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We consider the local filtering in order to investigate the properties of the closest disentangled and
PPT states in any system (multi-party with any dimension). This physical operation ensures that
the state after the operation is disentangled (or PPT) if the state before operation is disentangled
(or PPT). As a result, we can obtain some equations the closest disentangled and PPT state must
satisfy. Further, we find some sufficient conditions for which the closest disentangled (or PPT) state
has the same reduction as the given entangled state.

Quantum entanglement is the most striking feature of
quantum mechanics. In order to quantify the resource of
the entanglement, several measures have been proposed.
The relative entropy of entanglement [1,2] is defined as
the distance to the disentangled state closest to the given
entangled state under the measure of the relative entropy.
This implies that the closest disentangled state plays an
important role to quantify the quantum entanglement. In
addition, the closest disentangled state itself answers the
following question: What is the state when the quantum
correlation is completely but minimally (maintaining the
classical correlation as long as possible [2]) washed out?
Therefore, it will be important to clarify the properties
of the closest disentangled state itself to understand the
characteristics of the quantum entanglement.

Further, the analytical formula of the relative entropy
of entanglement have been strongly desired to clarify the
relations between the entanglement and the performance
of many applications of quantum information. Howev-
er, deriving the analytical formula has been known to
be a hard problem even in the simplest two-qubit sys-
tem. Mathematically, the difficulty lies in searching for
the closest disentangled state on the complicated bound-
ary surface of the set of disentangled states in the Hilbert
space. Therefore, to investigate the closest disentangled
state might be also important in a sense that it might
give some hints for solving the hard problem.

In this paper, we consider the physical operation of the
local filtering in order to investigate the properties of the
closest disentangled states. This physical operation en-
sures that the state after the operation is disentangled if
the state before operation is disentangled. As a result, we
can obtain some equations the closest disentangled state
must satisfy, in spite that the geometry of the entangled-
disentangled boundary is quite complicated. In particu-
lar, we show that the reduction of the closest disentangled
state is strongly related to the extremal condition of the
local filtering on each party. Although the equations we
obtain are not still tractable, we find some sufficient con-
ditions for which the closest disentangled state has the
same reduction as the given entangled state.

For a given entangled state �, its relative entropy of
entanglement is defined as [1,2]

ER(�) = min
σ∈D

S(�||σ) = min
σ∈D

[
Tr� log � − Tr� log σ

]
, (1)

where the minimization is performed over the set of dis-
entangled states D. Let us assume that σ∗ is the closest
disentangled state which minimizes S(�||σ), and hence

S(�||σ) ≥ S(�||σ∗) (2)

for any σ ∈ D. Among those disentangled states, we
consider the state σ′ which is obtained from σ∗ by local
filtering operations. It should be noted that, in the defi-
nition of the relative entropy of entanglement, the set of
D is sometimes taken for the positive partial transposed
(PPT) states [3], and the state σ∗ achieving the minimum
is the closest PPT state. Even in this case, σ′ obtained
from σ∗ by local filtering is also PPT. Therefore, all the
results for the closest disentangled states shown below
also hold for the closest PPT states.

Let us consider Bob’s local filtering in two qubits:

σ′ =
(I ⊗ et�n·�σ/2)σ∗(I ⊗ et�n·�σ/2)

Tr[(I ⊗ et�n·�σ/2)σ∗(I ⊗ et�n·�σ/2)]
, (3)

where �σ is the vector of Pauli matrices, and t is a real
parameter. Using the polynomial expansion with respect
to t, we obtain

Tr� log σ′ = Tr� log σ∗

+ t

[
Tr�

∫ ∞

0

1
σ∗ + x

{σ∗, (I ⊗ �n · �σ)}
2

1
σ∗ + x

dx

−Tr[(I ⊗ �n · �σ)σ∗]
]

+ O(t2), (4)

where {A, B} ≡ AB +BA. If the linear coefficient of t
is not zero, there always exists σ′ satisfying S(�||σ′) <
S(�||σ∗) for a small enough |t|, but this contradicts Eq.
(2). Therefore the linear coefficient must be zero for any
direction of �n. Then σ∗ must satisfy

�sB = �rB + �gB, (5)

where �sB and �rB is the Bloch vector of σ∗
B and �, re-

spectively. The real vector �gB is given by (� ◦ g)B =



TrA(� ◦ g) = 1
2�gB · �σ with |i〉 being eigenstates of σ∗

(σ∗=
∑

i λi|i〉〈i|), and the matrix g being

gij =

{
λi+λj

2
log λi−log λj

λi−λj
− 1 for λi �= λj

0 for λi = λj

(6)

In this way, it can be seen that the local property of σ∗

is strongly related to the extremal condition with respect
to the local filtering.

