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Abstract — Independently of the input prob-
ability distribution p, we construct the quantum
universal variable-length source code in which the av-
erage error concerning to Bures’ distance tends
to 0 and the probability that the coding rate is
greater than the entropy rate H(ρp), tends to 0. If
we can estimate the entropy H(ρp), we can com-
press the coding rate to the admissible rate H(ρp)
with a probability close to 1. However, when we
perform a naive measurement for the estimation
of H(ρp), the input state is destroyed. Therefore,
in our code, it is the main problem to treat the
trade-off between the estimation of H(ρp) and the
non-demolition of the input state.

I. Review of quantum fixed-length
source coding

Let H be a finite-dimensional Hilbert space that repre-
sents the physical system of interest and let S(H) be the
set of density operators on H. Consider a source which
produces the pure state �ρn := ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn with
the i.i.d. distribution pn of the probability p on pure
states. In fixed-length source coding, a sequence of states
�ρn is compressed to the state in a smaller Hilbert space
Hn ⊂ H⊗n, whose dimension is enR. Here, the encoder
and the decoder is a trace-preserving completely positive
(TP-CP) map En and Dn, respectively. The average of
the total error is given by

εn,p(En, Dn) :=
∑

�ρn∈S(H⊗n)

pn(�ρn)b2 (�ρn, Dn ◦ En(�ρn)) ,

where Bures’ distance is defined as b(ρ, σ) :=√
1 − Tr

∣∣√ρ
√

σ
∣∣. In this setting, we focus on the infi-

mum of the rate with which the average error goes to
zero. The infimum is called the minimum admissible rate
Rp of p, and is defined by

Rp := inf
{

lim sup
1
n

log dimHn

∣∣∣∣ ∃{(Hn, En, Dn)},
εn,p(En, Dn) → 0

}
.

As was proven by Schumacher [1], and Jozsa and Schu-
macher [2], and Barnum et al. [9], the equation
Rp = H(ρp) := −Tr ρp log ρp holds, where ρp :=∑

ρ∈S(H) p(ρ)ρ. Moreover Jozsa et al. [3] constructed
the projections PR,n for a arbitarary rate R such that

rankPR,n ≤ enR, Tr PR,nρ⊗n → 1, (1)

for any density matrix ρ satisfynig H(ρ) < R, and pro-
posed a quantum universal fixed-length source code de-
pending only on the entropy rate.

II. Quantum universal variable-length
source coding

In the classical system, depending on the input state, the
encoder can determine the coding length. Such a code is
called a variable-length code. Using this type code, we
can compress any information without error. Lynch [4]
and Davisson [5] proposed a variable-length code with no
error, in which the coding rate is less than H(p) except
for a small enough probability under the distribution p.
Such a code is called a universal variable-length source
code. Today, their code can be regarded as the following
two-stage code: at the first step, we send the empirical
distribution which indicates a subset of data, and in the
second step, we send information which indicates every
sequence belonging to the subset.

This paper deals with quantum data compression in
which the encoder determines the coding length, accord-
ing to the input state. In order to make this decision, he
must measure the input quantum system. Thus, we need
describe a quantum measurement with state evolution,
by using an instrument consisting of a decomposition
E′ = {E′

ω}ω∈Ω, by CP maps from S(H) to S(H) under
the condition

∑
ω∈Ω TrE′

ω(ρ) = 1, ∀ρ ∈ S(H). When
we perform the instrument E′ = {E′

ω}ω∈Ω for an initial
state ρ, we get the data ω and the final state E′

ω(ρ)
TrE′

ω(ρ) with
the probability TrE′

ω(ρ). A quantum variable-length en-
coder E is given by a measurement process E′ and encod-
ing process E′′

ω depending on the data ω, which is a TP-
CP map from S(H) to S(Hω), where the Hilbert space Hω

depends on the data ω, as Eω = E′′
ω ◦E′

ω. Therefore, any
quantum variable-length encoder E consists of a decom-
position E = {Eω}ω∈Ω, by CP maps from S(H) to S(Hω)
under the condition

∑
ω∈Ω TrEω(ρ) = 1, ∀ρ ∈ S(H).

For a detail about instruments, see Ozawa [8].
The decoder is given by a set of TP-CP maps D =

{Dω}ω∈Ω, which presents the decoding process depending
on the data ω. A pair of an encoder E = {Eω}ω∈Ω and
a decoder D = {Dω}ω∈Ω is called a quantum variable-
length source code on H. The coding length is described
by log |Ω|+log dimHω, which is a random variable obey-
ing the probability PE

ρ (ω) := TrEω(ρ) when the input
state is ρ.



