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We define and consider quantum random walks in higher dimensions as in the case of one
dimension studied by Konno, Namiki and Soshi (quant-ph/0205065 (2002)).
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The classical random walk (CRW) on the line is a well-
studied process. It plays an essential role in various fields
of solid-state physics, polymer chemistry, biology, astron-
omy, mathematics and computer science.

The time evolution of the CRW on Z is given by the
following way. At each step particle moves one position
left or right with probability p or q respectively, where Z
is the collection of integers. After n step, the probability
Pk(n) that the particle at position k at time n satisfies

Pk(n + 1) = pPk+1(n) + qPk−1(n)

In particular, if p = q = 1/2, then the CRW is called
symmetric.

In this paper, we consider a quantum variation of the
CRW called quantum random wallk (QRW) on Zd. Re-
cent years, QRWs have been investigated by many re-
seachers, for examples, Aharonov et al.[1], Ambainis et
al.[2], Ambainis et al.[3], Bach et al.[4], Dür et al.[5],
Kempe [6], Konno [7,8], Konno, Namiki and Soshi [9,17],
Konno et al.[16], Mackay et al.[10], Moore and Russell
[11], Nayak and Vishwanath [12], Travaglione and Mil-
burn [14], Yamasaki, Kobayashi and Imai [15].

First, we consider a one-dimensional QRW (the
Hadamard walk) whose time evolution is given by the
following Hadamard transformation (see Nielsen and
Chuang [13]):

H =
1√
2

[
1 1
1 −1

]

The Hadamard matrix H is unitary. The Hadamard walk
is a quantum generalization of a symmetric CRW in one
dimension with an additional degree of freedom called
the chirality. The chirality takes values left and right,
and means the direction of the motion of the particle.
The evolution of the Hadamard walk is given by the fol-
lowing rules. At each time step, if the particle has the
left chirality, it moves one step to the left, and if it has
the right chirality, it moves one step to the right.

More precisely, the Hadamard matrix H acts on two
chirality states |L〉 and |R〉:

|L〉 → 1√
2
(|L〉 + |R〉), |R〉 → 1√

2
(|L〉 − |R〉)

where L and R refer to the right and left chirality state
respectively. In fact, define

|L〉 =
[

1
0

]
, |R〉 =

[
0
1

]

so we have

H|L〉 =
1√
2
(|L〉 + |R〉), H|R〉 =

1√
2
(|L〉 − |R〉)

We introduce P and Q matrices as follows:

P =
1√
2

[
1 1
0 0

]
, Q =

1√
2

[
0 0
1 −1

]

with H = P+Q. Remark that P (resp. Q) represents the
particle moves to the left (resp. right) with equal prob-
ability. Let Ψ(k, n) = t [ΨL(k, n),ΨR(k, n)] (t stands for
the transposed operator) be the two component of prob-
ability amplitudes of the particle being at position k at
time n, with the chirality left (upper component) or right
(lower component). Then, the dynamics for Ψ is given
by

Ψ(k, n + 1) = PΨ(k + 1, n) + QΨ(k − 1, n)

It should be noted that P and Q are useful tools in the
study of iterates of H.

The set of initial qubit states is defined by

Φ =
{

ϕ =
[

α
β

]
∈ C2 : |α|2 + |β|2 = 1

}

The symmetry of the probability distribution for the one-
dimensional Hadamard walk depends heavily on the ini-
tial qubit state ϕ (see Konno et al. [8]).

An analysis of the one-dimensinal QRW can be ex-
tended to higher dimensions. We define a generalization
of the Hadamard transformation as

Hd =

d︷ ︸︸ ︷
H ⊗ H ⊗ · · · ⊗ H

where ⊗ stands for the tensor product. We consider the
set of initial qubit states is given by

Φ(d) = {ϕ1 ⊗ ϕ2 ⊗ · · · · · · ⊗ ϕd : ϕi ∈ Φ (i = 1, 2, · · · , d)} ,



that is, Φ(d) is d-fold product space of Φ.

From now on, we discuss the two-dimensional
Hadamard walk. The definition of Hd implies

H2 = H ⊗ H =
1√
2

[
1 1
1 −1

]
⊗ 1√

2

[
1 1
1 −1

]

=
1
2




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




As in the one-dimentional case, we introduce P1, P2, P3

and P4 matrices:

P1 ≡ 1
2




1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0


 = P ⊗ P,

P2 ≡ 1
2




0 0 0 0
1 −1 1 −1
0 0 0 0
0 0 0 0


 = P ⊗ Q,

P3 ≡ 1
2




0 0 0 0
0 0 0 0
1 1 −1 −1
0 0 0 0


 = Q ⊗ P,

P4 ≡ 1
2




0 0 0 0
0 0 0 0
0 0 0 0
1 −1 −1 1


 = Q ⊗ Q.

We assume that P1 represents the particle moves to the
up. Similarly, P2, P3 and P4 represent the particle
moves to the right, left and down, respectively. Each Pi

(i = 1, 2, 3, 4) expresses the particle moves to one of four
directions with equal probability. Then, we can calculate
probability amplitude Ψϕ

n(k, l) at position (k, l) ∈ Z2 of
the Hadamard walk Xϕ

n at time n starting from initial
qubit state ϕ ∈ Φ(2) at position (0, 0).

For instance, we consider Ψϕ
2 (i, j) and P (Xϕ

2 =
(i, j)) (i, j = 0, 1, 2). Then we get the probability ampli-
tude Ψϕ

2 (i, j) and the probability P (Xϕ
2 = (i, j)) (i, j =

0, 1, 2) as follows:

Ψϕ
2 (0, 2) = (P1P1)ϕ, Ψϕ

2 (2, 0) = (P2P2)ϕ,

Ψϕ
2 (−2, 0) = (P3P3)ϕ, Ψϕ

2 (0,−2) = (P4P4)ϕ,

Ψϕ
2 (1, 1) = (P1P2 + P2P1)ϕ,

Ψϕ
2 (−1, 1) = (P1P3 + P3P1)ϕ,

Ψϕ
2 (1,−1) = (P2P4 + P4P2)ϕ,

Ψϕ
2 (−1,−1) = (P3P4 + P4P3)ϕ,

Ψϕ
2 (0, 0) = (P1P4 + P4P1 + P2P3 + P3P2)ϕ

Using Ψϕ
2 (i, j), we obtain the probability distribution at

time step 2:

P (Xϕ
2 = (i, j)) = |Ψϕ

2 (i, j)|2 = Ψϕ
2 (i, j)∗Ψϕ

2 (i, j)

where * means the adjoint operator.
At poster session, I discuss necessary and sufficient

conditions of symmetry of probability distribution for the
d-dimensional QRW as in the one-dimensional case stud-
ied by Konno, Namiki and Soshi [9].
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