
−2

√
3/9 ≈ −0.3849.

and jl = 0, 1 is the measurement setting. I2 enabled
the experimental detection of Bell correlations in spin-
squeezed BECs [2] and cold atomic ensembles [3]. But
the low-order correlation pose a fundamental limit on
their applicability.

After taking higher-order moments into consideration,
in this work we present around twenty new PIBIs involv-
ing three- and four-body correlators. For example, one
of the third-order PIBIs is

I3 ≡ −12(N − 1)S0 − 12(N − 1)S1 + 3(N − 2)S00

+ 6NS01 + 3(N − 2)S11 − 2S000 − 3S001 + S111

+ 12N(N − 1) ≥ 0, (2)
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Figure 2: a): Relative quantum violation of the PIBIs I2
(blue) and I3 (orange) for N = 50 spin OAT states |ψ(µ)⟩
as a function of µ. An advantage over I2 can also be
found for ISDP

3 (red dashed), which requires to measure
only one third moment of the collective spin. b): For
mixed states ρ(η, µ) = η|Φ(µ)⟩⟨Φ(µ)|+(1− η)I/(N +1),
the minimum purity η required to violate each PIBI.

and one PIBI with at most four-body correlators is

I4 ≡ 24(N − 1)S00 + 48(N − 1)S01 + 24(N − 3)S11

+ S0000 + 4S0001 + 6S0011 + 4S0111 + S1111

+ 48N(N − 1) ≥ 0, (3)

which we have proven to be valid for all atom num-
ber N . Compared to known PIBIs up to second-order
correlators, I3 and I4 provide an advantage in terms of
noise robustness and sensitivity to non-Gaussian states.
In Fig.1 we show Maximum relative quantum violation
QN

V /βC for I2 and I3, as a function of atom number
N . It is evident the significantly better scaling for the
higher-order Bell inequalities I3 compared to I2. In the
limit N → ∞, it is possible to show through a varia-
tional calculation that the relative violation of I3 tends
to −2

√
3/9 ≈ −0.3849, which is larger than the value

−1/4 obtained for I2. A larger relative violation indi-
cates a higher noise robustness, as well as the possibility
to detect Bell correlations in a larger class of states.
We also show higher-order PIBIs allow us to detect

Bell correlations in many-body spin states of experimen-
tal relevance. To illustrate this, let us consider the spin
squeezed states |Φ(µ)⟩ prepared through the one-axis
twisting (OAT) Hamiltonian, with evolution times µ. To
investigate Bell correlations in the OAT states |Φ(µ)⟩, we
compute I2 and I3 as a function of µ in Fig. 2 for N = 50,
where we can observe that I3 outperforms I2 by reaching
larger relative violation QN

V /β
N
C as well as detecting Bell

correlations over a wider squeezing range, and thus for
a larger class of states. To investigate the noise robust-
ness, we consider OAT states mixed with white noise as
ρ(η, µ) = η|Φ(µ)⟩⟨Φ(µ)|+ (1− η)I/(N +1). In Fig. 2 we

Figure 3: For N = 50, Wigner function of the eigen-
state corresponding to the minimum eigenvalue of Bell
operator Î4. Red dots indicate the optimal measurement
direction Ŝn⃗, Ŝm⃗, for violating I4.

plot the minimum η for observing a PIBI violation, and
show that high-order inequalities detect Bell correlations
with higher noise tolerance.

For some highly non-Gaussian states, for example,
the states maximally violating inequality I4, see Fig. 3.
These states do not violate I2, and their Bell correlations
can be revealed by higher-order PIBIs.

Since higher-order moments require massive measure-
ment statistics in practice, we want to reduce the number
of higher-order measurements. For a PIBI to be exper-
imentally practical, we note that the coefficients of the
correlators must satisfy some (nonlinear) constraints. We
find that these can be imposed a priori, and formulate a
SDP that looks for PIBIs resulting in Bell operators of
the desired form (e.g. involving only one third-moment).
In Fig. 2, the red dashed line is ISDP

3 via SDP methods,
it outperforms I2. I

SDP
3 has a worse noise tolerance than

I3, but is more experimentally friendly as only one direc-
tion for third-order measurements is needed. This work
has been published in Physical Review Letters [4].
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Universal readout error mitigation scheme characterized on
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Abstract. Experiments in quantum technologies are limited by numerous sources of noise that can
only be partially captured by simple analytical models and additional characterization is required. We
designed an universal readout error mitigation protocol based on quantum state tomography and detector
tomography. By treating readout error mitigation in the context of state tomography the method becomes
largely device-, architecture-, noise source-, and quantum state-independent. We implement this method
on a superconducting qubit and benchmark the protocol when varying important noise sources, such as
suboptimal readout signal amplification. We observed decreases in readout infidelity by a factor of up to
30.

Keywords: Readout error mitigation, quantum state tomography, quantum detector tomography, super-
conducting qubit, overlapping tomography

Quantum technologies are highly dependent on accu-
rate control and reliable readout of quantum systems.
In the era of NISQ devices, there is a need for reliable
operation of quantum hardware despite the noise levels
present. Current experiments are limited by numerous
sources of noise that can only be partially captured by
simple analytical models, and additional characterization
of the noise sources is required.
There are generally two approaches to dealing with

noise-induced errors at the algorithmic level: error cor-
rection and error mitigation [1]. The goal of error cor-
rection is to on-the-fly correct errors that occur during
a computation or simulation, by performing syndrome
measurements on a logical qubit encoded onto multiple
physical qubits and actively correcting them. The aim
of error mitigation is more modest and tries to miti-
gate the effects of noise by applying post-processing onto
measured data. A prominent type of noise not captured
by error correction is the so-called state preparation and
measurement errors, which occurs outside the standard
gate formulation. Therefore, these types of noise are best
handled by error mitigation methods. The focus of our
work is specifically on readout errors.
Our goal is to tackle a problem that is currently not

sufficiently addressed within readout error mitigation
(REM), which are methods that capture a general class
of readout errors, while light-weight enough to be ap-
plied to system sizes of up to 6 qubits. Such domains are
very interesting when used in conjunction with methods
based on quantum overlapping tomography [2, 3], which
allows the construction of lower-order correlators of large
quantum systems efficiently.
Our proposed method [4], illustrated in Fig. 1, consists

∗aasen@kip.uni-heidelberg.de
†martin.gaerttner@uni-jena.de

of two stages: First, we have a calibration stage based on
quantum detector tomography (QDT), which character-
izes the measurement procedure in terms of generalized
measurement operators, known as the positive operator-
valued measure (POVM). Second, we perform the exper-
iment of interest and apply quantum state tomography
(QST) to estimate the full density matrix of the quan-
tum system. The key insight of our procedure is that
we directly integrate the information about the measure-
ment noise into the state estimator. Thus, by treating
readout error mitigation in the context of state tomogra-
phy, the method becomes largely device-, architecture-,
noise source-, and quantum state-independent, making it
universal in the qubit domain it operates on.

Beyond the broader scope of the readout errors, the
protocol comes with additional benefits which is often
not enjoyed by simpler methods [5]. Most importantly
we directly estimate the non-noisy state without invert-
ing any noise channels, which often causes the resulting
state to be non-physical. Furthermore, post-processing
is completely separate from the experimental operation,
making our method non-invasive.

The protocol relies on a notable assumption: State
preparation errors must be small compared to readout
errors. While this is not guaranteed for all experimen-
tal platforms, it is a reasonable assumption for super-
conducting qubits. It is possible to generalize our pro-
tocol by switching to more comprehensive error estima-
tion schemes, such as gate set tomography [6], which self-
consistently characterizes both readout and state prepa-
ration errors up to some gauge freedom. However, gate
set tomography requires many more circuit runs, making
it a prohibitively expensive calibration method.

To verify the ability of our readout error mitigation
protocol, we implement it on a superconducting qubit
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Figure 1: Protocol schematic overview. (a) Detector to-
mography: A complete set of basis states (e.g. the Pauli
states) are prepared and measured repeatedly. Based on
the outcomes of the measurements, a POVM is recon-
structed. In a sense, it associates the measured outcome
(here visualized as spin up/down measurements) with a
measurement operator M̃i. (b) State tomography: Using
the reconstructed POVM, the modified likelihood func-
tion is endowed with knowledge of the operation of the
measurement device. The system of interest is then pre-
pared and measured repeatedly with the desired number
of shots.

device, and benchmark the improvement in state recon-
struction fidelity due to our error mitigation scheme. We
characterize the performance of the method by varying
important noise sources, such as sub-optimal readout sig-
nal amplification, insufficient resonator photon popula-
tion, off-resonant qubit drive, and effectively shortened
T1 and T2 decay times. As an example, in Fig. 2, we
present results for insufficient readout amplification. We
see a consistent ability to mitigate any added error by
lowering the amplification, even to the point of com-
pletely turning it off. Even with optimal experimental
parameters we see a large improvement. Furthermore,
we identified noise sources for which readout error mit-
igation worked well and observed decreases in readout
infidelity by a factor of up to 30.
We have shown that our method greatly improves state

reconstruction in the presence of readout errors, and thus
reduces the quality demands on readout devices consid-
erably. Our method adds to the toolbox of readout error
mitigation schemes, and opens up new possibilities for
systems with noisy readouts where accurate knowledge
of the quantum state is required.
The full manuscript can be found online at

arXiv:2312.04211 [4].
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Abstract. We introduce an even-parity precession protocol that can detect nonclassicality of some quan-
tum states using only measurements of a uniformly-precessing variable at different points in time. Depend-
ing on the system under study, the protocol may detect the Wigner negativity of a single quantum harmonic
oscillator or of a single spin j ≥ 2; the non-Gaussian entanglement of two harmonic oscillators; or genuine
multipartite entanglement of a spin ensemble, whose total spin is integer. Unlike other nonclassicality
tests, simultaneous or sequential measurements are not required. Our protocol can also detect states that
commute with the parity operator, which were missed by similar protocols built from Tsirelson’s original
precession protocol. This work also closes a long-standing gap by showing the possibility of detecting the
Greenberger–Horne–Zeilinger entanglement of an even number of qubits using only collective spin mea-
surements.

Keywords: nonclassicality, harmonic Oscillator, spin angular momentum, entanglement

1 Introduction

Uniform precession is a ubiquitous phenomenon in
many physical systems, from the orbits of large celes-
tial bodies, to the harmonic motion of mesoscopic ob-
jects in optomechanical traps, to the rotation of micro-
scopic spins in a uniform magnetic field. As a uniformly-
precessing observable has the same dynamics in both
classical and quantum theory, one would not expect the
simple observation of its values at different times to re-
veal any nonclassical signatures.
Yet, an unpublished preprint by [1] challenged this no-

tion. He showed that if the position of a harmonic os-
cillator was measured at one of three random times in
each round, and this was repeated over many indepen-
dent rounds, the position of a quantum harmonic oscil-
lator can be found to take a positive value more often
than any state of a classical oscillator. This is an exam-
ple of a mechanical task where quantum mechanics has
a demonstrable advantage, in the same vein as the prob-
ability backflow of a freely-evolving particle [2] and the
enhanced distance travelled by quantum projectiles [3].
Nonclassicality is therefore certified when some quantum
mechanical advantage is demonstrated.
Since then, Tsirelson’s original protocol has been ex-

tended to what we will call the odd-parity precession
protocol, which certifies nonclassicality (in the form of
Wigner negativity [4]) by probing a uniformly-precessing
observable at one of K suitably chosen times, where
K is odd [5]. In contrast to other single-system non-
classicality tests, like contextuality or Leggett–Garg in-
equalities [6,7], simultaneous or sequential measurements
are not required. The odd-parity precession protocol
has later been extended to witness entanglement. No-
tably, some non-Gaussian entangled states of two har-
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monic oscillators can be detected using only measure-
ments of their center-of-mass position, and without the
risk of false positives typical of witnesses based on un-
certainty relations [8]. In spin ensembles, genuine mul-
tipartite entanglement can be detected measuring only
total angular momentum. While similar witnesses of this
type were known, this is the first family that detects also
Greenberger–Horne–Zeilinger (GHZ) states [9].

Like any linear non-classicality witness, the odd-parity
precession protocol cannot detect all states of interest
(non-Gaussian, entangled). In particular, it misses all
states that commute with the parity operator, as well
as even-number GHZ states. In this paper, we intro-
duce an even-parity precession protocol, which requires
only measurements of a uniformly-precessing observable
at one of K suitably chosen times, with K now even. The
score is not associated to the positivity of the measure-
ment outcome: rather, we assign an alternating positive
or negative score if it falls within a region close to the ori-
gin. Nonclassicality is certified when the observed score
exceeds the maximum classical score.

We show that there are states of both quantum har-
monic oscillators and spin systems that violate the classi-
cal bound, some of which cannot be detected by the odd-
partiy protocol. We also show that the protocol, when
applied to a collective observable of a composite system,
can detect entangled states of two coupled harmonic os-
cillators, and genuine multipartite entangled states of a
spin ensemble. Our work not only contributes a new
example of quantum advantage in mechanical systems,
but also completely closes the problem of detecting GHZ
states using collective spin measurements.
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2 The Even-parity Precession Protocol
and Its Classical Bound

We shall call a physical observable Ax(θ) uniformly
precessing with respect to a parameter θ if it satisfies

Ax(θ) = cos(θ)Ax(0) + sin(θ)Ay(0),

Ay(θ) = cos(θ)Ay(0)− sin(θ)Ax(0).
(1)

where An̂(θ) is the value of An̂ along the angle θ in the
classical case, and an operator in the Heisenberg picture
in the quantum case.
The even-parity precession protocol is defined for a

uniformly-precessing observable Ax(θ), a real number
∆ ≥ 0, and an even integer K ≥ 4, and is carried out by
performing many independent rounds. In each round:

1. A value θk = πk/K for k ∈ {0, 1, . . . ,K − 1} is
chosen;

2. Ax(θk) is measured at the chosen angle θk;

3. The score (−1)k is assigned if |Ax(θk)| ≤ ∆/2, and
the score 0 is assigned otherwise .

After many rounds, the average score is calculated as

sK,∆ :=
1

K

K−1∑
k=0

(−1)k Pr

[
|Ax(θk)| ≤

∆

2

]
. (2)

In classical mechanics, the score scK,∆ of a pure
state is fully determined by its initial configuration
(Ax(0), Ay(0)). As general classical states are probability
distributions on classical pure states, this in turn implies
by convexity that the classical bound is∣∣scK,∆

∣∣ ≤ 1

K
=: scK , (3)

which is independent of ∆.

3 Quantum Violations of the Classical
Bound

3.1 Quantum Harmonic Oscillator

The quantum harmonic oscillator is specified by the
Hamiltonian H = P 2/(2m) +mω2X2/2, where the posi-
tion X and momentum P are operators that satisfy the
uncertainty relation [X,P ] = iℏ1. The evolution of these
observables in time is given in the Heisenberg picture as

X(t) = cos(ωt)X + sin(ωt)P/(mω)

P (t) = cos(ωt)P − sin(ωt)mωX.
(4)

Alternatively, the observable
√
mω/ℏX(θ/ω) is the

quadrature along the angle θ associated with homodyne
detection in quantum optics [10]. This observable com-
plies with Eq. (1), so the position of a harmonic oscil-
lator, equivalently the quadrature in optical systems, is
uniformly precessing with respect to θ.
Hence, we can perform the precession protocol on

X(θ/ω), and we prove the lower bound

K(|s∞K,∆| − scK) ≤ 2NV (5)
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Figure 1: Maximum quantum scores max∆ s
(j)
K,∆ against

j for j ≤ 200. The score is zero whenever j < K/2,
always peaks at j = K/2, violates the classical bound
for every j ≥ K/2, and converges to a limit as j → ∞.
We conjecture that the limit is max∆ s∞K,∆.

on the Wigner negativity volume

NV :=

∫
dx

∫
dp [|W (x, p)| −W (x, p)]/2 , (6)

which quantifies Wigner negativity as a resource [11–13].

3.2 Spin Angular Momentum

In quantum mechanics, the components of the angular
momentum vector J⃗ = (Jx, Jy, Jz) satisfy the commu-
tation relation [Jx, Jy] = iℏJz, where ℏ is the reduced

Planck constant. Now, J
(j)
x evolves under a rotation gen-

erated by the Hamiltonian H ∝ −J
(j)
z , which means that

we can the precession protocol on X(J
(j)
x /ℏ). We have

plotted the maximum quantum scores max∆ s
(j)
K,∆ against

j in Fig. 1. Meanwhile, the maximum score for j = K/2
is analytically worked out to be

s
(K/2)
K,∆ = 2−(K−1)

(
K − 1

⌊K+∆
2 ⌋

)
, (7)

The maximum value of s
(K/2)
K,∆ for fixed K is given

by the central binomial coefficient, which occurs when
⌊(K +∆)/2⌋ = ⌈(K − 1)/2⌉ = K/2. And we show that

s
(j=K/2)
K,∆=0 > scK for all even K ≥ 4. Therefore, the clas-
sical bound of the even-parity precession protocol can
be violated by all quantum systems with integral spins
j ≥ 2 [5].

Finally, while we have taken the spin number j to be
fixed in the above discussions, it is easily extendable the
case where the protocol is performed on J⃗ = ⊕j∈J J⃗ (j)

for some set J of spins.

4 Witnessing Entanglement

4.1 Witnessing Non-Gaussian Entanglement
with Quadrature Measurements

A system of two identical linearly-coupled harmonic
oscillators is governed by the Hamiltonian

H =
P 2
+

2m
+

mω2
+

2
X2

+ +
P 2
−

2m
+

mω2
−

2
X2

−, (8)
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where X± := (X2 ±X1)/
√
2, P± := (X2 ±X1)/

√
2, and

ω± := ω ± g/(2m). Here, X+ is the center-of-mass po-
sition of the two oscillators, and its evolution in time is
generated by the Hamiltonian in Eq. (8) is

X+(t) = cos(ω+t)X+ + sin(ω+t)P+. (9)

As such, we can perform the precession protocol on
the coupled harmonic oscillators using X+(θ/ω+) as the
uniformly-precessing variable. We prove that s∞K,∆ ≤
scK + 2NV /K, where NV is the Wigner negativity vol-
ume (6) of the state tr− ρ.
If ρ is separable over the two oscillators, it is known

that the Wigner function of tr− ρ must be nonnegative
by Theorem 2 of Ref. [14], which implies that NV = 0.
However, if NV = 0, then s∞K,∆ ≤ scK . Taking the con-
trapositive statement, if the even-parity precession proto-
col is performed on the center-of-mass position X+, then
s∞K,∆ > scK implies that the two oscillators are entangled.
Furthermore, since 2NV ≥ K(s∞K,∆ − scK) > 0, this cri-
teria only detects non-Gaussian entangled states of the
system with negative Wigner functions.

4.2 Witnessing Genuine Multipartite Entangle-
ment with Collective Spin Measurements

Considering an ensemble of N particles, where the nth
particle has spin jn with angular momentum J⃗ (jn), and
the total spin

∑N
n=1 jn is an integer, we can perform

the precession protocol on the total angular momentum

Jx(θ) =
∑N

n=1 J
(jn)
x (θ) for K = 2

∑N
n=1 jn. And we

prove that

|tr(ρ¬GMESK,∆)| ≤
sK,∆

2
=: sK-sep

K,∆ , (10)

where ρ¬GME is not genuine multipartite entangled state.
So observing |tr(ρSK,∆)| > sK-sep

K,∆ implies that ρ ̸=
ρ¬GME.
Since our witness requires only measurements of the

total angular momentum, it belongs to the family of en-
tanglement witnesses that utilize only collective observ-
ables. Past witnesses in this family have been shown to
detect Dicke and many-body singlet states [15, 16], but
the detection of GHZ states for more than three qubits
using such a witness was not partially solved until the
odd-parity precession protocol was introduced, which de-
tects GHZ states with an odd number of qubits [9]. Our
witness therefore completely closes this gap.
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ity of the Wigner function as an indicator of non-
classicality. Journal of Optics B: Quantum and
Semiclassical Optics, 6(10):396, aug 2004.

[12] Ryuji Takagi and Quntao Zhuang. Convex resource
theory of non-Gaussianity. Phys. Rev. A, 97:062337,
Jun 2018.

[13] Francesco Albarelli, Marco G. Genoni, Matteo G. A.
Paris, and Alessandro Ferraro. Resource theory of
quantum non-Gaussianity and Wigner negativity.
Phys. Rev. A, 98:052350, Nov 2018.

[14] Lin Htoo Zaw. Certifiable lower bounds of wigner
negativity volume and non-Gaussian entanglement
with conditional displacement gates, 2024.

[15] Otfried Gühne and Géza Tóth. Entanglement de-
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Abstract. This paper presents a practical Schmidt number certification protocol by integrating the k-
reduction map, the moment method, and the classical shadow method. Firstly, we study the spectrum of
the k-reduced operators for different types of states and the corresponding k-reduction negativity, a similar
notion with entanglement negativity. Secondly, we combine the moment method with the k-reduction map,
and construct one series of moment criteria in the consideration of the spectrum information. Our criteria
can detect more states than the fidelity-based methods, and are more practical than the correlation matrix
method.

Keywords: Entanglement detection, High-dimensional entanglement, Schmidt number, k-positive map,
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1 Schmidt number and k-reduction map

Quantum entanglement is one of the most important
and fundamental resources for many quantum technolo-
gies like quantum communication, quantum computa-
tion, quantum metrology, etc. Compared with the entan-
glement among qubits, high-dimensional entanglement
has many advantages such as higher information capac-
ity [1], better noise resistance [2], etc. [3]. The detection
and certification of high-dimensional entanglement play
the fundamental role in the applications of it to quantum
technologies [4, 5].
Schmidt number or entanglement dimensionality char-

acterizes the high-dimensional entanglement [6]. A pure
state’s Schmidt number is just its Schmidt rank; while
for a mixed state ρAB ∈ HA ⊗HB , its Schmidt number
is defined as

SN(ρAB) ≡ inf
D(ρ)

max
|ϕi⟩∈D(ρAB)

SR(|ϕi⟩). (1)

where D(ρAB) is a pure state decomposition of ρAB .
Hence, SN(ρAB) is the minimal dimension of the sub-
systems of a bipartite physical system to prepare this
state, which explains why it’s also called entanglement
dimensionality.

Currently, no method exists that is both powerful
and practical for detecting high-dimensional entangle-
ment. One popular approach, known as the fidelity-based
method [7], relies on the fidelity condition between the
state ρAB and the maximally entangled state [6]. How-
ever, this method has a significant limitation: it can only
detect a restricted set of states, specifically the faithful
states [8]. As a result, many common states, such as
pure states with depolarized noise, may not be identified
as entangled using this method.

In recent years, another method, called the correla-
tion matrix or covariance matrix method, was proposed
[9, 10]. This method, based on the condition of the 1-
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norm of the covariance matrix, can be conveniently re-
alized by the randomized measurements. However, this
method requires at least unitary 4-design to guarantee
its performance, but there doesn’t exist a simple method
to realize unitary 4-design.

In this work, we propose a new method for certifying
Schmidt number based on the k-reduction map [11]. k-
reduction map is the most known example of k-positive
map, defined as

Rk(·) ≡ kTr(·)I − (·). (2)

There is a fundamental relationship between Schmidt
number and k-reduction map [6]: given a state ρAB ,

if SN(ρAB) ≤ k, then (IA ⊗RB
k )(ρAB) ⪰ 0. (3)

In other words, (IA ⊗ RB
k )(ρAB) ⪰ 0 is the necessary

condition for SN(ρAB) ≤ k. Conversely, if the operator
(IA ⊗ RB

k )(ρAB) ̸⪰ 0, then SN(ρAB) > k. When ρ is a
pure state, (IA ⊗ RB

k )(ρ) ⪰ 0 is also a sufficient condi-
tion for SN(ρ) ≤ k. Condition Eq.(3), called k-reduction
condition, is the basis of our certification protocol.

2 k-reduction negativity and k-reduction
moments

The information of the spectrum of k-reduced operator
Rk(ρ) ≡ (IA ⊗Rk)(ρAB) is important for our later pro-
tocol. For a pure state |ψ⟩, by directly computation of
the spectrum of Rk(ρ), we conclude that Rk(ρ) contains
one and only one negative eigenvalue if k < SN(|ψ⟩). As
for a general mixed state ρ, it’s easy to see that the spec-
trum of Rk(ρ) is contained in the interval [−1, k] by the
Weyl inequalities of matrices.

Similar with the entanglement negativity [12], we de-
fine the k-reduction negativity as the absolute value of
the sum of negative eigenvalues of (IA ⊗Rk)(ρAB)

Nk(ρ) ≡ 1

2
(∥Rk(ρ)∥1 − Tr[Rk(ρ)]) (4)

where (IA⊗Rk)(ρAB) is denoted by Rk(ρ) for simplicity.
For pure states, we can prove the following result.
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Theorem 1. Suppose k is a fixed integer, Nk(ψ) is Schur
concave for pure states |ψ⟩ ∈ HAB.

When SN(|ψ⟩) = r, Nk(ψ) ≤ 1 − k/r, the equality is
saturated when |ψ⟩ is a maximally entangled state with
Schmidt number r. Then we can get a further conclusion
that the spectrum of Rk(ρ) is contained in [kd −1, k] with
d = min{dA, dB}.

Next, we turn to the construction of the certification
protocol. From the previous k-reduction condition, we
understand that the key challenge is determining the pos-
itivity of Rk(ρ), which is generally a difficult task. Fortu-
nately, this problem has been partially addressed in the
context of entanglement detection, where some moment
criteria for partial transposed states have been proposed
[13, 14, 15].

Before introducing the moment criteria, we first define
the n-th k-reduction moment

qn := Tr[(Rk(ρ))n], (5)

for n being a non-negative integer. Obviously, qn is just
the sum of the n-th power of the eigenvalues of Rk(ρ).
Given the k-reduced operator, we get a moment sequence
SN (ρ) = (q0, · · · , qN ) for any positive integer N . Such a
moment sequence SN (ρ) is called the truncated [−1, k]-
moment sequence [16], as the spectrum of Rk(ρ) is con-
tained in [−1, k].1 As a result, the problem of deter-
mining the positivity of Rk(ρ) is equivalent to determine
if SN (ρ) is further a truncated [0, k]-moment sequence.
The letter problem can be easily solved by consulting
the theorems in [16], then we get the k-reduction mo-
ment criteria.

Theorem 2. If ρ ∈ HAB satisfies SN(ρ) ≤ k, then
BN [ρ, k] ⪰ 0 for all positive integer N . Here BN [ρ, k]
are the Hankel matrices defined as

BN [ρ, k] ≡ (qi+j+1)Ni,j=0, for N is odd, (6)

BN [ρ, k] ≡ (kqi+j+1 − qi+j+2)Ni,j=0, for N is even. (7)

As the k-reduction condition, BN [ρ, k] ⪰ 0’s are nec-
essary conditions for SN(ρ) ≤ k. Conversely, if there
exists an order N such that BN ̸⪰ 0, then Rk(ρ) ̸⪰ 0,
so we can get the conclusion that SN(ρ) > k. For every
N , BN [ρ, k] ⪰ 0 produces a moment condition for k-
reduction moments, and the first two moment conditions
are trivial, so we only consider the moment conditions
for N ≥ 3.

3 Moment estimation

Let’s take the third moment condition of k-reduction
moments as an example,

B3 =

(
q1 q2
q2 q3

)
⪰ 0, (8)

1We don’t use the tighter bound, because we assume the dimen-
sions of the subsystems are unknown.
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Figure 1: The depolarized Haar random pure ensem-
bles with noise strengths ϵ = 0, 0.1, 0.5 separately and
dA = dB = 8. The dashed (solid) lines correspond to the
correlation matrix criterion (k-reduction criterion). k is
the parameter used in two criteria. Ratio is just the pro-
portion of states in the ensemble whose Schmidt number
can be certified by two criteria with parameter k.

where the explicit expressions of these three moments are

q1 =kdB − 1

q2 =k(kdB − 2)Tr(ρ2A) + Tr(ρ2AB)

q3 =k2(kdB − 3)Tr(ρ3A) + 3kTr[(ρA ⊗ IB)ρ2AB ]− Tr(ρ3AB).

The above equations show that we need to estimate these
terms

Tr(ρ2A),Tr(ρ2AB),

Tr(ρ3AB),Tr(ρ3A),Tr[(ρA ⊗ IB)ρ2AB ]. (9)

Now the problem is reduced to how to estimate these
terms in Eq.(9). A popular approach is the classical
shadow method, which can efficiently estimate the non-
linear functions of ρ and ρA [17]. The classical shadow
method utilizes the randomized measurement outcomes
to construct the classical description of a state, called
the classical shadow. Taking ρ as an example, we can get
these classical shadows of it, {ρ̂1, · · · , ρ̂M}, then use these
shadows to construct the estimator of Tr(ρ2),Tr(ρ3) as

2

M(M − 1)

∑
1≤i<j≤M

Tr[ρ̂iρ̂j ], (10)

3!

M(M − 1)(M − 2)

∑
1≤i<j<k≤M

Tr[ρ̂iρ̂j ρ̂k]. (11)

The estimation errors are controlled by these estimators’
variances. Requiring the upper bounds of the estima-
tion errors to be small, we can compute the sample com-
plexity of these estimators, i.e., the order of the num-
ber of samples M . Given the unitary ensemble used in
the classical shadow method is unitary 3-design, letting
M = Ω(dAdB) is enough for estimating all these terms
in Eq.(9).

4 Numerical results

k-reduction criterion Firstly, we explore the theoret-
ical capability of the k-reduction condition Eq.(3) and
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Table 1: Certification ratios by the k-reduction criterion
with ED,K , D = 162.

SN=
K=

2 3 4 5 6

2 1 1 1 1 1

3 1 1 1 1 0.9976

4 1 1 1 0.0176 0

5 1 1 0.0006 0 0

6 1 0.1596 0 0 0

7 1 0 0 0 0

8 1 0 0 0 0

9 0.0022 0 0 0 0

Table 2: Certification ratios by the covariance matrix
criterion with ED,K , D = 162.

SN=
K=

2 3 4 5 6

5 1 1 1 1 1

6 1 1 1 0 0

7 1 0 0 0 0

8 1 0 0 0 0

9 0.0034 0 0 0 0

compare it with the covariance matrix criterion given in
[9, 10]. As for the fidelity-based method, the previous
two criteria both performs better than it.

In the case of pure states, the sufficient and necessary
condition says that the k-reduction condition can certify
any pure state with Schmidt number larger than k, while
there is no such guarantee that the covariance matrix
criterion can certify any pure state’s Schmidt number.
As shown in Fig.1, we consider the ensembles of Haar
random pure states with different depolarized noises, and
compare the certification ratios of these two criteria. We
can find that the performance of k-reduction condition is
always better as long as the noise strength ε is not very
large.

As for the general mixed states, k-reduction criterion
doesn’t have better performance than the covariance ma-
trix criterion. Here we consider the ensembles of mixed
states with induced measure ED,K , where D = dAdB and
K is the dimension of the auxiliary system. As shown in
Table 1 and 2, the behaviors of k-reduction criterion are
even worse for K becoming larger.

k-reduction moment criteria Secondly, we analyze
the behavior of the moment criteria of k-reduction mo-
ments. From Fig.2, two key points require explanation.
First, the certification ratios increase as the order N of
the moment criteria increases, approaching 1 when N
is sufficiently large. This is expected because the mo-
ment criterion BN approximates the k-reduction condi-
tion more closely as N increases. Second, the certifica-
tion ratios decrease as k becomes larger. This is because,
for larger k, the leading term of BN with respect to k
contributes more significantly, and this leading term is
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Figure 2: Certification ratios of different k-reduction mo-
ment conditions for the pure state ensemble with Schmidt
rank r = 6 and d = 16.
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Figure 3: Comparison between the k-reduction moment
criteria and the moment-based covariance matrix crite-
rion for the pure state ensemble with r = 6 and k = 5.

approximately a weaker criterion.
Next, we compare the performances of the k-reduction

moment criteria and the moment-based covariance ma-
trix criterion. As shown in Fig.3, the certification ra-
tios of the k-reduction moment criteria can exceed those
of the moment-based covariance matrix criterion when
N ≥ 7. However, the detection ratio of the k-reduction
moment criteria decreases rapidly as the local dimension
d increases, whereas the detection ratio of the covariance
matrix criterion varies more slowly with d.

5 Summary

Now we summarize the advantages and disadvantages
of our method.

• The k-reduction condition performs significantly
better than the fidelity-based method and is su-
perior to the covariance matrix criterion for pure
states or pure states with small noise.

• The moment-based covariance matrix criterion out-
performs the k-reduction moment criteria at lower
orders.

• The k-reduction moment criteria at lower orders
can be estimated efficiently and are much more
practical than the moments used in the covariance
matrix method.
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A Introduction

With the development of noisy intermediate-scale
quantum (NISQ) devices, quantum systems have become
increasingly controllable in laboratories. Entanglement
phenomena reveal one of the most fundamental differ-
ences between quantum mechanics and classical mechan-
ics. Thus, to demonstrate the power of quantum infor-
mation technologies, the certification of entanglement is
one vital step [5, 18, 13, 15, 14, 19, 20, 21].

Extracting information from a quantum state is con-
ventionally achieved through quantum tomography of the
entire state. However, the formidable challenge lies in
the substantial resources demanded by quantum tomog-
raphy [22, 23, 24]. Recently, randomized measurement
[25, 26] has emerged as an alternative resource-efficient
method for various tasks in quantum information, which
have been used to estimate different physical quantities,
such as purity [20], entanglement negativity [19] and von
Neumann entropy [17, 27], etc. The technique of clas-
sical shadow tomography [17] effectively produces a clas-
sical description of a quantum state by integrating the
ideas of randomized measurement and shadow tomog-
raphy [28, 29], known as the classical shadow. This
technique has many applications and inspires much re-
search [30, 31, 32, 33, 34, 35, 36]. One particular appli-
cation is the entanglement certification, where the classi-
cal shadow is used to construct the moments of the par-
tial transposed operators to determine whether a state
satisfies the positive partial transpose (PPT) criterion
[13, 15, 14].

Entanglement dimensionality, or Schmidt number [6,
37], is a specific quantification of entanglement. Usu-
ally, the criteria for Schmidt number certification can
find a correspondence criterion for entanglement certi-
fication. For instance, similar to the entanglement wit-
ness, Schmidt number witness [38] is an operator that
divides the density operator space into two parts, where
all states with a specific Schmidt number upper bound
belong to one side. The most common Schmidt number
witness is a linear combination of the identity and the
maximally entangled state projector. Essentially, this
witness is equivalent to the fidelity-based criterion, stat-
ing that the fidelity between a target state and the maxi-
mally entangled state cannot exceed its Schmidt number
divided by the Hilbert space dimension [6, 39, 7]. How-
ever, the fidelity-based method fails to detect a large class
of states, called unfaithful [8]. Even pure states with a
certain depolarizing noise can be unfaithful. Recently, the
correlation matrix method proposed in [27, 40, 10, 9] can
resolve this problem. In these works, the authors proved
that for a mixed state with certain Schmidt number up-
per bound, the 1-norm of its correlation matrix with re-
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spect to an operator basis of the bipartite Hilbert space
has an upper bound determined by the upper bound
and the Hilbert space’s dimension. They further use the
constraint to carve out the regions of density operators
with varying Schmidt numbers in the space of the sec-
ond and the fourth order orthogonal moments [10, 9].
This method can detect a much broader range of quan-
tum states compared with the fidelity-based method, but
suffers from the problem of lacking of a convenient and
simple unitary 4-design, for the well-known fact the Clif-
ford group is only a unitary 3-design [41].

In this paper, we explore the capability of k-positive
map, more specifically, the k-reduction map, to certify
the Schmidt number of an unknown quantum state. In
the problem of entanglement certification, the PPT cri-
terion states that if a partial transposed quantum state
is not positive, then it must be entangled. The k-positive
map, just like partial transpose, is a special type of posi-
tive but not completely positive map, which preserves the
positivity of all density operators with Schmidt number
no larger than k. Similarly, if the operator obtained by
applying a k-positive map to the target state is not pos-
itive, then the Schmidt number of the unknown state is
larger than k. So the key step is to determine whether the
new operator is positive or not. Analogous to [13, 15, 14],
we will use the moment method to accomplish the task.

Our discoveries are summarized here. We provide ana-
lytical results about the spectrum of operators obtained
by applying the k-reduction map on different types of
states, and define the sum of the negative parts of the
spectrum as the k-reduction negativity. We prove that
this quantity is Schur concave for Schmidt spectrum of
pure states. In terms of the application of the moment
method, by taking the bounded spectrum into consider-
ation, we complete the existing method in [15] with a
new series of even-order moment conditions. We quan-
tify the performances of our protocol and the correlation
matrix protocol [9, 10] by exploring the situations where
the protocol can certify the actual Schmidt number of the
target state, or by computing the optimal Schmidt num-
ber lower bound certifiable by different methods. We
conclude that our protocol works better than the cor-
relation matrix protocol with sufficiently high moments
for pure states and isotropic states. As for the random
mixed states with induced metric [42], the performance
of our protocol is also comparable to the correlation ma-
trix protocol. Our protocol is also more competitive in
consideration of unitary design [43].

The main context is organized as follows. In Section
B, we review the definition of Schmidt number for mixed
states and give an overview of the correlation matrix
method. In Sec. C, we summarize some results about
the k-positive map, and then study the spectrum of the
k-reduced operators. In Sec. D, we elaborate on the mo-
ment method systematically, and then present our pro-
tocol for Schmidt number certification. In Sec.E, we de-
scribe how to estimate the reduction moments. In or-
der to compare the performance of our protocol with the
known ones, in Sec. F we analyze the detection ratios

and the sample complexity of our methods. Finally, we
make the conclusions and end this paper in Sec. G. A
summary of main results can be found in Table 3.

B Background on Schmidt number cer-
tification criterion

B.1 Schmidt number

Consider a pure state |ψ⟩ defined in a bipartite Hilbert
space HAB = HA⊗HB with dimension D = dAdB , dA ≡
dim(HA), dB ≡ dim(HB). Its Schmidt number is defined
as

SN(|ψ⟩) ≡ rank [TrB(|ψ⟩⟨ψ|)] . (12)

We also define the Schmidt spectrum of |ψ⟩ as the set of
eigenvalues of TrB(|ψ⟩⟨ψ|). As an instance, if the pure
state |ψ⟩ has Schmidt decomposition

|ψ⟩ =

r−1∑
i=0

√
λi|i⟩A ⊗ |i⟩B , (13)

then its Schmidt spectrum is {λi}r−1
i=0 ∪ {0}d−r.

The convex combinations of pure states with Schmidt
number no larger than r constitute a convex set, denoted
as Sr. There is an inherent hierarchy structure from the
definition:

S1 ⊂ S2 ⊂ · · · ⊂ Sd = S(HAB), (14)

where d = min{dA, dB} and S(HAB) represents the set
of density operators in Hilbert space HAB . If a state ρ
belongs to Sr but does not belong to Sr−1, then it has
Schmidt number r:

SN(ρ) ≡ r, if ρ ∈ Sr/Sr−1. (15)

The Schmidt number is more commonly defined by gen-
eralizing the Schmidt rank for pure states through the
convex-roof construction:

SN(ρ) ≡ inf
D(ρ)

max
ϕi∈D(ρ)

SN(|ϕi⟩). (16)

where D(ρ) is a pure state decomposition of ρ. A quan-
tum state with Schmidt number r can be prepared from
rank-r maximal entangled states, but not from states of
lower rank. Hence, the Schmidt number of a mixed state
ρ quantifies the minimal dimension of the Hilbert space
needed for state preparation.

B.2 Method of correlation matrix

In recent years, a new method has been developed to
detect the Schmidt number [27, 10, 9], which utilizes the
correlation matrix of ρ on an operator basis of HAB .
Assuming dA = dB = d, the correlation matrix of ρ is
defined as

Tjk ≡
1

d
Tr
(
ρσ

(A)
j ⊗ σ(B)

k

)
, (17)

where {σ(A)
j } (or {σ(B)

j }) together with the identity forms
the operator basis for the Hermitian operators on HA (or
H(B)), i.e.,

Tr
(
σ
(A)
j σ

(A)
j′

)
= Tr

(
σ
(B)
j σ

(B)
j′

)
= dδj,j′ . (18)
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Table 3: Comparison between different Schmidt number certification protocols for quantum states with total dimension
D.

Method
Limited to

faithful states
Order of

unitary design
Sample

complexity

Fidelity-based Yes / Ω(1)[7]

Correlation matrix No 4 Unknown

Full state tomography
of rank-r states

No 4 Ω(D2r)[44]

Moments of k-reduced operator
(This work)

No 3
Ω(D1/2)

Appendix L

Suppose T has singular values {vn}d
2−2

n=0 , its p-th Schat-
ten norm is

∥T∥p ≡

d2−2∑
n=0

vpn

 1
p

= Tr
[
(TT⊤)

p
2

] 1
p

. (19)

The correlation matrix criterion is [10, 9]:

if SN(ρ) ≤ r, then ∥T∥1 ≤ r −
1

d
. (20)

It has been proved that the correlation matrices obtain by
different local operator bases differ by orthogonal trans-
formations, hence the singular values of T are invariant
under local unitary transformations.

If condition Eq. (20) is violated, then we conclude that
SN(ρ) is larger than r. However, we cannot directly esti-
mate this 1-norm or the singular values in experiments.
Instead, the second and the fourth moments of the sin-
gular values (∥T∥22, ∥T∥44) can be obtained by the second
and the fourth order Haar-randomized correlators C(n)
with special observables P ,

C(n) ≡
∫
dUAdUB Tr

[
ρUAPU

†
A ⊗ UBPU

†
B

]n
. (21)

We can determine if the point (C(2), C(4)) lies in the region

Tr ≡
{

(C(2), C(4)) : ∥T∥1 ≤ r − d−1
}
, (22)

whose boundaries can be computed analytically through
an optimization problem with the constraint of the cor-
relation matrix condition Eq.(20).

The moment-based correlation matrix criterion is thus

if SN(ρ) ≤ r, then (C(2), C(4)) ∈ Tr. (23)

To estimate the fourth order correlator C(4) experimen-
tally, we need at least unitary 4-design. However, the
Clifford group fails to be unitary 4-design [41, 45].

C Method of k-reduction map

C.1 k-positive map and k-reduction map

In this paper, we will focus on the application of the k-
reduction map to Schmidt number certification. We first

introduce the notions of k-positive map. Let L(H) be the
set of operators defined on Hilbert space H. An operator
X ∈ L(H) is positive if ⟨ψ|X|ψ⟩ ≥ 0 for all |ψ⟩ ∈ H,
denoted as X ⪰ 0, while a linear mapM : L(H)→ L(H)
is positive if and only if it satisfies

M(X) ⪰ 0, ∀X ⪰ 0. (24)

A linear map M : L(H) → L(H) is called k-positive if
and only if the map Ik ⊗M : L(Hk ⊗H)→ L(Hk ⊗H)
is positive, where Ik is the identity map for the auxiliary
Hilbert space Hk with dimension k [46, 47, 11, 48]. The
most important and common example of k-positive map
is the k-reduction map [47, 11], defined as:

Rk(X) ≡ kTr(X)I −X. (25)

There are other types of k-positive map, but they are
more complicated to use [49].

A linear map M : L(HB) → L(HB) is k-positive
map if and only if, for any pure state |ψ⟩ ∈ HAB with
Schmidt number at most k, IA ⊗M(|ψ⟩⟨ψ|) is positive
semi-definite [6, 50]. A mixed state ρ with Schmidt num-
ber no larger than k must also satisfy IA ⊗M(ρ) ⪰ 0
for any k-positive map M, but the converse is not nec-
essarily true. When we choose the k-positive map to be
the explicit k-reduction map Rk (Hereafter we will use
Rk(ρ) to denote IA ⊗ Rk(ρ) for simplicity), we get the
following results [6]:

Proposition 3. If SN(ρ) ≤ k, then

Rk(ρ) = kρA ⊗ IB − ρ ⪰ 0. (26)

When ρ is a pure state, the condition is also sufficient.

Analogous to the violation of PPT condition, if ρ vio-
lates the above condition, we can conclude that SN(ρ) >
k. The above necessary condition is the basis of our
Schmidt number certification method, so we call it the k-
reduction condition. We also call the operators obtained
by acting the k-reduced map on quantum states as the
k-reduced operators.
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C.2 Properties of the k-reduction operator

In this section, we will study basic properties of the
k-reduction map, particularly the spectrum of the k-
reduced operators.

We first study the explicit structure of the spectrum of
Rk(|ψ⟩⟨ψ|) with SN(|ψ⟩) = r and k < r. The results are
summarized in the following theorem, and its proof is in
Appendix I.1:

Theorem 4. Given a pure state ρ = |ψ⟩⟨ψ| in HAB with

|ψ⟩ =

r−1∑
i=0

√
λi|i⟩A ⊗ |i⟩B , λi > 0, (27)

then the k-reduced operator Rk(ρ) has spectrum

{xi} ∪ {kλi}dB−1 ∪ {0}dB(dA−r)

where i = 0, · · · , r − 1 and {xi} are the eigenvalues of

k

r−1∑
i=0

λi|i⟩A⟨i| ⊗ |i⟩B⟨i| − |ψ⟩⟨ψ|. (28)

If k ≥ r, all eigenvalues are non-negative. If 1 ≤ k < r,
there exists exactly one negative eigenvalue in {xi}.

The smallest eigenvalue of Rk(ρ) measures the degree
to which the k-reduction criterion is violated. Thus, sim-
ilar to the concept of entanglement negativity [12], we
can also define the negativity of k-reduction map as

Nk(ρ) ≡ 1

2
(∥Rk(ρ)∥1 − Tr[Rk(ρ)])

=
1

2
(∥Rk(ρ)∥1 − kdB + 1) ,

(29)

which is the absolute value of the sum of the negative
eigenvalues of Rk(ρ), and we call it the k-reduction neg-
ativity. The k-reduction criterion can thus be reinter-
preted as:

if SN(ρ) ≤ k, then Nk(ρ) = 0. (30)

As an instance, define the maximally entangled state
with Schmidt number r as

|+r⟩ ≡
1√
r

r−1∑
i=0

|i⟩A ⊗ |i⟩B . (31)

If k < r, Rk(|+r⟩⟨+r|) has spectrum

{k/r}dBr−1 ∪ {k/r − 1} ∪ {0}dB(dA−r), (32)

and its k-reduction negativity is 1− k
r .

We proceed by proving an important property of
the k-negativity. Given two vectors of real numbers
x = (x1, x2, · · · , xr),y = (y1, y2, · · · , yr), we rearrange
the entries in the non-increasing order to obtain ←−x =
(x′1, x

′
2, · · · , x′r) and ←−y = (y′1, y

′
2, · · · , y′r). If

r′∑
k=1

x′k ≥
r′∑

k=1

y′k, ∀r′ ≤ r, (33)

and the equation holds when r′ = r, then we say x ma-
jorizes y, denoted by x ≻ y. A function F is Schur
concave [51] if the condition x ≻ y implies F (x) ≤ F (y).

Considering a pure state |ψ⟩ ∈ HAB with Schmidt
spectrum λ = {λi}d−1

i=0 (0 ≤ λi ≤ 1), according to Theo-
rem 4, the k-negativity Nk(ψ) is sorely determined by λ.
We define a new function θk of the Schmidt spectrum λ,
whose value satisfies

θk(λ) ≡ Nk (ψ) , (34)

where |ψ⟩ is any pure state with λ as the Schmidt spec-
trum. For the benefit of proof, we define θk(λ) on region
[0,+∞)×d/{0}×d instead. Then we give the following
result, whose proof is in Appendix I.1.

Theorem 5. For every pure state |ψ⟩ ∈ HAB with
Schmidt spectrum λ = {λi}d−1

i=0 , we have the following
results: (a) θk(λ) is Schur concave with respect to λ with
k being fixed; (b) when SN(|ψ⟩) = r, Nk(ψ) ≤ 1−k/r, the
equality is saturated when |ψ⟩ is a maximally entangled
state with Schmidt number r; (c) the k-reduction nega-
tivity Nk(ψ) is non-increasing with k increasing.

According to the Nielsen’s criterion [52], if the Schmidt
spectrum of |ψ⟩ is majorized by that of |ψ′⟩, |ψ′⟩ can be
produced from |ψ⟩ through local operations and classi-
cal communication (LOCC). According to Theorem 5,
k-negativity can be used to determine if one pure state
can be transformed from another by LOCC. As a result,
it is possible that the k-negativity is an entanglement
monotone.

Using Theorem 5, we can also prove the following result
about the eigenvalues of Rk(ρ), which will be useful in
our protocol:

Corollary 6. Suppose ρ is a quantum state defined on
HAB, then the spectrum of Rk(ρ) is a subset of[

k

d
− 1, k

]
. (35)

For mixed states, the spectrum of Rk(ρ) is difficult to
analyze in general. Therefore, we will consider the pure
states with depolarized noise as our next instance:

ρ = (1− ϵ)|ψ⟩⟨ψ|+ ϵ
I

dAdB
(36)

with SN(|ψ⟩) = r. Because the k-reduction map is linear,
we have

Rk(ρ) = (1− ϵ)Rk(|ψ⟩⟨ψ|) + ϵRk

(
I

dAdB

)
. (37)

The second term is merely a constant. Thus, there exists
a simple linear relation between the spectrum of Rk(ρ)
and the spectrum of Rk(|ψ⟩⟨ψ|). Using this property,
we can quantify the k-negativity of depolarized states as
well.
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Figure 4: The k-reduction negativity Nk(ρϵ,r) as a func-
tion of ϵ for k = 1, 2, 3. Here we set dA = dB = 4, r = 4.
As ϵ approaches 1, the k-reduction negativity decreases
with it. When the k-reduction negativity equals to 0,
the k-reduction map cannot certify the corresponding
Schmidt number lower bound any more.

Theorem 7. Suppose ρ is a depolarized state in the form
of Eq. (36), then it has k-reduction negativity

Nk(ρ) =

{
0, ϵ ≥ ϵ∗

(1− ϵ)Nk(ψ)− ϵ(dBk−1)
dAdB

, ϵ < ϵ∗,
(38)

with

ϵ∗ ≡ dAdBNk(ψ)

kdB − 1 + dAdBNk(ψ)
. (39)

See Appendix I.2 for its proof. If we choose |ψ⟩ = |+r⟩
in Eq. (36), then we obtain

ρϵ,r ≡ (1− ϵ)|+r⟩⟨+r|+ ϵ
I

dAdB
. (40)

We have the following result about the range of its
Schmidt number

Theorem 8. Suppose ρϵ,r is a quantum state defined on
HAB in the form of Eq. (40). Define constant

u ≡ ε

(1− ε)dAdB
(41)

for simplicity. Then its Schmidt number has lower and
upper bounds:⌈

r
1 + u

1 + dBru

⌉
≤ SN(ρε,r) ≤

⌈
r

1 + u

1 + r2u

⌉
. (42)

Specifically, if ε < 0.5, r ≤
√
dA, then SN(ρε,r) = r.

See Appendix I.2 for its proof. We define ϵ
(RM)
c as the

maximal value of ε that keeps Rr−1(ρε,r) ̸⪰ 0. According
to Theorem 7, we have:

ϵ(RM)
c =

(
1 +

r2 − r
dA

− r

dAdB

)−1

. (43)
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Figure 5: Comparison between ε
(RM)
c and ε

(CM)
c with dif-

ferent local dimension d. Here we choose r = 4, thus

ϵ
(CM)
c = d/(4d − 1) (see Appendix M for its proof), and

ϵ
(RM)
c is given in Eq. (43). As shown by the figure, the k-

reduction criterion can certify states with noise strength
ϵ in a larger region than the correlation matrix criterion.

As the local dimensions dA, dB increase, this maximal
value approaches 1, so the k-reduction criterion can cer-
tify states ρϵ,r with any noise strength asymptotically.
We also compute Nk(ρϵ,r) numerically in Fig. 4.

In the last part of this section, we compare the k-
reduction criterion Eq. (26) with the correlation ma-
trix criterion Eq. (20) under different situations. From
Proposition 3, we know that the Schmidt number of any
pure state can be detected by the k-reduction map. How-
ever, the correlation matrix criterion Eq. (20) cannot cer-
tify all pure states. Consider the following rank-4 state√

4

5
|00⟩+

√
1

15
|11⟩+

√
1

15
|22⟩+

√
1

15
|33⟩. (44)

with dA = dB = 16. The 1-norm of its correlation
matrix is approximately 2.7231, which is smaller than
r − 1− d−1 = 2.9375. Thus, from the correlation matrix
criterion, we can only conclude that its Schmidt number
is at least 3 instead of 4.

Then we consider the pure state with depolarized noise
ρϵ,r.

Proposition 9. Suppose ρϵ,r is the state in Eq. (40)
with dA = dB = d, T is its correlation matrix under any
operator basis, and

ϵ <
1 + d−1

r
+
r(r +

√
r − 1 + 2)

d
. (45)

Then we have ∥T∥1 > r − 1− d−1.

The proof can be found in Appendix M. Similar to

ε
(RM)
c , we can also consider the maximal value ϵ

(CM)
c of ϵ

that keeps ∥T∥1 ≥ r− 1− d−1. When d is very large, we

have ϵ
(CM)
c ≈ r−1, which is much smaller than ϵ

(RM)
c in

Eq. (43). Therefore, the correlation matrix criterion can
only certify ρϵ,r with ϵ in a narrower region than that of
k-reduction criterion. An illustration of this comparison
can be found in Fig. 5.
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Figure 6: Comparison between the certification ratios of
the two criteria for the ensembles of the depolarized Haar
random pure states with ϵ = 0, 0.1, 0.5 separately. Here
we set dA = dB = 8. The horizontal axis represents
the parameter used in the criteria. Every point is the
ratio of states whose Schmidt number can be certified to
be at least k by the criteria in the sampled ensemble.
The dashed lines correspond to the correlation matrix
criterion. The solid lines correspond to the k-reduction
criterion. As shown by the figure, the performances of
the k-reduction criterion are better than the correlation
matrix criterion in all three situations.

Finally, we consider the Haar random pure states with
depolarized noise. In Fig. 6 we numerically demonstrate
that the k-reduction criterion has a higher certification
ratio than the correlation matrix criterion. The certifi-
cation ratio means the percentage of states certifiable by
certain Schmidt number certification criterion in the en-
semble of sampled states. All above discussions show that
the k-reduction criterion is more powerful for the cases
of pure states and pure states with depolarized noise.

D Schmidt number certification by k-
reduction moments

In this section we systematically develop the moment
method, which is designed to characterize the subset of
positive operators with respect to a given set of Hermi-
tian operators, and apply this method to the problem of
certifying the lower bound of the Schmidt number of an
unknown state.

D.1 PT moments and k-reduction moments

Firstly, we provide an overview of how moment meth-
ods are utilized in entanglement certification [13]. The
well-known PPT criterion states that if a bipartite state
ρ becomes a non-positive operator under a partial trans-
pose operation, then ρ is necessarily entangled. We de-
note the partial transposed operator as ρ⊤B .

The PPT criterion is proved to be useful for a large
class of states. However, non-complete positive maps, in-
cluding partial transpose and k-positive maps, are non-
physical. We cannot directly implement them in labo-
ratories. One solution to this problem is quantum to-
mography. After reconstructing the entire state from the
outcomes of experimental measurements, we can directly

test the PPT criterion by a classical computer. Unfortu-
nately, full-state tomography suffers from the exponential
dimension of the Hilbert space [22, 23, 24]. So we need
to avoid using full-state quantum tomography.

Recently, researchers have found a more resource-
efficient protocol [28, 29, 17]. To exploit the PPT cri-
terion, we need to determine whether the spectrum of
ρ⊤B does not contain negative eigenvalues. Instead of
directly constructing ρ⊤B , the positivity of ρ⊤B can be
reflected by the partial transposed (PT) moments:

p⊤n ≡ Tr
[
(ρ⊤B )n

]
, n = 1, 2, · · · . (46)

The condition that employs the first n PT moments is
referred to as the p⊤n -PPT condition [13, 14, 15]. If the
PT moments violate these conditions, for example, the
p⊤3 -PPT condition,

p⊤3 ≥ [p⊤2 ]2, (47)

then we can claim that ρ is entangled. In experiments,
efficient estimations of p⊤n can be realized using random-
ized measurement toolbox.

Likewise, we can design Schmidt number certification
protocols using the sequence of k-reduction moments:

Sk(ρ) ≡ (q0, q1, · · · ),
qn ≡ Tr[(Rk(ρ))n].

(48)

According to Theorem 4, when ρ is a pure state with
Schmidt spectrum {λi}r−1

i=0 ,

qn =

r−1∑
i=0

xni + (dB − 1)

r−1∑
i=0

(kλi)
n. (49)

If the first few orders of {qn} can be estimated accurately,
we can determine whether Rk(ρ) ⪰ 0 or not as well. In
the following sections, we will develop our argument in
detail.

D.2 The moment method

In this section, we present a few standard results of
the moment method [16]. Readers with sufficient related
background can directly go to Sec. D.3.

The moment problem concerns the following question:
given a real sequence S = (sn)n∈N0

and a closed subset
K, when does there exist a Radon measure µ such that
sn =

∫
K
xndµ(x) for all non-negative integer n ∈ N0?

The moment methods refer to the systematic approaches
for solving the moment problems. A sequence S is called
a Hamburger moment sequence when K = R. Likewise,
if K = [0,+∞) (or [a, b]), the corresponding sequence is
referred to as a Stieltjes moment sequence (or an [a, b] se-
quence). Accordingly, the moment problems can be spec-
ified as the Hamburger moment problem, the Stieltjes
moment problem, and the [a, b]-moment problem. When
the sequence is a finite, the corresponding moment prob-
lems are called truncated moment problems. We use the
following notation to represent a finite sequence gener-
ated from a truncation of an infinite sequence S:

SN1,N2
≡ (sN1

, sN1+1, · · · , sN2
),

SN ≡ S0,N .
(50)
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The arithmetic operations between sequences are defined
by the corresponding operations on each entry:

(S ± S′)i ≡ Si ± S′
i. (51)

An important tool of the moment problem is the Hankel
matrix. Given an integer n and a finite sequence S2n, the
Hankel matrix is defined as,

(H(S2n))ij ≡ si+j , i, j = 0, 1, · · · , n, (52)

which is a real symmetric matrix with dimension (n +
1)× (n+ 1).

The Hankel matrix generated by any truncated Ham-
burger moment sequence must satisfy the following con-
dition:

Lemma 10. A real sequence S2n is a truncated Ham-
burger moment sequence if and only if H(S2n) ⪰ 0, and

(sn+1, sn+2, · · · , s2n)⊤ ∈ range(H(S2n)). (53)

That is to say, if we know S2n comes from the trunca-
tion of a Hamburger moment sequence, then we always
have H(S2n) ⪰ 0.

We are particularly interested in the truncated [a, b]-
moment problem, because in practice we can only have
access to finite number of moments from experimental
data, and the k-reduced operator has bounded spectrum.
The standard result from the theory of moment problems
provides us with the bounded moment conditions as a
solution to this scenario.

Lemma 11 (Bounded Moment Conditions). A real se-
quence SN with even N is a truncated [a, b]-moment se-
quence if and only if

H(SN ) ⪰ 0, H(SN−2) ⪰ 0, (54)

where S = (si),

si ≡ (a+ b)si+1 − si+2 − absi. (55)

When N is odd, the conditions become

H(S1,N − aSN−1) ⪰ 0,

H(bSN−1 − S1,N ) ⪰ 0.
(56)

Here are a few remarks:

1. SN can be a truncated [a, b]-moment sequence, even
when S is not a [a, b]-moment sequence;

2. when N is even and S is known to be a Ham-
burger sequence, the condition H(SN ) ⪰ 0 is triv-
ial according to Lemma 10. Thus, we only need
H(SN−2) ⪰ 0.

D.3 k-reduction moment conditions

We now focus on the moment sequences generated by
the moments of Rk(ρ). To interpret the certification
question as a moment problem, we first write the mo-
ments with the notation of an atomic measure. Given a k-
reduced operator Rk(ρ) with spectrum {λ0, · · · , λD−1},
we can construct the following atomic measure

µρ,k(x) ≡
D−1∑
i=0

δ(x− λi), (57)

Since Spec(Rk(ρ)) ⊂ [−1, k] (see Corollary 6), the se-
quence Sk(ρ), through the atomic measure, can be con-
sidered as a [−1, k]-moment sequence:

qn =

∫ k

−1

xndµρ,k(x). (58)

Define the range of Rk in domain S(HAB), i.e., the set
of k-reduced operators, as

Range(Rk) ≡
{
Rk(ρ)

∣∣ρ ∈ S(HAB)
}
,

and Range+(Rk) is the set of positive operators in
Range(Rk). According to the k-reduction condition,

Rk(Sk) ⊂ Range+(Rk) (59)

with Sk defined in Eq. (14). To certify the Schmidt num-
ber of a quantum state ρ, we need to determine whether
Rk(ρ) ∈ Range+(Rk) or not. So the problem is trans-
formed into the characterization of Range+(Rk) with re-
spect to Range(Rk). That is, given a truncated [−1, k]-
moment sequence Sk(ρ)N , when can we conclude that it
is not a truncated [0, k]-moment sequence? A sequence
of criteria can be obtained using Lemma 11.

Introduce the Hankel matrices {BN [ρ, k]}:

(BN [ρ, k])ij ≡ qi+j+1, N is odd,

(BN [ρ, k])ij ≡ kqi+j+1 − qi+j+2, N is even,
(60)

where {qn} is defined in Eq. (48). Sometimes we also
simplify BN [ρ, k] as BN . Combining the k-reduction cri-
terion with Lemma 10 and Lemma 11, we obtain

Theorem 12. Suppose ρ is a state defined on HAB and
SN(ρ) ≤ k. Then for all N , BN [ρ, k] ⪰ 0.

The simplest odd order condition is

B3 =

(
q1 q2
q2 q3

)
⪰ 0, (61)

and the simplest even order condition is

B4 =

(
kq1 − q2 kq2 − q3
kq2 − q3 kq3 − q4

)
⪰ 0. (62)

Here are a few remarks:

1. The conditions B1 ⪰ 0, B2 ⪰ 0 are trivial because
B1, B2 only contain one entry, so we usually start
with N = 3.
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Figure 7: Plot of the detectable regions. Each point rep-
resents a state with Schmidt number 3 in the form of Eq.
(64). The region of states whose Schmidt number can be
detected by the N -th order moment criterion (that is, the
set of states satisfying BN [ψ, 2] ̸⪰ 0) is illustrated in the
plot. The higher the moment is, the larger the detectable
region becomes. When N = 7, all states can be detected.

2. BN is a submatrix of BN+2, which means the N -
th order moment condition BN ⪰ 0 is strictly not
stronger than BN+2 ⪰ 0.

3. If the condition is violated, i.e., ∃N,BN ̸⪰ 0, then
we can conclude that Sk(ρ)N is not a truncated
[0, k]-moment sequence, thus Rk(ρ) ̸⪰ 0, SN(ρ) >
k. Therefore, the N -th order moment-based crite-
rion is

if BN [ρ, k] ̸⪰ 0, then SN(ρ) > k. (63)

4. BN ⪰ 0 itself does not imply anything.

Theorem 12 provides us a series of moment-based criteria
for Schmidt number certification. In Fig. 7, we use the
following state to reflect the detectable regions of these
moment-based conditions:

√
x1|00⟩+

√
x2|11⟩+

√
1− x1 − x2|22⟩. (64)

The set of such states whose Schmidt number can be
detected by BN is shown in the figure.

We also want to know given the dimension of the op-
erator as D, how large N should be to guarantee that we
can characterize its positivity completely. We have the
following result as an answer to this question:

Corollary 13. Suppose ρ is a quantum state with di-
mension D and Rk(ρ) ̸⪰ 0, then the finite moment se-
quence Sk(ρ)N cannot be a truncated [0, k]-moment se-
quence when N ≥ 2D.

The proof of the corollary is in Appendix J.3.

D.4 Certification by the third moment criterion

In the section, we formally introduce our protocol, and
use the N = 3 moment criterion as an instance. Using
the results in Sec. D, we know that if a quantum state ρ
has Schmidt number at most k, then it must remain pos-
itive under the k-reduction map; thus, {BN}, the Hankel
matrices composed by the first few moments of the k-
reduced operator, must all be positive semi-definite.

In linear algebra, BN ⪰ 0 is equivalent to the con-
dition that the determinants of all principal minors of
BN are non-negative [53]. A principal minor of a matrix
is the determinant of a submatrix obtained by deleting
pairs of column and row whose joint entry is diagonal.
The determinant of the entire matrix is also included in
the principal minors. However, for the case of N = 3,
because q1 = kdB − 1 > 0, the principle minors of the
Hankel matrix other than the full determinant are trivial
(if q3 < 0, then the full determinant must be negative,
thus it is included in the case where the full determinant
is negative). We only need to test the determinant of
the entire Hankel matrix. Therefore, if SN(ρ) ≤ k, then
det(B3[ρ, k]) ≥ 0. Conversely,

if det(B3[ρ, k]) < 0, then SN(ρ) > k. (65)

In our protocol, we certify the lower bound of SN(ρ)
based on this criterion, which can be simplified by in-
troducing a function:

FR(ρ, k) ≡ det(B3[ρ, k]), (66)

such that if FR(ρ, k) < 0, then SN(ρ) > k.
Notice that FR(ρ, k) is a polynomial of k:

FR(ρ, k) = α4k
4 + α3k

3 + α2k
2 + α1k + α0. (67)

Define pn ≡ Tr(ρn), an ≡ Tr(ρnA), and further define
p1,2 ≡ Tr

(
ρA ⊗ IBρ2

)
. Then the coefficients of FR(ρ, k)

are as follows:

α4 = d2B(a3 − a22),

α3 = −4dB(a3 − a22),

α2 = dB(3p1,2 − 2a2p2)− 4a22 + 3a3,

α1 = 4a2p2 − dBp3 − 3p1,2,

α0 = p3 − p22.

(68)

Using this condition, we obtain an algorithm that can
certify whether the Schmidt number of the target is
smaller than a specific value or not. See Algorithm 1.
The complete algorithm, which uses a general moment
order N , is detailed in Algorithm 2 and includes Algo-
rithm 1 as a subroutine.

Here are a few comments for Algorithm 1. First, we
have to set truncation values for k,N because we cannot
apply the k-reduction moment condition with infinite or-
der. The common truncation value for k is d, because
the largest Schmidt number is d. Second, the output is
always a lower bound of the Schmidt number.
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Algorithm 1 Certification of Schmidt number lower
bound
Require: Target state ρ, maximal order N∗, expected

Schmidt number rest.
Ensure: Return whether SN(ρ) ≥ rest or not.
1: for N = 3, 4, · · · , N∗ do
2: Set k = rest − 1. Estimate the moments
q1, q2, · · · , qN of Rk(ρ).

3: Construct the Hankel matrix BN .
4: If BN is not positive semi-definite, return yes (1).
5: end for
6: Return no (0).

Algorithm 2 Optimal certification of Schmidt number

Require: Taget state ρ, maximal order N∗, expected
Schmidt number upper bound rupper.

Ensure: If SN(ρ) < rupper, then the output is SN(ρ).
1: stemp = 1.
2: for k = 1, 2, · · · , rupper do
3: Input (ρ,N∗, k) to Algorithm 2.
4: if ouput equals 0, then
5: Return stemp.
6: else stemp = k.
7: end if
8: end for
9: Return stemp.

E Moments estimation

E.1 Moment estimation by randomized mea-
surements

For the purpose of Schmidt number certification, the
entries of the Hankel matrices to be estimated are qn or
kqn − qn+1 with qn introduced in Eq. (48). After we
expand Rk(ρ)n, the polynomial is in the form of

Tr [poly(ρ, ρA ⊗ IB)] . (69)

Quantities of this form can be estimated in experiments
by randomized measurement protocols, such as the clas-
sical shadow method [17]. There are two steps in classical
shadow tomography. The first step is data acquisition.
Given a unitary ensemble U , we randomly sample an el-
ement U from it and apply it on the state ρ, then mea-
sure the rotated state in the standard basis to obtain |ŝ⟩.
Based on U and |ŝ⟩, we can create the classical shadow
of the target state:

ρ̂ =M−1
cs

(
U†|ŝ⟩⟨ŝ|U

)
. (70)

HereMcs is the measurement channel, whose expression
depends on the specific ensemble U . For global Clifford
group ensemble, the classical shadow is

ρ̂ = (D + 1)U |ŝ⟩⟨ŝ|U† − I, (71)

where D is the dimension of ρ. The second step involves
predicting the expectation values Tr(Oaρ) of the observ-
ables by constructing estimators based on the empirical

mean

ôa =
1

M

M∑
m=1

Tr(ρ̂mOa), (72)

or the median-of-means. The variance of these estimators
is controlled by the shadow norm:∥∥∥∥Oa −

Tr(Oa)

D

∥∥∥∥2
shadow

. (73)

The formal definition can be found in [17]. Additionally,
classical shadows can be employed to estimate quadratic
functions of ρ, such as oa = Tr(Oaρ⊗ ρ), using formula

ôa =
2

M(M − 1)

∑
m<n

Tr(Oa · ρ̂m ⊗ ρ̂n). (74)

As an instance, given a sequence of state estimator {ρ̂m},
the purity Tr

(
ρ2
)

can be estimated by

1

M(M − 1)

∑
m̸=n

Tr
[
W(12) · ρ̂m ⊗ ρ̂n

]
=

1

M(M − 1)

N∑
m̸=n

Tr(ρ̂mρ̂n),

(75)

where W(12) is the swap gate between two Hilbert spaces.
Other non-linear functions can be estimated in a similar
formalism.

Statistical correlation method is another randomized
measurement protocol that can estimate moments of a
quantum state [20, 19]. The advantage of statistical cor-
relation is we do not need to record the information of
random unitaries for each measurement, while its appli-
cable scope is much narrower than the classical shadow
methods.

The performance of a randomized measurement proto-
col is assessed based on two primary factors: the order
of unitary design and the sample complexity. Ideally, we
want to sample unitaries from a Haar random ensemble,
which is not realistic for large systems. Instead, we sam-
ple unitaries from a t-design to approximate a uniformly
random sample. A set of unitary operators U is called a
unitary t-design [43] if for all operators O,

1

|U|
∑
U∈U

U⊗tO(U†)⊗t =

∫
dµUU⊗tO(U†)⊗t. (76)

The ensemble U can thus be used to replace the Haar ran-
dom ensemble if we only need a random unitary twirling
channel with order no larger than t. High order uni-
tary designs with t > 4 are hard to construct for qubit
systems. Thus, it is advantageous for a randomized mea-
surement to require a low order of unitary design.

Randomized measurement protocols are essentially
based on concentration laws of statistics. The sample
complexity means how many samples we need to guar-
antee the convergence of the statistical outcomes. It is
quantified by the variance of the target estimator. Cer-
tainly, the smaller the sample complexity (variance of the
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estimator) is, the better the protocol is. Because the esti-
mators of the moments are non-linear functions of ρ, the
sample complexity of classical shadow method is usually
related to the dimension of the system [13].

We prove the following results about the sample com-
plexity of Algorithm 2 with N∗ = 3 in Appendix L.

Theorem 14. Suppose ρ is a quantum state with di-
mension D, and we are given access to a unitary-3 de-
sign. Then the sample complexity of estimating p2, p3 and
Tr
(
ρA ⊗ IB · ρ2

)
up to accuracy O(1) using randomized

measurements is Ω(D1/2).

E.2 Moment estimation by permutation tests

A simple quantum computer that enables permutation
test can reduce the sample complexity of moment estima-
tion to Ω(1). Given a sequence of states ρ1, ρ2, · · · , ρN ,
add an ancillary qubit |+⟩ and perform a controlled-full-
permutation Wπ:

|0⟩⟨0|
2
⊗

N⊗
n=1

ρn +
|1⟩⟨1|

2
⊗Wπ

N⊗
n=1

ρnW−1
π ,

+
|0⟩⟨1|

2
⊗

N⊗
n=1

ρnW−1
π +

|1⟩⟨0|
2
⊗Wπ

N⊗
n=1

ρn.

(77)

The ancilla qubit becomes:

I

2
+

1

2
Tr

(
N∏

n=1

ρn

)
X. (78)

Measure it in the Pauli X basis, the probability of mea-
suring |+⟩ state is

P+ =
1

2
+

1

2
Tr

(
N∏

n=1

ρn

)
, (79)

and the probability of measuring |−⟩ state is

P− =
1

2
− 1

2
Tr

(
N∏

n=1

ρn

)
. (80)

Thus, if we associate the |+⟩ state with +1, and |−⟩ with
−1, the expectation value of the measurement outcome
is

P+ − P− = Tr

(
N∏

n=1

ρn

)
. (81)

All the necessary parameters in the moment-based crite-
ria can be written in this form, and we only need Ω(ϵ−2)
runs of tests to obtain error bound ϵ.

An example with N = 3 is demonstrated here:

|0⟩ H H

ρ1

Wπρ2

ρ3

F Performance

In this section, we analyze the detectability of various
types of quantum states and their performance under dif-
ferent certification protocols. The protocols considered
are Eq. (63) and Eq. (23).

Denote the certification protocol by a function F (ρ, k).
One example is represented in Eq.(67). Let E be an en-
semble of quantum states, then the probability of certify-
ing Schmidt number with lower bound k in this ensemble
is,

Pr
{
F (ρ, k) < 0

∣∣ ρ ∈ E} , (82)

which is referred to as the detection ratio in the following
paragraphs. If a state with Schmidt number r satisfies
F (ρ, r − 1) < 0, then we say the criterion can detect the
state for simplicity. The higher the detection ratio is, the
better the performance is for the ensemble E .

Certainly, depending on the choice of E , the detection
ratios of the same criterion can be different. In the next
section, we will look into three concrete examples: the
isotropic states, the pure state ensemble and the induced
metric state ensemble.

F.1 Isotropic states

The isotropic state is defined as

ρF ≡
1− F
d2 − 1

I +
d2F − 1

d2 − 1
|+d⟩⟨+d|. (83)

An isotropic state can be constructed by averaging over
the set of Haar random unitaries. For example, given
integer r, the isotropic state with F = r/d can be written
as ∫

dUU ⊗ U∗|+r⟩⟨+r|U† ⊗ (U∗)†, (84)

which is the convex combinations of infinite numbers of
maximally entangled states with Schmidt number r [54].
It is natural to infer that this mixed state has Schmidt
number r. In fact, for a general F , it has been proved that
SN(ρF ) = ⌈dF ⌉, and the k-reduction map can detect the
Schmidt number of all isotropic states [6]. We find that
the lowest order moment criterion is enough to certify all
isotropic states as well:

Proposition 15. Suppose ρF is an isotropic state with
F > d−1 and 1 ≤ k ≤ ⌈dF ⌉ − 1. Then B3[ρF , k] ̸⪰ 0.

The proof is in Appendix K. The correlation matrix
criterion Eq. (20) can detect the Schmidt number of an
isotropic state as well.

Proposition 16. Suppose ρF is an isotropic state de-
fined on HAB with dA = dB = d, and T is its correlation
matrix under any operator basis. Then the singular val-
ues of T are

d2F − 1

d(d2 − 1)
(85)

with multiplicity d2 − 1. Therefore,

∥T∥1 = dF − d−1. (86)
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See Appendix M for its proof. However, for a se-
quence with completely even distribution, it is impossible
to properly bound the 1-norm based on low order of mo-
ments. Suppose the singular values of T are all s with
multiplicity D, thus

∥T∥22 = Ds2, ∥T∥44 = Ds4. (87)

We can construct another rank-2 correlation matrix T ′

with singular values {σ0, σ1} that shares the same mo-
ments:

σ2
0 + σ2

1 = Ds2, σ4
0 + σ4

1 = Ds4. (88)

The 1-norm of this matrix is

∥T ′∥1 = σ0 + σ1 =

√
D +

√
2(D2 −D)s. (89)

Based on the second and the fourth moment, one can-
not rule out this possibility. To conclude that SN(ρF ) >
⌈dF ⌉ − 1, we need at least

∥T∥1 > dF − d−1 − 1 = Ds− 1, (90)

which is much larger than ∥T ′∥1. Hence, the second
and the fourth moments of correlation matrix method
are not enough to accurately certify the Schmidt number
of isotropic states.

F.2 Ensemble of pure states, analytical results

Define the target ensemble as

E0 ≡

{
|ψ⟩ =

r−1∑
i=0

√
λi|i⟩A ⊗ |i⟩B

}
, (91)

where {|i⟩A}, {|i⟩B} are elements of two orthogonal bases
of HA and HB separately, and {λi} is sampled from the
uniform distribution of (r − 1)-simplex [55]:{

(λ0, λ1, · · · , λr−1) :
r−1∑
i=0

λi = 1, λi ≥ 0

}
, (92)

which is also called the Dirichlet distribution. We do not
need to apply local random unitaries to |i⟩A and |i⟩B
because the k-reduction moment criterion and the cor-
relation matrix criterion are both invariant under local
unitaries.

We first demonstrate the efficiency of our algorithm by
showing that the k-reduction moment criteria can always
detect |+r⟩:

Proposition 17. Given |+r⟩ defined in Eq. (31) and
1 ≤ k < r, we have BN [+r, k] ̸⪰ 0.

See Appendix K for its proof. However, for a general
pure state, the local dimension dB plays an important
role in the detectability performances of k-reduction mo-
ment conditions. This is because the N -th order mo-
ments qn can be written as a polynomial of dB . Thus,
the performance of the criterion depends strongly on the
local dimension. In Appendix K, we prove the following
result about the asymptotic behavior of the odd order k-
reduction moment criteria. The proof for the even order
situation is similar.

Proposition 18. Suppose |ψ⟩ is a pure state define on
HAB with non-degenerate Schmidt spectrum {λi}r−1

i=0 and
N is an odd number. If N+1

2 ≥ 2r, then the N -th order
moment condition is able to detect the Schmidt number r
as

BN [ψ, r − 1] ̸⪰ 0. (93)

If N+1
2 ≤ r and the local dimension dB is large enough

in the sense that

dB > 1 +
(N + 1)Nr−1(ψ)

2λmin(H1)
, (94)

where H1 ≡ H(S
(1)
1,N ), S(1) = (s

(1)
n ),

s(1)n ≡
r−1∑
i=0

[(r − 1)λi]
n, (95)

then the N -th order moment condition fails to detect the
Schmidt number r as:

BN [ψ, r − 1] ⪰ 0. (96)

In another word, if the target state has a large dimen-
sion and the Schmidt spectrum of |ψ⟩ is non-degenerate,
then the criteria almost always fail when N ≤ 2r − 1,
and always succeed when N ≥ 4r − 1. Therefore, be-
cause the samples from the Dirichlet distribution satisfies
∀i ̸= j, λi ̸= λj almost surely, the detect ratio of the k-
reduced moment criterion with a small value of N tends
to 0 as the system dimension gets large.

Notice that maximally entangled states with Schmidt
number r have degenerate Schmidt spectrum, thus do
not satisfy the precondition in Proposition 18.

As a comparison, although the correlation matrix cri-
terion (Eq. (20)) cannot detect all pure states, it exhibits
a weaker dependence on dimension. More specifically,

Proposition 19. Suppose |ψ⟩ is a pure state defined on
HAB with dA = dB = d and its Schmidt spectrum is
{λi}r−1

i=0 , T is its correlation matrix under any operator
basis. Then the non-zero singular values of T are

{
√
λiλj + ηij}r−1

i,j=0, (97)

with |ηij | < (r + 2
√
r − 1 + 2)/d.

The proof is in Appendix M. Therefore, for a pure state
with Schmidt spectrum {λi}r−1

i=0 , when the local dimen-
sion is very larger, ∥T∥1 > r − 1 − d−1 is close to the
condition of

r−1∑
i=0

√
λi ≥

√
r − 1. (98)

Hence, the probability of certifying SN(ψ) ≥ r with
correlation matrix criterion almost only depends on the
Schmidt spectrum. The moment-based protocol has this
property as well. For large systems, we have approxima-
tions:

∥T∥22 ≈
r−1∑
i=0

λi = 1,

∥T∥44 ≈
r−1∑
i=0

λ2i .

(99)
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Figure 8: Detection ratios of different k-reduction mo-
ment conditions (Eq. (63)) for pure state ensemble E0
(Eq. (91)). The horizontal line is the moment order N .
The pure state ensemble E0 has Schmidt rank r = 6. The
first figure has local dimension d = 8, the second figure
has local dimension d = 16. As shown by the figure, the
detection ratio increases monotonically with the order of
the criterion and decreases with k. When the order is
high enough, eventually the detection ratios approach 1.

Therefore, the forth moment of the correlation matrix
can detect the Schmidt number of a pure state when

r−1∑
i=0

λ2i ≤
1

r − 1
+O(d−1). (100)

The condition depends weakly on d.

F.3 Ensemble of pure states, numerical results

Here are a few numerical results about the detection
ratios of pure state ensembles E0 mentioned in Eq. (91).
In Fig. 8, we test the k-certification ratios of pure state
ensemble for different orders of bounded k-reduction mo-
ment criteria (see Corollary 11). The horizontal line rep-
resents the orders of the criteria, the vertical line rep-
resents the corresponding detection ratios for different
k. As demonstrated by the figure, the detection ratio
increases with the criterion order and decreases with k,
and eventually the detection ratios all approach 1. This
phenomenon matches with our understanding:

In Fig. 9, we compare the detection ratio of our pro-
tocol with that of the correlation matrix method, and
demonstrate how both detection ratios evolve with the
dimension of the local system. One prominent feature of
the correlation matrix method is that its detection ratio
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Figure 9: Comparison between the k-reduction moment
criteria (Eq. (63)) and the moment-based correlation ma-
trix criterion (Eq. (23)). The horizontal line is the local
dimension d. In this test, we sample states from E0 (Eq.
(91)) with r = 6 and set k = 5. The detection ratios are
obtained by averaging over 106 samples. The detection
ratio of the bounded moment criteria can be larger than
that of the correlation matrix criterion for N ≥ 7. How-
ever, the detection ratio of the bounded moment criteria
decays fast with the local dimension, while the detection
ratio of the correlation matrix criterion varies slowly with
d.
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Figure 10: Detection ratios of different k-reduction mo-
ment conditions (Eq. (63)) for pure state ensemble E0
(Eq. (91)). The horizontal line is k. The pure state en-
semble E0 has Schmidt rank r = 6. The first figure has
local dimension d = 8, the second figure has local dimen-
sion d = 16.
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Table 4: Detection ratios for the optimal Schmidt num-
ber lower bound obtained by Eq. (63) in induced metric
ensemble ED,K (Eq. (101)) with D = 162.

SN=
K=

2 3 4 5 6

3 0 0 0 0 0.1506

4 0 0 0 0.9986 0.8494

5 0 0 1.0000 0.0014 0

6 0 0.9984 0 0 0

7 0.0610 0.0016 0 0 0

8 0.9386 0 0 0 0

9 0.0004 0 0 0 0

Table 5: Detection ratios for the optimal Schmidt num-
ber lower bound obtained by Eq. (23) in induced metric
ensemble ED,K (Eq. (101)) with D = 162.

SN=
K=

2 3 4 5 6

5 0 0 0.0678 1.0000 1.0000

6 0 0.9988 0.9322 0 0

7 0.9958 0.0012 0 0 0

8 0.0042 0 0 0 0

almost does not decay with the dimension. This is be-
cause for a pure state |ψ⟩, the singular values of its corre-
lation matrix T are sorely determined by the eigenvalues
of TrB(|ψ⟩⟨ψ|), thus the criterion function k−d−1−∥T∥1
depends very weakly on d. On the other hand, each qn
is a polynomial function of dB , which makes the detec-
tion ratio of our protocol highly susceptible to the size of
dimension.

F.4 Ensemble of induced metric states

Let |ψ⟩ be a sample of Haar random pure state on
HA⊗HB⊗HC . We set dim(HA) = dim(HB) =

√
D and

dim(HC) = K. Then the ensemble of induced metric
states is generated by

ED,K = {TrC(|ψ⟩⟨ψ|)} . (101)

We do not choose the Hilbert-Schmidt ensemble with
K = D because the states rarely have negative eigenval-
ues under the action of the k-reduction map, although
these states are known to be entangled [42, 56].

In the numerical tests we set D = d2 = 162 and
K = 2, 3, 4, 5, 6, then use Algorithm 1 to detect the
Schmidt numbers of sampled states. As shown by the
results (see Table 4 and Table 5), the moment method
of k-reduction map provides the lower bound estimation
of the Schmidt number of an unknown state ρ, which
means if the estimation is k0 by the above algorithm,
then SN(ρ) ≥ k0. From the numerical results, we cannot
tell which method is better, since there are always some
cases where one of the methods provides higher lower
bound for Schmidt number.

Table 6: Detection ratios of Schmidt number lower
bounds certifiable by criterion Eq. (26) in the induced
metric ensemble ED,K (Eq. (101)) with D = 162.

SN=
K=

2 3 4 5 6

2 1 1 1 1 1

3 1 1 1 1 0.9976

4 1 1 1 0.0176 0

5 1 1 0.0006 0 0

6 1 0.1596 0 0 0

7 1 0 0 0 0

8 1 0 0 0 0

9 0.0022 0 0 0 0

Table 7: Detection ratios of Schmidt number lower
bounds certifiable by criterion Eq. (20) in the induced
metric ensemble ED,K (Eq. (101)) with D = 162.

SN=
K=

2 3 4 5 6

5 1 1 1 1 1

6 1 1 1 0 0

7 1 0 0 0 0

8 1 0 0 0 0

9 0.0034 0 0 0 0

G Conclusion

In this paper, we design a practical and efficient proto-
col for entanglement dimensionality characterization that
is applicable to a wide class of quantum states. The pro-
tocol verifies whether Rk(ρ) is positive or not through
the Hankel matrix. Each entry of the matrix is a non-
linear function of ρ and ρA. The key procedure is thus
to use the randomized measurement method to estimate
several non-linear functions of the target state.

The comparison between the k-reduction map method
and the correlation matrix method is analyzed from two
aspects. In terms of the original criteria, the k-reduction
map is able to detect the Schmidt number of all pure
states, while the correlation matrix method cannot (see
Eq. (44) for a counterexample). For noisy maximally
entangled state with Schmidt number r and the ensemble
of Haar random pure states with depolarized noise, the
k-reduction map method can also detect a larger range
of states.

In terms of the moment-based protocols (those can ac-
tually be implemented by experiments), our protocol is
more feasible for two reasons. First, our lowest order
protocol with N∗ = 3 only needs unitary-3 design to
perform, while in correlation matrix method, the estima-
tion of C(4) needs unitary-4 design. Second, by combin-
ing the classical shadow and the statistical correlation,
we only need Ω(D1/2) samples to estimate all necessary
parameters in the third moment k-reduction criterion.
While the sample complexity of the correlation matrix
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method is unknown yet. Furthermore, the third order k-
reduction moment criterion is enough to certify isotropic
states, which is more powerful than the moment-based
correlation matrix criterion. However, the detection ra-
tios of the low order moment-based protocols decay to
zero with the dimension of the system, while the correla-
tion matrix method depends weakly on the dimension.

A few unsolved questions in this paper also deserve
further exploration. In our protocol, we only use the
simplest type of k-positive map. Other extent k-positive
maps [49] are very complicated, and not suitable for de-
signing practical protocols at the first glance. Thus, can
we design new k-positive maps that are more efficient
than the k-reduction map? Besides, we do not take
the statistical errors into consideration when analyzing
the performances of our protocol. The analysis requires
knowledge about the perturbation theory of Hankel ma-
trices, which we will leave for future work. Finally, it is
unclear whether the k-reduction negativity is an entan-
glement measure or not yet. The purpose is to show that
the k-reduction negativity, as a function of ρ, does not
increase under LOCC operations on ρ. A rigorous proof
is still absent.
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Supplemental Materials

I Spectrum of k-reduced operators

In this section, we discuss the details about the spec-
trum of the k-reduced operators. We start with the
simplest case of the pure states and provide a complete
characterization of the spectrum of the corresponding k-
reduced operators, and then consider a more involved
situation, where several types of noises are added to the
pure states. Although the spectrum of the k-reduced op-
erator of a general density operator is very hard to cal-
culate, we still succeed in extracting information about
the spectrum.

I.1 Pure state

We start with the proof of Theorem 4. Part of the
result has been proved in previous works [11, 6]. Here we
prove it with a different method.

Proof of Theorem 4. Given the explicit Schmidt decom-

position of |ψ⟩, we have

Rk(ρ) = k
r−1∑
i=0

λi|i⟩A⟨i| ⊗ I −
r−1∑
i,j=0

√
λiλj |i⟩A⟨j| ⊗ |i⟩B⟨j|.

(102)

Notice that {|j⟩B}r−1
j=0 is part of a vector basis of HB .

Denote the full basis as {|j⟩B}dB−1
j=0 . Define W as the

space span{|i⟩A}r−1
i=0 ⊗ HB , then the bipartite Hilbert

space can be decomposed as HA ⊗HB =W ⊕W⊥, such
that dim(W) = dBr, dim(W⊥) = dB(dA − r), and Rk(ρ)
is supported on W. In space W⊥, there are dB(dA − r)
eigenvectors of Rk(ρ) with eigenvalue 0.

Operator Rk(ρ) can be divided into X1 +X2, where

X1 ≡ k
r−1∑
i=0

λi|ii⟩⟨ii| −
r−1∑
i,j=0

√
λiλj |ii⟩⟨jj|, (103)

X2 ≡ k
r−1∑
i=0

dB−1∑
j=0,j ̸=i

λi|ij⟩⟨ij|. (104)

We further define W1 ≡ span{|ii⟩}r−1
i=0 , and W = W1 ⊕

W2. Notice that X1 is supported on W1 and X2 is sup-
ported on W2. In W1, X1 has r eigenvalues denoted
by {xi}r−1

i=0 ; In W2, X2 has eigenvalues {kλi}r−1
i=0 and

each has multiplicity dB − 1. From here we can see that
Rk(ρ) ⪰ 0 if and only if X1 ⪰ 0.

Rewrite X1 as Λ
1
2OΛ

1
2 , where

Λ
1
2 ≡

r−1∑
i=0

λ
1
2
i |ii⟩⟨ii|, O ≡ k

r−1∑
i=0

|ii⟩⟨ii| −
r−1∑
i,j=0

|ii⟩⟨jj|.

(105)

The eigenvalues of O are {k, k−r}, where the multiplicity
of k is r − 1. Both Λ and O live in W1 as X1 does,
hence X1 ⪰ 0 if and only if O ⪰ 0, which further implies
Rk(ρ) ⪰ 0 if and only if k ≥ r.

When k < r, O has exactly one negative eigenvalue
k − r. Because Λ1/2 is reversible in W1, X1 also only
contains one negative eigenvalue.

Having finished the proof of Theorem 4, we want to
know more details about the eigenvalues of X1. Assum-
ing |ϕ⟩ =

∑r−1
i=0 ϕi|ii⟩ is one eigenvector of X1 with eigen-

value x, we substitute it into the equation X1|ϕ⟩ = x|ϕ⟩
and get

kλiϕi −
r−1∑
j=0

√
λiλjϕj = xϕi for i = 0, · · · , r − 1.

(106)

Write the above equation as

(kλi − x)ϕi =
√
λi

r−1∑
j=0

√
λjϕj

 . (107)
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According to the factor kλi−x = 0 or not, the solution of
the above equation can be classified into two situations.

(a) ∃0 ≤ i ≤ r − 1, x = kλi. We set i = 0 without
loss of generality. Since kλ0 is an eigenvalue of X1, it is
a root of the characteristic function:

det(kλ0 −X1) = det(Λ)×

det

r−1∑
i=0

kλ0 − kλi
λi

|ii⟩⟨ii|+
r−1∑
i,j=0

|ii⟩⟨jj|

 = 0. (108)

Because∣∣∣∣∣∣∣∣∣
1 1 1 · · ·
1 1 + λ′1 1 · · ·
1 1 1 + λ′2 · · ·
...

...
...

. . .

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 0 0 · · ·
0 λ′1 0 · · ·
0 0 λ′2 · · ·
...

...
...

. . .

∣∣∣∣∣∣∣∣∣ = λ′1λ
′
2 · · · ,

(109)
we have

det(kλ0 −X1) = det(Λ) ·
r−1∏
j=1

kλ0 − kλj
λj

= kr−1λ0

r−1∏
j=1

(λ0 − λj). (110)

So x = kλ0 if and only if ∃0 < j ≤ r − 1, λ0 = λj .
Equivalently, for every pair 0 ≤ i ̸= j ≤ r − 1, λi ̸= λj if
and only if ∀0 ≤ i ≤ r − 1, x ̸= kλi, which is our second
situation.

(b) ∀0 ≤ i ≤ r− 1, kλi − x ̸= 0. Dividing the non-zero
factor on the two sides of Eq.(107), then we obtain

ϕi =

√
λi

kλi − x

r−1∑
j=0

√
λjϕj

 . (111)

Multiplying it by
√
λi on the two sides and summing it

over i, we get the following equation(
r−1∑
i=0

λi
kλi − x

− 1

)r−1∑
j=0

√
λjϕj

 = 0. (112)

If
∑r−1

i=0

√
λiϕi = 0, then from Eq.(107) we have ϕi = 0

for all i, which is a trivial solution. Hence, every eigen-
value x ̸= kλi must satisfy

r−1∑
i=0

λi
kλi − x

= 1. (113)

If we consider the complete Schmidt spectrum of |ψ⟩ in-
cluding eigenvalue 0: λ = {λi}r−1

i=0 ∪ {0}d−r, the eigen-
value x satisfies

d−1∑
i=0

λi
kλi − x

= 1, (114)

where λi = 0 for i ≥ r. When k < r, the k-reduction
negativity Nk(ψ) is defined as the opposite of the unique
negative eigenvalue of Rk(ρ), hence it satisfies

d−1∑
i=0

λi
kλi +Nk(ψ)

= 1. (115)

Recall that we define θk(λ) in Eq. (34) as a function
of λ ∈ [0, 1]×d whose value equals Nk(ψ) when |ψ⟩ has
Schmidt spectrum λ:

if k ≥ r, θk(λ) = 0,

if k < r, θk(λ) > 0, s.t.
d−1∑
i=0

λi
kλi + θk(λ)

= 1.

(116)

Given a nonzero vector x = (x0, x1, · · · , xd−1) defined in
[0,∞)×d, we introduce the following function

G(θ;x) ≡
d−1∑
i=0

xi
kxi + θ

. (117)

We will prove that for k < r, the equation G(θ;λ) = 1
has a unique positive root, so we can define θk(λ) as the
positive solution of the equation. Notice that G(θ;λ) is
continuous and decreases monotonically with θ in (0,∞).
Because G(0;x) = r/k > 1 and limθ→∞G(θ;x) = 0 < 1,
there must exist a unique solution for G(θ;x) = 1 in
(0,+∞).

Proof of Theorem 5. (a) We first prove that θk(λ) is
Schur concave in (0, 1)×d. We know that a smooth
symmetric function f(λ1, · · · , λd) is Schur concave if
∂f
∂λℓ
− ∂f

∂λj
always has the opposite sign with λℓ−λj [51].

To use this theorem, we compute the partial derivative
∂θk
∂λℓ

by[
d−1∑
i=0

kλi
(kλi + θk)2

]
· ∂θk
∂λℓ

=
kθk

(kλℓ + θk)2
. (118)

Because θk is positive in (0, 1)×d, when λℓ > λj , we have
∂θk
∂λℓ

< ∂θk
∂λj

. Therefore, θk is Schur concave in the open

set (0, 1)×d.
Let’s consider two nonzero vectors λ and η defined in

[0, 1)×d, and assume λ ≻ η, where λ has r > k non-zero
entries, η has t > k non-zero entries. The majorization
relation ensures that r ≤ t. We introduce a parameter
δ ∈ (0, 1) such that

λδ ≡
(

(1− δ)λ0, · · · , (1− δ)λr−1,
δ

d− r
, · · · , δ

d− r

)
,

ηδ ≡
(

(1− δ)η0, · · · , (1− δ)ηt−1,
δ

d− t
, · · · , δ

d− t

)
,

(119)

then λδ ≻ ηδ. Since λδ,ηδ ∈ (0, 1)×d, according to the
previous conclusion, we get

θk(ηδ) ≥ θk(λδ). (120)

As functions of δ, both θk(ηδ) and θk(λδ) are continuous
in δ. Thus, taking the limit δ → 0+, we obtain

θk(η) ≥ θk(λ). (121)

Let’s consider another case where λ ≻ η, r ≤ k and t ≤ k
or k ≤ t, then

θk(η) ≥ 0 = θk(λ). (122)
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Combining all the situations, we can conclude that
θk(λ) is Schur concave in [0, 1)×d.

(b) For any Schmidt spectrum λ with r non-zero en-
tries, the vector that is majorized by the vector(

r−1, · · · , r−1, 0, · · · , 0
)
, (123)

with r non-zero entries. For
(
r−1, · · · , r−1, 0, · · · , 0

)
,

θk = 1 − k/r, so we get θk(λ) ≤ 1 − k/r, since θk is
Schur concave.

(c) Given λ, as k increases from 1 to r−1, θk(λ) has to
become smaller according to Eq. (116). If k ≥ r, θk = 0.
So we can conclude that θk(λ) remains non-increasing as
k increases.

I.2 Pure state with noise

Since we cannot prepare an ideal pure state in labo-
ratory, we have to consider the pure states with noises.
Firstly, we consider a pure state with depolarizing noise:

ρ = (1− ε)|ψ⟩⟨ψ|+ ε
I

dAdB
, (124)

where ε ∈ [0, 1]. Applying the k-reduction map to it, we
get

Rk(ρ) = (1− ε)Rk(|ψ⟩⟨ψ|) +
ε

dAdB
Rk(IAB). (125)

Hereafter, we denote the eigenvalues of an operator O by
σi(O) and arrange them in increasing order as σ0(O) ≤
σ1(O) ≤ · · · ≤ σdAdB−1(O). For simplicity, we also define
σℓ ≡ σℓ(Rk(|ψ⟩⟨ψ|)), ℓ = 0, 1, · · · , dAdB − 1.

Proof of Theorem 7. The smallest eigenvalue of Rk(ρ) is

σ0(Rk(ρ)) = (1− ε)σ0 + ε
kdB − 1

dAdB
. (126)

If k < r, then σ0 < 0 and equals −Nk(ψ). When ε
is small enough, we have σ0(Rk(ρ)) < 0 and it equals
−Nk(ρ). When ε is large enough, we have σ0(Rk(ρ)) ≥ 0
and Nk(ρ) = 0. The critical value of ε that separates the
two situations can be obtained by solving

−(1− ε∗)Nk(ψ) + ε∗
kdB − 1

dAdB
= 0. (127)

If we assume dA, dB ≫ 1, in order to have σ0(Rk(ρ)) <
0, we need

ε <
σ0

σ0 − kdB−1
dAdB

≈ σ0
σ0 − k/dA

=
Nk(ψ)

Nk(ψ) + k/dA
. (128)

As illustrated in Fig. 11, when ε becomes closer and
closer to 1, k/dA must be smaller and smaller. We can
only certify a small lower bound of the Schmidt number
when p is close to 1.

σ0=-0.5

σ0=-0.1

σ0=-0.02

ε=0.8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

k/dA

ε

Figure 11: With fixed values of σ0, the relation between
ε and k/dA is shown in the figure. The three curves are
σ0/(σ0 − k/dA) with σ0 = 0.01, 0.2, 0.5 separately. To
order to have a positive k-reduction negativity, ε must
be below the three curves the for three cases. The ε =
0.8 shows when the noise strength is large, how small
k/dA should be to certify the Schmidt number. When σ0
approaches 0, the region of possible values for ε shrinks
quickly.

The isotropic state can be viewed as a maximally state
with depolarizing noise:

ρF =
1− F
d2 − 1

(I − |+d⟩⟨+d|) + F |+d⟩⟨+d|

=
1− F
d2 − 1

I +
d2F − 1

d2 − 1
|+d⟩⟨+d|, (129)

where we have assumed dA = dB = d. The smallest
eigenvalue of the corresponding k-reduced operator is

σ0(Rk(ρF )) =
(1− F )(kd− 1)

d2 − 1
+
d2F − 1

d2 − 1
σ0(Rk(|+d⟩⟨+d|)).

(130)

The spectrum ofRk(|+d⟩⟨+d|) contains k/d−1 with mul-
tiplicity 1 and k/d with multiplicity d2 − 1. So

σ0(Rk(ρF )) = k/d− F. (131)

We can conclude SN(ρF ) > k when F > k/d, which is
consistent with a previous result [6].

Proof of Theorem 8. To certify a lower bound of the
Schmidt number of a quantum state, we can first con-
struct a k-positive map, then prove that the state be-
comes non-positive after applying the map. To certify an
upper bound, we can construct a pure state decomposi-
tion of that state, and find which Sr it belongs to.

Given the state

ρϵ,r = (1−ϵ)|+r⟩⟨+r|+ϵ
I

dAdB
, |+r⟩ =

1√
r

r−1∑
j=0

|jA⟩⊗|jB⟩,

(132)
we define W0 ≡ span{|iA⟩ ⊗ |jB⟩, i, j = 0, 1, · · · , r − 1},
and let I0 be the projector onto this subspace and I1 =
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I − I0, then we obtain

ρϵ,r =

[
(1− ϵ)|+r⟩⟨+r|+ ϵ

I0
dAdB

]
⊕ ϵ I1

dAdB

= (1− ϵ′)ρefϵ,r ⊕ ϵ′
I1

dAdB − r2
,

(133)

where

ρefϵ,r ≡
1− ϵ
1− ϵ′

|+r⟩⟨+r|+
ϵ

1− ϵ′
I0

dAdB
, ϵ′ ≡ ϵdAdB − r

2

dAdB
.

(134)
Notice that ρefϵ,r lives in W0. Every pure state decompo-

sition of ρefϵ,r corresponds to a pure state decomposition
of ρϵ,r with the same maximal Schmidt number. Thus,

SN(ρϵ,r) ≤ SN
(
ρefϵ,r
)
. (135)

The state in the RHS is an isotropic state. Previous
result [6] shows that the Schmidt number of

1− F
r2 − 1

I0 +
r2F − 1

r2 − 1
|+r⟩⟨+r| (136)

equals ⌈rF ⌉. Therefore, by solving the equation of F :

r2F − 1

r2 − 1
=

1− ϵ
1− ϵ′

, (137)

and introduce u ≡ ϵ
(1−ϵ)dAdB

for simplicity, we obtain

SN(ρϵ,r) ≤
⌈
r2 − 1

r
· dAdB(1− ϵ)
dAdB(1− ϵ) + ϵr2

+
1

r

⌉
=

⌈
r

1 + u

1 + r2u

⌉
. (138)

On the other hand, according to Theorem 7, the smallest
eigenvalue of Rk(ρϵ,r) is

(1− ε)(k/r − 1) + ε
kdB − 1

dAdB
. (139)

When the value is smaller than 0, we can conclude that
SN(ρϵ,r) > k. The critical value of k that satisfies
σ0(Rk(ρϵ,r)) = 0 is

r ·
1− ε+ ε

dAdB

1− ε+ ε r
dA

= r
1 + u

1 + dBru
. (140)

Thus, the optimal Schmidt number lower bound certifi-
able by the k-reduction map is

SN(ρϵ,r) ≥
⌈
r

1 + u

1 + dBru

⌉
. (141)

One can verify that when ε < 1/2, r ≤
√
dA, we have

u < (dAdB)−1 and

r
1 + u

1 + dBru
> r − 1. (142)

So SN(ρε,r) = r in this case.

Secondly, we consider the pure state with dephasing
noise. Assume dA = dB = d and the pure state |ψ⟩ has
Schmidt number r. The full state reads

ρ = (1− p)|ψ⟩⟨ψ|+ p|+d⟩⟨+d|, p ∈ [0, 1]. (143)

Its k-reduced operator is

Rk(ρ) = (1− p)Rk(|ψ⟩⟨ψ|) + pRk(|+d⟩⟨+d|) (144)

which is just the convex combination of the k-reduced
operators of |ψ⟩ and |+d⟩. Using Weyl inequalities [53],
we obtain

σ0(Rk(ρ)) ≥ (1− p)σ0 + p(k/d− 1), (145)

σ0(Rk(ρ)) ≤ min{(1− p)σ0 + pk/d,

(1− p)σd2−1 + p(k/d− 1)}. (146)

Define ∆ ≡ σd2−1 − σ0. When p < ∆
∆+1 , the first term

on right-hand side of Eq. (146) is smaller, the condition
for σ0(Rk(ρ)) < 0 is

p <
σ0

σ0 − k/dA
. (147)

When p > ∆
∆+1 , the second term on right-hand side of

Eq. (146) is smaller, the condition for σ0(Rk(ρ)) < 0 is

p >
σd2−1

σd2−1 + 1− k/d
. (148)

J The moment method and moment cri-
teria

In this section of the appendix, we aim to construct-
ing the moment method more rigorously, and providing
the proof of Corollary 13. Here we will not provide the
theorems about the solutions of the Hamburger, Stieltjes
and [a, b]-moment problems, but recommend the books
[16, 57] and the lecture notes [58] to the readers.

J.1 The relative moment problems

We want to ask such questions: what are the condi-
tions for a Hamburger moment sequence S further being
a Stieltjes moment sequence, or a [a, b]-moment sequence
(a < 0 < b) further being a [0, b]-moment sequence? We
call such problems as the relative moment problems. Al-
though there are no direct answers for these relative mo-
ment problems in the [16], it is easy to get the answer by
comparing the known results of the moment problems.
So we directly list the results in the following.

Corollary 20 (The relative infinite Stieltjes moment
problem). Suppose S is a Hamburger moment sequence,
and H(S1,2n+1) ⪰ 0 for all n ∈ N+, then S is also a
Stieltjes moment sequence.

Corollary 21 (The relative truncated Stieltjes moment
problem). Suppose SN is a truncated Hamburger moment
sequence, and
(a) even case N = 2n: H(S1,2n−1) ⪰ 0,
(sn+1, · · · , s2n)T ∈ range(H(S1,2n−1));
(b) odd case N = 2n+ 1: H(S1,2n+1) ⪰ 0.
Then S is also a truncated Stieltjes moment sequence:
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Corollary 22 (The relative infinite [0, b]-moment prob-
lem). Suppose S is an [a, b]-moment sequence with a <
0 < b, and H(bS1,2n+1 − S2,2n+2) ⪰ 0 (or H(S1,2n+1) ⪰
0) for n ∈ N+, then S is also a [0, b]-moment sequence.

Corollary 23 (The relative truncated [0, b]-moment
problem). Suppose SN is a truncated [a, b]-moment se-
quence with a < 0 < b, and
(a) even case N = 2n, H(bS1,2n−1 − S2,2n) ⪰ 0;
(b) odd case N = 2n+ 1, H(S1,2n+1) ⪰ 0;
Then SN is also a truncated [0, b]-moment sequence.

J.2 The moment criteria

Suppose O is a set of Hermitian operators on Hilbert
space H with dimension D, and O+ is the subset of pos-
itive semidefinite operators in O, our goal is to charac-
terize the positive operators of O+ with respect to O by
a series of moment criteria. Given an operator X ∈ O, if
the spectrum of X is (λ1, · · · , λD), there is a correspond-

ing atomic measure µX =
∑D

i=1 δ(x − λi) with x ∈ R
being a real variable, and the n-th moment is related to
the spectrum of X by

sn(X) ≡ Tr(Xn) =

D−1∑
i=0

λni =

∫ ∞

−∞
xndµX . (149)

Through the atomic measure, each operator in O
is mapped into an infinite real sequence S(X) =
(s0(X), s1(X), · · · ), the set of all such infinite real se-
quences is denoted as

XO = {(s0(X), s1(X), · · · ) : X ∈ O, sn(X) = Tr(Xn)}.
(150)

Likewise, the set of infinite real sequences corresponding
to O+ is

XO+ = {(s0(X), s1(X), · · · ) : Y ∈ O+, sn(X) = Tr(Xn)}.
(151)

By definition, every sequence S(X) ∈ XO is a Hamburger
moment sequence, every sequence S(O) ∈ XO+ is further
a Stieltjes moment sequence and XO+ ⊂ XO.

Given the assumption that the infinite moment se-
quence S(X) = (s0(X), s1(X), · · · ) of an unknown op-
erator X ∈ O is known, the sequence S(X) is naturally
a Hamburger moment sequence, then we want to know if
S(X) is a Stieltjes moment sequence. First, we consider
if the sequence S(X) has a unique representing measure,∫ +∞

−∞
eϵ|x|dµX(x) =

D∑
i=1

∫ +∞

−∞
eϵ|x|δ(x− λi)dx ≤ Deϵτ

(152)

where τ represents the upper bound of |λi|, which
means the spectrum of the operator X is assumed
to be bounded. The above result tells us that∫ +∞
−∞ eϵ|x|dµX(x) < ∞, then according to the Carle-

man’s condition [16], the Hamburger sequence S(X) cor-
responds to a unique measure, and it’s the same for op-
erators in O+. The previous results mean that there is a

one-to-one map between the operator set O and the se-
quence set XO (up to unitary transformation). In other
words, a positive operator X ∈ O+ must correspond to
a Stieltjes moment sequence and a non-positive operator
corresponds to a Hamburger moment sequence.

Given an infinite moment sequence S(X) of an un-
known operator X, if the moment sequence is further a
Stieltjes moment sequence, then we can conclude that X
is a positive operator. So by Corollary 20, we get the
following conditions, called the plain moment conditions,
to determine if an unknown operator X ∈ O is positive
or not:

Theorem 24 (Plain moment conditions). An operator
X ∈ O is positive semidefinite if and only if the infinite
moment sequence S(X) is a Stieltjes moment sequence.
In other words, S(X) must satisfy

H(S1,2n+1(X)) ⪰ 0, for all n ∈ N0. (153)

In practice, we only have the first few moments of an
operator X, so we must consider the truncated moment
sequence rather than the infinite moment sequence. Ac-
cording to Theorem 21, we get the result.

Theorem 25 (Truncated plain moment conditions). An
operator X ∈ O is positive semidefinite if and only if the
truncated moment sequence SN (X) is a Stieltjes moment
sequence. In other words, SN (X) has to satisfy the fol-
lowing conditions:
(1) When N = 2n: H(S1,2n−1(X)) ⪰ 0, and
(sn+1, · · · , s2n)⊤ ∈ range(H(S1,2n−1(X)));
(2) When N = 2n+ 1: H(S1,2n+1(X)) ⪰ 0.

We note that the condition of Hankel matrix
Hn−1(ES) ⪰ 0 for N = 2n is the same as the one
for N = 2n − 1, but the case of N = 2n has an
extra condition (sn+1, · · · , s2n)T ∈ range(Hn−1(ES)).
Let H̃n−1 denotes the extended matrix of Hn−1(ES)
by appending the column vector (sn+1, · · · , s2n)T , so
(sn+1, · · · , s2n)T ∈ range(Hn−1(ES)) is equivalent to
rankH̃n−1 = rankHn−1(ES). However, in practice, the
extra condition for N = 2n does not make any difference,
since rare random moment sequences satisfy this extra
condition. So the truncated plain moment conditions are
equivalent to the plain moment conditions effectively.

The truncated plain moment conditions for N = 2n+1
has been found in [15] and are used to solve the problem
of entanglement certification by combining with PPT.
However, we should emphasize that the truncated mo-
ment conditions used in [15] are only the necessary con-
ditions for X to be positive, while the infinite series of
plain moment conditions are necessary and sufficient con-
ditions.

Since we know the spectrum of any k-reduced operator
Rk(ρ) is bounded, we can use the [a, b]-moment method
to improve the previous conditions. Generally, we assume
the spectrum of an operator X ∈ O is bounded by an in-
terval [a, b], then X generates an [a, b]-moment sequence
S(X) = (s0(X), s1(X), · · · ). All infinite [a, b]-moment
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sequences correspond to unique representing measures,
then there is a one-to-one map between the operator set
O and the sequence set XX [a, b]. Hence, the problem
of determining an operator X is positive or negative is
equivalent to the one of determining if the moment se-
quence S(X) is a [0, b]-moment sequence, given S(X) is
an [a, b]-moment sequence? According to Corollary 22,
we get the following result.

Theorem 26 (Bounded moment conditions). An oper-
ator X ∈ X with spectrum contained in [a, b] is positive
semi-definite if and only if the infinite moment sequence
S(X) is a [0, b]-moment sequence. In other words, S(X)
must satisfy

H(S1,2n+1(X)) ⪰ 0, for all n ∈ N+, (154)

or

H(bS1,2n+1(X)− S2,2n+2(X)) ⪰ 0, for all n ∈ N+.
(155)

In consideration of the truncated moment problems
and their solutions 23, we get the following similar re-
sult. [Truncated bounded moment conditions] An oper-
ator X ∈ X with spectrum contained in [a, b] is positive
semidefinite if and only if the finite moment sequence
SN (X) is a [0, b]-moment sequence. In other words,
SN (X) must satisfy:
(1) when N = 2n: H(bS1,2n−1(X)− S2,2n(X)) ⪰ 0.
(2) when N = 2n+ 1: H(S1,2n+1(X)) ⪰ 0.

We can see that the plain moment conditions only cor-
responds to the second series of bounded moment con-
ditions, the truncated bounded moment conditions have
one more series of criteria corresponding to the even or-
ders, compared with the conditions in [15].

J.3 Boundary point of the moment cone

Naively, we think the above Theorem J.2 is already
a complete characterization of O+ with respect to O.
However, since the truncated moment sequence is only
an approximate truncation of the infinite moment se-
quence, SN ∈ XN

O [a, b] may have more than one repre-
senting measures. So it is possible that there is another
representing measure ν(SN ) of SN letting SN be a [0, b]-
moment sequence, even if the corresponding operator X
is not a positive operator, then we will classify X into the
class of positive operators by mistake. It is exactly the
reason why truncated moment conditions are only neces-
sary conditions but not sufficient conditions to determine
if an operator is positive.

We want to know the upper bound of the moment order
to determine an operator X being positive definitely. In
order to do this, we first review some notions of the trun-
cated [a, b]-moment problem. The set of all truncated-N
moment sequences is actually a convex cone, called mo-
ment cone and denoted by XN [a, b]. Each moment se-
quence SN ∈ XN [a, b] has at least one k-atomic repre-
senting measure,

µ =
k∑

i=1

miδ(x− ti), (156)

with k ≤ N + 1. The numbers ti ∈ [a, b] are pairwise
different, called roots of µ, and mi > 0 are the weights.
The index of the representing measure µ for SN with
respect to the interval [a, b] is defined as

ind[a,b](µ) ≡
k∑

i=1

ϵ(ti), (157)

where ϵ(t) = 2 if t ∈ (a, b), while ϵ(t) = 1 if t = a or
b. The index of sequence SN is defined as the minimal
index of all representing measures for SN , i.e.,

ind[a,b](SN ) = min
µ

ind[a,b](µ(SN )). (158)

A representing measure µ of SN is called principal if
ind[a,b](µ) = N + 1, and further called upper (lower)
principal if it is principal and b is (not) a root of µ.
A representing measure µ of SN is called canonical if
ind[a,b](µ) ≤ N + 2.

The points of moment cone XN [a, b] are classified into
two types, boundary points and interior points, the fol-
lowing theorem provides a characterization of them.

Theorem 27 (Characterization of boundary and in-
terior points of moment cone). Suppose XN [a, b] is a
closed convex cone in RN+1 with nonempty interior. For
SN ∈ XN [a, b] and N can be even or odd, the following
statements are equivalent:
(1) SN is a boundary point of XN [a, b].
(2) det(HN (S)) = 0 or det(H̄N (S)) = 0.
(3) SN is [a, b]-determinate.
(4) ind[a,b](SN ) ≤ N .
The following statements are equivalent:
(5) SN is an interior point of XN [a, b].
(6) The Hankel matrices HN (SN ), H̄N (SN ) are positive
definite.
(7) det(Hn(SN )) = 0 and det(H̄n(SN )) = 0 for all
n ≤ N .
(8) ind[a,b](SN ) ≥ N + 1.

Now we focus on the k-reduced operators. Let’s as-
sume X ∈ Range(Rk) is a non-positive operator, then
discuss the consequences of SN being a boundary point
of XN [−1, k]. Theorem 27 tells us that there is only
one representing measure of it, which is exactly the
atomic measure corresponding to the spectrum of X,
there cannot exist another new representing measure let-
ting SN ∈ XN [0, k]. So we can conclude that SN which
is both [−1, k]-moment sequence and [0, k]-moment se-
quence must be an interior point of XN [−1, k].

Suppose the spectrum of X is µX = (λ1, · · · , λD) ⊂
[−1, k], then the index of representing measure µX with
respect to [−1, k] is ind[−1,k](µX) ≤ 2D, so the index of
SN (X) satisfy ind[−1,k](SN ) ≤ 2D. According to theo-
rem 27, at least when N = 2D, SN (X) must be a bound-
ary point of XN [−1, k]. Combined with the previous dis-
cussion, we can get the conclusion that SN generated by
X cannot be [0, k]-moment sequence when N ≥ 2D. So
we can formalize the above discussions into the following
important theorem.
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Theorem 28 (Proof of Corollary 13). For any non-
positive operator X ∈ Range(Rk), the moment sequence
SN generated by X cannot be a [0, k]-moment sequence
when N ≥ 2D.

Although the above theorem is correct, but the up-
per bound of ind[−1,k](SN ) is not tight for special cases.
Consider the case of k-reduced operator Rk(ρ) with ρ
being a pure state. We have known the structure of the
spectrum of the k-reduced operator Rk(ρ), i.e., the spec-
trum totally contains at most 2r+1 different eigenvalues
{kλ1, · · · , kλr, 0, x1, · · · , xr} ⊂ [−1, k]. Then the index
of µX is bounded as, ind[−1,k](µX) ≤ 2(2r+ 1) = 4r+ 2,
so we get a much tighter upper bound of the index of
SN as ind[−1,k](SN ) ≤ 4r + 2. This fact tells us that
we can always determine if the k-reduced operator of a
pure state is a positive operator or not by the moment
conditions with order larger than 4r + 2.

K Detectable regions of Algorithm 2

Proof of Proposition 15. The isotropic state under the k-
reduction map writes

Rk(ρF ) =
k(d− d−1)− 1 + F

d2 − 1
I − d2F − 1

d2 − 1
|+d⟩⟨+d|.

(159)
Its non-zero spectrum is

{λ∆}d
2−1∪{λδ} , λ∆ ≡

F − 1

d2 − 1
+
k

d
, λδ ≡

k

d
−F. (160)

Therefore, the moments of Rk(ρF ) are

qn = (d2 − 1)λn∆ + (−λδ)n. (161)

Notice that SN(ρF ) = ⌈dF ⌉. So if k ≤ ⌈dF ⌉ − 1, then
λδ ≥ (1 + dF − ⌈dF ⌉)/d > 0.

Because k ≥ 1, we have λ∆ > 0, and

q1q3 − q22 = −(d2 − 1)λ∆λδ(λ∆ + λδ)2 < 0, (162)

which means the third moment condition always works.

For the pure state situation, we start with a few prop-
erties of the Hankel matrix. Consider the following mo-
ment sequence S = (sn)n∈N with

sn =

L−1∑
i=0

miγ
n
i , mi ∈ N+, γi ∈ R/{0}, γi ̸= γj .

(163)
Here {γi} can be regarded as the set of eigenvalues, {mi}
are the multiplicities, and L is the total number of dis-
tinct eigenvalues. For an odd number N , the Hankel
matrix H(S1,N ) writes

[H(S1,N )]ij = si+j+1, i, j = 0, 1, · · · , N − 1

2
. (164)

Define dN ≡ dim(H(S1,N )) = N+1
2 for simplicity. Then

we have

Lemma 29. Given H(S1,N ) defined as described before.
Then we have (a) rank (H(S1,N )) = min{dN , L}; (b)
when dN ≥ L, H(S1,N ) is positive semi-definite if and
only if ∀i, γi > 0.

Proof. (a) Let

e(γ) ≡ (1, γ, γ2, · · · , γdN−1)⊤, (165)

then H(S1,N ) has decomposition:

H(S1,N ) =
L−1∑
i=0

miγie(γi)e(γi)
⊤. (166)

Introduce matrix

V ≡ (e(γ1) e(γ2) · · · e(γL)). (167)

Because all {miλi} are non-zero, we have
rank(H(S1,N )) = rank(V ).

According to the Vandermonde determinant, if dN =
L, then

det(V ) =
∏
i̸=j

|γi − γj | ≠ 0. (168)

Thus, the set of {e(γi)} are linearly independent, and
rank(V ) = L. The situation is the same for dN > L. So
for dN ≥ L,

rank(H(S1,N )) = rank(V ) = L. (169)

If dN < L, then the rank of V is the same with that of

(e(γ1) e(γ2) · · · e(γdN
)). (170)

The determinant of this matrix is
∏

i̸=j≤dN
|γi− γj | ̸= 0,

so V still has full rank. Hence

rank(H(S1,N )) = rank(V ) = dN . (171)

(b) If ∀i, γi > 0, then for any real vector c,

c⊤H(S1,N )c =
L∑

i=1

miγi|c⊤e(γi)|2 ≥ 0, (172)

so H(S1,N ) is positive semi-definite.
If there exists a γi∗ < 0, then in the space

span{e(γi), i = 0, 1, · · · , L−1}, there must exist a v that
is orthogonal to span{e(γi), i ̸= i∗} and has a non-zero
overlap with e(γi∗). Therefore,

v⊤H(S1,N )v = mi∗γi∗ |v⊤e(γi∗)|2 < 0, (173)

so H(S1,N ) is not positive semi-definite.

Using this lemma, we can prove:

Proof of Proposition 18. Recall that the non-zero spec-
trum of Rk(|ψ⟩⟨ψ|) includes

{kλj}dB−1 ∪ {xj}, (174)

where {xj} are the solutions of

r−1∑
j=0

λj
kλj − x

= 1. (175)
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Because {λj} are distinct to each other and k < SN(ψ),
from Theorem 4 we obtain

xj1 ̸= xj2 , xj ̸∈ {kλj}, −1 < min
j
xj < 0. (176)

Therefore,

qn = (dB − 1)
r−1∑
j=0

(kλj)
n +

r−1∑
j=0

xnj . (177)

In the notation of Lemma 29, it means

L = 2r, γi = kλi, γi+r = xi,

mi = dB − 1, mi+r = 1, i = 1, 2, · · · , r. (178)

Since there exists a negative γi, when dN ≥ L = 2r, the
Hankel matrix is not positive semi-definite.

When dN ≤ r, let H1 be the Hankel matrix gener-

ated by s
(1)
n ≡

∑r−1
j=0(kλj)

n, let H2 be the Hankel ma-

trix generated by s
(2)
n ≡

∑r−1
j=0 x

n
j . Thus, BN [ψ, k] =

(dB − 1)H1 + H2. Because it is required that {λj} are
distinct and positive, we have H1 ⪰ 0 and rank(BN ) =
rank(H1) = dN . Thus, all the eigenvalues of H1 are non-
zero.

The smallest eigenvalue of BN [ψ, k] has lower bound

(dB − 1)λmin(H1) + λmin(H2). (179)

Furthermore, suppose xr−1 is the only negative eigen-
value of Rk(|ψ⟩⟨ψ|), then we have lower bound:

λmin(H2) > min
v∈RdN ,∥v∥2=1

xr−1|v⊤e(xr−1)|2 > dN · xr−1

= −N + 1

2
Nk(ψ). (180)

Hence, when

dB > 1 +
(N + 1)Nk(ψ)

2λmin(H1)
, (181)

the matrix BN [ψ, k] must be positive.

Proof of Proposition 17. The non-zero spectrum of
Rk(|+r⟩⟨+r|) is {

k

r

}dBr−1

∪
{
k

r
− 1

}
. (182)

Therefore, in the notation of Lemma 29

L = 2, γ1 =
k

r
, γ2 =

k

r
− 1,

m1 = dBr − 1, m2 = 1. (183)

When 1 ≤ k ≤ r − 1, we have γ1 > 0, γ2 < 0, so the
Hankel matrix is not positive semi-definite.

L Sample complexity of Algorithm 2
with N∗ = 3

Here are a few notations for asymptotic analysis in
complexity theory. If a real function f(x) satisfies

lim
x→∞

|f(x)|
xn

<∞ (184)

then f(x) = O(xn). If the above limit is not zero, then
f(x) = Ω(xn). If f(x) = O(xn) and f(x) = Ω(xn), then
f(x) = Θ(xn). On the other hand, if

lim
x→∞

|f(x)|
xn

= 0, (185)

then f(x) = o(xn). If f(x) = O(xn), g(x) = O(xm), then
f(x) + g(x) = O(xmax{m,n}), and f(x)g(x) = O(xm+n);
if f(x) = O(xn), g(x) = o(xn), then f(x)+g(x) = O(xn).

In order to computer the variance of estimators, we
need to estimate the average over k-fold random uni-
taries. Using Weingarten calculus, we obtain

Φ(k)(·) ≡
∫
dUU⊗k(·)(U†)⊗k =

∑
π,σ∈Sk

Cπ,σ Tr(Wπ·)Wσ,

(186)
where the matrix C is

Qπ,σ ≡ d#cycles(πσ), C ≡ Q−1 (187)

and d is the dimension of each U . The exponential index
#cycles(π) is how many cycles the permutation π can be
decomposed into. For example, in S3 group, the identity
can be written as (1)(2)(3), so it has 3 cycles; (123) itself
is a cycle, so it has 1 cycle.

For example,

Φ(2)(X) =
1

D2 − 1
[I Tr(X) + WTr(WX)

−D−1WTr(X)−D−1I Tr(WX)]. (188)

Here we use W to represent W(12) for simplicity.
The following lemma is useful in our analysis.

Lemma 30. Given d, k ∈ N+, the entries of C defined
in Eq. (187) have bounds:

|Cπ,π−1 − d−k| ≤ 2d−k−1; |Cπ,σ| ≤ 2d−k−1, σ ̸= π−1.
(189)

Proof. Let

Q0 ≡ dk
∑
π∈Sk

δπ,π−1 , Q1 ≡ Q−Q0. (190)

For all πσ ̸= 1, d#cycles(πσ) ≤ dk−1. Thus ∥Q1∥∞ ≤ dk−1,
and

∥Q−1/2
0 Q1Q

−1/2
0 ∥∞ ≤ ∥Q−1

0 ∥∞∥Q1∥∞ ≤ dk ·dk−1 = d−1.
(191)

144



Because Q0 is a real symmetric reversible, Q1 is real sym-

metric, and ∥Q−1/2
0 Q1Q

−1/2
0 ∥∞ < 1, we have

C = (Q0 +Q1)−1

= Q
−1/2
0 (I +Q

−1/2
0 Q1Q

−1/2
0 )−1Q

−1/2
0

= Q
−1/2
0

∞∑
n=0

(−Q−1/2
0 Q1Q

−1/2
0 )nQ

−1/2
0

= Q
−1/2
0

∞∑
n=0

(−Q−1/2
0 Q1Q

−1/2
0 )nQ

−1/2
0

= Q−1
0 −Q

−1
0 Q1Q

−1
0 + · · · .

(192)

Finally,

∥C −Q−1
0 ∥∞ ≤

∞∑
n=1

∥Q1∥n∞∥Q−1
0 ∥n+1

∞ ≤
∞∑

n=1

(dk−1)n(d−k)n+1

= d−k
∞∑

n=1

d−n ≤ 2d−k−1.

(193)
It is equivalent to

|Cπ,π−1 − d−k| ≤ 2d−k−1; |Cπ,σ| ≤ 2d−k−1, σ ̸= π−1.
(194)

In the following paragraphs, we will show that given
access to unitary-3 designs, the sample complexity of es-
timating Tr

(
ρ2
)
,Tr
(
ρ3
)
,Tr
(
ρ2 · ρA ⊗ IB

)
using the clas-

sical shadow methods are Ω(D),Ω(D1/3),Ω(D1/2) sep-
arately. Here D is the dimension of ρ. Thus, if we use
the statistical correlation method to estimate Tr

(
ρ2
)

[20],
and the classical shadow method to estimate the other
two quantities, then the sample complexity of the third
moment k-reduction criterion by randomized measure-
ment is Ω(D1/2).

Proof of Theorem 14. In the classical shadow protocol,
we first sample a random unitary U from ensemble U ,
then apply U on the target state ρ and measure the ro-
tated state in the standard basis to obtain |b⟩. Let Ψ̂ be
the random variable whose value is U |b⟩⟨b|U†, then

P [Ψ̂ = U |b⟩⟨b|U†] =
1

|U|
⟨b|U†ρU |b⟩. (195)

After computation, the expectation value is

E[Ψ̂] =
1

|U|
∑
U∈U

∑
|b⟩

U |b⟩⟨b|U† · ⟨b|UρU†|b⟩

=
∑
|b⟩

Tr2

[
1

|U|
∑
U∈U

U⊗2|b⟩⟨b|⊗2(U†)⊗2 · I ⊗ ρ

]

=
∑
|b⟩

Tr2

[
Φ(2)

(
|b⟩⟨b|⊗2

)
· I ⊗ ρ

]
=
∑
|b⟩

Tr2

[
1

D(D + 1)
(I + W) · I ⊗ ρ

]

=
ρ+ I

D + 1
.

(196)

where U forms a unitary-2 design. Therefore, the esti-
mator for the state is

ρ̂ ≡ (D + 1)Ψ̂− I, (197)

and

E[ρ̂⊗ ρ̂] =(D + 1)2E[Ψ̂⊗ Ψ̂]− (D + 1)E[Ψ̂]⊗ I
− (D + 1)I ⊗ E[Ψ̂] + I ⊗ I. (198)

To compute the variances, we also need E[ρ̂⊗ ρ̂], which
can be computed from

E[Ψ̂⊗ Ψ̂] =
1

|U|
∑
U∈U

∑
|b⟩

U |b⟩⟨b|U† ⊗ U |b⟩⟨b|U† · ⟨b|UρU†|b⟩,

=
∑
|b⟩

Tr3

[
1

|U|
∑
U∈U

U⊗3|b⟩⟨b|⊗3(U†)⊗3 · I ⊗ I ⊗ ρ

]

=
∑
|b⟩

Tr3

[
Φ(3)

(
|b⟩⟨b|⊗3

)
· I ⊗ I ⊗ ρ

]
=

2

(D + 1)(D + 2)
[I ⊗ I + ρ⊗ I + I ⊗ ρ]Πs.

(199)

whenU forms a unitary-3 design. Here Πs = (I + W)/2.
The derivation of the last step can be found in Lemma
14 of [59]. Accordingly,

E[ρ̂⊗ρ̂] =
D + 1

D + 2
(I⊗I+I⊗ρ+ρ⊗I)W− 1

D + 2
(ρ⊗I+I⊗ρ+I⊗I).

Let Rρ ≡ I ⊗ I + I ⊗ ρ + ρ ⊗ I. Then the expectation
value can be simplified to

E[ρ̂⊗ ρ̂] =
D + 1

D + 2
RρW−

1

D + 2
Rρ. (200)

(a). Variance of Tr
(
ρ2
)
by the classical shadow. Label

the state estimator of each run as ρ̂1, ρ̂2, · · · , ρ̂M sepa-
rately, where M is the total number of samples. Then
the estimator for the purity is (recall that pn ≡ Tr(ρn)):

p̂2 =

(
M

2

)−1∑
j<k

Tr(ρ̂j ρ̂k). (201)

Its variance Var[p̂2] can be computed by

Var[p̂2] = E[p̂22]− p22

=

(
M

2

)−2 ∑
j1<k1,j2<k2

E
[
Tr(ρ̂j1 ⊗ ρ̂j2 · ρ̂k1

⊗ ρ̂k2
)− p22

]
=

(
M

2

)−1 {
2(M − 2)

[
Tr(ρ⊗ ρ · E[ρ̂⊗ ρ̂])− p22

]
+
[
Tr
(
E[ρ̂⊗ ρ̂]2

)
− p22

]
≤ 4(M − 2)

M(M − 1)
Tr(ρ⊗ ρ · E[ρ̂⊗ ρ̂])

+
2

M(M − 1)
Tr
(
E[ρ̂⊗ ρ̂]2

)
.
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Using

Tr(RρWRρW) = Tr
(
R2

ρ

)
= D2 + 4D + 2Dp2 + 2,

Tr
(
R2

ρW
)

= D + 4 + 4p2,

(202)

we obtain

Tr(ρ⊗ ρ · E[ρ̂⊗ ρ̂]) =
D + 1

D + 2
(p2 + 2p3)− 1

D + 2
(1 + 2p2)

≤ p2 + 2p3,

Tr
(
E[ρ̂⊗ ρ̂]2

)
= (D + 1)2 − D2 + 2(D + 1)(D + 4)

(D + 2)2

+ 2
D2 − 2

D + 2
p2

≤ (D + 1)2 + 2Dp2.

Hence,

Var[p̂2] ≤ 4(M − 2)

M(M − 1)
·(p2+2p3)+

2

M(M − 1)
((D+1)2+2Dp2).

To guarantee that Var[p̂2] = O(1), M = Ω(D) number of
samples suffices.

(b). Variance of Tr
(
ρ3
)
by classical shadow. The third

moment p3 has estimator

p̂3 =

(
M

3

)−1 ∑
i<j<k

Tr (ρ̂iρ̂j ρ̂k) . (203)

Its variance is

Var[p̂23] =

(
M

3

)−2 ∑
i1<j1<k1,i2<j2<k2

E[Tr(ρ̂i1 ρ̂j1 ρ̂k1
)

Tr(ρ̂i2 ρ̂j2 ρ̂k2
)− p23]

=

(
M

3

)−2 ∑
i1<j1<k1,i2<j2<k2

E[Tr ((ρ̂i1 ⊗ ρ̂i2)·

(ρ̂j1 ⊗ ρ̂j2) · (ρ̂k1
⊗ ρ̂k2

)− p23]

Now we analyze the expectation value of each summand
with different indices. Based on how many pairs of ρ̂
sharing the same index, we can classify the summand
into 4 types:

1. all indices are distinct;

2. there exists exactly a pair of identical indices;

3. there exist exactly two pairs of identical indices;

4. there exist three pairs of identical indices.

Type 1, the summand equals 0.
Type 2, the summand equals

S2 = Tr
(
E[ρ̂⊗ ρ̂] · ρ2 ⊗ ρ2

)
− p23. (204)

For fixed i1 = i2 = m, then there are totally
(
M−m

2

)
different pairs of (j, k). So there are totally

M−2∑
m=1

(
M −m

2

)[(
M −m

2

)
− 1

]
= O(M5) (205)

number of summands of this type.
Type 3, the summand equals

S3 = Tr
(
E[ρ̂⊗ ρ̂]2 · ρ⊗ ρ

)
− p23, (206)

and there are totally

M∑
m=1

M∑
m′=m+1

(M −m′ + 1)(M −m′) = O(M4) (207)

number of summands of this type.
Type 4, the summand equals

S4 = Tr
(
E[ρ̂⊗ ρ̂]3

)
− p23, (208)

and there are totally
(
M
3

)
= O(M3) number of summands

of this type.
Therefore,

Var[p̂23] = O(M−1)S2 +O(M−2)S3 +O(M−3)S4. (209)

After computation, these summands have magnitudes:

S2 ≤
D + 1

D + 2
(p4 + 2p5)− 1

D + 2
(p22 + 2p2p3)− p23

=O(1),

S3 ≤
1 + (D + 1)2

(D + 2)2
Tr
[
R2

ρ · ρ⊗ ρ
]

=
1 + (D + 1)2

(D + 2)2
(1 + 4p2 + 2p3 + 2p22)

=O(1),

S4 ≤
1

(D + 2)3
[(D + 1)3 Tr(RρWRρWRρW)

+ 3(D + 1) Tr
(
R3

ρW
)
]

=
(D + 1)3 + 3(D + 1)

(D + 2)3
(D + 6 + 12p2 + 8p3)

=O(D).

(210)

Hence,

Var[p̂3] = O(M−1) +O(M−2) +O(M−3D). (211)

To guarantee that Var[p̂3] = O(1), M = Ω(D1/3) number
of samples suffices.

(c). Variance of p1,2 by classical shadow. In order to
estimate p1,2, we need to construct classical shadow for
ρA ⊗ IB as well. Denote the estimator of ρA ⊗ IB as
â, and suppose there are totally L of samples, then the
estimator of p1,2 is

p̂1,2 = L−1

(
M

2

)−1 L−1∑
n=0

M−1∑
i<j

Tr (ânρ̂iρ̂j) (212)

Similarly, its variance is

Var[p̂1,2] =L−2

(
M

2

)−2 L−1∑
n1,n2

M−1∑
i1<j1,i2<j2

E[Tr (ân1
ρ̂i1 ρ̂j1) Tr (ân2

ρ̂i2 ρ̂j2)− p21,2]. (213)
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The summand in RHS can be rewritten as

Tr (E [ân1
⊗ ân2

] · E[ρ̂i1 ρ̂j1 ⊗ ρ̂i2 ρ̂j2 ])− p21,2. (214)

It has been proved that

L−1∑
n1,n2

E [ân1 ⊗ ân2 ]

=L(L− 1)ρA ⊗ IB ⊗ ρA ⊗ IB + LE[â⊗ â]

=L(L− 1)ρA ⊗ IB ⊗ ρA ⊗ IB

+ L

(
DA + 1

DA + 2
RρA

WA −
1

DA + 2
RρA

)
⊗ IB ⊗ IB ,

M−1∑
i1<j1,i2<j2

E[ρ̂i1 ρ̂j1 ⊗ ρ̂i2 ρ̂j2 ]

=

(
M

2

)2

ρ2 ⊗ ρ2 +

(
M

2

)
E[ρ̂⊗ ρ̂]2

+

(
M

2

)
(M − 2){ρ⊗ ρ · E[ρ̂⊗ ρ̂] + E[ρ̂⊗ ρ̂] · ρ⊗ ρ},

Here RρA
:= IA ⊗ IA + IA ⊗ ρA + ρA ⊗ IA and WA is

the swap gate between two Hilbert spaces HA.
After computation, we obtain

Var[p̂1,2]

=O(L−1) Tr
(
RρA

WA ⊗ I⊗2
B · ρ2 ⊗ ρ2

)
+O(M−2) Tr

(
ρ⊗2
A ⊗ I

⊗2
B · E[ρ̂⊗ ρ̂]2

)
+O(L−1M−2) Tr

(
RρA

WA ⊗ I⊗2
B · E[ρ̂⊗ ρ̂]2

)
+O(L−1) Tr

(
ρ⊗2
A ⊗ I

⊗2
B · E[ρ̂⊗ ρ̂] · ρ⊗ ρ

)
+O(M−1L−1) Tr

(
RρA

WA ⊗ I⊗2
B · E[ρ̂⊗ ρ̂] · ρ⊗ ρ

)
=O(L−1) +O(M−2D2

B) +O(L−1M−2D2
BDA)

+O(L−1) +O(M−1L−1). (215)

Therefore,

Var[p̂12] = O(M−2D2
B) +O(L−1M−2D2

BDA). (216)

To guarantee that Var[p̂12] = O(1), we need

M = Ω(DB), LM2 = Ω(D2
BDA). (217)

Thus, when we choose L = Ω(DA),M = Ω(DB), L +
M = Ω(DA + DB) number of samples suffices. If DA =

DB =
√
D, then the sample complexity is Ω(D

1
2 ).

(d) Variance of Tr
(
ρ2
)
by statistical correlation. We

give a self-consistent analysis for the sample complexity
of estimating Tr

(
ρ2
)

with statistical correlation method

as well. Here is the protocol for estimating Tr
(
ρ2
)

using
statistical correlation:

• sample a sequence of random unitaries
{U1, U2, · · · , UN};

• for each Un, apply it to ρ then measure state UnρU
†
n

in the standard basis;

• repeat the measurement for M times to obtain
{|sn,1⟩, |sn,2⟩, · · · , |sn,M ⟩};

• output

1

N

N−1∑
n=0

2

M(M − 1)

M∑
m1<m2

Ξ(sn,m1 , sn,m2) (218)

where
Ξ(s1, s2) ≡ (D + 1)δs1,s2 − 1. (219)

Define
Ξ̂ ≡

∑
s1,s2

Ξ(s1, s2)|s1, s2⟩⟨s1, s2|. (220)

For each U , the probability of obtaining measurement
outcome s is

P (s|U) = ⟨s|UρU†|s⟩. (221)

Notice that the average over measurement outcomes gives

EM [Ξ(s1, s2)] =
∑
s1,s2

Ξ(s1, s2)P (s1|U)P (s2|U)

= Tr
[
(UρU†)⊗2Ξ̂

]
. (222)

Denote the estimator for Tr
[
(UnρU

†
n)⊗2Ξ̂

]
as Tn (the

summand of Eq. (218) with respect to n), thus the vari-
ance of Tr

(
ρ2
)

is

1

N
EU [EM [T 2

n ]− EM [Tn]2]. (223)

Now we expand T 2
n as

T 2
n =

1

M2(M − 1)2

∑
m1 ̸=m2,m3 ̸=m4

Ξ(sm1
, sm2

)Ξ(sm3
, sm4

)

=(M−4)
∑

m1 ̸=m2 ̸=m3 ̸=m4

Ξ(sm1
, sm2

)Ξ(sm3
, sm4

)

+ (M−4)
∑

m1 ̸=m2 ̸=m3

Ξ(sm1
, sm2

)Ξ(sm1
, sm3

)

+ (M−4)
∑

m1 ̸=m2

Ξ2(sm1 , sm2), (224)

EM [T 2
n ] =(1) Tr

(
(UnρU

†
n)⊗2Ξ̂

)2
+ (M−1) Tr

(
(UnρU

†
n)⊗3Ξ̂′

)
+ (M−2) Tr

(
(UnρU

†
n)⊗2Ξ̂2

)
(225)

where

⟨s1, s2, s3|Ξ̂′|s1, s2, s3⟩ = Ξ(s1, s2)Ξ(s1, s3). (226)

When we compute EM [T 2
n ]] − EM [Tn]2, we can ignore

the (1) term because it always cancels with EM [Tn]2 =

Tr
(

(UnρU
†
n)⊗2Ξ̂

)2
. Hence,

EM [T 2
n ]]− EM [Tn]2

=(M−1)

[
Tr
(

(UρU†)⊗3Ξ̂′
)
− Tr

(
(UnρU

†
n)⊗2Ξ̂

)2]
+ (M−2)[Tr

(
(UρU†)⊗2Ξ̂2

)
− Tr

(
(UnρU

†
n)⊗2Ξ̂

)2
] (227)
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EU [EM [T 2
n ]]− EU [EM [Tn]2]

=(M−1) Tr
(
EU (UρU†)⊗3Ξ̂′

)
+ (M−2) Tr

(
EU (UρU†)⊗2Ξ̂2

)
=(M−1) Tr

[
Φ(3)(Ξ̂′)ρ⊗3

]
+O(M−2) Tr

[
Φ(2)(Ξ̂2)ρ⊗2

]
The last equality holds as long as the unitary ensemble

forms a unitary-3 design.
Using Lemma 30, we obtain

Tr
[
Φ(2)(Ξ̂2)ρ⊗2

]
=

(
D−2 max

π∈S2

Tr
(

Ξ̂2Wπ

))
, (228)

Tr
[
Φ(3)(Ξ̂′)ρ⊗3

]
=

(
D−3 max

π∈S3

Tr
(

Ξ̂′Wπ

))
. (229)

The values of the traces are:

Tr
(

Ξ̂2
)

=
∑
s1,s2

Ξ2(s1, s2) = D(D2 +D − 1), (230)

Tr
(

Ξ̂2W(12)

)
=
∑
s

Ξ2(s, s) = D3, (231)

Tr
(

Ξ̂′
)

=
∑

s1,s2,s3

Ξ(s1, s2)Ξ(s1, s3) = D, (232)

Tr
(

Ξ̂′W(12)

)
=
∑
s1,s2

Ξ(s1, s1)Ξ(s1, s2) = D, (233)

Tr
(

Ξ̂′W(123)

)
=
∑
s

Ξ(s, s)Ξ(s, s) = D3. (234)

Thus,

Tr
[
Φ(2)(Ξ̂2)ρ⊗2

]
= (D), Tr

[
Φ(3)(Ξ̂′)ρ⊗3

]
= (1).

(235)

The variance has upper bound

Var[p̂2] = Var

[
1

N

N−1∑
n=0

Tn

]
=

1

NM2
(D) +

1

NM
(1).

(236)
If we choose N = Ω(1),M = Ω(D1/2), then NM =
Ω(D1/2) number of samples suffices to guarantee that
Var[p̂2] = O(1).

M Detectable regions of the correlation
matrix method

In this section we study what type states with Schmidt
number r can be certified by criterion Eq. (20). When

dA = dB = d, we can choose {σ(A)
j } and {σ(B)

k } to be
the same set of operator bases. Therefore, we will drop
the upper indices and only use {σj} to denote the basis
operators for simplicity.

Proof of Proposition 16. We start with a simpler situa-
tion where the state is the maximally entangled state

|+d⟩, then

Tjk =
1

d
⟨+d|σj ⊗ σk|+d⟩

=
1

d2

d−1∑
m,n=0

⟨mm|σj ⊗ σk|nn⟩

=
1

d2
Tr
(
σjσ

⊤
k

)
. (237)

Clearly, T is diagonal with diagonal entries belonging to
{±1/d,±i/d}. Thus, the singular values of T are all d−1,
and

∥T∥1 = (d2 − 1) · d−1 = d− d−1. (238)

Now we use this result to analyze the isotropic state.
Because I does mot contribute the correlation matrices,
the correlation matrix of the isotropic state is propor-
tional to that of |+d⟩, which is

Tjk =
d2F − 1

d(d2 − 1)
⟨+d|σj ⊗ σk|+d⟩. (239)

The singular values of T are all d2F−1
d(d2−1) .

Pure state. Recall that for a system with local di-
mensions dA = dB = d, the correlation matrix of |ψ⟩ =∑r−1

n=0

√
λn|n⟩A ⊗ |n⟩B writes

Tjk =
1

d

r−1∑
m,n=0

√
λm
√
λn Tr(|n⟩A⟨m| ⊗ |n⟩B⟨m| · σj ⊗ σk).

(240)
Rewrite it as

Tjk =

r∑
m,n=1

√
λmλn

⟨m|σj |n⟩√
d

⟨m|σk|n⟩√
d

. (241)

Using the fact that |m⟩⟨n| = 1
d

∑
σ⟨m|σ|n⟩σ, we obtain

1

d

∑
σ

⟨m|σ|n⟩⟨m′|σ|n′⟩ = δmm′δn,n′ , (242)

δmnδm′n′ +
∑
σ ̸=I

⟨m|σ|n⟩⟨m′|σ|n′⟩ = dδmm′δnn′ . (243)

Define

|Bm,n⟩ ≡
d2−1∑
j=1

⟨m|σj |n⟩∗√
d

|ej⟩, (244)

Ĵc ≡ c∗, Ĵ |Bm,n⟩ =
d2−1∑
j=1

⟨m|σj |n⟩√
d
|ej⟩. (245)

then

T =

r∑
m,n=1

√
λmλnĴ |Bm,n⟩⟨Bm,n|,

⟨Bm,n|Bm′,n′⟩ = δmm′δnn′ − 1

d
δmnδm′n′ ,

ĴT |Bm,n⟩ =
√
λmλn|Bm,n⟩ −

1

d
δmn

∑
n

λn|Bn,n⟩.

(246)
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Now we can see that T has rank at most r2. We can
further write ĴT as Tα − r

dTβ , where

Tα ≡
r∑

m,n=1

√
λmλn|Bm,n⟩⟨Bm,n|, notag (247)

Tβ ≡
r∑

n=1

λn|Bn,n⟩ ·
r∑

m=1

⟨Bm,m|
1√
r
. (248)

From here we can prove Theorem 19.

Proof of Theorem 19. The singular values of T are the
same with those of ĴT , so we directly analyze ĴT here.
Besides, because ∥Tβ∥∞ ≤ 1, in the limit d→∞, the sin-

gular values of ĴT are the same with those of T1. There-
fore, we focus on the singular values of Tα.

Notice that the set of vectors {|Bm,n⟩,m ̸= n} satisfies

⟨Bm,n|Bm′,n′⟩ = δm,m′δn,n′ , (249)

so they are part of a vector basis and there are totally
r(r − 1) of them. The other r vectors {|Bm,m⟩} are or-
thogonal to the previous r(r − 1) vectors, and

⟨Bm,m|Bn,n⟩ = δm,n −
1

d
. (250)

Construct the following mutually orthogonal vectors us-
ing Schmidt decomposition:

|B̃1⟩ ≡ |B1,1⟩,
|B̃2⟩ ≡ |B2,2⟩ − ⟨B1,1|B2,2⟩|B1,1⟩

= |B2,2⟩+
1

d
|B1,1⟩

|B̃3⟩ ≡ |B3,3⟩ − ⟨B1,1|B3,3⟩|B1,1⟩ − ⟨B2,2|B3,3⟩|B2,2⟩

= |B3,3⟩+
1

d
|B1,1⟩+

1

d
|B2,2⟩.

(251)

By mathematical induction, eventually we obtain

|B̃n⟩ = |Bn,n⟩+
1

d

∑
n′<n

|Bn′,n′⟩,

⟨B̃n|B̃n⟩ = 1− 1

d
− n− 1

d2
− 2n2 − 5n+ 3

d3
. (252)

For all n = 1, 2, · · · , r, we have

∥|B̃n⟩⟨B̃n| − |Bn,n⟩⟨Bn,n|∥∞ ≤ ∥|B̃n⟩ − |Bn,n⟩∥2 ≤
√
r − 1

d
.

(253)

Define

T̃α ≡
∑
m̸=n

√
λmλn|Bm,n⟩⟨Bm,n|

+
r∑

n=1

λn
|B̃n⟩⟨B̃n|

1− 1
d −

n−1
d2 − 2n2−5n+3

d3

, (254)

which has eigenvalues

{
√
λmλn, λm(1 +O(d−1)), m ̸= n = 1, 2, · · · , r}.

(255)

Its norm distance to ĴT is bounded by

∥ĴT − T̃α∥∞ ≤ ∥Tα − T̃α∥∞ +
r

d
∥Tβ∥∞

≤ 2

d
+

√
r − 1

d
+
r

d
.

(256)

The theorem is proved using Weyl’s inequality from here.

As a special example, we consider the rank-4 maxi-
mally entangled state defined on 2L qubits:

|+4⟩ =
1

2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩+ |2⟩ ⊗ |2⟩+ |3⟩ ⊗ |3⟩) .

(257)
Its correlation matrix satisfies:

Proposition 31 (The computation of ϵ
(CM)
c in Fig. 5).

Suppose |+4⟩ is a multi-qubit state is defined on HAB

with dA = dB = d = 2L, L ∈ N+, then

∥T∥1 = 4− d−1. (258)

Proof. Because the singular values of correlation matrix
are invariant under local unitaries, we can assume |+4⟩ =
(|00⟩+|11⟩+|22⟩+|33⟩)/2, where the states |0⟩, |1⟩, |2⟩, |3⟩
are

|0⟩L−2|00⟩, |0⟩L−2|01⟩, |0⟩L−2|10⟩, |0⟩L−2|11⟩,
(259)

and the operator basis to be the standard Pauli basis. We
can classify the Pauli operators into the following groups.
Let OX be a Pauli-X operator, then define

⟨OX⟩ ≡ {cOXOZ : c = ±1,±i, OZ is a Pauli-Z operator}.
(260)

Therefore, Tjk ̸= 0 if and only if σj , σk belongs to one of
the groups ⟨I⟩, ⟨X1⟩, ⟨X2⟩, ⟨X1X2⟩ simultaneously. We
can thus decompose T as the direct sum of the four cor-
relation matrices accordingly:

T = T⟨I⟩ ⊕ T⟨X1⟩ ⊕ T⟨X2⟩ ⊕ T⟨X1X2⟩. (261)

If σj , σk ∈ ⟨I⟩, then ⟨m|σj |n⟩ = ⟨m|σk|n⟩ = δm,n, thus

(T⟨I⟩)jk =
1

d
, σj , σk ∈ ⟨I⟩. (262)

Also notice that |⟨I⟩| = 2L − 1 = d− 1.
If σj , σk ∈ ⟨X1⟩, write them as

σj = (−i)s1Zs1
1 Z

s2
2 · · ·Z

sL
L X1, sn = 0, 1, (263)

σk = (−i)r1Zr1
1 Z

r2
2 · · ·Z

rL
L X1, rn = 0, 1. (264)

Then ⟨0|σj |1⟩ = (−i)s1 , ⟨1|σj |0⟩ = is1 , ⟨2|σj |3⟩ =
(−1)s2(−i)s1 , ⟨3|σj |2⟩ = (−i)s1 = (−1)s2is1 , other en-
tries are 0, we further have

(T⟨X1⟩)jk =
1

4d
[(−i)s1+r1 + is1+r1 + (−1)s2+r2(−i)s1+r1

+ (−1)s2+r2is1+r1 ]

=
is1+r1

4d
[1 + (−1)s1+r1 ][1 + (−1)s2+r2 ]. (265)
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In the matrix form

T⟨X1⟩ =
1

d


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⊗ I2L−2 , (266)

which has singular value {d−1} with multiplicity 2L = d.
The computation for T⟨X2⟩ and T⟨X1X2⟩ is similar. Thus,

∥T∥1 = ∥T⟨I⟩∥1+∥T⟨X1⟩∥1+∥T⟨X2⟩∥1+∥T⟨X1X2⟩∥1 = 4−d−1.
(267)

Proof of Proposition 9. Given state ρ = (1−ϵ)|+r⟩⟨+r|+
ϵ
d2 I, the identity part does not contribute to the correla-
tion matrix, thus

Tjk = (1− ϵ)1

r

r−1∑
m,n=0

⟨m|σj |n⟩√
d

⟨m|σk|n⟩√
d

(268)

According to Proposition 19, if d > (r +
√
r − 1 + 2)/η,

each singular value of T belongs to region[
1− ϵ
r
− η, 1− ϵ

r
+ η

]
, (269)

Thus,
∥T∥1 ≥ (1− ϵ)r − r2η. (270)

In order to guarantee that ∥T∥1 > r − 1− d−1, we need
at least

ϵ <
1 + d−1

r
+rη <

1 + d−1

r
+
r(r +

√
r − 1 + 2)

d
. (271)
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1 Overview of the results

We investigate the memory effects in quantum
state verification [1, 2, 3] and show that quantum
memories can substantially improve QSV efficiency.
Specifically,

1. We establish an analytic formula for optimiz-
ing two-copy state verification in Theorem 1.

2. Building on Theorem 1, we construct a two-
copy optimal verification protocol for graph
states, utilizing only Clifford gates. This
strategy is transversal, requires no magic re-
source [4] in fault-tolerant quantum computa-
tion, and reveals the latent structure inherent
in graph states.

3. For multi-copy availability, we present a
general dimension expansion technique be-
come increasingly advantageous with grow-
ing memory resources, ultimately approach-
ing the theoretical limit of efficiency.

Our findings demonstrate that quantum memories
dramatically enhance state verification tasks, shed-
ing light on error-resistant strategies and practi-
cal applications of large-scale quantum memory-
assisted verification. We believe the results are ben-
eficial to the broader audience of AQIS, especially to
those who are working in benchmarking and improving
the qualities of near-term quantum computers.

A full technical version can be found in the attached
technical PDF and is accessible in arXiv:2312.11066.

2 Quantum memory assisted state verifi-
cation

In this verification strategy, n spatially disparate ver-
ifiers conduct a test as follows: First, they store k
copies of d-dimensional qudits in their local quan-
tum memories; Then, they measure their local
copies in Hk ≡ H⊗k using (possibly entangled) mea-
surements and make a decision based on the out-
comes. This “store-and-measure” strategy is vividly

∗chance.siyuan@gmail.com
†nju.wangkun@gmail.com

illustrated in Fig. 1 for k = 2. The test will be re-
peated M times and the total number of consumed
states is Mk. We designate this quantum memory-
assisted strategy as an (n, k, d) verification strategy.
The standard verification strategies fall under the
category of (n, 1, d) strategies.

In the good case, the overall state stored in the
quantum memories admits a tensor product struc-
ture: |Ψ⟩ :=

⊗k
r=1|ψ⟩(r), where the superscript r

represents the r-th copy in the quantum memory.
The verifiers perform a local binary measurement
{Tℓ,1− Tℓ} such that state |Ψ⟩ passes the test with
certainty. In the bad case, we assume that the k
states produced by the quantum device are indepen-
dent, indicating that the fake state in the composite
space Hnk has the form

ξ =
k⊗

r=1

σ(r), (1)

where each σ(r) satisfies ⟨ψ|σ(r)|ψ⟩ ≤ 1 − ε. Cor-
respondingly, the maximal probability that the fake
state ξ in the bad case can pass the test is

p(Ω) := max
⟨ψ|σ(r) |ψ⟩≤1−ε

Tr

[
Ω

(
k⊗

r=1

σ(r)

)]
. (2)

The minimum required number of measurements to
saturate the worst-case failure probability, denoted
as Mm(Ω), is given by Mm(Ω) = ln δ/ ln p(Ω).
Thus, the total number of copies consumed by the
verification strategy Ω satisfies

Nm(Ω) = kMm(Ω) =
k ln δ

ln p(Ω)
. (3)

The verifiers’ objective is to design efficient
memory-assisted strategies Ω that minimize the
number of copies consumed.

3 Two-copy verification strategy

We analytically solve the maximization problem in
Eq. (2) for the case of k = 2, yielding an exact an-
alytic formula for optimizing two-copy state veri-
fication. First of all, we simplify the form of the
optimisation in Eq. (2). Regarding the permuta-
tion invariant nature of the verifiers, we show that
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Figure 1: Schematic view of quantum memory as-
sisted state verification. In this (2, 2, d) strategy, the
verifiers store two copies of quantum states (repre-
sented by atoms) in their local quantum memories.
They then agree on local measurements via clas-
sical communication and perform these measure-
ments on their respective qudits. Finally, they make
a “pass/reject” decision from the measurement out-
comes.

it is best to consider verification strategies that are
symmetric with respect to the two state copies; i.e.,
F1↔2ΩF1↔2 = Ω, where F1↔2 is the swap opera-
tor between the first and second copy. Regarding
the restriction conditions in Eq. (2), we make the
following useful observations: (a) it suffices to con-
sider fake product states without classical correla-
tion; (b) it suffices to optimize over pure fake states;
and (c) If the quantum device is not too bad, i.e.,
there exists an insurance infidelity εmax ≥ ε such that
⟨ψ|σ|ψ⟩ ≥ 1 − εmax for all σ, it is then suffices to
consider fake states σ for which ⟨ψ|σ|ψ⟩ = 1 − ε.
We introduce the following two projectors

Ps :=
F1↔2 + I12

2
, (4)

Pψ := |ψ⟩⟨ψ| ⊗ (I − |ψ⟩⟨ψ|) (5)

which are useful in deriving the analytic formula.
Note that Ps is the projector onto the symmetric sub-
space of Hn ⊗Hn. For any symmetric two-copy ver-
ification strategy Ω, define the doubly projected op-
erator Ω⋆ := 2PψPsΩPsPψ. Let λ⋆(Ω) be the max-
imal eigenvalue of the projected operator Ω⋆. We
show that, λ⋆ is the intrinsic property of Ω which
underpins Ω’s verification efficiency, as elucidated
in the ensuing theorem.

Theorem 1 When λ⋆(Ω) < 1 and the existence of in-
surance fidelity εmax is guaranteed, it holds that

p(Ω) = 1 − 2(1 − λ⋆(Ω))ε +O(ε1.5). (6)

Correspondingly, the sample complexity of Ω is given by

Nm(Ω) =
2 ln δ

ln p(Ω)
≈ 1

(1 − λ⋆(Ω))ε
ln

1
δ

. (7)

Figure 2: Comparison of the total number of state
copies required to verify the Bell state for differ-
ent strategies as a function of the infidelity ε, where
δ = 0.001. Here, Ngraph is the sample complexity
of our proposed two-copy graph verification strat-
egy, NPLM is the sample complexity of the optimal
strategy by Pallister et al. [2], and Nglob is the sample
complexity of the globally optimal strategy.

Figure 3: Schematic view of a graph code b of a
graph and its induced parity code c(b). The binary
value of a vertex (red vertex) in the induced parity
code is given by the summation modulus 2 of the
values of its adjacent vertices (yellow vertices) in the
graph code b.

4 Demonstrative exmaple: Graph states

Stabilizer operations have been shown to be effi-
ciently classically simulatable [5]. Under local Clif-
ford transformation, any stablizer states can be re-
duced into a graph state [6]. We leverage Theorem 1

and one-bit teleportation construction [7] to con-
struct a two-copy Clifford verification strategy for
arbitrary multi-qubit graph state |G⟩ associated with
a graph G = (V, E), demonstrating that for those
state devoid of magic, moderate quantum memory
usage, rather than magic resource, can boost the
QSV efficiency to global optimality.

To formally describe our two-copy verification strat-
egy for graph states, we begin by introducing the
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concept of graph codes of a graph G = (V, E). Let
n = |V| be the number of vertices. A graph code
b ∈ {0, 1}n is an n-bit binary string that assigns the
binary value bv ∈ {0, 1} to vertex v ∈ V. Each graph
code b uniquely induces a parity code c(b) ∈ {0, 1}n,
where the binary string map c : {0, 1}n → {0, 1}n

is defined as cu(b) := ∑v∈V,u∼v bv (mod 2), cu is
the value of vertex u, and u ∼ v means that u is
adjacent to v. Fig. 3 visualizes an example. Let
|Φ00⟩ := (|00⟩ + |11⟩)/

√
2 be the standard two-

qubit Bell state. A binary code pair (m, n) induces
a locally transformed Bell state via |Φmn⟩ := (I ⊗
XmZn)|Φ00⟩, where X and Z are the Pauli operators.
Our two-copy strategy for |G⟩ involves binary mea-
surement {Ωg, I − Ωg}, where Ωg corresponding to
passing the test is

Ωg = ∑
b∈{0,1}n

n⊗
j=1

|Φcj(b)bj
⟩⟨Φcj(b)bj

|OjO′
j
, (8)

where Oj, O′
j represent two qubits held by the j-

th verifier. The verification strategy carries out as
follows. In each test, the verifiers first store two
copies of the states. Then, the j-th verifier mea-
sures his qubits OjO′

j with the Bell measurement
{|Φmn⟩⟨Φmn|}m,n∈{0,1} and records the outcome as
bj = m and b′j = n. Finally, they classically com-
municate the outcomes and obtain two graph codes
b, b′ of the graph G. The states pass the test if and
only if b = c(b′).

Regarding the performance of our two-copy verifi-
cation strategy Ωg, we can prove that λ⋆(Ωg) = 0
and εmax > 1 − ε. Thus its optimal efficiency is
achieved with a sample complexity of Ngraph(Ωg) ≈
1/ε ln 1/δ using Eq. (7), indicating that Ωg achieves
globally optimal efficiency. As a showcase, we com-
pare its efficiency with the optimal single-copy veri-
fication strategy [2] on verifying the canonical Bell
state |Φ00⟩. As shown in Fig. 2, our two-copy
strategy rapidly converges towards globally opti-
mal when ε → 0, reducing the sample complexity
by 50% compared to the optimal single-copy strat-
egy. Note that our two-copy verification strategy for
the Bell state bears similarities with the celebrated
entanglement-swapping protocol [8, 9], an impor-
tant component of quantum networks.

5 Dimension expansion

It is demanding to generalize Theorem 1 to k > 2.
We present a general technique for constructing ef-
ficient verification strategies for arbitrary k, inspired
by the observation that every k-tensor state |Ψ⟩ can
be equivalently viewed as a single n-partite state
with local dimension dk. This “dimension expan-
sion” from d to dk leverages quantum memory to

establish an equivalence between an (n, 1, dk) verifi-
cation strategy and an (n, k, d) strategy. Concretely,
we relax the maximization problem in Eq. (2) by
considering any quantum state ξ in Hnk satisfying
the fidelity constraint ⟨Ψ|ξ|Ψ⟩ ≤ (1 − ε)k, thus pro-
viding an upper bound for p(Ω):

p(Ω) ≤ max
⟨Ψ|ξ|Ψ⟩≤(1−ε)k

Tr[Ωξ] = 1 − ν(Ω)ε′, (9)

where ε′ := 1 − (1 − ε)k. Note that p(Ω) is com-
pletely determined by ν(Ω), analogous to the single-
copy state verification case.
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Bosonic codes offer noise resilience for quantum information processing. Good performance often comes
at a price of complex decoding schemes, limiting their practicality. Here, we propose using a Gottesman-
Kitaev-Preskill (GKP) code to detect and discard error-prone qubits, concatenated with a quantum parity code to
handle the residual errors. Our method employs a simple, linear-time decoder that nevertheless offers significant
performance improvements over the standard decoder. Our work may have applications in a wide range of
quantum computation and communication scenarios.

Bosonic codes protect discrete quantum information en-
coded in bosonic mode(s). The infinite-dimensional na-
ture of the bosonic Hilbert space allows more sophisticated
encoding than the conventional single-photon encoding [1]
or matter-based qubits [2]. The Gottesman–Kitaev–Preskill
(GKP) qubit [3] has emerged as a promising bosonic qubit for
fault-tolerant quantum computation due to its excellent per-
formance against common types of noise [4]. Experiments in-
volving trapped ions [5] and superconducting circuits [6] have
demonstrated a GKP qubit, with the latter boasting a squeez-
ing level close to 10 dB. This level is sufficient for fault tol-
erance in some proposed architectures [7, 8] and is approach-
ing what is required by others [9, 10]. Recently, optical sys-
tems have demonstrated in proof-of-principle experiments of
a GKP qubit [11].

The ultimate goal of a large-scale, fault-tolerant quantum
computation will require additional innovations, and its ulti-
mate architecture remains an open question. Such require-
ments on the device can be roughly classified into scalability
(many qubits) and fault tolerance (of good quality) [12], and
architectures designed to use bosonic qubits as the informa-
tion carriers have recently demonstrated prominent advances
in both areas. Analog quantum error correction (QEC) [13]
makes strides toward achieving the goal of Ref. [14] by us-
ing the real-valued syndrome of a GKP qubit to improve error
recovery in a concatenated code by selecting the most likely
error pattern for a given syndrome in a continuous variable
(CV)-level decoder. In fact, when used with a suitable qubit
code, analog QEC can achieve the hashing bound of additive
Gaussian noise [7, 13]. This would seem to be the end of the
story except for one major drawback: The decoder for analog
QEC employs a type of belief propagation [15] that may be-
come unwieldy in real-world implementations. This is espe-
cially true in optical architectures, where fast processing of the
outcomes is vital [9, 10], i.e. good performance often comes
at a price of complex decoding schemes, limiting their prac-
ticality. Thus, in such cases—and especially when hardware-
level control is used—reducing the number of bits required to
represent outcomes may be critical to fast decoding.

In this work, we make significant progress toward achieving
this goal. What we would like is a simple CV-level decoder
that generates discrete outcomes that can be fed directly into
a qubit-level code at the next level of concatenation. We pro-

pose using the GKP code [3] to detect and discard error-prone
qubits, concatenated with a quantum parity code (QPC) [16]
to handle the residual errors [17]. This is the key innovation
that makes further improvements feasible since more compli-
cated codes or additional layers of concatenation do not re-
quire modifying the CV-level decoding scheme, thus keeping
the decoder simple and efficient. In the following, we will
briefly summarize our main results, and we refer to the full
paper (Ref. [17]) for the detailed explanation of our method.

The highly reliable measurement (HRM) [7] is the key
to improving the performance of the code without the com-
putational overhead required for conventional analog QEC.
In the measurement of the GKP qubit, the measurement
outcomes—each of the form sm = n

√
π + ∆m with integer

n and |∆m| ≤
√

π/2, where even and odd n correspond to 0
and 1 logical bit values, respectively—together form the syn-
drome, as shown in Fig. 1(a). The bit-or phase-flip errors
occur when the GKP syndrome value sm, which is wrapped
mod

√
π , misidentifies a definite displacement u∈ [−

√
π,

√
π)

as u±
√

π [3]. The HRM buffers against this possibility by
introducing a danger zone of outcomes 0 ≤

√
π/2−|∆m|< δ

for some δ > 0, as shown in Fig. 1(b). Outcomes in this zone
are flagged as unreliable, with δ → 0 recovering the usual
case [3]. This corresponds to flagging as unreliable any dis-
placement u (mod 2

√
π) that falls within δ of a crossover

point ±
√

π/2. Thus, the HRM is a ternary (three-outcome)
decoder for GKP qubits that maps each raw CV outcome sm
from R → {±1,E}, where E represents an untrustworthy
value. Specifically, when the HRM flags a result sm as unreli-
able, the corresponding qubit is discarded and treated as a lo-
cated erasure error (sm →E), while otherwise the result is kept
and binned as usual (sm →±1) depending on which of an even
or odd multiple of

√
π sm is close to. For error probabilities

of the HRM, we define three cases: the measurement result
is correct, P(c) = Pr(|u|<

√
π/2−δ ); the result is incorrect,

P(i) = Pr(|u|>
√

π/2+δ ); or the result is unreliable and the
qubit discarded, P(d) = Pr(−δ < |u|−

√
π/2 < δ ). We fur-

ther define the “success probability”, 1−P(d), as the proba-
bility the qubit was not discarded and the “postselected error
probability”, P(i)

post = P(i)/(1−P(d)), as the probability of get-
ting an incorrect outcome within the sample of qubits that are
not discarded. Figures 1(c) and 1(d) show that decreasing the
postselected error probability (by increasing δ ) reduces the
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FIG. 1. The highly reliable measurement (HRM). (a) Effect of
a displacement umod2

√
π , distributed according tothe wrapped

distribution p(u) = 1
2
√

π
ϑ

(
− u

2
√

π
, iσ 2

2

)
with variance σ2, where

ϑ(z,τ) = ∑m∈Z exp
[
2πi

( 1
2 m2τ +mz

)]
is a Jacobi theta function of

the third kind. (b) The HRM flags outcomes in the 2δ -wide “danger
zone” (yellow) as unreliable. (c) Postselected error probability of the
HRM for several values of δ . (d) Corresponding success probabil-
ity. Note: (Squeezing level in dB) =−10log10(σ

2/σ2
vac), where the

vacuum variance σ2
vac =

1
2 .

success probability.

Our decoder uses the CV-level measurement outcome from
GKP error correction merely in the CV-level decoder to de-
cide whether to keep the qubit or discard it entirely and treat
it as a located erasure error. Loss-tolerant QEC codes such
as the QPC [16] are well suited to dealing with the dis-
carded qubits [18–20]. The (n,m) QPC is an nm-qubit code
built from n blocks of m qubits. Logical basis states are
|±⟩L = 2−n/2

(
|0⟩⊗m ±|1⟩⊗m)⊗n. In our code, the physical

qubit states are GKP qubits. Here, concatenating GKP qubits
with one of the loss-tolerant codes compensates for the dis-
carded (“lost”) qubits due to using the HRM. The key insight
of our work is that coarse graining the real-valued outcomes
to a single ternary outcome, R→ {±1,E}, decreasing the er-
ror probability of the postselected GKP qubit. This trade of
unlocated errors for located erasures makes the logical qubit
more robust. This is a simple, local decoding step and does
not require complicated modeling of CV-level errors since the
HRM maps locally detected unreliable results to lost qubits
at known locations, while analog QEC requires modeling the
joint likelihood of real-valued outcomes over multimode code
words, which will be intractable when the code size gets

FIG. 2. Failure probabilities using the (n,m) QPC for (a) δX = δZ = 0
(conventional GKP error correction [3]) and (b) optimized values δX
and δZ , where δZ(X) is the parameter for the HRM in the Z(X) basis.

larger. For low-latency applications such as hardware-level
decoding for high-throughput optical architectures [9], pro-
cessing these values is computationally expensive compared
to using one- or two-bit values. We refer to the full paper [17]
for the detailed explanation of our CV-decoder.

Specifically, figure 2 shows the performance of (a) the QPC
without HRM and (b) that with HRM, as a function of the
standard deviation of the GKP qubit for several sizes (n,m)
of the QPC. In Fig. 2(a), we optimized the value of n for
the given m so that the failure probability is minimized; in
Fig. 2(b), we optimized δZ and δX , as well as n, so that
the failure probability is minimized, where δZ(X) is the pa-
rameter for the HRM in the Z(X) basis. The conventional
method (a) gives a threshold of ξ ≈ 0.555, matching previous
work with concatenated codes and simple decoding [3, 14].
Our improved method—-discarding unreliable outcomes—-
greatly surpasses this, achieving a threshold ξ ≈ 0.585, as
shown in Fig. 1(c). Thus, our method employs a simple,
linear-time decoder that nevertheless offers significant perfor-
mance improvements over the standard decoder.

In conclusion, we have shown that concatenating the GKP
code with a QPC considerably improves its performances with
a small code and straightforward decoding, linear in the num-
ber of modes. Respectively, (1) decoding happens in linear
time since the CV-level decoding is entirely local; and (2) the
HRM wraps each GKP qubit in a simple “error-detecting”
code, so concatenating with any qubit-level code designed to
handle erasures [21–23] can benefit from this type of outcome
mapping. Further applications and extensions include im-
proved decoding in GKP-based architectures (e.g., [9, 10, 24])
and in codes that exploit biased noise (e.g., [25–27]). In ad-
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dition, our method can be used directly with other qubit-level
decoders e.g., topological ones [9]. There is room for further
improvement of the threshold to achieve the hashing bound
of additive Gaussian noise by using more complicated codes,
additional layers of concatenation, or analog quantum error
correction. But our innovation however is rooted in the sim-
ple and efficient decoder, where our method considerably im-
proves its performances with a small code and straightforward
decoding in linear time.
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Abstract. Randomness expansion secure against quantum adversaries requires either a violation of a
Bell inequality at the cost of ensuring no-communication and high detection efficiencies or trusted charac-
terization of some or all of the devices. In this work, we establish that local contextuality-based self-tests
are sufficient to provide random numbers that are secure against quantum adversaries without fully char-
acterizing and trusting the devices nor the strict experimental conditions of Bell scenarios. Our scheme
is semi device-independent, in the sense that it inherits the assumptions required for the soundness of the
underlying contextuality test. We leverage the recent results on self-testing of contextual correlations to
show that our scheme provides random numbers which are O(

√
ϵ)-close to being uniformly distributed and

uncorrelated from an unbounded quantum adversary, where ϵ is the robustness paramter of the self-test.
For example, we show that a recent experiment on the violation of the 5-cycle noncontextuality inequality
[X.-M. Hu et al., npj Quantum Inf. 9, 103 (2023)] guarantees the generation of 0.9878 secure random bits
per round.

Keywords: quantum randomness, self-testing, contextuality, semi device-independent, randomness ex-
pansion

1 Introduction

Randomness expansion (RE) is the task of using an
initial random string to generate a longer one and serves
as the underlying protocol for many commercial random
number generators. Quantum theory allows for device-
independent randomness expansion (DI-RE), for per-
forming the task under minimal assumptions and without
comprehensive information of the inner workings of the
devices. This is accomplished by observing a violation of
a Bell inequality. These protocols can be considered as
the pinnacle of security, as they offer security against un-
bounded quantum adversaries (by which we mean com-
putationally unbounded adversaries who may have access
to additional quantum side-information) with only mini-
mal assumptions on the physical devices. However, while
they offer maximum security, they also impose extremely
strict experimental requirements which are very difficult
to implement in the lab. In order to mitigate these issues,
a significant effort has been put forth into the develop-
ment of alternate quantum randomness expansion (QRE)
schemes which may offer a similar notion of security as
DI-RE but sometimes against classical adversaries and
with less stringent experimental requirements [3, 4, 5].

∗jaskaran@gs.ncku.edu.tw
†cameron.foreman@quantinuum.com
‡kishor.bharti1@gmail.com
§adan@us.es

The downside is that slightly stronger assumptions are re-
quired, like having a trusted or fully characterized source
or measurement. Such schemes are categorized as semi
device-independent QREs (SDI-QREs).

The approach of SDI-QRE has generated significant
interest in the community leading to several schemes with
varying levels of trust and characterization of devices.

In this paper, we propose an alternate SDI-QRE pro-
tocol which is based on self-testing of contextual correla-
tions and offers universally composable security against
quantum adversaries. Particularly, our protocol does not
require complete characterization of the preparation and
measurement devices, while the security is determined
via the violation of a non-contextuality (NC) inequality.
Essentially, we show that whenever the contextual cor-
relations can be robustly self-tested with robustness pa-
rameter O(

√
ϵ), where ϵ is the deviation from the max-

imum quantum value, it implies that the QRE scheme
can produce uniformly random bits which are O(

√
ϵ)-

close to being uncorrelated from a quantum adversary.
Our result re-enforces the idea that contextuality should
be considered as a strong candidate for locally generat-
ing secure random bit strings much like Bell non-locality,
albeit with slightly stronger assumptions (which can be
experimentally enforced).

Notably, while our proposal is not fully DI, and there-
fore requires some characterization of the device to test
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security, it offers several advantages that make it worth
investigating independently. Foremost, our proposal is
based on self-testing of contextual correlations under
an alternate set of assumptions and can be generalized
to a huge class of contextuality-based self-tests [8, 9].
Loophole-free experimental implementations of the same
have also been performed recently [6, 7] which enable
our scheme to be experimentally accessible. Secondly, we
propose an information-theoretically secure QRE scheme
in a localized manner (i.e. on a single device). This sets
our scheme apart from DI-RE protocols which rely on at
least two non-communicating devices.

2 Self-testing of quantum contextual cor-
relations

We adopt the framework of Ref. [8] for odd N -cycle NC
inequalities, which shows that localized quantum systems
can be self-tested via NC inequalities using the graph the-
oretic framework of Ref. [10]. For brevity, more details
on NC inequalities and the underlying assumptions that
are required in the self-testing can be found in our ac-
companying technical manuscript.
A canonical version of an NC inequality is defined as a

linear sum of all the probability assignments p(1|i) to the
vertices vi of an exclusivity graph G = (V, E) such that
p(1|i) + p(1|j) ≤ 1 for all (vi, vj) ∈ E . Mathematically,
it is written as

β =
N∑
i=1

p(1|i) ≤ βnc(G) ≤ βqc(G), (1)

where βnc(G) is maximum value of the sum of proba-
bilities attained under the NC assumption and βqc(G) is
the maximum value attained by quantum theory for a
particular choice of projective measurements and quan-
tum state. Now, we can state the result of robust local
self-testing of a NC correlations [8].

Definition 1 (Local self-testing of relations)
Consider the NC inequality in Eq. (1) and its cor-
responding exclusivity graph G for which the optimal
quantum strategy is S1 :

(
|v0⟩ ⟨v0| , {Πi}Ni=1

)
for

i = 0, 1, . . . , N . The NC inequality provides a robust
local self-test for this strategy, in the sense, that for any

other quantum strategy S2 :
(
|ṽ0⟩ ⟨ṽ0| , {Π̃i}Ni=1

)
that

achieves β = βqc(G)− ϵ, there exists a global isometry V
such that

∥∥|ṽi⟩ ⟨ṽi| − V |vi⟩ ⟨vi|V †
∥∥ ≤

√
ϵ.

3 Protocol and security

We consider a party Alice who wants to securely ex-
pand her private randomness locally under a specific set
of assumptions (detailed in the accompanying techni-
cal manuscript). We describe our necessary notation in
Fig. 1 and our protocol to achieve this task in Fig. 2.
We consider a quantum adversary Eve, who may have
some knowledge of the string of bits generated by Alice.
Therefore, the joint state of Alice’s m registers storing
the produced random bits (the key) and the state of Eve

Parameters and notation:

n ∈ N - Total number of rounds.

H - Hilbert space of dimension d ∈ N.

N ≥ 5 ∈ N/2N - Odd total number of measure-
ments greater than or equal to 5.

Mi = {Πi,1 − Πi}, i ∈ {1, . . . , N} - Dichotomic
projective measurements with outcomes labelled
by a ∈ {0, 1} corresponding to 1 − Πi and Πi,
respectively.

ρ ∈ H - Initial quantum state on which Mi are
implemented.

β - N -cycle NC inequality as defined in Eq. (1).(
ρ, {Πi}Ni=1

)
- Quantum realization that obtains

β = βqc(G).

ϵ ∈ (0, 1) - Parameter to quantify the deviation of
β from βqc(G).

ω0 = 1 and ω1 = cos π
N .

Figure 1: Parameters and notations used in the protocol.

can be written as a classical-quantum (cq) state which is
given as

ρKE =
∑

k∈{0,1}m

p(k) |k⟩ ⟨k| ⊗ ρEk , (2)

where ρEk is the reduced state of Eve conditioned on the
string k.

The string k, conditioned on not aborting, is said to
be ϵsec-secure if it can be distinguished (by Eve) from a
string generated by a uniform distribution with probabil-
ity at most 1/2 + ϵsec/2. This security parameter ϵsec is
quantified by a bound on the trace distance,∥∥ρKE − 2−m1K ⊗ ρE

∥∥ ≤ ϵsec , (3)

where 2−m1K is the maximally mixed state [2]. It should
be noted that this security condition is composable.

In order to show that the random numbers gener-
ated from our protocol are ϵsec-secure, we proceed as fol-
lows (for proofs we refer to the accompanying technical
manuscript).

Theorem 1 Let S be a quantum strategy which achieves
β = βqc(G) for the NC inequality in Eq. (1). This
inequality provides a local self-test of relations for all
quantum strategies S̃ : (ρ̃A, {|ãi⟩ ⟨ãi|}a,i) that achieve

β = βqc(G)−ϵ and there exists an isometry U = V †
A⊗1E

and an ancillary state |ξ⟩E such that for the purification
|ψ⟩AE of the state ρ̃A and the measurement outcomes
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Procedure

1. Alice chooses a quantum realization
(
ρ, {Πi}Ni=1

)
of an odd N -cycle NC inequality.

2. While j ≤ n:

For q ∈ [0, 1], choose Tj = 0 with probability
1− q and Tj = 1 otherwise.

If Tj = 0 (Key round):

Implement M1 on state ρ to obtain a.

If a = 0:

Record a as kj with probability ω1

and set j = j + 1.

Else a = 1:

Record a as kj with probability ω0

and set j = j + 1.

Else Tj = 1 (Spot-check round):

Randomly choose i ∈ {1, . . . , N}.
Implement Mi on state ρ to obtain a.
Record a, i and set j = j + 1.

3. Using the statistics from all spot-check rounds
evaluate β.

If βqc(G)− β < ϵ:

Abort the protocol.

Else

Obtain the bit string k as a concatenation of
all bit values kj .

Figure 2: Protocol for randomness expansion.

{|ai⟩ ⟨ai|},∥∥∥∥∥U (|ãi⟩ ⟨ãi| ⊗ 1E) |ψ⟩ ⟨ψ|AE U
†

− (|ai⟩ ⟨ai| ⊗ 1E) (|v0⟩ ⟨v0|A ⊗ |ξ⟩ ⟨ξ|E)

∥∥∥∥∥ ≤ 2ϵ′ ∀a, i,

(4)

where ϵ′ = 2
√
ϵ. This shows that self-testing quantum

strategies are 2ϵ′-close to uncorrelated from Eve. Follow-
ing Theorem 1, we can finally show that

Theorem 2 All self-testing quantum strategies that
achieve β = βqc(G)− ϵ satisfy∥∥ρ⊗m

AE − 2−m1K ⊗ ρE
∥∥ ≤ 8

√
ϵ, (5)

where ρE =
⊗m

j=1 |ξj⟩ ⟨ξj | is the reduced state of Eve for
m key rounds, and |ξj⟩ is her state corresponding to the
jth round.

This proves that self-tests of contextuality can offer
information-theoretically secure randomness expansion,
against a quantum adversary, with security parameter
ϵsec = 8

√
ϵ.

Next, we calculate the net randomness expansion of
our scheme. The amount of randomness produced is
quantified by the smooth min-entropy Hδ

min(K|E). In
our protocol, after n total number of rounds the produced
randomness is Hδ

min(K|E) = m, for δ = 8
√
ϵ. Our proto-

col also consumes a certain amount of randomness which
should be kept private and independent of the settings
chosen. The amount of initial private randomness can
be quantified by noting that it is required for (a) choos-
ing whether the round will be a spot-check with prob-
ability q, (b) randomly choosing which measurement to
implement, (c) post-selecting the outcome 1 with prob-
ability ω1 (note that the outcome 1 occurs with proba-
bility 1/ [1 + cos(π/N)]) and (d) randomly choosing the
sequence of measurement for the self-test (for more de-
tails, see Ref. [6]). In total, the amount of initial private
randomness required is

lin = nh(q) + q logN + h

(
ω1

1 + cos π
N

)
+ 1 , (6)

where h(·) is the binary entropy function. Therefore, the
net randomness expansion per round can be evaluated as
r = m−lin

n .
As an example we consider the data of the KCBS self-

test performed in Ref. [6] and find that our protocol could
generate r = 0.9878 bits per round when n = 104 out
of which 102 rounds can be used for spot checking with
ϵsec = 10−2. We note that the value of ϵsec can be im-
proved by considering higher number of rounds with more
precise results.

4 Conclusion

We have proposed a scheme for locally performing SDI-
QRE secure against an unbounded quantum adversary.
We leverage the results of Ref. [8] to show that self-testing
contextual correlations can certify information-theoretic
security of randomness expansion. Unlike many of the
SDI schemes developed so far, our scheme does not re-
quire trusted measurements (but assumes that the mea-
surements satisfy certain constraints. Instead, a different
set of assumptions are required which can be (and have
been) experimentally enforced [6, 7, 11, 12].

Additionally, the security of our scheme does not rely
on entanglement, no-communication or even on the re-
quirement of at least two parties. On the downside, it
is necessary to provide some characterization of the de-
vices for the self-test such that the orthogonality and
repeatability conditions are satisfied. This increases the
amount of resources required for the certification of secu-
rity. However, there is always a compromise between the
level of trust and security and the amount of resources re-
quired to achieve it, and our scheme proposes a different
trade-off as compared to other works. It may be argued
that the requirement of correlations that offer close-to-
maximal violation of NC inequalities may be a downside
of our scheme, but unlike Bell experiments and as evi-
denced by the experiment in Ref. [6], it is already possi-
ble to achieve such correlations in the lab which makes
our scheme much more relevant.
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Achieving universally composable randomness expansion secure against quantum side-information
requires a loophole-free violation of a Bell inequality at the cost of ensuring no-communication
and high detection efficiencies or the characterization of some or all of the devices by expending
more resources. In this work, we establish that local contextuality-based self-tests are sufficient to
provide universally composable random numbers which are secure against quantum side-information
without fully characterizing and trusting the devices and the strict experimental conditions of Bell
scenarios. Our scheme is semi device-independent and inherits the assumptions required for the
quantum soundness of the underlying contextuality test. We leverage the recent results on self-
testing of contextual correlations to show that our scheme provides uniform random numbers which
are O(

√
ϵ)-close (in trace norm) to being uncorrelated from a quantum adversary where ϵ is the

deviation from the maximum quantum value of the non-contextuality inequality. As an example,
we show that a recent experiment on the violation of the 5-cycle non-contextuality inequality [X.-M.
Hu et al., npj Quantum Inf. 9, 103 (2023)] can already guarantee the generation of 0.9878 secure
random bits per round

Introduction.— Random numbers are an indispensable
resource in several information processing tasks including
gaming, simulations, computing and many tasks in cryp-
tography. Quantum theory has proven useful in gener-
ating “true randomness” [1–6] by utilizing quantum pro-
cesses which are inherently non-deterministic [7–22] with
several commercial applications [23, 24].

As an added advantage, quantum theory also allows for
device-independent randomness expansion (DI-RE) [25–
31] which can be implemented under minimal assump-
tions and without comprehensive information of the in-
ner workings of the devices. This offshoot of quantum
cryptography can allow the certification of secure ran-
domness against computationally unbounded adversaries
who may posses quantum side-information (which we call
unbounded quantum adversaries) by exploiting the prop-
erties of observing the violation of a Bell inequality [32–
34]. A considerable amount of research has been devoted
to the theoretical and experimental development of such
protocols [4, 35–39]. These protocols can be (at least
theoretically) considered as the pinnacle of security as
they offer composable security [40] against unbounded
quantum adversaries under minimal assumptions on the
physical devices.

However, while DI-RE offers maximum security, such
schemes also impose extremely strict experimental re-
quirements which are very difficult to implement. These
requirements generally include no-communication and
loophole-free Bell violation. In order to mitigate these

issues a significant effort has been put forth into the de-
velopment of alternate quantum randomness expansion
(QRE) schemes which may offer a similar notion of secu-
rity as DI-RE but sometimes against classical adversaries
or with less stringent experimental requirements [41–51].
The downside is that slightly stronger assumptions are re-
quired, like having a trusted or fully characterized source
or measurements. Such schemes are categorized as semi
device-independent QREs (SDI-QREs).

Recently, SDI-QREs based on the violation of a non-
contextuality (NC) inequality [52–55] have also been pro-
posed [56, 57]. This approach, in principle, sounds more
advantageous than the aforementioned QRE protocols
as it does not require strict experimental conditions as
DI-RE and the full characterization of either the prepa-
ration or measurement devices. While their approach
sounds favorable, even in their work contextual correla-
tions by themselves (without any additional assumptions
apart from those needed in tests of contextuality) cannot
guarantee composable security against a quantum adver-
sary with minimal trust on the devices.

Consequently it is natural to ask whether it is possible
to generate universally secure quantum random numbers
without fully characterizing the devices and the strong
requirements of DI-RE.

In this paper, we conclusively answer this question
and propose a SDI-QRE protocol based on self-testing of
contextual correlations which offers universally compos-
able security. Particularly, our protocol does not require
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complete characterization of the preparation and mea-
surement devices, while its security is derived via the
violation of a NC inequality. Essentially, we show that
whenever the contextual correlations can be robustly self-
tested with robustness parameter ϵ, it implies that the
QRE scheme can produce uniformly random bits which
are O(

√
ϵ)-close (in trace norm) to being uncorrelated

from a quantum adversary. Our result re-enforces the
idea that contextuality should be considered as a strong
candidate for locally generating secure random bit strings
much like Bell non-locality, albeit with slightly stronger
assumptions (which can be experimentally enforced)

Notably, while our proposal is not fully DI, and there-
fore requires some characterization of the device to test
security, it offers several advantages that make it worth
investigating independently. Foremost, our proposal is
based on self-testing of contextual correlations under an
alternate set of assumptions. Significantly loophole-free
experimental implementations of the same have been per-
formed recently [58, 59] which can already achieve the
desired correlations. This enables our scheme to be ex-
perimentally accessible and will act as a catalyst for fur-
ther research into local certification of security of QRE
schemes. Secondly, our scheme certifies universally com-
posable security of a QRE scheme in its natural setting:
a single local device.

