Remarks on additivity of the Holevo channel capacity and of the entanglement of formation

Keiji Matsumoto, ${ }^{*}$ Toshiyuki Shimono ${ }^{\dagger}$ and Andreas Winter ${ }^{\ddagger}$

1 Introduction

Holevo capacity of a quantum channel and entanglement of formation [1] of a quantum state raise the natural problem of additivity under tensor products.

The literature on the subject is vast and increasing fastly, and in the presentation, we will point out that the Stinespring dilation of a completely positive map provides the link between the two quantities, which will be exploited in a number of examples, some involving group symmetry arguments. Some of these results are used to demonstrate a gap between entanglement cost and distillable entanglement.

We also discuss the relation of superadditivity of entanglement of formation, most notably its implying additivity of entanglement of formation, of channel capacity, and of channel capacity with a linear cost constraint.

2 Holevo capacity $C(T)$ and entanglement of formation $E_{f}(\rho)$

Holevo capacity, or the classical capacity $C(T)$ of a quantum channel $T: \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}\left(\mathcal{H}_{2}\right)$, with \mathcal{H} and \mathcal{H}_{2} being Hilbert spaces, is given by

$$
C(T)=\sup _{\left\{p_{i}, \pi_{i}\right\}} I(p ; T(\pi))
$$

where $\left\{p_{i}, \pi_{i}\right\}$ runs over all the pure state ensemble on $\mathcal{H}, I(p ; \rho)$ is Holevo mutual information, and $S(\omega)$ is von Neumann entropy[6]. The entanglement of formation $E_{f}(\rho)$ [1] of a state ρ on $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ is defined as

$$
E_{f}(\rho):=\inf _{\left\{p_{i}, \rho_{i}\right\}} \sum_{i} p_{i} S\left(\operatorname{Tr}_{\mathcal{H}_{2}} \pi\right)
$$

where inf is taken over all the pure state ensembles $\left\{p_{i}, \rho_{i}\right\}$ with $\sum_{i} p_{i} \rho_{i}=\rho$.

It is conjectured that both of these quantities are additive (see [5] and the above references),

$$
\begin{array}{r}
C\left(T_{1} \otimes T_{2}\right)=C\left(T_{1}\right)+C\left(T_{2}\right) \\
E_{f}\left(\rho_{1} \otimes \rho_{2}\right)=E_{f}\left(\rho_{1}\right)+E_{f}\left(\rho_{2}\right) \tag{2}
\end{array}
$$

[^0]While (1) proved for the cases like,
(I) unital qubit-channels $[7,8]$,
(II) arbitrary depolarising channels $[2,3,9]$,
(III) entanglement-breaking channels [12],
(2) is proved only in a few cases the only published examples are in [14]. In our presentation, (1) is related to (2), producing several new examples in which (2) is valid.
If the additivity of entanglement of formation would turn out to be true, the entanglement cost $E_{c}(\rho)$ of ρ, i.e. the asymptotic rate of EPR pairs to approximately create n copies of ρ is given by $E_{f}(\rho)$, for we have [4],

$$
E_{c}(\rho)=\lim _{n \rightarrow \infty} \frac{1}{n} E_{f}\left(\rho^{\otimes n}\right)
$$

3 Stinespring dilation: Linking $C(T)$ to $E_{f}(\rho)$

Due to a theorem of Stinespring [13] the TPCP map T can be presented as the composition of an isometric embedding of \mathcal{H} into a bipartite system with a partial trace. By embedding into larger spaces we can present U as restriction of a unitary, which often we silently assume done. Denote $\mathcal{K}:=U \mathcal{H} \subset \mathcal{H}_{1} \otimes \mathcal{H}_{2}$, the image subspace of U. Then we can say that T is equivalent to the partial trace channel, with inputs restricted to states on \mathcal{K}. This entails:

$$
\begin{equation*}
C(T)=\sup \left\{S\left(\operatorname{Tr}_{\mathcal{H}_{1}} \rho\right)-E_{f}(\rho): \rho \text { state on } \mathcal{K}\right\} \tag{3}
\end{equation*}
$$