The above discussion can be extended to any system in
a very straightforward manner. For the multi-party sys-
tem, the local filtering of the type I⊗ . . .⊗et�n·�σ/2⊗ . . .⊗I
can be applied. For the party with d-dimension, the set
of Pauli matrices is replaced with the set of d2−1 Hermi-
tian generators �J of SU(d). Then we arrive at the main
result of this paper:

Let � be an entangled state in any multi-party system
with any dimension. The reduction of the closest dis-
entangled (and PPT) state σ∗ with respect to the party
X must satisfy �sX = �rX +�gX, where �sX and �rX are the
generalized Bloch vector of σ∗

X and �X , respectively, and
(� ◦ g)X = 1

2�gX · �J .
It has been proved in Ref. [4], if ER(�)=max{S(�A)−

S(�), S(�B)−S(�)}, σ∗ must have the same reduction as
�. According to the above, the necessary and sufficient
condition for which the reductions are the same to each
other is given by �gX = 0. If σ∗ commutes with �, σ∗ is
diagonalized in the same basis as �. In this case �◦ g=0,
and hence �gX =0 for every party X . Therefore, [�, σ∗]=0
is a sufficient condition for which the reductions are the
same to each other.

Now it is worth to check how the condition of �sX =
�rX+�gX is satisfied in analytically solved examples of the
relative entropy of entanglement. In all of the already
solved examples, it can be seen that �gX = 0 and the re-
ductions are the same to each other. Does σ∗ commute
with � in all examples? The answer is no. Instead, we
found that all examples satisfy a condition, which is suffi-
cient for (�◦g)A =(�◦g)B =0 but weaker than [�, σ∗]=0,
that is

(|j〉〈j|[�, σ∗]|i〉〈i|)A = (|j〉〈j|[�, σ∗]|i〉〈i|)B = 0 (7)

for any i and j. Here, [A, B]≡AB−BA, and |i〉’s are the
eigenstates of σ∗. Depending on how to satisfy the con-
dition, the examples are mainly classified in the following
two categories:

(i) [�, σ∗] = 0 and Eq. (7) is satisfied. The Bell diag-
onal states in two qubits [1], maximally entangled
mixed states in two qubits [2,5], and isotropic state
with any dimension [3] belong to this category.

(ii) In the support space of �, (|j〉〈i|)A = (|j〉〈i|)B = 0
for all i �= j, and Eq. (7) is satisfied. The maxi-
mally correlated states (including pure states) [3,6]
and the state proposed in Ref. [7] belong to this
category.

It is interesting to note that, if we wash out the classi-
cal correlations as well as the quantum correlations, the
closest “uncorrelated” state is σu =�A ⊗ �B ⊗ �C · · · [1],
where the reductions of σu are always the same as �.
In the case of the closest disentangled state, although
there is no guarantee that the reductions are the same,
(� ◦ g)X =0 is rather widely satisfied and reductions are
the same in many cases as shown above.

Instead of the local filtering, we can consider the local
unitary transformation as follows:

σ′ = (I ⊗ eit�n·�σ/2)σ∗(I ⊗ e−it�n·�σ/2), (8)

which also ensures that σ′ is disentangled (or PPT) for
any t. The same discussion as the local filtering case gives

([�, log σ∗])B =
i

2
�hB · �σ = 0, (9)

with �hB being a real vector. Therefore, the closest disen-
tangled (and PPT) state must satisfy both Eq. (5) and
Eq. (9) and Alice’s counterparts. It is interesting to note
that, even though S(�||σ∗) �= S(�||σ∗

PPT ) where σ∗ and
σ∗

PPT is the closest disentangled and PPT state of �,
respectively, both σ∗ and σ∗

PPT satisfy the same equa-
tions of (5) and (9) (and Alice’s counterparts). The total
number of these equations in the d ⊗ d bipartite system
is 4(d2−1). Therefore, in principal, d4−1 independent
parameters in σ∗ can be reduced to d4−4d2+3 by solv-
ing those equations. Although both Eq. (5) and Eq. (9)
are not still tractable, the number of the remaining pa-
rameters is only three in the case of the simplest 2 ⊗ 2
systems.

To conclude, we study the extremal condition with
respect to the local filtering and obtained the set of e-
quations both the closest disentangled and PPT state
must satisfy without explicitly using the condition that
σ∗ must be disentangled (or PPT). We showed that the
local property of σ∗ is strongly related to the extremal
condition of the local filtering. Further, we obtained the
sufficient condition for which σ∗ has the same reduction
as the given entangled state �, and showed that the con-
dition has been rather widely satisfied.
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