Self-testing of quantum contextual correlations.—We
adopt the framework of Ref. [60] which shows that local-
ized quantum systems can be self-tested via NC inequal-
ities using the graph theoretic framework of Ref. [53].
This notion of self-test is markedly distinct than the self-
tests performed in Bell scenarios which have two spatially
separated parties. As an example, in the Bell-CHSH sce-
nario it is possible to show that the maximum violation
of the Bell-CHSH inequality implies that both the parties
are implementing Pauli qubit observables on a two-qubit
maximally entangled state. However, a self-test of NC
inequalities only implies that the set of projectors in-
volved in the NC inequality follow the same exclusivity
relations as the set of projectors which maximally violate
the inequality and the overlap with the handle (under-
lying preparation) is the same in both cases. Moreover,
the underlying assumptions in both the frameworks are
different. For more details on NC inequalities and the un-
derlying assumptions that are required in the self-testing
see Appendix .

We start by defining an exclusivity graph, G = (V, E)
which is defined as a pair of set of vertices V = {vi}Ni=1

and a set of edges E = {vi, vj}i,j . If the pair of vertices
{vi, vj} ∈ E , then the corresponding vertices are termed
as exclusive and are denoted by vi ∼ vj .

A canonical version of an NC inequality is then written
as a linear sum of all the probability assignments p(1|i)
to the vertices of a graph G such that p(1|i) + p(1|j) ≤ 1

for vi ∼ vj ∀i, j. Mathematically, it is written as

β =
N∑
i=1

p(1|i) ≤ βnc(G), (1)

where βnc(G) is maximum value of the sum of probabili-
ties which is attained under the NC assumption that the
probability assigned to a vertex i is independent of the as-
signment to vertex j ̸= i. A quantum realizations of this
scenario is the one in which projectors Πi are assigned to
each vertex i, such that tr (ΠiΠj) = 0 for vi ∼ vj . These
projectors are considered to act on a quantum state ρ
and the required probabilities are evaluated according to
the Born rule p(1|i) = tr (ρΠi). In this case, the inequal-
ity (1) can attain a maximum value βqc(G) ≥ βnc(G),
which is known as the quantum bound of the inequality.
Now, we can state the result of robust local self-testing

of a NC correlations [60].

Definition 1 (Local self-testing of relations). Consider
the NC inequality in Eq. (1) and its corresponding ex-
clusivity graph G for which the optimal quantum strat-
egy be S1 :

(
|v0⟩ ⟨v0| , {Πi}Ni=1

)
. This strategy achieves

β = βqc(G) and satisfies the relations tr (ΠiΠj) = 0 for
all vi ∼ vj. The NC inequality provides a robust local self-
test for these relations, in the sense, that for any other

quantum strategy S2 :
(
|ṽ0⟩ ⟨ṽ0| , {Π̃i}Ni=1

)
that achieves

β = βqc(G) − ϵ, there exists an isometry V such that∥∥|ṽi⟩ ⟨ṽi| − V |vi⟩ ⟨vi|V †
∥∥ ≤

√
ϵ for i = 0, 1, . . . , N .

Here, ∥A∥ = tr
(√

A†A
)
denotes the trace norm of a

matrix A. Next, we will use this definition of local self-
testing of relations to show that it is possible to locally
certify the security of a random number generator with-
out entanglement.
Protocol.—We consider a party Alice who is interested

in expanding her private randomness in a way that she
can certify the security of her randomness locally under
a set of assumptions (as detailed in Appendix). We de-
scribe a protocol to achieve this task in Fig. 1. Here, it
should be noted that while we present our findings for
odd N -cycle NC inequalities it generalizes for arbitrary
NC inequalities which can provide a self-test following
Ref. [60].
In our protocol it should be noted that in the key

round, for the measurements Mi Alice randomly post-
selects the outcomes 1 − Πi with probability ω1 =
cosπ/N , while the outcomes corresponding to Πi are se-
lected with probability ω0 = 1. This is done in order
to make the resultant bit string unbiased. After post-
selection the resultant probability distribution of the out-
comes p̂(a|i) is simply

p̂(a|i) = ωap(a|i)∑1
a=0 ωap(a|i)

=
1

2
∀a ∈ {0, 1}. (2)
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Protocol for randomness expansion

Parameters and notation:

n ∈ N - Total number of rounds.

H - Hilbert space of dimension d ∈ N.
N ≥ 5 ∈ N/2N - Total number of measurements which
are taken to be odd and greater than or equal to 5.

Mi = {Πi,1 − Πi}, i ∈ {1, . . . , N} - Two outcome
projective measurements with outcomes labelled by
a ∈ {0, 1} corresponding to 1 − Πi and Πi respec-
tively.

ρ ∈ H - Initial quantum state on which the measure-
ments are performed.

β - N -cycle NC inequality as defined in Eq. (1) with
maximum quantum value βqc(G).(
ρ, {Πi}Ni=1

)
- Quantum realization that obtains β =

βqc(G).
ϵ ∈ (0, 1) - Parameter to quantify the deviation of β
from βqc(G) under trace norm.

ω0 = 1 and ω1 = cos π
N
.

Procedure

1. Alice chooses a quantum realization
(
ρ, {Πi}Ni=1

)
of an

odd N -cycle NC inequality.

2. While j ≤ n:

For q ∈ [0, 1], choose Tj = 0 with probability
1− q and Tj = 1 otherwise.

If Tj = 0 (Key round):

Perform the measurement M1 on state ρ to
obtain outcome a.

If a = 0:

Record a as kj with probability ω1 and
set j = j + 1.

Else a = 1:

Record a as kj with probability ω0 and
set j = j + 1.

Else Tj = 1 (Spot-check round):

Randomly choose i ∈ {1, . . . , N} with uni-
form probability.

Perform the measurement Mi on state ρ to
obtain outcome a. Record the outcome a
and the measurement i and set j = j + 1.

3. Using the statistics from all spot-check rounds evalu-
ate β.

If βqc(G)− β < ϵ:

Abort the protocol.

Else

Obtain the bit string k as a concatenation of all
bit values kj .

FIG. 1. The template protocol for randomness expansion us-
ing self-testing of contextual correlations.

Here, it should be noted that the post-selection is per-
formed on the key rounds only and as such does not in-
troduce any loopholes in the test of the NC inequality
which is performed on a separate set of rounds.
In the case when Alice is able to successfully pass the

self-test using the statistics of spot-check rounds, she can
certify that the results obtained in the key rounds (after
post-selection) can be used to generate a secure and ran-
dom key.
Security.—In order to show security we consider that

a computationally unbounded quantum adversary, Eve,
may share some correlations with Alice. Therefore, the
joint state of Alice’s m registers storing the bits of the
key and the state of Eve can be written as a classical-
quantum (cq) state which is given as

ρKE =
∑

k∈{0,1}m

p(k) |k⟩ ⟨k| ⊗ ρEk , (3)

where ρEk is the reduced state of Eve conditioned on the
string k.
The string k is said to be ϵsec-secure if it can be distin-

guished (by Eve) from a string generated by a uniform
distribution with probability at most 1/2 + ϵsec/2. For
cq-states, this distinguishability is quantified by a bound
on the trace norm (due to the maximum guessing prob-
ability in quantum state discrimination).∥∥ρKE − 2−m1K ⊗ ρE

∥∥ ≤ ϵsec, (4)

where it should be noted that the reduced state of Eve is
now uncorrelated with the bit string of Alice.
In order to show that the random numbers generated

from our protocol are ϵsec-secure (for some value of ϵsec),
we proceed as follows. First, we show that the strat-
egy of Alice is ϵ′-close to being uncorrelated with Eve
where ϵ′ = 2

√
ϵ if the N -cycle NC inequality satisfies

β ≤ βqc − ϵ. In this step we use the self-test proposed
in Ref. [60] and derive an extraction map for the case
when Alice observes the maximal violation of the NC in-
equality. An extraction map is defined as a map that
can transform a quantum system into another quantum
system having some desirable properties. Afterwards we
show that in case of close-to-maximal violation, our ex-
traction map extracts a strategy which is 4

√
ϵ-close to

the target (desired) strategy if Alice observes β ≤ βqc−ϵ.
Then, we show that after performing post-selection in the
key rounds by Alice, the bit string with her can be made
uniform. Applying both the two results together, we are
then able to prove Eq. (4) with ϵsec = 8

√
ϵ for our case.

Here, a quantum strategy is defined as the quan-
tum realization of a NC scenario given by the tuple
S = (|v0⟩ ⟨v0| , {|ai⟩ ⟨ai|}a,i) such that for this realization
β = βqc(G). In our work the strategy to be self-tested is
denoted by a tilde.

Theorem 1. Let S be the target quantum strategy which
achieves β = βqc(G) for the NC inequality in Eq. (1).
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This inequality provides a local self-test for all quantum
strategies S̃ : (ρ̃A, {|ãi⟩ ⟨ãi|}a,i) that also achieve β =

βqc(G) and there exists an isometry U = V †
A⊗1E and an

ancillary state |ξ⟩E such that for the purification |ψ⟩AE

of the state ρ̃A,

U (|ãi⟩ ⟨ãi| ⊗ 1E |ψ⟩AE) = (|ai⟩ ⟨ai|v0⟩A)⊗ |ξ⟩E ∀a, i.
(5)

Proof. See appendix.

The specific form of U in this case forms our extrac-
tion map. Using this extraction map we can show that
the post-measurement state of Alice is given by (see Ap-
pendix for the proof)

ρAE =
1∑

a=0

p(a|i) |ai⟩ ⟨ai| ⊗ |ξ⟩ ⟨ξ|E ∀i, (6)

where as can be seen the state of Eve, denoted by |ξ⟩E is
uncorrelated with Alice’s.

Next, we look at the case where Alice can only achieve
a violation of the NC inequality which is ϵ-close to the
maximal one.

Theorem 2. Let S be a quantum strategy which achieves
β = βqc(G) for the NC inequality in Eq. (1). This
inequality provides a local self-test of relations for all
quantum strategies S̃ : (ρ̃A, {|ãi⟩ ⟨ãi|}a,i) that achieve

β = βqc(G)−ϵ and there exists an isometry U = V †
A⊗1E

and an ancillary state |ξ⟩E such that for the purification
|ψ⟩AE of the state ρ̃A and the measurement outcomes
{|ai⟩ ⟨ai|},∥∥∥∥∥U (|ãi⟩ ⟨ãi| ⊗ 1E) |ψ⟩ ⟨ψ|AE U

†

− (|ai⟩ ⟨ai| ⊗ 1E) (|v0⟩ ⟨v0|A ⊗ |ξ⟩ ⟨ξ|E)

∥∥∥∥∥ ≤ 2ϵ′ ∀a, i.

(7)

Proof. See appendix.

As can be seen the same extraction map as before is
sufficient to showcase our results. Similarly as before,
we can use these results to show that the joint state of
Alice’s outcomes and Eve in the case of close-to-optimal
violation satisfies∥∥∥∥∥ρAE −

1∑
a=0

p(a|i) |ai⟩ ⟨ai| ⊗ |ξ⟩ ⟨ξ|E

∥∥∥∥∥ ≤ 4ϵ′ ∀i. (8)

So far we have shown that the post-measurement states
of Alice 4ϵ′-close to being uncorrelated from Eve when-
ever the rounds are spot-check rounds. Since Alice ran-
domly selects each round as either a spot-check round or
a key round without Eve knowing, it is expected that the
post-measurements states of Alice in the key round will
also follow a similar behavior. In this case, the distribu-
tion p(a|i) will be replaced with post-selection probability
distribution p̂(a|i).

Theorem 3. For all quantum strategies S̃ :
(ρ̃A, {|ãi⟩ ⟨ãi|}a,i) that can be self-tested following
Theorem 5, Alice’s m key registers satisfy∥∥∥∥∥∥ρ⊗m

AE − 2−m
∑

k∈{0,1}m

|k⟩ ⟨k| ⊗ ρE

∥∥∥∥∥∥ ≤ 4ϵ′, (9)

where ρE =
⊗m

j=1 |ξj⟩ ⟨ξj | is the reduced state of Eve for
the m rounds, and |ξj⟩ is her state corresponding to the
jth key round.

Proof. See appendix.

We can further simplify the expression by noting that∑
k∈{0,1}m |k⟩ ⟨k| = 1 and putting ρ⊗m

AE = ρKE to obtain

∥ρKE − 2−m1⊗ ρE∥ ≤ 4ϵ′, which is exactly the expres-
sion we set out to prove. The parameter 4ϵ′ can then be
identified with ϵsec which quantifies the security of the
protocol. For a higher level of security we would like it
be as small as possible.
Next, we can bound the length of the secure random

bit string that can be generated using our approach. Note
that the amount of randomness produced is quantified by
the smooth min-entropy Hδ

min(K|E) (for more details see
Appendix). In our case, since we already show that af-
ter self-testing the key registers of Alice are uniform and
uncorrelated with Eve, we can safely set the parameter
δ = 4ϵ′ = 8

√
ϵ and obtain Hδ

min(K|E) = m. However,
our protocol also consumes a certain amount of random-
ness which should be kept private and independent of the
settings chosen. The amount of initial private random-
ness can be quantified by noting that it is required for
(a) choosing whether the round will be a spot-check with
probability q, (b) randomly choosing which measurement
to implement and (c) post-selecting the outcome 1 with
probability ω1 (note that the outcome 1 occurs with prob-
ability 1/ [1 + cos(π/N)]) and (d) randomly choosing the
sequence of measurement for the self-test (e.g. to mea-
sure p(1|i = 2) for the self-test, one could choose to per-
form M2 followed by M3 or vice-versa. For more details
see Ref. [59].). In total, the amount of initial private
randomness required, for a single round, is

lin = nh(q) + q logN + h

(
ω1

1 + cos π
N

)
+ 1 , (10)

where h(·) is the binary entropy function.
Therefore, the net randomness expansion per round

can be evaluated as r = m−lin
n Moreover, it has been

shown that for a large number of rounds n, an effective
value of probability for spot-checking is q = 1√

n
. We

plot the amount of randomness generated per round as
a function of the total number of experimental rounds in
Fig. 2.
As an example for randomness expansion using our

scheme, we can consider the data of the KCBS self-test
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FIG. 2. The amount of secure randomness expansion per
round as a function of total number of experimental rounds.
We take N = 5 corresponding to the KCBS scenario and set
q = 1√

n
as the probability for spot-checking.

performed in Ref. [59] to estimate the randomness gener-
ated per key generation round. The maximum violation
of the KCBS inequality experimentally observed in Ta-
ble 2 of Ref. [59] is β = 2.236 which yields ϵ ≈ 10−5.
As a result ϵsec = 4ϵ′ ≈ 10−2 is the security parameter.
Secondly, the experiment performed 104 rounds of self-
testing; We can consider that 102 rounds can be used for
spot checking (corresponding to q = 1√

n
) out of a total of

104 rounds. In this case we find that the randomness ex-
pansion is r = 0.9878 bits per round (assuming that the
accuracy of the KCBS self-test is still maintained with
lower number of spot-check rounds).

Discussion.—We have put forth a scheme for locally
certifying universal composability of a QRNG against a
quantum adversary in a semi-device independent man-
ner. We leverage the results of Ref. [60] to show that
contextual correlations that offer close-to-maximal vio-
lation of a NC inequality are sufficient to certify secure
randomness expansion. Unlike many of the semi-device
independent schemes presented in Ref. [56, 57, 61], our
scheme does not require trusted measurements or prepa-
ration sources and is secure against a quantum adversary
(as opposed to a classical one). Instead, a different set of
assumptions are required which can be (and have been)
experimentally enforced [56, 57, 59, 62–66].

The security of our scheme is guaranteed by the self-
test of the NC inequality and does not rely on entangle-
ment, no-communication or even on the requirement of at
least two parties. More importantly, it does not require
the use of fully trusted components. On the downside, it
is necessary to provide some characterization the QRNG
for the self-test such that it obeys the required orthog-
onality and repeatability conditions. This increases the
amount of resources that are required for the certification
of security. However, this is expected as there is always

a compromise between the level of trust and security and
the amount of resources required to achieve it. It may
be argued that achieving correlations that offer close-to-
maximal violation of NC inequalities may be a downside
of our scheme, but as is evidenced by the experiment
in Ref. [59], it is already possible to achieve such corre-
lations in the lab which makes our scheme much more
relevant.

Similar to other works on randomness expansion based
on self-testing in Bell scenarios [67], our results only hold
for close-to-maximum violation of the NC inequality. By
using the data of KCBS self-test in Ref. [59] we are able to
show that the experiment is capable of generating 0.9878
bits per round of secure randomness with ϵsec ≈ 10−2.
Here, it can be noted that the value ϵsec may not be
impressive from a cryptographic point of view. We at-
tribute this to a limitation of Ref. [59] in which they only
report violation of KCBS inequality upto 3 significant
digits. It should also be noted that the order of our secu-
rity parameter is similar to some of the robust self-tests
in Bell scenarios [68–70] which can also be leveraged for
randomness expansion. However, while so far no experi-
ment has even come close to achieving such correlations
for Bell scenarios (in a loophole-free manner), self-testing
contextual correlations that can even achieve maximum
quantum violation have already been experimentally re-
alized. This makes our scheme experiment-ready.

Following our work several future directions of research
can be identified. As a next step, it now remains to
develop techniques for estimating the min-entropy con-
ditioned on a quantum adversary for contextual corre-
lations achieving arbitrary violation of the NC inequali-
ties. Even though it is possible to experimentally achieve
maximum quantum violation of NC inequalities in a
loophole-free manner, the min-entropy approach would
offer tighter bounds on randomness expansion rates. We
have reasons to believe that device dependent techniques
similar to the ones developed in Ref. [71] can be appro-
priately modified to fit our scheme and provide tighter
bounds on the net randomness expansion in a SDI man-
ner as shown in Ref. [72]. Secondly, deriving tighter
bounds on the robustness for self-tests of contextual cor-
relations would also be an interesting problem that will
have significant impact on the security parameter in our
scheme.
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testing protocols based on the chained Bell inequalities,
New J. Phys. 18, 035013 (2016).

169



8
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Self-testing of NC inequalities

We start by defining a graph, G = (V, E) which is defined as a pair of set of vertices V = {vi}i and a set of edges
E = {vi, vj}i,j . If the pair of vertices {vi, vj} ∈ E , then the corresponding vertices are termed as adjacent and will
be hereafter denoted by vi ∼ vj . We can consider different theories that assign probabilities to measurement events
to characterize the different classes of correlations. Without loss of generality, let p : V → [0, 1] be a probability
assignment, such that a vertex vi is mapped to a probability pi ∈ [0, 1]. Moreover, since we only focus on exclusivity
graphs, by definition of exclusive events it is required that pi + pj ≤ 1 if vi ∼ vj .

We can now define a canonical version of an NC inequality as a linear sum of all the probability assignments to the
vertices of a graph G. Mathematically, it is written as

β =
N∑
i=1

p(1|i) ≤ βnc(G), (11)

where βnc(G) maximum value of the sum of probabilities which is attained under the NC assumption that the
probability assigned to a vertex i is independent of the assignment to vertex j ̸= i. This value can be identified with
the independence number of the graph G.

In the approach of Ref. [53], the authors consider a set of N measurement events {ei}Ni=1 which are associated with
the vertices of a graph G, such that two mutually exclusive events ei and ej , which can be perfectly distinguished
by two jointly measurable observables, are associated with adjacent vertices vi ∼ vj . The corresponding graph G is
termed as an exclusivity graph.

We consider different theories that assign probabilities to measurement events to characterize the different classes
of correlations. Without loss of generality, let p : V → [0, 1] be a probability assignment, such that a vertex vi is
mapped to a probability pi ∈ [0, 1]. Moreover, since we only focus on exclusivity graphs, by definition of exclusive
events it is required that pi + pj ≤ 1 if vi ∼ vj . Different theories can provide different probability assignments to all
the events. For our purposes we focus on two of those, namely, deterministic NC and quantum theory.

A deterministic NC theory makes the assignment p : V → {0, 1} such that an assignment to a particular event ek
is independent of the probability assignments for the events {ej}j ̸=k. The polytope of deterministic non-contextual
assignments corresponding to a graph G, denoted by Pnc(G) forms a convex hull of all non-contextual assignments.
Any probability assignment that does not lie in Pnc(G) is termed as contextual.

A quantum realization, (ρ, {Πi}), of the graph G can be made by considering an underlying Hilbert space H, a
quantum state ρ = |v0⟩ ⟨v0| and a set of measurements Mi = {Πi,1−Πi}, i ∈ {1, . . . , N}, such that each Πi = |vi⟩ ⟨vi|
corresponds to a vertex vi ∈ V and for every vi ∼ vj , tr (ΠiΠj) = 0. Let us denote the outcomes of each of the
measurements Mi by a ∈ {0, 1}, where the outcome 1 corresponds to Πi. Then the probability assigned to every
vertex vi can be written as a conditional probability p(1|i) = tr (ρΠi).

For certain quantum realizations, the inequality (11) can attain a maximum value βqc(G) ≥ βnc(G), which is known
as the quantum bound of the inequality. Using the graph theoretic formalism, the quantum bound can be identified
with the Lovász number ϑ of the exclusivity graph G. For more details see Refs. [53, 60].

170



9

In our work, for simplification, we only consider odd N -cycle NC scenarios in which vi ∼ vi+1, such that
tr (ΠiΠi+1) = 0 for i ∈ {1, . . . , N} and N + 1 ≡ 1. The NC bound of an odd N -cycle NC inequality is

α =
N − 1

2
, (12)

while the quantum bound is found to be

ϑ =
N cosπ/N

1 + cosπ/N
, (13)

which can be achieved by choosing

|v0⟩ = (1, 0, 0)
T

|vj⟩ = (cos θ, sin θ sinϕj , sin θ cosϕj)
T ∀j,

(14)

where cos2 θ = cosπ/N
1+cosπ/N and ϕj = jπ(N−1)

N for j ∈ {1, . . . , N}. Additionally, in this case, the probabilities p(1|i) are
found to be

p(1|i) = cosπ/N

1 + cosπ/N
∀i, (15)

which shows that each of the projectors Πi = |vi⟩ ⟨vi| have an equal overlap with the state ρ = |v0⟩ ⟨v0|.

Required assumptions

In this section we provide a detailed discussion on the assumptions that have been made while deriving our results.
Many of them follow from the set of assumptions which are necessary in self-testing of contextual correlations, while
some are technical assumptions which are standard in several randomness expansion schemes. Tests of the former
have already been implemented in Ref. [59].

1. All measurements involved in our result are assumed to be repeatable. This means that consecutively and
sequentially performing the same measurement yields the same result. A test of whether this assumption is
satisfied in the experiments can be made by estimating the quantity R = p(00|ii) + p(11|ii), where p(aa|ii) is
the probability of obtaining the outcome a twice in sequence when the measurement corresponding to setting i
is implemented sequentially.

2. All measurements involved in our result are assumed to follow the required orthogonality relationships. A test
of whether this assumption is satisfied in the experiments can be made by testing the quantities for i ∼ j:
p(11|ij) = p(11|ji) = 0, p(10|ij) = p(01|ji), p(01|ij) = p(10|ji) and p(00|ij) = p(00|ji).

3. The measurement devices are memoryless. This assumption is required for the self-test and the derivation of our
main result. While this assumption may sound too restrictive, it is rather often an implicit assumption in several
cryptographic applications including QKD [73], randomness expansion [48] and tests of Bell inequality [74] to
name a few. There also exist some methods which can allow to bypass this assumption [75, 76]. Specifically, it
has been shown that the amount of private entropy produced is almost the same as in the case of no memory.

4. It is also assumed that Alice has access to some (short) private randomness to implement some operations in the
protocol that require random selection. These operations include selecting whether a round will be a spot-check,
randomly selecting the measurements or randomly selecting a key generation for post-selection. However, as we
show in the main text, after a certain number of key generation rounds, the protocol can be used to expand the
amount of this randomness (hence the name randomness expansion).

5. The lab of Alice is shielded from an adversary such that no information about her measurement outcomes can
leak out.

6. We do not need to assume that the state prepared by Alice is a pure state. However, it is known that only
(close-to) pure states can exhibit a violation of the n-cycle NC inequalities that are used in our result. Note,
however that the same cannot be said for the measurements. We already assume that the measurements be
repeatable and satisfy the orthogonality relationships.
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Proofs of main theorems

In this section, we first prove our results for the case when Alice observes maximum violation of the NC inequality,
i.e. β = βqc(G). Afterwards, we use similar techniques to prove our results in the case when β ≤ βqc(G) − ϵ, where
ϵ≪ 1.

We start by showing a particular extraction map that will be used throughout all our proofs.

Theorem 4. Let S1 be the target quantum strategy which achieves β = βqc(G) for the NC inequality in Eq. (1).

This inequality provides a local self-test of relations for all quantum strategies S :
(
ρ̃A, {Π̃i}Ni=1

)
that also achieve

β = βqc(G) and there exists an isometry U = V †
A⊗1E and an ancillary state |ξ⟩E such that for the purification |ψ⟩AE

of the state ρA,

U [(|ãi⟩ ⟨ãi| ⊗ 1E) |ψ⟩AE ] = (|ai⟩ ⟨ai|v0⟩A)⊗ |ξ⟩E ∀a, i. (16)

Proof. The purification |ψ⟩AE of the state ρ̃A can be written as

|ψ⟩AE =
∑
l

√
cl |ϕl⟩A ⊗ |l⟩E , (17)

where cl ≥ 0 ∀l and the state ρ̃A = trE (|ψ⟩AE ⟨ψ|) =
∑

l cl |ϕl⟩ ⟨ϕl|. Let us also define the projectors Π̃A
i =

|ṽi⟩ ⟨ṽi|A⊗1E (any other projector can also be taken instead of 1E without changing the proof). Following Definition 1,
if Alice observes maximum violation of the NC inequality then the following relations hold: |ϕl⟩A = VA |v0⟩A and

|ṽi⟩ ⟨ṽi|A = VA |vi⟩ ⟨vi|V †
A ∀i.

Next, we define our extraction map by considering the unitary operator

U = V †
A ⊗ 1E , (18)

using which we can show that

U
(
Π̃A

i |ψ⟩AE

)
= U (|ṽi⟩ ⟨ṽi|A ⊗ 1E)U

†U |ψ⟩AE

=
∑
l

√
cl

(
V †
A |ṽi⟩ ⟨ṽi|A VA ⊗ 1E

)(
V †
A |ϕl⟩A ⊗ |l⟩E

)
= (|vi⟩ ⟨vi|A ⊗ 1E)

(∑
l

√
cl |v0⟩ ⊗ |l⟩E

)
=
(
ΠA

i |v0⟩A
)
⊗ |ξ⟩E ∀i,

(19)

where we have taken |ξ⟩E =
∑

l

√
cl |l⟩E .

In a similar fashion as above we can show that

U
[(
1− Π̃A

i

)
|ψ⟩AE

]
=
[(
1−ΠA

i

)
|v0⟩A

]
⊗ |ξ⟩E . (20)

Using Eqs. (19) and (20) together we can conclude the proof.

Next, we can evaluate the post-measurement cq-state of Alice and Eve, which is given by

ρAE =
1∑

a=0

|ai⟩ ⟨ai| ⊗ ρai

E ∀i, (21)

where ρai

E = trA [(|ãi⟩ ⟨ãi| ⊗ 1E) |ψ⟩ ⟨ψ|AE ].

For the moment, let us focus on the term trA

[(
Π̃i ⊗ 1E

)
|ψ⟩ ⟨ψ|AE

]
and using the fact that the isometry U†U = 1,

we have

trA

[(
Π̃A

i ⊗ 1E

)
|ψ⟩ ⟨ψ|AE

]
= trA

[
U†U

(
Π̃A

i ⊗ 1E

)
|ψ⟩ ⟨ψ|AE U

†U
]

= trA
[
U† (ΠA

i |v0⟩ ⟨v0|A ⊗ |ξ⟩ ⟨ξ|E U
)]

= tr
(
ΠA

i |v0⟩ ⟨v0|
)
|ξ⟩ ⟨ξ|E

= p(1|i) |ξ⟩ ⟨ξ|E ,

(22)
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which, after performing a similar analysis for the term trA

[(
1− Π̃i ⊗ 1E

)
|ψ⟩ ⟨ψ|AE

]
results in the post-measurement

state being

ρAE =
1∑

a=0

p(a|i) |ai⟩ ⟨ai| ⊗ |ξ⟩ ⟨ξ|E , (23)

where it can be seen that Eve is uncorrelated with the results of Alice’s measurements. Next, we move on to prove
our results in the case when Alice observes close-to-maximum violation of the N -cycle NC inequality.

Theorem 5. Let S be a quantum strategy which achieves β = βqc(G) for the NC inequality in Eq. (1). This inequality

provides a local self-test of relations for all quantum strategies S̃ : (ρ̃A, {|ãi⟩ ⟨ãi|}a,i) that achieve β = βqc(G) − ϵ

(ϵ≪ 1) and there exists an isometry U = V †
A ⊗ 1E and an ancillary state |ξ⟩E such that for the purification |ψ⟩AE of

the state ρ̃A, ∥∥∥∥∥U (|ãi⟩ ⟨ãi| ⊗ 1E) |ψ⟩ ⟨ψ|AE U
†

− (|ai⟩ ⟨ai| ⊗ 1E) (|v0⟩ ⟨v0|A ⊗ |ξ⟩ ⟨ξ|E)

∥∥∥∥∥ ≤ 2ϵ′ ∀a, i. (24)

Proof. The proof can be broken down into two steps. In the first step we bound the distance∥∥∥∥∥U (|ãi⟩ ⟨ãi| ⊗ 1E) |ψ⟩ ⟨ψ|AE U
†

− (|ai⟩ ⟨ai| ⊗ 1E) |ψ⟩ ⟨ψ|AE

∥∥∥∥∥ ≤ ϵ′ ∀a, i, (25)

which can be done by noting that ∥∥∥∥∥U (|ãi⟩ ⟨ãi| ⊗ 1E) |ψ⟩ ⟨ψ|AE U
†

− (|ai⟩ ⟨ai| ⊗ 1E) |ψ⟩ ⟨ψ|AE

∥∥∥∥∥
=
∥∥U (|ãi⟩ ⟨ãi| ⊗ 1E)U

† − |ai⟩ ⟨ai| ⊗ 1E

∥∥
=
∥∥∥V †

A |ãi⟩ ⟨ãi|VA − |ai⟩ ⟨ai|
∥∥∥

≤ ϵ′,

(26)

where in the last line we used the definition of the robust self-test of NC inequalities.

In the second step we bound the distance

∥(|ai⟩ ⟨ai| ⊗ 1E) |ψ⟩ ⟨ψ|AE − (|ai⟩ ⟨ai|1E) (|v0⟩ ⟨v0|A ⊗ |ξ⟩ ⟨ξ|E)∥ ≤ ϵ′ (27)

which can be accomplished by noting that for any state ρ̃A =
∑

l,k clk |ϕl⟩ ⟨ϕk|A which is part of the strategy used to
achieve the local self-test, must be ϵ′-close to the pure state that achieves the maximum value of the NC inequality
for a fixed set of projectors. Therefore, we have∥∥∥V †

A |ϕ⟩ ⟨ϕ|A VA − |v0⟩ ⟨v0|
∥∥∥ ≤ ϵ′, (28)

which can be used to show that ∥∥∥∥∥V †
A |ϕ⟩ ⟨ϕ|A VA ⊗ |ξ⟩ ⟨ξ|

− |v0⟩ ⟨v0| ⊗ |ξ⟩ ⟨ξ|

∥∥∥∥∥ ≤ ϵ′, (29)

which implies

∥(|ai⟩ ⟨ai| ⊗ 1E) |ψ⟩ ⟨ψ|AE − (|ai⟩ ⟨ai| ⊗ 1E) (|v0⟩ ⟨v0|A ⊗ |ξ⟩ ⟨ξ|E)∥
=
∥∥U |ϕ⟩ ⟨ϕ|A ⊗ |ξ⟩ ⟨ξ|U† − |v0⟩ ⟨v0|A ⊗ |ξ⟩ ⟨ξ|E

∥∥
= ∥|ψ⟩ ⟨ψ|AE − |v0⟩ ⟨v0|A ⊗ |ξ⟩ ⟨ξ|E∥
≤ ϵ′

(30)
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Next, using Eqs. (25) and (30) we can write∥∥∥∥∥U (|ãi⟩ ⟨ãi| ⊗ 1E) |ψ⟩ ⟨ψ|AE U
†

− (|ai⟩ ⟨ai| ⊗ 1E) (|v0⟩ ⟨v0|A ⊗ |ξ⟩ ⟨ξ|E)

∥∥∥∥∥
≤

∥∥∥∥∥U (|ãi⟩ ⟨ãi| ⊗ 1E) |ψ⟩ ⟨ψ|AE U
†

− (|ai⟩ ⟨ai| ⊗ 1E) |ψ⟩ ⟨ψ|AE

∥∥∥∥∥+
∥∥∥∥∥ (|ai⟩ ⟨ai| ⊗ 1E) |ψ⟩ ⟨ψ|AE

− (|ai⟩ ⟨ai| ⊗ 1E) (|v0⟩ ⟨v0|A ⊗ |ξ⟩ ⟨ξ|E)

∥∥∥∥∥
= 2ϵ′

(31)

where we have the triangle property of the trace distance which states that for any three operators ρ, τ and σ, we
have ∥ρ− σ∥ ≤ ∥ρ− τ∥+ ∥τ − σ∥.

Next, following the same technique as before we can show that the post-measurement cq-state of Alice and Eve is
uncorrelated except with a probability 4ϵ′. Specifically, we wish to show that∥∥∥∥∥ρAE −

1∑
a=0

p(a|i) |ai⟩ ⟨ai|A ⊗ |ξ⟩ ⟨ξ|E

∥∥∥∥∥ ≤ 4ϵ′, (32)

where ρAE =
∑1

a=0 |ai⟩ ⟨ai|A ⊗ ρai

E and ρai

E = trA [(|ai⟩ ⟨ai|A ⊗ 1E) |ψ⟩ ⟨ψ|AE ].
We can see this result by noting that from Eq. (24) and using a result from Ref. [77] which states that for an

operator X ∈ H1 ⊗H2, where Hi denotes the i-th Hilbert space, the norm satisfies ∥tr1 (X)∥ ≤ ∥X∥, where tr1(·) is
the partial trace over the system 1. Therefore, we have (for all permissible values of a and i)∥∥∥∥∥trA

[
U (|ãi⟩ ⟨ãi| ⊗ 1E) |ψ⟩ ⟨ψ|E U

†]
− trA [(|ai⟩ ⟨ai| ⊗ 1E) (|v0⟩ ⟨v0| ⊗ |ξ⟩ ⟨ξ|E)]

∥∥∥∥∥ ≤ 2ϵ′. (33)

However, the term on the left hand side can be re-written as∥∥∥∥∥trA
[
U (|ãi⟩ ⟨ãi| ⊗ 1E) |ψ⟩ ⟨ψ|E U

†]
− trA [(|ai⟩ ⟨ai| ⊗ 1E) (|v0⟩ ⟨v0| ⊗ |ξ⟩ ⟨ξ|E)]

∥∥∥∥∥
=
∥∥trA [U (|ãi⟩ ⟨ãi| ⊗ 1E) |ψ⟩ ⟨ψ|E U

†]− p(a|i) |ξ⟩ ⟨ξ|E
∥∥

=

∥∥∥∥∥ |ai⟩ ⟨ai| ⊗ trA
[
U (|ãi⟩ ⟨ãi| ⊗ 1E) |ψ⟩ ⟨ψ|E U

†]
− p(a|i) |ai⟩ ⟨ai| ⊗ |ξ⟩ ⟨ξ|E

∥∥∥∥∥,
(34)

which, for all permissible values of a and i, gives us∥∥∥∥∥ |ai⟩ ⟨ai| ⊗ trA
[
U (|ãi⟩ ⟨ãi| ⊗ 1E) |ψ⟩ ⟨ψ|E U

†]
− p(a|i) |ai⟩ ⟨ai| ⊗ |ξ⟩ ⟨ξ|E

∥∥∥∥∥ ≤ 2ϵ′. (35)

Next, by using the property of sub-additivity of the trace distance we obtain∥∥∥∥∥ρAE −
1∑

a=0

p(a|i) |ai⟩ ⟨ai| ⊗ |ξ⟩ ⟨ξ|E

∥∥∥∥∥ ≤ 4ϵ′, (36)

which proves our result.

Entropic quantities

In this section we describe some of the entropic quantities that we employ in our work. Our work mainly revolves
around the operational formulation of min-entropy and its smooth version [78, 79]. We first define the guessing
probability for an adversary Eve. For a given cq state ρKE =

∑
k p(k) |k⟩ ⟨k| ⊗ ρEk , the guessing probability is defined
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as the maximum probability with which Eve can guess the outcome of a measurement on the system K if she has
access to system E. Mathematically, it is written as

pguess(K|E) := max
{Mk}

∑
k

p(k)tr
(
Mkρ

E
k

)
, (37)

where {Mk} are the positive-operator-valued-measures (POVM) elements of a measurement that Eve implements on
her system E. Following this definition we can now define min-entropy as

Hmin(K|E) := − log (pguess(K|E)) , (38)

where log is taken base 2. Here it should be noted that the quantity Hmin(K|E) is evaluated for the state ρKE .
However, in our work we are concerned with states that may only be δ-close (in trace norm) to the state ρKE such
that δ ≥ 0. In such a case, we cannot directly employ the min-entropy and therefore need to use its smoothed version,
Hδ

min(K|E) which is defined over the set of states that are δ-close to the state ρKE as

Hδ
min(K|E) := sup

ρ′
KE∈Bδ(ρKE)

Hmin(K|E)ρ′
KE
, (39)

where Bδ(ρKE) denotes a δ-ball centered at ρKE with respect to the purified distance [80] and the min-entropy is
defined over the set of states ρ′KE . For a detailed analysis on min-entropy and smooth min-entropy we refer to Ref. [81]
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1 Introduction

Quantum machine learning (QML) stands out as an in-
novative application of quantum computation. The suc-
cess of QML algorithm does not solely depend on how
well the model fits the training data but, more impor-
tantly, on their ability to accurately predict the out-
comes of previously unseen data. This crucial capability,
known as generalization, has been extensively explored
and analyzed through the lens of statistical learning the-
ory. However, recent studies have highlighted the limi-
tations of current understandings of generalization based
on uniform bounds in both classical and quantum ma-
chine learning frameworks [1, 2]. In this work, we pro-
pose a complexity measures based on margin distribution,
which can accurately capture the generalization perfor-
mance of QML models.

2 Rethinking Generalization

Suppose there is an unknown joint probability distri-
bution D governing the quantum state ρ and its cor-
responding label y. In this section, for simplicity, we
will consider ρ ∈ C2n×2n and y ∈ {−1,+1}, namely n-
qubit binary classification task. Withm independent and
identically distributed (i.i.d) samples S = {ρi, yi}mi=1,
the goal is to find a hypothesis h∗ with small true er-
ror R(h∗) = Eρ,y∼D[1sgn(h∗(ρ))̸=y]. Since the true dis-
tribution D is unknown, we alternatively find h (from a
hypothesis class H) with small empirical risk, R̂S(h) =
1/|S|

∑
ρ,y∈S 1sgn(h(ρ))̸=y. For a hypothesis h, we define

a generalization gap as a difference between true and em-
pirical risk, g(h) = R(h)− R̂S(h). A common way to un-
derstand generalization is to upper bound g(h) by a com-
plexity measure of the hypothesis class H. For example,
the hypothesis class of Quantum Neural Networks (QNN)
with parameterized quantum circuit U(θ) and observable
O can be expressed as HQNN = {ρ 7→ Tr(OU(θ)ρU†(θ)) :
θ ∈ Θ}.

Theorem 1 (Rademacher Complexity Bound)
For any δ > 0, with probability at least 1 − δ over a
sample S of size m drawn according to D, following

∗takh0404@yonsei.ac.kr
†dkd.park@yonsei.ac.kr

holds for any h ∈ HQNN,

R(h) ≤ R̂S(h) + R̂S(sgn ◦ HQNN) + 3

√
log(2/δ)

2m
. (1)

Here, sgn ◦ HQNN = {ρ 7→ sgn(h(ρ)) : h ∈ HQNN}, and
R̂S(H) = Eσ[suph∈H

1
m

∑
i σih(ρi)], where σi are i.i.d

Rademacher random variables that takes value ±1 with
equal probability 1/2.

Although Theorem 1 provides rigorous theoretical
guarantee for generalization, it can result in vacuous up-
per bound, especially when HQNN is extensive enough
to overfit random labels. For example, consider a cor-
rupted sample S̃ = {ρi, ỹi}mi=1, where each ỹi are in-
dependently assigned ±1 with a probability 1/2, irre-
spective of the data ρi. Suppose HQNN can overfit the

corrupted sample S̃, i.e. ∃h ∈ HQNN s.t. R̂S̃(h) ≈ 0.
Since the true error with respect to the corrupted dis-
tribution is 0.5 for all h, the analysis indicates that
0.5 ≲ R̂S(sgn ◦ H) + 3

√
log(2/δ)/2m. Consequently, the

Rademacher complexity bound g(h) ≲ 0.5 is uninforma-
tive for binary classification.

Ref [1] highlighted that modern (classical) machine
learning models, due to their large size and extensive
numbers of parameters, can overfit random labels, sug-
gesting our understanding of generalization is incomplete.
Similarly, Ref [2] demonstrated that Quantum Convolu-
tional Neural Networks (QCNNs) can also overfit ran-
dom labels in the Quantum Phase Recognition problem,
indicating this issue extends to quantum machine learn-
ing. It is important to note that this problem is not re-
stricted to Rademacher Complexity bound, but any uni-
form generalization bounds, including the results from
Ref [3, 4, 5, 6, 7, 8].

3 Margin based Generalization in Quan-
tum Machine Learning

The concept of margin has been extensively explored
since the early days of machine learning, offering theo-
retical foundations for Support Vector Machines [9]. The
margin quantifies the difference between the output for
correct labels and incorrect labels. More specifically, in
k-class classification, for a data point (x, y), where x ∈ X
and y ∈ [k], and a classifier f : X 7→ Rk, margin is defined
as f(x)y −maxj ̸=y f(x)j . Here, the k-dimensional vector
output of the classifier corresponds to the probability of
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Figure 1: A (Tukey) box-and-whisker plot depicting the margin distributions of optimized Quantum Convolutional
Neural Networks (QCNNs). The results for QCNNs with two, four, and six layers are displayed, along with their
corresponding test accuracies. QCNNs were trained for 4-class classification task aimed at quantum phase recognition
(QPR). The experiment was performed with varying degrees of label noise: QPR dataset with pure labels (left),
half randomly labelled dataset (middle), and full randomly labelled datasets (right). As the noise (corruption) level
increases, the margin distributions tend to exhibit a more pronounced skew towards the left, indicating that a greater
proportion of samples are classified with smaller margins. Notably, the margin distribution exhibits a strong positive
correlation with test accuracy across all scenarios.

assigning x to each class. Recently, Ref [10] proposed a
generalization bound based on margins, normalized by
a spectral norm of the weights, in the context of deep
neural networks. It illustrated that complexity measures
based on margin can address the shortcomings of uniform
generalization bounds, as will be explained in more detail
later in this section. Furthermore, it empirically demon-
strated a significant correlation between margin-based
measures and generalization error. Since then, margin
is extensively used as a tool to understand generalization
in (classical) machine learning [11, 12, 13, 14, 15].
The notion of margin can be extended to understand

generalization performances of quantum machine learn-
ing models. Consider a k-class classification employing
quantum neural networks, where the hypothesis class is
defined as HQNN = {ρ 7→ [Tr(MiU(θ)ρU†(θ))]ki=1 : θ ∈
Θ}. Here, measurement outcome of Mi represents the
probability of assigning ρ to label i.

Theorem 2 (Margin Bound for QNN)
For any δ > 0 and γ > 0, with probability at least 1− δ
over a sample S of size m drawn according to D, follow-
ing holds for any h ∈ HQNN,

R(h) ≤ R̂γ(h) +
2

γ
R̂S(HQNN) + 3

√
log(2/δ)

2m
. (2)

Here, R̂γ(h) represents the empirical margin error, quan-
tifying the number of samples whose classification mar-
gin falls below the threshold γ. Formally, it is defined as
R̂γ(h) = 1/|S|

∑
ρ,y∈S 1h(ρ)y≤maxj ̸=y h(ρ)j+γ .

The upper bound described in Equation 2 comprises
of two competing terms: selecting a larger γ increases
R̂γ(h), while simultaneously decreasing 2R̂S(HQNN)/γ.

According to Theorem 2, a hypothesis that classifies S
with large margins results in a tighter upper bound, as
opting for a larger γ does not significantly increase R̂γ(h).
Thus the margin distribution, which is the distribution of
margins of sample S, plays a crucial role in comprehend-
ing the generalization performance of QML models.

Unlike uniform generalization bounds, margin bound
provides distinct results depending on the distribution of
the data. For instance, if we corrupt the sample from S to
S̃ (and the data distribution from D to D̃) as outlined in
Section 2, the margin distribution will also vary, leading
to a different generalization upper bound. If the margin
distribution skews toward left as the data are corrupted,
the margin bounds correctly explains the increasing gen-
eralization gap, a subtlety that uniform generalization
bounds fail to capture.

Remark 1 It is noteworthy that we can further upper
bound the R̂S(HQNN) and achieve more interpretable re-
sults. For instance, Ref [6, 7, 8] analyze the Rademacher
complexity of QNN through the lens of quantum resource
theory. Additionally, Ref [4] quantifies the covering num-
ber of QNN based on the numbers of parameters. This
result, combined with Dudley’s entropy integral, can be
utilized to establish the upper bound of Rademacher com-
plexity [16]. However, in this study, our primary focus
lies on exploring the margin distributions of quantum ma-
chine learning models and how margin-based complexity
measures strongly correlate with generalization gap.

4 Experimental Results

This section experimentally demonstrate strong corre-
lation between margins and generalization performances
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Figure 2: A comparative analysis demonstrating mutual information between generalization gap and various com-
plexity measures. This includes four margin-based complexity measures: mean, lower quartile (Q1), median (Q2),
and upper quartile (Q3), along with two parameter-based complexity measures: number of parameters and number
of effective parameters. The experiments were conducted using three distinct variational ansatz: 1) QCNN without
parameter sharing, 2) QCNN with parameter sharing 3) StronglyEntanglingLayer (see Ref [17] for details). Further-
more, the experiments were repeated under label corruption as outlined in Section 1. In all scenarios, margin-based
complexity measure exhibited more mutual information about the generalization gap compared to parameter-based
complexity measures. Notably, the mutual information tends to decrease with higher levels of corruption.

of QML models. We conducted extensive tests on Quan-
tum Neural Networks (QNNs) with various hyperparam-
eters, including circuit architecture, variational ansatz,
number of layers, number of training samples, training
batch size, maximum training iteration. The models
were trained to perform the Quantum Phase Recogni-
tion (QPR) task, which involves classifying the phases of
the ground state of the generalized cluster Hamiltonian,
defined as H =

∑n
j=1(Zj −J1XjXj+1 −J2Xj−1ZjXj+1)

(see Ref [4, 2] for details). Additionally, the experiments
were conducted under different levels of label noise: pure
labels (r=0.0), half random labels (r=0.5), and fully ran-
dom labels (r=1.0).
Figure 1 illustrates margin distributions of the opti-

mized QCNNs in a box-and-whisker plot, alongside their
respective test accuracies, conducted with varying num-
bers of QCNN layers. Across all layer configurations,
the test accuracy decreases (and consequently, the gen-
eralization gap increases) as the labels are randomly cor-
rupted with increasing levels of noise. The margin distri-
butions exhibit significant leftward skew as the labels are
corrupted. Thus, the margin bounds (Equation 2) cor-
rectly captures the generalization behavior under label
corruption. Moreover, QCNNs with a larger number of
layers tend to have higher test accuracy and exhibit right-
skewed margin distributions, which further validates that
margin distribution effectively captures the generaliza-
tion performance in QML.
In Figure 2, we compare four margin-based complex-

ity measures—mean, lower quartile, median, and upper

quartile of the margin distribution—against parameter-
based complexity measures. The latter includes 1) the
number of parameters and 2) the number of effective
parameters, which underwent significant changes during
the optimization process. We evaluated mutual informa-
tion between generalization gap and various complexity
measures, treating them as random variables depending
on sample S and hyperparameters of the models. Intu-
itively, a larger mutual information value indicates that
the complexity measure contains more information about
the generalization gap. Consequently, there is less uncer-
tainty about generalization given the complexity mea-
sure. The experiments were conducted with three dis-
tinct variational ansatz: 1) QCNN without parameter
sharing [18], 2) QCNN with parameter sharing [19, 20],
and 3) StronglyEntanglingLayers [17]. Across all
models, the mutual information values with margin-
based complexity measures are significantly larger than
those with parameters-based counterparts, indicating
that margin distribution is more effective tool for under-
standing the generalization performance of QML models.
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Abstract. Quantum information-processing techniques enable work extraction from a system’s inher-
ently quantum features, in addition to its classical free energy. Meanwhile, the science of computational
mechanics affords tools for the predictive modelling of non-Markovian stochastic processes. We combine
tools from these two sciences to develop a technique for predictive work extraction from non-Markovian
stochastic processes with quantum outputs. We demonstrate that this technique can extract more work
than non-predictive quantum work extraction protocols, on one hand, and predictive work extraction
without quantum information processing, on the other. We discover a phase transition in the efficacy of
memory for work extraction from quantum processes, which has no classical precedent. Our work opens
the prospect of machines that harness environmental free energy in an essentially quantum time-varying
form.

Keywords: Quantum Thermodynamics, Stochastic Processes, Computational Mechanics, Temporal Cor-
relations

1 Introduction

In the earliest heat engines, a combustible fuel was
burned to maintain a temperature gradient between hot
and cold heat reservoirs. The second law of thermody-
namics holds that no engine can sustainably function
with a single reservoir [1, 2, 3, 4]. While thought ex-
periments such as Maxwell’s demon and Szilard’s engine
initially appear to defy this law [5], a more complete
understanding of thermodynamics resolved the apparent
paradox: the resource powering the engine need not be
a temperature gradient, but may be any form of free en-
ergy—even information [6, 7, 8, 9, 10]. The emerging
field of quantum thermodynamics has continued to ex-
pand the scope of “fuel” to increasingly general forms
of free energy. There has been both theoretical and ex-
perimental advancement in constructing engines that can
harness the free energy locked up in quantum coherence,
over and above classical free energy [11, 12, 13, 14, 15].
The story does not stop there—in addition to static

fuel, there is also a dynamical fuel-like resource embodied
by complex thermodynamic processes. The framework
of computational mechanics in complexity science offers
powerful techniques for the characterization and manip-
ulation of stochastic processes. The future behaviour of
such a process in general cannot be known perfectly using
data from its past. Nevertheless, temporal correlations,
i.e., patterns in a process’s behaviour over time, enable
prediction. These correlations may even be non-Marko-
vian, whereby the future of a process depend not only
on its present, but also on its distant past. Epsilon ma-
chines and their quantum extensions [16, 17, 18] perform
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†pmriechers@gmail.com
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memory-optimal predictive modelling of stochastic pro-
cesses. Pattern extractors [14, 19] leverage prediction to
extract useful work from the classical free energy present
in temporal patterns, exchanging heat with a single bath.
However, these predictive engines are not equipped to
harness the free energy locked up in quantum degrees of
freedom.

1.1 Our contributions

Here, we develop the theoretical prototype for a pre-
dictive quantum engine: a machine that charges a bat-
tery by feeding on a multipartite quantum system whose
parts are temporally correlated via a classical stochastic
process [?]. It can extract free energy beyond what is
accessible to current quantum engines or classical pre-
dictive engines. We present a systematic construction of
such an engine for arbitrary classical processes and quan-
tum output states. We illustrate its application on ex-
ample stochastic processes of correlated non-orthogonal
qubits. (Fig. 1). We also use this test case to bench-
mark the performance of our engine against various al-
ternatives, including one without coherent quantum in-
formation processing, and one without predictive func-
tionality. Our predictive quantum engine outperforms
these alternatives in terms of work output. We show
that parametrized processes of correlated non-orthogonal
quantum outputs exhibit phase boundaries between para-
metric regions where memory of past observations can
and cannot enhance the work yield—despite the appar-
ently smooth change of memoryful correlations in the
process across this boundary. The sudden lack of memory
advantage is thus fundamentally thermodynamic (since
prediction per se has more freedom than during work
extraction) and fundamentally quantum (since classical
engines can exploit all the process’s inherent memory).
Finally, we generalize the Information Processing Sec-
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Figure 1: Latent-state sources of correlated quantum pro-
cesses. Each arrow represents a transition between latent
states; the label p : σ(x) indicates that the transition hap-
pens with probability p and produces a quantum state
σ(x). (a) Perturbed-coin process. (b) 2-1 golden-mean
process.

ond Law (IPSL) to the quantum regime and derive the
fundamental bounds on a quantum pattern engine’s per-
formance.

2 Framework

Rather than using memoryless quantum sources which
produce independent and identically distributed (IID)
quantum states at each discrete time [20, 21], we con-
sider general finite-state sources of quantum states which
can create nontrivial correlation across time. Some sim-
ple examples are depicted in Fig. 1. these memoryful
sources of states can be represented by a hidden Markov
Model (HMM). The states generated are separable but
can have non-classical correlations in the form of dis-
cord [22]. These sources generalize the kindred ‘classi-
cally controlled qubit sources’ of Ref. [23].
We restrict the the engine to possess no quantum mem-

ory and limited classical memory. Each of the quantum
states generated also has an immediate expiration date,
hence the quantum states generated must be fed into the
engine one at a time rather than storing everything for
later time. We allow the HMM to be arbitrary in its al-
phabet, size, statistics as well as the quantum outputs’
dimensionality and purity. Lastly, we assume that the
source of the fuel tape is known exactly, which entails
the complete knowledge of the HMM
The engine will operate relying on its internal memory

which keeps track of “belief states”, ηt. The memory
will allow the engine to predict what the next expected
state, ξt, will be. The engine then attempts to extract
work from the quantum states based on the identity of ξt.
The battery storing the work will eventually be measured
and the memory will be updated. The process proceeds
cyclically as shown in Fig. 2.

3 Results

Here we provide a summary of our results.

1. We generalised the so-called “mixed-state presen-
tation” into the quantum regime where the states
are non-orthogonal [24, 25, 26, 27, 28].

Update belief state 𝛈
conditioned on state of battery, B 

Quantum Work 

Extraction based on 𝜉

Predict next 

expected state, 𝜉

ξ

ξ

1

Figure 2: The protocol proceeds cyclically to fine-tune
the belief state.

2. We demonstrated the superior performance of our
engine by comparing it against other engines that
lacked either memory or the ability to operate co-
herently on quantum states.

3. We discovered a phase transition in efficacy of
knowledge in work extraction with respect to pro-
cess parametrization. This along with the general
performance of our engine can be found in Fig. 3

4. Finally, we provide a fundamental limit of this
quantum pattern engine by invoking the quantum
information processing second law to act as an up-
per bound.

4 Discussion

We developed the theoretical prototype for a quantum
pattern engine: a machine that can adaptively extract
useful work from quantum stochastic processes by ex-
ploiting knowledge of the temporal patterns they con-
tain. We witnessed that, in the presence of coherence,
the memory-assisted quantum approach will always out-
perform the memory-assisted classical approach. We also
demonstrated its advantage over engines that can only
harness static quantum resources. We found a phase
transition marking the onset of memory advantage. It
is an open question whether this phase transition coin-
cides with the onset of quantum discord.

We found how to update the state of knowledge about
any latent-state generator of a quantum process, given
any POVM on the current quantum output. Further-
more, the fundamental thermodynamic limits of work ex-
traction from correlated multi-partite quantum systems
was found, setting the ultimate benchmark.

Despite the advances presented here, many open
questions remain for future work.Although designing the
protocol guarantees maximal work extraction locally in
time, it remains an interesting open question whether
there is a superior steady-state approach that sacrifices
short-term work extraction for greater knowledge and
long-term returns. It may be possible to extend our
method to more complex quantum processes, e.g., to
those with entangled temporal correlations. This would,
however, likely require a quantum memory. On the
other hand, our method can immediately be adapted
to applications where the pattern is spatial instead of
temporal (e.g., states of many-body systems), and where
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Figure 3: Comparison between average work-extraction rates of various approaches. (a) Memory enhancement of work
extracted, compared to memoryless quantum approach. (b) Quantum enhancement of work extraction, compared to
memoryful classical approach. Panels (c) and (d) reveal phase transitions in memory enhancement through cross-
sections of parameter space. Analytic results (solid lines) and simulations (markers) are shown. Blue (squares)
represents memory-assisted quantum approach; black (circles) represents memory-assisted classical approach; red
(triangles) represents overcommitment approach; green (stars) represents memoryless quantum approach.

the engine is constrained to operate locally on small
regions at a time.

For full detail of the paper, please refer to [29]. If
time permits, we shall present our most recent work of
utilizing techniques from reinforcement learning such as
dynamic programming to achieve the maximal work.
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Abstract. Causal inference revealing causal dependencies between variables from empirical data has
found applications in multiple sub-fields of scientific research. Here, we have devised a photonic setup and
experimentally realized an algorithm capable of identifying any two-qubit statistical correlations generated
by the two basic causal structures under an observational scenario, thus revealing a universal quantum
advantage in causal inference over its classical counterpart. We further demonstrate the explainability and
stability of our causal discovery method, which is widely sought in data processing algorithms. Employing
a fully observational approach, our result paves the way for studying quantum causality in general settings.

Keywords: quantum algorithm, causal structures, quantum correlations

1 Introduction

According to the Reichenbach’s common cause princi-
ple (RCCP) [1], a latent variable that jointly influences
two events can always produce the same correlation as
a direct causal link between the two events. The con-
sequence of RCCP for causal identification is the in-
ability to differentiate between a common cause (CC)
and a direct cause (DC) using observational data gen-
erated by classical entities. Given that quantum cor-
relations have drastically different behaviors from their
classical counterparts, it is natural to consider the extent
to which a quantum perspective on correlations and cau-
sations can overcome the limitations imposed by RCCP.
The question has motivated a number of works explor-
ing the quantum advantages in identifying causal rela-
tionships [3, 4, 5]. In this study, we tackle the quantum
counterpart of the two-point causal identification prob-
lem. Our aim is to determine whether the causal struc-
ture of a two-point qubit correlation is induced by the
same particle going through a unitary quantum chan-
nel which amounts to a DC, or two (possibly entangled)
particles being successively measured which constitutes
a CC.

2 Quantum causality with geometry

In classical causal theory, a DC implies that an earlier
variable directly influences a subsequent variable, while a
CC signifies a confounding factor co-influencing the two
variables. In quantum theory, the notion of variables is
replaced by quantum states. As shown in Fig. 1a and b,
a quantum channel connecting input and output states
can serve as a quantum analog of DC, whereas a bipartite
system consisting of two subsystems gives rise to a quan-
tum CC. The concept can be formulated with a quantum
comb representation where a quantum gate switches to
an either identity or SWAP gate determining the latent
causal structure (Fig. 1c). We need to note that in the

∗zawang@mail.ustc.edu.cn

classical regime, it is insufficient to distinguish the causal
structures by merely observing the temporal correlation
of the two states and intervention such as placebos in
clinical examinations is needed. On the contrary, one
can take advantage of quantum correlations to distin-
guish them [2].

0( )P σ

1( )P σ

2( )P σ

3( )P σ
(| )P +Φ 〉

(| )P −Φ 〉

(| )P +Ψ 〉

(| )P −Ψ 〉

1

1

1

0

0

0

1−
1−

1−

33C

11C

22C

d

X YU

a b Y

X

Λ

Initial state ρ

P

N

M
R YX U ...

c

Gate

Identity SWAPOR

Q
...

Figure 1: Perspectives of two-point quantum
causality. a, b: Directed acyclic graph of direct cause
(DC) and common cause (CC). c: Quantum comb repre-
sentation of causal structures. d: Geometric description
of two-qubit causal structures.

Moreover, one can map the two-point quantum cor-
relations derived from canonical Pauli measurements to
points in a three-dimensional space formulating a geo-
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Algorithm 1 The algorithm for discrimination of the two-point qubit causal structures. TDC (TCC) is the DC- (CC-)
tetrahedron in the main text, whose four vertices are (+1,+1,+1)T, (+1,−1,−1)T, (−1,+1,−1)T, (−1,−1,+1)T

((−1,−1,−1)T, (−1,+1,+1)T, (+1,−1,+1)T, (+1,+1,−1)T). The quantities δ, ε and ε′ are cutoff values and can be
conveniently chosen. The function D means the Euclidean distance of its two arguments.

Require: A two-point Pauli correlation P = (C11, C22, C33)
T , Cii := p(x = y|σi, σi)− p(x ̸= y|σi, σi),P ∈ TDC ∪TCC.

The sum of all entries of P is b
Ensure: The latent causal structure of the correlation, DC or CC
if P ̸∈ TDC ∩ TCC then ▷ Distinguishable by Pauli correlations

if P is in the DC tetrahedron then return DC
else return CC
end if

else if 1− b < δ then ▷ Distinguishable by symmetrically modified Pauli correlations
calculate V
measure the new correlation CV

33

if 1− CV
33 < ε then return DC

else return CC
end if

else ▷ Distinguishable by asymmetrically modified Pauli correlations
calculate V = V2V1, V

′ = V2σ1V1 ▷ V1 and V2 are obtained in two consecutive rounds
measure the new correlation P = (CV ′

11 , C
V ′

22 , C
V ′

33 )
T

if D(PV ′ ,P(σ3)) < ε′ then return DC
else return CC
end if

end if

metric representation [6]. In Fig. 1d, the blue tetrahe-
dron encompasses the set of DC cases while the red one
encompasses the set of CC cases [7].

3 Experimental demonstrating Algorith-
mic causal identification

As the two tetrahedra are non-identical, cases observed
in the disjoint areas will imply causation. However, in the
overlapping area, both DC and CC causal explanations
are possible and extra measurements are needed. We
perform a quantum algorithm in Algorithm 1 to eliminate
this ambiguity. Generally, by exerting a pair of delicately
designed operators, the algorithm moves the points out
of the overlapping area thus the causal structures become
distinguishable.
We implement the quantum causal identification algo-

rithm by realizing the comb representation in Fig. 1c in
an optical platform as depicted in Fig. 2. The quantum
gate that controls the latent causal structure is realized
by a PBS based Sagnac ring. In Fig. 3, We test two fam-
ilies of temporally-ordered quantum systems, of which
causality is not unveiled by their Pauli correlations and
the initial state ρ is pure. The result shows that in the
second measurement, when the latent causal structure is
DC (blue), we move the ambiguous points (yellow) to
the top of the cube, leaving the overlapping area; while
the red points representing CC structures can not reach
the top, thus the causal structure is successfully distin-
guished. Similarly, we also extend to cases where the ini-
tial states are mixed (not shown limited by the length).

The distinguishability is quantified by two distance mea-
sures 1− CV

33 and D(PV ′ ,P(σ3)) and the distinguishing
criteria are set with cutoff values ε and ε′.

4 Discussion

The algorithm is built upon quantum correlation and
unitary operations within an observational scheme, elim-
inating the need for interventions, which sets it apart
from its classical counterpart and results in reduced re-
source requirements. Besides the framework we have
used, physicists have also researched other formalisms
such as pseudo-density matrix formalism and process ma-
trix formalism, to properly describe causal structures and
seek less intervening and go on less resource consuming
inference methods. Digging out more causal inference
criteria that take the advantages of the quantum world
could be a natural trend. Therefore, we hope that our
comprehensive exploration of two-point quantum correla-
tions from a causal perspective will contribute to the fur-
ther advancement of quantum causal inference and pave
the way for the construction of causal networks involving
various quantum resources.
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Figure 2: Experimental setup. The checkpoints M, N, P, and Q match the notations in Fig. 1. The monochromatic
panels were inside the quantum comb and the blue panels were accessible to the causal discovery algorithm.
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Correlation-Pattern-Based Continuous Variable Entanglement
Detection through Neural Networks
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Abstract. Entanglement in continuous-variable non-Gaussian states provides irreplaceable advantages
in many quantum information tasks. However, the sheer amount of information in such states grows
exponentially and makes a full characterization impossible. Here, we develop a neural network that allows
us to use correlation patterns to effectively detect continuous-variable entanglement through homodyne
detection. Our algorithm works not only on any kind of Gaussian state but also on a whole class of
experimentally achievable non-Gaussian states. The findings provide a new approach for experimental
detection of continuous-variable quantum correlations without resorting to a full tomography of the state
and confirm the exciting potential of neural networks in quantum information processing.

Keywords: Non-Gaussian entanglement, Neural networks, Homodyne detection

The study of quantum entanglement is experiencing a
thorough theoretical development and impressive exper-
imental progress, leading to important applications in
quantum cryptography, quantum metrology, and quan-
tum computation. It is, therefore, crucial to find reliable
and practical methods to detect entanglement. However,
once quantum objects are sufficiently large, it becomes
practically impossible to decide whether an arbitrary
state is entangled or not. In quantum physics, “large”
is measured in what we call the dimension of the Hilbert
space that describes the object. In our work, we focus
on one of the most popular quantum systems out there:
light. The different modes of light are mathematically
described by infinite-dimensional Hilbert spaces, i.e. the
continuous variable (CV) regime, which makes the study
of quantum correlations between these modes, in gen-
eral, impossible. By focusing on specific, yet experimen-
tally relevant classes of states, we managed to circumvent
these problems. We leverage the power of artificial neural
networks to use measurements of the electric field -known
as homodyne measurements- to decide whether a state is
likely to be entangled or not.
The conventional entanglement criteria which rely on

the knowledge of reconstructed density matrix, such as
the positive partial transpose (PPT) criterion [1] or the
quantum Fisher information (QFI) criterion proposed in
Ref. [2], are experimentally infeasible for general non-
Gaussian states, which possess complex non-Gaussian
Wigner functions. An innovative approach to overcome
this issue is provided by deep neural networks, which can
work with limited amounts of data from actual measure-
ments. Recently, neural networks have found extensive
applications in quantum physics and quantum informa-
tion science, including detecting quantum features, char-
acterizing quantum states and quantum channels, and
solving many-body problems. A key step thus lies in
selecting an appropriate training data set to ensure that
the networks can effectively and universally learn the fea-
tures of the quantum system. Keeping our focus on the
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Figure 1: Scheme of the training data processing. The
generation of the training data set begins with a series of
random density matrices ϱ. Then for each density matrix
one generates 24×24×4-dimensional correlation patterns
as input data of the neural network. At the output, 3
entanglement labels are computed from ϱ and fed into
the neural network for training. The loss function, a
binary cross-entropy loss, is evaluated between the true
entanglement labels and the predicted labels output from
the neural network.

homodyne measurements, which are the primary means
of revealing CV entanglement in experiments, we seek to
answer the following question in this paper: Can neu-
ral networks be used to detect entanglement for general
non-Gaussian states?

The first step in achieving this goal is to use a numeri-
cal method to efficiently simulate a large number of quan-
tum states of light that require only linear optics and a
small number of single-photon operations to be produced.
While this class of states is very far from arbitrary, it
does contain the states that can be produced with state-
of-the-art experiments. For our simulated states, we can
easily check whether or not they are entangled.

On top of this, we can also reproduce the typical mea-
surement statistics for homodyne measurements. This
information is then used to train a machine learning al-
gorithm that can use homodyne measurements as input
to decide whether or not the state from which these mea-
surements originate is entangled (Shown in Fig. 1).
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Figure 2: (a) Binned correlation patterns of a state
ρ̂ ∈ ϱtest when the number of Monte Carlo sampling
points N = 10, 100, 1000, 10, 000 and 100, 000. The plot
with N = ∞ shows the correlation patterns directly dis-
cretized from the theoretical joint probability distribu-
tions. (b) Accuracy of PPT-type entanglement predic-
tion from the neural network (orange line) and MaxLik
algorithm (gray line) against the same value of N in (a).
(c) Accuracy of QFI-type entanglement prediction from
the neural network (blue lines) and MaxLik (gray lines)
algorithm against N . Solid and dashed lines represent
the first and second-order QFI, respectively.

After 3, 000 epochs of training the loss function has
converged and the network has captured the features
mapping the correlation patterns to the entanglement la-
bels, without providing the full density matrices ϱ. This
is a crucial element since experiments generally do not
have access to the full density matrix of a produced state,
and what can be acquired is partial correlation informa-
tion from measurements.

To test the network with experimental-like data, we
simulate the homodyne measurement outcomes via a
Monte Carlo sampling method. The test data are ob-
tained from previously unseen quantum states, denoted
as ϱtest. For each pattern of the state in ϱtest, we perform
N repetitions of sampling to simulate the joint measure-
ment events for each mode, forming a 2×N -dimensional
outcomes and used to recover the joint probability dis-
tributions. However, directly feeding the raw sampling
results into the neural network is infeasible, as the in-
put layer of our trained network requires 24 × 24 × 4-
dimensional data. Thus, we also bin each 2×N sampling
points into a 24 × 24-dimensional matrix. Figure 2(a)
shows the discretized correlation patterns with different
numbers of sampling points N . The plot with N = ∞ is
directly obtained from discretizing the theoretical joint
probability distributions. As the number of samples N
increases from 10 to 100, 000, the Monte Carlo sampling
result converges towards the N = ∞ case.

Finally, we rely on another type of machine learning
tool to visualize what is happening during the training
process (Shown in Fig. 3). A clustering algorithm called
t-SNE will group quantum states depending on how sim-

Figure 3: Two-dimensional clusters of two-mode CV
states. (a) Examples of 24 × 24 × 4-dimensional cor-
relation patterns for two input states. (b) Left: The
2-dimensional clustering of states before being fed into
the network, where t-SNE preserves the pairwise similar-
ities between data points. Right: The same dimension
reduction process is conducted on the 64-dimensional ar-
ray from the last hidden layer of the neural network.
Points representing PPT-type entangled are colored in
light green, while others are colored in deep green.

ilar their homodyne measurement statistics are. This
way, we can see many clusters of entangled states ap-
pearing, which form a useful guideline for future research.
Furthermore, this visualization provides a useful sanity
check. Quantum states that are too different from any-
thing that the machine learning algorithm was trained
on -and thus states for which the algorithm cannot be
trusted- will not belong to the previously identified clus-
ters. In such a case, one would have to enrich the set
quantum states used for the training.

This work builds upon the idea that artificial intelli-
gence is a crucial tool to help us recognize patterns in the
intricate measurement data that are obtained in quantum
optics experiments. In the case of our work, the impres-
sive feature is that the artificial neural network really
manages to achieve a goal that, at present, cannot be
attained in any other way. This work has been accepted
by Physical Review Letters and available on [3].
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Arbitrary Amplification of Quantum Coherence in Asymptotic and Catalytic
Transformation
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Abstract. Quantum coherence is one of the fundamental aspects distinguishing classical and quantum theories.
Coherence between different energy eigenstates is particularly important, as it serves as a valuable resource under
the law of energy conservation. A fundamental question in this setting is how well one can prepare good coherent
states from low coherent states and whether a given coherent state is convertible to another one. Here, we show
that any low coherent state is convertible to any high coherent state arbitrarily well in two operational settings:
asymptotic and catalytic transformations. For a variant of asymptotic coherence manipulation where one aims to
prepare desired states in local subsystems, the rate of transformation becomes unbounded regardless of how weak
the initial coherence is. In a non-asymptotic transformation with a catalyst, a helper state that locally remains in the
original form after the transformation, we show that an arbitrary state can be obtained from any low coherent state.
Applying this to the standard asymptotic setting, we find that a catalyst can increase the coherence distillation rate
significantly—from zero to infinite rate. We also prove that such anomalous transformation requires small but
non-zero coherence in relevant modes, establishing the condition under which a sharp transition of the operational
capability occurs. Our results provide a general characterization of the coherence transformability in these
operational settings and showcase their peculiar properties compared to other common resource theories such as
entanglement and quantum thermodynamics.

Keywords: Quantum coherence, resource theories, quantum thermodynamics, catalyst, information theory

1 Background
In this presentation [1], we investigate the ability of ma-

nipulation of quantum systems under the law of energy
conservation. In this setting, the quantum coherence among
different energy eigenstates is important from both applica-
tional and theoretical perspectives. In applications, quantum
coherence is a valuable resource in constructing quantum
clocks [2] and performing quantum metrology [3]. Under
the law of energy conservation, coherence in the above sense
is easily lost due to decoherence, while it is impossible to
create and inflate coherence without any help. In this regard,
coherence is a precious quantum resource that should be
utilized as efficiently as possible. From the theoretical per-
spective, this problem has been investigated in the light of the
resource theory of asymmetry (unspeakable coherence) [4, 5],
and is also strongly related to quantum thermodynamics [6]
since quantum thermodynamics also respects the energy
conservation.

To investigate the manipulation power with coherence,
two frameworks of state transformations— catalytic and
asymptotic transformations—have been actively investigated.
In the catalytic transformation, one is allowed to borrow
the help of an auxiliary system called catalyst—an ancillary
system that should return to its own state at the end of the
process. In particular, correlated catalyst, which could have a
correlation with the main system after the transformation, has
shown to be effective in enhancing the resource manipulability
for several physical settings [7–19]. Another standard setting
is asymptotic transformation, which concerns the conversion
of many copies of an initial quantum state to many copies
of another target state [20]. The key performance quantifier
of the asymptotic transformation is its transformation rate,
which is the ratio of the number of copies of the final state
to those of the initial one. To respect the law of energy
conservation, we restrict a class of possible operations to the
set of covariant operations, which is a standard setting in this
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research field [4, 5, 21].
Previous studies have revealed that both transformations

have severe limitations on the manipulation of coherence. In
particular, in the catalytic transformation, the coherence no-
broadcasting theorem [22, 23] shows that no coherence could
be created even with a correlated catalyst if the input state
is exactly incoherent. From these observations, coherence
manipulation is considered to be much harder compared to
other resource manipulations.

2 Summary of results
Contrarily to these previous implications, in this presenta-

tion we demonstrate that we can accomplish arbitrary state
conversions in both frameworks, as long as the initial state
has (even a tiny amount of) nonzero coherence on relevant
energy modes. This result includes a striking case that an
almost incoherent initial state is converted into a maximally
coherent state, which means that quantum coherence can be
arbitrarily amplified in the operational settings we describe
below. These protocols solve several open problems on single-
shot [24] and asymptotic [18] coherence transformation with
correlated catalysts.

On the opposite side, we derive no-go theorems that an
exactly zero coherent mode in the initial state should result
in zero coherence on this mode in the final state. Combining
these two, our results elucidate a sharp threshold in the re-
source theory of asymmetry, which distinguishes one regime
where we can perform arbitrary state conversions and another
regime where we can gain no coherence. Our results provide
the first general characterization of the feasible manipulation
of quantum coherence in asymptotic and catalytic settings,
offering potential applications to quantum metrology and
quantum thermodynamics.

3 Correlated-catalytic transformation
We consider state transformation with covariant opera-

tions, the standard set of physically available operations
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implementable by an energy-conserving unitary [5]. We
denote by 𝜌 and 𝜌′ the initial and the target states, respec-
tively. In the correlated-catalytic transformation, we employ
an auxiliary system 𝐶 called catalyst that retains the same
form after the transformation but helps state conversion in the
system 𝑆. We say that 𝜌 is convertible to 𝜌′ with a correlated-
catalytic transformation if there exists a finite-dimensional
catalytic system 𝐶 with a catalyst state 𝑐, and a covariant
operation Λ on 𝑆𝐶 such that 𝜏 = Λ(𝜌 ⊗ 𝑐) with Tr𝑆 [𝜏] = 𝑐

and Tr𝐶 [𝜏] = 𝜌′. Our final state may have a correlation
between the system and the catalyst, which reflects the name
“correlated catalyst”. The correlated catalyst is employed in
various resource theories [7–19], which usually accompanies
insightful and physically robust results. In most studies, the
final state is allowed to have an arbitrarily small but finite
error. If the final state has no error, we say that this trans-
formation is exact. The central question in this setting is
whether a given state 𝜌 can be converted into another given
state 𝜌′ with a correlated catalyst.

As explained, the coherence no-broadcasting theorem [22,
23] states that a fully incoherent initial state is convertible
only to an incoherent state through a covariant operation
even with the help of a correlated catalyst. This may give an
impression that a correlated catalyst offers little advantage
in state convertibility with quantum coherence. However,
we show exactly the opposite—correlated catalysts allow
enormous operational power, and the only exception is the
case with no coherence in the initial state.

Theorem 1 (Fig. 1 (Left, b)). For arbitrary states 𝜌 and
𝜌′, 𝜌 is convertible to 𝜌′ with a correlated catalyst with an
arbitrarily small error as long as 𝜌 has nonzero coherence on
relevant modes. Moreover, the transformation can be made
exact if 𝜌′ is full rank. In addition, the correlation between
the system and the catalyst can be made arbitrarily small.

This theorem claims that an almost incoherent state can be
transformed into an almost maximally coherent state with a
correlated catalyst, which solves the conjecture in Ref. [24] in
the affirmative. Notably, the correlation between the system
and the catalyst can be made arbitrarily small, implying that
the final state 𝜏 is extremely close to a product state of 𝜌′⊗ 𝑐.

We remark that the above correlated-catalytic transforma-
tion can be exact for almost all final states without measure-
zero exceptions. This is an advantage of our result compared
to other results on correlated-catalytic transformations since
most of the previous results apply only to the case that the
final state has a small but nonzero error.

As its direct consequence, we also solve in the affirmative
an open problem on catalytic asymptotic transformations
raised in Ref. [18], asking whether a correlated catalyst
improves the rate of (standard) asymptotic transformations.
Theorem 1 suggests the solution of the above conjecture in a
drastic manner that the transformation rate is improved from
zero without a catalyst to infinity with a catalyst.

As for the converse, we provide a no-go result which we
call mode no-broadcasting theorem prohibiting a correlated-
catalytic transformation from incoherent mode to coherent
mode. This is an extension of the coherence no-broadcasting
theorem [22, 23]—the coherence no-broadcasting theorem
applies only when the initial state is completely incoherent
(i.e., all modes have no coherence), while our mode no-
broadcasting theorem applies to coherent initial states if the

coherent modes are relatively irrational to the mode of interest.
Intuitively speaking, coherence on relatively irrational modes
provides no help to create coherence on a certain mode. Our
no-go theorem formalizes this intuition.

Theorem 2 (Fig. 1 (Right)). Consider two states 𝜌 and 𝜌′

such that 𝜌′ has a coherence on a mode and all coherent
modes in 𝜌 is relatively irrational to this mode. Then, there
is no correlated-catalytic covariant transformation from 𝜌 to
𝜌′.

We stress that previously nothing was known about the ca-
pability of correlated-catalytic covariant operations other than
the coherence no-broadcasting theorem. Theorems 1 and 2
provide the first general characterization of the feasible co-
herence manipulation with the help of correlated catalysts.

4 Asymptotic transformation
We next consider the asymptotic transformation. In the

standard framework of asymptotic transformation, one con-
siders a series {Λ𝑛}𝑛 of covariant operations that transforms
𝜌⊗𝑛 to 𝜌′⊗⌊𝑟𝑛⌋ with taking the limit of 𝑛 → ∞. The key
quantity in this framework is the asymptotic transformation
rate 𝑅(𝜌 → 𝜌′), which is the supremum over all achievable
rates.

We in particular employ the framework of the asymptotic
marginal transformations [19, 25], where the reduced state
of Λ𝑛

(
𝜌⊗𝑛

)
on every subsystem approaches 𝜌′ with an

arbitrarily small error. If the reduced state of any single
subsystem exactly coincides with the target state 𝜌′ for some
finite 𝑛, we say that this asymptotic marginal transformation
is exact. This setting is especially appealing in the scenario
where multiple parties are separated from each other and
would like to consume a good coherent state locally. In such
a setting, the quality of the resource state is determined by
how close the local marginal state is to the desired final state
𝜌′.

We remark that the above definition is different from
the standard definition of asymptotic transformations where
we measure the error on the entire system, not on each
single subsystem. To distinguish these two, we denote by
�̃�(𝜌 → 𝜌′) the asymptotic marginal transformation rate and
by 𝑅(𝜌 → 𝜌′) the (standard) asymptotic transformation rate,
respectively. The asymptotic marginal transformation rate
is larger than or equal to the asymptotic transformation rate;
�̃�(𝜌 → 𝜌′) ≥ 𝑅(𝜌 → 𝜌′), as the former only focuses on
the accuracy of preparing good marginal states. This, for
instance, allows for correlation among different subsystems
in the final state. Nevertheless, �̃�(𝜌 → 𝜌′) is known to
come with a fundamental upper bound for a wide class of
resource theories [25], and these two rates indeed coincide
for entanglement distillation [19]. This suggests that the
above relaxation of the asymptotic setting may not realize a
significant change in the ability of transformation. On the
basis of the above suggestion, together with the limitations
on coherence distillation [26] showing that 𝑅(𝜌 → 𝜌′) = 0
for a generic mixed state 𝜌 and a pure coherent state 𝜌′, the
marginal asymptotic transformation on coherence seems to
have severely limited power of state conversions.

Nevertheless, we prove that any low coherent state can
actually be transformed to any high coherent state with an
arbitrarily high transformation rate. Namely, there is no
restriction on coherence transformation in this operational
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Figure 1: (Left, a): An asymptotic marginal transformation maps 𝑛 copies of 𝜌 into 𝑚 copies of 𝜌′ with correlation among
copies. Theorem 3 states that for almost all 𝜌 and 𝜌′, the rate of asymptotic marginal transformation of 𝜌 → 𝜌′ defined as
lim𝑛→∞ max𝑚 𝑚

𝑛
is unbounded. (Left, b): A correlated-catalytic transformation maps a product state of system 𝑆 and catalyst

𝐶 written as 𝜌 ⊗ 𝑐 to 𝜏 such that Tr𝑆 [𝜏] = 𝑐 and Tr𝐶 [𝜏] = 𝜌′. Theorem 1 states that for almost all 𝜌 and 𝜌′, 𝜌 is convertible to
𝜌′ with a correlated catalyst. In addition, the strength of the correlation between the main and catalytic systems can be made
arbitrarily small. (Right): Suppose that a mode has no coherence in the initial state. Then even if the initial state has coherence
on other modes irrationally related to the mode in interest, a covariant operation with a correlated catalyst cannot provide
coherence on this mode. This restriction is stronger than the coherence no-broadcasting theorem [22, 23].

setting, and all states without measure-zero exceptions admit
infinite asymptotic marginal distillation rates.

Theorem 3 (Fig. 1 (Left, a)). For arbitrary states 𝜌 and 𝜌′,
�̃�(𝜌 → 𝜌′) diverges as long as 𝜌 has non-zero coherence
on relevant modes. Moreover, the asymptotic marginal
transformation can be made exact if 𝜌′ is full rank. In both
cases, the correlation between one subsystem and the others
can be made arbitrarily small.

On the other hand, if 𝜌 does not have coherence on relevant
modes, even a single copy of 𝜌′ with arbitrarily small errors
cannot be prepared from any number of copies of 𝜌.

We emphasize that we put no requirement on the amount
of coherence in the initial state 𝜌, meaning that a negligibly
small but nonzero coherence suffices to obtain a maximally
coherent state with an arbitrary rate. The only meaningful
distinction lies in whether the state has (maybe extremely
small but) non-zero coherence or has exactly zero coherence,
and if a system has non-zero coherence, the amount of
coherence does not matter in this setting.

It is also remarkable that the diverging rate is obtained
for the exact transformation. In fact, results in asymptotic
resource transformations typically break down when no errors
are allowed, and therefore much less is known for exact
transformation compared to transformation with an arbitrarily
small but finite error. Our theorem presents an exceptionally
rare setting in which exact transformations have an enormous
ability of state conversions.

5 Proof techniques
We briefly discuss several novel proof techniques we

introduce in our work. The full proofs can be found in the
technical manuscript. Theorem 1 follows from Theorem 3,
and to show Theorem 3 we employ another type of catalytic
transformation called marginal catalytic transformation as
a subroutine in the construction. The marginal catalytic
transformation uses multiple initially uncorrelated catalysts.
At the end of the protocol, catalysts may have correlations
among them, but their reduced state remains invariant. We
show that by exploiting the property of marginal catalysts, we
can turn a marginal-catalytic transformation into a correlated
catalytic one.

To this end, we first turn marginal catalytic transforma-
tion into asymptotic marginal transformation, from which
Theorem 3 naturally follows. We prove this by utilizing the
fact that marginal catalysts are not infinitely reusable but
partially reusable. We combine this observation with the
recent result [24] showing that an arbitrary coherence trans-
formation is possible with marginal catalysts. This allows us
to prepare an arbitrary number of copies of the target state in
the sense of asymptotic marginal transformation, resulting in
the diverging transformation rate. We then turn the asymp-
totic marginal transformations into the correlated-catalytic
transformations. We accomplish this by extending the con-
struction introduced by one of the authors [10] to convert
asymptotic marginal transformations to correlated-catalytic
transformations, resulting in Theorem 1.

The core idea of showing Theorem 2 is to prove that
correlated catalysts cannot exploit coherence on a certain
mode to create coherence on another mode that is only
irrationally related. To prove this, we present the approach
using ladder systems, allowing one to separately deal with
coherence that is rationally related. We then introduce the
technique of complete degeneration, which virtually changes
energy levels so that the modes except the one under study
become incoherent. This allows us to reduce the mode
broadcasting setting to the one for coherence broadcasting,
resulting in Theorem 2. We expect that these techniques will
find much use in showing further properties of coherence
manipulation and other related problems.

6 Discussion
We showed the anomalous potential of the manipulation of

quantum coherence in the asymptotic and catalytic coherence
distillation. Our results shed light on the power of correlation
in resource manipulation. The importance of correlation has
already been discussed intensively in the context of quantum
thermodynamics [27–30]. Our results confirm that the un-
bounded power of coherence transformation is also present
in the setting with more operational motivation—asymptotic
and correlated-catalytic coherence transformation—lifting
quantum coherence as a tangible operational resource.
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Quantum coherence is one of the fundamental aspects distinguishing classical and quantum theories.
Coherence between different energy eigenstates is particularly important, as it serves as a valuable resource
under the law of energy conservation. A fundamental question in this setting is how well one can prepare
good coherent states from low coherent states and whether a given coherent state is convertible to another
one. Here, we show that any low coherent state is convertible to any high coherent state arbitrarily well in
two operational settings: asymptotic and catalytic transformations. For a variant of asymptotic coherence
manipulation where one aims to prepare desired states in local subsystems, the rate of transformation
becomes unbounded regardless of how weak the initial coherence is. In a non-asymptotic transformation
with a catalyst, a helper state that locally remains in the original form after the transformation, we show that
an arbitrary state can be obtained from any low coherent state. Applying this to the standard asymptotic
setting, we find that a catalyst can increase the coherence distillation rate significantly—from zero to
infinite rate. We also prove that such anomalous transformation requires small but nonzero coherence in
relevant modes, establishing the condition under which a sharp transition of the operational capability
occurs. Our results provide a general characterization of the coherence transformability in these operational
settings and showcase their peculiar properties compared to other common resource theories such as
entanglement and quantum thermodynamics.

DOI: 10.1103/PhysRevLett.132.180202

Quantum coherence between different energy eigenstates
is a valuable resource inevitable for quantum clocks [1],
metrology [2], and work extraction [3]. Under the law of
energy conservation, coherence in the above sense is easily
lost due to decoherence, while it is impossible to create and
inflate coherencewithout any help. In this regard, coherence
is a precious quantum resource that should be utilized as
efficiently as possible.
A central problem concerning quantum coherence as an

operational resource is to characterize its manipulability
with energy-conserving unitary [4,5]. This physical set-
ting comes with a fundamental constraint that the total
amount of quantum coherence cannot be increased by
energy-conserving operations. To understand its manipu-
lation power, two formalisms of state transformations—
asymptotic and catalytic transformations—have been
actively investigated.
One standard setting for resource manipulation is the

asymptotic transformation, where one aims to convert
many copies of the initial quantum state to many copies
of another target state [6]. The key performance quantifier
of the asymptotic manipulation is its transformation rate,
the ratio of the number of copies of the final state to those of
the initial one. On the asymptotic coherence manipulation,
it has been shown that there is a strong limitation that the
transformation rate from generic mixed states to pure
coherent states is zero [7].

Another standard setting for resource manipulation is
catalytic transformation, where one is allowed to borrow
the help of another auxiliary system called catalyst—an
ancillary system that should return to its own state at
the end of the process. In particular, correlated catalyst,
which could have a correlation with the main system after
the transformation, has been shown to be effective in
enhancing the resource manipulability for several physical
settings [8–20]. However, similarly to the asymptotic trans-
formation, fundamental limitations on catalytic enhance-
ment have been observed. A notable result is the coherence
no-broadcasting theorem [21,22], showing that no coher-
ence could be created with a correlated catalyst if the input
state is exactly incoherent. These previous studies, both on
asymptotic and catalytic transformations, indicate the
potential difficulty of manipulating quantum coherence.
Contrarily to these suggestions, we here show that an

arbitrary coherence manipulation is enabled in asymptotic
and catalytic coherence transformation. We consider a
variant of the asymptotic transformation where one aims
to prepare a target state on each subsystem [23] and show
that the transformation rate becomes unbounded if the
initial state has nonzero coherence. In the correlated-
catalytic transformation, we prove that arbitrary state
transformation becomes possible as long as the initial state
has nonzero coherence. This shows that the observation
from the coherence no-broadcasting theorem is unstable
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about the perturbation of the initial state in the following
sense: As long as the initial state contains even a tiny
amount of coherence, every coherent state suddenly
becomes reachable. In addition, for target states besides
measure-zero exceptions, exact transformation is possible,
which is a much stronger claim than the conventional
resource-theoretic results allowing a small error in the
final state.
As a direct consequence of our result, we show that the

standard asymptotic transformation rate becomes infinite
with the help of correlated catalysts. This resolves the open
problem proposed in Ref. [11], asking whether correlated
catalysts could improve the asymptotic rate at all, in the
most drastic manner—catalysts can make undistillable
coherent states infinitely distillable.
Our protocols require a nonzero amount of coherence—

even if extremely small—in the initial state to implement
arbitrary state conversions. To fully characterize this
requirement, we formalize no-go theorems on state con-
versions by introducing the notion of resonant coherent
modes. These no-go theorems reveal that initial coherence,
even if it is negligibly small, is inevitable for arbitrary state
conversions, and exactly zero coherence must result in zero
coherence. Together with the feasible transformations
described above, these characterize state transformability
both in asymptotic and catalytic settings, revealing that the
distinction between zero and nonzero coherence is an
extremely sharp threshold.
We remark that these “amplification” effects do not

contradict the physical requirements that the total amount
of coherence should not increase. Our results rest on the
fact that coherence can locally increase, as observed in
several settings previously [24,25]. Our results extend these
observations in the context of asymptotic and catalytic
coherence manipulation and provide general characteriza-
tions of the anomalous coherence amplification phenomena
observed in each operational setting.
Coherence transformation.—Superposition between

energy eigenstates is manifested in time evolution. For a
system with Hamiltonian H, a state ρ is called coherent if
U tðρÞ ≠ ρ for some time t, where U tðρÞ ≔ e−iHtρeiHt is the
unitary time evolution. A state is called incoherent if it is
not coherent. We remark that the coherence we consider in
this work is what is so-called unspeakable coherence [26].
(Not to be confused with another type known as speakable
coherence [27].)
Available operations in manipulating quantum coherence

should not create coherence from incoherent states, as
respecting the law of energy conservation. In reflecting this
restriction, a natural set of available operations for the
coherence manipulation is the covariant operations with
time translation [28], i.e., the action of a channel
Λ∶ S → S0, where S and S0 are input and output systems,
commutes with the unitary time evolution as Λ ∘US

t ¼
US0
t ∘Λ for all t [4,5,29]. From the operational perspective,

any covariant operation Λ can be equivalently written by an
energy-conserving unitary U and an incoherent state η as
ΛðρÞ ¼ TrA½Uðρ ⊗ ηÞU†�, where A is some auxiliary
system [5,30]. In other words, covariant operations are
operations which can be implemented by an energy-
conserving unitary with incoherent states.
Coherent modes.—Our findings clarify that whether

relevant modes have (maybe tiny but) nonzero coherence
leads to a drastic change. To formalize this, we introduce
the notion of resonant coherent modes. A mode for Δ is a
pair of two energy levels with energy difference Δ, and a
state ρ has a coherent mode Δ if ρij ≠ 0with Ei − Ej ¼ Δ is
satisfied for some i, j, where ρij ≔ hijρjji and jii is an
energy eigenstate with energy Ei for the given Hamiltonian
H. We then define the set CðρÞ of resonant coherent modes
of state ρ as all linear combinations of nonzero coherent
modes with integer coefficients, i.e.,

CðρÞ ≔
�
xjx ¼

X
i;jðρij≠0Þ

nijΔij; nij ∈Z

�
ð1Þ

for an energy interval Δij ¼ Ei − Ej and a nonzero off-
diagonal entry ρij of a density matrix ρ for energies Ei and
Ej. Notably, in the asymptotic and catalytic coherence
manipulation, one can create a coherence on mode Δ ¼
Δ1 þ Δ2 if the initial state has coherence on modes Δ1

and Δ2 [31].
Asymptotic manipulation.—We first consider the asymp-

totic manipulation. Suppose ρ is an initial state and ρ0 is a
target state. In the standard framework of asymptotic
transformation, one considers a series fΛngn of available
operations that transforms ρ⊗n to ρ0⊗brnc with vanishing
error at the limit of n → ∞. The asymptotic transformation
rate Rðρ → ρ0Þ is the supremum over all achievable rates r.
When ρ0 is a pure state ϕ, it is particularly called asymptotic
distillation. For coherence distillation with covariant oper-
ations, the distillation rate Rðρ → ϕÞ is known to be zero
for an arbitrary full-rank state ρ and an arbitrary coherent
pure state ϕ [7], which puts a fundamental restriction on the
tangibility of coherence as an operational resource.
However, the necessity of obtaining the state close to

ϕ⊗brnc can be reasonably relaxed for many operational
settings. For instance, consider the scenario where multiple
parties are separated from each other and would like to
consume a good coherent state locally. In such a setting, the
quality of the resource state is determined by how close the
local marginal state is to the maximally coherent state.
The framework that fits this operational setting was
considered previously and called asymptotic marginal
transformation [9,23]. Suppose ρ and ρ0 are the states
on the systems S and S0 respectively. The state ρ can be
converted to ρ0 with an asymptotic marginal transformation
with rate r if there exists a series of available operations
fΛngn from S⊗n to S0⊗brnc such that the reduced state of
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Λnðρ⊗nÞ on every subsystem approaches ρ0 with a vanish-
ing error at the n → ∞ limit. If the reduced state of any
single subsystem exactly coincides with the target state ρ0
for some finite n, we say that this asymptotic marginal
transformation is exact. Although the asymptotic marginal
transformation rate R̃ðρ → ρ0Þ, which is defined as the
highest achievable rate in the marginal asymptotic con-
version, serves as an upper bound of the standard asymp-
totic transformation R̃ðρ → ρ0Þ ≥ Rðρ → ρ0Þ, these two
rates coincide in many settings such as entanglement,
quantum thermodynamics, and nonclassicality [23], sug-
gesting that this relaxation may not realize a significant
improvement in the ability of transformation (see also
Sec. II A in the Supplemental Material [32]).
Despite these previous observations, we prove that any

low coherent state can be transformed to any high coherent
state with an arbitrarily high transformation rate. Namely,
there is no restriction on coherence transformation, and all
states without measure-zero exceptions admit infinite
asymptotic marginal distillation rates [Fig. 1(a)].
Theorem 1.—For arbitrary states ρ and ρ0, R̃ðρ → ρ0Þ

diverges if ρ has nonzero coherence in the sense of
Cðρ0Þ ⊆ CðρÞ. Moreover, the asymptotic marginal trans-
formation can be made exact if ρ0 is full rank. In both cases,
the correlation between one subsystem and the others can
be made arbitrarily small. On the other hand, if Cðρ0Þ=⊆CðρÞ,
even a single copy of ρ0 cannot be prepared from any
number of copies of ρ with arbitrarily small error.
We remark that Cðρ0Þ ⊆ CðρÞ is quite a mild condition

since any state ρ with extremely small but nonzero
coherence on all modes automatically passes this require-
ment regardless of ρ0.
Theorem 1 provides the complete characterization of the

general asymptotic marginal coherence transformation,

including the case of distillation when ρ0 is pure.
Intuitively speaking, if the initial state contains nonzero
coherence on modes that are coherent in the target state,
then an arbitrary rate can be realized. The condition
Cðρ0Þ ⊆ CðρÞ, whether the state has (maybe extremely
small but) nonzero coherence or has exactly zero coher-
ence, serves as an extremely sharp and the only threshold
separating infinite and zero asymptotic transformation
rates.
The diverging rate for the exact transformation shown in

Theorem 1 is also remarkable. In fact, asymptotic resource
transformation typically comes with a severe restriction
when no errors are allowed, and therefore much less is
known for exact transformation compared to transforma-
tion with a vanishing error. Our result presents a rare
scenario in which exact transformation realizes an out-
standing performance that coincides with the performance
of nonzero error transformation.
Correlated-catalytic transformation.—We now consider

the correlated-catalytic transformation, where we employ
an auxiliary system C called catalyst which does not
change its own state between the initial and the final state
but helps state conversion in system S. We say that ρ is
convertible to ρ0 through correlated-catalytic transforma-
tion if there exists a finite-dimensional catalytic system C
with a catalyst state c, and a covariant operation Λ on SC
such that τ ¼ Λðρ ⊗ cÞ with TrS½τ� ¼ c and TrC½τ� ¼ ρ0.
Our final state may have a correlation between the system
and the catalyst, which reflects the name “correlated
catalyst.”
We investigate covariant operations with a correlated

catalyst. Recent studies have revealed a severe limitation
for correlated-catalytic covariant operations, called the
coherence no-broadcasting theorem [21,22]. This theorem
states that a fully incoherent initial state is convertible only
to an incoherent state through a covariant operation even
with the help of a correlated catalyst. This may suggest that
a correlated catalyst offers little advantage in state con-
vertibility with quantum coherence. However, we show
exactly the opposite—correlated catalysts allow enormous
operational power to most covariant state conversions, and
the only exception is the case with no coherence in the
initial state.
Theorem 2.—For arbitrary states ρ and ρ0, ρ is convert-

ible to ρ0 with a correlated catalyst with an arbitrarily small
error if Cðρ0Þ ⊆ CðρÞ, and the transformation can be made
exact if ρ0 is full rank. In addition, the correlation between
the system and catalyst can be made arbitrarily small.
This shows that a correlated catalyst enables an arbitrary

coherence amplification—an almost incoherent state can be
transformed to an almost maximally coherent state with a
correlated catalyst [Fig. 1(b)], solving the conjecture in
Ref. [31] in the affirmative. Similarly to the case of
asymptotic transformation, the only meaningful distinction
lies in whether the state has nonzero coherent modes or not.

C C

(a) (b)

FIG. 1. (a): An asymptotic marginal transformation maps n
copies of ρ into m copies of ρ0 with correlation among copies.
Theorem 1 states that for almost all ρ and ρ0, the rate of
asymptotic marginal transformation of ρ → ρ0 defined as
limn→∞maxmðm=nÞ is unbounded. (b): A correlated-catalytic
transformation maps a product state of system S and catalyst
C written as ρ ⊗ c to τ such that TrS½τ� ¼ c and TrC½τ� ¼ ρ0.
Theorem 2 states that for almost all ρ and ρ0, ρ is convertible to ρ0
with a correlated catalyst. In addition, the strength of the
correlation between the main and catalytic systems can be made
arbitrarily small.

PHYSICAL REVIEW LETTERS 132, 180202 (2024)

180202-3

196



Notably, the correlation between the system and the
catalyst can be made arbitrarily small, implying that the
final state τ is extremely close to a product state of ρ0 ⊗ c.
By choosing the initial state as ρ⊗n and the target state as

ϕ⊗rn for a coherent state ρ and a pure coherent state ϕ, there
exists a correlated catalyst that enables the transformation
from ρ⊗n to ϕ⊗rn with an arbitrarily small error for every n
and r. This setup corresponds to the standard (not marginal)
asymptotic distillation, i.e., the error in the final state is
measured for the entire state ϕ⊗rn, assisted by correlated
catalysts. Noting that the standard asymptotic distillation
rate Rðρ → ϕÞ without a catalyst is zero for every full-rank
state ρ [7], our result gives the first example for which the
catalyst improves the asymptotic transformation rate,
resolving the open problem raised in Ref. [11].
As for the converse, we expect that Cðρ0Þ ⊆ CðρÞ also

gives the necessary condition for the transformation to
exist. Here, we give a partial result toward the full solution
to this problem. As naturally guessed, coherence in the
initial state would not be helpful in creating coherence on
the mode that is only irrationally related to the resonant
coherent modes. To formalize this, we introduce C0,
which is an extension of C to rational coefficients:
C0ðρÞ ≔ fxjx ¼ P

i;jðρij≠0Þ nijΔij; nij ∈Qg. We then obtain

the necessary condition for the approximate correlated-
catalytic covariant transformation (Fig. 2).
Theorem 3.—For two states ρ and ρ0 such that

C0ðρ0Þ⊈C0ðρÞ, there does not exist a correlated-catalytic
covariant transformation from ρ to ρ0.
This result can be understood asmode no-broadcasting—

new coherent modes cannot be created by a covariant
operation with a correlated catalyst. This contains the
coherence no-broadcasting theorem as a special case with
C0ðρÞ ¼ f0g and extends it to the case of coherent initial
states. We conjecture that the above condition is strength-
ened to Cðρ0Þ=⊆CðρÞ, which would provide the exact char-
acterization of the feasible coherence transformation with a
correlated catalyst together with Theorem 2.

Proof sketch.—Here, we provide a proof sketch of our
main results. The complete proofs are presented in the
Supplemental Material [32].
We first outline the proof of the achievable part ofTheorem

1. Our protocol employs another operational framework
known as marginal-catalytic transformations [31] (see also
Ref. [24]). In particular, it was shown that for any full-rank
state ρ0 there exists a setC1;…; CN of catalytic systems with
states c1;…; cN and a covariant operation Λ: S ⊗ C1 ⊗
� � � ⊗ CN → S0 ⊗ C1 ⊗ � � � ⊗ CN such that Λðc1 ⊗ � � � ⊗
cNÞ ¼ τ with TrC1;…;CN

½τ� ¼ ρ0 and TrnCi
½τ� ¼ ci for all

i ¼ 1;…; N. Furthermore, these catalysts are partially reus-
able: If we have Nk sets of catalysts c1 ⊗ � � � ⊗ cN , an
appropriate recombination of them allows one to prepare
ðkþ 1ÞNk copies of ρ0 with these marginal catalysts.
We now construct our protocol, which is inspired by

Ref. [9]. We first show that a set c1 ⊗ � � � ⊗ cN of catalysts
can be prepared exactly from ρ⊗μ by a covariant operation
for some integer μ. This allows us to transform μNk copies
of ρ into Nk sets of catalysts. Using these catalysts, we
obtain ðkþ 1ÞNk copies of ρ0 by a marginal catalytic
covariant transformation, after which we discard the
catalytic systems. The transformation rate is ðkþ 1Þ=μ,
which can be made arbitrarily large by setting sufficiently
large k. This transformation can be made exact for a full-
rank target state ρ0 by employing the result in Ref. [18].
The converse part of Theorem 1 can be shown by

utilizing the properties of the modes of asymmetry [83].
Theorem 2 can be obtained by applying the well-known

technique to derive correlated-catalytic convertibility from
asymptotic convertibility with vanishing error. This type of
result was first shown in Ref. [16] in the context of quantum
thermodynamics (cf. Refs. [84,85] for exact asymptotic
transformation), and a general formof statement is explicitly
shown and proven in Ref. [31]. In particular, this construc-
tion was recently used to convert asymptotic marginal
transformation to correlated-catalytic transformation [18].
We finally outline the proof of Theorem 3. We suppose

contrarily that the final state ρ0 has coherence on a mode
ΔE ∉ C0ðρÞ and derive contradiction with the coherence
no-broadcasting theorem [21,22]. Let LðΔÞ be an infinite-
dimensional system whose energy levels form a ladder with
energy interval Δ. We embed the main system S and
catalytic system C into a product of ladder systems
LðΔ0Þ ⊗ LðΔ1Þ ⊗ LðΔ2Þ ⊗ � � � such that Δ0 is an integer
multiple ofΔE (ΔE ¼ mΔ0 for some integerm), and the set
fΔ0;Δ1;Δ2;…g are rational-linearly independent. By
assumption, ρ0 has coherence in LðΔ0Þ, for which ρ is
incoherent. For brevity, we abbreviate the set Δ1;Δ2;…
as Δ̃.
Our key observation is that since a covariant operation

acts on each rational-linearly independent mode separately,
if ρ ⊗ c on LðΔ0Þ ⊗ LðΔ̃Þ can be transformed to τ by a
covariant operation, the same transformation is also possible

C C

FIG. 2. Suppose that a mode has no coherence in the initial
state. Then even if the initial state has coherence on other modes
irrationally related to the mode in interest, a covariant operation
with a correlated catalyst cannot provide coherence on this mode.
This restriction is stronger than the coherence no-broadcasting
theorem [21,22].
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on systems with another arbitrary set Δ̃0 ¼ ðΔ0
1;Δ

0
2;…Þ.

Namely, ρ ⊗ c → τ on LðΔ0Þ ⊗ LðΔ̃Þ (the same density
matrix on ladders with different energy spacings) is possible
by a covariant operation. Setting Δ̃0 ¼ 0 in the above
modification, where all states outside LðΔ0Þ are degenerate,
we find that ρ on LðΔ0Þ ⊗ Lð0Þ is completely incoherent.
On the other hand, the final state ρ0 has coherence in LðΔ0Þ,
which contradicts the coherence no-broadcasting theorem.
Discussion.—We showed the anomalous potential of the

manipulation of quantum coherence in the asymptotic and
catalytic coherence distillation. These results are highly
special to quantum coherence that cannot be seen in other
resource theories such as entanglement [86,87], quantum
thermodynamics [19], and speakable coherence [26,27,88]
(see Sec. V in the Supplemental Material [32]). Related to
this, we stress that our result is different from the well-
known embezzlement phenomena observed in several
resource theories [89,90], admitting arbitrary state con-
versions by allowing a small error in a catalyst. Our
framework allows no errors in the catalyst, and thus the
operational capability comes from an entirely different
mechanism.
Our results shed light on the power of correlation in

resource manipulation. In fact, without correlation, ampli-
fication of coherence is impossible in both asymptotic and
catalytic settings. The importance of correlation has already
been discussed intensively in the context of quantum
thermodynamics [91–94]. Quantum thermodynamics with
an uncorrelated catalyst has many restrictions with Rényi
entropies in state convertibility [84,89,95,96], while most
of the restrictions are lifted by proper use of correlations,
and only the second law of thermodynamics with the
relative entropy remains [14,16]. For the coherence trans-
formation, previous studies [24,31] showed an astonishing
operational power enabled by correlations between multi-
ple catalysts. Our results confirm that the unbounded power
of coherence transformation is also present in the setting
with much more operational motivation—asymptotic and
correlated-catalytic coherence transformation—lifting
quantum coherence as an even more tangible operational
resource.

Note added.—During the completion of our manuscript, we
became aware of an independent related work by Kondra
et al. [97], which was concurrently posted to arXiv with
ours. Also, an anonymous referee of the QIP conference
notified us that when ρ0 is pure and the period (the
minimum time after which the state returns to the original
one) for ρ and ρ0 coincide, one can also obtain the diverging
asymptotic marginal transformation rate (with an arbitrary
small error) by generalizing the construction for sublinear
coherence distillation in Ref. [7] [Supplementary Note 7] to
the case of marginal asymptotic conversion. This approach,
which is different from ours, in fact admits a larger target
state, up to the size sublinear in the number of copies of ρ.

Our Theorem 1, on the other hand, applies to the fully
general setting and contains further insights into the
possibility of exact transformation and fundamental limi-
tations imposed by the resonant coherence modes. We
thank the referee for their insightful comments.

We thank Eunwoo Lee for discussions on group repre-
sentations, and Kohdai Kuroiwa for the asymptotic con-
tinuity. N. S. was supported by JSPS Grants-in-Aid for
Scientific Research Grant No. JP19K14615. R. T. is sup-
ported by JSPS KAKENHI Grant No. JP23K19028.

*shiraishi@phys.c.u-tokyo.ac.jp
†ryujitakagi.pat@gmail.com

[1] D. Janzing and T. Beth, IEEE Trans. Inf. Theory 49, 230
(2003).

[2] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett.
96, 010401 (2006).

[3] M. Lostaglio, D. Jennings, and T. Rudolph, Nat. Commun.
6, 6383 (2015).

[4] G. Gour and R.W. Spekkens, New J. Phys. 10, 033023
(2008).

[5] I. Marvian Mashhad, Symmetry, asymmetry and quantum
information, Ph.D. thesis, 2012.

[6] M.M. Wilde, Quantum Information Theory (Cambridge
University Press, Cambridge, England, 2013).

[7] I. Marvian, Nat. Commun. 11, 25 (2020).
[8] P. Boes, J. Eisert, R. Gallego, M. P. Müller, and H. Wilming,

Phys. Rev. Lett. 122, 210402 (2019).
[9] R. Ganardi, T. Varun Kondra, and A. Streltsov, arXiv:2305

.03488.
[10] T. V. Kondra, C. Datta, and A. Streltsov, Phys. Rev. Lett.

127, 150503 (2021).
[11] Lami, L., B. Regula, and A. Streltsov, arXiv:2305.03489.
[12] S. H. Lie and H. Jeong, Phys. Rev. Res. 3, 043089 (2021).
[13] P. Lipka-Bartosik and P. Skrzypczyk, Phys. Rev. Lett. 127,

080502 (2021).
[14] M. P. Müller, Phys. Rev. X 8, 041051 (2018).
[15] R. Rubboli and M. Tomamichel, Phys. Rev. Lett. 129,

120506 (2022).
[16] N. Shiraishi and T. Sagawa, Phys. Rev. Lett. 126, 150502

(2021).
[17] H. Wilming, Phys. Rev. Lett. 127, 260402 (2021).
[18] H. Wilming, Quantum 6, 858 (2022).
[19] H. Wilming, R. Gallego, and J. Eisert, Entropy 19, 241

(2017).
[20] B. Yadin, H. H. Jee, C. Sparaciari, G. Adesso, and A.

Serafini, J. Phys. A 55, 325301 (2022).
[21] M. Lostaglio and M. P. Müller, Phys. Rev. Lett. 123, 020403

(2019).
[22] I. Marvian and R.W. Spekkens, Phys. Rev. Lett. 123,

020404 (2019).
[23] G. Ferrari, L. Lami, T. Theurer, and M. B. Plenio, Commun.

Math. Phys. 398, 291 (2023).
[24] F. Ding, X. Hu, and H. Fan, Phys. Rev. A 103, 022403

(2021).
[25] G. Manzano, R. Silva, and J. M. R. Parrondo, Phys. Rev. E

99, 042135 (2019).

PHYSICAL REVIEW LETTERS 132, 180202 (2024)

180202-5

198



[26] I. Marvian and R.W. Spekkens, Phys. Rev. A 94, 052324
(2016).

[27] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev.
Lett. 113, 140401 (2014).

[28] In the context of resource theories, covariant operations
correspond to the class of completely resource nongenerat-
ing operations (see also Proposition S.4 in the Supplemental
Material), which constitutes the standard set of free oper-
ations considered for the resource theory of unspeakable
coherence.

[29] E. Chitambar and G. Gour, Rev. Mod. Phys. 91, 025001
(2019).

[30] M. Keyl and R. F. Werner, J. Math. Phys. (N.Y.) 40, 3283
(1999).

[31] R. Takagi and N. Shiraishi, Phys. Rev. Lett. 128, 240501
(2022).

[32] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.132.180202 for de-
tailed proofs and discussions of our main results, which
includes Refs. [33–82].

[33] F. Albarelli, M. G. Genoni, M. G. A. Paris, and A. Ferraro,
Phys. Rev. A 98, 052350 (2018).

[34] C. H. Bennett, H. J. Bernstein, S. Popescu, and B.
Schumacher, Phys. Rev. A 53, 2046 (1996).

[35] A. Anshu, M.-H. Hsieh, and R. Jain, Phys. Rev. Lett. 121,
190504 (2018).

[36] K. Audenaert, M. B. Plenio, and J. Eisert, Phys. Rev. Lett.
90, 027901 (2003).

[37] F. G. S. L. Brandão, M. Horodecki, J. Oppenheim, J. M.
Renes, and R.W. Spekkens, Phys. Rev. Lett. 111, 250404
(2013).

[38] S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).
[39] K. Bu, U. Singh, and J. Wu, Phys. Rev. A 93, 042326

(2016).
[40] E. T Campbell, Phys. Rev. A 83, 032317 (2011).
[41] Coladangelo, A., and D. Leung, arXiv:1910.11354.
[42] K. Fang and Z.-W. Liu, Phys. Rev. Lett. 125, 060405

(2020).
[43] K. Fang and Z.-W. Liu, PRX Quantum 3, 010337 (2022).
[44] M. G. Genoni and M. G. A. Paris, Phys. Rev. A 82, 052341

(2010).
[45] T. Gonda and R.W. Spekkens, Compositionality 5, 7

(2023).
[46] G. Gour, Phys. Rev. A 95, 062314 (2017).
[47] G. Gour and C. M. Scandolo, arXiv:2101.01552.
[48] G. Gour and A. Winter, Phys. Rev. Lett. 123, 150401

(2019).
[49] F. Hansen, Proc. Natl. Acad. Sci. U.S.A. 105, 9909 (2008).
[50] A. Hickey and G. Gour, J. Phys. A 51, 414009 (2018).
[51] M. Horodecki and J. Oppenheim, Nat. Commun. 4, 2059

(2013).
[52] M. Horodecki and J. Oppenheim, Int. J. Mod. Phys. B 27,

1345019 (2013).
[53] R. Horodecki, P. Horodecki, M. Horodecki, and K.

Horodecki, Rev. Mod. Phys. 81, 865 (2009).
[54] M. Howard and E. Campbell, Phys. Rev. Lett. 118, 090501

(2017).
[55] D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 3566

(1999).
[56] K. Kuroiwa and H. Yamasaki, Quantum 4, 355 (2020).

[57] H. Kwon, K. C. Tan, T. Volkoff, and H. Jeong, Phys. Rev.
Lett. 122, 040503 (2019).

[58] Y. Liu and X. Yuan, Phys. Rev. Res. 2, 012035 (2020).
[59] Z.-W. Liu, K. Bu, and R. Takagi, Phys. Rev. Lett. 123,

020401 (2019).
[60] Z.-W. Liu and A. Winter, arXiv:1904.04201.
[61] I. Marvian, Phys. Rev. Lett. 129, 190502 (2022).
[62] I. Marvian and R.W. Spekkens, New J. Phys. 15, 033001

(2013).
[63] I. Marvian and R.W. Spekkens, Nat. Commun. 5, 3821

(2014).
[64] B. Regula, J. Phys. A 51, 045303 (2018).
[65] B. Regula, Phys. Rev. Lett. 128, 110505 (2022).
[66] B. Regula, Quantum 6, 817 (2022).
[67] B. Regula, K. Bu, R. Takagi, and Z.-W. Liu, Phys. Rev. A

101, 062315 (2020).
[68] B. Regula, K. Fang, X. Wang, and M. Gu, New J. Phys. 21,

103017 (2019).
[69] B. Regula and L. Lami, arXiv:2211.15678.
[70] B. Regula, L. Lami, G. Ferrari, and R. Takagi, Phys. Rev.

Lett. 126, 110403 (2021).
[71] B. Regula and R. Takagi, Nat. Commun. 12, 4411 (2021).
[72] B. Regula and R. Takagi, Phys. Rev. Lett. 127, 060402

(2021).
[73] B. Synak-Radtke and M. Horodecki, J. Phys. A 39, L423

(2006).
[74] R. Takagi, Sci. Rep. 9, 14562 (2019).
[75] R. Takagi and B. Regula, Phys. Rev. X 9, 031053 (2019).
[76] R. Takagi, B. Regula, K. Bu, Z.-W. Liu, and G. Adesso,

Phys. Rev. Lett. 122, 140402 (2019).
[77] R. Takagi, B. Regula, and M.M. Wilde, PRX Quantum 3,

010348 (2022).
[78] R. Takagi and Q. Zhuang, Phys. Rev. A 97, 062337 (2018).
[79] R. Uola, T. Kraft, J. Shang, X.-D. Yu, and O. Gühne, Phys.

Rev. Lett. 122, 130404 (2019).
[80] V. Veitch, S. A. H. Mousavian, D. Gottesman, and J.

Emerson, New J. Phys. 16, 013009 (2014).
[81] B. Yadin, F. C. Binder, J. Thompson, V. Narasimhachar, M.

Gu, and M. S. Kim, Phys. Rev. X 8, 041038 (2018).
[82] C. Zhang, B. Yadin, Z.-B. Hou, H. Cao, B.-H. Liu, Y.-F.

Huang, R. Maity, V. Vedral, C.-F. Li, G.-C. Guo, and D.
Girolami, Phys. Rev. A 96, 042327 (2017).

[83] I. Marvian and R.W. Spekkens, Phys. Rev. A 90, 062110
(2014).

[84] G. Aubrun and I. Nechita, Commun. Math. Phys. 278, 133
(2008).

[85] R. Duan, Y. Feng, X. Li, and M. Ying, Phys. Rev. A 71,
042319 (2005).

[86] R. Alicki and M. Fannes, J. Phys. A 37, L55 (2004).
[87] M. Christandl and A. Winter, J. Math. Phys. (N.Y.) 45, 829

(2004).
[88] Z. Xi, Y. Li, and H. Fan, Sci. Rep. 5, 10922 (2015).
[89] F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, and S.

Wehner, Proc. Natl. Acad. Sci. U.S.A. 112, 3275 (2015).
[90] W. van Dam and P. Hayden, Phys. Rev. A 67, 060302

(2003).
[91] S. H. Lie and N. H. Y. Ng, Phys. Rev. A 108, 012417

(2023).
[92] M. Lostaglio, M. P. Müller, and M. Pastena, Phys. Rev. Lett.

115, 150402 (2015).

PHYSICAL REVIEW LETTERS 132, 180202 (2024)

180202-6

199



[93] M. P. Müller and M. Pastena, IEEE Trans. Inf. Theory 62,
1711 (2016).

[94] F. Sapienza, F. Cerisola, and A. J. Roncaglia, Nat. Commun.
10, 2492 (2019).

[95] M. Klimesh, arXiv:0709.3680.
[96] S. Turgut, J. Phys. A 40, 12185 (2007).

[97] T.Varun Kondra, R. Ganardi, and A. Streltsov, arXiv:2308
.12814.

[98] J. I. Cirac, A. K. Ekert, and C. Macchiavello, Phys. Rev.
Lett. 82, 4344 (1999).

[99] X. Wang and M.M. Wilde, Phys. Rev. Lett. 125, 040502
(2020).

PHYSICAL REVIEW LETTERS 132, 180202 (2024)

180202-7

200



1

Supplemental Material

“Arbitrary Amplification of Quantum Coherence in Asymptotic and
Catalytic Transformation”

Naoto Shiraishi and Ryuji Takagi

Department of Basic Science, The University of Tokyo

Contents

I. General setups 1
A. Preliminaries 1

1. Quantum resource theories 1
2. Quantum coherence and covariant operation 2

B. Coherent modes 4

II. Asymptotic transformation 4
A. Preliminaries 4
B. Arbitrary coherence amplification: asymptotic marginal transformation (Theorem 1) 6
C. Consistency with zero coherence distillation rate 10
D. Consistency with asymmetry measure 11
E. No-go theorem for asymptotic marginal transformation (Theorem 1) 12

III. Catalytic transformation 13
A. Preliminaries 13
B. Arbitrary coherence transformation with correlated catalysts (Theorem 2) 14
C. Mode no-broadcasting (Theorem 3) 16

IV. Asymptotic coherence manipulation with correlated catalyst 18

V. Extension to general resource theories 19
A. Asymptotic-marginal and correlated-catalytic free transformation 19
B. Restrictions imposed by resource measures 20

References 21

Appendix I: General setups

I.A Preliminaries

1. Quantum resource theories

The coherence transformation discussed in this work can be understood in a broader context of
quantum resource theories [1], which is a general framework that describes the quantification and
feasible manipulation of quantities that are considered “precious” under given physical settings. The
physical restriction can be formalized by specifying a set F of free states and a set O of free operations
that are assumed to be freely accessible in the setting of interest. The requirement imposed on free
operations is that they should not be able to create resourceful (i.e., non-free) states from free states,
i.e., every free operation Λ ∈ O satisfies Λ(σ) ∈ F for all σ ∈ F, justifying the notion of “free”
operations.
These concepts not only allow us to characterize the resourceful states but also motivate us to

quantify the amount of resourcefulness contained in a given resourceful state ρ ̸∈ F. The resource
quantification can be formalized by resource measures, also known as resource monotones, which are
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functions from quantum states to real numbers that return the “amount” of resourcefulness. For a
function R to be a valid resource measure, it is required that (1) it takes the minimum value for free
states: R(σ) = c for all σ ∈ F with some constant c and R(ρ) ≥ c for every state ρ, (2) it does
not increase under free operations (monotonicity): R(ρ) ≥ R(Λ(ρ)) is satisfied for all free operations
Λ ∈ O and all states ρ.
The fundamental problem in any operational setting is to characterize the feasible state transfor-

mation by a quantum process accessible in a given setting. The resource theory framework allows
us to formulate this question as follows: for given states ρ and ρ′, does there exist a free operation
Λ ∈ O such that Λ(ρ) = ρ′? We call this type of state transformation enabled by a free operation
free transformation. The problem of feasible state transformation is closely related to the notion
of resource quantification since the monotonicity of a resource measure R ensures R(ρ) ≥ R(Λ(ρ)).
Therefore, R(ρ) ≥ R(ρ′) serves as a necessary condition for the free transformation from ρ to ρ′ to
be possible. This also reflects the intuition that “free operations should not increase the amount of
precious resources”. On the other hand, proving the sufficient part requires one to construct a specific
free operation Λ that actually transforms ρ to ρ′. The ultimate goal then is to obtain the necessary
and sufficient conditions for feasible free transformation for arbitrary given states ρ and ρ′.
The performance of free transformation can be studied in various settings, each of which comes

with an operational motivation. In this work, we mainly focus on two standard settings known as
asymptotic and catalytic transformation, which we discuss in Sec. II and Sec. III respectively.
The characterization of feasible free transformation admits not only advances in the fundamental

understanding of operational aspects of quantum mechanics but also practical consequences. Quantum
information processing protocols typically employ a pure state prepared in the standard form as its
“fuel”. For instance, quantum teleportation utilizes the maximally entangled state (called “e-bit”) to
realize the optimal performance. However, available quantum states are typically not provided in the
desired form, mainly due to inevitable noise. This requires one to prepare such standard pure states
from given noisy states. This procedure is called resource distillation and serves as a key routine in
numerous settings, such as entanglement manipulation [2], fault-tolerant quantum computation [3],
and work extraction [4, 5]. The generality of resource theories allows us to study the performance
of the distillation process as a problem of free transformation. Indeed, distillation corresponds to a
specific setting where we choose ρ′ as the desired pure state ϕ.
The resource-theoretic framework can be applied to numerous physical settings to describe key

quantities such as entanglement transformation under local operations and classical communica-
tion [6], quantum non-classicality [7, 8] and non-Gaussianity [9–11] in continuous-variable systems,
quantum thermodynamics [4, 5, 12], and non-Cliffordness (magicness) in fault-tolerant quantum com-
putation [13, 14]. In recent years, the unified understanding of the operational characterization of
the individual quantum resources has been developed under the framework of general resource the-
ories, which keeps the generality of the choice of free objects and seeks the properties shared by all
such quantum resources in the context of, e.g., advantages in discrimination tasks [15–18], resource
quantification [15–24], and resource distillation and dilution [25–38]. The main focus of this work is a
specific instance of resource theory, which we introduce in the next subsection. Nevertheless, having a
background understanding and context in general quantum resource theories is helpful in interpreting
and appreciating the results of individual theories. We also discuss extensions of our main results to
general resource theories in Sec. V.

2. Quantum coherence and covariant operation

Throughout this study, we consider the situation under the law of energy conservation. Under this
constraint, we cannot create coherence between energy eigenstates with different energies without any
help, while it decoheres very easily. We first clarify an incoherent state, which has no coherence in it:

Definition S.1 (Incoherent state). Consider a system with Hamiltonian H =
∑

iEiΠi where Πi :=∑
α |Ei, α⟩⟨Ei, α| is the projector onto the subspace of energy eigenstates with energy Ei. Here, |Ei, α⟩

is an energy eigenstate with energy Ei, and α distinguishes the degeneracy in the same energy. A
state ρ is incoherent if this state is block-diagonal with respect to the energy eigenbasis: ρ =

∑
i piσi

with some probability distribution {pi}i and state σi such that ΠiσiΠi = σi for all i. Equivalently, a
state ρ is incoherent if ρ = e−iHtρeiHt holds for any t ∈ R.
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The equivalence can be confirmed as follows: Let ρij := ⟨i|ρ|j⟩ be an off-diagonal element in the
sense of block diagonalization, i.e., |i⟩ and |j⟩ are energy eigenstates with the energies Ei and Ej

such that Ei ̸= Ej . Then, by expressing ρ(t) := e−iHtρeiHt, we have ρij(t) = ei(Ej−Ei)tρij . Hence,
ρij(t) = ρij is equivalent to ρij = 0 for Ei ̸= Ej .
Since a coherent state cannot be prepared from an incoherent state under energy conservation,

coherence among energy eigenstates with different energies is considered as a precious resource in this
setting, while incoherent states can be regarded as free states which we can freely use and waste.
The class of possible operations under the law of energy conservation is characterized by covariant

operations. We consider a state transformation from system S to system S′, whose Hamiltonians are
respectivelyHS andHS′ . Let ρ and ρ′ be states in S and S′. We first present one definition of covariant
operations whose physical picture is most transparent and then provide equivalent definitions that are
more axiomatic.

Definition S.2 (Covariant operation). An operation Λ : S → S′ is a covariant operation if the
following relation is satisfied: There exist auxiliary systems A and A′ with Hamiltonians HA and HA′

satisfying S ⊗A = S′ ⊗A′ such that the operation Λ can be expressed as

Λ(ρ) = TrA′ [U(ρ⊗ η)U†], (1)

where U is an energy-conserving unitary satisfying

U(HS ⊗ IA + IS ⊗HA)U
† = HS′ ⊗ IA′ + IS′ ⊗HA′ , (2)

with the identity operator I, and η is an incoherent state in A.

The above definition manifests the fact that a covariant operation is implementable under the law
of energy conservation with an incoherent state.

We remark that there are several equivalent characterizations of covariant operations: The equiva-
lence of these definitions is proven in, e.g., Refs. [39, 40].

Proposition S.3. An operation Λ: S → S′ is a covariant operation if and only if

Λ(e−iHStρeiHSt) = e−iHS′ tΛ(ρ)eiHS′ t (3)

holds for any ρ and any t ∈ R.

Proposition S.4. An operation Λ: S → S′ is a covariant operation if and only if the following
condition is satisfied: For any auxiliary system B with Hamiltonian HB, if a state τ on SB is an
incoherent state with respect to HS⊗IB+IS⊗HB, then the final state Λ⊗IB(τ) is also an incoherent
state with respect to HS′ ⊗ IB + IS′ ⊗HB. Here, Λ⊗ IB is an operation that applies Λ on system S
and leave system B as it is.

The above operational setting provides a resource theory with the set F of free states being incoher-
ent states and the set O of free operations being covariant operations. This was introduced under the
name of the resource theory of asymmetry [41], as the coherence is manifested by the resource that
causes the asymmetry under time translation {e−iHt}t∈R, which constructs a unitary representation
of the group R. Therefore, we also use the word “asymmetry” interchangeably to refer to coherence.
Although the framework of resource theory of asymmetry encompasses the general group G, in this
manuscript we refer to the case G = R with time translation as its unitary representation unless
otherwise stated. For instance, we say “asymmetry measure” to refer to a resource measure defined
for the resource theory of asymmetry in the above sense.

We also remark on the potential confusion regarding the use of the word “coherence”. In the
context of resource theories, another standard framework to describe quantum superposition is to
look at off-diagonal terms with respect to a given orthonormal basis {|i⟩}i [42], where there is no
concept of energy or time translation. The coherence characterized in this framework is known as
speakable coherence, while coherence relevant in this work is known as unspeakable coherence [43].
The former quantity is rooted in the computational notion where we are given a fixed computational
basis, while the latter is relevant to the physical system equipped with a certain Hamiltonian, making
it a relevant quantity for quantum clock and work extraction in the quantum thermodynamic setting.
The properties of these two different notions of coherence are significantly different — we indeed see
that our main results regarding unbounded amplification of coherence never apply to the speakable
coherence, as we discuss in Sec. VB.
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I.B Coherent modes

To formally state our result, let us introduce the notion of coherent modes. The idea of coherent
modes stems from the observation that the difference in the energy levels to which coherence is
attributed plays a crucial role in characterizing the coherence transformation. Classifying coherence
in terms of energy levels can be formalized by the modes of asymmetry introduced in Ref. [44].

Definition S.5 (Modes of asymmetry [44]). The modes of asymmetry is defined as the set of a mode
with non-zero coherence:

D(ρ) :=
{
∆ij

∣∣∣ ∆ij = Ei − Ej , (i, j) ∈ M(ρ)
}
, (4)

where M(ρ) := {(i, j)| ⟨Ei, α|ρ|Ej , β⟩ ̸= 0} is the set of integer pairs (i, j) such that the off-diagonal
element of ρ with respect to energy eigenstates with energies Ei and Ej is non-zero.

As we shall show in the remainder, extremely small but non-zero coherence can be amplified ar-
bitrarily, while exactly zero coherence never becomes non-zero coherence. Therefore, we need to
determine whether state ρ has coherence on the modes where ρ′ also has coherence. To describe the
presence and the absence of coherence on a mode, we define a set of resonant coherent modes in state
ρ on a system equipped with energy levels {Ei}i, which is an extension of the mode of asymmetry [44].

Definition S.6 (Set of resonant coherent modes). Denoting by ∆ij := Ei − Ej , we define a set of
resonant coherent modes C(ρ) as a linear combination of non-zero coherent mode of ρ with integer
coefficients:

C(ρ) :=

x ∣∣∣ x =
∑

(i,j)∈M

nij∆ij : nij ∈ Z

 . (5)

Here we consider a linear combination of coherent mode because if we have coherent modes with
energy difference 1 and

√
2, then we can create a coherent mode with energy difference 1+

√
2 through

a covariant operation in both the asymptotic-marginal and correlated-catalytic transformation [45].
The relation C(ρ′) ⊆ C(ρ) means that all resonant coherent modes of ρ′ are also those of ρ.
A simple but important fact on C(ρ) is that ρ and its tensor-product state ρ⊗n has the same set of

resonant coherent modes:

C(ρ⊗n) = C(ρ). (6)

Appendix II: Asymptotic transformation

II.A Preliminaries

Before proceeding to our main arguments, we first present general frameworks of resource theories
not restricted to quantum coherence, and then proceed to quantum coherence. One of the effective
approaches to studying free transformation is to leverage the tools and ideas from Shannon theory,
aiming to transform many copies of the initial state into many copies of the target state. We then
study the rate of the number of copies of the initial and final states. This framework is generally
called asymptotic transformation.
There are several approaches to quantifying the performance of asymptotic transformation. One

of the ways is to consider the maximum transformation rate at which a free operation can transform
many copies of ρ into a state that approaches many copies of the target state ρ′. Specifically, we call
r an achievable rate if for any ε > 0 there exists a series {Λn}n of free operations (i.e., Λn ∈ O for

all n) such that limn→∞ ∥Λn(ρ
⊗n)− ρ′

⊗⌊rn⌋∥1 < ε. The asymptotic transformation rate R(ρ→ ρ′) is
the supremum of the achievable rates given by

R(ρ→ ρ′) := sup
{
r
∣∣∣ lim

n→∞
∥Λn(ρ

⊗n)− ρ′
⊗⌊rn⌋∥1 = 0, Λn ∈ O : S⊗n → S′⊗⌊rn⌋

}
. (7)
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In particular, when the target state ρ′ is a pure state ϕ, the rate R(ρ → ϕ) is customarily called
asymptotic distillation rate with the target state ϕ. We note that there may exist a finite error in the
final state for finite n, while it should vanish in the asymptotic limit.
The asymptotic transformation rate is relevant when one would like to prepare uncorrelated copies

of the target state ρ′. Another operational setting is when multiparties are separate apart and each
of them would like to obtain a state close to the target state ρ′. A reasonable goal in this setting is
to obtain a state whose local marginal states are close to the target state while distributing the good
local state to as many parties as possible. The transformation rate suitable for characterizing such a
setting was previously studied [46, 47]. Here, we call it asymptotic marginal transformation rate and
formally define it as follows.

Definition S.7 (Asymptotic marginal transformation rate). Let ρ and ρ′ be states on systems S and
S′. We say that asymptotic marginal transformation rate r is achievable if there is a series {Λn}n
of free operations with Λn : S⊗n → S′⊗⌊rn⌋ such that limn→∞ maxi ∥Tr\iΛn(ρ

⊗n) − ρ′∥1 = 0. Here,
Tr\i represents a partial trace over subsystems except for the i th one. The asymptotic marginal

transformation rate R̃(ρ→ ρ′) is the supremum over the achievable rates, i.e.,

R̃(ρ→ ρ′) := sup
{
r
∣∣∣ lim

n→∞
max

i
∥Tr\iΛn(ρ

⊗n)− ρ′∥1 = 0, Λn : S⊗n → S′⊗⌊rn⌋ ∈ O
}
. (8)

When ρ′ is a pure state ϕ, we particularly call R̃(ρ → ϕ) asymptotic marginal distillation rate
with the target state ϕ. Unlike the standard asymptotic transformation, the asymptotic marginal
transformation does not require the final state to approach a product of the target state at the
infinite-copy limit, allowing for some correlation among the subsystem in the final state. However, if
⌊rn⌋ copies are used separately and do not interact with each other, the final state is indistinguishable
from the case of an exact transformation.

The contractivity of the trace distance under the partial trace ensures that ∥Λn(ρ
⊗n)−ρ′⊗⌊rn⌋∥1 < ε

implies ∥Tr\iΛn(ρ
⊗n) − ρ′∥1 < ε, leading to R(ρ → ρ′) ≤ R̃(ρ → ρ′). The previous study [46] found

that the asymptotic marginal transformation is explicitly upper bounded as

R(ρ→ ρ′) ≤ R̃(ρ→ ρ′) ≤ G(ρ)

G(ρ′)
, (9)

where G is a resource measure that is superadditive, tensor-product additive, and lower semi-
continuous. In the case of the theory of entanglement, a much stronger claim was shown. Let
|Φ⟩ = 1√

2
(|00⟩ + |11⟩) be the maximally entangled state. If ρ is distillable (i.e., R(ρ → Φ) > 0), the

above two rates coincide; R(ρ→ Φ) = R̃(ρ→ Φ) [47].
Our result also involves a stronger notion than the asymptotic marginal transformation, which we

call asymptotic exact marginal transformation. In the asymptotic transformation, one typically allows
non-zero errors that vanish asymptotically at the infinite-copy limit. This can be understood via the
non-asymptotic transformation with non-zero error. Let ρ and ρ′ be states on system S and S′. Then
we define the asymptotic marginal transformation rate with the target state ρ′ by

R̃(ρ→ ρ′) := lim
ε→0

lim
n→∞

sup
{
r
∣∣∣ max

i
∥Tr\i[Λn(ρ

⊗n)]− ρ′∥1 < ε, Λn : S⊗n → S′⊗⌊rn⌋ ∈ O
}
. (10)

As is explicit in the above formulation, the asymptotic marginal transformation admits non-zero errors
for every n as long as it asymptotically vanishes at the limit n→ ∞. On the other hand, we can also
define the asymptotic exact marginal transformation and its rate as follows:

R̃0(ρ→ ρ′) := lim
n→∞

sup
{
r
∣∣∣ ∀i Tr\i[Λn(ρ

⊗n)] = ρ′, Λn : S⊗n → S′⊗⌊rn⌋ ∈ O
}
. (11)

As seen from the definition, the asymptotic exact marginal transformation does not allow any error,
which is a much more stringent requirement than the asymptotic marginal transformation. In fact,
since every sequence of operation {Λn}n that achieves the asymptotic marginal exact transformation
clearly realizes the transformation whose error vanishes at the limit of n → ∞, we always have
R̃0(ρ→ ρ′) ≤ R̃(ρ→ ρ′).
We note that despite the clear relation between two asymptotic rates R(ρ→ ρ′) ≤ R̃(ρ→ ρ′), there

is no simple relation between the asymptotic rate R and asymptotic exact marginal rate R̃0. The
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asymptotic exact marginal transformation rate can similarly be introduced for the standard asymptotic
transformation, and it was extensively studied in the context of zero-error distillable entanglement
and entanglement cost [48–50].

In the theory of coherence, the performance of the standard asymptotic transformation rate was
studied in the context of coherence distillation. Notably, Ref. [40] showed a fundamental restriction
in the coherence distillation — every full-rank state has a zero asymptotic distillation rate.

Theorem S.8 (Coherence distillation is impossible [40]). Consider the asymptotic transformation
with covariant operations. For an arbitrary full-rank state ρ and a target pure coherent state ϕ,
R(ρ→ ϕ) = 0 holds.

This result appears to suggest that obtaining high-quality coherent bits would come with a fun-
damental difficulty. However, we show that the distillation rate behaves in a dramatically different
manner if we consider the asymptotic marginal transformation. Namely, we prove that these two
rates take two opposite extremes, and the difference between these two becomes unbounded, realizing
R(ρ → ϕ) = 0 and R̃(ρ → ϕ) = ∞ for almost all coherent states ρ. To the best of our knowledge,
this is the first example of the resource theory for which these two rates do not coincide. We also
show that the coherence manipulation is free from the severe restriction of the exact transformation
when it comes to the asymptotic marginal transformation. The asymptotic exact marginal rate R̃0

also diverges for most coherent states.

II.B Arbitrary coherence amplification: asymptotic marginal transformation
(Theorem 1)

Now we are in a position to prove our first main result Theorem 1 in the main text. We break
down the claim of Theorem 1 on the asymptotic marginal transformation into two parts: the diverging
rate for C(ρ′) ⊆ C(ρ) (discussed in this subsection) and vanishing rate for C(ρ′) ⊈ C(ρ) (discussed in
Sec. II E). We will see that the resonant coherent modes introduced above play an essential role in
dividing these two regimes and completely characterizes the power of asymptotic marginal transfor-
mation.

We begin with the case when the infinite rate can be realized. We also show that the strength of
correlation can be made arbitrarily small, which makes the asymptotic marginal transformation even
more operationally relevant.

Theorem S.9 (The first part of Theorem 1 in the main text). For arbitrary states ρ and ρ′, R̃(ρ→ ρ′)
diverges if C(ρ′) ⊆ C(ρ). Moreover, the correlation between one subsystem and the others can be made
arbitrarily small, i.e., for any ε > 0 the final state τ satisfies ∥τ − ρ′ ⊗ Triτ∥1 < ε for any i-th copy.

In fact, we show an even stronger claim, which shows that asymptotic exact marginal transformation
rates also diverge for almost all transformations.

Theorem S.10. Suppose ρ and ρ′ are arbitrary states such that C(ρ′) ⊆ C(ρ) and ρ′ is full rank. Then,
the asymptotic exact marginal transformation rate R̃0(ρ → ρ′) diverges. Moreover, the correlation
between one subsystem and the others can be made arbitrarily small, i.e., for any ε > 0 the final state
τ satisfies ∥τ − ρ′ ⊗ Triτ∥1 < ε for any i-th copy.

We remark that Theorem S.9 is a direct consequence of Theorem S.10 as shown in the following.

Proof of Theorem S.9. Theorem S.9 can be derived from Theorem S.10 by noting that full-rank states
are dense in the state space and thus every state has a full-rank state in its arbitrary neighborhood.
Let ρ′ be an arbitrary state in S′ satisfying C(ρ′) ⊆ C(ρ). For a given δ > 0, there exists a full-rank
state ρ̃ in S′ such that ∥ρ′ − ρ̃∥1 < δ. Theorem S.10 ensures that for every r > 0, there exists an

integer n and a covariant operation Λ : S⊗n → S′⊗⌊rn⌋
such that Tr\iΛ(ρ

⊗n) = ρ̃ for all i. This
ensures that

∥Tr\iΛ(ρ⊗n)− ρ′∥1 ≤ ∥Tr\iΛ(ρ⊗n)− ρ̃∥1 + ∥ρ′ − ρ̃∥1
< δ

(12)
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for every i, which shows that R(ρ→ ρ′) diverges. It is also guaranteed by Theorem S.10 that the final
state τ = Λ(ρ⊗n) satisfies ∥τ − ρ′ ⊗ Tr\iτ∥1 < ε for all i.

Therefore, we focus on proving Theorem S.10. To this end, we introduce several results needed for
the proof.
One of the key observations in proving our theorems is that any state conversion is possible by a

covariant operation with the help of a class of auxiliary states called marginal catalysts.

Definition S.11 (Marginal-catalytic transformation). We say that a state ξ in system S is con-
vertible to a state ρ′ in the system S′ by a marginal-catalytic free transformation if there ex-
ists finite-dimensional catalytic systems C1, . . . , CM with states c1, . . . , cM and a free operation
Λ : S ⊗ C1 ⊗ · · · ⊗ CM → S′ ⊗ C1 ⊗ · · · ⊗ CM ∈ O such that

τ = Λ(ξ ⊗ c1 ⊗ · · · ⊗ cM ), Tr\Sτ = ρ′, Tr\Ci
τ = ci ∀i. (13)

The marginal-catalytic transformation was first introduced in the context of quantum thermody-
namics [51], and it was recently shown that an arbitrary state transformation is possible by a covariant
operation with a marginal catalyst [45]. The precise statement is as follows:

Lemma S.12 (Theorem 2 in Ref. [45]). For any two quantum states ξ and ρ′, and for any accuracy ε >
0, there exists a set of two-level catalytic systems C1, . . . , CN with full-rank qubit mixed states c1, . . . , cN
and a covariant operation Λ: S⊗C1⊗· · ·⊗CN → S′⊗C1⊗· · ·⊗CN such that Λ(ξ⊗c1⊗· · ·⊗cN ) = τ
with ∥TrC1,...,CN

[τ ]− ρ′∥1 < ε and Tr\Ci
[τ ] = ci for all i = 1, . . . , N .

Note that although the above statement is on the marginal-catalytic transformations with vanishing
error, as demonstrated soon after (Proposition. S.15) this can be strengthened into the form of the
exact marginal-catalytic transformations.

The framework of marginal-catalytic transformations comes with a less clear operational meaning
compared to the correlated catalyst, as the final catalyst cannot be reused indefinitely due to the
correlation among catalytic subsystems. Nevertheless, we show that the marginal-catalytic covariant
transformation constructed in Ref. [45] serves as an effective subroutine in our protocols.

The key property of marginal catalysts that lends themselves to useful subroutines is that, although
the marginal catalysts cannot be reused indefinitely for state transformation, they can still give some
operational advantage. It was shown that they are partially reusable, meaning that the catalyst allows
a larger number of transformations than the number of sets of catalysts provided. For brevity, we
denote a set C1, . . . , CN of catalytic systems and their initial states c1, . . . , cN by C and c, respectively.

Lemma S.13 (Supplemental Material of Ref. [45]). Let ξ and ρ′ be arbitrary states in systems S
and S′. For any accuracy ε > 0, let C and c be the sets of catalytic systems and states ensured

by Lemma S.12. Then, Nk sets of catalysts c⊗Nk

in C⊗Nk

can realize (k + 1)Nk marginal-catalytic

transformation from ξ to ρ′, i.e., there is a covariant operation Λ: S⊗(k+1)Nk⊗C⊗Nk → S′⊗(k+1)Nk⊗
C⊗Nk

such that

Λ(ξ⊗(k+1)Nk

⊗ c⊗Nk

) = τ, ∥Tr\Sj
[τ ]− ρ′∥1 < ε, Tr\Cij

[τ ] = ci ∀i (14)

for every 1 ≤ j ≤ (k+1)Nk. Here, Sj denotes the j th main system, and Cij refers to the i th catalyst
in the j th copy.

The idea is to reuse the marginal catalysts by recombining them in a way that the correlation
present in the final state does not affect the next round of transformation. Below we present a way of
such a recombination. We label Nk copies of catalysts Cj by a tuple of k integers (n1, n2, . . . , nk) with
ni ∈ {1, 2, . . . , N}. In the first step, we coordinate catalysts into Nk groups of C1, . . . , CN such that
catalysts in the same group have the same label (n1, n2, . . . , nk). Using these Nk sets of catalysts,
we have Nk conversions in this step. In the l-th step (2 ≤ l ≤ k + 1), we coordinate catalysts into
Nk groups of C1, . . . , CN in the following manner: N catalysts in the same group has the same labels
(n1, n2, . . . , nk) except for nl, and there exists an integer g such that the label nl with catalyst Cj

is written as nl = g + j mod N for all Cj . Using these Nk sets of catalysts, in each step we have
Nk conversions. It is easy to confirm that in any group all the catalysts have no correlation before
the catalytic transformation. Through the whole procedure, we have (k+1)Nk conversions. We refer
interested readers to the first section of the Supplemental Material of Ref. [45] for further details.
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We also introduce a useful lemma, which connects approximate transformations to exact transfor-
mations. The essential idea was shown by Wilming [52] for the catalytic entropy conjecture, and
following this we present a statement in a general form.

Lemma S.14 (Ref. [52]). We consider a quantum system equipped with the trace distance d(ρ, σ) :=
1
2∥ρ− σ∥1. Given a sequence of convex closed sets of quantum states {Sn}∞n=1 satisfying Sn ⊆ Sn+1,
let V be a set of states such that for any ε > 0 and any σ ∈ V there exist a sufficiently large N and
a state η ∈ SN such that d(σ, η) < ε. If κ is an interior state of V in terms of distance d, then there
exists an integer n such that κ ∈ Sn.

Let Sn be the set of exactly convertible states with parameter n (e.g., the number of copies and
the size of a catalyst), and let V be the set of approximately convertible states from ρ. Lemma S.14
suggests that if we can convert ρ to κ approximately and κ is an interior state of V , then we can
convert ρ to κ exactly. The condition of convexity is fulfilled if a classical mixture is a free operation
in the resource theory in consideration. This fact enables us to interpret results on approximate
transformations to exact transformations.

Proof of Lemma S.14. We prove it by contradiction. Suppose contrarily that κ ∈ V is an interior
state while it does not belong to S∞ := limn→∞ Sn.

Consider an open ball Bδ =
{
ρ
∣∣∣ ∥ρ− κ∥1 ≤ δ, ρ ≥ 0, Tr(ρ) = 1

}
with its center κ and radius δ

such that Bδ ⊆ V . By definition, there exists n such that for any η ∈ Bδ, Sn has a state ξ(η) ∈ Sn

satisfying ∥ξ(η) − η∥1 < δ/2. Since Sn is convex and κ /∈ Sn, there uniquely exists a state a ∈ S∞
closest to κ. Let ρ(t) := −(t − 1)a + tκ, t ≥ 1 be the set of states on the ray from κ along the line
going through a and κ. Since Tr(ρ(t)) = 1 for every t, ρ(t) is a quantum state if and only if ρ(t) ≥ 0.
We also have ∥ρ(t)− κ∥1 = (t− 1)∥a− κ∥1, which is continuous and increasing with t. Therefore, for
every δ′ < δ, there exists t′ ≥ 1 such that ∥ρ(t′)− κ∥1 = δ′ and ρ(t′) ∈ Bδ. Taking δ

′ = 2δ/3, we get

∥ρ(t′)− a∥ = t′∥a− κ∥1 ≥ (t′ − 1)∥a− κ∥1 = ∥ρ(t′)− κ∥1 = 2δ/3. (15)

We also note that

min
b∈Sn

∥ρ(t′)−b∥ = min
b∈Sn

∥−(t′−1)a+t′κ−b∥1 = t′ min
b∈Sn

∥∥∥κ−
[
(1− t′

−1
)a+ t′

−1
b
]∥∥∥

1
= t′∥κ−a∥1 (16)

where in the last equality, we used the fact that (1 − t′
−1

)a + t′
−1
b ∈ Sn due to the convexity of Sn

and the assumption that a is the closest state to κ and thus b = a achieves the minimum. Together
with the assumption of Sn that minb∈Sn

∥ρ(t′)− b∥ ≤ δ/2, we obtain

δ/2 ≥ min
b∈Sn

∥ρ(t′)− b∥ = ∥ρ(t′)− a∥ ≥ ∥ρ(t′)− κ∥1 = 2δ/3 (17)

which is a contradiction.

Applying Lemma S.14 to Lemma S.12, we have the following proposition, showing that, if the target
state is full rank, the marginal transformation can be made exact.

Proposition S.15. For any quantum state ξ and a full-rank state ρ′, there exists a set of two-level
catalytic systems C1, . . . , CN with full-rank mixed states c1, . . . , cN and a covariant operation Λ such
that Λ(ξ ⊗ c1 ⊗ · · · ⊗ cN ) = τ with TrC1,...,CN

[τ ] = ρ′ and Tr\Ci
[τ ] = ci for all i = 1, . . . , N .

We also show that an arbitrarily good qubit coherent state can be prepared from finite copies of
a general state ρ as long as it contains the mode of asymmetry for the qubit coherent state (recall
Definition S.5).

Lemma S.16. Let ρ be an arbitrary state and σ be an arbitrary two-level state such that D(σ) ⊆
D(ρ). Then, for every ε > 0, there exists a positive integer n and a covariant operation Λ such that
∥Λ(ρ⊗n)− σ∥1 < ε.
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Proof. For every ∆ ∈ D(ρ), one can transform ρ to a weakly coherent qubit state η with D(η) =
{0,±∆} by a covariant operation using the protocol in Ref. [45, Lemma 11 in Supplemental Material].
Let Λ1 be this covariant operation such that Λ1(ρ) = η. As pointed out in Ref. [40], the protocol
introduced in Ref. [53] allows one to transform many weakly coherent qubit states to one copy of a
good coherent state by a covariant operation. That is, for every ε′ > 0, there is a positive integer m
and a covariant operation Λ2 such that ∥Λ2(η

⊗m) − |+⟩⟨+|∥1 < ε′ where |+⟩ := 1√
2
(|0⟩ + |1⟩) is the

maximally coherent state with ∆ ∈ D(|+⟩⟨+|).
We now employ the fact that every full-rank qubit state σ can be prepared exactly by a covariant

operation from finite copies of |+⟩⟨+| defined in the same system. This is because the coherence
cost 1/R(|+⟩⟨+| → σ) is proportional to the ratio of the quantum Fisher information of σ to that
of |+⟩ [54], and |+⟩ has the largest quantum Fisher information in a two-level system, particularly
ensuring that the coherence cost is upper bounded by 1. Therefore, for every δ > 0 there is an integer
k′ and a covariant operation Λ̃3 such that ∥Λ̃3(|+⟩⟨+|⊗k′

) − σ⊗k′∥1 < δ. Taking the partial trace
other than the first subsystem and noting the data-processing inequality of the trace norm, we get
∥Λ′

3(|+⟩⟨+|⊗k′
)− σ∥1 < δ where Λ′

3 = Tr\1 ◦ Λ̃3 is also a covariant operation. We then note that this
applies to an arbitrary qubit state σ, which ensures the existence of the exact transformation that
prepares σ because of Lemma S.14. We let Λ3 be such a covariant operation satisfying Λ3(|+⟩⟨+|⊗k) =
σ for some integer k.
Then,

∥Λ3 ◦ Λ⊗k
2 ◦ Λ⊗km

1 (ρ⊗km)− σ∥1 ≤ ∥Λ3 ◦ Λ⊗k
2 (η⊗km)− Λ3(|+⟩⟨+|⊗k)∥1

≤ ∥
[
Λ2(η

⊗m)
]⊗k − |+⟩⟨+|⊗k∥1

< kε′

(18)

where in the last inequality we used ∥Λ2(η
⊗m) − |+⟩⟨+|∥1 ≤ ε′ and the following general inequality

satisfying for all states ρ1 and ρ2 and every integer n:

∥ρ⊗n
1 − ρ⊗n

2 ∥1 ≤ ∥ρ⊗n
1 − ρ2 ⊗ ρ⊗n−1

1 ∥1 + ∥ρ2 ⊗ ρ⊗n−1
1 − ρ⊗2

2 ⊗ ρ⊗n−2
1 ∥1 + · · ·+ ∥ρ⊗n−1

2 ⊗ ρ1 − ρ⊗n
2 ∥1

≤ n∥ρ1 − ρ2∥1.
(19)

Since ε′ in (18) can be taken as small as one wishes, the target error ε can be realized by choosing
ε′ = ε/k. Noting that Λ := Λ3 ◦ Λ⊗k

2 ◦ Λ⊗km
1 is also a covariant operation concludes the proof.

Using Lemma S.14, we can improve Lemma S.16 as the exact preparation of arbitrary full-rank final
states.

Lemma S.17. Let ρ be an arbitrary state and σ be an arbitrary two-level full-rank state such that
D(σ) ⊆ D(ρ). Then, there exists a positive integer n and a covariant operation Λ such that Λ(ρ⊗n) =
σ.

We are now in a position to present the proof of Theorem S.10.

Proof of Theorem S.10. We first construct an asymptotic conversion protocol whose transformation
rate is larger than any integer R without taking into account the small correlation condition, and then
demonstrate how to suppress correlation.
Let ρ be a state in S and ρ′ be a full-rank state in S′ such that C(ρ′) ⊆ C(ρ). We aim to construct

the catalysts c1, . . . , cN by a covariant operation from multiple (but finite) copies of the initial state ρ.
Lemma S.17 ensures that there exists {µi}Ni=1 such that ρ⊗µi is convertible to ci exactly by a covariant

operation. We write µ :=
∑N

i=1 µi. We remark that the exact preparation of the catalysts here is
essential to avoid the errors from accumulating during the multiple uses of the prepared catalysts
c1, . . . , cN .

We now construct the desired covariant operation as follows: We start with µNk copies of ρ. We
first convert µNk copies of ρ into Nk copies of c1 ⊗ · · · ⊗ cN by the above protocol. Then, using the
partial reusability of the marginal catalysts shown in Lemma S.13 and the exact marginal-catalytic

covariant transformation ensured by Proposition S.15, a set of free states ξ⊗(k+1)Nk

can be converted

into state Σ on S′⊗(k+1)Nk

such that its reduced state to any single copy i = 1, . . . , (k+1)Nk is equal
to ρ′ exactly (Tr\i[Σ] = ρ′ for all 1 ≤ i ≤ (k + 1)Nk). Overall, this protocol realizes the covariant
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operation that transforms ρ⊗n to m copies of ρ′ with n := µNk and m := (k + 1)Nk in the sense of
the marginal asymptotic conversion.
Since

m

n
=

(k + 1)Nk

µNk
=
k + 1

µ
(20)

can become arbitrarily large by taking a sufficiently large k, we get that any transformation rate R is
an achievable asymptotic exact marginal transformation rate.
We now demonstrate how to ensure that the correlation between a copy and the remainder of copies

is less than ε in the sense of trace distance. Let κ be a state such that (i) κ is ε′ close to a pure state
(i.e., there exists a pure state ψ such that ∥κ − ψ∥1 ≤ ε′), (ii) κ is convertible to ρ′ by a covariant
operation, (iii) C(κ) = C(ρ′). The existence of such κ is guaranteed by Lemma S.17 as follows. First,
if κ̃ satisfies (i) and (iii), then κ = κ̃⊗r with sufficiently large r also satisfies (i) with ε′ → rε′ and (iii),
as well as (ii) due to Lemma S.17. It therefore suffices to ensure the existence of such κ̃ satisfying
(i) and (iii) with replacing ε′ by ε′/r. Such a state for an arbitrary ε′ > 0 can be constructed by,
e.g., purifying ρ′ using the auxiliary system with a trivial Hamiltonian and applying the depolarizing
channel with sufficiently small noise strength.
We replace ρ′ in the above protocol by κ, and let Λ be the covariant operation converting ρ⊗n

to κ⊗m. Due to the condition (i), the correlation between state κ and other copies is bounded as
∥Λ(ρ⊗n)−κ⊗Tri[Λ(ρ

⊗n)]∥1 < 2ε′+
√
ε′/2 [47] for all i. Take small enough ε′ such that 2ε′+

√
ε′/2 < ε

and let κ be a state satisfying (i)–(iii) for this ε′. Let E be a covariant operation E(κ) = ρ′ ensured
by the condition (ii). Then, τ := E⊗m ◦ Λ(ρ⊗n) is the desired final state because

Tr\iτ = E(Tr\iΛ(ρ⊗n)) = E(κ) = ρ′ (21)

for all i, and

∥τ − ρ′ ⊗ Triτ∥1 = ∥E⊗m ◦ Λ(ρ⊗n)− E⊗m(κ⊗ TriΛ(ρ
⊗n)∥1

≤ ∥Λ(ρ⊗n)− κ⊗ TriΛ(ρ
⊗n)∥1

< ε

(22)

for all i, where we used the contractivity of the trace norm under E⊗m.

We remark that our protocol requires exact catalysts, not approximated ones, unlike the previous
result on entanglement [47], where the catalyst can be an approximated one. This difference comes
from the difference between a correlated single catalyst and multiple marginal catalysts. If we employ
a single correlated catalyst with some error, this error does not increase through the above process. On
the other hand, if we employ multiple marginal catalysts with some errors, these errors may increase
through the above process. To avoid this trouble, we should prepare catalysts without any small
errors.

II.C Consistency with zero coherence distillation rate

Theorem S.9 ensures that one can produce a state with an arbitrary size whose marginal is arbitrarily
close to a pure state—which includes the maximally coherent state |+⟩ = 1√

2
(|0⟩ + |1⟩)—with an

arbitrarily small correlation between one and the other subsystems. One may wonder how this would
be consistent with the vanishing asymptotic distillation rate R(ρ→ ϕ) = 0 for every full-rank state ρ
and pure coherent state ϕ [40], as it might appear that the final state with arbitrarily small correlation
should also be arbitrarily close to the tensor product of ϕ, leading to the contradiction with the zero
asymptotic distillation rate. Here, we show that these two results are consistent.
The key observation is that even if a state τm satisfies S′⊗m

with ∥Tr\iτm − ϕ∥1 < ε for all i and
∥τm−ϕ⊗Triτ∥1 < ε with small ε > 0, τm can generally be far from ϕ⊗m for large m. Here we bound
both the error in each subsystem and the amount of correlation by the same variable ε for notational
simplicity. We denote the distance between τm and ϕ⊗m by

∥τm − ϕ⊗m∥1 := f(m, ε). (23)
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Then, in order for {τm}m to be a valid family of states for the (standard) asymptotic transformation
by taking small ε, it is required that

lim
ε→0

lim
m→∞

f(m, ε) = 0. (24)

However, this requirement does not hold in general. For instance, let ϕ = |+⟩⟨+| and consider a class
of states defined by

τm = (1− δ)
[
(1− ε/2)|+⟩⟨+|+ ε

2
|−⟩⟨−|

]⊗m

+
δ

2
(|+⟩⟨+|⊗m + |−⟩⟨−|⊗m). (25)

This satisfies ∥Tr\iτm − |+⟩⟨+|∥1 ≤ ε and ∥τm − |+⟩⟨+| ⊗ Triτ∥1 ≤ ε for every i for sufficiently small
δ. On the other hand,

f(m, ε) = 2[1− (1− δ)(1− ε/2)m − δ/2]. (26)

which satisfies limε→0 limm→∞ f(m, ε) = 2(1− δ/2) > 0.
This example shows that the combination of “good local states” and “small correlation” does not

necessarily result in a “good global state” and ensures that Theorem S.9 is not in contradiction with
the zero asymptotic distillation rate. We remark that the above example may not be a general form
that can be obtained by our protocol. Nevertheless, this example is already sufficient to argue that
there is no definite inconsistency between our result and the zero asymptotic distillation rate.

II.D Consistency with asymmetry measure

Besides the zero asymptotic distillation rate, one might also find it strange that an arbitrary number
of highly coherent states can be prepared in every subsystem from the viewpoint of resource measures.
Theorem S.9 shows that from a state with an arbitrarily small amount of coherence, one could prepare
a state whose local state is arbitrarily close to a highly coherent state with an arbitrarily small
correlation. If we naively think that the small correlation would ensure that the total coherence is
approximately the sum of local asymmetry, this appears to lead to the contradiction.
To formalize this concern, consider a tensor-product additive asymmetry measure, i.e., an asym-

metry measure R satisfying R(⊗i ρi) =
∑

iR(ρi). The standard tensor-product additive asymmetry
measure includes quantum Fisher information [55] andWigner-Yanase skew information [56, 57], which
are in a family of additive asymmetry measures known as metric-adjusted skew informations [57, 58].
As in the previous subsection, let τm = Λ(ρ⊗n) be a state in S′⊗m

such that ∥Tr\iτm − ϕ∥1 < ε for
all i and ∥τm − ϕ⊗Triτ∥1 < ε for some pure coherent state ϕ. Using the tensor-product additivity of
R and the monotonicity of R under covariant operations, we get

R(ρ) =
1

n
R(ρ⊗n) ≥ 1

n
R(Λ(ρ⊗n)) =

1

n
R(τm). (27)

If R is also continuous with respect to the trace distance, Theorem S.9 claims that even for a state ρ
for which R(ρ) is arbitrarily close to 0, (27) holds for an arbitrarily large m and arbitrarily small ε for
a sufficiently large n. This appears a counterintuitive claim, and indeed, if τm had no correlation at all,
this would immediately meet the contradiction. This is because if τm = ⊗iρ

′
i for some coherent states

ρ′i close to ϕ, then tensor-product additivity of R would imply 1
nR(τm) = 1

n

∑m
i=1R(ρ

′
i) ∼ m

nR(ϕ),
which could be made arbitrarily large by taking large m.
The above concern is based on the naive observation that (1) τm should be close to ϕ⊗n, and (2)

R(ϕ⊗m) = mR(ϕ), therefore (3) R(τm) should be close to mR(ϕ), which might cause an inconsistency.
To see where this argument breaks down, let us consider the continuity of R. Let ρ1 and ρ2 be two
d-dimensional states and t := ∥ρ1 − ρ2∥1. The continuity can be formalized as

|R(ρ1)−R(ρ2)| ≤ g(d, t) (28)

where g is a continuous bounded function for t ∈ [0, 1] such that limt→0 g(d, t) = 0. Let us take
m = rn and tr,n,ε := ∥τrn − ϕ⊗rn∥1. Then, the tensor-product additivity and the continuity of R
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gives

R(ρ) ≥ 1

n
R(τm)

≥ rR(ϕ)− g(2rn, tr,n,ε)

n
.

(29)

This inequality prohibits the case of limε→0 limn→∞
g(2rn,tr,n,ε)

n = 0, because by taking sufficiently
small ε and sufficiently large n (that depends on the chosen ε), the right-hand side of (29) could
become arbitrarily close to rR(ϕ), which would violate (29) by taking large enough r.

To avoid limn→∞
g(2rn,tr,n,ε)

n = 0, the function g must scale with d at least as log d (i.e., linear in
n). If g grows faster than log d, then we get limn→∞ g(2rn, tr,n,ε)/n = ∞, making (29) consistent.
Therefore, the only case that the consistency with (29) might be in question is when g grows with log d
and gives g(2rn, tr,n,ε)/n =: h(tr,n,ε) satisfying limx→0 h(x) = 0. When this holds, the function R is
said to be asymptotically continuous [59]. In this case, the issue may arise if limε→0 limn→∞ tr,n,ε = 0
for an arbitrary τrn such that ∥Tr\iτrn − ϕ∥1 ≤ ε for all i and ∥τrn − ϕ⊗Triτrn∥1 ≤ ε. However, this
is not the case in general as we show in the previous section with the example in (25). This confirms
that the apparent inconsistency with additive asymmetry measures actually does not arise.
In fact, the above argument can be employed to obtain a general continuity property of weakly

tensor-product additive functions, which may be of independent interest. Let f be a map from
quantum states to real numbers satisfying |f(ρ1)−f(ρ2)| ≤ g(d, t) for arbitrary d-dimensional quantum
states ρ1 and ρ2, where t = ∥ρ1 − ρ2∥1 and g is a continuous bounded function for t ∈ [0, 1] such that

limt→0 g(d, t) = 0. We say that f is more than asymptotically continuous [60] if limd→∞
g(d,td)
log d = 0

for an arbitrary sequence {td}d such that td ∈ [0, 1].

Proposition S.18. Let f be an arbitrary non-constant map from quantum states to real numbers that
is weakly tensor-product additive, i.e., f(ρ⊗n) = nf(ρ) for an arbitrary state ρ and a positive integer
n. Then, f cannot be “more than asymptotically continuous”.

Proof. Since f is not a constant map, there exist states ρ and σ such that f(ρ) < f(σ). Let d be the
dimension of ρ and σ, and let tn := ∥ρ⊗n − σ⊗n∥1. Then, we get

f(ρ) =
1

n
f(ρ⊗n)

≥ 1

n
f(σ⊗n)− g(dn, tn)

n

= f(σ)− g(dn, tn)

n

(30)

where the first and the last equalities are due to the weak tensor-product additivity. If f is more than
asymptotically continuous, we have limn→∞ g(dn, tn)/n = 0. This then implies f(ρ) ≥ f(σ) by taking
the n→ ∞ limit on both sides, which is a contradiction.

We remark that Ref. [60] showed—with a different technique—that tensor-product additive, permu-
tationally invariant non-constant functions cannot be more than asymptotically continuous. Propo-
sition S.18 extends it to all weakly tensor-product additive non-constant functions, which may not
necessarily be permutationally invariant.

II.E No-go theorem for asymptotic marginal transformation (Theorem 1)

Theorem S.9 states that if C(ρ′) ⊆ C(ρ) is satisfied, the asymptotic marginal transformation rate
R̃(ρ → ρ′) becomes unbounded. Here, we show its opposite: C(ρ′) ⊈ C(ρ) implies R̃(ρ → ρ′) = 0,
showing that the condition in terms of the set of resonant coherent modes serves as a sharp threshold
between the infinite and zero transformation rates.

Theorem S.19 (The second part of Theorem 1 in the main text). If C(ρ′) ̸⊆ C(ρ), even a single copy
of ρ′ cannot be prepared from any number of copies of ρ with arbitrarily small error, which particularly
implies that the asymptotic marginal transformation rate becomes zero: R̃(ρ→ ρ′) = 0.
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This result can be formalized as follows.

Theorem S.20. Suppose two states ρ and ρ′ satisfy C(ρ′) ⊈ C(ρ). Then, there exists ε > 0 such that
for every sequence {Λn}n of covariant operations, ∥Λn(ρ

⊗n)− ρ′∥1 > ε holds for all n.

The main idea behind the proof is that the modes of asymmetry defined in Definition S.5 cannot
be created by a covariant operation [44].

Proof of Theorem S.20. Suppose, to the contrary, that ρ and ρ′ satisfy C(ρ′) ̸⊆ C(ρ) but there exists a
series {Λn}n of covariant operations such that for every ε > 0, there is a sufficiently large n satisfying
∥Λn(ρ

⊗n)− ρ′∥1 < ε.
Take sufficiently small ε > 0 such that C(ρ′) ⊆ C (Λn(ρ

⊗n)). There always exists such ε because
each entry of the density matrix is continuous with respect to the change in the density matrix with
trace distance, and thus every non-zero mode remains as a non-zero mode with a sufficiently small
perturbation (while zero modes could turn into non-zero modes under arbitrarily small perturbation.)

This means that, together with the assumption C(ρ′) ̸⊆ C(ρ), there exists n and a covariant operation
Λn such that C (Λn(ρ

⊗n)) ⊈ C(ρ). By Definitions S.5 and S.6 of modes of asymmetry and sets of
resonant coherent modes, D(ρ1) ⊆ C(ρ2) implies C(ρ1) ⊆ C(ρ2) for arbitrary states ρ1 and ρ2. This
observation leads to D (Λn(ρ

⊗n)) ⊈ C(ρ), because if D (Λn(ρ
⊗n)) ⊆ C(ρ) held contrarily to our claim,

then C (Λn(ρ
⊗n)) ⊆ C(ρ) would also hold, contradicting our previous finding C (Λn(ρ

⊗n)) ⊈ C(ρ).
Notice that

D(ρ⊗m) =

x ∣∣∣ x =
∑

(i,j)∈M

nij∆ij : nij ∈ Z,
∑
(i,j)

|nij | ≤ m

 ⊆ C(ρ) (31)

for any m. This, together with D(Λn(ρ
⊗n)) ⊈ C(ρ), implies D (Λn(ρ

⊗n)) ⊈ D(ρ⊗n). However, this
contradicts the fact that the modes of asymmetry cannot be created by a covariant operation [44],
i.e., D(Λ(ρ)) ⊆ D(ρ) for every state ρ and covariant operation Λ.

We also obtain the no-go theorem for asymptotic exact marginal transformation. The case when
C(ρ′) ̸⊆ C(ρ) can be shown as a direct consequence of Theorem S.20. We can also add another
constraint when ρ is pure.

Theorem S.21. If either (1) C(ρ′) ̸⊆ C(ρ) or (2) ρ′ is pure coherent state and ρ is full rank, there is
no covariant operation Λ such that Λ(ρ⊗n) = ρ′ for any integer n. As a result, we get R̃0(ρ→ ρ′) = 0

Proof. Theorem S.20 implies the part for the case when C(ρ′) ̸⊆ C(ρ). The case when ρ′ is a pure
coherent state and ρ is full rank is prohibited by the fact that pure coherent states have the diverging
purity of coherence [40] while full rank states have the finite purity of coherence.

Appendix III: Catalytic transformation

III.A Preliminaries

Another approach to enhance the desired transformation is to use an auxiliary state that aids the
transformation. In particular, when the auxiliary state is returned to the original form, it is called a
catalyst. The most direct framework for such a transformation is to transform a state ρ⊗c to the final
state ρ′ ⊗ c, where the catalyst c can be reused for another transformation. We particularly call this
product catalyst, as the transformation keeps the product structure in the final state. It turned out
that the product catalyst is able to enhance the feasible transformation in various settings, such as
entanglement transformation [61–63], quantum thermodynamics [12], speakable coherence [64], and
magic state transformation in the context of fault-tolerant quantum computation [65].
If one focuses on the infinite reusability of the catalyst, the above transformation framework can be

extended. After one round of the transformation, if it is promised that a fresh initial state (uncorrelated
with the previous final state) is prepared for the next transformation, what only matters for the next
transformation is the reduced state in the catalytic system — as long as the reduced state in the
catalytic system remains intact from the initial form, it can still be reused indefinitely. This is called
correlated catalyst, which we formally define as follows.
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Definition S.22 (Correlated-catalytic transformation). We say that state ρ in system S is convertible
to state ρ′ in system S′ by a correlated-catalytic transformation if there exists a finite-dimensional
catalytic system C with a state c and a free operation Λ ∈ O : S ⊗ C → S′ ⊗ C such that

τ = Λ(ρ⊗ c), TrC [τ ] = ρ′, TrS′ [τ ] = c. (32)

The correlated-catalytic transformation has been proven to be effective in several physical settings.
A prominent example is quantum thermodynamics, where a correlated catalyst enables us to recover
the second law of thermodynamics in a conventional form [66, 67]. It has also been discovered that
similar observations can be made to the entanglement transformation [68, 69] and a general class of
resource theories [45].
However, when it comes to the covariant operations, several previous works indicated that the use

of a catalyst may not help much for the coherence transformation. First, it is known that a pure
product catalyst does not enhance the transformation at all in the covariant operations [70, 71]. In
addition, as for the correlated catalyst, it was shown that one could not create any coherence from
an incoherent state with a correlated-catalytic covariant operation, i.e., if ρ is incoherent, then so is
ρ′ [72, 73] (see Theorem. S.25 for its precise statement).

III.B Arbitrary coherence transformation with correlated catalysts (Theorem 2)

Contrarily to the aforementioned implications, we here show that correlated catalysts can provide a
dramatic operational power, and the limitations imposed on the correlated-catalytic covariant trans-
formation shown in Refs. [72, 73] (coherence no-broadcasting theorem) is exceptional for the incoherent
input states.
There exists a standard technique to reduce asymptotic transformations to correlated-catalytic

transformations. This technique for non-exact asymptotic transformations was first discussed by
Shiraishi and Sagawa [67]. This paper has commented its general applicability, and a number of
papers have applied this technique to various resource theories including entropy conjecture [74],
entanglement [47, 69], and teleportation [68]. The statement in a general form is presented by the
authors (Proposition 4 in Ref. [45]).
For our purpose, we here express a slightly generalized version of the statement. The proof is the

same as that in Ref. [45] and was employed in Ref. [47, 52].

Proposition S.23 (Slight generalization of Ref. [45]). Consider a resource theory such that a set of
free operations includes the relabeling of a classical register and the conditioning of free operations by
a classical register. Then, if there is a free transformation Λ : S⊗n → S⊗n which maps ρ⊗n to τ with
σ := 1

n

∑n
i=1 Tr\i[τ ], then there exists a correlated-catalytic free transformation mapping ρ to σ.

We here assume, without loss of generality, that the initial state ρ and the final state σ are states
in the same system S. This is because if the system S′ for the final state was different from the input
system S, one could consider an enlarged system S ⊕ S′ as its input and output system and simply
call it S. This modification is harmless since an embedding process is a covariant operation and we
can make possible errors in the final state inside the S′ part.
For completeness, we here present the construction of the desired correlated-catalytic transforma-

tions. Suppose that a covariant operation E : S⊗n → S⊗n converts ρ⊗n to τ with σ := 1
n

∑n
i=1 Tr\i[τ ].

Then, defining the reduced state of copies from the first copy to the i-th copy as

τi := TrCi+1,...,Cn [τ ] ∈ S⊗i, (33)

we construct the catalytic system C = S⊗(n−1) ⊗R with state c as

c :=
1

n

n∑
k=1

ρ⊗(k−1) ⊗ τn−k ⊗ |k⟩ ⟨k|R . (34)

Here R is a classical register system spanned by {|k⟩}nk=1. The initial state of the composite system
is written as

ρ⊗ c =
1

n

n∑
k=1

ρ⊗k ⊗ τn−k ⊗ |k⟩ ⟨k|R . (35)
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For later discussion, we say that the first copy corresponds to system S, and the latter k − 1 copies
correspond to catalyst C.
Our free operation consists of two steps. In the first step, we apply Λ if the classical register is

|n⟩ ⟨n| and leave the system otherwise. The resulting state is

1

n

(
n−1∑
k=1

ρ⊗k ⊗ τn−k ⊗ |k⟩ ⟨k|R + τ ⊗ |n⟩ ⟨n|R

)
. (36)

In the second step, we relabel the classical register as k → k+1 for k ̸= n and n→ 1, which results in

1

n

n∑
k=1

ρ⊗(k−1) ⊗ τn−k+1 ⊗ |k⟩ ⟨k|R . (37)

Finally, by regarding the first n − 1 copies as catalyst C and the last copy as system S, the state of
the catalyst returns to its own state:

Trn

[
1

n

n∑
k=1

ρ⊗(k−1) ⊗ τn−k+1 ⊗ |k⟩ ⟨k|R

]
=

1

n

n∑
k=1

ρ⊗(k−1) ⊗ Trn[τn−k+1]⊗ |k⟩ ⟨k|R

=
1

n

n∑
k=1

ρ⊗(k−1) ⊗ τn−k ⊗ |k⟩ ⟨k|R

= c,

(38)

and the state of the system is σ:

Tr\n,R

[
1

n

n∑
k=1

ρ⊗(k−1) ⊗ τn−k+1 ⊗ |k⟩ ⟨k|R

]
=

1

n

n∑
k=1

Tr\n[τn−k+1] =
1

n

n∑
k=1

Tr\k[τ ] = σ. (39)

Now we state our second main result on correlated-catalytic transformations, stating that any
coherent state is convertible to any full-rank state with a correlated catalyst.

Theorem S.24 (Theorem 2 in the main text). Let ρ and ρ′ be arbitrary states such that C(ρ′) ⊆ C(ρ).
Then, for any accuracy δ > 0 and correlation strength ε > 0, there exists a finite-dimensional catalyst
c and a covariant operation Λ such that

Λ(ρ⊗ c) = τ, ∥TrC [τ ]− ρ′∥1 < δ, TrS [τ ] = c, ∥τ − ρ′ ⊗ c∥1 < ε. (40)

Moreover, if ρ′ is full rank, the transformation can be made exact, i.e., TrC [τ ] = ρ′.

Proof. If we do not require the smallness of correlation, this is a direct consequence of Theorem S.10
and Proposition S.23. Since one can let the system for the classical register come with the trivial
Hamiltonian, in which case relabeling of the classical register is a covariant operation, Proposition S.23
can be applied to the case of covariant operations. Theorem S.10 then implies that the exact catalytic
transformation is possible for a full-rank target state ρ′. Since the set of full-rank states is dense in
the state space, for every non-full rank state ρ′ and every δ > 0, there exists a full-rank state that is
δ-close to ρ′, which shows the statement in the theorem.

To make the correlation arbitrarily small, we employ the trick that has already been used in the
proof of Theorem S.10. Let κ be a state such that (i) κ is ε′ close to a pure state (i.e., there exists
a pure state ψ such that ∥κ − ψ∥1 ≤ ε′), (ii) κ is convertible to ρ′ by a covariant operation, (iii)
C(κ) = C(ρ′). Applying Proposition S.23 to the marginal-asymptotic transformation from ρ to κ with
transformation rate R = 1 ensured by Theorem S.10, we obtain a correlated-catalytic transformation
from ρ to κ. By taking sufficiently small ε′ in the condition (i), the correlation between state κ and
the catalyst is bounded from above by ε, which means that τ ′ = Λ(ρ⊗ c) satisfies ∥τ ′ − κ⊗ c∥1 < ε.
Finally, applying a covariant operation that transforms κ to ρ′, we arrive at the desired correlated-
catalytic transformation with the correlation less than ε. Here, we used the fact that an operation
acting on only the system (not on the catalyst) does not increase the correlation between the system
and the catalyst.
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The anomalous power of correlated-catalytic transformations for a two-level system was first argued
by Ref. [71], while as pointed by Ref. [45], there was a gap in their proof. The same paper [45] con-
jectured that the condition C(ρ′) ⊆ C(ρ) would be the necessary and sufficient condition for arbitrary
amplification of coherence with a correlated catalyst. Theorem S.24 solves the sufficient part of this
conjecture, together with the unproved claim in Ref. [71], in the affirmative. In the next section, we
discuss the necessary part of this conjecture and present the significant step toward the full resolution
of this problem.

III.C Mode no-broadcasting (Theorem 3)

We here investigate the limitation of correlated-catalytic transformations with covariant operations.
We first describe an important result known as the coherence no-broadcasting theorem found by
Lostaglio and Müller [72] and Marvian and Spekkens [73] independently.

Theorem S.25 (Coherence no-broadcasting [72, 73]). Let ρ be an incoherent state on system S.
Consider a correlated-catalytic transformation from ρ to ρ′ by a covariant operation Λ on SC with
catalyst C: TrS [Λ(ρ ⊗ c)] = c. Then, the final state of the system ρ′ = TrC [Λ(ρ ⊗ c)] is still an
incoherent state.

This theorem applies only when an initial state of the system is completely incoherent. However,
it is highly plausible that even if an initial state has some coherence on some modes, this coherence
provides no advantage to create coherence on a mode that is only irrationally related to theirs. This
intuition is indeed true, and we can prove the following theorem, which is an extension of the above
coherence no-broadcasting theorem to the level of each mode. To state our finding, we slightly extend
the definition of a set of resonant coherent modes.
For a given set S of real numbers, we say that a real number x can be written by a rational-linear

combination of the elements in S if there exists a set {aj}j of rational numbers such that x =
∑

j ajsj
for elements sj ∈ S. We then define C′(ρ) as the set of all real numbers that can be written by a
rational linear combination of the set D(ρ) of modes of asymmetry defined in Definition S.5.

Definition S.26 (Set of rational coherent modes). We define a set of rational coherence modes
denoted by C′(ρ) as rational-linear combinations of non-zero coherent modes of ρ:

C′(ρ) :=

x ∣∣∣ x =
∑

∆∈D(ρ)

a∆∆ : a∆ ∈ Q

 . (41)

We then show the following no-go theorem.

Theorem S.27 (Theorem 3 in the main text: Mode no-broadcasting (weak version)). Consider a
correlated-catalytic transformation from ρ to ρ′ through a covariant operation Λ on SC with catalyst
C: TrS [Λ(ρ ⊗ c)] = c. Then, the final state of the system ρ′ = TrC [Λ(ρ ⊗ c)] has no coherence on a
mode that is only irrationally related to coherent modes of ρ, i.e., C′(ρ′) ⊆ C′(ρ).

Namely, if C′(ρ′) ⊈ C′(ρ), then no correlated-catalytic transformation maps ρ to ρ′.
To show this, we first remark that the input system S and the output system S′ of a covariant

operation can generally be different. However, as pointed out in Ref. [75], one can model such a trans-
formation with another covariant operation with the same input and output systems by considering
an extended space Hin ⊕Hout, where Hin,out are the Hilbert spaces underlying the systems S and S′

respectively. Therefore, we consider S as the system on the space that is already extended in this way
and focus on a covariant operation such that SC is its input and output space.

Our proof of Theorem S.27 is based on the proof by contradiction. We suppose contrarily that
there exists a correlated-catalytic transformation from ρ to ρ′ despite C′(ρ′) ⊈ C′(ρ). Our goal is to
construct a protocol violating the coherence no-broadcasting theorem.

To deal with any system in a unified framework, we embed the main and the catalytic systems in
a product of ladder systems whose energy levels form an infinite ladder.

Definition S.28 (Ladder system). A ladder system with energy interval ∆ denoted by L(∆) has
states labeled by two integers (n, a) with n ∈ Z and a ∈ N. The state |n, a⟩ is an energy eigenstate
with energy n∆. The label a distinguishes degenerate energy eigenstates.
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Suppose that the main system S and catalytic system C can be embedded into the collection
of the ladder systems. We consider this extended ladder system as our system S and write it as
S = LS(∆1) ⊗ LS(∆2) ⊗ · · · =: LS(∆) with abbreviation ∆ = (∆1,∆2, . . .). Similarly, we set the
catalytic system as C = LC(∆). For later convenience, we write a subsystem whose energy interval
is multiples of ∆i as X(∆i) := LS(∆i)⊗ LC(∆i). We also denote by X(∆) := LS(∆)⊗ LC(∆).
We remark that this embedding is always possible when all energies for S and C can be written

as integer-linear combinations of ∆. For instance, suppose that an energy E for (either the main
or catalytic) system is written as E =

∑
j nj∆j for some integers {nj}j and elements {∆j}j of

∆. Then, the energy eigenstates |E,α⟩ (where α distinguishes the degeneracy) can be mapped as
|E,α⟩ → ⊗j |nj , α⟩∆j

where |nj , α⟩∆j
is an energy eigenstate in L(∆j). By construction, ⊗j |nj , α⟩∆j

is an energy eigenstate of the extended ladder system with energy
∑

j nj∆j .
In the following, we say that a set S is rational-linearly independent if, for all elements xi ∈ S,

there is no set {aj}j of rational numbers such that xi =
∑

j ̸=i ajxj . Our key observation is that if a
covariant operation on X(∆) exists and all ∆ is rational-linearly independent, then the value of ∆ is
in fact irrelevant. To describe this, we denote by ρ[∆] a quantum state on S = LS(∆) whose density
matrix is ρ. Similarly, we denote by c[∆] and τ [∆] quantum states on C = LC(∆) and SC = X(∆),
respectively.

Lemma S.29. Let ∆1,∆2, . . . be energy intervals that are rational-linearly independent. Suppose that
a state τ [∆] on SC = X(∆) is convertible to τ ′[∆] on SC by a covariant operation. Then, for any
∆′ state τ [∆′] on X(∆′) is also convertible to τ ′[∆′] on X(∆′) by a covariant operation.

Proof. By definition, a covariant operation Λ on SC can be expressed by using an auxiliary system
A = LA(∆) with its incoherent state η as

Λ(τ) = TrA′ [U(τ ⊗ η)U†], (42)

where U is an energy-conserving unitary on SCA. Owing to the energy conservation and rational-
linear independence of energy intervals, energy change in S or C occurs only in each LS(∆i) ⊗
LC(∆i) ⊗ LA(∆i), since the energy change with a multiple of ∆i cannot be compensated by any
rational-linear combination of ∆j ’s with j ̸= i. In other words, using a set of operators {Kj

i }j acting
on LS(∆i)⊗ LC(∆i)⊗ LA(∆i), any energy-conserving unitary U can be expressed in the form of

U =
∑
j

⊗
i

Kj
i (43)

with

[Kj
i , HSCA(∆i)] = 0 (44)

for any i and j. Here, HSCA(∆i) is a Hamiltonian on LS(∆i)⊗ LC(∆i)⊗ LA(∆i).
As seen from Eq. (43), U conserves energy regardless of the value of ∆i’s. This directly implies that

the same U for ∆′ with the initial state of A as η[∆′] serves as the desired covariant operation.

We are now in a position to prove Theorem S.27.

Proof of Theorem S.27. Let ρ and ρ′ be states on the system S, and suppose C′(ρ′) ̸⊆ C′(ρ). Then,
there exists a mode in ρ′ that cannot be written by a rational-linear combination of the modes in ρ.
Let ∆0 be the energy interval for such a mode. We show that one can construct a set ∆ of intervals
that embeds SC and would lead to the contradiction with coherence no-broadcasting theorem.
To construct the desired ∆, we start with ∆ = {∆0} and add elements to ∆ step by step. Let D(ρ)

be a set of modes where ρ does not have coherence, which is a complement of a set D(ρ) of coherent
modes. Let ∆i(ρ) be the i th element in D(ρ) (with an arbitrary order). We run the following
procedure.

(i) If ∆i(ρ) cannot be written by a rational-linear combination of the elements already in ∆, add
∆i(ρ) to ∆. On the other hand, if ∆i(ρ) =

∑
j

mj

nj
∆j for ∆j ∈ ∆ and some integers mj and nj ,

we redefine all elements ∆ ∈ ∆ as ∆ → ∆/
∏

j nj , while not adding ∆i(ρ) to ∆. We sequentially
apply this procedure for i = 1, 2, . . . |D(ρ)|.
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(ii) We then apply the same procedure for all incoherent modes in D(ρ). Namely, if an incoherent
mode cannot be written as a rational-linear combination of the elements already in ∆, we add
the incoherent mode into ∆. Otherwise, we redefine the elements in ∆ by dividing them by
some integer.

(iii) We apply the same procedure for energy intervals of the catalytic system C.

By construction, the resulting set ∆ satisfies that (1) all energies in S and C can be written as an
integer-linear combination of the elements in ∆, and thus SC can be embedded in LS(∆) ⊗ LC(∆)
(2) ∆ is rational-linearly independent (3) no combination of ∆0 and other modes in ∆ results in a
coherent mode of ρ. The condition (3) is confirmed as follows: If a combination of ∆0 and other modes
in ∆ results in a coherent mode of ρ, one could write ∆0 as a rational-linear combination of modes in
D(ρ), which would contradict the assumption that ∆0 ̸∈ C′(ρ). A remarkable point of this construction
lies in the fact that defining ∆̃ := ∆ \ {∆0} so that ∆ = {∆0, ∆̃}, any state ρ on LS(∆0) ⊗ LS(∆̃)
which is incoherent on LS(∆0) (i.e., ∆0 ̸∈ C′(ρ)) can be expressed as ρ =

∑
i,α,α′ pi|i, α⟩⟨i, α′|∆0

⊗ σi,
since the coefficient of |i, α⟩⟨j, α′|∆0

terms with i ̸= j should be zero due to absence of coherence on
LS(∆0). Here, σi are states on LS(∆̃) and pi are nonnegative coefficients satisfying

∑
i pi = 1.

Then, suppose contrarily that a covariant operation Λ on SC converts Λ(ρ⊗ c) = τ with TrS [τ ] = c
and TrC [τ ] has non-zero coherence for the mode with energy interval ∆0. This implies that the
reduced state of TrC [τ ] on LS(∆0) has non-zero coherence. We aim to show that this contradicts the
coherence no-broadcasting theorem.

To this end, we introduce a method of complete degeneration. By setting ∆′ = {∆0,0} in
Lemma S.29, we have a correlated-catalytic covariant transformation from ρ[{∆0,0}] to ρ′[{∆0,0}]
with a catalyst c[{∆0,0}]. Remarkably, the form ρ =

∑
i,α,α′ pi|i, α⟩⟨i, α′|∆0

⊗ σi and the fact that
LS(0) has a single energy with fully degenerate energy eigenstates—hence no coherence in any state—
the initial state of the system ρ[{∆0,0}] is an incoherent state. On the other hand, the final state of
the system, ρ′[{∆0,0}] has non-zero coherence in LS(∆0). In summary, an incoherent state ρ[{∆0,0}]
is converted into a coherent state ρ′[{∆0,0}] by a covariant operation with a correlated catalyst, which
contradicts the coherence no-broadcasting theorem.

Although we do not have a proof at present, we expect that the condition C′(ρ′) ⊈ C′(ρ) in our
mode no–broadcasting theorem can be lifted to C(ρ′) ⊈ C(ρ).

Conjecture S.30 (Mode no-broadcasting (strong version)). Consider a correlated-catalytic transfor-
mation from ρ to ρ′ by a covariant operation Λ with a catalyst c: TrS [Λ(ρ⊗ c)] = c. Then, the final
state of the system ρ′ = TrC [Λ(ρ⊗ c)] satisfies C(ρ′) ⊆ C(ρ).

The nontrivial part of showing the conjecture is to rule out the possibility of creating non-zero coher-
ence from the coherence on another mode that is rationally related. We leave a thorough investigation
for future work.

Appendix IV: Asymptotic coherence manipulation with correlated catalyst

The power of correlated catalyst has mainly been considered in the context of enhancing single-shot
transformations, i.e., whether a catalyst could perform the transformation from a single copy of ρ to
a single copy of ρ′ that is not realizable without the help of catalysts.

An interesting—yet still much unexplored—question is whether correlated catalysts could enhance
the asymptotic transformation rate by using correlated catalysts alongside the asymptotic transforma-
tion. This question was recently raised and studied in the context of entanglement distillation [47, 76].
Here, let us formally introduce relevant quantities.

Definition S.31 (Asymptotic correlated-catalytic transformation rate). Let ρ and ρ′ be states on
systems S and S′. We say that the rate r is achievable in asymptotic correlated-catalytic transforma-
tion if there is a series {cn}n of finite-dimensional states in some systems {Cn}n and a series {Λn}n
of free operations with Λn : S⊗n ⊗Cn → S′⊗⌊rn⌋ ⊗Cn such that for any ε > 0 there exists sufficiently
large N and for n > N

∥TrCn
Λn(ρ

⊗n ⊗ cn)− ρ′
⊗⌊rn⌋∥1 < ε, Tr\Cn

Λn(ρ
⊗n ⊗ cn) = cn (45)
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is satisfied. The asymptotic correlated-catalytic transformation rate Rcc(ρ→ ρ′) is the supremum over
the achievable rates.

