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In NMR quantum computers, nuclear spins in a
molecule are used as qubit. Since the sensitivity of NMR
is so low that we cannot observe a single nuclear spin but
we need 1014 or more molecules. Spins are initially in
the thermal equilibrium state. Unless the temperature is 0
K, each spin is in mixed state . At room temperature, the
population difference is merely about 10−5 and the state
is almost maximally mixed. Even at low temperature the
state is still highly mixed. Anyway, we must extract the
signal from qubits initially in|0〉⊗n.

Exhaustive averaging [1] is known to work for this pur-
pose, but it requires 2n experiments and the advantage of
quantum computation is lost.

Recently new initialization based on typical states is
proposed [2]. Although this method is demonstrated by
making pseudo typical states [3], the efficient algorithm
for initialization has not been shown. In this paper, we
discuss efficient initialization algorithm of NMR quantum
computers.

We considern-qubit system in which each qubit is in
|0〉 with probability p0 and in |1〉 with p1 = 1 − p0. The
population of|0〉⊗n becomes exponentially small withn.
But the population of the typical ensembleA in which
the number of|0〉’s is np0 and that of |1〉’s is np1 is(

n
np0

)
pnp0

0 pnp1

1 ∼ 1. Since the number of elements ofA
is

(
n

np0

)
∼ 2nH , we can express the states inA with only

nH qubits, whereH = −p0 log p0 − p1 log p1 is the en-
tropy. Therefore we can make remainingn(1− H) qubits
set to the same state,|0〉⊗n(1−H).

Such a process can be regarded as Schumacher com-
pression, and the polynomial time algorithm is already
known [4]. The algorithm can be performed with in-
equality judgings and additions. The required time is
O(n3) while n + �logn� clean ancillary qubits are needed.
However, restriction specific to initialization is that the
number of ancillary qubits must be less than or equal to
log[poly(n)]. The known algorithm [4] does not satisfy
it. The in-place algorithm based on the different principle
has been proposed, which claimsO(n logn) steps but al-
lows some errors [5]. Efficient in-place algorithm without
error has not been known.

In Ref. [4], n ancillary qubits are used for addition.

But, addition can be executed without ancillary qubits by
using quantum Fourier transform (QFT) [6].

QFT of |a〉 and |a + b〉 are expressed as|φ(a)〉 and
|φ(a + b)〉 respectively. Then|φ(a)〉 can be transformed
into |φ(a + b)〉 by phase shifts without ancillary qubits.

This addition requiresO(n2) steps;O(n2) for QFT’s and
O(n) for phase shifts.

Next, we consider inequality judging. When a number
b is subtracted froma,

|0〉|b〉 −a→
|0〉|b − a〉 (b ≥ a)

|2n+1 − (a − b)〉 = |1〉|x〉 (b < a)
(1)

that is, ifb < a, the most significant qubit is changed from
|0〉 to |1〉, else unchanged. We can use the most significant
qubit for inequality judging. Therefore inequality judging
is performed with an ancillary qubit andO(n2) steps (for
addition).

In Ref. [4], both addition and inequality judging are
performed withO(n) operations andO(n) ancillary qubits.
But here they are carried out withO(n2) operations with
no or one ancillary qubit. Therefore we can perform Schu-
macher compression withO(n4) steps and�logn� ancil-
lary qubits. It satisfies conditions required for initializa-
tion algorithm.

In Fig. 1, we show an example of circuit in the case of
n = 4, p1 = 1/4. In this case, typical states are|0001〉,
|0010〉, |0100〉, |1000〉. They are compressed into|0000〉,
|0001〉, |0010〉, |0011〉 with one ancillary qubit. Also the
simulation result of the circuit in Fig. 1 is shown in Fig. 2

By initialization, thermal equilibrium state is trans-
formed into

ρ′ =Q(0) |0〉〈0|︸︷︷︸
ancilla

⊗
(∑

x

2−nH(p0) |0〉〈0|︸︷︷︸
n[1−H]

⊗|x〉〈x|

+
∑
y�A

P(y)S |y〉〈y|S †
)
+

∑
j�0

Q( j) | j〉〈 j|︸︷︷︸
ancilla

⊗ρ j

(2)

whereQ(x) is probability which ancillary qubit’s state is
|x〉. Therefore in the block where ancillary qubits is|0〉,
n[1 − H] qubits are initialized. This is the similar situa-
tion as effective pure state by logical labeling [7]. Conse-
quently, the signal from a particular block can be extracted
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Figure 1: Example of circuit in the case ofn = 4, p1 = 1/4. The most significant qubit is an ancillary qubit initialized
to |0〉.
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Figure 2: The simulation result of circuit in Fig. 1. top:
the spectra of typical states (most left qubit is ancillary
qubit initialized to |0〉). bottom: the spectra after com-
pression. The last two qubits are with no signal because
they are completely random and next two qubits are ini-
tialized to|00〉.

in at mostn experiments by the method similar to Ref. [8].
Accordingly, total cost isO(n5) and�logn� uninitialized
ancillary qubits.

In conclusion we have developed the efficient initializa-
tion algorithm for NMR quantum computation. We show
that the cost required by this algorithm isO(n5) steps and
�logn� ancillary qubits. That does not require exponen-
tial cost. Therefor, true quantum computation becomes
possible in NMR quantum computer.
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