Lower bound on the quantum query complexity of read-once functions: abstract
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We establish a lower bound of 2(y/n) on the bounded-error
quantum query complexity of read-once Boolean functions,
providing evidence for the conjecture that Q(+/D(f)) is a
lower bound for all Boolean functions.

In the quantum query model of computation, the
goal is to compute a function f of the string = which
is accessed via queries. A state of the computer is:
S i oz 0)i)]2), (where 3, fagisf? = 1). Here
|z) € Hpp, with @ € {0,1}™; Hpy, is called the input regis-
ter. We require i € {0, 1}M°87+11; |i) belongs to a query
register containing an index specifying what bit of x will
be queried if the oracle is called (or a null query), and |z)
belongs to an auxiliary register with an unspecified (but
finite, for a given computation) number of qubits. The
query and auxiliary registers together form the workspace
Hy.

The unitary operator O, the oracle, operates as follows:

O|l‘,i,2’> = (_l)ml l’,i,2> (1)

An algorithm is specified by (1) an arbitrary sequence
Ui,...,U; of unitary operators acting nontrivially only
on the Hyy and (2) a pair of orthogonal projectors Py on
Hyy satisfying Py + P, = Iy . It executes starting with
the input register set to the input z and all other registers
set to 0. Then the sequence Uy, O0,Us,0O,...,U;, O is
applied to the computer. Thus the state of the computer
is always of the form |z)®|¥, (¢)) where z is the input and
| ¥, (t)) is a vector of Hy (generally not a standard basis
state). If the final state of the computation is |z) @ |¥)
then the computation outputs j with probability equal
to [| P} ¥)][2.

The complexity of the algorithm is measured by the
number of calls ¢ to the oracle. For 0 < e < 1/2 a com-
putation is said to e-compute f if for every input, the
probability that the algorithm gives the wrong answer
for that input, is no greater than e. The e-error quan-
tum query complexity of f, denoted Q.(f) is the mini-
mum number of steps in an algorithm that e-computes
f- Up to a multiplicative constant, it is independent of
€€ (0,1/2).

In the bounded error model, quantum computation
speeds up f = OR of N variables quadratically (to v N
queries) over deterministic (and randomized) classical de-
cision trees. This is the best speedup result known for a
boolean total function.

Conjecture 1 For any boolean function f and € €

(0,1/2), Qe(f) = AD(f)'/?).

The best known result of this type says that for any
total f Q.(f) = Q(D(f)Y/%). Tt was obtained in [2], via
an extension to the quantum setting of the polynomials
methods introduced in [3].

Our main result is to prove the conjecture for the class
of read-once functions, those expressible by a boolean
formula in which each variable (bit z; of the input string)
appears once. This is a quantum counterpart to the lower
bounds on the randomized decision tree complexity of
read-once functions given in [4] and [5].

The result is proved by an inductive argument, to-
gether with an extension of a lower bound method of
Ambainis. We have learned of work by Hgyer, Neerbek,
and Shih [1] which applies a similar extension of Ambai-
nis’ method to other problems.

Ambainis’ method involves viewing a quantum algo-
rithm as inducing as a mapping from inputs z to quan-
tum states |¥,(¢)) of the workspace, which changes as
the computation proceeds. Initially, the mapping is con-
stant: the initial state of the machine is independent of
the input. If the algorithm e-computes f then at the
end of the computation the mapping must satisfy that
the two states associated with any pair of inputs having
different f values are nearly orthogonal. One carefully
selects a set of f-distinguished pairs. The sum of the
inner products of the corresponding states |1, (t)) must
decrease significantly during the computation. By deriv-
ing an upper bound on the decrease in the sum during a
single step, one can obtain a lower bound on the number
of steps.

We extend Ambainis’ bound by considering general
weighted sums of f-distinguished pairs. This allows one
to optimize the tradeoff in the sum, for example, between
abundant pairs of states requiring a certain variable x; to
be queried in order to distinguish them, and less abun-
dant pairs (which might otherwise have too little impact
on the sum) requiring a different variable to be queried,
by giving the latter a larger relative weight p,,. We
then prove the result for read-once functions by induc-
tion on the number of variables, where the induction step
involves a careful choice of weights depending on f to op-
timize the lower bound attained.