Analogously to the case of other asymptotic transformations, we can also introduce the asymptotic
exact rate.

Definition S.32 (Asymptotic exact correlated-catalytic transformation rate). Let ρ and ρ′ be states
on systems S and S′. We say that the rate r is achievable in asymptotic exact correlated-catalytic
transformation if there is a series {cn}n of finite-dimensional states in some systems {Cn}n and a
series {Λn}n of free operations with Λn : S⊗n ⊗Cn → S′⊗⌊rn⌋ ⊗Cn such that there exists sufficiently
large N and for n > N

TrCn
Λn(ρ

⊗n ⊗ cn) =ρ
′⊗⌊rn⌋

Tr\Cn
Λn(ρ

⊗n ⊗ cn) =cn.
(46)

The asymptotic exact correlated-catalytic transformation rate R0
cc(ρ → ρ′) is the supremum over the

achievable rates.

In the context of entanglement distillation, it was found that correlated catalysts cannot enable
non-zero distillation rate for positive-partial-transpose (PPT) entangled states [47] or cannot increase
the distillation rates for distillable entangled states [76]. Ref. [76] also showed that, in the setting
of speakable coherence [42]—related but different framework from that for superposition of energy
eigenstates, which we discussed in this article—distillable coherence or coherence cost does not change
with the help of correlated catalysts. It was then proposed as an open problem whether correlated
catalysts could ever improve asymptotic transformation rates in any physical setting.

Let us now consider our setting of coherence distillation with covariant operations. Recall that the
standard asymptotic rate R(ρ → ϕ) of coherence distillation by covariant operations is zero for all
full-rank state ρ and pure state ϕ (Theorem S.8). This shows that all full-rank states are “bound
coherent” states analogous to bound entanglement in the resource theory of entanglement, and the
corresponding question is whether correlated catalysts could improve this rate, i.e., whether it is
possible to obtain Rcc(ρ→ ϕ) > 0. Our results answer this question in the most drastic way.

Corollary S.33. Let ρ be a state in S and ρ′ be a state in S′ such that C(ρ′) ⊆ C(ρ). Then,
Rcc(ρ → ρ′) diverges. Moreover, if ρ′ is full rank, R0

cc(ρ → ρ′) also diverges. In both cases, the
correlation between the main and catalytic systems can be made arbitrarily small.

Proof. This is a direct consequence of Theorem S.24 by taking ρ⊗n as the initial state and ρ′
⊗Rn

as
the target state for an arbitrary R. The condition in Theorem S.24 is satisfied because C(σ⊗m) = C(σ)
for every state σ and integer m.

Appendix V: Extension to general resource theories

V.A Asymptotic-marginal and correlated-catalytic free transformation

The arguments to prove Theorems S.10 and S.24 provide a systematic way of constructing
asymptotic-marginal and correlated-catalytic transformations from a marginal catalytic transforma-
tion (recall its definition in Definition S.11). Notably, what we have employed is only the afore-
mentioned general properties, and other specific properties of quantum coherence are not utilized.
Therefore, these results can directly be extended to general resource theories. We omit the proofs
because they are essentially the same as those for Theorems S.10 and S.24.

Theorem S.34. Consider a resource theory with set O of free operations. Let ρ and ρ′ be arbitrary
states on S and S′. Suppose that ρ can be transformed to ρ′ by marginal-catalytic free transformation,
i.e., there exist catalytic systems C1, . . . , CN with state c1, . . . , cN and a free operation Λ ∈ O :
S⊗C1⊗ · · ·⊗CN → S′⊗C1⊗ · · ·⊗CN such that τ = Λ(ρ⊗ c1⊗ · · ·⊗ cN ) satisfies TrC1,...,CN

[τ ] = ρ′

and Tr\Ci
[τ ] = ci for any 1 ≤ i ≤ N . Suppose also that there exists a free operation E ∈ O : S⊗m →

C1 ⊗ · · · ⊗ CN such that E(ρ⊗m) = c1 ⊗ · · · ⊗ cN for some integer m.
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Then, for any δ > 0, there exist sufficiently large integers n and m with m
n > 1 − δ and a free

operation K ∈ O on S⊗n → S′⊗m such that

Tr\i[K(ρ⊗n)] = ρ′ (47)

for any 1 ≤ i ≤ m.

Theorem S.35. Consider a resource theory whose free operations include the relabeling of classical
registers and free operations conditioned by classical labels. Let ρ and ρ′ be arbitrary states on S and
S′ such that ρ can be transformed by marginal-catalytic free transformation. Suppose also that there
exists a free operation E : S⊗m → C1 ⊗ · · · ⊗ CN such that E(ρ⊗m) = c1 ⊗ · · · ⊗ cN for some integer
m. Then, there exists a finite-dimensional catalytic system C, its state c, and a free operation K on
SC such that

K(ρ⊗ c) = τ, TrC [τ ] = ρ′, TrS [τ ] = c. (48)

V.B Restrictions imposed by resource measures

Theorems S.9 and S.24 appear highly anomalous compared to results in other resource theories.
One may wonder why such apparent amplification enabled by correlation is not seen in other resource
theories. To elucidate the specialty of (unspeakable) quantum coherence, we see these phenomena
from the viewpoint of resource measures.
To this end, we recall the limitations imposed on correlated and marginal catalytic transformations.

Proposition S.36 (Proposition 3 of Ref. [45]). Let R be a resource measure that is tensor-product
additive and superadditive. Then, R(ρ) ≥ R(ρ′) holds if ρ is convertible to ρ′ by a correlated-catalytic
or a marginal-catalytic free transformation.

Here, a resource measureR is tensor-product additive ifR(ρ⊗σ) = R(ρ)+R(σ), and is superadditive
if a state τ on a composite system AB satisfies R(τ) ≥ R(TrA[τ ])+R(TrB [τ ]). This theorem directly
implies that the existence of even a single resource measure satisfying the above conditions and the
nontriviality, i.e., there exist two states ρ and ρ′ such that 0 < R(ρ) < R(ρ′), prohibits arbitrary state
conversions by a correlated-catalytic free transformation, since conversion ρ → ρ′ with R(ρ) < R(ρ′)
is impossible.
The restriction on the asymptotic marginal transformation is obtained in a similar manner.

Proposition S.37. Let R be a resource measure that is tensor-product additive and superadditive.
Then, R(ρ) ≥ R̃0(ρ→ ρ′)R(ρ′) holds.

Proof. By definition of the asymptotic exact marginal transformation rate, for every δ > 0, there exists

a sufficiently large n and a free operation Λ ∈ O : S → S′⊗⌊(R̃0(ρ→ρ′)−δ)n⌋ such that Tr\iΛ(ρ
⊗n) = ρ′

holds for all i. Using such n, we get

R(ρ) =
1

n
R(ρ⊗n)

≥ 1

n
R(Λ(ρ⊗n))

≥

⌊
n
(
R̃0(ρ→ ρ′)− δ

)⌋
n

R(ρ′)

≥

[
n
(
R̃0(ρ→ ρ′)− δ

)
− 1
]

n
R(ρ′)

=
[(
R̃0(ρ→ ρ′)− δ

)
− 1/n

]
R(ρ′)

(49)

where the first line is due to the tensor-product additivity of R, the second due to the monotonicity,
and the third line due to the superadditivity of R. The statement follows by noting that δ > 0 and
1/n can be made arbitrarily small by taking a sufficiently large n.
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Most resource theories including entanglement [77, 78], quantum thermodynamics [79], speakable
coherence [42, 80] have such a nontrivial measure. (See, e.g., [29, 81] for a couple of exceptions.) In
contrast, any nontrivial faithful measure in the resource theory of (unspeakable) coherence is shown
not to be superadditive [73]. This distinguishes the resource theory of quantum coherence from other
resource theories.
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Abstract. A promising approach for scalable quantum computing involves distributed quantum com-
putation, where quantum processing units (QPUs) are remotely connected through entanglement. Since
entanglement is susceptible to noise, entanglement purification is often used to mitigate the impact of
noise. However, this process produces entanglement with limited fidelity when each QPU is noisy. Here,
we propose a new entanglement purification protocol, leveraging local operation and classical communi-
cation (LOCC) with a combination of classical post-processing, which we refer to virtual LOCC since it
generates the purified entanglement in the expectation value. Owing to virtual LOCC, our demonstration
finds that our protocol can break the fidelity limit of conventional purification protocols. Our results show
the potential of virtual LOCC and pave the way for further scalability of quantum computer.

Keywords: Quantum error mitigation, Entanglement purification, Quantum computation

1 Introduction

Quantum computers hold the promise of outperform-
ing classical computers in computational power, which
necessitates a large number of physical qubits for fault-
tolerant computation. Although current technological
advancements have enabled an increase in the num-
ber of qubits on a single quantum processing unit
(QPU), further scalability is crucial for achieving quan-
tum supremacy. A promising approach to attaining
this scalability is a modular architecture, where mul-
tiple QPUs are remotely connected via quantum links.
Typically, this connection is realized through long-range
entanglement [1, 2]. However, the current technology
can generate noisy long-range entanglement insufficient
for reliable quantum computations. Meanwhile, an al-
ternative method involving classical links called circuit
knitting has been actively explored to simulate quantum
links [3, 4, 5]. Nonetheless, this approach requires an ex-
cessive number of additional circuit runs, known as the
sampling cost, rendering it impractical for further scala-
bility.
A feasible solution is entanglement purification, which

generates high-fidelity entanglement by noisy entangle-
ment with local operations and classical communication
(LOCC) (Fig. 1(a)). The literature finds protocols that
achieve perfect fidelity asymptotically as long as LOCC
is noiseless [6, 7]. However, current QPUs have limited
memory and are noisy, degrading the performance of en-
tanglement purification. Although practical considera-
tions of such hardware limitations and imperfections have
investigated efficient protocols [8, 9, 10, 11, 12, 13], the
fidelity is constrained by local noise in a QPU [8, 11]:
For example, a 1% two-qubit gate error rate, which is
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achieved in current technology [14], enables a maximum
fidelity of 99.5%, which is not enough for practical large-
scale quantum computation on surface codes [15].

To overcome this challenge, we leverage the concept of
virtual operations, a notion developed within the field of
quantum error mitigation (QEM). QEM is initially pro-
posed for noisy intermediate-scale quantum computers,
which lack sufficient qubits for full quantum error cor-
rection [16, 17], to mitigate noise-induced biases in ex-
pectation values by post-processing outputs from a large
number of noisy circuit runs. Since these operations used
in QEM influence the expectation values rather than the
quantum state itself, it is called virtual operations. Here,
we introduce an entanglement distillation protocol that
utilizes virtual operations confined LOCC, which we term
virtual LOCC (vLOCC) (Fig. 1(b)). Our proposed pro-
tocol with vLOCC generates a purified Bell state from
noisy Bell states in the expectation value. Remarkably,
our demonstration shows that this protocol can surpass
the fidelity limit of conventional protocols under noisy
LOCC: a 1% two-qubit gate error rate enables a purified
Bell state of 99.9% fidelity, only with single round purifi-
cation from noisy Bell states with 90% fidelity. While our
approach is used only for calculating expectation value at
the cost of sampling shots, it is significantly more efficient
than circuit knitting techniques. Our results show the
potential of virtual LOCC and pave the way for further
scalability by reducing the hardware requirement.

2 Construction of our protocol

To construct a protocol using vLOCC with high er-
ror tolerance, we can leverage recurrence protocols since
these protocols have inherently higher error tolerance
compared to other purification methods. Its high error
tolerance may come from that they leverage quantum er-
ror detections by noisy parity measurements with noisy
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Figure 1: (a) Schematic illustration of conventional entanglement purification. This illustration mainly considers re-
currence protocols, which purify noisy entanglement states with local operations and classical communication (LOCC).
(b) Entanglement purification with virtual LOCC (vLOCC), where the LOCC is combined with post-processing of the
measurement results. vLOCC purifies noisy entanglements in the expectation value of the measurement outcomes.

entanglement [7, 11]. In other words, they purify the Bell
states by projecting noisy ones,

P̂ ρnoisyP̂

Tr[P̂ ρnoisyP̂ ]
= ρBell = |ΨBell⟩ ⟨ΨBell| , (1)

where |ΨBell⟩ = (|00⟩ + |11⟩)/
√
2 and P̂ is the pro-

jector onto |ΨBell⟩ described as P̂ =
∑

Ŝi∈S Ŝi/4 with

S = {Î Î , X̂X̂, ẐẐ,−Ŷ Ŷ } being the stabilizer operators
of |ΨBell⟩, respectively.
Our protocol implement this projection virtually with

the help of a Werner state [18] with error rate ϵ as an
ancilla, ρWerner = (1− 3ϵ/4)ρBell + ϵÎ/4, as shown in the
quantum circuit in Fig. 1(b), which can be prepared from
any two-qubit state by implementing a suitable twirling
operation, without changing its fidelity. [19], where

Ŝi(j,k) ≡ Ŝ
(A)
i(j,k)Ŝ

(B)
i(j,k) with ŜiŜk = Ŝj are uniformly

sampled from the stabilizers S = {Î Î , X̂X̂, ẐẐ,−Ŷ Ŷ }.
In a practical quantum computation, Bell state is con-
sumed for non-local operation U , and we would like to
obtain the expectation value of an operator Ô for the
state U(ρin). Fig. 1(b) provides the desired expectation
value as follows. The X̂X̂ measurement on ρWerner and Ô
measurement in Fig. 1(b) provides 1/2(Tr[U(ŜiρnoisyŜj⊗
ρin)Ô] + [i ↔ j]), where Ŝi, Ŝj ∈ S. Uniformly sam-
pling i, j and averaging this expectation value provides
Tr[U(P̂ ρnoisyP̂ ⊗ ρin)Ô] since P̂ =

∑
Ŝi∈S Ŝi/4. Dividing

the results of simultaneous measurement of Ô and Î and

U provides the desired expectation value,

Tr[ÔU(ρin ⊗ (P̂ ρnoisyP̂ )]

Tr[P̂ ρnoisyP̂ ]
= Tr[ÔU(ρin ⊗ ρBell)]. (2)

As with other QEM methods, our protocol incurs addi-

tional sampling shots O(γ2N) with γ =
(
1− 4

3ϵ
)−1

(1−
Fnoisy)

−1 being the sampling-cost factor [20, 21], where

Fnoisy = Tr[P̂ ρnoisy] is the fidelity of ρnoisy.

3 Comparison with conventional proto-
cols

Here, we compare the performance of our protocol with
that of conventional entanglement purification protocols.
The performance of entanglement purification is usually
evaluated using the quantity called yield, which is defined
as the ratio of the number of output purified Bell states
per input noisy Bell state. Since we have extended entan-
glement purification protocols with vLOCC, we should
define the yield for vLOCC. We require additional in-
put noisy Bell states O[γ(Fnoisy)]

2npurified for vLOCC to
generate npurified purified Bell states because we require
O[γ(Fnoisy)]

2npurified more sampling shots to achieve the
same accuracy. This leads to the following definition of
the yield for protocols with vLOCC:

YvLOCC(npurified, Fnoisy) =
1

K

npurified∏
i=1

1

[γi(Fnoisy)]2
, (3)

where Fpurified and Fnoisy are the fidelity of the purified
and noisy Bell states, respectively, K is the number of
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Figure 2: Purified fidelity with corresponding yield
including local one-qubit, two-qubit and measurement
noise. While the yield of our protocol decreases with
increasing the number of distilled Bell states, npurified,
our protocol always generates much higher fidelity than
that of the double selection protocol and brakes the con-
ventional limit.

consumed Bell states (e.g. K = 2 for our protocol), and
γi(Fnoisy) is the sampling-cost factor for ith purified Bell
state.
To compare our protocol with conventional entangle-

ment purification protocols, we conducted numerical sim-
ulations using Qulacs [22] with introducing local noise
as one-qubit and two-qubit depolarizing noise with er-
ror rates of 0.001 and 0.01, respectively, after each gate
in the distillation circuit, as well as measurement noise
with an error rate of 0.03 [8]. These error rates are consis-
tent in the current superconducting quantum computer
[14]. We set the initial state to be the Werner state
ρnoisy = ρWerner with an initial fidelity of Fnoisy = 0.9
for both our virtual and conventional distillation proto-
cols. Note that the fidelity for our protocol is calculated
Tr[ρBellP̂ ρP̂ ]/Tr[P̂ ρ] as the usual fidelity.
The purified fidelity and the corresponding yield are

shown in Fig. 2. As shown, the purified fidelity of
our protocol (the red circles) is much higher than that
achieved by the conventional double-selection (the green
dot-dashed curve with squares) protocols as well as the
upper fidelity limit of the conventional protocols [8, 11]
shown in black dotted line. Surprisingly, our protocol
achieves a fidelity of 99.9%, while the maximum fidelity
for many rounds of the double-selection protocol is only
99.2%. The reason for the high fidelity of our protocol is
the error robustness of the ancilla. The effect of readout
error is canceled by the division in our protocol. The
most of the two-qubit errors are also canceled except for
Ẑ on the ancilla and Î on the target state in the sum-
mation for calculating the trace, which contributes p2ϵ.
Thus, the dominant contributions to the fidelity of our
protocol are the one-qubit error p1 and the term p2ϵ, lead-
ing to a much higher fidelity compared to conventional
protocols. Although the yield for our protocol exponen-
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Figure 3: Sampling-cost factor γ2 as a function of the
error rate ϵ of the input noisy Bell state for our protocol,
where the two horizontal lines represent the lower bounds
of γ2 for circuit knitting with LO and LOCC, respectively
[3].

tially decreases with increasing n, the yield might still be
acceptable for a few tens of n.

Figure 3 compares the sampling-cost factor between
our protocol and the lower bounds of circuit knitting [3]
and shows that our protocol can break the lower bounds
of circuit knitting [3]. Given that a 10% error in Bell
states can be generated using current technologies, our
protocol can significantly reduce the sampling cost com-
pared to circuit knitting. Since circuit knitting or cutting
is regarded as a key technology for scaling quantum com-
puters [1, 5], our protocol can serve as a more efficient
alternative for simulation.

4 Conclusion and outlook

We have proposed a new entanglement purification
protocol utilizing vLOCC and have demonstrated its
higher error tolerance for noise in purification circuit
than conventional protocols. In particular, our proto-
col can break the fidelity limit of the conventional purifi-
cation protocols due to the classical post-processing in
vLOCC. An interesting future direction of our work in-
cludes searching for more efficient protocols with vLOCC,
extending it for multiple entangled states such as the n-
qubit GHZ state [23] and the linear cluster state [24], and
integrating our protocol with conventional entanglement
purification protocols. Since vLOCC allows for more free-
dom, it would be intriguing to explore its limitations and
possibilities mathematically.
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Simultaneous Measurement of Multiple Incompatible Observables and
Tradeoff in Multiparameter Quantum Estimation
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Abstract. How well can multiple incompatible observables be implemented via a single measurement?
This is a fundamental problem with wide implications in quantum information. While prior research
substantially focused on two observables, our framework extends to any finite number, providing novel
analytical error bounds of the implementations. Additionally, we introduce a stringent bound utilizing semi-
definite programming that, in the context of two observables, generates an analytical bound tighter than
any previously known bounds. These bounds have significant applications in assessing the trade-off among
the precisions in multi-parameter quantum estimation. Experimental validation with a superconducting
quantum processor confirms our theoretical results.

Keywords: Uncertainty Relations, Non-commutative Observables, Multi-parameter Quantum Metrology

1 Introduction

Quantum mechanics, distinct for its noncommutativ-
ity, poses challenges in measuring noncommuting observ-
ables simultaneously [1–3], necessitating approximation
and inherently introducing trade-offs in measurement ac-
curacy. This issue is underscored by the uncertainty prin-
ciple and extends to quantum systems’ preparation and
measurement uncertainty relations [4–18]. Our paper fo-
cuses on state-dependent measurement uncertainty re-
lations [4–15], particularly relevant to multi-parameter
quantum estimation where simultaneous measurement of
multiple observables is critical, as seen in applications
like vector magnetometry and quantum imaging. We in-
troduce methods that provide analytical and numerically
stringent error-tradeoff relations for an arbitrary number
of observables, offering insights into the calibration of the
precision in multiparameter quantum metrology. These
methods are empirically validated using a superconduct-
ing quantum processor.

2 Results

2.1 Analytical error-tradeoff relation

We commence by deriving an analytical measurement
uncertainty relation for a general set of n observables.
The objective is to use a single Positive Operator-Valued
Measurement (POVM), denoted M = {Mm}, to approx-
imate the given n observables X1, X2, . . . , Xn when ap-
plied to a quantum state ρ and to determine relations
that set limits on the minimum cumulative weighted ap-
proximation error. According to Neumark’s dilation the-
orem [19], the POVM, M = {Mm = K†

mKm}, is equiv-
alent to a projective measurement on ρ ⊗ σ in an ex-
tended Hilbert space HS ⊗ HA, here σ = |ξ0⟩⟨ξ0| is an
ancillary state such that (I⊗⟨ξ0|)U†(I⊗|ξm⟩⟨ξm|)U(I⊗
|ξ0⟩) = Mm, where {|ξm⟩} is an orthonormal basis for

∗hzchen@szu.edu.cn
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Figure 1: Simultaneous measurement of multiple observ-
ables {X1, X2, ..., Xn} via a single measurement.

the ancillary system, U is a unitary operator on the
extended space such that for any |ψ⟩, U |ψ⟩ ⊗ |ξ0⟩ =∑

mKm|ψ⟩|ξm⟩. Denote Vm = U†(I ⊗ |ξm⟩⟨ξm|)U , we
then have Tr[(ρ ⊗ |ξ0⟩⟨ξ0|)Vm] = Tr(ρMm). From the
measurement, we can construct a set of commuting ob-
servables, {Fj =

∑
m fj(m)Vm|1 ≤ j ≤ n}, to approxi-

mate {Xj ⊗ I} in the extended Hilbert space (see Fig.1).
The mean squared error of the approximation on the
state is given by [6, 7, 12]

ϵ2j = Tr
[
(Fj −Xj ⊗ I)2 (ρ⊗ σ)

]
. (1)

In the case of two observables, Ozawa and Branciard
obtained a series of error-tradeoff relations [6, 7, 12, 13],
which is tight for pure states. While for mixed states,
none of them is tight [15], and the geometrical method
employed to derive these relations are not readily extend-
able to scenarios involving more than two observables.
For general n observables, the error-tradeoff relation is
little understood.

Here we present an approach that can lead to analytical
tradeoff relations for an arbitrary number of observables.
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Let

Au =




⟨u|√ρ⊗ σE1

...
⟨u|√ρ⊗ σEn

⟨u|√ρ⊗ σ(X1 ⊗ I)
...

⟨u|√ρ⊗ σ(Xn ⊗ I)







⟨u|√ρ⊗ σE1

...
⟨u|√ρ⊗ σEn

⟨u|√ρ⊗ σ(X1 ⊗ I)
...

⟨u|√ρ⊗ σ(Xn ⊗ I)




†

=

(
Qu Ru

R†
u Su

)
≥ 0,

(2)
here Ej = Fj − Xj ⊗ I is the error operator, |u⟩ is any
vector, Qu, Ru, Su are n × n submatrices of Au. Given
any set of states {|uq⟩} such that

∑
q |uq⟩⟨uq| = I, we can

derive a corresponding set of matrices {Auq
}. We then

construct a matrix Ã as the sum of these matrices with
each Ãuq

being either Auq
or its transpose, AT

uq
. Since

both Auq and AT
uq

are positive semi-definite, it follows
that:

Ã =
∑

q

Ãuq
=

(
Q̃ R̃

R̃† S̃

)
≥ 0, (3)

where the components are defined as Q̃ =
∑

q Q̃uq ,

R̃ =
∑

q R̃uq , and S̃ =
∑

q S̃uq , with every

(Q̃uq , R̃uq , S̃uq ) being either (Quq , Ruq , Suq ) or their com-
plex conjugate (Q̄uq

, R̄uq
, S̄uq

), here M̄ = MRe −
iMIm and for Hermitian matrix M̄ = MT . We
then have (Q̃Re)jk = 1

2Tr [(ρ⊗ σ){Ej , Ek}], (S̃Re)jk =
1
2Tr(ρ{Xj , Xk}). Specifically, the diagonal elements of

Q̃ and S̃ are given as (Q̃)jj = ϵ2j and (S̃)jj = Tr(ρX2
j ),

respectively.
From Eq.(3), we derive an analytical error-tradeoff re-

lation for approximating n observables [20]

Tr(S−1
ReQRe) ≥

(√
∥S− 1

2

Re S̃ImS
− 1

2

Re ∥F + 1− 1

)2

, (4)

where ∥ · ∥F =
√∑

j,k |(·)jk|2 represents the Frobenius

norm. In this inequality, the term QRe is the sole quan-
tity dependent on the measurement strategy and its diag-
onal entries correspond to the mean-square errors of the
approximation. Both SRe and S̃Im are independent of the
specific measurement process; instead, they are entirely
determined by the inherent properties of the observables
when applied to the given quantum state.
The inequality in Eq.(4) establishes a fundamental

limit on the minimum achievable errors for any POVM
that approximates the given set of observables on a quan-
tum state. It provides a bound that holds true for any
choice of orthonormal basis |uq⟩, and the tightest bound
can be obtained by optimizing over all possible |uq⟩. In
the case of pure states, the selection of a specific |uq⟩
is not necessary. The derived analytical bound guaran-
tees to be tighter than simply summing up Branciard’s
bounds for two observables pairwisely when the total
number of observables exceeds four [20].

2.2 Error-tradeoff relation via semidefinite pro-
gramming

We proceed to introduce a secondary approach that
yields even tighter tradeoff relations. This method by-
passes the need for selecting specific {|uq⟩} and can
be formulated as semi-definite programming (SDP), en-
abling efficient computation.

Again for any POVM, {Mm} ∈ HS , it can be realized
as projective measurement, {Vm} ∈ HS ⊗HA, with (I ⊗
⟨ξ0|)Vm(I ⊗ |ξ0⟩) = Mm. We can then construct {Fj =∑

m fj(m)Vm} to approximate {Xj ⊗ IA}. Let Q be an
n× n Hermitian matrix, with its jkth element given as

Qjk =Tr [(ρ⊗ σ)(Fj −Xj ⊗ I)(Fk −Xk ⊗ I)]

=Tr

[
ρ
∑

m

fj(m)Mmfk(m)

]
− Tr (ρRjXk)

− Tr (ρXjRk) + Tr (ρXjXk) ,

(5)

here Rj =
∑

m fj(m)Mm is a Hermitian matrix in
HS . We let S be a n × n block operator whose jk-
th block is Sjk =

∑
m fj(m)Mmfk(m), and let R =(

R1 R2 · · · Rn

)†
, X =

(
X1 X2 · · · Xn

)†
. We

have S ≥ RR†. E can then be rewritten as E = Tr(WQ) =
Tr

[
(W ⊗ ρ)(S − RX† − XR† + XX†)

]
, where W ≥ 0 is a

weighted matrix. The minimization of E is then readily to
be formulated as a semi-definite programming with [20]

E0 = min
S,{Rj}n

j=1

Tr
[
(W ⊗ ρ)(S − RX† − XR† + XX†)

]

subject to Sjk = Skj = S†
jk, ∀j, k

Rj = R†
j , ∀j(

I R†

R S

)
≥ 0.

(6)

The derived lower bound, E ≥ E0, offers a tighter con-
straint than the analytical bounds from the previous sec-
tion for any selection of {|uq⟩}. Furthermore, an explicit
construction detailing the optimal approximation strat-
egy that attains this bound for pure states is provided,
which demonstrates the tightness of the bound for any
number of observables when applied to pure states [20].

2.3 Tighter analytical relation for two observ-
ables

By leveraging the SDP bound provided in Eq.(6) and
employing a judicious selection of |uq⟩ analogues to the
analytical bound in Eq.(4), we can derive analytical
bounds on mixed states for two observables that are
tighter than the Ozawa’s relation, the tightest analyti-
cal bound previously known.

When ρ = |ψ⟩⟨ψ| is a pure state and W =
diag{w1, w2}, Eq.(6) can be analytically solved as [20]

w1ϵ
2
1 + w2ϵ

2
2 ≥ 1

2

(
α−

√
α2 − β2

)
, (7)

where

α = w1(∆X1)
2 + w2(∆X2)

2,

β = i
√
w1w2⟨ψ|[X1, X2]|ψ⟩.

(8)
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For a mixed state, ρ, we can choose any {|uq⟩} with∑
q |uq⟩⟨uq| = I and write ρ =

∑
q

√
ρ|uq⟩⟨uq|√ρ =

∑
q λq|ϕq⟩⟨ϕq|, here λq = ⟨uq|ρ|uq⟩, |ϕq⟩ =

√
ρ|uq⟩√

⟨uq|ρ|uq⟩
.

For each |ϕq⟩ we can get a corresponding lower bound
E|ϕq⟩ by substituting |ϕq⟩⟨ϕq| in Eq.(6), and solve it an-

alytically to get E|ϕq⟩ = 1
2

(
αq −

√
α2
q − β2

q

)
, where αq

and βq are obtained from Eq.(8) by substituting |ψ⟩ with
|ϕq⟩. Using the fact that E0 ≥ ∑

q λqE|ϕq⟩, we obtain an
analytical bound

w1ϵ
2
1 + w2ϵ

2
2 ≥

∑

q

λq
2

(
αq −

√
α2
q − β2

q

)
. (9)

Specifically, by choosing {|uq⟩} as the eigenstates of√
ρ[X1, X2]

√
ρ, the analytical bound in Eq.(9) is tighter

than the bound obtained from the Ozawa’s relation [20].
The presented framework thus not only extends to sce-
narios involving an arbitrary number of observables but
also provides improved analytical bounds in the case of
two observables.

2.4 Experiment validation in a superconducting
quantum processor

We conducted an experimental verification of the error-
tradeoff relations on a superconducting quantum proces-
sor, utilizing the Quafu cloud quantum computing plat-
form [21]. The selected processor, ScQ-P136, consists
of 136 qubits with single-qubit gate fidelities surpassing
99% [21–23], and for our analysis, we focused exclusively
on the first qubit. To experimentally quantify the er-
ror ϵj for each observable Xj when measured through a
specific measurement set {Mm}, we adopt the “3-state
method” [24, 25]. The essence of this approach is illus-
trated in Fig.2(a), which involves preparing and measur-
ing three distinct quantum states:

ρ1 = ρ, ρ2 ≃ XjρXj , ρ3 ≃ (I +Xj)ρ(I +Xj). (10)

By analyzing the measurement statistics of {Mm} on
these three states—ρ1, ρ2, and ρ3—we can obtain ϵj ,
the error of the approximation. The corresponding to-
tal mean-squared-errors are plotted in Fig.2(b)(c), where
simulated results are also presented for comparison.

2.5 Tradeoff relations for multiparameter quan-
tum estimation

By directly applying the tradeoff relations obtained
above, we can readily obtain tradeoff relations for es-
timating multiple parameters by simply substituting the
n observables with the n SLDs, {L1, · · · , Ln}. In this
context, SRe corresponds to the quantum Fisher infor-
mation matrix, FQ. For any POVM {Mm}, we con-
struct {Fj =

∑
m fj(m)Vm} to approximate the SLDs.

By minimizing ϵ2j = Tr
[
(Fj − Lj ⊗ I)2 (ρx ⊗ σ)

]
un-

der the given measurement, we have QRe = FQ − FC ,
and Tr(S−1

ReQRe) = n − Tr(F−1
Q FC), E = Tr(WQ) =

Tr(WQRe) = Tr[W (FQ − FC)] [20]. The error-tradeoff
relations can thus be directly applied to assess the preci-
sion tradeoffs in multi-parameter quantum metrology.
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Figure 2: Experimental results for testing the error-
tradeoff relations. (a) Scheme diagram to evaluate
the mean squared error of each Xj using the “3-state
method”. (b) Error-tradeoff relations for the simultane-
ous measurement of three spin operators on a pure state
|ψ⟩ = Rz(

π
2 )Ry(θ)|0⟩. (c) Error-tradeoff relations for the

simultaneous measurement of three spin operators on a
mixed state ρ = p|0⟩⟨0|+ (1− p)|1⟩⟨1|.

3 Discussion

We developed methodologies that establish tradeoff re-
lations for approximating any number of observables us-
ing a single measurement, and we also refined the existing
analytical bounds in scenarios involving two observables.
Each of the error-tradeoff relations can be directly ap-
plied to assess the precision tradeoffs in multi-parameter
quantum metrology. This paves the way for further ex-
ploration into state-dependent measurement uncertainty
relations for multiple observables. Moreover, it reinforces
the connection between measurement uncertainty and
the incompatibility inherent to multi-parameter quan-
tum estimation, thereby promoting deeper investigations
across both domains.
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Abstract. Spin defects in two-dimensional (2D) materials serve as promising systems for quantum sensing
applications. The negatively charged boron vacancy (V−

B ) defect in hexagonal boron nitride (hBN) has
emerged as the most extensively investigated spin defect. By designing a specific hBN suspension seal
structure, external pressure induces strain in hBN films, which affects the properties of V−

B defects near

the strain structure. These V−
B defects affected by the strain are selectively and site-specifically generated

in hBN by using helium ion implantation. Therefore, we can establish the relationship between external
pressure and the photoluminescence response properties of the spin defects. Our study presents the first
demonstration of a quantum sensor designed for ambient pressure measurements, thereby opening a new
avenue for the development of sensing strategies based on spin defects in 2D materials.

Keywords: hBN, 2D material, spin defect, quantum sensor

1 Introduction

Solid-state materials contain many defect structures,
among which spin defects exhibit remarkable potential
for quantum sensing applications [1, 2, 3, 4]. The most
prominent systems are the nitrogen-vacancy (NV) cen-
ter in diamond and various types of spin defects in sili-
con carbide (SiC) [5, 6, 7, 8]. These systems enable the
initialization, manipulation, and optical readout of their
electron spin states. This allows for the direct map-
ping of external stimuli, such as magnetic and electric
fields, temperature, and pressure, onto the spin states
[9, 10, 11, 12, 13, 14]. However, these spin defects are
all embedded in bulk materials, whose three-dimensional
(3D) nature makes it challenging to locate the spin de-
fects near the surface of a sample. The sensitivity of
quantum sensors is highly dependent on the proximity
between the spin defect and the sensing target. The co-
herence of spin defects near the surface is greatly reduced,
hindering their further applications [15, 16]
In this work, inspired by the fabrication techniques of

nanoelectromechanical systems, we ultiized nanofabrica-
tion methods to initially fabricate hydrogen silsesquiox-
ane (HSQ) circular annular cylinder on a gold copla-
nar waveguide. Subsequently, hBN was transferred onto
these annular cylinder, forming hBN thin film sealed
cavity structures. Leveraging the sealed cavity struc-
ture, the underlying coplanar waveguide configuration
enhances the microwave efficiency radiated onto the color
centers. Moreover, the pre-stress in the hBN thin films
during fabrication leads to an increase in fluorescence in-
tensity, thereby enhancing the sensitivity of this struc-
ture for application in quantum sensors. Subsequently,
we showcased the potential of V−

B spin defects in hBN
as quantum sensors for ambient pressure, employing a
custom-built vacuum pressure chamber.

∗zengxiaodong@mail.ustc.edu.cn
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Figure 1: (a) Schematic of a flexible 2D material with
spin defects. (b) Schematic diagram of the V−

B spin de-
fects structure. The typical ODMR signal is shown in
the inset. (c) Schematic of sample fabrication step-by-
step: hBN overlays HSQ which is positioned on the gold
coplanar waveguide. (d) Schematic of the cross-section
of a sealed hBN film cavity.

2 Schematic diagram of quantum pres-
sure sensing

As shown in Fig. 1(a), we demonstrate a flexible hBN
film embedded with spin defects. The purple planes rep-
resent single atomic layers of the hBN, and the arrows
indicate the electron spins associated with atomic de-
fects. Local stress variations induce deformation of the
atomic layers, resulting in a noticeable shift of the res-
onant frequency of the spin. Fig. 1(b) illustrates the
structure of the V−

B spin defect, where a boron atom is
replaced by an electron to form the defect. The inset on
the right displays the V−

B defect zero-field ground state
optically detected magnetic resonance(ODMR), reveal-
ing zero-field splitting(ZFS) parameters of approximately
Dgs ≈ 3.46 GHz and Egs ≈ 50 MHz. Fig. 1(c) presents

233



the design process for the sealed cavity structure in hBN.
First, a coplanar waveguide (CPW) is fabricated on a
SiO2/Si substrate. Then, the HSQ resist is shaped into
a circular cylinder and patterned onto the CPW. Subse-
quently, a thin hBN film (∼ 20 nm) is transferred onto
the HSQ circular cylinder, Using a commonly employed
dry transfer method, a sealed cavity structure is formed.
This configuration can react to external pressure alter-
ations, inducing strain in the hBN film. In Fig. 1(d),
a cross-sectional schematic of the hBN film-sealed cavity
is presented, demonstrating the structure ability to mea-
sure high ODMR contrast of the V−

B spin defect, with
potential applications in fabricating cavity structures for
other 2D materials.

700 740 780 820 860 900
0

100

200

300

400
On the air chamber

On the flat

0 2 4 6 8 10

200

400

600

800

1000

(a) (b)

(c) (d)

Wavelength (nm)

In
te

ns
ity

 (a
.u

.)

x (μm)

H
ei

gh
t (

nm
)

5

20

10

0

25

15

y 
(μ

m
)

x (μm)5 2015100 25

Intensity (kHz)

1000

4000

3000

2000

0

5000

Figure 2: (a) SEM image of the sample with a scale bar
of 50 µm in the lower right corner. (b) PL map scanned
from the sample outside the vacuum chamber. (c) Spec-
tra of the V−

B spin defect measured, with the red line
representing the spectrum on a flat region and the blue
line representing the spectrum on a suspended region.
(d) 3D AFM topographic map scanned from the sample,
with an inset showing a schematic diagram of the inter-
nal and external pressures applied to the hBN film, where
the red line indicates the height variation on the surface
of the hBN film.

3 Spin defect array

Fig. 2(a) displays the scanning electron microscopy
(SEM) image, showing HSQ circular annular cylinder
above the CPW and a transferred thin film of hBN po-
sitioned above one of the annular cylinder to form the
sealed cavity structure. We then used the helium ion mi-
croscope (HIM) to generate a V−

B spin defect array, with
the implantation dose of 1017 ions/cm2 and the implan-
tation energy of 30 keV, and the PL map depicted in
Fig. 2(b). The distribution of photoluminescence (PL)
spectra dinstinctly demonstrates the notable influence of
stress at the edges of the circular annular cylinder, un-
der continuous excitation from a 532 nm laser at power
of 4 mW. A brighter ring of spin defects, corresponding

to the edge of the HSQ circular annular cylinder[?], is
observable in the array. The suspended region hBN film
contributes to the enhanced photoluminescence. The PL
spectra of V−

B spin defects in both the flat and suspended
regions were measured, as denoted by the green and red
asterisks in Fig. 2(b), respectively. The measurement
results reveal an enhancement in photoluminescence flu-
orescence, as shown in Fig. 2(c). We employed atomic
force microscope (AFM) to analyze the topography of
the hBN film on HSQ, as shown in Fig. 2(d). The 3D
AFM image presents the surface morphology of hBN,
with the height distribution position represented by a
white dashed line. The schematic in the top-left corner
illustrates the distribution of internal and external pres-
sure on the hBN film under applied pressure.
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Figure 3: (a) PL map obtained from scanning the sample
inside the vacuum chamber at atmospheric pressure, with
red circles indicating the regions of the hBN film-sealed
cavity. (b) PL map obtained from scanning the sample
inside the vacuum chamber under a pressure of 27.2 kPa,
with red circles indicating the regions of the hBN film-
sealed cavity. (c) Simulation of the strain in the hBN
film under external pressure, with a cross-sectional view
showing the distribution of lateral stress. (d) Strain in
the cross-section of the hBN film under various external
pressures.

4 Fluorescent response to pressure

After fabricating the samples, we introduced them into
a custom-made Sealed chamber (see Supporting Informa-
tion). We selected the brightest point in the PL map for
further experiments. Subsequently, we applied air pres-
sure to the vacuum pressure chamber. Fig. 3(a) and (b)
show the PL map obtained at atmospheric pressure and
under an applied pressure of 27.2 kPa, respectively. In
these figures, the strain caused by external pressure on
the hBN film can be clearly observed, leading to an en-
hancement of the fluorescence intensity. Based on AFM
measurements of the surface topography, we conducted
numerical simulations. As shown in Fig. 3(c), when an
external pressure of 30 kPa is applied, the suspended re-
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gion of the hBN film undergoes deformation. Fig. 3(d)
illustrates that as the external pressure increases, the
strain in the hBN film also increases.

5 Conclusion

Utilizing the characteristics of hBN two-dimensional
thin film, spin defects in 2D materials offer several ad-
vantages over traditional 3D solid-state spin systems, in-
cluding layer-by-layer stacking, ease of integration, etc.
Utilizing this property, we designed a sensing demonstra-
tion for detecting external pressure. Throughout the ex-
periment, we observed an enhancement in fluorescence
count due to stress. By leveraging this fluorescence en-
hancement, we improved the sensitivity of the targeted
measurement points as quantum sensors. Subsequently,
we varied the external air pressure and observed strain
phenomena in the hBN film, along with corresponding
changes in fluorescence count. Exploiting this response,
we demonstrated the sensing of ambient pressure. Fur-
thermore, we utilized finite element simulation software
to investigate the actual strain of hBN films under exter-
nal pressure.
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Quadratic speed-ups in quantum kernelized binary classification
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Abstract. Quantum kernelized binary classifiers (QKCs) have recently emerged as a promising
application at the intersection of quantum kernel methods and machine learning. However,
current QKCs do not offer a quantum advantage in the number of data samples, despite requiring
an initial quantum state that contains all data samples in superposition. This work demonstrates
how leveraging the capability of superposing multiple data samples through Quantum Amplitude
Estimation can achieve a quadratic speed-up. Furthermore, we propose simplified QKCs in which
the number of qubits is reduced by one, and the circuit depth is reduced linearly with the number
of data samples.
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1 Introduction

Recent advancements in quantum hardware and
simulation frameworks have led to the rise of quan-
tum machine learning (QML), which merges ma-
chine learning (ML) with quantum information pro-
cessing (QIP). This integration offers the potential
to overcome the limitations of classical ML methods.
A prominent approach within QML is the quantum
kernel method (QKM) [1, 2, 3, 4], which leverages
quantum computing to enhance the performance of
kernel-based algorithms.
In ML, the kernel is a function that quantifies

the similarity between two data points, enabling
the learning of patterns within a dataset for ef-
fective classification or prediction. The computa-
tional advantages of the QKM stem from the state
and measurement postulates of quantum mechanics,
which allow for efficient computation of certain ker-
nel functions on a quantum computer. In particular,
the Hadamard or swap test can exponentially expe-
dite the computing of fidelity between two quantum
states compared to its classical counterpart [5, 6].
Therefore, they have been harnessed in several quan-
tum kernelized binary classifiers (QKCs) for expo-
nential speed-ups with respect to the number of
features (dimensions) in the data when evaluating
the classification score in supervised classification.
These algorithms are known as the Hadamard clas-
sifier (HC) [7] and swap test classifier (SC) [8], re-
spectively, and represent one of the simplest QML
protocols with potential quantum speed-up.
The original QKCs prepare an initial quantum

∗ljy89017@yonsei.ac.kr
†dkd.park@yonsei.ac.kr

state containing entire data samples in a quantum
superposition, which is a distinct feature of what
quantum computers can do. This state preparation
routine is implemented at the cost of increasing the
circuit depth linearly and its width logarithmically
with the number of data samples. However, QKCs
do not utilize this unique property of quantum com-
puting. Thus, there is no quantum advantage with
respect to the number of data samples. In other
words, previous QKCs failed to utilize the capa-
bility of placing training data in superposition and
therefore merely increased the size of the quantum
circuits without yielding any computational advan-
tages.
In this work, we first propose simplified QKCs

(SQKCs) by modifying the encoding process and
the measurement scheme. These modifications al-
low SQKCs to provide the same work as QKCs
while using one less qubit and linear reduction in
circuit depth concerning the number of training
data. Then, as the main result, we present a proto-
col for integrating Quantum Amplitude Estimation
(QAE) [9] into SQKCs (hence, QKCs), resulting in
a quadratic speed-up with respect to the number of
data samples used in superposition.

2 Results

2.1 Simplified quantum kernelized binary
classifiers

As QKCs are supervised classification algorithms,
they should be able to identify the class of the data
after initial quantum state preparation. The origi-
nal QKCs encode the class information into an extra
qubit by linearly increasing the depth of the circuit
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(a) Simplified Hadamard classifier (SHC) (b) Simplified swap test classifier (SSC)

Figure 1: Quantum circuit diagrams for (a) Simplified Hadamard classifier (SHC) and (b) Simplified swap
test classifier (SSC). The green dashed box, Uco(xm, ym), indicates that the class-ordered encoding and the
red dotted box is the measurement with the Clifford transformation.

Table 1: An overview of variables used for comparing the performance of SQKCs-QAE and SQKCs.

Number of samples Estimation error

SQKCs-QAE 2t+1N q
shot := 2t+1 The 81% largest value among all errors, |a− ãi|, i = 1, 2, ..., I.

I is the number of repetitions for a given number of samples.SQKCs N c
shot := 2t+1

to training data. However, this can be simplified
by the class-ordered encoding, shown in the green
dashed box in Fig. 1, i.e. encode class 1 data after
class 0 data are encoded. With this strategy, the
class information is implicitly encoded into one of
the qubits making the quantum superposition, |m⟩.
Thus, labeling the class of the data points can be
achieved without increasing extra circuit width or
depth by data size. Moreover, the Clifford transfor-
mation shown in the red dotted box in Fig. 1 can
further reduce the measurement process from two-
qubits to a single-qubit. This reduces the applica-
tion of QAE by a factor of two, as the new mea-
surement scheme allows classification with a single
probability.

2.2 Main protocols

The main protocol of this work is to verify
whether SQKCs with QAE (SQKCs-QAE) have the
potential to get any quantum speed-up compared
with normal SQKCs. Thus, it is crucial to establish
a clear and rigorous evaluation criterion for compar-
ing the performance of SQKCs-QAE and SQKCs. In
this regard, we compare the rate at which the esti-
mation errors decrease in SQKCs-QAE and SQKCs
as the number of samples increases. Two variables,
namely the number of samples and the estimation
error, whose relationship is analyzed and compared
in the subsequent section, are summarized in Ta-
ble 1. Here “sample” is prepared by querying the
circuit Fig. 1a or 1b. Thus, the “number of sam-
ples” corresponds to the instances of applying the

circuit. The estimator of QAE satisfies the abso-
lute error that is upper bounded by O(1/Nq) with
a probability of at least 8/π2(≈ 81%), where Nq is
the number of samples (see Section 4 in [9] for more
detail). Considering the success probability of QAE,
“estimation error” is defined as the 81st percentile
largest error value for each sample on both SQKCs-
QAE and SQKCs. If, for instance, we generated
1000 error results on both SQKCs and SQKCs-QAE,
respectively, the comparison is based on the 810th
largest error. Note that, in this scenario, I in Table 1
is 1000, where a and ãi denote the real value we want
to estimate and its ith estimator, respectively. For a
more concise comparison, we fitted each error result
to a linear curve using the log2 function. The slope
of the fitted line for SQKCs-QAE and SQKCs indi-
cates how fast the estimation error decreases. Thus,
we can verify the speed-up quantitatively by inves-
tigating the ratio between two slopes: (slope of the
linear fit for SQKCs-QAE estimation error)/(slope
of the linear fit for SQKCs estimation error).

2.3 Numerical simulation results

Numerical simulations were conducted on the
IBM quantum simulator using the first and last
classes, setosa and virginica, based on two features
of the Iris dataset: sepal width and petal length. The
error curves in Fig. 2a represent the mean value com-
puted from a total of 12 results, with 6 for SHC
and 6 for SSC. A total of 11 subsets from the Iris
dataset are utilized, comprising one set used in both
SHC and SSC, along with five independent random
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(a) Average comparison result (b) Linear fitting

Figure 2: (a) Comparison of average error scaling between SQKCs with QAE (SQKCs-QAE) and standard
SQKCs. The results are derived from a total of 12 measurements, with 6 for SHC and 6 for SSC. (b) Linear
fitting of (a) shows a slope ratio of approximately 1.9185, indicating a quadratic speed-up.

sets for each SHC and SSC. Fig. 2b displays the lin-
ear fitting results of Fig. 2a, and the ratio between
two slopes is approximately 1.9185 (≈ 2). Compar-
ative simulation results between SQKCs-QAE and
SQKCs indicate that, for a given level of precision,
the estimation speed of SQKCs can be quadratically
enhanced by leveraging data superposition via QAE.

3 Future work

Since the classification score over the full dataset
is computed entirely coherently on a quantum com-
puter, the protocols we discussed are fully quantum
algorithms. This work primarily focuses on achiev-
ing quantum speed-up in computing the classifica-
tion score, expressed as a weighted sum of the ker-
nel between new input and data samples. However,
QAE can also expedite the estimation of a single
kernel function, an element of the kernel matrix or
Gram matrix (typically given by quantum state fi-
delity), by integrating QAE into the Hadamard or
swap test. Thus, QAE is beneficial in quantum-
classical hybrid ML, where the quantum kernel ma-
trix is utilized in classical ML algorithms, such as
the support vector machine (SVM). Therefore, es-
timating the kernel function faster through QAE
could pave the way for interesting future work, since
many near-term and fault-tolerant quantum models
can be replaced or formulated by a general SVM
with a quantum kernel [10].
While QKCs and SQKCs introduced in this pa-

per focus on binary problems, they can also address
multi-class classification problems using heuristic
strategies such as one-vs-rest or one-vs-one. More-
over, we emphasize that QKCs can apply to any
datasets, as long as they are supplied as quantum
states that can be handled by a quantum computer,

either by an inherently quantum-mechanical system
or through quantum feature mapping. Therefore,
extending our method to multi-class QKCs or inves-
tigating it on other datasets remains an interesting
avenue for future research.
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Abstract. Since the generic techniques for amplitude encoding often demand exponential cost in terms
of qubit number, it is desirable for users to have moderately specialized techniques for practical tasks.
We develop an encoding scheme that generates an arbitrary linear combination of localized functions.
It is demonstrated that discrete Lorentzian functions as a basis set lead to more efficient probabilistic
amplitude encoding than other localized functions. In addition, our scheme can be rendered deterministic
analytically via quantum amplitude amplification. The new scheme will be a powerful tool especially for
encoding molecular orbitals in first-quantized systems, as demonstrated by our resource estimation.

Keywords: Amplitude encoding, quantum chemistry

1 Introduction

A quantum algorithm that solves a problem more ef-
ficiently than classical algorithms often assumes that
an initial many-qubit state has already been prepared
in which the initial condition is appropriately encoded.
Such generic techniques for preparing an arbitrary many-
qubit state from initialized qubits as efficiently as pos-
sible are called the amplitude encoding. Since an n-
qubit system has O(2n) degrees of freedom, the encod-
ing of a truly arbitrary state using predetermined circuit
parameters inevitably suffers from exponential classical-
computational cost (see, e.g., Refs. [1, 2]). When we
tackle a specific kind of problems, however, such tech-
niques are found to be too generic, that is, the degrees
of freedom in a generic encoding technique is unneces-
sarily enormous compared to the amount of information
specifying an initial state of practical use. We there-
fore develop moderately specialized encoding techniques
in the present study: generation of an arbitrary linear
combination (LC) of localized functions [3].
To this end, we design the main encoding technique by

starting from the probabilistic operation [4, 5] for an LC
of discrete Lorentzian functions (LFs), to which we apply
the quantum amplitude amplification (QAA) technique
[6, 7] to render the encoding deterministic. As is demon-
strated later, the expansion of a target function in LFs is
favorable for achieving efficient circuit implementation.
Our encoding techniques possess applicability to diverse
fields of quantum computation. Amongst them, quan-
tum chemistry in real space [8, 9, 10, 11] is a promising
one, where an initial state can be constructed from one-
electron molecular orbitals (MOs), typically expressed as
LCs of localized orbitals. We provide resource estimation
for such calculations. Also, we perform the new scheme
on the real quantum computers commercially provided
by IBM.

∗kosugi.taichi@gmail.com

2 Encoding scheme and resource estima-
tion

Setup Let us consider a case where an nq-qubit data
register is available and we are provided with nloc real
functions {fℓ}nloc−1

ℓ=0 localized at the origin as an expan-
sion basis set in one-dimensional space. For the equidis-
tant grid points xj ≡ j∆x (j = 0, . . . , 2nq−1) of a spacing
∆x on a range [0, N∆x], we want to encode a normalized
LC of the displaced basis functions on the data register
as

|ψlc⟩ =
N−1∑
j=0

nloc−1∑
ℓ=0

dℓfℓ(xj − kcℓ∆x)|j⟩nq , (1)

where N ≡ 2nq . |j⟩nq is the computational basis for the
data register. kcℓ is the integer coordinate (0 ≤ kcℓ ≤
N − 1) of the center of the displaced ℓth basis func-
tion. dℓ is the real coefficient for the LC. We assume
that the basis functions are normalized over the range,
that is,

∑N−1
j=0 fℓ(xj)

2 = 1 for each ℓ, and the displaced
ones are not necessarily orthogonal to each other. We
further assume that the nq-qubit unitary for generat-
ing each basis function centered at the origin is known:

U
(ℓ)
orig|0⟩nq =

∑N−1
j=0 fℓ(j∆x)|j⟩nq for each ℓ.

Generation of LC We define the phase shift gate
Ushift(k) for an integer k that acts on a computational
basis diagonally as

Ushift(k)|j⟩nq
= exp

(
−i2πk

N
j

)
|j⟩nq

. (2)

This gate can be implemented as separate single-qubit
gates. With this and the quantum Fourier transform
(QFT), the operator

T (k) ≡ QFT · Ushift(k) ·QFT† (3)

is easily confirmed to perform modular addition for a
computational basis as T (k)|j⟩nq

= |(j + k) mod N⟩nq
.
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Each of the displaced basis functions can thus be gen-
erated by locating fℓ at the origin and translating it
by kcℓ using the translation operator T (kcℓ). The cir-
cuit for encoding the LC probabilistically can then be
constructed by the method described in Ref. [5], where
nA ≡ ⌈log2 nloc⌉ ancillae are introduced and the circuit
parameters are calculated from the coefficients {dℓ}ℓ. The
probabilistic circuit involves two QFT gates. Since the
success probability can be calculated analytically, we can
construct a unitary gate by introducing a single extra an-
cilla for QAA, so that the encoding is performed deter-
ministically and thus there is no need for a measurement.
For details, see the original paper [3].

Discrete Lorentzian functions The quantum com-
putational cost of the encoding depends on the basis func-
tions we adopt for expanding a target function. To find
good basis functions, we first define, by recalling the work
done by Klco and Savage [12], a discrete Slater function
(SF) S(nq, a) having a decay rate a > 0 such that its
value at an integer coordinate j is

Sj(nq, a) ≡

{
CS(nq, a)e

−aj̃ 0 ≤ j̃ < N/2

CS(nq, a)e
−a(N−j̃) N/2 ≤ j̃ < N

(4)

with the normalization constant CS(nq, a). We have in-

troduced the tilde symbol as j̃ = j mod N. S(nq, a) is a
period-N function having cusps at the origin and its du-
plicated points. A single SF can be thankfully encoded
by a depth-O(log nq) unitary circuit U (S) [3]. We define
the discrete LF L(nq, a) corresponding to the SF defined
above as

Lj(nq, a) ≡
CS(nq, a)√

N

(1− e−2a)(1− (−1)je−aN/2)

1− 2e−a cos(2πj/N) + e−2a
,

(5)

which is also localized at the origin. One can confirm that
the LF and SF are related via QFT, which means that
the unitary gate U (L) ≡ QFT ·U (S) encodes the LF with
depth O(nq log nq). This expression tells us that, if we
adopt the LFs as the expansion basis set, one of the two
QFT gates in the probabilistic encoding of the LC cancels

U (S) for each basis function. The circuit C(L)
lc in such a

case is shown in Fig. 1. Even when we determinize this
circuit by employing QAA, the QFT gate is performed
only once, thanks to the Lorentzian basis set.

Resource estimation for quantum chemistry in
real space One of the intriguing applications of our
scheme is the encoding of molecular orbitals (MOs) for
quantum chemistry in real space. Our scheme is straight-
forwardly extended to a three-dimensional case by em-
ploying product basis functions. Before we start a sim-
ulation of real-time dynamics or an energy minimization
procedure such as the probabilistic imaginary-time evo-
lution (PITE) [8] or the adiabatic time evolution (ATE)
[11] or variational methods for a target molecule, an ini-
tial many-electron state has to be prepared. The effi-
cient antisymmetrization scheme proposed by Berry et

al. [13] assumes that all the occupied MOs have been
prepared. Here we analyze the computational cost that
is required for encoding MOs as LCs of LFs. As discussed
in Ref. [8], the required number of data qubits for encod-

ing an MO scales typically as nq = O(log(n
1/3
el /∆x)) for

a molecule containing nel electrons. If the desired MO is
delocalized over the molecule, the number of basis func-
tions for it thus scales the same way as the molecule size:
nloc = O(nel). The computational time with respect to
nel spent until the probabilistic encoding is done is thus
estimated to be O(n2el log nel), while that for the deter-

minized encoding is O(n
3/2
el log nel). If the desired MO is

localized, on the other hand, we have clearly nloc = O(1).
The computational time in this case for the probabilistic
encoding is estimated to be O((log nel) log log nel) as well
as the determinized encoding.

3 Experiments

To confirm the validity of our encoding techniques, we
generated LCs of LFs on the real quantum computers
provided by IBM. We did not employ the determinization
technique since we wanted to perform quantum compu-
tation using as few physical qubits as possible. We tried
three combinations of decay rates and centers of two LFs
for ibm nairobi. The results are shown in Fig. 2.

4 Conclusions

In summary, we developed probabilistic and determin-
istic encoding techniques that generates an arbitrary LC
of LFs. Since the ancillae increase only as O(nloc) regard-
less of nq and QFT is performed only once, this technique
achieves efficient encoding. One of the intriguing applica-
tions of our generic scheme will be the encoding of MOs
used in quantum chemistry in real space. We found that
the computational time for encoding a localized MO is
polynomial in terms of the logarithm of electron number.
This results is encouraging since the encoding of MOs is
a crucial part for the state preparation of an initial many-
electron wave function. The encoding techniques devel-
oped in the present study thus make quantum chemistry
in real space more promising on fault-tolerant quantum
computers.
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Abstract. Quantum error correction (QEC) codes are crucial for mitigating noise in quantum
systems, ensuring reliable quantum computations. Non-periodic boundaries in QEC codes intro-
duce additional complexities in error correction. This paper examines how spatial boundaries af-
fect QEC performance, focusing on decoding algorithms like Minimum-Weight Perfect-Matching
(MWPM) and Union-Find (UF). Through numerical simulations, we analyze various boundary-
handling strategies and their impact on the threshold of topological codes. Our findings show
that these strategies can either improve or reduce error correction efficiency, providing valuable
insights for optimizing QEC algorithms in the presence of physical boundaries.
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1 Introduction

Quantum computing stands at the forefront of
computational science, offering unparalleled poten-
tial to solve problems that elude today’s classical
computers. However, the journey towards practi-
cal quantum computation is fraught with challenges,
many of which stem from presence of noise in quan-
tum devices. Quantum error correction (QEC) is
needed to protect the fragile quantum information
being processed; achieved by utilizing QEC codes to
encode logical information across numerous physical
qubits, allowing for the detection and correction of
errors.

2 Quantum Error Correction

A core challenge in QEC is the complex inter-
play between theoretical models and experimental
implementations. Theoretical frameworks like the
toric code assume certain hardware capabilities, and
overlook practical limitations. As experimental ef-
forts progress, these constraints became clearer, em-
phasizing the need to align theory with practice.
Significant milestones in this evolution include the
shift from the toric code to the planar surface code,
and from the planar to the rotated planar surface
code [2, 1]. The toric code, which operates on a
torus without physical boundaries, is conceptually
elegant but impractical due to the requisite qubit
topologies and long-range interactions. Recogniz-
ing some hardware architectures would be limited
to nearest-neighbor interactions, the planar surface
code emerged as a more practical solution. The ro-
tated surface code further improves efficiency, of-

∗mbmyersii@u.nus.edu
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fering the same error correction guarantees with
fewer qubits. Notably, both planar codes have non-
periodic boundaries [3]. These transitions highlight
the necessity of accommodating the physical limita-
tions of real-world quantum platforms.

3 Decoding with Boundaries

Decoding algorithms, such as Minimum Weight
Perfect Matching using Sparse-Blossom (MWPM),
Union-Find (UF), Maximum-Likelihood (ML), Neu-
ral Networks (NN), and Cellular Automaton (CA),
are central to quantum error correction [4,5]. Their
primary goal is to identify and correct faults to pre-
serve encoded quantum information. Decoders use
syndrome measurements from error correction cir-
cuits to locate defects and apply corrective opera-
tions. However, certain fault-correction combina-
tions can form non-trivial chains, leading to logi-
cal errors. In the planar surface codes, these chains
must span the code’s spatial boundaries to induce
logical errors; whereas, for the toric code these
chains must form closed-loops around the torus.

As we consider increasing code distance, the ra-
tio of boundary qubits to interior qubits goes down;
which may lead one to believe that boundary effects
will diminish. This is natural, since fewer logical er-
rors will be observed, due the need for longer fault-
correction chains to induce each logical errors. How-
ever, when logical errors do occur, they always in-
volve boundary interactions. When physical bound-
aries are present, there is unknowable information,
with regards to the detection capabilities of the vir-
tual ancillaries which could potentially identify de-
fects – if physically present. Therefore, it is crucial
that we carefully consider how physical boundaries
can be utilized to improve the efficiency and accu-
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(a)

(b)

(c)

Figure 1: Visualization the distance d = 3 (a) toric
code, (b) planar surface code, and (c) rotated
surface code. X ancillaries (blue) are on each
vertex, Z ancillaries (red) are on each plaquette,
and data qubits (empty black circles) are on each
edge. Example Z/X stabilizers are shown in the
blue/red shaded regions. The red dashed lines
illustrate the dual lattice. The blue and red
highlighted row and column correspond to the
logical X and Z operators. (a) The faded-out
column and row indicate the periodic boundaries of
the toric code lattice, where the bottom row and
right column map to the top row and left column
respectively. For clarity, this means that the X
ancillaries (faded blue) in the three corners of the
lattice, map to the same singular X ancillary qubit
(blue) in the top left of the lattice. (b) and (c) The
grey outline indicates where the physical
boundaries of the lattices are located, and the
faded blue and red circles represent virtual
ancillary qubits which are missing from the
stabilizers.

racy of decoding. See figure 2 for some examples of

the strategies we investigated in this work.

(a) (b)

Figure 2: A yellow dot, inside an ancillary,
indicates a detected defect. The yellow shaded
regions indicate the cluster growths, with darker
shading indicating multiple growth steps. (a) Treat
Virtual Ancillaries as Stop Condition: You can see
that during the second growth step, the cluster has
reached two virtual ancillaries; however, it takes
two growth rounds (b) Treat Virtual Ancillaries as
Detected Defects with a Stop Condition: This
method requires fewer growth steps; however, you
do have to grow more clusters.

We have found that many still benchmark their
decoding algorithms on toric code models – assum-
ing that the algorithms straightforwardly generalize
to codes with non-periodic boundaries. Some re-
search has addressed decoding algorithms for codes
with physical boundaries; however, these studies
do not explore the rationale behind their specific
boundary-handling strategies. This leaves a gap in
understanding how spatial and temporal boundaries
affect decoder performance. We aim to fill this gap
by examining the impact of physical boundaries on
decoders like MWPM and UF; where, through opti-
mizing the boundary handling strategy, we were able
to improve benchmarks, such as the fault-tolerance
threshold and decoder runtime. Our findings high-
light the importance of developing decoding algo-
rithms that take full advantage of the spatial bound-
aries present in QEC codes.
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Abstract. Shadow estimation is a powerful tool in quantum characterization and verification. In this
work, we extend the main theoretical results of Huang et al. to all prime local dimensions and general
Clifford orbits, and bridge the gap between qudit and qubit systems in shadow estimation. Furthermore,
adopting Clifford orbits based on magic states as measurement primitive, we provide rigorous bounds
showing that a single magic gate can already boost the performance of shadow estimation. Specifically,
the sample complexity corresponding to qudit stabilizer measurements is independent of system size, while
its counterpart with qudit magic orbits is independent of both system size and local dimension.
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1 Introduction

The shadow estimation is a sample-efficient protocol
for learning the properties of a quantum system through
randomized measurements [1]. Among existing protocols,
Clifford-based measurements play a pivotal role. The
Clifford group is one of the most important groups in
quantum information processing, with extensive applica-
tions in quantum computation, quantum error correction,
and randomized benchmarking. While most considera-
tions focus on qubit systems, little is known about the
efficiency of qudit shadow estimation previously.
In this work we perform the first systematic and in-

depth study of qudit shadow estimation based on the
Clifford group. In particular, we consider the case where
local dimension d is an odd prime. Surprisingly, we find
that although the qudit stabilizer states may deviate ex-
ponentially from a 3-design in terms of the third moment
operator, the overhead of its associated sample complex-
ity in shadow estimation, compared with qubit stabilizer
measurements, is only O(d), which is independent of sys-
tem size n.
Furthermore, we investigate shadow estimation with

measurement primitive being the Clifford orbit based on
qudit magic states, which we shall call ‘qudit magic or-
bit’, and prove rigorous upper bounds on its associated
sample complexity. We emphasize that a single magic
gate can already eliminate the O(d) overhead in qudit
shadow estimation and bridge the gap between qudit and
qubit systems. This provides new evidence for the power
of a single magic gate in quantum information processing.

2 Classical shadows

Suppose ρ is an unknown n-qudit quantum state. To
extract meaningful information, one repeatedly applies
a random unitary U sampled from a pre-selected en-
semble E to rotate the state (ρ 7→ UρU†), followed
by a computational-basis measurement with outcome
b ∈ Fn

d , where d is the local dimension. A quantum
channel related to this procedure is defined by M(ρ) :=

∗zhuhuangjun@fudan.edu.cn

E
[
U†|b⟩⟨b|U

]
, with its inverse M−1 called the recon-

struction map. The ensemble of ρ̂ := M−1
(
U†|b⟩⟨b|U

)
stored in classical memory is called the classical shadows
of ρ, which can then be used to estimate the expectation
value of any observable.

Consider a linear operator O in HD := H⊗n
d , where

D = dn. Suppose we have N samples, using empirical
means, an unbiased estimator ô for tr(Oρ) can be con-
structed

ô =
1

N

N∑
j=1

tr(Oρ̂j). (1)

Its mean square error is upper bounded by

⟨ϵ2⟩ ≤ ∥O0∥2sh
N

, (2)

where O0 := O−tr(O)I/D is the traceless part of O, and
the (squared) shadow norm ∥O∥2sh is defined as follows

max
σ

EU∼E
∑
b∈Fn

d

⟨b|UσU†|b⟩ · ⟨b|UM−1(O)U†|b⟩2. (3)

Alternatively, we can use the median of means estimation
to decrease the probability of large deviation from the
true value. The shadow norm plays a central role in the
analysis of sample complexity, and is widely used as a
figure of merit for evaluating the performance of shadow
estimation protocols.

When the ensemble E of unitaries forms a 2-design, the
associated reconstruction map takes on a simple form,
M−1(O) = (D+ 1)O− tr(O)I for any linear operator O
acting on HD. If in addition the ensemble E forms a 3-
design, then the shadow norm has upper bound ∥O0∥2sh ≤
3∥O0∥22 [1]. Unfortunately, when the local dimension is
an odd prime, the Clifford group is only a 2-design, but
not 3-design. When the dimension is not a prime power,
the Clifford group is not even a 2-design.

3 Shadow estimation based on stabilizer
measurements

Denote the n-qudit Clifford group by Cl(n, d). We take
the unitary ensemble to be E = Cl(n, d), which is ex-
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Figure 1: The quantum circuit for data acquisition in
shadow estimation based on qudit magic orbits.

actly the qudit analogue of the ‘random Clifford mea-
surements’ discussed in Ref. [1]. In this case, the cor-
responding measurement primitive is the Clifford orbit
consisting of all stabilizer states. The associated shadow
norm is bounded by the following theorem.

Theorem 1 Suppose d is a prime, n is a positive in-
teger, and O is a linear operator on HD. Adopt stabi-
lizer measurements, i.e., each random unitary is chosen
uniformly from Cl(n, d). Then the shadow norm of its
traceless part O0 satisfies

∥O0∥22 ≤ ∥O0∥2sh ≤ (2d− 1)∥O0∥22. (4)

The upper bound is asymptotically tight as n → ∞, and
O is a projector onto a stabilizer state.

4 Shadow estimation based on qudit
magic orbits

Magic gates supplement the set of Clifford gates so that
universal quantum computation can be achieved. Here
we are mainly interested in qudit magic gates that are
diagonal in the computational basis, which were clarified
by Howard and Vala [3]

T :=

{∑
u∈Fd

ωf(u)|u⟩⟨u| d ≥ 5,∑
u∈Fd

ω
f(u)
9 |u⟩⟨u| d = 3.

(5)

For d ≥ 5, ω = e2πi/d, and f is a cubic polynomial in
Fd[x] with nonzero cubic coefficient. For d = 3, ω9 =
e2πi/9, and f(u) = c3u

3 + 3c2u
2 (c3 ∈ Z9, c2 ∈ F3).

Assume that d is an odd prime. For shadow estimation
based on qudit magic orbits, every element in unitary
ensemble E consists of a random Clifford unitary C ∈
Cl(n, d) and k magic gates T (1 ≤ k ≤ n) acting on
different qudits, each followed by a Fourier gate F

F :=
1√
d

∑
x,y∈Fd

ei·
2π
d ·xy|x⟩⟨y|. (6)

See Fig. 1 for an illustration. We prove the following
upper bound on the shadow norm in this case.

Theorem 2 Suppose d is an odd prime, n is a positive
integer and O is a linear operator on HD. Denote T as
the d-dimensional magic gate defined in Eq. (5). Adopt

a Clifford orbit based on magic states as the measure-
ment primitive, i.e., each random unitary is chosen uni-
formly from Cl(n, d), followed by T gates and Fourier
gates. Then the shadow norm of the traceless part O0 of
O satisfies

∥O0∥2sh ≤ γd,E∥O0∥22. (7)

The coefficient γd,E is defined as

γd,E =

{
3 + 2k+1(d−2)

dk d = 2 mod 3 or d = 3,

3 + 9
8 · 4k

dk−1 d = 1 mod 3,
(8)

where k is the number of T gates.

Previously, Ref. [4] exploited the magic in the qubit
Clifford group to perform multi-shot shadow estimation.
Compared to the homeopathic circuit they use, which is
composed of sequences of Clifford circuits, we only re-
quire one ‘layer’ of Clifford unitary, making the increase
in circuit depth almost negligible.

Figure 2: Distribution of the shadow norms of randomly
sampled 2-qudit normalized Hermitian and diagonal ob-
servables for some odd prime dimensions. By ‘normal-
ized’ we mean that O is traceless and ∥O∥2 = 1. k is the
number of T gates in the measurement primitive.

5 Numerical simulation

We demonstrate our theoretical findings with numer-
ical simulations. In Fig. 2 we show the distribution of
shadow norms of 1000 randomly sampled observables,
associated with both stabilizer and magic orbit measure-
ments. We see that one single T gate in the measurement
primitive leads to a significant reduction in shadow norm,
and thus the sample complexity. The effect is particularly
strong for observables diagonal in stabilizer basis.

We then consider the task of fidelity estimation using
shadow estimation based on magic and non-magic Clif-
ford orbits. We test our protocols on both stabilizer state
(n-qudit GHZ state |GHZ(n, d)⟩) and non-stabilizer state
(T |GHZ(n, d)⟩), where

|GHZ(n, d)⟩ = 1√
d

d−1∑
x=0

|x⟩⊗n. (9)
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Figure 3: Fidelity estimation of qudit GHZ states and T -modified GHZ states with themselves based on Clifford orbits
with different numbers of magic gates. We plot the inverse of average mean square error 1/⟨ϵ2⟩ over 100 runs versus
the number of samples, and by solid (dashed) lines we denote the linear fittings of the data. The input states and
measurement primitives are labeled in each figure.

Fig. 3 shows that the inverse of mean square error
1/⟨ϵ2⟩ increases almost linearly with the number of sam-
ples, which is consistent with Eq. (2). The larger the
slope, the smaller the shadow norm. In all cases, sys-
tem size n has almost no influence on sample complex-
ity. When applying stabilizer measurements on stabilizer
states (Fig. 3(a)), the sample complexity shows a clear
dependence on local dimension d. The dependence be-
comes almost negligible once we switch to magic orbits.
Moreover, the gap between the performance of shadow
estimation in qubit systems and those of qudit cases nar-
rows as the number of T gates increases. We also per-
form numerical simulations with cluster states, and use
median of means instead of empirical means. The results
are similar.

6 Summary

In this work, we generalize the shadow estimation
based on the Clifford group to all prime local dimensions,
as well as considering magic Clifford orbits as measure-
ment primitives, which turns out to be a fruitful, yet little
explored field of research. Leveraging a little magic-state
resource, our protocol overcomes the gap between qudit
and qubit systems in shadow estimation. Our work also
provides valuable insights on the (qudit) Clifford groups
and Clifford orbits, and highlights the power of a sin-
gle magic gate in quantum information processing, which
may have profound implications for various topics beyond
shadow estimation.
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The classical shadow estimation is a sample-efficient protocol for learning the properties of a
quantum system through randomized measurements. In this work, we extend the main theoretical
results of Huang et al. to all prime local dimensions as well as general Clifford orbits, and bridge
the gap between qudit and qubit systems in shadow estimation. Furthermore, adopting Clifford
orbits based on magic states as measurement primitive, we provide rigorous bounds showing that a
single magic gate can already boost the performance of shadow estimation. Specifically, the sample
complexity associated with measurements based on qudit stabilizer orbits is independent of system
size, while its counterpart with qudit magic orbits is independent of both system size and local
dimension.
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I. INTRODUCTION

Learning the properties of an unknown, but physi-
cally accessible quantum system is of both fundamen-
tal and practical importance in quantum science and
technology. The classical shadow estimation was pro-
posed as a sample-efficient protocol for fulfilling this
task [1]. Not demanding a full classical description
of the quantum state, this protocol circumvents the
‘curse of dimensionality’ for traditional state tomog-
raphy [2, 3]. Several variants have been proposed by
previous researchers. For example, robust shadow es-
timation [4, 5] and error-mitigation techniques [6, 7]
are introduced to make the protocol noise-resilient.
Novel schemes based on shallow circuits [8, 9], quench
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dynamics [10] and generalized measurements [11, 12]
also exhibit potential advantages in specific scenar-
ios. Experimental implementations have also been
reported [13, 14].

Among existing protocols, Clifford-based measure-
ment plays a pivotal role. The Clifford group is one of
the most important groups in quantum information
processing, with extensive applications in quantum
computation, quantum error correction, and ran-
domized benchmarking. While most considerations
focus on qubits, the underlying physical system as
information carriers are not necessarily binary, but
typically exhibit multilevel structures, which can be
exploited as a resource in quantum simulation [15–
17] and quantum computing algorithms [18, 19]. De-
velopments in experimental control of qudit states
with photonics, solid-state, trapped ion, and su-
perconducting platforms have made universal, pro-
grammable qudit-based quantum processors possi-
ble [20–24]. Generalizing qubit classical shadow es-
timation to qudits is both theoretically interesting
and potentially useful for verifying, calibrating and
controlling qudit systems. However, little is known
about the efficiency of qudit shadow estimation pre-
viously.

In this work we perform the first systematic and
in-depth study of qudit shadow estimation based on
the Clifford group. We consider the case where local
dimension d is an odd prime. Surprisingly, we find
that although the qudit stabilizer states may deviate
exponentially from a 3-design in terms of the third
moment operator, the overhead of its associated sam-
ple complexity in shadow estimation, compared with
qubit stabilizer measurements, is only O(d), which is
independent of system size n. In particular, with qu-
dit stabilizer measurements, the shadow norm of any
linear operator is upper bounded by (2d − 1) times
its Hilbert-Schmidt norm.

Furthermore, we investigate shadow estimation
with measurement primitive being the Clifford orbit
based on qudit magic states, which we shall denote
as the ‘qudit magic orbit’. We prove rigorous up-
per bounds on the corresponding sample complexity.
We emphasize that a single magic gate can already
eliminate the O(d) overhead in qudit shadow estima-
tion, making the sample complexity independent of
both system size and local dimension. This can lead
to a great reduction in resource cost, especially for
high dimensional cases, and bridge the gap between
qudit and qubit systems in terms of performance in
shadow estimation. Our results also provide new evi-
dence of the power of a single magic gate in quantum
information processing.

This paper extracts the key results in our com-
panion paper, which contains complete technical de-
tails and additional results, including the proofs of
all statements presented here.

II. SHADOW ESTIMATION

Suppose the Hilbert space HD is a tensor power
of the form HD = H⊗n

d , where the local dimension
d is a prime, and the total dimension is D = dn.
The computational basis of H⊗n

d can be labeled by
elements in Fn

d , where Fd is the finite field com-
posed of d elements. Our main task is to estimate
the expectation values of certain linear operators on
HD with respect to an unknown n-qudit quantum
state ρ. To this end, we can repeatedly apply a
random unitary U sampled from a pre-selected en-
semble E to rotate the state (ρ 7→ UρU†), followed
by a computational-basis measurement with outcome
b ∈ Fn

d . This procedure defines a quantum chan-
nel as follows, M(ρ) := E

[
U†|b⟩⟨b|U

]
, and the in-

verse M−1 is called the reconstruction map. By
virtue of this map we can construct an estimator
ρ̂ := M−1

(
U†|b⟩⟨b|U

)
, called a (classical) shadow

of ρ, in each run [1].
Suppose we want to estimate the expectation value

of a linear operator O on HD. If N samples are avail-
able, then an unbiased estimator ô for o := tr(Oρ)
can be constructed from the empirical mean as fol-
lows,

ô =
1

N

N∑
j=1

ôj =
1

N

N∑
j=1

tr(Oρ̂j), (1)

where ρ̂j is the estimator for ρ in the jth run. Since
by construction tr(ρ̂) = 1, the variance of ô only de-
pends on the traceless part O0 = O − tr(O)I/D of
O [1], where I is the identity operator on HD. Thus
without loss of generality, sometimes we consider O0

instead of O to simplify the discussion. The mean
square error of ô is upper bounded by (see the sup-
plement for a proof)

⟨ε2⟩ ≤ ∥O0∥2sh
N

, (2)

where the (squared) shadow norm ∥O∥2sh is defined
as follows [1],

max
σ

EU∼E
∑
b∈Fn

d

⟨b|UσU†|b⟩ ·
∣∣⟨b|UM−1(O)U†|b⟩

∣∣2 .
(3)

Alternatively, we can use the median of means esti-
mation to decrease the probability of large deviation
from the true value. Generalization to two or more
observables is also straightforward. In any case, the
shadow norm plays a central role in the analysis of
the sample complexity and is widely used as the key
figure of merit for evaluating the performance of a
shadow estimation protocol.
When the ensemble E of unitaries forms a 2-design,

the associated reconstruction map takes on a simple
form, M−1(O) = (D + 1)O − tr(O)I for any linear
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operatorO acting onHD. If in addition the ensemble
E forms a 3-design, then the shadow norm satisfies
∥O0∥2sh ≤ 3∥O0∥22 [1].

III. HEISENBERG-WEYL GROUP AND
CLIFFORD GROUP

The phase operator Z and cyclic-shift operator X
for a single qudit are defined as follows,

Z|j⟩ = ωj
d|j⟩, X|j⟩ = |j + 1⟩, (4)

where ωd := e
2πi
d , and the addition j+1 is modulo d.

When d is an odd prime, the qudit Heisenberg-Weyl
(HW) group W(d) is generated by Z and X; when
d = 2, the HW group W(d) reduces to the Pauli
group and is generated by Z, X, and iI. The n-qudit
HW group W(n, d) is the tensor product of n copies
of W(d), and its elements are called Weyl operators.
A Weyl operator is trivial if it is proportional to the
identity and nontrivial otherwise. A Weyl operator is
m local if it is a tensor product ofm nontrivial single-
qudit Weyl operators and (n−m) identity operators
on Hd.

The single-qudit Clifford group Cl(d) is the nor-
malizer of the HW group W(d). The local Clif-
ford group Cl(d)⊗n is the tensor product of n copies
of Cl(d). By contrast, the (global) Clifford group
Cl(n, d) is the normalizer of W(n, d). When d = 2,
the Clifford group Cl(n, d) is a 3-design, [25, 26], and
this is the only known infinite family of 3-designs
based on discrete groups. Indeed, the performance
guarantees of qubit shadow estimation is rooted from
the 3-design property of Cl(n, 2). When d is an odd
prime, the Clifford group Cl(n, d) is only a 2-design,
but not 3-design [27]. Consequently, whether the
high efficiency of shadow estimation can be main-
tained in qudit case is unknown, which motivates the
current study.

IV. SHADOW ESTIMATION BASED ON
LOCAL CLIFFORD MEASUREMENTS

First, we choose the local Clifford group for shadow
estimation, i.e., E = Cl(d)⊗n. This is the qudit gen-
eralization of the scheme based on ‘random Pauli
measurements’ in qubit shadow estimation [1]. The
associated reconstruction map reads

M−1
(
U†|b⟩⟨b|U

)
=

n⊗
j=1

[
(d+ 1)U†

j |bj⟩⟨bj |Uj − I
]
.

(5)
The basic properties of the shadow norm are sum-
marized in Proposition 1 and Theorem 1; see Ap-
pendix D for proofs. Proposition 1 also follows from
Theorem 4 in the companion paper. As in the qubit

case, this strategy is efficient if O only acts on a few
qudits.

Proposition 1. Suppose O is an m-local Weyl op-
erator. Then its shadow norm associated with local
Clifford measurements reads

∥O∥2sh = (d+ 1)m. (6)

Theorem 1. Suppose O is an m-local linear op-
erator on H⊗n

d , that is, O = Õ ⊗ I⊗(n−m) with

Õ ∈ H⊗m
d . Then the shadow norm of O with respect

to local Clifford measurements satisfies

∥O∥2sh ≤ dm∥Õ∥22. (7)

V. SHADOW ESTIMATION BASED ON
STABILIZER MEASUREMENTS

Next, we turn to shadow estimation based on the
global Clifford group, i.e., E = Cl(n, d). Equiva-
lently, the associated measurement primitive is the
orbit of all n-qudit stabilizer states Stab(n, d). Since
the Clifford group Cl(n, d) forms a unitary 2-design,
any Clifford orbit forms a 2-design, and the corre-
sponding reconstruction map is particularly simple,

M−1(U†|b⟩⟨b|U) = (D + 1)U†|b⟩⟨b|U − I. (8)

However, Stab(n, d) does not form a 3-design when
d is an odd prime [27], and it is substantially more
difficult to determine the shadow norm of a generic
observable. Actually, little is known about this issue
although the counterpart for the qubit case is well
known. Indeed, a deep understanding of the third
moment of stabilizer states is indispensable to re-
solve this problem. In the companion paper we have
clarified the properties of the third moment, which
enable us to derive universal upper bounds for the
shadow norm as shown in the following theorem. A
sketch of the proof is presented in Appendix F.

Theorem 2. Suppose O is a linear operator on HD;
then the shadow norm of its traceless part O0 with
respect to stabilizer measurements satisfies

∥O0∥22 ≤ ∥O0∥2sh ≤ (2d− 3)∥O0∥22 + 2∥O0∥2. (9)

If in addition O is diagonal in a stabilizer basis, then

∥O0∥2sh ≤ (d− 1)∥O0∥22 + d∥O0∥2. (10)

If in addition n = 1 and O is diagonal in a stabilizer
basis, then

∥O0∥2sh = (d+ 1)∥O0∥2. (11)

Incidentally, Eq. (11) implies Proposition 1.
Thanks to Theorem 2, the ratio ∥O0∥2sh/∥O0∥22 is
upper bounded by 2d − 1, which is independent of
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FIG. 1. Shadow norms of projectors onto stabilizer states
with respect to Clifford measurements without T gates
(upper) and with one canonical T gate (lower).

the number n of qudits, so the overhead of shadow
estimation of a qudit system over a qubit system
does not grow with n. This result may have pro-
found implications for quantum information process-
ing based on qudits, and is quite unexpected given
that Stab(n, d) is not a 3-design. In fact, the op-
erator norm of the third normalized moment opera-
tor associated with Stab(n, d) increases exponentially
with n when d = 3 or d = 1 mod 3 []. Surprisingly,
measurement ensembles far from 3-designs (with re-
spect to one of the most popular figures of merit) can
achieve similar performance to 3-designs in shadow
estimation. When O is a stabilizer projector, we can
even derive an analytic formula for O.

Proposition 2. Suppose O is a rank-K stabilizer
projector on HD with 1 ≤ K ≤ dn−1. Then
its shadow norm associated with stabilizer measure-
ments reads

∥O∥2sh
∥O0∥22

=
D + 1

D + d

(
d− 1− d

D
+

d

K

)
. (12)

The shadow norms of projectors onto stabilizer
states are illustrated in Fig. 1. They can saturate
the upper bounds in Eqs. (9) and (10) asymptoti-
cally as n→ ∞. Interestingly, they are also the most
difficult to estimate by stabilizer measurements. For
comparison, Fig. 2 shows the distributions of shadow
norms of random Hermitian observables and random
diagonal observables of two qudits that are normal-
ized with respect to the Hilbert-Schmidt norm. In
the former case, the shadow norms are usually much

FIG. 2. Distribution of the shadow norms of randomly
sampled 2-qudit normalized Hermitian and diagonal ob-
servables for some odd prime dimensions. By ‘normal-
ized’ we mean that O is traceless and ∥O∥2 = 1. k is the
number of T gates in the measurement primitive. All T
gates are canonical.

smaller than the upper bound in Eq. (9) and do not
increase with the local dimension; in the later case,
by contrast, the upper bound in Eq. (10) is nearly
optimal.

VI. THE POWER OF MAGIC GATES IN
SHADOW ESTIMATION

Clifford circuits supplemented by sufficiently many
magic gates can realize universal quantum computa-
tion [], but little is known about the power of lim-
ited magic gates in quantum information processing.
Here we propose a simple recipe for boosting the effi-
ciency of qudit shadow estimation by virtue of a few
magic gates and show that a single magic gate can
already bridge the gap between a qudit system and
a qubit system.
We are mainly interested in qudit magic gates that

are diagonal in the computational basis and belong to
the third Clifford hierarchy [28]. These magic gates
as clarified by Howard and Vala [29] (see also our
companion paper []) are referred to as T gates hence-
forth. Up to an irrelevant global phase factor, a qudit
T gate takes the form

T :=
∑
u∈Fd

ω̃f(u)|u⟩⟨u|, ω̃ :=

{
ωd d ≥ 5,

ω9 d = 3.
(13)

When d ≥ 5, f is a cubic polynomial on Fd with
nonzero cubic coefficient. When d = 3, f(u) = c3u

3+
3c2u

2 (with c2 ∈ F3, c3 ∈ Z9, and c3 ̸= 0 mod 3) is a
function from F3 to Z9. The T gate associated with
the function f(u) = u3 is referred to as the canonical
T gate henceforth.
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FIG. 3. Shadow estimation based on the Clifford circuit
supplemented by a layer of T gates.

Using T gates we can construct an alternative uni-
tary ensemble for shadow estimation as follows: First
apply a random Clifford unitary C selected from
Cl(n, d), then apply k T gates (1 ≤ k ≤ n) on k
different qudits, each followed by a Fourier gate F ,
where

F :=
1√
d

∑
x,y∈Fd

ωxy
d |x⟩⟨y|. (14)

Without loss of generality, we can assume that the
T gates are applied on the first k qudits; denote by
Tj the T gate applied to the jth qudit. The result-
ing unitary ensemble is denoted by E

(
{Tj}kj=1

)
, and

the effective measurement ensemble corresponds to
a Clifford orbit generated from a magic state. The
schematic diagram is illustrated in Fig. 3. The cir-
cuit we employ is substantially simpler than popular
interleaved Clifford circuits: in each run we need to
sample a random Clifford unitary only once, which is
as economic as possible and is particularly appealing
in the NISQ era [30]. Nevertheless, such simple cir-
cuits are surprisingly powerful in shadow estimation
as shown in the following theorem.

Theorem 3. Suppose O is a linear operator on HD

and T1, T2, . . . , Tk are k T gates with 1 ≤ k ≤ n.
Then the shadow norm of its traceless part O0 with
respect to E

(
{Tj}kj=1

)
satisfies

∥O0∥2sh ≤ γd,k∥O0∥22, (15)

where

γd,k :=

{
3 + 2k+1(d−2)

dk d ̸= 1 mod 3,

3 + 9
8 · 4k

dk−1 d = 1 mod 3.
(16)

Thanks to Theorem 3, the shadow norm associated
with the unitary ensemble E

(
{Tj}kj=1

)
converges ex-

ponentially to the counterpart of a unitary 3-design
as the number k of T gates increases. Moreover, a
single T gate can already bridge the gap between a
qudit system and a qubit system. Notably, if the
observable O has a bounded Hilbert–Schmidt norm,

which is the case for many tasks, such as the fidelity
estimation, then the sample complexity is indepen-
dent of the local dimension and the number of qudits.
When O is a stabilizer projector, we can even de-

rive an analytical formula for the shadow norm; see
our companion paper for details. The results for pro-
jectors onto stabilizer states are shown in Figs. 1 and
6; results for general stabilizer projectors are shown
in Fig. 7. (Figures 6 and 7 are in Appendix H.) In
addition, T gates can significantly reduce the shadow
norms of random diagonal observables, as illustrated
in Fig. 2, although their utility for random observ-
ables seems limited because Clifford circuits are al-
ready good enough. Theorem 3 is applicable irre-
spective of the specific choices of T gates. If we can
make educated choices, then the shadow norm can
be reduced further as shown in Appendix H.

VII. NUMERICAL SIMULATION

To corroborate our theoretical findings, we per-
formed extensive numerical simulation on qudit
shadow estimation based on Clifford circuits sup-
plemented by T gates. To this end, we first gen-
eralize the tableau representation of stabilizer states
[31] and gadgetization method for insertion of magic
gates in Clifford circuits [32, 33] to the qudit setting
(see Appendix I for more details). Together with
the sampling algorithm of Clifford unitaries [34, 35],
we are able to simulate a single shot in shadow esti-
mation on a classical computer with an approximate
computational cost of O

(
(n+ t)3 + tdt+1

)
, where t

is the number of magic states in the gadgetized cir-
cuit.
As a showcase, we consider the task of fidelity es-

timation in which the input state ρ is identical to a
pure target state |Ψ⟩⟨Ψ|. In this case, the observ-
able of interest is O = |Ψ⟩⟨Ψ| and the true fidelity is
tr(ρO) = 1. Estimators for the fidelity can be con-
structed from empirical means as in Eq. (1). First,
we test our protocols on the n-qudit GHZ state, that
is |Ψ⟩ = |GHZ(n, d)⟩, where

|GHZ(n, d)⟩ := 1√
d

d−1∑
x=0

|x⟩⊗n. (17)

Figure 4 shows the simulation results on the inverse
mean square error 1/⟨ε2⟩, which increases linearly
with the number of samples as expected by Eq. (2).
The smaller the shadow norm, the larger the slope
of the interpolation line. In all cases under consid-
eration, the number n of qudits has little influence
on the sample complexity. If we choose Clifford cir-
cuits without T gates for shadow estimation, then
the slope is approximately inversely proportional to
the local dimension d. If we add one canonical T
gate, then the ratio of the maximum slope over the
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FIG. 4. Inverse mean square error in fidelity estimation of the n-qudit GHZ state |GHZ(n, d)⟩. The estimation
protocols are based on the Clifford circuits supplemented by up to two canonical T gates. The mean square error ⟨ε2⟩
for each data point is the average over 100 runs. The solid (dashed) lines are determined by interpolation. Results on
the state T |GHZ(n, d)⟩ are also shown for comparison.

minimum slope is upper bounded by 3, so the depen-
dence on the local dimension is insignificant. If more
T gates are applied, then the ratio is even smaller.
All these results are consistent with theoretical pre-
dictions.

For comparison, we also test our protocols on the
state T |GHZ(n, d)⟩, where T is the canonical T gate
acting on the first qudit, and the results are also
shown in Fig. 4. Now the MSE gets smaller and we
see a ‘duality’ between magic gates in state prepa-
ration and in measurements: the MSE is mainly de-
termined by the total number of T gates. For ex-
ample, Fig. 4(b) and Fig. 4(d) show similar behav-
iors; Fig. 4(c) and Fig. 4(e) show similar behaviors
too. Additional simulation results on the median of
means estimation and on cluster states can be found
in Appendix H; the general conclusions are similar.

We then consider a more realistic case in which the
input state is a depolarized GHZ state, i.e.,

ρ = pI/D + (1− p)|GHZ(n, d)⟩⟨GHZ(n, d)|, (18)

where p ∈ [0, 1] is the noise probability, and we want
to estimate its fidelity with |GHZ(n, d)⟩ using shadow
estimation.

Figure 5 shows that our protocols give reasonably
good estimators for fidelity using a relative small
(104) number of samples. As more T gates are added
to the Clifford circuit, the fluctuation (standard de-
viation) becomes smaller, meaning that the protocol

has a better performance guarantee.This again con-
firms our theoretical prediction.

VIII. ESTIMATION OF QUADRATIC
FUNCTIONS

Here we consider the estimation of quadratic func-
tions based on Clifford circuits supplemented by a
few T gates. In Appendix J, we derive an up-
per bound for the sample complexity of estimating
quadratic functions of the form tr(Oρ⊗ ρ).
As a concrete example, consider the estimation of

the purity of an m-qudit subsystem of interest. The
associated observable is the swap operator S: S|ψ⟩⊗
|ϕ⟩ = |ϕ⟩ ⊗ |ψ⟩ for all |ψ⟩, |ϕ⟩ ∈ HD. This task is
tied to the probing of a Rényi entanglement entropy,
which is of interest in many research fields. Suppose
we employ the Clifford circuits supplemented by k
T gates, then the sample complexity of this task is
approximately 2d− 1 when k = 0 and 8

√
3γd,kd

n/ε2

when 1 ≤ k ≤ n, where γd,k is defined in Eq. (16).
For local Clifford measurements, by contrast, the

sample complexity is approximately 8(d2n + dn)/ε2.
In addition, Ω

(
16d3n/ε2

)
samples are required to es-

timate the purity within precision ε using a tradi-
tional tomographic approach based on independent
measurements [2]. So shadow estimation can reduce
the resource cost by a factor of d2n.
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FIG. 5. Fidelity estimated using shadow estimation and
the corresponding standard deviation. k denotes the
number of canonical T gates in E

(
{Tj}kj=1

)
. Here, the

estimator is constructed from 104 samples, and the stan-
dard deviation (SD) is calculated from 100 independent
runs. The grey lines in the left column show the true
fidelity F = 1− p.

IX. SUMMARY

In this work, we generalize the shadow estimation
based on the Clifford group to all prime local di-
mensions, as well as considering qudit magic orbits
as measurement primitives, which turns out to be a
fruitful, yet little explored field of research.

Leveraging a little magic-state resource, our pro-
tocol resolves the dependence of sample complexity
on local dimension and allows us to predict proper-
ties of large-scale, high-dimensional quantum states
with comparable efficiency as in the qubit case. Since
our protocol only require one layer of random Clifford
circuit and one magic gate from the third Clifford hi-
erarchy, it is promising to be implemented on NISQ
devices.

Our work also provides valuable insights on the
(qudit) Clifford group and the Clifford orbits, and
highlights the power of a single magic gate in
overcoming the gap between qudit and qubit sys-
tems in quantum information processing, which may
have profound implications for various topics beyond
shadow estimation.
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Appendix A: Proof of Eq. (2)

Suppose in the jth run the random unitary is U and the measurement outcome is b. Then the corresponding
single-shot estimator ôj reads

ôj := tr (Oρ̂j) = tr (O0ρ̂j) = tr
[
O0 · M−1(U†|b⟩⟨b|U)

]
= tr

[
M−1(O0) · U†|b⟩⟨b|U

]
, (A1)

where the last equality holds because the map M−1 is self-adjoint. The expectation value of ôj reads
E[ôj ] = o = tr(Oρ) = tr(O0ρ). The variance of ôj can be upper-bounded as follows,

Var[ôj ] = E
[
|ôj − o|2

]
≤ E

[
|ôj |2

]
= E

[∣∣⟨b|UM−1(O0)U
†|b⟩

∣∣2]
= EU∼E

∑
b∈Fn

d

⟨b|UρU†|b⟩ ·
∣∣⟨b|UM−1(O0)U

†|b⟩
∣∣2 ≤ ∥O0∥2sh, (A2)

where the last inequality follows from the definition of the shadow norm in Eq. (3). Note that this derivation
is applicable even if O is not Hermitian.

By definition the empirical mean ô is the average of N independent single-shot estimators. Therefore,

⟨ε2⟩ := Var[ô] =
1

N2

N∑
j=1

Var[ôj ] ≤
∥O0∥2sh
N

, (A3)

which confirms Eq. (2).

Appendix B: Heisenberg-Weyl group and Clifford group

In this appendix, we provide a bit more details on the Heisenberg-Weyl group and Clifford group, assuming
that the local dimension d is an odd prime. Recall that the HW group W(d) for a single qudit is generated
by the two operators Z and X defined in Eq. (4), that is,

W(d) := ⟨Z,X⟩ =
{
ωj
dZ

kX l | j, k, l ∈ Fd

}
, (B1)

where ωd = e
2πi
d . Up to phase factors, the elements in W(d), known as Weyl operators, can be labeled by

vectors in F2
d [36]. Given u = (p, q) ∈ F2

d, define

Wu =W (p, q) := χ(−2−1pq)ZpXq, (B2)

where χ(r) = ωr
d. Then W(n, d) =

{
ωj
dWu | j ∈ Fd, u ∈ F2

d

}
. Let u, v be two vectors in F2

d; then Wu commute

with Wv iff u and v are linearly dependent. The n-qudit HW group W(n, d) is the tensor product of n
copies of W(d). Up to phase factors, n-qudit Weyl operators can be labeled by vectors in F2n

d . Given
u = (uz1, u

z
2, . . . , u

z
n, u

x
1 , u

x
2 , . . . , u

x
n) ∈ F2n

d , define

Wu :=Wu1 ⊗Wu2 ⊗ · · · ⊗Wun , (B3)

where uj = (uzj , u
x
j ). Then W(n, d) =

{
ωj
dWu | j ∈ Fd,u ∈ F2n

d

}
.

To better understand the structure of the HW group, we need to introduce a symplectic structure in F2n
d .

Denote by [u,v] the symplectic product defined as follows,

[u,v] := u⊤Jv, J =

(
0n In
−In 0n

)
. (B4)

Then the composition and commutation relations of two Weyl operators Wu and Wv are determined by this
symplectic product,

WuWv = ω
[u,v]/2
d Wu+v, , WuWv = ω

[u,v]
d WvWu, u,v ∈ F2n

d . (B5)
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In addition, this symplectic product defines the symplectic group Sp(2n, d), which is composed of all 2n× 2n
matrices on Fd that preserve the symplectic product, that is,

Sp(2n, d) :=
{
S ∈ F2n×2n

d | S⊤JS = J
}
. (B6)

Elements in Sp(2n, d) are called symplectic matrices or symplectic transformations. If S is a symplectic
matrix, then [Su, Sv] = [u,v] for all u,v ∈ F2n

d .
The Clifford group Cl(n, d) is the normalizer of the HW group W(n, d), that is,

Cl(n, d) :=
{
U ∈ U(H⊗n

d ) |UW(n, d)U† = W(n, d)
}
. (B7)

By definition the commutation relations of Weyl operators are invariant under Clifford transformations. So
every Clifford unitary induces a symplectic transformation on the space F2n

d . Conversely, for any symplectic
transformation M ∈ Sp(2n, d), there exists a unitary operator µ(M) such that [36]

µ(M)Wuµ(M)† =WMu ∀u ∈ F2n
d , (B8)

where µ is called the Weil or metaplectic representation of the symplectic group [37, 38]. Note that this
conclusion relies on the assumption that d is an odd prime and does not hold when d = 2. Up to an overall
phase factor, any Clifford unitary C ∈ Cl(n, d) is of the form

C =Waµ(M), a ∈ F2n
d , M ∈ Sp(2n, d). (B9)

In addition, we have

CWuC
† =Waµ(M)Wuµ(M)†W †

a =WaWMuW
†
a = χ ([a,Mu])WMu. (B10)

Incidentally, the Clifford group Cl(n, d) can be generated by the following unitary operators acting on
individual qudits or individual pairs of qudits [35, 39]:

F :=
1√
d

∑
x,y∈Fd

χ(x · y)|x⟩⟨y|, M(ν) :=
∑
x∈Fd

|νx⟩⟨x|, (B11)

S(ν) :=
∑
x∈Fd

χ(2−1νx2)|x⟩⟨x|, CX :=
∑

(x,y)∈F2
d

|x, x+ y⟩⟨x, y|, (B12)

Z =
∑
x∈Fd

χ(x)|x⟩⟨x|, X =
∑
x∈Fd

|x+ 1⟩⟨x|, (B13)

where ν is a primitive element in F×
d .

Appendix C: Stabilizer codes and stabilizer states

A stabilizer group S is an Abelian subgroup of W(n, d) that does not contain the operator ωdI. Given a
stabilizer group S generated by m (1 ≤ m ≤ n) Weyl operators. The stabilizer projector PS is defined as the
projector onto the subspace CS stabilized by S

CS :=
{
|ψ⟩ ∈

(
Cd
)⊗n | g|ψ⟩ = |ψ⟩, ∀g ∈ S

}
, (C1)

thus

PS =
1

|S|
∑
g∈S

g. (C2)

It’s not difficult to see that the rank K of PS is dn−m.
If the stabilizer group S has the maximum order of dn, then the stabilizer code CS is one-dimensional and

can be represented by a normalized state, known as a stabilizer state. A stabilizer state can be uniquely
determined by its generating set, which contains n Weyl operators.
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Appendix D: Local Clifford measurements

Before proving Proposition 1 and Theorem 1 we need to introduce some auxiliary notation and results. Let
u,v be two vectors in F2n

d . The weight |u| of u is defined as |u| :=
∣∣{j | (uzj , uxj ) ̸= (0, 0)}

∣∣. As a generalization,
we define

|u ∨ v| : =
∣∣{j | (uzj , uxj ) ̸= (0, 0) or (vzj , v

x
j ) ̸= (0, 0)}

∣∣ ,
|u ∧ v| : =

∣∣{j | (uzj , uxj ) ̸= (0, 0) and (vzj , v
x
j ) ̸= (0, 0)}

∣∣ . (D1)

Evidently, we have

|u|+ |v| − |u ∧ v| = |u ∨ v|. (D2)

Let ϕ be a real phase, then the weight of a Weyl operator of the form eiϕWu is defined as the weight of u;
the Weyl operator is m local if it has weight m, that is, |u| = m. Two Weyl operators Wu,Wv are locally
commutative, denoted by Wu ▷◁ Wv, if Wuj

and Wvj
are commutative for j = 1, 2, . . . , n, where uj = (uzj , u

x
j )

and vj = (vzj , v
x
j ). In this case, we also use the notation u ▷◁ v to denote the induced relation on F2n

d . By
definition u ▷◁ v iff uj , vj are linearly dependent for j = 1, 2, . . . , n. In addition, we write u ▷ v if uj is
proportional to vj for j = 1, 2, . . . , n. If u ▷ v, then u ▷◁ v, but the converse is not guaranteed in general. If
u ▷◁ v, then we can deduce the following relations,

|u ∨ v| = min{|s| : s ∈ F2n
d ,u ▷ s,v ▷ s}, |u ∧ v| = max{|s| : s ∈ F2n

d , s ▷ u, s ▷ v}. (D3)

Define

V∗
1 := {(0, 1), · · · , (d− 1, 1), (1, 0)} . (D4)

V∗
n :=

{
(sz,1, sz,2, ..., sz,n; sx,1, sx,2, ..., sx,n) | (szj , sxj ) ∈ V∗

1 ∀1 ≤ j ≤ n
}
. (D5)

Lemma 1. Suppose d is an odd prime, b ∈ Fn
d , and u,v ∈ F2n

d . Then we have

EU∼Cl(1,d)⊗nU†|b⟩⟨b|U⟨b|UWuU
†|b⟩⟨b|UWvU

†|b⟩∗ =

{
d−n(d+ 1)−|u∨v|WuW

†
v if u ▷◁ v,

0 otherwise.
(D6)

Proof. Thanks to the tensor structure of U , Wu, Wv, and |b⟩, it suffices to prove Eq. (D6) in the case n = 1.
Then we can rewrite the LHS of Eq. (D6) as follows,

E|Ψ⟩∼Stab(1,d)|Ψ⟩⟨Ψ|⟨Ψ|Wu|Ψ⟩⟨Ψ|Wv|Ψ⟩∗ =
1

d(d+ 1)

∑
|Ψ⟩∈Stab(1,d)

|Ψ⟩⟨Ψ|⟨Ψ|Wu|Ψ⟩⟨Ψ|Wv|Ψ⟩∗. (D7)

If Wu,Wv do not commute, then they cannot belong to the stabilizer group of any stabilizer state simulta-
neously. Therefore, ⟨Ψ|Wu|Ψ⟩⟨Ψ|Wv|Ψ⟩∗ = 0, which implies Eq. (D6). If Wu =Wv = I, then Eq. (D6) holds
because E|Ψ⟩∼Stab(1,d)|Ψ⟩⟨Ψ| = I/d.

Next, suppose Wu and Wv commute, and at least one of them is not proportional to the identity operator.
Then we can find a Clifford unitary C ∈ Cl(d) such that

C†WuC = ωr1
d Z

s1 , C†WvC = ωr2
d Z

s2 , (D8)

where r1, s1, r2, s2 ∈ Fd. Therefore,∑
|Ψ⟩∈Stab(1,d)

|Ψ⟩⟨Ψ|⟨Ψ|Wu|Ψ⟩⟨Ψ|Wv|Ψ⟩∗ =
∑

|Ψ⟩∈Stab(1,d)

|Ψ⟩⟨Ψ|⟨Ψ|Cωr1
d Z

s1C†|Ψ⟩⟨Ψ|Cωr2
d Z

s2C†|Ψ⟩∗

=
∑

|Ψ⟩∈Stab(1,d)

C|Ψ⟩⟨Ψ|C†⟨Ψ|ωr1
d Z

s1 |Ψ⟩⟨Ψ|ωr2
d Z

s2 |Ψ⟩∗ =
∑
b∈Fd

C|b⟩⟨b|C†⟨b|ωr1
d Z

s1 |b⟩⟨b|ωr2
d Z

s2 |b⟩∗

= Cωr1
d Z

s1ω−r2
d Z−s2C† =WuW

†
v. (D9)

Together with Eq. (D7), this equation implies Eq. (D6) and completes the proof of Lemma 1.

259



12

For local Clifford measurements, the reconstruction map in M−1 Eq. (5) can be expressed as

M−1 =
(
D−1

1/(d+1)

)
d⊗n, (D10)

where D−1
y (·) is the inverse of the single-qudit depolarizing channel Dy(·) = y · +(1 − y) tr(·)d I. Note that

D−1
1/(d+1)(O) = (d+ 1)O− tr(O)I for any linear operator on Hd. If O = Wu is a Weyl operator with u ∈ F2

d,

then

D−1
1/(d+1)

(Wu) =

{
Wu ifWu ∝ I,
(d+ 1)Wu otherwise.

(D11)

1. Proof of Proposition 1

Proof of Proposition 1. If d = 2, then Proposition 1 holds according to Lemma 3 in Ref. [1].
Next, suppose d is an odd prime and O is an m-local Weyl operator. Then O has the form O = eiϕWu,

where ϕ is a real phase and u ∈ F2n
d with |u| = m. By virtue of Eqs. (3) and (D10) we can deduce that

∥O∥2sh = ∥Wu∥2sh = max
σ

∑
b∈Fn

d

EU∼Cl(d)⊗n⟨b|UσU†|b⟩ · |⟨b|U(D−1
1/(d+1))

⊗n(Wu)U
†|b⟩|2

= (d+ 1)2m max
σ

∑
b∈Fn

d

EU∼Cl(d)⊗n⟨b|UσU†|b⟩ · |⟨b|U(Wu)U
†|b⟩|2

= dn(d+ 1)2m × 1

dn(d+ 1)m
max
σ

tr
(
σWuW

†
u

)
= (d+ 1)m, (D12)

which confirms Proposition 1. Here the second equality follows from Eq. (D11) and the fact that Wu is
m-local, and the last equality follows from Lemma 1.

2. Proof of Theorem 1

Proof of Theorem 1. If d = 2, then Eq. (7) follows from Proposition 3 in Ref. [1], so it remains to consider
the case in which d is an odd prime.

We expand Õ in the Weyl basis as Õ =
∑

u αuWu, where u ∈ F2m
d . According to Eq. (D11), we have

(D−1
1/(d+1)

)⊗m(Õ) =
∑

u∈F2m
d

(d+ 1)|u|αuWu. (D13)

In conjunction with Eqs. (3) and (D10) we can deduce that

∥O∥2sh = ∥Õ∥2sh = max
σ

EU∼Cl(1,d)⊗m

∑
b∈Fm

d

⟨b|UσU†|b⟩
∣∣∣⟨b|U(D−1

1/(d+1)
)⊗m(Õ)U†|b⟩

∣∣∣2
= max

σ

∑
b∈Fm

d

∑
u,v∈F2m

d

(d+ 1)|u|+|v|αuα
∗
v tr

[
σ · EU∼Cl(1,d)⊗mU†|b⟩⟨b|U⟨b|UWuU

†|b⟩⟨b|UWvU
†|b⟩∗

]

= max
σ

∑
u,v∈F2m

d ,u▷◁v

(d+ 1)|u|+|v|

(d+ 1)|u∨v| αuα
∗
v tr
(
σWuW

†
v

)
=

∥∥∥∥∥∥
∑

u,v∈F2m
d ,u▷◁v

(d+ 1)|u|+|v|

(d+ 1)|u∨v| αuα
∗
vWuW

†
v

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
s∈V∗

n

∑
u,v▷s

(d+ 1)|u|+|v|

(d+ 1)m
αuα

∗
vWuW

†
v

∥∥∥∥∥∥ ≤ 1

(d+ 1)m

∑
s∈V∗

m

∥∥∥∥∥∑
u,v▷s

(d+ 1)|u|+|v|αuα
∗
vWuW

†
v

∥∥∥∥∥
=

1

(d+ 1)m

∑
s∈V∗

m

∥∥∥∥∥∑
u▷s

(d+ 1)|u|αuWu

∥∥∥∥∥
2

≤ 1

(d+ 1)m

∑
s∈V∗

m

∣∣∣∣∣∑
u▷s

(d+ 1)|u|αu

∣∣∣∣∣
2

. (D14)
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Here the fourth equality follows from Lemma 1 and the sixth equaity follows from the fact that

|{s ∈ V∗
m |u,v ▷ s}| = (d+ 1)m−|u∨v|. (D15)

If Õ = Wq is an m-local Weyl operator, say, Õ = Wq with q ∈ F2m
d and |q| = m, then αu = 1 if u = q and

αu = 0 otherwise, so both inequalities in Eq. (D14) are saturated and we recover Proposition 1.
Next, apply the Cauchy-Schwartz inequality to Eq. (D14) we can deduce that

∥O∥2sh ≤ 1

(d+ 1)m

∑
s∈V∗

m

∣∣∣∣∣∑
u▷s

(d+ 1)|u|αu

∣∣∣∣∣
2

≤ 1

(d+ 1)m

∑
s∈V∗

m

(∑
u▷s

(d+ 1)|u|

)(∑
u▷s

(d+ 1)|u||αu|2
)

= d2m
∑
s∈V∗

m

∑
u▷s

(d+ 1)|u|−m|αu|2 = d2m
∑

u∈F2m
d

|αu|2 = dm∥Õ∥22, (D16)

which confirms Theorem 1. In deriving the above equalities we have taken into account the following facts,

∑
u▷s

(d+ 1)|u| =
m∑
j=0

(
m

j

)
(d− 1)j(d+ 1)j = d2m, |{s ∈ V∗

m |u ▷ s}| = (d+ 1)m−|u|. (D17)

Appendix E: The third moment operator

Recently, Gross, Nezami and Walter (GNW) developed a variant of Schur-Weyl duality for the Clifford
group [40], which states that when n ≥ t− 1 the commutant of Cl(n, d)⊗t is spanned by the set of operators
R(T ) for T ∈ Σt,t(d), where the operator R(T ) is defined as

r(T ) :=
∑

(x;y)∈T

|x⟩⟨y|, R(T ) := r(T )⊗n (E1)

for each T ≤ F2t
d , and Σt,t(d) is called the set of stochastic Lagrangian subspaces. For the purpose of our

discussion, let t = 3, d be an odd prime, and Σ(d) := Σ3,3(d). The cardinality of Σ(d) is 2d+ 2.
Let S3 := {1, ζ, ζ2, τ12, τ23, τ13} be the third order symmetric group, where 1 is the identity, ζ is the cyclic

permutation and τij is the transposition that interchanges i and j. For all O ∈ S3,

TO :=
{
(Ox;x) |x ∈ F3

d

}
(E2)

is an element in Σ(d). Define

Tsym := {TO |O ∈ S3}, Tns := Σ(d)\Tsym. (E3)

Specifically, when d = 2, Σ(d) = Tsym.
Define the third moment operator of the Clifford orbit generated from any fiducial state |Ψ⟩ ∈ HD as

Q (orb(Ψ)) := EU∼Cl(n,d)

[
U†|Ψ⟩⟨Ψ|U

]⊗3
. (E4)

Evidently, Q (orb(Ψ)) belongs to the commutant of Cl(n, d)⊗3, and can be expanded as a linear combination
of {R(T )}T ∈Σ(d). Specifically, when |Ψ⟩ is a stabilizer state, Q (orb(Ψ)) takes the following simple form [40]

Q(n, d, 3) := EStab(n,d)

[
|S⟩⟨S|⊗3

]
=

1

D(D + 1)(D + d)

∑
T ∈Σ(d)

R(T ), (E5)

where Stab(n, d) denotes the ensemble of n-qudit stabilizer states. We also define the ‘normalized third
moment operator’ as

Q̄ (orb(Ψ)) := π[3]Q (orb(Ψ)) , (E6)
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where

π[3] = tr
(
P[3]

)
=

(
D + 2

3

)
, (E7)

with P[3] being the projector onto the tripartite symmetric subspace in H⊗3
D . The third moment operator is

closely related with the shadow norm. Suppose the measurement primitive corresponds to a Clifford orbit
based on |Ψ⟩ ∈ HD. For any linear operator O, define

Q̄Ψ(O) := trBC

[
Q̄ (orb(Ψ)) (I⊗O⊗O†)

]
, (E8)

then the shadow norm of O reads

∥O∥2sh =
6(D + 1)

D + 2
∥Q̄Ψ(O)∥, (E9)

This is the case for both scenarios discussed in Sec. V and Sec. VI. When there are more than one Clifford
orbits in the measurement primitive, Eq. (E9) can be generalized by taking the average over all orbits.

Appendix F: Proof of Theorem 2

Proof of Theorem 2. We focus on the proof of Eq. (9), and Eqs. (10) and (11) follows by a similar reasoning.
For a detailed derivation, see our companion paper. In the case of stabilizer measurements, define

Q̄(n, d, 3) := π[3]Q(n, d, 3), Q̄n,d(O) := trBC

[
Q̄(n, d, 3)(I⊗O⊗O†)

]
, (F1)

then

∥O∥2sh =
6(D + 1)

D + 2
∥Q̄n,d(O)∥. (F2)

First consider the case d = 2, the set of stabilizer states forms a 3-design [25], which means Q̄(n, d, 3) = P[3].
Then for any linear operator O ∈ HD,

6 trBC [P[3](I⊗O⊗O†)] = OO† +O†O+ tr
(
O†O

)
I+ | trO|2I+ tr(O)O† + tr

(
O†)O. (F3)

Consider the shadow norm of O0. Since O0 is traceless, we have

∥O0∥22 ≤ 6∥Q̄n,d(O0)∥ = 6∥ trBC [P[3](I⊗O0 ⊗O†
0)]∥ = ∥O0∥22 + ∥O0O

†
0 +O†

0O0∥ = ∥O0∥22 + 2∥O0∥2, (F4)

which implies Eq. (9).
From now on, assume that d is an odd prime, then

6∥Q̄n,d(O0)∥ = 6max
σ

tr
[
Q̄(n, d, 3)(σ ⊗O0 ⊗O†

0)
]
≥ 6

D
tr
[
Q̄(n, d, 3)(I⊗O0 ⊗O†

0)
]

=
D + 2

D
tr
[
(I+ S)(O0 ⊗O†

0)
]
=
D + 2

D
tr
(
O0O

†
0

)
=
D + 2

D
∥O0∥22,

(F5)

where S is the swap operator. The second equality holds because 6 trA Q̄(n, d, 3) = (D+ 2)(I+ S) given that
the set of stabilizer states forms a 2-design.

Define the ‘shadow map’ associated with T ∈ Σ(d) for any linear operator O ∈ HD

RT (O) := trBC

[
R(T )(I⊗O⊗O†)

]
. (F6)

It follows that

Q̄n,d(O) =
D + 2

6(D + d)

∑
T ∈Σ(d)

RT (O). (F7)
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If T ∈ Tsym, then T = TO with O ∈ S3. By straightforward calculation we have

∥RT (O)∥ =


| tr(O)|2 if O = 1;

| tr(O)|∥O∥ if O = τ12, τ13;

∥O∥22 if O = τ23;

∥O∥2 if O = ζ, ζ2.

(F8)

then ∑
T ∈Tsym

∥RT (O0)∥ = ∥O0∥22 + 2∥O0∥2. (F9)

For T ∈ Tns, we have the following lemma. The detailed proof is presented in our companion paper.

Lemma 2 (Lemma 17 in Ref.). Suppose d is an odd prime and O is a linear operator in HD. Then

∥RT (O)∥ ≤ ∥O∥22 ∀T ∈ Tns. (F10)

According to Lemma 2, we have ∑
T ∈Tns

∥RT (O0)∥ = (2d− 4)∥O0∥22. (F11)

In conjunction with Eq. (F7), we can deduce that

6(D + d)

D + 2
∥Q̄n,d(O0)∥ ≤

∑
T ∈Σ(d)

∥RT (O0)∥ =
∑

T ∈Tsym

∥RT (O0)∥+
∑

T ∈Tns

∥RT (O0)∥

≤ (2d− 3)∥O0∥22 + 2∥O0∥2.
(F12)

Eqs. (F5) and (F12) give the lower and upper bound in Eq. (9), respectively, according to Eq. (F7).

Appendix G: Magic gates and magic states

We have introduced the qudit magic gate T in the main text. The single-qudit magic state associated with
T reads

|T ⟩ := T |+⟩ = 1√
d

∑
u∈Fd

ω̃
f(u)
d |u⟩, (G1)

where |+⟩ :=
∑

u∈Fd
|u⟩/

√
d, T is defined in Eq. (13). By definition, |T ⟩ can be generated from |0⟩ by the

Fourier gate followed by the magic gate T .
When d = 1 mod 3, we need to distinguish three types of T gates depending on the cubic coefficient

c (c ̸= 0) of the underlying cubic polynomial f . It turns out the cubic character of the cubic coefficient can
identify the essence. Let ν be a primitive element in the field Fd. Here we choose the cubic character η3 to be

η3(ν
k) = ωk

3 , where ω3 = e2πi/3. (G2)

This cubic character depends on the choice of the primitive element ν, the choice of which for some small
primes is shown in Table I. The cubic character of f , denoted by η3(f), is defined as the cubic character of
c, that is, η3(f) = η3(c). The cubic character of T and that of |T ⟩ are defined as the cubic character of f .

From Eq. (G2) we see that η3(c) = 0 if and only if c is a cubic residue, that is, a cube of another element
in Fd. Thus, when d = 2 mod 3, every element in Fd is a cubic residue, so only one type of T gate exists.
When d = 3, it can be verified by direct calculation that there is only one type of T gate.
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TABLE I. Specific choices of primitive elements for Fd, d < 50

d 3 5 7 11 13 17 19 23 29 31 37 41 43 47

ν 2 2 3 2 2 3 2 5 2 3 2 6 3 5

Appendix H: Additional numerical results

1. Shadow norms of stabilizer projectors

While Fig. 1 shows that one single T gate can already reduce the shadow norm of a stabilizer state
significantly, and that the system size n has little influence once n ≥ 10, Fig. 6 shows that ∥O∥2sh − 3 actually
decrease exponentially with respect to the number of T gates. Recall that ∥O∥2sh ≈ 3 with the measurement
primitive is a 3-design, this result indicates that as more T gates are included, the underlying magic orbit
approaches exponentially to a 3-design.

FIG. 6. Shadow norms of stabilizer states with respect to Clifford measurements supplemented by k canonical T gates.
Here n = 50.

Besides stabilizer states (K = 1), we also calculate the shadow norm for stabilizer projectors of general
rank K according to the analytical expressions given in the companion paper. In Fig. 7, we show the shadow
norm of normalized stabilizer projector with respect to its rank, where K = dη, and the system size is set to
be n = 50. We consider normalized stabilizer projectors mainly to remove the influence of ∥PS∥2.

FIG. 7. Shadow norm of normalized stabilizer projectors. Suppose P is a rank-K stabilizer projector (K = dη). Then

O = P0/∥P0∥2, where P0 = P −KI/D and ∥P0∥2 =
√

K −K2/D. We set the number of qudits to be n = 6. k is the
number of canonical T gates.
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2. Median of means estimation

To compare different estimators, we also show the mean square error versus sample number using median
of means estimation in Fig. 8, in comparison with Fig. 4 in the main text, which uses empirical means. For
each sample number N , we divide the samples equally into c parts, each containing h = N/c samples. We
then calculate the means of every h samples, and take the median of c means as the estimator,

ô(h, c) = median
(
ô(1)(h, 1), · · · , ô(c)(h, 1)

)
, where ô(j)(h, 1) =

1

h

hj∑
i=h(j−1)+1

tr(Oρ̂i). (H1)

Here we take c = 10, which, according to Theorem 1 in Ref. [1], implies that an error larger then ε occurs
with probability less than δ ≈ 0.013. We see in Fig. 8 that the inverse mean square error 1/⟨ε2⟩ for median
of means is approximately 30% lower than that of empirical means.

FIG. 8. Fidelity estimation of qudit GHZ states and T -modified GHZ states with themselves based on Clifford orbits
with different numbers of magic gates, using median of means estimation with c = 10. We plot the inverse of average
mean square error 1/⟨ε2⟩ over 100 runs versus the number of samples, and by solid (dashed) lines we denote the linear
fitting of the data.

3. Performance of shadow estimation on higher local dimensions and other states

In addition to Fig. 4, we show the performance of shadow estimation for different local dimensions in Fig. 9.
Here we fix the systems size to be n = 10 and consider shadow estimation based on stabilizer measurements,
and magic orbits with 1 and 2 T gates, respectively. We test on all prime dimensions under 20, and the type
of T gates are all optimal choices under the specific settings. (See Table II). In all three settings, d = 2 has
the smallest mean square error, but the gap between qubit and higher dimension cases is narrowing as the
number of T gates increases. The dependence of 1/⟨ε2⟩ on local dimension is also diminishing as more T
gates are added to the circuit.

Similar behavior as in Fig. 4 also holds if we replace qudit GHZ state with other stabilizer states. As another
widely interested case, we consider 2d cluster state on square lattice (with periodic boundary conditions).
Suppose the square lattice is a × a, and the local dimension is d. We denote the X (Z) operator of the
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FIG. 9. Fidelity estimation of qudit GHZ states with itself based on Clifford orbits with different numbers of magic
gates. Here we fix the number of qudits to be n = 10 and plot 1/⟨ε2⟩ versus sample number for different dimensions.
The data points are average over 100 runs, and the straight lines denote the linear fittings. The input state is
|GHZ(10, d)⟩, and the measurement primitives are labeled in each figure.

FIG. 10. Fidelity estimation of qudit cluster states (with periodic boundary conditions) and T -modified cluster states
with themselves based on Clifford orbits with different numbers of magic gates. We plot the inverse of average mean
square error 1/⟨ε2⟩ over 100 runs versus the number of samples, and by solid (dashed) lines we denote the linear
fittings of the data. The input states and measurement primitives are labeled in each figure.

qudit on the i-th row, j-th column by Xi,j (Zi,j). The stabilizer generators of the corresponding cluster state
|square(a, d)⟩ are

g = Xi,jZi−1,jZi+1,jZi,j−1Zi,j+1, 1 ≤ i, j ≤ a, (H2)

where the arithmetics on indices is done modulo a. The results for fidelity estimation are shown in Fig. 10.

4. Influence of T gates types on shadow norms

The type of T gates in E({Tj}kj=1) may also affect the performance of shadow estimation. In Table II, we
list the optimal choices of types of T gates for some dimensions satisfying d = 1 mod 3. The ith number

266



19

in the bracket denotes the cubic coefficient of the T gate acting on the ith qudit. To numerically show the
difference between these measurement settings, in Fig. 11 we calculate the distributions of shadow norms for
randomly sampled 2-qudit diagonal and Hermitian observables for d = 7, with all possible combinations of
cubic coefficients. For d = 7, one choice of the primitive element is ν = 3. From Fig. 11 we see that for
random diagonal observables in stabilizer basis, the settings [0, ν2], [ν2, ν2], [ν, ν2] stand out for their small
shadow norm, which is consistent with the result in Table II. For random Hermitian observables, typical
shadow norms are much smaller, making the difference negligible.

TABLE II. Optimal choices of types of T gates for different dimensions

T 2T (identical) 2T

d = 7, ν = 3 [ν2] [ν2, ν2] [ν, ν2]

d = 13, ν = 2 [1] [1, 1] [1, ν]

d = 19, ν = 2 [ν2] [ν2, ν2] [1, ν2]

d = 31, ν = 3 [1] [1, 1] [1, ν2]

FIG. 11. Distribution of shadow norm of randomly sampled 2-qudit observables for d = 7 under different measurement
settings. The X-axis denotes the cubic coefficients of the T gates on two qudits, ν = 3.

Appendix I: Details for numerical simulations

Classical simulation of a quantum circuit has long been an important task for verification and validation
of quantum devices. Notably, the Gottesman-Knill theorem states that a stabilizer circuit can be efficiently
simulated on a classical computer. Later on, Aaronson and Gottesman gave a practical implementation.
Using the tableau representation, their algorithm runs in time O(n2) for both deterministic and random
measurements, and O(n3) for computing the inner product between two stabilizer states, where n is the
qubit number [31]. Other simulation methods based on graph state representation [41] and canonical form
of Clifford unitary [42] were also proposed. However, as far as we are concerned, no explicit algorithm for
simulating qudit stabilizer circuits has been implemented so far.

There has been an extended collection of works on sampling algorithm for (qubit) Clifford group [34, 43, 44].
Ref. [35] generalized the subgroup algorithm in Ref. [34] to all prime dimensions.

The data acquisition phase of shadow estimation is essentially a random Clifford circuit. When no magic
gates are involved, we can simulate this procedure on a classical computer by generalizing the tableau method
in Ref. [31] to qudit case, and combining it with the Clifford sampling in Ref. [35].
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Towards the simulation of universal quantum circuits, there has been several works focusing on the simula-
tion of (qubit) stabilizer circuits interspersed with magic gates, among which two main approaches for dealing
with T gates were proposed: first is by low-rank stabilizer decomposition [45], and second is through gadgeti-
zation [32, 33]. For both methods, the computational cost is polynomial in qubit number and exponential
with respect to the number of magic gates. Here we take the latter one and generalize it to qudits.

The simulation method for qudit circuits we developed in this section may be of interest in itself, and useful
beyond the current task.

1. Generating matrix of qudit stabilizer states

Before presenting the simulation algorithms, we shall first briefly review the generating matrix representa-
tion of qudit stabilizer states. Since for qubit case (d = 2) various techniques have been developed, from now
on we assume d ≥ 3, d is an odd prime.

Suppose |Ψ⟩ ∈ Stab(n, d) is an n-qudit stabilzer state, with stabilizer group S = ⟨S1, S2, ..., Sn⟩, then |Ψ⟩
can be uniquely determined by its generating matrix GΨ

GΨ =
[
Gz
Ψ Gx

Ψ r
]
=

 uz1,1 · · · uz1,n ux1,1 · · · ux1,n ru1
...

. . .
...

...
. . .

...
...

uzn,1 · · · uzn,n uxn,1 · · · uxn,n run

 , (I1)

where every row represents a stabilizer generator

Si = χ(rui )Wui
= χ(rui )

n⊗
k=1

W (uzi,k, u
x
i,k). (I2)

We shall call ui := (uzi,1, . . . , u
z
i,n;u

x
i,1, . . . , u

x
i,n) a ‘stabilizer vector’, and ω

rui
d its corresponding phase factor.

According to the properties of stabilizer generators, if we swap two rows of GΨ, add one row to another, or
multiply one row by any integers in Fd\{0}, the underlying stabilizer state |Ψ⟩ is unchanged. We shall call
these ‘row actions’.

According to Eq. (B10), it’s not hard to see that applying a Clifford unitary C = Waµ(M) ∈ Cl(n, d) on
|Ψ⟩ is equivalent to the mapping

ui 7→Mui, (I3)

followed by a change in phase factors

rui 7→ rui + [a,Mui], (I4)

for i = 1, . . . , n in the generating matrix GΨ, where M , a are the symplectic matrix and vector corresponding
to C in Eq. (B9), respectively.

Our shadow estimation protocol involves sampling of a random Clifford unitary. In generating matrix
representation, this naturally reduces to the sampling of M ∈ Sp(2n, d) plus sampling of a ∈ Fn

d . We directly
use the algorithm in Ref. [35] for sampling of M ∈ Sp(2n, d), which is a generalization of the subgroup
algorithm proposed in Ref. [34] for Sp(2n, 2).

2. Simulating stabilizer circuit

For the simulation of stabilizer circuit (with no T gates), using tableau representation can be more efficient,
especially for computing inner products. The overall simulation algorithm for stabilizer circuits in data
acquisition phase is presented in Algorithm 1.

The sampling of random symplectic matrix in Sp(2n, d) is described in detail in Section 5.3.1 of Ref. [35],
which we shall not repeat here. Associated notations and subroutines we developed will be introduced in the
following subsections.

We generalize the tableau method for simulating stabilizer circuits in Ref. [31] to qudit cases mainly
in the following aspects. Firstly, we develop an algorithm for constructing the tableau representation for
arbitrary qudit stabilizer states. Secondly, inspired by the representation of stabilizer state with its associated
Lagrangian subspace introduced in [35, 36], we develop a new method based on Gaussian elimination for
computing the inner product, as well as simulating measurement, which runs in time O(n3).
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Algorithm 1: Data acquisition for stabilizer circuit

Input : Representation of the input state |Ψ⟩, in the form of s1, . . . , sn, and ϕ1, . . . , ϕn

Output: n-dit measurement outcome x
1 Construct tableau JΨ ; // See Appendix I 2 b

2 Sample a random M ∈ Sp(2n, d) and a ∈ Fn
d ;

3 Update JΨ with M and a ; // See Appendix I 2 a

4 Computational basis measurement on JΨ with outcome x. // See Appendix I 2 d

a. Tableau representation

The tableau JΨ of a stabilizer state |Ψ⟩ is a 2n× (2n+1) matrix over Fd. The upper half of JΨ is exactly
GΨ. The lower half of JΨ, which we shall denote as [vzj,1 · · · vzj,n | vxj,1 · · · vxj,n | rvj ] (j = 1, ..., n), should satisfy
the following relations where the bracket denotes the symplectic inner product [31]

[ui,uj ] = 0, [vi,vj ] = 0, [ui,vj ] = δij , (I5)

for all i, j = 1, . . . , n. Analogous to stabilizer generators {Si}ni=1, the Weyl operators correspond to vj and
rvj are called ‘destabilzer’ generators {Dj}nj=1, where

Dj := χ(rvj )Wvj = χ(rvj )

n⊗
k=1

W (vzj,k, v
x
j,k). (I6)

Similarly, we shall call vj := (vzj,1, . . . , v
z
j,n; v

x
j,1, . . . , v

x
j,n) a ‘destabilizer vector’. Apparently, row actions on

the upper (or lower) half of tableau JΨ will not change the underlying state |Ψ⟩. Destabilizer vectors vj and
rvj in phase factors satisfy the same update rules Eqs. (I3) and (I4) as ui and r

u
i .

b. Constructing tableau for a stabilizer state

Suppose that a generating set of the stabilizer group of stabilizer state |Ψ⟩ is ⟨χ(ϕ1)Ws1 , · · · , χ(ϕn)Wsn⟩,
where s1, · · · , sn ∈ Fn

d , ϕ1, · · ·ϕn ∈ Fd. Given s1, · · · , sn, ϕ1, · · ·ϕn , we can construct the tableau representa-
tion JΨ of |Ψ⟩ with the following two steps: (1) finding stabilizer and destabilizer vectors; (2) tracking phase
factors.

(1) Finding stabilizer and destabilizer vectors: Leave out the last column in JΨ for now and denote

the resulting 2n×2n matrix by J̃Ψ. We shall call J̃Ψ the reduced tableau of |Ψ⟩. In this step, we want to find
a set of n stabilizer vectors u1, . . . ,un and n destabilizer vectors v1, . . . ,vn such that Eq. (I5) are satisfied,
and that {ui}ni=1 spans the same Lagrangian subspace as {si}ni=1. This is done by Algorithm 2 introduced
below.

Consider any eigenstate in the computational basis. Its corresponding reduced tableau can be written as
J̃0 = I2n, which we shall call the ‘standard’ reduced tableau. We denote the rows of J̃0 the ‘standard basis’
of reduced tableau, denoted as {e2n(i)}2ni=1, where e2n(i) is a vector of length 2n with all zero entries except
a 1 on the i-th entry.

In this step, we take the ‘local’ convention and write the tableau row (z1, . . . , zn, x1, . . . , xn) as

(z1, x1, . . . , zn, xn). The basic idea of Algorithm 2 is that, starting from J̃0, if we can find a symplectic
transformation that takes e2n(2i − 1) to ui, then it also transforms e2n(2i) to vi such that the symplectic
inner products Eq. (I5) are preserved.

Denote Sp(2m, d) by Gm. For symplectic groups, the following nested subgroup chain holds

G1 ⊂ G2 ⊂ · · · ⊂ Gn−1 ⊂ Gn =: G. (I7)

Let Mm−1 ∈ Gm−1. The embedding Gm−1 7→ Gm is given by Mm−1 7→
(
1 0
0 1

)
⊕Mm−1, and the map

Gn/Gn−1 ×Gn−1/Gn−2 × · · · ×G2/G1 ×G1 → G (I8)

([Mn], [Mn−1], . . . , [M2],M1) →MnMn−1 · · ·M1 (I9)
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is an isomorphism. In particular, each symplectic transformation M ∈ G has a unique representation as
MnMn−1 · · ·M1 with [Mm] ∈ Gm/Gm−1 for j = 2, . . . , n and M1 ∈ G1. Thus, to obtain the desire M , we
can construct Mn,Mn−1, ...,M1 sequentially.

The major tool for finding a desired symplectic transformation is symplectic transvections [35]. Given a
vector h ∈ F2m

d (in our case m = 1, 2, ..., n) and a scalar λ ∈ Fd\{0}, a symplectic transvection is a symplectic
map Tλ,h such that

Tλ,h(x) = x+ λ[x,h]h. (I10)

The inverse transvection is given by

T−1
λ,h(x) = T−λ,h(x). (I11)

A basic fact from symplectic geometry is that transvections generate the symplectic group. More concretely,
let x,y ∈ F2m

d \{02m} be two vectors. Then there exist vectors h1,h2 and scalars λ1, λ2 such that

y = Tλ1,h1
Tλ2,h2

(x). (I12)

This is Lemma 5.1 of Ref. [35], in which a constructive proof is also given and it should be clear how
the subroutine ‘find transvections’ in Algorithm 2 Line 3 works. The overall computational complexity of
Algorithm 2 is O(n3).

For convenience of notation, we will write Tλ1,h1
Tλ2,h2

(x) simply as T (x) and (Tλ1,h1
Tλ2,h2

)
−1

(x) =

T−1
λ2,h2

T−1
λ1,h1

(x) as T−1(x). Here we take the ‘local convention’, that is, the (2j − 1)-th, 2j-th entry of u
denotes the power of Zj , Xj respectively.

Algorithm 2: Constructing tableau for stabilizers

Input : Stabilizer vectors s1, . . . , sn
Output: Tableau rows u1, . . . ,un,v1, . . . ,vn

1 Set {u(1)
1 , . . . ,u

(1)
n } = {s1, . . . , sn};

2 for i = 1 : n do

3 Find transvections, construct Ti such that Ti(e2(n+1−i)(1)) = u
(i)
i ;

4 for j = i+ 1 : n do

5 u
(i+1)
j = T−1

i (u
(i)
j ), and discard the first two entries of u

(i+1)
j ;

6 end

7 end
8 for i = n : 1 do
9 M = I2

⊕
M (M = I2 for i = n);

10 Apply Ti to every row of M ;

11 end
12 u1, . . . ,un,v1, . . . ,vn are the corresponding rows of M .

Since the commutation relations Eq. (I5) are preserved under symplectic transformations, in each iteration,

u
(i+1)
j = T−1

i (u
(i)
j ) is guaranteed to commute with both e2(n+1−i)(1) and e2(n+1−i)(2), thus the first two entries

of u
(i+1)
j must be zero. So we can discard them and continue to look for transvections that correspond to

symplectic transformations in Sp(2(n−i), d) in the next iteration.
(2) Tracking phase factors: Now we determine the phase factors in the last column of JΨ. Since every

si (i = 1, . . . , n) is a linear combination of u1, . . . ,un, i.e., si =
∑n

j=1 c
j
iuj , with coefficients

cji = [si,vj ], (I13)

we can solve for ru1 , . . . , r
u
n from n linear equations

n∑
j=1

cji r
u
j = ϕi, (i = 1, . . . , n). (I14)

This is essentially a Gaussian elimination, and takes time O(n3).
The phase factors for destabilizers {rvi }ni=1 are actually redundant. For simplicity, we set as convention

rvi = 0 for i = 1, . . . , n.
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Algorithm 3: Simulation of computational basis measurement

Input : The Lagrangian subspace L and characteristic vector m of pre-measurement state
Output: Measurement outcome x

1 Find a basis {wk}ζk=1 of L0 ∩ L with the Zassenhaus algorithm;
2 Construct the equations according to Eq. (I20), and solve for x̃;
3 Return the latter half of x̃ as x.

c. Lagrangian subspace and characteristic vector

An alternative representation of stabilizer state |Ψ⟩ is to use its Lagrangian subspace, which would be very
useful when computing the inner product of two stabilizer states in next subsection.

Given the stabilizer vectors u1, · · · ,un of state |Ψ⟩, they span a subspace L of Fn
d . Note that the symplectic

inner product vanish on L. Such subspaces are called isotropic. One can show that the maximal dimension of
an isotropic subspace is n. Such a maximal isotropic subspace is called a Lagrangian subspace. Apparently,
L is a Lagrangian subspace. Let U be a subspace of V. We use U⊥ to denote the symplectic complement of
U , i.e., for any v ∈ U⊥, [u,v] = 0, ∀v ∈ U . If in addition U is a Lagrangian subspace, then U⊥ = U .

We can express |Ψ⟩ as [36]

|Ψ⟩ = |L,m⟩ := |L|−1
∑
u∈L

χ([m,u])Wu, (I15)

where m ∈ Fn
d is called the characteristic vector.

Note that the choice of m is not unique. In fact, if m′−m ∈ L, then |L,m′⟩ represents the same stabilizer
state as |L,m⟩, that is to say, m has a dn-fold degeneracy.

The conversion from tableau JΨ to |L,m⟩ is straightforward. Observe that m should satisfy

[m,ui] = rui , ∀ i = 1, . . . , n. (I16)

Thus we can choose m = −
∑

i r
u
i ·vi. In fact, instead of tableau JΨ, according to Eq. (I15), we can represent

|Ψ⟩ by u1, · · · ,un and m, and simulate Clifford transformation C =Waµ(M) by the following map

ui 7→Mui,

m 7→Mm+ a.
(I17)

However, to determine the characteristic vector m, we first need to construct a symplectic basis
{u1, . . . ,un,v1, . . . ,vn}, so the overall computational cost of this approach is almost the same as that of
tableau representation.

d. Computational basis measurement

The simulation of computational basis measurement can be seen as a variant of computing inner product
of two stabilizer states.

Given two stabilizer states |L1,m1⟩ and |L2,m2⟩, their overlap reads [35]

|⟨L1,m1|L2,m2⟩|2 =

{
d dim|L1∩L2|−n if m1 −m2 ∈ (L1 ∩ L2)

⊥

0 otherwise.
(I18)

Denote L0 as the Lagrangian subspace spanned by e2n(1), ..., e2n(n), that is, the upper half of J̃0. Suppose
x = (x1, ..., xn) is the measurement outcome. The corresponding characteristic vector can be chosen as
x̃ = (0,x) = (0, ..., 0, x1, ..., xn). Then the probability of obtaining outcome x when performing computational
basis measurement on stabilizer state |L,m⟩ is

p(x) = |⟨L,m|L0, x̃⟩|2. (I19)

We then describe the scheme for sampling an n-dit measurement outcome x. Firstly, find a basis of

L0 ∩ L. This can be done with the Zassenhaus algorithm [46]. Suppose the basis we find is {wk}ζk=1, where
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ζ = dim|L0 ∩ L|, 0 ≤ ζ ≤ n. Then we can sample a characteristic vector x̃ by solving the equations

[x̃,wi] = [m,wi] for i = 1, . . . , ζ,

[x̃, e2n(i)] = αi for i = ζ + 1, . . . , n,
(I20)

where αi is a random integer in Fd. Finally, we take the latter half of x̃, which is exactly x. The overall
procedure is summarized in Algorithm 3.

3. Simulating Clifford+T gate circuit

In the main text, we focus on fidelity estimation using shadow estimation as a prototypical task. In this
section, we shall describe how to classically simulate the procedure when the unitary ensemble corresponds
to a Clifford circuit with magic gates.

In the data acquisition stage, an input state goes through a layer of random Clifford gate Cm ∈ Cl(n, d),
a layer of T gates and a layer of Fourier gates, followed by computational basis measurement. If the input
state can be prepared by applying a few layers of Clifford and T gates to |0⟩⊗n, then this procedure can be
efficiently simulated. That is to say, we can sample the measurement outcome x := (x1, x2, . . . , xn) of this
quantum circuit according to probability distribution {p(x)}x on a classical computer, with computational
cost polynomial in n, and exponential with respect to (t1 + t2), where t1 is the number of T gates used in
preparation of input state, and t2 is the number of T gates in measurement primitive.

We use the same simulation scheme as in Ref. [33], in which each T gate is replaced equivalently by a
‘reversed’ gadget. For simplicity, we denote the magic gates liberally as T , regardless of its specific type.
Define a single qudit ancillary state

|T †⟩ :=

{
1√
d

∑
u∈Fd

ω
−f(u)
d |u⟩ d ≥ 5,

1√
d

∑
u∈Fd

ω
−f(u)
9 |u⟩ d = 3.

(I21)

Diagrammatically, we can express the generalized reversed gadget for qudit circuits as

•〈
T †
∣∣ |0⟩

= 1√
d
T . (I22)

Circuits in this section are read from right to left, so that we can derive the expression of some intermediate
quantum states directly from the circuit diagram.

Suppose the input state is Cp,l...T
⊗s2Cp,1T

⊗s1Cp,0|0⟩⊗n, where
∑k

i=1 si = t1, Cp,0, Cp,1, ..., Cp,l ∈ Cl(n, d),
then the circuit U we are to simulate can be expressed diagrammatically as in Fig. 12 (a). (p for state
preparation and m for measurement). Since Cm is selected randomly from Cl(n, d), the last Cp,l can be
absorbed into Cm, and the t2 T gates in the measurement primitive are applied to the first t2 different qudits
without loss of generality. Its equivalent circuit using reversed gadget is shown in Fig. 12 (b).

To obtain outcome x and its corresponding probability p(x), we sample the outcome on each qudit subse-
quently [32]. For each j = 1, . . . , n− 1, define the conditional probabilities

p(y |x1, . . . , xj−1) :=
p(x1, . . . , xj−1, y)

p(x1, . . . , xj−1)
, (I23)

where y ∈ Fd. Thus, to simulate each experiment shot, we only need to calculate the outcome probabilities
p(x) for nd sequences x of length varying from 1 to n, instead of calculating all dn probabilities p(x) for
x ∈ Fn

d . Evidently, the corresponding (single shot) fidelity estimator can be expressed as

f̂(x) = (dn + 1)p(x)− 1. (I24)

In what follows, we will illustrate how to evaluate an outcome probability p(x) for x = (x1, . . . , xw) of
length w (1 ≤ w ≤ n). We refer to the first w qudits as the measured register ‘a’ and the remaining (n− w)
qudits as the marginalized register ‘b’, then the probability reads

p(x) =
∥∥⟨x|aU |0⟩⊗n

ab

∥∥2
2
, (I25)
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FIG. 12. (a) Quantum circuit for Clifford+T measurement on an input state prepared from Clifford unitaries plus a
few T gates. (b) Post-selected circuit obtained by reverse gadgetization of each T gate.

After gadgetization, circuit U acting on |0⟩⊗n
ab is re-expressed as a Clifford circuit V acting on |0⟩⊗n+t

abc , with t

ancillary qudits in register ‘c’ post-selected on the state |T †⟩. Thus the above probability can be re-expressed
as

p(x) = dt
∥∥⟨x|a⟨T †|⊗t

c V |0⟩⊗n+t
abc

∥∥2
2
, (I26)

which can be further considered as the trace of the product of two projectors p(x) = tr (ΠGΠT,x), where

ΠG = V |0⟩⟨0|⊗n+t
abc V †, ΠT,x = |x⟩⟨x|a ⊗

(
I⊗n−w

)
b
⊗ |T †⟩⟨T †|⊗t

c . (I27)

We express stabilizer state V |0⟩⊗n+t
abc with its generating matrix G.

In order to contribute non-trivially to p(x), Si must satisfy the following constraints: (i) Si is identity on
qudits in register ‘b’, and contains only Z components in qudits in register ‘a’, and (ii) the phase factor ri of
Si subject to certain constraints imposed by |x⟩⟨x|a.

Before presenting the algorithm for calculating p(x), we first introduce two useful functions.
(1) Slicing of G: We denote by Gz[α : β, γ : δ] the sub-matrix of Gz the contains rows from α to β, and

columns form γ to δ in Gz, and similarly for Gx[α :β, γ :δ] and Gx. For G, we define

G[α :β, γ :δ] :=

 uzα,γ · · · uzα,δ uxα,γ · · · uxα,δ ruα
...

. . .
...

...
. . .

...
...

uzβ,γ · · · uzβ,δ uxβ,γ · · · uxβ,δ ruβ

 . (I28)

When arguments in position α (γ) are omitted, we mean starting from the first row (column). When arguments
in position β (δ) are omitted, we mean stopping on the last row (column). Suppose α < β, γ < δ, G[β :α, γ :δ]
(G[α :β, δ :γ]) means rearranging the rows (columns) of (G[α :β, γ :δ]) in inverse order.

(2) Echelon forms of G: We denote by Echelon-z (G, m) (Echelon-x (G, m)) the generating matrix G′

obtained by row actions (swap, addition and multiplication by integers in Fd\{0}) on G such that G′z[:, 1:m]
(G′x[:, 1:m]) is in echelon form.
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For convenience of expression, we also define an ‘inverse echelon form’: inv-Echelon-z (G, m) (inv-Echelon-
x (G, m)) is the generating matrix G′ derived from G by row actions such that G′z[:,m : 1] (G′x[:,m : 1]) is in
echelon form.

Moreover, we define a ‘cut’ function for (inverse) echelon form, which returns a row index. When G′z is
in echelon form (or inverse echelon form), cut-z (G′; k1, k2) is defined as row index of G′ such that for all
j ≥ c =cut-z (G′; k1, k2), G′z[j, k1 : k2] has all zero entries; for all 1 ≤ j < c, G′z[j, k1 : k2] has at least one
non-zero entry. Similarly we can define cut-x (G′; k1, k2).

Algorithm 4 takes as input the generating matrix G of V |0⟩⊗n+t
abc , and outputs the ‘constrained stabilizers’ Gc

and an integer ξ. Essentially, Algorithm 4 takes the partial trace in Eq. (I26), as the first step for calculating
p(x). When the overlap is zero, the algorithm returns None. Gc is in a form similar to the generating matrix,
with every row representing a Weyl operator gi on register ‘c’ (see Eq. (I2)). Suppose the rank of Gc is kc.
Gc and ξ satisfy the following equation

p(x) = dt tr (ΠGΠT,x) = dt+ξ tr
(
ΠGc

· |T †⟩⟨T †|⊗t
c

)
, (I29)

where ΠGc
=
∏kc

i=1

(∑d−1
j=0 g

j
i

)
.

Algorithm 4: Constrain stabilizers

Input : Generating matrix G, w-dit outcome x
Output: Constrained stabilizers Gc, integer ξ

1 G′ =Echelon-x (G, n+ t);
2 c1 =cut-x (G′; 1, n), G1 = G′[c1 :, :], k1 = len(G1);
3 G′1 =inv-Echelon-z (G1, n);
4 c2 =cut-z (G′1;w + 1, n), G2 = G′1[c2 :, :], k2 = len(G2);
5 for i = 1 : k2 do
6 r′i = ri − Gz2 [i, 1:w] · x;
7 if Gz2 [i, n+ 1 : n+ t], Gx2 [i, n+ 1 : n+ t] all zero then
8 if r′1 ̸= 0 then
9 return None;

10 else
11 Continue;
12 end

13 else
14 Add

(
Gz2 [i, n+ 1:n+ t] | Gx2 [i, n+ 1:n+ t] | r′i

)
to Gc;

15 end

16 end
17 kc = len(Gc);
18 return Gc, ξ = k2 − kc.

Note that G2 in Algorithm 4 line 4 already satisfies condition (i), and we check for condition (ii) in lines
5 to 16. The · in line 6 denotes vector inner product, and all arithmetic is done modulo d. The time cost for
Algorithm 4 is approximately O

(
(n+ t)3 + k31

)
.

With Gc obtained, it follows immediately that p(x) = dt+ξ tr
(
ΠGc

· |T †⟩⟨T †|⊗t
c

)
can be computed directly

in time O
(
tdkc+1

)
. Usually, kc equals to t, so the computational cost increase exponentially with t. The

procedure for simulating a Clifford circuit with T gates is summarized in Algorithm 5.
Notice that some intermediate results (such as G1, G2) can be used repeatedly, we made some optimization

to our algorithm. Finally, the overall time cost for simulation of a single experiment shot, that is, the time
cost for sampling an outcome x of length n, is approximately O

(
(n+ t)3 + k31 + tdk1+1 + ndk1

)
. Since typical

k1 is little larger than t, we conclude that a single experiment shot can be simulated on classical computer in
time O

(
(n+ t)3 + tdt+1

)
, where t is the number of T gates in the gadgetized circuit.

Appendix J: Predicting quadratic functions

Here we focus on the task of predicting a quadratic function of the form f(ρ) := tr(Oρ⊗ ρ) using shadow
estimation based on the Clifford group. The estimator constructed from U-statistic reads

ô =
1

N(N − 1)

∑
i̸=j

tr(Oρ̂i ⊗ ρ̂j), (J1)
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Algorithm 5: Data acquisition for Clifford circuit

Input : Circuit representation U
Output: n-dit measurement outcome x

1 Construct the generating matrix G for |0⟩⊗n, apply Cp,0,CNOT, Cp,1, ... sequentially;

2 Sample a random M ∈ Sp(2n, d) and a ∈ F2n
d ;

3 Update G with M and a;
4 Apply CNOT and F gates to the corresponding qudits in G;
5 for w = 1 : n do
6 for y = 0 : d− 1 do
7 y = concatenate(x, y);
8 Constrain stabilizers(G,x);
9 if result= None then

10 p(y) = 0;
11 else
12 p(y) = dt+ξ tr

(
ΠGc · |T †⟩⟨T †|⊗t

c

)
;

13 end

14 end

15 Sample y according to {p(y)/p(x)}d−1
y=0, x← y;

16 end
17 return x

which is the minimum-variance unbiased estimator. A general upper bound for the sample complexity was
established in Ref. [1], as reproduced here.

Lemma 3. Fix a measurement primitive E. For a quadratic target function O, a measurement budget of size

8/ε2 ×max
{
Var[tr(Oρ⊗ ρ̂1)],Var[tr(Oρ̂1 ⊗ ρ)],

√
Var[tr(Oρ̂1 ⊗ ρ̂2)]

}
(J2)

allows for predicting the expectation value of O via U-statistic estimators within error ε.

This is a simple corollary of Lemma 5 in Ref. [1]. Next, we consider variance bounds for the three mea-
surement primitives discussed in the main text, respectively.

1. Variance bounds for measurement based on Clifford orbits

Let ρ be an n-qudit quantum state, and D = dn. First we consider shadow estimation based on magic and
non-magic Clifford orbits. Based on Eq. (16), we generalize the definition of γd,k

γd,k =


2d− 1 k = 0,

3 + 2k+1(d−2)
dk 1 ≤ k ≤ n, d ̸= 1 mod 3,

3 + 9
8 · 4k

dk−1 1 ≤ k ≤ n, d = 1 mod 3,

(J3)

where k is the number of T gates in the measurement primitive. From Theorem 2 and Theorem 3, we know
that ∥O∥2sh ≤ γd,k∥O∥22 for any traceless linear observable O ∈ HD.

Proposition 3. Suppose O describes a quadratic function tr(Oρ⊗ ρ) and ∥O∥2 ≥ 1. Adopting shadow
estimation based on magic or non-magic Clifford orbits, the associated variance can be upper bounded as
follows:

max
{
Var[tr(Oρ⊗ ρ̂1)],Var[tr(Oρ̂1 ⊗ ρ)],

√
Var[tr(Oρ̂1 ⊗ ρ̂2)]

}
≲

√
3γd,k

(
∥O∥22 + ϑ

)
, (J4)

where γd,k is defined in Eq. (J3), and

ϑ = max

(
0, tr(O)

2 −
∑
a=1,2

∥ tra(O)∥22

)
, (J5)

and by ≲ we have omitted terms of order O(D−1).
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Proof of Proposition 3. Note that

E[tr(Oρ̂1 ⊗ ρ) = E[tr(Oρ⊗ ρ̂1)] = E[tr(Oρ̂1 ⊗ ρ̂2)] = tr(Oρ⊗ ρ), (J6)

so we can drop the square of expectation in variance and only consider the expectation of the square.
For the first variance, define Oρ = tr1(ρ⊗ I ·O), then

E[tr(Oρρ̂1)
2
] ≤ ∥Oρ∥2sh ≤ γd,k

∥∥∥∥Oρ −
tr(Oρ)

D
I
∥∥∥∥2
2

≤ γd,k∥Oρ∥22. (J7)

Since tr(ρ) = 1, tr
(
ρ2
)
< 1, we have

∥Oρ∥22 = tr
(
tr1(ρ⊗ I ·O)2

)
≤ tr

(
O2
)
= ∥O∥22. (J8)

Thus we conclude that

Var[tr(Oρ⊗ ρ̂1)] ≤ γd,k∥O∥22. (J9)

A similar result holds for the second variance Var[tr(Oρ̂1 ⊗ ρ)]. Lemma 4 below provides a bound for the

square of the final contribution. We have assumed that ∥O∥2 ≥ 1, so ∥O∥2 ≤ ∥O∥22, and the claim follows.

Lemma 4. Suppose d is a prime, n is a positive integer, ρ is an operator on HD, and O is an operator on
H⊗2

D . Consider measurements based on magic or non-magic Clifford orbits, we have

Var[tr(Oρ̂1 ⊗ ρ̂2)] ≲ 3γ2d,k

(
∥O∥22 −

∑
a=1,2

∥ tra(O)∥22 + tr(O)
2

)
(J10)

Proof of Lemma 4. To bound the variance of tr(Oρ̂1 ⊗ ρ̂2), we follow the same approach as in Ref. [1] and
define the following traceless variants of O:

O
(1)
0 = tr2(O)− tr(O)

D
I, O

(2)
0 = tr1(O)− tr(O)

D
I,

O
(1,2)
0 = O− tr2(O)⊗ I

D
− I
D

⊗ tr1(O) + tr(O)
I
D

⊗ I
D
,

(J11)

where tra(·) with a = 1, 2 denotes the partial trace over the first and second system respectively. All three
operators are traceless. Recall that the reconstruction map reads

ρ̂a = (D + 1)U†
a |ba⟩⟨ba|Ua − I for a = 1, 2. (J12)

Using these expressions, we can rewrite tr(Oρ̂1 ⊗ ρ̂2) as follows:

tr(Oρ̂1 ⊗ ρ̂2) = tr
(
O · [(D + 1)U†

1 |b1⟩⟨b1|U1 − I]⊗ [(D + 1)U†
2 |b2⟩⟨b2|U2 − I]

)
=(D + 1)2 tr

(
O

(1,2)
0 U†

1 |b1⟩⟨b1|U1 ⊗ U†
2 |b2⟩⟨b2|U2

)
+

tr(O)

D2

+
D + 1

D
tr
(
O

(1)
0 U†

1 |b1⟩⟨b1|U1

)
+
D + 1

D
tr
(
O

(2)
0 U†

2 |b2⟩⟨b2|U2

)
.

(J13)

The second term is constant and does not contribute to the variance. For the remaining terms, same as
before, we consider the expected square, i.e.,

E

((D + 1)2 tr
(
O

(1,2)
0 U†

1 |b1⟩⟨b1|U1 ⊗ U†
2 |b2⟩⟨b2|U2

)
+
D + 1

D

∑
a=1,2

tr
(
O

(a)
0 U†

a |ba⟩⟨ba|Ua

))2
 , (J14)

and analyze on a case-by-case basis.
Linear terms: A direct calculation shows that

E

[(
D + 1

D
tr
(
O

(a)
0 U†

a |ba⟩⟨ba|Ua

))2
]
=

1

D2
E
[
tr
(
O

(a)
0 ρ̂a

)2]
≤ 1

D2

∥∥∥O(a)
0

∥∥∥2
sh

≤ γd,E
D2

∥∥∥O(a)
0

∥∥∥2
2
. (J15)
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Leading-order term: In this case, the derivation is more involved. We calculate that

E
[(

(D + 1)2 tr
(
O

(1,2)
0 U†

1 |b1⟩⟨b1|U1 ⊗ U†
2 |b2⟩⟨b2|U2

))2]
=(D + 1)4EU1,U2∼Cl(n,d)

∑
b1,b2∈Fn

d

⟨b1|U1ρU
†
1 |b1⟩⟨b2|U2ρU

†
2 |b2⟩ tr

[(
O

(1,2)
0

)⊗2

· (U†
1 |b1⟩⟨b1|U1 ⊗ U†

2 |b2⟩⟨b2|U2)
⊗2

]
=(D + 1)4EU1,U2∼Cl(n,d)

∑
b1,b2∈Fn

d

tr
[
ρ⊗ ρ⊗O

(1,2)
0 ⊗O

(1,2)
0 · (U†

1 |b1⟩⟨b1|U1 ⊗ U†
2 |b2⟩⟨b2|U2)

⊗3
]

=(D + 1)4D2 tr
[
ρ⊗ ρ⊗O

(1,2)
0 ⊗O

(1,2)
0 ·Q (orb(Ψ))

(odd) ⊗Q (orb(Ψ))
(even)

]
,

(J16)
where |Ψ⟩ is the fiducial state of the Clifford orbit. The superscript ‘even’ and ‘odd’ indicate on which subset
of tensor factors the projectors act. Using the results in our companion paper, we can rewrite (J16) as

(D + 1)2

(D + 2)2

∑
T ,T ′∈Σ(d)

κ̂(Ψ, T )κ̂(Ψ, T ′) tr
(
ρ⊗ ρ⊗O

(1,2)
0 ⊗O

(1,2)
0 ·R(T )(odd) ⊗R(T ′)(even)

)
=
(D + 1)2

(D + 2)2

∑
T ,T ′∈Σ(d)

κ̂(ψ, T )κ̂(ψ, T ′) tr
(
ρ⊗ ρ · RT ,T ′(O

(1,2)
0 )

)
,

where we have defined the ‘shadow map’

RT ,T ′(A) := trBCB′C′

[
I⊗ I⊗ A⊗ A† ·R(T )(odd) ⊗R(T ′)(even)

]
, (J17)

for any linear operator A on H⊗2
D . We use A,B,C (A′, B′, C ′) to denote the first, second and third party

R(T )(odd) (R(T )(even)) acts on. If |Ψ⟩ ∈ Stab(n, d), κ̂(Ψ, T ) = D+2
D+d for all T ∈ Σ(d).

Since in the case under consideration A = O
(1,2)
0 is traceless, evidently, if either T or T ′ corresponds to an

element in {1, τ12, τ13}, then RT ,T ′(A) = 0. Define Σ̃(d) = Σ(d)\{1, τ12, τ13}. According to Lemma 5, we
have

∥RT ,T ′(O
(1,2)
0 )∥ ≤ ∥O(1,2)

0 )∥22 T , T ′ ∈ Σ(d). (J18)

Then the leading-order term is upper bounded by

(D + 1)2

(D + 2)2

∑
T ,T ′∈Σ̃(d)

κ̂(Ψ, T )κ̂(Ψ, T ′)∥RT ,T ′(O
(1,2)
0 )∥ ≤

 ∑
T ∈Σ̃(d)

|κ̂(Ψ, T )|

2

∥O(1,2)
0 ∥22 ≤ γ2d,k∥O

(1,2)
0 ∥22.

(J19)
In the case |Ψ⟩ ∈ Stab(n, d), the last inequality is saturated. When the measurement primitive is a qudit
magic orbit, we have ∑

T ∈Σ̃(d)

|κ̂(Ψ, T )| ≤
∑

T ∈Σ(d)

|κ̂(Ψ, T )| ≤ γd,k. (J20)

See our companion paper for a detailed proof.
Bounds on cross terms: Recall that

E[U†
a |ba⟩⟨ba|Ua] =

ρ+ I
D + 1

, (J21)

we can effectively get rid of the linear contribution:(
D + 1

D

)2

E

[ ∏
a=1,2

tr
(
O

(a)
0 U†

a |ba⟩⟨ba|Ua

)]
=

1

D2
tr
(
O

(1)
0 ρ

)
tr
(
O

(2)
0 ρ

)
≤ 1

2D2

(
∥O(1)

0 ∥2 + ∥O(2)
0 ∥2

)
.

(J22)
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We use Eqs. (J15) (J16) and (J17) to upper bound the remaining terms:

(D + 1)3

D
E
[
tr
(
O

(1,2)
0 U†

1 |b1⟩⟨b1|U1 ⊗ U†
2 |b2⟩⟨b2|U2

)
tr
(
O

(a)
0 U†

a |ba⟩⟨ba|Ua

)]
≤1

2

{
E
[(

(D + 1)2 tr
(
O

(1,2)
0 U†

1 |b1⟩⟨b1|U1 ⊗ U†
2 |b2⟩⟨b2|U2

))2]
+ E

[(
D + 1

D
tr
(
O

(a)
0 U†

a |ba⟩⟨ba|Ua

))2
]}

≤γd,k
2

(
γd,k∥O(1,2)

0 ∥22 +
1

D2
∥O(a)

0 ∥22
)
.

(J23)
Full variance bound: Combine all individual bounds together, we have

Var [tr(Oρ̂1 ⊗ ρ̂2)] ≤ 3γ2d,k∥O
(1,2)
0 ∥22 +

2γd,k
D

∑
a=1,2

∥O(a)
0 ∥22 +

1

D2

∑
a=1,2

∥O(a)
0 ∥2 (J24)

Note that

∥O(1,2)
0 )∥22 =

(
1− 2

D

)(
∥O∥22 −

∑
a=1,2

∥ tra(O)∥22

)
+ tr(O)

2

∥O(a)
0 ∥22 ≤ ∥ trā(O)∥22 −

tr(O)
2

D
,

∥O(a)
0 ∥ ≤ ∥ trā(O)∥ − | tr(O)|

D
,

(J25)

where ā denotes the party other than a.
Substituting these expressions into Eq. (J24), finally we have

Var [tr(Oρ̂1 ⊗ ρ̂2)]

≤3γ2d,k∥O∥22 +
(
−3γ2d,k +

2

D
(γd,k + 1)

) ∑
a=1,2

∥ tra(O)∥22 +
2

D2

∑
a=1,2

∥ tra(O)∥2 + 3γ2d,k tr(O)
2

≲3γ2d,k

(
∥O∥22 −

∑
a=1,2

∥ tra(O)∥22 + tr(O)
2

)
,

(J26)

where by ≲ we have omitted terms of order O(D−1).

Lemma 5. Suppose d is an odd prime and A is a linear operator on H⊗2
D . Then

∥RT ,T ′(A)∥ ≤ ∥A∥22 ∀T , T ′ ∈ Tns. (J27)

If in addition A is traceless, then

∥RT ,T ′(A)∥ ≤ ∥A∥22 ∀T ∈ Σ(d). (J28)

Proof of Lemma 5. The proof of Lemma 5 is similar to that of Lemma 17 in the companion paper.
First we consider the case where T , T ′ ∈ Tns. To simplify notation, we also focus on the case n = 1. The

basic idea admits straightforward generalization.

RT ,T ′(A) : = trBCB′C′

[
I⊗ I⊗ A⊗ A† ·R(T )(odd) ⊗R(T ′)(even)

]
=

∑
(x;y)∈T

(x′;y′)∈T ′

trBCB′C′
[
|x,x′⟩⟨y,y′|

(
I⊗ I⊗ A⊗ A†)]

=
∑

(x;y)∈T
(x′;y′)∈T ′

Ay2,x2;y′
2,x

′
2
(A†)y3,x3;y′

3,x
′
3
|x1, x′1⟩⟨y1, y′1|,

(J29)
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where x1, x2, x3 (x′1, x
′
2, x

′
3) are the three entries of x (x′), and y1, y2, y3 (y′1, y

′
2, y

′
3) are the three entries of y

(y′). We introduce the following two linear maps from T to F3
d,

fi : (x;y) 7→ (x1;xi; yi), i = 2, 3. (J30)

Both f2 and f3 are injective and surjective. See Lemma 17 in the companion paper for a proof. Consequently,

{(y2;x2) | (x;y) ∈ T , x1 = a} = {(y3;x3) | (x;y) ∈ T , x1 = a} = F2
d ∀a ∈ Fd. (J31)

Therefore,∑
b,b′∈Fd

|RT ,T ′(A)a,b;a′,b′ | ≤
∑

b,c,b′,c′∈Fd

|Ab,c;b′,c′ ||Aα(b,c);α′(b′,c′)| ≤
∑

b,c,b′,c′∈Fd

|Ab,c;b′,c′ |2 = ∥A∥22 ∀a ∈ Fd,

(J32)
where α, α′ are permutations on F2

d, which may depend on a and a′, respectively. By a similar reasoning we
can deduce that ∑

b,b′∈Fd

|RT ,T ′(A)b,a;b′,a′ | ≤ ∥A∥22 ∀a ∈ Fd. (J33)

The above two equations together imply Eq. (J27).
Since Σ(d) = Tsym ∪ Tns, now we consider the T in Tsym := {TO |O ∈ S3}. If A is traceless, direct

calculation shows that if either T or T ′ corresponds to an element in {1, τ12, τ13}, then RT ,T ′(A) = 0. Note
that in addition to Tns, Eq. (J31) also holds for Tτ23 . Thus for all T , T ′ ∈ Tns ∪ {Tτ23}, we have

∥RT ,T ′(A)∥ ≤ ∥A∥22. (J34)

If T , T ′ ∈ {Tζ , Tζ2}, according to Lemma 6 in Ref. [1], Eq. (J34) also holds.
If only one of T , T ′ is in {Tζ , Tζ2}, say T ∈ Tns ∪ {Tτ23}, T ′ = Tζ , assuming (x′1, x

′
2, x

′
3) = (a, b, c), we can

rewrite Eq. (J29) as

RT ,T ′(A) =
∑

(x,y)∈T
a,b,c∈Fd

Ay2,x2;c,b(A
†)y3,x3;a,c|x1, a⟩⟨y1, b|,

=
∑

x1,x2,y2∈Fd
a,b,c∈Fd

Ay2,x2;c,b(A
†)α(y2,x2);a,c|x1, a⟩⟨β(x1), b|,

(J35)

where α, β are permutations on F2
d and Fd, respectively.

Define the vectorization of submatrices of A as

v(A)(i,j) = (A0,0;i,j , · · · ,A0,d−1;i,j ,A1,0;i,j , · · · ,A1,d−1;i,j , · · · ,Ad−1,0;i,j , · · · ,Ad−1,d−1;i,j) , (J36)

for i, j ∈ Fd, then v(A)
(i,j) ∈ Cd2

. Define an inner product on Cd2

⟨u,v⟩ = u⊤Pαv, u,v ∈ Cd2

, (J37)

where Pα is a permutation matrix associated with α. Then we have∑
x2,y2,c∈Fd

Ay2,x2;c,b(A
†)α(y2,x2);a,c =

∑
c∈Fd

⟨v(A)(a,c), v(A)(c,b)⟩ ≤
∑
c∈Fd

∥v(A)(a,c)∥2 · ∥v(A)(c,b)∥2. (J38)

We introduce a matrix M ∈ Rd×d
+ such that

Mij = ∥v(A)(i,j)∥2. (J39)

Then

RT ,T ′(A) ≤
∑

a,b,c,x1∈Fd

MacMcb|x1, a⟩⟨β(x1), b| =

∑
a,b∈F

(M2)ab|a⟩⟨b|

⊗

( ∑
x1∈Fd

|x1⟩⟨β(x1)|

)
= M2 ⊗ Pβ ,

(J40)
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where Pβ is a permutation matrix associated with β. Finally, we can calculate that

∥RT ,T ′(A)∥ ≤ ∥M2∥ · ∥Pβ∥ = ∥M∥2 ≤ ∥M∥22. (J41)

It can be easily verified that

∥M∥22 =
∑

i,j∈Fd

∥v(A)(i,j)∥22 =
∑

i,j,k,l∈Fd

|Ak,l;i,j |2 = ∥A∥22. (J42)

Thus we conclude that in this case Eq. (J34) is still valid.
The above discussion, together with Eq. (J27), implies Eq. (J28).

2. Variance bounds for local Clifford measurements

Proposition 4. Suppose that O describes a quadratic function tr (Oρ⊗ ρ) that acts on at most m-qubits

in both the first and the second system. Let Õ denote the non-trivial part of O, O = Õ ⊗ I⊗2(n−m), and
∥Õ∥2 ≥ 1. Adopting local Clifford measurements, the associated variance can be upper bounded as follows:

max
(
Var[tr(Oρ⊗ ρ̂1)],Var[tr(Oρ̂1 ⊗ ρ)],

√
Var[tr(Oρ̂1 ⊗ ρ̂2)]

)
≤ dm∥Õ∥22. (J43)

Proof. Same as the previous case, we omit the square of expectation and only consider the expectation of
square. For the first and second variance, we have

E[(tr(Oρ⊗ ρ̂1))
2] ≤ ∥Oρ∥2sh ≤ dm∥Õρ∥22, (J44)

where Oρ = tr1(ρ⊗ I ·O), and Õρ denotes its non-trivial part. Note that

∥Õρ∥22 = tr
(
Õ2

ρ

)
= tr

(
tr1(ρm ⊗ I⊗m · Õ)2

)
≤ tr

(
Õ2
)
= ∥Õρ∥22, (J45)

where ρm is the reduced density matrix of the qudits O acts non-trivially on. Then

Var[tr(Oρ⊗ ρ̂1)] ≤ dm∥Õ∥22. (J46)

As for the third variance, recall that the reconstruction map associated with Weyl measurement has single-
qudit tensor product structure, thus the tensor product of two snapshots ρ̂1 ⊗ ρ̂2 of state ρ may be viewed as
a single snapshot of the tensor product state ϱ := ρ⊗ ρ:

ρ̂1 ⊗ ρ̂2 =
n⊗

i=1

(
M−1(U

(i)
1 |b(i)

1 ⟩⟨b(i)
1 |U (i)†

1 )
) n⊗

i=1

(
M−1(U

(i)
2 |b(i)

2 ⟩⟨b(i)
2 |U (i)†

2 )
)

=
2n⊗
i=1

M−1(U (i)|b(i)⟩⟨b(i)|U (i)†) = ϱ̂.

(J47)

By assumption, O is an observable acting on at most 2m qudits. From Theorem 2 we obtain

Var[tr(Oρ̂1 ⊗ ρ̂2)] ≤ ∥O∥2sh ≤ d2m∥Õ∥22, (J48)

and the variance bound in Proposition 4 immediately follows.

3. Sample complexities for purity and 2nd Rényi entropy

We focus on estimating the purity of a subsystem, as one of the most widely concerned quadratic functions.
The associated observable is the swap operator S (defined as S|ψ⟩⊗ |ϕ⟩ = |ϕ⟩⊗ |ψ⟩ for all states |ψ⟩ and |ϕ⟩):

tr
(
ρ2
)
= tr (S · ρ⊗ ρ) . (J49)
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Suppose max
(
Var[tr(Sρ⊗ ρ̂1)],Var[tr(Sρ̂1 ⊗ ρ)],

√
Var[tr(Sρ̂1 ⊗ ρ̂2)]

)
is upper bounded by σpu. The sam-

ple complexity for estimating purity is 8σpu/ε
2. The second Rényi entropy is closely related with purity

S2(ρ) = − log tr
(
ρ2
)
. (J50)

Using the law of propagation of uncertainties, we can calculate the variance associated with S2:

σS2 =
1

tr(ρ2)
· σpu, (J51)

and the sample complexity for estimating S2 immediately follows:

8σpu
tr(ρ2)ε2

. (J52)

Measurement based on Clifford orbits: We shall calculate σpu explicitly based on Proposition 3.
Several simplifications can be made using the properties of the swap operator.

For the first and second variance, note that

Sρ := tr1 (ρ⊗ I · S) = tr(I) · ρ = Dρ, (J53)

and we obtain

Var[tr(Sρ⊗ ρ̂1)] ≤ ∥Sρ∥2sh ≤ γd,k∥Dρ− I∥22 ≤ γd,kD
(
D tr

(
ρ2
)
− 1
)
. (J54)

For the third variance, we have

tr(S) = D, tr1(S) = tr2(S) = I, (J55)

and consequently,

S(1)0 = S(2)0 = 0, S(1,2)0 = S− 1

D
· I⊗ I. (J56)

Substituting into Eq. (J24), we obtain

Var[tr(Sρ̂1 ⊗ ρ̂2)] ≤ 3γ2d,k

∥∥∥∥S− 1

D
· I⊗ I

∥∥∥∥2
2

= 3γ2d,k(D − 1)2. (J57)

Finally, we conclude that

max
{
Var[tr(Sρ⊗ ρ̂1)],Var[tr(Sρ̂1 ⊗ ρ)],

√
Var[tr(Sρ̂1 ⊗ ρ̂2)]

}
≤

√
3γd,kD =: σpu, (J58)

and the sample complexities for estimating purity and 2nd Rényi entropy follow immediately.
Measurement based on local Clifford measurements: In this case we have

Var[tr(Oρ⊗ ρ̂1)] ≤ E[(tr(Sρ⊗ ρ̂1))
2] = E[(tr(ρρ̂1))2] ≤ D2, (J59)

and

Var[tr(Sρ̂1 ⊗ ρ̂2)] ≤ E[(tr(ρ̂1ρ̂2))2] ≤ (D2 +D − 1)2. (J60)

Thus in this case we have

max
{
Var[tr(Sρ⊗ ρ̂1)],Var[tr(Sρ̂1 ⊗ ρ)],

√
Var[tr(Sρ̂1 ⊗ ρ̂2)]

}
≤ D2 +D − 1 =: σpu, (J61)
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Optimal quantum metrology of two-photon absorption parameter and
related physics with photon number statistics
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Abstract. Two-photon absorption (TPA) is a crucial nonlinear optical process with significant appli-
cations, yet its precise measurement is challenging. We explore using quantum light to enhance TPA
parameter estimation via Quantum Fisher Information, showing that optimized discrete-variable quantum
states exhibit a quantum advantage over classical benchmarks. Comparisons with a squeezed vacuum state
and the use of photon counting as a nearly optimal detection scheme are discussed. Additionally, we find
that TPA can be enhanced without entanglement by adjusting the photon number statistics of the injected
light, offering new insights into the related physics of TPA.

Keywords: Quantum metrology, Two-photon absorption, Photon number statistics

1 Optimal quantum metrology [1]

Two-photon absorption (TPA) is a crucial nonlinear
optical process with significant applications. Despite its
importance, precisely measuring and characterizing TPA
parameters is challenging due to the weak nature of the
process and the discrete nature of light.
In this work, we study the use of quantum light to

enhance TPA parameter estimation precision. Quantum
Fisher information (QFI) is employed to quantify the in-
formation about the parameter, leading to a fundamen-
tal precision bound through the quantum Cramer-Rao
inequality. We optimize discrete variable (DV) quantum
states to maximize QFI for given losses, revealing a quan-
tum advantage compared to classical benchmarks. Our
results show that the Fock state is optimal for large TPA
losses, while a superposition of vacuum and a particular
Fock state is optimal for small losses. This differs from
single-photon absorption, where the Fock state is optimal
across all parameters.
Although optimal DV quantum states are theoretically

interesting, they are challenging to realize. Therefore, we
investigate the performance of a practical quantum state,
the single-mode squeezed vacuum state. In comparison
with the coherent state, the squeezed state outperforms
for small TPA losses but underperforms in the interme-
diate regime and becomes comparable in the large loss
limit. These behaviors can be understood by the differ-
ence between even and odd number Fock states, which
are also analyzed. Interestingly, the QFI for even number
states diverges in both large and small loss limits, while
that for odd number states diverges only in the small loss
limit.
We also examine the photon number counting scheme

as a practical measurement setup, demonstrating that
it offers nearly optimal performance compared to the
QFI bound for the studied states in a wide range
of TPA losses. This work provides valuable insights
into quantum-enhanced TPA parameter estimation, and
paves the way for its potential application in TPA imag-
ing techniques.

∗changhyoup.lee@gmail.com

2 Enhanced two-photon absorption [2]

TPA has been extensively studied, revealing that en-
tangled photon pairs from spontaneous parametric down-
conversion (SPDC) enhance TPA rates linearly with
photon flux, unlike the quadratic scaling with coherent
light. This enhancement, due to correlated photon ar-
rival times, holds potential for TPA-based imaging and
spectroscopy. Despite numerous studies, the role of en-
tanglement in TPA enhancement remains unclear, and
current experiments have yet to achieve it.

We are thus motivated to explore quantum-enhanced
TPA without entanglement by engineering the input
state’s photon number distribution. Using a single-
mode approximation, it demonstrates that optimizing
the probe state can achieve similar or greater TPA en-
hancement without entanglement. The key factor in-
fluencing TPA is the zero-delay second-order coherence
function of the input state. The squeezed vacuum state,
with its higher auto-correlation function, outperforms co-
herent light, which is less effective than even thermal light
in TPA.

By confirming that entanglement is not essential for
quantum-enhanced TPA, the findings provide significant
insights into the quantum features driving this process
and pave the way for more effective TPA-based applica-
tions.
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Nonstabilizerness enhances the thrifty shadow estimation
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Abstract. Classical shadow has emerged as an effective method for efficiently estimating quan-
tum systems through randomized measurements. Many works have been presented to study the
classical shadow. One of the improved protocols is the thrifty shadow, which reduces resource
consumption by employing multiple independent measurements per unitary. Here, we find that
the performance of the thrifty shadow is directly related to the nonstabilizerness in the proto-
col. Specifically, we analyze the effects of nonstabilizerness in both the states and the unitary
ensembles. Our findings revise the previous understanding of thrifty shadows with Clifford mea-
surements, highlighting their broad applicability in certifying quantum states. Moreover, we
propose a new configuration of the non-Clifford gates interleaved Clifford circuits. It reduces the
requirements of an abundance of Clifford layers and shows prospects in other applications.

Keywords: Shadow Estimation, Nonstabilizerness, Interleaved circuits

1 Introduction

As a significant advancement in quantum state
learning, the classical shadow [1] has attracted wide
attention. In contrast to the inefficiencies of tradi-
tional quantum tomography for large quantum sys-
tems, classical shadow offers a general framework
for efficiently estimating quantum systems through
randomized measurements. The fundamental step
in this protocol involves randomly applying a uni-
tary transformation to the unknown state and per-
forming a measurement in each round, serving as
the foundation for efficient information extraction
from the unknown state. However, making multi-
ple changes to the unitary requires resetting the ex-
perimental configuration, leading to significant re-
source consumption in practice. To address this
challenge, recent research has proposed a proto-
col with reduced resource consumption, known as
thrifty shadow estimation [2, 3, 4]. The primary
modification of this protocol is straightforward: we
apply several independent measurements for each
unitary. Given that repeating the same unitary
transformation is less resource-consuming, this pro-
tocol is anticipated to be more feasible compared to
the original approach.
In contrast to the original classical shadow, the

thrifty shadow with Clifford measurements proves
ineffective in certain scenarios. As demonstrated

∗22110190002@m.fudan.edu.cn
†zhuhuangjun@fudan.edu.cn

in Ref. [2], for a thrifty shadow protocol to uni-
versally outperform the classical shadow, its uni-
tary ensemble must form a unitary 4-design. How-
ever, the lack of an exact construction scheme for
unitary 4-designs makes implementing an efficient
thrifty shadow protocol highly challenging.

2 Main Results

In this work, we explore how nonstabilizerness en-
hances the performance of thrifty shadows from two
aspects: nonstabilizerness of the state and that of
the unitary ensemble.
We start with some important preliminaries about

this work. Compared to the original classical
shadow, each unitary in the thrifty shadow protocol
is reused R times. As a consequence, the variance
using the thrifty shadow to estimate an observable
O with respect to the state ρ is now given by:

VR(O, ρ) =
1

R
V (O, ρ) +

R− 1

R
V∗(O, ρ), (1)

where V (O, ρ) is the variance using the original clas-
sical shadow. It’s important to note that the sam-
ple complexity is proportional to RVR(O, ρ), which
is greater than V (O, ρ). Therefore, V∗(O, ρ) charac-
terizes the additional sample complexity introduced
by thrifty shadow estimation. On the other hand,
the resource cost of reusing a circuit is consider-
ably lower than that of introducing a new circuit. If
V∗(O, ρ) is negligible, achieving the same accuracy
with fewer resources becomes feasible.
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Figure 1: The statistical variance of the thrifty
shadow to certify various families of states with re-
spect to Clifford group. The circled dots are the nu-
merical results. In (a) and (b), the lines represent
the theoretical results. (a) Estimation of the fidelity
of W states, parameterized by the qubits number n.
(b) Estimation of the fidelity of the depolarized W
states: ρ̃ = (1 − p)ρ + pI/d and the ideal state is
chosen as the 10-qubit W state. (c) Estimation of
the fidelity of a random state. The blue dashed line
represents the average variance of estimating 1000
random states from the Haar measure. The green
dotted line indicates the standard deviation of the
variances.

2.1 Nonstablizerness from the state

The previous work argued that the thrifty shadow
with Clifford measurements is inefficient based on
the results of certifying a stabilizer state. Surpris-
ingly, we find that the Clifford group is suitable for
certifying most states instead. We demonstrate that
the performance of the thrifty shadow with respect
to the Clifford group hinges on the stabilizer 2-Rényi
entropy of the target state [5], which characterizes
its nonstabilizerness:

Theorem 1 Suppose ρ = |ϕ⟩⟨ϕ| is any n-qubit state
and the observable O = |ϕ⟩⟨ϕ| − I/d, then the vari-
ance of the thrifty shadow using the Clifford group
reads

VR(O, ρ) =
1

R

2(d− 1)

d+ 2
+
R− 1

R

2(d+ 1)2−M2(|ϕ⟩) − 4

d+ 2
,

(2)
where M2(|ϕ⟩) is the stabilizer 2-Rényi entropy of

𝑀

𝑀

…
𝐶1

𝑀

𝑘

𝐶2…

𝐶3𝑀 𝑀

𝑀

…

…
𝐶𝑙+1

Figure 2: The circuits model of l-layer M̂k-
interleaved Clifford circuits. C1, C2, . . . ,Cl+1 are
randomly selected in the Clifford group. In this
configuration, the M gates can be replaced by any
single-phase gate.

state |ϕ⟩ defined by [5]

M2(|ϕ⟩) = − log2
1

d

∑
P∈Pn

⟨ϕ|P |ϕ⟩4. (3)

In the worst case that the target state is a sta-
bilizer state, the variance VR(O, ρ) is equivalent to
V (O, ρ), indicating that reusing the same circuits
does not obtain extra information. However, the
thrifty shadow with respect to the Clifford group be-
gins to show benefits when M2(|ϕ⟩) is large. Given
that most states are expected to have a high sta-
bilizer 2-Rényi entropy [5], the Clifford group is
generally suitable for certifying states. Besides the
theoretical conclusion, this result can also be ver-
ified by numerical experiment in Fig. 1(c). We
find that using the thrifty shadow with the Clif-
ford measurements to certify a random state from
the Haar measure is efficient with high probabil-
ity. We also examine various state families, includ-
ing W states, Greenberger–Horne–Zeilinger (GHZ)
states, and a family of states constructed by the non-
Clifford gates. Here we take theW state as an exam-
ple, seeing in Fig. 1(a). For W states, the stabilizer
2-Rényi entropy is of order log2 n

2, indicating that
the thrifty shadow with Clifford measurements also
benefits the fidelity estimation. Since the prepared
states in realistic experiments may not be ideal, we
also consider states affected by depolarization noise,
defined as ρ̃ = (1− p)ρ+ pI/d. Interestingly, we ob-
serve a decrease in variance as the error increases
in Fig. 1(b). It shows the robustness of the thrifty
shadow against noises.

2.2 Nonstabilizerness from the unitary en-
semble

The power of the nonstabilizerness of the unitary
ensemble is shown by the non-Clifford interleaved
Clifford circuit [2, 6, 7, 8]. Ref. [2] exhibited that this
circuits will enhance the thrifty shadow. Inspired
by Ref. [6], the authors used the interleaved circuits
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with only one non-Clifford gate between two Clifford
layers. Despite the convenience of the mathemati-
cal analysis, this approach poses practical challenges
due to the multiple use of Clifford gates. Our work
proposes a novel circuit model that employs multi-
ple non-Clifford gates within each interleaved layer,
shown in Fig. 2. Here we denote the π/8 gate by M
and simplify the notation I⊗n−1⊗M as M̂1, indicat-
ing the action of the M gate on the nth qubit. Gen-
erally, we can denote I⊗n−k ⊗M⊗k by M̂k. We dis-
cover that the effectiveness of this model in thrifty
shadow depends primarily on the total number of
non-Clifford gates, rather than their specific loca-
tions. We present two simple case studies to illus-
trate our primary findings.

Theorem 2 Suppose U is ensemble of one layer
M̂k-interleaved Clifford circuits, which means U ∈ U
satisfies U = U1M̂kU2 where U1, U2 are randomly
chosen in the Clifford group and M̂k = I⊗n−k ⊗
M⊗k. V∗(O, ρ) is defined in Eq. (1) where O is a
traceless observable. Then

V∗(O, ρ) <

[
2

(
3

4

)k

+
4

d

]
tr(O2). (4)

Proposition 3 Suppose U is ensemble of l-
layer M̂1-interleaved Clifford circuits, which means
U ∈ U satisfies U = U1M̂1U2 . . . M̂1Ul+1 where
U1, . . . , Ul+1 are randomly chosen in the Clifford
group and M̂1 = I⊗n−1 ⊗ M . V∗(O, ρ) is defined
in Eq. (1) where O is a traceless observable. Then

V∗(O, ρ) <

[
2

(
3

4

)l

+
8

d

]
tr(O2). (5)

These circuits, despite their differing structures,
perform comparably in leading-order terms. How-
ever, the depth required for one layer M̂k-interleaved
Clifford circuits is considerably less than the alter-
native. This disparity provides a method to sub-
stantially reduce the number of necessary Clifford
gates, which simplifies the experimental procedures
and lessens the computational demands of classical
simulations.
We further argue that the effectiveness of the

thrifty shadow with respect to the ensemble of l-
layer M̂k-interleaved Clifford circuits mainly de-
pends on the number of the non-Clifford gates:

V∗(O, ρ) =

[
2

(
3

4

)kl

+O(d−1)

]
tr(O2). (6)

Given that this count naturally measures the non-
stabilizerness of the unitary ensemble, such as the
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Figure 3: The statistical variance of the thrifty
shadow to estimate the fidelity of a 50-qubit GHZ
state. The unitary ensembles are chosen as the one
layer M̂k-interleaved Clifford circuits and the l-layer
M̂1-interleaved Clifford circuits, depicted with cir-
cled and triangular dots, respectively.

T -count [5, 9, 10], it substantiates the idea that the
nonstabilizerness of the unitary ensemble can signif-
icantly improve thrifty shadow performance.
The analytical results can be found in our pa-

per, and we use the numerical results to show our
findings. When the dimension of the quantum sys-
tem is large enough, the difference in variance be-
tween these two unitary ensembles becomes negli-
gible. Our results also indicate that increasing the
number of times a unitary is reused leads to a reduc-
tion in variance. These findings are corroborated by
the numerical simulations presented in Fig. 3.

2.3 Technical contribution

Additionally, our main technical contribution is
the investigation of the mathematical structure un-
derlying thrifty shadow. To our knowledge, it is the
first time such a structure has appeared. Except for
its intrinsic properties, we investigate the connection
between the fourth moment.
By virtue of our thorough understanding of the

structure, the general upper bounds of the variances
of the thrifty shadows with respect to various uni-
tary ensembles are tighter than the results in the
preceding work. Also, the fidelity estimation task
can be analyzed completely.
At last, the mathematical structure underlying

the thrifty shadow is brand new. It deserves further
study to find other applications for the mathemati-
cal structure.
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Phys. Rev. Lett., 128:050402, Feb 2022.

[6] Jonas Haferkamp, Felipe Montealegre-Mora,
Markus Heinrich, Jens Eisert, David Gross,
and Ingo Roth. Efficient unitary designs
with a system-size independent number of
non-Clifford gates. Commun. Math. Phys.,
397(3):995–1041, 2023.

[7] Jonas Haferkamp. Random quantum circuits
are approximate unitary t-designs in depth
O
(
nt5+o(1)

)
. Quantum, 6:795, September 2022.

