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We present a new type of limit theorems for the Hadamard walk. In contrast with the de
Moivre-Laplace limit theorem, our symmetric case implies that Xϕ

n /n converges in distribution
to a limit Zϕ as n → ∞ where Zϕ has a density 1/π(1 − x2)

√
1 − 2x2 for x ∈ (−√

2/2,
√

2/2).

PACS numbers: 03.67.Lx, 05.40.Fb, 02.50.Cw

The classical symmetric random walk on the line is
the motion of a particle which inhabits the set of inte-
gers. The particle moves at each step either one step to
the right with probability 1/2 or one step to the left with
probability 1/2. The directions of different steps are in-
dependent of each other. Here we consider quantum vari-
ations of the above classical random walk. Very recently
quantum random walks have been widely investigated
by a number of groups in connection with the quantum
computing, for examples, [1-13]. For more general set-
ting including quantum cellular automata, see [14]. In
[2], they gave two general ideas for analyzing quantum
random walks. One is the path integral approach, the
other is the Schrödinger approach. Here we take the
path integral approach, that is, the probability ampli-
tude of a state for the quantum random walk is given
as a combinatorial sum over all possible paths leading to
that state. In this paper we focus on the Hadamard walk
which has been extensively investigated in the study of
quantum random walks. The time evolution of the one-
dimensional Hadamard walk studied here is given by the
following unitary matrix (see [15]):

H =
1√
2

[
1 1
1 −1

]

The Hadamard walk is a quantum generalization of the
classical symmetric random walk in one dimension with
an additional degree of freedom called the chirality. How-
ever the symmetry of the Hadamard walk depends heav-
ily on initial qubit state, see [9]. The chirality takes val-
ues left and right, and means the direction of the motion
of the particle. The evolution of the quantum random
walk is given by the following way. At each time step, if
the particle has the left chirality, it moves one step to the
left, and if it has the right chirality, it moves one step to
the right.

More precisely, the Hadamard matrix H acts on two
chirality states |L〉 and |R〉: |L〉 → (|L〉+|R〉)/√2, |R〉 →
(|L〉 − |R〉)/√2 where L and R refer to the right and
left chirality state respectively. In fact, define |L〉 =
t[1, 0], |R〉 = t[0, 1], so we have H|L〉 → (|L〉 +
|R〉)/√2, H|R〉 → (|L〉 − |R〉)/√2 where t means the

trasposed operator. We introduce P and Q matrices as
follows:

P =
1√
2

[
1 1
0 0

]
, Q =

1√
2

[
0 0
1 −1

]

with H = P + Q. Here P (resp. Q) represents that
the particle moves to the left (resp. right) with equal
probability. We should remark that P and Q are useful
tools in the study of the iterates of H. However, they
cannot be interpreted as dynamical evolution operators
since they are not unitary. In the present paper, the
study on the dependence of a limit distribution on initial
qubit state is one of the essential parts, so we define the
set of initial qubit states as follows:

Φ =
{

ϕ =
[

α
β

]
∈ C2 : |α|2 + |β|2 = 1

}

Let Xϕ
n be the Hadamard walk at time n starting from

initial qubit state ϕ ∈ Φ. It is noted that Xϕ
0 = 0. For

fixed l and m with l + m = n and m − l = k,

Ξ(l,m) =
∑

lj,mj

P l1Qm1P l2Qm2 · · ·P lnQmn

summed over all lj,mj ≥ 0 satisfying m1 + · · ·+mn = m
and l1 + · · · + ln = l. Moreover, to define P (Xϕ

n = k), it
is convenient to introduce

R =
1√
2

[
1 −1
0 0

]
, S =

1√
2

[
0 0
1 1

]

We should remark that the set of P,Q,R, and S forms
an orthonormal basis of the vector space of complex 2×2
matrices. An expression of Ξ(l,m) can be given by using
P,Q,R and S (see Theorem 3 in [9]). The definition of
Ξ(l,m) gives

P (Xϕ
n = k) = (Ξ(l,m)ϕ)∗(Ξ(l,m)ϕ)

where n = l + m and k = −l + m. From this expression,
we obtain the characteristic function of Xϕ

n and the mth
moment of it. One of the interesting results is that when



m is even, the mth moment of Xϕ
n is independent of the

initial qubit state ϕ ∈ Φ. On the other hand, when m is
odd, the mth moment depends on the initial qubit state.
So the standard deviation of Xϕ

n in not independent of
the initial qubit state ϕ ∈ Φ. The above mentioned re-
sults for general 2 × 2 unitary matrices appeared in [8].

