Initialization Algorithm of NMR Quantum Computers

A. Kataoka ${ }^{\dagger}$ and M. Kitagawa ${ }^{\text {¹ }}$

Graduate School of Engineering Science, Osaka University CREST, Japan Science and Technology Corporation
1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 Japan
${ }^{\dagger}$ akataoka@laser.ee.es.osaka-u.ac.jp, ${ }^{\dagger \dagger}$ kit @qc.ee.es.osaka-u.ac.jp

In NMR quantum computers, nuclear spins in a molecule are used as qubit. Since the sensitivity of NMR is so low that we cannot observe a single nuclear spin but we need 10^{14} or more molecules. Spins are initially in the thermal equilibrium state. Unless the temperature is 0 K , each spin is in mixed state. At room temperature, the population difference is merely about 10^{-5} and the state is almost maximally mixed. Even at low temperature the state is still highly mixed. Anyway, we must extract the signal from qubits initially in $|0\rangle^{\otimes n}$.

Exhaustive averaging [1] is known to work for this purpose, but it requires 2^{n} experiments and the advantage of quantum computation is lost.

Recently new initialization based on typical states is proposed [2]. Although this method is demonstrated by making pseudo typical states [3], the efficient algorithm for initialization has not been shown. In this paper, we discuss efficient initialization algorithm of NMR quantum computers.
We consider n-qubit system in which each qubit is in $|0\rangle$ with probability p_{0} and in $|1\rangle$ with $p_{1}=1-p_{0}$. The population of $|0\rangle^{\otimes n}$ becomes exponentially small with n. But the population of the typical ensemble \mathcal{A} in which the number of $|0\rangle$'s is $n p_{0}$ and that of $|1\rangle$'s is $n p_{1}$ is $\binom{n}{n p_{0}} p_{0}^{n p_{0}} p_{1}^{n p_{1}} \sim 1$. Since the number of elements of \mathcal{A} is $\binom{n}{n p_{0}} \sim 2^{n H}$, we can express the states in \mathcal{A} with only $n H$ qubits, where $H=-p_{0} \log p_{0}-p_{1} \log p_{1}$ is the entropy. Therefore we can make remaining $n(1-H)$ qubits set to the same state, $|0\rangle^{\otimes n(1-H)}$.

Such a process can be regarded as Schumacher compression, and the polynomial time algorithm is already known [4]. The algorithm can be performed with inequality judgings and additions. The required time is $O\left(n^{3}\right)$ while $n+\lceil\log n\rceil$ clean ancillary qubits are needed. However, restriction specific to initialization is that the number of ancillary qubits must be less than or equal to $\log [\operatorname{poly}(n)]$. The known algorithm [4] does not satisfy it. The in-place algorithm based on the different principle has been proposed, which claims $O(n \log n)$ steps but allows some errors [5]. Efficient in-place algorithm without error has not been known.

In Ref. [4], n ancillary qubits are used for addition.

But, addition can be executed without ancillary qubits by using quantum Fourier transform (QFT) [6].

QFT of $|a\rangle$ and $|a+b\rangle$ are expressed as $|\phi(a)\rangle$ and $|\phi(a+b)\rangle$ respectively. Then $|\phi(a)\rangle$ can be transformed into $|\phi(a+b)\rangle$ by phase shifts without ancillary qubits.

This addition requires $O\left(n^{2}\right)$ steps; $O\left(n^{2}\right)$ for QFT's and $O(n)$ for phase shifts.
Next, we consider inequality judging. When a number b is subtracted from a,

$$
|0\rangle|b\rangle \xrightarrow{-a} \begin{cases}|0\rangle|b-a\rangle & (b \geq a) \tag{1}\\ \left|2^{n+1}-(a-b)\right\rangle=|1\rangle|x\rangle & (b<a)\end{cases}
$$

that is, if $b<a$, the most significant qubit is changed from $|0\rangle$ to $|1\rangle$, else unchanged. We can use the most significant qubit for inequality judging. Therefore inequality judging is performed with an ancillary qubit and $O\left(n^{2}\right)$ steps (for addition).