When the state �ρn on H⊗n obeys the i.i.d. distribu-
tion pn of the probability p on pure states, the error of
decoding for a variable-length code (En,Dn) on H⊗n is
evaluated by Bures’ distance as

∑
ωn∈Ωn

TrEn
ωn

(�ρn)b2

(
�ρn,Dn

ωn

(
En

ωn
(�ρn)

TrEn
ωn

(�ρn)

))
,

and the average error is given by

εn,p(En,Dn) :=
∑

�ρn∈S(H⊗n)

pn(�ρn)

×
∑

ωn∈Ωn

TrEn
ωn

(�ρn)b2

(
�ρn,Dn

ωn

(
En

ωn
(�ρn)

TrEn
ωn

(�ρn)

))
.

In this case, the data ωn obeys the probability:

PEn

pn (ωn) :=
∑

�ρn∈S(H⊗n)

pn(�ρn)TrEn
ωn

(�ρn) = TrEn
ωn

(ρ⊗n
p ).

A sequence {(En,Dn)} of quantum variable-length source
code is called universal if εn,p(En,Dn) → 0 for any prob-
ability p on pure states.

As mentioned latter, there exists a quantum universal
variable-length source code {(En,Dn)} satisfying

lim PEn

pn

{
1
n

(log |Ωn| + log dimHωn) ≥ H(ρp) + ε

}
= 0

for any ε > 0. Conversely, if a quantum variable-length
source code {(En,Dn)} is universal and

lim PEn

pn

{
1
n

(log |Ωn| + log dimHωn) ≥ R

}
= 0,

then R ≥ Rp = H(ρp).

III. Construction of a quantum
variable-length source code

First, for an intuitive explanation of our construction,
we naively construct a good variable-length code. For
this construction, we fixed a strictly increasing sequence
�a := {ai}l+1

i=1 of real numbers such that 0 = a1 < a2 <
. . . < al < al+1 = log d. We define the encoder E�a,n

with the data set {1, . . . , l} by

P�a,n
i := Pai+1,n − Pai,n

E�a,n
i (ρn) := P�a,n

i ρnP�a,n
i , ρn ∈ S(H⊗n),

and define the decoder D�a,n
i as the embedding to H⊗n.

Assume that H(ρp) belongs to the interval [ai, ai+1). As
is guaranteed by (1), if H(ρp) does not lie on the bound-
ary on the interval [ai, ai+1), the probability Tr ρ⊗n

p P�a,n
i

tends to 1. Thus, we can prove εn,p(E�a,n,D�a,n) → 0.
Of course, if we choose ai+1 − ai to be sufficiently small,
the coding length is close to the entropy H(ρp) with al-
most probability 1. However, if H(ρp) lies on the bound-
ary, the state is demolished, as is caused by the same

reason of Lemma 2 in [7]. In this case, we can prove
lim εn,p(E�a,n,D�a,n) > 0. Thus, it is not universal.

Next, we assume that the interval ai+1 − ai (i =
2, . . . , l − 1) is δ := log d/(l − 1) and that a2 − a1, al+1 −
al < δ. Then, our code is uniquely defined by the
choice of a2 ∈ (0, δ). For the non-demolition of initial
states, we construct a variable-length code, by choosing
a2 ∈ { k

n | k
n ∈ (0, δ), k ∈ Z} at random. In this protocol,

the set { k
n | k

n ∈ (0, δ), k ∈ Z} × {1, 2, . . . , l, l + 1} corre-
sponds to the data set Ωn, and we can expect that the
average error tends to 0 for any probability p on pure
states. In order to achieve the rate H(ρp), we need to
choose the set Ωn so that 1

n log |Ωn| → 0. It is essential
in our code to restrict a2 to this lattice { k

n |k ∈ Z}.
Moreover, when δ is large for a fixed number n, the de-

molition of initial state seems small and the coding length
seems long. Therefore, roughly speaking, in this code for
a finite number n, by choosing δ, we can treat the trade
off between the coding length and the non-demolition of
the input state. In Hayashi and Matsumoto [7], using the
representation theory like as Keyl and Werner [6], we con-
struct a code in which the average error uniformlly goes to
0 and the exponent of its overflow probability is optimal.
In order to satisfy the universality and the optimality of
the overflow exponent, we need choose δ depending on n,
more carefully.

IV. Discussion
In our code, the nonzero number δ is essential. One
may expect that the quantum variable-length source code
{(E0,n,D0,n)} is universal. However, this code destroys
the input state by a quantum measurement [7]. More-
over, it seems impossible to construct a universal code
whose average error εn,p exponentially tends to 0 [7].
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