[8] Lorenzo Leone, Salvatore F. E. Oliviero, You
Zhou, and Alioscia Hamma. Quantum Chaos
is Quantum. Quantum, 5:453, May 2021.

[9] Sergey Bravyi and David Gosset. Improved
classical simulation of quantum circuits dom-
inated by clifford gates. Phys. Rev. Lett.,
116:250501, Jun 2016.

[10] Sergey Bravyi, Graeme Smith, and John A.
Smolin. Trading classical and quantum com-
putational resources. Phys. Rev. X, 6:021043,
Jun 2016.

286



Complete version: Nonstabilizerness enhances the thrifty shadow
estimation

Datong Chen1 2 3 ∗ Huangjun Zhu1 2 3 †

1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China.
2 Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China.

3 Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433, China.

Contents

1 Introduction 1

2 Setup 2

3 The nonstabilizerness from the states 2

4 The nonstabilizerness from unitary ensem-
ble 4

5 Conclusions 5

A Commutant of the Clifford tensor powers 7

B Mathematical structure 9
B.1 Haar uniform ensemble and Clifford group 9
B.2 Interleaved Clifford circuits . . . . . . . . 12
B.3 The relation between the fourth moment . 16

C Proofs of Propositions 1, 6 and Theo-
rems 2, 5 18

D Proofs of Theorems 3, 4, 7, and 8 22
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1 Introduction
As a significant advancement in quantum state learn-

ing, the classical shadow [1] has attracted wide attention.
In contrast to the inefficiencies of traditional quantum
tomography for large quantum systems [2, 3, 4], clas-
sical shadow offers a general framework for efficiently
estimating quantum systems through randomized mea-
surements [5]. This field has seen numerous theoret-
ical studies [6, 7, 8, 9, 10] and experimental break-
throughs [11, 12, 13, 14], highlighting its increasing rele-
vance and application. The fundamental step in this pro-
tocol involves randomly applying a unitary transforma-
tion to the unknown state and performing a measurement
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in each round, serving as the foundation for efficient in-
formation extraction from the unknown state. However,
making multiple changes to the unitary requires reset-
ting the experimental configuration, leading to signifi-
cant resource consumption in practice. To address this
challenge, recent research has proposed a protocol with
reduced resource consumption, known as thrifty shadow
estimation [10, 15, 16]. The primary modification of this
protocol is straightforward: we apply several independent
measurements for each unitary. Given that repeating the
same unitary transformation is less resource-consuming,
this protocol is anticipated to be more feasible compared
to the original approach.

In contrast to the original classical shadow, the thrifty
shadow with Clifford measurements proves ineffective
in certain scenarios. As demonstrated in Ref. [10], for
a thrifty shadow to universally outperform the classi-
cal shadow, its unitary ensemble must form a unitary
4-design. However, the lack of an exact construction
scheme for unitary 4-designs makes implementing an ef-
ficient thrifty shadow protocol highly challenging.

In this work, we explore how nonstabilizerness en-
hances the performance of thrifty shadows from two as-
pects: nonstabilizerness of the state and that of the uni-
tary ensemble. The former is confirmed through quan-
tum fidelity estimation tasks. We demonstrate that the
performance of the thrifty shadow with respect to the
Clifford group hinges on the stabilizer 2-Rényi entropy
of the target state [17], which characterizes its nonstabi-
lizerness. Surprisingly, we find that the Clifford group is
suitable for certifying most states.

The power of the nonstabilizerness of the unitary en-
semble is shown by the non-Clifford interleaved Clifford
circuit [10, 18, 19, 20]. Ref. [10] exhibited that this
circuits will enhance the thrifty shadow. Inspired by
Ref. [18], the authors used the interleaved circuits with
only one non-Clifford gate between two Clifford layers.
Despite the convenience of the mathematical analysis,
this approach poses practical challenges due to the mul-
tiple use of Clifford gates. Our work proposes a novel
circuit model that employs multiple non-Clifford gates
within each interleaved layer. We discover that the effec-
tiveness of this model in thrifty shadow depends primar-
ily on the total number of non-Clifford gates, rather than
their specific locations. Thus, it can serve as a unitary
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ensemble combining the experimental feasibility and the
simulation efficiency for the thrifty shadow.

2 Setup
The standard protocol for the classical shadow of a

state ρ is constructed by a unitary ensemble U and a
measurement basis, typically the standard computational
basis |b⟩ where b ∈ {0, 1}n. Initially, a random unitary
transformation from U is applied to ρ. Then an outcome
b is obtained from the computational-basis measurement,
yielding a record U†|b⟩⟨b|U . The average over the records
can be viewed as a post-processing channel:

M(ρ) =
∑
b

EU∼U ⟨b|UρU†|b⟩U†|b⟩⟨b|U. (1)

The shadow channel M depends on the unitary ensemble.
Moreover, if the measurement ensemble {U†|b⟩}U∼U,b is
informationally complete, the shadow channel is invert-
ible, and its inverse is termed the reconstruction map.
Thus, for a state ρ, the snapshot corresponding to out-
come b and unitary U is written as ρ̂ = M−1(U†|b⟩⟨b|U).
One can efficiently extract information from the state
through this snapshot. Previous studies have demon-
strated that the number of required measurements to
predict a certain property of the target state within a
given error remains independent of the system’s dimen-
sion, which overcomes the most serious problem of tradi-

tional quantum tomography. In particular, for the global
Clifford group, the variance in estimating a traceless ob-
servable O is bounded by 3tr(O2)

Compared to the original classical shadow, each uni-
tary in the thrifty shadow protocol is reused R times. As
a consequence, the snapshot of the state in this protocol
is ρ̂R =

∑R
i=1 M−1(U†|bi⟩⟨bi|U)/R. The variance of es-

timating an observable O with respect to the estimator
tr(Oρ̂R) is now given by:

VR(O, ρ) = 1
R
V (O, ρ) + R− 1

R
V∗(O, ρ), (2)

where V (O, ρ) is the variance using the original classical
shadow. It’s important to note that the sample complex-
ity is proportional to RVR(O, ρ), which is greater than
V (O, ρ). Therefore, V∗(O, ρ) characterizes the additional
sample complexity introduced by thrifty shadow estima-
tion. On the other hand, the resource cost of reusing a
circuit is considerably lower than that of introducing a
new circuit. If V∗(O, ρ) is negligible, achieving the same
accuracy with fewer resources becomes feasible.

Due to Ref. [15], the variance of the thrifty shadow
estimation is only concerned with the traceless part
of the observable. Hence, we assume that the ob-
servable O is traceless. Under this assumption,
V∗(O, ρ) defined in Eq. (2) with respect to some uni-
tary ensemble U can be specifically formulated as:

V∗(O, ρ) = (d+ 1)2tr

EU∼U
∑
i,j

U†⊗4|bi⟩⟨bi|⊗2 ⊗ |bj⟩⟨bj |⊗2U⊗4O ⊗ ρ⊗O ⊗ ρ

− tr(Oρ)2.

= (d+ 1)2tr [ΩU ({|bi⟩}i)O ⊗ ρ⊗O ⊗ ρ] − tr(Oρ)2.

(3)

Since we focus on the qubit case, we denote 2n by
d for simplicity, where n is the number of the qubits.
The performance of the thrifty shadow with respect to
a unitary ensemble U completely depends on this opera-
tor ΩU ({|bi⟩}i). However, its algebraic structure remains
unclear. To gain a deeper understanding of the thrifty
shadow estimation, we investigate this operator analyti-
cally for various unitary ensembles. The discussion of this
operator included an extension to a general measurement
basis {|ψi⟩}i can be found in Appendix B. Thereafter,
we will use the properties to analyze the performance of
the thrifty shadow and show the relationship between the
nonstabilizerness.

3 The nonstabilizerness from the states
Ref. [10] claims that if U is drawn uniformly from Haar

measure or any unitary 4-design, V∗(O, ρ) is of order
O(d−1tr(O2)), which is much less than V (O, ρ). Here
we give a more accurate proposition.

Proposition 1 Suppose U is a Haar random ensemble
or a unitary 4-design and V∗(O, ρ) is defined in Eq. (3)

where O is a traceless observable. Then

V∗(O, ρ) ≤ 4d2 + 28d+ 26
d(d+ 2)(d+ 3)tr(O2) = O(d−1tr(O2)). (4)

This proposition shows that in consideration of a large
dimensional quantum system, the thrifty shadow with
respect to the unitary 4-design can decrease the number
of the required circuits but only introduce little impact
on the accuracy for any observable.

Then, we focus on the case when U is the Clifford
group. We get a general upper bound of the variance
with respect to the Clifford group, and this bound is tight
in the leading order.

Theorem 2 Suppose U is the Clifford group and
V∗(O, ρ) is defined in Eq. (3) where O is a traceless ob-
servable. Then

V∗(O, ρ) ≤ 2(d+ 1)
(d+ 2) tr(O2) < 2tr(O2). (5)

This implies that there is a significant gap between the
performances of these two ensembles in some cases. If
V∗(O, ρ) is of order tr(O2), the thrifty shadow using the
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Clifford group performs even worse than the original clas-
sical shadow in the sense that it introduces extra unneces-
sary experimental costs. Refs. [10, 15] have shown that in
the task of stabilizer state fidelity estimation, the vari-
ance of the thrifty shadow with respect to the Clifford
group approximately achieves the upper bound in The-
orem 2. Here we extend our investigation to the fidelity
estimation of general states. We find that the Clifford
group performs well in certifying states with high non-
stabilizerness.

Theorem 3 Suppose ρ = |ϕ⟩⟨ϕ| is any n-qubit state and
the observable O = |ϕ⟩⟨ϕ| − I/d, then the variance of
the thrifty shadow using the Haar random ensemble or a
unitary 4-design reads

VR(O, ρ) = 1
R

2(d− 1)
d+ 2 + R− 1

R

4(d− 1)
(d+ 2)(d+ 3) . (6)

Theorem 4 Suppose ρ = |ϕ⟩⟨ϕ| is any n-qubit state and
the observable O = |ϕ⟩⟨ϕ| − I/d, then the variance of the
thrifty shadow using the Clifford group reads

VR(O, ρ) = 1
R

2(d− 1)
d+ 2 + R− 1

R

2(d+ 1)2−M2(|ϕ⟩) − 4
d+ 2 ,

(7)
where M2(|ϕ⟩) is the stabilizer 2-Rényi entropy of state
|ϕ⟩ defined by [17]

M2(|ϕ⟩) = − log2
1
d

∑
P∈Pn

⟨ϕ|P |ϕ⟩4. (8)

This theorem provides a practical criterion for selecting
the thrifty shadow with Clifford measurements. Com-
pared to Theorem 3, the performance of the thrifty
shadow with respect to the Clifford group is dependent
on the stabilizer 2-Rényi entropy of the target state. In
the worst case that the target state is a stabilizer state,
the variance VR(O, ρ) is equivalent to V (O, ρ), indicating
that reusing the same circuits does not obtain extra in-
formation. However, the thrifty shadow with respect to
the Clifford group begins to show benefits when M2(|ϕ⟩)
is large. Particularly, if M2(|ϕ⟩) > log2(d + 3)/4, using
the Clifford group becomes even more efficient than the
unitary 4-design. Given that most states are expected to
have a high stabilizer 2-Rényi entropy [17, 21], the Clif-
ford group is generally suitable for certifying states, also
shown by the random states results in Fig. 1(e).

We verify our conclusions with several numerical ex-
periments [22, 23, 24, 25] in Fig. 1, including W
states [26], Greenberger–Horne–Zeilinger (GHZ) states,
a family of states constructed by the non-Clifford gates,
and random states. For W states, the stabilizer 2-Rényi
entropy is of order log2 n

2, seeing in Appendix E, indicat-
ing that the thrifty shadow with Clifford measurements
also benefits the fidelity estimation. For GHZ states, we
consider GHZ states with a phase factor:

|GHZθ⟩ = 1√
2

(
|0⟩⊗n + eiθ |1⟩⊗n

)
. (9)
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Figure 1: The statistical variance of the thrifty shadow
to certify various families of states with respect to Clif-
ford group. In (a)-(d), the lines represent the analytical
results in Theorems 3 and 4 for different state families.
The circled dots are the numerical results with 100, 000
random samplings from the Clifford group and 10 re-
peated times. (a) Estimation of the fidelity of W states,
parameterized by the qubits number n. (b) Estimation
of the fidelity of 50-qubit GHZ states, parameterized by
the phase factor θ shown in Eq. (9). (c) Estimation of the
fidelity of |S50,k(π/4)⟩ defined in Eq. (10), parameterized
by the number of magic states k. (d) Estimation of the
fidelity of |S50,10(θ)⟩, parameterized by the phase factor
θ. In (e), the blue dashed line represents the average
variance of estimating 1000 random states from the Haar
measure. The green dotted line indicates the standard
deviation of the variances.
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Unfortunately, the advantages of the thrifty shadow are
inconspicuous for any θ. At last, we construct a state
family with high nonstabilizerness [27]:

|Sn,k(θ)⟩ = |0⟩⊗n−k ⊗
[

1√
2
(
|0⟩ + eiθ |1⟩

)]⊗k

. (10)

This can also be viewed as applying the gates I⊗n−k ⊗
(HP )⊗k on |0⟩⊗n, where H is the Hadamard gate and
P is a general single-phase gates. As k increases, the
variance will decrease exponentially. The exact stabi-
lizer 2-Rényi entropies of these states can be found in
Appendix E. Since the prepared states in realistic exper-
iments may not be ideal, we also examine states affected
by depolarization noise, defined as ρ̃ = (1 − p)ρ + pI/d.
Interestingly, we observe a decrease in variance as the er-
ror increases, as shown in Fig. 2. It shows the robustness
of the thrifty shadow against noises. Detailed results are
available in Appendix D.
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Figure 2: The statistical variance of the thrifty shadow to
certify a W state with depolarized noise. Here ρ̃ = (1 −
p)ρ+pI/d and the ideal state is chosen as the 10-qubit W
state. The lines are the analytical results and the circled
dots represent the numerical results with 20,000 random
samplings from the Clifford group and 10 repeated times.

4 The nonstabilizerness from unitary en-
semble

When the Clifford group fails to benefit the thrifty
shadow, such as certifying the states close to stabilizer
states, we can use an approximate 4-design to improve
the performance of the thrifty shadow. Considering both
the practical costs and the complexity of classical sim-
ulation, the non-Clifford gates interleaved Clifford cir-
cuits are recommended. In contrast to the preceding
model [18, 19, 20, 10], our work presents a modified cir-
cuit model. This new circuit architecture diverges from
prior models by incorporating multiple non-Clifford gates
within each layer, which is shown in Fig. 3.

We assume the non-Clifford gates as the π/8 gates
since this gate has been identified as the most effective
single-qubit phase gate, seeing in Appendix B. Denote
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…
𝐶𝑙+1

Figure 3: The circuits model of l-layer M̂k-interleaved
Clifford circuits. C1, C2, . . . ,Cl+1 are randomly selected
in the Clifford group. In this configuration, the M gates
can be replaced by any single-phase gate.

the π/8 gate by M and simplify the notation I⊗n−1 ⊗M
as M̂1, indicating the action of the M gate on the nth
qubit. Generally, we can denote I⊗n−k ⊗ M⊗k by M̂k.
Next, we present two simple case studies to illustrate our
primary findings.

Theorem 5 Suppose U is ensemble of one layer M̂k-
interleaved Clifford circuits, which means U ∈ U satisfies
U = U1M̂kU2 where U1, U2 are randomly chosen in the
Clifford group and M̂k = I⊗n−k ⊗ M⊗k. V∗(O, ρ) is de-
fined in Eq. (3) where O is a traceless observable. Then

V∗(O, ρ) <
[

2
(

3
4

)k
+ 4
d

]
tr(O2). (11)

Proposition 6 Suppose U is ensemble of l-layer M̂1-
interleaved Clifford circuits, which means U ∈ U satis-
fies U = U1M̂1U2 . . . M̂1Ul+1 where U1, . . . , Ul+1 are ran-
domly chosen in the Clifford group and M̂1 = I⊗n−1⊗M .
V∗(O, ρ) is defined in Eq. (3) where O is a traceless ob-
servable. Then

V∗(O, ρ) <
[

2
(

3
4

)l
+ 8
d

]
tr(O2). (12)

These circuits, despite their differing structures, per-
form comparably in leading-order terms. However, the
depth required for one layer M̂k-interleaved Clifford cir-
cuits is considerably less than the alternative. This dis-
parity provides a method to substantially reduce the
number of necessary Clifford gates. Since any Clifford
gates can be synthesized by O(n2/ logn) gates from the
gate set of Hadamard gate, Phase gate, and the CNOT
gate [22], using one layer M̂k-interleaved Clifford circuits
allows for a reduction of up to O((k − 1)(n2/ logn)) ele-
mentary gates. We further argue that the effectiveness of
the thrifty shadow with respect to the ensemble of l-layer
M̂k-interleaved Clifford circuits mainly depends on the
number of the non-Clifford gates, proved in Appendix B:

V∗(O, ρ) =
[

2
(

3
4

)kl
+ O(d−1)

]
tr(O2). (13)

Given that this count naturally measures the nonsta-
bilizerness of the unitary ensemble, such as the T -
count [17, 28, 29], it substantiates the idea that the non-
stabilizerness of the unitary ensemble can significantly
improve thrifty shadow performance.
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Figure 4: The statistical variance of the thrifty shadow
to estimate the fidelity of a 50-qubit GHZ state. The uni-
tary ensembles are chosen as the one layer M̂k-interleaved
Clifford circuits and the l-layer M̂1-interleaved Clifford
circuits, depicted with circled and triangular dots, re-
spectively. For each ensemble, we perform 100, 000 times
random sampling and R repeated times. Lines represent
analytical results for different repeated times R.

Additionally, we note that the upper bounds intro-
duced in Theorem 5 and Proposition 6 are not tight.
Therefore, one cannot assert that the performance of l-
layer M̂1 interleaved Clifford circuits is worse than the
one-layer M̂k interleaved Clifford circuits when the total
number of M gates is the same. In the subsequent exam-
ple, we find that the variance with respect to the l-layer
M̂1 interleaved Clifford circuits is even smaller.

Theorem 7 Suppose ρ = |S⟩⟨S| is a stabilizer state and
the observable O = |S⟩⟨S| − I/d, then the variance of
the thrifty shadow using the ensemble of one layer M̂k-
interleaved Clifford circuits reads

VR(O, ρ) = 1
R

2(d− 1)
d+ 2 + R− 1

R

[
2
(

3
4

)k
+ O(d−1)

]
.

(14)

Theorem 8 Suppose ρ = |S⟩⟨S| is a stabilizer state
and the observable O = |S⟩⟨S| − I/d, then the variance
of the thrifty shadow using the ensemble of l-layer M̂1-
interleaved Clifford circuits reads

VR(O, ρ) = 1
R

2(d− 1)
d+ 2 + R− 1

R

[
2
(

3
4

)l
+ O(d−1)

]
.

(15)

It can be verified that the variance of the l-layer M̂1 in-
terleaved Clifford circuits is smaller than the other config-
uration by the exact results, seeing in Appendix D. When
the dimension of the quantum system is large enough, the
difference in variance between these two unitary ensem-
bles becomes negligible. Our results also indicate that
increasing the number of times a unitary is reused leads
to a reduction in variance. These findings are corrobo-
rated by the numerical simulations presented in Fig. 4.

5 Conclusions
We have presented a complete description of the thrifty

shadow. Generalizing to the preceding work, our findings
demonstrate that thrifty shadow estimation with the Clif-
ford measurements can offer significant advantages over
the original classical shadow in some cases. This is par-
ticularly evident in fidelity estimation tasks where the
performance of thrifty shadow is enhanced by the nonsta-
bilizerness of the target states. For almost all states, se-
lecting the Clifford group for thrifty estimation is advan-
tageous. Conversely, for states close to stabilizer states,
interleaved Clifford circuits effectively address the limita-
tions of the Clifford group. Moreover, our study reveals
that interleaved Clifford circuits, enhanced by incorpo-
rating multiple non-Clifford gates within each layer, can
reduce the need for numerous Clifford layers. This adap-
tation simplifies the experimental procedures and lessens
the computational demands of classical simulations. We
believe that it may play a role in wide applications.

Our work also analytically discusses the mathematical
structure underlying thrifty shadow. To our knowledge,
it is the first time such a structure has appeared. Except
for its intrinsic properties, we investigate the connection
between the fourth moment. It deserves further study to
find other applications for the mathematical structure.
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A Commutant of the Clifford tensor powers
We first introduce the Schur-Weyl duality of the Clifford tensor powers as the main mathematical basis of this

paper. The most established Schur-Weyl duality applicable to the unitary group states that the commutant of the
unitary tensor powers is generated by the symmetric group [30, 31]. Since the Clifford group is a subgroup of the
unitary group, the commutant of Clifford tensor powers Cl⊗t should be larger. In the following context, we focus on
the qubit case and assume the Hilbert space to be H⊗n

2 . The central concept for analyzing the commutant of Cl⊗t
is the notion of stochastic Lagrangian subspace [32]. A subspace T ≤ Z2t

2 is a stochastic Lagrangian subspace if it
satisfies the following three conditions:

1. x · x = y · y mod 4 for all (x,y) ∈ T .

2. T has dimension t.

3. 12t = (1, 1, . . . , 1) ∈ T .

The first condition implies that T is totally isotropic with respect to the quadratic form q(x,y) = x ·x−y ·y mod 4.
Together with the second condition, such subspace is referred to as Lagrangian. The set comprising all such subspaces
is denoted by Σt,t. A special subset of the Σt,t can be determined by the stochastic orthogonal group Ot. A t × t
matrix with entries in Z2 is called stochastic orthogonal if Ox ·Ox = x · x mod 4 for all x ∈ Zt2. This group can be
directly embedded into Σt,t by defining TO := {(Ox,x)| x ∈ Zt2}.

To further understand the structure of the stochastic Lagrangian subspace, we introduce two additional concepts. A
defect subspace is a subspace N ≤ Zt2 satisfying x ·x = 0 mod 4 for all x ∈ N . Such subspaces are totally q-isotropic
according to the quadratic form q(x) = x · x mod 4. The orthogonal complement N⊥ is taken with respect to the
inner product modulo 2. Given two defect subspaces M,N , a linear map J : N⊥/N → M⊥/M is called a defect
isomorphism if it satisfies:

1. q (J [x]) = q ([x]) for all [x] ∈ N⊥/N .

2. J [1t] = [1t].

According to Ref. [32], any stochastic Lagrangian subspace is induced by two defect subspaces M,N and a defect
isomorphism J .

For each stochastic Lagrangian subspace T , we define the corresponding operators r(T ) and R(T ) as follows:

r(T ) :=
∑

(x,y)∈T

|x⟩⟨y|, R(T ) := r(T )⊗n. (16)

We also denote r(TO) by r(O). It has been proved that when n ≥ t − 1, the set of R(T ) is linearly independent and
spans the commutant of Cl(n)⊗t. Moreover, r(T ) and R(T ) are closely related to the Calderbank-Shor-Steane (CSS)
code [33, 34]. For a defect subspace N , we can define a stabilizer group:

CSS(N) := {ZpXq| p, q ∈ N}, (17)

which corresponds to a CSS code. The projector onto the corresponding code space is given by

PN = 1
|N |2

∑
p,q∈N

ZpXq, (18)

where |N | is the cardinality of N . Based on the CSS code, given a stochastic Lagrangian subspace T , if the left and
right defect subspaces of T coincide, denoted as N , and the defect isomorphism is trivial, r(T ) can be expressed as

r(T ) = |N |PN . (19)

Furthermore, any r(T ) can be determined by a stochastic orthogonal matrix O and a defect subspace N [18].
Then, we consider the case t = 4 in detail. For the sake of simplicity, we denote 2n by d in the following. By virtue

of Ref. [32], for t = 4, we have

Σ4,4 = S4 ∪ S4


1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1
0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0

S4 = S4 ∪ S4T4S4. (20)

Moreover, the set S4T4S4, which comprises six subspaces, exhibits a simpler form, as demonstrated the following
lemma.
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Lemma 9 Suppose St is the permutation group and S3 is the subset of S4 generated by {(12), (123)}. Let T4 be defined
as in Eq. (20). Then

S4T4S4 = S3T4. (21)

Proof. It is straightforward to verify that N = {|0000⟩, |1111⟩} is the only nontrivial defect subspace in Z4
2. Thus,

the stochastic Lagrangian subspace in the set S4T4S4 is determined by the defect isomorphism J . Specifically, for
T ∈ S4T4S4,

T = {(x + z,y + w)| [y] ∈ N⊥/N, J [y] = [x], z,w ∈ N}. (22)

By definition, the set of defect isomorphisms is the set of automorphisms of N⊥/N . Given that dimN⊥/N = 2 and
J [14] = [14], the set of automorphisms is isomorphic to S3. Actually, it is exactly the permutation group S3. For
instance, for (12) ∈ S3, the action of (12) induces an automorphism of N⊥/N , J , such that

J [(0000)] = [(0000)], J [(1010)] = [(0110)], J [(0110)] = [(1010)], J [(0011)] = [(0011)]. (23)

The remaining automorphisms are induced by other elements in S3, thus concluding the proof. □

As mentioned above, for n ≥ 3, the commutant of Cl(n)⊗4 is spanned by the linearly independent set {R(T )}T∈Σ4,4 .
Actually, the set of {R(T )}T∈Σ4,4 spans the commutant of Cl(n)⊗4 for all n, indicating that the restriction on n can
be relaxed.

Lemma 10 Suppose Σ4,4 is the set of stochastic Lagrangian subspace in Z8
2. Then {R(T ) = r(T )⊗n}T∈Σ4,4 spans the

commutant of Cl(n)⊗4.

Proof. Let {Ti}
|Σ4,4|
i=1 be an enumeration of Σ4,4. Denote by Γ the Gram matrix of the set {R(T )}T∈Σ4,4 , where the

entries is defined as
Γij := tr

[
R(Ti)†R(Tj)

]
. (24)

The rank of Γ is precisely the dimension of the span of {R(T )}T∈Σ4,4 , i.e.,

rank Γ = dim span
(
{R(T )}T∈Σ4,4

)
. (25)

Calculating the eigenvalue of Γ yields

d(d− 1)(d− 2)(d− 4), d(d+ 1)(d+ 2)(d+ 4), d(d− 1)(d+ 1)(d− 2), d(d− 1)(d+ 1)(d+ 2), (26)

with multiplicities 1, 1, 14, and 14 respectively. Consequently,

rank Γ =


15, n = 1,
29, n = 2,
30, n ≥ 3.

(27)

This matches the dimension of the commutant of Cl(n)⊗4 [35], thereby finishing the proof. □

Considering the following requirements, we are interested in the projectors onto the representation spaces of the
Clifford group. Based on the Schur-Weyl duality, the total space (Cd)⊗t can be decomposed into multiplicity-free
irreducible representations of U(d) × St:

(Cd)⊗t =
⊕
λ

Wλ ⊗ Sλ, (28)

where λ represents the non-increasing partitions of t into nor more than d parts, Wλ is the Weyl module carrying
the irreducible representation of U(d) associated with λ, and Sλ is the Specht module on which St acts irreducibly.
Denote the projector onto Wλ ⊗ Sλ by Pλ. Obviously, it is the weighted summation of R(T ) over S4, which has the
form

Pλ = dλ
24

∑
T∈S4

χλ(T )R(T ), (29)

where dλ is the multiplicity of the Weyl module Wλ, χλ is the character of the irrep of S4 corresponding to the
partition λ.

As we mentioned before, the operator R(T4) is proportional to a projector onto a CSS code space [36, 32]:

R(T4) = dP
(n)
N = 1

d

(
I⊗4 +X⊗4 + Y ⊗4 + Z⊗4)⊗n = 1

d

∑
P∈Pn

P⊗4, (30)
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where N = {|0000⟩, |1111⟩} is the nontrivial defect subspace in Z4
2 and the subscript (n) represents the number of

qubits. Hereafter, N specifically refers to this space. Since R(T4) or P (n)
N commutes with all permutations in S4,

PλP
(n)
N is also a projector, denoted by P (n)

N,λ, which is composed by R(T ) with T ∈ S4T3:

P
(n)
N,λ = dλ

24d
∑
T∈S4

χλ(T )R(T )R(T4). (31)

The exact dimensions of each projector can be found in Ref. [36].

B Mathematical structure
According to Eq. (3), we would like to analyze the property of the operator ΩU . For a general orthogonal basis

{|ψi⟩}i, we can define ΩU ({|ψi⟩}i) as

ΩU ({|ψi⟩}i) := EU∼U
∑
i,j

U†⊗4|ψi⟩⟨ψi|⊗2 ⊗ |ψj⟩⟨ψj |⊗2U⊗4. (32)

Next, we consider the specific examples of this operator.

B.1 Haar uniform ensemble and Clifford group
We start by discussing the concrete form of Ω for some simple cases. If the unitary ensemble is a Haar random

ensemble or a unitary 4-design, ΩHaar is independent of the choice of the basis. According to the Schur-Weyl duality
and Schur’s lemma, we obtain the following proposition:

Proposition 11 Suppose that U is a Haar random ensemble or a unitary 4-design, {|ψi⟩}i is any set of orthogonal
bases, and ΩHaar is defined in Eq. (32). Then

ΩHaar = κ
(
Haar, P[4]

)
P[4] + κ

(
Haar, SP[2,2]

)
SP[2,2] + κ

(
Haar, SP[3,1]

)
SP[3,1], (33)

where SPλ = Pλ+(12)Pλ+(34)Pλ+(12)(34)Pλ and (12), (34), (12)(34) are the shorthand for the corresponding R(T ).
The coefficients κ are 

κ
(
Haar, P[4]

)
= 4(d+ 5)

(d+ 1)(d+ 2)(d+ 3) ,

κ
(
Haar, SP[2,2]

)
= 1
d(d+ 1) ,

κ
(
Haar, SP[3,1]

)
= 1

(d+ 1)(d+ 2) .

(34)

Proof. By definition, the operator ΩHaar(|ψi⟩i) is expressed in two components:

ΩHaar = EU∼U
∑
i

(U†|ψi⟩⟨ψi|U)⊗4 + EU∼U
∑
i̸=j

U†⊗4|ψi⟩⟨ψi|⊗2 ⊗ |ψj⟩⟨ψj |⊗2U⊗4

= dΦHaar +
∑
i̸=j

Φ′
Haar,(i,j) = dΦHaar + d(d− 1)Φ′

Haar.
(35)

where ΦHaar is the fourth moment over the Haar uniform ensemble, calculated as:

ΦHaar =
24P[4]

d(d+ 1)(d+ 2)(d+ 3) . (36)

The term Φ′
Haar,(i,j) corresponds to different states |ψi⟩ and |ψj⟩. After the scrambling over the Haar uniform ensemble,

all such terms for i ̸= j become equivalent, thus allowing us to simplify notation by omitting the indices (i, j).
Unlike the fourth moment, Φ′

Haar incorporates more than just a combination of the projectors Pλ. Generally, it can
be written as

Φ′
Haar =

∑
σ∈S4

∑
λ

αijR(σ)Pλ =
∑
σ∈S4

∑
λ

αijσPλ, (37)

where we sum over all the possible permutations σ and partitions λ.For simplicity, we replace R(σ) with σ. It is
important to note that σPλ remains within the support of Pλ. Given that tr(Φ′

HaarP[14]) = 0 and tr(Φ′
HaarP[2,12]) = 0,

and considering the positivity of Φ′
Haar, we claim that the terms σP[14], σP[2,12] are excluded from the expansion of

Φ′
Haar. Moreover, due to the symmetry of the S = {(e), (12), (34), (12)(34)}, the permutation group is categorized into

three distinct parts:
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1. (e), (12), (34), (12)(34);

2. (13), (23), (14), (24), (123), (132), (124), (142), (134), (143), (234), (243), (1234), (1243),
(1342), (1432);

3. (13)(24), (14)(23), (1324), (1423);
The coefficients of σPλ where σ belongs to the same group should be equivalent. Denote

SPλ := Pλ + (12)Pλ + (34)Pλ + (12)(34)Pλ. (38)

It is straightforward to verify that:
(SPλ)2 = 4(SPλ). (39)

With the fact that SPλ is hermitian, it implies that (SPλ)/4 is a projector. Then, we can verify that (13)(24)Pλ +
(14)(23)Pλ + (1324)Pλ + (1423)Pλ = (13)(24)SPλ is in the support of SPλ:

(13)(24)SPλ (SPλ) = 4(13)(24)SPλ. (40)

Moreover, we can find that
((13)(24)SPλ)2 = 4(SPλ). (41)

By virtue of the fact that (13)(24)SPλ is also hermitian, we derive that

|(13)(24)SPλ| = SPλ. (42)

Particularly, in the case λ = [2, 2], [3, 1], we have

tr(SP[2,2]) = d2(d2 − 1)
3 , (13)(24)SP[2,2] = SP[2,2],

tr(SP[3,1]) = d(d+ 2)(d2 − 1)
2 , (13)(24)SP[3,1] = −(SP[3,1]).

(43)

Considering that P[4]Pλ = 0 for any λ ̸= [4], the sum of σPλ over the σ in the second group is also proportional to
SPλ for λ = [2, 2], [3, 1]. Thus, we express Φ′

Haar as:

Φ′
Haar = α1P[4] + α2SP[2,2] + α3SP[3,1]. (44)

Using the fact that tr(Φ′
HaarP[4]) = 1/6, tr(Φ′

2,2P[2,2]) = 1/3, tr(Φ′
HaarP[3,1]) = 1/2, we can obtain the desired equation.

□ We can also compute the Schatten l-norm of ΩHaar analytically. Particularly, ∥ΩHaar∥1 = d2:

∥ΩHaar∥ll = d(d+ 1)(d+ 2)(d+ 3)
24

(
4(d+ 5)

(d+ 1)(d+ 2)(d+ 3)

)l
+ d2(d2 − 1)

12

(
4

d(d+ 1)

)l
+ d(d+ 2)(d2 − 1)

8

(
4

(d+ 1)(d+ 2)

)l
.

(45)

Given the ubiquitous application of the Clifford group in quantum information tasks, particularly in shadow esti-
mation, we now delve into the specific case of the Clifford group.
Proposition 12 Suppose that U is the Clifford group, {|ψi⟩}i is any orthogonal basis, and ΩCl({|ψi⟩}i) is defined in
Eq. (32). Then

ΩCl({|ψi⟩}i) = κ
(
Cl, {|ψi⟩}i, P[4]

)
P[4] + κ

(
Cl, {|ψi⟩}i, P (n)

N,[4]

)
P

(n)
N,[4] + κ

(
Cl, {|ψi⟩}i, SP[2,2]

)
SP[2,2]

+ κ
(

Cl, {|ψi⟩}i, SP (n)
N,[2,2]

)
SP

(n)
N,[2,2] + κ

(
Cl, {|ψi⟩}i, SP[3,1]

)
SP[3,1],

(46)

where SPλ = Pλ+(12)Pλ+(34)Pλ+(12)(34)Pλ and (12), (34), (12)(34) are the shorthand for the corresponding R(T ).
PN is defined in Eq. (30). The coefficients κ are

κ
(
Cl, {|ψi⟩}i, P[4]

)
= 4d3(d+ 5) − 8G1({|ψi⟩})
d2(d− 1)(d+ 1)(d+ 2)(d+ 4) ,

κ
(

Cl, {|ψi⟩}i, P (n)
N,[4]

)
= −4d2(d+ 5) + 2(d+ 3)G1({|ψi⟩})

d(d− 1)(d+ 1)(d+ 2)(d+ 4) ,

κ
(
Cl, {|ψi⟩}i, SP[2,2]

)
= d3(d− 1) − 2G2({|ψi⟩})

d2(d2 − 1)(d2 − 4) ,

κ
(

Cl, {|ψi⟩}i, SP (n)
N,[2,2]

)
= G2({|ψi⟩}) − 2d(d− 1)

2(d2 − 1)(d2 − 4) ,

κ
(
Cl, {|ψi⟩}i, SP[3,1]

)
= 1

(d+ 1)(d+ 2) ,

(47)
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where G1({|ψi⟩}) and G2({|ψi⟩}) are defined as

G1({|ψi⟩}) =
∑
i,j

∑
P∈Pn

⟨ψi|P |ψi⟩2⟨ψj |P |ψj⟩2 + 2|⟨ψi|P |ψj⟩|2⟨ψi|P |ψi⟩⟨ψj |P |ψj⟩,

G2({|ψi⟩}) =
∑
i,j

∑
P∈Pn

⟨ψi|P |ψi⟩2⟨ψj |P |ψj⟩2 − |⟨ψi|P |ψj⟩|2⟨ψi|P |ψi⟩⟨ψj |P |ψj⟩.
(48)

In particular, assuming that {|ψi⟩}i is the standard computational basis, denoted by {|bi⟩}i, the coefficients κ are

κ
(
Cl, {|bi⟩}i, P[4]

)
= 4

(d+ 1)(d+ 2) ,

κ
(

Cl, {|bi⟩}i, P (n)
N,[4]

)
= 2d

(d+ 1)(d+ 2) ,

κ
(
Cl, {|bi⟩}i, SP[2,2]

)
= 1

(d+ 1)(d+ 2) ,

κ
(

Cl, {|bi⟩}i, SP (n)
N,[2,2]

)
= d

2(d+ 1)(d+ 2) ,

κ
(
Cl, {|bi⟩}i, SP[3,1]

)
= 1

(d+ 1)(d+ 2) .

(49)

Proof. According to Refs. [32, 36] and Proposition 11, ΩCl(|ψi⟩i) can be expressed using a combination of projectors
including P[4],P

(n)
N,[4],SP[2,2],SP

(n)
N,[2,2], and SP[3,1]. The dimensions of these operators P (n)

N,[4] and SP (n)
N,[2,2] are given by:

tr
(
P

(n)
N,[4]

)
= (d+ 1)(d+ 2)

6 , tr
(
SP

(n)
N,[2,2]

)
= 4(d2 − 1)

3 . (50)

It is straightforward to verify that

tr
[
P

(n)
N,[4]ΩCl({|ψi⟩}i)

]
= 1

6d2

∑
i,j

∑
P∈Pn

⟨ψi|P |ψi⟩2⟨ψj |P |ψj⟩2

+ 4|⟨ψi|P |ψj⟩|2⟨ψi|P |ψi⟩⟨ψj |P |ψj⟩ + |⟨ψj |P |ψi⟩|4,

tr
[
SP

(n)
N,[2,2]ΩCl({|ψi⟩}i)

]
= 1

6d2

∑
i,j

∑
P∈Pn

⟨ψi|P |ψi⟩2⟨ψj |P |ψj⟩2

− 2|⟨ψi|P |ψj⟩|2⟨ψi|P |ψi⟩⟨ψj |P |ψj⟩ + |⟨ψj |P |ψi⟩|4.

(51)

Then we prove the following lemma, which shows the summation of the first term equals to the third one:

Lemma 13 Suppose that A,B are two operators acting on the H⊗n
2 , then the following relation holds∑

P∈Pn

tr(APBP )2 =
∑
P∈Pn

tr(AP )2tr(BP )2, (52)

where Pn is the set of Pauli operators in H⊗n
2 .

Proof. We give two separate proofs of this lemma, where the first one is based on the property of the commutant of
the Clifford group, while the second one is more general.

As detailed in Lemma 9, certain products R(σ)R(T4) for σ ∈ S4 are actually equivalent. Specifically, we find that
(13)(24)R(T4) = R(T4) where (13)(24) is the shorthand for the corresponding operator. Therefore, we can deduce
that

tr(A⊗A⊗B ⊗BR(T4)) = tr(A⊗A⊗B ⊗B(13)(24)R(T4)). (53)

Using the explicit form of R(T4) as given in Eq. (30), we can obtain the desired result.
The second proof does not require knowledge of the Clifford commutant. Noting that {1/d1/2P}P∈Pn forms an

orthogonal basis of the space of the operators acting on H⊗n
2 , we express A,B as:

A = 1
d

∑
P∈Pn

tr(AP )P, B = 1
d

∑
P∈Pn

tr(BP )P. (54)

Substituting these expansions into tr(APBP )2 allows for straightforward verification of the lemma. □
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Following from Lemma 13, the overlap between ΩCl and P
(n)
N,[4], SP

(n)
N,[2,2], simplifies to

tr
[
P

(n)
N,[4]ΩCl({|ψi⟩}i)

]
= 1

3d2G1, tr
[
SP

(n)
N,[2,2]ΩCl({|ψi⟩}i)

]
= 1

3d2G2. (55)

A detailed but straightforward calculation reveals the coefficients for each term, which confirms the first part of the
proposition. As for the second part, G1 and G2 can be calculated specifically

G1 = d3 + 2d2, G2 = d3 − d2. (56)

Thus, the specific form of ΩCl({|bi⟩}i) can be computed in this case. □

In order to quantify the difference between Ω with respect to the unitary 4-design and the Clifford group, we can
calculate the 1-norm

∥ΩCl({|ψi⟩}i) − ΩHaar∥1 = (d− 1)(d+ 1)(d+ 2)(d+ 4)
3d(d+ 3)

∣∣∣κ(Cl, {|ψi⟩}i, P (n)
N,[4]

)∣∣∣
+ 8(d2 − 4)(d2 − 1)

3d2

∣∣∣κ(Cl, {|ψi⟩}i, SP (n)
N,[2,2]

)∣∣∣ . (57)

Assuming the set of bases as the standard computational basis, the 1-norm is given by

∥ΩCl({|bi⟩}i) − ΩHaar∥1 =
2(d− 1)

(
3d2 + 6d− 10

)
3d(d+ 3) = O(d). (58)

Rescaling it by dividing ∥ΩHaar∥1, one find that ΩCl({|bi⟩}i) is close to ΩHaar when the dimension is large enough.

B.2 Interleaved Clifford circuits
We have redefined the structure of non-Clifford gates interleaved with Clifford circuits in Sec. 4, as shown in Fig. 3.

Here, these non-Clifford gates are specifically single-phase gates.
We start with the analysis of the M gate and then extend to the general case. For the M -interleaved Clifford

circuits, we obtain the following theorem

Theorem 14 Suppose U is ensemble of l-layer M̂k-interleaved Clifford circuits, which means U ∈ U satisfies U =
U1M̂kU2 . . . M̂kUl+1 where U1, . . . , Ul+1 is randomly chosen in the Clifford group and M̂k = I⊗n−k ⊗M⊗k. {|ψi⟩}i is
any orthogonal basis and ΩlM̂k

({|ψi⟩}i) is defined in Eq. (32). Then

ΩlM̂k
({|ψi⟩}i) = κ

(
lM̂k, {|ψi⟩}i, P[4]

)
P[4] + κ

(
lM̂k, {|ψi⟩}i, P (n)

N,[4]

)
P

(n)
N,[4]

+ κ
(
lM̂k, {|ψi⟩}i, SP[2,2]

)
SP[2,2] + κ

(
lM̂k, {|ψi⟩}i, SP (n)

N,[2,2]

)
SP

(n)
N,[2,2]

+ κ
(
lM̂k, {|ψi⟩}i, SP[3,1]

)
SP[3,1],

(59)

where SPλ = Pλ+(12)Pλ+(34)Pλ+(12)(34)Pλ and (12), (34), (12)(34) are the shorthand for the corresponding R(T ).
The coefficients κ are

κ
(
lM̂k, {|ψi⟩}i, P[4]

)
=
[
κ
(
Cl, {|ψi⟩}i, P[4]

)
− κ

(
Cl, {|ψi⟩}i, P (n)

N,[4]

) α(k)
0

α
(k)
1

(
1 −

(
1 − α

(k)
1

)l)]
,

κ
(
lM̂k, {|ψi⟩}i, P (n)

N,[4]

)
= κ

(
Cl, {|ψi⟩}i, P (n)

N,[4]

)(
1 − α

(k)
1

)l
,

κ
(
lM̂k, {|ψi⟩}i, SP[2,2]

)
=
[
κ
(
Cl, {|ψi⟩}i, SP[2,2]

)
− κ

(
Cl, {|ψi⟩}i, SP (n)

N,[2,2]

) β(k)
0

β
(k)
1

(
1 −

(
1 − β

(k)
1

)l)]
,

κ
(
lM̂k, {|ψi⟩}i, SP (n)

N,[2,2]

)
= κ

(
Cl, {|ψi⟩}i, SP (n)

N,[2,2]

)(
1 − β

(k)
1

)l
,

κ
(
lM̂k, {|ψi⟩}i, SP[3,1]

)
= κ

(
Cl, {|ψi⟩}i, SP[3,1]

)
,

(60)
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α
(k)
0 , α(k)

1 , β(k)
0 , and β(k)

1 write

α
(k)
0 = −

4
{
d2
[
1 −

( 3
4
)k]+ 3d

[
1 −

( 1
2
)k]+ 2

}
(d− 1)(d+ 1)(d+ 2)(d+ 4) ,

α
(k)
1 =

d(d+ 3)
{
d2
[
1 −

( 3
4
)k]+ 3d

[
1 −

( 1
2
)k]+ 2

}
(d− 1)(d+ 1)(d+ 2)(d+ 4) ,

β
(k)
0 = −

4
{
d2
[
1 −

( 3
4
)k]− 1

}
(d2 − 1)(d2 − 4) ,

β
(k)
1 =

d2
{
d2
[
1 −

( 3
4
)k]− 1

}
(d2 − 1)(d2 − 4) .

(61)

Proof. We begin our analysis with one-layer M̂k Clifford circuits. Considering the action of M̂⊗4
1 on the commutant

of Cl(n)⊗4, if T ∈ S4, it is straightforward to verify that M̂⊗4
1 R(T )M̂†⊗4

1 = R(T ). Otherwise, after the conjugate
action of M̂⊗4

1 , we can derive that

M̂⊗4
1 R(T )M̂†⊗4

1 = r(T )⊗n−1 ⊗ [r(T ) − 2 (|0000⟩⟨1111| + |1111⟩⟨0000|)]
= r(T )⊗n−1 ⊗ [r(T ) − 2 (|0⟩⟨1| + |1⟩⟨0|)] .

(62)

For the sake of simplicity, we denote |0000⟩ and |1111⟩ by |0⟩ and |1⟩. Therefore, after the action of M̂k, the projector
Pλ and P

(n)
N,λ will transform to

M̂⊗4
k PλM̂

†⊗4
k = Pλ,

M̂⊗4
k P

(n)
N,λM̂

†⊗4
k =

k∑
j=0

(−1)j
(
k

j

)
P

(n−j)
N,λ ⊗ (|0⟩⟨1| + |1⟩⟨0|)⊗j

.
(63)

Remark that P (n−j)
N,λ may project onto different subspaces with n − j qubits. We denote them by the same notation

for the sake of simplicity. By virtue of Eq. (63), we obtain the following equation after the conjugation action by

ΩM̂k
({|ψi⟩}i) = κ

(
Cl, {|ψi⟩}i, P[4]

)
P[4] + κ

(
Cl, {|ψi⟩}i, P (n)

N,[4]

)
(P (n)
N,[4] − ∆[4])

+ κ
(
Cl, {|ψi⟩}i, SP[2,2]

)
SP[2,2] + κ

(
Cl, {|ψi⟩}i, SP (n)

N,[2,2]

)
(SP (n)

N,[2,2] − ∆[2,2]))

+ κ
(
Cl, {|ψi⟩}i, SP[3,1]

)
SP[3,1],

(64)

where ∆λ is defined as

∆λ := −E U†⊗4


k∑
j=1

(−1)j
(
k

j

)
P

(n−j)
N,[λ] ⊗ (|0⟩⟨1| + |1⟩⟨0|)⊗j

U⊗4. (65)

Obviously, it is also combined by the projectors Pλ and SP
(n)
N,λ:

∆[4] = α
(k)
0 P[4] + α

(k)
1 P

(n)
N,[4], ∆[2,2] = β

(k)
0 P[2,2] + β

(k)
1 SP

(n)
N,[2,2]. (66)

The coefficients can be determined by solving a linear system of equations. Take λ = [4] as an example:
trP[4]α

(k)
0 + trP (n)

N,[4]α
(k)
1 = tr

[
P[4]∆[4]

]
= 0,

tr
[
PNP[4]

]
α

(k)
0 + tr

[
PNP

(n)
N,[4]

]
α

(k)
1 = tr

[
PN∆[4]

]
=
d2
[
1 −

( 3
4
)k]+ 3d

[
1 −

( 1
2
)k]+ 2

6 .

(67)

Then we can derive that

α
(k)
0 = −

4
{
d2
[
1 −

( 3
4
)k]+ 3d

[
1 −

( 1
2
)k]+ 2

}
(d− 1)(d+ 1)(d+ 2)(d+ 4)

α
(k)
1 =

d(d+ 3)
{
d2
[
1 −

( 3
4
)k]+ 3d

[
1 −

( 1
2
)k]+ 2

}
(d− 1)(d+ 1)(d+ 2)(d+ 4) .

(68)
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Similarly, β(k)
0 and β

(k)
1 can be computed exactly. Therefore, we obtain

κ
(
M̂k, {|ψi⟩}i, P[4]

)
=
[
κ
(
Cl, {|ψi⟩}i, P[4]

)
− κ

(
Cl, {|ψi⟩}i, P (n)

N,[4]

)
α

(k)
0

]
,

κ
(
M̂k, {|ψi⟩}i, P (n)

N,[4]

)
= κ

(
Cl, {|ψi⟩}i, P (n)

N,[4]

)(
1 − α

(k)
1

)
,

κ
(
lM̂k, {|ψi⟩}i, SP[2,2]

)
=
[
κ
(
Cl, {|ψi⟩}i, SP[2,2]

)
− κ

(
Cl, {|ψi⟩}i, SP (n)

N,[2,2]

)
β

(k)
0

]
,

κ
(
lM̂k, {|ψi⟩}i, SP (n)

N,[2,2]

)
= κ

(
Cl, {|ψi⟩}i, SP (n)

N,[2,2]

)(
1 − β

(k)
1

)
,

κ
(
lM̂k, {|ψi⟩}i, SP[3,1]

)
= κ

(
Cl, {|ψi⟩}i, SP[3,1]

)
,

(69)

Repeating the above step recursively, we get the result. □

Also, the 1-norm of the difference from ΩlM̂k
to ΩHaar is expressed as∥∥∥ΩlM̂k

({|ψi⟩}i) − ΩHaar

∥∥∥
1

= (d− 1)(d+ 1)(d+ 2)(d+ 4)
3d(d+ 3)

∣∣∣κ(lM̂k, {|ψi⟩}i, P (n)
N,[4]

)∣∣∣
+ 8(d2 − 4)(d2 − 1)

3d2

∣∣∣κ(lM̂k, {|ψi⟩}i, SP (n)
N,[2,2]

)∣∣∣
= ∥ΩCl({|bi⟩}i) − ΩHaar∥1

[(
3
4

)kl
+ O(d−1)

]
.

(70)

The previous work mainly focuses on the effect of l-layer M̂1-interleaved Clifford circuits [18], which is a corollary of
Theorem 14. Due to Eq. (70), when n is large, ΩlM̂1

({|ψi⟩}i) will converge to ΩHaar with factor (3/4)l. Strikingly, by
virtue of this theorem, we find that the closeness degree of the l-layer M̂k-interleaved Clifford circuits to the unitary
4-design only depends on the number of M gates in the circuits approximately. Particularly, we compare two cases,
one layer M̂k-interleaved Clifford circuits and l-layer M̂1-interleaved Clifford circuits.

Proposition 15 α1, α
(k)
1 , β1, β

(k)
1 are defined in Eq. (61) for the M̂1 and M̂k-interleaved Clifford circuits. Then

−k
(

3
4

)k
d−1 < (1 − α1)k − (1 − α

(k)
1 ) ≤ 0, 0 ≤ (1 − β1)k − (1 − β

(k)
1 ) < k

(
3
4

)k
d−1. (71)

where the equality is saturated when k = 1.

Proof. First, we prove the inequality about α. Considering the upper bound, when k = 1, the equality holds
automatically. For k = 2, we have

(1 − α1)k − (1 − α
(k)
1 ) = d(−3d3 − 2d2 + 29d+ 24)

16(d+ 2)(d2 − 1) < 0 (72)

when d ≥ 4. For k = 3,

(1 − α1)k − (1 − α
(k)
1 ) = −

d
(
24d6 + 59d5 − 357d4 − 1071d3 + 57d2 + 1480d+ 768

)
64(d+ 2)(d+ 4) (d2 − 1)3 < 0 (73)

when d ≥ 8. For k ≥ 4,

(1 − α1)k =
(

3
4

)k (
1 − 3d+ 1

3(d− 1)(d+ 1)

)k
≤
(

3
4

)k (
1 − 3d+ 1

3(d− 1)(d+ 1)

)4
. (74)

Therefore, we obtain

(1 − α1)k − (1 − α
(k)
1 ) ≤ f(d) + g(d)(3/4)k + h(d)(1/2)k

81(d− 1)4(d+ 1)4(d+ 2)(d+ 4) , (75)

where
f(d) = 324d8 + 972d7 − 324d6 − 2916d5 − 972d4 + 2916d3 + 1620d2 − 972d− 648,
g(d) = −81d9 − 999d8 − 567d7 + 5670d6 + 3645d5 − 10407d4 − 8781d3 + 5632d2 + 7680d+ 2048,
h(d) = −243d9 − 729d8 + 729d7 + 2187d6 − 729d5 − 2187d4 + 243d3 + 729d2.

(76)
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It is straightforward to check that g(d), h(d) < 0 when d ≥ 16. Due to the relation d−1 ≤ (1/2)k < (3/4)k and 1/d < 1,
we deduce

f(d) + g(d)
(

3
4

)k
+ h(d)

(
1
2

)k
< −756d7 − 162d6 + 4941d5 + 1944d4 − 9678d3 − 6918d2 + 5389d+ 9080 < 0, (77)

when d ≥ 16. Combining all the situations, we complete the proof of the second inequality.
Next, we consider the lower bound. According to the inequality (1 − x)k ≥ 1 − kx when x ∈ (0, 1) and k ≥ 1, we

have

(1 − α1)k − (1 − α
(k)
1 ) + k

d

(
3
4

)k
≥

∑4
i=0 ωid

i

d(d− 1)(d+ 1)(d+ 2)(d+ 4)

≥ ω0 + (ω1 + 2ω2)d+ ω3d
3 + ω4d

4

d(d− 1)(d+ 1)(d+ 2)(d+ 4) ,

(78)

where

ω0 = −8k
(

3
4

)k
,

ω1 = 8 −
(

8 + 26k
3

)(
3
4

)k
,

ω2 = 12 − (6 + 3k)
(

3
4

)k
,

ω3 = 4 +
(

7 − k

3

)(
3
4

)k
− 9

(
1
2

)k
> 4 −

(
2 + k

3

)(
3
4

)k
> 0,

ω4 = 3
(

3
4

)k
− 3

(
1
2

)k
> 0.

(79)

Also,

ω1 + 2ω2 = 28 −
(

20 + 44k
3

)(
3
4

)k
> 0. (80)

Therefore,

(1 − α1)k − (1 − α
(k)
1 ) + k

d

(
3
4

)k
≥ ω0 + (ω1 + 2ω2)2 + ω323 + ω424

d(d− 1)(d+ 1)(d+ 2)(d+ 4)

= 96 + (64 − 40k)(3/4)k − 120(1/2)k

d(d− 1)(d+ 1)(d+ 2)(d+ 4)

>
96 − (56 + 40k)(3/4)k

d(d− 1)(d+ 1)(d+ 2)(d+ 4) > 0.

(81)

The inequality about β can also be proved in this way, which is not shown here. □

According to this proposition, the difference between the one layer M̂k-interleaved Clifford circuits and l-layer M̂1-
interleaved Clifford circuits is sufficiently small when the number of the magic gates is the same, and the dimension
of the quantum system is large. As a consequence, one can use one layer M̂k-interleaved Clifford circuits to achieve
the same performance of l-layer M̂1-interleaved Clifford circuits considering a large quantum system.

More generally, we can replace M by any single phase gate, denoted by P where P is defined as

P =
(

1 0
0 eiϕ

)
. (82)

Then, we obtain the corresponding result

Proposition 16 Suppose U is ensemble of l-layer P̂k-interleaved Clifford circuits, which means U ∈ U satisfies U =
U1P̂kU2 . . . P̂kUl+1 where U1, . . . , Ul+1 is randomly chosen in the Clifford group and P̂k = I⊗n−k ⊗ P⊗k. ΩlP̂k

({|ψ⟩}i)
is defined in Eq. (32). Then

ΩlP̂k
({|ψi⟩}i) = κ

(
lP̂k, {|ψi⟩}i, P[4]

)
P[4] + κ

(
lP̂k, {|ψi⟩}i, P (n)

N,[4]

)
P

(n)
N,[4]

+ κ
(
lP̂k, {|ψi⟩}i, SP[2,2]

)
SP[2,2] + κ

(
lP̂k, {|ψi⟩}i, SP (n)

N,[2,2]

)
SP

(n)
N,[2,2]

+ κ
(
lP̂k, {|ψi⟩}i, SP[3,1]

)
SP[3,1],

(83)
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where SPλ = Pλ+(12)Pλ+(34)Pλ+(12)(34)Pλ and (12), (34), (12)(34) are the shorthand for the corresponding R(T ).
The coefficients κ are

κ
(
lP̂k, {|ψi⟩}i, P[4]

)
=
[
κ
(
Cl, {|ψi⟩}i, P[4]

)
− κ

(
Cl, {|ψi⟩}i, P (n)

N,[4]

) χ(k)
0

χ
(k)
1

(
1 −

(
1 − χ

(k)
1

)l)]
,

κ
(
lP̂k, {|ψi⟩}i, P (n)

N,[4]

)
= κ

(
Cl, {|ψi⟩}i, P (n)

N,[4]

)(
1 − χ

(k)
1

)l
,

κ
(
lP̂k, {|ψi⟩}i, SP[2,2]

)
=
[
κ
(
Cl, {|ψi⟩}i, SP[2,2]

)
− κ

(
Cl, {|ψi⟩}i, SP (n)

N,[2,2]

) η(k)
0

η
(k)
1

(
1 −

(
1 − η

(k)
1

)l)]
,

κ
(
lP̂k, {|ψi⟩}i, SP (n)

N,[2,2]

)
= κ

(
Cl, {|ψi⟩}i, SP (n)

N,[2,2]

)(
1 − η

(k)
1

)l
,

κ
(
lP̂k, {|ψi⟩}i, SP[3,1]

)
= κ

(
Cl, {|ψi⟩}i, SP[3,1]

)
,

(84)

χ
(k)
0 , χ(k)

1 , η(k)
0 , and η(k)

1 write

χ
(k)
0 = −

4
{
d2
[
1 −

(
7+cos 4ϕ

8

)k]
+ 3d

[
1 −

(
3+cos 4ϕ

4

)k]
+ 2

[
1 −

(
1+cos 4ϕ

2

)k]}
(d− 1)(d+ 1)(d+ 2)(d+ 4) ,

χ
(k)
1 =

d(d+ 3)
{
d2
[
1 −

(
7+cos 4ϕ

8

)k]
+ 3d

[
1 −

(
3+cos 4ϕ

4

)k]
+ 2

[
1 −

(
1+cos 4ϕ

2

)k]}
(d− 1)(d+ 1)(d+ 2)(d+ 4) ,

η
(k)
0 = −

4
{
d2
[
1 −

(
7+cos 4ϕ

8

)k]
− 4

[
1 −

(
1+cos 4ϕ

2

)k]}
(d2 − 1)(d2 − 4) ,

η
(k)
1 =

d2
{
d2
[
1 −

(
7+cos 4ϕ

8

)k]
− 4

[
1 −

(
1+cos 4ϕ

2

)k]}
(d2 − 1)(d2 − 4) .

(85)

Proof. When M is replaced by P , the projectors undergo the following transformation:
P̂⊗4
k PλP̂

†⊗4
k = Pλ,

P̂⊗4
k P

(n)
N,λP̂

†⊗4
k =

k∑
j=0

(
−1

2

)j (
k

j

)
P

(n−j)
N,λ ⊗

[
(1 − e−4iϕ)|0⟩⟨1| + (1 − e4iϕ)|1⟩⟨0|

]⊗j
.

(86)

We apply the same methodology of the Theorem 14 to define the term ∆′
λ writes

∆′
λ := −E U†⊗4


k∑
j=1

(
−1

2

)j (
k

j

)
P

(n−j)
N,λ ⊗

[
(1 − e−4iϕ)|0⟩⟨1| + (1 − e4iϕ)|1⟩⟨0|

]⊗jU⊗4. (87)

Subsequently, by deducing the trace relationships and solving the corresponding linear equations, we obtain expressions
for χ(k)

0 , χ(k)
1 , η(k)

0 , and η
(k)
1 . From these, the final result is straightforwardly derived. □

By virtue of this proposition, the effect of different phase gates can be discussed in detail. The phase gate with
ϕ = π/4 or 3π/4 is the most efficient considering all phase gates. It convinces us that the M̂ -interleaved Clifford
circuit is the best choice in this sense. When ϕ = 0, π/2, π, the P̂ -interleaved Clifford circuit is futile. In fact, these
phase gates are included in the Clifford group exactly. Furthermore, the coefficients also show a nonstabilizing power
of a non-Clifford gate. Compared to the definition in Ref. [17] which corresponds to the stabilizer 2-Rényi entropy,
the nonstabilizing power here is characterized by the operator Ω.

B.3 The relation between the fourth moment
In this subsection, we are devoted to showing the discrepancy between ΩU ({|ψi⟩}i) and the fourth moment for the

state ensemble {U†|ψi⟩}U∼U,i. Also, we find although these two notions are different, they have a close relationship
with each other.

Given that the unitary ensembles of interest are invariant under conjugation, we will rewrite the state ensemble as
{U |ψi⟩}U∼U,i in subsequent discussions. For the state ensemble {U |ψi⟩}U∼U,i, a well-known concept is the projective

302



t-design, which characterizes the closeness of the first t-th moments from the state ensemble to the Haar measure.
It has been widely used in the quantum information. Besides, the operator ΩU ({|ψi⟩}i) can also be viewed as the
intrinsic property of the state ensemble {U |ψi⟩}U∼U,i. Note that only part of ΩU ({|ψi⟩}i) is related to the fourth
moment, we suppose that the projective 4-design is not enough for ΩU ({|ψi⟩}i) to achieve ΩHaar. It means even if
{U |ψi⟩}U∼U,i forms a projective 4-design, ΩU ({|ψi⟩}i) does not equal to ΩHaar. In particular, considering the state
ensemble generated by the Clifford group, i.e., {U |ψi⟩}U∼Cl,i, we can analyze this intuition specifically.

As a result of the Proposition 12, ΩCl({|ψi⟩}i) coincides with ΩHaar iff G1 = 2d2(d+ 5)/(d+ 3) and G2 = 2d(d− 1).
To study the fourth moment of the state ensemble, one can refer to the magic of a single state. Adopting the idea in
Reference [17], we define the stabilizer 2-Rényi entropy for an orthogonal basis:

M2({|ψi⟩}i) = − log2
1
d

∑
i

tr
[
R(T4)|ψi⟩⟨ψi|⊗4] = − log2

∑
i

∑
P∈Pn

1
d2 ⟨ψi|P |ψi⟩4. (88)

It is straightforward to verify that the properties of the stabilizer 2-Rényi entropy also apply here: (i) M2({|ψi⟩}i) = 0
iff any |ψi⟩ in the ensemble is a stabilizer state, otherwise M2({|ψi⟩}i) > 0; (ii) M2({U |ψi⟩}i) = M2({|ψi⟩}i) for any
U ∈ Cl; (iii) M2({|ψi⟩}i ⊗ {|ϕj⟩}j) = M2({|ψi⟩}i) + M2({|ϕj⟩}j). Based on the conclusions in Ref. [36], the state
ensemble {U |ψi⟩}U∼Cl,i forms a projective 4-design iff M2({|ψi⟩}i) = log2(d + 3)/4. We claim that this condition is
independent of the constraints of ΩCl({|ψi⟩}i) in some sense. For example, we exhibit a simple two qubits example.
Assume that the orthogonal basis is separable, which means it can be written as

{|ψi⟩}i = {{cos θ1|0⟩ + sin θ1|1⟩,− sin θ1|0⟩ + cos θ1|1⟩} ⊗ {cos θ2|0⟩ + sin θ2|1⟩,− sin θ2|0⟩ + cos θ2|1⟩}}. (89)

In this case, we can calculate the stabilizer 2-Rényi entropy, G1 and G2 exactly:

M2({|ψi⟩}i) = − log2

[
1
4(1 + sin4 2θ1 + cos4 2θ1)(1 + sin4 2θ2 + cos4 2θ2)

]
,

G1({|ψi⟩}i) = 16(1 + sin4 2θ1 + cos4 2θ1)(1 + sin4 2θ2 + cos4 2θ2)
+ 8

[
1 + (sin2 2θ1 − cos2 2θ1)2] [1 + (sin2 2θ2 − cos2 2θ2)2] ,

G2({|ψi⟩}i) = 16(1 + sin4 2θ1 + cos4 2θ1)(1 + sin4 2θ2 + cos4 2θ2)
− 4

[
1 + (sin2 2θ1 − cos2 2θ1)2] [1 + (sin2 2θ2 − cos2 2θ2)2] .

(90)

The constraint of projective 4-design confines that M2({|ψi⟩}i) = log2 7/4, while the restriction on ΩHaar indicates
that M2({|ψi⟩}i) = log2 28/13. In this example, if the state ensemble {U |ψi⟩}U∼Cl,i constructs a projective 4-design,
then ΩCl({|ψi⟩}i) will never achieve the Haar random case, and vice versa. The contradiction implies that ΩU ({|ψi⟩}i)
is a brand-new structure compared to the fourth moment for such the state ensemble.

Although M2({|ψi⟩}i) is not suitable for analyzing ΩCl({|ψi⟩}i), it still gives an bound for G1 and G2, which is
shown in the following context. Moreover, we claim that when the Clifford orbits of {|ψi⟩}i form a projective 4-design,
ΩCl({|ψi⟩}i) will be closer to the Haar random case than the one with respect to the standard computational basis:

Theorem 17 Suppose that U is the Clifford group, {|ψi⟩}i is an orthogonal basis satisfying that M2({|ψi⟩}i) =
log2(d+ 3)/4. Then

∥ΩCl({|ψi⟩}i) − ΩHaar∥1 / ∥ΩCl({|bi⟩}i) − ΩHaar∥1 ≤ O(d−1). (91)

Proof. We initiate our proof by establishing bounds for G1 and G2 the stabilizer 2-Rényi entropy M2({|ψi⟩}i). First,
we have ∣∣∣∣∣∣

∑
i,j

∑
P∈Pn

|⟨ψi|P |ψj⟩|2⟨ψi|P |ψi⟩⟨ψj |P |ψj⟩

∣∣∣∣∣∣ ≤
∑
i,j

∑
P∈Pn

|⟨ψi|P |ψj⟩|2 |⟨ψi|P |ψi⟩⟨ψj |P |ψj⟩|

≤
∑
i,j

[ ∑
P∈Pn

|⟨ψi|P |ψj⟩|4
∑
P∈Pn

⟨ψi|P |ψi⟩2⟨ψj |P |ψj⟩2

]1/2

=
∑
i,j

∑
P∈Pn

⟨ψi|P |ψi⟩2⟨ψj |P |ψj⟩2.

(92)

where we use the Triangle inequality, Cauchy-Schwarz inequality, and Lemma 13. Furthermore, we can obtain that

∑
i,j

∑
P∈Pn

⟨ψi|P |ψi⟩2⟨ψj |P |ψj⟩2 ≤
∑
i,j

[ ∑
P∈Pn

⟨ψi|P |ψi⟩4
∑
P∈Pn

⟨ψj |P |ψj⟩4

]1/2

=

∑
i

( ∑
P∈Pn

⟨ψi|P |ψi⟩4

)1/2
2

≤ d
∑
i

∑
P∈Pn

⟨ψi|P |ψi⟩4 = d32−M2({|ψi⟩}i).

(93)
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From this, we obtain

−d32−M2({|ψi⟩}i) ≤ G1 ≤ 3d32−M2({|ψi⟩}i), 0 ≤ G2 ≤ 2d32−M2({|ψi⟩}i). (94)

If the state ensemble {U |ψi⟩}U∼U,i form a projective 4-design, then the stabilizer 2-Rényi entropy is log2(d+ 3)/4.
By substituting this into Eq. (57), we deduce that:

∥ΩCl({|ψi⟩}i) − ΩHaar∥1 ≤ max{4(d− 1)(7d+ 6)
3d(d+ 3) ,

4(9d2 + d+ 6)
3d(d+ 3) } = 4(9d2 + d+ 6)

3d(d+ 3) . (95)

This completes the proof by dividing the case for the standard computational basis. □

Remark that the established bounds of G1 and G2 in Eq. (94) are not tight when considering the standard computa-
tional basis. Generally, these bounds are more suitable for M2({|ψi⟩}i) of order log2 O(d) and less stringent for values
of the order order log2 O(1). Here we propose another set of bounds that are tighter for smaller values of M2({|ψi⟩}i).

We first find that for any i ̸= j

|⟨ψi|P |ψi⟩| ≤
√

1 − |⟨ψi|P |ψj⟩|2, (96)

where we use the completeness of the set {|ψi⟩}i. Therefore,∣∣∣∣∣∣
∑
i,j

∑
P∈Pn

|⟨ψi|P |ψj⟩|2⟨ψi|P |ψi⟩⟨ψj |P |ψj⟩

∣∣∣∣∣∣
≤
∑
i

∑
P∈Pn

⟨ψi|P |ψi⟩4 +
∑
i̸=j

∑
P∈Pn

|⟨ψi|P |ψj⟩|2
(
1 − |⟨ψi|P |ψj⟩|2

)
=d2(d− 1) + 2d22−M2({|ψi⟩}i) −

∑
i,j

∑
P∈Pn

⟨ψi|P |ψi⟩2⟨ψj |P |ψj⟩2.

(97)

where the last equality uses
∑
P∈Pn

|⟨ψi|P |ψj⟩|2 = d and Lemma 13. Furthermore,∑
i,j

∑
P∈Pn

⟨ψi|P |ψi⟩2⟨ψj |P |ψj⟩2 ≥
∑
i

∑
P∈Pn

⟨ψi|P |ψi⟩4 = d22−M2({|ψi⟩}i). (98)

Combining with Eq. (93), we obtain

−d22−M2({|ψi⟩}i) − 2d2(d− 1) ≤G1 ≤ 2d2(d− 1) + 3d22−M2({|ψi⟩}i)

−d2(d− 1) ≤G2 ≤ d2(d− 1) + 2d22−M2({|ψi⟩}i).
(99)

For an orthogonal basis composed of stabilizer states, this formulation offers a tighter upper bound. In conclusion, we
deduce that

G1 ∈
[
max{−d32−M2({|ψi⟩}i),−d22−M2({|ψi⟩}i) − 2d2(d− 1)} ,

min{3d32−M2({|ψi⟩}i), 2d2(d− 1) + 3d22−M2({|ψi⟩}i)}
]
,

G2 ∈
[
0,min{2d32−M2({|ψi⟩}i), d2(d− 1) + 2d22−M2({|ψi⟩}i)}

]
.

(100)

C Proofs of Propositions 1, 6 and Theorems 2, 5
Here, we first prove the propositions and theorems about the general bounds for the variance of the thrifty shadow.

For the convenience of the following discussion, we start by rewriting Propositions 11, 12, and Theorem 14 in the
form of the summation of R(T ) with T ∈ Σ4,4. By the definition, ΩU is invariant under the action of S × S and
the conjugation action, where S = {(e), (12), (34), (12)(34)}. So all stochastic Lagrangian subspaces T ∈ Σ4,4 can be
classified as five distinct sets, denoted by Gi respectively:

1. (e), (12), (34), (12)(34);

2. (13), (23), (14), (24), (123), (132), (124), (142), (134), (143), (234), (243), (1234), (1243),
(1342), (1432);

3. (13)(24), (14)(23), (1324), (1423);

4. T4, (12)T4;
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5. (13)T4, (23)T4, (123)T4, (132)T4.

Thus, we define
Ri =

∑
T∈Gi

R(T ). (101)

According to the symmetry,

ΩU ({|ψi⟩}i) =
5∑
i=1

ri (U , {|ψi⟩}i) Ri. (102)

In view of the unitary 4-design, the Clifford group, and the interleaved Clifford circuits, the coefficients ri have explicit
relationships with κ:

r1 (U , {|ψi⟩}i) = 1
24κ

(
U , {|ψi⟩}i, P[4]

)
+ 1

3κ
(
U , {|ψi⟩}i, SP[2,2]

)
+ 1

2κ
(
U , {|ψi⟩}i, SP[3,1]

)
,

r2 (U , {|ψi⟩}i) = 1
24κ

(
U , {|ψi⟩}i, P[4]

)
− 1

6κ
(
U , {|ψi⟩}i, SP[2,2]

)
,

r3 (U , {|ψi⟩}i) = 1
24κ

(
U , {|ψi⟩}i, P[4]

)
+ 1

3κ
(
U , {|ψi⟩}i, SP[2,2]

)
− 1

2κ
(
U , {|ψi⟩}i, SP[3,1]

)
,

r4 (U , {|ψi⟩}i) = 1
6dκ

(
U , {|ψi⟩}i, P (n)

N,[4]

)
+ 4

3dκ
(

U , {|ψi⟩}i, SP (n)
N,[2,2]

)
,

r5 (U , {|ψi⟩}i) = 1
6dκ

(
U , {|ψi⟩}i, P (n)

N,[4]

)
− 2

3dκ
(

U , {|ψi⟩}i, SP (n)
N,[2,2]

)
.

(103)

Then, we present alternative formulations of ΩU ({|ψi⟩}i) employing various unitary ensembles. Specifically for
applications in the thrifty shadow, we primarily assume the orthogonal basis as the standard computational basis.

Lemma 18 Suppose that U is a Haar random ensemble or a unitary 4-design, {|ψi⟩}i is any orthogonal basis and
ΩHaar is defined in Eq. (32). Then

ΩHaar = (d2 + 4d+ 2)
d(d+ 1)(d+ 2)(d+ 3)R1 − 1

d(d+ 1)(d+ 2)(d+ 3)R2 + 1
d(d+ 1)(d+ 3)R3. (104)

Lemma 19 Suppose that U is the Clifford group, {|bi⟩}i is the standard computational basis and ΩCl({|bi⟩}i) is defined
in Eq. (32). Then

ΩCl({|bi⟩}i) = 1
(d+ 1)(d+ 2)R1 + 1

(d+ 1)(d+ 2)R4. (105)

Lemma 20 Suppose U is ensemble of one layer M̂k-interleaved Clifford circuits, which means U ∈ U satisfies U =
U1M̂kU2 where U1, U2 is randomly chosen in the Clifford group and M̂k = I⊗n−k ⊗ M⊗k. {|bi⟩}i is the standard
computational basis and ΩM̂k

({|bi⟩}i) is defined in Eq. (32). Then

ΩM̂k
({|bi⟩}i) = (d4 + 4d3 − 6d2 − 16d+ 16) − d3(d+ 2)(3/4)k − (d− 2)d2(1/2)k

(d− 2)(d− 1)(d+ 1)(d+ 2)2(d+ 4) R1

−
d2 [d+ 1 − 2d(3/4)k + (d− 2)(1/2)k

]
(d− 2)(d− 1)(d+ 1)2(d+ 2)2(d+ 4) R2

+
d
[
(d+ 1)(d2 + 2d− 4) − (d+ 2)d2(3/4)k − (d− 2)d(1/2)k

]
(d− 2)(d− 1)(d+ 1)2(d+ 2)2(d+ 4) R3

+
(d2 + 3d− 2)d3(3/4)k +

(
d2 + d− 6

)
d2(1/2)k − 4(d+ 1)(d2 + 2d− 4)

(d− 2)(d− 1)(d+ 1)2(d+ 2)2(d+ 4) R4

+
d
[
−(d+ 2)d2(3/4)k +

(
d2 + d− 6

)
d(1/2)k + 4(d+ 1)

]
(d− 2)(d− 1)(d+ 1)2(d+ 2)2(d+ 4) R5.

(106)

Lemma 21 Suppose U is ensemble of l-layer M̂1-interleaved Clifford circuits, which means U ∈ U satisfies U =
U1M̂1U2 . . . M̂1Ul+1 where U1, . . . , Ul+1 is randomly chosen in the Clifford group and M̂1 = I⊗n−1 ⊗M .{|bi⟩}i is the
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standard computational basis and ΩlM̂1
({|bi⟩}i) is defined in Eq. (32). Then

ΩlM̂1
({|bi⟩}i) =

 d2 + 4d+ 2
d(d+ 1)(d+ 2)(d+ 3) −

(
1 − d(d+3)

4(d2−1)

)l
3(d+ 1)(d+ 2)(d+ 3) −

2
(

1 − d2

4(d2−1)

)l
3d(d+ 1)(d+ 2)

R1

+

− 1
d(d+ 1)(d+ 2)(d+ 3) −

(
1 − d(d+3)

4(d2−1)

)l
3(d+ 1)(d+ 2)(d+ 3) +

(
1 − d2

4(d2−1)

)l
3d(d+ 1)(d+ 2)

R2

+

 1
d(d+ 1)(d+ 3) −

(
1 − d(d+3)

4(d2−1)

)l
3(d+ 1)(d+ 2)(d+ 3) −

2
(

1 − d2

4(d2−1)

)l
3d(d+ 1)(d+ 2)

R3

+


(

1 − d(d+3)
4(d2−1)

)l
3(d+ 1)(d+ 2) +

2
(

1 − d2

4(d2−1)

)l
3(d+ 1)(d+ 2)

R4

+


(

1 − d(d+3)
4(d2−1)

)l
3(d+ 1)(d+ 2) −

(
1 − d2

4(d2−1)

)l
3(d+ 1)(d+ 2)

R5.

(107)

Using these lemmas, we can prove the propositions and theorems in Sections. 3 and 4. Proof. [Proof of Proposition 1]
By virtue of Ref. [10], for any state ρ, traceless operator O, and T ∈ Σ4,4, we have

|tr(R(T )O ⊗ ρ⊗O ⊗ ρ)| ≤ tr(O2). (108)

In addition,
tr(R1O ⊗ ρ⊗O ⊗ ρ) = tr(Oρ)2 ≤ tr(O2), (109)

where the last inequality is followed by the Cauchy-Schwarz inequality and ∥ρ∥2 ≤ 1. Therefore, due to Lemma 18,
we deduce that

V∗(O, ρ) = (d+ 1)2tr [ΩHaarO ⊗ ρ⊗O ⊗ ρ] − tr(Oρ)2

=
(

(d+ 1)(d2 + 4d+ 2)
d(d+ 2)(d+ 3) − 1

)
tr (R1O ⊗ ρ⊗O ⊗ ρ)

− d+ 1
d(d+ 2)(d+ 3)tr (R2O ⊗ ρ⊗O ⊗ ρ) + d+ 1

d(d+ 3)tr (R3O ⊗ ρ⊗O ⊗ ρ)

≤
(

(d+ 1)(d2 + 4d+ 2)
d(d+ 2)(d+ 3) − 1 + 16(d+ 1)

d(d+ 2)(d+ 3) + 4(d+ 1)
d(d+ 3)

)
tr(O2)

= 4d2 + 28d+ 26
d(d+ 2)(d+ 3)tr(O2) = O(d−1tr(O2)).

(110)

□

Proof. [Proof of Theorem 2] Using Lemma 19 and the same conclusion in the proof of Proposition 1,

V∗(O, ρ) = − 1
d+ 2tr (R1O ⊗ ρ⊗O ⊗ ρ) + d+ 1

d+ 2tr (R4O ⊗ ρ⊗O ⊗ ρ) ≤ 2(d+ 1)
d+ 2 tr(O2). (111)

□

Proof. [Proof of Theorem 5] By virtue of the analysis in the proof of Proposition 1, the expression for evolves as:

V∗(O, ρ) = (d+ 1)2tr
[
ΩM̂k

({|bi⟩}i)O ⊗ ρ⊗O ⊗ ρ
]

− tr(Oρ)2

=
[
(d+ 1)2r1

(
M̂k, {|bi⟩}i

)
− 1
]

tr(Oρ)2 +
5∑
i=2

(d+ 1)2ri

(
M̂k, {|bi⟩}i

)
tr [RiO ⊗ ρ⊗O ⊗ ρ]

<
[
16
∣∣∣r2

(
M̂k, {|bi⟩}i

)∣∣∣+ 4
∣∣∣r3

(
M̂k, {|bi⟩}i

)∣∣∣+ 2
∣∣∣r4

(
M̂k, {|bi⟩}i

)∣∣∣+ 4
∣∣∣r5

(
M̂k, {|bi⟩}i

)∣∣∣] (d+ 1)2tr(O2).

(112)
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In the last inequality, we use the fact that

(d+ 1)2r1

(
M̂k, {|bi⟩}i

)
− 1 = − (d+ 2)d3(3/4)k + (d− 2)d2(1/2)k − 2(3d+ 4)d+ 16

(d− 2)(d− 1)(d+ 2)2(d+ 4)

≤ − (d+ 2)d3(3/4)n + (d− 2)d2(1/2)n − 2(3d+ 4)d+ 16
(d− 2)(d− 1)(d+ 2)2(d+ 4) < 0.

(113)

Similarly, we analyze all the coefficients ri

r2

(
M̂k, {|bi⟩}i

)
= −

d2 [d+ 1 − 2d(3/4)k + (d− 2)(1/2)k
]

(d− 2)(d− 1)(d+ 1)2(d+ 2)2(d+ 4) ≤ 0. (114)

r3

(
M̂k, {|bi⟩}i

)
=
d
[
(d+ 1)(d2 + 2d− 4) − (d+ 2)d2(3/4)k − (d− 2)d(1/2)k

]
(d− 2)(d− 1)(d+ 1)2(d+ 2)2(d+ 4) ≥ 0. (115)

r4

(
M̂k, {|bi⟩}i

)
=

(d2 + 3d− 2)d3(3/4)k +
(
d2 + d− 6

)
d2(1/2)k − 4(d+ 1)(d2 + 2d− 4)

(d− 2)(d− 1)(d+ 1)2(d+ 2)2(d+ 4) ≥ 0. (116)

r5

(
M̂k, {|bi⟩}i

)
=
d
[
−(d+ 2)d2(3/4)k +

(
d2 + d− 6

)
d(1/2)k + 4(d+ 1)

]
(d− 2)(d− 1)(d+ 1)2(d+ 2)2(d+ 4) ≤ 0. (117)

Remark that ΩM̂k
({|bi⟩}i) is closer to ΩHaar than ΩCl({|bi⟩}i), which gives an intuition about how large these values

are. Therefore,

V∗(O, ρ) <
2
(
d2 + 3d− 18

)
d3(3/4)k − 2

(
d2 − 5d+ 6

)
d2(1/2)k + 4

(
d4 + 5d3 − 8d2 − 4d+ 8

)
(d− 2)(d− 1)(d+ 2)2(d+ 4) tr(O2). (118)

Moreover, we can verify that

2
(
d2 + 3d− 18

)
d3(3/4)k − 2

(
d2 − 5d+ 6

)
d2(1/2)k + 4

(
d4 + 5d3 − 8d2 − 4d+ 8

)
(d− 2)(d− 1)(d+ 2)2(d+ 4) − 2

(
3
4

)k
− 4
d

=
2
(
−d5 + 5d4 − 6d3) 21−k + 4

( 3
4
)k (−d5 − 8d4 + 14d3 + 4d2 − 16d

)
+ 8

(
−3d3 + 12d2 + 8d− 16

)
(d− 2)(d− 1)d(d+ 2)2(d+ 4)

≤
2
(
−d5 + 5d4 − 6d3) 21−n + 4

( 3
4
)n (−d5 − 8d4 + 14d3 + 4d2 − 16d

)
+ 8

(
−3d3 + 12d2 + 8d− 16

)
(d− 2)(d− 1)d(d+ 2)2(d+ 4)

≤ 0.

(119)

where the first inequality follows from −d5 + 5d4 − 6d3 ≤ 0, −d5 − 8d4 + 14d3 + 4d2 − 16d < 0, and k ≤ n. Since
the numerator in the last step is monotone decreasing and the value is zero when n = 1, we deduce that the second
inequality, thus concluding the proof □

Proof. [Proof of Proposition 6] Following the similar approach of the proof of Proposition 5, we find that

V∗(O, ρ) <
12d2 + 84d+ 78 +

(
−2d3 + 3d2 + 5d

)
ak +

(
8d3 + 38d2 + 48d+ 18

)
bk

3d(d+ 2)(d+ 3) tr(O2). (120)

Since the derivation is direct, we will not show it in detail. Here a = 1 − d(d+ 3)/4(d2 − 1) and b = 1 − d2/4(d2 − 1)
for the sake of simplicity. Due to the inequalities a, b < 3/4, we find that

12d2 + 84d+ 78 +
(
−2d3 + 3d2 + 5d

)
ak +

(
8d3 + 38d2 + 48d+ 18

)
bk

3d(d+ 2)(d+ 3) − 2
(

3
4

)k
− 8
d

=
(
11d2 + 17d+ 18

)
(3/4)k

3d(d+ 2)(d+ 3) + −12d2 − 36d− 66
3d(d+ 2)(d+ 3) ≤ − 5d2 + 31d+ 70

4d(d+ 2)(d+ 3) < 0.
(121)

Thereby, we finish the proof of the proposition. □
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D Proofs of Theorems 3, 4, 7, and 8
In this section, we prove the theorems and propositions corresponding to the fidelity estimation. Proof. [Proof of

Theorem 3] By the definition of variance in the original shadow estimation [1], one obtains that

V (O, ρ) = d+ 1
d+ 2

[
tr(O2) + 2tr(ρO2)

]
− tr(Oρ)2 = 2(d− 1)

d+ 2 . (122)

We now proceed to compute V∗(O, ρ). Based on the definition of V∗(O, ρ) and Lemma 18, we express V∗(O, ρ) as

V∗(O, ρ) = (d+ 1)(d2 + 4d+ 2)
d(d+ 2)(d+ 3) tr (R1O ⊗ ρ⊗O ⊗ ρ) − d+ 1

d(d+ 2)(d+ 3)tr (R2O ⊗ ρ⊗O ⊗ ρ)

+ d+ 1
d(d+ 3)tr (R3O ⊗ ρ⊗O ⊗ ρ) − tr(Oρ)2.

(123)

For each term, it is easy to calculate that

tr (R1O ⊗ ρ⊗O ⊗ ρ) = tr(Oρ)2 = (d− 1)2

d2 ,

tr (R2O ⊗ ρ⊗O ⊗ ρ) = tr(O2) + 4tr(O2ρ) + 2tr(O2ρ2) + 2tr(OρOρ) = (d− 1)(9d− 8)
d2 ,

tr (R3O ⊗ ρ⊗O ⊗ ρ) = tr(O2)tr(ρ2) + tr(Oρ)2 + 2tr(O2ρ2) = (d− 1)(4d− 3)
d2 .

(124)

Upon substituting these calculations into Eq. (123) and applying the definition of VR(O, ρ), we obtain the desired
result. □

Proof. [Proof of Theorem 4] Similar to the proof of Proposition 3, we need to calculate the V∗(O, ρ). The expression
for V∗(O, ρ) is given by

V∗(O, ρ) = d+ 1
d+ 2tr (R1O ⊗ ρ⊗O ⊗ ρ) + d+ 1

d+ 2tr (R4O ⊗ ρ⊗O ⊗ ρ) − tr(Oρ)2

= d+ 1
d+ 2tr (R4O ⊗ ρ⊗O ⊗ ρ) − 1

d+ 2tr(Oρ)2.

(125)

To further refine this calculation, we substitute the specific choice of O and ρ, yielding

O ⊗ ρ⊗O ⊗ ρ = |ϕ⟩⟨ϕ|⊗4 − 1
d
I ⊗ |ϕ⟩⟨ϕ|⊗3 − 1

d
|ϕ⟩⟨ϕ|⊗2 ⊗ I ⊗ |ϕ⟩⟨ϕ| + 1

d2 I ⊗ |ϕ⟩⟨ϕ| ⊗ I ⊗ |ϕ⟩⟨ϕ|. (126)

For the first part,
tr(R4|ϕ⟩⟨ϕ|⊗4) = 21−M2(|ϕ⟩), (127)

where we use the fact tr
(
R(T )|ϕ⟩⟨ϕ|⊗4) = 2−M2(|ϕ⟩) for any T ∈ S3T4.

For the second part,

tr(R4I ⊗ |ϕ⟩⟨ϕ|⊗3) = tr(R(T4)I ⊗ |ϕ⟩⟨ϕ|⊗3) + tr((12)R (T4) I ⊗ |ϕ⟩⟨ϕ|⊗3)

= 1
d

∑
P∈Pn

[
tr(P )tr(P |ϕ⟩⟨ϕ|)3 + tr(|ϕ⟩⟨ϕ|)tr(P |ϕ⟩⟨ϕ|)2]

= 1 + 1
d

∑
P∈Pn

tr(P |ϕ⟩⟨ϕ|)2 = 1 + tr(|ϕ⟩⟨ϕ|2) = 2.

(128)

In the third equality, we use the fact that tr(P ) = dδP,I . The last equality is followed by the fact that {1/
√
dP}P∈Pn

is a set of orthogonal bases.
For the remaining terms,

tr(R4|ϕ⟩⟨ϕ|⊗2 ⊗ I ⊗ |ϕ⟩⟨ϕ|) = 1
d

∑
P∈Pn

[
tr(P )tr(P |ϕ⟩⟨ϕ|)3 + tr

(
(P |ϕ⟩⟨ϕ|)2) tr(P )tr(P |ϕ⟩⟨ϕ|)

]
= 2, (129)

tr(R4I ⊗ |ϕ⟩⟨ϕ| ⊗ I ⊗ |ϕ⟩⟨ϕ|) = 1
d

∑
P∈Pn

[
tr(P )2tr(P |ϕ⟩⟨ϕ|)2 + tr(|ϕ⟩⟨ϕ|)tr(P )tr(P |ϕ⟩⟨ϕ|)

]
= d+ 1, (130)
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where we use the fact that tr(P ) = dδP,I . Thus, substituting these values into the equation for V∗(O, ρ) results in

V∗(O, ρ) = d+ 1
d+ 2

21−M2(|ϕ⟩)d2 − 3d+ 1
d2 − (d− 1)2

d2(d+ 2) = 2(d+ 1)2−M2(|ϕ⟩) − 4
d+ 2 . (131)

This completes the proof, as substituted into Eq. (2). □

Then, we consider the fidelity estimation of a state with noise.

Proposition 22 Suppose ρ = (1−p)|ϕ⟩⟨ϕ|+pI/d is any n-qubit state with noises and the observable O = |ϕ⟩⟨ϕ|−I/d,
then the variance of the thrifty shadow using the Haar random ensemble or a unitary 4-design reads

V (O, ρ) = 1
R

{(
d− 1
d

)2 [
−p2 + 4d

(d− 1)(d+ 2)p+ d2 − 3d− 2
(d− 1)(d+ 2)

]
+ d2 − 1

d2

}

+ R− 1
R

{
4
(
d3 − d2 + d+ 1

)
(1 − p)2

d2(d+ 2)(d+ 3) − 8d+ 8
d4(d+ 2)(d+ 3)

}
,

(132)

Proposition 23 Suppose ρ = (1−p)|ϕ⟩⟨ϕ|+pI/d is any n-qubit state with noises and the observable O = |ϕ⟩⟨ϕ|−I/d,
then the variance of the thrifty shadow using the Clifford group reads

V (O, ρ) = 1
R

{(
d− 1
d

)2 [
−p2 + 4d

(d− 1)(d+ 2)p+ d2 − 3d− 2
(d− 1)(d+ 2)

]
+ d2 − 1

d2

}

+ R− 1
R

{
d+ 1

(d+ 2)d

[
2d(1 − p)22−M2|ϕ⟩ − p2 + 6p− 3

]
− 1
d+ 2

(
d− 1
d

)2
(1 − p)2

}
,

(133)

where M2(|ϕ⟩) is the stabilizer 2-Rényi entropy of state |ϕ⟩.

Proof. [Proof of Propositions 22 and 23] Here we prove the above two propositions together. We first calculate the
variance of the classical shadow

V (O, ρ) =
(
d− 1
d

)2 [
−p2 + 4d

(d− 1)(d+ 2)p+ d2 − 3d− 2
(d− 1)(d+ 2)

]
+ d2 − 1

d2 . (134)

Then, by virtue of Eq. (125), we calculate the following four terms:

tr (R1O ⊗ ρ⊗O ⊗ ρ) =
[
d− 1
d

(1 − p)
]2
,

tr (R2O ⊗ ρ⊗O ⊗ ρ) = 4((d− 3)(d− 2)d− 3)p2

d3 + 4(d− 2)(d− 1)(d+ 2)p
d3 + d3 + 3d2 + 4

d3 ,

tr (R2O ⊗ ρ⊗O ⊗ ρ) = 2(d− 1)(2(d− 2)d+ 3)p2

d3 + 4(d− 2)(d− 1)p
d3 + (d− 1)(d+ 2)

d3 ,

tr (R4O ⊗ ρ⊗O ⊗ ρ) = 2(d+ 1)
d+ 2 (1 − p)22−M2(|ϕ⟩) + d+ 1

d(d+ 2)(−p2 + 6p− 3).

(135)

By combining these results, we can get the desired conclusions. □

Proof. [Proof of Theorem 7] In the proof of Propositions 3 and 7, we have already calculated that

tr (R1O ⊗ ρ⊗O ⊗ ρ) = (d− 1)2

d2 ,

tr (R2O ⊗ ρ⊗O ⊗ ρ) = (d− 1)(9d− 8)
d2 ,

tr (R3O ⊗ ρ⊗O ⊗ ρ) = (d− 1)(4d− 3)
d2 ,

tr (R4O ⊗ ρ⊗O ⊗ ρ) = (d− 1)(2d− 1)
d2 .

(136)
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For R5, we calculate each R(T ) for T ∈ G5 separately.

tr ((13)R(T4)O ⊗ ρ⊗O ⊗ ρ) = d− 1
d

,

tr ((23)R(T4)O ⊗ ρ⊗O ⊗ ρ) =
(
d− 1
d

)2
,

tr ((123)R(T4)O ⊗ ρ⊗O ⊗ ρ) =
(
d− 1
d

)2
,

tr ((132)R(T4)O ⊗ ρ⊗O ⊗ ρ) =
(
d− 1
d

)2
,

(137)

which gives the result that
tr (R5O ⊗ ρ⊗O ⊗ ρ) = (d− 1)(4d− 3)

d2 . (138)

Then, due to Lemma 20 and the definition of VR(O, ρ), one can derive the conclusion:

V (O, ρ) = 1
R

2(d− 1)
d+ 2 + R− 1

R

2
(
d3(3/4)k + 3d2(1/2)k + 2d2 − 8

)
(d+ 2)2(d+ 4) . (139)

□

The proof of Theorem 8 is a clear extension of Lemma 21, whose detail is not displayed. Here we give the exact
form of the variance in Theorem 8:

V (O, ρ) = 1
R

2(d− 1)
d+ 2 + R− 1

R

[
4(d− 1)

(d+ 2)(d+ 3) + 2(d− 1)(d+ 1)
(d+ 2)(d+ 3)

(
1 − d(d+ 3)

4(d2 − 1)

)l
−2(d− 1)(d+ 1)(9d− 8)

3d3(d+ 2)

(
1 − d2

4(d2 − 1)

)l] (140)

E Stabilizer 2-Rényi entropies of various state families
E.1 W states
W states are a special case of Dicke states, expressed as

|Wn⟩ = 1√
n

(|10 . . . 0⟩ + |01 . . . 0⟩ + · · · + |00 . . . 1⟩). (141)

Thus, |Wn⟩⊗4 can be written as

|Wn⟩⊗4 = 1
n2

∑
a,b,c,d∈S⊂{0,1}n

|a1b1c1d1⟩ ⊗ |a2b2c2d2⟩ ⊗ · · · ⊗ |anbncndn⟩. (142)

By the definition of W states, for each vector v ∈ S, only one element equals 1.
According to Eq. (30) and the discussion in Appendix A, we can compute the stabilizer 2-Rényi entropy as

M2(|Wn⟩) = − log2 tr
(
R(T4)|Wn⟩⟨Wn|⊗4)

= − log2
1
n4

∑
a,a′,...,d′∈S

⟨a1b1c1d1|r(T4)|a′
1b

′
1c

′
1d

′
1⟩ . . . ⟨anbncndn|r(T4)|a′

nb
′
nc

′
nd

′
n⟩

= − log2
1
n4

[
n2 + n(n− 1)

2 × 2 × 2 × 3
]

= log2
n3

7n− 6 .

(143)

E.2 GHZ states
For GHZ states with a phase factor, it is equivalent to computing the stabilizer 2-Rényi entropy of a single qubit

state:
|ψθ⟩ = 1

2
(
|0⟩ + eiθ|1⟩

)
. (144)

The stabilizer 2-Rényi entropy can be calculated directly

M2(|GHZθ⟩) = M2(|ψθ⟩) = − log2
cos 4θ + 7

8 . (145)
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E.3 |Sn,k(θ)⟩
Given that the additivity of the stabilizer α-Rényi entropy and Eq. (144), we can derive the stabilizer 2-Rényi

entropy of |Sn,k(θ)⟩ easily

M2(|Sn,k(θ)⟩) = kM2(|ψθ⟩) = −k log2
cos 4θ + 7

8 . (146)
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Abstract. The hierarchical equations of motion (HEOM) approach can describe the reduced dynamics
of a system simultaneously coupled to multiple bosonic and fermionic environments. The complexity
of exactly describing the system-environment interaction with the HEOM method usually results in time-
consuming calculations and a large memory cost. Here, we introduce an open-source software package called
HierarchicalEOM.jl: a Julia framework integrating the HEOM approach. HierarchicalEOM.jl features a
collection of methods to compute bosonic and fermionic spectra, stationary states, and the full dynamics
in the extended space of all auxiliary density operators (ADOs). The required handling of the ADOs
multi-indexes is achieved through a user-friendly interface.

Keywords: Julia, open quantum system, hierarchical equations of motion, non-Markovianity

1 Introduction

The time evolution of a closed quantum system can
offer important insights about its nature and properties.
However, the dynamics are inevitable affected by interac-
tions with external environments [1, 2], which can involve
the exchange of energy or particles, and the suppression
of quantum coherence. Due to the effective continuum
of degrees of freedom present in these external baths [3,
4], modeling the dynamics of an open quantum system
can be challenging. This is especially the case when
perturbative approaches [5] are no longer valid due to
non-Markovian effects emerging in the presence of strong
interaction with the bath [6, 7]. In this regime, stan-
dard Markovian master equations are no longer applica-
ble, and non-perturbative techniques are required [8–12].
In particular, here we consider the hierarchical equa-

tions of motion (HEOM) approach, which offers a non-
perturbative [13] characterization of all the environmen-
tal effects on the system. This is achieved by using
a hierarchy of auxiliary density operators (ADOs) to
model system-bath correlations and entanglement [14].
This makes the HEOM suitable for studying complex
systems strongly coupled to either bosonic [15–19] or
fermionic [20–22] environments. Additionally, quantum
systems interacting simultaneously with both bosonic
and fermionic environments can be found in the study
of electron transport through both natural and artificial
molecules [23, 24]. Naturally, such an increase in the
complexity of the environment leads to an increase in

∗nwlambert@gmail.com
†cirio.mauro@gmail.com
‡yuehnan@mail.ncku.edu.tw

computational resources which, in the case of the HEOM
method, corresponds to an increase in the size of the
HEOM Liouvillian superoperator (HEOMLS) matrix. To
deal with this issue, it is beneficial to explore the nu-
merical efficiency of programming languages designed to
optimize different computational resources.
HierarchicalEOM.jl is developed following the design

philosophy of Julia programming language [25, 26]: one
can have machine performance without sacrificing human
convenience [25]. While integrating many of the features
presented in other open-source HEOM packages [27–31],
HierarchicalEOM.jl also includes other functionalities,
such as the estimation of importance values for all ADOs,
the calculation of spectra for both bosonic and fermionic
systems, the construction of HEOMLS matrices for even-
or odd-parity auxiliary density operators, and a user-
friendly interface (which interrogates the ADOs multi-
indexes) for gaining access to bath properties. By wrap-
ping some functions from other Julia packages [32–34],
we could further optimize the computations of the dy-
namics and stationary states for all ADOs.

2 Total Hamiltonian

Throughout this work, we consider an open quantum
system (s) interacting with fermionic (f) and bosonic (b)
environments described by the following total (T) Hamil-
tonian (ℏ is set to unity throughout this work):

HT = Hs(t) +Hf +Hb +Hsf +Hsb, (1)

where Hs(t) is the (possibly time-dependent) system
Hamiltonian containing boson and fermion particles.
Here, we allow the fermionic environment to be composed
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by multiple baths of non-interacting fermionic degrees of
freedom described by the Hamiltonian

Hf =
∑
α

∑
k

ϵα,kc
†
α,kcα,k, (2)

where cα,k (c†α,k) annihilates (creates) a fermion (f) in
the state k (with energy ϵα,k) of the αth fermionic bath.
Analogously,

Hb =
∑
β

∑
k

ωβ,kb
†
β,kbβ,k, (3)

describes a generic bosonic environment which can ac-
commodate multiple non-interacting bosonic baths in
which bβ,k (b†β,k) is the bosonic annihilation (creation) op-
erator associated to the kth mode (with frequency ωβ,k)
in the βth bosonic bath. The interaction Hamiltonian be-
tween a fermionic system and the fermionic environments
can be written as

Hsf =
∑
α,k

(
gα,kc

†
α,kds + g∗α,kd

†
scα,k

)
, (4)

in terms of the coupling strengths gα,k. Analogously, the
interaction between a bosonic or fermionic system and
the exterior bosonic environments can be modeled by

Hsb = Vs

∑
β,k

gβ,k(bβ,k + b†β,k), (5)

in terms of the coupling strengths gβ,k. Here, ds and
Vs refer to the coupling operators acting on the system’s
degrees of freedom. In particular, ds is a odd-parity op-
erator destroying a fermion in the system, while Vs is
in general a Hermitian operator which can act on both
fermionic and bosonic systems. When Vs is acting on the
fermionic system, it must have even-parity to be com-
patible with charge conservation. Furthermore, one can
easily generalize to the case where the system contains
multiple bosonic and fermionic quantum numbers (such
as frequency, energy, or spin) interacting with either in-
dividual or shared environment(s).
We assume the following three conditions in HEOM ap-

proach: (1) The system and the environments (baths) are
initialized in a separable state. (2) Each of the fermionic
(bosonic) baths is initially in thermal equilibrium char-
acterized by a Fermi-Dirac (Bose-Einstein) distribution.
(3) The bath operator within the system-bath interac-
tion Hamiltonian should be linear in the bath annihi-
lation and creation operators, as shown in Eq. (4) and
Eq. (5). In this case, the effects of fermionic and bosonic
environments [initially in thermal equilibrium (eq) and
linearly coupled to the system] are completely encoded
in the two-time correlation functions C(t1, t2) [35]. In
the fermionic case, they depend on the spectral density
Jα(ω) = 2π

∑
k |gα,k|2δ(ω−ωk) and the Fermi–Dirac dis-

tribution neq
α (ω) = {exp[(ω − µα)/kBTα] + 1}−1 as

Cν
α(t1, t2) =

1

2π

∫ ∞

−∞
dωJα(ω)

[1− ν

2
+ νneq

α (ω)
]
eνiω(t1−t2).

(6)

Analogously, in the bosonic case, they depend on the
spectral density Jβ(ω) = 2π

∑
k g

2
β,kδ(ω − ωk) and the

Bose–Einstein distribution neq
β (ω) = {exp[ω/kBTβ ] −

1}−1 as

Cβ(t1, t2) =
1

2π

∫ ∞

0

dωJβ(ω)
[
neq
β (ω)eiω(t1−t2)

+ (neq
β (ω) + 1)e−iω(t1−t2)

]
.

(7)

Here, kB is the Boltzmann constant and Tα (Tβ) rep-
resents the absolute temperature of the α-fermionic (β-
bosonic) bath. A non-zero chemical potential (µα ̸= 0)
in the α-fermionic bath can account for non-equilibrium
physics.

In Ref. [35], by expressing the bath correlation func-
tions in Eqs. (6-7) as a sum of exponential terms (expo-
nents), one can define an iterative procedure which leads
to the celebrated hierarchical equations of motion. It can
also be expressed as the HEOM Liouvillian superoperator
(HEOMLS) matrix which characterizes the dynamics in
the full auxiliary density operators (ADOs) space.

3 Package architecture

The package HierarchicalEOM.jl is designed to inte-
grate the efficiency of Julia with the functionalities pro-
vided by other existing HEOM packages [27–31]. This
leads to an intuitive interface to construct arbitrary
Hamiltonians and initial states. We now introduce the
ecosystem of the package as summarized in Fig. 1.

Following Fig. 1(a) and Fig. 1(b), users should spec-
ify the system Hamiltonian Hs(t), system coupling op-
erators Vs (ds) describing the interaction with bosonic
(fermionic) baths, and the bath correlation functions.
For the bath correlation functions in Eq. (6) and Eq. (7),
users can specify them by an exponential series (list of
exponents). HierarchicalEOM.jl provides built-in func-
tions to construct these series from physical parame-
ters (e.g., coupling strength, temperature, etc.). Alter-
natively, HierarchicalEOM.jl offers the possibility to
manually define the correlation functions (simply supply-
ing the list of exponents). Additional spectral densities
could be incorporated into the built-in functions in fu-
ture releases. We explicitly note that the package allows
for any combination of fermionic and bosonic baths.

After the definition of the bath, users can further con-
struct the HEOMLS matrix M̂ together with the system
Hamiltonian Hs(t), see Fig. 1(c).

As shown in Fig. 1(d), with this information it is pos-
sible to proceed with solving for the dynamics of all the
ADOs on either CPUs or GPUs. HierarchicalEOM.jl

provides two distinct methods to compute the dynamics.
The first one relies on DifferentialEquations.jl [32]
which provides a set of low-level solvers for ordi-
nary differential equations. The second method di-
rectly builds the propagator when the system Hamil-
tonian is time-independent: Ĝ(t) = exp(M̂t) us-
ing FastExpm.jl [34] which is optimized for the ex-
ponentiation of either large-dense or sparse matrices.
In addition, HierarchicalEOM.jl can also directly
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Figure 1: (a) Users should specify the system Hamiltonian Hs(t), coupling operators (Vs or ds), and the bath cor-
relation function C(t). For the exponent {ηk, γk}, users can either specify the physical parameters characterizing the
spectral density of the bath by built-in functions, or directly providing a list of exponents. (b) Construction of the
bath-object which includes the system coupling operator and a list of exponents characterizing the bath correlation
function. (c) Construction of the HEOM Liouvillian superoperator (HEOMLS) matrix M̂ which defines the hierar-
chical equations of motion from the system Hamiltonian and the bath-objects. (d) Computation of the dynamics and
stationary states for all auxiliary density operators using M̂. (e) The hierarchy dictionary translates the index of each
ADO into the corresponding multi-index ensembles together with the exponents of the bath, and vice-versa. (f) The
hierarchy dictionary allows a high-level interpretation of the ADOs to compute some physical properties. (g) Logo of
HierarchicalEOM.jl package.

solve for the stationary states of all the ADOs using
LinearSolve.jl [33], which offers a unified interface to
solve linear equations in Julia.
To allow further analysis of specific physical proper-

ties, HierarchicalEOM.jl provides a hierarchy dictio-
nary, as depicted in Fig. 1(e) and Fig. 1(f). This dic-
tionary translates the index of each ADO in terms of
the corresponding exponential terms of the bath, and
vice-versa. This feature is designed to allow a high-
level description of the ADOs, which can be useful in
the analysis of electronic currents [20, 22], heat cur-
rents [18, 36, 37], and higher-order moments of heat cur-
rents [38]. Moreover, HierarchicalEOM.jl can calculate
the spectrum for both bosonic and fermionic systems us-
ing LinearSolve.jl.

4 Conclusion

In conclusion, the HierarchicalEOM.jl software pack-
age provides a user-friendly and efficient tool for simu-
lating complex open quantum systems, including non-
Markovian effects due to non-perturbative interaction
with one, or multiple, environments. It takes advantage
of other available packages [27–31] for the following fea-
tures:

• It supports different choices of spectral densities
and spectral decomposition methods to accurately
compute bath correlation functions.

• It supports time-dependent system Hamiltonians.

• It constructs the HEOMLS matrices for different
types (bosonic, fermionic, or hybrid) of baths.

• The HEOMLS matrices are constructed using
multi-threading.

• It provides different methods based
on DifferentialEquations.jl [32],
LinearSolve.jl [33], and FastExpm.jl [34]
to compute the dynamics and stationary state of
all ADOs with either CPUs or GPUs.

As a result, we believe that HierarchicalEOM.jl will
be a valuable tool for researchers working in different
fields such as quantum biology, quantum optics, quantum
thermodynamics, quantum information, quantum trans-
port, and condensed matter physics.

5 Code Availability

The HierarchicalEOM.jl package is available through
a public GitHub repo (https://github.com/NCKU-
QFort/HierarchicalEOM.jl). It is also registered in
the Julia package registry and can be installed
by the Julia package manager. Moreover, de-
tailed information (documentation and other examples)
is available through a public website (https://ncku-
qfort.github.io/HierarchicalEOM.jl).
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22R. Härtle, G. Cohen, D. R. Reichman, and A. J. Mil-
lis, “Decoherence and lead-induced interdot coupling in
nonequilibrium electron transport through interacting
quantum dots: a hierarchical quantum master equation
approach”, Phys. Rev. B 88, 235426 (2013).
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Abstract. Quantum steering, an essential concept in quantum information theory, has been shown to
enhance quantum metrology [Nat. Commun. 12, 2410 (2021)]. In this work, we extend steering-enhanced
metrology from single noiseless phase shifts to superpositions of noisy phase shifts. We examine a control
system guiding a target through superpositions of dephased or depolarized phase shift channels. Our
findings indicate that such superpositions can mitigate noise and enhance metrology. Proof-of-principle
experiments conducted on the IBM Quantum Experience for dephased phase shifts demonstrate notable
improvements, underscoring the practical benefits of this approach.
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1 Motivation

Recently, Ref. [1] showed that Reid’s criterion [2] can
be extended to the domain of quantum metrology, where
Bob aims to estimate an unknown phase shift θ gener-
ated by a Hamiltonian H. An important result is that
there exists a complementary relation between the vari-
ance of H and the precision of the θ estimation quantified
by the quantum Fisher information (QFI). This comple-
mentary relation can be regarded as not only a metro-
logical steering inequality (MSI), but also a generalized
local uncertainty relation.
The metrological steering task has so far only been in-

vestigated under a noiseless scenario, where the phase
shift is generated by a perfect unitary evolution. How-
ever, in a real experimental setup, the effects of noise are
ubiquitous, such that the phase shifts could deviate from
a perfect unitary and, thus, neutralize quantum advan-
tages in metrology [3]. A typical source of noise comes
from the inevitable interaction between a given system
and its uncontrollable environments. A question arises
on how to mitigate the effects of these undesired interac-
tions [4, 5].
Recently, a novel approach, termed superposition of

quantum channels, has been used to enhance quantum
capacity in communication tasks [6–8]. In this frame-
work, multiple quantum channels can be used. Further-
more, an additional quantum control was introduced to
determine which channel for the target system to pass
through. Hence, when the control system is prepared in
a superposition state, the target system can go through

∗yuehnan@mail.ncku.edu.tw

these channels in a quantum-superposed manner. One
can take advantage of the quantum interference between
these channels to alleviate the effects of noise [9, 10].

In this work, we consider the cases where the phase
shifts are distorted by either pure dephasing noise or de-
polarizing noise. In this sense, we denote the correspond-
ing noise-distorted phase shifts as dephased and depolar-
ized phase shifts, respectively. Intuitively, the enhance-
ment of the estimation precision decreases when the noise
strength increases. Furthermore, we investigate the in-
fluences of a superposition of both dephased and depo-
larized phase shifts by comparing different (coherent and
incoherent) states of the control system. We show that
the control system in a coherent state can mitigate the
noise and enhance the violation of the MSI. Finally, we
experimentally implemented a metrological steering task
with a superposition of dephased phase shifts on the IBM
Quantum (IBM Q) Experience. Our experimental results
clearly show that the enhancement of the MSI violation
is due to the initial coherence of the control system. We
also provide noise simulations that take into account the
inherent errors of the IBM Q device.

2 A Metrological steering task

We start by formulating the noiseless metrological
task, where the phase shift θ is generated by a unitary
channel exp (−iHθ), with a “generating” HamiltonianH.
We consider a bipartite state ρAB shared by Alice and
Bob. In each round of the experiment, Alice performs
a measurement labeled by A. The probability to obtain
the result a is denoted as p(a|A); and the conditional
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Figure 1: Illustration of steering-enhanced quantum
metrology with a superposition of quantum channels.

reduced state of Bob’s subsystem is ρB,a|A. After gen-
erating a local phase shift θ, Bob’s conditional reduced
state becomes ρB,a|A(θ) = exp(−iHθ)ρB,a|A exp(iHθ).
As reported in Ref. [1], when an assemblage is unsteer-

able, the MSI can be derived as FQ,opt ≤ 4∆Hopt. Here,
we define the violation V of the MSI, i.e.,

V := max (FQ,opt − 4∆Hopt, 0) . (1)

Therefore, V > 0 implies that the assemblage is steerable.

3 A Superposition of noisy phase shifts

We now consider a scenario for superposing two iden-
tical noisy phase shifts, as shown in Fig. 1. A control
system C to determine which environment (i.e., E1 or
E2,) is introduced, affecting the system B. The total sys-
tem is initially prepared in ρtot = |j⟩⟨j|C⊗ρ⊗ EE1

⊗ EE2

for j being either 0 or 1. In this case, the total evolution
can be described by

Utot = |0⟩ ⟨0|C ⊗ UBE1(θ) + |1⟩ ⟨1|C ⊗ UBE2(θ). (2)

In other words, when C is prepared in the state |j⟩, B in-
teracts with the corresponding environment Ej . Thus,
if C is prepared in an incoherent mixed state, i.e.,
(|0⟩ ⟨0|C + |1⟩ ⟨1|C)/2, the system B has equal probabil-
ities to interact with either E0 or E1. For simplicity,
we consider that UBE1

(θ) and UBE2
(θ) are isomorphic to

each other (so EE1 = EE2); that is, two phase shifts are
implemented in the same way.
On the other hand, when the control C is prepared in

|+⟩C = (|0⟩C + |1⟩C)/
√
2, we obtain

ρCB(θ) =
1C

2
⊗Λθ(ρ)+

(|0⟩ ⟨1|C + |1⟩ ⟨0|C)
2

⊗Tρ T †, (3)

where T = TrE [UBE (1⊗ E)] characterizes the quantum
interference effect between these two channels [7]. The in-
terference effect occurs simultaneously with the non-zero
off-diagonal terms in C. In this case, the target passes
through a “superposition of noisy phase shift channels”.

4 Implementation on the IBM Cairo

To further decrease the circuit depth, we consider a
scenario known as temporal steering [11, 12]. Therein,
the initial maximally entangled state shared by Alice

and Bob can be replaced by a prepare-and-measure sce-
nario [13, 14]. As shown in Fig. 2, we provide a cir-
cuit model to experimentally implement the metrological
steering task with the superposition of dephased phase
shifts, which involves four qubits: the control C, the sys-
tem B, E1, and E2, respectively.

Now, we perform a set of projective measurements,
{|+⟩ ⟨+|C , |−⟩ ⟨−|C}, with |±⟩ = (|0⟩ ± |1⟩)/

√
2, on

the quantum control C with probabilities P± =
Tr [(|±⟩ ⟨±|C ⊗ 1B) ρCB(θ)] are the probabilities of the
outcomes ± for the projective measurements.

The main result of this paper that: the superposition
of phase shifts can enhance the violation of the MSI. To
highlight this point, we compare the two cases: (1) con-
trol C is prepared in an incoherent mixed state 1C/2
(without a superposition of phase shifts); (2) control C
is in a superposition |+⟩ ⟨+|C state (with a superposition
of phase shifts). We show that case (1), in general, can-
not improve the violation of MSI; nevertheless, for case
(2), it is possible to observe an enhancement of the MSI
violation under the dephased phase shifts characterized
by the following system-environment unitary evolution:

Udeph
w |ψ⟩ ⊗ |0⟩E =

√
1− w

2
|ψθ⟩ ⊗ |0⟩E

+

√
w

2
σz |ψθ⟩ ⊗ |1⟩E ,

(4)

where |ψθ⟩ = exp (−iZθ) |ψ⟩, and w is the visibility for
the dephased phase shift.

To further discuss the coherent-control-enhanced vio-
lation of the MSI, we consider the average optimal FI
(the lower bound of QFI) and variance by taking into
account their probabilities [15], namely:

F avg
opt :=

∑
±
P±Fopt,±; ∆Havg

opt :=
∑
±
P±∆Hopt,±. (5)

This circuit can be divided into three parts: (i) state
preparation, (ii) the superposition of dephased phase
shifts, and (iii) measurement on the qubits C and B. In
part (i), the qubits C, B, and E1,(2) are prepared in the
states |+⟩ ⟨+|, ρa|A, and |0⟩ ⟨0|1,(2), respectively. In part

(ii), the circuit model of the superposition of dephased
phase shifts is shown in Fig. 2(a). The qubit topology
of the four qubits that we chose in IBM-Cairo is shown
in Fig. 2(b). Through the control qubit C, the system
B can interact with alternative environments. We di-
vide the total unitary in Fig. 2(a) into a gate sequence,
which is shown in Fig. 2(c). In this sequence, we use
control-rotation with angle ϕ on the system B and its cor-
responding environment such that ϕ = 2 sin−1(

√
w/2),

with ϕ ∈ [0, π/2]. In part (iii), we measure σx on qubit
C and measure σz or σy on qubit B.

As shown in Fig. 3, the experimental result with the
dephased phase shifts: the control C is prepared in (a)
ρC = 1C/2 (without a superposition of phase shifts) and
(b) ρC = |+⟩ ⟨+|C (with a superposition of phase shifts).
Specifically, the red-cross (blue-circle) data points are the
experimental results of the average optimal Fisher infor-
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(a) (b)

(c)

Figure 2: Circuit model for steering-enhanced quantum metrology with a superposition of dephased phase shifts.
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Figure 3: Experimental results and noise simulations
(including qubit relaxation and qubit dephasing, gate er-
ror, and readout error [16]) of the metrological tasks.

mation (the optimal variance) with respect to the visi-
bility w. Note that θ = 0. the error bars are obtained
from 40 individual rounds of experiments; each experi-
mental data point consists of 10,000 individual runs per-
formed on about ten different dates. Therefore, the error
bars represent the variance of the IBM-Cairo device to
conduct these experiments in long timescales. The solid
curves represent the noise simulations for the dephased
phase shifts with ρC = |+⟩ ⟨+|C; the dashed curves rep-
resent the noise simulations with ρC = 1C/2. Although
we consider only several common noisy resources [16], the
tendencies and magnitudes of noise simulations approach
the actual experiment in both cases (a) and (b). We
clearly observe that the control in a superposition state,
i.e., |+⟩ ⟨+|C, can enhance the optimal Fisher informa-
tion and decrease the optimal variance; thus, it extends
the violations of the metrological steering inequality from
w ≈ 0.38 to w ≈ 0.69.

5 Summary

In this paper, we generalize the metrological steering
task described in Ref. [1] to a scenario with superposi-
tions of noisy phase shifts. We show that the control in
|+⟩ ⟨+|C (i.e., via a superposition of dephased and de-
polarized phase shifts) can alleviate the noisy effect and
enhance the average violations of the MSI in compari-
son with the case where the control is in an incoherent
mixed state (i.e., without superposition of dephased and
depolarized phase shifts).

Moreover, we proposed a circuit model for superpos-
ing two dephased phase shifts and experimentally imple-
mented the circuit on the IBM Quantum Experience. We
clearly observe the violations of the MSI, and the exper-
imental results agree with our noise simulations.

Finally, it is known that the order of channels can also
be coherently controlled [17, 18]. Therefore, it would be
promising to apply this framework to the noisy metro-
logical steering task.
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Abstract. Quantum dynamics simulation via Hamilton simulation algorithms is one of the most crucial applications
in the quantum computing field. While this task has been relatively considered the target in the fault-tolerance era, the
experiment for demonstrating utility by an IBM team simulates the dynamics of an Ising-type quantum system with the
Trotter-based Hamiltonian simulation algorithm with the help of quantum error mitigation. In this study, we propose
the Trotter subspace expansion method to mitigate not only physical errors but also algorithmic errors of Trotterized
quantum circuits in both the near-term and early fault-tolerant eras. This method inherits the advantages of the two
existing quantum error mitigation methods: two-dimensional error extrapolation, which considers both physical and
Trotter error, and virtual distillation. Using the 1D transverse-field Ising model, we numerically demonstrate that we
can suppress both physical and algorithmic errors.

Keywords: quantum computation, quantum simulation, quantum algorithm, quantum error mitigation, Trottriza-
tion, early-fault tolerant quantum computation

1 Overview
One of the most promising applications of a fault-tolerant

quantum computer is simulating the dynamics of many-body
problems, such as condensed matter physics and quantum
chemistry [1]. Hamiltonian simulation algorithms have been
mainly discussed in the regime of fault tolerance, and numer-
ous improvements have been made in this area. Although most
such algorithms are beyond the capacity of the current quan-
tum computers, the Trotter-based Hamiltonian simulation al-
gorithm has already been performed in the current quantum
device by an IBM team, with the utility of quantum devices
being investigated [2].

In the above experiment, the error-extrapolation quantum er-
ror mitigation (QEM) [3–5] has played a crucial role in im-
proving the accuracy of the simulation result by suppressing
the physical errors due to coupling to the environment. Be-
sides the near-term application, it has been pointed out that
QEM can significantly improve the computation accuracy of
quantum algorithms in the early fault-tolerant quantum com-
puting (FTQC) era and can contribute to reducing resources
such as code distances and T gate counts.

While the primary target of QEM has been the suppression
of physical errors, the computation accuracy of quantum algo-
rithms is also restricted by algorithmic errors because of the
insufficiency of the circuit depth. Ref. [6] elaborated a QEM
method tailored to noisy Trotterized quantum circuits to sup-
press both the algorithmic and physical errors. This method
uses error-extrapolation QEM methods to mitigate physical er-
ror rates and then applies the algorithmic error extrapolation
method for Trotter-based quantum simulation by leveraging
the outcome for the fewer Trotter step number. Although this
method does not impose any additional hardware requirements
and may enhance computation accuracy even in current quan-
tum devices, the heuristic nature of error-extrapolation QEM
methods does not guarantee that the result corresponds to the
physical quantum state. It may increase the bias of the estima-

∗ shigeo.hakkaku@ntt.com
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tion.
In this work, we propose the Trotter subspace expansion, an

even more robust QEM for Trotter-based quantum algorithms.
This QEM method also ensures that the error-mitigated com-
putation outcome leads to the physical one. We construct
the error-mitigated state 𝜌QEM = 𝜌2

TS
Tr[𝜌2

TS] for the effective state
𝜌TS = ∑𝑖 𝑐𝑖𝜌(𝑝𝑖, 𝑀𝑖) (𝑐𝑖 ∈ ℝ) based on the purification-
based QEM methods. Here, 𝜌(𝑝𝑖, 𝑀𝑖) are noisy states with
𝑝𝑖 and 𝑀𝑖 being the different physical error rates and Trotter
step numbers. We find the optimal coefficients 𝑐𝑖 with two-
dimensional hypersurface extrapolation, which gives a more
accurate result than sequentially applying extrapolation for
physical and algorithmic errors. Then, purification further fil-
ters out the residual noise and results in the outcome for the
physical density operator, i.e., positive-semidefinite operators.

To benchmark the Trotter subspace expansion, we numeri-
cally compare it with the existing error mitigation method pro-
posed in Ref. [6] when the shot noise is free. We find that the
Trotter subspace expansion can mitigate more bias than the ex-
isting error mitigation methods from the numerical simulation
with a one-dimensional transverse-filed Ising model with 10
qubits without the shot noise effect.

2 Preliminaries
In this section, we review the Trotterization and then how

to suppress the algorithmic error introduced by the Trotteri-
zation according to Ref. [6]. The Trotterization approximates
an exponential of a sum of operators, such as a time evolu-
tion operator, by a product of elementary exponentials. In the
following, we explain the Trotterization using a time evolu-
tion operator as an example. Let 𝐻 = ∑𝑗 𝐻𝑗, where each
𝐻𝑗 acts on a constant number of qubits. The time evolution
operator 𝑒−𝑖𝐻𝑡 can be approximated by a product of unitaries

𝑒−𝑖𝑡/𝑀𝐻𝑗 , i.e., exp(−𝑖𝐻𝑡) = [∏𝑗 exp(−𝑖 𝑡
𝑀 𝐻𝑗)]

𝑀
+𝒪( 𝑡2

𝑀 )

, where 𝑀 is the Trotter step number and 𝒪( 𝑡2

𝑀 ) is an al-
gorithmic error. Therefore, 𝑀 determines the level of al-
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gorithmic error. If quantum circuits are error-free, the al-
gorithmic error can be arbitrarily suppressed as the Trotter
step number increases. Denoting 𝜖𝑀 = 1/𝑀 and 𝑈𝜖𝑀

as

𝑈𝜖𝑀
(𝑡) ≔ [∏𝑗 exp(−𝑖𝜖𝑀𝑡𝐻𝑗)]

1/𝜖𝑀
, then we can obtain

lim𝜖𝑀→+0 𝑈𝜖𝑀
(𝑡) = exp(−𝑖𝐻𝑡).

However, we cannot increase 𝑀 infinitely because current
quantum devices suffer from quantum noise. In such a device,
a number of Trotter step number introduce more physical er-
rors, and thus, there exists the optimal number of Trotter step
number 𝑀opt [7]. Thus, we cannot reduce the algorithmic er-
ror any further in a naive way.

To alleviate this issue, Ref. [6] elaborated the method that
suppresses the algorithmic error by regarding an inverse of the
Trotter step number as an ‘‘error rate’’ in the standard poly-
nomial error extrapolation method [3–5]. Suppose that one
applies the unitary operator 𝑈𝜖𝑀

(𝑡) to the state |𝜓⟩, then the
expectation value of an observable 𝐴 is given by

⟨𝐴(𝑡)⟩(𝜖𝑀) = ⟨𝜓∣𝑈†
𝜖𝑀(𝑡)𝐴𝑈𝜖𝑀

(𝑡)∣𝜓⟩.

Expanding ⟨𝐴(𝑡)⟩(𝜖𝑀) as a function of 𝜖𝑀 gives

⟨𝐴(𝑡)⟩(𝜖𝑀) = ⟨𝐴(𝑡)⟩(0) +
𝑛′

∑
𝑖=1

𝐴(𝑡)𝑖𝜖
𝑖
𝑀 + 𝒪(𝜖𝑛′+1

𝑀 ), (1)

where ⟨𝐴(𝑡)⟩(0) = ⟨𝜓|exp(𝑖𝐻𝑡)𝐴 exp(−𝑖𝐻𝑡)|𝜓⟩ i.e., the
algorithmic-error-free expectation value of 𝐴.

From Eq. (1), we can confirm that the error extrapolation
method can be applied with algorithmic errors by reducing the
Trotter step number. Normally, we increase the Trotter step up
to 𝑀opt. Combining the set of data points with different Trot-

ter step number {⟨𝐴(𝑡)⟩(𝜖𝑀𝑖
)}

𝑛′

𝑖=0
, where 𝑀𝑛′ ≤ ⋯ 𝑀1 ≤

𝑀0 = 𝑀opt, with Eq. (1), we obtain

⟨𝐴⟩est(0) =
𝑛′

∑
𝑖=0

⟨𝐴⟩(𝜖𝑀𝑖
) ∏

𝑘≠𝑖

𝜖𝑀𝑘

𝜖𝑀𝑘
− 𝜖𝑀𝑖

= ⟨𝐴⟩(0) + 𝒪(𝜖𝑛′+1
𝑀opt

).

Thus, we see that the algorithmic error could be suppressed to
𝒪(𝜖𝑛′+1

𝑀opt
) = 𝒪(𝑀−(𝑛′+1)

opt ).
The authors of Ref. [6] have numerically confirmed that the

above method suppresses the algorithmic error if the physical
errors are well mitigated in advance by a physical error extrap-
olation method [3–5]. However, as in the error extrapolation
for physical errors, algorithmic error extrapolation is a heuris-
tic method, and the physicality of the result is not generally
guaranteed.

3 Trotter Subspace Expansion
Here, we propose Trotter subspace expansion that robustly

mitigates both algorithmic and physical errors and certifies the
physicality of the result. We prepare the 𝑛′ +1 output states of
noisy Trotterized circuit 𝜎𝑖 = 𝜌(𝑝𝑖, 𝑀𝑖)(𝑖 = 0, … , 𝑛′), where
𝑝𝑖 and 𝑀𝑖 are the error rates of physical noise 𝑝 and the Trot-
ter step number of the noisy Trotterized circuit, respectively.

|+⟩
𝑋

𝜌(𝑝𝑖, 𝑀𝑖)
𝜌(𝑝𝑗, 𝑀𝑗)

(a)

|+⟩
𝑋/𝑌

𝜌(𝑝𝑖, 𝑀𝑖) 𝑃𝛼

𝜌(𝑝𝑗, 𝑀𝑗)

(b)

Figure 1: Quantum circuits for evaluating the expectation
value of an observable 𝐴 for the ansatz state of the Trot-
ter subspace 𝜌QEM shown in Eq. (2). (a): Swap test circuit
to evaluate Tr(𝜌(𝑝𝑖, 𝑀𝑖)𝜌(𝑝𝑗, 𝑀𝑗)) by measuring the Pauli
𝑋 of the most upper line. (b): Quanutm circuit to evalu-
ate Tr(𝜌(𝑝𝑖, 𝑀𝑖)𝜌(𝑝𝑗, 𝑀𝑗)𝑃𝛼) by measuring the Pauli 𝑋 and
Pauli 𝑌, where 𝐴 = ∑𝛼 𝑐𝛼𝑃𝛼 and 𝑃𝛼 is a Pauli operator.

Then, we virtually construct the following state:

𝜌TS = ∑
𝑖

𝑐𝑖𝜌(𝑝𝑖, 𝑀𝑖)

𝜌QEM = 𝜌2
TS

Tr(𝜌TS)
(2)

where 𝑐𝑖 is the coefficient of the multidimensional extrapola-
tion [8, 9] parametrized by the physical error 𝑝𝑖 and the in-
verse of the Trotter number 1/𝑀𝑖 and is calculated by classi-
cal computers. The ansatz state 𝜌QEM satisfies Tr(𝜌QEM) = 1
and 𝜌 ≥ 0, which ensures that 𝜌QEM is physical. Then, the
corresponding error-mitigated expectation value of 𝐴 is given
by

⟨𝐴⟩est =
∑𝑛′

𝑖,𝑗=0 𝑒𝑖𝑒𝑗Tr(𝜌(𝑝𝑖, 𝑀𝑖)𝜌(𝑝𝑗, 𝑀𝑗)𝐴)

∑𝑛′

𝑖,𝑗=0 𝑒𝑖𝑒𝑗Tr(𝜌(𝑝𝑖, 𝑀𝑖)𝜌(𝑝𝑗, 𝑀𝑗))
. (3)

To obtain each term constituting ⟨𝐴⟩est, i.e.,
Tr(𝜌(𝑝𝑖, 𝑀𝑖)𝜌(𝑝𝑗, 𝑀𝑗)𝐴) and Tr(𝜌(𝑝𝑖, 𝑀𝑖)𝜌(𝑝𝑗, 𝑀𝑗))
in Eq. (3), we use a modified quantum circuit of purification-
based QEM methods [10, 11]. The quantum circuits for
Trotter subspace expansion for copy-based purification are
shown in Fig. 1 [12].

To benchmark the Trotter subspace expansion, we present
numerical simulations using the one-dimensional transverse
Ising model. We approximate the time evolution under this
Hamiltonian by the 1st-order Trotterization. We assume there
is single- or two-qubit depolarizing noise after a single- or two-
qubit gate in a Trotterized circuit, respectively. Using the data
points shown in Fig. 2a, we plot the estimation bias between
each error mitigation method and an exact expectation value of
the Pauli operator 𝑋0 without the shot noise effect in Fig. 2b.
From Fig. 2b, we confirm that the bias of the Trotter subspace
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expansion is about 10 times smaller than those of the existing
methods.

4 Conclusion
We have presented an error mitigation method for noisy

Trotterized quantum circuits that suppresses both physical and
algorithmic errors. We call the method the Trotter subspace
expansion. The Trotter subspace expansion uses the ansatz
constructed with the multi-dimensional extrapolation, where
physical and algorithmic errors are parametrized, as well as
the VD. We have numerically confirmed that the Trotter sub-
space expansion well mitigates both physical and algorithmic
errors without shot noise, and it has decreased more bias than
the proposed method [6].

Our work leaves several open questions. Although we have
considered the first-order deterministic Trotterization, it can
be extended to the higher-order Trotterization or randomized
Trotterization. In particular, the extension to the qDRIFT [13]
would be interesting for investigating the dynamics of elec-
tronic structure Hamiltonians. Recently, post-Trotter methods,
such as truncated Taylor series [14–16] and quantization [17],
have been paid much attention. This is because such meth-
ods exponentially improve as a function of the desired accu-
racy compared to the Trotter ones [1]. We also expect that one
could extend our work or invention for the above post-Trotter
methods. Although we only consider the dynamics of a Hamil-
tonian of condensed-matter physics as a practical case in our
paper, it would be interesting to apply our proposed method to
the statistical phase estimation [18], which is one of the most
promising algorithms for the early-fault tolerant era.
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Figure 2: Benchmark of Trotter subspace expansion and the
previous method proposed in Ref. [6]. (a): Expectation val-
ues of 𝑋0 obtained by noisy Trotterized circuits with differ-
ent physical error rates and Trotter steps. These data points
are used for the quantum error mitigation methods. The blue
makers indicate the expectation values, and the red plane in-
dicates the exact expectation value. (b): Comparison of the
biases in the error-mitigated expectation values. The red bar
represents the estimation bias of the data point whose absolute
error is the smallest. The yellow and green bars represent the
biases of the previous methods proposed in Ref. [6] using the
polynomial and the exponential physical error extrapolation,
respectively. The blue bar represents the bias of the Trotter
subspace expansion.
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Designing Elegant Bell Inequalities
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Abstract. Elegant Bell inequality is well known for its much exploited property, being maximally violated
by maximal entanglement, mutually unbiased bases, and symmetric informationally complete potitive
operator-valued measure elements. It is the only one with such property known so far. We present a
method to construct Bell inequalities with violation feature analogous to original elegant Bell inequality in
high dimension from a simple analytic quantum bound. A Bell inequality with such feature is derived in
three dimension for the first time. It shows larger violation compared to known Bell inequalities of similar
classes while requiring arguably small number of measurements.

Keywords: Bell inequality, Mutually unbiased bases, Symmetric informationally complete POVM

1 Introduction

Performing local measurements on the shared system,
distant subsystems can reveal a quantum correlation that
cannot be reproduced by any local hidden variable the-
oretical explanation. Such nonlocality of the correla-
tion can be tested via the violation of Bell inequalities
[1]. What Bell inequality can tell us about the system
goes beyond the scope of the mere existence of nonlocal
correlation. It has been investigated the method to ex-
ploit Bell’s theorem for further certifying the properties
of given system in so-called device-independent (DI) ap-
proach [2]. This approach leads to various applications,
including DI quantum key distribution [3, 4, 5] and DI
certification of randomness [6, 7].
Reflecting on the aforementioned possibilities provided

by Bell inequalities, it is of prime importance to derive
them such that their maximal violations are obtained
from desirable features, for example maximal entangle-
ment, mutually unbiased bases (MUBs), or symmetric
informationally complete POVM elements (SICs). As
well known, Clauser-Horne-Shimony-Holts (CHSH) Bell
inequality is the case in which the maximal violation can
be obtained from maximal entanglement and Pauli mea-
surements having MUBs as their eigenstates. There ex-
ists another bipartite Bell inequality so-called Gisin’s el-
egant Bell inequality (EBI) [8],

E11 + E12 − E13 − E14

+ E21 − E22 + E23 − E24

+ E31 − E32 − E33 + E34 ≤ 6,

also optimally violated by maximally entangled state.
The expectation value of the product outcomes of Al-
ice’s x-th measurement and Bob’s y-th measurement is
denoted by Exy. Quantum bound for EBI is proven as
4
√
3 ≃ 6.9282 > 6 [9]. What makes EBI more interest-

ing is that its violation is obtained from the case where
the local measurements of each subsystem is constructed

∗kibae@kisti.re.kr

by MUBs and SICs respectively. As first remarked by
Gisin, the geometrical symmetries in the optimal mea-
surement settings of EBI are clearly revealed when they
are mapped on Bloch’s sphere [8]. Three eigenstates
defining three projective measurements of Alice form
three mutually orthogonal vectors on Bloch sphere and
four eigenstates of Bob’s side make a tetraheron [8]. Orig-
inal EBI has been used in several fields of quantum in-
formation including DI randomness certification [9, 16],
DI certification of non-projective measurement [11], and
for other tasks [12, 13]. Self-testing property of EBI has
also been studied in [14].

MUBs and SICs are important resources in quantum
cryptography [9, 15, 16]. There has been efforts to de-
rive Bell inequalities for MUBs or SICs exploiting the
advantage of high dimension [17, 18]. For example, for
DI certification of optimal amount of randomness, high
dimension provides natural advantage [9]. EBI is dis-
tinguished from Bell inequalities constructed either for
MUBs or SICs as it is optimally violated by both of them.

We address the problem of deriving Bell inequalities
with violation feature analogous to original EBI in high
dimension. The problem is closely related to the ques-
tion of what benefit for Bell nonlocality would come from
simultaneous consideration of the symmetries of MUBs
and SICs. It is worth noting that although EBI is origi-
nally derived in the different context [8], we focus on the
generalization of the property, being maximally violated
by maximal entanglement, MUBs and SICs. Such gen-
eralization of EBI has not much been investigated so far
to our knowledge. We approach the raised problem, by
defining optimal correlation as follows.

Definition. For prime d ≥ 3, generalized elegant
correlation(GEC) is defined as the bipartite correlation
obtained from the quantum realization: (i) maximally

entangled state
∣∣ϕ+

d

〉
:= (1/

√
d)

∑d−1
α=0 |αα⟩, (ii) Alice’s

d2 − 1 observables comprising Wd \ 1 and (iii) Bob’s d2

observables having d2 SICs in their eigenspaces.

325



In condition (ii), Wd := {XmZn|m,n ∈ [0, d)} is
the set of d2 Weyl-Heisenberg (WH) operators defined

with X :=
∑d−1

α=0 |α+ 1⟩ ⟨α|, Z :=
∑d−1

α=0 ω
α |α⟩ ⟨α| and

ω := e2πi/d. The integer domain {0, 1, . . . , d − 1} is
denoted by [0, d) and similar abbreviation is to be used
throughout this work.

2 Preliminaries

We consider the measurement scenario of two subsys-
tems Alice and Bob respectively performing one of possi-
ble d2−1 and d2 number of d outcome measurements Ax

and By on the shared system. Measurements are labelled
with x ∈ {1, 2, . . . , d2 − 1} and y ∈ {0, 1, . . . , d2 − 1}.
Outcomes of Ax and By are respectively distinguished
with indices α, β ∈ {0, 1, . . . , d − 1}. Probability of
obtaining the outcomes α and β respectively from set-
tings x and y is denoted by P (αβ|xy). A statistics of
the Bell test can be described with correlation, p :=
{P (αβ|xy)|∀α, β, x, y}. Quantum correlation allows

P (αβ|xy) = tr
[
ρAB(G

x
α ⊗Hy

β)
]

where ρAB is the bipartite density matrix of Alice and
Bob. Measurement operators, {Gx

α} and {Hy
β}, define

the measurements of Alice and Bob respectively. Bell
inequality is used to show that there is quantum cor-
relation which does not allow the local hidden variable
(LHV) theoretical description of the correlation [1]. Ge-
ometrically, LHV correlation region forms a polytope, L,
and quantum region, Q, is known to include it.
The generic form of so-called Bell expression without

marginal probabilities can be defined as,

S =
∑
α,β

∑
x,y

gα,βx,y P (αβ|xy) (1)

=
∑
n

∑
x,y

fn
x,y⟨An

xB
n
y ⟩ (2)

where n ∈ (1, d) and gα,βx,y ∈ R is the real weight
for each probability. For simplicity, the summations
over all possible values are to be denoted without lim-
its. The correlator ⟨An

xB
n
y ⟩ =

∑d−1
α,β=0 ω

n(α+β)P (αβ|xy),
where the outcomes of the measurements Ax and By

are respectively set as ωα, ωβ ∈ {1, ω, . . . , ωd−1}. And
the coefficient gα,βx,y :=

∑
n f

n
x,yω

n(α+β) . The condi-

tion fd−n
x,y := (fn

x,y)
∗ guarantees that the expression

is real-valued. A certain expression is specified by a
(d2−1)×d2 coefficient matrices, {Fn}, whose entries are
{fn

x,y}. We define x-th row and y-th column of Fn respec-
tively as column vectors rnx := (fn

x,0, f
n
x,1, . . . , f

n
x,d2−1)

⊺

and cny := (fn
1,y, f

n
2,y, . . . , f

n
d2−1,y)

⊺ such that Fn =

[rn1 , r
n
2 , . . . , r

n
d2−1]

⊺ = [cn0 , c
n
1 , . . . , c

n
d2−1]. In terms of Fn,

real-valuedness condition is re-written as Fn = F ∗
d−n.

Maximal value of S under LHV theory is, L :=
maxp∈L S(p). Violation of the Bell inequality by quan-
tum mechanics, L < Q, is shown with the maximal quan-
tum value, Q := maxp∈Q S(p). Quantum mechanical
expectation can be evaluated with the operator,

B =
∑
n

∑
x,y

fn
x,yA

n
x ⊗Bn

y (3)

Here, we consider the quantum measurements, Ax =∑
α ωαGx

α and By =
∑

β ω
βHy

β where Gx
α, H

y
β are rank-

one projectors.

3 Result

As one of the main results, we proved the below the-
orem. Here, we explain the meaning of the theorem in
brief manner. It states that the correlation function max-
imized by GEC always can be found from Eq.(4) with
Weyl-Heisenberg(WH) group covariant SICs. One has
freedom in the choice of SICs, consequently determining
the coefficients {fn

x,0} in our method. One can con-
struct different correlation functions maximized by GEC
by varying {fn

x,0} of Eq.(4) with different choices of SICs.

Theorem. Consider prime d, in which WH group co-
variant SICs are defined. Then, there always exists the
expression S defined with,

fn
dp+q,dr+s = ω−n(ps+qr)fn

dp+q,0 (4)

for p, q, r, s ∈ [0, d), dp+q ̸= 0 whose quantum maximum

Q̃ =
1

2

[∑
n

∥Fn∥2 + d2(d− 1)

]
(5)

is obtained with generalized elegant correlation.
In the Eq.(5), ∥·∥ is the Frobeniuns norm of a matrix.

The upper bound (5) can be obtained with the maximally
entangled state

∣∣ϕ+
d

〉
and the optimal measurements,

Adp+q = τWdp+q ∀p, q (6)

By = WyB0W
†
y ∀y (7)

where τ := ωpqδ(d,2)/2 is defined with kronecker delta, δ
and the parameterization x = dp + q is used in Eq.(6).
The index x ∈ (0, d2) is parameterized with p, q ∈ [0, d)
satisfying dp + q ̸= 0 and y ∈ [0, d2). The constant τ
is especially introduced for d = 2, the only even prime
dimension, to satisfy A2

3 = 1. Alice’s observables in (6)
are given as d2 − 1 WH operators. Bob’s d2 observables
are generated from B0 in Eq.(7).

From the d = 2 case of our framework, the Gisin’s EBI
can be generated. In d = 3, we derive a Bell inequality
maximally violated by generalized elegant correlation,

S3 :=
2∑

n=1

8∑
x=1

8∑
y=0

fn
x,y⟨AxBy⟩ ≤ 15 (8)

where the coefficients for n = 1 is defined from Eq.(4)
along with the first column of F1, (f

1
1,0, f

1
2,0, . . . , f

1
8,0)

⊺ =

(1/2)(1, 1, λ, ν, µ, λ, µ, ν)⊺ with λ := −i/
√
3, µ := ωλ and

ν := ω2λ. The coefficient matrix is expressed as,

F1 =
1

2



1 1 1 ω2 ω2 ω2 ω ω ω
1 1 1 ω ω ω ω2 ω2 ω2

λ ν µ λ ν µ λ ν µ
ν µ λ µ λ ν λ ν µ
µ λ ν ν µ λ λ ν µ
λ µ ν λ µ ν λ µ ν
µ ν λ λ µ ν ν λ µ
ν λ µ λ µ ν µ ν λ


.
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All the coefficients are determined with the above F1 and
the real-valuedness condition, F1 = F ∗

2 . The violation of
the Bell inequality (8) is obtained from the maximum
quantum value, Q̃ = 18, evaluated from (5) with ∥Fn∥ =
9 for n = 1, 2. The optimal violation is obtained from
maximally entangled state

∣∣ϕ+
d

〉
, Ax = Wx and By =

WyB0W
†
y with

B0 =

1 0 0

0 −1/2 i
√
3/2

0 i
√
3/2 −1/2

 . (9)

Detailed derivation is to be given in the presentation.
We remark that the Bell inequality defined in (8) shows

stronger violation than known Bell inequalities [8, 17, 18]
of similar classes. The critical visibility νc, the smallest
ν of the isotropic state ρ = ν

∣∣ϕ+
d

〉 〈
ϕ+
d

∣∣ + (1 − ν)/d2 to
show the violation, is 83.33% for S3. It is smaller than
that of similar types of Bell inequalities including Bell
inequality for d = 3 MUBs, 96.77% [17], 96.63% [18], for
SICs, 96.41% [18], and original EBI, 86.6% . In addition,
the number of settings required for Alice is 8 for S3 and
it is smaller than the case of knwon Bell inequality for

d = 3 SICs which requires
(
d2

2

)
= 36 settings for Alice

when the number of Bob’s setting is same as 9 [18].

4 Conclusion

We generalize the original feature of EBI, being max-
imally violated by maximal entanglement, MUBs and
SICs, in arbitrary prime local dimension. Based on it,
we presented a method to construct a correlation func-
tion for which the quantum maximum is always ob-
tained in a simple analytic form from complete MUBs
and SICs. A Bell inequality for two-qutrit system derived
with our method manifests larger violation compared to
known Bell inequalities of similar classes, including origi-
nal EBI. Our work lays a foundation for the future studies
of device independent cryptographic protocols exploiting
MUBs or SICs in high dimension.
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Abstract. Nonlocality within quantum systems guarantees the presence of entanglement, prompting
the question of how much entanglement is necessary for specific nonlocal behaviors. This study answers
this by examining generalized Clauser-Horne-Shimony-Holt-type (CHSH) Bell inequalities to quantify en-
tanglement. We derive analytical bounds on the entanglement of formation and negativity and provide
numerical estimates of one-way distillable entanglement. Without neglecting the necessity of measurement
incompatibility, our study reveals a counterintuitive interplay among entanglement, incompatibility and
nonlocality in qubit-qubit systems. The study also applies its findings to experimental states, demonstrat-
ing the potential to enhance entanglement estimation through optimized Bell inequality selection. This
submission is based on Ref. [1].
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1 Introduction

In the early stages of quantum mechanics, Einstein,
Podolsky, and Rosen identified “spooky action” between
observables [2], later formalized by Bell [3]. If the CHSH
value exceeds 2, it indicates a violation of local realism,
ensuring Bell nonlocality and the presence of entangle-
ment, a non-classical feature essential for quantum infor-
mation tasks. Entanglement is characterized by a joint
state that cannot be generated through local operations
and classical communication (LOCC) [4, 5]. It is quanti-
fied using appropriate measures like entanglement of for-
mation and one-way distillable entanglement [6–9]. How-
ever, state tomography, which fully reconstructs a quan-
tum state, is prone to untrust results due to detection
loss, noise, and attacks from adversaries [10, 11]. Quan-
tum nonlocality allows us to detect entanglement while
not needing to characterize the quantum devices a pri-
ori [12, 13]. This observation leads to the question of
what the minimum amount of entanglement is necessary
for a given nonlocal behavior, which serves as a device-
independent (DI) entanglement estimation tool [14–20].
Despite the significant role of measurement incompati-
bility in this narrative, it has been largely overlooked in
previous studies. This oversight makes exploring the in-
terplay among entanglement, nonlocality, and measure-
ment incompatibility a captivating and worthwhile en-
deavor. The illustration is in Fig. 1.
In this work, we first explore the minimum entan-

glement necessary for a given nonlocal behavior mani-
fested by violating generalized CHSH-type Bell inequal-
ities. Then, we investigate the interplay among entan-
glement, nonlocality, and measurement incompatibility,
revealing a complex relationship rather than a simple
trade-off. In the third part, we analyze the statistics
that arise from pure entangled states and Werner states

∗zhuyw18@mails.tsinghua.edu.cn
†thuxjzhang@gmail.com
‡xma@tsinghua.edu.cn

Nonlocality

Entanglement
Measurement
incompatibility

interplay

trade-off?

Figure 1: The interplay among nonlocality, entangle-
ment, and measurement incompatibility.

and examine the performance of our results.

2 Preliminaries

To establish the interplay among nonlocality, entan-
glement, and measurement incompatibility, in our study,
we refer to the generalized CHSH-type Bell inequality for
quantifiers of nonlocality. The corresponding Bell expres-
sion under quantum measurements is given by:

S = Tr
(
ρABŜα

)
, (1)

where Ŝα = αÂ0 ⊗ B̂0 + αÂ0 ⊗ B̂1 + Â1 ⊗ B̂0 − Â1 ⊗ B̂1.
A Bell value within (2α, 2

√
α2 + 1] indicates nonlocality,

further indicating entanglement and measurement
incompatibility [21, 22].

We focus on entanglement estimation in bipartite sys-
tems, represented by density operators ρAB . We employ
various entanglement measures. For qubit pairs, the con-
currence C(ρAB) is considered [23, 24]. For general bi-
partite states, we also consider:

• Entanglement of formation (EOF), EF(ρAB), de-
fined via the convex-roof construction from pure
states. For two-qubit states, it simplifies to a closed
form in terms of concurrence [23].

• One-way distillable entanglement (ODE), given
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by the negative conditional entropy E→
D (ρAB) =

−H(A|B)ρ = H(ρB)−H(ρAB) [25].

• Negativity of entanglement N (ρAB), determined
by the violation of the positive partial transpose
(PPT) criterion [26].

3 DI entanglement quantification

Our goal is to estimate the underlying entanglement of
a state from the observed α-CHSH Bell value. For a given
entanglement measure E, the problem is formulated as:

Eest = min
ρAB ,Â0,Â1,B̂0,B̂1

E(ρAB),

s.t. S = Tr
(
ρABŜα

)
,

ρAB ≥ 0,

Tr(ρAB) = 1.

(2)

The optimization problem is challenging to solve di-
rectly. We degenerate this problem into four steps.

1. Set up the entanglement estimation with the ob-
served Bell value S as the constraint, as in Eq. (2).

2. Apply duality to find optimal measurements that
maximize the Bell value for a given state ρAB .

3. Use Jordan’s Lemma to simplify the measurement
process as a convex combination of qubit pairs.

4. Narrow down to Bell-diagonal states for the opti-
mization, maintaining the α-CHSH Bell value and
non-increasing entanglement through LOCC.

We systematically obtain a tight estimation result for
qubit pairs through these steps. Based on Jordan’s
lemma, when generalizing the results from a qubit-pair
scenario to unknown dimensions, if the qubit-pair entan-
glement estimation Eest is convex in the Bell value S,
the process is straightforward. On the other hand, if it is
concave, a “convex closure” of the function is necessary
for general bipartite states. A detailed discussion can be
found in Ref. [1].
By applying different entanglement measures, we ob-

tain the following results.

Theorem 1 Suppose the underlying quantum state is a
pair of qubits. For a given tilted CHSH expression in
Eq. (1) parametrized by α, if the Bell expression value
is S, then the amount of concurrence in the underlying
state can be lower-bounded,

C(ρAB) ≥
√

S2

4
− α2. (3)

Theorem 1 is under the assumption that the underly-
ing state is a pair of qubits. Applying the convex clo-
sure technique and the closed-form expression of EOF in
terms of the concurrence, the EOF of an unknown di-
mension system can be lower-bounded.

Theorem 2 For a given tilted CHSH expression in
Eq. (1), if the Bell expression value is S, then the EOF
in the underlying state can be lower-bounded,

EF(ρAB) ≥
S − 2α

2
√
1 + α2 − 2α

. (4)

With similar techniques, the negativity of entangle-
ment is lower-bounded without system-dimension as-
sumption.

Corollary 3 For a given tilted CHSH expression in
Eq. (1), if the Bell expression value is S, then the amount
of negativity in the underlying state can be lower-bounded,

N (ρAB) ≥
S − 2α

4(
√
1 + α2 − α)

. (5)

Notably, when α = 1, Eq. (5) analytically confirms
the observed linear relation between negativity and Bell
value. Our result proves the conjecture of Eq. (5) in
Ref. [16], obtained by using the third level of a Navascués-
Pironio-Aćın-type numerical algorithm [27].

Additionally, we provide DI numerical estimation re-
sults for ODE under α-CHSH Bell nonlocality. We
present numerical results for some values of α in Fig. 2.

2 2.5 3 3.5 4 4.5

-0.2

0

0.2

0.4

0.6

0.8

1

=1 =1.2 =1.4 =1.6 =1.8 =2

Figure 2: ODE estimation diagram using CHSH-type
Bell expressions with increasing discrete α. Estimation
E→

D,est(S) is convex over valid S range. E→
D,est(S) at

S = 2α increases and converges to 0 as α grows.

4 Interplay among nonlocality, entangle-
ment, and measurement incompatibil-
ity

We further explore the interplay among nonlocality,
entanglement, and measurement incompatibility for a
pair of qubits. We aim to determine the minimum en-
tanglement required for nonlocal behavior given a level
of measurement incompatibility. The optimization prob-
lem is defined based on Eq. (2) with a few additional as-
sumptions: (1) the underlying system is a pair of qubits,
and (2) the measurement operators are qubit observ-
ables. These assumptions aim to provide straightforward
parameterization in the study. Specifically, we assume
measurements as Â0 = σz, Â1 = σx, B̂0 = cos θσz +
sin θσx, B̂1 = cos θσz − sin θσx. This parametrization
determines the measurement incompatibility of Bob as
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|sin(2θ)|: when θ = 0, B̂0 and B̂1 commute; when
θ = π/4,B̂0 and B̂1 exhibit maximal incompatibility. We
analyze the relation between entanglement and measure-
ment incompatibility varying θ within the range [0, π/4].
Taking concurrence and ODE as the target entangle-

ment measures, we simulate the trajectories between θ
and Eest for discrete α-CHSH violations when α = 1.2,
as shown in Fig. 3. The figure shows a non-trivial re-
lation between the necessary amount of entanglement
with respect to measurement incompatibility under dif-
ferent Bell values S. For both entanglement mea-
sures, initially, entanglement decreases with increasing
incompatibility. After reaching a threshold θ∗E (θ∗C =

arctan
(√

S2/4− α2/α
)
for concurrence), entanglement

increases counterintuitively. The range of θ for which
nonlocality is possible shrinks as S increases, with the
underlying state self-testing maximally entangled state
and non-maximally incompatible measurements (with
θ = arctan 1/α) at the highest Bell value, 2

√
1 + α2.

These trajectories indicate a complex interplay among
the three quantities: the most nonlocality, in general, is
not indicated by the largest amount of entanglement and
measurement incompatibility.

/8 /4
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0.8
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Figure 3: Interplay among Bell nonlocality, measure-
ment incompatibility, and entanglement using the α-
CHSH Bell expression with α = 1.2. Blue curves: ODE;
red curves: concurrence. Before θ reaches a threshold θ∗E ,
there is a trade-off: less entanglement is needed for nonlo-
cality as measurements become more incompatible, and
vice versa; when θ ∈ (θ∗C , π/4], entanglement increases
with θ. At the peak Bell value of 2

√
1.22 + 1, the system

self-tests a single point, showing that maximal violation
occurs with maximal entanglement and non-maximal in-
compatibility.

5 Application: optimizing entanglement
estimation in realistic settings

Finally, we examine the impact of various Bell ex-
pressions on entanglement estimation, particularly un-
der conditions of experimental imperfections such as loss
and noise. The α-CHSH expression is used for its en-
hanced capacity to estimate entanglement over the stan-
dard CHSH expression.

We delve into the analysis of Werner state,

ρW(p) = (1− p)
∣∣Φ+

〉〈
Φ+

∣∣+ p
I

4
, (6)

where we write |Φ+⟩ = (|00⟩ + |11⟩)/
√
2. The

Werner state is entangled when p < 2/3. We
parametrize the measurements as follows for Alice and
Bob: Â0 = σz, Â1 = cos θ1σz + sin θ1σx, B̂0 = cos θ2σz +
sin θ2σx, B̂1 = cos θ3σz + sin θ3σx. Fig. 4 indicates that
based on the entanglement estimation result in Sec. 3, the
optimal value for estimating EOF and ODE of a Werner
state are 1.2 and 1.4, respectively. This insight is instru-
mental for strategically selecting CHSH-type inequalities
in entanglement estimation, as shown in the analytical
results for EOF.

1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

0.2

0.4

0.6
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Figure 4: Entanglement estimation results for nonlocal
correlations arising from Werner states. The experimen-
tal setting is given by p = 0.05, θ1 = π/2, θ2 = π/6, and
θ3 = −π/6. We depict the entanglement estimation re-
sults using different α-CHSH Bell expressions. We plot
the estimated values of ODE and EOF with the black
solid line and the red dashed line, respectively.

Theorem 4 In a Bell test experiment, suppose the un-
derlying state of the system takes the form of Eq. (6), and
the observables are parameterized as above. For EOF es-
timation solely from the violation values of α-CHSH Bell
inequalities, if θ1, θ2, θ3 and p satisfy

(1− p)[sin θ1(sin θ2 − sin θ3) + cos θ2(
√
2 + 1 + cos θ1)

+ cos θ3(
√
2 + 1− cos θ1)] > 2(1 +

√
2),

(7)

then there exists α > 1, where a better estimation of
EF,est(S) can be obtained by using the α-CHSH inequal-
ity parameterized by this value than by using the original
CHSH inequality (corresponding to α = 1).

Theorem 4 analytically confirms that nonlocality de-
picted by the original CHSH Bell value does not always
provide the EOF estimation that approaches the real
value. Similarly, examples and conclusions for the non-
maximally entangled state are derived in Ref. [1]. These
results guarantee that more optimal choices of Bell in-
equality exist for entanglement quantification in various
scenarios.
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[17] G. Tóth, T. Moroder, and O. Gühne, Phys. Rev.
Lett. 114, 160501 (2015), URL https://link.aps.

org/doi/10.1103/PhysRevLett.114.160501.

[18] R. Arnon-Friedman and H. Yuen, arXiv:1712.09368
(2017), URL https://arxiv.org/abs/1712.

09368.

[19] S.-L. Chen, C. Budroni, Y.-C. Liang, and Y.-N.
Chen, Phys. Rev. A 98, 042127 (2018), URL
https://link.aps.org/doi/10.1103/PhysRevA.

98.042127.

[20] R. Arnon-Friedman and J.-D. Bancal, New J. Phys.
21, 033010 (2019), URL https://iopscience.

iop.org/article/10.1088/1367-2630/aafef6.
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[22] E. Woodhead, A. Aćın, and S. Pironio, Quantum 5,
443 (2021), ISSN 2521-327X, URL https://doi.

org/10.22331/q-2021-04-26-443.

[23] S. A. Hill and W. K. Wootters, Phys. Rev. Lett. 78,
5022 (1997), URL https://link.aps.org/doi/10.

1103/PhysRevLett.78.5022.
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Abstract. Explicitly constructing a quantum decoder is key to reliably transmitting quantum
information. In this submission, we provide two explicit decoders capable of recovering quantum
information whenever it is in principle recoverable, i.e., when the decoupling condition is satis-
fied. These decoders particularly achieve quantum capacities with a suitable encoder. They are
constructed using the amplitude amplification algorithm based on the quantum singular value
transformation (QSVT), revealing the power of the quantum algorithmic approach to quantum
decoders. The proposed decoders also have practical advantages since they reduce the compu-
tational cost for implementation compared to a previous explicit decoder.
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1 Introduction and summary of results

Reliably transmitting quantum information via a
noisy quantum channel is crucial in quantum in-
formation theory, and is commonly investigated by
the decoupling approach [1–3]. The decoupling of-
fers the necessary and sufficient condition for reli-
able transmission and has an outstanding feature
that one can address the problem without explic-
itly considering a decoder. This feature is typically
considered to be a strong advantage of the decou-
pling approach as it significantly simplifies the anal-
ysis, but it can also be a drawback as one cannot
achieve the task in practice without an explicit de-
coder. In recent years, the importance of explicit de-
coders also increases in fundamental physics to bet-
ter understand quantum chaos and quantum black
holes [4–14]. Hence, it is important in quantum
information and fundamental physics to explicitly
construct a decoder that can recover quantum in-
formation.
As explicitly constructing a decoder is, in general,

a highly non-trivial task, only a handful of results
are known so far. A commonly used decoder is the
Petz recovery map [15,16]. It is known that the Petz
recovery map is capable of recovering quantum in-
formation with a nearly optimal recovery error [17],
and can be implemented by a quantum circuit [18],
implying that it can be used as an explicit decoder.
However, the circuit complexity for implementing
the Petz recovery map is fairly high. Decoders with
smaller computational cost have been desired.

∗takeru-utsumi@g.ecc.u-tokyo.ac.jp
†yoshifumi.nakata@yukawa.kyoto-u.ac.jp

A possible approach for constructing a decoder
with smaller computational cost is to extend a con-
struction in [19], known as a Yoshida-Kitaev (YK)
decoder. The YK decoder is for decoding quan-
tum information in the Hayden-Preskill (HP) proto-
col [7], a specific model based on the qubit-erasure
noise with a Haar random encoding, and the de-
coder has relatively small circuit complexity. It is
constructed in two steps: first, a decoding proto-
col with quantum measurement and post-selection
is considered. Then, the measurement is replaced
with a non-trivial application of the amplitude am-
plification (AA) algorithm. This two-step construc-
tion was shown to work well for decoding the HP
protocol, but the reason why it works strongly re-
lies on the simple properties of the specific encoding
and noise in the HP protocol. It has been unclear if
the two-step construction can be extended to gen-
eral situations.
In this submission based on [19], we explore the

two-step construction with a certain modification
and provide two explicit quantum decoders. One
is a generalized YK decoder, and the other is a sim-
plified Petz recovery map that we call a Petz-like
decoder. The crucial modification for the construc-
tion of these decoders is to use the fixed-point AA
(FPAA) based on the quantum singular value trans-
formation (QSVT) [20–22] instead of the standard
AA algorithm in the original YK approach. Due
to the flexibility of the QSVT-based FPAA, all the
issues that may arise in extending the original ap-
proach can be circumvented, and the two-step con-
struction becomes applicable to more general situa-
tions.
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We show that both the generalized YK and Petz-
like decoders have high decoding performance in the
sense that they can recover quantum information
when the decoupling condition is satisfied. As de-
coupling is necessary and sufficient for the recovery
of quantum information, this implies that the de-
coders work well whenever quantum information is
in principle recoverable. In particular, the decoders
can achieve quantum capacity, both entanglement-
assisted [23–25] and non-assisted [26–28] ones, when
it is combined with a suitable encoder meeting the
decoupling condition.
We also investigate the circuit complexity of the

proposed decoders. While the complexity depends
on various factors, a simple criterion can be obtained
for the generalized YK decoder to have smaller com-
plexity than the Petz-like decoder. The criterion is
in terms of the number of logical qubits, the amount
of entanglement pre-shared between the sender and
the receiver, the size of the output of the noisy
channel, and the number of Kraus operators of the
noisy channel. Furthermore, we show that both de-
coders have smaller complexity than the Petz recov-
ery map [18] in most parameter range.
Our results extend and demonstrate the power

of the two-step construction of quantum decoders
that lifts up a decoding protocol with post-selection
to a decoding quantum circuit by using the QSVT-
based FPAA. This approach is of theoretical inter-
est and paves the way for exploring decoders with
better performance by a quantum algorithmic ap-
proach. The approach may also be of practical
use since we have shown that the constructed de-
coders have high decoding performance and reduce
the computational cost. We expect that our results,
opening a new research direction in the intersection
of quantum information and quantum algorithms,
contribute to the further development of quantum
information science.

2 Setting

We use superscripts to indicate the system on
which operators and maps are defined. A reduced
density operator on, e.g., A of φAB is denoted by
φA. We also use the notation that dA is the dimen-
sion of a Hilbert space HA and that a Hilbert space,

such as HA′
or HÂ, is isomorphic to HA. A maxi-

mally entangled state (MES) in the computational

basis {|i⟩}i is denoted by |Φ⟩AÂ = 1√
dA

∑dA
i=1 |i⟩A|i⟩Â

with the corresponding density operator ΦAÂ. The
completely mixed state (CMS) by π, such as πA =

IA/dA, where IA is the identity operator.
We consider the following standard situation. A

sender aims to transmit (log dA)-qubit quantum in-
formation to a receiver using a noisy channelNC→D.
The sender and the receiver may share entanglement
|Φ⟩BB′

in advance, where B (B′) is with the sender
(receiver). When they share no entanglement, we
set dB = 1. The sender encodes the system A with
B using an encoder EAB→C and sends the encoded
system C to the receiver by NC→D. The receiver
applies a decoder DDB′→R′

onto the system DB′

for recovering the quantum information to be trans-
mitted as much as possible. Our goal is to explicitly
construct a decoder DDB′→R′

for a given encoder E
and noisy channel N ,
The recovery error ∆(D|E ,N ) by a decoder D is

defined by introducing a reference system R isomor-
phic to A with dR = dA and by preparing the sys-
tems A and R to be in a MES |Φ⟩AR. More precisely,

∆(D|E ,N ) :=
1

2
∥ΦRR′ −DDB′→R′

(ωRDB′
)∥1, (1)

where ωDRB′
:= NC→D◦ EAB→C(ΦAR ⊗ ΦBB′

).

3 Main results

We describe only the two-step construction of the
generalized YK decoder. See [29] for the results of
the Petz-like decoder and the in-depth analysis of
these decoders.
We start with a decoding protocol with post-

selection consisting of three steps. Note that the
receiver has the output D of the noisy channel and
the system B′ of the pre-shred entanglement.

1. The MES ΦA′R′
is prepared in ancillary sys-

tems A′R′.

2. An isometry (V A′B′→E′D′
N◦E )∗ is applied onto

A′B′. Here, VN◦E is any Stinespring isome-
try of N ◦E and ∗ is the complex conjugate in
the computational basis.

3. The system DD′ is measured by M :=
{|Φ⟩⟨Φ|DD′

, IDD′− |Φ⟩⟨Φ|DD′}. If the former
outcome is obtained, the protocol succeeds.

This decoding protocol generalizes the original
YK decoding protocol in a straightforward manner.
It is based on the idea to emulate the inverse dy-
namics of the encoding and the noisy channel in the
receiver’s local system and to measure the actual
output D of the noisy channel and the emulated
one D′ in the maximally entangled basis. When the
desired measurement outcome is obtained, all the
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Figure 1: A diagram of the generalized YK de-
coder in our setting. The decoder is indicated
by the dashed box. In the decoding protocol with
post-selection, the QSVT-based FPAA is replaced
by the measurement M on DD′ and the par-
tial trace over E′.

“information” in D is transferred to D′ and then,
the effect of the noise is canceled by the emulated
inverse that was applied in advance. As a result,
under the condition that the post-selection is suc-
cessful, the MES between R and R′ is obtained, i.e.,
the recovery of quantum information is succeeded.
In fact, we can show that the fidelity between

the MES ΦRR′
and the state after the post-selection

ζRR′
succ is given by

F
(
ζRR′
succ ,Φ

RR′)
=

1

dA
2H2(RE)ω−H2(E)ω . (2)

We observe from Eq. (2) that, if ωRE ≈ πR ⊗
ωE , which is nothing but the decoupling condi-
tion, F

(
ζRR′
succ ,Φ

RR′) ≈ 1. Hence, when the de-
coupling condition is satisfied, this protocol suc-
ceeds in recovering quantum information. However,
the success probability of this protocol is psucc =
2−H2(RE)ωdB/dD. As this is exponentially small
even if the decoupling is satisfied, this protocol fails
to recover quantum information in most cases.
The key of our construction is to use the QSVT-

based FPAA algorithm [20–22] instead of the mea-
surement M. By doing so, one can amplify the
success probability and achieve a decoding quantum
channel without post-selection. More concretely, we
replace the step 3 in the above protocol with

3’. The QSVT-based FPAA algorithm is applied
on DD′E′R′, which is characterized by the
number t of repetitions of certain unitaries
with phases ϕ ∈ (−π, π]t.

See also Fig. 1. By taking the partial trace over
DD′E′, the generalized YK decoder DDB′→R′

t,ϕ is
constructed. Note that the value of ϕ are indepen-
dent of N ◦E and there exist classical algorithms to
compute that in running time O

(
poly(t)

)
[30–34]

We emphasize that the QSVT-based FPAA is cru-
cial. If we use the AA algorithm as in the original
YK approach, decoding fails due to an issue related
to the ‘overcook’ problem of the AA algorithm. Sim-
ilarly, the original FPAA algorithm [35–37] does not
work, which is elaborated on in our paper [29].
Our main result about the generalized YK de-

coder is the following. It reveals the trade-off be-
tween the circuit complexity C(Dt,ϕ) and the recov-
ery error ∆(Dt,ϕ|N ◦ E).

Theorem 1 Let ωRE be the state on the reference
system R and the environment E of the encoder
E and the noisy channel N , and λmin(ω

RE) be the
non-zero minimum eigenvalue of ωRE. Suppose that
there exists a state τE such that ∥ωRE−πR⊗τE∥1 ≤
ϵ. For any δ ∈ (0, 1] and any odd integer t satisfying

t = Ω

(√
dD

dBλmin(ωRE)
log(1/δ)

)
, (3)

there exist ϕ ∈ (−π, π]t such that the recovery error
∆(Dt,ϕ|N ◦ E) is given by

∆(Dt,ϕ|N ◦ E) ≤
√
ϵ+

√
2δ, (4)

and its circuit complexity C
(
Dt,ϕ

)
satisfies

C
(
Dt,ϕ

)
= O

(
t
(
C(VN◦E) + log(d2DdE/dB)

))
, (5)

where C(VN◦E) is a circuit complexity of the Stine-
spring isometry of N ◦ E.

In Theorem 1, the recovery error ∆(Dt,ϕ|N ◦ E)
depends on δ as well as the degree of decoupling ϵ.
As the circuit complexity is proportional to log(1/δ)
(see Eqs.(3) and (5)), we can take δ exponentially
small without significantly increasing the complex-
ity. Thus, the generalized YK decoder can recover
quantum information with small error if the decou-
pling condition is satisfied.
We observe that the dominant term in the com-

plexity is t which arises from the QSVT-based FPAA
algorithm. As Eq. (3) is known to be an optimal or-
der for implementing the AA algorithm [21, 36, 38],
the quantum circuit for the generalized YK de-
coder cannot be significantly improved. Note that
the number t in Eq. (3) depends on λmin(ω

RE).
When the decoupling condition is satisfied, we have
λmin(ω

RE) ≈ λmin(τ
E)/dA. Hence, the complex-

ity depends on the minimum non-zero eigenvalue
of the state in the environment. For instance,
if τE is pure and the CMS, we have the com-
plexity with t = Θ

(√
dAdD/dB log(1/δ)

)
and t =

Θ
(√

dAdDdE/dB log(1/δ)
)
, respectively.
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Recovering quantum information from a noisy quantum system is one of the central challenges
in quantum information science and fundamental physics. The key to this goal is explicitly con-
structing a decoder. In this paper, we provide two explicit decoding quantum circuits that are
both capable of recovering quantum information when a decoupling condition is satisfied, i.e., when
quantum information is in principle recoverable. The decoders are constructed by using the fixed-
point amplitude amplification algorithm based on the quantum singular value transformation, which
significantly extends an approach by Yoshida and Kitaev in a specific noise model to general situ-
ations. We also show that the proposed decoding circuits reduce the computational cost compared
to a previously known explicit decoder. Our constructions not only show an intriguing intersection
between decoders and quantum algorithms but also reveal the power of an algorithmic approach to
recovering quantum information.

I. INTRODUCTION

Recovering quantum information from a noisy sys-
tem is crucial for transmitting quantum information over
noisy quantum channels. A standard technique is to use
quantum error correction, in which quantum informa-
tion is encoded before the system experiences noise and
is decoded afterward. Recovery of quantum information
is also of significant importance in fundamental physics
to understanding complicated quantum many-body phe-
nomena. By analyzing the recovery of quantum informa-
tion, various novel insights into the black hole informa-
tion paradox [1–3], the AdS/CFT correspondence [4, 5],
topological orders [6–8], and quantum chaos [9–11], have
been obtained.

The recovery of quantum information is commonly in-
vestigated by the decoupling approach [12–14]. Decou-
pling refers to the situation, where the environmental
system of the noisy channel is decoupled from the ref-
erence system that keeps track of the quantum informa-
tion, and is necessary and sufficient for the quantum in-
formation to be recoverable. While decoupling provides
a useful theoretical approach to the problem of informa-
tion recovery without referring to the recovery process,
from a practical viewpoint, it is important to explicitly
construct a recovery protocol, or a decoder. An explicit
decoder also advances the understanding of the recovery
process of quantum information.

Only a handful of results about explicit constructions
of a decoder are known so far [15–17]. A standard ex-
plicit decoder is the Petz recovery map [18, 19]. While
the map was originally introduced in a different context,

∗ takeru-utsumi@g.ecc.u-tokyo.ac.jp
† yoshifumi.nakata@yukawa.kyoto-u.ac.jp

it is known that the map is applicable to recovering quan-
tum information, resulting in a close-to-optimal recovery
error [15]. However, a quantum circuit for implement-
ing the Petz recovery map requires high computational
complexity [20]. Hence, simplifications of the Petz re-
covery map, focusing on its use as a decoder, have been
studied [21, 22].

Another explicit decoder is the Yoshida-Kitaev (YK)
decoder [16], which is capable of decoding the so-called
Hayden-Preskill (HP) protocol [1]. The HP protocol is a
toy model of the qubit-erasure noise with a specific uni-
tary encoding, and has a good interpretation in the black
hole information paradox. The YK decoder can decode
the HP protocol, and its quantum circuit is explicitly
given. The decoder is also of interest from an algorithmic
perspective: first a recovery protocol with post-selection
by measurement is considered, and then a decoder is con-
structed by replacing the measurement with a non-trivial
use of the amplitude amplification (AA) algorithm [23–
25], which is for amplifying the success probability. The
YK decoder, however, strongly relies on the specific set-
ting of the HP protocol. It is highly non-trivial if such
a two-step construction of a decoder using a AA-type
algorithm can be extended to more general situations.

In this paper, we explore the use of the AA-type al-
gorithms for recovering quantum information and pro-
vide two explicit decoding quantum circuits. One is
a generalization of the YK decoder, in which we cru-
cially modify the decoder by replacing the AA algorithm
with the fixed-point amplitude amplification (FPAA) al-
gorithm based on the quantum singular value transfor-
mation (QSVT) [26–28]. Due to the flexibility of the
QSVT-based FPAA algorithm, the issues that arise with
the AA algorithm can be circumvented, and the gener-
alized YK decoder is applicable to general encoding and
noisy channels. The other is a simplification of the Petz
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recovery map, which we call a Petz-like decoder. Simi-
larly to the generalized YK decoder, the simplification is
achieved by using the QSVT-based FPAA algorithm, and
the Petz-like decoder is also applicable to any situation.

We show that both decoders have high recovery per-
formance in the sense that they succeed in recovering
quantum information if the decoupling condition is satis-
fied. As the decoupling is a necessary and sufficient con-
dition for the information recovery, this immediately im-
plies that quantum information can be recovered by the
proposed decoders whenever it is in principle recoverable.
Important applications of the decoders are to the inde-
pendent and identically distributed (i.i.d.) asymptotic
setting. In the i.i.d. setting, both decoders with suit-
ably chosen encoders achieve the quantum capacity [29–
31]. This is also true when the sender and the receiver
share entanglement in advance. This situation is called
an entanglement-assisted setting. The proposed decoders
with suitable encoders achieve the entanglement-assisted
quantum capacity [32–34] as well.

Taking advantage of our explicit constructions, we also
investigate the circuit complexity of the generalized YK
and the Petz-like decoders. While the complexity de-
pends on various factors, the dominant factor is in gen-
eral the complexity for implementing the QSVT-based
FPAA algorithm. We provide a simple criterion for the
generalized YK decoder to have smaller complexity than
the Petz-like decoder. The criterion is in terms of the
number of qubits of the encoded quantum information,
the amount of pre-shared entanglement, the number of
output qubits of the noisy channel, and also the num-
ber of Kraus operators of the channel. It turns out that
the generalized YK decoder typically has less complexity
when more entanglement is shared in advance. We ad-
ditionally compare the complexity with the algorithmic
implementation of the original Petz recovery map and
show that the proposed decoders have smaller complex-
ity in a large parameter region.

This paper is organized as follows. We start with pre-
liminaries in II. Our main results are summarized in III.
The proofs of our results are provided in IV. We con-
clude with a summary and outlooks in V, and provide a
derivation of a technical statement in Appendix A.

II. PRELIMINARIES

We here introduce our notation and our setting. We
then briefly overview an implicit decoder commonly used
in the decoupling approach. We also provide quick
overviews of the Petz recovery map and the YK decoder.

A. Notation

Throughout this paper, we denote by S(H) a set of all
quantum states on a Hilbert space H. While we usually

denote a pure state by |φ⟩, the corresponding density op-
erator is sometimes described as φ, namely, φ = |φ⟩⟨φ|.
We use a superscript to represent a system on which op-
erators and maps are defined. For instance, an operator
on a system AB and a superoperator from A to B are de-
noted by φAB and T A→B , respectively. The superscript
is omitted when it is clear from the context. A reduced
density operator on A of φAB is described as φA, i.e.,
φA = TrB φ

AB , where TrB is the partial trace over B.
For an operator M , we denote the complex conjugate

and the transpose in a given basis by M∗ and MT, re-
spectively, and denote the Hermitian conjugate by M†.
The identity operation is denoted by I and id for opera-
tors and superoperators, respectively. We often omit the
identity operators and superoperators for simplicity.

A Hilbert space, such as HA′
or HÂ, is isomorphic to

HA: it has the same dimension, and we fix the same
basis as HA. This applies not only to the system A, but

also to any systems, such as HB′
and HĈ . We write the

dimension of a Hilbert space H as d, and for instance,
denote by dA the dimension of HA.

We omit the symbol of the tensor product between
vectors and denote it as |φ⟩ ⊗ |ψ⟩ = |φ⟩|ψ⟩, for simplic-
ity, when it is clear from the context. We denote by |Φ⟩
a maximally entangled state (MES) defined in the or-
thonormal computational basis. For instance, the MES
between A and Â is

|Φ⟩AÂ =
1√
dA

dA∑
i=1

|i⟩A|i⟩Â, (1)

where {|i⟩}i is the computational basis in A and Â, re-
spectively. Note that a MES in an arbitrary basis can be
transformed into the MES in the computational basis by
applying an appropriate unitary to one of the local sys-
tems. We also denote the completely mixed state (CMS)
by π, such as πA = IA/dA.
The circuit complexity of T is denoted by C(T ). It is

the minimum total number of one- and two-qubit unitary
gates required to perform T with ancillae polynomial in
qubits.
For a matrix M , the trace norm is defined by ∥M∥1 :=

Tr
[√
M†M

]
. The trace norm has the contraction prop-

erty such that for φAB ∈ S(HAB) and ψAB ∈ S(HAB),

∥φA − ψA∥1 ≤ ∥φAB − ψAB∥1. (2)

The fidelity between φ ∈ S(H) and ψ ∈ S(H) is defined

as F(φ,ψ) :=
∥∥√φ√ψ∥∥2

1
. The fidelity is rephrased using

the purified states of φ and ψ as

F(φA, ψA) = max
V

∣∣⟨φ|ACV B→C |ψ⟩AB
∣∣2, (3)

where the maximization is taken over all isometries
V B→C . Here, we supposed dC ≥ dB without loss of gen-
erality. This is called the Uhlmann’s theorem [35]. The
trace norm and the fidelity are related by the Fuchs-van
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time

？

MES

Pre-shared -ebit entanglement Receiver 

Sender 

Encoder

Noise 

Decoder 

MES

FIG. 1. A diagram of our setting. Time flows from left to right. The boxes represent quantum channels. The purpose of the
sender and the receiver is to transmit quantum information via noisy channel NC→D, which is equivalent to preserving the
maximally entangled state between A and R. They may share (log dB)-ebit entanglement in advance, which is used during the
encoding and decoding operations.

de Graaf inequalities [36, 37]

1−
√

F(φ,ψ) ≤ 1

2
∥φ− ψ∥1 ≤

√
1− F(φ,ψ). (4)

We use the quantum collision entropy. For φA ∈ S(HA)
it is given by

H2(A)φ = − log Tr[(φA)2]. (5)

This satisfies 0 ≤ H2(A)φ ≤ dA.

B. Our setting

We consider the following setting. Suppose that a
sender aims to transmit (log dA)-qubit quantum infor-
mation using a given noisy channel NC→D and possibly
a pre-shared entanglement |Φ⟩BB′

, where B and B′ are
with the sender and receiver, respectively. When they
share no entanglement, we set dB = 1. The sender en-
codes the system A with B using an encoding channel
EAB→C . The qubits in C are then transmitted to the
receiver through the noisy channel NC→D. The receiver
obtains the output system D of the noisy channel and
applies a recovery channel, i.e., a decoder DDB′→R′

onto
the system DB′. For simplicity, we denote by FAB→D

the composite channel NC→D◦ EAB→C . The main con-
cern in this paper is to explicitly construct a decoder
DDB′→R′

for a given channel FAB→D. We assume that
the descriptions of the encoding map E and the noisy
channel N are known, so that the decoder can depend
on their details.

Following the convention, we introduce a reference sys-
tem R isomorphic to A with dR = dA, and prepare the
systems A and R to be in a MES |Φ⟩AR. We denote by

ωRDB′
the state just before the decoder is applied:

ωRDB′
:= FAB→D(ΦAR ⊗ ΦBB′

). (6)

See also Fig. 1. The recovery error of quantum informa-
tion by a decoder DDB′→R′

in this protocol is defined
as [38]

∆(D|F) :=
1

2
∥ΦRR′

−DDB′→R′
(ωRDB′

) ∥1. (7)

C. Decoupling and the Uhlmann decoder

A standard approach to evaluating the recovery error
is to estimate how much quantum information is leaked
to an “environment” of the noisy channel. This is specif-
ically quantified by the degree of decoupling.
We denote by V AB→ED

F a Stinespring isometry of the
channel FAB→D = NC→D◦ EAB→C by an environment
E. That is, the channel FAB→D is represented as

FAB→D( · ) = TrE
[
V AB→ED
F ( · )(V AB→ED

F )†
]
. (8)

For convenience, we also introduce a purified state of
ωRDB′

in Eq. (6) as

|ω⟩REDB′
:= V AB→ED

F |Φ⟩AR|Φ⟩BB′
. (9)

The following is called the decoupling approach.

Proposition 1 (Decoupling approach [12–14]). Suppose

|ω⟩REDB′
is a pure state. If there exists a state τE such

that ∥ωRE − πR ⊗ τE∥1 ≤ ϵ, then there exists a CPTP

map DDB′→R′

Uhlmann that satisfies

1

2
∥ΦRR′

−DDB′→R′

Uhlmann (ω
RDB′

) ∥1 ≤
√
ϵ. (10)

The proof of this proposition follows from Eqs. (2), (3),
and (4). See, e.g., [12–14]. We refer to the decoder
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DUhlmann as the Uhlmann decoder. The condition that
there exists τE such that

∥ωRE − πR ⊗ τE∥1 ≤ ϵ, (11)

is known as a decoupling condition. While the decoupling
approach implicitly indicates the existence of a decoder
when the decoupling condition is satisfied, it does not
provide an explicit procedure to construct a decoder. For
this reason, all the details about decoders, such as the
computational cost for the construction, are open.

The decoupling approach is particularly strong in the
study of the maximum possible rate for transmitting
quantum information. Let N be the number of uses of
a noisy channel NC→D to transmit quantum informa-
tion. The transmission rate for a fixed N is defined by
RN := 1

N log dA. An asymptotically-achievable rate is
then defined by R := limN→∞ RN under the assumption
that there exists a sequence of pairs of an encoder and
a decoder such that the recovery error tends to zero as
N → ∞. The supremum of asymptotically-achievable
rates for the channel is called the quantum capacity
Q(N ). It is known by the technique of the random encod-
ing that if R < Q(N ), there exists an isometric encoder
that asymptotically achieves decoupling, i.e., ϵ→ 0 [39].
Hence, the recovery error of the Uhlmann decoder also
asymptotically tends to zero. That is, the Uhlmann de-
coder with suitably chosen encoders achieves the quan-
tum capacity.

D. Petz recovery map

One of the explicit decoders we use is the Petz recovery
map [18, 19], which has been a useful tool in quantum
information theory and has been intensely studied [33,
40]. The Petz recovery map is developed from a quantum
analog of Bayes theorem based on the idea that there can
be a reverse channel that recovers an effect of noise. The
general form of the Petz recovery map is determined by
a map T and a reference state σ, and given by

PB→A
σ, T ( · )

= (σA)
1
2 (T A→B)†

(
[T (σA)]−

1
2 ( · )[T (σA)]−

1
2

)
(σA)

1
2 ,

(12)

where (T A→B)† is the adjoint map of T A→B with
respect to the Hilbert-Schmidt inner product. The Petz
recovery map is composed of three CP maps:

( · ) → [T (σA)]−
1
2 ( · )[T (σA)]−

1
2 , (13)

( · ) → (T A→B)†( · ), (14)

( · ) → (σA)
1
2 ( · )(σA)

1
2 . (15)

It achieves the perfect recovery for the reference state σA,
i.e., PB→A

σ,T (T A→B(σA)) = σA.

Λ

FIG. 2. A diagram of the Petz recovery map applied to our
setting. The dash-dotted box corresponds to the Petz recov-

ery map Pπ,G given in Eq. (19). The boxes of (ωB′D)−1/2 and

(πR′
)1/2 represent that ( · ) → (ωB′D)−1/2( · )(ωB′D)−1/2 and

( · ) → (πR′
)1/2( · )(πR′

)1/2, respectively. The double vertical lines
represent that the qubits of that system are traced out.

For the recovery error of the Petz recovery map, the
following is known, stating that, if there exists a decoder
that recovers information with a small error, the Petz
recovery map also recovers it with a small error.

Proposition 2 (Barnum-Knill’s theorem [15]). For any
state ρA and any channel T A→B, it holds that

F
(
ρAR,PB→A

ρ,T ◦ T A→B(ρAR)
)

≥
[
max
R

F
(
ρAR,RB→A ◦ T A→B(ρAR)

)]2
, (16)

where ρAR = |ρ⟩⟨ρ|AR is a purified state of ρA. The
maximum is taken over all quantum channels RB→A.

To apply the Petz recovery map to our setting, let F
be the system such that ABF = ED, and a unitary UL

F
be defined by

V AB→ED
F = UL

F |0⟩F , (17)

where L = ABF = ED. Using this unitary, Eq. (8) is
rephrased as

FAB→D( · ) = TrE
[
UL
F ( · ⊗ |0⟩⟨0|F )(UL

F )
† ]. (18)

We use GA→DB′
( · ) := FAB→D( · ⊗ΦBB′

) and fix the
reference state to be the CMS πA. The explicit form of
the Petz recovery map in our setting is then given by

PDB′→R′

π,G (ωRDB′
)

= dE(π
R′
)1/2⟨Φ|B̂B′

⟨0|F̂ (U L̂
F )

†[(ωDB′
)−1/2ωRDB′

(ωDB′
)−1/2 ⊗ ΦÊE′]

UL
F |Φ⟩B̂B′

|0⟩F̂ (πR′
)1/2,

(19)

where L̂ is equal to R′B̂F̂ = ÊD. See also the diagram
in Fig. 2.
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By combining Proposition 2 with Proposition 1 and
the Fuchs-van de Graaf inequalities, we derive the fol-
lowing statement, which relates the recovery error of the
Petz recovery map PDB′→R′

π,G against FAB→D to the de-

coupling condition: if there exists a state τE such that
∥ωRE − πR ⊗ τE∥1 ≤ ϵ, then the recovery error of the
Petz recovery map in the above setting is given by

∆(Pπ,G | F ) ≤ 2 ϵ1/4. (20)

As discussed in II C, the decoupling is asymptotically
achieved by an appropriately chosen encoder. Since the
upper bound on the recovery error of Pπ,G tends to zero
with such an encoder, hence, the Petz recovery map also
archives the quantum capacity.

An algorithmic implementation of the Petz recovery
map using the QSVT is provided in [20]. Using the algo-
rithm, one can obtain an explicit decoder. However, its
circuit complexity is generally inefficient.

E. Yoshida-Kitaev decoder in the Hayden-Preskill
protocol

The YK decoder [16] was proposed for recovering quan-
tum information in the toy model of the black hole infor-
mation paradox, i.e., the HP protocol [1]. The HP pro-
tocol formulates the information paradox based on the
qubit-erasure noise with a restriction that the encoding
operation is given by a unitary dynamics of a black hole,
typically assumed to be sufficiently random. More specif-
ically, the encoder E and the noisy channel N in Fig. 1
are given by a random unitary and the partial trace over
a subsystem E of C, respectively, where AB = C. It is
further assumed that the receiver, i.e., the person who
applies a decoder, knows what unitary was applied and
which qubits were traced over.

The YK decoder provides an explicit algorithm for de-
coding the HP protocol, and is based on the idea of “emu-
lating” the inverse dynamics of the encoding unitary and
the erasure noise in the receiver’s local system. The re-
ceiver then measures the output of the erasure noise and
the corresponding “emulated” output in the maximally-
entangled basis. If a desired outcome were obtained, the
emulated output becomes as if it were in the quantum
state same as the state of the actual input of noise. In
this case, the effect of the erasure noise is canceled by
the emulated inverse in the local system, and the receiver
succeeds in recovering quantum information. While this
protocol does not succeed with certainty as it requires
post-selection, the probability of obtaining the desired
outcome can be amplified by a non-trivial use of the AA
algorithm, completing the construction of the YK de-
coder.