Theorem 1 If for any two channels T and T^{\prime}, with fixed Stinespring dilation as above, $C\left(T \otimes T^{\prime}\right)=C(T)+$ $C\left(T^{\prime}\right)$, then

$$
E_{f}\left(\rho_{T} \otimes \rho_{T^{\prime}}\right)=E_{f}\left(\rho_{T}\right)+E_{f}\left(\rho_{T^{\prime}}\right)
$$

where ρ_{T} is a state which maximise eq. (3).
Most interesting is the case when we know $C\left(T^{\otimes n}\right)=$ $n C(T)$, such as (I)-(III), for which we can conclude

$$
\begin{equation*}
E_{f}\left(\rho_{T}^{\otimes n}\right)=n E_{f}\left(\rho_{T}\right)=n E_{c}\left(\rho_{T}\right) \tag{4}
\end{equation*}
$$

4 Group symmetry

Making use of group symmetries, like [14], we can prove the additivity of E_{f} for more states. The examples (I) (II) in previous section satisfy the following. A compact group G acts irreducibly both on \mathcal{K} and \mathcal{H}_{2} by a unitary representation (which we denote by V_{g} and U_{g}), which commutes with the map T (partial trace):

$$
\begin{equation*}
\operatorname{Tr}_{\mathcal{H}_{1}}\left(V_{g} \sigma V_{g}^{\dagger}\right)=U_{g}\left(\operatorname{Tr}_{\mathcal{H}_{1}} \sigma\right) U_{g}^{\dagger} \tag{5}
\end{equation*}
$$

By use of this symmetry and eq. (4), for all states ρ spanned by $\left\{V_{g}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right| V_{g}^{*}: g \in G\right\}$, where $\left|\psi_{0}\right\rangle$ is a pure state with $E_{f}\left(\left|\psi_{0}\right\rangle\right)=\min \left\{E_{f}(|\psi\rangle):|\psi\rangle \in \mathcal{K}\right\}$, we can conclude,

$$
\begin{equation*}
E_{c}(\rho)=E_{f}(\rho)=\min \{E(\psi):|\psi\rangle \in \mathcal{K}\} . \tag{6}
\end{equation*}
$$

If in addition the action of G in \mathcal{K} is transitive like in the example (II), eq. (6) holds for all the state supported on \mathcal{K}, because $E_{f}(|\psi\rangle)$ takes the same value for any pure state $|\psi\rangle$ in \mathcal{K}.

5 Gap between E_{c} and E_{D}

The distillable entanglement, $E_{D}(\rho)$ measures the number of bell pairs which is distillable from infinitely many copies of ρ, which, in case that ρ is a pure state, equals $E_{c}(\rho)=S\left(\operatorname{Tr}_{\mathcal{H}_{\infty}} \rho\right)$. In case that ρ is a mixed state, in general, $E_{D}(\rho) \leq E_{c}(\rho)$, and, in some cases, strict inequality holds [15]. In our example (I), we can supply some more examples of such states by use of the inequality [15],

$$
\log \left\|\rho^{\Gamma}\right\|_{1}>E_{D}(\rho)
$$

By use of the discussion in previous section, we have,

$$
E_{c}\left(\rho_{T, s}\right)=H\left(p_{0}+p_{z}, p_{x}+p_{y}\right),
$$

where

$$
\begin{aligned}
\rho_{T, s} & =s\left|\psi_{T}\right\rangle\left\langle\psi_{T}\right|+(1-s)\left|\psi_{T}^{\perp}\right\rangle\left\langle\psi_{T}^{\perp}\right|, \\
\left|\psi_{T}\right\rangle & =\sqrt{p_{0}}|0\rangle \otimes|0\rangle+\sqrt{p_{x}}|1\rangle \otimes|x\rangle \\
& +i \sqrt{p_{y}}|1\rangle \otimes|y\rangle+\sqrt{p_{z}}|0\rangle \otimes|z\rangle, \\
\left|\psi_{T}^{\perp}\right\rangle & =\sqrt{p_{0}}|1\rangle \otimes|0\rangle+\sqrt{p_{x}}|0\rangle \otimes|x\rangle \\
& -i \sqrt{p_{y}}|0\rangle \otimes|y\rangle-\sqrt{p_{z}}|1\rangle \otimes|z\rangle,
\end{aligned}
$$

with
$p_{0}+p_{z}-p_{x}-p_{y} \geq\left|p_{0}+p_{y}-p_{x}-p_{z}\right|,\left|p_{0}+p_{x}-p_{y}-p_{z}\right|$.

