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We investigate the security of quantum cryptography using balanced homodyne detection against
the individual beamsplitting attack. Under the assumption that the eavesdropper can use a positive
operator valued measure (POVM) on the individual split signal, we estimate the upper bound for
the potentially leaked information by the loss. The key gain rate for a given optical loss is then
calculated. The secure key gain can be positive for a sufficiently large threshold if the loss is less

than unity.

Introduction- Quantum cryptography allows two par-
ties, Alice (the sender) and Bob (the receiver), to share
a random bit sequence, called key, which is unknown to
the eavesdropper Eve [1].

For any practical implementation of quantum cryptog-
raphy, degrade of the performance due to the transmis-
sion loss is important [2, 3]. The loss weakens the signal
intensity and at the same time it potentially causes the
information leakage to Eve. The loss is usually modeled
by a beamsplitter and the split signal is assumed to be
received by Eve. This eavesdropping strategy is called
beamsplitting attack.

The conventional security measure of quantum crypto-
graphic system is the secure key gain which represents the
secure key bits gain per signal [4, 5]. che Here we show
the key gain for a coherent state protocol [6] against the
individual beamsplitting attack, that is, Eve can use a
positive operator valued measure (POVM) for the indi-
vidual split signal.

Protocol and basic quantities- The protocol we study
here is a four state protocol using phase modulation of
weak coherent pulse and balanced homodyne detection
[6]. Alice randomly chooses one of the four coherent
states |ae?™™/?) with a > 0, m = 0,1,2,3 and sends
it to Bob. Then Bob randomly measures one of the two
quadratures I with k = 1,2. After the transmission of a
large number of pulses, Bob informs Alice of the choice of
quadratures through a classical channel. For the pulses
m—k = odd, Bob sets a threshold (> 0) and constructs
his bit sequence by the following decision:

1 if x> x
0 if z < —xo, (1)

(bit value) = {
where z is the result of Bob’s measurement.

In a simple loss model Bob receives the signal
|y/Mae™ /2. 0 < n < 1is the parameter characteriz-
ing the loss 1 — 7 (see Fig. 1). If m — k = odd, the
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FIG. 1: A simple loss model is a beamsplitter (BS). The loss
is characterized by the reflectivity of the BS1—n, 0 <n < 1.
In the beamsplitting attack we consider that the split pulse
is recieved by Eve. Thus the loss causes some information
leakage even if the signal is undisturbed.

probability that the measurement results x is given by
Prob(z) = — {6[72@7\/77_”)2] N 6[72(m+\/n_n)2]},
2T
(2)
where n = «@? is the pulse intensity (the mean photon

number per pulse). Therefore Bob’s Shannon informa-
tion gain per pulse is given by

2

% Z Prob(z)iap(z,nn), (3)

lz|>z0

where the factor 1/2 is the probability that the basis is
correct i.e., m — k = odd and

iag(w,n) = 1+ Prob(yv/n|z)log, Prob(yv/n|z)
+ Prob(—+/n|z)log, Prob(—v/n|z) (4)

is the Shannon information gain when z is triggered
where

(a1la)P
(@1la)l + (1] = @)
o )

1+ exp(—4ax)

Prob(a|zy) =

is the conditional probability that the state is |«) when
the measurement results z;.
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FIG. 2: (a) The optimal threshold z3?* for the values of the
pulse intensity n = 0.1,0.2,0.5,1.0, 1.5, 2.0 as functions of the
loss 1 — 7. (b) The key gain G at the optimal threshold.

Individual beamsplitting attack- Since Eve can perform
her measurement after she knows the basis information,
her task is to differentiate the binary phase shifted co-
herent pulse signals | £ /1 —na). For the differentia-
tion problem of two pure state, the POVM which gives
the minimum error rate (the maximum Shannon infor-
mation) also gives the maximum Renyi information gain
[7]. For some two pure states {|¥1), |¥2)}, the maximum
Renyi information gain is given by

IR, =log, (2 — 4q + 4¢°), (6)

where

q= 1- v1—|<lII1|\II2>|2 (7)
2

is the minimum error rate (Helstrom bound [8]). For the

coherent states {|/T — na),| —+/1 —na)} we obtain

Ipi(n,m) =log, (2 —exp[—4(1—n)nl),  (8)

where n = o?.

Secure key gain- Using the expressions (3) and (8) we
obtain the secure key gain (with ideal error correction)

[5]-

G(zo,n,n) = % Z Prob(w)(iAB(:U,nn)—Iﬁ)t(n,n)).

lz|>z0

9)

Since 0 < Ig)t < 1 for any finite n > 0 and isp is an
increasing function of z having the limit i4p — 1, (z —
o0) if n > 0, we can always find # which satisfies

iAB(jann) - Iﬁt("ﬂ?) 2 0 (10)

and a choice of the threshold zg > Z gives a positive
gain with Prob(z) > 0. Therefore secure key is always
obtainable by setting a sufficiently large threshold if only
7 differs from zero.

The summation taken over the region where inequal-
ity (10) is satisfied maximizes the gain. Thus, if equality
holds for some Z, the choice of the threshold z¢o = T gives
the maximum gain. Otherwise the inequality should hold
for any Z > 0 and thus the threshold zp = 0 gives the
maximum gain. The optimum threshold zy and gain
G(zgP,mqn) for n = 0.1, 0.2, 0.5, 1.0, 1.5 are shown
in Fig. 2

Summary- We have calculated the secure key gain for
a coherent state quantum cryptographic protocol against
the individual beamsplitting attack. The threshold en-
ables us to obtain a positive gain if the loss is less than
unity. In this sense the transmission distance is unlim-
ited. The optimal threshold is selected to maximize the
gain.
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