Although the YK decoder provides an insight that the
two-step approach, i.e., the approach of considering the
protocol with post-selection and combining it with the
AA algorithm, may be useful for constructing a decoder,
the reason for the decoder to work strongly relies on the

specific properties of the HP protocol. In particular, it is
crucial that, when the decoupling condition is met, the
unitary encoding and the erasure noise make the eigen-
values of the quantum state on the reference R and the
environment E of the noise completely uniform, namely,
ωRE ≈ πR ⊗ πE . Without this uniform property, the
AA algorithm in the YK decoder does not work. Since
the uniform condition is not satisfied for general encod-
ing operations and noises, extending the YK decoder to
a general situation is highly non-trivial. We comment on
this point in more detail in the proof of our main result
in IVA2.

III. MAIN RESULTS

In this section, we summarize our results. We provide
explicit quantum circuit constructions of two decoders
and evaluate their performance. One is the generalized
Yoshida-Kitaev decoder presented in IIIA, and the other
is the Petz-like decoder given in III B. We investigate the
complexity of the decoders in III C and IIID.
Both decoders are constructed by the two-step ap-

proach similar to the YK decoder: we first consider a
protocol with post-selection and then transform the pro-
tocol into the one without post-selection. Unlike the YK
decoder, however, we use the QSVT-based FPAA algo-
rithm [26–28] instead of the standard AA algorithm. The
QSVT-based FPAA algorithm is a slight extension of the
standard FPAA algorithm [41–43] and is crucial for cir-
cumventing the issues arisen when the standard AA al-
gorithm is used.

A. Generalized Yoshida-Kitaev decoder

We below propose a generalization of the YK decoder.
In IIIA 1, we investigate a decoding protocol with post-
selection that works for general encoding maps and noisy
channels. We then show in IIIA 2 that the protocol can
be transformed into a decoder using the QSVT-based
FPAA algorithm.

1. Decoding protocol with post-selection

The decoding protocol with post-selection consists of
the following three steps. See Fig. 3 as well.

1. The receiver prepares ancilla qubits in the system
A′R′, and then generates a MES ΦA′R′

, which is a
copy of the MES ΦAR.

2. The receiver applies an isometry (V A′B′→E′D′

F )∗

onto A′B′, where V AB→ED
F is a Stinespring isome-

try of FAB→D. The complex conjugate is taken in
the computational basis.
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Λ

Λ

FIG. 3. A diagram of the protocol with post-selection for the
generalized YK decoder. The double vertical lines represent
that the qubits of that system are traced out. The dash-

dotted box corresponds to the isometry map VB′→D′E′R′
de-

fined in Eq. (21).

3. The receiver performs a binary measurement
M := {|Φ⟩⟨Φ|DD′

, IDD′− |Φ⟩⟨Φ|DD′} on DD′.
When the former result of the measurement M is
obtained, this protocol succeeds.

In this protocol, all the systems with a prime, i.e., A′, B′

R′, D′, and E′, in addition to the output system D of
the channel F are in the hands of the receiver. Hence,
the above protocol can be executed by the receiver.

The Stinespring dilation V AB→CD
F in the step 2 is not

uniquely determined from a given channel FAB→D: the
dilation has a freedom of applying additional isometries
on the environment E. However, the protocol works for
any choice of V AB→CD

F . Hence, the receiver can choose
arbitrary Stinespring dilation of the channel FAB→D.

For future use, we denote the operation up to the step
2 of the above protocol by an isometry map VB′→D′E′R′

.
That is,

VB′→D′E′R′
( · )

:= (V A′B′→E′D′

F )∗( · ⊗ΦA′R′
)(V A′B′→E′D′

F )T.
(21)

We denote by psucc and ζsucc the success probability and
the output state with the success in the step 3, respec-
tively. The reduced state on RR′ of ζsucc is given by

ζRR′

succ = TrDD′E′

[ 1

psucc
|Φ⟩⟨Φ|DD′

VB′→D′E′R′
(ωRDB′

)
]
.

(22)

In IVA1, we compute psucc and the fidelity between ζRR′

succ

and ΦRR′
, and then obtain

psucc =
dB
dD

2−H2(RE)ω , (23)

F
(
ζRR′

succ ,Φ
RR′)

=
1

dA
2H2(RE)ω−H2(E)ω . (24)

This implies that if ωRE decouples as ωRE≈ πR⊗ωE , the
fidelity after post-selection becomes F

(
ζRR′

succ ,Φ
RR′) ≈ 1.

Namely, the recovery of the MES is succeeded if the mea-
surement is successful under the decoupling is satisfied.

2. Construction of the generalized YK decoder

We now explain how the above decoding protocol with
post-selection can be transformed into a decoder without
post-selection by the QSVT-based FPAA algorithm. The
QSVT is a quantum algorithm described by a unitary
Gt,ϕ with parameters ϕ = (ϕ1, ϕ2, . . . , ϕt) ∈ (−π, π ] t
and t ∈ N. It is to apply a polynomial transformation
to the singular values of a linear operator embedded in
a submatrix of the unitary [26–28]. The polynomial is
determined by the phase sequence ϕ, and the integer t
which corresponds to the degree of the polynomial. The
key point of the QSVT-based FPAA algorithm is that,
by choosing an appropriate t and ϕ for approximating
the sign function, we amplify the success probability of
the measurement M in the step 3 to nearly unity.
To elucidate the structure of the unitary Gt,ϕ in our

setting, we introduce two projectors:

ΠD′E′R′

1 := (V A′B′→E′D′

F )∗

( IB
′
⊗ |Φ⟩⟨Φ|A

′R′
)(V A′B′→E′D′

F )T, (25)

ΠDD′

2 := |Φ⟩⟨Φ|DD′
, (26)

and unitaries:

Wm(θ) := eiθ(2Πm−I ), (27)

where m = 1, 2 and θ ∈ (−π, π ]. Let WDD′E′R′

t,ϕ be a
unitary given by

WDD′E′R′

t,ϕ

:=W2(ϕt)
DD′

(t−1)/2∏
j=1

W1(ϕ2j)
D′E′R′

W2(ϕ2j−1)
DD′

.

(28)

The unitary GDD′E′R′H
t,ϕ

is then defined by

GDD′E′R′H
t,ϕ :=WDD′E′R′

t,ϕ ⊗ |+⟩⟨+|H

+WDD′E′R′

t,−ϕ ⊗ |−⟩⟨−|H ,
(29)

where H is a single-qubit auxiliary system.
When we construct the generalized YK decoder, the

measurement step 3 in the previous protocol is replaced
with the application of Gt,ϕ as follows.

3’. The receiver prepares an auxiliary single-qubit
state |0⟩H in a systemH, and then applies a unitary

GDD′E′R′H
t,ϕ , with appropriate t and ϕ to approxi-

mate the sign function.

All together, the decoder is given by DDB′→R′

t,ϕ as

DDB′→R′

t,ϕ ( · )

:= TrDD′E′H

[
GDD′E′R′H

t,ϕ

(
VB′→D′E′R′

( · )

⊗ |0⟩⟨0|H
)
(GDD′E′R′H

t,ϕ )†
]
,

(30)
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Λ Λ

⋯

⋯

⋯

⋯

⋯

FIG. 4. A diagram of the generalized YK decoder. Open circles imply that the gates are controlled by |0⟩, while closed circles
indicate the ones controlled by |1⟩. The gate H is the single-qubit Hadamard gate. The red dashed and green dotted boxes
correspond to the generalized YK decoder Dt,ϕ defined in Eq. (30), and the unitary Gt,ϕ by the QSVT-based FPAA algorithm
given in Eq. (29), respectively.

where VB′→D′E′R′

is defined in Eq. (21). See Fig. 4 as
well.

The following theorem holds.

Theorem 3 (Performance of the generalized YK de-
coder). For a given channel FAB→D, let F̄AB→E be a
complementary channel of FAB→D, ωRE be given by

ωRE = F̄AB→E(ΦAR ⊗ πB), (31)

and λmin(ω
RE) be the non-zero minimum eigenvalue of

ωRE. Suppose that there exists a state τE such that
∥ωRE − πR ⊗ τE∥1 ≤ ϵ. For any δ ∈ (0, 1 ], there exist
t ∈ N and ϕ = (ϕ1, ϕ2, . . . , ϕt) ∈ (−π, π ] t such that the
recovery error ∆(Dt,ϕ | F ) of the generalized YK decoder

DDB′→R′

t,ϕ
is given by

∆(Dt,ϕ | F ) ≤
√
ϵ+

√
2δ, (32)

where t is an odd integer satisfying

t = Θ

(√
dD

dBλmin(ωRE)
log(1/δ)

)
. (33)

The circuit complexity of the decoder DDB′→R′

t,ϕ
is

C
(
Dt,ϕ

)
= O

(
t
(
C(UF ) + log(d2DdE/dB)

))
, (34)

and the number of ancilla qubits is O
(
log(d2DdE/dB)

)
.

Here, C(UF ) is a circuit complexity of a unitary UL
F such

that UL
F |0⟩F is a Stinespring isometry of FAB→D, and

L = ABF = ED.

Theorem 3 shows in Eq. (32) that the recovery error is
dependent on ϵ and δ. While ϵ is an upper bound on the

degree of decoupling and depends only on the channel F ,
δ can be chosen arbitrarily small. One may hence think
that the limit δ → 0 should be taken. This is true if
the recovery error is the only concern. However, there
is a trade-off relation between the recovery error and the
circuit complexity. The parameter δ is to characterize the
trade-off. In fact, Eqs. (33) and (34) show that the circuit
complexity of the generalized YK decoder depends on δ,
such as log(1/δ). Hence, the complexity increases if one
wishes to achieve small errors. This trade-off is naturally
expected due to the nature of the AA-type algorithm.
Note that the dependence of the complexity on 1/δ is
only logarithmic, and so, exponentially small δ is feasible.

One needs to know the value of each ϕj for j =
1, 2, . . . , t to implement the generalized YK decoder,
which requires additional computational cost, apart from
the circuit complexity. However, the computational cost
for this is not high since the values are independent of
F and there exist classical algorithms to compute such
ϕj in running time O

(
poly(t)

)
[44–48].

As FAB→D = NC→D◦ EAB→C , Theorem 3 states that
when the encoding map E is appropriately chosen against
a given noise N , or equivalently when the encoder E is
chosen to satisfy the decoupling condition with small er-
ror, then the generalized YK decoder achieves a small
error in recovering quantum information. As explained
in II C, if the rate is below the quantum capacity, there
exists such a good encoder that achieves the decoupling
condition with a vanishing ϵ in the i.i.d. asymptotic limit.
Hence, by setting δ in Theorem 3 to the values vanishing
in the i.i.d. asymptotic limit, the generalized YK de-
coder can be used as a decoder that achieves the quan-
tum capacity, which can be entanglement-non-assisted or
-assisted. In this sense, the generalized YK decoder is a
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capacity-achieving decoder.

We make a couple of comments on the complexity
C
(
Dt,ϕ

)
. First, as the number t depends on λmin(ω

RE),
the receiver needs to know that value. When the de-
coupling condition is satisfied with small ϵ, the minimum
eigenvalue λmin(ω

RE) ≈ λmin(τ
E)/dA, where λmin(τ

E) is
minimum eigenvalue of the state τE in the environment.
Since the number t is proportional to [λmin(τ

E)]−1/2,
the larger λmin(τ

E) is, the smaller the complexity be-
comes. In the case that τE is a pure state, for in-
stance, λmin(τ

E) = 1. We then have a minimal com-

plexity with t = Θ
(√

dAdD/dB log(1/δ)
)
. On the other

hand, when τE is the CMS, λmin(τ
E) = 1/dE and then

t = Θ
(√

dAdDdE/dB log(1/δ)
)
= Θ

(
dA

√
dF log(1/δ)

)
.

From these observations and Eqs. (33) and (34), the
number t is dominant in the complexity unless C(UF ) is
exponentially large. The number t arises from the QSVT-
based FPAA algorithm and is known to be an optimal
order [27, 42, 49]. Hence, the quantum circuit imple-
mentation for the generalized YK decoder given in Fig. 4
cannot be significantly improved. Note that, while t is
independent of the choice of the dilation of FAB→D, the
whole complexity is dependent on the choice due to the
factor C(UF ) + log(d2DdE/dB) in Eq. (34). Hence, using
the unitary UL

F which minimizes C(UF ) + log(d2DdE/dB)
results in the smallest complexity.

Another important factor to be noted in the complex-
ity is

√
dD/dB , where dD is the dimension of the output

of the noisy channel NC→D and dB is that of the pre-
shared entanglement. In the simplest case, where the
encoding map is given by a unitary on AB that is set to
the same size as the input system C of the noisy channel
NC→D, we have

√
dD/dB =

√
dAdD/dC . In this case,

the complexity depends on dA and the ratio dD/dC be-
tween the dimensions of the input C and the output D
of the noisy channel. If the encoding is non-unitary, this
is not the case, and one may expect that the complex-
ity could be decreased by increasing dB . This might be
done by, e.g., factitiously adding more entanglement at
the outset, and by discarding it in the encoding process.
This trick, however, does not change the total complex-
ity due to the other factor [λmin(ω

RE)]−1/2. As |ω⟩REDB′

is pure, λmin(ω
RE) = λmin(ω

DB′
), where λmin(ω

DB′
) is

non-zero minimum eigenvalue of ωDB′
. This implies that,

even if we factitiously add extra entanglement of dimen-
sion dextra for increasing dB , the value of λmin(ω

DB′
)

changes by factor 1/dextra, which cancels the increase of
dB in the complexity.

B. Petz-like decoder

Using a similar technique, we can construct another
decoder, which is thought of as a simplification of the
Petz recovery map. We call this decoder the Petz-like
decoder [50]. We first introduce a decoding protocol with
post-selection in III B 1. Combining it with the QSVT-

FIG. 5. A diagram of the protocol with post-selection for
the Petz-like decoder. The dash-dotted box represents the
isometry map Ṽ in Eq. (35).

based FPAA algorithm, we explicitly construct the Petz-
like decoder in III B 2.

1. Decoding protocol with post-selection

The decoding protocol with post-selection is as follows.
See Fig. 5 as well. Similarly to the generalized YK de-
coder, we denote a Stinespring isometry of FAB→D by
UL
F |0⟩F as given in Eqs. (17) and (18). Note that the

protocol works for any choice of UF .

1. The receiver prepares ancilla qubits in the system

ÊE′, and then generates a MES ΦÊE′
.

2. The receiver applies the unitary (U L̂
F )

†, where L̂ =

R′F̂ B̂ = ÊD.

3. the receiver performs a binary measurement M̃ :=

{|0⟩⟨0|F̂ ⊗ |Φ⟩⟨Φ|B̂B′
, IF̂ B̂B′− |0⟩⟨0|F̂ ⊗ |Φ⟩⟨Φ|B̂B′}

on F̂ B̂B′. When the former result of the measure-
ment M̃ is obtained, this protocol succeeds.

In this protocol, all the systems with a prime or a hat,
and the channel output D, are in the hands of the re-

ceiver. Below, we denote by ṼD→E′R′F̂ B̂ an isometry
map of the operation up to the step 2. That is

ṼD→E′R′F̂ B̂( · ) := (U L̂
F )

†( · ⊗ΦÊE′
)U L̂

F . (35)

Conditioned by the success of the measurement M̃,
the reduced state on the system RR′ is given by

ζ̃RR′

succ = TrE′ÊB̂B′

[ 1

p̃succ
(|0⟩⟨0|F̂ ⊗ |Φ⟩⟨Φ|B̂B′

)

ṼD→E′F̂R′B̂(ωRDB′
)
]
,

(36)

where p̃succ is the success probability of M̃, and ωRDB′
=

FAB→D(ΦAR⊗ΦBB′
). It is straightforward to show that

p̃succ =
dA
dE

2−H2(RE)ω , (37)

F
(
ζ̃RR′

succ ,Φ
RR′)

=
1

dA
2H2(RE)ω−H2(E)ω . (38)
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See Sec. III B 1 for the details.
As mentioned before, UL

F is not uniquely determined
from FAB→D. Although this decoding protocol works
for any choice of UF , the decoding performance depends
on the choice, which is unlike the generalized YK de-
coder. In fact, the success probability p̃succ is inverse-
proportional to dE , which implies that it succeeds with
higher probability if a smaller environment of the channel
FAB→D is chosen. On the other hand, the fidelity is the
same as the generalized YK decoder. It is independent of
the choice of UF , and we have F

(
ζ̃RR′

succ ,Φ
RR′) ≈ 1 when

the decoupling is satisfied as ωRE ≈ πR ⊗ ωE .

2. Construction of the Petz-like decoder

We now use the QSVT-based FPAA algorithm to am-
plify the success probability of the measurement M̃. To
describe the corresponding unitary G̃t,ϕ, let us define two
projectors as

Π̃E′R′F̂ B̂
1 := (U L̂

F )
†( |Φ⟩⟨Φ|ÊE′

⊗ ID)U L̂
F , (39)

Π̃F̂ B̂B′

2 := |0⟩⟨0|F̂ ⊗ |Φ⟩⟨Φ|B̂B′
. (40)

By replacing Πm, in the definition ofWm(θ) (m = 1, 2) in
Eq. (27) and the following the constructions by (28) and

(29), with Π̃1 and Π̃2, we define the unitary G̃
E′R′F̂ B̂B′H
t,ϕ .

The Petz-like decoder D̃DB′→R′

t,ϕ is given by changing
the step 3 in the protocol with post-selection to the fol-
lowing. See Fig. 6 as well.

3’. The receiver prepares an auxiliary state |0⟩H in the

system H and applies the unitary G̃E′R′F̂ B̂B′H
t,ϕ .

With this modification, the Petz-like decoder is explicitly
given as

D̃DB′→R′

t,ϕ ( · )

:= TrE′F̂ B̂B′H

[
G̃E′R′F̂ B̂B′H

t,ϕ

(
ṼD→E′R′F̂ B̂( · )

⊗ |0⟩⟨0|H
)
(G̃E′R′F̂ B̂B′H

t,ϕ )†
]
.

(41)

The number t ∈ N and the phases ϕ ∈ (−π, π ] t are
chosen such that the QSVT realizes an approximation of
the sign function.

The following theorem provides the performance of the
Petz-like decoder.

Theorem 4 (Performance of the Petz-like decoder). For
a given channel FAB→D, let F̄AB→E be a complementary
channel of FAB→D, ωRE be

ωRE = F̄AB→E(ΦAR ⊗ πB), (42)

and λmin(ω
RE) be the non-zero minimum eigenvalue of

ωRE. Suppose that there exists a state τE such that
∥ωRE − πR ⊗ τE∥1 ≤ ϵ. For any δ ∈ (0, 1 ], there ex-
ist t ∈ N and ϕ = (ϕ1, ϕ2, . . . , ϕt) ∈ (−π, π ] t such that

FIG. 6. A diagram of the Petz-like decoder D̃t,ϕ, which is
given in Eq. (41), corresponds to the dash-dotted box. Note

that G̃t,ϕ consists of repeated applications of unitaries, which
is similar to Fig. 4.

the recovery error ∆( D̃t,ϕ | F ) of the Petz-like decoder

D̃DB′→R′

t,ϕ
is given by

∆( D̃t,ϕ | F ) ≤
√
ϵ+

√
2δ, (43)

where t is an odd integer t satisfying

t = Θ

(√
dE

dAλmin(ωRE)
log(1/δ)

)
. (44)

The circuit complexity of the decoder D̃DB′→R′

t,ϕ
is

C
(
D̃t,ϕ

)
= O

(
t
(
C(UF ) + log(dDd

2
E/dA)

))
, (45)

and the number of ancilla qubits is O
(
log(dDd

2
E/dA)

)
.

Here, C(UF ) is a circuit complexity of a unitary UL
F such

that UL
F |0⟩F is the Stinespring isometry of FAB→D, and

L = ABF = ED.

Theorem 4 has many similarities to Theorem 3 for the
generalized YK decoder, such as that the recovery er-
ror depends on the degree ϵ of the decoupling as well as
the parameter δ that characterizes the trade-off relation
between the recovery error and the circuit complexity of
the decoder. Also, from the upper bound on the recovery
error in Eq. (43), we observe that the Petz-like decoder
achieves quantum capacity in the asymptotic i.i.d. limit
if the encoder and δ are suitably chosen.
On the other hand, the complexity of the Petz-like de-

coder differs from that of the generalized YK decoder.
The number t, as well as the remaining part in C(D̃t,ϕ),
explicitly depends on dE . This implies that the com-
plexity depends on the choice of the dilation of FAB→D,
which reflects the aforementioned fact that the success
probability of the protocol with post-selection is depen-
dent on dE . Hence, it is desirable to use a dilated unitary
UL
F with a small environment E.
In the next section, we compare the complexities of

decoders and clarify the cases in which one decoder has

345



10

TABLE I. A table of notation that we use in III C. Instead of the dimensions, we use the numbers of qubits in the systems.

k The number of logical qubits in A: k = log dA.

nin The number of input qubits of the channel N : nin = log dC .

nout The number of output qubits of the channel N : nout = log dD

e The number of ebits shared by the sender and the receiver in advance: e = log dB

κ
The number of qubits in the environment E,

which is equal to the logarithm of #Kraus ops.: κ = log dE = log(#Kraus ops.).

smaller complexity than the other. As explained, our de-
coder has a better circuit complexity than the algorith-
mic implementation of the original Petz recovery map
[20], if δ is appropriately chosen. This is because we are
interested in applying the Petz recovery map to decod-
ing quantum information. When this is the case, it is not
necessary to exactly implement the Petz recovery map.

C. Comparision of the circuit complexities

We compare the circuit complexities of the generalized
YK decoder, the Petz-like decoder, and the algorithmic
implementation of the original Petz recovery map [20]. In
the comparison, we use the number of qubits in each sys-
tem instead of the dimensions. Specifically, we denote the
number of qubits in A, B, C, D, and E by k, e, nin, nout,
and κ, respectively. See Table I as well. Note that κ is
the logarithm of the number of the Kraus operators of the
channel FAB→D, i.e., κ = log dE = log(#Kraus ops.).
This number depends on how the channel is dilated. As
we are interested in minimizing the complexity, we take
the minimum possible number of Kraus operators in the
comparison below.

We here compare the complexity of the generalized YK
decoder and that of the Petz-like decoder. As explained
in Sec. III A 2, the number t is the significant factor in the
complexity. We denote the numbers t for the generalized
YK decoder and for the Petz-like decoder by t gYK and
tPl, respectively. That is,

t gYK = Θ
([

2e−noutλmin(ω
RE)

]−1/2
log(1/δ)

)
, (46)

tPl = Θ
([

2k−κλmin(ω
RE)

]−1/2
log(1/δ)

)
. (47)

See Eq. (33) and Eq. (44). Comparing t gYK and tPl, we
find that

t gYK ≤ tPl (48)

⇐⇒ k − e ≤ κ− nout. (49)

The left-hand side of Eq. (49) is given by the number
k of qubits that the sender intends to transmit and the
number e of pre-shared ebits. On the other hand, the
right-hand side depends on the quantities κ and nout that

are the properties of the channel FAB→D. To better un-
derstand the condition (49), we below consider a couple
of explicit instances, in which we assume an isometric
encoder for convenience. In these cases, κ corresponds
to the number of Kraus operators of the noisy channel
NC→D.
For a given noisy channel NC→D, the right-hand side

of Eq. (49) is fixed as a property of the noise. Hence,
the number of logical qubits, k, and that of pre-shared
entanglement, e, determines which decoder has smaller
complexity. In general, the generalized YK decoder has
an advantage when e is large, and as e becomes smaller,
the advantage shifts to the Petz-like decoder. To ob-
serve this more concretely, we note that 0 ≤ e ≤ nin − k.
When the sender and the receiver pre-share the maximal
number of entanglement, i.e., e = nin − k, Eq. (49) is
rephrased as k ≤ 1

2 (nin − nout − κ). In particular, if the

input and the output systems of the channel NC→D are
identical, i.e., nin = nout, it reduces to k ≤ 1

2κ. In this
case, unless the number of logical qubits exceeds half of
the number of the Kraus operators of the noisy channel,
the generalized YK decoder has smaller complexity than
the Petz-like decoder. In contrast, when no entangle-
ment is shared in advance and e = 0, Eq. (49) reduces
to k ≤ κ − nout. Although whether this holds or not
depends on details, there exist cases where the inequal-
ity is violated, such as the amplitude damping noise on
each qubit independently. For such noises or the choice
of large k, the Petz-like decoder has smaller complexity
than the generalized YK decoder.
We may also use the fact that k should necessarily

satisfy k ≤ nin for the recovery to be possible. This leads
to a trivial inequality k + nout − κ ≤ nin + nout − κ.
Furthermore, κ always satisfies κ ≤ nin + nout, since κ
is the logarithm of the number of Kraus operators. If a
given noisy channel N has the property that κ = nin +
nout, it follows that

k + nout − κ ≤ 0 ≤ e, (50)

for any e. Hence, for the noise with the maximum pos-
sible number of Kraus operators, the generalized YK de-
coder has smaller complexity than the Petz-like decoder
no matter how much entanglement is pre-shared.
We next compare the complexity of the Petz-like de-

coder with an algorithmic implementation of the original
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Petz recovery map provided in [20]. The following Corol-
lary can be derived by applying this algorithmic imple-
mentation to our setting.

Corollary 5 (Algorithmic implementation of the Petz

recovery map [20]). Let PDB′→R′

π,G be the decoder based on

the Petz recovery map defined in Eq. (19). There exists

a quantum algorithm realizing the map P̃DB′→R′

π,G , which
satisfies

∥P̃DB′→R′

π,G − PDB′→R′

π,G ∥♢ ≤ ε, (51)

with a circuit complexity

C( P̃π,G ) = O
(
tPetz

(
C(UF ) + log dBdE +

C(Uω)

λmin(ωRE)

× log
dE
ε

+ dA log dA log
dE

ελmin(ωRE)

))
,

(52)

where tPetz is an integer satisfying

tPetz = Θ

(√
dE

λmin(ωRE)

)
, (53)

and C(Uω) is a circuit complexity of a unitary UDB′P
ω

such that, for any system P ,

ωDB′
= TrP [U

DB′P
ω |0⟩⟨0|DB′P (UDB′P

ω )†]. (54)

From Eqs. (20) and (51), the recovery error of P̃π,G is
bounded as

∆( P̃π,G | F ) ≤ 2 ϵ1/4 + ε, (55)

when there exists τE such that ∥ωRC − πR ⊗ τE∥1 ≤ ϵ.
We clarify the condition that the Petz-like decoder has

smaller complexity than the algorithmic implementation
of the Petz recovery map. First, when C(UF ) is larger
than other terms, Eqs. (45) and (52) approximately re-
duce to

C
(
D̃t,ϕ

)
≈ O

(
tPl C(UF )

)
, (56)

C
(
P̃π,G

)
≈ O

(
tPetz C(UF )

)
, (57)

respectively. When this is the case, we only
need to compare tPl with tPetz, which satisfies tPl =

Θ
( log(1/δ)√

dA
tPetz

)
. Hence, as far as

δ = Ω(2−
√
dA), (58)

the Petz-like decoder has smaller complexity than the
algorithmic implementation of the original Petz recovery
map. Note that δ is also related to the recovery error
of the Petz-like decoder, as in Eq. (43). However, the
choice of δ such as Eq. (58) is sufficiently small and can
be negligible in the recovery error.

The advantage of the Petz-like decoder remains even
when C(UF ) is not dominant. To see this, suppose that

ε in Eq. (52) is ε = O(
√
δ ) with sufficiently small δ. The

complexity of the algorithmic implementation of the Petz
recovery map reduces to

C
(
P̃π,G

)
≈ O

(
tPetz log(1/δ)poly(nin, nout, k)

×
( poly(nin, nout, k)

λmin(ωRE)
+k2k

))
(59)

= O
(
tPl poly(nin, nout, k)

× 2k/2
( poly(nin, nout, k)

λmin(ωRE)
+k2k

))
. (60)

Here, we used in the second equation that tPl =

Θ
( log(1/δ)√

dA
tPetz

)
and assumed that C(UL

F ) is polynomial

in qubits, which further implies that C(UDB′P
ω ) is polyno-

mial. On the other hand, the complexity of the Petz-like
decoder in this case is

C
(
D̃t,ϕ

)
= O

(
tPl poly(nin, nout, k)

)
. (61)

Since this corresponds to the first line of Eq. (60), the
Petz-like decoder has smaller circuit complexity than the
algorithmic implementation of the Petz recovery map.

D. Application to concrete noisy models

We consider several noises for demonstration. We in-
vestigate the noises that independently act on each qubit,
such as the independent Pauli noise, the independent am-
plitude damping noise, and the qubit-erasure noise. If the
input system C of the noisy channel NC→D is equal to
the output system D of it, we denote by S the system
as S = C = D, and by n the number of these qubits as
n = nin = nout.

• Independent Pauli noise

The first example is the independent Pauli noise. A
Stinespring isometry of the single-qubit Pauli noise is
given by

V S→ES
N =

3∑
i=0

√
pi |ei⟩E ⊗ σS

i , (62)

where
∑3

i=0 pi = 1 and (σS
i ) = (IS , XS , Y S , ZS). Since

the number of qubits of the system S is n, and the loga-
rithm of the number of the Kraus operators κ = 2n, we
can rephrase Eqs. (48) and (49) as

n− k − e ≥ 0 (63)

⇐⇒ t gYK ≤ tPl. (64)

Since k+e ≤ n is always satisfied, the generalized YK de-
coder has smaller complexity than the Petz-like decoder
for the independent Pauli noise.
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TABLE II. The circuit complexity of our decoders to particular noise models. We denote mini{pi} by pmin. The constant γ is
assumed to be 1/2 or less. We have assumed a unitary encoding, so k + e = nin. The part poly(· · · ) comes from the term of
unitary dilation of the noise, and from the term logarithmic in dimensions in Eqs. (34) and (45).

Generalized YK decoder C
(
Dt,ϕ

)
Petz-like decoder C

(
D̃t,ϕ

)
Pauli noise

[(
2k/p

n/2
min

)
log(1/δ)

]
poly(n, k)

[(
2/p

1/2
min

)n
log(1/δ)

]
poly(n, k)

Amplitude damping noise
[
2k(2/γ)n/2 log(1/δ)

]
poly(n, k)

[
(4/γ)n/2 log(1/δ)

]
poly(n, k)

Erasure noise
[
2k log(1/δ)

]
poly(nin, nout, k)

[
2nin−nout log(1/δ)

]
poly(nin, nout, k)

• Independent amplitude damping noise

The second example is the amplitude damping noise for
{|0⟩S , |1⟩S}, which independently acts on each qubit.
The single-qubit noise is represented by an isometry

V S→ES
N =

√
γ |e0⟩E ⊗ |0⟩⟨1|S

+ |e1⟩E ⊗ (|0⟩⟨0|S +
√

1− γ |1⟩⟨1|S),
(65)

where γ ∈ [0, 1]. As n = κ, Eqs. (48) and (49) become

e− k ≥ 0 (66)

⇐⇒ t gYK ≤ tPl. (67)

Hence, when the number of pre-shared entanglement e is
more than the number of the logical qubits k, the gener-
alized YK decoder has smaller complexity than the Petz-
like decoder.

• Qubit-erasure noise

The third example is the qubit-erasure noise, which
erases κ qubits out of nin input qubits. The erased qubits
are randomly chosen, but it is assumed that the receiver
knows which qubits were erased. In this case, it holds
that nin = nout + κ. Thus, Eqs. (48) and (49) become

nin − 2nout − k + e ≥ 0 (68)

⇐⇒ t gYK ≤ tPl. (69)

Especially, when there is no pre-shared entangle-
ment, e = 0 and the encoding rate k/nin is given
by k/nin = nout/nin − 1/2, which is the value near
the quantum capacity, Eq. (68) does not hold, and
the Petz-like decoder has smaller complexity than the
generalized YK decoder. On the other hand, when the
maximal amount of entanglement is pre-shared, i.e.,
e = nin − k, Eq. (68) is rephrased as k ≤ nin − nout = κ.
Hence, if more than k qubits are erased by the noise, the
generalized YK decoder has smaller complexity than the
Petz-like decoder.

In Table II, we explicitly provide the circuit complexi-
ties of our decoders against these noise models. For sim-
plicity, the values in Table II are restricted to those for a
unitary encoder by a polynomial-sized quantum circuit.

Moreover, we assume the decoupling ωRE ≈ πR ⊗ ωE ,
which leads to

λmin(ω
RE) ≈ λmin(ω

E)/dA, (70)

where λmin(ω
E) is the non-zero minimum eigenvalue of

ωE = N̄C→E(πC).
From these results, we find that, when pmin =
min

i=0,1,2,3
{pi} or γ is larger, the complexities becomes

smaller. Hence, from the viewpoint of the computational
cost, both the generalized YK decoder and the Petz-like
decoder are more advantageous in moderately noisy sit-
uations.

IV. PROOFS

In this section, we provide proofs of the main results.
In IVA and IVB, we show the statements about the gen-
eralized YK decoder and the Petz-like decoder, respec-
tively.

A. Proofs: the generalized YK decoder

We first consider the decoding protocol with post-
selection, and provide the success probability and the
fidelity after the post-selection. We then prove Theo-
rem 3.

1. Success probability and fidelity in the decoding protocol
with post-selection

The input state of the decoding protocol is

ωRDB′
= FAB→D(ΦAR ⊗ ΦBB′

). (71)

When necessary, we consider the state including the en-
vironment E, namely, a purified state

|ω⟩REDB′
= V AB→ED

F |Φ⟩AR|Φ⟩BB′
. (72)

We use the following lemma. The proof of this lemma
is straightforward. See Fig. 7 for the diagram of the
statement.
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Lemma 6 (Transpose of a matrix sandwiched by two
MESs). For any linear operator LAB→ED, i.e., dEdD ×
dAdB matrix, it holds that

⟨Φ|EE′(
IB

′E′
⊗ LAB→ED

)
|Φ⟩BB′

=

√
dAdD
dBdE

⟨Φ|AA′(
(LA′B′→E′D′

)T ⊗ IAD
)
|Φ⟩DD′

.

(73)

Note that this is a liner operator from AE′ to B′D. The
transpose is taken with respect to the basis that defines
each MES.

Using Lemma 6 for L = V ∗
F , the state ζRR′

succ on the
system RR′ after the post-selection is rewritten as

ζRR′

succ =
1

psucc
TrE′

[
⟨Φ|DD′

(V A′B′→E′D′

F )∗

(ωRDB′
⊗ ΦA′R′

)(V A′B′→E′D′

F )T|Φ⟩DD′]
(74)

=
1

psucc
TrE′

[
⟨Φ|DD′

(V A′B′→E′D′

F )∗|Φ⟩A
′R′

ωRDB′
⟨Φ|A

′R′
(V A′B′→E′D′

F )T|Φ⟩DD′]
(75)

=
1

psucc

dBdE
dAdD

TrE′
[
⟨Φ|B̂B′

(V R′B̂→ÊD
F )†|Φ⟩ÊE′

ωRDB′
⟨Φ|ÊE′

V R′B̂→ÊD
F |Φ⟩B̂B′]

(76)

=
1

psucc

dB
dAdD

⟨Φ|B̂B′
(V R′B̂→ÊD

F )†

(ωRDB′
⊗ IÊ)V R′B̂→ÊD

F |Φ⟩B̂B′
. (77)

Here, we used Lemma 6 in the third equation. The suc-
cess probability of the measurement M is then given as

psucc =
dB
dAdD

Tr[⟨Φ|B̂B′(
V R′B̂→ÊD
F

)†
(ωRDB′

⊗ IÊ )V R′B̂→ÊD
F |Φ⟩B̂B′

] (78)

=
dB
dD

Tr
[(

IR ⊗ V R′B̂→ÊD
F (πR′

⊗ ΦB̂B′
)

(V R′B̂→ÊD
F )†

)
(ωRDB′

⊗ IÊ)
]
(79)

=
dB
dD

Tr[( IR ⊗ ωDB′Ê)(ωRDB′
⊗ IÊ)] (80)

=
dB
dD

Tr[(ωDB′
)2 ] (81)

=
dB
dD

2−H2(RE)ω . (82)

Since the state |ω⟩REDB′
is pure, we here used that

Tr[(ωDB′
)2] = Tr[(ωRE)2] = 2−H2(RE)ω .

The fidelity after the post-selection is calculated from

FIG. 7. A diagram of the transpose of a matrix L sandwiched
by two MESs

ζRR′

succ as follows:

F( ζRR′

succ ,Φ
RR′

)

=
1

psucc

dB
dAdD

Tr[ΦRR′
⟨Φ|B̂B′(

V R′B̂→ÊD
F

)†
(ωRDB′

⊗ IÊ)V R′B̂→ÊD
F |Φ⟩B̂B′

] (83)

=
1

psucc

dB
dAdD

Tr[V R′B̂→ÊD
F (ΦRR′

⊗ ΦB̂B′
)

(V R′B̂→ÊD
F )†(ωRDB′

⊗ IÊ)] (84)

=
1

psucc

dB
dAdD

Tr[ωRÊDB′
(ωRDB′

⊗ IÊ)] (85)

=
1

psucc

dB
dAdD

Tr[(ωRDB′
)2 ] (86)

=
1

psucc

dB
dAdD

2−H2(RDB′)ω . (87)

Substituting Eq. (82), we obtain that

F( ζRR′

succ , ϕ
RR′

) =
1

dA
2H2(RE)−H2(RDB′) (88)

=
1

dA
2H2(RE)−H2(E), (89)

where we used H2(RDB
′)ω = H2(E)ω since |ω⟩REDB′

is
pure. Thus, we obtain Eqs. (23) and (24).

2. Proof of Theorem 3

To show Theorem 3, we use the QSVT-based FPAA
algorithm instead of the measurement M. We here men-
tion that our situation differs from the common situation
for the AA algorithm since the receiver has access only
to a part of the whole system: the reference R and en-
vironment E are not with the receiver. This issue will
be circumvented by Jordan’s lemma, which we explain
below.
We denote the input state of the QSVT-based FPAA

algorithm by

ωRDD′E′R′

0 := VB′→D′E′R′
(ωRDB′

), (90)

where VB′→D′E′R′
is the isometry map such that

VB′→D′E′R′
( · )

= (V A′B′→E′D′

F )∗( · ⊗ ΦA′R′
)(V A′B′→E′D′

F )T.
(91)
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Note that ωRE
0 = ωRE . Let |ω0⟩REDD′E′R′

be the puri-

fied state of ωRDD′E′R′

0 given by

|ω0⟩REDD′E′R′
= (V A′B′→E′D′

F )∗|ω⟩REDB′
|Φ⟩A

′R′
.
(92)

We first check relations between this state ω0, the state
after the post-selection ζsucc, and the two projectors Π1

and Π2. Here, the state ζsucc on REE′R′ after post-
selection is given by

|ζsucc⟩REE′R′
=

1
√
psucc

⟨Φ|DD′
|ω0⟩REDD′E′R′

. (93)

To this end, we use the following lemma.

Lemma 7 (Jordan’s lemma [51–53]). For any two pro-
jectors Π and Π′ on a Hilbert space H, there exists
an orthogonal decomposition of H into one- and two-
dimensional subspaces Hµ. Each subspace Hµ is invari-
ant under Π and Π′. Moreover, in each subspace, Π and
Π′ act as rank-one projectors, such as Π|Hµ

= |ψµ⟩⟨ψµ|
and Π′|Hµ

= |ξµ⟩⟨ξµ|, respectively. Each subspace is
hence given by Hµ = span{|ψµ⟩, |ξµ⟩}.

This lemma states that, as |ψµ⟩ ⊥ |ξν⟩ for µ ̸= ν,
namely, they are in different subspaces, the products of
Π and Π′ are given by

ΠΠ′Π =
r∑

µ=1

qµ|ψµ⟩⟨ψµ|, (94)

Π′ΠΠ′ =
r∑

µ=1

qµ|ξµ⟩⟨ξµ|, (95)

where qµ = |⟨ξµ|ψµ⟩|2, and we arranged them such as
q1 ≥ q2 ≥ . . . ≥ qr > 0. The whole Hilbert space can be
decomposed as

H =
r
⊕

µ=1
Hµ ⊕H⊥. (96)

Here, the Hilbert spaces Hµ = span{|ψµ⟩, |ξµ⟩} are either
common one-dimensional subspaces spanned by |ψµ⟩ =
|ξµ⟩ or two-dimensional subspaces. The Hilbert spaceH⊥
is the remaining orthogonal complement to the others.

We apply the Jordan’s lemma to our projectors

ID ⊗ΠD′E′R′

1 = ID ⊗ (V A′B′→E′D′

F )∗( IB
′
⊗

|Φ⟩⟨Φ|A
′R′

)(V A′B′→E′D′

F )T, (97)

ΠDD′

2 ⊗ IE
′R′

= |Φ⟩⟨Φ|DD′
⊗ IE

′R′
. (98)

Then, the Hilbert space HDD′E′R′
is decomposed into a

direct sum of one- and two-dimensional subspaces, each
of which is invariant under ΠD′E′R′

1 and ΠDD′

2 . The prod-
ucts of these projectors can be computed as

(Π1Π2Π1)
DD′E′R′

=
dB
dD

ωDD′E′R′

0 , (99)

(Π2Π1Π2)
DD′E′R′

= |Φ⟩⟨Φ|DD′
⊗
(dBpsucc

dD
ζE

′R′

succ

)1/2
,

(100)

FIG. 8. A diagram of the state |ζsucc⟩REE′R′
. This is sym-

metrical with respect to the red dash-dotted line, up to the
complex conjugate. Due to this symmetry, the Schmidt basis

of |ζsucc⟩REE′R′
is given by {|ηµ⟩RE |η∗

µ⟩E
′R′

}µ.

which are derived in Appendix A.
Let qµ and |ψµ⟩DD′E′R′

for µ = 1, 2, . . . , r be non-
zero eigenvalues and the corresponding eigenstates of
(Π1Π2Π1)

DD′E′R′
, respectively. From Eq. (99), the

Schmidt decomposition of |ω0⟩REDD′E′R′
, divided into

RE and DD′E′R′, is given by

|ω0⟩REDD′E′R′
=

r∑
µ=1

√
dD
dB

√
qµ|ηµ⟩RE |ψµ⟩DD′E′R′

,

(101)

where {|ηµ⟩RE}µ is an orthonormal basis. From Eq. (93),

the state |ζsucc⟩REE′R′
is then given by

|ζsucc⟩REE′R′
=

r∑
µ=1

√
dDqµ
dBpsucc

|ηµ⟩RE⟨Φ|DD′
|ψµ⟩DD′E′R′

.

(102)

It is important to notice the symmetry of |ζsucc⟩REE′R′

between RE and R′E′. From Fig. 8, we observe that
taking the complex conjugate of this state is equal to
swapping RE for R′E′. Hence, the Schmidt basis of
|ζsucc⟩REE′R′

in RE and that in E′R′ are the same up
to the complex conjugate. Together with Eq. (102), we

see that ⟨Φ|DD′ |ψµ⟩DD′E′R′
is proportional to |η∗µ⟩E

′R′

with a real coefficient. Moreover, substituting Eq. (102)
to Eq. (100) and noting that the eigenvalues of Π2Π1Π2

are qµ by the Jordan’s lemma, the coefficient turns out
to be

√
qµ. Thus,

⟨Φ|DD′
|ψµ⟩DD′E′R′

=
√
qµ|η∗µ⟩E

′R′
. (103)

From Eqs. (102) and (103), the Schmidt decomposition

of |ζsucc⟩REE′R′
is given by

|ζsucc⟩REE′R′
=

r∑
µ=1

√
dD
dB

qµ√
psucc

|ηµ⟩RE |η∗µ⟩E
′R′
. (104)
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Using the states {|ψµ⟩DD′E′R′}µ and {|η∗µ⟩E
′R′}µ, the

products of projectors Π1 and Π2 are rephrased as

(Π1Π2Π1)
DD′E′R′

=
r∑

µ=1

qµ|ψµ⟩⟨ψµ|DD′E′R′
, (105)

(Π2Π1Π2)
DD′E′R′

=
r∑

µ=1

qµ|ξ∗µ⟩⟨ξ∗µ|DD′E′R′
, (106)

where |ξ∗µ⟩DD′E′R′
:= |Φ⟩DD′ |η∗µ⟩E

′R′
, and the Hilbert

space HDD′E′R′
is decomposed into

HDD′E′R′
=

r
⊕

µ=1
HDD′E′R′

µ ⊕HDD′E′R′

⊥ , (107)

where HDD′E′R′

µ = span{|ψµ⟩DD′E′R′
, |ξ∗µ⟩DD′E′R′}

and HDD′E′R′

⊥ is remaining orthogonal complement to

⊕r
µ=1HDD′E′R′

µ .
In the following, we focus only on the subspaces

⊕r
µ=1HDD′E′R′

µ and ignore HDD′E′R′

⊥ . This does not
cause any issue since Eqs. (99) and (100) guarantee that

all eigenstates of ωDD′E′R′

0 and ΦDD′ ⊗ ζE
′R′

succ are in

⊕r
µ=1HDD′E′R′

µ . As we will explain later, our goal is

to transform the eigenvectors |ψµ⟩DD′E′R′
to the corre-

sponding eigenvectors |ξ∗µ⟩DD′E′R′
within each subspace

HDD′E′R′

µ by the QSVT-based FPAA algorithm. Thus,
it is sufficient that we focus only on the subspaces that
contain all eigenstates.

For the sake of analysis, we define an auxiliary state
|ωtarg⟩RR′EE′

as

|ωtarg⟩RR′EE′
:=
∑
µ

√
dD
dB

√
qµ|ηµ⟩RE |η∗µ⟩E

′R′
. (108)

This state is useful due to the following lemma.

Lemma 8. If there exists a state τE such that ∥ωRE −
πR ⊗ τE∥1 ≤ ϵ, it holds that

1

2
∥ωRR′

targ − ΦRR′
∥1 ≤

√
ϵ. (109)

This lemma is shown by a vectorization operation. A
vectorization in a given basis {|i⟩}i is a linear map Vec
such that

Vec(|ψ⟩⟨φ|) = |ψ⟩|φ∗⟩, (110)

where the complex conjugate is taken in the basis {|i⟩}i,
i.e., |φ∗⟩ =

∑
i c

∗
i |i⟩ when |φ⟩ =

∑
i ci|i⟩. A vectorization

has the property that

∥L−M∥2 = ∥Vec(L)−Vec(M)∥, (111)

for any matrix L and M , where ∥ · ∥2 is the Hilbert-
Schmidt norm for matrices and ∥ · ∥ is the Euclidian
norm for vectors.

Proof. (Proof of Lemma 8) Let τα and {|eα⟩E}α be
eigenvalues and eigenstates of τE , respectively, and let
|τ⟩EE′

:=
∑

α

√
τα|eα⟩E |e∗α⟩E

′
, where the complex con-

jugate is taken in the computational basis |α⟩E .
We regard the two pure states |ωtarg⟩RR′EE′

and

|Φ⟩RR′ |τ⟩EE′
as the states after the vectorization of op-

erators on RE, which is taken in the computational basis
{|i⟩R|α⟩E}i,α. That is,

∥|ωtarg⟩RR′EE′
− |Φ⟩RR′

|τ⟩EE′
∥

=
∥∥∥∑

µ

√
dD
dB

√
qµ|ηµ⟩RE |η∗µ⟩R

′E′

−
∑
i,α

√
τα
dA

|i⟩R|eα⟩E |i⟩R
′
|e∗α⟩E

′
∥∥∥
(112)

=
∥∥∥Vec

(∑
µ

√
dD
dB

√
qµ|ηµ⟩⟨ηµ|RE

)
−Vec

(∑
i,α

√
τα
dA

|i⟩⟨i|R ⊗ |eα⟩⟨eα|E
)∥∥∥.
(113)

Using the property of the vectorization in Eq. (111).
Eq. (113) is equal to∥∥∥∑

µ

√
dD
dB

√
qµ|ηµ⟩⟨ηµ|RE

−
∑
i,α

√
τα
dA

|i⟩⟨i|R ⊗ |eα⟩⟨eα|E
∥∥∥
2

(114)

=
∥∥(ωRE

targ

)1/2 − (πR ⊗ τE
)1/2∥∥

2
(115)

≤ ∥ωRE
targ − πR ⊗ τE∥1/21 (116)

= ∥ωRE − πR ⊗ τE∥1/21 (117)

≤
√
ϵ. (118)

In the first inequality we used the Powers-Størmer in-
equality [54, 55]: ∥L1/2 −M1/2∥22 ≤ ∥L −M∥1 for Her-
mite operators L and M . The last equation follows as
ωRE
targ = ωRE , and the last inequality is by assumption.
From ∥|v⟩⟨v| − |w⟩⟨w|∥1 ≤ 2∥|v⟩ − |w⟩∥ for any pure

states |v⟩ and |w⟩, it follows that

1

2
∥ωRR′EE′

targ − ΦRR′
⊗ τEE′

∥1 ≤
√
ϵ. (119)

Using the contraction property of the trace norm against
the partial trace, we complete the proof.

We now turn to investigate the QSVT-based FPAA
algorithm. From Lemma 8, it suffices to show that the
output state DDB′→R′

t,ϕ (ωRDB′
) is closed to ωRR′

targ . This

is achieved by the operation such that |ψµ⟩DD′E′R′ →
|ξ∗µ⟩DD′E′R′

= |Φ⟩DD′ |η∗µ⟩E
′R′

for all µ. In fact, we
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observe from Eqs. (101) and (108) that this operation
achieves

|ω0⟩REDD′E′R′
→ |ωtarg⟩REE′R′

|Φ⟩DD′
, (120)

whose reduced state on RR′ is ωRR′

targ . The goal below is to
show that this operation is ahieved by the QSVT-based
FPAA algoriothm with high accuracy.

Before we start, we comment on the crucial role of
the QSVT-based FPAA algorithm rather than the stan-
dard AA algorithm. As we will soon show, when the
QSVT-based FPAA algorithm or the AA algorithm is
applied, |ψµ⟩DD′E′R′

rotates toward |ξ∗µ⟩DD′E′R′
in each

two-dimensional subspace HDD′E′R′

µ . Hence, the decod-
ing succeeds by stopping the rotation when all the states
|ψµ⟩DD′E′R′

simultaneously get close to the correspond-

ing |ξ∗µ⟩DD′E′R′
. If qµ differs from each other, this simul-

taneous condition is hard to satisfied by the standard
AA algorithm since it can over-rotate the state. This is
the reason why we need to use the QSVT-based FPAA
algorithm.

We make another small comment on the difference be-
tween the QSVT-based FPAA algorithm and the stan-
dard FPAA algorithm in [42]. When we use the standard
FPAA algorithm instead of the QSVT-based FPAA algo-
rithm, |ψµ⟩DD′E′R′

still rotates in each subspace. How-
ever, the algorithm may end up with undesirable phases
θµ, such as |ψµ⟩DD′E′R′ → eiθµ |ξ∗µ⟩DD′E′R′

. In our case,
these phases act as relative phases (see Eq. (101)), and
results in the failure of the recovery. This issue is also cir-
cumvented by the QSVT-based FPAA algorithm [26, 27].

The following is an important lemma about the QSVT
in our setting.

Lemma 9 (Quantum singular value transformation to
real odd polynomials [26, 27, 47]). Suppose that Qt(x) is
any degree-t odd real polynomial satisfying |Qt(x)| ≤ 1
for all x ∈ [−1, 1 ]. Then, there exists ϕ ∈ (−π, π ] t such
that

(ΠDD′

2 ⊗ ⟨0|H)GDD′E′R′H
t,ϕ (ΠD′E′R′

1 ⊗ |0⟩H)

= Qt(Π
DD′

2 ΠD′E′R′

1 ).
(121)

The unitary GDD′E′R′H
t,ϕ is given by Eq. (29), and

ΠD′E′R′

1 and ΠDD′

2 are given by Eqs. (25) and (26), re-
spectively. The system H is a single-qubit system.

By the Jordan’s lemma, HDD′C′R′

µ is invariant un-

der the action of ΠD′E′R′

1 and ΠDD′

2 . Hence, it suffices

to consider the action of GDD′E′R′H
t,ϕ in each subspace

HDD′E′R′H
µ := span{|ψµ⟩DD′E′R′ |0⟩H , |ξ∗µ⟩DD′E′R′ |0⟩H}.

We use a notation such as |φ̌⟩DD′E′R′H = |φ⟩DD′E′R′ |0⟩H
for a state |φ⟩DD′E′R′

. From Eq. (103), the state

|ψ̌µ⟩DD′E′R′H is expanded as

|ψ̌µ⟩DD′E′R′H =
√
qµ|ξ̌∗µ⟩DD′E′R′H

+
√

1− qµ|⊥̌µ⟩DD′E′R′H ,
(122)

where |⊥̌µ⟩DD′E′R′H is a state in HDD′E′R′H
µ orthogonal

to |ξ̌∗µ⟩DD′E′R′H . From Lemma 9, the QSVT achieves the

matrix transformation in HDD′E′R′H
µ such as

IDD′E′R′H |Hµ =

⟨ψ̌µ| ⟨ψ̌⊥
µ |( )

|ξ̌∗µ⟩
√
qµ

√
1− qµ

|⊥̌µ⟩
√

1− qµ −√
qµ

(123)

QSVT−→ GDD′E′R′H
t,ϕ |Hµ

=

⟨ψ̌µ| ⟨ψ̌⊥
µ |( )

|ξ̌∗µ⟩ Qt(
√
qµ) ·

|⊥̌µ⟩ · · . (124)

Here, |ψ̌⊥
µ ⟩ is the state in HDD′E′R′H

µ orthogonal to

|ψ̌µ⟩DD′E′R′H .
It is clear from this representation that, if one chooses

the polynomial Qt( · ) such that Qt(
√
qµ) ≈ 1 for all µ,

the desired operation that transforms |ψµ⟩ into |ξ∗µ⟩ is
realized. A possible choice of such a polynomial is a
polynomial approximating the sign function:

sign(x) =

 1 (x > 1)
0 (x = 0)
−1 (x < 0).

(125)

The following lemma shows that there exists such a poly-
nomial approximating the sign function.

Lemma 10 (Polynomial approximation of the sign func-
tion [26–28, 56, 57]). For any β, δ ∈ (0, 1 ], there exists
an odd integer t = Θ

(
1
β log(1/δ)

)
and a real polynomial

Qsign
t (x) of degree t such that

• x ∈ [−1, 1 ] : |Qsign
t (x)| ≤ 1,

• x ∈ [−1,−β ) ∪ (β, 1 ] : |Qsign
t (x)− sign(x)| ≤ δ.

Given a polynomial, the corresponding ϕ can be com-
puted in O(poly(t)) time by a classical computer [44–
48], where t is the degree of the polynomial. We take
the phase sequence ϕ = (ϕ1, . . . , ϕt) so that the poly-

nomial Qt( · ) in Eqs. (121) and (124) becomes Qsign
t ( · ).

From Lemma 10, for Qsign
t (

√
qµ) to be larger than 1− δ

for all µ = 1, . . . , r, it is necessary that
√
qmin ≥ β,

where qmin := minµ∈[1,r] qµ. From ωRE
0 = ωRE and

Eq. (101), the non-zero minimum eigenvalue of ωRE is
λmin(ω

RE) = dD

dB
qmin. Hence, we take the odd integer t

such that

t = Θ

(
1

√
qmin

log(1/δ)

)
(126)

= Θ

(√
dD

dBλmin(ωRE)
log(1/δ)

)
. (127)
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We finally combine all together. We denote the output
state of the QSVT-based FPAA algorithm by

|ω̌t⟩REDD′E′R′H := GDD′E′R′H
t,ϕ |ω0⟩REDD′E′R′

|0⟩H .
(128)

By taking t and ϕ as mentioned above to approximate the
sign function, we obtain the overlap between this output
state and the state |ωtarg⟩REE′R′ |Φ⟩DD′ |0⟩H as

⟨ωtarg|REE′R′
⟨Φ|DD′

⟨0|H |ω̌t⟩REDD′E′R′H (129)

=
dD
dB

r∑
µ=1

qµ⟨ξ̌∗µ|DD′E′R′HGt,ϕ|ψ̌µ⟩DD′E′R′H (130)

=
dD
dB

r∑
µ=1

qµQ
sign
t (

√
qµ ) (131)

≥ (1− δ)
dD
dB

r∑
µ=1

qµ (132)

= 1− δ, (133)

where we use
dD

dB

∑r
µ=1 qµ = 1. Using the Fuchs-van de

Graaf inequities and the contraction property of the trace
norm, it follows that

1

2
∥ω̌RR′

t − ωRR′

targ∥1 ≤
√
1− (1− δ)2 ≤

√
2δ. (134)

Note that the state ω̌RR′

t is the output state of the gen-

eralized YK decoder: ω̌RR′

t = DDB′→R′

t,ϕ (ωRDB′
). By

Lemma 8, Eq. (134), and the triangle inequality, we have

1

2
∥ω̌RR′

t − ΦRR′
∥1 ≤

√
ϵ+

√
2δ, (135)

completing the evaluation of the recovery error by the
generalized YK decoder.

We next investigate the circuit complexity of the gen-
eralized YK decoder. Since the non-trivial part is to im-
plement the unitary Gt,ϕ by the QSVT-based FPAA al-
gorithm, we focus on C(Gt,ϕ).

We start with a circuit implementation of Wm(θ) for
m = 1, 2:

Wm(θ) = eiθ(2Πm−I) (136)

= e−iθ I− (e−iθ − eiθ)Πm. (137)

To implement the unitary Wm(θ), we use the projector-
controlled NOT gate [26, 27] that is in general defined for
a projector Π on the system P as

CΠNOTP -G := ΠP ⊗XG + ( IP −ΠP )⊗ IG. (138)

The order of the superscripts in the left-hand side indi-
cates the controlling and controlled systems. The gate

FIG. 9. A quantum circuit for implementing a unitary
Wm(θ)P . The box in which a projector is written implies
that this projector controls the gate. The circle drawn inside
the intersecting lines represents the NOT gate, i.e., the Pauli-
X gate.

FIG. 10. A quantum circuit for implementing W1(ϕ2j)
D′E′R′

W2(ϕ2j−1)
DD′

⊗|+⟩⟨+|H+W1(−ϕ2j)
D′E′R′

W2(−ϕ2j−1)
DD′

⊗
|−⟩⟨−|H . Open circles implies that the gates are controlled
by |0⟩, while closed circles indicate the ones controlled by |1⟩.

X is the single-qubit Pauli-X gate. We also use a single-
qubit rotation-Z gate:

Z(θ) := e−iθZ (139)

= e−iθ|0⟩⟨0|+ eiθ|1⟩⟨1|. (140)

It is straightforward to check that, for any state |Ψ⟩P ,

(CΠNOTP -GZ(θ)GCΠNOTP -G)(|Ψ⟩P ⊗ |0⟩G)
=
[
e−iθ IP − (e−iθ − eiθ)ΠP )|Ψ⟩P

]
⊗ |0⟩G.

(141)

Hence, we can implement Wm(θ)P by preparing a single-
qubit system G and by operating a quantum circuit in
Fig. 9.

To construct a circuit for Gt,ϕ, we prepare another
single-qubit system H for the controlled implementation
of Wm(θ)P . For instance, a quantum circuit implement-
ing

W1(ϕ2j)
D′E′R′

W2(ϕ2j−1)
DD′

⊗ |+⟩⟨+|H

+W1(−ϕ2j)D
′E′R′

W2(−ϕ2j−1)
DD′

⊗ |−⟩⟨−|H ,
(142)

is given in Fig. 10. By applying the circuit (t−1)/2 times

with various phases and finally applying W2(ϕt)
DD′ ⊗

HH , the unitary Gt,ϕ is realized. Here, the gate HH is
the single-qubit Hadamard gate on the system H.

In this construction, the unitary Gt,ϕ is decomposed

into two unitaries CΠ1
NOTD′E′R′-G and CΠ2

NOTDD′-G.

A quantum circuit for CΠ1
NOTD′E′R′-G is given in

Fig. 11. The unitary C|0⟩⟨0|NOTP -G can be imple-
mented using O(log dP ) single- and two-qubit gates and

O(log dP ) ancilla qubits [58], and the unitary UA′R′

Φ ,
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FIG. 11. A quantum circuit for implementing the protector-

controlled NOT gate CΠ1NOTD′E′R′-G. The dashed box rep-

resents the gete C|0⟩⟨0|NOTF ′A′R′-G.

which is given by

UA′R′

Φ |0⟩A
′
|0⟩R

′
= |Φ⟩A

′R′
, (143)

can be implemented using O(log dA) gates. Hence, in

total, CΠ1
NOTD′E′R′-G can be implemented by

O
(
C(UF ) + log (dAdF )

)
(144)

gates and O(log dAdF ) ancilla qubits. Similarly,

CΠ2
NOTDD′-G can be implemented using O(log dD)

gates and O(log dD) ancilla qubits.
In the unitary Gt,ϕ, these projector-controlled NOT

gates are used O(t) times. Thus, the total complexity of
the generalized YK decoder is given by

C(Dt,ϕ) = O
(
t
(
C(UF ) + log(dAdF dD)

))
+ C(UF ) +O(log dA) (145)

= O
(
t
(
C(UF ) + log(d2DdE/dB)

))
, (146)

with O
(
log (d2DdE/dB)

)
ancilla qubits. Here, we used

dAdBdF = dEdD. In Eq. (145), the first line in the right-
hand side comes from Gt,ϕ and the second line comes

from VA′B′→E′D′
, which is applied before Gt,ϕ.

B. Proofs: the Petz-like decoder

Similarly to the YK decoder, we first consider the de-
coding protocol with post-selection and then provide a
sketch of a proof of Theorem 4.

From Eqs. (17), (35), and (36), the success probability
p̃succ is computed as

p̃succ =
dA
dE

Tr
[
V R′B̂→ÊD
F (ΦB̂B′

⊗ πR′
)

(V R′B̂→ÊD
F )†(ωRDB′

⊗ IÊ)
]

(147)

=
dA
dE

Tr
[
(ωDB′

)2
]

(148)

=
dA
dE

2−H2(DB′)ω (149)

=
dA
dE

2−H2(RE)ω , (150)

where we used H2(DB
′)ω = H2(RE)ω as |ω⟩REDB′

is

pure. The fidelity between ζ̃RR′

succ and ΦRR′
is computed

as

F( ζ̃RR′

succ ,Φ
RR′

)

=
1

dE p̃succ
Tr
[
V R′B̂→ÊD
F (ΦRR′

⊗ ΦB̂B′
)

(V R′B̂→ÊD
F )†(ωRDB′

⊗ IÊ)
]

(151)

=
1

dA
2H2(RE)ω Tr

[
ωRÊDB′

(ωRB′D ⊗ IÊ)
]

(152)

=
1

dA
2H2(RE)ω−H2(RDB′)ω (153)

=
1

dA
2H2(RE)ω−H2(E)ω , (154)

by using H2(RDB
′)ω = H2(E)ω for |ω⟩REDB′

. Hence,
we obtained Eqs. (37) and (38).
Let us now turn to the proof of Theorem 4. Since it

can be shown similar to Theorem 3, we provide only an
outline of the proof.
We denote the input state of the QSVT-based FPAA

algorithm by

ω̃RE′R′F̂ B̂B′

0 := ṼD→E′R′F̂ B̂(ωRDB′
), (155)

where ṼD→E′R′F̂ B̂ is the isometry map such that

ṼD→E′R′F̂ B̂ = (U L̂
F )

†( · ⊗ ΦÊE′
)U L̂

F , (156)

and L̂ = R′F̂ B̂ = ÊD. Note that ω̃RE
0 = ωRE . Let

|ω̃0⟩REE′R′F̂ B̂B′
be the purified state which is given by

|ω̃0⟩REE′R′F̂ B̂B′
= (U L̂

F )
†|ω⟩REDB′

|Φ⟩ÊE′
. (157)

The state on REE′R′ after the post-selection is then
given by

|ζ̃succ⟩REE′R′
=

1√
p̃succ

⟨0|F̂ ⟨Φ|B̂B′
|ω̃0⟩REE′R′F̂ B̂B′

.

(158)
It is important to observe that

ζ̃REE′R′

succ = ζREE′R′

succ , (159)

where the right-hand side is the state after the post-
selection in the generalized YK protocol. Although it
may be hard to observe this relation from its construc-
tion in Fig. 5, it can be readily shown using Lemma 6 as
in Fig. 12. From this relation, it turns out that the state
ζ̃REE′R′

succ is also symmetrical between RE and E′R′ up
to the complex conjugate, and thus, the Schmidt basis
in RE and that in E′R′ are complex conjugate of each
other.
We next compute the products of projectors Π̃E′R′F̂ B̂

1

and Π̃F̂ B̂B′

2 , which are defined in Eqs.(39) and (40). Sim-
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FIG. 12. The equivalence of the states ζ̃REE′R′
succ and ζREE′R′

succ , which are obtained after the post-selection in the Petz-like
protocol and in the generalized YK protocol, respectively. We can derive this equivalence by applying Lemma 6 onto the
portion enclosed by the blue dash-dotted lines.

ilarly to Eqs. (99) and (100), we obtain

(Π̃1Π̃2Π̃1)
E′R′F̂ B̂B′

=
dA
dE

ω̃E′R′F̂ B̂B′

0 , (160)

(Π̃2Π̃1Π̃2)
E′R′F̂ B̂B′

=
(dAp̃succ

dE
ζ̃E

′R′

succ

)1/2
⊗ |0⟩⟨0|F̂ ⊗ |Φ⟩⟨Φ|BB′

. (161)

Let q̃µ and |ψ̃µ⟩E
′R′F̂ B̂B′

for µ = 1, 2, . . . , r be
non-zero eigenvalues and corresponding eigenstates of

(Π̃1Π̃2Π̃1)
E′R′F̂ B̂B′

, respectively. From Eq. (160), the
Schmidt decomposition of |ω̃0⟩REE′R′F̂ B̂B′ , divided into

RE and E′R′F̂ B̂B′, is given by

|ω̃0⟩REE′R′F̂ B̂B′
=

r∑
µ=1

√
dE
dA

√
q̃µ |ηµ⟩RE |ψ̃µ⟩E

′R′F̂ B̂B′
,

(162)

where {|ηµ⟩RE}µ is an orthonormal basis. As ω̃RE
0 is

equal to ωRE
0 , we have that q̃µ = dAdD

dBdE
qµ.

Since the state |ζ̃succ⟩ is defined by using |ω̃0⟩ as
Eq. (158), it follows that

|ζ̃succ⟩REE′R′

=
r∑

µ=1

√
dE q̃µ
dAp̃succ

|ηµ⟩RE⟨0|F̂ ⟨Φ|B̂B′
|ψ̃µ⟩E

′R′F̂ B̂B′
.

(163)

From Eq. (104) for |ζsucc⟩ in the generalized YK protocol
with post-selection and Eq. (159), we have

⟨0|F̂ ⟨Φ|B̂B′
|ψ̃µ⟩E

′R′F̂ B̂B′

=

√
dAdDp̃succ
dBdEpsucc

qµ√
q̃µ

|η∗µ⟩E
′R′

=
√
q̃µ |η∗µ⟩E

′R′
. (164)

Here, we substituted the success probabilities psucc and
p̃succ in the generalized YK and Petz-like protocols with

post-selection, which are given by Eqs. (23) and (37). We
have also used q̃µ = dAdD

dBdE
qµ.

Applying the Jordan’s lemma (Lemma 7) to the projec-

tors Π̃E′R′F̂ B̂
1 and Π̃F̂ B̂B′

2 , the Hilbert space HE′R′F̂ B̂B′

is decomposed into a direct sum of one- and two-

dimensional subspaces HE′R′F̂ B̂B′

µ and the remaining or-

thogonal complement HE′R′F̂ B̂B′

⊥ such that

HE′R′F̂ B̂B′
= ⊕r

µ=1HE′R′F̂ B̂B′

µ ⊕HE′R′F̂ B̂B′

⊥ , (165)

where HE′R′F̂ B̂B′

µ is given by

HE′R′F̂ B̂B′

µ = span{|ψ̃µ⟩E
′R′F̂ B̂B′

, |η∗µ⟩E
′R′

|0⟩F̂ |Φ⟩B̂B′
}.

(166)

From Eqs. (160) and (161), all eigenstates of ω̃E′R′F̂ B̂B′

0

and ζ̃E
′R′

succ are in ⊕r
µ=1HE′R′F̂ B̂B′

µ , on which we focus in
the following.

In each subspace HE′R′F̂ B̂B′

µ , the state |ψ̃µ⟩E
′R′F̂ B̂B′

is decomposed as

|ψ̃µ⟩E
′R′F̂ B̂B′

=
√
q̃µ |η∗µ⟩E

′R′
|0⟩F̂ |Φ⟩B̂B′

+
√

1− q̃µ |⊥̃µ⟩E
′R′F̂ B̂B′

,
(167)

where |⊥̃µ ⟩E
′R′F̂ B̂B′

is a state in HE′R′F̂ B̂B′

µ orthogo-

nal to |η∗µ⟩E
′R′ |0⟩F̂ |Φ⟩B̂B′

. By the QSVT-based FPAA

algorithm with appropriately chosen ϕ ∈ (−π, π ] t,
|ψ̃µ⟩E

′R′F̂ B̂B′
is transformed to |η∗µ⟩E

′R′ |0⟩F̂ |Φ⟩B̂B′
in

each subspace. Hence, it approximately achieves the
transformation that

|ω̃0⟩REE′R′F̂ B̂B′
7→ |ωtarg⟩REE′R′

|0⟩F̂ |Φ⟩B̂B′
, (168)

where |ωtarg⟩REE′R′
is defined as Eq. (108). Thus, by

a similar technique to the generalized YK decoder, we
obtain that the Petz-like decoder D̃t,ϕ achieves

1

2
∥D̃DB′→R′

t,ϕ (ωRDB′
)− ωRR′

targ∥ ≤
√
2δ, (169)
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where t is an odd number satisfying

t = Θ

(
1√
q̃min

log (1/δ)

)
(170)

= Θ

(√
dA

dEλmin(ωRE)
log (1/δ)

)
. (171)

From Lemma 8, ωRR′

targ ≈ ΦRR′
when the decoupling con-

dition is satisfied. Hence, using the triangle inequality,
the recovery error by the Petz-like decoder is evaluated
as

1

2
∥D̃DB′→R′

t,ϕ (ωRDB′
)− ΦRR′

∥1 ≤
√
ϵ+

√
2δ. (172)

Finally, since Π̃E′R′F̂ B̂
1 and Π̃F̂ B̂B′

2 are explicitly given
by Eqs. (39) and (40), respectively, the complexity of the
Petz-like decoder can be evaluated similarly to the gen-
eralized YK decoder. The circuit complexity of CΠ̃1

NOT
is

O
(
C(UF ) + log dE

)
, (173)

and that of CΠ̃2
NOT is

O
(
log dBdF

)
. (174)

Since they are applied O(t) times in the Petz-like de-
coder, the total complexity is given by

O
(
t
(
C(UF ) + log (dEdBdF )

))
, (175)

with O
(
log (dEdBdF )

)
ancilla qubits. Using dAdBdF =

dEdD, Theorem 4 is obtained.

V. SUMMARY AND OUTLOOKS

In this paper, we have provided two explicit decoders
that are applicable to any encoding and noisy channels:
one is the generalized YK decoder, and the other is the
Petz-like decoder. Both are constructed by two steps:
first we consider a decoding protocol with measurement
and post-selection, and then we construct a decoder by
replacing the measurement with the QSVT-based FPAA
algorithm, which is for amplifying the success probability
of the post-selection. These decoders have been shown
to have high recovering performance in the sense that
they can recover quantum information when the recov-
ery is guaranteed to be in principle possible, which is
formulated in terms of the decoupling condition. An im-
portant implication is that the decoders with a suitable
choice of encoding are capacity-achieving.

We have then investigated the circuit complexity of
the generalized YK decoder and the Petz-like decoder.
While the complexity depends on various factors, we have
shown that the generalized YK decoder has smaller com-
plexity in general if the sender and the receiver share

more entanglement in advance. This conclusion was ob-
tained by comparing the dominant term, i.e., the one
that comes from the implementation of the QSVT-based
FPAA algorithm.
Our approach extends the powerful use of the QSVT

to the problem of recovering quantum information, which
bridges quantum algorithms to quantum information the-
ory, and is of conceptual interest. As mentioned, this
approach was proposed in the original work by Yoshida
and Kitaev [16] with a limited use in a specific model,
where the standard AA algorithm was used. Our work
shows that, if one uses the QSVT-based FPAA algorithm
instead of the standard AA algorithm, the approach can
be extended to general situations. The constructed de-
coder is still inefficient in general, but it would be an
interesting open problem to see if an efficient decoder
can be constructed by this approach.
It may also be interesting to address the question about

whether a similar approach may work for recovering clas-
sical [59, 60] or hybrid [61–64] information. In the former,
the encoded information is classical, and the decoder is
simply given by quantum measurement. In the latter,
the information is a mixture of classical and quantum,
which can be decoded by a simultaneous use of quantum
measurement and quantum decoder. Both use quantum
measurement, and a couple of quantum measurements
are known to work well, such as the pretty-good mea-
surement [60, 65]. Our approach adapted to these set-
tings may provide a better decoder.
From a technical viewpoint, another direction is a re-

laxation of the assumptions about the knowledge of the
noisy channel [66] and the non-zero minimum eigenvalue
of the noisy state. While general decoders, as well as the
proposed decoders in this paper, are constructed based
on such knowledge, it would not be realistic to obtain
complete knowledge of the noise. If we can relax these
assumptions, the decoders become more practical ones.
An intriguing future challenge lies in understanding to
what extent we can relax those restrictions.
These decoders may also have potential use in funda-

mental physics for exploring exotic quantum many-body
phenomena that are related to the recovery of quan-
tum information. For instance, the proposed decoders
could be potentially applied to reconstructing the inter-
nal structure of a black hole from the noisy Hawking
radiation [67], and to recovering the bulk structure from
a part of boundaries, such as the entanglement wedge re-
construction [68]. This is also an intriguing direction of
study with the decoders.
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Appendix A: Derivation of Eqs. (99) and (100)

In this section, we derive Eqs. (99) and (100). The
calculations are as follows.

(Π1Π2Π1)
DD′E′R′

= (V A′B′→E′D′

F )∗|Φ⟩⟨Φ|A
′R′

(V A′B′→E′D′

F )T|Φ⟩DD′

(V A′B′→E′D′

F )∗|Φ⟩⟨Φ|A
′R′

(V A′B′→E′D′

F )T (A1)

=
dBdE
dAdD

(V A′B′→E′D′

F )∗|Φ⟩A
′R′

⟨Φ|EE′
V AB→ED
F

|Φ⟩⟨Φ|BB′
(V AB→ED

F )†|Φ⟩EE′
⟨Φ|A

′R′
(V A′B′→E′D′

F )T

(A2)

=
dB
dD

(V A′B′→E′D′

F )∗(ωDB′
⊗ ΦA′R′

)(V A′B′→E′D′

F )T

(A3)

=
dB
dD

ωDD′E′R′

0 , (A4)

where we used Lemma 6 in the second equation. Note
that ωDB′

is given by ωDB′
= TrE [V

AB→ED
F (πA ⊗

ΦBB′
)(V AB→ED

F )T ].

The other one is calculated as

[
(Π2Π1Π2)

DD′E′R′]2
= |Φ⟩⟨Φ|DD′

(V A′B′→E′D′

F )∗|Φ⟩⟨Φ|A
′R′

|Φ⟩⟨Φ|DD′
(V A′B′→E′D′

F )T(V A′B′→E′D′

F )∗

|Φ⟩⟨Φ|A
′R′

(V A′B′→E′D′

F )T|Φ⟩⟨Φ|DD′
(A5)

= ΦDD′
⊗ dB
dD

⟨Φ|DD′
(V A′B′→E′D′

F )∗

(ωDB′
⊗ ΦA′R′

)(V A′B′→E′D′

F )T|Φ⟩DD′
(A6)

= ΦDD′
⊗ dBpsucc

dD
ζE

′R′

succ . (A7)

Taking the square root of both sides concludes the deriva-
tion. Here, we also used Lemma 6 in the second equation.
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Abstract. In many ideal quantum cryptographic protocols, including relativistic quantum bit commit-
ment [1] and quantum money tokens [2], Bob sends Alice random states from the BB84 [3] or another
given set. In practice, the states are prepared with misalignment, not uniformly distributed, are mixed,
and include some multi-photon states. To cheat, Alice must produce statistically plausible results for mea-
surements in both BB84 bases, allowing for a given error level. We present a general security analysis based
on maximum confidence quantum measurements [4] that strongly bounds Alice’s probability of winning
games of this type with arbitrary quantum strategies, and discuss applications to specific protocols.

Keywords: practical quantum cryptography, maximum confidence quantum measurement, quantum to-
kens, quantum bit commitment

1 Summary of results

Our main technical results are twofold.
First, we consider a broad class of quantum tasks in

which Alice receives quantum states from a given set in
N independent rounds and is required to obtain particu-
lar classical information about the prepared states for all
rounds, with the possibility of failing in no more than n
rounds, for a given 0 ≤ n ≤ N . Effectively, Alice is play-
ing a multi-round game which she wins if she succeeds in
a sufficiently high proportion of the rounds.
We show that if Alice’s success probability in the kth

round is upper bounded by P k
bound, conditioned on any

quantum inputs ρj and classical outputs xj for rounds
j ̸= k and on any extra measurement outcome oextra
obtained by Alice, for all k ∈ [N ], then Alice’s success
probability Pwin(n,N |oextra) in the task conditioned on
the extra outcome oextra is upper bounded by the prob-
ability P coins

bound(n,N) of having no more than n errors
in N independent coin tosses with success probabilities
P 1
bound, P

2
bound, . . . , P

N
bound. Thus, we have

Pwin(n,N |oextra) ≤ P coins
bound(n,N)

≤
n∑

l=0

(
N
l

)
(1− Pbound)

l(Pbound)
N−l,

(1)

where P k
bound ≤ Pbound < 1 for all k ∈ [N ]. This further

implies that we can upper bound the right hand side
by a Chernoff bound decreasing exponentially with N if
n < N(1− Pbound).
This result is quite useful for a great variety of quan-

tum cryptography protocols in which Alice’s cheating
probability reduces to wining the described task. In this
case the security proof can be reduced to finding the up-
per bound P k

bound for the round k conditioned on any
quantum inputs ρj and classical outputs xj for rounds

∗apak@damtp.cam.ac.uk
†D.Pitalua-Garcia@damtp.cam.ac.uk

j ̸= k and on any extra measurement outcome oextra ob-
tained by Alice, for all k ∈ [N ]. Crucially, we note that
the result applies to arbitrary quantum strategies by Al-
ice, including arbitrary joint quantum measurements on
the quantum states received in all N rounds.

Examples where this result is useful include relativis-
tic quantum bit commitment protocols (e.g., [1]), quan-
tum money schemes (e.g., [5]), quantum S-money to-
ken schemes [2]. It can also be used for security proofs
in other mistrustful quantum cryptography protocols,
for example, quantum spacetime-constrained oblivious
transfer protocols [6, 7].

Second, we deduce the bound P k
bound for an impor-

tant and cryptographically relevant subset of the quan-
tum tasks described above, in which Alice’s task in each
round can be shown to be equivalent to a quantum state
discrimination task. In this case, we show that Alice’s
probability to win the task in round k, conditioned on
any quantum input states ρi and classical outputs xi for
rounds i ̸= k and on any extra measurement outcomes
oextra, is upper bounded by her maximum confidence
quantum measurement maxj∈Sk

PMC(ρ
k
j ) [4], where

PMC(ρ
k
j ) = max

Q≥0

pkjTr[Qρ
k
j ]

Tr[Qρk]
, (2)

where in the relevant state discrimination task Alice re-
ceives the quantum state ρkj with probability pkj , for all

j ∈ Sk, and where ρk =
∑

j∈Sk
pkj ρ

k
j .

Because PMC can be shown to increase relatively lit-
tle for small variations from the ideal protocol, this re-
sult allows us to derive significantly tighter and more
general security bounds for S-money quantum tokens of
Ref. [2], in which we allow the prepared states to de-
viate from the target BB84 state up to an angle θ on
the Bloch sphere. Previous security analyses [2] assumed
that the four states belonged to two qubit orthonormal
bases, which cannot be precisely guaranteed in a realistic
experimental setup. Similarly, we note that this result
applies to the experimental implementation of relativis-
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tic quantum bit commitment reported in Ref. [1], as the
security analysis provided in Ref. [1] also assumed that
the prepared states belonged to two qubit orthonormal
bases deviating from the BB84 basis by an angle θ.
We further refine the security analysis for the S-money

quantum tokens of [2] by allowing a small probability
Pθ that the qubit prepared states deviate from the in-
tended BB84 states by an angle greater than θ in the
Bloch sphere. This allows security to be proven based on
experimental data that sample the distribution of devia-
tions from BB84 states.

2 Application to a refined security analy-
sis of quantum S-money token schemes

2.1 The quantum S-money scheme

We describe the quantum S-money scheme of Ref. [2]
for two presentation regions R0 and R1. Alice and Bob
agree in advance on a spacetime reference frame F, and
define R0 and R1 in F. Let P be the intersection of the
causal pasts of R0 and R1. Alice and Bob have labo-
ratories Ai and Bi able to communicate within Ri, for
i = 0, 1. Alice (Bob) and her (his) laboratories com-
municate via secure and authenticated channels, which
can be implemented via predistributed secret keys, for
instance. An ideal quantum S-money scheme comprises
the following steps.

1. Bob sends Alice N random states from the BB84
set {|0⟩, |1⟩, |+⟩, |−⟩} [3]. Alice chooses a random
bit z and measures all the states in the qubit or-
thonormal basis Dz, where D0 = {|0⟩, |1⟩} and
D1 = {|+⟩, |−⟩}. Let t denote Bob’s encoded bits
and u the preparation bases. Let x denote Alice’s
outcomes.

2. Alice sends x to Ai; while Bob sends t and u to Bi,
for i = 0, 1.

The previous steps comprise the quantum phase,
which can be performed arbitrarily in advance of
the following stage. The following steps comprise
the classical phase.

3. Within P , Alice obtains the bit b, labelling the pre-
sentation region Rb; she sends b to Ai, for i = 0, 1,
and c = b⊕ z to Bob.

4. Within P , after receiving c, Bob sends c to Bi, for
i = 0, 1.

5. After receiving b, Ab sends x to Bb within Rb.

6. For i = 0, 1, within Ri, assuming that Bi receives
a token xi, Bi calculates di = c⊕ i, and computes
the number Nerrors,i of entries k ∈ ∆i that do not
satisfy xik = tk, where ∆i = {k ∈ [N ]|uk = di}. Bi

locally validates the token if

Nerrors,i

Ni
≤ γerr , (3)

or rejects it otherwise, where Ni = |∆i|.

The practical scheme deviates from the ideal scheme
above by allowing the experimental imperfections de-
scribed in Table 5, and making the assumptions of Table
6, of Ref. [2]. However, we note that we relax the as-
sumption A of table 6, as now we allow the prepared
states to deviate from the intended BB84 states up to an
angle θ on the Bloch sphere without constraining them
to define two qubit orthonormal bases. We also allow a
small probability Pθ > 0 that such uncertainty angle is
larger than θ.

Furthermore, the scheme can be extended to allow for
a big amount of losses, by requiring that Alice reports to
Bob a set Λ ⊆ [N ] of received pulses, and constraining the
scheme to these pulses. In this case Bob does not abort if
and only if |Λ| ≥ γdetN , for a predetermined γdet ∈ (0, 1]
(the case γdet = 1 corresponds to Alice not reporting
any losses). We can consider a situation in which the
experimental setup has sufficiently small losses so that
Alice does not need to report any losses to Bob. In this
case, we do not need to make the assumptions C, D and
F of Ref. [2], and we can guarantee perfect protection
against multi-photon attacks [9], which as discussed in
Ref. [9] applies to various implementations of mistrustful
quantum cryptography.

The ideal and practical schemes extend straightfor-
wardly to an arbitrary number of presentation spacetime
regions. Our security analysis applies to this general case.
The unforgeability proof holds even if Alice is required
to report losses and applies for arbitrarily powerful dis-
honest Alice who may detect all quantum states received
from Bob and choose to report an arbitrary subset of
states as lost.

2.2 Security analysis

We consider the general case in which Alice reports
losses to Bob. We define the following parameters.
Pdet is the probability that a quantum state |ψk⟩ trans-

mitted by Bob is reported by Alice as being successfully
measured, with label k ∈ Λ, for k ∈ [N ] = {1, 2, . . . , N};
E is the probability that Alice obtains a wrong mea-
surement outcome when she measures a quantum state
|ψk⟩ in the basis of preparation by Bob; if the error rates
Etu are different for different prepared states, labelled by
t = 0, 1, and for different measurement bases, labelled
by u = 0, 1, we simply take E = maxt,u{Etu}; Pnoqub

is the probability that a prepared quantum state has di-
mension greater than two (by comprising two or more
qubits, for instance), which arises due to an imperfect
single-photon source; Pθ is is the probability that a pre-
pared quantum state has uncertainty angle greater than
θ in the Bloch sphere, due to errors in state preparation;
Pnoqub,θ is the probability that a prepared quantum state
has dimension greater than two or its uncertainty angle
in the Bloch sphere is greater than θ; We have

Pnoqub,θ = 1− (1− Pnoqub)(1− Pθ); (4)

N is the number of quantum states that Bob sends Alice;
Ωqub is the set of labels k ∈ [N ] for quantum states |ψk⟩
of dimension two that Bob sends Alice; βPB (βPS) is the
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maximum deviation away from probability 1
2 when Bob

chooses a preparation basis (state); βE is the maximum
deviation away from probability 1

2 when Alice chooses
the bit z denoting her measurement basis; γdet is the
minimum rate of states reported by Alice as successfully
measured for Bob not abort; γerr is the maximum er-
ror rate allowed by Bob when validating Alice’s token;
νcor is a security parameter chosen by Alice to compute
a guaranteed degree of correctness; νunf is a security pa-
rameter chosen by Alice to compute a guaranteed degree
of unforgeability.
Our refined unforgeability proof is based on computing

the maximum confidence quantum measurement in the
following quantum state discrimination task. Let ρktu de-
note the density matrix for the qubit state that Bob sends
Alice with label k ∈ Ωqub, when Bob aims to prepare the
state encoding the bit t in the basis Du, for t, u ∈ {0, 1}.
That is, ρkt0 ≈ |t⟩⟨t| for t = 0, 1, ρk01 ≈ |+⟩⟨+| and ρk11 ≈
|−⟩⟨−|. For k ∈ Ωqub, let P

k
PS(t)P

k
PB(u) be the probabil-

ity that Bob prepares the state ρktu, where {P k
PS(t)}1t=0

and {P k
PB(u)}1u=0 are bit probability distributions. For

k ∈ Ωqub, we define ρk1 = ρk00, ρ
k
2 = ρk01, ρ

k
3 = ρk10,

ρk4 = ρk11, q
k
1 = P k

PS(0)P
k
PB(0), q

k
2 = P k

PS(0)P
k
PB(1),

qk3 = P k
PS(1)P

k
PB(0), q

k
4 = P k

PS(1)P
k
PB(1), and

rki =
qki + qki+1

2
, χk

i =
qki ρ

k
i + qki+1ρ

k
i+1

qki + qki+1

, ρk=
4∑

i=1

rki χ
k
i , (5)

for all i ∈ [4], where we use the notation 4 + 1 = 1. Let
PMC(χ

k
j ) be the maximum confidence quantum measure-

ment that the received state was χk
j when Alice’s out-

come is j ∈ [4] [4], where the maximum is taken over all
positive operators Q acting on a two dimensional Hilbert
space. That is, we have

PMC(χ
k
j ) = max

Q≥0

rkj Tr[Qχ
k
j ]

Tr[Qρk]
. (6)

We define Pbound as a probability satisfying

max
j∈[4],k∈Ωqub

2PMC(χ
k
j ) ≤ Pbound < 1. (7)

A bound Pbound can be computed analytically or nu-
merically (e.g., [8]).
We say the scheme is ϵunf−unforgeable if the probabilty

that Alice can make Bob validate a token at more than
one presentation region is not greater than ϵunf.

Theorem 1 Suppose that the following constraints hold:

Nγdet ≤ n ≤ N,

0 < Pnoqub,θ < νunf < γdet

(
1− γerr

1− Pbound

)
, (8)

for predetermined γdet ∈ (0, 1] and γerr ∈ [0, 1) and for
some νunf ∈ (0, 1), where n = |Λ|, and where Pbound sat-
isfies (7). The quantum token scheme is ϵunf−unforgeable

with

ϵunf =

⌊N(1−νunf)⌋∑
l=0

(
N
l

)
(1− Pnoqub,θ)

l(Pnoqub,θ)
N−l

+

⌊nγerr⌋∑
l=0

(
n−⌊Nνunf⌋

l

)
(1− Pbound)

l(Pbound)
n−⌊Nνunf⌋−l,

(9)

which decreases exponentially with N from the conditions
(8). In the case that losses are not reported we take
γdet = 1 and n = N .

We note that theorem 1 is improved with respect to
theorem 1 of Ref. [2] in two main ways: 1) it allows Bob’s
prepared states to deviate arbitrarily from the intended
BB84 states up to an angle θ in the Bloch sphere without
restricting the prepared states to form qubit orthonormal
bases; and 2) it replaces Pnoqub by Pnoqub,θ. That is, in
the security analysis of Ref. [2], θ was considered an up-
per bound on the uncertainty angle in the Bloch sphere
for state preparation. But, here we relax this assump-
tion by allowing the uncertainty angle to be greater than
θ with a probability Pθ. The probability Pnoqub,θ con-
siders this via equation (4). Crucially, we note that by
using the maximum confidence quantum measurement,
our scheme is proved secure against arbitrary attacks by
Alice, comprising an arbitrary quantum measurement on
the whole quantum system of N pulses received from Bob
and an ancilla of arbitrary finite Hilbert space dimension
held by Alice, which also include loss dependent attacks
in which Alice selects what set of pulses to report as lost
to her convenience.

3 Discussion

Our refined security proof can be helpful for implemen-
tations of other tasks in mistrustful quantum cryptogra-
phy, for instance, relativistic quantum bit commitment.
For example, one of the first experimental demonstra-
tions of realtivistic quantum bit commitment [1] based
its security analysis on the assumption that states belong
to two qubit orthonormal basis, deviating from the BB84
bases by an angle θ in the Bloch sphere. Our refined secu-
rity analysis allows this assumption to be discarded and
for security to be proved based directly on experimental
estimates for deviations from BB84 states.

More broadly, we believe our security analysis can be
helpful to analyse the security of practical implemen-
tations of mistrustful quantum cryptography. Together
with the analysis of multiphoton attacks in Ref. [9], these
results provide a more rigorous security analysis of im-
plementations of mistrustful quantum cryptography with
realistic experimental setups. This is crucial for develop-
ing the secure mistrustful quantum cryptographic appli-
cations envisaged for free space and fibre optic quantum
networks and the eventual quantum internet [10, 11].
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Efficient learning of mixed-state tomography for photonic quantum walk
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Abstract. Noise-enhanced applications in open quantum walk (QW) has recently seen a surge due
to their ability to improve performance. However, verifying the success of open QW is challenging, as
mixed-state tomography is a resource-intensive process, and implementing all required measurements is
almost impossible due to various physical constraints. To address this challenge, we present a neural-
network–based method for reconstructing mixed states with a high fidelity (∼97.5%) while costing only
50% of the number of measurements typically required for open discrete-time QW in one dimension. Our
method uses a neural density operator that models the system and environment, followed by a generalized
natural gradient descent procedure that significantly speeds up the training process. Moreover, we introduce
a compact interferometric measurement device, improving the scalability of our photonic QW setup that
enables experimental learning of mixed states. Our results demonstrate that highly expressive neural
networks can serve as powerful alternatives to traditional state tomography.

Keywords: Photonic Quantum Walks,Open System,Quantum State Tomography,Machine Learning,
Neural Density Operator,Neural Network

QW can not only simulate complex many-body phys-
ical phenomena such as quantum thermalization and lo-
calization but also provide a basic framework for develop-
ing efficient quantum algorithms such as quantum search
and PageRank algorithms. Open QW with specific noise
has been shown to significantly improve quantum trans-
port efficiency and then enhance problem-solving effi-
ciency (for example, a maze escape problem) by several
orders of magnitude compared to noise-free scenarios.
Moreover, by adding controlled noise to quantum evo-
lution, QW can be dynamically initialized in any high-
dimensional form and generate the Haar random unitary
operators required for quantum computation. To lever-
age the computational and simulated power of such open
QW, it inevitably requires mixed-state characterization.
However, the characterization of open quantum systems
is a resource-intensive process, and implementing all re-
quired measurements is almost impossible due to various
physical constraints, so it is still a significant challenge
to address mixed-state tomography.
Recently, neural network approaches for efficient learn-

ing of open quantum systems have been theoretically pro-
posed. Such an efficient method enables high-fidelity re-
constructions of mixed quantum states using only partial
measurements that are experimentally accessible. How-
ever, the high expressive ability of neural networks for
mixed states demands a complex deep network struc-
ture, and directly applying this method faces complicated
gradient-based training as the system size increases.
In this work, by establishing a mapping between the

open QW and the restricted Boltzmann machine, we real-
ized the effective learning of mixed quantum states for the
open QW, in terms of reconstruction fidelity, the number
of measurements, and the number of training iterations.
To increase the network training data, we innovatively

∗xuxiaoye@ustc.edu.cn

introduced an unequal-arm interferometer in the time
domain based on the previously constructed large-scale
photonic QW, thus significantly increasing the number
of measurement bases. The neural network method was
tested, and it showed that using only half the number
of complete measurements (i.e., partial measurements),
the trained neural network can well reconstruct arbitrary
mixed states with an average fidelity of up to 97.5%.
Moreover, we also introduced a generalized version of the
natural gradient descent procedure to accelerate training
efficiency, which enables about one order of magnitude
fewer training iterations than the one using traditional
gradient descent procedures. The efficient mixed-state
learning method sheds new light on previous tomographic
methods with a pure-state hypothesis and would inspire
further research and discoveries in noise-assisted quan-
tum computing and simulation.
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Figure 1: Photonic open QW. (a) The experimental setup mainly has four central parts: 1) Spontaneous parameter
down-conversion generates the time-correlated photon pairs, where signal photons as the walker and the idler photons
serve to herald; 2) The open QW, as reported in the upper panel of (b); 3) A Michelson interferometer together
with a polarization analyzer implements the measurement base on position and coin; 4) A single-photon frequency
up-conversion implements the position-resolved detection of the walker in each base. (b) The schematic diagrams
show the QW dynamics of a localized initial state (top) and the duplicate QW with time inversion constructed for
the state measurements in different bases (bottom), respectively. A list of abbreviations: β−BaB2O4 (BBO); dichroic
mirror (DM); interference filter (IF); polarization-dependent beam splitter (PBS); half-wave plate (HWP); quarter-wave
plate (QWP); piezoelectric ceramic (PZT); fiber collimator (FC); single-mode fiber (SMF); Si amplified detector (SAD);
photomultiplier tube (PMT); avalanche photodiode detector (APD).
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Figure 2: Benchmarking neural density operator tomography using partial measurements. Neural density operator
reconstruction fidelity as a function of the number of time steps for (a) Hadamard QW(green solid line), coherent
disordered QW (red dashed line), and (b) open QW with arbitrary mixing (blue dash-dotted line). The shaded
regions for coherent disordered and open QW are the standard errors of neural density operator reconstruction with
20 random samples for each step, and the lines are the averaging results. The insets in (a) and (b) show the purity of
reconstructed states of the 20 samples for a 20-step coherent disordered (red squares) and open QW (blue squares),
respectively. The black solid lines in the insets are the theoretical values of the purity for target density matrix.
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Figure 3: Experimental generalized-natural-gradient-descent-enhanced neural density operator tomography of QW
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Scalability enhancement of quantum computing
under limited connectivity through distributed quantum computing
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Abstract. We employ quantum-volume random-circuit sampling to benchmark two-QPU
entanglement-assisted distributed quantum computing (DQC) and compare it with single-QPU
quantum computing. Based on our error model, we derive an analytical approximation of the
average gate fidelity and show the one-to-one correspondence of three figures of merits, namely
average gate fidelity, heavy output probability, and linear cross-entropy, which is shown to align
with numerical simulations. The approximation is calculated based on an allocation matrix ob-
tained from the extended connectivity graph of a DQC device. Furthermore, we provide a simple
formula to estimate the average gate fidelity, which also provides us with a heuristic method to
evaluate the scalability enhancement in DQC, and unveils the scalability enhancement in DQC
for the QPUs with limited connectivity. The full version is available on [1].

Keywords: Distributed quantum computing, Quantum volume, Randomized benchmarking,
Entanglement-assisted LOCC, Average gate fidelity

In noisy intermediate-scale quantum (NISQ) com-
puting, the imperfection on quantum processing
units (QPUs) can not yet be corrected. The defects
on a single QPU are much more difficult to suppress
as the number of qubits increases. A solution for
scaling up quantum computers is distributed quan-
tum computing (DQC) [2, 3], in which one imple-
ments global quantum circuits over multiple high-
quality small-size QPUs, assisted by classical and
quantum communication across different QPUs, as
shown in Figure 1.

Figure 1: Implementation of a global unitary U
over two QPUs QA and QB through local unitaries
UA and UB, with the help of pre-shared entangled
pairs eAB (wiggly line) and classical communications
(double line).

To verify the enhancement of computation power
in DQC, one needs to benchmark and compare the
quantum computing power of multi-QPU DQC de-
vices and single-QPU devices. The correspond-

∗junyiwuphysics@gmail.com

ing figures of merits include average gate fidelity
(AGF)[4], heavy output probability (HOP)[5], and
linear cross-entropy (LXE)[6]. The quality of the
quantum computing on a quantum processor can be
then quantified by averaging these figures of merits
over a random sampling of quantum circuits. We
adopt different figures of merits (AGF, HOP, and
LXE) to the QV random-circuit sampling, and ex-
tend them to two QPU DQC.

Error model. Establishing a noise model is es-
sential for the characterization of errors in quantum
devices. In the QV random-circuit sampling, the
two-qubit gates are sampled from Haar random uni-
taries, hence we adopt the depolarizing channel as
our fundamental noise model. The single-qubit de-
polarizing noise that affects each qubit individually
is applicable with a preserving factor ranging from
1 to 0 for the identity channel and the complete de-
polarizing channel, respectively. Furthermore, such
a random sampling allows us to assume that the
unitary channels and the channel of the error are
commutable. We can therefore rearrange the order
of operations by moving all depolarizing channels to
the end of the circuit, as shown in Figure 2. With
this rearrangement, the outcome distribution pU (x)
can be obtained from the ideal outcome distribution
qU (x

′) transformed by a Markov matrix DP⃗ (x|x
′),
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Figure 2: The single-qubit depolarizing channels (blue ellipse) come after every layer of the random gates
ui and act on each qubit individually.

i.e.

pU (x) =
∑

x′∈{0,1}N
DP⃗ (x|x

′)qU (x
′), (1)

where P⃗ = (P1, P2, . . . ) are the preserving factor of
the effective depolarizing channel on each qubit that
is moved to the end of a circuit. By averaging over
all random circuits, our three figures of merit are
given by:

F̄ (P⃗ ) =
∏
q∈Q

1 + Pq

2
, (2)

H̄(P⃗ ) = H̄ideal
2N F̄ − 1

2N − 1
+ (1− F̄ )

2N−1

2N − 1
, (3)

χ̄(P⃗ ) =
2N F̄ − 1

2N − 1
χ̄ideal. (4)

These three equations show the one-to-one corre-
spondence among average AGF F̄ , HOP H̄, and
LXE χ̄ in the QV random-circuit benchmarking un-
der an approximated error model

F̄ ←→
QV random

H̄ ←→
QV random

χ̄. (5)

Furthermore, in the large size limit(2N ≫ 1), we
had equality between the HOP and LXE given by

H̄(P⃗ ) =
1

2
+

1

2
ln 2

χ̄(P⃗ )

χ̄ideal
. (6)

This result allows us to estimate average gate fi-
delity from heavy output probability or linear cross-
entropy in numerical simulation, and vice versa.

Extended connectivity and allocation matrix.
To assess the average AGF of multi-QPU DQC with
limited connectivity one needs to incorporate the
noises introduced by swapping gates and the telegat-
ing processes into the effective preserving factors P̄q.
We achieve this by introducing an allocation matrix
{Aq,q′}q,q′∈Q modeled with the single-qubit depolar-
izing noises. Each element Aq,q′ of the allocation
matrix describes the average number of single-qubit
depolarizing channels propagating from the qubit

q′ to the qubit q when one implements a random
two-qubit SU(4) gate on q. Hence we derive an ap-
proximated formula of F̄ for the QV random-circuit
benchmarking of multi-QPU DQC devices under ar-
bitrary connectivity described by extended connec-
tivity graphs, which is given as follows,

F̄ =
∏
q∈Qw

1 + (
∏

q′∈Q P
Aq,q′

q′ )2⌊
N
2
⌋

2
, (7)

where Qw is the set of the working qubits of the
QPUs. To provide an efficient analytical tool, we
introduce further approximation of average AGF for
large-size and high-fidelity QPUs,

F̄Q(ϵ) ≈ exp(−NAQ
2

ϵ), (8)

where the error rate is assumed to be uniform for
every qubit given by a constant ϵ, and the charac-
teristic cost AQ of a connectivity configuration Q is
the sum of all elements of the allocation matrix Aq,q′

AQ ≡
∑

q∈Qw,q′∈Q
Aq,q′ . (9)

The theory of error model approximation is sup-
ported by numerical simulations on qiskit. In our
simulation, we select six types of connectivity, which
can be categorized into two groups. The first group
comprises devices utilizing a single QPU, while the
second group consists of DQC-composited devices
equipped with two local QPUs. as shown in Fig-
ure 3.

Numerical simulation. We employ linear cross-
entropy for measuring average gate fidelity and set
5 different constant error rates from ϵ = 0.05% to
ϵ = 0.5%(ϵ ≡ 1 − P ) across all qubits in qiskit.
We sampled over 1000 random circuits for each con-
nectivity graph and error rate and executed 10, 000
shots for each configuration. Then we plot the re-
lation between the error rate in the qiskit and the
effective error rate calculated by the simulation date
through Eq. 2. The case of size 8 is shown in Fig-
ure 4.
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Figure 3: The blue and orange vertices represent
the working qubits and the black edges identify the
direct coupling between qubits. The yellow vertices
denote the auxiliary memory qubits, which can ei-
ther store the shared entangled state or facilitate the
passage of additional swapping gates.
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Figure 4: The scatter indicates the data point, here
we use different shapes to denote the connectivity
of the devices. The linear fitting gives the blue and
green lines, where the ratio is close to 1 (1 ± 0.05)
and the intercept is around 10−5 ∼ 10−6.

To further support the AGF-HOP-LXE corre-
spondence and scalability enhancement of DQC, we
conduct additional simulations, in which we fix the
error rate ϵin = 0.15% for all qubits, and benchmark
both single-QPU and two-QPU devices from 3-qubit
to 10-qubit. Under this setting, we sample over 2000
random circuits for all sizes and take 10000 shots
for each random circuit. For each configuration of
connectivity graph G and qubit number n, we eval-
uate the measurement outputs with both average
HOP and LXE and plot them in Fig. 5(a). One can
clearly verify the HOP-LXE correspondence derived
in Eq. (6) with these simulated data as a general
property independent of the size and connectivity
of a quantum computing device.
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Figure 5: QV random-circuit benchmarking for 3−
10 qubit devices with different types of connectivity.

The theoretical calculation according to our the-
ory agrees with the simulation results, which show
the scalability enhancement in DQC for QPUs with
limited connectivity, such as 1D and 2D graphs
shown in Figure 5. The results suggest that the
condition for scaling up quantum computing using
DQC is to choose a good qubit such that the con-
nectivity of the extended graph is improved. For
given local QPUs, we can find the best position for
the auxiliary memory qubit, with the help of the
allocation matrix. The allocation matrix also pro-
vides a heuristic method of finding the best position
through the minimization of the characteristic value
AQ.
The scalability enhancement is unveiled under the

assumption of the same error rate for all devices.
However, in practice, the error rate of a small-size
QPU is usually smaller than the one of a large-size
QPU. In this regard, the DQC may still enhance
scalability, even without improving the connectivity.
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Abstract. We propose a compilation protocol that enables fault-tolerant quantum error correction circuits
to be implemented on devices with incompatible topologies, in such a way that preserves their fault-
tolerance. By restricting the appearance of error mechanisms that break fault-tolerance, our protocol
preserves the scaling of logical error rates with code distance and the presence of thresholds, while resulting
in deteriorations that can be estimated using a simple effective noise model. As an example, we apply our
protocol to the planar surface code, showing that it can be embedded onto the heavy-hexagonal and
hexagonal lattices with only a constant overhead in additional timesteps, and deteriorations in threshold
values by less than an order of magnitude. Simulations of logical error rates under a full-circuit noise
model further verify our predictions. Our results are fully generalizable to any quantum circuit and device
topologies, and relaxes the dependence of statements regarding fault-tolerance on device details.

Keywords: Fault-tolerant quantum error-correction, compilation, qubit routing

1 Introduction

Fault-tolerant quantum error correction (FTQEC) is
an essential component for quantum computation at
scale. Implementations of FTQEC protocols are designed
with strict error propagation properties in mind that en-
sure their fault-tolerance, and are thus extremely sensi-
tive to architectural aspects of the quantum device such
as their topology.
In the broader context of implementing general quan-

tum circuits under such device-topological constraints, a
well-known approach to solve this compilation problem is
via qubit routing, where a series of SWAP gates are em-
ployed to transform the non-local quantum circuit (which
we call the abstract circuit) to one that obeys the locality
constraints of the device (which we call the routed circuit)
[1]. Crucially, qubit routing generally alters the manner
in which errors are introduced and propagated. This is
especially undesirable in the context of FTQEC, where
abstract circuits (e.g. corresponding to syndrome extrac-
tion circuits or logical operations) are usually designed
with error propagation behaviours in mind that ensure
their fault-tolerance, such as transversality. It therefore
appears that there is little flexibility when implementing
FTQEC circuits, prohibiting execution on devices that
do not meet the circuit’s connectivity requirements.
With these considerations in mind, our results demon-

strate that it is in fact possible to perform routing in a
way that preserves the fault-tolerance of the underlying
abstract circuit, thereby relaxing constraints on FTQEC
set by device topologies. Using the surface code – a
prime candidate for QEC at scale – routed on the heavy-
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hexagonal lattice as an example, we further show that
our routing process results only in tolerable deteriora-
tions in logical error rates and threshold values (< an
order of magnitude), rendering it a highly viable strat-
egy for the implementation of FTQEC protocols under
device-topological constraints.

2 Main results

We define a routing schedule to be the representation of
a sequence of single-timestep/layer circuits consisting of
either gates implementing the abstract quantum circuit
(referred to as interaction layers), or SWAP gates which
carry out qubit routing (referred to as SWAP layers).

Our goal is to perform the compilation by inserting
SWAP gates in a manner that does not introduce and
propagate errors in an uncontrollable way, relative to the
underlying abstract circuit. For this purpose, we intro-
duce the notion of error-pattern-preserving (EPP) rout-
ing schedules, which are routing schedules with SWAP
gates that obey one of the following constraints:

1. its targets consists of a routing qubit and an ab-
stract qubit (which we call type-1 SWAP gates),

2. its targets consists exclusively of abstract qubits
(which we call type-2 SWAP gates) which further-
more must be connected in the interaction graph,
and in a manner consistent with the ordering of the
interactions.

The main result of our work concerns the fault-tolerance
of abstract circuits routed with EPP schedules:

Theorem 1 Consider an abstract circuit routed by a
EPP schedule. If the abstract circuit is fault-tolerant,
the routed circuit is also fault-tolerant.

Here, the fault-tolerance of a circuit is defined rigor-
ously by conditions that guarantee that the circuit does
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not uncontrollably spread and convert correctable errors
into uncorrectable ones, even when its components are
faulty [2, 3].
The intuition behind the proof of Theorem 1 is that

routing schedules preserve the structure and error mech-
anisms of the underlying faulty abstract circuit, while
potentially introducing new error mechanisms that can
break its fault-tolerance, depending on the form of the
routing schedule. The constraints of EPP routing sched-
ules prevent the appearance of such error mechanisms,
and therefore allows routed circuits to inherit the fault-
tolerance of the abstract circuit. Consequently, abstract
circuits that have been designed to be fault-tolerant can
be implemented on a device of a different topology in a
similarly fault-tolerant manner, as long as a solution to
the routing problem under the constraints of EPP sched-
ules can be found.
The above result can also be seen as a consequence

of the more general fact that fault-tolerance remains ro-
bust under weak, persistent coupling to an environment
in a non-Markovian manner [2, 4]. The routing qubits
act as a bath that is coupled to the abstract qubits via
type-1 SWAP gates, with the possibility that multiple
abstract qubits can share the same bath, and at differ-
ent times over the course of the computation. Nonethe-
less, the structure of routed circuits ensures that spatio-
temporally correlated errors involving s qubits occur with
a probability that is exponentially suppressed as s, which
can be interpreted as the noise effectively satisfying a lo-
cality condition [2] that preserves fault-tolerance.
When applied to the compilation of abstract circuits

implementing quantum memories, the absence of new er-
ror mechanisms directly implies the preservation of the
scaling of their logical error rates (LERs), including the
exponential suppression of errors with increasing code
distance and the presence of thresholds. Furthermore, it
implies that the behaviour of the noisy routed circuit can
be understood in terms of the abstract circuit subjected
to an averaged, effective noise model. This effective noise
model takes the same form as the noise model of the un-
derlying abstract circuit, but is instead parametrized by
an effective physical error rate:

peff = p+
nswap

|E|
pswap, (1)

where p is the physical error rate of original noise model,
E is the set of all error locations of the original quantum
circuit, nswap counts the total number of times qubits in
the abstract circuit were involved in SWAP gates, and
pswap the physical error rate of faulty SWAP gates. The
LERs and threshold value of the routed circuit can thus
be approximately related to those of the abstract circuit
via:

p′L(p) ≈ pL(peff), (2)

p′threshold ≈ pthreshold − nswap

|E|
pswap. (3)

3 Application to the surface code

Using our compilation protocol, we demonstrate how
the surface code can be robustly implemented in a fault-
tolerant manner on devices with incompatible topologies,
such as the heavy-hexagonal lattice.

3.1 EPP routing schedules for the surface code

Firstly, to obtain valid EPP routing schedules, we ex-
tend existing routing algorithms based on a distance-
minimizing greedy graph search [1, 5] to impose the con-
straints of EPP schedules. Furthermore, exploiting the
fact that both the square lattice of the planar surface
code and heavy-hexagonal lattices possess the same dis-
crete translational symmetry, the search algorithm can
be modified to be distance/scale-independent, by solely
working with a primitive unit cell of the surface code.
Applied to the surface code embedded onto the heavy-
hexagonal lattice, we obtain the depth-minimal EPP
routing schedule visualized in Fig. 1 (a)-(f).

This schedule consists of two SWAP layers between
each pair of interaction layers, resulting in six SWAP
layers and four interaction layers in total. Decomposing
SWAPs in terms of CNOTs and parallelizing entangling
gates whenever possible, we find that it contains 19 layers
of two-qubit gates (instead of 4 layers, when executed
natively on a square lattice). Each data/ancilla qubit
experiences 3 SWAP gates in each cycle, albeit in an
inhomogenous manner in time.

Notably, after each cycle, the entire routed surface
code is translated diagonally across one cell of the heavy-
hexagonal lattice. Reversing the syndrome extraction cir-
cuit at alternating cycles returns it to its original loca-
tion in a periodic manner, and retains the prevention of
aligned hook errors built into the circuit [6].

3.2 Approximate LERs and threshold values

For simplicity, we first assume that faulty CNOTs are
the dominant contributors of errors. In this case, devel-
oping Eq. (1) to linear order in p for the surface code
yields peff = cp, where a dimensionless constant:

c ≡ 1 +
3

4
n̄swap (4)

appears, with n̄swap the average number of times each
qubit in the surface code has been involved in a SWAP
gate throughout the routing schedule. Eqs. (2) and (3)
then take the simple forms:

p′L(p) ≈ pL(cp), (5)

p′threshold ≈ pthreshold/c. (6)

The calculation above allows us to estimate the deteri-
oration in LERs and thresholds of a routed circuit solely
based on the structure of the routing schedule, modulo
the effects of single-qubit errors, and inhomogeneities of
the SWAP schedule. For the schedule of Fig. ??, where
n̄swap = 3, we therefore expect the threshold of the routed
surface code to approximately deteriorate by a multi-
plicative factor of c = 3.25 in the limit of large code
distances.
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X-ancilla qubits

Z-ancilla qubits

Z-data qubits

Routing qubits

(g)

Figure 1: Schematic representation and LERs of the EPP routing schedule to embed the planar surface code onto
the heavy-hexagonal lattice. (a) Visualization of the syndrome extraction circuit for the distance 3 planar surface
code, showing CNOT gates (colored edges) between the data and ancilla qubits (17 colored circles, separated into four
‘species’ of qubits), arranged on a square lattice. (b) Initial layout of the 17 qubits in the heavy-hexagonal lattice. The
dotted box denotes a tileable unit cell of the circuit. (c)-(f) Intermediate layouts during the four interaction layers of
the surface code. Between each pair of interaction layers are two SWAP layers, consisting of only type-1 SWAP gates
that permute data/ancilla qubits to reach the next layout. (g) pL as a function of peff for the surface code executed
natively on a square grid without routing (solid lines), and on the heavy-hexagonal lattice with the EPP schedule
(crosses) for increasing code distances. peff = p for the natively executed surface code, while peff = 3.7p for the routed
surface code. The threshold of the routed circuit has also deteriorated by a multiplicative factor of 3.7.

Notably, the value of n̄swap (and thus c) depends ex-
plicitly on the structure of the routing schedule, which is
in turn restricted by purely graph-theoretic constraints
arising from the mismatch between the interaction graph
of the QEC circuit and the topology of the quantum de-
vice. For instance, a naive lower bound of n̄swap ≥ 2 can
be obtained by considering the difference in minimum
degrees between the heavy-hexagonal and the square lat-
tices, putting the schedule of Fig. 1 (a)-(f) close to opti-
mal depth.

3.3 Simulations of LERs and threshold values

We numerically simulate the LERs of the native and
routed circuit codes for increasing distances under a full-
circuit depolarizing noise model (errors during qubit ini-
tialization/reset, measurements, single-qubit gates, and
two-qubit gates) parametrized by a common physical er-
ror rate p. MWPM is used for decoding, alongside a
matching graph with edge weights modified according to
the structure of the routing schedule.
To plot the two sets of pL curves as a function of peff,

we perform a numerical fitting procedure to empirically
obtain the value of c for the routed circuit that mini-
mizes their mean squared error, yielding c = 3.7, which
is slightly higher than the predicted value of 3.25 due to
the aforementioned approximations present in Eq. (4).
Fig. 1 (g) shows the LERs pL of the native and routed

surface codes, plotted against the effective physical error
rates peff, where peff = p for the native surface code by
definition, and peff = 3.7p for the routed surface code.
The close agreement between the two sets of curves, in-
cluding the position of the threshold, confirms our de-

scriptions of the LERs of routed schedules.

4 Conclusion

In summary, we have proposed a general way to fault-
tolerantly implement QEC circuits on devices with in-
compatible topologies.

Our approach is directly compatible with any device
topology and quantum circuit, and opens up the possibil-
ity of implementing and testing QEC circuits on different
devices, which is particularly relevant on the majority of
current scalable quantum hardware architectures featur-
ing geometrically local connectivities.

Furthermore, our approach yields relatively simple
descriptions of LERs and threshold values, and does
not significantly modify the classical decoding process,
which facilitates implementation and analysis. Applied
to the surface code, this simply translates to perform-
ing MWPM on the same matching graph, with locally
modified edge weights.

From a broader theoretical perspective, Theorem 1
relaxes the dependence of statements regarding fault-
tolerance on device details. It implies that FTQEC pro-
tocols can remain fault-tolerant when executed on a de-
vice of incompatible topology as long as a solution to
the routing problem under the constraints of EPP sched-
ules exists, which is a purely graph-theoretical problem
concerning the connectivity of the device and the QEC
code.
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Abstract. Many-body dissipative quantum systems exhibit complex relaxation dynamics towards sta-
tionality. While the Liouvillian gap describes the asymptotic decay rate, it does not always accurately
give the relaxation time due to the existence of long transient regime. This study demonstrates that bulk-
dissipated quantum systems exhibit the acceleration of decay rates in the transient regime. We introduce
the instantaneous decay rate to study the transient dynamics and explain the accelerated decay rate from
the viewpoint of operator spreading. Additionally, we discuss the implications of this accelerated decay
rate in quantum computation using gate-based quantum computers.
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1 Introduction

The relaxation dynamics of a quantum system coupled
to a dissipative environment is a longstanding fundamen-
tal issue in non-equilibrium statistical physics [1, 2, 3].
Previous studies have mainly focused on relatively small
systems, whereas our understanding of many-body open
quantum systems remains limited. Recent experimental
progress with superconducting transmons and trapped
ions has enabled us to tackle problems using quantum
computers. Current quantum computers are considered
quantum many-body open systems because they consist
of many qubits and are susceptible to errors due to the
coupling with dissipative environment [4]. This also mo-
tivates us to study many-body open quantum systems.
It has been pointed out that many-body open quantum

systems exhibit counter-intuitive dynamical features in
the relaxation process. The Markovian dynamics, where
the timescale of the environment is much shorter than
others, is generated by the Lindblad operator [5, 6]. The
spectral gap of the Lindblad operator, called the Liouvil-
lian gap, indicates the asymptotic decay [3], but does not
necessarily provide a correct estimate of the relaxation
time. Indeed, the relaxation time is much longer than
the estimate given by the Liouvillian gap in boundary-
dissipated many-body quantum systems, where a con-
served current flows in the bulk [7, 8, 9, 10]. This dis-
crepancy is due to the existence of a long-time transient
regime. Therefore, clarifying the relaxation dynamics in
the transient regime is important.
In this work, we study the autocorrelation function in

the steady state of bulk-dissipated quantum systems [11].
We find that bulk-dissipated quantum systems display a
much shorter relaxation time than the inverse of the Liou-
villian gap, which is different from boundary-dissipated
systems. To study the transient dynamics, we intro-
duce the instantaneous decay rate to establish a rigor-
ous bound on the autocorrelation functions. We identify
three distinct dynamic regimes (see Fig. 1): the accel-
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Figure 1: Dynamics of the instantaneous decay rate κA(t)
with Â = σz

1 −⟨σz
1⟩ss for various system sizes in the bulk-

dissipated system (see the model in Eq. (1)). Lines show
κA(t) forN = 4, 5, 6, 7, 8 from bottom to top. The arrows
indicate the values of the Liouvillian gap.

eration regime, the plateau regime, and the asymptotic
regime. The growth of the instantaneous decay rate in
the acceleration regime implies an acceleration of the de-
cay rate. In the following, we explain that the relaxation
dynamics is universal in bulk-dissipated many-body sys-
tems from the viewpoint of the operator spreading. Ad-
ditionally, we demonstrate the implications of the accel-
erated decay rate in quantum computation using noisy-
intermediate-quantum (NISQ) computers.

2 Accelerated decay rate of autocorrela-
tion function

We study the decay of autocorrelation functions in
steady states. For clarity, we consider a bulk-dissipated
one-dimensional N -spin system, which is governed by the
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Figure 2: Dynamics of the autocorrelation function
CA(t) with Â = σ̂z

1 − ⟨σ̂z
1⟩ss for various system sizes in

the bulk-dissipated system. Scaled correlation function
|CA(t)/CA(0)| for N = 4, 6, 8 from top to bottom (solid
lines) and the upper bounds in Eq. (3) (Dashed lines) are
depicted.

following Lindblad equation:

d

dt
ρ = −i[Ĥ, ρ] + γ

N∑
i=1

(
L̂iρL̂

†
i −

1

2

{
L̂†
i L̂i, ρ

})
= Lρ,

Ĥ =
N∑
i=1

(
hzσ̂z

i + hxσ̂x
i + Jσ̂z

i σ̂
z
i+1

)
,

L̂i = σ̂−
i =

1

2
(σ̂x

i − iσ̂y
i ),

(1)

where L is a superoperator called Liouvillian acting on
density operator ρ, and {σ̂α

i }α∈{x,y,z} denote the Pauli
operators acting on site i. We set the parameters to
hz = 0.9045, hx = 0.809, and J = 1, for which the eigen-
state thermalization hypothesis is numerically shown to
be satisfied [13], and fix the dissipation strength as
γ = 0.01. The steady state is given by Lρs = 0.
Figure 2 shows the dynamics of autocorrelation func-

tions for various system sizes by solid lines. The auto-
correlation function is defined as [12]

CA(t) = ⟨A(t), A⟩s = ⟨A(t), Aρs⟩ (2)

where ⟨A,B⟩ = Tr(A†B) and ⟨A,B⟩s = Tr(A†Bρs).

Here, A(t) = exp(L̃t)A where L̃ is a conjugate super-
operator defined as ⟨L̃A,B⟩ = ⟨A,LB⟩. The autocorre-
lation function decays at the Liouvillian gap in the long-
time asymptotic regime. However, we found a transient
regime where the decay rate is larger than the decay rate
of the Liouvillian gap.
In order to study the relaxation dynamics in the tran-

sient regime, we derive a rigorous upper bound on the
autocorrelation functions as

|CA(t)| ≤ exp

(
−
∫ t

0

κA(τ)dτ

)
CA(0), (3)

Time

Decay 
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γ 3γ 5γ
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(Nγ)
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Figure 3: Schematic picture of accelerated decay in a
bulk-dissipated quantum chain with N = 7 spins. Filled
circles represent sites where an operator Â(t) nontrivially
acts.

where κA(t) is called the instantaneous decay rate and is
given by

κA(t) = −1

2

⟨A(t), (L̃+ L̃∗)A(t)⟩s
⟨A(t), A(t)⟩s

. (4)

Here, L̃∗ is defined as ⟨L̃∗A,B⟩s = ⟨A, L̃B⟩s. The instan-
taneous decay rate satisfies (i) κA(t) ≥ 0 and (ii) κA(t)
approaches the Liouvillian gap in the long-time limit.

Figure 1 shows the dynamics of the instantaneous
decay rate for various system sizes. There are three
dynamic regimes: the acceleration regime, the plateau
regime, and the asymptotic regime. The instantaneous
decay rate increases over time in the acceleration regime,
takes a constant value in the plateau regime, and de-
cays to the value of the Liouvillian gap in the asymptotic
regime.

We explain the three dynamic regimes from the view-
point of operator spreading. Figure 3 provides a
schematic picture of the relaxation dynamics in one-
dimensional bulk-dissipated systems. Here, we consider
A = Oi as an operator acting on a single site i. The filled
circles in the figure denote sites where the operator A(t)
nontrivially acts. The number of filled circles represents
the operator size. The operator is initially localized to
site i, making the operator size one. Then, the operator
size increases with time, resulting in the operator spread-
ing [14, 15]. Let us study the effect of bulk dissipation.
The single-site operator Oi decays at the rate of γ due
to the coupling with the dissipative environment. As a
result, operator Oi−1OiOi+1 decays at the rate of 3γ. In
this way, the decay rate is accelerated in the acceleration
regime as the operator size increases with time.
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In the plateau regime, the instantaneous decay rate
takes a constant value proportional to the system size.
This observation can also be understood from the view-
point of operator spreading. Namely, since the operator
spreads over the entire system in this regime, the decay
rate is proportional to the system size.
In the asymptotic regime, the instantaneous decay rate

approaches the decay rate of the Liouvillian gap. The
oscillation of the instantaneous decay rate for small-sized
systems implies the degeneracy of the Liouvillian gap.
In Fig. 2, we compare the dynamics of the autocorre-

lation function with the upper bound in Eq. (3). The
autocorrelation function exhibits a rapid decay in the
initial stage of the dynamics, which is not captured by
the bound. The instantaneous decay rate fails to de-
scribe this initial decay due to the Hamilton dynamics.
However, It is worth noting that the upper bound accu-
rately describes the decay rate in the long-time transient
regime. The decay rate in the transient regime is well re-
produced by the plateau value of the instantaneous decay
rate.

3 Demonstration of accelerated decay
rates in quantum computation

Here, we demonstrate the implications of the acceler-
ated decay rate in quantum computation on noisy quan-
tum computers.
Let us consider a two-point measurement on an N -

qubit quantum system. First, we prepare an initial state
|ψ⟩ and perform a projection measurement of observable
A. A post-measurement state |a⟩ (i.e., A |a⟩ = a |a⟩) is
obtained with a probability of |⟨a |ψ⟩ |2. Then, the system
evolves over a time 2T in the presence of noise. The
unitary part of the time evolution for the period t ∈ [0, T ]
is given by U , and that for the period t ∈ [T, 2T ], it is
given by U†. The state |a⟩ ⟨a| evolves as

εU†εU (|a⟩ ⟨a|), (5)

where εU and εU† are noise maps corresponding to U
and U†, respectively. Finally, a projection measurement
of A gives an output state |a′⟩ with a probability of
⟨a′| εU†εU (|a⟩ ⟨a|) |a′⟩.
The correlation function resulting from the two-point

measurement of observable A at times t = 0 and t = 2T
is given by

C
(2)
A (U) =

∑
a,a′

aa′|⟨a |ψ⟩ |2 ⟨a′| εU†εU (|a⟩ ⟨a|) |a′⟩ . (6)

Randomly sampling the initial state |ψ⟩ to satisfy
[|ψ⟩ ⟨ψ|] = I/2N provides the ensemble average of

C
(2)
A (U) as

C
(2)
A (U) =

1

2N
⟨AU , AU ⟩ , (7)

AU = εUA. When the dissipative dynamics εU
is generated by the Lindblad equation as εU =

Texp
(∫ T

0
L(t)dt

)
, where T is a time-ordering operator

=

10-3

10-2

10-1

100

100 101 102

- 
L
o
g

 
C
A

Circuit depth l

N=4

N=6

N=8

N=10

N=12

N=14

N=16

slope 2

slope 1

Figure 4: (Upper) Noise map εU on quantum circuit with
4 qubits. (Lower) Circuit-depth dependence of the two-

point correlation functions of A =
∑N

i=1 σ
z
i for various

system sizes. The two guiding lines clearly illustrate
the crossover between the acceleration regime and the
plateau regime.

and L(t) is a time-dependent Liouvillian at t, we obtain
an equality:

C
(2)
A (U) =

1

2N
exp

(
−
∫ T

0

2κAs(t)dt

)
⟨A,A⟩ . (8)

Here, the instantaneous decay rate is given as

κAs(t) = −1

2

⟨As(t), (L(t) + L̃(t))As(t)⟩
⟨As(t), As(t)⟩

, (9)

where As(t) = T exp(
∫ t

0
L(τ)dτ)A. The acceleration

of the decay rate should be observed for C
(2)
A (U) since

κAs(t) is proportional to the operator size of As(t), and
As(t) spreads to the entire system with time.

We calculate the correlation function using a sim-
ulator of gate-typed quantum computers on the one-
dimensional architecture. In Fig. 4 (upper), we present
a quantum circuit representing ϵU with a circuit depth
ℓ and N = 4. U (2) denotes the random two-qubit gate
from Ref. [16], and Nz denotes the dephasing noise chan-
nel with a dissipation strength γ = 0.001. The initial
state is set to |ψi⟩ = |0⟩⊗N

, where σz
i |0⟩ = |0⟩. We av-

erage the result over 1000 samples of the set of U (2) and
Nz.

In Fig. 4 (lower), we depict the circuit-depth depen-
dences of the two-point correlation functions of A =∑N

i=1 σ
z
i for various system sizes. CA shows a crossover

between the acceleration regime and the plateau regime.
In the acceleration regime, CA = exp(−O(ℓ2)), whereas
in the plateau regime, CA = exp(−O(Nℓ)).
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Quantum metrology performance with proper resource accounting
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Abstract. We quantify the full resource costs of quantum metrology protocols, in particular, taking into
account the practical preparation costs of exotic quantum states. We benchmark performance according
to actual resource costs, rather than a standard comparison based on the number of probes used. This
leads us to a new figure of merit that unveils surprising results: Nonclassical states that offer estimation
enhancements in the conventional characterization using probe numbers (e.g. give the Heisenberg scaling)
can perform worse than classical states in practice, due to their high resource costs.

Keywords: Quantum metrology, resource, quantum technology, quantum estimation

1 Motivation & Introduction

Quantum metrology, with the utilization of nonclassi-
cal properties of the sensor states, allows for enhanced
sensitivity in estimation of physical parameters beyond
classical limits. Conventionally, the performance of quan-
tum metrology schemes is quantified by the estimation
accuracy, as defined by the quantum Fisher informa-
tion (QFI), for a given number of probes n involved
in the sensing task. In this picture then, nonclassical
states such as squeezed states and NOON states are
shown to be superior than classical states like coherent
states: The former can attain estimation precision that
increases quadratically with n (i.e., the Heisenberg scal-
ing), whereas the estimation precision for the latter can
at most scale linearly with n [1].

Such a characterization of metrological performance
according to n disregards important details of the practi-
cal protocol, including the resource costs of the sensor
state preparation, the application of controlled opera-
tions, the measurement stage, as well as experimental
implementation constraints that may incur costs invisi-
ble to fundamental considerations. Indeed, there is no
reason to expect a simple relation between the QFI for
a metrological scheme and its actual resource cost; such
a relation will depend on the actual implementation. In
particular, one can anticipate that, while exotic nonclas-
sical states may promise better QFI and precision scaling,
the states in question may be so difficult to prepare in
practice that the resource costs overwhelm any advantage
achieved over conventional classical states. In addition,
practical limitations that result in imperfect operations
can affect the performance of different metrology schemes
in different ways; a proper comparison must take into ac-
count also the robustness of a scheme against imperfec-
tions.
The main objective of this work is then to identify

and properly evaluate the relevant resources used

∗yinkloong@quantumlah.org
†tejas.acharya.221@gmail.com
‡alexia.auffeves@cnrs.fr
§huikhoon.ng@nus.edu.sg

in quantum metrology schemes, and to provide
performance assessments based on resource costs,
beyond simplistic probe-number comparisons.

2 Results

(a)

(c)

 SQ

(b)

 BS

Figure 1: Phase sensing in a two-mode interferometer.
(a) We prepare the input sensor state |ψ⟩, which under-

goes the transformation |ψ⟩ → eiθâ
†â |ψ⟩, and is then

measured by M such that information about θ can be
obtained. For the choice of input state |ψ⟩, we consider
either (b) a coherent state in mode a and either a co-
herent state |α⟩b, squeezed vacuum |ξ⟩b, or “cat” state
|Ψ1(ξ;T )⟩b in mode b, then followed by a mixing at a
50:50 beam splitter (BS), or (c) a two-mode squeezed
vacuum state, which is obtained by post selecting the
signal and idler photons from the interaction between a
coherent pump |α⟩c and a “squeezer” (SQ), which is es-
sentially a non-linear crystal.

We focus on the standard metrology task of sensing
the phase θ in an two-mode optical interferometer; see
Fig. 1(a). A relevant practical resource cost is the aver-
age energy cost, or “work credit”Wc [2], of preparing the
input sensor states. We compare the performance of four
well-studied schemes, based on four different input states:
(i) coherent states, (ii) NOON states, (iii) entangled co-
herent states (ECS) [3], and (iv) two-mode squeezed vac-
uum (TMSV) states. The coherent state case, regarded
as the classical situation, shows QFI that scales linearly
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(a) (b)

Figure 2: (a) Conventional plot for the performance of phase sensing in optical quantum metrology based on probe
numbers: QFI per mean photon number n̄ as a function of n̄. All the three ideal nonclassical states exhibit the
Heisenberg scaling, in contrast with the coherent state situation which serves as the reference for classical scaling.
The curves for the ECS and TMSV coincide, except at small n̄ values. (b) Resource-based figure of merit for the
estimation performance, viz QFI per Wc as function of the energy cost Wc. Wc is evaluated for real experimental
state-preparation schemes, and is quantified by the total average energy (units: ℏω) used in the state generation. In
contrast to the Heisenberg scaling of Fig. 2(a), none of the nonclassical states exhibit a quadratic scaling of QFI with
Wc. Moreover, finite squeezing capabilities in experiments restricts TMSV to be produced only up to about the range
of Wc ≈ 1.6× 1015; in that range, it performs worse than the coherent-state scheme. For the ECS scheme, it is more
beneficial to not have the cat-state component in the input at all when Wc is less than about 5.2 × 1015. We also
perform a quick robustness check on the effect of weak loss on the NOON state scheme, as shown in the red dashed
line.

as the mean photon number n̄, whereas the other three
nonclassical states, ideally, follow the Heisenberg scaling
as shown in Fig. 2(a). For each state, we compute the
work credit for the state preparation in practical experi-
mental settings, and then the QFI for the encoded state.
To properly evaluate the resource costs of quantum

phase sensing using these states, we have to consider ex-
perimental implementations. We select implementations
that have actually been carried out, or are feasible for
real experiments. For coherent states [see Fig. 1(b)], we
consider two individual lasers (|α⟩a and |α⟩b) that mix at
a 50:50 beam splitter (BS). As beam splitter is energy-
conserving, the work credit Wc is the sum of the average
energy stored in the two laser fields (2h̄ω|α|2, with ω as
the laser frequency). The NOON state and the ECS [see
again Fig. 1(b)] are obtained by mixing a (single-mode)
squeezed state |ξ⟩b and a cat state |Ψ1(ξ;T )⟩b, respec-
tively, with a coherent state at a BS [5, 3]. The respective
Wc is the sum of the cost to generate the squeezed state
and the cat state, plus the energy of the coherent-state
component. For the cat-state generation, we consider
the method as proposed by [6], whereby a single-mode
squeezed state is passed through a beam splitter, and
is only post-selected upon detecting a photon in the re-
flected port of the beam splitter (reflectivity T ). The cost
for the cat state is thus the cost of a squeezed state multi-
plied by a factor that compensates for the non-unity post-
selection probability. Lastly, TMSV state [see Fig. 1(c)]
comprises the signal and idler states of the (type-II) spon-
taneous parametric down-conversion (SPDC) process [4],

and its Wc is hence the cost for the SPDC.
The cost of generating a squeezed state (single- and

two-mode) is the energy stored in the pump laser in the
SPDC process. While one can argue that a careful pump-
recycling protocol can recover the energy from the pump
beam to be reused in a subsequent sensing round, one
nevertheless has to come up with the “energy credit”
needed to power the pump beam in the first place. We
find that, to obtain a squeezed state with squeezing pa-
rameter ξ, we require the energy input of κ2|ξ|2h̄ω, where
ω is the frequency of the down-converted photons, and
the factor κ is a conversion factor that characterizes the
efficiency of generating a squeezed state from the pump
laser via the SPDC process. It captures the expensive na-
ture of SPDC, and hence an important overhead in gener-
ating nonclassical states, as we find that κ ∼ 1

χ(2) ∼ 107,

where χ(2) is the second-order nonlinear susceptibility of
the nonlinear crystal needed for the SPDC.

Fig. 2(b) shows our results, in which the QFI per Wc

is plotted against the energy cost Wc for the schemes
based on the different input states, where for the NOON
state and ECS, for the given Wc, the QFI plotted is ob-
tained with further optimization over the distribution
of the resource cost over their constituent components,
i.e., the squeezed state or cat state component respec-
tively with the coherent state component. The perfor-
mance of the different schemes are notably distinct from
the conventional picture Fig. 2(a). Not only are their
relative performance altogether different, under this en-
ergetic comparison, the Heisenberg scaling is lost alto-
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gether, and nonclassical states need not be energetically
better, compared with classical states, for sensing tasks.
Note that, to acknowledge current experimental capabil-
ities in squeezed-state generation, we limit |ξ| ≤ 2. This
restricts the experimental TMSV scheme to a limited
range of Wc, in which it actually performs worse than
the coherent-state scheme. This is also the reason the
Heisenberg scaling is lost for the nonclassical states, as
the energy is directed into the coherent state component
when the squeezing reaches its practical limit. Finally,
we perform a quick check on the effect of imperfect im-
plementation in the form of weak lossy interferometer, on
the NOON state scheme—calculate using expansion over
the leading power of the weak loss parameter, and hence
a limited range of Wc is plotted. As shown by the red
dashed line, the overall performance is worsen, though it
suggests still a performance that is better than an ideal
scheme with coherent state.
Our plots tell the story for the specific experimental

schemes we have studied, and for the specific way we
have accounted for resource costs. Nevertheless, the gen-
eral conclusion holds: Whether a metrology scheme
performs well has to be judged based on the to-
tal resource costs incurred in the whole protocol,
from the initial state preparation to the final measure-
ment, and including any additional costs arising from
experimental constraints. Naive comparisons based on
abstract quantities separate from experimental consider-
ations cannot tell the full story.
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Abstract. This work studies the limitations of noisy quantum devices with the help of general classical
processing, showing that noisy quantum devices with a circuit depth exceeding O(log n) provide no compu-
tational advantage for any quantum algorithm, rigorously rules out the possibility of well-known quantum
algorithms, including Shor’s, Grover’s, Harrow-Hassidim-Lloyd, and linear-depth variational algorithms.
Moreover, we show one-dimensional noisy quantum devices have no super-polynomial computational advan-
tage. Then, we study the entangling power of one- and two-dimensional noisy quantum devices, establishing
a maximum entanglement growth bound of O(log n) for one-dimensional chains, underscoring significant
constraints on quantum simulation and scalability. (Preprints: arXiv 2306.02836.)

Keywords: noisy intermediate-scale quantum devices, quantum computational advantage, quantum en-
tanglement

Finding solid and practical quantum advantages via
noisy quantum devices without error correction is a crit-
ical but challenging problem. Conversely, comprehend-
ing the fundamental limitations of the state-of-the-art is
equally crucial. In this work, we observe the polynomial-
time indistinguishability of n-qubit devices from random
coins when circuit depths exceed ω(log(n)) under single-
qubit depolarizing noise. Even with classical processing,
we can demonstrate the absence of computational ad-
vantage in polynomial-time algorithms with noisy quan-
tum circuits of super-logarithmic depths. This find-
ing decisively negates the feasibility of executing promi-
nent quantum algorithms such as Shor’s[1], Grover’s[2],
and the Harrow-Hassidim-Lloyd algorithm[3]. In addi-
tion, our results apply to variational quantum algorithms
[4, 5], error mitigation [6, 7, 8], and quantum simula-
tion with polynomial depths. Furthermore, we consider
noisy quantum devices with restraint gate topology. We
rule out super-polynomial quantum advantages for a one-
dimensional noisy qubit array in all-depth regimes. We
also establish upper limits on entanglement generation:
O(log(n)) for one-dimensional arrays and O(

√
n log(n))

for two-dimensional arrays. Our findings underscore the
entanglement scalability constraints in noisy quantum
devices. Our findings are summarised in Fig. 1.
Model of noisy quantum devices.—In the NISQ era,
we may describe a noisy quantum device by employing
layers of unitary gates followed by independent single-
qubit depolarizing noise channels after each layer. The
noise acts on a single qubit as

Λ1(ρ) = (1− p)ρ+ p
I

2
, (1)

where p is the strength of noise. After applying all layers
of gates and noise, we perform computational-basis mea-
surements at the end of the circuit to obtain the classical
output.

∗yanyx21@mails.tsinghua.edu.cn
†xma@tsinghua.edu.cn

Definition 1 (Noisy quantum devices). A noisy quan-
tum device, with n qubits, produces a quantum state at a
depth of t,

ρ(t) = Λ ◦ Ut ◦ Λ ◦ · · · ◦ Λ ◦ U2 ◦ Λ ◦ U1(|0⟩⟨0|⊗n
), (2)

where U ’s are layers of gates and Λ = Λ⊗n
1 is the

noise channel. In each layer, a qubit can be manipu-
lated at most by one quantum gate. The classical out-
put Cn(ρ(t)) from measurements obeys the distribution
Pr[Cn(ρ(t)) = X] = ⟨X| ρ(t) |X⟩, where X is a n-bit
string and |X⟩ is the corresponding computational basis.

Importantly, our model does not allow mid-circuit
measurements and resets, i.e., replacing a qubit with a
known pure state, such as |0⟩. Because both of these op-
erations will enable fault-tolerant quantum computing,
which goes beyond the scope of the NISQ era [10, 11, 12].
As a result, we lose the information of the quantum state
layer by layer without the opportunity of retrieval. The
information loss is exponentially fast regarding the cir-
cuit depth[13, 14].
Limitations of depths for computational advan-
tages.—By analyzing the entropy of measurement out-
comes, we find that if an algorithm queries noisy quantum
devices with ω(nq) depth, where q is the circuit execution
times, the output of the noisy quantum device will be too
noisy to provide any quantum advantages for computa-
tion, as depicted in Fig. 2. Therefore, if we replace them
with random coins, the answer to decision problems will
not be influenced. The observation leads to the following
theorem.

Theorem 2 (informal version). Consider a hybrid algo-
rithm operating within time T (n) with nq queried mea-
surement bits from noisy quantum devices. If circuit

depth t ≥ ω( log(nq)
− log(1−p) ), noisy devices will yield no quan-

tum advantages. In this case, a classical algorithm, run-
ning within T (n) time, can be used instead by replacing
the noisy device queries with random coins from a uni-
form distribution.
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HHL O(n)

Grover exp(O(n))
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− log(1−p)
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✗
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Classial Simulatable

Complexity ∼ nO(1/−log(1−p))

Entanglement ∼ O(log(n))

Entanglement ∼ O(
√
n log(n))

?
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ω( log(n)
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1D
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(b)

Figure 1: Summary of the limitations for noisy quantum devices without error correction. a For algorithms
with generic classical processing control, we prove that devices with circuit depths beyond ω(log(n)) under single-qubit
depolarizing noise are too noisy to offer any computational advantage in a polynomial running time, including well-
known quantum algorithms, such as Shor’s, Grover’s, and the Harrow-Hassidim-Lloyd algorithm. The depth needed
in the table is the best implementation, as far as we know, without additional space overhead. 2 The scaling of depth
with the qubit number, n, is shown by dashed curves for each algorithm, with a solid curve showing the logarithmic
upper limit. The scaling is shown in an asymptotical limit, i.e., when n is large. b In the regime where the circuit
depth is below the logarithmic scaling, potential quantum advantages depend on the gate connection topology of
noisy quantum devices. For the one-dimensional case, we prove classical simulatability for noisy devices and give an
entanglement upper bound of O(log(n)). For the two-dimensional case, the entanglement generation upper bound
scales as O(

√
n log(n)). Therefore, super-polynomial advantages without error correction are only possible when gate

connectivity is higher than one dimension, and the circuit depth is below logarithmic scaling for noisy devices. Such
a regime is colored in green.

An immediate consequence of Theorem 2 is that noisy
quantum devices with super-logarithmic depth do not
provide any quantum advantage for polynomial-time
quantum algorithms, regardless of the classical process-
ing that controls quantum devices depend on previous
measurement outcomes. This result helps us explicitly
eliminate the advantages of implementing a broad class of
quantum algorithms on noisy quantum devices that only
query super-logarithmic-depth quantum circuits. Exam-
ples include but are not limited to Shor’s [1], Grover’s
[2], and Harrow-Hassidim-Lloyd (HHL) algorithm [3].
Moreover, our results have significant implications

for NISQ algorithms, such as variational quantum
algorithms and quantum error mitigation. Our
information-theoretical limitations on circuit depth
unify and generalize previous research in this area. Vari-
ational quantum algorithms aim to solve optimization
problems in hybrid schemes [4, 5]. For linear growing
circuit depth, our results directly lead to the exponential
complexity required for quantum devices to impact the
optimization result and to provide advantages. This
has been perceived as the noise-induced barren plateau
problem [15], which involves exponentially vanishing
gradients with n due to noise. Quantum error mitigation
techniques are introduced to decrease errors in expecta-
tion values at the cost of increased sampling overhead
[6, 7, 16]. For single-copy mitigation schemes, our results
strengthen the previous findings of exponential sampling
overhead [17, 18] by considering the dependence of

circuits on previous measurement outcomes.

Limitations of computational advantages in one-
dimensional local circuits.—In real-world quantum
devices, gates are often subjected to certain topologies,
further restraining their computational power. Here, we
consider a one-dimensional qubit array, where gates are
restrained between the nearest neighbor qubits on a lin-
ear chain. We show that one-dimensional noisy devices
do not possess any super-polynomial computational ad-
vantages, regardless of their depth. Our finding is based
on a state-vector simulator created for constant-depth
one-dimensional circuits [19]. We have demonstrated
that the simulator can be extended to one-dimensional
noisy devices with a depth of O(log(n)), thus ruling out
the possibility of super-polynomial advantages.

Theorem 3 (informal version). One-dimensional noisy
quantum devices that run in computational time T (n) can

be simulated by a classical algorithm with T (n)1+
1

− log(1−p)

computational time, thus having no super-polynomial
quantum advantages.

Our results stress that the connectivity of quantum
devices is particularly important in the NISQ diagram.
Higher than two dimensions in qubit connection are re-
quired to obtain super-polynomial advantages with noise.
Limitations of quantum entanglement produc-
tion.—After ruling out quantum advantages of noisy
quantum devices above O(log n) depth, we consider the
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Figure 2: In a hybrid algorithm, the orange boxes
on the left represent noisy quantum devices, in which
a darker color represents noisy quantum devices with
super-logarithmic depths, ω(log(nq)). The classical com-
puter on the right can control noisy quantum devices
based on previous measurement outputs. After obtaining
data from quantum devices and classical computation,
the classical computer outputs 0 or 1. We use the boxes
with coins to show that random coins can replace noisy
quantum devices with super-logarithmic depths. After
the replacement, the new classical algorithm can still give
the same output bit. Thus, the noisy quantum devices
with super-logarithmic depth do not provide any quan-
tum advantages.

case of arbitrary depths and study the entangling power.
In this part, our results depend on the topology of qubit
connections. We study one- and two-dimensional connec-
tions, which are two typical designs for quantum devices.

Theorem 4 (Upper bound on entanglement in one
dimension for noisy quantum devices). For a contigu-
ous half A and the complement half Ā in an n-qubit
noisy quantum device with a one-dimensional connec-
tion topology, the quantum mutual information and hence
the quantum relative entropy of entanglement are upper
bounded by

ER(A : Ā) ≤ I(A : Ā) ≤ log(n)

−2 log(1− p)
, (3)

where p is the noise strength defined in Eq. (1).

Our findings have significant implications for quantum
simulation, a crucial application of quantum computing
devices [20, 21, 22]. The role of entanglement in quantum
simulation is critical and was explored in recent experi-
ments [23]. Our results imply any quantum systems with
a super-logarithmic entanglement scaling will not be able
to be efficiently prepared and simulated in a noisy quan-
tum device. This limitation extends to a wide range of
quantum systems, including highly excited states at the
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Figure 3: Limitations of entanglement production, with
varied number of qubits n and noise strength p, which
are taken as the minimal values between n/2 and the
upper bounds in Theorem 4. Lines in different colors
correspond to different noise strengths p, and one of the
lines is for the case of a two-dimensional qubit connection.

mid-spectrum of local Hamiltonian [24] and thermalized
quantum states in quantum dynamics [25, 26], such as
quantum many-body thermalization and black hole dy-
namics. We also investigate entanglement between dis-
tant regions in qubit chains and show that entanglement
decay to 4p

1−p exponentially with the distance of the two
regions.

For two-dimensional lattices, we consider qubits ar-
ranged in a square of side length

√
n and show that

maximal entanglement is O(
√
n log(n)). For one- and

two- dimensional lattices, we present the numerical up-
per bounds of entanglement for different values of noise
strength p in Fig. 3. After the number of qubits reaches a
certain number related to the noise strength, the further
growth of quantum entanglement in the noisy quantum
device will be suppressed. For the one-dimensional case,
this will lead to an exponential cost of qubits required
to scale up the system’s entanglement further due to the
logarithmic scaling of the upper bounds of entanglement.
In the two-dimensional case, a polynomial cost is also re-
quired.
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Limitations of Noisy Quantum Devices in Computing and Entangling Power1
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Finding solid and practical quantum advantages via noisy quantum devices without error correc-
tion is a critical but challenging problem. Conversely, comprehending the fundamental limitations of
the state-of-the-art is equally crucial. In this work, we observe the polynomial-time indistinguisha-
bility of n-qubit devices from random coins when circuit depths exceed ω(log(n)) under single-qubit
depolarizing noise. Even with classical processing, we can demonstrate the absence of computa-
tional advantage in polynomial-time algorithms with noisy quantum circuits of super-logarithmic
depths. This finding decisively negates the feasibility of executing prominent quantum algorithms
such as Shor’s, Grover’s, and the Harrow-Hassidim-Lloyd algorithm. In addition, our results ap-
ply to variational quantum algorithms, error mitigation, and quantum simulation with polynomial
depths. Furthermore, we consider noisy quantum devices with restraint gate topology. We rule out
super-polynomial quantum advantages for a one-dimensional noisy qubit array in all-depth regimes.
We also establish upper limits on entanglement generation: O(log(n)) for one-dimensional arrays
and O(

√
n log(n)) for two-dimensional arrays. Our findings underscore the entanglement scalability

constraints in noisy quantum devices.
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Recent advancements in quantum computing have notably enhanced the scale and fidelity of quantum devices,18

surpassing classical brute-force simulation capabilities [1, 2]. Meanwhile, scalable quantum error correction remains19

out of reach, primarily due to high noise levels and the limited qubit count. Consequently, current quantum devices,20

ranging from dozens to several hundred noisy qubits, are situated between classical computing and fault-tolerant21

quantum computing, a regime known as Noisy Intermediate-Scale Quantum (NISQ) era [3]. Despite ongoing progress22

towards quantum error correction [4–11], transitioning from NISQ to fault-tolerant quantum computation presents a23

formidable challenge, which is expected to take years or even decades.24

Within the NISQ paradigm, many important previous works have been devoted to seeking advantages over classical25

computers via noisy quantum devices without error correction. Here, “advantages” refer to the quantum device’s26

capability to accelerate computational tasks beyond purely classical means. In this line of research, specific problems27

demonstrate theoretical quantum advantages of noisy devices in shallow circuit regimes [12] or when oracles are28

introduced [13]. Experimentally, noisy quantum circuit sampling has also challenged the ability of most powerful29

classical supercomputers [1, 2]. Yet, in more practical applications, the noise in quantum devices often undermines30

potential advantages. Notably, as important practical advantage candidates, variational quantum algorithms exhibit31

fragility to noise [14, 15]. These findings raise an important question: what is the limit of the noisy device’s power in32

the NISQ era?33

When assessing the power of NISQ devices, classical computers should be considered due to their ability to assist34

noisy quantum devices. When viewed in itself, a noisy quantum device experiences rapid loss of information due35

to noise [16, 17]. However, quantum algorithms can use classical inputs to control quantum devices and process36

measurement outcomes, thus enhancing noisy quantum devices. Classical processing is particularly crucial in the NISQ37

era as it mitigates noise and amplifies the capabilities of quantum hardware [18, 19]. The problem of assessing NISQ38

advantages, with classical computer enhancements considered, is complicated and requires systematic understanding.39

The classical simulation complexity of noisy quantum devices is also a crucial factor in NISQ advantages, as easier40

simulation often implies weaker advantages. Existing work has developed algorithms [20–25] much more efficient than41

the brute-force way that calculates the state vector. Theoretical classical simulatability can be proven under certain42

conditions, such as having small underlying graph treewidth [20] or being in the anti-concentration regime under noise43

[25]. Under these conditions, polynomial-time classical algorithms exist, thereby excluding super-polynomial quantum44

advantages. More generally, the advantages of noisy quantum devices remain an open question.45

In this work, we establish a clear boundary for the limitations of noisy quantum devices. Our analysis is based on46

a model where devices are affected by independent single-qubit depolarizing noise without error correction. We show47

the statistical indistinguishability of noisy quantum device outputs from a uniform distribution when circuit depth48

exceeds the logarithmic of the running time. Incorporating any form of classical processing and controls, we show49

that devices with super-logarithmic circuit depths ω(log(n)) fail to deliver any quantum advantage for polynomial-50

time quantum algorithms. Famous no-go examples include Shor’s [26], Grover’s [27], and the Harrow-Hassidim-Lloyd51

algorithm [28].52

On quantum computing platforms like superconducting qubits, gates are restrained in specific topologies [1, 2],53

further challenging potential quantum advantages. We demonstrate that noisy quantum circuits for one-dimensional54

qubit arrays are simulatable with any depth and thereby rule out super-polynomial advantages. To further characterize55

the physical limitations, we investigate the maximal entanglement generation in noisy quantum devices. Our findings56

indicate that for a one-dimensional qubit array, the capacity to generate quantum entanglement is capped at O(log(n)).57

This boundary rules out the efficient creation of highly entangled states, such as highly excited or thermalized states58

of almost all quantum systems. Our findings are summarized in Fig. 1.59

I. RESULTS60

A. Model of noisy quantum devices61

In the NISQ era, we represent operations on noisy devices as a sequence of unitary gates interspersed with single-62

qubit depolarizing noise that acts independently. The depolarizing noise impacts each qubit as63

Λ1(ρ) = (1− p)ρ+ p
I

2
. (1)

After gate operations with associated noise, computational-basis measurements yield the output. The noisy device64

model is formally defined as follows, with a visual representation in Fig. 2(a).65
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Depth t

Size n

Shor O(n2)

HHL O(n)

Grover exp(O(n))

Possible advantage? ∼ log(n)
− log(1−p)

?
✗

(a)

Depth

Topology

Classial Simulatable

Complexity ∼ nO(1/−log(1−p))

Entanglement ∼ O(log(n))

Entanglement ∼ O(
√
n log(n))

?
Too noisy

(like random coins)

✗

ω( log(n)
− log(1−p)

)

1D

2D

(b)

FIG. 1. Summary of the limitations for noisy quantum devices without error correction. a For algorithms with
generic classical processing control, we prove that devices with circuit depths beyond ω(log(n)) under single-qubit depolarizing
noise are too noisy to offer any computational advantage in a polynomial running time, including well-known quantum algo-
rithms, such as Shor’s, Grover’s, and the Harrow-Hassidim-Lloyd algorithm. The scaling of depth with the qubit number, n,
is shown by dashed curves for each algorithm, with a solid curve showing the logarithmic upper limit. The scaling is shown in
an asymptotical limit, i.e., when n is large. b In the regime where the circuit depth is below the logarithmic scaling, potential
quantum advantages depend on the gate connection topology of noisy quantum devices. For the one-dimensional case, we
prove classical simulatability for noisy devices and give an entanglement upper bound of O(log(n)). For the two-dimensional
case, the entanglement generation upper bound scales as O(

√
n log(n)). Therefore, super-polynomial advantages without error

correction are only possible when gate connectivity is higher than one dimension, and the circuit depth is below logarithmic
scaling for noisy devices. Such a regime is colored in green.

Definition 1 (Noisy quantum devices). A noisy quantum device of n qubits produces a quantum state at a depth of66

t,67

ρ(t) = Λ ◦ Ut ◦ Λ ◦ · · · ◦ Λ ◦ U2 ◦ Λ ◦ U1(|0⟩⟨0|⊗n
), (2)

where Ui denotes a gate layer and Λ = Λ⊗n
1 represents the noise channel. Each layer allows at most one gate operation68

per qubit. The measurement output Cn(ρ(t)) will follow the distribution69

Pr[Cn(ρ(t)) = X] = ⟨X| ρ(t) |X⟩ , (3)

with X being an n-bit string and |X⟩ its computational basis state.70

Our NISQ model prohibits using mid-circuit measurements and refreshing qubits. Such restrictions imply that the71

system’s entropy cannot be reduced and will rise following each noise layer. We make the assumption intentionally for72

the NISQ era, as allowing these operations could facilitate fault-tolerant quantum computing below a noise threshold73

[29, 30], a capability beyond the scope of the NISQ era [13].74

As a result, all stored information will be inevitably lost due to the transition to the maximally mixed state with75

growing noisy circuit depth, regardless of the noise strength p. This convergence to the maximal mixed state is76

exponentially rapid as a function of circuit depth t. Quantitatively, the relative entropy between the state ρ(t) and77

the maximally mixed state diminishes as78

D(ρ(t)∥σ0) ≤ n(1− p)2t, (4)

where σ0 = I/2n is the maximally mixed state [16, 17]. The relative entropyD(ρ(t)∥σ0) can also be seen as the residual79

knowledge within the state ρ(t), since D(ρ(t)∥σ0) = n − S(ρ(t)), with S(ρ(t)) being the von Neumann entropy of80

ρ(t). In addition to the qubit case, we derive similar results for qudit systems and provide proofs in Supplementary81

Information [31].82

Importantly, apart from our choice of single-qubit depolarizing channels, many other types of noise also have83

exponential decaying behaviors with decay rates in different forms [32–37]. Thus, the results of this work can be84

easily extended to those cases, with quantitive results straightforwardly modified according to the different decay85

rates.86
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B. Entropy analysis for a hybrid algorithm87

As highlighted above, this work focuses on quantum algorithms with the assistance of classical processing. We88

use the term “hybrid algorithms” to emphasize the integration of quantum and classical processing. Within a hybrid89

algorithm, a classical computer calls noisy quantum devices for measurement outcome bits. In each query, the quantum90

device responds by returning one bit of measurement results to the classical computer. Here, the classical computer91

is assumed to be noiseless with persistent memory. This process is depicted in Fig. 2(b). Following the intuition, our92

Methods section will provide strict formulations using a probabilistic Turing machine.93

. . .

. . .

. . .

|0⟩

U1 U2 Ut
|0⟩
...

...
...

|0⟩

(a)

(b)

(c)

(d)

FIG. 2. Illustration of a hybrid algorithm with noisy quantum devices and the replacement process from noisy
quantum devices to random coins. a Noisy quantum devices defined in Definition 1. Blocks of Ui’s are gate layers, and
black dots are single-qubit depolarizing noise channel Λ1. Computational basis measurements are performed at the end of the
circuit to provide classical information output. b In a hybrid algorithm, the orange boxes on the left represent noisy quantum
devices, in which a darker color represents noisy quantum devices with super-logarithmic depths, ω(log(nq)). The classical
computer on the right can control noisy quantum devices based on previous measurement outputs. After obtaining data from
quantum devices and classical computation, the classical computer outputs 0 or 1. We use the boxes with coins to show
that random coins can replace noisy quantum devices with super-logarithmic depths. After the replacement, the new classical
algorithm can still give the same output bit. Thus, the noisy quantum devices with super-logarithmic depth do not provide
any quantum advantages, as stated in Theorem 1. c Our results apply to single-copy quantum error mitigation, designed to
suppress errors in expectation values, usually albeit with increased running time when single copies are fed. d Our results also
apply to variational quantum algorithms that adapt circuits to update parameters during optimization. Our results suggest
their limitations regarding noisy circuit depth, independent of classical processing designs.

Under our hybrid computing framework, we analyze the relation between the entropy of measurement results from all94

correlated queries (X1, X2, · · · , Xq) and the circuit depth t. Each query of a noisy quantum device produces outcome95

Xi from computational measurements on the final gate layer, with exponentially diminishing information regarding the96
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circuit depth t [16, 17]. However, extending this to multiple queries within a hybrid algorithm is not straightforward97

and necessitates carefully considering the correlations among the different queries. These correlations emerge from98

classical computers that can control subsequent quantum device operations based on previous measurements. A naive99

entropy analysis might suggest that such correlations could reduce the total entropy, potentially enabling hybrid100

algorithms to aggregate information and amplify quantum advantages.101

Contrary to this presumption, our theoretical analysis proves that even if we consider query correlations, the102

aggregate information obtained from all measurement outputs (X1, X2, . . . , Xq) becomes exponentially small with103

increasing circuit depth t, as stated in the following lemma. We break down the total entropy into a sequential sum of104

conditional entropies based on preceding queries to obtain the result. The detailed proof is provided in Supplementary105

Information [31].106

Lemma 1. Suppose the hybrid algorithm calls for q times of circuit execution with a minimum circuit depth t. Denote107

Xi as the measurement output from the i-th circuit execution on noisy n-qubit devices. The collection of outcomes108

X1, . . . , Xq , containing nq queried measurement bits, yields109

S(X1, . . . , Xq) ≥
(
1− (1− p)2t

)
nq, (5)

where p denotes the depolarizing channel’s magnitude as specified in Eq. (1).110

This lemma considers correlations among queries to quantum devices, which arise from arbitrary classical processing111

and controls, thereby going beyond isolated quantum device analysis in existing studies [16, 17]. Furthermore, this112

lemma makes our results applicable to generic hybrid algorithms.113

C. Limitations of depths for computational advantages114

Based on the above entropy analysis, we have identified the limitations of circuit depth for hybrid algorithms that115

use noisy quantum devices. Our study reveals that the maximum depth limit to provide advantages scales as the116

logarithm of the number of queries to the noisy quantum devices, nq. We clarify this argument with the following117

theorem. The formal version of the theorem is available in the Methods section.118

Theorem 1 (informal version). Consider a hybrid algorithm operating within time T (n) with nq queried measurement119

bits from noisy quantum devices. If circuit depth t ≥ ω( log(nq)
− log(1−p) ), noisy devices will yield no quantum advantages.120

In this case, a classical algorithm, running within T (n) time, can be used instead by replacing the noisy device queries121

with random coins from a uniform distribution.122

The running time of an algorithm can be broken down into three parts: quantum circuit execution, queries to123

measurement outcomes, and classical processing. We can represent this as the following equation:124

T (n) = c1tq + c2nq + Tc(n). (6)

Here, t represents the circuit depth, q represents the number of circuit executions, Tc(n) represents classical processing125

time, and c1 and c2 are the constant time for executing a gate layer and querying a measurement outcome bit126

respectively. We use functions of the qubit number n to represent T (n) and Tc(n) as they typically depend on the127

number of qubits n, representing algorithm input size. We assume that one query returns one bit of measurement128

outcomes, taking c2 time for the classical computer. Therefore, we always have nq ≤ 1
c2
T (n) from the above equation.129

In previous studies on isolated noisy devices [16, 33], the maximal circuit depth depends on the number of qubits.130

In contrast, we highlight query times, i.e., nq, and the running time T (n) as an important factor in hybrid quantum131

algorithms. The difference is attributed to the role of classical computing in hybrid algorithms. For the same noisy132

device, the longer the duration of a hybrid algorithm, the greater the opportunities it has to query the device and133

receive quantum advantages via the assistance of classical processing, e.g., error mitigation protocols [18, 38, 39].134

Following this intuition, we present the proof in the Supplementary Information [31].135

The running time of efficient quantum algorithms is required to be at most polynomial growth with respect to136

the number of qubits. In this case, where nq ≤ 1
c2
T (n) ≤ O(poly(n)), noisy quantum devices with super-logarithmic137

depth cannot provide any advantage for such polynomial-time quantum algorithms. This limitation is unavoidable via138

the sophistication of classical processing or adaptive operations based on measurement outcomes in previous queries.139

As a result, we have established strict no-go results on algorithms that necessitate a super-logarithmic circuit depth140

1, such as Shor’s [26], Grover’s [27], and the Harrow-Hassidim-Lloyd (HHL) algorithm [28]. In quantum simulation,141

1 We should note that we do not consider implementations that reduce the depth of the algorithm at the cost of significantly increasing
the number of qubits required. For instance, a modified version of Shor’s algorithm that factors an n-bit number in O(log(n)) depth
but demands O(n5) qubits [40] falls under this category and hence, is excluded.
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our findings establish an upper bound of O(log(n)) for the allowable evolution time. The reason behind this is that,142

generally, simulating a quantum system with an evolution time of τ requires a circuit depth proportional to τ , which143

is known as the no-fast-forwarding theorem [41–43]. The examples mentioned are summarized in Table I.144

TABLE I. Quantum algorithms that are shown to offer no advantage on noisy devices, where necessary depths exceed the
super-logarithmic scale in qubits, n. Listed depths for Grover’s algorithm and quantum simulations are theoretically optimal
[44], while those for Shor’s and HHL represent the most efficient known configurations without significant qubit overhead.

Algorithm Depth Advantages

Shor’s algorithm [26] O(n2) [45, 46] No

Grover’s algorithm [27] O(exp
(
n
2

)
) No

HHL algorithm [28] O(n) No

Quantum simulation O(τ), τ < O(log(n)) No

Our findings apply to NISQ algorithms, where the running time and circuit depths are usually variable. In partic-145

ular, we consider the algorithms that calculate the expectation values of observables, such as in variational quantum146

algorithms [47, 48] and quantum error mitigation [18, 38, 39]. To estimate m expectation values, we collect Qi147

computational-basis measurement outcomes for the i-th. Then, we use classical processing to estimate the statistical148

value of f (i) = Tr
[
Ô(i)ρ(i)

]
. Here, Ô(i) represents the i-th observable, and ρ(i) corresponds to the quantum state149

associated with it. Note that ρ(i)’s may differ from each other, which are generated by various noisy circuits. Specif-150

ically, the structures of single-copy error mitigation and variational quantum algorithms are illustrated in Fig. 2(c)151

and 2(d), respectively, which are special cases of our hybrid computing framework in Definition 1. Therefore, we can152

apply Theorem 1 and derive the following corollary.153

Corollary 1. For variational quantum algorithms and single-copy quantum error mitigation algorithms, if the circuit154

depth of noisy quantum devices is t, then the algorithm must have running time T (n) = Ω(2| log(1−p)|t) to provide155

quantum advantage exists.156

The corollary strengthens and unifies important findings in NISQ algorithm limitations. For variational quantum157

algorithms, our results imply the issue of noise-induced barren plateaus. This issue arises at linear circuit depth due158

to noise, causing the gradients to exponentially vanish as the number of qubits n increases and the optimization to159

fail [37]. For quantum error mitigation, our results imply the exponential sampling costs associated with single-copy160

mitigation schemes [49, 50]. For both aforementioned applications, we strengthen the previous results by considering161

the general dependence of circuits on previous measurements and classical processing, which may even go beyond the162

diagram in Fig. 2(c) and 2(d). Note that a higher sampling overhead for error mitigation has been demonstrated in163

a different noisy circuit model, where multiple layers of gates are executed between local depolarizing channels [51].164

The implications of our research further extend to sampling algorithms. Following the idea of Theorem 1, we show165

that the ω(log(nq)) samples from noisy devices are statistically indistinguishable from those of uniformly distributed166

random coins if circuit depth exceeds ω(log(nq)). When the running time T (n) is within ω(poly(n)), it suggests that167

sampling advantages cannot be demonstrated in polynomial time for noisy circuit depth exceeding ω(log(n)). The168

details are available in the Method section.169

D. Limitations of computational advantages in one-dimensional local circuits170

In real-world quantum devices, gates are often subjected to certain topologies, resulting in deeper circuits and171

further restraining their computational power under noise. For example, we can consider a one-dimensional qubit172

array, where gates are restrained between the nearest neighbor qubits on a linear chain.173

We show that one-dimensional noisy devices do not possess any super-polynomial computational advantages, re-174

gardless of their depth. Our finding is based on a state-vector simulator designed for constant-depth one-dimensional175

circuits [52]. We have demonstrated that the simulator can be extended to one-dimensional noisy devices with a176

depth of O(log(n)), thus ruling out the possibility of super-polynomial advantages. Further details are available in177

the Methods section.178

Lemma 2. The output distribution of one-dimensional quantum devices, without noise or with any single-qubit noise,179

can be sampled with O(22tnt) computational times on a classical computer, where n is the qubit number, and t is circuit180

depth.181
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Note that this lemma applies to both noiseless and noisy cases. In the noisy case, noise models can be chosen as182

any single-qubit noise, even beyond the single-qubit depolarizing model discussed in the sections above.183

Suppose we assume depolarizing noise, as in Definition 1, super-polynomial advantages will be excluded in all depth184

regimes. To see this, we consider two depth regimes divided by O(log(n)), respectively. Below O(log(n)), Lemma 2185

exclues super-polynomial advantages. Otherwise, if the circuit depth t = ω(log(n)), Theorem 1 suggests the absence186

of quantum advantages. Combining the two aspects, we exclude the super-polynomial advantages of one-dimensional187

noisy quantum devices, regardless of circuit depth, under the singe-qubit depolarizing noise model.188

Theorem 2. One-dimensional noisy quantum devices that run in computational time T (n) can be simulated by a189

classical algorithm with T (n)1+
1

− log(1−p) computational time, thus having no super-polynomial quantum advantages.190

Our results stress the importance of connectivity in the NISQ diagram. With depolarizing noise and without error191

correction, super-polynomial advantages require stronger connectivity than a one-dimensional qubit array.192

E. Limitations of entanglement generation193

In the above sections, we have shown the computational limitations of noisy quantum devices. We aim to investigate194

further how noise physically impacts quantum devices with gate locality constraints. To this end, we analyze the195

entangling power in one-dimensional and two-dimensional qubit arrays.196

For the one-dimensional qubit chain, we consider bipartite entanglement between two contiguous halves of the chain,197

denoted as A and Ā. A key observation is that the interaction of a qubit is localized in a region whose radius grows198

with the depth t. The physical picture is that the qubits interact within a light cone. We generalize this observation199

to entanglement spreading and derive an upper bound of the entanglement monotone E between halves of the chain,200

E(A : Ā) ≤ t. (7)

The generation of entanglement requires sufficient circuit depth. Similar bounds have been derived for the dynamics201

of pure states without noise [53, 54]. Using local operation monotones and induction, we extend the entangling upper202

bound to the mixed-state case. This result is essential for analyzing noisy quantum devices.203

On the other hand, noisy quantum devices suffer from an exponential loss of information with increasing depth t,204

which also leads to exponentially rapid decay of maximal entanglement. Jointly, the two effects result in a logarithmic205

upper bound of entanglement generation in noisy quantum devices at arbitrary circuit depths, as stated in the following206

theorem. The proof of our results, including the following theorem, can be found in Supplementary Information [31].207

Theorem 3 (Entanglement upper bound on one dimension array). For a contiguous half A and the complement half208

Ā in an n-qubit noisy quantum device with a one-dimensional connection topology, the quantum mutual information209

and hence the quantum relative entropy of entanglement are upper bounded by210

ER(A : Ā) ≤ I(A : Ā) ≤ log(n)

−2 log(1− p)
, (8)

where p is the noise strength defined in Eq. (1).211

Our findings have significant implications for preparing quantum states with large-scale entanglement by exclud-212

ing the possibility of efficiently preparing any quantum state with a super-logarithmic entanglement scaling. This213

limitation extends to a wide range of scenarios, including high excitation [55] and thermalization in most quantum214

dynamics [56, 57]. This is also related to limitations in quantum simulation, where entanglement plays an important215

role [58]. We also investigate entanglement between distant regions in qubit chains and show that the upper bound216

of entanglement decays to a constant 4(1−p)
p(2−p) , exponentially with the distance between the two regions.217

For two-dimensional lattices, we consider qubits arranged in a square of side length
√
n and show that maximal218

entanglement is O(
√
n log(n)). For one- and two- dimensional lattices, we present the numerical upper bounds of219

entanglement for different values of noise strength p in Fig. 3. After the number of qubits reaches a certain number220

related to the noise strength, the further growth of quantum entanglement in the noisy quantum device will be221

suppressed. For the one-dimensional case, this will lead to an exponential cost of qubits required to scale up the222

system’s entanglement further due to the logarithmic scaling of the upper bounds of entanglement. In the two-223

dimensional case, a polynomial cost is also required.224225
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FIG. 3. Limitations of entanglement generation, with varied number of qubits n and noise strength p, which are taken as
the minimal values between n/2 and the upper bounds in Theorem 3. Lines in different colors correspond to different noise
strengths p, and one of the lines is for the case of a two-dimensional qubit connection.

II. DISCUSSION226

The limitations on computational and entangling capabilities are inherent in our NISQ model. Future advancements227

in quantum computing hardware must strive to transcend the assumptions of this model and, therefore, be able to228

avoid the rapid convergence to the maximally mixed state. In the interim, strategies such as delaying the introduction229

of qubits into a noisy environment until the last possible moment or transforming the noise into more manageable230

forms may mitigate some of the issues [59]. The ultimate solution to quantum errors can be achieved through231

resetting qubits or using mid-circuit measurements with feedforward actions to purify the system. These techniques232

are important steps toward quantum error correction, but they require a sufficient supply of qubits and low error233

rates below the error tolerance threshold. Therefore, exceeding the limitations outlined in our study is necessary to234

achieve fault-tolerant quantum computation during the current NISQ era.235

Future work will involve expanding our results to other types of noise. In this work, we adopt single-qubit depolar-236

izing channels as an idealized noise model. As mentioned earlier, our results also apply to many other noise channels237

[32–37]. For Theorem 1-3 to stay valid, noise models will be required to result in exponentially fast convergence of238

relative entropy, as depolarizing noise does in Eq. (4). Yet, the situation will be very different for the noise that does239

not drive the state to the maximally mixed state, such as dephasing channels and the amplitude damping channel [60].240

For these noise models, as long as they are single-qubit noise, Lemma 2 will still hold for any one-dimensional qubit241

array with noise, excluding superpolynomial advantages. For higher dimensional qubit arrays, these noise models242

need further investigation.243

Our methods may also help establish limitations for other properties of noisy quantum devices, including quantum244

state complexity, topological order, magic, and quantum chaos. It will also be interesting to apply our results to more245

quantum computer applications.246
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III. METHODS247

A. Formalism of hybrid quantum algorithms248

Here, we present the formalism of hybrid quantum algorithms, which combine quantum computing with classical249

processing, as illustrated in Fig. 2(b). The scope of algorithms we discuss includes decision problems and sampling250

problems. We adopt the notion of languages and the probabilistic Turing machine (PTM), which are standard terms in251

theoretical computer science. For decision problems, the term language refers to a general problem where a determined252

answer is required as an answer to the problem.253

Definition 2 (Language). A language L is a subset of {0, 1}∗. For x ∈ {0, 1}∗, L(x) is defined as L(x) = [x ∈ L].254

A probabilistic Turing machine (PTM) is a classical algorithm that can compute a language with a probability of255

giving the correct answer greater than 2
3 . It is important to note that the classical algorithm may be randomized.256

Regarding the randomness in algorithms, a random variable Y is introduced to represent the choice of Turing machines.257

Definition 3 (Probabilistic Turing machine). A probabilistic Turing machine, denoted by M , decides a language L258

in time T (n) if, for any string x, M halts within T (|x|) steps and the probability of M outputting the correct answer259

for x is at least 2
3 when given a random string Y .260

Here, Y is a random choice of Turing machines, which follows a uniform distribution over bit strings of length261

T (|x|). When the input x and random choices Y are given, M(x, Y ) is the output of the chosen Turing machine.262

Hybrid algorithms can interact with noisy quantum devices, as shown in Fig. 2(b). We formulate a hybrid algorithm263

as a PTM that queries noisy quantum devices, receives measurement outcomes in the form of bit strings, and performs264

classical processing on these outcomes. As mentioned in the main text, T (n) denotes its running time, t denotes its265

circuit depth, and q denotes the times of circuit execution. Based on this formalism, we analyze the limitations of266

hybrid algorithms with noisy quantum devices, leading to Theorem 1, as formally stated below.267

Theorem 1 (formal version). Consider a hybrid algorithm A that decides a decision problem L with nq queried268

measurement outcome bits in running time T (n). A classical algorithm M exists that decides L in time O(T (n)) if269

t ≥ 1
2| log(1−p)| (log(nq) + 5), where p is the depolarizing noise strength in Eq. (1). Here, M can be constructed by270

replacing noisy quantum devices with random coins from a uniform distribution.271

The intuition for the proof follows Lemma 1. In Supplementary Information [31], we provide detailed proof for272

the theorem and show how to establish equivalence between decision problems defined in Definition 2 and algorithms273

mentioned in the main text, such as Shor’s algorithm.274

Furthermore, we extend our result to quantum sampling, as demonstrated in experiments [1, 2]. In sampling275

problems, the quest is to obtain nq measurement output bits, i.e., samples, from noisy quantum devices. Here, we276

consider a distinguished who tries to tell whether samples are from noisy quantum devices or a uniform distribution.277

We show that such effort will fail if circuit depths exceed the same depth upper limits in Theorem 1. Formally, we278

have the following theorem, with proof available in Supplementary Information [31].279

Theorem 4. Consider nq samples generated from noisy quantum devices. If circuit depth t ≥ 1
2| log(1−p)| (log(nq)+5),280

then the obtained samples are statistically indistinguishable from those from a uniform distribution. Namely, any281

distinguisher cannot tell the difference.282

Here, the distinguishment is formalized as a decision problem. By Definition 3, this requires the distinguisher to283

succeed with probability at least 2
3 . Our results highlight the difficulty of distinguishing between the outcomes of284

deep, noisy quantum circuits and random coin flips within a reasonable time. Our findings imply that any attempt to285

demonstrate a sampling advantage using noisy quantum devices with super-logarithmic circuit depth would require a286

super-polynomial number of samples nq, which implies a super-polynomial running time for the sampling algorithm.287

B. Simulatability of one-dimensional qubit array with noise288

We use the algorithm proposed in [52] to sample from a one-dimensional local circuit. We then analyze the289

complexity of the classical algorithm, proving Lemma 2 and Theorem 2.290

Consider a one-dimensional noisy circuit with a depth of t. The intuition is that the light cone of each site only291

contains at most 2t qubits. Thus, we can calculate the conditional distribution by straightforwardly maintaining the292
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state of O(t) qubits on a classical computer, which consumes 2O(t) computational time. The entire one-dimensional293

noisy circuit as a channel is decomposed as294

U = Λ ◦ Ut ◦ Λ ◦ · · · ◦ Λ ◦ U2 ◦ Λ ◦ U1, (9)

where Λ and Ui are noise channel and unitary gate layers appeared in Eq. (2), respectively.295

Consider the unitaries and noise channels within the light cone of the i-th qubit, denoted as Li and shown in Fig. 4(a).296

Specifically, Li is obtained by removing the gates and noise channel in U that do not impact the expectation value of297

any local observable Oi on the site i. For any observable Oi and density matrix ρ, we have Tr[U(ρ)Oi] = Tr[Li(ρ)Oi].298

Note that Li only act non-trivially on O(t) qubits.299

To sample from each qubit, we should consider all gates and noise within its light cone. Conditioned on previous300

measurement outcomes, we introduce the effective channel for each site, denoted as Vi, following these steps: Let301

V1 = L1. For i > 1, define Vi by removing the overlapped gates and noisy channels in Li and Li−1 from Li, as302

illustrated in Fig. 4(b). This leads to another decomposition of the circuit channel in Eq. (9),303

U = Vn ◦ Vn−1 ◦ · · · ◦ V1. (10)

(a)

(b)

FIG. 4. Illustration of the light cone and effective channels for each site and the sampling algorithm. a For
each site, only quantum gates and noise channels within the light cone of the i-th qubit impact the expectation value of local
observables at site i. The number of qubits in each light cone is at most 2t. b Due to the limited range of light cones, we
can define an effective channel Vi on each site and the dynamic sweeping process in the algorithm. In the classical computer,
we store the density matrix t + 1 qubits, where t represents circuit depth. The procedure involves sweeping over each site to
perform a measurement and subsequently discarding the measured qubit. Following this, we introduce the next qubit into the
classical computer, applying effective channels on the classical memory as per Eq. (12). This iterative process continues as we
alternatively calculate the conditional probability on each site and sample accordingly. After finishing the whole process, we
will obtain a sample string x from p(x) = | ⟨x|U |0⟩⊗n |2. The algorithm operates with a time complexity of 2O(t).

Based on the notion of effective channels, we show the sampling procedure for p(x) by successively sampling304

from the conditional distribution p(xi|x1 = a1, . . . , xi−1 = ai−1). For convenience, we define [n] = {1, 2, · · · , n},305

Mj = |aj⟩⟨aj | ⊗ I[n]−j for aj ∈ {0, 1}. When measuring the j-th qubit of ρ, the probability of obtaining result aj306

is Tr[Mjρ], and the post-measurement state is Sj(ρ) =
MjρMj

Tr[Mjρ]
. With previous measurement outcomes fixed, the307

conditional probability can be written as308

p(xi = 0|x1 = a1, · · · , xi−1 = ai−1)

=Tr[|0⟩⟨0|i Si−1 ◦ Si−2 ◦ · · · ◦ S1 ◦ U(ρ0)]
=Tr[|0⟩⟨0|i Si−1 ◦ Si−2 ◦ · · ·S1 ◦ Vn ◦ Vn−1 ◦ · · · ◦ V1(ρ0)],

(11)

where ρ0 = |0⟩⟨0|⊗n
is the initial state. We observe that Si and Vi+1 commute since they act on different qubits.309

Therefore, we re-arrange the operators in the equation above so that Vi and Si are applied alternatively,310

p(xi = 0|x1 = a1, · · · , xi−1 = ai−1)

=Tr[|0⟩⟨0|i Vi ◦ Si−1 ◦ Vi−1 ◦ Si−2 ◦ Vi−2 ◦ · · ·S1 ◦ V1(ρ0)].
(12)

The conditional probability in Eq. (12) can be estimated by simulating O(t) qubits in a classical computer. Specif-311

ically, V1(ρ0) is supported on (t + 1) qubits, necessitating 2O(t) time to compute the density matrix. As we have a312
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complete description of V1(ρ0) in the classical computer, we can calculate both p(x1 = a1) and the post-measurement313

state S1(V(ρ0)). The subsequent measurement process for the second qubit follows a similar procedure. Subsequently,314

we introduce new qubits in V3 and apply S3 to measure the third qubit. Similarly, following Eq. (12), we can alternate315

between applying Vi and processing Si, calculate the conditional probability, and sample from each qubit accordingly.316

We have outlined the algorithm in Box 1, which is also depicted in Fig. 4(b) for better understanding.317

Box 1: Classical Algorithm for Simulating One-Dimensional Noisy Quantum Devices

1. Calculate the reduced density matrix of the first t+ 1 qubits, denoted as ρ.

2. Apply the effective channel, namely the unitaries and noisy channels that will affect the marginal prob-
ability of the first qubit, to ρ.

3. Sample according to the marginal probability of the first qubit.

4. Update ρ to the post-measurement state and remove the first qubit. After removal, the next qubit will
be assigned as the first qubit.

5. Unless all qubits are traced out, add the qubits that will affect the marginal probability of the first qubit
in ρ and go to Step 2.

318

We examine the space and time complexity as follows: The algorithm requires simulating (t+ 1) qubits simultane-319

ously, which takes up O(22t) space complexity on a classical computer. On (t+ 1) qubits, simulating each two-qubit320

gate, each single-qubit noise channel, or each measurement takes up to O(22t) time. Given that the total number of321

gates with noise is within O(nt), the time complexity to calculate all conditional probabilities, given previous sam-322

pling outcomes, is O(22tnt). Our algorithm operates in O(22tnt) computational time, with space complexity O(22t),323

thereby validating Lemma 2.324

Note that our analysis and the resulting Lemma 2 is not restricted to any specific type of noise channel. Our results325

apply to noisy quantum devices with O(log(n)) depth under various forms of local noise, including the noiseless case,326

in contrast to previous works [13, 15, 16]. When focusing on the single-qubit depolarizing noise channel, we can then327

prove Theorem 2 by combining Theorem 1 with Lemma 2 and substituting t in the latter with 1
2| log(1−p)| (log(T (n))+5).328

Note added.—After posting our work on arXiv, we realized that [61] had also obtained an upper bound on entan-329

glement growth regarding noisy circuit depth, similar to our Eq. (7), in their Lemma 14 using a different approach.330
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Supplementary Information: “Limitations of Noisy Quantum Devices in Computing1

and Entangling Power”2

In Section I, we review the convergence of noisy quantum devices and provide a new proof. In3

Section II, we prove the results of computational limitations and provide additional lemmas and4

corollaries. In Section III, we prove the results of entangling power limitations.5
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I. CONVERGENCE OF NOISY QUANTUM DEVICES17

For qubit systems with depolarizing noise channels, the following lemma gives an exponential decay of relative18

entropy to the maximally mixed state.19

Lemma 3 (Convergence of quantum qubit systems to the maximally mixed state [1], Eq. (4) in the main text). In20

a n-qubit noisy quantum device, after t layers of quantum gates, the relative entropy between the state ρ(t) and the21

maximally mixed state σ0 = I
2n decays as22

D(ρ(t)∥σ0) ≤ n(1− p)2t. (1)

For qudit systems with depolarizing channels, we also have an exponential decay, but the decay rate will be (1−p).23

We state this result in the following lemma.24

Lemma 4 (Convergence of quantum qudit systems to the maximally mixed state [2]). In a n-qudit noisy quantum25

device, after t layers of quantum gates, the relative entropy between the state ρ(t) and the maximally mixed state26

σ0 = I
dn decays as27

D(ρ(t)∥σ0) ≤ n log(d)(1− p)t. (2)

This suggests that the limitations discussed in this work can directly apply to qudit systems, with the decay rate28

changed to (1− p).29

Here, we also provide a new proof of the lemma. The proof is divided into two parts as follows. First, we provide30

a new proof of quantum Shearer’s inequality based on the strong subadditivity of quantum entropy.31

Lemma 5 (Quantum Shearer’s inequality [3]). Consider t ∈ N and a family F ⊂ 2{1,2,··· ,n} of subsets of {1, 2, · · · , n}32

such that each i is included in more than t elements of F . For any state ρ ∈ D(Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdn) we have33 ∑
F∈F

S(ρF ) ≥ tS(ρ) (3)

in which ρF is the reduced density matrix of ρ on subsystems F .34
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Proof. We will prove the theorem using mathematical induction.35

For t = 0, the lemma holds because S(ρF ) ≥ 0 for any subsystem F .36

For t ≥ 1, let S denotes {1, 2, · · · , n}. If S ∈ F , then F ′ := F \ {S} is a family in which each i is included in more37

than t− 1 times. By induction,38 ∑
F∈F ′

S(ρF ) ≥ (t− 1)S(ρ) (4)

Thus,39 ∑
F∈F

S(ρF ) = S(ρ) +
∑
F∈F ′

S(ρF )

≥ tS(ρ)

(5)

If S ̸∈ F , find a maximal set S1 in F . Because t ≥ 1, there must exists another set S2, such that S2 \ S1 ̸= ∅. Let40

S′
1 = S1 ∪ S2, S

′
2 = S1 ∩ S2,F ′ = (F \ {S1, S2}) ∪ {S′

1, S
′
2}, by the strong subadditivity of quantum entropy,41

S(ρS1
) + S(ρS2

) ≥ S(ρS′
1
) + S(ρS′

2
)∑

F∈F
S(ρF ) ≥

∑
F∈F ′

S(ρF )
(6)

If S′
1 = S, then combine equation (5) and (6), we get equation (4). If S′

1 ̸= S, we repeat this process on F ′. Because42

n is finite, this process will terminate in finite steps and finally get43 ∑
F∈F

S(ρF ) ≥
∑
F∈F ′

S(ρF ) ≥ · · · ≥ tS(ρ) (7)

44

Second, based on quantum Shearer’s inequality, the following lemma characterizes the entropy increase caused by45

the noise channel.46

Lemma 6. For any n-qudit state ρ,47

S(Λ(ρ)) ≥ (1− p)S(ρ) + pn log(d), (8)

where Λ is the noise channel and p is the strength of the depolarizing channel in noisy quantum devices.48

Proof. By definition of the noise channel,49

Λ(ρ) =

n∑
i=0

pn−i(1− p)i
∑

F⊆[1,2,··· ,n],|F |=i

ρF ⊗ I

dn−i
(9)

Take von Neumann entropy on both sides and use the subadditivity of entropy,50

S(Λ(ρ)) ≥
n∑

i=0

pn−i(1− p)i
∑

F⊆[1,2,··· ,n],|F |=i

S(ρF ⊗ I

dn−i
)

=
n∑

i=0

pn−i(1− p)i
∑

F⊆[1,2,··· ,n],|F |=i

[S(ρF ) + (n− i) log(d)].

(10)

Note that F = {F ⊆ [1, 2, · · · , n], |F | = i} is a family that each i is included in more than
(
n−1
i−1

)
times. Then51

S(Λ(ρ)) ≥
n∑

i=0

pn−i(1− p)i
(
n

i

)
[
i

n
S(ρ) + (n− i) log(d)]

= n log(d)− n log(d)− S(ρ)

n

n∑
i=0

pn−i(1− p)i
(
n

i

)
i

= n log(d)− (n log(d)− S(ρ))
n∑

i=1

pn−i(1− p)i
(
n− 1

i− 1

)
= n log(d)− (n log(d)− S(ρ))(1− p)

= (1− p)S(ρ) + pn log(d).