For the Hadamard walk, we have the following new
type of limit theorems: if −√

2/2 < a < b <
√

2/2, then
as n → ∞,

P (a ≤ Xϕ
n /n ≤ b) →

∫ b

a

1 − (|α|2 − |β|2 + αβ + αβ)x
π(1 − x2)

√
1 − 2x2

dx

for any initial qubit state ϕ = t[α, β]. The above
density function is denoted by f(x;ϕ). For the classi-
cal symmetric random walk Y o

n starting from the ori-
gin, the well-known central limit theorem implies that if
−∞ < a < b < ∞, then as n → ∞,

P (a ≤ Y o
n /

√
n ≤ b) →

∫ b

a

e−x2/2

√
2π

dx

This result is often called the de Moivre-Laplace limit
theorem. When we take ϕ = t[1/

√
2, i/

√
2] (symmetric

case), then we have the following quantum version of the
de Moivre-Laplace limit theorem: if −√

2/2 < a < b <√
2/2, then as n → ∞,

P (a ≤ Xϕ
n /n ≤ b) →

∫ b

a

1
π(1 − x2)

√
1 − 2x2

dx

So there is a remarkable difference between the quan-
tum random walk Xϕ

n and the classical one Y o
n even in a

symmetric case for ϕ = t[1/
√

2, i/
√

2]. The above limit
theorem can be also extended to ϕ ∈ Φ⊥, since Konno,
Namiki and Soshi [9] gave Φ⊥ = Φs = Φ0 where

Φ⊥ =
{

ϕ =
[

α
β

]
∈ Φ : |α| = |β|, αβ + αβ = 0

}

Φs = {ϕ ∈ Φ : P (Xϕ
n = k) = P (Xϕ

n = −k)
for any n ∈ Z+ and k ∈ Z}

Φ0 = {ϕ ∈ Φ : E(Xϕ
n ) = 0 for any n ∈ Z+}

and Z (resp. Z+) is the set of (resp. non-negative) inte-
gers. Noting that E(Xϕ

n ) = 0 (n ≥ 0) for any ϕ ∈ Φ⊥,
we have

V (Xϕ
n )/n2 → (2 −√

2)/2 = 0.29289 . . .

where V (X) is the variance of X. So the standard devia-

tion of the limit distribution is given by
√

(2 −√
2)/2 =

0.54119 . . .. This rigorous result reveals that numerical
simulation result 3/5 = 0.6 given by [12] is not so accu-
rate. As in a similar way, when we take ϕ = t[0, eiθ]
where θ ∈ [0, 2π) (asymmetric case), we see that if
−√

2/2 < a < b <
√

2/2, then as n → ∞,

P (a ≤ Xϕ
n /n ≤ b) →

∫ b

a

1
π(1 − x)

√
1 − 2x2

dx

So we have

E(Xϕ
n )/n → (2 −

√
2)/2 = 0.29289 . . .

V (Xϕ
n )/n2 → (

√
2 − 1)/2 = 0.20710 . . .

When ϕ = t[0, 1] (θ = 0), Ambainis et al. [2] gave the
same result. In their paper two approaches are taken,
that is, the Schrödinger approach and the path integral
approach. However their result comes mainly from the
Schrödinger approach by using a Fourier analysis. The
details on the derivation based on the path integral ap-
proach is not so clear compared with [8]. In another
asymmetric case ϕ = t[eiθ, 0] where θ ∈ [0, 2π), a similar
argument implies that if −√

2/2 < a < b <
√

2/2, then
as n → ∞,

P (a ≤ Xϕ
n /n ≤ b) →

∫ b

a

1
π(1 + x)

√
1− 2x2

dx

Noting that f(−x; t[eiθ, 0]) = f(x; t[0, eiθ]) for any x ∈
(−√

2/2,
√

2/2), we have the following same results as in
the previous case ϕ = t[0, eiθ]. So the standard devia-

tion of the limit distribution is given by
√

(
√

2 − 1)/2 =
0.45508 . . . . Simulation result 0.4544 ± 0.0012 in [10]
(their case is θ = 0) is consistent with our rigorous result.

This work is partially financed by the Grant-in-Aid for
Scientific Research (B) (No.12440024) of Japan Society
of the Promotion of Science.

[1] D. Aharonov, A. Ambainis, J. Kempe and U. V. Vazi-
rani, in Proceedings of the 33rd Annual ACM Symposium
on Theory of Computing, 50 (2001).
[2] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath and
J. Watrous, in Proceedings of the 33rd Annual ACM
Symposium on Theory of Computing, 37 (2001).
[3] E. Bach, S. Coppersmith, M. P. Goldschen, R. Joynt
and J. Watrous, quant-ph/0207008.
[4] A. M. Childs, E. Farhi and S. Gutmann, Quantum
Information Processing, 1, 35 (2002).
[5] W. Dür, R. Raussendorf, V. M. Kendon and H.-J.
Briegel, quant-ph/0207137.
[6] J. Kempe, quant-ph/0205083.
[7] N. Konno, quant-ph/0206053.
[8] N. Konno, quant-ph/0206103.
[9] N. Konno, T. Namiki and T. Soshi, quant-
ph/0205065.
[10] T. D. Mackay, S. D. Bartlett, L. T. Stephanson and
B. C. Sanders, J. Phys. A: Math. Gen. 35, 2745 (2002).
[11] C. Moore and A. Russell, Quantum walks on the
hypercubes, quant-ph/0104137.
[12] B. C. Travaglione and G. J. Milburn, Phys. Rev. A.
65, 032310 (2002).
[13] T. Yamasaki, H. Kobayashi and H. Imai, quant-
ph/0205045.
[14] D. Meyer, J. Stat. Phys. 85, 551 (1996).
[15] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information, (Cambridge University
Press, Cambridge, 2000).


