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In NMR quantum computers, nuclear spins in But, addition can be executed without ancillary qubits by
molecule are used as qubit. Since the sensitivity of NM&sing quantum Fourier transform (QFT) [6].
is so low that we cannot observe a single nuclear spin butQFT of |a) and |[a+ b) are expressed d#(a)) and
we need 18 or more molecules. Spins are initially inj¢(a+ b)) respectively. Theng(a)) can be transformed
the thermal equilibrium state. Unless the temperature isi@o |¢(a + b)) by phase shifts without ancillary qubits.
K, each spin is in mixed state . At room temperature, the This addition require®(n?) stepsO(n?) for QFT’s and
population diference is merely about 1®and the state O(n) for phase shifts.
is almost maximally mixed. Even at low temperature the Next, we consider inequality judging. When a number
state is still highly mixed. Anyway, we must extract thé is subtracted frona,
signal from qubits initially in0)®".

Exhaustive averaging [1] is known to work for this pur- |0Y|b) =3 {|0r>]|+t;_ @ (b=2a) Q)
pose, but it requires™experiments and the advantage of 2" —(a-Db) =D (b<a)
quantum computation is lost. that s, ifb < a, the most significant qubit is changed from

Recently new initialization based on typical states |g) to|1), else unchanged. We can use the most significant
proposed [2]. Although this method is demonstrated yubit for inequality judging. Therefore inequality judging
making pseudo typical states [3], thieient algorithm s performed with an ancillary qubit arf@(n?) steps (for
for initialization has not been shown. In this paper, wgddition).
discuss #icientinitialization algorithm of NMR quantum  |n Ref. [4], both addition and inequality judging are
computers. performed withO(n) operations an@®(n) ancillary qubits.

We considem-qubit system in which each qubit is inBut here they are carried out with(n?) operations with
|0) with probability po and in|1) with p1 = 1 — po. The no or one ancillary qubit. Therefore we can perform Schu-
population of|0)*" becomes exponentially small with macher compression witB(n*) steps andlogn] ancil-
But the population of the typical ensemla in which lary qubits. It satisfies conditions required for initializa-
the number of|0)’'s is npy and that of|1)’s is np; is tion algorithm.

(ngo)pgp‘) p;™ ~ 1. Since the number of elements &  In Fig. 1, we show an example of circuit in the case of
is ngo) ~ 2™ we can express the statesdhwith only N =4, P1 = 1/4. In this case, typical states 4907,

nH qubits, whereH = —polog po — p1log s is the en- 0010, |0100, |1000. They are co_mpresseq ini@000,
tropy. Therefore we can make remaining. — H) qubits 10003, [0010, |0013) with one ancillary qubit. Also the
set to the same stat@®"H). S|mulgt|<_)_n r_esu_lt of the circuit in I_:l_g._l is shown_ln Fig. 2

Such a process can be regarded as Schumacher corY |n_|t|aI|zat|on, thermal equilibrium state is trans-
pression, and the polynomial time algorithm is alreadfrmed into

known [4]. The algorithm can be performed with in- , —nH(po)
equality judgings and additions. The required time is P _Q(O)QQ(@ lez W®|x><x|

O(n®) while n + [logn] clean ancillary qubits are needed. ancilla ni1-Hl )
However, restriction specific to initialization is that the i N _
number of ancillary qubits must be less than or equal to * ;‘ PSS ) M ; Q(J)w&)’

y J

ancilla

log[poly(n)]. The known algorithm [4] does not satisfy
it. The in-place algorithm based on thetdrent principle whereQ(x) is probability which ancillary qubit's state is
has been proposed, which clai@énlogn) steps but al- |x). Therefore in the block where ancillary qubits|s,
lows some errors [5]. ficient in-place algorithm without n[1 — H] qubits are initialized. This is the similar situa-
error has not been known. tion as dfective pure state by logical labeling [7]. Conse-
In Ref. [4], n ancillary qubits are used for addition.quently, the signal from a particular block can be extracted
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Figure 1: Example of circuit in the casemE 4, p; = 1/4.
to |0).
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Figure 2: The simulation result of circuit in Fig. 1. top
the spectra of typical states (most left qubit is ancillal

qubit initialized to|0)). bottom: the spectra after com-
pression. The last two qubits are with no signal because
they are completely random and next two qubits are iriz]

tialized to|00).
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The most significant qubit is an ancillary qubit initialized

in at mosin experiments by the method similar to Ref. [8].
Accordingly, total cost i€O(n°) and[logn] uninitialized
ancillary qubits.

In conclusion we have developed tHaent initializa-
tion algorithm for NMR quantum computation. We show
that the cost required by this algorithm@¢n®) steps and
[logn] ancillary qubits. That does not require exponen-
tial cost. Therefor, true quantum computation becomes
possible in NMR quantum computer.
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