(11)
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The first inequality is from Lemma 5, and other equalities are from the direct calculation and combinatorial identity.52

53

Finally, we return to the proof of Lemma 4 and derive the exponential information loss.54

Lemma 4’s proof. For any n-qudit state ρ and the maximally mixed state σ0 = I
dn ,55

D(ρ∥σ0) = n log(d)− S(ρ). (12)

By Lemma 6,56

D(Λ(ρ)∥σ0) = n log(d)− S(Λρ)

≤ n log(d)− (pn+ (1− p)S(ρ))

= (1− p)(n log(d)− S(ρ))

= (1− p)D(ρ∥σ0)

(13)

Entropy is invariant after passing through a unitary channel {Ui},57

D(Ui(ρ)∥σ0) = D(ρ∥σ0). (14)

Note that the state after t layers is written as58

ρ(t) = Λ ◦ Ut ◦ Λ ◦ · · · ◦ Λ ◦ U2 ◦ Λ ◦ U1(|0⟩⟨0|⊗n
), (15)

where U(ρ) = UρU† is the superoperator for each layer of gates. Therefore, we can finish the proof by alternatively59

using Eq. (13) and (14).60

II. PROOFS OF LIMITATIONS OF DEPTHS FOR COMPUTATIONAL ADVANTAGES61

A. Proof of lower bounds of total entropy in hybrid algorithms62

This section provides proof of Lemma 1 in the main text. We recall the definition of conditional entropy.63

Definition 5 (Conditional Entropy). For two discrete random variables X and Y , the conditional entropy is defined64

as65

S(X|Y ) = −
∑
x,y

P (X = x, Y = y) logP (X = x|Y = y) (16)

The conditional entropy is useful in our proof. We briefly prove two entropy equalities with direct calculation for66

clarity and completeness. Firstly,67

S(X|Y ) = −
∑
y

P (Y = y)
∑
x

P (X = x|Y = y) logP (X = x|Y = y)

=
∑
y

P (Y = y)S(X|Y = y)
(17)

in which S(X|Y = y) is the entropy of marginal distribution of (X,Y ) when Y is fixed value y. Secondly,68

S(XY ) = −
∑
x,y

P (X = x, Y = y) logP (X = x, Y = y)

= −
∑
x,y

P (X = x, Y = y)[logP (X = x|Y = y) + logP (Y = y)]

= −
∑
x,y

P (X = x, Y = y) logP (Y = y)−
∑
x,y

P (X = x, Y = y) logP (X = x|Y = y)

= −
∑
y

P (Y = y) logP (Y = y)−
∑
x,y

P (X = x, Y = y) logP (X = x|Y = y)

= S(Y ) + S(X|Y )

(18)

After introducing the notion of conditional entropy, we provide proof of Lemma 1 in the main text. Here, we69

consider a slightly more general case, where the hybrid algorithm can query quantum devices with different numbers70

of qubits ni.71
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Lemma 7 (A generalised version of Lemma 1 in the main text). Suppose we use noisy quantum devices of depth at least72

t for q times. Let Xi = Cni
(ρi) denotes the measurement result of the i-th quantum circuit. Here, ρi = Φ(i)(|0⟩ ⟨0|⊗ni),73

Φ(i) = Λ ◦ U (i)
ti ◦ Λ ◦ · · · ◦ Λ ◦ U (i)

2 ◦ Λ ◦ U (i)
1 denotes the quantum channel as a whole process combining all gates and74

noise in sequential order, ti ≥ t, U (i)
j is an arbitrary quantum channel. We obtain q random variables X1, . . . , Xq.75

Then S(X1, · · · , Xq) ≥ (
∑q

i=1 ni)(1− ζ), in which ζ = (1− p)2t.76

Proof. By Lemma 3, for any quantum channel U (i)
j ,77

S(Φ(i)(|0⟩ ⟨0|⊗ni)) ≥ ni(1− ζ), (19)

with ζ = (1− p)2t.78

According to our assumption, measurements are noiseless and performed on a computational basis. The resulting79

distribution of measurement outcome Xi is on the diagonal of ∆(Φ(i)(ρ)), where ∆ denotes the dephasing channel for80

the computational basis. The entropy of the dephased state is the Shannon entropy of random strings Xi,81

S(Xi) = S(∆(Φt(ρ))) (20)

Note that S(∆(ρ)) ≥ S(ρ) for arbitrary quantum state ρ from quantum data processing inequality. Thus,82

S(Xi) = S(∆(Φt(ρ))) ≥ S(Φ(i)(ρ)) ≥ ni(1− ζ) (21)

Note that equation Eq. (21) holds regardless of channels {U (i)
j }j=1,2,··· ,ti implemented in the noisy quantum device.83

Although Xi may depend on X1, . . . , Xi−1, Eq. (21) holds regardless of previous measurement outcome. In other84

words, for all 1 ≤ i ≤ q , 1 ≤ j < i and xj ∈ {0, 1}nj , we have:85

S(Xi|X1 = x1, X2 = x2, · · · , Xi−1 = xi−1) ≥ ni(1− ζ) (22)

Then we sum over all previous measurement outcomes x1, · · · , xi−1 and use Eq. (17),86

S(Xi|X1, X2, · · · , Xi−1) =
∑

x1,··· ,xi−1

P (X1 = x1, X2 = x2, · · · , Xi−1 = xi−1)S(X|X1 = x1, X2 = x2, · · · , Xi−1 = xi−1)

≥
∑

x1,··· ,xi−1

P (X1 = x1, X2 = x2, · · · , Xi−1 = xi−1)ni(1− ζ)

≥ ni(1− ζ)

(23)

By Eq. (18),87

S(X1, X2, · · · , Xq) = S(Xq|X1, X2, · · · , Xq−1) + S(X1, X2, · · · , Xq−1)

= S(Xq|X1, X2, · · · , Xq−1) + S(Xq−1|X1, X2, · · · , Xq−2) + S(X1, X2, · · · , Xq−2)

=

q∑
i=1

S(Xi|X1, X2 · · · , Xi−1)

(24)

Combined with (23),88

S(X1, X2, · · · , Xq) ≥
q∑

i=1

ni(1− ζ) (25)

89

Following this generalized form, if considering all devices to have the same number of qubits ni = n and the number90

of queried measurement bits Q =
∑q

i=1 ni = qn, we will get Lemma 1 in the main text.91
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B. Proofs of the limitations of hybrid algorithm92

This section analyzes the limitations of hybrid algorithms with noisy quantum devices. First, we focus on decision93

problems. Then, we will extend the result of decision problems to other problems. The notion of languages, proba-94

bilistic Turing machines, and hybrid algorithms with noisy quantum devices are introduced in the Methods section of95

the main text.96

Here, we provide proof of Theorem 1 in the main text.97

Theorem 1’s proof. For convenience, denote the depth upper limit in Theorem 1 by t⋆ = 1
2| log(1−p)| (log(Q) + 5). As98

stated in the theorem, we will consider the case where t ≥ t⋆.99

Let Y denote the random strings in A, including the string from noisy quantum devices and random inputs for the100

probabilistic Turing machines. Let W1 denote Y ’s substring from noisy quantum devices, namely, W1 = YS , where S101

is the indices that correspond to noisy quantum devices queries.102

Now, consider a construction of a classical algorithm, i.e., PTM M . Replace W1 in Y with a random string W2103

from a uniform distribution, and denote the new string as Z, such that W2 = ZS . By Lemma 1 in the main text,104

D(W1∥W2) ≤ Qζ, (26)

in which ζ = (1− p)2t. Here, Y,Z can be regarded as generated by passing W1, W2 through the same channel Γ, that105

is, Y = Γ(W1), Z = Γ(W2). The channel Γ represents the transfer from quantum measurement outcomes to the rest106

of classical random strings, determined by classical processing and controls. Then, by data processing inequality, we107

have108

D(Y ∥Z) = D(Γ(W1)∥Γ(W2)) ≤ D(W1∥W2) ≤ Qζ ≤ 1

32
. (27)

The first inequality is data processing inequality; the second is Eq. (26); the third is from the assumption t ≥ t⋆.109

By construction, A and M has same classical processing structure, that is, ∀x ∈ {0, 1}n, y ∈ {0, 1}T (n),M(x, y) =110

M ′(x, y). Then we have the following equation:111

D(A(x, Y )∥M(x, Z)) ≤ D(Y ∥Z) ≤ 1

32
. (28)

The first inequality is from data processing inequality; the second is from Eq. (27). Pinsker’s inequality suggests112

∥A(x, Y )−M(x, Z)∥1 ≤
√

2D(A(x, Y )∥M(x, Z)) ≤ 1

4
. (29)

We have the probability that the classical algorithm solves the decision problem L,113

Pr[M(x, Z) = L(x)] = Pr[M(x, Z) = A(x, Y )] ≥ 2

3
− 1

8
=

13

24
. (30)

Then, we can repeat the PTM M a constant number of times and then take a majority vote on the output results114

to obtain the final decision. By doing so, we can ensure that the probability of the output being equal to L(x) is at115

least 2
3 . Therefore, L can be decided by a PTM without noisy quantum devices in O(T (n)) time.116

This leads to the absence of quantum advantages of many existing algorithms, including the examples mentioned117

in the main text, such as Shor’s, Grover’s, and HHL algorithms. For Shor’s and HHL algorithms, the algorithm’s118

output is not one bit as assumed in our decision problem formalism. Yet, in the following section, we will show that119

they can still be reduced to a decision problem, therefore, within the scope of Theorem 1.120

For sampling problems, we use Theorem 2 to suggest statistical indistinguishability of noisy quantum samples from121

the uniform distribution for t ≥ ω(log(Q)), where Q refers to the number of samples. We can easily adapt the previous122

proof to get this new result.123

Theorem 2’s proof. Consider the distinguisher, mentioned in the theorem, as a hybrid algorithm A with no input x124

and only queries noisy quantum devices. We require A(∅, Y ) to tell whether it actually queries noisy quantum devices125

or just random coins from a uniform distribution. Specifically, when given quantum devices, it should return a “true”126

with probability at least 2
3 ; when given random coins, it should always return a “false.”127

Suppose it can indeed solve this decision problem. Now, we replace noisy quantum devices with random coins,128

equivalent to M(∅, Z). From Eq. (30), with probability at least 13
24 , the distinguisher will return the same answer in129

the two cases, A(∅, Y ) and M(∅, Z). Note that when given random coins, it should return a “false.” Therefore, when130

given noisy quantum devices, it will answer “false” with probability at least 13
24 , which is a wrong answer. Therefore,131

it cannot succeed with at least 2
3 probability, i.e., failing the decision problem.132
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C. Equivalence of factorizing and solving linear systems to decision problems133

In this part, we present some problems that are equivalent to a decision problem so that our result can pose limi-134

tations of these problems on noisy quantum devices. Here, equivalent means that solving one problem in polynomial135

time implies being able to solve the other problem in polynomial time.136

Proposition 1 (Factorizing). The following two problems are equivalent:137

1. Given n, output the smallest non-trivial factor of n.138

2. Given (n, k), determine if there exist a non-trivial factor of n that is less than k.139

Proof. Suppose we solve problem 1 by algorithm A in polynomial time. Then for any input (n, k), we use A to factorize140

n and get its minimal non-trivial factor m. Then we compare m and k. Thus, we solve problem 2 in polynomial time.141

Suppose we solve problem 2 by algorithm B in polynomial time. Then, we can use binary search to find the smallest142

non-trivial factor of n in polynomial time.143

Proposition 2 (Linear systems of equations). The following two problems are equivalent:144

1. Given a classical description of the N ×N matrix A, a unit vector |b⟩, a quantum operator M , and a precision145

ϵ. Output ⟨x|M |x⟩ with precision ϵ, |x⟩ is the solution of A |x⟩ = |b⟩.146

2. Given a classical description of the N ×N matrix A, a unit vector |b⟩, a quantum operator M , a real number a147

, and a precision ϵ. Determine if ⟨x|M |x⟩ is less than a+ ϵ (output 0), or is larger than a+ ϵ/2(output 1). |x⟩148

is the solution of A |x⟩ = |b⟩.149

Proof. Suppose we solve problem 1 by algorithm A in polynomial time. For an input (A, |b⟩ ,M, a, ϵ) of problem 2,150

we query a with input (A, |b⟩ ,M, a, ϵ/10) to get an output a′. If a′ < a+ 9ϵ
10 , this means ⟨x|M |x⟩ ≤ a′ + ϵ

10 < a+ ϵ,151

then output 0. Otherwise, ⟨x|M |x⟩ ≥ a′ − ϵ
10 ≥ a+ 4ϵ

5 output 1. Then, we solve problem 2 in polynomial time.152

Suppose we solve problem 2 by algorithm B in polynomial time. For an (A, |b⟩ ,M, ϵ) of problem 1, we can solve153

problem 1 by performing a binary search in O(log
(
1
ϵ

)
) time on algorithm B with decision ϵ′ = ϵ

10 inputted to B.154

Proposition 1 and Proposition 2 suggest the applicability of Theorem 1 to problems of factoring and solving linear155

systems, corresponding to Shor’s and HHL algorithms, respectively.156

III. PROOFS OF LIMITATIONS OF ENTANGLEMENT PRODUCTION157

A. Entanglement in a one-dimensional chain158

A key observation is that gates act on the qubits in a spatial locality, respecting the one-dimensional chain topology.159

Consider a qubit in the chain within t layers. Its interaction should be restrained within a distance of t. The restraint160

can be understood through a physical picture of a light cone, illustrated in Fig. 1.161162

This will limit entanglement spreading and the bipartite entanglement between halves of the chain. We develop163

the intuition into the following lemma.164

Lemma 8 (Eq. (6) in the main text). For a one-dimensional lattice, namely a chain, at a fixed number of layers t,165

bipartite entanglement E(ρ(t)) is upper bounded by 2t. If A contains one end of the chain, the upper bound will become166

t. The upper bounds hold for any quantities E that do not increase under local operations and are upper bounded by t.167

Proof. Recall the output state is given by Eq. (15). Now, we divide gates in Ut into two kinds: U (1)
t contains gates that168

act across A and Ā; while U (2)
t contains other gates, which act on two qubits both in a same subsystem. Importantly,169

U (2)
t is a local operation concerning the partition and has no contribution to entanglement. We construct the following170

state by reducing Λ and U (2)
t ,171

ρ′(t) = U (1)
t (ρ(t− 1)), (31)

satisfying ρ(t) = Λ ◦ U (2)
t (ρ′(t)). It can be converted to ρ(t) by local operations, thus E(ρ(t)) ≤ E(ρ′(t)). And by the172

definition of U (1)
t , the size of its support is at most four.173

Similarly, to reduce the (t− 1)th layer, we again divided Ut−1 into two kinds. This time the gates and noise to be174
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FIG. 1. The physical picture of the light cone in one dimension. Dot lines are boundaries of the light cone. We use a
specific brickwise architecture for illustration, which is not required. The color of the layers gets darker with increasing depth,
representing the state is approaching σ0 according to Lemma 3.

reduced must satisfy an additional condition that they should commute with U (1)
t , which requires that they do not175

overlap with supU (1)
t in general.176

ρ′(t− 1) = U (1)
t ◦ Λ

sup(U(1)
t )

◦ U (1)
t−1(ρ(t− 2)) = U ′

t−1(ρ(t− 2)), (32)

where the combined channel U ′
t−1 satisfying | sup(U ′

t−1)| ≤ 4. Local operations can again convert it to ρ′(t).177

We follow the procedure and iteratively reduce all layers of gates. The final resulting state is ρ′(1) = U ′
1(|0⟩⟨0|

⊗n
)178

with | sup(U ′
1)| ≤ 4t. Considering bipartite entanglement is at most half of the system size, we conclude that E(ρ(t)) ≤179

E(ρ′(1)) ≤ 2t. The whole procedure is illustrated in Fig. 2.180

The support can only grow to one side when A contains one end of the chain. Following the same procedure, the181

support size has an upper bound of t. Thus, E(ρ(t)) ≤ t.182

Our result is a generalization of previous work that establishes a similar bound only for the entanglement entropy of183

pure states [4–7]. As far as we know, no such bounds have been derived for the mixed-state case, which is essentially184

the case for analyzing noisy quantum devices.185

Then, by combining the results with Lemma 3, we derive the upper bounds of quantum relative entropy of entan-186

glement and quantum mutual information as Theorem 3 in the main text.187

Theorem 3’s proof. First, we show both the quantum relative entropy of entanglement and quantum mutual informa-188

tion are upper bounded by D(ρ∥σ0). For quantum relative entropy of entanglement, this is because189

ER(A : Ā) = min
σ∈SEP

D(ρ∥σ) ≤ D(ρ∥σ0), (33)

where SEP denotes the set of separable states over A and Ā partition. For quantum mutual information, this is190

because191

I(A : Ā) = S(A) + S(Ā)− S(ρ) ≤ n− S(ρ) = D(ρ∥σ0). (34)

And also we know ER(A : Ā) is upper bounded by I(A : Ā), because ER(A : Ā) = minσ∈SEPD(ρ∥σ) ≤ D(ρ∥ρA⊗ρĀ) =192

I(A : Ā). Combined with Lemma 3,193

I(A : Ā) ≤ D(ρ∥σ0) ≤ n(1− p)2t. (35)
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Λ1 Λ1 Λ1

Λ1 Λ1 Λ1

Λ1 Λ1 Λ1

Λ1 Λ1 Λ1

Λ1 Λ1 Λ1

Λ1 Λ1 Λ1

(a) The original circuits without reduction.

Λ1 Λ1

Λ1 Λ1

Λ1 Λ1

U (1)
t

Λ1 Λ1

Λ1 Λ1

Λ1 Λ1

(b) After one iteration of reduction.

Λ1

Λ1

U (2)
t

Λ1

Λ1

Λ1

Λ1

(c) After two iterations of reduction.

U (3)
t

(d) Ater three iterations of
reduction.

FIG. 2. The iterative reduction of layers of gates. We show a case of six qubits across one boundary between A and Ā as a
part of a larger quantum device for illustration. The half A contains the upper three qubits, while Ā contains the rest. We
show the iterative reduction by the series of subfigures.

From Lemma 8, we have another upper bounds194

I(A : Ā) ≤ t. (36)

By combining the two upper bounds, we have195

I(A : Ā) ≤ min{n(1− p)2t, t} ≤ t⋆, (37)

where t⋆ is the greatest integer that satisfied n(1− p)2t
⋆ ≥ t⋆.196

Here, we first consider the case where p < 2
3 . Then, If n ≥ 3 so that n > 1

2(1−p) , we will have t⋆ ≥ 1 and197

t⋆ ≤ log(n)
− log(1−p) . Therefore, the upper bound follows as198

I(A : Ā) ≤ t⋆ ≤ log(n)

− log(1− p)
. (38)

When n = 2, the maximal entanglement is upper bounded by 1, and 1 < log(n)
−2 log(1−p) . We need at least two qubits to199

discuss entanglement.200

Otherwise, p ≥ 2
3 , we will show that the state will always be fully separable. To see this, we need only to show that201

any two-qubit quantum states ρ will become separable after the single-qubit depolarizing noise channel if p ≥ 2
3 so202
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that entanglement cannot be produced from a product initial state by such noisy circuits. Without loss of generality,203

we suppose ρ to be a pure state |ψ⟩ ⟨ψ|. After the single-qubit depolarizing noise channel, its purity will be less than204 ( 1+(1−p)2

2

)2
< 1

3 by Lemma 9. Note that a two-qudit state with purity less than or equal to 1
d+1 is separable. In our205

qubit case, the two-qubit state is less than 1
3 , therefore separable.206

Lemma 9 (Purity loss of a pure state). Suppose the pure state is |ψ⟩, which can be arbitrarily entangled. After a207

layer of single-qubit depolarizing channels, its purity is less than
( 1+(1−p)2

2

)n
.208

Proof. After a layer of noise channel, the state becomes209

ρ′ =
∑

a∈{0,1}n

pW [a](1− p)n−W [a] Ia
2W [a]

⊗ Tra |ψ⟩ ⟨ψ| . (39)

Here a is a n-bit binary vector to denote a subsystem and ai = 1 i.f.f. ith qubit is in the subsystem. W [a] =
∑n

i=1 ai.210

Its purity is211

Tr
[
ρ′

2
]
=

∑
a,b

pW [a]+W [b](1− p)2n−(W [a]+W [b]) Tr

(
(
Ia

2W [a]
⊗ Tra |ψ⟩ ⟨ψ|)(

Ib
2W [b]

⊗ Trb |ψ⟩ ⟨ψ|)
)

(40)

Let W̃ [a, b] = pW [a]+W [b](1− p)2n−(W [a]+W [b]):212

Tr
[
ρ′

2
]
=

∑
a,b

W̃ [a, b] Tr
(
(Tra∪b |ψ⟩ ⟨ψ|)2

)
≤

∑
a,b

W̃ [a, b] =
(1 + (1− p)2

2

)n
.

(41)

Here a∪ b denotes qubits that are either in a or in b. The last equality is because all “trace” terms in the summation213

are equal to 1 if |ψ⟩ = |0⟩⊗n
. The physical meaning of the lemma is interesting: entangled states will lose more purity214

than product states.215

B. Entanglement in a two-dimensional lattice216

For general dimensional topologies, if the entanglement between subsystem A and its complement Ā scales with217

the area of the boundary, the system follows the area-law scaling. Alternatively, if the entanglement scales with the218

volume of A, the system follows the volume-law scaling.219

(a) One-dimensional lattice (b) Two-dimensional lattice

FIG. 3. Two typical topology setups for noisy quantum devices are studied in this work. The filled circles denote qubits. The
lines are connections of those qubits where quantum gates can be placed.

For two-dimensional lattices, we take A as a square, whose size is (n1/2, n1/2). And one of A’s vertex is on a vertex220

of the whole lattice.221

Theorem 5. In a two-dimensional lattice with the number of qubits n > 9
(1−p)4 , for both quantum mutual information222

and quantum relative entropy of entanglement, we have upper bounds223

E(ρ(t)) <
1
2 log(n)− 1

−2 log(1− p)
2n

1
2 +

( 1
2 log(n)− 1

−2 log(1− p)

)2

. (42)
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Proof. In two-dimensional lattices, a light cone lemma can be established similarly. Now, the interaction of qubits can224

expand in two different dimensions. So the size of the support of the reduced channel, at last, will be upper bounded225

| sup(U ′
1)| ≤ (n

1
2 + t)(n

1
2 + t)− n = 2tn

1
2 + t2. (43)

For both quantum mutual information and quantum relative entropy of entanglement, denoted by E(A : Ā), we226

have the following two upper bounds,227

E(A : Ā) ≤ n(1− p)2t,

E(A : Ā) ≤ 2tn
1
2 + t2.

(44)

Combining the two bounds, we have228

E(A : Ā) ≤ min{n(1− p)2t, 2tn
1
2 + t2} ≤ 2t⋆n

1
2 + t⋆2, (45)

where t⋆ is the greatest integer that satisfies n(1− p)2t ≥ 2n
1
2 t+ t2. With the requirement of n > 9

(1−p)4 , we have229

n(1− p)2 > 3n
1
2 ≥ 2n

1
2 + 1. (46)

Then we assure that t⋆ ≥ 1 and can further derive230

n(1− p)2t
⋆

≥ 2n
1
2 + 1 > 2n

1
2 . (47)

This will give t⋆ an upper bound,231

t⋆ ≤
1
2 log(n)− 1

−2 log(1− p)
. (48)

Finally, we have the upper bound232

E(A : Ā) <
1
2 log(n)− 1

−2 log(1− p)
2n

1
2 +

( 1
2 log(n)− 1

−2 log(1− p)

)2

. (49)

233

When n is sufficiently large, the upper bound scales as n
1
2 log(n), exhibiting an area-law scaling with an additional234

logarithmic factor. However, unlike the one-dimensional case, this entanglement scaling has no known implications for235

classical simulatability in the two-dimensional lattice. This is because no known efficient classical simulation algorithm236

exists for even area-law systems in two dimensions. As a two-dimensional extension of MPS, projected Entangled237

Pair States (PEPS) have exponential contraction complexity.238

As in the one-dimensional case, the proposed entanglement scaling limits the simulation of two-dimensional quantum239

systems. However, it is feasible to use a two-dimensional noisy quantum device to simulate a one-dimensional quantum240

system [8].241

We summarize our results in different lattice dimensions and compare them with the numerical results from the242

particular case of random noisy circuits [9, 10] in Table I.243

TABLE I. Bounds of quantum mutual information and relative entropy of entanglement in a noisy quantum device. For two-

dimensional lattices, A is a square with the size of (n
1
2 , n

1
2 ). Previous works numerically study the entanglement production

of noisy circuits with random two-qubit gates arranged in a brick-wise architecture, which is a special case of our model. We
list their results for comparison.

Topology Bounds Entanglement scaling Random circuits [9, 10]

1D Chain log(n)
−2 log(1−p)

O(log(n)) O(1)

2D Lattice
1
2
log(n)−1

−2 log(1−p)
2n

1
2 +

( 1
2
log(n)−1

−2 log(1−p)

)2

O(n
1
2 log(n)) O(n

1
2 )

244

245
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C. Entanglement between distant regions in a one-dimensional chain246

Besides the entanglement between adjacent regions, we also investigate the entanglement between two distant parts247

of the devices. Consider two distant contiguous regions, A and B. We define their distance d(A,B) as the shortest248

path connecting them in a given qubit connection topology.249

If no noise exists, the entanglement between the two arbitrarily far parts can reach the optimal value of min(|A|, |B|)250

after a depth more than their distance. However, when the device suffers from noise and their distance is far, such a251

depth cannot be reached before the system gets too noisy. Formally, we have the following theorem.252

Theorem 6. The entanglement between the two distant regions A and B in a one-dimensional chain, with distance253

d(A,B) is upper bounded by254

E(A : B) ≤ (|A|+ |B|)(1− p)2d(A,B) +
4(1− p)

p(2− p)
. (50)

Proof. Following the previously used method, we consider the loss of information in the system AB. Unlike in the255

previous problem, AB may gain information by interacting with the outside systems. AB can only interact with the256

four qubits adjacent to their boundaries for each layer in a one-dimensional chain. Therefore, four bits of information257

can be regained at most before depolarizing noise comes. The information loss in a layer will be258

D(ρ(t+ 1)AB∥(σ0)AB) ≤ (1− p)2 [D(ρ(t)AB∥(σ0)AB) + 4] . (51)

We rewrite it into259

D(ρ(t+ 1)AB∥(σ0)AB)−
4(1− p)

p(2− p)
≤ (1− p)2

[
D(ρ(t)AB∥(σ0)AB)−

4(1− p)

p(2− p)

]
. (52)

This suggest that D(ρ(t)AB∥(σ0)AB) − 4(1−p)
p(2−p) undergoes an exponential decay. Note that D(ρ(0)AB∥(σ0)AB) =260

|A| + |B| takes the maximal value. We will have an exponentially decaying upper bounds of entanglement with an261

extra term 4(1−p)
p(2−p) .262

E(A : B) ≤ D(ρ(t)AB∥(σ0)AB) ≤ (|A|+ |B|)(1− p)2t +
4(1− p)

p(2− p)
. (53)

From gate locality, we know that when t < d(A,B), the entanglement will be strictly zero. To see this, we can263

still use the reduction techniques shown in Fig. 2 and do the same tricks. Combining this with the bounds we just264

obtained, we will eventually have265

E(A : B) ≤ (|A|+ |B|)(1− p)2d(A,B) +
4(1− p)

p(2− p)
. (54)

266

The result we obtain is exponentially vanishing with the existence of an additional term 4(1−p)
p(2−p) related solely to the267

noise strength. Therefore, we show that the entanglement between far regions has an upper limit regardless of how268

large the sizes of the two regions are.269

Previous work also studied the entanglement of distant regions, with more flexible consideration of noise model and270

error correction [11]. Their result depends on p being beyond or below a threshold pc, which is related to percolation271

theory. When p > pc, they found the same exponentially vanishing entanglement regarding d(A,B), but without272

additional terms as in our result. Their result is better than ours for the p > pc case. Our result still applies273

for the p < pc case. This suggests that the exponential decay behavior of entanglement between distant regions is274

threshold-free when depolarizing noise is considered, and error correction is not applicable.275

It is also important to point out that the upper bounds we derived could be strengthened. This is because when276

deriving Eq. (51), we suppose the surrounding environment cools the four boundary qubits in each layer throughout277

the process. However, considering that depolarizing noise acts on all qubits, such cooling could be difficult. Previous278

work has suggested that quantum cooling in the context of quantum computing is impossible when depolarizing noise279

is considered [12]. Although it cannot be used directly in our setup, the possibility of cooling to increase entanglement280

between distant regions is also small.281
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Quantum circuits for diagonal unitary matrices with reflection symmetry
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Abstract. During the noisy intermediate-scale quantum (NISQ) era, it is necessary to optimize the
quantum circuits in circuit depth and gate count, especially entanglement gates, including the CNOT
gate. Based on a natural gate set {CNOT, Rz}, we simplify the quantum circuits for diagonal unitary
matrices in a specific case of reflection symmetry. Compared to the existing results for general diagonal
unitary matrices, our proposed circuit, in this case, achieves nearly half reduction in both the CNOT count
and the circuit depth. Moreover, we show that our result has practical applications, including the part of
symmetric potential in the first-quantized Hamiltonian simulation.

Keywords: quantum circuit, diagonal unitary matrix, reflection symmetry, first-quantized Hamiltonian
simulation

1 Problem description and our target

We consider a diagonal unitary matrix, which is given
by

D(θ) :=



eiθ0 0 · · · 0 0 0 0
0 eiθ1 · · · 0 0 0 0
...

...
. . .

...
...

...
...

0 0 0 eiθ2n−1−1 0 0 0
0 0 0 0 eiθ2n−1 0 0
...

...
...

...
...

. . .
...

0 0 0 0 0 0 eiθ2n−1


, (1)

for θ = (θ0, θ1, . . . , θ2n−1−1, θ2n−1 , . . . , θ2n−1)T ∈ R2n
where

n ∈ N := {1, 2, . . .}. This diagonal unitary matrix directly
corresponds to a unitary operation:

UD(θ) =

2n−1∑
k=0

eiθk |k⟩ ⟨k| ,

and we are interested in its quantum circuit. Moreover,
we introduce a vector φ defined by

φ ≡ (φ0, . . . , φ2n−1)T := −
2
√

2n
Hθ ∈ R2n

, (2)

where H is the Hadamard transform.

Previous results: Based on a natural gate set
{CNOT,Rz}, 2n×2n diagonal unitary matrices can be pre-
cisely implemented using 2n (multifold) z rotation gates
whose rotation angles are given by φ (see [1, 2]). In a
suitable order of the (multifold) z rotation gates, some
CNOT gates can be canceled, and a quantum circuit of

∗kkou@quemix.com

2n − 2 CNOT gates and 2n − 1 phase rotation gates with
a depth of at most 2n+1 − 3 was obtained in [1, 3, 4].
Although the gate count remained the same, Zhang et
al. [5] reduced the circuit depth to 2n by commuting and
parallelizing the quantum gates.

Our target: The previous results seem optimal if the
components of θ are completely independent. By in-
troducing a so-called reflection symmetry, we aim at a
nearly half reduction of the gate count, as well as the
circuit depth.

2 Preliminary and main result

Definition 1 We call that a unitary diagonal matrix (1)
admits reflection symmetry if the given vector θ ∈ R2n

satisfies the following condition:

θk = θ2n−1−k for all k = 0, 1, . . . , 2n − 1. (3)

Under the above symmetric structure of θ, the Hadamard
transform extracts the necessary information, so that half
of the rotation angles vanish in the case of reflection
symmetry.

Lemma 2 Let n ∈ N. Assume that θ ∈ R2n
admits re-

flection symmetry, and a vector φ is defined by Eq. (2).
Then, we have φk = 0 for any k = 0, 1, . . . , 2n − 1 such
that

n−1∑
m=0

km mod 2 = 1.

Here, [k0k1 · · · k2n−1] is the binary representation of k. As
for detailed proof, we refer to Theorem 1 in Appendix A
of [6]. Equipped with the above lemma, we can prove
the main result.
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Figure 1: The comparison between the general algorithm
in [5] (upper circuit) and our specifically designed algo-
rithm for reflection symmetry (lower circuit) in the case
of n = 4. Each square denotes a phase rotation gate with
its rotation angle inside.

Theorem 3 Any unitary operation corresponding to a
diagonal unitary matrix that admits reflection symme-
try can be implemented, up to a global phase, by a
quantum circuit with 2n−1 − 1 phase rotation gates and
2n−1 + n − 2 CNOT gates with a depth of at most
2n−1 + 2n−3. Here, the depth is considered based on the
gate set {CNOT,Rz}.

The proof follows from a constructive algorithm, and we
refer the technical details to Algorithm 1 and Appendix
C of [6].

For a demonstration, we compare the quantum circuits
using the general algorithm in [5] and our specifically
designed algorithm (Algorithm 1 in [6]) for reflection
symmetry in Fig. 1. We find that the CNOT count and
the depth are reduced to 10 in the case of n = 4.

3 Application to real-time evolution in first-
quantized Hamiltonian simulation

For the first-quantized Hamiltonian simulation, there
is a well-known grid-based method that uses the
so-called centered/shifted quantum Fourier transform
UCQFT to diagonalize the kinetic energy operator T̂ .
Since the potential energy operator V̂ is already diago-
nal in the real-space representation, one combines this
with the Trotter-Suzuki formula to obtain an approxima-
tion scheme [7, 8, 9, 10]. For example, the first-order
Trotter-Suzuki formula gives the following approxima-
tion for K steps:

e−iHK∆t = (e−iH∆t)K

≈ (e−iT̂∆te−iV̂∆t)K

=
(
UCQFTUkin(∆t)U†CQFTUpot(∆t)

)K
,

where Ukin(∆t),Upot(∆t) are two unitary operations cor-
responding to two diagonal unitary matrices with the pa-
rameter ∆t.

We provide two illustrative examples of first-
quantized Hamiltonian simulations in one dimension, for
which the proposed quantum circuit can be applied.

Example 1 One-particle simulation with Eckart barrier
potential

In this example, we have V̂ |ψ⟩ = veck(|x− r0|) |ψ⟩, where
veck(x) = A sech(ax) with two parameters A and a. Let L
be the length of the simulation cell and xk = k∆x − L/2,
k = 0, 1, . . . , 2n − 1 be the grid points, where ∆x = L/2n.
Then, we find that the diagonal unitary matrix Upot(∆t)
subjects to a vector θ with

θk = −veck (|xk − r0|)∆t = −veck
(∣∣∣k − 2n−1 + 1/2

∣∣∣∆x
)
∆t,

for k = 0, 1, . . . , 2n − 1. Here, we have chosen r0 =

(−1/2)∆x = −L/2n+1 so that θ satisfies Eq.(3). There-
fore, Upot(∆t) admits reflection symmetry.

Example 2 Two-particle simulation in an electric field

In this example, we consider a LiH molecule simula-
tion where the two electrons are bound to the corre-
sponding Li or H nucleus separately at the beginning.
From t = 0, we impose an electric field and simulate
the evolution of the two-electron system. V̂ is com-
posed of four parts: electron-nucleus, electron-electron,
nucleus-nucleus, and external potentials, among which
the particle-particle interactions are modeled by modi-
fied Coulomb potentials, and the external potential of a
static electric field is described by vext(x) = −ω0x. Here,
we focus on the electron-electron potential vee. Using
the same notations L, ∆x, and xk, we find that the unitary
operation e−iV̂ee∆t subjects to a vector θ ∈ R22n

with

θk ≡ θ2n j+ j′ = −vee(|x j − x j′ |)∆t = −vee(| j − j′|∆x)∆t,

for k = 0, 1, . . . , 22n − 1. By noting that k ↔ ( j, j′)
implies 22n − 1 − k ↔ (2n − 1 − j, 2n − 1 − j′), again we
conclude that the diagonal unitary matrix regarding the
electron-electron interaction admits reflection symmetry.

Moreover, we provide the simulation results in
Figs. 2,3 for the above examples using quantum emu-
lator Qiskit [11]. For Example 1, we choose n = 10 and
∆t = 0.1, and we find that the infidelity between the sim-
ulated wave function using Qiskit and the “exact” one
(calculated by diagonalizing the discretized Hamiltonian
matrix) is less than 0.05. Compared to the circuit using
the previous work, we also find about 39% reduction in
the CNOT count and 32% reduction in the depth by ap-
plying Algorithm 1. For Example 2, we choose n = 7
and ∆t = 0.1 for the simulation, and the infidelity be-
tween the simulated wave function and the “exact” one
is less than 0.001 for the case of a strong electric field,
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Figure 2: Hamiltonian simulation with different strength of the barrier at time points t = 0, 0.4, 0.8, 1.2, 1.6, 2.0 with
grid size n = 10 and time step ∆t = 0.1. In each panel, the left vertical axis represents the electron density, and the
right vertical axis represents the Eckart barrier potential in gray. The left panel shows the case with a larger strength
A = 200 where one observes that a partial wave penetrates the barrier while a partial wave returns. The right panel
shows the case with a weaker strength A = 100 in which only penetration is observed.

Figure 3: Hamiltonian simulation with grid size n = 7, time step ∆t = 0.1, and different electric fields. In each panel,
the left vertical axis represents the electron density of the two-electron system, and the right vertical axis represents
the potential due to nuclei in gray. The left panel shows the fast decay of the electron density in the virtual domain
of the molecule with a strong electric field of parameter ω0 = 5, and the probability of electrons remaining in the
molecule is very small after t > 2.0. The right panel demonstrates the case with a weak electric field of parameter
ω0 = 0.3, in which we observe that the electrons remain in the molecule with high probability even at t = 10.0.

and is less than 0.05 for the case of a weak electric field.
Compared to the previous work, applying Algorithm 1
achieves about 48% reduction in the CNOT count and
37% reduction in the depth. The details on the numeri-
cal simulation can be found in Sect. 5 of [6].

4 Concluding remarks

The quantum circuit for an arbitrary 2n × 2n diago-
nal unitary matrix is known to have 2n − 2 CNOT gates
and 2n − 1 phase rotation gates with a depth of at most
2n. Under the assumption of reflection symmetry, that is,
Eq. (3), we provide a specifically designed circuit that is
constructed by 2n−1 + n − 2 CNOT gates and 2n−1 − 1
phase rotation gates with a depth of at most 2n−1 + 2n−3,
based on the gate set {CNOT,Rz}.

Diagonal unitary matrices with reflection symmetry
serve as subroutines in applications, one of which is the
quantum circuit for the potential part (either a symmet-

ric or an interaction potential) in the Hamiltonian sim-
ulation illustrated above. Although the given examples
consider only the one-dimensional case, our specifically
designed circuit achieves a nearly half reduction in gate
count and depth compared to the general one even in a
high-dimensional case.
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Potentials and Limitations of Analog Quantum Simulators in
Variational Quantum Algorithms
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1 Summary

Significant progress has been made in studying vari-
ational quantum algorithms (VQAs) [1, 2] using the
digital-gate-based approach, where quantum dynamics
are constructed through a sequence of quantum gates.
However, this method requires precise control, posing
practical challenges for near-term quantum device im-
plementation. Alternatively, analog quantum simulators
leverage the inherent quantum dynamics of the system
to mimic the quantum dynamics of interest, requiring
much less control and being more resilient to noise [3, 4].
Consequently, analog quantum simulation is one of the
promising candidates for exploring quantum advantage in
near-term practical quantum devices, yet it is relatively
less explored in the context of VQAs [5, 6, 7, 8].
This work bridges the gap between digital-gate-based

and analog quantum simulators by investigating the scal-
ability of VQAs implemented with analog quantum sim-
ulators from the fundamental aspects of universality, ex-
pressivity, and untrainability. Specifically, we consider
quench dynamics generated by a disordered Ising spin
chain, which can operate in different quantum phases, as
a key case study. We compare the VQA ansatz initial-
ized in two distinct phases of matter—the thermalized
and many-body localized (MBL) phases [9]. Our find-
ings suggest a regime where initializing the ansatz in the
MBL phase offers improved trainability and a sufficient
number of parameters for achieving the desired unitary
during the optimization process.

2 Framework

Variational quantum algorithms. We compute the
cost function, defined as the expectation value of an ob-
servable O which defines a problem of interest: C(Θ) =
Tr(OU(Θ)ρ0U

†(Θ)) where ρ0 is some initial state, U(Θ)
is a parametrized unitary (also called an ansatze) on n
qubits with Θ as a set of trainable parameters. The
training procedure typically consists of estimating the
loss with quantum computers and classically optimize in
a variational manner, ultimately aiming to obtain pa-
rameter values such that the loss function is minimized
Θmin = argminΘC(Θ).

Analog quantum simulator. The explicit form of
the ansatze significantly contributes to the success of
VQAs. While much advancements have been made for
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†supanut.thanasilp@gmail.com
‡thiparatc@gmail.com

implementing digital-gate-based quantum circuits, here
we consider an alternative whereby an analog quantum
is used as an ansatze. In particular, we consider a quan-
tum quench dynamic of the form

U(Θ) =

M∏
m=1

e−iθ(0)
m H(θm) , (1)

where M is the total number of quenches, θ
(0)
m is an evo-

lution time of the mth quench (which can also be made
trainable) and H(θm) is a native Hamiltonian with coef-
ficients θm as trainable parameters.

In our study, we consider a disordered Ising spin chain
with nearest-neighbor interactions

H(θ) = J
∑
⟨i,j⟩

ZiZj + h
n∑

i=1

Xi +
n∑

i=1

θiZi , (2)

where J is a coupling strength, h is a uniform trans-
verse field strength, {θi} are on-site disordered ener-
gies in which each is uniformly drawn from the inter-
val [−W/2,W/2] with the disorder strength W , and Xi

and Zi are the Pauli X and Z matrices for the ith site,
respectively. This Hamiltonian serves as a simplified ver-
sion without long-range interactions of the trapped ion
Hamiltonian [10] and hence constitutes an ideal play-
ground for studying fundamental aspects of VQAs with
analog quantum simulators.

Depending on the parameter regime, this Hamiltonian
is capable of exhibiting different quantum phases of mat-
ter. For a weak disorder limit, the system is in a ther-
malized phase, being chaotic and enjoying an ergodicity
for a sufficiently long evolution time. On the other hand,
strong disorder can prevent the system from thermaliza-
tion, leading to the many-body localized (MBL) phase.
To identify the regime where the system falls into which
phase under the given Hamiltonian, we numerically probe
its level-spacing statistics which is a standard diagnostic
tool in many-body quantum physics [11] (see Appendix A
for further details).

3 Main Results

Universality. The first fundamental aspect that we in-
vestigate is whether the quantum quench dynamics de-
scribed in Eq. (1) with the Hamiltonian in Eq. (2) can
realize an arbitrary unitary. This is of particular interest
when we employ the analog simulators to solve a problem
that may not align with the native quantum evolution.
In other words, in this scenario, U(Θ) in Eq. (1) acts as
a problem-agnostic ansatze.
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By using a constructive method described in Ref. [12],
we argue that, upon appropriately adjusting the on-site
transverse and longitudinal fields and evolution time, the
quench dynamics can be engineered to approximate any
quantum evolution. This result is also in agreement with
Dynamical Lie Algebra perspective in Ref [13].

Expressivity. Intuitively, expressivity measures how
uniformly an unitary ensemble generated by varying the
trainable parameters covers the whole unitary group.
That is, it indicates how close the unitary distribution
form the ensemble is to the Haar distribution. One ap-
proach to quantify expressivity is to compute the distri-
bution of probabilities in computational basis (for a given
intial state) and see how far it is from Porter-Thomas dis-
tribution (which is a theoretical prediction in the case of
a Haar random state 1). Here, we compute this difference
using Kullback-Leibler Divergence (KLD).
Figure 1 shows KLD for both the thermalized and

many-body localized (MBL) phases as the number of
quenches increases. For both phases, the KLD eventually
saturates, indicating that the expressivity of the ansatz
reaches its maximum for a given number of qubits. The
decay rate towards saturation is faster in the thermalized
phase compared to the MBL phase, suggesting that the
thermalized phase more rapidly approximates a uniform
distribution over the possible output states.

Figure 1: The KL divergence saturates as the num-
ber of quenches increases in both the thermalized
(left) and the MBL (right) initialization. The pa-
rameters in the thermalized and the MBL phase are, re-
spectively, W = 5J and W = 50J . For each number of
quenches, the KLD are averaged over 400 random initial-
izations. Importantly, the MBL initialization takes many
more quenches to achieve its maximal expressivity, given
a fixed number of qubits.

Untrainability. Barren plataeu (BP) is a well-known
trainability issue in VQAs where the gradients of cost
function vanish exponentially with the number of qubits

1More precisely, the Porter-Thomas distribution serves as a
benchmark, representing the distribution of the state |0⟩⟨0| after
evolution under a random Haar unitary.

[14, 15, 16], causing an untrainable cost landscape as one
scales up the system size. Since the variance of the cost
function can also serve as an indicator for the BP [17],
we explore this issue in our analog ansatz initialized in
either the thermalized or the MBL phase by computing
the variance of a local observable, ⟨Z1Z2⟩.

Figure 2 compares the behaviors of vanishing variances
for the thermalized (left) and the MBL (right) phases.
The thermalized phase exhibits a faster decay in vari-
ance as the number of quenches increases. However, with
a sufficient number of quenches, both phases eventually
reach the same saturated variance. This saturated vari-
ance is further investigated in Fig. 10, revealing an ex-
ponential decay in the number of qubits for both phases,
a key signature of BP. Thus, both phases ultimately face
the same trainability challenge: both suffer from BP. Ad-
ditionally, as shown in Fig. 9, the saturation of KLD
correlates with the onset of the barren plateau (BP) in
the trainability analysis of Fig. 2, in agreement with the
observation in Ref. [18]. Next, we further study the ini-
tialization strategy in the MBL phase, as the saturated-
variance-regime arises later. We shall exploit this non-
saturated regime with higher expressivity to mitigate BP
issues.

Figure 2: The onset of barren plateaus in the ther-
malized (left) and the MBL (right) initialization.
The variance of ⟨Z1Z2⟩ of the thermalized (W = 5J)
and MBL (W = 50J) initialization, averaged over 400
random initializations, is plotted against the number
of quenches. The onset of barren plateaus arises more
rapidly in the thermalized initialization than in the MBL
initialization. This onset also correlates with the satura-
tion point of KLD in Fig.1, see a detailed comparison in
Fig. 9.

Initialization strategy. Building on the results in the
previous sections, we conclude that for a given number
of quenches (i.e., fixed M) there exists three different
regimes for initialization

• Regime I (small number of quenches): Both ther-
malized and MBL phases are barren plateau free
but are not maximally expressive.
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• Regime II (intermediate number of quenches): The
thermalized phase becomes maximally expressive
but suffers from a barren plateau. On the other
hand, the MBL phase has large loss differences
at the initial training step and becomes more and
more expressive (compared to Regime I).

• Regime III (large number of quenches): Both
phases are maximally expressive but untrainable.

These three different regimes can be quantitatively deter-
mined by the ratio Q of a variance of a local observable
at quench M to the saturated variance (i.e., variance at
very large M), as shown in Fig. 3.
In practice, employing the analog ansatze generally re-

quires us to predetermine the number of quenches (i.e.,M
is treated a hyperparameter) unless the adaptive strategy
is used (which is not considered in this work). From the
observation mentioned above, it motivates us to propose
an initialization strategy where the number of quenches
in the ansatze is chosen such that U(Θ) is in Regime II
within the MBL phase. This allows the ansatze to be
trainable at the initial step while having large enough
expressivity during later training iterations.

Figure 3: Three initialization regimes The ratio Q
of variance to the saturated variance is plotted against
the number of quenches for 10 qubits. The blue and
red correspond to initialization in the MBL and thermal-
ized phase, respectively. We categorize the initialization
strategy into three regimes: regime I (yellow) in which
both phases do not suffer from BP, regime II (cyan) in
which the thermalized phase is untrainable (BP) while
MBL phase still does not encounter MP, and regime III
(red) in which both phases are untrainable. Thus, ini-
tialization in regime II of MBL phase can avoid BP while
attaining relatively high expressivity at a larger number
of quenches.

Benchmark on a toy example. To show that the
proposed MBL initialization scheme can be trained to
also express states that are not in an MBL phase, we
benchmark the scheme on a variational quantum eigen-
solver task: finding a ground state of an instance of a
long-range transverse field Ising model Hamiltonian

Htarget =
∑
i,j

JijZiZj +B
∑
i

Xi +
∑
i

hiXi, (3)

Figure 4: VQE benchmark results for MBL initial-
izations The average relative error, comparing between
the estimated ground state energy ⟨Htarget⟩Θ and the
actual ground state energy of Htarget, is plotted in solid
green lines on a logarithmic scale against the optimiza-
tion epochs for quench dynamics initialized in the MBL
phase over 100 realizations, using (left) 2 and (right) 6
quenches. The blue and orange dashed lines are the max-
imum and minimum relative error among all the realiza-
tions respectively. The standard derivation is 2.80% and
0.32% for 2-quench and 6-quench ansatze, respectively,
which are unnoticeable on the logarithmic scale.

where Jij = 1
|i−j| , in a parameter regime such that the

system is in the thermalized phase with 7 qubits. We
employ a parameterized quench dynamics governed by
the Hamiltonian in Eq. (2) initialized in the MBL phase
as an ansatze and calculate the relative error between
our trained model prediction and the true ground state
energy (∆E = E−E0

E0
). As shown in Fig. 4, after 100

training (optimization) epochs, we obtain an average rel-
ative error of 2.05% with a standard deviation of 2.80%
using a 2-quench ansatze and an average relative error
of 0.27% with a standard deviation of 0.32% using a
6-quench ansatze. Another example application of our
analog VQA initialization strategy is to solve a Max-Cut
problem, see the results in Appendix B.

4 Discussion

We study fundamental aspects of VQAs with analog
quantum simulators. By considering a disordered Ising
spin chain as an example, we study how expressivity
and barren plateaus are fundamentally linked with the
phases of matter. While maximal expressivity can be
achieved in both phases through quench dynamics, the
expressivity-induced barren plateaus have also arisen in
this analog setting, similar to the situation in the digital-
circuit-based VQAs counterpart. From the study of our
analog ansatze, we propose a novel initialization strategy
based on the MBL phase whereby the ansatze is trainable
at the initial step and has sufficiently large expressivity to
solve interesting problems. Our work bridges the gap be-
tween fundamental aspects of VQAs and quantum phases
of matter.
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Appendix

A Level-spacing Statistics

Here we provide the parameter setting for our model
and more detailed description of the level-spacing statis-
tics that characterize the thermalized and MBL phases
in the main text. We consider the statistics of the energy
level spacing ri, defined as

ri =
min(∆i,∆i+1)

max(∆i,∆i+1)
, (4)

where ∆i is the difference between the ith and the (i−1)th

energy level.
Specifically, we focus on the Hamiltonian in Eq. (2) us-

ing a uniform transverse field strength of −2J . The sys-
tem governed by this Hamiltonian is in the thermalzied
phase when the disorder strength W = 5J , character-
ized by the level-spacing statistics that follows that of
the Gaussian Orthogonal Ensemble (GOE) shown in the
right panel of Fig. 5. The GOE signifies the level repul-
sion, a characteristic feature of the thermalized phase.
In contrast, at strong disorder, with W = 50J , the level
spacing follows a Poisson distribution (left panel of Fig.
5), a characteristic of the MBL phase.

Figure 5: Level-spacing statistics of disordered
Ising model in a weak and a strong disorder
strength The histograms represent the level-spacing
statistics for 10-qubits systems governed by the Hamilto-
nian in Eq. (2) (Right) withW = 5, the histogram follows
the GOE statistic, indicative of the system being in the
thermalized phase. (Left) Conversely, with W = 50, the
histogram follows the Poisson statistics, indicative of the
system being in the MBL phase. These different disor-
dered strengths are used for initializing the parameters
in our ansatze for the thermalized and the MBL initial-
ization.

B Quadratic Unconstrained Binary Op-
timization: Max-Cut

We present another example application of our ansatze
by solving a Max-Cut problem, a prototypical Quadratic
Unconstrained Binary Optimization (QUBO) problem.
This problem involves finding the maximum cut in a
graph, which entails dividing the graph’s vertices into
two sets such that the total weight of the edges con-
necting vertices across these two sets is maximized. The

QUBO Hamiltonian associated with such problem can be
expressed as

H =
∑
i>j

wijZiZj , (5)

where wij is the weight of the edge connecting vertices i
and j. As a demonstration, we consider a specific graph
instance represented in Fig. 6. This graph has multi-
ple Max-Cut solutions where vertices can be partitioned
into sets {2,5} and {1,3,4}, or {1,4} and {2,3,5}. The
ground state configuration of this problem Hamiltonian
thus has four-fold degeneracy. As shown in Fig 7, we
achieve the average approximation ratio of 99.59% with
a standard deviation of 2.30% for the 2-quench case. This
result identifies three configurations above the selection
probability threshold (p > 0.01), which correspond to the
degenerate ground state configuration. The performance
is slightly better in the 6-quench case, with an average
approximation ratio of 99.61% and a standard deviation
of 2.27%. Additionally, it successfully identifies all four
degenerate ground states given the same threshold.

Figure 6: Weighted graph for a max-cut problem
An instance of a graph for a max-cut problem with 5
vertices and 7 edges whose weights are either -1 and 1.

C More Realistic Model Hamiltonian

We explore the trainability of an analog VQAs in a
more realistic model with long-range interactions cap-
tured by the Hamiltonian

Hlong−range = J
∑
i>j

ZiZj

|i− j|α
+B

∑
i

Xi +
∑
i

giXi, (6)

where J is the coupling strength, α controls the strength
of long-range interaction, B represents a uniform effective
transverse field, and gi is an on-site disorder potential. In
this model, for α = 1 and B = 0, the system is in the
thermalized phase when the on-site disorder is drawn uni-
formly from the interval [−0.3J, 0.3J ], and in the MBL
phase when drawn uniformly from [−7.5J, 7.5J ]. As il-
lustrated in Fig. 8, we observe that the variances of the
cost function saturate at the same number of quenches
in both phases. Unfortunately, in this model, there does
not appear to be an advantageous regime where MBL ini-
tialization is more preferable, unlike in the model studied
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Figure 7: Max-Cut optimization results Probabil-
ity distribution of computational bases from the output
state after optimization with 50 epochs and the average
approximation ratio plotted against optimization epoch,
averaged over 100 realizations, are shown for a 2-quenches
ansatze (top) and a 6-quench ansatze (bottom). For ap-
proximation ratio plot, the green solid line represents the
average value, surrounded by a grey shade representing
the error bars upper bounded by the maximum approxi-
mation ratio. The blue and orange dashed lines indicate
the minimum and maximum approximation ratios among
all the realizations, respectively.

in the main text. Thus, a preferable ’Regime II’ for the
MBL initialization strategy may not generally apply to
other analog models that contain both MBL and ther-
malized phases.

D Additional Figures

Figure 8: The emergence of barren plateaus as the
number of quenches increase in the long-range
Hamiltonian of Eq. (6) in the thermalized and
the MBL initialization The variance of ⟨Z1Z2⟩ of the
(left) thermalized and (right) MBL initialization is plot-
ted against the number of quenches for 7-9 qubits aver-
aged over 400 realizations. In this more realistic Hamilto-
nian, initialization in both phases requires approximately
the same number of quenches to reach the onset of the
barren plateaus.

Figure 9: The correspondence between the mini-
mum number of quenches to saturate KLD (at-
taining ansatz maximal expressivity) and to sat-
urate ⟨Z1Z2⟩ variance (the onset of BP) For each
number of qubits, The number of quenches when the
variance saturates (orange) and when the KL divergence
saturates (blue) are plotted. (Left) and (right) are for
the thermalized and the MBL initialization, respectively.
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Figure 10: Exponential decay of variance The vari-
ance of ⟨Z1Z2⟩ is plotted against the number of qubits in
the logarithmic scale in the y-axis for (left) thermalized
(W = 5J) and (right) MBL (W = 50J) initializations.
The number of quenches taken here is 120. This is the
evidence of the barren plateaus exhibited in both phases
in the long time limit.

Figure 11: Three initialization regimes The ratio of
Q in the MBL initialization to Q in the thermalized ini-
tialization is plotted against the number of quench for
the 10-qubits system.

421



Robust Lindbladian Tomography with Error Amplification
Takanori Sugiyama1 2 ⇤

1 Quantum Laboratory, Fujitsu Limited. Nakahara-ku, Kawasaki, Kanagawa 211-8588, Japan.
2 RIKEN RQC-FUJITSU Collaboration Center, RIKEN. Wako, Saitama 351-0198, Japan.

Abstract. Precise characterization of noisy quantum operations implemented plays an im-
portant role for realizing further accurate operations. Quantum tomography is a popular class
of characterization methods, and its advanced methods like Gate-set tomography (GST) use
error amplification circuit (EAC), a repetition of a sequence of quantum gates, for increasing
their estimation precision on gates. Although GST has high precision, it su↵ers from highly
nonlinear numerical optimization due to nonlinearity of EAC, which increases numerical cost
and instability of GST. In order to overcome the GST’s numerical problem, here we propose a
new tomographic method for Lindbladian error of quantum gates with EAC. First, we develop
new theoretical tools for analyzing e↵ects of EAC on the Lindbladian error in arbitrary finite-
dimensional system, which takes non-commutativity between di↵erent gates or between ideal
and error parts of a gate, periodic properties of ideal gates, and repetition of gate sequence into
consideration within a first order approximation. With the approximation, the numerical opti-
mization of the proposed method reduces to positive semi-definite program (SDP). Therefore,
compared to GST, the optimization problem is solvable more e�ciently and stably, although its
numerical cost grows exponentially with respect to the number of qubits, which is the same as
other tomographic methods including GST. Second, we evaluate the performance of our method
by numerical experiments on 1-qubit system. The result clearly shows an improvement of esti-
mation precision by use of EAC. These results indicate that, even though we used a first order
approximation, our method practically works well with numerical e�ciency and stability better
than GST.

Keywords: Quantum Tomography, Error Amplification, Lindbladian

1 Introduction

Further improvement of elemental quantum op-
erations’ accuracy is an inevitable task for realiz-
ing practical quantum computer. Characterization
methods such as quantum tomography and random-
ized benchmarking are used for improving the accu-
racies, and take a role to obtain information of errors
of the operations. Tomographic methods are suit-
able for obtaining detailed information of the errors,
but its standard protocols su↵er from not-negligible
systematic errors originated from mismatch of our
model values on states and measurements, which is
called state-preparation-and-measurement (SPAM)
error. Error amplification circuit (EAC) consists of
a repetition of a sequence of quantum gates (Fig. 1).
It is used to suppress e↵ects of such SPAM error on
estimation result in advanced tomographic methods
such as Gate-set tomography (GST) [1], idle tomog-
raphy (IT) [2], and Hamiltonian-Error Amplifying
tomography (HEAT) [3].
GST has high precision, but it su↵ers from

highly nonlinear numerical optimization due to non-
linearity of EAC, which increases numerical cost and
instability. There are several approaches to make

⇤sugiyama-taka@fujitsu.com

the numerical optimization simpler. We focus on
characterization of gates, although GST treats all
of states, measurements, and gates. In IT estima-
tion object is limited to identity gates, and in HEAT
it is limited to cross resonance gates with a specific
error model. However, there are other elemental
quantum gates, and actual errors are not necessar-
ily included in the specific error model. So we need
another tomographic method that is applicable to
wider class of gates and error models compared to
IT and HEAT and whose numerical e�ciency and
stability are better than GST.

2 Notation and Settings

Let us consider arbitrary finite d dimensional sys-
tem. Let ⇢ 2 d⇥d and ⇧ = {⇧x}x denote density

Figure 1: Quantum circuit diagram of an error am-
plification circuit. The superscript, “⇥n”, means n
times repetition of the braketed gate sequence.

422



matrix and POVM, respectively. Let G denote a
linear trace-preserving and completely-positive map
representing action of a quantum gate. Let B de-
note an orthonormal matrix basis on d⇥d. Let |⇢ii
and G denote the matrix vectorization of ⇢ and ma-
trix representation of G w.r.t. B. When the gate
G is implemented by dynamics of Lindblad master
equation, G is represented in the following form,

G = eL
ideal+�L, (1)

where Lideal is the matrix representation of the ideal
Lindbladian (accumulated over finite time) of the
gate, and �L is an Lindbladian error.
For a given ideal gate Gideal, if there exists a pos-

itive integer k satisfying
h
Gideal

i
k

= I, (2)

we call the smallest k the period of the gate. For
example, typical quantum gates like X90 and ZX90
has period k = 4. We assume that the all ideal gates
in the EAC has periods. Then any gate sequence
consisting the gates has a period.
In the EAC experiment depicted by Fig. 1, let

⇢, ⇧, G denote actual (implemented) quantum op-
erations that are possibly noisy. When the super-
script, ideal is put on an object, it corresponds to
the ideal counterpart, and we assume the ideal value
is known. The di↵erence between the actual and
ideal values is its error. In our method, the Lind-
bladian errors of some gates specified by an user is
the estimation object, and errors of the other objects
(gates, states, measurements) are not.
The probability that we observe an outcome x at

the experiment depicted by Fig. 1 is given as

px(�L, n) = hh⇧x| [· · ·G2G1]
n |⇢ii, (3)

where �L denote a set of Lindbladian errors for
gates in the EAC. The functionality of px w.r.t. �L
is highly non-linear for large n. This non-linearity
makes the numerical optimization for tomographic
data-fitting of the model to data hard and unstable.

3 Ideas and Theoretical Results

We briefly explain ideas and theoretical results [4].
Suppose that we perform experiments with common
EAC and di↵erent repetition numbers n = {nj}j .
We choose the numbers satisfying

nj = k ·mj + r, j = 1, 2, . . . , (4)

where k is the period of the repetition unit of the
EAC, and r is the residual independent of j. When

Eq. (4) holds, the di↵erence between actual and
ideal values of probability observing an outcome x
can be expanded as the following form,

px(�L, nj)� pidealx =
1X

t=0

(nj)
t · q(t)x (�L), (5)

where the ideal value

pidealx := px(�L = O, nj) (6)

depends on r but is independent of j. So, its takes
a common value over nj 2 n. The zero-th term
(t = 0) is the not-amplified term, and the others
are amplified terms. We use Eqs. (5) and (6) for
deriving our fitting model for an amplified term and
calculating its corresponding counterpart from data.

3.1 Fitting Model

We introduce two linear approximations for deriv-
ing our fitting model: one is w.r.t. n, and the other
is w.r.t. �L. First, focus on the linearly amplified

term q(t=1)
x (�L) in Eq. (5). Next, we expand q(t=1)

x

w.r.t. �L. The lowest order term depends linearly

on �L. Let F (1)
x denote the linear function, which

represents a (doubly) linearized action of amplifica-
tion of EAC on Lindbladian errors. We derive math-
ematical tools for arbitrary finite d to analyze such
linearized action of gate composition and repetition
by combining an integral formula of matrix expo-
nential derivative [5, 6], matrix perturbation theory
[7], and matrix diagonalization (spectral decompo-
sition) [8]. With the mathematical tools derived, we
also give an algorithm for calculating the action of

F (1)
x for a given EAC with arbitrary finite depth.

We use F (1)
x as the fitting model to data.

The algorithm is applicable to a class of gates,
which is wider than IT and HEAT, but is not appli-
cable to some gates with singularity. Expansion of
the applicability is a future work.

3.2 Data Pre-processing

Let fx(n) denote relative frequencies for an out-
come x when we choose n repetitions for amplifica-
tion. The law of large number guarantees that fx(n)
converges to px(�L, n) as the amount of data goes to
infinity. We assume that the amount of data is su�-
ciently large, and fx is su�ciently close to px. Since
our fitting model is not for px but for the approxi-

mated q(1)x , we have to calculate the corresponding
counterpart from px. In order to do that, we use
polynomial fitting w.r.t. nj 2 n and calculate an

estimate, say h(1)x , of q(1)x . This calculation can be
done by a linear inversion w.r.t. fx(n).
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3.3 Tomographic Experiment and Numeri-

cal Optimization

For obtaining multiple information of �L, we need
multiple EACs, ⇢s, and ⇧s. Let a denote an index
for the multiple settings. We consider a constraint
(weighted) least-squares problem with notation up-

date from F (1)
x to F (a,1)

x and h(1)x to h(a,1)x ,

�LRLT := argmin�L
X

a

w(a)
n
F (a,1)
x (�L)� h(a,1)x

o2

s.t. �L are physical. (7)

We call this robust Lindbladian tomography (RLT).
By linearity of F (a,1), this optimization reduces to
SDP as the standard tomographic protocols [9].

4 Numerical Results

We implemented the RLT estimator in Eq. (7) in
Python. We used SCS [10] as the numerical SDP
solver and CVXPY [11] as a parser. We performed
numerical experiments on 1-qubit system (d = 2)
for evaluating the performance of RLT as the first
step (theoretical results hold for any finite d).
The estimation object is the Lindbladian error

dL of X90 gate, which has 12 (= d4 � d2) degrees
of freedom. We assume that the ideal Z90 gate is
available by the virtual-Z gate (vZ) protocol [12].
We chose two EACs, [X90]⇥n (n = 4, 8, 16, 32) and
[X90·vZ90]⇥n (n = 3, 6, 12, 24). The ideal states are
four Pauli eigenstates, |X+i, |Y+i, |Z+i, |Z�i, and
the ideal measurements are X-, Y-, and Z-projective
measurements. We modeled noisy states and mea-
surements with their Lindbladian errors as

|⇢ii = e�Ls |⇢idealii, (8)

hh⇧x| = hh⇧ideal
x |e�Lp , (9)

and chose all 12 (= 4 ⇥ 3) combinations of ⇢ and
⇧ for each EAC. An analysis of the support of the
maps F1

x reveals that 10 of 12 degrees of freedom of
�L is amplified in this setting. We used ideal values
⇢ideal and ⇧

ideal in Eq. (7), leading to SPAM error.
A Lindbladian error can be decomposed into two

parts: One is for Hamiltonian error (subscripted
with H) and the other is for dissipation (subscripted
with D). We set same values for the size of the
H-parts (k�LHk = k�Ls,Hk = k�Lp,Hk w.r.t. the
Frobenius norm), which is because 1-qubit gates are
used for state preparation and measurement in prac-
tice, and sweeped from 10�3 to 10�1. So, in this
setting, the size of the H-part of the SPAM errors is
compatible with the size of the H-part of the esti-
mation object. We fixed k�Ls,Dk = k�Lp,Dk = 10�2

(1% error) and k�LDk = 10�3 (0.1% error). These
values are chosen along with the recent experiments
on superconducting quantum circuits. Directions of
the Lindbladian errors were randomly chosen. In or-
der to distinguish the e↵ect of amplification by the
EACs on SPAM errors from statistical errors, we cal-
culated the true probability distributions and used
them as the relative frequencies, which corresponds
to the case of the infinite amount of data.
Figure 2 is a numerical result of the setting. The

vertical axis is the estimation error ✏ := k�LRLT �
�Lk.The horisontal axs is the size of the Hamiltonian
part of Lindbladian errors, k�LHk(= k�Ls,Hk =
k�Lp,Hk). The blue dots are for all 12 error compo-
nents, and the orange dots are for amplified 10 error
components. The blue dots contain 2 not-amplified
error components, and it scales as ✏ ⇠ k�LHk, im-
plying that the size of the systematic error on the
not-amplified components can be the same as k�LHk
itself and the estimate is not reliable. On the other
hand, the 10 amplified components (orange dots) is
about ten times smaller than the black line (y = x) if
k�LHk < 5⇥ 10�2, which implies that the amplified
components of the estimate are reliable in the re-
gion. This numerical result indicates that RLT cap-
tures the amplification e↵ect of EACs even though
it based on the first order approximations, and that
RLT works reliably in a practical setting.
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Unambiguous discrimination of sequences of quantum states
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Abstract. We consider the problem of determining the state of an unknown quantum sequence without
error. The elements of the given sequence are drawn with equal probability from a known set of linearly
independent pure quantum states with the property that their mutual inner products are all real and
equal. This problem can be posed as an instance of unambiguous state discrimination where the states
correspond to that of all possible sequences having the same length as the given one. We calculate the
optimum probability by solving the optimality conditions of a semidefinite program. The optimum value is
achievable by measuring individual members of the sequence, and no collective measurement is necessary.

Keywords: https://arxiv.org/pdf/2402.06365, state discrimination, quantum information

The task of state discrimination is one of the most fun-
damental primitives in any physical theory. The rules of
quantum mechanics make this task a highly non-trivial
one in the quantum domain. While any set of orthogo-
nal states can be distinguished with certainty, once the
states become non-orthogonal, distinct states do not im-
ply distinguishability [1].
Consequently different variants of the quantum state

discrimination problem have been formulated and exten-
sively studied along with the potential scenarios for ap-
plication [3]. The most common variants of the state
discrimination problem are the minimum-error and the
unambiguous discrimination problem. In the minimum-
error paradigm, the aim is to minimize the average proba-
bility of error while remaining completely oblivious to the
accuracy of the guess made in a given run [7]. In contrast
to this, the unambiguous discrimination task demands an
answer only when an error-free identification of the state
has been made. In other words, the unambiguous dis-
crimination task allows the discriminator to output an
inconclusive “don’t know” answer in a given run when
the discriminator is not sure of its guess, but a mistaken
identification is not allowed [8].
In this work, we exclusively deal with the unambiguous

state discrimination paradigm, so it’s worthwhile review-
ing its basic results. First of all, unlike minimum-error
discrimination, which can be done for any set of quantum
states, a necessary and sufficient condition for a set of
states to be unambiguously distinguishable is that it has
to be linearly independent [4]. Secondly, while a closed
form expression for the optimum success probability of
unambiguous discrimination is known for two states, no
such solutions are known for three or more states. The
optimal success probability for unambiguous discrimina-
tion of two linearly independent states |ψ1⟩ and |ψ2⟩ oc-
curring with prior probabilities η1 and η2 respectively, is
given by 1− p? [2] where

p? = 2
√
η1η2|⟨ψ1|ψ2⟩| (1)

∗tathagatagupta@gmail.com
†shayeef.murshid91@gmail.com
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is the minimum probability for an inconclusive result.
For more than two states, the optimal probability of suc-
cess is known only for some special cases, like three states
with pairwise equal and positive inner product [9]. Al-
though a general closed form solution has been elusive,
the unambiguous state discrimination problem can be
cast as a semi-definite program [6], which means that
given a set of states we can find the optimum probability
of success by some efficient algorithm.

In this paper, we study unambiguous discrimination
of sequences of pure quantum states. Consider a set
of quantum states SN = {|ψi⟩ : i = 1, . . . , N}, where
N ≥ 2. Suppose a sequence of k quantum states is formed
by drawing states from SN with replacement and given to
an identifier whose task is to unambiguously identify the
received sequence. This may arise in some information
processing task where an identifier receives a sequence of
quantum states from another party or a source, which
emits states from SN according to some probability dis-
tribution. Let [n] = {1, 2, . . . , n : n ∈ N} denote the set
of natural numbers from 1 to n and F(k,N) be the set
of all functions from [k] to [N ], where k,N ∈ N. Given
SN , define the set SN,k by

SN,k =
{∣∣ψσ(1)

〉
⊗ · · · ⊗

∣∣ψσ(k)

〉
: σ ∈ F(k,N)

}
.

The sequence that the identifier receives is the tensor
product of all the states that are chosen from SN and
is an element of the set SN,k. Its unambiguous identifi-
cation can be cast as the unambiguous discrimination of
the set SN,k.

It is already known that the set of states SN,k is lin-
early independent if and only if the set SN is [5]. This
means that, given the set SN,k of multi-particle states,
we can unambiguously distinguish between them if and
only if we can unambiguously distinguish between the
single particle states that make up the set SN . Since the
states of SN,k are multipartite, one would expect that
their optimal discrimination would entail collective mea-
surements on all the particles. The main contribution of
this paper is that we show that this is not the case for
a large class of states. In particular, we show that local
measurements on individual particles achieve the optimal
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discrimination strategy if the states in SN are chosen with
equal probability and they satisfy the following condition

⟨ψi|ψj⟩ = s, ∀ i, j, i ̸= j and s ∈ R. (2)

Let us state our result more formally. Let us denote by
p and pk the optimal probability of success of unambigu-
ously discriminating the set SN and SN,k respectively.
Then, we show that, if SN is a set of equiprobable lin-
early independent pure states whose pairwise inner prod-
ucts are real and equal then the optimal probabilities of
success follow the relation

pk = pk,

where SN,k is the set of sequences formed by drawing
states from SN uniform randomly. Note that unambigu-
ously identifying a given sequence is equivalent to unam-
biguously identifying all its component states. So a local
protocol of discriminating between the sequences could
always be carried out by performing the optimal measure-
ment for the set SN on each state of the sequence. Since
the optimal probability of success for SN is p, a success-
ful identification of all the states, and equivalently of the
sequence, is pk. Our result implies that, although quan-
tum mechanics allows more general measurements on the
states taken together collectively, we cannot improve on
this probability of success for the sequence; individual
measurements on the component states is optimal, and
no joint measurement will give us any advantage.
We now briefly discuss our proof method. Since the

quantum sequences are quantum states, we can use SDP
for unambiguous state discrimination. Given a set of N
linearly independent pure states |χi⟩ with prior probabil-
ities ηi, the SDP for their unambiguous discrimination is
as follows [10]

maximize
p⃗

η⃗ · p⃗

subject to Γ− P ⪰ 0

p⃗ ⪰ 0.

Here η⃗ = (η1, . . . , ηN ) represents the prior probabilities
of the states and p⃗ = (p1, . . . , pN ) where pi is the SDP
variable representing the probability of successfully de-
tecting the i-th state |χi⟩; Γ is the Gram matrix whose
elements are Γij = ⟨χi|χj⟩ and P = diag(p1, . . . , pN ).
The first constraint says that the matrix Γ−P should be
positive semi-definite and the second constraint is sim-
ply the positive-semidefiniteness of the individual prob-
abilities pi’s. First, we note that the primal problem is
convex, and it is strictly feasible. Under these conditions
Slater’s theorem guarantees that strong duality holds,
and the duality gap is zero. Therefore, we first present
an ansatz probability of success and obtain a feasible so-
lution for the primal problem, which is not necessarily
optimal. Then, we present candidates for the dual vari-
ables and show that this makes the dual value equal to
the primal. Since strong duality holds, this implies that
our ansatz must be the optimal solution for the primal
problem.

A number of questions arise from our work. The first
one is the general case where the mutual inner products
between the states of SN are arbitrary. In this case nu-
merical experiments on short sequences of length k = 2, 3
ran with N = 3 seem to suggest that the optimal proba-
bility is once again achievable by local protocol (assuming
uniform prior probabilities).

The second problem deals with sequences without rep-
etition. Restrict k < N and by S′

N,k denote the set of
length k sequences where there is no repetition of any
quantum state. If we let G(k,N) be the set of injective
functions from [k] to [N ], then

S′
N,k =

{∣∣ψτ(1)

〉
⊗ · · · ⊗

∣∣ψτ(k)

〉
: τ ∈ G(k,N)

}
.

The cardinality of this set is NPk =
N !

(N − k)!
. Now as-

sume that the inner products between the states |ψi⟩ are
equal and positive, say s > 0. Then S′

N,k ⊂ SN,k, where
SN,k is the set of sequences considered here. Under these
restricted conditions numerical experiments still suggest
that the optimal probability for discriminating the set
S′
N,k unambiguously once again obeys (1− s)k.
The question of whether optimal unambiguous se-

quence discrimination requires collective measurements,
in general, is an interesting one. Our result showed that
if the members of a sequence are uniformly drawn from
a linearly independent set with a specific property (inner
products are all real and equal), measuring the individual
members will suffice, and collective measurements are not
required. But the question in general scenarios (without
assumptions on inner products) remains open, and our
numerical attempts with a limited number of states and
sequences have, so far, failed to yield a counter-example.
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Abstract. Successfully implementing a quantum algorithm involves maintaining a low logical error rate
by ensuring the validity of the quantum fault-tolerance theorem. The required number of physical qubits
arranged in an array depends on the chosen Quantum Error Correction code and achievable physical qubit
error rate. As the qubit count in the array increases, parallel gating —simultaneously manipulating many
qubits— becomes a crucial ingredient for a successful computation.

In this study, small arrays of a type of donor- and quantum dot-based qubits, known as flip-flop qubits,
are investigated. The flip-flop qubit utilizes antiparallel electron-nuclear spin states of a 31P donor atom
embedded in 28Si and controlled by an applied electric field. Simulation results of gate fidelities in linear,
square, and star arrays of four flip-flop qubits are presented to examine the effect of parallel gating, as
well as that of charge noise and idling qubits. The obtained gate fidelities are compared to determine the
optimal array and the reasons behind the selection.

Keywords: semiconductor qubits, flip-flop qubit, gate fidelity, qubit arrays

1 Introduction

In the realm of semiconductor qubit holders based on
donor atoms and quantum dots in silicon [1, 2, 3, 4], the
flip-flop (FF) qubit exploits antiparallel electron-nuclear
spin states of a 31P donor atom embedded in 28Si and it
is controlled by an applied electric field. It was designed
by Tosi et al. in 2017 [5], gained increasing attention in
the following years [6, 7, 8, 9, 10] and was experimentally
demonstrated in 2023 [11].
The FF qubits have drawn interest for their poten-

tial utilization of long-range electric dipole-dipole inter-
actions, typically spanning 200-500 nm [5], which can al-
leviate the stringent requirements for precise qubit place-
ment and inter-qubit spacing in qubit arrays based only
on electrostatic quantum dots.
As the number of qubits in an array increases, the de-

mand for (high-fidelity) parallel gates becomes essential
for successfully implementing Quantum Error Correction
(QEC). A reliable evaluation of gate fidelity reduction
induced by parallel gating is necessary for accurately es-
timating physical qubit error rates. While previous stud-
ies have simulated parallel gating, unwanted interactions
with idling qubits, and noise effects on gate fidelities for
FF qubits arranged in linear and square arrays [12], this
study extends the investigation to a different type of ar-
ray geometry.

2 Model

The scheme of the FF qubit is presented in Figure
1. The FF qubit comprises a 31P donor atom situated
within a 28Si bulk, positioned at a distance from the
Si/SiO2 interface. An electric field, generated by a metal
gate on top of the SiO2 layer, regulates the movement of
the donor-bound electron between the donor site and the
Si/SiO2 interface.

∗marco.demichielis@cnr.it
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Figure 1: FF qubit scheme where a 31P donor atom is
embedded in a 28Si bulk, positioned below a Si/SiO2 in-
terface and under the application of a constant magnetic
field B0. An electric field Ez controls the system states by
moving the electron position between the nucleus (state
|d⟩) and the quantum dot at the interface (state |i⟩).

The Hamiltonian Ĥi of the single FF qubit is [5, 8]:

Ĥi = ĤB0 + ĤA + ĤOrb (1)

where

ĤB0
=γeB0

[
Î+

(
Î
2
+
d e∆Ez

2hϵ0
σ̂z +

Vt
2ϵ0

σ̂x

)
∆γ

]
Ŝz+

− γnB0Îz, (2)

ĤA = A

(
Î
2
− d e∆Ez

2hϵ0
σ̂z −

Vt
2ϵ0

σ̂x

)
S · I, (3)

describe the Zeeman splitting caused by a constant mag-
netic field B0 (Eq. 2) and the hyperfine interaction (Eq.
3), respectively. In particular, in Eq. 2, ∆γ takes into
account the variation of the electron gyromagnetic ra-
tio γe between the nucleus and the interface, while γn is
the constant nuclear gyromagnetic ratio. S (I) are the
electron (nuclear) spin operators with ẑ component Sz

(Iz) and B0 is a constant magnetic field. Moreover, Vt is
the tunnel coupling between the donor and the interface
potential well, ∆Ez = Ez − E0

z where E0
z is the verti-

cal electric field at the ionization point, i.e. the point in
which the electron is shared halfway between the donor
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and the interface, ε0 =
√
V 2
t + (de∆Ez/h)2 is the energy

difference between the orbital eigenstates, where h is the
Planck’s constant, e is the elementary charge and d is the
distance between the positive charge of the 31P nucleus
and the negative charge of the bounded electron. In Eq.
3, the hyperfine coupling A decreases as the control elec-
tric field Ez is increased, following a function reported in
Ref. [8, 12].
The orbital part ĤOrb, which gives a treatment of the

electron position between the interface and the donor as
a two level system is given by

ĤOrb =− ϵ0
2
σ̂z+

− d eEac(t)cos(ωEt+ ϕ)

2h

(
d e∆Ez

hϵ0
σ̂z +

Vt
ϵ0
σ̂x

)
,

where Eac(t) is the time dependent amplitude of an ap-
plied oscillating electric field with pulsation ωE and phase
ϕ.
The interaction Hamiltonian Hij

int for two FF qubits
with indexes i,j is defined as [8, 12]:

Ĥi,j
int =

1

4πφ0φrr3ij

[
pi · pj −

3(pi · rij)(pj · rij)
r2ij

]
(4)

where φ0 is the vacuum permittivity, φr is the material
dielectric constant , rij is the vector distance between the

two qubits and pi(j) = ed
2

(
Îi(j) + σ̂id

z,i(j)

)
is the dipole

operator of the qubit to whom is associated the position
operator σ̂id

z = d e∆Ez

hϵ0
σ̂z+

Vt

ϵ0
σ̂x, whose eigenstates |i⟩ and

|d⟩ indicate if the electron is localized near the interface
or the donor, respectively, and σ̂z = |g⟩ ⟨g|−|e⟩ ⟨e| , σ̂x =
|g⟩ ⟨e| + |e⟩ ⟨g| are the Pauli matrices with |g⟩(|e⟩) the
electron ground (excited) state. The qubit logical basis
is |0⟩ = |g ↓⇑⟩ and |1⟩ = |g ↑⇓⟩, with |↑⟩ , |↓⟩ and |⇑⟩ , |⇓⟩
being the electron and nuclear spin states, respectively.
The quantum gates under investigation here, namely

Rz(−π
2 ), Rx(−π

2 ) and
√
iSWAP , constitute a universal

set of quantum gates through a total electrical manipula-
tion [5] with details of the control signal waveforms ∆Ez

and Eac reported in Ref. [12].
Three types of arrays made up of four FF qubits are

simulated: one with qubits displaced in a linear array
(LA), the second one in a square array (SA) and the last
one in a star array (STA) as sketched in Figure 2. In STA
a central qubit is equidistant from the other ones placed
at the vertices of an equilateral triangle. The shortest
inter-qubit distance is r0.

1 2 3 4

r0 r0 r0

1 2

34 r0

r0

1

2
34

r0

a b c

Figure 2: Schemes of the arrays of four qubits with short-
est inter-qubit distance r0. a) Scheme of a LA composed
by equally displaced qubits. b) SA scheme. c) STA
scheme.

The Hamiltonian Ĥ4FFQ describing an array of four

FF qubits is:

Ĥ4FFQ =
4∑

i=1

Ĥi(∆Ei
z, E

i
ac)+

3∑
i=1

4∑
j=i+1

Ĥi,j
int(∆E

i
z,∆E

j
z)

(5)
where the dependencies from the control inputs ∆Ez and
Eac of each qubit are explicitly displayed.

The gate unitary matrix U(t) obtained at the end of
the application of specific gate control signals is calcu-

lated as U(t) = exp
(
−itĤ4FFQ(∆Ez(t), Eac(t))/ℏ

)
.

The selected figure of merit to compare the different
arrays is the entanglement fidelity F that does not de-
pend on the qubit initial state and is given by [13, 12]

F = tr[ρRSIR ⊗ (U−1
i Ud)Sρ

RSIR ⊗ (U−1
d Ui)S ], (6)

where Ui (Ud) is the ideal (disturbed) quantum gate ma-
trix and ρRS = |ψ⟩⟨ψ|, where |ψ⟩ = 1√

2
(|0⟩⊗2n + |1⟩⊗2n)

for a n-qubit gate (n=1, 2, 4), represents a maximally
entangled state in a double state space generated by two
identical Hilbert spaces R and S. For each gate under
study, Nrep instances of the 1/f charge noise in the time
domain are generated with an amplitude α∆Ez

and added
to the ideal sequence signals performing the operation for
each qubit. Each qubit noise signal is considered uncor-
related to other qubit noises. Finally the average over the
resulting entanglement infidelities (1− F ) is calculated.

3 Results and Discussion

In this section the results of simulated infidelities, af-
fected by charge noise and unwanted qubit interactions,
for one-qubit operations, for two parallel one-qubit gates,
for a single two-qubit operation and finally for two par-
allel two-qubit gates in the three considered arrays are
presented when the noise amplitude α∆Ez

spans a range
from 0 to 100 V/m. r0 is set to 360 nm in all the
simulations and resulting infidelities are averaged over
Nrep=100 repetitions.

3.1 One-qubit operations

Figure 3 reports 1 − F as a function of α∆Ez
when

a one-qubit gate, Rz(−π
2 ) and Rx(−π

2 ), is performed to
one qubit while the others are in an idle state. Regardless
of the type of performed operation, the set of indexes of
the qubit(s) under manipulation, hereafter named con-
figurations ”c” followed by the corresponding index(es),
are the c1 and c2 configurations for the LA (a), the c1
for the SA (b) and the c1 and c2 for the STA (c). All
the others possible configurations are from a geometrical
point of view equivalent to the one presented and then
give the same 1− F results.

Gate infidelities in the three arrays considered increase
as α∆Ez

raises and 1−F remain below the 5·10−3 value in
the whole range of noise amplitude studied, with Rz(−π

2 )
showing lower 1− F than Rx(−π

2 ). 1− F in c1 configu-
rations are always smaller than c2 ones (c2=c1 for a SA
thus it is not plotted). Qubit arranged in a LA, due to
lower inter-qubit connectivity, stably shows lower 1 − F
than in SA and STA ones.
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Figure 3: Rz(−π
2 ) and Rx(−π

2 ) infidelities vs α∆Ez . The
quantum gates are disturbed by the noise and by the idle
qubits for a) c1 and c2 configurations in LA, b) c1 in SA
and c) c1 and c2 in STA.

3.2 Parallel one-qubit operations

Figure 4 illustrates simulated 1 − F as a function of
α∆Ez when two parallel one-qubit gate are applied to
a couple of qubits while the other ones are in an idle
state. The configurations analyzed depend on the array
geometry and they are c12, c13, c14, c23 configurations
in LA (a), c12 and c13 in SA (b) and c12 and c13 in
STA (c). Parallel gating reasonably produces an overall
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Figure 4: Two parallel Rz(−π
2 ) and Rx(−π

2 ) infidelities
vs the noise amplitude α∆Ez

for a) the c12, c13, c14 and
c23 configurations in the LA, b) the c12 and c13 config-
urations in the SA and c) the c12 and c13 configurations
in the STA.

increased gate infidelity with respect to the one-qubit
case. Two parallel Rz(−π

2 ) shows lower 1 − F than two
parallel Rx(−π

2 ) ones in all the arrays. In the LA 1 −
F (Rx(−π

2 )) in all configurations are almost overlapped
whereas 1−F (Rz(−π

2 )) in c13 and c23 stay close to each
other and the same happens for c12 and c14. In the
SA infidelity of c13 is higher than 1− F of c12 for both
gates and conversely the STA has 1 − F of c12 larger
than 1− F of c13. Configuration c12 in the STA has an
higher 1 − F due to the higher connectivity of qubit 2.
The LA performs better than others arrays due to lower
inter-qubit connectivity.

3.3 Two-qubit operations

Figure 5 illustrates 1 − F of the two-qubit operation√
iSWAP as a function of α∆Ez while the other two

qubits are in an idle state, for the c12 and c23 config-

urations in a LA (a) and the c12 configuration in a SA
(b) and in a STA (c). The two-qubit operation is applied
only between qubits at distance r0.

010 50 100
,
"E

z

 [V/m]

10-5

10-4

10-3

10-2

10-1

1-
F

LA

p
iSWAP c12p
iSWAP c23

010 50 100
,
"E

z

 [V/m]

10-5

10-4

10-3

10-2

10-1

SA

p
iSWAP c12

010 50 100
,
"E

z

 [V/m]

10-5

10-4

10-3

10-2

10-1

STA

p
iSWAP c12

a b c

Figure 5:
√
iSWAP infidelity vs the noise amplitude

α∆Ez for a) the c12 and c23 configurations in the LA,
b) the c12 configuration in the SA and c) the c12 config-
uration in the STA.

√
iSWAP of c23 shows a lower infidelity than that

one of c12 in a LA. Only the c12 configuration has been
studied for SA and STA showing almost the same 1− F
values. All the infidelities show an high sensitivity to the
noise.

3.4 Parallel two-qubit operations

Figure 6 illustrates the 1−F of two parallel
√
iSWAP

gates vs α∆Ez
for the c12-34 configuration in the LA

(a) and in the SA (b). No results are reported for the
STA because in this array it is not possible to apply two
parallel two-qubit operations with an inter-qubit distance
equal to r0.
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Figure 6: Two parallel
√
iSWAP c12-34 infidelities vs

the noise amplitude α∆Ez for a) the LA and b) the SA.

Two parallel
√
iSWAP infidelity of c12-34 configura-

tion in a LA is lower than that one of c12-34 in a SA.
This behaviour is related to the reduced connectivity in
the LA with respect to the SA. Both the infidelities are
very high even at very low noise values.

4 Conclusion

Good values of infidelity for parallel one-qubit gates
in linear, square and star arrays of four flip-flop qubit
are obtained. Despite a reduced qubit density of the
linear array that reasonably limits the maximum number
of arrangeable qubits, results point out that it can achieve
lower infidelities than the square and star arrays. This
performance advantage of the linear array with respect to
the square one vanishes for parallel two-qubit operations.
In this case high infidelity results for both the linear and
square array are obtained even at very low noise values.
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Abstract 
 
Quantum Extreme Learning Machines (QELMs) have 
emerged as a promising framework for quantum ma-
chine learning. Their appeal lies in the rich feature 
map induced by the dynamics of a quantum substrate 
-the quantum reservoir- and the efficient post-
measurement training via linear regression. Here we 
study the expressivity of QELMs by decomposing the 
prediction of QELMs into a Fourier series. We show 
that the achievable Fourier frequencies are deter-
mined by the data encoding scheme, while Fourier 
coefficients depend on both the reservoir and the 
measurement. Notably, the expressivity of QELMs is 
fundamentally limited by the number of Fourier fre-
quencies and the number of observables, while the 
complexity of the prediction hinges on the reservoir. 
As a cautionary note on scalability, we identify four 
sources that can lead to the exponential concentration 
of the measurement outcomes as the system size 
grows (Haar-expressivity of both reservoir and encod-
ing, hardware noise, entanglement, and global meas-
urements) and show how this can turn QELMs into 
useless input-agnostic oracles.  
 
We further generalize our analytics to Quantum Res-
ervoir Computing (QRC), which is typically used for 
time series prediction. We obtain fundamental upper 
bounds on the total information processing capacity 
and show that the above four sources can also induce 
the exponential concentration of observables for QRC 
with finite length inputs. Our analysis elucidates the 
potential and fundamental limitations of QELM and 
QRC, and lays the groundwork for systematically 

exploring quantum reservoir systems for other ma-
chine learning tasks. 
 
References 
[1] Xiong, Weijie, et al. arXiv preprint ar-

Xiv:2312.15124 (2023). 
 
Figures 
 

 
 
Figure 1: Pauli re-uploading and the exponential encod-
ing lead to polynomially and exponentially many fre-
quencies, resp. Hence, the prediction of a QELM with 
Pauli encoding has a more concentrated Fourier spectrum, 
which is more efficiently simulated classically. The expo-
nential encoding, corresponding to the partial control re-
gime M < |Ω|, allows for a wider range of target functions 
compared to the Pauli re-uploading, where M > |Ω| and 
might offer a quantum advantage. 
 
 
 

 
 
Figure 2: Reservoir Haar-expressivity-induced con-
centration. Variance of the expectation value of observa-
ble Z1Z2 over a set of inputs uniformly sampled from [-π, 
π], as a function of the number of total qubits n and for 
different depths of the reservoir defined in Eq. (47) of Ref. 
[1]. 
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Fast computation of magic monotones
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Abstract. The nonstabilizerness, or magic, is an essential quantum resource to perform
universal quantum computation. While the mathematical formalism of nonstabilizerness can
be given in a concise manner, it is in general extremely challenging to determine the exact
value in practice, in particular when we must deal with superexponentially many pure sta-
bilizer states. In this work, we present fast novel algorithms to compute nonstabilizerness
such as the robustness of magic (RoM), stabilizer extent, and stabilizer fidelity. The crucial
techniques are subroutines for overlap calculation between the target and all pure stabilizer
states that achieve (i) exponential reduction of time complexity per stabilizer state, (ii) su-
perexponential reduction in the space complexity. Based on these subroutines, we develop
algorithms based on the Column Generation method which iteratively updates the subset of
stabilizer states necessary to solve the optimization problem. The proposed algorithms allow
us to compute the exact values of the RoM and stabilizer extent of arbitrary states up to
n = 8 and 9 qubits, respectively, while the naive method requires a memory size of at least
86PiB and 305EiB, which cannot be executed on any state-of-the-art classical computer.
Considering that the proposed iterative algorithms rely on the strong duality of the mono-
tones, which are common for various other resource measures, we envision that the algorithm
readily generalizes beyond the targets discussed in this work. Our work paves a novel avenue
for quantum computing architecture design based on a resource theoretic approach.
(Remark: Our submission combines two works provided by technical manuscript (TM) 1, 2)

Keywords: Resource theory of magic, Robustness of Magic, Stabilizer extent, Pauli decom-
position, Classical simulation

1 Motivation and background

Universal fault-tolerant quantum computation
is often formulated such that the elementary
gates consist of both classically simulatable gates
and costful gates, such as in the most well-
known Clifford+T formalism [1–6]. Since the non-
Clifford gates are indispensable for any quantum
advantage [7–10], there is a surging need to eval-
uate the complexity of quantum circuits using the
framework of resource theory, in order to explore
the boundary of quantum and classical comput-
ers [11–19].

One of the earliest attempts is the proposal of
a quantity called the robustness of magic (RoM)
by Howard and Campbell [20–23], which charac-
terizes the quasiprobability-based classical simu-
lation overhead or complexity of a given quantum
state. The computation of the RoM can be re-
duced to a simple L1 norm minimization problem,
and hence can be done with polynomial time to
the problem size. However, the number of pure
stabilizer states grows superexponentially with the
number of qubits n, and hence it is extremely chal-
lenging to perform computation beyond n > 5
qubits. Such a bottleneck is also common in other
resource measures [15, 24], such as the stabilizer

∗hamaguchi-hiroki0510@g.ecc.u-tokyo.ac.jp
†zkouaaa@g.ecc.u-tokyo.ac.jp
‡nyoshioka@ap.t.u-tokyo.ac.jp

extent which is known to characterize the classi-
cal simulation cost of rank-based simulators [11,
15, 24, 25]. While besides the work by Heinrich
and Gross that utilizes the permutation symme-
try of disentangled state for the RoM [22], there
is no strategy to offload such a heavy burden to
compute such magic monotones.

2 Preliminary on magic monotones

In order to understand the bottleneck more
in detail, we provide some basic notations and
then the definitions of magic monotones. Let
Pn = {±1,±i} × {I,X, Y, Z}⊗n be the n-qubit
Pauli group. When there exist a set of n indepen-
dent Pauli operators {Pi} such that Pi|ψ⟩ = |ψ⟩,
the state |ψ⟩ is an n-qubit stabilizer state. We
denote the entire set of n-qubit stabilizer states
as Sn, whose size scales superexponentially as

|Sn| = 2n
∏n−1

k=0(2
n−k + 1) = 2O(n

2) [26, 27].
The Robustness of magic (RoM) of an n-qubit

mixed state ρ is defined as

R(ρ) = min
x∈R|Sn|

{
∥x∥1

∣∣∣∣∣ ρ =
∑

σi∈Sn

xiσi

}
. (1)

This can be rewritten into a standard form of Lin-
ear Program (LP), and thus we can formulate ei-
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Target Application Formulation
Subroutine time complexity Memory

Naive Ours Naive Ours

Robustness of magic [20]
Clifford+T sim.
Circuit synthesis

LP O(|Sn|2n) O(|Sn|n) O(|Sn|2n) O(2n)

Stabilizer extent [24] Clifford+T sim. SOCP O(|Sn|2nn2) O(|Sn|) O(|Sn|2n) O(2n)

Stabilizer fidelity [24] Bound for RoM
Overlap

calculation
O
(
|Sn|2nn2

)
O(|Sn|) O(2n) O(2n)

Pauli decomposition
Circuit simulation
Noise analysis

Quantum benchmark

Matrix-vector
multiplication

O(16n) O(4nn) O(4n) O(4n)

Table 1: Summary for computational complexity of algorithms for magic resource measures and related
subroutines. Details for RoM and stabilizer extent are provided in TM 1 and 2, respectively.

Magic
Monotone

Qubit count n 5 6 7 8 9

RoM

|Sn| 2.42e+06 3.15e+08 8.13e+10 4.18e+13 4.29e+16
size of ARoM

n 379MiB 95GiB 86TiB 86PiB 172EiB
Runtime (naive) 2min × × × ×
Runtime (ours) 2.3 s 7.0min 1.6 h 2.0 d ×

Stabilizer
extent

|Sn| 2.42e+06 3.15e+08 8.13e+10 4.18e+13 4.29e+16
size of ASE

n 1011MiB 254GiB 153TiB 153PiB 305EiB
Runtime (naive) 7.7min × × × ×
Runtime (ours) 1.5 s 3.8 s 12.9 s 8.8min 19.2 h

Table 2: Numerical demonstration of fast magic monotone calculations.

ther via the primal or dual formalism as

R(ρ) =


min

x∈R|Sn|

{
∥x∥1

∣∣ ARoM
n x = b

}
(Primal),

max
y∈R4n

{
b⊤y

∣∣∣ ∥∥∥ARoM
n

⊤
y
∥∥∥
∞
≤ 1

}
(Dual).

(2)
Here, bj = Tr[ρPj ] gives the unique Pauli decom-
position that stores the information of the state
ρ, and (ARoM

n )j,i = Tr[σiPj ] encapsulates the in-
formation of the entire pure stabilizer states. We
also introduce primal and dual variables x and y.

The stabilizer extent of an n-qubit pure state
|ψ⟩ is defined as

ξ(ψ) := min
c∈C|Sn|

∥c∥21
∣∣∣∣∣∣ |ψ⟩ =

|Sn|∑
j=1

cj |ϕj⟩

 . (3)

This is pointed out to be a Second-Order Cone
Program (SOCP) [28], and thus we can further
simplify as the complex L1-norm minimization
problem as

√
ξ(ψ) =



min
x∈C|Sn|

{
∥x∥1

∣∣ ASE
n x = b

}
(Primal),

max
y∈C2n

{
Re(b†y)

∣∣∣ ∥∥∥ASE
n

†
y
∥∥∥
∞
≤ 1

}
(Dual).

(4)

Here, we define ASE
n ∈ C2n×|Sn| as (ASE

n )ij :=
⟨i|ϕj⟩ and b ∈ C2n as bi := ⟨i|ψ⟩ using the compu-

tational basis {|i⟩}2
n−1

i=0 .
It is known that both LP and SOCP can be

solved with polynomial time with respect to the
problem size, while the matrices ARoM

n and ASE
n

are superexponentially large. This renders naive
solvers intractable for n > 5. However, to our
knowledge, none of existing algorithms have ex-
ploited the dual formalism of the problem nor the
mathematical structures of ARoM

n and ASE
n . In this

regard, our goal is to combine the newly intro-
duced canonical forms of stabilizer states and the
art of optimization techniques to push the state-
of-the-art computation of resource monotones.

3 Summary of results

Our primal findings are the fast computation
algorithms for magic resource measures such as
the RoM, stabilizer extent, and stabilizer fidelity,
as summarized in Table 1. We find that the
strong duality of magic monotones can be ex-
ploited. Namely, it is extremely beneficial to em-
ploy a technique called the Column Generation
(CG) method in the dual formalism, which takes
a subset of stabilizer states and iteratively updates
it until one finds the subset necessary to obtain the
exact solution (see Algorithm 1). The initial guess
and updates are based on overlap calculation be-
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tween the target state and all the stabilizer states,
for which we propose two distinct algorithms for
mixed states (see Sec. 3 in TM1) and pure states
(see Sec. 3 in TM2) that reduces the time com-
plexity exponentially per stabilizer state. Further-
more, compared to the naive method of solving
the primal problems in Eqs. (2) and (4), our pro-
posal is superexponentially more efficient in terms
of memory consumption.

We have performed numerical demonstrations
to show the significant improvement achieved by
our proposal. Regarding the calculation of the
RoM, we have successfully applied Algorithm 1 to
random mixed states up to n = 8 qubits within 2
days using a cluster computer, while naive compu-
tation consumes memory of 86PiB. As a byprod-
uct, we have also proposed an algorithm that com-
putes the Pauli decomposition b of quantum states
with nearly quadratically improved time complex-
ity from O(16n) to O(4nn) (see Appendix B in
TM1). It is worth mentioning that there are
other works with improved time complexity of
O(8n) [29, 30] and the one with similar complex-
ity [31]; we have performed an exhaustive com-
parison to find that our proposal is the fastest
among state-of-the-art algorithms (see Appendix
B in TM1).

We find that there is an even more drastic im-
provement in the computation of the stabilizer ex-
tent. Owing to our pruning technique, dubbed as
the stabilizer pruning, we can avoid unnecessary
overlap computation by leveraging the newly pro-
posed canonical form of stabilizers (see Sec. 3.1 in
TM2). This enabled us to compute the stabilizer
extent ξ(ψ) of random pure quantum state up to
n = 9 qubits, which naively requires memory of
305EiB. In similar to the calculation of RoM, we
have utilized the CG method to obtain the subset
of stabilizer states required to obtain the exact so-
lution with significantly reduced problem size.

While the idea of applying resource theory to
quantum computing has attracted great amount of
interest, the barrier of computational hardness (in
particular memory consumption) has prevented us
from gaining further benefits for circuit design and
optimization. Our work provides a comprehensive
methodology that is not limited to the resource
measures considered above, but is also expected to
generalize to other monotones such as the dyadic
negativity [15].

4 Key technical contributions

The key to the significant speed up of the over-
lap calculation is modified canonical forms of sta-
bilizer states which allow us to perform the over-
lap calculation of expontentially many stabilizer
states with reduced time complexity.

Algorithm 1: Exact Magic Monotone Cal-
culation by Column Generation

Input: Vector b encoding state information
Column set An = {aj} of An

Output: Exact valueM (= R or ξ)
1 C0 ← Partial set of An

/* Initialize using overlap values */

2 for k = 0, 1, 2, . . . do
3 Primal xk, dual yk ← Solve(Ck, b)

/* Solve problem restricted to Ck */

4 Compute M̂k from xk

5 C′ ←
{
aj ∈ An

∣∣∣ ∣∣∣a†jyk∣∣∣ > 1
}

/* Use of core subroutine */

6 if C′ = ∅ then
7 returnM = M̂k

8 Ck+1 ← Ck ∪ C′

For the case of the RoM, our findings are sum-
marized by the following (see Lemma 2 in TM1):

Lemma 1 (Decomposition of ARoM
n into Walsh–

Hadamard matrix) For all n ∈ N, there ex-
ists a constructive and efficient way of enumerat-
ing properly sparsified Walsh–Hadamard matrices

{Wj}|Sn|/2n
j=1 such that

ARoM
n =

[
W1 · · ·W|Sn|/2n

]
. (5)

Once such a canonical form is obtained, we can
utilize an in-place calculation algorithm called
the Fast Walsh-Hadamard Transform to compute
the matrix-vector multiplication for each Wj with
time complexity of O(n2n) and space complexity
of O(2n).

For the calculation of the stabilizer extent, first
note that there exists a canonical form for every
stabilizer state as [32–34]

|ϕ⟩ = 1

2k/2

2k−1∑
x=0

(−1)x
⊤Qxic

⊤x |Rx+ t⟩ , (6)

where k ∈ {0, ..., n}, R ∈ Fn×k
2 , Q ∈ Fk×k

2 , t ∈
Fn
2 . In our work, we find that we can construct a

modified and equivalent canonical form even if we
impose the following conditions (see Theorem 1 in
the TM2):

(1) Q is an upper triangular matrix

(2) R is a reduced row echelon form matrix with
rank k

(3) t is a representative of element in quotient
space Fn

2/Im(R)

By using these properties, we can show that there
exists a recursive procedure that allows us to
prune the unnecessary calculations to a significant
amount (see Appendix A in TM2).

436



References

[1] D. Gottesman, The Heisenberg Representa-
tion of Quantum Computers, 1998.

[2] M. A. Nielsen and I. L. Chuang, Quan-
tum Computation and Quantum Informa-
tion: 10th Anniversary Edition (Cambridge
University Press, 2010).

[3] S. Bravyi and A. Kitaev, “Universal Quan-
tum Computation with ideal Clifford gates
and noisy ancillas”, Physical Review A 71,
022316 (2005).

[4] D. Litinski, “A Game of Surface Codes:
Large-Scale Quantum Computing with Lat-
tice Surgery”, Quantum 3, 128 (2019).

[5] D. Horsman, A. G. Fowler, S. Devitt, and
R. V. Meter, “Surface code quantum com-
puting by lattice surgery”, New Journal of
Physics 14, 123011 (2012).

[6] A. G. Fowler and C. Gidney, Low overhead
quantum computation using lattice surgery,
2019.

[7] C. Gidney and M. Eker̊a, “How to fac-
tor 2048 bit RSA integers in 8 hours using
20 million noisy qubits”, Quantum 5, 433
(2021).

[8] J. Lee, D. W. Berry, C. Gidney, W. J. Hug-
gins, J. R. McClean, N. Wiebe, and R. Bab-
bush, “Even More Efficient Quantum Com-
putations of Chemistry Through Tensor Hy-
percontraction”, PRX Quantum 2, 030305
(2021).

[9] V. von Burg, G. H. Low, T. Häner,
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The nonstabilizerness, or magic, is an essential quantum resource to perform
universal quantum computation. Robustness of Magic (RoM) in particular
characterizes the degree of usefulness of a given quantum state for non-Clifford
operation. While the mathematical formalism of RoM can be given in a concise
manner, it is extremely challenging to determine the RoM in practice, since it
requires dealing with superexponentially many pure stabilizer states. In this
work, we present efficient novel algorithms to compute the RoM. The crucial
technique is a subroutine that achieves the remarkable features in the calcula-
tion of overlaps between pure stabilizer states: (i) the time complexity per state
is reduced exponentially, (ii) the space complexity in total is reduced superex-
ponentially. Based on this subroutine, we present algorithms to compute the
RoM for arbitrary states up to n = 8 qubits, while the naive method requires a
memory size of at least 86 PiB, which cannot be executed on any state-of-the-
art classical computer. We find as a byproduct that, the proposed subroutine
allows us to simulate the stabilizer fidelity up to n = 8 qubits. We further
propose novel algorithms that utilize the preknowledge of the structure of the
target quantum state such as the permutation symmetry or disentanglement,
and numerically demonstrate our state-of-the-art results for copies of magic
states and partially disentangled quantum states. The series of algorithms con-
stitutes a comprehensive “handbook” to scale up the computation of the RoM,
and we envision that the proposed technique applies to the computation of
other quantum resource measures as well.

1 Introduction
Universal fault-tolerant quantum computation is often formulated such that the elementary
gates consist of both classically simulatable gates and costful gates, such as in the most
well-known Clifford+T formalism of the magic state model [1, 2, 3, 4, 5, 6]. Since the

Hiroki Hamaguchi: hamaguchi-hiroki0510@g.ecc.u-tokyo.ac.jp
Kou Hamada: zkouaaa@g.ecc.u-tokyo.ac.jp
Nobuyuki Yoshioka: nyoshioka@ap.t.u-tokyo.ac.jp
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consumption of the non-Clifford gates is indispensable for any quantum advantage [7, 8,
9, 10], there is a surging need to evaluate the complexity of quantum circuits using the
framework of resource theory, in order to explore the boundary of quantum and classical
computers [11, 12, 13, 14, 15, 16, 17]. One such attempt is the proposal of a quantity
called the Robustness of Magic (RoM) by Howard and Campbell [18, 19, 20]; the RoM
characterizes the classical simulation overhead or complexity of a given quantum state
based on its effective amount of magic, and it geometrically quantifies the distance from
the convex set of stabilizer states.

The computation of the RoM can be reduced to a simple L1 norm minimization prob-
lem. Meanwhile, since the size of the set of pure stabilizer states grows superexponentially
with the number of qubits, both the time and space complexity are prohibitively large, so
it is extremely challenging to perform computation beyond n > 5 qubits. Concretely, the
memory consumption blows up to 86 PiB even for n = 8 qubit system. Existing works
have been done to offload such a heavy burden; for instance, Ref. [20] proposed to utilize
the symmetry of the target state. By exploiting the permutation symmetry between copies
of identical states and also the internal (or local) symmetry, it has been shown that, if one
considers copies of symmetric magic states such as |H⟩⊗n used for T -gates, one can simu-
late up to n = 26 qubits. However, when one is interested in the magic resource of noisy
states, for instance, there is no valid way to scale up the characterization of the resource.

In this work, we propose a systematic procedure as shown in Fig. 1 to compute the
RoM value that overcomes the barrier in the existing works. Central to our work is the
subroutine that computes the overlaps of a given quantum state between stabilizer states
with (i) exponentially faster time complexity per state and (ii) superexponentially smaller
space complexity in total. Using this efficient subroutine, we propose algorithms that
surpass the state-of-the-art results of the RoM calculation for arbitrary states up to n = 8
qubits. We also extend the capability of methods that utilize the preknowledge of the
structure of the target quantum state such as the permutation symmetry and decoupled
structure, and show that we may compute the RoM for multiple copies of arbitrary single
qubit states up to n = 17 qubits.

The remainder of this work is organized as follows. In Sec. 2, we present the prelimi-
naries regarding the formalism of RoM. In Sec. 3, we first give the main subroutine on the
overlap calculation (Theorem 1) and then present the algorithms that compute the RoM
value with the reduced computational resource by utilizing the information of all the over-
lap values between the target state and stabilizer states. In Sec. 4, we present algorithms
for practical target states that are decoupled from each other, such as the multiple copies
of single-qubit states or tensor products over subsystems. Finally, in Sec. 5, we provide
the discussion and future perspective of our work.

2 Preliminaries
2.1 Robustness of Magic
Let Pn = {±1,±i}×{I,X, Y, Z}⊗n be the n-qubit Pauli group. For any n-qubit stabilizer
state |ψ⟩ , we denote by Stab(|ψ⟩) = ⟨P1, . . . , Pn⟩ the stabilizer group of |ψ⟩ , i.e., the
group generated by the set of n independent Pauli operators such that Pi |ψ⟩ = |ψ⟩ for
each generator Pi. We denote the entire set of n-qubit stabilizer states as Sn, whose size
scales superexponentially as |Sn| = 2n∏n−1

k=0(2n−k + 1)= 2O(n2) [21, 22], and also denote
the convex hull of them as STABn = {

∑
i piσi | σi ∈ Sn, pi ≥ 0,

∑
i pi = 1}.

The Robustness of Magic (RoM) of a given n-qubit quantum state ρ can be interpreted

2
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Figure 1: Flow chart of RoM computation.

Method Target Qubit count Exact/Approximate
Naive LP [18] Arbitrary n ≤ 5 Exact
Top-overlap Arbitrary n ≤ 8 Exact*

Column Generation (CG) Arbitrary n ≤ 8 Exact
Minimal Feasible Solution Arbitrary n ≤ 14 2n/2-approximation, if random

Symmetry Reduction ρ⊗n n ≤ 17 Exact up to n ≤ 7
Partition Optimization

⊗
i ρi n ≤ 15 Approximation

Symmetry Reduction [20] ρ⊗n
H,F n ≤ 26 Exact up to n ≤ 9, 10

Table 1: Methods for calculating RoM. The top four methods are applicable to arbitrary n-qubit states,
while the latter three assume certain structures such as permutation symmetry, decoupled structure,
and local symmetry. The expression “Exact*” is intended to denote that there is a hyperparameter
that controls the accuracy of the solution, while we have performed numerical demonstrations that
successfully find the exact solution up to n = 5 qubits.

as distance from the polytope of free states identified with STABn and is defined as [18, 23]

R(ρ) := min
σ+,σ−∈STABn

{
2p+ 1

∣∣∣∣∣ ρ = (p+ 1)σ+ − pσ−, p ≥ 0
}
. (1)

It is straightforward to show that this yields an equivalent expression as

R(ρ) = min
x


|Sn|∑
i=1
|xi|

∣∣∣∣∣ ρ =
∑

σi∈Sn

xiσi, xi ∈ R

 , (2)

which can be further simplified as

R(ρ) = min
x


|Sn|∑
i=1
|xi|

∣∣∣∣∣ Anx = b

 . (3)

Here, we have utilized the unique decomposition of the quantum state into n-qubit Pauli
operators to define bj = Tr[ρPj ] and (An)j,i = Tr[σiPj ] where Pj (1 ≤ j ≤ 4n) is the j-th

3

441



Pauli operator in lexical order. Here, An encapsulates the information of the entire pure
stabilizer states, whereas x stores that of the target quantum state ρ. It is also convenient
to define An = {a} as the entire set of columns in An such that An = (a)a∈An . In
practice, one may solve Eq. (3) as follows:

minimize
u

∑
i

ui

subject to
(
An −An

)
u = b,

u ≥ 0,

(4)

where the inequality denotes the element-wise inequality. This is a standard form of linear
programming problem, and thus can be solved by Linear Programming (LP). For the sake
of convenience for later discussion, we denote a function SolveLP(A, b) that returns R(ρ)
and x by solving Eq. (4) given a set of columns A, and also denote the minimization
problem itself as Prob(A, b) using the matrix A determined from the set A.

2.2 Dualized Robustness of Magic
Since the RoM can be formalized via the standard form of linear programming problem,
the strong duality holds, which implies that the dual problem gives an equivalent definition.
Concretely, the value of the RoM can be computed via the following:

R(ρ) = max
y

{
b⊤y

∣∣∣∣∣ −1 ≤ A⊤
n y ≤ 1

}
, (5)

where 1 is a length-4n vector with all the elements given by unity. By the nature of the
dual problem, any feasible solution yields a lower bound on the RoM. For instance, it can
be shown by taking y = (. . . , sgn(Tr[ρPj ])/2n, . . . ) that, the RoM can be lower-bounded
by the st-norm as ∥ρ∥st = 1

2n ∥b∥1 [20].

3 Scaling up RoM calculation for arbitrary states
It is well known that linear programming problems are solvable in polynomial time with
respect to the matrix size. However, it must be noted that the matrix size of An itself is
4n × |Sn| where |Sn| = 2O(n2), and hence it is impractical to use the entire An to tackle
n > 5 qubit systems [14].

Motivated by such a problematic situation, we propose two numerical algorithms that
compute the RoM for arbitrary quantum states beyond the state-of-the-art system size.
The key technique is to utilize a subroutine that achieves the following two remarkable
features in overlap calculation: (i) total time complexity is drastically improved from
O(2n|Sn|) to O(n|Sn|), which is due to the exponential reduction from O(2n) to O(n)
per stabilizer state, (ii) the space complexity is reduced superexponentialy from O(2n|Sn|)
to O(2n) since we do not explicitly construct the entire An. Based on this subroutine,
the first algorithm referred to as the top-overlap method (Algorithm 1) solves the primal
problem (3) with a limited set of stabilizers whose overlaps with the target quantum states
are taken from largest or smallest ones. The second algorithm referred to as the Column
Generation method (Algorithm 2), on the other hand, iteratively adds stabilizer states for
the decomposition until all the inequality constraints in the dual problem (5) are satisfied,
such that one has a guarantee for the exact solution.

4
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In the following, we first present the fast overlap computation algorithm in Sec. 3.1,
and then proceed to introduce two novel algorithms in Sec. 3.2 and 3.3, respectively. We
show that these algorithms enable us to compute the exact RoM value up to n = 8 qubit
system. In this case, the memory consumption for the main subroutine is suppressed by a
factor of 108; compared to the entire An size 86 PiB, we can run the efficient subroutine
with only 512 MiB.

3.1 Core subroutine: fast computation of stabilizer overlaps
First, we introduce the core subroutine in our work that computes the overlaps between
the target state and pure stabilizer states, or the stabilizer overlaps in short. When we
resort to a naive calculation, it requires time complexity of O(2n|Sn|) to compute all the
stabilizer overlaps via the matrix-vector product of A⊤

n y, even if we utilize the sparsity of
An. We show this can be done exponentially faster per stabilizer state:

Theorem 1. (Complexity of computing all stabilizer overlaps) Computation of A⊤
n y can

be done in time complexity of O(n|Sn|) and space complexity of O(2n).

One of the most practical applications of this theorem is to apply to the computation of
overlaps A⊤

n b for the Pauli vector b of a given quantum state; as we later detail in Sec. 3.2,
this technique is essential to scale up the RoM calculation to larger systems.

In order to show Theorem 1, first we introduce the Fast Walsh–Hadamard Transform
(FWHT) algorithm that efficiently performs matrix-vector product operation, when there
is a tensor product structure in the matrix [24]. Here we use the unnormalized Walsh–

Hadamard matrix as Hn := H⊗n where H :=
(

1 1
1 −1

)
and refer to the matrix-vector

multiplication of Hn as the FWHT algorithm. As is evident from the well-known pseu-
docode provided in Appendix A, we can show that the computational cost is given as in
the following lemma:

Lemma 1. (Complexity of FWHT algorithm) Matrix-vector multiplication of unnormal-
ized Walsh–Hadamard matrix can be done by in-place computation with time complexity
of O(n2n) and space complexity of O(2n).

Next, we show that An is essentially constructed by concatenating unnormalized Walsh–
Hadamard matrices (see also Fig. 2). Let Wn denote a set of all matrices that can be

expressed as sparsified form of

[
Hn

O

]
by reordering and flipping the signs of the rows ap-

propriately, where O denotes a null matrix of size (4n−2n)×2n. We can state the following
lemma (see Appendix D for the proof):

Lemma 2. (Decomposition of An into Walsh–Hadamard matrix) For all n ∈ N, there
exists a constructive and efficient way of enumerating properly sparsified Walsh–Hadamard
matrices {Wj}|Sn|/2n

j=1 (Wj ∈ Wn) such that

An =
[
W1 · · ·W|Sn|/2n

]
. (6)

By combining Lemma 1 and 2, we complete the proof of Theorem 1. As a direct corol-
lary, we also obtain that the stabilizer fidelity defined as FSTAB(|ψ⟩) = max|ϕ⟩∈Sn

|⟨ψ|ϕ⟩|2 [25]
can be shown to be computed exponentially faster as well (see Appendix B for details):

Corollary 1. (Complexity of computing stabilizer fidelity) Stabilizer fidelity can be com-
puted with time complexity of O(n|Sn|) and space complexity of O(2n).

5
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Figure 2: Visualization of An for n = 1 and n = 2.

It has been recognized that the stabilizer fidelity cannot be computed with moderate
computational cost for n > 5 [14]. Meanwhile, our algorithm allows us to compute up
to n = 8 in 4 hours. Note that this numerical experiment was conducted using C++17
compiled by GCC 9.4.0 and a cluster computer powered by Intel(R) Xeon(R) CPU E5-
2640 v4 with 270 GB of RAM using 40 threads. Even if we use a laptop powered by Intel(R)
Core(TM) i7-10510U CPU with 16 GB RAM, we can compute n = 7 in 2 minutes using 8
threads.

3.2 Top-overlap method for primal RoM
Using the efficient overlap calculation subroutine presented in Sec. 3.1, we propose a novel
algorithm that computes the exact/approximate value of the RoM by utilizing the following
properties: (i) by the nature of L1 norm minimization problem, the solution of the optimal
stabilizer decomposition is sparse [26], (ii) the stabilizer overlap is closely related to the
optimal stabilizer decomposition (see Fig. 3 (a)). Concretely, as we provide the detail in
Algorithm 1, we restrict the number of columns in An and consider only a fraction K of
pure stabilizer states with the largest or smallest overlaps; the fraction of 1−K is neglected.

As a useful visualization to confirm the observation (ii), we show in Fig. 3(a) the
distribution of stabilizer overlaps {Tr[ρσi]}i and their weights {xi}i for random 4-qubit
mixed state ρ =

∑
σi∈Sn

xiσi. Indeed, we find strong correspondence between the stabilizer
overlaps and weights. A similar property can be seen in various random instances in larger
systems as well.

It is natural that stabilizer states with large overlaps have large weights. On the other
hand, it seems quite counterintuitive that stabilizer states with small overlaps contribute
non-negligibly. In this regard, we mention that, in the field of operations research, there is
an approximation method called Orthogonal Matching Pursuit for L1 norm minimization
problem that greedily takes near-orthogonal basis to improve the solution [27, 28]. It can
be understood that the orthogonal bases contribute to extending the effective dimension
of the space spanned by the chosen basis, and thus are essential to enhance the quality of
the approximation for random states.

As we highlight in Fig. 3(b), we only need a small fraction from the entire Sn in order
to obtain a nearly-exact solution. We find that, for a random mixed state of n = 4 qubit
system, it is sufficient to use a fraction of K ∼ 0.05 in order to achieve an absolute error
of 0.023. The fraction required to achieve similar accuracy for larger systems are orders
of magnitude smaller as K = 10−2, 10−3, 10−5 for n = 5, 6, 7, respectively. Meanwhile,
we remark that we must take a significantly larger column set to assure the exact RoM
value; the fraction is K ∼ 0.32 for n = 4 qubit case. We provide further numerical details
in Appendix H.1.

6
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Algorithm 1: Top-overlap method for primal RoM
Input: Pauli vector b for quantum state ρ,

Fraction K (0 < K ≤ 1)
Output: Approximate RoM

1 Compute overlap a⊤b for each a ∈ An using FWHT algorithm
2 C ←Partial column set {a} with K|Sn| largest and smallest overlaps
3 return SolveLP(C, b)

Figure 3: (a) Stabilizer overlaps Tr[ρσi] and the weights xi for random mixed state of n = 4 qubits.
(b) RoM value computed under a restricted set of stabilizers of ratio 0 < K ≤ 1 for random mixed
state of n = 4 qubits.

3.3 Column generation method for dualized RoM
Despite the significant improvement over naive methods, there are three major issues in
Algorithm 1: (i) we cannot tell whether the partial column set C ⊂ An is sufficient to
yield the exact solution, (ii) there is no quantitative measure to judge the quality of the
approximate solution, (iii) there is a large gap in the computational resource between
“highly approximate” and “exact” solutions. While we do not address these problems
explicitly for the primal formulation of RoM, we find that these issues are well addressed
when we consider the dualized formalism instead.

Recall that the dualized formulation of RoM is given as

R(ρ) = max
y

{
b⊤y

∣∣∣∣∣ −1 ≤ A⊤
n y ≤ 1

}
. (7)

Let us assume that we have computed the approximate value of the RoM under a restricted
column set C, and that the solver has returned a dual variable ŷ, which is often the case
for practical implementations. If ŷ does not obey all the constraints in Eq. (7), i.e., if
there exists a ∈ An such that |a⊤ŷ| > 1, then we must increase the size of the reduced
column set C to include violated a’s if we wish to obtain the exact value of the RoM (see
also Fig. 4). Conversely, when there is no violation, then the solution is exact, due to the
strong duality of the problem.

This discussion naturally motivates us to employ an iterative method that gradually
takes constraints into account until there is no violation of the constraints at all. Such
a strategy is known as the Column Generation technique in the field of operations re-
search [31], and here we propose a method that unifies the knowledge of such technique
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(a)      (b)

ignored positive 

weight

negative 

weight

Figure 4: (a) Graphical description of the primal formalism for the RoM. The Pauli vector b of the
target state is decomposed into a sum over those of pure stabilizer states a denoted by vertices on
the stabilizer polytope, so that the L1 norm of primal variables ∥x∥1 is minimized. The restriction on
columns of An is expressed by gray vertices that are eliminated from the decomposition. (b) Graphical
description of the dual formalism for the RoM. The equality constraints in primal problem are now given
as inequalities −1 ≤ A⊤

n y ≤ 1 for the dual variables y, while the objective function is the inner product
with b. A solution y obtained from reduced column set C may violate some constraints, denoted by the
red dotted line in the figure, so that one shall add more columns to improve the solution, while there
are some columns denoted by gray dotted lines that do not affect the result.

Algorithm 2: Exact dual RoM calculation by Column Generation
Input: Pauli vector b of target state ρ
Output: Exact RoM R(ρ)

1 C ← Partial set of An /* Initialize using top and least overlaps */
2 while true do
3 R,y ← SolveLP(C, b)
4 C′ ←

{
a ∈ An

∣∣∣ ∣∣∣a⊤y
∣∣∣ > 1

}
/* Use of FWHT */

5 if C′ = ∅ then
6 break
7 C ← C ∪ C′

8 return R

and the FWHT algorithm introduced in Sec. 3.2. In particular, we compute the overlap
a⊤ŷ for every a ∈ An at each iteration in order to improve the quality of the solution; the
columns that violate the constraint is added to the reduced column set C. By iteratively
updating C until there is no violation, we obtain the exact RoM value. See also Algorithm 2
for the pseudocode.

In Fig. 5, we present the results of the numerical demonstration of Algorithm 2. We have
initialized the partial column sets with K = 10−5, 10−8 for random mixed states of n = 7, 8
qubit systems, respectively. We can see that the numbers of violated columns decrease
rapidly so that the exact solutions can be obtained after small number of iterations. Using
the machines described as in Sec. 3.1, the total run time was 2 hours using the laptop for
n = 7 and 2 days using the cluster computer for n = 8. Note that there is no nontrivial
bound on the time complexity, and thus the algorithm is not guaranteed to yield exact
solutions within realistic run time. However, we strongly expect that the exact value of
RoM can be obtained with similar run time for average case, unless a malicious input state
is provided. See Appendix H.1 for details.

We remark that there are two practical tricks to suppress |C| which results in drastic
enhancement of the efficiency of the computation. First, we introduce a threshold d (0 ≤
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Figure 5: Demonstration of Algorithm 2 for random mixed state of (a) n = 7 qubits and (b) n = 8
qubits with the fraction K chosen as in Table 2. Here we display the value of approximate RoM and the
number of columns that violate the inequality condition in Eq. (7). The number of violating columns
quickly reduces to zero, which assures that the exact value of the RoM is obtained. The run time is 2
hours using the laptop for n = 7 and 2 days using the cluster computer for n = 8, whose specifications
are provided in Sec. 3.1.

Qubit count n Full-size An Our work K

4 3 MiB 301 KiB 10−1

5 379 MiB 4 MiB 10−2

6 95 GiB 97 MiB 10−3

7 86 TiB 499 MiB 10−5

8 86 PiB 512 MiB 10−8

Table 2: Memory size required to store the A matrix. The full-size An takes the entire columns into
account, while the reduced A takes only the fraction K from the column set, as in the initialization step
in Algorithm 2. We empirically find that the maximal memory consumption during the iterations are
approximately 1.5 times larger than the values shown here. The data is based on sparse matrix format
in SciPy [29]. The code for generating An and proposed algorithms are available via GitHub [30].

d ≤ 1) to discard columns ai that satisfy both
∣∣∣a⊤

i y
∣∣∣ < d and xi = 0, where xi is the

corresponding primal variable. Second, instead of adding the entire violating columns to
the reduced column set C at once, we set an upper bound on the number of the columns so
that the memory consumption does not become infeasible. In particular, for the calculation
given in Fig. 5, we have added only K|Sn| columns with either large or small overlaps at
each iteration. As a consequence of these two tricks, we can significantly suppress the
memory consumption. Concretely, we empirically find that |C| is no more than 2K|Sn| in
our numerical experiments.

3.4 Minimal feasible solution with accuracy guarantee
Exact solutions for large-scale systems may require prohibitively large computational re-
sources, while we may still wish to compute a feasible solution. Here, we propose a method
with minimal computational resources that is always guaranteed to yield a feasible solu-
tion. By utilizing the LP for the cover matrix that is later introduced in Theorem 2, we
have obtained the approximate RoM value with its corresponding feasible solution x for
random state of n = 14 qubits within a minute.

A technical contribution of this section is the construction of a reduced A matrix that
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always guarantees a feasible decomposition of ρ into stabilizer states. While we guide
readers for the proof to Appendix E, here we simply provide the core proposition:

Proposition 1. (Existence of cover stabilizer set) Let Sn be a subset of Sn such that, for
any P ∈ Pn there exists |ψ⟩ ∈ Sn that satisfies {P,−P} ∩ Stab(|ψ⟩) ̸= ∅. Then, for all
n ∈ N, the size of the set is bounded as |Sn| ≥ 2n + 1, and one can construct Sn such that
|Sn| = 2n + 1.

Using this proposition, it is straightforward to see that the following theorem holds:

Theorem 2. (Existence of cover matrix) Let Sn = {|ψj⟩}j be a minimal cover stabilizer
set that is obtained from Proposition 1. Let the stabilizer group denoted as Stab(|ψj⟩) =
⟨Q(j)

1 , . . . , Q
(j)
n ⟩, and let |ψj,χ⟩ be defined for χ = (χ1, . . . , χn) ∈ {0, 1}n so that Stab(|ψj,χ⟩) =

⟨(−1)χ1Q
(j)
1 , . . . , (−1)χnQ

(j)
n ⟩, and aj,χ be its Pauli vector. Then, by defining M :=

(. . . ,aj,χ, . . . ), it is guaranteed that there exists a feasible solution to Prob(M, b) that
can be solved with time complexity of O(n4n).

Proof. The cover stabilizer set Sn is constructed so that, for any P ∈ {I,X, Y, Z}⊗n \
{I⊗n}, there is a unique |ψj⟩ that satisfies P |ψj⟩ ∈ {|ψj⟩ ,− |ψj⟩}. Consequently, for all
|ψj⟩ ∈ Sn (1 ≤ j ≤ 2n + 1), one may enumerate the set of indices Ij = {νj | Pνj |ψj⟩ ∈
{|ψj⟩ ,− |ψj⟩}}. By extracting the elements from b as bj = (bνj )νj∈Ij , the primal problem
in the reduced bases is equivalent to Hnxj = bj where Hn is the unnormalized Walsh–
Hadamard matrix. Therefore, for each j we can simply compute by the FWHT algorithm
as

xj = (1/2n)Hnbj , (8)

and then combine all the solutions to construct x that is assured to be feasible by the
nature of the cover stabilizer set Sn (see Fig. 6 for example in n = 2). Since each FWHT
algorithm can be performed with time complexity of O(n2n), the total time complexity is
O(n4n).

By using the cover matrix, we have We remark that we can not only ensure feasibility
by Theorem 2 but also provide an accuracy bound for the algorithm. Let RFWHT be the
approximate RoM value obtained from the minimal feasible solution. We can show that
the following holds (see Appendix F):

Lemma 3. (Accuracy bound of minimal feasible solution) Let bj drawn uniformly from
N (0, I) for all j. Then,

Ebj∼N (0,I)

[
RFWHT
∥ρ∥st

]
≈ 2n/2. (9)

Note that this lemma allows us to expect that RFWHT ≤ 2n/2R(ρ) for a random state
with high probability at the asymptotic limit of large n, while we practically observe con-
vergence already at n ≤ 10. While RFWHT significantly deviates from the exact RoM value,
we envision that the feasible solution can be utilized as, e.g., approximate initialization.

4 Quantum resource of multiple magic states
One of the most important applications of RoM is to measure the total nonstabilizerness
of multiple magic states that are decoupled from each other. For instance, one may wish
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Figure 6: Graphical description of (a) the cover matrix and (b) application of FWHT algorithm for
individual segments. Since the identity operator is present in any stabilizer group, we divide the vector
element equally by the size of the cover stabilizer set |Sn| = 2n + 1, which yields the vector element
0.2 for each submatrix for n = 2. Also, note that the signs of some vector elements in b4 and b5 are
flipped (denoted by ×(−1)).

to evaluate the amount of magic resources for copies of multiple states ρ⊗n to estimate the
upper bound on the number of generatable clean magic states. In general, this could even
include situations where the quantum states are nonequivalent, such as partially decoupled
states

⊗
i ρi. Note that there exists a previous work by Heinrich and Gross [20] that has

utilized the symmetry of some pure magic states such as |H⟩ ⟨H| = 1
2

(
I + 1√

2(X + Y )
)

and |F ⟩ ⟨F | = 1
2

(
I + 1√

3(X + Y + Z)
)

to scale up the simulation up to n = 26 qubits,
we still lack a method to investigate general quantum states with partial disentangled
structure (see Fig. 7).

In this section, we apply the algorithms proposed in Sec. 3 to practical problems;
copies of identical quantum states ρ⊗n and partially disentangled quantum states

⊗
i ρi.

In particular, we first discuss the case of permutation symmetric state ρ⊗n in Sec. 4.1, and
then also consider general partially disentangled states in Sec. 4.2.

4.1 Copies of general quantum states
When the target quantum state is given as an identical copies of a quantum state as ρ⊗n, we
may compress the size of An by utilizing the permutation symmetry to combine multiple
columns of An. In this work, we have employed the compression method for An proposed
in Ref. [20] to define a set of permutation symmetric columns Qn. As in Ref. [20], we also
make use of the data by Danielsen [32]. This enables us to run the algorithm to obtain the
exact solutions for n ≤ 7 qubits.

Beyond n = 7, 8 qubits, it is not realistic to obtain the exact solution even when we
use Qn instead of An. Note that Qn is the matrix given by ordering all the columns
in Qn whose number of rows (and correspondingly that of b) is reduced by permutation
symmetry as well. Therefore, here we propose an approximate method that performs
divide-and-conquer computation. As we present the details in Algorithm 3, we consider all
possible decomposition of m qubits into two groups with j and k qubits (j + k = m), and
compute the optimal stabilizer decomposition. If one has stored the solution of the LP
for Prob(Qi, bi) for i < m, one can simply load the result. We take the tensor product of
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Figure 7: Hierarchy of partially disentangled quantum states.

Algorithm 3: Approximate RoM for permutation symmetric states
Data: Compressed column set Qn of matrix Qn

Input: Positive integer n, k (n ≥ k), Pauli vector b for target state ρ
Output: Approximate RoM value Ri of ρ⊗i (i = 1, . . . , n)

1 for i← 1 to k do
2 Ri, Ci ← SolveLP(Qn, b)
3 for i← k + 1 to n do
4 C′ ← ∅
5 for l← 1 to ⌊i/2⌋ do
6 m← i− l
7 C′ ← C′ ∪ {ρl ⊗ ρm | ρl ∈ Cl, ρm ∈ Cm}
8 Ri, Ci ← SolveLP(C′, b)
9 return (R1, . . . , Rn)

stabilizers with nonzero weights as {ρj ⊗ ρk | ρj ∈ Cj , ρk ∈ Ck}. By taking the union over
all states to construct Cm, we compute the approximate value of RoM, which is assured to
be less than the product of RoMs computed for subsystems.

Figure 8 shows the results of a numerical demonstration of the proposed algorithm
applied to copies of pure magic state |H⟩, pure random state, and mixed random state.
Using the exact stabilizer decomposition up to k = 7 qubits, we have successfully computed
the approximate RoM value up to n = 17 for the pure and mixed random state, while the
compressed column set size |Cn| is significantly smaller for |H⟩ so that we have reached
n = 21. While this is not as large as n = 26 reported in Ref. [20], we emphasize that the
present work is based on an algorithm that is agnostic to the internal symmetry of the
single-qubit state. As a remark, we mention that the approximate RoM values for copies
of pure magic states are almost identical to those presented in Ref. [20]; the value was at
most 1.007 times larger.
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Figure 8: Exact and approximate RoM values computed for n copies of single-qubit state ρ⊗n. The
blue, orange, and green data denote the RoM value for random mixed state, random pure state, and
the magic state |H⟩. The circle (crossed) points indicate that the solution is exact (approximate). The
approximate values are computed from the exact solutions for n ≤ 7 qubits.

4.2 Partially disentangled states
Let us assume that we are interested in a general partially decoupled state of m subsystems
as ρ =

⊗m
i=1 ρi, where

∑m
i=1 ni = n with ni being the qubit count of i-th subsystem and ρi

corresponding to the local quantum state. In similar to the previous section, we may first
compute the optimal decomposition for each subsystem, and then take tensor products
over non-zero weight stabilizers to construct reduced basis for the total system. In this
regard, we first show that assures an upper bound with small computational effort:

Proposition 2. (Approximate RoM from multiplicativity) Let ρi be given for the i-th
subsystem, R(ρi) and xi be the exact solution for Prob(Ani , bi). Then,

R =
m∏

i=1
R(ρi), x =

m⊗
i=1

xi, (10)

is one of the exact solutions for Prob(
⊗m

i=1 Ani , b) where
⊗m

i=1 Ani ⊂ An

Proof. See Appendix G.

By noting the submultiplicativity of exact RoM [18], i.e., R(
⊗

i ρi) ≤
∏m

i=1R(ρi), it
is natural to expect that one can further improve the approximate RoM value by extend-
ing the column set from those used in

⊗m
i=1 Ani . For instance, one may group several

subsystems so that each partial LP consists of 6 or 7-qubit systems.
We find that it is more effective to consider multiple variations to divide subsystems.

As we show the pseudocode in Algorithm 4, we may divide subsystems into groups so that
the exact (or highly accurate approximate) value of the RoM can be computed for each
group. By comparing the product of those values for various decompositions, we take the
minimal value as the approximate RoM. For instance, in the case of a 15-qubit system
that is decoupled into 5 subsystems as ρ = ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ ρ4 ⊗ ρ5, where each ρi is a
3-qubit state. One may compute the approximate value as R(ρ1⊗ρ2)×R(ρ3⊗ρ4)×R(ρ5)
or R(ρ1) × R(ρ2 ⊗ ρ3) × R(ρ4 ⊗ ρ5), for instance, and take the minimal value as the
approximate output. While there could be combinatorially many possibilities for such

13

451



Algorithm 4: Optimization of subsystem division
Input: Target state ρ =

⊗m
i=1 ρi

Subsystem decomposition
Output: Approximate RoM value

1 foreach Decomposition of ρi do
2 Rj ←

∏
R(
⊗
ρi) /* Approximate RoM value for each decomposition */

3 return minj Rj

groupings in general, we expect that the difference is not significant when ρi resemble each
other, e.g., when we simulate the RoM of noisy magic states. One may also speed up the
computation by brute-force parallelization if needed.

5 Discussion
In this work, we have proposed a systematic procedure to compute the RoM value to
surpass the state-of-the-art results for random arbitrary states, multiple copies of single-
qubit magic states, and partially disentangled quantum states. We have presented the
core subroutine that is capable of computing the overlap between the target state and a
pure stabilizer state with exponentially improved time complexity per state and superex-
ponentially improved space complexity in total. Based on the efficient overlap simulation
subroutine, we have proposed algorithms for arbitrary quantum states that significantly
reduce the computational cost by reducing the number of stabilizer states based on the
overlap values, so that RoM for n = 8 qubit state can be computed exactly with approxi-
mately 108-fold reduction in memory consumption. We have also proposed algorithms to
incorporate the nature of the target quantum state, such as the permutation symmetry
between multiple copies of states and the partially decoupled structure for inhomogeneous
magic resources, and have numerically shown that we can scale the approximate RoM
calculation up to n = 17 qubits.

Numerous future directions can be envisioned. First, it is intriguing to seek gener-
alization to other quantum resource measures. Since the core subroutine in this work
only assumes that the total system is composed of local systems with discrete degrees of
freedom, we envision that our work can be applied to other resource monotones that are
formulated with Lp norm optimization (in particular p = 0, 1) such as stabilizer extent [25],
channel robustness [23], negativity [19]. In particular, it is nontrivial if we can extend the
framework when the pure free states constitute a continuous set, such as in the case of
fermionic non-Gaussianity [33, 34, 35]. Second, it is interesting to investigate whether it is
possible to further scale up computations for weakly decoupled states such as tensor net-
work states. While exact computation may require as costly calculation as in the generic
case, we may perform approximate computation with an accuracy bound that depends on
the entanglement.
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A Pseudocode of fast Walsh–Hadamard transform algorithm
Here, we provide the pseudocode of the Fast Walsh–Hadamard Transform (FWHT) algo-
rithm. Note that we omitted the normalization factor in the pseudocode since the Hn itself
is unnormalized. Clearly, the in-place computation allows the time complexity of O(n2n)
and the space complexity of O(2n).

B Basic properties of inner product in Pauli vector representation
In this section, we provide a brief review of the basic properties of inner products in Pauli
vector representation.
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B.1 Complexity of computing Pauli vector representation
Let ρ be an n-qubit quantum state whose Pauli vector representation is given by bj =
Tr[ρPj ] where Pj is the j-th Pauli operator. In order to compute all the elements, naively
the computational complexity scales as O(8n) even if we use the sparse structure of each
Pauli matrix. In the following, we show that we can perform an in-place computation that
exponentially reduces the time complexity:

Lemma 4. (Complexity of computing Pauli vector) Given the full density matrix repre-
sentation of n-qubit quantum state ρ, its Pauli vector representation can be computed with
time complexity of O(n4n).

Proof. First let us introduce a map from an n-qubit density matrix to a 2n-qubit stat-
evector as follows:

ρ =
∑
i,j

ρi1···in,j1···jn |i1 · · · in⟩⟨j1 · · · jn| 7→
∑
i,j

ρi1···in,j1···jn |i1, j1, . . . , in, jn⟩. (11)

Note that this is different from the well-known Choi map ρ 7→
∑

ij ρij |i⟩ |j⟩, and thus we
refer to it as modified Choi vectorization. We introduce a modified Choi vector c such
that ck denotes the k-th element, which can be obtained practically via extracting the
matrix elements of ρ in the Z-order curve. Then, we find that c is related with the Pauli
vector representation b as

b = Mnc, (12)

where the transformation matrix Mn is defined as

Mn := M⊗n, M :=


1 0 0 1
0 1 1 0
0 i −i 0
1 0 0 −1

. (13)

Similar to the FWHT algorithm as provided in Algorithm 5, in-place computation for
such a tensor-product structure can be done with time complexity of O(n4n) and space
complexity of O(4n), which completes the proof.

We describe the numerical comparison of our Pauli decomposition algorithm with other
previous studies [36, 37, 38]. The algorithms are implemented with C++ and run on the lap-
top. Our C++ implementation is mostly based on the Python implementation by Jones [39],
except for the iterative algorithm by Hantzko et al. since it is not included in the Python
implementation. The algorithms run on 50 random density matrices; both real and imag-
inary parts of each entry are independently and uniformly sampled from [0, 1).

Fig. 9 shows the benchmark of Pauli decomposition. It shows that our Pauli decom-
position algorithm is the fastest. Although our algorithm and the algorithms by Hantzko
et al. both have the best time complexity O(n4n) among the algorithms, our algorithm is
faster by a constant factor. We consider it is because our algorithm uses in-place compu-
tation, which is cache efficient.

B.2 Pauli vector overlap and quantum state fidelity
The fidelity between quantum states ρ1 and ρ2 is defined as

F (ρ1, ρ2) := Tr
(√

ρ
1/2
1 ρ2ρ

1/2
1

)
. (14)

We can show that the fidelity is closely related to the Pauli vector as follows:

18

456



1 2 3 4 5 6 7 8 9 10 11 12
Number of qubits

103

104

105

106

107

108

109

1010

R
u

nt
im

e
[n

s]
Hamaguchi et al.

Hantzko et al. (iterative)

Hantzko et al. (recursive)

Romero and Santos-Suárez
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Figure 9: Comparison of Pauli decomposition algorithms. The algorithms are implemented with C++

and run on the laptop. The first three methods in the legend have a time complexity of O(n4n), while
the next two methods have a time complexity of O(8n).

Lemma 5. Let the Pauli vector representation of quantum states ρ1 and ρ2 be b1 and b2,
respectively. If at least one of ρ1 and ρ2 is a pure state, then the overlap 1

2nb⊤
1 b2 coincides

with F 2(ρ1, ρ2).

Proof. It follows directly from the orthogonality of Pauli operators that 1
2nb⊤

1 b2 = Tr[ρ1ρ2].
By taking ρ1 = |ψ⟩ ⟨ψ| to be a pure state, we can show that F 2(ρ1, ρ2) = ⟨ψ|ρ2|ψ⟩ =
Tr[ρ1ρ2].

It follows directly that the stabilizer fidelity can also be computed from the overlap
computation between Pauli vectors. By denoting the Pauli vector of a pure stabilizer state
|ϕ⟩ ∈ Sn as bϕ, we can show the following:

Corollary 2. (Stabilizer fidelity as Pauli vector inner product) Let ρ = |ψ⟩ ⟨ψ| be a pure
state with its Pauli vector given as bρ. Then,

1
2n

(
max

|ϕ⟩∈Sn

b⊤
ρ bϕ

)
= max

|ϕ⟩∈Sn

|⟨ϕ|ψ⟩|2 = FSTAB(|ψ⟩). (15)

Finally, we provide a fact that is useful as a preknowledge regarding the distribution
of overlaps in addition to the fact that 0 ≤ b⊤

ρ bϕ ≤ 2n.

Lemma 6. (Bound on overlap counts) Let ρ be an arbitrary n-qubit quantum state. Then,
for all n ∈ N, the count on the pure stabilizer states satisfies the following:

#{ϕ− ∈ Sn | b⊤
ρ bϕ− ∈ [0, 1]} ≥ |Sn|/2n, (16)

#{ϕ+ ∈ Sn | b⊤
ρ bϕ+ ∈ [1, 2n]} ≥ |Sn|/2n. (17)

Proof. Let us take an arbitrary ϕ ∈ Sn, and consider a set Φ of 2n stabilizer states whose
stabilizer generators are equivalent to ϕ except for their signs. Then, it holds that∑

ϕ̂∈Φ

b⊤
ρ bϕ̂ = 2n. (18)

Therefore, if we assume that the overlap is either all b⊤
ρ bϕ̂ < 1 or all b⊤

ρ bϕ̂ > 1, then this
contradicts with Eq. (18), which completes the proof.
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C Check matrix representation
One of the most well-known concise representations of a stabilizer state is the stabilizer
tableau [21], which uses binary representation and the sign of each stabilizer generator.
Meanwhile, in order to certify if a given set of Pauli operators suffices as an n-qubit
stabilizer group generators, we may neglect the sign information and focus only on the
commutativity and linear independence of generators. Here, we briefly introduce the check
matrix representation [2] for the sake of convenience in discussion of Appendix D and E.

Let an n-qubit stabilizer group be given as ⟨g1, . . . , gn⟩ so that −I⊗n is not included as
an element. Let each generator be expressed in the binary symplectic form as

gi = (−1)χiXαi
i Zβi , (19)

where Xαi := Xαi,1 ⊗ · · · ⊗Xαi,n (αi,j ∈ {0, 1}), Zβi := Zβi,1 ⊗ · · · ⊗ Zβi,n (βj ∈ {0, 1}),
and χi ∈ {0, 1}. The check matrix representation of the stabilizer group is given as n× 2n
matrix as

C = [X Z], (20)

where (X)i,j = αi,j and (Z)i,j = βi,j denote the (i, j) elements of the left and right half
of the check matrix, respectively. Note that such a representation is unique except for
the degrees of signs. Using the check matrix representation, we may confirm the linear
independence and the commutativity of stabilizer generators. Such useful properties can
be summarized as follows:

Lemma 7. (Linear independence of stabilizer generators, Proposition 10.3 of Ref. [2])
The generators of a stabilizer group are mutually independent if and only if the rows of
the corresponding check matrix C are linearly independent, i.e., full row rank.

Lemma 8. (Commutativity of stabilizer generators) Let G = {g1, . . . , gn} be a set of
n-qubit stabilizer generators and C be the check matrix corresponding to G. Then, the
following two conditions are equivalent:

(i) [gi, gj ] = 0 for all gi, gj ∈ G.

(ii) C

(
O In

In O

)
C⊤ = 0.

Note that the operations for the check matrix are done modulo two.

D Proof of Lemma 2
Here we prove Lemma 2 in the main text that states that An can be decomposed into
sparsified Walsh–Hadamard matrices.

Lemma 9. (Restatement of Lemma 2 in the main text) For all n ∈ N, there exists a con-
structive and efficient way of enumerating properly sparsified Walsh–Hadamard matrices
{Wj}|Sn|/2n

j=1 (Wj ∈ Wn) such that

An =
[
W1 · · ·W|Sn|/2n

]
. (21)
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Proof. Recall that, any set of n-qubit stabilizer generators {gi}ni=1 can be related to other
2n−1 stabilizer states by considering a state corresponding to {(−1)χigi}ni=1. This implies
that a single check matrix corresponds to 2n stabilizer states; thus, a check matrix yields
a sparsified Walsh–Hadamard matrix.

Next, we show that there is a constructive and efficient way to enumerate all the check
matrices using a standard form that allows the unique description of a check matrix. While
some standard forms suffice for such a purpose, here we employ the following standard
form: (

Ik X1 Z1 O
O O X⊤

1 In−k

)
, (22)

where X1 ∈ Fk×(n−k)
2 is given by reduced row echelon form of rank k and Z1 = Z⊤

1 ∈ Fk×k
2

is a symmetric matrix. Since all the choices of X1 and Z1 give rise to mutually different
check matrices that satisfy both Lemmas 7 and 8, we can assure that Eq. (22) yields a
unique and complete construction of the entire set of check matrix.

Two remarks are in order. First, we can check the validity of the above construction by
computing the total number of check matrices. The number of choices for Z1 is 2k(k+1)/2

while the number of choices for X1 is given by the q-binomial coefficient
[n
k

]
2, which is

defined for general q(̸= 1) as[
n

k

]
q

= (1− qn)(1− qn−1) . . . (1− qn−k+1)
(1− q)(1− q2) . . . (1− qk) . (23)

Therefore, by using
∑n

k=0
[n
k

]
22k(k+1)/2 = |Sn|/2n which can be derived from the q-binomial

theorem [40], we can certify the validity. Second, in the actual numerical implementation,
we have utilized the gray code so that operations on matrix representations and group
elements can be done efficiently. See the codes available via GitHub [30] for details.

E Proof of Proposition 1
In this section, we provide the proof for Proposition 1 regarding the existence of the cover
stabilizer set.

Proposition 3. (Restatement of Proposition 1 in the main text) Let Sn be a subset of Sn

such that, for any P ∈ Pn there exists |ψ⟩ ∈ Sn that satisfies {P,−P} ∩ Stab(|ψ⟩) ̸= ∅.
Then, for all n ∈ N, the size of the set is bounded as |Sn| ≥ 2n + 1, and one can construct
Sn such that |Sn| = 2n + 1.

E.1 Main proof
E.1.1 Proof on size bound

First we show that |Sn| ≥ 2n + 1. Note that I⊗n ∈ Stab(|ψ⟩) holds for any |ψ⟩ ∈ Sn, and
therefore Stab(|ψ⟩) \ {I⊗n} consists of 2n − 1 elements. Therefore, in order to cover the
remaining 4n − 1 elements of {I,X, Y, Z}⊗n \ {I⊗n}, the number of stabilizers satisfies

|Sn| ≥ (4n − 1)/(2n − 1) = 2n + 1. (24)

21

459



E.1.2 Proof on the existence of minimum cover stabilizer set

Next, we prove the latter half of Proposition 3 that, there exists a cover stabilizer set Sn

such that |Sn| = 2n +1. In the following, we explicitly construct Sn with |Sn| = 2n +1, and
show that Sn satisfies the desired properties. Note that the overall sign of the stabilizer
generators in the following argument is not relevant, and hence not discussed explicitly.

Let us take |+⟩⊗n as the 0-th element for Sn. For the k-th element (1 ≤ k ≤ 2n), we
take a state whose check matrix Ck = [Xk Zk] is given as follows:

1. Zk is an n× n identity matrix.

2. Xk is given such that Lemma 10 is satisfied.

Lemma 10. There exists an explicit construction for a set of symmetric matrices {Xk |
Xk ∈ Fn×n

2 }2n

k=1 such that the following is satisfied.

∀v ∈ Fn
2 \ {0}, {Xkv}2

n

k=1 = Fn
2 . (25)

From the fact that Xk are all symmetric matrices, it follows that the condition in
Lemma 8 is satisfied, and therefore Ck = [Xk Zk] indeed yields a valid representation of
some pure stabilizer state.

Let us show that the constructed Sn indeed satisfies the condition in Proposition 3.
Since it is obvious that P ∈ {I,X}⊗n is covered by |+⟩⊗n, we focus on other Pauli operators
that are denoted as P = (−1)χXαZβ with β ̸= 0.

Consider some state |ψk⟩ whose check matrix is given by Xk and Zk. For any f ∈ Fn
2 , we

can take Pk,f ∈ {I,X, Y, Z}⊗n so that its binary symplectic form yields Pk,f ≈ XXkfZZkf ,
and thus {Pk,f ,−Pk,f} ∩ Stab(|ψk⟩) ̸= ∅.

Now let us take f = β. Due to Lemma 10, we can take k such that Xkβ = α. This
implies that the X and Z exponents of binary symplectic form of Pk,f can be given as Xkf =
α and Zkf = β, respectively. This implies Pk,f = P so that {P,−P} ∩ Stab(|ψk⟩) ̸= ∅,
and therefore satisfies the condition of Proposition 3.

E.2 Proof of Technical Lemma 10
Now the remaining work is to prove Lemma 10. We first provide the explicit construction
of {Xk}2

n

k=1, and then prove that it indeed satisfies Eq. (25).

E.2.1 Construction of Xk

We first introduce some algebraic concepts necessary for the discussion. We denote the
polynomial ring over F2 by F2[x]. Let f be an arbitrary irreducible polynomial of degree n.
We consider a quotient ring F2[x]/(f), where (f) denotes the ideal generated by f . Then,
F2[x]/(f) is a field because f is irreducible. It is also noteworthy that F2[x]/(f) is a vector
space over F2 and

{
x0, . . . , xn−1} can be taken as a basis.

In what follows, we discuss the construction of {Xk}2
n

k=1. We define a symmetric matrix
C(x) ∈ (F2[x]/(f))n×n as a matrix whose (i, j) entry equals xi+j−2. Namely, C(x) can be
represented as follows:

C(x) =



x0 x1 x2 · · · xn−1

x1 x2

x2 . . .
...

...
xn−1 · · · x2n−2


.
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Every entry of C(x) can be represented as a linear combination of a basis
{
x0, . . . , xn−1},

and we define Ci be a matrix consisting of such xi coefficients. In other words, Ci ∈ Fn×n
2

is defined so that C(x) = C0x
0 + · · ·+ Cn−1x

n−1 holds. Note that Ci is also symmetric.
We give a concrete example below. We take n = 3 and f = 1 + x + x3, which is

irreducible. Then, C0, C1, C2 can be derived in the following way:

C(x) =

x0 x1 x2

x1 x2 x3

x2 x3 x4


=

 1 x x2

x x2 1 + x
x2 1 + x x+ x2


=

1
1

1


︸ ︷︷ ︸

C0

x0 +

 1
1 1

1 1


︸ ︷︷ ︸

C1

x1 +

 1
1

1 1


︸ ︷︷ ︸

C2

x2.

Next, we consider the following set of symmetric matrices:{
n−1∑
i=0

aiCi

∣∣∣∣∣ ai ∈ F2

}
.

Since the elements of the set are distinct, the set has 2n elements. We take this set as the
set {Xk}2

n

k=1.

E.2.2 Proof that Xk satisfies Lemma 10

Next, we prove that {Xk}2
n

k=1 given in the previous subsection satisfies Eq. (25).
By the definition of Xk, one can show that Eq. (25) holds if and only if {Civ}n−1

i=0 is
linearly independent for any v ∈ Fn

2 \ {0}. From here, we show the linear independence of
{Civ}n−1

i=0 by proving several lemmas.

Lemma 11. For any vectors u,v ∈ Fn
2 \ {0}, u⊤C(x)v ̸= 0.

Proof. Using a vector x = (x0, . . . , xn−1)⊤, we have C(x) = xx⊤. Thus, by defining two
polynomials u(x) = u⊤x =

∑n−1
i=0 uix

i and v(x) = v⊤x =
∑n−1

i=0 vix
i, u⊤C(x)v can be

represented as u(x)v(x). Hence, it suffices to show that u(x)v(x) ̸= 0. Because u and v
are nonzero, u(x) and v(x) are nonzero as well. Noting that F2/(f) is a field, the product
u(x)v(x) is also nonzero.

Lemma 12. For any vectors u,v ∈ Fn
2 \ {0}, there exists i such that u⊤Civ ̸= 0.

Proof. By multiplying C(x) = C0x
0 + · · ·+ Cn−1x

n−1 by u from the left and v from the
right, we obtain

u⊤C(x)v = (u⊤C0v)x0 + · · ·+ (u⊤Cn−1v)xn−1. (26)

Eq. (26) expresses u⊤C(x)v as a polynomial with coefficients u⊤Civ ∈ F2. Since u⊤C(x)v
is nonzero from Lemma 11, there exists a nonzero coefficient, i.e, u⊤Civ ̸= 0 for some i.

Lemma 13. For any vector v ∈ Fn
2 \ {0}, {Civ}n−1

i=0 is linearly independent.
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Proof. We consider a matrix [C0v, . . . , Cn−1v] with Civ as the column vectors. By mul-
tiplying an arbitrary nonzero vector u ∈ Fn

2 \ {0} from the left, we obtain a vector
(u⊤C0v, . . . ,u

⊤Cn−1v), which is nonzero by Lemma 12. Therefore, we can confirm that
the matrix [C0v, . . . , Cn−1v] is non-singular, which implies the linear independence of
{Civ}n−1

i=0 .

Having shown Lemma 13, it is also proved that {Xk}2
n

k=1 given in the previous subsec-
tion satisfies Eq. (25), i.e., Lemma 10 is proved.

F Proof of Lemma 3
In this section, we prove Lemma 3 in the main text, which provides the accuracy bound
on the minimal feasible solution for RoM calculation. Let us first recall that the Pauli
vector b of length-4n is decomposed in correspondence with the minimal cover matrix as
{bi}2

n+1
i=1 where each bi is a length-2n vector. The Lemma 3 is based on the observation

that bi seems to obey normal distribution for random states. This motivates us to show
the random average of the approximate value RFWHT as follows.

Lemma 14. (Restatement of Lemma 3) Let bi drawn uniformly from N (0, I) for all j.
Then,

Ebi∼N (0,I)

[
RFWHT
∥ρ∥st

]
≈ 2n/2. (27)

Proof. Recall that the FWHT algorithm for i-th segment bi yields the segment of minimal
feasible solution xi, from which the approximate RoM value is obtained as

RFWHT =
2n+1∑
i=1
∥xi∥1 = 1

2n

2n+1∑
i=1
∥Hnbi∥1. (28)

By combining with the definition of the st-norm ∥ρ∥st = 1
2n ∥b∥1 = 1

2n

∑2n+1
i=1 ∥bi∥1, we

obtain

Ebi∼N (0,I)

[
RFWHT
∥ρ∥st

]
=Ebi∼N (0,I)

[∑2n+1
i=1 ∥Hnbi∥1∑2n+1

i=1 ∥bi∥1

]

=
2n+1∑
i=1

2nEbi∼N (0,I)


∣∣∣1⊤bi

∣∣∣∑2n+1
i=1 ∥bi∥1


=2nEbij∼N (0,1)

∑2n+1
i=1

∣∣∣∑2n

j=1 bij

∣∣∣∑2n+1
i=1

∑2n

j=1 |bij |

, (29)

where, to derive the second equation, we have used the fact the matrix elements of the
Walsh–Hadamard matrix Hn only consist of ±1 and that the elements of bi are distributed
symmetrically with respect to sign change. We have also denoted the elements of the vector
as bi = (. . . , bij , . . . ).

In order to evaluate Eq. (29), we utilize the second order formula for random variable
as [41]

E
[
X

Y

]
≈ E[X]

E[Y ] −
Cov(X,Y )

E[Y ]2 + Var(Y )E[X]
E[Y ]3 . (30)
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It can be shown that X =
∑2n+1

i=1

∣∣∣∑2n

j=1 bij

∣∣∣, Y =
∑2n+1

i=1
∑2n

j=1 |bij | can be evaluated as

E[X]
E[Y ] = 1

2n/2 ,
Cov(X,Y )

E[Y ]2 = o

( 1
2n

)
,

Var(Y )E[X]
E[Y ]3 = o

( 1
2n

)
. (31)

Therefore, by substituting this into Eq. (30), we finally obtain

2nE
[
X

Y

]
≈ 2n/2 + o(1),

which completes the proof.

While the Lemma holds for asymptotically large n, we numerically find that the con-
vergence is observed for moderate n. Namely, we have numerically computed the values
for 100 random 10-qubit mixed states to show that(

RFWHT
∥ρ∥st

) 1
n

= 1.41412± 0.00006. (32)

This implies that we can readily expect the accuracy bound to hold in moderate-size
systems.

G Proof of Proposition 2
In this section, we prove Proposition 2 which assures that when one restricts the pure
stabilizer sets so that the target problem is described by tensor product as

⊗
i Ani ⊂ An,

the solution is simply a tensor product of individual solution. The proof can be similarly
done by following arguments provided in Ref. [42].

Let us consider a general L1 norm minimization problem with a tensor product structure
over M subsystems as

(P) minimize
x

∥x∥1

subject to
(

M⊗
i=1

Ai

)
x =

M⊗
i=1

bi,

where the i-th subsystem can be formulated as

(Pi) minimize
xi

∥xi∥1

subject to Aixi = bi.

Assuming that optimal solution exists for every (Pi), the following holds.

Lemma 15. Let x∗
i be the optimal solution for (Pi). Then, x∗ =

⊗M
i=1 x

∗
i is the optimal

solution for (P).

Proof. It is obvious that x∗ is a feasible solution, and therefore we show the optimality of
x∗ via duality. The dual problem for the total system is given as

(D) maximize
y

(
M⊗

i=1
b⊤

i

)
y

subject to
∥∥∥∥∥
(

M⊗
i=1

A⊤
i

)
y

∥∥∥∥∥
∞

≤ 1.
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where the dual problem for each subsystem can also be provided as

(Di) maximize
yi

b⊤
i yi

subject to
∥∥∥A⊤

i yi

∥∥∥
∞
≤ 1.

Now the strong duality of the problem assures that optimal solution y∗
i exists for any (Di)

with the optimal value given as ∥x∗
i ∥1 = b⊤

i y
∗
i . By taking y∗ :=

⊗M
i=1 y

∗
i , then it follows

from the property of L∞ norm that∥∥∥∥∥
(

M⊗
i=1

A⊤
i

)
y∗
∥∥∥∥∥

∞

=
∥∥∥∥∥

M⊗
i=1

(
A⊤

i y
∗
i

)∥∥∥∥∥
∞

=
M∏

i=1

∥∥∥A⊤
i y

∗
i

∥∥∥
∞
≤ 1,

which guarantees that y∗ is a feasible solution of (D). Now the objective function for the
dual problem (D) satisfies(

M⊗
i=1

b⊤
i

)
y∗ =

M∏
i=1

(
b⊤

i y
∗
i

)
=

M∏
i=1
∥x∗

i ∥1 =
∥∥∥∥∥

M⊗
i=1

x∗
i

∥∥∥∥∥
1

= ∥x∗∥1. (33)

Therefore, the objective functions of feasible solutions x∗ and y∗ for the primal and dual
problems coincide with each other and hence are optimal due to the strong duality.

Given Lemma 15, Proposition 2 in the main text follows directly by applying to the
calculation of RoM.

H Numerical details on RoM calculation
In this section, we provide details on the numerical results on RoM calculation.

H.1 More results on top-overlap method
Here, we provide the results on numerical demonstration regarding the top-overlap method
introduced in Sec. 3.2 in the main text. Concretely, we present results for random mixed,
pure, tensor product states of n = 4, 5, 6, 7 qubit system.

As is shown in Fig. 10, we can see that the top-overlap method significantly outperforms
naive random selection methods in all cases. We can see that the improvement becomes
more evident when we simulate larger systems; in particular, for n = 7 qubit case it suffices
to take only K = 10−5 to reach near-optimal value for any target.

Two remarks are in order. First, we note that we have added the column set of cover
matrix in the case of tensor product states, in order to assure the existence of a feasible
solution. In other words, the restriction of the column set solely using the information
of overlaps may lead to rank deficient matrix. Second, the run time of our algorithm for
the n = 6 qubit system was approximately 5 seconds for computing all the overlaps and 3
minutes for solving the LP. For the case of the n = 7 qubit system, the overlap computation
consumes 15 minutes at most and 15 minutes for solving the LP. The simulation was done
on a single laptop, and we envision that the use of MPI or GPU shall further speed up the
computation.
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H.2 Assuring feasibility
As mentioned in the previous subsection, we cannot obtain any feasible solution if the set
of stabilizer states are not appropriately restricted.

One of the most robust ways to assure feasibility for arbitrary quantum states is to
utilize an efficiently computed approximate solution with relatively low precision. Formally,
we can understand this as modifying the problem as

minimize
x

∥x∥1 + c∥e∥1
subject to Ax− b = e,

(34)

where e is introduced to absorb the numerical error due to rank deficiency, and c is a
hyperparameter that determines the penalty due to such an error. In practice, one may
add the cover matrix to the set of stabilizers for such a purpose.

The second method that is applicable in the case of tensor product states is to utilize
the solution obtained from small scale systems. As shown in Lemma 15 in Appendix G,
we can always obtain a feasible solution by taking tensor products and hence can be used
as an initialization. Therefore, one may extend the set of stabilizers so that the quality of
the solution is improved. Such a technique is also valid for the Column Generation method
presented in Sec. 4.

H.3 Overlap computation using singular value decompomsition
Here, we discuss how to efficiently compute the overlap between the Pauli vector b of
(n+m)-qubit system and a stabilizer state that can be decomposed into a tensor product
of n and m-qubit stabilizer state.

First, let us consider singular value decomposition of the Pauli vector as b =
∑r

k=1 σk(uk⊗
vk) where r is the number of nonzero singular values, uk and vk is the k-th vector of n and
m-qubit system with singular value of σk. Then, the overlap with all stabilizer states in
Sn ⊗ Sm (⊂ Sn+m) can be computed efficiently by noting that

b⊤(An ⊗Am) =
r∑

k=1
σk((u⊤

k An)⊗ (v⊤
k Am)) (35)

= vec(U⊤V ), (36)

where “vec” denotes the vectorization of a matrix, U and V are matrices whose k-th row
are given as

√
σku

⊤
k An and

√
σkv

⊤
k Am, respectively. From Eq. (35) to Eq. (36), we have

utilized the tensor product structure as(∑
k

λ(k) ⊗ ξ(k)
)

(l,m)

=
∑

k

λ
(k)
l ξ(k)

m =
(
Λ⊤Ξ

)
l,m

= vec(Λ⊤Ξ), (37)

where Λ = (. . . ,λ(k), . . . ) and Ξ = (. . . , ξ(k), . . . ).
The matrix-matrix product in Eq. (36) can be computed with time complexity of

O(r(n|Sn|+m|Sm|+ |Sn||Sm|)). In particular, when the target state is completely decou-
pled into two subsystems as r = 1, then the maximal value of all the overlaps between
|Sn||Sm| states can be computed with time complexity of O(n|Sn|+m|Sm|).

Note that, the above technique can be utilized as an initialization technique. Namely,
one may discard small singular values so that we can perform data compression as long as
the truncated state well-reproduces the original target state. Given the compressed data,
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we have used the Khatri-Rao product to regenerate the columns in the n+m-qubit system.
In this sense, one may further extend the approximation algorithm to low-entangled states
that can be represented efficiently by, e.g., tensor networks.
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Figure 10: Numerical demonstration of top-overlap method introduced in Sec. 3.2 in the main text.
The column set is restricted to K|Sn| (0 < K ≤ 1). The cyan and blue lines denote the approximate
RoM values computed by restricting the column set of stabilizers at random and by taking the largest

and smallest overlaps, respectively. The black dotted lines indicate the exact RoM values which is
computed with Column Generation method.
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Characterization of nonstabilizerness is fruitful due to its application in
gate synthesis and classical simulation. In particular, the resource monotone
called the stabilizer extent is indispensable to estimate the simulation cost us-
ing the rank-based simulators, which are one of the state-of-the-art simulators
of Clifford+T circuits. In this work, we propose fast numerical algorithms to
compute the stabilizer extent. Our algorithm utilizes the column generation
technique, which iteratively updates the subset of pure stabilizer states used
for calculating the value of the monotone, based on the information of the state
overlap between the target state and all stabilizer states. Upon updating the
subset, we make use of a newly proposed subroutine for overlap calculation
that (i) prunes unnecessary computation that does not contribute to stabilizer
extent, (ii) reduces the time complexity of necessary stabilizer states expo-
nentially per state, (iii) reduces the space complexity superexponentially by
in-place calculation. As a result, we have demonstrated our algorithm for ran-
dom pure states up to n = 9 qubits, which naively requires memory of 305 EiB.
We also show that our algorithm runs even more efficient when the target state
vector is real; the size of optimization problem is reduced exponentially so that
we can even simulate the case of n = 10 qubits in 7.4 hours.

1 Introduction
In the domain of universal fault-tolerant quantum computation, elementary gates are
often formulated to include both classically simulatable gates and more resource-intensive
gates, as exemplified by the prominent Clifford+T formalism of the magic state model [1,
2, 3, 4, 5, 6]. Since Clifford circuits are classically simulatable [1], non-Clifford gates
are essential for achieving quantum advantage [7, 8, 9, 10], and naturally it is crucial to
improve and characterize classical simulation algorithms to quantitatively understand the
computational speedups in quantum circuits [11, 12, 13, 14, 15, 16, 17].

When we address optimization problems involving the entire set of stabilizer states,
such as those related to Robustness of Magic (RoM) or stabilizer extent, the task becomes

Hiroki Hamaguchi: hamaguchi-hiroki0510@g.ecc.u-tokyo.ac.jp
Kou Hamada: zkouaaa@g.ecc.u-tokyo.ac.jp
Nobuyuki Yoshioka: nyoshioka@ap.t.u-tokyo.ac.jp
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Table 1: The size of Sn, the data size of An in sparse matrix format [19], and the time to
numerically compute the stabilizer extent for Haar random pure state by the naive method
and our proposed method in Section 3, or the method in Section 4 for n = 10.

n 5 6 7 8 9 10

|Sn| 2.42e+06 3.15e+08 8.13e+10 4.18e+13 4.29e+16 8.79e+19
size of An 1011 MiB 254 GiB 153 TiB 153 PiB 305 EiB 1 YiB

naive 7.7 min × × × × ×
proposed 1.5 s 3.8 s 12.9 s 8.8 min 19.2 h (Real Case)

exceedingly difficult due to the superexponential number of states involved. In the case of
RoM, it was shown by authors [18] that we can dramatically push the simulatable system
size by combining the column generation method and fast overlap calculations. Naturally,
this raises the question of whether the computation of stabilizer extent, which is utilized
as the state-of-the-art in classical simulators, can also be accelerated. However, this is not
straightforward for the following reasons: (i) the Fast Walsh-Hadamard Transform cannot
be used for inner product calculations, and (ii) the problem class is not given by Linear
Program (LP) but by a more challenging class of Second-Order Cone Program (SOCP),
reflecting the fact that variables are complex instead of real. Due to such a complication,
it has remained unclear whether stabilizer extent can be computed faster for larger qubit
counts.

In this work, we show that the computation of stabilizer extent can actually be ac-
celerated even further compared to the one for RoM. We find a novel canonical form of
pure stabilizer states that allows us to both enumerate them efficiently and perform fast
overlap computation that can be done exponentially faster per stabilizer state. We further
find that, when we search for the subset of stabilizer states during the Column Genera-
tion (CG) method, we can prune the computation based on the bounds of overlap values,
resulting in skipping nearly half of the overlap calculation. We numerically demonstrate
that our proposed algorithm allows us to compute the stabilizer extent of random pure
state up to n = 9 qubits, which naively requires memory of 305 EiB. Furthermore, with
the scope of application to entanglement resource states such as GHZ or W states and
eigenstates of physically important Hamiltonians, we show that real-coefficient state vec-
tors can be computed with even less computational cost. Concretely, the size of relevant
stabilizer states is reduced exponentially, so that we can compute the stabilizer extent of
random state up to n = 10 qubits.

The remainder of this paper is organized as follows. In Section 2, we present the
preliminaries on the formalism of stabilizer extent. In Section 3, we first introduce how
to calculate the overlap with all stabilizer states efficiently in Theorem 3, which serves as
the main subroutine for our algorithm. Then, we describe the algorithm that computes
stabilizer extent up to 9-qubit states with reduced computational resources by utilizing
these overlap values. In Section 4, we demonstrate that by specializing the algorithm for
states with certain properties, we can further compute the stabilizer extent for 10-qubit
states. Finally, in Section 5, we discuss our findings and provide future perspectives on
our work.
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2 Preliminaries
Let Sn := {|ϕj⟩} be the entire set of n-qubit stabilizer states. We also define the density
matrix for |ϕj⟩ as σj := |ϕj⟩⟨ϕj |. The size of Sn scales superexponentially as |Sn| =
2n ∏n−1

k=0(2n−k + 1) = 2O(n2) [20, Proposition 1]. See also Table 1 for the size of Sn.
The Robustness of Magic (RoM) is introduced in [21] to quantify an n-qubit state ρ,

represented by a density matrix. RoM is defined as follows:

R(ρ) := min
c∈R|Sn|

∥c∥1
∣∣∣∣∣∣ ρ =

|Sn|∑
j=1

cjσj

 .

The stabilizer extent is introduced in [22, Definition 3] to quantify an n-qubit state ψ,
represented by a state vector. Stabilizer extent is defined as follows:

ξ(ψ) := min
c∈C|Sn|

∥c∥21
∣∣∣∣∣∣ |ψ⟩ =

|Sn|∑
j=1

cj |ϕj⟩

 . (1)

In this paper, we focus on numerical computation of stabilizer extent. This definition (1)
can be simplified as the complex L1-norm minimization problem in the following.√

ξ(ψ) = min
x∈C|Sn|

{∥x∥1 | Anx = b} (2)

Here, we define An ∈ C2n×|Sn| as (An)ij := ⟨i|ϕj⟩ and b ∈ C2n
as bi := ⟨i|ψ⟩ using the

computational basis {|i⟩}2
n−1

i=0 . In reference to [23], problem (2) is a Second-Order Cone
Program (SOCP). Thus, by defining An as the columns set {aj} of An, its dual problem
can be derived as [23, Appendix A][24, Section 5.1.6]√

ξ(ψ) = max
y∈C2n

{
Re(b†y)

∣∣∣ ∣∣∣a†
jy

∣∣∣ ≤ 1 for all aj ∈ An

}
(3)

where † denotes the conjugate transpose.
Further, we introduce a function SolveSOCP(C, b) to describe our algorithm in later

sections. The C ⊆ An represents a column subset, and this function solves problem (3)
restricting An to C, and returns the solution x for the corresponding restricted primal
problem of (2), as well as the solution y for the restricted dual problem of (3). In actual
implementation, this function can be realized by just solving the corresponding primal
problem (2) with SOCP solver, such as MOSEK [25] or CVXPY [26, 27].

3 Scaling Up the Exact Stabilizer Extent Calculation
In the preceding sections, we introduced two similar quantum resource measures: Robust-
ness of Magic and stabilizer extent. Despite both being efficiently quantifiable through
convex optimization problems, solving them naively for n > 5 qubit systems becomes
impractical due to the superexponential growth of the number of stabilizer states |Sn| as
shown in Table 1. Moreover, the solver requires at least twice the memory size of An. To
address this challenge, in [18] we proposed employing a classical optimization technique
known as the Column Generation (CG) method [28] for RoM calculation. However, it
remained unclear whether the same approach could be applied to stabilizer extent, since
the structure of the matrix we use for the calculation, An, is largely different, and SOCP
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is more general and difficult than Linear Program (LP) [24, Section 4.4.2], which is used in
RoM calculation. Here, we demonstrate that leveraging the specific structure of stabilizer
states enables us to use the branch and bound method for the size reduction of An and a
similar method to work effectively for calculating stabilizer extent as well.

3.1 Core Subroutine: Calculating Overlap
Before considering the stabilizer extent, we define stabilizer fidelity of a pure quantum
state |ψ⟩ using its state vector b ∈ C2n

as√
F (|ψ⟩) := max

ϕ∈Sn

|⟨ϕ|ψ⟩| = max
aj∈An

∣∣∣a†
jb

∣∣∣,
which is the maximal overlap between the target state and the stabilizer states. The im-
portance of the stabilizer fidelity is highlighted by its role in computing the RoM [18] and
its direct relationship with stabilizer extent, as demonstrated in [22, Definition 4][23]. In
later sections, we will show that the stabilizer fidelity is crucial in our proposed approach.
Here, we demonstrate how to efficiently compute the stabilizer fidelity up to 9-qubit sys-
tems.

To this end, we introduce the following theorem which is useful for enumerating all the
stabilizer states. This theorem is a variant of previous works [29, Theorem 2], [30, Section
5], [31, Theorem 5.(ii)]. The proof is given in Appendix A.1.

Theorem 1. For all k ∈ {1, . . . , n}, define the following set:

Qk :=
{
Q

∣∣∣ Q ∈ Fk×k
2 is a upper triangular matrix

}
,

Rk :=
{
R

∣∣∣ R ∈ Fn×k
2 is a reduced row echelon form matrix with rank(R) = k

}
,

Tk(R) :=
{
t

∣∣∣ t ∈ Fn
2 is a representative of element in the quotient space Fn

2/ Im(R)
}
.

Define the set of states Sn,k as

Sn,k :=

 1
2k/2

2k−1∑
x=0

(−1)x⊤Qxic
⊤x |Rx+ t⟩

∣∣∣∣∣∣ Q ∈ Qk, c ∈ Fn
2 , R ∈ Rk, t ∈ Tk(R)

 , (4)

and define Sn,0 := {|t⟩ | t ∈ Fn
2}. Then, we have

⋃n
k=0 Sn,k = Sn.

Let |ϕ⟩ be one of the stabilizer states with k > 0 in Theorem 1, which means |ϕ⟩ =
1

2k/2
∑2k−1

x=0 (−1)x⊤Qxic
⊤x |Rx+ t⟩. Then, by denoting a ∈ An as the corresponding state

vector of |ϕ⟩, the overlap between states |ψ⟩ and |ϕ⟩ is given by a and b as

∣∣∣a†b
∣∣∣ = |⟨ϕ|ψ⟩| =

∣∣∣∣∣∣ 1
2k/2

2k−1∑
x=0

(−1)x⊤Qxic⊤x ⟨Rx+ t|ψ⟩

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2k−1∑
x=0

(−1)x⊤Qxic
⊤x

( 1
2k/2 b

†
Rx+t

)∣∣∣∣∣∣.
In the following, we define Px := 1

2k/2 b
†
x, and for the simplicity, we fix k = n,R = In, t = 0.

This assumption is not restrictive since the other cases can be easily reduced to this case.

Recall that what we want is maxaj∈An

∣∣∣a†
jb

∣∣∣. Owing to the equation above, this is basically

equivalent to the following problem:

max
Q,c

{∣∣∣∣∣
2n−1∑
x=0

(−1)x⊤Qxic
⊤xPx

∣∣∣∣∣
}
. (5)
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Figure 1: Visualization of stabilizer pruning for Theorem 2. Each cell stores the eval-
uated value of the expression, and the 2n+n(n+1)/2 leaf nodes correspond to the value∑2n−1

x=0 (−1)x⊤Qxic
⊤xPx. Since we only need one set of cells per color during the procedure,

we can do it in-place. This means the space complexity is O
(∑n

i=0 2i
)
, i.e., O(2n).

If we solve (5) naively, the time complexity is O
(
2n+n(n+1)/22nn2

)
, where 2n+n(n+1)/2 is

the number of combinations for (Q, c), 2n is the number of the terms in the summation,
and n2 is the computational cost per each term. However, we can compute this much
more efficiently.

Theorem 2. Problem (5) can be solved in O
(
2n+n(n+1)/2

)
time complexity and O(2n)

space complexity.

We refer to the algorithm used in Theorem 2 as stabilizer pruning in this paper.
Details are provided in Figure 1 and Appendix A.2. Stabilizer pruning is based on the
branch and bound method and is a recursive, in-place procedure. Since we are solving a
maximization problem, solutions inferior to the current best solution (or to 1 for the case
in Section 3.2.2) are unnecessary. Thus, we can terminate branches if the upper bound of
the current branch is lower than these values. For more details on the pruning strategy,
see Appendix A.3. By applying a similar argument for every k,R, and t, we can derive
the next theorem as a consequence.

Theorem 3. Stabilizer fidelity of a n-qubit state |ψ⟩ can be computed in time complexity
of O(|Sn|) and space complexity of O(2n).

Let us briefly discuss the numerical results of the stabilizer fidelity calculation. The
time to compute stabilizer fidelity of a Haar random 8-qubit state was 5 seconds, and
that of a 9-qubit state was 26 minutes, thanks to the pruning by the branch and bound
method. We will use a slightly modified version of this algorithm as a subroutine to
compute the stabilizer extent; namely, besides finding the maximum, we also identify other
large overlaps in the CG method. All numerical experiments in this paper are conducted
using C++17 compiled by GCC 9.4.0 and a cluster computer powered by Intel(R) Xeon(R)
CPU E52640 v4 with 270 GB of RAM using 40 threads, and all the codes are available at
GitHub [32].
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Figure 2: (a) Provisional value ξ̂k(ψ) in the Algorithm 1 for a Haar random 9-qubit state.
The ratio |C0|/|An| varies from 10−13 to 10−12. We got much better results with the top
overlap method compared to the randomly selected C0. The black dotted line labeled as
“Exact” represents ξ(ψ). (b) The convergence of the CG method for the same state. (c)
maxaj∈An

∣∣∣a†
jyk

∣∣∣ reached 1.00 after 10 iterations, indicating that the optimal solution has
been found.

3.2 CG Method for Stabilizer Extent Calculation

Algorithm 1: Exact Stabilizer Extent Calculation by Column Generation
Input: vector b ∈ C2n corresponding to the state ψ
Output: exact stabilizer extent ξ(ψ)

1 C0 ← Partial set of An /* Initialize using top overlap
∣∣∣a†

jb
∣∣∣ */

2 for k = 0, 1, 2, . . . do
3 xk, yk ← SolveSOCP(Ck, b)
4 ξ̂k(ψ)← ∥xk∥21
5 C′ ←

{
aj ∈ An

∣∣∣ ∣∣∣a†
jyk

∣∣∣ > 1
}

/* Use of subroutine in Section 3.1 */

6 if C′ = ∅ then
7 return ξ(ψ) = ξ̂k(ψ)
8 Ck+1 ← Ck ∪ C′

Next, we introduce the CG method, the algorithm to compute the exact stabilizer
extent ξ(ψ) up to 9-qubit systems. This is outlined in Algorithm 1, and is an iterative
algorithm that solves a subproblem restricted to C ⊆ An per each iteration. It begins with
a small subset of columns C0 and progressively adds a set of columns C′ that violate the
constraints of the dual problem (3), and terminate if there are no more violated columns.
For further implementation techniques, we direct the reader to [18]. There are two key
aspects of this algorithm: the initialization process and the optimality of the solution. We
will discuss these in subsequent sections.

3.2.1 Initialization

In the initial step of Algorithm 1, we select a subset C0 ⊆ An in descending order of
∣∣∣a†

jb
∣∣∣,

which can be computed efficiently as stated in Theorem 3. The size of C0 is arbitrary. In
the experiment shown in Table 1, we set it to 10,000 for n ≤ 8 and 100,000 for n = 9. The
use of

∣∣∣a†
jb

∣∣∣ = |⟨ϕj |ψ⟩| as the indicator can be justified with various interpretations. One
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of them is to consider it as the “closeness” between the states |ϕj⟩ and |ψ⟩, which means
choosing states based on their overlaps is reasonable. The numerical experiment result in
Figure 2 also supports the effectiveness of this indicator. For a Haar random pure 9-qubit
state, even if we use as small subset as |C0| = 10−12|An|, the obtained value ξ̂0(ψ) closely
approximated the exact extent ξ(ψ) and outperformed randomly selected C0.

3.2.2 Optimality of Solution

The terminate criterion for Algorithm 1 is the absence of columns that violate the dual

constraints
∣∣∣a†

jyk

∣∣∣ ≤ 1, which can be checked efficiently by Theorem 3 as well. The

termination of the CG method indicates that the optimal dual solution for problem (3)
has been found, and the primal solution xk is also optimal for problem (2) thanks to the
strong duality of the SOCP. Consequently, we can affirm that Algorithm 1 is certain to
find the exact stabilizer extent for any state |ψ⟩ once it terminates. The convergence of the
CG method is also confirmed in numerical experiments. For the same 9-qubit state as in

the initialization, maxaj∈An

∣∣∣a†
jyk

∣∣∣ reaches 1.00 after 10 iterations, indicating the discovery

of the optimal solution.

4 Calculation for States With Special Properties
So far, we have explored the method for calculating the stabilizer extent applicable to the
general case. However, the method is limited to around n ≤ 9 due to the superexponential
growth of |Sn|. Nevertheless, for states possessing certain properties, computations can
be extended to even larger quantum systems.

One of the examples is a product state, ψ = ⊗jψj . The multiplicative of stabilizer
extent asserts that ξ(ψ) =

∏
j ξ(ψj) holds true if all factors are at most 3-qubits state [22].

Unfortunately, if the factors contain a 4 or more qubits state, we cannot guarantee that
the multiplicativity always holds [23]. However, we can still use the tensor product of each
solution xj of ξ(ψj) as the initial guess for the solution of ξ(ψ).

In this section, we will explore how to leverage another property of a state: the real-
ness of expansion coefficients. To the best of our knowledge, this property has not been
investigated in previous works, and it offers significant advantages for calculation.

4.1 Applications
Firstly, we will present examples of states with real coefficients. One of the well-known
examples is the W-state and the GHZ-state, defined as follows:

|W ⟩ := 1√
n

(|100 . . . 0⟩+ |010 . . . 0⟩+ · · ·+ |000 . . . 1⟩), |GHZ⟩ := |0⟩
⊗n + |1⟩⊗n

√
2

Other important applications include eigenstates of quantum many-body Hamiltonians
with time-reversal symmetry, whose matrix elements are given by real components. For
instance, physically important Hamiltonians such as in XXZ and Heisenberg spin models,
transverse-field Ising model, Fermi-Hubbard model, and t-J model all preserve the time-
reversal symmetry regardless of the underlying lattice. Beyond condensed matter systems,
we may also consider first-principle quantum chemistry Hamiltonians or lattice gauge the-
ory Hamiltonians such as the 1d Schwinger model. Note that the abundance of examples
reflects the fact that the microscopic equation of motion is time-reversal symmetric unless
there is a spontaneous symmetry breaking or the weak interaction.
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In this section, we will compute the stabilizer extent for uniformly random quantum
states with real expansion coefficients up to 10-qubit systems. Targeting random states
allows us to avoid assuming unnecessary specificity, thereby demonstrating the broad
computational potential.

4.2 Reduction of Problem Size
Now, we will state how to efficiently compute the stabilizer extent for the state with real
coefficients. Firstly, we define S ′

n ⊂ Sn as follows:

S ′
n = {|ϕj⟩ ∈ Sn | ⟨i|ϕj⟩ ∈ R for all i}.

This means that S ′
n is the union of Sn,0 and the set of states with c = 0 in Theorem 1.

Let A′
n denote the corresponding subset of the columns in An. Also refer to Figure 3 for

the definition of A′
n. Then, the next lemma holds.

00
01
10
11

00
01
10
11

∗∗∗∗∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

R
ea

l
Im

ag

k = 0 k = 1 k = 2

+1

+1/
√

2

+1/2

−1/2

−1/
√

2

Figure 3: Visualization of the matrix An, i.e., the column set An, with n = 2. The upper
half corresponds to the real part, and the lower half corresponds to the imaginary part.
The j-th column of this represents a column aj for a stabilizer state |ϕj⟩. The k below
the matrix corresponds to the k in Theorem 1. By restricting the column set An to the
starred columns which are real vectors, we can obtain A′

n.

Lemma 1. Suppose y is a real vector and satisfies
∣∣∣a†y

∣∣∣ ≤ 1 for all a ∈ A′
n. Then, y

satisfies
∣∣∣a†y

∣∣∣ ≤ 1 for all a ∈ An.

Proof. Fix a ∈ An and let |ϕ⟩ denote the corresponding state. We will check that
∣∣∣a†y

∣∣∣ ≤ 1.
Now, consider |ϕ⟩ in the form in Theorem 1. The case k = 0 is trivial since then a ∈ A′

n.
Suppose that k > 0 and |ϕ⟩ = 1

2k/2
∑2k−1

x=0 (−1)x⊤Qxic
⊤x |Rx+ t⟩, and a†y = α+iβ (α, β ∈

R). The following two states

|ϕ+⟩ := 1
2k/2

2k−1∑
x=0

(−1)x⊤Qx |Rx+ t⟩ , |ϕ−⟩ := 1
2k/2

2k−1∑
x=0

(−1)x⊤Qx+c⊤x |Rx+ t⟩

belong to S ′
n. Let define a+ and a− as the columns in A′

n of |ϕ+⟩ and |ϕ−⟩, respectively.
Then, we have a†

+y = α+ β, a†
−y = α− β, and∣∣∣a†y

∣∣∣ =
√
α2 + β2 ≤ |α|+ |β| = max{|α+ β|, |α− β|} ≤ 1.

The last inequality follows from the assumption, completing the proof.

As a result, we can derive the following corollary of Thorem 3.
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Figure 4: The convergence of the CG method for a uniformly random state with real
coefficients. It shows a similar behavior to Figure 2 and indicates the optimality of the
solution.

Corollary 1. Stabilizer fidelity of a n-qubit state |ψ⟩ with real coefficients can be computed
in time complexity of O(|Sn|/2n) and space complexity of O(2n).

Now, we are ready to prove the following theorem.

Theorem 4. Suppose that |ψ⟩ is a state with real coefficients. The optimal solution for
problem (3) is also optimal for a restricted problem where An is substituted by A′

n.

Proof. The main idea is the same as in [18, Proposition 2]. Let x∗ and y∗ be the optimal
solutions of the restricted primal and dual problems, namely, problem (2) and problem (3)
with the column set A′

n instead of An. We can assure such solutions always exist. Now,
we show that the x∗, y∗ are optimal not only for the restricted problems but also for the
original problems.

Let OPT be the optimal value for the original problems. Since x∗ can be a feasible
solution for the original primal problem, it is clear that OPT ≤ ∥x∗∥1. By the strong
duality theorem, OPT is also the optimal value for the original dual problem. From
Lemma 1, we can see that y∗ is a feasible solution for the original dual problem and OPT ≥
Re(b†y∗). Again, by applying the strong duality theorem to the restricted problems, we
have ∥x∗∥1 = Re(b†y∗), which means that OPT = ∥x∗∥1 = Re(b†y∗). Therefore, x∗ and
y∗ are also optimal solutions for the original problems.

Thanks to Theorem 4, we can reduce the size of the column set size by a factor of
O(2n). Figure 4 presents the outcomes of our numerical experiments conducted on a
uniformly random 10-qubit state. The results demonstrate our success in computing its
stabilizer extent, achieved within a time frame of 7.4 hours.

5 Discussion
In this paper, we have shown that the stabilizer fidelity and stabilizer extent can be
efficiently calculated by leveraging the specific structure of stabilizer states. We proposed
an algorithm based on the branch and bound method and the CG method to compute
the exact stabilizer extent, and demonstrated its applicability to sufficiently large systems.
Additionally, we proposed a specialized algorithm for states with real coefficients.

While the idea of applying resource theory to quantum computing has attracted a
great amount of interest, the barrier of computational hardness (in particular memory

9



consumption) has prevented us from gaining further benefits for circuit design and opti-
mization. We envision that the methodology proposed in this work shall not be limited
to the stabilizer extent but also expected to generalize to other monotones such as the
dyadic negativity [15].
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Martin Roetteler, and Matthias Troyer. “Quantum computing enhanced computa-
tional catalysis”. Physical Review Research 3, 033055 (2021).

[10] Nobuyuki Yoshioka, Tsuyoshi Okubo, Yasunari Suzuki, Yuki Koizumi, and Wataru
Mizukami. “Hunting for quantum-classical crossover in condensed matter problems”.
npj Quantum Information 10, 45 (2024).

[11] Sergey Bravyi, Graeme Smith, and John Smolin. “Trading classical and quantum
computational resources”. Physical Review X 6, 021043 (2016).

[12] Emanuele Tirrito, Poetri Sonya Tarabunga, Gugliemo Lami, Titas Chanda, Lorenzo
Leone, Salvatore F. E. Oliviero, Marcello Dalmonte, Mario Collura, and Alioscia
Hamma. “Quantifying nonstabilizerness through entanglement spectrum flatness”.
Physical Review A: Atomic, Molecular, and Optical Physics 109, L040401 (2024).

10



[13] Oliver Hahn, Alessandro Ferraro, Lina Hultquist, Giulia Ferrini, and Laura Garćıa-
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A Fast Algorithm for Overlap
In this section, we will explain the details of the stabilizer pruning in Section 3.1 and
introduce some heuristics to improve efficiency.

A.1 Efficient Enumeration of Stabilizer States
In this section, we prove Theorem 1.

Theorem 1. For all k ∈ {1, . . . , n}, define the following set:

Qk :=
{
Q

∣∣∣ Q ∈ Fk×k
2 is a upper triangular matrix

}
,

Rk :=
{
R

∣∣∣ R ∈ Fn×k
2 is a reduced row echelon form matrix with rank(R) = k

}
,

Tk(R) :=
{
t

∣∣∣ t ∈ Fn
2 is a representative of element in the quotient space Fn

2/ Im(R)
}
.