By some elementary considerations, $\log \left\|\rho_{T, \frac{1}{2}}^{\Gamma}\right\|_{1}<$ $E_{c}\left(\rho_{T}\right)$ is equivalent to,

$$
\begin{align*}
z^{4}-z^{3} & +4\left(p_{0} p_{x} p_{y}+p_{0} p_{x} p_{z}+p_{0} p_{y} p_{z}+p_{x} p_{y} p_{z}\right) z \\
& -16 p_{0} p_{x} p_{y} p_{z}>0 \tag{8}
\end{align*}
$$

with $z=-\frac{2^{E_{c}\left(\rho_{T, \frac{1}{2}}\right)}-1}{2}$ (figure 1). Therefore, in this region,

$$
E_{D}\left(\rho_{T, \frac{1}{2}}\right)<E_{c}\left(\rho_{T, \frac{1}{2}}\right) .
$$

If $p_{0}+p_{z}=p_{x}+p_{y}=\frac{1}{2}$ and $p_{0} \neq p_{z}, p_{x} \neq p_{y}$, we can prove the gap even for all $0<s<1$,

$$
E_{D}\left(\rho_{T, s}\right)<E_{c}\left(\rho_{T, s}\right)
$$

6 Superadditivity of E_{f} ?

Conjecture 2 (Superadditivity) Let ρ be a state on $\mathcal{H} \otimes \mathcal{H}^{\prime}$, where $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ and $\mathcal{H}^{\prime}=\mathcal{H}_{1}^{\prime} \otimes \mathcal{H}_{2}^{\prime}$. Then,

$$
\begin{equation*}
E_{f}(\rho) \geq E_{f}\left(\operatorname{Tr}_{\mathcal{H}^{\prime}} \rho\right)+E_{f}\left(\operatorname{Tr}_{\mathcal{H}} \rho\right) \tag{9}
\end{equation*}
$$

where all entanglements of formation are understood with respect to the 1-2-partition of the respective system.

If this superadditivity conjecture turns out to be true, additivity both of E_{f} and of Holevo capacity will be obtain as its corollaries.

Figure 1: Plots in a $\left(p_{x}, p_{y}, p_{z}\right)$-frame of the admissible parameters according to eq. (7) and of the region for which eq. (8)holds (between the two surfaces).

References

[1] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, W. K. Wootters, Phys. Rev. A, vol. 54, no. 5, pp. 3824-3851, 1996.
[2] D. Bruss, L. Faoro, C. Macchiavello, M. Palma, J. Mod. Optics, vol. 47, no. 2, pp. 325-331, 2000.
[3] A. Fujiwara, T. Hasizume, to be published in Phys. Lett. A.
[4] P. M. Hayden, M. Horodecki, B. M. Terhal, J. Phys. A: Math. Gen., vol. 34, no. 35, pp. 6891-6898, 2001.
[5] A. S. Holevo, Rep. Mathematical Phys., vol. 12, no. 2, pp. 273-278, 1979.
[6] A. S. Holevo, IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 269-273, 1998.
[7] C. King, J. Mathematical Phys., vol. 43, no. 3, pp. 1247-1260, 2002.
[8] C. King, e-print quant-ph/0103156, 2001.
[9] C. King, e-print quant-ph/0204172, 2002.
[10] C. King, M. B. Ruskai, IEEE Trans. Inf. Theory, vol. 47, pp. 192-209, 2001.
[11] B. Schumacher, M. D. Westmoreland, Phys. Rev. A, vol. 56, no. 1, pp. 131-138, 1997.
[12] P. W. Shor, e-print quant-ph/0201149, 2002.
[13] W. F. Stinespring, Proc. Amer. Math. Soc., vol. 6, pp. 211-216, 1955.
[14] G. Vidal, W. Dür, J. I. Cirac, Phys. Rev. Letters, vol. 89, no. 2, 027901, 2002.
[15] G. Vidal, R. F. Werner, Phys. Rev. A, vol. 65, 032314, 2002.

[^0]: *Quantum Computation and Information project, JST, Hongo 5-28-3, Bunkyo-ku, Tokyo 133-0033, Japan. Email: keiji@qci.jst.go.jp
 ${ }^{\dagger}$ Department of Computer Science, Graduate School of Information Science and Technology, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan. Email: shimono@is.s.u-tokyo.ac.jp
 \ddagger Department of Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, United Kingdom. Email: winter@cs.bris.ac.uk

