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Asymptotic entanglement concentration is discussed. We give the distillable entanglement as a
function of an error exponent. The formula fills the gap between the least upper bound of distillable
entanglement in probabilistic concentration, which is the well-known entropy of entanglement, and
the maximum attained in deterministic concentration. A strong converse of entanglement concen-
tration is also presented.

Quantum entanglement, an indispensable resource for
quantum information processing is expected to have a
rich mathematical structure behind its weirdness. As in
the case of other physical resources, quantification of en-
tanglement is the key to understanding its full potential.
The fundamental results are the intimate connection be-
tween the mathematical theory of majorization and en-
tanglement manipulation [1–4], and the existence of a
unique measure of entanglement in the asymptotic limit
[5, 6]. Entanglement concentration has been discussed
extensively as one way of quantifying pure-state entan-
glement [2–5, 7–10], but here we deal with it from the
viewpoint of error exponents.
Suppose we share n identical copies of a partially en-

tangled state |φ〉 =
∑d

i=1

√
pi|i〉|i〉, where the Schmidt

coefficients squared are arranged in decreasing order, i.e.,
p1 ≥ p2 ≥ · · · ≥ pd ≥ 0, and sum to one. Consider entan-
glement concentration that converts |φ〉⊗n into a maxi-
mally entangled state of size Ln with the optimal success
probability PLn . Bennett et al. [5] proved that the max-
imum number of Bell pairs distilled per copy from |φ〉⊗n

is given by

Eentropy(φ) = −
d∑

i=1

pi log2 pi, (1)

in the asymptotic limit, n → ∞. (Logarithms are taken
to base two throughout this paper.) They imposed the
condition that the success probability of entanglement
concentration tends to one in the asymptotic limit, i.e.,
PLn = 1− ε, where ε → 0 as n → ∞.
On the other hand, the maximum entanglement yield

in deterministic concentration [9] becomes

Edet(φ) = − log p1. (2)

The restriction deterministic means that the process suc-
ceeds with probability one both in finite regimes and in
the asymptotic limit.
Though the quantities Eentropy and Edet give entangle-

ment yield in the asymptotic limit, where both processes
succeed with probability one, the two quantities do not
coincide. We will see that the discrepancy is caused by
the difference of the rate at which failure probabilities
decrease when n tends to infinity in both concentration
processes.
In the following, we discuss the case where the optimal

success probability PLn converges to one as the number of
entangled pairs n increases. The rate of the convergence
is represented by an error exponent r, the first order co-
efficient in the exponent of the failure probability in the
asymptotic limit, which is defined as

r = lim
n→∞

{
− 1

n
log(1 − PLn)

}
. (3)

We will present the maximum number of Bell pairs
distilled per copy in the asymptotic limit, E, as a func-
tion of the error exponent r by using the Shannon en-
tropy H(p) = −∑d

i=1 pi log pi and the relative entropy
D(p ‖ q) =

∑d
i=1 pi log pi

qi
, where p and q are probability

distributions. First, we present a theorem that relates
entanglement yield and an error exponent via a mono-
tone function, from which we will derive a formula for
entanglement yield E(r).



Theorem 1 Consider a sequence of entanglement con-
centration schemes converting n identical copies of |φ〉 =∑d

i=1

√
pi|i〉|i〉, i.e., |φ〉⊗n, into a maximally entangled

state of size Ln, which attain the optimal success proba-
bility PLn . Suppose

lim sup
n→∞

(
1
n
logLn

)
< H(p), (4)

and

1
n
logLn > − log p1, (5)

where p = (p1, · · · , pd). Then,

lim sup
n→∞

(
1
n
logLn

)
= f

(
lim inf
n→∞

{
− 1

n
log(1− PLn)

})
,

(6)
and

lim inf
n→∞

(
1
n
logLn

)
= f

(
lim sup

n→∞

{
− 1

n
log(1− PLn)

})
,

(7)
where f(r) ≡ minq:D(q‖p)≤r {D(q ‖ p) + H(q)}.
Theorem 1 leads to the following corollary, which gives

the maximum asymptotic entanglement yield E(r) under
the requirement that the failure probability decreases as
rapidly as 2−nr:

Corollary 2 Consider a sequence of entanglement con-
centration schemes converting |φ〉⊗n into a maximally
entangled state of size Ln with success probability
P

(n)
success, such that

r ≤ lim inf
n→∞

{
− 1

n
log(1 − P (n)

success)
}

. (8)

Let us denote the class of all such sequences by C(r).
Then, for r > 0,

E(r) ≡ max
C(r)

lim sup
n→∞

(
1
n
logLn

)
= max

C(r)
lim inf
n→∞

(
1
n
logLn

)

= min
q:D(q‖p)≤r

{D(q ‖ p) + H(q)} . (9)

This corollary provides the missing link between the
least upper bound of distillable entanglement in proba-
bilistic concentration and the maximum attained in de-
terministic one: Eentropy = H(p) = limr→0 E(r) and
Edet = − log p1 = limr→∞ E(r).

We have discussed how entanglement yield behaves
when the failure probability exponentially decreases. The
above results are obtained by using the method of types
[11, 12]. In addition, we consider the case where the
success probability exponentially decreases. Assuming
that the optimal success probability converges to zero as
the number of entangled pairs n increases, we can also
derive the distillable entanglement as a function of the
exponent of the success probability in a similar way to
the asymptotically successful case mentioned above. The
analysis shows that the success probability exponentially
decreases when we try to distill more entanglement than
H(p) (strong converse). This was observed in Ref. [7],
but here we are able to drive the exact error rate.
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FIG. 1: Entanglement yield in asymptotic entanglement con-
centration with an error exponent r. The horizontal axis rep-
resents the error exponent. The vertical axis represents the
number of Bell pairs distilled per copy in the asymptotic limit:
E(r) = minq:D(q‖p)≤r {D(q ‖ p) + H(q)}.
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