Define the set of states Sn,k as

Sn,k :=

 1
2k/2

2k−1∑
x=0

(−1)x⊤Qxic
⊤x |Rx+ t⟩

∣∣∣∣∣∣ Q ∈ Qk, c ∈ Fn
2 , R ∈ Rk, t ∈ Tk(R)

 , (4)

and define Sn,0 := {|t⟩ | t ∈ Fn
2}. Then, we have

⋃n
k=0 Sn,k = Sn.

Proof. The main idea comes from [29]. From previous works [29, Theorem 2], [30, Section
5], and [31, Theorem 5.(ii)], we know that any state in

⋃n
k=0 Sn,k is a stabilizer state.

Thus, we can construct a inclusion map from
⋃n

k=0 Sn,k to Sn. In this proof, we will show
that this map is bijective, which means this map is an identity mapping. The assertion is
trivial for the case k = 0 with 2n instances. We will only consider the case k > 0. Define
f : (Q, c,R, t) 7→ |ϕ⟩ as a map from (Q, c,R, t) to the corresponding stabilizer state |ϕ⟩.
We will confirm that f is bijective. First, we show that f is injective. We can say that{

R1x+ t1
∣∣∣ x ∈ Fn−k

2

}
=

{
R2x+ t2

∣∣∣ x ∈ Fn−k
2

}
⇐⇒ (Im(R1) = Im(R2)) ∧ (t1 − t2 ∈ Im(R1))
⇐⇒ R1 = R2 ∧ t1 = t2.

The last equivalence is due to the property of the reduced row echelon form and the
quotient space. Given that Q is an upper triangular matrix, both Q and c can be uniquely
reconstructed from the expansion coefficients of the state. Consequently, the f is injective.

Next, we show that f is surjective. Since f is injective, we only have to show that
the cardinality of the domain is equal to that of the codomain, i.e., −2n + |Sn|. It is
known that the number of Fn×k

2 reduced row echelon form matrices R with rank(R) = k
is

[n
k

]
2, which is a q-binomial coefficient with q = 2. Therefore, the number of Q, c,R, t is

2k(k+1)/2, 2k,
[n
k

]
2, 2

n−k, respectively, and the total number of states is

n∑
k=1

2k(k+1)/22k

[
n

k

]
2
2n−k = −2n+2n

n∑
k=0

[
n

k

]
2
2k(k+1)/2 = −2n+2n

n∏
k=1

(2k +1) = −2n+|Sn|.

In the second to last equation, we used the q-binomial theorem. Therefore, the mapping
is surjective, which concludes the proof.
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In Theorem 1, we used F2. However, from the perspective of the branch and bound
method, it is more practical to use {0, 1} ⊂ Z and permit the term c⊤x to be any integer
value. Otherwise, −1 = i1+1 ̸= i0 = 1 although 1+1 = 0 in F2, which makes the algorithm
more complicated. Hence, the subsequent corollary is valuable.

Corollary 2. In Theorem 1, We can substitute F2 with {0, 1} ⊂ Z.

Proof. By substituting F2 with {0, 1} ⊂ Z, the term (−1)x⊤Qx is invariant, and the term
ic

⊤x is multiplied by −1 iff p ≡ 2, 3 (mod 4), where p is the number of i such that ci = 1
and xi = 1. Now, we consider the following form for k > 0:

|ϕ⟩ := 1
2k/2

2k−1∑
x=0

(−1)x⊤(Q+Q′)xic
⊤x |Rx+ t⟩ (6)

where Q′
ij = 1 iff (i < j) ∧ (ci = cj = 1). Now, if the pair (Q, c,R, t) in (6) is the same as

that of the original form (4), then the two states represent the exactly same state since

(−1)x⊤Q′x = (−1)(
p
2) =

{
1 if p ≡ 0, 1 (mod 4),
−1 if p ≡ 2, 3 (mod 4).

Therefore, by identifying the Q+Q′ in Z with the Q in F2, we can conclude the proof.

A.2 Branching in Branch and Bound Method
In this section, we prove Theorem 2. Note that problem (5) is equivalent to the following
problem thank to Corollary 2:

max
Q∈{0,1}n×n,c∈{0,1}n

{∣∣∣∣∣
2n−1∑
x=0

(−1)x⊤Qxic
⊤xPx

∣∣∣∣∣
}
.

Theorem 2. Problem (5) can be solved in O
(
2n+n(n+1)/2

)
time complexity and O(2n)

space complexity.

Proof. Define x :=
[
x0
x

]
(x0 ∈ {0, 1}, x ∈ {0, 1}n−1), Q :=

[
Q00 Q⊤

0
0 Q

]
(Q00 ∈ {0, 1}, Q0 ∈

{0, 1}n−1, Q ∈ {0, 1}(n−1)×(n−1)), and c :=
[
c0
c

]
(c0 ∈ {0, 1}, c ∈ {0, 1}n−1). Since x⊤Qx =

x0(Q00 +Q⊤
0 x) + x⊤Qx and c⊤x = c0x0 + c⊤x, we can derive that

2n−1∑
x=0

(−1)x⊤Qxic
⊤xPx =

2n−1−1∑
x=0

(−1)x⊤Qxic
⊤x

(
P2x + (−1)Q00+Q⊤

0 xic0P2x+1
)

=
2n−1−1∑

x=0
(−1)x⊤Qxic

⊤xP x (7)

where P x := P2x + (−1)Q00+Q⊤
0 xic0P2x+1, and we identify a vector

[
x0 x1 · · · xn−1

]⊤

as a integer
∑n−1

i=0 xi2i. Since (7) is the same form as the original one, this problem can
be solved recursively by fixing the value Q00, Q0 and c0.

We now analyze the time complexity of this recursive algorithm. There are 2n+1

possible combinations of Q00, Q0, and c0. For each such combination, P x can be computed
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in O
(
n2n−1)

time. Hence, we establish the following recurrence relation for the time
complexity T (n):

T (n) = 2n+1(T (n− 1) + n2n−1), T (1) = 4.

Solving this recurrence relation yields

T (n) = 2n+ n(n+1)
2 +

n∑
d=2

2n+ n(n+1)
2 − d(d−1)

2 d,

T (n)

2n+ n(n+1)
2

= 1 +
n∑

d=2
2− d(d−1)

2 d ≤ 1 +
n∑

d=2
2−d+1d = 4− (n+ 2)2−n+1 → 4 (n→∞).

Therefore, the time complexity is O
(
2n+n(n+1)/2

)
. The statement of the space complexity

is apparent from Figure 1.

While the algorithm and proof presented above may seem somehow rough, our actual
implementation is significantly more precise and efficient. You can access it at GitHub [32].
Moreover, we can enhance efficiency further by employing branch-cut heuristics, as we will
explain in the next section.

A.3 Pruning for the Branch and Bound Method
In the previous section, we explained the stabilizer pruning. This algorithm can be much
faster by using the branch-cut heuristics we will introduce in this section. Firstly, recall
that we are maximizing the following:

max
Q,c

{∣∣∣∣∣
2n−1∑
x=0

(−1)x⊤Qxic
⊤xPx

∣∣∣∣∣
}
.

This can be easily bounded by

max
Q,c

{∣∣∣∣∣
2n−1∑
x=0

(−1)x⊤Qxic
⊤xPx

∣∣∣∣∣
}
≤ max

Q,c

{2n−1∑
x=0

∣∣∣(−1)x⊤Qxic
⊤xPx

∣∣∣} =
2n−1∑
x=0
|Px|.

Such a bound is important for the branch and bound method, because it allows us to
terminate the branch if the current value is inferior to the bound. However, this bound
can be more refined. Since each coefficient takes only 1,−1, i or −i, we can bound as
follows

max
Q,c

{∣∣∣∣∣
2n−1∑
x=0

(−1)x⊤Qxic
⊤xPx

∣∣∣∣∣
}
≤ max

cx

{∣∣∣∣∣
2n−1∑
x=0

icxPx

∣∣∣∣∣
}

(8)

where cx takes values independently from the set {0, 1, 2, 3}. Let P :=
∑2n−1

x=0 icxPx, and
define θx := arg(icxPx). We have

max
cx
{|P |} = max

cx,θ

{
⟨P, eiθ⟩

}
= max

cx,θ

{2n−1∑
x=0
⟨icxPx, e

iθ⟩
}

= max
cx,θ

{2n−1∑
x=0
|Px| cos(θx − θ)

}
(9)

where ⟨·, ·⟩ denotes the inner product of complex values. Then, we can confirm that
Algorithm 2 is certain to return the optimal solution for (8) as follows. If we fix the value
of θ in (9), the optimal values of cx can be determined so that cos(θx − θ) is maximized,
i.e., θx ∈ [θ − π/4, θ + π/4). Then, instead of trying all the possible values of θ, we can
run Algorithm 2 to cover all the possible optimal solutions of cx, which are sufficient to
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Algorithm 2: Bounding for the Branch and Bound Method
Input: Coefficients Px for x = 0, 1, . . . , 2n − 1
Output: The answer for problem (8)

1 Modify the cx and sort so that 0 ≤ θ0 ≤ θ1 ≤ · · · ≤ θ2n−1 < π/2.
2 ans← 0
3 for x← 0 to 2n − 1 do
4 ans← max

(
ans,

∣∣∣∑2n−1
x=0 icxPx

∣∣∣)
5 cx ← cx + 1
6 return ans

Input

P00

P01

P10

P11

same as
the first one

The maximum exists among these.

Figure 5: Visualization of Algorithm 2. Suppose that n = 2 and Px are represented as the
vectors in the complex plane (e.g., P00 = 1 − 5i) in the left figure. Iterating the loop in
Algorithm 2 yields 2n patterns of the coefficients cx, as depicted in the right figure. The
maximum of problem (8) exists among these 2n patterns.

calculate maxcx{|P |}. Refer to Figure 5 for a visual representation of this algorithm. The
time complexity of this approach is O(n2n) owing to the sorting of 2n elements.

As the end of this section, we evaluate the performance of this bound. We can obtain
the lower bound of (9) by taking the expected value with respect to θ as follows:

max
cx
{|P |} = max

cx,θ

{2n−1∑
x=0
|Px| cos(θx − θ)

}

≥ E
[
max

cx

{2n−1∑
x=0
|Px| cos(θx − θ)

}]
=

2n−1∑
x=0
|Px| · E

[
max

cx
{cos(θx − θ)}

]
. (10)

Here, we assume θ is drawn from the uniform distribution over [0, 2π). Then, we can
replace each term E[maxcx {cos(θx − θ)}] with E[cos(θ′

x)] where θ′
x follows the uniform

distribution over the interval [−π/4,+π/4). Then, we can derive that

maxcx {|P |}∑2n−1
x=0 |Px|

≥
∑2n−1

x=0 |Px| · E[cos θ′
x]∑2n−1

x=0 |Px|
=

∫ + π
4

− π
4

cos(θ) dθ
π/2 = 2

√
2

π
= 0.900316 · · · .

The result of a numerical experiment suggests that this lower bound serves as a rough
approximation of the ratio. We independently sampled Px from the standard normal
distribution and θx from the uniform distribution over [0, 2π). The numerical experiment
results obtained are as follows. Firstly, the average of

maxcx {|P |}∑2n−1
x=0 |Px|

=
maxcx

{∣∣∣∑2n−1
x=0 icxPx

∣∣∣}∑2n−1
x=0 |Px|

15



over 100 runs yields 0.935624 for n = 4. This confirms that Algorithm 2 provides a better
bound compared to

∑2n−1
x=0 |Px|. However, in the same setting, it turned out that the

average of

maxQ,c

{∣∣∣∑2n−1
x=0 (−1)x⊤Qxic

⊤xPx

∣∣∣}∑2n−1
x=0 |Px|

yields 0.824056, implying the bound (8) may not necessarily be optimal. Whether a better
bound can be obtained with fewer computational cost is left for an open problem.
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Abstract. We extend classical information transmission via quantum channels to general physical the-
ories where states and measurements are operationally defined. By generalizing the method invented by
Wang and Renner [Phys. Rev. Lett. 108, 200501 (2012)], we obtain the upper bound of the one-shot
classical capacity, the optimal rate of classical information transmitted using a single channel constrained
by a certain error probability, in general physical theories. We also derive its lower bound by showing the
existence of a good code. Then we demonstrate the asymptotic equivalence between classical capacity and
hypothesis testing relative entropy even in any general physical theory.
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1 Introduction

Since Shannon invented the information theory [48], it
has been increasingly important (see e.g., Ref. [14]). The
goal of information theory is basically to express the opti-
mal efficiency for some tasks, and the optimal efficiencies
for different tasks are sometimes equivalent or directly
related through some information quantities like mutual
information. A typical example is the asymptotic equiv-
alence between the exponent rate of hypothesis testing
and classical information transmission capacity [52].

Recently, as quantum information theory (see e.g.,
Refs. [56, 55]) has flourished, similar relations are known
in quantum theory. In particular, the same relation-
ship between hypothesis testing and channel capacity also
holds in quantum theory [20, 37, 44, 45, 21, 7]. Such facts
imply that an information theory should possess such re-
lations between the optimal efficiencies for some tasks
independently of the mathematical structure of its back-
ground physical systems.

However, when we establish an information theory
standing by the operationally minimum principles, pos-
sible models of background physical systems are not re-
stricted to classical and quantum theory. Such theories
are called General Probabilistic Theories [22, 15, 42, 35,
30, 31, 16, 18, 38, 43, 19, 6, 39, 27, 49, 3, 28, 36, 10, 11,
34, 5, 12, 13, 26, 29, 25, 1, 57, 47, 46, 53, 40, 2, 24, 33, 41]
(for a review, see, e.g., Refs. [15, 22, 42, 35]). The frame-
work of GPTs is a kind of generalization of classical
and quantum theory whose states and measurements are
operationally defined, and studies of GPTs have been
widespread recently.

Even in such general models, some properties of in-
formation theory also hold similarly to quantum theory.
One of such results of preceding studies of GPTs is the
no-cloning theorem in GPTs [4]. It is clarified that any
model except for classical theory cannot copy any infor-
mation freely, similar to the no-cloning theorem in quan-
tum theory, which means that quantum theory is not a
special theory with no-cloning, but the classical theory is

∗minagawa.shintaro@nagoya-u.jp
†hayato.arai@riken.jp

a special theory with cloning.
On the other hand, some properties of information the-

ory are drastically changed in GPTs. A typical example
is entropy. Because entropy is not generalized straight-
forwardly in GPTs [3, 49, 28, 40, 41], we cannot easily
obtain a similar result of optimal efficiency for certain in-
formation tasks. Therefore, whether there are the same
relations between optimal efficiencies for different tasks
as the relations in classical and quantum theory is a dif-
ficult problem.

In this work [32], we discuss hypothesis testing and
classical information transmission in GPTs in the same
way as classical and quantum theory following Ref. [54].
Next, we estimate the upper and lower bound of one-shot
classical capacity by hypothesis testing relative entropy1

in GPTs. As a result, we obtain upper and lower bounds
similar to that of quantum theory. Moreover, due to the
construction of the achievable case of our bound, our re-
sult of the one-shot case can be applied to the asymptotic
case even though the asymptotic scenario is complicated
in GPTs. Consequently, we show the asymptotic equiv-
alence between the above two efficiencies even in GPTs.

2 General probabilistic theories

Here we introduce the mathematical basics of GPTs
following Refs. [57, 22, 42, 35]. Let V be a finite-
dimensional real vector space and the subset K ⊂ V be
a positive cone, i.e., a set satisfying the following three
conditions: (i) λx ∈ K holds for any x ∈ K and any
λ ≥ 0. (ii) K is convex and has a non-empty interior.
(iii) K ∩ (−K) = {0}. The dual cone of K, denoting K∗

is defined as follows:

K∗ := {y ∈ V ∗ | ⟨y, x⟩ ≥ 0 ∀x ∈ K} (1)

where ⟨, ⟩ is the inner product of the vector space V .
Besides, an inner point u ∈ K∗, called unit effect, is fixed
for a model. Then, a state in this model is defined as an
element ρ ∈ K satisfying ⟨ρ, u⟩ = 1. The state space,

1This quantity was first introduced by Ref. [9], and the relation-
ship to one-shot classical capacity was derived by Ref. [54], but we
generalize it to GPTs in this paper.
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i.e., the set of all states, is denoted as S(K). Due to the
convexity of K, the state space S(K) is also convex.

Also, a measurement is defined as a family e :=
{ej}j∈J satisfying ej ∈ K∗ for any j ∈ J and

∑
j∈J ej =

u. The measurement space, i.e., the set of all measure-
ments with finite outcomes, is denoted as M(K). Here,
⟨ej , ρ⟩ corresponds to the probability of obtaining an out-
come j ∈ J when we perform a measurement e to a state
ρ ∈ S(K). Next, we define an order relation ≥ on K∗.
We say that f ≥ e if f−e ∈ K∗. This means that for any
element x ∈ K, ⟨f, x⟩ ≥ ⟨e, x⟩. Here, we remark that a
family {e, u− e} is a measurement in M(K) if and only
if the element e ∈ K∗ satisfies 0 ≤ e ≤ u by using the
above order relation.

Next, we define a measurement channel associated
with a measurement e as the following map Ee from S(K)
to S(Rn

+) [42]:

Ee(ρ) :=
∑
j∈J

⟨ej , ρ⟩ |j⟩⟨j| . (2)

We also define an adjoint map of a measurement channel
Ee as E†

e(f) :=
∑

j∈J⟨f, |j⟩⟨j|⟩ej . Note that the data-
processing inequality also holds for measurement chan-
nels even in the framework of GPTs.

3 Hypothesis testing relative entropy in
GPTs

Next, we introduce hypothesis testing relative entropy
in general models. In quantum theory, hypothesis testing
relative entropy is defined for 0 ≤ ϵ ≤ 1 as follows [9, 8,
54, 17]:

Dϵ
H(ρ||σ) := − log2 min

E:0≤E≤1,
Tr{Eρ}≥1−ϵ

Tr{Eσ} , (3)

where 1 is an identity operator.
As a generalization of this definition, we can introduce

hypothesis testing relative entropy in GPTs as follows:

Definition 1 Let ρ, σ ∈ Ω be states and q be an effect
where 0 ≤ ⟨q, ρ⟩ ≤ 1 holds for any state ρ ∈ Ω. Let
0 ≤ ϵ ≤ 1 be a real value. We define hypothesis testing
relative entropy in the considering GPT as follows:

Dϵ
H,G(ρ||σ) := − log2 min

q: 0≤q≤u,
⟨q,ρ⟩≥1−ϵ

⟨q, σ⟩ . (4)

4 One-shot classical capacity in GPTs

Here we consider one-shot classical capacity in GPTs
based on the setup given by Ref. [54]. First, we describe
our setup of one-shot classical information transmission
from the sender in the system A to the receiver in the
system B.

The sender and receiver share a channel Φ from X to
S(K) defined as Φ(|x⟩⟨x|) = σB

x , where X is an alpha-
bet. The sender encodes an n-length bit string j ∈ Γ :=
{0, 1, 2, · · · , 2n−1} to x ∈ X by using a function g(j) = x
called encoder. Also, the set G = g(Γ) and the element
g(j) are called codebook and codeword, respectively. The

𝑗 En
coder

𝑔 𝑗 ∈ 𝒳 Φ ℳ 𝑗′
𝜎!(#) De

coder

Figure 1: The setup of sending classical information.
Reprinted from [32]. The dotted arrows mean trans-
missions of classical information. The solid line means a
transmission of a state in the general theory. The sender
chooses the massage j ∈ Γ and encodes it by a function
g : Γ → X . Classical information g(j) is transformed into
the state σg(j) by a channel Φ whose input is the classical
information and whose output is the state of the GPT of
the receiver’s system. Then the receiver performs a mea-
surement M to σg(j) and decodes that result to obtain
classical information j′. We say that the measurement
decodes the message j correctly when j′ = j.

receiver performs a measurement mB := {mB
j }j∈Γ to the

arrived state σB
g(j), where mB

j ≥ 0 and
∑

j∈Γ m
B
j = u.

The error probability for a given message j ∈ Γ, encoder
g and measurement mB is defined as

Pr(error|j, g,mB) = ⟨u−mB
j , σ

B
g(j)⟩ . (5)

The sender and receiver aim to maximize the size of
bit strings under the condition that the average error is
small enough. In order to define the rate of this task and
the capacity of the channel, we define a (2n, ϵ)-code that
fulfills this aim.

Definition 2 Let Γ = {0, 1, . . . , 2n−1} be a n-length bit
string. A (2n, ϵ)-code for a map Φ : |x⟩⟨x| 7→ σB

x consists
of an encoder g : Γ → X and decoding measurement
mB := {mB

j }j∈Γ whose average error probability when
the messages j ∈ Γ is chosen uniformly at random is
bounded from the above by ϵ, in a formula,

Pr(error|g,mB) :=
1

2n

∑
j∈Γ

Pr(error|j, g,mB) ≤ ϵ . (6)

Then, we define the rate and capacity as follows.

Definition 3 A real number R ≥ 0 is a one-shot ϵ-
achievable rate for one-shot classical information trans-
mission through Φ if there is a (2R, ϵ)-code.

Definition 4 The one-shot ϵ-classical capacity of a map
Φ, Cϵ(Φ) is defined as

Cϵ(Φ) := sup{R | R is a one-shot ϵ-achievable rate} .
(7)

Now, we define the following ensemble:

πAB
PX

:=
∑
x∈X

PX(x) |x⟩⟨x|A ⊗ σB
x , (8)

where PX(x) is a probability distribution of a random
variable associated with the alphabet X . The marginal
states with respect to A and B are the followings, respec-
tively:

πA
PX

=
∑
x∈X

PX(x) |x⟩⟨x|A , πB
PX

=
∑
x∈X

PX(x)σB
x .

(9)
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In quantum theory, the ϵ-one-shot classical capacity
is asymptotically equivalent to the optimal hypothesis
testing relative entropy between the above ensemble πAB

and the product of its marginal states. This paper shows
that the equivalence also holds even in GPTs.

Firstly, we show the converse part, i.e., the upper
bound of Cϵ(Φ) by applying the generalization of deta-
processing inequality.

Theorem 5 The ϵ-one-shot classical capacity of a map
Φ : |x⟩⟨x| 7→ σB

x is bounded as follows:

Cϵ(Φ) ≤ sup
PX

Dϵ
H,G(πAB

PX
||πA

PX
⊗ πB

PX
) , (10)

where the supremum is taken over all probability distri-
bution PX , and where πA

PX
and πB

PX
is a marginal state

of πAB
PX

with regard to system A and B, respectively.

Next, we show the achievable part, which gives the
lower bound of Cϵ(Φ).

Theorem 6 The ϵ-one-shot classical capacity of a map
Φ : x ∈ X → σB

x satisfies the following inequality for any
ϵ′ ∈ (0, ϵ), any s > 1 , and any t > s satisfying ϵ > sϵ′:

Cϵ(Φ) ≥ sup
PX

Dϵ′

H,G(πAB
PX

||πA
PX

⊗πB
PX

)−log2

t

ϵ− sϵ′
. (11)

5 Asymptotic i.i.d. case

In this section, we consider how the capacity is ex-
pressed when a channel is used m (a positive integer)
times in an independent and identical distribution (i.i.d.).

We express m-length sequence consists of alphabet X
as x1 . . . xm. Let us fix the probability of occurrence for
each symbol as PX(x). Then, when a channel Φ is used
m times, the sender and receiver can share the following
state:

πAB
PXm :=

∑
x1...xm∈Xn

PXm(x1 . . . xm) |x1 . . . xm⟩⟨x1 . . . xm|A

⊗ σB
x1...xm

.

(12)

Here, Xm means the set of all m-length sequences consist
of the alphabet X and σB

x1...xm
is the abbreviation of

σB
x1

⊗ σB
x2

⊗ · · · ⊗ σB
xm

. We denote the above map from
σB
x1...xm

to σB
x1

⊗ σB
x2

⊗ · · · ⊗ σB
xm

as Φ⊗m.
Here, we remark on the composition of the model of

GPTs. In the standard setting of GPTs, i.e., the case
when we assume no-signaling and local tomography [6,
23], an n-composite model of a model defined by K is
defined by a positive cone Kn satisfying

n⊗
i=1

Ki ⊂ Kn ⊂

(
n⊗

i=1

K∗
i

)∗

, (13)

where the set
⊗n

i=1 Ki is defined as
⊗n

i=1 Ki :=
Conv{⊗ρi|ρi ∈ Ki}. In other words, an n-composite
model of a single model is not uniquely determined in
GPTs. Therefore, we need to be more careful in GPTs

when we consider an asymptotic scenario. However, in
the above asymptotic scenario, we only need to consider
m-uses of a channel Φ, which is a channel from a classi-
cal m-length bit to an m-partite product state σB

x1...xm
.

Due to the inclusion relation (13), an m-partite product
state can be regarded as a state in any composite model
of a single system, and therefore, the map Φ⊗n is well-
defined even in GPTs. Hence, we can apply the results
in the single-shot scenario to the asymptotic scenario.

Now we consider the situation where we encode a mes-
sage j ∈ Γ to an m-length sequence x1 . . . xm by an en-
coder gm, that is, gm(j) = x1 . . . xm. Here, notice that
the size of the set of all messages Γ depends on m and
we denote it as |gm|. Also, let us denote the decoding
error ϵm when the message j appears uniformly at ran-
dom. Then, similar to the single-shot scenario, we de-
fine an ϵ-asymptotic achievable rate as a real number
R ≥ 0 if there exists a sequence of (m, |gm|, ϵ)-codes sat-
isfying lim infm→∞

1
m log |gm| = R. Finally, we define

ϵ-asymptotic classical capacity following [52].

Definition 7 The ϵ-asymptotic classical capacity of Φ is
defined as follows:

C̃ϵ(Φ) := sup {R | R is ϵ-achievable rate for Φ} . (14)

By definitions of one-shot ϵ-classical capacity and ϵ-
classical capacity, we have

C̃ϵ(Φ) = lim inf
m→∞

1

m
Cϵ(Φ⊗m) . (15)

Then, we show the asymptotic equivalence between the
upper and lower bounds of C̃ϵ(Φ) as the following theo-
rem.

Theorem 8 In any model of GPTs and any ϵ ∈ (0, 1),
a channel Φ satisfies

C̃ϵ(Φ) = lim
m→∞

1

m
sup
PXm

Dϵ
H,G(πAB

PXm∥πA
PXm ⊗ πB

PXm ) .

(16)

In other words, the classical capacity and the hypothe-
sis testing relative entropy are asymptotically equivalent
even in GPTs.

Here, we remark on the dependence of ϵ. In quantum
theory, because of quantum Stein’s lemma [20, 37], we
have the following inequality [54]:

∀ϵ ∈ (0, 1), lim
n→∞

1

n
Dϵ

H(ρ⊗n||σ⊗n) = D(ρ||σ) .

In other words, there is no ϵ-dependence in quantum
theory, and the rates are equal to Umegaki relative
entropy [50, 51], which leads to Holevo–Schumacher–
Westmoreland theorem [21, 45] as explained in Ref. [54].
Both of the above problems are still open in GPTs, i.e.,
(1) Are asymptotic classical capacity and asymptotic hy-
pothesis testing relative entropy independent with ϵ even
in GPTs? (2) Are asymptotic classical capacity and
asymptotic hypothesis testing relative entropy related to
standard relative entropy even in GPTs? The answer to
both problems should give an important new operational
perspective of entropies and information rates.
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[52] S. Verdú and T. S. Han. A general formula for
channel capacity. IEEE Transactions on Informa-
tion Theory, 40(4):1147–1157, 1994.

[53] E. Wakakuwa. Gentle measurement as a principle of
quantum theory. arXiv preprint arXiv:2103.15110,
2021.

[54] L. Wang and R. Renner. One-shot classical-quantum
capacity and hypothesis testing. Phys. Rev. Lett.,
108:200501, May 2012.

[55] J. Watrous. The theory of quantum information.
Cambridge university press, Cambridge, England,
2018.

[56] M. M. Wilde. Quantum Information Theory, 2nd
edition. Cambridge University Press, Cambridge,
England, 2017.

[57] Y. Yoshida, H. Arai, and M. Hayashi. Perfect
discrimination in approximate quantum theory of
general probabilistic theories. Phys. Rev. Lett.,
125:150402, Oct 2020.

488



Black box work extraction and composite hypothesis testing
Kaito Watanabe1 ∗ Ryuji Takagi1 †

1 Department of Basic Science, The University of Tokyo, Tokyo 153-8902, Japan

Abstract. We introduce a general framework for work extraction, an essential process in quantum thermodynamics,
which addresses the inaccessibility of information on the initial state. We show that the optimal extractable work
in the black box setting is completely characterized by the performance of a composite hypothesis testing task,
a fundamental problem in information theory. We employ this general relation to reduce the asymptotic black
box work extraction to the quantum Stein’s lemma in composite hypothesis testing, exhibiting the difficulty in
this task in comparison to the standard setting. We also show a new quantum Stein’s lemma motivated in this
physical setting, where a composite hypothesis contains a certain correlation. Our work exhibits the importance
of information about the initial state and gives a new interpretation of the quantities in the composite quantum
hypothesis testing, encouraging the interplay between the physical settings and the information theory.

Keywords: Quantum thermodynamics, Work extraction, Composite hypothesis testing, Quantum Stein’s lemma

1 Overview
One of the major goals in thermodynamics is to character-

ize the ultimate efficiency of work extraction. In particular,
provided the recent technological developments in accurately
controlling nanoscale systems, it is of fundamental impor-
tance to obtain a precise understanding of the extractable
work from small systems where quantum properties are not
negligible. Recently, there has been much progress in char-
acterizing extractable work in quantum systems employing
quantum information-theoretic approaches [1–4]. These re-
sults not only reveal that the optimal single-copy (one-shot)
extractable work is represented as the optimal performance
of the standard information-theoretic task known as quan-
tum hypothesis testing, where one aims to distinguish two
quantum states, but also offers a smooth connection to the
many-copy (asymptotic, thermodynamic) limit via the well-
known result in quantum hypothesis testing called quantum
Stein’s lemma [5, 6], where the Helmholtz free energy arises
as an emergent quantity [7].

Although these results entail fundamental insights into the
problem of work extraction, they do not represent natural
operational settings. Crucially, the optimal work character-
ized so far assumes that the description of the initial state
is provided, allowing the experimenters to tailor the work
extraction protocol depending on the given state. However,
in many settings—such as the scenarios where the state is
obtained by a complicated quantum process that cannot be
efficiently simulated classically, or the state experiences un-
known noise—we are not in possession of the complete
information about the initial state. To run the “state-aware”
protocol in these settings, one would first attempt to learn
the state description by quantum state tomography [8, 9],
which is also hard because of the large number of the required
systems which can affect the performance of the task, and
the physical limitation inherent in thermodynamic processes.
To encompass this large class of “state-agnostic” scenarios,
new techniques are required.

Here, we establish the fundamental relation between these
two—state-agnostic work extraction and composite hypothe-
sis testing, a more general setting of hypothesis testing where
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one aims to distinguish two sets of states by measuring a
state picked from either of the sets. We show that the optimal
guaranteed extractable work from a black box can be exactly
characterized by the performance of composite hypothesis
testing between the black box and thermal Gibbs state. This
not only extends the result of state-aware work extraction to
much more general and operational settings but also provides
the first operational interpretation of composite hypothesis
testing in terms of quantum thermodynamics.

We further employ this relation to obtain the asymptotic
work extraction rate in the black box setting. Employing the
composite quantum Stein’s lemmas, which include our new
result, we characterize the asymptotic work extraction rate
from a general black box with several standard classes of
thermodynamic processes [2] and find that it can be smaller
than the minimum Helmholtz free energy of the state in
the black box. This indicates the fundamental difficulty in
the state-agnostic setting compared to the standard setting.
Additionally, we show that a similar characterization can be
extended to a class of thermodynamic operations amenable
to easier physical implementation [1].

Work extraction protocol in quantum thermodynamics is
an example of quantum resource distillation. Potential and
limitations of resource distillation with unknown input states
were discussed for some specific cases of entanglement and
magic states by different approaches [10–12]. Our results
complement these findings, offering a platform that allows
mutual developments in state-agnostic resource distillation
and composite hypothesis testing, boosting the interplay
between physically motivated tasks and information-theoretic
problems.

2 Preliminaries
Thermodynamic operations We consider a system asso-
ciated with a finite-dimensional Hilbert space with some
Hamiltonian 𝐻, which is in contact with the heat bath whose
inverse temperature is 𝛽. Here, we employ a resource-
theoretic approach to quantum thermodynamics to formalize
the set of thermodynamic operations available for work ex-
traction. The idea of quantum resource theory is to consider
the set of states that can easily be prepared in the given phys-
ical setting (often called free states) and the ones preserving
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the set of free states as accessible operations (often called
free operations).

In quantum thermodynamics, it is standard to consider
the thermal Gibbs state 𝜏 := exp(−𝛽𝐻)/Tr[exp(−𝛽𝐻)] as
the only free state that can be prepared without any cost
accessible. Therefore, thermodynamically “free” operations
are the ones that preserve the Gibbs state [13]. There are
several classes of operations which satisfy this condition.

Composite hypothesis testing The composite hypothesis
testing aims to distinguish the set of states, in which the
hypotheses S and T are subsets of the set D(H) of all
quantum states in H , and one performs the binary POVM
{𝑀, 𝐼 − 𝑀} and guesses which set the measured state came
from. The performance of this task is represented as the
quantity called the composite hypothesis testing divergence
defined as

𝐷 𝜀
𝐻 (S||T ) = − log inf

0≤𝑀≤𝐼
sup𝜌∈S Tr[𝜌(𝐼−𝑀 ) ]≤𝜀

sup
𝜎∈T

Tr[𝜎𝑀]
(1)

When a composite hypothesis T consists of a single element
𝜏, we simply write 𝜏 to represent T = {𝜏}.

3 Black box work extraction
Framework We now introduce the framework of black
box work extraction. Consider a system associated with a
finite-dimensional Hilbert space H and the Hamiltonian 𝐻,
and another system called a ‘battery’ associated with a 2-
dimensional Hilbert space and its Hamiltonian. We represent
the extracted work by the difference between the two energy
eigenvalues of the battery system, i.e., we prepare the battery
system in the thermal state, and if one can convert this system
to the excited state by the free operations and the initial state,
we say that we can extract work.

We represent the inaccessibility to the information of the
given state as a black box, a subset S ⊂ D(H) of states
acting on H . The experimenters are informed about the
description of S and that the initial state is an element of the
black box S but are not told which state is actually given,
preventing them from tailoring work extraction protocols
depending on the initial state.

The problem is to find the maximum energy gap of the
battery system which can be charged for every choice of the
state from the black box and the allowed operation which
is independent of the initial state. We denote the one-shot
extractable work of the black box S ⊂ D(H) under allowed
operations O permitting some error 𝜀 with respect to the
fidelity as 𝛽𝑊 𝜀

O
(S). Note that we define the extractable work

as the maximum value of the work drawn regardless of the
states picked from the black box; in other words, it is the
worst-case extractable work with respect to the states in the
black box.

One can also consider the asymptotic limit of the ex-
tractable work from the black box by considering a sequence
of the black boxes. Consider the situation where there are
𝑛 systems with the same Hamiltonians 𝐻. To take the limit
𝑛 → ∞, we consider a family {S𝑛}∞𝑛=1 of black boxes with

S𝑛 ⊂ D(H⊗𝑛). We define the asymptotic black box ex-
tractable work as follows.

𝛽𝑊O ({S𝑛}∞𝑛=1) := lim
𝜀→+0

lim sup
𝑛→∞

1
𝑛
𝛽𝑊 𝜀
O (S𝑛). (2)

Namely, the asymptotic black box extractable work of the
sequence of the black boxes is the work drawn from the whole
system per the number of subsystems.

Unless stated otherwise, in the following discussion we
focus on the family with a tensor-product structure S𝑛 (𝑆) :={⊗𝑛

𝑖=1 𝜌𝑖 | 𝜌𝑖 ∈ 𝑆 ∀𝑖
}

generated by an arbitrary set 𝑆 ⊂
D(H).

Black box work extraction with Gibbs-preserving op-
erations We are in the position to characterize the per-
formance of black box work extraction. We first consider
Gibbs-preserving operations, the largest class of operations
which include all the operations which map the thermal state
of the input state to the thermal state of the output state, as
available thermodynamic processes. The following result
provides the general characterization of one-shot extractable
work in terms of composite hypothesis testing divergence.

Theorem 1. One-shot extractable work from an arbitrary
black box S under Gibbs-preserving operations satisfy

𝛽𝑊 𝜀
GPO(S) = 𝐷 𝜀

𝐻 (S||𝜏). (3)

Theorem 1 establishes a tight connection between the
composite hypothesis testing and the work extraction task
and provides a physical meaning of the composite hypothesis
testing divergence in the context of thermodynamics.

We remark that if two black boxes S and T satisfy S ⊂ T ,
due to the definition of the composite hypothesis testing
divergence, it holds that 𝛽𝑊 𝜀

GPO (S) ≥ 𝛽𝑊 𝜀
GPO (T ), which

means that the more detailed information about the initial
state increases the extractable work.

Let us now extend this to asymptotic work extraction via
the composite hypothesis version of the quantum Stein’s
lemma, a central question in information theory which in-
vestigates whether hypothesis testing divergence connects to
the standard relative entropy, the quantity which corresponds
to the Helmholtz free energy in the context of quantum
thermodynamics.

Our general characterization in Theorem 1 allows us to
obtain the following simple expression for the asymptotic
work extraction.

Theorem 2. The asymptotic black box extractable work of
the sequence {S𝑛 (𝑆)}∞𝑛=1 of the black boxes under Gibbs-
preserving operations is given by

𝛽𝑊GPO ({S𝑛 (𝑆)}∞𝑛=1) = lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 (𝑆) )

𝐷 (𝜌𝑛 | |𝜏⊗𝑛).
(4)

where C(S𝑛 (𝑆)) denotes the convex hull of the set S𝑛 (𝑆).

Theorem 2 clarifies the fundamental restriction imposed
by not knowing the input state. To see this, consider
𝑆 = {|𝜙1⟩⟨𝜙1 | , . . . , |𝜙𝑑⟩⟨𝜙𝑑 |}, where |𝜙1⟩ , . . . , |𝜙𝑑⟩ are the
eigenstates of the Hamiltonian of a single subsystem 𝐻. If
we have information about the initial state, we can extract the
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nonzero work from it since the free energy of any state in
the black box is strictly larger than that of the thermal states.
However, for any positive integer 𝑛, the thermal state 𝜏 is
included in C(S𝑛), which implies that one cannot extract any
work from this sequence of the black boxes asymptotically.
This example reveals the underlying difference between the
standard state-aware work extraction task and the black box
work extraction task.

Black box work extraction under Gibbs-preserving co-
variant operations Although Gibbs-preserving operations
admit relatively simple mathematical analysis, there is also
doubt in its operational justification. Notably, they can create
quantum coherence from scratch [14], and some Gibbs-
preserving operations require even unbounded quantum co-
herence to implement [15]. This motivates us to impose addi-
tional constraints that operations should be time-translation
covariant as the thermal operations—which prohibits the
creation and detection of quantum coherence—and this is
precisely the class of Gibbs-preserving covariant operations,
which includes all the Gibbs-preserving, time-tanslationally
covariant operations.

We show that the one-shot extractable work with this class
of operations is also related to the composite hypothesis
testing divergence as

𝛽𝑊 𝜀
GPC (S) = 𝐷 𝜀

𝐻 (P(S)| |𝜏), (5)

where P(·) B ∑
𝐸𝑖

Π𝐸𝑖
(·)Π𝐸𝑖

is the pinching operator with
respect to the Hamiltonian of the whole system, and P(S)
is the pinched black box. Here, Π𝐸𝑖

is the projector onto
the eigenspace of the Hamiltonian of the whole system
corresponding to the eigenvalue 𝐸𝑖 .

We would also like to understand the behavior in the
asymptotic limit via quantum Stein’s lemma, as we did
in the case of Gibbs-preserving operations. However, the
structure of the composite hypothesis is more involved in this
case because of the correlation between different subsystems
generated by the pinching channel. Namely, P(⊗𝑖𝜌𝑖) is not a
product state in general. Nevertheless, we show that quantum
Stein’s lemma holds even in such a case.
Lemma 3. For an arbitrary set 𝑆 of states,

lim
𝜀→+0

lim
𝑛→∞

1
𝑛
𝐷 𝜀

𝐻 (P(S𝑛 (𝑆)) | |𝜏⊗𝑛)

= lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 )

𝐷 (𝜌𝑛 | |𝜏⊗𝑛)
(6)

Let us remark on the relation between Lemma 3 and the
generalized quantum Stein’s lemma [16, 17]. Recent studies
have revealed that the relation between (state-aware) resource
distillation and composite hypothesis testing holds at the high
level of generality [18, 19]. The major open question along
this line, when trying to characterize the asymptotic state-
aware resource distillation, is the generalized quantum Stein’s
lemma, whose difficulty rests on the correlation between the
subsystems in the family of composite hypotheses. In this
sense, Lemma 3, which involves correlation in the composite
hypothesis, might be found useful in this context.

In the setting of black box work extraction, Lemma 3 is
precisely the one that brings one-shot result (Eq. (5)) to the
asymptotic setting, which is characterized as follows.

Theorem 4. The asymptotic black box extractable work of
the sequence of the black boxes {S𝑛 (𝑆)}∞𝑛=1 under Gibbs-
preserving covariant operations is given by

𝛽𝑊GPC ({S𝑛 (𝑆)}∞𝑛=1) = lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 (𝑆) )

𝐷 (𝜌𝑛 | |𝜏⊗𝑛),
(7)

Theorem 4 shows that although Gibbs-preserving covari-
ant operations come with restrictions compared to Gibbs-
preserving operations in one-shot level (as can be seen in
Theorem 1 and Eq. (5)), their performance coincides in the
asymptotic limit, both of which are characterized by the stan-
dard free energy. This result, therefore, extends the similar
observation in the standard state-aware work extraction [7], in
which the work extraction rate also agrees in the asymptotic
limit.

Black box work extraction under thermal operations
Since Gibbs-preserving operations and Gibbs-preserving
covariant operations are axiomatic classes of the operations,
they do not always reflect the physical implementability [15].
This motivates us to study thermal operations [1], which
is an operationally well-motivated class of thermodynamic
processes. Here, we focus on i.i.d. black boxes of the form
Si.i.d.
𝑛 (𝑆) :=

{
𝜌⊗𝑛 | 𝜌 ∈ 𝑆

}
generated by a set 𝑆 of finite size,

i.e., |𝑆 | < ∞.
In the technical manuscript, we devise an explicit work

extraction protocol with covariantly conditioned thermal
operations, which we newly introduce. We then show that this
class coincides with thermal operations in the work extraction
scenario, resulting in the following characterization.
Theorem 5. The asymptotic black box extractable work of{
Si.i.d.
𝑛 (𝑆)

}
𝑛

satisfying |𝑆 | < ∞ under thermal operations is
represented as

𝛽𝑊TO

({
Si.i.d. (𝑆)

}∞
𝑛=1

)
= min

𝜌∈𝑆
𝐷 (𝜌 | |𝜏). (8)

In Ref. [7], it is shown that the extractable work of the
known i.i.d. state is equal to the quantum relative entropy
under any of the three free operations mentioned in the
discussion above. Our result indicates that the same holds
true in the i.i.d. black box case. If there exists a sequence
of the black box with which the work extraction rate differs
between the closure of thermal operations and the Gibbs-
preserving covariant operations, it would imply that the
operational capabilities in state transformation of these two
sets are distinct, resolving an important open problem in the
field [13, 20].

4 Discussion
Our work clarifies when and how the lack of information

about the initial state crucially affects the work extraction
performance and what one can still do under such restricted
scenarios. As our framework forms a new connection between
the work extraction tasks in quantum thermodynamics and the
quantities in the composite quantum hypothesis testing, the
black box work extraction offers a richer landscape in general
quantum resource theories, complementing and extending
the state-aware asymptotic distillation tied to generalized
quantum Stein’s lemma.
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Work extraction is one of the most central processes in quantum thermodynamics. However, the prior analysis
of optimal extractable work has been restricted to a limited operational scenario where complete information
about the initial state is given. Here, we introduce a general framework of black box work extraction, which
addresses the inaccessibility of information on the initial state. We show that the optimal extractable work in
the black box setting is completely characterized by the performance of a composite hypothesis testing task, a
fundamental problem in information theory. We employ this general relation to reduce the asymptotic black box
work extraction to the quantum Stein’s lemma in composite hypothesis testing, allowing us to provide their exact
characterization in terms of the Helmholtz free energy. We also show a new quantum Stein’s lemma motivated
in this physical setting, where a composite hypothesis contains a certain correlation. Our work exhibits the
importance of information about the initial state and gives a new interpretation of the quantities in the composite
quantum hypothesis testing, encouraging the interplay between the physical settings and the information theory.

Introduction.— One of the major goals in thermodynamics
is to characterize the ultimate efficiency of work extraction. In
particular, provided the recent technological developments in
accurately controlling nanoscale systems, it is of fundamental
importance to obtain a precise understanding of the extractable
work from small systems where quantum properties are not
negligible. Recently, there has been much progress in char-
acterizing extractable work in quantum systems employing
quantum information-theoretic approaches [1–6]. These results
not only provide an explicit form of the optimal single-copy
(one-shot) extractable work, but also offer a smooth connection
to the many-copy (asymptotic, thermodynamic) limit, where
the Helmholtz free energy arises as an emergent quantity [4, 6].

Although these results entail fundamental insights into the
problem of work extraction, they do not represent natural oper-
ational settings. Crucially, the optimal work characterized so
far assumes that the description of the initial state is provided,
allowing the experimenters to tailor the work extraction protocol
depending on the given state. However, in many settings—such
as the scenarios where the state is obtained by a complicated
quantum process that cannot be efficiently simulated classically,
or the state experiences unknown noise—we are not in pos-
session of the complete information about the initial state. To
run the “state-aware” protocol in these settings, one would first
attempt to learn the state description by quantum state tomog-
raphy [7, 8]. At this point, the characterization of the prior
results becomes unclear because (1) state tomography requires
multiple (indeed, many) copies of the initial state and thus could
significantly change the effective performance of work extrac-
tion and (2) the full state tomography may not be possible due
to the physical limitation inherent in thermodynamic processes.
To encompass this large class of “state-agnostic” scenarios, new
techniques are required.

A major observation from a series of works is that work ex-
traction is closely related to the standard information-theoretic
task known as hypothesis testing, where one aims to distinguish
two quantum states. These entirely different-looking opera-
tional tasks turn out to be quantitatively connected via their
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performances—the maximum amount of work extractable from
a single copy of the given known state is precisely character-
ized by hypothesis-testing divergence [6, 9, 10]—the standard
quantifier for the asymmetric state discrimination—between
the initial (known) state and the thermal Gibbs state [5].

Interestingly, hypothesis testing has been extended to a more
general setting—instead of distinguishing two states, one aims
to distinguish two sets of states by measuring a state picked from
either of the sets. This task is known as composite hypothesis
testing and has been an active investigation in classical [11]
and quantum [12–14] information theory. In particular, there
has been a rising interest in quantum Stein’s lemma [15, 16],
which connects composite hypothesis testing divergence to the
optimized relative entropy in the asymptotic composite hypoth-
esis testing setting. Nevertheless, unlike the case of standard
hypothesis testing, the operational significance of composite
hypothesis testing in the context of quantum thermodynamics
has been unclear.

Here, we establish the fundamental relation between these
two—state-agnostic work extraction and composite hypothesis
testing. We introduce a general framework for state-agnostic
work extraction by considering a “black box”, from which a
state is picked and an experimenter—who knows what states
are contained in the box but does not know which state was
actually picked—applies a work extraction protocol. We show
that the optimal guaranteed extractable work from a black box
can be exactly characterized by the performance of composite
hypothesis testing between the black box and thermal Gibbs
state. This not only extends the result of state-aware work
extraction to much more general and operational settings, but
also provides the first operational interpretation of composite
hypothesis testing in terms of quantum thermodynamics.

We further employ this relation to obtain the asymptotic work
extraction rate in the black box setting. Notably, we prove a new
kind of Stein’s lemma for composite hypothesis testing, where
state copies from the composite hypothesis have a correlation
generated by a pinching channel [15, 17, 18]. This—together
with the general connection between black box work extraction
and composite hypothesis testing—shows that the asymptotic
work extraction rate from a black box with several standard
classes of thermodynamic processes [2] and find that it can
be smaller than the minimum Helmholtz free energy of the
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state in the black box. This indicates the fundamental difficulty
in the state-agnostic setting compared to the standard setting.
Additionally, we show that a similar characterization can be
extended to a class of thermodynamic operations amenable to
easier physical implementation [1].

Although the main focus here is work extraction in quantum
thermodynamics, our framework can readily be extended to
other quantum resource theories, such as quantum entangle-
ment [19], magic states [20, 21], and even a general class includ-
ing those [22]. Indeed, work extraction protocol in quantum
thermodynamics is an example of quantum resource distilla-
tion. Potential and limitations of resource distillation with
unknown input states were discussed for some specific cases of
entanglement and magic states by different approaches [23–25].
Our results complement these findings, offering a platform that
allows mutual developments in state-agnostic resource distilla-
tion and composite hypothesis testing, boosting the interplay
between physically motivated tasks and information-theoretic
problems.

Thermodynamic operations.— We consider a system as-
sociated with a finite-dimensional Hilbert space with some
Hamiltonian 𝐻, which is in contact with the heat bath whose
inverse temperature is 𝛽. Here, we employ a resource-theoretic
approach to quantum thermodynamics to formalize the set of
thermodynamic operations available for work extraction. The
idea of quantum resource theory is to consider the set of states
that can easily be prepared in the given physical setting (often
called free states) and the ones preserving the set of free states
as accessible operations (often called free operations).

In quantum thermodynamics, it is standard to consider the
thermal Gibbs state 𝜏 := exp(−𝛽𝐻)/Tr[exp(−𝛽𝐻)] as the only
free state that can be prepared without any cost accessible.
Therefore, thermodynamically “free” operations are the ones
that preserve the Gibbs state [5]. However, this constraint
does not single out the unique set of free operations, and
indeed, several classes of operations have been investigated
depending on the goal of the study. The largest class that
satisfies the minimum requirement is the Gibbs-preserving
operations [2, 26], which include all operations that map the
thermal state of the input system to that of the output system.
This class is mainly studied due to its simple mathematical
structure, which led to a number of recent key progress in
quantum thermodynamics [2, 10, 27–32]. On the other hand,
the class that respects the physical implementability is known
as thermal operations, in which appending the thermal state
as an ancillary system, applying the energy-conserving unitary,
and tracing out any subsystems are considered to be free,
i.e., a completely positive trace-preserving (CPTP) map E
from systems 𝐴 to 𝐵 is called a thermal operation if E can
be written as E(·) = Tr(𝐴+𝐸 )\𝐵

[
𝑈 (· ⊗ 𝜏𝐸)𝑈†] , where 𝜏𝐸 :=

exp(−𝛽𝐻𝐸)/𝑍𝐸 is a thermal state of the ancillary system, and
𝑈 is a energy-conserving unitary satisfying [𝑈, 𝐻𝐴 ⊗ 𝐼𝐸 + 𝐼𝐴 ⊗
𝐻𝐸] = 0.

It is easily checked that the thermal operation maps the ther-
mal state 𝜏𝐴 to the thermal state 𝜏𝐵, which implies that the
thermal operation is Gibbs-preserving. Another important prop-
erty of the thermal operation is the time translation covariance,

i.e., any thermal operation E from systems 𝐴 to 𝐵 satisfies

E
(
𝑒−𝑖𝐻𝐴𝑡 𝜌𝐴𝑒

𝑖𝐻𝐴𝑡
)
= 𝑒−𝑖𝐻𝐵𝑡E(𝜌𝐴)𝑒𝑖𝐻𝐵𝑡 , ∀𝑡 ∈ R. (1)

This property prohibits the operation from creating energetic
coherence—which serves another important thermodynamic
resource [6, 33–36]—from scratch. One can find a Gibbs-
preserving operation that does not satisfy this property by
constructing a map that is Gibbs-preserving and creates coher-
ence from the incoherent state [37] or detects coherence [36].
The class of operations that is mathematically easy to handle and
closer to thermal operations is called Gibbs-preserving covari-
ant operations, which are Gibbs-preserving and time-translation
covariant. In Ref. [38], it was shown that in the qubit case,
the set of thermal operations and the set of Gibbs-preserving
covariant operations are the same, but in the qutrit case, there
exists an operation that can be done in Gibbs-preserving covari-
ant operations but not in thermal operations. Note that these
three classes of operations satisfy the following relation.

Thermal ⊂ Gibbs-preserving covariant ⊊ Gibbs-preserving.
(2)

Whether the closure of the set of thermal operations and the
set of Gibbs-preserving covariant operations agree is an open
problem.

Composite hypothesis testing.— The standard quantum hy-
pothesis testing aims to distinguish two different states 𝜌 and 𝜎

called a null hypothesis and an alternative hypothesis respec-
tively, with a binary measurement with the POVM elements
{𝑀, 𝐼 − 𝑀} in which the outcome corresponding to 𝑀 means
that one guesses the given state is 𝜌, and the outcome that
corresponds to 𝐼 − 𝑀 means that one guesses the state is 𝜎.
The performance of the distinguishing task is rephrased as how
much one can minimize the probability of making mistakes
in the guess. In this work, we mainly focus on the minimum
probability of guessing 𝜎 as 𝜌 known as type II error, Tr[𝜎𝑀]
under the constraint in which type I error Tr[𝜌(𝐼 − 𝑀)]—the
probability of guessing 𝜌 as 𝜎—is at most 𝜀. The performance
of this task is represented as the quantity called the hypothesis
testing divergence defined as [9]

𝐷 𝜀
𝐻 (𝜌 | |𝜎) = − log inf

0≤𝑀≤𝐼
Tr[𝜌(𝐼−𝑀 ) ]≤𝜀

Tr[𝜎𝑀] . (3)

This framework can be extended to the composite case, where
the hypotheses are the set of states [12, 14]. In the composite
hypothesis testing, the hypotheses S and T are subsets of the set
D(H) of all quantum states in H , and one performs the binary
POVM and guesses which set the measured state came from.
The hypothesis testing divergence can also be extended to the
composite case by focusing on the worst-case error probability.

𝐷 𝜀
𝐻 (S||T ) = − log inf

0≤𝑀≤𝐼
sup𝜌∈S Tr[𝜌(𝐼−𝑀 ) ]≤𝜀

sup
𝜎∈T

Tr[𝜎𝑀]
(4)

Note that this quantity does not change even if we take the
convex hull of either the composite hypothesis.
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Black box work extraction.— We now introduce the frame-
work of black box work extraction. Consider a system associated
with a finite-dimensional Hilbert space H and the Hamiltonian
𝐻, and another system called a ‘battery’ associated with a
2-dimensional Hilbert space H𝑋 = Span {|0⟩ , |1⟩}. We take
the Hamiltonian for the battery system as 𝐻𝑋 = 𝐸𝑋,0 |0⟩⟨0| +
𝐸𝑋,1 |1⟩⟨1| with 𝐸𝑋,1 − 𝐸𝑋,0 = 𝛽−1 log(𝑚 − 1) so that the ther-
mal state of the battery system 𝜇𝑚 is 𝜇𝑚 = 𝑚−1

𝑚
|0⟩⟨0| + 1

𝑚
|1⟩⟨1|

for 𝑚 ≥ 1. If an allowed operation can transform an initial state
and the equilibrium state 𝜇𝑚 in the battery system to the state
|1⟩⟨1|𝑋 of the battery, we say that we can “charge” the battery.

We represent the inaccessibility to the information of the
given state as a black box, a subset S ⊂ D(H) of states acting
on H . The experimenters are informed about the description of
S and that the initial state is an element of the black box S but
are not told which state is actually given, preventing them from
tailoring work extraction protocols depending on the initial
state.

The problem is to find the maximum 𝑚 such that the battery
with the thermal state 𝜇𝑚 can be charged with the unknown
initial state picked up from the black box and allowed operations
O, i.e., to find the largest 𝑚 such that 𝜌 ⊗ 𝜇𝑚

O−→ |1⟩⟨1|𝑋 is
possible for every choice of the state from the black box and
the allowed operation which is independent of the initial state
𝜌 ∈ S. Here, we formulate the optimal performance of the
black box work extraction.

Definition 1. The one-shot extractable work of the black box
S ⊂ D(H) with error 𝜀 is defined as

𝛽𝑊 𝜀
O (S)

:= log max
{
𝑚 ∈ R

��� 𝐹O ((S, 𝜏), ( |1⟩⟨1|𝑋 , 𝜇𝑚)) ≥ 1 − 𝜀

}
,

(5)
where 𝐹O is the conversion fidelity defined as

𝐹O ((S, 𝜏), ( |1⟩⟨1|𝑋 , 𝜇𝑚)) = max
E∈O

min
𝜌∈S

𝐹 (E(𝜌), |1⟩⟨1|𝑋),

𝐹 (𝜌, 𝜎) :=
(√𝜌

√
𝜎


1

)2
=

(
Tr

[√︃√
𝜎𝜌

√
𝜎

] )2
.

(6)

Note that we define the extractable work as the maximum
value of the work drawn regardless of the states picked from
the black box, in other words, the worst-case extractable work
with respect to the states in the black box. For the justification
of this definition, see Appendix A. Also, note that when we
take S = {𝜌}, the problem is reduced to the ordinary work
extraction setting.

One can also consider the asymptotic limit of the extractable
work from the black box by considering a sequence of the black
boxes. Consider the situation where there are 𝑛 systems with
the same Hamiltonians 𝐻. Note that the Hamiltonian of the
whole system is represented as 𝐻×𝑛 := 𝐻 ⊗ 𝐼 ⊗ · · · ⊗ 𝐼 + 𝐼 ⊗
𝐻 ⊗ · · · ⊗ 𝐼 + · · · + 𝐼 ⊗ 𝐼 ⊗ · · · ⊗𝐻. To take the limit 𝑛 → ∞, we
consider a family {S𝑛}∞𝑛=1 of black boxes with S𝑛 ⊂ D(H⊗𝑛).
We define the asymptotic black box extractable work as follows.

Definition 2. The asymptotic black box extractable work of

the sequence {S𝑛}∞𝑛=1 of the black boxes is

𝛽𝑊O ({S𝑛}∞𝑛=1) := lim
𝜀→+0

lim sup
𝑛→∞

1
𝑛
𝛽𝑊 𝜀
O (S𝑛). (7)

Namely, the asymptotic black box extractable work of the
sequence of the black boxes is the work drawn from the whole
system per the number of subsystems.

Unless stated otherwise, in the following discussion we focus
on the family with tensor-product structure

S𝑛 (𝑆) :=

{
𝑛⊗
𝑖=1

𝜌𝑖 | 𝜌𝑖 ∈ 𝑆 ∀𝑖
}

(8)

generated by an arbitrary set 𝑆 ⊂ D(H).
Black box work extraction with Gibbs-preserving

operations.— We are in the position to characterize the perfor-
mance of black box work extraction. We first consider Gibbs-
preserving operations as available thermodynamic processes.
The following result provides the general characterization of
one-shot extractable work in terms of composite hypothesis
testing divergence (Proof in Appendix B 1).

Theorem 3. One-shot extractable work from an arbitrary black
box S under Gibbs-preserving operations satisfy

𝛽𝑊 𝜀
GPO(S) = 𝐷 𝜀

𝐻 (S||𝜏). (9)

Theorem 3 establishes a tight connection between the com-
posite hypothesis testing and the work extraction task and
provides a physical meaning of the composite hypothesis test-
ing divergence in the context of thermodynamics. We stress that
Theorem 3 holds for an arbitrary black box S, which may be
non-convex and could contain an uncountably infinite number of
states. In the case of a singleton set S = {𝜌}, our result recovers
the known result for state-aware work extraction [6, 10]. We
also remark that if two black boxes S and T satisfy S ⊂ T , due
to the definition of the composite hypothesis testing divergence,
it holds that 𝛽𝑊 𝜀

GPO(S) ≥ 𝛽𝑊 𝜀
GPO (T ), which means that the

more detailed information about the initial state increases the
extractable work.

Let us now extend this to asymptotic work extraction. The-
orem 3 allows us to focus our attention on analyzing how the
composite hypothesis testing divergence behaves under the
asymptotic limit. This is a central question in information
theory known as Stein’s lemma, which investigates whether
hypothesis testing divergence connects to the standard relative
entropy. This comes with a further physical significance in the
context of quantum thermodynamics because relative entropy
precisely corresponds to the free energy playing a central role
in the second law of thermodynamics.

When a composite hypothesis is involved, it is typically a
formidable task to establish Stein’s lemma. Nevertheless, previ-
ous works found that there are several settings in which Stein’s
lemma can be established [11, 13, 14, 39–41]. In particular, an
extension of quantum Sanov’s theorem [40], together with our
general characterization in Theorem 3, implies the following
simple expression for the asymptotic work extraction.
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Theorem 4. The asymptotic black box extractable work of the
sequence {S𝑛 (𝑆)}∞𝑛=1 of the black boxes under Gibbs-preserving
operations is given by

𝛽𝑊GPO ({S𝑛 (𝑆)}∞𝑛=1) = lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 (𝑆) )

𝐷 (𝜌𝑛 | |𝜏⊗𝑛),
(10)

where C(S𝑛 (𝑆)) is the convex hull of S𝑛 (𝑆). Furthermore, the
convex hull can be removed if every element in the black box is
permutationally invariant.

In Appendix C 1, we prove a more general result that implies
Theorem 4 by employing the recent result in Ref. [14]. We
remark that if the sequence of the black boxes is composed of
i.i.d. states, i.e., 𝜌𝑖 = 𝜌 𝑗 ∀𝑖, 𝑗 in (8), the right-hand side of
Eq. (10) is reduced to min𝜌∈𝑆 𝐷 (𝜌 | |𝜏), which can also be seen
as a consequence of the quantum Sanov’s theorem [39].

Theorem 4 clarifies the fundamental restriction imposed
by not knowing the input state. To see this, consider
𝑆 = {|𝜙1⟩⟨𝜙1 | , . . . , |𝜙𝑑⟩⟨𝜙𝑑 |}, where |𝜙1⟩ , . . . , |𝜙𝑑⟩ are the
eigenstates of the Hamiltonian of a single subsystem 𝐻. If
we have information about the initial state, we can extract the
nonzero work from it since the free energy of any state in the
black box is strictly larger than that of the thermal states. How-
ever, for any positive integer 𝑛, the thermal state 𝜏 is included
in C(S𝑛), which implies that one cannot extract any work from
this sequence of the black boxes asymptotically. This example
reveals the underlying difference between the standard state-
aware work extraction task and the black box work extraction
task.

Black box work extraction under Gibbs-preserving covariant
operations.— Although Gibbs-preserving operations admit
relatively simple mathematical analysis, there is also doubt
in its operational justification. Notably, they can create quan-
tum coherence from scratch [37], and some Gibbs-preserving
operations require even unbounded quantum coherence to
implement [36]. This motivates us to impose additional
constraints described in (1) that operations should be time-
translation covariant—which prohibits the creation and detec-
tion of quantum coherence—and this is precisely the class of
Gibbs-preserving covariant operations.

The time-translation covariant condition, which restricts an
operation to utilize the time information, naturally introduces
a channel that acts as the time average. This is a special
form of pinching channels often employed as an important
analytical tool in information theory [15, 17, 18]. In our setting,
the relevant pinching channel is the one with respect to the
Hamiltonian of the whole system defined as

P(·) = lim
𝑇→∞

1
𝑇

∫ 𝑇

−𝑇
𝑑𝑡𝑒−𝑖𝐻𝑡 · 𝑒𝑖𝐻𝑡 =

∑︁
𝐸𝑖

Π𝐸𝑖
(·)Π𝐸𝑖

, (11)

where Π𝐸𝑖
is the projector onto the eigenspace of the Hamilto-

nian of the whole system corresponding to the eigenvalue 𝐸𝑖 .
We then define the pinched black box

P(S) B
{
P(𝜌)

��� 𝜌 ∈ S
}
. (12)

The following result shows that the black box work extraction
with the time-tranlation covariant condition can be characterized

by the composite hypothesis divergence for a pinched black box.
(Proof in Appendix B 2.)

Theorem 5. One-shot extractable work from an arbitrary black
box S under Gibbs-preserving covariant operations satisfy

𝛽𝑊 𝜀
GPC(S) = 𝐷 𝜀

𝐻 (P(S)| |𝜏). (13)

We would also like to understand the behavior in the asymp-
totic limit via quantum Stein’s lemma, as we did in the case
of Gibbs-preserving operations. However, the structure of the
composite hypothesis is more involved in this case because
of the correlation between different subsystems generated by
the pinching channel. Namely, P(⊗𝑖𝜌𝑖) is not a product state
in general. This prevents us from directly applying the prior
results on composite quantum Stein’s lemma [11, 13, 14]. In-
deed, when correlation is present in a composite hypothesis,
Stein’s lemma can become extremely difficult to handle [12, 42].
Nevertheless, we show that quantum Stein’s lemma holds in
our setting.

Lemma 6. For an arbitrary set 𝑆 of states,

lim
𝜀→+0

lim
𝑛→∞

1
𝑛
𝐷 𝜀

𝐻 (P(S𝑛 (𝑆)) | |𝜏⊗𝑛)

= lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 )

𝐷 (𝜌𝑛 | |𝜏⊗𝑛)
(14)

In Appendix C 2, we prove a slightly more general result that
includes Lemma 6. We remark that non-composite version of
this was previously shown in Ref. [43].

Let us remark on the relation between Lemma 6 and the gen-
eralized quantum Stein’s lemma. Recent studies have revealed
that the relation between (state-aware) resource distillation and
hypothesis testing holds at the high level of generality [31, 44].
In fact, this is generally characterized by composite hypothesis
testing divergence—but in a different way where the second
argument of the divergence is a composite hypothesis (while
our black box setting contains a composite hypothesis in the
first argument). The major open question along this line, when
trying to characterize the asymptotic state-aware resource distil-
lation, is the generalized quantum Stein’s lemma. The difficulty
of the generalized quantum Stein’s lemma rests on the fact that
the family of composite hypotheses generally has a correlation
between different subsystems. Therefore, more insights into the
asymptotic behavior of composite hypotheses with correlation
will be helpful. In this sense, Lemma 6, which involves correla-
tion in the composite hypothesis, might be found useful in this
context, although it does not appear to directly contribute to the
resolution of the problem at the moment.

In the setting of black box work extraction, Lemma 6 is
precisely the one that brings one-shot result (Theorem 5) to the
asymptotic setting, which is characterized as follows.

Theorem 7. The asymptotic black box extractable work of the
sequence of the black boxes {S𝑛 (𝑆)}∞𝑛=1 under Gibbs-preserving
covariant operations is given by

𝛽𝑊GPC ({S𝑛 (𝑆)}∞𝑛=1) = lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 (𝑆) )

𝐷 (𝜌𝑛 | |𝜏⊗𝑛),
(15)
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where C(S𝑛 (𝑆)) is the convex hull of S𝑛 (𝑆). Furthermore, the
convex hull can be removed if every element in the black box is
permutationally invariant.

Theorem 7 shows that although Gibbs-preserving covariant
operations come with restrictions compared to Gibbs-preserving
operations in one-shot level (as can be seen in Theorems 3 and 5),
their performance coincides in the asymptotic limit, both of
which are characterized by the standard free energy. This result,
therefore, extends the similar observation in the standard state-
aware work extraction [6], in which the work extraction rate
also agrees in the asymptotic limit.

Asymptotic black box work extraction under thermal
operations.— Since the Gibbs-preserving operations and
Gibbs-preserving covariant operations are axiomatic classes of
the operations, they do not always reflect the physical imple-
mentability [36]. This motivates us to study thermal operations,
which is an operationally well-motivated class of thermody-
namic processes [1]. Here, we focus on i.i.d. black boxes of
the form Si.i.d.

𝑛 (𝑆) :=
{
𝜌⊗𝑛 | 𝜌 ∈ 𝑆

}
generated by a set 𝑆 of

finite size, i.e., |𝑆 | < ∞. In the standard state-aware setting,
the work extraction from i.i.d. state is discussed in Ref. [4],
which constructed a protocol that extracts work whose rate
asymptotically converges to 𝐷 (𝜌 | |𝜏), where 𝜌 is the known
initial state.

Toward characterizing the asymptotic black box work extrac-
tion with thermal operations, we first introduce a new class of
thermodynamic processes, which contains thermal operations.

Definition 8. Let H𝐴,H𝐵,H𝐶 be Hilbert spaces, and E :
D(H𝐴 ⊗ H𝐵) → D(H𝐶 ) be a CPTP map. We call E a
covariantly conditioned thermal operation if E has the form

E =
∑︁
𝑎

ETO
𝑎 ◦ Λmeas

𝑎 . (16)

Here, each ETO
𝑎 : D(H𝐵) → D(H𝐶 ) is a thermal operation

and

Λmeas
𝑎 (𝜌𝐴𝐵𝐶 ) := Tr𝐴

[
(𝑀cov

𝑎 ⊗ 𝐼𝐵𝐶 )𝜌𝐴𝐵𝐶 (𝑀cov
𝑎 ⊗ 𝐼𝐵𝐶 )†

]
(17)

is an instrument representing a covariant measurement, where
𝑀cov

𝑎 is a POVM element satisfying P(𝑀cov
𝑎 ) = 𝑀cov

𝑎 .

We remark that covariantly conditioned thermal operations
clearly contain thermal operations, while this is a subset of
the class called conditioned thermal operations introduced
in Ref. [45], in which all measurements are allowed to be
performed.

The following result shows that covariantly conditioned ther-
mal operations perform as well as Gibbs-preserving operations
and Gibbs-preserving covariant operations in the asymptotic
setting.

Proposition 9. The asymptotic black box extractable work of{
Si.i.d.
𝑛 (𝑆)

}
𝑛

satisfying |𝑆 | < ∞ under covariantly conditioned
thermal operations is given by

𝛽𝑊CCTO

({
Si.i.d. (𝑆)

}∞
𝑛=1

)
= min

𝜌∈𝑆
𝐷 (𝜌 | |𝜏). (18)

Here, we sketch the main idea of the protocol to achieve this
rate, while we defer a detailed proof in Appendix D 1. Our
strategy is to first learn the given state using some copies and
run the state-aware protocol by Ref. [4]. An apparent restriction
here is that we are only allowed to use covariant measurement,
which may not give us the full information about the given state.
For example, a covariant measurement can never distinguish
|+⟩⟨+| from |−⟩⟨−|, even when one has infinitely many copies.
Nevertheless, we observe that the protocol in Ref. [4] does not
require the full information about the initial state 𝜌—what only
matters is P(𝜌⊗𝑛) for extracting work from 𝑛 copies.

However, this raises another potential issue. Since
{P(𝜌⊗𝑛)}𝑛 is not an i.i.d series anymore, it is not clear whether
one could learn the description of P(𝜌⊗𝑛) for an arbitrary large
𝑛—which is generally required for asymptotic work extraction—
only using the sublinear number of copies so that it would not
affect the work extraction rate. We show that it is indeed possi-
ble. We prove that the structure of the energy blocks ensures that
it suffices to identify pinched 𝑑 states P(𝜌⊗𝑑) by performing
the quantum state tomography with the covariant measurement.
Since the number of the systems for this tomography does not
depend on 𝑛, the cost for the tomography becomes negligible
asymptotically.

We now extend Proposition 9 to thermal operations. To this
end, we show that in the situation where the dimensions of the
input and output systems are the same and the measurements
are projective, covariantly conditioned thermal operations co-
incide with the thermal operations. By showing that our work
extraction protocol can be modified to satisfy these conditions,
we obtain the following result (Proof in Appendix D 2).

Theorem 10. The asymptotic black box extractable work of{
Si.i.d.
𝑛 (𝑆)

}
𝑛

satisfying |𝑆 | < ∞ under thermal operations is
represented as

𝛽𝑊TO

({
Si.i.d. (𝑆)

}∞
𝑛=1

)
= min

𝜌∈𝑆
𝐷 (𝜌 | |𝜏). (19)

In Ref. [6], it is shown that the extractable work of the known
i.i.d. state is equal to the quantum relative entropy under any of
the three free operations mentioned in the discussion above. Our
result indicates that the same holds true in the i.i.d. black box
case. Whether this holds true in the more general setting is not
known. If there exists a sequence of the black box with which
the work extraction rate differs between the closure of thermal
operations and the Gibbs-preserving covariant operations, it
would imply that the operational capabilities in state transforma-
tion of these two sets are distinct, resolving an important open
problem in the field [5, 38]. We leave a further investigation
along this line as a future work.

Conclusion.— We introduced a framework of black box
work extraction, which represents the scenarios where one is to
extract work from an unknown quantum state. We presented
the optimal guaranteed extractable work in various settings by
establishing the connection between one-shot black box work
extraction and composite hypothesis testing. We utilized this
general relation to characterize the asymptotic work distillation
rate by employing and extending quantum Stein’s lemma for
composite hypothesis testing. Besides composite hypothesis
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testing, we also devised an explicit protocol for asymptotic
black box work extraction for physically motivated classes of
thermodynamic processes, which is shown to perform as well
as much larger classes of operations.

Our work clarifies when and how the lack of information
about the initial state crucially affects the work extraction perfor-
mance and what one can still do under such restricted scenarios.
The state-agnostic setting discussed in this work has not been
investigated well despite its operational significance and still
has much room to explore. Potential future directions include
an extension of our results to a more general family of black
boxes without a tensor product structure. Another important
extension is to other quantum resource theories beyond one-shot
distillation with the maximal set of free operations discussed in

this work. As our framework forms a new connection between
the resource distillation tasks in the quantum resource theory
and the quantities in the composite quantum hypothesis testing,
the black box resource distillation offers a richer landscape in
general quantum resource theories, complementing and extend-
ing the state-aware asymptotic distillation tied to generalized
quantum Stein’s lemma.
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Appendix A: Justification of the definition of the extractable work

The definition of extractable work in this letter is a little bit anomalous. In this section, we show that the
definition is equivalent to the standard definition of work extraction.

Suppose that we have the charged state of the battery system |1⟩⟨1|, and the thermal state of the battery system
is 𝜇𝑚 = 1/𝑚 |1⟩⟨1| + (𝑚 − 1)/𝑚 |0⟩⟨0|. Note that the charged state is incoherent, i.e., does not include any
superposition of the energy eigenstates of different energy. In [1], the amount of work is expressed as the energy
gaps between the two energy eigenvalues of the Hamiltonian of the two-dimensional system called work storage
𝑊 . In such a setting, it is shown that the necessary amount of work to obtain |1⟩⟨1| from the thermal state with
thermal operations is [1]

𝛽𝑊formation (|1⟩⟨1|) ≥ 𝐷max (|1⟩⟨1| | |𝜇𝑚) = log𝑚, (A1)

where 𝐷max is the max-divergence defined as

𝐷max (𝜌 | |𝜎) = log min {𝜆 | 𝜌 ≤ 𝜆𝜎}. (A2)

On the other hand, the work extracted from |1⟩⟨1| with thermal operations is [1]

𝛽𝑊extractable ≤ 𝐷min (|1⟩⟨1| | |𝜇𝑚) = log𝑚, (A3)

where 𝐷min is the min-divergence defined as

𝐷min (𝜌 | |𝜎) = − log Tr
[
Πsupp(𝜌)𝜎

]
(Πsupp(𝜌) is the projector onto supp(𝜌).). (A4)

These inequalities also hold when one can perform the Gibbs-preserving operations [2]. In our setting, the
work necessary for the formation of the charged state and extractable work from the charged system is the same,
and this is the reason why we consider this quantity.

Appendix B: One-shot black box work extraction

1. One-shot black box work extraction under Gibbs-preserving operations (Proof of Theorem 3)

Theorem S.1 (Theorem 3 in the main text). Let S ⊂ D(H) be the black box. The one-shot extractable work
under the Gibbs-preserving operations is represented as

𝛽𝑊 𝜀
GPO(S) = 𝐷 𝜀

𝐻 (S||𝜏). (B1)

Proof. We first show the achievable part 𝛽𝑊GPO (S) ≥ 𝐷 𝜀
𝐻
(S||𝜏). To show this, it suffices to show that some

Gibbs-preserving operation achieves this extractable work yield. Consider the CPTP map E : D(H) → D(H𝑋)
which has the following form.

E(𝜌) = Tr[𝑀𝜌] |1⟩⟨1|𝑋 + Tr[(𝐼 − 𝑀)𝜌] |0⟩⟨0|𝑋 , 0 ≤ 𝑀 ≤ 𝐼 (B2)

This map is Gibbs-preserving if and only if this map satisfies E(𝜏) = 𝜇𝑚, i.e.,

E(𝜏) = Tr[𝑀𝜏] |1⟩⟨1|𝑋 + Tr[(𝐼 − 𝑀)𝜏] |0⟩⟨0|𝑋 =
1
𝑚

|1⟩⟨1|𝑋 + 𝑚 − 1
𝑚

|0⟩⟨0|𝑋 ,

⇔ 𝑚 = (Tr [𝑀𝜏])−1.

(B3)

If we take 𝑀 such that 𝑀 satisfies Tr [𝑀𝜌] ≥ 1 − 𝜀 for every 𝜌 ∈ S, we can see that for any 𝜌 ∈ S

𝐹 (E(𝜌), |1⟩⟨1|𝑋) = 𝐹 (Tr[𝑀𝜌] |1⟩⟨1|𝑋 + Tr[(𝐼 − 𝑀)𝜌] |0⟩⟨0|𝑋 , |1⟩⟨1|𝑋)
≥ Tr[𝑀𝜌]𝐹 (|1⟩⟨1|𝑋 , |1⟩⟨1|𝑋) + Tr [(𝐼 − 𝑀)𝜌]𝐹 ( |0⟩⟨0|𝑋 , |1⟩⟨1|)
≥ Tr[𝑀𝜌] ≥ 1 − 𝜀.

(B4)

In the second line, we used the concavity of the fidelity. Recalling the definition, the one-shot blackbox extractable
work is calculated as

𝛽𝑊 𝜀
GPO (S) = log max

{
𝑚 ∈ R | max

E∈O
min
𝜌∈S

𝐹 (E(𝜌), |1⟩⟨1|𝑋) ≥ 1 − 𝜀

}
≥ log max

{
(Tr [𝑀𝜏])−1 | ∀𝜌 ∈ S, Tr [𝑀𝜌] ≥ 1 − 𝜀, 0 ≤ 𝑀 ≤ 𝐼

}
.

(B5)
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The last line is the composite hypothesis testing divergence 𝐷 𝜀
𝐻
(S||𝜏). Therefore, we obtain 𝛽𝑊 𝜀

GPO (S) ≥
𝐷 𝜀

𝐻
(S||𝜏).

To show the converse part 𝛽𝑊GPO (S) ≤ 𝐷 𝜀
𝐻
(S||𝜏), we start by showing the data processing inequality of

the composite hypothesis testing divergence, i.e., for any CPTP map E : D(H) → D(H ′) and any composite
hypotheses S,T ⊂ D(H),

𝐷 𝜀
𝐻 (E(S)| |E(T )) ≤ 𝐷 𝜀

𝐻 (S||T ) (B6)

holds. Recalling the definition of the composite hypothesis testing divergence, 𝐷 𝜀
𝐻
(E(S)| |E(T )) can be written

as

𝐷 𝜀
𝐻 (E(S)| |E(T )) = − log inf

0≤𝑀′≤𝐼H′
sup𝜌∈S Tr[ (𝐼−𝑀′ ) E (𝜌) ]≤𝜀

sup
𝜏∈T

Tr[E(𝜏)𝑀 ′] .
(B7)

Here, we denote the conjugate of E as E†, i.e., E† satisfies Tr[E(𝐴)𝐵] = Tr
[
𝐴E† (𝐵)

]
for any matrices

𝐴 ∈ L(H𝐴) and 𝐵 ∈ L(H𝐵). Since E is a CPTP map, E† is a CP unital map, which maps 𝐼H′ to 𝐼H . This can
be rewritten as

− log inf
0≤𝑀′≤𝐼H′

sup𝜌∈S Tr[ (𝐼−𝑀′ ) E (𝜌) ]≤𝜀

sup
𝜏∈T

Tr[E(𝜏)𝑀 ′] = − log inf
0≤𝑀′≤𝐼H′

sup𝜌∈S Tr[ (𝐼−E† (𝑀′ ) )𝜌]≤𝜀

sup
𝜏∈T

Tr
[
𝜏E† (𝑀 ′)

]
.

(B8)

Here, we used the definition and the unitality of E†. Here, we can easily check that E† (𝑀 ′) satisfies 0 ≤
E† (𝑀 ′) ≤ 𝐼H , which follows from the completely positivity of E†. From this, the following holds.

− log inf
0≤𝑀′≤𝐼H′

sup𝜌∈S Tr[ (𝐼−E† (𝑀′ ) )𝜌]≤𝜀

sup
𝜏∈T

Tr
[
𝜏E† (𝑀 ′)

]
≤ − log inf

0≤𝑀≤𝐼H
sup𝜌∈S Tr[ (𝐼−𝑀 )𝜌]≤𝜀

sup
𝜏∈T

Tr[𝜏𝑀] = 𝐷 𝜀
𝐻 (S||T ).

(B9)

Combining these, we obtain the data processing inequality of the composite hypothesis testing divergence.
If we take the composite alternative hypothesis T as T = {𝜏}, the situation is reduced to our original setting.

Here, Let E∗ be the Gibbs-preserving operation which achieves the optimal work extraction, and 𝑚∗ = 2𝛽𝑊 𝜀
GPO (S)

be the optimal 𝑚. From the data processing inequality of the composite hypothesis testing divergence,

𝐷 𝜀
𝐻 (S||𝜏) ≥ 𝐷 𝜀

𝐻 (E∗ (S)| |𝜇𝑚∗ )
= − log inf

0≤𝑀≤𝐼
sup𝜌∈S Tr[ (𝐼−𝑀 ) E∗ (𝜌) ]≤𝜀

Tr[𝜇𝑚∗𝑀] (B10)

holds. Recalling that E∗ satisfies 𝐹 ( |1⟩⟨1| , E∗ (𝜌)) = Tr[|1⟩⟨1| E∗ (𝜌)] ≥ 1−𝜀, ∀𝜌 ∈ S because of the definition
of the extractable work, we can substitute 𝑀 = |1⟩⟨1| and obtain the following.

− log inf
0≤𝑀≤𝐼

sup𝜌∈S Tr[ (𝐼−𝑀 ) E∗ (𝜌) ]≤𝜀

Tr[𝜇𝑚𝑀] ≥ − log Tr [𝜇𝑚∗ |1⟩⟨1|] = log𝑚∗ = 𝛽𝑊 𝜀
GPO (S). (B11)

From these, we obtain the converse part. □

Since the 𝜀- one shot extractable work of the state 𝜌 is obtained as 𝐷 𝜀
𝐻
(𝜌 | |𝜏)([6]), we can show the direct part

in a different way.

Proof. (Alternative proof for the direct part.) As one can see, if one takes the convex hull on the black box, the
conversion fidelity decreases, i.e.,

max
E∈GPO

min
𝜌∈S

𝐹 (E(𝜌), |1⟩⟨1|𝑋) ≥ max
E∈GPO

min
𝜌∈C(S)

𝐹 (E(𝜌), |1⟩⟨1|𝑋). (B12)

From this, one can see that

𝛽𝑊 𝜀
GPO (S) ≥ 𝛽𝑊 𝜀

GPO (C(S)). (B13)

In the following discussion, we focus on the RHS. 𝐹 (E(𝜌), |1⟩⟨1|𝑋) = Tr [E(𝜌) |1⟩⟨1|𝑋] is linear with respect to
the E and 𝜌. What is more, the set of the Gibbs-preserving operations and C(S) are both convex. Since S is
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closed, the convex hull C(S) is also closed, we can see that C(S) is bounded. From these, we can apply Sion’s
minimax theorem [46] as follows.

max
E∈GPO

min
𝜌∈C(S)

𝐹 (E(𝜌), |1⟩⟨1|𝑋) = min
𝜌∈C(S)

max
E∈GPO

𝐹 (E(𝜌), |1⟩⟨1|𝑋) (B14)

Therefore, the 𝛽𝑊 𝜀
GPO(C(S)) is reduced to the following expression.

𝛽𝑊 𝜀
GPO(C(S)) = log max

{
𝑚 ∈ R | min

𝜌∈C(S)
max
E∈GPO

𝐹 (E(𝜌), |1⟩⟨1|𝑋) ≥ 1 − 𝜀

}
= min

𝜌∈C(S)
𝛽𝑊 𝜀

GPO (𝜌)
(B15)

From the result in [6, 10], 𝛽𝑊 𝜀
GPO (𝜌) = 𝐷 𝜀

𝐻
(𝜌 | |𝜏), and the above can be rewritten as

𝛽𝑊 𝜀
GPO (C(S)) = min

𝜌∈C(S)
𝐷 𝜀

𝐻 (𝜌 | |𝜏) ≥ 𝐷 𝜀
𝐻 (C(S)| |𝜏). (B16)

The last inequality follows due to [14, Lemma 16]. By the definition, the composite hypothesis testing divergence
does not change when the convex hull is removed. Combining these discussions, we obtain

𝛽𝑊 𝜀
GPO(S) ≥ 𝛽𝑊 𝜀

GPO (C(S)) ≥ 𝐷 𝜀
𝐻 (C(S)| |𝜏) = 𝐷 𝜀

𝐻 (S||𝜏). (B17)

□

While Sion’s minimax is a very powerful tool in our setting, it is not the appropriate tool in the subsequent
discussion in which we discuss the asymptotic limit of the extractable work from the black box.

2. One-shot black box work extraction under Gibbs-preserving covariant operations (Proof of Theorem 5)

To obtain the one-shot black box extractable work under Gibbs-preserving covariant operations, we show the
following lemma without proof. For details, see [47, Exercise 3.5.20].

Lemma S.2. Let E : D(H𝐴) → D(H𝐵) be a time-translation covariant operation, i.e., E satisfies

E(𝑒−𝑖𝐻𝐴𝑡 𝜌𝑒𝑖𝐻𝐴𝑡 ) = 𝑒−𝑖𝐻𝐵𝑡E(𝜌)𝑒𝑖𝐻𝐵𝑡 , ∀𝑡 ∈ R, (B18)

where 𝐻𝐴, 𝐻𝐵 are the Hamiltonians of the input system 𝐴 and the output system 𝐵 respectively. Then,

P𝐵 ◦ E = E ◦ P𝐴 (B19)

holds, where P𝐴,P𝐵 are the pinching channels with respect to the Hamiltonian 𝐻𝐴 and 𝐻𝐵 respectively.

From the lemma above, we can see that the conversion fidelity under the Gibbs-preserving covariant operations
is connected to that under the Gibbs-preserving operations.

Lemma S.3.

𝐹GPC ((S, 𝜏) → (|1⟩⟨1| , 𝜇𝑚)) = 𝐹GPO ((P(S), 𝜏) → (|1⟩⟨1| , 𝜇𝑚)), (B20)

where P(S) is the set of pinched states of S

P(S) :=
{
P(𝜌)

��� 𝜌 ∈ S
}
, (B21)

and P is a pinching map with respect to the Hamiltonian of the whole system.

Proof. The idea of the proof is taken from [6]. First, we show the (≤) inequality. From the definition of the
conversion fidelity,

𝐹GPC ((S, 𝜏) → (|1⟩⟨1| , 𝜇𝑚)) = max
E∈GPC

min
𝜌∈S

𝐹 (E(𝜌), |1⟩⟨1|) (B22)
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holds. Due to the contractility of the fidelity,

max
E∈GPC

min
𝜌∈S

𝐹 (E(𝜌), |1⟩⟨1|) ≤ max
E∈GPC

min
𝜌∈S

𝐹 (P ◦ E(𝜌),P(|1⟩⟨1|))

= max
E∈GPC

min
𝜌∈S

𝐹 (P ◦ E(𝜌), |1⟩⟨1|)
(B23)

holds. Here, from Lemma S.2,

max
E∈GPC

min
𝜌∈S

𝐹 (P ◦ E(𝜌), |1⟩⟨1|) = max
E∈GPC

min
𝜌∈S

𝐹 (E ◦ P(𝜌), |1⟩⟨1|). (B24)

Finally, noting that Gibbs-preserving covariant operations are Gibbs-preserving,

max
E∈GPC

min
𝜌∈S

𝐹 (E ◦ P(𝜌), |1⟩⟨1|) ≤ max
E∈GPO

min
𝜌∈S

𝐹 (E ◦ P(𝜌), |1⟩⟨1|)

= 𝐹GPO((P(S), 𝜏) → (|1⟩⟨1| , 𝜇𝑚))
(B25)

holds. From these, 𝐹GPC ((S, 𝜏) → (|1⟩⟨1| , 𝜇𝑚)) ≤ 𝐹GPO ((P(S), 𝜏) → (|1⟩⟨1| , 𝜇𝑚)) is shown.
Next, we show the opposite inequality. From the definition, we can see

𝐹GPO((P(S), 𝜏) → (|1⟩⟨1| , 𝜇𝑚)) = max
E∈GPO

min
𝜌∈S

𝐹 (E ◦ P(𝜌), |1⟩⟨1|)

≤ max
E∈GPO

min
𝜌∈S

𝐹 (P ◦ E ◦ P(𝜌), |1⟩⟨1|).
(B26)

Again, we used the contractility of fidelity. As one can check easily, P ◦ E ◦ P is Gibbs preserving covariant for
any Gibbs-preserving operation E. From this,

max
E∈GPO

min
𝜌∈S

𝐹 (P ◦ E ◦ P(𝜌), |1⟩⟨1|) ≤ max
E∈GPC

min
𝜌∈S

𝐹 (E(𝜌), |1⟩⟨1|) = 𝐹GPC ((S, 𝜏) → (|1⟩⟨1| , 𝜇𝑚)) (B27)

follows. From these, we 𝐹GPC((S, 𝜏) → (|1⟩⟨1| , 𝜇𝑚)) ≥ 𝐹GPO ((P(S), 𝜏) → (|1⟩⟨1| , 𝜇𝑚)) is shown. Combin-
ing the two inequalities, the proof is completed. □

This lemma provides us the expression of the one-shot black box extractable work using the composite
hypothesis testing divergence.

Theorem S.4. Let S ⊂ D(H) be the black box. The one-shot extractable work under the Gibbs-preserving
covariant operations is represented as

𝛽𝑊 𝜀
GPC(S) = 𝐷 𝜀

𝐻 (P(S)| |𝜏). (B28)

Proof. From the definition of the one-shot extractable work and Lemma S.3,

𝛽𝑊 𝜀
GPC (S) = log max {𝑚 ∈ R | 𝐹GPC ((S, 𝜏) → (|1⟩⟨1| , 𝜇𝑚)) ≥ 1 − 𝜀}

= log max {𝑚 ∈ R | 𝐹GPO ((P(S), 𝜏) → (|1⟩⟨1| , 𝜇𝑚)) ≥ 1 − 𝜀}
= 𝛽𝑊 𝜀

GPO (P(S)) = 𝐷 𝜀
𝐻 (P(S)| |𝜏).

(B29)

holds. We used Lemma S.3. In the last equation, we used the result in Theorem S.1. □

Appendix C: Asymptotic black box work extraction and composite quantum Stein’s lemmas

1. Asymptotic black box work extraction under Gibbs-preserving operations (Proof of Theorem 4)

In this section, we consider the asymptotic black box work extraction. To take the asymptotic limit,
we have to consider the sequence of black boxes, i.e., the sequence of the subsets of the density matrices
{S𝑛}∞𝑛=1, S𝑛 ⊂ D(H⊗𝑛). Additionally, we consider a specific sequence of black boxes that satisfies the
following:

1. For any 𝑛 ∈ N, S𝑛 is closed.

2. For any 𝑛 ∈ N,S𝑛 is closed under the measurement on any subsystems and conditioning on the measurement
outcome.
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3. For any 𝑛 ∈ N, S𝑛 is closed under taking partial trace on any subsystems.

4. For any 𝑛 ∈ N, S𝑛 is closed under permutation of the subsystems.

When we impose these conditions on the sequence of the black boxes, the problem can be reduced to the classical
adversarial hypothesis testing, which leads us to obtain the asymptotic limit [11, 14].

Some examples which satisfy these conditions are the following:

• The i.i.d. states black box Si.i.d.
𝑛 (𝑆) =

{
𝜌⊗𝑛 | 𝜌 ∈ 𝑆

}
• The tensor product states black box STP

𝑛 (𝑆) =
{⊗𝑛

𝑖=1 𝜌𝑖 | 𝜌𝑖 ∈ 𝑆,∀𝑖
}

Here, 𝑆 ⊂ D(H) is a closed subset. When we take 𝑆 as 𝑆 = {𝜌}, it is reduced to the trivial black box.
Furthermore, we assume that the thermal state is represented as 𝜏⊗𝑛, which means that the Hamiltonian of

the 𝑛 systems are the same and have no correlation. Then, employing Theorem S.1, the one-shot asymptotic
extractable work of the black box S𝑛 under the Gibbs-preserving operations is represented as

𝛽𝑊 𝜀
GPO (S𝑛) = 𝐷 𝜀

𝐻 (S𝑛 | |𝜏⊗𝑛). (C1)

To take the 𝑛 → ∞ limit, we employ a previous result of the composite hypothesis testing and related quantum
Stein’s lemma.

Proposition S.5. ([14, Theorem 5]) Let S = {S𝑛} and T = {T𝑛} be the sequence of black boxes satisfying the
conditions above. Then,

lim
𝜀→0

lim
𝑛→∞

1
𝑛
𝐷 𝜀

𝐻 (S𝑛 | |T𝑛) = lim
𝑛→∞

1
𝑛

min
𝜎𝑛∈C(S𝑛 )
𝜏𝑛∈C(T𝑛 )

𝐷 (𝜎𝑛 | |𝜏𝑛), (C2)

where C(·) denotes the convex hull of the set. Furthermore, when for any 𝑛 ∈ N, S𝑛 is contained by the subspace
of D(H) the dimension of which is polynomial to 𝑛, the convex hull on S𝑛 can be removed.

When we take T𝑛 =
{
𝜏⊗𝑛

}
, we immediately obtain the following result.

Theorem S.6. The asymptotic extractable work of the sequence of black boxes {S𝑛}∞𝑛=1 which satisfies the
conditions above under Gibbs-preserving operations is

𝛽𝑊GPO({S𝑛}∞𝑛=1) = lim
𝜀→+0

lim
𝑛→∞

1
𝑛
𝐷 𝜀

𝐻 (S𝑛 | |𝜏⊗𝑛)

= lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 )

𝐷 (𝜌𝑛 | |𝜏⊗𝑛),
(C3)

where C(S𝑛) is the convex hull of S𝑛. Furthermore, when for any 𝑛 ∈ N, S𝑛 is contained by the subspace of
D(H) the dimension of which is polynomial to 𝑛, the convex hull on S𝑛 can be removed.

When the black box is the i.i.d. states black box, for example, the convex hull can be removed. When the
black box is the i.i.d. states black box, from the additivity of the relative entropy,

𝛽𝑊GPO (
{
Si.i.d.
𝑛 (𝑆)

}∞
𝑛=1) = lim

𝑛→∞
1
𝑛

min
𝜌⊗𝑛∈S𝑛

𝐷 (𝜌⊗𝑛 | |𝜏⊗𝑛)

= min
𝜌∈𝑆

𝐷 (𝜌 | |𝜏)
(C4)

holds. In this case, the asymptotic black box extractable work equals the worst-case extractable work in the
normal setting where the experimenters have complete information.

2. Asymptotic black box work extraction under Gibbs-preserving covariant operations (Proofs of Lemma 6 and
Theorem 7)

In the same way as the previous discussion, for a given sequence of the black boxes {S𝑛}∞𝑛=1, the asymptotic
black box work extraction under Gibbs-preserving covariant operations is expressed as follows.

𝛽𝑊GPC ({S𝑛}∞𝑛=1) = lim
𝜀→+0

lim
𝑛→∞

1
𝑛
𝐷 𝜀

𝐻 (P(S𝑛) | |𝜏⊗𝑛) (C5)
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The RHS is more complicated than the LHS of Proposition S.5, since P(S𝑛) no longer has the tensor-product
structure, which means that P(S𝑛) is not closed under the measurement on any subsystems and conditioning on
the measurement result. Here, we show that another type of composite quantum Stein’s lemma holds even in this
case.

Proposition S.7. Let {S𝑛}∞𝑛=1 be a sequence of black boxes which satisfies the conditions above. Here, the
following holds.

lim
𝜀→+0

lim
𝑛→∞

1
𝑛
𝐷 𝜀

𝐻 (P(S𝑛) | |𝜏⊗𝑛) = lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 )

𝐷 (𝜌𝑛 | |𝜏⊗𝑛) (C6)

Note that a similar type of the quantum Stein’s lemma can be seen in [43, Lemma 16], and is included by
Proposition S.7.

To show this, we start from showing the following lemma.

Lemma S.8. Let 𝜌, 𝜏 ∈ D(H) be arbitrary states, and P be the pinching channel with respect to 𝜏. Then, the
following holds.

0 ≤ 𝐷 (𝜌 | |𝜏) − 𝐷 (P(𝜌) | |𝜏) ≤ log |spec(𝜏) |, (C7)

where |spec(𝜏) | is the number of the different eigenvalues of 𝜏.

Proof. 0 ≤ 𝐷 (𝜌 | |𝜏) − 𝐷 (P(𝜌) | |𝜏) is shown by using the data processing inequality of the relative entropy. To
show the other inequality, we first employ Hayashi’s pinching inequality [17]

P(𝜌) ≥ 𝜌

|spec(𝜏) | . (C8)

Due to this inequality and the properties of the relative entropy, the following holds.

𝐷 (𝜌 | |𝜏) = 𝐷 (P(𝜌) | |𝜏) + 𝐷 (𝜌 | |P(𝜌))
≤ 𝐷 (P(𝜌) | |𝜏) + 𝐷 (𝜌 | |𝜌/|spec(𝜏) |) = 𝐷 (P(𝜌) | |𝜏) + log |spec(𝜏) |, (C9)

where in the inequality, we used the operator monotonicity of log. □

In the subsequent discussion, we denote the CPTP map which represent the measurement whose POVM
elements are {𝐸𝑎}𝑎 as

M(𝜌) :=
∑︁
𝑎

Tr[𝜌𝐸𝑎] |𝑎⟩⟨𝑎 | , (C10)

where {|𝑎⟩}𝑎 is the orthogonal vectors in the classical system. We review the concepts called compatible pair.

Definition S.9. [11] Let 𝑀 = (𝑀1, 𝑀2, . . .) be the sequence of the measurements with 𝑀𝑛 reprsenting the set
of measurements on D(H⊗𝑛). Furthermore, let S = (S1,S2, . . .) be the sequence of the sets of state where
S𝑛 is the subset of D(H⊗𝑛) for every 𝑛 ∈ N. We say that (𝑀,S) is the compatible pair when the sequence
S is closed under the measurement in 𝑀 on any subsystems and conditioning on the measurement outcome,
i.e., for any state 𝜌𝑛+𝑘 ∈ S𝑛+𝑘 , after performing any measurement in 𝑀𝑘 and conditioning on the outcome, the
post-measured state is the element of S𝑛.

Furthermore, we consider the restricted set of measurements called covariant measurements, which guarantees
that the probability distribution obtained by such a measurement is invariant under time translation.

Definition S.10. Let 𝐻 be the Hamiltonian of the considered system, and {𝑀𝑎}𝑎 be POVM elements of a
measurement 𝑀. We say that 𝑀 is a covariant measurement if and only if all the measurement operators 𝑀𝑎

satisfy the following condition.

∀𝑎, P(𝑀𝑎) = 𝑀𝑎 . (C11)

We denote the sequence of the covariant measurement as 𝑀cov.

We also denote the sequence of all measurements as 𝑀all. Before showing Proposition S.7, we show the
following two lemmas.
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Lemma S.11. Let S = {S𝑛}∞𝑛=1 be the sequence of the black boxes satisfying the condition mentioned above.
Furthermore, let P(C(S)) be the sequence of the sets of states {P(C(S𝑛))}∞𝑛=1. Here, (𝑀cov,P(C(S))) is the
compatible pair.

Note that (𝑀cov,P(S)) is the compatible pair too, which is proven in the same way as the following proof.
Here, we consider the convex hull of the black boxes to use this lemma to show Proposition S.7.

Proof. of Lemma S.11. We first note that due to the structure of any POVM elements of the covariant
measurement 𝑀cov

𝑎 ,

P
(
(𝑀cov

𝑎 )†𝑀cov
𝑎

)
= (𝑀cov

𝑎 )†𝑀cov
𝑎 (C12)

holds. Here, it suffices to show that for any measurement operators 𝑀cov
𝑎 and the arbitrary state P(𝜌𝑛+𝑘) ∈

P(C(S𝑛+𝑘)),∀𝑛, 𝑘 ∈ N

Tr𝑛+1,...,𝑛+𝑘
[ (
𝐼 ⊗ 𝑀cov

𝑎

)
𝜌𝑛+𝑘

(
𝐼 ⊗ 𝑀cov

𝑎

)†] ∈ P(C(S𝑛)) (C13)

holds. This can be checked as follows.

Tr𝑛+1,...,𝑛+𝑘
[ (
𝐼 ⊗ 𝑀cov

𝑎

)
𝜌𝑛+𝑘

(
𝐼 ⊗ 𝑀cov

𝑎

)†]
= Tr

[
(𝐼 ⊗ (𝑀cov

𝑎 )†𝑀cov
𝑎 )P(𝜌𝑛+𝑘)

]
= Tr

[
P(𝐼 ⊗ (𝑀cov

𝑎 )†𝑀cov
𝑎 )𝜌𝑛+𝑘

]
= Tr

[
(𝐼 ⊗ (𝑀cov

𝑎 )†𝑀cov
𝑎 )𝜌𝑛+𝑘

]
∈ P(C(S𝑛)).

(C14)

The first line is because the pinching channel satisfies P† = P, and the property mentioned at the beginning of
this proof is used in the second line. Finally, the third line is due to the second property of the sequence of the
black boxes S = {S𝑛}∞𝑛=1. □

Lemma S.12. It holds that

sup
M∈𝑀cov

𝑛

min
𝜌𝑛∈C(S𝑛 )

𝐷 (M(𝜌𝑛) | |M(𝜏⊗𝑛)) = sup
M∈𝑀all

𝑛

min
𝜌𝑛∈C(S𝑛 )

𝐷 (M(P(𝜌𝑛)) | |M(𝜏⊗𝑛)). (C15)

Proof. First, we show the (≤) inequality. For any states 𝜌𝑛 and any POVM element of the covariant measurement
𝑀cov

𝑎 , Noting that P(𝑀cov
𝑎 ) = 𝑀cov

𝑎 , it holds that

Tr
[
𝜌𝑛𝑀

cov
𝑎

]
= Tr

[
𝜌𝑛P

(
𝑀cov

𝑎

) ]
= Tr

[
P(𝜌𝑛)𝑀cov

𝑎

]
. (C16)

This implies that all the probability distributions which are obtained by measuring the state 𝜌𝑛 with the covariant
measurement can be realized by measuring the pinched state P(𝜌𝑛) with the covariant measurement. From this,

sup
M∈𝑀cov

𝑛

min
𝜌𝑛∈C(S𝑛 )

𝐷 (M(𝜌𝑛) | |M(𝜏⊗𝑛)) ≤ sup
M∈𝑀all

𝑛

min
𝜌𝑛∈C(S𝑛 )

𝐷 (M(P(𝜌𝑛)) | |M(𝜏⊗𝑛)). (C17)

holds. To show the (≥) inequality, note that

Tr
[
P(𝜌𝑛)𝑀all

𝑎

]
= Tr

[
𝜌𝑛P(𝑀all

𝑎 )
]

(C18)

holds. Here,
{
P(𝑀all

𝑎 )
}
𝑎

satisfies the conditions for POVM elements, i.e.,

∀𝑎, P(𝑀all
𝑎 ) ≥ 0,

∑︁
𝑎

P(𝑀all
𝑎 ) = P

(∑︁
𝑎

𝑀all
𝑎

)
= P(𝐼) = 𝐼 (C19)

holds. Furthermore, due to the definition of the pinching channel, the measurement whose POVM elements
are represented as

{
P(𝑀all

𝑎 )
}
𝑎

is the covariant measurement. From this, one can see that all the probability
distribution obtained by measuring the pinched state P(𝜌𝑛) with any measurement can be realized by measuring
𝜌𝑛 with covariant measurement which implies

sup
M∈𝑀cov

𝑛

min
𝜌𝑛∈C(S𝑛 )

𝐷 (M(𝜌𝑛) | |M(𝜏⊗𝑛)) ≥ sup
M∈𝑀all

𝑛

min
𝜌𝑛∈C(S𝑛 )

𝐷 (M(P(𝜌𝑛)) | |M(𝜏⊗𝑛)), (C20)

which completes the proof. □
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Here, we are ready to show Proposition S.7.

Proof. of Proposition S.7. Note that

𝐷 𝜀
𝐻 (P(S𝑛) | |𝜏⊗𝑛) = 𝐷 𝜀

𝐻 (C(P(S𝑛)) | |𝜏⊗𝑛) (C21)

holds and 𝐷 𝜀
𝐻
(C(P(S𝑛)) | |𝜏⊗𝑛) can be interpreted as the hypothesis testing divergence of C(S𝑛) with respect to

𝜏⊗𝑛 when the allowed measurement is restricted to the covariant measurement. Due to Lemma S.11 and [11,
Theorem 16], the following holds.

lim
𝜀→+0

lim
𝑛→∞

1
𝑛
𝐷 𝜀

𝐻 (C(P(S𝑛)) | |𝜏⊗𝑛) = lim
𝑛→∞

1
𝑛

sup
M∈𝑀cov

𝑛

min
𝜌𝑛∈C(S𝑛 )

𝐷 (M(𝜌𝑛) | |M(𝜏⊗𝑛))

= lim
𝑛→∞

1
𝑛

sup
M∈𝑀all

𝑛

min
𝜌𝑛∈C(S𝑛 )

𝐷 (M(P(𝜌𝑛)) | |M(𝜏⊗𝑛))
(C22)

Here, the second line follows from Lemma S.12 Employing [11, Lemma 13], we can exchange the sup and min,
i.e.,

lim
𝑛→∞

1
𝑛

sup
M∈𝑀all

𝑛

min
𝜌𝑛∈C(S𝑛 )

𝐷 (M(P(𝜌𝑛)) | |M(𝜏⊗𝑛)) = lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 )

sup
M∈𝑀all

𝑛

𝐷 (M(P(𝜌⊗𝑛)) | |M(𝜏⊗𝑛))

= lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 )

𝐷𝑀all
𝑛
(P(𝜌𝑛) | |𝜏⊗𝑛),

(C23)
where 𝐷𝑀all (P(𝜌𝑛) | |𝜏⊗𝑛) is the 𝑀all

𝑛 -measured relative entropy of P(𝜌𝑛) with respect to 𝜏⊗𝑛 [48].
We first note that the infimum is achieved at a permutation invariant state [14, Lemma 23]. Therefore, letting

PI𝑛 be the set of 𝑛-qudit permutation invariant states, we get

lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 )

𝐷𝑀all
𝑛
(P(𝜌𝑛) | |𝜏⊗𝑛) = lim

𝑛→∞
1
𝑛

min
𝜌𝑛∈C(S𝑛 )∩PI𝑛

𝐷𝑀all
𝑛
(P(𝜌𝑛) | |𝜏⊗𝑛). (C24)

We now recall [13, Lemma 2.4], showing that for all permutation invariant states 𝜂𝑛 and 𝜎𝑛, it holds that

𝐷 (𝜂𝑛∥𝜎𝑛) − log poly(𝑛) ≤ 𝐷𝑀all (𝜂𝑛∥𝜎𝑛) ≤ 𝐷 (𝜂𝑛∥𝜎𝑛). (C25)

This implies

lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 )∩PI𝑛

𝐷𝑀all (P(𝜌𝑛) | |𝜏⊗𝑛) = lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 )∩PI𝑛

𝐷 (P(𝜌𝑛) | |𝜏⊗𝑛). (C26)

Note that the number of the different eigenvalue of 𝐻×𝑛 is upper bounded by the number of type classes of 𝑛
length strings when the set of alphabets is {0, 1, . . . , 𝑑 − 1}. Since the number of type classes is upper-bounded
by (𝑛 + 1)𝑑 [49], due to Lemma S.8, it holds that for any states 𝜌𝑛,

𝐷 (𝜌𝑛 | |𝜏⊗𝑛) − log poly(𝑛) ≤ 𝐷 (P(𝜌𝑛) | |𝜏⊗𝑛) ≤ 𝐷 (𝜌𝑛 | |𝜏⊗𝑛), (C27)

which implies

lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 )∩PI𝑛

𝐷 (P(𝜌𝑛) | |𝜏⊗𝑛) = lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 )∩PI𝑛

𝐷 (𝜌𝑛 | |𝜏⊗𝑛). (C28)

Again, employing [14, Lemma 23], we obtain

lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 )∩PI𝑛

𝐷 (𝜌𝑛 | |𝜏⊗𝑛) = lim
𝑛→∞

1
𝑛

min
𝜌𝑛∈C(S𝑛 )

𝐷 (𝜌𝑛 | |𝜏⊗𝑛). (C29)

Combining these, we complete the proof.
□
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Appendix D: Asymptotic black box work extraction under thermal operations

1. Construction of work extraction protocol under covariantly conditioned thermal operations

In the following discussion, we consider the i.i.d. black boxes, which contain a finite number of states, i.e., the
black box

{
Si.i.d.
𝑛 (𝑆)

}∞
𝑛=1 with |𝑆 | < ∞. Our goal in this section is to show that under thermal operations, one

can extract the same amount of work asymptotically as the Gibbs-preserving operations and Gibbs-preserving
covariant operations when the given state is picked from the i.i.d. black boxes, which contain a finite number of
states.

First, we introduce a new class of operations called covariantly conditioned thermal operations, thermal
operations conditioned by the outcome of the covariant measurement. In [45], the class of operations called
conditioned thermal operations is introduced, in which one performs the measurement on one of the bipartite
systems, and applies the thermal operation conditioned by the measurement outcome. The class called covariantly
conditioned thermal operation restricts the measurement one can perform to the covariant measurement. The
rigorous definition of the class is the following.

Definition S.13. Let H𝐴,H𝐵,H𝐶 be Hilbert spaces, and E : D(H𝐴 ⊗ H𝐵) → D(H𝐶 ) be a CPTP map. E is
called a thermal operations + covariant measurements when E can be decomposed as follows.

E =
∑︁
𝑎

ETO
𝑎 ◦ Λmeas

𝑎 . (D1)

Here, ETO
𝑎 : D(H𝐵) → D(H𝐶 ), 𝑎 = 1, 2, . . . , 𝑚 is thermal operations and

Λmeas
𝑎 (𝜌𝐴𝐵𝐶 ) := Tr𝐴

[
(𝑀cov

𝑎 ⊗ 𝐼𝐵𝐶 )𝜌𝐴𝐵𝐶 (𝑀cov
𝑎 ⊗ 𝐼𝐵𝐶 )†

]
, 𝑎 = 1, . . . , 𝑚 (D2)

be the instruments which represent the covariant measurement, where 𝑀cov
𝑎 is the measurement operator on

D(H𝐴) which satisfies
∑

𝑎 (𝑀cov
𝑎 )†𝑀cov

𝑎 = 𝐼 . We denote the set of covariantly conditioned thermal operations
as CCTO(𝐴, 𝐵 → 𝐶) Furthermore, when the measurements are restricted to the covariant and projective
measurements, we say that the operation is thermal operation + covariant projective measurement. We denote
the set of thermal operations + covariant projective measurements as CCPTO(𝐴, 𝐵 → 𝐶)

Our first goal is to show the following proposition.

Proposition S.14. Let 𝑆 ⊂ D(H) be a subset of density matrices that contain a finite number of density matrices.
The asymptotic extractable work of the sequence of the i.i.d. black boxes

{
Si.i.d.
𝑛 (𝑆)

}∞
𝑛=1 under covariantly

conditioned thermal operations is represented as

𝛽𝑊CCTO (
{
Si.i.d.
𝑛 (𝑆)

}∞
𝑛=1) = min

𝜌∈𝑆
𝐷 (𝜌 | |𝜏). (D3)

Proof. (of (≤) part.) To show the (≤) inequality, we note the hierarchy of the operations

Thermal ⊂ covariantly conditioned Thermal ⊂ Gibbs − preserving covariant ⊂ Gibbs − preserving, (D4)

which implies

𝛽𝑊CCTO (
{
Si.i.d.
𝑛 (𝑆)

}∞
𝑛=1) ≤ 𝛽𝑊GPO (

{
Si.i.d.
𝑛 (𝑆)

}∞
𝑛=1) = min

𝜌∈𝑆
𝐷 (𝜌 | |𝜏). (D5)

The last inequality is due to Eq. (C4). □

To show the other inequality, we construct the concrete protocol as follows.

1. Given 𝑛 copies of some unknown state 𝜌, pick up 𝑘 𝛿′ , 𝑝𝑒 copies of states and perform the covariant
measurement. Here, 𝑘 𝛿′ , 𝑝𝑒 is a natural number that depends on the necessary accuracy to identify the
initial state.

2. Identify P(𝜌⊗𝑑) from the measurement outcome.

3. Perform the protocol in [4] using the information obtained in Step 2.
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One may see it weird that the goal of the second step is not to identify 𝜌. Actually, it is not possible to perform
the state tomography with the covariant measurement even if the experimenters have an infinite number of
copies. The simplest situation is where the experimenters are given a qubit system which is either |+⟩⟨+| or |−⟩⟨−|
where |+⟩ = ( |0⟩ + |1⟩)/

√
2 and |−⟩ = ( |0⟩ − |1⟩)/

√
2, and are told to guess which is the state with covariant

measurements. We assume that the Hamiltonian of the system is 𝐻 = |1⟩⟨1|. Here, from the definition of the
covariant measurement, for any 𝜌 ∈ D(H) and the POVM elements of the covariant measurement 𝐸cov

𝑎 on the
system,

Tr
[
𝐸cov
𝑎 𝜌

]
= Tr

[
P(𝐸cov

𝑎 )𝜌
]
= Tr

[
𝐸cov
𝑎 P(𝜌)

]
(D6)

holds. This implies that the probability distribution of the outcome of the covariant measurement does not
change when the state is pinched. Here, we observe the two state P(|+⟩⟨+|⊗𝑛) and P(|−⟩⟨−|⊗𝑛) coincide for
every 𝑛 ∈ N. Let 𝒔, 𝒕 ∈ {0, 1}𝑛 be the 𝑛-bit string. One can see that due to the definition of the pinching channel

⟨𝒔 | P(𝜌⊗𝑛) | 𝒕⟩ ≠ 0 ⇒ 𝒔 and 𝒕 belong to the same type class. (D7)

Furthermore, the direct calculation shows that

⟨𝒔 | 𝜌⊗𝑛 | 𝒕⟩ =
𝑛∏
𝑖=1

⟨𝑠𝑖 | 𝜌 |𝑡𝑖⟩ , (D8)

where 𝑠𝑖 and 𝑡𝑖 are the 𝑖-th alphabets of 𝒔 and 𝒕 respectively. When 𝒔 and 𝒕 belong to the same type class,

|{𝑖 ∈ {1, . . . , 𝑑}|𝑠𝑖 = 0, 𝑡𝑖 = 1}| = |{𝑖 ∈ {1, . . . , 𝑑}|𝑠𝑖 = 1, 𝑡𝑖 = 0}| (D9)

holds.
From this, we can see that all the elements of P(|−⟩⟨−|⊗𝑛) in the energy subspaces are all 1/2𝑛, and we can

conclude that P(|+⟩⟨+|⊗𝑛) = P(|−⟩⟨−|⊗𝑛) for any 𝑛. Therefore, even if the experimenters perform any covariant
measurement, they can never distinguish |+⟩⟨+| and |−⟩⟨−|. Due to the discussion above, we can never estimate
the unknown state 𝜌 by covariant measurement.

Then, what information can one obtain by the covariant measurement? In the subsequent discussion, we give
an answer to this question.

First of all, we restrict the Hamiltonian in consideration to what satisfies the following property.

Definition S.15. Let 𝐻 be a Hamiltonian, and 𝐸1, . . . , 𝐸𝑑 be the eigenvalues of 𝐻. We say that 𝐻 is rationally
independent when 𝐻 satisfies the following.∑︁

𝑖

𝑁𝑖𝐸𝑖 = 0,
∑︁
𝑖

𝑁𝑖 = 0, 𝑁𝑖 ∈ Z, ∀𝑖 ⇒ 𝑁𝑖 = 0, ∀𝑖. (D10)

In the following discussion, we assume that the Hamiltonian of each system satisfies this property. Rational
independence prohibits any number of copies of the systems from having degenerate energy levels other
than the degeneracy that comes from the permutation of the systems. A simple example is the qutrit system
H3 = Span {|0⟩ , |1⟩ , |2⟩} and the Hamiltonian of the system 𝐻 = 𝐸 |1⟩⟨1| + 2𝐸 |2⟩⟨2|. The Hamiltonian 𝐻

itself does not have degeneracy. However, when we prepare two copies of this, the energy subspace which
corresponds to the energy eigenvalue 2𝐸 of the Hamiltonian of the whole system 𝐻×2 is Span {|02⟩ |20⟩ , |11⟩}.
This additional degeneracy comes up because of the rational dependence of the Hamiltonian.

In the following discussion, we mainly focus on the Hamiltonian, which has this property. We note that the
energy subspaces of the 𝑛 copies of the system are spanned by the vectors that belong to the same type class,
and there exists a one-to-one correspondence between the energy eigenvalue of the 𝑛 copies of the system and
the type of the eigenvectors. After that, we also extend the discussion to the case where the Hamiltonian is not
rationally independent.

In the subsequent discussion, 𝜌 ∈ D(H) is a density operator, and {|𝑖⟩}𝑑𝑖=1 are the eigenvectors of the
Hamiltonian 𝐻. Furthermore, we denote 𝜌𝑖 𝑗 := ⟨𝑖 | 𝜌 | 𝑗⟩. We show that we can estimate the values called cyclic
product defined below in any accuracy by the covariant measurement.

Definition S.16. Let 𝒔 ∈ {1, . . . , 𝑑}𝑚 be a string of length 𝑚, which is composed of 𝑚 different alphabets, i.e.,
𝑠𝑖 = 𝑠 𝑗 ⇔ 𝑖 = 𝑗 . Here, 𝑚 ≤ 𝑑 holds. The cyclic product of 𝜌 with respect to the string 𝒔 is defined as

𝑚∏
𝑖=1

𝜌𝑠𝑖𝑠𝑖+1

(
= ⟨𝑠1𝑠2 · · · 𝑠𝑚 | 𝜌⊗𝑚 |𝑠2 · · · 𝑠𝑚𝑠1⟩

)
, (D11)

where we set 𝑠𝑚+1 = 𝑠1.
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Note that the number of the different cyclic products is finite. Furthermore, any cyclic products are in the
energy subspace, since 𝒔 = 𝑠1𝑠2 · · · 𝑠𝑚 and 𝒔′ = 𝑠2 · · · 𝑠𝑚𝑠1 belong to the same type class.

Lemma S.17. Suppose that every matrix element of P(𝜌⊗𝑑) is given. Then, all the cyclic products of 𝜌 can be
calculated from the elements of P(𝜌⊗𝑑).

Proof. We first consider the diagonal elements of 𝜌. Since for any 𝑖 ∈ {1, . . . , 𝑑}, 𝜌𝑖𝑖 ≥
0, ⟨𝑖𝑖 . . . 𝑖 | P(𝜌⊗𝑑) |𝑖𝑖 . . . 𝑖⟩ ≥ 0 due to the positive semidefiniteness of 𝜌 and P(𝜌⊗𝑑), and
⟨𝑖𝑖 . . . 𝑖 | P(𝜌⊗𝑑) |𝑖𝑖 . . . 𝑖⟩ = (𝜌𝑖𝑖)𝑑 holds, we can calculate 𝜌𝑖𝑖 as 𝜌𝑖𝑖 = (⟨𝑖𝑖 . . . 𝑖 | P(𝜌⊗𝑑) |𝑖𝑖 . . . 𝑖⟩)1/𝑑 . One
can calculate any cyclic products with respect to the string 𝒔 by choosing 𝑗 ∈ {1, . . . , 𝑑} such that 𝜌 𝑗 𝑗 ≠ 0 and
noting that

⟨ 𝑗 . . . 𝑗 𝒔 | P(𝜌⊗𝑑) | 𝑗 . . . 𝑗 𝒔′⟩ = (𝜌 𝑗 𝑗 )𝑑−|𝒔 |
𝑚∏
𝑖=1

𝜌𝑠𝑖𝑠𝑖+1 ,

𝑚∏
𝑖=1

𝜌𝑠𝑖𝑠𝑖+1 =
⟨ 𝑗 . . . 𝑗 𝒔 | P(𝜌⊗𝑑) | 𝑗 . . . 𝑗 𝒔′⟩

(⟨ 𝑗 𝑗 . . . 𝑗 | P(𝜌⊗𝑑) | 𝑗 𝑗 . . . 𝑗⟩)
𝑑−|𝒔 |
𝑑

.

(D12)

□

Once we obtain the list of the all cyclic products, under the assumption that the Hamiltonian is rationally
independent, we can reconstruct P(𝜌⊗𝑛) for any 𝑛 ∈ N.

Lemma S.18. Any nonzero elements of P(𝜌⊗𝑛) ∀𝑛 ∈ N can be represented as the product of cyclic products.

Proof. Due to the definition of the pinching channel, the matrix elements of P(𝜌⊗𝑛) that are not inside the
energy block are 0. Therefore, it suffices to consider the matrix elements inside the energy blocks. Any nonzero
elements of P(𝜌⊗𝑛) can be written in the form of

⟨𝒔 | 𝜌⊗𝑛 | 𝒕⟩ =
𝑛∏
𝑖=1

𝜌𝑠𝑖 𝑡𝑖 , (D13)

where 𝒔, 𝒕 ∈ {1, . . . , 𝑑}𝑛 are the strings of length 𝑛 which belong to the same type class. One can rearrange
𝜌𝑠1𝑡1 , . . . , 𝜌𝑠𝑛𝑡𝑛 to the following form.

𝜌𝑎1𝑎2𝜌𝑎2𝑎3 · · · 𝜌𝑎𝑛𝑎1 , 𝑎1, . . . , 𝑎𝑛 ∈ {1, . . . , 𝑑} (D14)

Note that this does not mean that any matrix elements of P(𝜌⊗𝑛) are the cyclic products, since the 𝑎1, . . . , 𝑎𝑛
can include the same alphabet. The existence of such a sequence is guaranteed by the assumption that
𝒔, 𝒕 ∈ {1, . . . , 𝑑}𝑛 are in the same type class. Now, we separate this sequence into the cyclic products in the
following way. If 𝑎𝑖 = 𝑎 𝑗 (= 𝛼), 𝑖 ≠ 𝑗 , we divide the sequence above as

𝜌𝑎1𝑎2 · · · 𝜌𝑎𝑖−1𝛼𝜌𝛼𝑎𝑖+1 · · · 𝜌𝑎 𝑗−1𝛼𝜌𝛼𝑎 𝑗+1 · · · 𝜌𝑎𝑛𝑎1 → 𝜌𝑎1𝑎2 · · · 𝜌𝑎𝑖−1𝛼𝜌𝛼𝑎 𝑗+1 · · · 𝜌𝑎𝑛𝑎1 , 𝜌𝛼𝑎𝑖+1 · · · 𝜌𝑎 𝑗−1𝛼

(D15)
These two terms also have the form in Eq. (D14). This procedure can be carried out until the divided terms have
no overlaps in the alphabets, in other words, they are divided into the cyclic products. This decomposition can be
done in any nonzero matrix elements in P(𝜌⊗𝑛), which completes the proof. □

From these lemmas above, we can easily see the following.

Lemma S.19. For any density matrix of the qudit system 𝜌1, 𝜌2 ∈ D(H),

P(𝜌⊗𝑑1 ) = P(𝜌⊗𝑑2 ) ⇔ P(𝜌⊗𝑛1 ) = P(𝜌⊗𝑛2 ), ∀𝑛 ∈ N. (D16)

Proof. (⇐) is obvious, and (⇒) follows because the left condition implies that all cyclic products of 𝜌1 and 𝜌2
are the same, which means the condition of the right-hand side due to Lemma S.18. □

Using these lemmata, we can show the Proposition S.14.
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Proof. (of (≥) part.) In [4], it is shown that one can perform the protocol Λ in which for any 𝜀′ > 0 and 𝜂′ > 0
there exists 𝑁 ∈ N such that

𝑛 ≥ 𝑁 ⇒ ∃𝑚𝑛 ∈ N s.t. 𝐹 (Λ ◦ P(𝜌⊗𝑛), (|1⟩⟨1| , 𝜇𝑚𝑛
)) ≥ 1 − 𝜀′,

����𝐷 (𝜌 | |𝜏) − 1
𝑛

log𝑚𝑛

���� < 𝜂′. (D17)

Note that since in this protocol, one first applies the pinching channel, it suffices to obtain information about the
pinched state by the covariant measurement for the work extraction protocol. Furthermore, due to Lemma S.19,
in order to specify the input state, one just needs to perform the quantum state tomography on the pinched 𝑑

copies of input state P(𝜌⊗𝑑).
Note that the black box contains a finite number of states. We define 𝛿 > 0 as

2𝛿 := min
𝜌𝑖 ,𝜌 𝑗 ∈𝑆

P(𝜌⊗𝑑
𝑖

)≠P(𝜌⊗𝑑
𝑗

)

∥P(𝜌⊗𝑑𝑖 ) − P(𝜌⊗𝑑𝑗 )∥1.
(D18)

To perform the quantum state tomography on P(𝜌⊗𝑑) with accuracy 𝛿′ with respect to the trace distance and
with success probability 1 − 𝑝𝑒, it suffices to use

𝑘 𝛿′ , 𝑝𝑒 = O
(
𝑑2𝑑

𝛿′2
log

(
1
𝑝𝑒

))
(D19)

copies of P(𝜌⊗𝑑) [50, Corollary 1.4]. If we take 𝛿′ smaller than 𝛿, the probability of judging 𝜌 as other elements
in black boxes 𝑝𝑒 can be arbitrarily small.

Now, we perform the covariant measurement and the thermal operations conditioned by the measurement
outcome as follows. We denote the appropriate operations for the input state 𝜌⊗𝑛

𝑖
as Λ𝑖,𝑛. We perform

state tomography with covariant measurement using 𝑘 𝛿′ , 𝑝𝑒 copies of given unknown state 𝜌, and obtain an
estimate of P(𝜌⊗𝑑), which we call �̂� . We then choose 𝑖 such that P(𝜌⊗𝑑

𝑖
) realizes the closest value to �̂� , i.e.,

𝑖 = argmin𝑖 ∥�̂� − P(𝜌⊗𝑑
𝑖

)∥1. We then apply Λ𝑖,𝑛 to the rest of the states 𝜌⊗𝑛. Noting that the probability of
successfully identifying the unknown state as 𝜌𝑖 = 𝜌𝑖 is at least 1 − 𝑝𝑒, this protocol ensures that when the given
state is 𝜌𝑖 , the operation applied to 𝜌⊗𝑛

𝑖
has the form (1 − 𝑝𝑒)Λ𝑖,𝑛 + 𝑝𝑒Ξ, where Ξ is some quantum channel.

This guarantees that for any 𝑖 and arbitrary 𝜀′, 𝜂′ > 0, there exists a sufficiently large 𝑛 such that

𝐹
( (
(1 − 𝑝𝑒)Λ𝑖,𝑛 + 𝑝𝑒Ξ

)
◦ P

(
𝜌⊗𝑛

)
, (|1⟩⟨1| , 𝜇𝑚𝑛

)
)
≥ (1 − 𝑝𝑒) (1 − 𝜀′)����𝐷 (𝜌 | |𝜏) − 1

𝑛
log𝑚𝑛

���� < 𝜂′
(D20)

Let us fix arbitrary 𝜀 > 0 and 𝜂 > 0. We choose 𝑘 𝛿′ , 𝑝𝑒 and 𝑛 to satisfy

(1 − 𝑝𝑒) (1 − 𝜀′) ≥ 1 − 𝜀. (D21)

Here, the point is that 𝑝𝑒 does not depend on 𝑛 but only on the accuracy of the state tomography 𝛿′. Furthermore,
with respect to the extractable work,����𝐷 (𝜌 | |𝜏) − 1

𝑛 + 𝑘 𝛿′ , 𝑝𝑒
log𝑚𝑛

���� = ����𝐷 (𝜌 | |𝜏) − 1
𝑛

log𝑚𝑛 +
(

1
𝑛
− 1
𝑛 + 𝑘 𝛿′ , 𝑝𝑒

)
log𝑚𝑛

����
≤

����𝐷 (𝜌 | |𝜏) − 1
𝑛

log𝑚𝑛

���� + 𝑘 𝛿′ , 𝑝𝑒

𝑛(𝑛 + 𝑘 𝛿′ , 𝑝𝑒 )
log𝑚𝑛

< 𝜂′ +
𝑘 𝛿′ , 𝑝𝑒

𝑛2 (𝐷 (𝜌 | |𝜏) + 𝜂′).

(D22)

This implies that if we take sufficiently large 𝑛, we can achieve����𝐷 (𝜌 | |𝜏) − 1
𝑛 + 𝑘 𝛿′ , 𝑝𝑒

log𝑚𝑛

���� < 𝜂. (D23)

From these discussions, we can conclude this protocol can achieve the same work extraction as the protocol
in [4]. Since we defined the black box extractable work as the worst-case work extraction, it holds that

𝛽𝑊CCTO (
{
Si.i.d.
𝑛 (𝑆)

}∞
𝑛=1) ≥ min

𝜌∈𝑆
𝐷 (𝜌 | |𝜏). (D24)
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(   ) (   )
additional degenerate space 

FIG. S.1. The procedure to erase the additional energy subspace due to the rational dependence of the Hamiltonian of each
system.

Even when the Hamiltonian is rationally dependent, We can achieve the same performance. To see this, we
consider the pinching channel with respect to the rationally independent Hamiltonian, not the Hamiltonian of the
system itself. We denote this channel as P̃ . In a similar way as the proof in [6] one can see that P̃ is a thermal
operation. Due to the definition, P̃ erases the additional degenerate spaces in the pinched density matrix with
respect to the original Hamiltonian, and satisfies P̃ ◦ P = P̃ = P ◦ P̃ (see FIG. S.1). Note that applying this
pinching channel in advance does not increase the extractable work, i.e.,

𝛽𝑊CCTO(
{
Si.i.d.
𝑛 (𝑆)

}∞
𝑛=1) ≥ 𝛽𝑊CCTO(

{
P̃ (Si.i.d.

𝑛 (𝑆))
}∞
𝑛=1). (D25)

After we apply this pinching channel, we can apply the same state tomography protocol and thermal operation
which follows P̃ conditioned by the result of the tomography. Applying the same protocol, we can achieve the
same extractable work as the case where the Hamiltonian is rationally independent. Therefore, it holds that

𝛽𝑊CCTO(
{
Si.i.d.
𝑛 (𝑆)

}∞
𝑛=1) ≥ 𝛽𝑊CCTO (

{
P̃ (Si.i.d.

𝑛 (𝑆))
}∞
𝑛=1) ≥ min

𝜌∈𝑆
𝐷 (𝜌 | |𝜏), (D26)

which completes the proof. □

Note that the measurement is used to perform the quantum state tomography, we use only the projective
measurements for the protocol above.

2. Equivalence of thermal operation and covariantly conditioned thermal operation with projective measurements

In this subsection, we show that one can perform the work extraction protocol in thermal operations. We
denote the set of thermal operations from D(H𝐴) to D(H𝐵) as TO(𝐴 → 𝐵). We start with the following
proposition.

Proposition S.20. Let 𝐴, 𝐵 be the input systems and 𝐶 be the output system. If dimH𝐵 = dimH𝐶 ,

TO(B → C) = CCPTO(A,B → C) (D27)

holds.

Proof. The idea stems from [51, Appendix C]. Since ETO
𝑖

is a thermal operation for any 𝑖 ∈ {1, . . . , 𝑚}, ETO
𝑖

can be decomposed as follows.

ETO
𝑖 (𝜌𝐵) = Tr𝐸′

𝑖

[
𝑈𝑖

(
𝜌𝐵 ⊗ 𝜏𝐸𝑖

)
𝑈

†
𝑖

]
(D28)

Here, 𝜏𝐸𝑖
= exp

(
−𝛽𝐻𝐸𝑖

)
/𝑍𝐸𝑖

is a thermal state of the ancillary system 𝐸𝑖 , which is associated with the Hilbert
space H𝐸𝑖

and the Hamiltonian 𝐻𝐸𝑖
. The unitary operator 𝑈𝑖 conserves the energy of the total system, i.e.,[

𝑈𝑖 , 𝐻𝐵 + 𝐻𝐸𝑖

]
= 0. The system 𝐸 ′

𝑖
satisfies 𝐵 + 𝐸𝑖 = 𝐶 + 𝐸 ′

𝑖
. We fix an arbitrary E ∈ TO + cov. proj. meas.,

and E is written as follows.

E(𝜌𝐴𝐵) =
𝑚∑︁
𝑖=1

Tr𝐸′
𝑖

[
𝑈𝑖

(
Tr𝐴

[
(𝑃𝐴

𝑖 ⊗ 𝐼𝐵)𝜌𝐴𝐵

]
⊗ 𝜏𝐸𝑖

)
𝑈

†
𝑖

]
(D29)
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FIG. S.2. In our work extraction setting, we can append the thermal states to the initial and output states to make the
dimensions of the input and output systems the same.

Consider another map Ẽ : D(H𝐴 ⊗ H𝐵) → D(H𝐶 ), which has the following form.

Ẽ (𝜌𝐴𝐵) = Tr𝐴,𝐸′
1 ,...,𝐸

′
𝑚

[
�̃�

(
𝜌𝐴𝐵 ⊗

(
𝑚⊗
𝑖=1

𝜏𝐸𝑖

))
�̃�†

]
,

�̃� =

𝑚∑︁
𝑖=1

𝑃𝐴
𝑖 ⊗ 𝑈𝑖 .

(D30)

Note that �̃� is indeed a unitary operator and commutes with the Hamiltonian of the whole system 𝐻all =
𝐻𝐴 + 𝐻𝐵 + ∑

𝑖 𝐻𝐸𝑖
. These can be checked as follows.

�̃��̃�† =
∑︁
𝑖

∑︁
𝑗

(
𝑃𝐴
𝑖 ⊗ 𝑈𝑖

) (
𝑃𝐴

𝑗 ⊗ 𝑈
†
𝑗

)
=

∑︁
𝑖

∑︁
𝑗

𝛿𝑖 𝑗𝑃
𝐴
𝑖 ⊗ 𝑈𝑖𝑈

†
𝑗

=
∑︁
𝑖

𝑃𝐴
𝑖 ⊗ 𝐼 = 𝐼 .[

�̃�, 𝐻all
]
=

∑︁
𝑖

[𝑃𝐴 ⊗ 𝑈𝑖 , 𝐻𝐴 + 𝐻𝐵 + 𝐻𝐸𝑖
]

=
∑︁
𝑖

[𝑃𝐴 ⊗ 𝑈𝑖 , 𝐻𝐴] +
∑︁
𝑖

[𝑃𝐴 ⊗ 𝑈𝑖 , 𝐻𝐵 + 𝐻𝐸𝑖
] = 0.

(D31)

Therefore, the map defined in Eq. (D30) is a thermal operation. Eq. (D30) can be calculated as

Ẽ (𝜌𝐴𝐵) = Tr𝐴,𝐸′
1 ,...,𝐸

′
𝑚

[
�̃�

(
𝜌𝐴𝐵 ⊗

(
𝑚⊗
𝑖=1

𝜏𝐸𝑖

))
�̃�†

]

= Tr𝐴,𝐸′
1 ,...,𝐸

′
𝑚


(

𝑚∑︁
𝑖=1

𝑃𝐴
𝑖 ⊗ 𝑈𝑖 (𝜌𝐴𝐵) ⊗

(
𝑚⊗
𝑖=1

𝜏𝐸𝑖

))©«
𝑚∑︁
𝑗=1

𝑃𝐴
𝑗 ⊗ 𝑈 𝑗

ª®¬
†

= Tr𝐴,𝐸′
1 ,...,𝐸

′
𝑚

[
𝑚∑︁
𝑖=1

𝑃𝐴
𝑖 ⊗ 𝑈𝑖

(
𝜌𝐴𝐵 ⊗

(
𝑚⊗
𝑖=1

𝜏𝐸𝑖

)) (
𝑃𝐴
𝑖 ⊗ 𝑈𝑖

)†]
=

𝑚∑︁
𝑖=1

Tr𝐴,𝐸′
𝑖

[
𝑃𝐴
𝑖 ⊗ 𝑈𝑖

(
𝜌𝐴𝐵 ⊗ 𝜏𝐸𝑖

) (
𝑃𝐴
𝑖 ⊗ 𝑈𝑖

)†]
=

𝑚∑︁
𝑖=1

Tr𝐸′
𝑖

[
Tr𝐴

{
𝑃𝐴
𝑖 ⊗ 𝑈𝑖

(
𝜌𝐴𝐵 ⊗ 𝜏𝐸𝑖

) (
𝑃𝐴
𝑖 ⊗ 𝑈𝑖

)†}]
=

𝑚∑︁
𝑖=1

Tr𝐸′
𝑖

[
𝑈𝑖

(
Tr𝐴

[
(𝑃𝐴

𝑖 ⊗ 𝐼𝐵)𝜌𝐴𝐵

]
⊗ 𝜏𝐸𝑖

)
𝑈

†
𝑖

]
,

(D32)

and we obtain Eq. (D29). □

Since tracing out the subsystems and adding other thermal states are free operations, we can take the dimensions
of the input and output systems equally, and we can undo this by tracing out the added systems, this procedure
does not affect the extracted work (see FIG. S.2). Therefore, we can take the input and output system so that the
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condition dimH𝐵 = dimH𝐶 is satisfied, which implies that we can carry out the protocol mentioned above by a
thermal operation.

Combining Proposition S.14 and Proposition S.20, we reached the following theorem.

Theorem S.21. The asymptotic extractable work of the sequence of the i.i.d. black boxes
{
Si.i.d.
𝑛 (𝑆)

}∞
𝑛=1

satisfying |𝑆 | < ∞ under thermal operations is

𝛽𝑊TO

({
Si.i.d.
𝑛 (𝑆)

}∞
𝑛=1

)
= min

𝜌∈𝑆
𝐷 (𝜌 | |𝜏). (D33)
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Abstract. Long-range entanglement is essential in topological orders and quantum error-correcting codes.
Preparing long-range entangled states often requires polynomial depth unitary circuits, which pose signif-
icant experimental challenges. Circuits assisted by local operations and classical communication (LOCC)
offer a promising avenue to reduce the required circuit depth substantially. But developing such short-
depth circuits for general long-range entangled states quantum states is an open question. In this work, we
address this challenge using a classical-quantum hybrid approach—the LOCC-assisted variational quantum
eigensolver. The algorithm accurately solves the ground state for long-range entangled models in numerical
experiments. We also establish the conditions for the absence of barren plateaus, ensuring the effectiveness
of our approach.

Keywords: Long-range entanglement, LOCC-assisted circuits, variational quantum circuits

Quantum systems often exhibit entanglement, but the
structures in which states become entangled can vary
greatly. In the asymptotic limit, which means when
the number of qubits n is infinite, some quantum states
cannot be prepared using finite-depth unitary circuits.
These states are long-range entangled states, including
the Greenberger–Horne–Zeilinger state and the toric code
state. On the other hand, short-range entangled states
are the remaining quantum states. Long-range and short-
range entangled states represent two different quantum
phases that cannot be connected by finite-depth unitary
circuits [1, 2].
Long-range entangled states are of great interest and

importance. For example, certain long-range entangled
states are topologically ordered and can be used as re-
sources for topological quantum memory and computa-
tion [3]. Besides, the crucial parameters of quantum error
correcting codes rely on long-range entanglement [4, 5].
Thereby, the significance of long-range entanglement in
quantum information, quantum computation, and con-
densed matter physics is closely related.
Important as they are, the polynomial depth require-

ments severely challenge the experimental preparation of
long-range entanglement under geometric locality con-
straints [6, 7, 8]. Fortunately, a promising method is
found by introducing mid-circuit measurements to help
information spread faster and significantly reduce the
depth of the circuit. This process utilizes circuits assisted
by local operations and classical communication (LOCC)
[9], which are no longer unitary due to the existence of
measurements.1 There are various LOCC-assisted proto-

∗These authors contributed equally to this work.
†you zhou@fudan.edu.cn
‡xma@tsinghua.edu.cn
1The model of circuits assisted by LOCC is known by various

names, such as adaptive circuits, dynamical circuits, and circuits
with measurements and feed-forward. Although these terms are

cols for a great variety of models with topological order
[10, 11, 12, 13, 14, 15]. And the feasibility of LOCC-
assisted circuits is experimentally demonstrated [16, 17].

Beyond previous success in the aforementioned specific
cases, how to prepare more general long-ranged entangled
systems via shallow LOCC-assisted circuits is an open
question. In essence, we need to perform optimization
over various LOCC-assisted circuits. While variational
quantum algorithms can solve problems without LOCC
[18], the same cannot be said for LOCC-assisted circuits.
This problem becomes much more challenging due to the
added complexity of classical communications and con-
trols involved in LOCC, which is a prerequisite for ex-
ploring general-structured long-range entanglement.

In this work, we propose a quantum-classical hybrid al-
gorithm to tackle this challenge, named LOCC-assisted
variational quantum eigensolver (LOCC-VQE). The al-
gorithm calculates the gradients of classical control pa-
rameters and allows for a flexible design of classical con-
trol protocol. For example, this protocol can be in the
form of look-up tables or neural networks. To demon-
strate the accuracy of our algorithm, we have chosen
long-range entangled models and numerically solved their
ground state. We also theoretically discuss the condition
for the absence of barren plateaus, which is a common
trainability problem for variational quantum algorithms.
Compared to other variational quantum algorithms, mid-
circuit measurement is introduced for the first time. This
merit opens new opportunities for exploring long-range
entangled states in general forms and reducing depths in
other variational quantum algorithm scenarios.
Variational LOCC-assisted quantum circuits.—
Here, we first revisit the definition of LOCC-assisted
circuits [9], and propose the variational LOCC-assisted

conceptually close, we will use the term “LOCC-assisted” in this
work to highlight the significance of classical communications.
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quantum circuits, illustrated in FIG. 1.

Figure 1: An illustration of a variational LOCC-assisted
circuit. The circuit consists of gate layers, with blue blocks
denoting Pauli rotation gates, and measurement layers, al-
ternatively arranged. The arrows show the communication
of measurement outcomes, which are processed by a classical
computer.

Definition 1 (LOCC-assisted circuits). Starting from
the initial state |Ψ0⟩, we alternatively apply unitaries or
measurements. Assumed that the outcomes are v = {vj},
the unnormalized outcome state will be∣∣∣Φ̃v

〉
= U (d)

v Π(d−1)
v · · ·Π(1)

v U (1) |Ψ0⟩ . (1)

Here, U denotes unitaries, and Π denotes measurement

projectors. Unitaries U
(i)
v may depend on earlier mea-

surement outcomes corresponding to projectors Πj for
j < i. The LOCC-assisted, on average, will generate
the following state:

Ψ =
∑
v

∣∣∣Φ̃v

〉〈
Φ̃v

∣∣∣ . (2)

The variational LOCC-assisted circuits are constructed
by introducing tunable parameters to the classical con-
trol protocols, which decide unitaries based on earlier
measurement outcomes.

Definition 2 (Variational LOCC-assisted circuits). The
variational LOCC-assisted circuits are defined by a clas-
sical control function g and classical control parameters
γ. By feeding parameters γ and mid-circuit measurement
outcome v into the function, we get the Pauli rotation
angles in the circuit as θ = g(γ,v).

The state generated from a variational LOCC-assisted
circuit is denoted by Ψγ , which can be expressed as a
mixture of different measurement outcomes,

Ψγ =
∑
v

Pθ(v)Φθ,v, (3)

where Φθ,v are normalized post-selected states and Pθ(v)
is the corresponding probability.
Gradient estimation protocol.— To efficiently find
the optimal γ for the variational LOCC-assisted circuits,

we need to calculate the gradients ∇γ Tr
[
ÔΨγ

]
, where

Ô is the problem-specified observable, e.g. the Hamilto-
nian, and employ gradient-based optimization. The fol-
lowing proposition expresses these gradients, which can
be estimated in a classical-quantum hybrid way.

Proposition 3 (Quantum gradients for variational
LOCC-assisted circuits). The gradients of a variational
LOCC-assisted circuit can be obtained by

∂ Tr
[
ÔΨγ

]
∂γj

=
∑
i,v

1

2

∂gi(γ,v)

∂γj

((
Pθ(v)Tr

[
ÔΦθ,v

] )∣∣∣
θ=gi+(γ,v)

−
(
Pθ(v)Tr

[
ÔΦθ,v

] )∣∣∣
θ=gi−(γ,v)

)
,

(4)

where ei is the unit vector for single parameter shift on
θi and gi±(γ,v) = g(γ,v)± π

2 ei.

To estimating Eq. (4), we propose a classical-quantum
hybrid approach:

1. On a quantum computer, for each θi, estimate con-
tribution to the expectation value with parameter
shifts from different mid-circuit measurement out-
come v.

2. On a classical computer, for each θi, γj , and sam-

pled v, calculate ∂gi(γ,v)
∂γj

from automatic differen-

tiation.

3. Reweight contribution from different outcome v by
∂gi(γ,v)

∂γj
.

The specific algorithm follows, where | · | denotes the
parameter vector length, and ei denotes the i-th unit
vector:

Algorithm 1: Gradient estimation protocol

Data: Observable Ô; ansatz Ψγ defined by
g(γ,v); estimation sample rounds M .

Result: Estimated gradient {Gj}j=1,··· ,|γ|.
for i← 1 to |θ| do

gi±(γ,v)← g(γ,v)± π
2 ei;

Ci+ ← ∅;
for k ← 1 to M do

Run the LOCC-assisted circuit using g+;
/* quantum computer */

v← mid-circuit measurement results;

c← one-shot estimation of Ô using g+;
Add the pair, (v, c), to Ci+;

Do the same procedure to get Ci− from g−;

for j ← 1 to |γ| do
G+ ← 0;
G− ← 0;
for i← 1 to |θ| do

for (v, c) ∈ Ci+ do

G+ ← G+ + 1
2
∂gi(γ,v)

∂γj
c;

for (v, c) ∈ C− do

G− ← G+ + 1
2
∂gi(γ,v)

∂γj
c;

Gj ← 1
M |θ| (G+ −G−);

In our proposed algorithm, sample data Ci± are reused
to estimate gradients for various γj . Therefore, the sam-
ple complexity of our algorithm is the same as variational
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quantum algorithms with unitary circuits, which depends
on the number of tunable Pauli rotations in the circuit.
Conditions for the absence of barren plateaus.—
With LOCC-VQE, we can prepare long-range entan-
glement using short-depth quantum circuits. Further,
we find that the short depth of the variational LOCC-
assisted circuits is crucial for ensuring the trainability of
the LOCC-VQE protocol. With an additional condition
for the classical control protocols, we show the absence
of barren plateaus [?], i.e., the aforementioned gradients
will not vanish exponentially as the number of qubits
scales.

Proposition 4. The following conditions can ensure the
absence of barren plateaus:

A1. Observables are local.—The support of Ô has con-
stant size, i.e., | supp(Ô)| = O(1).

A2. The circuit depth is constant.

A3. The gradient of the classical function g will not van-
ish as the size of its input increases.

A4. Each classical protocol parameter γj controls a con-
stant number of Pauli angles.—Each γj in function
g has a sparse support of size O(1).

Here, the first two conditions imply the absence of
barren plateaus in variational quantum circuits without
LOCC assistance, which is considered a special case of
LOCC-assisted circuits. The last two conditions con-
cern the additional classical protocol introduced in this
work. The third condition is a natural condition for
most gradient-based optimization algorithms, and the
last condition holds for many classical protocols, such
as lookup tables or a fully connected or convolutional
neural network layer. In this work, we ensure that the
LOCC-assisted ansatzes satisfy the conditions necessary
for trainability.
Numerical experiments.—To test the performance
of LOCC-VQE, we numerically find the LOCC-assisted
circuits to prepare ground states of various long-range
entangled systems. Meanwhile, we perturbed these
Hamiltonian with magnetic fields of varied perturbation
strengths to test the robustness and flexibility of our al-
gorithm.
Due to the limited length of this abstract, we only show

the results of the perturbed rotated surface code, a quan-
tum error-correcting code defined on a two-dimensional
rectangular lattice with open boundary conditions. More
numerical results will be provided in the arXiV version,
which will be released soon. We denote the perturbation
intensity as λ, and consequently, the perturbed surface
code Hamiltonian is:

Hsur(λ) = −(1−λ)
∑
v

Av − (1−λ)
∑
p

Bp−λ

2NxNy∑
i=1

Zi. (5)

where Nx and Ny are the numbers of rows and columns
of independent the regular lattice, and Av and Bp are
stabilizers for the unperturbed surface code, shown in

Figure 2: The rotated surface code. For every vertex v in
the lattice, Z-type stabilizers, denoted as Av, operate on the
four incident edges with Z operators, whileX-type stabilizers,
denoted as Bp, act on the boundary of each plaquette p with
X operators.

Fig. 2. The λ is the perturbation intensity, and Zi’s are
the Pauli Z operators on each site for the magnetic field.

When the perturbation is small enough, ground states
of the above Hamiltonian possess long-range entangle-
ment. We adopt a finite size, Nx = 6, and Ny = 2,
in our experiments. Theoretically, with four layers of
local two-qubit unitary gates, creating long-range entan-
glement between the left and right sides is impossible
[16]. Our LOCC-VQE finds four-layer LOCC-assisted
circuits to approximately prepare the ground states with
long-range entanglement, demonstrating energy accuracy
advantages over unitary circuit ansatzes, shown in Fig. 3.

Figure 3: Optimization results for LOCC-VQE on perturbed
surface code. Energy optimization results from our four-
layer LOCC-VQE circuits and four-layer brick-wise unitary
circuits. We use the same training setting, where iterations
are sufficient for the optimization for unitary ansatz to con-
verge. Our LOCC-VQE is significantly advantageous over
unitary circuits, especially when the perturbation intensity is
small and long-range entanglement dominates.

To summarize, we show the advantages of variational
LOCC-assisted circuits over their unitary counterparts.
Meanwhile, we find that the numerical simulation to
demonstrate LOCC-VQE is expensive when the qubit
number scales up. We have made efforts by using the cur-
rent state-of-the-art simulation technique based on ten-
sor networks [19] with massive parallelization. Currently,
our results contain up to 20 qubits. We are still improv-
ing the numeric size to give a stronger demonstration of
LOCC-VQE’s depth advantages.

517



References

[1] Xiao-Gang Wen. Topological Order: From Long-
Range Entangled Quantum Matter to a Unified Ori-
gin of Light and Electrons. 2013:e198710.

[2] Xie Chen, Zheng-Cheng Gu, and Xiao-Gang Wen.
Local unitary transformation, long-range quantum
entanglement, wave function renormalization, and
topological order. 82(15):155138.

[3] A.Yu. Kitaev. Fault-tolerant quantum computation
by anyons. 303(1):2–30.

[4] Nouédyn Baspin, Omar Fawzi, and Ala Shayeghi.
A lower bound on the overhead of quantum error
correction in low dimensions.

[5] Jinmin Yi, Weicheng Ye, Daniel Gottesman, and
Zi-Wen Liu. Complexity and order in approximate
quantum error-correcting codes.

[6] D. Aharonov, M. Ben-Or, R. Impagliazzo, and
N. Nisan. Limitations of Noisy Reversible Compu-
tation.

[7] Alexander Müller-Hermes, Daniel Stilck França, and
Michael M. Wolf. Relative entropy convergence for
depolarizing channels. 57(2):022202.

[8] Yuxuan Yan, Zhenyu Du, Junjie Chen, and
Xiongfeng Ma. Limitations of Noisy Quantum De-
vices in Computational and Entangling Power.

[9] Lorenzo Piroli, Georgios Styliaris, and J. Ignacio
Cirac. Quantum Circuits Assisted by Local Oper-
ations and Classical Communication: Transforma-
tions and Phases of Matter. 127(22):220503.

[10] Nathanan Tantivasadakarn, Ryan Thorngren,
Ashvin Vishwanath, and Ruben Verresen. Long-
range entanglement from measuring symmetry-
protected topological phases.

[11] Tsung-Cheng Lu, Leonardo A. Lessa, Isaac H. Kim,
and Timothy H. Hsieh. Measurement as a Short-
cut to Long-Range Entangled Quantum Matter.
3(4):040337.

[12] Sergey Bravyi, Isaac Kim, Alexander Kliesch, and
Robert Koenig. Adaptive constant-depth circuits for
manipulating non-abelian anyons.

[13] Nathanan Tantivasadakarn, Ruben Verresen, and
Ashvin Vishwanath. Shortest Route to Non-
Abelian Topological Order on a Quantum Processor.
131(6):060405.

[14] Yabo Li, Hiroki Sukeno, Aswin Parayil Mana,
Hendrik Poulsen Nautrup, and Tzu-Chieh Wei.
Symmetry-enriched topological order from partially
gauging symmetry-protected topologically ordered
states assisted by measurements. 108(11):115144.

[15] Nathanan Tantivasadakarn, Ashvin Vishwanath,
and Ruben Verresen. Hierarchy of Topological Or-
der From Finite-Depth Unitaries, Measurement, and
Feedforward. 4(2):020339.

[16] Michael Foss-Feig, Arkin Tikku, Tsung-Cheng Lu,
Karl Mayer, Mohsin Iqbal, Thomas M. Gatter-
man, Justin A. Gerber, Kevin Gilmore, Dan Gresh,
Aaron Hankin, Nathan Hewitt, Chandler V. Horst,
Mitchell Matheny, Tanner Mengle, Brian Neyenhuis,
Henrik Dreyer, David Hayes, Timothy H. Hsieh, and
Isaac H. Kim. Experimental demonstration of the
advantage of adaptive quantum circuits.

[17] Mohsin Iqbal, Nathanan Tantivasadakarn,
Thomas M. Gatterman, Justin A. Gerber, Kevin
Gilmore, Dan Gresh, Aaron Hankin, Nathan He-
witt, Chandler V. Horst, Mitchell Matheny, Tanner
Mengle, Brian Neyenhuis, Ashvin Vishwanath,
Michael Foss-Feig, Ruben Verresen, and Henrik
Dreyer. Topological Order from Measurements
and Feed-Forward on a Trapped Ion Quantum
Computer.

[18] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Si-
mon C. Benjamin, Suguru Endo, Keisuke Fujii, Jar-
rod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz
Cincio, and Patrick J. Coles. Variational quantum
algorithms. 3(9):625–644.

[19] Shi-Xin Zhang, Jonathan Allcock, Zhou-Quan Wan,
Shuo Liu, Jiace Sun, Hao Yu, Xing-Han Yang,
Jiezhong Qiu, Zhaofeng Ye, Yu-Qin Chen, Chee-
Kong Lee, Yi-Cong Zheng, Shao-Kai Jian, Hong
Yao, Chang-Yu Hsieh, and Shengyu Zhang. Ten-
sorCircuit: A Quantum Software Framework for the
NISQ Era. 7:912.

518
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Abstract. In recent years, research on errors in quantum deletion/insertion channels has made
significant progress. Our previous study, focused on a synchronization error, which are hypoth-
esized to induce quantum deletion/insertion errors when employing coherent-state qubits. We
demonstrated that, in the context of fundamental qubits, these errors differ from those predicted
by the conventional error model. Here, we provide a comprehensive analysis of synchronization
errors within the framework of the conventional error model for general coherent-state qubits.
Furthermore, we quantitatively assess the discrepancies between the conventional error model
and our more realistic approach, highlighting the limitations of the former in practical applica-
tions.

Keywords: synchronization error, coherent-state qubits, quantum insertion error

1 Introduction

Currently, quantum computers predominantly
utilize superconducting or ion-trap technologies to
create qubits. However, the technology that will
prevail in the future remains uncertain. In this con-
text, optical qubits are anticipated to be a promising
candidate for scalable quantum computing.
In general, errors are inevitable for qubits. Re-

cently, a new channel model called the quantum
deletion/insertion channel [1] has been proposed,
and study on codes that correct quantum dele-
tion/insertion errors has commenced [1–7]. Quan-
tum deletion/insertion errors are believed to result
from synchronization errors occurring in the chan-
nel. In quantum states with temporal spread, such
as coherent-state qubits [8,9], synchronization errors
are particularly significant, making the investiga-
tion of the applicability of conventional error models
highly relevant.
In our previous study, we examined synchroniza-

tion error in the context of coherent-state qubits and
demonstrated that, for fundamental qubits, the er-
ror differ from those predicted by the conventional
error model [10]. In this paper, we consider a re-
alistic synchronization error in superposition states
based on the coherent-state qubits and demonstrate
the extent to which the realistic error can be ap-
proximated by the conventional error model.
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2 Preliminary

2.1 Quantum mechanical description of
light

Light propagates through space as waves com-
posed of electric and magnetic fields. Its quantum
mechanical treatment is based on the quantization
of the electromagnetic field. In this paper, we focus
on a finite region of space of volume V . For instance,
in quantum communication, digital information can
be encoded into a light beam for transmission. In
this context, it is common to consider the region de-
fined by the beam diameter and the length occupied
by a single pulse carrying digital information.

2.2 Coherent state

The coherent state is described as the quantum
state of light closest to a sine wave. In general, sine
waves have finite power, but infinite energy. How-
ever, because the coherent state is defined within
the finite region of space under consideration, the
sine wave we consider is the part confined within
this region, and for which the average energy of the
coherent state is finite.
As mentioned above, the region of space we fo-

cus on based on the beam diameter and the length
of a single pulse carrying digital information. The
length of the pulse can be converted into a duration
using the speed of light. Therefore, when the beam
diameter is fixed, the duration T of the pulse’s pres-
ence determines the volume V of this region. The
synchronization errors, which are the focus of this
study, can also be interpreted as errors in estimat-
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ing the duration. Given these considerations, it is
possible that the quantum state discussed in this
paper is only partially read out. As a first step, we
discuss instances of short readout time.

3 Quantum insertion channels

A quantum insertion error occurs when unknown
quantum states are inserted at specific positions due
to synchronization errors, increasing the number of
output states. For instance, suppose we have an in-
put quantum state |ψ1〉|ψ2〉|ψ3〉, an unknown quan-
tum state |ϕ〉, and an error occurring when this state
is inserted between the first and second quantum
states. The input-output relationship of the chan-
nel can then be expressed as follows:

|ψ1〉|ψ2〉|ψ3〉 7→ |ψ1〉|ϕ〉|ψ2〉|ψ3〉. (1)

4 Change in coherent-state qubits due to
synchronization errors

To read out the temporally distributed coherent-
state qubits, the qubits are sequentially and repeat-
edly read out one by one at a set time duration. The
error model discussed here is based on a type of syn-
chronization error in which the receiver misidentifies
the temporal boundaries between states, leading to
an incorrect time duration. Because coherent-state
qubits are formed by temporally continuous waves,
we must consider scenarios in which the receiver
reads only part of a state.
In this study, we examine general qubits,

which are superpositions of the fundamental qubits
{|α〉, |−α〉}, as follows:

|ϕ〉 = k(c0|α〉+ c1|−α〉), (2)

where c0 and c1 denote superposition coefficients
satisfying |c0|2 + |c1|2 = 1 and k denotes the nor-
malization factor for normalizing the norm of quan-
tum state to 1. For simplicity, we consider the state
in which two fundamental qubits are equally super-
posed as the input state when performing specific
numerical calculations.

4.1 Output for short readout time

First, consider the transmission of signal
|ϕ1〉|ϕ2〉 · · · |ϕn〉 with n instances of |ϕ〉, each lasting
a duration of 1. If the first quantum state is read
with a duration T ′ shorter than 1, the state is di-
vided into ρ̂err1 and ρ̂err

′
1 corresponding respectively

to durations T ′ and 1− T ′, as follows:

|ϕ1〉 7→ ρ̂err1 ⊗ ρ̂err
′

1 . (3)

Here, it is assumed that the synchronization, that
is, the judgement of the boundaries after the second
quantum state |ϕ2〉 is correct.
Note that the energy of each quantum state result-

ing from splitting diminishes compared with that of
the original quantum state. Thus, the two output
quantum states can be represented using a general
attenuation model.
Denoting the original qubit of mode S by |ϕ〉S

and the vacuum state of ancilla mode A by |0〉A,
the state of the composite system is as follows:

U (S⊗A)|ϕ〉S|0〉A =c0|
√
T ′α〉S|

√
1− T ′α〉A

+c1|−
√
T ′α〉S|−

√
1− T ′α〉A. (4)

The quantum state ρ̂(S) of the signal mode S can
be obtained by performing a partial trace over the
ancilla mode A.
Using this partial trace, the output ρ̂err1 after

splitting is expressed as follows:

ρ̂err1 =c20|
√
T ′α〉A〈

√
T ′α|+ 2c0c1L|−

√
T ′α〉A〈

√
T ′α|

+ c21|−
√
T ′α〉A〈−

√
T ′α|, (5)

where L is the inner product of |
√
1− T ′α〉A and

|−
√
1− T ′α〉A. Similarly, we can derive ρ̂err

′
1 .

Therefore, for a coherent-state qubit, we see that
the number of outputs increases when the quantum
state splits, and each output quantum state becomes
a mixed state.

4.2 Calculation of the output fidelity

By calculating the fidelity of the output quantum
states corresponding to the error described in the
previous subsection and that given by the conven-
tional error model of the quantum insertion channel,
we demonstrate how well the realistic errors can be
approximated by the conventional error model.
Here, as in the previous subsection, we con-

sider n superposition states of coherent states,
|ϕ1〉|ϕ2〉 · · · |ϕn〉, and assume that the first state
is split and synchronization becomes stable after-
wards. This leads to an increase in the number of
states corresponding to a quantum insertion error
for which an unknown quantum state |ϕ′〉 is inserted
between the first and second states.
In this instance, the input/output of the former

is

|ϕ1〉|ϕ2〉 · · · |ϕn〉 7→ ρ̂err1 ⊗ ρ̂err
′

1 ⊗ ρ̂2 ⊗ · · · ⊗ ρ̂n, (6)

where ρ̂err1 and ρ̂err
′

1 denote the states split due to
the synchronization error, and ρ̂i = |ϕi〉〈ϕi| (i =
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2, . . . , n) denotes the density operator corresponding
to the quantum state |ϕi〉.
Moreover, the input/output of the latter is

|ϕ1〉|ϕ2〉 · · · |ϕn〉 7→ |ϕ1〉|ϕ′〉|ϕ2〉 · · · |ϕn〉. (7)

When calculating the fidelity, only the first and
second quantum states need to be considered, as the
states from the third onwards are identical in both
channels, with an inner product of 1.
In the conventional error model, the inserted

quantum state |ϕ′〉 is unknown, and various quan-
tum states are assumed to be inserted. The quan-
tum state considered here is described by equation
(8), using coherent states as the fundamental qubits,
with two degrees of freedom given by coefficients c′0
and c′1; specifically

|ϕ′〉 = k(c′0|α〉+ exp[iθ]c′1|−α〉), (8)

where k denotes the normalization factor that nor-
malizes the quantum state |ϕ′〉 to unity, and the co-
efficients c′0, c

′
1 are real numbers satisfying c′20 +c′21 =

1.
Based on the above, and as a simple example,

we assume that |ϕ1〉 is split in half and calcu-
late the fidelity of this output quantum state and
|ϕ1〉|ϕ′〉. Figure 1 shows fidelity results when θ =
0, π4 ,

π
2 ,

3π
4 , π. To observe the effect of varying T ′,

Fig. 2 shows the dependence of fidelity with the co-
efficient of |ϕ′〉 when θ = 0 and T ′ = 1

6 ,
1
3 ,

1
2 ,

2
3 ,

5
6 .

Furthermore, Fig. 3 focuses on F (ρ̂err
′

1 , |ϕ′〉) in the
above results.
These results indicate that the fidelity increases

when the energy difference between the two states
we compared is small.
Thus, by introducing the degrees of freedom for

the inserted quantum states and varying the values
of T ′, we demonstrate that the fidelity values consis-
tently remain low, suggesting a difficulty in approx-
imating realistic errors using the conventional error
model.

Figure 1: Fidelity with respect to the coefficient of
|ϕ′〉 when θ = 0, π4 ,

π
2 ,

3π
4 , π and T ′ = 1

2 .

Figure 2: Fidelity with respect to the coefficient of
|ϕ′〉 when T ′ = 1

6 ,
1
3 ,

1
2 ,

2
3 ,

5
6 and θ = 0.

Figure 3: F (ρ̂err
′

1 , |ϕ′〉) with respect to the coefficient
of |ϕ′〉 when T ′ = 1

6 ,
1
3 ,

1
2 ,

2
3 ,

5
6 and θ = 0.

5 Conclusion

In this paper, we used coherent-state qubits as
a fundamental qubit {|α〉, |−α〉} and examined the
synchronization error that misestimates the dura-
tion of the general qubits, created by equally super-
posing the coherent-state qubits, as being shorter
than their actual duration. Our results indicate that
the original state is split and represented by the ten-
sor product of two mixed states. Furthermore, we
investigated whether the conventional error model
can approximate the errors considered in this pa-
per by calculating the fidelity. We demonstrated
that the fidelity results never approach unity regard-
less of the inserted states, indicating a difficulty in
approximating errors using the conventional error
model. Future work includes exploring more gener-
alized expressions by investigating other misestima-
tions of qubit duration.
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Approximation accuracy of von Neumann entropy
for M-ary ASK coherent-state signals
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Abstract. Calculating the von Neumann entropy for a quantum information source is a critical
issue in both quantum communication and quantum cryptography. However, as the number of
signals increases, the calculation becomes increasingly challenging. This difficulty arises because
the computation requires solving the eigenvalue problem of the Gram matrix, the size of which
is proportional to the number of signals. In this study, we propose an approximation method for
eigenvalues and the von Neumann entropy for amplitude-shift-keying coherent-state signals by
approximating the Gram matrix as a tridiagonal matrix. Our results demonstrate the effective-
ness and practicality of this approximation.

Keywords: Quantum cryptography, Gram matrix, von Neumann entropy, ASK coherent-state
signals

1 Introduction

Estimating accurately the performance limit of
quantum communication is crucial for both the de-
sign of quantum communication systems and the
security evaluation of quantum cryptographic sys-
tems [1]. In quantum cryptography, systems such
as Y-00 [2], which is anticipated to be an ultrafast
quantum cryptosystem, have recently been tested
with more than 4 billion signals [3]. However, es-
timating the performance limit of quantum com-
munication becomes difficult as the number of sig-
nals increases. The quantum signals examined in
[4] are amplitude-shift-keying (ASK) coherent-state
signals, for which the Gram matrix is approximated
as an n-diagonal matrix by exploiting the exponen-
tial decay of the Gram matrix components as one
moves away from the diagonal. The Gram ma-
trix of the ASK coherent-state signal is a symmet-
ric Toeplitz matrix, and in this approximation, for
n = 3, the approximated matrix is a tridiagonal
matrix; analytical solutions for the eigenvalues and
eigenvectors of these matrices are well known [5].
This paper compares the eigenvalue distributions of
the Gram matrix and its tridiagonal approximation
for the ASK coherent-state signal, and discusses the
factors influencing the accuracy of the approxima-
tion.
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2 Basic Theory

2.1 The von Neumann entropy and Gram
matrix

Let
{
|ψi⟩

∣∣ i = 1, 2, . . . ,M
}

be an M -ary pure-
state signal system and let ξi be the a priori prob-
ability of each |ψi⟩. The density operator of the
quantum information source corresponding to this
signal system is defined as

ρ =
M∑
i=1

ξi|ψi⟩⟨ψi|. (1)

The von Neumann entropy is defined as

χ = −Tr(ρ log2 ρ) (2)

for the density operator of this source. The quantity
that maximizes the von Neumann entropy with re-
spect to {ξi} is the quantum channel capacity, which
defines the transmission limit of quantum communi-
cation. For simplicity, we assume in this paper that
the a priori probabilities of the signals are uniform.
The Gram matrix Γ for an M -ary pure-state signal
system

{
|ψi⟩

∣∣ i = 1, 2, . . . ,M
}
is the M ×M ma-

trix with the inner product ⟨ψi|ψj⟩ between signal
quantum states as the (i, j)-th component:

Γ =


⟨ψ1|ψ1⟩ ⟨ψ1|ψ2⟩ · · · ⟨ψ1|ψM ⟩
⟨ψ2|ψ1⟩ ⟨ψ2|ψ2⟩ · · · ⟨ψ2|ψM ⟩

...
...

. . .
...

⟨ψM |ψ1⟩ ⟨ψM |ψ2⟩ · · · ⟨ψM |ψM ⟩

 .
(3)
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The Gram matrix is a positive semi-definite Hermi-
tian matrix and is closely related to the theory of
square-root measurement (SRM), known as a quasi-
optimal measurement. Furthermore, it is extremely
important that the density operators ρ and 1

M Γ of
the corresponding information source are isomor-
phic when the a priori probabilities of the signal
quantum states are equal 1

M .
Therefore, since the eigenvalues of ρ and 1

M Γ co-
incide, the von Neumann entropy is determined by
the eigenvalue λj of 1

M Γ as

χ =
∑
j

λj log2 λj . (4)

2.2 ASK coherent-state signals

Coherent states are known as quantum states of
light that are very close to sinusoidal waves and are
defined as

|β⟩ = exp

(
−1

2
|β|2

) ∞∑
n=0

βn√
n!
|n⟩, (5)

where β denotes a complex amplitude, |n⟩ a number
state with exactly n photons, and the set {|n⟩} forms
an orthonormal basis of the infinite-dimensional
Hilbert space representing the optical system. ASK
coherent-state signals are signals for which the am-
plitude is modulated by digital information. In this
paper, we assume the complex amplitudes of coher-
ent states are real. The complex amplitudes of M -
ary ASK coherent-state signals are given by

αi =

(
i− M + 1

2

)
α (i = 1, 2, . . . ,M), (6)

where α is the amplitude difference from the adja-
cent signal and αi takes values from −1

2(M −1)α to
1
2(M − 1)α. The set of M -ary ASK coherent-state
signals is represented as

{
|αi⟩

∣∣ i = 1, 2, . . . ,M
}
.

The inner product of the coherent-state signals |αi⟩
and |αj⟩ is given by

⟨αi|αj⟩ = exp

[
−1

2
α2(i− j)2

]
. (7)

2.3 Gram matrix and von Neumann en-
tropy approximation

In this section, we first describe the properties of
the Gram matrix of the ASK coherent-state signal.
Then, we present the Gram matrix and the von Neu-
mann entropy approximation. Finally, we introduce
evaluation metrics for assessing the accuracy of the
approximation quantitatively.

As in Eq. (7), the inner product of theM -ary ASK
coherent-state signal depends on the difference i−j.
Thus, the Gram matrix of theM -ary ASK coherent-
state signal is a symmetric Toeplitz matrix,

Γ =


g1 g2 · · · gM
g2 g1 · · · gM−1
...

...
. . .

...
gM gM−1 · · · g1

 . (8)

Moreover, from the exponential decay property of
the inner product, Eq. (7), we have

1 = g1 > g2 > · · · > gM > 0 (9)

when α ̸= 0, implying the further away a compo-
nent of the Gram matrix is from the diagonal the
smaller its value. In this paper, we approximate the
Gram matrix as a tridiagonal matrix for which all
but the main diagonal and the two subdiagonals are
approximated to zero. Let Γ̃3 be the approximate
Gram matrix. The eigenvalues λ̃j (j = 1, . . . ,M) of
1
M Γ̃3 are known to have the following form;

λ̃j =
1

M

{
1 + 2g2 cos

(
jπ

M + 1

)}
. (10)

It is expected that λ̃j approximates the eigenvalue
λj of 1

M Γ—that is, λ̃j ≈ λj—thus providing an ap-
proximation of the von Neumann entropy (4).

2.4 Evaluation factor of eigenvalue approx-
imations

Because the von Neumann entropy yields a single
real value, its approximation can be easily evalu-
ated by direct comparison. In this paper, we also
provide approximate values of the original eigenval-
ues. Since the matrix 1

M Γ is isomorphic to the den-
sity operator of the source, its eigenvalues are non-
negative real numbers that sum to 1. Therefore, the
eigenvalue distribution {λj} can be regarded as a
probability distribution. Although there is no guar-
antee that the approximate eigenvalue distribution
{λ̃j} can be regarded as a probability distribution,
it is expected to be approximately so. For this rea-
son, as an approximate evaluation of the eigenvalue
distribution, we use the variation distance, which
measures the closeness of two probability distribu-
tions,

d =
M∑
j=1

∣∣∣λj − λ̃j

∣∣∣ . (11)

From the definition, d ≥ 0 and d = 0 if and only
if the eigenvalue distributions coincide. If {λ̃j} sat-
isfies properties of a probability distribution, then
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d ≤ 1. Therefore, when d is significantly less than
1 and close to 0, the approximation is considered
good.

3 Result

First, we estimate approximate values for the
eigenvalues. Since the true values of the eigenval-
ues are non-negative, we will consider instances for
which Eq. (10) is always non-negative. This requires
the condition

1 + 2g2 cos

(
jπ

M + 1

)
≥ 0

to hold. Noting −1 ≤ cos θ ≤ 1, it suffices that

g2 = exp

[
−1

2
α2

]
≤ 1

2
.

Therefore, we require

α ≥
√
2 loge 2 ≈ 1.17741 (12)

to be satisfied.
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Figure 1: Variation distance of distribution of eigen-
values and their approximate values (linear scale).

Figure 1 plots the variation distance of the dis-
tribution of eigenvalues and their approximations
against the amplitude difference α from the adjacent
signals. The number of signals is set to M = 4,16,
and 64. From Fig. 1, we observe that the variation
distance monotonically decreases with increasing α,
and the variation distance is nearly the same for
any number of signals. This suggests that the varia-
tion distance, or approximation accuracy, is almost
independent of the number of signals and depends
primarily on the amplitude difference α from the ad-
jacent signals. In other words, even with a very large
number of signals, high approximation accuracy can
be expected if α is appropriately chosen.
Figure 2 plots the von Neumann entropy and its

approximation with respect to the amplitude dif-
ference α from the adjacent signal. The black line
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Figure 2: The von Neumann entropy and its approx-
imation.

represents the von Neumann entropy, whereas the
colored line indicates the approximate value. It is
evident that the approximation of the von Neumann
entropy is accurate for α ≥ 1.17741, where the
approximate eigenvalue is always positive for each
number of signals, M = 4,16, and 64.

4 Conclusion

In this paper, we considered approximating the
Gram matrix as a tridiagonal Toeplitz matrix for
M -ary ASK coherent-state signals and investigated
the approximation accuracy of the eigenvalue dis-
tribution of the Gram matrix and that of the von
Neumann entropy. The results show that the ap-
proximation accuracy is almost independent of the
number of signalsM and is determined primarily by
the amplitude difference between adjacent signals.
From this result, it is expected that high approx-
imation accuracy can be obtained even when the
number of signals is very large and α is obtained
appropriately. Since analytical solutions of eigen-
values and eigenvectors are known for the tridiago-
nal Toeplitz matrix, it is straightforward to compute
eigenvalues and the von Neumann entropy approx-
imations even when the number of signals is very
large. Therefore, the results of this paper demon-
strate that the use of approximate values is effec-
tive for investigating the performance of large-scale
quantum communications or quantum cryptogra-
phy.
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Symmetric and asymmetric strategies for Bell-inequality violation
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Abstract. In quantum information, asymmetry, i.e., the lack of symmetry, is a resource allowing one to accomplish
certain tasks that are otherwise impossible. In a Bell test using any given Bell inequality, the maximum violation
achievable using quantum strategies that respect or disregard a certain symmetry can be different. When a gap is
present, a quantum violation beyond the symmetric bound immediately witnesses the asymmetry in the underlying
quantum strategies. Here, we focus on the symmetry of permutation invariance possessed by identical quantum
particles. For Bell scenarios with binary inputs, we provide evidence showing that the family of symmetric Collins-
Gisin-Linden-Massar-Popescu inequalities can always be maximally violated by symmetric quantum strategies min-
imal in the Hilbert space dimension.

Keywords: Quantum nonlocality, quantum correlation, symmetry, device-independent witness, Bell inequality,
quantum bound

1 Introduction
Symmetry plays a fundamental role in physics; for instance,

the indistinguishability of identical particles has many impor-
tant consequences in quantum theory. Symmetry conditions
are also useful in those cases where they are broken, as these
have often been indicative of some interesting new phenom-
ena.

From the violation of a Bell inequality, we know that corre-
lations derived from entangled states may give nonlocal prop-
erties inconsistent with locally-causal theories [1, 2]. Con-
sider a bipartite Bell experiment where two spatially sepa-
rated parties, Alice and Bob, share a quantum state ρAB acting
on the Hilbert space HA ⊗ HB. Moreover, let {M (A)

a|x } and

{M (B)
b|y } be, respectively, the positive-operator-valued mea-

sure (POVM) corresponding to Alice and Bob’s x-th (x ∈
{1, 2, · · · ,ma}) and y-th (y ∈ {1, 2, · · · ,mb}) measure-
ment, with outcomes labeled by a ∈ {1, 2, · · · , na} and
b ∈ {1, 2, · · · , nb}. According to Born’s rule, the local
measurement outcomes follow the joint conditional probabil-
ity distribution: P (a, b|x, y) = tr(ρABM

(A)
a|x ⊗M

(B)
b|y ). We

refer to the collection of these distributions as a correlation
P⃗ = {P (a, b|x, y)}a,b,x,y.

Below, we first provide some relevant definitions in the con-
text of a Bell experiment. Throughout, we use the term sym-
metric to be mean party-permutation invariance.

Definition 1 A symmetric quantum correlation P⃗ is one that
satisfies Born’s rule and

P (a, b|x, y) = P (b, a|y, x), ∀ a, b, x, y. (1)

Definition 2 A symmetric quantum strategy is one where (i)
Alice and Bob share a permutation-invariant state ρAB =
ρBA, and (ii) they perform the same local measurements, i.e.,
M

(A)
a|x = M

(B)
a|x for all a, x. Clearly, a symmetric quantum

∗ycliang@mail.ncku.edu.tw

strategy entails a symmetric quantum correlation since

P (a, b|x, y) = tr(ρABM
(B)
a|x ⊗M

(A)
b|y )

= tr(ρBAM
(B)
a|x ⊗M

(A)
b|y ) = P (b, a|y, x).

(2)

By the same token, we say that a Bell inequality Iβ⃗ :∑
a,b,x,y β

x,y
a,b P (a, b|x, y)

L
≤ B is symmetric if βx,y

a,b = βy,x
b,a

for all a, b, x, y. Clearly, not all Bell inequalities take a sym-
metric form. However, via an appropriate relabeling [3] of the
measurement settings x, y and/ or outcomes a, b, it may be
possible to recast a Bell inequality in a symmetric form. It is
known [4, 5] that the maximal violation of a symmetric Bell
inequality is always achievable using a symmetric strategy.

2 Technical work
Next, we present a symmetric quantum strategy for

the quantum violation of the Collins-Gisin-Linden-Massar-
Popescu (CGLMP) Bell inequality Id [6], relevant to a Bell
scenario with two parties, each performing two d-outcome
measurements. To facilitate subsequent discussions, we first
write the CGLMP Bell inequality in a symmetric form (via
appropriate relabeling) as follows:

Id =

⌊ d
2 ⌋−1∑
k=0

(
1− 2k

d−1

){
[
P (A1 = d−B1 − k) + P (B2 = d−A1 + k)

+P (B1 = d−A2 + k) + P (A2 = d−B2 − k − 1)
]

−
[
P (A1 = d−B1 + k + 1) + P (B2 = d−A1 − k − 1)

+P (B1 = d−A2 − k − 1) + P (A2 = d−B2 + k)
]} L

≤ 2

(3)

where P (Ax = d − By − k) ≡
∑

a,b P (a, b|x, y)δa,d−b−k

and all additions in the arguments of P are understood to be
taken modulo d. In the simplest case of d = 2, inequality (3)
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is equivalent to the Clauser-Horne-Shimony-Holt (CHSH) [7]
Bell inequality:

ICHSH = ⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩ − ⟨A2B2⟩ ≤ 2 (4)

and whose optimal quantum strategy is not usually presented
in a symmetrical form. Yet, we can easily verify that if Alice
and Bob share

|ψ⟩AB =
1

2
√

2−
√
2

[
|00⟩+ (1−

√
2)(|01⟩+ |10⟩)− |11⟩

]
(5)

and both measure σz for their first measurement and σx for
their second measurement, then they do attain the maximal
CHSH violation of I2 = 2

√
2.

Next, we describe how to construct a symmetric strategy
that attains the same CGLMP Bell violation as that given by
the known optimal asymmetric strategy (see, e.g., [8]). To
turn the asymmetric strategy into a symmetric one, we keep
Alice’s optimal measurement settings from [8] and set Bob’s
one to be the same, i.e., M (B)

a|x = M
(A)
a|x . Then, we solve

the largest eigenvalue of the corresponding Bell-operator [9].
The resulting optimal symmetric strategy may be specified as
M

(A)
a|1 = |a⟩⟨a|, M (A)

a|2 = |ã⟩⟨ã| with (|ã⟩)i = (U)ia, U =
TW , and

(T )ij =

{
(−1) , 2 ≤ i ≤ j

1 otherwise ,

(W )jk =
1

d

∣∣∣∣ 1

sin [(j − k − 1
2 )

π
d ]

∣∣∣∣ . (6)

As an explicit example, note that the optimal corresponding
eigenstate optimizing the eigenvalue of the Bell operator, and
hence the quantum violation of I3 is:

|ψ3⟩ =
1

3
γ

[
5−

√
33

2
|00⟩+ (|01⟩+ |10⟩)

+
−7 +

√
33√

2
(|02⟩+ |20⟩ − |11⟩)

−5−
√
33

2
(|12⟩+ |21⟩) + |22⟩

]
.

(7)

with γ = 2
√

2
55−9

√
33

. The above computation suggests a
general procedure for “symmetrizing” the known optimal
CGLMP measurements and we have found that it recovers
the best known quantum violation of CGLMP for 4 ≤ d ≤ 15.

Given the above observation, one may wonder whether the
maximal quantum violation of a Bell inequality can always
be achieved using a symmetric strategy. For the Bell scenar-
ios with two binary-outcome measurement (i.e., the CHSH
scenario), two ternary-outcome measurements (i.e., the sce-
nario for I3), and three binary-output measurements [3], this
is known to be impossible for facet-defining Bell inequalities
— they can all be cast in a symmetric form via relabeling. Nat-
urally, we thus explore the Bell scenario involving four mea-
surement settings, each with binary measurement outcomes

(ai, bj ∈ {+1,−1}) for which the facet-defining Bell inequal-
ities are completely described in [10]:

B4422 = δ +
4∑

i=1

αi⟨ai⟩+
4∑

j=1

βj⟨bj⟩+
4∑

i,j=1

γij⟨aibj⟩
L
≤ 0,

(8)

which one may also present equivalently using the table

B4422 =

δ β1 β2 β3 β4
α1 γ11 γ12 γ13 γ14
α2 γ21 γ22 γ23 γ24
α3 γ31 γ32 γ33 γ34
α4 γ41 γ42 γ43 γ44

L
≤ 0, (9)

Note that in this four-setting two-outcome Bell scenario, here-
after abbreviated as the 4422 Bell scenario, the Bell polytope
is completely specified by 175 classes of facet-defining Bell
inequalities, one of which is the trivial positivity facet, taking
the form of P (a, b|x, y) ≥ 0. For the others, by systematically
considering all possible relabelings, we came to the following
observation.

Observation 1 Among all 174 classes of nontrivial facet-
defining Bell inequalities in the 4422 Bell scenario, 54 of them
can be cast in a symmetric form.

In general, we are interested to know whether the require-
ment of symmetry results in any nontrivial consequences on
Bell violation. To this end, we can incorporate the constraints
of Eq. (1) into any of the hierarchies of semidefinite program-
ming (SDP) outer approximations for the quantum set of cor-
relations. For instance, the symmetry constraints can be easily
included in the SDP hierarchy due to Navascués, Pironio, and
Acı́n (NPA) [11, 12] or the one due to Moroder et al. [13]. Us-
ing such a modified hierarchy, we can upper bound the max-
imal quantum violation of any Bell inequality by symmetric
quantum violation. A systematic investigation has led to the
following observation.

Observation 2 For all 174 classes of nontrivial facet-
defining Bell inequalities in the 4422 Bell scenario, there is
at least one relabeled version from each class that cannot be
violated by symmetric quantum correlations.

In particular, for three of these, see Appendix C, we find that
their symmetric quantum bound even coincides with the Bell-
local bound, even though a different relabeling of them can
again be violated by symmetric qubit strategies.

Returning to the symmetric Bell inequalities in the 4422
scenario, we have found that 35 of them can be maximally vi-
olated using symmetric qubit strategies (these are listed in Ta-
bles 3 to 5 among others that cannot be cast in the symmetric
form, but whose symmetric bound matches the qubit bound).
However, 11 other of these inequalities, which we know can
be maximally violated using qubit strategies—based on our
numerical investigations using Eq. (19)—apparently cannot
be violated maximally using symmetric qubit strategies. Us-
ing the notations of [10], these are I44422, I134422, I144422, I154422,
I164422, J18

4422, J29
4422, J42

4422, J86
4422, J97

4422, and J113
4422. Interest-

ingly, for the remaining 8 symmetric inequalities, which are
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known to be violated maximally using only high-dimensional
quantum strategies, we also do not find matching maximally-
violating symmetric strategies of minimal dimension.

Finally, let us note that for all 175 classes of these facet-
defining Bell inequalities, we have always found at least one
(relabeled) version of it where symmetric quantum correla-
tions (apparently) fail to give the maximal quantum violation,
as indicated by a gap in the SDP bound obtained with and
without imposing the symmetric constraint of Eq. (1). For
some of these inequalities, see, e.g., Table 4, the gap between
the general quantum bound and the symmetric quantum bound
can be confirmed by noting that a matching lower bound of the
latter can be given by an explicit symmetric two-qubit strat-
egy. Apart from the trivial positivity facets, these findings
suggest that their violation beyond the symmetric bound can
be used as a device-independent witness for asymmetry.

3 Conclusion
In this work, we have presented a family of party-

permutation-invariant quantum strategies that recover the
best-known quantum violation of the CGLMP Bell inequality
with d outcomes for d ≤ 15. For larger values of d, we conjec-
ture that our symmetric quantum strategy remains optimal. In
contrast, in the bipartite, 4-input, 2-output Bell scenario, we
can easily identify facet-defining Bell inequalities where the
general quantum bound is strictly larger than those achievable
using only symmetric quantum strategies.
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Appendix A Symmetric strategy
A.1 Symmetric strategy in CGLMP inequality

For the Collins-Gisin-Linden-Massar (CGLMP) inequality
[6], which involves two parties who each perform d-two out-
come measurements. We found a symmetry version of the
quantum strategy that satisfy the maximal violation of fol-
lowing symmetric CGLMP inequality [6], which is A1 ↔
(d−A1) and forA1, A2 ↔ (d−A2−1) and forA2 compared
to the general version that described in [6]:

Id =

[d/2]−1∑
k=0

(1− 2k

d− 1
){[P (A1 = d−B1 − k)

+ P (B2 = d−A1 + k)

+ P (B1 = d−A2 + k)

+ P (A2 = d−B2 − k − 1)]

− [P (A1 = d−B1 + k + 1)

+ P (B2 = d−A1 − k − 1)

+ P (B1 = d−A2 − k − 1)

+ P (A2 = d−B2 + k)]} ≤ 2.

(10)

as P (Ax = d−By −k) ≡
∑

a,b P (a, b|x, y)δa,d−b−k, where
can get optimal Bell value from the symmetric quantum strat-
egy for any d ≥ 2 dimension.

The measurements are given by making some adjustments
to [8], while the d output measurement can be written in the
projectors:

MA
a|1 = |a⟩ ⟨a| , MA

a|2 = |ã⟩ ⟨ã| (11)

where the first measurement are in the standard basis and
(|ã⟩)i = (U)ia, and U = TW with matrix Td×d

(T )ij =

{
(−1) , 2 ≤ i ≤ j

1 else

and W denote as the matrix obtained by taking the absolute
value of each matrix element of W = UFTV1U

†
FT and it can

also be simplified as:

(W )jk =
1

d

∣∣∣∣ 1

sin [(j − k − 1
2 )

π
d ]

∣∣∣∣ . (12)

From [8], we know that the optimal measurement bases con-
sist of Alice applying a diagonal unitary followed by a discrete
Fourier transform UFT = 1√

d
ei(j−1)(k−1) 2π

d before measur-
ing in the standard basis. The W is the inner product of two
measurement basis M i

a = (UFTVi)
† with

V0 = Id, V1 =
∑
a

ei
aπ
d |a⟩ ⟨a| (13)

This approach is applied to the corresponding symmetry
CGLMP inequality to get the optimal violation and also the
optimal violation of equivalent symmetric I22dd inequality [3]
with the same correlation:

I22dd =
d−1∑
a=1

d−a∑
b=1

P (a, b|1, 1)

+
d−1∑
a=1

d−1∑
b=d−a

[P (a, b|1, 2) + P (a, b|2, 1)− P (a, b|2, 2)]

−
d−1∑
a=1

P (a|1)−
d−1∑
b=1

P (b|1) ≤ 0,

(14)

We describe the d = 3 matrix as an example, we can compute
the inner productW between two basesM i

a from Alice’s side:

W =M0†
a M1

a

=

⟨a11|a21⟩ ⟨a11|a21⟩ ⟨a11|a21⟩
⟨a12|a22⟩ ⟨a12|a22⟩ ⟨a12|a22⟩
⟨a13|a23⟩ ⟨a13|a23⟩ ⟨a13|a23⟩

 .
(15)

The actual unitary constructed by measurement basis for the
second measurement of the symmetric strategy are:

U =
(
|0̃⟩ |1̃⟩ |2̃⟩

)
.

=
1

3

2 1 2
2 −2 −1
1 2 −2

 .
(16)

From the strategy M (A)
a|x = M

(B)
a|x , the first measurement uni-

tary M (A)
1|x = M

(B)
1|x is constructed by standard basis, that is

an identity respect to dimension d. While adding the minus
sign on the upper triangle from the second column and row of
W , the second measurement basis is described as the column
in U . The optimal asymmetric strategy consists of employing
the partially entangled two-qutrit state:

|ψ3⟩ =
1

3
γ

[
5−

√
33

2
|00⟩+ (|01⟩+ |10⟩)

+
−7 +

√
33√

2
(|02⟩+ |20⟩ − |11⟩)

−5−
√
33

2
(|12⟩+ |21⟩) + |22⟩

]
.

