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Abstract
The hitting probability problem of quantum random walks with absorbing boundaries is discussed and with the path

method the explicit formulae of the generating functions for the amplitudes of them are shown.
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1 Introduction

Recently the study of quantum random walks is widely developed ([1, 2, 3, 4, 5, 6, 7]). Though differences between
classical random walks and quantum walks exist, the notion of “path” is still valid to analyze certain features of quantum
walks. At first the definition of path is introduced briefly. Secondly we show the simple method using path to obtain the
generating functions for absorbing boundaries problem.

As shown in [4, 5, 6] each path of random walks corresponds directly to that of quantum walks. LetU =
(

a b
c d

)

be a unitary2 × 2 matrix and setP =
(

1 0
0 0

)
U =

(
a b
0 0

)
andQ =

(
0 0
0 1

)
U =

(
0 0
c d

)
. Since these matrices

represent the action of quantum walks, the classical path of random walks corresponds to the product ofP andQ.
To study the combinations ofP andQ we needR = PQ andS = QP . We obtain Table 1 of computationsP, Q, R

andS in the case of Hadamard matrix.

P Q R S
P P R R P
Q S −Q Q −S
R P −R R −P
S S Q Q S

Table 1:P, Q, R andS generate the group for Hadamard walk. The factor1/
√

2 is neglected.

By such table, we can write down the certain probability amplitude with the linear combinations ofP, Q, R, S, and
from the fact that they are linearly independent all we have to do is to determine the coefficients ofP, Q, R, S for certain
set of paths.

2 Generating functions for absorbing problems

In this section we study the generating functions for absorbing problems. Though the results are partially included in
[2], the method we use here makes simple and straightforward interpretation from classical random walks to quantum
walks.

Let x > 0 and think about Hadamard walk (for simplify) starting atx. We consider the first hitting amplitude and
probability at0. Setpn, qn, rn andsn be the coefficients of the first hitting paths starting atx by n-step.

It is clear that such paths have the formP . . . P or P . . . Q, i.e. P must appear at the left. Therefore the problem
becomes simple becauseqn = sn = 0 and all we have to consider is only the value ofpn andrn. Observe the relation(

p
(x)
n r

(x)
n

0 0

)
U =

(
p
(x−1)
n−1 r

(x−1)
n−1

0 0

)
UP +

(
p
(x+1)
n−1 r

(x+1)
n−1

0 0

)
UQ



andUP = P ∗U, UQ = Q∗U , we have

p(x)
n = (p(x−1)

n−1 + r
(x−1)
n−1 )/

√
2 and r(x)

n = (p(x+1)
n−1 − r

(x+1)
n−1 )/

√
2

for Hadamard walk. The generating functionspx(z) =
∑∞

n=1 p
(x)
n zn andrx(z) =

∑∞
n=1 r

(x)
n zn (|z| ≤ 1) satisfy the

following form:

px(z) =
z√
2
(px−1(z) + rx−1(z)) , rx(z) =

z√
2
(px+1(z) − rx+1(z)).

From this we havepx(z) − √
2(z − 1/z)px−1(z) − px−2(z) = 0 and the two solutions areλ± = z2−1±√

z4+1√
2z

.
Because the boundary conditions forpx(z) are p1(z) = z and limx→∞ |px(z)| < ∞, the explicit formula is the
following:

px(z) = zλx−1
+ andrx(z) =

−1 +
√

z4 + 1
z

λx−1
+ .

Next we consider the two absorbing boundaries at0 andN case. Supposep (N)
x (z) andr

(N)
x (z) satisfy

p(N)
x (z) = Azλ

x−1
+ + Bzλ

x−1
− , r(N)

x (z) = Czλ
x−N+1
+ + Dzλ

x−N+1
− ,

all we have to do is to determine the coefficientsAz, Bz , Cz, Dz by using boundary conditions:p(N)
1 (z) = z and

r
(N)
N−1(z) = 0. From the boundary conditions, we haveCz + Dz = 0 andAz + Bz = z, so

p(N)
x (z) =

(z

2
+ Ez

)
λx−1

+ +
(z

2
− Ez

)
λx−1
− , r(N)

x (z) = Cz(λx−N+1
+ − λx−N+1

− )

whereEz = Az − z/2 = z/2 − Bz . To obtainEz andCz , we user1(z) = (p2(z) − r2(z))z/
√

2 andrN−2(z) =
(pN−1(z) − rN−1(z))z/

√
2 = pN−1(z)z/

√
2. Therefore

Cz(λ+ − λ−) =
z√
2

{(z

2
+ Ez

)
λN−2

+ +
(z

2
− Ez

)
λN−2
−

}

Cz(λN−2
+ − λN−2

− ) =
z√
2

{(z

2
+ Ez

)
(−1)N−1λ+ +

(z

2
− Ez

)
(−1)N−1λ− + Cz(λN−3

+ − λN−3
− )

}

Solving the above equations gives

Cz =
z2

√
2
(−1)N−2(λN−3

+ − λN−3
− )

×
{

(λN−2
+ − λN−2

− )2 − z√
2
(λN−2

+ − λN−2
− )(λN−3

+ − λN−3
− ) − (−1)N−3(λ+ − λ−)2

}−1

Ez =
z

2

[
(−1)N−1(λ2

+ − λ2
−) + (λN−2

+ + λN−2
− )(

z√
2
(λN−3

+ − λN−3
− ) − (λN−2

+ − λN−2
− ))

]

×
{

(λN−2
+ − λN−2

− )2 − z√
2
(λN−2

+ − λN−2
− )(λN−3

+ − λN−3
− ) − (−1)N−3(λ+ − λ−)2

}−1

.
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