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Abstract

This paper introduces quantum analogues of non-
interactive perfect and statistical zero-knowledge proof
systems. Similar to the classical cases, it is shown that
sharing randomness or entanglement is necessary for
non-trivial protocols of non-interactive quantum per-
fect and statistical zero-knowledge. It is also shown
that, with sharing EPR pairs a priori, the class of lan-
guages having one-sided bounded error non-interactive
quantum perfect zero-knowledge proof systems has a
natural complete problem. Non-triviality of such a
proof system is based on the fact proved in this pa-
per that the Graph Non-Automorphism problem, which
is not known in BQP, can be reduced to our com-
plete problem. Our results may be the first non-trivial
quantum zero-knowledge proofs secure even against dis-
honest quantum verifiers, since our protocols are non-
interactive, and thus the zero-knowledge property does
not depend on whether the verifier in the protocol is
honest or not. A restricted version of our complete
problem derives a natural complete problem for BQP.

1 Background

Zero-knowledge proof systems were introduced by
Goldwasser, Micali, and Rackoff [8] and have been
studied extensively from both complexity theoretical
and cryptographic viewpoints. Because of their wide
applicability in the domain of classical communica-
tion and cryptography, quantum analogue of zero-
knowledge proof systems is expected to play very im-
portant roles in the domain of quantum communication
and cryptography.

Very recently Watrous [13] proposed a formal model
of quantum statistical zero-knowledge proof systems.
To our knowledge, his model is the only one for a formal
model of quantum zero-knowledge proofs, although he
only considers the case with an honest verifier . The
reason why he only considers the case with an hon-
est verifier seems to be that even his model may not
give a cryptographically satisfying definition for quan-

tum statistical zero-knowledge when the honest veri-
fier assumption is absent. Indeed, generally speaking,
difficulties arise when we try to define the notion of
quantum zero-knowledge against cheating verifiers by
extending classical definitions of zero-knowledge in the
most straightforward ways. See [9] for a discussion
of such difficulties in security of quantum protocols.
Nevertheless, the model of quantum statistical zero-
knowledge proofs by Watrous is natural and reasonable
at least in some restricted situations. One of such re-
stricted situations is the case with an honest verifier,
which was discussed by Watrous himself. Another sit-
uation is the case of non-interactive protocols, which
this paper treats.

Classical version of non-interactive zero-knowledge
proof systems was introduced by Blum, Feldman, and
Micali [2], and was later studied by a number of
works [4, 5, 1, 6, 10, 3, 7, 12]. Such non-interactive
proof systems put an assumption that a verifier and
a prover share some random string, and it is known
that sharing randomness is necessary for non-trivial
protocols (i.e. protocols for languages beyond BPP) of
non-interactive quantum zero-knowledge proofs [6]. As
for non-interactive statistical zero-knowledge proof sys-
tems, De Santis, Di Crescenzo, Persiano, and Yung [3]
showed an existence of a complete promise problem for
the class NISZK of languages having non-interactive
statistical zero-knowledge proof systems. Goldreich,
Sahai, and Vadhan [7] showed another two complete
promise problems for NISZK, namely the Entropy Ap-
proximation (EA) problem and the Statistical Differ-
ence from Uniform (SDU) problem, from which they
derived a number of properties of NISZK such as evi-
dence of non-triviality of the class NISZK.

2 Our Results

This paper focuses on quantum analogues of non-
interactive perfect and statistical zero-knowledge proof
systems. The notion of quantum zero-knowledge used
in this paper is along the lines defined by Watrous [13].

First, similar to the classical cases, it is shown that



sharing randomness or entanglement is necessary for
non-trivial protocols (i.e. protocols for languages be-
yond BQP) of non-interactive quantum perfect and sta-
tistical zero-knowledge.

Next, it is shown that, with sharing EPR pairs a pri-
ori, the class of languages having one-sided bounded
error non-interactive quantum perfect zero-knowledge
proof systems has a natural complete promise problem,
which we call the Quantum State Closeness to Iden-
tity (QSCI) problem, informally described as follows:
given a description of a quantum circuit Q, is the out-
put qubits of Q is maximally entangled with the non-
output part or is it far from that? More formally, we
consider the following promise problem which is param-
eterized by constants α and β satisfying 0 ≤ α < β ≤ 1:

(α, β)-Quantum State Closeness to Identity

Input: A description of a quantum circuit Q acting
over the Hilbert space Hin = Hout ⊗ Hout, where
Hin consists of qin qubits and Hout consists of
qout ≤ qin qubits.

Promise: Letting ρ = trHout
(Q|0qin〉〈0qin |Q†), we

have either one of the following two:
(a) ‖ρ − I/2qout‖tr ≤ α,
(b) ‖ρ − I/2qout‖tr ≥ β.

Output: Accept iff ‖ρ − I/2qout‖tr ≤ α.

It is proved that (0, β)-QSCI is complete for the
class of languages having one-sided bounded error non-
interactive quantum perfect zero-knowledge proof sys-
tems for any constant 0 < β < 1. Note that our QSCI
problem may be viewed as a quantum variant of the
SDU problem, which is shown NISZK-complete by Gol-
dreich, Sahai, and Vadhan [7]. However, our proof for
the completeness of the QSCI problem is quite differ-
ent from their proof for the classical case at least in the
following two senses: (i) the completeness of the QSCI
problem is shown in a direct manner, while that of the
classical SDU problem was shown by using other com-
plete problems such as the EA problem, and (ii) our
proof for the completeness result is rather quantum in-
formation theoretical.

Using our complete problem, it is straightforward to
show that the Graph Non-Automorphism (GNA) prob-
lem (or sometimes called the Rigid Graphs problem)
has a non-interactive quantum perfect zero-knowledge
proof system of perfect completeness. Since the GNA
problem is not know in BQP, this gives an evidence of
non-triviality of our proof systems. One of the mer-
its of considering non-interactive models is that the
zero-knowledge property in non-interactive protocols
does not depend on whether the verifier in the proto-
col is honest or not. Thus, our results may be the first
non-trivial quantum zero-knowledge proofs secure even
against dishonest quantum verifiers.

It is also shown that the following restricted version
of our complete problem is complete for BQP for any
fixed constants 0 < α < β < 1:

(α, β)-One Qubit Quantum State Closeness to Identity

Input: A description of a quantum circuit Q acting
over the Hilbert space Hin = Hout ⊗ Hout, where
Hin consists of qin qubits and Hout consists of a
single qubit.

Promise: Letting ρ = trHout
(Q|0qin〉〈0qin |Q†), we

have either one of the following two:
(a) ‖ρ − I/2‖tr ≤ α,
(b) ‖ρ − I/2‖tr ≥ β.

Output: Accept iff ‖ρ − I/2‖tr ≤ α.

See [11] for formal definitions and detailed discus-
sions.
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