In Ref. [4], both addition and inequality judging are performed with $O(n)$ operations and $O(n)$ ancillary qubits. But here they are carried out with $O\left(n^{2}\right)$ operations with no or one ancillary qubit. Therefore we can perform Schumacher compression with $O\left(n^{4}\right)$ steps and $\lceil\log n\rceil$ ancillary qubits. It satisfies conditions required for initialization algorithm.

In Fig. 1, we show an example of circuit in the case of $n=4, p_{1}=1 / 4$. In this case, typical states are $|0001\rangle$, $|0010\rangle,|0100\rangle,|1000\rangle$. They are compressed into $|0000\rangle$, $|0001\rangle,|0010\rangle,|0011\rangle$ with one ancillary qubit. Also the simulation result of the circuit in Fig. 1 is shown in Fig. 2

By initialization, thermal equilibrium state is transformed into

$$
\begin{align*}
& \rho^{\prime}= Q(0) \tag{2}\\
& \underbrace{|0\rangle\langle 0|}_{\text {ancilla }} \otimes(\sum_{x} 2^{-n H\left(p_{0}\right)} \underbrace{|0\rangle\langle 0|}_{n[1-H]} \otimes|x\rangle\langle x| \\
&\left.+\sum_{y \notin \mathcal{A}} P(y) S|y\rangle\langle y| S^{\dagger}\right)+\sum_{j \neq 0} Q(j) \underbrace{|j\rangle\langle j|}_{\text {ancilla }} \otimes \rho_{j}
\end{align*}
$$

where $Q(x)$ is probability which ancillary qubit's state is $|x\rangle$. Therefore in the block where ancillary qubits is $|0\rangle$, $n[1-H]$ qubits are initialized. This is the similar situation as effective pure state by logical labeling [7]. Consequently, the signal from a particular block can be extracted

Figure 1: Example of circuit in the case of $n=4, p_{1}=1 / 4$. The most significant qubit is an ancillary qubit initialized to $|0\rangle$.

Figure 2: The simulation result of circuit in Fig. 1. top: the spectra of typical states (most left qubit is ancillary qubit initialized to $|0\rangle$). bottom: the spectra after compression. The last two qubits are with no signal because they are completely random and next two qubits are initialized to $|00\rangle$.
in at most n experiments by the method similar to Ref. [8]. Accordingly, total cost is $O\left(n^{5}\right)$ and $\lceil\log n\rceil$ uninitialized ancillary qubits.

In conclusion we have developed the efficient initialization algorithm for NMR quantum computation. We show that the cost required by this algorithm is $O\left(n^{5}\right)$ steps and $\lceil\log n\rceil$ ancillary qubits. That does not require exponential cost. Therefor, true quantum computation becomes possible in NMR quantum computer.

References

[1] E. Knill, I. Chuang and R. Laflamme, Phys Rev. A, 57, pp. 3348-3363 (1998).
[2] M. Kitagawa, "Initialization, Entanglement and Scalability in Bulk-Ensemble NMR Quantum Computation," EQIS'01 (2001).
[3] T. Nishimura, A. Kagawa, A. Kataoka and M.Kitagawa, "Initialization of NMR quantum computer at low temperature using data compression process," ISQC'02.
[4] R. Cleve and D. P. DiVincenzo, Phys. Rev. A 54, pp. 2636-2650 (1996).
[5] L. J. Schulman and U. Vazirani, in 31st ACM Symposium on Theory of Computing (1999), pp.322-329.
[6] Thomas G. Draper, "Addition on a Quantum Computer," quant-ph/0008033 (2000).
[7] N. Gershenfeld, I. L. Chuang, Science 275, pp. 350356 (1997).
[8] M. Kitagawa, in Quantum Coherence and Decoherence (Proc. 6th ISQM Tokyo '98), pp.33-36, Elsevier, 1999.