(17)

with γ = 2
√

2
55−9

√
33

and the state is given by the eigenstate
of the maximal eigenvalue λ1 = 2.9149 of corresponding Bell
operator B [9]:

B =



− 4
9 − 2

9 − 2
3 − 2

9 0 4
9 − 2

3
4
9

4
9

− 2
9 − 2

3
4
9 0 − 4

9 − 4
9

4
9

2
9 0

− 2
3

4
9

10
9

4
9 − 4

9
2
3

4
9 0 4

9

− 2
9 0 4

9 − 2
3 − 4

9
2
9

4
9 − 4

9 0

0 − 4
9 − 4

9 − 4
9

10
9 − 2

3 − 4
9 − 2

3 − 4
9

4
9 − 4

9
2
3

2
9 − 2

3 − 4
9 0 − 4

9
2
9

− 2
3

4
9

4
9

4
9 − 4

9 0 10
9

2
3

4
9

4
9

2
9 0 − 4

9 − 2
3 − 4

9
2
3 − 4

9
2
9

4
9 0 4

9 0 − 4
9

2
9

4
9

2
9 − 2

3


.
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Appendix B Numerical optimization
B.1 Optimization with symmetric quantum strategy

We define a symmetric quantum strategy to be one where
the same measurement settings are used by Alice and Bob in
a bipartite Bell scenario. To get the optimal Bell value for a
symmetric strategy, we use the fminunc function in MATLAB
to help us maximize Bell value by searching for the best state
in symmetric subspace and rank-1 projective measurements
Πa|x that correspond to the set of projections onto the columns
of some unitary matrix Ux

ij on dimension d:

Πa|x = Ux
iaU

x†
ia ,

Πb|y = Πa|x, ∀x, y ∈ {0, · · · ,m}.
(18)

where i, j are the labels of columns and rows of the unitary
matrix. This non-linear optimization happens to a proper re-
sult in qubits.

B.2 See-saw optimization with symmetry correlation
For finding the optimal quantum strategy, there is also a

heuristic approach called the see-saw method [14, 15], where
we exploit the fact that the objective function of a Bell value is
a bilinear function of Alice and Bob’s local measurement op-
erators. Thus, by iteratively optimizes each party’s measure-
ments, we can converge to a local maximum of the maximal
Bell violation. The iterations stop only when the change in the
objective value is smaller than some chosen threshold.

This means that we can write each iteration as a semidefi-
nite program. For example, our first iteration consists of find-
ing the optimal Ma|x given some randomly chosen initial val-
ues for Bob’s measurements Mb|y and state ρAB . Since we
are interested in symmetry correlations P⃗ , our optimization
problem can be written as

max S = β⃗ · P⃗
s.t. P (a, b|x, y) = P (b, a|y, x),

P⃗ = tr(ρABMa|x ⊗Mb|y),

Ma|x ⪰ 0,∑
a

Ma|x = I, ∀ x ∈ {0, · · · , n}.

(19)

After we find some optimal measurements Ma|x for Alice,
then we can execute the next iteration This time, we maximize
the Bell value S using the optimal measurements we found
in Eq. (19) for Alice and the initial value of the state. This
time we want to find an optimal Mb|y so we have a similar
optimization as described in Eq. (19), except we replace the
constraints for Mb|y . Finally, for the last iteration, we use
the optimal values of Ma|x and Mb|y to find the optimal state
using in Eq. (20), again with symmetry constraints on P⃗ :

max S = β⃗ · P⃗
s.t. P (a, b|x, y) = P (b, a|y, x),

P⃗ = tr(ρABMa|x ⊗Mb|y),

ρAB ≥ 0,

tr(ρAB) = 1,

(20)

Note that this process is repeated many times until the objec-
tive value converges to some value, where the convergence is
defined up to some numerical precision. To obtain a correla-
tion that violates the Bell inequality and even achieves maxi-
mal violation in symmetric correlations, it is necessary to con-
sider an appropriate initial state. This can be a maximally en-
tangled state or a partially entangled state in the symmetric
subspace of the Hilbert space.

Appendix C Some numerical results

Ineq. L NPA-L3 NPA-Swap-L3 qubits
J45
4422 0 3.0822 0.0000 -0.2245
J73
4422 0 4.4902 0.0000 -0.7300
J126
4422 0 3.2094 0.0000 0.0000

Table 1: Summary of the three Bell inequalities whose upper
bound on their symmetric quantum bound reduce to the local
bound. Here and in the other tables, NPA-L3 means an upper
bound computed using the NPA hierarchy at level 3 whereas
NPA-Swap-L3 means an upper bound on the Bell violation
computed with the NPA hierarchy at level 3 and the symmetric
constraint of Eq. (1). Also included in the best symmetric
qubit bound that we have found.

Ineq. L NPA-L3 NPA-Swap-L3 qubits
J45
4422 0 3.0822 2.9736 2.5451
J73
4422 0 4.4902 4.0378 4.0030
J126
4422 0 3.2094 2.7356 2.7356

Table 2: Summary of the (symmetric) quantum bound for the
three inequalities of Table 1 after relabeling. Also included in
the best symmetric qubit bound that we have found.
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Ineq. NPA-Swap-L3
CHSH 0.8284
I3322 1.0035
AII1 2.4222
AS1 2.1650
A5 1.7413
AS2 3.5140
I94422 1.8467
I104422 2.4558
I114422 0.8809
I124422 2.4753
I174422 2.6856
J12
4422 1.5755
J17
4422 0.1201
J19
4422 2.6969
J22
4422 3.2625
J26
4422 2.5610
J27
4422 1.1701
J28
4422 3.0000
J32
4422 2.3606
J41
4422 1.5886
J58
4422 3.5258
J60
4422 2.3691
J61
4422 3.2702
J85
4422 3.9051
J90
4422 3.3593
J91
4422 5.1971
J92
4422 4.2593
J102
4422 2.6603
J105
4422 4.2969
J108
4422 3.8706
J109
4422 6.9042
J110
4422 3.7830
J125
4422 4.0000
S51
242 4.0541
S52
242 3.4815

Table 3: Summary of a partial list of symmetric facet-defining
Bell inequalities in the 4422 scenario and their quantum
bound, which, except for I3322, is achievable using a sym-
metric two-qubit strategy. Here, we follow the normalization
of [10]; the local bounds, cf. Eq. (8), are thus 0.

Ineq. NPA-L3 NPA-Swap-L3
I24422 2.4855 2.0000
I34322 1.7459 1.6167
I54422 1.7459 1.7354
I74422 1.8193 1.7097
I114422 2.5534 0.8809
J2
4422 2.4560 2.3660
J3
4422 3.2425 2.4632
J6
4422 1.7846 1.5303
J12
4422 2.9047 1.5755
J16
4422 2.2696 2.1900
J17
4422 2.5518 0.1200
J23
4422 2.4361 2.2273
J25
4422 2.0591 1.5912
J27
4422 3.8571 1.1701
J33
4422 2.4603 2.2554
J35
4422 2.7730 2.1187
J36
4422 2.6826 1.2361
J39
4422 3.3058 1.8902
J41
4422 3.0384 1.5886
J43
4422 1.8743 1.7105
J44
4422 3.2094 2.7356
J46
4422 3.8867 1.8439
J47
4422 3.0579 1.2610
J48
4422 3.0068 1.8356
J50
4422 3.4224 1.3531
J51
4422 2.7001 2.1674
J52
4422 4.3996 4.3617
J53
4422 3.2373 3.1025
J57
4422 3.4439 2.6058
J56
4422 3.2768 2.4926
J59
4422 2.5518 1.4209
J63
4422 2.4314 1.5833
J64
4422 3.6668 2.2977
J65
4422 4.4441 2.4510
J66
4422 2.4745 0.8376
J67
4422 2.8851 2.4108
J68
4422 4.0714 2.8477
J71
4422 2.3291 2.2046
J72
4422 3.1513 1.7519
J74
4422 1.7394 1.0342
J75
4422 2.5081 2.3899
J76
4422 3.3164 2.2137
J77
4422 3.3624 3.1937
J78
4422 3.5750 3.1361
J80
4422 3.6205 3.3504
J81
4422 2.3983 2.3310
J82
4422 2.9232 2.8710
J83
4422 2.6767 1.1386
J84
4422 4.2678 1.6680

Table 4: Summary of a partial list of asymmetric facet-
defining Bell inequalities in the 4422 scenario, their quantum
bound, and their symmetric quantum bound, which is achiev-
able using a symmetric two-qubit strategy. Again, the local
upper bound is 0.
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Ineq. NPA-L3 NPA-Swap-L3
J87
4422 2.7395 1.1650
J88
4422 2.4640 2.3452
J89
4422 4.0142 3.8477
J93
4422 3.8509 3.7623
J98
4422 4.5988 2.9244
J99
4422 3.5962 3.1623
J100
4422 5.0701 4.8958
J101
4422 4.1184 1.8614
J103
4422 4.2080 4.1362
J104
4422 6.3503 6.3071
J106
4422 3.3530 1.6759
J107
4422 3.7359 1.4608
J111
4422 3.0304 1.8046
J112
4422 2.4990 2.4376
J114
4422 4.2612 3.5249
J116
4422 3.0607 2.4743
J117
4422 3.8884 3.2446
J119
4422 3.5944 3.2022
J121
4422 2.3883 2.0440
J124
4422 3.7639 2.6913
J123
4422 4.2564 2.7188
J126
4422 3.2094 2.7356
J128
4422 4.0384 3.5783
J129
4422 4.2090 1.1362

N1
4422 4.0303 2.7188

N2
4422 2.7127 2.1279

N3
4422 3.0947 1.6173

N5
4422 5.7507 3.4798

N7
4422 2.4974 1.7370

N8
4422 4.0755 0.4685

N12
4422 5.2999 1.1686

Table 5: Summary of a partial list of asymmetric facet-
defining Bell inequalities in the 4422 scenario, their quantum
bound, and their symmetric quantum bound, which is achiev-
able using a symmetric two-qubit strategy. Again, the local
upper bound is 0.
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Abstract. The exploration of an efficient and scalable architecture of fault-tolerant quantum comput-
ing (FTQC) is vital for the demonstration of useful quantum computing. Here, we propose a scalable,
high-performance, and practical architecture with cavity-quantum-electrodynamics (CQED) network. Our
architecture takes advantage of the stability of neutral atoms and the flexibility of a CQED network. We
show a concrete framework of the implementation of surface codes and numerically analyze the logical
error probability and threshold values for two extreme network architectures. Our results open up a new
direction of FTQC with neutral atoms.

Keywords: quantum error correction, cavity quantum electrodynamics

1 Introduction

The recent development in quantum processing using
neutral atoms has recently attracted much attention [1].
It has several advantages such as much longer lifetime
than bulk qubits and negligible correlated errors between
atoms thanks to no charge. Alternatively, the neutral-
atom processor has a drawback, a weak interaction be-
tween qubits.
One strategy to compensate the drawback is cav-

ity quantum electrodynamics (CQED). The recent de-
velopment in CQED-network technology, such as the
nanofiber-cavity network [2, 3], is realizing CQED-
network systems with both seamless cavity connection
and strong coupling between neutral atoms and cavity
field. To utilize the itinerancy of photons opens the possi-
bility for high designability in quantum processing. Nev-
ertheless, there are few studies that investigate its fault
tolerance and scalability compared with other physical
platforms.
In our talk, we propose a fault-tolerant and scalable

architecture with trapped neutral atoms with cavity net-
works. In this architecture, we utilize neutral atoms as
data qubits. Neutral atoms are reset to a ground state
and trapped with the magneto-optical trap. We adopt
the standard two-dimensional surface code [4] to con-
struct a logical qubit. As is well known, this code requires
only the nearest-neighbor interaction between qubits; our
architecture with itinerant photons has room for consid-
ering quantum codes which shows higher performance,
such as efficient low-density parity check codes. Never-
theless, the surface code is an unavoidable stepping stone
to exploit high performance codes. Thus, we first inves-
tigate its fault-tolerance and scalability.

∗rui.asaoka@ntt.com
†yasunari.suzuki@ntt.com
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Figure 1: Stabilizer measurement with CQED network
for constructing surface codes.

2 Method

2.1 Stabilizer measurement based on CQED

Thanks to the strong interaction of atoms with optical
modes mentioned above, we can perform some impor-
tant two-qubit gates, such as the controlled-Z gate be-
tween a photon and an atom [5, 6, 7]. Therefore, with
appropriate basis changes, we can perform a multi-qubit
Pauli measurement with single-photon inputs, which is
enough for performing stabilizer measurements. Figure 1
shows a schematic picture of a stabilizer measurement
for four atomic qubits. Ancillary photons pass through a
CQED network, which indicates that stabilizer measure-
ments in our architecture can be passively performed and
that there is no need to arrange the atomic data qubits
in two dimension in real space. Here we focus on the case
of a single logical qubit for simplicity, that is, mainly dis-
cuss the fault-tolerance of the parity-check measurement
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process; nevertheless, we would like to emphasize that
our idea can be straightforwardly extended to the case of
multiple logical qubits.

2.2 Error sources

We expect three types of errors in the procedure of
syndrome-value readout. The first one is the T2 decay
of trapped atoms. This forces the period of each syn-
drome measurement cycle sufficiently shorter than the
lifetime. We note that T1 can be neglected here because
it is very slow compared to other time scales character-
istic of CQED systems, such as the decay of the excited
state.
The second is the infidelity of the atom-photon gate.

The reduction in the fidelity of the CZ gate comes from
unbalanced photon loss between the computational bases
and distortion of reflected pulse shapes. The former
means that the photon loss probability depends on the
states of atomic and photonic qubits. This causes the
effective rotation of atomic qubits. However, it is known
that the unbalanced photo loss can be canceled by de-
signing cavity parameters appropriately [8], and we do
not consider this error in this study. The latter is caused
by frequency-dependent phase shift between the input
(incident) and output (reflected) photon pulses. In the
frequency-dependent phase shift, the reduction in the
gate fidelity mainly caused by the first order term regard-
ing frequency, or the delay in an output pulse. Thus, in
this paper, we consider that the infidelity of the atom-
photon gate is due to the pulse delay.
The last dominant error source is photon loss through

dissipative channels, namely undesirable scattering and
absorption inside cavities, atomic spontaneous emission,
transmission loss, and losses in detectors, circulators, and
switches. This photon loss error differ from the first two
error sources in that this error can be detected, i.e., we
can know that the photon is lost when the photodetec-
tors do not click. While we can perform error correction
by ignoring the heralded signal, we can achieve higher
performance by utilizing the photon-loss information in
the error estimation process.

2.3 CQED-network structures

Here we propose two particular CQED-network struc-
tures for constructing a logical qubit: N -cavity structure
(Fig. 2(a)) and 4-cavity multi-atom structure (Fig. 2(b)),
both of which are extensions of the fundamental struc-
ture in Fig. 1. The former is the most straightforward
realization of the surface code; N = 2d2 +2d+1 cavities
(d is the code distance), each including a single atomic
qubit, are allocated in the two-dimensional (2D) grid ar-
ray with the nearest neighbors connected (we note that
the cavities need not be arranged in the 2D grid in the
real space). Switches can rearrange the path of photon
pulses and even have the choices to connect polarime-
ters or photon sources. This structure requires the same
number of cavities as atomic qubits, but instead enables
a highly parallel syndrome measurement if the cavities
are connected in two-dimensional grid where each node

SW SW SWSW

… … … …
…SW SW

polarization
measurement

SW

polarization
measurement

single-photon
source

or

=

…

(a)

(b)

Figure 2: Cavity-network structures for constructing sur-
face codes. (a) Optimal structure when d2 cavities can be
prepared. (b) Structure when only the minimum number
of cavities, or 4 cavities, is available, where each cavity
includes d2/4 atomic qubits. Any one cavity is skipped
with switches when three-qubit Pauli strings on the edge
of a logical qubit are measured.

is connected to a single-photon source and a polarimeter.
The latter has only four cavities, each including a 1D
array of trapped atoms. We can somehow choose which
atoms to couple to the cavities, such as resonance shift
depending on atomic position by gradient electric or mag-
netic field with respect to a target atom, Stark shift by
selective laser irradiation, or position shift of each atom
by optical tweezer. This structure is of the lowest par-
allelism of the syndrome measurements, or the largest
syndrome-readout depth, but instead requires the mini-
mum number of cavities for constructing a logical qubit
relying on the fundamental structure in Fig. 1.

Thus, these structures are the extremes with respect
to a trade-off relation between the experimental resource
and the period of each syndrome measurement cycle, or
between the difficulty in implementing a logical qubit
and the T2 error. In this study, we investigate the fault-
tolerance of these two extreme cases.

3 Results and Conclusion

3.1 Threshold for each CQED-network struc-
ture

Here, we shows the boundaries between the regions
where pL,5/pL,3 or pL,7/pL,5 (pL,d is defined as the log-
ical error for code distance d) is less than unity and
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Figure 3: Boundaries between the regions where
pL,5/pL,3 (circles) or pL,7/pL,5 (squares) is less than unity
and greater than unity as a function of g/γ and κin/γ.
(a) N -cavity structure for T2γ = 104. (b) N -cavity struc-
ture for T2γ = 106. (c) 4-cavity structure for T2γ = 106.
Here we assume that the peripheral devices are ideal,
namely, pSW + pcir = 0. (d) Boundary of pL,5/pL,3 for
the N -cavity structure calculated based on the stabilizer
simulation using the improved MWPMA utilizing the in-
formation of the loss event of an ancillary photonic qubit
(triangles). We show pL,5/pL,3 boundary in (a) as a ref-
erence.

greater than unity as a function of the cavity parameters
(g, κin, γ). Here g, κin, and γ are the coupling strength
between cavity field and an atom, the undesirable cavity
decay rate due to the imperfection of a cavity, and the
atomic decay rate, respectively. In Figs. 3(a) and (b),
we show the difference between different dephasing times
T2γ = 104 and 106 in the case of the N -cavity structure.
The upper regions to the data points indicate that QC is
fault-tolerant. When κin/γ is small, the requirement for
the CQED parameters is notably relaxed for the longer
dephasing time. This is because a longer dephasing time
allows a longer input pulse, resulting in achieving high
gate fidelity even for a small Rabi splitting, namely, a
small g. This effect is emphasized for smaller κin be-
cause the cavity linewidth κ becomes sharp. The mini-

mum value of the internal cooperativity Cin ≡ g2

2κinγ
, a

fundamental characteristic of the cavity performance for
QC, required for FTQC is a few tens of thousands in
both cases. Figure 3(c) shows the error boundaries de-
fined in the same way as Figs. 3(a) and (b) in the case
of the 4-cavity structure. The dephasing time T2 is the
same as Fig. 3(a). In this case, the requirements of the
cavity parameters are a little more demanding for small
κin/γ compared to the N -cavity case (Fig. 3(a)). This is
because the 4-cavity structure sacrifices the parallelism
of the syndrome measurements instead of the ease of im-
plementation; this is equivalent to experiencing a short

dephasing time, which is an opposite case of Fig. 3(b) of
a long dephasing time.

3.2 Threshold improvement utilizing loss infor-
mation of ancillary qubits

So far, we have calculated the logical error rate using
a error estimation protocol, the minimum weight perfect
matching algorithm (MWPMA), in the stabilizer simu-
lation. In this section, we investigate whether an advan-
tage of our proposed system, being able to detect the
loss event of an ancillary photonic qubit, makes the er-
ror estimation in MWPMA more efficient. The central
idea in our improved MWPMA is that we set the error
probability high around the places where ancillary pho-
tonic qubits are lost. Figure 3(d) shows the pL,5/pL,3
boundary for the N -cavity structure calculated based on
the stabilizer simulation using the improved MWPMA
utilizing the information of the loss event of an ancillary
photonic qubit. It can be seen that the threshold is really
improved by utilizing the loss information; for example,
the value of the internal cooperativity Cin, which is de-
fined by g2/2κinγ, required for the fault-tolerant quan-
tum computation is about 1/10 compared to the stabi-
lizer simulation which does not use the loss information
when κin/γ = 0.01.

3.3 Conclusion

We have estimated the error thresholds in a surface
code for extreme two CQED-network structures. Our es-
timation is a reading study considering specific CQED-
network structure and its scalability. Moreover, our
error-decoding algorithm tailored for the proposed ar-
chitecture greatly relaxes the required performance of
CQED networks to achieve the error threshold. Our
results open up a new direction of FTQC with neutral
atoms.
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1 Overview of the results
We initialize the study of efficient verification of gen-

uinely entangled subspaces (GES). We establish a general
verification framework and provide efficient verification
strategies for various GESs of practical interests. Firstly,
we construct an efficient verification strategy for the GES
spanned by the 3-qubit GHZ state and W state. This
strategy involves one-way adaptive local measurements,
which we call the “Pauli+2” strategy. Then, we construct
two strategies to verify GES induced by stabilizer codes of
size k in an n-qubit system. Notably, we present the first
verification strategies for the genuinely entangled stabi-
lizer subspaces induced by the prominent five-qubit code
and toric code. These strategies use a limited number
of Pauli measurements and are non-adaptive, thus are
experimentally feasible.

Our findings demonstrate that genuinely entangled
subspaces (GES), including the stabilizer subspaces fun-
damental in quantum error correction as special case, can
be efficiently verified using experimentally feasible mea-
surements. We believe the results are beneficial to the
broader audience of AQIS, especially to those who are
working in constructing and benchmarking the qualities
of quantum error correction codes.

A full technical version can be found in the attached
technical PDF.

2 Quantum subspace verification
In this section, we first formally define the task of quan-

tum subspace verification. Then, we discuss this task un-
der local constraints, specifically focusing on verification
strategies that can be implemented locally.

2.1 Task description
Suppose we have N copies n-qubit states σ1, · · · , σN

produced by a same quantum device D. The quantum
state verification task answers the question: “Are the
states σi generated by D equal to a fixed state |ψ⟩⟨ψ|?”
Similarly, the quantum subspace verification aims to an-
swer the question:

∗nju.wangkun@gmail.com

“Are the states σi generated by D contained in the
subspace V spanned by the orthonormal basis {|ψj⟩}j?”

To mathematically verify whether a state is in the tar-
get subspace V, we define the projector Π :=

∑
j |ψj⟩⟨ψj |

and provide the following lemma.

Lemma 1 For a fixed quantum state σ,

Tr[Πσ] =
∑
j

⟨ψj |σ|ψj⟩ = 1, (1)

if and only if σ ∈ span{|ψj⟩}.

Thus, we can now formally define the quantum sub-
space verification task—Given a quantum device D, dis-
tinguish between the following two cases:

1. Good: for all i ∈ [N ], Tr[Πσi] = 1;

2. Bad: for all i ∈ [N ], Tr[Πσi] ≤ 1− ϵ for some fixed
ϵ.

A visual depiction of the quantum subspace verification
task is given in Figure 1.

Figure 1: Quantum subspace verification. Given a
quantum device D, we aim to distinguish exclusively
between two cases: Good case: all states prepared is in
a target subspace V ⊆ H. Bad case: ∃ i, σi ̸∈ V.

2.2 Practical verification with local constraints
Suppose that we have access to a set of POVM ele-

ments M and ∀M ∈ M, M is a local projector (assisted
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by classical communication). Then for each state prepa-
ration, we pick a POVM element M ∈ M with some
probability and consider the corresponding two-outcomes
POVMs {M,1 −M}, where M has output "pass" and
1 −M has output "fail". Moreover, we define a prob-
ability mass µ : M → [0, 1],

∑
M∈M µ(M) = 1. The

probability of a generated quantum state σ passing the
test can be expressed as

Pr {"pass"|σ} =
∑

M∈M
µ(M) Tr[Mσ] ≡ Tr[Ωσ], (2)

where the verification operator of this strategy is defined
as

Ω :=
∑

M∈M
µ(M)M. (3)

To satisfy the requirement of the verification task, we
impose two conditions on the verification operator Ω:
perfect completeness condition and soundness condition.
The perfect completeness condition requires that

Tr[Ωσ] = 1, ∀σ ∈ span{|ψj⟩}. (4)

This condition can be equivalently characterized using
the projector Π associated with the target subspace V as
follows.

Lemma 2 The perfect completeness condition can be
equivalently characterized as

Tr[ΩΠ] = rank(Π), (5)

where rank(Π) is the rank of the projector.

Now let’s consider the soundness condition. We find
the the worst-case passing probability p(Ω), defined as

p(Ω) := max
σ:Tr[Πσ]≤1−ϵ

Pr{“pass”|σ}, (6)

in the Bad case is uniquely determined by the largest
eigenvalue of the projected effective verification operator,
as elucidated in the following theorem.

Theorem 3 It holds that

p(Ω) := max
σ:Tr[Πσ]≤1−ϵ

Tr[Ωσ] = 1− (1− λmax(Ω̂))ϵ, (7)

where Ω̂ := (1 − Π)Ω(1 − Π) is the projected effective
verification operator and λmax(X) denotes the maximum
eigenvalue of the Hermitian operator X.

Therefore, the probability of accepting the Bad case is
bounded as follows,

Pr {"accept"|σ1, · · · , σN} ≤ (1− ν(Ω)ϵ)N , (8)

where ν(Ω) := 1−λmax(Ω̂) is the spectral gap. To achieve
the bound δ, we have

N ≥ 1

ν(Ω)
× 1

ϵ
ln

1

δ
. (9)

3 Subspace spanned by GHZ state and
W state

In this section, we propose an efficient verification pro-
tocol for the subspace spanned by the GHZ state and W
state,

|GHZ⟩ = (|000⟩+ |111⟩)/
√
2, (10a)

|W⟩ = (|001⟩+ |010⟩+ |100⟩)/
√
3. (10b)

We accomplish this verification task using Pauli+2 strat-
egy and the framework of our strategy is outlined in Fig-
ure 2.

Figure 2: The framework of Pauli+2 strategy, designed
to verify the subspace spanned by the 3-qubit GHZ
state and the W state. In the first step, we randomly
perform Pauli measurement Pi. Then, we can obtain a
post-measurement subspace Vo

Pi
with measurement

result o ∈ {+,−}. Subsequently, we perform the
measurement {Mo

Pi
,1−Mo

Pi
} defined in the technical

version. It the outcome is corresponding to the Mo
P ,

then we accept this state; otherwise, we reject it.

Firstly, we randomly choose a qubit index i and mea-
sure i-th qubit in a random Pauli X, Y , or Z basis. The
corresponding Pauli measurement is represented as Pi.
For the Pauli measurement Pi, there are two possible
outcomes, +1 and −1. Conditioned on the measure-
ment outcome, the remaining two qubits will live in a
two-qubit subspace, spanned by two post-measurement
states, which we term the post-measurement subspace.
We denote the post-measurement subspace resulting
from measurement Pi and outcome o ∈ {+1,−1} as Vo

Pi
.

Secondly, we use the two-qubit subspace verification
strategy, which is proposed in the technical version. We
design two-qubit subspace verification strategies based
on the outcome of the first measurement. For each post-
measurement subspace Vo

Pi
, we can construct a measure-

ment operator Mo
Pi

and perform POVM {Mo
Pi
,1−Mo

Pi
}.

We reject the state if the outcome is corresponding to
1−Mo

Pi
; otherwise, we pass it.

Now, we consider the complexity of Pauli+2 strategy.
Numerical calculations show that the optimal spectral
gap is about 0.358. Thus, the required number of copies
N needs to satisfy

N ≥ 2.79
1

ϵ
ln

1

δ
(11)

to achieve confidence level 1− δ.
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4 Stabilizer Subspace
In this section, we describe two efficient protocols for

verifying the stabilizer subspaces. For a n-qubit system,
a subspace V can be determined by a set of k stabilizer
generators Gk. We can construct a set of stabilizer oper-
ators Sk = {Py : y ∈ Zk

2} as follows:

Py :=
k∏

i=1

Syi

i . (12)

Protocol I works by uniformly and randomly choosing
a stabilizer operator Py from Sk and measure the target
state with Py. Mathematically, the verification operator
of Protocol I reads

ΩI :=
1

2k − 1

∑
P∈Sk\{1}

P+, (13)

where P+ := (P +1)/2 is the projector onto the positive
eigenspace of stabilizer operator P . What’s more, the
verification efficiency, i.e. the spectral gap, of ΩI satisfies

ν(ΩI) =
2k−1

2k − 1
. (14)

To achieve a confidence level 1− δ, it suffices to take

N(ΩI) =
(2k − 1)

2k−1

1

ϵ
ln

1

δ
≈ 2

1

ϵ
ln

1

δ
(15)

number of state copies, which is independent with the
subspace size k. Notably, this strategy necessitates at
most twice as many copies as the verification strategy
without local constraints. The disadvantage of Proto-
col I is self-evident: the experimenters must be able to
implement a total number 2k−1 Pauli measurement set-
tings, which increases exponentially in the subspace size
k and is challenging. This disadvantage motivates the
second protocol which requires far less number of mea-
surement settings.

Protocol II works by randomly choosing a stabilizer
generator S from Gk, each with probability 1/k. Mathe-
matically, the verification operator of Protocol II reads

ΩII :=
1

k

∑
S∈Gk

S+, (16)

where S+ := (S + 1)/2 is the projector onto the positive
eigenspace of stabilizer generator S. Subsequently, we
examine the verification efficiency of ΩII, which is

ν(ΩII) =
1

k
. (17)

Therefore, to achieve a confidence level 1 − δ, it suffices
to take

N(ΩII) = k
1

ϵ
ln

1

δ
(18)

number of state copies. Therefore, the drawback of Pro-
tocol II is obvious: it requires k/2 times more state

copies than Protocol I. This indicates a fundamen-
tal trade-off between the total number of required state
copies and the number of measurement settings, which
deserves further investigation.

In the following, we present the first verification strate-
gies for the genuinely entangled stabilizer subspaces in-
duced by the prominent five-qubit code and the toric
code.

Five-qubit code. Consider the GESS induced by the
five-qubit code [1]. This subspace is generated by the
following 4 generators,

S1 = X1Z2Z3X4, S2 = X2Z3Z4X5,

S3 = X1X3Z4Z5, S4 = Z1X2X4Z5.
(19)

To verify such a subspace, Protocol I requires 24 − 1 =
15 measurement settings, which are determined by 15
stabilizer operators (excluding 1) defined in Eq. (12). To
achieve a confidence level 1 − δ, we need 15/(8ϵ) ln 1/δ
state copies. On the other hand, Protocol II only 4
measurement settings, determined by 4 generators de-
fined in Eq. (19). However, Protocol II requires more
state copies, specifically 4/ϵ ln 1/δ,to achieve the same
confidence level 1− δ.

Toric code. Consider the GESS induced by the toric
code [1]. A toric code can be presented by a L×L lattice,
where each edge represents a qubit. The corresponding
stabilizer generators can be written as

Sv =
∏
i∈v

Xi, Sp =
∏
i∈p

Zi. (20)

There are 2L2 − 2 stabilizer generators in total. There-
fore, Protocol I requires 22L

2−2 − 1 measurement set-
tings and ≈ 2/ϵ ln 1/δ state copies to achieve a confidence
level 1− δ. Protocol II only requires 2L2 − 2 measure-
ment settings but needs (2L2−2)/ϵ ln 1/δ state copies to
achieve the same confidence level 1− δ.

Though we only provide two examples of GESSs, it
should be noted that for any arbitrary GESSs, we can
construct the corresponding verification strategies.
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We initialize the study of efficient verification of genuinely entangled subspaces (GES). We establish a gen-
eral verification framework and provide efficient verification strategies for various GESs of practical interests.
Firstly, we construct an efficient verification strategy for the GES spanned by the 3-qubit GHZ state and W state.
This strategy involves one-way adaptive local measurements, which we call the “Pauli+2” strategy. Along the
way, we categorize two-qubit subspaces with dimension 2 into three distinct types, which might be of indepen-
dent interest. Then, we present two strategies to verify GES induced by stabilizer codes of size k in an n-qubit
system. These strategies only use a limited number of Pauli measurements and are non-adaptive, thus are ex-
perimentally feasible. Notably, we present the first verification strategies for the genuinely entangled stabilizer
subspaces induced by the prominent five-qubit code and the toric code.

I. INTRODUCTION

Current quantum systems often fail to work as desired due
to the presence of quantum noise. Therefore, accurately de-
scribing the actual quantum system is a crucial task in quan-
tum information. Quantum tomography is a standard method
for characterizing the entire quantum system. However, it
is resource-intensive, making it impractical for large quan-
tum systems. On the other hand, in many practical scenar-
ios, it is unnecessary to describe the entire quantum system.
Consequently, many resource-efficient methods are developed
to certify the quantum system [1, 2], such as fidelity esti-
mation [3–7], entanglement detection [8–12]. Among these
methods, quantum state verification [9, 13] is designed to ver-
ify whether quantum states are prepared as desired. Specifi-
cally, the verification strategies primarily focus on using lo-
cal operators and classical communication (LOCC) to verify
entangled states. Recently, resource-optimal verification pro-
tocols based on LOCC have been found for many groups of
states, such as bipartite maximally entangled states [10], two-
qubit pure states [14], GHZ states [15], stabilizer states [16,
17] and antisymmetric basis states [18].

Meanwhile, a particular line of research on entanglement
in multipartite systems concerns the characterization of sub-
spaces composed solely of entangled states, known as entan-
gled subspaces. These special subspaces have proven useful
in quantum error correction [19–22] and quantum cryptogra-
phy [23]. An important type of entangled subspace is the gen-
uinely entangled subspace (GES), which is defined to be a
subspace of multipartite system that contains only genuinely
multiparty entangled (GME) states [24–29]. Naturally, certi-
fying GES is as important as certifying entangled states. Re-
cently, Baccari et al. [25] partially addressed this certification

∗ Corresponding author: yuxutao@seu.edu.cn
† Corresponding author: nju.wangkun@gmail.com

problem by presenting the first self-testing protocols for two
specific GESs, both of which are stabilizer subspaces.

In this work, we generalize quantum state verification to
quantum subspace verification, aiming to determine whether
a prepared state belongs to a GES using LOCC. Note that
quantum subspace verification has been previously mentioned
in [30, 31], where protocols are designed to verify ground
states of local Hamiltonians. Here, we establish a general ver-
ification framework and provide efficient verification strate-
gies for various GESs of practical interests. Firstly, we con-
sider the GES spanned by the 3-qubit GHZ state and W state
and construct an efficient strategy for it. This strategy in-
volves one-way adaptive local measurements, which we call
the “Pauli+2” strategy. Additionally, we study the verifica-
tion of two-qubit subspaces with dimension 2 and categorize
them into 3 distinct types. Subsequently, we investigate the
subspaces determined by the stabilizer codes, referred to as
stabilizer subspaces. We propose two non-adaptive verifica-
tion strategies for these subspaces using only Pauli measure-
ments. For a GES determined by k stabilizer generators, the
first strategy requires 2k − 1 measurement settings, while the
second requires only k measurement settings. However, the
sample complexity of the first strategy is lower than that of
the second and is independent of the size of the quantum sys-
tem. Concretely, we propose the verification strategies for two
genuinely entangled stabilizer subspaces determined by the
five-qubit code and the toric code, respectively.

The rest of the paper is organized as follows. Section II in-
troduces the concept of GES and stabilizer subspaces. Sec-
tion III formally defines the quantum subspace verification
task. Section IV presents our first result: the efficient veri-
fication of the subspace spanned by the 3-qubit GHZ state and
W state. Section V devotes to constructing verification strate-
gies for stabilizer subspaces.
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II. PRELIMINARIES

In this section, we introduce some necessary preliminaries
for our work. Firstly, we define genuinely entangled states and
subspaces. Then, we introduce stabilizer subspaces, which
can be genuinely entangled.

A. Genuinely entangled subspace

We focus on finite-dimensional n-partite product Hilbert
spaces Hd1,d2,··· ,dn

= Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdn , where di
is the dimension of the local Hilbert space corresponding to
the system Ai. An n-partite pure state |ψ⟩A1···An

is said to be
fully product if it can be written as

|ψ⟩A1···An = |φ1⟩A1 ⊗ · · · ⊗ |φN ⟩An . (1)

Otherwise, it is entangled. Among such states, there is one
distinguished class within which the quantum states are said
to be genuinely multiparty entangled (GME).

Definition 1 ([27]). A multipartite pure state is GME if

|ψ⟩A1···An
̸= |φ⟩S ⊗ |ϕ⟩S̄ (2)

for any bipartite cut S|S̄ of A1 · · ·An.

Genuinely entangled subspace is defined to be a subspace
that only contains genuinely multiparty entangled states.

Definition 2 ([27]). A subspace V ⊂ Hd1,··· ,dn
is called a

GES if all pure states |ψ⟩ ∈ V are GME.

A well-known example of GES in H2,2,2 is the one spanned
by the GHZ state (|000⟩+|111⟩)/

√
2 and the W state (|001⟩+

|010⟩+ |100⟩)/
√
3 [26].

B. Stabilizer subspace

Here, we consider the case where d1 = · · · = dn = 2
and introduce the stabilizer subspace, which can be genuinely
entangled. Let I,X, Y, Z be the Pauli matrices, and let Gn

denotes the Pauli group on n qubits, consisting of n-fold ten-
sor products of I,X, Y, Z with the overall factors ±1 or ±i.
Consider a subset of Gn, represented as

Gk = {S1, S2, · · · , Sk}, Si ∈ Gn, 1 ≤ i ≤ k, (3)

if it stabilizes a nontrivial subspace V , that is, Si|ψ⟩ = |ψ⟩
for all i ∈ [k] and |ψ⟩ ∈ V , then, we call Gk a stabilizer gen-
erator and V a stabilizer subspace determined by Gk. There
are many stabilizer subspaces, while we are mainly concerned
with genuinely entangled stabilizer subspace (GESS). A typi-
cal example of GESS is the GHZ state, which can be viewed
as a subspace whose dimension is 1. On the other hand, not
every stabilizer subspace is a GESS, e.g., the subspace deter-
mined by one generator Z1Z2, where Pi denotes the Pauli op-
erator P on i-th qubit. Therefore, a natural problem is whether

the subspace determined by Gk is a GESS. In [25, 26], the au-
thors provided a simple sufficient criterion to decide whether
a given stabilizer subspace is a GESS. In Section V, we will
introduce a general framework to verify GESS.

III. QUANTUM SUBSPACE VERIFICATION

In this section, we first formally define the task of quantum
subspace verification. Then, we introduce how to complete
this task perfectly if there is no constraints. Finally, we dis-
cuss this task under local constraints, specifically focusing on
verification strategies that can be implemented locally.

A. Task description

Suppose we have N copies n-qubit states σ1, σ2, · · · , σN
produced by a same quantum device D. The quantum state
verification task answers the question: “Are the states σi gen-
erated by D equal to a fixed state |ψ⟩⟨ψ|?” Similarly, the quan-
tum subspace verification aims to answer the question:

“Are the states σi generated by D contained in the subspace
V spanned by the orthonormal basis {|ψj⟩}j?”

To mathematically verify whether a state is in the target
subspace V spanned by the orthonormal basis {|ψj⟩}j , we de-
fine the projector Π :=

∑
j |ψj⟩⟨ψj | and provide the following

lemma, whose proof can be found in Appendix A 1.

Lemma 3. For a fixed quantum state σ,

Tr[Πσ] =
∑
j

⟨ψj |σ|ψj⟩ = 1, (4)

if and only if σ ∈ span{|ψj⟩}.

With the help of the above lemma, we can now formally
define the quantum subspace verification task—Given a quan-
tum device D, distinguish between the following two cases:

1. Good: for all i ∈ [N ], Tr[Πσi] = 1;

2. Bad: for all i ∈ [N ], Tr[Πσi] ≤ 1− ϵ for some fixed ϵ.

A visual depiction of the quantum subspace verification task
is given in Figure 1.

B. Optimal verification without constraints

Here we consider the verification task without constraints
on the set of available measurements, thus entangled measure-
ments are possible. The complexity of this “globally optimal”
strategy serves as a reasonable benchmark for other resource
constraint verification strategies.

We define the test POVM {Ω,1 − Ω} where Ω = Π. We
call the outcome of Ω “pass” and the one of 1−Ω “fail”. For
an arbitrary state σ, the probability that it passes the test is

Pr {“pass”|σ} = Tr[Ωσ] =
∑
j

⟨ψj |σ|ψj⟩. (5)
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FIG. 1: Quantum subspace verification. Given a quantum
device D, we aim to distinguish exclusively between two
cases: Good case: all states prepared is in a target subspace
V ⊆ H. Bad case: ∃ i, σi ̸∈ V .

Therefore, the state in the target subspace will be accepted
with certainty. Now, we consider the Bad case. For states
{σi}Ni=1 with Tr[Πσi] ≤ 1− ϵ for all i ∈ [N ], the probability
that all states pass is

Pr {“pass”|σ1, · · · , σN} =
∏
i

Tr[Πσi] ≤ (1− ϵ)N . (6)

We want this probability to be bounded from above by δ > 0,
i.e.,

(1− ϵ)N ≤ δ ⇒ N ≥ 1

ϵ
ln

1

δ
. (7)

This gives the least required number of states copies N .
It should be noted that the globally optimal verification

strategy necessitates the use of entangled measurements if the
target subspace is entangled (in which case there is at least
one entangled basis state). Implementing entangled measure-
ments is experimentally challenging. In the following, we dis-
cuss subspace verification under local constraints on measure-
ments, yielding experimental friendly verification strategies.

C. Practical verification with local constraints

Suppose that we have access to a set of POVM elements
M and ∀ M ∈ M, M is a local projector (assisted by classi-
cal communication). Then for each state preparation, we pick
a POVM element M ∈ M with some probability and con-
sider the corresponding two-outcomes POVMs {M,1−M},
where M has output "pass" and 1 − M has output "fail".
Moreover, we define a probability mass µ : M → [0, 1],∑

M∈M µ(M) = 1. The probability of a generated quantum
state σ passing the test can be expressed as

Pr {"pass"|σ} =
∑

M∈M
µ(M) Tr[Mσ] ≡ Tr[Ωσ], (8)

where the verification operator of this strategy is defined as

Ω :=
∑

M∈M
µ(M)M. (9)

To satisfy the requirement of the verification task, we im-
pose two conditions on the verification operator Ω: perfect
completeness condition and soundness condition. The perfect
completeness condition requires that

Tr[Ωσ] = 1, ∀σ ∈ span{|ψj⟩}. (10)

This condition can be equivalently characterized using the
projector Π associated with the target subspace V as follows;
See Appendix A 2 for the proof.

Lemma 4. The perfect completeness condition can be equiv-
alently characterized as

Tr[ΩΠ] = rank(Π), (11)

where rank(Π) is the rank of the projector.

Now let’s consider the soundness condition. We find the the
worst-case passing probability p(Ω), defined as

p(Ω) := max
σ:Tr[Πσ]≤1−ϵ

Pr{“pass”|σ}, (12)

in the Bad case is uniquely determined by the largest eigen-
value of the projected effective verification operator, as elu-
cidated in the following theorem. The proof can be found in
Appendix A 3.

Theorem 5. It holds that

p(Ω) := max
σ:Tr[Πσ]≤1−ϵ

Tr[Ωσ] = 1− (1− λmax(Ω̂))ϵ, (13)

where Ω̂ := (1 − Π)Ω(1 − Π) is the projected effective ver-
ification operator and λmax(X) denotes the maximum eigen-
value of the Hermitian operator X .

Therefore, the probability of accepting the Bad case is
bounded as follows,

Pr {"accept"|σ1, · · · , σN} ≤ (1− ν(Ω)ϵ)N , (14)

where ν(Ω) := 1−λmax(Ω̂) is the spectral gap. Similarly, to
achieve the bound δ, we have

N ≥ 1

ν(Ω)
× 1

ϵ
ln

1

δ
. (15)

This inequality provides a guideline for constructing efficient
verification by maximizing ν(Ω).

In the following, we provide efficient verification strategies
for various genuinely entangled subspaces of practical inter-
ests: the three-qubit GES spanned by the 3-qubit GHZ state
and W state and the general stabilizer subspaces, including
the genuinely entangled stabilizer subspaces induced by the
prominent five-qubit code and the toric code as special cases.

IV. SUBSPACE SPANNED BY GHZ STATE AND W STATE

In this section, we propose an efficient verification protocol
for the subspace spanned by the GHZ state and W state,

|GHZ⟩ := (|000⟩+ |111⟩)/
√
2, (16a)

|W⟩ := (|001⟩+ |010⟩+ |100⟩)/
√
3. (16b)
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It has been proven in [26] that such a space is genuinely en-
tangled. Our protocol is based on the result of the two-qubit
subspace verification, which will be introduced first. Then, we
introduce our verification strategy, termed as Pauli+2 strategy.
Lastly, we analyze the complexity of this strategy, i.e., the re-
quired number of copies of the states.

A. Verification of two-qubit subspace

For the three-qubit target space to be verified, measuring
any qubit will naturally generate a two-qubit subspace on the
other two qubits conditioned on the measurement outcome.
Thus, it is necessary to discuss the verification of two-qubit
subspaces first. Remarkably, we can categorize two-qubit sub-
spaces with dimension 2 into three types, each with its own
characteristics, detailed in Appendix B.

Firstly, we determine which kinds of subspaces can be ver-
ified. Intuitively, if the complementary subspace of the target
subspace can be spanned using LOCC, then the subspace can
be verified; otherwise, it cannot. Based on this principle, for
a two-qubit subspace with only one product state in it, we can
not verify this two-qubit subspace. Consequently, we named
this kind of subspaces as unverifiable subspaces. On the other
hand, if there are two different product states |τ0⟩, |τ1⟩ in the
two-qubit subspace, then, we call it is a verifiable subspace.
Specially, if ⟨τ0|τ1⟩ = 0, then, we call it is a perfectly verifi-
able subspace.

With this classification, we define verification operators tai-
lored to each type of subspace, as described in the following
lemma. Further details can be found in Appendix B.

Lemma 6. The verification operator of different kinds sub-
space is defined in the following form:

1. unverifiable subspace:

Ωu = 1− |τ⟩⟨τ |, (17)

where |τ⟩ is the only one product state in the comple-
mentary subspace. And we have ν(Ωu) = 1.

2. perfectly verifiable subspace:

Ωp = |τ0⟩⟨τ0|+ |τ1⟩⟨τ1|, (18)

where |τi⟩(i = 0, 1) are product states in the target sub-
space. And we have ν(Ωp) = 0.

3. verifiable subspace:

Ωv = 1− 1

2
(|τ2⟩⟨τ2|+ |τ3⟩⟨τ3|), (19)

where |τi⟩(i = 2, 3) are the product states in the com-
plementary subspace. And we have ν(Ωv) = 1

2 (1 +

|⟨τ2|τ3⟩|2).

To practically verify a two-qubit subspace, we utilize differ-
ent measurement strategies based on the types of verification
operators defined in Lemma 6.

• For an unverifiable subspace, we construct a two-
outcomes POVM {1 − |τ⟩⟨τ |, |τ⟩⟨τ |}, where |τ⟩ is de-
fined in the Eq. (17). We reject states with outcomes
corresponding to |τ⟩⟨τ |. However, this strategy is in-
evitably fooled by an entangled state |τ ′⟩, where |τ ′⟩ in
the complementary subspace and ⟨τ |τ ′⟩ = 0.

• For a perfectly verifiable subspace, we construct a two-
outcomes POVM {|τ0⟩⟨τ0| + |τ1⟩⟨τ1|,1 − |τ0⟩⟨τ0| −
|τ1⟩⟨τ1|}, where |τi⟩(i = 0, 1) are defined in the
Eq. (18). We pass the state with the result correspond-
ing to the |τ0⟩⟨τ0|+ |τ1⟩⟨τ1|. Notably, no states from the
complementary subspace can pass this strategy.

• For a verifiable subspace, the strategy is a litter more
complex than others. It involves two POVMs: {1 −
|τ2⟩⟨τ2|, |τ2⟩⟨τ2|} and {1 − |τ3⟩⟨τ3|, |τ3⟩⟨τ3|}, where
|τi⟩(i = 2, 3) are defined in the Eq. (19). Each POVM
is performed with probability 1

2 and we reject the states
with the result corresponding to the 1 − |τi⟩⟨τi|(i =
2, 3). Although the state in the complementary sub-
space can pass each test, it cannot pass with certainty.

B. One-way adaptive measurement

Based on the two-qubit subspace verification method pro-
posed in Section IV A, we show in the following a general
subroutine to construct one-way adaptive measurements that
are applicable for verifying three-qubit subspaces. The con-
struction is very intuitive: we first measure a qubit, then
we verify the induced two-qubit subspace conditioned on the
measurement outcome.

Assume now we choose a qubit index i and measure this
qubit in Pauli operator P . The corresponding Pauli measure-
ment is represented as Pi, where i ∈ [3] and P ∈ {X,Y, Z}.
For the Pauli measurement Pi, there are two possible out-
comes, +1 and −1, corresponding to the positive and neg-
ative eigenspaces of Pi. Conditioned on the measurement
outcome, the remaining two qubits will live in a two-qubit
subspace, spanned by two post-measurement states, which we
term the post-measurement subspace. We denote the post-
measurement subspace resulting from measurement Pi and
outcome o ∈ {+1,−1} as Vo

Pi
. For example, if a Z1 mea-

surement is performed and the outcome is +1, our target sub-
space becomes a two-qubit subspace spanned by |00⟩ and
(|01⟩+ |10⟩)/

√
2. All post-measurement subspaces are listed

in Appendix C.
Secondly, we design two-qubit subspace verification strate-

gies based on the outcome of the first measurement. With the
analysis in Section IV A, we define the following two-qubit
verification operators based on the different measurement out-
comes, while more details can be found in Appendix C:

• V+
Zi

is an unverifiable subspace and we define

M+
Zi

= 1− |11⟩⟨11|. (20)
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• V−
Zi

is a perfectly verifiable subspace and we define

M−
Zi

= |00⟩⟨00|+ |11⟩⟨11|. (21)

• V+
Xi

is a perfectly verifiable subspace and we define

M+
Xi

= |x+x+⟩⟨x+x+|+ |x̄+x̄+⟩⟨x̄+x̄+|, (22)

where |x+⟩ = cosα|0⟩ + sinα|1⟩, |x̄+⟩ = sinα|0⟩ −
cosα|1⟩, and α = arctan −1+

√
5

2 .

• V−
Xi

is a verifiable subspace and we define

M−
Xi

= 1− 1

2
(|x−x′−⟩⟨x−x′−|+ |x′−x−⟩⟨x′−x−|), (23)

where |x−⟩ = 1√
2
(|0⟩+ ei

π
3 |1⟩) and |x′−⟩ = 1√

2
(|0⟩+

e−iπ
3 |1⟩).

• V+
Yi

is a verifiable subspace and we define

M+
Yi

= 1− 1

2
(|y+y′+⟩⟨y+y′+|+ |y′+y+⟩⟨y′+y+|), (24)

where |y+⟩ = cosβ|0⟩ + e−iγ sinβ|1⟩,
|y′+⟩ = sinβ|0⟩ + ei(γ+

π
2 ) cosβ|1⟩, and β =

arctan

√√√
17+1

2
√
2

+
√
17
4 + 1

4 and γ = arctan tan2 β.

• V−
Yi

is a verifiable subspace and we define

M−
Yi

= 1− 1

2
(|y−y′−⟩⟨y−y′−|+ |y′−y−⟩⟨y′−y−|), (25)

where |y−⟩ = cosβ|0⟩+eiγ sinβ|1⟩, |y′−⟩ = sinβ|0⟩+
e−i(γ+π

2 ) cosβ|1⟩, and β and γ are defined before.

Overall, the corresponding one-way adaptive measurement
{M,1−M} induced by Pi has the form

MP,i = P+
i ⊗M+

Pi
+ P−

i ⊗M−
Pi
. (26)

C. Pauli+2 strategy

Now, we are ready to describe the verification strategy,
building on the one-way adaptive measurements constructed
on the last section.

The verification strategy works as follows. First, we uni-
formly and randomly choose a qubit i and choose a measure-
ment P ∈ {X,Y, Z} according to some probability distri-
bution µ(P ), which is to be optimized. The reason why we
choose the qubit uniformly is that both |GHZ⟩ and |W⟩ are
symmetric with respect to the qubit indices. Given this choice,
we construct an one-way adaptive measurement MP,i accord-
ing to Eq. (26). Then we perform this measurement on the
target quantum state and obtain a decision. We name the pro-
posed strategy the “Pauli+2” strategy and illustrate it in Fig-
ure 2. Here, “Pauli” means that we first perform a randomly

FIG. 2: The “Pauli+2” verification strategy. In the first step,
we randomly perform Pauli measurement P ∈ {X,Y, Z} on
a randomly chosen qubit. Then, we can obtain a
post-measurement subspace Vo

P with measurement result
o ∈ {+,−}. Subsequently, we perform the measurement
{Mo

P ,1−Mo
P } defined in Section IV B. If the outcome is

Mo
P , we accept; otherwise, we reject.

chosen Pauli measurement and “2” means that we perform a
two-qubit subspace verification conditioned on the measure-
ment outcome.

The verification operator of this “Pauli+2” strategy reads

Ωµ :=
∑

P∈{X,Y,Z},i∈[3]

µ(P )

3
MP,i, (27)

where µ(P ) is a probability distribution satisfying
∑
µ(P ) =

1 andMP,i is defined in Eq. (26). Obviously, µ(P ) affects the
performance of the Pauli+2 strategy. To find the optimal ver-
ification strategy, we solve the following optimization prob-
lem:

µ⋆ = argmax
µ

ν(Ωµ). (28)

Numerical calculations suggest that ν(Ωµ⋆) ≈ 0.358 when
µ⋆(X) ≈ 0.299, µ⋆(Y ) ≈ 0.209, and µ⋆(Y ) ≈ 0.4920. Cor-
respondingly, the required number of copies N must be

N ≥ 2.79× 1

ϵ
ln

1

δ
(29)

in order to achieve a confidence level 1 − δ. We leave the
analytic solution to Eq. (28) as an open problem.

V. STABILIZER SUBSPACE VERIFICATION

In this section, we describe two efficient protocols for ver-
ifying the stabilizer subspaces. As mentioned before, for a
n-qubit system, a subspace V can be determined by a set of k
stabilizer generators Gk. We can construct a set of stabilizer
operators Sk = {Py : y ∈ Zk

2} as follows:

Py :=
k∏

i=1

Syi

i . (30)

By construction, it holds that |Sk| = 2k.
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Protocol I works by uniformly and randomly choosing a
stabilizer operator Py from Sk and measure the target state
with Py . If the measurement outcome is +1, indicating that
the state lies in the positive eigenspace of Py , we accept; oth-
erwise we reject. Mathematically, the verification operator of
Protocol I reads

ΩI :=
1

2k − 1

∑
P∈Sk\{1}

P+, (31)

where P+ := (P + 1)/2 is the projector onto the positive
eigenspace of stabilizer operator P . We prove in Appendix D
that ΩI is indeed a valid verification strategy of V . What’s
more, the verification efficiency, i.e. the spectral gap, of ΩI

satisfies

ν(ΩI) =
2k−1

2k − 1
. (32)

Recalling Eq. (15), to achieve a confidence level 1− δ, it suf-
fices to take

N(ΩI) =
(2k − 1)

2k−1

1

ϵ
ln

1

δ
≈ 2

1

ϵ
ln

1

δ
(33)

number of state copies, which is independent with the sub-
space size k. Notably, this strategy necessitates at most twice
as many copies as the verification strategy without local con-
straints. The obtained result is consistent with the result in [9]
which considers the special case k = n. The disadvantage of
Protocol I is self-evident: the experimenters must be able to
implement a total number 2k − 1 Pauli measurement settings,
which increases exponentially in the subspace size k and is
challenging. This disadvantage motivates the second protocol
which requires far less number of measurement settings.

Protocol II works by randomly choosing a stabilizer gen-
erator S from Gk, each with probability 1/k. Then, we per-
form the corresponding measurement and only accept the state
with outcome +1. Mathematically, the verification operator of
Protocol II reads

ΩII :=
1

k

∑
S∈Gk

S+, (34)

where S+ := (S + 1)/2 is the projector onto the positive
eigenspace of stabilizer generator S. In Appendix D, we prove
that ΩII is a valid verification strategy of V . Subsequently, we
examine the verification efficiency of ΩII, which is

ν(ΩII) =
1

k
. (35)

Therefore, it suffices to take

N(ΩII) = k
1

ϵ
ln

1

δ
(36)

number of state copies to achieve a confidence level 1 − δ.
The obtained result is also consistent with the result in [9]
which consider the special case k = n. Protocol II requires

much less measurement settings than Protocol I but it con-
sumes k/2 times more state copies. This indicates a funda-
mental trade-off between the total number of required state
copies and the number of measurement settings, which de-
serves further investigation.

In the following, we present the first verification strategies
for the genuinely entangled stabilizer subspaces induced by
the prominent five-qubit code and the toric code.

Five-qubit code. Consider the GESS induced by the five-
qubit code [25]. This subspace is generated by the following
4 generators,

S1 = X1Z2Z3X4, S2 = X2Z3Z4X5,

S3 = X1X3Z4Z5, S4 = Z1X2X4Z5.
(37)

To verify such a subspace, Protocol I requires 24 − 1 = 15
measurement settings, which are determined by 15 stabilizer
operators (excluding 1) defined in Eq. (30). To achieve a con-
fidence level 1 − δ, we need 15/(8ϵ) ln 1/δ state copies. On
the other hand, Protocol II only 4 measurement settings, de-
termined by 4 generators defined in Eq. (37). However, Pro-
tocol II requires more state copies, specifically 4/ϵ ln 1/δ,to
achieve the same confidence level 1− δ.

Toric code. Consider the GESS induced by the toric
code [25]. A toric code can be presented by a L × L lat-
tice, where each edge represents a qubit. The corresponding
stabilizer generators can be divided into two groups: (i) those
associated with each lattice vertex v, with X acting on every
qubit associated with an edge attached to the given vertex, and
(ii) those associated with each plaquette p of the lattice, with
Z acting on each qubit represented by an edge surrounding
the plaquette. Mathematically, they can be written as

Sv =
∏
i∈v

Xi, Sp =
∏
i∈p

Zi. (38)

There are 2L2 − 2 stabilizer generators in total. Therefore,
Protocol I requires 22L

2−2 − 1 measurement settings and
≈ 2/ϵ ln 1/δ state copies to achieve a confidence level 1 − δ.
Protocol II only requires 2L2 − 2 measurement settings but
needs (2L2−2)/ϵ ln 1/δ state copies to achieve the same con-
fidence level 1− δ.

Though we only provide two examples of GESSs, it should
be noted that for any arbitrary GESSs, we can construct the
corresponding verification strategies in a similar manner.

VI. CONCLUSIONS

This work devotes to the efficient verification of GES. We
established a general verification framework and provided ef-
ficient verification strategies for two special types of GES.
Firstly, we proposed a “Pauli+2” strategy based on one-way
adaptive measurements to verify the GES spanned the 3-qubit
GHZ state and W state. This strategy requires ≈ 2.79/ϵ ln 1/δ
copies of states to achieve confidence 1 − δ. Then, we inves-
tigated GES determined by k stabilizer generators and con-
structed two non-adaptive strategies using only a few Pauli
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measurements. Protocol I requires 2k − 1 measurement set-
tings, constructed from the full stabilizer group, and consumes
≈ 2/ϵ ln 1/δ copies of quantum states. Notably, this com-
plexity is independent with the size of the system. Protocol
II requires only k measurement settings, constructed from the
stabilizer generators solely, and consumes k/ϵ ln 1/δ copies
of quantum states. Notably, we presented the first verification
protocols for the genuinely entangled stabilizer subspaces in-
duced by the prominent five-qubit code and the toric code.
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Appendix A: Proof of the subspace verification

1. Proof of Lemma 3

Proof of Lemma 3. The necessity is obvious. If σ ∈ span{|ψj⟩}, then we have

σ =
∑
jl

σjl|ψj⟩⟨ψl| ⇒
∑
j

⟨ψj |σ|ψj⟩ = 1. (A1)

Now we turn to show the sufficiency. For an arbitrary matrix σ, it can be written as

σ =
∑
i

λi|ϕi⟩⟨ϕi|,
∑
i

λi = 1, λi ≥ 0. (A2)

For each eigenstate |ϕi⟩, we have

|ϕi⟩ = sin θi|Ψi⟩+ cos θi|Ψ⊥
i ⟩, (A3)

where
∑

j |⟨ψj |Ψi⟩|2 = 1, and |Ψ⊥
i ⟩ is orthogonal to |Ψi⟩. Then, σ can also be written as

σ =
∑
i

λi
(
sin2 θi|Ψi⟩⟨Ψi|+ sin θi cos θi|Ψi⟩⟨Ψ⊥

i |+ sin θi cos θi|Ψ⊥
i ⟩⟨Ψi|+ cos2 θi|Ψ⊥

i ⟩⟨Ψ⊥
i |
)
. (A4)

With the trace constraint, we have∑
i

λi sin
2 θi = 1 ⇒ sin θi = 1, ∀ θi, ⇒ σ =

∑
i

λi|Ψi⟩⟨Ψi|, (A5)

which hints that σ ∈ span{|ψi⟩}.

2. Proof of Lemma 4

Proof of Lemma 4. With perfect completeness condition, there exist a set of orthogonal bases {|ψ⊥
l ⟩}l in the complementary

subspace of the target subspace, such that Ω can be written as

Ω = Π+
∑

ωl|ψ⊥
l ⟩⟨ψ⊥

l |, (A6)

otherwise ∀ σ ∈ span{|ψj⟩},Tr[Ωσ] = 1 does not hold. We define the projected effective verification operator as

Ω̂ := (1−Π)Ω(1−Π) =
∑

ωl|ψ⊥
l ⟩⟨ψ⊥

l |. (A7)

Therefore, we have

Tr[ΩΠ] = Tr[Π2] + Tr[Ω̂Π] = Tr[Π] = rank(Π). (A8)
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3. Proof of the Theorem 5

Proof of the Theorem 5. For a fixed set {|ψ⊥
l ⟩}, an arbitrary quantum state σ with Tr[Πσ] = r can always be written as

σ = rΨ+ (1− r)Ψ⊥ +
∑
jl

(
cjl|ψj⟩⟨ψ⊥

l |+ c∗jl|ψ⊥
l ⟩⟨ψj |

)
, (A9)

where Ψ and Ψ⊥ are the states in the span{|ψj⟩} and span{|ψ⊥
l ⟩}, respectively. Then, such a state will pass the test with

probability

Pr{"pass"|σ} = Tr[Ωσ] (A10)

= rTr[ΩΨ] + (1− r) Tr[Ω̂Ψ⊥] (A11)

≤ r + (1− r)λmax(Ω̂). (A12)

The above inequality becomes an equality if

Ψ⊥ = |ψ⊥
max⟩⟨ψ⊥

max|, (A13)

where |ψ⊥
max⟩ is the eigenstate of Ω̂ corresponding to the largest eigenvalue λmax(Ω̂). Thus, for a fixed Ω,

max
σ:Tr[Πσ]=r

Pr{"pass"|σ} = r + (1− r)λmax(Ω̂), (A14)

which is achieved by any density matrix of the form

σ = rΨ+ (1− r)|ψ⊥
max⟩⟨ψ⊥

max|+
∑
jl

(
cjl|ψj⟩⟨ψ⊥

l |+ c∗jl|ψ⊥
l ⟩⟨ψj |

)
. (A15)

Note that the pure state σ = |ϕ⟩⟨ϕ| for

|ϕ⟩ =
√
r|ψ′⟩+

√
1− r|ψ⊥

max⟩, (A16)

where |ψ′⟩ is the linear combination of vectors |ψj⟩, is of this form. Therefore, we can only consider pure states in the following
analysis.

Now, for a fixed ϵ̄ ≥ ϵ > 0, we define a state σ = |ϕϵ̄⟩⟨ϕϵ̄| with |ϕϵ̄⟩ =
√
1− ϵ̄|ϕ⟩ +

√
ϵ̄|ϕ⊥⟩, where |ϕ⟩ is the linear

combination of vectors {|ψj⟩}j and ⟨ϕ|ϕ⊥⟩ = 0. Then, we define that the worst-case passing probability as

p(Ω) := max
σ:Tr[Ωσ]≤1−ϵ

Pr{"pass"|σ} (A17)

= max
σ:Tr[Ωσ]≤1−ϵ

Tr[Ωσ] (A18)

= max
ϵ̄≥ϵ,|ϕ⊥⟩

1− ϵ̄+ ϵ̄⟨ϕ⊥|Ω̂|ϕ⊥⟩ (A19)

= 1− (1− λmax(Ω̂))ϵ. (A20)

Appendix B: Proof of two-qubit subspace verification

Before the detailed analysis, we introduce some necessary preliminaries. A general 2-qubit pure state |ψ⟩ can be uniquely
represented by the 2× 2 matrix ψ given by

|ψ⟩ = 1⊗ ψ|Φ⟩, (B1)

where |Φ⟩ = 1√
2
(|00⟩ + |11⟩). One measure of the entanglement possessed by |ψ⟩ is its concurrence, which is defined by

C(ψ) = |det(ψ)| ≤ 1. With this representation, we have the following properties.

1. If C(ψ) = 0, |ψ⟩ is a product state.
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2. With the condition ⟨α|β⟩ = 0, we have

⟨Φ|(1⊗ α)(1⊗ β)|Φ⟩ = 0 ⇒ Tr[α†β] = 0. (B2)

3. If the subspace spanned by |α⟩ and |β⟩ is a local subspace, we have [32, Lemma 1].

C(α) = C(β). (B3)

Then, we begin our analysis of two-qubit subspace verification.

1. When a two-qubit subspace is verifiable with local constraints?

Now consider a subspace V spanned by two orthogonal states, {|ψ0⟩, |ψ1⟩} and its complementary subspace is denoted as
V⊥. We can assume that |ψ1⟩ is a product state without loss of generality, as the maximal dimension of two-qubit CES is 1. We
have the following lemma for relationship between the number of the product states in the V and V⊥.

Lemma 7. The number of the different product states in the V is equal to its in the V⊥.

Proof. Firstly, if there are two product states in V , labeled as

|a1⟩ ⊗ |a0⟩, |b1⟩ ⊗ |b0⟩, (B4)

where |ai⟩, |bi⟩ are single-qubit states, then, there are also two product states in V⊥,

|ā1⟩ ⊗ |b̄0⟩, |b̄1⟩ ⊗ |ā0⟩, (B5)

where |āi⟩⟨āi|+ |ai⟩⟨ai| = 1 (like wise for |b̄i⟩), i = 0, 1.
Then, assume that |ψ1⟩ is the only one product state in V . If there are two different product states in V⊥, then, with the

previous analysis, there are two different product states in V , which conflicts with the assumption. Therefore, there are also only
one product state in V⊥.

With the following lemma, we can easily compute the number of product states in V .

Lemma 8. For a two-qubit subspace V spanned by two states |α⟩ and |β⟩ (not necessary orthogonal), where |β⟩ is an entangled
state, if αβ−1 has two different eigenvalues, then there are two different product states in this subspace.

Proof. The problem of finding all product states in V can be expressed as

det(α+ λβ) = 0 (B6)

det(αβ−1 + λ1) det(β) = 0 (B7)

det(αβ−1 + λ1) = 0. (B8)

If there are two different solution of λ, i.e., αβ−1 has two different eigenvalues, then we have two different projector states in
V .

Then, we try to show that whether V is verifiable depend on the number of product states in it. If there are two different
product states in V⊥, then we can span V⊥ with local states. It hints that we can verify this subspace with two test projectors:

Mi = 1− |τi⟩⟨τi|, i = 0, 1, (B9)

where |τi⟩ are the product states in V⊥. Therefore, V is verifiable and the corresponding verification operator is

Ω =
1

2

∑
i

Mi = 1− 1

2
(|τ0⟩⟨τ0|+ |τ1⟩⟨τ1|). (B10)

Specially, if these two states are orthogonal, i.e., ⟨ϕ0|ϕ1⟩ = 0, then the verification operator becomes

Ω = 1− (|τ0⟩⟨τ0|+ |τ1⟩⟨τ1|). (B11)

We call this kind of subspace a perfectly verifiable subspace. On the other hand, if there are only one product states in V⊥, then
we can not span V⊥ with local states. We call this kind of subspace an unverifiable subspace. It hints that we can only reject this
product in the test, i.e., the corresponding verification operator is

Ω = 1− |τ⟩⟨τ |, (B12)

where |τ⟩ is the only product state in V⊥.
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2. Spectral gap analysis

Here we analysis the complexity of the strategy proposed in the previous subsection.

• Firstly, it is obvious that for unverifiable subspace, the spectral gap of Ω defined in the Eq. (B12) is 1. It means that |ψ2⟩
always can fool this strategy, where C(ψ2) = C(ψ0) and ⟨ψi|ψ2⟩ = 0 for i = 0, 1.

• Secondly, it is also easy to find that for perfectly verifiable subspace, the spectral gap of Ω defined in Eq. (B11) is 0, i.e.,
no state can fool this strategy.

• Lastly, we have the following lemma for the spectral gap of Ω defined in the Eq. (B10).

Lemma 9. Suppose there are two different product states |a1a0⟩ and |b1b0⟩ (not orthogonal) in V , the spectral gap of Ω defined
in the Eq. (B10) is

ν(Ω) =
1

2
(1 + |⟨a1a0|b1b0⟩|2). (B13)

Proof. The product states in the V⊥ are |ā1b̄0⟩ and |b̄1ā0⟩. The verification operator is

Ω = 1− 1

2

(
|ā1b̄0⟩⟨ā1b̄0|+ |b̄1ā0⟩⟨b̄1ā0|

)
, (B14)

where |āi⟩⟨āi|+ |ai⟩⟨ai| = 1 (like wise for |b̄i⟩), i = 0, 1. Note that each state in V⊥ can be written as the linear combination of
|ā1b̄0⟩ and |b̄1ā0⟩. So we can define that |ϕ⟩ = x|ā1b̄0⟩+ y|b̄1ā0⟩ ∈ V⊥ without normalization, and have

⟨ϕ|Ω|ϕ⟩

=⟨ϕ|ϕ⟩ − 1

2

∣∣⟨ā1b̄0|ϕ⟩∣∣2 − 1

2

∣∣⟨b̄1ā0|ϕ⟩∣∣2 (B15)

=⟨ϕ|ϕ⟩ − 1

2

[
x2 + 2ℜ

(
x∗y⟨ā1b̄0|b̄1ā0⟩

)
+ y2|⟨ā1b̄0|b̄1ā0⟩|2

]
− 1

2

[
x2|⟨ā1b̄0|b̄1ā0⟩|2 + 2ℜ

(
xy∗⟨b̄1ā0|ā1b̄0⟩

)
+ y2

]
(B16)

=⟨ϕ|ϕ⟩ − 1

2
(x2 + y2)

(
1 + |⟨ā1b̄0|b̄1ā0⟩|2

)
− 2ℜ

(
x∗y⟨ā1b̄0|b̄1ā0⟩

)
(B17)

=
1

2
(x2 + y2)

(
1− |⟨ā1b̄0|b̄1ā0⟩|2

)
. (B18)

With normalization, we have

⟨ϕ|Ω|ϕ⟩
⟨ϕ|ϕ⟩

=
1

2

(
x2 + y2

) (
1− |⟨ā1b̄0|b̄1ā0⟩|2

)
x2 + y2 + 2ℜ

(
x∗y⟨ā1b̄0|b̄1ā0⟩

) (B19)

=
1

2

1− |⟨ā1b̄0|b̄1ā0⟩|2

1 + 2ℜ
(

x∗y
x2+y2 ⟨ā1b̄0|b̄1ā0⟩

) (B20)

=
1

2

1− |⟨ā1b̄0|b̄1ā0⟩|2

1 + 2ℜ
(

1
x
y+ y∗

x∗
⟨ā1b̄0|b̄1ā0⟩

) (B21)

≤ 1

2
(1− |⟨ā1b̄0|b̄1ā0⟩|2), (B22)

when x = 0 or y = 0, the equality is achieved. Therefore, the spectral gap of strategy Ω is

ν(Ω) =
1

2
(1 + |⟨ā1b̄0|b̄1ā0⟩|2) (B23)

=
1

2
(1 + |⟨a1a0|b1b0⟩|2). (B24)
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Appendix C: Proof of the special case

In this section, we show the detail analysis of our special case: the subspace spanned by the following two states,

|GHZ⟩ = (|000⟩+ |111⟩)/
√
2, (C1a)

|W⟩ = (|001⟩+ |010⟩+ |100⟩)/
√
3. (C1b)

Firstly, we compute all 2-qubit post-measurement subspaces. Due to the symmetry of GHZ state and W state, we obtain
the same post-measurement subspace with same measurements and outcomes, no matter which qubit is performed the first
measurement. Therefore, we we omit the subscript i without loss of generality in the following. And all post-measurement
states of different measurements and outcomes are illustrated in the Table I.

first measurement post-measurement states

Pauli outcome |GHZ⟩ |W⟩

Z
+ |00⟩ 1√

2
(|01⟩+ |10⟩)

− |11⟩ |00⟩

X
+ 1√

2
(|00⟩+ |11⟩) 1√

3
(|01⟩+ |10⟩+ |00⟩)

− 1√
2
(|00⟩ − |11⟩) 1√

3
(|01⟩+ |10⟩ − |00⟩)

Y
+ 1√

2
(|00⟩ − i|11⟩) 1√

3
(|01⟩+ |10⟩ − i|00⟩)

− 1√
2
(|00⟩+ i|11⟩) 1√

3
(|01⟩+ |10⟩+ i|00⟩)

TABLE I: Post-measurement states for the subspace spanned by {|GHZ⟩, |W⟩} defined in Eq. (C1).

Subsequently, we need to construct the verification strategies of post-measurement subspaces, which have been introduced in
Appendix B. In the following, we show the concrete analysis case by case and we label the post-measurement subspace with
measurement P ∈ {X,Y, Z} and outcome o ∈ {+,−} as Vo

P .
For the subspace V+

Z , there is only one product state |11⟩ in its complementary subspace. Thus, it is an unverifiable subspace
and the corresponding verification operator is

M+
Z = 1− |11⟩⟨11|. (C2)

For the subspace V−
Z , obviously, it is a perfectly verifiable subspace with

M−
Z = |00⟩⟨00|+ |11⟩⟨11|. (C3)

For the subspace V+
X , we can find two product states, |x+x+⟩ and |x̄+x̄+⟩, in its complementary subspace, where

|x+⟩ = cosα|0⟩+ sinα|1⟩, |x̄+⟩ = sinα|0⟩ − cosα|1⟩, α = arctan
−1 +

√
5

2
. (C4)

Additionally, we have ⟨x+x+|x̄+x̄+⟩ = 0. Thus, it is also a perfectly verifiable subspace with verification operator

M+
X = |x+x+⟩⟨x+x+|+ |x̄+x̄+⟩⟨x̄+x̄+|. (C5)

For the subspace V−
Z , we can find two product states, |x−x′−⟩ and |x′−x−⟩, in its complementary subspace, where

|x−⟩ =
1√
2
(|0⟩+ ei

π
3 |1⟩), |x′−⟩ =

1√
2
(|0⟩+ e−iπ

3 |1⟩). (C6)

As ⟨x−x′−|x′−x−⟩ ̸= 0, V −
Z is a verifiable subspace with

M−
Z = 1− 1

2

(
|x−x′−⟩⟨x−x′−|+ |x′−x−⟩⟨x′−x−|

)
(C7)

For the subspace V+
Y , we can find two product states, |y+y′+⟩ and |y′+y+⟩, in its complementary subspace, where

|y+⟩ = cosβ|0⟩+ e−iγ sinβ|1⟩, |y′+⟩ = sinβ|0⟩+ ei(γ+
π
2 ) cosβ|1⟩, (C8)

β = arctan

√√√
17 + 1

2
√
2

+

√
17

4
+

1

4
, γ = arctan tan2 β. (C9)
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As ⟨y+y′+|y′+y+⟩ ̸= 0, V +
Y is a verifiable subspace with

M+
Y = 1− 1

2
(|y+y′+⟩⟨y+y′+|+ |y′+y+⟩⟨y′+y+|). (C10)

For the subspace V−
Y , we can find two product states, |y−y′−⟩ and |y′−y−⟩, in its complementary subspace, where

|y−⟩ = cosβ|0⟩+ eiγ sinβ|1⟩, |y′−⟩ = sinβ|0⟩+ e−i(γ+π
2 ) cosβ|1⟩. (C11)

As ⟨y−y′−|y′−y−⟩ ̸= 0, V −
Y is a verifiable subspace with

M−
Y = 1− 1

2
(|y−y′−⟩⟨y−y′−|+ |y′−y−⟩⟨y′−y−|). (C12)

Appendix D: Proof of the stabilizer subspace verification

In this section, we prove the two verification strategies of stabilizer subspace. We prove the strategy with stabilizer operators
first, then provide the proof of strategy with stabilizer generators.

1. Proof of Protocol I

For the subspace V determined by Gk, we define a set of orthogonal bases in V as

{|ψ1⟩, · · · , |ψ2n−k⟩}. (D1)

The set of stabilizer operators is defined as Sk, and the projector onto V can be defined in the following two ways,

ΠV =
1

2k

∑
P∈Sk

P =
2n−k∑
j=1

|ψj⟩⟨ψj |. (D2)

We know that a feasible verification strategy Ω must be in the following form:

Ω =
2n−k∑
j=1

|ψj⟩⟨ψj |+
2n−2n−k∑

l=1

ωl|ψ⊥
l ⟩⟨ψ⊥

l | (D3)

where {|ψ⊥
1 ⟩, · · · , |ψ⊥

2n−2n−k⟩} is a set of orthogonal bases in complementary subspace of V . Additionally, the spectral gap of
Ω is

ν(Ω) = 1−max
l

ωl. (D4)

Now, we begin our proof. For each P ∈ Sk \ {1}, we have

P = P+ − P−, P+ + P− = 1, (D5)

where P+ (P−) is the projector onto the positive (negative) eigenspace of P . With the above decomposition, we have

2n−k∑
j=1

|ψj⟩⟨ψj | =
1

2k

∑
P∈Sk\{1}

(
P+ − P−)+ 1

2k
1 (D6)

=
1

2k

∑
P∈Sk\{1}

(
2P+ − 1

)
+

1

2k
1 (D7)

=
1

2k−1

∑
P∈Sk\{1}

P+ −
(
1− 1

2k−1

)
1. (D8)
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Then, we have

∑
P∈Sk\{1}

P+ = 2k−1
2n−k∑
j=1

|ψj⟩⟨ψj |+
(
2k−1 − 1

)
1 (D9)

= 2k−1
2n−k∑
j=1

|ψj⟩⟨ψj |+
(
2k−1 − 1

)∑
j

|ψj⟩⟨ψj |+
∑
l

|ψ⊥
l ⟩⟨ψ⊥

l |

 (D10)

= (2k − 1)
2n−k∑
j=1

|ψj⟩⟨ψj |+
(
2k−1 − 1

)∑
l

|ψ⊥
l ⟩⟨ψ⊥

l |. (D11)

Finally, we derive the desired equation

1

2k − 1

∑
P∈Sk\{1}

P+ =
2n−k∑
j=1

|ψj⟩⟨ψj |+
2k−1 − 1

2k − 1

∑
l

|ψ⊥
l ⟩⟨ψ⊥

l |, (D12)

which hints the ΩI defined in Eq. (31) is feasible and

ν(ΩI) = 1− 2k−1 − 1

2k − 1
=

2k−1

2k − 1
. (D13)

2. Proof of Protocol II

With the definition of ΩII in Eq.(34), we have

Tr[ΩIIΠV ] =
1

2k · k
∑

S∈Gk,P∈Sk

Tr[PS+] (D14)

=
1

2k · k

1

2

∑
S∈Gk,P∈Sk

Tr[P ] + Tr[PS]

 (D15)

=
1

2k+1 · k

[
k · 2n +

∑
S∈Gk

2n

]
(D16)

=
2n+1 · k
2k+1 · k

= 2n−k = rank(ΠV ). (D17)

Thus, ΩII satisfies perfect completeness condition defined in Lemma 4. Subsequently, we analyze the spectral gap of ΩII. We
define a set of complete stabilizer generators

Gn = {S1, · · · , Sk︸ ︷︷ ︸
Gk

, Sk+1, · · · , Sn}. (D18)

Then, we can construct a set of orthogonal bases |Cw⟩ with n-bit strings {w}, where

|Cw⟩⟨Cw| =
n∏

j=1

1+ (−1)wjSj

2
, w ∈ Zn

2 . (D19)

Obviously, |Cw⟩ is also a stabilizer state for all w [16]. And there is a subset W ⊆ Zn
2 , for all w ∈ W , |Cw⟩ ∈ V . In other

word, for a fixed w ∈W , the first k bits of it are all zeros. Then, we can define arbitrary state in V⊥ as

|Ψ⊥⟩ =
∑

w∈W⊥

αw|Cw⟩,
∑
w

|αw|2 = 1, (D20)
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and we have

⟨Ψ⊥|ΩII|Ψ⊥⟩ = 1

k

k∑
i=1

⟨Ψ⊥|S+
i |Ψ⊥⟩ (D21)

=
1

k

k∑
i=1

∑
w,w′∈W⊥

α∗
wαw′⟨Cw|S+

i |Cw′⟩ (D22)

=
1

k

k∑
i=1

∑
w,w′∈W⊥

α∗
wαw′δww′ϵi,w′ (D23)

=
1

k

k∑
i=1

∑
w∈W⊥

|αw|2ϵi,w, (D24)

where W⊥ = Zn
2 \W , S+

i |Cw⟩ = ϵi,w|Cw⟩, and

ϵi,w =

{
1 i-th bit of w is 0
0 else

. (D25)

Therefore, we have

⟨Ψ⊥|ΩII|Ψ⊥⟩ = 1

k

∑
w∈W⊥

|αw|2
(

k∑
i=1

ϵi,w

)
(D26)

≤ k − 1

k

∑
w∈W⊥

|αw|2 =
k − 1

k
, (D27)

with the fact that for the first k bits of w ∈ W⊥, there are at most k − 1 bits equal to 0. Additionally, it should be note that the
above equality is achievable. Thus, we have

ν(ΩII) = 1− k − 1

k
=

1

k
. (D28)
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1 Overview of the results
We focus on local quantum processes of a multipartite

quantum process and consider two questions:

1. How are the outputs of certain subsystems affected
when inputs of other subsystems are altered? and

2. What resources are needed to simulate the process’s
impact on each subsystem?

A visual depiction of the these problems is given in Figure
1. We completely answer these questions and make the
following contributions.

Main result 1: We propose a unified theory of re-
duced quantum processes with mathematically rigorous
definitions and equivalent characterizations in different
representations. According to this theory, to obtain in-
formation about local processes, all other subsystems in-
teracting with the subsystem of interest must be initial-
ized in a maximally mixed state.

Main result 2: We introduce a framework called
Quantum Process Overlapping Tomography (QPOT),
comprising three different methods, to efficiently char-
acterize all k-reduced quantum processes of an n-qubit
quantum process. This framework generalizes Cotler
and Wilczek’s results [1] from quantum states (static
resources) to quantum processes (dynamics resources).
Specifically, Method 1 requires the fewest measurement
settings, 3 + (9k − 3) · log(2n). While it requires n
ancilla qubits and the preparation of maximally entan-
gled states, the other two methods do not. Method 2
requires approximately k · nk−1 · 12k measurement set-
tings. For general quantum processes, although the gen-
eralization of Method 2 still works, it remains resource-
intensive. Method 3 requires only 2l · 12k · log(n) mea-
surement settings, where l =

∑
i li, assuming the tar-

get quantum process has i local interactions, each with
li qubits (

∑
i li ≤ n). All of these methods represent

a significant improvement over direct quantum process
tomography, which requires approximately

(
n
k

)
eO(k) ∼

∗nju.wangkun@gmail.com

Figure 1: (a) Given a quantum process NABC acting
on this system, how to determine its local processes
NAB ,NBC and NAC? (b) For a global input composed
of local inputs, how would a local output be influenced
by other local inputs? (c) What resources are required
to simulate local processes?

nk ·eO(k) settings if k is small compared to n. Our meth-
ods are experimentally confirmed in IBM hardware.

Our findings provide a powerful toolbox to analyze
the reduced quantum processes and characterize them
efficiently. We believe the results are beneficial to the
broader audience of AQIS, especially to those who are
working in characterizing, verifying, and validating quan-
tum devices of large scale.

A full technical version can be found in the attached
technical PDF.

2 Reduced quantum processes
Given a global process, determining its local processes

can be a challenging task. Let [n] := {1, · · · , n} and
s ∈ [n] be a set of integers. Let A[n] ≡ A1 · · ·An be
a quantum register of n qubits and As = ⊗s∈sAs be a

556



subset qubits of the quantum register A[n]. We can define
a reduced quantum state ρAs of the global state ρA[n]

as

ρAs = TrAs

[
ρA[n]

]
, (1)

where s := [n]\s. It inspires us to explore the local pro-
cesses of each subsystem by tracing out the other subsys-
tems from the global process. Thus, all local quantum
processes NAs→Bs (ρAs) of a global process NA[n]→B[n]

can be directly obtained by tracing out the other subsys-
tems of a localizable quantum process:

NAs→Bs (ρAs) = TrBs

[
NA[n]→B[n]

(
ρA[n]

)]
. (2)

The formula in Eq. (2) remains applicable for extracting
information about local processes from an input-output
flow perspective. However, the input state of Eq. (2) is
a global state. Naturally, we have a problem that how
to define a local process with local states. In the techni-
cal version, we define the k-reduced quantum process as
follows.

Definition 1 (k-reduced quantum process) Let
NA[n]→B[n]

(·) := U(·)U† be an n-qubit quantum unitary
channel given by the unitary UA[n]

. Let s ⊆ [n] be a
subset of qubit indices of size k. The k-reduced quantum
process NAs→Bs of N , acting on the qubit indices s, is
defined as follows:

NAs→Bs(ρAs) := TrBs

[
U

(
ρAs ⊗

1As

2n−k

)
U†

]
, (3)

where ρAs is an arbitrary quantum state in As and s :=
[n]\s.

There are different but equivalent representations of
quantum processes, e.g., Choi representation and Pauli
transfer matrix representation. In the technical version,
we characterize the reduced quantum processes in these
different representations and demonstrate their equiva-
lence.

3 Quantum process overlapping tomog-
raphy: Theory

There are
(
n
k

)
k-reduced quantum processes for an

n-qubit quantum process. To efficiently obtain all k-
reduced quantum processes, we introduce three methods
in the following subsections, accompanied by a detailed
protocol and complexity analysis.

3.1 Method 1
Here, we introduce our initial protocol, leveraging the

overlapping tomography technique mentioned. Recall
that a quantum process can be expressed by a Choi state,
and the Choi state of a k-qubit quantum process is a 2k-
qubit quantum state. Method 1 is a direct application of
state overlapping tomography based on [1]. Following the
calculations in [1], Method 1 requires 3+(9k−3)·log2 (2n)
measurement settings.

The primary drawback of this method is the construc-
tion of the Choi state, which needs n ancilla qubits to

prepare a 2n-qubit maximally entangled state, necessi-
tating a quantum device of double the size. This leads
to increased resource consumption and is impractical for
large system. The other two method is designed without
the ancilla qubits.

3.2 Method 2
Here, we consider a localizable quantum process first,

where any reduced quantum process is a local quantum
process. This implies that we can characterize all re-
duced quantum processes independently. The goal of
Method 2 is to maximize the parallelism. Initially, we
partition the n qubits into n/k groups, each contain-
ing k qubits. For each group, standard quantum pro-
cess tomography is performed, necessitating 12k mea-
surement settings. All n/k groups employ the same mea-
surement settings simultaneously. Therefore, we can ob-
tain all k-reduced quantum processes with approximately(
n
k

)
· 12k/(n/k) ∼ k · nk−1 · 12k measurement settings.

However, with Definition 1, we know that if there are
interactions between subsystems, the reduced quantum
processes cannot be directly obtained. Suppose there
are m qubits that interact with this k-reduced quan-
tum process. We have to simulate a maximally mixed
state of m qubits, 2m orthonormal bases needs to be cre-
ated. Therefore, the complexity for characterizing all k-
reduced quantum processes is

∑nk

i=1 ·2mi · 12k, where mi

is the number of qubits that interact with the i-th k-
reduced quantum process. Although the generalization
of Method 2 still works for general quantum processes, it
remains resource-intensive.

3.3 Method 3
Now, we tackle the challenge of characterizing all k-

reduced quantum processes when a global process com-
prises many interactions among local processes. Sup-
pose an n-qubit quantum process has i local interactions,
each contains li qubits. To ensure that any arbitrary
k-reduced quantum process contains a mixture of maxi-
mally mixed states, we prepare all local subsystems in-
volved in interactions in maximally mixed states and then
combine them. The procedure is as follows:

Step 1: We generate overlapping bases using the
log(n) perfect hash functions. Therefore, there are a total
of 12k ·log(n) bases, which cover 12 measurement settings
of any single-qubit process tomography. This procedure
is sufficient to characterize all k-reduced quantum pro-
cesses of localizable quantum processes, as they are all
composed of single-qubit processes.

Step 2: In this step, we iterate over each qubit in-
volved in interactions with other qubits and append a
complementary basis based on its current basis to all
overlapping bases generated in Step 1. For example,
during the iteration for qubit 0, we will add {|1⟩, X}
if the current preparation and measurement basis of
qubit 0 is {|0⟩, X}. Each iteration doubles the length
of the overlapping basis, so after all iterations, the size
of the overlapping basis will be multiplied by 2

∑
i li .

In contrast to Method 2, which involves summing over
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Figure 2: Experiment results of 4-qubit GHZ state preparation process on the IBM-brisbane device. (qi, qj) denotes
the 2-reduced quantum process acting on i-th and j-th qubit. (a) Two types of ideal 2-reduced quantum processes.
Type 1 contains (q0, q1), (q0, q2) and (q0, q3). On the other hand, type 2 contains (q1, q2), (q1, q3) and (q2, q3). (b)
The 2-reduced quantum processes (q0, q3) and (q2, q3) obtained by Method 2. (c) The 2-reduced quantum processes
(q0, q3) and (q2, q3) obtained by Method 3. (d) The reduced process fidelity of Method 2 and Method 3.

all k-reduced quantum processes and includes numer-
ous repeated sums, in Method 3,

∑
i li represents the

sum over all local interactions (noting that
∑

i li ≤ n).
The total number of measurement settings required is
2
∑

i li · 12k · log(n).

4 Quantum process overlapping tomog-
raphy: Experiment

In this section, we provide an illustrative example of
the process for preparing a 4-qubit GHZ state. We ex-
amine 2-reduced quantum processes derived from this
quantum process as an illustration, utilizing the nota-
tion (qi, qj) to denote the 2-reduced process acting on
the i-th and j-th qubits. There exist two types of 2-
reduced quantum processes, denoted as type 1 and type
2, respectively. Their PTMs are depicted in Figure 2 (a).
Type 1 quantum process comprises 2-reduced quantum
processes: (q0, q1), (q0, q2), (q0, q3), where the qubits are
directly interacted with CNOT gates. Type 2 quantum
process encompasses (q1, q2), (q1, q3), (q2, q3), where the
qubits are indirectly interacted.

Then, we implement Method 2 and Method 3 on the
IBM-brisbane device and certify this device. We present
two PTMs for each method, as depicted in Figure 2 (b)
and (d), respectively. To quantitatively assess the simi-
larity, we calculate the process fidelity for each 2-reduced
quantum process obtained by different methods. For dif-
ferent 2-reduced processes, Method 3 exhibits higher fi-
delities, possibly due to differences in implementation

times. Additionally, we observe that the reduced pro-
cesses with the highest fidelity for each type are the same:
(q0, q3) and (q2, q3). This suggests that q3 may be more
stable than the other qubits.
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Quantum process tomography is the gold standard for fully characterizing quan-
tum processes, yet it is resource-intensive. In this work, we shift our focus from global
to local quantum processes, which are beneficial for practical scenarios such as dis-
tributed quantum computing and quantum networks. We term these local processes as
reduced quantum processes and present a comprehensive theory to describe them. To
efficiently characterize all k-reduced quantum processes of an n-qubit quantum process,
we introduce a framework called Quantum Process Overlapping Tomography (QPOT),
which comprises three methods. Method 1 requires the fewest measurement settings,
3+(9k −3)·log(2n). While it requires n ancilla qubits and the preparation of maximally
entangled states, the other two methods do not. We consider the localizable process
first and propose Method 2, which requires approximately k · nk−1 · 12k measurement
settings. For general quantum processes, although the generalization of Method 2 still
works, it remains resource-intensive. Therefore, we propose Method 3, which is more
efficient than Method 2. Suppose the target quantum process has i local interactions,
each with li qubits (

∑
i li ≤ n). Method 3 requires only 2l · 12k · log(n) measurement

settings, where l =
∑

i li. All of these methods represent a significant improvement over
direct quantum process tomography, which requires approximately

(
n
k

)
eO(k) ∼ nk ·eO(k)

settings if k is small compared to n. The efficacy of our methods is confirmed through
experiments conducted on IBM hardware, aligning well with our theoretical predictions.
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1 Introduction

Over the last decade, significant progress has been made in the development of quantum devices.
These advancements include systems with entangled noisy qubits at an intermediate scale across
various physical platforms, such as photons, trapped ions, and superconductors [1–4], with further
advancements on the horizon. In the coming years, it is expected that quantum devices will
scale up to hundreds or thousands of qubits, unlocking a broad spectrum of quantum computing
applications with profound scientific and technological implications. To enhance the performance
of current quantum devices, it is essential to employ methods capable of characterizing complex
noisy processes. This capability is crucial for advancing error mitigation techniques in near-term
applications [5–8]. Quantum Process Tomography (QPT) serves as a standard method for the
diagnostic and comprehensive characterization of quantum processes, and it has been extensively
studied and applied in various experimental settings [9–15]. While QPT demonstrates considerable
efficacy, it is associated with substantial resource consumption. The requirement for a full quantum
process tomography involves an informationally complete set of measurement settings, leading to a
number of measurements that grows exponentially with the system size. Specifically, it necessitates
eO(n) measurement settings to characterize a process in an n-qubit quantum system [16]. As a
result, experimentally implementing quantum process tomography remains impractical even for
systems with dozens of qubits [17].

However, in many practical scenarios, the focus may not necessarily be on exploring the entirety
of the quantum process but rather on specific parts of interest. For example, in applications like
distributed quantum computing [18, 19] and quantum networks [20], each party possesses a local
quantum processor connected to others via quantum links. To enhance the quality of global quan-
tum operations, it is necessary to diagnose and mitigate errors on these local processors. Moreover,
spatially correlated errors, such as depolarizing errors in nearest-neighbor qubits, are inherent in
near-term quantum hardware [21–27]. Understanding and analyzing such error processes can help
reduce logical error rates.

Local quantum processes are commonly referred to as tensor-product processes. This means
that a process is considered local with respect to, for example, a bipartite system, if the entire
system process can be expressed in tensor-product form N = N1 ⊗ N2, where N1 and N2 act on
density operators in the Hilbert spaces H1 and H2, respectively. In other words, the total operation
can be decomposed into operations that act only locally on each subsystem. To characterize
such local processes, we can independently perform quantum process tomography at separate
locations to understand their characteristics. Taking this one step further, what if there are
correlations between subsystems? Can we investigate these local processes through individual
process tomography alone, or do we need additional operations? How can we rigorously describe
the local processes of such a system?

2
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To address these issues, we extend the concept of local quantum processes to more general
cases. We first introduce a unified theory of reduced quantum processes to describe all general
local processes. Without loss of generality, we explore the interaction between subsystems, ranging
from no interaction to full interaction, and develop a comprehensive theory of reduced quan-
tum processes. According to this theory, to obtain information about local processes, all other
subsystems interacting with the subsystem of interest must be initialized in a maximally mixed
state. Consider a k-qubit local quantum process (with no correlation) within an n-qubit system,
which represents a specific case of reduced quantum processes. Characterizing each local quan-
tum process requires eO(k) measurement settings. Hence, naively, we would require approximately(

n
k

)
eO(k) ∼ nk · eO(k) settings if k is small compared to n. For systems with interactions, the com-

plexity grows exponentially with the scale of interactions. For instance, in a 4-qubit system with
two local interactions—between qubits 0 and 1, and qubits 2 and 3—to characterize a 2-reduced
quantum process involving qubits 1 and 2, qubits 0 and 3 must be initialized in a maximally mixed
state. To simulate the behavior of maximally mixed state, one needs to prepare qubit 0 and 3 in
all 22 = 4 two-qubit computational bases to construct the local process of qubits 1 and 2. In this
case, the number of measurement settings amounts to 4 · eO(2). Consequently, the complexity of
characterizing all 2-reduced quantum processes scales approximately as ∼ 4 · n2 · eO(2). Generally,
if the average number of qubits that need to be initialized in a maximally mixed state for charac-
terizing a k-reduced quantum process is l, the overall complexity becomes ∼ 2l · nk · eO(k). As n
grows, directly conducting quantum process tomography for all these reduced quantum processes
becomes impractical.

In this work, we introduce an generalize framework, Quantum Process Overlapping Tomography
(QPOT), designed for simultaneously characterizing all reduced quantum processes of a system. It
leverages an overlapped basis generation technique, drawing inspiration from and generalizing the
results of quantum overlapping tomography of quantum states originally developed by Cotler and
Wilczek [28], which has been further expanded and refined in subsequent works [29–33]. We propose
3 methods to characterize all k-reduced quantum processes. Method 1 is the most efficient one
and only requires 3 + (9k − 3) · log(2n) measurement settings. However, it requires an additional n
ancilla qubits and the preparation of 2n-qubit maximally entangled states, which are impractical as
n grows. The other two methods are designed without these requirements. Similarly, we consider
local quantum processes first and Method 2 requires approximately k · nk−1 · 12k measurement
settings. For general quantum processes, the generalization of Method 2 requires approximately∑nk

i=1 2mi · 12k measurement settings, where mi is the number of qubits that interact with the i-th
reduced quantum process. Although Method 2 still works, it remains resource-intensive. Therefore,
we propose Method 3, which is more efficient than Method 2. Suppose the target quantum process
has i local interactions, each with li qubits (

∑
i li ≤ n). Method 3 requires only 2l · 12k · log(n)

measurement settings, where l =
∑

i li.

The rest of the paper is organized as follows. Section 2 presents preliminary concepts required by
this paper. Section 3 provides a rigorous mathematical description of reduced quantum processes.
Section 4 introduces the quantum process overlapping tomography framework to characterize the
reduced quantum processes. Section 4 experimentally validates the quantum process overlapping
tomography framework in IBM quantum devices.

2 Preliminaries

We review some definitions and notations used in this paper to elucidate our work.
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2.1 Quantum processes

Recall that a general quantum process acting on a finite d-dimensional Hilbert space is a completely
positive trace-preserving (CPTP) linear map [34,35]. This description captures the evolution of a
quantum system under a physical process, where the input ρA and output ρB are density operators.
We denote such a process as NA→B . The Trace-Preserving (TP) condition ensures that, after
undergoing certain evolution, the state remains identifiable with unit probability, a reasonable
assumption in physical reality. The Completely Positive (CP) requirement arises in situations
where system A is considered as part of a joint system AR by tracing out any reference system
R. It should be noted that after some process on system A, the positivity of not only the density
operator ρA, but also ρAR acting on the joint system, should be preserved. There are various
equivalent representations of CPTP maps. In this work, we predominantly employ the following
four representations to describe an n-qubit quantum process N : Stinespring representation, Kraus
representation, Choi representation, and Pauli transfer matrix representation [36].

The most intuitive understanding of a linear map satisfying CPTP conditions is that it allows
the system of interest to undergo an evolution alongside an external environment, where the entire
system experiences a unitary evolution. This concept is known as the Stinespring representation.
One can describe the process as follows:

NA→B(·) = TrR

[
U ((·) ⊗ ρR) U†]

, (1)

where U is an unitary operator acting on the whole quantum system AR which comprises the
principal system of interest and the environment (reference system), TrR denotes the partial trace
over the environment, and ρR is the initial state of the environment. The Stinespring representation
inherently satisfies the CPTP conditions: The entire system is characterized by a density operator
and the partial trace ensures the preservation of its positivity.

The Stinespring representation can also be formulated in an operator-sum form, commonly
known as the Kraus representation, expressed as:

NA→B(·) =
∑

i

Ki(·)K†
i , (2)

where {Ki}i are linear operators acting on the Hilbert space HA and the completely positive
condition requires

∑
i K†

i Ki = 1, where 1 is the identity matrix. A correspondence between the
Kraus and Stinespring representations can be established by identifying the operator Ki as the
linear operator ⟨ei|U |ρR⟩ on HA, where {|ei⟩}i forms an orthonormal basis for the environment’s
Hilbert space. When the CPTP map is represented by a unitary operator U , the process simplifies
to a unitary transformation, given by NA→B(·) = U(·)U†.

Another representation linking quantum processes to quantum states is derived from the Choi-
Jamiołkowski (CJ) isomorphism, which enables the representation of CPTP maps as density op-
erators. applying it to half of a maximally entangled 2n-qubit state, defined as:

JA′B = (idA′ ⊗ NA→B)(ΓA′A), (3)

where idA′ is the identity map acting on the ancillary system A′, |Γ⟩A′A :=
∑d−1

i=0 |i⟩A′ ⊗ |i⟩A/
√

d
is the 2n-qubit maximally entangled state on the joint system A′A, d = 2n, and {|i⟩A}i is an
orthonormal basis of HA. The CP condition renders the Choi state a positive semidefinite operator,
and the TP condition requires that TrB JA′B = 1A′/d.

The last representation worth noting is the Pauli Transfer Matrix (PTM) representation, orig-
inating from the technique of experimentally determining a quantum process, defined as:

(RN )ij := 1
d

Tr [PiNA→B(Pj)] , (4)
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where we denote {Pi}i as the set of Pauli operators acting on an n-qubit quantum system, with
Pi ∈ {I, X, Y, Z}⊗n and i = 1, ..., d2. By definition, RN is a d2]×d2 matrix. A direct transformation
between the Choi operator and the PTM can be found as follows:

(RN )ij = Tr
[
JAB(P T

j ⊗ Pi)
]

, (5)

JAB = 1
d2

∑
ij

(RN )ij

(
P T

j ⊗ Pi

)
, (6)

where T denote the matrix transposition with respect to the orthonormal basis defining |Γ⟩A′A.

2.2 Quantum process tomography

In this section, we provide a brief overview of the standard quantum process tomography (QPT),
which primarily involves preparing informationally complete inputs and subsequently measuring
the output states using quantum state tomography [36]. The objective of QPT is to reconstruct
the entire PTM of a target quantum process.

To measure the PTM of an n-qubit quantum process N , one first needs to prepare d2 linearly-
independent states that can span the operator space of all density matrices. Subsequently, for
each state, quantum state tomography is performed using d2 measurement bases, resulting in a
total of d4 measurement settings. We denote the preparation states as {ρi}i and the measurement
operators as {Ej}j . Experimentally, one can select {ρi}i = {|0⟩, |1⟩, |+⟩, |r⟩}⊗n, where |+⟩ and |r⟩
correspond to eigenstates of the Pauli X and Y operators with eigenvalue +1, respectively. The
measurement operators {Ej}i can be chosen as {X, Y, Z}⊗n. Therefore, 4n×3n = 12n measurement
settings can be used to reconstruct the PTM of a quantum process. Generally, one performs a
sequence of measurements and obtains outcome probabilities according to the Born’s rule:

pij := Tr [EjN (ρi)] . (7)

We can rewrite Eq. (7) in superoperator formalism by defining a vector |ρ⟩⟩ whose elements are
⟨⟨i|ρ⟩⟩ := 1

d Tr [Piρ] and ⟨⟨E|j⟩⟩ = Tr [EPj ]. In this way, Pauli operator Pi can be represented as |i⟩⟩
and we can rewrite pij as

pij = ⟨⟨Ej |RN |ρi⟩⟩ =
∑
kl

⟨⟨Ej |k⟩⟩⟨⟨k|RN |l⟩⟩⟨⟨l|ρi⟩⟩, (8)

with the fact that
∑

k |k⟩⟩⟨⟨k| =
∑

l |l⟩⟩⟨⟨l| = 1. Because the vectors ⟨⟨Ej | and |ρi⟩⟩ are chosen by the
experimenter, the matrices ⟨⟨Ej |k⟩⟩ and ⟨⟨l|ρi⟩⟩ are known in advance. Vectorizing the RN matrix
as rN and {|Ej⟩⟩⟨⟨ρi|}ij as S, Eq. (8) can be compactly expressed as

p = ST rN . (9)

The PTM can be obtained by linear inversion estimation as

rN =
(
ST

)−1
p. (10)

In cases where S is not full-rank, least-squares estimation can be used to obtain the PTM by

rN =
(
SST

)−1
Sp. (11)

2.3 Overlapping tomography of quantum states

Quantum overlapping tomography (QOT) is a technique designed to efficiently obtain all k-body
reduced density matrices (k-RDMs) of an n-partite quantum state, originally introduced by Cotler
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and Wilczek [28]. Since then, extended work building upon this approach has emerged, finding
applications in fields like quantum chemistry and many-body physics [29–33]. Here, we offer a
concise overview of this method.

QOT can characterizes all k-RDMs of an n-qubit state with approximately eO(n) log(n) single-
qubit measurement settings. The key insight is that measuring a particular subsystem can provide
significant information about all other subsystems that overlap with it. This insight suggests the
potential for efficient information extraction through parallel measurements, achieved by design-
ing informationally complete measurement bases and suitable data post-processing. The pivotal
mathematical tool for generating these measurement bases is the (n, k) families of perfect hash
functions [32, 33, 37–50], extensively studied in theoretical computer science. In the context of
overlapping tomography, these functions partition n qubits into k groups, with qubits in the same
group undergoing the same measurement. Subsequently, measurement settings are assigned in a
structured manner to ensure coverage of the complete tomographic basis for any k-RDM.

The main contribution of this work is that, we generalize Cotler and Wilczek’s results [28] from
quantum states to quantum processes and leverage the technique of QOT to conduct quantum
process tomography effectively for all reduced quantum processes.

3 Reduced quantum processes

Given a global quantum process, determining its local processes on individual qubits can be a
challenging task. In the context of distributed quantum computing, a global quantum operation is
typically executed through the combination of local operations performed by spatially separated
quantum processors. In such cases, the local processes might seem known, as they originate from
the operation of local processors. However, it is important to remember that these local processors
may be entangled due to some interactions. Such interactions imply that changes in one qubit can
influence the outputs of others, complicating the characterization of local processes. We address
this challenge from the perspective of a multipartite system. When considering a global quantum
operation on such a system, understanding its local processes involves two key questions:

1. How are the outputs of certain subsystems affected when inputs of other subsystems are
altered? and

2. What resources are needed to simulate the process’s impact on each subsystem?

A visual depiction of the local processes problem is given in Figure 1.

We begin with a simple case: localizable quantum processes, which correspond to those that can
be expressed in a tensor-product form. Consider a multipartite system A = A1 · · · An with an input
state ρA1···An = ρA1 ⊗ · · · ⊗ ρAn , where ρA1 , · · · , ρAn represent the inputs for each subsystem. We
denote the quantum process acting on this multipartite system as NA1···An→B1···Bn

(ρA1···An
). This

work only considers qubit systems for simplicity, where A1 ∼= · · · ∼= An
∼= B1 ∼= · · · ∼= Bn

∼= C2.
However, we note that the theory can easily be generalized to qudit systems. A localizable quantum
process can be written as:

NA1···An→B1···Bn
(ρA1···An

) = NA1→B1(ρA1) ⊗ · · · ⊗ NAn→Bn
(ρAn

) , (12)

where NA1→B1 (ρA1) , · · · , NAn→Bn
(ρAn

) are local quantum processes acting on subsystems. It
is clear that changes in one subsystem do not influence the others, and local resources suffice to
construct each local quantum process. So, why focus on a multipartite system? The reason is that
we can always express the input state of the entire system as the tensor product of the input states
of each subsystem, which can be equivalently represented as ρAi

= TrA1···Ai−1Ai+1···An
[ρA1···An

].
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Figure 1: (a) Given a global process NABC acting on a multipartite system ABC, how can one determine
its local processes NAB , NBC and NAC? (b) For a global input composed of local inputs, how would a local
output (e.g., TrC [NABC (ρABC)]) be influenced by other local inputs? (c) To simulate local processes (e.g.,
NAB (ρAB)), what resources are required?

This also applies to the output state. Moreover, the input and output states of a party can be
detected locally without assistance from other parties. Viewing this from an input-output flow
perspective, it inspires us to explore the local processes of each subsystem by tracing out the
other subsystems from the global process. Thus, all local quantum processes NAi→Bi

(ρAi
) can be

directly obtained by tracing out the other subsystems of a localizable quantum process:

NAi→Bi
(ρAi

) := TrB1···Bi−1Bi+1···Bn
[NA1···An→B1···Bn

(ρA1···An
)] . (13)

We can extend this approach to more general quantum processes, not limited to those expressible
in the form of Eq. (12). The formula in Eq. (13) remains applicable for extracting information
about local processes from an input-output flow perspective. We will demonstrate the equivalence
between different representations of NA1···An→B1···Bn

(ρA1···An
) in the subsequent sections. Since

the form in Eq. (13) resembles that of a reduced quantum state when we replace the entire process
with a quantum state, we term the local processes as reduced quantum process. In the following,
we shall provide more formal definitions of a reduced quantum process.

3.1 Definition of reduced quantum process

Let [n] := {1, · · · , n} and s ∈ [n] be a set of integers. Let A[n] ≡ A1 · · · An be a quantum register
of n qubits and As = ⊗s∈sAs be a subset qubits of the quantum register A[n]. The concept of
reduced quantum process is mathematically defined as follows.

Definition 1 (k-reduced quantum process). Let NA[n]→B[n](·) := U(·)U† be an n-qubit quantum
unitary channel given by the unitary UA[n] . Let s ⊆ [n] be a subset of qubit indices of size k. The
k-reduced quantum process NAs→Bs of N , acting on the qubit indices s, is defined as follows:

NAs→Bs(ρAs) := TrBs

[
U

(
ρAs ⊗

1As

2n−k

)
U†

]
, (14)
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where ρAs is an arbitrary quantum state in As and s := [n]\s.

From the above definition, it is obvious that for a global process NA[n]→B[n] , the information
of a reduced process NAs→Bs can be extracted from the global process by initializing all other
subsystems in a maximally mixed state.

Since quantum process has different yet equivalent representations, reduced quantum process
should also has different representations. In the following subsections, we give different represen-
tations of the reduced quantum process and prove their equivalence.

3.2 Choi representation of reduced quantum processes

We present the first mathematical description of a reduced quantum process using the Choi rep-
resentation, as the Choi operator of a quantum process is unique. Consequently, there is only one
form of such a reduced quantum process. We define a k-partite reduced quantum process as a
k-reduced quantum process. In the remainder of this paper, we will adopt this notation.

Definition 2 (k-reduced Choi state). Let NA[n]→B[n] be an n-qubit quantum channel whose Choi
state JA′

[n]B[n] is defined in Eq. (3). Let s ⊆ [n] be a subset of qubit indices of size k. The k-reduced
Choi state of J , induced by the qubit indices s, is defined as follows:

JA′
sBs := TrA′

s
Bs

[
JA′

[n]B[n]

]
. (15)

We ascertain that the reduced Choi state JA′
sBs in Eq. (15) represents an valid quantum process

as it satisfies the CPTP conditions. The proof can be found in Appendix A.

Proposition 3. The reduced Choi state JA′
sBs defined in Eq. (15), satisfies JA′

sBs ≥ 0 and
TrBs JA′

sBs = 1A′
s
/2k, where k = |s|.

Interestingly, we show that the Choi state of the reduced quantum process given in Definition 1
is exactly the k-reduced Choi state given in Definition 2. The proof given in Appendix B.

Proposition 4 (Choi representation of reduced quantum process). Let NA[n]→B[n](·) := U(·)U†

be an n-qubit quantum unitary channel given by the unitary UA[n] . Let s ⊆ [n] be a subset of qubit
indices of size k and let NAs→Bs be the k-reduced quantum process of N as defined in Eq. (14). It
holds that the Choi state of NAs→Bs is exactly given by JA′

sBs defined in Eq. (15).

3.3 PTM representation of the reduced quantum process

As a quantum process can be represented in PTM form, the k-reduced quantum processes can also
be defined in this form.

Definition 5 (k-reduced PTM). Let NA[n]→B[n] be an n-qubit quantum process whose PTM
RNA[n]→B[n]

is defined in Eq. (4). Let s ⊆ [n] be a subset of qubit indices of size k. The k-reduced
PTM of RNA[n]→B[n]

, induced by the qubit indices s, is defined as follows:

(
RNAs→Bs

)
ij

=
(

RNA[n]→B[n]

)
(
∑

b∈[k]
ib·4n−sb )(

∑
b∈[k]

jb·4n−sb )
(16)

Here, we represent the indices i, j of the PTM matrix as quaternary k-bit strings i = i1 · · · ik, j =
j1 · · · jk, and sb as the b-th element of s.
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Definition 5 reveals that the k-reduced PTM can be obtained from the PTM of the entire
quantum process. Additionally, it should be noted that the k-reduced quantum processes defined
in Definition 5 are consistent with Definition 1 and Definition 2. We prove that they can transform
into each other, as shown in the following proposition. The proof can be found in Appendix C.

Proposition 6. Let NA[n]→B[n] be an n-qubit quantum process and s ⊆ [n] be a subset of qubit in-
dices of size k. The transformation between three definition of k-reduced quantum process NAs→Bs

reads (
RNAs→Bs

)
ij

= 1
2k

Tr [PiNAs→Bs(Pj)] = Tr
[
JA′

sBsP T
j ⊗ Pi

]
, (17)

where NAs→Bs(ρAs) is defined in Eq.(14), JA′
sBs is the k-reduced Choi state defined in Eq. (15),

k = |s|.

To validate our theory and efficiently obtain all k-reduced PTMs for an n-qubit system, we
introduce several methods in the following section, accompanied by a detailed protocol and com-
plexity analysis.

4 Quantum process overlapping tomography: Theory

This section devotes to characterizing all k-reduced quantum processes of a given n-qubit quantum
unitary process. To achieve the target, we introduce a general framework called Quantum Process
Overlapping Tomography, comprising three tomographic methods each having its own feature.

4.1 Method 1

We have shown in Section 3.2 that the reduced quantum process admit an elegant Choi repre-
sentation that is directly related to the Choi state of the global quantum process. We leverage
this relationship to transform reduced quantum process tomography into reduced quantum state
tomography. By employing overlapping tomography techniques [28], we significantly reduce the
total number of required measurement settings.

Method 1 works as follows. A k-reduced quantum process can be expressed by a k-reduced
Choi state as shown in Eq. (15). Characterizing all k-reduced quantum processes is equivalent to
obtaining all k-reduced Choi states. It’s worth noting that the Choi state of an n-qubit quantum
process is a 2n-qubit quantum state, making a k-reduced Choi state a 2k-qubit reduced quantum
state. Therefore, we need to measure a total number of

(2n
2k

)
reduced density matrices. Explicitly,

we first construct a (n′, k′) family of perfect hash functions, which will be utilized to group the
qubits. There is extensive literature focusing on explicitly generating such (n′, k′) families of perfect
hash functions [32, 33, 37–50]. Here, we take n′ = 2n, k′ = 2(k = 1) as an example and illustrate
with (2n, 2) family of perfect hash functions.

Demonstration for k′ = 2. The (2n, 2) family of perfect hash functions comprises q = log2(2n)
functions, denoted as f1, ..., fq. Each function maps [n] → {0, 1} and is defined as

fi(j) = ith digit in the binary expansion of (j − 1). (18)

Here, the number of the qubit (j − 1) is implicitly represented by a q-bit string. In general, every
qubit is assigned a label of 0 or 1 by each perfect hash function. After this assignment, we use the
labels of qubits to generate measurement bases, following the procedure described in Section IV of
[28]. An illustration of this method is shown in Figure 2.
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Figure 2: Illustration for Method 1. As an example with k′ = 2, after the assignment by the perfect hash
function, we color the qubit labeled with 0 in green and those with 1 in blue. All green(blue) qubits are
measured in the same basis. We then iterate the green-blue basis over all 32 = 9 measurement settings:
{XX, XY , XZ, Y X, Y Y , Y Z, ZX, ZY , ZZ}.

Following [28], we know that tomographying
(2n

2k

)
reduced density matrices requires measure-

ment settings of the size

3 +
(
32k − 3

)
· log2 (2n) = 3 + (9k − 3) · log2 (2n) . (19)

In contrast, independently measuring all these density matrices would necessitate approximately
measurement settings of the size (

2n

2k

)
· 32k ∼

(
36 · n2)k

. (20)

Thus, overlapping tomography method offers significant advantages.

The primary drawback of Method 1 is the need to prepare a 2n-qubit maximally entangled
state, leading to increased resource consumption. Furthermore, operating a larger system with
higher entanglement may introduce more errors, potentially compromising the performance of
overlapping tomography. In the following, we introduce two more methods that are ancilla free.

4.2 Method 2

Here we introduce Method 2 that directly conducts quantum process tomography for k-reduced
quantum processes by exploring parallelism, without referring to quantum state tomography as in
Method 1. For localizable quantum processes, this method can efficiently harness the benefits of
parallelism.

Method 2 works as follows. First, we partition the n qubits into n/k groups, each containing
k qubits. Then, standard quantum process tomography is performed for each group, necessitat-
ing 12k measurement settings. Note that all n/k groups employ the same measurement settings
simultaneously. Explicitly, the 12 measurement settings are:

{|0⟩, |1⟩, |+⟩, |r⟩}︸ ︷︷ ︸
preparation basis

⊗ {X, Y, Z}.︸ ︷︷ ︸
measurement basis

(21)

The grouping procedure is visualized in Figure 3. It is clear that such parallelism can reduce the
total number of measurements by a factor of n/k.

However, if there are interactions between subsystems, the local processes cannot be directly ob-
tained unless all other interacted subsystems are initialized in a maximally mixed state. Therefore,
this parallelism is applicable only to localizable quantum processes, with the required measurement
settings approximately being

(
n
k

)
· 12k/(n/k) ∼ k · nk−1 · 12k.

To characterize a k-reduced quantum process of a general quantum process, suppose there are
m qubits that interact with this k-reduced quantum process. To simulate a maximally mixed
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Figure 3: Visualization of Method 2: n qubits are divided into n/k groups, with each group consisting of k
qubits that can represent a k-reduced quantum process. All k-reduced quantum processes undergo the same
quantum process tomography using the standard 12k measurement settings.

state of m qubits, a combination of 2m orthonormal bases needs to be created. The complexity of
characterizing such a k-reduced quantum process is 2m · 12k, which remains consistent for other
k-reduced quantum processes. Therefore, the complexity for characterizing all k-reduced quantum
processes is

(n
k)∑

i=1
·2mi · 12k ∼

nk∑
i=1

·2mi · 12k, (22)

where mi is the number of qubits that interact with the i-th k-reduced quantum process, and there
are in total

(
n
k

)
k-reduced quantum processes, so i ranges from 1 to

(
n
k

)
.

4.3 Method 3

Method 2 behaves bad when the number of qubits interacting with the target reduced quantum
process becomes large. To resolve this problem, we propose Method 3 that leverages interactions
between subsystems to achieve efficient characterization.

Suppose an n-qubit quantum process has i local interactions, each with dimensions li satisfying∑
i li ≤ n. For example, in a 7-qubits process, the whole unitary can be written as U = U0 ⊗

U3 ⊗ U14 ⊗ U256, where U14 and U256 (the subscripts indicate qubits they act on) are two unitaries
corresponding to local interactions with dimensions of 2 and 3, respectively. As discussed earlier,
we must construct a valid statistical mixture of maximally mixed states for these subsystems.
To ensure that any arbitrary k-reduced quantum process contains a mixture of maximally mixed
states, we prepare all local subsystems involved in interactions in maximally mixed states and then
combine them. Method 3 works as follows.

Step 1: Generate overlapping bases using the perfect hash functions, following the procedure
outlined in Section IV of [28]. However, we substitute the {X, Y, Z} basis with 12 QPT measure-
ment settings. As a result, there are a total of 12k · log(n) bases, which cover 12 measurement
settings of any single-qubit process tomography. This procedure is sufficient to characterize all
k-reduced quantum processes of localizable quantum processes, as they are all composed of single-
qubit processes. This procedure is depicted in Figure 4.

Step 2: Iterate over each qubit involved in interactions with other qubits and append a comple-
mentary basis based on its current basis to all overlapping bases generated in Step 1. For example,
during the iteration for qubit 0, we will add {|1⟩, X} if the current preparation and measurement
basis of qubit 0 is {|0⟩, X}. Each iteration doubles the length of the overlapping basis, so after
all iterations, the size of the overlapping basis will be multiplied by 2

∑
i

li . In contrast to Method
2, which involves summing over all k-reduced quantum processes and includes numerous repeated
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Figure 4: Illustration for Method 3 Step 1. We use perfect hash functions to group n qubits into k groups,
where every qubit in one group uses the same single-qubit measurement setting. For each perfect hash function,
we iterate the measurement setting of k groups over all 12k measurement settings.

sums, in this method,
∑

i li represents the sum over all local interactions (noting that
∑

i li ≤ n).
It’s crucial to emphasize that this factor is determined by the local interactions of a quantum
process, independent of the size of the entire process. Therefore, for a global process in a large
system with specific local interactions, this is a favorable scale. The total number of measurement
settings required is 2

∑
i

li · 12k · log(n).

Figure 5: Illustration for Method 3 Step 2. Taking the previous 7-qubit example where U = U0⊗U3⊗U14⊗U256,
we identify two local interactions: U14 with dimension 2 and U256 with dimension 3. In this case, we should
iterate over qubits {1, 2, 4, 5, 6}, and throughout all overlapping bases, we append a complement basis with
respect to qubit in interation.

Figure 6: Illustration for Method 3 with full interactions. For qubits in one group, we prepare 3 maximally
mixed states by mixing the qubits in the {|0⟩, |1⟩}, {|+⟩, |−⟩}, {|r⟩, |l⟩} bases. For each maximally mixed state,
we measure all qubits separately in the X, Y, Z bases. Therefore, there are in total

(
2n/k · 3 · 3

)k = 2n · 9k

measurement bases for each perfect hash function.
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Additionally, for quantum processes with full interactions, where every qubit interacts with
each other either directly or indirectly, a more efficient protocol can be designed. This protocol
involves mixing the qubits within the same group, as determined by perfect hash functions, into a
maximally mixed state. An illustration of this approach is depicted in Figure 6. The total number
of measurement bases will be 2n · 9k · log(n). In contrast, the method described in Step 2 yields
2n · 12k · log(n).

4.4 Comparison of methods

Sample Complexity Ancilla Required Overlapping Measurement

Method 1 3 + (9k − 3) · log (2n) ! !

Method 2
∑nk

i=1 ·2mi · 12k % %

Method 3 2
∑

i
li · 12k · log(n) % !

Table 1: Comparison between three quantum process overlapping tomography methods. We primarily concern
the sample complexity, whether it requires ancilla qubits, and whether it uses overlapping measurement. Here,
n is the number of qubits in the global system, k is the number of qubits of the reduced system, mi is the
number of qubits that interact with the i-th k-reduced quantum process, and li is the dimension of the i-th
local interaction.

We compare the three methods mentioned above and summarize the key results in Table 1.
In terms of sample complexity, Method 1 offers the best result, which is 3 + (9k − 3) · log(2n),
followed by Method 3, and then Method 2. The reason is that both Method 1 and Method
3 construct a set of overlapping measurements via perfect hash functions, which maximize the
parallelism. Additionally, the summation of i in Method 2 includes many repeated counts, where
Method 3 demonstrates significant advantages. On the other hand, both Method 2 and Method 3
require no ancillary qubits, whereas Method 1 requires an ancilla system of n qubits to construct a
maximally entangled state. Both ancillary qubits and maximally entangled states are challenging
or even impossible for large quantum system. Therefore, we will only consider Method 2 and
Method 3 in the following experiment.

5 Quantum process overlapping tomography: Experiment

This section devotes to experimentally validating the quantum process overlapping tomography
framework proposed in Section 4. Specifically, we apply the methods to reconstruct all 2-reduced
processes of the quantum process preparing a 4-qubit GHZ state. The corresponding quantum
preparation process is visualized in Figure 7. The total number of 2-reduced processes is

(4
2
)

= 6.

Figure 7: The quantum process for preparing a 4-qubit GHZ state.
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We use (qi, qj) to denote the 2-reduced process acting on the i-th and j-th qubits. Intuitively,
owing to the symmetry inherent in the quantum circuit, one might speculate that there exist two
distinct types of the 2-reduced quantum processes: one type comprising the reduced processes
(q0, q1), (q0, q2) and (q0, q3), and the other type including (q1, q2), (q1, q3) and (q2, q3). Our objec-
tive is to ascertain the validity of this conjecture. Initially, we compute the ideal PTM of the
entire process using the IBM Qiskit package [51]. Subsequently, employing Eq. (16), we calcu-
late all PTMs of the 2-reduced processes. The results corroborate our hypothesis: there exist
two types of 2-reduced quantum processes, denoted as type 1 and type 2, respectively. Their
PTMs are depicted in Figure 8(a). Type 1 quantum process comprises 2-reduced quantum pro-
cesses: (q0, q1), (q0, q2), (q0, q3), where the qubits are directly interacted with CNOT gates. Type 2
quantum process encompasses (q1, q2), (q1, q3), (q2, q3), where the qubits are indirectly interacted.

Then, we implement Method 2 and Method 3 on the IBM-Brisbane quantum device and
certify their performances. We present two PTMs for each method, as depicted in Figure 8(b)
and (d), respectively. From the results, the PTMs obtained by Method 2 and Method 3 closely
approximate the ideal PTM. To quantitatively assess the similarity, we calculate the process fidelity
for each 2-reduced quantum process obtained by different methods. The process fidelity is defined
as follows:

F (N , E) := Fs(JN , JE), (23)

where N , E are two quantum processes, JN , JE are the Choi states of N , E , and Fs is the state
fidelity defined as Fs(ρ, σ) := (Tr[

√√
ρσ

√
ρ])2. The results of these fidelities can be found in

Figure 8(d). For different 2-reduced processes, Method 3 exhibits higher fidelities, possibly due to
differences in implementation times. Additionally, we observe that the reduced processes with the
highest fidelity for each type are the same: (q0, q3) and (q2, q3). This suggests that q3 may be more
stable than the other qubits.

Figure 8: Quantum process overlapping tomography of 4-qubit GHZ state preparation process on the IBM-
brisbane quantum device. (qi, qj) denotes the 2-reduced quantum process acting on i-th and j-th qubit. (a)
Two types of ideal 2-reduced quantum processes. Type 1 contains (q0, q1), (q0, q2) and (q0, q3). On the other
hand, type 2 contains (q1, q2), (q1, q3) and (q2, q3). (b) The 2-reduced quantum processes (q0, q3) and (q2, q3)
obtained by Method 2. (c) The 2-reduced quantum processes (q0, q3) and (q2, q3) obtained by Method 3. (d)
The reduced process fidelities of Method 2 and Method 3.
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6 Conclusions

We systematically investigated the concept of reduced quantum processes of a global quantum pro-
cess, generalizing the concept of reduced quantum states to the quantum process domain. First, we
provided a rigorous mathematical description of reduced quantum processes and derived equivalent
characterizations in different quantum process presentations. Then, we introduced a general frame-
work called quantum process overlapping tomography to fully characterize the reduced quantum
processes. This framework makes use of perfect hash functions and comprises three tomographic
methods each having its own feature. At last, we experimentally validated our quantum pro-
cess overlapping tomography framework on IBM quantum devices. The obtained experimental
tomographic results align perfectly with the theory predictions.
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A Proof of Proposition 3

Proof of Proposition 3. Since the n-qubit Choi state JA′
1···A′

nB1···Bn
is a positive semidefinite opera-

tor, and partial trace preserve positivity, it follows that JA′
1···A′

k
B1···Bk

is also a positive semidefinite
operator. We use the single-qubit reduced Choi state as an example. For generality, we consider
the n-qubit process as an arbitrary quantum process in the form of the Kraus representation, as
shown in Eq. (2). We explicitly expand the single-qubit reduced Choi state in the following form:

JA′
1B1 = TrA′

2···A′
nB2···Bn

JA′
1···A′

nB1···Bn

= TrA′
2···A′

nB2···Bn

 1
2n

∑
i,j

|i⟩⟨j|A′ ⊗
∑

l

Kl|i⟩⟨j|AK†
l


= 1

2n

∑
i,j

TrA′
2···A′

n
[|i⟩⟨j|A′ ] ⊗ TrB2···Bn

[∑
l

Kl|i⟩⟨j|AK†
l

]

= 1
2n

∑
i,j

TrA′
2···A′

n
[(|i1⟩ ⊗ |in−1⟩)(⟨j1| ⊗ ⟨jn−1|)] ⊗ TrB2···Bn

[∑
l

Kl(|i1⟩ ⊗ |in−1⟩)(⟨j1| ⊗ ⟨jn−1|)K†
l

]

= 1
2n

∑
i,j

|i1⟩⟨j1|⟨in−1|jn−1⟩ ⊗ TrB2···Bn

[∑
l

Kl(|i1⟩ ⊗ |in−1⟩)(⟨j1| ⊗ ⟨jn−1|)K†
l

]

= 1
2n

∑
i,j

|i1⟩⟨j1|⟨in−1|in−1⟩ ⊗ TrB2···Bn

[∑
l

Kl(|i1⟩ ⊗ |in−1⟩)(⟨j1| ⊗ ⟨in−1|)K†
l

]

= 1
2n

∑
i1,j1

∑
in−1

|i1⟩⟨j1|⟨in−1|in−1⟩ ⊗ TrB2···Bn

[∑
l

Kl(|i1⟩⟨j1| ⊗ |in−1⟩⟨in−1|)K†
l

]

= 1
2n

∑
i1,j1

∑
in−1

|i1⟩⟨j1|⟨in−1|in−1⟩ ⊗ TrB2···Bn

[∑
l

Kl(|i1⟩⟨j1| ⊗ 1A2 · · · An)K†
l

]

=
∑
i1,j1

|i1⟩⟨j1|A′ ⊗ TrB2···Bn

[∑
l

Kl(
1
2 |i1⟩⟨j1|A ⊗ 1

2n−11A2 · · · An)K†
l

]
, (24)

Next, we prove that TrB1 JA′
1B1 = 1

21A′
1
:
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TrB1 JA′
1B1

=
∑
i1,j1

|i1⟩⟨j1|A′ ⊗ TrB1 TrB2···Bn

[∑
l

Kl(
1
2 |i1⟩⟨j1|A ⊗ 1

2n−11A2 · · · An)K†
l

]

=
∑
i1,j1

|i1⟩⟨j1|A′ ⊗ Tr
[∑

l

Kl(
1
2 |i1⟩⟨j1|A ⊗ 1

2n−11A2 · · · An)K†
l

]

=
∑
i1,j1

|i1⟩⟨j1|A′ ⊗ Tr

∑
l

Kl(
1
2 |i1⟩⟨j1|A ⊗ 1

2n−1

∑
in−1

|in−1⟩⟨in−1|A)K†
l


=

∑
i1,j1

|i1⟩⟨j1|A′ ⊗
∑

l

∑
in−1

1
2n

(⟨j1| ⊗ ⟨in−1|)K†
l Kl(|i1⟩ ⊗ |in−1⟩)

=
∑
i1,j1

|i1⟩⟨j1|A′

∑
in−1

1
2n

⟨j1|i1⟩

= 1
2

∑
i1

|i1⟩⟨i1|A′

= 1
21A′

1
(25)

Thus, the reduced state JA′
1B1 satisfies JA′

1B1 ≥ 0 and TrB1 JA′
1B1 = 1

21A′
1
. The proof for the

k-reduced Choi state JA′
1···A′

k
B1···Bk

follows a similar logic.

B Proof of Proposition 4

Proof of Proposition 4. We will use the single-qubit case as an example here, as the proof follows
the same procedure when considering multiple qubits. The Choi state of the reduced quantum
process NA1→B1 , as defined by Eq.(3), is(

idA′
1

⊗NA1→B1

) (
ΓA1A′

1

)
=

(
idA′

1
⊗NA1→B1

) 1
2

∑
i1j1

|i1i1⟩⟨j1j1|

=
∑
i1,j1

|i1⟩⟨j1|A′ ⊗ TrB2···Bn

[∑
l

Kl(
1
2 |i1⟩⟨j1|A ⊗ 1

2n−11A2···An
)K†

l

]
(26)

which is the same as Eq. (24).

C Proof of Proposition 6

Proving Proposition 6 requires the following Lemma.

Lemma 7. Let PAB and QA be two linear operators. It holds that

TrB [PAB ]QA = TrB [PAB(QA ⊗ 1B)]. (27)

Proof. Let {|i⟩A} and |k⟩B} be orthonormal bases for HA and HB respectively, and let dA ≡
dim(HA), dB ≡ dim(HB). Thus, PAB ∈ L(HAB) and QA ∈ L(HA). We can expand QA in terms
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of the orthonormal basis {|i⟩A} :

QA =
dA−1∑
ij=0

αij |i⟩⟨j|A (28)

and PAB in terms of orthonormal basis {|i⟩A} ⊗ {|k⟩B} :

PAB =
dA−1∑
ij=0

dB−1∑
kl=0

βijkl (|i⟩A ⊗ |k⟩B) (⟨j|A ⊗ ⟨l|B) . (29)

Now we can expand

TrB [PAB ]QA

=
dB−1∑
k=0

⟨k|B
dA−1∑
ij=0

dB−1∑
kl=0

βijkl (|i⟩A ⊗ |k⟩B) (⟨j|A ⊗ ⟨l|B)
dA−1∑
ij=0

αij |i⟩⟨j|A|k⟩B

=
dA−1∑
ij=0

dB−1∑
kl=0

αijβijkl⟨k|k⟩B (|i⟩A ⊗ 1B) (⟨j|A ⊗ ⟨l|B) |i⟩⟨j|A|k⟩B

=
dA−1∑
ij=0

dB−1∑
kl=0

αijβijkl (|i⟩A ⊗ 1B) (⟨j|A ⊗ 1B) |i⟩⟨j|A⟨l|k⟩B

=
dA−1∑
i=0

dB−1∑
k=0

αiiβiikk|i⟩⟨i|A (30)

and

TrB [PAB(QA ⊗ 1B)]

=
dB−1∑
k=0

⟨k|B
dA−1∑
ij=0

dB−1∑
kl=0

βijkl (|i⟩A ⊗ |k⟩B) (⟨j|A ⊗ ⟨l|B)
dA−1∑
ij=0

αij (|i⟩⟨j|A ⊗ 1B) |k⟩B

=
dA−1∑
ij=0

dB−1∑
kl=0

αijβijkl⟨k|k⟩B (|i⟩A ⊗ 1B) (⟨j|A ⊗ ⟨l|B) (|i⟩⟨j|A ⊗ |k⟩⟨k|B) |k⟩B

=
dA−1∑
ij=0

dB−1∑
kl=0

αijβijkl (|i⟩⟨j|A ⊗ ⟨l|B) (|i⟩⟨j|A ⊗ |k⟩B) ⟨k|k⟩B

=
dA−1∑
i=0

dB−1∑
k=0

αiiβiikk|i⟩⟨i|A. (31)

From Eq. (30) and (31) we can prove Eq. (27).

Now we are ready to prove Proposition 6.

Proof of Proposition 6. We take an example of single-qubit case. With the reduced Choi state
JA′

1B1 defined in Eq. (15), the element of PTM representation can be computed by(
RN (A1→B1)

)
i1j1

= Tr
[
JA′

1B1(P T
j1

⊗ Pi1)
]

= Tr
[
TrA′

2···A′
nB2···Bn

[
JA′

1···A′
nB1···Bn

]
(P T

j1
⊗ Pi1)

]
Using Lemma 7

= Tr
[
TrA′

2···A′
nB2···Bn

[
JA′

1···A′
nB1···Bn

(P T
j1·4n−1 ⊗ Pi1·4n−1)

]]
= Tr

[
JA′

1···A′
nB1···Bn

P T
j1·4n−1 ⊗ Pi1·4n−1

]
=

(
RN (A1···An→B1···Bn)

)
(i1·4n−1)(j1·4n−1) , (32)
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where i1, j1 range from 0 to 3. Thus, the Choi representation and the PTM representation can be
transformed into each other. Then, we consider Definition 1. Through Definition 1, we can also
deduce the PTM representation of the reduced quantum process NA1→B1 as:(

RN (A1→B1)
)

i1j1
= 1

d1
Tr [Pi1N (Pj1)]

= 1
d1

Tr
[
Pi1 TrB2···Bn

[
U(Pj1 ⊗ 1

dn−1
1A2···An

)U†
]]

Using Lemma 7

= 1
d1

Tr
[
TrB2···Bn

[
1

dn−1
Pi1·4n−1UPj1·4n−1U†

]]
= 1

d
Tr

[
Pi1·4n−1UPj1·4n−1U†]

= 1
d

Tr
[
Pi1·4n−1N (Pj1·4n−1)

]
=

(
RN (A1···An→B1···Bn)

)
(i1·4n−1)(j1·4n−1)

which is consistent with Eq. (16).
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Abstract. A silicon nitride photonic integrated QKD receiver employing tunable couplers is
demonstrated, enabling on-chip reconfigurability. The proposed approach achieves low quantum bit
error rates below 1.5% across different receiver configurations, providing a migration strategy towards
multi-protocol quantum-secured communication with optimized on-chip tuning.
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1 Introduction

The vast exchange of information has unquestionably
become an indispensable aspect of modern society
and economy. Sensitive information such as financial,
health, or governmental data is a natural target for
malicious actors, making its security crucial. Modern
cryptography methods, including widely used public-key
cryptography, rely on the computational complexity of
decryption problems (factoring large numbers), whilst
harvest now, decrypt later attacks are currently ongoing,
potentially exposing data in the future due to the
emergence of quantum computing [1], [2]. However,
quantum key distribution (QKD) methods [3]–[5],
predicated on quantum physics phenomena, may not
only protect real-time communication traffic but also
data that require long-term secrecy. Here, we focus
on discrete-variable QKD, where the information is
mapped to discrete quantum states, such as polarization,
phase, etc., of a single photon. Since a QKD system
is implemented on the physical layer over which a
quantum channel operates, specific components, such as
single-photon detectors (SPDs), single-photon sources,
and low-noise analog circuits, are required. Furthermore,
different protocols from the QKD ”protocol family” may
address distinct tasks in networks [6], hence requiring a
hybrid approach and rendering the advantage of having
universal receiver hardware compatible with multiple
protocols. Therefore, practical deployment of QKD
systems depends on scalable, cost-effective hardware
foundations such as photonic integrated circuits (PICs)
[7], proven for their power efficiency, miniaturization,
and compatibility with state-of-the-art semiconductor
technology.
In this work, we aim to tackle the challenges mentioned

above by exploiting photonic integration to build a
versatile receiver that can potentially be applied to
various QKD protocols such as BB84 [8], differential
phase shift (DPS) [9], and coherent one-way (COW)
[10]. We demonstrate a low-loss silicon nitride PIC
featuring tunable couplers (TCs) and an asymmetric

∗d.fatkhiev@tue.nl
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Figure 1: (a) Optoelectronic assembly and (b) microscope
image of the silicon nitride PIC.

Mach–Zehnder interferometer (AMZI). With the TC’s
high extinction ratio (ER) of >35 dB, we gain the ability
to reconfigure the power ratio between measurement
paths in a wide range. This allows for the receiver’s
basis selection probability adjustment and dynamic
switching among multiple QKD protocols. We show low
quantum bit error rates (QBERs) of 0.5%–1.5% using
commercially available InGaAs SPDs in different receiver
configurations, which are sufficient for generating high
secret key rates (SKRs).

2 Integrated Receiver

The receiver assembly and the silicon nitride PIC
are shown in Fig. 1a and Fig. 1b, respectively. The
circuitry includes two TCs and an AMZI. The optical IOs
(inputs and outputs) are implemented using a spot-size
converter (SSC) array on the PIC edge. Tunability
of a TC is achieved by a symmetric Mach-Zehnder
interferometer containing a TOPS in one of the arms,
so the relative phase of the light in the two arms
can be modified, enabling control over constructive
and destructive interference, determining the amount
of light directed to each output of the TC. The first
TC allows us to adjust the splitting ratio between
two measurement paths, related to the choice of the
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Figure 2: Integrated receiver characterization.
(a) TC1 coupling ratio coverage; (b) TC1 power output
varied over its TOPS voltage; (c) AMZI power output varied
over its TOPS voltage.

measurement basis by the so-called Bob, a traditional (in
quantum cryptography) misnomer for the party detecting
and decoding the quantum state during the protocol (the
party that generates the quantum state is called Alice).
The second TC enables power balancing between arms of
the AMZI to achieve higher ER by compensating for the
imbalance introduced due to the presence of the delay
line. The TOPS in the AMZI arm is used to fine-tune
the relative phase for state demodulation efficiency.
For the fabrication, the TriPleX silicon nitride

platform [11] was selected due to its low-propagation-loss

Laser

AWG

Z

X
SPD

TC1
TC2

AMZI

SMU

VOA

PolC

SMF

SPD

SiN PIC 

Alice

Bob

20 GS/s
14 Bit

16 Bit

Mod

Figure 3: Experimental setup for performance evaluation of
the QKD receiver.

waveguides (<0.2 dB/cm), which are important to
mitigate extra losses from the ≈900 ps delay line and
couplers. Overall losses through the TC1 path (Z basis)
and the AMZI path (X basis) are ≈5.3 dB and ≈9.4 dB,
respectively.

The PIC is wire-bonded and co-packaged with a
polarization-maintaining fiber array. The insertion loss
(IL) per SSC is around 1.1 dB. As shown in Fig. 1,
a multichannel source measure unit (SMU) is used to
independently actuate the phase shifters. The device
characterization data is presented in Fig. 2. The first
TC covers the whole coupling ratio range, which can be
seen from Fig. 2a. The extinction ratios of the TCs and
AMZI can be seen from Fig. 2b and Fig. 2c, which are
>35 dB and >25 dB, respectively.

3 Quantum Key Distribution Setup

To showcase the performance of the designed PIC, we
implemented the three-state time-bin BB84 protocol [12],
and the experimental setup is illustrated in Fig. 3. The
states are encoded in two bases: Z and X. Z basis
includes two states Z0 and Z1, a weak coherent pulse
in the first (Fig. 4a) or the second (Fig. 4b) time bin,
respectively. The X basis only includes one state X0: a
superposition of the first and second time-bin with zero
relative phase (Fig. 4c).

The transmitter, or Alice, consists of a low-linewidth
tunable laser (<100 kHz), an arbitrary-waveform
generator (AWG), and a Mach-Zehnder modulator
(Mod) for the generation of optical pulses at a 2.2GHz
repetition rate with an operating wavelength of 1550 nm.
The time bins have a temporal separation of ≈900 ps to
match the AMZI’s delay line. The optical pulse intensity
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Figure 4: Histogram measurements of the states on the
transmitter output: (a) Z0, (b) Z1, and (c) X0.
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Figure 5: Evolution of QBER over time for different receiver configurations.

is significantly attenuated to a single-photon level using
a variable optical attenuator (VOA). Optical pulses
are then sent to the receiver through a short piece of
single-mode fiber (SMF).
The receiver, or Bob, includes a polarization controller

(PolC), silicon nitride PIC, and two free-running InGaAs
SPDs. A PolC is employed to align the polarization
of incoming pulses with the polarization axis of the
PIC waveguide. Once a quantum state reaches Bob, a
passive measurement basis is selected by choosing the
measurement output to read (either Z or X, as shown
on Fig. 3). When the Z basis is chosen, the states are
directly transmitted to a SPD, which measures the arrival
time of the photons. In the case of X basis pick, the
coherence between two consecutive pulses is recovered
by an AMZI and measured with an SPD. After this, an
estimation of the QBER based on the statistics collected
using SPDs is carried out.

4 Results

To examine the versatility of the receiver PIC, the
approach in this work involved performing a set of QBER
measurements with various coupling ratio values set on
TC1, while TC2 was set to balance AMZI arms, hence
providing the highest ER possible. Note that the TOPS
phase shift in the AMZI arm is a free parameter we tweak
before measurements to fine-tune the relative phase for
precise demodulation of quantum states in the X basis.
The motivation for testing the system over different

coupling ratio configurations arises from reported works
on security analysis of BB84 and COW protocols
[13]–[15]. Even though in published works [16], [17],
coupling ratios on the receiver side were usually fixed as
the used couplers were not tunable, it was shown that
optimization variables related to coupling ratios alter
over different quantum channel losses. For instance, in
a one-decoy state BB84 protocol [14], to achieve optimal
performance, the coupling ratio varies from 5% to 35%,
and the experiment implementing 4-intensity decoy-state
BB84 [18] utilizes different coupling ratio values ranging
from 15% to 65%. Hence, coupler tunability is beneficial
for QKD performance optimization.
We measured QBERs over time for three different

coupling ratios of TC1: 90/10, 50/50, and 10/90, where
the first value corresponds to the Z basis path and
the second value to the X basis path. The results are
illustrated in Fig. 5. The average QBER in the X basis

(QBER-X) for each configuration remains below 1.5%
throughout the continuous 10-minute test period, which
is sufficiently low for generating a high SKR. However,
due to the absence of temperature control for the receiver
assembly, the QBER-X (Fig. 5) slowly drifts as the delay
line is sensitive to the environment, causing a relative
variation in the phase. This issue can be addressed by
adding feedback or thermal control [19]. Additionally, as
depicted in Fig. 5, the QBER in the Z basis (QBER-Z)
remains stable with an average value below 1% for each
configuration during continuous testing lasting 1 hour.

5 Conclusions and Discussion

A reconfigurable silicon nitride PIC-based QKD
receiver was demonstrated. By employing flexible
structures, including tunable couplers with a
high extinction ratio of >35 dB and a low-loss
>25 dB extinction ratio asymmetric Mach-Zehnder
interferometer, a higher degree of control and tunability
is achieved in the receiver. This enables adjustment of
the receiver’s basis selection probability, resulting in the
possibility to operate in different QKD protocols and
efficient quantum state decoding. We note that similar
receiver architectures were used in some previous works
[20], [21]. However, in our work, we employed another
protocol and basis definition and explicitly analyzed
the receiver in altering configurations. We reported low
QBER values of 0.5%–1.5% in various receiver settings,
which paves the way to multi-protocol QKD systems
with high secret key rates. By leveraging dedicated
electronic drivers [22] and integrated single-photon
detectors [23], further efforts can be directed toward
achieving the ultimate system-in-a-package solution.
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Abstract—Quantum computing holds vast potential but faces
limitations, such as inefficient programming and transpilation
time of quantum algorithms. In response to this demand, we
present a transpiler framework for transforming Qiskit’s quan-
tum circuit objects to LLVM Quantum Intermediate Represen-
tation (QIR). Our transpiler leverages LLVMLite to efficiently
transpile quantum circuits to QIR. Key features include support
for single-qubit and two-qubit gate operations, parameter han-
dling, and measurement operations. We conduct a comparative
analysis of the transpilation time between our QCC transpiler
and QCOR transpiler, a hybrid quantum-classical program-
ming tool, showcasing a significant reduction in transpilation
time. Through LLVMLite integration and custom instruction
definitions, we achieve efficient and optimized transpilation.
Our findings demonstrate a 99.3% reduction on average in
transpilation time compared to an existing method. This work
contributes to advancing the field of quantum programming by
providing an efficient tool for transpiling quantum circuits to
LLVM-based representations.

Index Terms—Quantum Programming, Qiskit Circuits, LLVM
QIR Transpilation

I. INTRODUCTION

Quantum computing has the potential to revolutionize vari-
ous fields, from cryptography [1] to optimization [2]. However,
efficient programming and transpilation of quantum algorithms
remain challenges. Existing research in quantum program-
ming has focused on various aspects, including language
design, optimization techniques, and compilation strategies.
One notable approach is using intermediate representations
(IRs) to facilitate efficient compilation of quantum algorithms.
LLVM [3], a widely-used classical compiler infrastructure,
has been adapted for quantum computing by developing
LLVM Quantum Intermediate Representation (QIR). Several
works [4]–[6] have been made to transpile quantum circuits
from high-level programming languages to MLIR and LLVM
IR. These efforts aim to bridge the gap between quantum
programming frameworks and efficient execution on quantum
hardware or simulators. One relevant work in this domain
is the development of QCOR [6], a C++ language extension

and associated compiler implementation for hybrid quantum-
classical programming. QCOR leverages Pybind11 [7] and
LLVM to generate QIR. However, existing transpilation tools
often face challenges related to performance, scalability, and
compatibility with quantum hardware architectures.

This paper addresses the transpilation challenge by pre-
senting a transpiler for converting Qiskit’s quantum circuits
to LLVM QIR. We present QCC transpiler, a frontend of
our QCC (quantum-classical compiler) framework, which
simplifies the development process for QIR code generation
by Leveraging LLVMLite [8] a lightweight LLVM binding
for Python. LLVMLite is a Python-LLVM interface that
provides APIs to construct LLVM IR code, optimizes and
generates code, and integrates with Python’s data structures.
We introduce key features that support single-qubit and two-
qubit gate operations, parameter handling (for rotation gates),
and measurement operations. Additionally, we compare the
transpilation time of our transpiler with the existing method,
demonstrating efficiency improvements. This work advances
quantum programming by providing an efficient tool to com-
pile circuits to LLVM-based representations. Through LLVM-
Lite integration and custom instruction definitions, we achieve
efficient and optimized transpilation. Our findings showcase a
99.3% reduction on average in transpilation time compared
to an existing method. This work contributes to advancing the
field of quantum programming by offering an efficient tool for
transpiling quantum circuits to LLVM-based representations.

II. TRANSPILER DESIGN AND IMPLEMENTATION

Figure 1 shows The quantum circuit compiler works in two
stages: frontend and backend. The front end translates quantum
circuit code into an IR format. The backend takes this IR and
optimizes and tailors it for a particular quantum processor.
Finally, it outputs machine code that is understandable by
that specific QPU. This work focuses on the frontend part,
explicitly designing and implementing our transpiler to convert
Qiskit’s quantum circuits to LLVM QIR.

584



Quantum Circuit

Extend IR Builder

LLVM QIR Generator

QIR Optimizer

Machine Code Generator

. . .

LLVM QIR

Machine Code

Frontend

Backend

Fig. 1. Overview of Quantum Circuit Compilation Workflow

1

2 from qiskit import QuantumCircuit
3 from qvm import qir
4

5 circ = QuantumCircuit(2)
6 circ.h(0)
7 circ.cx(0, 1)
8

9 qcc_qir_str = qir.transpile(circ)
10 print(qcc_qir_str)

Code 1. Example usage of a QCC transpiler

A. Design Overview

Our transpiler implementation follows a modular design
that is comprised of several key components to ensure ex-
tensibility and maintainability. At its core, the QIR Generator
converts Qiskit quantum circuits into LLVM QIR code. We ex-
tend LLVMLite’s IRBuilder with the ExtendedIRBuilder
class, enabling it to handle quantum-specific operations and
instructions. Additionally, the QInstruction class is in-
herited from LLVMLite’s Instruction to introduce quantum
instructions within LLVM QIR, offering instruction generation
and manipulation methods. The QubitType class represents
the quantum type within LLVM QIR. The QIR generator
is then encapsulated in the qvm (quantum virtual machine)
package. This design abstracts the complexities of LLVM QIR
generation, providing a flexible foundation for customization
and optimization. Code 1 shows an example of our transpiler
usage. Moreover, the output from our transpiler, as depicted in
Code 2, provides a glimpse into the LLVM QIR representation
of a quantum circuit. In this representation, the quantum circuit
comprises 2 qubits and 2 gates: the Hadamard gate h and
the Controlled-NOT gate (ctrl and x). We implemented
QCC transpiler in Python, leveraging the LLVMLite library
for LLVM integration. The implementation consists of the
following key steps.

B. QIR Generation

The QIR Generator module parses Qiskit quantum circuits
and generates corresponding LLVM QIR code. This process

1

2 define void @"circuit-160"(){
3 entry:
4 %".2" = alloca q1
5 %".3" = alloca q1
6 %".4" = load q1, q1* %".2"
7 %".5" = h q1 %".4"
8 store q1 %".5", q1* %".2"
9 %".7" = load q1, q1* %".2"

10 %".8" = load q1, q1* %".3"
11 %".9" = ctrl q1 %".7"
12 %".10" = x q1 %".9", q1 %".8"
13 store q1 %".9", q1* %".2"
14 store q1 %".10", q1* %".3"
15 ret void
16 }

Code 2. LLVM QIR output

involves several key steps, as illustrated in Code 3. First, a
new LLVM IR module is created to contain the generated
QIR code. This module is named based on the name of the
input quantum circuit. Next, a new LLVM QIR function is
defined within the module to represent the quantum circuit.
This function serves as the entry point for the QIR code
generation process. A basic block is appended to the function
to contain the instructions of the quantum circuit. This basic
block, named “entry”, will contain the QIR instructions. An
ExtendedIRBuilder object is created to generate QIR in-
structions within the basic block. This builder extends LLVM-
Lite’s IRBuilder to handle quantum-specific operations and
instructions. The QIR generator also creates LLVM IR types
representing qubits and classical bits within the generated QIR
code. Once the necessary types and registers are defined, the
generator transpiles LLVM QIR instructions corresponding to
the operations in the quantum circuit. Finally, the generator
completes the QIR generation process by returning the LLVM
IR module containing the generated QIR code.

C. Extend IR Builder

The Extended IR Builder module extends LLVMLite’s
IRBuilder class to support quantum-specific gate operations
and instructions. It provides convenient methods for construct-
ing quantum instructions and managing quantum registers.
The decorator function in Python is employed to extend the
behavior of the _gate_op function to support quantum
instructions, as shown in Code 4. Each decorator function
takes the gate operation name as an argument and defines a
corresponding method within the Extended IR Builder class.
The @_gate_op decorator function is a wrapper for creating
gate operations. The wrapped function within the decorator,
named ‘wrapped’, defines the behavior of the generated gate
operation method. It takes the qubits as input, along with an
optional name for the gate operation. Inside the wrapped func-
tion, an instruction object (QInstruction) representing the
specified gate operation is instantiated. This instruction object
is then inserted into the LLVM QIR basic block associated
with the Extended IR Builder.



1...
2 class QIRGenerator():
3 """LLVM QIR generator main class."""
4

5 def generate(self, qc: QuantumCircuit) -> str:
6 fntype = FunctionType(VoidType(), [])
7 # Create a new LLVM IR module
8 module = Module(name=f"file_{qc.name}")
9

10 # Create a new LLVM IR function
11 func = Function(module, fntype, name=qc.name)
12

13 # Create a new LLVM IR basic block
14 basic_block = func.append_basic_block(name="

entry")
15

16 # Create a Basic Block Builder
17 self._builder = ExtendedIRBuilder(basic_block)
18

19 # Create new LLVM IR qubit types
20 self._qubits = self._build_qubit_registers();
21

22 # Create new LLVM IR classical types
23 self._bits = self._build_classical_registers();
24

25 # Create new LLVM IR instructions
26 self._build_instructions(qc)
27

28 # Return the LLVM IR module
29 self._builder.ret_void()
30

31 return module
32...

Code 3. LLVM QIR generator main class.

D. Quantum Instruction and Type

The QInstruction class represents quantum instructions
in LLVM QIR. It encapsulates the logic for generating LLVM
IR code for quantum operations and provides methods for
instruction manipulation. The QubitType class represents
the quantum type (q1) in LLVM QIR, extending LLVMLite’s
Type class.

III. PERFORMANCE EVALUATION

A. Experimental Setup

This section outlines our experimental setup to evaluate the
transpilation performance of QCC and QCOR transpilers. The
evaluation employed several tools and libraries. These included
Qiskit, a comprehensive quantum computing framework for
quantum circuit construction and manipulation; QCOR [6], a
quantum-classical programming language compiler written in
C++ and utilized Pybind11 [7] for frontend; QCC transpiler,
for converting the quantum circuit to LLVM QIR.

The experimental procedure involved several steps. Initially,
random quantum circuits with varying numbers of qubits
and depths were generated using Qiskit’s circuit generation
utilities. Subsequently, the generated quantum circuits were
transpiled to LLVM QIR using both QCOR and QCC tran-
spilers, with the transpilation process timed to measure the
execution time for each transpiler. Experimental parameters,
including the number of qubits (ranging from 5 to 25) and the
depth of circuits (ranging from 100 to 1000 supported), were

1

2 from llvmlite.ir.builder import IRBuilder
3

4 def _gate_op(opname, cls=QInstruction):
5 """Decorator function for creating gate

operations."""
6 def wrap(fn):
7 @functools.wraps(fn)
8 def wrapped(self, qubits, name=’’):
9 if not isinstance(qubits, list):

10 qubits = [qubits]
11 instr = cls(self.block, QubitType(),
12 opname, qubits, name)
13 self._insert(instr)
14 return instr
15 return wrapped
16 return wrap
17...
18 class ExtendedIRBuilder(IRBuilder):
19 @_gate_op(’x’)
20 def x(self, lhs, name=’’):
21 """ X gate operation. """
22...

Code 4. Decorator function for creating single-qubit gate operations.

1

2 from llvmlite.ir.types import Type
3

4 class _BaseQubitType(Type):
5 """ Represents the base qubit type."""
6 ...
7 @classmethod
8 def _create_instance(cls):
9 cls._instance_cache = super(_BaseQubitType,

cls).__new__(cls)
10

11 class QubitType(_BaseQubitType):
12 """ The type for qubits. """
13 null = ’0’
14 intrinsic_name = ’q1’
15

16 def __str__(self):
17 return ’q1’
18

19 def format_constant(self, value):
20 return str(value)
21

22 QubitType._create_instance()

Code 5. Represents the classes of qubit type.

varied to assess the scalability and efficiency of the transpilers
under different circuit complexities.

B. Performance Analysis

Figure 2 compares transpilation time between the QCOR
and QCC IR transpiler methods. The graph illustrates the
relationship between the number of qubits (X-axis), the depth
of the circuit (Y-axis), and the transpilation time in seconds
(Z-axis). Based on the experimental results, the average tran-
spilation time for generating LLVM QIR using the proposed
transpiler was approximately 0.189 seconds, while the average
transpilation time for the QCOR transpiler was approximately
28.303 seconds. This indicates a significant reduction in tran-
spilation time when using our transpiler compared to QCOR,
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Fig. 2. Comparison of transpilation time for QCOR and QCC IR transpiler.
The X-axis represents the number of qubits, the Y-axis represents the depth
of the circuit, and the Z-axis represents the transpilation time in seconds.

with a percentage reduction of approximately 99.33%. This
significant reduction highlights the effectiveness of our tran-
spiler in the IR transpilation workflow for quantum circuits.

IV. CONCLUSION

In conclusion, we have presented a transpiler for converting
Qiskit’s quantum circuits to LLVM Quantum Intermediate
Representation (QIR). Through experimental evaluation, we
demonstrated the efficiency of our transpiler in significantly re-
ducing transpilation time compared to the existing framework
QCOR. The experimental results showcased an average execu-
tion time reduction of approximately 99.33% when using our
transpiler compared to QCOR. Our transpiler performs supe-
rior transpilation time reduction across all circuit sizes tested.
Notably, as the complexity of quantum circuits increases, the
efficiency gains become more pronounced, showcasing the
scalability of our approach. Furthermore, our framework’s
modular design facilitates extensibility and maintainability,
allowing for future enhancements and optimizations.
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Development of a single photon source and its application at room
temperature in KRISS
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Abstract. KRISS has developed and applied room temperature single photon sources utilizing diamond silicon
vacancy, gallium nitride defects, and hexagonal boron nitride vacancy. The study observed varying relaxation times
influencing photon stability, with GaN demonstrating high stability and hBN exhibiting high photon emission rates

(over 106/s).
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1 Introduction

Accurate photon measurement with high repeatability
and low uncertainty is essential in few-photon metrol-
ogy based on photon number [1-6]. Low photon number
fluctuations and high repeatability are critical for qual-
ifying a standard light source, but phenomena such as
blinking and internal relaxations in single photon emit-
ters can constrain these qualities [7-9], with variations
observed across different materials. This study focuses on
room temperature single photon emitters, including sili-
con vacancy in diamond (SiV), defects in gallium nitride
(GaN), and vacancy in hexagonal boron nitride (hBN),
which are known for their spectrally narrow and accessi-
ble platforms for single photon fluorescence.
We investigate the photon number statistics and fluc-

tuations of these emitters, as they significantly influ-
ence the accuracy of photon flux for radiometry appli-
cations. Additionally, we compare the maximum count
rates achievable with these materials using conventional
confocal microscopy collection techniques. Detection
count rates depend on refractive index geometries and
detection techniques. While our experiments are limited
by estimations of internal quantum efficiency and theo-
retical maximum count rates under continuous wave op-
eration, future application-oriented studies are needed to
further optimize collection efficiency, a crucial aspect of
photonics.
To discern general tendencies and characteristics

amidst the complexity and variety of our materials, this
study is based on a substantial dataset collected from nu-
merous emitters. Our dataset comprises two levels: the
first includes basic properties for identifying single pho-
ton emitters, while the second encompasses the utiliza-
tion of source characteristics in applications. Data fields
in the first level include photon coincidence correlation
g(2)(0) spectra and stability, which are used to authenti-
cate single photon fluorescence. Statistical distributions
of the positions of spectral peaks were collected for sub-

∗hongi2011@kriss.re.kr
†heejin.lim@kriss.re.kr
‡wookjaelee@kongju.ac.kr
§jinkyuyang@kongju.ac.kr

Figure 1: Presentation examples of applications in these
three fields, showcasing the research findings and poten-
tial uses of each material. (a) Illustrates the experimen-
tal setup for comparing SPAD and traceable detectors,
which have different units, in the context of quantum
radiometry. (b) Shows the single photon source setup
developed for plug-and-play quantum wireless commu-
nication. (c) Depicts the flow cytometry experimental
setup used for counting DNA and RNA molecules.

sequent studies on defect states and their formations.

2 Result and Discussion

In order to find the optimal material for realizing quan-
tum radiometry, KRISS evaluated single photon source
characteristics using various materials such as silicon
vacancy nano-diamond, gallium nitride and hexagonal-
boron nitride. Figure 1 presents examples of applications
in these three fields, showcasing the research findings and
potential uses of each single emitters. In the field of
quantum radiometry, KRISS used hexagonal boron ni-
tride (hBN) to compare the brightness range of 1 to 2
Mcps SPAD detectors(unit:CPS) with conventional de-
tectors(unit:W), measuring detection ranges down to 1
to 1 pW levels. This allowed for a comparative analysis
of the units of conventional and SPAD detectors.

For the quantum wireless communication field, GaN
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was utilized due to its superior long-term stability among
the three materials studied. However, since the count
rate was relatively low at 200 kCPS, a bulls-eye grating
was employed to enhance the brightness.
Lastly, in the quantum bio-sensing field, the same con-

focal setup was used to develop flow cytrometry for mea-
suring the quantities of DNA and RNA.
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Abstract. Quantum metrology offers a way of more accurate and precise estimation surpassing the
capabilities of classical methods. However, noise often undermines the enhanced estimation performance
in practical situations. Quantum error correction (QEC) - a method for correcting logical errors in quantum
information processing - can be applied for quantum metrology to restore estimation accuracy from the
noise. It has been shown that QEC cannot correct the noise parallel to the signal that we want to
estimate, while it works well against the noise perpendicular to the signal. In this study, we apply the
virtual purification method - an error mitigation approach to reduce the parallel noise and yields more
accurate estimations than those obtained through QEC-applied metrology.
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1 Noiseless metrology

Let us consider the canonical phase estimation where
an unknown signal ϕ is embedded by the unitary
operation

Û(ϕ) = exp

−iϕ
2

N∑
j=1

Ẑ(j)

 = exp

(
−iϕ

2
Ĥ

)
, (1)

where Ẑ(j) is the Pauli Z operator acting on jth qubit
and Ĥ ≡

∑N
i=1 Ẑi is the signal Hamiltonian. To estimate

ϕ, we consider N -qubit GHZ state as a quantum probe
|ψ0⟩ = |0⟩⊗N

+ |1⟩⊗N
. The corresponding signal state is

then

|ψ(ϕ)⟩ = e−iNϕ
2 |0⟩⊗N

+ ei
Nϕ
2 |1⟩⊗N

. (2)

We emphasize that the signal state lies in the 2-
dimensional Hilbert space whose basis vectors are |0⟩⊗N

and |1⟩⊗N
. We denote the corresponding Hilbert

space as H. It also has been studied that among
all possible combinations of the quantum probes and
the measurements, the smallest estimation error can be
achieved by measuring the signal state |ψ(ϕ)⟩ in the

eigenbasis of Â =
∏N

j=1 Ŷ
(j), where Ŷ (j) is the Pauli

Y acting on ith qubit. In this study, we mainly focus on
this scenario.

2 Independent Identically Distributed
Dephasing error

In practical situations, the presence of noise
deteriorates an estimation performance. Especially,
when one cannot obtain complete information about

∗swleego.kist.re.kr
†changhun0218@gmail.com

the noise, a bias occurs during the estimation, that
cannot be mitigated merely by augmenting the sample
size, unlike the statistical error. Notably, as the sample
size increases, the bias tends to outweigh the statistical
error and becomes the predominant source of estimation
error. In this study, we inspect the efficacy of the
stabilizer-based QEC and the virtual purification method
in terms of reducing the bias that occurs from the
lack of information about the noise. We consider
the independent identically distributed dephasing noise
(IIDD) as a dominant noise during the estimation, which
can be described as

ρ → E(ρ̂) = E(1) ◦ E(2) ◦ · · · ◦ E(N)(ρ̂), (3)

where, E(i) is the local Pauli noise which is defined as

E(i)(ρ̂) = pI ρ̂+ pzẐ
(i)ρ̂Ẑ(i). (4)

Here pI + pz = 1. The IIDD is one of the representative
noises, which is parallel to the signal, that cannot be
corrected by the QEC [3]. We assume that the IIDD
noise is characterized by its noise strength ∆ where the
probabilities pI , pz are functions of ∆. In addition, we
consider the mild noise limit pI = O(1) and pz = O(∆)
where ∆ is assumed to be small. Under the IIDD noise,
the signal state |ψ(ϕ)⟩⟨ψ(ϕ)| becomes the error state

ρ̂e(ϕ) ≡ E(|ψ(ϕ))⟩⟨ψ(ϕ))|) (5)

=

(
1 + (pI − pz)

N

2

)
|ψ(ϕ)⟩⟨ψ(ϕ)| (6)

+

(
1− (pI − pz)

N

2

) ∣∣∣ψ(ϕ− π

2N
)
〉〈
ψ(ϕ− π

2N
)
∣∣∣ . (7)

Since IIDP noise commutes with the signal unitary Û(ϕ),
our analysis includes IIDP noise occurring either before
or after the signal unitary process. We emphasize that
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the dominant eigenvector of ρ̂e is the ideal signal state
|ψ(ϕ)⟩, and

∣∣ψ(ϕ− π
2N )

〉
is orthogonal to |ψ(ϕ)⟩. When

one does not apply either the QEC and the virtual
purification, the corresponding bias, which we denote as
Be, is [1, 2]

Be ∝ Tr
[
ρ̂e(ϕ)Â

]
− ⟨ψ(ϕ)|Â|ψ(ϕ)⟩ (8)

= −2Npz⟨ψ(ϕ)|Â|ψ(ϕ)⟩+O(∆2) = O(∆). (9)

3 Stabilizer formalism based QEC
applied case

To apply the stabilizer QEC to reduce the bias, let
us encode the Hilbert space H, where the signal state
lies, into the larger Hilbert space. To construct the
larger Hilbert space, we assume that one can prepare
the noiseless NA-qubit ancilla system and the parameter
ϕ cannot be embedded in the ancilla mode, as a
consequence, the signal unitary acting on the (N +NA)-
qubit system, is described as

ÛL(ϕ) = exp

(
−iϕ

2
(Ĥ ⊗ ÎA)

)
= exp

(
−iϕ

2
ĤL

)
, (10)

where ÎA is the identity operator defined in the ancilla
mode and ĤL ≡ Ĥ ⊗ ÎA. Next, let us consider a code
space, which we denote as C(s), defined with the stabilizer
generator set

s = {ŝ1, ŝ2, · · · ŝN+NA−1}, (11)

where ŝi’s are the Pauli operators acting on (N + NA)-
qubit system. First, let us inspect the codewords of the
code space C(s), which we denote as

|0⟩⊗N → |0⟩L ≡ |c0⟩ ⊗ |φ0⟩A , (12)

|1⟩⊗N → |1⟩L ≡ |c1⟩ ⊗ |φ1⟩A . (13)

The original quantum probe |ψ0⟩ is encoded in the logical
quantum probe which we denote as |ψL0⟩

|ψ0⟩ → |ψL0⟩ = |0⟩L + |1⟩L , (14)

where the corresponding logical signal state is

|ψL(ϕ)⟩ = ÛL(ϕ) |ψL0⟩ (15)

=
(
e−iϕ

2 Ĥ |c0⟩
)
⊗ |φ0⟩A +

(
e−iϕ

2 Ĥ |c1⟩
)
⊗ |φ1⟩A (16)

= e−iNϕ
2 |0⟩L + ei

Nϕ
2 |1⟩L . (17)

As a result, the codewords should be |0⟩L = |0⟩⊗N ⊗
|φ0⟩A and |1⟩L = |1⟩⊗N ⊗ |φ1⟩A. Next, let us inspect the
relation between the stabilizer generators and the signal
Hamiltonian. Since the logical signal state lies on the
code space, the following equation should be satisfied:

ŝi |ψL(ϕ)⟩ = |ψL(ϕ)⟩ −→ Û†
L(ϕ)ŝiÛL(ϕ) |ψL0⟩ = |ψL0⟩ ,

(18)

i.e., all the stabilizer generators should commute with
ĤL. Equivalently, one can easily show that to commute

with ĤL, all the stabilizer generators should commute
with Ẑ(j) ⊗ ÎA for all j = 1, 2, · · · , N . Therefore, all the
Pauli Z errors cannot be corrected by the QEC scheme
since all the stabilizers commute with all the Pauli Z
operators. As a result, QEC cannot reduce the bias
occurring from the dephasing noise, which results in the
same bias as the error case:

BQEC =Be ∝ Tr
[
ρ̂e(ϕ)Â

]
− ⟨ψ(ϕ)|Â|ψ(ϕ)⟩ (19)

= −2Npz⟨ψ(ϕ)|Â|ψ(ϕ)⟩+O(∆2) = O(∆).
(20)

4 Virtual Purification

Instead of directly attaining the purified error state
ρ̂n
e

Tr[ρ̂n
e ]
, (here ρ̂ne is n squares of the error state), the virtual

purification allows one to obtain the expectation value of

an observable Â over the purified state
Tr[Âρ̂n

e ]
Tr[ρ̂n

e ]
, without

any prior knowledge about the noise. When the virtual
distillation is applied to the quantum metrology, the bias
becomes

BVP ∝ Tr

[
ρ̂ne

Tr[ρ̂ne ]
Â

]
− ⟨ψ(ϕ)|Â|ψ(ϕ)⟩ (21)

= −2N(pz)
n⟨ψ(ϕ)|Â|ψ(ϕ)⟩+O(∆n+1) = O(∆n),

(22)

where n is the mitigation order of the virtual purification
[1, 2]. By comparing Eqs. (20) and (22), one can find that
the virtual purification there is a noisy estimation scheme
that the virtual purification outperforms the stabilizer-
based QEC, in terms of reducing the bias.
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Figure 1: (a)-(c) Simulations of bias (with log scale) exploiting GHZ state (N = 5) as a quantum probe in the presence
of dephasing noise with different noise strengths. We use Ns = 109 numbers of samples. The lines are theoretical
values of the bias errors and the markers are the simulated values.
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Generic Bell inequalities with many local measurements
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Abstract. Violations of Bell inequalities imply that local realistic theories cannot predict the correlations
produced by quantum theory. Since Bell’s original discovery for the two-particle systems, there have been
many studies on generalizing Bell inequalities to more complex systems, such as multi-particle systems.
We here present Bell inequalities involving many measurements and show that the quantum violation can
be calculated using a Greenberger-Horne-Zeilinger entangled state. We introduce a geometric method to
calculate the violations of our Bell inequalities.

Keywords: Bell’s theorem, Bell inequalities, Greenberger-Horne-Zeilinger state

1 Introduction

Bell derived a constraint on correlations for two re-
mote systems that local hidden variable theories must
obey, and he showed that the constraint can be violated
by quantum mechanics in case of two coupled spin-1/2
particles and suitable local measurements [1]. This is
known as Bell’s theorem. Since Bell’s original discovery,
there have been many theoretical and experimental ef-
forts to verify Bell’s theorem [2, 3, 4, 5]. Nowadays, it
is known that violations of Bell inequalities are essential
conditions for various quantum information protocols to
beat their classical counterparts, for example, quantum
random number generation, quantum cryptography, re-
ducing communication complexity, and so on [6]. There-
fore, considerable efforts have been devoted to studying
Bell inequalities theoretically and experimentally [7].

We here investigate Bell’s theorem involving many
observables by suggesting the generic Bell inequalities
for (3,M,D) systems. A Bell inequality is said to be
generic in the sense that it is directly connected with the
Greenberger-Horne-Zeilinger (GHZ) theorem. We show
that the maximal quantum expectations of our generic
Bell operators can be achieved by the GHZ entangled
state. In order to increase the number of local measure-
ments, we deploy the quantum Fourier transformation
and the phase shift operation. To calculate the upper
bound of local realistic descriptions for the Bell inequal-
ities, we introduce a geometric approach. We shall show
the violations of the generic Bell inequalities involving
three (M = 3) and four (M = 4) measurement settings.

2 Results

We suggest a generic Bell operator for the tripartite
D-dimensional system involving three measurement set-
tings, which reads

B̂3 =
1

33

D−1∑
n=1

2∑
γ=0

3⊗
j=1

2∑
ηj=0

Ωγηjωnηj/3X̂n
j (ηj/3), (1)

where Ω = exp(2πi/3) and ω = exp(2πi/D). Note that
nth powers operator X̂n

j (ηj/3) is the ηjth observable of
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jth party and it reads

X̂(ν) = ω−ν

(
D−2∑
n=0

|n+ 1〉 〈n|+ ωνD |0〉 〈D − 1|

)
. (2)

The upper bound of the function B̂3 can be achieved by
the generalized GHZ state |ψ〉 = 1√

D

∑D−1
n=0 |n, n, n〉 as

〈ψ| B̂3 |ψ〉 = D − 1. (3)

It is because the GHZ state corresponds to the eigenstate
of the composite observables

⊗3
j=1 X̂

n
j (ηj/3) in Eq. (1),

see also Ref. [8].
Local realistic theories assume that the measurement

outcomes are predetermined before the actual measure-
ments and any physical influences on one side propagate
at most at the speed of light. By definition, the outcome
of measurement Xj(ηj/3) is predetermined as its eigen-
value ωα(j,ηj), where α(j, ηj) is integer. As a result, the
Bell function based on LHVs is given by

B3LHV =
1

32

2∑
~η

δ3(η̃)δD(η̃/3 + α̃)D − 1, (4)

with η̃ =
∑3
j=1 ηj and α̃ =

∑3
j=1 α(j, ηj). Here δD(α) =

1 if α ≡ 0 mod D and δD(α) = 0 otherwise. We sug-
gest a geometrical approach to obtain the classical up-
per bound. To describe our idea, we first apply to the
(3, 2, D) system. The classical Bell function is given by

B2LHV =
D

4
[δD(a1 + a2 + a3) + δD(a1 + b2 + b3 + 1)

+δD(b1 + a2 + b3 + 1) + δD(b1 + b2 + a3 + 1)]− 1. (5)

It was shown in Ref. [9] that the classical upper bound,
that is, the right hand side in Eq. (5) reads 3D/4 − 1.
We shall reproduce the result by using our geometrical
approach.

Consider a square with eight points depicted in
Fig. 1(a). Each point indicates the integer aj(or bj) and
each line implies the four delta functions in Eq. (5), re-
spectively. The variables by dotted lines are assigned to
the same values. Now, let us assign the integers to satisfy
the functions as δD(a) = 1 in a clockwise direction.
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+
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+
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+
1)�D(b1 + b2 + a3 + 1)

Figure 1: Geometrical method to calculate the classical
upper bound of two measurements settings. The four
delta functions of the generic Bell inequalities in Eq. (5)
are represented by the solid lines and each point denotes
the integer that is related to the predetermined value by
the local realistic description.

1. The variables a1 and a3 are freely chosen, but a2 =
−a1 − a3 to satisfy the δD(a1 + a2 + a3) = 1.

2. The value of b1 is given by a1 + a3 − b3 − 1 for the
δD(b1 + a2 + b3 + 1) = 1.

3. We must assign the value of −2a3 − a1 + b3 to the
b2 to satisfy the δD(b1 + b2 + a3 + 1) = 1.

4. Finally, we get the following delta function:
δD(−2a3 + 2b3 + 1).

The last delta function cannot be a unity for even D-
dimensional system. The linear congruence 2(−a3+b3)+
1 ≡ 0 mod D has no solution for even D because g =
gcd(2, even D) = 2 and 2 - −1, where the notation a - b
means that a does not divide b. As a result, the last delta
function becomes zero, i.e., δD(−2a3 +2b3 +1) = 0. As a
result, the maximal number of the delta functions to be
unity is 3, that is, we have B2LHV ≤ 3D/4− 1.

Figure 2 represents a hexagon that is employed to solve
the (3, 3, D) case, where the nine delta functions can be
obtained. Similarly to the two observables case, each
point indicates the variables in the delta functions and
the variables linked by dotted line have the same values.
The nine solid lines are represented to all delta functions.
Following the same argument as for two observables case,
we can obtain a loop consisting of the six delta functions
respectively. It turns out that the linear congruence ob-
tained from the loop has no solution for D = 3d, where d
is integer, and therefore the only five delta functions can
be unity. Following to the further calculations, we finally
obtain the classical upper bound of the general Bell in-
equality for (3, 3, D) system as B3LHV ≤ 7D/9−1, which
is contradiction to the quantum upper bound (D − 1).

Note that a loop is significant in our method in the
sense that we assign the values in consecutive order to
satisfy each delta function, and consequently by the loop
we obtain the local realistic constraint. In this poster
presentation, we will describe the calculations for three
and four measurements cases in detail.

a1 a2a3

a3

a3

b3

b3

b3c3

c3c3

c1

c2

b2

b1

Figure 2: Three measurements case. The hexagon is em-
ployed to represent the nine delta functions.
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An Efficient Quantum Circuit Construction Method for Mutually
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Abstract. Mutually unbiased bases (MUBs) are commonly viewed as maximal incompatibility and
complementarity in quantum information theory, which contributes to various applications like quantum
state tomography, error correction, entanglement detection, and quantum cryptography. The quantum
Fourier transformation circuit (or H⊗n) produces a basis mutually unbiased with the computational one
but can not directly generalize to a complete set of 2n + 1 MUB circuits. Based on a set of 2n + 1 MUB
formular given by the Galois-Fourier method, we design an efficient algorithm to generate each of 2n + 1
quantum MUBs circuits on n-qubit systems within O(n3) time. The 2n nontrivial circuits (excluding I⊗n)
consist of a maximum of (n2 + 7n)/2 H, S, and CZ gates, structured as −H − S − CZ−. Alternatively,
they can be implemented using H⊗n and a diagonal operation. On average, the count of S gates, CZ gates,
and CZ gates with distance u amounts to 3n/2, (n2−n)/4, and (n−u)/2, respectively. Moreover, we have
observed that the entanglement segment comprises 2n− 3 fixed modules, and the 2n circuits satisfy some
intriguing “linear" relations. Precisely, the knowledge of n special MUB circuits is enough to construct all
2n + 1 MUB circuits. The strength of this new construction lies in its efficiency and simplicity, paving
the way for implementing a complete set of MUBs in diverse quantum information processing tasks on
high-dimensional quantum systems.

Keywords: Quantum circuits, mutually unbiased bases, quantum tomography

1 Introduction
Quantum measurement is the exclusive method for

obtaining information about quantum systems, form-
ing a crucial link for understanding microscopic quan-
tum states through empirical observations [1]. Projec-
tive measurements onto mutually unbiased bases (MUBs)
[2] are widely utilized in quantum information science.
Preparing an eigenstate of one basis, its distribution is
uniform across any other MUB, highlighting their maxi-
mal incompatibility and complementarity [3, 4, 5]. MUBs
are useful in quantum tomography [6, 7, 8, 9], uncer-
tainty relations [10, 11, 12, 13], quantum cryptography
[14, 15, 16, 17, 18], quantum error correction [19, 20, 21],
and entanglement identification [22, 23, 24, 25, 26], to
name a few.

Two MUBs can always be constructed in any finite-
dimensional Hilbert space [2]. However, the maximum
number of MUBs is limited to d + 1, which remains an
open question in quantum information theory [27]. When
d is prim power, d+1 MUBs can be constructed [7]. For
dimension d = 6, strong numerical evidence indicates
that there are no four MUBs [28, 29, 30, 31]. Some re-
search focuses on the structure behind complete (d + 1)
MUBs sets and incomplete sets [32, 33, 34].

To measure the state ρ using a projective measurement
onto one MUB {Uj |k⟩ : k = 0, · · · , d − 1}, we can apply
the unitary U†

j to ρ and subsequently measure in the
computational basis. We aim to efficiently implement
2n + 1 MUB circuits in n-qubit systems, starting with
circuits involving two MUBs. Even two MUBs usually
work in a lot of quantum information tasks, the 2n + 1

∗ming-jing-happy@163.com
†wudongsheng14@mails.ucas.ac.cn

MUB circuits, together with the computational measure-
ment, are essential as minimal and optimal resources for
reconstructing all unknown n-qubit states [6, 7]. Addi-
tionally, while many d-dimensional Quantum Key Distri-
bution (QKD) protocols, such as the BB84 protocol, use
only two MUBs [35], employing d + 1 MUBs enhances
QKD robustness, particularly against correlated errors
[36, 37].

Let the first MUB circuit be I⊗n. The second MUB
circuit could be H⊗n or a Fourier transformation circuit
requiring O(n2) gates [38]. These circuits are integral to
numerous prominent quantum algorithms, including the
Deutsch-Jozsa algorithm [39, 40, 41], Shor’s factorization
algorithm [42], Grover’s search algorithm [43], and the
HHL algorithm [44], among others. However, these two
MUB circuits alone cannot generate the complete set of
2n+1 MUB circuits directly. Previous works constructed
a new second MUB circuit V [45, 46, 47, 48, 49]. It’s
interesting that repeating V with two times, three times
until 2n times, the complete set of 2n+1 MUB circuit can
be obtained. However, the gate number for some circuits
could be exponential.

In this work, we introduce a numerical method for
identifying both complete and incomplete MUBs using
complex Hadamard matrices and diagonal matrices. We
chose the 2n MUBs formula obtained by the Galois-
Fourier approach [50] to generate the complete MUBs
circuits. Each nontrivial MUB circuit is constructed
with the H⊗n and a diagonal operation, structured as
−H − S − CZ−. We propose an efficient computational
method to decompose each MUB circuit using O(n2)
gates within O(n3) time. An interesting entanglement
structure is presented. We find a linear relation where
the knowledge of n special MUB circuits describes all
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2n + 1 MUB circuits. We calculate the average occur-
rence of various gate types and analyze the distribution
of MUB state coefficients. Finally, we suggest several av-
enues for further exploration and discussion. The circuit
construction method holds the potential to enhance the
utilization of MUBs in the realms of quantum informa-
tion and quantum computing tasks in the future. And
the method could offer deeper insights into MUBs’ struc-
tural properties.

2 Preliminaries and a Numerical Method
Conjecture

Definition 1 (MUB). A set of two normalized eigen-
bases {|ψj⟩}d−1

j=0 and {|ϕk⟩}d−1
k=0 are called mutually unbi-

ased (MU) if the following condition holds for each j, k:

|⟨ψj |ϕk⟩|2 =
1

d
(1)

Given a set of M eigenbases labeled as {{|ψk
j ⟩}

d−1
j=0 :

k = 0, · · · ,M − 1}, if any two bases within this set are
MU, then the set is said to contain M MUBs. For prime
power dimensions d, a set containing maximum d + 1
MUBs can always be found.

Definition 2 (Complex Hadamard matrix). Given a
unitary matrix U , it is called a complex Hadamard matrix
if each matrix element Ujk satisfies the following condi-
tion:

|Ujk|2 =
1

d
(2)

Any complex Hadamard matrix can produce the sec-
ond basis mutually unbiased with computation one
{|k⟩}d−1

k=0.
Fix a basis {|ψ0

j ⟩}
d−1
j=0 from a set of MUBs, it corre-

sponds to a unitary operation I =
∑d−1

k=0 |ψ0
j ⟩⟨ψ0

j |. For
any other MUB {|ψk

j ⟩}
d−1
j=0 , it corresponds to unitary op-

eration Uk =
∑d−1

k=0 |ψk
j ⟩⟨ψ0

j |.

Corollary 1. Finding a set of M MUBs is equivalent to
finding M−1 unitary operations {U0 = I, U1, · · · , UM−1}
such that U†

jUk is a complex Hadamard matrix for each
different j, k = 0, · · · ,M − 1.

The Corollary yields a numerical method to construct
a set of MUBs [32, 33, 34], illustrated as Fig.(1). We
may as well let the first row of the unitary operations be
real number for the freedom choice of global phase. If
we have infinite computational resources, the process in
Fig.(1) will produce all the set of MUBs.

Similar to the numerical method to construct symmet-
ric informationally complete measurement (SIC-POVM)
[51], the problem is to find d2 unit complex vectors
{|ϕj⟩}d

2

j=1 such that the following condition is satisfied
for different j, k

|⟨ϕj |ϕk⟩|2 = 1/(d+ 1) (3)

The existence problems of d + 1 MUBs and SIC-POVM
with d2 elements are identified as two open questions in

Figure 1: Method 1: First, we choose a complex
Hadamard matrix U1. Then we find another Hadamard
matrix U2 such that U†

1U2 is still a complex Hadamard
matrix. We continue this process until we find the final
matrix UM .

quantum information theory [27]. Zauner’s conjecture
[52, 53] simplify the computation process in Eq.(3) by
finding one fiducial state |ϕ0⟩. Define X =

∑d−1
k=0 |k +

1⟩⟨k|, Z =
∑d−1

k=0 e
2π

√
−1k/d|k⟩⟨k|. If we can find |ϕ0⟩

such that
|⟨ϕ0|XjZk|ϕ0⟩|2 = 1/(d+ 1) (4)

for j, k = 0, · · · , d − 1, the SIC-POVM is then con-
structed. Recently, a necessary condition for the exis-
tence of fiducial state is given [54].

We think the effort to find MUBs in Corollary 1 can
be modified as follows.

Method 1. In order to construct the unitary operations
{U0 = I, U1, · · · , UM−1} in Corollary 1, we can find a
complex Hadamard matrix U1 and search M − 2 diago-
nal matrices Dk, where k = 1, · · · , d − 2. The diagonal
element is chosen from

{eπ
√
−1/d, e2π

√
−1/d, · · · , e(2d−1)π

√
−1/d, 1}

If the following condition is held,

U†
1D

†
jDkU1 for different j, k (5)

The operations {U0 = I, U1, D1U1, · · · , DM−2U1} can
generate M MUBs.

This method can avoid the knowledge of the math-
ematical theory of finite rings and field to construct
MUBs. For n-qubit case, d = 2n, we let the diagonal
elements be {±1,±

√
−1} and let U1 = H⊗n, the numer-

ical experiment shows that we can always construct the
complete set of MUBs using Method 1. Besides, the so-
lutions are not unique. For example, the four nontrivial
MUB circuits for n = 3 can be the following after repre-
senting the diagonal matrix with S gates and CZ gates.

However, it seems like things are heading towards two
extremes. The results [48, 49] cost polynomial compu-
tations with some circuits decomposed of exponential
gates. Using method 1 costs exponential computations
with polynomial decomposed gates for small n.

To construct each MUB circuit within polynomial time
and using a polynomial number of gates, we turn to the
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formulas for 2n nontrivial MUBs. We find the formula by
Wootters and Fields [7], the Galois Rings formula [55],
the Galois-Fourier formula [50], or the method involving
the division of 4n − 1 Pauli observables [56, 57]. The
Galois-Fourier formula [50] directly meets our require-
ments. And we find some structures for these MUB cir-
cuits.

3 Results
Result 1. New decomposition method and circuit struc-
ture. The circuit for the computational basis is I⊗n. For
j = 0, . . . , 2n − 1, every nontrivial U(j) can be deter-
mined explicitly and decomposed into the following circuit
sequence: −H − S − CZ−.

Analysis. According to [50, Eq.(2.70)], the j-th MUBs
consists of elements

|ejk⟩ =
1√
2n

2n−1∑
l=0

|l⟩(−1)k⊙l · αj
l

We made a permutation to obtain states

|f jk⟩ =
1√
2n

2n−1∑
l=0

|l⟩(−1)k·l
T

· αj
l .

The parameter αj
l are recalculated

αj
l =

n−1∏
r=0

(√
−1

)ar(j)lr ·
∏

0⩽s<t⩽n−1

(−1)bs,t(j)lslt (6)

Then
U(j) = UCZ(j) · US(j) ·H⊗n, (7)

where

H⊗n = H ⊗ · · · ⊗H︸ ︷︷ ︸
n times

, US(j) = Sa0(j) ⊗ · · · ⊗ San−1(j)

and
UCZ(j) =

∏
0≤s<t≤n−1

CZ(s, t)bs,t(j), (8)

with CZ(s, t) being the n-qubit CZ operation with qs as
the control qubit and qt as the target qubit.

Result 2. Entanglement structure. If gate CZ(s, t) ap-
pears at circuit U(j), then gate CZ(s′, t′) should also ap-
pear with s+ t = s′+ t′. Thus the entanglement parts are
divided into 2n− 3 modules.

Result 3. Time efficiency. Given an input qubit number
n and a random j ∈ {0, 1, . . . , 2n−1}, the time complexity
to generate the circuit U(j) is O(n3).

Result 4. Linear property. There are “linear" relations
between the 2n MUBs circuits U(j). Specifically, given
the knowledge of n circuits U(20), U(21), · · · , U(2n−1),
any circuit U(j) can be deduced, 0 ≤ j ≤ 2n − 1.

Result 5. Gates efficiency and average count. The
maximal number of gates in an arbitrary circuit U(j) is
(n2+7n)/2. The average number of S gates is 3n/2, the
average number of CZ gates is (n2−n)/4, and the num-
ber of CZ gates of distance u (represented as CZ(s, t)
with t− s = u) is (n− u)/2.

Result 6. Balanced parameter distributions.
For these 4n nontrivial MUB states, each component

belongs to {±1,±
√
−1}/

√
2n and these coefficients are

evenly distributed.
When we look at all the coefficients at all rows of 2n

nontrivial MUBs, the elements in the first row are always
1/

√
2n.

Given any Uj we look at the coefficients in the col-
umn. They are evenly distributed from {±1}/

√
2n or

from {±
√
−1}/

√
2n.
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