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1 Introduction

Holevo capacity of a quantum channel and entangle-
ment of formation [1] of a quantum state raise the nat-
ural problem of additivity under tensor products.

The literature on the subject is vast and increasing
fastly, and in the presentation, we will point out that
the Stinespring dilation of a completely positive map
provides the link between the two quantities, which will
be exploited in a number of examples, some involving
group symmetry arguments. Some of these results are
used to demonstrate a gap between entanglement cost
and distillable entanglement.

We also discuss the relation of superadditivity of en-
tanglement of formation, most notably its implying ad-
ditivity of entanglement of formation, of channel capac-
ity, and of channel capacity with a linear cost constraint.

2 Holevo capacity C(T ) and en-
tanglement of formation Ef(ρ)

Holevo capacity, or the classical capacity C(T ) of a
quantum channelT : B(H) −→ B(H2), with H and H2

being Hilbert spaces, is given by

C(T ) = sup
{pi,πi}

I
(
p;T (π)

)

where {pi, πi} runs over all the pure state ensemble on
H, I(p; ρ) is Holevo mutual information, and S(ω) is von
Neumann entropy[6]. The entanglement of formation
Ef(ρ) [1] of a state ρ on H1 ⊗H2 is defined as

Ef(ρ) := inf
{pi,ρi}

∑

i

piS (TrH2π) ,

where inf is taken over all the pure state ensembles
{pi, ρi} with

∑
i piρi = ρ.

It is conjectured that both of these quantities are ad-
ditive (see [5] and the above references),

C(T1 ⊗ T2) = C(T1) + C(T2), (1)
Ef(ρ1 ⊗ ρ2) = Ef (ρ1) + Ef(ρ2). (2)
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While (1) proved for the cases like,
(I) unital qubit–channels [7, 8],

(II) arbitrary depolarising channels [2, 3, 9],
(III) entanglement–breaking channels [12],
(2) is proved only in a few cases the only published
examples are in [14]. In our presentation, (1) is related
to (2), producing several new examples in which (2) is
valid.

If the additivity of entanglement of formation would
turn out to be true, the entanglement cost Ec(ρ) of ρ,
i.e. the asymptotic rate of EPR pairs to approximately
create n copies of ρ is given by Ef(ρ), for we have [4],

Ec(ρ) = lim
n→∞

1
n
Ef

(
ρ⊗n

)
.

3 Stinespring dilation: Linking
C(T ) to Ef(ρ)

Due to a theorem of Stinespring [13] the TPCP map
T can be presented as the composition of an isometric
embedding of H into a bipartite system with a partial
trace. By embedding into larger spaces we can present
U as restriction of a unitary, which often we silently
assume done. Denote K := UH ⊂ H1 ⊗H2, the image
subspace of U . Then we can say that T is equivalent
to the partial trace channel, with inputs restricted to
states on K. This entails:

C(T ) = sup{S(
TrH1ρ

) −Ef (ρ) : ρ state on K}. (3)

Theorem 1 If for any two channels T and T ′, with
fixed Stinespring dilation as above, C(T ⊗T ′) = C(T )+
C(T ′), then

Ef(ρT ⊗ ρT ′) = Ef(ρT ) + Ef(ρT ′ ),

where ρT is a state which maximise eq. (3). �

Most interesting is the case when we know C(T⊗n) =
nC(T ), such as (I)-(III), for which we can conclude

Ef(ρ⊗n
T ) = nEf (ρT ) = nEc(ρT ). (4)

4 Group symmetry

Making use of group symmetries, like [14], we can prove
the additivity of Ef for more states. The examples (I) -
(II) in previous section satisfy the following. A compact
group G acts irreducibly both on K and H2 by a unitary
representation (which we denote by Vg and Ug), which
commutes with the map T (partial trace):

TrH1

(
VgσV

†
g

)
= Ug

(
TrH1σ

)
U †

g . (5)



By use of this symmetry and eq. (4), for all states ρ
spanned by {Vg|ψ0〉〈ψ0|V ∗

g : g ∈ G}, where |ψ0〉 is a
pure state with Ef(|ψ0〉) = min

{
Ef(|ψ〉) : |ψ〉 ∈ K}

,
we can conclude,

Ec(ρ) = Ef(ρ) = min {E(ψ) : |ψ〉 ∈ K} . (6)

If in addition the action of G in K is transitive like
in the example (II), eq. (6 ) holds for all the state sup-
ported on K, because Ef (|ψ〉) takes the same value for
any pure state |ψ〉 in K.

5 Gap between Ec and ED

The distillable entanglement, ED(ρ) measures the num-
ber of bell pairs which is distillable from infinitely many
copies of ρ, which, in case that ρ is a pure state, equals
Ec(ρ) = S(TrH∞ρ). In case that ρ is a mixed state,
in general, ED(ρ) ≤ Ec(ρ), and, in some cases, strict
inequality holds [15]. In our example (I), we can sup-
ply some more examples of such states by use of the
inequality [15],

log ‖ρΓ‖1 > ED(ρ).

By use of the discussion in previous section, we have,

Ec(ρT,s) = H(p0 + pz, px + py),

where

ρT,s = s|ψT 〉〈ψT |+ (1 − s)|ψ⊥
T 〉〈ψ⊥

T |,
|ψT 〉 =

√
p0|0〉 ⊗ |0〉 +

√
px|1〉 ⊗ |x〉

+ i
√
py|1〉 ⊗ |y〉 +

√
pz|0〉 ⊗ |z〉,

|ψ⊥
T 〉 =

√
p0|1〉 ⊗ |0〉 +

√
px|0〉 ⊗ |x〉

− i
√
py|0〉 ⊗ |y〉 − √

pz|1〉 ⊗ |z〉,

with

p0 + pz − px − py ≥ |p0 + py − px − pz|, |p0 + px − py − pz|.
(7)

By some elementary considerations, log ‖ρΓ
T, 12

‖1 <

Ec(ρT ) is equivalent to,

z4 − z3 + 4(p0pxpy + p0pxpz + p0pypz + pxpypz)z
− 16p0pxpypz > 0, (8)

with z = −2
Ec(ρ

T, 1
2

)
−1

2 (figure 1). Therefore, in this
region,

ED(ρT, 1
2
) < Ec(ρT, 1

2
).

If p0 + pz = px + py = 1
2 and p0 �= pz, px �= py, we

can prove the gap even for all 0 < s < 1,

ED(ρT,s) < Ec(ρT,s).

6 Superadditivity of Ef?

Conjecture 2 (Superadditivity) Let ρ be a state on
H⊗H′, where H = H1 ⊗H2 and H′ = H′

1 ⊗H′
2. Then,

Ef(ρ) ≥ Ef (TrH′ρ) + Ef(TrHρ), (9)

where all entanglements of formation are understood
with respect to the 1–2–partition of the respective sys-
tem.

If this superadditivity conjecture turns out to be true,
additivity both of Ef and of Holevo capacity will be
obtain as its corollaries.
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Figure 1: Plots in a (px, py, pz)–frame of the admissible
parameters according to eq. (7) and of the region for
which eq. (8)holds (between the two surfaces).
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