Our lower bound on Q.(f) is expressed in terms of a
complex vector |a) of length 2" indexed by inputs and
a 2™ x 2™ nonnegative real symmetric matrix I' indexed
by pairs of inputs, satisfying 'y, = 0 if f(z) = f(y).
Our weights decompose as jizy = azl'zya,. For each



i € {1,...,n} we define the I'-dependent quantity

Veg = Z Fzya (2)

YAy

the total I'-weight of inputs differing from x on variable
i. Further, for i € {1,...,n} we define:

v, = max Ve, ilVy,i
(2,y): T2y #0,2:#y;

v = max V.
ie{1,....n}

Theorem 1 Let f be an n-variate boolean function. Let
|y be a nonnegative real valued vector indexed by {0,1}™
and I" be a nonnegative real symmetric matriz indexed by
{0,1}" x {0,1}" satisfying I'y,, = 0 whenever f(z) =0
or f(y) = 1. If there is a quantum algorithm that e-
computes f using t queries, then

(ollla)(1 —2/aT=4) _ , ( (alla)
2 7 o (f7) @

(Buhrman and Szegedy (personal communication)
have independently obtained a similar result.) This
should be compared to Theorem 6 of [6].

For read-once functions, it suffices for I' to be the char-
acteristic function of a relation, but the nonuniformity of
the coefficients a (even for inputs giving the same value
of f) will be crucial. Then applying Theorem 1 gives:

Theorem 2 Q(\/n) is a lower bound on the bounded-
error quantum query complexity of all read-once Boolean
functions.

A read-once function can be represented a rooted tree
with n leaves, each corresponding to a different variable
(with some possibly negated), with each internal node
labeled either AND or OR. Each AND (OR) node in the
tree is associated to a function which is defined recur-
sively as the AND (OR) of the functions computed by its
children. WLOG, we assume that all of the children of an
AND node are OR nodes, and vice versa. Also, we con-
sider monotone functions, those for which the leaves are
nonnegated variables, since @) is preserved under nega-
tion of variables.

The idea of the proof is to represent f by an AND/OR
tree, and express f as g A ... A g" where ¢’ are the
functions computed at the children of the root labeled by
AND. In choosing a T" and |a) for applying Theorem 1,
we focus on critical inputs. An input is critical if for each
AND node, at most one child evaluates to 0 and for each
OR node, at most one child evaluates to 1. These are,
intuitively, the inputs on which f is hardest to compute.
(These play a similar role in the lower bound proofs for

the randomized query complexity of read-once functions
4] [5)).

Evaluating each node in a tree on a given input gives
the evaluated tree corresponding to that input, called a
critical tree if the input is critical. A critical child of an
node in a critical tree is one such that negating its value
negates the value of its parent. Two critical trees are
recursively defined to be neighbors if exactly one criti-
cal child of the root of one tree is negated compared to
the other tree, and the subtrees rooted at that child are
neighbors, while the subtrees rooted at the other chil-
dren are identical. Two neighbors differ on exactly one
input variable and consequently, for any critical input w
and any j € {1,...,n}, w has at most one neighbor that
differs from it on variable j.

We take I'y,, = 1 if =,y are critical neighbors, 0 other-
wise. Then v of Theorem 1 is equal to 1 (for by the last
sentence of the previous paragraph, the v, ; is at most 1
for any critical input w and j € {1,...,n}).

We choose |a) to maximize the lower bound of Theo-
rem 1 (given our particular choice of T"), using Lagrange
multipliers to obtain a set of first-order conditions. We
then inductively construct |a) that satisfies the first order
conditions. Assume (essentially WLOG) that the root is
an AND with r children, the i-th of which computes g°.
Write n; for the number of (boolean) variables in g%, so
n:= Y., n; is the number of (boolean) variables in f.
Assume we have determined the optimal |a*) for each of
the g;. We construct |a) in terms of these. Further we
show that if |?) gives a bound of x./n; for each of the g,
then |a) gives a bound of ky/n for f. We assume the coef-
ficients a,, oy to be chosen so as to make the lower bound
of theorem 1 (given the assumptions on I') maximal, not
only for f, but for each of the g;. With the base case of
one query to evaluate f(x;) = x;, this inductively implies
the bound of y/n for any AND/OR tree. In establishing
the induction step, we make extensive use of the first-
order conditions for Lagrange multiplier optimization of
Theorem 1’s lower bound expression (as simplified by our
additional assumptions), both for f and for the g°.
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